
HAL Id: tel-01153260
https://theses.hal.science/tel-01153260

Submitted on 19 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual networked infrastructure provisioning in
distributed cloud environments

Marouen Mechtri

To cite this version:
Marouen Mechtri. Virtual networked infrastructure provisioning in distributed cloud environments.
Networking and Internet Architecture [cs.NI]. Institut National des Télécommunications, 2014. En-
glish. �NNT : 2014TELE0028�. �tel-01153260�

https://theses.hal.science/tel-01153260
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et L’UNIVERSITE PIERRE ET

MARIE CURIE

Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Marouen Mechtri

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Virtual networked infrastructure provisioning in

distributed cloud environments

Soutenue le : 1 Décembre 2014

devant le jury composé de :

Prof. Filip De Turck

Prof. Steven Martin

Bruno Chatras

Prof. Raouf Boutaba

Prof. Maurice Gagnaire

Dr. Stefano Secci

Dr. José Neto

Prof. Djamal Zeghlache

Rapporteur

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinateur

Examinateur

Directeur de thèse

Ghent University, iMinds, Belgium

Université Paris-Sud, France

Orange Labs, France

Université de Waterloo, Canada

Télécom ParisTech, France

UPMC, France

Télécom SudParis, France

Télécom SudParis, France

Thèse no: 2014TELE0028

JOINT THESIS BETWEEN TELECOM SUDPARIS AND UNIVERSITY OF PARIS 6 (UPMC)

Doctoral School : Informatique, Télécommunications et Electronique de Paris

Presented by

Marouen Mechtri

For the degree of

DOCTEUR DE TELECOM SUDPARIS

Virtual networked infrastructure provisioning in

distributed cloud environments

Defense Date : 1 December 2014

Jury Members :

Prof. Filip De Turck

Prof. Steven Martin

Bruno Chatras

Prof. Raouf Boutaba

Prof. Maurice Gagnaire

Dr. Stefano Secci

Dr. José Neto

Prof. Djamal Zeghlache

Evaluator

Evaluator

Evaluator

Examiner

Examiner

Examiner

Examiner

Thesis Advisor

Ghent University, iMinds, Belgium

University Paris-Sud, France

Orange Labs, France

University of Waterloo, Canada

Télécom ParisTech, France

UPMC, France

Télécom SudParis, France

Télécom SudParis, France

Thesis no: 2014TELE0028

Abstract

Cloud computing emerged as a new paradigm for on-demand provisioning of IT

resources and for infrastructure externalization and is rapidly and fundamentally

revolutionizing the way IT is delivered and managed. The resulting incremental

Cloud adoption is fostering to some extent cloud providers cooperation and in-

creasing the needs of tenants and the complexity of their demands. Tenants need

to network their distributed and geographically spread cloud resources and ser-

vices. They also want to easily accomplish their deployments and instantiations

across heterogeneous cloud platforms. Traditional cloud providers focus on com-

pute resources provisioning and offer mostly virtual machines to tenants and cloud

services consumers who actually expect full-fledged (complete) networking of their

virtual and dedicated resources. They not only want to control and manage their

applications but also control connectivity to easily deploy complex network func-

tions and services in their dedicated virtual infrastructures. The needs of users are

thus growing beyond the simple provisioning of virtual machines to the acquisition

of complex, flexible, elastic and intelligent virtual resources and services.

The goal of this thesis is to enable the provisioning and instantiation of this type

of more complex resources while empowering tenants with control and management

capabilities and to enable the convergence of cloud and network services. To reach

these goals, the thesis proposes mapping algorithms for optimized in-data center

and in-network resources hosting according to the tenants’ virtual infrastructures

requests. In parallel to the apparition of cloud services, traditional networks are

being extended and enhanced with software networks relying on the virtualization

of network resources and functions especially through network resources and func-

tions virtualization. Software Defined Networks are especially relevant as they

decouple network control and data forwarding and provide the needed network

programmability and system and network management capabilities.

