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Chapter 1

Introduction

1.1 About the present Ph.D. work

The purpose of this work As far as X-ray absorption phenomena are concerned,
the available theoretical descriptions and calculation methods are rather behind the
experiments, in terms of performance. In other words, experimental data are often not
fully understood or ill interpreted. The current Ph.D. work aims to reduce the gap
between the experiments and the theory behind, in order to achieve a better agreement
between the two. Within the FDMNES code, I contributed to the improvement of
existing methods - the implementation of a self-consistent scheme - and to the develop-
ment of new ones, like the LSDA+U and the time dependent density functional theory
(TDDFT) methods. I performed numerous calculations on simple, model compounds
to test the accuracy and the reliability of our new developments. We compared the
output of the FDMNES calculations with the ones issued by other codes or methods.
No calculation method is well-suited for all the possible materials. Another main di-
rection of this work was to test the limits of each method and its range of applicability.
Thanks to these studies, we were able to set some default settings and calculation meth-
ods which make FDMNES friendlier for less experienced users. Finally, I performed
calculations on complex compounds and provided interpretation of experimental data.

The aim of this manuscript The aim of this manuscript is to introduce the reader
to the ab initio (�rst principles) X-ray absorption calculation techniques. I provide
simple physical pictures, I explain the formalism and the potential approximations
or limitations, I detail the implementation of the methods and �nally I give explicit
examples. I shall focus on the single particle approach with an underlying self-consistent
procedure, as well as on the LSDA+U and the TDDFT methods. I will show examples
of success and failures of each method and discuss their range of applicability. For
some speci�c compounds (NdMg, manganites) I will show results of various calculation
methods and investigate which is the best one to �t the experiment and why.

The structure of this manuscript The �rst part of the manuscript (the �rst two
chapters and the �rst section of the third one) is an introduction to the �eld and to the
FDMNES calculation code. The remaining part (from section 3.2 to the end) contains
the theoretical developments achieved during this Ph.D. degree.

1
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This manuscript is organized as follows. In the remaining part of this chapter I
shall review the use of core spectroscopy for material science and the corresponding
numerical calculations. In chapter 2 I treat the interaction of X-rays with matter in
the second quantization formalism, I provide a uni�ed description of the related types
of absorption spectroscopies and �nally I explain the tensor treatment of these. In
section 3.1 I give an overview and explain the underlying formalism of the features
already implemented in the FDMNES package. The reason behind this choice is that
their mastery is a pre-requisite, in order to understand the further developments in the
code.

The remaining part of chapter 3 is dedicated to an application, i.e. a complete study
of the resonant di�raction spectra of NdMg revealing magnetic and orbital orderings.
The rest of the manuscript describes the numerical developments to the FDMNES code
that were implemented during this Ph.D: the self-consistent procedure (chapter 4), the
LSDA+U (chapter 5) and the TDDFT methods (chapter 6).

I chose to move the heavy formulae to the appendix, provided their absence in the
main part of the manuscript does not impede the comprehension of the aspects that I
treat. The topics in the appendix are listed in its beginning.

1.2 Synchrotron radiation and the latest trends in material

science

The current advancements in technology stimulate a growing interest in the under-
standing of novel materials. Large e�orts, at the same time theoretical and experi-
mental, are being invested to gain insight into the fundamental physics governing these
materials.

X-ray absorption spectroscopy are powerful tools for solving crystallographic struc-
tures (coordination numbers, local symmetries etc.) and investigating the properties
of the sample, like the phase distribution, magnetism, orbital hybridisation or valence
states. Moreover, the latter can equally be studied in a dynamic regime by the time-
resolved core spectroscopies. Therefore the use of synchrotron radiation has become a
milestone for material science.

In a �rst category of materials of major interest one �nds those which are potentially
interesting for microelectronics, computer and energy industries and concern the stor-
age and reading of information. These materials are carriers of so-called extraordinary
properties. Giant and colossal magnetoresistence compounds, multiferroics, magnetic
nanostructures, dilute magnetic materials, molecular magnets, magnetic heterostruc-
tures and high Tc superconductors are just some of the classes of materials whose
physics is still not well understood. One hopes that an exact knowledge of their ground
state would both clarify the mechanisms driving these extraordinary e�ects and allow
the elaboration of other materials exhibiting similar properties.

Perovskite-type manganites exhibit the colossal magnetoresistence e�ect for certain
values of the doping (see section 7 for details). It is believed that colossal magnetore-
sistence is an outcome of the interplay of several electron correlation driven e�ects,
i.e. charge, orbital and magnetic order [30]. To discover the exact mechanism, one
needs to determine the ground state of these compounds. The synchrotron techniques
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in di�raction mode are a very good candidate for this purpose, as one may gain insight
into any of these breakings of symmetry by cleverly choosing the di�raction scattering
vectors.

In the �eld of spintronics, the quest for new materials exhibiting spin dependant trans-
port properties speeds up with the increasing demand of technological developments.
Standard reading devices are made up of multilayers containing in-plane magnetic com-
pounds separated by isolators. A more recent trend is to create heterostructures with
an out of plane (perpendicular) magnetic anisotropy and several successful attempts
have been reported. In this sense, there is a particular interest for the study of het-
erostructures exhibiting the exchange bias, i.e. a shift of the hysteresis loop due to
the exchange coupling between a ferromagnetic and a antiferromagnetic layer [82]. To
discover and synthesize new similar materials, one needs to thoroughly understand
the physics at the layers' interface. Microscopically, this can be done by using X-ray
absorption techniques [117].

The spin torque phenomenon (i.e. the coupling between a spin polarized current
and the magnetization of a ferromagnetic layer) is a promising alternative to applying
magnetic �elds to reading and writing information in a spintronic device. The recently
developed pulsed X-ray laser allow a time-resolved study of spin dynamics in such spin
torque devices [18,29].

Some very recent developments [17] involve the study of the behaviour of magnetic
layers subjected to an external electric �eld, or to a spin polarised current. Such a layout
would allow the study of multiferroics by resonant di�raction (RXD) techniques, which
are insensitive to the electric �eld.

A new emerging �eld called "orbitronics" has been proposed as an alternative to the
more conventional spintronics. For "orbitronics", angular momentum is the spintronics'
equivalent to the spin. The orbitronic devices are some metal oxide/superconductor
heterostructures whose electronic structure at the interface, in terms of the spatial
orientation of hybridized orbitals, can be controlled with an electric �eld. Thus, the
current running through the structure can be switched on and o�, depending on whether
the orbital moment carried by the conduction electrons penetrates the interface or
not [28]. Once again, X-ray absorption spectroscopy are the best means to gain insight
into the microscopical behaviour at the interface.

The control of transition metal oxides interfaces o�ers the opportunity to exploit
strongly correlated systems for the development of new application devices. E�orts are
needed for a quantitative understanding of the phenomena at the interface, and X-ray
spectroscopy are a good candidate for this task [43].

Molecular magnets (i.e. molecules combining a large spin with an easy magnetization
axis) are another system of high interest in modern physics, as they o�er the possibility
of spin-dependent transport. Characterizing the magnetic behaviour is fundamental to
the �eld of molecular spintronics. As long as sub-monolayers of magnetic atoms or
molecules are concerned, the X-ray magnetic circular dichroism (XMCD) technique is
the only available tool for characterization [69].

A second large category of materials of major interest are the biological molecules
studied by the life sciences - proteins, organic and metallo-organic compounds, nucleic
acids, viruses etc. Given the potential pharmaco-medical applications of these materi-
als, the �eld of macromolecular crystallography has become a major stream in material
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science. Determining the structure of these macromolecules is a delicate issue, due
to the huge number of atoms from which they are formed from and to the polymor-
phisms these compounds may be subjected to. Such a macromolecule often contains
thousands, up to several hundreds of thousands of atoms in the case of viruses. The res-
olution of the structure proves to be a di�cult task, even when several complementary
synchrotron techniques are being employed.

Besides the structure resolution, in situ dynamics of reactions is another issue at stake
in biological and chemical physics. These in operandis (i.e. real time) studies allow
the understanding and eventually the control of the chemical reaction. By performing
time resolved X-ray absorption experiments one can explore the relationship between
structure, kinetics and functionality [108]. In the very same spirit, a detailed monitoring
of the catalysis reaction would ultimately help to improve this technique.

Synchrotron radiation may be used on samples subjected to special conditions (high
temperatures, high pressures) in order to study their behaviour to such extreme expo-
sure. This technique is particularly important for geological and mineralogical stud-
ies [53].

1.3 X-rays for the study of materials

Spectroscopy is the study of emission, absorption or scattering of radiation with
respect to its energy. Currently, one deals with light - gamma rays, X-rays, ultraviolet,
visible or infrared, depending on frequency - but one may equally use other particles,
such as electrons, neutrons, muons etc. When performing a spectroscopic experiment,
one expects to get information on the sample by analysing the outgoing particles (whose
nature is not necessarily the same as the incident ones').

One can obtain di�erent kinds of information on the sample, depending on the type
and wavelength of the measured radiation. In the IR range, one probes the molecular
(vibrational and rotational) energy states, UV and visible radiation probe the valence
electron states, X-rays are sensitive to the core electronic levels whereas gamma radia-
tion senses the energy levels of the nuclei. The mean free path of the detected particles
indicates whether one measures a surface or a bulk e�ect.

To learn information at the atomic scale, and to determine the crystal structures,
one needs to use either X-rays, electrons or neutrons in the range corresponding to
interatomic distances.

Standard X-ray di�raction is a method for solving crystallographic structures. When
the energy of the incoming photon beam is tuned as to �t the absorbing edge (the
binding energy of a core level) of some chemical element in the sample, an anomalous,
resonant e�ect appears on the di�raction spectra. Hence, di�raction intensities are
severely modi�ed. One might equally �nd a non zero signal for forbidden re�ections,
i.e. whose extinction in the o�-resonant regime is ordered by the space group. This
speci�c di�raction technique is called Resonant X-ray Di�raction (RXD).

Compared to RXD, neutron di�raction techniques are not directly sensitive to the
asphericity of the electron cloud. Despite the wider impact and spread of the latter,
the former is a more appropriate probe of the electronic structure when an electric
quadrupole moment is expected.
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One often argues that neutron-based techniques are universal in the sense that they
are the best tool to solve crystallographic and magnetic structures. This is generally
true at low atomic numbers or if one uses a single crystal with a large volume, an
imperative for neutron studies. If this is not the case (di�culty to grow a single crystal,
thin �lms and interfaces, high pressure studies, nano and one dimensional objects) the
X-ray techniques are the best solution.

In sofar as magnetic studies are concerned, X-ray absorption techniques are a viable
alternative to neutrons. In the early '70s, a pioneering study of Brunel and Bergevin [33]
proved that photons can couple directly to electron spins via the interaction spin -
magnetic �eld, and thus can reveal di�raction patterns of magnetic superstructures (for
instance the antiferromagnets). Nevertheless, apart from the resonant regime, di�racted
intensities are very small. The idea of performing magnetic scattering experiments
at the absorption edge dates back to Blume in 1985 [16] and was accomplished by
Namikawa the very same year [79]. Two years later, Schüz discovered the circular
magnetic dichroic e�ect [100], i.e. absorption spectra for right and left circular polarized
incident light are quantitatively di�erent. The dichroic e�ect is expected to measure
the spin and orbital momentum of the empty electronic state, hence the development
of the so-called sum rules (see for instance [112]). A great theoretical e�ort is required
to improve these rules.

RXD techniques mainly provide structural information, either crystallographic or
magnetic. If one wishes to explicitly study excitations such as the lattice, charge and
spin density waves (whose Fourier transforms are the phonons, plasmons and magnons,
respectively), one must appeal to the Resonant X-ray Inelastic Scattering (RIXS). Up
to now, it has been believed that inelastic neutron scattering is the only technique that
could investigate these excitations. The very recent, high resolution RIXS gives very
promising results [20, 21], which are in good agreement with the neutron data [21, 32].
We equally mention the recently established, hybrid XMCD-RIXS method [107] that
allows the investigation of the 3d transition elements magnetic moment all by exploiting
the advantages of hard (i.e. high energy) X-rays.

In principle one may perform a scattering experiment on a single molecule. In practice
the scattered intensity is too small to allow any quantitative analysis. One needs to grow
a periodic structure in order to enhance the scattering signal. This is no longer necessary
if the di�raction experiment is performed with pulsed X-rays instead of a continuous
beam - a breakthrough introduced by the last generation of X-ray sources [66].

1.4 The synchrotron techniques

1.4.1 The X-ray sources

The development of X-ray absorption spectroscopy has become experimentally pos-
sible (on a large scale) with the advent of synchrotrons. The discovery of synchrotron
radiation was a major scienti�c breakthrough of the '80s. Synchrotron radiation is
emitted by a bunch of electrons at constant energy (≈ GeV) which circles a storage
ring. What was previously considered a waste product appears to be a high quality
source of polarized X-rays.

Contrary to ordinary, laboratory X-ray sources, the synchrotron radiation's spectrum
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is continuous, and thus allows extended energy scans. Its intensity is high enough to
allow the observation of time dependent phenomena as well as the measurement of
dilute samples. The synchrotron beam can be focused down to µm size, has small
divergence and is tunable to a well de�ned polarization (linear, circular or elliptic).
Here are some instructive �gures: with the �ux of the third generation synchrotron'
radiation (1012 - 1013 photons per second) one can acquire a di�raction pattern within
one second.

The fourth generation of X-ray sources (most of them are still under construction)
introduced the free electron laser (X-FEL) capability, which is based on a high quality
electron beam and a long undulator. The X-FEL emitted radiation is coherent, thus
leading to an increase of several orders of magnitude in brightness, as compared to
the standard synchrotron radiation. From now on, it is possible to record a di�raction
pattern in about 10−13s and e�orts are being made to decrease this limit.

The coherence of X-FEL makes it possible to split the beam into short pulses, going
from 1 femtosecond down to 1 attosecond. This facility gives the opportunity of taking
snapshots of ultrafast dynamics all by keeping the atomic resolution [66].

The following sections aim to introduce the reader to the most common synchrotron
experimental techniques, with a particular emphasis on the X-ray absorption Near Edge
Structure (XANES), RXD and XMCD. We shall explain the edge and polarization
indexing conventions, as they are referred to all through this manuscript.

1.4.2 X-ray Absorption Near Edge Structure

Photons (i.e. electromagnetic waves) interact with electrons in the matter and thus
can provide information on the electronic properties.

When an incident beam hits a sample, according to the Beer-Lambert law, the per-
centage of the transmitted beam reads as:

I

I0
= e−µ(E) l (1.1)

where I0 and I are the intensities of the incident and the transmitted beam, respectively,
l is the thickness of the sample and µ(E) is the energy dependent absorption coe�cient
of the sample. The link to the atomic cross sections is:

µ(E) =
1

V

∑
i

σi (1.2)

where V is the volume of the sample and σi the absorption cross section of atom i.

X-ray Absorption Near Edge Structure (XANES) and the closely related Extended
X-ray Absorption Fine Structure (EXAFS) measure µ's variation with respect to the
energy, through an absorbing edge. The di�erence between XANES and EXAFS is
uniquely related to the energy range the spectra is measured in: up to 50 eV after
the edge for XANES, whereas EXAFS designates the extended region, i.e. from 50 to
approximately 2000 eV after the edge. XANES and EXAFS merge under the acronym
XAS, standing for X-ray Absorption Spectroscopy.

The idea behind XAS is that by tuning the incident beam's energy through the ab-
sorption edge one gets to excite a core electron to an empty electronic state. Electronic
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Figure 1.1: Each edge is named with a letter indicating the energy
level and a �gure designing the total angular momentum.

and geometric structures being entangled, XAS probes both of them. XAS is a selective
technique, both chemically (each atomic species has well de�ned core level binding en-
ergies) and orbitally, through the selection rules. This means that from all the possible
combinations, only a few transitions are allowed from a quantum mechanics point of
view (see section 2.1).

The absorption spectrum of an isolated atom is a simple step function (sometimes
containing simple atomic structures), i.e. one probes the density of electronic states
of the vacuum. As we shall detail further in this manuscript (see section 2.3.3) the
oscillations (the �ne structures) in the XANES and EXAFS spectra are due to the
atomic environment around the absorbing atoms. From an EXAFS spectra one can
get quantitative information concerning the coordination number and atomic distances.
The XANES spectra is more sensitive to the local symmetries around the absorbing
atoms at the expense of atomic distances. More precisely, the information contained in
the XANES region is used to re�ne the structure one has already �t with the EXAFS
data. XAS techniques can be performed on either solids or �uids - as local probe
spectroscopy, they do not require any long range order.

At an absorbing edge of a chemical species, the energy of the incident photon beam
is such that a core electron is ejected out of the absorbing atom. Edges are indexed
increasingly according to the energy and angular momentum quantum numbers de-
scribing the core level (�gure 1.1). Each edge is named with a letter indicating the
energy level - K for n = 1, L for n = 2 etc. - and a �gure designing the total angular
momentum - L1 for 2s, L2 for the 2p1/2, L3 for the 2p3/2 etc. 1

1Historically, the spectroscopic notations showing the quantization of angular momentum have an
intuitive meaning: s for simple, p for principal, d for di�use and f for fundamental. All the rest (g,h,i
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Figure 1.2: The experimental absorbtion spectra of nickel: above,
the K edge of pure nickel; below, the L2,3 edges of pure nickel and
of nickel in NiO. The form of the absorption edge depends strongly
on both the core level and the atomic environment of the absorbing
nickel.

In a �rst approximation, the XANES spectrum can be interpreted in terms of the
Golden Rule, i.e. a result of the perturbation theory (see chapter 2.1):

σ(ω) =
πωe2

ε0ch̄
2

∑
j

∑
f,g

|〈ψf |~ε ~r|ψ(j)
g 〉|2 ρ(E) δ

(
h̄ω − (E − E(j)

g )
)

(1.3)

where σ(ω) is the absorption cross section, h̄ω the photon energy and the other con-
stants have the usual meaning. The absorption signal thus depends on ρ(E), the density
of states of the continuum. Absorption occurs when the photon energy h̄ω equals the
di�erence of energy between the two concerned levels, a condition re�ected in the Dirac
δ function. The initial state ψg and the �nal state ψf are coupled via the photon �eld,
whose polarization is ~ε. Here the electromagnetic �eld has been described semiclasi-
cally, in the electric dipole approximation. ψg being an atomic-like, localized state, we
thus introduced the j index to describe the absorbing atom.

etc.) are ordered alphabetically.
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In the simplest (one body) picture, the absorption spectrum is a speci�c projection
of the density of the unoccupied electronic states on the absorbing atom (eq. 1.3).
According to the dipole allowed selection rule, at the K edge one probes the p states,
whereas at the L2,3 edges one looks at the d states (and, to a lesser extent, the s ones).
The general aspect of the spectrum is thus a signature of the localized (L2,3 edges of
nickel in NiO), partially localized (L2,3 edges of bulk nickel) or delocalized (K edge of
nickel) character of the �nal states (�gure 1.2). The more localized the structures in
the absorption spectrum, the more sensitive one is at the local electronic structure at
the expense of the geometrical one.

The X-ray absorption spectroscopy are essentially anisotropic, i.e. one is sensitive to
the orientation of the photon beam's polarisation with respect to the sample. Powders,
as well as single crystals possessing cubic symmetry, and in the dipolar approximation
(see section 2.1), give an isotropic signal. In the rest of this manuscript, all experimental
and calculated XANES spectra are already spatially averaged, unless we explicitly
specify otherwise.

In practice, the XANES signal is either obtained as log I/I0 by a direct measurement
of the transmitted beam, or by the measurement of a secondary decay e�ect. The latter
can be �uorescence or emitted electrons. Fluorescence is the emission of a secondary
photon during the re-arrangement of the electrons, as they are trying to �ll the core
hole. The Auger e�ect consists in the emission of electrons following the absorption
of the secondary photon. The secondary e�ect measurement mode's resolution is less
accurate, nevertheless for certain samples (opaque, diluted) the direct method cannot
be used. Whatever the detection mode, the form of the recorded signal is globally
the same, unless the self-absorption e�ects are strong. By self-absorption we mean
the sample absorbing the X-ray �uorescent photons, which causes an alteration of the
spectrum, in the sense that the strong absorption features are attenuated.

Characteristic timescales of the absorption process Modeling the absorption
process becomes possible if one divides it into several subprocesses, governed by di�erent
timescales. The �rst step is the absorption of the photon, or, equivalently, the creation
of the core hole (t1 ≈ 10−20 s). The core hole's lifetime is given by the probability
of its �lling (t2 ≈ 10−15 − 10−16 s). The electron cloud reacts to the advent of the
core hole in the so-called screening process, within t3 ≈ 10−15 − 10−16 s. The ejected
core electron travels out of the excited atom on a timescale depending on its kinetic
energy (t4 ≈ 10−15 − 10−17 s). Once outside the atom, the photoelectron is subject
to various elastic and inelastic (mainly plasmons) scattering mechanisms, with the
latter limiting its lifetime (t5 ≈ 5 · 10−15 − 10−16s). The slowest dynamics involved is
the interaction with the lattice (the scattering on phonons, with a characteristic time
t6 ≈ 10−13 − 10−14 s). As t5 << t6, the photoelectron sees the lattice distortions
only in the form of snapshots. Consequently, the inclusion of temperature e�ects in
calculations reduces to a statistical averaging procedure.

The screening process The fact that several processes have characteristic timescales
of the same order of magnitude makes it delicate to construct a theoretical model.
Within the single particle approaches the screening of the core hole by the surrounding
electron cloud is being taken into account in a static way, i.e. it remains unchanged
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during the entire absorption process. In the XANES region, where the photoelectron
has a low kinetic energy, the �nal state rule applies: the core hole is fully screened,
i.e. one removes the core electron and places an extra one on the �rst available valence
orbital of the absorbing atom. Physically, this means that the photoelectron has not
yet quit the atom and still sees the core hole. In the EXAFS range the initial state

rule applies: due to its high kinetic energy, the photoelectron's lifetime is longer than
the hole's, thus it sees the ground state electronic structure. In some cases one has
to perform a partial screening (0.8 - 0.9) to better �t the experiment. As we shall
explain further, an accurate scheme for the core-hole screening can be achieved only in
the framework of genuine many body calculation methods, with dynamical screening
emerging naturally from the theory.

1.4.3 Resonant X-ray Di�raction

Resonant X-ray Di�raction (RXD) is a technique even more selective than XANES.
Besides the chemical and orbital selectivity proper to every absorption spectroscopy
technique, RXD may preferentially exploit speci�c atomic sites by an appropriate choice
of the re�ection. Increased selectivity can be obtained with a proper choice of the
incoming and outgoing polarizations.

When far from the absorbing edge the scattering occurs on the whole electron cloud
(which is nearly spherical) and not on a speci�c orbital state. Therefore the o�-resonant
(i.e. Thomson) di�raction is quasi-isotropic. When close to resonances, this is no
longer the case and azimuthal (polarization) e�ects are generally strong. Equally, at
resonance, the outgoing polarization may be di�erent from the incoming one, contrary
to the Thomson, charge scattering case. Note that the magnetic scattering generally
has an azimuthal dependence, and may alter the orientation of the polarisation even
in the o�-resonant case.

Figure 1.3 illustrates the conventions for a RXD experiment. ~Q is the scattering
vector, ~kin (~kout) is the incoming (outgoing) wavevector and the plane de�ned by ~Q,
~kin and ~kout is called the di�raction plane. The polarization ~ε of the electric �eld is
generally chosen as perpendicular to the di�raction plane (σ polarization) or contained
in the plane (π polarization). Ψ is the azimuthal angle. The zero azimuth corresponds
to the σ polarization along Oy.

1.4.4 X-ray Magnetic Circular Dichroism

Historically, the term "natural dichroism" (non-magnetic) points to a change of colour
in a mineral's appearance when the linear polarization of the incident light is rotated.
Microscopically, this phenomenon is due to a charge anisotropy within the sample. As
charge and spin are coupled, dichroism will ultimately investigate the magnetism of the
sample.

The incident photon's coupling to the electron spin, in the resonant regime, o�ers
the opportunity to perform advanced X-ray magnetic studies. The X-ray Magnetic
Circular Dichroism (XMCD) is based on the fact that a given spin orientation will
scatter di�erently the right and left circular polarized light. The XMCD signal is given
by the subtraction of the absorptions corresponding to the two circular polarizations.
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Figure 1.3: The conventional notations for a RXD experimental
setup: ~Q is the scattering vector, ~kin (~kout) the incoming (out-
going) wavevector. The polarization ~εσ is perpendicular to the
di�raction plane, whereas ~επ is contained in the plane.

To have a signal, the sample must be spin-aligned. To see a XMCD signal the sample
must not be antiferromagnetic, in which case the contributions from the two helicities
cancel. Generally speaking, the time reversal breaking of symmetry makes XMCD even
more selective than the related XANES technique.

One would not detect a XMCD signal if it weren't for the spin-orbit coupling. In the
X-ray range, the interaction of the electromagnetic wave with the matter is entirely
due to the electric �eld it carries. The electric �eld does not directly interact with the
electron spin, but with its angular momentum. As the latter is coupled to the spin
through the spin-orbit interaction, the incoming photons probe the magnetism of the
sample.

XMCD allows one to trace the atomic magnetism, both in size and orientation, by
means of the sum rules. In a simple physical picture, when absorption occurs, the pho-
ton transfers its angular momentum (+h̄ or -h̄ for right and left circular polarization,
respectively) to the core electron, which will probe some continuum state. The transi-
tion amplitude is di�erent whether the angular momentum of the �nal state is parallel
or antiparallel to the photoelectron's. The XMCD L2 and L3 signals have opposite
signs.

1.5 State of the art in the calculations

In some simple cases, X-ray absorption spectroscopic data can be interpreted by the
comparison with reference spectra and by interpreting the chemical shift. This is no
longer the case for complex, multi-phased compounds, or when one deals with new
phases. In this instance a theoretical support is needed to interpret the spectra.

Theoretical spectroscopy aims to explain the origin of each structure in the spectrum
and provide quantitative information on the sample: charge and magnetic moment of
the atoms, inter-atomic distances, symmetries, phase or magnetic domain distribution
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etc. Another target would be to suggest experimental setups the pursuit of which would
reveal new information on the sample.

A realistic modelling of a many body system is a very di�cult task, especially when
excited states are involved. The many body system's evolution is governed by the
Schrödinger-like equation (SE) - Schrödinger or Dirac equation -, whose solving is either
ab initio or via a model Hamiltonian. The ab initio methods are often based on the
density functional theory (DFT) plus a mean �eld approximation. We shall see in the
following paragraphs that there exist more sophisticated ab initio calculations making
less severe approximations. On the other hand, the model Hamiltonians simplify the
exact one in a less crude way, but introduce parameters to quantify the relative strengths
of the various interactions they aim to describe.

In either case, there is no exact analytical solution and one needs to construct a
numerical one. Numerical solutions are basically electronic structure calculations that
need to take into account the core hole. Therefore one �nds the same plethora of
methods as for the standard electronic structure calculations.

There is a great need of codes which are able to reproduce the near edge structure
within a reasonable calculation time. Providing a satisfactory description of such com-
plex electronic scattering phenomena is a theoretical challenge and numerous attempts
have been reported. They are either well established, thoroughly tested methods -
DFT or multiplet theory calculations [8, 13, 26, 34, 40, 56, 76, 80, 85] - or more recent
works requiring further investigation - the multichannel method [62], the time depen-
dent density functional theory (TDDFT) or the Bethe Salpeter equation (BSE) based
methods [106].

The one body methods

The DFT methods are ab initio, i.e. they are based on �rst principles and do not use
essential, adjustable parameters. They are tailored for a multiatomic treatment and
thus account for the in�uence of the distant atomic neighbourhood. The philosophy
behind these methods is to solve the SE with the single particle potential suggested
by the DFT description of exchange-correlation. The DFT methods provide a fair
treatment of the extended states and in some sense of the partially delocalized ones
(�gure 1.2) but fail to describe the highly-correlated ones, where the interaction with
the core hole is strong. This is due to the relatively long timescale associated to the
localized level, as compared to the core hole's lifetime.

To solve the electronic structure, one can make approximations on the spacial range
and distribution of the single particle potential. According to this criterion, the DFT
methods are either full potential - the �nite di�erences method (FDM) [56], the full
potential multiple scattering theory (FP-MST) [9,49], the full potential Koringa-Kohn-
Rostoker (KKR) method [40], the full potential linear augmented plane waves method
[85] - or subject to approximations. The ubiquitous mu�n tin (MT) approximation
assumes that the crystal potential has spherical symmetry around the atoms, within
the so-called MT sphere, and is constant between adjacent spheres. The most common
methods exploiting this approximation are the MT-MST [13, 56, 80], the linear mu�n
tin orbital (LMTO) [124] and the MT KKR [40] methods. The MT approximation
provides fair results for the close-packed structures, but often fails to describe the
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sparse materials. The more sparse the material, the more important it is to treat the
scattering in the interstitial space and to consider other terms than the spherical one
in the development of the potential inside the MT sphere.

DFT calculations can be performed either in the real space [8,13,56,62,80,118] or in
the reciprocal one [26,40,85,124]. Note that for where absorption calculations are con-
cerned, the real space basis seems to be a natural choice. First, these techniques can be
performed on molecules or liquids, where no periodicity is involved. Second, even when
performed on single crystals, the core hole breaks the periodicity. Third, the spacial
range probed in X-ray absorption experiments is limited to the mean free path of the
photoelectron (≈ 5-10 Å) and thus, in a real space description, the scattering problem
is localized. Nevertheless reciprocal space calculations give similar results, provided a
supercell has been built: the absorbing atom is treated as an impurity breaking the
periodicity of the crystal [113]. The great majority of reciprocal space calculations are
self-consistent [26, 40, 85, 124]. The self-consistency for real space calculations is less
trivial, due to technical reasons discussed in chapter 4. The only existing real space,
X-ray absorption calculation codes are FDMNES [56] and FEFF [8].

The exchange-correlation functionals All the DFT methods of condensed matter
physics use a local exchange-correlation functional, most often in the form of the local
density approximation (LDA) or the semi-local one (GGA). Note that this is not the
case of the DFT methods employed in quantum chemistry, which treat the FP case and
employs more sophisticated, often parametrised descriptions of the correlation. The
LDA approximates the exchange energy to that of a homogeneous electron gas (see
for instance the beautiful explanations in [25]), whereas the correlation contribution
is described by a local analytical form (see, for instance, reference [86]). Despite its
reductionism, LDA gives good results when the physical system has a band behaviour.
The LDA exchange - correlation functional has been improved based on the works of
Hedin and Lundqvist [51], who proposed a parametrized, GW derived way to take into
account the inelastic processes su�ered by the photoelectron - the so-called self-energy
correction to the exchange-correlation potential.

Note that the DFT methods support an extension of the LDA allowing the calcu-
lation of spin polarized energy bands, i.e. the so-called local spin density approxima-
tion (LSDA). In the absence of the spin-orbit coupling, two separate calculations are
conducted for each spin. Magnetic behaviour can be described, since the exchange-
correlation is a functional of both the density and the spin polarization.

The self-energy corrections The self-energy corrected exchange - correlation po-
tentials have some energy dependence, unlike the LDA one. The locality of all these
functionals leads to a decoupling of the equations of motion describing the electrons and
maps the system into a non-interacting one yielding the same density. The emerging
(non-interacting) quasiparticles feel an e�ective potential whose form depends on the
functional. These kinds of approaches are called either the quasiparticle approximation
(QA) or the independent particle approximation (IPA), depending on whether one uses
an energy dependent functional or not. IPA and QA are generally referred to as the
single particle (one body) approach.

A complete GW calculation [84] provides a more accurate treatment of the self-energy,
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albeit an increased computational e�ort. For X-ray absorption one does not expect an
improvement signi�cant enough to justify the use of such a resource consuming method.
For empty electron levels, the GW correction often reduces to a global energy shift [113].
Although this may correct the false o�set of the absorption spectra predicted by the
ground state DFT, we feel that a GW correction for the X-ray absorption calculations
is no end in itself. Nevertheless, a GW calculation may be a good starting point for
the implementation of more advanced features, as the BSE methods [106].

The quasiboson model There are structures in the spectra that cannot appear in
an IPA calculation but are reproduced in a GW one: the plasmonic peaks and the
multiple electron excitations (shake o� and shake on processes). A way to include
these in an X-ray absorption calculation would be to convolute the IPA spectrum with
a spectral function that accounts for the many body processes. Such a function has been
constructed based on a generalisation of the GW approach [27], the so-called quasiboson
model. In this model, the electrons interact with the electron-hole excitations, which
are treated as bosons. The quasiboson model goes beyond the GW approximation by
making a distinction between the intrinsic inelastic losses (due to the instantaneous
creation of the core hole) and the extrinsic ones (mainly the scattering on plasmons).
As intrinsic and extrinsic losses are indistinguishable from a quantum mechanical point
of view, they interfere. Contrary to the GW, the quasiboson model gets to treat
this interference. The authors claim that its e�ects are particularly strong at the
edge, where the two contributions cancel each other. Consequently, the quasiboson
model would explain why the multiple electron excitations are scarce near the edge,
where the intensity of the primary channel in the spectral function (the single particle
peak) in enhanced at the expense of the broader queue describing the multiple electron
excitations. The quasiboson model has been implemented in the FEFF code [93].

The shortcomings of the DFT methods The one body approaches' major draw-
back is that they cannot handle accurately the electronic correlations. By correlations
we mean all electron - electron interactions beyond the mean-�eld picture. Note that
the generally accepted de�nition of correlation, in the sense of quantum mechanics, is
that it contains all the e�ects beyond the Hartree-Fock approximation. Nevertheless,
the Hartree-Fock calculation is usually not tractable for extended systems, as the DFT
functional describing the exact exchange is highly non-local. Consequently, one cannot
distinguish between pure correlation and exchange contributions, since we are not able
to calculate the latter. Therefore when refering to correlation, we chose to include both
e�ects: exchange and pure correlation. In this manuscript, the term "correlation" is
used in the sense of the Dynamical Mean Field Theory.

In correlated materials, the DFT underestimates the gap at the Fermi level. This may
be partially �xed by the adding of a Hubbard-like correction (the LDA+U method),
as we shall see further (chapter 5). Another issue of the DFT-LDA based calculations
is that they cannot correctly describe the excited states, as the DFT is a ground
state theory. To account for the core hole some ad hoc prescriptions are used (see for
instance the explanations for the �nal state rule in section 1.4.2). All these kinds of
adjustments are static, i.e. they do not take into account the relaxation of the electron
cloud surrounding the core hole. We shall come back to this point later in this very
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section.

Some features in an experimental spectrum cannot be reproduced by single particle
calculations, in particular the plasmonic and excitonic structures. Plasmons (i.e. the
quanta of the collective oscillations of the electron gas) are correlation - driven e�ects
that appear beyond the one body framework. Excitonic structures are equally missed
by the single particle approximation, as they are due to the Coulomb interaction of
electrons and holes, a two particle process. For bound excitons, the excitonic peak
physically corresponds to the internal degrees of freedom of an interacting electron -
hole pair, in the same way as a bound electron - positron system (the hydrogen atom)
has discrete internal energy levels.

The atomic methods

To improve the description of the X-ray absorption process one should leave be-
hind the one body theories and explore the many-body framework. Correlations are
particularly strong when the wavefunction of the core electron overlaps with those of
the absorber's valence electrons, i.e. when the absorber's valence states have a pro-
nounced atomic character (for instance, the transition metal oxides). In the case of
open shell systems (S 6= 0) this leads to the so-called multiplet e�ect (see, for instance,
reference [34]). The multiplets are the discrete spectral structures appearing when
correlations split a single particle state. Multiplets are a signature of the many-body
e�ects.

The multiplet methods In the case of X-ray absorption, the transition of the pho-
toelectron to an atomic-like unoccupied state can be described in terms of electron -
hole con�gurations, whose multiplicity will depend on the initial and the �nal states'
manifold. For instance, at the L2,3 edges of a metal in an oxide compound the dipolar
signal is due to the 2p6 3dN → 2p5 3dN+1 transitions [125]. The initial state rule IPA
only treats the case where the d electrons are passive, i.e. no charge transfer from
the oxygen atoms (also called ligands) occurs. Consequently, one of the strengths of
the multiplet methods is that they can deal with the charge transfer e�ects, i.e. a
phenomenon consisting in charge �uctuations in the initial and �nal state.

Secondly, within the multiplet methods, the arrival state 3dN+1 is no longer degen-
erated: several con�gurations 2p5 3dN+1 are thus taken into consideration. Numerous
interactions, like the spin-orbit coupling, the crystal �eld or other electron-electron in-
teractions lift the degeneracy of the �nal state's con�gurations. This gives rise to a
multiplet structure: a main line and its satellites. In zero external �eld, the lowest
energy multiplet is indicated by Hund's rules. The multiplet e�ect may be masked by
the core level's width, hence, except for the pre-edge structures, it is di�cult to see
a multiplet e�ect at K edges. The appearance of the multiplet structure is a conse-
quence of having considered advanced correlations, whereas the energy position and
the spectral weight of the multiplets depend on the strength of the various interactions
described in the Hamiltonian. The ligand �eld theory gives a parametrized description
of the localized electronic states but fails to describe the delocalized ones, which can
no longer be characterized in terms of con�gurations. This method is limited in the
number of atoms and it may disregard the e�ects due to the atomic neighbourhood.
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Nevertheless e�orts are underway to eliminate this shortcoming and one expects it to
no longer be a problem in the near future. As the origin of multiplet structure lies in
the localized states, one expects the atomic multiplet e�ect to be of the same order of
magnitude in both atoms and solids. Note that the ligand �eld calculations are not ab
initio as they use adjustable parameters whose values depend on the local symmetry
of the absorbing site.

The cluster many-body method A very related, genuine many-body calculation
technique is the so-called cluster many-body calculation. It consists in the solving of
the parametrised, second quantization Hamiltonian [75]. Compared to the multiplet
calculation, this method is less limited in terms of number of atoms. Its parameters
are taken from experiments and are independent of the local symmetries [76].

