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Cloud computing emerged as a new paradigm for on-demand provisioning of IT resources and for infrastructure externalization and is rapidly and fundamentally revolutionizing the way IT is delivered and managed. The resulting incremental Cloud adoption is fostering to some extent cloud providers cooperation and increasing the needs of tenants and the complexity of their demands. Tenants need to network their distributed and geographically spread cloud resources and services. They also want to easily accomplish their deployments and instantiations across heterogeneous cloud platforms. Traditional cloud providers focus on compute resources provisioning and offer mostly virtual machines to tenants and cloud services consumers who actually expect full-fledged (complete) networking of their virtual and dedicated resources. They not only want to control and manage their applications but also control connectivity to easily deploy complex network functions and services in their dedicated virtual infrastructures. The needs of users are thus growing beyond the simple provisioning of virtual machines to the acquisition of complex, flexible, elastic and intelligent virtual resources and services.

The goal of this thesis is to enable the provisioning and instantiation of this type of more complex resources while empowering tenants with control and management capabilities and to enable the convergence of cloud and network services. To reach these goals, the thesis proposes mapping algorithms for optimized in-data center and in-network resources hosting according to the tenants' virtual infrastructures requests. In parallel to the apparition of cloud services, traditional networks are being extended and enhanced with software networks relying on the virtualization of network resources and functions especially through network resources and functions virtualization. Software Defined Networks are especially relevant as they decouple network control and data forwarding and provide the needed network programmability and system and network management capabilities.

In such a context, the first part of the thesis proposes optimal (exact) and heuristic placement algorithms to find the best mapping between the tenants' requests and the hosting infrastructures while respecting the objectives expressed in iii the demands. This includes localization constraints to place some of the virtual resources and services in the same host and to distribute other resources in distinct hosts. The proposed algorithms achieve simultaneous node (host) and link (connection) mappings. A heuristic algorithm is proposed to address the poor scalability and high complexity of the exact solution(s). The heuristic scales much better and is several orders of magnitude more efficient in terms of convergence time towards near optimal and optimal solutions. This is achieved by reducing complexity of the mapping process using topological patterns to map virtual graph requests to physical graphs representing respectively the tenants' requests and the providers' physical infrastructures. The proposed approach relies on graph decomposition into topology patterns and bipartite graphs matching techniques. In the third part, the thesis proposes an open source Cloud Networking framework to achieve cloud and network resources provisioning and instantiation in order to respectively host and activate the tenants' virtual resources and services. This framework enables and facilitates dynamic networking of distributed cloud services and applications. This solution relies on a Cloud Network Gateway Manager (CNG-Manager) and gateways to establish dynamic connectivity between cloud and network resources. The CNG-Manager provides the application networking control and supports the deployment of the needed underlying network functions in the tenant desired infrastructure (or slice since the physical infrastructure is shared by multiple tenants with each tenant receiving a dedicated and isolated portion/share of the physical resources).

Chapter 1 Introduction

Cloud computing, a paradigm for on-demand provisioning of IT resources and for infrastructure externalization, is rapidly and fundamentally revolutionizing the way IT is delivered and managed. Cloud users can today rent resources (e.g.

Virtual Machines or VMs) on a pay-per-use basis and can thus avoid capital and operational expenses.

Cloud services are progressing and becoming more widely accessible and popular. Cloud providers are also inclined to cooperate and collaborate for mutual benefit to offer more complex services involving distributed services across multiple infrastructures and platforms. To achieve this evolution, however, additional capabilities and features need to be integrated in their current basic cloud services (essentially compute and storage). Providers at this stage focus mostly on computing resources provisioning and simply offer virtual machines (VMs) as a service to end users and tenants. The networking of the virtual resources dedicated to the tenants' and end users' applications has received less attention. The networking of virtual resources is typically left to the applications themselves and this hinders and hampers wider cloud adoption, especially for complex services involving distributed resources and services across multiple infrastructures and providers.

Even if the cloud community has started to address networking requirements, existing cloud network models put the priority on intra data center networking and insufficiently support inter cloud connectivity. Networking for hybrid clouds is not adequately developed for the purpose and requires innovative improvements to meet expectations and address current barriers. More efforts are required to solve for instance the current limitations in IP addresses, minimize latency between interacting VMs, provide the required bandwidth and respect resource locality constraints. In addition to these desired features, users and tenants need to control connectivity and networking of their dedicated and distributed resources and applications. They also need to deploy complex network functions and services to gain in flexibility and agility. Tenants need to deploy, control and manage their own complex functions (within their dedicated virtual infrastructure or slice) such as address assignments (DHCP), firewalls and name resolution services (DNS). This need concerns equally the providers who need to optimize the use of their resources, reduce cost, increase their revenues through efficient partitioning of their physical infrastructures and ensure isolation in a multi-tenant context.

To overcome these limitations and move to richer, more flexible and agile cloud services, current cloud resources and services provisioning needs to evolve beyond the simple allocation of dedicated resources and hosting platforms. This thesis has identified three key requirements for this evolution that have naturally guided and motivated the investigations. Providers and tenants both require the availability of smart placement algorithms that can ease the dynamic selection of infrastructure resources that will host their dedicated virtual complex resources. The emphasis and ambition is the provisioning of dedicated slices to tenants so they can use, control and manage them freely within the boundaries specified by a service agreement. The existence of a service level agreement is assumed in this thesis and is out of scope since the goal of the research work is only to provide the means to set up and dynamically adapt a virtual infrastructure or complex cloud service.

Once resources to host complex cloud services are selected, they need to be instantiated and activated to build the tenant dedicated, distributed and interconnected resources or equivalently service graph. In addition to making the virtual resources available, our aim is to provide the tenants with the ability to control and manage their services and connectivity. To provide users with this missing connectivity control, we believe it is important to combine the cloud architecture with emerging networking technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). Both offer the programmability, flexibility and manageability required to fulfil the ambition of providing elastic and agile cloud services from shared physical cloud infrastructures involving simultaneously computing, storage and networking services. SDN and NFV are complementary and allow automated provisioning along with centralized command and control when used together. This is exactly the vision and approach selected by this thesis to contribute to the creation of a cloud networking framework enabling tenants with "dynamic networking capabilities" of distributed cloud services. This thesis focuses consequently on the problem of virtual networked infrastructures provisioning over distributed clouds, and specifically aims at providing the missing mapping, deployment, instantiation and management solutions and capabilities to tenants and users.

Virtual networked infrastructures provisioning

The problem addressed by the thesis corresponds to the dynamic establishment of virtual networks to support distributed services and applications according to tenants and user requests. The requests are expressed in the form of service graphs composed of virtual machines or virtual resources interconnected by a specified networking topology. Provisioning and deploying such graphs for potentially largescale applications with stringent QoS and availability requirements across clouds is a challenging problem. This context where tenants request the creation of connected and complex sets of compute, storage and network resources over multiple cloud providers is depicted in Figure 1.1. These complex sets are commonly called slices in the cloud, networking and future networks communities. The slices as mentioned earlier should in addition be programmable and allow users or tenants to control and manage them.

This problem is known as on demand and dynamic provisioning of virtual networked infrastructures and is the main focus of the thesis. Our goal is to achieve this on-demand provisioning of distributed and networked slices from multiple cloud and network providers. So far in the current state of the art and available literature, cloud and network provisioning are considered as separate processes.

We aim at joint provisioning of both types of resources and at achieving simultaneous node (servers and networking entities) and link (interconnection links between nodes) mapping and provisioning. We also contend that combining joint mapping with the global view provided by software defined networks is an efficient approach to dynamic provisioning of virtual cloud and network resources from physical infrastructures. To accomplish successful provisioning of virtual networked infrastructures (or equivalently slices), three key capabilities must be provided:

• Slice mapping: that corresponds to optimal resource mapping and placement to assist the optimal creation of a slice from a shared distributed infrastructure from multiple providers while meeting specified QoS requirements.

• Slice instantiation: that occurs once resources are mapped to deploy, configure and instantiate the selected, and distributed, resources from the providers.

• Slice control and configuration automation: to enable users to control and manage their applications and to deploy their network functions.

Analyzing the area of infrastructure provisioning from one or multiple providers in general, and virtual networks embedding or mapping in particular, we have observed that recent studies and approaches map node and link resources separately starting by servers or nodes and addressing the links in a second stage. This leads to suboptimal solutions that often do not scale. In addition, the solutions are either user or provider centric and are not sufficiently general and generic to apply to any stakeholder that needs to optimize placement, selection and provisioning.

This has motivated the investigations and goals of this doctoral work that addresses the provisioning of distributed and networked virtual infrastructures supplied by multiple providers of heterogeneous physical infrastructures. The thesis assumes that physical resources can be shared through scheduling (when physical resources are reserved and dedicated to a user on a pay per use and on demand basis for a specified time interval or duration) and through virtualization (of operating systems, servers, networks and even storage). In this context, the thesis seeks a comprehensive solution and architecture that can:

• provide optimal (exact) mappings (of the requested virtual infrastructure onto the providers' infrastructures) and near optimal heuristic solutions that can scale with the sizes of the virtual and physical infrastructures;

• facilitate the establishment (instantiation) of the virtual infrastructures (slices)

and the automatic integration or addition of network services and functions to these infrastructures;

• enable programmability, control and management of the selected and deployed virtual infrastructures, an aspect not sufficiently addressed in the current solutions not to say neglected so far.

This thesis consequently aims at the development of a comprehensive framework for virtual infrastructures provisioning and establishment augmented by the ability to deploy additional network services and functions within the infrastructures through SDN and NFV principles and concepts where the former provides control and management capabilities and the latter deployment capabilities of virtualized networking functions.

Research Problems and Objectives

In line with the thesis scope, the thesis focuses on virtual infrastructures (networks) allocation and instantiation with emphasis on related key challenges:

• How to map virtual resources in a distributed cloud environment while meeting tenant satisfaction. To address this question we aim at achieving optimal placement of virtual resources (virtual machines and networking functions)in the physical infrastructure by selecting the hosts that lead to minimum cost and meet collectively the desired tenant quality of service. We seek simultaneous node and link mapping to advance the state of the art that continues to map nodes first and links in a second stage.

• How to support service requirements expressed by the tenants. The tenant requirements in terms of localization (co-localization and separation)

and topology (connectivity) of their virtual resources have to be embedded in the models.

• How to ensure networking between nodes deployed in geographically distributed data centers. Once the mapping of virtual resources in the providers provisioned clouds is achieved, means to deploy and instantiate (automatically) the virtual resources and their interconnection links have to be provided. This aspect requires more attention from the scientific community.

• How to provide on demand SDN and NFV services for user applications. Once a virtual infrastructure is assigned and reserved, tenants need a framework to control, configure and manage their dedicated infrastructure (or slice), in virtual nodes and links and their connectivity, as well as the applications they deploy in their slices.

To address the identified and selected problems, the thesis defined a work plan and a set of key objectives:

• move optimal (smart) placement, which includes virtual network mapping or embedding, beyond the current state of the art by taking into account multiple criteria and constraints often neglected in the past. Achieve joint optimization and avoid treating mapping of nodes and links sequentially. Develop exact and heuristic mathematical programming models and optimization algorithms sufficiently generic (i.e., useful to and usable by providers, brokers and tenants), in line with the tenants' and providers' requirements and constraints.

• design and implement a control and management framework based on virtualization, SDN and NFV principles to facilitate deployment, instantiation, configuration, control and management of tenant dedicated virtual infrastructures by the tenants themselves. Focus on networking of virtual resources by designing a generic appliance, that acts as a gateway between the resources and services providers, and on a control framework to deploy, configure and manage this appliance. Generalize the framework by focussing on interfaces to ensure compatibility with current networks and clouds.

Contributions

We summarize for convenience the contributions (achievements) of the thesis with respect to originally identified challenges and defined research goals.

The first contribution is a new generic and exact model for resource mapping in distributed clouds. The algorithm addresses both cloud and network resources, achieves joint mappings of nodes and links, takes into account localization constraints, topology and quality of service requirements specified in the tenants' requests for virtual infrastructures allocation. The model is an enhanced mathematical programming formulation of the virtual network embedding problem.

Performance, complexity and scalability of the model are reported. The model can serve as a reference and benchmark for heuristic algorithms that will typically scale better and converge faster to a near optimal solution.

The second contribution addresses scalability of the model with increasing virtual and physical infrastructures (graphs) sizes. It consists of an efficient heuristic algorithm that scales for large virtual and physical networks when multiple service providers are involved and the focus is on inter cloud networking. This algorithm maps also jointly nodes and links and provides close to optimal solutions. The algorithm uses graph decomposition into topology patterns followed by bipartite graph matching to solve the mapping problem. Decomposition into Patterns leads to smaller structures and lower algorithmic complexity compared to mapping the entire original requested and physical graphs.

The third contribution concerns the instantiation of virtual infrastructures.

More specifically, the design and implementation of a virtual network instantiation system that comprises an open source Cloud Networking framework [START_REF] Mechtri | Cloud networking gateway manager[END_REF] used to establish the virtual network (or slice) proposed by the mapping algorithms.

The system extends cloud and network services control and management to the end users so they can dynamically connect and adapt their virtual resources. The framework relies on gateways (called Cloud Networking Gateways, CNGs) seen as a virtualized network/switching/flow control function, a fundamental VNF, and a CNG-Manager acting as a controller to establish dynamic connectivity between cloud and network resources. The CNG-Manager provides the control of application networking and supports the deployment of network functions in the tenant slices. The CNG-Manager ensures the connectivity in a non-intrusive way that preserves the network configuration of cloud providers. Using this system, tenants can easily deploy, configure and control network functions and services as well as the networking between the application components.

Thesis Organization

The core chapters of this thesis are structured as shown in Figure 1.2: Chapter 3 introduces a new and generic model for cloud and networking resources mapping in distributed and hybrid cloud environments. The problem is modeled as a virtual network mapping objective to derive an exact algorithm, formulated as a linear integer program, that achieves optimal and simultaneous node and link mapping.

Chapter 4 develops a novel heuristic algorithm (named pattern centric mapping algorithm -PCMA) relying on topology patterns and bipartite matching to reduce complexity and speed up convergence to near optimal solutions. The heuristic algorithm improves convergence times by several orders of magnitude and find very often the optimal solutions provided by the exact algorithm. A comparison to the exact algorithm and another virtual embedding algorithm is also reported and completes the analysis and performance evaluation.

Chapter 5 describes the architecture and implementation of our Cloud Networking Framework that enables the control of connectivity between distributed resources and provides the on demand deployment of networking functions. The networking system comprises a controller, called the CNG Manager, and a virtual and generic appliance acting as a gateway between user resources. The framework is evaluated through an integration with a cloud broker interacting with heterogeneous cloud providers.

Chapter 6 summarizes the thesis contributions and presents future research directions and perspectives.

Chapter 2

The State of the Art

Introduction

Cloud computing and Cloud networking have recently emerged as promising concepts for on demand virtual servers and networking between applications. These concepts have been enhanced with new models and algorithms that support provisioning of complex services over distributed infrastructures. In parallel, Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) are enabling network programmability and the automated provisioning of virtual networking services. Combining these new paradigms can overcome the limitations of traditional clouds and networks by enhancing their dynamic networking capabilities. Since these evolutions have motivated this thesis and our investigations, this chapter on the state of the art will provide an overview of cloud computing architectures, services and provisioning challenges and reflect the convergence trend between cloud computing, software networks and the virtualization of networking functions.

This chapter provides in the first part an overview of the cloud computing architecture, services and provisioning challenges. The second part describes different steps of resource provisioning in distributed cloud environments and surveys some existing models and algorithms of resources mapping. Finally, convergence between cloud computing and both SDN and NFV is discussed in part three.

Cloud

Computing: background and challenges

Cloud Computing

Cloud computing [START_REF] Armbrust | A view of cloud computing[END_REF], [START_REF] Dikaiakos | Cloud computing: Distributed internet computing for it and scientific research[END_REF], [START_REF] Zhang | Cloud computing: state-of-theart and research challenges[END_REF] allows the on demand provisioning of virtual resources and services from a pool of physical resources or data centers by automating the processes of service deployment. The Cloud computing has become a cost-effective model for delivering large-scale services over the Internet in recent years [START_REF] Zhang | Cloud computing: state-of-theart and research challenges[END_REF]. In Cloud Computing a set of configurable and shared resources: servers, storage, networks (to a lesser extent), applications and services, are delivered on-demand to end-users. This set of resources can be rapidly provisioned and delivered with minimal management efforts. In existing literature, there are many definitions of cloud computing [5] [6]. We believe that the definition proposed by the National Institute of Standards and Technology (NIST) in [START_REF] Peter | the nist definition of cloud computing[END_REF] is the most appropriate as it covers cloud computing more broadly:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

Cloud service models

Cloud computing opens up new business opportunities for service providers and Cloud users, since they can easily deploy complex services directly into a virtualized and networked infrastructure. As described in [START_REF] Youseff | Toward a unified ontology of cloud computing[END_REF], a cloud can deliver many services:

Infrastructure as a Service (IaaS):

This model provides users with infrastructure resources like compute, storage and network as a fully outsourced on demand service. Users can use the allocated resources to install, manage and run their own software stack. This service provides developers with a software platform to deploy their applications onto the cloud infrastructure without any specialized administration skills.

PaaS users have the control of their deployed applications but have no control of the underlying infrastructure that is managed by the service provider.

Software as a Service (SaaS):

This service provides users with access to the applications they require (e.g.

Email). In this case, Cloud providers host applications on their infrastructure and users can get the application functionality and avoid development cost. The details of implementation and deployment are abstracted from the user and only a limited configuration control is provided. 

Cloud deployment models

There are four main cloud computing deployment models: public, private, commu- 

Virtualization

Storage virtualization:

The concept of storage virtualization is similar to that of server virtualization since it abstracts the logical storage from the physical ones. Instead of interacting directly with a storage device, this type of virtualization enables the access to logical storage without regard to the physical location of data.

Network virtualization:

Network virtualization allows running isolated logical networks on a shared physical network. 

Challenges

Resource Provisioning and especially virtual infrastructure provisioning is an important and challenging problem in hybrid and distributed cloud computing environments. The provisioning process is based on two steps: resource mapping and resource instantiation.

Resource mapping determines the best placement to find a projection of virtual compute and network resources onto physical nodes and physical paths while meeting tenant requirements. As of today resource mapping does not address complex services requests from users that require distributed virtual resources with specific connectivity. VM placement has received the majority of the attention from the scientific community.

Resource instantiation consists in deploying and activating resources on shared cloud and network infrastructures. Server virtualization is a mature technology that provides computing resources provisioning and includes also the virtualization of network interfaces from the operating system point of view. Server virtualization, however, does not support virtualization of network components such as routers, switches and firewalls. Network virtualization technologies enable multiple logical networks to share the same physical network infrastructure but do not provide the missing inter cloud networking service to link distributed Cloud resources. These two approaches need to be combined to fill the gap between clouds and networks.