In such a context, the first part of the thesis proposes optimal (exact) and

heuristic placement algorithms to find the best mapping between the tenants’ re-

quests and the hosting infrastructures while respecting the objectives expressed in

iii

the demands. This includes localization constraints to place some of the virtual

resources and services in the same host and to distribute other resources in dis-

tinct hosts. The proposed algorithms achieve simultaneous node (host) and link

(connection) mappings. A heuristic algorithm is proposed to address the poor

scalability and high complexity of the exact solution(s). The heuristic scales much

better and is several orders of magnitude more efficient in terms of convergence

time towards near optimal and optimal solutions. This is achieved by reducing

complexity of the mapping process using topological patterns to map virtual graph

requests to physical graphs representing respectively the tenants’ requests and the

providers’ physical infrastructures. The proposed approach relies on graph de-

composition into topology patterns and bipartite graphs matching techniques. In

the third part, the thesis proposes an open source Cloud Networking framework

to achieve cloud and network resources provisioning and instantiation in order to

respectively host and activate the tenants’ virtual resources and services. This

framework enables and facilitates dynamic networking of distributed cloud ser-

vices and applications. This solution relies on a Cloud Network Gateway Manager

(CNG-Manager) and gateways to establish dynamic connectivity between cloud

and network resources. The CNG-Manager provides the application networking

control and supports the deployment of the needed underlying network functions

in the tenant desired infrastructure (or slice since the physical infrastructure is

shared by multiple tenants with each tenant receiving a dedicated and isolated

portion/share of the physical resources).

Contents

Abstract ii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Virtual networked infrastructures provisioning 3

