
HAL Id: tel-01152623
https://theses.hal.science/tel-01152623

Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving incompressible Navier-Stokes equations on
heterogeneous parallel architectures

Yushan Wang

To cite this version:
Yushan Wang. Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures.
Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris Sud - Paris XI, 2015. English.
�NNT : 2015PA112047�. �tel-01152623�

https://theses.hal.science/tel-01152623
https://hal.archives-ouvertes.fr

Université Paris-Sud

ÉCOLE DOCTORALE 427 :
INFORMATIQUE PARIS SUD

Laboratoire de Recherche en Informatique

THÈSE DE DOCTORAT

INFORMATIQUE

par

Yushan WANG

Solving Incompressible Navier-Stokes Equations

on Heterogeneous Parallel Architectures

Date de soutenance: 09/04/2015

Composition du jury:

Directeur de thèse : Marc BABOULIN Professeur (Université Paris-Sud, Orsay)

Co-directeur de thèse : Olivier LE MAÎTRE Directeur de Recherche (LIMSI/CNRS, Orsay)

Rapporteurs : Fabienne JÉZÉQUEL Mâıtre de Conférences (LIP6, Paris)

Masha SOSONKINA Professeur (Old Dominion University, USA)

Examinateurs : Abdel LISSER Professeur (Université Paris-Sud, Orsay)

Michel KERN Chargé de Recherche (INRIA, Le Chesnay)

Membre invité : Yann FRAIGNEAU Ingénieur de Recherche (LIMSI/CNRS, Orsay)

ii

Résumé

Dans cette thèse, nous présentons notre travail de recherche dans le domaine du calcul

haute performance en mécanique des fluides. Avec la demande croissante de simula-

tions à haute résolution, il est devenu important de développer des solveurs numériques

pouvant tirer parti des architectures récentes comprenant des processeurs multi-cœurs

et des accélérateurs. Nous nous proposons dans cette thèse de développer un solveur

efficace pour la résolution sur architectures hétérogènes CPU/GPU des équations de

Navier-Stokes (NS) relatives aux écoulements 3D de fluides incompressibles.

Tout d’abord nous présentons un aperçu de la mécanique des fluides avec les équations de

NS pour fluides incompressibles et nous présentons les méthodes numériques existantes.

Nous décrivons ensuite le modèle mathématique, et la méthode numérique choisie qui

repose sur une technique de prédiction-projection incrémentale.

Nous obtenons une distribution équilibrée de la charge de calcul en utilisant une méthode

de décomposition de domaines. Une parallélisation à deux niveaux combinée avec de la

vectorisation SIMD est utilisée dans notre implémentation pour exploiter au mieux les

capacités des machines multi-cœurs. Des expérimentations numériques sur différentes

architectures parallèles montrent que notre solveur NS obtient des performances satis-

faisantes et un bon passage à l’échelle.

Pour améliorer encore la performance de notre solveur NS, nous intégrons le calcul sur

GPU pour accélérer les tâches les plus coûteuses en temps de calcul. Le solveur qui en

résulte peut être configuré et exécuté sur diverses architectures hétérogènes en spécifiant

le nombre de processus MPI, de threads, et de GPUs.

Nous incluons également dans ce manuscrit des résultats de simulations numériques pour

des benchmarks conçus à partir de cas tests physiques réels. Les résultats obtenus par

notre solveur sont comparés avec des résultats de référence. Notre solveur a vocation

à être intégré dans une future bibliothèque de mécanique des fluides pour le calcul sur

architectures parallèles CPU/GPU.

Mots clés: équations de Navier-Stokes, méthode de prédiction-projection, calcul haute

performance, parallélisation multi-niveaux, calcul sur GPU.

iv

Abstract

In this PhD thesis, we present our research in the domain of high performance software

for computational fluid dynamics (CFD). With the increasing demand of high-resolution

simulations, there is a need of numerical solvers that can fully take advantage of current

manycore accelerated parallel architectures. In this thesis we focus more specifically on

developing an efficient parallel solver for 3D incompressible Navier-Stokes (NS) equations

on heterogeneous CPU/GPU architectures.

We first present an overview of the CFD domain along with the NS equations for in-

compressible fluid flows and existing numerical methods. We describe the mathematical

model and the numerical method that we chose, based on an incremental prediction-

projection method.

A balanced distribution of the computational workload is obtained by using a domain

decomposition method. A two-level parallelization combined with SIMD vectorization

is used in our implementation to take advantage of the current distributed multicore

machines. Numerical experiments on various parallel architectures show that this solver

provides satisfying performance and good scalability.

In order to further improve the performance of the NS solver, we integrate GPU comput-

ing to accelerate the most time-consuming tasks. The resulting solver can be configured

for running on various heterogeneous architectures by specifying explicitly the numbers

of MPI processes, threads and GPUs.

This thesis manuscript also includes simulation results for two benchmarks designed

from real physical cases. The computed solutions are compared with existing reference

results. The code developed in this work will be the base for a future CFD library for

parallel CPU/GPU computations.

Keywords: Navier-Stokes equations, prediction-projection method, Helmholtz solver,

Poisson solver, high performance computing, multi-level parallelization, GPU comput-

ing.

vi

Acknowledgements

First of all, I would like to thank Marc Baboulin and Olivier Le Mâıtre for acting

as advisors for my thesis. I appreciate very much their help in this multidisciplinary

collaborative research work and their availability.

I would also like to thank Yann Fraigneau, with whom I had detailed and fruitful dis-

cussions about the code SUNFLUIDH.

I also thank the referees of my thesis, Fabienne Jézéquel and Masha Sosonkina, for

constructive comments on the manuscript.

I express my gratitude to Franck Cappello (Joint-Laboratory on Extreme Scale Com-

puting) for funding my visit to Argonne National Laboratory, USA, in August 2013.

I want to thank Jack Dongarra and Stanimire Tomov for giving me access to their com-

puting resources at Innovative Computing Laboratory (University of Tennessee, USA).

I acknowledge the Texas Advanced Computing Center (TACC) at The University of

Texas at Austin for providing HPC resources that have contributed to the research

results reported within this thesis.

Finally, I want to express my gratitude to Joël Falcou, Karl Rupp and the colleagues at

LRI, who enabled me to progress in my thesis.

vii

Contents

Résumé iii

Abstract v

Acknowledgements vii

Contents viii

List of Figures xi

Introduction 1

1 Navier-Stokes equations 5

1.1 Computational fluid dynamics and Navier-Stokes equations 5

1.1.1 Fluid mechanics . 6

1.1.2 Equations of fluid dynamics . 8

1.1.3 The dimensionless Navier-Stokes equations 13

1.2 Numerical methods for the incompressible Navier-Stokes equations 14

1.3 Incremental prediction-projection method 15

1.4 Solution of the Helmholtz system . 17

1.5 Solution of the Poisson equation . 19

1.6 Spatial discretization . 21

1.6.1 Staggered mesh . 21

1.6.2 Spatial discretization for the Navier-Stokes equation 24

1.7 Conclusion of Chapter 1 . 27

2 Parallel algorithms for solving Navier-Stokes equations 29

2.1 Domain decomposition approach . 30

2.2 Multi-level parallelism . 34

2.2.1 Shared memory architecture . 34

2.2.2 Distributed memory architecture 35

2.2.3 Combining shared and distributed memory systems 35

2.3 General structure of the solver . 38

2.4 Accelerating the solution of the tridiagonal systems 39

2.5 Performance results for Navier-Stokes computations 44

2.5.1 Shared memory with pure MPI programming model 44

ix

Contents x

2.5.2 Performance using MPI + OpenMP 48

2.5.3 Performance comparison with an iterative method 49

2.6 Conclusion of Chapter 2 . 51

3 Taking advantage of GPU in Navier-Stokes equations 53

3.1 Introduction to GPU computing . 54

3.2 Using GPU for solving Navier-Stokes equations 57

3.2.1 A GPU Helmholtz-like solver . 57

3.2.2 A GPU Poisson solver . 62

3.2.3 General structure of the GPU solver 65

3.3 Experimental results . 66

3.3.1 Overview of computational resources 66

3.3.2 Performance of the Helmholtz solver 67

3.3.3 Performance of the Poisson solver 68

3.3.4 Performance of the hybrid CPU/GPU Navier-Stokes solver 69

3.4 Conclusion of Chapter 3 . 71

4 Simulations of Physical Problems 73

4.1 Three dimensional Taylor-Green vortices 74

4.1.1 Benchmark settings . 74

4.1.2 Validation . 75

4.1.3 Performance analysis . 78

4.2 Flow around a square cylinder . 79

4.2.1 Benchmark settings . 80

4.2.2 Validation . 80

4.2.3 Performance analysis . 83

4.3 Conclusion of Chapter 4 . 84

A Iterative Methods for Linear Systems 89

A.1 Iterative Methods . 89

A.1.1 Bases of iterative methods . 89

A.1.2 Jacobi method . 91

A.1.3 Gauss-Seidel method . 92

A.1.4 Successive over-relaxation method 92

A.2 Multigrid methods . 93

List of Figures

1.1 A page from “On Floating Bodies”. 6

1.2 A free water jet issuing from a square hole into a pool by Leonardo da
Vinci. 7

1.3 Title page of “Principia”, first edition (1687). 7

1.4 Staggered mesh showing the pressure (black squares at the cells’ center)
and velocity components unknowns (red and blue squares for the x and
y components, respectively). 21

1.5 Locations of the pressure and velocity unknows: p in black, u-component
in red, v-component in blue. Fictitious cells for the (pressure) boundary
conditions are plotted with a dashed line. 23

1.6 Illustration of the stencils for the discretization of the operators appearing
in the momentum equation in two-dimension. 27

2.1 Example of 3D domain decomposition with a cartesian topology 4× 2× 2 31

2.2 2D domain decomposition with order 1 overlapping. 31

2.3 Ordering of variables in a 2D domain (two subdomains). 32

2.4 Matrix pattern using ordering from Fig. 2.3. 32

2.5 Ordering of variables in a 2D domain (two subdomains, interior variables
are numbered first). 33

2.6 Matrix pattern using ordering from Fig. 2.5. 33

2.7 Stampede system. Image from https://www.tacc.utexas.edu 36

2.8 Illustration of a single node on Stampede. 36

2.9 Solver structure . 38

2.10 The main procedure of NS solver and the time percentage of each step. . 39

2.11 Read 8 bytes from unaligned memory. 41

2.12 Thomas algorithm with vectorization. 42

2.13 Time breakdown for one iteration of the NS solver. 45

2.14 Strong scalability of NS solver. 45

2.15 Weak scaling performance of the Navier-Stokes solver on shared memory. 46

2.16 Performance of two implementations of Thomas algorithm. Matrix size
= 100. Test carried out using Intel Xeon E5645. 47

2.17 Performance of NS solver on the Stampede system. 48

2.18 Weak scaling of NS solver (MPI-OpenMP implementation). 49

2.19 Performance comparison between different Poisson solvers. 50

3.1 Nvidia GeFroce 256. 54

3.2 Nvidia GeFroce 8800 GTX. 54

3.3 Time breakdown in Helmholtz equation (Intel Xeon E5645 2×6 cores 2.4
GHz.) . 58

xi

https://www.tacc.utexas.edu

List of Figures xii

3.4 Illustration of GPU thread, block and grid. 59

3.5 Assignment of tridiagonal matrix and RHS to thread blocks. 59

3.6 Time breakdown in Poisson equation (Intel Xeon E5645 2 × 6 cores 2.4
GHz.) . 62

3.7 3D domain decomposition along i = 1 direction. 63

3.8 Distribution of Q−11 = {Qij}i=1,...,p;j=1,...,p and s on multiple processors. . 64

3.9 Matrix-matrix multiplication with multiple subdomains. 64

3.10 Solver structure with GPU computing. 66

3.11 Performance of Helmholtz solver using Thomas algorithm and explicit
inverse. 67

3.12 Performance of Poisson solver. 68

3.13 Time for solving Navier-Stokes equations using CPU/GPU system (Stam-
pede). 69

3.14 Parallel speedup for CPU/GPU Navier-Stokes solver (Stampede). 70

3.15 “Weak” scaling performance for Navier-Stokes solver (Stampede). 70

4.1 Initial status of Taylor-Green vortices problem. 75

4.2 Iso-surface of Q = 0.01 of Taylor-Green vortices at different times. 76

4.3 Dissipation rate 〈ε(t)〉 at Re = 400, using 643 and 1283 meshes. 77

4.4 Dissipation rate 〈ε(t)〉 at Re = 800, using 1283 and 2563 meshes. 77

4.5 Comparison of our computation for the dissipation rate at Re = 800
with the computations of (a) Ouzzine [76], (b) Brachet et al [15] and (c)
Gassner and Beck [35]. 78

4.6 The geometry of the 3D laminar flow problem. 81

4.7 Longitudinal velocity field at different times. Simulation for Re = 100
with total mesh size = 320× 240× 32. 82

4.8 Snapshots of the longitudinal velocity field illustrating the structure of
the Von-Karman street at different Reynolds numbers. 82

4.9 Transverse component of the vorticity for the flow at Reynolds number 150. 83

4.10 Transverse component of the velocity for observation points P1 and P2. . 84

A.1 V-cycle multigrid scheme . 95

Introduction

This PhD thesis is a collaboration between the laboratories LRI1 and LIMSI2, in the

framework of the CALIFHA project, funded by Région Île-de-France and Digitéo3. The

main objective of this project was to take advantage of state-of-the-art parallel architec-

tures (e.g. multicore, GPUs) in solving Navier-Stokes equations for incompressible fluid

flows.

The Navier-Stokes equations play a major role in the domain of fluid dynamics since

they describe a large class of fluid flows. Finding an analytical solution of the Navier-

Stokes equations is one of the seven millennium problems listed by the Clay Mathematics

Institute. If we do not have an analytical solution, then computing efficiently numerical

solutions for these equations becomes essential. There exist many types of Navier-Stokes

solvers based on various numerical methods based for instance on finite differences [21],

finite elements [37, 90], finite volumes methods [31] or discontinuous Galerkin meth-

ods [84]. The importance of Navier-Stokes equations also results from their numerous

fields of application. The numerical simulation of these equations is used for instance

in aircraft design [53], weather forecast [45, 75], among other domains. For these appli-

cation domains, the Navier-Stokes equations are used to model different types of fluid

flows. For example, in the modeling of the earth atmosphere, the fluid (here the air)

is considered as compressible while in the simulation of ocean tides, the fluid (water) is

considered as incompressible.

In this document, we consider the Navier-Stokes equations applied to incompressible fluid

flows, based on a finite difference discretization and an operator splitting method [52], the

idea behind this operator splitting method being to divide the original boundary value

problem into a set of subproblems that are easier to solve. Based on the Helmholtz-

Hodge decomposition [99], we split the Navier-Stokes equations into an Helmholtz-like

equation for an auxiliary velocity field and a Poisson equation for the auxiliary pressure.

The temporal solutions are then computed via successive updates. In our work, we focus

1Laboratoire de Recherche en Informatique, http://www.lri.fr
2Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, http://www.limsi.fr
3http://www.digiteo.fr

1

http://www.lri.fr
http://www.limsi.fr
http://www.digiteo.fr

Introduction 2

more specifically on solving the sparse linear systems arising from the discretization of

Helmholtz and Poisson equations which represent the major part of the computational

time in our Navier-Stokes solver. Our main objective in designing and implementing

our solver was to combine the different paradigms of parallel programming (vectoriza-

tion through SIMD extension, MPI message passing, multithreading with OpenMP, GPU

programming with CUDA) in order to compute efficiently solutions on current heteroge-

neous multicore/GPU architectures. This required to identify the most time-consuming

kernels in the solver and what is the most appropriate architecture/programming model

to obtain the best performance for each kernel. In particular, a major concern in our

algorithmic and programming choices was to exploit parallelism as much as we can but

also to minimize data-communication that represents the main limitation to performance

in current parallel systems. Our work in developing software for Navier-Stokes equa-

tions will be validated by numerical experiments on state-of-the-art parallel machines,

including the Stampede system which is ranked #7 in the Top500 list4.

In Chapter 1, we present the numerical method that we use for solving Navier-Stokes

equations. We start with a brief overview of computational fluid dynamics and the

Navier-Stokes equations. Then we give the detail of the mathematical model used in our

3D Navier-Stokes solver. For this model, we describe the spatial/temporal discretization

and the proposed numerical methods. We present the derivation of the Helmholtz-like

and Poisson equations as well as their numerical methods such as alternating direction

implicit method [54], partial diagonalization [78] and some iterative methods.

In Chapter 2, we describe the algorithms and implementations of the Navier-Stokes

solver for current multicore machines. We divide the computational domain into sub-

domains and computations on each subdomain are performed in parallel. We associate

each subdomain to an MPI process representing a computational node of the paral-

lel architecture. On each node, the computations are optimized using multithreading

techniques. We also apply vectorization techniques to accelerate tridiagonal systems

which represent the most time-consuming tasks in the Helmholtz and Poisson solvers.

Performance results are presented using two different parallel machines.

In Chapter 3, we further extend the Navier-Stokes solver to the use of accelerators,

namely Graphics Processing Units (GPU). We designed GPU routines for the Helmholtz

and Poisson solvers and we obtained satisfactory speedups. Then we added GPU func-

tionalities into the global Navier-Stokes solver, that can adapt automatically according

to the architecture and the presence of GPUs. From the user point of view, the Navier-

Stokes solver does not need to be modified to run on different architectures. The input

4http://www.top500.org/

http://www.top500.org/

Introduction 3

parameters to be specified by the user are the number of MPI processes, the number of

OpenMP threads, and possibly the number of GPUs.

In Chapter 4, we present numerical simulations on real physical problems in the domain

of fluid dynamics using our CPU/GPU hybrid Navier-Stokes solver. The Taylor-Green

vortex problem enables us to evaluate the accuracy of the solver with different Reynolds

numbers. In the second benchmark, we simulate the flow motion around a square cylin-

der. Iterative methods are used in this case due to the presence of obstacle in the

domain. The computed results for both benchmarks are compared with published re-

sults to validate numerically our approach. By testing our solver on these problems, we

illustrate that our solver provides accurate solutions and can be applied to a wide range

of applications.

Finally, we give concluding remarks and we propose possible research tracks that deserve

further investigations.

Chapter 1

Navier-Stokes equations

In this chapter, we start by giving a brief history of computational fluid dynamics. We

then introduce the Navier-Stokes (NS) equations considered in the thesis. We finally

present the numerical method for the solution of the three-dimensional NS equations

and finally discuss its discretization in the case of second order finite difference methods

on Cartesian grids.

1.1 Computational fluid dynamics and Navier-Stokes equa-

tions

Computational fluid dynamics, abbreviated as CFD, is a branch of fluid mechanics which

aims at solving numerically a system of partial differential equations that describes the

motion of fluids. The evolutions in the CFD field is closely related to the development

of modern computers architectures. Although the use of computers did not come into

practice until the 1940s, the conceptual beginning of CFD can be traced back as early

as 1917, when Lewis Fry Richardson (1881-1953, English mathematician, physicist and

meteorologist) pioneered modern mathematical techniques of weather forecasting. One

of Richardson’s most celebrated achievements is his retroactive attempt to forecast the

weather during a single day, 20 May 1910, by direct computation. Richardson’s forecast

failed dramatically because he did not apply smoothing techniques to the data [67].

When these are applied, Richardson’s forecast revealed to be essentially accurate.

However, the real development of CFD started in the 1940s when Kopal compiled mas-

sive tables of the supersonic flow over sharp cones by numerically solving the governing

5

Chapter 1. Navier-Stokes Equations 6

equations [59]. Since the 1950s, with the improvements achieved in the computer hard-

ware, especially in the storage and execution speed, CFD began to play an important

role in many scientific and engineering applications, including fluid mechanics.

1.1.1 Fluid mechanics

Fluid mechanics is a branch of physics that studies fluids (liquids, gases, and plasmas)

and the forces that are applied on them. Fluid mechanics can be divided into three

categories: fluid statics concerns the study of fluids at rest; fluid kinematics concerns

the study of fluids in motion; and finally fluid dynamics which concerns the study of the

effect of forces in fluid flows.

Early fluid mechanics studies can to traced back to ancient Greece. “Any object, wholly

or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid

displaced by the object.” This is the famous Archimedes’ principle stated by Archimedes

of Syracuse in his treatise on hydrostatics, On Floating Bodies, which is considered to

be the first major work in fluid mechanics.

Figure 1.1: A page from “On Floating Bodies”.

Leonardo da Vinci(1452-1519) was the first to visualize the motion of fluid particles in a

flow, with his famous sketch (shown by Fig. 1.2) of a free water jet issuing from a square

hole into a pool. This is perhaps the world’s first use of visualization as a scientific tool

to study a turbulent flow. Leonardo wrote (translated by Ugo Piomelli, University of

Maryland), “Observe the motion of the surface of the water, which resembles that of

hair, which has two motions, of which one is caused by the weight of the hair, the other

by the direction of the curls; thus the water has eddying motions, one part of which is

due to the principal current, the other to the random and reverse motion.”

Sir Isaac Newton(1642-1727), an English physicist and mathematician widely recognized

as one of the most influential scientists of all time and as a key figure in the scientific rev-

olution, also played an important role in fluid mechanics. In his book Principia, Newton

Chapter 1. Navier-Stokes Equations 7

Figure 1.2: A free water jet issuing from a square hole into a pool by Leonardo da
Vinci.

formulated the laws of motion which dominated the scientists’ views of the physical uni-

verse for the next three centuries. He also introduced the notion of Newtonian fluids in

which the viscous stresses arising from its flow, at every point, are linearly proportional

to the local strain rate, i.e. the rate of change of its deformation over time [12, 77]. In

other words, in a Newtonian fluid the internal forces are proportional to the rates of

change of the fluid’s velocity vector as one moves away from the point in question in

various directions.

Figure 1.3: Title page of “Principia”, first edition (1687).

From the publication of Principia in 1687 to the 1950’s, researches in fluid mechanics

were mainly divided theoretical and experimental approaches. In theoretical researches,

scientists focus mainly on the derivation of governing equations for the flow and on the

subsequent solution of these equations, while experimentalists perform measurements on

real flows to investigate the behavior of the flows and their dynamics and provide material

in order to confirm and validate theories. Before the emergence of computers, the

resolution of the governing equations was limited to simple situations for which explicit

solutions could be derived analytically, limiting essentially computable predictions to

linear situations.

Chapter 1. Navier-Stokes Equations 8

After the 50s and the starting availability of computers, the CFD approach started to

have an increasing impact on fluid dynamics. Today, computational approaches are used

to support theoretical investigations and is considered as a substitute to the experimental

approach in many situations. This success is mostly due to the continuous increase in the

computational resources available and the development of ever more efficient numerical

methods dedicated to the resolution of the equations describing flows. Another success

reason for the success of CFD is its relatively cheap cost (compared to the experimental

approach) and also the possibility to conduct simulations for situations that can not

be physically controlled in a real experiment. Examples of CFD application domains

are the calculation of forces on aircrafts, the determination of the mass flow rate of

petroleum through pipelines, weather forecast, the simulation of nebulae in interstellar

space, the hydrodynamical modeling nuclear weapon, . . .

