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Chapter 1

Introduction

For a long time lipids, and membranes made out of these lipids, were
thought of as building blocks of cells, having not so prominent tasks as
e.g. proteins. Fulfilling their function as cell boundaries, they cover a total
surface area of about 100 km2 in a single human being. In recent years the
knowledge about their role has been extended. It was found that lipids act
not only as passive solvents for membrane proteins, but play also an inte-
gral part of cellular function. They can act as enzymes, receptors, drugs as
well as regulators.
Real cell membranes are highly complex systems, which consist not only of
several different kinds of lipids, but also of membrane proteins and mem-
brane active molecules such as cholesterol. Therefore model membrane
systems such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are
often used to mimic their more complex natural counterparts, because they
show a similar thermodynamical behaviour. Depending on temperature,
pressure or amount of water in the system the dynamic behaviour of these
model systems can be effected. Hence, knowledge of these interactions are
crucial to better understand the parameters necessary for the functioning
of biological membranes and what precisely are their effects.
In the first part of this work the results of elastic and quasi-elastic neutron
scattering experiments on DMCP multilayers as a function of hydration
will be discussed in more detail. Analogous to the investigation of lipid dy-
namics, in the second part of this thesis the investigation of a protein under
various external conditions via neutron scattering is described. This ansatz
forms an extension of the methodology already described in the chapters
dealing with DMPC.
Molecular dynamics of pure recombinant human acetylcholinesterase
(hAChE) and inhibited by Huperzine A using elastic, quasi-elastic and in-
elastic neutron scattering will be described. This enzyme plays an impor-
tant role in the termination of nerve impulses via the hydrolysis of the neu-
rotransmitter acetylcholin. Therefore it is a primary target of neurotoxins.
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In recent years the investigation of AChE has also gained interest in the
treatment of neural diseases such as Alzheimer’s disease or myasthenia
gravis, where the hydrolysis of ACh is defective.

The energy E and wavelength λ of cold and thermal neutrons lies in the
millielectron volt and Ångstrom range, therefore neutron scattering is very
well suited to investigate dynamics in the pico- to nanosecond timescale
and on a atomic length scale. A big advantage of neutron scattering over
other techniques is the fact that it is isotope selective, this means there is a
large difference of the incoherent scattering cross section of hydrogen and
deuterium (about one order of magnitude). Samples such as proteins or
membranes comprise about 50% hydrogen atoms, thus neutron scattering
probes an average over the whole sample and perdeuteration can eventu-
ally be used to “mask” some parts.

After an introduction to the general properties of the neutron, in chap-
ter 3 an overview of the theory of thermal neutron scattering is given,
herein section 3.6 introduces the models for elastic (section 3.6.1) and quasi-
elastic (section 3.6.2) incoherent neutron scattering used for data treatment
in chapters 6 - 9. A brief presentation of research neutron sources and the
principle of spectrometers used for this work, namely backscattering and
time-of-flight spectrometers, is also part of this chapter.

The thermal backscattering spectrometer IN13 is presented in detail in chap-
ter 4. In the course of my Ph.D. work I was highly involved in the opera-
tion and the maintenance of this collaborating research group (CRG) instru-
ment. The chapter starts with a description of the design of the instrument.
Examples of the instrument development, which led to a significant im-
provement of the instrument’s performance, are given also.

After a short historical introduction, the model lipid DMPC and its thermo-
dynamical characteristics are reviewed in chapter 5, thereafter the sample
preparation for the experiments described in the chapters 6 and 7 is out-
lined.

The neutron scattering experiments performed on DMPC are described in
detail in chapters 6 and 7. Chapter 6 deals with the elastic experiments
contains results from two different sets of measurements, one performed
on IN13 (section 6.2), the second one done on IN16 (section 6.3), both in-
struments are situated at the Institut Laue-Langevin in Grenoble, France. In
total samples with four different hydration levels were prepared on a solid
support of silicon wafers. Thanks to their very good alignment, in-plane
and out-of-plane dynamics of the membranes could be probed. Results ob-
tained during the IN13 experiments showed a clear shift to higher temper-
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atures of the lipid main phase transition for decreasing water content and
served also as preparation for the quasi-elastic measurements performed at
the Munich research reactor FRM II.

The experiments performed on IN16 and described in section 6.3 allowed a
comparison between summed intensities and mean square displacements
(msd) of two samples at low hydration. It was shown that the decrease
of the elastic intensity, which occurs at the main phase transition, is corre-
lated with an increased mobility, indicated by a change of slope of the mean
square displacements. The results from this experiment were published in
the journal “Spectroscopy” as part of the proceedings of the XIII European
Conference on the Spectroscopy of Biological Molecules, where this work
was presented, and are part of the appendix of this manuscript (cf section
D.1).

The quasi-elastic experiments performed on the time-of-flight spectrometer
TOFTOF of the FRM II research reactor in Munich are outlined in chapter 7.
The same samples employed for the elastic experiments on IN13 were also
used for these measurements. Elastic incoherent structure factors (EISF)
could be extracted. Different models had to be fitted to the data to take into
account the effects of hydration. The obtained findings from the TOFTOF
and IN13 experiments resulted in a paper, which is published in “The Jour-
nal of Chemical Physics” and can be found in the appendix to this work in
section D.2.

Temperature scans are nowadays routinely used to investigate dynamics
of biomolecules by neutron scattering. In contrast high hydrostatic pres-
sure is under represented in combination with neutron scattering due to
engineering difficulties. With the investigation of high pressure, a second
thermodynamical variable can be explored apart from temperature scans.
Pressure has a similar effect on membranes as to reduce the hydration of
lipid bilayers, thus the experiments described in chapter 6 and 7 are com-
plementary to the high pressure investigations started now. The develop-
ment of a new high pressure equipment and first diffraction and spectro-
scopic measurements on DMPC are described in chapter 8.

The investigation on AChE is described in chapter 9. After a general in-
troduction to AChE and depiction of the sample preparation, the elastic
experiments are delineated in section 9.3. This section is based on a paper,
which has been submitted to “Physical Chemistry Chemical Physics”. Cover-
ing two orders of magnitude in instrumental resolution allows to observe
mean square displacements on different time scales, ranging from about
10-1000 ps. In section 9.4 a comparison with results obtained on human
butyrylcholinesterase (BChE) is drawn. The data published by Gabel and
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co-workers show remarkable differences to our results on AChE, even if
the function and structure of both enzymes are quite similar.
Finally in section 9.5 the results of quasi-elastic measurements on AChE at
IN6 are elaborated.



Chapter 2

Résumé de la thèse en français

Pendant longtemps, les lipides et les membranes, qui sont elle-même consti-
tuées de lipides, ont été considérés comme simples composantes des cel-
lules, n’ayant pas autant de fonctions que les protéines, par exemple. En
tant que limites des cellules biologiques, ils couvrent une surface totale
d’environ 100 km2 dans un être humain. Ces dernières années, la connais-
sance de leurs fonctions a pourtant bien évolué. On a constaté que les li-
pides n’agissent pas seulement comme solvants passifs pour les protéines
membranaires, mais font partie de la fonction cellulaire. Ils peuvent agir en
tant qu’enzymes, récepteurs, médicaments ainsi que régulateurs.
Les membranes cellulaires biologiques sont des systèmes très complexes
qui ne contiennent pas seulement plusieurs types de lipides, mais aussi
des protéines membranaires et des molécules actives telles que le choles-
térol. C’est pourquoi les systèmes modèles de membranes comme le 1,2-
dimyristoyl-sn-glycéro-3-phosphocholine (DMPC) sont souvent utilisés pour
imiter leurs homologues naturels plus complexes, car ils ont un comporte-
ment thermodynamique similaire. Selon la température, la pression ou la
quantité d’eau dans le système le comportement dynamique de ces mo-
dèles peut être effectuée. Par conséquent, la connaissance de ces interac-
tions est cruciale pour mieux comprendre les paramètres nécessaires au
fonctionnement des membranes biologiques et quels sont exactement leurs
effets.
Dans la première partie de ce travail, les résultats de la diffusion élastique
et quasi-élastique de neutrons sur les multicouches DMCP en fonction de
l’hydratation seront discutés. Analogue à l’investigation de la dynamique
des lipides, dans la deuxième partie de cette thèse l’investigation d’une
protéine dans diverses conditions externes par la diffusion neutronique est
décrite. Cette approche formes une extension de la méthode déjà décrite
dans les chapitres sur DMPC.
La dynamique moléculaire de l’acétylcholinestérase humaine recombinante
(hAChE), pure et inhibée par HuperzineA, sera décrite utilisant la diffusion
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de neutrons élastique, quasi-élastique et inélastique. Cette enzyme joue un
rôle important dans l’achèvement des impulsions nerveuses par l’hydro-
lyse du neurotransmetteur acétylcholine. Par conséquent, c’est une cible
primaire des neurotoxines. Ces dernières années, l’étude de l’AChE a éga-
lement suscité l’intérêt dans le cadre du traitement des maladies neurolo-
giques, comme la maladie d’Alzheimer ou la myasthénie grave, où l’hy-
drolyse de l’acétylcholine est défectueuse.

L’énergie E et la longueur d’onde λ des neutrons froids et thermiques se
situent dans le domaine des milli-électronvolts et des Ångstroms, la dif-
fusion de neutrons est donc très bien adaptée à l’étude de la dynamique
dans le domaine de la pico- à la nanoseconde et sur une échelle de lon-
gueur atomique. Un grand avantage de la diffusion neutronique par rap-
port à d’autres techniques provient du fait qu’elle est sélective entre diffé-
rents isotopes, cela signifie qu’il ya une grande différence entre la section
efficace incohérente de l’hydrogène et du deutérium (environ un ordre de
grandeur). Les échantillons tels que les protéines ou les membranes com-
portent environ 50% d’atomes d’hydrogène, les neutrons mesurent donc
une moyenne sur l’ensemble de l’échantillon. La deutériation peut éven-
tuellement être utilisée pour "masquer" certaines parties.

Après une introduction des propriétés générales des neutrons dans le cha-
pitre 3, un aperçu de la théorie de la diffusion des neutrons thermiques est
donnée. Dans la section 3.6 des modèles sont présentés pour décrire la dif-
fusion incohérente neutronique élastique (section 3.6.1) et quasi-élastique
(section 3.6.2), qui seront utilisés pour le traitement des données dans les
chapitres 6 - 9. Une brève présentation des sources de neutrons pour la re-
cherche et du principe des spectromètres utilisés pour ce travail, à savoir
des spectromètres à rétrodiffusion et des spectromètres en temps de vol,
fait aussi partie de ce chapitre.

Le spectromètre thermique à rétrodiffusion IN13 est présenté en détails
dans le chapitre 4. Au cours de mon travail doctoral, j’ai été très impli-
qué dans l’opération et le maintien de cet instrument d’un “collaborating
research group” (CRG). Le chapitre commence par une description de la
conception de l’instrument. Des exemples du développement de l’instru-
ment, qui a entraîné une importante amélioration de sa performance, sont
exposés dans la suite.

Après une brève introduction historique, le lipide DMPC et ses caractéris-
tiques thermodynamiques sont présentés dans le chapitre 5, puis la prépa-
ration des échantillons pour les expériences sont décrites dans les chapitres
6 et 7.
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Les expériences de diffusion de neutrons effectuées sur DMPC sont dé-
crites en détails dans les chapitres 6 et 7. Le chapitre 6 sur les expériences
élastiques contient les résultats de deux séries de mesures différentes, l’une
effectuée sur IN13 (section 6.2), l’autre sur IN16 (section 6.3). Les deux ins-
truments se trouvent à l’Institut Laue-Langevin à Grenoble, France. Au to-
tal, quatre échantillons avec des niveaux d’hydratation différents ont été
préparés sur un support solide de plaquettes en silicium. Grâce à leur ex-
cellent alignement, la dynamique des bicouches dans le plan et perpendicu-
laire à la normale des bichouches pouvait être sondée. Les résultats obtenus
lors des expériences sur IN13 ont clairement montré un déplacement de la
transition de phase lipidique principale vers des températures plus élevées
pour des hydratations plus basses et ils ont également servi pour préparer
les mesures quasi-élastiques réalisées à Munich au réacteur de recherche
FRM II.

Les expériences réalisées sur IN16 et décrites dans la section 6.3 ont per-
mis de faire une comparaison entre les intensités sommées et les déplace-
ments carrés moyens (msd) de deux échantillons à faible hydratation. Il
a été montré que la diminution de l’intensité élastique à la transition de
phase principale est corrélée avec une mobilité accrue, qui se manifeste par
un changement du coefficient directeur des déplacements carrés moyens.
Les résultats de cette expérience ont été publiés dans la revue "Spectroscopy"
dans les actes de la conférence “XIII European Conference on the Spectro-
scopy of Biological Molecules”, où ce travail a été présenté, et font partie
de l’annexe de ce manuscrit (cf article D.1).

Les expériences quasi-élastiques réalisées sur le spectromètre en temps de
vol TOFTOF du réacteur de recherche FRM II à Munich sont décrites dans
le chapitre 7. Les mêmes échantillons utilisés pour les expériences élas-
tiques sur IN13 ont aussi servis pour ces mesures. Des facteurs de structure
élastiques incohérents (EISF) ont pu être extraits des données. Différents
modèles ont été comparés aux données pour prendre en compte les effets
de l’hydratation. Les résultats obtenus à partir des expériences faites sur
TOFTOF et IN13 ont abouti à une publication dans "The Journal of Chemical
Physics" qui se trouve dans l’annexe de ce travail dans la section D.2.
Les deux chapitres commencent par une caractérisation de l’échantillon par
diffraction neutronique, suivie par une description des expériences et du
traitement des données est donnée suivie par l’interprétation et la discus-
sion des résultats obtenus sont exposés en fin de chapitre.

Des balayages en température sont aujourd’hui couramment utilisés
pour étudier la dynamique des biomolécules par diffusion de neutrons. Au
contraire, la haute pression hydrostatique est sous-utilisée en combinaison
avec la diffusion neutronique en raison des difficultés technologiques. Or,
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en considerant la haute pression, une seconde variable thermodynamique
peut être explorée. La pression a un effet similaire sur les membranes que
la réduction de l’hydratation des bicouches lipidiques, ainsi les expériences
décrites dans les chapitres 6 et 7 sont complémentaires aux études en fonc-
tion de la haute pression démarrées récemment. Le développement d’un
équipement de haute pression et les premières mesures de diffraction et de
spectroscopie de DMPC sont décrites dans le chapitre 8.

L’étude de l’AChE est décrite dans le chapitre 9. Après une introduction
générale de l’AChE et la présentation de la préparation des échantillons,
les expériences élastiques sont détaillées dans la section 9.3. Cette section
est basée sur une publication soumise à "Physical Chemistry Chemical Phy-
sics". L’exploitation de deux ordres de grandeur de la résolution instrumen-
tale permet d’observer les déplacements carrés moyens sur des échelles de
temps très différentes, allant de 10-1000 ps environ.
Dans la section 9.4 une comparaison avec les résultats obtenus sur la bu-
tyrylcholinestérase humaine (BChE) est entreprise. Les données publiées
par Gabel et ses collaborateurs montrent des différences significatives par
rapport à nos résultats avec l’AChE, même si la structure et la fonction des
deux enzymes sont très similaires.
Enfin dans la section 9.5 les résultats des mesures quasi-élastiques de l’AChE
sur IN6 sont présentés.



Chapter 3

Thermal neutron scattering

3.1 General introduction and properties of the neu-
tron

The neutron was discovered by Chadwick in 1932 [1]. Together with the
proton it is the building block of the nucleus. Bound in the nucleus the
neutron is stable, whereas the free neutron undergoes a beta decay into a
proton, an electron and an anti-neutrino. The particle data group (PDG)
average value of the lifetime of the free neutron is (885.7± 0.8) s [2]. The
use of neutrons in the field of condensed matter was first introduced by
Brockhouse and Shull [3]. In 1994 both were awarded the Nobel Prize in
physics ”for pioneering contributions to the development of neutron scat-
tering techniques for studies of condensed matter” [4].
In terms of the wave-particle dualism neutrons can be described as waves
through their wave vector~k defined in equation 3.1

∣∣∣~k∣∣∣ = 2π

λ
, (3.1)

where λ is the wavelength of the neutron. Neutrons can be treated non-
relativistically because their velocity is small compared to the speed of light
and their kinetic energy EKin can be transformed using de Broglie’s relation
~p = h̄~k = mn~v as shown in equation 3.2

Ekin =
1
2

mnv2 =
h̄2k2

2mn
=

h2

2mnλ2 . (3.2)

Here h is Planck’s constant and h̄ = h
2π . For exact values see the ap-

pendix (chapter B). mn is the mass of the neutron (see table 3.1 for some
characteristics of the neutron.).
In a neutron scattering experiment the energy transfer ∆E (cf equation 3.3a)

11
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and the momentum transfer ~Q (cf equation 3.3b) are the observed quanti-
ties, as visualised in figure 3.1.

∆E = E f − Ei = h̄ω =
h̄2

2mn
(k2

f − k2
i ) (3.3a)

and
~Q = ~k f − ~ki. (3.3b)

For inelastic processes the energy dependence of ~Q has to be taken into
account. The corresponding formula (equation 3.16) can be found in section
3.5.2.

kf

kf

Elastic scattering

Ef=Ei

Inelastic scattering

Ef>Ei

2θ

ki

kf

Inelastic scattering

Ef<Ei

Q

Figure 3.1: Schematic representation of a scattering event. The incoming
wave is characterised by its wave vector ~ki and its corresponding wave-
length λi and energy Ei. Both elastic (E f = Ei) and inelastic scattering (E f ,

Ei) are shown. Also conservation of momentum ~Q =~k f -~ki is depicted. 2θ
is the scattering angle.

3.2 Interaction between neutrons and matter

Electromagnetic radiation interacts with the electrons in the atomic shell.
Therefore the interaction strongly depends on the atomic number. The
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charge 0
mass 1.008 66 u = 1.675 10× 10−27 kg
spin 1

2
magnetic moment -1.923 nuclear magnetons

Table 3.1: Properties of the neutron.

higher the atomic number, the stronger the interaction. In contrast to elec-
tromagnetic radiation no such general statement about neutrons can be
made, since neutrons interact via the short range strong interaction with
the nucleus of the atoms and therefore the interaction is not as systematic
as in the eletromagnetic case. The scattering processes will be treated in
more detail in section 3.3.
The difference in the scattering cross sections of hydrogen and its isotope
deuterium is employed in biophysical neutron scattering (cf. table 3.2).
About 50% of the atoms in biological macromolecules are hydrogens, thus
their incoherent scattering dominates the recorded signal.
Hydration plays a crucial role in the dynamics of biomolecules such as
lipids [5], proteins [6], RNA and whole cells [7], too. In order to focus on
the water dynamics, deuterated macromolecules are used so that the only
hydrogen atoms in the sample are those of the solvent [8]. If in contrast
the interest of the performed study lies in the dynamics of the biomolecule,
D2O is used for hydration [9]. However, it has been shown that the elas-
tic energy resolution and therefore the accessible space-time window of
the employed instrument also plays a role. For example in the space-time
frame observed on IN13, bulk H2O contributes to the data only as a flat
background [10].

3.3 Scattering law

In the following section the basic principles of neutron scattering are pre-
sented. As biological samples are normally non magnetic, only nuclear
scattering is considered below.
In any neutron experiment the double differential cross section d2σ

dΩdE is mea-
sured. This quantity is the number of neutrons scattered per second into a
given solid angle dΩ with a final energy E between h̄ω and h̄ω + h̄dω di-
vided by the incoming flux. When the perturbation of the scatterer by the
incident neutron is small, the Born approximation holds [12] and the dou-
ble differential cross section can be written as:

d2σ

dΩdE
=

k f

ki

1
2πh̄ ∑

i,j

〈
bibj
〉 ∫ ∞

−∞

〈
e−i~Q~ri(0)ei~Q~rj(t)

〉
· e−iωtdt, (3.4)
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Isotope σcoh [barn] σinc [barn] σabs [barn]

H 1.76 80.26 0.33
1H 1.76 80.27 0.33
2H 5.59 2.05 0.0

3He 4.42 1.53 5333.0
4He 1.34 0.0 0.0
Li 0.45 0.92 70.50

6Li 0.51 0.46 940.0
7Li 0.62 0.78 0.05
B 3.54 1.70 767.0

10B 0.14 3.0 3835.0
C 5.55 0.0 0.0
N 11.01 0.50 1.90
O 4.23 0.0 0.0
Al 1.50 0.01 1.50
Si 2.16 0.0 0.17
P 3.31 0.0 0.17

Cd 3.04 3.46 2520.0
Gd 29.30 151.0 49700.0

157Gd 650.0 394.0 259000.0

Table 3.2: Scattering cross sections σ. The table gives the coherent (σcoh), in-
coherent (σinc) and absorption (σabs) cross section for the most common ele-
ments in biological samples (H,C,O,N,P,S). From the high absorption cross
section of 6Li, 10B, Cd and Gd it is obvious that these elements are used for
shielding purposes. Where no isotope is specified the numbers refer to the
ratio occurring in nature [11].
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where~ri(t ) is the position of scatterer i at a time t and bi the scattering
length of atom i. The sum runs over all possible pairs (i,j) of scatterers in
the sample. b is related to the scattering cross sections given in table 3.2 as
follows:

σcoh = 4π 〈b〉2 = 4πb2
coh (3.5a)

σinc = 4π(
〈
b2〉− 〈b〉2) = 4πb2

inc (3.5b)

Equation 3.4 contains two contributions: A first part concerning the
time correlation between different scatterers (i,j) and a self-correlation part
where i=j. A separation of these two parts leads to:

d2σ

dΩdE
=

σcoh

4π

k f

ki

1
2πh̄ ∑

i,j

∫ ∞

−∞

〈
e−i~Q~ri(0)ei~Q~rj(t)

〉
· e−iωtdt

+
σinc

4π

k f

ki

1
2πh̄ ∑

i

∫ ∞

−∞

〈
e−i~Q~ri(0)ei~Q~ri(t)

〉
· e−iωtdt

(3.6)

With the coherent Scoh(~Q,ω) and incoherent Sinc(~Q,ω) dynamic scatter-
ing functions defined as follows:

Scoh(~Q,ω) =
σcoh

N
1

2πh̄ ∑
i,j

∫ ∞

−∞

〈
e−i~Q~ri(0)ei~Q~rj(t)

〉
· e−iωtdt (3.7a)

Sinc(~Q,ω) =
σinc

N
1

2πh̄ ∑
i

∫ ∞

−∞

〈
e−i~Q~ri(0)ei~Q~ri(t)

〉
· e−iωtdt (3.7b)

the double differential cross section can be written as:

d2σ

dΩdE
= N

1
4π

k f

ki
(Scoh(~Q,ω) + Sinc(~Q,ω)). (3.8)

Introducing the intermediate scattering functions

Icoh(~Q, t) =
σcoh

N ∑
i,j

〈
e−i~Q~ri(0)ei~Q~rj(t)

〉
(3.9a)

Iinc(~Q, t) =
σinc

N ∑
i

〈
e−i~Q~ri(0)ei~Q~ri(t)

〉
(3.9b)

equations 3.7 can be written as time Fourier transforms:
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Scoh(~Q,ω) =
1

2πh̄

∫ ∞

−∞
Icoh(~Q, t) · e−iωtdt (3.10a)

Sinc(~Q,ω) =
1

2πh̄

∫ ∞

−∞
Iinc(~Q, t) · e−iωtdt. (3.10b)

Performing a Fourier transform with respect to space on the interme-
diate scattering functions leads to the Van Hove pair correlation function
in the case of coherent scattering and to the self correlation function in the
case of incoherent scattering [13]:

G(~r, t) =
1

(2π)3

∫
Icoh(~Q, t) · e−i~Q~rd~Q (3.11a)

GS(~r, t) =
1

(2π)3

∫
Iinc(~Q, t) · e−i~Q~rd~Q. (3.11b)

G(~r,t) is the probability that, given a particle at the origin a time t = 0,
any particle (including the original particle) can be found at~r at a time t.
In contrast GS(~r,t) gives the probability of finding the same particle, which
was at t = 0 at the origin at a time t at the position~r. Therefore G(~r,t) in-
cludes GS(~r,t).
Coherent scattering thus contains the correlation of the position of different
atoms at different times. Hence information on structure and collective mo-
tions can be deduced from coherent scattering. In contrast the incoherent
part contains information about the evolution in time of one and the same
atom, thus the local dynamics of the sample can be probed with incoherent
scattering.

3.4 Neutron sources and transport

About 50% of all matter is made up of neutrons but they are bound to the
nucleus. In order to produce free neutrons two methods are employed in
research institutes: fission (Institut Laue-Langevin (ILL), Grenoble, France,
Forschungsreaktor München II (FRMII), Munich, Germany) and spallation
(Spallation neutron source (SNS) in Oak Ridge, US, Paul Scherrer Insti-
tut (PSI), Villigen, Switzerland or ISIS, Didcot, UK). Laser induced fusion
has been proposed lately [14], but will not be available in the near future,
due to technological difficulties.
In the fission process 235Uranium nuclei are split into two lighter parts and
release energy (see figure 3.2a). Apart from the fission fragments in av-
erage 2.5 neutrons with energies in the MeV range are produced per fis-
sion event. This technology is limited to a relatively low flux (maximum
1× 1014-1× 1015 n cm2/s), due to heat production in the reactor core and
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the difficulty of heat dissipation in short times.
In the case of spallation sources a heavy metal target (liquid or solid) is hit
by an accelerated proton (up to several GeV). The excitation of the target
leads to an evaporation of 20 to 30 neutron in the MeV range per event (cf
figure 3.2b). Therefore more neutrons can be produced per proton pulse in
a spallation source, but these sources are normally operated in a discontin-
uous way. Thus absolute flux values are difficult to compare.

(a) (b)

Figure 3.2: Schematic representation of the fission 3.2a and spallation 3.2b
process [15].

The energy of the liberated neutrons (in the order of MeV) is too high
by far for scattering experiments for which energies in the meV range are
needed to probe excitations within the sample. Moderators are generally
used to shift the energy of the neutrons to lower values. In reactor sources
they are in particular needed to slow down the fast neutrons created in the
fission process and thus sustain the chain reaction. In neutron scattering
moderation is also employed to move the energy of the fission neutrons
into the range used for the experiments (≈ meV). Typically materials used
as moderators have a high scattering cross section (cf table 3.2). At ambient
temperature water or heavy water is often used. To slow down the neu-
trons even further liquid hydrogen or deuterium at temperatures around
20 K can be employed. The neutrons have Maxwellian energy distribution
after the moderation with a maximum which corresponds to the temper-
ature of the moderator. An overview of characteristic temperatures and
energies typically employed in neutron scattering can be found in table 3.3.
Neutron guides are used to transport the free neutrons from where they
are created to the experiments. Nowadays the longest transport distance
is about 100 m at neutron centres, so beam loss due to neutron decay can
be neglected. As neutrons carry no charge, they cannot be deflected by
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electro-magnetic fields. Therefore total reflection is employed to transport
the neutrons. Often nickel is used for the coating of neutron guides due to
its high refraction index n. Below a critical angle of θC = λ[Å]× 0.1° total re-
flection occurs [16]. It can be improved even further by using 58Ni due to its
larger coherent scattering length and multilayer coating of the guides [17].

E [meV] T [K] v [m s−1] λ [Å]

cold 0.1 - 10 1 - 120 130 - 1300 30 - 3
thermal 10 - 100 120 - 1200 1300 - 4000 3 - 1
hot 100 - 500 1200 - 6000 4000 - 10000 1 - 0.4

Table 3.3: Characteristic neutron energies, temperatures, velocities and cor-
responding wavelengths. Values can be calculated using the relation E =
kBT and equation 3.2.

