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Résumé

Le contrôle de systèmes industriels à cause de l'automatisation et la réduction de nombre des opérateurs devient un enjeu crucial. Les systèmes de production automatisés (AMS) sont d'autant plus touchés car une défaillance du programme de contrôle peut réduire considérablement la productivié voire entraôner l'arrêt du système de production. Pour certains de ces systèmes où le partage des ressources est pondérant, la notion de blocage partiel ou global est fréquente et la validation avant implantation est préférable pour réduire les risques.

En raison de la capacité des réseaux de Petri à décrire aisément l'exécution concurrente des processus et le partage des ressources, de nombreuses méthodes de vérification d'absence de blocage et de synthèse de contrôleurs basées sur la théorie structurelle ou le graphe d'accessibilité des réseaux de Petri ont été proposées au cours des deux dernières décennies. Traditionnellement, une méthode de prévention de blocage est évaluée selon trois critères de performance : la complexité structurelle, la permissivité comportementale, et la complexité de calcul. Les méthodes fondées sur l'espace d'état aboutissent généralement à un contrôle maximal permissif mais souffrent de l'explosion combinatoire de l'espace d'états. En revanche, les méthodes de synthèse de contrôleurs fondées sur l'analyse structurelle évitent le problème de l'explosion de l'espace d'état mais aboutissent à des superviseurs pouvant restreindre considérablement les comportements admissibles du système. De plus si la théorie structurelle de contrôle de siphons pour la synthèse des superviseurs est mature dans le cas des réseaux de Petri ordinaires, elle est en développement pour les réseaux de Petri généralises. Par ailleurs, la plupart des travaux existants partent du principe que les ressources sont constamment disponibles. Or l'indisponibilité de ressources est en réalité un phénomène ordinaire. Il serait donc judicieux de développer une politique de vérification de blocage qui soit efficace tout en considérant des ressources non fiables.

Cette thèse vise principalement à faire face aux limitations mentionnées ci-dessus. Nos princi-pales contributions à la fois théoriques et algorithmiques sont les suivantes.

Premièrement, après avoir revisité les conditions de contrôlabilité des siphons (cs-propriété) et précisé les limitations des max, max et max -cs-propriétés, nous définissons la max * -cs-propriété et nous démontrons que cette nouvelle propriété est une condition non seulement suffisante mais aussi nécessaire pour la vivacité de la classe des GS 3 PR (Generalized Systems of Simple Sequential Processes with Resources). Par la suite nous montrons comment le problème de la vérification de cette propriété et donc la vivacité des GS 3 PR peut se ramener à la résolution d'un programme linéaire en nombre entiers.

Dans une seconde partie, nous proposons une classe de réseaux de Petri appelée M-Nets dotée d'une forte capacité de modélisation des systèmes de production automatisés. En combinant la théorie du contrôle siphon avec la théorie des régions, nous développons une méthode de prévention de blocage ayant un bon compromis entre l'optimalité du comportement et la complexité de calcul. De plus, nous proposons une méthode de synthèse d'un contrôleur maximal permissif pour une sous-classe de réseaux notée β-nets basée sur des distributions de jetons dans les siphons et évitant la génération du graphe d'accessibilité ainsi que l'énumération des siphons minimaux.

Enfin, nous proposons dans cette thèse une méthode de conception d'un superviseur de systèmes de production automatisés où les ressources ne sont pas toutes fiables et particulièrement efficace pour les systèmes pouvant être modélisés par les réseaux S 3 PR (Systems of Simple Sequential Processes with Resources).

Mots clés : Systèmes de production automatisés, réseaux de Petri, blocage, siphon, synthèse de contrôleurs.

Abstract

Because of automation and reduction of the number of operators, the control of industrial systems is becoming a critical issue. For automated manufacturing systems (AMS) where resource sharing is preponderant, the notion of partial or total blocking is frequent and validation before implementation is preferable to reduce the risks.

Due to the easy and concise description of the concurrent execution of processes and the resource sharing by Petri nets, many methods to verify deadlock-freeness and to synthesize controllers using structural theory or reachability graph have been proposed over the past two decades.

Traditionally, a deadlock control policy can be evaluated by three performance criteria : structural complexity, behavioral permissiveness, and computational complexity. Generally, deadlock control policies based on the state space analysis can approach the maximal permissive behavior, but suffer from the state explosion problem. On the contrary deadlock control policies based on the structural analysis of Petri nets avoid in general the state explosion problem successfully, but cannot lead to the maximally or near maximally permissive controller. Moreover, the current deadlock control theory based on siphons is fairly mature for ordinary Petri nets, while for generalized Petri nets, it is presently at an early stage. On the other hand, most deadlock control policies based on Petri nets for AMS proceed on the premise that the resources in a system under consideration are reliable. Actually, resource failures are inevitable and common in most AMS, which may also cause processes to halt. Therefore, it is judicious to develop an effective and robust deadlock control policy considering unreliable resources. This thesis aims to cope with the limitations mentioned above. Our main theoretical and algorithmic contributions are introduced as the following.

Firstly, after revisiting the controllability conditions of siphons and limitations of max, max , and max -controlled siphon properties (cs-properties), we define the max * -cs-property and prove that this new cs-property is not only sufficient but also a necessary liveness condition for generalized systems of simple sequential processes with resources (GS 3 PR). Moreover, we show the verification of this property and hence liveness of GS 3 PR nets can be translated into resolution of an integer programming (IP) model.

Secondly, we propose a class of manufacturing-oriented Petri nets, M-nets for short, with strong modeling capability. Combining siphon control and the theory of regions, we develop a deadlock prevention method that makes a good trade-off between behavioral optimality and computational tractability. Moreover, this thesis proposes a maximally permissive control policy for a subclass of Petri nets (called β-nets) based on the token distribution patterns of siphons and avoiding the generation of reachability graphs and enumeration of minimal siphons.

Finally, we propose a design method of robust liveness-enforcing supervisors for AMS with unreliable resources. The proposed method is appropriate in particular for plants which can be modeled by systems of simple sequential processes with resources (S 3 PR). 3 PR net (N, M 0 ), (b) a live GS 3 PR with a non-max-controlled siphon. . . 3 PR with a non-max -controlled siphon. . . . . . . . . . . . . . . . . . 3 PR with a non-max -controlled siphon. . . . . . . . . . . . . . . . . 
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Introduction

Technological revolution in our real-world increasingly requires new techniques for the synthesis and verification of complex systems such as automated manufacturing systems (AMS), communication networks, communication systems, and traffic control systems. An AMS is readily represented in a logical form as discrete event systems (DES). Petri nets are well suitable to describe AMS' behavior and characteristics such as concurrency, conflict, and causal dependency.

They can be used to reveal such behavioral properties as liveness, and boundedness via a Petri net formalism [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Ezpeleta | A class of well structured Petri nets for flexible manufacturing systems[END_REF]. Compared to finite state automata that are extensively used in the DES framework, Petri nets offer a compact representation of DES, as they do not represent explicitly the state space of the system. This thesis addresses new methodologies for the supervisory control of AMS. This introductory chapter first provides the background of AMS and their deadlock problems and resolution.

Subsequently, liveness-enforcing supervision for AMS with and without unreliable resources are briefly discussed and research issues to be addressed are exposited. Finally, the thesis organization is presented.

Background

Competition among the world's major industrial nations has renewed interest in the issues of increasing productivity through state-of-the-art manufacturing technologies. Such a technological edge can be achieved through the development and deployment of advanced automated manufacturing systems (AMS). An AMS is a new type of manufacturing pattern with a computer-controlled configuration to automatically produce different products. There are three main systems in most AMS : (1) work machines to perform a series of operations, (2) an integrated material transport 1. BACKGROUND system with a computer to control the flow of materials, tools, and information throughout the system, and (3) auxiliary work stations for loading and unloading, cleaning, inspection, etc.

To effectively utilize the precious resources, they must be shared and carefully coordinated among various competing jobs. The high level of resource sharing may lead to circular wait conditions, the cause of deadlocks in which each of a set of two or more jobs keeps waiting indefinitely for the other jobs in the set to relinquish resources that they hold. Deadlocks and related blocking phenomena can give rise to unnecessary productivity loss, and even catastrophic results in some highly automated systems such as semiconductor manufacturing. It is therefore necessary to explore an effective and computationally efficient mechanism to properly allocate resources such that deadlocks can never occur. With the wide application of AMS, their deadlock control problem has been extensively studied over the last two decades, leading to significant theoretical results and successful industrial applications [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF], [START_REF] Huang | Siphon-based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Li | Liveness-enforcing supervisor design for a class of generalized Petri net models of flexible manufacturing systems[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Luo | Supervisor synthesis for enforcing a class of generalized mutual exclusion constraints on Petri nets[END_REF], [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF].

Generally speaking, deadlocks in an AMS are considered to be a result of (1) shortage of system resource, (2) improper order of process execution, and (3) misallocation of resources. In summary, there are four conditions for a deadlock to occur, known as the Coffman conditions [START_REF] Coffman | Systems deadlocks[END_REF].

1. Mutual exclusion condition : a resource that cannot be used by more than one process at a time ;

2. Hold and wait condition : processes already holding resources may request new resources held by other processes ; 3. No pre-emption condition : no resource can be forcibly removed from a process holding it, resources can be released only by the explicit action of the process ; 4. Circular wait condition : two or more processes form a circular chain where each process waits for a resource that the next process in the chain holds.

The first three conditions are necessary but not sufficient for a deadlock to exist. For a deadlock to actually take place, the fourth condition is required. That is to say, once a deadlock occurs, all the four conditions must hold. On the contrary, a deadlock will never occur if one of these conditions is not satisfied.

Removing the "mutual exclusion" condition means that no process may have exclusive access to a resource. This proves impossible for resources that cannot be spooled, and even with spooled 1. BACKGROUND resources deadlock could still occur.

The "hold and wait" condition may be removed by requiring processes to request all the resources they will need before starting up. This advance knowledge is frequently difficult to satisfy and, in any case, is an inefficient use of resources. Another way is to require processes to release all their resources before requesting all the resources they will need. This is often impractical.

The "no pre-emption" condition may also be difficult or impossible to avoid as a process has to be able to have a resource for a certain amount of time, or the processing outcome may be inconsistent or thrashing may occur. However, the inability to enforce pre-emption may interfere with a priority algorithm.

The "circular wait" condition may be prevented by establishing off-line a precedence to each resource and forcing processes to request resources in order of increasing precedence. This forces resource allocation to follow a particular and non-circular ordering. Hence, circular wait cannot occur.

The necessity of the four conditions for a deadlock to occur leads us to infer that negating one of them makes impossible the occurrence of deadlocks in an AMS. The physical characteristics and technical background of an AMS show that the first three deadlock conditions always hold and the only feasible doorway to eliminate deadlocks is to falsify the circular wait condition [START_REF] Fanti | Deadlock control methods in automated manufacturing systems[END_REF].

Deadlocks can be addressed by different approaches, generally classified into three categories : deadlock detection and recovery [START_REF] Viswanadham | Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models[END_REF], [START_REF] Wysk | Resolution of deadlocks in flexible manufacturing systems : avoidance and recovery approaches[END_REF], [START_REF] Kumaran | A structured approach to deadlock detection, avoidance and resolution in flexible manufacturing systems[END_REF], [START_REF] Zhou | Petri net synthesis for discrete event control of manufacturing systems[END_REF], deadlock prevention [3], [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF], [START_REF] Fanti | Deadlock control methods in automated manufacturing systems[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Jeng | Deadlock detection and prevention of automated manufacturing systems using Petri nets and siphons[END_REF], and deadlock avoidance [START_REF] Viswanadham | Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models[END_REF], [2], [94], [START_REF] Wu | Necessary and sufficient conditions for deadlock-free operation in flexible manufacturing systems using a colored Petri net model[END_REF], [START_REF] Wu | Avoiding deadlock and reducing starvation and blocking in automated manufacturing systems based on a Petri net model[END_REF], [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF], [START_REF] Wu | Modeling and deadlock control of automated guided vehicle systems[END_REF], [START_REF] Wu | Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles[END_REF], [START_REF] Wu | Deadlock resolution in automated manufacturing systems with robots[END_REF].

The deadlock detection and recovery is an optimistic strategy that grants a resource to a request as long as it is available. A detection algorithm is used to detect the occurrence of deadlocks.

Once detected, a recovery mechanism is initialized by aborting one or more processes involved in a deadlock and the resources held by the aborted processes are relinquished. A deadlock detection and recovery strategy is often used in the case where deadlocks are infrequent and their consequence is not serious. It should be noted that this strategy is in general undesirable based on the performance studies [START_REF] Zhou | Deadlock avoidance methods for a distributed robotic system : Petri net modeling and analysis[END_REF].

In the deadlock avoidance strategy, a resource is granted to a process only if the resulting state is not a deadlock. In order to decide whether the forthcoming state is safe after a resource is 2. LITERATURE REVIEW allocated to a process, every cell controller and global controller need to keep track of the global system state. Some aggressive deadlock avoidance policies do not eliminate all deadlock states [START_REF] Wu | Necessary and sufficient conditions for deadlock-free operation in flexible manufacturing systems using a colored Petri net model[END_REF].

The deadlock prevention is a static strategy that imposes restrictions on the interactions among resources and processes such that resource requests that may lead to deadlocks are prevented. Deadlock prevention does not suffer from the danger of system stoppage and thus is used extensively.

The synthesis and implementation of a deadlock resolution policy can be done based on a number of different formal models of AMS such as digraphs, automata, and Petri nets [START_REF] Fanti | Deadlock control methods in automated manufacturing systems[END_REF]. Digraphs are a simple and intuitive tool to describe interactions between operations and resources, from which a deadlock control policy can be derived. The representative research groups are led by Wysk [START_REF] Wysk | Resolution of deadlocks in flexible manufacturing systems : avoidance and recovery approaches[END_REF], [START_REF] Wysk | Detection of deadlocks in flexible manufacturing cells[END_REF], and Fanti [START_REF] Fanti | Digraph-theoretic approach for deadlock detec-BIBLIOGRAPHIE tion and recovery in flexible production systems[END_REF], [START_REF] Fanti | Deadlock detection and recovery in flexible production systems with multiple capacity resources[END_REF], [START_REF] Fanti | Performance of deadlock avoidance algorithms in flexible manufacturing systems[END_REF], [START_REF] Fanti | Event-based feedback control for deadlock avoidance in flexible production systems[END_REF], [START_REF] Fanti | Event control for deadlock avoidance in production systems with multiple capacity resources[END_REF], [START_REF] Fanti | Comparing digraph and Petri net ap-proaches to deadlock avoidance in FMS[END_REF], [START_REF] Fanti | Distributed event-control for deadlock avoidance in automated manufacturing systems[END_REF], [START_REF] Fanti | Event-based controller to avoid deadlock and collisions in zone control AGVs[END_REF], [START_REF] Fanti | Design of supervisors to avoid deadlock in flexible assembly systems[END_REF]. Based on formal languages and finite automata, supervisory control theory (SCT) [START_REF] Ramadge | The control of discrete event systems[END_REF] originated by Ramadge and Wonham provides a comprehensive and structural treatment of the modeling and control of DES.

As an important paradigm, SCT has a profound influence on the supervisory control of AMS under other formalisms such as Petri nets. A number of effective yet computationally efficient deadlock control policies are developed based on automata. Lawley, Reveliotis, and Ferreira are distinguished experts in this area [START_REF] Lawley | Design guidelines for deadlock handling strategies in flexible manufacturing systems[END_REF], [START_REF] Lawley | Flexible manufacturing system structural control and the neighborhood policy. Part 1. Correctness and scalability[END_REF], [START_REF] Lawley | Flexible manufacturing system structural control and the Neighborhood Policy. Part 2. Generalization, optimization, and efficiency[END_REF], [START_REF] Lawley | A correct and scalable deadlock avoidance policy for flexible manufacturing systems[END_REF], [START_REF] Lawley | The application and evaluation of banker's algorithm for deadlock-free buffer space allocation in flexible manufactur-ing systems[END_REF], [START_REF] Lawley | Deadlock avoidance for production systems with flexible routing[END_REF], [START_REF] Lawley | Integrating flexible routing and algebraic deadlock avoidance policies in automated manufacturing systems[END_REF], [START_REF] Lawley | Deadlock avoidance for sequential resource allocation systems : Hard and easy cases[END_REF], [START_REF] Lawley | Robust supervisory control policies for manufacturing systems with unreliable resources[END_REF], [START_REF] Reveliotis | Deadlock avoidance policies for automated manufacturing cells[END_REF].

Petri nets have been widely used for modeling, analysis, and deadlock control of AMS. They are well suitable to describe AMS' behavior and characteristics such as concurrency, conflict, and causal dependency. They can be used to reveal such behavioral properties as liveness, and boundedness [START_REF] Barkaoui | On the equivalence between liveness and deadlock-freeness in Petri nets[END_REF], [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Ezpeleta | A class of well structured Petri nets for flexible manufacturing systems[END_REF]. Based on Petri nets, various deadlock resolution strategies are developed.

Literature Review 2.1 Liveness-enforcing Supervision for Automated Manufacturing Systems

In recent years, liveness-enforcing supervisory control has been an active area of research for AMS characterized by processes with highly ordered, linear workflows. Petri nets can describe AMS in a quite compact way. Over the past two decades, many researchers considered Petri nets as an alternative to automata. Deadlock control policies in the framework of Petri nets can be 2.1 LIVENESS-ENFORCING SUPERVISION FOR AUTOMATED MANUFACTURING SYSTEMS developed on the basis of state space analysis, structural analysis, and combination of the former two methods. Traditionally, a deadlock control policy can be evaluated by a number of performance criteria : structural complexity, behavioral permissiveness, and computational complexity.

State space analysis considers the reachable space of a net model that reflects possible behavior of system evolution. The studies in [1], [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF], [START_REF] Uzam | The use of Petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Uzam | An improved iterative synthesis approach for liveness enforcing supervisors of flexible manufacturing systems[END_REF], [START_REF] Uzam | Identification and elimination of redundant control places in Petri net based liveness enforcing supervisors of FMS[END_REF], [START_REF] Uzam | An iterative synthesis approach to Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], and [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF] are some of the most representative works.

In [1], the theory of regions is proposed. It originally aims to provide a formal methodology to synthesize a Petri net from a transition system. Later, Uzam [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF] proposes an approach to design optimal Petri net supervisors by using the theory of regions. Shortly after the study in [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], Ghaffari et al. present an easily understandable explanation of the design approach to an optimal liveness-enforcing Petri net supervisor based on the theory of regions [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF] by using linear algebra. The work in [START_REF] Uzam | The use of Petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems[END_REF] is an improved version of the study in [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF].

If an optimal supervisor exists for a Petri net model, then it can be found [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF]. When an optimal net supervisor does not exist, the work in [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF] and [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF] does not offer a deadlock control solution. In this case, an interesting problem is to find a best permissive liveness-enforcing Petri net supervisor such that there are no other Petri net supervisors that are more permissive than it. The work in [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF] presents a deadlock prevention approach to find a maximally permissive liveness-enforcing supervisor for an AMS if such a supervisor exists. Otherwise, it can derive a best permissive liveness-enforcing Petri net supervisor in the sense that there do not exist other Petri net supervisors that are more permissive than it.

Chen et al. [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF], [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF], [START_REF] Chen | Behaviorally optimal and structurally simple livenessenforcing supervisors of flexible manufacturing systems[END_REF] develop a novel method that can definitely find an optimal supervisor by adding monitors if such a supervisor exists. This method aims to block the uncontrolled system from entering into the deadlock-zone by preventing all the first-met bad markings (FBM) from being reached. Moreover, they formulate a method to ensure that all legal markings can be reached in the controlled system and a technique to reduce the computation burden by considering only a minimal set of legal markings and a minimal set of FBM via a vector covering approach.

The work in [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF] suffers from the structural complexity problem since the number of the computed control places is not minimal. In [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF], they propose an approach that can obtain a maximally permissive liveness-enforcing supervisor with the minimal number of control places. It is a
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non-iterative approach since all control places can be once obtained by solving an integer linear programming problem (ILPP) (denoted as MCPP in [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF]). Though this approach overcomes the problems of both behavior permissiveness and structural complexity, it still suffers from expensive computational cost.

The work in [START_REF] Chen | Behaviorally optimal and structurally simple livenessenforcing supervisors of flexible manufacturing systems[END_REF] employs a small (not minimal) number of monitors but more efficient by overcoming the computational complexity problem in [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF]. They reduce the number of monitors by solving an ILPP at each iteration, when a place invariant for a control place is constructed to forbid FBM as many as possible and to allow the reachability of all markings in the minimal covering set of legal markings. This is achieved by maximizing the number of FBM forbidden by a place invariant (PI) via the objective function of the ILPP. By removing the forbidden FBM from the minimal covered set of FBM, this process is repeated until all FBM are forbidden. These contributions, though correct and sound, are however far from being the cutting-edge of the literature, given that a better ILP model (plus more or less the same greedy heuristic) has been proposed in [START_REF] Nazeem | Designing compact and maximally permissive deadlock avoidance policies for complex resource allocation systems through classification theory : The linear case[END_REF]. This model has a number of constraints which is linear with respect to the number of states, as opposed to the quadratic one required by the model in [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF]. If the quadratic model were tighter than the linear one, that would compensate for its larger size. However, the experimental results which can be obtained implementing both models on an ILP solver and comparing their performance on benchmark instances, point towards a negative answer.

What is more, the ILP models commonly adopted in the literature have theoretical weaknesses, as discussed in [START_REF] Cordone | Parsimonious monitor control of Petri net models of flexible manufacturing systems[END_REF], where it is shown how several large benchmark instances can be solved in a matter of seconds to guarantee optimality by an ad hoc algorithm, whereas an ILP solver requires hours, and often must be terminated without achieving an optimality guarantee, not to mention the recent extension of this theory to more complex supervisory control structures presented in [START_REF] Nazeem | Designing compact and maximally permissive deadlock avoidance policies for complex resource allocation systems through classification theory : the nonlinear case[END_REF].

All theses approaches require reachability analysis and some computation to compute critical live and forbidden markings.

Deadlock prevention based on siphon control is a typical application of structural analysis techniques of Petri nets. Siphons, a structural object of a Petri net, are widely used to analyze the deadlock problems in Petri nets. Deadlock control by using siphons can avoid the state explosion problem. Researchers have developed a large number of deadlock control policies based on siphon control, among which the representative works are given in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [4], [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Jeng | A Petri net synthesis theory for modeling flexible manufacturing systems[END_REF], [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF],

2.1 LIVENESS-ENFORCING SUPERVISION FOR AUTOMATED MANUFACTURING SYSTEMS [START_REF] Tricas | Using linear programming and the Petri net structure for deadlock prevention in sequential resource allocation systems[END_REF], [START_REF] Huang | Siphon-based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF], [START_REF] Xing | Optimal Petri net-based polynomialcomplexity deadlock avoidance policies for automated manufacturing systems[END_REF], [START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF], and [START_REF] Piroddi | Combined siphon and marking generation for deadlock prevention in Petri nets[END_REF].

In [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], Ezpeleta et al. develop a design method of monitor-based liveness-enforcing Petri net supervisors for AMS. This seminal work is usually considered to be a classical contribution that utilizes structural analysis techniques of Petri nets to prevent deadlocks in AMS. For a typical class of ordinary Petri nets, systems of simple sequential processes with resources (S 3 PR), the work in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] proposes a deadlock prevention policy by adding a control place to each possibly emptiable strict minimal siphon (SMS) to prevent itself from being emptied. The significance of this approach is that it successfully separates a plant net model and its supervisor. However, it is time-consuming for a sizable plant model since the number of such siphons in a net grows very quickly and may grow exponentially with respect to its size [START_REF] Lautenbach | Linear algebraic calculation of deadlocks and traps[END_REF]. Moreover the approach in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] suffers from the following problems : behavioral permissiveness, computational complexity, and structural complexity.

Due to the inherent complexity of Petri nets, any deadlock prevention policy that depends on a complete siphon enumeration is definitely exponential with respect to the size of its plant net model. In [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], Chu and Xie first use mixed integer programming (MIP) to detect whether a structurally bounded Petri net is deadlock-free. This method avoids the explicit enumeration of all strict minimal siphons and opens a new research avenue. Specifically, given a Petri net, a maximal unmarked siphon can be obtained by the following traditional siphon solution. First, remove all the unmarked places. Then remove the transitions without input places as well as their output places. Repeat the two steps until no places and transitions can be removed. A feasible solution corresponds to a maximal unmarked siphon when there exists a siphon that can be emptied at a marking that is reachable from the initial marking. Otherwise, its optimal solution is equal to the number of all the places in the Petri net. Although an MIP problem is NP-hard in theory [START_REF] Winston | Introduction to Mathematical Programming[END_REF],

extensive numerical studies show that its computational efficiency is relatively insensitive to the initial marking and is more efficient than those that depend on a complete state or siphon enumeration. Deadlock control is usually concerned with minimal siphons. Huang et al. [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF] propose an iterative two-stage deadlock prevention policy based on the work in [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF]. At each iteration, an unmarked maximal siphon is detected by solving an MIP problem. If such a siphon exists, then an algorithm extracts a strict minimal siphon from the maximal one. In [7], [START_REF] Giua | Liveness enforcing supervisors for railway networks using ES 2 PR Petri nets[END_REF], and [START_REF] Chao | Technical Note -MIP iteration-reductions for deadlock prevention of flexible manufacturing systems[END_REF], the MIP technique is also used. Their methods can find a minimal unmarked siphon directly.
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A liveness-enforcing supervisor based on a complete siphon enumeration technique suffers from high structural complexity when the number of siphons is large. This problem has been recognized for many years. By fully utilizing the topological structure of a Petri net, the concepts of elementary and dependent siphons in a Petri net are proposed by Li and Zhou [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Li | Clarifications on the definitions of elementary siphons in Petri nets[END_REF]. They claim that siphons in a Petri net can be divided into elementary and dependent ones. The latter can be further distinguished by strongly and weakly dependent siphons with respect to elementary ones. It is shown that the number of the elementary siphons in a net is bounded by the smaller of place and transition counts. In many cases, monitors can be added for elementary siphons only. The controllability of a dependent siphon can be ensured by properly supervising the initial number of tokens in the monitors that are added to its elementary siphons. That is to say, a dependent siphon can be implicitly controlled by controlling its correlative elementary siphons. This is fully illustrated in [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF] by an AMS example. The major contribution of the elementary theory is that it does lower the structural complexity of the supervisor notably. Note that the method in [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF] does not lower the computational complexity or improve the behavior permissiveness compared with the policy in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF].

In an ordinary Petri net, a siphon is said to be controlled if it cannot be unmarked at any reachable marking [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF]. If a Petri net is generalized, however, the controllability of a siphon is much more complex. Owing to the weights of arcs, the non-emptiness of a siphon is not sufficient for the absence of dead transitions. The existence of a strict minimal siphon is no longer necessary for the occurrence of deadlocks. As a whole, the controllability concept is concerned with the enabling and firing of transitions.

As a typical class of generalized Petri nets, a system of sequential systems with shared resources (S 4 R) is proposed in [4]. It can model more complicated resource allocation systems with multiple concurrent processes. Different types of multiple resources can be requested by different processes. Thus, an S 4 R has better modeling power than an S 3 PR that is composed of states machines and resources [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]. Hence, solving a siphon control problem for S 4 R assumes significance in designing liveness-enforcing supervisors.

However, the weight of an arc in a generalized Petri net can be an arbitrarily positive integer such that it is difficult to properly decide the lower bound of the number of tokens in a siphon.

Motivated by this notorious issue, researchers propose a number of concepts involving the control-
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lability of siphons in a generalized Petri net, such as max-controllability [4], max -controllability [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF], [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF], [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF], and max -controllability [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF]. The proposal of these concepts aims to reduce the conservativeness1 of a deadlock prevention policy whose development is based on the siphon control. Accordingly, a number of sufficient but not necessary liveness conditions are developed. This motivates us to find a more general controllability condition of siphons in generalized Petri nets.

Generalized system of simple sequential processes with resources (GS 3 PR) is a subclass of S 4 R and a generalized version of an S 3 PR. It is easy to understand that the decision conditions for S 4 R still hold for GS 3 PR. The research on the necessary and sufficient condition for the siphon control in GS 3 PR will be an important progress in deadlock control of generalized Petri nets.

Siphons are well recognized to be tied with deadlocks, which is true in both ordinary and generalized Petri nets. Iterative deadlock control is a classic strategy in deadlock prevention. Tricas utilizes an iteration approach to prevent deadlocks for AMS [START_REF] Tricas | An iterative method for deadlock prevention in FMS[END_REF], [START_REF] Tricas | Deadlock Analysis, Prevention and Avoidance in Sequential Resource Allocation Systems[END_REF], [START_REF] Tricas | Some results on siphon computation for deadlock prevention in resource allocation systems modeled with Petri nets[END_REF], [START_REF] Tricas | Using linear programming and the Petri net structure for deadlock prevention in sequential resource allocation systems[END_REF]. At each iteration step, a siphon is computed and controlled by a monitor. Such a process is continued until all siphons are controlled. For an S 4 R, this class of iterative deadlock prevention policies is usually believed to converge at some step although it is not an easy job to provide a formal yet satisfactory proof. The work has the advantage of avoiding the state explosion problem. However, such an iterative approach, in a general case, hardly leads to an optimal supervisor due to the unmature siphon control techniques for generalized Petri nets if deadlocks are eliminated by means of the concepts of max-controlled [4] or max'-controlled [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF] siphons.

In [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF], based on deadly marked siphons (DMS) [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF] in well-marked S 4 R, Zhao et al. modify the MIP test in [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF] to detect DMS for S 4 R. However, an S 4 R may have livelocks even though it is deadlock-free. In this case, the siphons causing livelocks cannot be detected by the modified MIP and the net cannot be further controlled. Furthermore, the techniques in both [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF] and [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF] cannot obtain a minimal problematic siphon directly.

In [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF], Zhong et al. propose an MIP model to detect a minimal non-max-marked siphon [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF]. However, their method cannot detect the siphons that cause livelocks. Furthermore, it outputs an SMS when a Petri net is live with non-max-marked siphons, creating a false impression
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that the net is non-live and thus needs a control place to control it.

In [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF], the existing MIP-based methods are improved in the literature in terms of the maxcontrollability condition of siphons. We define extended DMS (EDMS) and then develop a more general MIP model that can detect deadlocks and livelocks caused by siphons in an S 4 R. We conclude that the net is live if there is no feasible solution for the MIP model. This programming is more powerful than the MIPs in [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF] and [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF] but still restrictive since it outputs an SMS when a Petri net is live with non-max -marked siphons.

Recently, several deadlock control policies based on combination of state space and structural analysis have been proposed. The work in [START_REF] Wei | On the suboptimal liveness-enforcing supervisors based on Petri net structural analysis and the theory of regions[END_REF] can be considered as an improvement of the theory of regions. It designs a supervisor for a plant net model with maximally permissive behavior by using the theory of regions. Then, the SMS in the maximally permissive controlled system are computed and divided into elementary and dependent ones. To prevent them from being emptied, algebraic expressions about the markings of the additional monitors in the supervisor and the resource places in the plant net model are derived, under which the supervisor is live. The expressions are used to derive the live initial markings for the supervisor without changing its structure when the initial marking of the plant changes. A case study shows that the combined method is computationally efficient compared to existing ones in which the theory of regions is used alone, and the permissive behavior of the supervisor is near-optimal.

In [START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF], Piroddi et al. point out that there are several important drawbacks in the deadlock prevention methods that are based on elementary siphons [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF]. Firstly, elementary siphons are developed by purely utilizing the topological structure of a net, not taking into account of the dynamical evolution information of the net. Secondly, the policies based on elementary siphons are generally not maximally permissive, since the controlled siphons may be constrained to keep more than one token. Thirdly, the set of elementary siphons in a Petri net is not unique. The existence of different sets of elementary siphons also implies that the deadlock prevention solution is not unique. Last but not least, the policies based on elementary siphons can be applied to some special classes of Petri nets only. Piroddi et al. believe that it is important to integrate the structural information related to strict minimal siphons with reachability graph analysis to avoid unnecessary control places. The work in [START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF] develops a selective siphon control policy in which the concepts of essential, dominated, and dominating siphons and critical, dominating and dominated markings 2.2 AUTOMATED MANUFACTURING SYSTEMS WITH UNRELIABLE RESOURCES play an important role. By solving set covering problems, dominating siphons are found to ensure that dominated siphons are controlled. The resulting supervisor is highly permissive. The major technical problem in [START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF] is its computational complexity. At each iteration, it needs to compute all minimal siphons and all dominating markings and to solve a set covering problem, each of which is NP-hard in theory with respect to the net size. Later, in [START_REF] Piroddi | Combined siphon and marking generation for deadlock prevention in Petri nets[END_REF], Piroddi et al. improve the method by using the MIP-based deadlock detection approach such that the complete minimal siphon enumeration is avoided.

Automated Manufacturing Systems with Unreliable Resources

All the studies reviewed in the previous section assume that resources do not fail. Actually, resource failures are inevitable in most AMS, which may also cause an AMS to be deadlocked. Thus, it is a necessary requirement to develop an effective and robust deadlock control policy to ensure that deadlocks cannot occur even if some resources in a system break down.

There is a lack of research in Petri nets regarding the impacts of unreliable resources on AMS under the supervisory control of deadlocks. In fact, resource failures are a common problem in realworld systems, which pose challenges in supervisory control of discrete event systems including AMS. In case of resource failures, the existing deadlock control policies are always no longer in force and deadlocks in the disturbed system may be caused. Therefore, reanalysis of the disturbed system is usually necessary. Robustness analysis provides an alternative way to determine whether the operation of a disturbed system or a part of it can still be maintained in case of resource failures.

To the best of our knowledge, no much work is found on robust supervision of AMS based on Petri nets.

Reveliotis [95] considers a scenario where parts requiring a failed resource can be rerouted or removed from a system through human intervention. Park and Lim [88] address the existence issues of robust supervisors. Lawley et al. [START_REF] Lawley | Robust supervisory control policies for manufacturing systems with unreliable resources[END_REF], [START_REF] Chew | Robust supervisory control for production systems with multiple resource failures[END_REF], [98] design supervisors for unstable systems based on the banker's algorithm and central buffer constraints with the following properties : (1) the supervisor ensures continuing production of part types, not requiring failed resources ; (2) the supervisor allows only those states that serve as feasible initial states if additional resource failure occurs ; and (3) the supervisor allows only those states that serve as feasible initial states if failed resources are repaired.

THESIS ORGANIZATION

Hsieh develops a variety of methods to determine the feasibility of production with a set of resource failures modeled as the extraction of tokens from a Petri net [START_REF] Hsieh | Robustness of deadlock avoidance algorithms for sequential processes[END_REF], [START_REF] Hsieh | Fault-tolerant deadlock avoidance algorithm for assembly processes[END_REF], [START_REF] Hsieh | Robustness analysis of Petri nets for assembly/ disassembly processes with unreliable resources[END_REF], [START_REF] Hsieh | Analysis of flexible assembly processes based on structural decomposition of Petri nets[END_REF], [START_REF] Hsieh | Robustness analysis of holonic assembly/disassembly processes with Petri nets[END_REF], [START_REF] Hsieh | Collaborative reconfiguration mechanism for holonic manufacturing systems[END_REF], [45]. This researcher has studied the robustness of several subclasses of Petri nets, including controlled production Petri nets (CPPN) [START_REF] Hsieh | Robustness of deadlock avoidance algorithms for sequential processes[END_REF], controlled assembly Petri nets (CAPN) [START_REF] Hsieh | Fault-tolerant deadlock avoidance algorithm for assembly processes[END_REF], controlled assembly/disassembly Petri nets (CADPN) [START_REF] Hsieh | Robustness analysis of Petri nets for assembly/ disassembly processes with unreliable resources[END_REF], controlled assembly Petri nets with alternative routes (CAPN-AR) [START_REF] Hsieh | Analysis of flexible assembly processes based on structural decomposition of Petri nets[END_REF], collaborative Petri nets (CPN) [START_REF] Hsieh | Robustness analysis of holonic assembly/disassembly processes with Petri nets[END_REF], and non-ordinary controlled flexible assembly Petri nets with uncertainties (NCFAPNU) [45]. In these works, liveness conditions and robustness analysis of the nets are based on the concepts of token flow paths and minimal resource requirements (MRR). His work reports fault tolerant conditions and proposes a structural decomposition method to test the feasibility of production routes. However, all these methods are not intuitive to the Petri net models. In this dissertation, we try to enforce liveness and robustness via a supervisor by adding monitors and recovery subnets. This implies that both a plant and its supervisor are unified in a Petri net formalism.

An interesting issue is how to make the existing deadlock control policies possess a desirable robust property to cope with resource failures. Specifically, the desirable robustness is a system property to keep a controlled system live as some resources break down. In this thesis, we focus on robust supervision of AMS. We hope that the supervisor designed for AMS with unreliable resources has following properties : (1) it can prevent deadlocks for a plant model when all resources work normally, (2) deadlocks are prevented even if some resources fail to work and be removed to repair at any time, and (3) deadlocks disappear after the repaired resources are returned.

Thesis Organization

This thesis is intended to provide deadlock resolution based on Petri nets and robust supervisor design for AMS. The proposed methods mostly rely on Petri net structural analysis. The thesis also deals with the cases of unreliable resources in AMS when designing deadlock controllers.

In Introduction, we first recall the AMS and discuss the importance of the deadlock problems and their resolution. Then, we review two different aspects of AMS, i.e., liveness-enforcing supervision for AMS and AMS with unreliable resources.

Chapter 1 introduces the necessary basics of Petri nets as well as the notations used throughout 3. THESIS ORGANIZATION this thesis.

Chapter 2 reviews the concepts of max, max , max -controlled siphons and formulates a new concept called max * -controlled siphons for GS 3 PR. We conclude that a GS 3 PR is live iff all its strict minimal siphons are max * -controlled. Then examples are given to illustrate the max, max , max , max * -controlled siphons and their difference. Compared with the existing ones, the proposed concept is more general. Also, some open problems are discussed. Based on the max *controllability condition of siphons, we propose a new integer programming (IP) model that can detect minimal non-max * -marked siphons that cause deadlocks or livelocks directly. We conclude that if there is no feasible solution to this model, the net is live. Since the approach is based on siphons and mathematical programming, its computational efficiency is relatively insensitive to the initial marking. Compared with the existing methods, the proposed one is more powerful. Experimental studies are conducted to illustrate it.

Chapter 3 reports a novel design method of deadlock prevention supervisors based on Petri nets. It does not guarantee optimality but empirical results show its superiority over other approaches based on siphon control. Given the Petri net model of an AMS, one first designs an optimal liveness-enforcing controlled system for the model under a minimal initial marking by utilizing the theory of regions. Then, we calculate all SMS in the controlled system. Such a siphon does not contain a trap. For each SMS, an algebraic inequality with respect to the markings of monitors and resource places in the controlled system, also called a liveness constraint, is established in terms of the concept of max-controlled or invariant-controlled siphons. Its satisfaction implies the absence of dead transitions in the postset of the corresponding siphon. Consequently, given initial markings that satisfy all the liveness inequality constraints, all siphons can be maxcontrolled, and the resulting controlled system is live. After a controlled system structure is found, one can reallocate the initial markings according to the inequality constraints. No matter how large the initial markings and the number of states are, the liveness constraints remain unchanged. Their satisfaction ensures the absence of uncontrolled siphons.

Chapter 4 proposes a maximally permissive control policy for a subclass of S 3 PR (called βnets) based on the theory of token distribution pattern of siphons. We first show that by adding a monitor for each critical siphon, some live states may get lost since the monitor controls the complementary set of a critical siphon, where some places may not be marked. By controlling 3. THESIS ORGANIZATION only the set of marked operation places, more live states can be reached. However, this induces some emptiable siphons. The corresponding token pattern can be inferred. By adding monitors to all such possibly emptiable siphons, the controlled net becomes live and maximally permissive.

There is no need to construct a reachability graph and enumerate all minimal siphons.

A variety of deadlock control policies based on Petri nets have been proposed for AMS. Most of them prevent deadlocks by adding monitors for emptiable siphons that, without an appropriate control policy, can cause deadlocks, where the resources in a system under consideration are assumed to be reliable. When resources are unreliable, it is difficult or impossible to apply existing control strategies. For S 3 PR, Chapter 5 bridges the gap between a divide-and-conquer deadlock control strategy and its application to real-world systems with unreliable resources. Recovery subnets and monitors are designed for unreliable resources and strict minimal siphons that may be emptied, respectively. Normal and inhibitor arcs are used to connect monitors with recovery subnets in case of necessity. Then reanalysis of the original Petri net is avoided and a robust livenessenforcing supervisor is derived. Examples are presented to illustrate the proposed methodology.

Finally, we summarize this dissertation by highlighting the major contributions. Limitations and future research issues are outlined. Several unsolved and interesting problems are illustrated.

Chapitre 1

Preliminaries of Petri Nets 1.1 Introduction

This chapter presents the formal definition of Petri nets and the related concepts, including structural and behavioral properties such as invariants, siphons, traps, liveness, and boundedness.

A number of important subclasses of Petri nets are introduced. This chapter is fundamental for understanding of the ideas presented in the following chapters. For more details, please refer to [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF], [START_REF] Zhou | Modeling, Simulation, and Control of Flexible Manufacturing Systems : a Petri Net Approach[END_REF], [START_REF] Murata | Petri Nets : Properties, Analysis, and Applications[END_REF], [START_REF] Barkaoui | On the equivalence between liveness and deadlock-freeness in Petri nets[END_REF], and [START_REF] Liu | Necessary and sufficient liveness condition of gs3pr petri nets[END_REF].

Formal Definitions

From the perspective of graph theory, a Petri net is a directed bipartite graph. It consists of two components : a net structure and an initial marking. A net structure is composed of two kinds of nodes, namely places and transitions, and directed arcs from places to transitions or from transitions to places. Graphically, places are represented by circles and transitions by boxes or bars.

Tokens in a place can be denoted by black dots, or a positive integer representing their number.

The initial token distribution is called the initial marking. 

FORMAL DEFINITIONS

N = (P, T, F, W) is ordinary, denoted as N = (P, T, F), if ∀ f ∈ F, W( f ) = 1. It is said to be a generalized net if ∃ f ∈ F, W( f ) > 1.
Usually, a place represents a condition, a resource, or an activity while a transition represents an event. A token in a place means the fulfilment of a condition, the availability of a resource, or the process of an activity.