1.1.2 Equations of fluid dynamics

In this section, we briefly recall the principles for the derivations for the fundamental

governing equations [12] of fluid dynamics.

We start be summarizing the principal properties of fluids and flows:

• Compressibility. All fluids are compressible to some extent, that is, changes

in pressure or temperature will result in changes in density. However, in many

situations the changes in pressure and temperature are sufficiently small that the

changes in density can be neglected. In this case the flow can be modeled as an

incompressible flow [27, 106]. For flow of gases, to determine whether to use com-

pressible or incompressible fluid models, the Mach number1 of the flow is to be

evaluated. As a rough guide, compressible effects can be ignored at Mach numbers

below approximately 0.3. For liquids, whether the incompressible assumption is

valid depends on the fluid properties (specifically the critical pressure and temper-

ature of the fluid) and the flow conditions (how close to the critical pressure the

actual flow pressure becomes). Acoustic problems always require allowing com-

pressibility, since sound waves are compression waves involving changes in pressure

and density of the medium through which they propagate. In this thesis we only

consider flows of incompressible fluids.

• Viscosity. We can find in [68] a simple definition of (dynamic) viscosity: all

fluids offer resistance to any force tending to cause one layer to move over another.

1In fluid mechanics, Mach number, named after Austrian physicist and philosopher Ernst Mach(1838-
1916), is a dimensionless quantity representing the ratio of the characteristic fluid velocity and the local
speed of sound.

Chapter 1. Navier-Stokes Equations 9

Viscosity, often noted by µ, is the fluid property responsible for this resistance. It

is a matter of common experience that, under particular conditions, one fluid offers

greater resistance to flow than another. Liquids such as tar, treacle and glycerine

can not be rapidly poured or easily stirred, and are usually spoken of as thick.

On the other hand, so-called thin liquids such as water, petrol and paraffin flow

much more readily. In fact, for fluids in motion, the ability to transmit a shear

force introduces the property of dynamic viscosity. It is found empirically that

for a large class of fluids the shear stress is directly proportional to the velocity

gradient with the dynamic viscosity as the constant of proportionality. Such fluids

are recognized as Newtonian fluids. In this thesis we only consider Newtonian

fluids.

• Steady and unsteady flows. Steady-state flow refers to the condition where the

fluid properties at a point in the system do not change over time. Otherwise, the

flow is said unsteady (sometimes called transient). Whether a particular flow is

steady or unsteady, can depend on the chosen frame of reference. For instance, the

laminar flow over a translating sphere can be steady in the frame of reference that

is stationary with respect to the sphere. In a frame of reference that is stationary

with respect to a background flow, the flow is unsteady.

The partial differential equations formulation of the fluid flow is based on the contin-

uum hypothesis and expresses the fundamental conservation laws of physics. From the

microscopic perspective, a fluid consists of molecules which are individually in a state

of random motion. By the continuum hypothesis, only the large-scale (macroscopic)

motion of these molecules is perceived; therefore the various properties of the fluid in

motion are assumed to vary continuously with position and time. Usually, the physical

properties of interest are the density, the pressure, the temperature and the velocity (or

the momentum).

There are two ways to define a coordinate system to describe a fluid in motion, namely

the Eulerian description and the Lagrangian description. In the Eulerian description, the

values of the velocity and thermodynamical properties are specified at a fixed location

in the space-time domain, i.e. are defined as functions of (x, y, z, t). The alternative

Lagrangian description traces along time individual particles (fluid parcels) from their

positions and thermodynamical properties which are dependent variables. We shall

adopt the Eulerian description throughout this thesis.

In deriving the governing equations of fluid dynamics, it is postulated that mass, mo-

mentum and energy are conserved. In order to derive the mathematical formulations

of the corresponding conservation laws, we consider a closed control volume V of the

Chapter 1. Navier-Stokes Equations 10

fluid domain, which is fixed in space and time in an Eulerian coordinate system. The

boundary of V is an orientable surface S, with the unit vector n normal to S pointing

from the inside of V toward the outside.

1.1.2.1 Conservation of mass

The mass conservation states that the rate of accumulation of mass in a volume V is

exactly balanced by the mass flux across its boundary S; it expresses as

∂

∂t

ˆ
V
ρ dV +

ˆ
S
ρn · u dS = 0, (1.1)

where ρ is the density and u the fluid velocity vector. The surface integral in Eq. (1.1)

can be converted into a volume integral by Gauss’ divergence theorem2, hence Eq. (1.1)

can be written as ˆ
V

[
∂

∂t
+∇ · (ρu)

]
dV = 0, (1.2)

which gives the integral form of mass conservation. From now on we further assume

that all functions considered are continuous and sufficiently differentiable. Since V is

arbitrary, we must have
∂ρ

∂t
+∇ · (ρu) = 0. (1.3)

By simple vector analysis, Eq. (1.3) implies

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0, (1.4)

or
Dρ

Dt
+ ρ∇ · u = 0, (1.5)

where
Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ is called the material derivative or substantial derivative of

ρ. The material derivative is often used in fluid dynamics, which specifies the rate of

change of a physical quantity when moving with the fluid flow.

The Eqs. (1.3) and (1.5) are often referred to as forms of the continuity equation. If the

fluid is incompressible, the density ρ is constant with respect to both space and time,

hence
Dρ

Dt
= 0 and

∇ · u = 0, (1.6)

which is the incompressibility condition for the flow field.

2Suppose V is a subset of Rn (in the case of n = 3, V represents a volume in 3D space) which is
compact and has a piecewise smooth boundary S. If F is a continuously differentiable vector field defined
on a neighborhood of V , then we have:

´
V
∇ · F dV =

´
S
F · n dS

Chapter 1. Navier-Stokes Equations 11

1.1.2.2 Conservation of momentum

The conservation of momentum states that the rate of accumulation of momentum in

V plus the flux of momentum out through S is equal to the rate of gain of momentum

due to body forces and surface stresses. Mathematically it leads to

∂

∂t

ˆ
V
ρu dV +

ˆ
S
ρ (n · u)u dS =

ˆ
V
ρ f dV +

ˆ
S

n · σ dS, (1.7)

where f is the body force and σ is the stress tensor. Using Gauss’ divergence theorem,

Eq. (1.7) yields

ˆ
V

[
∂

∂t
(ρu) +∇ · (ρuu)

]
dV =

ˆ
V

(ρ f +∇ · σ) dV, (1.8)

where uu stands for the dyadic or tensor product. From Eq. (1.8), we again use the

argument that the volume V is arbitrary to obtain

∂

∂t
(ρu) +∇ · (ρuu) = ρ f +∇ · σ, (1.9)

and by vector analysis

u
∂ρ

∂t
+ ρ

∂u

∂t
+ ρu · ∇u + u∇ · (ρu) = ρ f +∇ · σ. (1.10)

The continuity Eq. (1.3) implies that the first and last terms on the left hand side of

Eq. (1.10) must cancel, hence

ρ
∂u

∂t
+ ρu · ∇u = ρ f +∇ · σ, (1.11)

or in terms of material derivative,

ρ
Du

Dt
= ρ f +∇ · σ. (1.12)

Eq. (1.11) and (1.12) are usually referred to as the equation of motion.

For Newtonian fluids, the constitutive relationship for the stress tensor σ is given by

Newton’s law as {
σ = −pI + τ, (1.13a)

τ = λ(∇ · u)I + 2µD(u), (1.13b)

where τ is the deviatoric stress tensor, D(u) =
1

2

[
∇u +∇uT

]
is the rate-of-strain

tensor, p is the pressure, µ the dynamic viscosity, and λ the second coefficient of viscosity.

Chapter 1. Navier-Stokes Equations 12

Introducing Eqs. (1.13a) and (1.13b) into Eq. (1.12) yields

ρ
Du

Dt
= ρ f −∇p+ µ∆u + (λ+ µ)∇(∇ · u) + (∇ · u)∇λ+ 2 D(u) · ∇µ. (1.14)

In the case of an incompressible fluid with constant viscosity, the equation of motion

reduces to
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∆u + f , (1.15)

where ν = µ
ρ is called kinematic viscosity. The Eq. (1.15) is one of the most frequently

encountered governing equation in fluid dynamics, known as the Navier-Stokes equa-

tion, which was derived independently by Claude-Louis Navier (1785-1836), and George

Gabriel Stokes (1819-1903). In the literature, Eqs. (1.6) and (1.15) are jointly referred

to as the Navier-Stokes equations for viscous incompressible flow.

1.1.2.3 Conservation of energy

The conservation of energy in the control volume V means that the rate of accumulation

of energy plus the flux of energy out through S is equal to the flux of heat in through

S plus the rate of gain of energy due to surface stresses (dissipation). Mathematically

this principle implies

∂

∂t

ˆ
V
ρE dV +

ˆ
S
ρE(n · u) dS = −

ˆ
S

n · q dS +

ˆ
S

n · (σ · u) dS. (1.16)

In Eq. (1.16), q is the heat-flux vector and E is the total specific energy given by

E = e+
1

2
u2 − f · u, (1.17)

where e is the specific internal energy,
1

2
u2 the specific kinetic energy, and −f · u the

specific potential energy. By using Gauss’ divergence theorem we have

ˆ
V

[
∂

∂t
(ρE) +∇ · (ρEu)

]
dV =

ˆ
V

[−∇ · q +∇ · (σ · u)] dV. (1.18)

Again, since V is arbitrary, it comes

∂

∂t
(ρE) +∇ · (ρEu) = −∇ · q +∇ · (σ · u). (1.19)

It can be shown, in [83], that Eq. (1.19) leads to

ρ
De

Dt
= −∇ · q− p∇ · u + τ : ∇u, (1.20)

Chapter 1. Navier-Stokes Equations 13

where the double dot product of two tensors S and T is defined as S : T = trace(S, T).

The Eq. (1.20) expresses the first law of thermodynamics. Further discussions on the

energy Equation (1.20) can be found in [83].

1.1.3 The dimensionless Navier-Stokes equations

In this thesis, we shall restrict ourselves to the case of isothermal incompressible flows

with uniform density ρ and viscosity ν. Within these restrictions, the energy equation is

irrelevant (no thermodynamical effects) and the flow is entirely governed by Eqs. (1.6)

and (1.15) which are conveniently recast in a dimensionless form.

Dimensionless quantities are constructed considering the fluid density ρ, viscosity ν, and

characteristic (reference) length L and velocity U . Using these references, we define

x =
x

L
, u =

u

L
, t =

U

L
t, p =

p

ρU2
, f =

L

U2
f

where the upper bars denote the dimensionless character of the quantities. The incom-

pressible Navier-Stokes equations can be recast in terms of the dimensionless quantities,

yielding the dimensionless form of (1.6) and (1.15) ∇ · u = 0, (1.21a)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∆u + f , (1.21b)

where for notational convenience we have denoted the dimensionless variables by the

same symbols as the corresponding dimensional ones.

The non-dimensional number Re =
LU

ν
, known as the Reynolds number, is one of

the most important non-dimensional numbers in fluid dynamics. The magnitude of

Re measures how large are the inertial effects compared to the effects of the viscous

dissipation in a particular fluid flow. For Re � 1, one can neglect the nonlinearity

(inertial effects) and the solution of the Navier-Stokes equations can be found in closed-

form in many instances [62]. In many flows of interest Re is very large. For example,

river flows have Reynolds number as high as Re ≈ 107. For Re � 1 there is no stable

steady solution of the equations of motion. The solutions are strongly affected by the

nonlinearity, and the actual flow pattern is complicated, convoluted and vortical. When

such inertial instabilities are fully developed, the flow is said turbulent.

Chapter 1. Navier-Stokes Equations 14

1.2 Numerical methods for the incompressible Navier-Stokes

equations

We consider the unsteady flow of a incompressible Newtonian fluid governed by the

Navier-Stokes (NS) equations. Recall the dimensionless form of the NS equations:
∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u, (1.22a)

∇ · u = 0. (1.22b)

There exist many numerical methods for the discretization and resolution of the Navier-

Stokes equations. The most common ones are the Finite Difference (FD) [8, 20, 31, 46,

102], Finite Volume (FV) [31, 102], Finite Element (FE) [41, 82] and Spectral Element

(SE) [19].

All of these methods are based on Eulerian formulations of the governing equations.

Mesh-free methods, including Particles and Vortex Methods (VM) [24] and Smoothed

Particle Hydrodynamics (SPH) [65] are on the contrary based on Lagrangian formula-

tions. All these methods have their own advantages and disadvantages, making them

more or less suitable for the discretization of a given problem.

For instance, Particle methods naturally deal with flows in unbounded domains, but re-

quire great effort to accurately enforce boundary conditions on solid surfaces. Regarding

Eulerian methods, FD methods are often considered more simple to implementation, in

the case of cartesian meshes, compared to other methods, but the treatment for curved

domains and the introduction of adaptive strategies can become quickly cumbersome.

FV methods are often chosen for they enforce the ”physical” conservation properties of

the continuous equations at the discrete level; on the contrary to FE approaches calls for

a special discretization to be conservative. However, high-order FV schemes are difficult

to derive, especially in the case of non cartesian meshes, while FE methods, in par-

ticular the Discontinuous Galerkin method [47], are naturally amenable to higher order

discretization schemes (polynomial approximation) and flexible enough to accommodate

general meshes with local adaptation. However, FE methods can suffer from numerical

stability issues, requiring stabilization fixes, and the discrete functional spaces must be

selected with care in order to ensure the well-posedness of the weak formulation (e.g.

the famous inf-sup condition, see [28]).

As discussed below, they are two central difficulties when solving the incompressible

Navier-Stokes equations for a Newtonian fluid. The first one concerns the non-linearities

induced by the convective term. The second issue concerns the enforcement of the

Chapter 1. Navier-Stokes Equations 15

mass conservation and the role of the pressure term which has no thermodynamical

significance.

Concerning the non-linearity, it is very common to rely on explicit treatments (in time)

of the convective term to end with the resolution of linear problems for the time-

advancement of the solution and so avoid the need to solve a full set of non-linear

equations. However, even when treated explicitly, the non-linearity continues to mani-

fest itself by the emergence of small structure in the flow dynamic. When the convective

effects are important (cases of high Reynolds number flows) the discretization must be

fine enough to properly accounts for all the scales present in the dynamics. This means

in practice that one must use finer and finer spatial and temporal discretizations when

the Reynolds number increased, with large computational costs as a result.

Concerning the enforcement of the mass conservation, the divergence-free constraint in-

troduces an algebraic constraint on the velocity field, and the pressure is understood

as the Lagrange multiplier associated to this constraint. The coupled velocity-pressure

problem, for an explicit treatment of the non-linear terms (Stokes problem), has a saddle-

node structure which makes its resolution difficult. For instance, the use of precondition-

ers is critical for an efficient iterative resolution of such saddle-node problem. Different

alternatives have then been proposed to enforce the divergence-free character of the

velocity field. For instance, the artificial compressibility method [20] re-introduces a

pseudo state equation relating the rate of change of the pressure, ∂p
∂t to the divergence

of the velocity field. Tuning carefully this pseudo state equation allows to control the

divergence of the velocity field, but introduces an additional stiffness in the governing

equations. Alternatively, the prediction-projection approach [17, 20, 40, 58], considered

in this thesis and detailed below in Section 1.3, introduces an auxiliary elliptic problem

for the determination of the pressure with an exact enforcement of the divergence-free

character of the velocity field.

In our work, we apply the incremental prediction-projection method which is originally

implemented in the 3D Navier-Stokes solver SUNFLUIDH. Within this method, we will

apply the alternating direction implicit and the partial diagonalization methods to solve

the subproblems resulting from the prediction-projection method.

1.3 Incremental prediction-projection method

For the time derivation term approximation, we consider the second order Euler’s

scheme, also known as the two-step backward differentiation formula (BDF2) [9, 48],

Chapter 1. Navier-Stokes Equations 16

with a constant time step ∆t. We denote u(n) and p(n) the approximation of the veloc-

ity and pressure fields at time tn = n∆t. For the BDF2 formula, the approximation of

the time derivative writes

∂u

∂t

(n+1)

=
3u(n+1) − 4u(n) + u(n−1)

2∆t
+ O(∆t2).

Further, denoting NL(u) = u · ∇u the non-linear term of the momentum equation, and

considering a implicit discretization of the NS equation, we have to solve at each time

step the semi-discrete problem

3u(n+1) − 4u(n) + u(n−1)

2∆t
+NL(u)(n+1) = −∇p(n+1) +

1

Re
∆u(n+1), (1.23)

∇ · u(n+1) = 0. (1.24)

The non-linear character of the semi-discrete problem is first removed by approximating

explicitly NL(u)(n+1). Possible choices are linear time extrapolations, using for instance

NL(u)(n+1) ≈ NL(u)(∗) = 2u(n) · ∇u(n) − u(n−1) · ∇u(n−1),

or

NL(u)(n+1) ≈ NL(u)(∗) =
3

2
u(n) · ∇u(n) − 1

2
u(n−1) · ∇u(n−1).

Substituting such an approximation for NL yields a linear problem for u(n+1) and p(n+1),

but maintain the velocity-pressure coupling. The decoupling is achieved through an

incremental prediction-projection method. In a first step, a prediction of u(n+1), denoted

u∗, is computed by solving

3u∗ − 4u(n) + u(n−1)

2∆t
+NL(u)(∗) = −∇p(n) +

1

Re
∆u∗, (1.25)

that is making explicit the pressure and disregarding the divergence constraint. The

efficient resolution of the (Helmholtz) prediction problem for u∗ is a central contribution

of the thesis and will be further discussed later in the chapter.

Whence the velocity prediction has been computed, u∗ must be corrected to enforce the

divergence free condition ∇·u(n+1) = 0 and the pressure must be updated to p(n+1). The

correction equation for u(n+1) − u∗ is obtained by taking the difference of Eqs. (1.23)

and (1.25). It comes to

3u∗ − 3u(n+1)

2∆t
= ∇(p(n+1) − p(n)) +

1

Re
∆(u∗ − un+1). (1.26)

Chapter 1. Navier-Stokes Equations 17

Following the Helmholtz-Hodge decomposition (HHD) [99], the velocity correction is

sought as the gradient of a potential φ, that is

u(n+1) = u∗ −∇φ. (1.27)

Using the divergence-free condition ∇ · u(n) = 0, the correction potential is solution of

the Poisson equation

∆φ = ∇ · u∗. (1.28)

The Poisson Eq. (1.28) along with appropriate boundary conditions allow us to compute

the velocity field u(n+1) using Eq. (1.27) and to update the pressure from Eq. (1.26):

p(n+1) = p(n) +
3

2∆t
φ− 1

Re
∇ · u∗. (1.29)

It is seen that the incremental prediction-projection approach amounts to solve at every

time step a system of Helmholtz equations for the velocity prediction u∗, followed by

the resolution of a Poisson equation for the velocity correction potential φ. These are

the main computationally expensive steps for the time-integration of the incompressible

Navier-Stokes equations. The principal contribution of the thesis consists in proposing

efficient implementations for these two steps. In Section 1.4 we present the Alternating

Direction Implicit method used for the resolution of the Helmholtz system, and in Sec-

tion 1.5 we discuss the resolution of the Poisson equation using Partial Diagonalization.

1.4 Solution of the Helmholtz system

The incremental prediction-projection method introduced above leads to a prediction

step consisting in the resolution of the Helmholtz system (1.25) for u, which can be

recast in (
I− 2∆t

3Re
∆

)
u∗ = S, (1.30)

where

S =
4u(n) − u(n−1)

3
− 2∆t

3

(
NL(u)(∗) +∇p(n)

)
. (1.31)

In this section, we introduce the Alternating Direction Implicit (ADI) method for the

resolution of this system. The central idea of the ADI method is to approximate the

3-dimensional Helmholtz operator into a product of one-dimensional operators acting

along the 3 spatial coordinates:(
I− α∆t

Re
∆

)
≈
(

I− α∆t

Re
∆x

)(
I− α∆t

Re
∆y

)(
I− α∆t

Re
∆z

)
, (1.32)

Chapter 1. Navier-Stokes Equations 18

with α = 2/3.

However, applying directly the approximation of the Helmholtz operator to Eq. (1.30)

leads to a numerical error which is of the first order in time. The second order time-

accuracy can be recovered by formulating the prediction problem in terms of the velocity

increment δu∗ = u∗ − u(n). This is achieved by rewriting the prediction problem as

follows:

3(u∗ − u(n))− u(n) + u(n−1)

2∆t
+NL(u)(∗) = −∇p(n)+ 1

Re
∆(u∗−u(n))+

1

Re
∆u(n), (1.33)

leading to the Helmholtz system for the velocity increment(
I− 2∆t

3Re
∆

)
δu∗ = δS, (1.34)

where

δS =
u(n) − u(n−1)

3
− 2∆t

3

(
NL(u)(∗) +∇p(n) − 1

Re
∆u(n)

)
. (1.35)

As previously mentioned, the Helmholtz equation is then approximated using the ADI

method, which consists of approximating the 3D operator by a product of one-dimensional

operators (
I− α∆t

Re
∆x

)(
I− α∆t

Re
∆y

)(
I− α∆t

Re
∆z

)
δu∗ = δS. (1.36)

With this operator decomposition, we can substitute Eq. (1.36) by a sequence of three

one-dimensional equations: 

(
I− α∆t

Re
∆x

)
T1 = δS, (1.37a)(

I− α∆t

Re
∆y

)
T2 = T1, (1.37b)(

I− α∆t

Re
∆z

)
δu∗ = T2. (1.37c)

The main advantage of using the ADI method comes from the fact that for meshes con-

sisting of orthogonal Cartesian grids supporting a centered second-order finite-difference

spatial discretization, the discrete one-dimensional operators are well conditioned tridi-

agonal systems. These three diagonal systems can be efficiently solved with Thomas

algorithm [92].

The previous development can also been applied to other time-discretization schemes.

In this thesis, we also consider the Crank-Nicolson (CN) scheme for prediction problem.

Chapter 1. Navier-Stokes Equations 19

The CN scheme for the prediction problem is written as:

u∗ − u(n)

∆t
+NL(u)(∗) = −∇p(n) +

1

2Re

(
∆u(n) + ∆u∗

)
. (1.38)

The incremental version of the CN scheme is(
I− ∆t

2Re
∆

)
δu∗ = δS, (1.39)

with

δS = −∆t

(
∇p(n) +NL(u)(∗) − 1

Re
∆u(n)

)
. (1.40)

The ADI resolution of the incremental problem for the CN scheme can be carried-out

in a similar fashion as for the BDF-2 scheme, using α = 1/2 in the definition of the

one-dimensional operators. Both CN and BDF2 schemes are implemented in the code.

In this thesis, we will keep the BDF2 scheme for demonstrating purpose.