3.5 Spectrometers

Via Heisenberg’s uncertainty principle:

∆E∆t ≥ h̄
2

(3.12)

the observation time is directly related to the energy resolution of the
employed instrument. Thus using spectrometers with different energy res-
olutions gives access to different time scales probed within the sample.
A whole hierarchy of energy resolutions is covered by the different types
of spectrometers currently available in neutron scattering centres.
The highest energy resolution (in the order of neV) is obtained by the Neu-
tron spin echo (NSE) technique [18]. Backscattering spectrometers give ac-
cess to energy resolutions between 0.9 µeV and 10 µeV. This type of instru-
ment will be discussed in more detail in section 3.5.1 and the IN13 spec-
trometer will be especially highlighted in chapter 4. The energy resolu-
tion of disk chopper time-of-flight spectrometers can be varied almost con-
tinuously between 10 µeV and 3 meV by adjusting the speed of the chop-
pers. Resolutions of the instruments used in this work are shown in figure
3.3 for comparison. The resolution functions normally have Gaussian or
Lorentzian shapes, but can also have a triangular shape, depending on the
chopper alignment. Three axis spectrometers are employed mainly in solid
state physics to study collective excitations (phonons). They will not be
discussed here.

In neutron spectroscopy not only the spatial deviation of the neutron,
but also the energy exchanged with the sample is measured. Via the scat-
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tering vector ~Q information on the length scales under investigation can be
extracted. The energy transfer ∆E provides information on the dynamics
of the samples. Therefore the incident wave vector ~ki of the neutrons has to
be well defined.
Two methods are employed in backscattering and time-of-flight instruments
to select a given wavelength out of the polychromatic neutron beam:

1. Bragg reflection of crystals. In this case the reflection of a single crys-
tal is used to select a wavelength, which is determined by the lattice
constant of the crystal. This method is mainly employed in backscat-
tering spectrometers (see section 3.5.1), but also on some time-of-
flight instruments (e.g. IN6).

2. Time-of-flight. A set of choppers is used to create neutron pulses with
a given energy resolution (cf section 3.5.2). Choppers are disks rotat-
ing with a speed up to 20000 rpm. They are coated with a neutron ab-
sorbing material (e.g. gadolinium), only a small fraction is untreated
and therefore lets neutrons pass.

In the following sections backscattering and time-of-flight spectrome-
ters will be discussed in greater detail, because these two types of instru-
ments were employed in the presented work.

Spectrometer IN6 IN6 IN13 IN16 TOFTOF

Wavelength [Å] 5.12 5.90 2.23 6.27 6.00
Accessible Q-range [Å−1] 0.4-2.2 0.4-1.9 0.2-4.9 0.02-1.9 0.4-1.6
Length scale [Å] 2.9-15.7 3.3-15.7 1.3-31.4 3.3-314.2 3.9-15.7
Resolution FWHM [µeV] 90 50 8 0.9 56
Timescale [ps] 4 7 40 365 6

Table 3.4: Characteristics of the spectrometers used in this work. IN6, IN13
and IN16 are situated at the ILL, TOFTOF at the FRMII.
The length scale was calculated using equation 6.2. Following Heisenberg’s
uncertainty principle (equation 3.12) the elastic energy resolution can be
converted into a timescale using the relation: ∆t = 329 µeV ps/∆E.

3.5.1 Backscattering spectrometers

In this section some general remarks on backscattering spectrometers will
be given and two spectrometers (IN13, IN16), used in this work will be
highlighted in more detail.
The backscattering technique was proposed 1966 by Maier-Leibnitz [19].
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Figure 3.3: Comparison of the elastic energy resolutions of three different
instruments and four different resolutions used for this work. The reso-
lutions cover a range from 0.9 µeV to 90 µeV (FWHM). Shown in red IN6
(5.1 Å = 90 µeV), in green IN6 (5.9 Å = 50 µeV) is displayed, in black IN13
(8 µeV) is presented and IN16 (0.9 µeV) is depicted in blue. More informa-
tion on the characteristics of the single instruments can be found in table
3.4.
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In this technique crystal reflections are used according to Bragg’s law (see
equation 3.13) to select a given wavelength:

nλ = 2d sin θB. (3.13)

In this equation d stand for the repeat distance of the crystal lattice, θB
for the Bragg angle and n for the order of the reflection. It takes advantage
of the fact, that the energy resolution in backscattering geometry (2θ = 180°)
becomes very narrow. This can be seen by taking the derivative of Bragg’s
Law:

∆E
E

=
2∆λ

λ
=

2∆d
d

+ 2 cot θB∆θB. (3.14)

For θB=90° the cotangent term in eq. 3.14 becomes zero and only the
first term, which solely depends on the crystal quality, dominates the en-
ergy resolution of the spectrometer. This setup is realised within the sec-
ondary spectrometer (see pictures 3.4 and 4.1). The analyser crystals are
mounted in perfected backscattering geometry, so only neutrons with the
corresponding resolution are collected by the neutron detectors.
Until the invention of the spin echo technique, backscattering spectrome-
ters provided the finest energy resolution available. Furthermore the first
inelastic studies revealing the dynamical transition with neutrons were per-
formed on a backscattering spectrometer [9].

IN13

During my thesis I was involved in the development and the operation
of the thermal backscattering spectrometer IN13, therefore the instrument
and its characteristics will be discussed in more detail in chapter 4.

IN16

The backscattering spectrometer IN16 is situated on a guide looking at one
of the cold sources of the ILL. Therefore the Si (111) reflection is used to
select a wavelength of λ = 6.27 Å of the incoming neutrons. This instru-
mental setup results in a very narrow elastic energy resolution of 0.9 µeV.
In contrast to IN13, where the energy of the impinging neutrons is changed
by heating or cooling the monochromator, IN16 uses a Doppler drive. For
elastic measurements this drive is at rest, in the quasi-elastic mode it moves
with a given speed resulting in an accessible energy range of± 15 µeV. The
schematic layout of IN16 can be found in figure 3.4.
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Figure 3.4: Schematic layout of the cold neutron backscattering spectrome-
ter IN16 at ILL [20].

3.5.2 Time-of-Flight spectrometers

This type of spectrometer uses the time-of-flight of the scattered neutrons
for energy discrimination. Monochromatisation is done by either using
Bragg reflection, then the spectrometer is called XTL-TOF (crystal-time-of-
flight) spectrometer. If a system of choppers is used to select a wavelength,
the instrument is called TOF-TOF spectrometer. At least two choppers are
needed to perform this task. A schematic representation of this setup is
shown in figure 3.5. The first chopper (P-chopper in figure 3.5) divides
the continuous beam into discrete packages. These packages still contain
neutrons with different wavelengths, i.e. different velocities. The second
chopper (M-chopper in figure 3.5), installed at a certain distance to the first
one (typically one to several meters), is used to select one wavelength out
of the now dispersed package. Additional choppers can be put in place be-
tween these two choppers, to avoid e.g. that very slow neutrons from the
reactor also pass and distort the recorded signal.

The scattered neutrons are detected as a function of time. Neutrons
which gained energy during the scattering process will arrive before elas-
tically scattered neutrons. Neutrons which have lost energy during the in-
teraction with the sample will arrive last in the detectors. The recorded
time difference ∆t then permits to recalculate the energy difference to the
elastically scattered neutrons through:
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Figure 3.5: Sketch of the time-of flight principle. The different wavelengths
of the polychromatic beam are presented by different colours. Adapted
from [21].

∆E = h̄∆ω =
1
2

mn(∆v)2

=
1
2

mnL2
SD

(
1
t0
− 1

t

)2

=
1
2

mnL2
SD

(
∆t

t2
0 + t0∆t

)2 (3.15)

where LSD denotes the distance between sample and detector (cf figure
3.5), t0 is the flight time of the elastically scattered neutrons and ∆t the
difference in the time of flight: ∆t = t - t0.

In contrast to backscattering spectrometers, where only small energy
transfers are probed, on a time-of-flight instrument the energy dependence
of ~Q cannot be neglected. Hence equation 3.3b has to be rewritten as equa-
tion 3.16

Q2 = k2
i + k2

f − 2kik f cos 2θ. (3.16)

Together with the energy transfer (eq. 3.2) this leads to the fundamental
relation between scattering vector ~Q, incident wave vector ~ki and scatter-
ing angle 2θ which is shown in equation 3.17 and visualised for different
scattering angles in figure 3.6:

Q2 = 2k2
i −

2mnω

h̄
− 2ki

√
k2

i −
2mnω

h̄
cos 2θ. (3.17)

In the following sections, the two time-of-flight spectrometers which
have been used during this work, will be described in more detail.

IN6

IN6 is an example of a time focusing XTL-TOF spectrometer. It uses crystal
reflections of three pyrolytic graphite monochromator arrays to monochro-
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Figure 3.6: Dynamic range for a given ki=1.23 Å−1 (corresponding to a
wavelength of 5.1 Å) and different scattering angles 2θ. The black lines
indicate the angular range covered with detectors on the IN6 spectrometer
at ILL.

matise the incident beam. By changing the angle of the secondary spec-
trometer with respect to the monochromator, four discrete wavelengths
(4.1, 4.6, 5.1, 5.9 Å) can be selected on this spectrometer. Higher order re-
flections are removed by a beryllium filter. The schematic layout of the
instrument can be found in figure 3.7. For the experiments described in the
following chapters only incident wavelengths of 5.1 and 5.9 Å were used,
resulting in elastic energy resolutions of 90 and 50 µeV, respectively (cf fig-
ure 3.3). In order to get the neutrons from all three monochromators at the
same time on the sample, this corresponds to the so called time-focusing
condition, the beam is pulsed by a Fermi chopper (a fast rotating assem-
bly of curved slits). To prevent frame-overlap when the chopper is rotating
faster than 7500 rpm, a suppressor chopper is placed before the Fermi chop-
per and rotates in phase with the latter at a lower speed. The secondary
spectrometer is filled with helium and equipped with 337 3He counters
covering an angular range from 10° to 115° and a total surface of about
6 m2.
The accessible dynamic range of IN6 for an incident wavelength of 5.1 Å is
shown as a black line in figure 3.6.
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Figure 3.7: Schematic layout of the cold time-of-flight spectrometer IN6
at ILL [22]. The four possible positions of the secondary spectrometer are
indicated by the four openings of the monochromator shielding (blue).

TOFTOF

In contrast to IN6 the “TOFTOF” time-of-flight spectrometer installed at the
FRMII in Munich is a TOF-TOF spectrometer. In total seven choppers are
used to monochromatise the beam of cold neutrons [23]. The elastic energy
resolution can be varied between about 4 µeV to 3000 µeV. Due to a special
S-shaped neutron guide with an increased reflectivity towards the sample,
the spectrometer provides a high flux and at the same time a good signal
to noise ratio. After interacting with the sample, the scattered neutrons are
detected by 603 3He gas detectors installed 4 m from the sample position.
They cover an angular range from −15° to −140°.

3.6 Energy resolved neutron scattering

A schematic representation of a typical scattering spectrum is shown in fig-
ure 3.8a. Elastic, quasi-elastic and inelastic scattering are presented. The
elastic scattering (∆E = 0) has always a finite width Γres given by the elas-
tic energy resolution of the spectrometer. From the evolution of the elastic
intensity with Q (see figure 3.8b) information about the geometry of the ob-
served motion can be inferred.
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The quasi-elastic broadening with width H1 is caused by diffusive mo-
tions. It can be described by a sum of Lorentzians [24]. According to
the employed model different parameters such as diffusion constants D
or residence times τ can be extracted from the half width at half maximum
(HWHM) of the curve.

Inelastic excitations are generated by e.g. phonons and give rise to a
satellite peak at a given energy value. They are often investigated by three
axis spectroscopy [25] and will not be discussed in detail in this framework.

In the following section more details about elastic (Section 3.6.1) and
quasi-elastic neutron scattering (section 3.6.2) will be given.

3.6.1 Elastic neutron scattering

Elastic incoherent scans as a function of temperature provide a fast way to
characterise average molecular dynamics of the sample, because the elastic
intensity is by far larger than in the quasi-elastic or inelastic regime.
The incoherent intermediate scattering function 3.9b can be rewritten in
terms of the Gaussian approximation [27, 28]. The approximation assumes
that displacement of the atoms around their rest position ~ri(0) is Gaussian.
It yields:

Iinc(~Q, t) =
1
N ∑

i
e−

1
3 Q2〈u2

i 〉 (3.18)

where the displacements ~ui(t) are defined as follows:

~ui(t) =~ri(t)−~ri(0). (3.19)

The intermediate scattering function can be separated into a time-dependent
and a time-independent part [24]:

Iinc(~Q, t) = Iinc(~Q, ∞) + I
′
inc(~Q, t). (3.20)

Fourier transformation of this expression results in:

Sinc(~Q, ω) = S(~Q, 0) + S
′
inc(~Q, ω) (3.21)

with:

S(~Q, 0) = δ(ω)Iinc(~Q, ∞). (3.22)

Hence S(~Q,ω) can again be separated in an elastic and an inelastic con-
tribution. Below the elastic component will be examined in more detail.
After performing the average over i, S(~Q,0) reads:
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S(~Q, 0) ≈ e−
1
3 Q2〈u2〉 (3.23)

The average mean square displacement can be extracted from a linear
fit to the logaritm of S(~Q,0) versus Q2 according to :

〈
u2〉 = −3

∂ ln S(~Q, 0)
∂Q2 . (3.24)

The same formalism is used in small angle scattering and known as
Guinier approximation [29]. The approximation is strictly valid for Q→ 0,
but it was shown, that it hold up to

〈
u2〉 Q2 ≈ 1 [30].

3.6.2 Quasi-elastic neutron scattering

Analysing the quasi-elastic scattering gives a more detailed picture about
the observed dynamics. From the elastic incoherent structure factor (EISF)
the geometry of the motion can be inferred. The theoretical scattering func-
tion Stheo(~Q,ω) reads [24]:

Stheo(~Q, ω) = e−〈x2〉Q2

[
A0(~Q)δ(ω) + ∑

n
An(~Q)Ln(~Q, ω)

]
(3.25)

where e−〈x2〉Q2
is the Debye-Waller factor, representing vibrations. The

delta function δ accounts for dynamics that cannot be resolved by the in-
struments’ resolution. The amplitude A0(~Q) is the elastic incoherent struc-
ture factor (EISF) and contains information about the geometry of the move-
ment. The quasi-elastic contributions are mimicked by a sum of Lorentzian
functions Ln(~Q,ω) and the corresponding quasi-elastic incoherent structure
factors (QISF) An(~Q).

Ln(~Q, ω) =
1
π

Γn(~Q)

ω2 + Γn(~Q)2
. (3.26)

For data analysis the theoretical scattering law Stheo has to be convo-
luted with the instrumental energy resolution, which can be mimicked by
e.g. vanadium:

Smeas(~Q, ω) = Stheo(~Q, ω)⊗ Sres(~Q, ω). (3.27)

Diffusion in a sphere model

For the description of diffusion in confined space, such as hydrogen atoms
in a lipid or in proteins, Volino and Dianoux developed the model of dif-
fusion in a sphere. Here diffusive motion are allowed only inside a sphere
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with radius r and impervious walls [31]. The scattering law can be written
as:

S(~Q, ω) = A0
0(~Q)δ(ω) + ∑

(l,n),(0,0)
(2l + 1)Al

n(~Q)
1
π

λl
nD

πω2 + (λl
nD)2 . (3.28)

The authors found an analytical expression for the EISF, which reads:

A0
0(~Q) =

[
3j1(~Qr)

~Qr

]2

, (3.29)

where j1(x) = sin x
x2 - cos x

x is the first order spherical Bessel function and r
the radius of the sphere, which can be extracted from fitting equation 3.29
to the obtained data. Bellisent-Funel and co-workers [32] expanded the
model for the EISF by an immobile fraction p, where p denotes strongly
bound proton. Equation 3.29 then reads:

A0
0(~Q) = p + (1− p)×

[
3j1(~Qr)

~Qr

]2

. (3.30)

Figure 3.9a shows the HWHM of the quasi-elastic component of the
scattering law as a function of (RQ)2. For continuous diffusion a linear
dependence is expected [24] as drawn in the graph 3.9. However, for small
Q-values (Q < π

r ) Γ tends towards a constant value Γ0, what is a signature
of motion in confinement. Γ is then related to the Diffusion constant D and
the radius of the sphere via:

Γ0 =
4.33D

r2 . (3.31)

Hall and Ross [33] extended this model to a random jump diffusion
within the restricted geometry of a sphere. For small Q-values, it shows
the same behaviour as the diffusion in a sphere model, but for large values
of Q it converges towards the jump-diffusion model introduced by Singwi
and Sjölander [34]. The half width at half maximum can be described by
equation 3.32, where D is the diffusion constant and τ the residence time
between two jumps. τ can be described in the limit of large Q as Γ∞ = 1/τ:

Γ =
DQ2

1 + DQ2τ
. (3.32)

Carpentier model

A modification of the Volino-Dianoux model assumes not only one fix ra-
dius but allows increasing radii for the diffusion volumes of the hydrogen
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atoms along a linear chain (see equation (3.33a)). This model was intro-
duced by Carpentier et al. for the study the dynamics of alkyl chain of
dicopper tetrapalmitate [35] and was already employed to describe the dy-
namics of lipid chains by König et al. [36] and also by Doxastakis et al. [37].
In this case the EISF can be written as:

A0(~Q) =
1
N

N

∑
n=1

[
3j1(QRn)

QRn

]2

(3.33a)

with
Rn =

n− 1
N − 1

× [RN − R1] + R1. (3.33b)

N stands for the total number of hydrogen atoms along a chain and Rn
gives the corresponding radii for the running index n. The line width in
this model shows a similar behaviour as in the case of the “diffusion in a
sphere” model.
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Figure 3.8: Figure 3.8a shows a schematic representation of a scattering
spectrum is shown. Elastic, quasi-elastic and inelastic scattering are indi-
cated (Taken from [26]). The evolution of the elastic peak as a function of Q
is shown in figure 3.8b.
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(a) (b)

Figure 3.9: Schematic representations of the HWHM of the function repre-
senting the quasi-elastic component of the scattering law in the case of the
diffusion in a sphere model (3.9a) [31] and the model introduced by Hall
and Ross (3.9b) [33].
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Chapter 4

The backscattering
spectrometer IN13

The backscattering (BS) spectrometer IN13 was designed in the 1980s at the
ILL for the study of tunnelling effects [38]. The instrument was built in or-
der to achieve a good energy resolution with a large Q-range, as these are
the important characteristics for tunnelling experiments. It also fills the gap
in (~Q, ω) space between the backscattering spectrometers with even finer
energy resolution (IN10 and IN16) and the time-of flight instruments IN5
and IN6. The shorter wavelength allows especially to access a much larger
Q-range compared to a cold instrument. In the case of IN13 a scattering
vector Q of up to 4.9 Å−1 is available.
After redesigning and the installation of some modifications the thermal
neutron backscattering spectrometer IN13 is operated since 1998 by a Col-
laborating research group (CRG) [39]. 50% of the available beamtime is
allocated by the CRG partners (Italy and France) and the other half by the
ILL subcommittees. The CRG time is dedicated to the investigation of dy-
namics of biological systems such as proteins, lipids or whole cells.

4.1 Detailed instrument description

A schematic layout of the spectrometer is displayed in figure 4.1. The in-
strument is situated on the H24 guide of the ILL which is fed with thermal
neutrons coming from the reactor core. The neutrons have a Maxwellian
distribution centered around 2 Å due to the moderator temperature of 300K.
A monochromator made out of CaF2 crystals is employed to extract neu-
trons with a wavelength of 2.23 Å from the guide. For this purpose the (422)
reflection of the crystals is used. Several types of scans can be performed
on the spectrometer. For elastic scans, the energy of the incoming neutrons
is kept fix. To perform inelastic scans, the energy of the neutrons hitting the
sample is changed. This is achieved by heating or cooling the monochro-

33



34 4.1. DETAILED INSTRUMENT DESCRIPTION

Figure 4.1: Schematic layout of the IN13 backscattering spectrometer [40].
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mator, which results in a change of the lattice constant of the monochroma-
tor crystals. To obtain a good energy resolution an almost backscattering
condition is employed already at this stage. With a take-off angle of typ-
ically 1.8° a deflector is needed to deviate the neutrons. For this purpose
an array of nine rows of pyrolytic graphite crystals deflects and focuses the
neutron beam into the secondary spectrometer. To avoid beam loss due to
air scattering (for a flight path of 1 m in air approximately 10% of the neu-
trons are lost) the deflector is housed in a sealed box which is filled with
helium gas. The box is additional faced with cadmium to avoid parasitic
scattering.
The sample is normally contained in a closed cycle cryostat (displex) or
a cryofurnace for temperature control. The displex allows experiments in
a temperature range from 3 K to 550 K. A set of seven analyser crystals
(again CaF2, (422) reflection) installed in perfect backscattering condition
selects the neutrons of the right energy, which pass a second time through
the sample before reaching the detectors. A sample transmissions in the or-
der of 90% or higher avoids that the neutrons are scatterd again while they
pass a second time through the sample. Finally the neutrons are detected
by 35 3He counters and in the small angle region by a Position Sensitive De-
tector (PSD). In order to suppress the neutrons which are scattered directly
from the sample onto the detectors and thus do not fulfil the backscattering
condition and to suppress higher orders of the refelction of the monochro-
mator (λ/2, etc), a chopper is used. Operating at a speed of 6756 rpm, it
chops the neutron beam into discrete packages. Because the velocity of
the neutrons is well-known, a discrimination via the time-of-flight is pos-
sible. Neutrons scattered directly into the detectors are suppressed by the
electronics. Finally only neutrons which were selected by the analysers are
counted, whereas.
Neutrons that pass the sample without being scattered are stopped by a
cadmium coated beam stop, which can be replaced by a monitor to mea-
sure transmission. In total IN13 makes use of two monitors. The first one is
permanently installed in the beam, positioned between chopper and sam-
ple. It is used to normalise the scattered intensity to the incoming flux. It
has a low efficiency in order to keep the impinging flux on the sample as
high as possible. The second one is used to measure transmission and is
mounted on a linear stage after the sample position. During data acquisi-
tion it is moved out of the beam, for transmission measurements it is put
in.

4.2 Instrument development

During my PhD I was also highly involved in the user support, mainte-
nance and running of the IN13 spectrometer. In this section some of the
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recent technical developments are highlighted.

• In order to guide and focus the beam perfectly onto the sample, the
deflector can be moved by five axes. It is mounted on two linear
stages, through which the x- and y-direction can be controlled. Fur-
thermore it can be rotated (ω), tilted (χ) and its curvature can be
changed (ρ) in order to focus the beam on the sample position.
During inelastic scans the temperature of the monochromator is var-
ied in order to change the energy of the incoming neutrons. There-
fore, the deflector has to be moved to the new position of the beam.
Even during elastic scans its position has to be checked regularly and
corrected when needed. This can be necessary when the temperature
of the analyser crystals changes due to environmental reasons. In
this case the temperature of the monochromator is changed while the
temperature of the deflector is kept fixed. Thus a precise positioning
and monitoring of the deflector is essential for the experiment.
The motors performing the motions are controlled by encoders which
allow the absolute determination of the position of the motors. Be-
cause of a malfunction of one of the encoders and aging due to radi-
ation, it was decided to replace all of them. During the work a dis-
placement of the linear stage, on which the deflector is mounted, was
discovered. Thereupon a re-alignment of the complete instrument,
starting with the monochromator became necessary.

Energy [µeV] xDF[mm] yDF[mm] ωDF[°] ωBA[°]

-100 78.20 419.64 45.21 7.11
-50 72.70 414.22 45.28 6.88
-25 69.97 411.52 45.32 6.84
-10 68.32 409.89 45.34 6.84
1.8 67.04 408.62 45.36 6.81
10 66.14 407.72 45.37 6.77
25 64.52 406.09 45.39 6.74
50 61.84 403.41 45.43 6.69

100 56.38 398.03 45.51 6.52

Table 4.1: Deflector positions as a function of energy transfer on IN13.
1.8 µeV corresponds to the elastic position.

During a long shutdown in 2010, in a first step a laser setup was used
to find the optically correct position of the deflector and the corre-
sponding position of the secondary spectrometer. The alignment us-
ing neutrons was done in the beginning of the first cycle 2010. Scans
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of the four axes xDF, yDF, ωDF, ωBA (where ”DF” stands for deflector
and ”BA” for the secondary spectrometer) were performed to find the
position of the maximal flux. First a scan with large step width of the
xDF- and yDF-axis of the deflector was performed in order to locate
the elastic position. These two axes are less sensible to changes than
ωDF and ωBA, as it can be seen from table 4.1. A second scan using
all four axes around the intensity maximum found in the first scan
then allowed to exactly determine the position of the maximal flux.
An example of the scan of xDF and yDF is shown in figure 4.2. The
re-alignment resulted in a gain in flux of about 7%.

• A second improvement was the installation of a new CCD camera
to check the sample alignment [41]. The position of the sample in
the beam has to be verified for every user. In the old configuration a
Polaroid camera was used to verify the sample position with respect
to the beam. Both systems use scintillators to convert neutrons into
photons, which are then recorded either by a photo sensitive chip or
an emulsion. Typical exposure times for the Polaroid camera were in
the order of 5 min whereas with the CCD camera the exposure time
could be reduced to 20 s. Figure 4.3 shows an example where the
length of the sample stick had to be adapted. With the old setup this
simple operation took at least ten minutes whereas it can be done in
less than a minute now. Furthermore, the picture taken can be easily
archived for comparison.

• Finally the development and testing of a high pressure cell dedicated
to biological samples was also part of my work. The cell was orig-
inally designed in the group of M.-C. Bellisent-Funel at the Labora-
toire Léon Brillouin (LLB) in Saclay [42] (see figure 4.4). The pres-
sure cell used in this work was manufactured by J.-L. Laborier and C.
Payre at the ILL. It is made out of an aluminium cylinder (7049T6)
with an inner diameter of 6 mm and an outer diameter of 15 mm,
what leads to a thickness of 9 mm. A piston transmits the pressure
of up to 6.5 kbar (1 bar = 0.1 MPa) with a precision of 3% to the sam-
ple inside. In order to avoid multiple scattering the sample volume
in the beam can be further reduced by an aluminum insert of 4 mm
diameter. The cell has been tested with powder (hydrated lysozyme)
and liquid samples (DMPC in D2O). Some of the results obtained on
DMPC will be presented in more detail in chapter 8.
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Figure 4.2: Wide scan of the x and y axes of the deflector. Figure 4.2a shows
the intensity measured at the position of the monitor 1, 4.2b shows the
summed intensity of all detectors. The sample used, was a 2 mm thick
vanadium reference.
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(a) (b)

Figure 4.3: Example for the adjustment of the length of the sample stick
using the new CCD camera. Picture 4.3a shows the initial position of the
sample with respect to the incident neutron beam. Picture 4.3b displays
the adjusted position. Exposure times were 20 s per image. To visualise the
center of the sample cell a cross made out of cadmium is screwed to the
sample stick.

Figure 4.4: Schematic design of the high pressure cell. The cell can be filled
and emptied via the bottom. To reduce the sample volume, an aluminum
insert can be used.
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Chapter 5

Model lipids

5.1 Historical overview

Biological membranes are complex systems containing not only different
kinds of lipids, they incorporate also membrane proteins, membrane ac-
tive molecules such as, e.g., cholesterol or ethanol etc. The membrane com-
position varies not only from organism to organism but it differs also for
different organelles. A myelin membrane contains about 80% lipids and
20% proteins, whereas the mitochondrial inner membranes contain about
75% proteins and only 25% lipids.

Figure 5.1: Schematic composition of a membrane containing lipids, pro-
teins and other molecules [43].
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The exact knowledge about membrane structure is not very old and it
turned out that it was not an easy task to come to this picture. The first
time an existence of a plasma membrane was proposed was in 1877 by
Pfeffer [44]. The bilayered structure was introduced by Gorter and Gredel
in 1925 [45]. But it took until 1972 to come to a more complete picture
when Singer and Nicolson [46] suggested in their fluid-mosaic model that
proteins are not simply bound to the membrane, but that they can also
be incorporated in it. To account for mismatches within the lipid bilayer
caused by lipids with different chain length or by lipid protein interactions,
Mouritsen and Bloom proposed a modified version of the Singer model, the
mattress model [47]. Here interfacial tension can lead to a deformation of
the bilayer and to the aggregation of lipids of a similar kind. A schematic
assembly of a membrane and its components is shown in figure 5.1.
Even if the investigation of membrane dynamics using neutron scattering
started about 15 years ago [36, 48–50], there is still discussion about the
types of motion observed [51]. In recent years not only local dynamics [36,
51] using time-of-flight instruments, but also collective dynamics [25, 52]
using three-axis and spin-echo spectrometers have been studied.