Definition 1.2 Let N = (P, T, F, W) be a Petri net with P X ⊆ P and T X ⊆ T . N 

X = (P X , T X , F X , W X ) is called a subnet generated by P X ∪ T X if F X = F ∩ [(P X × T X ) ∪ (T X × P X )] and ∀ f ∈ F X , W X ( f ) = W( f ).
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Definition 1.5 Let N = (P, T, F, W) be a net and σ a finite sequence of transitions. The Parikh vector of σ is -→ σ : T → N which maps t in T to the number of occurrences of t in σ. Denote

- → t 1 = (1, 0, • • • , 0) T , - → t 2 = (0, 1, 0, • • • , 0) T , and - → t k = (0, 0, • • • , 0, 1) T assuming k = |T |.
It is trivial that for each transition t, we have 

[N](•, t) = [N] - → t . Note that M[t M leads to M = M + [N](•, t). Consequently, if M[t M , we have M = M + [N] - → t .
Exemple 1.3 In Fig. 1.1, • t 1 = {p 1 , p 7 }, t • 1 = {p 2 }, • p 3 = {t 2 }, • p 6 = {t 5 }, • p 7 = {t 3 , t 6 }, p • 3 = {t 3 }, p • 6 = {t 6 }, and p • 7 = {t 1 , t 2 , t 5 }. Given S = {p 3 , p 6 , p 7 }, • S = • p 3 ∪ • p 6 ∪ • p 7 = {t 2 ,
∈ R(N, M 0 ), M 0 ∈ R(N, M). Definition 1.9 Given a marked Petri net (N, M 0 ), a transition t ∈ T is live at M 0 if ∀M ∈ R(N, M 0 ), ∃M ∈ R(N, M), M [t holds. A transition t ∈ T is said to be dead at marking M ∈ R(N, M 0 ), if M ∈ R(N, M), M [t . (N, M 0 ) is live at M 0 if ∀t ∈ T ,

Deadlocks and Livelocks

In order to facilitate understanding and readability, this section gives some visual interpretation for deadlocks and livelocks by using reachability graphs.

A net system is bounded if its reachability set has a finite number of elements. The reachability set of net (N, M 0 ) can be expressed by a reachability graph that is a directed graph whose nodes are markings in R(N, M 0 ) and arcs are labeled by the transitions of N.

An arc from M 1 to M 2 is labeled by t if M 1 [t M 2 .
In the reachability graph of a Petri net, a global deadlock is a terminal node that corresponds to system states from which the system cannot further evolve. While the existence of local deadlocks is referred to as livelocks. When a system is at a livelock state, the overall states of the system continues to change while parts of the system are deadlocked [START_REF] Krogh | Aotomated generation and evaluation of control programs for discrete manufacturing processes[END_REF]. Actually, livelock is a special case of resource starvation although the system may be deadlock-free. Formally, if a system has livelock states, its reachability graph must contain a strongly connected component with two or more nodes and without outgoing arcs (no exit to leave the component). 

INHIBITOR ARC

Livelocks must be considered when solving deadlock control problems since once a system is at livelock, other processes cannot be processed smoothly. Broadly speaking, livelock is a special case of deadlocks. It is very significant to find a mechanism to detect deadlocks and livelocks in a system.

Inhibitor Arc

The modeling power of Petri nets can be increased by inhibitor arcs. An inhibitor arc, denoted as (p, t) o , connects an input place and a transition, and is graphically represented by an arc from a place p to a transition t terminated with a small circle. The presence of an inhibitor arc changes the transition enabling conditions. A transition is regarded as enabled if each input place, connected to the transition by a normal arc (an arc terminated with an arrow), contains at least the number of tokens equal to the weight of the arc, and no tokens are present in each input place connected to the transition via an inhibitor arc. The transition firing rules are the same as for normally connected places. The firing, however, does not change the marking of the places connecting the transition by an inhibitor arc [START_REF] Zurawski | Petri nets and industrial applications : a tutorial[END_REF], [START_REF] Murata | Petri Nets : Properties, Analysis, and Applications[END_REF]. We use • t o to denote the set of places from which there are inhibitor arcs to transition t. While p o• denotes the set of transitions to which there are inhibitor arcs from place p.

A Petri net with an inhibitor arc (p 2 , t) o is shown in Fig. 1.5. We have 

Structural Invariants, Siphons, and Traps

The structural properties that depend on only the topological structure of a Petri net and are independent of the initial marking are called invariants. Structural invariants are an important method to analyze the behavior of a Petri net from a structural viewpoint. Definition 1.13 A P-vector is a column vector I : P → Z indexed by P and a T -vector is a column vector J : T → Z indexed by T , where Z is the set of integers. P-vector I is denoted by p∈P I(p)p for economy of space. For example, I = (3, 1, 0, 0, 4) T can be written as I = 3p 1 + p 2 + 4p 5 . We denote a column vector whose entries equal 0(1) by 0(1). Token count in their corresponding places keeps constant, i.e., the invariant law associated with a P-invariant holds for any reachable marking. Specifically, if I is a P-invariant of (N, M 0 ), then

∀M ∈ R(N, M 0 ), I T M = I T M 0 .
Exemple 1.5 Consider the Petri net in Fig. 1 Let X be a matrix where each column is a P-semiflow of (N, M 0 ). The set of invariant markings is denoted as

I X (N, M 0 ) = {M ∈ N m |X T M = X T M 0 }
, where m is the number of places of (N, M 0 )

and N m indicates the set of m-dimensional non-negative integer vectors.

Similar to structural invariants, siphons and traps are also structural objects and play an important role in the analysis of Petri nets, particularly their liveness property. The combination of P-invariants and siphons can be used to design liveness-enforcing supervisors for Petri nets. A siphon remains empty once it loses all tokens while a trap remains marked once it has any token. 

∀M ∈ R(N, M 0 ), M(S ) > 0.
When we talk about siphon control, we usually consider minimal siphons since the controllability of a minimal siphon implies that of those containing it.

Due to the definition of siphons, all transitions connected to a siphon can never be enabled once it is emptied. The transitions are therefore dead, leading to the fact that the net containing these transitions is not live. As a result, deadlock-freedom and liveness of a Petri net are closely related to its siphons, which is shown by the following known results [START_REF] Desel | Free Choice Petri Nets[END_REF].

Property 1.1

Let S ⊆P be a siphon of an ordinary net N. If S is controlled by a P-invariant I under M 0 , S cannot be emptied, i.e., ∀M∈R(N, M 0 ), S is marked at M.

Property 1.2

If an ordinary net system (N, M 0 ) is dead, the set of all unmarked places forms a siphon. If no minimal siphon in N can be emptied, (N, M 0 ) is deadlock-free.

Theorem 1.1

Let (N, M 0 ) be an ordinary net and Π the set of its siphons. The net is deadlock-free if ∀S ∈ Π,

∀M ∈ R(N, M 0 ), M(S ) > 0.
This theorem states that an ordinary Petri net is deadlock-free if no (minimal) siphon eventually becomes empty.

Theorem 1.2

Let (N, M) be an ordinary net that is in a deadlock state. Then, S = {p ∈ P|M(p) = 0} is a siphon.

This result means that if an ordinary net is dead, i.e., no transition is enabled, then the unmarked places form a siphon. If a Petri net is generalized, however, the controllability of a siphon is much more complex.

Owing to the weights of arcs, the non-emptiness of a siphon is not sufficient for the absence of dead transitions. The existence of an SMS is no longer necessary for the occurrence of deadlocks.

As a whole, the controllability concept is concerned with the enabling and firing of transitions.

Subclasses of Petri Nets

Many results are applicable to certain classes of Petri nets only. Various net classes are proposed for AMS in literature. Different net classes may model different complex processes of AMS. In this section, we first review a necessary background in the place classification of Petri net models of flexible manufacturing systems. Then S 3 PR, GS 3 PR and S 4 R nets are given to serve for latter chapters.

Let us consider a small manufacturing system consisting of a machine, a robot, an input buffer and an output buffer. The robot picks up a raw part from the input buffer, uploads the machine tool, and downloads the finished part from the machine and puts it into the output buffer after the machine finishes the operation on a raw part. Fig. 1.6(a) and 1.6(b) show the system and its Petri net model, respectively. In the Petri net model, place p 1 models the input and output buffers.

M 0 (p 1 ) = 2 means that at the initial state, there are two raw parts in the input buffer. Place p 5 models the machine. M 0 (p 5 ) = 2 represents its processing capacity, indicating the two parts can be processed in it at the same time. Place p 6 models the robot. M 0 (p 6 ) = 1 means that the robot can hold one part only at a time. Places p 2 , p 3 , p 4 model the operations of uploading by the robot, processing by the machine, and downloading by the robot, respectively. The machine and the robot are called fixed resources in the sense that their capacities are normally fixed. The input and output buffers are called variable resources since they can carry the variable number of raw parts.

In a Petri net model of a manufacturing system, a place represents either an operation or a resource status and a transition represents the start or end of an operation. Such a modeling paradigm can be traced back to the seminal works [START_REF] Zhou | A Top-down modular approach to synthesis of Petri net models for manufacturing systems[END_REF], [START_REF] Zhou | Adaptive design of Petri net controllers for error recovery in automated manufacturing systems[END_REF], [START_REF] Zhou | Parallel and sequential mutual exclusions for Petri net modeling of manufacturing systems with shared resources[END_REF], and [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]. Accordingly, the places in a Petri net model of a manufacturing system have the following partition : A-places, B-places, and C-places, depending on the physical characteristics of its resources, represented by the initial marking M 0 [START_REF] Zhou | A Top-down modular approach to synthesis of Petri net models for manufacturing systems[END_REF], [START_REF] Zhou | Adaptive design of Petri net controllers for error recovery in automated manufacturing systems[END_REF], [START_REF] Zhou | Parallel and sequential mutual exclusions for Petri net modeling of manufacturing systems with shared resources[END_REF], which is adopted by the researchers in this area nowadays.

A-place : A place p is called an A-place or an activity place (also called an operation place) if M 0 (p) = 0. B-place : A place p is called a B-place or a fixed resource place if M 0 (p) is a constant. C-place : A place p is called a C-place or a variable resource place if p is initially marked with M 0 (p) > 0 and the number of initial tokens in p is variable, i.e., M 0 (p) is variable.

An A-place p often represents an activity place. Initially there is no operation in a system. A B-place p represents the availability of a fixed number of resources for a given system. A Cplace p can represent the availability of raw parts. B-places and C-places model the availability of resources that are necessary to start some operations at certain stages. This classification has been well accepted by academic and industrial communities. Later, with the same partitioning rules, Ezpeleta et al. [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] rename A-places, B-places, and C-places to be activity places, resource places, and process idle places whose sets are denoted by P A , P R , and P 0 , respectively. In Fig. 1.6(b), p 1 is a process idle place. p 2 , p 3 , and p 4 are activity places, and p 5 and p 6 are resource places. That is to say, P A = {p 2 , p 3 , p 4 }, P 0 = {p 1 }, and P R = {p 5 , p 6 }. Suppose The number of tokens in a process idle place indicates the maximal number of concurrent activities that can occur in a process. A token in an activity place means that a raw material is being processed and the tokens in a resource place represent its capacity indicating how many processing units can be provided by the resource type. For example, the operation modeled with place p 1 in Fig. 1.7(a) needs one unit of only one resource type, i.e., p 7 . The activity place modeled with p 1 in Fig. 1.7(b) needs two units of only one resource type, i.e., p 7 . The activity place modeled with p 3 in Fig. 1.7(c) needs one unit of resource p 8 and one unit of resource p 9 .

1.6.1 S 3 PR Net Definition 1.17 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] A simple sequential Process (S 2 P) is a Petri net N = (P A ∪ {p 0 }, T, F) where 1) P A ∅ is called the set of activity places ; 2) p 0 P A is called the idle process place ; 3) N is a strongly connected state machine ; and 4) every circuit of N contains place p 0 . Definition 1.18 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] A simple sequential process with resources (S 2 PR) is a Petri net N = ({p 0 } ∪ P A ∪ P R , T, F) such that 1. The subnet generated by X = P A ∪ {p 0 } ∪ T is an S 2 P.

P R ∅ and (P

A ∪ {p 0 }) ∩ P R = ∅.

SUBCLASSES OF PETRI NETS

∀p ∈ P

A , ∀t ∈ • p, ∀t ∈ p • , ∃r p ∈ P R , • t ∩ P R = t • ∩ P R = {r p }.
4. The following statements are verified : (a) ∀r ∈ P R ,

•• r ∩ P A = r •• ∩ P A ∅ and (b) ∀r ∈ P R , • r ∩ r • = ∅. 5. •• (p 0 ) ∩ P R = (p 0 ) •• ∩ P R = ∅. Note that • r represents place r's input transitions. •• r = ∪ t∈ • r
• t is the set of all input places of all input transitions of place r. Similarly, r Definition 1.20 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] A system of S 2 PR, called S 3 PR for short, is defined recursively as follows :

1. An S 2 PR is an S 3 PR.

SUBCLASSES OF PETRI NETS

Let N i = (P

A i ∪{p 0 i }∪P R i , T i , F i ), i ∈ {1, 2}, be two S 3 PR such that (P A 1 ∪{p 0 1 })∩(P A 2 ∪{p 0 2 }) = ∅, P R 1 ∩ P R 2 = P C ∅, and T 1 ∩ T 2 = ∅.
Then, the net N = (P A ∪ P 0 ∪ P R , T, F) resulting from the composition of N 1 and N 2 via P C defined as follows :

(a) P A = P A 1 ∪ P A 2 . (b) P 0 = {p 0 1 } ∪ {p 0 2 }. (c) P R = P R 1 ∪ P R 2 . (d) T = T 1 ∪ T 2 .
(e) F = F 1 ∪ F 2 is also an S 3 PR.

In the sequel, an S 3 PR N composed by n S 2 PR N 1 -N n , denoted by N = n i=1 N i , is defined as follows :

N = N 1 if n = 1 ; N = ( n-1 i=1 N i ) • N n if n > 1.
N i is used to denote the S 2 P from which the S 2 PR N i is formed. Transitions in (P 0 ) • are called source transitions that represent the entry of raw materials when a manufacturing system is modeled with an S 3 PR. Definition 1.21 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] Let N be an S 3 PR. (N, M 0 ) is called an acceptably marked S 3 PR if one of the following statements is true : 

1. (N, M 0 ) is an acceptably marked S 2 PR. 2. N = N 1 • N 2 , where (N i , M 0 i ) is an acceptably marked S 3 PR and (a) ∀i ∈ {1, 2}, ∀p ∈ P A i ∪ {p 0 i }, M 0 (p) = M 0 i (p). (b) ∀i ∈ {1, 2}, ∀r ∈ P R i \P C , M 0 (r) = M 0 i (r). (c) ∀r ∈ P C , M 0 (r) = max{M 0 1 (r), M 0 2 (

SUBCLASSES OF PETRI NETS

In what follows, when we talk about an S 3 PR, it is assumed to be acceptably marked unless otherwise stated.

Let S be an SMS in an S 3 PR N = (P A ∪ P 0 ∪ P R , T , F). Ezpeleta et al. [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] show that S does not contain idle process places but consists of activity and resource places only. As a result, S can be represented by S A ∪ S R , where S R = S ∩ P R and S A = S \S R , i.e., S A = S ∩ P A .

Definition 1.22 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] For r ∈ P R , H(r) = •• r ∩ P A , the activity places that use r, is called the set of holders of r. Let [S ] = (∪ r∈S R H(r))\S . [S ] is called the complementary set of siphon S .

The concept of the complementary set of a siphon plays an important role in the development of the deadlock prevention policy in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]. Intuitively, the complementary set of a siphon is a set of activity places that use the resources in it but are excluded from it. That is to say, the activity places in the complementary set compete for the limited resources with those in the siphon. When the tokens initially staying in the resource places of a siphon are completely held or "stolen" by the places in its complementary set, the siphon is emptied. As is known, if a siphon has no token, it remains free of tokens in the subsequent reachable markings. The transitions in its postset are completely disabled, leading to deadlocks.

Definition 1.23 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] Let {r 1 , r 2 , • • • , r m } ⊆ P R (m ≥ 2) be a set of resources in an S 3 PR N =

(P A ∪ P 0 ∪ P R , T, F). A simple circuit C(r 1 , t 1 , r 2 , t 2 , • • • , r m , t m ) in N is called a resource circuit if 1. ∀i ∈ N m , r i ∈ • t i ; 2. ∀i ∈ {2, • • • , m}, r i ∈ t • i-1 ; 3. r 1 ∈ t • m .
Theorem 1.3 [START_REF] Li | A maximally permissive deadlock prevention policy for FMS based on Petri net siphon control and the theory of regions[END_REF] Let C be a resource circuit in an S 3 PR N = (P Generalized systems of simple sequential processes with resources (GS 3 PR), a subclass of Petri nets, are defined as below. Note that a GS 3 PR is a generalized version of an S 3 PR, that is, the weight of an arc in a GS 3 PR can be greater than one. A GS 3 PR becomes an S 3 PR if the weight of each arc is changed to be one.

A ∪ P R ∪ P 0 , T, F). S = C R ∪ {p|p ∈ ∪ r∈C R H(r) ∧ (p •• ∩ (P A ∪ P 0 )) ∪ r∈C R H(r)} is a siphon in N.
Definition 1.24 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] A generalized simple sequential process with resources (GS 2 PR) is a Petri

net N = (P A ∪ {p 0 } ∪ P R , T, F, W) if :
1. The subnet generated by X = P A ∪ {p 0 } ∪ T is an S 2 P ;

2. P R ∅ (r ∈ P R is called a resource or a resource place in a net formalism) and Definition 1.25 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] Let N = (P A ∪ {p 0 } ∪ P R , T, F, W) be a GS 2 PR. An initial marking M 0 is called an acceptable initial marking for N if :

(P A ∪ {p 0 }) ∩ P R = ∅ ; 3. W = W A ∪ W R , where W A : ((P A ∪ P 0 ) × T ) ∪ (T × (P A ∪ P 0 )) → {0, 1} and W R : (P R × T ) ∪ (T × P R ) → N, where P 0 = {p 0 }. 4. ∀p ∈ P A , ∀t ∈ • p, ∀t ∈ p • , • t ∩ P R = t • ∩ P R = {r p } and W(r p , t) = W(t ,
∈ P R , • r ∩ r • = ∅ and •• r ∩ P A = r •• ∩ P A ∅ ; 6. •• (p 0 ) ∩ P R = (p 0 ) •• ∩ P R = ∅.
∀p ∈ P A , M 0 (p) = 0 ; ∀r ∈ P R , M 0 (r) ≥ max p∈ I r I r (p) ; and M 0 (p 0 ) ≥ 1.
The couple (N, M 0 ) with N being a GS 2 PR and M 0 being an acceptable initial marking is called a well-marked GS 2 PR. An acceptable initial marking guarantees that each transition is potentially fireable. Specially, at least one token in a process idle place means that a process can start. (N 1 , M 10 ) depicted in Fig. 1.9(a) meets the conditions in Definitions 1.24 and 1.25. Hence, (N 1 , M 10 ) is a GS 2 PR with an acceptable initial marking.

Definition 1.26 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] A system of GS 2 PR, called GS 3 PR, is defined recursively as follows :

1. A GS 2 PR is a GS 3 PR ; 2. Let N i = (P A i ∪P 0 i ∪P R i , T i , F i , W i ), i ∈ {1, 2}, be two GS 3 PR such that (P A 1 ∪P 0 1 )∩(P A 2 ∪P 0 2 ) = ∅, P R 1 ∩ P R 2 = P C ( ∅)
, and T 1 ∩ T 2 = ∅ (in this case we say that N 1 and N 2 are two composable GS 3 PR). Then, the net N = (P A ∪ P 0 ∪ P R , T, F, W) resulting of the composition of N 1 and N 2 via P C (denoted as N = N 1 • N 2 ) defined as follows :

(a) P A = P A 1 ∪ P A 2 , (b) P 0 = P 0 1 ∪ P 0 2 , (c) P R = P R 1 ∪ P R 2 , (d) T = T 1 ∪ T 2 , (e) F = F 1 ∪ F 2 , (f) W = W 1 ∪ W 2 is also a GS 3 PR.
Definition 1.27 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] Let N be a GS 3 PR. (N, M 0 ) is a well-marked GS 3 PR if one of the two following statements is true :

1. (N, M 0 ) is a well-marked GS 2 PR ; 1.6. SUBCLASSES OF PETRI NETS 2. N = N 1 • N 2 , where (N i , M i0 ) is a well-marked GS 2 PR : (a) ∀i ∈ {1, 2}, ∀p ∈ P A i ∪ P 0 i , M 0 (p) = M i0 (p) ; (b) ∀i ∈ {1, 2}, ∀r ∈ P R i \P C , M 0 (r) = M i0 (r) ; (c) ∀r ∈ P C , M 0 (r) = max{M 10 (r), M 20 (r)}. In the sequel, a GS 3 PR N composed of k GS 2 PR N 1 -N k , denoted by N = k i=1 N i , is defined as follows : if k = 1 then N = N 1 ; if k > 1 then k i=1 N i = ( k-1 i=1 N i ) • N k ,
where k ∈ N\{0}. Given N in this way, we denote I N = {1, ..., k}. On the other hand, N i represents the S 2 P from which we form the GS 2 PR N i .

As discussed above, both (N 1 , M 10 ) and (N 2 , M 20 ) in Fig. 1.9 are GS 2 PR. Since they have common resource places p 7 and p 8 , they are composable. Their composition leads to a GS 3 PR (N, M 0 ), as shown in Fig. 1.9(c). Since it meets Definition 1.27, the net in Fig. 1.9(c) is a wellmarked GS 3 PR.

Note that the initial markings in process idle places of GS 3 PR can affect the liveness of Petri nets. Take the net shown in Fig. 1.9(c) as an example. There are two tokens in process idle place p 3 . The net is live. If the initial marking of p 3 is greater than or equal to three, the net is non-live.

In this paper, we suppose that an initial marking in a process idle place is greater than or equal to the total capacity of the resources used by the process. Then the process idle place is an implicit place [START_REF] Colom | Improving the linearly based characterization of P/T nets[END_REF], i.e., it can be eliminated without producing any changes in the behavior of the original net.

Definition 1.28 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] Let r be a resource place in a GS 3 PR. H(r) = •• r ∩ P A , the activity places that use r, is called the set of holders of r. Definition 1.29 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] Let S be a siphon in a GS 3 PR with S = S A ∪ S R , S R = S ∩ P R , and

S A = S \S R . [S ] = (∪ r∈S R H(r))\S is called the complementary set of S .
As shown in Fig. 1.9(c), (N, M) is a well-marked GS 3 PR, where P 0 = {p 3 , p 6 }, P A 1 = {p 1 , p 2 }, P A 2 = {p 4 , p 5 }, and P R = {p 7 , p 8 }. S = {p 2 , p 5 , p 7 , p 8 } is its unique SMS, where S R = {p 7 , p 8 } and

S A = {p 2 , p 5 }. We have I 1 = p 1 + p 2 + p 3 , I 2 = p 4 + p 5 + p 6 , I p 7 = 2p 1 +2p 5 + p 7 , I p 8 = p 2 + p 4 + p 8 , H(p 7 ) = {p 1 , p 5 }, and H(p 8 ) = {p 2 , p 4 }. We can obtain [S ] = {p 1 , p 4 }.

SUBCLASSES OF PETRI NETS

Similar to Proposition IV.2 in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] (Let N = (P A ∪ P 0 ∪ P R , T, F) be an S 3 PR and S be a siphon such that it does not contain the support of any P-semiflow. Then, |S ∩ P R | > 1), we conclude that a strict siphon in a GS 3 PR contains at least two resource places.

Theorem 1.4

Let N = (P A ∪ P 0 ∪ P R , T, F, W) be a GS 3 PR and S be a strict siphon. Then,

|S ∩ P R | ≥ 2. Proof : A GS 3 PR N is composed of k GS 2 PR N 1 -N k , denoted by N = k i=1 N i .
Net N i represents the S 2 P from which we form the GS 2 PR N i .

Suppose that S ∩ P R = ∅. ∀i j ∈ I N , T i ∩ T j = ∅ is true since each N i is a strongly connected state machine. We can conclude that there exists i ∈ I N such that (P i ∪ P 0 i ) ⊆ S , and then, S contains the support of a P-semiflow, which is not possible. Then,

|S ∩ P R | > 0. Suppose r ∈ S ∩ P R . H(r) S is true since H(r) ∪ {r} is the support of a P-semiflow. Let p ∈ H(r)\S . Based on Definition 1.24, let {t} = p • ∩ • r. Since S is
a siphon, t is necessarily in the postset of the siphon. By p S , t is necessarily in the postset of some resource in the siphon.

Then, we have • t ∩ P R = {r } ⊂ S . Considering Definition 1.24.5b), i.e., ∀r ∈ P R , • r ∩ r • = ∅, we conclude that r r , and then, {r, r } ⊆ S , i.e., |S ∩ P R | ≥ 2. Note that the above proof is motivated by the proof in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]. Based on Theorem 1.4, there necessarily exists the structure in strict siphons of a GS 3 PR, as shown in Fig. 1.10. Note that this structure is important to understand the proposed new controllability condition in this thesis. 1. P = P A ∪ P 0 ∪ P R is a partition such that (1) P A = ∪ n i=1 P A i is called the set of activity places, where ∀i, j ∈ {1, . . . , n}, i j, P A i ∅ and

P A i ∩ P A j = ∅. (2) P 0 = ∪ n i=1 {p 0 i } is called the set of idle places. (3) P R = ∪ n i=1 P R i = {r 1 , r 2 , • • • , r m } is called the set of resource places ; 2. T = ∪ n j=1 T j , T j ∅. ∀i j, T i ∩ T j = ∅ ; 3. W = W A ∪ W R , where W A : ((P A ∪ P 0 ) × T ) ∪ (T × (P A ∪ P 0 )) → {0, 1} and ∀ j i, W A : ((P A j ∪ {p 0 j }) × T i ) ∪ (T i × (P A j ∪ {p 0 j })) → {0}, and W R : (P R × T ) ∪ (T × P R ) → N ;
4. N j generated by P A j ∪ {p 0 j } ∪ T j is a strongly connected state machine such that every circuit in N j contains place p 0 j ;

5. ∀r ∈ P R , there exists a unique minimal P-semiflow I r such that I r ∩ P R = {r}, I r ∩ P 0 = ∅, and I r (r) = 1. Furthermore, we have P A = ∪ r∈P R ( I r \P R ) ; 6. N is pure and strongly connected ;

7. ∀p ∈ P A , M 0 (p) = 0 ; ∀r ∈ P R , M 0 (r) ≥ max p∈ I r I r (p) ; and ∀p 0 j ∈ P 0 , M 0 (p 0 j ) ≥ 1.

Definition 1.31 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] Let S be an SMS in an S 4 R with S = S A ∪ S R , S R = S ∩ P R , and S A = S \S R .

For r ∈ P R , H(r) = ||I r ||\{r}, the activity places that use r, is called the set of holders of r.

[S ] = (∪ r∈S R H(r))\S is called the complementary set of S .

As shown in Fig. 1.11, (N, M 0 ) is a well-marked S 4 R with P 0 = {p 10 , p 11 }, P A = {p 1 -p 6 }, and P R = {r 1 , r 2 , r 3 }. The net has three SMS : GS 3 PR is a subclass of S 4 R and a generalized version of an S 3 PR. A GS 3 PR is equivalent to a WS 3 PR in [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF]. Since any Petri net has a weight function, it is sound and rational to rename a weighted S 3 PR in [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] to be a generalized S 3 PR. A GS 3 PR becomes an S 3 PR if the weight of each arc is changed to be one. GS 3 PR is a subclass of S 4 R and a generalized version of an S 3 PR. It is easy to understand that the decision conditions for S 4 R still hold for GS 3 PR.

S 1 = {p 3 , p 5 , p 6 , r 2 , r 3 }, S 2 = {p 3 , p 6 , r 1 , r 2 , r 3 }, and 
S 3 = {p 2 , p 6 , r 1 }. We have I r 1 = p 1 + 3p 2 + p 6 + r 1 , I r 2 = p 2 + 2p 5 + 2p 6 + r 2 , I r 3 = p 3 + p 4 + r 3 , H(r 1 ) = {p 1 , p 2 , p 6 }, H(r 2 ) = {p 2 , p 5 , p 6 }, and 
H(r 3 ) = {p 3 , p 4 }.

Summary

Petri nets are suitable to describe discrete event systems. Their various analysis techniques make it possible to reveal many behavioral properties of such systems. Basic definitions and properties of Petri nets are given in this chapter. Also, three typical classes of Petri nets are outlined.

This chapter is fundamental to understand the ideas presented in the following ones.

SUMMARY

Chapitre 2

Structural Analysis of GS 3 PR Nets

Introduction

Structural analysis is one of the most important and efficient methods to investigate the behavior of Petri nets. Liveness is a significant behavioral property of Petri nets. Siphons, as structural objects of a Petri net, are closely related to its liveness. Many deadlock control policies for AMS modeled by Petri nets are implemented via siphon control. Most of the existing methods design liveness-enforcing supervisors by adding control places for siphons based on their controllability conditions. To compute a liveness-enforcing supervisor with as much as permissive behavior, it is both theoretically and practically significant to find an exact controllability condition for siphons. However, the existing conditions, max, max , and max -controllability of siphons are all overly restrictive and generally sufficient only. This chapter develops a new condition called max * -controllability of the siphons in GS 3 PR, which are a net subclass that can model many realworld automated manufacturing systems. We show that a GS 3 PR is live iff all its SMS are max *controlled. Compared with the existing conditions, i.e., max-, max -, and max -controllability of siphons, max * -controllability of the SMS is not only sufficient but also necessary.

Then, for GS 3 PR, an integer programming (IP) model is formulated, which can detect the existence of minimal non-max * -marked siphons that cause deadlocks or livelocks. We conclude that a GS 3 PR is live if there is no feasible solution to the formulated IP model.

The rest of this chapter is organized as follows. Section 2 motivates this study via an example.

Section 3 formulates the new concept called max * -controlled siphons and concludes that a GS 3 PR is live iff all its SMS are max * -controlled. Differences among the max, max , max , and max * -2.2. MOTIVATION controllability of siphons are discussed in Section 4. Section 5 develops a general IP test for liveness detection for GS 3 PR based on max * -controllability condition. Examples are used to illustrate the proposed method in Section 6. Also, we further discuss the proposed IP in this section. Finally, Section 7 concludes this chapter.

Motivation

In this section, we first briefly review the concepts of the max-, max -, and max -controllability conditions of a siphon in a GS 3 PR net in [4], [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF], [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF], and [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF] by an example, which motivates this study.

Max-controlled Siphons

The following properties of GS 3 PR nets are from [4]. Given a place p, we denote max t∈p • {W(p, t)} by max p • . Definition 2.1 [4] Let S be a siphon of a net system (N, M 0 ). S is said to be max-marked at

M ∈ R(N, M 0 ) if ∃p ∈ S such that M(p) ≥ max p • .
Definition 2.2 [4] Let S be a siphon in a well-marked net (N, M 0 ). S is said to be max-controlled if S is max-marked at any reachable marking M ∈ R(N, M 0 ).

Definition 2.3 [4] (N, M 0 ) satisfies the max cs-property (controlled siphon-property) if each mi- nimal siphon of N is max-controlled.
Theorem 2.1

[4] A generalised Petri net is deadlock-free if it satisfies the max cs-property.

Corollary 2.1

A GS 3 PR net is deadlock-free if it satisfies the max cs-property.

Proof : It follows from Theorem 2.1 by considering that a GS 3 PR net is a generalised Petri net.

As shown in Fig. 2.1(a), (N, M 0 ) is a well-marked GS 3 PR, where P 0 = {p 11 , p 12 , p 13 , p 14 }, 

P A = {p 1 , p 2 ,
)} = max{5, 4, 1, 6} = 6. We have M 0 (p 9 ) > max p • 9 .
Hence, S is max-marked at M 0 . Suppose that both t 1 and t 10 fire once. Then, the net system reaches M with M = p 1 + p 7 + 4p 9 + 4p 10 + 2p 11 + 11p 12 + 10p 13 + p 14 as shown in Fig. 2.1(b). We have

M(p 9 ) = 4 < max p • 9 = 6 and M(p 10 ) = 4 < max p • 10 = 6.
Based on the definition of the maxmarked siphons, S is not max-marked at this marking. Therefore, (N, M 0 ) does not satisfy the max cs-property. However, the net is live by, as can be obtained by, reachability graph analysis. The max-controllability condition for siphons is restrictive in the sense of deadlock control.

F. 2.1 -(a)

A GS 3 PR net (N, M 0 ), (b) a live GS 3 PR with a non-max-controlled siphon.

Max -controlled Siphons

In [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF], Chao first proposes a new concept namely max -controlled siphons to relax the maxcontrolled condition. [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] refine the concept and propose the formal definition for max -controlled siphons.

Definition 2.4 [126] Let S be a siphon in a well

-marked S 4 R (N, M 0 ). S is said to be max - marked at M ∈ R(N, M 0 ) if ∃p ∈ S A such that M(p) ≥ 1 or ∃p ∈ S R such that M(p) ≥ max t∈p • ∩[S ] • {W(p, t)}.
Definition 2.5 [START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF] Let S be a siphon in a well-marked S 4 R (N, M 0 ). S is said to be max -

controlled if S is max -marked at M, ∀M ∈ R(N, M 0 ). Theorem 2.2
[9] Let (N, M 0 ) be a well-marked S 4 R. If every siphon in the net is max -controlled, it is live.

MOTIVATION Corollary 2.2

Let (N, M 0 ) be a well-marked GS 3 PR. If every siphon in the net is max -controlled, it is live.

Proof : It follows from Theorem 2.2 by considering that a GS 3 PR net is a subclass of S 4 R.

The net at M = p 1 + p 5 + 4p 9 + 3p 10 + 2p 11 + 10p 12 + 9p 13 + 2p 14 shown in Fig. 2.2 is obtained by firing t 1 and t 7 once in Fig. 2.1(a).

M (p 9 ) = 4, M (p 10 ) = 3, max p • 9 ∩[S ] • = max{W(p 9 , t 8 ), W(p 9 , t 11 )} = max{1, 6} = 6, and max p • 10 ∩[S ] • = max{W(p 10 , t 2 ), W(p 10 , t 5 )} = max{4, 1} = 4. We have M (p 9 ) < max p • 9 ∩[S ] • and M (p 10 ) < max p • 10 ∩[S ] • .
Based on the definition of the max -marked siphons, S is not max -marked at this marking. However, the net is live. The max -controllability condition for siphons is still restrictive in the sense of deadlock control. 3 PR with a non-max -controlled siphon.

F. 2.2 -A live GS

Max -controlled Siphons

In our previous work [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF], we presented a new concept called max -controllability condition of siphons to relax the max -controllability condition. Definition 2.6 [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF] Let S be a siphon in a well-marked S 4 R (N, M 0 ). S is said to be max -marked at M ∈ R(N, M 0 ) if at least one of the following conditions holds :

(i) M is an initial marking ; (ii) ∃p ∈ S A such that M(p) ≥ 1 ; 2.2. MOTIVATION (iii) ∃r ∈ S R , min t∈T α t •W(t, r)+M(r) ≥ max t ∈r • ∩[S ] • {W(r, t )}, where T = {t|t ∈ • r ∩[S ] • , ∀r ∈ • t∩P R , M(r ) ≥ W(r , t), M(P A ∩ • t) ≥ 1}, α t denotes
the times that t is fired from marking M, and min t∈T α t • W(t, r) can be solved by the following mixed integer program (MIP) :

min t∈T α t • W(t, r) p ∈ • t∩P A , M(p) ≥ 1, t x ∈ p • ∩ T α t x ≤ M(p) r ∈ • t∩P R , t y ∈ r • ∩ T α t y • W(r , t y ) ≤ M(r ) t ∈ • r∩[S ] • min{ M(r )-α ty •W(r ,t y ) W(r ,t) , M(p) -α t x } < 1 α t ∈ N Definition 2.7 [80]
Let S be a siphon in a well-marked S 4 R (N, M 0 ). S is said to be max -

controlled if ∀M ∈ R(N, M 0 ), S is max -marked at M. Theorem 2.3
[80] Let (N, M 0 ) be a well-marked S 4 R. The net is live if all its siphons are max -controlled.

Corollary 2.3

Let (N, M 0 ) be a well-marked GS 3 PR. The net is live if all its siphons are max -controlled. 

T = {t 5 }. We have minα t 5 • W(t 5 , p 9 ) + M (p 9 ) = 4α t 5 = 4 < max p • 9 ∩[S ]
• , where α t 5 can be obtained by solving the MIP in Definition 2.6. Based on the definition of the max -marked siphons, this S is not max -marked at this marking. However, the net is live. The max -controllability condition for siphons is still restrictive. 

By Definitions

Necessary and Sufficient Condition

In order to facilitate understanding and readability, we first define critical transitions in a GS 3 PR net. Then the definition of a max * -controlled siphons is introduced. Finally, we present the main results.

Definition 2.8 Let S be a strict siphon in a well-marked GS 3 PR net (N, M 0 ) and [S ] its comple-

mentary set. T c r = r • ∩[S ] • is called the set of critical transitions of r, where r ∈ S R . T c S = S • R ∩[S ] • is called the set of critical transitions of S .

Theorem 2.4

Let S be a strict siphon in a well-marked GS 3 PR net (N, M 0 ) and [S ] its complementary set.

T c S = S • R ∩ [S ] • = [S ] • .

NECESSARY AND SUFFICIENT CONDITION

Proof : Let r ∈ S R and p ∈ H(r)\S , i.e., p ∈ [S ]. From Definition 1.24, for each t ∈ [S ] • , we can find {t} = p • ∩ • r. Since S is a siphon, t is necessarily in the postset of the siphon. By p S , t is necessarily in the postset of some resource in the siphon. Then we have

• t ∩ P R = {r } ⊂ S .
Hence, t ∈ S • . In a word, for each t 

∈ [S ] • , we can find t ∈ S • R , i.e., T c S = S • R ∩ [S ] • = [S ] • . t ∈ T c S is
-marked. S = {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } is its unique SMS with [S ] = {p 1 , p 3 , p 5 , p 7 }. T c p 9 = p • 9 ∩ [S ] • = {t 1 , t 4 , t 8 , t 11 } ∩ {t 2 , t 5 , t 8 , t 11 } = {t 8 , t 11 }, T c p 10 = p • 10 ∩ [S ] • = {t 2 , t 5 , t 7 , t 10 } ∩ {t 2 , t 5 , t 8 , t 11 } = {t 2 , t 5 }, and T c S = T c p 9 ∪ T c p 10 = {t 2 , t 5 , t 8 , t 11 }.
Definition 2.9 Let S be a strict siphon in a well-marked GS 3 PR net (N, M 0 ). S is said to be max *marked (non-max * -marked) at M ∈ R(N, M 0 ) if at least one (none) of the following conditions holds :

(i) ∃p ∈ S A , M(p) ≥ 1 ; (ii) ∃r ∈ S R , M(r) ≥ max t∈T c r W(r, t) ; (iii) ∃t ∈ T c
S , e pt = 1 and e rt = 1 (t is enabled at M).

This definition presents a new concept called a max * -marked siphon. In essence, Conditions Let S be a strict siphon in a well-marked GS 3 PR net (N, M 0 ), which is non-max * -marked at M ∈ 2.3. NECESSARY AND SUFFICIENT CONDITION R(N, M 0 ). The following statements are true :

(1) M is a dead marking with respect to

S if ∀t ∈ S • \ • S , t is disabled at M. (2) ∀t ∈ T S , t is dead at M, where T S = {t|t ∈ T c S , r ∈ • t ∩ S R , M(r ) < W(r , t), p ∈ • t ∩ P A , M(p) ≥ 1}. (3) ∀r ∈ S R , M(r) ≥ M (r), where M ∈ R(N, M). Proof : (1) As known, S is non-max * -marked at M ∈ R(N, M 0 ). From Definition 2.9, the following statements hold : (i) ∀p ∈ S A , M(p) = 0 ; (ii) ∀r ∈ S R , M(r) < max t∈T c r W(r, t) ; and (iii) ∀t ∈ T c S ,
t is disabled at M. This means that only t ∈ S • \ • S is possibly enabled. By the assumption that ∀t ∈ S • \ • S , t is disabled at M, the fact that M is a dead marking with respect to S can be concluded.

(

) One can obtain r∈S R M T • Y r = p∈[S ],r∈S R M(p) • Y r (p) + p∈S A M(p) • Y r (p) + M(S R ). At marking M, ∀p ∈ S A , M(p) = 0. Hence, we can simplify this equation as r∈S R M T • Y r = p∈[S ],r∈S R M(p) • Y r (p) + M(S R ) 2 
, where Y r is the P-semiflow associated with resource r.

Suppose that ∃r ∈ S R , M(r) < M (r), where M ∈ R(N, M). Considering the above equation, this assumption means that from marking M to M , some tokens in the complementary set can return to resource place r. This implies that there exists transition t in the preset of r which is enabled at some reachable marking from M. Specifically, t ∈ T r and

T r = {t|t ∈ • r ∩ T c r , r ∈ • t ∩ S R , M(r ) < W(r , t), p ∈ • t ∩ P A , M(p) ≥ 1}. In this situation, firing t requires M (r ) ≥ W(r , t), where M ∈ R(N, M).
The increment of token count in r requires that some tokens in the complementary set can return to it. This implies that there exists transition t in the preset of r which is enabled at some reachable marking from M. Specifically, t ∈ T r and

T r = {t |t ∈ • r ∩ T c r , r ∈ • t ∩ S R , M(r ) < W(r , t ), p ∈ • t ∩ P A , M(p ) ≥ 1}.
In this situation, firing t requires M (r ) ≥ W(r , t ), where M ∈ R(N, M). However, the increment of token count in r requires that some tokens in the complementary set can return to it. The number of resource places in S is finite. By Definition 1.24 and Theorem 1.4, the case represented above forms a circular wait 1 . At marking M, no transition in T S is enabled, and the same holds for all markings reachable 2.3. NECESSARY AND SUFFICIENT CONDITION from M, where

T S = {t|t ∈ T c S , r ∈ • t ∩ S R , M(r ) < W(r , t), p ∈ • t ∩ P A , M(p) ≥ 1}. (3) By (2), ∀r ∈ S R , M(r) ≥ M (r), where M ∈ R(N, M).
The theorem reveals that if S is non-max * -marked at M ∈ R(N, M 0 ), the tokens flowed in [S ] will not be returned to the siphon owing to the insufficient marking of resources at M. The GS 

(i) is not satisfied due to M(p 5 ) = M(p 9 ) = M(p 18 ) = 0. Since M(p 12 ) = 1 < 2 (max t∈T c p 12 W(p 12 , t) = max{W(p 12 , t 10 ), W(p 12 , t 14 )} = max{1, 2} = 2) and M(p 13 ) = 1 < 2 (max t∈T c p 13 W(p 13 , t) = max{W(p 13 , t 3 )} = 2)
, Condition (ii) does not hold. Also, Condition (iii) is not satisfied since t 3 , t 10 , and t 14 are all disabled at M. Now, the three statements in Theorem 2.5 are considered.

t 2 ∈ S • 1 \ • S 1 is disabled at M.
Hence, M is not a dead marking with respect to S 1 . We have T S 1 = {t 3 , t 14 }. From Fig. 2.4(b), t 3 can fire at M if tokens in complementary place p 17 can return to resource place p 13 , where M ∈ R(N, M). This demands that t 14 should be potentially enabled at M (M ∈ R(N, M). Firing t 14 requires M (p 12 ) ≥ W(p 12 , t 14 ). The increment of token count in p 12 requires that some tokens in complementary place p 3 can return to it. This requires that t 3 should be potentially enabled. The case stated above forms a circular wait {p 12 , p 13 }.