The con�guration interaction method The con�guration interaction (CI) method
is another ab initio method used to calculate X-ray spectra [55]. The CI methods scale
very unfavourably with the system's size [84], thus one refers to them as atomic meth-
ods. One considers all the particle - hole excited con�gurations, with the hole lying
on the core level concerned by the spectroscopy. Contrary to the multiplet method,
which employs atomic orbitals, the CI uses the molecular ones (check reference [55] for
a detailed comparison of the two methods). This method takes into account the mixing
between the several transition channels (the so-called con�guration interaction) and is
naturally tailored to describe charge transfer. The CI method has been employed to
calculate the L2,3 edge branching ratio of the 3d elements [120]. The authors concluded
that the L2 (L3) structure in the absorption spectrum does not correspond exclusively
to transitions from the 2p1/2 (2p3/2) core levels, as predicted by the single particle
approaches. This conclusion will be later validated by all the TDDFT calculations of
the X-ray absorption spectrum (see the discussion in chapter 6).

The essential shortcoming of the atomic methods (CI and multiplets) is that they
ignore the band modulation of the continuum. This modulation is the e�ect of the
non-zero size of the calculation cluster: the photoelectron su�ers multiple scatterings
on the neighbouring atomic shells and the backscattered wavefunctions interfere (see
section 2.3.1). On the other hand, the complementary single particle DFT methods
succeed in this, but fail to describe the eventual atomic features.

The inclusion of many-body e�ects in the band description

The LDA+U method Correlations can be partially introduced in the one body
calculation schemes by adding an on site, Coulomb repulsion corrective term U to a
usual LDA calculation. U is often taken as a parameter, even if it may be calculated
from �rst principles. Its value is element dependent and typically of several eV. The
details of this method will be explained elsewhere (section 5). The LDA+U is a �rst
attempt at merging an ab initio method (DFT-LDA) with a model Hamiltonian (the
Hubbard Hamiltonian): delocalized states are treated within the former, whereas the
localized ones are treated by the inclusion of a Hubbard-like term in the Hamiltonian.
Note that although the LDA+U is successful in describing the Mott insulators [15], its
application to weakly correlated metals is questionable [87].
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The Hamiltonian methods One expects to override the one body approximations'
limitations by taking explicitly into account the many-body e�ects in the Hamiltonian.
A somehow rudimentary attempt to do so [89] is based on the theory developed by
Nozières and De Dominicis [83]. They simplify the many body Hamiltonian by taking
into account the Coulomb interaction only between the core electron and the valence
ones, then apply the equation of motion technique. In this way both the itinerant
electrons and the core hole are being considered. The authors get to validate the �nal
state rule for the XANES spectroscopy and the initial state rule for the photoemission.
Although this model makes a step beyond the single particle approaches and accounts
for the core hole, at least to some extent, it is too rudimentary to reproduce multiplet
structures, dynamic screening or excitonic e�ects.

The time dependent density functional theory methods TDDFT is a ab initio
framework that can, in principle, account for some of these e�ects [84]. In theory
TDDFT is an exact method. One is nevertheless brought to make assumptions on
the form of the exchange correlation kernel, a key ingredient of the formalism. The
kernel hides the richness of the physics that is reproducible by the TDDFT calculation.
For instance, the time dependent equivalent of the LDA (TDLDA) inherits the same
limitations as its ground state counterpart - for instance, it gives a wrong o�set of the
absorption spectra. Among its drawbacks, we note TDLDA's incapacity to describe
the charge transfer and thus to treat the open-shells correctly. The TDLDA takes
(partially) into account the core - hole: within this approach, the Coulomb interaction
naturally mixes the transition channels, leading to a redistribution of intensities. More
generally, this e�ect takes place when some two edges are close in energy (L23 or M45

edges). In a sense, this redistribution has the same origin with the one predicted by
the CI calculations, but quantitatively it gives more reliable results than those of the
atomic description. The advantage of the TDLDA over CI is that it can also handle
the continuum states, which are ignored in the atomic approach.

A �rst attempt to implement a TDDFT method for X-ray absorption in extended
systems has been reported by Schwitalla and Ebert in 1998 [101]. They propose a
fully relativistic KKR method with a local kernel. As in the case of the multichannel
method, they get a good agreement for the L2,3 branching ratio of the early transition
metals and not such a good result for the late ones. A similar calculation method,
fully relativistic and using the same TDLSDA formalism, has been reported the same
year [64].

One should say that the TDDFT methods have been exploited more by the quan-
tum chemists than by the condensed matter physicists. The reference in [111] contains
a TDDFT study of the core electron excitations from the point of view of quantum
chemistry. The authors used the TDDFT features in the ADF code to calculate the
L2,3 edges of Ti in the TiCl4 molecule by considering no spin-orbit coupling, neither
for the core states, nor for the �nal ones. Surprisingly, they succeed in reproducing
the experimental data despite such a drastic assumption. Quantum chemistry calcula-
tions employ basis sets that are more re�ned then the ubiquitous Hartree-Fock atomic
wavefunctions used in solid state physics. By increasing the accuracy in the choice of
basis sets, the L3 structure is not altered, but the higher energy L2 peak is. The same
behaviour occurs when choosing various forms of the exchange-correlation potential for
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the ground state calculation, a pre-step of the TDDFT one. Whether these features
would hold for extended systems, and by considering the spin-orbit coupling, remains
an open question.

In 2003, Ankudinov, Nesvizhskii and Rehr reported the implementation of a TDDFT-
MST method [7], which was later integrated in the FEFF package [92]. They made
several choices of the kernel, including the random phase approximation with local
�eld e�ects (RPA-LF), the TDLDA and an extension of the latter. Note that a static
(i.e. no explicit time or energy dependence) kernel cannot describe the relaxation of
the electron cloud. With an appropriate choice of the kernel, the authors apparently
succeed in reproducing the experimental branching ratio for the L2,3 edges of the 3d
elements. For an extended discussion, please refer to section 6.4.

In 2005, Scherz et al. went the other way around: they used the values of the above
mentioned experimental branching ratios to deduce the exact form of the kernel [99].
They concluded that the branching ratio anomaly of the early 3d elements is not entirely
due to the mixing of the L2 and L3 transitions, but to an e�ective reduced spin-orbit
coupling of the initial state.

The latest news in the �eld concerns the derivation of the LDA+U kernel for the
TDDFT - the non-local TDLDA+U functional by Lee, Hsueh and Ku [63]. Contrary
to the TDLDA, or to the TDLDA coupled to a LDA+U calculation, the innovative
TDLDA+U successfully generates excitons. Although the theory predicts a good ex-
citonic energy range, it fails to detect their �ne structure (the multiplet e�ect). The
authors argue that in order to get it, it is imperative to construct an energy dependent
(non-adiabatic) kernel.

The two-body band methods The BSE X-ray absorption calculations are a promis-
ing, yet computationally demanding option. Amongst the pioneers, we mention Shirley's
performing the �rst BSE X-ray absorption calculation [106]. Ankudinov, Nesvizhskii
and Rehr proposed a version of the TDLDA method with a kernel claimed to be derived
from the BSE [7, 91]. Further advances have been reported by the same authors [9],
who propose a claimed TDDFT-BSE calculation scheme. For a critical discussion of
these approaches, please refer to chapter 6.

As the BSE formalism is based on the two particle Green's function, these methods
naturally include the interaction between the electron-hole pairs, which is neglected by
other ab initio methods. The inclusion of this interaction is crucial to reproduce the
excitonic peaks and to treat the screening dynamically. The price to pay lies in the
computation time - BSE calculations are extremely demanding. To this moment, such
methods are not tractable for routine calculations and are not yet implemented at a
large scale. Nevertheless, J.J. Rehr et al. have recently reported having developed an
interface between the FEFF code and the BSE OCEAN code (to be published), but
this attempt is still in an embryonic phase.

The BSE methods improve signi�cantly the agreement between the band calculations
and the experiment by adding the description of the two body e�ects (i.e. excitons).
Nevertheless, some key features are still missing: the multiplet structures, which are a
many body and not a two body e�ect. Correlation e�ects described by the BSE are
not orbital dependent, and thus may not distinguish between the e�ect of the several
atomic con�gurations.
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The coupled atomic-band methods

The Holy Grail of the X-ray absorption calculations is the union between the com-
plementary ab initio and the atomic methods. The atomic approaches such as CI and
the multiplet theory reproduce some complementary many body e�ects but neglect the
band structure modulation of the continuum. On the other hand, one body calculations
succeed in describing the band structure but not the multiplet one. To get an accurate
picture of X-ray absorption, one should merge the atomic and the band methods.

The multichannel method Such an ab initio attempt is the multichannel MST
method [61, 62]. It is a real space method exploiting the standard multiple scattering
theory (MST) formalism and the CI. The CI allows an explicit treatment of the core
hole, whereas the band behaviour is handled by the MST. Given the atomic character
of the CI, the multichannel method holds as long as the correlation e�ects are con�ned
to the absorbing atom. The multichannel method gives more satisfactory results for
the L2,3 absorption edges of the early transition metals as compared to the TDDFT
ones [101].

The dynamical mean �eld theory based methods An example of such a com-
bination is the use of the dynamical mean �eld theory (DMFT) [59] coupled to a LDA
calculation. DMFT is suited for strongly correlated materials, i.e. in between the
DFT-LDA (no correlations) and the LDA+U (Mott insulator) descriptions. The idea
behind this method is to map (self-consistently) the full many-body problem onto the
Anderson impurity Hamiltonian. In DMFT one calculates a local, but energy depen-
dent self-energy - "the dynamical mean �eld". For a review of DMFT, please check [67].
The hybrid LDA-DMFT scheme treats the correlated orbitals in a DMFT-like way and
the remainder in the LDA framework. Recently, this method has been employed to
calculate theM4,5 branching ratio of the actinides [104]. Its success is explained by the
LDA-DMFT capability to describe accurately both the localized electron states and the
itinerant ones. A very recent X-ray absorption study investigating the Mott transition
in V2O3 [95] uses a combined LDA+DMFT coupled to a multiplet cluster calculation
to explain the experimental �ndings.

Few attempts to perform hybrid atomic - band calculations have been reported, and
they are still in an early phase. As long as TDDFT calculations are concerned, the
possibility of providing the complete many body description is dependent on the devel-
opment of an orbital dependent exchange-correlation kernel that contains the multiplet
e�ect. For the time being such kernel does not exist.

FDMNES To understand experiments, one needs easy to use and accurate tools.
FDMNES (standing for Finite Di�erence Method Near Edge Structure) is a calculation
code originally developed by Yves Joly since 1996 and which simulates XANES, RXD
and XMCD spectra [56]. The containing package is user-friendly, free and open-source,
and equally supports parallel architectures (the Message Passing Interface protocol).
It is an ab initio, self-consistent [24], real space, symmetrised code, which solves the
electronic structure either in the MT-MST frame, or by using the full potential FDM.
It can rigorously treat magnetism by taking into consideration the exact spin-orbit
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Table 1.1: An overview of the most known X-ray absorption cal-
culation codes and their main features

Code Main author Method Type FP Rel. self-consistent Fit Ref.
CONTINUUM C.R. Natoli MST cluster 7 4 7 7 [80]
MXAN M. Benfatto MST cluster 7 4 7 4 [13]
FEFF J.J. Rehr MST, TDLDA cluster 4 4 4 4 [8, 92]
FDMNES Y. Joly FDM, MST, TDLDA cluster 4 4 4 4 [24, 56]
FPX D. Foulis MST cluster 4 7 7 7 [42]
SPRKKR H. Ebert KKR 3D 4 4 4 7 [40]
WIEN2k P. Blaha FP-LAPW 3D 4 4 4 7 [85]
PARATEC modi�ed D. Cabaret pseudopotentials 3D 7 4 4 7 [26]
XKDQ R.V. Vedriinski MST cluster 7 7 4 7 [118]
Py-LMTO A.N. Yaresko LMTO 3D 7 4 4 7 [124]
ICXANES D.D. Vvedensky MST cluster 7 7 7 7 [119]
ADF M. Stener TDDFT Slater - 4 4 7 [111]
NBSE E. Shirley BSE cluster - 4 4 7 [106]
TT-MULTIPLETS T. Thole multiplets cluster - 4 - 7 [34, 35]
AMACORD A. Mirone multiplets cluster - - - 7 [76]

coupling. FDMNES uses the Hedin-Lundquist energy corrections [51, 52] for the DFT
exchange-correlation kernel [86]. The package allows an advanced analysis of both
cartesian and spherical tensors describing the absorption process [57]. Recently we
have extended the calculation behind the single particle approach, by implementing a
TDLSDA method. Another recent development includes the adding of the LSDA+U
calculation scheme.



Chapter 2

Fundamental aspects of the

interaction of x-rays with matter

2.1 The quantum �eld theory description

For a scattering problem, the system under study contains both the cluster and the
electromagnetic �eld. The purpose of this section is to calculate the absorption and
the scattering cross sections in the second quantization formalism. This framework is
necessary for rigorous analytical calculations. The general formulae are deduced in the
single particle picture, i.e. the mean �eld approximation for the electronic problem.

The Hamiltonian of the system The main idea behind this calculation is to ap-
ply the time dependent perturbation theory's prescriptions to calculate the e�ects of
the interaction of light with matter, all by considering the electromagnetic �eld as a
perturbation. Let H0 be the mean-�eld Hamiltonian of the unperturbed system, i.e.
in the absence of the photon - matter interaction:

H0 =
∑
k

(
h̄2k2

2m
+ VMF [n]

)
c†kck +

∑
~q,ε~q

h̄ωq

(
a†~q,~ε~qa~q,ε~q +

1

2

)
(2.1)

where θ is the step function and εk is the energy (calculated in the density functional
theory) of the level k. VMF [n] is the e�ective one body potential suggested by the
density functional theory (see section 3.1). c†k and ck are the operators describing the
creation and the annihilation of an electron of momentum k, whereas nk =

∑
c†kck is

the density operator. a†q and aq describe the creation and the annihilation of a photon
of energy h̄ωq and polarisation ~ε~q. The choice of this mean �eld approximation for
the electronic part of the Hamiltonian is motivated by the fact that in perturbation
theory, the response to the perturbation is expressed in terms of the eigenfunctions of
the unperturbed Hamiltonian. Therefore one needs a H0 that one is able to solve. The
electromagnetic �eld is described by the vector potential ~A(~r) [22]:

~A(~r) =
∑
~q,ε~q

√
h̄

2ε0ωqV

(
a†~q,~ε~q e

−i~q~r ~ε∗~q + a~q,ε~q e
i~q~r ε~q

)
(2.2)

21



22

where V is the normalization volume. In the Coulomb gauge (~∇ ~A = 0) the single
particle Hamiltonian becomes:

H =
∑
k

(
(h̄k + e ~A)2

2m
+ VMF [n]θ(EF − εk)

)
c†kck + h̄ωq

(
a†~q,~ε~qa~q,ε~q +

1

2

)
(2.3)

We chose to show a simpli�ed form of H, where neither the spin-orbit interaction nor
the coupling with the external magnetic �eld were included. The reason for the former
choice is the simplicity (for the details of the spin orbit case please refer to the ap-
pendix), whereas the latter has negligible values in the linear regime. The perturbation
V̂ = H−H0 gives:

V̂ =
∑
k

(
eh̄

m
~k ~A+

e2

2m
A2

)
c†kck (2.4)

and physically corresponds to the coupling between the electromagnetic �eld and the
electronic system.

The transition amplitude To calculate the absorption cross section, one needs to
know the probability per unit timeWgf that the system evolves from state |Φg > (elec-
tronic ground state + one photon) to |Φf > (electronic excited state + zero photons).
Both |Φg > and |Φf > are eigenstates of the unperturbed Hamiltonian H0. Conse-
quently, they can be factorised in pure electron (|φf > and |φg >) and photon states
(|1ωq > and |0ωq >):

|Φg〉 = |φg〉
∣∣1ωq〉 and |Φf 〉 = |φf 〉

∣∣0ωq〉 (2.5)

In time dependent perturbation theory, the transition amplitude is given by:

Wgf =
2π

h̄

∣∣∣〈Φf |T̂ |Φg〉
∣∣∣2 ρ(E) (2.6)

where T̂ is the transition operator. The absorption (or emission) problem is a one
photon problem, in the sense that only one scattering process is involved. Therefore, to
describe this �rst order process, it is su�cient to perform the �rst order approximation
i.e. T̂ = V̂ . In this case, by replacing (2.4) in the Golden Rule (2.6), one obtains:

Wgf =
2π

h̄

(
eh̄

m

)2 ∣∣∣〈Φf |~k ~A|Φg〉
∣∣∣2 ρ(E) (2.7)

Note that the term in A2 from (2.4) drops out, as it corresponds to a second order,
two photon process. Moreover, in (2.2), the �rst term describes the emission process
(creation of a photon) whereas the second describes the absorption. We replace the
latter in (2.7) and we sum over all the available (empty states) |φf >, whose density of
states is ρ(E):

W =
∑
g,f

π

ε0V

(
eh̄

m

)2∑
~q,ε~q

1

ωq

∣∣∣〈Φf |~k~εqa~q,~ε~q e
i~q~r|Φg〉

∣∣∣2 (2.8)
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There exists one only mode q that couples |Φg > and |Φf >, thus the sum over the
modes drops out:

W =
∑
g,f

π

ε0V

( e
m

)2 1

ω
δ(E − Eg − h̄ω)

∣∣∣〈φf |~p~ε ei~q~r|φg〉∣∣∣2 ρ(E) (2.9)

where E is the eigenvalue corresponding to φf . Moreover, it can be shown [31] that:

〈φf |~p~ε (1 + i~q~r)|φg〉 = i
m

h̄
(E − Eg)

(
〈φf |~ε~r|φg〉+

i

2
〈φf |~ε~r~q~r|φg〉

)
(2.10)

where we kept only the �rst two terms in the expansion of the exponential in (2.9).

The multipolar development of the potential By de�nition, we call

Ô(~ε, ~r) = ~ε~r

(
1 +

i

2
~q~r

)
(2.11)

the transition operator. It is obvious that its explicit form depends on the choice
of the gauge and of the representation. This expansion is similar to the multipolar
expansion of the classical electrodynamics and admits an in�nity of terms, according
to the expansion of the exponential function in (2.9). In practice, only the �rst two
terms are necessary, as the contribution to the signal of the remainder is too small.
When plugged into 〈φf |Ô(~ε, ~r)|φg〉, the terms in (2.11) give, respectively, to the electric
dipole (E1) and the electric quadrupole (E2) matrix elements.

The absorption cross section The absorption cross section is related to the tran-
sition probability:

σ(ω) =
W (ω)V

c
(2.12)

with c the speed of light in the vacuum. The �nal result for the absorption cross section
is:

σ(ω) =
πω

ε0c

( e
h̄

)2
∫ ∞
EF

dE
∑
f,g

δ(E − Eg − h̄ω)
∣∣∣〈φf |Ô(~ε, ~r)|φg〉

∣∣∣2 ρ(E) (2.13)

where f are all the empty states of energy E > EF with EF the Fermi energy.

The scattering cross section To describe the photon-in - photon-out processes one
must expand the transition operator in second order in V̂ , i.e. T̂ = V̂ + V̂ G0(Eg)V̂ . By
the aid of (2.4), for a given k and after suppressing the terms in power 1 (one photon
process) or greater than 2 (high order excitations) of ~A, we get:

Tk =

(
eh̄

m

)2
~k ~AG0(Eg)~k ~A (2.14)

From (2.6) and (2.14) one can deduce all the scattering amplitudes, resonant and non-
resonant, elastic or inelastic. For the detailed calculation, please refer to [57, 103]. In
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this work, we will be interested in the resonant elastic scattering cross-section (the
structure factor):

f ′(ω)− if ′′(ω) =
mω2

h̄2

∫ ∞
EF

dE
∑
f,g

〈φg|Ô†(~εout, ~r)|φf 〉〈φf |Ô(~εin, ~r)|φg〉
h̄ω − (E − Eg) + iε

(2.15)

The sign convention for f ′′(ω) requires it to be positive, whereas the limit ε → 0
has been omitted for simplicity. Should one wish to describe the �nite lifetime of the
arrival states, ε becomes �nite (see section 3.1.6). The pre-factor is such that |φf > are
normalized according to the procedure in the appendix.

A uni�ed description of the X-ray absorption spectroscopy One can see that
the connecting bridge of the absorption spectroscopies (XANES, RXD, RIXS, XMCD)
is the transition matrix element of type 〈φf |Ô(~ε, ~r)|φg〉. These spectroscopies are due
to the same physical phenomenon and can be described by the same formalism. We
recall that the proofs in this chapter have been conducted in the one body frame.
Nevertheless, the strong connections between the several spectroscopies stay unaltered
when the many body interactions are turned on.

The selection rules In the context of the spectroscopy calculation, the two matrix
elements yield the E1-E1, E1-E2 or E2-E2 contributions. The main reason for this
multipolar analysis is that it allows the precise identi�cation of the probed orbital φf .
Depending on the term in the multipolar expansion (2.11) it comes from, the transition
matrix elements are submitted to various selection rules [57]. As a rule of thumb, the
spin is conserved during the transition, as the transition operator is purely electric.
The orbital quantum number selection rule is ∆l = ±1 for the E1 transitions and
∆l = 0,±2 for the E2 ones. In practice, almost all the signal comes from the ∆l = 1
for the dipole transitions and ∆l = 2 for the dipolar ones.

2.2 The tensor analysis

2.2.1 The formalism

As the X-ray absorption phenomena is generally anisotropic, both the physical origin
and the azimuthal dependence of the spectra can be understood in terms of tensor
algebra. Moreover, the tensor formalism provides a mathematically uni�ed description
of the core, related spectroscopy.

The tensor's rank depends on the order of the speci�c term in the multipolar expan-
sion of the transition operator (2.11). Note that the expansion in (2.11) only considers
the interactions of electrical origin. We therefore de�ne the following atomic, electric
tensors, whose energy dependent components describe the resonant process:

D
(j)
αβ(h̄ω = E − E(j)

g ) =
∑
f,g

〈ψ(j)
g |rα|ψf 〉〈ψf |rβ|ψ(j)

g 〉 (2.16)

I
(j)
αβγ(h̄ω = E − E(j)

g ) = − i
2

∑
f,g

〈ψ(j)
g |rα|ψf 〉〈ψf |rβrγ |ψ(j)

g 〉 (2.17)
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Q
(j)
αβγη(h̄ω = E − E(j)

g ) =
1

4

∑
f,g

〈ψ(j)
g |rαrβ|ψf 〉〈ψf |rγrη|ψ(j)

g 〉 (2.18)

Here the f index accounts for the �nal states of same energy E whereas α, β, γ and
η run over the x, y and z space directions. All |ψf > are normalized, according to
the procedure described in the appendix. Dαβ is the electric dipole-dipole (also known
as E1-E1), Iαβγ the dipole-quadrupole (E1-E2) and Qαβγη the quadrupole-quadrupole
(E2-E2) tensor element.

The atomic tensor D is a tensor of rank 2 and has the form of a hermitian matrix:
Dαβ = D∗βα. I and Q are of rank 3 and 4, respectively. Note that the atomic dipole-
quadrupole term is zero if the point group of the corresponding atom contains the
inversion. The reason behind this is that the selection rules impose that |ψf > involved
in the dipole-quadrupole is a mixture of states of opposite parity. This condition is not
ful�lled if the material possesses the inversion symmetry. The dipole-quadrupole term
is equally zero for linear polarizations in XANES (but not necessarily in RXD).

From a computational point of view working with tensors is extremely convenient,
especially as far as the RXD calculations are concerned. Once we have the tensor
describing a re�ection, it is easy to multiply it by several sets of incoming and outgoing
polarisations, in order to calculate the azimuthal scans and the polarization analysis:

f ′(ω)− if ′′(ω) =
m

h̄2

∫ ∞
EF

dE
(E − Eg)2

h̄ω − (E − Eg) + iε
T (h̄ω = E − Eg) (2.19)

where T contains the contributions from the various terms in the multipolar expansion
of the transition operator:

T (ω) =
∑
α β

ε∗α εβ Dαβ(ω) +
∑
α β γ

ε∗α εβ
(
kγIαβγ(ω) + kγI

∗
βαγ(ω)

)
+

∑
α β γ η

ε∗α εβ kγ kη Qαβγη(ω) (2.20)

Note that the atomic tensor T is invariant in the symmetry operations of the magnetic
point group of the atomic site. One can re-write the absorption cross section (2.13) in
a similar way:

σ(ω) =
πω

ε0c

( e
h̄

)2
∫ ∞
EF

dE
∑
f,g

T (h̄ω = E − Eg) (2.21)

By comparing (2.21) and (2.19) one can see mathematical evidence of the related char-
acter of the X-ray core spectroscopy. The reason why the density of states factor in
(2.13) no longer appears in (2.21) should be looked for in the normalization procedure
we previously mentioned.

The tensors of the transition matrix can be expressed either in a cartesian basis, or in
the spherical one. The latter have a more straightforward meaning, as they link directly
to physical quantities such as the charge, the magnetic moment, the quadrupolar electric
moment etc. For instance, the isotropic contribution to scattering at the resonance is
given by the trace of the tensor (a rotational invariant) normalized by a

√
3 factor. The

(Dxx+Dyy+Dzz)/
√

3 term is equal to the integrated (spatially) density of unoccupied
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states per energy unit (the di�erential charge). The term Dyz−Dzy = i
√

2lx (idem for
circular permutations) where lx is the projection of the atomic orbital momentum per

energy unit on the Ox axis.

The FDMNES code is extremely powerful with respect to the analysis of the tensor.
The calculation may be performed using the tensor elements of a speci�c rank, which
allows the identi�cation of the origin of each structure in the spectrum.

From now on, for simplicity, we shall only refer to the rank 2 atomic tensor and link
it to the crystal. In periodic structures it is more convenient to deal with the crystal
tensor D given by:

Dαβ =
∑

j∈unit cell
D

(j)
αβ (2.22)

The symmetry of D is determined by the symmetries of the crystal. The crystal tensor
D is used for instance in the calculation of the absorption. One can assume a perfectly
general form for the atomic tensor D(j)

αβ :

Dαβ =
∑

non equiv

∑
sym

sym
(
D

(j)
αβ

)
gen

(2.23)

where the �rst sum is over all the non-equivalent atoms, whereas the second one con-
cerns all the symmetry operations. One can also introduce a symmetry reduced form
of D(j)

αβ , i.e. summed over all the atom's point group symmetries operations:

Dαβ =
∑

non equiv

∑
equiv

∑
sym at

(
D

(j)
αβ

)
gen

=
∑

non equiv

∑
equiv

(
D

(j)
αβ

)
sym

(2.24)

To describe the di�raction it is necessary to introduce the structure factor tensor given
by:

Dαβ( ~Q) =
∑
j

ei
~Q~Rj D

(j)
αβ =

∑
non equiv

∑
sym

ei
~Q~Rj sym(Dαβ) (2.25)

where ~Q = (hkl) is the scattering vector. FDMNES uses symmetries to reduce the
computation time: only the tensors of the non equivalent atoms are calculated, then
symmetry operations are used to deduce those of the other atoms.

2.2.2 Symmetries

FDMNES is a symmetrized code, i.e. it exploits the point symmetries of the absorbing
sites to save calculation time. In practice one calculates explicitely only the non-
equivalent atoms (from the point group point of view). The equivalent atoms are being
accounted for by the use of an adapted procedure to solve the SE. For the technical
details of the symmetrization please refer to [36]. We stress the fact that the �nal result
is independent of whether one uses a symmetrised procedure or not.

After solving the SE we obtain atomic tensors whose form is tributary to the magnetic
point group symmetries of each site. Let d be the tensor of a central atom. A second
atom, related to the �rst one by symmetry, may be described by:

d′ = R+ d R (2.26)
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where R is the transformation matrix corresponding to the symmetry operation that
links the two atoms and R+ its adjoint. If no magnetism is involved, these transfor-
mations are simple matrix transformations. If this is not the case, one should pay
attention to the particular behaviour of spins when submitted to symmetry operations:

M‖S = −S; TM‖S = S; C‖S = S; TS = −S
M⊥S = S; TM⊥S = −S; TC‖S = −S

where T is the time reversal. M‖ (M⊥) stands for the mirror operation whose axis
is parallel (perpendicular) to the spin S direction C‖ is a rotation around the spin
direction. If the rotation is performed along an axis which is perpendicular to the spin
direction, the spin undergoes a vector-like transformation. Note that provided they are
parallel to a rotation axis, spins are invariant under inversion and that time reversal
changes the sign of their projection.

An example Let two magnetic atoms related by a C2z rotation. The �rst one is
described by a tensor in the most general form:

d =

 dxx dxy dxz
dyx dyy dyz
dzx dzy dzz

 (2.27)

whereas the second one gives:

d′ = C+
2zdC2z =

 dxx dxy −dxz∗
dyx dyy −dyz∗
−dzx∗ −dzy∗ dzz

 (2.28)

Note that as Sz is invariant with respect to C2z one has =(dyx− dxy) = =(dyx
′− dxy ′).

On the other hand Sx changes sign, thus =(dyz − dzy) = −=(dyz
′ − dzy ′).

2.3 Solving the electronic structure

2.3.1 The Schrödinger-like equation

All one body methods that solve the electronic structure are based on some stationary
equation describing the spatial distribution of the wavefunction. More precisely, when
the relativistic e�ects are not signi�cant, one deals with the Schrödinger equation. If
one calculates heavy atoms, or a spin-orbit coupling, one should appeal to the Dirac
equation.

The Schrödinger equation In a single particle, non-relativistic picture one can
generally write (in Rydbeg units):(

−∇2 + V̂ − E
)
|Ψ〉 = 0 (2.29)

with V̂ the one body potential. To describe the inelastic e�ects one should introduce
the self-energy correction:(

−∇2 + V̂ + Σ(E)− E
)
|Ψ〉 = 0 (2.30)
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Here Σ(E) is the standard notation for self-energy. The Hamiltonian in (2.30) is no
longer hermitian, due to the imaginary part of Σ. This means that the eigenstates of
the system decay with a rate described by =Σ. In section 3.1.6 we show that =Σ is
responsible for the broadening of the spectral lines. <Σ is responsible for an energy
shift in the spectrum. A proper treatment of the self-energy, but still subjected to
approximations, is achieved within the GW framework [84].

In the case of spin polarisation, one can still appeal to the Schrödinger equation
provided there is no spin-orbit coupling. Two distinct, independent calculations are
conducted, with an e�ective potential depending on the speci�c spin population.

The Dirac equation The spin-orbit coupling is a relativistic e�ect and emerges
naturally from the Dirac equation, i.e. the covariant generalisation of the Schrödinger
equation. The radial Dirac equation is solved with the use of no approximation and by
the elimination of the small components. For a discussion and references, please refer
to [71]. For the radial solution of the Dirac equation, please refer to the appendix.

The �nal state wavefunctions

To apply the Golden Rule (1.3) for an absorption calculation one should apply (2.29)
to both the calculation of the initial wavefunctions Ψg(~r) and to the �nal ones Ψf (~r).
The solution of the formal is trivial, as the initial states concerned by the X-ray spec-
troscopy are atomic. Therefore, solving the electronic structure reduces to the calcula-
tion of the �nal states, or to some related quantities (the propagator G).

Zero spin-orbit coupling All through this manuscript, by spin-orbit coupling we
mean the spin-orbit coupling of the �nal states, as for the initial ones it is included
in the calculations under all circumstances. In the zero spin-orbit coupling limit we
can treat magnetism provided we perform two separate calculations (with di�erent
potentials) for the two spins populations. Provided the transition operator is of an
electrical nature (see chapter 2), the transition channels for the two spins do not mix,
i.e. no spin-�ip processes are possible. Consequently, the eigenfunctions of (2.29) can
be expanded in:

Ψf (~r;E) =
∑
σ

∑
l,m

af,σl,m(E) bσl (r, E) Y m
l (r̂) χσ (2.31)

where the radial part is normalized according to the procedure described in the ap-
pendix and χσ is the spin function.

The spin-orbit coupling The spin-orbit coupling links the |m, ↑〉 and |m+ 1, ↓〉
states (m of the complex spherical harmonics). The state vector Ψf is no longer a
unique wavefunction, but the sum of two 2× 1 matrices in the spin vector space. The
solutions s are indexed +1

2 and −1
2 , respectively. The �nal states have the following

form [71]:

Ψf (~r) =
∑
l,m

∑
s=± 1

2

af
l,m+ 1

2
−s,s(E)

(
bsl,m,↑(r) Y m

l (r̂, E)

bsl,m+1,↓(r) Y m+1
l (r̂, E)

)
(2.32)
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We stress upon the fact that the spin-orbit coupling lifts the radial degeneracy, i.e. the
solution b of the radial SE depends on both l and m. In the zero-coupling limit (2.31)

one �nds that b
1
2
l,m+1,↓(r, E) = b

− 1
2

l,m,↑(r, E) = 0 and the solution index is identical to the

spin one. Moreover, one always has b
1
2
l,l+1,↓(r, E) = b

− 1
2

l,−l−1,↑(r, E) = 0, which implies
that the |m = −l, ↑〉 and |m = l, ↓〉 states are decoupled from the others.

Numerically, we assign ↑= +1
2 and ↓= −1

2 to the electron spin projections σ. If we
keep the same values for the indices running over the solutions, one can re-write (2.32)
under the more condensed form:

Ψf (~r) =
∑
s

∑
σ

∑
l,m

af
l,m+ 1

2
−s,s(E) bs

l,m+ 1
2
−σ,σ(r, E) Y

m+ 1
2
−σ

l χσ (2.33)

where χ 1
2

=

(
1
0

)
and χ− 1

2
=

(
0
1

)
are the spin functions. Note that the use of real

spherical harmonics in (2.32) and (2.33) is no longer possible.

If the potential V (~r) can be factorized into a radial and an angular part, one may
separate the two dependencies in the SE. In particular, this is the case for the poten-
tials which have spherical symmetry, including the one of the MT approximation. We
mention that the potential is rigorously symmetric only for the closed shells.

The radial SE is solved around each atom core and the solution is straightforward.
Finding the angular distribution of the wavefunction is a more delicate issue, that we
can address either in the MST or FDM frameworks.

2.3.2 The �nite di�erence method

The FDM is a method to determine the electronic structure by the direct resolution
of the SE equation. The FDM is full potential, i.e. it makes no approximation on the
form of the potential. Moreover, FDM is the only full potential, real-space X-ray core
spectroscopy calculation. It was implemented by Yves Joly in the FDMNES code [56].
The method consists in setting a mesh of points around each atom, discretising the SE
and solving it at each point of the mesh.

2.3.3 The multiple scattering theory

The MST is a method to solve the electronic structure, all by avoiding the explicit
calculation of eigenstates. The reason behind this choice is that the exact calculation of
the real space, �nal state wavefunctions Ψf (~r) require extended basis sets, that would
be limiting from the numerical point of view. We do not intent to treat the issues of
MST in detail (see [45] for a complete discussion or [74] for an introductory one) but
to give an overview and focus on the speci�c features implemented in the FDMNES
calculation.

Phenomenologic interpretation of the multiple scattering The idea behind
the multiple scattering process is that the electron's wavefunction interferes with its
re�ections on the neighbouring atoms. Consequently, the origin of the modulations
on a XAS, MST calculated, spectrum lies in the constructive interference between the
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direct and the backscattered waves (�gure 2.1): the spectrum of an isolated atom is
smooth. This physical picture is appropriate only for the extended region in EXAFS.
In the XANES energy range the wavelength of the photoelectron is larger than the
distance to the �rst neighbouring shell and its propagation can no longer be described
in the classical picture of a �nite number of scattering events on separate atoms.
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Figure 2.1: Absorption calculations at the K edge of copper: iso-
lated versus embedded (175 atoms) absorber. The spectrum's �ne
structure is given by the environment around the absorbing atom

The multiple scattering matrix

The MST treats the scattering of an electronic wave |φ > on a set of non overlapping
atomic scatterers vi. We only treat the MT case, where vi have spherical symmetry in
a region of �nite radius. The propagation is described by the Hamiltonian:

H = H0 + V̂ (2.34)

where H0 is the Hamiltonian in the free case, whose eigenfunctions |φ > have the
eigenvalues E0. The term V̂ =

∑
i vi is the perturbation. One seeks the stationary

solution |ψ > of energy E:

H |ψ >= E |ψ > (2.35)

The formal solution of (2.35) is given by the Lippman-Schwinger equation, whose equiv-
alent forms are:

|ψ > = |φ > + Ĝ0 V̂ |ψ > (2.36)

|ψ > = |φ > + Ĝ V̂ |φ > (2.37)

|ψ > = |φ > + Ĝ0 T̂ |φ > (2.38)

where Ĝ and Ĝ0 are the retarded (η > 0) propagators of the SE with and without the
perturbation, respectively:

Ĝ = lim
η→0

1

E −H+ iη
; Ĝ0 = lim

η→0

1

E −H0 + iη
(2.39)
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and T̂ is the transition operator:

T̂ = V̂ + V̂ Ĝ0T̂ (2.40)

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0 (2.41)

The retarded propagator Ĝ, also called Green's function, describes the evolution of the
outgoing solution. T̂ is sometimes referred to as the multiple scattering operator, and
its representations are called the T-matrix. To solve the scattering problem in (2.38)
one needs to determine the representations of either Ĝ or T̂ . To explain the physical
meaning of T̂ we iterate equation 2.41 n in�nite order (one is allowed to do that when
the scattering is weak, i.e. in the EXAFS region):

T̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0 + .... (2.42)

Consequently, the T-matrix describes the scattering on the potential V̂ at the in�nite
order (the n th term corresponds to the scattering process of order n-1). T̂ pictures the
e�ect of the ensemble of scatterers as a single unit. Note that the operators in (2.42)
include the contributions from all the scatterers i in the cluster. More speci�cally one
has:

T̂ =
∑
i

t̂i +
∑
i

∑
i1 6=i

t̂i1 Ĝ0t̂i +
∑
i

∑
i1 6=i

∑
i2 6=i

t̂i2 Ĝ0t̂i1 Ĝ0t̂i + .... (2.43)

where the atomic multiple scattering operator t̂i is given by:

t̂i = vi + viĜ0vi + viĜ0viĜ0vi + ... (2.44)

The expansion in (2.43) does not consider successive scatterings from the same atom
i, as t̂i already accounts for the scatterings on vi in in�nite order (equation 2.44).
At high kinetic energies E0 (EXAFS region) the series in (2.42) and (2.43) converge.
Consequently, one can get T̂ by summing only the �rst terms in (2.42). This procedure
is called the path expansion and it is employed by the codes specialized in the calculation
of the extended region (for instance, the FEFF code [8]). At small E0 (the XANES
region) the series diverges and the only way to get T̂ is to solve the matrix equation
(2.41).