5.2 Model lipid DMPC and its phase behaviour

Phospholipids are amphiphilic molecules, which means they posses both
hydrophobic and hydrophilic parts. In the case of phospholipids the polar
head group is the hydrophilic part and the acyl chains are hydrophobic.
Therefore they tend to form aggregates when inserted into water with the
trend to form larger aggregates at higher lipid concentrations. The first
crystal structure of DMPC, the lipid used in this work, was published in
1979 [53].

As a function of shape, temperature and concentration they can form
different kinds of phases, such as micelles, lamellar, cubic or hexagonal
phases. In the following description we will concentrate on the lamellar
phases. Depending on the sample preparation they were employed as ori-
ented bilayers (when prepared on a solid support 5.3.1) or vesicles, which
can be subdivided into unilamellar (formed out of only one bilayer) or mul-
tilamellar (made out of several bilayers). Below, the different phases are
described in more detail and displayed in figure 5.2. Phase transitions can
be determined e.g. by calorimetric measurements, the corresponding data
for DMPC are shown in figure 5.5.

• Lβ′ phase: In this so called ’gel’ phase the lipid chains are ordered in
the all-trans configuration. The prime indicates that the alkyl chains
are tilted with respect to the bilayer normal, in the case of DMPC an
angle of about 30° is observed. The high degree of chain order leads to
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Figure 5.2: Schematic representation of the different phases that occur as
a function of temperature [54]. The higher the temperature, the higher the
chain disorder. Transition temperatures are given for protonated DMPC.

a quasi-crystalline order. This order can be recognised in the neutron
data by the appearance of a coherent peak. This quasi-Bragg peak at
Q=1.48 Å−1 corresponds to the inter-chain distance of about 4.25 Å in
real space.

• Pβ′ phase: the ’ripple’ phase. This phase is formed prior to the main
phase transition. It exhibits one dimensional ripples on the mem-
brane surface.

• Lα phase: the liquid-disordered or fluid phase. The long-range in-
plane order is lost. Due to the disorder of the lipid chains, the quasi-
Bragg peak caused by the chain ordering vanishes. This effect can be
used for determination of the temperature of the main phase transi-
tion TM.

Generally speaking the degree of chain ordering gets lower as you go
through the different phases starting with the low temperature Lβ′ phase.
Figure 5.3 shows the phase behaviour of DMPC which was used in this
study as a function of temperature and hydration.
The transition temperature shifts with increasing chain length to higher
temperatures and can be approximated linearly. Table 5.1 gives values for
TM for some common lipids. The lower TM for the deuterated lipids was
associated by Guard-Friar and coworkers to a lower degree of ordering in
the gel phase of the deuterated hydrocarbon chains [56].

During this work two kinds of DMPC were used for experiments: fully
protonated DPMC and chain deuterated DMPC-d54 (see figure 5.4). Both
coherent and incoherent scattering lengths for the two species are found
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Figure 5.3: Phase diagram of DMPC as a function of temperature and rela-
tive humidity [55].

Lipid chain length TM [K]

DMPC 14:0 296.75
DMPC-d54 14:0 293.30
DPPC 16:0 314.45
DPPC-d62 16:0 310.27
DSPC 18:0 327.85
DSPC-d70 18:0 323.67

Table 5.1: Transition temperatures TM of some common lipids. Values for
the protonated lipids are adapted from [54]. The chain deuterated lipids are
marked as “-d” where the number indicates the total number of deuterium
atoms present in both alkyl chains. TM for the chain deuterated lipids are
taken from [56].
Note that there is a shift of 3-5 K for the deuterated lipids. This shift was
associated by Guard-Friar et al. [56] with a less well ordering of the chains
in the gel phase in the case of chain deuterated lipids compared to their
nondeuterated counterparts.
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in table 5.2. The experiments done with DMPC-d54 are described in the
chapters 6 and 7, fully protonated DMPC was used for the high pressure
studies presented in chapter 8.

σcoh [barn] σinc [barn]

DMPC 373.97 5779.98
DMPC (tails)

239.34 4315.17
(H54C26)
DMPC (head group)

135.32 1445.38
(C10H18NO8P)
DMPC-d54 (tails)

446.29 110.73
(D54C26)
DMPC-d54 total 581.61 1556.11

Table 5.2: Scattering lengths σ for fully protonated DMPC and chain deuter-
ated DMPC-d54. The head group comprises the choline and phosphate
groups as well as the glycerol backbone. The chain includes the CD2 and
CD3 groups.

5.3 Sample preparation

5.3.1 Oriented samples

The chain deuterated lipids were purchased from Avanti Polar Lipids (Al-
abaster, AL., USA) and used without any further purification. The DMPC
powder was dissolved in a 3:1 chloroform-trifluoroethanol (TFE) mixture
[59]. This solution was kept at −20 ◦C overnight and then sprayed onto
cleaned Si-wafers. The wafers were purchased from Siltronix, Archamps,
France. Its specifications are listed in table 5.4. Each Si-wafer was cut to
a size of about 30 mm x 40 mm to fit perfectly the dimensions of the IN13
sample holders. The sample holders are made out of aluminium and were
coated with 0.5 µm gold and 3 µm nickel to avoid chemical interacting be-
tween the holder and the sample. About 30 mg of lipid was deposited on a
single wafer. After the preparation the wafers were dried for two days in a
desiccator.

The samples were rehydrated from pure D2O or saturated salt solutions
at 40 ◦C. The corresponding relative humidities can be found in table 5.3.
Each sample was made out of six such wafers, to achieve a sample amount
of about 200 mg per sample. In order to reduce contact with the sample
holder to a minimum, the wafers are inserted into the holder in a way that
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(a)

(b)

Figure 5.4: Schematic structure of the both types of DMPC employed in this
work. Fully protonated DMPC is shown in figure 5.4a, chain deuterated
DMPC-d54 in figure 5.4b, respectively. Both pictures are taken from [57].

salt relative humidity max. dissolved salt
[%] [g/100 g H2O]

K2SO4 96 14.8
KCl 82 40.3
NaCl 75 36.4

Table 5.3: Salts used for rehydration. All values are given for a temperature
of 40 ◦C.

the sprayed sides face each other. After closing the sample holders, the
weight of both samples was monitored. No mass loss was observed after
the experiments.

5.3.2 DMPC in solution for the high pressure experiments

When applying high pressure to the membranes, oriented sample can no
longer be used, simply because the silicon wafers will not support the high
pressure and break. Therefore the samples for the high pressure investi-
gation of the dynamics of DMPC cannot be prepared on silicon wafers but
have to be in solution.
For the high pressure experiments completely protonated DMPC purchased
at Lipoid (Ludwigshafen, Germany), was used. To avoid water inclusions
in vesicles formed during the preparation, DMPC powder was hydrated
from D2O vapor pressure at 40 ◦C for two days. To ensure a fully hydrated
sample, additional heavy water was added when filling the sample holder
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Figure 5.5: Calorimetric melting profile of DMPC [58]. Here, the heat capac-
ity ∆cp as a function of temperature is shown. It increases slightly around
287 K at the pretransition from the gel phase to the ripple phase. Around
297 K ∆cp shows a drastic and sharp increase due to the main phase transi-
tion from the ripple to the liquid-disordered phase.

Diameter 3 inch
Orientation <111>
Thickness (380± 25)µm
Doping N-Phos
Resistivity > 10 Ω
Surface polished one side

Table 5.4: Characteristics of Si-wafer.
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for the high pressure experiments.



Chapter 6

Elastic measurements

Native biological systems are always found in aqueous environments. There-
fore, it is not surprising that dynamics of such systems are influenced by
the hydration level, as it has been confirmed by several neutron scatter-
ing studies [6, 60–64] and molecular dynamics (MD) simulations [65–68].
A dynamical transition for proteins appears around 200 K. This marks the
crossover from a regime in which only vibrational motions of the atoms,
around their stationary position, are observed to a regime where anhar-
monic motions emerge. Below a certain level of hydration (typically 0.2-0.4
g water/g protein) corresponding to one complete water layer bound to the
protein surface, the protein shows no dynamical transition and as a conse-
quence does not become active [6].
In the case of membranes a transition due to the structural transition into
the liquid-crystalline Lα phase is observed (cf chapter 5). Depending on
the chain length and the degree of hydration of the lipid it occurs around
room temperature or even higher temperatures [54]. In contrast to pro-
teins where the hydration of individual amino acids allows local motions of
the protein, in phospholipid bilayers only the hydration of the hydrophilic
head group triggers the dynamic response of the hydration shielded hy-
drophobic alkyl chains, due to the increased surface available with increased
hydration. For membranes a shift of the main phase transition to higher
temperatures with decreasing water content is already known for quite
some time [55]. In recent years numerous neutron scattering studies of
membrane dynamics focused on highly hydrated samples [36, 48, 69, 70],
but only a few of these studies took hydration effects explicitly into consid-
eration, e.g., König et al. [48].
In the following chapters the investigation of the influence of hydration on
the dynamics of model membranes by elastic incoherent (EINS) (chapter
6) and quasi-elastic (QENS) (chapter 7) neutron scattering is discussed in
more detail. Dynamics in such lipid systems span a large range in time and
space and have been investigated not only by neutron scattering [25, 36,

49



50 6.1. SAMPLE CHARACTERISATION AT D16

48, 52, 69], but also by nuclear magnetic resonance (NMR) [50, 71], inelas-
tic x-ray scattering [72], dielectric spectroscopy [73], differential scanning
calorimetry (DSC) [74], dynamic light scattering (DLS) [75], single parti-
cle tracking [76] and other methods. In addition to the experimental re-
sults there are also simulations dealing with membrane dynamics avail-
able [65–68]. To mimic membrane behaviour in biological systems the fully
hydrated state is the one of interest because this resembles physiological
conditions. On the other hand also the dried state is of interest, e.g. for
food science [37]. Therefore an exact knowledge of the hydration and the
resulting dynamics of the investigated sample are crucial for the under-
standing of the system.

6.1 Sample characterisation at D16

In this section the characterisation of the DMPC-d54 multilayer samples
at the small momentum transfer diffractometer D16 (see figure 6.1) for the
elastic measurements performed on IN13 is described.
D16 is situated, like IN16, on the H53 guide of the ILL. Via a focusing py-
rolytic graphite monochromator two wavelengths (4.7 Å or 5.6 Å) can be
selected. A beryllium filter is used to eliminate higher orders and a set of
slits to adapt the beam size to the individual sample size is available. The
diffracted neutrons are recorded with a two dimensional area detector.
As mentioned in chapter 3, structural information about the sample can
be extracted from diffraction data. From the scattering angle θ, the wave
vector transfer Q can be calculated following eq. 6.1 (λ being the incident
wavelength and θ the scattering angle).

Q =
4π

λ
sin(θ). (6.1)

Combining equation 6.1 with Bragg’s law (eq. 3.13) leads to:

d =
2π

Q
. (6.2)

where d stands for the atomic distance corresponding to a given Q-
value.

In the case of solid supported membranes, the characteristic repeat dis-
tance d of the bilayers and the alignment of the multilayer with respect to
each other were checked. The first can be done by scanning the scattering
angle θ (θ - 2θ scan). From the positions of the Bragg peaks in reciprocal
space the repeat distance can be calculated using equation 6.2. As the re-
peat distance depends on the hydration, the degree of hydration can be
extracted from this value [78].
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Figure 6.1: Schematic layout of the small momentum transfer diffractome-
ter D16 at ILL [77].

The mosaic spread can be deduced from a rocking scan where the sample
is rotated with respect to the incoming beam (ω-axis). From the full width
at half maximum (FWHM) of the first order Bragg reflections the mosaic
spread of the samples was calculated. The mosaic spread is an indication
of the relative orientation of the membranes. A typical value of the mosaic
spread for solid supported membranes is in the order of 1° or less.
With this two methods a d-spacing of 62.5 Å and a mosaicity of (0.22± 0.02)°
(FWHM) were found for the sample hydrated from pure D2O. In the course
of this work, it will be referred to as the "higher hydrated sample".
The sample hydrated from saturated salt solution (D2O + NaCl) showed a
d-spacing of 54.9 Å and a mosaic spread of (0.25± 0.02)°. It will be referred
to as "less hydrated sample".
Comparing the measured values with the values obtained by Kucerka et al.
using X-ray diffraction [78], the hydration of the first sample corresponds
to a fully hydrated sample. The latter one corresponds to the hydration
used by Rheinstädter et al. for their investigations of collective membrane
dynamics e.g [25, 79].
Figures 6.2a and 6.2b show the fits to evaluate the mosaic spread. The θ-2θ
scans for the evaluation of the repeat distance are shown in figures 6.3a and
6.3b. The incident wavelength for these measurements was λ = 4.75 Å.

6.2 Elastic measurements at IN13

A detailed description of the instrument can be found in chapter 4. Trans-
mission for both samples was measured and found to be in the order of
90%, so multiple scattering effects were not taken into consideration for the
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(a) Higher hydrated DMPC-d54 sample. The sample contains about 12 water
molecules per lipid.
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(b) Less hydrated DMPC-d54 sample. The sample contains approximately 9 water
molecules per lipid

Figure 6.2: Rocking scans of the fully hydrated sample (6.2a) and the less
hydrated sample (6.2b) of DMPC-d54 oriented on silicon wafers, respec-
tively. In red Lorentzians fits to the data are shown, in blue Gaussian fits.
For the evaluation of the repeat distance and the mosaic spread, the values
obtained with the Lorentzian fit curve have been used.
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data treatment. For both samples fixed energy window (FEW) scans were
recorded in the temperature range between 250 K and 310 K in steps of 5 K
to cover both the phase transition from the lamellar gel to the fluid phase
at 295 K and also the transition from the gel to the crystalline phase around
285 K. Special care was taken for the sample alignment so that the scatter-
ing vector ~Q at the lipid peak maximum lies in the plane of the membrane
bilayers for the parallel orientation. Using equation 6.1 the corresponding
angles of 75° and 165° with respect to the incoming beam were calculated
for the parallel and perpendicular orientation of the scattering vector to-
wards the membrane surface, respectively.
Strictly speaking the terms “parallel” and “perpendicular” are only true for
these particular values, nevertheless we are using these designations in the
course of this work to distinguish the orientations where these alignments
are best visible. Both orientations ~Q|| and ~Q⊥ to the membrane surface
were measured, but we focused on the parallel orientation (2θ = 75°) in or-
der to investigate the in plane diffusion. Three hours per temperature were
measured to favor good data statistic collection for this orientation. For the
perpendicular orientation the acquisition time varied between 45 minutes
and one hour (at higher temperatures in particular). For data correction
purposes an empty cell, a cell with six cleaned wafers and for normaliza-
tion a 2 mm Vanadium sample were measured. The data evaluation was
carried out using the LAMP software available at ILL [80].
Normalised intensities as a function of Q for both orientations are shown
in figure 6.4. Here the clear difference between the two orientations is ob-
vious. The quasi-Bragg peak arising from the ordering of the alkyl chains
is clearly visible in the parallel setup (figure 6.4a), whereas in the perpen-
dicular orientation (figure 6.4b) ordering out of the plane is probed and
therefore the peak around 1.5 Å−1 is no longer observed.

6.2.1 Results and discussion

Figure 6.5 shows the normalized summed intensity taken on IN13 (Q-range:
0.19 Å−1 < Q < 1.67 Å−1) as a function of temperature for both samples.
The representation of the data offers a simple and model-free approach to
detect transitions as changes in the elastic intensity decay [81]. In the cho-
sen setup, the influence of the coherent scattering coming from the chain
ordering is mainly seen in the parallel orientation. Summed intensities are
then shown only for the parallel orientation. The phase transition for the
fully hydrated sample is found to lie around 294 K which coincides very
well with the value of 293.30 K found by Guard-Friar et al. [56] by differ-
ential scanning microcalorimetry for DMPC-d54. Whereas for the less hy-
drated sample a transition temperature around 298 K is found.
It is known from e.g. FTIR spectroscopy [82] that dehydration increases
the transition temperature. Following the procedure used by Pfeiffer et
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(a) Higher hydrated DMPC-d54 sample.
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(b) Less hydrated DMPC-d54 sample.

Figure 6.3: θ-2θ scans of the two samples. From the peak position the repeat
distance of the bilayers was calculated using equation 6.2.
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al. [83] we estimated the water content from the shift of the main phase
transition temperature. We can extract the parameter RW=nW/nA where
RW expresses the molar ratio of water (nW) and amphiphile (nA) [82, 83].
The calculated RW for the fully hydrated sample is RW ≈ 12 and RW ≈ 9
for the less hydrated sample. Pfeiffer et al. find for DMPC multilayers a
value of RW ≈ 12 for fully hydrated membranes [83]. Therefore the elastic
measurements on IN13 provide a solid basis to characterize the system for
the quasi-elastic experiment at TOFTOF. The quasi-elastic experiments will
be described in more detail in chapter 7.
Due to the coherent scattering arising from the ordering of the lipid chains
below the main phase transition and the relatively broad Q resolution of
IN13 only three detectors were left to evaluate the mean square displace-
ments (msd) [28], therefore, it was not possible to obtain msd’s with rea-
sonable error bars. A detailed comparison between mean square displace-
ments and summed intensities for DMPC can be found elsewhere [84].

6.3 Elastic measurements at IN16

Because it was not possible to extract mean square displacements from the
elastic scans on IN13, another set of measurements on the IN16 backscat-
tering spectrometer, where more detectors in the low Q-range and a higher
flux are available, was performed. This time two hydration levels that were
different from the ones used on IN13 and TOFTOF were used. For the sam-
ple rehydration saturated salt solution made out of D2O + K2SO4 and D2O
+ KCl, resulting in relative humidities of 96 % and 82 %, respectively (cf
table 5.3). As for the previous experiment also in this case the level of hy-
dration, the mosaicity of the 1D lamellar order and the evolution of the re-
peat distance (d-spacing) of the bilayers with temperature were checked by
neutron diffraction measurements on the small momentum transfer diffrac-
tometer D16 [77]. After heating to 330 K to allow annealing of defects, scans
were performed to obtain the repeat distance of the membranes at three dif-
ferent temperatures, namely 330 K, 310 K and 280 K. During the tempera-
ture changes data were taken to identify the temperature of the main phase
transition. An example of the evolution of the d-spacing with temperature
is shown in figure 6.6a.

Elastic temperature scans in the range of 280-330 K were performed on
the cold neutron backscattering spectrometer IN16 at ILL at an energy reso-
lution of ∆E = 0.9 µeV (full width half maximum) and an accessible Q-range
of 0.19-1.93 Å−1 [20]. The investigated temperature range covers both the
main phase transition from the Pβ ripple to the liquid-crystalline Lα phase
which occurs around 297 K for DMPC at full hydration and also the pre-
transition from the Lβ gel phase to the Pβ ripple phase about 10 degrees
below the main phase transition. Special care was taken on the orienta-
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(a) Parallel orientation ~Q||. Triangles represent data taken in the Lβ′ at 280 K, circle
data in the Lα phase at 300 K. The higher hydrated sample is drawn in red, the less
hydrated in blue.
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(b) Perpendicular orientation ~Q⊥. Again triangles show data recorded in the Lβ′ at
280 K. The data in the Lα phase are given for the higher hydrated sample at 300 K,
for the less hydrated sample at 305 K. The higher hydrated sample is drawn in red,
the less hydrated in blue.

Figure 6.4: Normalised elastic intensities for both DMPC-d54 samples un-
der investigation in the parallel (6.4a) and perpendicular (6.4b) orientation.
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Figure 6.5: Summed intensities for both samples DMPC-d54 in the parallel
orientation measured on IN13. Used Q-range: 0.19 Å−1 < Q < 1.67 Å−1.

tion of the sample to probe motions around the chain correlation peak at
Q=1.48 Å−1 parallel and perpendicular to the membrane surface. Via the
relation 6.1 the angle of the sample with respect to the incoming beam was
calculated to be 135° for the orientation parallel to the membrane surface
and 45° for the perpendicular orientation, respectively. From the obtained
data an empty cell was subtracted and the data were normalised by the
scattering of a 1mm Vanadium sample.
Figure 6.7 (using the left y-axis) shows the summed elastic intensities mea-
sured for the parallel orientation at 135° with respect to the incoming beam
for the two samples on IN16. At the temperature of the main phase transi-
tion a drastic decrease in the elastic intensity occurs. The phase transition
temperature moves to higher temperatures for the sample with lower wa-
ter content.
In order to compare the results obtained from the mean square displace-
ment (using the right y-axis in figure 6.7) with the summed elastic intensi-
ties, the intensities shown in figure 6.7 (using the left y-axis) were summed
over the same Q-range (0.43 Å−1 ≤ Q ≤ 1.16 Å−1) which was used in the
evaluation of the msd’s. The effect is stronger for the summed intensities
due to adding up the signals from all detectors in the used Q-range. From
hydration dependent studies of e.g. bacteriorhodopsin [55] it is known that
with increasing hydration the msd’s show a steeper slope only at high rel-
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(a) DMPC-d54 sample hydrated from D2O + K2SO4.
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(b) DMPC-d54 sample hydrated from D2O + KCl.

Figure 6.6: θ-2θ data taken on D16 at ILL. Data for both samples are shown
for three different temperatures: 280K (black), 310K (red) and 330K (green).
The less hydrated sample (6.6b) shows no change of the lamellar d-spacing
below 310 K, whereas a continuous change is observed for the higher hy-
drated sample 6.6a.
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ative humidities in contrast to proteins where a steady rice of the msd is
observed [28].

6.3.1 Results and discussion

From the shift of the main phase transition temperature to higher temper-
atures with decreasing water content (see section 1 and figure 1 in [5]), it is
possible to evaluate the water content between the phospholipid surfaces.
We can extract the parameter RW=nW/nA where RW expresses the molar
ratio of water (nW) and amphiphile (nA) [82, 83]. The calculated RW for the
higher hydrated sample is RW ≈ 6 (transition temperature: 305 K) and RW
≈ 4 for the less hydrated sample (transition temperature: 310 K). A values
of RW ≈ 12 was found by Pfeiffer et al. for DMPC multilayers for a fully
hydrated sample [83].
To characterise the local dynamics from the elastic neutron scattering in-
tensity, the so called atomic mean square displacements (msd) <u2> were
calculated. The elastic scattering function S(Q, ω=0) can be approximated
by S(Q, ω=0) ≈ exp(-<u2>Q2/3), as explained in section 3.6.1. From the
slope of a linear fit to the logarithm of the normalised data as a function
of Q2 the <u2> were extracted. Below the temperature of the main phase
transition, coherent scattering arising from the ordering of the alkyl chain,
gives rise to the so called "chain correlation peak" around a characteristic Q
value of 1.48 Å−1. Therefore the fit range was limited to 0.18-1.33 Å−2 in our
data analysis. As shown in figure 6.7 (using the right y-axis) the <u2> show
transitions at 305 K and 310 K for the higher and lower hydrated sample, re-
spectively. At first sight the evaluated mean square displacements are very
large above temperature of the main phase transition, but <u2> in the same
order of magnitude have been observed in a previous study which aimed
to investigate the influence of the myelin basic protein (MBP) on the dy-
namics of model membranes (DMPA in this study) [85].
A recently published molecular-dynamics simulation performed on fully
hydrated DMPC bilayers in the Lα phase (at 303 K) also shows very large
<u2> at this temperature, even larger then the two partially hydrated sam-
ples used in our study [86]. Hence we attribute the difference in the values
of the mean square displacements to the different hydrations of the sam-
ples, ranging from the highest <u2>-value for the simulation (≈ 8 Å2 for
the centre of mass) to the sample with the lowest hydration of RW ≈ 4 (≈
1.5 Å2). The authors differentiate three different diffusion regimes in time:
1. a ballistic region where <u2> ≈ t2; 2. a subdiffusive domain where <u2>
≈ tβ with β < 1 and 3. a domain of Fickian diffusion with <u2> ≈ t. Ac-
cording to this simulation, the time window of IN16 of about 700 picosec-
onds probes length scales in the subdiffusive regime. A detailed analysis
of quasi-elastic data taken on IN13 in both the Lβ gel and liquid-crystalline
Lα phase is still in progress [87].
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Figure 6.7: Summed elastic intensity (Q-range: 0.43-1.16 Å−1) measured
at 135° (left y-scale, filled squares RW ≈ 4, empty circles: RW ≈ 6) and
mean square displacements <u2> (right y-scale, filled diamonds RW ≈ 4,
empty triangles: RW ≈ 6). Drawn lines are guides to the eyes to follow
the evolution of the mean square displacements. Data taken on the cold
neutron spectrometer IN16 at ILL (energy resolution: 0.9 µeV). Intensities
are normalised to the lowest temperature.

Rheinstädter et al. [79] analyzed the elastic intensity at various Q-values
of DMPC to map out the transition of the different molecular components
from immobile to mobile as a function of temperature. The effect of hy-
dration on the membrane dynamics was neglected in their analysis. Our
study reveals the strong influence hydration has on the membrane sys-
tems, not only on the structure but also on the dynamics. Similar to hy-
drated protein powders also phospholipids show a dynamic transition in
the mean square displacements <u2> and a shift of the temperature of the
main phase transition depending on their hydration. The transition for pro-
teins occurs around 200 K and is often called "dynamical transition" [9]. In
the case of membranes this transition is due to the structural transition into
the liquid-crystalline Lα phase at 297 K. In contrast to proteins were the
individual amino acid is hydrated to allow local motions of the proteins in
phospholipid bilayers only the hydration of the hydrophilic head group of
the phospholipid triggers the dynamic response of the hydration shielded
hydrophobic alkyl chains. In conclusion special care should be taken for
the hydration control to avoid a mixing of effects, which could be partly
due to the hydration state of the sample.



Chapter 7

Quasi-elastic measurements

7.1 Sample characterisation at TREFF

The same two samples used for the elastic measurements in May 2008 at
IN13 (see chapter 6) were used for the measurements at the time-of-flight
instrument TOFTOF. In the time between the two measurements the sam-
ples were kept in a cold room at 8 ◦C. To see if the two samples kept their
good alignment, diffraction data was taken at the TREFF diffractometer at
FRM II (see figure 7.1). The higher hydrated sample showed a lamellar
d-spacing of 62.96 Å, which reproduced the values calculated from the ear-
lier measurements at D16 (see section 6.1). The mosaicity of this sample
was 0.1°. With 52.25 Å the d-spacing of the less hydrated sample was 2.6 Å
smaller then during the elastic measurements on IN13. The mosaicity for
this sample was also 0.1° (This value of 52.25 Å corresponds to the value of
53 Å of the sample used by Rheinstädter et al. [25]). Fits for the diffraction
data is shown in figures 7.2a and 7.2b.

7.2 The measurement

Quasi-elastic neutron scattering experiments (QENS) have been performed
on the same samples at the time-of-flight spectrometer TOFTOF [23] at the
Munich research reactor FRM II in Garching, Germany. Other results ob-
tained on of the spectrometer in the field of membrane biophysics can be
found in e.g. Busch et al. [51]. The incident wavelength was set to λ=6 Å,
the chopper speed to 12000 rpm, resulting in an energy resolution of the
elastic line of 56 µeV (FWHM of the elastic line). The setup was chosen
in order to compare the results with previous measurements obtained by
another group [36]. Both samples were measured in a temperature range
from 278 K to 298 K to cover both phase transitions, the pre-transition from
the Lβ gel phase to the Pβ ripple phase at 285 K as well as the main phase
transition from the Pβ phase to the Lα liquid phase at 295 K [55]. Spectra

61



62 7.3. RESULTS AND DISCUSSION

Figure 7.1: Setup of the diffractometer TREFF at FRM II.

were taken every 5 K. The measuring time per temperature was five hours.
All samples, including a 1.5 mm vanadium sample and a sample holder
with six empty wafers and pure D2O needed for corrections, were mea-
sured in one orientation (at 45° with respect to the incident beam), only.
The D2O hardly contributes to the scattering signal of the empty cell at this
wavelength as it was shown by Busch et al. [51], therefore the empty cell
scattering can be subtracted from the sample signal. In the case of 2θ =
45°, ~Q is mainly parallel to the membrane surface at the alkyl chain corre-
lation peak position (Q=1.48 Å−1) for low energy transfers. Earlier QENS
experiments on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) [36]
observed no significant differences in the elastic incoherent structure fac-
tor (EISF) for ~Q oriented parallel or perpendicular to the membrane sur-
face in this time window. This fact was confirmed by our elastic data,
and consequently the QENS data were recorded only for the parallel ori-
entation. From the measured spectra the scattering of the empty can was
subtracted, then they were normalized to vanadium and transformed into
(Q,E)-space. The data were binned into 15 groups with Q ranging from
0.44 Å−1 to 1.56 Å−1. Data reduction was performed with IDA package
available onsite [88], data analysis was done using the PAN package from
DAVE software [89].