Hence, t 3 and t 14 are disabled at M and they cannot fire again at any M ∈ R(N, M). For p 12 and p 13 , M(p 12 ) ≥ M (p 12 ) and M(p 13 ) ≥ M (p 13 ), where M ∈ R(N, M).

Theorem 2.6

Let S be a strict siphon in a well-marked GS 3 PR net (N, M 0 ). If S is non-max * -marked at a reachable marking, (N, M 0 ) is non-live.

Proof : Suppose that S is non-max * -marked at reachable marking M. By Theorem 2.5, ∀t ∈ T S , t is dead at M, where As shown in Fig. 2.4(b), S 1 is non-max * -marked at the current marking. By Theorem 2.6, the net is non-live.

T S = {t|t ∈ T c S , r ∈ • t ∩ S R , M(r ) < W(r , t), p ∈ • t ∩ P A , M(p) ≥ 1}. It is clear that T S ∅.
Definition 2.10 Let S be a strict siphon in a well-marked GS 3 PR net (N, M 0 ). S is said to be max * -controlled if S is max * -marked at any reachable marking from M 0 .

Lemma 2.1

[9] Let (N, M 0 ) be a well-marked GS 3 PR net, M ∈ R(N, M 0 ) and t ∈ T a dead transition at M.

Then, there exists M ∈ R(N, M) and two subsets J ⊂ I N and H ⊂ I N such that I N = J ∪ H,

I N = {1, 2, ..., n}, J ∩ H = ∅, J ∅ and (i) ∀h ∈ H, M (p 0 h ) = M 0 (p 0 h ), (ii) ∀ j ∈ J, M (p 0 j ) < M 0 (p 0 j )
and Ω = {p • |p ∈ P A , and M (p) > 0} is a set of dead transitions.

From Definition 1.26, a GS 3 PR contains n subnets that are strongly connected state machines such that every circuit contains an idle place. According to Lemma 2.1, at M , n subnets are divided into two parts. The first cannot proceed to complete operations, i.e., some tokens in their idle places at the initial marking cannot return to them. The second can proceed to complete operations. The former subnets necessarily exist due to the existence of the dead transitions.

Theorem 2.7

Let (N, M 0 ) be a well-marked GS 3 PR and t ∈ T be a dead transition at M ∈ R(N, M 0 ). Then there exists an SMS S and a marking M ∈ R(N, M) such that S is non-max * -marked at M .

Proof : Five steps are presented to prove the result.

NECESSARY AND SUFFICIENT CONDITION

Step1 : There exists a non-empty places set S 0 at M .

Consider M given in Lemma 2.1. Let S 0 R = {r ∈ P R |∃t ∈ r • , M (r) < W(r, t), p ∈ P A ∩ • t, M (p) > 0} and S 0 A = {p ∈ H(r)|r ∈ S R , M (p) = 0}. S 0
R is the set of resource places with at least one disabled output transition t that is not disabled by its input activity place p. S 0 A is the set of unmarked holders of these resources. We need to prove that S = S 0 A ∪ S 0 R is non-empty.

S 0 ∅. By contradiction, suppose that S 0 = ∅. Then S 0 R = ∅. This implies that ∀p ∈ P A , t ∈ p • can fire if M (p) > 0.
Then the set of indexes J given in Lemma 2.1 is empty. This contradicts Lemma 2.1. Hence, S 0 ∅.

Step2 : S 0 is a strict siphon.

Step2.1 : S 0 is a siphon. Construct a non-empty set S 0 by using dead transitions. Let t ∈ • S 0 .

Two cases are considered.

case-1 : t ∈ • r for r ∈ S 0 R : • t ∩ P A contains a unique place since each subnet N i in GS 3 PR is a state machine. Let • t∩P A = {p}. If M (p) = 0, then p ∈ S 0 A , which implies that t ∈ p • ⊆ S 0• A ⊆ S 0• . If M (p) ≥ 1, then • t ∩ P R ∅. By contrary, suppose that • t ∩ P R = ∅. Then, t is enabled at M due to M (p) ≥ 1. By the definition of GS 3 PR, | • t ∩ P R | = 1.
We use r to denote the unique element in • t ∩ P R . Next, we need to prove that at M , W(r , t) > M (r ) is true. By contradiction, if W(r , t) ≤ M (r ), then t is enabled at M , which contradicts the assumption that t is dead. In essence, t is dead due to the existence of its insufficiently marked input resource place at M . Hence, r ∈ S 0 R , and then,

t ∈ r • ⊆ S 0• R ⊆ S 0• . case-2 : t ∈ • p for p ∈ S 0 A : Since p ∈ S 0 A , ∃r ∈ S 0 R such that p ∈ H(r), and t ∈ r • ⊆ S 0• .
Step2.2 : S 0 is a strict siphon.

By contradiction, suppose that S 0 is not strict. There necessarily exists a P-semiflow ||I r || ⊆ S 0 , where r ∈ S 0 . By the construction of S 0 , M (r ) < M 0 (r ) holds. This implies that ∃q ∈ ||I r || ∩ P A such that M (q) ≥ 1. Place q cannot be in S 0 since S 0 A = {p ∈ H(r)|r ∈ S R , M (p) = 0}. Hence, S 0 is a strict siphon.

Step3 : Extract place sets S m from S 0 , where

S m = S m R ∪ S m A with S m R = {r ∈ S m-1 R |∃t ∈ r • ∩ [S m-1 ] • , M (r) < W(r, t), p ∈ S m-1 A ∩ • t, M (p) > 0} and S m A = {p ∈ H(r)|r ∈ S m R , M (p) = 0}, [S k ] = [S k-1 ]
, and m ∈ {1, • • • , k}. k is finite since S 0 is finite. Similar to Step2, it is easy to prove that S k is a strict siphon.

NECESSARY AND SUFFICIENT CONDITION

Step4 : S k is non-max * -marked at M. Now let us prove that S k is non-max * -marked at M . The three conditions in Definition 2.9 are considered here.

(i) ∀p ∈ S k A , M (p) = 0 ; (ii) ∀r ∈ S k R , M (r) < max t∈T c r W(r, t) ; (iii) By Lemma 2.1, at M , Ω = {p • |p ∈ P A , and M (p) > 0} is a set of dead transitions. ∀t ∈ T c S k , t is disabled at M . Hence, S k is non-max -marked.
Step5 : There exists a non-max * -marked SMS such that S ⊆ S k . This results can be obtained directly from Step4.

Here we use the net shown in Fig. 2.4 to illustrate Theorem 2.7. Let (N, M 0 ) be a well-marked GS 3 PR net and Π ∅ be the set of SMS.

M = M = 6p 1 + p 2 + 2p 3 + p 7 + p 8 +9p 10 + p 12 + p 13 + p 17 +9p 19 is a marking satisfying Lemma 2.1. At M , S 0 R = {r ∈ P R |∃t ∈ r • , M (r) < W(r, t), p ∈ P A ∩ • t, M (p) > 0} = {p 12 , p 13 , p 15 } and S 0 A = {p ∈ H(r)|r ∈ S R , M (p) = 0} = {p 9 , p 18 , p 4 , p 5 }. Hence, S 0 = S 0 R ∪ S 0 A = {p 12 , p 13 , p 15 , p 9 , p 18 , p 4 , p 5 }. Clearly, it is a strict siphon. [S 0 ] = {p 3 , p 17 } is then derived. According to S m R = {r ∈ S m-1 R |∃t ∈ r • ∩ [S m-1 ] • , M (r) < W(r, t), p ∈ S m-1 A ∩ • t, M (p) > 0} and S m A = {p ∈ H(r)|r ∈ S m R , M (p) = 0}, S 1 R = {p 12 , p 13 } since p • 15 ∩ [S 0• ] = {t 6 } ∩ {t 3 , t 14 } = ∅,
It is live iff ∀S ∈ Π, S is max * -controlled. Proof : (sufficiency) : If ∀S ∈ Π, S is max * -controlled, the net GS 3 PR (N, M 0 ) is live.
By contradiction, suppose that the net is non-live. From Theorem 2.7, there exists a marking M ∈ R(N, M 0 ) and t ∈ T such that t is a dead transition at M. Then there exists M ∈ R(N, M) and an SMS S such that S is a non-max * -marked siphon at M . In other words, not all SMS of the net are max * -controlled.

(necessity) :

If the net GS 3 PR (N, M 0 ) is live, ∀S ∈ Π, S is max * -controlled.

COMPARISON

By contradiction, suppose that there exists an SMS S and a marking M ∈ R(N, M 0 ), at which S is non-max * -marked. From Theorem 2.6, the net is non-live. This contradicts the liveness of the net.

In summary, a well-marked GS 3 

PR net (N, M 0 ) is live iff each SMS is max * -controlled.
As stated in Section 2, a GS 3 PR becomes an S 3 PR if the weight of each arc is changed to be one. In other words, GS 3 PR are more general than S 3 PR that are a subclass of GS 3 PR. This means that the max * -controllability condition of the siphons in GS 3 PR can be used in S 3 PR. The three items in Definition 2.9 for S 3 PR imply that siphon S is marked. It is easy to verify the fact that an S 3 PR is live iff all its SMS never become unmarked by Theorem 2.8.

Comparison

From the definition of max-controlled siphons [4], the number of tokens in each place of a siphon is restricted by the maximal weights of its output arcs, i.e., M(p) ≥ max p • . Chao [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF] points out that this condition is too restrictive and proposes the concept of max -controlled siphons. As for the marking of resource places considered in a siphon, condition M(p) ≥ max p • is relaxed to be

M(p) ≥ max t∈p • ∩[S ]
• {W(p, t)}. Note that max -controlled condition of a siphon is still a sufficient but not necessary.

In our previous work [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF], we show that the max -controllability condition can be further relaxed by a new concept called max -controlled siphons. As shown in Definition 2.6, at the marking of the considered resource places of a siphon, condition

M(p) ≥ max t∈p • ∩[S ] • {W(p, t)} is relaxed to be min t∈T α t • W(t, r) + M(r) ≥ max t ∈r • ∩[S ] • {W(r, t )}. This constraint guarantees that each transition in r • ∩ [S ]
• is potentially enabled. However, we need to solve an MIP to decide whether a siphon is max -marked at a marking M ∈ R(N, M 0 ). What is more, the maxcontrollability condition of the siphons in S 4 R is a sufficient condition only.

In this chapter, we improve our previous work [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF] by splitting Condition (iii) of Definition 2.6 into two parts : Condition (ii) and Condition (iii) of Definition 2.9. This method avoids solving MIP problems and loosens the constraint

min t∈T α t • W(t, r) + M(r) ≥ max t ∈r • ∩[S ] • {W(r, t )}.
It is easy to see that the former two conditions of the definition of max * -marked siphons are completely the same with the definition of max -marked siphons. The new definition allows a new condition.

LIVENESS DETECTION FOR GS 3 PR

Understandably, it is more general than max -marked siphons. Condition (iii) in Definition 2.9 means that a critical transition t of S is enabled at M. At M, a max * -marked siphon can guarantee that at least one transition in its preset can fire once.

The net shown in Fig. 2.1(a) is live with 654 legal markings. S is non-max-marked at 8 markings, non-max -marked at 4 markings, and non-max -marked at one marking as shown in Table 2.2, where the numbers of tokens in p 11 , p 12 , p 13 , and p 14 are not shown. However, S is max * -marked at all 654 markings. In a word, from a max-controlled siphon to max * -controlled one, constraints for siphon control become more and more weaker. T. 2.2 -Controllability conditions of siphon {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } in Fig. 2.1(a) markings of p 1 , p 2 , p 3 , p 4 , p 5 , p 6 , p 7 , p 8 , p 9 , p 10 max max max max * 1,0,1,0,1,0,0,0,0,3 no no no yes 1,0,0,0,1,0,0,0,4,3 no no yes yes 0,0,2,0,1,0,0,0,1,3 no no yes yes 0,0,1,0,1,0,0,0,5,3 no no yes yes 1,0,1,0,0,0,1,0,0,4 no yes yes yes 0,0,1,0,0,0,1,0,5,4 no yes yes yes 0,0,2,0,0,0,1,0,1,4 no yes yes yes 1,0,0,0,0,0,1,0,4,4 no yes yes yes

Based on the max * -controllability condition, we can design supervisors with more permissive behavior for GS 3 PR nets in theory. Hopefully, this condition can be used in an appropriate policy that leads a supervisor of a Petri net system to be optimal. Then the corresponding manufacturing system is of more flexibility. In this sense, the new concept proposed in this chapter can promote the development of optimal or suboptimal deadlock control. In other words, this necessary and sufficient liveness condition for GS 3 PR will be considered as an important progress in deadlock control of generalized Petri nets. Due to the complex structures of S 4 R, finding a necessary and sufficient siphon control condition for S 4 R is a challenging problem and remains open, which, in our own opinion, still needs many efforts.

Liveness Detection for GS 3 PR

Based on Theorem 2.8, an immediate implication is that a minimal non-max * -marked siphon at a marking M ∈ R(N, M 0 ) can be determined by the following integer programming problem if 2.5. LIVENESS DETECTION FOR GS 3 PR the net is non-live.

Theorem 2.9

Let (N, M 0 ) be a well-marked GS 3 PR net system. A minimal non-max * -marked siphon S and a corresponding marking M ∈ R S (N, M 0 ) can be obtained through the following IP formulation :

min p∈P\P 0 s p (2.1)
subject to For all t ∈ T , p ∈ P :

|t • | p∈ • t s p ≥ p∈t • s p (2.
2) (2.11) 

p∈P 0 s p = 0 (2.3) p∈P A s p ≥ 1 (2.4) p∈P R s p ≥ 2 (2.5) For all p ∈ P A , t ∈ p • e pt ≥ M(p) ψ(p) (2.6) M(p) ≥ e pt (2.7) s p + e pt ≤ 1 (2.8) t∈T \P 0• e pt ≤ |{t ∈ T \P 0• }| -1 (2.9) For all r ∈ P R , t ∈ r • e rt ≥ M(r) -W(r, t) + 1 M 0 (r) -W(r, t) + 1 (2.10) M(r) W(r, t) ≥ e rt
e rt + s r ≤ |r • | (2.12) For all r, r ∈ P R , t ∈ r • , r ∈ t • ∩ P R , p ∈ • t ∩ P A (2s r -1) • M(r ) ≤ (2s r -1) • {max[s r • s r •W(r , t)] -s r } (2.
M = M 0 + [N]Y, M ≥ 0, Y ≥ 0 (2.16)
where ψ(p) can be directly obtained from the definition of a GS 3 PR.

The minimal non-max * -marked siphon is the set of places whose associated variables s p 's are 1.

Proof : Let us first make some comments on the variables used in the constraints.

Constraints (2)-( 5) : Constraint (2) ensures that s is the characteristic vector of siphon S .

Constraints (3)-( 5) guarantee that the solution obtained contains no idle place, at least an activity place and two resource places as shown in Theorem 1.4.

Constraints ( 6)-( 9) : For each t ∈ p • e pt = 0 if M(p) = 0.

• For a non-live net, there exists at least one transition whose input arc (p, t) is disabled, where

p ∈ P A .
Constraints ( 10)-( 15) : For each t ∈ r • , r ∈ P R , e rt indicates whether arc (r, t) is enabled. It follows immediately from the following facts :

• If t is enabled by arc (r, t) at M, i.e., M(r) ≥ W(r, t), then M(r) W(r,t) ≥ 1 and 1 ≥ M(r)-W(r,t)+1
M 0 (r)-W(r,t)+1 > 0. Hence, the value of e rt must be 1.

• If t is disabled by arc (r, t) at M, i.e., M(r) < W(r, t), then M(r)
W(r,t) < 1 and 0 ≥ M(r)-W(r,t)+1 M 0 (r)-W(r,t)+1 . Hence, the value of e rt must be 0.

• For each resource place r ∈ P R , if r is in the solution, there exists at least one output arc of r which is disabled.

• If there exists an SMS in a GS 3 PR, there necessarily exist two resources r and r. For t ∈ r • , 13) means that when s r = 0, M(r ) ≥ 0 ; when s r = 1 and s r = 1, M(r ) ≤ max{W(r , t)} -1. Hence, Constraint (13) corresponds to the Definition of the non-max * -marked siphon (Definition 2.9 (ii)).

r ∈ P R , if t • ∩ P R ∅, let t • ∩ P R = {r}. Constraint (
• Only when e r t , e pt , and s r are all equal to one, the result of their multiplication is equal to one. However, based on Definition 2.9 (iii), e r t • e pt • s r = 1 implies that the siphon including r is max * -marked at M. We try to construct an IP to identify a minimal non-max * -marked at M. Thus we need Constraint [START_REF] Chen | Behaviorally optimal and structurally simple livenessenforcing supervisors of flexible manufacturing systems[END_REF], e r t • e pt • s r = 0. When one of e r t and e pt is equal to zero, it is non-deterministic that r belongs to a non-max * -marked siphon or not. However, e r t • e pt • s r = 0 is true.

If the IP has a feasible solution, the solution is a minimal non-max * -marked siphon with a corresponding marking M ∈ R S (N, M 0 ).

Theorem 2.10

Let (N, M 0 ) be a well-marked GS 3 PR. It is live if the IP in Theorem 2.9 has no feasible solution.

Proof : For a well-marked GS 3 PR, the fact that the IP in Theorem 2.9 has no feasible solution means that all siphons of the net are max * -controlled. By Theorem 2.8, it is live.

EXAMPLES AND DISCUSSIONS

R(N, M 0 ) ⊆ R S (N, M 0 ) is true since the state equation does not check the feasibility of a transition sequence. The markings in R S (N, M 0 )\R(N, M 0 ) are called spurious markings. Although the reachability set derived from the state equation may contain spurious markings, its linear description facilitates the liveness analysis of a GS 3 PR.

The existence of spurious markings sometimes prevents Theorem 2.9 from being a necessary condition. It means that for a live GS 3 PR, the IP model in Theorem 2.9 may still obtain a solution that pertains to a spurious marking. Note that a GS 3 PR is live iff there is no feasible solution in R(N, M 0 ) to this IP test. However, R(N, M 0 ) usually cannot be represented by a linear constraint.

Examples and Discussions

Example 1 : Take the net shown in Fig. 2.1(a) as an example. Liveness is checked by solving the IP in Theorem 2.9. Let s = [x 1 , x 2 , ..., x 14 ] T and M = [y 1 , y 2 , ..., y 14 ] T , where x i = 0 or x i = 1, y i ≥ 0, i = 1, 2, ..., 14. Specifically, we have M 0 = 9p 9 + 9p 10 + 3p 11 + 11p 12 + 10p 13 + 2p 14 . We use Lingo [START_REF] Lingo | Premier optimization modeling tools[END_REF] to solve the following IP problem :

min = x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 + x 8 + x 9 + x 10 ; x 11 + x 9 -x 1 ≥ 0 ; 2 * x 1 + 2 * x 10 -x 2 -x 9 ≥ 0 ; 2 * x 2 -x 10 -x 11 ≥ 0 ; x 12 + x 9 -x 3 ≥ 0 ; 2 * x 3 + 2 * x 10 -x 4 -x 9 ≥ 0 ; 2 * x 4 -x 10 -x 12 ≥ 0 ; x 13 + x 10 -x 5 ≥ 0 ; 2 * x 5 + 2 * x 9 -x 6 -x 10 ≥ 0 ; 2 * x 6 -x 9 -x 13 ≥ 0 ; x 14 + x 10 -x 7 ≥ 0 ; 2 * x 7 + 2 * x 9 -x 8 -x 10 ≥ 0 ; 2 * x 8 -x 9 -x 14 ≥ 0 ; 2.
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x 11 + x 12 + x 13 + x 14 = 0 ;

x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 + x 8 ≥ 1 ;
x 9 + x 10 ≥ 2 ; Note that the above source code follows the syntax of Lingo [START_REF] Lingo | Premier optimization modeling tools[END_REF], where function @smax( f 1 , f 2 , ..., f n ) indicates that the maximal value of f 1 , f 2 , ..., and f n is returned. No feasible solution can be found by solving this programming problem. It means that this net is live.

Actually, there is a unique SMS in this live net : S = {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } that is always sufficiently marked. However, the MIPs in both [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF] and [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF] can find a feasible solution for this net. Using the MIP in [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF], the SMS S is non-max-marked at marking M = p 3 + p 5 + 5p 9 + 3p 10 + 3p 11 + 10p 12 + 9p 13 + 2p 14 . Using the MIP in [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF], a minimal siphon S is non-max -marked at M = p 1 + p 3 + p 5 + 3p 10 + 2p 11 + 10p 12 + 9p 13 + 2p 14 . As shown in Table 2.2, S in Fig. 2.1(a) is non-max-marked at eight markings and non-max -marked at one marking. Hence, a solution can be found. The control policy in [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF] adds a control place for the obtained SMS, which is not necessary by the method proposed in this current chapter, as shown via this example.

Example 2 : The net shown in Fig. 2.5 has the same structure with a net in [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF] and [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF]. Fig. 2.6 is the reachability graph of the net in Fig. 2.5. Clearly, we can see that this net is deadlock-free and states M 9 = p 1 + p 2 + p 4 + p 5 + p 7 + p 10 and M 10 = p 1 + p 2 + p 4 + p 5 + p 7 + p 8 + p 9 are livelocks in Fig. 2.6. Here we use Theorem 2.9 to detect the minimal non-max * -marked siphon.

In Fig. 2.5, let s = [x 1 , x 2 , ..., x 10 ] T and M = [y 1 , y 2 , ..., y 10 ] T , where x i = 0 or x i = 1, y i ≥ 0, i = 1, 2, ..., 10. Specifically, we have M 0 = 2p 1 + 2p 4 + 3p 7 + 3p 8 + p 9 . The minimal non-max *marked siphon can be detected by the following IP problem : For this example, one cannot detect a deadly marked siphon by the MIP proposed in [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF]. At bad markings M 9 and M 10 , siphon {p 3 , p 6 , p 7 , p 8 , p 10 } is not deadly marked according to the definition of deadly marked siphons. Specifically, t 7 and t 8 are in the preset of the siphon. Transition t 8 is enabled by p 10 at M 9 and t 7 is enabled by p 8 at M 10 . These do not satisfy the condition ∀t ∈ • S , t is disabled by some p ∈ S .

min = x 2 + x 3 + x 5 + x 6 + x 7 + x 8 + x 10 ; x 1 + x 7 -x 2 ≥ 0 ;
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2 * x 2 + 2 * x 8 -x 3 -x 7 ≥ 0 ; 2 * x 3 -x 1 -x 8 ≥ 0 ; x 4 + x 8 -x 5 ≥ 0 ; 2 * x 5 + 2 * x 7 -x 6 -x 8 ≥ 0 ; 2 * x 6 -x 4 -x 7 ≥ 0 ; x 8 + x 9 -x 10 ≥ 0 ; 2 * x 10 -x 8 -x 9 ≥ 0 ; x 1 + x 4 + x 9 = 0 ; x 2 + x 3 + x 5 + x 6 + x 10 ≥ 1 ; x 7 + x 8 ≥ 1 ; 2 * y 2 + 2 * y 6 + y 7 = 3 ; 2 * y 3 + 2 *
(2 * x 7 -1) * y 7 ≤ (2 * x 7 -1) * (2 * x 7 * x 8 -x 7 ) ; (2 * x 8 -1) * y 8 ≤ (2 * x 8 -1) * (2 * x 8 * x 7 -x 8 ) ;
In fact, compared with the MIP technique in [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF], the proposed IP is more general in the two aspects : (i) a minimal non-max * -marked siphon can be obtained directly if a net is non-live and (ii) the new IP can solve the problem if a Petri net contains livelocks caused by siphons.

Summary

Deadlocks in an AMS can always be mapped into siphons of their Petri net models. They can be prevented by the proper control of siphons. Current deadlock control approaches suffer from restricted liveness characterization based on the controllability conditions of siphons. This chapter develops a necessary and sufficient controllability condition for GS 3 PR. The contributions of this chapter consists of (1) proposal of a new controllability condition of siphons in GS 3 PR, (2) development of a sufficient and necessary condition for the liveness of a GS 3 PR, and (3) formulation of an IP model to detect the minimal non-max * -marked siphon that cause deadlocks or livelocks in GS 3 PR. This chapter is another step towards a better knowledge about structural mechanisms ensuring a siphon to be controlled. This permits us to look forward a broader decision power of the controlled siphon property in particular for systems where the purely algebraic methods reach their limit. The use of the max * -controllability condition and the proposed IP model to control a generalized Petri net is still a problem requiring a further study. A sufficient and necessary siphon control condition for S 4 R remains open. Also, it is challenging to design an optimal supervisor for generalized Petri nets based on siphons.

The major contributions in this research are published : Deadlock Prevention for M-nets Based on Structure Reuse of Supervisors

Introduction

The existing prevention policies underlying Petri net formalisms are developed on the basis of either a state space or structural analysis, e.g., siphon control. Falling into the first category, the theory of regions that can derive Petri nets from automaton-based models is an important method for supervisory control of discrete event systems. The most attractive advantage of the approach is that an optimal supervisor can always be obtained, by adding monitors that are used to separate events from unsafe states, when such a supervisor exists. However, it bears much computational cost. One first needs to generate the reachability graph given a Petri net model. Then, the set of marking/transition separation instances is found, whose number is in theory exponential with respect to the net size and initial marking. Finally, for each instance, a monitor is found by solving a linear programming problem in which the number of constraints is approximately equal to that of nodes in the reachability graph. When its initial marking changes, the aforementioned steps have to be repeated. In such an approach, no information of previously determined supervisors can be reused.

Deadlock prevention based on siphon control is a typical application of structural analysis techniques of Petri nets. It is not optimal and can even be overly restrictive and conservative in many cases. However, it is computationally tractable and allows its supervisor to be reused when a system experiences such changes as new capacity and job instances [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Ezpeleta | A class of well structured Petri nets for flexible manufacturing systems[END_REF], [START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF], [START_REF] Huang | Siphon-based deadlock prevention policy for flexible manufacturing systems[END_REF],

3.1. INTRODUCTION [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Li | Clarifications on the definitions of elementary siphons in Petri nets[END_REF], [START_REF] Tricas | An iterative method for deadlock prevention in FMS[END_REF], [START_REF] Xing | Optimal Petri net-based polynomialcomplexity deadlock avoidance policies for automated manufacturing systems[END_REF], [START_REF] Xing | Resource-transition circuits and siphons for deadlock control of automated manufacturing systems[END_REF].

To inherit and preserve the advantages of two classes of the approaches, this chapter proposes a novel design method of deadlock prevention supervisors based on Petri nets, which does not guarantee optimality but empirical results show its superiority over other approaches based on siphon control. Given the Petri net model of an AMS, one first designs an optimal liveness-enforcing controlled system for the model at a minimal initial marking by utilizing the theory of regions.

Then, we calculate all SMS in the controlled system. Such a siphon does not contain a trap. For each SMS, an algebraic inequality with respect to the markings of monitors and resource places in the controlled system, also called a liveness constraint, is established in terms of the concept of max-controlled or invariant-controlled siphons. Its satisfaction implies the absence of dead transitions in the postset of the corresponding siphon. Consequently, given initial markings that satisfy all the liveness inequality constraints, all siphons can be max-controlled, and the resulting controlled system is live. After a controlled system structure is found, one can reallocate the initial markings according to the inequality constraints. No matter how large the initial markings and the number of states are, the liveness constraints remain unchanged. Their satisfaction ensures the absence of uncontrolled siphons. This implies that, for a plant model with a fixed net structure, we only need to compute its reachability graph at a minimal initial marking and the siphons of the controlled system once.

Whenever the number of process instances and the capacity of manufacturing resources change, a Petri net supervisor can be determined easily via these algebraic inequality constraints.

The remainder of this chapter is organized as follows. Section 2 formulates the considered problem through a motivation example and generalizes a class of manufacturing-oriented Petri nets. Section 3 elaborates a method that properly allocates initial markings for monitors to prevent siphons from being uncontrolled. Section 4 proposes an algorithm to identify the redundant constraints. A deadlock prevention policy is developed in Section 5. AMS examples are given in Section 6, showing the near optimality achieved by the proposed method. A problem of the proposed method is discussed in Section 7. Finally, Section 8 concludes the chapter and identifies research directions for future work.

STRUCTURE DESIGN OF A PETRI NET SUPERVISOR

3.2 Structure Design of a Petri Net Supervisor

Motivation and Problem Formulation

Let us recall the steps to use the theory of regions to design a supervisor for a Petri net model. First, we generate the reachability graph of the model. Then, all marking/transition separation instances are found. For each instance, a monitor is computed by solving a linear programming problem (LPP). In theory, the number of marking/transition separation instances grows exponentially with the net size and initial marking. So is the number of constraints in each LPP. Moreover, the size of a reachability graph is rather sensitive to the size and initial marking of a net. These facts make it infeasible for the theory of regions to be applied to real-world problems.

We formulate the problem and illustrate the proposed method through a small example from [START_REF] Zhou | Petri net synthesis for discrete event control of manufacturing systems[END_REF]. Consider a net (N, M 0 ) in Fig. 3.1(a) with its reachability graph shown in Fig. 3.1(b). Its optimal controlled system (N c , M c 0 ) can be found by the theory of regions [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF], as shown in Fig. 3.1(f). Now we consider the deadlock control in (N m , M m 0 ) as shown in Fig. 3.1(c). It has the same topology structure as (N, M 0 ) in Fig. 3.1(a), but has a small initial marking. Its reachability graph is shown in Fig. 3.1(d). Fig. 3.1(e) shows its controlled system (N mc , M mc 0 ) obtained by using the theory of regions. Finding (N mc , M mc 0 ) is obviously more tractable than finding (N c , M c 0 ) since (N m , M m 0 ) has a small reachability space.

Now we investigate the relationship between the controllability of siphons in (N mc , M mc 0 ) and its initial marking. N mc has five minimal siphons : 

S 1 = {p 1 , p 2 , p 3 , p 4 }, S 2 = {p 3 , p 5 }, S 3 = {p 2 ,

STRUCTURE DESIGN OF A PETRI NET SUPERVISOR

Now we consider the deadlock prevention problem for (N, M 0 ) by using the structure of the controlled system in Fig. 3 In summary, by using the structure of the controlled system of a net with a small initial marking, we can compute a controlled system for the same net structure with a large initial marking, in terms of algebraic inequality constraints with respect to markings. That is to say, once the structure of a controlled system is determined, the initial marking of monitors is determined by a set of inequality constraints. For a plant model (N, M 0 ) with its structure shown in Fig. 3.1(a) and a new initial marking M 0 = 4p 1 + 3p 5 + p 6 , one can easily find a controlled system with its structure shown in Fig. 3.1(f) and

M mc 0 (p c ) = 3 such that M c 0 (p 5 ) + M c 0 (p 6 ) > M c 0 (p c ) is true.
It is not necessary to apply the theory of regions afresh to (N, M 0 ). Let (N, M 0 ) be a plant net model with place set P and P V be the set of monitors in its controlled system (N c , M c 0 ). The deadlock prevention procedure proposed in this study contains the following steps :

(1) Find a controlled system (N mc , M mc 0 ) for (N m , M m 0 ) by using the theory of regions, where N m = N and M m 0 ≤ M 0 .

(2) Derive the controllability conditions of siphons in N mc , which are represented by algebraic inequalities of markings of the places in the plant model and monitors in N mc .

(3) Decide an initial marking M c 0 such that ∀p ∈ P, M c 0 (p) = M 0 (p) and ∀p ∈ P V , M c 0 (p) satisfies its corresponding inequality constraints. (N c , M c 0 ) is a controlled system for (N, M 0 ), where N c = N mc .

M-nets

This study considers deadlock problems for a class of manufacturing-oriented Petri nets, Mnets for short. It is a generalization of the existing net classes that model AMS. Definition 3.1 An M-net denoted by (N, M 0 ) satisfies the following statements :
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1. N = n i=1 N i = (P 0 ∪ P A ∪ P R , T, F, W) is composed of n nets N 1 , N 2 , . . ., and N n , where ∀i ∈ N n , N i = ({p 0 i } ∪ P A i ∪ P R i , T i , F i , W i ) is called a subnet of N.
2. P 0 = ∪ n i=1 {p 0 i } is called a set of idle process places with p 0 i p 0 j , ∀i, j ∈ N n , i j ;

P A = ∪ n i=1 P A i is called a set of activity places with P A i ∩ P A j = ∅, ∀i, j ∈ N n , i j ; and

P R = ∪ n i=1 P R i is called a set of resource places. 3. ∀i, j ∈ N n , i j, T i ∩ T j = ∅.
4. ∀r ∈ P R , it is associated with a minimal P-semiflow I r such that I r (r) = 1, ∀p ∈ P A , I r (p) ≥ 0, and ∀p ∈ P 0 , I r (p) = 0.

5. ∀p ∈ P A , p is associated with a minimal P-semiflow I p , where ||I p || ⊆ P A .

6. (N i , M 0i ) is quasi-live, bounded, and conservative.

7.

(N i , M 0i ) with N i = ({p 0 i } ∪ P A i , T i , F i , W i
) is live, bounded, and reversible, where N i is the resulting net from removing resource places in (N i , M 0i ).

Let

(N i , M 0i ) (i = 1, 2) be two subnets with N i = ({p 0 i } ∪ P A i ∪ P R i , T i , F i , W i ). Their com- position, denoted by (N 12 , M 12 ) with N 12 = N 1 • N 2 = (P 0 12 ∪ P A 12 ∪ P R 12 , T 12 , F 12 , W 12 )
, is defined as follows :

-P 0 12 = {p 0 1 } ∪ {p 0 2 } = {p 0 1 , p 0 2 }, P A 12 = P A 1 ∪ P A 2 , and P R 12 = P R 1 ∪ P R 2 -T 12 = T 1 ∪ T 2 -F 12 = F 1 ∪ F 2 -∀ f ∈ F 1 , W( f ) = W 1 ( f ) and ∀ f ∈ F 2 , W( f ) = W 2 ( f ) -∀p ∈ {p 0 1 } ∪ P A 1 , M 12 (p) = M 01 (p) ; ∀p ∈ {p 0 2 } ∪ P A 2 , M 12 (p) = M 02 (p) ; ∀r ∈ P R 1 \ P R 2 , M 12 (r) = M 01 (r) ; ∀r ∈ P R 2 \ P R 1 , M 12 (r) = M 02 (r) ; and ∀r ∈ P R 1 ∩ P R 2 , M 12 (r) = max{M 01 (r), M 02 (r)} 9.
The net N resulting from the composition of n subnets N 1 , N 2 , . . ., and N n is defined as

follows : if n = 1, then N = N 1 ; if n > 1, then N = n i=1 N i = ( n-1 i=1 N i ) • N n .
10. ∀p ∈ P 0 , M 0 (p) > 0 ; ∀p ∈ P A , M 0 (p) = 0 ; and ∀r ∈ P R , M 0 (r) ≥ max{I r (p)|p ∈ ||I r ||}.

Such a marking is said to be an admissible initial marking.

11. An uncontrolled siphon in (N, M 0 ) contains at least one resource place and one activity place but no idle process place.

12. (N, M 0 ) is live if no siphon is uncontrolled.

STRUCTURE DESIGN OF A PETRI NET SUPERVISOR

13. Liveness can be enforced to (N, M 0 ) by adding monitors whose addition leads to a controlled system.

14. Let (N c , M c 0 ) be a controlled system for (N, M 0 ). (N c , M c 0 ) is live if it is ordinary and no siphon is unmarked. (N c , M c 0 ) is live if it is generalized and satisfies the cs-property. [START_REF] Chen | Behaviorally optimal and structurally simple livenessenforcing supervisors of flexible manufacturing systems[END_REF]. Let P V be the set of monitors in (N c , M c 0 ). ∀v ∈ P V , there exists a minimal P-semiflow

I v such that I v (v) = 1 and ∀p ∈ ||I v || \ {v}, p ∈ P A .
For example, the net shown in Fig. 3.1(a) is an M-net, where p 1 is an idle process place, p 2 , p 3 , and p 4 are activity places, and p 5 and p 6 are resource places. It is quasi-live, bounded, and conservative. It is live if no siphon is uncontrolled. For example, the net at initial marking 2p 1 + 2p 5 + p 6 is live since every siphon can never be emptied.

It is easy to verify that M-nets are more general than almost all manufacturing-oriented Petri net subclasses in the literature such as PPN, augmented marked graphs [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], S 3 [START_REF] Huang | Siphon-based deadlock prevention policy for flexible manufacturing systems[END_REF], PNR [START_REF] Jeng | Process nets with resources for manufacturing modeling and their analysis[END_REF], RCNmerged nets [START_REF] Jeng | Analysis of modularly composed nets by siphons[END_REF], ERCN-merged nets [START_REF] Xie | ERCN-merged nets and their analysis using siphons[END_REF], ERCN * -merged nets [START_REF] Jeng | ERCN* merged nets for modeling degraded beha-BIBLIOGRAPHIE vior and parallel processes in semiconductor manufacturing systems[END_REF], S 3 PGR 2 [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF], G-tasks [5],

and well-formed G-systems [START_REF] Zouari | Parameterized supervisor synthesis for a modular class of discrete event systems[END_REF]. In [START_REF] Li | Deadlock Prevention Based on Structure Reuse of Petri Net Supervisors for Flexible Manufacturing Systems[END_REF], a formal proof is presented to show that an M-net is more general than a well-formed G-system.

Minimal Initial Marking

Let (N, M 0 ) be a plant M-net in which M 0 is admissible. This section finds a minimal initial marking M m 0 at which M-net N contains deadlocks and any SMS of N can become uncontrolled at a marking M ∈ R(N, M m 0 ). Output : M m 0 , "(N, M 0 ) is live", or "(N, M 0 ) cannot be handled by the proposed method" begin{ the MIP-based deadlock detection method [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF] is applied to (N, M 0 ) if {there are uncontrolled siphons in (N, M 0 )} then compute the set Π u of strict minimal siphons in N ∀p ∈ P 0 ∪ P A , M m 0 (p) := M 0 (p) ∀r ∈ P R , M m 0 (r) := max{I r (p)|p ∈ ||I r ||} the MIP-based deadlock detection method is applied to (N, M m 0 ) if {there are no uncontrolled siphons in (N, M m 0 )} then flag :=2 else compute the set of reachable markings of (N, M m 0 ) Find the set of dead markings ) is live (flag=2), then we cannot find a minimal initial marking for it and its deadlock problems can be handled by any existing approach, e.g., the theory of regions and siphon-based ones. If (N, M m 0 ) is not live and for any SMS, there exists a dead marking in R(N, M m 0 ) at which the SMS is uncontrolled, then the minimal admissible marking M m 0 is obtained. Note that this algorithm needs to compute the state space and the set of SMS of (N, M m 0 ) if the original model is not live. However, if the algorithm outputs the minimal initial marking M m 0 for N, the information of the state space and siphons of (N, M m 0 ) will be used later. Take the net (N, M 0 ) shown in Fig. 3.1(a) as an example. (N, M 0 ) is not live and

R D (N, M m 0 ) if {∀S ∈ Π u , ∃M ∈ R D (N, M m 0 ), S is
S = {p 4 , p 5 , p 6 } is unique SMS. Let M m 0 = 4p 1 + p 5 + p 6 .
(N, M m 0 ) is not live and S is uncontrolled at M 4 = 2p 1 + p 2 + p 3 . Then M m 0 = 4p 1 + p 5 + p 6 is the minimal initial marking of (N, M 0 ).

Derivation of the Structure of a Controlled System

Let (N, M 0 ) be an M-net with N = (P 0 ∪ P A ∪ P R , T, F, W). To find its controlled system, as stated in Section 3.2.1, we first design a controlled system for (N m , M m 0 ), where N m = N and M m 0 is the minimal initial marking.

Algorithm 3.2
structure design of a controlled system for (N, M 0 )

Input : a plant model (N, M 0 )

Output : (N mc , M mc 0 ) begin{ N m := N find the minimal initial marking M m 0 by Algorithm 3.1 if {there exists an optimal controlled system for (N m , M m 0 )} then design a controlled system (N mc , M mc 0 ) for (N m , M m 0 ) by the theory of regions else design a controlled system (N mc , M mc 0 ) for (N m , M m 0 ) by the method in [106] end if output (N mc , M mc 0 ) }end of the algorithm

SIPHON CONTROLLABILITY CONSTRAINTS

The motivation to design a controlled system (N mc , M mc 0 ) for (N m , M m 0 ) is that M m 0 is not greater than M 0 and it is more tractable by using the theory of regions to design a controlled system for (N m , M m 0 ) than that for (N, M 0 ).

The net shown in Fig. 3.1(a) with an initial marking M 0 = 150p 1 +100p 5 +50p 6 has more than 1.3 × 10 5 states. One can imagine the computational overhead if the theory of regions is applied to such a net. However, Algorithm 3.2 considers (N m , M m 0 ) as shown in Fig. 3.1(c), which has five reachable markings only. As a result, it is easy to compute a controlled system for (N m , M m 0 ) by using the theory of regions, as shown in Fig. 3.1(e).