Cloud and Network provisioning

In this section, we survey relevant research in the literature related to resources mapping in cloud and network environments. These studies are classified into three related topics that depend mainly on the type of service provider request.

The first topic is a simple virtual machine mapping, the second one is a virtual network mapping and the third topic is an interconnected VMs mapping.

VM mapping problem

Virtual machine mapping or placement in large-scale shared service hosting infrastructures has been studied in many contexts in the past. This prior art can be classified into: [START_REF] Mechtri | Cloud networking gateway manager[END_REF] VM mapping in single-cloud environments and (2) VM mapping in multi-cloud environments.

The problem of optimal resource placement in single-cloud environments is NP-Hard. The placement is the process of selecting an optimal set of nodes to host a set of services with dynamic demands while respecting the resource constraints.

This combinatorial optimization problem is challenging and the time to solve it grows exponentially with the size of the problem.

To address this problem while achieving a tradeoff between the convergence time and the quality of the solutions, various works are proposed in the literature.

Authors in [START_REF] Tang | A scalable application placement controller for enterprise data centers[END_REF] propose an algorithm that aims at maximizing the amount of satisfied application demand, in order to minimize the number of application starts and stops, and to balance the load across machines.

Hermenier et al. [START_REF] Hermenier | Entropy: A consolidation manager for clusters[END_REF] use an Entropy resource manager for homogeneous clusters to perform dynamic consolidation. The solution is based on constraint programming while considering the cost of VMs migration. In [START_REF] Li | Virtual machine placement for predictable and time-constrained peak loads[END_REF], authors propose an approach to optimal virtual machine placement within datacenters for predicable and time-constrained load peaks. The problem is formulated as a Min-Max optimization and solved using a binary integer programming based algorithm. Other authors aim at lowering electricity cost in high performance computing clouds that operate multiple geographically distributed data centers.

Le et al. [START_REF] Le | Reducing electricity cost through virtual machine placement in high performance computing clouds[END_REF] study the possibility of lowering electricity costs for cloud providers operating geographically distributed data centers. They propose policies that dynamically place and migrate virtual machines across data centers to achieve cost savings and to profit from differences in electricity prices and temperature.

When performing virtual machines placement over geographically distributed cloud providers, the decisions of placement are just based on the VM instances types and prices. The details about resource usage and load distribution are not exposed to the service provider. Hence, VM placement across multiple clouds is limited to cost aspects.

Chaisiri et al. [START_REF] Chaisiri | Optimal virtual machine placement across multiple cloud providers[END_REF] propose a stochastic integer programming algorithm to minimize the resource provisioning cost in a cloud computing environment.

Bossche et al. [START_REF] Van Den Bossche | Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads[END_REF] study the workload outsourcing problem in a multi-cloud setting with constrained deadlines. Their objective is to maximize the utilization of the internal data center and to minimize the cost of the outsourcing tasks in the cloud, while respecting the quality of service constraints.

Wubin et al. [START_REF] Li | Modeling for dynamic cloud scheduling via migration of virtual machines[END_REF] investigate dynamic cloud scheduling via migrating VMs across multiple clouds. They propose a linear integer programming model that uses different levels of migration overhead when restructuring an existing infrastructure.

Tordsson et al. [START_REF] Tordsson | Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers[END_REF], use a cloud brokering mechanism to optimize VM placement to achieve optimal cost-performance tradeoffs across multiple cloud providers.

Similarly, Vozmediano et al. [START_REF] Moreno-Vozmediano | Multicloud deployment of computing clusters for loosely coupled mtc applications[END_REF] [18] explore the multi-cloud scenario to deploy a computing cluster on top of a multi-cloud infrastructure to address loosely-coupled Many-Task Computing (MTC) applications. The cluster nodes are provisioned with resources from different clouds to improve the cost-effectiveness of the deployment and provide high-availability.

All the previously described work maps VMs in single or multiple cloud providers without considering the links between the virtual resources. These models are not appropriate for complex services where the relations between the virtual resources are essential for the service or application performance.

Virtual network mapping problem

The virtual network mapping (VNM) problem, extensively addressed in the literature, maps virtual nodes (mainly routers) and links on physical substrate networks.

The studies consider single domain (i.e., a network owned by a single infrastructure provider) and multiple domains (i.e., multiple networks managed by different infrastructure providers). In the single domain, the infrastructure provider maps virtual networks using multiple objectives: such as minimizing mapping costs [START_REF] Chowdhury | Vineyard: Virtual network embedding algorithms with coordinated node and link mapping[END_REF],

maximizing acceptance ratios and revenues [START_REF] Cheng | Virtual network embedding through topology-aware node ranking[END_REF], [START_REF] Fajjari | Vne-ac: Virtual network embedding algorithm based on ant colony metaheuristic[END_REF], and improving energy efficiency [START_REF] Botero | Energy efficient virtual network embedding[END_REF], [START_REF] Su | Energy-aware virtual network embedding through consolidation[END_REF].

The virtual network mapping differ primarily in the proposed algorithms. Minlan et al. [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] assume a flexible substrate network to resort to path splitting and migration to achieve better resource utilization and ease computational complexity without restricting the problem space. Jens et al. [START_REF] Lischka | A virtual network mapping algorithm based on subgraph isomorphism detection[END_REF] reduce the VNM problem to detecting a subgraph isomorphism with combined node and link mapping. Since the problem is NP-Complete, they turn to a parameterized combinatorial algorithm where they restrict the mapping of virtual links to physical paths shorter than a predefined distance ε. The proposed greedy and enumerative algorithm can find the optimal solution but suffers from long convergence times. The authors introduced a bound on the number of mapping steps to stop the algorithm and accept a suboptimal solution. Mosharaf et al. [START_REF] Chowdhury | Virtual network embedding with coordinated node and link mapping[END_REF] used a mixed integer formulation for virtual network embedding seen also as subgraph isomorphism. They used a revenue formulation and some constraints. They presented a relaxation of the integrity constraints to obtain a linear program supplemented by a rounding technique. They show that their algorithm reduces the cost for the substrate network provider. A transformation of the virtual network is used by Gang et al. [START_REF] Wang | A virtual network embedding algorithm based on mapping tree[END_REF] to achieve the mapping. This transformation consists in converting the virtual network into a tree topology using a greedy algorithm for node mapping.

The authors then use the k-shortest paths method to map virtual links. In the node mapping process authors use the assumption of mapping nodes to the same physical server. In these investigations, the nodes are mapped first and the links only in a second stage, once the nodes are selected.

In the multiple domain case, provisioning is achieved across multiple domains and infrastructure providers. Houidi et al. [START_REF] Houidi | Virtual network provisioning across multiple substrate networks[END_REF] proposed a centralized approach where the service provider first splits the request using Max-Flow Min-Cut based on prices offered by different infrastructure providers and then decides where to place the partitions. Chowdhury et al. [START_REF] Chowdhury | Polyvine: Policybased virtual network embedding across multiple domains[END_REF] use a distributed embedding solution called PolyVine. In PolyVine, the virtual network request is sent to a single Infrastructure Provider (InP) that tries to allocate as many resources as possible from within before forwarding the unserved requests (unassigned nodes and links) to a neighboring provider. The process continues recursively until the entire request is embedded.

Virtual networked infrastructure mapping problem

Recent and relevant research on the virtual networked infrastructure mapping problem, use different representations of the user cloud request and different techniques and algorithms to achieve the mapping. In some representations, the user cloud request is seen as a Virtual Data Center (VDC) or as a virtual graph composed by interconnected VMs. The proposed mapping techniques described in the literature are based primarily on node mapping followed afterwards by link mapping. In some cases, the approach is to partition the requests into subsequently mapped smaller requests.

Jielong et al. [START_REF] Xu | Survivable virtual infrastructure mapping in virtualized data centers[END_REF] consider the problem of mapping Virtual Infrastructure (VMs correlated with their backups) to a physical data center infrastructure graph at minimum cost subject to resource and bandwidth requirements and constraints.

They divide the problem into VM placement and Virtual Link Mapping. They address VM placement using a heuristic algorithm and use a linear program to deal with link mapping.

Ahmed et al. [START_REF] Amokrane | Greenhead: Virtual data center embedding across distributed infrastructures[END_REF] propose a virtual data center embedding algorithm across a distributed infrastructure. They divide the request into partitions and try to embed each partition into a single data center. This solution, that does not map nodes and links jointly, is based on two independent stages (request partitioning and partition embedding) without any corrective action if the second stage fails.

The authors limit the algorithm performance evaluation to small reference graphs (4 data centers and 14 network nodes). The work proposed in [START_REF] Amokrane | Greenhead: Virtual data center embedding across distributed infrastructures[END_REF] is similar to [START_REF] Xin | Embedding virtual topologies in networked clouds[END_REF]. Their algorithm also splits a request into partitions using minimum k-cut before assigning these partitions to different data centers.

Md Golam et al. [START_REF] Rabbani | On tackling virtual data center embedding problem[END_REF] present a heuristic algorithm to solve the problem of virtual data center embedding using three phases. The first phase maps the VMs, the second the virtual switches and third maps finally the virtual links. The algorithm tries to map topology requests on one physical server. If any of the three phases fails, they increase the number of physical servers by adding one adjacent server and try the mapping process again. Because of the number of iteration they use, this approach does not scale with graph size. In addition their embedding algorithm can be used only with two types of network topologies requests (star and VL2 topologies).

Khan-Toan et al. [START_REF] Khan-Toan | Cost-effective complex service mapping in cloud infrastructures[END_REF] propose three virtual graph mapping algorithms. The proposed algorithms, for three different input graph topologies (tree, path and star), minimize a cost function in polynomial time. They build their algorithms on the assumption that network resources are unlimited. This unrealistic assumption reduces considerably the virtual graph mapping problem complexity since there can be many possible solutions. In hybrid clouds where distributed resources need to be interconnected, the amount of available resources is definitely finite.

Cloud networking, SDN and NFV

This section reviews two key emerging concepts Software-Defined Networking (SDN) and Network Functions Virtualization (NFV)that are reshaping networks and traditional networking. Both paradigms bring into network architectures key properties and capabilities that have been missing so far. These are programmability and virtualization of networks along with their simplified control and management. SDN and NFV introduce agility in the systems and ease convergence with clouds and cloud services that are already agile and elastic.

Software-Defined Networking

SDN is an emerging network architecture where network control is decoupled from forwarding and is directly programmable [START_REF]Software-defined networking: The new norm for networks[END_REF]. This new approach is considered as one of the most promising architecture to realize network virtualization and enhance management and the control of networks. SDN provides a number of key and long awaiting features [START_REF] Sezer | Are we ready for sdn? implementation challenges for software-defined networks[END_REF]:

• Externalization and separation of the control plane from the data plane;

• Centralized controller and network view;

• Open interfaces between the devices in the control plane (controllers) and those in the data plane;

• Programmability of the network by external applications.

The Open Networking Foundation (ONF), a leader in SDN standardization, provides a relevant definition for SDN that we use as a basis:

"Software-Defined Networking (SDN) is an emerging architecture that is dynamic, manageable, cost-effective, and adaptable, making it ideal for the highbandwidth, dynamic nature of today's applications. This architecture decouples the network control and forwarding functions enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services"İ rrespective of the obvious bias in the ONF statement: "The OpenFlow protocol is a foundational element for building SDN solutions" , we recognize the seminal and fundamental aspect of OpenFlow but do not consider the framework as the only possible one as described in the sequel.

The main goal of SDN is to move network functionalities from hardware into software by conceiving configurable interfaces. Thanks to this approach, SDN facilitates the implementation of network virtualization and increases the programmability of the hardware. This programmability is provided, for example by protocols like OpenFlow acting as a standard communications interface between the control and forwarding layers of an SDN architecture [START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF]. OpenFlow and related specifications are handled by ONF. The OpenFlow protocol is implemented on both sides of the interface between network devices and the SDN control software. OpenFlow allows direct access to and manipulation of the forwarding plane of network devices, such as switches and routers. OpenFlow uses the concept of flows to identify network traffic based on pre-defined matching rules that can be statically or dynamically programmed by the SDN control software.

As described in [START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF], an OpenFlow switch must have three components: [START_REF] Mechtri | Cloud networking gateway manager[END_REF] a flow table, (2) a secure channel and (3) OpenFlow protocol messages. In the version 1.0 of OpenFlow [START_REF]Openflow switch specification[END_REF], the entries of the flow table contain: the header field, the flow action field and the flow counter field. A flow is defined by any combination of the header subfields from layer 1 to layer 4 along with possible wildcard fields.

The basic actions supported by the OpenFlow protocol are: forward to port, forward to controller and drop packet [START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF]. The third entry of the flow table (flow counters) is responsible for maintaining the statistic and the counters for each table, each port, each flow or each queue.

One very important aspect within the SDN architecture is the controller that keeps the (logically) centralized state of the network. There are many OpenFlow controller frameworks available as of today such as NOX [START_REF] Gude | Nox: Towards an operating system for networks[END_REF], Maestro [START_REF] Ng | Maestro: Balancing fairness, latency and throughput in the openflow control plane[END_REF], Floodlight [START_REF]Floodlight: Java-based openflow controller[END_REF], POX [START_REF]Pox: Python-based openflow controller[END_REF], Beacon [START_REF] Erickson | The beacon openflow controller[END_REF], Ryu [START_REF] Ryu | [END_REF], OpenDaylight [START_REF]Open daylight[END_REF]. These frameworks provide low-level control over switch flow tables and are typically imperative and object-oriented. Nettle [START_REF] Voellmy | Nettle: Taking the sting out of programming network routers[END_REF] is also a network controller, but differs from the above systems by allowing the low-level control programs to be written in a domain specific language based on functional reactive programming (FRP) and embedded in a functional programming language. Onix [START_REF] Koponen | Onix: A distributed control platform for large-scale production networks[END_REF] provides abstractions for partitioning and distributing network state onto multiple distributed controllers and by the same token addresses the scalability and fault-tolerance issues that arise when using a centralized controller. SNAC [START_REF] Snac | [END_REF] provides high-level patterns for specifying access control policies as well as a graphical monitoring tool. SNAC is not, however, a general programming environment. Procera [START_REF] Voellmy | Procera: A language for high-level reactive network control[END_REF] proposes a control architecture for software-defined networking (SDN) that includes a declarative policy language based on FRP; it uses a policy layer to express high-level network policies in a variety of network settings. The policy layer acts as a supervisor reacting to signals about relevant network events and out-of-band signals from users, administrators, and other sensors such as intrusion detection devices. The policy layer interacts with programmable switches via controllers. Frenetic [START_REF] Foster | Frenetic: A network programming language[END_REF] is a network programming language built on NOX with two sub-languages: (1) a declarative network query language, and (2) a functional and reactive network policy management library based also on FRP.

Network virtualization with OpenFlow can be achieved by using an OpenFlow hypervisor such as FlowVisor [START_REF] Yap | Flowvisor: A network virtualization layer[END_REF]. FlowVisor is a Java-based controller that enables multiple OpenFlow controllers to share the same network resources. FlowVisor delegates the control of subsets of network resources and/or traffic, called slice, to other Network Operators or Users.

FlowVisor virtualizes a network between user controllers and slice resources:

• Bandwidth: giving a fraction of bandwidth to each slice

• Topology: each slice should have its own view of network nodes

• Device CPU: computational resources of switches and routers must be sliced NFV in essence consolidates in its framework functions such as: network address translation (NAT), firewall, intrusion detection, domain name service (DNS), etc.

onto industry standard high volume servers, switches and storage, which could be located in data centers, Network Nodes and in end user premises [START_REF]Nfv network functions virtualisation[END_REF]. NFV will allow network functions to be provided as software residing on commodity hardware.

NFV aims also at increasing the flexibility when launching new network services and reducing the cost of operating these services. In essence, NFV offers a new way to design, deploy and manage networking services.

To define the requirements and architecture for the virtualization of network functions, several network operators created in November 2012 an ETSI Industry Specification Group for NFV [START_REF]Etsi[END_REF]. One of the documents produced by ETSI describes the high-level functional architectural framework of virtualized network functions and of the supporting infrastructure [START_REF]Network functions virtualisation[END_REF]. This document describes the three main components identified in the NFV framework:

• Virtualized Network Function (VNF): An implementation of a network function that can be deployed on a Network Function Virtualization Infrastructure (NFVI) [START_REF]terminology for main concepts in nfv[END_REF]. • Network Function Virtualization Infrastructure (NFVI): NFVI is the pool of resources that VNFs can exploit. NFVI includes compute, network and storage resources that are virtualized.

• NFV Management and Orchestration: Focuses on management tasks and covers the orchestration and life-cycle management of physical and/or software resources that support the infrastructure virtualization, and the life-cycle management of VNFs [START_REF]terminology for main concepts in nfv[END_REF].

A recently launched new project called Open Platform for NFV (OPNFV) [START_REF]Open plateform for nfv[END_REF] focuses on accelerating the evolution of NFV by providing an open source platform for deploying NFV solutions.

Cloud Networking

Network virtualization is essential for the success of cloud computing since it enables the coexistence of multiple virtual networks on the same physical infrastructure (data centers and physical servers). For network abstraction, neutron defines four types of resources:

• Network: isolated layer-2 broadcast domain.

• Subnet: pool of IP addresses associated with a network.

• Port: virtual switch port on a network. The virtual interface of the VM (VIF) is connected to the network through the port.

• Router: connects networks.

Neutron also supports monitoring of network protocols using Netflow, sFlow and SPAN/RSPAN. Other cloud management software such as OpenNebula [START_REF]The opennebula cloud platform[END_REF] and VMware also use various drivers such as Open vSwitch to create the virtual networks.

Networking of distributed resources in clouds is crucial to provide communication between user services. The control of connectivity is accordingly important.

OpenNebula [START_REF]The opennebula cloud platform[END_REF] and OpenStack Neutron [START_REF]Openstack neutron[END_REF] proposed recently an appliance that provides networking services to handle networking in their cloud managers.

OpenNebula and OpenStack Neutron refer to these appliances as Virtual Router appliance [START_REF]Virtual router[END_REF] and Provider Router [START_REF]Provider router[END_REF] respectively. These solutions handle connectivity between virtual machines deployed in the same data center.

In [START_REF] Perera | Cloud services gateway: A tool for exposing private services to the public cloud with fine-grained control[END_REF] Perera et al. propose a cloud services gateway enabling users to expose their private services, residing inside a firewall, to outside clients but focus only on the hybrid cloud architecture. Meridian [START_REF] Banikazemi | Meridian: an sdn platform for cloud network services[END_REF] proposes an SDN-based controller framework for cloud networking. Raghavendra et al. [START_REF] Raghavendra | Dynamic graph query primitives for sdn-based cloudnetwork management[END_REF] propose the same for Cloud network management. These two approaches focus only on providing cloud networking between resources managed by a single cloud provider.