Due to the spherical symmetry of the problem, the resolution of (2.41) is performed
onto the spherical harmonics basis. Subsequently, the free propagators Gij l

′m′

0 lm give the
amplitude that a (l,m) wave issued on the scatterer i becomes of type (l′,m′) on the
scatterer j:

Gij l
′m′

0 lm = −4πil−l′+1
∑
l′′,m′′

h+
l (krji) Y

m′′
l′′ (Ωji)

×
∫

dΩ Y m
l (Ω) Y m′

l′ (Ω) Y m′′
l′′ (Ω) (2.45)

Contractions in τ If the development in (2.31) is performed with real spherical
harmonics, the T-matrix is symmetrical: τ l

′m′
lm = τ lml′m′ . Again, if no spin-orbit coupling,

but by having used the complex harmonics in (2.31), one has τ l
′,m′

l,m = (−1)m+m′
τ l,−ml′,−m′ .

Either way, we draw attention upon the fact that τ is not hermitian, i.e. it does not
correspond to any observable.
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The Green function

The point in calculating the T-matrix is that it gives a complete description of the
interacting system and can be used to calculate some more interesting quantities, such
as the absorption cross section, the electronic DOS or the charge density. From now
on we shall use τ l

′m′
l,m (E), the representation of the T-matrix in the spherical harmonics

basis. We recall that in MST the �nal states are not calculated explicitly. Therefore,
the use of the multiple scattering matrix avoids the complications arisen from the real
space description of extended states.

The propagator G and the multiple scattering matrix are closely related [116]:

Gσ(~r, ~r′;E) =
∑
l,m

∑
l′,m′

bσl′(r
′, E)bσl (r, E)Y m′∗

l′ (r̂′)Y m
l (r̂)τ l

′,m′,σ
l,m,σ (E) (2.46)

or, equivalently:

Gl′m′σ
lmσ (E) =

∫
dr

∫
dr′bσl′(r

′, E)bσl (r, E)τ l
′,m′,σ
l,m,σ (E) (2.47)

The purpose of calculating the propagator G is that it provides the expectation value
of any observable of the system. For an explicit link to the physical quantities, please
refer to section 2.3.5. For real potentials the radial functions bσl′(r

′, E) in (2.46) and
(2.47) are real. We recall that if no spin-orbit coupling is involved, G is diagonal in
spin variables.

The case of complex energies The propagator changes its form if the scattering
potential is complex. If this is the case, the radial SE has two admissible solutions and
the MST formalism must account for both of them. If no spin-orbit coupling it has
been shown [116] that:

Gσ(~r, ~r′;E) =
∑
l,m

∑
l′,m′

bσl′(r
′, E) bσl (r, E) Y m′∗

l′ (r̂′) Y m
l (r̂)

×
(
τ l

′,m′,σ
l,m,σ (E)− δll′ tl

′,m′,σ
l,m,σ (E)

)
−
∑
l,m

tl,m,σl,m,σ(E)

× sσl (r<, E) sσl (r>, E) Y m
l (r̂<) Y m

l (r̂>) (2.48)

where r< = min (r, r′), r> = max (r, r′), sl the radial singular solution and tl
′,m′

l,m is

the atomic scattering matrix. In all cases tl
′,m′

l,m = δll′ t
l′,m′

l,m , i.e. t is diagonal in l. If
no spin-orbit coupling, t is equally diagonal in m. Note the absence of the complex
conjugate factors in the �rst term of (2.48). For the spin-orbit case, please refer to the
appendix.

2.3.4 The optical theorem

The optical theorem [37] connects the multiple scattering matrix element τ l
′,m′,σ
l,m,σ (E)

to the atomic amplitudes af (E). This theorem is an expression of the conservation of
the number of particles.
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If no spin-orbit coupling, the optical theorem reads:∣∣∣∣∣∣
∑
f

af∗l′,m′,σ(E) afl,m,σ(E)

∣∣∣∣∣∣ = −=
(
τ l

′,m′,σ
l,m,σ (E)

)
(2.49)

with f being the �nal states of the same energy E. Note that this form is valid only if
the scattering potential is real.

When considering the spin-orbit coupling, but still in a real potential, the optical
theorem becomes:

=τ l
′,m′+ 1

2
−s′,s′,∗

l,m+ 1
2
−s,s (E) = −

∑
f

af∗
l′,m′+ 1

2
−s′,s′(E) af

l,m+ 1
2
−s,s(E) (2.50)

with f the �nal states of the same energy E.

If there is a spin-orbit coupling and if the potentials for the two spin populations are
equal, one has:

τ l
′,m′,σ′

l,m,σ = (−1)m+m′
τ l,−m,−σl′,−m′,−σ′ (2.51)

We draw attention to the fact that when considering the spin-orbit coupling spin-�ip
transitions are allowed, as the coupled |m, ↑〉 and |m+ 1, ↓〉 states carry opposite spins.
Unlike the zero-coupling limit, τ is no longer diagonal in the spin variables.

Note that (2.49) and (2.50) are valid whether one solves the electronic structure in the
MST or in the FDM frames. For the former, τ means the multiple scattering matrix,
whereas for the latter only =τ is obtained.

2.3.5 The physical quantities

The propagator in (2.46) and (2.47) gives access to all the one body physical quantities
describing the system. For simplicity, in this section we shall discuss only the case of a
real potential, within the limit of a zero spin-orbit coupling. For the similar quantities
calculated in a complex potential, or including the spin-orbit coupling, please refer to
the appendix.

We can easily get the density of states by taking the trace of the G matrix:

δ(E) = − 1

π

∑
σ

=
∫
d3r Gσ(~r, ~r;E) (2.52)

If no spin-orbit coupling, according to (2.52) and (2.47):

δ(E) = − 1

π
=
∫
d3r

∑
lmσ

bσl (r, E) τ l,m,σl,m,σ (E) bσl (r, E) (2.53)

For an atom, we are mostly interested in the representation of the occupation matrix
in the spherical harmonics basis:

ρl
′,m′,σ
l,m,σ (r) = − 1

π
=
∫ EF

−∞
dE bσl′(r, E) τ l

′,m′,σ
l,m,σ (E) bσl (r, E) (2.54)
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The integral is taken over all the energies below the Fermi level EF . We recall that:

ρ(r) =
∑
σ

∫
dΩ

∫
dΩ′ Y m′∗

l′ (Ω′) ρl
′,m′,σ
l,m,σ (r) Y m

l (Ω) (2.55)

The expectation value of the occupation number is obtained by taking the trace of the
density of states matrix:

N =

∫ EF

−∞
dE δ(E) =

∫
d3r

∑
lmσ

ρl,m,σl,m,σ(r) (2.56)

The reformulation of the absorption cross section (2.13) gives [37,81]:

σ(ω) =
πω

ε0c

( e
h̄

)2 ∑
g

∑
σ

∑
lm

∑
l′m′

=τ l
′,m′,σ′

l,m,σ (2.57)

×
∫

dr φσ∗g (r) O∗(~ε, r) bσl′(r) Y
m′
l′ (r̂)

∫
dr φσg (r) O(~ε, r) bσl (r) Y m∗

l (r̂)

Note that if there is no spin-orbit coupling, the spin-�ip processes are forbidden. There-
fore, the summation over the spins is external. The fact that all the radial functions
bl(r, E) are real is a signature of the real potential. Identically, the structure factor
(2.15), reformulated in the spherical basis, reads (ε→ 0):

f ′(ω) − if ′′(ω) =
mω2

h̄2

∑
σ

∑
g

∑
lm

∑
l′m′

∫ ∞
EF

dE
=τ l

′,m′,σ′

l,m,σ

ω − (E − Eg) + iε
(2.58)

×
∫

dr φσ∗g (r) O∗(~εout, r) b
σ
l′(r) Y

m′
l′ (r̂)

∫
dr φσg (r) O(~εin, r) b

σ
l (r) Y m∗

l (r̂)



Chapter 3

FDMNES and the one body picture

3.1 The structure of the FDMNES code

This section aims to describe the framework of FDMNES's calculation procedure (see
�gure 3.1). The details of the calculation steps are to be explained in the subsequent
subsections.

The space group symmetry analysis FDMNES is a real-space code. Conse-
quently, whether one deals with a molecule or with a periodic system, FDMNES builds
a cluster of atoms around the absorber. If the cluster hosts two or more non-equivalent
atoms (from the space group's point of view) of the absorbing species, several distinct
calculations are conducted and one adds up the results.

Building the cluster One builds as many clusters as non-equivalent atoms. To get
accurate results one must have a large enough calculation cluster. At the K edge, a
cluster of about 8 Å is usually su�cient - one should check that by including extra
atomic shells the form of the broadened spectrum remains the same. Note that at the
L and M edges the convergence with respect to the radius is not necessarily faster,
even if the d and f states are more localized than the p ones.

FDMNES is a symmetrized code: within the cluster, not all the atoms are solved,
but only those which are non-equivalent in the magnetic point symmetry group of the
central atom. Consequently, one can deduce the electronic structure of the rest, by
applying the corresponding symmetry transformations (section 2.2.2). Note that this
second symmetry analysis is completely separate from the one described above. The
symmetrization procedure allows saving computation time: the more symmetric the
material, the more calculation time and memory are saved.

3.1.1 The atomic calculation

As input data, FDMNES only requires the atomic numbers and the positions of
atoms. One should add the spin populations and the spin direction in the case of
magnetic ordered materials. To begin with, we perform a self-consistent Dirac-Fock
calculation of atomic densities and energies for all the chemical species of the atoms in

35
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Figure 3.1: A simpli�ed �ow-chart of the FDMNES code

the calculation cluster. For the absorption calculation, we assume an excited electronic
con�guration for the absorbing atom. The default procedure is to place the core electron
on the �rst available unoccupied level (we consider a full screening, according to the
�nal state rule).

We use the atomic calculation to determine the initial state, i.e. the core level's
wavefunction. The core states are deep, localized levels, thus there is no e�ective
overlap between the ones belonging to adjacent atoms. Hence, the initial states have
no band structure. We are therefore justi�ed in describing the initial levels by using
atomic wavefunctions.

For core levels, it is mandatory to introduce the spin-orbit coupling. Consequently,
the eigenfunctions of the total Hamiltonian can no longer be characterized by the well
known, atomic l, m, s and ms quantum numbers, but may be indexed by l, s, j and
mj , where all notations obey the quantum mechanics standard (see, for instance, the
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Table 3.1: The table contains the cΛσg coe�cients. When con-
sidering the spin-orbit coupling, the good quantum numbers that
describe the electronic state are j and mj . The cΛσg coe�cients
connect this basis set to the one de�ned by l, s, ml and ms.

Initial state σ = 1/2 σ = −1/2

1s, 2s j = 0,mj = 0 1 1

2p1/2
j = 1

2 ,mj = −1
2 −

√
2
3

√
1
3

j = 1
2 ,mj = 1

2 −
√

1
3

√
2
3

2p3/2

j = 3
2 ,mj = −3

2 0 1

j = 3
2 ,mj = −1

2

√
1
3

√
2
3

j = 3
2 ,mj = 1

2

√
2
3

√
1
3

j = 3
2 ,mj = 3

2 1 0

dedicated chapter in reference [31]). This second basis |l, s, j,mj > can be obtained
from the �rst one |l, s,m,ms > by an unitary transformation. We introduce the no-
tations χ1/2 and χ−1/2 for the up and down spin wavefunction, respectively. The core
level total (radial part included) wavefunctions φ are of type:

φg(r) =
∑
σ

cΛσg bΛg(r) YΛg(r̂) χσ (3.1)

where Λσg = (j,mj) is the ensemble of quantum numbers describing the σ spin projec-
tion of the core state g and YΛg ≡ Y

mg
lg

are the complex spherical harmonics. bΛg(r)
are the radial wavefunctions describing the core level. In practice, their dependence on
mj and σ is negligible and we shall consider it no further. Moreover, bΛg(r) are always
real quantities. The c coe�cients (also called Clebsch-Gordon coe�cients) correspond
to the linear combinations in the above equations (see table 3.1).

For the K edge the core level has no dependence on the electron spin, nor on the
angular variables:

φ↑1s(r) = φ↓1s(r) =
1√
4π

b1s(r) (3.2)

and the behaviour is similar for a L1 edge. The initial states for the L2 and L3 edges
are twofold and, respectively, fourfold degenerated.

3.1.2 The potential calculation

To calculate the potential, one needs to know what is the charge distribution ρ0(~r)
in the cluster. In a �rst approximation, one sums up all the individual, atomic charge
densities |Ψ0(r)|2 issued by the atomic self-consistent Dirac-Fock calculation (the so-
called Mattheiss prescription [73]):

ρ0(~r) =
∑

i∈ cluster

|Ψ(i)
0 (~r)|2 (3.3)
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The Poisson equation links the charge density to the potential vH which generates it:

1

r2

d

dr

(
r2dvH(r)

dr

)
= −4πρ0(r) (3.4)

where we used the atomic units and assumed the spherical symmetry of both charge and
potential. vH is the Hartree, or the classical electrostatic potential. To get the total,
one body scattering potential v we need to add some quantum mechanical correction
vxc that accounts for the exchange and the correlation e�ects, on one side, and for the
inelastic scattering processes, on the other side:

vσ(r, E) = vH(r) + vσxc(ρ
↑
0(r), ρ↓0(r), E) (3.5)

where vxc is suggested by Hedin, Lundqvist and Von Barth [51,52]. Their prescription
was improved by Perdew and Wang [86], nevertheless this new parametrisation does
not a�ect quantitatively the X-ray scattering potentials.

V may be calculated separately for each spin. If any spin polarization (i.e. ρ↑0(r) 6=
ρ↓0(r)), the two spins scatter in two di�erent e�ective potentials v↑ 6= v↓. A magnetic
ground state is an electron-electron driven correlation e�ect, and cannot emerge from
a DFT calculation unless the breaking of the time reversal symmetry is described
explicitly. In practice, this is done by imposing at the beginning di�erent populations
for the two spin channels, which gives v↑ 6= v↓. Note that vH has no spin dependence,
as it issues from the classical theory.

Our exchange-correlation is described in a L(S)DA way: the corrective potential is
local (i.e. it depends on the charge density at the very same point) and calculated
in a simple model based on the homogeneous electron gas. Contrary to the Coulomb
repulsion, the exchange-correlation correction is attractive (i.e. vxc < 0). Note that
(3.5) is a mean �eld approximation for the electron-electron interactions in the system.
No interaction with the nucleii has been considered, as |Ψ0(~r)|2 contains only the
electronic charge distribution.

Hedin and Lundqvist [51] make a step beyond the LDA by considering the dependence
of Vxc on the photoelectron's kinetic energy E. In a very simpli�ed GW manner, they
parametrize a self-energy correction which accounts for the inelastic scattering processes
(mainly on plasmons) undergone by the photoelectron. The higher the kinetic energy,
the lesser the probability that the photoelectron disturbs the electron cloud. Therefore
the self-energy correction is positive, and applicable at the Fermi level and above.

3.1.3 Solving the radial Schrödinger equation

The radial solution of the SE is solved in the same way, whether one employs the
MST or FDM methods. For spherical potentials with no spin-orbit coupling b̃lm(r, E)
does not depend on m. In this case the radial Schrödinger equation reads:(

− d2

dr2
+ V (r)− E +

l(l + 1)

r2

)
ul(r) = 0 (3.6)

where ul(r) = rb̃l(r) is the solution of the radial SE, before the normalisation procedure.
This equation admits two distinct solutions. Nevertheless, for real potentials, only
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one of them is physical (the regular solution), whereas the second (the irregular one)
diverges in r = 0. Note that for complex potentials this is no longer the case and both
solutions are physically acceptable.

In practice, (3.6) is discretised within each atomic sphere and solved numerically.
Next, the solutions are normalised according to the procedure described in the ap-
pendix. If relativistic e�ects are important, we solve the radial Dirac equation (see the
appendix).

3.1.4 Solving the electronic structure

In practice we cut the wavefunction expansions in (2.31) and (2.33) at a maximum
value lmax+ 1 of the l quantum number, which depends on the energy according to the
rule: √

lmax(lmax + 1) =
√
E rMT (3.7)

where both the energy E and the mu�n-tin radius rMT are expressed in atomic units.
Typical values of this cut-o� are around 4 or 5 for up to 30 eV above the edge.

The multiple scattering method We use the spherical harmonics basis to represent
all the operators. According to section 2.3.3, our procedure consists in calculating a
multiple scattering matrix Ti for each atom in the cluster, where T =

∑
i Ti. We �rst

calculate the atomic scattering matrix Ti in (2.44) and the free propagators Gij l
′m′

0 lm in
(2.45).

Next we solve the following matrix equation in the (l,m) basis:

T̂i = [t̂−1
i − Ĝ0]−1 (3.8)

where the superscript indicates the inverse of the referred matrix. The MST calcula-
tion's most time demanding step is the matrix inversion required in (3.8), especially
at high energies where the number of spherical harmonics considered when expanding
the wavefunctions is increased (equation 3.7). In this case (100 eV above the edge or
more) the path expansion (2.42) can be preferred.

We stress that although the MST requires non overlapping potentials, we get better
results if we allow the MT spheres to overlap. This is a standard, although theoretically
unjusti�ed, procedure in the MST calculations community. It is primarily due to the
fact that s and p orbitals' spatial range is wider than the MT radius. It is intuitive to
understand that such a prescription allows a better treatment of the extended orbitals.
Actually, it improves the description of the other arbitals also. Typically, FDMNES
uses an overlap of 10 per cent.

The �nite di�erence method In practice, the full potential method couples a MT
sphere centred around the atoms, and whose radius is of the magnitude of an atomic
unit, to an uniform mesh. We calculate the atomic amplitudes al(E) in every point
of the mesh, and force the continuity with the solutions in the sphere. Subsequently,
according to section 2.3.4, we can obtain the equivalent of the imaginary part of the
multiple scattering matrix =τ .
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3.1.5 The tensor calculation

The atomic tensors Once τ is available, we calculate the scattering tensors for each
distinct (non-equivalent) absorbing atom in the cluster (equations 2.16, 2.17, 2.18) and
for every energy. These di�erential tensors are necessary for the calculation of the
XANES, RXD and XMCD spectra. At this step, we calculate the atomic spectra: we
consider the polarisation terms and integrate over all the energies.

The crystal tensors We sum the atomic spectra over all the participating atoms.
In the case of RXD, we multiply by the Bragg factors. Consequently, we obtain the
total cross section and the RXD amplitudes.

3.1.6 The convolution

This step of the calculation is supposed to add some broadening to the XANES
spectra and convolute the RXD amplitudes to get the total intensity on one hand, and
to eliminate the occupied states according to (2.13), on the other hand.

The XAS spectrum in (2.13) requires the convolution with a lorentzian having an
energy dependent width Γ(ω) in order to account for the broadening due both to the
core hole width Γhole and to the spectral width γ(ω) of the �nal state:

σconv(ω) =

∫ ∞
EF

dE σnonconv(E)
1

π

Γ(ω)

Γ(ω)2 + (h̄ω − E)2
(3.9)

with

Γ(ω) = Γhole + γ(ω) (3.10)

Here σnonconv(ω) and σconv(ω) are the unconvoluted and the convoluted absorption
signal, respectively. In practice, one uses the standard, tabulated [60], edge dependent
and energy independent (i.e. the screening is treated statically), values for Γhole. The
energy dependence of the broadening is entirely due to γ and is a signature of the inelas-
tic electron scattering phenomena. Note that Γ(E) is essentially a self-energy (equation
2.30) with no spacial dependence. We agree to set γ according to the arctangent model,
an empirical model close to the Seah - Dench formalism [102]:

Γ(E − EF ) = Γhole + Γmax

(
1

2
+

1

π
arctan

(
π

3

Γmax
El

(
e− 1

e2

)))
(3.11)

with

e =
E − EF
Ectr

(3.12)

where EF is the Fermi energy and the parameters describing the arctangent are: the
total height Γmax, the in�exion point Ectr − EF and the inclination El (�gure 3.2).
Their typical values for the K edge are 15 eV, 30 eV and 30 eV respectively. The deeper
the edge, the larger the convolution. In �gure 3.2, the in�exion point corresponds to
the emergence of the plasmons. The energy scale is referenced to the Fermi level EF
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Figure 3.2: Γ has an arctangent-like form, centred at Ectr and
whose de�ning parameters are the slope Γmax/El at Ectr and the
total height Γmax.

whereas its zero points to vacuum energy. To have an indication on the energy of the
photon, one should add the energy of the edge.

A similar procedure is used to obtain the RXD intensities from the corresponding
amplitudes:

f ′(ω)− if ′′(ω) =
mω2

h̄2

∫ ∞
Ef

dE

∑
g

∑
f 〈φg|Ô†(~εout, ~r)|φf 〉〈φf |Ô(~εin, ~r)|φg〉

ω − (E − Eg) + iΓ(E)
(3.13)

We use the same Γ as the one for the XAS broadening, but we evaluate it at the
photoelectron's energy E. The e�ect of Γ in (3.13) is no longer a broadening, like
in the XAS case. The RXD spectrum is due to a coherent scattering process. The
e�ect of the �nal state's �nite lifetime (or width) is that it destroys this coherence.
Consequently, the larger the Γ factor, the smaller the di�racted intensity (the surface
below the curve diminishes).

Contrary to the convolution of the spectrum in (2.13), the convergence of (3.13) over
the energies is sometimes extremely slow (for instance, the K edges). To overcome this
problem, one uses the imaginary part of f(ω) extrapolated to the atomic form factor
up to 10000 eV above the highest calculated energy.

In the (1.3) and (3.13) summations over the states only unoccupied states appear.
Consequently, one must eliminate the contribution of all Ψ

(j)
g corresponding to states

whose energies are below the Fermi energy. The sum over the �nal states in (1.3)
becomes:∑

≡
∫ ∞
EF

dE
∑
f

(3.14)

with f being the �nal states of the same energy E. In some cases the lower limit of
this integral is di�erent from the Fermi energy EF , as we show in chapter 4.

Interpretation of complex potentials Numerically, one can prove that performing
the convolution of (3.9) on the output of a real potential calculation is identical to the
unconvoluted result for the equivalent complex energies calculation (i.e. the imaginary
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part of the potential is equal to the Γ broadening of the former) in the limit EF → −∞.
Therefore the use of a complex potential is a synonym to the taking into account of some
inelastic photo-electron scattering mechanisms which leads to damping (the self-energy
correction, according to section 2.3.1).

3.1.7 Miscellaneous aspects

Real versus complex spherical harmonics From a computational point of view,
it is often interesting to replace the standard, complex spherical harmonics Y m

l with
the real ones. The latter take half the memory space required by the former. The real
harmonics are obtained as a linear combination of the complex ones:

Y m
l |real =


Y m
l ,m = 0
1√
2

(
Y m
l + (−1)m Y −ml

)
,m > 0

− i√
2

(
Y −ml − (−1)m Y m

l

)
,m < 0

We are allowed to use this unitary transformation under several restrictions. The ex-
pansions in (2.32) and (2.33) are no longer valid if the real harmonics basis is employed.
Therefore, if one takes into account the spin-orbit coupling, one needs to work with
the complex spherical harmonics. Secondly, if the calculation is not symmetrised (i.e.
simpli�ed thanks to the symmetry operations of the point group of the absorbing atom,
according to the paragraph in the beginning of this section) we are allowed to use either
the real or the complex harmonics in (2.31). We are equally allowed to do such if all the
representations of the symmetrised calculation have a real character. In the opposite
case of complex representations (for instance point groups containing the C3 symmetry
operation) the use of complex harmonics in (2.31) is compulsory.

The energy of the core level For bulk and simple materials, the edge energies are
well known, tabulated quantities [121]. When the very same absorbing chemical species
is part of another compound, the di�erent atomic environment induces a shift of the
absorbing edge with respect to its tabulated value.

FDMNES estimates the value of the Kohn-Sham energy of the core level, by using
the total potential V calculated above:

Eedge =< ψg|Ekin + Vcore|ψg > (3.15)

where the Vcore is the total electrostatic potential (including the attraction of the nu-
cleus) at the core level and Ekin the kinetic energy.

3.2 Application: magnetic and orbital ordering in NdMg

3.2.1 The context of the study

At low temperatures, the 4f electron cloud of the rare earths may lose its spherical
symmetry and distort in the presence of crystal �elds, provided L4f 6= 0. This distor-
tion can be described in terms of 4f electric quadrupoles. Consequently, the electric
quadrupolar moment becomes an order parameter and below the critical temperature
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Figure 3.3: Sketches of the quadrupolar arrangement in NdMg. In
phase I, between TN = 61 K and TR = 35 K, the single-k collinear
antiferromagnetic structure is associated with a ferroquadrupolar
arrangement of the quadrupolar moment. Below TR in phase II,
the double-k structure is associated with the antiferroquadrupolar
arrangement. This �gure was taken from reference [23].

one speaks of quadrupolar ordering. This ordering has either the periodicity of the
lattice (ferroquadrupolar order) or forms a superlattice (antiferroquadrupolar order).
When incidental to Jahn Teller distorsions in insulator phases, the mechanism of the
breaking of symmetry is mediated by the lattice (see chapter 7). In the metallic phases
as the NdMg, the breaking of symmetry is a consequence of the indirect exchange.

The quadrupolar ordering cannot be identi�ed straightforwardly by neutron studies,
as neutrons are not sensitive to the charge cloud. In this chapter we will be investigating
the alternative of the X-ray measurement, in terms of appropriateness for the study of
quadrupolar ordering. NdMg is a suitable model compound for this purpose.

The quadrupolar ordering in NdMg was already identi�ed by means of non-resonant
X-ray techniques [2]. We recall that the non-spherical Thomson scattering signal is
weak, thus delicate to measure. Before concluding on the appropriateness of the X-ray
techniques for the study of quadrupolar ordering, one should consider working in the
resonant regime, which enhances the di�raction signal. One chose to work at the L2,3

edges of neodym. Under these conditions the 4f quadrupoles are not probed directly,
but via their coupling to the 5d states.

The quadrupolar ordering generally involves a magnetic ordering. In NdMg, the
magnetism is due to the neodym atoms. Below the Néel temperature TN = 61K, the
consequent antiferromagnetic ordering drives a magnetostriction induced, tetragonal
symmetry lowering with (a− c)/a < 1. At TR = 35K a second phase transition occurs,
and the magnetic structure becomes double-k (see �gure 3.3). In the �rst phase, the
antiferromagnetic structure is associated with a ferroquadrupolar arrangement of the
electric quadrupoles. In the second phase, the double-kmagnetic structure is associated
with the antiferroquadrupolar placement of quadrupoles (see �gure 3.3) and with a
magnetoelastic strain of opposite sign (c − a)/a < 1 [1]. In the �rst phase, the spins
are vertical, whereas in the second one they lie in the horizontal plane.

The di�raction experiments were carried out at the ESRF-Grenoble on the ID20
beamline by R.M. Galéra and collaborators. For the details of the experimental setup
please refer to reference [23]. The object of the study is the second low-temperature
phase of NdMg. The measured re�ections are of type (h/2 k l/2) and (h k l/2), whose
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origins are quadrupolar and magnetic, respectively.

The tetragonal distortion is too small to allow the identi�cation of the several mag-
netic domains, within the experimental resolution. In other words, one cannot resolve
the three corresponding k-space spots for a given scattering vector. One therefore
expects that the (h k l

2) measured intensities come from the Dxz and from the Dyz

domains, whereas the (h2 k
l
2) intensity is due to the Dxz exclusively.

3.2.2 Tensor analysis

In the following we will apply the prescriptions in sections 2.2.1 and 2.2.2 to the
study of the azimuthal dependence of the RXD re�ections in NdMg. Unless speci�ed
otherwise, we will be referring only to the Dxy domain, i.e. the magnetic moments lie
in the xOy plane. The re�ections revealing the magnetic ordering are of type (h2 0 0)
and (0 k

2 0). The quadrupolar re�ections are of type (h2
k
2 0). For convenience, we

shall leave out from our discussion the more general (h2 k l) and (h k
2 l) re�ection (they

can be treated in a similar way). To get the corresponding experimental indexes, one
should perform the necessary circular permutations.

Figure 3.4: A sketch of the unit cell in NdMg. Only the Nd atoms
have been considered, by using oriented arrows to describe spins
and rounded, ex-centric shapes to model the electric quadrupoles.
The quadrupolar order spans with the (1

2
1
2 0) propagating vector,

whereas the magnetic one is described by two propagating vectors:
( 1

2 0 0) and (0 1
2 0). The table contains the positions and symmetry

operations that connect the equivalent atoms in the unit cell of
NdMg. E stands for the identity, C4z means a π/2 rotation around
the Oz axis and T stands for time reversal.

j ~Rj Op. sym.
1 0 0 0 E
2 1 0 0 C4z

3 0 1 0 TC4z

4 1 1 0 TE

Figure 3.4 shows the symmetry operations that connect, in the unit cell of NdMg,
the atoms in the plane where the magnetic moments lie. Let us consider the magnetic
domain where the spins lie in the plane xOy. The corresponding magnetic point group
is m′m′m and according to (2.24) the atomic, symmetry reduced tensor in the crystal
basis set gives:

D =

 a c id
c a -id
-id id b

 (3.16)
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The energy dependent components: a, b, c and d, are real numbers. We can note for
instance that, as Dxy −Dyx = 0 for all energies, the atomic orbital momentum along
the Oz axis is zero.

We use (2.25) and (3.16) and the prescriptions in section 2.2.2, given the symmetry
information in �gure 3.4. We are led to the following form for the crystal tensor:

D = 4

 a 0 0
0 a 0
0 0 b

 (3.17)

In the same way the following forms are obtained for the amplitudes A(j) for the (h2 00)

and the (h2
k
2 0) re�ections:

A
(j)
h
2

00
∝ ε†out

 0 0 0
0 0 -4id
0 4id 0

 εin (3.18)

A
(j)
h
2
k
2

0
∝ ε†out

 0 4c 0
4c 0 0
0 0 0

 εin (3.19)

We draw the attention upon the fact that (3.18) and (3.19) involve only one value
among the atomic tensor's elements. This implies that the global shape of the angular
dependence is energy independent. The angular dependence gives a hint of the energy
via an energy dependent multiplicative factor.

The components of the tensor in (3.18) being purely imaginary con�rm the fact that
the (h2 00) re�ections are magnetic. In (3.19) the components of the tensor are real,
thus the re�ections at the (h2

k
2 0) nodes are electrical. We note that the class of (0h2 0)

re�ections is equivalent to the (h2 00) ones as the site has the C4z symmetry. Therefore
in order to obtain its tensor amplitude it is enough to refer to (3.18) and perform the
corresponding symmetry operations.

The tensor approach allows us to understand how the extinction of certain re�ections
appears for a speci�c combination between the incoming and the outgoing polarizations.
For instance, the amplitude of the magnetic (h2 00) re�ections in the σ−σ con�guration
gives (see equation 3.18):

(0 − sin Ψ − cos Ψ)
 0 0 0

0 0 -4id
0 4id 0

 0
− sin Ψ
− cos Ψ

 = 0

where Ψ is the azimuthal angle. The experiment con�rms the extinction of this speci�c
re�ection. The same re�ection in the σ − π con�guration is isotropic with respect to
the azimuthal angle:

(sin θ cos θ cos Ψ − cos θ sin Ψ)
 0 0 0

0 0 -4id
0 4id 0

 0
− sin Ψ
− cos Ψ

 = 4id cos θ

where θ is the Bragg angle. The lack of azimuthal dependence of the (h2 00) σ − π
re�ection is in perfect agreement with the experimental observations. Note that the
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σ−π polarisation con�guration does not necessarily yield the same results as the π−σ
one. While the σ polarization is invariant, the π one has di�erent forms for the incoming
and outgoing cases. We obtain a periodicity of π for the (h2

k
2 0) σ − π re�ections:

(sin θ cosα− cos θ sinα cos Ψ sin θ sinα+ cos θ cosα cos Ψ − cos θ sin Ψ) · 0 4c 0
4c 0 0
0 0 0

 sin Ψ sinα
− sin Ψ cosα
− cos Ψ

 = c(−4 cos 2α sin Ψ + cos θ sin 2α sin 2Ψ)

with α = arctan(h/k)

The calculations described above (di�raction amplitudes, crystal tensor, azimuthal
dependence) are implemented in the FDMNES code and performed automatically. In
comparison to the analytical calculations, the numerical ones provide the exact value
of the atomic tensor components (a, b, c, d). For a single domain sample, this would
allow a quantitative analysis of the angular dependence.

All the calculations in this section were validated by the experimental data. We
cannot possibly know the distribution of the magnetic domains in the sample. There-
fore, a quantitative analysis of the azimuthal dependence of the measured re�ections is
impossible.

3.2.3 Results

All calculations were performed with the FDMNES code: the magnetic re�ections
were calculated in the MST, whereas the FDM was used to simulate the quadrupolar
ones. In rare earth compounds the spin-orbit coupling is essential and one cannot
neglect it. On the other hand, FDM calculations including the spin-orbit coupling are
extremely time consuming (several months for a small cluster calculation of NdMg).
We were therefore forced to calculate the magnetism in the MST frame. The MST
calculations were performed on a 8Å cluster, i.e. 65 atoms. The shortcoming of the
MST is that it cannot describe the quadrupolar electric moment, which is erased in the
MT approximation. We thus conducted the quadrupolar re�ections calculations in the
FDM, which is the ideal method for the situations where the non-sphericity plays an
important role.

In NdMg, the �nal states of the dominant E1-E1 transitions at the neodymium L2,3

edges are the 5d conduction band states. Consequently, the single particle approxima-
tion in FDMNES should be su�cient to describe the physics of the system. On the
other hand, the energy positions of the peaks corresponding to the E2-E2 transitions
to the 4f localized states are satisfactory, but not their intensities.

The antiferroquadrupolar ordering of the 4f electric quadrupolar moments introduces
a periodic perturbation of the potential that a�ects the 5d �nals states and gives rise
to the resonant scattering at the (h2 0 l2) nodes in the reciprocal space. The existence of
the 4f electric quadrupolar moment should be described through a convenient breaking
of the 4f orbital symmetry. This breaking of symmetry is driven by the correlation.
More speci�cally, it is an e�ect of the crystal �elds and cannot emerge naturally from a
DFT calculation. Therefore, the breaking of symmetry must be described as an input
of the calculations.
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As far as the FDM calculations are concerned, the degeneracy is removed by imposing
a speci�c extra population to a 4f orbital, provided it possesses an axial symmetry along
the local direction of the quantization axis de�ned by the local magnetic moment.
The Coulomb repulsion of this non-spherical extra electric charge breaks the local
symmetry and splits the 5d levels. To obey the axial symmetry constraints, we chose
the m4f = 0 orbital and rotated it to align it to the direction of the spins (see �gure
3.3). Calculations were run on a cluster of radius 4 Å, centered on the absorbing atom
and containing the �rst two neighboring shells i.e. 15 atoms. An extra population of
0.15 electrons was imposed on the m4f = 0 orbital but no magnetic information was
introduced into the calculations.

To align the calculated and experimental spectra, we shift the former until the thresh-
old position of the measured and theoretical absorption spectra coincide. We use the
same energy shift for all the RXD spectra.

In the MST calculations the description of the magnetic arrangement is an input
information, but no explicit description of the antiferroquadrupolar arrangement is
given. Nonetheless MST calculations predict a scattered signal at the (h2 0 l2) quadrupo-
lar nodes, in the π−π channel. The magnetic scattering, that occurs only in the rotated
π−σ or σ−π channels, is forbidden at these nodes. Such a result is quite unexpected,
as in the MT approximation the electric potential is forbidden any asphericity. When
the spin-orbit coupling is eliminated from the MST-MT calculations, no scattering at
the quadrupolar nodes is predicted. One thus ascribes the emergence of this scattering
to the spin-orbit coupling. The spin-orbit coupling enables the prediction of the non-
spherical e�ects by means of the coupling of the magnetic moment to the electronic
distribution. Figure 3.5 shows the L2 edge energy dependence of the calculated scat-
tered signal at the (−1

205
2) node in the π − π channel, within the MST-MT and FDM

approaches. The global shape of the two spectra is the same, at both edges. In terms of
intensities, the MST spectrum is underestimated by several orders of magnitude. This
can be understood by the fact that the 4f quadrupolar charge scattering (not described
in the MST-MT) is several orders of magnitude stronger than the magnetic scattering
implied by the spin-orbit coupling.

The experiment shows that the magnetic scattering occurs only in the rotated π− σ
and σ − π channels, which is consistent with the analysis in section 3.2.2. The form
of the measured magnetic spectra seems to depend on the edge and on the specular /
o�-specular character of the re�ection. In �gures 3.6 and 3.7 we show an example of
each. For this speci�c experimental setup [23], the re�ection (005

2) is specular, whereas
(−1

203), (1
203) and (0

502) are o�-specular.