Siphon Controllability Constraints

This section presents a set of algebraic inequality constraints with respect to the markings of resource places and monitors at which (N mc , M mc 0 ) is live as the output of Algorithm 3.1, where (N mc , M mc 0 ) is a controlled system for (N m , M m 0 ) with N mc = (P 0 ∪ P A ∪ P R ∪ P V , T, F mc , W mc ) and N m = (P 0 ∪ P A ∪ P R , T, F, W). Let Π u denote the set of uncontrolled minimal siphons in (N mc , M mc 0 ). Π u can be further divided into three disjoint subsets Π G , Π H , and Π V , called the sets of plant, hybrid, and monitor siphons, respectively, such that ∀S ∈ Π G , S ⊂ P A ∪ P R ; ∀S ∈ Π V , S ⊂ P A ∩ P V ; and ∀S ∈ Π H , ∃r ∈ P R and v ∈ P V such that {r, v} ⊆ S .

The net shown in Fig. 3.2(b) is an optimal controlled system for a plant model (N, M 0 ) depicted in Fig. 3.2(a) that is an M-net with P 0 = {p 1 , p 5 }, P R = {p 9 , p 10 , p 11 }, and the others are activity places. There are 15 minimal siphons : S 1 = {p 3 , p 8 , p 9 , p 10 }, S 2 = {p 4 , p 7 , p 10 , p 11 }, For example, S 1 = {p 3 , p 8 , p 9 , p 10 } ∈ Π G is a plant siphon in Fig. 3 

S 3 = {p 4 , p 8 , p 9 , p 10 , p 11 }, S 4 = {p 3 , p 7 , v 1 , v 2 }, S 5 = {p 3 , p 8 , p 9 , v 1 , v 2 }, S 6 = {p 4 , p 7 , p 11 , v 1 , v 2 }, S 7 = {p 4 , p 8 , p 9 , p 11 , v 1 , v 2 }, S 8 = {p 1 , p 2 ,
∀p ∈ ||I S || \ (S R ∪ α S ), M mc 0 (p) = 0. M mc 0 (S R ) -v∈α S d v M mc 0 (v) > p∈S I S (p)(max p • -1) implies the truth of I T S M mc 0 > p∈S I S (p)(max p • -1). By Proposition 3.1, S is max-controlled.
Note that the condition in Proposition 3.2 is rather conservative. This is due to Proposition 3.1.

Consider S 3 = {p 4 , p 8 , p 9 , p 10 , p 11 } in Fig. 3.2(b). We have

α S 3 = {v 1 , v 2 } with d v 1 = 1 and d v 2 = 1.
As a result, S 3 is max-controlled if M mc 0 (p 9 ) + M mc 0 (p 10 ) + M mc 0 (p 11 ) -M mc 0 (v 1 ) -M mc 0 (v 2 ) > 1. It is easy to verify that the above inequality does not hold in Fig. 3.2(b). However, transitions in S • 3 are still live.

Corollary 3.2

Given S being a minimal siphon in an ordinary net N, ∀p ∈ S , max p • -1 = 0.

Proof : By contradiction, suppose that ∃p ∈ S , p • = ∅, it means that • (S \ {p}) ⊆ (S \ {p}) • .
This contradicts the minimality of siphon S .

Corollary 3.3 Given S ∈ Π G in (N mc , M mc 0 ) that is ordinary, S is controlled if M mc 0 (S R ) -v∈α S d v M mc 0 (v) > 0.
Proof : It immediately follows from Proposition 3.2 and Corollary 3.2.

For example, S 5 = {p 4 , p 5 , p 6 } is a plant siphon in Fig. 3.1(e) that is ordinary. We have S 

S 4 is max-controlled if M mc 0 (v 1 ) + M mc 0 (v 2 ) -M mc 0 (p 9 ) -M mc 0 (p 11 ) > 1. Definition 3.6 Given S ∈ Π H , α S ⊆ P R ∪ P V is called a minimal set of constraint places of S with respect to A S = {d v i ∈ N + |i = 1, 2, . . . , |α S |} if (1) α S S \ P A ; (2) S ≤ v i ∈α S d v i H(v i ) ; (3) ∃p ∈ S , S (p) > Ω(p), where Ω = v i ∈α S (d v i -1)H(v i ) ;
c i ≡ m j=1 β S i j M mc 0 (v j ) < k j=1 δ S i r j M mc 0 (r j ) -ω S i (3.1)
where β S i j and δ S i r j are integers and ω S i = p∈S i I S i (p)(max p • -1).

Eq. (3.1) can be re-written as

c i ≡ m j=1 β S i j M mc 0 (v j ) ≤ k j=1 δ S i r j M mc 0 (r j ) -ω S i -1 (3.2) Let L = [l i j ] n×m = [β S i j ] n×m , x = [M mc 0 (v 1 ), M mc 0 (v 2 ), . . . , M mc 0 (v m )] T , and B = [b i j ] n×k = [δ S i r j ] n×k , ω = [-ω S 1 -1, -ω S 2 -1, . . . , -ω S n -1] T , B = [B|ω]
, and y = [M mc 0 (r 1 ), M mc 0 (r 2 ), . . ., M mc 0 (r k ), 1] T . The controllability constraints of uncontrolled siphons can be written to be

Lx ≤ By (3.3)
Eq. (3.3) is called a (liveness) constraint equation. To find a controlled system given a plant model, the marking of monitors can be decided by solving the following LPP :

z = max{ m i=1 M mc 0 (v i )} s.t.
Lx ≤ By

SIPHON CONTROLLABILITY CONSTRAINTS

Take the net shown in Fig. 3.2(b) as an example. The constraints of uncontrolled siphons are as follows :

                               S 1 : M mc 0 (v 1 ) ≤ M mc 0 (p 9 ) + M mc 0 (p 10 ) -2 S 2 : M mc 0 (v 2 ) ≤ M mc 0 (p 10 ) + M mc 0 (p 11 ) -1 S 3 : M mc 0 (v 1 ) + M mc 0 (v 2 ) ≤ M mc 0 (p 9 ) + M mc 0 (p 10 ) + M mc 0 (p 11 ) -2 S 4 : -M mc 0 (v 1 ) -M mc 0 (v 2 ) ≤ -M mc 0 (p 9 ) -M mc 0 (p 11 ) -2 S 5 : M mc 0 (v 3 ) -M mc 0 (v 2 ) ≤ M mc 0 (p 9 ) -3 S 6 : M mc 0 (v 3 ) -M mc 0 (v 1 ) -M mc 0 (v 2 ) ≤ M mc 0 (p 11 ) -M mc 0 (p 10 ) -2 S 7 : M mc 0 (v 3 ) -M mc 0 (v 2 ) ≤ M mc 0 (p 9 ) + M mc 0 (p 11 ) -M mc 0 (p 10 ) -3
The matrix form of the controllability constraints is as follows :

                               1 0 0 0 1 0 1 1 0 -1 -1 0 0 -1 1 -1 -1 1 0 -1 1                                •           M mc 0 (v 1 ) M mc 0 (v 2 ) M mc 0 (v 3 )           ≤                                1 1 0 -2 0 1 1 -1 1 1 1 -2 -1 0 -1 -2 1 0 0 -3 0 -1 1 -2 1 -1 1 -3                                •                M mc 0 (p 9 ) M mc 0 (p 10 ) M mc 0 (p 11 ) µ 0                (3.4) 
We suppose M 0 = h 1 p 1 +h 5 p 5 +5p 9 +4p 10 +3p 11 is an initial marking for the net in Fig. 3.

2(a),

where h 1 and h 5 are integers and big enough such that no transition is disabled due to deficiency of tokens in idle places. At initial marking M 0 = h 1 p 1 + h 5 p 5 + 5p 9 + 4p 10 + 3p 11 , the above constraints can be re-written as

                               M mc 0 (v 1 ) ≤ 7 M mc 0 (v 2 ) ≤ 6 M mc 0 (v 1 ) + M mc 0 (v 2 ) ≤ 10 -M mc 0 (v 1 ) -M mc 0 (v 2 ) ≤ -10 M mc 0 (v 3 ) -M mc 0 (v 2 ) ≤ 2 M mc 0 (v 3 ) -M mc 0 (v 1 ) -M mc 0 (v 2 ) ≤ -3 M mc 0 (v 3 ) -M mc 0 (v 2 ) ≤ 1
Taking z = max{ 3 i=1 M mc 0 (v i )} as an objective function, the LPP with the above constraints has an optimal solution z * = 17 with M mc 0 (v 1 ) = 4, M mc 0 (v 2 ) = 6, and M mc 0 (v 3 ) = 7. That is to say, the net structure shown in Fig. 3.2(b) at initial marking M 0 = h 1 p 1 + h 5 p 5 + 5p 9 + 4p 10 + 3p 11 + 4v 1 + 6v 2 + 7v 3 is a controlled system with liveness for the net shown in Fig. 3.2(a) at the given initial marking M 0 . Eq. (3.4) shows the liveness requirements for the net in Fig. 3.2(a). Next section focuses on reducing the size of a constraint equation.

REDUNDANCY IDENTIFICATION OF CONSTRAINTS

Redundancy Identification of Constraints

Due to a large number of siphons in a controlled system, the size of a constraint equation is in theory exponential with respect to the structural scale of a Petri net model. In the standard form of an LPP, i.e, Ax ≤ b, constraint matrix A is usually assumed to be of full row rank, where b is right-hand-side vector. It is easy to see that in this study, matrix L, in a general case, does not have full row rank, which can be shown by the existing examples in the literature. On the other hand, a designer always hopes to have a concise constraint equation. This section focuses on identifying redundant ones in order to find a small set of siphon controllability conditions. Let (N, M 0 ) be a plant net model with minimal initial marking M m 0 and (N mc , M mc 0 ) be a controlled system for (N, M m 0 ). The set of siphons to be controlled in (N mc , M mc 0 ) is denoted by Π u . As stated in the previous section, the controllability of siphons can be represented by a set of constraints C, taking the form of Lx ≤ By. A single constraint is denoted by 

(l i , b i ) that represents l T i x ≤ b T i y. Alternatively, a constraint c i ∈ C can be written as (l i , b i ) ≡ l T i x ≤ b T i y.
C E is called a strongly dependent constraint if ∃a i ≥ 0 and (l i , b i ) ∈ C E such that l = (l i ,b i )∈C E a i l i . Definition 3.11 (l, b) C E is called a weakly dependent constraint if ∃a i > 0 and ∃ non-empty A, B ⊂ C E such that A ∩ B = ∅ and l = (l i ,b i )∈A a i l i -(l i ,b i )∈B a i l i .
|C E | ≤ |P V |. Proof : |C E | = rank(L) ≤ min{|P V |, |Π u |} ≤ |P V |. Theorem 3.3 A strongly dependent constraint (l, b) is redundant with respect to C E if (l i ,b i )∈C E a i b T i y ≤ b T y. Proof : It immediately follows due to l T x = (l i ,b i )∈C E a i l T i x ≤ (l i ,b i )∈C E a i b T i y ≤ b T y that results from l = (l i ,b i )∈C E a i l i . Theorem 3.4 A weakly dependent constraint (l, b) is redundant with respect to C E if (l i ,b i )∈C E a i b T i y -(l j ,b j )∈C E a j b T j y ≤ b T y.
Proof : This result is trivially true. 

l 3 = l 1 + l 2 M mc 0 (p 10 ) ≤ 1 l 4 = -l 1 -l 2 M mc 0 (p 10 ) ≥ 2.5 l 5 = l 1 + l 6 M mc 0 (p 11 ) ≤ 2 l 7 = l 1 + l 6
M mc 0 (p 10 ) ≤ 2 3.5. DEADLOCK PREVENTION POLICY

Deadlock Prevention Policy

This section proposes a deadlock prevention policy based on the results obtained in the previous sections. Its computational complexity is also discussed.

Let Π B denote the set of minimal siphons that are also traps marked at the minimal initial marking of an M-net. They are called B-siphons. In fact, Π B can be easily computed from (N mc , M mc 0 ) by its structural properties. For example, {p 3 , p 5 }, {p 2 , p 4 , p 6 }, and {p 1 , p 2 , p 3 , p 4 } are B-siphons since they are marked at any admissible initial marking. By using the MIP-based deadlock detection method [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF] or complete siphon enumeration [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], it can be verified whether a plant M-net contains deadlocks. We assume that it has deadlocks. Algorithm 3.4 controlled system design for (N, M 0 )

Input : an M-net (N, M 0 ) with N = (P 0 ∪ P A ∪ P R , T, F, W) Output : controlled system (N c , M c 0 ) begin{ find (N m , M m 0 ) for (N, M 0 ), where N m = N design a controlled system (N mc , M mc 0 ) for (N m , M m 0 ) by Algorithm 3.2 compute the set Π A of all minimal siphons in N mc The complexity of this deadlock control algorithm is exponential with respect to the size of a net model since both the theory of regions and a complete siphon enumeration are exponential.

However, the fact underlying this policy is that, given a plant model with any admissible initial marking, its controlled system can be easily decided by the controllability constraints of siphons once the structure of a controlled system is determined. That is to say, given a plant model, we just need to use the theory of regions and compute all minimal siphons once to find the structure of a controlled system. Even if the initial marking of the plant model changes, the structure of the controlled system obtained previously can be reused. This means that we just need to find the markings of the monitors in the new controlled system, which can be decided by satisfying the controllability constraints of siphons. Fig. 3.3 shows the flowchart underlying the deadlock control strategy, where the computation involved in the steps above the dotted line is carried out only once for a net N.
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F. 3.3 -Flowchart of the deadlock prevention policy.

One may wonder the performance of the proposed method since many approaches in the literature need to compute siphons only once given a net structure, e.g., those in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF], and [START_REF] Huang | Siphon-based deadlock prevention policy for flexible manufacturing systems[END_REF]. However, they are usually overly conservative. For example, a study on a typical AMS shows that the controlled system due to [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] usually has 30% or so permissive behavior of 3.6. EXAMPLES an optimal one [START_REF] Li | A survey and comparison of Petri net-based deadlock prevention policy for flexible manufacturing systems[END_REF]. The next section discusses the performance of the proposed method.

Examples

This section considers two typical examples that are widely investigated in the literature, indicating that the proposed deadlock prevention policy is nearly optimal.

An AMS consists of two robots R1 and R2 and three machines M1-M3. Its model is shown in Fig. 3 

                               0 0 1 1 -1 -1 0 1 0 1 0 0 1 -1 0 0 1 1 1 0 -1                                •           M mc 0 (v 1 ) M mc 0 (v 2 ) M mc 0 (v 3 )           ≤                                0 1 1 -1 0 0 0 -1 1 1 0 -1 1 0 1 -1 0 0 1 -1 1 1 1 -1 1 0 0 -1                                •                M mc 0 (p 12 ) M mc 0 (p 13 ) M mc 0 (p 14 ) 1                (3.5)
Table 3.2 shows the permissive behavior of controlled systems at different initial markings,

EXAMPLES

where the initial markings of the monitors are decided by Eq. (3.5). In this table, B p is the number of reachable states of (N, M 0 ), B L represents the number of states that an optimal controlled system for (N, M 0 ) has, B m indicates the number of states of controlled system (N mc , M mc 0 ), and B m /B L implies the optimality degree. T. 3.2 -Behavioral permissiveness of the proposed deadlock prevention policy in Fig. 3 The second AMS is shown in Fig. 

P 2 : M 3 M 4 M 2 R 1 R 1 R 2 ( a ) ( b ) 
M a c h i n e 4

I n p u t 2 For economy of space, the liveness constraint equation for the system is not shown. Table 3.3

I n p u t 1 O u t p u t 2 R 2 R 2 R 1 R 1 R 1 R 1 M 3 M 2 O 2 O 1 I 2 I 1 M 1 F. 3.
shows the performance of the controlled systems at different initial markings. From this table, we conclude that the proposed method for this example is near-optimal. 

Discussions

For a generalized Petri net model, the proposed deadlock prevention policy does not provide a controlled system as permissive as the case in which N mc is ordinary. From the theoretical point of view, this is due to the conservativeness of Proposition 3.1, which can be verified by the following example. Fig. 3.7(a) shows a generalized net and Fig. 3.7(b) depicts its controlled system derived from Propositions 3.1 and 3.2. For the sake of simplicity, r 1 (r 2 ; v) is used to denote a place as well as the number of tokens in it. [5]. By Proposition 3.2, S is max-controlled if

v < r 1 + r 2 -p∈S I S (p)(max p • -1), where I S = p 2 + p 4 + r 1 + r 2 -v -9p 3 . When r 1 = r 2 = 10,
we have v ≤ 10. However, v can be obtained by solving the following LPP :

max v = x + y x ≤ r 1 (1/W(v, t 4 ))y ≤ r 2 (r 1 + r 2 ) -x -(1/W(v, t 4 ))y ≥ p∈S I S (p)(max p • -1)
This problem has an optimal solution v = 100 with x = 0 and y = 100. It can be verified that the net shown in Fig. 3 The permissiveness of a supervisor derived from the proposed deadlock prevention approach strongly depends on the control of an uncontrolled siphon. Siphon control in a generalized Petri net by Proposition 3.1 is too conservative, i.e., the addition of a monitor exclude legal states from the resulting controlled system. It is not surprising since the concept of max-controlled siphons is applicable to any net, not limiting to some special net classes. Recognizing its drawback, the concept of max -controlled [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF] and max -controlled siphons [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF] are proposed for S 4 R, which, to a large extent, relaxes the controllability condition of siphons. That is to say, more tokens can be initially marked in a monitor if a siphon is max -or max -controlled. The proposed deadlock prevention policy can also lead to a nearly optimal controlled system for a generalized plant net model if the concept of max -controlled [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF] or max -controlled [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF] siphons is, if applicable, employed to derive siphon controllability condition.

Summary

Deadlocks are a threat to the safety and performance of AMS. Deadlock prevention is a well defined strategy in resource allocation systems. It is usually developed by either structural or state space analysis. Those based on structural analysis such as siphons cannot in general lead to optimal supervisors [START_REF] Iordache | Synthesis of deadlock prevention supervisors using Petri nets[END_REF], [START_REF] Li | A survey and comparison of Petri net-based deadlock prevention policy for flexible manufacturing systems[END_REF], while those combining state space analysis can lead to optimal or suboptimal ones [START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF], [START_REF] Piroddi | Combined siphon and marking generation for deadlock prevention in Petri nets[END_REF], [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], [START_REF] Uzam | An improved iterative synthesis approach for liveness enforcing supervisors of flexible manufacturing systems[END_REF], [START_REF] Uzam | An iterative synthesis approach to Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]. For example, the theory of regions is a technique that can find an optimal one when it exists. However, its computation is notoriously expensive since a complete state enumeration is necessary and the number of LPP to be solved is exponential with respect to the size of a plant model and its initial marking.

The proposed deadlock prevention policy aims to felicitously trade off behavioral optimality for computational tractability. To achieve this, we first derive, by using the theory of regions, a

supervisor for the plant model with its minimal initial marking. The controllability of siphons is expressed as a set of inequality constraints with respect to the markings of resource places and 3.8. SUMMARY monitors. For a fixed net structure with different initial markings, the theory of regions is used and a siphon enumeration is computed once only. Then, the supervisor can be decided by satisfying the constraints of siphon controllability by adjusting the initial marking of monitors only. Once an optimally controlled system's structure is found, a nearly optimal system can be obtained without using the theory of regions. AMS examples show that the proposed method is nearly optimal.

Future efforts will be guided to a near-optimal supervisor with low computational overhead and an efficient method to find a deadlock-liable minimal initial marking for an M-net. The performance of the proposed method for generalized net models needs to be addressed.

The major contribution in this research is published : all n-dependent siphons, only one siphon (whose unmarked state follows some token distribution) needs to be controlled. This greatly simplifies the supervisor synthesis as well as minimizes the number of monitors required while making the controlled net maximally permissive (i.e., all live states can be reached). This chapter further proposes a maximally permissive control policy for a subclass of S 3 PR (called β-nets) based on the above theory of token distribution pattern of unmarked siphons.

[1] Zhiwu Li,
We first show that by adding a monitor for each critical siphon, some live states may get lost since the monitor controls the complementary set of a critical siphon, where some places may not be marked. By controlling only the set of marked activity places, more live states can be reached.

However, this induces some emptiable siphons. The corresponding token pattern can be inferred. By adding monitors to all such possibly emptiable siphons, the controlled net becomes live and maximally permissive. There is no need to construct reachability graph and enumerate all minimal siphons. Hence, the computational burden is the least among all approaches in the literature.

CRITICAL SIPHON

Nevertheless, the presented approach addresses a simpler problem in time complexity with less information provided compared to behavior analysis based on the reachability graph.

The rest of this chapter is organized as follows. Section 2 presents the theory of critical siphons.

The control policy is developed with examples in Section 3. Several examples are used to illustrate the proposed method in Section 4. Section 5 concludes the chapter.

Critical Siphon

This section develops the theory of critical siphons. Once a critical siphon in a set Q of siphons is controlled, so will be the rest of siphons in Q. The following defines Q based on basic and compound siphons, which are synthesized from elementary and compound resource circuits c (all places in the circuit are resource types) ; respectively by attaching handles (directed paths) to c, like handles to a tea pot. An n-compound siphon S 0 is a compound siphon containing n basic siphons (serially connected). An n-dependent siphon is either an n-compound one S 0 or a siphon derived from S 0 . An XY-handle starts from a node in X (='T' or 'P') to a node on Y (='T' or 'P').

For instance, A TP-handle is a directed path from a transition to a place. For more details, please refer to [START_REF] Shih | Sequence of control in S 3 PMR[END_REF]. 

, S i ∩ S j = {r i }, r i ∈ P R , j = i + 1, i = 1, 2, . . . , n -1. A subcompound siphon of S 0 is of the form : S i • S i+1 • . . . S j-1 • S j (i ≥ 1 and j ≤ n) of size k < n. S 0 is also called a uniform compound siphon if ∀i, H(r i ) ∩ S i ∩ [S 0 ]
∅. r i is called an internal place and is said to be singular if

M 0 (r i ) = 1.
Note that S 0 is a strongly dependent siphon by Theorem 2 in [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF] since and c 2 , respectively. The set of basic siphons equals that of elementary siphons. This is consistent

η 0 = η 1 + η 2 + • • • + η n-1 + η n where η 0 (resp. η i ) is the characteristic T -vector of S 0 (resp. S i ).

CRITICAL SIPHON

with the theory in [START_REF] Chao | Conservative control policy for weakly dependent siphons in S 3 PR based on elementary siphons[END_REF], [START_REF] Wang | A method to compute strict minimal siphons in a class of Petri nets based on loop resource subsets[END_REF]. When c 1 ∩ c 2 is no longer a single resource place but a directed path, then S 0 is no longer a strongly dependent siphon and may be a weakly one [START_REF] Chao | Conservative control policy for weakly dependent siphons in S 3 PR based on elementary siphons[END_REF].

F. 4.1 -An example of the control policy based on UP but with no unmarked places in H(V).

T. 4.1 -Basic siphons, resource circuits, and V(M 0 ) for the net in Fig. 4.1(a) Note that once all basic siphons (S 1 , S 2 , ..., S n ) are identified, so will be all subcompound ones

S b c b V(M 0 ) c i ∩ c i+1
since S 0 = S 1 • S 2 • . . . S n-1 • S n and any compound siphon S is of the form S = S i • S i+1 • . . . • S j-1 • S j
, which can be easily computed using the method in [START_REF] Chao | An incremental approach to extract minimal bad siphons[END_REF] as all S i , S i+1 , ..., S j-1 , and S j have been found. Furthermore, we have developed theory [START_REF] Chao | An incremental approach to extract minimal bad siphons[END_REF] to efficiently extract SMS incrementally rather than the traditional global approach. Only linear number of basic siphons needs to be searched. Adding and deleting common sets of places from existing ones (called composition 

i ) = 1, M(H(r i )∩[S 0 ]) = 0 ; and (2) For other r in S 0 , M(r) = 0, M(H(r) ∩ [S 0 ] ∩ • (V • )) = M 0 (r)
, where V is a monitor for S 0 . An n-dependent siphon S with the above unmarked pattern (UP) is called a critical siphon. Let M be a UP for Proof :

S 0 = S 1 • S 2 • . . . S n-1 • S n , then 1. ∀r j ∈ S 0 , ∀t ∈ r • j ∩ [S 0 ] • , t (any output transition of r j ) is disabled ; 2. ∀r j ∈ S 0 , ∀t ∈ • r j ∩ • [S 0 ], t (
1. There are two cases ∀r j ∈ S 0 :

(a) M(r j ) = 0, t is disabled.

(b) M(r j ) = 1 and M(p) > 0, p ∈ • t. Let V be the monitor added for S * 0 = S 1 -S j+1 , t ∈ V • , and all internal r follow the UP. Then M(V)=0 and t is also disabled. Similar conclusion applies when V is the monitor added for S * 0 = S j -S n and t ∈ V • .

2. There are two cases ∀r j ∈ S 0 : 4.2. CRITICAL SIPHON (a) r j is internal. Then t is also an output transition of an internal resource place. By Part ). This can be avoided by shrinking [S ] so that unmarked activity places in [S ] are precluded from being controlled as shown below. 

1 of this theorem, t is disabled. (b) r = r 1 , r n+1 . t is disabled since M(p) = 0, p ∈ • t ∩ S 0 .
N i . p j ∈ p •• j-1 , j = 2, 3. p 2 is said to be a hole in [S ] at M if only M(p 2 ) = 0.
To reach more states for the net shown in Fig. 4.1(a), one should set

H(V) = Ψ = [S ]\{p 3 , p 5 },
the set of marked activity places or UP. Note that M max (Ψ) = M 0 (R(Ψ)) and one cannot shift a token from p 2 to p 3 to forbid live states that happens when H(V) = [S ] where

M max ([S ]) < M 0 (R([S ]
).) However, this induces new emptiable siphons and the net is not live implying that there are other token distributions (e.g., M = 2p 2 + p 3 + p 4 + 2p 6 + p 9 + p 10 ) which corresponds to another forbidden marking rather than the unmarked one. Note that M is a forbidden (necessarily evolves to M by firing t 3 ) but not a dead (since t 3 is enabled) marking in the uncontrolled net.

It is a dead one after V is added to prevent M from being reached by setting H(V) = Ψ and all k-dependent (k < 4) siphons have been controlled.

The only possible enabled transition is t ∈ p

• 9 . Let t = t 3 ∈ p • 9 ∩ p • 3 .
Then t 3 is also an output transition of V ; i.e., t 3 ∈ V • . M (V) = 0 and t 3 is disabled at M . There is another output transition t = t 4 ∈ • p 4 of r = p 9 . Let V be the monitor for a critical siphon S (S 0 = S 1 • S 2 ) such that r, r ∈ S R = {p 7 , p 8 , p 9 } and t 4 ∈ V • . Then M (V ) = 0 and t is also disabled at M . Thus, all transitions in the net are disabled at M after V is added. Hence, M is a dead marking.

M is obtained from M by shifting a token from p 8 to p 9 (or from p 4 to p 3 ) ; this operation is called exchange one below. There are only these two kinds of forbidden markings (the above forbidden ones and the unmarked pattern ones in Theorem 4.1).

Definition 4.5 Let S be an emptiable n-dependent siphon, Ψ ⊂ [S ] a set of marked activity places

when M(S ) = 0, M ∈ R(N, M 0 ). The operation of shifting a token from a place p ∈ H(r) in Ψ at M to another place p in [S ] to form another marking M ∈ R(N, M 0 ) is called an exchange operation. M is called an exchanged unmarked pattern (EUP). The internal place r such that p ∈ H(r ) is called a boundary place.

CRITICAL SIPHON

Note that both p and p must be in [S ] since otherwise the set of unmarked activity places Ψ at M may correspond to a different siphon. In the sequel, all M encountered denotes the above M in Definition 4.5 and M Ψ denotes the submarking obtained by projecting M onto Ψ.

Note that M * = 2p 2 + p 3 + p 4 +2p 6 + p 9 + p 10 = M-2(p 4 ⊕ p 4 )+ p 3 +((M 0 (p 9 )-1))p 4 can also be obtained by the same exchange operation ; however, M * is a live marking (M * (p 9 ) = 1, t 4 ∈ • p 4 ).

We need to find the exact token pattern after the exchange operation to find the corresponding set Ψ of marked activity places to add correct control arcs.

Theorem 4.2

Let S , Ψ, M, M , p ∈ H(r) and p ∈ H(r ) be as defined in Definition 4.5. H(r) = {p, p + }. V is the monitor added to control S and H(V) = Ψ (to reach more states). All k-monitors (k < n) have been added.

1. M =M + p + (M 0 (r) -1)p + -M 0 (r)(p + ⊕ p) is a forbidden marking. 2. M =M + p + ap + bp + -M 0 (r)(p + ⊕ p) is a live marking, a + b = M 0 (r) -1, a > 0.
Proof :

1. The only possible enabled transition is t ∈ r • . Let t ∈ r • ∩ p • . Then t is also an output transition of V ; i.e., t ∈ V • . M (V) = 0 and t is disabled at M . There is another output transition t ∈ • p + of r. Let V be the monitor for a critical siphon S such that r, r ∈ S R and t ∈ V • . Then M (V ) = 0 and t is also disabled at M . Thus, all transitions in the net are disabled at M after V is added. Hence, M is a forbidden marking.

2. At M , M (V ) > 0 (M (S ) > 1) and t is enabled. After t fires, other transitions become enabled and so on. The marking M is a live one.

Note that we cannot move a token from p 2 (on the opposite side of p 3 in contrast to p 4 ) to p 3 since then the 4-dependent siphon becomes marked. We cannot move a token from p 10 to p 9 (or from p 4 to p 5 ) since then S 4 becomes unmarked which is impossible as S 4 (4 th basic siphon) has been controlled by adding a monitor.

CONTROL POLICY

Control Policy

This section develops a maximally permissive control policy based on the token patterns for unmarked siphons.

To reach more states, all possible sets of unmarked activity places must be considered to add a monitor accordingly. They can be identified by finding all possible exchange operations. For the above siphons, such a policy results in a maximally permissive controlled net. (2.3) Combine token patterns obtained in Steps 2.1 and 2.2. For each such a token pattern, add a monitor with M 0 (V) = M 0 (S ) -θ -1, where θ is the number of singular places in S ;

Output the resulting controlled model. 

S V(M 0 ) V • S • V S [V S ] S 1 V 11 (2) t 1 ,
V i j indicates V is the j-th i-dependent critical siphon. V k (k > 1) indicates V is a EUP Theorem 4.3
The controller obtained by Algorithm 4.1 is live and maximally permissive for β-nets.

Proof : Recall that two kinds of forbidden markings exist. Once they are controlled, all forbidden markings are avoided and the controlled net is live based on the theory in [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF]. H(V) has been shrinked so that M max (Ψ) = M 0 (R(Ψ)). One cannot insert a token into Ψ from a forbidden one to make it a live one (and yet still forbidden by V). Thus, no live states are forbidden and the maximal permissiveness is achieved.

Theorem 4.4

The time complexity for Algorithm 4.

1 is O(|P R | 2 ((|T | + |P R |)|P 2 A |)|T |), where |P R | (resp. |T |, |P A |)
is the number of resource places (resp. transitions, activity places) in the net. In addition, no control arcs are weighted. Furthermore, Lemma 4 in [START_REF] Chao | An incremental approach to extract minimal bad siphons[END_REF] indicates that it is relatively easy to identify basic circuits c b between two neighboring working processes (WP). This plus Lemma 6 (all places in any c b must be resource places) in [START_REF] Chao | An incremental approach to extract minimal bad siphons[END_REF] simplifies the search of c b .

There is no need to search circuits containing far-away resource places. Furthermore, it is easy to find c b (normally formed among adjacent sharing resource places) when resource places between two adjacent WP are arranged in reverse order. 4.5). Note that S 4 is non-uniform and no control siphon can be formed from V 1 and V 2 . Hence, the compound siphon is the critical one consistent with that obtained from the UP. Finally, for the set of 3-dependent siphons related to the compound siphon synthesized from Example 3 : Next apply the approach to a second well-know S 3 PR [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] as shown in Fig. 4.4.

Examples

S V(M 0 ) V • S • V S [V S ] S V 11 (3) t 1 ,
V i j indicates V is the j-th i-dependent critical siphon. V k (k > 1) indicates V is a EUP F.
c 1 • c 2 • c 3 ,
We add a monitor for each basic siphon (Tables 4.6 and 4.8). As shown in Table 4.7, for the set of Note that the set of unmarked activity places for UP is a proper subset of that for EUP (1). By Theorem 2 in [START_REF] Chao | Conservative control policy for weakly dependent siphons in S 3 PR based on elementary siphons[END_REF], the monitor V = V 1 11 for the UP is redundant. A monitor (V 1 11 , V 2 11 , and V 3 11 ) is added for the above EUP. And there are live states that cannot be reached caused by V 1 11 .

) V • S • V S [V S ] S 1 V 1 (2) t 9 ,
V = V 8 is added with [V]=[S
The resulting model in Table 4.8 is live where we have added 14 monitors and 82 control arcs vs 19 monitors and 120 control arcs in [START_REF] Chao | Technical Note -MIP iteration-reductions for deadlock prevention of flexible manufacturing systems[END_REF] but with 21,562 good states, which is slightly less than the maximally permissive one [START_REF] Desel | Free Choice Petri Nets[END_REF]581) in [START_REF] Li | Control of elementary and dependent siphons in Petri nets and their application[END_REF], but with much faster computation and no weighted control arcs.

Summary

This chapter proposes a maximally permissive control policy for a subclass of S 3 PR based on the new ground-breaking theory of token distribution pattern of unmarked siphons. This has the advantage of avoiding the computation of new siphons derived from monitor places since the UP solely determines the controller region (or control arcs) and the initial marking. This is no need to construct the reachability tree and hence the problem is no longer NP-hard. This results in 4.5. SUMMARY fewer monitors and more reachable states as shown by two well-known S 3 PRs. Future work should consider how to add minimal number of weighted control arcs to make controlled nets maximally permissive and to extend to other complicated nets.

The major contribution in this research is published : Robustness of Deadlock Control for S 3 PR with Unreliable Resources

[1] Gaiyun Liu,

Introduction

A variety of deadlock control policies based on Petri nets have been proposed for AMS. Most of them prevent deadlocks by adding monitors for emptiable siphons that, without an appropriate control policy, can cause deadlocks, where the resources in a system under consideration are assumed to be reliable. When resources are unreliable, it is infeasible or impossible to apply the existing control strategies. For S 3 PR, this chapter bridges the gap between a divide-and-conquer deadlock control strategy and its application to real-world systems with unreliable resources. Recovery subnets and monitors are designed for unreliable resources and strict minimal siphons that may be emptied, respectively. Normal and inhibitor arcs are used to connect monitors with recovery subnets in case of necessity. Then reanalysis of the original Petri net is avoided and a robust liveness-enforcing supervisor is derived. The supervisors designed for S 3 PR by the proposed method has following properties : (1) they can prevent deadlocks for plant models when all resources work normally ; (2) deadlocks are prevented even if some resources fail to work and are removed to repair at any time ; and (3) waiting-for-repair states (see Definition 13) disappear after the repaired resources are returned.

The rest of this chapter is organized as follows. Section 2 motivates this study via an example.

A design method of a robust liveness-enforcing supervisor for an S 3 PR net with unreliable resources is proposed in Section 3. Examples are given in Section 4 to demonstrate the proposed 5.2. MOTIVATION method. Section 5 discusses some open problems. Finally, Section 6 concludes this work and suggests directions for future research.

Motivation

An automated manufacturing cell shown in In Fig. 5.1 (b), S = {p 4 , p 5 , p 6 } is a unique SMS. The siphon is empty at marking 2p 2 + p 3 and correspondingly the system is in a deadlock state. Physically, it means that each robot is holding and the machine tool is processing a part at the same time. All the resources are occupied and they are in a circular wait. We need to avoid this case such that the system can keep running.

Using the traditional methods in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF], and [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF] that add monitors for siphons, we can find a liveness-enforcing supervisor for the S 3 PR, as shown in Fig. 5.1 (c).

The deadlock control policies in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF], and [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF] are developed by assuming that the resources in a system are reliable. However, real-world AMS often suffer from unreliable resource failures. In Fig. 5.1 (a), we assume that one robot breaks down at the initial marking. Then the ro-

MOTIVATION

bot with a malfunction needs to be removed and recovered. One token is correspondingly removed from p 6 in Fig. 5.1 (c) and then a net shown in Fig. 5.2 is derived. In Fig. 5.2(b), marking p 1 + p 2 + p 3 is a deadlock state. Monitor p 7 cannot control the system any more in this case. In other words, the supervisor of the system is not robust in the sense that a broken robot leads the original controlled net system to a deadlock state. It is necessary to design a robust liveness-enforcing supervisor for the Petri net, which can control the system whether a robot breaks down or not.

R P a r t s I O M (a)
As shown in Fig. 5.3, we remove a token from monitor p 7 when a token is removed from p 6 , i.e., t 7 is fired. This means that the robot with a malfunction is sent to be repaired. In this case, monitor p 7 with one token makes the system controllable. In fact, for resource type R, robots may break down in p 2 , p 4 , or p 6 . Once a resource breaks down in some place, it needs to be removed, which does not depend on whether its related monitor is marked or not. Based on this fact, a robust liveness-enforcing supervisor is designed as Fig. 5.3 shows. More detailed explanations will be shown in the next section.

In this chapter, we try to design a supervisor for a plant model such that deadlocks cannot occur even if some resources in a system break down. F. 5.3 -A robust supervisor for a system.

ROBUST LIVENESS-ENFORCING SUPERVISOR DESIGN

Robust Liveness-enforcing Supervisor Design

This section presents algorithms to design a robust liveness-enforcing supervisor for an S 3 PR with unreliable resources.

Let (N, M 0 ) be an S 3 PR plant model and (N sup , M sup ) be its liveness-enforcing supervisor. The controlled system of the plant is denoted as (N c V , M c V0 ). The robustness of (N sup , M sup ) is a system property to keep the controlled system live as some resources break down. In this chapter, we aim to design supervisors for S 3 PR with the following properties : (1) they can prevent deadlocks for plant models when all resources work normally ; (2) deadlocks are prevented even if some resources fail to work and are removed to repair at any time ; and (3) waiting-for-repair states (see Definition 13) disappear after the repaired resources are returned. Hence, the supervisors are more robust than the traditional ones in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF], and [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF]. They can self-adaptively control the deadlocks without reanalysis. Specifically, this chapter develops a two-stage approach to synthesize robust liveness-enforcing supervisors for AMS that can be modeled with S 3 PR. First, we find a liveness-enforcing supervisor for an S 3 PR by the divide-and-conquer strategy proposed in [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF]. Second, to improve the robustness of the supervisor, we add recovery subnets, complementary places of monitors, and necessary 5.3. ROBUST LIVENESS-ENFORCING SUPERVISOR DESIGN arcs to the system obtained by the first stage such that liveness is still preserved. We find that the complementary places of monitors and related arcs can be replaced by inhibitor arcs. Then, an improved algorithm is reported.

It is worthy of noting that the purposes of the divide-and-conquer strategy proposed in [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] and the strategy in this chapter are different. The former is a deadlock control strategy that guarantees the liveness of the original system. The latter focuses on a robust control strategy that improves the robustness of the supervisor of the original system with unreliable resources.

Liveness-enforcing Supervisor Design

A Classical Deadlock Prevention Policy

In this section, we mainly review the deadlock prevention policy proposed by Ezpeleta et al. in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], which is used in the divide-and-conquer strategy in the next section. It develops a systematic method to establish a liveness-enforcing supervisor for an S 3 PR by adding monitors for its SMS such that they are prevented from being emptied. Some useful notations [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] are first introduced as follows :

-Let C be a circuit of N and x and y be two nodes of C. Node x is said to be previous to y if there exists a path in C from x to y, the length of which is greater than one and does not pass over the idle process place p 0 . This fact is denoted as x < C y.

-Let x and y be two nodes in N. Node x is said to be previous to y in N if there exists a circuit C such that x < C y. This fact is denoted by x < N y.

-Let x and A ⊆ P ∪ T be a node and a set of nodes in N, respectively. Then x < N A iff there exists a node y ∈ A such that x < N y and A < N x iff there exists a node y ∈ A such that y < N x.

Take the net shown in Fig. 5.4 (a) as an example. In this net, C=p 1 t 1 p 7 t 2 p 3 t 3 p 5 t 4 p 6 t 5 p 1 is a circuit and EP(p 7 , p 6 ) = p 7 t 2 p 3 t 3 p 5 t 4 p 6 is a path in C. The support of EP(p 7 , p 6 ) is {p 7 , t 2 , p 3 , t 3 , p 5 , t 4 , p 6 } and the support of C is {p 1 , t 1 , p 7 , t 2 , p 3 , t 3 , p 5 , t 4 , p 6 , t 5 }. Clearly, we have p 7 < C p 6 and

p 7 < N p 6 .
The following notations are also useful in the establishment of the deadlock prevention policy in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]. Mathematically, given a set A, the power set of A, written as 2 A , is the set of all subsets of F. 5.4 -An S 3 PR (N, M 0 ).

A. Note that Π is used to denote the set of SMS in an S 3 PR (N, M 0 ). The sets of downstream and upstream siphons of a transition are defined as follows.

Definition 5.1 [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF] Let ∆ + (t) (∆ -(t)) denote the set of downstream (upstream) siphons of a transition t and P S denote the adjoint set of a siphon S in an S 3 PR N = n i=1 N i = (P 0 ∪ P A ∪ P R , T, F).

(1)

∆ + : T → 2 Π is a mapping : If t ∈ T i , then ∆ + (t) = {S ∈ Π|t < N i [S ] i }. If S ∈ ∆ + (t), then
the set [S ] i is reachable from t, i.e., there exists a path in N i leading from t to an activity place p ∈ P A i that is not included in S but uses a resource of S , where

[S ] = ∪ n i=1 [S ] i , P A = ∪ n i=1 P A i , and [S ] i = [S ] ∩ P A i . (2) ∆ -: T → 2 Π is a mapping : If t ∈ T i , then ∆ -(t) = {S ∈ Π|[S ] i < N i t}. (3) ∀i ∈ N n , ∀S ∈ Π, P i S = [S ] i ∪ {p ∈ P A i |p < N i [S ] i }, and P S = ∪ n i=1 P i S .
Take the net shown in Fig. 5.4 (a) as an example. There are three SMS S 1 = {p 5 , p 9 , p 12 , p 13 }, the S 3 PR can not be disassembled. In this case, the divide-and-conquer deadlock control strategy cannot take advantage of it. For example, the net shown in Fig. ?? can not be disassembled since

∆ + (t 1 ) = ∆ + (t 2 ) = ∆ + (t 8 ) = {S 1 , S 2 , S 3 }, ∆ + (t 3 ) = {S 2 , S 3 }, ∆ + (t 9 ) = {S 1 , S 3 } and ∆ + (t 4 ) = ∆ + (t 10 ) = ∅. Similarly, upstream siphons include ∆ -(t 1 ) = ∆ -(t 2 ) = ∆ -(t 6 ) = ∆ -(t 7 ) = ∅, ∆ -(t 3 ) = {S 1 }, and ∆ -(t 4 ) = ∆ -(t 5 ) = {S 1 , S 2 , S 3 }.