1.2 Research Problems and Objectives 6

1.3 Contributions . 7

1.4 Thesis Organization . 8

2 The State of the Art 10

2.1 Introduction . 10

2.2 Cloud Computing: background and challenges 11

2.2.1 Cloud Computing . 11

2.2.1.1 Cloud service models 11

2.2.1.2 Cloud deployment models 12

2.2.2 Virtualization . 13

2.2.3 Challenges . 14

2.3 Cloud and Network provisioning . 15

2.3.1 VM mapping problem . 15

2.3.2 Virtual network mapping problem 17

2.3.3 Virtual networked infrastructure mapping problem 18

2.4 Cloud networking, SDN and NFV 19

2.4.1 Software-Defined Networking 19

2.4.2 Network functions virtualization 23

2.4.3 Cloud Networking . 24

2.5 Conclusions . 26

3 Exact Algorithm 28

3.1 Introduction . 28

3.2 System model . 31

iv

Contents v

3.2.1 Virtual Infrastructure Mapping problem 33

3.3 The exact algorithm . 33

3.4 Performance evaluation . 43

3.5 Conclusions . 44

4 Pattern Centric Matching Algorithm 45

4.1 Introduction . 45

4.2 Pattern Centric Matching Algorithm (PCMA) 46

4.2.1 Graph decomposition . 47

4.2.2 Maximum matching on bipartite graph 49

4.2.3 Description of a distance metric 50

4.2.4 Description of the heuristic approach (PCMA) 53

4.3 Computational complexity . 54

4.4 Performance evaluation . 56

4.4.1 Simulation and Evaluation Conditions and Settings 57

4.4.2 Results . 57

4.4.2.1 Heuristic-PCMA algorithm scalability 58

4.4.2.2 Tenant satisfaction 63

4.5 Conclusions . 68

5 Network Instantiation 69

5.1 Introduction . 69

5.2 Cloud Networking Architecture . 71

5.2.1 CNG: Cloud Networking Gateway 73

5.2.2 CNG Manager . 74

5.2.2.1 CNG Manager Components 74

5.2.2.2 Isolation using CNG Manager 77

5.3 CNG Manager and network deployment 78

5.3.1 CNG Manager for traditional network deployment 78

5.3.2 CNG Manager used for SDN deployment 79

5.4 Experimental results . 79

5.4.1 CNG Manager in a real framework 80

5.4.2 CNG evaluation . 83

5.5 Conclusions . 86

6 Conclusions and Perspectives 87

6.1 Conclusions and discussions . 87

6.2 Future Research Directions . 88

A Thesis Publications 90

B CNG Manager: Installation, Configuration and utilization 92

B.1 Introduction . 92

B.2 Getting the CNG image file . 93

Contents vi

B.3 Installing CNG Manager . 93

B.4 Starting CNG Manager . 93

B.5 Network configuration example . 94

C Résumé en Français 97

C.1 Introduction . 97

C.2 Algorithme exact . 99

C.3 Algorithme de couplage basé sur les patterns de graphe (PCMA) . . 106

C.3.1 Graph decomposition . 107

C.3.2 Maximum matching on bipartite graph 108

C.3.3 Description de la métrique de distance 108

C.3.4 Description de l’approche heuristique (PCMA) 110

C.4 Architecture du Cloud Networking 111

C.4.1 CNG: passerelle générique pour le Cloud Networking 113

C.4.2 CNG Manager: gestionnaire de passerelle 115

C.4.2.1 Les composants de CNG Manager 115

C.4.2.2 Isolation en utilisant le CNG Manager 117

C.4.3 Le deployment réseau via CNG Manager 118

C.5 Conclusion . 118

Bibliography 121

List of Figures

1.1 Virtual networked infrastructure . 4

1.2 Thesis organization . 8

2.1 Cloud layer architecture . 12

2.2 SDN architecture . 21

2.3 NFV architecture . 24

3.1 Input and output of the Exact algorithm 29

3.2 Mapping with separation constraint 41

3.3 Mapping with co-localization constraint 42

3.4 Exact algorithm evaluation . 44

4.1 Input and output of the Heuristic algorithm 45

4.2 Patterns construction . 47

4.3 Construction of the bipartite graph 49

4.4 Bipartite graph matching . 50

4.5 Example of two Patterns with p and k leaves 51

4.6 Time execution comparison between Exact and Heuristic Approaches
when RG is varying . 58

4.7 Time execution comparison between Exact and Heuristic Approaches
when IG is varying . 59

4.8 Time execution comparison between Exact and Heuristic Approaches
for RG size of 100 nodes . 60

4.9 Time execution comparison between Exact and Heuristic Approaches
for RG size of 150 nodes . 61

4.10 Time execution comparison between Exact and Heuristic Approaches
for RG size of 200 nodes . 62

4.11 Heuristic algorithm’s time execution for large-scale instances 62

4.12 2stage mapping versus optimal mapping of virtual networks 63

4.13 Heuristic versus optimal mapping 65

4.14 Impact of node mapping and link mapping on the optimality of the
PCMA heuristic . 67

5.1 CNG Manager architecture . 72

5.2 Interactions between CNG Manager components and Cloud Broker 76

5.3 Isolation between user services . 77

5.4 Connectivity via non SDN/OpenFlow 79

vii

List of Figures viii

5.5 Connectivity via OpenFlow . 80

5.6 Integration of CONETS in the CompatibleOne architecture 82

5.7 Sequential and parallel instantiation delay comparison 84

5.8 Sequential and parallel configuration delay comparison 85

5.9 Sequential and parallel configuration and instantiation delay of Open-
Flow and traditional network . 86

B.1 Network configuration example with CNG-Manager framework . . . 94

C.1 Input and output of the Exact algorithm 99

C.2 Patterns construction . 107

C.3 Construction of the bipartite graph 108

C.4 Bipartite graph matching . 109

C.5 Example of two Patterns with p and k leaves 109

C.6 Architecture du CNG Manager . 114

C.7 Interactions between CNG Manager components and Cloud Broker 116

C.8 Isolation between user services . 118

List of Tables

3.1 Table of Notations . 34

4.1 Gaps between exact and heuristic mappings 66

4.2 2-stage & Heuristic gaps, | RG |=200 67

C.1 Table de Notations . 101

ix

Chapter 1

Introduction

Cloud computing, a paradigm for on-demand provisioning of IT resources and for

infrastructure externalization, is rapidly and fundamentally revolutionizing the

way IT is delivered and managed. Cloud users can today rent resources (e.g.