The spin-orbit MST calculations provide a qualitative interpretation of the measured
re�ections, but fail to reproduce the quantitative aspects (�gures 3.6 and 3.7). At the L3

edge, in order to simulate the experimental peak at 6206 eV in the specular re�ections,
one has to lower the cut-o� energy 2 eV down from the self-consistently calculated
cut-o� level. In the calculations, the appearing structure is unambiguously assigned to
the E2-E2 electric quadrupole transitions towards the 4f states. We recall that when
many-body e�ects are present the concept of Fermi level loses its signi�cance and a
best description could be obtained by adjusting the cut-o� energy. This is a reasonable
procedure in the present case. While for the o�-specular re�ections no change occurs
in the structure of the spectra, the peak of E2- E2 origin in the specular re�ections
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Figure 3.5: The calculations of the (− 1
20 5

2 ) quadrupolar re�ection.
The FDM spectrum (dashes) is issued from a non-magnetic calcu-
lation where the 4f distortion was described explicitly. The spin-
orbit MST calculation does not take into account the asphericity of
the electron cloud. The common e�ect of the antiferroquadrupolar
ordering and of the spin-orbit coupling is that they break the de-
generacy of the 4f electron cloud. Note that there is a di�erence
of two orders of magnitude between the two: the charge scattering
is stronger than the magnetic one.

is clearly resolved at the L3 and L2 edges, after having adjusted the cut-o� level.
Although the single particle approaches are not adapted to describe strongly correlated
electrons, the reasonable agreement with the experiment allows to de�nitively ascribe
the peaks observed at 6206 and 6715 eV in the spectrum of the (005

2) re�ection to the
E2-E2 electric quadrupole transitions.

The non-negligible intensity measured far below the L2,3 edges for the o�-specular re-
�ections is due to the interference between the non-resonant magnetic and non-spherical
Thomson terms. The latter is not included in the FDMNES calculations, and thus the
pre-edge background is absent from the calculations. The broad structure observed at
both edges at ≈ 6 - 7 eV below the E0 peak in the energy spectra for the o�-specular
re�ections is completely missing from the calculations. In our calculations, no available
f or p states are calculated at this position in energy. The origin of the structure
remains unclear, and we suspect it is an experimental artefact due to a misalignment
issue.

The quantitative aspect of the agreement with the experiment for the magnetic re-
�ections, in terms of calculated intensities, is particularly ill-suited. This is not entirely
due to the many-body e�ects, but to the unknown domain distribution. For the two
contributing magnetic domains, the polarization (azimuthal) conditions are not the
same, for a given illumination. This is disturbing, provided the azimuthal dependence
of a certain re�ection is strong - the case of the o�-specular re�ections. Concerning the
specular re�ections, the calculations predict no azimuthal e�ect (see section 3.2.2 for
an analytic proof).

Figure 3.8 shows the energy spectra of the (−1
205

2) quadrupolar satellite in phase II
at the neodym L2,3 absorption edges. In the π− π channel the quadrupolar scattering
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Figure 3.6: The magnetic specular (above) and o�-specular (below)
re�ections at the L3 edge: calculations versus experiment. Two
di�erent cut-o� energies were employed: the self-consistent Fermi
level (dashes) and a cut-o� shifted down by 2 eV from the previous
value (solid).

presents a single-peak resonant structure centered around ≈ 6724 and ≈ 6212 eV for
the L2 and L3 edges, respectively. Experimentally, the intensities at the L2 and L3

edge are not comparable. The statistics at the L3 edge are not very accurate, which
could be a reason for the mismatch between the broadening of the experimental and
calculated spectra. It appears clearly that the RXD may be used to investigate the
quadrupolar ordering.

Quadrupolar scattering is straightforwardly related to the 4f orbital asphericity, thus
it is expected to be more intense than the magnetic scattering. However the experiment
is observed to be one order of magnitude smaller. This discrepancy probably arises from
an unfavorable domain partition in the probed surface crystal.

3.2.4 Conclusions

The present experimental and theoretical study of RXD at the L2,3 absorption edges
of neodym con�rms the existence of resonant scattering signals at the reciprocal space
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Figure 3.7: The magnetic specular (above) and o�-specular (below)
re�ections at the L2 edge: calculations versus experiment. Two
di�erent cut-o� energies were employed: the self-consistent Fermi
level (dashes) and a cut-o� shifted down by 2 eV from the previous
value (solid).

positions associated with both the magnetic and the quadrupolar orderings in phase II
of the NdMg compound. Experimentally, the polarization and azimuth dependencies
of the (h2 0 l2)-type satellites are fully consistent with the antiferroquadrupolar order-
ing in NdMg, ordering that was previously evidenced in non-resonant conditions. The
calculations of the resonant quadrupolar scattering performed using the �nite di�er-
ences method predict the one peak structure of the energy spectra, the polarization
and azimuth dependencies in noteworthy agreement with the observations.

The energy dependence of the magnetic satellites presents a multi-peak structure
that depends on the edge and on the specular and o�-specular character of the re�ec-
tion. MST-MT calculations including the spin-orbit coupling allow these spectra to
be interpreted. The E1-E1 electric dipole transitions toward the 5d states give rise to
the two peaks at and above the edge energy. Though the single particle approaches
are not adapted to describe strongly correlated electrons, the position in energy of the
E2-E2 electric quadrupole transitions toward the 4f states in the calculated spectra is
consistent with the experimental observations at least at the L3 edge.
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Figure 3.8: Experimental and FDM calculated spectra of the
(− 1

20 5
2 ) quadrupolar re�ection, at the L3 (above) and L2 (below)

edges of neodym.

One must nevertheless admit that the quantitative agreement between the calcula-
tions and the experiment is not satisfactory. These calculations could bene�t from the
inclusion of the spin-orbit coupling in the FDM calculations, which for the time being
is prohibited for extended systems and within reasonable calculation times. One should
equally tempt calculations behind the one body picture, which is obviously unsuitable
to describe the correlated 4f orbitals of the neodym.
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Chapter 4

The self-consistent procedure

4.1 Motivation

Given today's state of art of electronic structure calculations we feel that a reliable
X-ray absorption calculation needs to support a self-consistent procedure. It is not
customary for real space, MST absorption calculations to be self-consistent. Actually,
FDMNES is the only self-consistent real-space code besides FEFF [8]. Whether the
self-consistent results are better than the non self-consistent ones (and, eventually, to
what degree) is another issue, that we will address later. In our view the development
of a self-consistent procedure is not a goal in itself, but a layer to support further
implementations. For instance, to perform a LSDA+U calculation one is required to
know the occupation numbers for the correlated orbitals involved. Of even greater
importance is the fact that we need a reliable procedure of counting the electrons in
the cluster in order to determine the Fermi level in an unambiguous way. This feature
emerges naturally provided one bene�ts from a self-consistent calculation scheme.

In the acceptance of the electronic structure calculation community, a self-consistent
procedure consist in solving a non-linear equation (the mean �eld SE) by iteration. In
other terms, we iterate on a certain ensemble of charge distributions in the cluster, until
we are certain that the potential they generate is the closest to the real one. We recall
that the default procedure is to calculate the potential starting from the superposition
of the atomic charge densities in the cluster (see section 3.1.2). What self-consistency
does is that beginning with the second iteration, the potential is calculated based on
the charge density that was calculated at the previous iteration. After convergence, we
should obtain a better potential than the one obtained with the Mattheiss prescription
[73].

A more profound meaning of the self-consistency can be found in the very SE (in
Hartree units):

(−1

2
∇2 + V̂ )|Ψ > −E|Ψ >= 0 (4.1)

whose self-consistent feature is given by the fact that V̂ depends on |Ψ|2 (the cluster
potential depends on the electronic density). This problem can be solved iteratively:
we make a �rst assumption on V̂ (the Mattheis prescription), we solve the SE to get
|Ψ >, we calculate the new V = V [n] where the density n is directly linked to |Ψ|2, we
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Screening scheme SCF cycle Absorption calculation
(a) ≡ SCF non-excited 7 7

(b) ≡ SCF excited 4 4

(c) ≡ SCF hybrid 7 4

solve again the SE etc.

In principle, the self-consistent procedure is mandatory in order to assure the rele-
vance of the mean �eld solution of the exact Hamiltonian (in our case, the solution of
the Kohn-Sham equations of the DFT in the local approximation). In this chapter, we
will adress the question whether the self-consistent loop is equally important from a
practical point of view.

4.2 Implementation

The self-consistent procedure is independent of the actual method of resolution of
the SE (MST or FDM in our case). Whatsoever, at the time being, the FDMNES self-
consistency is performed strictly in the MST. We shall come back later to the reasons
for this choice.

The details of the implementation are as follows. FDMNES self-consistency consists
of two main steps. First we iterate to obtain the correct electronic density, in MST.
Second, we perform a last iteration which calculates the absorption spectra (2.13),
in either the MST or the FDM approach. We note that the cluster's radius for this
last calculation is not necessarily the same as the one used in the previous step. In
particular we can be interested in running an absorption calculation at a larger radius
than the one used in order to get the electronic density in a self-consistent way.

We distinguish between three ways of performing the self-consistent procedure, which
we will further reference by (a), (b) and (c), respectively. Scheme (a) assumes a non-
excited electronic con�guration for the absorber during the entire calculation (the
ground state con�guration). The second possibility (b) is to assume an excited ab-
sorber, i.e. in the presence of a core hole and with an extra electron on the �rst
available valence level (solid state screening). Finally, there is a third scheme (c) cor-
responding to an intermediate situation between (a) and (b): the self-consistency is
performed on a non-excited atom; it is only during the absorption calculation that
we take into account the excited electronic structure of the absorber. In practice, at
the beginning of the absorption calculation, we add the di�erence between the atomic
density corresponding to an excited atom ρatomexc (~r) and the one for the non-excited case
ρatomnonexc(~r) to the self-consistent electronic density of the absorber ρSCF(~r):

ρSCF(~r) = ρSCFnonexc(~r) + (ρatomexc (~r)− ρatomnonexc(~r)) (4.2)

We note that both in (b) and in (c) we introduce by default a full screening to calculate
absorption. Therefore, the many body e�ects due to the core hole are taken into
account through the �nal state rule. The essential dissimilarity between the (b) and
(c) procedures is linked to the di�erence in the time scales associated with the two main
processes involved: the transit of the photoelectron out of the atom and the response
of the electron cloud surrounding the absorber (see the dedicated paragraph in section
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1.4.2). If the electrons adjust instantaneously to the perturbed structure scheme (b)
is appropriate. If the photoelectron travels out of the atom before the other electrons
have the time to readjust, scheme (c) is more accurate. In the results section we shall
distinguish which is the most accurate procedure among the three.

We cycle on a wide range of electron energies (we set an energy step of 0.1 eV) and
we calculate the a(E) and bl(r, E) factors for each of these energies. The �rst energy of
the calculation is chosen between those of the last core orbital and of the �rst valence
one, in terms of the atomic energy levels of the atoms in the cluster. We de�ne the
core states as those atomic orbitals which are part of a full shell and are far enough
from the potentially occupied states; the remainder are referred to as valence states.
We recall that the atomic levels have no physical signi�cance if the cluster contains
several atoms; they still give us a fair indication of where the calculation should begin,
in order not to miss the electrons we are interested in. We note that beginning the
calculation at a rather low energy (at around 30 to 80 eV below the edge) is not very
time consuming, because of the small number of spherical harmonics featured in the
expansion, according to the rule in (3.7).

Calculation time is saved by means of the symmetrization. We recall that all calcula-
tions are symmetriZed, but di�erent symmetry constraints are applied according to the
choice of the self-consistent scheme (a, b or c). Procedures (a) and (c) are consistent
with the periodic description of a crystal. In this case we calculate electronic densities
corresponding to the non-equivalent atoms in the unit cell and impose them on the
rest of the atoms in the cluster, according to the space group symmetry. This scheme
avoids the convergence problems due to border phenomena that concern the atoms far
from the absorber. Within the scheme (b), when we deal with an excited absorber,
the crystal symmetry is broken by the presence of the core hole which renders the cal-
culation molecular-like. The space group symmetry is no longer relevant and we need
to calculate the electronic structure of atoms independently, at most by taking into
account the point group symmetry of the absorber. One straightforward consequence
of this procedure is the fact that it induces arti�cial e�ects at the cluster's borders.
The lack of constraints with regard to the distribution of electrons predisposes them to
accumulate at the borders. This phenomenon does not prevent convergence.

In order to calculate the potential for the atoms at the border of the cluster, we use
an auxiliary calculation cluster, whose radius is larger than that of the former. The
additional atoms it brings are not calculated self-consistently. Their only purpose is to
set the atomic levels used for the superposition of both the electronic densities and the
atomic potentials.

To perform a real-space self-consistent calculation in solids the use of complex energies
is mandatory. They are required in order to broaden the localized electronic levels,
otherwise one would need an extremely small energy step to count properly the electrons
in these orbitals. We therefore need to refer to equations (2.48) and (2.54) for the
calculation of all the density-related quantities. The reason why we are limited to the
MST scheme in order to perform the self-consistent procedure is that we cannot treat
the singular solution with the FDM method. The energies of the calculation are chosen
to have a small (0.1 eV) imaginary part.

The evaluation of the Fermi level demands the setting of a reference in terms of
the number of valence electrons one can �nd in the cluster. Summing up the atomic
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numbers is not exact, for two reasons. Firstly, we only count the electrons lying within
the atomic spheres Rj , whose construction is explained in the following paragraph.
Secondly, we fail to count some valence electrons localized beyond the cluster's borders
and which belong to the next-to-the-border atoms.

To solve this, we assign a speci�c space extension to each atom. We consider spherical
atoms j with radii Rj , chosen in such a way that the cluster is neutral. This procedure
has been proved inappropriate for certain kinds of materials (i.e. sparse structures) as
it implies a too large overlap between the atomic spheres. In this case we set an upper
limit of 30 per cent of overlap with respect to the sum of the volumes of the spheres in
the unit cell. We note that the atomic radii are usually larger than the MT radii. One
calculates the spatial integrals in the following manner:∫

space
d3r =

∑
j

∫ Rj

0
d3r (4.3)

by summing the relevant atomic sphere over all the atoms of the cluster.

Subsequently, we use (2.56) and (4.3) to calculate the number of electrons belonging
to each atom and then the total electronic population of the cluster. The �rst calcu-
lation is stopped when this number reaches the reference electron number. We get the
corresponding electron charge density. In practice, as usual, we perform a weighting of
the charge density at the previous iteration (that we used in the beginning of the cycle
in order to calculate the Coulomb potential) with the current one. The experience tells
us that the current calculation needs to have a rather small weight (0.1 at most) for
convergence to be achieved. The interpolation parameter is set up dynamically, i.e. we
decrease it by a factor 2 in case of a beating convergence parameter, which we de�ne
later in (4.5). We inject the weighted charge density into the next cycle and we repeat
the calculation until the convergence is achieved.

We note that the automatic setting of the Fermi level is a very convenient and user-
friendly feature of the self-consistent calculation. For the codes where this is not the
case, the Fermi level is set ad-hoc and thus the elimination of occupied states according
to (3.14) is spurious. In the case of sparse structures (as one will see in the next
section) the calculated Fermi level and the cut-o� of the absorption spectrum may
di�er, nevertheless the former still gives valuable information (within ≈ 1-2 eV).

Provided the non-spherical e�ects are not very signi�cant, we observed that the
calculated Fermi level suits well the cut-o� value needed for a satisfactory agreement
with the experiment, if schemes (a) or (c) are employed. If, on the contrary, we perform
a full excited calculation of type (b), our experience tells that the cut-o� value needs
to be less (1-1.5 eV) than the calculated Fermi energy. Consequently, we developed
an automatic procedure that estimates this new cut-o�: we integrate the valence DOS
for the absorber until it reaches the nominal number of electrons of the non-excited
atom. For instance, let the case of a self-consistent, excited calculation on bulk titanium
(Z = 22). We integrate its atomic d DOS until it reaches the value 2 (i.e. the number
of the 3d electrons for the non-excited atom), and the limiting energy is taken as the
cut-o� for the spectrum. The reason that this value is less than the Fermi level is that
the core hole lowers the energy of the (localized) d states, whereas the s and the p are
less in�uenced.

The total energy of the cluster E is calculated by integrating the multiple scattering
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calculated quantities into the Kohn - Sham formula [58]:

E [ρ(r)] =
∑
atoms

∫
dE E δ(E) +

∑
atoms

∑
g∈core

εg −
1

2

∫
d3r ρ(r)VH (ρ(r))

+

∫
d3r ρ(r)εxc (ρ(r))−

∫
d3r ρ(r)Vxc (ρ(r)) (4.4)

where f are the �nal states of the same energy E and all quantities are in Rydberg
units. The �rst term of (4.4) represents the sum over the occupied valence orbitals of
the eigenvalues we got by solving the SE. VH is the bare Coulomb potential (the Hartree
term) , Vxc the exchange-correlation potential and εxc is the exchange correlation energy.
The second term, which we do not calculate explicitly, is the energy of the core states,
calculated in the single particle picture. What we calculate is the variation of this
energy with respect to the �rst iteration value, under the assumption that this variation
is entirely due to the changing potential and that the core wavefunction is the atomic
one. Consequently, the energy in (4.4) is de�ned up to an additive constant.

The criterion to achieve convergence is to have a stable total cluster energy E , i.e. the
variation of this quantity from one iteration to the next must be inferior to a particular
user-chosen value. In practice, we take into account the less favourable situation where
the variations of energies of di�erent atoms have di�erent signs, from one iteration to
the next. Hence we use a more severe criterion, as compared to the stability of E :

∆E =

p∑
eq

Np · |Eip − Ei−1
p | < 1 eV ×

∑
p

Np (4.5)

where we sum on all the equivalent atoms p, with Np being their multiplicity and
N =

∑
pNp the total number of atoms in the cluster. Eip is the energy of such a

prototype atom p at the i iteration. Once convergence is achieved we expect that E
reaches its minimum amongst all the iteration values.

In practice this is not the case. We suspect that the third term in (4.4), whose order
of magnitude is largely superior to the others', masks the variations in the exchange-
correlation contribution. We may be not precise enough to calculate an accurate total
energy of the system. We think that this may be a limitation of the method. We
nevertheless mention that when convergence is achieved, the total energy is de�nitely
smaller than the one at the �rst iteration, and rather close to the minimum value
recorded amongst all iterations. For comparison, we mention that the convergence
criterion in the FEFF code is linked to the stability of the Fermi level and not to the
total energy [8].

4.3 Results

In this section we aim to answer several questions linked to the pertinence of applying
a self-consistent procedure to an X-ray absorption calculation. In particular, we are
interested to detect what are the structures where a self-consistent calculation can
improve the non self-consistent results. Another issue is whether one could a�ord a
smaller calculation radius for the self-consistent part than for the absorption calculation,
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Figure 4.1: Evolution of the K edge absorption signal with respect
to the cluster size: before (top) and after convolution (bottom).
The cut-o� in the unconvoluted spectra is a consequence of the
elimination of the occupied states.

the purpose being to save computation time. Moreover, we wish to indicate what is
the best self-consistent approach among the ones presented in the previous section.
We shall mainly study the K edges, where the agreement with the experiments is
satisfactory enough to enable us to state whether the self-consistent procedure is useful
or not. To begin with, we shall study two textbook cases, the copper Cu (at both K
and L2,3 edges) and the rutile TiO2. We also discuss the results of calculations run on
the boron nitrate BN and the calcium oxide CaO, as well as on the 3d elements.

The copper Cu

To begin with, we will show the self-consistent calculations run on copper, as a
reference case. We show the absorption spectra at the K edge for several radii of
calculation, each of them corresponding to an additional shell of atoms. Figure 4.1
shows theK edge absorption spectra, calculated within the MST frame, before and after
the convolution. One should always appeal to the convoluted spectra when comparing
with the experiment. One can see that in terms of calculation radii, convergence is
achieved at 6.76 Å (i.e. 135 atoms). For this radius we superpose the spectra after
convolution, for several self-consistent and for a non self-consistent calculation. The self-
consistent calculations have been performed in several manners (a,b,c), according to the
procedures described above (see section 4.2). Among these, one can see that procedure
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Figure 4.2: Calculation and experimental data for absorption of
copper. Above, we show the K edge, for a 6.76 Å cluster. Be-
low, we show the L2,3 edges for a 7.66 Å cluster. For what self-
consistent calculations are concerned, we tested the three di�erent
procedures: full non-excited calculation (a), full excited calcula-
tion (b) and hybrid (c), i.e. self-consistency is performed on the
non-excited absorber while the absorption takes into consideration
the excited electronic structure.

(c) is the most appropriate with respect to the agreement with the experiments, as it
improves the ratio of intensities of the structures after the edge. Unlike scheme (b),
non-excited self-consistent procedures (a) and (c) do not in�uence the position of the
structures preceding the main edge, as compared both to the non self-consistent case
and to the experiment. We therefore conclude that the assumption we had made to get
the (b) spectrum (i.e. the response of the electron cloud surrounding the absorber to
the passage of the photoelectron is adiabatic) is not valid at the K-edge, as con�rmed
by our further examples. Note that in the particular case of copper, the L2,3 behaviour
is similar to the K edge one. As the 3d levels are completely �lled for the excited
atom, the orbitals probed by the photoelectron are the band like 4d ones. We shall
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discuss the issue whether the self-consistency (i.e. all but the last iteration) has to be
performed at the same radius as the absorption (i.e. the last iteration) calculation.
We ran a calculation where we used a cluster of 2.56 Å radius (13 atoms, i.e. the
absorber surrounded by the �rst shell of copper atoms) for the self-consistency, while
the absorption calculation was performed on a cluster of 6.76 Å. We compared the
result with the one we had previously got (�gure 4.2) for a full 6.76 Å calculation.
We obtained practically no di�erence between the two, which encourages us to use
a smaller cluster for the self-consistency part for the copper-like (i.e. compact, close
packed) structures.

The rutile TiO2

In this section we will show the results of calculations run on the TiO2 compound.
We calculate the absorption signal at the titanium's K edge, for two di�erent polar-
isations. TiO2 is an interesting structure to test our self-consistent procedure on, as
it features several pre-edge peaks of both dipolar and quadrupolar origin, related to
the 3d states of titanium. The MST non self-consistent calculations do not give a very
good agreement with the experiments. A priori one would expect bene�ts from a self-
consistent calculation, as it is supposed to act especially on the localized 3d states in
the vicinity of the Fermi level.

In �gure 4.3 we show the non self-consistent and the self-consistent calculations (ac-
cording to the two di�erent procedures (b) and (c) ) run on a 5.51 Å cluster and
compare them to the experimental data of Poumellec et al. [88]. We note that a ra-
dius of 5.51 Å corresponds to 75 atoms and is enough to achieve convergence of the
absorption signal with respect to the cluster size. We note that a condition sine qua

non to obtain the pre-edge structures is that the cluster contains the �rst shell of
TiO2 octahedral surrounding the absorber, which is achieved for the 5.51 Å radius.
All absorption calculations have been performed in the MST frame. We analyse the
signal obtained for two di�erent orientations of the polarisation and the wavevector:
(ε, k) = ([001], [110]) and (ε, k) = ([1-10], [110]). One can see that all calculations fail to
describe the double structure at the edge (4980 - 4990 eV), for the second polarisation.
This is a defect of the MT approximation. As far as the pre-edge structures are con-
cerned, they are due to the overlap between the absorber's electronic states and the eg
and the t2g of the titanium neighbours. As compared to the non self-consistent calcu-
lation, both procedures (b) and (c) succeed in shifting the pre-edge structures towards
the smaller energies, nevertheless this shift is not enough to give a perfect agreement
with the experiments. One should note that TiO2 is a rather sparse material and the
MST - MT is known not to give very good results for this particular kind of structure
because of the approximations it introduces on the form of the potential. For what the
self-consistent calculations are concerned, we checked that the converged result is the
same if we choose di�erent departure points in terms of the atomic electronic structure
of the absorber (i.e. 3d1 4s2 4p1 or 3d2 4s2 4p0), proving the robustness of our proce-
dure. Moreover, in practice the result is nearly independent of the exchange correlation
potential we used (i.e. Hedin-Lundquist [51,52] or Perdew and Wang [86]).

Another aspect to take into consideration when performing the self-consistent proce-
dure is the evolution of the atomic charges during the iterations. We recall that we set
the atomic radii Rj in order to assure the neutrality of the unitary cell, or, equivalently,
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Figure 4.3: MST-MT calculations and experimental data [88] for
absorption at titanium's K-edge, for a 5.51 Å cluster. Two po-
larisations are shown: (ε, k) = ([001], [110]) (top) and (ε, k) = ([1-
10], [110]) (bottom). As far as the self-consistent calculations are
concerned, we tested two di�erent procedures: the full excited (b)
and the hybrid (c) calculation. On the right hand side, we show a
zoom on the pre-edge structures. One can see that as compared to
the non self-consistent ones, self-consistent procedures reduce the
disagreement with the experiment.

of the calculation cluster. We checked that when convergence is achieved, the modulus
of the individual atom charges decreases as compared to its value at the beginning.
In the particular case of TiO2, by using the self-consistent scheme (c) we converge to
negatively charged oxygen and positively charged titanium, which is consistent with
the electrochemical picture. When convergence is achieved, we get an additional +0.7 e
for the titanium and −0.35 e for the oxygen, with e being the modulus of the electron
charge. At this point, the calculated atomic charges (0.256 e for the titanium and
−0.128 e for the oxygen) are still very di�erent from the formal ones (4e and −2e,
respectively). This is partially due to the fact that the atomic radii Rj we used for the
charge calculation (1.42 Å and 1.04 Å) are di�erent from the ionic radii (0.86 Å and
1.4 Å).

In �gure 4.4 we show a self-consistent calculation with the absorption calculation
performed in the FDM frame. The main di�erence between the FDM and the MST-
MT calculations occurs at the edge (4980 - 4990 eV), as the former is able to reproduce
the double structure for the (ε, k) = ([1-10], [110]) polarisation. This is a consequence of
having considered the full potential. As compared to its non self-consistent counterpart,
the self-consistent FDM calculation shifts the quadrupolar signal towards the lower
energies. Moreover, the ratio of the intensities of the pre-edge structures is improved.
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Figure 4.4: FDM calculations and experimental data [88] for ab-
sorption at titanium's K edge, for a 5.51 Å cluster. Two po-
larisations are shown: (ε, k) = ([001], [110]) (top) and (ε, k) = ([1-
10], [110]) (bottom). The self-consistent calculations are performed
according to scheme (c). On the right hand side we show a zoom
on the pre-edge structures. One can see that as compared to the
non self-consistent ones, self-consistent procedures reduce the dis-
agreement with the experiment.

The self-consistent scheme is still performed in the MST-MT frame; to get a better
agreement with the experiments one should implement a full potential self-consistent
calculation. We have studied the in�uence of the cluster's size for the self-consistent
part, for a given radius (5.51 Å) of the absorption calculation. We note that all the radii
we tested upon are large enough to exhibit the pre-edge structures. Unlike the copper
case, the results are very sensitive to the radius for the self-consistent part (�gure 4.5).
We therefore conclude that for oxides, whose structure is sparser, one should take the
same cluster size for the self-consistent part as for the absorption calculation.

The 3d and 4d series

We tested our procedure on numerous materials for which self-consistency brings
little or no change with respect to its non self-consistent counterpart. In this section
we focus on the results on the bulk 3d and 4d elements.

We ran K edge calculations on the 3d and 4d series by using the standard crystallo-
graphic structure. We encountered no particular di�culty, neither to achieve conver-
gence, nor to obtain the correct cut-o� for the convolution and, thus, the elimination of
the occupied states. We chose to show the results we got for titanium , nickel, iron and
silver (�gure 4.6) and compare them to the experiment [72]. In the cases where the (b)
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Figure 4.5: Self-consistent calculations of type (c), run for di�erent
sizes of the cluster. The absorption calculation is performed on a
5.51 Å cluster, in the MST-MT frame.

and (c) self-consistent schemes give di�erent results (Ag,Ni,Cu), the best agreement is
achieved by using the former procedure. In other cases (Fe,Ti) this di�erence is not at
all noticeable. We inferred that the (b) self-consistent scheme is the best choice when
dealing with the K edge. Our general conclusion is that the self-consistency brings no
major change at high energies, as compared to the non self-consistent calculations. In
some cases (Fe,Ni) one can see a shift in the position of the low energy peaks. This
behaviour con�rms our assertion that the self-consistent e�ects occur mostly in the
vicinity of the Fermi level.

We note that in the case of transition metals one can allow the self-consistent calcu-
lation to run on a cluster of a lesser radius than the one for the absorption calculation.
A cluster containing two atomic shells surrounding the absorber is large enough to
render reasonable results for the self-consistent part of the calculation. We tested this
feature on the transitional metals and we observed that the absorption calculation run
for a given radius (of the order of 5 Å or more) is not sensitive to the previous self-
consistent calculation step provided the latter contains two or more atomic shells. We
equally calculated the L2,3 edges absorption spectra of the bulk 3d elements (which
we do not show in the manuscript). In this case, the agreement with the experiment
is poor (including the non self-consistent calculation) to such extent that it does not
allow us to distinguish what is the best screening scheme among the three. We cannot
state clearly that for XANES spectra, the self-consistent calculation is better than its
non self-consistent counterpart. A genuine improvement is brought by the corrections
introduced by the TDDFT, as shown in section 6.

Open structures

In the following paragraph we shall discuss the results we obtained for calcium oxide
CaO and boron nitrate BN, some prototypical compounds where non-spherical e�ects
are important. The experiments have been performed at the K edges of Ca and B,
respectively. In both cases, we compared the self-consistent and the non self-consistent
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Figure 4.6: Calculations - nonSCF (long dashes), SCF - (b) (solid
line), SCF - (c) (short dashes) and experimental data (with dots)
for some transition elements. All calculations were performed on a
7 Å cluster. The absorption units match the calculation and the
experimental data is scaled for the comparison. Self-consistency
does not bring signi�cant change, nevertheless it allows a judicious
estimation of the Fermi level. Among the several alternatives, the
scheme (b) is to be preferred.

results (�gures 4.7 and 4.8) with the experiment [8, 77]. Among the self-consistent
calculations, schemes (b) and (c) give similar results and we chose to show the former
one. For these particular materials, the calculated Fermi level is not the same with the
cut-o� we used for the convolution (for the quantitative information, see the captions
of �gures 4.7 and 4.8). We explain this inadequacy by the fact that our assumption of
sphericity (the MT approximation) prevents us from counting all the electrons, given
the fact that we are not allowed to exceed an upper limit of the overlap of the Rj
integration spheres. This energy shift does not usually appear if the compound is a
compact structure, as non-spherical e�ects are negligible, but may be signi�cant if
one deals with a sparse structure, like BN or CaO. We note that it is still the self-
consistent calculation which gives a more reasonable result with respect to the Fermi
level evaluation. In the case of BN, one can see practically no di�erence between the
self-consistent and the non self-consistent calculations, whether the last iteration was
performed in the FDM or in the MST-MT frame. Moreover, the agreement with the
experiment is obviously better in the case of the FDM calculations. One concludes that
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Figure 4.7: Comparison between the self-consistent (solid line) and
non self-consistent (dashed line) calculations with the experimen-
tal data [77] (with dots), for the calcium oxide CaO, with the
absorption calculation performed in the FDM (above) and in the
MST-MT (below). We used a 6.9 Å cluster, i.e. 93 atoms. The
absorption units match the calculation and the experimental data
is scaled for the comparison. The calculated Fermi level (4037
eV for the non self-consistent calculation and 4039.5 eV for the
self-consistent one) is di�erent from the cut-o� we used for the
convolution (4042 eV).

it is crucial for this particular material to be treated within a full potential method
(FDM). The fact that the calculation is self-consistent or not (we recall that the self-
consistency was implemented in the MST frame, due to computational limits) does not
make any di�erence.

For what the CaO is concerned, one notices an improvement provided by the self-
consistent calculations, in both MST-MT and FDM cases. Nevertheless we are still
unable to get a perfect agreement for the modulations in the range 4060-4070 eV.
One can see (�gure 4.7) a better agreement in the case of a non self-consistent FDM
absorption calculation than for the self-consistent MST-MT one. This leads us to the
conclusion that the taking into account of the non spherical e�ects is more important
than the improvement given by the self-consistent procedure, as implemented in the
FDMNES (i.e. in the spherical potential approximation).
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Figure 4.8: Comparison between the self-consistent (solid line) and
non self-consistent (dashed line) calculations with the experimental
data [8] (with dots), for the boron nitrate BN, with the absorption
calculation performed in the FDM (above) and in the MST-MT
(below). We used a 4.7 Å cluster, i.e. 87 atoms. The absorption
units match the calculation and the experimental data is scaled for
the comparison. The calculated Fermi level (178.2 eV for the non
self-consistent calculation and 179 eV for the self-consistent one) is
di�erent from the cut-o� we used for the convolution (186 eV).

Comparison with other codes

We wish to validate our self-consistent procedure by comparing it to an equivalent
band structure calculation. We chose to compare with the results of Moruzzi, Janak
and Williams [78], who used the self-consistent, reciprocal space KKR method, leaning
on the MT approximation. Our self-consistent scheme (a) is completely equivalent
to a band structure result, as the absorber is supposed non-excited throughout the
calculation. To insure a high resolution, we performed a calculation on a radius of
8.47 Å (225 atoms) taking the value of 0.025 eV both for the energy step and for the
imaginary energy. In �gure 4.9 we compare the total density of states (DOS) for the
two calculations. One can see a very good agreement of the two, which testi�es to the
accuracy of our self-consistent scheme.

For comparison, we mention that the self-consistent procedure implemented in the
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Figure 4.9: A comparison between the total density of states of
copper calculated by FDMNES (a SCF - (a) procedure calculation)
and the results of Moruzzi et al. [78]. The zero of the energy scale
corresponds to the Fermi level [78].

FEFF code [8,77] is automatically performed in the (b), i.e. excited scheme. According
to our results for the K edge of copper, this is not the best scheme, as it overestimates
the height of the main edge (see �gure 4.2 and the �rst �gure in reference [93]). We
think that the choice of the hybrid self-consistent scheme (c) is a better solution.

For the rest, the applications of the self-consistent procedure implemented in the
FEFF code [8,77] suggest the same outcome as our's: self-consistency does not alter the
global shape of the spectra, but it o�ers a more reliable, though not perfect, evaluation
of the Fermi level.

4.4 Conclusions

One concludes that at the K edge most of the stringent e�ects of self-consistency,
in terms of the positions of the peaks in the spectra, are restrained to the pre-edge
structures, close to the Fermi level. Nevertheless, for certain materials, a slight re-
distribution of the intensities can be observed at high energies. These considerations
apply to absorption spectra. We expect that XMCD calculations at the K edge will be
rather sensitive to the self-consistent feature.

The value of the Fermi level is the most useful information one gets from a self-
consistent calculation, as it is essential for the identi�cation of the occupied states
and thus for comparison with the experimental spectra. This cut-o� of the spectra is
correctly estimated for the compact structures, but is liable to adjustment (1-2 eV) in
the case of materials where non-spherical e�ects are important.

We have proved that the self-consistency brings practically no change for the closed-
packed structures, in which case one should content oneself to run the self-consistent
part of the calculation at a lower radius than the one used for the absorption part. We
recommend that the auxiliary calculation cluster's radius contains at least one atomic
shells around the absorbing atom. Oxides require that one uses the same cluster sizes
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for the two stages of the calculation for the purpose of improving the description of
pre-edge structures.

The self-consistent procedure enables an a posteriori study of the screening of the
core hole, as it allows us to distinguish which of the three possible screening schemes
is the most appropriate one. Note that the full excited option, i.e. the (b) scheme,
is inappropriate to the description of core spectroscopy, at least at the K edge. Our
explanation to this fact is that the (b) scheme mistreats the screening phenomenon.
At the K edge, we noticed than in most of the cases it is the (c) scheme that gives the
best agreement to the experiment.

The self-consistent corrections are negligible at high photon energies (EXAFS region)
where the shape of the spectrum depends on the position of the atoms and less on their
electronic structure.

It has been argued [8] that for real space calculations the MT self-consistent procedure
is more important than the full potential feature. We disagree with this statement (at
least in the near-edge region), as proved by our results on CaO and BN compared to
the ones in references [77] and [8], respectively. In our view and as proved by our results
on CaO and BN, the most important ingredient of an single particle X-ray absorption
calculation is the full potential feature. Full potential is far more important (at low
energies) than self-consistency in the MT approximation.

To conclude upon the self-consistent e�ects at the L2,3 edges is a delicate task. Most
often, the many body e�ects are important (the L2,3 edges of rare earths or transition
elements) and the single particle calculations, whether self-consistent or not, give a
poor agreement with the experiment. We believe that our self-consistent procedure
does yield a more reliable density of states than its non self-consistent counterpart
(this statement will be argued in chapter 5). The reason behind the disagreement with
the experiments should be looked for in the inappropriateness of describing absorption
based on the single particle density of states.

We conclude that the point in implementing self-consistency for the X-ray absorption
real space calculations is that this procedure is a pre-step for other theoretical devel-
opments. One needs it to have a reasonable evaluation of the Fermi level, which is an
important element of the TDDFT calculation scheme. One equally needs the electrons'
count procedure in order to implement the LSDA+U.



Chapter 5

The LSDA+U method

5.1 Motivation

The LSDA+U calculation method is a hybrid scheme meant to improve the LSDA. Its
introduction was motivated by the LSDA's failure to describe the strongly correlated
systems. The reason behind this is that the LSDA picture is appropriate for band
behaviour and misses completely the physics of localized (correlated) electrons. On
the other hand, the LSDA+U reconciles, to some extent, the atomic behaviour of the
correlated orbitals and the band behaviour of the remainder.

A textbook example of failure of the LSDA approximation to the DFT concerns the
electronic structure calculations on materials containing ions with d or f open shells.
In the case of several insulating transition metal oxides, the LSDA calculations predict
a metallic character [114] and no gap in the 3d DOS. In reality, the 3d electrons are
localized on the metal ion, which causes an energy gap between the occupied 3d band
and the continuum d states.

To solve this contradiction, one needs an orbital dependent DFT functional that
selectively opens the gap for the 3d like states and does not a�ect the delocalized
orbitals. The DFT method employing such functional is called the LSDA+U scheme,
with U the on-site 3d repulsion. This functional has been constructed starting from
the mean �eld approximation of the Hubbard model [5, 6, 39, 65].

The LSDA+U was originally introduced for ground state calculations. Nonetheless,
successful calculations of X-ray absorption spectra have been reported [15, 50]. When
applied to a compound whose Fermi level is already in the gap in a LSDA calculation
(the 3d degeneracy is lifted in octahedral or tetrahedral symmetries), the LSDA+U in
practice enlarges this gap. For spectroscopy calculations, this is particularly important
for the position of the calculated E2-E2 pre-peak: in the LSDA+U scheme, the pre-peak
approaches the edge.