Despite these contributions, efficient solutions for inter-cloud networking are still lacking. A number of proposals have been put forward to address intra and inter networking problems for data centers [START_REF] Greenberg | The cost of a cloud: Research problems in data center networks[END_REF], [START_REF] Ai Avetisyan | Open cirrus: A global cloud computing testbed[END_REF], [START_REF] Bernstein | Blueprint for the intercloud -protocols and formats for cloud computing interoperability[END_REF], [69] but have not reported any explicit solutions for cloud networking at this stage.

VICTOR [START_REF] Hao | Enhancing dynamic cloud-based services using network virtualization[END_REF] proposes an architecture for Virtual Machines' mobility using

OpenFlow. The work relies on a set of distributed forwarding elements connecting virtual machines and users. Their network architecture is fixed and pre-configured, does not address nor provides on demand provisioning of network nodes between distributed data centers.

Amazon Virtual Private Cloud (VPC) [START_REF]Amazon Virtual Private Cloud[END_REF] enables users to access Amazon Elastic Compute Cloud (Amazon EC2 [START_REF]Amazon elastic computing cloud[END_REF]) resources over an IPsec tunnel. This solution allows the use of hybrid Clouds. Wood et al. [START_REF] Wood | The case for enterprise-ready virtual private clouds[END_REF] propose CloudNet, a cloud platform architecture which utilizes virtual private networks to securely and seamlessly link cloud and enterprise sites. This solution tries to meet requirements of an enterprise connected to cloud computing environments using VPCs.

Conclusions

In recent years, the convergence between networking and IT is becoming a key trend in information and the communications technology landscape. This trend has been enhanced by the virtualization of IT infrastructures through cloud technologies, the evolution of network services through Network Functions Virtualization (NFV) and the decoupling of network control and data planes proposed by SDN. All these new concepts and technologies have been introduced in this chapter that also describes the resource mapping problem to lay the background and foundation for the thesis work. The next chapters describe the thesis contributions in terms of resource mapping mathematical models and optimization algorithms and regarding a cloud networking framework for network services instantiation.

Chapter 3 Exact Algorithm

This chapter presents an exact analytical graph-based model for resources mapping in distributed cloud environment. In this approach, we aim to provide an optimal resource mapping and placement that assist the optimal creation of a virtual infrastructure from a shared distributed infrastructure from multiple providers.

Introduction

As cloud computing and network virtualization paradigms become more accessible and popular, a natural and expected evolution is to extend the concepts of service, platform and infrastructure as a service to the on demand provisioning of cloud networking services to support connectivity between virtual machines, resources and services beyond what is currently possible in clouds.

This is especially relevant and needed in private and hybrid clouds involving a single or multiple providers. Private clouds involving multiple sites and centers need to federate and slice their resources to make better use of their infrastructures, share them and deploy (possibly isolate) their applications across slices. A slice is defined as a virtual infrastructure with compute, communications and storage resources. A resource is defined as a concrete resource such as real world resources including virtual machines, networks, services, etc.

In hybrid clouds, resources are acquired from both private and public clouds and need to be combined (connected) into a dedicated infrastructure to support an information system from a private enterprise or public body for instance. The same needs arises in cloud federations where cloud services from the members are used to compose the desired (tenant or consumer) service. With the advent of software networks and network function virtualization in addition to system virtualization, it is possible and foreseeable that slices are composed on demand and dynamically. Achieving such a goal requires advances at all levels in the cloud and network stack, starting from a dynamic SLA negotiation all the way down to the deployment, instantiation and management of service instances. This chapter contributes to one of the steps in this global process, namely, optimal resource mapping and placement to assist the optimal creation of a slice from a shared distributed infrastructure from multiple providers. All other steps are assumed as covered by the rest of the process, and our contribution in this chapter focuses only on the design of algorithms adequate for the dynamic creation of virtual infrastructures (or slices) in distributed clouds. We hence make the assumption that the physical infrastructure can be specified and used as input to the proposed algorithms. This can be done in a federation for instance via a service repository where all providers announce their available services and quotas for all the members. Further, we assume that the substrate graphs has been annotated with all the key performance requirements and attributes of each node and link. These assumptions are realistic and justified as this is exactly how current (distributed) clouds are composed. For the hybrid cloud context, the size of the problem in nodes (servers) and links will be in the order of thousands as the typical private data centers sizes in number of servers are much smaller than the sizes of public clouds. In addition, one has to realize that the input graph to the algorithm is composed of only valid candidate resources since resources not likely to meet the request can be eliminated prior to building the request (input) graph. The input request can be from a single tenant or composite for multiple tenants. All the requests, in an allocation round, can be lumped into one unique input graph with relationships (links with weights reflecting scheduling constraints and incompatibilities) between subgraphs. In conclusion, we always have the same problem to solve, only the size of the input graph varies, and we are hence faced with the same system and mathematical model and this holds for a single provider, a broker and a federation with multiple providers. This emphasizes the importance of solving the resource mapping problem in the most generic way while enabling specialization on a scenario and case by case basis. These observations have motivated our work, and guided our derivation of the mathematical model and the design of optimal and efficient algorithm.

As depicted in Figure 3.1, the model (algorithm) maps an input graph composed of nodes and links to the reference infrastructure (composed of available providers' resources). The model uses a generic objective function that combines multiple criteria and a notion of distance that measures the closeness between the requested and selected resources. Compared to [START_REF] Li | Enacloud: An energy-saving application live placement approach for cloud computing environments[END_REF], [START_REF] Speitkamp | A mathematical programming approach for server consolidation problems in virtualized data centers[END_REF], [START_REF] Verma | pmapper: Power and migration cost aware application placement in virtualized systems[END_REF] that do not consider latency, our algorithms embed end to end latency between VMs and map nodes and links jointly in contrast to previous work [START_REF] Lischka | A virtual network mapping algorithm based on subgraph isomorphism detection[END_REF], [START_REF] Chowdhury | Virtual network embedding with coordinated node and link mapping[END_REF], [START_REF] Muntasir Raihan Rahman | Survivable virtual network embedding[END_REF], [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF], [START_REF] Zhu | Algorithms for assigning substrate network resources to virtual network components[END_REF] and [START_REF] Hermenier | Entropy: a consolidation manager for clusters[END_REF] mapping nodes and links sequentially. Multiple criteria can be added to our models via a configurable function acting as a weight to steer the optimization depending on priorities and objectives. Another original contribution is our introduction of localization constraints on the optimal placement of virtual resources so they can be co-located in the same physical host or assigned to different hosts. Further, we allow both in data center and in-network hosting by considering network nodes that can offer compute and storage resources in addition to switching and routing functions.

This chapter starts with an introduction of the system model used in the design 

System model

For the virtual infrastructure mapping problem depicted in Figure 3.1, the objective is to map an undirected graph, expressed by tenants to connect their resources, referred as the input graph, to the providers' physical infrastructures, described by one or more physical or substrate graphs.

This problem is close to the well known subgraph isomorphism problem described in [START_REF] Stephane | Solving subgraph isomorphism problems with constraint programming[END_REF] that aims at finding an optimal mapping between nodes and edges of two given graphs G 1 and G 2 with the number of vertices of G 1 smaller than the number of vertices of G 2 . The subgraph isomorphism problem NP-Completeness was shown a while ago by [START_REF] Garey | Computers and intractability[END_REF]. The difference with the subgraph isomorphism is the mapping of links to the best substrate paths (those with minimum latency for instance) as opposed to subgraph isomorphism that maps to one unique link in the reference graph. This makes our problem combinatorially more complex than the subgraph isomorphism.

With the stated objectives and requirements, the modeling starts by considering requests as graphs composed of nodes (or vertices) representing VMs and links (or edges) reflecting the traffic flow (interaction, connectivity requirements) needs between the VMs. The edges are virtual links characterized by the latency they incur on data flows. The requested graph is the virtual graph for which a match and a mapping must be found in the larger infrastructure graph or physical graph.

Since we are aiming at connecting distributed VMs (or virtual resources) located in distributed data centers via transport networks embedding in-network services, we also specify and define these resources. Recall that we assume the availability of open and programmable routers and servers capable of hosting cloud and networking services next to more conventional routers and switches that act as simple forwarders. Each vertex of this physical graph thus represents one of the three considered types of nodes in our investigation:

1. Type 1: a server, whose main purpose is to host VMs. The server is characterized by its compute and memory capacities;

2. Type 2: a router, this is a standard router, that does not host VMs, and whose unique role is to partake in routing traffic from source to destination.

Virtual nodes (or edges) can not be deployed on this type of resource;

3. Type 3: a server/router, a hybrid resource that can host VMs and route traffic and hence can even host software defined routing and switching stacks.

This resource can operate as a simple software hosting platform and as a software defined router running in the resource hardware.

Note type 1 nodes (server nodes) can be used as a cloud (or data center) abstraction of compute, memory and storage quotas made available or assigned to tenants in hybrid cloud contexts where there is no visibility on some of the resources. As shown in Figure 3.1, a tenant requests a mapping of a service composed of 4 interconnected VMs. Based on the available capacity in the physical infrastructure, each node of the tenant requested graph will be mapped on a server or a server/router by our algorithms. In the case where we do not have control of (or visibility on) the data centers (e.g. Public Cloud), our algorithm will optimize the mapping based on quotas made available to the tenants. In Figure 3.1, one node is mapped on Cloud Provider 2. For each virtual link, our algorithms will choose the path (concatenation of segments or physical links) respecting the tenant (latency) requirements. We consequently introduce a distance metric between the virtual nodes and links and the physical nodes and physical paths (since virtual links are a concatenation of physical links forming a physical path supporting the virtual link). This metric that drives the selection of resources is now formally defined.

The distance is a binary metric that eliminates infeasible mappings between virtual and physical resources. A mapping is considered feasible if and only if the requested capacity for a virtual node is less than the remaining capacity of a candidate physical node and the latency of a virtual link is greater than the latency of a candidate physical path or link. The distance metric measures the closeness between the requested virtual resource and the physical resource. The algorithms will then select the best mapping among all the candidates.

Virtual Infrastructure Mapping problem

Before we describe the exact algorithm in section 3.3, we provide background definitions used in our model and list the variables and constants in Table 3.1.

Recall that the exact algorithm consists in defining constraints in the form of valid inequalities that describe partially the convex hull of the incidence vectors of the solution to speed up the optimization.

Definition 3.1. A graph G = (V G , E G ) is a set of vertices V G and an edge set E ⊆ V G × V G
where each edge links pairs of nodes (u, v). In our work, we consider only undirected graphs, and all extensions to the directed graphs are not in the paper scope.

Definition 3.2. of the Virtual Infrastructure Mapping problem

The problem consists in mapping an input graph G = (V G , E G ) to a reference graph H = (V H , E H ) in nodes and links (in vertices and edges). The objective is hence to look for a injective function

I : V G → V H that maps each node in V G to
a node in V H , and that matches edges in E G to edges in E H (or paths in our case).

That is ∀(u, v) ∈ E G , (u, v) will be matched to (I(u), I(v)).

The exact algorithm

In the following we present a mathematical programming approach based on a linear integer programming. We address a Branch and Bound algorithm describing a set of valid inequalities of the Virtual Infrastructure Mapping problem cited above. We give the objective function to optimize under linear constraints. Some of these constraints are obtained according to practical applications in cloud data centers resource allocation. 

V T = {S ∪ SR ∪ R}.
To derive the exact algorithms, a number of equivalent expressions between maximum (capacity) and remaining (available or free) compute, storage and communications resources are used and are summarized in a set of equations relating virtual node i and physical node j. These equivalences are needed to introduce a notion of distance between demand (requested virtual resources or CPU, storage and memory) and offer (selected physical resources) corresponding to input graph and reference graph resources.

CP U (i, j) ⇔ (cpu i ≤ CP U j ) (3.1) ST O(i, j) ⇔ (sto i ≤ ST O j ) (3.2) M EM (i, j) ⇔ (mem i ≤ M EM j ) (3.3) 
In this set, cpu i (sto i and mem i ) is the amount of requested CPU (storage and memory) by VM i while CP U j (ST O j and M EM j ) is the available (free) CPU (storage and memory) in a physical node j.

To assess the quality of the mapping of virtual resources to physical resources, we introduce the notion of distance for each realized mapping of a virtual node to a physical node of type 1 (servers) and 3 (servers/routers). Recall that type 2 are simple routers that do not provide resources. This distance metric, defined earlier in section 3.2, measures the closeness or similarity between the requested virtual resource and the selected physical resource. The objective functions minimize this distance criterion to achieve the optimal match. This distance can be weighted by node and link depend functions (see

f node (i, k) and f link (ij, k 1 k n ) in equation 3.7
) whose attributes depend on the goals of the involved actors, scenarios and use cases. Energy efficiency, cost, price of resources and SLA extracted attributes can populate this function to include as many required criteria as needed in the optimization. For example a simple cost model based on [START_REF] Chowdhury | Virtual network embedding with coordinated node and link mapping[END_REF] and [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] can be used to minimize the infrastructure provider costs by setting the functions as follows:

f node (i, k) = α k × N ode cap (i) f link (ij, k 1 k n ) = n l=1 β (k l k l+1 ) × Link cap (i, j)
where N ode cap (i) and Link cap (i, j) denote the requested node and link capacity weighted respectively by parameters α k and β (k l k l+1 ) to tune the costs of physical node k and physical path/link (k l k l+1 ). More elaborate (e.g. per resource type) cost functions can be used.

Candidate nodes for selection are all the nodes that meet the mapping conditions of equations (3.1), (3.2) and (3.3). This is expressed using the mapping distance:

d(i, k) =            1, if CP U (i, k) & ST O(i, k)& M EM (i, k); 0, otherwise. (3.4) 
where i ∈ V P and k ∈ V T \ R. This distance will remove all unfeasible nodes.

We also consider two additional mapping distances to handle link mapping between the requested virtual links and the physical paths selected to support these virtual links.

The mapping distances have to be minimized to find the closest and optimal matches. Note that a physical path is composed of multiple (connected) physical links. This can reduce to one physical link when a one to one mapping between the virtual link and the selected physical link meets the goal. When the virtual resources (or machines) are co-located or on the same node, this link is internal to a node of type S or SR. Hence, we allow the virtual link to collapse to a physical node in our expressions of the introduced distances.

These distances measure how close a physical path is from the originally requested virtual link. The request necessarily specifies the source and destination nodes. These nodes can sometimes be on the same node or in the same cluster.

The cluster case requires the establishment of a VLAN. These two distances are respectively given by d 1 and d 2 :

d 1 (ij, P k 1 ,kn ) =                  1, if CP U (i, k 1 ) and CP U (j, k n ) & ST O(i, k 1 ) and ST O(j, k n )& M EM (i, k 1 ) and M EM (j, k n )& lat ij ≥ LAT k 1 ,kn ;
0, otherwise.

(3.5)

d 2 (ij, k 1 ) = 1, if cpu i + cpu j ≤ CP U k 1 ; 0, otherwise. (3.6)
where i, j ∈ V P and k 1 , k n ∈ V T \ R. P k 1 ,kn represents a path of length n with k 1 and k n as the endpoints.

Distance d 1 covers the interconnection between two separate nodes k 1 and k n when the virtual resources have to reside on different nodes if imposed by the tenant. When no constraints on the co-localization or separation of virtual resources is expressed by the tenants, no constraints are put on nodes k 1 and k n . In fact the input graph must be parsed for all the requirements concerning virtual resources and application constraints in order to configure the overall objective function.

The goal is to maximize the tenants' satisfaction when mapping their requests.

The satisfaction is measured as the percentage of virtual resources in the requests that are mapped to the physical resources while respecting the tenants' expressed requirements. The objective is to be as close as possible to 100% proper mapping. Consequently, the algorithm will choose a mapping between virtual links and physical paths that will connect a virtual resource i hosted by a physical node k 1 to another virtual resource j hosted by a physical node k n while maximizing the number of successful mappings (this is equivalent to minimizing the distance metric as defined earlier).

Distance d 2 handles requests for co-localization of the virtual resources i and j on the very same node (or cluster). Distance d 2 is used to verify that required resources by virtual resource i and j are available on node k q . We set in our expressions subscript q to 1 with no loss of generality to stress that the source node is also the destination node for such requests, i.e. k 1 .

Using these three distances d, d 1 and d 2 , we can express our objective function to find the closest match in nodes and links simultaneously for the input graph in the physical graph.

min Z = min[

i∈V P k∈V T \R f node (i, k) × d(i, k) × x ik + (ij)∈E P k 1 ∈V T \R k 1 =kn kn∈V T \R f link (ij, k 1 k n ) × d 1 (ij, P k 1 ,kn ) × y ij,k 1 ,kn + (ij)∈E P k 1 ∈V T \R f link (ij, k 1 k 1 ) × d 2 (ij, k 1 ) × y ij,k 1 ,k 1 ] (3.7)
where the used bivalent variables are defined as follows:

x ik = 1, if the VM i is mapped to k ∈ S ∪ SR; 0, otherwise. (3.8) y ij,k 1 ,kn =        1, if i is mapped to k 1 , j is mapped to k n
and ij is mapped to P k 1 ,kn ; 0, otherwise.

(

The first term in the objective function makes sure that the needed resources are available on a candidate physical node k so it can be selected. It also ensures that the best node or optimal node will be retained thanks to the overall optimization.

The second term in the objective function finds the optimal physical path P k 1 ,kn to support the virtual link (i, j). The third term handles all the requests for co-localization of the virtual resources i and j on the same node k 1 .

In order to enhance performance and reduce the search space for the optimal graph, we introduce a number of equalities and inequalities for the virtual infrastructure mapping problem. These linear constraints will speed up convergence to some extent for the exact approach.

1. Node mapping constraint: One typical constraint or requirement is to map one virtual node on one physical node. This can be imposed by the tenant or the application that can not or need not be distributed. When such a constraint applies, each virtual node is mapped to exactly one physical node of type 1 or 3. This is expressed by:

k∈V T \R x ik = 1, ∀i ∈ V P (3.10)
2. CPU capacity constraint: The total amount of requested compute resources can not exceed the maximum available compute power (remaining or free CPU) of the physical node. Or equivalently, each physical node of type 1 or 3 can not host more than a maximum number of virtual machines depending on remaining resources on the physical node. This leads to the following inequality:

i∈V P cpu i × x ik ≤ CP U k , ∀k ∈ V T \ R (3.11)
where cpu i is the CPU requested by VM i, and CP U k is the available CPU in physical node k.

Memory capacity constraint:

As in (3.11), physical nodes are limited in memory and storage capabilities in terms of maximum possible capacity and remaining or free memory or storage space. This provides an additional set of constraints in the memory and storage dimensions. The memory constraints is expressed as:

i∈V P mem i × x ik ≤ M EM k , ∀k ∈ V T \ R (3.12)
where mem i is the memory requested by VM i, and M EM k is the available memory in physical node k.