1.5 Solution of the Poisson equation

There exists many methods to solve the Poisson equation. In this section, we present

a direct method based on the eigendecomposition [85] of square matrices. The method

is called Partial Diagonalization. The applicability of partial diagonalization method is

most advantageous in the case of separable problems discretized on meshes consisting

of orthogonal Cartesian grids.

Given a real square non-singular matrix A ∈ Rn×n, the diagonalization of A corresponds

to the factorization of A in

A = QΛQ−1,

where Λ = {λi}i=1,2,...,n is a diagonal matrix whose diagonal elements are the eigenvalues

of A, and Q is the square matrix whose i−th column is the eigenvector qi of A.

Now take A the discrete Laplacian operator in Eq. (1.28). We can write formally

A = ∆ = ∆x + ∆y + ∆z,

where ∆x, ∆y and ∆z are the discrete versions of the ∂2/∂x2, ∂2/∂y2 and ∂2/∂z2

operators respectively.

The principle of the Partial diagonalization method is to diagonalize the components of

Laplacian operator associated with 2 directions (more generally, diagonalization along

N − 1 directions if N is the number of spatial dimensions of the problem).

Chapter 1. Navier-Stokes Equations 20

For instance, diagonalizing ∆x, and ∆y we obtain

(QxΛxQ
−1
x +QyΛyQ

−1
y + ∆z)φ = S, (1.41)

where we have denoted as S the right-hand-side vector of the discretized Poisson equation

for simplicity.

Multiplying Eq. (1.41) with Q−1x Q−1y and using the following properties of the Qx and

Qy matrices, 
Q−1x Q−1y = Q−1y Q−1x ,

Q−1x Λ−1y = Λ−1y Q−1x ,

Q−1y Λ−1x = Λ−1x Q−1y ,

we obtain

(Λx + Λy + ∆z)φ̃ = S̃, (1.43)

where {
φ̃ = Q−1y Q−1x φ,

S̃ = Q−1y Q−1x S.

For a separable problem with regular Cartesian grids, the matrices Qx and Qy have

specific structures that can be exploited for an efficient parallel implementation. In ad-

dition, for such grids and using the classical second order central finite difference scheme,

the resulting operator Λx+Λy +∆z is tridiagonal and well conditioned, allowing the use

of the Thomas Algorithm mentioned in Section 1.4. This method is then faster than any

other iterative methods. An important remark concerning Eq. (1.43) is that when using

homogeneous Neumann boundary conditions there will be zero eigenvalues which cause

singularities in the system. These singularities can be removed by introducing artificial

Dirichlet boundary conditions on the free-modes when discretizing the problem.

For non-separable problems, we use the successive over-relaxation (SOR) and multigrid

methods, as described in Appendix A, which are also very successful for solving elliptic

and hyperbolic partial differential equations and the linear systems that arise when

they are discretized. As explained previously, in a domain with obstacles, the partial

diagonalization method is not applicable. Thus an iterative method such as SOR or

Jacobi will be used to solve the Poisson equation.

Chapter 1. Navier-Stokes Equations 21

1.6 Spatial discretization

As stated above, the thesis considers simple computational domains consisting in right-

rectangular prisms, with orthogonal principal directions aligned with the x, y, and z

directions. The three-dimensional domain is discretized using a Cartesian grids result-

ing from the tensorization of one dimensional grids in the x, y and z, which supports

centered second-order finite-difference schemes for the approximations of the first and

second order derivatives in the respective directions. However, the velocity and pressure

unknowns are defined over different Cartesian grids as explained below.

1.6.1 Staggered mesh

As illustrated in Fig. 1.4, for a two-dimensional mesh, the computational domain is

discretized into rectangular parallelepipeds (shown with black solid lines, referred to

as cells). The discrete velocity and pressure unknowns are defined along a staggered

arrangement, in which the pressure points are located at the center of each cell, and the

velocity components are defined on the center of the corresponding edges.

v

i,j+1

u

i,j+1

v

i,j

v

i-1,j

v

i,j-1

v

i+1,j

u

i+1,j
u

i,j
u

i-1,j

u

i,j-1

of v

ontrol

volume

of u

mesh

element

volume

ontrol

x

i,j+1

x

i+1,j+1

x

i-1,j+1

x

i-1,j x

i,j x

i+1,j

x

i-1,j-1 x

i,j-1 x

i+1,j-1

P

i+1,j+1

P

i,j+1

P

i-1,j+1

P

i+1,j

P

i+1,j-1

P

i,j

P

i,j-1

P

i-1,j

P

i-1,j-1

Figure 1.4: Staggered mesh showing the pressure (black squares at the cells’ center)
and velocity components unknowns (red and blue squares for the x and y components,

respectively).

The staggered arrangement is widely used in CFD because it prevents spurious pressure

oscillations [64]. For this type of arrangement, one can also easily construct second order

approximations of the gradient, Laplacian, and divergence operators that verify the clas-

sical identities of vector analysis. This so-called mimetic discretization provides a better

numerical stability for the prediction-projection method compared to a discretization

where all the variables are defined on the same points of the mesh.

Chapter 1. Navier-Stokes Equations 22

For the sake of simplicity, consider a two-dimensional rectangle domain D, of length Lx

and heigth Ly. The position of each point of the domain is defined within a orthogonal

Cartesian landmark in which the origin is placed in the left lower corner. The mesh

is orthogonal Cartesian and the (two-dimensional) domain discretization have Nx ×Ny

mesh cells. The mesh associated to the pressure, that we note as Mc, is such that:

− The discrete coordinates xc(i) and yc(j) define the center’s position of mesh cell

Mc(i, j) where all the scalar variables are defined. As the mesh discretization is

Cartesian, x depends only on i and y depends only on j.

− The discrete coordinates xi(i) and yi(j) define the position of the superior inter-

faces of mesh cell (i, j) and serve to locate the velocity components. The relations

between the centered coordinates and those of the interfaces are:

xc(i) =
xi(i− 1) + xi(i)

2

yc(i) =
yi(j − 1) + yi(j)

2

− The dimensions of the cell Mc(i, j) are defined by:

∆Xci = xi(i)− xi(i− 1)

∆Ycj = yi(j)− yi(j − 1)

− The control volume (the surface in 2D) of each mesh cell is defined as the product

of cell dimensions in each direction:

∆Vci,j = ∆Xci ·∆Ycj

From the definition of Mc, it is possible to construct the shifted meshes Mu and Mv

associated to velocity components u and v respectively. Theses meshesMu andMv are

such that:

− For Mu:

Coordinates of ui,j : (xi(i), yc(j))

Dimensions : ∆Xui = xc(i+ 1)− xc(i)
∆Yuj = yi(j)− yi(j − 1) = ∆Ycj

Control volume : ∆Vui,j = ∆Xui ·∆Yuj

Chapter 1. Navier-Stokes Equations 23

− For Mv:

Coordinates of vi,j : (xc(i), yi(j))

Dimensions : ∆Xvi = xi(i+ 1)− xi(i) = ∆Xci

∆Yvj = yc(j + 1)− yc(j)
Control volume : ∆Vvi,j = ∆Xvi ·∆Yvj

Additional peripheral cells, usually named fictitious or ghost cells, are reserved for the

treatment of the boundary conditions. Consider that the three grids have the same

dimensions Nx × Ny (for the practical reason of programming arrays sizes) then the

discrete interior points of the domain are:

For Mc : [2, Nx − 1]× [2, Ny − 1]

For Mu : [2, Nx − 2]× [2, Ny − 1]

For Mv : [2, Nx − 1]× [2, Ny − 2]

We note that the shifted meshes associated to the velocity components are defined with

one cell less along the direction of the considered velocity component. In this case, mesh

points associated to boundary conditions coincide with the boundaries of the domain.

Otherwise, they would be outside of the domain in the fictitious cells (cf. Fig. 1.5).

Ly

i = 1 i = 2 i = Nx − 1 i = Nx

Lx

j = 1

j = 2

j = Ny − 1

j = Ny

Figure 1.5: Locations of the pressure and velocity unknows: p in black, u-component
in red, v-component in blue. Fictitious cells for the (pressure) boundary conditions are

plotted with a dashed line.

Chapter 1. Navier-Stokes Equations 24

1.6.2 Spatial discretization for the Navier-Stokes equation

Consider the momentum equation for incompressible flow:

∂u

∂t
+NL(u) = −∇p+ L(u), (1.45)

where NL is the non-linear convection term and L is the viscous diffusion term (L(u) =
1

Re
∆u). In the following of the section, we present the centered second-order finite-

difference schemes for the approximation of the different terms appearing in the dis-

cretization of the momentum equation, restricting ourselves to the two-dimensional case

for simplicity, i.e. u = (u, v).

1.6.2.1 Pressure gradient discretization

Owing to the staggered arrangement of the variables on the mesh, the components of

the pressure gradient appear in the equations for the respective velocity components. It

allows for a straightforward approximation of the pressure gradient components at the

corresponding velocity points. For a two-dimensional mesh, it comes

∂p

∂x

∣∣∣∣
(i,j)

=
p(i+ 1, j)− p(i, j)

∆Xi+1/2
, (1.46)

∂p

∂y

∣∣∣∣
(i,j)

=
p(i, j + 1)− p(i, j)

∆Yj+1/2
. (1.47)

1.6.2.2 Laplacian operator discretization

Owing to the Cartesian structure of the meshes, the discretization of the Laplacian

operators appearing in the prediction and projection steps is immediate. For instance,

the discretization of the viscous term

L(u)|(i,j) =
1

Re
∆u

∣∣∣∣
(i,j)

=
1

Re

(
(
∂2u

∂x2
+
∂2u

∂y2
), (

∂2v

∂x2
+
∂2v

∂y2
)

)∣∣∣∣
(i,j)

, (1.48)

is performed on the mesh associated to the considered velocity component: the Laplacian

of u is discretized on the meshMu and the Laplacian of v on the meshMv. As a result,

for the second order finite-difference scheme the approximations of the second order

Chapter 1. Navier-Stokes Equations 25

operators for the u and v components are:

∂2u

∂x2

∣∣∣∣
(i,j)

=
ui+1,j − ui,j

∆Xi+1∆Xi+1/2
− ui,j − ui−1,j

∆Xi∆Xi+1/2
, (1.49)

∂2u

∂y2

∣∣∣∣
(i,j)

=
ui,j+1 − ui,j
∆Yj+1/2∆Yj

− ui,j − ui,j−1
∆Yj−1/2∆Yj

, (1.50)

∂2v

∂x2

∣∣∣∣
(i,j)

=
vi+1,j − vi,j

∆Xi+1/2∆Xi
− vi,j − vi−1,j

∆Xi−1/2∆Xi
, (1.51)

∂2v

∂y2

∣∣∣∣
(i,j)

=
vi,j+1 − vi,j

∆Yj+1∆Yj+1/2
− vi,j − vi,j−1

∆Yj∆Yj+1/2
. (1.52)

The discretization of the Laplacian equation of the projection step proceeds in a similar

fashion, but for unknown correction potential Φ being collocated as for the pressure, i.e.

on the mesh Mc.

1.6.2.3 Convective term discretization

Concerning the convective term, two formulations are used in the present thesis: the

conservative formulation NL(u) = ∇ · (u⊗u) and the convective formulation NL(u) =

(u · ∇)u.

These two formulation, under the condition of incompressibility ∇·u = 0, are equivalent:

∇ · (u⊗ u)− (u · ∇)u =


∂(uu)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
∂(vu)

∂x
+
∂(vv)

∂y
+
∂(vw)

∂z
∂(wu)

∂x
+
∂(wv)

∂y
+
∂(ww)

∂z

−

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z



=


u
∂u

∂x
+ u

∂v

∂y
+ u

∂w

∂z

v
∂u

∂x
+ v

∂v

∂y
+ v

∂w

∂z

w
∂u

∂x
+ w

∂v

∂y
+ w

∂w

∂z

 = u(∇ · u) = 0. (1.53)

In the two-dimensional case, the convective term in conservative form is

∇ · (u⊗ u)|(i,j) =

(
∂(uu)

∂x
+
∂(uv)

∂y
,
∂(vu)

∂x
+
∂(vv)

∂y

)∣∣∣∣
(i,j)

, (1.54)

Chapter 1. Navier-Stokes Equations 26

leading to the discrete version

∂(uu)

∂x

∣∣∣∣
(i,j)

=
(ui+1,j + ui,j)

2 − (ui−1,j + ui,j)
2

4∆Xi+1/2
, (1.55)

∂(uv)

∂y

∣∣∣∣
(i,j)

=
(ui,j + ui,j+1)(vi,j + vi+1,j)− (ui,j + ui,j−1)(vi,j−1 + vi+1,j−1)

4∆Yj
,

(1.56)

∂(vu)

∂x

∣∣∣∣
(i,j)

=
(ui,j + ui,j+1)(vi,j + vi+1,j)− (ui−1,j + ui−1,j+1)(vi−1,j + vi,j)

4∆Xi
,

(1.57)

∂(vv)

∂y

∣∣∣∣
(i,j)

=
(vi,j + vi,j+1)

2 − (vii,j + vi,j−1)
2

4∆Yj+1/2
. (1.58)

Similarly, for the conservative form

(u · ∇)u|(i,j) =

(
u
∂u

∂x
+ v

∂u

∂y
, u
∂v

∂x
+ v

∂v

∂y

)∣∣∣∣
(i,j)

, (1.59)

the discrete form is

u
∂u

∂x

∣∣∣∣
(i,j)

=
1

2
ui,j

(
ui,j − ui−1,j

∆Xi
+
ui+1,j − ui,j

∆Xi+1

)
, (1.60)

v
∂u

∂y

∣∣∣∣
(i,j)

=
1

4

(
(vi,j + vi+1,j)

ui,j+1 − ui,j
∆Yj+1/2

+ (vi,j−1 + vi+1,j−1)
ui,j − ui,j−1

∆Yj−1/2

)
,

(1.61)

u
∂v

∂x

∣∣∣∣
(i,j)

=
1

4

(
(ui−1,j + ui−1,j+1)

vi,j − vi−1,j
∆Xi−1/2

+ (ui,j+1 + ui,j)
vi+1,j − vi,j

∆Xi+1/2

)
,

(1.62)

v
∂v

∂y

∣∣∣∣
(i,j)

=
1

2
vi,j

(
vi,j − vi,j−1

∆Yj
+
vi,j+1 − vi,j

∆Yj+1

)
. (1.63)

Note that the discretization of the convective term may require a mixture of central

differences and donor-cell discretization, e.g. up-winding, to ensure stability for strongly

convective problems. Such stabilization schemes are not considered in the present work;

we only remark that if needed they can be easily incorporate in the proposed framework,

as stabilized convective schemes would only affect the discretization of the convective

terms which are treated explicitly. In fact, the objective of the present thesis is to derive

efficient computational approaches allowing for a fine enough spatial discretization such

that stabilization methods, and their inherent numerical diffusivity, can be avoided.

The stencils for the discretization of the operators associated to the pressure and velocity

cells are illustrated in Fig. (1.6).

Chapter 1. Navier-Stokes Equations 27

∆Yj+1/2

∆Yj−1/2

∆Yj ∆Xi∆Xi−1/2 ∆Xi+1/2

p(i+ 1, j)p(i− 1, j) p(i, j)

p(i, j + 1)

p(i, j − 1)

(a) Stencil for centered cells.

∆Yj+1/2

∆Yj

∆Yj−1/2

(i, j + 1)

(i, j − 1)

(i− 1, j) (i, j) (i+ 1, j)

∆Xi+1∆Xi

∆Xi+1/2

ui−1,j ui,j ui+1,j

ui,j−1

ui,j+1

(b) Stencil for u-cells.

∆Xi

∆Xi+1/2∆Xi−1/2

(i, j + 1)

(i, j − 1)

∆Yj+1/2

∆Yj−1/2

∆Yj

(i− 1, j) (i+ 1, j)(i, j)

vi,j+1

vi,j−1

vi,j+1vi−1,j vi+1,j

(c) Stencil for v-cells.

Figure 1.6: Illustration of the stencils for the discretization of the operators appearing
in the momentum equation in two-dimension.

1.7 Conclusion of Chapter 1

After a brief introduction of the incompressible Navier-Stokes equations for a New-

tonian fluid, we have discussed in Section 1.3 a prediction-projection method for the

time-integration of these equations. In particular, we have shown that this approach

essentially amounts to the resolution at each time-step of Helmholtz and Poisson prob-

lems. Relying on the discretized operators provided in Section 1.6.2, one could readily

construct the fully discretized version of the Helmholtz and Poisson problems. However,

this direct discretization results in large discrete systems. In addition, when using fine

grids the explicit treatment of the convective terms yields a stability constraint on the

time-step, known as the Courant-Friedrichs-Lewy (CFL) condition [72], ∆t < min(h/|u|)
with h being the size of the spatial discretization and |u| the local velocity modulus. As

a result, a smaller and smaller time-step must be used when h decreases, making the

simulation more and more demanding. This issue calls for efficient solvers in order to

maintain reasonable computational times for the simulations. The remainder of the

Chapter 1. Navier-Stokes Equations 28

thesis is dedicated to the design and implementation of fast solvers on different parallel

hybrid architectures.

In the case of separable problems, the ADI and Partial Diagonalization techniques were

introduced in Sections 1.4 and 1.5 respectively. These techniques allow us to recast the

three-dimensional problems into sequences of one-dimensional ones with lower computa-

tional complexity. The crucial point is that when considering discretization over Carte-

sian grids, the discretization of the one-dimensional second order operators ∂2/∂x2,

∂2/∂y2, and ∂2/∂z2 leads to tridiagonal systems (for instance, the operator in direc-

tion x involves unknowns with same (j, k) indices). This specificity allows for direct,

fast (vectorized) and parallel solutions of the linear systems using Thomas algorithm,

with significant computational saving compared to a direct solution of the correspond-

ing three-dimensional problems. Two crucial aspects have been mainly investigated in

view of an implementation on modern multicore computers. First, the efficient parallel

implementation of the linear system solution and, second, the fast computation of the

change of bases in the partial diagonalization method.

Finally, for non-separable problems, for instance in presence of solid obstacles inside

the computational domain, the fully three-dimensional discrete systems must be con-

sidered. Due to the size of these systems, direct solvers are challenged in the case of

very fine discretization meshes, and iterative solvers need be considered. We have also

investigated the implementation of available iterative solvers on hybrid architectures. A

quick overview of the iterative methods for the solution of linear systems is provided in

Appendix A.

Chapter 2

Parallel algorithms for solving

Navier-Stokes equations

Contents

1.1 Computational fluid dynamics and Navier-Stokes equations 5

1.1.1 Fluid mechanics . 6

1.1.2 Equations of fluid dynamics . 8

1.1.3 The dimensionless Navier-Stokes equations 13

1.2 Numerical methods for the incompressible Navier-Stokes

equations . 14

1.3 Incremental prediction-projection method 15

1.4 Solution of the Helmholtz system 17

1.5 Solution of the Poisson equation 19

1.6 Spatial discretization . 21

1.6.1 Staggered mesh . 21

1.6.2 Spatial discretization for the Navier-Stokes equation 24

1.7 Conclusion of Chapter 1 . 27

As described in Chapter 1, the fine discretization of the Navier-Stokes equations repre-

sents a huge computational work. We use double precision variables in order to improve

the accuracy. However this doubles memory usage comparing to single precision vari-

ables. We also want the mesh to be fine enough in such a way that the flow motion

at small scale can be well captured by our numerical simulations. However, such fine

discretization increases the size of the resulting linear systems and requires proper use of

parallelism in the implementation. In this chapter, we present the Navier-Stokes solver

and its implementation for multicore systems.

29

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 30

Section 2.1 describes the domain decomposition method used in the Navier-Stokes solver.

We also explain how to compute the Schur complement in the solver. In Section 2.2,

we discuss the interest of multi-level parallelism and why we choose the MPI/OpenMP

programming model in our parallel implementation. In Section 2.3, we present the main

structure of the NS solver and its sequential performance. Then in Section 2.4, we op-

timize the solver for tridiagonal systems using vectorization techniques. In Section 2.5,

we describe some numerical experiments on both shared and distributed memory archi-

tectures including performance results. Finally, some concluding remarks are given in

Section 2.6.

2.1 Domain decomposition approach

In the area of physical simulations, many problems arise from the discretization of partial

differential equations. Because of the complexity of the computing domain, the domain

decomposition method is often applied. This method solves a boundary value problem

not on the original domain but on a set of subdomains. Different approaches exist to

coordinate the solutions between subdomains. We choose the domain decomposition

method for several reasons. The first reason is that the original boundary value problem

is easier to solve on smaller and more regular subdomains. This is mainly the motivation

of the domain decomposition method proposed by Schwarz [87]. However, the original

Schwarz method, often called as alternating Schwarz method, consists in solving the same

problem on subdomains, alternating from one to another. This procedure is sequential

since solving the problem on one subdomain can not begin if the problem is not yet

solved on its neighbors. Pierre-Louis Lions modified the alternating Schwarz method

and proposed the parallel Schwarz method in [66]. In the parallel method, the problem

is solved independently on each subdomain and the solutions on interfaces are updated

after each iteration. The second reason is related to the increasing amount of data

handled to solve the problem. As physicists want more and more realistic simulations,

the degrees of freedom can be too high for the whole problem to fit into the computer

memory.

Often referred as divide-and-conquer techniques, the first step of any domain decompo-

sition method consists in dividing the domain. We can find in [25, 80, 94] more details

on the types of partitioning. For example, when using the finite element discretization,

the elements are mapped into subdomains resulting in a so-called element-based decom-

position. In this way, all information related to one element is included in the same

subdomain. The edge-based decomposition is often used in the finite volume discretiza-

tion where edges cannot be split into two subdomains. The vertex-based partitioning

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 31

consists in dividing the vertex set into subsets and allowing edges and elements to be

shared between subdomains. In the context of this thesis, we use an element-based

decomposition. Fig 2.1 shows an example of a 3D domain decomposition of a rectan-

gular domain (16 subdomains). Moreover, to balance the computational work on each

subdomain, we make sure that the subdomains have equal size.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

I II III IV

Figure 2.1: Example of 3D domain decomposition with a cartesian topology 4×2×2

Another important aspect in domain decomposition methods is the existence of over-

lapping. We can have no overlapping, or overlapping with different sizes. In our work,

we choose the overlapping to be of order one, which means that we introduce one layer

of mesh cells to each subdomain. This layer can be either the fictive cells of the domain

which are mainly used to deal with boundary conditions, or the real cells of the neighbor

subdomain.

IV

IV

I II

III

Figure 2.2: 2D domain decomposition with order 1 overlapping.

As illustrated in Fig. 2.2 (left), the domain is equally divided into four subdomains.

When looking for instance at subdomain IV in Fig. 2.2 (right), the solid black rectangle

surrounds the “real” cells while the cells outside the black rectangle are the boundary

(fictive) cells and interface cells. For this example, we mention that we do not need the

values on the four corners of the interface because of the differencing scheme we use.