At the present moment, FDMNES is the �rst and only real space (MST) X-ray
absorption calculation code to have the LSDA+U feature. The exchange-correlation
functional contains the speci�c orbital's population, which requires at least one previ-
ous iteration. Therefore the self-consistent procedure is a pre-requisite of the practical
implementation of the LSDA+U. Although the method is rather simple from a con-
ceptual point of view, its implementation in a real space MST calculation is fastidious,

69
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Table 5.1: The Hubbard parameter U is de�ned as the energy cost
to bring two electrons to the same site.

N N 2E(dn)

N+1 N-1 E(dn+1) + E(dn−1) + U

due to technical reasons that we shall develop in the following sections.

5.2 Theoretical grounds

LSDA+U is not just an unintentional approximation of the DFT exchange-correlation
potential. The reasons for its success should be looked for in its ability to reconcile the
band description (LSDA) with the atomic one (+U), as already discussed in section
1.5. In practice, the LSDA+U divides the Hilbert space into two distinct subspaces:
the extended, delocalized electronic states, which are treated by the LSDA as usual,
and the localized, correlated orbitals, whose corresponding LSDA result is corrected by
a Hubbard-like term. Consequently, there is a close connection between the Hubbard
model and the more recent LSDA+U method.

The Hubbard model The starting point in the construction of the LSDA+U func-
tional is the Hubbard model, which treats the localized electrons embedded in the
extended states. The corresponding Hamiltonian reads:

H = −t
∑

<i,j>,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ρi↑ρi↓ (5.1)

Here t is the bandwidth (a measure of the kinetic energy), U > 0 measures the on-site
repulsion, i and j are the site indexes and the < i, j > symbol stands for a summation
on the nearest neighbours. The �rst term in (5.1) describes the hopping of an electron
from site i to site j. Note that the hopping process conserves the spin - no spin-�ips
are allowed in the Hubbard model. The second term in (5.1) competes with the �rst
one and is zero unless two electrons of opposite spins stand on the same site. In the
limit U → 0 one retrieves the tight binding model, with t the overlap integrals.

In the Hubbard model, U is a parameter and it is de�ned as the energy cost to bring
two electrons to the same site [6] (see table 5.1):

U = E(dn+1) + E(dn−1)− 2E(dn) (5.2)

The Hubbard Hamiltonian has no exact solution for dimensions other than 1. Conse-
quently, the mean �eld approximation of (5.1) gives [6]:

HMF = HLSDAMF +
U

2

∑
i

∑
mσ 6=m′σ′

ρi,mσρi,m′σ′ (5.3)
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The LSDA+U exchange-correlation functional The connection between the
Hubbard Hamiltonian HMF and the LSDA+U exchange-correlation functional is made
via the total energy of the system described by (5.3). One uses this procedure for
the correlated orbitals only (d of the transition elements and f of the rare earths),
whereas the remaining are described in the usual LSDA way. Therefore, one says that
the LSDA+U exchange-correlation functional is orbital dependent.

One needs to calculate the total energy of a system described by the Hamiltonian
in (5.3), by avoiding the double counting of the correlated electrons that are already
included in HLDAMF . These calculation steps are detailed in reference [6]. Next, the
exchange-correlation potential is obtained as the functional derivative of the total en-
ergy with respect to the density.

Within the same philosophy, several forms of the exchange-correlation potential have
been proposed [6, 39, 65]. In 1991, Anisimov et al. proposed the �rst correction to the
LSDA for correlated orbitals [5,6]. The shortcoming of the exchange-correlation poten-
tial they introduce is that it is basis set dependent (i.e. depends on the choice of the
spherical harmonics basis m). Nonetheless, this dependency is not crucial for the out-
come of the LSDA+U calculations [4]. This �aw was corrected in 1995 by Liechtenstein
et al., who proposed a rotationally invariant, orbital dependent exchange-correlation
potential [65]. In the limit of a diagonal occupation matrix (ρmm′ = ρmδmm′) the two
approaches are equivalent. In 1998, Dudarev et al. propose a potential that has both
the simplicity of the one in [6] and the rotational invariance of [65]:

V σ
mm′ = V

σ LSDA
mm′ + (U − J)

(
1

2
− ρσmm′

)
(5.4)

where V σ
mm′ is the orbital and spin dependent potential, V

σ LSDA
mm′ its LSDA counterpart

and ρσmm′ the occupation matrix. U and J stand for the spherically averaged on-site
repulsion and exchange. They can either be accounted for as parameters (Hubbard
U and the Stoner parameter J) or may be calculated from �rst principles, by means
of a constrained LSDA calculation [65] or based on a RPA scheme [11]. To grasp the
meaning of (5.4), let us consider the diagonal case m = m′. The U correction takes
the occupied orbitals ρσm = 1 to lower energies, and the free orbitals to higher energies.
Therefore one says that the U − J term opens the gap.

In this current work, we propose an improved form of the potential in (5.4). Instead
of the 1

2 factor standing for the average occupancy number per orbital (for a complete
shell) we use:

V σ
mm′ = V

σ LSDA
mm′ + (U − J)

(ρ0

2
− ρσmm′

)
(5.5)

where

ρ0 =
Tr{ρ}

2(2l + 1)
(5.6)

the actual average occupancy per orbital. l is the orbital quantum number of the
concerned correlated orbital (l = 2 for the 3d) and Tr{ρ} =

∑
mσ ρ

σσ
mm is the trace of

the occupation matrix. The di�erence between (5.4) and (5.5) is that the latter keeps
the correlated orbitals symmetric with respect to the Fermi level.
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Formally, the orbital dependence of the potential in the LSDA+U method is synony-
mous with non-locality [4]. In this sense, the LSDA+U is a particular case of the GW
approximation: the non-local, energy independent exchange-correlation potential is a
contraction of the more general, non-local, energy dependent self-energy [4].

5.3 Implementation

As already mentioned, the implementation of a LDA+U method in a real space,
symmetrized code is complicated from a technical point of view. Basically, the main
di�erence between a LDA and a LSDA+U calculation is that the latter employs the
V σ
mm′ in (5.5) instead of V

σ LSDA
mm′ to solve the radial SE. It therefore requires a previous

LSDA iteration that returns the occupation matrix ρσmm′ .

The technical di�culty resides in the fact that while the occupation matrix is a gen-
eral matrix, the potential in the actual implementation of FDMNES is diagonal in m
and m′ (including the spin-orbit coupling case), and thus (5.4) requires a diagonal oc-
cupation matrix. There are two ways to reconcile the two. One may implement a radial
SE resolution for un-spherical potentials and adapt the MST electronic structure reso-
lution to deal with non-diagonal atomic scattering amplitudes. One may equally keep
the diagonal formulation of the SE and MST and perform a basis set transformation
from the crystal basis A to an internal one B where the occupation matrix is diagonal,
and the other way around. It appeared to us that the latter is more convenient.

We perform a �rst iteration which employs the usual LSDA potential to calculate the
occupation matrix ρσmm′ according to (2.54). If ρ̂ is diagonal by symmetry, no basis set
transformations are required. Otherwise we diagonalise ρ̂ for each atom in the cluster
that contains a correlated orbital:

ρ̂′ = R+ρ̂R (5.7)

where ρ′ is the diagonal occupation matrix and R the transformation matrix from the
crystal basis A to the internal basis B. R contains on its columns the eigenvectors
of ρ̂. If the calculation is symmetrized, this transformation has to be done in blocks
corresponding to irreducible representations. The reason for this is that the R matrix
must forbid the mixing of ms that do not belong to the same representation.

We inject both the diagonal matrix ρ̂′ and the transformation matrix R into the
next iteration. At this point we are in the local basis B. We solve the radial SE in
B. We perform a unitary transformation towards A and solve the electronic structure
(either in MST or FDM) in the crystal basis. We therefore obtain =τ in the A basis,
and transform it back to B. The reason for this last change of basis set is the singular
solution is diagonal in the internal B basis only, and the MST formalism that treats
it requires a diagonal form. Next, we calculate the atomic and crystal tensors in
the internal basis B, then transform them back to A. Therefore the calculation of the
density of states is performed in the crystal basis A. We deduce the occupation matrix,
and if necessary we re-iterate and start over all the procedure. If, on the other hand,
the calculation is not self-consistent, we exit the loop and proceed with the convolution
step.

Consequently, should one perform a self-consistent LSDA+U calculation, the �rst
iteration is the usual LSDA one, and all the rest contain the U corrections. Our
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LSDA+U procedure accepts complex energies. Compared to an usual LSDA calcu-
lation, the FDMNES implementation of the LSDA+U requires a similar amount of
calculation time.

5.4 Results

We present preliminary results of the LSDA+U calculation scheme applied to X-ray
absorption spectroscopy. As a model compound we chose the well known LaMnO3, a
Mott insulator belonging to the Pnma spacegroup. We performed calculations at the
K and L3 edges of manganese by setting up U − J = 5 eV (unless speci�ed otherwise).

All the calculation we show here are self-consistent. Non self-consistent ones provide
very bad results in the LSDA+U. It appears that LSDA+U is extremely sensitive to the
calculated occupation numbers. Bad occupation numbers yield unphysical LSDA+U
results. We performed calculations on a 5Å cluster. Note that in the LSDA+U case
it is imperative to have the same cluster at all the calculation steps. We recall that in
some cases one might want to perform the self-consistent loop at a smaller radius than
the absorption calculation (see chapter 4).

All the calculations are in the ground state (non-excited, or, equivalently, no de-
scription of the core hole) for the occupation number calculation step. This procedure
corresponds to the (a) and (c) calculation schemes introduced in chapter 4. The moti-
vation for this choice is as follows. These results are preliminary and we do not intend
to compare them to the experimental spectra yet. We are more interested in the funda-
mental di�erences between the LSDA and LSDA+U. This comparison is more natural
in the non-excited case, as there is no ambiguity concerning the setting of the cut-o�
level of the spectra (we recall that the other calculation schemes often require an adjust-
ment of the calculated cut-o�). Second, the meaning of a self-consistently calculated
core hole (scheme b) is less straightforward than the self-consistent calculation of the
ground state electronic structure (schemes a and c). Third, we aim at obtaining a gen-
eral view on the L2,3 edges calculation, by employing several tools (TDDFT, LSDA+U
and the self-consistent procedure). As TDDFT is based on a ground state calculation,
we prefer the same for the underlying self-consistent cycle of the LSDA+U to facilitate
the comparison.

In �gure 5.1 we show the self-consistent, ground state density of the manganese d
states in LaMnO3, with and without the Hubbard correction. The two calculations
were shifted to superpose the Fermi levels, which are indicated by a thick vertical line.
One can see that the LSDA predicts a metallic character, whereas the LSDA+U opens
the gap around the Fermi level. It follows that the Hubbard U term corrects the LSDA
prediction and describes the real physics of the LaMnO3 compound (a Mott insulator).
Although the LSDA+U calculation in �gure 5.1 shows some surviving electronic states
around the Fermi level, the trend is de�nitely towards the description of an insulating
state. Quantitatively, the gap opening is linked to the U − J parameter and to the
calculated average occupation number of the d orbitals. Therefore one expects that
increasing U − J will increase the gap of a similar value, weighted by the average
population (see �gure 5.2).

In �gures 5.3 and 5.4 we show the absorption spectra of manganese in LaMnO3

within the two calculation schemes, LSDA and LSDA+U, at the K and L3 edges,
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Figure 5.1: The self-consistent d DOS of the Mn atoms in LaMnO3:
with (solid) and without (dashes) the Hubbard U. The former was
shifted by 1.9 eV to the higher energies, in order to superpose the
Fermi levels in the two calculations (indicated by the thick vertical
line). The energies are expressed in an internal energy scale of
FDMNES. The U term opens the gap around the Fermi level.

respectively. At both edges, it appears that the e�ect of the Hubbard U correction
is to change the form of the spectrum. At the L edges, this is due to the di�erent
position of the Fermi level relative to the edge jump (the Fermi levels are indicated by
a vertical line). The change in the shape of the XANES signal is a general feature of
the LSDA+U calculations at the L2,3 edges, where one probes directly the correlated
d states. On the other hand, further tests are required before concluding whether the
change at the edge jump in K edges is a universal behaviour in LSDA+U calculations
or not. We recall that at K edges one probes the p states, which are sensitive to the
U correction only via the coupling with the d states. At the K edge (�gure 5.3) the
LSDA+U decreases the energy distance between the pre-peak and the main edge. This
is a general feature of the LSDA+U calculations at the K edge: as the empty d states
are moved to the higher energies, the position of the pre-peak changes accordingly.

5.5 Conclusions and perspectives

The LSDA+U feature in the FDMNES code is supposed to allow an improved treat-
ment of correlated orbitals, more precisely the 3d orbitals of the transition metal com-
pounds and the 4f ones of the rare earths. We have shown that the LSDA+U results
are very sensitive to the occupation numbers of the correlated orbital. Therefore the
LSDA+U requires an accurate underlying electronic structure calculation, which can
only be achieved within a self-consistent scheme. Non self-consistent LSDA+U calcu-
lations are often inaccurate, due to the badly calculated occupation numbers.

In practice, one should employ the LSDA+U for the K edge calculations in the cases
where the LSDA calculated pre-peaks are placed at too low an energy with respect to
the edge jump. If, on the other hand, the K edge pre-peaks' position is too high in
energy, the LSDA+U can only worsen the agreement with the experiment.
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Figure 5.2: The self-consistent d DOS of the Mn atoms in LaMnO3

for two distinct values of the U − J parameter: 5 (solid) and 6 eV
(dashes). The calculations were shifted to the same Fermi levels
which is indicated by the thick vertical line. The energies are
expressed in an internal energy scale of FDMNES. The value of
the gap depends on U − J and on the average population.
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Figure 5.3: The Mn absorption spectra in LaMnO3 at the K edge:
with (solid) and without (dashes) the Hubbard U. The former was
shifted by 1.9 eV to the higher energies, in order to superpose the
Fermi levels in the two calculations (indicated by the thick vertical
line). The U term changes the shape of the spectrum and the
position of the pre-peak.

One might think that the LSDA+U correction to the LSDA is more signi�cant at the
L2,3 and M4,5 edges, where one probes directly the d and f states, than at the K edge.
Our results on LaMnO3 suggest the opposite: at both edges, the Hubbard correction
is liable to change the shape of the XANES signal at the main jump. Nevertheless,
further tests on di�erent kind of compounds are needed before concluding upon the
e�ects of the LSDA+U method at the K edges.

At the L2,3 edges, the LSDA+U leads to the reduction the L2,3 branching ratio (see
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Figure 5.4: The Mn absorption spectra in LaMnO3 at the L3 edge:
with (solid) and without (dashes) the Hubbard U. The former was
shifted by 1.9 eV to the higher energies, in order to superpose
the Fermi levels in the two calculations (indicated by the thick
vertical line). The U term changes the o�-set and the shape of the
spectrum.

�gure 5.4). Consequently, we are considering using a ground state LSDA+U calculation
(instead of a LSDA one) as the �rst step of the TDLSDA procedure (see chapter 6)
meant to calculate the L2,3 edges of correlated materials.

The present FDMNES implementation of the LSDA+U uses U − J as a parameter.
In practice, we either take its �rst principles value from the literature, if available, or
make an educated guess on its value. The value of U − J , weighted by the average
population, is identical to the extra gap opening that it brings. Therefore one should
be careful not to �t the experiment with unphysical assumptions. We are currently
considering the implementation of a �rst principle, RPA based estimation of U , to
remove these ambiguities.

The results of this chapter are preliminary. More tests and benchmarking are to be
foreseen before coming to an ultimate conclusion on the in�uence of the U correction
on the X-ray core spectroscopy.



Chapter 6

Beyond the one body picture

6.1 The failure of the single particle approximation

There are cases where the agreement between experimental data and single particle
calculations is far from being satisfactory. In the following paragraphs we shall illustrate
some typical cases where the single particle picture fails.

The L2,3 branching ratio of 3d elements One of the most cited examples when
the single particle picture fails concerns the L2,3 edges of the transition metals. In
�gure 6.1 we show the experimental and calculated absorption at the L2,3 edges of
bulk vanadium. Roughly, the experiments shows a 1:1 ratio between the L3 and the
L2 features, which is obviously not the case in the one body calculation. In the single
particle picture, according to the Golden Rule (2.13), one assumes that the L2 peak
comes from the transitions from the 2p1/2 core level, whereas L3 is due to the 2p3/2

ones. The manifold of the corresponding initial states are 2 and 4, respectively. It
follows that the L3 feature should be more or less twice as high as the L2 one. The
calculated ratio moves away from this value, due to the spin-orbit coupling of the �nal
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Figure 6.1: Experiment (dots) from reference [98] and FDMNES
one body calculation (solid) for the absorption at the L2,3 edges of
vanadium. The ratio between the L3 and the L2 intensities is ill
calculated.
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Figure 6.2: The (100) incoming π re�ection at the L2,3 edges of
manganese in Pr0.6Ca0.4MnO3: the one body calculation (solid)
versus the experiment (with points).

states and to the ratio
ωL3
ωL2

(see equation 1.3). The value ≈ 2 for the branching ratio
is rigorously exact if one subtracts the continuum background signal. In so far as this
work is concerned, we did not do this. Consequently, the actual value of the branching
ratio in the one body calculations is ≈ 1.5.

The reason for this disagreement is that the L2 and the L3 features cannot be assigned
to one of the two core levels exclusively. The two transition channels mix, due to the
many body e�ects. The closer the edges, the more important the mixing. In the
language of quantum mechanics, the absence of mixing is indicated by the sum of the
square modulus in (1.3). One sums over the probabilities (and not the probability
amplitudes !) associated to each transition channel:

σ ∝
∑
f

∑
i

|〈φf |Ô|φi〉|2 ρ(E) (6.1)

The strongly correlated materials As we stressed previously in chapter 1.5, the
one body calculations are particularly ill-suited when strong correlation is involved.
For illustration, we show a di�raction spectrum at the L2,3 edges of manganese in
Pr0.6Ca0.4MnO3.

The absorption spectra of rare gases The multiple electron excitations are a
many-body e�ect which cannot be obtained in a one body picture. During a multiple
excitation process, due to correlation e�ects, other electrons are promoted by the X-ray
�eld, in addition to the usual photoelectron transition. If these extra electrons transit
to a bound state, the process is called shake-up. If, on the contrary, the �nal state is
a continuum one, the process is called shake-o�. These e�ects are signi�cant in closed-
shell systems, like the rare gases. For some experimental examples, please refer to the
references cited in [127].

Numerous attempts to go beyond the one body approximation have been reported
(see section 1.5 for details and references). One has to mention the atomic methods (CI,
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multiplets) which describe successfully the many body e�ects, but fail to account for the
band modulation of the continuum. On the other hand, the band structure methods like
TDDFT or BSE succeed in doing so, but fail to reproduce the localized electronic states.
Great hope is placed in the advent of the coupled atomic - band like calculations, such as
the multichannel method, the cluster calculations or the DMFT-LDA based methods.
It is extremely di�cult to build a methodology that works on whatever compound.
Should one limit oneself to the delocalized and partially delocalized edges, the TDDFT
methods give reasonable results. The rest of this chapter focuses on the formalism and
on the implementation of a TDDFT method for X-ray absorption calculation in the
FDMNES code, as well as on its successes and limitations.

6.2 The time dependent density functional theory

We argued the need to go beyond the single particle picture for electronic structure
calculations, and particularly for the X-ray absorption spectroscopy simulations. We
equally argued that one is interested in a method that is computationally reasonable
for extended systems. Such a solution was �rst proposed by Zangwill and Soven in
1980 [126]. They proposed an e�cient, LDA-based method to describe the local �eld
e�ects in rare gases. The theoretical basis of this approach were established later in
1984, when Runge and Gross stated and proved the founding theorems of the time
dependent density functional theory (TDDFT) [96].

TDDFT versus DFT The TDDFT integrates time dependence and thus can ac-
count for excited states. This feature, essential for spectroscopic calculations, propels
TDDFT one step behind the ubiquitous density functional theory (DFT). DFT won
recognition due to its success in describing the ground state properties (electronic con-
�guration, atomic distances, ground state energies) of an electronic system. Neverthe-
less, DFT is not meant to describe the excited states of the system, nor to reproduce
the excitation spectra. In spite of all this, the DFT might give a satisfactory agreement,
under the limiting conditions discussed in chapter 1.5.

Both DFT and TDDFT are an alternative to the Schrödinger (many body) wave-
function formulation of quantum mechanics. They no longer rely on the many body
wavefunction, but on the electron density. While the wavefunction depends on 3N+1
variables, with N the number of electrons in the system, the density depends on only
four variables (three spacial + time). Consequently, the many body problem becomes
computationally tractable.

TDDFT for solids TDDFT was initially used in quantum chemistry and applied to
the study of the excitation of molecules under an external �eld (optical spectra, laser
pulses etc.). The use of TDDFT in condensed matter studies is more recent [19, 84].
In the thermodynamic limit (in our case, for the extended systems) the exchange-
correlation functionals of quantum chemistry lose their special behaviour and are no
longer useful [70]. Solid state systems have a huge number of basis functions, which
makes the engineering of an exchange-correlation functional adapted to the extended
system impossible in practice. Therefore, exchange-correlation functionals in condensed
matter studies are variations of the exchange-correlation of the uniform electron gas.
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The limitations of this model makes TDDFT less successful for solids than it is for
molecules.

TDDFT and synchrotron radiation We have already stated that the TDDFT
is naturally tailored to describing spectroscopy. We shall see that, depending on the
strength of the incoming radiation, TDDFT can be treated either within the linear
response or by solving the full time propagation of the ground state. The latter, though
extremely resource consuming, is mandatory when one deals with laser pulses or X-
FELs, i.e. for �elds whose intensity is of the same order of magnitude with electric
�elds inside the atom. In this manuscript only the standard (weak) �elds of the third
generation synchrotron are to be considered, which is where the perturbation theory
works.

TDDFT within this work According to the overview in chapter 1.5, TDDFT has
recently been applied to core spectroscopy [7, 64, 92, 101]. Although we do not claim
to have developed an original theoretical framework, we consider this work to be an
important study of the TDDFT applied the X-ray core spectroscopic frequency range,
as the previous ones are not su�ciently well established. We propose our own imple-
mentation of the TDDFT method and perform a detailed study of its applicability and
performance. We make numerous references to the existing TDDFT methods and re-
veal behaviour that has not previously been discussed in the literature. At the present
time, the X-ray absorption community lacks an advanced study of the suitability of the
various exchange-correlation kernels. Our work aims to �ll in these gaps. Such a study
is mandatory before attempting the implementation of more sophisticated many body
methods.

6.2.1 The formalism

In the remainder of this section we shall present the founding principles of the
TDDFT. For an extended discussion please refer to references [19,70]. Let a system of
N electrons, submitted to an external perturbation V̂ext (the electromagnetic �eld, for
instance) acting from t = 0. The system is described by the Hamiltonian (in Rydberg
units):

Ĥ = −
N∑
i

∇2 +
N∑
i 6=j

1

|~ri − ~rj |
+ V̂ext (6.2)

where the �rst term is the kinetic energy, the second one is the Coulomb repulsion
and V̂ext =

∑N
i vext(~ri, t) is the problem speci�c, external potential. Note that this

Hamiltonian ignores the nuclei, which are either considered �xed or treated classically
(the Born-Oppenheimer approximation).

Similar to the DFT, TDDFT is based on a one to-one correspondence between the
wavefunction of the system, the total potential and the density:

V (~r, t)↔ Ψ(~r1, ~r2, . . . ~rN , t)↔ n(~r, t) (6.3)

The milestone of the TDDFT is the Runge-Gross theorem [96], which yields the precise
form of this mapping. This theorem states that for a given initial state Ψ(t = 0), two
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di�erent external potentials vext(~r, t) and v′ext(~r, t) yield di�erent densities provided
they di�er by more than a purely function of time. Under these restrictions the external
potential is a functional of the density.

We stress that the above argument can be formulated in terms of spin densities. With
the same restrictions, there is a mapping between v↑ext(~r, t) (v

↓
ext) and n

↑(~r, t) (n↓). It
follows that the external potential is a functional of the two spin densities: vext[n↑, n↓].

Since the many-body SE is not tractable, solving (6.2) is problematic. To overcome
this impediment, one applies the same procedure as in the case of the DFT to reduce
the complexity to that of a one body problem. One constructs a �ctitious system
of non-interacting particles (the so-called Kohn-Sham system) which yields a density
identical to the one of the real system. The time evolution of the auxiliary system
obeys the Kohn-Sham equations:

i
∂φi(~r, t)

∂t
=
[
−∇2 + vKS [n](~r, t)

]
φi(~r, t) (6.4)

with

vKS [n](~r, t) = vext(~r, t) + vH(~r, t) + vxc[n](~r, t) (6.5)

the Kohn-Sham one body potential and

n(~r, t) =

N∑
i

|φi(~r, t)|2 (6.6)

the genuine density, built from the Kohn-Sham single particle eigenstates φi(~r, t). Note
that φi(~r, t) are not the true eigenfunctions of the interacting system, and only their
square modulus is meaningful. Here the notation vxc[n](~r, t) signi�es that the potential
in (~r, t) is generally non-local, a functional of the density n in every point, and not
necessarily in the (~r, t).

From the Runge-Gross theorem one infers that the exchange-correlation potential
vxc[n](~r, t) is a functional of the density n(~r, t) and of the interacting and Kohn-Sham
systems' initial wavefunctions, Ψ(0) and Φ(0), respectively. In practice we consider
that the ground state is non-degenerate. Consequently, any dependence on the initial
state drops out. This procedure is always applied for extended systems studies.

The philosophy behind the TDDFT is to alias the interacting system of interest
with a non-interacting one (the Kohn-Sham system), which one is able to solve. The
missing piece of the puzzle is the exchange-correlation potential vxc[n](~r, t). The Runge-
Gross theorem guarantees that the exchange-correlation potential is a functional of the
density, that is unique and independent of the speci�city of the problem (i.e. of the
external potential vext). Nonetheless, no exact analytical form of vxc[n](~r, t) is known
and one has to approximate it.

One way to solve the many-body problem (6.2) would be to calculate the evolution
operator of (6.4), propagate the initial state Φ(0), which can be factorized in terms of
Kohn-Sham orbitals as Φ(0) =

∏
i φi(0), and �nally deduce the time evolution of the

system from (6.6). This procedure is extremely costly and is not really necessary unless
high external �elds are employed. For small �elds the perturbation theory is valid and
one may work in the linear response approximation.
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6.2.2 The linear response regime

The essence of the linear response (LR) theory is that it describes the response of
a system to an external perturbation by employing ground state quantities. Such an
approach is pertinent only if the external perturbation does not modify the density far
from its ground state value.

The key quantity of the LR theory is the response function χ, also called susceptibility,
or the density - density correlation function of the Kubo theory. One de�nes:

n(~r, t) = n(~r, 0) +

∫ t

−∞
dt′ d3r′ χ(~r, ~r ′, t, t′) δvext(~r

′, t′) (6.7)

χ shows in what way the perturbing potential of the electromagnetic wave δvext, acting
in ~r ′ at t′, changes the density n in ~r and at the instant t. The response function χ
contains all the information on the �rst order response of the system. An equivalent
form of (6.7) yields:

χ(~r, ~r ′, t, t′) =
δn(~r, t)

δvext(~r ′, t′)

∣∣∣∣
n=n(t=0)

(6.8)

Note that χ is calculated from quantities belonging to the unperturbed system.

Equation (6.7) is written for the interacting many body system. One can write an
analogue expression for the non-interacting Kohn-Sham system:

n(~r, t) = n(~r, 0) +

∫ t

−∞
dt′ d3r′ χ0(~r, ~r ′, t, t′)

×
[
δvext(~r

′, t′) + δvH(~r ′, t′) + δvxc[n](~r ′, t′)
]

(6.9)

Note that (6.7) and (6.9) involve the same density variation δn(~r, t) = n(~r, t)−n(~r, 0),
due to the very de�nition of the Kohn-Sham system: it is meant to yield the same
density as the one of the interacting system.

The Dyson-like equation We wish to connect χ to χ0. To do so, we take the
functional derivative of (6.5):

δvKS(~r, t)

δn(~r ′, t′)

∣∣∣∣
n=n(t=0)

=
δvext(~r, t)

δn(~r ′, t′)

∣∣∣∣
n=n(t=0)

+
δvH(~r, t)

δn(~r ′, t′)

∣∣∣∣
n=n(t=0)

+
δvxc[n](~r, t)

δn(~r ′, t′)

∣∣∣∣
n=n(t=0)

(6.10)

By employing (6.8) and (6.9) one gets an operatorial, Dyson-like renormalisation equa-
tion:

χ̂0
−1 = χ̂−1 + fH + fxc

χ̂ = χ̂0 + χ̂0(fH + fxc)χ̂ (6.11)

fH and fxc are the Hartree and the exchange-correlation kernel, respectively (see the
appendix). Equation (6.11) is an operatorial equation. In the reciprocal space (k,ω) it
reduces to a simple product, whereas in the direct one it becomes an integral equation,
as shown later in (6.25). Equation (6.11) is often referred to as the Dyson-like equa-
tion, due to the similarities to the Dyson equation (2.41) for the Green function of an
interacting system.
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The absorption cross section The imaginary part of the response function is di-
rectly connected to the absorption cross section [126]:

σ(ω) = −4πω

c

∑
σσ′

=
∫

d3r

∫
d3r′ Ô†(ω,~r ′) χσσ

′
(ω,~r, ~r ′) Ô(ω,~r) (6.12)

where Ô is the transition operator (2.11) corresponding to the (unscreened) external
potential δvext. All through this chapter, we shall be using the atomic unit system.
The analogous of (6.12) for the Kohn-Sham system reads [126]:

σ(ω) = −4πω

c

∑
σσ′

∫
d3r

∫
d3r′ Ô′†(ω,~r ′) =χσσ′

0 (ω,~r, ~r ′) Ô′(ω,~r) (6.13)

Note that Ô′ = ε−1Ô describes the screening of the photon �eld, with ε the dielectric
matrix.

If one plugs in χ0 instead of χ in (6.12) one would expect a result identical to the
absorption calculated in the MST framework, for a ground state (no core hole) cluster.
In the terminology of chapter 4 this corresponds to the screening scheme (a).

To our knowledge, all the TDDFT calculations for X-ray absorption spectroscopy
have been performed in the dipole approximation [7, 99, 101]. We stress the fact that
our implementation of the TDDFT can account in principle for the matrix elements
beyond the dipole approximation (E1-E2 and E2-E2 introduced in section 2.2.1) and
make use of them for the calculation of the absorption signal (6.12).

Formally, the TDDFT implementation we propose is similar to the one of Schwitalla
and Ebert [101] in the sense that the many body corrections are contained within χ
and the absorption cross section is calculated from (6.12). An equivalent way to do
this, provided the potential takes real values, would be to plug the many body e�ects
directly into the �eld operator, following the prescription of Zangwill and Soven [126].
This method was employed by Ankudinov, Nesvizhskii and Rehr [7], who calculate the
absorption cross section from (6.13) and consider the screened photon �eld Ô′ instead
of the external one Ô. In principle, these two procedures are equivalent.

6.2.3 The ground state response function

To explain the formalism we chose the zero spin-coupling limit. Please refer to the
appendix for the fully relativistic formulae. Concerning the wavefunctions, we shall be
using the following notations (h̄ = 1):

φσg (~r) = cσgΛσg b
σ
Λg(r) YΛg(Ω) (6.14)

Ψσ
Λ(~r,E) = bσΛ(r, E) YΛ(Ω) (6.15)

Ψ̃σf
Λ (~r,E) = aσfΛ (E) bσΛ(r, ω + Eg) YΛ(Ω) (6.16)

Here Ψ and Ψ̃ are the �nal state wavefunctions, the latter being normalized to the
square root of the density of states of the vacuum. φ describe the initial states g. Let
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the ground state susceptibility χ0 (ε→ 0):

χσσ
′

0 (~r, ~r ′, ω) =
∑

g(Eg<EF )

∑
ΛΛ′

∑
f

∫ ∞
EF

φσg (~r) Ψ̃σf†
Λ (~r,E) Ψ̃σ′f

Λ′ (~r ′, E) φσ
′†
g (~r ′)

ω − (E − Eg) + iε

(6.17)

χσσ
′

0 (~r, ~r ′, ω) = − 1

π

∑
g(Eg<EF )

∑
ΛΛ′

∫ ∞
EF

φσg (~r) Ψσ†
Λ (r, E) =τσσ′

ΛΛ′ Ψσ′
Λ′(~r ′, E) φσ

′†
g (~r ′)

ω − (E − Eg) + iε

(6.18)

We recall that χ0 is the response function for a system of non-interacting particles.
Equations (6.17) and (6.18) are simpli�ed forms of the Adler-Wiser equation. Their
equivalence is easy to see given the optical theorem (2.49). The Adler-Wiser equa-
tion [84] normally involves all the occupied (g index) and unoccupied (energy E) states.
Nevertheless, in the resonant case, and thus at high energies beyond the optical spec-
trum, one can assume that the only signi�cant contribution is brought in by the levels
whose energy E is close to the photon energy ω, i.e. the concerned core levels. We
stress the fact that the energies ω and E are expressed into di�erent scales: the for-
mer describes the photon, whereas the latter belongs to the photoelectron. Eg is the
Kohn-Sham energy of the g state, i.e. the expectation value of the DFT local density
approximation hamiltonian HLDA:

Eg =
〈φg|HLDA|φg〉
〈φg|φg〉

(6.19)

χ0 is diagonal over the initial state index g, meaning that in a single particle picture
the di�erent channels available to the electronic transition do not mix. In the language
of many body physics, inserting χ0 into (6.12) provides the absorption cross section σ
in the random phase approximation with no local �eld e�ects (RPA).

In the following we shall exploit the formalism developed by Schwitalla and Ebert
in [101]. We are interested in a spherical harmonics representation for χ0. Consequently,
we are considering an expansion of the following kind:

χσσ
′

0 (~r, ~r ′, ω) =
∑
gg′

δgg′
∑
ΛΛ′

χ̃0
σσ′
gg′,ΛΛ′(ω) (6.20)

× φσg (~r) Ψσ†
Λ (~r, ω + Eg) Ψσ′

Λ′(~r ′, ω + Eg′) φ
σ′†
g′ (~r ′)

as if we were projecting χ0 on the "set" of functions formed by the initial state wave-
functions φ and the �nal state ones Ψ. We stress the idea that φg and ΨΛ do not form
a basis set, as they are not orthogonal. The peculiar feature of our calculation is that
we do not use a �xed basis, but perform an exact solution of the electronic structure,
yielding the energy dependence of ΨΛ. Consequently, the energy dependence of Ψ is
bothering and needs to be counterbalanced by considering an energy dependence in the
very form of χ̃0

σσ′
gg′,ΛΛ′(ω). We suppose that a similar development is also valid for χ.
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The connection to the multiple scattering amplitude We are trying to establish
the connection between χ and τ , the multiple scattering amplitude of the MST. Let
us investigate the similarities between the results of the LR theory and the MST for
the absorption cross section. We recall that in the MST and in the complex spherical
harmonics basis:

σ(ω) = −4πω

c

∫
d3r

∫
d3r′

∑
σσ′

∑
gg′

∫ ∞
EF

dE O(ω,~r) O∗(ω,~r ′)

φσ
′†
g′ (~r ′)

∑
ΛΛ′

=τσσ′
ΛΛ′ Ψσ′

Λ′(~r ′, ω + Eg′) Ψσ†
Λ (~r, ω + Eg) φ

σ
g (~r) (6.21)

One can treat the projection of the susceptibility χ̃ and the multiple scattering ampli-
tudes τ on equal footing:

χ̃0
σσ′
gg′,ΛΛ′ ≡ τσσ′ΛΛ′ (6.22)

The equivalence is easy to see if one compares (6.21) to (6.13), all by using the de�nition
of χ̃0

σσ′
gg′,ΛΛ′ in (6.21). This is a remarkable result and it was �rst suggested by Schwitalla

and Ebert [101]. We recall that the equivalence does no longer hold if τ is issued from a
(mathematical) complex potential. The equivalence between =χ̃ and =τ equally holds
if the latter is calculated in the FDM. In this case, =τ may be expressed in function
of the atomic amplitudes (section 2.3.4) and keeps the same physical meaning. The
advantage of coupling the TDDFT procedure to a full potential ground state calculation
are obvious provided the non-spherical e�ects are signi�cant.

Let:

χ̃0
σσ′
gg′,ΛΛ′(ω) = −

∫ ∞
EF

dE

π

=τσσ′
ΛΛ′(E) δgg′

ω − (E − Eg) + iε

Zg
′Λ′

σ′ (E) ZgΛσ (E)

Zg
′Λ′

σ′ (ω + Eg) Z
gΛ
σ (ω + Eg′)

(6.23)

an equivalent form with (6.22), where

ZgΛσ (E) =

∫ R

0
dr r2 bσΛg(r) b

σ
Λ(r, E) (6.24)

is some energy dependent function that is supposed to account for the energy modu-
lations in Ψ. In our actual implementation, Z has no dependence on the initial state
g, as we consider that the radial wavefunctions describing the core levels depends on n
and l only, and not on j. Note that the Z normalisation procedure in (6.23) is reason-
able as long as the energy dependence in Z, and consequently in the radial �nal state
wavefunctions, is weak. We stress upon the fact that this is the only approximation
introduced by the method and otherwise the expansions in (6.20) and (6.23) would be
exact.

6.2.4 The kernel

We have already seen that in LR-TDDFT, the response function is renormalised to
include the many body e�ects:

χσσ
′
(~r, ~r ′, ω) = χσσ

′
0 (~r, ~r ′, ω) +

∑
σ′′σ′′′

∫
d3r′′

∫
d3r′′′

× χσσ
′′

0 (~r, ~r′′, ω) Kσ′′σ′′′
(~r′′, ~r′′′) χσ

′′′σ′
(~r′′′, ~r′, ω) (6.25)
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This expression is a form of the operatorial Dyson-like equation (6.11), projected on
the |r > basis. Ideally, the integral kernel K describes the many body e�ects, including
the core hole interaction. χ0 is the ground state response function and χ is the one
accounting for the many body corrections described by K.