4.

Limited storage constraint: Each physical node (of type 1 and 3) has a limited amount of storage space available to share across all the resource requests. This allows it to host only a limited number of virtual nodes (VMs).

i∈V P sto i × x ik ≤ ST O k , ∀k ∈ V T \ R (3.13)
where sto i is the requested storage by VM i, and ST O k is the available storage in physical node k.

5.

Link mapping constraint: Usually and most commonly virtual links will be mapped to one physical path composed of concatenated networking segments (or physical links). Hence, each virtual link (i, j) will be mapped to exactly one physical path P k 1 ,kn where k 1 and k n are the virtual link end points. As usual physical nodes k 1 and k n hosting the end to end applications can only be of type 1 or 3. Intermediate nodes can of course be simple routers of type 2 along the physical path.

k 1 ∈V T \R kn∈V T \R y ij,k 1 ,kn = 1, ∀(ij) ∈ E P (3.14)
6. Node and link mapping constraint (source type or 1): When a virtual node i is mapped to a physical node k 1 of type 1 or 3, each virtual link (i, j)

has to be mapped to a physical path with k 1 as one of its endpoint or extremity (source). The other endpoint is a k n .

kn∈V T \R y ij,k 1 ,kn = x ik 1 , ∀(ij) ∈ E P , ∀k 1 ∈ V T \ R (3.15) 
7. Node and link mapping constraint (destination type or 2): Similarly to (3.15), if a virtual node j is mapped to a physical node k n of type 1 or 3, then each virtual link (i, j) has to be mapped to a physical path having k n as one of its endpoints (destination).

k 1 ∈V T \R y ij,k 1 ,kn = x jkn , ∀(ij) ∈ E P , ∀k n ∈ V T \ R (3.16)
8. Latency constraint: If a virtual link (i, j) is mapped to a physical path P k 1 ,kn , the cumulated latency on this path can not exceed the required one on link (i, j).

LAT k 1 ,kn × y ij,k 1 ,kn ≤ lat i,j , ∀(ij) ∈ E P , ∀k 1 , k n ∈ V T \ R, k 1 = k n (3.17)
9. Node location constraint: This constraint supports the scenario where virtual resources have to be mapped onto particular locations (set of physical nodes) in order to minimize the delay between end users and the location of the virtual resources for example or simply due to tenant requirements or application constraints. The set of pairs (i, k) of virtual nodes i that must be mapped onto physical nodes k of type 1 and 3 are listed in Loc. This constraint is also useful in case of performance degradation of a subset of nodes that composes tenant graph/request. It keeps the placement of nodes which are not affected by this degradation, so we can initiate the optimization by launching our algorithm to find new placement for the affected nodes.

l ik ≤ x ik , ∀i ∈ Loc, ∀k ∈ V T \ R (3.18)
10. Node separation constraint: This constraint corresponds to situations where virtual resources (virtual machines) have to be separated and mapped onto distinct nodes for security reasons for example or simply due to tenant requirements or application constraints. This is indicated as a subset Sep of virtual resources (i, j) that must be mapped onto different physical nodes k of type 1 and 3. In this case virtual resources from the pair (i, j) will be mapped into nodes k 1 and k n with k 1 = k n . 11. Co-localization constraint: This is the opposite requirement of the previous one when tenants and applications impose for their dedicated virtual resources to be co-located on the same physical node. The set of services that must be co-located on the same node k is noted J. This can also occur due to operating system requirements for the application components or if high performance computing with very high speed interconnects or communications are required. This translates mathematically into setting x ik = 1 and x jk = 1 jointly and simultaneously in the objective function. To avoid quadratic formulations of the type (x ik x jk = 1) due to this joint setting, we introduce also a new variable: (each with their specified latency requirement) and a co-localization constraint to host virtual nodes 1, 2, 3 on the same physical node.

x ik + x jk ≤ 1, ∀i, j ∈ Sep, ∀k ∈ V T \ R (3.19)
k∈V T \R z k ij = 1, ∀i, j ∈ J (3.20) x ik + x jk = 2z k ij , ∀i, j ∈ J, ∀k ∈ V T \ R (3.21)

Performance evaluation

The linear programming solver CPLEX [START_REF]IBM ILOG CPLEX[END_REF] was used to assess performance of the exact solution.

The performance assessment would not be complete without the evaluation of the influence of separation and co-localization constraints (expressed in equation For small graph instances the Branch and Bound algorithm exhibits similar performance irrespective of the constraints. For large graphs, however, more important differences appear with "mapping with node separation constraints" standing out as an easier VNM problem to solve. With node separation constraint the space of feasible solutions is the smallest as more subspaces are removed from the VNM problem polytope. For 150 nodes in the RG, solutions with node separation constraints are found in 1300 sec while it takes 2900 seconds to find the optimal solution with no mapping constraints. When some virtual nodes have to be hosted by the same physical node, co-location constraint case, finding the optimal solutions requires 3500 sec on the average. When nodes have to be co-located, link mapping becomes harder to achieve between these co-located clusters and other nodes or clusters while satisfying all latency requirements. 

Conclusions

In this chapter, an integer linear program (ILP) model have been proposed to solve the problem of virtual infrastructure mapping in distributed cloud environments.

The model introduces new localization constraints on the optimal placement of virtual resources so resources can be co-located in the same physical host or assigned to different hosts or assigned to a specific hosts. In addition, the exact model is generic enough to optimize the mapping for infrastructure providers or for service providers thanks to the use of a generic objective function that combines multiple criteria and a notion of distance metric.

The proposed model performs well for small and medium-sized problem instances but the formulated ILP is still NP-hard. Therefore, we propose in the next chapter a new efficient and scalable heuristic algorithm based on topology patterns and bipartite matching to solve the virtual infrastructure mapping problem.

Chapter 4

Pattern Centric Matching Algorithm

Introduction

The previous chapter introduced an exact mathematical formulation to the virtual networked infrastructure mapping problem. This solution is optimal and performs well for small and medium-sized problem instances but exhibits exponential convergence times for large-scale instances. To address larger scale problems and manage the plethora of requirements in networks and clouds, a heuristic solution is needed to find optimal and near optimal solutions in polynomial time. In this chapter, we present a heuristic approach, based on topology patterns and bipartite matching, to optimally create slices over multiple providers while meeting the specified QoS requirements. The presented solution achieves simultaneous mapping of nodes and links, provides close to optimal solutions and reduce mapping delays. To show the effectiveness of our heuristic, we benchmark it with the exact algorithm and with other approaches. Simulations were conducted and results indicate our proposed heuristic is close to optimal and improves the performance by several orders of magnitudes.

The remainder of the chapter is organized as follows. The next section presents in details our Pattern Centric Matching Algorithm (PCMA). The complexity of our solution is analyzed in section 4.3, followed by an evaluation and analysis of the obtained experimental results in Section 4.4. The chapter is concluded with Section 4.5 providing a summary of results and contributions.

Pattern Centric Matching Algorithm (PCMA)

The exact algorithm performs well for small input and reference graph instances and as usual, similarly to NP-Hard subgraph isomorphism problems, exact algorithms will not scale with increasing graph sizes. They exhibit exponential convergence times and this compels us to search for heuristic algorithms that find optimal and near optimal solutions in polynomial time. To avoid the large convergence times and to scale as much as possible with graph sizes and handle graphs of hundreds to thousands of nodes, we resort to decomposition of the input and reference graphs into Patterns and apply bipartite matching to the produced graph patterns.

The principle is to transform the original graphs in a form where each node is considered as a root to build a tree from this root specifying all its connections to other nodes. These trees are used to achieve the desired matching and the search for the optimal solutions (the hosting nodes and their links: (k 1 , k n )) for all pairs (i, j) in the request graph. Instead of searching in the initial graphs as is, the match is exerted on the patterns that form the derived trees for the input and reference graphs. This requires building the Patterns before launching the optimization that will again rely on distance metrics to ensure closest match at minimum end to end latency. The heuristic algorithm can be summarized into four steps visible in Algorithm 4 acting as the main routine calling the intermediate steps handled by Algorithms 1 to 3:

1. decomposition of the virtual and physical graphs into topology patterns whose roots represent each node of the original graph and links reflect the relationships of these roots with other pattern nodes (see Figure 4.2);

2. computation of a similarity distance across all virtual and physical pattern graphs;

3. creation of a complete bipartite graph based on the computed distance followed by mapping of the virtual graph onto the physical graph according to the minimum distance;

4. refinement of the mapping making sure virtual nodes and links are mapped correctly.

Since the original graphs have to be decomposed into Patterns, we start the description of our heuristic algorithm, named pattern centric matching algorithm (PCMA), with the needed background on graph decomposition, patterns and on bipartite graphs (used to conduct the matching). where V P attern is a set of nodes and E P attern is the set of edges. A detailed decomposition algorithm of a graph G = (V G , E G ) with an adjacency matrix A = (a ij ) , i, j = 1, . . . , |V G | is given by algorithm 1 and is summarized below:

Algorithm 1 Graph Decomposition (graph G = (V G , E G )) Input: graph G = (V G , E G ).
Output: graph G decomposed into Patterns. end for 10: end for The complexity of this decomposition is O(|V G | 2 ). We use this decomposition algorithm and a bipartite graph approach to build our PCMA algorithm that will match input graph patterns to patterns in the physical infrastructure or graph. This decomposition into Patterns leads to smaller structures and lower algorithmic complexity compared to matching the entire original graph. The matching is conducted in our approach on bipartite graphs to find candidate patterns and select the optimal.

Maximum matching on bipartite graph

In bipartite graphs a matching is a set of pairwise disjoint edges. Details on matching theory and on the most popular algorithms can be found in [START_REF] Korte | Combinatorial optimization: theory and algorithms[END_REF]. 

Description of a distance metric

To finalize our heuristic algorithm (PCMA), we introduce a distance metric to assess similarity or closeness of two Patterns with one associated to the input graph (virtual graph) and the other with the reference graph (physical graph).

We assume that the number of pendent vertices (leaves or nodes attached to the roots in the Pattern representations) in the input graph (IG) is lower than the number in the reference graph (RG). The leaves are in fact nodes connected to the root nodes resulting from the Pattern decompositions. A natural assumption is that a router that does not host virtual nodes can not represent a Pattern root node.

We measure the distance between two Patterns (P attern 1 and P attern 2 ) by computing the distance between the roots of these Patterns dist nodes(n r , v r ) and adding a distance measure between their branches dist branches(branches(P attern 1 ), branches (P attern 2 )). This overall distance is expressed in equation (4.1). Note that a branch is considered as a composition of two nodes and one edge (see figure 4.5).

Distance(P attern 1 , P attern 2 ) = dist nodes(n r , v r )+ dist branches(branches(P attern 1 ), branches(P attern 2 )) 

for h = 1 → k do 15: dist branches matrix[f, h] = dist nodes(n f , v h ) + dist edges(b f , e h ) 16:
end for 17: end for 18: Determine the mapping of all leaves of P attern IG on P attern RG leaves according to minimum distance given by dist branches matrix; 

Description of the heuristic approach (PCMA)

The heuristic algorithm proposed in this chapter uses all the described above notions as subroutines to finally realize simultaneous mapping of nodes and links.

The heuristic algorithm first decomposes the input graph (IG) and the reference graph (RG) to Patterns as described in Algorithm 1 and then constructs the distance matrix dist matrix between the derived Patterns in step one.

From the distance matrix, the heuristic algorithm constructs in a third step a complete weighted bipartite graph G = (U ∪ W, E G ) as indicated in Algorithm 4.

The set of vertices U is composed by the Patterns of IG while W is the set of Patterns of RG. The existing edge between each vertex of U and W is weighted by the mapping cost taken from the previously constructed distance matrix dist matrix.

The next step consists in extracting all the minimum weight maximum matchings on the constructed bipartite graph to collect all the matched Patterns (potential candidates to fulfil the IG request) using Algorithm 2.

Note that the results of matching the IG on the RG correspond to the matching of the IG Patterns on the RG patterns produced by the bipartite graph matching.

At this stage, only root nodes of all IG Patterns are mapped exactly on the root nodes of the Patterns of RG. In order to meet the objective of simultaneous node and link mapping, we verify if these mappings of roots on roots comply also with the latency requirements. If the target latency is not met, we check all virtual nodes labeled with root and leaves in the following order:

1. mapping as a root with leaves: first by searching and finding a shortest path between the IG root (for which latency compliance could not be confirmed after the root to root mapping in the bipartite graph step involving IG and RG) and a leaf in the RG Patterns in the reference graph; 

Computational complexity

To assess the ability of the heuristic algorithm to find exact solutions for the virtual infrastructure mapping problem with large-scale graph instances in reasonable (practical) times, this section analyzes the complexity of the algorithm. A number of known characteristics of the VNM problem are added for completeness.

Theorem 4.3. The described VNM problem is NP-Hard.

The VNM problem considered in our work bears some specificities as it consists of mapping a virtual network (nodes and undirected links) onto a physical network or infrastructure. The modifications compared to the classical VNM are:

1. Many virtual nodes can be mapped to exactly one physical node; 2. Different types of physical nodes are considered: servers, routers and servers/routers, but virtual nodes can only be mapped to physical nodes of type servers and servers/routers.

3. All links in the input and reference graphs are weighted to reflect latency requirements.

Capacity is always capped by maximum available resource and currently

available resources in each node (in CPU, memory, storage)and available link bandwidth; 5. A virtual link can also be mapped to a server and/or a router/server when co-location constraints or data centers or clusters are involved (the notion of resource abstraction is of course assumed in these cases).

These modifications increase complexity compared to the classical VNM problem that is known to be NP-Hard in its original form in for example [START_REF] Garey | Computers and intractability[END_REF].

If we relax all our introduced modifications (from 1 to 5), the problem corresponds to an instance of the subgraph isomorphism problem where one maps all virtual nodes and links to a physical graph. This problem is known to be NP-Hard [START_REF] Cordella | Performance evaluation of the vf graph matching algorithm[END_REF], [START_REF] Garey | Computers and intractability[END_REF]. Our problem is thus a generalization of this problem and hence we deduce also NP-Hardness for our VNM addressed or specific problem.

As shown in subsection 3.3, mathematical programming based on Branch and

Bound techniques can be used to derive exact solutions for the VNM problem.

These solutions provide bounds on graph sizes that can be managed at reasonable and practical convergence times by exact methods and serve as a benchmark for alternate or approximate solutions. In our case, we have proposed a heuristic algorithm that can perform near optimal, compared to the exact algorithm for small and medium size graphs, in considerably faster times. As shown in the performance and results sections, the heuristic algorithm can also handle large graph sizes with converge times feasible for operational conditions.

To assess the complexity of the heuristic algorithm we define n as the number of virtual nodes and m as the number of physical nodes (capable of hosting virtual machines) with n ≤ m. This evaluation is based on the maximum match with minimum weight (cost or latency).

The heuristic algorithm consists of three main or key steps: Each node has to be treated as a root to derive the Patterns, leading to the n 2 and m 2 costs.

Distance computation:

This step is more complex and requires computing the distance between all Patterns of the input and reference graphs. This leads to O(n × m) time complexity to consider all combinations or couples.

Matching these two sets with a maximum bipartite matching algorithm is achievable in O(n × m). This leads to a total complexity of O(n 2 × m 2 ) which can be equivalent to O(m 4 ) in the worst case. We repeat these steps for a minimum number of IG and RG Patterns to map. One may have to deal with m Patterns in the worst case, however. This leads to a complexity that will not exceed O(m 5 ) time complexity. In summary, the average computational complexity of the proposed heuristic algorithm for finding solutions to the VNM problem is O(m 5 ) in the worst case.

Performance evaluation

The linear programming solver CPLEX [START_REF]IBM ILOG CPLEX[END_REF] was used to assess performance of the exact solution. For NP-Hard problems, we expect the exact algorithm (limitations of the Branch and Bound method) not to scale with problem size or with input and reference graph sizes. The objective of the performance evaluation is hence to identify the limits beyond which the exact algorithm convergence time becomes unfeasible for operational networks or systems. This evaluation also aims at comparing the heuristic algorithm solutions with the optimal ones found by the exact algorithm in convergence time, scalability and optimality.

As the heuristic algorithm will not always find the optimal mapping, the evaluation provides an estimate of the percentage of times the heuristic algorithm finds the optimal solutions. The results will show that the heuristic algorithm converges much faster with a three to four orders of magnitude improvement with a high percentage of concordance with the optimal solutions provided by the exact algorithm. In addition, the heuristic algorithm handles large graph sizes for which the exact method can not find solutions in acceptable time.

In the results that are reported throughout this performance evaluation section, we will use Input Graph (IG) and Reference Graph (RG) instead of "Virtual graph" and "Target or Physical graph or Infrastructure" respectively.

Simulation and Evaluation Conditions and Settings

The algorithms were evaluated using a 2.53 GHz Quad Core server with 24 GBytes of available RAM. The GT-ITM tool [START_REF] Zegura | How to model an internetwork[END_REF] was used to generate the input and reference graphs. These graphs are partial mesh with an average connectivity of 0.5 or 50%. The number of generations of these graphs was set to 100 in the GT-ITM tool resulting in 100 independent runs for each simulated point in all the reported results or performance curves. All the reported results have a confidence interval of 95% that is not reported in the figures because it would be too small to visualize and will blur the legends on each curve.

In the simulations and evaluations, only compute resources (CPU) were used for simplicity in virtual and physical nodes without any loss of generality. In order to span arbitrarily the entire optimization space, random resource requests and physical resources topologies were used to avoid any statistical bias and make all input and reference graph settings arbitrary and equiprobable. Random CPU capacity requests between 1 and 5 units were generated for each virtual node and random latency requirements between 1 and 100 time units were drawn for each virtual link. The hosting capacity of the physical nodes and the physical links latencies were was also generated randomly between 1 and 10 CPU units and 1 and 50 delay units respectively. For all the scenarios, 100 independent runs were averaged to produce each performance point. In addition, with no impact on complexity and no loss in generality, f node (i, k) and f link (ij, k 1 k n ) are both fixed to 1 for the exact algorithm (whose distance metric eliminates infeasible candidate) and to 0 for the heuristic-PCMA algorithm (since it minimizes distance between patterns).

Results

Through extensive experiments, we first evaluate the effectiveness of our algorithms in terms of scalability and convergence time with large instances of input and reference graphs. In this evaluation we compare our Exact and heuristic-PCMA algorithms with another approach based on the two stage VNM algorithm [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF]. Then, we study the optimality of our heuristic-PCMA in terms of tenant satisfaction and we compare our approach with the two stage approach.