7.3 Results and discussion

A detailed description of the analysis of quasi-elastic neutron scattering
data can be found in Bée [24]. For applications in the context of lipid dy-
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namics see e.g. Busch et al. [51] and for water dynamics in lipid systems
e.g. Swenson et al. [90].
The obtained data are a convolution of the theoretical scattering law Stheo(~Q,ω)
and the instrumental resolution Sres(~Q,ω) given by a measured vanadium
sample (cf equation 3.27). The theoretical scattering law can be expressed
by a delta function for the elastic contribution and a sum of Lorentzians
for the quasi-elastic contributions coming from the dynamics of the inves-
tigated sample [24]. It is shown in equation 3.25. In our study, an elastic
peak and two Lorentzian functions (narrow and broad components) were
necessary to reasonably fit the obtained data. In figure 7.3 the fits to the
data are shown for two Q values. S(~Q,ω) can be written as shown in equa-
tion 3.25 with n = 2.
Keeping in mind that chain-deuterated lipids were used in our experi-
ments, the narrow and the broad Lorentzians were associated with slow
and fast motions of the head groups, respectively. The geometry of the mo-
tion can be extracted from the elastic incoherent structure factor (EISF) as
defined in equation (7.1)

EISF(~Q) =
A0(~Q)

A0(~Q) + A1(~Q) + A2(~Q)
. (7.1)

For both samples the EISF does not decay to zero for large Q-values,
which indicates an immobile fraction in the examined time-space window.
Two different models were applied to fit the EISFs. First we used the "diffu-
sion in a sphere" model introduced by Volino and Dianoux [31], where free
diffusion in the restricted volume of a sphere is permitted. Bellissent-Funel
and co-workers [32] established as an addition to this model an immobile
fraction. Here p and (1 − p) denote the populations of hydrogen atoms
that appear immobile and mobile in the observed space and time window,
respectively. The corresponding EISFs are described by equations 3.29 and
3.30.
A modification of the Volino-Dianoux model allows increasing radii for
the diffusion volumes of the hydrogen atoms along the head group (see
equation (3.33a)). This model was introduced by Carpentier et al. for the
study of dicopper tetrapalmitate [35] and is described by equations 3.33a
and 3.33b. N stands for the total number of atoms in the chain to which hy-
drogen atoms are bound (in the case of this study N=3). The index n starts
with the carbon atom the closest to the oxygen of the phosphorus group
which connects the lipid chains with the head group and ends with the
nitrogen of the choline group (see fig. 5.4). Rn gives the radius of the dif-
fusion volume for the corresponding hydrogen atoms. In equation (3.33b)
linear increasing radii are assumed. It turned out during the fitting proce-
dure that the choice of N=3 yields physically reasonable results, whereas
for values bigger than N=3 the radius for R1 became negative.
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(a) Higher hydrated sample with a repeat distance of 62.96 Å and a mosaic spread
of 0.1°.
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(b) Less hydrated sample with a repeat distance of 52.25 Å and a mosaic spread of
0.1°.

Figure 7.2: Rocking scan of the two DMPC-54 samples measured at TREFF
(FRMII). The samples were exactly the same samples used for the experi-
ments on D16 and IN13 and described in chapter 6.2.
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Around 1.48 Å−1 the coherent scattering rising from the ordering of the
lipid chains, the so called "chain correlation peak", is clearly visible. To ex-
clude its influence on the EISF fits, the fit range was restricted to a range
of 0.44 Å−1 < Q < 1.32 Å−1. Figures 7.4a and 7.4b show the obtained data
for two temperatures, one below (278 K) and one above (298 K) the main
phase transition for the fully hydrated sample and the less hydrated sam-
ple, respectively. Fits corresponding to the diffusion in a sphere model are
shown as solid blue lines, the Carpentier model as dashed green lines. In
the case of the less hydrated sample the diffusion in a sphere model fits the
data sufficiently well within the experimental errors, leading to values of
a = (2.64± 0.10)Å and a = (2.91± 0.06)Å for the radii at 278 K and 298 K,
respectively. For the higher hydrated sample the simple model of diffu-
sive motion in a sphere is not longer sufficient. Here the Carpentier model
gives definitely better results, especially at higher temperatures. In the Lβ
gel phase at 278 K the fits result in values of Rmin = (0.36± 0.04)Å for the
displacement of the proton bound in the methylene groups near the phos-
phorus atoms of the lipid and of Rmax = (5.05± 0.06)Å for the hydrogens
of the methyl groups in the choline group. At 298 K in the liquid Lα phase
corresponding values of Rmin = (1.14± 0.03)Å and Rmax = (6.42± 0.11)Å
were obtained. The fact that the EISF is not going to zero for large Q-values
is an indication that not all of the protons take part in the movements ob-
served in the chosen time-space window of the experiment, as it has been
seen e.g. for protein-membrane complexes [85, 91]. However for a detailed
investigation a broader Q-range would be preferable to clearly distinguish
trends. In this context we want to emphasize that both employed mod-
els have only two fit parameters, namely in the case of the diffusion in a
sphere model the radius a and the immobile fraction p, and in the Carpen-
tier model the first radius R1 and the last radius RN . We tried also to fit
other models to the EISF (with more than two fit parameters) which are
often used to analyze methyl group reorientation because of the three head
group methyl groups. Namely the threefold jump model [24] and a variant
of this model (applied to the methyl reorientation on trimethyloxosulpho-
nium [92]) have also been fitted to the data, but they do not sufficiently well
fit the experimental data (not shown).

Our experiments demonstrate nicely the influence of hydration on the
mobility of the protons. The difference in the EISF values shows a strong
dependence on the level of hydration. For the "diffusion in a sphere" model
the percentage of immobile protons can be inferred directly from the fit pa-
rameter p (see formula 3.30)), in the case of the Carpentier model different
radii for the volume of rotation can be extracted. Thus, for the less hy-
drated sample the values of the strongly bound protons for 278 K amount
to p278 K = (61.9± 1.4)% and p298 K = (42.0± 0.8)% for 298 K, respectively.
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Figure 7.3: Plot of S(~Q,ω) for the higher hydrated sample (RW ≈ 12) at
two discrete Q-values at a temperature of 278 K. The resulting fit is shown
(black line) as well as the single contributions. As blue line the delta func-
tion is drawn, the two Lorentzians are plotted as green and pink lines, re-
spectively.
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Even if the "diffusion in a sphere" model cannot be applied to the higher
hydrated sample, it is already clear from comparing figures 7.4a and 7.4b
that the immobile fraction for the latter sample is lower. With the obtained
results, we are able to directly associate different models of motions to a
given hydration of the lipids.
The line width of the broad Lorentzian is about a factor of ten larger than
the narrow one and it shows Q independent, constant values of Γ for both
hydrations (data shown in figure 7.6), indicating some rotational motions.
As this contribution is so noisy, it will not be discussed in more detail.

Figures 7.5 and 7.7 show the line widths Γ of the narrower Lorentzian
as a function of Q2.

For small Q-values (Q → 0), the data do not go to zero as for free dif-
fusion, then they increase and asymptotically reach a constant value Γ∞
for large Q. A constant value at small Q was assigned by Volino and Di-
anoux [31] to a confinement effect at large radii. A similar behaviour is
assumed and has also been observed by Carpentier et al. [35].
However we find a discrete kink only for the lowest measured tempera-
ture (red points in figure 7.5 and in more detail shown in figure 7.7). At
this temperature the confinement radius Rcon f obtained from the crossover
of the two regimes at a Q2-value of about 0.55 Å−2 following formula 7.2
was calculated to be (4.2± 0.4)Å. This values is in between Rmin and Rmax
obtained from the EISF fits for the corresponding sample at 278 K and there-
fore consistent with these values according to

Q =
π

Rcon f
. (7.2)

No pronounced plateau is visible for higher temperatures, but a Γ which
does not decay to zero for small Q values is still an indication for restricted
motion as it has also been observed for proteins [93,94]. As we find several
radii for the diffusion volumes in the Carpentier model, a superposition
of different kinks leads to the observed behaviour, especially at high tem-
peratures. At larger Q-values, the line width Γ follows the "random jump
diffusion" model [95].
As for the EISF also for the line width the influence of the coherent scatter-
ing arising from the chain ordering around Q=1.48 Å−1 occurs below the
main phase transition, whereas for 298 K the predicted plateau is observed.
Therefore the data are drawn in the same range as for the EISF.

7.4 Conclusions

In this chapter the hydration dependent behavior of model membrane sys-
tems above and below the main phase transition of DMPC with a focus on
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Figure 7.4: Elastic incoherent structure factors for both samples. The low-
est, 278 K (red squares), and highest temperature measures 298 K (black tri-
angles) are shown. Data for the higher hydrated DMPC-d54 sample (RW ≈
12) are given in figure 7.4a, the less hydradted samples (RW ≈ 9) is shown
in figure 7.4b. Fits according to the diffusion in a sphere model (equation
3.30) are shown in blue. The fits corresponding to the Carpentier model
(equation 3.33) are shown as dashed green lines.
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Figure 7.5: Comparison of the line width for the higher hydrated sample for
selected temperatures (278 K (black sqaures), 288 K (red circles) and 298 K
(green triangles)). For the display of the data, the same Q-range was used
as for the EISFs.

the head group motion has been investigated using quasi-elastic neutron
scattering. In contrast to existing studies, hydration effects on the dynamics
of model membrane systems were explicitly taken into account. Therefore,
different models for the motions of the hydrogen atoms in the head group
could be associated to different degrees of hydration. The influence of hy-
dration in the observed time and space window is clearly assigned by the
different models necessary to fit the obtained elastic incoherent structure
factors for the different hydrations and the resulting radii.

7.5 Conclusion en français

Dans ce chapitre, nous avons étudié par diffusion quasi-élastique de neu-
trons le comportement des systèmes modèles de membranes en fonction
de l’hydratation. Nous mesurons au-dessus et en-dessous de la transition
de phase principale de DMPC en mettant l’accent sur les mouvements du
groupe de tête des lipides. Contrairement aux études existantes, les effets
de l’hydratation sur la dynamique des systèmes membranaires modèles
ont été explicitement pris en compte. Par conséquent, des modèles diffé-
rents pour les mouvements des atomes d’hydrogène dans le groupe de
tête pouvaient être associés à des degrés différents d’hydratation. Dans la
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fenêtre espace-temps définie par l’instrument, l’influence de l’hydratation
peut clairement être attribuée aux différents modèles nécessaires à l’affine-
ment des facteurs de structure incohérents élastiques pour des hydratations
différentes et les rayons de confinement qui en résultent.
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(a) Line width of the broad Lorentzian for the higher hydrated sample.
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(b) Line width of the broad Lorentzian for the less hydrated sample.

Figure 7.6: Lorentzian width of the broader Lorentzian. All measured tem-
perature are shown: 278 K (black squares), 283 K (red circles), 288 K (green
triangles), 293 K (dark blue inverse triangles) and 298 K (light blue dia-
monds). The line width is Q independent. Note that line width is also
constant in the investigated temperature range. A further analysis was not
performed, due to the large errors of the obtained values.
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Figure 7.7: Line width of the smaller Lorentzian for the higher hydrated
sample at 278 K. A plateau (marked with a black line) indicating a confine-
ment is observed at small Q-values. For high Q-values the data follow a
behaviour according to equation 3.32 of the random jump diffusion model
(blue curve). Data are fitted up to Q2-values of 1.5 Å−2 to exclude the in-
fluence of the coherent scattering arising from the chain ordering in the gel
phase around 2 Å−2.



Chapter 8

High pressure experiments on
DMPC

In order to establish a complete picture of the energy landscape of the
biomolecule under investigation, as many thermodynamical variables as
possible have to be employed. Besides temperature, which is routinely
used in neutron scattering studies, high pressure opens access to a com-
plementary parameter.
A recent development within our research group was the construction and
testing of a high pressure cell dedicated to biological samples. For several
reasons it was decided to use DMPC as a benchmark in order to test the
performance of the cell. About 200 mg are needed for (in-)elastic neutron
scattering experiments in order to achieve good counting statistics. Due
to constrains resulting from the design of the high pressure cell, an even
higher amount of several hundreds of milligram of specimen are needed
to fill the cell. Because of their large variety of applications not only in re-
search but also for industrial e.g. pharmaceutical and cosmetic industry,
lipids are available in large quantities, therefore they are ideally suited to
test the performance of the high pressure cell.
From a scientific point of view the use of lipids is interesting for two rea-
sons. First, there are already SAXS/SANS experiments showing a shift of
the temperature of the main phase transition of about 22 K per 1000 bar [96],
therefore these experiments can serve as a reference. Secondly, only a few
dynamical studies under high pressure of lipid model systems exist, that
were performed using NMR [97]. No neutron scattering study dealing with
the influence of high pressure on lipid dynamics has been published so far.
Thus already from the first experiments, relevant data can be extracted.
After a general introduction, a brief description of the diffraction experi-
ments performed on D16 are described, followed by a series of EINS mea-
surements done on IN13.
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(b) Radial integrated scattering intensity of a θ-2θ scan at 600 bar.

Figure 8.1: Sample characterisation of DMPC in the excess of D2O at D16.
In figure 8.1a the scattered intensity at atmospheric pressure as a function of
temperature is shown. The phase transitions are clearly visible as changes
of the peak position and hence of the repeat distance of the lipid multilay-
ers. Picture 8.1b shows the scattered intensity at 600 bar.
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8.1 Introduction

About 75% of the marine biosphere lies in the deep sea below 1000 m.
Therefore, it is exposed to 100 bar or higher pressure [98]. In the Mariana
Trench, depth up to 11 000 m, corresponding to 110 bar are reached. In food
industry high hydrostatic pressure (HHP) is used as a nonthermal food
processing technology, whereby foods are subjected to pressure, generally
in the range of 100-600 MPa at or around room temperature [99]. Pressures
between 300 and 600 MPa can inactivate yeasts, moulds and most vegeta-
tive bacteria including most infectious food-borne pathogens. Thus, pres-
sure is a potential alternative to heat pasteurization as pressure leaves small
molecules such as many flavour compounds and vitamins intact [100].
Even if the structure and composition of deep-sea life form is under inves-
tigation for quite a while [101], the recently completed “census of marine
life” [102] quarried numerous, so far unknown, life forms from all three
domains of life [103]. Somero and co-workers [98] found that membranes
are very sensitive to pressure effects, in the sense that the main phase tran-
sition is shifted to higher temperatures with increasing pressure, therefore
pressure has a similar effect on the transition temperature as a decreased
hydration. The observed effect is independent of the chain length.
In order to maintain membrane fluidity at physiological temperatures or-
ganisms exposed to high pressure change the ratio between saturated and
unsaturated lipid chains toward the latter. Unsaturated chains are known
to lower transition temperature [104, 105], this counteracts the ordering ef-
fect induced by the applied pressure.
Lipids can form additional hexagonal phases, so called "mesophases", while
applying pressure. However this behaviour is only observed for lipids with
a chain length longer than 16 carbon atoms [106]. So DMPC with only 14
carbon atoms per chain is ideally suited to probe the dynamics of pure
lamellar phases (Lβ gel and Lα liquid phase, respectively).
Also from a biomedical point of view the investigation of pressure effects
on membranes is interesting. Anaesthetics are known to lower the temper-
ature of the main phase transition and whereas pressure increases TM. It
was shown that the effect of alcohol and other anaesthetics on tadpoles can
be reversed by applying pressure up to 5000 psi (1 psi ≈ 0.069 bar) [107].
Even if there are models which try to explain the impact of anaesthetics by
a thermodynamical approach [108], a general description how anaesthetics
act on membranes is still not existing.
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Figure 8.2: The peak position at both investigated pressure values is shown
in figure 8.2a. Figure 8.2b shows a comparison of the repeat distance of the
different lipid phases at atmospheric pressure.
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8.2 Diffraction experiments on D16

In a first step and as a test of the newly developed pressure cell (see chap-
ter 4) we performed diffraction experiments on D16 to follow the predicted
shift of the temperature of the main phase transition of 22 K per 1000 bar
[96].
To avoid water inclusions in lipid vesicles the sample was prepared to form
lamellar bilayers by hydrating dry lipid powder from D2O vapour at 310 K
for two days (cf chapter 5). Additional heavy water was added to ensure
a full hydration of the sample. As reference a temperature scan from 276 K
to 310 K at atmospheric pressure was performed (steps of 2 K). Figure 8.1a
shows a reference scan taken at atmospheric pressure. As expected for fully
hydrated DMPC, the two phase transitions are apparent and occur at the
same temperatures, namely 287 K and 297 K, as in the oriented samples in
the fully hydrated state (see chapter 6) or e.g. DSC. Even if no correction
for multiple scattering has been applied so far, this is an encouraging result
from the first test.
In a next step a second temperature scan from 280-330 K (steps of 2 K) was
recorded, this time a pressure of 600 bar was applied to the sample. The
observed temperature for the main phase transition at this pressure was
310 K, corresponding exactly to a shift of 13 K (cf figure 8.1b) and thus in
agreement with what was reported by Winter et al. [96]. Below the temper-
ature of the main phase transition neither the ripple phase nor the gel phase
was observed. As pressure has a similar effect on the lipids as a decreased
hydration, the absence of the Pβ′ phase is in agreement with observations
made by Smith et al. [55] at hydrations below 85 % relative humidty. The
surprising feature of the absence of the gel phase is under further investi-
gation.
Figure 8.2a shows a comparison of the peak position of the Lα phase for
both investigated pressure values. They agree within errors and show a re-
peat distance around 63 Å, which is in agreement with literature values for
fully hydrated DMPC. The fact that the repeat distance of the bilayers stays
constant when applying pressure is an indication that the lateral structure
persists in the investigated pressure range.

8.3 Elastic experiments on IN13

First experiments on IN13 were performed using the high pressure cell in
the course of 2010. Due to an exceptional reactor shut down during the
third cycle in 2010, it was so far only possible to perform a temperature
scan at atmospheric pressure, which will serve as reverence. Figure 8.3a
shows the summed elastic intensity normalised to 290 K. Due to the high
counting time per point (approximately 12 hours) only a limited temper-
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Figure 8.3: Elastic intensities and mean square displacements of DMPC in
excess of heavy water at atmospheric pressure.
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ature range can be scanned during an experiment. The calculated mean
square displacements are shown in figure 8.3b, so far no correction of mul-
tiple scattering has been applied.
Nevertheless the extracted <u2> show already good agreement with a re-
cent MD simulation at 303 K and atmospheric pressure [86]. Figure 8.4
shows the results of the simulation. The time resolution of IN13 is drawn
as dashed red line. Values for the mean square displacements at different
position of the lipid molecule were extracted from the simulation. For the
carbon atom of the methyl group at the end of the lipid chain (CT) a value
of about 11 Å2 is found, whereas for the centre of mass (CM) a value of
about 1 Å2 was deduced. The value obtained from the IN13 experiment is
5 Å2 (cf figure 8.3b) and thus lies in between the two simulation values.
The data obtained on IN13 with the cylindrical high pressure cell show the
well known behaviour of a kink at the main phase transition indicating an
increased mobility. The same characteristics were observed on IN16 with
the solid supported DMPC in flat sample holders (see chapter 6.3).
In addition to the reference scan at atmospheric pressure, temperature scans
at two more pressure values, namely 300 bar and 600 bar are planned. The
applied pressure should lead to a shift of 6.6 K for 300 bar and 13.2 K for
600 bar, respectively.

8.4 Future perspectives

For the fourth reactor cycle in 2010 high pressure elastic and quasi-elastic
neutron scattering experiments on the time-of-flight spectrometers IN5 and
IN6 on fully hydrated DMPC in the range between 0 bar and 600 bar will
be performed. They will enlarge the already started elastic investigations
on IN13.
It is known from the investigation of deep-sea organisms that the composi-
tion of membranes changes as a function of pressure. The higher the pres-
sure, the more lipids with unsaturated chains are found [109].
The effect of unsaturated chains on the phase transition temperature will be
investigated by elastic temperature scans on IN13. In the autumn proposal
round 2010 a project was submitted to perform EINS experiments on mix-
tures of saturated DMPC (14:0) with (∆9-Trans) PC (1,2-dimyristelaidoyl-
sn-glycero-3-phosphocholine) and (∆9-Cis) PC (1,2-dimyristoleoyl-sn-glycero-
3-phosphocholinelipids). These lipids have the same chain length and head
group as DMPC but they have one unsaturated carbon bond per chain
(14:1) at the ninth position of the chain. The temperature range between
275 K and 330 K will be investigated in order to detect any shift of the main
phase transition temperature. In addition to the neutron experiments, DSC
measurements are envisaged to follow the shift transition temperature with
a complementary method.
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On a long scale perspective comparative measurements of cell membranes
from organisms living at different depths can give insight on how lateral
diffusion processes in the membrane under physiological pressure condi-
tions happen.

Figure 8.4: Values of MSDs extracted from MD simulations. Data are given
for four different positions within the lipid. The open square represent
the MSDs of the phosphorus atom, open triangles the carbon of the methyl
groups in the head group of the lipid, open circles the carbon of the terminal
methyl group of the lipid chain and the closed circles represent the centre
of mass MSDs. The time resolution of IN13 is depicted as dashed red line.
Figure is adapted from [86].

8.5 Perspectives

Dûrant le quatrième cycle du réacteur en 2010, des expériences à haute
pression élastique et quasi-élastique sont prévues sur les spectromètres en
temps de vol IN5 et IN6. Des échantillons DMPC complètement hydratés
seront étudiés dans la gamme entre 0 et 600 bars pour élargir les investiga-
tions déjà commencées sur IN13.
L’effet des chaînes non saturées sur la température de la transition de phase
sera étudié par balayages élastiques sur IN13. En automne 2010, un pro-
jet a été soumis à l’ILL pour effectuer des expériences EINS sur des mé-
langes de DMPC saturé (14 :0) avec (∆9-Trans) PC (1,2-dimyristelaidoyl-sn-
glycéro-3-phosphocholine) et (∆9- Cis) PC (1,2-dimyristoleoyl-sn-glycéro-
3-phosphocholinelipids). Ces lipides ont la même longueur de chaîne et le
même groupemebnt de tête que DMPC, mais ils ont une liaison insaturée
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par chaîne (14 :1) à la neuvième position de la chaîne. La gamme de tempé-
rature entre 275 K et 330 K a été choisie afin de détecter tout changement de
la température de transition de phase principale. En plus des expériences
neutroniques, des mesures DSC sont envisagées pour suivre le décalage de
la température de transition par une méthode complémentaire.
A plus longue échelle des mesures de comparaison de membranes cellu-
laires d’organismes vivants à des profondeurs différentes peuvent donner
des indications à savoir comment des processus de diffusion latérale ont
lieu dans une membrane sous des conditions de pression physiologique.
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Chapter 9

Neutron scattering studies of
human acetylcholinesterase

In the following chapter a second project, in which I have participated in
the course of my PhD thesis, is described. Neutron scattering studies on
pure human acetylcholinesterase and in complex with the non-covalent
binding inhibitor Huperzine A have been performed. In total three dif-
ferent spectrometers (IN6, IN13, IN6) and four different energy resolutions
have been employed to study the dynamics of AChE and its inhibited coun-
terpart on a pico- to nanosecond timescale.
After a general introduction (section 9.1) and the description of the sample
preparation (section 9.2), the elastic experiments are described in section
9.3, this section is based on a research paper submitted to “Physical Chem-
istry Chemical Physics” for publication. In section 9.4 the mean square dis-
placements of AChE are compared to those of the second cholinesterase,
which can be found in humans, butyrylcholinesterase (BChE). Both en-
zymes fulfil similar tasks and have therefore a high structural similarity,
nevertheless our findings show significant differences on the pico- to nanosec-
ond timescale between them. The results from the quasi-elastic measure-
ments are introduced in section 9.5. Concluding remarks and an outlook
for further investigations are given in section 9.6.

9.1 Introduction

Cholinesterases (ChEs) belong to the hydrolase class of enzymes (Enzyme
Commission (E.C.) class 3) and are fundamental for cholinergic and non-
cholinergic functioning of the nervous system and are presumably involved
in various diseases. It has been proposed that they have additional func-
tions as bioscavengers for poisons, as protection against the toxicity of
nerve agents or in mutant forms as therapeutic treatment of cocaine over-
dose [111, 112]. Acetylcholinesterase (AChE, E.C. 3.1.1.7, see figure 9.1 for
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Figure 9.1: Crystal structure of human AChE (PDB code 3LII). Data were
taken at a resolution of 3.2 Å. The size of the unit cell was determined to a
= b = 210.90 Å and c = 115.27 Å (angles: α = β = 90°, γ = 120°) [110].
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the crystal structure), which is one of the two ChEs found in mammals, hy-
drolyses the neurotransmitter acetylcholine (ACh) (see figure 9.2), thereby
regulating the concentration of the transmitter at the synapse. An abrupt
blockade of acetylcholine-mediated neurotransmission is lethal. Clinically,
moderate inhibition of AChE is effective in treatment of certain diseases to
prolong the action of ACh on the receptor. Such a treatment is desirable
either if there are fewer ACh-receptors, as in the case of myasthenia gravis,
or if there is reduced production of ACh, as in the case of Alzheimer’s
disease. Huperzine A (HupA) is a naturally occurring alkaloid isolated
from the Chinese medicinal herb Huperzia serrata. As it is a powerful re-
versible inhibitor of AChE, it was envisaged for the symptomatic treatment
of Alzheimer’s disease.

Figure 9.2: Enzymatic hydrolysis of Acetylcholin by AChE.