The TDDFT is in principle an exact theory, provided the kernel integrates the full
interactions. Whatsoever, as no exact analytical form of the exchange-correlation is
available, one has to assume the form of K. The physics one may describe and the
accuracy of the description are tributary to the choice of the ansatz.

To avoid the solving of the integral equation (6.25), we project the operatorial Dyson-
like equation (6.11) on the "basis" introduced in (6.20):

χ̃σσ
′

gg′,ΛΛ′(ω) = χ̃0
σσ′
gg,ΛΛ′(ω) (6.26)

+
∑
g′′′

∑
σ′′,σ′′′

∑
Λ′′,Λ′′′

χ̃0
σσ′′
gg,ΛΛ′′(ω) K̃σ′′σ′′′

gg′′′,Λ′′Λ′′′(ω) χ̃σ
′′′σ′
g′′′g′,Λ′′′Λ′(ω)

where we have used χ0
σσ′
gg′ = χ0

σσ′
gg′ δgg′ . We are interested in K̃, the projection of the

kernel on the same "basis" functions as in (6.20). One notices that, unlike χ0, K̃ is not
diagonal in the initial states. We plug in (6.25) the expansions of type (6.20) for both
χ0 and χ and identify with (6.26). One obtains:

K̃σσ′
gg′,ΛΛ′(ω) =

∫
d3r

∫
d3r′ Kσσ′

(~r, ~r ′, ω)

× φσ†g (~r) Ψσ
Λ(~r, ω + Eg) φ

σ′
g′ (~r

′) Ψσ′†
Λ′ (~r ′, ω + Eg′) (6.27)

As a technical detail, note the di�erence with (6.20) in terms of hermitian conjugate
factors. In this sense, the form of K̃ both in reference [101] (eq. 11) and in [9] (eq.
26) is not general (but nevertheless correct in the case of kernels that take only real
values).

In its most general form, the TDDFT kernel can be split into a classical Coulomb
(Hartree) term fH and an exchange-correlation contribution fxc:

Kσσ′
(~r, ~r ′, ω) = fσσ

′
H (~r, ~r ′) + fσσ

′
xc (~r, ~r ′, ω) (6.28)

where fH is local and independent of spin, and expressed in Hartree units (for a rigorous
proof please refer to the appendix):

fσσ
′

H (~r, ~r ′) =
1

|~r − ~r′|
(6.29)

In the following we shall discuss several approximations for the exchange-correlation
part of the kernel fxc, and the physics they imply.

6.2.5 The local �elds e�ect

The local �elds (LF) e�ect are due to the internal polarization of the sample when
penetrated by the X-rays and are a consequence of the atomic structure of the sample.
The physical phenomenon that gives the local �elds e�ect is simply the re-arrangement
of the electrons in the sample, when subjected to the electromagnetic �eld.
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The local �elds picture introduces the concept of electron and holes and allows some
electron-electron (hole-hole) interaction. The electron-hole pairs create an internal
electric �eld which opposes the one of the electromagnetic wave. In other words, the
local �elds are responsible for the screening of the X-ray �eld. The local �elds are long-
ranged and their e�ect next to the absorber's nucleus is minimum [126]. Therefore the
screening they introduce is not proper to the core hole, but to the X-ray external �eld.
The RPA-LF approximation to the TDDFT consists in imposing fσσ

′
xc (~r, ~r ′, ω) = 0.

The corresponding TDDFT kernel reads:

Kσσ′
(~r, ~r ′, ω) =

1

|~r − ~r′|
(6.30)

6.2.6 The adiabatic local density approximation

A straightforward way to add some exchange and correlation e�ects to the RPA-LF
description is "to recycle" the LSDA to the time-dependent situation. This method goes
under the name of adiabatic local density approximation (ALDA) or the time dependent
local (spin) density approximation (TDLSDA). The adiabatic approximation excludes
the memory e�ects, and the exchange-correlation potential depends uniquely on the
density in the ground state (i.e. at t = 0):

vxc[n](~r, t) = vxc[n(t)](~r)|n=n(t=0) (6.31)

where vxc[n] is provided in references [51] and [52] (see section 3.1.2). The corresponding
exchange-correlation kernel gives:

fσσ
′

xc (~rt, ~r′t′) =
δvxc[n(t), σ](~r)

δnσ′(~r ′, t′)

∣∣∣∣
n(t=0)

(6.32)

One sees that fσσ
′

xc generates a potential that is local both in space and in time, and
that may mix the spin channels. It follows that:

Kσσ′
(~r, ~r ′, ω) =

1

|~r − ~r ′|
+ fσσ

′
xc (~r) δ(~r − ~r ′) (6.33)

The Fourier transformed δ(t − t′) term in (6.32) will give no ω dependence, i.e. the
TDLSDA kernel is independent of energy. The TDLSDA kernel may indirectly integrate
an ω dependence, provided one uses the Hedin correction for the exchange-correlation
potential, as described in section 3.1.2. The TDLSDA has the same fundamental char-
acteristics as its ground state equivalent, the LSDA. It is spatially local, as the potential
vxc depends exclusively on the density in the very same position.

The time dependent equivalent of the LDA inherits the same pathologies as its par-
ent's [19]. For �nite systems, the main limitation of the TDLSDA is given by the ill
behaving asymptotic behaviour of the local functionals. At very large distances, the
real Coulomb potential decays as 1/r, whereas the L(S)DA total potential decays ex-
ponentially (like the density) and does not cancel the former. In in�nite systems, the
worrying feature of the TDLSDA exchange-correlation kernel is its dependence on the
local density. Therefore the TDLSDA works in systems where the electrons are rather
delocalized, i.e. where no dramatic variations of the potential occur. It follows that
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TDLSDA overestimates delocalization. Only non-local functionals may account cor-
rectly for charge transfer, thus TDLSDA fails to predict localized charges. Moreover,
TDLSDA cannot predict bound excitons [84]. For optical excitations, the TDLDA gives
reasonable results in most of the cases in �nite systems, but not in extended ones [19].
It has been argued [19] that the case of core electron spectra is in many regards similar
to the situation of �nite systems. For a detailed discussion, please refer to section 6.4.

We draw attention to the fact that, with a view towards accuracy, we implemented
the TDLSDA, and not the TDLDA, kernel. The exchange-correlation potential given
by the TDLSDA in the spin unpolarized case is equal to the TDLDA one. Note that
this is not the case for the exchange-correlation kernels.

Compared to the RPA-LF, the TDLSDA brings the local (short-range) interaction
between electrons and holes as an extra ingredient. The core hole is a localized entity.
To achieve a minimum description of its interactions, one should use a non-local, and
eventually frequency dependent, exchange-correlation potential (and kernel).

6.2.7 The restricted adiabatic approximation

The restricted TDL(S)DA is more or less an interpolation between the RPA-LF and
the TDL(S)DA. The idea is to use the TDLSDA correlation for the kernel elements
that connect identical states, and the RPA-LF for the rest:

Kσσ′
(~r, ~r ′, ω)

∣∣∣
gg′

=
1

|~r − ~r ′|
+ δgg′ f

σσ′
xc (~r) δ(~r − ~r ′) (6.34)

This kernel was �rst introduced by Ankudinov, Nesvizhskii and Rehr [7] on a claimed
BSE justi�cation and is supposed of providing a better description of the core hole.
According to Ankudinov and Rehr [9], should fxc describe the core hole, the latter's
localisation determines the spherical symmetry of the screened potential. Therefore
fxc only couples states with identical total momentum j. For a detailed discussion
of the pertinence of this choice of the kernel, please refer to section 6.4. In [7], the
kernel in (6.34) is called the dynamical TDLDA, due to a supposed energy dependence.
We nevertheless prefer another nomenclature, as the kernel in (6.34) depends on the
energies of the initial states, and not on ω, the photon's energy.

One could equally try using the exchange-correlation contribution only between the
states of equal energy (the second restricted TDL(S)DA):

Kσσ′
(~r, ~r ′, ω)

∣∣∣
gg′

=
1

|~r − ~r ′|
+ δ(Eg − E′g) fσσ

′
xc (~r) δ(~r − ~r ′) (6.35)

In practice, the results of the second restricted TDL(S)DA are extremely close to the
restricted TDL(S)DA ones. We therefore choose not to pursue in this direction.

6.2.8 The limitations of these kernels

The resonances of χ0 in (6.18) are in�nitely narrow (ε → 0) and are placed at the
single particle excitation energies of the system. On the contrary, those of χ (issued from
a "perfect" calculation) have a �nite width and are described by poles in the complex
plane, whose real part gives the excitation energies whereas the imaginary one is related
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to the excitation lifetime. Generally speaking, χ has more poles than χ0 does. The
singularities of χ0 are related to the single particle excitations in the system, whereas
the extra ones introduced by χ account for the multi-electron excitations (double, triple
etc. or collective).

The approximations we made for the exchange-correlation kernel cannot possibly add
extra peaks to the spectrum (missing in the IPA calculation) other than plasmon ones.
To see double excitations (two di�erent electrons in an excited state), it is mandatory
to have an energy dependent kernel [68]. This is not the case in our calculations.
We recall that the energy dependence of the restricted TDLSDA kernel is trivial and
thus unable to reproduce such sophisticated features. Therefore, our implementation
of the TDDFT is unable to feature peaks due to the multi-electron excitations. To our
knowledge, this limitation concerns all the present TDDFT calculations for extended
systems.

Physically, an energy dependence of the exchange-correlation kernel means that it de-
scribes memory e�ects, i.e. the exchange-correlation functional depends on the density
at a previous time. It has been shown that a time (energy) dependent exchange-
correlation kernel is not pertinent unless it is nonlocal [38]. At the present time and
to our knowledge, no such functional has been implemented in an X-ray absorption
calculation.

None of the kernels we introduced describes the core hole explicitly. Moreover, its
interactions were not taken into account directly, although the energy dependence of
the restricted TDLSDA may be seen as a substitute of it [7]. An explicit treatment of
the core hole e�ect implies having a kernel that describes the electron - hole interaction
non-locally, in both space and time (the excitonic e�ect). At the moment, this is
possible either by exploiting the BSE formalism [105] for the localized exciton, or,
in a lesser extent, by appealing to the extremely recent (and still to be tested and
implemented) TDLDA+U non-local functional [63]. We recall that for the time being
no exchange-correlation kernel that includes the multiplet e�ect is available.

6.2.9 The spherical harmonics expansion

This section introduces quantities that are speci�c to the FDMNES implementation
of the TDDFT method. We use the spherical harmonics development of the Hartree
potential, as proposed in reference [3]:

1

|~r − ~r ′|
=
∑
Λ0

4π

2l0 + 1

rl0+1
<

rl0>
Y ∗Λ0

(Ω) YΛ0(Ω′) (6.36)

where r< = min(r, r′) and r> = max(r, r′).

We stress upon the idea that this TDDFT method requires that the ground state
resolution of the SE is performed with a real potential, due to its inability to treat the
singular solution. Therefore all the radial functions are real and we drop the cc. for
the radial functions. The contributions in (6.28) give:

K̃σσ′
gg′,ΛΛ′(ω) = f̃H

σσ′

gg′,ΛΛ′(ω) + f̃xc
σσ′

gg′,ΛΛ′(ω) (6.37)
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where, with the aid of (6.36) and (6.27):

f̃H
σσ′

gg′,ΛΛ′(ω) = cσgΛσg c
σ′

g′Λσ
′
g′

∑
Λ0

4π

2l0 + 1

∫
dΩ′ YΛ0(Ω′) Y

Λσ
′
g′

(Ω′) Y ∗Λ′(Ω′) (6.38)

×
∫

dΩ Y ∗Λ0
(Ω) Y ∗Λσg (Ω) YΛ(Ω)

×
(∫ R

0
dr r2 bσΛ(r, ω + Eg) b

σ
Λg(r)

∫ r

0
dr′r′

2
bσ

′
Λg′(r

′) bσ
′

Λ′(r′, ω + Eg′)
r′ l0+1

rl0

+

∫ R

0
dr r2 bσΛ(r, ω + Eg) b

σ
Λg(r)

∫ R

r
dr′r′

2
bσ

′
Λg′(r

′) bσ
′

Λ′(r′, ω + Eg′)
rl0

r′ l0+1

)
and

f̃xc
σσ′

gg′,ΛΛ′(ω) = cσ
gΛσ′g

cσ
g′Λσ

′
g′

∫
dΩ Y m

l (Ω) Y
mg∗
lg

(Ω) Y m′∗
l′ (Ω) Y

mg′
lg′

(Ω) (6.39)

×
∫ R

0
dr r2 bσΛ(r, ω + Eg) b

σ
Λg(r) b

σ′
Λg′(r) b

σ′
Λ′(r, ω + Eg′) f

σσ′
xc (r)

The expression in (6.39) is valid for the TDLSDA, whereas the restricted schemes
involve an extra δgg′ factor, and δ(Eg−Eg′) respectively. All these kernels are hermitian.
For the explicit form of fxc please check the appendix.

The series in (6.36) can be cut at a maximum value of l0 = lg + lmax, according to
the selection rules for the Gaunt coe�cients in (6.38). The evaluation of the integrals
of angular products in (6.39) is less customary and is detailed in the appendix.

6.2.10 The renormalisation of the response function

We underline the fact that the TDDFT provides a calculation recipe to include the
many body interactions, to an extent dictated by the kernel, in the response function.
The renormalisation in (6.11) is actually a matrix equation of the form:

χ̂ = (1̂− χ̂0 K̂)−1 χ̂0 (6.40)

where all the quantities are operators.

While χ̃0 is diagonal over the initial states g, it is not the case for the kernel K̃.
Consequently, the many body response function χ̃ may cross di�erent initial states.
This e�ect gets to be seen on the spectra if one calculates two edges that are close in
energy (less than 50 eV of di�erence), such as the L2,3 edges of the 3d elements. In
this case, the overlap between the matrix elements of the real parts of χ̃0 (�gure 6.3)
determines a transfer of spectral weight in the imaginary parts of χ̃. Subsequently, the
branching ratio is modi�ed.

Calculating two edges close in energy all by employing the approximation (6.18)
to the Adler-Wiser equation is referred to as the double pole approximation [10, 99].
Physically, this approximation is valid if two transitions are strongly coupled to each
other (L2 and the L3 of the 3d elements) but not to the rest of the spectrum. In other
words, the approximation we employed is a three level problem [99].

Generally speaking, the poles of the response function indicate the values of the exci-
tation energies in the system, unless they are forbidden by symmetry. In the resonant
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Figure 6.3: Calculated real and imaginary parts of χ0 for the L2,3

edges of pure nickel. <χ0 is similar to f ′, whereas =χ0 indicates
the absorption peaks before the multiplication with the manifold
of the corresponding initial states.

case, and in the IPA picture, these are the di�erence between the �nal state's energy
and the core level's one. Similar to the optical frequencies range case, our method does
not seem to detect any signi�cant shift: the poles of χ are situated at more or less the
same position as the ones of χ0.

Note that the kernel's elements are zero for the Λ states whose mixing is prohibited
by the symmetry constrains. For instance, the kernel matrix elements connecting the
states with l = 0 and l = 1 in a material possessing the inversion symmetry are zero.
Moreover, there is no symmetry lowering due to the many body e�ects, nor are the
selection rules altered (at least in the local approximations for the kernel).

6.2.11 Extensions of the adiabatic approximation

In the resonant regime, the interaction with the core hole is a strong, if not essential,
e�ect. A proper treatment of the core hole requires the description of the excitonic
e�ect (the electron-hole interaction) into our calculation. Rigorously, this may be done
by appealing to a BSE method [105] whose computational cost is extremely high.
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Ideally, one should construct a method that follows the BSE spirit all by keeping the
computational simplicity of the TDDFT calculation.

The Bethe Salpeter equation A complete description of the excitonic e�ects can
be obtained by solving the BSE, originally introduced by H. Bethe and E. Salpeter in
1951 [97]. We shall be very brief on the description of the formalism, as it is secondary
to the purpose of this manuscript. For more details, please refer to the reference [84].
The BSE deals with two particle Green functions L0 and L, whose poles indicate the
two particle excitation energies in the system. In one of its most usual operatorial
forms, the BSE reads:

L = L0 + L0(v −W )L (6.41)

where L stands for the interacting two particle Green function, whereas

L0(x1, x2, x3, x4, ω) =
∑
ij

(fj − fi)
φ∗i (x1)φj(x2)φi(x3)φ∗j (x4)

ω − (Ei − Ej)
(6.42)

is the non-interacting one. Here x = (~rσ) and fi is the occupation number of orbital
i. Note that contrary to the TDDFT renormalisation in (6.11), the BSE involves four-
point quantities, the main reason for its computational heaviness. v stands for the bare
Coulomb interaction, whereas W is the screened electron-hole interaction. Moreover,
χ0 and fH are the two point contractions of L0 and v, respectively:

χ0(x1, x3, ω) = −L0(x1, x2, x3, x4, ω)δ(x1 − x2) δ(x3 − x4) (6.43)

by confronting (6.18) and (6.42). A similar equation connects v to fH . In reference [19]
authors stress upon the fact that χ0 is calculated from the Kohn-Sham wavefunctions,
whereas L0 is issued by the many body perturbation theory and is usually calculated
in the GW quasiparticle approximation. Consequently, (6.43) is valid only if the two
quantities are calculated from the same approximation. The subtraction in (6.41)
indicates the attractive character of the screened interaction. In (6.41) the screened
interaction W is assigned the same task as the exchange-correlation kernel fxc in the
TDDFT formalism: to describe all interaction e�ects beyond the local �elds.

TDDFT versus BSE Several attempts to reconcile the TDDFT and BSE methods
have been reported (see, for instance [94,109]). BSE and TDDFT equations have been
proved to be formally equivalent. The exact form of this equivalence has been found
for a local exchange-correlation kernel [84]. It is equally possible to derive a TDDFT
exchange-correlation kernel based on the BSE calculations. This has been done for
optical frequencies and is known as the Nanoquanta kernel [19,44,109].

The strength of the core hole interaction Taking the limit W → 0 in (6.41)
reduces the complexity of the problem to the calculation of the local �eld e�ects.
Depending on the strength of the core hole interaction, one can distinguish several
regimes. If it is weak, the local �elds dominate, and the application of (6.41) to the
calculation of X-ray core spectroscopy implies a total screening e�ect lower than the
one suggested by the RPA-LF. If the interaction is strong, it may overcome the local
�eld e�ects.
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The extended TDLSDA calculation scheme

In 2005, Ankudinov, Takimoto and Rehr [9] proposed a calculation scheme claimed
to be a TDDFT-BSE procedure submitted to certain approximations. In this work, we
use the spirit of the method proposed in [9] and adapt it to our own implementation.
The purpose is to study it in great detail and to analyze to what extent it is capable
of describing the core hole. Although it was originally baptized as TDDFT-BSE [9],
we shall call it the extended TDLSDA method, for reasons that will become clearer
further in the manuscript.

Ankudinov, Takimoto and Rehr [9] propose a correction that is related to the screened
interaction W. The corresponding TDDFT kernel reads:

Θ̂ = K̂ + Ŵ (6.44)

where K ≡ fH is the usual RPA-LF kernel and W is the two point contraction of W .
Note that performing a TDDFT calculation by the use of Θ̂ is rigorously equivalent
with the two steps method introduced in [9]. In reference [9] the authors distinguish
between the cases where K̂ is calculated in the RPA-LF or in the TDLSDA. For the
latter, they subtract fxc from W. We chose not to discuss this second method, as it
yields results that are quasi-identical to the �rst one's.

The authors of [9] expect that calculating the absorption cross section by using Θ̂
would include some e�ect due to the core hole interaction, which would justify the
TDDFT-BSE name. We believe that this particular choice of the kernel cannot describe
the core hole properly. Our arguments are to be revealed in the rest of the current
section.

Similarly to fxc, W of the BSE is subjected to approximations. In the following
paragraphs we discuss the approximations introduced by Ankudinov, Takimoto and
Rehr [9], who tried to integrate W within the TDDFT framework.

The RPA screened interaction Most usually the BSE schemes take the screened
interaction W as frequency independent:

W = ε−1fH (6.45)

where we chose to show the two points form, dealt with by the TDDFT, and not the
four points form in the BSE framework. ε is the dielectric matrix calculated in the
RPA [19]:

ε = 1̂− K̂χ̂0 (6.46)

Note the di�erent order of terms, as compared to (6.40). K is the usual TDDFT kernel.

W = (1̂− K̂χ̂0)−1fH (6.47)

This approximation on W is usually referred to as the statically screened RPA interac-
tion. By employing (6.44) with K = fH and (6.47) the renormalisation equation (6.40)
gives:

χ̂ =
(

1̂− χ̂0fH − χ̂0

(
1̂− fH χ̂0

)−1
fH

)−1
χ̂0 (6.48)
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Note that according to (6.45) W is local, static and positive, whereas W from (6.41) is
non-local, frequency dependent and preceded by a − sign.

Mathematically, it can be proven that the extended TDLSDA with RPA screened
interaction always enhances the local �elds. In (6.44) the two kernels fH and W have
identical signs, whereas this is not the case of the genuine BSE (6.41). Should we
take W with the opposite sign in (6.47), the corresponding extended TDLSDA scheme
gives identical results to the IPA calculations, meaning that the opposite sign Coulomb
interaction cancels. To understand this behaviour, one could iterate (6.46):

ε = lim
n→∞

(
1 + fH χ̂0 + (fH χ̂0)2 + · · ·+ (fH χ̂0)n

)
(6.49)

and plug it into (6.48):

χ̂N = (1− χ̂0fH ∓ lim
n→∞

(
χ̂0fH + (χ̂0fH)2 + · · ·+ (χ̂0fH

)n
)−1χ̂0 (6.50)

where ∓ stands for a positive W (as proposed originally in equation 6.47) and for a
negative one, respectively. Our calculations show that the contribution of the terms
whose n > 1 in (6.50) is negligible. In the �rst case of �gures (positive W) we actually
evaluate:

χ̂N = (1− 2χ̂0fH)−1χ̂0 (6.51)

whereas a negative W yields directly χN = χ0, validating our observations. These
arguments show that, at least for some simple materials, the extended TDLSDA scheme
employing (6.47) gives results that are identical to the ones obtained by a simple RPA-
LF calculation whose Hartree kernel fH has been doubled with respect to its initial
value. We veri�ed this conclusion with several L2,3 calculations and we think it is a
general one. Rigorously, one is not allowed to iterate (6.46), as some of the concerned
matrix elements are not less smaller than 1. Still, these are just a minority and our
argument stays qualitatively correct.

All the arguments above have been veri�ed numerically: an extended TDDFT cal-
culation in the limit of the RPA screened interaction (6.47) yields results that are
identical to the ones issued from a RPA-LF calculation where all values of the kernel
matrix elements have been doubled.

The locally screened interaction By analogy with the Hartree potential, a more
intuitive guess on W gives:

∆V (~r) =

∫
d3r′ n(~r ′)W(~r, ~r ′) (6.52)

where

∆V (~r) = Vexc(~r)− V0(~r) (6.53)

is the fully screened core hole potential, i.e. the di�erence between the absorber's
potential with and without the core hole, respectively. Note that both ∆V (~r) and
W(r, r′) are negative.
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Within this scheme, we employ the approximation that the short-ranged screened
interaction W takes signi�cant values only in the space extension of the core orbital.
Moreover, both the core potential ∆V (~r) and its density |φσg (~r ′)|2 are taken as spher-
ical. In other words, (6.52) becomes:

∆V (~r) =

∫
d3r′ |φσg (~r ′)|2 W (~r, ~r ′) (6.54)

This is a very strong approximation. The dependence of ∆V (r) on the initial state g
and spin σ is suppressed, due to the very spherical approximation. Similar to (6.27)
the TDDFT kernel derived from W reads:

K̃σgg′,ΛΛ′(ω) =

∫
d3r

∫
d3r′ W(~r, ~r ′, ω)

× φσ†g (~r) Ψσ
Λ(~r, ω + Eg) φ

σ
g′(~r

′) Ψσ†
Λ′ (~r

′, ω + Eg′) (6.55)

The fact that ∆V (r) is diagonal in the initial state variable implies the very same
feature in the kernel's K's behaviour. It follows that the screened interaction W has
some trivial energy dependence, in the sense that its matrix elements depend on the
energy of the edge designated by the g initial state. One could re-write (6.54) in form:

∆V (r) =

∫
d3r′ φσ †g (~r ′) φσg′(~r ′) W(~r, ~r ′) (6.56)

One could wish to merge (6.55) and (6.56). To do so, the only possible way is to assume
a local character for W :

W(~r, ~r ′) = W̃(~r) δ(~r − ~r ′) (6.57)

We stress the fact that this is yet another way to take into account the core hole,
locally. The local character of the approximation places it outside the BSE framework.
We recall that the justi�cation for its introduction is a technical (the need to merge
equations 6.55 and 6.56) and not a physical one. By employing (6.55), (6.56) and (6.57)
one gets:

K̃gσΛΛ′(ω) =

∫
d3r ∆V (r) Ψσ

Λ(~r, ω + Eg) Ψσ†
Λ′ (~r

′, ω + Eg′) δgg′ (6.58)

K̃gσΛΛ′(ω) =

∫
dr r2 ∆V (r) bσΛ(~r, ω + Eg) b

σ
Λ′(~r, ω + Eg′) δgg′

×
∫

dΩ YΛ(Ω) Y ∗Λ′(Ω) (6.59)

The normalization relation for the spherical harmonics gives:

K̃gσΛ (ω) =

∫
dr r2 ∆V (r) bσΛ

2(~r, ω + Eg) (6.60)

meaning that the TDDFT kernel describing the core hole interaction in the local ap-
proximation is diagonal in the Λ, g and σ variables. Physically, it means that the
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present approximation for W prevents the core hole interaction from coupling states
with di�erent (l,m) quantum numbers, i.e. W has a s wave character. This reminds
us of the form of the restricted TDLSDA approximation described previously.

This result can be retrieved in a close form in Ankudinov, Takimoto and Rehr [9].
Nonetheless, the derivation in [9] raises several problems. First, the authors start
from a di�erent form of the matrix formulation of K: eq. 28 in [9] introduces an
inaccurate dependence on ~r and ~r ′ (check our equation 6.55 for comparison). Due
to this inaccuracy, they no longer need to suppose the local character of W and can
merge their equivalent forms (6.55) and (6.56) directly. Consequently, we reach the
same result as the authors of [9], but we make an extra assumption (the locality ofW).
Given the local character of the exchange-correlation kernel, we chose not to pursue in
this direction.

About the so-called TDDFT-BSE method From this point of view, performing
the extended TDLSDA scheme by choosing the statically screened RPA interaction W
has no profound physical meaning, as it yields results that are identical to the ones
one would obtain by the mere multiplication by a factor 2 of the Hartree kernel matrix
elements. We therefore question the appropriateness of the method introduced by
Ankudinov, Takimoto and Rehr [9] that concerns the RPA screened interaction (6.47).
We equally disagree with the original nomenclature in [9] of the TDDFT methods
concerning the RPA screened interaction (6.47) and the locally screened one (6.55).
We �nd that calling this method TDDFT-BSE is un�t: a local approximation (in both
cases K is local) should not be introduced in a BSE context.

6.3 Implementation

Any TDDFT calculation requires a previous ground state one. This is why the
implementation of the TDDFT method within the FDMNES code is modular. From
the user's point of view, it is a completely separate module, whose call is optional (via
a keyword). In our implementation, the TDDFT calculation accompanies, but does not
alter, the single particle calculation (see the �ow-chart in �gure 3.1). Consequently,
besides the usual output �les, an extra one containing the TDDFT-corrected absorption
cross section is generated.

The underlying ground state calculation, either self-consistent or not, is equally meant
to provide us the Fermi level, the knowledge of which is essential for the calculation
of χ0. Note that this feature would not have been available without the previously
implemented self-consistent loop.

The ground state calculation can be performed either in the MST, or by following
a full potential scheme (FDM). The latter is to be preferred if the MT approximation
is questionable for the calculated compound. We recall that a FDM ground state
calculation is limited to rather small cluster radii. Moreover, in practice, integrating
the spin-orbit coupling into a ground state, FDM calculation is not feasible due to the
enormous calculation time it would require.

Let the calculation of some neighbour edges, like the L2,3 or the M4,5. As long as a
single particle calculation is concerned, one de�nes the same energy grid {E} around
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each edge, in units of photoelectron (and not photon) energies. Next, one performs two
separate, consecutive calculations, which di�er only in terms of photon energies and
initial states.

To evaluate χ0(ω) with the aid of (6.23) we will be using =τσσ′
ΛΛ′(E) and ZσgΛ(E)

from the single particle calculation. The energy dependence of =τσσ′
ΛΛ′ points to some

photoelectron energy E, whereas χ0 depends on the photons' energy ω. Thus, for a
TDDFT calculation where two edges are involved, it is mandatory to construct an
extended energy grid that will explicitly contain the two edges.

This new grid is built automatically from the initial ones, which were user-de�ned. We
superpose the two initial grids, which we previously shifted by a quantity corresponding
to the energy di�erence between the two edges. We keep the meshing of the initial grids
and at their crossing we give priority to the mesh of the shifted one. The reason for
this choice is that the density of the point energies is supposed to be higher in the
beginning of the initial grid (i.e. next to the edge), than at its end. One should insure
that the initial grid is large enough to cover the distance between the edges and that
the mesh is accurate enough around the low part of the energy edge.

To get the values of χ0 on the extended grid, according to (6.23), we need to evaluate
integrals of the following kind:

B(ω) =

∫ ∞
EF

dE
A(E)

ω − (E − Eg) + iε
(6.61)

where A(E) = =τσσ′
ΛΛ′(E) Zσ

′
g′Λ′(E) ZσgΛ(E). By separating the real from the imaginary

parts one gets:

B(ω) =

∫ ∞
EF

dE A(E)
ω − (E − Eg)(

ω − (E − Eg)
)2

+ ε2

− i

∫ ∞
EF

dE A(E)
ε(

ω − (E − Eg)
)2

+ ε2
(6.62)

In practice, the upper limit of the integral is taken some 1000 eV above the last point in
the energy grid, instead of∞. The missing values inA(E) are taken as the extrapolation
of the imaginary part of the atomic structure factor f ′′, with the corresponding units.
The physical reason one needs a large extension of the grid is that, although =A(E)
are very localized structures around the edge energies, <A(E) are extended. Note
that this procedure of calculating the real part of the susceptibility is proper to our
implementation. The other existing methods (see the implementation details in [101]
and [7]) use the Kramers-Kronig relations to do so.

One can evaluate (6.62) either by taking into account a �nite ε (≈ 0.1eV), or by
taking the limit ε→ 0. In practice the two give similar results. For the latter, one can
use the following representation of the Dirac δ function:

lim
ε→0

1

π

ε

x2 + ε2
= δ(x) (6.63)

Consequently, after discretisation, (6.62) becomes:

B(ω) = −1

2

(∑
i

A(Ei) log
ω − (e2 − Eg)
ω − (e1 − Eg)

)
− iπA(ω + Eg) Θ(ω + Eg − EF )
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Here i is the mesh index running over the E energies and A(Ei) is considered constant
in the energy interval limited by:

e1 =
1

2
(Ei−1 + Ei); e2 =

1

2
(Ei + Ei+1) (6.64)

The above evaluation of the integral in (6.23) enables us to determine χ0(ω). Note that
we obtain a χ0 representation of each edge g, whose imaginary parts' unique peaks are
similar in form but shifted in energy (see �gure 6.3). The two di�erent peaks have
identical heights, as the di�erence in the spectral weight of the absorption peaks is due
to the sum on the initial states, a later step in the calculation.

We evaluate the cσg,Λσg according to the prescription in section 3.1.1. From this point
on, we are interested in running the TDDFT calculation in the extended energy grid
exclusively.

We introduce a �rst energy loop to calculate the radial wavefunctions bl(r) in the new
grid, then calculate the kernel K̃, on the basis of (6.38) and (6.39). A second loop is
required for the matrix inversion in (6.40) and the calculation of χ̃. Should we perform
the extended TDLSDA scheme, we use the same loop to calculateW. We use the same
loop equally to determine the transition matrix tensors (2.16), (2.17) and (2.18). As
we previously stressed upon, the main idea behind this particular TDDFT method is
that we can treat χ̃ and τ on equal footing. Once we get χ̃ we re-use the single particle
implementation in the code that was meant for τ and calculate the tensors in the usual
FDMNES' way. This procedure is extremely convenient, as we get to "recycle" the
ancient structure of FDMNES and keep the powerful feature of the tensor analysis.

One great advantage of the TDDFT calculation is that it is not time consuming. Most
of the computational time goes into the matrix inversion in (6.40). A remarkable fact is
that the TDDFT calculation time does not scale with the radius of the cluster. Due to
the approximation for resonant regimes to the Adler-Wiser equations in (6.18), χ0 only
takes signi�cant values inside the absorbing atom. This means that the matrix inversion
(6.40) is limited to the spacial range of the absorber, and thus the computation time
required for the TDDFT method is nearly independent of the size of the calculation
cluster.

6.4 Results

To test the pertinence of our method, we calculated the TDDFT corrections for the
L2,3 absorption spectra of the bulk transitional elements. We used large clusters of
calculation (7Å) and the cut-o� level issued from our self-consistent procedure. The
experimental data issue from references [41] and [98]. The former is used as reference by
Schwitalla and Ebert [101] and Ankudinov, Nesvizhskii and Rehr [7]. Whenever avail-
able, we prefer the more recent data in [98], for the reason it has better experimental
resolution.

In our series of calculations, we included calcium and scandium, due to their avail-
able 3d states, and excluded zinc, whose 3d levels are full. For all these elements we
compared the single particle calculations to the TDDFT ones (RPA-LF, TDLSDA,
restricted TDLSDA), for identical broadening. In order not to arti�cially alter the
branching ratio we chose a broadening that does not depend on the energy. According
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to section 3.1.6 this corresponds to Γmax = 0. Concerning the spectral width of the
core level, we take the same tabulated values of Γhole (see equation 3.10) for both the
L2 and the L3 structures. We calculate the branching ratio by a simple ratio of the
maxima of the intensities of the L3 and L2 structures.

Unless speci�ed otherwise, the TDDFT results we present are issued from fully rela-
tivistic calculations preceded by a non-excited IPA (scheme a) self-consistent loop. All
calculations showed for the magnetic 3d elements (iron, cobalt, nickel) include the spin
polarisation.

In �gures 6.4 - 6.7 and 6.13 we confront the IPA and TDDFT calculations (more
speci�cally, LSDA and TDLSDA) to experimental data, for the L2,3 edges of the 3d
elements. TDDFT de�nitely improves on the one-body calculations, for the �rst half
of the 3d series, both in terms of branching ratio and general shape of the spectra. The
experimental data was normalized to match the high energy spectrum of the calcula-
tions. Neither the IPA nor the TDDFT calculations were normalized, which allows one
to observe the eventual energy shift and the mismatch at high energies. The TDDFT
corrections have little in�uence for the second half of the 3d series, and are sometimes
worse than the IPA ones (see the case of iron and cobalt in �gure 6.7).

A rough comparison between the LSDA and the TDLSDA calculations gives rise to
some general remarks. Firstly, the two seem to meet at high energies. When this
superposition is not perfect (see �gures 6.4 and 6.7) we suspect an artefact of the
calculation. Secondly, the TDDFT spectra are beneath the IPA ones (see �gures 6.4 -
6.7, 6.13 and 6.9). The two behaviour are consequences of the fact that the TDDFT
corrections indicate the change in the screening response when the many-body e�ects
are turned on. The higher the screening of the X-ray �eld, the lesser the area beneath
the absorption spectrum. The screening we calculate in this TDDFT way is intra-
atomic. It is known [105] that the screening e�ects do have a band contribution. Its
calculation is beyond the performance of our method. The screening e�ects are visible
only in the near-edge region. Therefore, we expect the two types of calculations to
converge at high energies.

For the �rst elements of the 3d series, the calculated L3 edges are broader and down
shifted in energy with respect to the experimental ones. This e�ect disappears at
higher atomic numbers, where the concerned states are occupied anyway. We believe
that, for reasons we do not understand yet, the �rst d states above the Fermi level
are not available to the spectroscopy. We recall that the degeneracy of the d states
is lifted by the crystal �eld, resulting in a double structure at the L3 (L2) edge. It
is therefore natural that the double structure appears in the LSDA calculation, where
one probes a projection of the density of states. Moreover, it seems that the local
TDDFT approximation does not succeed in erasing the �rst of these structures. The
same behaviour has been observed by Schwitalla and Ebert [101].

In the following we shall discuss in what way the di�erent ingredients of the calcu-
lation (cluster size, spin-orbit coupling, choice of the kernel, convolution procedure)
a�ect the TDDFT results.

The cluster size We checked that our TDDFT procedure had no intrinsic artefacts
due to the size of the calculation cluster, provided it contained at least one atomic shell
around the absorbing atom. As we explained in section 6.3, the e�ect of the TDDFT is
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Figure 6.4: One body LSDA (dashes) and TDLSDA calculations
(solid) versus experiment [41] for calcium and scandium at the
L2,3 edges. TDLSDA improves on the LSDA calculations, but not
enough to give a satisfactory agreement with the experiment in
terms of general shape of the spectra. Both calculations seem to
underestimate the onset of the L3 edge.

localized around the absorbing atom. Therefore, when increasing the cluster's radius,
the form of the TDDFT spectrum follows accurately the band modulations of the IPA
one (see �gure 6.8). It follows that most of the change brought in by the TDDFT is
independent of the size of the cluster. The di�erence between the IPA and TDDFT
calculations of absorption in vanadium is roughly the same, whether one deals with a
single atom or with a cluster.

The spin-orbit coupling We performed two di�erent sets of calculations, with and
without the spin-orbit coupling (see table 6.1). One notices an intrinsic TDDFT e�ect
linked to the fact of having considered the coupling (for the speci�c changes in the
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Figure 6.5: One body LSDA (dashes) and TDLSDA calculations
(solid) versus experiment [98] for titanium and vanadium at the
L2,3 edges. TDLSDA calculations are de�nitely better than the
LSDA ones. Similar to the calcium and scandium case, both
TDDFT calculations seem to underestimate the onset of the L3

edge.

formulae, please check the appendix). Even if for the �rst elements of the series the
spin-orbit coupling makes no di�erence in terms of the IPA calculations, the TDDFT
ones are seriously a�ected (see �gure 6.10). We checked that this extra di�erence is due
to the non-diagonal (in terms of spin) elements of the Coulomb kernel matrix elements.
From this point on, for the sake of accuracy, we will be discussing only the calculations
that include the spin-orbit coupling.