Virtual Machines or VMs) on a pay-per-use basis and can thus avoid capital and

operational expenses.

Cloud services are progressing and becoming more widely accessible and pop-

ular. Cloud providers are also inclined to cooperate and collaborate for mutual

benefit to offer more complex services involving distributed services across multi-

ple infrastructures and platforms. To achieve this evolution, however, additional

capabilities and features need to be integrated in their current basic cloud services

(essentially compute and storage). Providers at this stage focus mostly on com-

puting resources provisioning and simply offer virtual machines (VMs) as a service

to end users and tenants. The networking of the virtual resources dedicated to the

tenants’ and end users’ applications has received less attention. The networking

of virtual resources is typically left to the applications themselves and this hin-

ders and hampers wider cloud adoption, especially for complex services involving

distributed resources and services across multiple infrastructures and providers.

Even if the cloud community has started to address networking requirements,

existing cloud network models put the priority on intra data center networking and

insufficiently support inter cloud connectivity. Networking for hybrid clouds is not

adequately developed for the purpose and requires innovative improvements to

meet expectations and address current barriers. More efforts are required to solve

for instance the current limitations in IP addresses, minimize latency between

1

Chapter 1. Introduction 2

interacting VMs, provide the required bandwidth and respect resource locality

constraints. In addition to these desired features, users and tenants need to con-

trol connectivity and networking of their dedicated and distributed resources and

applications. They also need to deploy complex network functions and services to

gain in flexibility and agility. Tenants need to deploy, control and manage their

own complex functions (within their dedicated virtual infrastructure or slice) such

as address assignments (DHCP), firewalls and name resolution services (DNS).

This need concerns equally the providers who need to optimize the use of their re-

sources, reduce cost, increase their revenues through efficient partitioning of their

physical infrastructures and ensure isolation in a multi-tenant context.

To overcome these limitations and move to richer, more flexible and agile cloud

services, current cloud resources and services provisioning needs to evolve beyond

the simple allocation of dedicated resources and hosting platforms. This thesis has

identified three key requirements for this evolution that have naturally guided and

motivated the investigations. Providers and tenants both require the availability of

smart placement algorithms that can ease the dynamic selection of infrastructure

resources that will host their dedicated virtual complex resources. The empha-

sis and ambition is the provisioning of dedicated slices to tenants so they can use,

control and manage them freely within the boundaries specified by a service agree-

ment. The existence of a service level agreement is assumed in this thesis and is

out of scope since the goal of the research work is only to provide the means to

set up and dynamically adapt a virtual infrastructure or complex cloud service.

Once resources to host complex cloud services are selected, they need to be

instantiated and activated to build the tenant dedicated, distributed and intercon-

nected resources or equivalently service graph. In addition to making the virtual

resources available, our aim is to provide the tenants with the ability to control and

manage their services and connectivity. To provide users with this missing con-

nectivity control, we believe it is important to combine the cloud architecture with

emerging networking technologies such as Software Defined Networking (SDN) and

Network Function Virtualization (NFV). Both offer the programmability, flexibil-

ity and manageability required to fulfil the ambition of providing elastic and agile

cloud services from shared physical cloud infrastructures involving simultaneously

computing, storage and networking services. SDN and NFV are complementary

and allow automated provisioning along with centralized command and control

Chapter 1. Introduction 3

when used together. This is exactly the vision and approach selected by this the-

sis to contribute to the creation of a cloud networking framework enabling tenants

with ”dynamic networking capabilities” of distributed cloud services.