AChE is one of the fastest enzymes known [113], operating nearly at
the diffusion limit. The first crystallographic structure of Torpedo Californica
AChE (TcAChE) [114] revealed a surprising feature, which is at odds with
the speed of the enzyme: the active site is located at the bottom of a deep
and narrow gorge lined by 14 conserved aromatic residues. Due to the re-
strictive dimensions of the active site gorge (20 Å deep, Ø ≈ 5 Å), substrate
hydrolysis takes place in a closed space virtually isolated from the bulk sol-
vent. In parts, the gorge appears to be so narrow that only water molecules
could fit through, and substrates or inhibitors would have no access to the
active site if the enzyme was rigid. Thus large amplitude fluctuations are
necessary to explain the entry of molecules like substrates and inhibitors.
Experimentally neutron spin echo experiments have been used to inves-
tigate large scale fluctuations covering a time range up ton several 100 ns
[115]. In the case of alcohol dehydrogenase the collective motion of do-
mains were related to a cleft opening dynamics between the binding and
the catalytic domains enabling binding and release of a functional impor-
tant cofactor [116].
In addition molecular dynamics simulations (MD) are a powerful comput-
ing tool to analyse dynamics in more detail and such efforts have revealed
a whole hierarchy of motions acting together on different timescales. Stud-
ies of the enzyme’s dynamics, using MD simulations [117, 118] and quan-
tum mechanical-molecular mechanical (QM/MM) simulations [119], indi-
cate the presence of such motions. The groups of J.A. McCammon and
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Y. Xu [120] have undertaken simulations of mouse AChE (mAChE), unli-
ganded and in complex with HupA [121–124]. The first two simulations
of McCammons’ group dealt with a liganded mAChE at 300 K over 500 ps
and 1 ns (with slightly different starting structures). The next simulations
investigated the unliganded form at 300 K over 1 and 10 ns. The authors
analyzed the dynamics of the breathing mode of the gorge and the possible
opening of a so-called backdoor and other possible side channels in detail.
These studies revealed in particular the dynamical complexity of the fluctu-
ations: the latter fact seems to be a general characteristic of macromolecules
due to their rough energy landscapes [125]. Xu et al. concentrated on the
motions of specific residues and studied amongst others the question how
one could explain the fact that the association time with HupA is much
shorter than the dissociation time [124].
Within complex dynamical systems such as proteins, diffusive motions are
often confined in space. Therefore they can be described as diffusion pro-
cesses in presence of systematic forces. The corresponding autocorrelation
functions exhibit long-term memory effects and lead to a non-exponential
decay in time. This effect is the signature of a linking of the time scales of
fast and slow functional relaxation dynamics [126], resulting from differ-
ent scales of interactions that each have important but competitive con-
tributions. The analysis of the variation of the gorge radius over 10 ns
showed clearly that the corresponding autocorrelation function complies
with a non-exponential relaxation [123]. For instance, the local motions of
side chains seem to contribute significantly to the opening of the gorge, but
they are strongly correlated to larger domains of collective dynamics. At
least half the protein was found to be involved in large-scale fluctuations.
The authors are speaking about a hierarchy of relaxations divided into tiers
of faster and slower motions, where the relaxations in the slower tiers only
become accessible when the faster tiers have moved into the required con-
formations. A similar interpretation was given by K. Henzler-Wildman &
D. Kern [125], stating that transitions are slow if they are improbable, aris-
ing from many individual attempts by local groups to overcome the energy
barrier separating the conformational states. The low success rate results
from the collective nature of such large-scale motions.
More recently, a combined MD simulation and experimental study has
shown that picosecond mean square displacements, as measured by elastic
incoherent neutron scattering (EINS), satisfy a universal scaling law with
respect to viscosity measured over much longer time scales (up to seconds
or more). Such universal correlation was observed to be valid for a wide
range of simple liquids, supercooled liquids and glass formers, and thus
confers on picosecond MSDs a more general and intriguing role of fast
predictor for slower dynamical processes governed by viscosity and relax-
ations [127, 128]. In fact, the protein solvation shell exhibits a regular glass
transition, so that such effects are probably also correlated to protein dy-
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namics.
Members of the ChE family differ from each other in catalytic activity,
oligomerisation state and glycosylation [129]. The question of whether
there exists a correlation between these characteristics and dynamics is
still an unresolved matter [130]. Catalytic activities lie on the millisecond
timescale, which are comparable to those required for protein folding. Can
differences in catalytic activities be reflected in variations in atomic thermal
fluctuations on the pico- to nanosecond time-scale? By blocking or not en-
zymatic activity with an inhibitor, could this be a way to trigger it and to
probe its effects on the dynamics? The inhibitor HupA was chosen for the
experiments because it is a small molecule. Due to its low hydrogen con-
tent, the molecule itself will be almost invisible in the neutron dynamics
studies, but when bound to AChE, it switches off the enzyme activity.
Elastic, quasi-elastic and inelastic neutron scattering was used to probe ex-
perimentally and quantitatively the molecular dynamics of human AChE
(hAChE), with or without HupA inhibition, in order to investigate the re-
lationships between molecular dynamics, activity, inhibitor-binding, and
unfolding.
We used three different spectrometers (IN6, IN13 and IN16) [20, 22, 40, 131]
at the ILL. The energy resolution of the spectrometers corresponds to differ-
ent time scales, which permitted to probe dynamics between a few picosec-
onds up to about one nanosecond (cf table 3.4), corresponding to move-
ments from very fast internal motions to slow global motions. In section
9.3 elastic intensity changes upon temperature variation are reported. The
application of approximate relations assuming a Gaussian distribution of
the atoms around their equilibrium positions permits the extraction of av-
erage atomic mean square displacements. They are the reflection of the
sampling of conformational sub-states and of vibrational amplitudes. The
wavelength of the incident neutrons corresponds to inter-atomic distances
and, contrary to the energy of X-ray or synchrotron radiation, the corre-
sponding neutron energy is of the order of the energy of vibrational and
conformational states. Therefore EINS is well suited for experimental in-
vestigations of thermal fluctuations within biological macromolecules un-
der different biochemical conditions on timescales that match those of MD
calculations and permit direct comparisons.

9.2 Sample preparation and characterisation

9.2.1 Purification of recombinant human AChE

The full cDNA of hAChE was inserted into pGS vector carrying the glu-
tamine synthetase gene marker and expressed in Chinese hamster ovary
cells (CHO-K1 cells). The cells were maintained in BioWhittaker® Ultra-
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cultureTM medium (Lonza, Belgium) and transfected using DNA-calcium
phosphate co-precipitation. Transfected clones were selected by incubation
in media containing methionine sulfoximide (50 M). The enzyme, secreted
into the culture medium, was purified by affinity chromatography as pre-
viously described [132]. hAChE was concentrated to 13 mg ml−1 using a
Centricon-30 ultrafiltration microconcentrator (30,000 MW cutoff from Am-
icon (Millipore, USA)). Enzyme concentration was determined from its ab-
sorbance at 280 nm using a molar extinction coefficient of 1.7 for 1 mg ml−1

of protein [133].
Activity measurements were carried out at 298 K according to Ellman method
[134] using 1 mM acetylthiocholine (ATC) as substrate and 0.5 mM 5-5’-
dithio-bis (2-nitrobenzoic acid) (DTNB) in 0.1 M phosphate buffer pH 7.
Circular dichroism (CD) spectra of recombinant hAChE (0.1 mg ml−1 in
ammonium acetate buffer 5 mM pH 7) were collected on a JASCO-810 CD
spectrometer in the spectral range 190 nm–240 nm (at 0.5 nm intervals) at
room temperature. Baseline was performed with ammonium acetate buffer
5 mM pH 7. The spectra analyses were performed using the DichroWeb
server (Dichro).

9.2.2 Sample preparation for neutron scattering

A batch of about 300 mg of hAChE was dialyzed against 25 mM ammo-
nium acetate dissolved in D2O, pD 7.0 (corresponding to a pH 6.6). Since
the buffer is completely volatile, an over-night lyophilisation at 220 K un-
der vacuum resulted in salt free protein powder. About 140 mg of hAChE
in D2O solution was mixed with 2 molar equivalents of (-)-HuperzineA
before lyophilisation. About the same amount of hAChE was lyophilised
without inhibitor. Both lyophilised powders (free hAChE and hAChE-
HupA complex) were placed in aluminium sample containers of dimen-
sions 30× 40× 1 mm3 to match the size of the neutron beam available on
the instruments. The samples were dried at atmospheric pressure over
phosphorus pentoxide (P2O5) and weighed. The measured weights were
taken as their dry weights (h = 0 g D2O/g dry powder, denoted by g/g
below). For neutron experiments, samples were hydrated by vapour ex-
change over D2O, at ambient temperature, in a desiccator. A final water
content of 0.4g/g for both samples was achieved. To verify that no loss
of material had occurred, all samples were weighed before and after the
neutron scattering experiments. No losses were detected for any sample.

9.3 Elastic experiments

Incoherent neutron scattering is dominated by the signal of hydrogen scat-
tering intensity. This is due to the hydrogen incoherent scattering cross sec-
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tion which is one order of magnitude larger than that of all other elements
usually occurring in biological matter, and also of its isotope deuterium
(see table 3.2). The technique probes average protein dynamics because
hydrogen atoms are uniformly distributed in the protein. The wild type
form of hAChE contains a high proportion of hydrogen, 4673 of a total of
9470 atoms. The incoherent cross section of the hydrogen atoms thus cor-
responds to 99.8% of the total incoherent cross section and to 92.6% of the
total scattering. The exact number of amino acids and the atomic composi-
tion of hAChE can be found in the tables C.1 and C.2 in appendix C.

9.3.1 Instrumental aspects and data analysis

The characteristics of the used spectrometers in terms of incident wave-
length, accessible Q-range, detectable length-scale, energy resolution and
timescale are already outlined in table 3.4. The timescale can be calcu-
lated from the energy resolution using the Heisenberg uncertainty relation
(equation 3.12) or eq. 21 in the paper by Zorn [135], assuming a Gaussian
shape of the resolution function. As the edges of the time window are not
sharp, rounded values in between both results are given in the table.
The cold neutron time-of-flight spectrometer IN6 [22] is sensitive to mo-
tions with associated times of a few ps. Two different wavelengths corre-
sponding to two different energy resolutions of ∆E ≈ 50 and 90 µeV were
measured. IN13 [40] is the only thermal neutron backscattering spectrom-
eter worldwide with an intermediate energy resolution of ∆E ≈ 8 µeV. Fi-
nally IN16 [20] is a high resolution cold neutron backscattering spectrom-
eter with an energy resolution of ∆E ≈ 0.9 µeV, corresponding to a time
window ranging up to ≈ 1 ns. A comparison of the different elastic res-
olution functions was already shown in figure 3.3 of section 3.5.2. Thus,
the three instruments are sensitive to motions on different time scales. The
different contributions to atomic motions (lattice and internal molecular vi-
brations, reorientations, translations) are assumed to be completely decou-
pled, because they occur on significantly different time scales, what was
also shown by MD simulations [136]. In this sense the instruments can be
seen as a motion filter to focus on certain aspects of the sample dynamics
only. Internal motions are within the window for all three spectrometers.
The contribution of global protein diffusion is negligible for all instruments
apart from IN16, which has the broadest time window. Water diffusion
is outside the window of IN13 and IN16 and appears as a smooth back-
ground. It does, however, contribute significantly on IN6. Especially the
length-time window of IN13 is well suited to measure internal dynamics,
without ’pollution’ of the scattering by contributions from global or bulk
water diffusion [137].
Transmission values were measured on IN13 and corresponded to 0.94 and
0.95 for the wild type and the inhibited form of AChE, respectively. Mul-
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(b) Data taken on IN6 (90 µeV resolution).

Figure 9.3: Logarithm of the normalised intensities of hAChE plotted ver-
sus Q2 for 20 (black squares), 100 (red circles), 200 (green triangles) and
300 K (blue diamonds) with corresponding error bars. The full lines corre-
spond to the linear fits used to extract the MSDs. The dashed lines in the
right figure are extrapolations of the linear fits to higher Q-values and show
a clear deviation from Gaussian behaviour at higher temperatures.
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tiple scattering effects were therefore not taken into consideration for the
data treatment. To obtain the scattered intensities of the sample, scattering
from the empty sample holder was subtracted. The data were normalized
to the lowest temperature (20 K), where molecular motions are strongly
reduced. Absorption correction was based on the correction formula of
Paalman-Pings coefficients [138]. Data evaluation was carried out using
the LAMP software available at ILL [80].

9.3.2 Determination of atomic mean-square displacements

The logarithm of the elastic intensity (eq 3.23) of each sample at a given
temperature T is plotted against Q2 (see e.g. figures 9.3a and 9.3b). As IN6
is a time-of-flight instrument, the whole accessible energy range is mea-
sured simultaneously. The elastic data were thus extracted by integrating
over an energy range of [-0.11, 0.12] meV for the 90 µeV resolution and of
[-0.06, 0.09] meV for the 50 µeV resolution. This corresponds to the whole
elastic peak and not only the full width half maximum (FWHM). Whereas
at low temperatures intensities decreased linearly over the whole Q-range,
a dynamical transition appeared in the plots above ≈ 200 K (see figure 9.3),
consistent with the well-known deviation from the Gaussian behaviour at
higher temperatures [9]. The mean square displacements can be obtained
from the slope of the logarithm of the scattered intensities according to
equation 3.24. This approach is formally similar to the Guinier approxi-
mation in small angle scattering experiments [29]. MSDs were extracted
from the Q-ranges where the linearity was clearly visible. The correspond-
ing Q-ranges, used during the fitting procedure are given in table 9.1.

Spectrometer IN6 IN6 IN13 IN16

Resolution FWHM [µeV] 90 50 8 0.9
used Q-range [Å−1] 0.49 - 1.24 0.42 - 1.13 0.52 - 1.67 0.54 - 1.10

Table 9.1: Q-range used in order to extract mean square displacements.

The criterion for validity of the Gaussian approximation <u2> Q2 ≤ 1
was checked a posteriori: it is slightly exceeded at IN16 and IN13 (values
up to 2.9), but the curves are still linear for these Q-values and thus the
approximation is justified [139].

9.3.3 Results

Some complementary tests were performed to characterise the samples be-
fore and after the neutron scattering experiments. The enzyme solutions
were stable at 277 K and hAChE activity was partially preserved after a
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lyophilisation step (only 20-25% of activity was lost - data not shown). The
CD spectrum of hAChE in 5 mM ammonium acetate buffer (pH 7) indi-
cated the presence of a large amount of alpha-helix structures and beta-
sheets. However, after the neutron scattering study, dissolution of hAChE
sample was not possible and neither activity nor CD measurements could
be performed as a final temperature exceeding the denaturation tempera-
ture was reached during the experiments (cf section 9.3.3).

IN13: Correlation between heat denaturation and MSDs
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Figure 9.4: MSDs measured on IN13 of hAChE (squares) and hAChE with
HupA (circles), hydrated from D2O in the temperature ranges 20-310 K
(filled symbols) and 310-365 K (open symbols). The seal of the sample
holder had to be exchanged between the two temperature ranges. The
mid-point denaturation temperature of the native (non-inhibited) enzyme
in solution is indicated by the vertical line.

The denaturation temperature of recombinant hAChE is known to be
329 K in HEPES 20 mM NaCl 150 mM at pH 7.5 [140] and 334 K in 50 mM
sodium phosphate at pH 8.0 [141]. Therefore we measured both samples
(hAChE with and without HupA) first in the temperature range from 20-
310 K (measured on all instruments) and in a second experiment from 310-
365 K (measured only on IN13). One difficulty was related to the fact, that
the used indium alloy seal to make the sample holder tight melts around
350 K. So the sample holders for higher temperature measurements had to
be re-opened in order to take away the indium and replace it by a seal of
silicon Motorsil D. The samples were then carefully dried and rehydrated



CHAPTER 9. NEUTRON SCATTERING STUDIES OF HUMAN
ACETYLCHOLINESTERASE 93

again.

The behaviour of the protein on IN13 under denaturing conditions by
heating it up to 365 K was investigated.
Here a reference to a former study on IN16, which reported about en-
zyme dynamics in the presence of a covalent inhibitor (the organophos-
phonate soman) on hydrated powders [142] as function of temperature
is inserted. The protein under investigation was a ChE without known
function, present in human blood plasma: human butyrylcholinesterase
(hBuChE, E.C. 3.1.1.8)). hBuChE and AChE have a close structure of the
active site and a similar a/b fold [111, 129], hence both share a similar cat-
alytic function, only hBuChE can hydrolyse butyrylcholine in addition to
acetylcholine. For instance, the size of the catalytic subunit of hBuChE is
almost identical to that of TcAChE, the residues 1 - 574 and 1 - 575 for the
tailed molecular forms and their sequences are 54% identical.
Neutron dynamics studies revealed identical behaviour of the wild type
and the inhibited enzyme in the temperature range below 334 K, but above
that temperature the soman phosphonylated BChE was more rigid than
the native enzyme. Furthermore the inhibited enzyme had a denaturation
midpoint temperature in both H2O- and D2O-solution shifted by 10 K from
337.5 to 347.5 K [143, 144]. In the present study, similar effects were ad-
dressed using the non-covalent inhibitor HupA on hAChE.
Figure 9.4 shows MSDs obtained on IN13 as function of temperature. Since
HupA has only 18 hydrogen atoms compared to the 4673 H-atoms of hAChE,
the measured signal represents essentially the enzyme dynamics, even in
presence of the ligand. The MSDs increase smoothly and display the well-
known dynamical transition at around 220K [9]. Within the error bars, no
differences are visible between both samples below the denaturation tem-
perature at around 330 K. The error bars increase above 300 K, due to the
reduced data acquisition time available. Only above 360 K a slight differ-
ence between the curves appears. Such a small effect cannot be valued
as a proof, but it is also not contradicting earlier observations of Rochu et
al. [145] and Gabel et al. [142], i.e. a covalently or non-covalently bound
inhibitor stabilizes the enzyme and shifts the denaturation temperature to
a higher value.
The results can be compared with MD simulations from Tara et al. [122]
of pure mAChE and mAChE in the presence of HupA. These simulations
found overall lower structural MSDs for residues in the gorge of the unli-
ganded form. In a first impression, this fact could seem to be at variance
with the presented data, because hardly any difference between the wild
type and the inhibited form is seen. Neutron scattering averages over all
residues in the protein and cannot differentiate between gorge residues and
others in a completely protonated protein. Simulations can easily disen-
tangle such small effects. Their observation is in accordance with an ex-
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(a) IN6, 90 µeV, tmax ≈ 10 ps.
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(b) IN6, 50 µeV, tmax ≈ 20 ps. Due to limited beamtime the native AChE sample
could only be measured up to a temperature of 270 K.

Figure 9.5: MSDs of pure hAChE (black squares) and with HupA (red cir-
cles), hydrated from D2O vapor and measured at IN6. For a better visi-
bility error bars are given only for a few data points. They are highest at
high temperature. tmax gives the maximal resolved observation time of the
corresponding spectrometer. Figure is continued on the next page
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(c) IN13, 8 µeV, tmax ≈ 100 ps.
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(d) IN16, 0.9 µeV, tmax ≈ 1 ns.

Figure 9.5: MSDs of pure hAChE (black squares) and with HupA (red cir-
cles), hydrated from D2O vapor and measured at IN13 and IN16. For a
better visibility error bars are given only for a few data points. They are
highest at high temperature. tmax gives the maximal resolved observation
time of the corresponding spectrometer.
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perimental study by S. Sacquin-Mora et al. [146], where they investigated
by neutron scattering the purple bacterium Rhodobacter sphaeroides in par-
allel with two nonfunctional mutants and showed that the active sites are
among the rigid parts of proteins.

MSDs of folded hAChE with and without inhibitor HupA

In order to compare the elastic data measured on each spectrometer, the
MSDs were extracted from all elastic measurements as described in section
3.6.1 (see figure 9.5). For all three instruments and all four energy resolu-
tions there is no difference detectable in the MSDs between the liganded
and the wild type form of AChE. With an improving instrumental energy
resolution and thus an increasing time window the MSDs increase contin-
uously by more than a factor of two between the smallest and the largest
time window (see figure 9.6). Such a tendency is in accordance with other
comparative measurements on different spectrometers [147], showing that
specific motions occur on each time domain.
The dynamical transition appears in all four figures, but becomes more pro-
nounced with finer instrumental resolution. The corresponding onset of
anharmonic motions is shifted with the time window from 180 K at IN16 to
230 K for the broadest resolution at IN6, as shown in figure 9.6. This means
that between 180 and 230 K the elastic peak of the underlying relaxation
process is situated in between the energy resolution of IN6 and IN16 and
thus can be seen on IN16 and not on IN6. Doster [9] and Cordone [148]
emphasized the importance of the protein environment on its dynamics,
which influences the onset transition temperatures depending on the ex-
perimental time scale and particularly including the viscosity of the sol-
vent (hydration water and buffer). In a recent publication, Doster [149]
describes the mechanism of the dynamical transition as a first appearance
of local dynamics in the cage of nearest neighbours, corresponding to the
fast β-process. This process is the precursor of a main structural relaxation,
the α-relaxation, which is a collective dynamics process corresponding to
slower motions. Again we find here the idea of a hierarchy of motions,
which appear in different instrumental time windows.
As long as their motions can be considered as harmonic, i.e. below the
dynamic transition, particles perform only vibrations around their equi-
librium positions and do not change between one local minimum of the
energy landscape and another. Hence no energy barrier is passed and no
energy is exchanged upon collision with neutrons. The harmonic motions
induce purely elastic scattering processes with no quasi-elastic contribu-
tion. This means that the MSDs measured at all three instruments must
coincide up to at least 150 K (see figure 9.6) and the elastic intensities must
follow a linear drop off with Q2 up to the highest Q values (see figure 9.3).
Our results verify this for both intensities and MSDs within the accuracy of
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the measurements.

Figure 9.5 shows the MSDs measured on all three instruments over the
whole investigated temperature range. It indicates that the MSDs are pos-
sibly converging for all instruments at higher temperatures, as it was re-
ported by Daniel et al. [150]. Unfortunately this fact could not be veri-
fied experimentally due to the protein denaturation and the associated ir-
reversible structural changes at temperatures above 334 K. The MSD val-
ues measured at IN13 are thus between the data of IN16 and IN6, includ-
ing the relaxation processes of the lower energy resolution and indicating
that there must be a certain overlap between the measurable motions on
the three instruments. To make this effect even more visible, Daniel et
al. [150, 151] mention the possibility of subtracting the IN6 (or IN13) data
from the IN16 data to study the change in dynamics in different time win-
dows.
The observed decrease in slope of the MSDs at IN16 (figure 9.5 and 9.6) for
temperatures higher than 280 K can be explained by the limitation of the
instrumental resolution in relation to the measurement of large-scale mo-
tions [142]. The influence of a finite instrument resolution was simulated
within the framework of the neutron frequency window model [152]. The
transition observed by a spectrometer depends on the relationship between
the timescales of the relaxation processes activated and the timescale acces-
sible to the instrument. Two extreme scenarios were considered: firstly
if the characteristic relaxation frequencies lie all within the energy reso-
lution of the instrument, the observed dynamical transition is completely
dependent on the temperature changes of the corresponding atomic MSDs,
probing the energy levels of different conformational substates. The dif-
ference in energy of the substates corresponds to the free energy difference
∆G, which is furnished by the increase in thermal energy [9]. Secondly, it
could be possible to have no change of the MSDs with temperature, which
could be conceivable if there is no difference in energy for different local
minima of the energy landscape. In the latter case, the various local min-
ima are separated by a potential barrier corresponding to the activation
energy Ea. Comparing data taken on IN6 and IN16 with simulations, Mc-
Cammon et al. [117] demonstrated that such effects lead to a shift of the
dynamic transition temperature and can explain the change of slope of the
MSDs measured on IN16. Such an apparent dynamical transition can arise
if the relaxation frequencies increase with temperature, e.g. the density of
states is changing, such that they move into the frequency window of the
instrument, giving therefore information about the timescales of motions
crossing the resolution window of the instrument.
In a complex protein energy landscape it is likely to find a combination
of both scenarios. The increase of the MSDs with the time scale together
with the deviation of the intensities from Gaussian behaviour indicates
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(a) <u2> of the pure hAChE.
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(b) <u2> of hAChE + HupA.

Figure 9.6: Compilation of the obtained mean square displacements. IN16
(blue diamonds), IN13 (green triangles) and IN6 (50 µeV: red circles,
90 µeV: black squares). For clarity characteristic error bars are only given
at 50 K, 200 K and 300 K.
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the existence of more than a single relaxation process (G. Kneller, unpub-
lished work). This leads necessarily to an autocorrelation function I(Q,t),
the Fourier transform of the scattering function S(Q, ω), with long-term
memory effects and a non-exponential decay in time. As mentioned in
the introduction, it is the signature of a linking of the time scales of fast
and slow functional relaxation dynamics [126] and was already found by
molecular dynamics simulations [123].

In fact, this can be verified by the experimental data. Using the “Fourier
Transform Toolkit” (FFT) included in the DAVE program suite [89], the
recorded scattering functions S(Q, ω) have been transformed into interme-
diate scattering functions I(Q,t). When only one relaxation process is ob-
served, I(Q,t) shows an exponential decay, corresponding to β = 1 in equa-
tion 9.1. If several processes lie in the examined space and time window,
I(Q,t) can be described by a stretched exponential or Kohlrausch-Williams-
Watts (KWW) function, where 0 ≤ β ≤ 1 and τ represents the relaxation
time of the system.

I(t) ∝ exp

[
−
(

t
τ

)β
]

(9.1)

The β extracted from fits to the data shown in figure 9.7 resulted in
values of β ≈ 0.3 for both resolutions.

Conclusions

A series of elastic incoherent neutron scattering experiments were carried
out on native and HupA inhibited hAChE at different spectrometers to
probe different motions contributing to the functioning of the enzyme. Al-
though no difference in MSDs of the wild type and the inhibited form until
350 K was detected, a indication of a small shift of the denaturation tem-
perature due to the ligand appears around 360 K and could indicate stabi-
lization by the inhibitor.
The MSDs recorded on the different instruments increase continuously with
the enlargement of the observation time window from about 1.0 Å2 for ∆E
= 90 µeV to about 2.3 Å2 for ∆E = 0.9 µeV. In agreement with MD simula-
tion the results confirm the concept that a hierarchy of local and subdomain
motions is necessary for the breathing movement of the enzyme’s gorge.
Another effect of the influence of the instrumental resolution can be seen
on the basis of the shift of the dynamical transition temperature from 230 K
at IN6 (90 µeV) to 180 K at IN16 (0.9 µeV). It can be explained in the light of
the so-called ’frequency-window model’ where the motion enter the reso-
lution window of the corresponding instrument at different temperatures.
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(a) Intermediate scattering function I(Q,t) at a given wavelength of 5.1 Å
for AChE + HupA. The figure shows curves for Q-values of 0.5 Å−1 (red),
1.0 Å−1 (green), 1.5 Å−1 (dark blue) and 2.0 Å−1 (light blue) at 300 K.
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(b) Comparison of I(Q,t) of pure AChE and AChE + HupA (λ = 5.9 Å).
Data for the pure AChE is depicted with squares, AChE + HupA with
circles, respectively. Again selected Q-values of 0.5 Å−1 (red and brown),
1.0 Å−1 (green and pink) and 1.5 Å−1 (blue and orange) are shown.

Figure 9.7: Intermediate scattering functions for both resolutions measured
on IN6. The increasing error bars for long correlation times indicate the
resolution limit of the given setup. The black curves represents the instru-
mental resolution.
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In this context also the observed decrease in slope of the MSDs on IN16
for temperatures higher than 280 K can be explained by the limitation of
the instrumental resolution. The stretched exponential behaviour of I(Q,t)
indicates the existence of more than a single relaxation process [123].

9.4 Comparison between AChE and BChE

Figure 9.8: Crystal structure of human BChE (PDB code 1P01). Data were
taken to a resolution of 2.0 Å. The size of the unit cell was determined to a
= b = 154.66 Å and c = 127.89 Å (angles: α = β = γ= 90°) [129].

The second member of the choline family which can be found in mam-
malians is BChE (E.C. 3.1.1.8). Human BChE is a tetrameric protein, whose
crystal structure is shown in figure 9.8. It was solved by the group of P.
Masson [129]. As already mentioned in the introduction, it fulfils similar
tasks as AChE, but is mainly found in the plasma, whereas AChE is mainly
located in the muscle nervous tissue. Nevertheless also BChE is found in
small amounts in nervous tissue.
The mean square displacements of native BChE and in the presence of
its covalent binding inhibitor soman, have been investigated by Gabel et
al. [142], using the backscattering spectrometer IN16.

For the comparison of the two data sets, the data recorded by Gabel et
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(a) Native AChE and BChE.
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(b) Same data as shown in 9.9a but with a shift of the x-axis for AChE data of 35 K.

Figure 9.9: Comparison of the mean square displacements of native AChE
and BChE taken on IN16. In black the AChE data are shown, in red the
corresponding BChE data, respectively. To demonstrate that both data sets
show the same slope, the x-axis of the AChE data is shifted by 35 K in figure
9.9b.
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al. [142] have been retreated using exactly the same LAMP routines as for
the evaluation of the AChE data in order to avoid any differences coming
from the data treatment. No discrepancies between the old and the new
data treatment were found.
At first glance, it appears that AChE shows a steeper slope in comparison to
BChE after the dynamical transition. Figures 9.9a and 9.10a show the orig-
inal data, whereas figures 9.9b and 9.10b show, for comparison, the same
data, but with the temperature axis shifted empirically by 35 K in the case
of AChE and AChE + HupA. From the latter it is obvious that both, AChE
and BChE, show the same slope, and therefore the same resilience [153].
In order to extract thermodynamical variables from the elastic data a model,
introduced by Becker et al. [152, 154], was used to fit the mean square dis-
placements as a function of temperature. The corresponding equation used
for the fitting procedure is given as:

< ∆u2 >=< ∆u2 > f ast + < ∆u2 >Ā0

(
1− 2

π
arctan

∆ω

κ

)
. (9.2)

Following the description of Becker et al. <∆ u2> f ast was assumed to
depend linearly on temperature, can be expressed as <∆ u2> f ast = αT and
can be obtained by fitting the data at low temperatures with a straight
line. <∆ u2>Ā0

is a fit parameter, accounting for slow motions. ∆ω is
given by the half width at half maximum of the elastic energy resolution
of the corresponding spectrometer. In the case of IN16 ∆ωIN16 = 0.5 µeV =̂
7.595× 108 s−1 and in the case of IN13 ∆ωIN13 = 4 µeV =̂ 6.076× 109 s−1. κ
is the relaxation frequency of the observed process.