We draw attention upon a speci�c di�erence with respect to the TDDFT procedure
introduced by Ankudinov, Nesvizhskii and Rehr [7]. The TDDFT scheme introduced by
these authors assumes for convenience that the response function χ(~r, ~r ′) has spherical
symmetry [7,9], i.e. its projection on the spherical harmonics basis is independent ofm.
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Figure 6.6: One body LSDA (dashes) and TDLSDA calculations
(solid) versus experiment [98] for chromium and manganese at the
L2,3 edges.

This means that only the spherical contribution of the TDDFT corrections are being
considered. On the other hand, our implementation does not make any assumption.
The spherical approximation breaks down particularly in the presence of the spin-orbit
coupling, when the development of χ(~r, ~r ′) on the spherical basis will contain some
=τ l,m+1↓

l,m↑ factor.

The various local kernels One can see (�gures 6.9 and 6.11) that the various
exchange-correlation kernels that we tested (RPA-LF, TDLSDA, restricted TDLSDA)
give quasi-identical results. This result is in agreement with the �ndings of Schwitalla
and Ebert [101] and turns to be valid equally for TDDFT calculations on complex
structures (for instance, transition elements oxides). From the physics' point of view,
this means that the local �elds e�ect is important for X-ray absorption calculations,
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Figure 6.7: One body LSDA (dashes) and TDLSDA calculations
(solid) versus experiment [98] for iron, cobalt and nickel at the L2,3

edges. In so far the branching ration is concerned, the TDLSDA
corrections are negligible for nickel, and worsen the LSDA results
for iron and cobalt.
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improve the IPA calculations for the �rst elements of the 3d se-
ries. The di�erent local exchange-correlation kernels (RPA-LF,
TDLSDA and restricted TDLSDA) give quasi-identical results.
This �gure has been made with the data in table 6.1.
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di�erence between the two spectra seems to come mainly from the
non-diagonal (in terms of spin) elements of the Coulomb kernel
matrix elements.

Method
Ca Sc Ti

SO no SO SO no SO SO no SO
IPA 1.33 1.31 1.42 1.42 1.34 1.34

RPA-LF 0.96 1.16 1.00 1.21 0.86 0.72
TDLSDA 0.99 1.23 1.05 1.30 0.90 0.83

restricted TDLSDA 0.96 1.17 1.00 1.25 0.85 0.76
Experiment 0.761 0.771 0.832

Method
V Cr Mn

SO no SO SO no SO SO no SO
IPA 1.57 1.58 1.55 1.55 1.64 1.55

RPA-LF 1.07 1.26 1.10 1.21 1.24 1.29
TDLSDA 1.11 1.29 1.13 1.22 1.26 1.32

restricted TDLSDA 1.07 1.25 1.10 1.19 1.25 1.30
Experiment 0.982 1.152 1.821

Method
Fe Co Ni

SO no SO SO no SO SO no SO
IPA 1.60 1.76 1.63 1.71 1.49 1.39

RPA-LF 1.38 1.40 1.47 1.49 1.44 1.32
TDLSDA 1.41 1.39 1.49 1.43 1.45 1.35

restricted TDLSDA 1.36 1.38 1.46 1.44 1.44 1.34
Experiment 2.112 2.332 2.372

Table 6.1: The L2,3 branching ratio, experimental and calculated.
SO stands for spin-orbit calculation. 1,2 issue from experimental
data taken from references [41] and [98] respectively.
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Ca Sc Ti V Cr Mn Fe Co Ni Cu
1.29 1.36 1.43 1.50 1.56 1.63 1.00 0.80 0.60 0.60
Table 6.2: The values (in eV) of the convolution parameter Γ one
has used to calculate de branching ratio in table 6.1.
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Figure 6.11: TDDFT calculations of the L2,3 edges of vana-
dium. Three distinct local approximations for the exchange-
correlation kernel have been tested: RPA-LF, TDLSDA and re-
stricted TDLSDA. They all yield similar results.

whereas the local part of the electron-hole interaction is negligible. We draw attention
to the fact that this is di�erent from the optical frequency range, where the inclusion of
the local exchange-correlation kernel generates an e�ect no longer negligible. It appears
that in the X-ray range the interaction with the core hole has an extremely pronounced
non-local character. Consequently, we argue that the use of a non-local exchange-
correlation kernel is mandatory for accurate TDDFT X-ray absorption calculations.

Our results disagree with the ones of Rehr and Ankudinov [92]. They �nd about
50 per cent di�erence between the branching ratio calculated in RPA-LF with respect
to the TDLSDA one. They equally �nd an excellent match between the restricted
TDLSDA calculated and the experimental branching ratio at the L2,3 branching ratio
of the 3d elements. In our view such an agreement cannot be obtained by employing
a local approximation on the exchange-correlation kernel, as the core hole e�ect is an
essential ingredient of the description of X-ray absorption spectroscopy.

For the �rst half of the 3d series, our calculations show a reduction of about 25 per

cent of the TDDFT calculation with respect to the IPA one, in terms of L2,3 branching
ratios. For the �rst half of the 3d series, our results are in good agreement with the ones
of Schwitalla and Ebert [101]. These authors obtain a TDDFT correction that reduces
slightly with the increasing atomic number. In our case, this tendency is stronger and
leads to an almost zero e�ect in the case of nickel.
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Note that, contrary to the alternative TDDFT X-ray absorption implementations,
ours does not perform any Kramers-Kronig transformation and therefore is numerically
more stable.

TDDFT on excited atoms All the TDDFT calculations described above have been
performed on an underlying ground state calculation. We also tried to insert the �nal
state rule in this preliminary calculation. We described a cluster with a fully screened
core hole, and calculated χ̂0 accordingly. Such a procedure is not rigorously justi�ed,
as the Adler-Wiser equations (6.18) require the wavefunctions ΨΛ to be calculated in
the ground state. Nevertheless, the sometimes poor agreement with the experiment of
the rigorous calculations may justify some deviations from this rule. Quantitatively,
this procedure turned up to worsen the agreement with the experiment, therefore we
chose not to pursue this direction.

The broadening in χ0 There are two basic ways to apply the broadening to the
spectra. The standard procedure is to evaluate χ0 by taking the limit ε → 0, then
calculate absorption by means of χ and broaden the spectra at the very end. The
alternative is to broaden χ0 directly, by employing ε = Γhole and Γmax = 0. Under
these terms no further convolution is needed. Performing a TDDFT calculation with
a broadened ground-state response function is somehow un-orthodox, as the decay
phenomena should not appear in the fundamental state. Despite this, such an ad-hoc

prescription actually works, and the two procedures are equivalent in terms of results.

TDDFT and the convolution procedure In the previous results we have shown,
the convolution of the L2,3 spectra is identical and energy independent (for the speci�c
values, please check table 6.2). We feel that this is the best way to put into perspective
the genuine improvement that TDDFT brings to the branching ratio. Note that a
TDDFT calculation with a better (and frequency dependent) kernel should yield the
correct width of the L2 and L3 structures. If this is not the case (for instance, for
kernels that are local and energy independent), it should be accepted as such and one
should not tempt to correct this by convoluting with di�erent L2 and L3 widths. The
interpretation of the TDDFT calculation of the L2,3 spectra is very delicate. A change
in the convolution procedure may lead to completely di�erent conclusions.

In �gure 6.12 (above) we show the TDLSDA calculations of the L2,3 edges of nickel,
for two distinct, energy independent, convolution parameters. One can see that the
spectrum convoluted by Γ = 1.3 eV gives a poor agreement with the experiment at the
very beginning of the L3 edge. In this sense, we �t Γ such as the L3 edge is perfectly
modelled, and use the same convolution value for all energies (�gure 6.12 above). It
is obvious that this procedure, though favourable for the �rst edge, cannot describe
accurately the second one. Experimentally, the L2 structure is broader than the L3

one: as the energy of the 2p1/2 states is lower that the one of 2p3/2, there are more
mechanisms to �ll it and thus its life time is shorter.

One might argue that an energy dependent convolution is required in order to ac-
count for this di�erent experimental broadening. We therefore tried to convolute the
L2 structure with twice the value of the L3 width (�gure 6.12 below) and thus we get
an undeniable improvement of the agreement between the TDDFT calculation and the
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Figure 6.12: The experimental [98] and TDDFT calculated absorp-
tion at the L2,3 edges of nickel. Above, the TDDFT calculations
correspond to two distinct energy independent, convolution pa-
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(solid). Below, we show TDDFT calculations corresponding to two
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to distinguish what is the actual improvement brought in by the
TDDFT scheme.
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experiment. In this spirit, one could �nd a perfect agreement, provided the two broad-
ening parameters were conveniently chosen. We argue that such procedure, though
tempting, is to be avoided, whether the two widths are taken from experimental data
(tabulated values) or are calculated ab initio (for instance, via a GW calculation). In
the �rst case of �gures, i.e. tabulated values, the success of the convoluted TDDFT
spectrum is due to a �tting procedure and not to the TDDFT procedure itself. More-
over, such procedure cannot be general: for the same chemical element, the two widths
depend on the atomic environment (for instance, the widths of nickel in pure nickel and
in nickel oxide are di�erent). In the second case of �gures (ab initio calculated widths)
one should clearly distinguish to what extent the improvement is due to the particu-
lar choice of the TDDFT kernel, or to the GW approximation. To conclude with, we
argue that in order to analyse the e�ect of the TDDFT calculation, the broadening
parameters Γ need to be the same at both edges, contrary to the procedure employed
by Ankudinov, Nesvizhskii and Rehr [7].

TDDFT and the energy shift As we previously mentioned in section 6.2.10, we
do not observe any genuine energy shift between the IPA and the TDDFT calculations,
although an apparent one may be observed. In some cases the �rst structures in the
IPA spectrum are strongly diminuated or nearly suppressed, which induces an apparent
shift between the TDDFT and the IPA calculations.

Scherz et al. [99] start from the work of [10] and propose an e�ective, element depen-
dent, exchange-correlation kernel meant to describe the experimental L2,3 branching
ratio of the 3d elements. They construct a kernel starting from the very experimental
data, then run a non-relativistic TDDFT calculation in the double pole approximation
that uses the very same kernel. Although their method is not general, as it is based
more or less on a �t procedure, it has the great merit to provide insight into the TDDFT
mechanisms that allow the change in the positions and intensities of peaks. Scherz et
al. [99] do obtain a shift: it is due to the fact that the diagonal (in terms of initial
states) elements of the kernel have signi�cantly di�erent values when the states belong
to either the L2 or to the L3 transitions. This is not the case of the kernels we are
employing.

TDDFT and the delocalized L2,3 edges All the L2,3 edges of the 3d elements are
partially localized structures, with the exception of copper (�gure 6.13). This seems to
be a general feature of the calculation of delocalized edges: the TDDFT corrections, in
the limit of local approximations, bring very little improvement on the IPA calculations.

The 3d levels of copper are almost full. Therefore, the absorption spectra is tributary
mostly to the 4d transitions. It follows that the e�ect of the mixing when the transitions
concern delocalized levels is weak.

TDDFT and the cut-o� level There is an inherent advantage of the TDDFT
calculations on the �nal state rule ones: the former introduce no ambiguity in the
calculation of the cut-o� level. In the TDDFT case, the cut-o� is the Fermi level of the
ground state calculation. In the case of �nal state rule calculations, the Fermi level (a
one body, ground state concept) loses its meaning and the cut-o� is calculated as the
energy where the integrated d DOS equals the nominal d electrons on the absorbing
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Figure 6.13: One body LSDA (dashes) and TDLSDA calculations
(solid) versus experiment for copper at the L2,3 edges. Both cal-
culations were run on a 9 Å cluster (248 atoms) and the value of
the broadening parameter is 0.6 eV. It appears that for delocalized
edges, the TDLSDA corrections are negligible.

atom. This means that the photoelectron takes part in the screening process and is
absent form the 3d levels. Such a procedure to determine the cut-o� is justi�ed by our
aiming at a better agreement with the experiment, but is still theoretically ambiguous.
On the contrary, the RPA-LF does not encounter such problems: the only impeding
factor to the precise identi�cation of the cut-o� level are the non-spherical e�ects. For
the 3d simple elements at the L2,3 edges, we found that TDDFT calculations are to be
preferred to the �nal state rule ones.

TDDFT and the mixing of transition channels We noticed that performing a
TDDFT calculation at a single edge, whether completely delocalized (the K edge of the
3d elements) or not (the L2 or the L3 edges of the 3d elements), yields practically the
same values as its IPA correspondent. It follows that our method can only account for
the local �elds or exchange-correlation e�ects through the mechanism of the mixing of
transitions, which occurs when one solves (in a single calculation) some adjacent edges,
like the L2,3 edges of the 3d elements. Moreover, one can see that the correction brought
in by the TDDFT procedure reduces while the atomic number, and thus the energy
distance between L2 and L3, increase. Although in principle the TDDFT correction
should also a�ect the isolated edges, we never managed to have a quantitative e�ect.
We believe this is a consequence of the local approximation on the exchange-correlation
kernel.

The available transitions (single particle excitations) in the X-ray range are sparser
than the ones of the optical frequencies. The core spectroscopy involves initial levels
that are rather far from one another. For instance, a L2 calculation does not need to
take into account the possible transitions from the 2s level of the absorber. On the



111

other hand, it needs to account for the ones from 2p3/2, which are a lot closer (a few
eV).

Therefore, using our TDDFT implementation for the calculation of a single L2 (L3)
edge of a 3d element does not make any sense. In such a case, the approximation we
made to the Adler Wiser equation (6.18) no longer stands. One is allowed to select a
few transition channels (the g states instead of all the occupied states) provided they
are isolated from the rest of the spectrum. This is not the case for a single L2 (L3)
transition.

We analysed in detail the mechanism of the mixing. We banned the mixing between
the cross-edge transitions in (6.40), by arti�cially setting to zero the kernel elements
connecting the 2p1/2 and the 2p3/2 states. In this way we only allowed the intra-edge
mixing, corresponding to the crossing of the 2p1/2, or of the 2p3/2 states, respectively.
Under these conditions, we get results that are similar to the IPA. It follows that only
the inter-edge mixing contribute to the change in the branching ratio, in the limit of
the local approximation. This conclusion is in perfect agreement with the �ndings of
Scherz et al. [99].

6.5 Conclusions and perspectives

We presented a detailed study of adiabatic TDDFT methods applied to X-ray ab-
sorption at the L2,3 edges. The work presented in this chapter is at its beginning and
further re�nement is to be expected. We have shown that although the TDDFT with
local kernels provides an improvement with respect to the IPA calculations, there is still
an essential ingredient missing from our TDDFT scheme. We think that the same as
for the optical region, at X-ray frequencies the core hole e�ects are essential in order to
get a satisfactory agreement with the experimental data. It has been argued [19] that
the TDLSDA is supposed to gives satisfactory results for core spectroscopy. Our re-
sults invalidate this statement, thus a non local (and eventually frequency dependent)
exchange-correlation kernel is imperative for a TDDFT calculation of core spectro-
scopies. In other words, one needs a kernel that can describe the excitonic e�ects.

There are clear shortcomings of the TDDFT calculations on extended systems, at the
present moment. The most stringent ones concern some speci�c aspects of the spectra,
like the prediction of multiplet and excitonic lines, or the correct position of E2− E2
structures atK edges. It is still unclear to what extent the limitations of the underlying
DFT-LDA ground state calculation a�ect the performance of the TDDFT calculation.
In so far the latter is concerned, the exchange-correlation kernel accounting for all the
many body e�ects (including multiplets) has not been derived yet. It follows that
the TDDFT calculations on extended systems encounter huge limitations for strongly
correlated materials.

Our conclusion is in reasonable agreement with the work of Schwitalla and Ebert
[101] on local �elds e�ects. On the other hand, our results contradict the �ndings of
Ankudinov, Nesvizhskii and Rehr [7], who pretend to have achieved a perfect agreement
with the experimental values of the L2,3 branching ratios for the 3d elements, all by
employing a local kernel (the restricted TDLSDA). Moreover, our results indicate that
all the local exchange-correlation kernels we employed (RPA-LF, TDLSDA, restricted
TDLSDA) yield similar results, which goes against the �ndings in reference [7]. We
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equally disagree with Ankudinov, Takimoto and Rehr [9], who claim to have developed
a mixed TDDFT-BSE calculation scheme.

It follows that the X-ray absorption community lacks a convenient calculation tool
that is able to account for the core hole. One of the perspectives of this work include
the implementation of a genuine, BSE derived, TDDFT kernel which is supposed to
describe the excitonic e�ects. Second, we wish to test the way in which our TDDFT
procedure couples to the LSDA+U ground state calculations. The calculation of the
L2,3 edges of correlated materials is expected to bene�t from this duo.



Chapter 7

A study of the colossal

magnetoresistive Pr0.6Ca0.4MnO3
perovskite

7.1 The context of the study

The manganites 1 are perovskites of type RexA1−xMnO3, where Re is a trivalent rare
earth (Pr, La, Nd, Sm etc.) and A a divalent alkali element (Ba, Ca, Sr) yielding a
partially �lled Mn 3d band. For particular values of doping, manganites exhibit the
colossal magnetoresistance e�ect, which encouraged extensive research work aiming at
elucidating the origins of this extraordinary transport property.

The manganites have rich phase diagrams that show a (classical) critical point around
the same value of the doping x. It follows that in the vicinity of this point, the balance
between the various degrees of freedom (spin, orbital or charge) is very sensitive to
external conditions like presure, magnetic and electric �elds or variations of temperature
or doping. The colossal magnetoresistance e�ect exhibited by manganites at half-doping
is believed to be a consequence of the interplay between the orbital and spin degrees
of freedom. Its mechanism is as follows: while the ground state of these manganites
is insulating and antiferromagnetic, applying an external magnetic �eld destroys the
orbital order. The emerging state is metallic and ferromagnetic, thus with a drop in
resistivity.

To understand and control the phase transition it is imperative to unambiguously
determine the ground state of the half-doped manganites. At room temperature, these
materials have a single manganese site (of formal charge 3.5). At low temperature,
three distinct manganese sites appear: Mn1, Mn2 and Mn3 (see �gure 7.1). The �rst
and simplest microscopic model for the low temperature phase was introduced in the
early '50s by Goodenough, who proposed a charge ordered model in the form of a che-
querboard pattern of the Mn3+ and Mn4+ [46]. In this model, Mn1 and Mn2 correspond
to the 3+ formal charge and are subjected to the Jahn-Teller e�ect (i.e. the lifting of

1Although the term manganite is unanimously agreed upon in material science, its use is inaccurate.
In inorganic nomenclature, the manganite is a mineral, whereas any negatively charged molecular entity
with manganese as the central atom is called a manganate.
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Figure 7.1: On the left, the Pr0.6Ca0.4MnO3 unit cell in the high
temperature phase. The octahedra are formed by the oxygen atoms
and are centred around the manganese. For simplicity, the Ca/Pr
atoms are not shown. All octahedra are equivalent. On the right, a
sketch of the ground state in the original Goodenough model. The
�lled eights represent the occupied eg orbital on the Mn3+ sites,
whereas the closed circles represent the isotropic Mn4+. The + and
- signs indicate the relative orientations of the spin. The rectangle
marks the unit cell for the orbital order, whereas the whole picture
represents the unit cell when considering the additional magnetic
ordering. The images have been taken from reference [47].

orbital degeneracy following the distortion of the oxygen octahedron centred around
the manganese atom). Mn3 is isotropic and bears the 4+ formal charge.

At the present moment we know that the Goodenough model is not accurate: recent
X-ray studies at the K edge of manganese [47, 54] go against the hypothesis of the
charge separation. Nevertheless, the picture of the Jahn-Teller / isotropic manganese
atoms holds. One therefore needs to re�ne the classical Goodenough model towards a
more realistic description of the ground state of manganites. The RXD experimental
technique is particularly suitable for this task, as it gets to probe the orbital, magnetic
and eventual charge order by a clever choice of the scattering vector. In the particular
case of Pr0.6Ca0.4MnO3 several resonant scattering experimental studies, either at the
K edge [47, 48] or at the L2,3 edges [110, 115], exist. To our knowledge, the only
theoretical interpretations of the latter are based on multiplet calculations. We believe
that our ab initio calculation schemes can be used to gain more insight into these
experiments.

Calculating the manganese L2,3 edges in manganites is a very delicate task and re-
quires an approach that goes beyond the one body picture. To acquire better knowledge
of the material, we chose to begin with the calculation of the K edge. The next step
is to run our TDDFT calculation schemes at the L2,3 edges. We underline the fact
that this is the �rst application of a TDDFT method to a RXD spectrum calculation.
Consequently, we pay particular attention to the polarization e�ect and its eventual
alteration in the many-body framework.

In its low temperature phase, Pr0.6Ca0.4MnO3 crystallizes in the Pbnm spacegroup
[90], which contains three distinct manganese atoms: Mn1, Mn2 and Mn3 (see �gure
7.1). The orientation of the spins remains unknown and its determination is one of the
tasks of the calculations.
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7.2 The resonant X-ray di�raction study

The low temperature phase of Pr0.6Ca0.4MnO3 is antiferromagnetic, of propagation
vector (100). All through this manuscript, the indices correspond to the low temper-
ature unit cell (the experimental studies generally refer to the high temperature unit
cell). The orbital order spans in the perpendicular direction, with the propagation
vector (010). The only resonant contributions to the magnetic (100) and orbital (010)
re�ections come from Mn1 and Mn2.

An important aspect to be discussed is that at the K edge, the (010) re�ection probes
the Jahn-Teller distortion, and not the orbital ordering. This issue was long debated
upon in the late '90s. The �nal resolution is that at K edge one sees the coupling
between the p states and the t2g states issued from the Jahn Teller e�ect [12, 14].
Should one have no distortion but ordered d orbitals, the coupling between these and
the p states is too weak to yield a signal at the (010) position. Consequently, we did
not describe any orbital ordering in the input of the calculation. A structure that has
the Jahn Teller distortion is su�cient to yield a good agreement with the experimental
data.

At the L2,3 edges, the distinction between the Jahn Teller distortion and the orbital
order no longer makes sense, as one probes directly the d orbitals. The Jahn-Teller
distortion breaks the symmetry of the t2g orbitals, and this asphericity propagates
with the (010) periodicity - the orbital ordering. The orbital ordering needs to be
explicitly described as input only when it is not associated to the Jahn-Teller e�ect, as
in the case of NdMg (see section 3.2).

The (020) and (060) re�ections measure the di�erence between the Jahn-Teller man-
ganese atoms Mn1 and Mn2 and the isotropic Mn3 (see table 7.1). For historical reasons,
they are called charge order re�ections, as they are supposed to account for the charge
separation between the Mn 3+ and Mn 4+ of the Goodenough model. Experimental
data unambiguously reject this hypothesis [128]: in Pr0.6Ca0.4MnO3 the charge order
peak in the σ−σ con�guration vanishes at φ = π/2 azimuth, i.e. when the incoming σ
polarization is along Oz. Such setup, which is insensitive to the Jahn-Teller distortion
contained in the xOy plane, is supposed to reveal the di�erence in the structure fac-
tors of the two kinds of manganese, if any. Of course, this conclusion should be taken
with care, i.e. some slight charge ordering may be compatible with the experimental
resolution.

The (020) and (060) re�ections can only be measured at the K edge. At the lower
energy L2,3 edges these points lie outside the Ewald sphere. Nonetheless, the charge
ordering phenomena (if any) is the same whatever the edge and it is unecessary to
measure it at the L2,3 edges.

7.3 Tensor analysis

In this section we shall deal with the azimuthal dependence of the re�ections we are
interested in, at both K and L2,3 edges. Calculations show that Mn1 and Mn2 have
quasi-identical electronic structures.
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Mn1

Position 010 100 020 Op.sym.
0. 0. 0. 1 1 1 E
0.5 0. 0. 1 -1 1 TE
0. 0. 0.5 1 1 1 TC2z

0.5 0. 0.5 1 -1 1 C2z

Mn2

Position 010 100 020 Op.sym.
0. 0.5 0. -1 1 1 E
0.5 0.5 0. -1 -1 1 TE
0. 0.5 0.5 -1 1 1 TC2z

0.5 0.5 0.5 -1 -1 1 C2z

Mn3

Position 020 Op.sym.
0.241 0.25 0. -1 E
0.241 0.25 0.5 -1 mz

0.259 0.75 0. -1 Ti
0.259 0.75 0.5 -1 TC2z

0.741 0.25 0. -1 TE
0.741 0.25 0.5 -1 Tmz

0.759 0.75 0. -1 i
0.759 0.75 0.5 -1 C2z

Table 7.1: Positions, Bragg factors and symmetry operations for
the non-equivalent manganese atoms.

Let D1 (D2) the tensor describing the prototypical Mn1 (Mn2) atom:

D1 =

 a1 d1 e1

d∗1 b1 f1

e∗1 f∗1 c1

 (7.1)

The symmetry operations in table 7.1 transform the tensor in the following way:

TED1 =

 a1 d∗1 e∗1
d1 b1 f∗1
e1 f1 c1

 (7.2)

C2zD1 =

 a1 d1 -e1

d∗1 b1 -f1

-e∗1 -f∗1 c1

 (7.3)

TC2zD1 =

 a1 d∗1 -e∗1
d1 b1 -f∗1
-e1 -f1 c1

 (7.4)

and the equivalent for the D2 transformations. On the basis of the principles expound
in section 2.2.1 and similarly to the calculation in section 3.2.2, the amplitudes of the
(010), (100) and (020) scatterings give:

A010 = 4

 a1 − a2 <d1 −<d2 0
<d1 −<d2 b1 − b2 0
0 0 c1 − c2

 (7.5)

A100 = 4

 0 0 i(=e1 + =e2)
0 0 i(=f1 + =f2)
-i(=e1 + =e2) -i(=f1 + =f2) 0

 (7.6)

A020 = 4

 a1 + a2 − 2a3 <d1 + <d2 − 2<d3 0
<d1 + <d2 − 2<d3 b1 + b2 − 2b3 0
0 0 c1 + c2 − 2c3

 (7.7)
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The origin of (010) and (020) being electrical, their amplitude tensor elements are real.
On the contrary, the (100) is magnetic, thus its amplitude contains purely imaginary
terms. This discussion is general and applies to both K and L2,3 edges. It is important
to mention that the actual values of the general tensor (7.1) depend on the choice of
the edge, as the majority, dipolar probed states are not the same. As a consequence,
the magnetic re�ection (100) cannot be seen at the K edge: the magnetism carried by
the d orbitals yields tensor elements that are too weak. For the rest of the re�ections,
there is no need to describe the magnetism for the K edge calculations and one could
stick to a general tensor (7.1) with real elements.

7.4 Results at the K edge

The K edge of Pr0.6Ca0.4MnO3 is rather easy to calculate: we performed non-
magnetic MST calculations on a cluster of 157 atoms (7.65 Å). We did not describe
any charge or orbital ordering for the manganese atoms, as input data (see the expla-
nations above). Pr0.6Ca0.4MnO3 is a solid state solution: the insertion of Ca in the
PrMnO3 matrix is not periodic. We perform two distinct calculations for PrMnO3 and
CaMnO3 by using the same crystallographic structure [90], then convolute the resulting
di�raction amplitudes with a weight of 0.6 and 0.4.

In the calculations, the indexation of re�ection obeys the low temperature unit cell.
To retrieve the experimental indexes one must divide by h and k by a factor of 2.
In �gures 7.2 and 7.3 we compare calculations and experimental data for the charge
and orbital re�ections, respectively. The agreement is rather good. We succeed in
reproducing the global shapes of the spectra, as well as the spectral details at the 6542
eV in the charge order spectra. On the contrary, the localized structures around 6562
eV for the (020) and 6568 eV for (060) are not well resolved by our calculations. At
the very same energies, very discrete shoulders appear in the (030) spectrum, and are
equally missed by our calculation. The simulations equally overestimate the intensity
of the signal after the edge, for the charge order re�ections, and underestimates it for
the orbital order ones.

Calculations predict a narrower orbital order spectral line than the one that is actually
measured (�gure 7.3). We believe that this is a consequence of the experimentalists
having used di�erent monochromators for the (020) and (030) outgoing polarization
analysis. Consequently, there are two distinct experimental resolutions, whereas in the
calculations we used a single one.

From (7.5) and (7.6), and after the multiplication with the incoming and outgoing
polarizations, we get to calculate the azimuthal dependence of the di�racted intensity.
We set the origin of the azimuth φ along the Oz axis, or, equivalently, when the sigma
polarization εσ is contained in the xOy plane. At zero azimuth andK edge we calculate:

Iσπ010

Iσσ010 φ=0

=
cos2 θB(<d1 −<d2)

(a1 − a2)2
>> 1 (7.8)

as a1 ≈ a2 due to the similarity in the p states of Mn1 and Mn2. This means that
calculations predict that orbital order scatterings occur in the σ − π channel exclu-
sively. This result disagrees with the experimental data in reference [128] (�gure 7 -
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Figure 7.2: The charge order re�ections (020) and (060) in the
dominant σ - σ channel: theory (solid) and experiments from ref-
erence [47] (dots). The experimental data were scaled to the max-
imum of the di�raction peak.
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Figure 7.3: The orbital order re�ection (030) in the dominant σ
- π channel: theory (solid) and experiments from reference [47]
(dots). The experimental data were scaled to the maximum of the
di�raction peak.
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Figure 7.4: The azimuthal dependence of the calculated charge
order re�ection (060) in the dominant σ - σ channel. The experi-
mental data in [128] show a cancellation of the intensity at φ = 90,
which proves the absence of the charge ordering. The larger the
calculation radii, the higher the minimum in φ = 90. We conclude
that this is an artefact of the calculation, as it overestimates the
di�erence in electronic structure between the Mn1 and Mn2, on
one hand, and Mn3, on the other hand.

the experimental re�ections are indexed based on the high temperature unit cell). At
the K edge, the measured (030) σ−σ scattering is not negligible (the 010 was not mea-
sured), as there is experimental evidence for non-resonant Thomson scattering. This
is probably due to the fact that the spacegroup used in the calculations and suggested
in the literature [90] is not accurate enough, and thus the real symmetry is lower than
the one which was used.

The dominant contribution to the (030) scattering is in the σ−π channel. The calcu-
lations show a very good agreement with the experimental data (�gure 7.3). Contrary
to the (010) and (030) orbital order re�ections, the dominant scattering channel for the
charge order (020) and (060) re�ections is the σ − σ:

Iσπ020

Iσσ020 φ=0

=
cos2 θB(<d1 + <d2 −<d3)

(a1 + a2 − 2a3)2
<< 1 (7.9)

in agreement with the experiment [47]. We obtain a non-zero minimum for the (060)
σ−σ at φ = 90 (see �gure 7.4). The calculations predict a ratio Iσσ020(φ = 90)/Iσσ020(φ =
0) between 0.1 (for a cluster radius of 5.65 Å) and 0.3 (for 7.65 Å) instead of the zero (in
the limits of the experimental resolution) obtained in [128]. We mention that the data
in [128] are not corrected for self-absorption. The value of the ratio of the intensities
at the two azimuths should not depend on the radius of the cluster, once convergence
with respect to the cluster size has been achieved. We believe that its overestimation
is an artefact of the calculation. The MT approximation enhances the di�erence in
electronic structure between the Mn1 and Mn2, on one hand, and Mn3, on the other
hand.

Our calculations predict a charge ordering, even if in the input all the manganese
atoms were described with the same atomic con�guration. In a sense, this is to be
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expected, in both experiment and simulation, while Mn1, Mn2 and Mn3 are on di�erent
sites. The reason for the disagreement is to be looked for either in the experiment
(resolution problems, misalignment, lack of polarisation analysis) or in the calculations
(as explained above).

Experimentally, no traces of the structural phase transition have been noticed on the
(020) σ − π re�ection [47]. Note that the (020) is forbidden in the high temperature
phase, where all the manganese atoms are equivalent. Measuring a signal requires some
kind of asphericity (enhanced by the resonant regime): one measures the di�erence
between two atoms that are connected by a symmetry operation other than the identity.
This phenomenon is called the Templeton e�ect. One might say that if the (020) σ−π
re�ection intensity is not altered in the phase transition point, it is insensitive to the
Jahn-Teller distortion.

Above the phase transition (no periodicity of the distorted octahedra), a simple
calculation gives:

Iσπ020|HT = 16d2 cos2 θB (7.10)

whereas below the transition point (in temperature):

Iσπ020|LT = 16(d1 + d2 − d3)2 cos2 θB (7.11)

HT (LT) stands for high (low) temperature and d is the xy general tensor element for
the manganese atom in HT. At the K edge one is allowed to take d1 ≈ −d2: when
neglecting the d orbitals contribution, Mn1 and Mn2 are connected by a mx mirror.
The isotropic Mn3 is barely a�ected by the structural transition, thus we approximate
d3 ≈ d. Within these approximations, we obtain an overestimated factor 4 in favour
of the LT phase. We therefore plead that the Jahn-Teller distortion a�ects the (020)
σ − π indirectly, via the change in the xy tensor element for the isotropic manganese.
This explains why the re�ection is not dramatically increased at the transition point.

In the re�ections we studied, the E2-E2 contribution is minimal. Although the RXD
spectra calculations agree very well with the experimental data in terms of shape and
intensities, they are placed at a too high energy (not shown here). To get our reference,
we superposed the experimental and calculated XANES signal. This e�ect is most
probably a screening issue: the �nal state rule fails. We chose not to proceed in the
direction of trying partial screening, as the calculations provide a most satisfactory
analysis of the RXD spectra, which are not expected to be altered by a potential
energy shift.

7.5 Results at the L23 edges

In this chapter, we use some unpublished data of K.J. Thomas et. al. [115]. In this
experiment, the (010) and (100) re�ections were measured at the L2,3 edges of man-
ganese, on a single crystal. The incoming photons were π polarized and no polarisation
analysis was performed on the outgoing beams. The orbital re�ection (010) was mea-
sured with the crystal c axis in the scattering plane, whereas the magnetic (100) was
measured with c perpendicular to the scattering plane. In our calculations, the origin
of the azimuthal angle is along c (Oz). This gives Ψ = 0 for the orbital re�ection and
Ψ = 90 for the magnetic one.



121

 0

 0.5

 1

 630  640  650

In
te

n
si

ty
 (

10
3  e

2 )

Energy (eV)

CaMnO3

010 πin

TDLSDA
RPA-LF

IPA
experiment

Figure 7.5: TDLSDA (solid), RPA-LF (long dashes) and IPA
(short dashes) calculations of the orbital (010) incoming π re�ec-
tion. The calculations were performed on CaMnO3, whereas the
experimental data (line with points) was taken on Pr0.6Ca0.4MnO3.
The Fermi level of Mn1 and Mn2 is indicated with a vertical line.
The best agreement is given by the TDLSDA calculation: the �rst
structure in the spectrum is shifted from 631.5 eV in the IPA cal-
culation to 632.2 eV in the TDLSDA one, following the trend in
the experiment.
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Figure 7.6: TDLSDA (solid), RPA-LF (long dashes) and IPA
(short dashes) calculations of the magnetic (100) incoming π re�ec-
tion. The calculations were performed on CaMnO3, whereas the
experimental data (line with points) was taken on Pr0.6Ca0.4MnO3.
The Fermi level of Mn1 and Mn2 is indicated with a vertical line.
The best agreement is given by the TDLSDA calculation: the in-
tensity of the structure at 644 eV decreases, whereas its position is
shifted by 0.2 eV with respect to its IPA counterpart.
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Figure 7.7: TDLSDA (solid), RPA-LF (long dashes) and IPA
(short dashes) calculations of the orbital (010) incoming π re�ec-
tion. The calculations were performed on PrMnO3, whereas the
experimental data (line with points) was taken on Pr0.6Ca0.4MnO3.
The Fermi level of Mn1 and Mn2 is indicated with a vertical line.
The TDLSDA improves the intensity of the structure at 644 eV.
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Figure 7.8: TDLSDA (solid), RPA-LF (long dashes) and IPA
(short dashes) calculations of the magnetic (100) incoming π re�ec-
tion. The calculations were performed on PrMnO3, whereas the
experimental data (line with points) was taken on Pr0.6Ca0.4MnO3.
The Fermi level of Mn1 and Mn2 is indicated with a vertical line.
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Figure 7.9: TDLSDA (solid), RPA-LF (long dashes), IPA (short
dashes) calculations and experimental data (line with points) on
the magnetic (010) incoming π re�ection at the L2,3 edges of Mn
in Pr0.6Ca0.4MnO3. The TDLSDA improves the intensity of the
structure at 644 eV.
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Figure 7.10: TDLSDA (solid), RPA-LF (long dashes), IPA (short
dashes) calculations and experimental data (line with points) on
the magnetic (100) incoming π re�ection at the L2,3 edges of Mn
in Pr0.6Ca0.4MnO3.
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The experimental data should be looked at with extreme precaution. First, the
crystal used in the experiment is twinned. Due to the close values of a and b the
(010) and (100) re�ections are not well resolved in the k space, which may bias the
values of the measured intensities. Second, the magnetic re�ection spectrum shown
in [115] (c axis normal to the scattering plane) indicates intensities that are two orders
of magnitude higher than the ones of the orbital re�ection. Experiments on powders
refute this �nding [110] which leads us to the conclusion that this fact is either an
experimental artefact, or a feature linked to the particular azimuth. Our calculations
support the former, which lead us to scale all the experimental data in a convenient
way.

All the calculations were performed on a 6.13 Å cluster (87 atoms) and convoluted
with the energy independent, tabulated values [60]. In this work we will discuss the
improvement brought by the TDDFT calculations (RPA-LF and TDLSDA) upon the
IPA ones. We chose not to show the restricted TDLSDA data, which is quasi-identical
to the TDLSDA. We equally chose not to show the extended TDLSDA results, due
both to the lack of foundation of this method, as explained in chapter 6, and to the
poor agreement with the experimental data.