When updating the value on one cell, we only need the values of its left, right, upper

and bottom neighbor cells in the 2D case (front and back cells are needed as well in the

3D case).

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 32

The domain decomposition in our NS solver serves as a “work distributor”. As the do-

main is equally divided into subdomains, each MPI process has the same computational

load. Also, the reason why each subdomain has one layer interface lies in the differencing

scheme we chose. For example, when we compute the source term of the Helmholtz-like

equation (1.34), we need the gradient of the pressure, Laplacian of the velocity and the

convection term. In order to compute these quantities for one specific mesh cell in one

subdomain, we need information from its four neighbor cells (six neighbors in the 3D

case). If we do not have the interface layer, we will have to fetch information from

neighboring subdomains in order to calculate on one subdomain which involve informa-

tion exchange. Once the source term is computed, by using the ADI method, we obtain

three tridiagonal systems for the Helmholtz problem. We note that each MPI process

has one part of these systems. In the following, we show how these systems can be solved

efficiently in parallel using the Schur complement method [107].

Let us consider a 2D domain with 2 subdomains (pink and blue) shown by Fig 2.3

where the variables are ordered by subdomains. Within each subdomain, the variables

are ordered by row then by column. From Eq. (1.37a) for example, the resulting matrix

can be depicted by Fig. 2.4. We can see that this system, each process has its own

information about the system and we can not solve efficiently this system in parallel.

1 2 3

13 14 15
9 10 11
5 6 7

18 19 20

30 31 32
26 27 28
22 23 24

4 17

12
2916
25

8 21

Figure 2.3: Ordering of variables in a 2D domain (two subdomains).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Figure 2.4: Matrix pattern using ordering from Fig. 2.3.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 33

By changing the ordering of variables as shown in Fig. 2.5 (we order first the interior

variables and then the interface variables), the resulting matrix (see Fig. 2.6) has a block

structure that enables us to apply the Schur complement method.

1 2 3

10 11 12
7 8 9
4 5 6

13 14 15

22 23 24
19 20 21
16 17 18

25 29

27
3228
31

26 30

Figure 2.5: Ordering of variables in a 2D domain (two subdomains, interior variables
are numbered first).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Figure 2.6: Matrix pattern using ordering from Fig. 2.5.

Given a linear system Ax = b, the Schur complement can be defined using an expression

of the linear system in its block form :(
B E

F C

)(
x1

x2

)
=

(
b1

b2

)
(2.1)

or equivalently,

Bx1 + Ex2 = b1 (2.2)

Fx1 + Cx2 = b2 (2.3)

From Eq. (2.2), the unknown x1 can be expressed as

x1 = B−1(b1 − Ex2) (2.4)

Then by substitution in Eq. (2.3), the following reduced system is obtained:

(C − FB−1E)x2 = b2 − FB−1b1 (2.5)

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 34

The matrix S = C − FB−1E is called the Schur complement matrix of system (2.1).

If this matrix can be formed and Eq. (2.5) can be solved, the variable x2 is then avail-

able. Once this variable is computed, the remaining variable x1 can be computed from

Eq. (2.4).

Let us go back to Fig. 2.6. We can consider that the block B represents in this pattern

the two tridiagonal blocks. E and F are two sparse blocks and C is the bottom right

block. We also notice that, except for C, the blocks B, E and F can be decoupled into

two independent parts, which provide parallelism.

We mention that in the implementation of our NS solver, starting from Fig. 2.3, blocks

E, F and C are built directly by choosing the right coefficients, leading to a matrix as

represented in Fig. 2.6. The whole procedure consists of five steps:

• Identify interior and interface variables and construct blocks E, F and C.

• Compute right-hand side of Eq. (2.5).

• Construct the Schur complement S.

• Solve Eq. (2.5) to obtain interface values x2.

• Solve Eq. (2.4) to obtain interior values x1.

2.2 Multi-level parallelism

With the growing demand of three-dimensional models, parallelism became essential in

numerical simulations. In this section, we present a brief description of the parallel

programming models related to shared and distributed memory architectures.

2.2.1 Shared memory architecture

As the name suggests, a shared memory system is an architecture where all processors

have the same access to a global memory. This means that the address space is the

same for all processors. The main advantage of a shared memory architecture is that

access to data depends very little on its location in memory. This property facilitates

programming but one must pay attention to memory conflicts as well as the the data

coherence to avoid incorrect results. One drawback of shared memory system is that

it does not exploit data locality. When solving partial differential equations, the dis-

cretization often has an intrinsically local nature: data that are highly related are often

stored nearby in the global memory.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 35

There are several possibilities for programming shared memory architectures. For ex-

ample, we can use threads as in Pthreads [18]. We can also use a different language

for parallel programming, (e.g., Ada [3]) or specific extensions to existing programming

language (C/C++, Fortran, etc.) [2, 74]. Another possibility is to use an existing pro-

gramming language enriched with compiler directives to specify parallelism, for instance

OpenMP [4].

Let us consider the domain decomposition that we presented in Section 2.1. When

dealing with shared memory systems, we assign each subdomain to a processor - usually

a processor in shared memory refers to a single compute core - and the computation can

be performed in parallel by the each core.

2.2.2 Distributed memory architecture

A typical distributed memory system is main composed of many processors which are

often identical and are connected via a network having a given topology. Each proces-

sor has its own memory, processing units etc.. Contrary to shared memory systems ,

processors only access to their own memory and the access to other processors memory

is performed by communication.

To deal with communication among processors, one standard API is the Message Pass-

ing Interface (MPI) [32]. MPI is a standardized and portable message-passing model

designed by researchers from academia and industry to be used on a wide variety of

parallel computers. This standard defines the syntax and semantics of library routines

useful for a wide range of users writing portable message-passing programs in different

programming languages such as Fortran, C, C++ and Java. MPI is a specification, not

an implementation. There are multiple implementations of MPI such as MPICH [39]

and OpenMPI [34] etc.

Similarly to shared memory systems, when using MPI in a domain decomposition

method, we divide the domain into subdomains according to the number of processors

which are usually multicore processors.

2.2.3 Combining shared and distributed memory systems

A classical type of architecture, commonly used for clusters, is the distributed-shared

memory model. In such a memory model, we have several nodes connected through

some high-speed interconnection. A node can be either a single-processor computer, or

a symmetric multiprocessors (SMP), or even a non uniform memory access (NUMA)

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 36

architecture [43]. The memory is considered to be shared on each node and is not

directly addressable from other nodes.

An example of such a system is the Stampede1 computer from Texas Advanced Com-

puting Center (TACC) at University of Texas, Austin, USA (see Fig. 2.7).

Figure 2.7: Stampede system. Image from https://www.tacc.utexas.edu

This system is a 10 petaflop/s Dell Linux Cluster based on more than 6400 Dell Pow-

erEdge server nodes. Each node of Stampede is composed of 2 Intel Xeon E5-2680

(Sandy Bridge) processors running at 2.7GHz with 8 cores each (16 cores total) and

32GB of global memory, and an Intel Xeon Phi coprocessor. The peak performance of

the Intel Xeon E5 processors is about 2 petaflop/s, while the Xeon Phi coprocessors have

an additional peak performance of more than 7 petaflop/s. Among the 6400 nodes of

Stampede, we have also 128 compute nodes where we have a single NVIDIA K20 GPU

on each node with 5 GB of on-board memory. Stampede is ranked #7 in the Top500

list2 published in November 2014. From the computing resources of Stampede, we will

use CPU nodes (in Chapter 2) and GPUs (in Chapter 3) but we will not use the Intel

Xeon Phi coprocessors.

Figure 2.8: Illustration of a single node on Stampede.

Fig. 2.8 shows the architecture of a single SMP node on Stampede. On each node, we

have 2 sockets to hold the Intel Sandy Bridge processors. Each socket has 8 cores and

1http://www.tacc.utexas.edu/stampede
2http://www.top500.org/

https://www.tacc.utexas.edu
http://www.tacc.utexas.edu/stampede
http://www.top500.org/

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 37

the local memory of the node is addressable from any core in any socket. As the memory

is attached to sockets, the 8 cores sharing the socket have fastest access to the attached

memory.

There are several parallel programming models for such an architecture: pure MPI,

pure OpenMP, hybrid MPI+MPI and hybrid MPI+OpenMP. Each of these models has

pros and cons. For example, with a pure MPI programming model where we have

one MPI process on each core, any existing MPI program can run successfully without

modifications and the MPI library does not need to support multiple threads. However,

we lose performance with unnecessary intra-node communication and topology problem

may occur. This problem is that, for a given application, the topology of MPI processes

within a node can have an important effect on the performance. For example, given a 3D

domain of size N3 on a node with 32 cores, we apply a 1-dimensional data decomposition.

The communication volume per core is about 2N2. If we apply a 3-dimensional data

decomposition, we can have three times less communications. If we use the OpenMP-

only model, although we will not have topology problem within a node, we will need the

a virtual memory system. This will result in inter-node communication which are much

slower than with MPI. The hybrid MPI+MPI model consists on using MPI for inter-

node communications and the MPI-3.0 standard [69] for shared memory programming.

The advantage of this model is that no message passing is performed inside of the SMP

nodes and thread-safety is not an issue. However, we can encounter similar topology

problem as in the pure MPI model. Also, unnecessary communications are presented

in this model as in the pure MPI model. Finally, the model hybrid MPI+OpenMP has

neither the topology problem nor the communication cost within an SMP node. The

downside to this model is an increased code complexity and no performance guarantee

compared to other models.

The optimal parallel programming model for distributed shared memory architectures

depends on the application. However, the hybrid programming model is usually better

than pure MPI and pure OpenMP models for the following reasons. First, we eliminate

the domain decomposition at the node level. Second, we ensure automatic memory

coherence at node level. Third, data movement is bounded between nodes. Last, we can

synchronize on memory instead of using barriers.

Of course, the hybrid programming model has its drawbacks. For example, a multi-

threaded algorithm created by aggregating MPI parallel components on a node will usu-

ally run slower than the MPI version algorithm. What’s more, we add code complexity

to the application when using hybrid programming model. Though the drawbacks, the

hybrid programming model has become standard since not only does it balance the

computational load of the applications, but also reduces memory traffic (especially for

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 38

memory-bound applications). We will use this model in developing our Navier-Stokes

solver. We decompose the computational domain into subdomains of the number of

available nodes. Within each subdomain, we use threads according to the number of

cores for heavy computations.

2.3 General structure of the solver

We first present the main structure of the solver (see Fig. 2.9).

• Initialization

– Data initialization: read the input file

– Domain initialization: construct the subdomains

– Fields initialization: allocate arrays

– Operators initialization: construct the tridiagonal matrices

• Loop on time

– Solve Helmholtz-like problem

– Solve Poisson problem

– Velocity update

– Store results

• Finalize

Figure 2.9: Solver structure

In the data initialization step, we read inputs from an external file in which we specify

the dimension, some physical quantities, and other characteristics of the problem. Then

we initialize the computational domain and construct the set of subdomains according

to the given number in the input file. In the field initialization step, we allocate the

necessary memory for both velocity and pressure. In the final phase of initialization, we

construct the operators (mainly tridiagonal) as described in Chapter 1.

Then we consider the solving phase which is inside a loop on time. This step, which

has been clearly explained in Chapter 1, consists of solving a Helmholtz-like equation

followed by a Poisson equation, and of updating the auxiliary variables by an explicit

correction. We can choose to store the solution after each time iteration, or after a

certain number of iterations in order to save memory space. For example, we can decide

to store solutions every 500 iterations. If the time step is 0.001 second, then the final

simulation will be constructed by the solutions obtained every 0.5 second. Of course,

this can be changed, depending on the required accuracy.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 39

Initialization

Time iteration

Save data

Solve Helmholtz-like Eq.

Solve Poisson Eq.

Variables update
4%

66%

30%

Till max time

Figure 2.10: The main procedure of NS solver and the time percentage of each step.

We present in Fig. 2.10 the main procedure of the NS solver. The result depicted in

this figure is obtained by executing an existing NS solver developed at LIMSI [33].

We use one core of the AMD Opteron 6172 processor, and compute for one iteration,

the percentage of time spent in the three main tasks (velocity solving in Helmholtz

problem, pressure solving in Poisson problem, and variables updating). We can see in

this figure that the Helmholtz problem takes about 30% of the time in one iteration and

Poisson problem is the most time consuming task which takes about 2/3 of the execution

time. Improving the performance of both solvers can significantly improve the NS solver

performance. In this chapter, we will talk about the tridiagonal solver. As explained

previously in Chapter 1, solving a Helmholtz-like equation using ADI involves solving

a set of tridiagonal systems. Thus, improving the performance of the tridiagonal solve

will lead to better performance of the Navier-Stokes solver.

We would like to mention that in Fig. 2.10, we use the partial diagonalization method

to solve the Poisson equation.

2.4 Accelerating the solution of the tridiagonal systems

We recall that, from Eqs. (1.37) and (1.43), the operators are all of a Laplacian form.

Then, using the second order central differencing scheme (∆nui =
ui−1 − 2ui + ui+1

∆h2
),

the discretization of these operators leads to diagonally dominant tridiagonal systems.

We explain in this section how to improve these tridiagonal solves in our NS solver.

Let us consider a general diagonally dominant tridiagonal system (2.6) Ax = s where

A ∈ Rm×m and x, s ∈ Rm.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 40



b1 c1
. . .

. . .
. . .

ai bi ci
. . .

. . .
. . .

am bm





x1
...

xi
...

xm


=



s1
...

si
...

sm


. (2.6)

This system can be solved using the Thomas algorithm given in Algorithm 1.This algo-

rithm consists of two steps. The first step is a forward elimination where we eliminate

the lower diagonal coefficients and transform the original matrix into an upper trian-

gular one. The second step is a backward substitution that solves the upper triangular

system. This requires O(n) operations.

Algorithm 1: Thomas algorithm.

Data: Diagonal matrix (a, b, c), RHS s.
Result: Solution x (stored in si).

1 Forward elimination: for i = 2 to m, do

2 bi = bi −
ci−1 × ai
bi−1

3 si = si −
si−1 × ai
bi−1

4 end

5 Backward substitution: sm =
sm
bm

6 for i = m− 1 to 1, do

7 si =
si − ci × si+1

bi
8 end

This algorithm actually corresponds to a Gaussian elimination without pivoting. In the

LAPACK [7] linear algebra library, the solution of tridiagonal systems is implemented in

the DGTSV routine (when using double precision arithmetic) which performs a Gaussian

elimination with partial pivoting. Note that, if there is no need for pivoting, the Thomas

algorithm and the DGTSV routine are similar. In the following, we explain how we can

accelerate the Thomas algorithm by using vectorization techniques.

Since the late 90’s, processor manufacturers provide specialized processing units called

Single Instruction Multiple Data (SIMD) extensions. This new feature has allowed

processors to exploit the latent data parallelism available in applications by executing

a given instruction simultaneously on multiple data stored in a single special register.

However, taking advantage of the SIMD extensions remains a complex task. We can find

for instance in [29] a description of Boost.SIMD, a high-level C++ library to program

SIMD architectures. Boost.SIMD provides both expressiveness and performance by

using generic programming to handle vectorization in a portable way.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 41

A first requirement to get performance is to store data in arrays that have been specially

aligned in memory. The SIMD unit is able to read a certain number of bytes at a time

and if it reads data from unaligned memory addresses, this request will involve two

read operations. For instance in Fig. 2.11, assuming SIMD unit works with 8-byte units,

trying to read 8 bytes from relative offset of 5 will be done by first reading bytes 0-7, and

second reading bytes 8-15. As a result, the relatively slow memory access will become

even slower.

Figure 2.11: Read 8 bytes from unaligned memory.

To improve performance, we need to make sure that the arrays that we use in the

tridiagonal system are aligned in memory. However, part of our NS solver is written

in standard Fortran 95 which does not provide any memory alignment guarantee for

arrays. The only way to use aligned memory is to allocate it with an external C/C++

function, such as simd::allocator in Boost.SIMD library. Once the C/C++ allocation is

done, we can transfer this aligned memory allocation to Fortran by using the standard

Fortran array pointer via the ISO C BINDING interface (see Algorithm 2).

Algorithm 2: Aligned memory allocation in Fortran 95.

use ISO_C_BINDING

real(C_DOUBLE), pointer :: arr(:,:)

type(C_PTR) :: p

p = simd_alloc(int(L * M * N, C_SIZE_T))

!... simd alloc is the c++ allocator of Boost.SIMD
!... L , M and N determine the form of the 3-D array
!... C SIZE T is the number of elements to allocate

call c_f_pointer(p, arr, [L,M,N])

!... associate pointer arr with allocated memory p
!... use arr and arr(i,j) as usual

call simd_dealloc(p)

!... free pointer p

The interest of using vectorization comes from the fact that we handle multiple right-

hand sides (RHS) in the tridiagonal systems. We illustrate the method in Fig. 2.12,

where we consider the simplified case of two RHS.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 42

=
c3a3

a4

b1 c1

a2 c2b2

b3

b4

x1
1 x2

1

x1
2 x2

2

x1
3 x2

3

x1
4 x2

4

s11 s21

s12 s22

s13 s23

s14 s24

(a) Original system.

=
c3a3

a4

c1

a2 c2

b3

b4

x1
1 x2

1

x1
2 x2

2

x1
3 x2

3

x1
4 x2

4

s13 s23

s14 s24

s11

s12

s21

s22

b1

b2

(b) First iteration.

=
c3a3

a4

c1

c2

x1
1 x2

1

x1
2 x2

2

x1
3 x2

3

x1
4 x2

4

s11

s12

s21

s22

b1

b2

b3

b4

s13

s14

s23

s24

(c) Second iteration.

=
c3

c1

c2

x1
1 x2

1

x1
2 x2

2

x1
3 x2

3

x1
4 x2

4

s11

s12

s21

s22

b1

b2

b3

b4

s13

s14

s23

s24

(d) After elimination.

=
c3

c1

c2

s11

s12

s21

s22

b1

b2

b3

b4

s13

s14

s23

s24x1
4 x2

4

x2
3x1

3

x2
2x1

2

x2
1x1

1

(e) Backward substitution.

Figure 2.12: Thomas algorithm with vectorization.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 43

The main steps of our vectorized algorithm applied to the system given in Fig. 2.12(a)

can be described as follows.

Forward elimination (Fig. 2.12(b), 2.12(c), 2.12(d)):

- load two register units with (s1i , s
1
i+1) and (s2i , s

2
i+1) for i = 1, 3, ...n− 1,

- “shuffle” the two vectors to have (s1i , s
2
i), (s1i+1, s

2
i+1) (shown by the blue box).

- perform two Thomas iterations to eliminate ai, ai+1 and update the corre-

sponding diagonal and RHS:

bi = bi −
ci−1ai
bi−1

(s1i , s
2
i) = (s1i , s

2
i)−

(s1i−1, s
2
i−1)ai

bi−1

bi+1 = bi+1 −
ciai+1

bi

(s1i+1, s
2
i+1) = (s1i+1, s

2
i+1)−

(s1i , s
2
i)ai+1

bi

Backward substitution (Fig. 2.12(e)) :

- (x1n, x
2
n) =

(s1n, s
2
n)

bn
,

- (x1i , x
2
i) =

(s1n, s
2
n)− ci(x1i−1, x2i−1)

bi
, for i = n− 1, ..., 1

Similarly to the RHS s, we compute two solutions with one operation.

The procedure is also described in Algorithm 3.

Algorithm 3: Thomas algorithm using SIMD.

• load two register units with two coefficients of the main diagonal and the lower
diagonal;

• shuffle (permute) the data to have a 2× 2 dense matrix;

• perform two Gaussian eliminations to eliminate the coefficients of the lower
diagonal (see Fig. 2.12(c));

• solve backward the system with two RHS coefficients loaded in one register (see
Fig. 2.12(e)).

Shuffling is a characteristic idiom of SIMD programming that replaces some class of

complex memory access patterns by computation after simpler patterns. Depending

on the extension, these shufflings can either be limited (like in SSE2 where shuffling

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 44

can only occurs piecewise inside a given register) or be random (like in Altivec where

shuffles are in fact real complete byte permutations). Shuffling also enables idioms like

deinterleaving, where scattered data can be fetched from main memory and brought

back into a single, contiguous SIMD register. In our case, we use shuffling to aggregate

values from the sparse representation of the system into a set of contiguous values in

order to perform the backtracking and solving in a SIMD way. The code is expected

to be faster due to less memory accesses (thus limiting cache misses) and as well as the

augmented SIMD speedup layout of the data after the shuffling.

Our implementation extends this method to multiple RHS. Note that the memory align-

ment described previously enables here the “load” process to be performed efficiently.

We mention that this vectorization approach can be also used in other parts of our

solver, for instance to compute the source term faster. More generally, this technique

enables us to get good speedups when performing computations on arrays that have no

data dependencies.

2.5 Performance results for Navier-Stokes computations

2.5.1 Shared memory with pure MPI programming model

We performed some numerical experiments on a shared memory machine. The following

experiments were carried out using a MagnyCours-48 system from University of Ten-

nessee, Knoxville, USA. This machine has a NUMA architecture and is composed of four

AMD Opteron 6172 (with a SSE-4a instruction set) running at 2.1GHz with twelve cores

each (48 cores total) and 128GB of memory. Our solver is linked with the LAPACK

and ScaLAPACK routines from the 10.3.6 version of the Intel MKL [51] library and

communications are performed using OpenMPI 1.4.3. We use the pure MPI parallel

programming model mentioned in Section 2.2 (no OpenMP directives) and one MPI

process per core.

We consider a 3D vortex problem with mesh size 2403, e.g. about 1.4× 107 unknowns.

The discretization sizes used in our simulations are chosen by physicists and they are

considered to be realistic sizes for such testing problem. We represent the performance

(in seconds) for one iteration of the NS solver including the Helmholtz and Poisson

equations, and miscellaneous tasks (mainly I/O and velocity/pressure updates). The

number of MPI processes varies from 1 to 48. We observe in Fig. 2.13 that the CPU time

decreases significantly with the number of processes, showing then a good scalability of

the solver. We observe that the Helmholtz equation represents about 30% of the global

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 45

computational time and this percentage remains the same when the number of processes

increases.

��

���

����

����

����

����

����

����

� � � � � � � �� �� �� �� �� �� �� �� ��

�
��
�
��
�
�

�����������������������

��������������
�������
�����

Figure 2.13: Time breakdown for one iteration of the NS solver.

Fig. 2.14 shows the parallel speedup of the solver. We obtain a speedup up of 33 using

48 cores. We also observe in Fig. 2.14 that the solution for the Poisson equation scales

slightly better than for the Helmholtz equation. This is because in the Poisson equation

we have only one tridiagonal system to solve (vs three systems in Helmholtz equation)

and thus there is less information exchanged (as mentionned in Section 2.1, when we

solve a tridiagonal system via the Schur complement method, we have a reordering of

the variables that results in additionnal communication).