Heuristic-PCMA algorithm scalability

The first experiment consists in comparing the exact and heuristic algorithms for an IG size fixed at 15 virtual nodes. The behaviour as a function of increasing RG graph size is reported for both algorithms for reasonably small to medium RG graph sizes in the [START_REF] Foster | Frenetic: A network programming language[END_REF]200] range. As suspected for the exact algorithm that relies on the Branch and Bound method and despite the use of a set of constraints to confine the problem convex hull to find the optimal solutions faster, the convergence times are in the order of tens of seconds as depicted in Figure 4.6. The heuristic algorithm designed to reduce convergence times and scale for large graphs exhibits far better performance and finds optimal solutions in less than 100 msec for all evaluated scenarios (actually in less than 30 msec for 200 physical nodes in The strength of the heuristic algorithm is its ability to find solutions much faster with a 10 3 to a 10 4 convergence time improvement ratio compared to the exact method. This gap increases with the number of physical nodes (gap is closer to 10 4 for 200 physical nodes in RG). The heuristic algorithm scales better already for these graph sizes and will be shown to be far more robust for much larger sizes in ensuing scenarios and simulations. In order to improve the performance of the exact algorithm, that always finds the optimal solution but unfortunately in exponential times, more valid inequalities need to be introduced to obtain better descriptions of the virtual infrastructure mapping problem convex hull. In essence, the virtual infrastructure mapping problem polyhedral study should be extended to propose new bounds to reduce the solution space further.

In Figure 4.7, the number of physical nodes is held constant at 50 to study the behaviour of the algorithms for increasing sizes of input graph IG from 5 to 30 virtual nodes. The gap between the algorithms is in the [10 3 , 10 4 ] improvement factor in favor of the heuristic algorithm. The exact algorithm performance gradually degrades with input graph size and will exponentially grow for sizes not shown in Figure 4.7. This will nevertheless be revealed by additional experiments and simulations with larger graphs.

This scalability analysis starts with an evaluation with input graphs ranging from 5 to 40 virtual nodes and reference graphs of size 100 and 150 physical nodes Size IG Convergence Time (milliseconds) Heuristic-PCMA (RG=100) Exact Algorithm (RG=100) where the exact algorithm performs well and has not reached its limits. Beyond 40 virtual nodes, the exact algorithm experiences exponential convergence times not feasible with most practical and operational systems as hours to several days are needed to find the optimal solution as the graph sizes increase. The heuristic algorithm is quite robust with marginal increases in convergence times that remain in the order of hundreds of milliseconds and thus stands out as a viable approach for deployment and use in operational cloud and network infrastructures to conduct virtual infrastructure mapping dynamically and on demand. answers are reported in Figure 4.11 that depicts performance of the heuristic algorithm for input graph sizes of 50 and 100 and for reference graphs of thousands of physical nodes (50 to 1500). Even if there is a noticeable performance degradation from IG with 50 to IG with 100 virtual nodes, the heuristic algorithm returns a solution within a maximum of 80 seconds for the (IG, RG) = (100, 1500). For small graphs the response time is in milliseconds. The heuristic approach is much more robust to increasing graph sizes and continues to return solutions in a few minutes for large graphs (100 nodes for the user request to map to infrastructures with 1000 nodes).

In Figure 4.12 we compare the convergence time between our proposed heuristic algorithm, the exact approach and the two stage mapping algorithm in [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] that uses the implementation of Ref. [START_REF]Virtual Network Embedding Simulator[END_REF]. The idea of [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] is to do the node mapping in a greedy manner in a first stage and only after that move to link mapping by solving the multi-commodity flow problem. For this comparison the RG size is fixed at 200 nodes while the IG size varies between 5 and 40 nodes. We compare only to the standard two-stage algorithm of [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] since we do not use path splitting nor migrations in our case. Our experimental evaluation shows that the heuristic algorithm is faster than the two stage approach, especially for large input graphs which are hard to map. In comparison with the two stage approach (Figure 4.12)

the heuristic algorithm reduces mapping delays by three orders of magnitude for a 

Tenant satisfaction

To pursue the performance evaluation of the heuristic algorithm, IGs with 40% connectivity (partial mesh) with 5 to 200 nodes were used to estimate the percentage of optimal mappings (known and found by the exact algorithm) the heuristic algorithm achieves. Figure 4.13 depicts the percentage of optimal mappings achieved by the heuristic algorithm during the simulations with 100 independent runs for each reported point in each curve. Recall that the satisfaction is measured as the percentage of virtual resources in the requests that are mapped, in compliance with requirements, to the physical resources. For small input graph instances (5 virtual nodes), the percentage of optimal solutions found by the heuristic algorithm can be as high as 98.1%. This percentage remains higher than 85% for input graphs with less than 10 virtual nodes. The lowest experienced percentage of optimal mappings are in the 20 to 30 virtual nodes range for all simulated RG sizes (from 50 to 500 physical nodes).

For higher IG sizes (more than 30 virtual nodes), the heuristic algorithm performs consistently better for all RG sizes and achieves the best mapping percentage for RG of 500 nodes.

As the input graph size increases the set of possible solutions meeting the objectives and constraints decreases. In this region the heuristic algorithm tends to match more often the optimal solution achieved by the exact algorithm. This is directly related to the Patterns that are grouped in a confined region of the overall reference graph for large IG sizes. Consequently, optimal link mappings become more likely.

The lower performance in the 10 to 30 IG nodes range is due to the presence of more candidates to map to with higher likelihood of widely dispersed candidate nodes that need to be linked to each other while respecting latency requirements. This will make compliance with virtual link latency difficult to match on necessarily longer physical paths. The heuristic algorithm will have to resort to leaf with roots and leaf with leaves mappings between the IG and RG patterns to find solutions. This will produce the 19% suboptimal solutions depicted in the valley region of Figure 4.13 (IG size around 20). Hopefully, the heuristic algorithm finds 81% of the optimal mappings which remains a very good performance when taking into consideration the times needed to find these optima (milliseconds to tens of seconds for the heuristic algorithm compared to the minutes to hours needed by the exact algorithm, see Figures 4.10 and 4.11). Note also that the heuristic algorithm performs closer to optimal as the input graph sizes become more important (above 90% for IG > 80 irrespective of RG sizes in the [START_REF] Foster | Frenetic: A network programming language[END_REF]500] for the evaluated scenarios).

Note that an actual comparison between the exact and heuristic approach has been conducted for small IG graph instances (|IG| ≤ 20) since the exact algorithm finds the optimal solution in acceptable time. For large instances the solutions found by the heuristic algorithm are compared in terms of gap with the ideal solution (the exact solution would find but in unacceptable time) that meets exactly the input graph request (100% horizontal line in Figure 4.13).

The performance of the heuristic algorithm compared to the optimal solutions in terms of requirements satisfaction is represented as a gap defined as the difference in percentage between the optimal and the heuristic algorithm solutions: The performance of the heuristic algorithm compared to the optimal solutions is represented as a gap defined as the difference in percentage between the optimal and the heuristic algorithm solutions:

gap(%) = E Sol -H Sol E Sol × 100 = 100 -H Sol (4.2)
where E Sol = 100 is the percentage of exact solutions provided by the Branch and Bound algorithm (or 100%) and H Sol is the fraction of heuristic mappings that correspond to optimal solutions. Note that H Sol corresponds to the achieved tenant satisfaction by the heuristic algorithm. Note also that the exact algorithm provides 100% tenant satisfaction when it converges or when an optimal solution is found.

One hundred (100) independent runs were used to produce each entry in Table 4.1. The average over these runs is provided. For some combinations of graph sizes there are no solutions for both algorithms as a condition for finding any solution is: |IG| < |RG|. In addition some network nodes, routers do not host any virtual resources or application.

The same performance behaviour as depicted previously in Figure 4.13 is revealed by Table 4.1. For simulated instances in the ranges |IG| from 5 to 15 and for |RG| from 50 to 500, the heuristic algorithm performs close to optimal and can match optimal solutions 98% to 82% of the runs in fairly adverse conditions;

recall that drawings are uniform in requested capacity per virtual node as well as in available capacity per physical node.

In the range [|IG| = 20, |IG| = 40], the heuristic algorithm encounters some difficulty in finding the optimal solution. For this range, the problem size is important and the number of patterns is not rich enough to favor better matching.

The performance for this less favorable set of scenarios lies in the [81%, 85%] range.

Even if Pattern roots are well identified and matched it is more difficult in these cases to find the best links meeting the latency requirements. To explain the decrease in tenant satisfaction when mapping the input graphs, let us explore Figure 4.14, which presents the satisfaction for nodes and links of IG for different sizes of IG and RG. This figure indicates clearly that nodes of IG are always mapped optimally (respecting tenants' requirements) for RG sizes between 200 and 500 nodes. However, the heuristic algorithm does not always find an optimal solution when mapping links. This is the origin of the performance degradation observed in Figure 4.13 and Table 4.1. The limitation is due to suboptimal link mapping for the heuristic algorithm.

In the continuity of the comparison between our solutions with other approach, Table 4.2 depicts the performance of the two stage mapping algorithm of Ref. [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] compared to the optimal solutions and our proposed Heuristic-PCMA algorithm.

This comparison is a gap defined as the difference in percentage of solutions that are optimal between these algorithms when referenced to the exact solution (whose gap is zero since the exact solution always finds the optimal). This gap is computed using equation 4. the two stage algorithm shows that it does not scale with infrastructure size (with gaps that become unacceptably high from 9% to 58% of solutions not matching the optimal). Our heuristic on the contrary scales much better than the two stage approach when the input and reference graphs increase thanks to the joint node and link mapping (5% to 19% gap only with respect to the exact algorithm). 

Conclusions

This chapter presented and evaluated a heuristic algorithm for virtual infrastructure mapping across distributed Cloud and network providers.

The presented solution, using topology patterns and bipartite matching, performs closer to the exact formulation solutions presented in previous chapter and shows scalability and higher performance comparing to two-stage mapping algorithms suggested in the literature. Moreover, The proposed heuristic algorithm improves convergence time by several orders of magnitude compared to the exact algorithm and handles graphs of thousands of nodes as opposed to algorithms in the current literature that can handle only graphs of less than a hundred nodes in practical convergence times. By developing this solution we addressed the challenge of slice mapping. To go further with the complete provisioning process, slice instantiation, control and automation challenges need to be addressed.

The next chapter introduces a Cloud Networking Framework that represents the missing piece responsible for the network instantiation, network programmability and network device deployment in the virtual distributed infrastructure.

Chapter 5

Network Instantiation

Introduction

The on-demand dynamic allocation and interconnection of user services in distributed cloud environments includes several major steps that still need to evolve beyond what is currently offered in the cloud and networking communities to facilitate networking automation. This concern or need is being addressed by both communities, especially the OpenStack community (via Neutron) [START_REF]Openstack neutron[END_REF], OpenFlow [START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF] and more recently SDN (Software Defined Networking) [START_REF]Software-defined networking: The new norm for networks[END_REF].

The objective of our proposed cloud networking framework is to complement these efforts by facilitating the establishment of connectivity between distributed cloud and network resources through cloud networking gateways. We set as requirement: compatibility with these efforts and more traditional networking technologies including IP. An additional requirement is to remain compliant and compatible with OCCI (Open Cloud Computing Interface) [START_REF]Open Cloud Computing Interface OCCI[END_REF] that has become a key standard interface between client applications and clouds. We focus on the instantiation step required for the on-demand establishment of connectivity be- Our solution is designed to be integrated easily with cloud brokers, cloud federation frameworks or cloud providers handling resources in multiple data centers.

We assume that Service Level Agreements (SLAs) between brokers and providers are already in place to drive and govern the amount of authorized control provided to the end users so they can invoke (or ask) the proposed cloud networking framework to establish links between their dedicated nodes and services. The proposed networking architecture relies on two main components:

• Cloud Networking Gateway Manager (CNG Manager)

• Virtual and generic appliance acting as a gateway between user resources (named Cloud Networking Gateway, CNG)

The advantage of the CNG Manager is to establish connectivity between user resources regardless of connectivity type (via dedicated links or the Internet) and to ensure connectivity in a non-intrusive way that preserves the network configuration of cloud providers. The solution is thus compatible with (and usable by) providers.

The CNG Manager presents a northbound interface to users and applications connectivity requests and a southbound interface relying on a set of drivers to offer heterogeneous virtual machines connectivity as a service. The VMs themselves are acquired through clouds managers, such as OpenStack The remainder of the chapter is organized as follows. The next section 5.2

presents the proposed cloud networking architecture that relies on the CNG Manager and the gateways to establish dynamic connectivity between cloud and network resources. Section 5.3 describes the benefits of using SDN with the CNG Manager. The impact on networking performance when introducing our solution in existing systems is reported in section 5.4.

Cloud Networking Architecture

Our solution aims at:

• Ensuring connectivity between resources acquired from distributed and independent cloud providers irrespective of the used networking technologies

• Giving partial or complete control of connectivity to the users. The overall goal is to allow users to handle networking of their applications.

The proposed architecture is composed of three ( 3) levels: a central component, the CNG Manager core, a northbound interface towards applications and a southbound interface interacting with transport technologies through drivers.

These three levels are used to control, configure and program the CNGs deployed in the infrastructure.

The CNG Manager northbound interface presents to applications or users (application developers, customers or consumers) an extended OCCI [START_REF]Open Cloud Computing Interface OCCI[END_REF] interface.

At the CNG Manager southbound interface, communications with the underlying networks is achieved though specific drivers. For the CNG Manager core, we have developed the required functions and actions to handle networking demands from users (received via the northbound interface) and to select the appropriate drivers, in line with user expressed networking requirements, to interact with the desired networking technology. deployed in the infrastructure layer. In fact, the CNG is an appliance acting as a gateway compatible with multiple cloud computing platforms (such as Open-Nebula, OpenStack...). This appliance exposes an OCCI interface so it can be configured remotely by the CNG Manager.

In summary, our solution, depicted in Figure 5.1, exposes two (2) OCCI interfaces (at the dashed separation lines): one in the CNG Manager (for user cloud networking requests) and the second in the CNG appliance (for network configurations within the cloud and network infrastructures). This ensures that our proposed cloud networking is achievable in an OCCI compliant manner and is in line with current practices in the OpenStack cloud community (for example Open-Stack4 and [START_REF]Openstack neutron[END_REF]). This also considerably eases integration into cloud and network software architectures using the OCCI RESTful paradigms.

The Open Cloud Computing Interface (OCCI) [START_REF]Open Cloud Computing Interface OCCI[END_REF], on which our solution is based, is a RESTful protocol and API for cloud resource management. The OCCI Core model introduces the notion of "Category Type" that is used by the OCCI classification system [START_REF]Occi core model[END_REF] and the framework for facilitating interoperability and integration of heterogeneous cloud services. Each category instance is characterized by a CRUD (Create, Retrieve, Update, Delete) RESTful interface and also by an interface referencing the category's own set of actions that can hopefully be invoked externally to achieve custom behavior.

CNG: Cloud Networking Gateway

The CNG is a virtual appliance providing cloud networking services for layer 2, layer 3 and higher layers with equal weight and emphasis. The CNG is generic enough to cover interconnection of virtual resources using VLANs, VPNs as well as virtual networks that can rely more closely on the underlying networking technologies and systems. The CNG integrates software defined networking frameworks (such as NOX5 /OpenFlow [START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF]) to enable flow control and management between resources interconnected by the CNG.

The CNG exposes an OCCI RESTful interface [START_REF]CompatibleOne Software Appliance Configuration Services[END_REF] based on OCCI so it can be configured and programmed by the CNG Manager. This interface is generic, supports all kinds of configuration rules and allows fine control and configuration of the gateway. Through this interface the communication between the CNG Manager and the CNG Appliance is performed securely.

The CNG can be used to manage the connectivity in one or between data centers. In a cloud environment, the allocation of public addresses is expensive and sometimes limited by a finite number of available addresses. In the case of Amazon, all accounts are by default limited to 5 Elastic IP addresses [START_REF]Elastic ip address limitation in amazon[END_REF]. In addition, most new applications need Internet access in order to be executed. However, exposing all resources to the Internet via a public address must be controlled, traceable and secure. Adopting public addresses for all service components imposes consequently the implementation of security policies, decision and enforcement points. The benefits in using CNG is to hide this network resource management complexity.

The CNG can provide access to the Internet for the VMs without exposing them to the outside world with public addresses through NATing. The user will use a single public IP address to serve all VMs deployed in the same data center. Since all VMs go through the CNG to reach the outside world, traffic management and implementation of security policies become easier. Besides saving public IP addresses, the CNG can offer other services such as DHCP and DNS.

The CNG is also used to establish dynamic and secure VPNs between resources deployed in different clouds. Users will need only a minimum number of public IP addresses equal to the number of cloud providers hosting user services instead of allocating as many addresses as there are VMs running these services. This is especially useful and practical for the scarce IPv4 addresses that are still largely used and deployed. VPN tunnels created between CNGs (in the infrastructure layer of Figure 5.1) have two important properties: they support a wide variety of network layer protocols including non-IP and multicast protocols and they provide end to end secure communications via the Internet.

CNG Manager

The CNGs are controlled, configured and managed by the CNG Manager that hides heterogeneity of underlying networking technologies. As depicted in Figure 5.1, the CNG Manager is composed of three entities: interface, drivers and core elements.

CNG Manager Components

The CNG Manager is composed of three components:

• The first component is the CNG Manager interface containing 2 elements responsible for the configuration of gateways and the links between them. In our implementation we decided to model these 2 elements as OCCI categories for the previously stated reasons. The first category called "CNG" represents the network component acting as a gateway for a service user and that is typically running in data centers (at the edge). In the CNG Manager this category will contain the information of the VM in which the CNG appliance is running. One attribute of this category "connection" contains the number of links established from this gateway. Based on the value of this attribute, we can decide to shutdown this gateway when it is not used or to add another gateway when the number of connection exceeds the gateway capabilities or capacity. The second category "linkCNG" represents a link interconnecting two gateways. This category contains the information needed for configuring and establishing a tunnel between gateways.

• The second component of the CNG Manager is the core that manages the list of OCCI categories through the handling of a database related to the instances of these categories. We have implemented in this entity the RESTful CRUD functions and the necessary actions of the exposed categories. The CNG Manager Core chooses the appropriate networking technology driver to configure and inject rules into the gateways.

• The CNG Manager drivers, representing the third element, hide the heterogeneity of the networking technologies. A specific driver is used per technology by this component to enable handling of multiple routing and switching protocols and systems. Each Driver is responsible for communicating with the underlying technology used in the gateway (OpenFlow, BGP, OSPF, MPLS, etc...). The CNG Manager in fact interacts with drivers to configure the connectivity between sites. The underlying framework can be software or hardware based (software switching and routing technologies or programmable hardware). As described in Figure5.1, we distinguish two main family of drivers. The first one provides the dynamic establishment of tunnels between CNG gateways (e.g. IPsec, GRE, OpenVPN, Capsulator...).