The TDDFT results introduced in this section are original in the sense that this is
the �rst application of a TDDFT method to the calculation of RXD spectra. Generally
speaking, the corrections suggested by the TDDFT are more spectacular for RXD than
they are for XANES. A peculiar feature in the measured spectra [115], and that cannot
be explained in the IPA picture, is that the magnetic re�ection is shifted by 0.7 eV
towards the low energies, with respect to the orbital one. In the following we will show
how the TDDFT partially succeeds in modelling this shift.

There is a lot of experimental evidence (on both Pr0.6Ca0.4MnO3 and other mangan-
ites, regardless of the choice of the edge) proving that the (010) and (100) scatterings
take signi�cant values only in the rotated σ − π or π − σ channels [47, 110]. Our
calculations support this �nding: the (010) and (100) π − π intensities are negligible.

As a starting point we used the magnetic structure in reference [90]. All the calcula-
tions we show include the spin-orbit coupling and are not self-consistent. In �gures 7.5
and 7.6, on one hand, and 7.7 and 7.8, on the other hand, we compare the experimental
data with the calculations on CaMnO3 and PrMnO3, respectively. An extra shift (0.5
eV to the higher energies) has been employed for the latter. The partial agreement is
di�erent in the two cases. For CaMnO3, the TDDFT succeeds in shifting the peak at
635 eV in the IPA (010) spectrum by 0.7 eV towards the higher energies. This is exactly
the quantity needed to obtain a perfect agreement. Unfortunately, PrMnO3 does not
reproduce the same behaviour. Consequently, the convolution of two, with a weight
favourable to the PrMnO3 (0.6) yields only a small fraction (≈ 20%) of the required
shift (�gures 7.9 and 7.10). Both in terms of intensities and shifts, we estimate that
the TDLSDA gives the best results of all the three calculations (the second best being
the RPA-LF). The TDLSDA constantly improves the intensity of the structure at 644
eV in the magnetic (100) spectrum.

In �gures 7.5, 7.6 we pictured the Fermi level of Mn1 and Mn2 by a vertical line. The
Fermi levels corresponding to the two di�erent calculation clusters (centered around
Mn1 and Mn2 respectivelly) are calculated in the �rst step of the calculation, according
to the procedure featured in chapter 4. We recall that Mn3 does not participate in the
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concerned re�ections, as well as the fact that Mn1 and Mn2 are quasi-identical, thus
with similar Fermi levels. One can see that in the cases of both CaMnO3 and PrMnO3

the Fermi level is placed in the gap (more precisely, it is at the very beginning of the
d band, but this is a calculation artefact). This was to be expected, as both materials
have a Mott insulating low temperature phase. It follows that the calculations might
bene�t from a LSDA+U calculation followed by a TDDFT one. We are currently
working on this issue.

Our calculations on CaMnO3 and PrMnO3, with and without the spin-orbit coupling
(not shown here) indicate that the contribution of the latter is minimal. This was to
be expected, as the 3d orbital moment is quenched in the 3d systems. Small di�erences
do exist, and surprisingly they are more important in the orbital than in the magnetic
spectrum. If no coupling and for the (010) re�ection, the most stringent e�ect is the
modi�cation of the azimuthal dependence, as compared to the IPA calculation. Such
an e�ect is to be expected when two or more elements of the atomic tensor contribute
to the azimuthal dependence. The TDDFT brings an individual correction for both of
them, and this may alter the azimuthal dependence.

7.6 Conclusions and perspectives

In this chapter we confronted calculations to the resonant di�raction experimental
data on Pr0.6Ca0.4MnO3, at both the K and L2,3 edges of manganese. The agreement
is far better at the former than it is at the latter. Many body e�ects are important
at the L2,3 edges of Mn in Pr0.6Ca0.4MnO3, thus we decided to employ the TDDFT
method to improve upon the IPA calculation. We stress the fact that this is a very
audacious pursuit, as Pr0.6Ca0.4MnO3 is an alloy containing two di�erent magnetic
materials, each of them having three non-equivalent manganese atoms.

This work shows the �rst results of a TDDFT calculation method applied to the RXD
technique. These �rst results are encouraging, but there is still room for improvement.
The TDLSDA correction only achieves in partially reproducing the energy shift between
the (100) and (010) re�ections. Further improvements are needed to get the entire shift.
Work in progress consists in using the Hubbard correction U for the 3d orbitals of
manganese, in the ground state calculation that precedes the TDLSDA one. Although
we do expect a change for the better, we strongly believe that only by improving the
TDDFT kernel can we obtain a satisfactory agreement with the experimental spectra.
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Chapter 8

Conclusions and Perspectives

The present work is aiming at a better ab initio description of X-ray absorption
spectroscopy. Research e�orts were invested in three distinct directions: setting up
a self-consistent procedure, the implementation of an LSDA+U calculation scheme
and the establishment of a TDLSDA procedure adapted to the core spectroscopies
energy range. In spite of the fact that all these procedures are well established in
more "standard" cases (reciprocal space calculations, optical frequencies ...), the X-
ray community lacks a detailed study of their applicability for core spectroscopies. A
major purpose of this work is to answer to these questions. At a higher level, we wish to
investigate the interplay of the theoretical developments mentioned above: performing
a TDDFT calculation preceded by self-consistent, real space, ground state LSDA+U
one.

In the following we will sum up our major conclusions. The main advantage in
performing a real space, X-ray absorption, self-consistent calculation is that it gives a
reasonable estimate of the Fermi level. Technical constraint forced us to implement the
self-consistent procedure in the MT approximation. Consequently, self-consistency in
itself is less important than the full potential feature. The e�ect of self-consistency is
very little for absorption spectra at K edges. Nevertheless, one needs to use this feature
in the case of a LSDA+U calculation, which is very sensitive to the electronic structure.
The TDLSDA calculation gives a better agreement than the IPA one, at the L2,3 edges
of both simple (3d elements) and complex materials (manganites). Nevertheless, for
a satisfactory agreement, one should improve the TDDFT kernel. It appears that the
pertinent description of the core hole is essential for the X-ray absorption spectroscopy
calculations. It follows that only a non-local and, ideally, frequency dependent, kernel
is a suitable candidate for this task.

This work set up the tools and a methodology to calculate XANES, RXD and XMCD
spectra behind the one body picture. Its natural continuation would be to exploit the
methods established and tested within this Ph.D. work in order to explore interesting
physics.
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Résumé en français

Les spectroscopies autour des seuils d'absorption X sont d'excellents moyens d'analyse
de l'environnement de l'atome absorbeur sur le plan géométrique, électronique ou mag-
nétique. A très basse énergie (domaine du XANES pour X-ray Absorption Near Edge
Structure), les données expérimentales prises au synchrotron sont encore souvent mal
interprétées par les modèles théoriques en vigueur alors que c'est là qu'elles sont le plus
riches en informations sur le matériau étudié. L'interprétation de ces phénomènes est
un enjeu important pouvant s'appliquer à l'étude des matériaux les plus divers qu'ils
soient d'intérêts physiques (magnétisme, conduction ..), chimiques (catalyse . . . ) ou
même biologiques. Ce travail à pour but l'amélioration des méthodes existantes et
l'implémentation de nouvelles méthode de calcul des transitions électroniques, appli-
cable au XANES, à la di�raction résonnante et au dichroïsme. Parmi les nombreuses
techniques de calcul, les plus répandues sont celles dites "monoélectroniques" util-
isant la fonctionnelle densité (DFT) et les méthodes de type multiplet. Les premières
réussissent généralement à reproduire les seuils K, alors que les multiplets sont plutôt
appropriés pour les seuils L2,3 et M4,5. La tendance actuelle est de s'orienter vers des
méthodes des calcul qui fonctionnent dans les deux cas. Parmi celles-ci nous mention-
nons les méthodes de calcul basées sur la théorie de la fonctionnelle densité dépendante
du temps (TDDFT), l'équation Bethe-Salpeter (BSE) et la méthode multicanal.

Le but de ce travail Les outils actuels de simulation des spectroscopies d'absorption
(absorption X, di�raction résonnante, dichroïsme circulaire magnétique) manquent sou-
vent de précision dans la description des spectres expérimentaux. Les travaux présen-
tés dans le cadre de cette thèse ont pour de diminuer l'écart entre l'expérience et la
théorie. Tous ces développements théoriques ont été intégrés dans le code FDMNES.
J'ai contribué à l'amélioration des méthodes de calcul existantes, l'implémentation de
la procédure autocohérente, et au développement de nouvelles méthodes: la procédure
LDA+U et la méthode TDDFT. Des nombreux calculs sur des composés modèles ont
été e�ectués, a�n de tester l'exactitude et la solidité de nos méthodes. Les résultats
des calculs FDMNES ont été comparés à ceux issus d'autres méthodes ou codes de
calcul. Il n'existe pas une technique unique de calcul, qui soit appropriée pour toutes
les classes de matériaux. En conséquence, une autre direction de ce travail était de
tester les limites de chaque méthode présentée dans le cadre de cette thèse. Grâce à
cette étude, nous sommes en mesure de proposer des options de calcul par défaut, ce
qui aide des utilisateurs moins expérimentés de ces simulations. Des calculs sur des
composés complexes ont également été e�ectués et les données expérimentales ont été
interprétées.
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Le but du manuscrit L'intérêt principal de ce manuscrit est d'introduire le lecteur
aux techniques ab initio de calcul des spectroscopies d'absorption de rayons X. Le for-
malisme et ses limites en terme d'approximations sont expliqués, l'implémentation des
méthodes est décrite en détail puis illustrée par des exemples parlants. L'autocohérence
dans l'approche monoélectronique et la méthode LDA+U puis la TDDFT sont succes-
sivement présentées. Les succès et les failles de chaque de ces méthodes ainsi que
leur domaine d'applicabilité sont discutés. Pour quelques composés spéci�ques (NdMg,
manganates) les résultats des plusieurs méthodes de calcul sont décrits en spéci�ant
laquelle est la plus appropriée par rapport aux données expérimentales et pourquoi.

La structure du manuscrit La première partie de ce manuscrit (les deux premiers
chapitres et la première section du troisième) constituent une introduction générale
au domaine et au code FDMNES. Le reste du manuscrit contient les développements
théoriques réalisés pendant cette thèse. Les paragraphes suivants résument le contenu
de chaque chapitre.

Introduction Le premier chapitre est une introduction aux techniques expérimen-
tales - l'absorption X (XANES), la di�raction résonnante (RXD) et le dichroïsme mag-
nétique circulaire (XMCD)- et aux méthodes de calcul correspondantes. Je donne une
vue d'ensemble sur l'utilisation des techniques synchrotron dans de nombreux direc-
tions de la science de matériaux et des sciences du vivant. En particulier, je décris
les avantages des techniques rayons X par rapport à leurs équivalents en neutrons.
Finalement je présente l'état de l'art dans les méthodes de calcul actuellement util-
isées pour la simulation de ces spectroscopies. Une distinction entre les méthodes
dites monoélectroniques (à un corp) et basées sur la théorie de la fonctionnelle densité
(DFT) et les méthodes atomiques (multiplets, interaction des con�guration, diagonal-
ization exacte) est faite. Ces techniques sont complémentaires: les premières donnent
des résultats satisfaisants lorsque la structure électronique des états d'arrivée est plutôt
délocalisée, alors que les deuxièmes fonctionnent lorsque les états d'arrivé sont local-
isés (atomiques). Les techniques DFT sont ab initio, i.e. elles n'introduisent pas de
paramètres fondamentaux, alors que les multiplets et les techniques de diagonalization
exacte utilisent un Hamiltonien où les di�érentes interactions ont été quanti�ées de
manière paramètrisée. Il existe également des modèles de bande qui vont au delà de
l'approximation monoélectronique - les méthodes TDDFT ou BSE. La clé d'une de-
scription raisonnable de l'absorption X est d'aller vers des méthodes qui incluent le
description atomique dans les modèles de bande. Dans ce sens nous mentionnons la
procédure LDA+U et le calcul basé sur la théorie dynamique du chaps moyen (DMFT)
couplée à l'approximation de la densité locale (LDA).

Aspects fondamentaux de l'interaction des rayons X avec la matière Le
deuxième chapitre est dédié aux aspects fondamentaux de l'interaction des rayons X
avec la matière. En premier lieu, les formules de base du processus de l'absorption (la
section e�cace d'absorption et celle de di�usion) sont déduites en utilisant les outils
de la seconde quanti�cation. Dans la suite du chapitre le formalisme tensoriel pour la
description des spectroscopies mentionnées est exposé, en intégrant les simpli�cations
introduites par la description des symétries locales. Finalement, les éléments de base
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de la résolution de la structure électronique du solide sont présentés.

FDMNES et le calcul monoélectronique Le troisième chapitre traite de la méth-
ode monoélectronique du calcul FDMNES. L'organigramme général du code est présenté,
ainsi que chaque étape en particulier: le calcul des états atomiques, le calcul du poten-
tiel, la résolution de l'équation de Schrödinger radiale et de la structure électronique,
le calcul des tenseurs et la convolution �nale. Dans la derniere partie du chapitre 3 je
présente une application du calcul monoélectronique à l'étude RXD de l'ordre magné-
tique et quadrupolaire dans NdMg, aux seuils L2,3 du neodyme.

La procédure autocohérente Le quatrième chapitre contient l'étude de la procé-
dure autocohérente pour le calcul de l'absorption X. Je présente les détails de l'implémentation,
ainsi que les résultats sur des composés simples (le cuivre aux seuils K et L2,3, la même
chose pour les éléments de transition) ou plus complexes (le TiO2, le BN et le CaO, tous
au seuil K). La conclusion générale est que l'autocohérence a très peu d'in�uence sur la
forme des spectres d'absorption. Néanmoins, l'information la plus important que l'on
obtient est une estimation pertinente de la position du niveau de Fermi. L'identi�cation
de celui ci est essentielle pour l'élimination des états occupés, et donc pour obtenir un
bon accord avec les spectres expérimentaux. Quantitativement, l'estimation est as-
sez exacte pour les structures compactes, mais peut être imprécise pour les matériaux
où les e�ets non-sphériques sont importants. Dans ce même cas des structures com-
pactes, le calcul autocohérent de la structure électronique peut être e�ectué sur un
rayon d'agrégat plus petit que celui utilisé pour le calcul de l'absorption. Des con-
traintes techniques ont imposé que l'autocohérence dans FDMNES soit implémentée
dans le cadre de l'approximation mu�n-tin. Nos résultats sur BN et CaO indiquent
que les calculs non autocohérents mais sans aucune approximation pour le potentiel
(méthode des di�érences �nies) sont meilleurs que ceux auto-cohérents, mais utilisant
l'approximation mu�n-tin. Jusqu'ici, cette discussion a été contrainte aux calculs du
seuil K. Il est assez délicat de conclure sur les seuils L2,3, car l'accord avec les données
expérimentales est assez mauvais, que l'on soit autocohérent ou pas, en raison des e�ets
multiélectroniques. Bien que l'auto-cohérence fournit une densité d'états électroniques
plus �able, cela ne su�t pas pour avoir un accord satisfaisant. De manière générale,
l'introduction d'une procédure autocohérente n'est pas un but en soi, mais une étape
nécessaire pour d'autres développements théoriques telle la méthode TDDFT ou la
procédure LDA+U.

La méthode LDA+U Le cinquième chapitre se préoccupe de la procédure de calcul
LDA+U, ou la correction de Hubbard. Cette méthode est censée améliorer la descrip-
tion des orbitales corrélées, i.e. les 3d des éléments de transition ou les 4f des terres
rares. L'esprit de cette méthode est de rajouter des corrections atomiques (le terme U)
pour les orbitales mentionnées tout en gardant la description de bande (LDA) pour le
reste. Je présente les fondements de cette méthode, les détails de l'implémentation et
quelques résultats préliminaires sur les seuils K et L2,3 du manganèse dans LaMnO3.
Nous avons constaté que les résultats de la LDA+U sont extrêmement sensibles au taux
d'occupation de l'orbitale corrélée, d'où la nécessité d'e�ectuer un calcul autocohérent
en amont. On pourrait penser que la correction que la LDA+U apporte à la LDA est
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plus importante aux seuils L2,3, où on sonde directement les orbitales corrélés, qu'au
seuil K. Nos résultats montrent cependant un changement de la forme du spectre
XANES même pour un seuil K. Toujours-est-il que plus de tests seront nécessaires
avant de conclure sur le sujet de la LDA+U appliquée à l'absorption X. La correction
U arrive à ouvrir le gap autour du niveau de Fermi dans LaMnO3 et donc à décrire la
physique de ce matériau (un isolant de Mott), ce qui constitue une faille de la LDA.

Au délà de l'approche monoélectronique Le sixième chapitre contient l'aspect
le plus important de ce travail de thèse - la méthode TDDFT appliquée à l'absorption
X. Les bases de cette théorie sont introduites, ainsi que l'implémentation de la méth-
ode dans le code FDMNES. Bien que ce ne soit pas la première fois qu'une méthode
TDDFT ait été appliquée à l'absorption X, les études précédentes ne sont pas claires.
Nos travaux ont pour but d'étudier dans quelle mesure l'approximation locale de la
TDDFT (TDLDA) est appropriée au calcul des spectroscopies de c÷ur. Nos résultats
montrent que malgré le fait que la TDLDA améliore nettement les résultats du calcul
monoélectronique des seuil L2,3 des éléments de transition, un élément essentiel manque
dans cette description: le trou de c÷ur. Nous concluons que comme pour l'absorption
optique, la description de l'e�et excitonique est une condition nécessaire pour avoir un
bon accord avec l'expérience. En conséquence, la continuation de ce travail implique
l'amélioration du noyau TDDFT en vue de l'inclusion de ces e�ets.

L'étude RXD du Pr0.6Ca0.4MnO3 Le septième et dernier chapitre contient l'étude
RXD du Pr0.6Ca0.4MnO3 aux seuils K et L2,3 du manganèse. Bien que les simulations
du seuil K donnent un bon accord avec l'expérience, les seuils L2,3 sont assez mal
reproduits aussi bien en monoélectronique qu'en TDLDA. La TDLDA apporte une
amélioration par rapport au monoélectronique, mais cette amélioration n'est pas su�-
isante. Nous estimons que seule une amélioration du noyau de la TDDFT peut donner
un accord satisfaisant. Nous soulignons le fait que ce calcul constitue la première appli-
cation d'une méthode TDDFT au calcul de RXD. Ce matériau est compliqué également
par le fait qu'il nécessite deux calculs indépendants (les seuils L2,3 du manganèse dans
CaMnO3 et PrMnO3) dont chacun implique le calcul de trois atomes non-équivalents.

Perspectives Ce travail eut pour but l'amélioration des descriptions ab initio des
spectroscopies d'absorption X. Des e�orts ont été investis dans trois directions préféren-
tielles: la mise au point d'une procédure autocohérente, l'implémentation de la méthode
LDA+U et l'établissement d'une méthode de calcul basée sur l'approximation locale
de la TDDFT. Malgré le fait que tous ces éléments sont déjà établis dans des cas plus
standards (calculs dans l'espace réciproque, fréquences optiques) la communauté des
rayons X manque d'une étude détaillée de leur applicabilité pour les spectroscopies de
c÷ur. L'intérêt de cette thèse est de répondre à ces questions. Pour la suite, nous en-
visageons de regarder l'interaction entre les outils mentionnés, par des calculs TDLDA
précédés de calculs autocohérents LSDA+U de l'état fondamental. Il faudra aussi
améliorer la prise en compte de l'e�et du trou de c÷ur par l'introduction d'un noyau
d'échange-corrélation non locale et dépendent de temps. En�n la continuation de cette
thèse consistera en l'application des méthodes mises au point au calcul de composés
complexes.
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The norm of the radial solution

This appendix describes the normalization procedure for the radial wavefunction that
is employed by FDMNES. If no spin-orbit coupling, the eigenfunctions of (2.29) can
be expanded around each atom core. Consequently:

φ̃(~r) =
∑
l

l∑
m=−l

alm(E) b̃lm(r, E) Y m
l (r̂) (1)

where Y m
l (r̂) are the complex spherical harmonics. Let

φ̃l(r, E) = al(E) b̃l(r, E) (2)

the radial part of the SE regular solution. Note that the energy dependence is
contained mainly in the al coe�cient. The following procedure holds for each
m ∈ (−l, l) and thus we make no further reference to the m quantum number. We
want to normalize the radial wavefunctions in order to match the stationary solution
of the SE in the vacuum:

φvac(r, E) =

√
k

π

(
jl(kr)− i tlh+

l (kr)
)

(3)

where tl is the atomic, energy dependent, scattering amplitude, k =
√
E, jl(kr) the

Bessel function and h+
l (kr) the retarded (outgoing) Haenkel function. This second

term accounts for the scattered waves whereas the k
π factor normalizes to the density

of states in the vacuum. In practice we impose the continuity at the MT radius rMT

of the two wavefunctions (the free and the atomic) and of their �rst order derivatives:

al(E) b̃l(rMT , E) =

√
k

π

(
jl(krMT )− i tlh+

l (krMT )
)

(4)

al(E) b̃′l(rMT , E) =

√
k

π

(
j′l(krMT )− i tlh+′

l (krMT )
)

(5)
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yielding:

al
tl

= − 1

πr2
MT

√
k

π
W−1(jl, bl)

∣∣
r=rMT

(6)

where W (f, g) = fg′ − f ′g is the wronskian. We choose the norm as:

bl(r, E) =
al
tl
b̃l(r, E) (7)

yielding:

φl(r) = al(E)bl(r, E) (8)

which means that h+
l and φl(r) match. This normalization corresponds to one state

per Rydberg. A similar procedure is employed for the normalisation of the solutions of
the Dirac equation, where we perform a distinct calculation for each spin population.

The radial solution of the Dirac equation

After the elimination of the small components, the Dirac equation gives [122]:

(
−∇2 + V (~r)− E − α2

4
(V (~r)− E)2

− α2

4

1

1− α2

4 (V (~r)− E)
(∇V (~r)∇+ i~σ(∇V (~r)×∇)

)
Ψ(~r) = 0 (9)

where α is the �ne structure constant and ~σ are the Pauli matrices (i = 1, 2, 3):

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(10)

The �rst three terms of (9) are the same as those of the Schrödinger equation,
whereas the rest are relativistic ones. The forth term induces an energy shift (with
respect to the non-relativistic case) and the last is the quantitative spin-orbit
coupling. The solution Ψ(~r) is a two component spinor:

Ψ(~r) =

(
Ψ↑(~r)
Ψ↓(~r)

)
(11)

and the potential V (~r) is spin polarised:

V (~r) =

(
V↑(~r)
V↓(~r)

)
(12)

The Dirac equation (9) contains no approximation, and is valid for a potential of
arbitrary symmetry. Note that the spin-orbit term in (9) is proportional to the
gradient of the potential. It follows that there can be no spin-�ip in a region of
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constant potential, like the interstitial space between the MT spheres. The radial
solution of (9) is a system of two coupled equations:

(
− d2

dr2
+GOl↑(~r) +mGSO↑(~r)

)
ul,m,↑(r)

+
√

(l −m)(l +m+ 1)GSO↑(~r)ul,m+1,↓(r) = 0√
(l −m)(l +m+ 1)GSO↓(~r)ul,m,↑(r)

+

(
− ∂2

∂r2
(~r) +GOl↓(r)− (m+ 1) GSO↓(~r)

)
ul,m+1,↓(r) = 0

where (σ =↑, ↓):

GOlσ = Vσ(~r)− E +
l(l + 1)

r2
− α2

4
(Vσ(~r)− E)2

−α
2

4

1

1− α2

4 (Vσ(~r)− E)

∂Vσ(~r)

∂r

(
d

dr
− 1

r

)
(13)

(14)

and

GSOσ =
α2

4

1

1− α2

4 (Vσ(~r)− E)
(15)

The physical quantities in the presence of the spin-orbit coupling

If one takes into account the spin-orbit coupling, and still for a real potential, the spin
polarised quantities in section 2.3.5 become:

ρ
l′,m′+ 1

2
−σ

l,m+ 1
2
−σ (r, σ) = − 1

π
=
∑
ss′

∫ EF

0
dE bs

′

l′,m′+ 1
2
−σ,σ(r, E)

× τ
l′,m′+ 1

2
−s′,s′

l,m+ 1
2
−s,s (E) bs

l,m+ 1
2
−σ,σ(r, E) (16)

δσ(E) = − 1

π
=
∫
d3r

∑
ss′

∑
l,m

× bs
′

l,m+ 1
2
−σ,σ(r, E) τ

l,m+ 1
2
−s,s

l,m+ 1
2
−s,s (E) bs

l,m+ 1
2
−σ,σ(r, E) (17)

Nσ =

∫
d3r

∑
l,m

ρ
l,m+ 1

2
−σ

l,m+ 1
2
−σ(r, σ) (18)

σ(ω) =
πω

ε0c

( e
h̄

)2 ∑
g

∑
σσ′

∑
lms

∑
l′m′s′

=τ l
′,m′+ 1

2
−s′,s′

l,m+ 1
2
−s,s

×
(∫

d3rφσ∗g (~r) O∗(~ε, ~r)bs
l,m+ 1

2
+σ,σ

(r)Y
m+ 1

2
+σ

l (r̂)

)
×

(∫
d3rφσ

′
g (~r) O(~ε, ~r) bs∗

l′,m′+ 1
2

+σ,σ
(r)Y

m′+ 1
2

+σ′∗
l′ (r̂)

)
(19)
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f ′(ω)− if ′′(ω) =
mω2

h̄2

∑
σσ′

∑
g

∑
lms

∑
l′m′s′

∫ ∞
EF

dE
=τ l

′,m′+ 1
2
−s′,s′

l,m+ 1
2
−s,s

ω − (E − Eg) + iΓ(E)

×
(∫

d3r φσ∗g (~r) O∗out(~ε, ~r) b
s′

l′,m′+ 1
2

+σ,σ
(r) Y

m′+ 1
2

+σ′

l′ (r̂)

)
×

(∫
d3r φσg (~r) Oin(~ε, ~r) bs

l,m+ 1
2

+σ,σ
(r) Y

m+ 1
2

+σ∗
l (r̂)

)
(20)

For a potential taking complex values, the same quantities as above can be deduced
from the following propagator [116]:

Gσσ′(~r, ~r ′) =
∑
l,m

∑
l′,m′

∑
s,s′

bs
′

l′,m′+ 1
2
−σ′,σ′(r

′, E) Y
m′+ 1

2
−σ′ ∗

l′ (r̂′)

×
(
τ
l′,m′+ 1

2
−s′,s′

l,m+ 1
2
−s,s (E)− δll′ t

l′,m′+ 1
2
−s′,s′

l,m+ 1
2
−s,s (E)

)
bs
l,m+ 1

2
−σ,σ(r, E) Y

m+ 1
2
−σ

l (r̂)

−
∑
l,m

∑
s

ss
l,m+ 1

2
−σ′,σ′(r<, E) Y

m+ 1
2
−σ′,σ′

l (r̂<)

× t
l,m+ 1

2
−s,s

l,m+ 1
2
−s,s(E) ss

l,m+ 1
2
−σ,σ(r>, E) Y

m+ 1
2
−σ,σ

l (r̂>) (21)

We underline the fact that the propagator G crosses the spins, i.e. it couples some up
and down elements. For an explanation of the physical meaning of a complex
potential, please refer to section 3.1.6.

The Hartree kernel

The total classical energy of a charged system is:

E =
∑
σσ′

∫
d3r

∫
d3r′ nσ(~r)nσ′(~r′)

|~r − ~r′|
(22)

If one assimilates the charge distributions with Dirac functions, one gets the energy of
a two charge system. One equally has:

E =
1

2

∑
σ

∫
d3r V (~r, σ) nσ(~r) (23)

where V is the Hartree (classical) potential. The Hartree potential is the functional
derivative of the total energy:

V (~r, σ) =
δE

δnσ(~r)
(24)

which yields:

V (~r, σ) =
∑
σ′

∫
d3r′ nσ′(~r′)

|~r − ~r′|
(25)
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Note that the Hartree potential is independent of spin: V (~r, ↑) = V (~r, ↓). More
explicitly:

V (r) =

∫
d3r′

n↑(~r′)
|~r − ~r′|

+

∫
d3r′

n↓(~r′)
|~r − ~r′|

(26)

The kernel of the Hartree term:

f(~r, σ, σ′) =
δV (~r, σ)

δnσ′(~r)
(27)

which gives:

fH(~r, ↑, ↑) = fH(~r, ↓, ↓) = fH(~r, ↑, ↓) =
1

|~r − ~r′|
(28)

or

fH(~r, σ, σ′) =
1

|~r − ~r′|
(29)

The TDLSDA exchange-correlation kernel

Let the parameters [78]:

cP = 0.045; cF =
cP
2

; rP = 21; rF = 2
4
3 rP (30)

and the following notations (σ =↑, ↓):

xσ =
nσ

n↑ + n↓
;
(
n↑ + n↓

)−1
=

4π

3
r3
S (31)

µP,Fc = −cP,F ln

(
1 +

rP,F
rS

)
; εP,Fc = −cP,F f

(
1 +

rS
rP,F

)
(32)

νC =
4

3

1

2
1
3 − 1

(
εFC − εPC

)
(33)

where

f(y) = (1 + y3)ln

(
1 +

1

y

)
+

1

2
y − y2 − 1

3
(34)

By using the form of the exchange-correlation potential in reference [86], the
exchange-correlation kernel reads (we omit the ~r dependence for convenience):

fσxc =
δV σ

xc

δnσ
(35)
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fσxc = −
4πr2

S

9

{(
2(1− x)(2x)−

2
3 + 2x

1
3

)(18

π2

) 1
3

+
cP rP

1 + rP
rS

+
4

3

1

1− 2−
1
3

(
x

4
3 + (1− x)

4
3 − x

1
3

)
r2
S

×

[
+

cF
rF

(
3

(
rS
rF

)2

ln

(
1 +

rF
rS

)
− rF
rS

+
3

2
− 3

rS
rF

)

− cP
rP

(
3

(
rP
rF

)2

ln

(
1 +

rP
rS

)
− rP
rS

+
3

2
− 3

rP
rF

)]

+
1

1− 2−
1
3

(
x

4
3 + (1− x)

4
3 − 2−

1
3

)( cF rF
1 + rF

rS

− cP rP
1 + rP

rS

)
+ 2

1
3 rS νC(1− x)

(
4x

1
3 − 4(1− x)

1
3 + x−

2
3

)
+

4

1− 2−
1
3

rS
(
µFC − µPC

)
(1− x)

(
−x

1
3 + (1− x)

1
3

)}
(36)

The generalized Gaunt coe�cient

Starting from the known Gaunt coe�cients [123]:

G3(L1, L2, L3) =

∫
dΩ Y ∗L1

(Ω) YL2(Ω) YL3(Ω) (37)

we want to calculate:

G4(L1, L2, L3, L4) =

∫
dΩ Y ∗L1

(Ω) YL2(Ω) Y ∗L3
(Ω) YL4(Ω) (38)

where L = (l,m). One can always expand:

Y ∗L1
(Ω) YL2(Ω) =

∑
L

cLL1L2
YL(Ω) (39)

Should one multiply (39) by YL′(Ω) and integrate with respect of dΩ:

cLL1L2
= G3(L2, L1, L) (40)

after using the fact that G3 s are real. (39) becomes:

Y ∗L1
(Ω) YL2(Ω) =

∑
L

G3(L2, L1, L) YL(Ω) (41)

One can re-write (41) in the form:

Y ∗L3
(Ω) YL4(Ω) =

∑
L′

G3(L4, L3, L) YL′(Ω) (42)

From (41) and (42) one obtains:

G4(L1, L2, L3, L4) =
∑
L

G3(L2, L1, L) G3(L4, L3, L) (43)
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Equations of the TDDFT with the spin-orbit coupling

This appendix introduces the equations of chapter 6, adapted for a non zero
spin-orbit coupling for the �nal states. This is meant to be a technical section and we
therefore skip the detailed comments of the formulae. Please refer to section 6 for a
detailed explanation. The main di�erence with the zero coupling limit consists in the
appearance of two extra summations over the two solutions s and s′ of the SE, as
introduced in section 2.3.1. Note that in this case χ0 is no longer diagonal with
respect to the spin variable. The initial wavefunctions are:

φg(~r) =
∑
σ

φσg (~r) ζσ =
∑
σ

cΛσg bg(r) YΛσg (r̂) ζσ (44)

where Λσg = (lg,mg + 1
2 − σ, σ) is the set of quantum numbers characterizing the

initial states and ζσ the spin eigenfunction. One can see that each initial state φg(~r)
is a sum of the two spin contributions, weighted by the Clebsch-Gordon coe�cients
cΛσg . The �nal state wavefunction can be written as [57]:

Ψf (~r,E) =
∑
σ

∑
Λs

afΛs(E) Ψs
Λσ(~r,E) ζσ (45)

Here s is the index over the solution and by convention we take it either 1
2 or −1

2 , i.e.
the same values as for the spin projection σ. Λs = (l,m+ 1

2 − s, s) and
Λσ = (l,m+ 1

2 − σ, σ) are set of quantum numbers describing the �nal state. afΛs(E)
is the multiple scattering amplitude of the Λσ contribution to the s component of the
�nal state wavefunction:

Ψs
Λσ(~r,E) = bsΛσ(r, E) YΛσ(r̂) (46)

where the summation over Λs implies:∑
Λs

≡
∑
lms

(47)

and m obeys the constraint −l ≤ m+ 1
2 − s ≤ l. A similar remark can be made on the

Λσ summation.

The fully relativistic Adler-Wiser equation [84] reads:

χ0
σσ′

(~r, ~r ′, ω) = lim
ε→0

∑
g

∫ ∞
EF

dE
∑
f

φσg (~r) Ψ†f (~r,E) Ψf (~r ′, E) φσ
′†
g (~r ′)

ω − (E − Eg) + iε
(48)

where f are the �nal states of the same energy E. We stress the fact that the energies
ω and E are expressed into di�erent scales: the former describes the photon, whereas
the latter belongs to the photoelectron. Eg is the Kohn-Sham energy of the g state,
i.e. the expectation value of the DFT local density approximation hamiltonian HLDA:

Eg =
〈φg|HLDA|φg〉
〈φg|φg〉

(49)
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By exploiting the optical theorem:∑
f

afΛ′
s
(E)afΛs(E) = −=τΛsΛ′

s
(E) (50)

the AdlerWiser equation (48) can be simpli�ed to:

χ0
σσ′

(~r, ~r ′, ω) = − 1

π

∑
gg′

∑
ΛsΛ′

s

lim
ε→0

∫ ∞
EF

dE δgg′ (51)

×
φσg (~r) Ψs†

Λσ
(r, E) =τΛsΛ′

s
(E) Ψs′

Λ′
σ
(~r ′, E) φσ

′†
g′ (~r ′)

ω − (E − Eg) + iε

We are considering an expansion of the following kind:

χ0
σσ′

(~r, ~r ′, ω) =
∑
gg′

δgg′ φ
σ
g (~r) φσ

′†
g′ (~r ′)

∑
ΛsΛ′

s

(52)

× χ̃0
σσ′
gg′,ΛsΛ′

s
(ω) Ψs†

Λσ
(~r, ω + Eg) Ψs′

Λ′
σ
(~r ′, ω + Eg′)

We recall that:

σ(ω) = −4πω

c

∫
d3r

∫
d3r′

∑
σσ′

∑
gg′

∑
ΛsΛ′

s

O∗(ω,~r ′) O(ω,~r) (53)

× φσ
′†
g′ (~r ′) bsΛσ(r) Y ∗Λσ(r̂) =τΛsΛ′

s
bs

′
Λ′
σ
(r ′) YΛ′

σ
(r̂ ′) φσg (~r)

One can treat the projection of the susceptibility χ̃ and the multiple scattering
amplitudes τ on equal footing:

χ̃0
σσ′
g,ΛsΛ′

s
≡ τΛsΛ′

s
(54)

Let:

χ̃0
σσ′
gg′,ΛsΛ′

s
(ω) = −δgg′

∫ ∞
EF

dE

π

=τΛsΛ′
s
(E)

ω − (E − Eg) + iε

Zs
′
g′Λ′

σ
(E) ZsgΛσ(E)

Zs
′
g′Λ′

σ
(ω + Eg′) Z

s
gΛσ

(ω + Eg)
(55)

an equivalent form of the equivalence in (54) where:

ZsgΛσ(E) =

∫ R

0
dr r2 bg(r) b

s
Λσ(r, E) (56)

In the |r > representation (6.11) re-writes as:

χσσ
′
(~r, ~r ′, ω) = χσσ

′
0 (~r, ~r ′, ω) +

∑
σ′′σ′′′

∫
d3r′′

∫
d3r′′′ (57)

× χσσ
′′

0 (~r, ~r ′′, ω) Kσ′′σ′′′
(~r ′′, ~r ′′′) χσ

′′′σ′
(~r ′′′, ~r ′, ω)

We project the operatorial Dyson-like equation (6.11) on the "basis" introduced in
(52):

χ̃σσ
′

gg′,ΛsΛ′
s
(ω) = χ̃0

σσ′
gg,ΛsΛ′

s
(ω) +

∑
g′′′

∑
σ′′σ′′′

∑
Λ′′
sΛ′′′

s

χ̃0
σσ′′
gg,ΛsΛ′′

s
(ω) K̃σ′′σ′′′

gg′′′,Λ′′
sΛ′′′

s
(ω) χ̃σ

′′′σ′
g′′′g′,Λ′′′

s Λ′
s
(ω)(58)



K̃σσ′
gg′,ΛsΛ′

s
(ω) =

∫
d3r

∫
d3r′ Kσσ′

(~r, ~r ′, ω) (59)

× φσ†g (~r) Ψs
Λσ(~r, ω + Eg) φ

σ′
g′ (~r

′) Ψs′ †
Λ′
σ

(~r ′, ω + Eg′)

Kσσ′
(~r, ~r ′, ω) = fσσ

′
H (~r, ~r ′) + fσσ

′
xc (~r, ~r ′, ω) (60)
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