Assuming an Arrhenius behaviour for κ, it can be expressed as:

κ(T) = a · e−Ea/RT , (9.3)

where a is a prefactor, Ea the activation energy, R the ideal gas constant
and T the temperature. The resulting fits to the elastic data of the AChE
samples are shown in figure 9.11 for the data obtained on IN16 and in fig-
ure 9.13 for the IN13 data, respectively. The fits to the BChE sample are
given in figure 9.12.
During the analysis of the elastic neutron data it was found that the values
of Ea for BChE are about a factor of two larger the the values obtained for
the activation energy Ea of AChE (cf tables 9.2 for AChE and 9.3 for BChE).
This tendency is in agreement with results obtained by activity measure-
ments of hAChE and hBChE. About a factor of two between the two en-
zymes was found [155].
The degree of glycolisation differs between the two enzymes. As sugars
are known to slow down dynamics on the pico- to nanosecond range [156],
this could be one reason for the difference see between AChE and BChE.
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(a) AChE inhibited with HupA, BChE inhibited with soman.
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(b) same data as shown in 9.10a but with a shift of the x-axis for AChE + HupA
data of 35 K.

Figure 9.10: Comparison of the mean square displacements of AChE and
BChE in the presence of their inhibitors on IN16. In black the AChE +
HupA data are shown, in red the corresponding BChE + soman, respec-
tively. As for figure 9.9b also in figure 9.10b the x-axis of the AChE + HupA
data is shifted by 35 K.
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fit parameters AChE AChE + HupA

IN16

α [Å2 K−1] 0.00106 ± 0.00005 0.00100 ± 0.00007
<∆ u2>Ā0

[Å2] 0.83 ± 0.02 0.84 ± 0.03
a [s−1] 1× 1012 1× 1012

Ea [kJ mol−1] 14.20 ± 0.11 14.27 ± 0.16

IN13

α [Å2 K−1] 0.00083 ± 0.00007 0.00074 ± 0.00005
<∆ u2>Ā0

[Å2] 0.97 ± 0.10 1.18 ± 0.09
a [s−1] 1× 1012 1× 1012

Ea [kJ mol−1] 12.55 ± 0.39 12.88 ± 0.30

IN6
α [Å2 K−1] 0.00069 ± 0.00012 0.00078 ± 0.00005

<∆ u2>Ā0
[Å2] 0.88 ± 0.78 0.99 ± 0.15

50 µeV
a [s−1] 1× 1012 1× 1012

Ea [kJ mol−1] 9.40 ± 22.20 14.46 ± 0.54

IN6
α [Å2 K−1] 0.00056 ± 0.00004 0.00058 ± 0.00004

<∆ u2>Ā0
[Å2] 4.78 ± 1.80 5.65 ± 1.93

90 µeV
a [s−1] 1× 1012 1× 1012

Ea [kJ mol−1] 12.25 ± 0.99 12.62 ± 0.90

Table 9.2: Values obtained from fitting formula 9.2 to the mean square dis-
placements of AChE and AChE + HupA. Values are given for data obtained
on all spectrometers. a was fixed to a value of 1× 1012 s−1 in order to allow
the fit to converge. The value can be found in the literature as a typical
value for barrier crossing in condensed-phase molecular systems [24, 152].
Due to the limited acquisition time on IN6 the native AChE sample elastic
data could only be measured up to 270 K in the 50 µeV setup, therefore the
obtained fit results show large errors compared to the other data sets.

BChE BChE + Soman

α [Å2 K−1] 0.00104 ± 0.00005 0.00119 ± 0.00003
<∆ u2>Ā0

[Å2] 1.78± 0.10 1.57 ± 0.06
a [s−1] 1× 1012 1× 1012

Ea [kJ mol−1] 19.39 ± 0.26 19.56 ± 0.18

Table 9.3: Values obtained from fitting formula 9.2 to the mean square dis-
placements of BChE and BChE + Soman. As for the fits of the AChE data,
the value for a was kept fix during the fitting procedure in order to allow a
convergence of the fit.
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(a) MSDs of AChE with corresponding fit.
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(b) MSDs of AChE + HupA with corresponding fit.

Figure 9.11: Evaluated mean square displacements of AChE and AChE +
HupA on IN16 with corresponding fits according to equation 9.2. The ob-
tained fit parameters are given in table 9.2.
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With the values for a and Ea obtained by fitting equation 9.2 to the data,
the resulting curves for κ are shown in figure 9.14. The elastic energy res-
olution of IN16 is about 1000 ps. The inverse of this value corresponds to
a frequency of 0.001 ps−1, which indicates the resolution limit of the spec-
trometer, and is drawn as horizontal line in figure 9.14a. Motions faster
than this limit cannot be resolved by the spectrometer. The fact, that both,
AChE and AChE + HupA, cross this line around 250 K is consistent with
the finding of a kink around the same temperature in the mean square dis-
placements.
In the case of BChE and BChE + Soman κ passes the resolution limit not
until 330 K. Therefore the observed motions stay almost over the whole
investigated temperature range within the resolution window of the spec-
trometer.
For the MSDs of AChE obtained on IN13 the situation presents itself dif-
ferently. On this spectrometer the energy resolution is about 8 µeV, thus
about a factor of 10 larger than the resolution of IN16. Therefore also the
observation time is ten times shorter and hence the observable frequency
ten times larger, respectively.
Fits to the mean square displacements are depicted in figure 9.13, they
show no levelling off, as seen for IN16. Hence the κ obtained from the
fits and drawn in figure 9.14b stay within the time resolution for IN13, in-
dicated by the horizontal black line. The investigated fit range was limited
to 310 K in order to exclude the influence of the protein denaturation occur-
ring around a temperature of 330 K.
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(a) MSDs of BChE with corresponding fit.
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(b) MSDs of BChE + Soman with corresponding fit.

Figure 9.12: Evaluated mean square displacements of BChE and BChE +
Soman on IN16 with corresponding fits according to equation 9.2. The re-
sulting fit parameters are given in table 9.3.
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(a) MSDs of AChE with corresponding fit on IN13.
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(b) MSDs of AChE + HupA with corresponding fit on IN13.

Figure 9.13: Evaluated mean square displacements of AChE and AChE +
HupA with corresponding fits according to equation 9.2 on IN13. The ob-
tained fit parameters are given in table 9.2. In order to exclude the influence
of denaturation effects, the fit range was limited to a a range of 20 K–310 K.
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(a) Values for AChE are shown in black, AChE + HupA in red. The calculated
values for BChE are given in green and for Soman in blue, respectively. The black
horizontal line indicates the resolution limit of ≈ 0.001 ps−1 on IN16.
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(b) Values for AChE are shown in black, AChE + HupA in red. The black horizontal
line indicates the resolution limit of ≈ 0.01 ps−1 on IN13.

Figure 9.14: κ calculated according to equation 9.3 using the values ob-
tained by fitting equation 9.2 to the MSDs for IN16 and IN13.
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9.5 Quasi-elastic experiments
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Figure 9.15: Dynamical ranges for the two wavelengths used on IN6. The
dashed blue line represents the elastic line. In the data evaluation a Q-range
of 0.5 Å−1–1.6 Å−1 was chosen for a λ of 5.9 Å and 0.5 Å−1–1.9 Å−1 for λ =
5.1 Å, respectively.

On a high flux instrument such as IN6 it is possible due to the high
count rate around the elastic position to record the elastic data, during heat-
ing the samples from 20 K to room temperature. However to obtain rea-
sonable statistics for quasi-elastic scans, longer count rates are necessary.
Typical QENS measuring times lie in the order of several hours, instead of
several minutes for an elastic scan.
Recorded data are corrected in the same way as elastic data for the scatter-
ing coming from the sample holder, then they are normalised to the 20 K
data and grouped to increase the statistics.
Due to the two different wavelengths used in the experiments, the acces-
sible Q-ranges differ slightly for the two resolutions, as can be seen from
figure 9.15. For an incoming wavelength of λ = 5.9 Å and an energy trans-
fer of± 0.75 meV, the Q-range is limited to 0.5 Å−1–1.6 Å−1. Choosing a ∆Q
of 0.1 Å−1 this results in 12 data points. For λ = 5.1 Å this can be extended to
an energy transfer of ± 1 meV and a Q-value of 1.9 Å−1. The same binning
of ∆Q = 0.1 Å−1 was chosen, resulting in 15 groups.

The obtained data were fitted using a delta function for the elastic con-
tribution, a single Lorentzian to mimic the quasi-elastic broadening and a
slope background. The resulting fits for the native AChE sample and an
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(a) Wave vector Q = 0.5 Å−1.
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Figure 9.16: S(Q,ω) of native AChE taken on IN6 (90 µeV energy resolution)
with corresponding fits. Data are shown as black points with correspond-
ing error bars. The delta function used as elastic line is shown in green, in
blue is a single Lorentzian curve and in cyan a linear background is drawn.
Due to the convolution with the experimental determined instrumental res-
olution, the elastic line shows noise for higher energy transfers. Data are
given for the lowest and highest measured Q-value.
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incident wavelength of 5.1 Å are shown in figure 9.16. Data and fits cor-
responding to the second measured resolution (5.9 Å =̂ 50 µeV) are given
in figure 9.17. For comparison fits for the lowest and highest measured Q-
values are given.
The half-width at half maximum Γ of the Lorentzian used in the fitting pro-
cedure are given in figure 9.18a for the 90 µeV setup and in figure 9.18b for
the 50 µeV as a function of Q2, respectively. From both figures it is obvious
that in the limit of Q → 0 the HWHM does not tend to zero. Γ increases
with Q2 and seems to approach asymptotically a constant value Γ∞. The
first feature indicates, as already mentioned in the theory section (section
3.6.2), that the diffusive motion is not free, but confined in space [24]. Us-
ing the “diffusion in a sphere” model introduced by Volino and Dianoux
(cf. section 3.6.2) and the modification introduced by Bellissent-Funel et
al., this can be taken into consideration for the data evaluation.
The radius of the sphere was extracted from fitting equation 3.30 to the Q-
dependence of the EISF. The resulting fits are shown in figure 9.19 and the
obtained values for the radius of the sphere and the percentage of immo-
bile protons are given in table 9.4. For both investigated resolutions the ob-
tained values for the EISF agree within experimental errors. The observed
radius is larger for an incident wavelength of λ = 5.9 Å due to the longer
observation time in comparison to an incident wavelength of λ = 5.1 Å. For
the second parameter extracted from the fits, the immobile fraction, such a
statement is not possible because of the large errors due to the restricted fit
range at large Q-values (cf figure 9.19).
In contrast to MD simulations [121, 122] where specific sites of the enzyme
can be investigated in more detail e.g. the gorge, neutron scattering probes
the average over all protons present in the protein. Therefore the conclu-
sion can be drawn that ligand binding can have a local effect on the dynam-
ics of the gorge but a rather small impact on global dynamics.

native AChE AChE + HupA

λ = 5.1 Å
radius a [Å] 2.69 ± 0.07 2.71 ± 0.07

immobile fraction p [%] 71.19 ± 3.71 69.81 ± 4.31

λ = 5.9 Å
radius a [Å] 2.93 ± 0.09 2.96 ± 0.06

immobile fraction p [%] 69.37 ± 6.00 68.19 ± 4.23

Table 9.4: Results obtained from fitting the EISF with the “diffusion in a
sphere” model. Values are given for both samples and both investigated
energy resolutions.

The line widths of the Lorentzian are drawn in figure 9.18, as already
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Figure 9.17: S(Q, ω) of AChE + HupA taken on IN6 (50 µeV energy reso-
lution) with corresponding fits. Data are shown as black points with cor-
responding error bars. The delta function used as elastic line is shown in
green, in blue is a single Lorentzian curve and in cyan a linear background
is drawn. Due to the convolution with the experimental determined instru-
mental resolution, the elastic line shows noise for higher energy transfers.
Data are given for the lowest and highest measured Q-value.



CHAPTER 9. NEUTRON SCATTERING STUDIES OF HUMAN
ACETYLCHOLINESTERASE 115

mentioned above. For small Q-values, i.e. large distances, a confinement
effect is visible. According to the “diffusion in a sphere” model (cf section
3.6.2), the diffusion coefficient D can be estimated from the limit Γ0 for Q→
0 according to equation 3.31. The resulting values are given in table 9.5 for
90 µeV. For the 50 µeV energy resolution the values for D were extracted
from fitting equation 3.32 to the data, corresponding values are shown in
table 9.5. Again, the obtained values match within experimental errors for
both resolutions.
For large Q-values, the line width does not follow a free diffusion. For free
diffusion Γ can be written as Γ = DQ2. In the here investigated case the
line width shows a jump diffusion behaviour, described by equation 3.32.
High Q-values correspond to short length scales, thus local motions such
as jumps of the observed protons become dominant. The residence time τ
between two jumps is given by τ = 1/Γ∞, where Γ∞ can be extracted from
the asymptotic behaviour of Γ for high Q, where a constant value Γ∞ is
reached.
For both resolutions the line width is still increasing at high Q-values and
has not yet reached a plateau in the investigated Q-range. Therefore the
values have to be extracted from fitting equation 3.32 to the data. Corre-
sponding values for τ are also given in tables 9.5 and 9.6.
The characteristic jump distance can be calculated using:

l =
√

Dτ. (9.4)

Again the obtained results are given in tables 9.5 and 9.6. As for all other
parameters obtained, also the jump lengths for native AChE and AChE +
HupA agree within experimental errors.
In order to perform a jump, protons have to overcome an energy barrier
imposed by the surrounding energy landscape. The height of this energy
barrier is linked to the residence time via the Arrhenius relation:

τ = τ0eEa/kBT , (9.5)

where τ0 is a pre-factor and Ea the activation energy of the process.
When τ0 is assumed to be the same for native AChE and its inhibited coun-
terpart, ∆Ea can be written as

∆Ea = kBT ln
(

τAChE

τHupA

)
. (9.6)

Using equation 9.6 the activation energy difference between the two in-
vestigated systems is found to be ∆Ea,90 µeV = 10.47 ± 0.30 and ∆Ea,50 µeV
= 11,90 ± 0.43 cal/mol, respectively. Both values correspond to approxi-
mately 0.02kBT and therefore only to very small energy differences.
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In this section first quasi-elastic neutron scattering data on native AChE
and AChE + HupA for two different energy resolutions are presented. In-
formation on internal diffusion motion were extracted from fits to the quasi-
elastic broadening of the experimental scattering function. The analysis of
the EISF gave information on the radii in which protons diffuse according
to the “diffusion in a sphere” model [31]. In addition the immobile fraction
of hydrogens in the observed space-time window could be extracted. The
evaluation of the HWHM of the Lorentzian broadening permits a detailed
evaluation of the observed diffusive motions. In the low Q-region a con-
finement effect is observed as deviation from the DQ2 law. For the higher
Q-values, the diffusion can be described by jump diffusion. Both diffusion
constants D and residence times τ were calculated. All results obtained in
this section agree within the experimental errors for the native AChE and
its inhibited counterpart. Even if the here presented results were obtained
using hydrated powders, they yield values for D and τ which can be com-
pared to values obtained on proteins in solution, e.g. [93].

9.6 Conclusion and outlook

In this chapter extensive neutron scattering studies on human AChE are de-
scribed. The dynamics in the pico to nanosecond time have been explored
using four different elastic energy resolutions. The results from the elastic
scattering experiments (section 9.3) showed that more than one relaxation
process is observed. From the fact, that the observed motions leave the time
window of IN16 a maximal timescale of the motion can be inferred.
In section 9.4 the mean square displacements of human AChE and human
BChE have been investigated. A clear difference in the msds has been de-
tected. Already some explanations have been given in section 9.4, but in
order to further clarify the reasons for the different behaviours, several ad-
ditional investigations have to be performed.
Finally, in section 9.5 the results from the quasi-elastic experiments on IN6
are presented. The evaluation of the obtained EISFs and Lorentzian widths
permits a more detailed picture of the internal diffusive motions than the
elastic data but showed also no significant difference between the native
and the inhibited form of AChE.
In a next step EINS studies on different kinds of AChE, especially mouse
ACHE (mAChE) are planned using the same four energy resolutions as for
AChE. With the results from these experiments it will be possible to show,
if there is already a large variation of MSDs between AChE from different
species or if the observed difference between human AChE and BChE is
due structural differences between the two enzymes. Especially the results
from IN16 where a comparison of all samples is possible will help to clarify
this fact.
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In addition to the experimental approach, MD simulations are foreseen. So
far it was not possible to perform MD simulations of human AChE because
there was no crystal structure available. The crystal structure of human
AChE in its apo state has only been published very recently [110].
With the now available crystallographic data, MD simulations of human
AChE and BChE will be performed in the ns range to cover the time win-
dow of IN16 in order to find the origin of the observed difference in the
neutron data obtained on this spectrometer. The experimental data ob-
tained on mAChE will also be included in the analysis, because there exist
already MD simulations on this type of AChE [121–123], not only in the
native form but also in complex with HupA.

9.7 Conclusion en français

Dans ce chapitre, des études détaillées de l’AChE humaine par diffusion de
neutrons sont décrites. La dynamique dans le domaine du temps allant de
la pico- à la nano -seconde a été explorée en utilisant quatre différentes réso-
lutions pour l’énergie élastique. Les résultats des expériences de diffusion
élastique (section 9.3) ont montré que plus d’un processus de relaxation est
contenu dans la dynamique. Le fait que les mouvements observés sortent
la fenêtre de temps de IN16 permet de déduire l’échelle de temps maximale
des mouvements.
Dans la section 9.4 les déplacements carrés moyens de l’AChE humaine et
de la BChE humaine ont été étudiés. Une différence considérable dans leurs
MSD a été détectée. Quelques explications sont proposées dans la section
9.4, mais pour mieux comprendre les raisons des comportements différents,
plusieurs études supplémentaires sont envisagées.
Nous voulons réaliser des études EINS sur différents types de AChE, en
particulier l’ACHE de souris (mAChE). Avec les résultats de ces expériences
nous pourrons voir si il existe déjà une grande variation entre les MSD de
différentes espèces, ou si la différence observée entre l’AChE et la BChE
humaines est due à des différences structurales entre les deux enzymes.
Une autre approche sera effectuée à l’aide de simulations de dynamique
moléculaire. Jusqu’à présent, il n’était pas possible d’entreprendre de telles
simulations de l’acétylcholinestérase humaine, parce qu’il n’existait pas de
structure cristalline publiée. La structure cristalline de l’AChE humaine
dans son état apo n’a été publiée que très récemment [110].
Avec les nouvelles données cristallographiques, des simulations de dyna-
mique moléculaire de l’AChE et de la BChE humaines seront effectuées
dans le domaine de la ns pour couvrir la fenêtre de temps de IN16, afin
de mieux comprendre l’origine de la différence observée dans les don-
nées neutroniques obtenues sur ce spectromètre. En outre, les mesures re-
cueillies sur mAChE pourront également être incluses dans l’analyse, car il
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(a) Lorentzian width at a wavelength of 5.1 Å (elastic energy resolution:
90 µeV). Fit curves correspond to equation 3.32 of the jump diffusion model.
A clear deviation for low Q-values, corresponding to confinement effects, is
visible. The results from the fits are given in table 9.5.
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(b) Lorentzian width for the data taken at 50 µeV. Fit corresponds to the jump
diffusion model (see equation 3.32). The results from the fit are given in table
9.6.

Figure 9.18: Half widths of the quasi-elastic Lorentzian as a function of Q2

for native AChE (black squares) and AChE + HupA (red circles) for both
investigated resolutions on IN6. The colors of the fit curves correspond to
respective sample.
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existe déjà des simulations MD sur ce type d’AChE [121–123], et non seule-
ment dans sa forme native, mais aussi en complexe avec HupA.
Enfin, dans la section 9.5 les résultats des expériences quasi-élastiques sur
IN6 sont présentés. L’évaluation des EISFs fournisse une image plus dé-
taillée de la dynamique que les données élastiques seules.
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(a) EISF for an incident wavelength of 5.1 Å (elastic energy resolution : 90 µeV).
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(b) EISF for an incident wavelength of 5.9 Å (elastic energy resolution : 50 µeV).

FIGURE 9.19 – Elastic incoherent structure factor for both resolutions mea-
sured on IN6. Data and corresponding fits for pure AChE are drawn in
black, for AChE + HupA data and fits are depicted in red. The values ex-
tracted from the fits are given in table 9.4.
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native AChE AChE + HupA

D [10−5 cm2 s−1] 1.58 ± 0.07 1.51 ± 0.06
τ [ps] 3.30 ± 0.29 3.36 ± 0.31
l [Å] 0.72 ± 0.04 0.71 ± 0.04

∆Ea [cal/mol] 10.47 ± 0.30

Table 9.5: Values obtained by fitting equation 3.32 to the data obtained with
90 µeV energy resolution and shown in figure 9.18a.

native AChE AChE + HupA

D [10−5 cm2 s−1] 3.53 ± 0.33 3.45 ± 0.31
τ [ps] 9.11 ± 0.23 8.93 ± 0.22
l [Å] 1.79 ± 0.17 1.76 ± 0.16

∆Ea [cal/mol] 11.90 ± 0.43

Table 9.6: Values obtained by fitting equation 3.32 to the data at 50 µeV
energy resolution and shown in figure 9.18b. Due to the levelling of at
small Q-values the, first data point was excluded from the fit.
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Appendix A

Abbreviations

AChE Acetylcholinesterase
BChE Butyrylcholinesterase
CCD Charge-coupled device
CRG Collaborating research group
DMPA 1,2-dimyristoyl-sn-glycero-3-phosphate
DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine
DMPC-d54 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine
DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
EINS Elastic incoherent neutron scattering
EISF Elastic incoherent structure factor
eV Electron volt
FRMII Forschungsreaktor München II
FWHM Full width at half maximum
HHP High hydrostatic pressure
HupA Huperzine A
HWHM Half width at half maximum
IBS Institut de Biologie Structurale
ILL Institut Laue-Langevin
LLB Laboratoire Léon Brillouin
MD Molecular dynamics
msd Mean square displacement
NSE Neutron spin echo
PDG Particle data group
PSD Position Sensitive Detector
PSI Paul Scherrer Institut
QENS Quasi-elastic neutron scattering
QISF Quasi-elastic incoherent structure factor
rpm Revolutions per minute
SNS Spallation neutron source

I
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Appendix B

Physical constants

Planck constant:

h = (6.626 068 96± 0.000 000 33)× 10−34 J s

= (4.135 667 33± 0.000 000 10)× 10−15 eV s

reduced Planck constant

h̄ =
h

2π
= (1.054 571 628± 0.000 000 053)× 10−34 J s

= (6.582 118 99± 0.000 000 16)× 10−16 eV s

Boltzmann constant

kB = (1.380 650 4± 0.000 002 4)× 10−23 J K−1

= (8.617 343± 0.000 015)× 10−5 eV K−1

Avogadro constant

NA = (6.022 141 79± 0.000 000 30)× 1030 mol−1

Gas constant

R = NA · kB = (8.314 472± 0.000 015) J mol−1 K−1

= 5.189× 1019 eV mol−1 K−1

III



IV



Appendix C

Amino acid composition of
hAChE

Amino acid number percentage

Ala (A) 55 9.0
Arg (R) 43 7.0
Asn (N) 17 2.8
Asp (D) 29 4.7
Cys (C) 8 1.3
Gln (Q) 24 3.9
Glu (E) 34 5.5
Gly (G) 58 9.4
His (H) 15 2.4
Ile (I) 9 1.5

Leu (L) 69 11.2
Lys (K) 10 1.6
Met (M) 9 1.5
Phe (F) 29 4.7
Pro (P) 51 8.3
Ser (S) 36 5.9
Thr (T) 26 4.2
Trp (W) 17 2.8
Tyr (Y) 21 3.4
Val (V) 54 8.8

Table C.1: Amino acid composition of human AChE.

V



VI

Atom number in protein

Carbon C 3074
Hydrogen H 4673
Nitrogen N 841
Oxygen O 865
Sulfur S 17

Table C.2: Atomic content of human AChE.
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Articles

In this chapter all accepted articles are listed, I contributed to. They are
quoted in the order of their publication data, staring with the earliest.

D.1 Elastic scattering studies of aligned DMPC multi-
layers on different hydrations

The following article was published in the proceedings of the XIII European
Conference on the Spectroscopy of Biological Molecules, held in Palermo,
Italy from August 28 - September 2, 2009. During the conference I pre-
sented a poster with results of a measuring campaign on IN16, ILL. The
presented results are summarised in the following article.
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Abstract. Biological membranes, consisting mainly of phospholipids and proteins, are organized in a bilayered structure which
exhibits dynamical behaviour within time regimes ranging from 10−12 s with the motion of alkyl chain defects and 1 s corre-
sponding to collective excitations of the bilayer [Europhysics Letters 8 (1989), 201–206]. With the prominent role hydration
plays on the structural phase behaviour of phospholipids membranes, it is essential for a better description of membranes to
understand also the influence of hydration on the dynamics of membrane systems. In the present study we have performed
neutron scattering investigations on highly oriented DMPC-d54 multilayers at two different relative humidity (rh) levels. Our
results reveal the strong influence of hydration on the local membrane dynamics, i.e., head group dynamics.

Keywords: Oriented model membranes, elastic neutron scattering, dynamics, hydration effects

1. Introduction

Biological membranes consist not only of different kinds of lipids, but also of membrane proteins and
molecules like, e.g., cholesterol and ethanol [18]. To investigate the physical and structural behaviour of
such complex systems, lipid membranes consisting of only one type of lipid such as 1,2-Dimyristoyl-
sn-Glycero-3-Phosphocholine (DMPC) serve as suitable model systems.

Saturated phospholipids like DMPC show two phase transitions: (1) a pre-transition from the Lβ gel
phase to the Pβ ripple phase (DMPC at 286 K) and (2) the main phase transition from the Pβ ripple
phase to the liquid-crystalline Lα phase (DMPC at 296 K) where the mobility of the alkyl chains is
enhanced with respect to the gel phase [10]. For chain deuterated lipids which were used in this study
the temperature of the main phase transition is shifted by about 3 K to lower temperatures [6].

Lowering the water content reduces the repeating distance of the bilayers. In addition, structural in-
vestigations [20] show that a lower degree of hydration causes a shift of the main phase transition to

1This paper was presented at ECSBM, Palermo, Italy, August 28–September 2, 2009. Guest Editor: A. Cupane.
*Corresponding author: Judith Peters, Université Joseph Fourier, F-38042 Grenoble Cédex 9, France. Tel.: +33 476 20 75

60; Fax: +33 476 20 76 88; E-mail: peters@ill.fr.
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higher temperatures. The effect can be observed by X-ray or neutron diffraction following the shift in
the distance of the Bragg peaks of the lipid bilayers. The relation d = λ/2× sin(θ) (λ – X-ray or neutron
wavelength, θ – scattering angle) allows to calculate the repeating distance d. For a fully hydrated DMPC
bilayer, the repeating distance d is around 63 Å [8]. While the influence of hydration on the structural
properties of membranes is well investigated [20], its influence on dynamic behaviour is rather poor.