The second one enables the configuration of Network Functions Virtualization VNF [START_REF]Nfv network functions virtualisation[END_REF] like Firewall, NAT, DNS... In addition, our proposed model is flexible and can be extended to support other network technologies by developing appropriate drivers like OpenFlow and NOX that have been integrated in our solution. With the emergence of commercial programmable network equipment, we can even go further by supporting the configuration of the hardware by designing suitable drivers. 

Isolation using CNG Manager

The CNG Manager provides two isolation levels (Figure 5.3) to enable separation of users and applications:

• The first level is the isolation between users' services through the creation of a gateway per user;

• The second level isolates services and applications of a single user through a tunnel/VPN per user service. User 1 makes two requests (request 1 and request 2 for user 1) and user 2 makes only one request (request 1 for user 2). User 1 services or applications are isolated using tunnels between the CNGs assigned to user 1. User 2 is assigned another pair of CNGs located in cloud provider 2 and 3 in the illustration. The isolation between user 1 and user 2 is ensured by the creation of dedicated gateways per user.

CNG Manager and network deployment

The CNG Manager is designed to handle configuration and instantiation of networking to fulfill users's resources (VMs for the performance evaluation) connection requests. The CNG Manager can deploy 2 types of networks:

• Traditional networks: For these networks, the CNGs, deployed in different data centers, manage not only the forwarding functions but also the routing and control decisions and actions in line with the information injected by the CNG Manager (see Figure 5.4).

• SDN networks (e.g., based on the OpenFlow technology): For this type of networks the control and data plane are decoupled. The CNGs act as forwarding elements and another CNG (driven by the CNG Manager) controls them (see Figure 5.5).

CNG Manager for traditional network deployment

The CNG Manager deploys and configures the data plane (by establishing tunnels between the CNGs) and the routing rules according to the topology and user application requirements. The routing decision can be achieved by injecting static routing rules on each CNG or by activating a routing algorithm in the CNGs (like OSPF or BGP). The CNG Manager uses the programmable interface for all the previously cited configurations to fulfill the requested application topology. 

CNG Manager used for SDN deployment

Since the CNG supports the OpenFlow [START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF] technology, it can establish OpenFlow based connectivity between user resources. switches by injecting rules. In this case the control of connectivity can also be achieved by activating the appropriate module in the OpenFlow controller.

Experimental results

The evaluation of the CNG Manager has been performed with two objectives in mind. The first assesses the ease of integration of the CNG Manager with OCCI centric clouds. The second evaluation focuses on the additional delay introduced by the CNG architecture when interconnecting distributed services across multiple providers.

CNG Manager in a real framework

To assess ease of integration in OCCI centric clouds, a specific instance of the CNG Manager, named CONETS (COmpatibleOne NEtwork Services), has been integrated in an open source cloud broker known as CompatibleOne6 . This cloud broker provides a model, CORDS (CompatibleOne Resource Description System) [START_REF]CompatibleOne Resource Description Schema (CORDS)[END_REF], and a platform, ACCORDS (Advanced Capabilities for CORDS) [START_REF]Advanced Capabilities for CORDS[END_REF], respectively for the description and federation of different clouds comprising resources provisioned by heterogeneous cloud service providers.

CompatibleOne's flexible service architecture is independent of any Cloud Service Provider (OpenStack, OpenNebula , Azure7 ...) and addresses all types of cloud services (IaaS, PaaS...) and any type of cloud service deployment (public, private, community and hybrid). The overall architecture provides consequently an appropriate framework to evaluate the CNG Manager.

The broker relies on a set of specific modules to achieve provisioning goals from various technology providers. For networking services, the CompatibleOne broker invokes and uses CONETS (which corresponds to an instance of the CNG Manager) to establish connectivity as expressed by the end user in an initial manifest.

CONETS provides connectivity services between the endpoints specified by the broker. In more complex scenarios CONETS establishes all the links between nodes or cloud resources of a specified network connectivity graph. Each service of the ACCORDS platform is an OCCI server. This server manages a list of OCCI categories by handling the database related to the instances of these categories. To ensure communication between these services, the ACCORDS platform provides a publication service called publisher. Other platform components use the publisher to announce their service offers via the OCCI categories they manage.

In the case of the CONETS service, the integration requires two steps. In the first step CONETS publishes the list of categories that it manages (linkCNG and CNG). During the second step, CONETS using the publisher informs the broker that it is responsible for the network provisioning and provides the broker key information such as its name and address... Thanks to this procedure CONETS (a simple CNG Manager instance) will be called automatically by the Cloud Broker. The user first formulates and sends a service request to the CompatibleOne Broker. The request is described (e.g. using CORDS) as a manifest composed of a list of nodes and relations between these nodes (e.g. links). One of these nodes will describe all the parameters (CPU, memory, storage...) needed to instantiate a VM acting as a gateway to offer connectivity. After parsing and validating the user manifest using the CompatibleOne parser, a list of CompatibleOne components (such as placement, billing and provisioning modules...) are invoked to select, reserve and instantiate nodes of a service.

The CONETS module is invoked to establish the connectivity between the service nodes. CONETS uses three steps to achieve connectivity: 1. Instantiation at runtime of the VM acting as a CNG in the appropriate cloud provider following placement decisions. This instantiation consists in creating a gateway manifest containing information (CPU, memory, storage...) extracted from the original (initial) user request derived manifest.

Configuration of the CNGs by CONETS that injects the rules and policies

to establish the desired connectivity between the CNGs according to the user applications and services requirements. Note that the communication between CONETS and the CNGs is secure.

3. Redirection of the user VM traffic to the CNG as default gateway. This redirection is conducted by CONETS (or equivalently the CNG Manager).

In order to redirect the user VM traffic to the CNG, CONETS configures the routing table of the VM via the CNG by putting the CNG as the default gateway. If a DHCP service is activated in the CNG, the user VM will get an address from this DHCP server. In this case an isolation mechanism needs to be put in place by the cloud provider.

CNG evaluation

The objective of the evaluation is to estimate the delay penalty introduced by the CNG Manager architecture when it is used to establish connectivity between distributed services or VMs. This evaluation will indicate if the proposed CNG architecture introduces marginal degradation when it is integrated into an existing system. Since our main objective is to assess only the additional delay penalty, we do not seek or conduct comparisons with similar approaches that may be available in the literature (in fact there are no vendor independent frameworks we can compare meaningfully our proposal to).

Since the CNG is designed and packaged in a VM and used as a gateway in each cloud provider, we need to assess the delay added by this implementation. In our evaluation, we suppose that the placement of user resources or services , the CNGs in our case, in the cloud providers is handled by the cloud broker. OpenNebula has been used to instantiate the CNGs but any other cloud resource and service manager can be used (such as the more popular OpenStack).

The analysis is conducted for sequential "gateways and links establishments" (thus providing a worst case performance reference, or very pessimistic assessment) and for parallel establishments where simultaneous actions take place in the gateways under the command, control and coordination of the CNG Manager (optimistic assessment that is nevertheless very close to actual/practical instantiation and configuration delays).

We evaluate in Figure 5. When two cloud providers are involved in inter-cloud networking, the CNG Manager deploys an SDN controller (NOX for the evaluation) and the two CNGs (one per provider) to interconnect. The sequential deployment and instantiation penalty in this case is 3 times that of the parallel instantiation or 150 s. For the parallel instantiation, the delay drops to 50 s (this includes deployment and activation that take place in parallel). Once a CNG is deployed and activated the delay reduces to the configuration penalty which is rather small (around 8 seconds as depicted in Figure 5.8).

In the second experimentation, we evaluate the delays in configuring the CNGs' interconnection graph. Each node of the network graph represents a cloud provider.

The focus is on the configuration delay induced by the CNG Manager. The network graph topologies are randomly generated using the GT-ITM tool [START_REF] Zegura | How to model an internetwork[END_REF]. The average network graph connectivity is fixed at 0.5. In this experiment the number of links between CNGs varies between 1 and 16 links since the number of links to In the last experiment, we compare the configuration and instantiation delays between the OpenFlow and traditional networks. Figure 5.9 depicts a negligible configuration delay compared to the instantiation delay. As expected, Figure 5.9

shows that the OpenFlow solution that operates dynamically requires a marginal additional delay to achieve instantiation while it can achieve configuration a little bit faster that the traditional case. This is a very small price to pay overall when compared to the flexibility and programmability benefits provided by the proposed CNG architecture (and more generally software defined networking approaches). source cloud broker to confirm its ease of integration with cloud and network infrastructures.

The framework is shown to establish on-demand connectivity between virtual resources at marginal additional instantiation delays. The CNG Manager provides the needed programmability and flexibility to support easily other network technologies including programmable networks (hardware switches). As confirmed by our experiments, the introduced configuration and instantiation delays to interconnect distributed services across multiple providers using the proposed networking architecture are marginal.

Chapter 6

Conclusions and Perspectives

This chapter summarizes the research work and contributions of the thesis on networked virtual infrastructures provisioning over distributed clouds. The chapter then outlines some perspectives for future investigations.

Conclusions and discussions

This thesis addresses the research challenges of virtual networked infrastructures provisioning over distributed hybrid clouds in response to growing requirements in cloud computing with respect to: a) the networking of distributed virtual resources across multiple providers and infrastructures and b)the need of users and tenants to control, configure and manage their dedicated resources. The central goal for the thesis has been to provide a comprehensive solution that covers the challenge of (optimally) mapping requests for virtual resources on physical infrastructures and of providing the means to control, configure and manage the user or tenant dedicated resources and services. The key contributions of the thesis, listed below, reflect these objectives:

• An exact algorithm for virtual networked infrastructure mapping in distributed cloud environments, formulated and solved using linear integer programming (ILP) that achieves optimal resource mapping and placement to enable the creation of a virtual infrastructures from shared physical resources. The model extends prior art by including localization constraints on virtual resources and optimizes nodes and links jointly. The proposed solution is generic enough to be used by infrastructure and service providers;

• A Pattern Centric Matching heuristic algorithm has been developed to address scalability and complexity. The heuristic operates on the virtual and physical infrastructures topology patterns and bipartite matching to reduce convergence times by several orders of magnitude;

• A cloud networking framework (CNG-Manager) [START_REF] Mechtri | Cloud networking gateway manager[END_REF] was implemented using SDN principles and the Open Cloud Computing Interface (OCCI) to facilitate the instantiation, configuration, control and management of networking services by the users and tenants. This framework enables tenants to take control and full advantage of their dedicated slices especially when they are composed of distributed and interconnected services across multiple sites and infrastructure providers;

• The proposed cloud networking framework would not be complete without the means to deploy networking functions easily in the tenant virtual infrastructure (or slice). The thesis did not overlook this aspect and designed (and implemented) a generic appliance (the CNG) acting as a gateway between tenant resources. This appliance is in fact a virtualized network function that corresponds to a VNF in the ETSI specified NFV framework. The gateway is in addition compatible with multiple cloud computing platforms and exposes an interface so it can be configured remotely by the tenants.

• The cloud networking architecture (i.e., the CNG Manager framework) was successfully tested and integrated with an open source cloud broker to confirm its compatibility with cloud and network infrastructures. The framework is shown to establish on-demand connectivity between virtual resources at marginal additional instantiation delays.

Future Research Directions

Beyond the key contributions of this thesis we foresee a number of additional investigations and perspectives for future work: [75], [START_REF] Verma | pmapper: Power and migration cost aware application placement in virtualized systems[END_REF], notre algorithme intègre la latence de bout en bout entre les VMs.

En plus, notre modèle mappe les noeuds et les liens conjointement contrairement aux travaux précédents [START_REF] Lischka | A virtual network mapping algorithm based on subgraph isomorphism detection[END_REF], [START_REF] Chowdhury | Virtual network embedding with coordinated node and link mapping[END_REF], [START_REF] Muntasir Raihan Rahman | Survivable virtual network embedding[END_REF], [START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF], [START_REF] Zhu | Algorithms for assigning substrate network resources to virtual network components[END_REF] et [START_REF] Hermenier | Entropy: a consolidation manager for clusters[END_REF] 
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Cette distance éliminera tous les noeuds qui n'ont pas la capacité demandée.

Nous considérons aussi deux distances pour gérer le mapping des liens virtuels sur des chemins physiques d 1 et des liens virtuels sur le même noeud physique d 2 : 
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où les variables utilisées sont définies comme suit: 

x ik = 1,
i∈V P cpu i × x ik ≤ CP U k , ∀k ∈ V T \ R (C.11)
où cpu i est le CPU demandé par la VM i, et CP U k est la quantité de CPU disponible dans le noeud physique k.

3. Contrainte de mémoire limitée:

i∈V P mem i × x ik ≤ M EM k , ∀k ∈ V T \ R (C.12)
où mem i est la mémoire demandée par la VM i, et M EM k est la quantité de mémoire disponible dans le noeud physique k.

4. Contrainte de stockage limitée:

i∈V P sto i × x ik ≤ ST O k , ∀k ∈ V T \ R (C.13)
où sto i est le stockage demandé par la VM i, et ST O k est le stockage disponible dans le noeud physique k.

5. Contrainte de placement des liens:

k 1 ∈V T \R kn∈V T \R y ij,k 1 ,kn = 1, ∀(ij) ∈ E P (C.14)
6. Contrainte de placement de noeud et de lien à partir de la 1ere extrémité du lien:

kn∈V T \R y ij,k 1 ,kn = x ik 1 , ∀(ij) ∈ E P , ∀k 1 ∈ V T \ R (C.15)
7. Contrainte de placement de noeud et de lien à partir de la 2ere extrémité du lien:

k 1 ∈V T \R y ij,k 1 ,kn = x jkn , ∀(ij) ∈ E P , ∀k n ∈ V T \ R (C.16)
8. Contrainte de latence:

LAT k 1 ,kn × y ij,k 1 ,kn ≤ lat i,j , ∀(ij) ∈ E P , ∀k 1 , k n ∈ V T \ R, k 1 = k n (C.17)
9. Contrainte de localisation des noeuds virtuels:

l ik ≤ x ik , ∀i ∈ Loc, ∀k ∈ V T \ R (C.18)
10. Contrainte de placement des noeuds virtuels sur des noeuds physique différents:

x ik + x jk ≤ 1, ∀i, j ∈ Sep, ∀k ∈ V T \ R (C.19)
11. Contrainte de co-localisation des noeuds virtuels sur des noeuds physiques: 

k∈V T \R z k ij = 1, ∀i, j ∈ J (C.20) x ik + x jk = 2z k ij , ∀i, j ∈ J, ∀k ∈ V T \ R (C.
Algorithm 5 Graph Decomposition (graph G = (V G , E G )) Input: graph G = (V G , E G ).
Output: graph G decomposed into Patterns.

1: for i = 1 → |V G | do 2: P attern[i] = {} 3: end for 4: for i = 1 → |V G | do 5: for j = 1 → |V G | do 6:
if a ij = 0 then 

for h = 1 → k do 15: dist branches matrix[f, h] = dist nodes(n f , v h ) + dist edges(b f , e h ) 16:
end for 17: end for 18: Determine the mapping of all leaves of P attern IG on P attern RG leaves according to minimum distance given by dist branches matrix; 
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 11 Figure 1.1: Virtual networked infrastructure provisioning over distributed providers.
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 21 Figure 2.1: Cloud layer architecture.

  nity and hybrid Clouds. Public cloud providers offer their services to the general public (and consumers) and are located outside the users' premises. Private clouds are exclusively maintained by the user and offer many of the same features and benefits of public clouds. In this case, the organizations own the infrastructure and have full control over the hardware, network and software components. While Private Clouds are owned and managed by a single organization, community clouds are owned by several private contributors. In this scenario, contributors of a specific community share a common infrastructure on which they deploy their services and collaborate. The last Cloud model, hybrid cloud, combines the benefits of public, private and community models. This model enables organizations to provide and manage their resources in-house and externally.
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 22 Figure 2.2: SDN architecture.
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 23 Figure 2.3: NFV architecture (based on [54]).
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 31 Figure 3.1: Input and output of the Exact algorithm.

Figure 3 .

 3 Figure 3.1 depicts the scope of the study and illustrates the input and outputs of the proposed optimization algorithms (2 data centers, 1 network provider and 2 public providers for the example). The reference graph is the visible set of resources from private and public clouds to the Exact algorithm. In the private realms the local resources and networks can be to some extent accessed, inspected,

  of the exact mapping algorithm. Then, a number of constraints represented in the form of valid equalities and inequalities are introduced to formulate our integer linear program model in section 3.3. This model support three types of service location by introducing a set of constraints that assist cloud tenant to specify nodes location or nodes localization and separation. Section 4.4 reports the results of performance for the exact algorithm for different scenario of node localization.
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 32 Figure 3.2: Example of a request mapping with node separation constraints of all virtual nodes.
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 3 Figure 3.2 depicts a mapping with separation requirements of all virtual nodes into distinct physical nodes of type 1 and 3.
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 33 Figure 3.3: Example of a request mapping with the constraint of deploying nodes 1, 2, 3 on the same physical node.
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 3 Figure 3.3 illustrates a mapping request for 5 virtual nodes and 5 virtual links

  3.19 and equations 3.20) and (3.21 respectively) on the performance of the Branch and Bound algorithm. For this purpose simulations with RG graphs with 50 and 100 physical nodes for an IG of 20 virtual nodes were used to collect the results depicted in Figure3.4. The performance results in Figure3.4 correspond to the cases of: default mapping (no constraints on the mapping process), node separation constraint (node pairs that must reside or be hosted by different physical nodes), and co-location constraint (virtual node pairs to be hosted by the same physical node). The average number of node pairs that must be separated or colocated is set to 7 in multiple independent runs, with 100 runs averaged for each reported point.
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 34 Figure 3.4: Branch and Bound algorithm's time execution with and without separation and co-localizations' constraints.
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 41 Figure 4.1: Input and output of the Heuristic algorithm.
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 21 Graph decomposition Definition 4.1. A Pattern is considered as an undirected graph G P attern = (V P attern , E P attern )
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 42 Figure 4.2: Example of a graph decomposition to 4 patterns.
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 4 Figure 4.2 depicts a Pattern as a one level tree represented by a node acting as root and all other nodes connected to this node forming branches representing the edges in the initial graph involving the root and the nodes to which the root has a connection.

Figure 4 .

 4 Figure 4.2 depicts a decomposition of a graph composed of 4 nodes into 4Patterns. At each step of this decomposition, each node from the original graph is selected as a root to construct the Pattern for this node using all its neighbors (nodes to which the root node has a connection).