��

��

���

���

���

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
�
�
�

�����������������������

��������������
�������

��
�����

Figure 2.14: Strong scalability of NS solver.

In another experiment, we consider a 3-D vortex problem where the size increases with

the number of threads and with a fixed mesh size per subdomain (weak scalability).

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 46

The local size is set to 240× 240× 10 and 10 time iterations are performed. We observe

in Fig. 2.15 that the time spent in solving Helmholtz and Poisson equations does not

vary (about 60 and 110 milliseconds, respectively) because the number of unknowns

computed is always 2402 × 10 = 5.76 × 105. However, the global CPU time increases

linearly with the number of processes due to a larger amount of I/O after each iteration.

Indeed, the numerical solution is stored after each time iteration in order to generate

a detailed animation that visualizes the fluid movement. In this numerical test, we

only divide the domain along one direction (z−direction here) to keep the shape of the

interfaces. Thus, the amount of information to be exchanged (the number of interface

elements) is 2402 × (number of MPI processes− 1).

��

���

����

����

����

����

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
�
��
�
�

�����������������������

��������������
�������

��

Figure 2.15: Weak scaling performance of the Navier-Stokes solver on shared memory.

We now compare the performance of the vectorized Thomas algorithm (illustrated in

Fig. 2.12) with the LAPACK 3.2 routine DGTSV from Netlib, linked with the MKL

BLAS library, which solves a general tridiagonal system using Gaussian elimination

with partial pivoting (note that, since our matrices are diagonally dominant, the routine

DGTSV does not pivot and only the search for pivot is performed).

In Fig. 2.16(a), we plot the number of cycles required to compute one element of the

result with respect to the number of RHS. This metric, computed as

c =
execution time× frequency

number of elements

allows us to do a fine-grain analysis of both the impact of vectorization and the impact

of memory access. For the curve related to DGTSV, we observe a cycle/value amount

that jumps each time we hit the cache size (L2 and L3). This is due to the fact that

every computation requires the full amount of memory access to be completed.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 47

However, as shown in the second curve of Fig. 2.16(a), by using vectorized shuffle which

replaces memory access by computation, the vectorized version of Thomas algorithm has

a constant amount of CPU cycle/value up to the largest size (106 in our experiment).

In Fig. 2.16(b), we plot the ratio of execution time for both DGTSV and vectorized

Thomas algorithm. For large problem sizes (e.g. more than 106 unknowns), we observe

that the vectorized version of Thomas algorithm outperforms DGTSV by a factor 3. In

the remainder of this Chapter, this tridiagonal solver using SIMD extension will be used

in the Navier-Stokes solver.

 10

 20

 30

 40

 50

 60

 70

1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06

C
yc

le
 p

er
 v

al
ue

 (c
/v

)

Number of RHS

DGTSV
vectorized Thomas

L2 cache size
L3 cache size

(a) Cycles per value for Thomas algorithm.

 0

 1

 2

 3

 4

 5

1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06

R
at

io
 o

f t
im

e

Number of RHS

(b) Ratio =
Time for LAPACK routine DGTSV

Time for vectorized Thomas algorithm
.

Figure 2.16: Performance of two implementations of Thomas algorithm. Matrix size
= 100. Test carried out using Intel Xeon E5645.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 48

2.5.2 Performance using MPI + OpenMP

We study in this section the performance of the Navier-Stokes solver on a cluster of

multicore processors. We run the solver for 10 iterations and we set the global mesh size

to 2563.

��

���

���

���

���

����

����

����

����

����

� � � � �� ��

�
��
�
��
�
�

���������������

(a) Time for solving NS equations.

��

��

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ���

�
�
�
�
�
�
�

���������������

��������������
�����������������

(b) Parallel speedup of NS solver.

Figure 2.17: Performance of NS solver on the Stampede system.

We use the Stampede system described in Section 2.2.3 to run the code. Each node of

Stampede is composed of two Intel Xeon E5 processors on which we use all the 16 cores

for multithreading. We observe in Fig. 2.17(a) that the execution time drops with the

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 49

increasing number of nodes. This execution time is consistent with the time obtained in

Section 2.5.1 (note that the problem size and the processor speed are slightly different).

The performance is good since we obtain, in Fig. 2.17(b) a parallel speedup of about

24 with 32 compute nodes (the speedup measures here the ratio of the execution time

using one node and the time using various numbers of nodes). This speedup is similar

to the one obtained in Section 2.5.1.

Next, we study the weak scalability of the solver. The mesh size per node is set to 643.

We increase the number of nodes and measure the execution time for 10 iterations.

��

����

��

����

��

����

��

����

� � � � �� ��

�
��
�
��
�
�

���������������

Figure 2.18: Weak scaling of NS solver (MPI-OpenMP implementation).

We observe in Fig. 2.18 that the execution time increases with the number of nodes.

This increase of time is due to a larger amount of information exchanged as we increase

the total mesh size. We did not store the solution after each iteration in order to observe

the impact of increasing communication on the solver performance.

2.5.3 Performance comparison with an iterative method

We present in this section a performance comparison between the direct method based

on partial diagonalization (see Section 1.5) and an iterative method for the solution

of the Poisson equation described in Appendix A. The library Hypre [63] is used for

the implementation of a Poisson solver based on the multigrid method and successive

over-relaxation method.

Hypre is a library for solving large, sparse linear systems of equations on massively

parallel computers. It contains several families of preconditioned algorithms. These

algorithms include structured multigrid and element-based algebraic multigrid. Hypre

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 50

also provides commonly used Krylov-based iterative methods to be combined with its

scalable preconditionners. This includes Conjugate Gradient and GMRES algorithms.

Data structure in Hypre can be of different forms. Hypre provides data structures to

represent and manipulate sparse matrices through interfaces. Each interface gives access

to several solvers without the need to write new interface codes. These interfaces include

stencil-based structured/semi-structured interfaces, finite-element based unstructured

interface, and a linear algebra based interface.

Fig. 2.19 depicts the comparison of performance for the following Poisson solvers:

• our algorithm based on partial diagonalization and using the vectorized tridiagonal

solves described in Section 2.4,

• iterative method based on multigrid preconditioned SOR solver (see Appendix A)

with a straightforward implementation,

• Hypre routine for multigrid preconditioned SOR solver.

Figure 2.19: Performance comparison between different Poisson solvers.

These experiments were carried out using one node of the Stampede system described

in Section 2.5.2 The problem that we tested is the 3D Taylor-Green vortex that will

be detailed in Chapter 4. The domain is considered to be full fluid and thus with no

obstacles. The mesh size is 1283. We can use both direct method (partial diagonal-

ization) and iterative method (multigrid + SOR) to solve the Poisson equation in the

NS problem. We measured the average execution time for solving the Poisson equation

using 2 MPI processes and 8 threads per process. We observe in Fig. 2.19 is that the

direct method is more than 3 times faster than the iterative method based on the Hypre

library. Note that the Hypre implementation outperforms our straightforward imple-

mentation for multigrid preconditioned SOR solver. However, as will be explained in

Chapter 4, the iterative method enables us to address fluid flow simulations that include

obstacles in the domain, which is not possible with the direct method.

Chapter 2. Parallel algorithms for solving Navier-Stokes equations 51

2.6 Conclusion of Chapter 2

In this chapter, we have described the implementation of our Navier-Stokes solver for

CPUs. Using domain decomposition method, the solver shows good performance and

satisfying scalability on both shared and distributed memory architectures. We have op-

timized the tridiagonal solver using vectorization techniques and improved the speedup

with a factor of three, when compared to the LAPACK routine DGTSV linked with

MKL. For the MPI/OpenMP hybrid implementation, we obtain a speedup of 24 using

32 MPI processes and 16 threads per MPI process. The problem size is set to 2563 which

is commonly used in such Navier-Stokes solvers. We published some of these results in

a recent publication [100].

We also presented the performance of the Poisson solver implemented in the Navier-

Stokes solver. We observe that the iterative method for solving Poisson problems can

be improved using the Hypre library while the direct method, for suitable problems,

remains faster.

If we want to further accelerate the simulations and adapt our NS solver to the current

architecture (namely the heterogeneous architectures), vectorization techniques will not

be sufficient and the use of accelerators can not be avoided. In the next chapter, we will

explain how to take advantage of Graphics Processing Units (GPUs) without modifying

the main structure of our Navier-Stokes solver.

Chapter 3

Taking advantage of GPU in

Navier-Stokes equations

Contents

2.1 Domain decomposition approach 30

2.2 Multi-level parallelism . 34

2.2.1 Shared memory architecture . 34

2.2.2 Distributed memory architecture 35

2.2.3 Combining shared and distributed memory systems 35

2.3 General structure of the solver 38

2.4 Accelerating the solution of the tridiagonal systems 39

2.5 Performance results for Navier-Stokes computations 44

2.5.1 Shared memory with pure MPI programming model 44

2.5.2 Performance using MPI + OpenMP 48

2.5.3 Performance comparison with an iterative method 49

2.6 Conclusion of Chapter 2 . 51

In the domain of computational science, when considering high performance computing

applications, we cannot neglect the use of accelerators which has become a major com-

ponent of modern supercomputers. Originally designed for graphics processing, GPU

(Graphics Processing Unit) can also enhance performance in scientific computing appli-

cations and in particular in computational fluid dynamics. In this chapter, we describe

how GPU computing can be used in our Navier-Stokes solver. In the first section, we

discuss the development of CPU/GPU computing. In the second section, we propose

GPU algorithms and implementations to accelerate our Navier-Stokes solver. We also

describe the GPU version of the Helmholtz and Poisson solvers. In the third section,

performance results are presented, followed by a concluding section.

53

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 54

3.1 Introduction to GPU computing

Different from classical CPU processors, GPUs are mostly designed and used in visual

processing. The world’s first GPU is GeForce 256, product of Nvidia in 1999. The

technical definition of this GPU is “a single-chip processor with integrated transform,

lighting, triangle setup/clipping, and rendering engines that are capable of processing a

minimum of 10 million polygons per second”1.

Figure 3.1: Nvidia GeFroce 256.

As the name suggests, GPUs are developed for graphics rendering. During the first years

of appearance, the main purpose of GPUs was related to graphics pipeline in visual

processing. Later on, GPU has been developed into a strong programmable processor.

An application programming interface is added and the compute capacity has much

increased. This era is marked by GeForce 8800 GTX, that has a capacity of over 330

Gflops which is higher than a high-end CPU at that time (2006).

Figure 3.2: Nvidia GeFroce 8800 GTX.

Since then, GPU design has entered a new stage where it is not only used for calcula-

tions related to 3D computer graphics but also for other general purpose computations,

1www.nvidia.com/page/geforce256.html

www.nvidia.com/page/geforce256.html

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 55

leading to the term GPGPU (General Purpose Graphics Processing Unit). GPGPU

is considered as a modified form of stream processor. This concept turns the massive

computational power of a modern graphics accelerator’s shader pipeline into a general-

purpose computing power. In some applications requiring massive vector operations,

this can yield several orders of magnitude higher performance than a conventional CPU.

GPGPUs are used for many types of parallel tasks. They are generally suited to high-

throughput type computations that exhibit data-parallelism. Furthermore, GPU-based

high performance computers are playing a significant role in large-scale modeling. In the

list of Top500 2, three of the 10 most powerful supercomputers in the world use GPU

as accelerators.

Great progress have been achieved by using GPU in many applications. For example,

we can find on the site of Nvidia3, the software HMMER [26], which is used for searching

sequence databases for homologs of protein sequences, and for making protein sequence

alignments, can be accelerated by a factor of 100 using 3 Tesla C1060 GPUs instead of

one CPU. In [30], we can find some experiments on Matlab code with CUDA extension.

For example, the simulation of 2D elliptic vortex evolution (mesh size 256 × 256) is

accelerated by a factor of 11 using a Quadro FX5600 GPU comparing to an Opteron

250 processor.

So far, there are only few applications of GPUs to solve the full non-stationary incom-

pressible 3D Navier-Stokes equations with an Eulerian grid based approach. Krüger [61]

was one of the first to publish results in this field with the target of real-time applications

for fluid dynamics. His solver uses Chorin’s projection approach [21] on a staggered grid,

finite differences with forward and central differencing, velocity advection as proposed

by Stam [88], a conjugate gradient solver for the pressure Poisson equation and vorticity

confinement [89] to reduce the numerical diffusion introduced by Stam’s method.

Furthermore, Thibault and Senocak [91] implemented a multi-GPU solver for the full

incompressible Navier-Stokes equations. Instead of Stam’s advection approach they use

a first order explicit Euler scheme. The pressure Poisson equation is solved by a Jacobi

iterative solver. To use multiple GPUs, they consider a shared-memory parallelization

by Posix threads and a standard domain decomposition approach. Due to hardware

limitations, they also compute in single precision. This way, they obtain a speedup

factor of 33 on one GPU compared to a single CPU and a speedup factor of 100 on four

GPUs.

2www.top500.org
3http://www.nvidia.com/object/bio_info_life_sciences.html

www.top500.org
http://www.nvidia.com/object/bio_info_life_sciences.html

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 56

Cohen and Molemaker [23] implemented a double precision solver for the Navier-Stokes

equations. They included temperature into their model via the Boussinesq approx-

imation [38]. The discretization employs a second order finite volume approach on

a staggered regular grid, the pressure projection method and a second order Adams-

Bashfort time integration [44]. A multigrid solver handles the Poisson equation. This

way, a maximum speedup of 8.5 is obtained on the latest available graphics hardware

(NVIDIA C1060) compared to an eight-core multithreaded fluid solver.

A significant effort to implement three-dimensional finite difference methods on GPUs

has been made by Micikevicius [70]. He introduced base patterns for the fast compu-

tation of high order finite difference stencils. Additionally, he presented a scalable and

fast multi-node/multi-GPU parallelization using MPI.

Because our Navier-Stokes solver is already functional on multicore architectures, we do

not want to modify its main structure for the sake of re-usability for physicists at LIMSI.

The strategy of adding GPU computation to the original code is called the “minimal

invasion” strategy [22]. The minimal invasion strategy means that we replace the codes

to be optimized, by some GPU codes while keeping the same inputs and outputs. In

this way, we may not reach the optimum GPU performance but it is simple to switch

between CPU and CPU/GPU codes. The main purpose of our work is to develop a

general Navier-Stokes solver supporting different architectures. In Chapter 2, we have

shown that the user can configure the solver with MPI and OpenMP. Now if the user

has access to some accelerators, he can also take advantage of the devices by adding the

GPU computing in the solver.

The most common programming languages on GPU are CUDA (“Compute Unified

Device Architecture”, [73]) by Nvidia and OpenCL (“Open Computing Language”, [95])

by the Khronos Group4. CUDA is specifically for NVIDIA GPUs whilst OpenCL is

designed to work across a multitude of architectures including GPU, CPU and digital

signal processor (DSP). These technologies allow specified functions from a C program

to run on the GPU’s stream processors. This enables C programs to take advantage of

GPU’s ability to operate on large matrices in parallel, while still making use of the CPU

when it is appropriate.

We use CUDA in our work. To avoid using the CUDA Fortran compiler, we add a

C interface (see Algorithm 4) using the ISO_C_BINDING module to correctly call any

CUDA function.

4The Khronos Group was founded in January 2000 by a number of leading media-centric companies,
including 3Dlabs, ATI, Discreet, Evans & Sutherland, Intel, NVIDIA, SGI and Sun Microsystems,
dedicated to creating open standard APIs to enable the authoring and playback of rich media on a wide
variety of platforms and devices.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 57

Algorithm 4: Illustration of Fortran-C-CUDA interface.

In a Fortran file:
use ISO_C_BINDING

type(C_PTR) :: device_array

!... declare a CUDA array of C-pointer type
integer(C_LONG) :: device_ad

!... declare a variable to store the address of device array
Call GPU_alloc(device_array, device_ad, size)

!... Allocates some GPU memories
call GPU_routine(device_array, device_ad, ...)

!... Do some computes on GPU
call GPU_free(device_array, device_ad)

!... Free GPU memories

In a C file:
GPU_alloc_(device_array, device_ad, size) {

cudaMalloc(device_array, size); // CUDA memory allocator
device_ad = (unsigned long) *device_array;}// store explicit address

GPU_routine_(device_array, device_ad) {

device_array = (double*) device_ad;}// find the right memory to proceed
some computes;

GPU_free_(device_array, device_ad) {

device_array = (double*) device_ad;}

cudaFree(device_array); // CUDA memory deallocator

3.2 Using GPU for solving Navier-Stokes equations

As described in Chapter 2, the Navier-Stokes solver is composed mainly of a Helmholtz-

like solver and a Poisson solver. So it is necessary to improve the performance of these

two solvers in order to achieve better performance of the Navier-stokes solver. We explain

in the following how we can use GPU capabilities to attain such a goal.

3.2.1 A GPU Helmholtz-like solver

In this section, we present a Helmholtz solver using GPUs. The method for solving

a Helmholtz-like problem is, as mentioned in Section 2.1, the ADI method. With the

same domain configuration and spatial discretization, the ADI method consists in solving

three tridiagonal systems. Then it is essential for developing the Helmholtz solver to

have an efficient tridiagonal system solver on GPU.

Fig. 3.3 shows how the global computational time is distributed among these tasks when

considering one iteration of the Navier-Stokes solver (CPU code using only MPI) for a

Helmholtz-like problem (mesh size = 2403) on a multicore system of two Intel E5645

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 58

6-core processors. We observe that solving the tridiagonal systems (solve) represents

about 2/3 of the execution time. We also see in this figure that the calculations for

convection and diffusion flux represent about 30% of the total execution time. So it is

also an important aspect to take into account in the design of a GPU Helmholtz solver.

Figure 3.3: Time breakdown in Helmholtz equation (Intel Xeon E5645 2 × 6 cores
2.4 GHz.)

To solve the tridiagonal systems resulting from the ADI method, we implement the

Thomas algorithm on GPU. If the domain has no solid obstacles, the tridiagonal system

is considered as one tridiagonal matrix with multiple right-hand-side vectors. If we look

at Fig. 2.6 and Eq. (2.4), when solving the block tridiagonal subsystem with B, each

tridiagonal block in B is identical. Thus matrix B can be represented by only one of

its tridiagonal block. With this “multiple RHS structure” of the system, we can exploit

parallelism with GPU computing, as will be explained in the remainder.

One important aspect in GPU computing is the manipulation of GPU threads. As

shown in Fig. 3.4, threads are gathered into blocks that form a grid. One thread block is

executed on one streaming multiprocessor. Threads in the same block have faster access

to the shared memory than to the global memory. If possible, it is better to store data

on shared memory for faster I/O operations.

We describe the GPU version of the Thomas algorithm using one GPU. When there are

multiple GPUs, or in other words multiple subdomains, we apply the Schur complement

method described in Section 2.1, which divides the tridiagonal system into smaller ones

and associates each subproblem to one GPU.

As illustrated by the upper part of Fig. 3.5, we store the tridiagonal matrix in the

GPU shared memory so that it is accessible by all threads in the same thread block.

The right-hand side matrix is divided into blocks according to the number of thread

blocks which is a preset parameter. The size of the thread block, or in other words, the

number of threads in one block, is defined by the ratio between the column number of

the right-hand side matrix and the number of blocks. For a problem of size 2563, if we

want to use 32 thread blocks, then the block size should be 2562/32 = 2048. Once the

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 59

Figure 3.4: Illustration of GPU thread, block and grid.

Thread block 0 Thread block 1 Thread block n-1

Thread block i

All thread blocks

thread
0

thread
1

thread
2

thread
m
-1

Figure 3.5: Assignment of tridiagonal matrix and RHS to thread blocks.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 60

input data have been distributed, as shown in the lower part of Fig. 3.5, each thread

block has access to the tridiagonal matrix and one part of the right-hand side matrix.

However, the right-hand-side matrix cannot fit in the shared memory. For the problem

with size 2563, the size of the matrix is 4MB while the size of the shared memory is only

49152 bytes on a Kepler K20 GPU. So we keep the right-hand side matrix in the global

memory and load the row that we want to update into the shared memory as explained

in Algorithm 5.

Recall the Helmholtz-like equations resulting from the ADI method:

(
I − α∆t

Re
∆x

)
T1 = S, (3.1a)(

I − α∆t

Re
∆y

)
T2 = T1, (3.1b)(

I − α∆t

Re
∆z

)
δ
(n+1)
u = T2. (3.1c)

As system (3.1) is solved successively, the solution of the first equation is used as the

right-hand side of the second equation. However, the matrices (I− α∆t

Re
∆x, I− α∆t

Re
∆y

and I − α∆t

Re
∆z) in system (3.1) are tridiagonal only if the variables are ordered with

respect to the solving direction (x, y, z, respectively). So we need a GPU kernel which

deals with the reordering according to the solving direction.

Algorithm 6 is an example of reordering from x→ y → z to y → z → x, where n1, n2, n3

are sizes of variables along the x, y, z directions, respectively.

Another method for solving Eq. (3.1) uses the explicit inverse of matrix B. We can

find in [98] an expression for the inverse of a general non-singular tridiagonal matrix A,

where each component of A−1 can be expressed as

A−1ij =


(−1)i+jcici+1 . . . cj−1θi−1φj+1/θn, i < j,

θi−1φi+1/θn, i = j,

(−1)i+jaj+1aj+2 . . . aiθj−1φi+1/θn, i > j,

(3.2)

where θi verify the recurrence relation,

θi = biθi−1 − ci−1aiθi−2, for i = 2, ...,m,

with initial conditions θ0 = 1 and θ1 = b1, and φi verify the recurrence relation,

φi = biφi+1 − ciai+1φi+2, for i = m− 1, ..., 1,

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 61

Algorithm 5: GPU implementation of Thomas algorithm with multiple RHS.

Data: Copy of the tridiagonal matrix (ld, d, ud) and the RHS vectors bd.
Result: Solution xd (stored in bd).

1 Declare two shared vector s1 and s2
2 Forward elimination:
3 Load row 1 of bd into s1
4 for i = 2, 4, 6, ..., do
5 Load row i of bd into s2
6 Compute the elimination coefficient δi
7 for each thread do
8 Update s2 by s2 += δis1
9 end

10 Store s2 back to bd
11 Load row i+ 1 of bd into s1
12 Compute the elimination coefficient δi+1

13 for each thread do
14 Update s1 by s1 += δi+1s2
15 end
16 Store s1 back to bd
17 end
18 Backward substitution:
19 Load row n of bd into s1
20 for each thread do
21 Update s1 using s1 /= dn s1
22 end
23 Store s1 back to bd
24 for i = n− 1, n− 3, ..., do
25 Load row i of bd into s2
26 for each thread do

27 Update s2 using s2 =
s2− udis1

di
28 end
29 Store s2 back to bd
30 Load row i− 1 of bd into s1
31 for each thread do

32 Update s1 using s1 =
s1− udi−1s2

di−1
33 end
34 Store s1 back to bd
35 end

with initial conditions φm+1 = 1 and φm = bm. We also observe that θm = |A|.