ROBUST LIVENESS-ENFORCING SUPERVISOR DESIGN

P F R = ∅.
While the net shown in Fig. 5.4 (a) is disassemblable since P F R = {p 11 , p 15 } ∅.

Definition 5.4 [76]

A subnet (N i , M i 0 ) derived from P i ∪ T i in an S 3 PR (N, M 0 ) with N = (P 0 ∪ P A ∪ P R , T, F) is called a toparchy derived from P i R , where

P i = P i R ∪ {p ∈ P A |p ∈ H(r), r ∈ P i R } and T i = ∪ p∈P i ( • p ∪ p • ).
Definition 5.5 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] The subnet (N F , M F 0 ) derived from P F ∪ T F in an S 3 PR (N, M 0 ) with N = (P 0 ∪ P A ∪ P R , T, F) is called an autonomous subnet derived from P F R , where

P F = P F R ∪ {p ∈ P|p ∈ H(r), r ∈ P F R } and T F = ∪ p∈P F ( • p ∪ p • ).
For the net in Fig. 5.4 (a), we have P 1 R = {p 12 , p 13 , p 14 } and P F R = {p 11 , p 15 }. It is easy to see that P 1 = {p 12 , p 13 , p 14 } ∪ {p 3 , p 4 , p 5 , p 6 , p 8 , p 9 }, T 1 = {t 2 , t 3 , t 4 , t 5 , t 8 , t 9 , t 10 , t 11 }, P F = {p 11 , p 15 } ∪ {p 2 , p 7 }, and T F = {t 1 , t 2 , t 6 , t 7 }. As a result, the net in Fig. 5.4 (a) can be decomposed into a toparchy and an autonomous subnet, as shown in Fig. 5.5. Theorem 5.2 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] An autonomous subnet (N F , M F 0 ) is live.

Theorem 5.3 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] A toparchy (N i , M i 0 ) is not live. an autonomous subnet (N F , M F 0 ) derived from P F R does not need to be controlled for its liveness. Indeed, to achieve the deadlock control purposes for an S 3 PR, we need to consider its toparchies only.

Definition 5.6 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] Let (N, M 0 ) be an S 3 PR with N = (P 0 ∪ P A ∪ P R , T, F). A subnet derived from (P 0 , T S O ∪ T S I ), denoted by (N id , M id 0 ), is called the idle subnet of (N, M 0 ), where ∀p ∈ P 0 , M id 0 (p) = M 0 (p), T S O and T S I denote the set of source transitions and the set of sink transitions, respectively. Definition 5.7 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] A toparchy is said to be subordinate (dominate) is its idle-augmented net is live (not live).

For example, the net shown in Fig. 5.6 is the idle subnet of (N, M 0 ) in Fig. 5.4 (a). Definition 5.7 is used in Section 6 to show why toparchies are not distinguished into subordinate or dominate ones in Algorithm 5.1. T,F,W) is said to be a synchronous synthesis net resulting from the merge of (N 1 , M 1 ) and (N 2 , M 2 ), denoted by (b), we can find that the supervisor is with more reachable states but a less complex structure.

Definition 5.8 [76] Let (N 1 , M 1 ) and (N 2 , M 2 ) be two nets with N i = (P i , T i , F i , W i ), i = 1, 2, satisfying P 1 ∩ P 2 = ∅. (N, M) with N = (P,
(N 1 , M 1 ) (N 2 , M 2 ), if (1) P = P 1 ∪ P 2 ; (2) T = T 1 ∪ T 2 ; (3) F = F 1 ∪ F 2 ; (4) W = W 1 ∪ W 2 ;
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However, when P F R = ∅, an S 3 PR cannot be disassembled. In this case, Algorithm 5.1 is equivalent with the deadlock control policy described by Definition 5.2. For example, if Algorithm 5.1 is used to control the net model in Fig. 5.1 (b), the obtained liveness-enforcing supervisor is the same with Fig. 5.1 (b). In this study, we design robust supervisors for S 3 PR based on this divide-and-conquer deadlock control strategy.

Robustness of a Supervisor

Let P V = {V i |i ∈ N u } be the set of the monitors computed by Algorithm 5.1 and P R = P R 1 ∪ P R 2 be the set of the resource places, where

P R 1 = {r|r ∈ R, M 0 (r) = 1} and P R 2 = {r|r ∈ R, M 0 (r) ≥ 2}.
At a marking M, when a resource in p breaks down, we remove a token from p, i.e., M(p) := M(p) -1. In order to analyze the robustness of a supervisor, we define a new type of states called waiting-for-repair states. Definition 5.10 Let (N c V , M c V0 ) be a controlled system of an S 3 PR net system (N , M 0 ), where (N , M 0 ) is an augmented autonomous or an augmented toparchy subnet computed by Algo-

rithm 5.1. Marking M ∈ R(N c V , M c V0
) is said to be a waiting-for-repair state if p∈||I r || M(p) <
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M 0 (r), t ∈ T such that M[t , where r ∈ P R .

Both deadlock and waiting-for-repair states are those at which an original system stops running. However, they have different generation mechanisms. At a deadlock state, a set of processes keeps waiting indefinitely for other processes in a set to release resources [START_REF] Fanti | Deadlock control methods in automated manufacturing systems[END_REF]. While at a waitingfor-repair state, a set of processes keeps waiting for resources that are removed to repair. At a waiting-for-repair state and deadlock, system stops running. For an S 3 PR, there exists at least an SMS emptied at a deadlock state. As well known, a siphon remains empty once it is emptied. It means that the system will not run. While at a waiting-for-repair state, the system stops running and is waiting for some necessary resources. The system can work properly again when the repaired resources are returned. In essence, deadlocks are a safety property that is closely related to liveness, which can be avoided through proper control methods. While a waiting-for-repair state cannot be avoided since a resource failure is uncertain and stochastic.

For r ∈ P R in an S 3 PR, the system must trap into a waiting-for-repair state when r fails with M 0 (r) = 1 or when all this type of resources fails to work. This chapter discusses more complex and meaningful cases where a type of resources does not totally fail to work.

In an AMS, a resource failure is of temporal uncertainty. Correspondingly, unreliable resources may break down in activity or resource places in its Petri net model.

P U r = {p u |p u ∈ ||I r ||, r ∈ P R 2 }
is called the set of unreliable places of r. When a resource breaks down in an unreliable place p u , we try to add a subnet that can remove a token from p u and repair the broken resource. Also, after the resource is repaired, this subnet can return a token to the unreliable place. Then the resource can be used again. We call this subnet a recovery subnet. Its formal definition is proposed as follows.

Definition 5.11 A recovery subnet is an ordinary

Petri net N r = ({p u , p re }, {t s , t f }, F r ), where F r = {(p u , t s ), (t s , p re ), (p re , t f ), (t f , p u )}. (N r , M r0
) is called a marked recovery subnet and M r0 = x • p u is called an initial marking, where x is a nonnegative integer. unreliable place in a plant model N. In this place, some failures may occur and be detected. Hence a recovery procedure is needed. Transitions t s and t f are called a start and a finish transition, respectively. They denote that the recovery activities start and finish. In fact, when a resource in p u
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H(r), p ∈ [S x ], p ∈ H(V S x )}, P 2 V rs = {V S y |p ∈ H(r), p ∈ S y }, and P 1 V rw = {V S z |p ∈ H(r), p ∈ P S z \ [S z ], p ∈ H(V S z )}. Let α, β, and γ denote |P 1 V rs |, |P 2 V rs |, and |P 1 V rw |, respectively.
By Definition 5.13, a monitor in P V r is either strongly or weakly correlated with resource r. In other words, P V r = P V rs ∪ P V rw and P V rs ∩ P V rw = ∅ hold. As shown in Fig. 5.1 (b), H(p 5 ) = {p 3 },

H(p 6 ) = {p 2 , p 4 }, and 
H(p 7 ) = {p 2 , p 3 }. By H(p 5 ) ∩ H(p 7 ) = {p 3 } ∅ and H(p 6 ) ∩ H(p 7 ) =
{p 2 } ∅, p 5 and p 6 are correlated with p 7 . Also, M 0 (p 7 ) changes with M 0 (p 5 ) and M 0 (p 6 ). Hence, P V p 5 = P V p 5s = {p 7 } and P V p 6 = P V p 6s = {p 7 }. Also, for p 2 , we can obtain P 1 V rs = {p 7 }, P 2 V rs = ∅, and P 1 V rw = ∅ ; for p 4 , we can obtain P 2 V rs = {p 7 }, P 1 V rs = ∅, and

P 1 V rw = ∅.
As shown in Fig. 5.3, when a resource in p 6 fails to work, we need to remove it. Hence, a recovery subnet needs to be started. This means that t 7 or t 9 will be fired. In fact, when a resource in p 6 fails to work and monitor p 7 is marked, t 7 is then fired, otherwise t 9 is fired. In other words, repairing the broken resource in p 6 does not depend on whether p 7 is marked, but this activity may effect the number of tokens in p 7 . Next, we introduce the complementary place of a k-bounded place p to implement these requirements. Output : (N Correspondingly, add arcs (t ps , V rs ) and (V rs , t p f ) to ensure that V rs is the complementary place of V rs . Meanwhile, add arcs (t ps , V rw ) and (V rw , t p f ) for every recovery subnet, where V rw ∈ P 1 V rw . (ii) for resource r, add 2 θ (θ = |P V rs |) recovery-subnets. Either V rs ∈ P V rs or V rs connects transition t rs in every recovery subnet. A normal arc (V rs , t rs ) is used to connect V rs and t rs , while a self-loop (V rs , t rs ) and (t rs , V rs ) weighted by M V0 (V rs ) connects V rs and t rs .

There are 2 θ logical combinations. If V rs connects t rs in a recovery subnet by a normal arc, in pairs, a normal arc from t r f of the recovery subnet to V rs is added. Correspondingly, add arcs (t rs , V rs ) and (V rs , t r f ) to ensure that V rs is the complementary place of V rs . end if end while output a robust liveness-enforcing net (N rc V , M rc V0 ) }end of the algorithm T s and T f are used to denote the sets of start and finish transitions in all recovery subnets, respectively. The algorithm indicates when some resources break down, we remove them to repair.

At the same time we may need to change the number of tokens in their correlated monitors. If the 1. P V r = ∅. Algorithm 5.2 adds recovery subnets to every place in P U r , where r ∈ P R 2 . When M 0 (r) resources break down and all of them are removed to recovery subnets and meanwhile the system needs this resource type, the system is at a waiting-for-repair state.

P V r

∅. Adding arcs (t ps , V rw ) and (V rw , t p f ) does not change token count of V rw , where

V rw ∈ P 1 V rw in Algorithm 5.2.
However, other steps in (i) and (ii) in Algorithm 5.2 force broken resources to be removed to recovery subnets. From Definition 5.10, if ∃M ∈ R(N rc V , M rc V0 ), p∈||I r || M(p) < M 0 (r) and t ∈ T , M[t , the disturbed controlled system is at a waiting-for-repair state, where r ∈ P R . Algorithm 5.2 is applied to the net depicted in Fig. 5.1 (b). Since P R 2 = {p 6 }, it needs to iterate only once. We have P V p 6s = {p 7 } and P V p 6w = ∅. The complementary place p 7 needs to be added for p 7 . For p 2 that is in the complementary set of SMS {p 4 , p 5 , p 6 }, P 2 V p 6s = ∅ implies that β = 0 and a recovery subnet is needed. For p 4 that is in SMS {p 4 , p 5 , p 6 }, P 2 Hence two recovery subnets need to be added. Normal arcs (p 7 , t 7 ) and (t 8 , p 7 ) are used to connect the monitor with a recovery subnet, and a self-loop (p 7 , t 9 ) and (t 9 , p 7 ) weighted by 2 is used to connect p 7 and the other recovery subnet. Then (N rc V , M rc 0V ) is obtained for the original S 3 PR, as shown in Fig. 5.3.

Based on Theorem 5.6, the final system obtained by Algorithm 5.2 can trap into waiting-forrepair states. For example, in Fig. 5.3, when two robots are occupied by p 2 and p 4 and the robot in place p 4 breaks down, it needs to be repaired. However, after removing this robot to p 12 , we find that the original system stops running. It gets into a waiting-for-repair state. Note that (N rc V , M rc 0V ) is still live. Indeed, resource failures are of randomness. Specifically, the resources that will fail, the states at which resources will fail, and the number of broken resources are unpredicted before errors occur. The objective of this chapter is to design a robust supervisor that can handle errors as many as possible without reanalyzing the original system. However, based on Algorithm 5.2, the robust liveness-enforcing supervisor for an S 3 PR has a complex structure. The next section shows that the supervisor structure can be reduced by introducing inhibitor arcs.
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Improvement of Algorithm 5.2

The class of Petri nets studied in this chapter are bounded ones. A bounded Petri net with inhibitor arcs can be transformed into a conventional Petri net [22]. Given a k-bounded place p with F. 5.9 -Transformation.

• p = T * = {t 1 , • • • , t m }, p • = T * = {t 1 , • • • , t n },
* = {t 1 , • • • , t n }, p • = T * = {t 1 , • • • , t m }
In Algorithm 5.2, the complementary places of monitors and related arcs are used to represent the fact that the removal of the broken resources does not depend on the markings of their related monitors. Specifically, if a resource fails in SMS and is removed and the corresponding monitors are marked, a token from them is removed at the same time. If the corresponding monitors are unmarked, it does not effect the removal of the broken resource. When a monitor V S loses M 0V (V S ) tokens, V S must get M 0V (V S ) tokens. Then the corresponding start transition can be fired. Indeed, an inhibitor arc can be used to represent the fact that when the corresponding monitors are unmarked, it does not effect the removal of the broken resource. Inhibitor arcs are used to replace the complementary places of monitors and related arcs. Algorithm 5.2 can be improved accordingly. Let (N rc * V , M rc * V0 ) be a controlled system of an S 3 PR (N , M 0 ), where (N , M 0 ) is an augmented autonomous or an augmented toparchy subnet computed by Algorithm 5.1. (N rc * V , M rc * V0 ) with broken resources is at a waiting-for-repair state if ∃M ∈ R(N rc * V , M rc * V0 ), p∈||I r || M(p) < M 0 (r) and t ∈ T , M[t , where r ∈ P R .

Algorithm 5.3 is applied to the net depicted in Fig. 5.1 (c). Since P R 2 = {p 6 }, it needs to iterate only once. We have P V p 6s = {p 7 } and P V p 6w = ∅. For p 2 that is in the complementary set of SMS Based on Theorem 5.8, in Fig. 5.10, when two robots are occupied by p 2 and p 4 and the robot in place p 4 breaks down, the robot needs to be repaired. After removing this robot to p 12 , we find that the system stops running. It gets into a waiting-for-repair state. However, (N rc * V , M rc * 0V ) is still live. 

Examples

The automated manufacturing cell shown in Fig. 5 In the original S breaks down, it needs to be removed, which does not depend on whether V S 1 and V S 3 are marked.

According to this fact, normal and inhibitor arcs are added for monitors and recovery subnets as shown in Fig. 5.12.

Since |P V p 12s | = |{V S 1 , V S 3 }| = 2, we also need to add four recovery subnets to p 12 . If the resource in p 12 breaks down, it needs to be removed, which does not depend on whether V S 1 and V S 3 are marked. Accordingly, normal and inhibitor arcs are added for monitors and recovery subnets as Fig. 5.12 shows. Then a robust liveness-enforcing supervisor (N rc * V , M rc * 0V ) for the original S 3 PR is derived. each SMS can be controlled by adding a monitor such that an S 3 PR is live. Accordingly, for each of toparchies 1, 2, and 3, a toparch can be designed by synthesizing a set of monitors, as shown in Table 5.1. Once these toparches are computed, a monarch can be found by synchronously synthesizing the idle subnet, the autonomous subnet, and the toparches.

V S
In the original S 3 PR model, P R 2 = {r|r ∈ R, M 0 (r) ≥ 2} = {p 16 , p 25 , p 34 , p 35 }. We first choose unreliable resource p 16 that is in Toparchy 1 as an example. By Definitions 5.12 and 5.13, 

P V p 16 = {V S 1 , V S 2 , V S 3 }, P V p 12s = {V S 1 , V S 2 , V S

Discussions

There is a lack of research regarding unreliable resources on AMS under the existing deadlock control policies. The goal of this chapter is to design a robust liveness-enforcing supervisor in a Petri net formalism for AMS.

Based on the concept of resource circuits, we divide the resources in P R of a considered S 3 PR into two classes : the ones each of which is associated with a resource circuit from which an SMS can be derived from, and the ones that are not associated with SMS. The former is in

P 1 R ∪ P 2 R ∪ • • • ∪ P k
R and the latter is in P F R , i.e., P 1

R ∪ P 2 R ∪ • • • ∪ P k R ∪ P F R = P R .
According to this partition, an S 3 PR is disassembled into an autonomous subnet if it exists, a number of toparchies, and an idle subnet. Then, a liveness-enforcing toparch is designed for each toparchy. All toparches and the F. 5.14 -A robust supervisor for the original system.

DISCUSSIONS

autonomous subnet are merged into a monarch that is shown to be a liveness-enforcing supervisor for the whole plant Petri net model. We add recovery subnets to the unreliable places of unreliable resources. To keep the robustness of the monitors, normal and inhibitor arcs are needed to connect monitors and recovery subnets by Algorithm 5.3. Then, we can obtain a more robust supervisor than [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF]. Note that when a waiting-for-repair state appears, the whole system must wait for the necessary resource that is removed to repair.

The chapter bridges the gap between the existing deadlock policies and real-world manufacturing systems. It provides deep insights on the development of deadlock control policies for AMS with unreliable resources. Compared with existing policies [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF], [START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF], [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], [START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF], [START_REF] Wu | Modeling and deadlock control of automated guided vehicle systems[END_REF], [START_REF] Wu | Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles[END_REF], [START_REF] Wu | Deadlock resolution in automated manufacturing systems with robots[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [START_REF] Jeng | Deadlock detection and prevention of automated manufacturing systems using Petri nets and siphons[END_REF], [START_REF] Xing | Resource-transition circuits and siphons for deadlock control of automated manufacturing systems[END_REF], [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF], we consider the uncertainty factors in AMS. By considering Hsieh's work [START_REF] Hsieh | Robustness of deadlock avoidance algorithms for sequential processes[END_REF], [START_REF] Hsieh | Fault-tolerant deadlock avoidance algorithm for assembly processes[END_REF], [START_REF] Hsieh | Robustness analysis of Petri nets for assembly/ disassembly processes with unreliable resources[END_REF], [START_REF] Hsieh | Analysis of flexible assembly processes based on structural decomposition of Petri nets[END_REF], [START_REF] Hsieh | Robustness analysis of holonic assembly/disassembly processes with Petri nets[END_REF], [START_REF] Hsieh | Collaborative reconfiguration mechanism for holonic manufacturing systems[END_REF], [45], our research is more intuitive since supervisors are in a Petri net formalism.

We are led to conclude that the robustness design methodology developed in this research can be easily extended to other deadlock control policies based on siphons [START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF], [START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF], [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF]. The reason why the divide-and-conquer deadlock control policy is selected to be a demonstrator rather than the typical method in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] lies in the following aspects. First, supervisors designed by the method in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] are expressed by a set of monitors that are added for emptiable SMS with output arcs pointing to the source transitions of the plant models. This usually forbids a portion of legal states. While the divide-and-conquer deadlock control policy can solve this problem to some extent since the allocation mechanism of the resources in P F R in a plant S 3 PR net model cannot lead to deadlocks. Second, if we use the method in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] at the first stage directly, by Definition 5.12, P V r of r may have more elements. This leads to the supervisor computed by Algorithm 5.3 with a much more complex structure. Last but not least, we will show why toparchies are not distinguished into subordinate or dominate [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] toparchies in Algorithm 5.1. Taking no account of unreliable resources, a subordinate toparchy's idle-augmented net is live based on its definition. However, if there exist unreliable resources in a subordinate toparchy and when some fail to work and are removed to repair, the subordinate toparchy's idle-augmented net may no longer live. In this case, monitors are needed to add to control deadlocks. Hence, at the first stage, monitors are added for all toparchies.

This chapter presents exploratory research on robustness of liveness-enforcing supervisors for 5.6. SUMMARY AMS in a Petri net formalism. Computational and structural complexity of the supervisors needs to be improved. More specifically, deciding how to reduce the complexity of Algorithm 5.3 and to extend the results to more complex Petri nets such as GS 3 PR and S 4 R [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF] is of importance and significance. The robustness analysis problem of more general Petri nets remains open.

Summary

This chapter focuses on the robust liveness-enforcing supervisor design for AMS. Recently, extensive work on supervisor design based on Petri nets has been devoted to the liveness enforcement on the premise that all the resources in a system work properly. However, real-world AMS may suffer from unpredicted resource failures. When broken resources are removed to repair, the liveness-enforcing supervisor designed for the original system by traditional policies may cause deadlocks. This chapter is motivated by the need to design a supervisor that can ensure not only the liveness of the original Petri net but also the robustness of the controlled system for S 3 PR.

Recovery subnets and monitors are added for unreliable resources and strict minimal siphons that may be emptied, respectively. Normal and inhibitor arcs are used to connect monitors with recovery subnets when necessary. In this case, when a resource fails, the proposed supervisor can still ensure that no deadlock occurs. Compared with the traditional deadlock control policies, the most advantage of the proposed method is that the reanalysis of the net can be avoided. To a large extent, the robustness of the supervisor is improved. Results indicate that the controller is qualified with robustness and liveness. However, there is an obvious drawback in this study. The final supervisor for S 3 PR designed by Algorithm 5.3 is too complex in structure even though the algorithm is easily implemented for an S 3 PR in theory.

Future work includes simplifying the structure of the supervisor designed by Algorithm 5.3 for S 3 PR and extending the proposed technique to more general Petri nets such as GS 3 PR and S 4 R [START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF].

The major contribution in this research is published : 1. CONTRIBUTIONS thod is more general. Also, some open problems are discussed. Based on the max * -controllability condition of siphons, for GS 3 PR, it proposes a new IP model that can detect minimal problematic siphons directly. We conclude that if there is no feasible solution to this model, the net is live. Since the approach is based on siphons and mathematical programming, its computational efficiency is relatively insensitive to the initial marking. Compared with the existing methods, the proposed one is more powerful.

Secondly, it develops a novel design method of deadlock prevention supervisors based on Petri nets, which does not guarantee optimality but empirical results show its superiority over other approaches based on siphon control. Given the Petri net model of an AMS, an optimal livenessenforcing controlled system is designed for the model under a minimal initial marking by utilizing the theory of regions. Then, we calculate all strict minimal siphons (SMS) in the controlled system, each of which does not contain a trap. For each SMS, an algebraic inequality with respect to the markings of monitors and resource places in the controlled system, also called a liveness constraint, is established in terms of the concept of max-controlled or invariant-controlled siphons.

Its satisfaction implies the absence of dead transitions in the postset of the corresponding siphon.

Consequently, given initial markings that satisfy all the liveness inequality constraints, all siphons can be max-controlled, and the resulting controlled system is live. After a controlled system structure is found, one can reallocate the initial markings according to the inequality constraints. No matter how large the initial markings and the number of states are, the liveness constraints remain unchanged. Their satisfaction ensures the absence of uncontrolled siphons.

Moreover, it proposes a maximally permissive control policy for a subclass of S 3 PR (called β-nets) based on the theory of token distribution pattern of siphons. We first show that by adding a monitor for each critical siphon, some live states may get lost since the monitor is associated with the complementary set of a critical siphon, where some places may not be marked. By controlling only the set of marked activity places, more live states can be reached. However, this induces some emptiable siphons. The corresponding token pattern can be inferred. By adding monitors to all such possibly emptiable siphons, the controlled net becomes live and maximally permissive.

There is no need to construct a reachability graph and enumerate all minimal siphons. Hence, the computational burden is minimized among all approaches in the literature.

Last but not least, a variety of deadlock control policies based on Petri nets have been pro-2. LIMITATIONS AND FUTURE RESEARCH posed for AMS. Most of them prevent deadlocks by adding monitors for emptiable siphons that, without an appropriate control policy, can cause deadlocks, where the resources in a system under consideration are assumed to be reliable. When resources are unreliable, it is difficult or impossible to apply existing control strategies. For S 3 PR, Chapter 5 bridges the gap between a divideand-conquer deadlock control strategy and its application to real-world systems with unreliable resources. Recovery subnets and monitors are designed for unreliable resources and strict minimal siphons that may be emptied, respectively. Normal and inhibitor arcs are used to connect monitors with recovery subnets if necessary. Then reanalysis of the original Petri net is avoided and a robust liveness-enforcing supervisor is derived.

Limitations and Future Research

Despite some basic problems that have been discussed and solved in this thesis, from many aspects, the work in the thesis can be further extended in the future. Such extensions making the proposed methods more practical and leading to more applications are discussed as follows.

So far, many deadlock control policies based on siphon control have been proposed for Petri nets. The use of the max * -controllability condition to control a generalized Petri net is still an open problem requiring a further study. A sufficient and necessary siphon control condition for G-systems, S 4 R, and S * PR family remains open. Also, it is challenging to design an optimal supervisor for these generalized Petri nets based on siphons.

For AMS with unreliable resources, no much work is found on robust supervision design based on Petri nets. The thesis only seeks to offer simple or even naive solution for S 3 PR. There is an obvious drawback in this study. The final supervisor for S 3 PR is too complex in structure even though the algorithm is easily implemented in theory. Actually, robust liveness-enforcing supervisor design is much more difficult for complex AMS. Also, more effective methods with low computational overheads and simple structural complexity can be potentially studied in the future.

Glossaire 2 A

The power set of a set A. C A circuit.

C

A set of inequality constraints.

F

A set of flow relations in a Petri net. f A flow relations in a Petri net.

H(r)

The set of holders using resource r. I A place invariant.

I

The support of a place invariant I. I +

The positive support of a place invariant I. I -

The negative support of a place invariant I. J

A transition invariant. (l, b) A general mutual exclusion constraint (GMEC). (L, B)

A set of GMEC.

M

A marking.

M(S )

The sum of tokens in a place set The postset of a place p.

• p

The preset of a place p.

Post

The post-incidence matrix of a Petri net.

Pre

The pre-incidence matrix of a Petri net.

R(N, M)

The set of markings reachable from M. R(N, M 0 )

The set of markings reachable from M 0 . S A siphon.

S A

The set of activity places in S .

S R

The set of resource places in S .

[S ]

The complementary set of S . T A set of transitions in a Petri net. t

A transition in a Petri net.

• t

The preset of a transition t. t • The postset of a transition t.

• t o

The set of places from which there are inhibitor arcs to transition t. W A weight function.

W(x, y)

The weight of arc (x, y). W( f )

The weight of arc f .

• x

The preset of a node x∈P∪T . x • The postset of a node x∈P∪T . X A set.

|X|

The element count in a set X. X

The cardinality in a set X. [106], [START_REF] Uzam | Identification and elimination of redundant control places in Petri net based liveness enforcing supervisors of FMS[END_REF], [START_REF] Uzam | An iterative synthesis approach to Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] et [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF] sont quelques-unes des oeuvres les plus représentatives.

Dans [1], la théorie des régions est proposée. L'auteur vise à fournir une méthodologie formelle pour synthétiser un réseau de Petri à partit d'un système de transition. Plus tard, Uzam [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF] propose une approche pour concevoir des superviseurs de réseaux de Petri optimaux en utilisant la théorie des régions. Peu de temps après [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], Ghaffari et al.

présentent une explication facilement compréhensible de l'approche de conception d'un superviseur en termes de réseaux de Petri optimal basé sur la théorie des régions [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF] et l'algèbre linéaire. Le travail dans [START_REF] Uzam | The use of Petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems[END_REF] est une version améliorée de l'étude dans [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF].

Si un superviseur optimal existe pour un modèle de réseaux de Petri, alors il peut être trouvé [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF], [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF]. Lorsqu'un superviseur optimal n'existe pas, le travail dans [START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF] et [START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF] n'offre pas une solution de contrôle de blocage. Dans ce cas, un problème intéressant est de trouver un superviseur de réseaux Petri qui soit le plus permissif possible. Le travail dans [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF] présente une approche de prévention de blocage pour trouver un superviseur avec un maximum de permissivité pour un AMS si un tel superviseur existe. Sinon, il peut promouvoir le meilleur superviseur permissif posssible.

Chen et al. [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF], [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF], [START_REF] Chen | Behaviorally optimal and structurally simple livenessenforcing supervisors of flexible manufacturing systems[END_REF] développent une nouvelle méthode qui peut concrètement trouver un superviseur optimal en ajoutant des moniteurs. Cette méthode vise à bloquer le système non contrôlé de pénétrer dans la zone de blocage en empêchant l'atteignabilité de tous les premiers mauvais marquages (FBM). En outre, ils formulent une méthode pour s'assurer que tous les marquages accessibles peuvent être atteints dans le système contrôlé et une technique pour réduire la charge de calcul en considérant uniquement un ensemble minimal de marquages accessibles et un ensemble minimal de FBM par une approche de recouvrement de vecteur.

Le travail dans [START_REF] Chen | Design of maximally permissive liveness-enforcing petri net supervisor for flexible manufacturing systems[END_REF] souffre du problème de la complexité structurelle car le nombre des places de contrôle calculé n'est pas minimal. Dans [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF], les auteurs proposent une approche qui peut obtenir un superviseur permissif au maximum avec le nombre minimal de places de contrôle. C'est une approche non-itérative où toutes les places de contrôle peuvent être obtenues en résolvant un problème de nombres entiers en programmation linéaire (ILPP) (notée MCPP dans [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF]). Bien que cette approche permette de surmonter les problèmes à la fois de la permissivité du comportement et de la complexité structurelle, elle souffre toujours du coût calcul élevé.

Le travail dans [START_REF] Chen | Behaviorally optimal and structurally simple livenessenforcing supervisors of flexible manufacturing systems[END_REF] emploie un petit (pas minimum) nombre de moniteurs mais plus efficace en surmontant le problème de la complexité des calculs dans [START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF] Basé sur la condition de max*-controllability des siphons, nous proposons un nouveau modèle de programmation en nombres entiers (IP) qui peut détecter des siphons non-max*-marqués qui causent directement des blocages ou inter-blocages. Nous concluons que s'il n'y a pas de solution possible à ce modèle, le réseau est vivant.

Prenez le réseau montré à la Fig. 1 comme exemple. La vivacité est vérifiée par la résolution de l'IP proposée. Nous utilisons Lingo [START_REF] Lingo | Premier optimization modeling tools[END_REF] pour résoudre le problème de la propriété intellectuelle. Aucune solution réalisable ne peut être trouvée. Cela signifie que ce réseau est vivant. En fait, il y a un SMS unique dans ce réseau vivant: S = {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } qui est toujours suffisamment marqué. Cependant, les MIP à la fois dans [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF] et [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF] peuvent trouver une solution réalisable pour ce réseau .en utilisant les MIP dans [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF], le SMS S est non-max marqué au marquage M = p 3 + p 5 + 5p 9 + 3p 10 + 3p 11 + 10p 12 + 9p 13 + 2p 14 . En utilisant les MIP dans [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF], un siphon minimal S est non-max"-marqué au M = p 1 + p 3 + p 5 + 3p 10 + 2p 11 + 10p 12 + 9p 13 + 2p 14 . Comme le montre le tableau 1, S sur la Fig. 1 est non-maxmarqué à huit marquages et non-max"-marqué à un marquage. Par conséquent, une solution peut être trouvée. La politique de contrôle dans [START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF] ajoute un lieu de contrôle pour le SMS obtenu, ce qui n'est pas nécessaire dans la méthode proposée du chapitre en cours, comme indiqué par l'intermédiaire de cet exemple.

Le réseau représenté sur la Fig. 2 a la même structure avec un réseau dans [START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF] et [START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF]. La Fig. 3 est le graphe d'accessibilité du réseau de la Fig. Pour cet exemple, on ne peut détecter un siphon mort marqué par la MIP proposée dans [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF].

Aux mauvais marquages M 9 et M 10 , le siphon {p 3 , p 6 , p 7 , p 8 , p 10 } n'est pas bloqué selon la définition des siphons bloqués. Plus précisément, t 7 et t 8 sont dans la présélection du siphon. La transition t 8 est activée par p 10 au M 9 et t 7 est activée par p 8 au M 10 . Celles-ci ne satisfont pas la condition ∀t ∈ • S, t est désactivé par certains p ∈ S.

En fait, par rapport à la technique de MIP dans [START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF], le projet IP est plus général dans les deux aspects: (i) un siphon minimal non-max*-marqué peut être obtenu directement si un réseau est non-vivant et (ii ) la nouvelle adresse IP peut résoudre le problème si un réseau de Petri contient des inter-blocages causés par les siphons. que le système puisse continuer à fonctionner. En utilisant les méthodes traditionnelles dans [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF] et [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF] qui ajoutent des moniteurs pour siphons, nous pouvons trouver un superviseur optimal pour les S 3 PR, comme le montre la Fig. 6 (c).

Les politiques de contrôle de blocage dans [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF], [START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF] et [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF] 
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Gaiyun LIU Supervisor Synthesis for Automated Manufacturing Systems Based on Structure

Theory of Petri Nets Abstract :

Because of automation and reduction of the number of operators, the control of industrial systems is becoming a critical issue. For automated manufacturing systems (AMS) where resource sharing is preponderant, the notion of partial or total blocking is frequent and validation before implementation is preferable to reduce the risks. Due to the easy and concise description of the concurrent execution of processes and the resource sharing by Petri nets, many methods to verify deadlock-freeness and to synthesize controllers using structural theory or reachability graph have been proposed over the past two decades. Traditionally, a deadlock control policy can be evaluated by three performance criteria : structural complexity, behavioral permissiveness, and computational complexity. Generally, deadlock control policies based on the state space analysis can approach the maximal permissive behavior, but suffer from the state explosion problem. On the contrary deadlock control policies based on the structural analysis of Petri nets avoid in general the state explosion problem successfully, but cannot lead to the maximally or near maximally permissive controller. Moreover, the current deadlock control theory based on siphons is fairly mature for ordinary Petri nets, while for generalized Petri nets, it is presently at an early stage. On the other hand, most deadlock control policies based on Petri nets for AMS proceed on the premise that the resources in a system under consideration are reliable. Actually, resource failures are inevitable and common in most AMS, which may also cause processes to halt. Therefore, it is judicious to develop an effective and robust deadlock control policy considering unreliable resources. This thesis aims to cope with the limitations mentioned above. Our main theoretical and algorithmic contributions are introduced as the following. Firstly, after revisiting the controllability conditions of siphons and limitations of max, max , and max -controlled siphon properties (cs-properties), we define the max * -cs-property and prove that this new cs-property is not only sufficient but also a necessary liveness condition for generalized systems of simple sequential processes with resources (GS 3 PR). Moreover, we show the verification of this property and hence liveness of GS 3 PR nets can be translated into resolution of an integer programming (IP) model. Secondly, we propose a class of manufacturing-oriented Petri nets, M-nets for short, with strong modeling capability. Combining siphon control and the theory of regions, we develop a deadlock prevention method that makes a good trade-off between behavioral optimality and computational tractability. Moreover, this thesis proposes a maximally permissive control policy for a subclass of Petri nets (called β-nets) based on the token distribution patterns of siphons and avoiding the generation of reachability graphs and enumeration of minimal siphons. Finally, we propose a design method of robust liveness-enforcing supervisors for AMS with unreliable resources. The proposed method is appropriate in particular for plants which can be modeled by systems of simple sequential processes with resources (S 3 PR).
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Definition 1 . 1 A

 11 Petri net is a four-tuple N = (P, T, F, W) where P and T are finite and nonempty sets. P is a set of places and T is a set of transitions with P ∪ T ∅ and P ∩ T = ∅. F ⊆ (P × T ) ∪ (T × P) is called a flow relation of the net, represented by arcs with arrows from places to transitions or from transitions to places. W : (P × T ) ∪ (T × P) → N is a mapping that assigns a weight to an arc : W( f ) > 0 if f ∈ F and W( f ) = 0 otherwise, where N = {0, 1, 2, . . .}.

Definition 1 . 3 Exemple 1 . 1

 1311 A marking M of a Petri net N assigns to each place a nonnegative integer. To facilitate linear algebraic analysis, a marking M is usually treated as a |P|-vector. M(p) denotes the number of tokens in place p. For economy of space, p∈P M(p)p is used to denote vector M. Place p is marked at M if M(p) > 0. Given a subset S ⊆ P, the sum of tokens in all the places in S is denoted by M(S ) with M(S ) = p∈S M(p). S is marked (unmarked) at M if M(S ) > 0 (M(S ) = 0). Let M 0 be an initial marking of net N. (N, M 0 ) is called a marked net. As shown in Fig. 1.1, (N, M 0 ) is a Petri net with P = {p 1 -p 8 }, T = {t 1 -t 6 }, F = {(p

Fig. 1 .

 1 Fig. 1.2 shows the reachability graph of the net (N, M 0 ) shown in Fig. 1.1. Marking M 4 is a

F. 1 . 4 -

 14 An example of livelocks shown in a reachability graph.

F. 1 . 5 -

 15 An extended Petri net with an inhibitor arc.1.5. STRUCTURAL INVARIANTS, SIPHONS, AND TRAPS

  I T and [N] T are their transposed versions of I and [N], respectively. Definition 1.14 P-vector I is called a P-invariant (place invariant) if I 0 and I T [N] = 0 T . A P-semiflow I is a P-invariant if every element of I is non-negative. ||I|| = {p ∈ P|I(p) 0} is called the support of I. ||I|| + = {p|I(p) > 0} denotes the positive support of P-invariant I, while ||I|| -= {p|I(p) < 0} denotes the negative support of I. I is said to be a minimal P-invariant if there does not exist a P-invariant I such that ||I || ⊂ ||I|| and its components are mutually prime. P-invariants that can be derived from the state equation of a Petri net are marking invariants.

  .6 -(a) A manufacturing system, (b) its net model (N, M 0 )

1. 6 .

 6 SUBCLASSES OF PETRI NETS that the nets in Fig. 1.7 are the models of manufacturing systems. In Fig. 1.7(a), we have P A = {p 1 , p 2 , p 4 , p 5 }, P 0 = {p 3 , p 6 }, and P R = {p 7 , p 8 }. In Fig. 1.7(b), we have P A = {p 1 , p 2 , p 4 , p 5 }, P 0 = {p 3 , p 6 }, and P R = {p 7 , p 8 }. In Fig. 1.7(c), we have P A = {p 2 , p 3 , p 4 , p 6 , p 7 }, P 0 = {p 1 , p 5 }, and P R = {p 8 , p 9 }. F. 1.7 -(a) An S 3 PR, (b) a GS 3 PR, (c) an S 4 R.

  r p ). ∀r ∈ P R , ∃ a unique minimal P-semiflow I r s.t. I r = •• r ∩ P A ∪ {r}, I r ∩ P R = {r}, I r ∩ P 0 = ∅, and I r (r) = 1. Furthermore, P A = ∪ r∈P R ( I r \P R ) ; 5. The following statements are satisfied : ∀r

5 F. 1 . 9 -

 519 (a) A marked Petri net (N 1 , M 10 ), (b) a marked Petri net (N 2 , M 20 ), (c) the composed GS 3 PR.1.6. SUBCLASSES OF PETRI NETSThe net N 1 shown in Fig.1.9(a) is a GS 2 PR extended from the S 2 P in Fig.1.8(a), where P R = {p 7 , p 8 } is the set of resource places. Likewise, N 2 shown in Fig.1.9(a) is a GS 2 PR if p 6 is a idle process place, p 4 and p 5 are activity places, and p 7 and p 8 are resource places.

F. 1 . 10 -

 110 Typical structure of a siphon in GS 3 PR (N, M 0 ). 1.6. SUBCLASSES OF PETRI NETS 1.6.3 S 4 R Net This section defines S 4 R [81], a class of generalized Petri nets with more powerful modeling ability than S 3 PR and GS 3 PR. It is equivalent to S 4 PR [100] and S 3 PGR 2 [89]. Definition 1.30 [81] A well-marked S 4 R net (N, M 0 ) is a marked Petri net N = (P, T, F, W) with initial marking M 0 such that :

F. 1 .

 1 11 -An S4 R net (N, M 0 ).1.6.4 Relationships among S 3 PR, GS 3 PR, and S 4 R Nets S 3 PR and S 4 R (S 4 R in[START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF] are equivalent to S4 PR in[START_REF] Tricas | An iterative method for deadlock prevention in FMS[END_REF], and S 3 PGR 2 in[START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF]) are typical classes of ordinary Petri nets and generalized Petri nets, respectively. Both S 3 PR and S 4 R are composed of a set of state machines and a set of resource places. In S3 PR, only one shared resource is allowed to be used at each stage in a job. Compared with the usage of resources in S3 PR, the usage of resources in S 4 R is almost arbitrary and requires only conservativeness 1 .

Figure 1 .

 1 7 depicts intuitive examples of the Petri net subclasses mentioned-above. We can see that in an S3 PR, an activity place (representing a processing stage) of a job needs a single unit of a single resource type. For example, the activity modeled with place p 1 in Figure1.7(a) needs one unit of only one resource type, i.e., p 7 . In a GS3 PR, an activity place of a job may need multiple units of a single resource type. For instance, the activity place 1.7. SUMMARY modeled with p 1 in Figure1.7(b) needs two units of only one resource type, i.e., p 7 . While, in an S4 R, an activity place may be supported by any resource requirements, specifically, multiple units of multiple resource types. In Figure1.7(c), the activity place modeled with p 3 needs one unit of resource p 8 and one unit of resource p 9 .