1: for i = 1 → |V G | do 2 :

 12 P attern[i] = {} 3: end for 4: for i = 1 → |V G | do 5: for j = 1 → |V G | do 6: if a ij = 0 then 7: P attern[i] = P attern[i] ∪ {i, j}
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 42 A bipartite graph G = (U ∪ W, E G ) is a graph in which the set of vertices is the union of two disjoint sets U and W . Each edge in the bipartite graph is a link between vertices u ∈ U and w ∈ W . The first step in the construction of the bipartite graph is to derive the IG patterns that will compose the first set U and the RG patterns to form the second set W . The second step interconnects each IG pattern in U with all the RG patterns in W (see figure 4.3). Note that each edge of the bipartite graph is weighted by a distance (equation 4.1) that is described later and used to meet capacity requirements in the original IG request.
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 43 Figure 4.3: Construction of the bipartite graph.
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 4 Figure 4.4 depicts the result of the maximum bipartite matching algorithm which consists in finding a subset of edges connecting each pattern of the input graph (IG) with a single pattern of the reference graph (RG).

Algorithm 2

 2 Max Matching Bipartite Graph (bipartite graph G = (U ∪ W, E G )) Input: bipartite graph G = (U ∪ W, E G ) where U = IG patterns and W = RG patterns.Output: the optimal matching between IG and RG patterns.

1 : 2 :

 12 M = {e}, such that e ∈ E G is the edge with the minimum weight. e is directed from U to W ; Redirect all edges e ∈ M from W to U with a weight -w e 3: Redirect all edges e not belonging to M , from U to W , with a weight +w e ; 4: Let U M = {u ∈ U \ M }; and W M = {u ∈ W \ M } 5: Find an existing shortest path P from U M to W M ; 6: Put M = M ∆P (M ∆P = (M ∪ P ) \ (M ∩ P )), and repeat steps 2, 3 and 4; 7: M is the optimal matching.
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 44 Figure 4.4: Bipartite graph matching.

(4. 1 )

 1 If all the tenant required CPU, storage and memory are satisfied then dist nodes(n r , v r ) is equal to 0 or to 1 otherwise. The distance between branches of two Patterns (figure 4.5) dist branches(branches(P attern 1 ),branches(P attern 2 )) is introduced to emphasize the cost of joint mapping of nodes and links. This distance between branches is the distance between all the edges of the two Patterns. It is set to 0 in algorithm 3 if the latency requirement requested in P attern 1 (in IG) is met by P attern 2 (selection in RG). This is added to the distance between leaves to obtain the overall cost or distance from optimal (or required graph with minimum weight and maximum match in required resources).
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 45 Figure 4.5: Example of two Patterns with p and k leaves.

Algorithm 3

 3 distance2Patterns (Pattern IG, Pattern RG) Input: IG pattern, RG pattern. Output: mapping cost of IG Pattern into RG Pattern.

19 :

 19 Return cost of mapping; The next step consists in constructing a complete weighted bipartite graph G = (U ∪ W, E G ) in which U represents the Patterns of the input graph (IG) and W is the set of Patterns of the reference graph (RG). For each edge from U to W we associate a weight corresponding to the distance of mapping a Pattern in U to a Pattern in W . Computing a maximum matching with minimum weight on the bipartite graph G will return a minimum distance representing the mapping cost of IG Patterns into RG Patterns. Algorithm 3 summarizes the steps needed to compute the distance metric between two Patterns. We use the same notations as in equations (3.1), (3.2) and (3.3) to check compliance of nodes to the CPU, storage and memory requirements.

2 .Algorithm 4 5 : 8 :

 2458 mapping as a leaf with roots: second by computing a shortest path between this root taken as a leaf in the other Patterns with the other roots and keeping only the first root that satisfies the latency requirements; 3. mapping as a leaf with leaves: last, by finding also a shortest path between the leaf representation of this root in other Patterns and all other leaves since steps 1 and 2 failed. Algorithm 4 summarizes and provides details on the key steps used by the heuristic approach to map nodes and links onto the physical graph or infrastructure. Pattern Centric Mapping Algorithm 1: list Patterns IG = Graph Decomposition (IG) 2: list Patterns RG = Graph Decomposition (RG) 3: for i = 1 → size(list P atterns IG) do 4: for j = 1 → size(list P atterns RG) do dist matrix[i, j] = distance2Patterns(list Patterns IG[i],list Patterns RG[j]) Construct the complete weighted bipartite graph G based on the dist matrix 9: // Get the maximum matching of the weighted bipartite graph 10: Max Matching Bipartite Graph (G);

1 .

 1 Decomposition: This step consists in decomposing both the input and target graphs into Patterns. The time complexity of this step is O(n 2 + m 2 ).

3 .

 3 Node and Link mapping: This step maps nodes and links simultaneously once all other steps are finalized. This mapping is based on a maximum matching algorithm on a bipartite graph weighted by the distance computations. It is executed in O(m 2 + n 2 ) in the worst case. It is hence negligible compared to the rest of the complexity.
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 46 Figure 4.6: Time execution comparison between Exact and Heuristic Approaches when RG is varying
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 46 Figure 4.6). The main difference between the algorithms is: the exact algorithm does not have to resort to any decomposition or Pattern representations to find the optimal solution.
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 47 Figure 4.7: Time execution comparison between Exact and Heuristic Approaches when IG is varying

Figure 4 . 8 :

 48 Figure 4.8: Time execution comparison between Exact and Heuristic Approaches for RG size of 100 nodes

Figure 4 .

 4 8 depicts and confirms the expected stable relative performance between the exact and heuristic algorithms in the 5 to 40 virtual nodes interval. This corresponds to the range

Figures 4 .Figure 4 .Figure 4 . 9 :

 4449 Figures 4.9 and 4.10 extend the study and confirm these behaviors for RG with 150 and 200 physical nodes. The limits in the input graph size that the exact algorithm can handle drop from 40 virtual nodes to 35 nodes from Figure 4.9 to Figure 4.10 results. Clearly the exact algorithm in its current version with our set of introduced constraints in equations 3.10 to 3.21 can handle a few tens of virtualnodes in the tenants requests and this limit will drop further as the number of physical nodes in the reference graph increases.
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 410411 Figure 4.10: Time execution comparison between Exact and Heuristic Approaches for RG size of 200 nodes
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 412 Figure 4.12: 2stage mapping versus optimal mapping of virtual networks

Figure 4 . 13 :

 413 Figure 4.13: Heuristic versus optimal mapping

Figure 4 . 14 :

 414 Figure 4.14: Impact of node mapping and link mapping on the optimality of the PCMA heuristic

  tween inter-cloud resources. The instantiation step consists in deploying the list of requested VMs and networking them. This VMs interconnection establishment needs to be open and transparent to the applications while hiding the underlying networking technologies used by the cloud providers. This becomes also a goal in the design of the CNGs and the CNG Manager.Even if current cloud computing and clouds services efficiently provide on demand IT resources with a focus on compute and storage resources provisioning from shared physical infrastructures, the networking of the virtual resources dedicated to applications, end users or tenants deserves more attention. Existing cloud network models focus mostly on assigning IP addresses to user VMs and insufficiently support inter cloud and inter data center connectivity. Facilitating the control, configuration and instantiation of connectivity of application components and tenant resources requires further work to take full advantage of compute, storage and network virtualization altogether. The proposed cloud networking framework in this paper addresses specifically this objective of enabling users and applications to gain some control on the establishment of connectivity between their dedicated resources with a focus on deployment, control, configuration and instantiation of cloud networking services.

  1 or OpenNebula 2 , from the data centers. The open source implementations of the CNG Manager and the gateways have been integrated in an open source Cloud Broker 3 offering compatibility, arbitrage and aggregation services to/from multiple heterogeneous cloud providers.

Figure 5 . 1 :

 51 Figure 5.1: CNG Manager architecture.

Figure 5 . 2 :

 52 Figure 5.2: Interactions between CNG Manager components and Cloud Broker to establish connectivity between CNGs.

Figure 5 .

 5 Figure 5.2 depicts, in a flow diagram, the interactions between a Cloud Broker (when a broker is used to coordinate and aggregate resources from the same or various providers) and the CNG Manager components needed to establish connectivity between CNGs deployed in one or in different cloud providers. We assume that the cloud broker instantiates CNG nodes and user nodes in the appropriate cloud provider and knows the CNG public addresses and the topology of user nodes. The cloud broker invokes the CNG manager interface to instantiate the CNG categories (see Figure 5.2 steps 1 and 2) with key parameters such as the CNG address and the network functions to activate on the gateway (e.g. firewall, Nat, DNS...).

Figure 5 . 3 :

 53 Figure 5.3: Isolation between user services.

Figure 5 .

 5 Figure 5.3 depicts how two users are isolated using CNGs when acquiring cloud resources from multiple providers. The provisioning of resources may be achieved by a cloud broker that would interact on behalf of the users with the

Figure 5 .

 5 Figure 5.4 depicts a scenario where the CNG Manager configures two gateways, CN G j and CN G k deployed respectively in cloud j and cloud k. Thanks to this configuration users' VMs are allowed to communicate securely with each other.

Figure 5 . 4 :

 54 Figure 5.4: Connectivity via non SDN/OpenFlow.

Figure 5 .

 5 5 depicts a scenario where the CNG Manager relies on an OpenFlow driver to configure two (2) CNGs acting as OpenFlow switches connected to an OpenFlow controller called NOX. The NOX controller is running in a CNG and it is configured through the CNG Manager so the "NOX in a VM" controls remotely the OpenFlow switches. The CNG Manager establishes tunnels dynamically between the OpenFlow switches. The NOX controller handles routing and switching decisions between the OpenFlow

Figure 5 . 5 :

 55 Figure 5.5: Connectivity via OpenFlow.

Figure 5 .

 5 Figure 5.6 depicts how CONETS is integrated with CompatibleOne and describes a scenario where the cloud broker deals with two cloud providers to aggregate services acquired from these providers (e.g. VM1, VM2 and VM3 in Figure 5.6).
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 56 Figure 5.6: Integration of CONETS (an instance of CNG Manager) in the CompatibleOne architecture.

Figure 5 . 7 :

 57 Figure 5.7: Sequential and parallel instantiation delay comparison
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 58 Figure 5.8: Sequential and parallel configuration delay comparison

Figure 5 . 9 :

 59 Figure 5.9: Sequential and parallel configuration and instantiation delay of OpenFlow and traditional network

L

  'objectif de cette thèse est de permettre le placement et l'instanciation des ressources complexes dans des infrastructures de Cloud distribués tout en permettant aux utilisateurs le contrôle et la gestion de leurs ressources. En plus, notre objectif est d'assurer la convergence entre les services de cloud et de réseau. Pour atteindre ces objectifs, cette thèse propose des algorithmes de mapping d'infrastructures virtuelles dans les centres de données et dans le réseau tout en respectant les exigences des utilisateurs. Avec l'apparition du Cloud Computing, les réseaux traditionnels sont étendus et renforcés avec des réseaux logiciels reposant sur la virtualisation des ressources et des fonctions réseaux. En plus, le nouveau paradigme d'architecture réseau (SDN : Software Defined Networks) est particulièrement pertinent car il vise à offrir la programmation du réseau et à découpler, dans un équipement réseau, la partie plan de données de la partie plan de contrôle. Dans ce contexte, la première partie de la thèse propose des algorithmes optimaux (exacts) et heuristiques de placement pour trouver le meilleur mapping entre les demandes des utilisateurs et les infrastructures sous-jacentes, tout en respectant les exigences exprimées dans les demandes. Cela inclut des contraintes de localisation permettant de placer une partie des ressources virtuelles dans le même noeud physique. Ces contraintes assurent aussi le placement des ressources dans des noeuds distincts. Les algorithmes proposés assurent le placement simultané des noeuds et des liens virtuels sur l'infrastructure physique. Nous avons proposé aussi un algorithme heuristique afin d'accélérer le temps de résolution et de réduire la complexité du problème. L'approche proposée se base sur la technique de décomposition des graphes et la technique de couplage des graphes bipartis. Dans la troisième partie de la thèse, nous proposons un cadriciel open source (framework) permettant d'assurer la mise en réseau dynamique entre des ressources Cloud distribués et l'instanciation des fonctions réseau dans l'infrastructure virtuelle de l'utilisateur. Ce cadriciel permettra de déployer et d'activer les composants réseaux afin de mettre en place les demandes des utilisateurs. Cette solution se base sur un gestionnaire des ressources réseaux "Cloud Network Gateway Manager (CNG-Manager)" et des passerelles logicielles permettant d'établir la connectivité dynamique et à la demande entre des ressources cloud et réseau. Le CNG-Manager offre le contrôle de la partie réseau et prend en charge le déploiement des fonctions réseau nécessaires dans l'infrastructure virtuelle des utilisateurs. C.2 Algorithme exact Dans cette section, nous décrivons le modèle analytique proposé qui se base sur la théorie de graphe et ayant pour objectif d'assurer le mapping des ressources dans des environnements Cloud distribués. Dans cette approche, nous visons à fournir un mapping optimal des ressources afin d'assurer un déploiement optimal des infrastructures virtuelles dans des infrastructures partagées et distribuées entre plusieurs fournisseurs.

Figure C. 1 :

 1 Figure C.1: Les entrées sorties de l'algorithme exact.

C. 3 . 1

 31 Graph decomposition Definition C.1. Un pattern est considéré comme un graphe non orienté G P attern = (V P attern , E P attern ) où V P attern est un ensemble de noeuds et E P attern est un ensemble des arêtes.

Figure C. 2 :

 2 Figure C.2: Exemple d'une décomposition du graphe en 4 patterns.

7 :

 7 P attern[i] = P attern[i] ∪ {i, j} end for 10: end for La complexité de cette décomposition est O(|V G | 2 ). Dans la partie suivante, nous décrivons les étapes de construction et de couplage du graphe biparti. C.3.2 Maximum matching on bipartite graph La première étape consiste à construire les sous-ensembles U et W du graphe biparti. La partition U est formée des patterns de IG et la deuxième partition W est composée des patterns de RG. La deuxième étape relie chaque pattern de U avec tous les patterns de W (voir la figure C.3). Chaque arête du graphe biparti est pondérée par une distance calculée à partir de l'équation C.22.

Figure C. 3 :

 3 Figure C.3: La construction du graphe biparti.

Figure C. 4 :

 4 Figure C.4: Couplage du graphe biparti.

Algorithm 6

 6 distance2Patterns (Pattern IG, Pattern RG) Input: IG pattern, RG pattern. Output: mapping cost of IG Pattern into RG Pattern.

19 : 1 . 2 . 3 . 4 : 5 : 8 :

 19123458 Return cost of mapping;La prochaine étape de l'algorithme consiste à construire un graphe biparti complète G = (U ∪ W, E G ) où U représente les patterns du graphe de la requête (IG) et W est l'ensemble des patterns du graphe de référence (RG). Pour chaque lien entre U de W , nous associons un poids correspondant à la distance de mapping d'un pattern de U avec un pattern de W . C.3.4 Description de l'approche heuristique (PCMA) L'algorithme heuristique proposée utilise toutes les notions et les procédures décrites ci-dessus pour réaliser la mapping simultanée des noeuds et des liens. L'algorithme heuristique décompose d'abord le graphe de la requête (IG) et le graphe de référence (RG) en des patterns comme décrit dans l'algorithme 5. Ensuite, l'algorithme construit une matrice de distance dist matrix entre les patterns de IG et RG. En se basant sur la matrice de distance, l'algorithme heuristique construit un graphe biparti pondéré et complet G = (U ∪ W, E G ) comme indiqué dans l'algorithme 7. L'ensemble des sommets de U est composée par les patterns de IG alors que W est composé des patterns de RG. Le lien entre chaque sommet de U et W est pondéré par le coût de mapping déjà calculé dans la matrice de distance dist matrix. La dernière étape consiste à calculer le couplage maximum à coût minimum sur le graphe biparti. A noté que le résultat de mise en correspondance entre IG et RG correspondent à la mise en correspondance entre les patterns d'IG et RG faite par le couplage du graphe biparti. A ce stade, seuls les noeuds racine de tous les patterns d'IG sont mappés exactement sur les noeuds racine des patterns de RG. Afin de répondre à l'objectif de mapping simultané des noeuds et des liens, nous vérifions si le mapping des racines sur les racines est également conforme aux exigences de latence. Si la latence demandée n'est pas satisfaite, nous vérifions les noeuds virtuels marqués comme racines et feuilles dans l'ordre suivant: Mappé une racine sur une feuille: premièrement en cherchant un mapping entre la racine d'un pattern de IG sur une feuille d'un pattern de RG; Mappé une feuille sur une racine: deuxièmement en cherchant un mapping entre la racine d'un pattern de IG prise comme une feuille dans les autres patterns avec une racine d'un pattern de RG; Mappé une feuille sur une feuille: enfin, on cherche un mapping de la feuille d'IG sur une feuille de RG si les étapes 1 et 2 ont échoué. L'algorithme 7 résume et donne des détails sur les étapes utilisées par l'approche heuristique pour mapper les noeuds et les liens virtuels sur le graphe physique. C.4 Architecture du Cloud Networking L'allocation dynamique et l'interconnexion des services de l'utilisateur dans les environnements Cloud distribués comprend plusieurs étapes majeures qui ont encore Algorithm 7 Pattern Centric Mapping Algorithm 1: list Patterns IG = Graph Decomposition (IG) 2: list Patterns RG = Graph Decomposition (RG) 3: for i = 1 → size(list P atterns IG) do for j = 1 → size(list P atterns RG) do dist matrix[i, j] = distance2Patterns(list Patterns IG[i],list Patterns RG[j]) Construct the complete weighted bipartite graph G based on the dist matrix 9: // Get the maximum matching of the weighted bipartite graph 10: Max Matching Bipartite Graph (G); besoin d'évoluer au-delà de ce qui est actuellement offert dans les communautés de Cloud et réseaux pour faciliter l'automatisation de la mise en réseau. Cette préoccupation est abordée par les deux communautés, notamment la communauté OpenStack (via neutron)[57], OpenFlow [37] et plus récemment SDN (Software Defined Networking) [35]. L'objectif de notre cadriciel de Cloud Networking est de compléter ces efforts en facilitant la mise en place de la connectivité dynamique et à la demande entre des ressources Cloud et réseau via des passerelles logicielles. Nous avons fixé comme condition: la compatibilité avec les technologies de réseau traditionnelles. Une exigence supplémentaire est de rester conforme et compatible avec OCCI (Open Interface Cloud Computing) [87] qui est devenue une interface standard clé entre les applications clientes et le Cloud. Nous nous concentrons sur l'étape d'instanciation nécessaire pour la mise en place de la connectivité à la demande entre les ressources inter-Cloud. L'étape d'instanciation consiste à déployer la liste des machines virtuelles demandées et à mettre en place la connectivité entre eux. Cet établissement d'interconnexion entre les machines virtuelles doit être ouvert et transparent aux applications tout en masquant les technologies de réseau sous jacentes utilisées par les fournisseurs de Cloud. L'architecture du Cloud Networking proposée repose sur deux éléments principaux: • Un gestionnaire de passerelle pour le Cloud Networking (nommé Cloud Networking Gateway Manager, CNG Manager) • Une brique applicative "software appliance" virtuelle et générique qui agit comme une passerelle entre les ressources de l'utilisateur (nommé Cloud Networking Gateway, CNG) Notre solution vise à: • Assurer la connectivité entre les ressources acquises auprès des fournisseurs de Cloud distribués indépendamment des technologies réseau utilisées; • Donner le contrôle partiel ou complet de la connectivité pour les utilisateurs. L'objectif général est de permettre aux utilisateurs de gérer la mise en réseau de leurs applications. L'architecture proposée est composée de trois (3) niveaux: un élément central, le gestionnaire de passerelle "CNG Manager", une interface nord en interaction avec les applications et une interface sud en interaction avec les technologies de transport par le biais des pilotes logiciels. Ces trois niveaux sont utilisés pour contrôler, configurer et programmer les passerelles "CNGs" déployées dans l'infrastructure. Notre solution, illustrée à la figure C.6, expose deux (2) interfaces OCCI: une au niveau du gestionnaire de passerelle "CNG Manager" (pour les demandes de mise en réseau de l'utilisateur) et la seconde au niveau des passerelles "CNGs" (pour les configurations de réseau dans le Cloud et dans les infrastructures de réseaux). Cela garantit que notre solution du Cloud Netwroking est réalisable d'une manière conforme à OCCI et aussi en ligne avec les pratiques actuelles de la communauté OpenStack (par exemple OpenStack 1 et [57]). Cela facilite considérablement l'intégration dans le Cloud et avec les architectures SDN en utilisant les paradigmes RESTful. C.4.1 CNG: passerelle générique pour le Cloud Networking CNG est une brique logicielle permettant de fournir une connectivité dynamique de couche 2, 3 et des couches supérieures entre des ressources Cloud et réseau. Le CNG est suffisamment générique pour couvrir l'interconnexion des ressources virtuelles à l'aide de VLAN, VPN ainsi que les réseaux virtuels qui peuvent s'appuyer davantage sur les technologies et les systèmes de réseau sous-jacents.Le CNG intègre des architectures SDN (tels que NOX 2 /OpenFlow[START_REF] Mckeown | Openflow: Enabling innovation in campus networks[END_REF]) pour permettre le contrôle et la gestion des flux.
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 6421 Figure C.6: Architecture du CNG Manager.