We use formulas (3.2) to compute the inverse of the three tridiagonal matrices of sys-

tem (3.1) in the initialization step of the solver and store the inverse in GPU memory.

The solution of system (3.1) is then computed by the matrix-matrix multiplications.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 62

Algorithm 6: Reorder the solution array from x → y → z to y → z → x.

int id1, id2, id3;
for each thread i do

id1 = i%n1;
id2 = (i%(n1 × n2))/n1;
id3 = i/(n1 × n2);
arraynew[id2 + id3 × n2 + id1 × n2 × n3] = arrayold[i];

end

3.2.2 A GPU Poisson solver

In this section, we will discuss the construction of a Poisson GPU solver using the partial

diagonalization method described in Chapter 1.

Fig. 3.6 represents the time breakdown for one iteration of a Poisson problem (mesh size

= 2403) using a CPU implementation on a multicore system with two Intel E5645 6-core

processors and using only MPI parallelization. According to the partial diagonalization

method mentioned in Section 1.5, the main tasks are base projections and tridiagonal

solves. We observe in Fig. 3.6 that the most time-consuming part is the base projections,

which correspond to matrix-matrix multiplications. In the remainder of this section, we

explain how to improve this calculation using GPU accelerators.

Figure 3.6: Time breakdown in Poisson equation (Intel Xeon E5645 2× 6 cores 2.4
GHz.)

To reduce the execution time spent in matrix-matrix multiplication, we take advantage of

GPU accelerators by calling the MAGMA [10, 93] routine magmablas dgemm. MAGMA

is a dense linear algebra library designed for multicore+GPU heterogeneous/hybrid sys-

tems. It contains most of the BLAS [1] and LAPACK routines modified to use ac-

celerators like GPUs and more recently Intel Xeon Phi co-processors. One remark for

performing the matrix-matrix multiplication is that we need to reorder the variables

according to the considered direction. For example, to compute the new source term

s′, we have to reorder the source array s by the order y → z → x to be able to use

the magmablas dgemm routine to compute Q−1
y s. Next, we have to once again reorder

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 63

the result Q−1y s in the order of x → y → z to perform the second multiplication with

Q−1x . For the same reason, the product Q−1x Q−1y s must be ordered by z → x→ y to fit

into the block tridiagonal structure, and the solution needs to be once again reordered

according to the multiplication factor. The algorithm for the reordering is exactly the

same as Algorithm 6 shown in Section 3.2.1.

Let us now study how to implement on GPU the matrix-matrix multiplication for the

matrices Qi on multiple subdomains. Suppose that the 3D domain is divided into p

subdomains along x direction as shown in Fig. 3.7. According to the principles of

domain decomposition, each subdomain is assigned to one multicore processor Pi and

to one GPU Gi.

P1 P2 . . . Pp

Figure 3.7: 3D domain decomposition along i = 1 direction.

Recall that the Poisson equation is solved via,

(Λx + Λy + ∆z)φ̃ = s̃,

where φ̃ = Q−1y Q−1x φ,

s̃ = Q−1y Q−1x s.

Let us consider for instance the multiplication of Q−1x and s that are used to compute

to projection of source term s̃. As the source array s is already distributed on the cor-

responding processor or accelerator, and its size is often important, we do not want to

re-distribute s by column blocks to perform the usual parallel matrix-matrix multipli-

cation. The redistribution of s can be very expensive especially when s is stored on the

GPU memory. On the other hand, we distribute the matrix Q−1x by column blocks to

the corresponding processor or accelerator as shown in Fig. 3.8.

With Q−1x distributed in blocks, on accelerator Gi, we multiply Qji and si with j =

1, 2, ..., p, where Qji ∈ Rn1×n1 and si ∈ Rn1×(n2×n3). Once all the p multiplications

are performed, we send the results back to processor Pi and we call MPI routines

MPI ALLTOALL and MPI REDUCE to distribute the block multiplication results and to ob-

tain the final multiplication result as shown in Fig. 3.9.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 64

Q11 Q12 . . . Q1p

Q21 Q22 . . . Q2p

...
...

...
...

Qp1 Qp2 . . . Qpp







Q11

Q21

...

Qp1

Q12

Q22

...

Qp2

. . . Q1p

. . . Q2p

...

. . . Qpp

s1
s2

...
sp







s1
 

s2

sp
 

↓
P1

↓
P2

↓
Pp

→ P1

→ P2

→ Pp

Figure 3.8: Distribution of Q−1
1 = {Qij}i=1,...,p;j=1,...,p and s on multiple processors.

P1 → Q11s1 Q21s1 . . . Qp1s1

P2 → Q12s2 Q22s2 . . . Qp2s2

...
...

...
...

Pp → Q1psp Q2psp . . . Qppsp

Q11s1 Q21s1 . . . Qp1s1

Q12s2 Q22s2 . . . Qp2s2

Q1psp Q2psp . . . Qppsp

MPI
ALLTOALL

P1 → Q11s1 Q12s2 . . . Q1psp

P2 → Q21s1 Q22s2 . . . Q2psp

...
...

...
...

Pp → Qp1s1 Qp2s2 . . . Qppsp

Q11s1 Q12s2 . . . Q1psp

Q21s1 Q22s2 . . . Q2psp

Qp1s1 Qp2s2 . . . Qppsp

MPI
REDUCE(+)

P1 →
∑p

l=1Q1lsl

P2 →
∑p

l=1Q2lsl

...

Pp →
∑p

l=1Qplsl

∑p
l=1Q1lsl

∑p
l=1Q2lsl

∑p
l=1Qplsl

Figure 3.9: Matrix-matrix multiplication with multiple subdomains.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 65

To summarize, we compute Qx, Qy, Q
−1
x and Q−1y in the initialization phase and copy

the corresponding column blocks in the associated GPU. While doing the matrix-matrix

multiplication, we first transfer (or not if it is already on the GPU) the source array s to

the GPU and then call the MAGMA routine magmablas dgemm to obtain the blocks Qijsj

which are then sent back to the processor. Then we exchange the necessary information

via MPI routines and send back to GPU the final solution in order to perform the next

multiplication or the tridiagonal solve.

3.2.3 General structure of the GPU solver

In the previous sections, we described our GPU solvers for Helmholtz and Poisson prob-

lem separately. In this section, we will explain how GPU routines are integrated in the

general NS solver.

We described in Chapter 2 a Navier-Stokes solver for shared and distributed memory

architectures. Because of the fast development of GPUs, most of the modern computers

have at least one GPU attached to the CPU host. So if we want our solver to be

for general use, it should exploit the capabilities of GPU for the tasks that are able

to take advantage of them, similarly to the approach described for instance in [11].

However, the solver should be able to work and thus the main structure of the code will

remain unchanged and the use of GPU is considered as an alternative when performing

simulations.

The strategy we applied in developing the code is called the “minimum invasion” method,

meaning that the GPU code should not interfere much with the CPU code. A minimum

interface will be established between these two programs for information exchanges.

Of course, GPU computing is not always the best choice when constructing the Navier-

Stokes solver. As shown in Sections 3.2.1 and 3.2.2, we can identify the most time-

consuming tasks in the Navier-Sokes solver. We choose to add GPU alternatives for

routines dealing with tridiagonal solves and matrix-matrix multiplications. In this way,

if the user chooses to use GPU resources, the solver will execute the GPU version of the

routines. Otherwise, the solver keeps the CPU version and the GPU routines are simply

ignored.

The code structure can be illustrated by Fig. 3.10 showing how GPU computing is

integrated into the Navier-Stokes solver.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 66

• Initialization

– Data initialization: read the input file

– Domain initialization: construct the subdomains

– Fields initialization: allocate arrays

– Operators initialization: construct the tridiagonal matrices for Helmholtz-like
and Poisson problems

– Compute projection matrices Qx, Qy, Q
−1
x , Q−1y if partial diagonalization is

chosen

– Memory transfer: Send the tridiagonal matrices and projection matrices to
device

• Loop on time

– Solve Helmholtz-like problem on device:

∗ Send right-hand sides to device

∗ Perform tridiagonal solve on device

∗ Send solution to host

– Solve Poisson problem

∗ Send right-hand sides to device

∗ Perform matrix-matrix multiplication on device and tridiagonal solve on
device

∗ Send solution to host

– Velocity update

– Store results

• Finalize

Figure 3.10: Solver structure with GPU computing.

3.3 Experimental results

3.3.1 Overview of computational resources

We perform experiments mainly on two machines. The first one, which is used for code

development, is a local workstation in our laboratory. This machine is composed of 2

sockets of one Intel Xeon E5645 hexacore processor and a Tesla C2060 GPU.

The second machine is the Stampede system from Texas Advanced Computing Center

(TACC) already described in Section 2.2.3. In particular we will use the NVIDIA K20

GPUs associated to some of the nodes (128) of Stampede.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 67

3.3.2 Performance of the Helmholtz solver

The 3D Helmholtz test problem that we consider is defined as follows.

{
V(x)− α∆V(x) = S(x), x ∈ Ω = (0, 1)3,

V(x) = 0, x ∈ ∂Ω,
(3.3)

where S = (1 + 3απ2)V, x = (x1, x2, x3) and α = 10−7. The exact solution is:

V(x) =




sin(πx1)sin(πx2)sin(πx3)

sin(πx1)sin(πx2)sin(πx3)

sin(πx1)sin(πx2)sin(πx3)


 .

In Fig. 3.11 we compare the two methods described in Section 3.2.1 for solving the tridi-

agonal systems resulting from Eq. (3.3) for different mesh sizes (Thomas algorithm and

explicit inverse). For both methods we compute the absolute error given by ||u−uh||/
√
N

where u and uh are respectively the exact and approximate solutions. We noticed that

the error is the same for both methods. Regarding the performance, Fig. 3.11 represents

the execution time for the two methods. For instance, for a mesh size of 2563, using an

explicit inverse enables us to gain a factor 4 over the Thomas algorithm. However, as

computing the explicit inverse suits only for problems with same boundary conditions

for each direction, the standard Thomas algorithm will be still useful in more general

Helmholtz problems.

Figure 3.11: Performance of Helmholtz solver using Thomas algorithm and explicit
inverse.

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 68

3.3.3 Performance of the Poisson solver

Let us now consider the following Poisson problem.





∆φ(x) = s(x), x ∈ Ω = (0, 1)3,
∂φ

∂n
(x) = 0, x ∈ ∂Ω,

(3.4)

where s = −π2φ and the exact solution is

φ(x) = cos(πx1)cos(πx2)cos(πx3).

The performance of the Poisson solver is presented in Fig. 3.12. We observe that, when

the problem size grows, the error (same definition as in Section 3.3.2) decreases and the

execution time increases.

Figure 3.12: Performance of Poisson solver.

Tab. 3.1 lists the time breakdown for one iteration of the Helmholtz and Poisson solvers

and compares the performance of the GPU solvers to that of CPU solvers. We observe

that the GPU implementations enable us to accelerate the calculations with roughly a

factor 8 and 5 for the Helmholtz and Poisson solvers respectively when compared to the

CPU solvers using MPI or multithreading. The data transfer from CPU to GPU for

the Helmholtz solver includes three RHS vectors (size 2403) and three inverted matrices

B−1 (2402). For the Poisson solver, the amount is three diagonals of size 2403, one RHS

vector of size 2403, and the matrices Q1, Q
−1
1 , Q2, Q

−1
2 of size 2402. Consequently, the

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 69

data movements for the Poisson solver require 1/3 more time than for the Helmholtz

solver, which is confirmed in Tab. 3.1.

Helmholtz Poisson
(with B−1)

Transfers CPU-GPU (only once) 85 109

Matrix multiplication 216 96

Solution reordering 126 84

Tridiagonal system solve - 165

Total CPU solver (12 MPI procs) 2700 1460

Total CPU solver (12 threads) 2750 1760

Total GPU solver 342 345

Table 3.1: Time (ms) distribution for Poisson and Helmholtz GPU solvers (mesh size
= 2403).

3.3.4 Performance of the hybrid CPU/GPU Navier-Stokes solver

��

���

���

���

���

���

���

���

���

���

����

� � � � �� ��

�
��
�
��
�
�

���������������

Figure 3.13: Time for solving Navier-Stokes equations using CPU/GPU system
(Stampede).

Fig. 3.13 depicts the performance of the Navier-Stokes solver by measuring the execution

time of 10 time iterations for a problem of size 2563. On the x-axis, one node includes

2 Intel Xeon E5 processors and one Kepler K20 GPU. We observe in Fig. 3.13 that the

execution time decreases with the increasing number of computing nodes. We compare

this result to the performance result presented by Fig. 2.17(a) in Section 2.5.2 by com-

puting the acceleration ratio 1− Time(GPU)

Time(CPU)
. We obtain an acceleration of 44.8% with

one node and 34.5% with 32 nodes. The acceleration ratio decreases when we increase

the nodes. This is because in the strong scaling test, the computational workload per

node decreases when we increase the number of nodes. GPU routines are more efficient

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 70

��

��

���

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ���

�
�
�
�
�
�
�

���������������

��������������
�����������������

Figure 3.14: Parallel speedup for CPU/GPU Navier-Stokes solver (Stampede).

when they deal with large amount of data. Thus the acceleration ratio drops with mul-

tiple nodes, illustrating that GPU are less efficient in this case. In Fig. 3.14 we plot the

speedup of the solver (strong scaling). We obtain a speedup of 20 with 32 computing

nodes.

��

����

��

����

��

����

� � � � �� ��

�
��
�
��
�
�

���������������

Figure 3.15: “Weak” scaling performance for Navier-Stokes solver (Stampede).

We also study the “weak” scalability of the solver, with a mesh size per node equal to

643. In this experiment, we increase the number of nodes and measure the execution

time for 10 iterations. We observe in Fig. 3.15 that the execution time increases slightly

with the number of nodes. This behavior is similar to that of Fig. 2.18 in Section 2.5.2.

This is because the amount of information exchanged between nodes is the same in these

Chapter 3. Taking advantage of GPUs in Navier-Stokes equations 71

two tests. Only the execution time for the same number of nodes is different because of

the existence of GPU computing in Fig. 3.15.

3.4 Conclusion of Chapter 3

In this chapter, we explained our motivation for using GPU accelerators in our Navier-

Stokes solver. We designed new algorithms and implementations for the Helmholtz and

Poisson solvers using GPUs and we obtained satisfactory speedups. Then we modified

our Navier-Stokes solver to integrate the new GPU versions for some routines. The

resulting hybrid CPU/GPU Navier-Stokes solver is operational and can be used on

different types of architectures. The experiments using the CPU/GPU solver on a

cluster with up to 32 computational nodes (512 cores and 32 K20 GPUs) show a good

scalability and a gain up to 45% of the execution time when compared to the CPU-

only implementation. Our performance results also show that our GPU solver is more

efficient in large-scale problem simulations. We published some of these results in a

recent publication [101].

Chapter 4

Simulations of Physical Problems

Contents

3.1 Introduction to GPU computing 54

3.2 Using GPU for solving Navier-Stokes equations 57

3.2.1 A GPU Helmholtz-like solver 57

3.2.2 A GPU Poisson solver . 62

3.2.3 General structure of the GPU solver 65

3.3 Experimental results . 66

3.3.1 Overview of computational resources 66

3.3.2 Performance of the Helmholtz solver 67

3.3.3 Performance of the Poisson solver 68

3.3.4 Performance of the hybrid CPU/GPU Navier-Stokes solver . . 69

3.4 Conclusion of Chapter 3 . 71

In the field of computational fluid dynamics, comprehensive benchmarks are very impor-

tant yet numerically challenging. Numerical benchmark cases give people frameworks

to quantitatively explore limits of the computational tools and to validate them. In

this Chapter, we use two benchmark problems for the purpose of validating our numer-

ical solver and assessing its computational efficiency. The first benchmark concerns the

simulation of the evolution of three dimensional Taylor-Green vortices in a 3-periodic

cube. This setting allows us to use GPUs acceleration for the tridiagonal solves of the

linear systems resulting from the ADI (see Section 1.4) and partial diagonalization (see

Section 1.5) methods for the Helmholtz and Poisson problems. The second benchmark

problem concerns the three-dimensional flow around a square cylinder. The presence of

an obstacle (the cylinder) inside the computational domain renders the problem non-

separable. The solver then continues to rely on the ADI method for solving the Helmholtz

73

Chapter 4. Simulations of Physical Problems 74

systems, but no partial diagonalization is made for the Poisson equations. Instead, an

iterative method (SOR with multigrid, see Appendix A) is employed.

The numerical simulations presented in the Chapter were all carried out on the Stampede

system described in Section 2.2.3. The visualization of the flow fields are performed using

ParaView [71].

4.1 Three dimensional Taylor-Green vortices

The three dimensional Taylor-Green vortices benchmark is selected as it gives rise to a

separable problem. It allows for the use of the direct methods designed in the thesis for

the solution of the Helmholtz and Poisson equations. The benchmark is then ideal to

measure the performance of our solver on an heterogeneous architecture.

4.1.1 Benchmark settings

The Taylor-Green (TG) flow is three-dimensional and periodic in all spatial directions.

The dimensionless initial condition of the TG flow is given by

u = sin(x)cos(y)cos(z), (4.1a)

v = cos(x)sin(y)cos(z), (4.1b)

w = 0, (4.1c)

p = p0 +
ρ0
16

(cos(2x) + cos(2y))(cos(2z) + 2), (4.1d)

for (x, y, z) ∈ [−π, π]3. The TG flow is governed by the 3D incompressible Navier-Stokes

equations. The Reynolds number of the flow is here defined as Re =
ρ0V0L

µ
where V0

and L are reference velocity and length. In our tests, we considered Re = 400 and 800,

while simulations are carried out from the initial condition at t = 0 to the final time

tfinal = 20 tc, where tc =
L

V0
is the characteristic convective time.

Regarding the domain decomposition, we used 8 subdomains, 2 along each spatial di-

mension. Each subdomain is assigned to one computational node; thus, the simulation

uses at total 8 nodes. Computations then use 3 mesh sizes 643, 1283, and 2563

Fig. 4.1 shows the initial condition of the flow, where the magnitude of the dimensionless

velocity is plotted. The plot shows the initially regular arrangement of the vortices in

the periodic domain. From this initial condition, the vortices subsequently evolve in

a non-linear fashion, break-up into smaller vortices with the emergence of complicated

small scale structures.

Chapter 4. Simulations of Physical Problems 75

Figure 4.1: Initial status of Taylor-Green vortices problem.

4.1.2 Validation

For the visualization of the flow and the evolution of the vortices, we plot at different

times iso-surfaces of the so-called Q-criterion [49], a quantity classically used in CFD to

extract and visualize coherent eddy structures in turbulent flows [50]. The Q-value is

defined as the second invariant of ∇u. For an incompressible flow, we have

Q =
1

2
(‖Ω‖2 − ‖S‖2).

where S and Ω the symmetric and antisymmetric parts of ∇u respectively, and ‖ · ‖ is

the Euclidean matrix norm. Coherent eddy-structures are then visualized by plotting

the iso-surfaces of Q. In our results, we plot the iso-surface of Q = 0.01.

Fig. 4.2 shows iso-surfaces of the Q-criterion at different times and for Re = 800 with

mesh size 2563. For clarity, only the upper half of the domain is shown. In the plots, the

iso-surfaces are colored by the magnitude of the velocity. We observe that from the very

simple coherent structures at t = 0 (see Fig. 4.2(a)), the flow quickly evolves to a more

complicated pattern of coherent structures at t = 5 convective times (see Fig. 4.2(d)),

and eventually yields coherent structures at smaller and smaller scales, as time further

increases, through vortices reconnection and break-up. The emergence of small scale

structures also highlights the need for a fine mesh to correctly approximate the dynamics

of such small features of the flow during the simulation. In addition, the complexity of

the iso-surface relates to high velocity gradients where viscous dissipation takes place.

The dissipation can be effect of the viscous dissipation can also be appreciated by the

global decay of the velocity magnitude as time advances. Note however the presence

at early time of higher velocity regions, in particular at t = 5 (see dark red areas in

Fig. 4.2(d)), due to the vortex stretching.

Chapter 4. Simulations of Physical Problems 76

(a) Iso-surface of Q = 0.01 at t = 0. (b) Iso-surface of Q = 0.01 at t = 1.

(c) Iso-surface of Q = 0.01 at t = 3. (d) Iso-surface of Q = 0.01 at t = 5.

(e) Iso-surface of Q = 0.01 at t = 10. (f) Iso-surface of Q = 0.01 at t = 20.

Figure 4.2: Iso-surface of Q = 0.01 of Taylor-Green vortices at different times.

The representation of the coherent structures provides of qualitative validation of the

solver. For a quantitative validation we need a better criteria allowing for a comparison

with the results published in the literature. To this end, we shall consider the time

evolution of the dissipation rate [79]. The dissipation rate, 〈ε(t)〉 is defined as the

(negative) instantaneous variation of the averaged kinetic energy, that is

〈ε(t)〉 .= −d 〈k(t)〉
dt

, 〈k〉 =
1

2

[〈
u2
〉

+
〈
v2
〉

+
〈
w2
〉]
.

Fig. 4.3 and 4.4 report the time evolutions of the dissipation rates from our simulations,

Chapter 4. Simulations of Physical Problems 77

at Re = 400 and 800 respectively. For the two Reynolds numbers, computations using

two meshes are contrasted to appreciate the convergence of the simulations. Focusing

first on the case of Re = 400, in Fig. 4.3, we observe that the computed dissipation rates

are the same for the 643 and 1283 meshes up to t ≈ 5. For latter times differences appear

denoting the lack of resolution for the coarser mesh. In particular, the plateau in the

maximum dissipation rate for t ∈ [6, 9] is not well captured for the coarser mesh. In the

case of the larger Reynolds number tested, Re = 800, the simulations for the two meshes

agree better, although the 1283 mesh seems to slightly over estimate the dissipation rate

after the maximum. Again, insufficient discretization is to be blamed.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 5 10 15 20

A
v
e
ra

g
e
 k

in
e
ti

c
d
is

si
p
a
ti

o
n
 r

a
te

Time

Mesh size = 64^3
Mesh size = 128^3

Figure 4.3: Dissipation rate 〈ε(t)〉 at Re = 400, using 643 and 1283 meshes.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 5 10 15 20

A
v
e
ra

g
e
 k

in
e
ti

c
d
is

si
p
a
ti

o
n
 r

a
te

Time

Mesh size = 128^3
Mesh size = 256^3

Figure 4.4: Dissipation rate 〈ε(t)〉 at Re = 800, using 1283 and 2563 meshes.