Proof:

  It follows from Theorem 2.3 by considering that a GS 3 PR net is a subclass of S 4 R. The net at marking M = p 1 + p 3 + p 5 + 3p 10 + 2p 11 + 10p 12 + 9p 13 + 2p 14 shown in Fig. 2.3 is obtained by firing t 1 , t 4 , and t 7 once in Fig. 2.1(a). M (p 9 ) = 0, M (p 10 ) = 3, M (p 3 ) = 1, and

  a critical transition of S . The relationship between T c S and T c r can be written as T c S = r∈S R T c r . From Theorem 1.4 and Fig. 1.10, the fact that a transition t ∈ T c S is enabled means e pt = 1 and e rt = 1, where p ∈ [S ] ∩ • t and r ∈ S ∩ • t. The GS 3 PR net shown in Fig. 2.1(a) is well

  (i) and (ii) are completely identical with the conditions in Definition 2.4. It is easy to find that the proposed definition admits an extra condition. Understandably, it is more general than the definition of max -marked siphons. Based on the definition of GS 3 PR nets and Theorem 1.4, there necessarily exists the typical structure of a siphon in a GS3 PR net as shown in Fig.1.10. In this structure, e pt = 1 and e rt = 1 in Condition (iii) mean that t is enabled at M. At marking M, a max *marked siphon can guarantee that at least one transition in its preset can potentially fire once. The GS 3 PR net shown in Fig. 2.1(a) is well-marked. By firing t 1 , t 4 , and t 7 once, we can obtain M as shown in Fig. 2.3 with M = p 1 + p 3 + p 5 + 3p 10 + 2p 11 + 10p 12 + 9p 13 + 2p 14 . p 3 ∈ • t 5 ∩ P A , M(p 3 ) = 1, and e p 3 t 5 = 1. {p 10 } = • t 5 ∩ P R , M(p 10 ) = 3, and e p 10 t 5 = 1. t 5 ∈ T c S , e p 3 t 5 = 1, and e p 10 t 5 = 1 satisfy the third condition in Definition 2.9. Hence, S is max * -marked at M. Theorem 2.5

and S 1 A

 1 = {p 9 , p 18 , p 4 , p 5 }. Hence, S 1 = S 1 R ∪ S 1 A = {p 12 , p 13 , p 9 , p 18 , p 4 , p 5 }. [S 1 ] = {p 3 , p 17 } is then derived. k = 1 since [S 1 ] = [S 0 ]. Clearly, S 1 is a strict siphon. From the figure, an SMS S 1 = {p 5 , p 9 , p 18 , p 12 , p 13 } ⊆ S 1 is non-max * -marked at M . Theorem 2.8

2. 6 .

 6 EXAMPLES AND DISCUSSIONS F. 2.5 -A net in[START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF].
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 26 The reachability graph of the net in Fig.2.5.

e r 7

 7 t 5 * e t 5 * x 7 * x 8 = 0 ; e r 8 t 2 * e t 5 * x 8 * x 7 = 0 ; Solving the above programming problem gives min = x 2 + x 3 + x 5 + x 6 + x 7 + x 8 + x 10 = 5, where x 3 = 1, x 6 = 1, x 7 = 1, x 8 = 1, x 10 = 1, and the others are zero. The corresponding minimal non-max * -marked siphon is S = {p 3 , p 6 , p 7 , p 8 , p 10 }. Meanwhile, we can obtain the bad marking M = p 1 + p 2 + p 4 + p 5 + p 7 + p 8 + p 9 . Contrasted with the reachability graph in Fig. 2.6, this 2.7. SUMMARY bad marking is M 10 . For Fig. 2.5, t 7 fires once at M 10 , M 9 = p 1 + p 2 + p 4 + p 5 + p 7 + p 10 is then obtained. Once the system evolves at M 9 or M 10 , it can never process other processes. They are livelocks.

[ 1 ]

 1 Gaiyun Liu and Kamel Barkaoui, Necessary and sufficient liveness condition of GS 3 PR Petri Chapitre 3

  p 4 , p 6 }, S 4 = {p 2 , p 3 , p c }, and S 5 = {p 4 , p 5 , p 6 }. The first four are also traps, implying that they cannot be unmarked once p 1 , p 5 , p 6 , and p c are initially marked. From the original model (N, M 0 ), p 1 , p 5 , and p 6 are initially marked. As a monitor, p c must be initially marked. Otherwise there exist dead transitions at the initial marking. Next we give a marking relation with which S 5 is controlled. Note that I p 5 = p 3 + p 5 , I p 6 = p 2 + p 4 + p 6 , and I p c = p 2 + p 3 + p c are P-invariants in Fig. 3.1(e). Let I = I p 5 + I p 6 -I p c . Clearly, I = p 4 + p 5 + p 6 -p c is a P-invariant. Since ||I|| + ⊆ S 5 , S 5 is controlled if I T M mc 0 > 0, i.e., M mc 0 (p 4 ) + M mc 0 (p 5 ) + M mc 0 (p 6 ) > M mc 0 (p c ). The above results indicate that each siphon in (N m , M m 0 ) is controlled if p 1 , p 5 , and p 6 are initially marked, and M mc 0 (p 4 ) + M mc 0 (p 5 ) + M mc 0 (p 6 ) > M mc 0 (p c ).

3. 2 .F. 3 . 1 -

 231 STRUCTURE DESIGN OF A PETRI NET SUPERVISOR (a) A plant model (N, M 0 ), (b) the reachability graph of (N, M 0 ), (c) a modified model (N m , M m 0 ), (d) the reachability graph of (N m , M m 0 ), (e) a controlled system (N mc , M mc 0 ) for (N m , M m 0 ), (f) a controlled system (N c , M c 0 ) for (N, M 0 ).

  .1(e). In (N, M 0 ), M 0 = 4p 1 + 2p 5 + p 6 , i.e., p 1 , p 5 , and p 6 are initially marked. If p c is initially marked and M c 0 (p 5 ) + M c 0 (p 6 ) > M c 0 (p c ), then a controlled system for (N, M 0 ) can be obtained. Since M c 0 (p 5 ) = M 0 (p 5 ) = 2 and M c 0 (p 6 ) = M 0 (p 6 ) = 1, M c 0 (p c ) = 2 means the truth of M c 0 (p 5 ) + M c 0 (p 6 ) > M c 0 (p c ), as shown in Fig. 3.1(f).

  PR [23], L-S 3 PR [24], S 4 R [81], S 4 PR [100], ES 3 PR [47], WS 3 PSR [99], S * PR [25], S 3 PMR

Algorithm 3. 1

 1 finding a minimal initial marking for N Input : a plant model (N, M 0 ) with N = (P 0 ∪ P A ∪ P R , T, F, W)

  uncontrolled at M} then flag :output "(N, M 0 ) cannot be handled by the proposed method" else if {flag==1} then output "(N, M 0 ) is live" algorithm First, Algorithm 3.1 decides whether (N, M 0 ) is live. By the definition of M-nets, it is live if there is no uncontrolled siphon, which can be determined by an MIP-based deadlock detection3.2. STRUCTURE DESIGN OF A PETRI NET SUPERVISORmethod. If it is live (flag=1), the algorithm exits. If it is not live, then the set of SMS and the minimal admissible initial marking M m 0 are computed. If (N, M m 0

p 3 ,

 3 p 4 }, S 9 = {p 5 , p 6 , p 7 , p 8 }, S 10 = {p 2 , p 8 , p 9 }, S 11 = {p 3 , p 7 , p 10 }, S 12 = {p 4 , p 6 , p 11 }, S 13 = {p 2 , p 7 , v 1 }, S 14 = {p 3 , p 6 , v 2 }, and S 15 = {p 2 , p 6 , v 3 }. Note that S 8 -S 15 are also traps that are marked at the minimal initial marking by the definition of M-nets. As a result, they do not contribute to deadlocks. We have Π u = {S 1 , S 2 , . . . , S 7 } with Π G = {S 1 , S 2 , S 3 }, Π V = {S 4 }, and Π H = {S 5 , S 6 , S 7 }. S ∈ Π G can be represented by S A ∪ S R , where S A ⊆ P A and S R ⊆ P R . Definition 3.2 Given S ∈ Π G in N mc , I r is the minimal P-semiflow associated with r ∈ P R ∪ P V , Ω S = r∈S R I r , and Ω S = p∈S Ω S (p)p. Multiset S = Ω S -Ω S is called S s complementary set.

F. 3 . 2 -

 32 (a) A plant model (N, M 0 ), (b) a controlled system (N mc , M mc 0 ) for (N, M 0 ).

Definition 3 . 7 Definition 3 . 9

 3739 A constraint (l, b) is said to be redundant with respect to (l i , b i ) if the truth of (l i , b i ) implies that of (l, b). Definition 3.8 A constraint (l, b) is said to be redundant with respect to a set of constraints C S if the truth of one or more constraints in C S implies that of (l, b). Let l α , l β , . . ., and l γ ({α, β, . . . , γ} ⊆ N |Π u | ) be a linearly independent maximal set of matrix L. Then C E = {(l α , b α ), (l β , b β ), . . ., (l γ , b γ )} is called a set of elementary constraints in C. Definition 3.10 (l, b)

Theorem 3. 1 |C

 1 E | = rank(L), where rank(L) denotes the rank of L. Proof : It follows immediately from the definition of elementary constraints. Since the rank of L is bounded by the smaller of |P V | and |Π u |, Theorem 3.1 leads to the following important conclusion. Theorem 3.2

For

  example, C E = {(l 1 , b 1 ), (l 2 , b 2 ), (l 6 , b 6 )} is a set of elementary constraints of Eq. (3.4). We have l 3 = l 1 + l 2 , l 4 = -l 1 -l 2 , l 5 = l 1 + l 6 , and l 7 = l 1 + l 6 . By Definitions 3.10 and 3.11, (l 3 , b 3 ), (l 5 , b 5 ), and (l 7 , b 7 ) are strongly dependent and (l 4 , b 4 ) is weakly dependent. Specifically, the redundancy condition of (l 3 , b 3 ) is M mc 0 (p 9 ) + M mc 0 (p 10 ) -2 + M mc 0 (p 10 ) + M mc 0 (p 11 ) -1 ≤ M mc 0 (p 9 ) + M mc 0 (p 10 ) + M mc 0 (p 11 ) -2, i.e., M mc 0 (p 10 ) ≤ 1. The redundancy conditions of the dependent constraints in Eq. (3.4) are summarized in Table 3.1. T. 3.1 -Redundancy conditions of the dependent constraints in Fig. 3.2(b) dependent constraint redundancy condition

  find Π B Π u := Π A \ Π B derive controllability constraints for siphons in Π u by Algorithm 3.3 find redundancy conditions for constraints decide M c 0 (v) by reduced constraint set and M 0 , ∀v ∈ P V ∀p ∈ P 0 ∪ P A ∪ P R , M c 0 (p) := M 0 (p) N c := N mc output (N c , M c 0 ) }end of the algorithm Theorem 3.5 (N c , M c 0 ) resulting from Algorithm 3.4 is a live controlled system for plant model (N, M 0 ). Proof : All siphons in (N c , M c 0 ) are max-controlled, implying that it satisfies cs-property. From 3.5. DEADLOCK PREVENTION POLICY Definition 3.1, (N c , M c 0 ) is live.

F. 3 . 4 -

 34 (a) An M-net (N, M 0 ), (b) controlled system (N mc , M mc 0 ).

  3.5(a). It has two robots R1 and R2, each of which can hold one product at a time. The cell also contains four machines M1-M4, and each of them can hold one part. Parts enter AMS through two automatic loading buffers I1 and I2, and leave it through two unloading ones O1 and O2. The robots deal with the movements of parts. Two part types P1 and P2 are produced. Their respective production routes are shown in Fig. 3.5(b).

O u t p u t 1 M a c h i n e 2 R o b o t 1 R o b o t 2 M a c h i n e 1 M a c h i n e 3 P 1 :

 1212131 

  Fig. 3.6(a) shows its net model, which is an M-net with P 0 = {p 1 , p 8 }, P R = {p 15 , p 16 , p 17 , p 18 , p 19 }, and the others are activity places. It can be easily verified that the current initial marking is

F. 3 . 6 -

 36 (a) Petri net model of an AMS, (b) structure of the controlled system. T. 3.3 -Behavioral permissiveness of the proposed deadlock prevention policy in Fig. 3.6(b)

F. 3 . 7 -

 37 (a) An example net, (b) its controlled system. The only siphon in Fig. 3.7(a) is S = {p 2 , p 4 , r 1 , r 2 }. Its controllability is ensured by the addition of monitor v, as shown in Fig. 3.7(b)

  .7(b) at initial marking M 0 = 10r 1 + 10r 2 + 100v is live. Compared with v = 10 resulting from Propositions 3.1 and 3.2, this novel siphon control method achieves much better control effects. For the net shown in Fig. 3.2(b), when M 0 (p 9 ) = M 0 (p 10 ) = M 0 (p 11 ) = 6, we have M mc 0 (v 1 ) = 5, M mc 0 (v 2 ) = 11, and M mc 0 (v 3 ) = 14 due to Eq. (3.4). However, by the novel siphon 3.8. SUMMARY control approach, we can have M mc 0 (v 1 ) = 16, M mc 0 (v 2 ) = 11, and M mc 0 (v 3 ) = 16. The net in Fig. 3.2(a) at M 0 (p 9 ) = M 0 (p 10 ) = M 0 (p 11 ) = 6 has 12,495 reachable states. An optimal live controlled system should have 12,415 states. The controlled system at M mc 0 (v 1 ) = 16, M mc 0 (v 2 ) = 11, and M mc 0 (v 3 ) = 16 has 12,374 reachable states. The optimality ratio is 12,374/12,425=99.67%.

Definition 4 . 1

 41 An elementary resource circuit c b in an S 3 PR, i.e., all places in c b are resources, is called a basic circuit. SMS constructed from c b is called a basic siphon. Let S 0 be an SMS and S 0 = S 1 • S 2 • . . . S n-1 • S n is called an n-compound siphon, where S 1 , S 2 , . . ., and S n are basic siphons

Fig. 4 .

 4 1 provides an example for strongly dependent siphon. As shown in Table 4.1, c 1 ∩ c 2 = {p 8 } is a single resource place and the SMS synthesized from c 1 ∪ c 2 strongly depends on S 1 and S 2 synthesized from c 1

Theorem 4. 1

 1 

  any input transition of r j ) is disabled ; 3. ∃S ∈ £(S 0 ), S is unmarked and M([S ]) = r∈R(S 0 ) M(r) -θ, where θ is the number of singular places. 4. Once the critical siphon S for M in Definition 4.3 is controlled, so are the rest of siphons S with M([S ]) M([S ]) in £(S 0 ).

3 .

 3 All input and output transitions of the monitor are dead, they remain so permanently. The set of unmarked places form an unmarked siphon from which we can extract a minimal siphon S such that [S ] ∩ [B] ∅, where B = S 1 or S n . By Definition 4.3, S ∈ £(S 0 ). M([S ]) = r∈R(S 0 ) M(r) -θ by Definition 4.3 since M is a UP by assumption. 4. There are two cases : (a) M max ([S ]) < M max ([S ]). By the theory in [96], [S 0 ] ⊃ [S c ] ⊃ [S p x ] ⊃ [S f x ] where S c , S p x , S f x are control, partial mixture, and full mixture siphons, respectively. Furthermore, S c ∩ [S p x ] ∅ and S p x ∩ [S f x ] ∅. Thus, [S ] ⊂ [S ], S ∩ [S ] ∅, and S is marked at the UP M. Adding the monitor for S will push tokens out of [S ] to make some control places in S marked. Hence S is always marked or controlled. (b) M max ([S ]) > M max ([S ]). This is impossible since all output and input transitions of S 0 are dead at M, where M([S ]) = M max ([S ]). One can no longer fire any transition to move tokens into [S ] ⊂ [S 0 ] to make M max ([S ]) > M max ([S ]). After adding V, M([S ]) < M max ([S ]) and transitions are disabled more easily to make S more marked (i.e., have more tokens). Thus, S is controlled. In Fig. 4.1(a), there are four basic circuits from which, four basic siphons S 1 = {p 3 , p 7 , p 8 , p 2 }, S 2 = {p 4 , p 8 , p 9 , p 3 }, S 3 = {p 5 , p 9 , p 10 , p 4 }, S 4 = {p 6 , p 10 , p 11 , p 5 } can be synthesized, and four monitors V 11 , V 12 , V 13 , and V 14 in Fig. 4.1(b) are added accordingly. For 2-and 3-dependent siphons, the UP are obvious and monitors are added as shown in Figs. 4.1(c) and (d), respectively. For the only 4-dependent siphon S , p 8 , p 9 , and p 10 are internal places ; p 8 and p 10 are singular. θ = 2 and the UP (see Fig. 4.1(e) for the monitor) is M = 2p 2 + 2(p 4 ⊕ p 4 ) + 2p 6 + p 8 + p 10 , where 2(p 4 ⊕ p 4 ) indicates that M(p 4 ) + M(p 4 ) = 2. The controlled model reaches 1060 states losing 66 live states (there are 1126 live states among all 1432 reachable states) by adding a monitor V to each critical siphon with H(V) = [V] = [S ] = {p 2 , p 3 , p 4 , p 4 , p 5 , p 6 } (unmarked p 3 and p 5 are not excluded since the presence of unmarked 4.2. CRITICAL SIPHON places clutters the figure.), where H(V) is the set of holder places that use V. By shifting a token from p 2 to p 3 , M is changed to M = p 2 + p 3 + 2(p 4 ⊕ p 4 ) + 2p 6 + p 8 + p 10 , which is a live marking since p 8 ∈ S or p 2 ∈ S holds a token. But M is forbidden by the monitor added for S since M([S ]) = M ([S ]

Definition 4 . 4

 44 Let {p 1 , p 2 , p 3 } ⊆ [S ] ∩ P Ai be a set of 3 consecutive activity places in subprocess

1 . 4 . 1 Controller

 141 Now we give a detailed picture of the controlled model in Fig. 4.1. The only available exchange operations are with 3-and 4-dependent siphons. Consider S 0 = S 1 • S 2 • S 3 . The UP is M Ψ = 2p 2 + 2(p 4 ⊕ p 4 ) + p 5 . By shifting a token from p 4 to p 3 , we have M Ψ = 2p 2 + p 3 + p 4 + p 5 . Adding a monitor V to each of Ψ and Ψ (H(V) = Ψ and Ψ ) with M 0 (V) = M 0 (S ) -θ -1 = 6 -2 = 4, the resulting model now reaches 1074 > 1060 states. Similar discussion applies to S 0 = S 2 •S 3 •S 4 . Unmarked pattern is M * Ψ * = p 3 +2(p 4 ⊕p 4 )+2p 6 . Adding a monitor V * with [V * ] = Ψ * induces a new siphon, whose UP can be reached by (exchange operation) moving a token from p 4 to p 5 (associated with singular place p 10 ) such that M * Ψ ∧ = p 3 + p 4 + p 5 + 2p 6 that is another forbidden state besides M * Ψ * . By adding a monitor for each of Ψ * and Ψ ∧ , the resulting model reaches 1082 states. Finally, consider the only 4-monitor with singular places p 8 and p 10 . With 2 possible Ψ's for each singular place, there are four possible sets of unmarked activity places. Hence, we replace the monitor with 4 monitors. The resulting model as shown in Table 4.2 reaches 1126 states which is maximally permissive. Note that when M 0 (p 9 ) = 1, all internal places are singular and all critical siphons S are control ones. The marking for each unmarked S is a UP. The controller synthesis is summarized in Algorithm 4.Algorithm Synthesis for β-nets INPUT : An uncontrolled β-netOUTPUT : Maximally permissive controlled system 1. For each basic siphon, add a monitor V with M 0 (V) = M 0 (S )-1 ;2. For each n-dependent region (n ≥ 2) Θ,

( 2 . 1 )

 21 For each non-boundary place in Θ, follow Definition 4.3 to find its token distribution ; 4.3. CONTROL POLICY (2.2) For each boundary place in Θ, find all possible exchange operations and corresponding token patterns ;

T. 4 . 2 -

 42 Controlled model for the net in Fig. 4.1.

4. 4 .

 4 EXAMPLES those by Uzam and Zhou (requires reachability analysis) as well as Piroddi et al. (requires MIP analysis).

Example 1 :

 1 For the net in Fig. 4.2(a), there are four basic circuits from which, one can synthesize four basic siphons S 1 , S 2 , S 3 , and S 4 and four 1-monitors V 11 , V 12 , V 13 , and V 14 are added accordingly as shown in Fig. 4.2(b). For each 2-dependent siphon, there is no boundary place and no exchange operation is available. Hence, the token pattern for an unmarked siphon follows that in Definition 4.3. Monitors V for these 2-dependent siphons are added (Fig. 4.2(c)) such that [V] = [S ]. Figs 4.2(d) and (e) show the 3-and 4-monitors with [V] = [S ]. The final controlled model reaches 2566 states. F. 4.2 -Another example of the control policy based on UP but with no unmarked places in H(V).

4. 4 .Example 2 :

 42 EXAMPLESTo reach more states, consider the exchange operations for the 3-dependent siphons S 1 and S 2 . S R 1 = {p 8 , p 9 } has only one boundary place p 9 with one exchange operation of moving a token from p 3 to p 4 such that the token pattern changes from M Ψ = 2p 2 + 2(p 3 ⊕ p 3 ) + 2p 5 toM Ψ = 2p 2 + p 3 + p 4 +2p 5 . A monitor V is added for each of Ψ and Ψ with M 0 (V) = M 0 (S )-θ-1 = 7 -2 = 5. S R 2 ={p 9 , p 10 } has only one boundary place p 9 with one exchange operation of moving a token from p 5 to p 4 so that the token pattern changes from M Ψ * = 2p 3 + 2(p 5 ⊕ p 5 ) + 2p 6 toM Ψ ∧ = 2p 3 + p 4 + p 5 + 2p 6 . Add a monitor V for each of Ψ * and Ψ ∧ with M 0 (V) = M 0 (S ) -θ -1 = 7 -2 = 5.These two exchange operations lead to 2606>2566 live states.There is only one 4-dependent siphon S . S R = {p 8 , p 9 , p 10 } has only one boundary place p 9 but with 2 possible exchange operations. First one moves a token from p 3 to p 4 such that the token pattern changes fromM Ψ = 2p 2 + 2(p 3 ⊕ p 3 ) + 2(p 5 ⊕ p 5 ) + 2p 6 to M Ψ = 2p 2 + p 3 + p 4 + 2(p 5 ⊕ p 5 ) + 2p 6 . Add a monitor V for each of Ψ and Ψ with M 0 (V) = M 0 (S ) -θ -1 = 9 -2 = 7.Note that when M 0 (p 9 ) = 2, all internal places are nonsingular and all critical siphons are compound ones. The marking for each unmarked S is a UP.Second one moves a token from p 5 to p 4 (this does not change the total number of tokens in[S ]) such that the token pattern changes from M Ψ = 2p 2 + 2(p 3 ⊕ p 3 ) + 2(p 5 ⊕ p 5 ) + 2p 6 to M Ψ ∧ = 2p 2 +2(p 3 ⊕p 3 )+p 4 +p 5 +2p 6 . Add a monitor V for Ψ with M 0 (V) = M 0 (S )-θ-1 = 9-2 = 7. There are 3 monitors added above. The resulting model as shown in Table4.3 is maximally permissive and reaches 2628 states.Note that for non-β nets of practical problems, most compound siphons fit the pattern in Definition 4.1. One can apply the method in this chapter to add monitors to the corresponding n-dependent siphons without computing them. The following two examples illustrate this point. Now apply the approach to a well-known S 3 PR [49] as shown in Fig. 4.3. We add a monitor for each basic siphon (Tables 4.4 and 4.5). As shown in Table 4.4, for the set of 2-dependent siphons related to S 4 synthesized from c 4 = c 1 • c 2 , the unmarked pattern is UP = p 3 ⊕ p 12 + p 2 ⊕ p 11 + p 4 . This corresponds to that of compound siphon S 4 . A monitor V = V 4 is added with [V]=[S 4 ] and M 0 (V) = M(p 15 ) + M(p 18 ) -1=3 (see Table

3 -

 3 Controlled model for the net in Fig. 4.2.

2 -F. 4 . 4 -

 244 dependent siphons related to S 15 synthesized from c 15 = c 1 • c 16 , the UP is M(p 21 ) = M(p 22 ) = M(p 26 )=0 and M(p 12 ) = M 0 (p 21 ) = M(p 19 ) = M 0 (p 22 ) =1, M(p 13 ) + M(p 18 ) = M 0 (p 26 ) =2. This corresponds to that of compound siphon S 15 . A monitor V = V 7 is added with [V]=[S 15 ] and M 0 (V) = M(p 12 ) + M(p 19 ) + M(p 13 ) + M(p 18 ) -1=3. Note that S 1 ∩ S 16 = {p 26 } and M 0 (p 26 ) > 1 is the condition in [96] for the critical siphon to be a compound one. If M 0 (p 26 ) = 1, then the critical siphon is a control siphon as shown below, where S 14 is synthesized from c 14 = c 16 • c 18 , S 16 ∩ S 18 = {p 21 } and M 0 (p 21 ) = 1. An S 3 PR model in [23]. The UP is M(p 21 ) = M 0 (p 21 )= 1, M(p 25 ) = M(p 26 )=0 and M(p 11 ) = M 0 (p 25 ) = M(p 18 ) = 4.4. EXAMPLES T. 4.6 -Basic siphons, resource circuits, and V(M 0 ) for the net in Fig.

19 ]

 19 ={p 11 , p 18 } and M 0 (V) = M(p 11 ) + M(p 18 ) -1=3. For the set of 3-dependent siphons related to S 13 synthesized from c 13 = c 1 • c 16 • c , the UP is M(p 21 ) = M 0 (p 21 )= 1, M(p 22 ) = M(p 25 ) = M(p 26 )=0 and M(p 11 ) = M 0 (p 25 ) = 2, M(p 19 ) = M 0 (p 22 )=1, M(p 13 ) + M(p 18 ) = M 0 (p 26 ) =2.

  p 21 is no longer an internal resource place here since it is on the above resource circuit c. The UP is M(p 21 ) = M(p 22 ) = M(p 24 ) = M(p 25 )=0, M(p 26 ) =1, and M(p 9 ) = M 0 (p 24 ) = M(p 11 ) = 4.5. SUMMARY M 0 (p 25 ) = 2, M(p 18 ) = M(p 19 ) = M 0 (p 22 ) = 1, and M(p 2 ) + M(p 3 ) + M(p 8 ) = M 0 (p 21 )=1. A monitor V = V 10 is added with [V]=[S 21 ] ={p 2 , p 3 , p 8 , p 9 , p 11 , p 18 , p 19 }and M 0 (V) = M(p 2 ) + M(p 3 ) + M(p 8 ) + M(p 9 ) + M(p 11 ) + M(p 18 ) + M(p 19 ) -1 = 6 = M 0 (R(S )) -θ -1, θ=1 consistent with the UP since the presence of V 8 reduces the maximal marking in {p 11 , p 18 } by one. For the set of 2-dependent siphons related to S 2 synthesized from c 2 = c 4 • c 17 , the UP is M(p 21 ) = M 0 (p 21 )= 1, M(p 22 ) = M(p 23 ) = M(p 24 ) = M(p 25 ) = M(p 26 )=0 and M(p 6 ) = M 0 (p 20 ) = M(p 19 ) = M 0 (p 22 ) =1, M(p 13 ) + M(p 18 ) = M 0 (p 26 ) =2, M(p 11 ) + M(p 16 ) = M 0 (p 25 ) =2, M(p 7 ) = M 0 (p 23 ) = M(p 9 ) = M 0 (p 24 ) =2.

Fig. 5 .F. 5 . 1 -

 551 1 (a) has a machine tool M and a type of robots R with two robots. Each of the robots can move and the machine tool can process one part at a time. Parts enter the cell through uploading buffer I, and leave the cell through downloading buffer O. The machine tool performs an activity on raw parts and robots deal with the movements of parts. The cell can be modeled with Petri nets as Fig. 5.1 (b) shows. The net is an S 3 PR, where P 0 = {p 1 }, P R = {p 5 , p 6 }, and the others are activity places. (a) An automated manufacturing cell, (b) a Petri net model, (c) a liveness-enforcing supervisor.

F. 5 . 2 -

 52 (a) One robot is removed, (b) one token is correspondingly removed from p 6 .

S 2 =

 2 {p 4 , p 6 , p 13 , p 14 }, and S 3 = {p 6 , p 9 , p 12 , p 13 , p 14 }. Their complementary sets are [S 1 ] = {p 3 , p 4 }, [S 2 ] = {p 5 , p 8 }, and [S 3 ] = {p 3 , p 4 , p 5 , p 8 }, respectively. We have downstream siphons

F. 5

 5 .5 -(a) An autonomous subnet, (b) a toparchy of the net in Fig. 5.4 (a).

5. 3 . 6 F. 5 . 6 -

 3656 ROBUST LIVENESS-ENFORCING SUPERVISOR DESIGN The idle subnet (N id , M id 0 ). By Definition 5.5, an S3 PR has at most one unique autonomous subnet. From Theorem 5.2,

3 F. 5 . 7 -

 357 Monarch synthesis for (N, M 0 ) in Fig. 5.4 (a). (N, M 0 ). By Algorithm 5.1, the monarch synthesis for the plant net model in Fig. 5.4 (a) is obtained as Fig. 5.7 shows. This supervisor leads to 96 reachable states. Comparing Fig. 5.7 with Fig. 5.4

Fig. 5 .

 5 Fig. 5.8 graphically represents a marked recovery subnet (N r , M r0 ). Place p u represents an

Definition 5 . 14

 514 The complementary place of a k-bounded place p with initial marking M 0 (p) = k is a new place p satisfying • p = p • , p • = • p, where k is a nonnegative integer. The place p is initially unmarked. By construction, p is k-bounded. For each reachable marking M, M(p) = k implies M(p) = 0. This definition is important to understand the following algorithm that enhances the robustness of the liveness-enforcing supervisor computed by Algorithm 5.1 through adding recovery subnets, normal arcs, and the complementary places of monitors. Algorithm 5.2 robust liveness-enforcing supervisor design Input : G = (N c V , M c V0 ) of an S 3 PR plant model (N, M 0 )

V p 6s = {p 7 }

 6s7 implies that β = 1 and two recovery subnets are needed. As shown in Fig. 5.3, normal arcs (p 7 , t 11 ) and (t 12 , p 7 ) are used to connect the monitor with a recovery subnet, and a self-loop (p 7 , t 13 ) and (t 13 , p 7 ) weighted by 2 is used to connect p 7 and the other recovery subnet. For resource place r, θ = |P V p 6s | = 1.

  and p o• = {t}, the behavior of inhibitor arc (p, t) o can be equivalently replaced by adding a complementary place p with • p = T

Algorithm 5. 3

 3 robust liveness-enforcing supervisor design with inhibitor arcsInput : G = (N c V , M c V0 ) of an S 3 PR plant model (N, M 0 )Output : (N rc * V , M rc * V0 ) begin{ 5.3. ROBUST LIVENESS-ENFORCING SUPERVISOR DESIGN Theorem 5.8

{p 4 ,

 4 p 5 , p 6 }, P 2 V p 6s = ∅ implies β = 0 and a recovery subnet is needed. For p 4 that is in SMS {p 4 , p 5 , p 6 }, P 2 V p 6s = {p 7 } implies β = 1 and two recovery subnets need to be added. As shown in Fig. 5.10, normal arcs (p 7 , t 11 ) and (t 12 , p 7 ) and inhibitor arc (p 7 , t 13 ) o are used to connect the monitor with recovery subnets. For resource place r, θ = |P V p 6s | = 1. Hence two recovery subnets need to be added. Normal arcs (p 7 , t 7 ) and (t 8 , p 7 ) and inhibitor arc (p 7 , t 9 ) o are used to connect monitor with recovery subnets. Then we have (N rc * V , M rc * 0V ) for the original S 3 PR, as shown in Fig. 5.10.

3 F. 5 . 10 -

 3510 Supervisor with inhibitor arcs. 5.4. EXAMPLES Compared Figs. 5.10 with 5.3, complementary place p and related arcs are replaced by an inhibitor arc. The structure of the robust liveness-enforcing supervisor is simplified.

  .11(a) has three types of machines M1, M2, and M3. M2 has two processing units while M1 and M3 have only one unit. Also the cell contains two types of robots R1 and R2 and each type has one processing unit. Parts enter the cell through two loading buffers I1 and I2, and leave the cell through two unloading buffers O1 and O2. The robots deal with the movements of parts. R1 handles part movements from I1 to M1 and M2. R2 handles part movements from M2 to M3 and M3 to M2. Three part types J1, J2, and J3 are produced. Their respective production routes are shown in Fig. 5.11(b) and the Petri net model of the system is shown in Fig. 5.4(a). The net system is an S 3 PR that contains deadlocks. For the net in Fig. 5.4(a), a liveness-enforcing monarch (N c V , M c 0V ) synthesized by Algorithm 5.1 is shown in Fig. 5.7.

3 F. 5 .

 35 11 -(a) An AMS's layout, (b) the production routings of the AMS.

Fig. 5 .

 5 Fig. 5.14 shows. Similarly, we can design recovery subnets for p 25 , p 34 , and p 35 . Then we obtain a robust liveness-enforcing supervisor (N rc * V , M rc * 0V ) for the original S 3 PR as shown in Fig. 5.14. Due to the limited space, the supervisor is not shown completely. In the figure, for clarity, Ei is used to denote a recovery mechanism for an unreliable place, where i = {1, 2, • • • , 10}. It is explained below the figure.

[ 1 ]

 1 Gaiyun Liu, Zhiwu Li, Kamel Barkaoui, and Abdulrahman M. Al-Ahmari, Robustness of deadlock control for a class of Petri nets with unreliable resources, Information Sciences, vol.235, pp.259-279, 2013.

FIG. 1 -

 1 FIG.1 -Alive GS 3 PR.

2 .

 2 De toute évidence, nous pouvons voir que ce réseau est sans interblocages et déclare M 9 = p 1 + p 2 + p 4 + p 5 + p 7 + p 10 et M 10 = p 1 + p 2 + p 4 +p 5 + p 7 + p 8 + p 9 sont des interblocages dans la Fig. 3.

2 FIG. 2 -

 22 FIG. 2 -Un réseau dans[START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF].

FIG. 3 -

 3 FIG.3-Le graphe d'accessibilité du réseau de la Fig.2.

  Depuis que l'approche est basée sur les siphons et la programmation mathématique, son efficacité de calcul est relativement insensible au marquage initial. Par rapport aux méthodes existantes, celle qui est proposée est plus puissante.Le Chapitre 3 présente une nouvelle méthode de conception des superviseurs de prévention de blocage basé sur les réseaux de Petri. Il ne garantit pas l'optimalité mais les résultats empiriques montrent sa supériorité sur les autres approches fondées sur le contrôle de siphon.Compte tenu du modèle de réseau de Petri d'un AMS, on conçoit d'abord un système contrôlé de vivacité-d 'exécution optimale pour le modèle doté d'un marquage minimal initial en utilisant la théorie des régions. Ensuite, nous calculons tous les SMS dans le système contrôlé.Un tel siphon ne contient pas un piège. Pour chaque SMS, une inégalité algébrique respectant les marquages de moniteurs et des places ressources dans le système contrôlé, également appelée une contrainte vivacité, est établie en fonction de la notion de siphons max-contrôlés ou invariants contrôlés. Sa satisfaction implique l'absence de transitions mortes dans l'ensemble du siphon correspondant. Par conséquent, les marquages initiaux donnés qui répondent à toutes les contraintes d'inégalité de vivacité, tous les siphons peuvent être maxcontrôlés et le système résultant est contrôlé vivant. Après avoir trouvé une structure asservie de système, on peut réaffecter les marquages initiaux en fonction des contraintes d'inégalité.Peu importe la taille des marquages initiaux et le nombre d'états, les contraintes de vivacité restent inchangées. Leur satisfaction garantit l'absence de siphons incontrôlés. Une fois la structure d'un système commandé de manière optimale est trouvée, un système quasi optimal peut être obtenu sans l'aide de la théorie des régions.

FIG. 4 -FIG. 5 -FIG. 6 -

 456 FIG. 4-(a) An M-net (N, M 0 ), (b) controlled system (N mc , M 0 mc ).

FIG. 7 -FIG. 8 -FIG. 10 -

 7810 FIG.7 -(a)One robot is removed, (b) one token is correspondingly removed from p 6 .

  Le contrôle de systèmes industriels à cause de l'automatisation et la réduction de nombre des opérateurs devient un enjeu crucial. Les systèmes de production automatisés (AMS) sont d'autant plus touchés car une défaillance du programme de contrôle peut réduire considérablement la productivié voire entraôner l'arrêt du système de production. Pour certains de ces systèmes où le partage des ressources est pondérant, la notion de blocage partiel ou global est fréquente et la validation avant implantation est préférable pour réduire les risques. En raison de la capacité des réseaux de Petri à décrire aisément l'exécution concurrente des processus et le partage des ressources, de nombreuses méthodes de vérification d'absence de blocage et de synthèse de contrôleurs basées sur la théorie structurelle ou le graphe d'accessibilité des réseaux de Petri ont été proposées au cours des deux dernières décennies. Les méthodes fondées sur l'espace d'état aboutissent généralement à un contrôle maximal permissif mais souffrent de l'explosion combinatoire de l'espace d'états. En revanche, les méthodes de synthèse de contrôleurs fondées sur l'analyse structurelle évitent le problème de l'explosion de l'espace d'état mais aboutissent à des superviseurs pouvant restreindre considérablement les comportements admissibles du système. De plus si la théorie structurelle de contrôle de siphons pour la synthèse des superviseurs est mature dans le cas des réseaux de Petri ordinaires, elle est en développement pour les réseaux de Petri généralises. Par ailleurs, la plupart des travaux existants partent du principe que les ressources sont constamment disponibles. Or l'indisponibilité de ressources est en réalité un phénomène ordinaire. Il serait donc judicieux de développer une politique de vérification de blocage qui soit efficace tout en considérant des ressources non fiables. Cette thèse vise principalement à faire face aux limitations mentionnées ci-dessus. Nos principales contributions à la fois théoriques et algorithmiques sont les suivantes. Premièrement, après avoir revisité les conditions de contrôlabilité des siphons (cs-propriété) et précisé les limitations des max, max et max -cs-propriétés, nous définissons la max * -cs-propriété et nous démontrons que cette nouvelle propriété est une condition non seulement suffisante mais aussi nécessaire pour la vivacité de la classe des GS 3 PR (Generalized Systems of Simple Sequential Processes with Resources). Par la suite nous montrons comment le problème de la vérification de cette propriété et donc la vivacité des GS 3 PR peut se ramener à la résolution d'un programme linéaire en nombre entiers. Dans une seconde partie, nous proposons une classe de réseaux de Petri appelée M-Nets dotée d'une forte capacité de modélisation des systèmes de production automatisés. En combinant la théorie du contrôle siphon avec la théorie des régions, nous développons une méthode de prévention de blocage ayant un bon compromis entre l'optimalité du comportement et la complexité de calcul. De plus, nous proposons une méthode de synthèse d'un contrôleur maximal permissif pour une sous-classe de réseaux notée β-nets basée sur des distributions de jetons dans les siphons et évitant la génération du graphe d'accessibilité et l'énumération des siphons minimaux. Enfin, nous proposons une méthode de conception d'un superviseur considérant les ressources nom fiables particulièrement efficace pour les systèmes pouvant être modélisés par les réseaux S 3 PR.
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  ⊆ P ∪ T , • S = ∪ x∈S • x and S • = ∪ x∈S x • .For p ∈ P, t ∈ • p and t ∈ p • are called an input and an output transition of p, respectively. For t ∈ T , p ∈ • t and p ∈ t • are called an input and an output place of t, respectively.

	1.2. FORMAL DEFINITIONS
	transition sequence σ such that M[σ M , we have
	M = M + [N] -→ σ
	This equation is called the state equation of a Petri net (N, M), which presents an algebraic
	description of the marking change in a Petri net. Such a linear algebraic expression is very helpful
	because it allows one to apply the concepts and results of linear algebra to the domain of Petri nets.
	Definition 1.6 Given a node x ∈ P ∪ T , • x = {y ∈ P ∪ T | (y, x) ∈ F} is called the preset of x, while
	x • = {y ∈ P ∪ T | (x, y) ∈ F} is called its postset. We can extend this notation to a set of nodes as
	follows : given S
	For an arbitrary finite

  t 3 , t 5 , t 6 }, and S • = p • 3 ∪ p • 6 ∪ p • 7 = {t 1 , t 2 , t 3 , t 5 , t 6 }.