The diffusive motions of lipids within the bilayer have been explored by quasi-elastic neutron scat-
tering [7,14,22]. More recently collective motions of the lipid bilayer were also studied with inelastic
neutron scattering [15]. However, the hydration effects on the lipid bilayer properties were not enclosed
in these investigations. In this study, we thus performed neutron scattering investigations on highly ori-
ented DMPC multilayers at two different relative humidity (rh) levels with the aim to fill this gap. Our
results reveal the strong influence of hydration on the local membrane dynamics.

2. Materials and methods

2.1. Sample preparation

To probe dynamics of lipid membranes in and out of plane, oriented samples can be prepared on very
smooth surfaces such as silicon wafers or mica sheets. Solid supported bilayer systems also allow the
preparation of large amount of sample (≈150–200 mg) required in inelastic and quasi-elastic neutron
scattering experiments [19]. Another advantage of this preparation method is the very low mosaic spread
(below 0.5◦). Each Si-wafer was of size of about 30 × 40 mm which fitted perfectly the dimensions
of the flat gold coated aluminium sample cells used for the experiments.

Alkyl chain deuterated 1,2-dimyristoylphosphatidylcholine-d54 (DMPC-d54) was purchased from
Avanti Polar Lipids (Alabaster, AL, USA) and used without further purification. The DMPC powder
was dissolved in a 3:1 chloroform–trifluoroethanol (TFE) mixture following a protocol described in [2].
This solution was then kept at −20◦C overnight.

About 30 mg of lipid was deposited on a single wafer. After the deposition the wafers were dried for
two days in a desiccator. One sample was rehydrated from pure D2O with relative humidity of 100%,
another one was rehydrated from a saturated salt solution (D2O + NaCl) with reduced relative humidity
of 75%. Six such wafers were placed in the sample cell and sealed to achieve an amount of about 200 mg
hydrated lipid bilayers per sample. The weight of both samples was monitored and no change in weight
before and after the neutron experiments was observed.

2.2. Elastic neutron experiments

The level of hydration, the mosaicity of the 1D lamellar order and the evolution of the repeat distance
(d-spacing) of the bilayers with temperature were checked by neutron diffraction measurements on the
small momentum transfer diffractometer D16 at the Institut Laue-Langevin (ILL), Grenoble, France [1].
After heating to 330 K to allow annealing of defects, scans were performed to obtain the repeat distance
of the membranes at three different temperatures, namely, 330, 310 and 280 K. During the temperature
changes data were taken to identify the temperature of the main phase transition. An example of the
evolution of the d-spacing with temperature is shown in Fig. 1.

Elastic temperature scans in the range of 280–330 K were performed on the cold neutron backscatter-
ing spectrometer IN16 at ILL at an energy resolution of ΔE = 0.9 µeV (full width half maximum) and
an accessible Q-range of 0.19–1.93 Å−1 [5]. The investigated temperature range covers both the main
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Fig. 1. Diffraction data taken on D16 at ILL. Data are shown for three different temperatures: 280 K (straight line), 310 K
(broken line) and 330 K (broken line with crosses). The sample was hydrated from a saturated salt solution (D2O + NaCl)
resulting in a relative humidity of 75%.

phase transition from the Pβ ripple to the liquid-crystalline Lα phase which occurs around 296 K for
DMPC at full hydration and also the pre-transition from the Lβ gel phase to the Pβ ripple phase about
10 degrees below the main phase transition.

Special care was taken on the orientation of the sample to probe motions around the chain correlation
peak at Q = 1.48 Å−1 parallel and perpendicular to the membrane surface. Via the relation Q =
4π sin(2θ)/λ the angle of the sample with respect to the incoming beam was calculated to be 135◦ for
the orientation parallel to the membrane surface and 45◦ for the perpendicular orientation, respectively.
From the obtained data an empty cell was subtracted and the data were normalised by the scattering of
a 1 mm vanadium sample.

3. Results and discussion

From the shift of the main phase transition temperature to higher temperatures with decreasing wa-
ter content (see Section 1 and Fig. 1 in [20]), it is possible to evaluate the water content between the
phospholipid surfaces. We can extract the parameter Rw = nW/nA where Rw expresses the molar ratio
of water (nW) and amphiphile (nA) [12,13]. Figure 2 (using the left y-axis) shows the summed elastic
intensities measured for the parallel orientation at 135◦ with respect to the incoming beam for the two
samples on IN16. At the temperature of the main phase transition a drastic decrease in the elastic inten-
sity occurs. The phase transition temperature moves to higher temperatures for the sample with lower
water content. The calculated Rw for the higher hydrated sample is Rw ≈ 6 (transition temperature:
305 K) and Rw ≈ 4 for the less hydrated sample (transition temperature: 310 K). Pfeiffer et al. find for
DMPC multilayers a value of Rw � 12 for fully hydrated membranes [13].
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Fig. 2. Summed elastic intensity (Q-range: 0.43–1.16 Å−1) measured at 135◦ (left y-scale, filled squares: Rw ≈ 4, empty
circles: Rw ≈ 6) and mean square displacements 〈u2〉 (right y-scale, filled diamonds: Rw ≈ 4, empty triangles: Rw ≈ 6).
Drawn lines are guides to the eyes to follow the evolution of the mean square displacements. Data taken on the cold neutron
spectrometer IN16 at ILL (energy resolution: 0.9 µeV). Intensities are normalised to the lowest temperature.

To characterise the local dynamics from the elastic neutron scattering intensity, the so-called mean
square displacements (msd) 〈u2〉 were calculated. The elastic scattering function S(Q, ω = 0) can be
approximated by S(Q, ω = 0) ≈ exp(1/6 × 〈u2〉Q2) [21]. From the slope of a linear fit to a semi-
logarithmic plot of the data one can extract the 〈u2〉. Below the temperature of the main phase transi-
tion, coherent scattering arising from the ordering of the alkyl chain, gives rise to the so-called “chain
correlation peak” around a characteristic Q-value of 1.48 Å−1. Therefore the fit range was limited to
0.18 Å−2 � Q2 � 1.33 Å−2 in our data analysis. As shown in Fig. 2 (using the right y-axis) the 〈u2〉
show transitions at 305 and 310 K for the higher and lower hydrated sample, respectively. At first sight
the evaluated mean square displacements are very large above temperature of the main phase transition,
but 〈u2〉 in the same order of magnitude have been observed in a previous study which aimed to inves-
tigate the influence of the myelin basic protein (MBP) on the dynamics of model membranes (DMPA
in this study) [11]. A recently published molecular-dynamics simulation performed on fully hydrated
DMPC bilayers in the Lα phase (at 303 K) also shows very large 〈u2〉 at this temperature, even larger
then the two partially hydrated samples used in our study [4]. Hence we attribute the difference in the
values of the mean square displacements to the different hydrations of the samples, ranging from the
highest 〈u2〉-value for the simulation (≈8 Å2 for the centre of mass) to the sample with the lowest hy-
dration of Rw ≈ 4 (≈2.9 Å2). The authors differentiate three different diffusion regimes in time: (1) a
ballistic region where 〈u2〉 ∼ t2; (2) a subdiffusive domain where 〈u2〉 ∼ tβ with β < 1 and (3) a
domain of Fickian diffusion with 〈u2〉 ∼ t. According to this simulation, the time window of IN16 of
about 700 picoseconds probes length scales in the subdiffusive regime. A detailed analysis of quasi-
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elastic data taken in both the Lβ gel and liquid-crystalline Lα phase is still in progress [23]. In order
to compare the results obtained from the mean square displacement (using the right y-axis in Fig. 2)
with the summed elastic intensities, the intensities shown in Fig. 2 (using the left y-axis) were summed
over the same Q-range (0.43 Å−1 � Q � 1.16 Å−1) which was used in the evaluation of the msd’s.
The effect is stronger for the summed intensities due to adding up the signals from all detectors in the
used Q-range. From hydration dependent studies of, e.g., bacteriorhodopsin [9] it is known that with
increasing hydration the msd’s show a steeper slope only at high relative humilities in contrast to protein
where a steady rice of the msd is observed [17]. Only small difference of the calculated slopes in the
Lα phase (higher hydrated sample: 0.258 ± 0.0157, less hydrated sample: 0.224 ± 0.022) of our results
confirm these finding.

Rheinstaedter et al. [16] analyzed the elastic intensity at various Q-values of DMPC to map out the
transition of the different molecular components from immobile to mobile as a function of temperature.
The effect of hydration on the membrane dynamics was neglected in their analysis. Our study reveals
the strong influence hydration has on the membrane systems, not only on the structure but also on the
dynamics. Similar to hydrated protein powders [3] also phospholipids show a dynamic transition in the
mean square displacements 〈u2〉 and a shift of the temperature of the main phase transition depending
on their hydration. The transition for proteins occurs around 200 K and is often called “dynamical
transition”. In the case of membranes this transition is due to the structural transition into the liquid-
crystalline Lα phase. In contrast to proteins were the individual amino acid is hydrated to allow local
motions of the proteins in phospholipid bilayers only the hydration of the hydrophilic head group of
the phospholipid triggers the dynamic response of the hydration shielded hydrophobic alkyl chains. In
conclusion special care should be taken for the hydration control to avoid a mixing of effects, which
could be partly due to the hydration state of the sample.
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D.2 Hydration dependent studies of highly aligned
multilayer lipid membranes by neutron scatter-
ing

The article entitled “Hydration dependent studies of highly aligned multi-
layer lipid membranes by neutron scattering” has been accepted for publi-
cation in The Journal of Chemical Physics and was published in October 2010.
The article was also selected for the October issue of the JCP: BioChemical
Physics. It includes the subset of articles from The Journal of Chemical Physics
that directly deals with, or has important implications for, biologically re-
lated systems.
Elastic and quasi-elastic data are presented which where obtained dur-
ing measurements on IN13 and TOFTOF. I was responsible for the sample
preparation, took part in both measurement campaigns and performed the
data evaluation.
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We investigated molecular motions on a picosecond timescale of 1,2-dimyristoyl-
sn-glycero-3-phosphocholine �DMPC� model membranes as a function of hydration by using elastic
and quasielastic neutron scattering. Two different hydrations corresponding to approximately nine
and twelve water molecules per lipid were studied, the latter being the fully hydrated state. In our
study, we focused on head group motions by using chain deuterated lipids. Information on in-plane
and out-of-plane motions could be extracted by using solid supported DMPC multilayers. Our
studies confirm and complete former investigations by König et al. �J. Phys. II �France� 2, 1589
�1992�� and Rheinstädter et al. �Phys. Rev. Lett. 101, 248106 �2008�� who described the dynamics
of lipid membranes, but did not explore the influence of hydration on the head group dynamics as
presented here. From the elastic data, a clear shift of the main phase transition from the P� ripple
phase to the L� liquid phase was observed. Decreasing water content moves the transition
temperature to higher temperatures. The quasielastic data permit a closer investigation of the
different types of head group motion of the two samples. Two different models are needed to fit the
elastic incoherent structure factor and corresponding radii were calculated. The presented data show
the strong influence hydration has on the head group mobility of DMPC. © 2010 American Institute
of Physics. �doi:10.1063/1.3495973�

I. INTRODUCTION

Native biological systems are always found in aqueous
environments. Therefore, it is not surprising that the dynam-
ics of such systems is influenced by the hydration level, as it
has been confirmed by several neutron scattering studies1–6

and molecular dynamics simulations.7–9 The dynamical tran-
sition for proteins appears around 200 K. It marks the cross-
over from a regime in which only vibrational motions of the
atoms are observed to a regime where anharmonic motions
emerge. Below a certain level of hydration �typically 0.2–
0.4 g water/g protein� corresponding to one complete water
layer bound to the protein surface, the protein shows no dy-
namical transition and as a consequence does not become
active.4

In the case of membranes, a transition due to the struc-
tural transition into the liquid-crystalline L� phase is ob-
served. Depending on the chain length and the degree of
hydration of the lipid, it occurs around room temperature or

even higher temperatures.10 In contrast to proteins where the
hydration of individual amino acids allows local motions of
the protein, in phospholipid bilayers, only the hydration of
the hydrophilic head group triggers the dynamic response of
the hydration shielded hydrophobic acyl chains due to the
increased surface available with increased hydration. For
membranes, a shift of the main phase transition to higher
temperatures with decreasing water content is already known
for quite some time.11 In recent years, neutron scattering
studies of membrane dynamics focused on highly hydrated
samples,12–15 but only a few of these studies took hydration
effects explicitly into consideration, e.g., König et al.14

In this work, we investigated the hydration influence on
the dynamics of model membranes by quasielastic neutron
scattering �QENS� and elastic incoherent neutron scattering.
Model membrane systems such as 1,2-dimyristoyl-sn-
glycero-3-phosphocholine �DMPC� show a similar thermo-
dynamical behavior as real cell membranes16 and are there-
fore often used to mimic their more complex natural
counterparts.

Dynamics in such lipid systems span over a large range
a�Author to whom correspondence should be addressed. Electronic mail:

peters@ill.fr.
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in time and space, and have been investigated not only by
neutron scattering,12–14,17,18 but also by nuclear magnetic
resonance,19,20 inelastic x-ray scattering,21 dielectric
spectroscopy,22 differential scanning calorimetry,23 dynamic
light scattering,24 single particle tracking,25 and other meth-
ods. To mimic membrane behavior in biological systems the
fully hydrated state is the one of interest because this re-
sembles physiological conditions. On the other hand, also the
dried state is of interest, e.g., for food science.26

The knowledge of the dynamical behavior of these
model systems as a function of hydration is then crucial to
better understand the parameters necessary for the function-
ing of biological membranes and what precisely are their
effects.27

II. SAMPLE PREPARATION AND CHARACTERIZATION

In neutron scattering, deuterated samples allow to take
advantage of the great difference in the incoherent scattering
cross sections of hydrogen ��inc=80.26 b �Ref. 28�� and its
isotope deuterium ��inc=2.05 b�, whereas the coherent scat-
tering cross sections are of the same order of magnitude
��coh�H�=1.76 b and �coh�D�=5.59 b, all values are given
for thermal neutron with an incident wavelength of about
1.8 Å�. So selective deuteration can be used to change the
contrast between different parts of the sample. This method
is especially useful for biological samples which contain a
high amount of homogeneously distributed hydrogen atoms.
In phospholipid model membranes, the incoherent scattering
cross section is drastically decreased by deuterating the
alkyl-chains of the lipids. For completely protonated DMPC,
the contribution to the incoherent scattering of the head
group accounts for 25% of the total incoherent scattering.
However, for the chain deuterated lipid used in our experi-
ments, 73% of the total �incoherent+coherent� scattering
cross section stems from the head group. The ratio is even
more striking considering only the incoherent cross section,
here 93% of the scattering originates from the head group. In
the gel phase, the chains are arranged in a regular manner at
a characteristic distance. This ordering gives rise to the co-
herent scattering originating from a quasi-Bragg peak around
1.48 Å−1, the so called “chain correlation peak,” correspond-
ing to a distance of about 4.2 Å. In the liquid phase, the
motion of the lipid chains prevents their ordering, and there-
fore the appearance of the correlation peak.

For the experiments described in the paper, we used
chain deuterated DMPC-d54 �including the methyl groups at
the end of the alkyl chains, see Fig. 1�. The lipids were
purchased from Avanti Polar Lipids �Alabaster, AL, USA�
and used without any further purification �deuteration of

�98%�. The DMPC powder was dissolved in a 3:1
chloroform-trifluoroethanol mixture following a protocol de-
scribed by Ding and co-workers.29 The dissolution was kept
at −20 °C overnight. To be able to probe the in- and out-of-
plane motions of the lipids in the membranes, oriented
samples have to be used. Such oriented samples have to be
prepared on very smooth surfaces such as silicon wafers. The
wafers were purchased from Siltronix �Archamps, France�
with a thickness of 380�25� �m and Si �111� orientation.
Each Si-wafer was cut to a size of about 30 mm�40 mm to
fit the dimensions of the flat aluminum sample container
used for the experiments. To avoid chemical interactions be-
tween the holder and the sample, the cells are coated with a
layer of 3 �m nickel and 0.5 �m gold. About 30 mg of lipid
solution was sprayed onto a single wafer. Using this method,
bilayer stacks parallel to the wafer surface are assembled.
Two samples with different hydration levels were prepared.
After the deposition, the wafers were dried over silica gel for
2 days in a desiccator. One sample was rehydrated from pure
D2O at 40 °C to achieve a fully hydrated sample �corre-
sponding to about 12 water molecules per lipid and more30�.
The other one was rehydrated from a saturated salt solution
to get reduced water content compared to the fully hydrated
sample �D2O+NaCl at 40 °C resulting in a relative humidity
of 75%, about 9 water molecules per lipid�. For each sample,
six wafers were stacked together after rehydration to achieve
a total amount of about 200 mg lipid per sample. A flat cover
was used to close the sample cells. The total sample thick-
ness of the six wafers �total thickness of 2.3 mm� and depos-
ited DMPC was 3 mm. With typical values of about 90% for
the sample transmission, this amount of sample is needed to
achieve sufficiently high statistics in a reasonable measuring
time. The weight of both samples was monitored before and
after the experiments and no change was observed.

The level of hydration and the mosaicity of the samples
were characterized by neutron diffraction prior to both the
quasielastic and elastic experiments. The corresponding dif-
fraction data obtained at D16 �Ref. 31� of the Institut Laue
Langevin �ILL�, Grenoble, France, are shown in the supple-
ments to this paper.32 This allows evaluating the bilayer re-
peat distance for each sample and by this means the relative
humidity.33 For the sample hydrated from pure D2O, which
will be referred to as the “higher hydrated sample” in the
following, the diffraction data yield a repeat distance of
62.5 Å. The mosaic spread was extracted from fitting a
Lorentzian curve to the experimental data to be 0.22�2�° �full
width at half maximum �FWHM��. The sample hydrated
from D2O+NaCl showed a d-spacing of 54.9 Å and a mo-
saicity of 0.25�2�° �data not shown here�. It will be referred
to as “less hydrated sample.”

III. EXPERIMENT

A. Elastic experiments at IN13

Elastic experiments were performed at the Collaborative
Research Group �CRG� thermal neutron backscattering spec-
trometer IN13 at ILL, Grenoble. The incident wavelength
was �=2.23 Å with an incident neutron energy of about
16 meV. This setup results in a uniquely wide range of mo-

FIG. 1. Schematic view of DMPC-d54. According to the Carpentier model,
three different radii are sketched in the choline head group.
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mentum transfer Q�0.2 Å−1	Q	4.9 Å−1�. The elastic en-
ergy resolution was 8 �eV. A detailed description of the
instrument and selected applications in the field of biophys-
ics can be found in Natali et al.34 Transmission for both
samples was measured and found to be in the order of 90%,
so multiple scattering effects were not taken into consider-
ation for the data treatment. For both samples, fixed energy
window scans were recorded in the temperature range be-
tween −23 and 37 °C in steps of 5 °C to cover both the
phase transition from the lamellar gel to the fluid phase at
22 °C and also the transition from the gel to the crystalline
phase around 12 °C. Special care was taken for the sample
alignment so that the momentum transfer 
Q� at the lipid
peak maximum lies in the plane of the membrane bilayers
for the parallel orientation. Using Eq. �1�, the corresponding
angles of 75° and 165° with respect to the incoming beam
were calculated for the parallel and perpendicular orientation
of the scattering vector toward the membrane surface, re-
spectively,

Q =
4�

�
sin � . �1�

Strictly speaking, the terms “parallel” and “perpendicular”
are only true for these particular values; nevertheless, we are
using these designations in the course of this paper to distin-
guish the orientations where these alignments are best vis-
ible. Both orientations Q� parallel and Q� perpendicular to the
membrane surface were measured. We mainly focused on the
parallel orientation �2�=75°�. 3 h per temperature was mea-
sured to favor good data statistic collection for this orienta-
tion. For the perpendicular orientation, the acquisition time
varied between 45 min and 1 h �at higher temperatures in
particular�. For data correction purposes, an empty cell, a cell
with six cleaned wafers, and for normalization a 2 mm va-
nadium sample were measured. The data evaluation was car-
ried out using the LAMP software available at ILL.35

B. Quasielastic neutron scattering experiments
at TOFTOF

QENS experiments have been performed on the same
samples at the time-of-flight spectrometer TOFTOF �Ref. 36�
at the Munich research reactor FRM II in Garching. Appli-
cations of the spectrometer in the field of membrane bio-
physics can be found in, e.g., Busch et al.37 The incident
wavelength was set to �=6 Å, the chopper speed to
12 000 rpm, resulting in an energy resolution of the elastic
line of 56 �eV �FWHM of the elastic line�. The setup was
chosen in order to compare the results with previous mea-
surements obtained by another group.13 Both samples were
measured in a temperature range from 5 to 25 °C to cover
both phase transitions: the pretransition from the L� gel
phase to the P� ripple phase at 12 °C as well as the main
phase transition from the P� phase to the L� liquid phase at
22 °C.11 Spectra were taken every 5 °C. The measuring
time per temperature was 5 h. All samples, including a
1.5 mm vanadium sample and a sample holder with six
empty wafers and pure D2O needed for corrections, were
measured in one orientation �at 45° with respect to the inci-

dent beam� only. In this case 
Q� is mainly parallel to the
membrane surface at the alkyl chain correlation peak posi-
tion �Q=1.48 Å−1� for low energy transfers. Earlier QENS
experiments on 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine13 showed no significant differences in the
elastic incoherent structure factor �EISF� for 
Q� oriented
parallel and perpendicular to the membrane surface. This fact
was confirmed by our elastic data and the QENS data were
recorded only for the parallel orientation. From the measured
spectra, the scattering of the empty can was subtracted, then
they were normalized to vanadium and transformed into
�Q,E�-space. The data were binned into 15 groups with Q
ranging from 0.44 to 1.56 Å−1. Data reduction was per-
formed with IDA package available onsite,38 data analysis
was done using the PAN package from DAVE software.39

IV. RESULTS AND DISCUSSION

A. Elastic data

Figure 2 shows the normalized summed intensity taken
on IN13 (Q-range: 0.19 Å−1	Q	1.67 Å−1� as a function
of temperature for both samples. The representation of the
data offers a simple and model-free approach to detect tran-
sitions as changes in the elastic intensity decay.40 In the cho-
sen setup, the influence of the coherent scattering coming
from the chain ordering is mainly seen in the parallel orien-
tation. Summed intensities are then shown only for the par-
allel orientation. The phase transition for the fully hydrated
sample is found to lie around 21 °C which coincides very
well with the value of 20.15 °C found by Guard-Friar et al.41

Whereas for the less hydrated sample a transition tempera-
ture around 25 °C is found. It is known from, e.g., Fourier
transform infrared spectroscopy �FTIR� spectroscopy42 that
dehydration increases the transition temperature. Following
the procedure used by Pfeiffer et al.,30 we estimated the wa-
ter content from the shift of the main phase transition tem-
perature. We can extract the parameter Rw=nW /nA where Rw

expresses the molar ratio of water �nW� and amphiphile
�nA�.30,42 The calculated Rw for the fully hydrated sample is
Rw�12 and Rw�9 for the less hydrated sample. Pfeiffer et
al. found for DMPC multilayers a value of Rw�12 for fully
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FIG. 2. Plot of the normalized summed elastic intensity vs temperature for
Q aligned parallel to the membrane surface. With decreasing water content,
a shift in the temperature of the main phase transition is evident. Lines are
guides to the eye.
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hydrated membranes.30 Therefore, the elastic measurements
on IN13 provide a solid basis to characterize the system for
the quasielastic experiment at TOFTOF.

Due to the coherent scattering arising from the ordering
of the lipid chains, below the main phase transition and the
relatively broad Q resolution of IN13, only three detectors
were left to evaluate the mean square displacements
�MSDs�;43 therefore, it was not possible to obtain MSDs with
reasonable error bars. A detailed comparison between the
mean square displacements and the summed intensities for
DMPC is found elsewhere.44

B. Quasielastic data

A detailed description of the analysis of quasielastic neu-
tron scattering data can be found in Bée.45 For applications
in the context of lipid dynamics, see, e.g., Busch et al.,37 and
for water dynamics in lipid systems, see, e.g., Swenson
et al.46

The obtained data are a convolution of the theoretical
scattering law Stheo�Q� ,� and the instrumental resolution
Sres�Q� ,� given by a measured vanadium sample,

Smeas�Q� ,� = Stheo�Q� ,� � Sres�Q� ,� . �2�

The theoretical scattering law can be expressed by a delta
function for the elastic contribution and a sum of Lorentzians
for the quasielastic contributions coming from the dynamics
of the investigated sample.45 In our study, an elastic peak and
two Lorentzian functions �narrow and broad components�
were necessary to reasonably fit the obtained data. In Fig. 3
the fits to the data are shown for two Q-values. The S�Q� ,�
writes

Stheo�Q� ,� = e−DWF�A0�Q� ���� + A1�Q� �L1��1,�

+ A2�Q� �L2��2,�� . �3�

e−DWF is the Debye–Waller factor according for vibrational
motions, �i represents the half width at half maximum of
each Lorentzian, Ai is the corresponding amplitude with the
normalization A0+A1+A2=1. Keeping in mind that chain-
deuterated lipids were used in our experiments, the narrow
and the broad Lorentzians were associated with slow and fast
motions of the head groups, respectively. The geometry of
the motion can be extracted from the EISF as defined in

EISF�Q� � =
A0�Q� �

A0�Q� � + A1�Q� � + A2�Q� �
. �4�

For both samples, the EISF does not decay to zero for large
Q-values, which indicates an immobile fraction in the exam-
ined time-space window.

Two different models were applied to fit the EISFs. First,
we used the “diffusion in a sphere” model introduced by
Volino and Dianoux,47 where free diffusion in the restricted
volume of a sphere is permitted. Bellissent-Funel and
co-workers48 established as an addition to this model an im-
mobile fraction. The corresponding EISF is described by

A0�Q� � = p + �1 − p� � �3j1�Qa�
Qa

�2

, �5�

where j1 is the first order spherical Bessel function of the
first kind, a is the radius of the sphere, p denotes an immo-
bile contribution, and �1− p� is the corresponding mobile
fraction.

A modification of the Volino/Dianoux model allows in-
creasing radii for the diffusion volumes of the hydrogen at-
oms along the head group �see Eq. �6a��. This model was
introduced by Carpentier et al. for the study of dicopper
tetrapalmitate49 and is described by

A0�Q� � =
1

N
	
n=1

N �3j1�QRn�
QRn

�2

�6a�

with

Rn =
n − 1

N − 1
� �RN − R1� + R1. �6b�

N stands for the total number of atoms in the chain to which
hydrogen atoms are bound �in the case of this study N=3�.
The index n starts with the carbon atom the closest to the
oxygen of the phosphorus group which connects the lipid
chains with the head group and ends with the nitrogen of the
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FIG. 3. Plot of S�Q� ,� for �a� Q=0.44 Å−1 and �b� Q=1.48 Å−1 at 5 °C.
The resulting fit is shown �black line� as well as the single contributions.
The delta function is drawn in the blue line; the two Lorentzians are plotted
as green and pink lines, respectively.
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choline group �see Fig. 1�. Rn gives the radius of the diffu-
sion volume for the corresponding hydrogen atoms. In Eq.
�6b� linear increasing radii are assumed. It turned out during
the fitting procedure that the choice of N=3 yields physically
reasonable results, whereas for values bigger than N=3 the
radius for R1 became negative. Around 1.48 Å−1, the coher-
ent scattering rising from the ordering of the lipid chains, the
so-called chain correlation peak, is clearly visible. To ex-
clude its influence on the EISF fits, the fit range was re-
stricted to a range of 0.44 Å−1	Q	1.32 Å−1. Figures 4�a�
and 4�b� show the obtained data for two temperatures, one
below �5 °C� and one above �25 °C�, the main phase tran-
sition for the fully hydrated sample and the less hydrated
sample, respectively. Fits corresponding to the diffusion in a
sphere model are shown as solid blue lines, the Carpentier
model as dashed green lines. In the case of the less hydrated
sample, the diffusion in a sphere model fits the data suffi-
ciently well within the experimental errors, leading to values
of a=2.64�10� Å and a=2.91�06� Å for the radii at 5 and
25 °C, respectively. For the higher hydrated sample, the
simple model of diffusive motion in a sphere is not longer
sufficient. Here, the Carpentier model gives definitely better
results, especially at higher temperatures. In the L� gel phase
at 5 °C, the fits result in values of Rmin=0.36�4� Å for the

displacement of the proton bound in the methylene groups
near the phosphorus atoms of the lipid and of Rmax

=5.05�6� Å for the hydrogens of the methyl groups in the
choline group. At 25 °C in the liquid L�, phase correspond-
ing values of Rmin=1.14�3� Å and Rmax=6.42�11� Å were
obtained. The fact that the EISF is not going to zero for large
Q-values is an indication that not all of the protons take part
in the movements observed in the chosen time-space window
of the experiment, as it has been seen, e.g., for protein-
membrane complexes.50,51 However, for a detailed investiga-
tion, a broader Q-range would be preferable to clearly dis-
tinguish trends. In this context, we want to emphasize that
both employed models have only two fit parameters, namely,
in the case of the diffusion in a sphere model the radius a and
the immobile fraction p, and in the Carpentier model the first
radius R1 and the last radius RN. We tried also to fit other
models to the EISF �with more than two fit parameters�
which are often used to analyze methyl group reorientation
because of the three head group methyl groups. Namely, the
threefold jump model45 and a variant of this model �applied
to the methyl reorientation on trimethyloxosulphonium52�
have also been fitted to the data but they do not sufficiently
well fit the experimental data �data not shown�.