To complete the validation of the solver on the TG flow benchmark, we compared in

Fig. 4.5 our computation of the dissipation rate 〈ε(t)〉 at Re = 800, using the 2563 global

mesh, with computations reported in the literature [15, 35, 76]. We observe that our

Chapter 4. Simulations of Physical Problems 78

computation agrees well with the reference results. In [76], the mesh sizes are the same

as in our tests for different Re numbers. The authors of [15] have chosen a mesh size of

2563 for all tests with different Re numbers. As for [35], authors have used a high-order

discontinuous Galerkin discretization for the simulation and the result we plotted as

reference was obtained by using 643 degrees of freedom.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 5 10 15 20

A
v
e
ra

g
e
 k

in
e
ti

c
d
is

si
p
a
ti

o
n
 r

a
te

Time

Our result
Reference result (a)
Reference result (b)
Reference result (c)

Figure 4.5: Comparison of our computation for the dissipation rate at Re = 800
with the computations of (a) Ouzzine [76], (b) Brachet et al [15] and (c) Gassner and

Beck [35].

4.1.3 Performance analysis

To quantify the improvements brought by the GPU acceleration developed in the thesis,

we compare in Tab. 4.1 the execution times for different types of parallelization of the

3D Navier-Stokes solver:

• MPI+OpenMP+CUDA: CPU/GPU hybrid parallelization using MPI, OpenMP

and CUDA,

• MPI+OpenMP: parallelization using MPI combined with OpenMP,

The tests were carried out using 8 computational nodes of Stampede (total 128 cores),

for meshes with total sizes, 646, 1283 and 2563, and a Reynolds number Re = 400.

For the time measurement, we use 100 time iterations, without storing the solution.

The initialization and set-up times are also excluded from the time measurements. In

this way, the reported execution times truly represent the computational times spent in

solving NS equations.

Chapter 4. Simulations of Physical Problems 79

Table 4.1 reports the computational times (in second) of one iteration, for the three

meshes and the different parallelizations. We first observe that, as expected, the GPU

acceleration is able to significantly reduce the computational time, for all the mesh sizes

considered. The improvement is quantified by means of the acceleration percentage

defined as

Acceleration percentage = 1− Time(GPU)

Time(CPU)
, (4.2)

where Time(GPU) represents the execution time using the CPU/GPU three-level paral-

lelization and Time(CPU) is the execution time using MPI with OpenMP. The reported

values for the acceleration percentage indicate that the GPU parallelization is becoming

more efficient as the mesh size increases. Specifically, the acceleration relative to the

MPI+OpenMP parallelization goes from ≈ 22% to 36% using meshes 643 and 1283. This

positive trend can be explained by the fact that the GPU better exploits the parallelism

when dealing with large amounts of data. This effect is also visible from the numbers

in red shown in Tab. 4.1, which are the factors in the increase of execution time, with

respect to the 1283 mesh and for each of the parallelizations: while going to the 1283

and 2563 meshes we expect theoretically an increase of computational loads by factors of

8 and 64 respectively, it is seen that the execution times for the MPI+OpenMP+CUDA

parallelization increase only by factors ≈ 7 and ≈ 58 respectively. This finding confirms

the huge potential of using GPUs in large scale CFD simulations.

Mesh size 643 1283 2563

MPI+OpenMP+CUDA 0.028 0.2 (×7.14) 1.62 (×57.85)

MPI+OpenMP 0.036 0.27 (×7.5) 2.53 (×70.3)

GPU Acceleration from MPI+OpenMP 22.2% 25.9% 36%

Table 4.1: Time (s) per iteration of NS solver for Taylor-Green vortices (Re = 400)
on Stampede (128 cores).

4.2 Flow around a square cylinder

The second benchmark considered in the thesis concerns the flow around a square cylin-

der. This benchmark, along with many others, has been defined within a DFG High-

Priority Research Program by Schäfer and Turek [86], and since then has been investi-

gated by many researchers. We can find in [55] and [14] results on this benchmark. In

these articles, Re = 20 and this low Reynolds number leads to a steady flow. For higher

Reynolds number, as the flow becomes unsteady, there is no precisely determined results

[13]. However, we can find simulation results in many publications such as [56, 60, 81].

In our test, we are interested in the unsteady state of the flow around a square cylinder.

Chapter 4. Simulations of Physical Problems 80

As the unsteadiness appears when Re > 45 [96], we choose to study the case where

Re = 50, 100, 150.

4.2.1 Benchmark settings

The configuration consists in a fixed cylinder with square section, having edge length D

and axis in the z-direction. The cylinder is placed in the center of a channel made of two

parallel walls (with normal in the y-direction) separated by a distance H = 10 D. The

distance from the cylinder centerline to the channel entrance is equal to 10D. The inflow

conditions at the channel entrance are set with a bulk velocity Um in the x-direction

with a parabolic velocity profile:
u(0, y, z) = 6Umy/H(1− y/H), (4.3a)

v(0, y, z) = 0, (4.3b)

w(0, y, z) = 0. (4.3c)

The boundary conditions on the walls at y = 0, y = 10 D are homogeneous Dirichlet

conditions u = 0. On the lateral plans, at z = 0 and z = 8, we apply periodic boundary

conditions. On the outlet plan of the channel, at x = 40 D, we apply the Neumann

condition
∂u

∂n
= 0. We also have the flow rate preservation condition to ensure that

the inlet volume equals to the outlet volume. The configuration of the flow domain is

illustrated in Fig. 4.6.

Finally, the discretization of the domain is performed using orthogonal grids matching

the cylinder boundaries. The numerical simulations are carried out using 4 nodes of

Stampede, with 2 subdomains along both x and z directions. No domain decomposition

is used along the y direction, because when sharing the obstacle between subdomains

the iteration method used to solve Poisson equation converges slowly.

4.2.2 Validation

Based on the characteristic velocity Um, length D and fluid viscosity ν, the problem is

entirely defined from the Reynolds number Re =
UmD

ν
, which is set to 100. For this

value of the Reynolds number, the flow around the cylinder is unstable and develops a

pattern of alternated vortices in the wake, the so-called Von-Karman street.

Fig. 4.7 shows fields of the longitudinal component of the velocity at different t, nor-

malized by the convective time tc = D/Um. The plots show the results in a (x, y)-plan

of the domain. We can see that from the inlet with parabolic profile, the flow develops

instabilities behind the cylinder to form the Von-Karman street. The instability grows

Chapter 4. Simulations of Physical Problems 81

Outlet plane

Inlet plane

y

x

z

Parabolic Inlet Outlet

4.5

4.5

1

40

10

8 8

Figure 4.6: The geometry of the 3D laminar flow problem.

as time goes on, to eventually reach a periodic dynamics as expected for the Reynolds

number considered here. Further analysis of the results (not shown) reveals that the

flow is actually two-dimensional (w-component of the velocity is zero), although the

simulation is three-dimensional. This finding demonstrates the correct behavior of the

parallel solver which does not break the z-invariance of the flow by introducing spurious

numerical instabilities.

The Von-Karman street pattern is closely related to the Reynolds number, and we

expect to observe vortex shedding with different wave-length and amplitudes for different

Reynolds numbers. In Fig. 4.8, we plot simulation results for Reynolds numbers of 50,

100 and 150. We see that the shedding is weaker for flows at lower Reynolds numbers:

in Fig. 4.8(a) the shedding is hardly formed while in Fig. 4.8(c) the shedding is very

intense.

The vortex shedding process and the Von-Karman street can be better appreciated in

Fig. 4.9, where plotted is the transverse component of the vorticity field.

For the validation of the numerical simulations we focus on the reduced frequency of the

vortex shredding. To this end, we record the temporal velocity field at two observation

points P1 and P2 in the domain. We set P1 and P2 on the center line of the domain at a

distance of D and 2D respectively from the cylinder in the downstream direction, and

monitor the magnitude of the transverse velocity at P1 and P2. The signals are reported

Chapter 4. Simulations of Physical Problems 82

(a) t = 10. (b) t = 30.

(c) time = 50. (d) time = 70.

Figure 4.7: Longitudinal velocity field at different times. Simulation for Re = 100
with total mesh size = 320× 240× 32.

(a) Re = 50. (b) Re = 100.

(c) Re = 150.

Figure 4.8: Snapshots of the longitudinal velocity field illustrating the structure of
the Von-Karman street at different Reynolds numbers.

Chapter 4. Simulations of Physical Problems 83

Figure 4.9: Transverse component of the vorticity for the flow at Reynolds number
150.

for Re = 150 in Fig. 4.10. The first plot, in Fig. 4.10(a), shows the signals during

the transient time when the wake instability develops; the second plot, in Fig. 4.10(b),

shows the signals after the periodic state has been reached. The spectra of these signal

can be computed to extract their dimensionless fundamental frequency, or Strouhal

number [104], defined by St =
fD

Um
where f denotes the shedding frequency. For our

computation with Re = 150 we found St = 0.144, a value that agrees favorably with

results reported in the literature [6, 36], therefore validating our simulations.

4.2.3 Performance analysis

Next, we look at the performance of the solver on this benchmark. As for the first bench-

mark, we compare the performance of two types of parallelization of the 3D Navier-Stokes

solver. However, because of the obstacle and for the sake of accuracy, we can not perform

the simulation for a too coarse mesh, so that only meshes are used to assess the per-

formances. In addition, the configuration of the domain decomposition can significantly

impact the number of iterations for the convergence of the iterative method, making

difficult a fair comparison of the computational times when changing the configuration

of the domain decomposition. As a result, we choose to report the performances of three

parallelization types for a fixed domain decomposition configuration, and we provide no

complete scalability results for this benchmark.

Table 4.2 reports the execution times (in second per iteration) for the two different par-

allelizations of the NS solver. As previously, we also report the acceleration percentages

defined by Eq. 4.2. It is seen that the use of GPU does not decrease the execution

time significantly. This is due to the fact that most of the execution time (∼ 70%) is

dedicated to solve the Poisson problem, a task completely performed on CPU. In these

tests, only the tridiagonal solves (for the Helmholtz problem using ADI) are performed

on GPUs, and these calculations do not represent a large workload. This percentage is

not constant because for the second mesh, locally coarser, the number of unknowns per

process in smaller than that for the first one. The fork-join operation of threads being

Chapter 4. Simulations of Physical Problems 84

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

La
ti

tu
d
in

a
l
m

a
g
n
it

u
d
e
 o

f
v
e
lo

ci
ty

Time

 P1
 P2

(a) Oscillations begin to form for P1 and P2.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 110 115 120 125 130

La
ti

tu
d
in

a
l
m

a
g
n
it

u
d
e
 o

f
v
e
lo

ci
ty

Time

 P1
 P2

(b) Stable oscillations for P1 and P2.

Figure 4.10: Transverse component of the velocity for observation points P1 and P2.

a constant overhead in both settings, the computational work shared by the threads is

heavier and the final acceleration percentage is higher.

4.3 Conclusion of Chapter 4

In this chapter, the 3D Navier-Stokes solver developed in the thesis has been tested on

two classical benchmarks in CFD, with the osbjective of validating the simulation code

and assessing the performance of the parallelizations.

First, the separable problem of Taylor-Green vortices has been considered. This problem

was solved using direct solvers for the Helmholtz and Poisson problem. GPU accelerators

Chapter 4. Simulations of Physical Problems 85

Number of nodes 1 9
(number of subdomains along each direction) (1, 1, 1) (3, 3, 1)
(mesh size per node) (320× 240× 32) (160× 64× 32)
(total mesh size) (320× 240× 32) (480× 192× 32)

MPI+OpenMP+CUDA 0.98 0.21

MPI+OpenMP 1.07 0.225

GPU acceleration from MPI+OpenMP 8.4% 6.7%

Table 4.2: Time (s) for one NS iteration.

described in Chapter 3 could be used in this case, not only for tridiagonal solves but

also for solving the Poisson equations. We observed several criteria in order to validate

the numerical solutions. We also performed some computations for different types of

parallelization and different mesh sizes. The results confirmed the benefit of using GPUs

for large scale numerical simulations in the domain of fluid dynamics. Specifically, we

obtained an acceleration of up to 36% by integrating GPUs in the Navier-Stokes solver.

Second, the flow around a square cylinder was considered. In this case, the domain

includes one obstacle, making the problem non-separable and requiring an iterative

method to solve the Poisson equation. A combination of SOR and multigrid methods

was used to solve the Poisson problem (while the Helmholtz problem was solved using the

ADI method on GPU). The simulations were first validated by comparing the Strouhal

number of the flow with values reported in the literature. Finally, the investigation of the

parallelization performance has shown that we cannot achieve significant improvement

by using GPU for this problem, because most of the computational time is spent on CPU

by solving the Poisson problem with the iterative method. Future work will investigate

the use of GPUs in iterative methods.

Conclusion

This PhD manuscript described a parallel 3D Navier-Stokes solver that runs efficiently

on different types of architectures and uses GPU accelerators. The solver has been

enhanced thanks to the use of several levels of parallelism based on MPI, OpenMP

and GPU programming. The improvement concerns the solution of the Helmholtz and

Poisson problems that represent the main computational cost of the Navier-Stokes solver,

including also the solution of tridiagonal systems using SIMD vectorization.

Our solver can be used with or without GPU accelerators, depending on the targeted

architecture. It has been tested on various parallel architectures and has shown satis-

factory scalability results. For instance on the Stampede system, we obtained a speedup

of 24 using 32 multicore nodes (total 512 cores), and a speedup of 20 with 32 compute

nodes when using also GPUs. We have also developed independent GPU solvers for

Helmholtz and Poisson problems. Benchmarks on real applications enabled us to vali-

date numerically the computed solutions by comparing them to reference results. We

plan to integrate this solver in a future library for fluid dynamics simulations.

There are still some research directions that deserve further investigations.

This PhD thesis illustrated how it is possible to solve incompressible NS equations by

taking advantage of heterogeneous parallel architectures. However the memory transfers

between the CPU host and the GPU device can still be reduced in a future implementa-

tion. These data movements between CPU and GPU occur for instance in the following

phases: First for every time step, when solving a tridiagonal system, we need to transfer

the right-hand side vectors (that are different for each time step) to the GPU while the

tridiagonal matrix is transferred at once in the initialization phase because the matrix is

constant. The solution of tridiagonal systems are then sent back to the CPU for the next

time iteration. Second, in the Poisson equation, before calling “dgemm” from MAGMA,

we have to send the source matrix (matrix S in Section 3.2.2) to the GPU and receive the

solution matrix φ from the GPU after the MAGMA call. In a next version, it would be

preferable to overlap these memory transfers by computation (e.g., the computation of

the temperature when the temperature is a variable). Another possibility is to use task

87

Conclusion 88

streaming which would allow us to transfer data by blocks and to start the computation

before having the whole amount of data.

Moreover, the Navier-Stokes solver should be also adapted for the Intel Xeon Phi co-

processors in order to take advantage of the large-size register for better performance in

vectorizations. This coprocessor can also be considered as an accelerator by using the

offload execution mode.

The solver could also benefit from closer links with external libraries such as Hypre

that provides many iterative solvers. Indeed, when there are obstacles inside fluid flows

(see Section 4.2), our solver is not applicable and the Hypre library can provide good

performance on CPU architectures (see Section 2.5.3) in the solution of the Poisson

equation (also in the Helmholtz-like equation as a replacement method for ADI). Our

solver could also benefit from some external libraries for which there has been recent

development on GPUs, such as the Paralution [5] library.

Finally our solver, which is developed for simulations of incompressible fluid flows, can

also be adapted to address dilatable flows and low mach number flows. It can also

address the case where Navier-Stokes equations are coupled with transport equations.

Different numerical methods are used in such situations and they are not addressed by

this PhD thesis.

Appendix A

Iterative Methods for Linear

Systems

A.1 Iterative Methods

Direct methods for solving linear systems theoretically give the exact solution in a finite

number of operations. Unfortunately, this is not always true in applications because of

round-off errors. Contrary to direct methods, iterative methods consist in constructing

a series of approximate solutions such that it converges to the exact solution of the

system. The main advantage of an iterative method is that it is self-correcting. In this

appendix, we present some iterative methods for solving a general linear system

Ax = b. (A.1)

where A ∈ Rn×n and x, b ∈ Rn.

A.1.1 Bases of iterative methods

An iterative method for solving the linear system Ax = b constructs a series of approx-

imations xi, i = 0, 1, 2, . . ., which under certain conditions will converge to the exact

solution xe of the system Axe = b. To do so, it is necessary to choose a starting point

x0 and a rule that is iteratively applied to compute xi+1 from xi.

A starting point x0 is usually chosen as an approximation of xe. Next, given xi, i ∈ N,

the next element of the series is computed using a rule of the form

xi+1 = Bixi + Cib , i = 0, 1, 2, . . . , (A.2)

89

Appendix A. Iterative Methods for Linear Systems 90

where Bi, Ci ∈ Rn×n, i ∈ N. Different choices of Bi and Ci define different iterative

methods.

To guarantee the convergence of an iterative method, several conditions must be satisfied.

First of all, it has to satisfy that

Bi + CiA = In,

for all i ∈ N, or equivalently,

xe = Bixe + CiAxe , i ∈ N.

In other words, the exact solution xe is a fixed point of the rule and the method can not

diverge from the exact solution. Secondly, given a starting point x0 6= xe, the rule must

ensure that approximate solution xi converges to xe as i increases.

To satisfy the second condition, we must have

lim
i→∞

BiBi−1 . . . B0 = 0.

If we choose the stationary iterative method, which means that Bi = B for all i, we

must have

ρ(B) < 1, (A.3)

where ρ(B) is the spectral radius of B and ρ(B) = maxi=1,...,n |λi| where the λ are the

eigenvalues of B.

We note that the convergence condition ρ(B) < 1 holds, for example, if ‖B‖ < 1 in any

matrix norm. Moreover, the condition (A.3) guarantees the self-correcting property of

iterative methods since convergence takes place independently of the choice of starting

point x0. Thus, if a round-off errors affect xi during the i−th iteration, xi can always

be considered as a new starting point and the iterative method will further converge.

As a result, the iterative methods are in general more robust than the direct methods.

Of course, an iterative procedure should be kept going until xi = xe. This is impractical

and usually unnecessary. Therefore, a stopping (or convergence) criteria is used to stop

the iterative procedure when a pre-specified condition is met. One of the most used

stopping criteria is based on the change of the solution or residual vector along the

iterations. Specifically, given a small ε > 0, the iterative procedure is stopped after the

i−th iteration when ‖xi − xi−1‖ ≤ ε, ‖ri − ri−1‖ ≤ ε, or ‖ri‖ ≤ ε, where ri = Axi − b
is the residual vector. A maximum number of iterations is also usually specified. If

an iterative methods does not meet the stopping criteria before reaching the maximum

Appendix A. Iterative Methods for Linear Systems 91

iteration number, it is considered to be inefficient. In this case, other methods should

be considered or a preconditioner should be applied.

From the above general principles of iterative methods, several variants can be derived

by choosing different matrices B and C (for stationary iterative methods).

A.1.2 Jacobi method

The Jacobi method is supported by the following observation. Suppose that A have

nonzero diagonal elements. Then the diagonal part D of A is nonsingular and Eq. (A.1)

can be rewritten as Dx + (L + U)x = b where U and L denote the upper and lower

triangular parts of A respectively. As a result,

x = D−1[(−L− U)x+ b]. (A.4)

Replacing x on the left-hand side by xi+1 and x on the right-hand side by xi leads to

the Jacobi iterations:

xi+1 = −D−1(L+ U)xi +D−1b. (A.5)

The intuition of the Jacobi method is very simple: given an approximation xold of the

solution, let us express the k−th component xk of x as a function of the other components

from the k−th equation and compute xnewk given xold:

xnewk =
1

Akk

bk − n∑
j=1

Akjx
old
j

 , k = 1, . . . , n. (A.6)

The convergence condition for Jacobi method is ρ(D−1(L + U)) < 1. This condition is

satisfied for a relatively large class of matrices, including diagonally dominant matrices1

and symmetric matrices2 such thatD, L+D+U , and−L+D−U are all positive definite3.

Although there are many variants of the basic principle of the Jacobi method to improve

the convergence rate, the advantages of this method is a simple and fast implementation:

the computation of a component of the new iterate, xnewk is independent from its other

component, making the Jacobi method embarrassingly parallel.

1Matrices A such that
∑n

j=1,j 6=i |Aij | ≤ |Aii| for i = 1, . . . , n.
2Matrices A such that Aij = Aji.
3A symmetric real matrix A is said to be positive definite if zTAz is positive for every non-zero

column vector z.

Appendix A. Iterative Methods for Linear Systems 92

A.1.3 Gauss-Seidel method

From the decomposition A = D+L+U , similar to the Jacobi method, the Gauss-Seidel

method expresses Eq. (A.1) as

(L+D)x+ Ux = b, (A.7)

which implies

x = (L+D)−1 [−Ux+ b] . (A.8)

This gives us the iteration formula of the Gauss-Seidel method:

xi+1 = −(L+D)−1Uxi + (L+D)−1b, (A.9)

or componentwise

xnewk =
1

Akk

bk − k−1∑
j=1

Akjx
new
j −

n∑
j=k

Akjx
old
j

 , k = 1, . . . , n. (A.10)

The main difference between the Gauss-Seidel and Jacobi methods lies in a more efficient

use of Eq. (A.6). When computing the k−th component of the new approximate solution

xnewk , the first k − 1 elements xnew1 , . . . , xnewk−1 are already known and are assumed to be

more accurate than xold1 , . . . , xoldk−1. Thus, it is possible to use these new values instead

of the old ones and increase the converge rate. Moreover, using this strategy, the newly

computed elements of xnew can directly overwrite the respective elements of xold, with

memory saving as a result. The Gauss-Seidel method’s convergence condition is that

ρ((L+D)−1U) < 1. This condition stands for diagonally dominant and definite matrices.

A.1.4 Successive over-relaxation method

The successive over-relaxation (SOR) method is a further refinement of the Gauss-Seidel

method. By adding and subtracting Dxi in the Gauss-Seidel formula (A.9), we obtain

(D + L)xi+1 = b− (U +D)xi +Dxi, (A.11)

or

xi+1 = xi −D−1 [Lxi+1 + (D + U)xi − b] = xi −∆i, (A.12)

which expresses the next approximate solution with a correction ∆i from xi to xi+1.

It is then natural to question whether the iterations can converge faster if we “overly”

correct xi at each iteration (xi is corrected by a multiple ω of ∆i in each iteration). This

Appendix A. Iterative Methods for Linear Systems 93

idea leads to the SOR formula:

xi+1 = xi − ωD−1 [Lxi+1 + (D + U)xi − b] (A.13)

or in component form

xnewk = ω
1

Akk

bk − k−1∑
j=1

Akjx
new
j −

n∑
j=k

Akjx
old
j

+ (1− ω)xoldk . (A.14)

The parameter ω > 0 is called the (over)relaxation parameter and it can be shown that

SOR can only converge for ω ∈ (0, 2) [57].

A well-selected ω can accelerate the convergence, as measured by the spectral radius

of the corresponding iteration matrix B [42] (a lower spectral radius ρ(B) means faster

convergence).