	Definition 1.7 Given a marking M, an arc (p, t) ∈ F is said to be enabled (disabled) if M(p) ≥
	W(p, t) (M(p) < W(p, t)). For an arc (p, t), e pt , a binary variable, indicates whether the arc is
	enabled. e pt = 1 (e pt = 0) means that the arc is enabled (disabled).
	Definition 1.8 In net (N, M 0 ), A transition t is enabled (disabled) at M if ∀p ∈ • t (∃p ∈ • t), arc
	(p, t) is enabled (disabled). This fact can be denoted by M[t . Firing it can reach a new marking
	M with M (p) = M(p)-W(p, t)+W(t, p), denoted by M[t M . Marking M is said to be reachable
	from M if there exist a sequence of transitions σ = t 0 t 1 . . . t n and markings M 1 , M 2 , . . . , and M n
	such that M[t 0 M 1 [t 1 . . . M n [t n M holds. The set of markings reachable from M in N is called
	the reachability set of Petri net (N, M) and denoted as R(N, M). Petri net is reversible if ∀M

  For the Petri net in Fig.1.1, t 1 and t 4 are enabled at M 0 = 3p 1 + 2p 4 + 3p 7 + p 8since • t 1 = {p 1 , p 7 }, M 0 (p 1 ) = 3 > W(p 1 , t 1 ) = 1, M 0 (p 7 ) = 3 > W(p 7 , t 1 ) = 2, • t 4 = {p 4 , p 8 }, M 0 (p 4 ) = 2 > W(p 4 , t 4 ) = 1, and M 0 (p 8 ) = W(p 6 , t 4 ) = 1. Firing t 1 at M 0 leads to M 1 = 2p 1 + p 2 + 2p 4 + 2p 7 + p 8 . Firing t 4 at M 0 leads to M 2 = 3p 1 + p 4 + p 5 + 3p 7 . The reachability set of the net is R(N, M 0 ) = {M 0 , M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 , M 9 , M 10 , M 11 , M 12 }, where M 0 = 3p 1 + 2p 4 + 3p 7 + p 8 , M 1 = 2p 1 + p 2 + 2p 4 + 2p 7 + p 8 , M 2 = p 1 + 2p 2 + 2 4 + p 7 + p 8 , M 3 = 3p 2 + 2p 4 + p 8 , M 4 = 3p 2 + p 4 + p 5 , M 5 = p 1 + 2p 2 + p 4 + p 5 + p 7 , M 6 = 2p 2 + p 3 + 2p 4 , M 7 = 2p 1 + p 2 + p 4 + p 5 + 2p 7 , M 8 = 2p 1 + p 2 + p 4 + p 6 + p 8 , M 9 = 2p 1 + p 2 + p 5 + p 6 , M 10 = 3p 1 + p 4 + p 5 +3p 7 , M 11 = 3p 1 + p 4 + p 6 + p 7 + p 8 , M 12 = 3p 1 + p 5 + p 6 + p 7 . Fig. 1.2

	1.2. FORMAL DEFINITIONS 1.3. DEADLOCKS AND LIVELOCKS
	non-live. (N, M 0 ) is deadlocked at M if t ∈ T , M[t , where M ∈ R(N, M 0 ) and M is called a dead by EP(x 0 , x n ). A circuit is an elementary path with x 0 = x n . Petri net N is strongly connected if
	marking. (N, M 0 ) is deadlock-free if ∀M ∈ R(N, M 0 ), ∃t ∈ T , M[t . there is a directed path from each node x to every other node y, where x, y ∈ P ∪ T .
	Definition 1.10 A marked net is bounded if ∃k ∈ N, ∀M ∈ R(N, M 0 ), ∀p ∈ P, M(p) ≤ k. A net N Definition 1.12 A net N = (P, T, F) is called a state machine if ∀t ∈ T , | • t| = |t • | = 1.
	is structurally bounded if it is bounded for any initial marking.
	Exemple 1.4 shows its reachability graph. The net is non-live and bounded.
	F. 1.2 -The reachability graph of net (N, M 0 ) shown in Fig. 1.1.
	Definition 1.11 Let x be a node in a Petri net N = (P, T, F, W) and (x i , x i+1 ) be a directed arc from
	node x i to x i+1 . A sequence x 0 , (x 0 , x 1 ), x 1 , . . . , x n-1 , (x n-1 , x n ), x n is called a directed path of N if
	∀x ∈ {x 0 , . . . , x n }, x ∈ P ∪ T and ∀i ∈ {1, 2, . . . , n}, (x i-1 , x i ) ∈ F. An elementary path from x 0 to x n
	t is live at M 0 . Otherwise, (N, M 0 ) is is a path whose nodes are all different (except, perhaps, x 0 and x n ). An elementary path is denoted

  For states M 36 = p 1 + p 3 + p 5 + p 8 + 5p 9 + 5p 10 + 5p 11 , M 37 = p 2 + p 3 + p 5 + p 7 + 5p 9 + 5p 10 + 5p 11 , M 38 = p 1 + p 2 + p 3 + p 5 + 4p 9 + 5p 10 + 5p 11 , and M 39 = p 3 + p 5 + p 7 + p 8 + 6p 9 + 5p 10 + 5p 11 , there are no outgoing arcs to leave the component

	1.3. DEADLOCKS AND LIVELOCKS									
				t 1	t 4	2		p 7		2	t 9		
	6 p 1 0	6	p 9	p 1 t 2	p 3 t 5	2	2	p 8	2	2	p 6 t 8	p 1 1	6
				p 2	p 4						p 5		
				t 3	t 6	2		2		t 7		
				F. 1.3 -A Petri net (N, M 0 ) in [81].			
					M 2 3	M 4 5							
					t 7	t 4							
	M 1 6		t 7	M 3 8	t 3	t 2 M 3 6	t 1	M 3 9			t 7	1. Marking M 4 is a M 2 2
	global deadlock. When the system is at this state, it cannot go back to the initial state. This state must be avoided when a deadlock control policy is designed. t 3 M 3 7 t 4 t 4 t 1 M 4 7
	Take the reachability graph of the Petri net model shown in Fig. 1.3 as an example. By using
					t 7	t 4							
	INA [50], we can obtain 60 reachable states, 56 of which are permissive behavior. This net is
					M 2 1	M 4 6							
	deadlock-free. Here, we only show the livelock part due to its large size. In Fig. 1.4, the compo-
	nents in the dashed line are at livelocks. in the dashed-line box.									

• t o = {p 2 } and p o• 2 = {t}. In this figure, t can fire at the current state. Firing t leads to M(p 1 ) = M(p 2 ) = 0 and M(p 3 ) = 1.

  

  .1. There are four minimal P-invariants, i.e., I 1 = p 1 + p 2 + p 3 , I 2 = p 4 + p 5 + p 6 , I 3 = p 2 + 3p 3 + 2p 6 + p 7 , and I 4 = p 3 + p 5 + p 8 .

  In the net shown in Fig.1.1, S = {p 3 , p 6 , p 7 } is an SMS since • S = {t 2 , t 3 , t 5 , t 6 }, S • = {t 1 , t 2 , t 3 , t 5 , t 6 }, and • S ⊂ S • . From the reachability graph of the net, we can see that the net is not live.

	1.6. SUBCLASSES OF PETRI NETS
	Exemple 1.6

  •• = ∪ t∈r • t • represents the set of all output places of all output transitions of place r. For example, in Fig.1.8 (d), • p 7 = {t 2 , t 6 } and •• p 7 = • t 2 ∪ • t 8 = {p 1 , p 5 , p 8 }. p • 7 = {t 1 , t 5 } and p •• 7 = t • 1 ∪ t • 7 = {p 1 , p 5 , p 8 }. Clearly, •• p 7 = p •• 7 .

		t 1		t 1	p 7	p 7	t 6			t 1	p 7	t 6
	p 1		p 1	3		p 5			p 1	3	p 5
	p 3	p 3						p 3		
	4	t 2	4	t 2			t 5	3	4	t 2	t 5	3
					p 8	p 8		p 6			p 8	p 6
	p 2		p 2			p 4			p 2	p 4
		t 3		t 3			t 4			t 3	t 4
	( a )			( b )			( c )				( d )
	F. 1.8 -(a) An S 2 P, (b) a marked Petri net (N 1 , M 10 ), (c) a marked Petri net (N 2 , M 20 ), (d) the composed S 3 PR.
	Definition 1.19 [75] Let N = (P A ∪ {p 0 } ∪ P R , T, F) be an S 2 PR. An initial marking M 0 is called
	an acceptable initial marking for N if (1) M 0 (p 0 ) ≥ 1, (2) M 0 (p) = 0, ∀p ∈ P A , and (3) M 0 (r) ≥ 1,
	∀r ∈ P R . An S 2 PR with such a marking is said to be an acceptably marked one.
	Exemple 1.7 The Petri net shown in Fig. 1.8 (a) is an S 2 P, where p 1 and p 2 are activity places
	and p 3 is a idle process place. Clearly, the net is a strongly connected state machine.
	The net (N 1 , M 10 ) depicted in Fig. 1.8 (b) is an S 2 PR extending from the S 2 P in Fig. 1.8(a),
	where P R = {p 7 , p 8 } is the set of resource places. It meets the conditions in Definitions 1.18 and
	1.19. Hence, (N 1 , M 10 ) is an S 2 PR with an acceptable initial marking.

  r)}.

	Exemple 1.8 The net (N 1 , M 10 ) shown in Fig. 1.8(b) is an S 3 PR if p 3 is an idle process place,
	p 1 and p 2 are activity places, and p 7 and p 8 are resource places. Likewise, (N 2 , M 20 ) shown in
	Fig. 1.8(c) is an S 3 PR if p 6 is an idle process place, p 4 and p 5 are activity places, and p 7 and p 8 are
	resource places. Since they have common resource places, they are composable. Their composition
	leads to an S 3 PR (N, M 0 ), as shown in Fig. 1.8(d). Since one can verify that it meets the conditions
	in Definition 1.21, the net in Fig. 1.8(d) is an acceptably marked S 3 PR.

  Furthermore, if S does not contain the support of any P-semiflow, it is strict minimal. PR with P 0 = {p 1 , p 6 }, P A = {p 1 , p 2 , p 4 , p 5 }, and P R = {p 7 , p 8 }. We have I p 7 = p 1 + p 5 + p 7 , I p 8 = p 2 + p 4 + p 8 , H(p 7 ) = {p 1 , p 5 }, and H(p 8 ) = {p 2 , p 4 }. By Definition 1.23, C(p 7 , t 5 , p 8 , t 2 ) is a resource circuit with C R = {p 7 , p 8 }. S = {p 2 , p 5 , p 7 , p 8 } is the unique SMS in this net. Its complementary set is {p 1 , p 4 }.

	Exemple 1.9 As shown in Fig. 1.8(d), (N, M 0 ) is an S 3 1.6. SUBCLASSES OF PETRI NETS 1.6.2 GS 3 PR Net

  = {p 9 , p 10 } and S A = {p 2 , p 4 , p 6 , p 8 }. In this net, M 0 (p 9 ) = 9 and max p • 9 = max{W(p 9 , t 1 ), W(p 9 , t 4 ), W(p 9 , t 8 ), W(p 9 , t 11

p 3 , p 4 , p 5 , p 6 , p 7 , p 8 }, and P R = {p 9 , p 10 }. S = {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } is its unique 2.2. MOTIVATION SMS, where S R

  2.1, 2.4, and 2.6, we check siphon {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } at markings shown in Fig.s 2.1(a), 2.1(b), 2.2, and 2.3. Test results are shown in Table 2.1. We can see that the above 2.3. NECESSARY AND SUFFICIENT CONDITION F. 2.3 -A live GS 3 PR with a non-max -controlled siphon. three controllability conditions of siphons are all sufficient but not necessary for the liveness of GS 3 PR. This study aims to relax the controllability condition by proposing the max * -controlled siphons in GS 3 PR. T. 2.1 -Controllability of siphon {p 2 , p 4 , p 6 , p 8 , p 9 , p 10 } at different markings

	the marking in max-marked max -marked max -marked
	Fig. 2.1(a)	yes	yes	yes
	Fig. 2.1(b)	no	yes	yes
	Fig. 2.2	no	no	yes
	Fig. 2.3	no	no	no

  3 PR net N shown in Fig.2.4(a) is well-marked at M 0 . There are three SMS in this net : S 1 = {p 5 , p 9 , p 18 , p 12 , p 13 }, S 2 = {p 6 , p 4 , p 17 , p 13 , p 14 }, and S 3 = {p 6 , p 9 , p 18 , p 12 , p 13 , p 14 }. At marking M = 6p 1 + p 2 + 2p 3 + p 7 + p 8 + 9p 10 + p 12 + p 13 + p 17 + 9p 19 shown in Fig. 2.4(b), S 1 and S 3

are non-max * -marked siphons, and S 2 is max * -marked siphon.

Take S 1 as an example. We have

[

S 1 ] = {p 3 , p 4 , p 17 }, S 1R = {p 12 , p 13 }, S 1A = {p 5 , p 9 , p 18 }, and T c S 1 = S • 1R ∩ [S 1 ] • = {t 3 , t 10 , t 14 }. For S 1 , three conditions in Definition 2.9 are considered. Condition

5

  * y 1 + 4 * y 3 + y 6 + 6 * y 8 + y 9 = 9 ; 4 * y 2 + y 4 + 6 * y 5 + 5 * y 7 + y 10 = 9 ; y 1 + y 2 + y 11 = 3 ; y 3 + y 4 + y 12 = 11 ; y 5 + y 6 + y 13 = 10 ; y 7 + y 8 + y 14 = 2 ; + e t 11 ≤ 1 ; x 8 + e t 12 ≤ 1 ; e t 2 + e t 3 + e t 5 + e t 6 + e t 8 + e t 9 + e t 11 + e t 12 ≤ 7 ; 5 * e r 9 t 1 -y 9 ≥ -4 ; 6 * e r 9 t 4 -y 9 ≥ -3 ; 9 * e r 9 t 8 -y 9 ≥ 0 ; 4 * e r 9 t 11 -y 9 ≥ -5 ; 6 * e r 10 t 2 -y 10 ≥ -3 ; 9 * e r 10 t 5 -y 10 ≥ 0 ; 4 * e r 10 t 7 -y 10 ≥ -5 ; 5 * e r 10 t 10 -y 10 ≥ -4 ; y 9 -5 * e r 9 t 1 ≥ 0 ; y 9 -4 * e r 9 t 4 ≥ 0 ; y 9 -e r 9 t 8 ≥ 0 ; y 9 -6 * e r 9 t 11 ≥ 0 ; y 10 -4 * e r 10 t 2 ≥ 0 ; y 10 -e r 10 t 5 ≥ 0 ; y 10 -6 * e r 10 t 7 ≥ 0 ; y 10 -5 * e r 10 t 10 ≥ 0 ; 2.6. EXAMPLES AND DISCUSSIONS e r 9 t 1 + e r 9 t 4 + e r 9 t 8 + e r 9 t 11 + x 9 ≤ 4 ; e r 10 t 2 + e r 10 t 5 + e r 10 t 7 + e r 10 t 10 + x 10 ≤ 4 ;(2 * x 9 -1) * y 9 ≤ (2 * x 9 -1) * (@smax(x 9 * x 10 * 1, x 9 * x 10 * 6, 0) -x 9 ) ; (2 * x 10 -1) * y 10 ≤ (2 * x 10 -1) * (@smax(x 10 * x 9 * 4, x 10 * x 9 * 1, 0) -x 10 ) ; e r 9 t 8 * e t 8 * x 9 * x 10 = 0 ; e r 9 t 11 * e t 11 * x 9 * x 10 = 0 ; e r 10 t 2 * e t 2 * x 9 * x 10 = 0 ; e r 10 t 5 * e t 5 * x 9 * x 10 = 0 ;

	2.6. EXAMPLES AND DISCUSSIONS
	x 1 + e t 2 ≤ 1 ;
	x 2 + e t 3 ≤ 1 ;
	x 3 + e t 5 ≤ 1 ;
	x 4 + e t 6 ≤ 1 ;
	x 5 + e t 8 ≤ 1 ;
	x 6 + e t 9 ≤ 1 ;
	x 7
	e t 2 -y 1 ≥ 0 ;
	2 * e t 3 -y 2 ≥ 0 ;
	2 * e t 5 -y 3 ≥ 0 ;
	9 * e t 6 -y 4 ≥ 0 ;
	e t 8 -y 5 ≥ 0 ;
	9 * e t 9 -y 6 ≥ 0 ;
	e t 11 -y 7 ≥ 0 ;
	e t 12 -y 8 ≥ 0 ;
	y 1 -e t 2 ≥ 0 ;
	y 2 -e t 3 ≥ 0 ;
	y 3 -e t 5 ≥ 0 ;
	y 4 -e t 6 ≥ 0 ;
	y 5 -e t 8 ≥ 0 ;
	y 6 -e t 9 ≥ 0 ;
	y 7 -e t 11 ≥ 0 ;
	y 8 -e t 12 ≥ 0 ;

  y 5 + y 8 + y 10 = 3 ; y 1 + y 2 + y 3 = 2 ; y 4 + y 5 + y 6 = 2 ; + e t 3 + e t 5 + e t 6 + e t 8 ≤ 4 ; 2 * e r 7 t 5 -y 7 ≥ -1 ; 2 * e r 8 t 2 -y 8 ≥ -1 ; 2 * e r 8 t 4 -y 8 ≥ -1 ; 3 * e r 8 t 7 -y 8 ≥ 0 ; 2 * e r 7 t 1 -y 7 ≥ -1 ; y 7 -2 * e r 7 t 1 ≥ 0 ; y 7 -2 * e r 7 t 5 ≥ 0 ; y 8 -2 * e r 8 t 2 ≥ 0 ; y 8 -2 * e r 8 t 4 ≥ 0 ; y 8 -e r 8 t 7 ≥ 0 ; e r 7 t 1 + e r 7 t 5 + x 7 ≤ 2 ; e r 8 t 2 + e r 8 t 4 + e r 8 t 7 + x 8 ≤ 3 ;

	2.6. EXAMPLES AND DISCUSSIONS
	x 2 + e t 2 ≤ 1 ;
	x 3 + e t 3 ≤ 1 ;
	x 5 + e t 5 ≤ 1 ;
	x 6 + e t 6 ≤ 1 ;
	x 10 + e t 8 ≤ 1 ;
	e t 2
	y 9 + y 10 = 1 ;
	e t 2 -y 2 ≥ 0 ;
	e t 3 -y 3 ≥ 0 ;
	e t 5 -y 5 ≥ 0 ;
	e t 6 -y 6 ≥ 0 ;
	e t 8 -y 10 ≥ 0 ;
	y 2 -e t 2 ≥ 0 ;
	y 3 -e t 3 ≥ 0 ;
	y 5 -e t 5 ≥ 0 ;
	y 6 -e t 6 ≥ 0 ;
	y 10 -e t 8 ≥ 0 ;

  I p 9 -p 9 = p 2 + 2p 8 + p 9 -p 9 = p 2 + 2p 8 and H p 10 = p 3 + p 7 . It is easy to verify that {p 2 , p 8 } ⊂ P A and {p 3 ,p 7 } ⊂ P A . Given S ∈ Π G , α S ⊆ P R ∪ P V is called a minimal set of constraint places of S with respect to A S = {d v i ∈ N + |i = 1, 2, . . . , |α S |} if (1) α S S \ P A ; (2) S ≤ v i ∈α S d v i H(v i ) ; (3) ∃p ∈ S , S (p) > Ω(p), where Ω = v i ∈α S (d v i -1)H(v i ) ; and (4) α S ⊆ P R ∪ P V such that (1)-(3) are satisfied and |α S | < |α S |.The addition of the sets of the holders of the monitors in α S is greater than or equals to multiset SIPHON CONTROLLABILITY CONSTRAINTS S 3 = {p 4 , p 8 , p 9 , p 10 , p 11 } with S 3 = p 2 + p 3 + p 6 + p 7 . We have α S 3 = {v 1 , v 2 } with d v 1 = 1 and d v 2 = 1. Let (N, M 0 ) be a Petri net and S be a siphon of N. If there exists a P-invariant I such that ∀p ∈ (||I|| -∩ S ), max p • = 1, ||I|| + ⊆ S , andI T M 0 > p∈S I(p)(max p • -1), then S is maxcontrolled. Given S ∈ Π G and I S = r∈S R I r -v∈α S d v I v , S is max-controlled if M mc 0 (S R )-v∈α S d v M mc 0 (v) > Both r∈S R Ir and v∈α S d v I v are P-semiflows. As a result, I S is a P-invariant. By the definition of α S , we have S ≤ v∈α S d v H(v). Therefore, ||I S || -∩ S = ∅, ||I S || + ⊆ S , and

	Definition 3.4 Proposition 3.1 [4] Proposition 3.2

.2(b). We have Ω S 1 = p 2 +2p 8 + p 9 + p 3 + p 7 + p 10 and Ω S 1 = p 3 +2p 8 + p 9 + p 10 . Thus, S 1 = p 2 + p 7 . S 2 = {p 4 , p 7 , p 10 , p 11 } is also a plant siphon with Ω S 2 = p 3 + p 7 + p 10 + p 4 + p 6 + p 11 and Ω S 2 = p 4 + p 7 + p 10 + p 11 . Therefore, we have S 2 = p 3 + p 6 . Definition 3.3 Given r ∈ P R ∪ P V , H(r) = I r -r is called the set of holders of r, where H(r) is a multiset. Corollary 3.1 ∀r ∈ P R ∪ P V , H(r) ⊆ P A . For example, H(p 9 ) = S . For example, S 1 = {p 3 , p 8 , p 9 , p 10 } is a plant siphon in Fig. 3.2(b) with S 1 = p 2 + p 7 . Note that H(v 1 ) = p 2 + 2p 7 . We have α S 1 = {v 1 } and d v 1 = 1 since S 1 < p 2 + 2p 7 . Consider a plant siphon 3.3. p∈S I S (p)(max p • -1).

Proof :

  Given S ∈ Π V , α S ⊆ P R ∪ P V is called a minimal set of constraint places of S with respect to A S = {d v i ∈ N + |i = 1, 2, . . . , |α S |} if (1) α S S \ P A ; (2) S ≤ v i ∈α S d v i H(v i ) ; (3) ∃p ∈ S , S (p) > Ω(p), where Ω = v i ∈α S (d v i -1)H(v i ) ; and (4) α S ⊆ P R ∪ P V such that (1)-(3) are satisfied and |α S | < |α S |. Given S ∈ Π V and I S = v∈S ∩P V I v -r∈α S d r I r , S is max-controlled if M mc 0 (S ∩ P V ) -r∈α S d r M mc 0 (r) > p∈S I S (p)(max p • -1).For instance, S 4 = {p 3 , p 7 , v 1 , v 2 } is a monitor siphon in Fig.3.2(b). Its minimal set of constraint places is α S 4 = {p 9 , p 11 } with H(p 9 ) = p 2 + 2p 8 , d p 9 = 1, H(p 11 ) = p 4 + p 6 , and d p 11 = 1. Thus,

	3.3. SIPHON CONTROLLABILITY CONSTRAINTS
	Definition 3.5 Proposition 3.3

5 = p 2 + p 3 and H(p c ) = p 2 + p 3 . Thus, α S 5 = {p c }. Note that p 4 ∈ P A and {p 5 , p 6 } ⊆ P R . S 5 is controlled if M mc 0 (p 5 ) + M mc 0 (p 6 ) -M mc 0 (p c ) > 0.

  Given S ∈ Π H and I S = v∈S \PA I v -r∈α S d r I r , S is max-controlled if .3. SIPHON CONTROLLABILITY CONSTRAINTS denote the set of constraints for siphons in Π G (Π H ; Π V ) by C G (C H ; C V ) and let C := C G ∪ C = {c i |i ∈ N |Π u |} be the set of constraints of siphons in a net with P V = {v 1 , v 2 , . . . , v m } and P

	C H ∪ C V
	Reorder the variables in each constraint in C such that no resource place is in the left side and
	no monitor is in the right side
	output C
	}end of the algorithm
	Proposition 3.4
	mc 0 (p 11 ) + M mc 0 (v 1 ) +
	M mc 0 (v 2 ) -M mc 0 (p 10 ) -M mc 0 (v 3 ) > 1.
	Algorithm 3.3
	controllability constraint generation for siphons in (N mc , M mc 0 )
	Input : a set of uncontrolled siphons Π u
	Output : a set of inequality constraints C

and (4) α S ⊆ P R ∪ P V such that (

1

)-(

3

) are satisfied and |α S | < |α S |. M mc 0 (S \ P A ) -r∈α S d r M mc 0 (r) > p∈S I S (p)(max p • -1). For example, S 6 = {p 4 , p 7 , p 11 , v 1 , v 2 } is hybrid with S 6 = p 2 + p 3 + 2p 6 . We have α S 6 = {p 10 , v 3 } with d p 10 = 1 and d v 3 = 1. As a result, S 6 is max-controlled if M begin{ divide Π u into Π G , Π H , and Π V derive constraints for siphons in Π G (Π H ; Π V ) by Propositions 3.2 (3.3 ; 3.4) 3Let R = {r 1 , r 2 , . . . , r k }. A constraint c i ∈ C can be represented by

  .4(a). It is an M-net, where p 1 and p 10 are idle places, p 11 -p 15 are resource places, and the others are activity places. (N mc , M mc 0 ) shown in Fig. 3.4(b) is the controlled system for the plant net with the minimal initial marking. Seven uncontrolled siphons in (N mc , M mc 0 ) are S 1 = {p 6 , p 8 , p 13 , p 14 }, S 2 = {p 5 , p 8 , v 2 , v 3 }, S 3 = {p 5 , p 7 , p 12 , p 13 }, S 4 = {p 6 , p 7 , p 12 , p 14 , v 2 , v 3 }, S 5 = {p 6 , p 8 , p 14 , v 2 , v 3 }, S 6 = {p 6 , p 7 , p 12 , p 13 , p 14 }, and S 7 = {p 5 , p 7 , p 12 , v 2 , v 3 }. The matrix form of the controllability constraints is as follows :

  .4(b) p 1 , p 10 , p 11 , p 12 , p 13 , p 14 , p 15 v 1 , v 2 , v 3

			B p	B L	B m	B m /B L
	3, 3, 1, 1, 1, 1, 1	1, 1, 1	73	54	54	100%
	4, 4, 2, 2, 2, 2, 2	3, 3, 2	1093	1047	941	89.88%
	5, 5, 3, 3, 3, 3, 3	5, 5, 3	5767	5705	5151	90.29%
	6, 6, 4, 4, 4, 4, 4	7, 7, 4	20324	20263	18517	91.38%
	7, 7, 5, 5, 5, 5, 5	9, 9, 5	57450	57390	52995	92.25%
	8, 8, 6, 6, 6, 6, 6	11, 11, 6	140703	140643	131000 93.14%
	9, 9, 7, 7, 7, 7, 7	13, 13, 7	310783	310723	291363 93.77%
	10, 10, 8, 8, 8, 8, 8	15, 15, 8	634173	634113	597853 94.28%
	11, 11, 9, 9, 9, 9, 9	17, 17, 9 1214679 1214619 1150189 94.70%
	12, 12, 10, 10, 10, 10, 10	19, 19, 10 2208445 2208385 2098887 95.04%

  S 1 ={p 3 , p 7 , p 8 , p 2 } c 1 =[p 7 t 2 p 8 t 2 p 7 ] V 11 (2) p 8 S 2 ={p 4 , p 8 , p 9 , p 3 } c 2 =[p 8 t 3 p 9 t 3 p 8 ] V 12 (2) p 9 S 3 ={p 5 , p 9 , p 10 , p 4 } c 3 =[p 9 t 4 p 10 t 4 p 9 ] V 13 (2) p 10 S 4 ={p 6 , p 10 , p 11 , p 5 } c 4 =[p 10 t 5 p 11 t 5 p 10 ] V

14 (2) Definition 4.2 r ∈ P R is called non-sharing if r is used by only one process. An S 3 PR with no non-sharing r is called a β-net. Each siphon S * such that [S * ] ∩ [B] ∅ is called a k-dependent one, where B = S i or S j (S i and S j defined in Definition 4.1). The set of n-dependent siphons is denoted as £(S 0 ). The monitor for S * (resp. S i ) is called a k-monitor (resp. 1-monitor).

  4.2. CRITICAL SIPHONmethod), one can derive the compound siphons with much reduced search time. It is easily subject to computer implementation in a very efficient way compared with all current techniques since all these steps can be expressed in terms of formulas. Only compound siphons that are critical need to be considered. Most importantly, our algorithm does not need to compute any compound siphon. Also note that if S 0 is not uniform (denoted by 'NU'), control circuits (from which to synthesize control siphons) may not be formed from two adjacent control places V h and V h+1 for S h and S h+1 , respectively. As a result, there is only one siphon (i.e., S 0 ) in £(S 0 ). In most cases, S 0 is not emptiable and needs no monitors.Hence, we should focus on uniform compound siphons.

Definition 4.3 Let S 0 = S 1 •S 2 •. . . S n-1 •S n be a compound siphon. The token distribution (called unmarked) pattern M is as follows : (1) For each singular place r i , M(r

  , p 3 , p 5 , p 4 , p 5 , p 6 S V 2 41 (7) t 1 , t 4 ,t 3 , t 6 t 3 , t 5 ,t 2 ,t 4 p 2 , p 3 , p 5 , p 3 , p 5 , p 6 S

	S S S S S S S S S S S	t 3 t 2 , t 4 t 3 , t 5 t 4 , t 6 t 1 , t 4 t 2 , t 5 t 3 , t 6 t 1 , t 5 t 1 , t 3 , t 5 t 2 , t 6 t 2 , t 4 , t 6 t 1 , t 4 ,t 6 p 2 V 3 t 2 , t 2 p 2 , p 3 V 12 (2) t 3 , t 3 p 3 , p 4 V 13 (2) t 4 , t 4 p 4 , p 5 V 14 (3) t 5 , t 5 p 5 , p 6 V 21 (4) t 3 , t 2 p 2 , p 3 , p 3 , p 4 V 22 (3) t 3 , t 4 p 3 , p 5 V 23 (4) t 5 , t 4 p 4 , p 5 , p 5 , p 6 V 1 31 (5) t 3 , t 3 p 2 , p 3 , p 4 , p 5 V 2 31 (5) t 3 , t 2 , t 4 p 2 , p 3 , p 3 , p 5 V 1 32 (5) t 4 , t 4 p 3 , p 4 , p 5 , p 6 V 2 32 (5) t 3 , t 5 , t 4 p 3 , p 5 , p 5 , p 6 V 1 41 (7) t 3 , t 5 , t 3 41 (7) t 1 , t 3 ,t 6 t 4 , t 2 ,t 4 p

2 , p 3 , p 4 , p 3 , p 5 , p 6

  4.3 -A more complicated Petri net model of an AMS.4.4. EXAMPLESFor the set of 2-dependent siphons related to S 6 synthesized from c 6 = c 2 • c 3 , the UP is UP=p 3 + p 6 + p 9 + p 10 . This corresponds to that of partial mixture (p -M) siphon S 8 . A monitorV = V 8 is added with [V]=|UP| and M 0 (V) = M(UP) -1=3. Note that p 12 ∈ (H(p 15 ) ∩ [S 6 ]), yet p 12 is not in the above UP since no control place V exists such that p 12 ∈ • (V • ). The corresponding EUP is p 3 + p 5 + p 9 + p 10 , which necessarily reaches the above UP by firing t 6 .

  the UP is UP=p 2 ⊕ p 5 + p 3 + p 4 + p 6 + p 9 + p 10 . This corresponds to that of a partial mixture siphon S 10 synthesized from the core subnet c 9 +[t 11 p 17 t 10 p 19 t 7 V S 3 ] obtained by adding TP-handle [t 11 p 17 t 10 p 19 t 7 V S 3 ] upon the core circuit c 9 . One can see that the condition ([96]) for 18 c 1 • c 2 UP= p 3 ⊕ p 12 + p 2 ⊕ p 11 + p 4 S 4 comp. p 2 , p 7 , p 11 , p 13 , p 14 , p 16 , p 17 , p 18 , p 19 contr. p 5 , p 6 , p 11 , p 12 , V S 2 , V S 3 [V S 2 t 11 V S 3 t 5 ] [S ] = {p 3 , p 9 , p 10 } ∈ £(S 6 ) S 7 p -M p 7 , p 11 , p 12 , p 17 , p 19 , V S 2 , V S 3 c 7 +[t 11 p 17 t 10 p 19 t 7 V S 3 ] UP= p 3 + p 6 + p 9 + p 10 ∈ £(S 6 ) S 8 p -M p 7 , p 11 , p 12 , p 17 , p 19 , V S 2 , V S 3 c 7 +[t 11 p 17 t 10 p 19 t 7 V S 3 ] EUP= p 3 + p 5 + p 9 + p 10 ∈ £(S 6 ) S 8 contr. p 5 , p 6 , p 11 , p 12 , V S 3 , V S 4 [V S 4 t 11 V S 3 t 5 ] [S ] = {p 2 , p 3 , p 4 , p 9 , p 10 } ∈ £(S 4 • S 3 ) , p 11 , p 12 , p 17 , p 19 , V S 3 , V S 4 c 9 +[t 11 p 17 t 10 p 19 t 7 V S 3 ] UP= p 2 ⊕ p 5 + p 3 + p 4 + p 6 + p 9 + p 10 ∈ £(S 4 • S 3 ) , p 11 , p 12 S 3 t 4 , t 5 , t 9 t 7 , t 11 V S 3 (3) p 5 , p 6 , p 9 , p 10 S 4 t 1 , t 11 t 4 , t 5 , t 13 V S 4 (2) p 2 , p 3 , p 4 , p 11 , p 12 S 8 t 2 , t 6 , t 9 t 5 , t 7 , t 11 V 1 S 8 (3) p 3 , p 6 , p 9 , p 10 S 8 t 2 , t 4 , t 9 t 6 , t 11 V 2 S 8 (3) p 3 , p 5 , p 9 , p 10 S 10 t 1 , t 9 t 7 , t 11 V 1 S 10 (4) p 2 , p 3 , p 4 , p 5 , p 6 , p 9 , p 10

	4.4. EXAMPLES		
			T. 4.5 -Controlled model for the net in Fig. 4.3.
		S S 2 t 2 , t 11 V • S	• V S t 5 , t 13	V(M 0 ) V S 2 (1)	[V S ] p 3
					in
	Fig. 4.3			
	Types places	c	[S ] or UP or EUP	#
	basic	p S 9
	p -M p 7 S 10
			p -M stands for partial mixture siphon ;
			comp. stands for compound siphon ;
			contr. stands for control siphon.

the critical siphon to be a partial mixture siphon is : (a) The core circuit c contains two control places added for two siphons synthesized from two core circuits intersecting at a resource place r with M 0 (r) = 1. (b) The corresponding control siphon is not emptiable. (c) The corresponding partial mixture siphon is emptiable. T. 4.4 -Types of siphons, their dependency on basic siphons,

[S ]

, UP, and EUP for the net 2 , p 5 , p 11 , p 13 , p 14 , p 18 [p 14 t 3 p 18 t 4 ] S 1 basic p 2 , p 5 , p 13 , p 15 , p 18 [p 15 t 12 p 18 t 5 ] UP= p 3 ⊕ p 12 + p 11 S 2 basic p 2 , p 7 , p 11 , p 13 , p 16 , p 17 , p 18 , p 19 [p 16 t 6 p 18 t 11 p 17 t 10 p 19 t 7 ] UP= p 5 + p 6 + p 9 + p 10 S 3 comp. p 5 , p 13 , p 14 , p 15 , p c 1 • c 3 [S ] = {p 3 , p 4 , p 5 , p 6 , p 9 , p 10 } S 5 comp. p 2 , p 4 , p 7 , p 13 , p 15 , p 16 , p 17 , p 18 , p 19 c 2 • c 3 [S ] = {p 3 , p 5 , p 6 , p 9 , p 10 , p 11 , p 12 } S 6

  S 1 ={p 10 , p 18 , p 22 , p 26 } [p 22 t 10 p 26 t 16 p 22 ] V 1 (2) S 4 ={p 4 , p 10 , p 17 , p 21 , p 22 , p 24 , p 26 } [p 21 t 17 p 26 t 16 p 22 t 5 p 24 t 4 p 21 ] V 2 (2) S 10 ={p 4 , p 9 , p 12 , p 17 , p 21 , p 24 } [p 21 t 13 p 24 t 4 p 21 ] V 3 (2) S 16 ={p 2 , p 4 , p 8 , p 13 , p 17 , p 21 , p 26 } [p 21 t 17 p 26 t 9 p 21 ] V 4 (2) S 17 ={p 2 , p 4 , p 8 , p 12 , p 15 , p 20 , p 21 , p 23 , p 25 } [p 21 t 3 p 23 t 2 p 20 t 19 p 25 t 18 p 21 ] V 5 (5) S 18 ={p 2 , p 4 , p 8 , p 12 , p 16 , p 21 , p 25 } [p 21 t 8 p 25 t 18 p 21 ] 18 S 5 (NU) S = S 10 •S 16 •S 17 S 6 (NU) S = S 10 •S 16 •S 18 S 7 (NU) S = S 10 • S 16 S 8 (NU) S = S 10 • S 17 S 9 (NU) S = S 10 • S 18 S 11 (NU) S 11 = S 1 •S 16 •S 17 S 12 (NU) S 12 = S 16 • S 17 S 13 (U) S 13 = S 1 •S 16 •S 18 2p 11 + 2(p 13 ⊕ p 18 ) + p 19 2p 11 + p 12 + p 18 + p 19 S 14 (U) S 14 = S 16 • S 18 2p 11 + 2p 18 S 15 (U) S 15 = S 1 • S 16 p 12 + 2(p 13 ⊕ p 18 ) + p 19

	4.4. EXAMPLES	
		T. 4.8 -Controlled model for the net in Fig. 4.4.
	S	V(M 0	
				V 6 (5)
	T. 4.7 -Compound siphons, their dependency on basic siphons, UP, and EUP for the net in
	Fig. 4.4		
	S 0 (U or NU) dependency	UP	EUP
	S 2 (U)		

S = S 4 • S 17 p 6 + 2p 7 + 2p 9 + 2(p 11 ⊕ p 16 ) + 2(p 13 ⊕ p 18 ) + p 19 p 6 + 2p 7 + p 8 + p 9 + 2(p 11 ⊕ p 16 ) + 2(p 13 ⊕ p 18 ) + p 19 , p 6 + 2p 7 + 2p 9 + 2(p 11 ⊕ p 16 ) + p 12 + p 18 + p 19 , p 6 + 2p 7 + 2p 9 + p 11 + p 17 + 2(p 13 ⊕ p 18 ) + p 19 S 3 (NU) S = S 4 • S

  , t 11 , t 15 t 5 , t 10 , t 13 , t 17 p 2 , p 3 , p 8 , p 9 , p 12 p 13 , p 18 , p 19 S 17 V 7 (5) t 1 , t 17 t 3 , t 8 , t 19 p 6 , p 7 , p 11 , p 16 , p 17 S t 9 , t 15 t 8 , t 10 , t 17 p 11 , p 13 , p 18 , p 19 S 21 V 10 (6) t 3 , t 7 , t 11 , t 15 t 5 ,t 8 , t 13 ,t 17 p 2 , p 3 , p 8 , p 9 , p 11 , p 17 , p 18 , p 19 t 9 , t 15 , t 18 t 5 , t 8 , t 10 , t 17 , t 19 p 6 , p 7 , p 8 , p 9 , p 11 p 13 , p 16 , p 18 , p 19 , t 9 , t 15 t 3 , t 5 , t 8 , t 10 , t 18 p 6 , p 7 , p 9 , p 11 , p 13 p 17 , p 18 , p S 3 t 4 , t 15 , t 18 t 3 , t 5 , t 9 , t 17 , t 19 p 6 , p 7 , p 9 , p 11 , p 12 , p 16 , p 18 , p 19 M 0 (p 26 ) =2. This corresponds to that of a control siphon S 19 = {V 6 , V 4 , p 12 , p 17 }. A monitor

			t 15	t 10 , t 16	p 13 , p 19
	S 10	V 2 (2)	t 3 , t 11	t 4 , t 13	p 2 , p 3 , p 8
	S 18	V 3 (2)	t 7 , t 17	t 8 , t 18	p 11 , p 17
	S 16	V 4 (2)	t 8 , t 16	t 9 , t 17	p 12 , p 18
	S 15	V 5 (3)	t 8 , t 15	t 10 , t 17	p 12 , p 13 , p 18 , p 19
	S 19	V 8 (3)	t 7 , t 16	t 8 , t 17	p 11 , p 18
	S 4 t 3 , t 8 1 V 6 (5) 13 V 1 9 (4) t 7 , t 15 S 2 13 V 2 9 (4) t 7 , S 1 22 V 1 11 (9) t 1 , S 2 22 V 2 11 (9) t 1 , t 4 22 V 3 11 (9) t 1 ,	t 9 , t 17	p 11 , p 12 , p 18 , p 19

  This corresponds to that of a partial mixture siphon S 20 = {V 7 , V 4 , p 10 , p 17 } synthesized from the core subnet obtained by adding TP-handle [t 17 V 8 t 16 p 22 t 10 V 7 ] upon the core circuit [t 8 V 6 t 17 V 7 t 8 ]. A monitor V = V 1 9 is added with [V]=[S 20 ] ={p 11 , p 12 , p 13 , p 18 , p 19 } and M 0 (V) = M(p 11 ) + M(p 13 ) + M(p 18 ) + M(p 19 ) -1=4. There is only one EUP : 2p 11 + p 12 + p 18 + p 19 , for which we add monitor V 2 9 . For the set of 2-dependent siphons related to S 3 synthesized from c 3 = c 4 • c 18 , the pattern rule no longer holds since it is not uniform (i.e., NU in Column 2 of Table 4.7) : c 18 (resp. c ) spans between WP32 (resp. WP31) and WP2 (see Fig. 4.4). The critical siphon S 21 ={V 8 , p 21 , p 22 , p 24 , p 17 , p 10 } is synthesized from the core circuit c = [V 8 t 16 p 22 t 5 p 24 t 4 p 21 t 8 V 8 ] that contains transitions on WP31, WP32, and WP2. Note

  This corresponds to that of a full mixture siphon S 22 ={V 5 , V 2 , p 10 , p 15 } synthesized from the core subnet obtained by adding 2 TP-handles [t 3 p 23 t 2 p 20 t 19 V 5 ], [t 17 p 26 t 16 p 22 t 5 V 2 ], and [t 17 p 26 t 16 p 22 t 10 V 2 ] upon the core circuit [V 2 t 8 V 5 t 17 V 2 ]. It is called a full mixture siphon since one cannot synthesize any new SMS by adding more handles. A monitor V = V 1 11 is added with [V]=[S 22 ] ={p 6 , p 7 , p 9 , p 11 , p 13 , p 16 , p 18 , p 19 } and M 0 (V) = M(p 6 ) + M(p 7 ) + M(p 9 ) + M(p 11 ) + M(p 13 ) + M(p 16 ) + M(p 18 ) + M(p 19 ) -1=9. There are three EUP : (1) p 6 + 2p 7 + p 8 + p 9 + 2(p 11 ⊕ p 16 ) + 2(p 13 ⊕ p 18 ) + p 19 , (2) p 6 + 2p 7 + 2p 9 + 2(p 11 ⊕ p 16 ) + p 12 + p 18 ) + p 19 , and (3) p 6 + 2p 7 + 2p 9 + p 11 + p 17 + 2(p 13 ⊕ p 18 ) + p 19 .

  Daniel Yuh Chao, and Fang Yu, Control policy for a subclass of Petri nets without reachability analysis, IET Control Theory and Applications, vol.7, no.8, pp.1131-1141, 2013.

	4.5. SUMMARY
	Chapitre 5

  if P V r = ∅ then add recovery subnets to every place in P U r else find P V rs , P V rw , P 2V rs , andP 1 V rw if V S ∈ P V rs does not have a complementary place V S then add a complementary place V S for V S end if (i) for each p ∈ P U r \{r}, add 2 β (β = |P 2 V rs |) recovery subnets to p. Either V rs ∈ P 2 V rs or V rs connects transition t ps in every recovery subnet. A normal arc (V rs , t ps ) is used to connect V rs and t ps , while a self-loop (V rs , t ps ) and (t ps , V rs ) weighted by M V0 (V rs ) connects V rs and t ps . There are 2 β logical combinations. If V rs connects t ps in a recovery subnet by a normal arc, in pairs, a normal arc from t p f in the recovery subnet to V rs is added.