Figure C. 7 :••••••

 7 Figure C.7: Interactions between CNG Manager components and Cloud Broker to establish connectivity between CNGs.

  

  

  Users who want to avoid the virtualization layer for better performance and control can use physical servers (if a bare metal service is provided known as Metal as a Service or MaaS). Maas is not explicitly part of the NIST definition of cloud computing but shall not be overlooked.

	Platform as a Service (PaaS):

Compute resources in the cloud can be either virtual or physical. Virtual resources are Virtual Machines (VMs) if the virtualization technology is hypervisor-based (e.g. KVM, Xen) or containers in the case of container based technologies (e.g. Linux Containers -LXC, Dockers).

  It consists in combining multiple network resources, capabilities and functionalities into a single unit known as a virtual network. Similarly to how server virtualization virtualizes vCPU and vRAM, network Virtualization provides vNIC, logical switches and routers (for layer 2 and 3 ) and other net-

working functionalities like logical load Balancers and logical Firewalls (from layer 4 to 7). In cloud environments, network virtualization is often combined with resource virtualization to provide users with virtualized platforms. Many technologies have been developed to provide network virtualization. Among the most common technologies, we cite Vlan,VPN, VXlan, Lisp, GRE,TRILL...

Table 3 . 1 :

 31 Table of Notations Available storage in a physical node j LAT k 1 ,kn Latency between physical nodes k 1 and k n P k 1 ,kn Physical path of length n interconnecting physical nodes k 1 and k n The set of routers is represented by R and the set of servers/routers by SR. Using these notations, the set of vertices of the physical or reference graph T is represented as

		Reference graph
	T=(V T ,E T ) Reference graph RG
	V T	Set of physical nodes V T = {S ∪ SR ∪ R}
	E T	Set of physical links
	S	Set of available servers
	R	Set of available routers
	SR	Set of available servers/routers
	CP U j	Available CPU in a physical node j
	M EM j	Available memory in a physical node j
	ST O j	
		Input graph
	P=(V P ,E P ) Input graph IG
	V P	Set of virtual nodes.
	E P	Set of virtual links
	cpu i	The amount of requested CPU by VM i
	mem i	The amount of requested memory by VM i
	sto i	The amount of requested storage by VM i
	lat i,j	Requested latency between node i and j
		Mapping model
	x ik	A boolean variable indicating whether VM i is assigned to phys-
		ical node k
	y ij,k 1 ,kn	A boolean variable indicating whether virtual link (i,j) is
		mapped to physical path between physical nodes k 1 and k n
	z k ij	A boolean variable indicating whether VM i and VM j are
		assigned to physical node k
	l ik	A boolean variable indicating whether VM i must be assigned
		to physical node k
	To derive the exact analytical model for the virtual infrastructure mapping
	problem, we define the input and reference graphs representing the tenant request
	and the physical infrastructure respectively.
	The input graph (or tenant requested virtual infrastructure) is represented by
	P = (V	

P , E P ).

The physical, reference or infrastructure graph defined as T = (V T , E T ) is composed of data center and network nodes and all interconnecting physical links. The nodes considered by the model are simple routers (acting as forwarders), servers (host virtual machines or act as application hosting platforms) and servers/routers (open and programmable nodes that can host networking protocol piles). The set of available servers in the data centers is noted as S.

Table 4 . 1 :

 41 Gaps between exact and heuristic mappings

	X X X X X X X X | RG | | IG | X X 5	50 4.28	200 4.86	300 6.62	400 4.55	500 1.83
	10	8.39	8.88	15.30 11.84 10.34
	15	16.23 12.58 17.94 14.26 15.13
	20	17.92 15.56 18.79 17.45 18.30
	30	17.74 18.49 17.46 16.79 15.69
	40	16.56 16.52 15.88 15.13 14.48
	50	-	14.14 14.02 13.91 13.10
	100	-	8.95	8.55	8.36	8.54
	150	-	6.40	6.35	6.24	6.25
	200	-	-	4.96	4.89	4.86

Table 4 .

 4 

	2: 2-stage & Heuristic gaps, | RG |=200	
	| IG |	5	10	15	20	25	30
	2-stage	9.66 17.62 26.42 37.24 49.21 58.61
	Heuristic-PCMA 4.86 8.88 12.58 15.56 17.28 18.49
	Exact = optimal	0	0	0	0	0	0

  où les noeuds et les liens sont mappés séquentiellement. En plus, nous introduisons dans notre modèle des contraintes de localisation des ressources virtuelles dans l'infrastructure physique. est supérieur à la latence du chemin ou lien physique candidat. La distance mesure le rapprochement entre la ressource virtuelle demandée et la ressource physique. Par la suite, l'algorithme exact sélectionnera le meilleure mapping parmi tous les candidats retenus.

	Ces contraintes permettent de co-localisé les ressources virtuelles de l'utilisateur Avant de décrire les équations et les contraintes de notre algorithme, nous dans le même noeud physique ou dans des neouds différents. Nous permettons décrivons dans la table de notations C.1 la liste des variables et des constantes aussi le placement des ressources à la fois dans les centres de données et dans le réseau d'hébergement. utilisées dans notre modèle.
	Avec les objectifs et les exigences cités ci dessus, le graphe de la requête sera
	composé des noeuds représentant les machines virtuelles et des liens pour les in-
	utilisateurs;
	2. Type 2: routeur, c'est un routeur standard, qui n'héberge pas des machines
	virtuelles, et son rôle unique est l'acheminement du trafic de la source vers
	la destination;
	3. Type 3: serveur/routeur, c'est une ressource hybride qui peut à la fois
	héberger des machines virtuelles et assurer l'acheminement du trafic. Cette
	ressource peut jouer le rôle d'une plate-forme d'hébergement des VMs.
	L'algorithme exact proposé choisira pour chaque lien virtuel le chemin (con-
	caténation des segments ou des liens physiques) qui respecte la latence demandée.
	Pour ce faire, nous introduisons une métrique "distance" permettant la sélection
	du meilleur mapping entre les ressources virtuelles et physiques. Cette distance
	est une mesure binaire permettant d'éliminer la mise en correspondance infaisable

terconnecter. En plus, puisque nous visons à interconnecter des VMs situées dans les centres de données ou dans le réseau d'interconnexion, nous avons décrit dans le graphe de référence 3 types de noeuds physiques: 1. Type 1: serveur, capable d'accueillir des machines virtuelles. Le serveur est caractérisé par ses capacités de calcul, de mémoire et de stockage. Cette ressource peut représenter aussi un Cloud (ou centre de données) où les capacités de calculer, de mémoire et de stockage sont des quotas affectés aux entre les ressources physiques et virtuelles. Sachant qu'un mapping est considéré faisable si et seulement si la capacité demandée pour un noeud virtuel est inférieur à la capacité restante d'un noeud physique candidat et le temps de latence d'un lien virtuel

Table C . 1 :

 C1 Table de Notations Graphe de référence T=(V T ,E T ) Graphe de référence RG V T Ensemble de noeuds physiques V T = {S ∪ SR ∪ R} E T Capacité de calcule disponible dans le noeud physique j M EM j Capacité de mémoire disponible dans le noeud physique j ST O j Capacité de stockage disponible dans le noeud physique j LAT k 1 ,kn Latence entre noeud physique k 1 et k n P k 1 ,kn Le chemin de taille n entre les noeuds physiques k 1 et k n Le modèle proposé sera résolu par la suite en utilisant la technique Branch and Bound. En plus, nous avons proposé des expressions C.1, C.3, C.2 décrivant la satisfactions des demandes en terme de capacité. Ces expressions sont nécessaires pour introduire la notion de distance entre les ressources virtuelles et physiques. La variable cpu i (sto i et mem i ) représente la quantité de CPU demandée (de stockage et de mémoire) par la VM i, tandis que CP U j (ST O j et M EM j ) est la quantité de CPU restante (stockage et mémoire) dans un noeud physique j.

		CP U (i, j) ⇔ (cpu i ≤ CP U j )	(C.1)
		ST O(i, j) ⇔ (sto i ≤ ST O j )	(C.2)
		M EM (i, j) ⇔ (mem i ≤ M EM j )	(C.3)
		Ensemble de liens physiques
	S	Ensemble de serveurs disponibles
	R	Ensemble de routeurs disponibles
	SR	Ensemble de serveurs/routeurs disponibles
	CP U j	
		Graphe de la requête
	P=(V P ,E P ) Graphe de la requête IG
	V P	Ensemble de noeuds virtuels
	E P	Ensemble de liens virtuels
	cpu i	La quantité de CPU demandée par la VM i
	mem i	La quantité de mémoire demandée par la VM i
	sto i	La quantité de stockage demandée par la VM i
	lat i,j	Latence demandée entre les noeuds i et j
		Modèle de Mapping
	x ik	Variable booléenne indiquant si VM i est affectée au noeud
		physique k
	y ij,k 1 ,kn	Variable booléenne indiquant si le lien virtuel (i, j) est mappé
		avec le chemin physique entre les noeuds physiques K 1 et k n
	z k ij	Variable booléenne indiquant si VM i et VM j sont affectées
		au même noeud physique k
	l ik	Variable booléenne indiquant si la VM i doit être mapper sur
		le noeud physique k
	Dans ce qui suit, nous présentons notre modèle mathématique basé sur la pro-

grammation linéaire en nombres entiers. Ce modèle est composé d'une fonction objective et d'un ensemble d'équations et d'inégalités valides décrivant le problème de mapping d'infrastructure virtuelle dans un environnement cloud distribué. Rappelons que la métrique distance mesure la similitude entre la ressource virtuelle demandée et la ressource physique sélectionnée. Cette distance est minimisée dans la fonction objective afin d'obtenir le mapping optimal. Cette distance peut être pondérée par des fonctions génériques (f node (i, k) et f link (ij, k 1 k n ) dans l'équation C.7) qui servent à optimiser le problème par rapport au type d'acteur, de scénario et de cas d'utilisation. Par exemple, l'efficacité énergétique, le coût et le prix des ressources peuvent allimenter ces fonctions pour inclure autant de critères requis selon les besoins dans l'optimisation. Par exemple, un modèle simple de coût basé sur

[START_REF] Chowdhury | Virtual network embedding with coordinated node and link mapping[END_REF] 

et

[START_REF] Yu | Rethinking virtual network embedding: substrate support for path splitting and migration[END_REF] 

peut être utilisé pour minimiser les coûts des fournisseurs d'infrastructure en définissant les fonctions comme suit:

  j) représentent la capacité de noeud et de lien demandée pondérés respectivement par les paramètres α k et β (k l k l+1 ) pour fixer les coûts des noeuds physiques k et des chemins/liens physiques (k l k l+1 ).

	On peut
	utiliser aussi d'autre fonctions (par exemple par type de ressource) de coûts plus
	élaborées.

Pour choisir les noeuds physiques candidats pour héberger les noeuds virtuels, il faut satisfaire les équations suivantes (C.1), (C.2) et (C.3). La sélection est exprimée en utilisant cette distance d: d

  si la VM i est mappé sur k ∈ S ∪ SR;Le premier terme de la fonction objective assure que les ressources demandées sont disponibles sur un noeud physique candidat k. Il assure également que le meilleur noeud sera conservé grâce à l'optimisation globale. Le second terme de la fonction objectif cherche le chemin physique optimal P k 1 ,kn sur lequel le lien virtuel (i, j) sera mappé. Le troisième terme gère toutes les demandes de co-localisation des ressources virtuelles i et j sur le même noeud physique k 1 .

			0, sinon.	(C.8)
	y ij,k 1 ,kn =	   	1, si i est mappé sur k 1 , j est mappé sur k n et ij est mappé sur P k 1 ,kn ;	(C.9)
		  	0, sinon.	

Pour améliorer les performances et pour réduire l'espace de recherche de la solution optimale, nous introduisons dans notre modèle un ensemble d'égalités et inégalités.

1. Contrainte de placement des noeuds:

k∈V T \R x ik = 1, ∀i ∈ V P (C.10)

2. Contrainte de CPU limitée:

  'algorithme exact fonctionne bien pour des petites instances de graphe de requête et de graphe de référence. Par contre, avec l'augmentation de la taille des graphes,

	21)
	C.3 Algorithme de couplage basé sur les pat-
	terns de graphe (PCMA)
	sont:
	1. décomposition des graphes virtuels et physiques en des patterns dont les
	racines représentent chaque noeud du graphe;
	2. calcul des distances de similarité entre les patterns des graphes de la requête
	et des graphes de référence;
	3. création d'un graphe biparti complet en se basant sur la distance calculée
	précédemment suivie par le calcule du couplage maximum de distance min-
	imale sur le graphe biparti afin de déterminer le mapping du graphe virtuel
	sur le graphe physique;
	4. raffinement du mapping afin d'assurer que les noeuds et les liens virtuels
	sont mappés correctement.

Ll'algorithme exact ne passera pas à l'échelle. Il présente des temps de convergence exponentielles, ce qui nous oblige à rechercher des algorithmes heuristiques pour trouver des solutions optimales et proche de l'optimales dans un temps polynomial.

Pour ce faire, notre solution sera basée sur la décomposition des graphes de requête et des graphes de référence en des patrons (Patterns) de graphe. Notre algorithme heuristique est composé de quatre étapes décrites dans l'algorithme 7. Ces étapes Dans les parties suivantes, nous allons décrire en détail les étapes de l'algorithme heuristique proposé.
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• A natural extension and improvement of the exact algorithm is to introduce additional constraints to improve convergence times as this will confine even more the problem convex hull;

• The heuristic algorithm can also be improved by matching roots (of the virtual graph patterns) on many roots (of the physical graph patterns) during b-matching instead of limiting the matching to roots to roots only. This will improve the quality of the solutions and reduce the gap between the heuristic and the exact algorithms;

• The Cloud networking framework, especially the "CNG-Manager " a key contribution in separation of control and forwarding and in network abstraction, should be distributed more formally to address more thoroughly inter domain and network providers interactions and cooperation;

• The CNG-Manager should be extended to work across different network technologies running in the gateways (CNGs or networking functions). The CNGs will simply use different networking technology ports to achieve intertechnology mappings and connectivity according to the involved heterogeneous "network segments" technologies.

• Another natural extension of the work is to produce additional VNFs and the appropriate related drivers;

• last but not least, since this is a much broader and longer term perspective, an orchestration framework on top of the CNG-manager framework is required to automate service provisioning, ensure service chaining and to accelerate the production of applications and services that take advantage of software networks principles and properties. The CNG Manager provides connectivity between resources acquired from distributed cloud providers and hides heterogeneity in networking technologies. The CNG Manager controls and configures virtual gateways called CNGs. The CNG Manager manages a list of OCCI [START_REF]Open Cloud Computing Interface OCCI[END_REF] categories to configure connectivity. Since the CNG Manager is based on the OCCI specification and service model, we have used PyOCNI [START_REF] Medhioub | Python open cloud networking interface[END_REF] as the OCCI server.

The CNG Manager has a northbound interface towards client requesting connectivity and a southbound interface interacting with transport technologies through drivers.

1. The northbound interface is composed of 3 elements responsible for the configuration of gateways and links between these gateways. These elements are OCCI categories (cng, linkcng and intercng). The most important information needed for configuration is: { " resources " : [ { " kind " : " http : // schemas . ogf . org / occi / infrastructure # intercng " , " attributes " : { " occi " : { " intercng " : { " name " : " First Network Configuration Example " , " publicaddrCNGsrc " : " 1 . 1 . 1 . 1 " , " privateaddrCNGsrc " : " 1 9 2 . 1 6 8 . 1 . 1 " , " privateNetToCNGsrc " : " 1 9 2 . 1 6 8 . 1 . 0 / 2 4 " , " ethernameCNGsrc " : " eth 0 " , " providerCNGsrc " : " site 1 " , " publicaddrCNGdst " : " 2 . 2 . 2 . 2 " , " privateaddrCNGdst " : " 1 0 . 1 0 . 1 0 . 1 " , " privateNetToCNGdst " : " 1 0 . 1 0 . 1 0 . 0 / 2 4 " , " ethernameCNGdst " : " eth 0 " , " providerCNGdst " : " site 2 " , " linkType " : " openvpn " , " reusable " : " 1 " , " account " : " userTest " 

C.5 Conclusion

Cette thèse traite les défis du provisionnement des infrastructures virtuelles interconnectées dans des Clouds hybrides et distribués tout en respectant les besoins de: a) la mise en réseau des ressources virtuelles répartis sur plusieurs fournisseurs