One important result regarding the value of ω can be found in [105]. Let the matrix

A be two-cyclic consistently ordered4. Then, if the Gauss-Seidel iteration matrix B =

−(L + D)−1U has a spectral radius ρ(B) < 1, the optimal relaxation parameter ω in

SOR is given by

ωopt =
2

1 +
√

1− ρ(B)
, (A.15)

and for this optimal value it holds ρ(B;ωopt) = ωopt − 1.

Using SOR with the optimal relaxation parameter significantly increases the rate of

convergence compared to the Gauss-Seidel method. If ωopt cannot be computed exactly,

it is better to take ω slightly larger than its optimal value, rather than smaller.

A.2 Multigrid methods

Iterative solvers (Jacobi, Gauss-Seidel, SOR) when applied to the resolution of dis-

cretized partial differential equations, e.g. Helmholtz and Poisson equations, have a

tendency to “stall”, i.e. to fail in effectively reducing the residual after several itera-

tions. The problem usually becomes more important when the spatial mesh is refined.

In fact, standard solvers behave much better on coarse meshes. A close inspection of

this behavior reveals that the convergence rate is a function of the error frequency, i.e.

the fluctuation of the error from a grid point to another. The error distributed in high

frequency modes has fast convergence rate and is quickly smoothed-out. However, the

4A matrix A is said to be two-cyclic consistently ordered if the eigenvalues of the matrix M(α) =
αD−1L+ α−1D−1U , α 6= 0, are independent of α.

Appendix A. Iterative Methods for Linear Systems 94

remaining error with low frequency fluctuations has a much lower convergence rate. As

a result, most iterative methods exhibit a number of iterations to reach a converged

solution that is linearly proportional to number of nodes (in one direction). This be-

havior can be rooted out to the fact that during the iterative process, the information

travels over one grid point per iteration, while the convergence requires the information

to travel back and forth through the mesh several times.

To remedy this issue, multigrid methods [16] have been proposed. These methods are

based on the idea of using coarser grids, on which a low frequency error will be seen as

a high frequency one, to improve the convergence rate of iterative methods. Multigrid

methods aim at accelerating the convergence of a basic iterative methods, introducing

a global correction which is accomplished by solving a coarse problem. This principle

involves interpolation between coarser and finer grids [97]. There are many variants

of multigrid algorithms, but the common features (of geometric ones) are a hierarchy

(levels) of discretization (grids) [103], the restriction and prolongation operators to in-

terpolate the residual and solutions between levels, and finally the smoothing procedure.

In summary, the procedure of a multigrid method can be defined in three elementary

steps:

• Smoothing: reducing high frequency errors by solving a residual equation. An

iterative method is usually used for that purpose.

• Restriction: casting the residual error from a fine grid to a coarser one. For

example, we keep the point-wise residual defined on the points shared by two

successive grid levels.

• Prolongation: interpolating a correction computed on a coarse grid into a finer

grid. A weighted mean is often used for the interpolation. For example, on the

finer grid, we keep the value on the shared points and send half of the value to the

neighbor points. In this way, the value on the points which are not defined on the

finer grid is computed by the means of its two neighbors.

A typical multigrid approach is illustrated in Fig. A.1, for the case of a two dimensional

domain. From the finer grid, having 8× 8 cells, a hierarchy of 3 successive coarser grids

is constructed by halving the number of cells in each spatial direction when going to a

level to the next.

Different multigrid algorithms can be constructed from for a hierarchy of grids and

multigrid operators. The most common multigrid algorithms are the V-cycle, W-cycle

and F-cycle. In this thesis, we only consider V-cycle which is also illustrated in Fig. A.1.

Bibliography 95

Figure A.1: V-cycle multigrid scheme

A V-cycle starts on the finer grid, supporting the current approximation of the solu-

tion, where several smoothing iterations are performed to reduce the high frequency

components of the residual. The remaining (low frequency) residual is restricted to the

next coarse grid, where it forms the right-hand side for the problem discretized on the

current grid. Several smoothing iterations are performed to approximate the solution

at the current level, before restricting the remaining residual to the next coarser grid.

The sequence of restriction / smoothing steps is repeated till the coarser grid of the

hierarchy is reached, terminating the first leg of the V-cycle. The second leg of the

V-cycle proceeds from the coarser grid to the finer one. First, the solution obtained on

the coarse grid is prolongated and added to the solution at the next grid level. The

solution at the next level being updated, several smoothing iterations are performed to

further reduce the residual, before before being prolongated and added to the next finer

level solution. This sequence is repeated till the finer grid is reached and the V-cycle

is completed. The convergence criteria is finally checked and if it is not satisfied a new

V-cycle is performed. Clearly, an important parameter of the multigrid algorithm is the

number of smoothing iterations performed at each level. The number of iterations must

be large enough to effectively reduce the high-frequency components of the residual, but

not too large to avoid ineffective iterations when the stagnation occurs.

Bibliography

[1] Basic Linear Algebra Subprograms Technical Forum Standard. Int. J. of High

Performance Computing Applications, 16(1), 2002.

[2] Boost.Thread Web page, 2007. http://www.boost.org/doc/libs/release/

libs/thread/.

[3] Ada reference manual. http://www.ada-auth.org/standards/12rm/html/

RM-TTL.html, 2012.

[4] OpenMP application program interface. version 4.0. http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf, 2013.

[5] PARALUTION Web page. http://www.paralution.com, 2014.

[6] A. Agrawal, L. Djenidi, and R. A. Antonia. Investigation of flow around a pair of

side-by-side square cylinders using the lattice boltzmann method. Computers and

Fluids, 35:1093–1107, 2006.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. SIAM, 1999. Third edition.

[8] J. P. D. Angeli, A. M. P. Valli, N. C. J. Reis, and A. F. D. Souza. Finite difference

simulations of the Navier-Stokes equations using parallel distributed computing.

In 15th Symposium on Computer Architecture and High Performance Computing,

SBAC-PAD’03, pages 149–156, Washington, DC, USA, 2003. IEEE Computer

Society.

[9] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1st edition, 1998.

[10] M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear algebra

for multicore and special purpose architectures. In 9th International Workshop

97

http://www.boost.org/doc/libs/release/libs/thread/
http://www.boost.org/doc/libs/release/libs/thread/
http://www.ada-auth.org/standards/12rm/html/RM-TTL.html
http://www.ada-auth.org/standards/12rm/html/RM-TTL.html
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.paralution.com

Bibliography 98

on State-of-the-Art in Scientific and Parallel Computing, volume 6126-6127 of

PARA’08. Springer-Verlag, 2008.

[11] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and S. Tomov. A class

of communication-avoiding algorithms for solving general dense linear systems on

cpu/gpu parallel machines. In International Conference on Computational Science

(ICCS 2012), volume 9 of Procedia Computer Science, pages 17–26. Elsevier, 2012.

[12] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,

2000.

[13] E. Bayraktar, O. Mierka, and S. Turek. Benchmark computations of 3d laminar

flow around a cylinder with cfx, openfoam and featflow. International Journal of

Computational Science and Engineering, 7(3):253–266, 2012.

[14] M. Braack and T. Richter. Solutions of 3D Navier-Stokes benchmark problems

with adaptive finite elements. Computers & Fluids, 35(4):372–392, 2006.

[15] M. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and U. Frisch.

Small-scale structure of the taylor-green vortex. Journal of Fluid Mechanics, 130:

411–452, 1983.

[16] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathe-

matics of Computation, 31(138):333–390, 1977.

[17] D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods for the

incompressible Navier-Stokes equations. Journal of Computational Physics, 168:

464–499, 2001.

[18] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[19] C. Canuto, M. Hussaini, A. Quateroni, and T. Zang. Spectral Methods, Funda-

mentals in Single Domains. Scientific Computing. Springer, 2006.

[20] A. J. Chorin. A numerical method for solving incompressible viscous flow problems.

Journal of Computational Physics, 2:12–26, 1967.

[21] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of

Computation, 22(104):745–762, 1968.

[22] J. Cohen and M. Garland. Novel architectures: Solving computational problems

with gpu computing. Computing in Science Engineering, 11(5):58–63, 2009.

[23] J. M. Cohen and M. J. Molemaker. A fast double precision CFD code using CUDA.

In 21st International Conference on Parallel Computational Fluid Dynamics (Par-

CFD2009), 2009.

Bibliography 99

[24] G.-H. Cottet and P. Koumoutsakos. Vortex Methods: Theory and Practice. Cam-

bridge University Press, 2000.

[25] V. Delean, P. Jolivet, and F. Nataf. An introduction to domain decomposition

methods: algorithms, theory and parallel implementation. Lecture note, 2015.

[26] S. R. Eddy. Accelerated profile HMM searches. PLoS Computational Biology, 7

(10):e1002195, 2011.

[27] D. F. Elger, B. C. Williams, C. T. Crowe, and J. A. Roberson. Engineering Fluid

Mechanics. Wiley, 10th edition, 2012.

[28] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Number

159 in Applied Mathematical Sciences. Springers, 2004.

[29] P. Estérie, M. Gaunard, J. Falcou, J.-T. Lapresté, and B. Rozoy. Boost.SIMD

generic programming for portable SIMDization. In 21st International Conference

on Parallel Architectures and Compilation Techniques, PACT ’12, pages 431–439,

New York, NY, USA, 2012. ACM.

[30] M. Fatica and W.-K. Jeong. Accelerating MATLAB with CUDA. the High Per-

formance Embedded Computing (HPEC) Workshop, 2007.

[31] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer,

3rd edition, 2002.

[32] M. P. I. Forum. MPI : A Message-Passing Interface Standard. Int. J. Supercom-

puter Applications and High Performance Computing, 1994.

[33] Y. Fraigneau. Principes de base des méthodes numériques utilisées dans le code

SUNFLUIDH pour la simulation des écoulements incompressibles et à faible nom-

bre de mach. Tech. Rep. 2013-09, LIMSI, 2013.

[34] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,

R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a

next generation MPI implementation. In Proceedings, 11th European PVM/MPI

Users’ Group Meeting, pages 97–104, 2004.

[35] G. J. Gassner and A. D. Beck. On the accuracy of high-order discretizations for un-

derresolved turbulence simulations. Theoretical & Computational Fluid Dynamics,

27(3/4):221–237, 2013.

[36] B. Gera, K. S. Pavan, and R. K. Singh. CFD analysis of 2D unsteady flow around

a square cylinder. International Journal of applied engineering research, 1(3):

602–610, 2010.

Bibliography 100

[37] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokes

equations. Lecture Notes in Mathematics, Berlin Springer Verlag, 749, 1979.

[38] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid

Dynamics : A Practical Introduction. Society for Industrial and Applied Mathe-

matics, 1998.

[39] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press, 1999.

[40] J.-L. Guermond. Remarques sur les méthodes de projection pour l’approximation

des équations de Navier-Stokes. Numerische Mathematik, 67(4):465–473, 1994.

[41] M. D. Gunzburger. Finite Element Methods For Viscous Incompressible Flows: A

Guide To Theory, Practice, And Algorithms. Academy Press, 1989.

[42] A. Hadjidimos. Successive overrelaxation (SOR) and related methods. Journal of

Computational and Applied Mathematics, 123(1-2):177–199, 2000.

[43] G. Hager and G. Wellein. Introduction to High Performance Computing for Sci-

entists and Engineers. CRC Press, 2011.

[44] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations

I: Nonstiff problems. Springer Verlag, 2nd edition, 1993.

[45] G. J. Haltiner. Numerical Weather Prediction. John Wiley & Sons, 1971.

[46] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface. Physics of Fluids, 8(12):2182–2189,

1965.

[47] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algo-

rithms, Analysis and Applications. Number 54 in Texts in Applied Mathematics.

Springers, 2008.

[48] W. Hundsdorfer. Partially implicit BDF2 blends for convectioni dominated flows.

SIAM Journal on Numerical Analysis, 38(6):1763–1783, 2001.

[49] J. C. R. Hunt, A. A. Wray, and P. Moin. Eddie, Stream, and Convergence Zones

in Turbulent Flows. Technical Report CTR-S88, Center for Turbulence Research,

1988.

[50] A. K. M. F. Hussain. Coherent structures and turbulence. Journal of Fluid Me-

chanics, 173(303-356), 1986.

Bibliography 101

[51] Intel. Math Kernel Library (MKL), 2014. https://software.intel.com/en-us/

intel-mkl.

[52] R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-

splitting. Journal of Computational Physics, 62:40–65, 1986.

[53] A. Jameson. Computational aerodynamics for aircraft design. Science, 245(361-

371), 1989.

[54] J. Jim Douglas. Alternating direction methods for three space variables. Nu-

merische Mathematik, 4(1):41–63, 1962.

[55] V. John. Higher order finite element methods and multigrid solvers ina benchmark

problem for the 3D Navier-Stokes equations. International Journal for Numerical

Methods in Fluids, 40(6):775–798, 2006.

[56] V. John. On the efficiency of linearization schemes and coupled multigrid meth-

ods in the simulation of a 3d flow around a cylinder. International Journal for

Numerical Methods in Fluids, 50:845–862, 2006.

[57] W. Kahan. Gauss-Seidel methods of solving large systems of linear equations. PhD

thesis, University of Toronto, Canada, 1958.

[58] J. Kim and P. Moin. Application of a fractional-step method to incompressible

Navier-Stokes equations. Journal of Computational Physics, 59(2):308–323, 1985.

[59] Z. Kopal. Tables of supersonic flow around cones. Massachusetts Institute of

Technology, 1947.

[60] I. M. Kozlov, K. V. Dobergo, and N. N. Gnesdilov. Application Of RES methods

for computation of hydrodynamic flows by an example of 2D flow past a circular

cylinder for Re=5-200. International Journal of Heat and Mass Transfer, 54:887–

893, 2011.

[61] J. H. Krüger. A GPU Framework for Interactive Simulation and Rendering of

Fluid Effects. Dissertation, Technische Universität München, München, 2006.

[62] H. Lamb. Hydrodynamics. Cambridge University Press, 1895.

[63] HYPRE Reference Manual version 2.9.0b. Lawrence Livermore National Labora-

tory, 2012.

[64] R. J. LeVeque. Numerical Methods for Conservation Laws. Lectures in Mathe-

matics. ETH Zurich. Birkhäuser, 2nd edition, 1992.

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl

Bibliography 102

[65] S. Li and W. K. Liu. Meshfree and particle methods and their applications. Applied

Mechanics Review, 55:1–34, 2002.

[66] P.-L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H.

Golub, G. A. Meurant, and J. Périaux, editors, First International Symposium

on Domain Decomposition Methods for Partial Differential Equations, pages 1–

42. SIAM, 1988.

[67] P. Lynch. The Emergence of Numerical Weather Prediction. Cambridge University

Press, 2006.

[68] B. Massey. Mechanics of Fluids. Taylor & Francis, 8 edition, 2006.

[69] MPI: A Message-Passing Interface Standard Version 3.0. Message Passing Inter-

face Forum, 2012.

[70] P. Micikevicius. 3D finite difference computation on GPUs using CUDA. In 2nd

Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-

2, pages 79–84. ACM, 2009.

[71] K. Moreland. The ParaView tutorial, version 4.1. Technical Report SAND 2013-

6883P, Sandia National Laboratories, 2013.

[72] C. A. d. Moura and C. S. Kubrusly. The Courant-Friedrichs-Lewy (CFL) Condi-

tion: 80 Years After Its Discovery. Birkhäuser Basel, 2012.

[73] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Programming

with CUDA. ACM Queue, 6(2):40–53, 2008.

[74] NAG Parallel Library Manual. The Numerical Algorithms Group (NAG), Oxford,

United Kingdom, 2000.

[75] J. Oliger and A. Sundström. Theoretical and practical aspects of some initial

boundary value problems in fluid dynamics. Appl. Math., 35(3):419–446, 1978.

[76] K. Ouzzine. Étude d’une classe de schémas numériques de haute précision et mise

en œuvre sur le cas du tourbillon de Taylor-Green. Master’s thesis, Université

Pierre & Marie Curie, 2013.

[77] R. L. Panton. Incompressible Flow. John Wiley & Sons, 4th edition, 2013.

[78] R. Peyret. Spectral Methods for Incompressible Viscous Flow. Springer Science &

Bussiness Media, 2002.

[79] S. B. Pope. Turbulent Flows. Cambridge University Press, 2011.

Bibliography 103

[80] A. Quarteroni and A. Valli. Domain Decomposition ethods for Partial Differential

Equations. Oxford University Press, 1999.

[81] B. N. Rajani, A. Kandasamy, and S. Majumdar. Numerical simulation of laminar

flow past a circular cylinder. Applied Mathematics Modeling, 33:1228–1247, 2009.

[82] R. Rannacher. Finite element methods for the incompressible Navier-Stokes equa-

tions. In G. P. Galdi, J. G. Heywood, and R. Rannacher, editors, Fundamental

directions in mathematical fluid mechanics, pages 191–293. Birkhäuser, 2000.

[83] S. M. Richardson. Fluid Mechanics. New York : Hemisphere Pub. Corp., 1989.

[84] B. Riviere. Discontinuous Galerkin Methods For Solving Elliptic And Parabolic

Equations: Theory and Implementation. Society for Industrial and Applied Math-

ematics, Philadelphia, PA, USA, 2008.

[85] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2nd edition, 2003.

[86] M. Schäfer and S. Turek. Benchmark computations of laminar flow around a

cylinder. In E. Hirschel, editor, Flow Simulation with High-Performance Com-

puters II. DFG priority research program results 1993-1995, number 52, pages

547–566. Vieweg, 1996.

[87] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren. Viertel-

jahrsschrift der Naturforschenden Gesellschaft in Zürich, 18:272–286, 1870.

[88] J. Stam. Stable fluids. In 26th Annual Conference on Computer Graphics and In-

teractive Techniques, SIGGRAPH’99, pages 121–128, New York, NY, USA, 1999.

ACM Press/Addison-Wesley Publishing Co.

[89] J. Steinhoff and D. Underhill. Modification of the Euler equation for “vortivity

confinement” - Application to the computation of interacting vortex rings. Physics

of Fluids, 6(8):2738–2744, 1994.

[90] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using

the finite element technique. Computers & Fluids, 1(1):73 – 100, 1973.

[91] J. C. Thibault and I. Senocak. CUDA implementation of a Navier-Stokes solver on

multi-GPU desktop platforms for incompressible flows. In 47th AIAA Aerospace

Sciences Meeting, 2009.

[92] L. H. Thomas. Elliptic problems in linear differential equations over a network.

Technical report, Columbia University, 1949.

Bibliography 104

[93] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid

GPU accelerated manycore systems. Parallel Computing, 36(5/6):232–240, 2010.

[94] A. Toselli and O. Widlund. Domain Decomposition Methodes - Algorithms and

Theory. Springer, 2005.

[95] N. Trevett. OpenCL introduction. Khronos Group, 2013.

[96] D. J. Tritton. Physical fluid dynamics. Oxford University Press, 2nd edition, 1987.

[97] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,

2001.

[98] R. A. Usmani. Inversion of a tridiagonal Jacobi matrix. Linear Algebra and its

Applications, 212-213:413–414, 1994.

[99] H. von Helmholtz. Über integrale der hydrodynamischen gleichungen, welcher der

wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik,

55:25–55, 1858.

[100] Y. Wang, M. Baboulin, J. Dongarra, J. Falcou, Y. Fraigneau, and O. L. Mâıtre.

A parallel solver for incompressible fluid flows. Procedia Computer Science, 18:

439–448, 2013.

[101] Y. Wang, M. Baboulin, K. Rupp, O. Le Mâıtre, and Y. Fraigneau. Solving 3D In-

compressible Navier-Stokes Equations on Hybrid CPU/GPU Systems. In Proceed-

ings of the High Performance Computing Symposium, HPC’14, pages 12:1–12:8,

San Diego, CA, USA, 2014. Society for Computer Simulation International.

[102] J. F. Wendt, editor. Computational Fluid Dynamics: An Introduction. Springer,

3rd edition, 2010.

[103] P. Wesseling. An introduction to Multigrid methods. John Wiley & Sons, 1992.

[104] F. W. White. Fluid Mechanics. McGraw Hill, 4th edition, 1999.

[105] D. Young. Iterative methods for solving partial differential equations of elliptic

type. Transactions of the American Mathematical Society, 76(1):92–111, 1954.

[106] D. F. Young, B. R. Munson, T. H. Okiishi, and W. W. Huebsch. A brief introduc-

tion to fluid mechanics. John Wiley & Sons, 5th edition, 2010.

[107] F. Zhang. The Schur Complement and its Applications. Springer, 2006.

	Résumé
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	1 Navier-Stokes equations
	1.1 Computational fluid dynamics and Navier-Stokes equations
	1.1.1 Fluid mechanics
	1.1.2 Equations of fluid dynamics
	1.1.3 The dimensionless Navier-Stokes equations

	1.2 Numerical methods for the incompressible Navier-Stokes equations
	1.3 Incremental prediction-projection method
	1.4 Solution of the Helmholtz system
	1.5 Solution of the Poisson equation
	1.6 Spatial discretization
	1.6.1 Staggered mesh
	1.6.2 Spatial discretization for the Navier-Stokes equation

	1.7 Conclusion of Chapter 1

	2 Parallel algorithms for solving Navier-Stokes equations
	2.1 Domain decomposition approach
	2.2 Multi-level parallelism
	2.2.1 Shared memory architecture
	2.2.2 Distributed memory architecture
	2.2.3 Combining shared and distributed memory systems

	2.3 General structure of the solver
	2.4 Accelerating the solution of the tridiagonal systems
	2.5 Performance results for Navier-Stokes computations
	2.5.1 Shared memory with pure MPI programming model
	2.5.2 Performance using MPI + OpenMP
	2.5.3 Performance comparison with an iterative method

	2.6 Conclusion of Chapter 2

	3 Taking advantage of GPU in Navier-Stokes equations
	3.1 Introduction to GPU computing
	3.2 Using GPU for solving Navier-Stokes equations
	3.2.1 A GPU Helmholtz-like solver
	3.2.2 A GPU Poisson solver
	3.2.3 General structure of the GPU solver

	3.3 Experimental results
	3.3.1 Overview of computational resources
	3.3.2 Performance of the Helmholtz solver
	3.3.3 Performance of the Poisson solver
	3.3.4 Performance of the hybrid CPU/GPU Navier-Stokes solver

	3.4 Conclusion of Chapter 3

	4 Simulations of Physical Problems
	4.1 Three dimensional Taylor-Green vortices
	4.1.1 Benchmark settings
	4.1.2 Validation
	4.1.3 Performance analysis

	4.2 Flow around a square cylinder
	4.2.1 Benchmark settings
	4.2.2 Validation
	4.2.3 Performance analysis

	4.3 Conclusion of Chapter 4

	A Iterative Methods for Linear Systems
	A.1 Iterative Methods
	A.1.1 Bases of iterative methods
	A.1.2 Jacobi method
	A.1.3 Gauss-Seidel method
	A.1.4 Successive over-relaxation method

	A.2 Multigrid methods