	5.3. ROBUST LIVENESS-ENFORCING SUPERVISOR DESIGN
	P R 2 := P R 2 \ {r}
	find P V r
	rc V , M rc V0 )
	begin{
	find P R 2
	while (P R 2 ∅) do
	choose a resource r ∈ P R 2

  for p and two normal arcs from and to p, weighted by k. For each reachable marking, p is unmarked if and only if p carries k tokens. Then the inhibitor arc is replaced. Fig.5.9 illustrates this equivalent transformation. This property of inhibitor arcs in bounded Petri nets is significant for us to simplify the supervisor structure derived from Algorithm 5.2.

	p			p		
	t 1	k	t 1 '	t 1	k	t 1 '
				t m	t n '	
	t m	t n '		p		
				k	k	
		t			t	

  3 PR model, there are two tokens in p 12 (M 2 ), i.e., P R 2 = {p 12 }. The method proposed in this chapter is applicable. Specifically, from the production routes, we observe : (1) if R 1 breaks down when R 1 moves J 1 and J 2 , J 1 and J 2 cannot be successfully produced ; (2) if M 1 breaks down, J 1 cannot be finished ; (3) if R 2 or M 3 fails to work, J 2 and J 3 cannot be finished ; and (4) if one machine of M 2 fails to work and the other one works properly at some states, system may produce parts smoothly without reanalyzing by Algorithm 5.3. There are three SMS S 1 = {p 5 , p 9 , p 12 , p 13 }, S 2 = {p 4 , p 6 , p 13 , p 14 }, and S 3 = {p 6 , p 9 , p 12 , p 13 , p 14 }. Their complementary sets are [S 1 ] = {p 3 , p 4 }, [S 2 ] = {p 5 , p 8 }, and [S 3 ] = {p 3 , p 4 , p 5 , p 8 }, 5.4. EXAMPLES respectively. By Definitions 5.12 and 5.13, we find P V p 12 = {V S 1 , V S 2 , V S 3 }, P V p 12s = {V S 1 , V S 3 }, and P V p 12w = {V S 2 }. For resource type p 12 , H(p 12 ) = {p 3 , p 9 , p 12 }. As shown in Fig. 5.7, for p 3 , we can obtain α = |{V S x |p ∈ H(r), p ∈ [S x ], p ∈ H(V S x )}| = |{V S 1 , V S 3 }| = 2, β = |{V S y |p ∈ H(r), p ∈ S y }| = 0, and γ = |{V S z |p ∈ H(r), p ∈ P S z \ [S z ], p ∈ H(V S z )}| = |{V S 2 }| = 1. By Algorithm 5.3, a recovery subnet and arcs (t 20 , V S 2 ) and (V S 2 , t 21 ) are needed to add for p 3 as shown in Fig. 5.12.The token count in V S 2 is compensated by these two arcs.For p 9 , we can obtain α= |{V S x |p ∈ H(r), p ∈ [S x ], p ∈ H(V S x )}| = |∅| = 0, β = |{V S y |p ∈ H(r), p ∈ S y }| = |{V S 1 , V S 3 }| = 2,and γ = |{V S z |p ∈ H(r), p ∈ P S z \ [S z ], p ∈ H(V S z )}| = |∅| = 0. According to Algorithm 5.3, four recovery subnets are needed to add for p 9 . If resource in p 9

  In the above AMS example, we consider only a type of resources is unreliable. Next we show a 5.4. EXAMPLES more complex example with four unreliable resource types, one of which does not have correlated monitors. The Petri net model shown in Fig.5.13 is an S3 PR, where P 0 = {p 1 , p , p 18 , p 33 }, P R = {p 12 , p 13 , p 14 , p 15 , p 16 , p 17 , p 24 , p 25 , p 26 , p 34 , p 35 , p 36 }, and the others are activity places. = {p 12 , p 13 , p 14 , p 24 , p 34 }, P 1 R = {p , p 16 , p 17 }, P 2 R = {p 25 , p 26 }, and P 3 R = {p 35 , p 36 }. This resource place partition leads to an idle subnet, an autonomous subnet, and three toparchies that are boxed in rectangles with dash lines, as depicted in Fig. 5.13. Toparchy 1 has three SMS : S 1 = {p 6 , p 10 , p 15 , p 16 }, S 2 = {p 7 , p 9 , p , p 17 }, and S 3 = {p 7 , p 10 , p 15 , p 16 , p 17 }. Toparchy 2 has one SMS S 4 = {p 23 , p 25 , p 26 } and Toparchy 3 has one SMS S 5 = {p 30 , p 32 , p 35 , p 36 }. By the deadlock prevention policy proposed in Definition 5.2,
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  3 }, and P V p 12w = ∅. For resource type p 16 , H(p 16 ) = {p 6 , p 9 , p 16 }. For p 6 , we can obtain α= |{V S x |p ∈ H(r), p ∈ [S x ], p ∈ H(V S x )}| = |{V S 2 , V S 3 }| = 2, β = |{V S y |p ∈ H(r), p ∈ S y }| = {V S 1 } = 1, and γ = |{V S z |p ∈ H(r), p ∈ P S z \ [S z ], p ∈ H(V S z )}| = |∅| = 0.According to Algorithm 5.3, two recovery subnets are needed to add for p 6 and normal and inhibitor arcs are needed to connect monitor V S 1 with these two subnets. Similarly, we can add recovery subnets and corresponding arcs for p 9 as shown in Fig.5.14.Since |P V p 16s | = |{V S 1 , V S 2 , V S 3 }| = 3,we need to add 8 recovery subnets to p 16 . If the resource in p 16 breaks down, it needs to be removed, which does not depend on whether V S 1 , V S 2 , and V S 3 are marked. Accordingly, normal and inhibitor arcs are added for monitors and recovery subnets as

	5.5. DISCUSSIONS				
	T. 5.1 -Monitors in the toparches for three toparchies
	toparch	monitor	preset	postset	marking
		V S 1	t 6 , t 11	t 5 , t 9	2
	Toparch 1	V S 2	t 7 , t 10	t 5 , t 9	2
		V S 3	t 7 , t 11	t 5 , t 9	3
	Toparch 2	V S 4	t 17	t 15	2
	Toparch 3	V S 5	t 22 , t 25	t 21 , t 24	2

  La révolution technologique dans notre monde réel nécessite de plus en plus de nouvelles techniques pour la synthèse et la vérification des systèmes complexes tels que les systèmes automatisés de production (AMS), les réseaux de communication, les systèmes embarqués temps-réel et les systèmes de contrôle du trafic. Un AMS est représenté sous sa forme logique par les systèmes à événements discrets (DES). Un AMS est mode de production avec une configuration commandée par ordinateur pour produire automatiquement des produits Comparés aux automates à états finis qui sont largement utilisés dans le cadre des DES, Les réseaux de Petri offrent une représentation compacte des DES car ils ne représentent pas explicitement l'espace d'état du système.Au cours des dernières années, le contrôle d'exécution est devenu un domaine de recherche actif pour les AMS caractérisé par des processus hautement ordonnés avec des flux de données linéaires. Au cours des deux dernières décennies, de nombreux chercheurs ont considéré les réseaux de Petri comme une alternative aux automates. Les politiques de contrôle de blocage dans le cadre des réseaux de Petri peuvent être développées sur la base de l'analyse de l'espace d'état, l'analyse structurelle et la combinaison des deux anciennes méthodes. Traditionnellement, une politique de contrôle de blocage peut être évaluée par un certain nombre de critères de performance: complexité structurelle, la permissivité comportementale et la complexité de calcul.

	Résumé en Français
	Le haut niveau de partage des ressources peut conduire à des conditions d'attente circulaires,
	la cause de blocage dans laquelle chaque ensemble de deux ou plusieurs tâches continue à
	attendre indéfiniment que les autres tâches de l'ensemble renoncent aux ressources qu'ils
	X • Z détiennent.	The postset of a set X⊆P∪T . The set of integers.
	Π Π E L'analyse et le contrôle de blocage jouent un rôle essentiel et critique dans la conception et le The set of strict minimal siphons. The set of elementary siphons.
	Π D fonctionnement des AMS. Partiellement, les systèmes localement ou complètement paralysés The set of dependant siphons.
	Π G Π H par les blocages sont une situation hautement indésirable. Dans de nombreux cas, ils réduisent The set of plant siphon. The set of hybrid siphon.
	Π V non seulement la productivité, mais aussi provoquent un coût économique fatal comme dans The set of monitor siphon.
	Π u α t les systèmes de fabrication de semi-conducteurs et des résultats catastrophiques tels que les A set of uncontrolled siphons. The times that t is fired from marking M.
	σ -systèmes de manipulation d'une centrale nucléaire. Avec l'automatisation et la complexité A firing sequence of a Petri net. → σ The Parikh vector of firing sequence σ. croissante, la description, l'analyse, le contrôle et la résolution des blocages dans les AMS ont
	été des sujets d'un grand intérêt. Les réseaux de Petri sont bien appropriés pour décrire le

• X The preset of a set X⊆P∪T . différents. Il existe trois systèmes principaux dans la plupart des AMS: (1) des machines de travail pour effectuer une série d'opérations, (2) un système de transport de matériel intégré avec un ordinateur pour contrôler le flux des matériaux, des outils et des informations dans tout le système, et (3) des stations de travail auxiliaires pour le chargement et le déchargement, le nettoyage, l'inspection…etc. Pour utiliser efficacement les précieuses ressources, elles doivent être partagées et soigneusement coordonnées entre les différents emplois concurrents.

comportement et les caractéristiques des AMS telles que la concurrence, les conflits, et la dépendance causale. Ils peuvent être utilisés pour révéler des propriétés comportementales telles que la vivacité et la borgnitude

[START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF]

,

[START_REF] Ezpeleta | A class of well structured Petri nets for flexible manufacturing systems[END_REF]

. L'analyse de l'espace d'état considère l'espace atteignable d'un modèle qui reflète le comportement possible de l'évolution du système. Les études dans

[1]

,

[START_REF] Uzam | An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions[END_REF]

,

[START_REF] Ghaffari | Design of a live and maximally permissive Petri net controller using the theory of regions[END_REF]

,

[START_REF] Uzam | The use of Petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems[END_REF]

,

  Ce modèle dispose d'un certain nombre de contraintes qui sont linéaires par rapport au nombre d'états, par opposition à la quadratique requise par le modèle dans[START_REF] Chen | Design of a maximally permissive liveness-enforcing supervisor with compressed supervisory structure for flexible manufacturing systems[END_REF]. Si le modèle quadratique était plus serré que celui linéaire qui compenserait pour sa plus grande taille. Cependant, les résultats expérimentaux qui peuvent être obtenus implémentant à la fois les modèles sur un solveur de ILP et comparant leurs performances sur des instances de référence, le point vers une réponse négative. d'optimalité, pour ne pas mentionner la récente extension de cette théorie aux structures de contrôle et de surveillance plus complexes présentées dans[START_REF] Nazeem | Designing compact and maximally permissive deadlock avoidance policies for complex resource allocation systems through classification theory : the nonlinear case[END_REF]. Toutes les approches de thèses nécessitent l'analyse d'accessibilité et certains calculs pour calculer la vivacité critique et les marquages interdits.La prévention de blocages basée sur le contrôle de siphons est une application typique des techniques d'analyse structurelle de réseaux de Petri. Les siphons, un objet de structure d'un réseau de Petri, sont largement utilisés pour analyser les problèmes de blocage dans les réseaux de Petri. Le contrôle de blocage en utilisant les siphons peut éviter le problème d'explosion d'états. Les chercheurs ont développé un grand nombre de politiques de contrôle de blocage basé sur le contrôle des siphons dont les oeuvres représentatives sont données dans Répéter les deux étapes jusqu'à ce qu'il n'y ait pas de places ni de transitions qui peuvent être enlevées.Une solution réalisable correspond à un siphon maximal non marqué lorsqu'il existe un siphon qui peut être vidé à un marquage qui est accessible à partir du marquage initial. Sinon, sa solution optimale est égale au nombre de toutes les places dans le réseau de Petri. Bien qu'un problème de MIP est NP-difficile en théorie[START_REF] Winston | Introduction to Mathematical Programming[END_REF], de nombreuses études numériques montrent que son efficacité de calcul est relativement insensible au marquage initial et est plus efficace que ceux qui dépendent de l'état complet ou de l'énumération du siphon. Le contrôle de blocage concerne habituellement les siphons minimaux. Huang et al.[START_REF] Huang | Deadlock prevention policy based on Petri nets and siphons[END_REF] proposent une politique de prévention de blocage en deux étapes itératives basées sur le travail dans[START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF]. A chaque itération, un siphon maximal non marqué est détecté par la résolution d'un problème de MIP. Si un tel siphon existe, alors un algorithme extrait un siphon strict minimal de celui maximal. Dans[7],[START_REF] Giua | Liveness enforcing supervisors for railway networks using ES 2 PR Petri nets[END_REF] et[START_REF] Chao | Technical Note -MIP iteration-reductions for deadlock prevention of flexible manufacturing systems[END_REF], la technique de MIP est également utilisée. Leurs méthodes peuvent trouver directement un siphon minimal non marqué. siphon ne soit pas vide n'est pas suffisant pour justifier l'absence de transitions mortes.L'existence d'un siphon strict minimal n'est plus nécessaire pour l'apparition de blocages.Les systèmes généralisés de processus séquentiels simples avec des ressources (GS 3 PR) sont une sous-classe de S4 R et une version généralisée d'un S 3 PR. Il est facile de comprendre que les conditions de décision pour S 4 R tiennent encore aux GS 3 PR. La recherche sur la condition nécessaire et suffisante pour le contrôle de siphon dans GS3 PR sera un progrès important dans le contrôle de blocage des réseaux de Petri généralisés. Pour un S 4 R, cette classe de politiques de prévention de blocage itérative est généralement supposée converger à une certaine étape même si ce n'est pas une tâche facile de fournir une preuve formelle encore satisfaisante. Le travail a l'avantage d'éviter le problème d'explosion d'états. Cependant, une telle approche itérative, dans un cas général, conduit difficilement à un superviseur optimal en raison de la non maturité des techniques de contrôle du siphon pour les réseaux de Petri généralisés si les blocages sont éliminés à l'aide des concepts de max-controlled siphons[4] ou max'-controlled siphons[START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF].Dans[START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF], basé sur les Deadly Marked Siphons (DMS)[START_REF] Park | Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings[END_REF] dans well-marked S 4 R, Zhao et al. modifient le test MIP dans[START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF] pour détecter les DMS pour les S 4 R. Toutefois, un S 4 R peut avoir des interblocages actifs même s'il est libre de blocages. Dans ce cas, les siphons causant l'interblocage ne peuvent pas être détectés par le MIP modifié et le réseau ne peut être contrôlé. En outre, les techniques à la fois dans[START_REF] Chu | Deadlock analysis of petri nets using siphons and mathematical programming[END_REF] et[START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF] ne peuvent pas obtenir directement un siphon problématique minimal.Récemment, plusieurs politiques de contrôle de blocage basées sur la combinaison de l'espace d'état et l'analyse structurelle ont été proposées. Le travail en[START_REF] Wei | On the suboptimal liveness-enforcing supervisors based on Petri net structural analysis and the theory of regions[END_REF] peut être considéré comme une amélioration de la théorie de régions. Il conçoit un superviseur pour un modèle avec un comportement permissif maximal en utilisant la théorie des régions. Ensuite, les SMS dans le système permissif maximal contrôlé sont calculés et divisés en ceux élémentaires et dépendants. Pour les empêcher d'être vidés, les expressions algébriques sur les marquages des moniteurs supplémentaires dans le superviseur et les places ressources dans le modèle de réseau sont dérivées, sous lesquelles le superviseur est vivant. Les expressions sont utilisées pour calculer les marquages initiaux accessibles pour le superviseur sans changer sa structure lorsque le marquage de l'usine initial change. Une étude de cas montre que la méthode de calcul combinée est efficace comparée à celle existante dans laquelle la théorie des régions est utilisée seule et le comportement permissif du superviseur est presque optimal.Dans[START_REF] Piroddi | Selective siphon control for deadlock prevention in Petri nets[END_REF], Piroddi et al. soulignent qu'il existe plusieurs inconvénients importants dans les méthodes de prévention de blocage qui sont basées sur les siphons élémentaires[START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF],[START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems : A Novel Petri Net Approach[END_REF].Premièrement, les siphons élémentaires sont développés purement en utilisant la structure topologique d'un réseau, ne tenant pas compte de l'information de l'évolution dynamique du réseau. Deuxièmement, les politiques fondées sur des siphons élémentaires ne sont généralement pas permissives au maximum puisque les siphons contrôlés peuvent être contraints de garder plus d'un jeton. Troisièmement, l'ensemble des siphons élémentaires dans un réseau de Petri n'est pas unique. L'existence de différents ensembles de siphons élémentaires implique également que la solution de prévention de blocage n'est pas unique. Dernier point mais pas le moindre, les politiques fondées sur des siphons élémentaires peuvent être appliquées à certaines classes spéciales de réseaux de Petri seulement. Piroddi et al. croient qu'il est important d'intégrer les informations structurelles relatives aux siphons minimales strictes avec l'analyse de graphe d'accessibilité afin d'éviter les places de contrôle inutiles. Le travail dans [90] développe une politique de contrôle de siphon sélective dans laquelle les concepts de siphons dominés et dominants essentiels et critiques, les marquages dominants et dominés jouent un rôle important en résolvant les problèmes de recouvrement d'ensembles, les siphons dominants sont trouvés pour s'assurer que les siphons dominés sont contrôlés. Le superviseur résultant est très permissif. Le problème technique majeur dans [90] est sa complexité de calcul. A chaque itération, il faut calculer tous les siphons minimaux et tous les marquages qui dominent et résoudre un ensemble de problèmes couvrant , chacun des NP-difficile en théorie par rapport à la taille des réseaux. Plus tard, dans [91], Piroddi et al.améliorent la méthode en utilisant l'approche de détection de blocage basé sur les MIP de telle sorte que l'énumération complète minimale du siphon est évitée. Toutes les études examinées dans la section précédente supposent que les ressources ne manquent pas. En fait, les échecs de ressources sont inévitables dans la plupart des AMS qui peuvent également provoquer le blocage d'un AMS. Ainsi, c'est une condition nécessaire pour élaborer une politique efficace et robuste de contrôle de blocage pour s'assurer que les blocages ne peuvent pas se produire même si certaines ressources dans un système sont en panne.p 11 , p 12 , p 13 , p 14 est non représenté. Cependant, S est max*-marqué à tous les 654 marquages.En un mot, du siphon max-contrôlé au max*-contrôlé, les contraintes pour le contrôle du siphon deviennent de plus en plus faibles.

	Dans l'ensemble, le concept de contrôlabilité concerne l'activation et le franchissement des
	transitions.
	Comme classe typique de réseaux de Petri généralisés, un système de systèmes séquentiels
	avec des ressources partagées (S 4 R) est proposé dans [4]. Il peut modéliser des systèmes
	d'allocation de ressources plus complexes avec de nombreux processus simultanés. Différents
	types de ressources multiples peuvent être demandées par différents procédés. Ainsi, un S 4 R a
	une meilleure modélisation qu'un S 3 PR qui est composé de machines à états et de ressources
	[23]. Par conséquent, la résolution d'un problème de contrôle de siphon pour S4R relève d'une
	[23], [4], [16], [52], [89], [47], [69] , [103], [48], [9], [122], [90] et [91]. importance dans la conception de superviseurs optimaux.
	qui sont ajoutés à ses siphons élémentaires. C'est-à-dire, un siphon dépendant peut
	En raison de la complexité inhérente des réseaux de Petri, toute politique de prévention de implicitement être contrôlé en contrôlant ses siphons élémentaires corrélatifs. Ceci est illustré
	blocage qui dépend d'une énumération complète de siphon est certainement exponentielle par dans [69] par un exemple d'AMS. La contribution majeure de la théorie élémentaire est
	rapport à la taille de son modèle d'usine. Dans [16], Chu et Xie utilisent une première qu'elle abaisse particulièrement la complexité structurelle du superviseur. Notons que la Les siphons sont bien connus pour être à égalité avec les blocages, ce qui est vrai dans les
	programmation mixte en nombres entiers (MIP) pour détecter si un réseau de Petri méthode de [69] ne fait pas baisser la complexité de calcul ou améliorer la permissivité du deux réseaux de Petri ordinaires et généralisés. La commande de blocage itérative est une
	structurellement limité n'a pas de blocages. Cette méthode évite l'énumération explicite de comportement comparée à la politique en [23]. stratégie classique en matière de prévention de blocage. Tricas utilise une approche d'itération
	De plus, les modèles ILP couramment adoptés dans la littérature ont des faiblesses théoriques, tous les siphons minimaux stricts et ouvre une nouvelle voie de recherche. Plus précisément, pour éviter les blocages pour un AMS [100], [101], [102], [103]. A chaque étape d'itération,

. Les auteurs réduisent le nombre de moniteurs en résolvant un ILPP à chaque itération, où un invariant de place est conçu pour une place de contrôle pour interdire autant que possible les FBM et permettre l'accessibilité de tous les marquages dans l'ensemble de couverture minimal des marquages accessibles. Ce résultat est obtenu en maximisant le nombre de FBM interdits par un invariant de place (PI) via la fonction objective de la ILPP. En supprimant les FBM interdits dans l'ensemble minimal couvert de FBM, ce processus est répété jusqu'à ce que tous les FBM soient interdits.

Ces contributions, si correctes et fiables, sont cependant loin d'être à la fine pointe de la littérature, étant donné qu'un meilleur modèle de ILP (plus ou moins de la même heuristique gloutonne) a été proposé dans

[START_REF] Nazeem | Designing compact and maximally permissive deadlock avoidance policies for complex resource allocation systems through classification theory : The linear case[END_REF]

. comme décrit dans

[START_REF] Cordone | Parsimonious monitor control of Petri net models of flexible manufacturing systems[END_REF]

, où il est montré comment plusieurs grandes instances de référence peuvent être résolues en quelques secondes pour garantir l'optimalité par un algorithme adhoc, alors qu'un solveur ILP nécessite des heures et souvent doit être résilié sans parvenir à une garantie Dans

[START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]

, Ezpeleta et al. développent une méthode de conception de superviseurs de réseaux de Petri vivants à base de moniteur-AMS .Ce travail séminal est généralement considéré comme une contribution classique qui utilise des techniques d'analyse structurelle des réseaux de Petri pour éviter les blocages dans les AMS. Pour une classe typique de réseaux de Petri ordinaires, des systèmes de processus séquentiels simples avec des ressources (S 3 PR), le travail dans

[START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] 

propose une politique de prévention de blocage en ajoutant une place de contrôle à chaque éventuel siphon strict minimal vide (SMS) pour s'auto-empêcher d'être vidé. L'importance de cette approche est qu'elle sépare avec succès un modèle de réseau d'usine et son superviseur. Cependant, il est coûteux en temps pour un modèle d'usine puisque le nombre de siphons dans un réseau accroit très rapidement et peut croître de façon exponentielle par rapport à sa taille

[START_REF] Lautenbach | Linear algebraic calculation of deadlocks and traps[END_REF]

. En outre, l'approche

[START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] 

souffre des problèmes suivants: la permissivité comportementale, la complexité de calcul, et la complexité structurelle.

étant donné un réseau de Petri, un siphon non marqué maximal peut être obtenu par la solution de siphon traditionnelle suivante : D'abord, enlever toutes les places non marquées.

Ensuite, retirer les transitions sans places d'entrée ainsi que leurs places de sortie.

Un superviseur optimal basé sur une technique d'énumération complète de siphon souffre de la complexité structurelle élevée lorsque le nombre de siphons est grand. Ce problème a été connu depuis de nombreuses années. En utilisant pleinement la structure topologique d'un réseau de Petri, Les concepts de siphons élémentaires et dépendants dans un réseau de Petri sont proposés par Li et Zhou

[START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF]

,

[START_REF] Li | Clarifications on the definitions of elementary siphons in Petri nets[END_REF]

. Ils affirment que les siphons dans un réseau de Petri peuvent être divisés en ceux élémentaires et dépendants. Ces derniers peuvent être distingués ,en outre, par siphons fortement et faiblement dépendants à l'égard de ceux élémentaires. Il est montré que le nombre de siphons élémentaires dans un réseau est borné par la plus petite place et le nombre de transitions. Dans de nombreux cas, les moniteurs peuvent être ajoutés seulement aux siphons élémentaires. La contrôlabilité d'un siphon dépendant peut être assurée par la supervision du nombre initial de jetons dans les moniteurs Dans un réseau de Petri ordinaire, un siphon est dit être contrôlé s'il ne peut être démarqué à tout marquage accessible

[START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF]

,

[START_REF] Huang | A deadlock prevention policy for flexible manufacturing systems using siphons[END_REF]

,

[START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF]

. Si un réseau de Petri est généralisé, cependant, la contrôlabilité d'un siphon est beaucoup plus complexe. En raison du poids des arcs,le fait qu'un Cependant, le poids d'un arc dans un réseau de Petri généralisé peut être un nombre entier positif arbitraire de telle sorte qu'il est difficile de déterminer correctement la limite inférieure du nombre de jetons dans un siphon. Motivé par ce problème notoire, les chercheurs proposent un certain nombre de concepts impliquant la contrôlabilité de siphons dans un réseau de Petri généralisé, comme max-controlability

[4]

, max' -controlability

[START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF]

,

[START_REF] Chao | Max -controlled siphons for liveness of S 3 PGR 2[END_REF]

,

[START_REF] Zhong | Self-liveness of a class of Petri net models for flexible manufacturing systems[END_REF]

, et max"-controlability

[START_REF] Liu | New controllability condition for siphons in a class of generalised Petri nets[END_REF]

. La proposition de ces concepts vise à réduire le conservatisme d'une politique de prévention de blocage dont le développement repose sur le contrôle de siphons. En conséquence, un nombre suffisant mais les conditions de vivacité nécessaires ne sont pas développées. Cela nous motive à trouver un état de contrôlabilité plus général de siphons dans les réseaux de Petri généralisés.

un siphon est calculé et commandé par un moniteur. Un tel procédé est poursuivi jusqu'à ce que tous les siphons soient contrôlés.

Dans

[START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF]

, Zhong et al. proposent un modèle de MIP pour détecter un siphon minimal nonmax-marqué

[START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF]

. Cependant, leur méthode ne peut pas détecter les siphons qui causent l'interblocage. En outre, il émet un SMS quand un réseau de Petri est vivant avec des siphons non-max-marqués créant une fausse impression que le réseau est non-vivant et qui donc a besoin d'une place de contrôle pour le contrôler.

Dans

[START_REF] Liu | General mixed integer programming-based liveness test for system of sequential systems with shared resources nets[END_REF]

, les méthodes basées sur les MIP-existants sont améliorées dans la littérature en termes de max"-condition de contrôlabilité de siphons. Nous définissons les DMS (EDMS) étendus et développons ensuite un modèle de MIP plus général qui peut détecter les blocages et les interblocages causés par les siphons dans un S 4 R. Nous concluons que le réseau est vivant si aucune solution n'est possible pour le modèle MIP. Cette programmation est plus puissante que les MIP dans

[START_REF] Zhao | Suboptimal liveness-enforcing supervisor design for a class of generalised Petri nets using partial siphon enumeration and mathematical programming[END_REF] 

et

[START_REF] Zhong | A deadlock prevention approach for flexible manufacturing systems without complete siphon enumeration of their petri net models[END_REF]

, mais encore restrictive car elle émet un SMS quand un réseau de Petri est vivant avec des siphons non-max"-marked.

A deadlock prevention policy is said to be conservative if its resulting supervisor excludes some legal states, which implies that the supervisor is not maximally permissive.

The resources in flexible manufacturing systems are conservative. A resource has a capacity of processing units that are represented by the tokens in a place that models the resource. A resource is either idle, implying that there is no ongoing processing stage that needs it, or some or all units are occupied by processing stages. In the context of a Petri net model, the tokens initially marked in a resource place are either in the resource place or in the activity places that need the resource to support.

The concept of circular waits in Petri nets are presented in[START_REF] Jeng | A Petri net synthesis theory for modeling flexible manufacturing systems[END_REF],[START_REF] Lewis | Analysis of deadlock and circular waits using a matrix model for flexible manufacturing systems[END_REF], and[START_REF] Liu | Liveness of an extended S 3 PR[END_REF]. For any two r i , r j ∈ P R , r i is said to wait for r j , denoted as r i → r j , if the availability of r j is an immediate requirement for the release of r i , or equivalently, if ∃t ∈ • r i ∩ r • j . An R-path between r i and r k is defined as a set of resource places such that r i → r j → • • • → r k . Then r i is said to wait over an R-path for r k , denoted as r i → r k , if there is an R-path between r i and r k[START_REF] Liu | Liveness of an extended S 3 PR[END_REF]. A circular wait is a set of resource places C ⊆ P R , with |C| > 1, such that for any ordered pair {r i , r j } ⊆ C, r i → r j[START_REF] Lewis | Analysis of deadlock and circular waits using a matrix model for flexible manufacturing systems[END_REF].

LIMITATIONS AND FUTURE RESEARCH

Remerciements

Remarks : Note that Algorithm 4.1 takes polynomial amount of time much better than current maximally permissive control policies which are NP-hard and requires constructing reachability trees. Hence, our algorithm runs much faster. Also, the resulting controller is structually simple since no weighted control arcs are employed. The limitation is that for non-β nets, it may not be maximally permissive. It has been shown in [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF] that any SMS can be synthesized from a strongly connected resource subnet (called core subnet). [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF] also proposes to synthesize elementary (resp. dependent) siphons from resource, called basic circuits (resp. subnets). They are also called basic (resp. compound) siphons. It takes O(|P A | + |P R |) time to compute all basic siphons in [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF]. But it takes O(|P A |) time to find [S ] of all basic siphons to add monitors.

Based on the theory in [START_REF] Li | Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems[END_REF], [S 0 ] = [S 1 ] ∪ [S 2 ] ∪ . . . ∪ [S n ]. Hence, it takes O(|P A |) time to find [S 0 ]. Several basic siphons make up a compound siphon. It has been shown [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF] that basic and compound siphons correspond to elementary and dependent siphons, respectively when the above basic circuits intersect at a single resource place. We propose in [START_REF] Shih | Sequence of control in S 3 PMR[END_REF] to add monitors to each basic siphon built from elementary resource circuits [START_REF] Chao | Computation of elementary siphons in Petri nets for deadlock control[END_REF] and find conditions for a compound siphon built from compound resource circuits to be already controlled. We show that if we assign monitors to basic siphons first, then many compound siphons are already controlled and need no monitors.

The converse is not true. This avoids some redundant monitors and becomes more permissive. The presence of control places may induce new emptiable (called control) siphons. From these control siphons, one can derive mixture siphons. In [START_REF] Shih | Sequence of control in S 3 PMR[END_REF], emptiable siphons are categorized into basic, compound, control and mixture siphons. If one carefully selects a sequence of emptiable siphons to add monitors, the number of monitors required can be reduced. This method does not need to enumerate all minimal siphons, nor to compute the reachability graph. Also no iterations are required and no need to remove redundant monitors. Hence, the computation burden is much less than
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We have adjoint sets

∈ Π} is a set of monitors such that there exists a bijective mapping between Π and P V .

(2

where

(3) M 0V is defined as follows : (3.1) 

For a strict minimal siphon S , M 0V (V S ) defined in Definition 5.2 ensures that the maximal number of tokens held by P S is not more than M 0 (S ). By Definition 5.1, [S ] ⊆ P S holds. Hence, S cannot be unmarked if a monitor V S is added for it.

Theorem 5.1 [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] (N V , M 0V ) is live .

For the net shown in Fig. 5.4 (a), three monitors are needed to prevent three SMS from being emptied. We first take S 1 = {p 5 , p 9 , p 12 , p 13 } as an example. Since P 0 = {p 1 , p 10 }, we have

) and S 1 ∆ + (t 10 ). We have

Next let us find the arcs related to V S 1 in F 3 V . We can obtain (T
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For siphons S 2 and S 3 , monitors V S 2 and V S 3 can be added with {(V S 2 , t 1 ), (V S 2 , t 8 ), (V S 3 , t 1 ),

The controlled system for (N, M 0 ) is shown in Fig. 5.4 (b) with 64 reachable states.

The deadlock prevention policy in [START_REF] Ezpeleta | A Petri net based deadlock prevention policy for flexible manufacturing systems[END_REF] is usually considered to be one of the most significant contributions in the deadlock control area using a Petri net formalism [START_REF] Giua | A systems theory view of Petri nets[END_REF]. However, on the one hand, all output arcs of the new monitors are added to the source transitions of the original model. This leads to the restriction of its behavior. On the other hand, if we design robust livenessenforcing supervisors for some S 3 PR based on this deadlock control policy, the final supervisors will be structurally complex (This disadvantage will be discussed in Section 6). In this study, we use the divide-and-conquer deadlock control strategy to improve this policy.

Divide-and-Conquer Deadlock Control Strategy

In this section, the main idea of the divide-and-conquer deadlock control strategy is briefly reviewed to understand this chapter. More details can be found in [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF].

Let N = (P A ∪ P 0 ∪ P R , T, F) be an S 3 PR. According to the concept of resource circuits, we classify the resources in P R into two classes (Algorithm 2 in [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF]) : the ones each of which is associated with a resource circuit from which an SMS can be derived, and the ones that are not associated with SMS. The former is in [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] Let N = (P A ∪ P 0 ∪ P R , T, F) be an S 3 PR. It is said to be disassemblable if

This definition means that if the set of resources that are not associated with SMS is empty,

Definition 5.9 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] 

Based on above definitions and theorems, a divide-and-conquer strategy to tackle the deadlock problems in a resource allocation system that is modeled with Petri nets is proposed in [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF]. A plant net model is first disassembled into an idle subnet, an autonomous subnet if it exists and a number of toparchies. Then, a liveness-enforcing sub-supervisor, called toparch, is designed for each toparchy. Finally, the idle subnet, the autonomous subnet, and all toparches are merged into a net, called monarch that is shown to be a liveness-enforcing supervisor for the whole plant Petri net model. Specifically, the monarch of an S 3 PR plant model (N, M 0 ) can be constructed using the following algorithm.

Algorithm 5.1 liveness-enforcing supervisor design [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] Input : an S 3 PR plant model (N, M 0 ) Output : (N c V , M c V0 ) begin{ compute the idle subnet (N id , M id 0 ) compute the autonomous subnet (

by the deadlock prevention policy designed by Definition 5.2 end for synchronously synthesize (N id , M id 0 ), (N F , M F 0 ), G 1 , G 2 , . . ., and G k output the synthesized net G = (N c V , M c V0 ) }end of the algorithm Theorem 5.4 [START_REF] Li | A divide-and-conquer strategy to deadlock prevention in flexible manufacturing systems[END_REF] The monarch G = (N c V , M c V0 ) synthesized by Algorithm 5.1 is a controlled Petri net for From the running example in Section 3, we find that the removal of the broken resource influences the liveness of the supervisor. In other words, some monitors fail to control the corresponding SMS. Here, we first explore the relationship between broken resources and monitors.

Definition 5.12 Let (N c V , M c V0 ) be a controlled system of an S 3 PR, r ∈ P R be a resource, and V ∈ P V be a monitor. r is said to be correlated with monitor V if H(r) ∩ H(V) ∅. The set of correlated monitors of resource r is denoted by P V r . Definition 5. 13 Let (N c V , M c V0 ) be a controlled system of an S 3 PR, V S be the monitor of S , and r ∈ P R be a correlated resource to monitor V S ∈ P V S . r and V S are said to be strongly correlated if r ∈ S . Otherwise, they are said to be weakly correlated. The set of monitors strongly (weakly) correlated with resource r is denoted by P V rs (P V rw ). The number of monitors in P V rs (

Let (N c

V , M c V0 ) be a controlled system of an S 3 PR, V S be the monitor of S , and P V r be the set of correlated monitors of resource r. A place p ∈ H(r) and a monitor V S ∈ P V r have the following three potential relationships : p ∈ [S ], p ∈ S , and p ∈ P S \ [S ]. Specifically, P 1

V rs = {V S x |p ∈
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number of tokens in their correlated monitors is changed and broken resources are returned, the removed tokens in monitors will put back. Next results show that the liveness of the supervisor of the original S 3 PR does not change and disturbed controlled system may be at waiting-for-repair states.

Theorem 5.5

) synthesized by Algorithm 5.2 preserves the liveness of the supervisor designed by Algorithm 5.1 for an S 3 PR.

Proof : Let us show that (N rc V , M rc V0 ) preserves the liveness of the supervisor designed by Algorithm 5.1 for the plant model (N, M 0 ). For r ∈ P R 2 , suppose that H(r) = {p 1 , . . . , p l } and ||I r || = {r, p 1 , . . . , p l } in (N, M 0 ).

1. P V r = ∅. In this case, r is not in any SMS in N. Algorithm 5.2 adds recovery subnets to every place in P U r , where r ∈ P R 2 . This implies that ||I rc r || = {r, p 1 , . . . , p l , p rr , p 1r , . . . , p lr } in (N rc V , M rc V0 ), where p rr , p 1r , . . ., and p lr are recovery places of r, p 1 , . . ., and p l , respectively.

Hence, adding recovery subnets to every place in P U r does not cause deadlocks.

P V r ∅.

By Definition 5.14, adding complementary places does not effect the liveness of the whole supervisor.

(2.1) For each p ∈ H(r) : a place p and a monitor V S ∈ P V r have the following three potential relationships : p ∈ [S ], p ∈ S , and p ∈ P S \ [S ]. Specifically, we have 

(a) p is in the complementary sets of α SMS : if the resource in p breaks down, the removal of the broken resource means that the token count in their monitors decreases by one implicitly.

Hence, these monitors in P 1

V rs act normally to control their corresponding SMS.

(b) p is in β SMS : to keep the liveness of the supervisor, certain mechanism needs to be designed between p and the corresponding β monitors. This mechanism should satisfy two basic requirements : on the one hand, when the resource represented by p breaks down, the removal
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of the resource effects the token count of their monitors that are marked. On the other hand, the removal of the broken resource does not depend on whether these β corresponding monitors are marked. For β monitors, there are 2 β logical combinations to indicate which one is marked and which one is unmarked. Algorithm 5.2 uses the complementary places of these monitors to show that when the monitors are unmarked, the start transitions can also be fired.

Algorithm 5.2 adds 2 β recovery subnets to p. Indeed, when a resource in p fails at some markings, only one of these 2 β recovery subnets will be started next. The fact which recovery subnet will work is based on the markings. In Algorithm 5.2, normal arcs (V rs , t ps ) and (t ps , V rs ) are used to connect V rs , t ps , and t p f . This implies that at those markings, if V rs is marked, arc (V rs , t ps ) is enabled. Correspondingly, add arcs (t ps , V rs ) and (V rs , t p f ) to ensure that V rs is the complementary place of V rs . A self-loop (V rs , t ps ) and (t ps , V rs ) weighted by M V0 (V rs ) is added to connect V rs and t ps . This implies that at those markings, if V rs is unmarked, then V rs is marked by M V0 (V rs ) and arc (V rs , t ps ) is enabled.

(c) p is in P S z \ [S z ] of γ SMS : for V rw ∈ P 1 V rw , the token count in V rw should not change with that of p. Hence, adding arcs (t ps , V rw ) and (V rw , t p f ) can ensure that the token count in V rw designed for S z does not change.

(2.2) Similarly, step (ii) in Algorithm 5.2 ensures that the token counts of the strongly correlated monitors of r change with that in r on condition that monitors can still control their corresponding siphons.

In a word, (N rc V , M rc V0 ) designed by Algorithm 5.1 for the plant model (N, M 0 ) preserves the liveness of the supervisor.

Theorem 5.6

Let (N rc V , M rc V0 ) be a controlled system of an S 3 PR (N , M 0 ), where (N , M 0 ) is an augmented autonomous or an augmented toparchy subnet computed by Algorithm 5.1. (N rc V , M rc V0 ) with broken resources is at a waiting-for-repair state if ∃M ∈ R(N rc V , M rc V0 ), p∈||I r || M(p) < M 0 (r) and t ∈ T , M[t , where r ∈ P R .

Proof : For (N rc V , M rc V0 ), if some resources break down and are removed to repair, the disturbed system stops running and is waiting for the removed resources to be returned. We have two cases. ) is a Petri net with inhibitor arcs. It is easy to find that the structure of (N rc * V , M rc * V0 ) is more simple than that of (N rc V , M rc V0 ). The complementary place of a monitor and a self-loop between the complementary place and a start transition are equivalent with an inhibitor arc from the monitor to the start transition. Algorithm 5.3 is equivalent with Algorithm 5.2 on behavior property. Hence, Theorems 5.7 and 5.8 hold, whose proofs are omitted. 

Conclusions and Future Research

This chapter concludes this thesis by reviewing the major contributions, discussing the limitations of the proposed methods, and summarizing some future research topics.

Contributions

This thesis investigates some important deadlock control issues in automated manufacturing systems (AMS) based on Petri nets structural analysis and robust supervisor design. Three challenges are tackled. The first is the derivation of looser controllability condition of siphons. The second is the design of supervisors with near-optimal/optimal permissive behavior and low computational complexity. The third is the robust liveness-enforcing supervisor design for AMS with unreliable resources. The first challenge is addressed by proposing the concept of max * -controllability and integer programming (IP) test techniques. The second problem is approached by combining of the theory of regions and structural analysis. Further, a maximally permissive control policy for a subclass of Petri nets based on the theory of token distribution pattern of siphons is proposed.

There is no need to construct a reachability graph and enumerate all minimal siphons. The third issue is overcome by introducing recovery subnets to Petri net plants. A robust liveness-enforcing supervisor is designed such that a good trade-off between the existing Petri net control policies and their application to real-world systems with unreliable resources can be made. The contributions of this thesis can be summarized into five aspects.

Firstly, it reviews the concepts of max, max , and max -controlled siphons and formulates the new concept called max * -controlled siphons for GS 3 PR. We conclude that a GS 3 PR is live iff all its siphons are max * -controlled. Then examples are given to illustrate the max, max , max , max * -controlled siphons and their difference. Compared with the existing work, the proposed me-