Our experiments demonstrate nicely the influence of hy-
dration on the mobility of the protons. The difference in the
EISF values shows a strong dependence on the level of hy-
dration. For the diffusion in a sphere model the percentage of
immobile protons can be inferred directly from the fit param-
eter p �see formula �5��, in the case of the Carpentier model
different radii for the volume of rotation can be extracted.
Thus, for the less hydrated sample, the values for 5 °C
amount to p5 °C=61.9�14�% and p25 °C=42.0�8�% for 25 °C,
respectively. Even if the diffusion in a sphere model cannot
be applied to the higher hydrated sample, it is already clear
from comparing Figs. 4�a� and 4�b� that the immobile frac-
tion for the latter sample is lower. With the obtained results,
we are able to directly associate different models of motions
to a given hydration of the lipids.

Figure 5 shows the line widths � of the narrower Lorent-
zian as a function of Q2. The line width of the second
Lorentzian is about a factor of 10 larger than the narrow one
and it shows a Q-independent, constant value for � for both
hydrations �data not shown here�. For small Q-values
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FIG. 4. EISFs with corresponding fits for the higher hydrated sample �a� and
the less hydrated sample �b�, respectively. Fits corresponding to the method
introduced by Carpentier and co-workers �Ref. 49� are drawn as dashed
green lines; fits corresponding to the diffusion in a sphere model �Ref. 47�
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�Q→0�, the data do not go to zero as for free diffusion, then
they increase and asymptotically reach a constant value ��

for large Q. A constant value at small Q was assigned by
Volino and Dianoux47 to a confinement effect at large radii.
A similar behavior is assumed and has also been observed by
Carpentier et al.49

However, we find a discrete kink only for the lowest
measured temperature �red points in Fig. 5�. At this tempera-
ture, the confinement radius Rconf obtained from the cross-
over of the two regimes at a Q2-value of about 0.55 Å−1

following formula �7� was calculated to be 4.2 �4� Å. These
values are in between Rmin and Rmax obtained from the EISF
fits for the corresponding sample at 5 °C and therefore con-
sistent with these values,

Q =
�

Rconf
. �7�

No pronounced plateau is visible for higher temperatures, but
a � which does not decay to zero for small Q values is still
an indication for restricted motion as it has also been ob-
served for proteins.53,54 As we find several radii for the dif-
fusion volumes in the Carpentier model, a superposition of
different kinks leads to the observed behavior, especially at
high temperatures. At larger Q-values, the line width � fol-
lows the “random jump diffusion” model.55

As for the EISF also for the line width, the influence of
the coherent scattering arising from the chain ordering
around Q=1.48 Å−1 occurs below the main phase transition,
whereas for 25 °C the predicted plateau is observed. There-
fore, the data are drawn in the same range as for the EISF.

V. CONCLUSIONS

In the present study, we have investigated the hydration
dependent behavior of model membrane systems above and
below the main phase transition of DMPC with a focus on
the head group motion. In contrast to existing studies, we
took explicitly into account the hydration effect on the dy-
namics of model membrane systems. Therefore, we were
able to directly associate different models for the motions of
the hydrogen atoms in the head group to different hydration
levels. The elastic temperature scans show a strong depen-
dence on the hydration: the phase transition temperature is
lower �related to a higher mobility of the head groups� in the
L� phase at full hydration compared to the less hydrated
sample. The type of head group motions possible in the dif-
ferent samples has been probed in more detail by the per-
formed QENS studies. Here, the hydration influence in the
observed time and space window is clearly translated by the
different models necessary to fit the obtained elastic incoher-
ent structure factor for the different hydrations and the result-
ing radii. In summary, this study has shown that hydration of
lipid bilayers plays a major role in understanding the dynam-
ics of these kinds of systems and should always be properly
characterized when dealing with samples containing lipids.
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APPENDIX D. ARTICLES XXIII

D.3 Dynamics of model membranes

In the following a chapter for the e-book entitled “Dynamics of Biologi-
cal Macromolecules by Neutron Scattering” is presented (editors Salvatore
Magazú and Federica Migliardo). I contributed to this review section 4
about the hydration influence on membranes.
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Abstract 
 
Biological membranes are complex multicomponent systems whose dynamics and structure provide their 
physiological function. Many parameters interplay to determine the membrane flexibility; among them, 
lipid composition, lipid-protein interaction, hydration, temperature etc. 
We provide here a tentative overview of recent successful neutron scattering experiments on different 
oriented model membranes, with the aim to demonstrate the many unique advantages that elastic and quasi-
elastic neutron scattering offer for the investigation of membrane dynamics. 
 
 
Introduction 
 
Membranes are fundamental elements of all living cells, performing important active 
functions controlling transport of molecules and ions across them. The lipid bilayer itself 
is a complicated multicomponent system made up of about 100 different lipids, differing 
in the hydrocarbon chain and in the polar head groups. Structural properties of these 
bilayers are very important for their functional activity and have been investigated in 
detail [1]. Much less is known on bilayer dynamics. 
On the other hand, it is well acknowledged that the different kinds of motions of the lipid 
chains are of paramount importance for the physiological function of membranes and 
those motions can be modulated by a number of factors like lipidic composition and 
protein interactions. 
It is commonly accepted that at least six different lipid movements can be observed in 
oriented membranes, characterized by specific time scale windows [2]. In the 10-11-10-8  s 
range the chain defect motions and the rotational diffusion about the lipid molecular axis 
and the chain defect motions can be observed. In the latter, the lipid chain oscillates 
forming an angle θ with respect to the molecule axis, along the normal to the membrane 
plane (wobbling motion). The origin of this kind of motion is still not completely 
understood and could be due to a fluctuating cis-trans isomerization of the acyl chains 
emphasized when membrane defects, such as holes due to a missing or not complete 
lipid, appear.  
On the other hand, the 10-10 – 10-9 s time scale is characterized by the exhibition of the 
vertical (i.e. parallel to the membrane normal) vibrational motion of the lipid molecules. 
At lower times, lateral diffusion in the bilayer plane (10-9 s) and rotational and flip flop 
motion of the lipid head groups (3×10-9 s), take place. Finally, much slower membrane 
dynamics is promoted by the collective modulations of the bilayers, which, observed in 
the s time scale, conferees the membrane roughness.  
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Incoherent neutron scattering is a powerful technique to investigate dynamics of 
biological molecules, which are characterized by a extremely high hydrogen content, 
representing at least half of the total number of atoms of the system. In fact, the hydrogen 
incoherent neutron scattering cross section is about an order of magnitude larger than that 
of other atomic species typically present in biological systems. Thus, incoherent neutron 
scattering provides averaged information on the global dynamics of the system. In 
particular, elastic (ENS) and quasi-elastic incoherent neutron scattering (QENS) have 
been already demonstrated to represent an optimal tool to provide unique information on 
lipid dynamics [3-5]. For these measurements, highly ordered samples are required in 
order to allow selection of the direction of momentum transfer with respect to the 
membrane normal, and therefore separation of in-plane and out-of-plane motions (Fig. 1). 

 
Fig. 1: By rotating the sample with respect to the incoming beam, the momentum transfer is predominantly 
oriented parallel (135°, panel a) and perpendicular to the membrane surface (45°, panel b) 
 
 
This is achieved using oriented lipid multilayer obtained drying a thin layer of liposome 
suspension on a solid support, typically SiO2 polished wafers. 
We report here few selected examples of the investigation of dynamical properties of 
different membrane model systems. 
 
1. Effect of Myelin Basic Protein on the Dynamics of Oriented Lipid Bilayers 
 
Myelin is the discontinuous multibilayer membrane sheath wrapped around the nerve 
axon. The integrity of the myelin sheath is fundamental to optimize the action potential 
conduction along spike in the axon [6,7], while stacking disorder causes severe diseases 
like multiple sclerosis. It contains proteins which are believed to play an important role in 
maintaining the membrane stack order [8-11]. Among them, the Myelin Basic Protein 
(MBP) is the second most abundant myelin protein that counts for up to 30% of the total 
protein fraction in the Central Nervous System (CNS) [12]. 
MBP is an extrinsic protein that, when removed from its native environment in the 
membrane and isolated in the water-soluble form, appears as an extended, flexible, 
irregular coil having little secondary structure [8,13]. However, several studies have 
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demonstrated that MBP, according to its structural role, can interact with specific lipids 
to form ordered assemblies [12,14,15]. On the other hand, it is still not clear whether the 
absence of MBP affects the lipid dynamics. Recent elastic and quasi-elastic neutron 
scattering experiments, performed on highly oriented dimyristoyl phosphatidic acid 
(DMPA) phospholipid multilayers, simulating the myelin sheath, have demonstrated that 
it is possible to separate the in-plane and out-of-plane contributions of the membrane 
dynamics, thus to investigate the eventual appearance of membrane anisotropy [16]. It 
was also observed that the addition of the MBP to the DMPA membranes affects 
significantly the membrane dynamics. In particular the lipid mobility in the out-of-plane 
configuration (i.e. at 45° with respect to the incident beam) was shown to increase (Fig. 
2). 

 
Fig. 2: Temperature dependence of the normalised Mean Square Displacements (MSD) of DMPA (filled 
symbols) and DMPA+MBP (empty symbols). Incoherent elastic neutron scattering data have been acquired 
at the high resolution backscattering spectrometer IN13 at the Institut Laue-Langevin in Grenoble - France 
(ILL), using an energy resolution of 8µeV, corresponding to ~100 ps time scale accessible. MSD are 
calculated, in agreement to the Gaussian model, as the slope of the logarithm of the elastic intensity versus 
squared momentum transfer Q2, in the low-Q range fulfilling the condition of the Guinier approximation. 
(a) and (b) refer to the in plane (135°) and out-of-plane (45°) configurations, respectively. The lipid phase 
transition from gel (Lβ) to liquid-crystalline (Lα), occurring at Tc close to 320 K, is also shown [16]. 
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Moreover, the lipids are known to exhibit a complex temperature-dependent phase 
diagram, with at least two phase transitions from crystalline (Lc-phase), to gel (Lβ-phase), 
and then to liquid crystalline (Lα-phase) structures, reflecting different degrees of 
disorder. The transition from gel to liquid-crystalline phase (Lβ � Lα) in saturated lipids 
normally occurs at temperatures around Tc ~ 320 K, depending on the membrane 
composition. 
Thus, the observed enhanced lipid flexibility in DMPA+MBP at T > 310 K (Fig. 2), that 
leads to higher MSD values, could be assigned to the effect of the membrane structural 
modification occurring across the lipid phase transition. 
Moreover, the out-of-plane membrane dynamics is markedly characterized by spatially 
restricted vertical diffusive motions of the lipids, significantly enhanced by the MBP 
above the gel to liquid crystalline (Lβ � Lα) DMPA phase transition (Fig.3).  
On the other hand, the in-plane dynamics seems to involve predominantly the spatially 
restricted lateral diffusion of the lipids on the membrane surface that appears to be only 
slightly affected by the presence of the MBP. 
 
 

 
 

Fig. 3: Q dependence of the Elastic Incoherent Structure Factor (EISF) of DMPA and DMPA+MBP, 
measured in the Lα liquid phase (T = 340 K) and at both geometrical configurations (135° and 45°). 
Incoherent quasi-elastic neutron data have been acquired at the IN16 backscattering spectrometer at ILL, 
using an energy resolution of 0.9µeV, corresponding to ~2 ns time scale accessible. The presence of an 
EISF indicates that the observed motions have a localized diffusive nature. The EISF values at high-Q 
show a tendency to an asymptotic non-zero value (close to 0.5), suggeststing that about 50% of the 
hydrogen contributing to the spectrum perform only fast vibrational motions and do not contribute to the 
quasi-elastic part of the spectrum. 
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2. Dynamics of lipoplex-DNA gene vectors  
 
Human gene therapy is defined as the transfer of nucleic acids to somatic cells of a 
patient providing a therapeutic effect [17,18]. Among the non-viral carriers, cationic 
liposomes (CL) attract a significant interest because of their unique properties and their 
efficiency in acting as vehicles for DNA delivery into eukariotic cells [18,19].  
Many theoretical and experimental studies have been performed [20-24] to understand 
the factors governing the energetic, structural, and thermodynamic characteristics of CL-
DNA complexes; these properties, strongly influenced by the specific composition of 
lipoplexes, are essential for optimizing their transfection efficiency. The cationic 
lipoplexes are normally constituted by the mixture of a neutral (helper) lipid and a 
charged lipid; the former determines a given structure (in particular lamellar or hexagonal 
geometry), whereas the latter is fundamental for delivering the genes into the cell [22,23-
30]. 
The direct interaction of the positively charged lipid headgroup with the negatively 
charged phosphate of the DNA backbone is suggested by many authors to be the main 
mechanism for the complexation of DNA with cationic lipids [26,28]. This is also 
supported by both fluorescence techniques and differential scanning calorimetry [25] 
suggesting that the release of bound water and counterions is the driving force behind 
complex formation [26]. Besides, Choosakoonkriang and coworkers suggest that 
complexation with DNA induces a small increase in the disordered conformation of the 
lipid alkyl chain, altering the packing of the lipid (due to the alignment of the lipid 
headgroup with the DNA phosphate) and determining a greater fluidity of the apolar 
region of the membrane [27,28]. 
Unfortunately, very few studies have been performed on the dynamics of CLs-DNA 
systems to date; among them, is the recent investigation of highly oriented lamellar CLs-
DNA complexes consisting of calf thymus DNA added to 1:1 ratio binary mixtures of 
cationic monovalent lipid DOTAP (dioleoyl trimethylammonium propane) and the 
neutral helper lipid DOPC (dioleoyl phosphatidylcholine), both lipids having two 18-
carbon (C18) aliphatic chains per molecule [31].  
The membrane dynamics is shown to be strongly dependent on the cationic lipid/DNA 
molar weight ratio ρ (Fig. 4). Indeed, CLs-DNA at the isoelectric point (Fig. 4, panel c), 
displays a marked anisotropy in the mean square displacements. In particular, higher 
dynamics is observed in the out-of-plane configuration.  
The main result is that a minimum amount of DNA phosphate groups is not sufficient to 
induce modifications in membrane dynamics. On the other hand, at the isoelectric point, 
the balance of the total net charge inside the complex, together with the displacement of 
bound water molecules into solution (accompanied by counterion release), provides new 
degrees of freedom to the lipoplex, enhancing the apolar region fluidity and resulting in a 
very large increase of the out-of-plane lipid motions, mainly assigned to spatially 
confined vertical translation of the entire lipid molecule. 
An exhaustive description of the results, together with a proposed model to interpret the 
data, is reported elsewhere [31]. 
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Fig. 4: Normalised MSD of the CLs-DNA mixed multilayers vs. T, as a function of the cationic 
lipid/DNA molar weight ratio ρ. Panel a: pure lipids (ρ=0); panel b: excess of liposomes (ρ=4); 
panel c: isoelectric point (ρ=ρiso=2.2). Open squares: out-of-plane direction; filled circles: in-plane 
direction. Incoherent elastic neutron scattering data have been acquired at IN13-ILL, with an energy 
resolution of 8µeV [31]. 
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More recently [32], the investigation was extended to DOTAP-DOPC model membranes 
as a function of the DOTAP/(DOPC+DOTAP) ratio φ (Fig. 5), revealing a reduction of 
the dynamics along the direction normal to the membrane induced by increasing the 
neutral lipid (DOPC) concentration from φ = 0.5 to 0.8.  

 

 
 
Fig. 5: Temperature dependences of MSD for φ = 0.5 (filled circles) and φ = 0.8 (empty squares), 
measured at 135° (a) and 45° (b) with respect to the membrane normal. Incoherent elastic neutron 
scattering data have been acquired at IN13-ILL, with an energy resolution of 8µeV [32]. 

 
 
The explanation of the observed behaviour has to take into account the origin of the 
detected elastic intensity. While in the case of φ = 0.5 equal contributions arise from 
DOPC and DOTAP scattering, the φ = 0.8 sample reflects a difference of the relative 
weight in the total revealed signal. Indeed, the 0.8 lipid ratio refers to the increasing of 
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DOPC concentration of a factor of 4 with respect to the DOTAP. Thus, being the density 
cross section comparable for the lipids, in the φ = 0.8 case the 80 % contribution to the 
total signal is assigned to the DOPC, while only 20 % arises from DOTAP. 
On the other hand, DOPC has greater hydrophilic heads, characterized by the presence of 
a phosphate PO4

- group not present in the cationic DOTAP where there is only the aminic 
one NH3

+. Thus, the decrease of the out-of-plane mean square displacements correlated to 
the increasing DOPC concentration may be interpreted in terms of more localized vertical 
diffusion due to less free space accessible (Fig. 6). 
 

 
 
Fig. 6. Schematic representation of the DOTAP+DOPC oriented lipid mixture. The greater occupation of 
the interbilayer free space assigned to the DOPC, is evident. 
 
 
Moreover, the φ independent in-plane dynamics confirms that the key-role in the changes 
of membrane dynamics is mainly governed by the different size of the lipid heads. 
 
 
3. The dynamics of the gangliosides in bilayer domains  
 
Many macromolecules of biological relevance are characterized by the presence of sugar 
moieties with different degrees of complexity. A particular class of sugar-containing 
molecules is that of gangliosides, glycosphingolipids abundant in neuronal plasma 
membranes, which are believed to play a role in a number of cellular functions, including 
cell recognition, adhesion, regulation, signal transduction, and development of tissues. 
They are predominantly located on the outer leaflet of the membrane and may act to 
protect the membrane from harsh conditions such as low pH or degradative enzymes [33, 
34]. Ganglioside are amphiphilic molecules constituted of a ceramide and a saccharidic 
headgroup including one or more charged sugars (sialic acid). The mechanical properties 
and biological functions of gangliosides are strongly dependent on the behaviour of the 
lipids to which they are bound [35-38]. The properties of lipids are then likely to be 
strongly affected by the microdomain presence and arrangement.  
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One of the most commonly studied gangliosides is galactosyl-Nacetylgalactosaminyl(N-
acetyl-neuraminyl)galactosylglucosylceramide (GM1) [39]. GM1 is a member of the 
glycosphingolipids family and contains four neutral sugar residues and a negatively 
charged sialic acid residue. The glycolipid monosialoganglioside GM1 is widely 
distributed in all tissues and reaches its highest concentrations in the central nervous 
system. It is primarily located in the outer surface of the mammalian cell’s plasma 
membrane and in synaptic membranes of the CNS. GM1 ganglioside modulates a number 
of cell surface and receptor activities as well as neuronal differentiation and development, 
protein phosphorilation and synaptic function. 
Recently the formation of ganglioside GM1-rich domains in monolayers and bilayers is 
an area of increased scientific interest. In particular, specialized membrane domains 
composed of phospholipids, glycolipids, and cholesterol-so called lipid rafts-are thought 
to play a role in a diverse range of processes ranging from membrane trafficking to 
signaling through specific membrane protein interactions where the raft microdomain 
acts as a platform for various cellular events [40-48].  
The first investigation on the dynamics of low-hydration lamellar systems containing 
gangliosides concerned the effect induced by the presence of minority amount of GM1 
molecules on the dynamics of oriented lamellar DMPC assemblies deposited on Si flat 
substrate [49].  
A strong gap in the incoherent elastic neutron intensity, measured on IN13 at ILL, was 
observed across the gel-to-liquid lipid phase transition region (Tc ~ 320K, at the given 
membrane hydration) (Fig. 7).  
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Fig. 7: Normalised elastic intensity of in-plane DMPC vs. Q2, measured on IN13-ILL. Temperatures from 
30 K to 350 K are reported. High temperature data points at high Q values are omitted for clarity, due to the 
large error bars associated to the low signals recorded [49]. 
Below the lipid phase transition, the in-plane lipid dynamics is sensibly increased upon 
addition of GM1, while a strong reduction of the out of plane mobility is observed across 
the phase transtion (data not shown, publication in progress, [49]). 
At a glance, the presence of GM1 results in a clear increase in anisotropy, damping the 
mean square displacement in out-of-plane direction a T > Tc, and in a kink mainly 
affecting the in-plane curve at temperatures slightly lower than 300 K, as if a double 
process is taking place. The presence of domains enriched in gangliosides could provide 
the clue for a reasonable interpretation of these results. Moreover, the present results 
would support the hypothesis, drawn on the basis of past experiments with various 
techniques evidencing their ability to establish an extended network of interactions, that 
gangliosides play a central role in the coordination of the structure and dynamics of their 
environment. 
 
 
4. Influence of hydration on the dynamics of model membrane systems 

Biological membranes are composed not only of different kinds of lipids but also of 
membrane proteins and molecules like e.g. cholesterol and ethanol. Lipid membranes 
consisting of only one type of lipid such as 1,2-Dimyristoyl-sn-Glycero-3-
Phosphocholine (DMPC) serve as role models for their more complex counterparts in 
biological systems. The phase behaviour is strongly dependent on the hydration level of 
the membranes [50]. Inelastic neutron scattering (INS) [51], quasi elastic neutron 
scattering (QENS) [2,52-53] and neutron spin echo spectroscopy (NSE) [54] have already 
been employed to study local as well as collective dynamics of these membranes. 
However, most of these studies lack a systematic investigation of the behaviour of the 
model membranes in dependence on their hydration. 
By hydrating the mulilayer stack using pure D2O or saturated salt solutions, the relative 
humidity (rh) can be adjusted and thus the level of hydration of the membranes. 
From structural investigations [50] it is known that a lower degree of hydration causes a 
shift of the main phase transition to higher temperatures. As a result of the lower water 
content the repeating distance of the bilayers is reduced. The effect can be seen e.g. by 
neutron diffraction as a shift in the distance of the Bragg peaks originating from the lipid 
bilayers as shown in Fig. 8. Via the relation d=λ/2*sin(θ) (λ=neutron wavelength, 
θ=scattering angle) the repeating distance d can easily be calculated. For a fully hydrated 
DMPC bilayer the d-spacing lies in the order of 63 Ångstroms [55]. While the influence 
of the hydration on the structural properties of the membranes is well investigated, the 
knowledge about this influence on the lipid dynamics of these model systems is rather 
poor. From quasi-elastic neutron scattering investigations on pure lipid multilayer 
systems, the diffusive motions of lipids within the bilayer have been estimated. 
Consistent values for the diffusion constant in the order of D=11*10-10 m2/s [51-53] have 
been obtained. However, none of them take into account hydration effects.  
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Fig. 8: Diffraction data taken on D16 at ILL to evaluate the d-spacing for two samples with different 
hydrations levels [56]. Open squares: 100 % rh (pure D2O atmosphere); filled diamonds: 75% rh (D2O in 
saturated NaCl salt solution). The experimental d-spacing are 62.5 Å and 54.9 Å, respectively [56]. 
 
 
Only recently, a neutron scattering investigation, performed on highly oriented DMPC 
multibilayers, at two different rh levels, enhanced the strong influence of hydration effect 
on the membrane dynamics [56] (Fig. 9). 
The investigated temperature range covers both the main phase transition from the Pβ 
ripple to the liquid-crystalline Lα phase which occurs around 296K for DMPC, at the 
hydration here investigated, and also the pre-transition from the Lβ gel phase to the Pβ 
ripple phase about 10 degrees below the main phase transition. The higher hydrated 
sample (100 % rh) shows a clear bend at the main lipid phase transition around 300K, in 
agreement with an increased mobility of the alkyl chain in the liquid phase, whereas a 
clear shift of the phase transition temperatures for the less hydrated sample (75 % rh) is 
evident.  
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Fig. 9 Integrated elastic intensity of DMPC, measured at 135°, on the cold neutron backscattering 
spectrometer IN16 at ILL with an energy resolution of 0.9 µeV. Data are binned over the Q range 0.43 – 
1.93 Å-1 to gain in statistic. Empty symbols: h=100 % rh; filled symbols: h=75 % rh [56]. 
 
 
The study reveals the strong influence hydration, not only on the structure but also on the 
dynamics on membrane systems.  
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Summary

Incoherent elastic and quasi-elastic neutron scattering were used to
measure membrane and protein dynamics in the nano- to picosec-
ond time and Ångstrom length scale.
The hydration dependent dynamics of DMPC model membranes
was studied using elastic and quasi-elastic neutron scattering. The
elastic experiments showed a clear shift of the temperature of the
main phase transition to higher temperatures with decreasing hy-
dration level.
The performed quasi-elastic measurements demonstrated nicely the
influence, hydration has on the diffusive motions of the head lipid
groups. Different models are necessary to fit the Q-dependence of
the elastic incoherent structure factor and show therefore the reduced
mobility as a result of reduced water content.
In addition to temperature, pressure as a second thermodynamical
variable was used to explore dynamics of DMPC membranes. The
ordering introduced by applying pressure has similar effect to de-
creased hydration, therefore both approaches are complementary.
Covering three orders of magnitude in observation time, the dynam-
ics of native AChE and its complexed counterpart in presence of Hu-
perzin A was investigated in the range from 1 ns to 100 ps. The mean
square displacements obtained from the elastic data allowed the de-
termination of activation energies and gave evidence that a hierarchy
of motions contributes to the enzymatic activity. Diffusion constants
and residence times were extracted from the quasi-elastic broaden-
ing.

Key words: neutron scattering, dynamics, model membranes, hydration,
AChE, BChE, high hydrostatic pressure



Résumé

La diffusion incohérente élastique et quasi-élastique de neutrons a
été utilisée pour mesurer la dynamique de membranes et de pro-
téines à l’échelle de la pico- à la nanoseconde et de la longueur de
l’Ångstrom.
La dynamique de membranes modèles DMPC, en fonction de l’hy-
dratation a été étudiée par diffusion neutronique. Les expériences
élastiques ont, clairement montré un décalage de la température de
transition de phase principale vers une température plus haute pour
une diminution du niveau d’hydratation.
Les mesures quasi-élastiques effectuées ont montré l’influence de
l’hydratation sur les mouvements diffusifs des têtes lipidiques. Dif-
férents modèles ont été nécessaires pour affiner les dépendances en
Q des facteurs de structure élastiques incohérents et montrent donc
la mobilité réduite due à l’hydratation inférieure.
En plus de la température, la pression comme deuxième variable
thermodynamique a été utilisée pour étudier la dynamique des mem-
branes DMPC. L’ordre induit par l’application d’une pression a un
effet similaire à une hydratation diminuée, donc les deux approches
sont complémentaires.
Couvrant trois ordres de grandeur, la dynamique d’AChE libre ou
complexée avec de l’Huperzine A a été étudiée dans le domaine al-
lant de 1 ns à 100 ps. Les déplacements carrés moyens obtenues à
partir des données élastiques ont permis la détermination des éner-
gies d’activation et prouvent que toute une hiérarchie de mouve-
ments contribue a l’activité enzymatique. Les constantes de diffusion
et les temps de corrélation ont été extraits de l’élargissement quasi-
élastique.

mots clefs : diffusion de neutrons, dynamique, membranes modèles, hy-
dratation, AChE, BChE, pression hydrostatique