This thesis focuses consequently on the problem of virtual networked infras-

tructures provisioning over distributed clouds, and specifically aims at providing

the missing mapping, deployment, instantiation and management solutions and

capabilities to tenants and users.

1.1 Virtual networked infrastructures provision-

ing

The problem addressed by the thesis corresponds to the dynamic establishment of

virtual networks to support distributed services and applications according to ten-

ants and user requests. The requests are expressed in the form of service graphs

composed of virtual machines or virtual resources interconnected by a specified

networking topology. Provisioning and deploying such graphs for potentially large-

scale applications with stringent QoS and availability requirements across clouds

is a challenging problem. This context where tenants request the creation of con-

nected and complex sets of compute, storage and network resources over multiple

cloud providers is depicted in Figure 1.1. These complex sets are commonly called

slices in the cloud, networking and future networks communities. The slices as

mentioned earlier should in addition be programmable and allow users or tenants

to control and manage them.

This problem is known as on demand and dynamic provisioning of virtual net-

worked infrastructures and is the main focus of the thesis. Our goal is to achieve

this on-demand provisioning of distributed and networked slices from multiple

cloud and network providers. So far in the current state of the art and available

literature, cloud and network provisioning are considered as separate processes.

We aim at joint provisioning of both types of resources and at achieving simul-

taneous node (servers and networking entities) and link (interconnection links

between nodes) mapping and provisioning. We also contend that combining joint

mapping with the global view provided by software defined networks is an efficient

approach to dynamic provisioning of virtual cloud and network resources from

physical infrastructures.

Chapter 1. Introduction 4

Figure 1.1: Virtual networked infrastructure provisioning over distributed
providers.

To accomplish successful provisioning of virtual networked infrastructures (or

equivalently slices), three key capabilities must be provided:

• Slice mapping: that corresponds to optimal resource mapping and place-

ment to assist the optimal creation of a slice from a shared distributed infras-

tructure from multiple providers while meeting specified QoS requirements.

• Slice instantiation: that occurs once resources are mapped to deploy,

configure and instantiate the selected, and distributed, resources from the

providers.

• Slice control and configuration automation: to enable users to control

and manage their applications and to deploy their network functions.

Chapter 1. Introduction 5

Analyzing the area of infrastructure provisioning from one or multiple providers

in general, and virtual networks embedding or mapping in particular, we have ob-

served that recent studies and approaches map node and link resources separately

starting by servers or nodes and addressing the links in a second stage. This leads

to suboptimal solutions that often do not scale. In addition, the solutions are

either user or provider centric and are not sufficiently general and generic to apply

to any stakeholder that needs to optimize placement, selection and provisioning.

This has motivated the investigations and goals of this doctoral work that ad-

dresses the provisioning of distributed and networked virtual infrastructures sup-

plied by multiple providers of heterogeneous physical infrastructures. The thesis

assumes that physical resources can be shared through scheduling (when physical

resources are reserved and dedicated to a user on a pay per use and on demand

basis for a specified time interval or duration) and through virtualization (of op-

erating systems, servers, networks and even storage). In this context, the thesis

seeks a comprehensive solution and architecture that can:

• provide optimal (exact) mappings (of the requested virtual infrastructure

onto the providers’ infrastructures) and near optimal heuristic solutions that

can scale with the sizes of the virtual and physical infrastructures;

• facilitate the establishment (instantiation) of the virtual infrastructures (slices)

and the automatic integration or addition of network services and functions

to these infrastructures;

• enable programmability, control and management of the selected and de-

ployed virtual infrastructures, an aspect not sufficiently addressed in the

current solutions not to say neglected so far.

This thesis consequently aims at the development of a comprehensive framework

for virtual infrastructures provisioning and establishment augmented by the ability

to deploy additional network services and functions within the infrastructures

through SDN and NFV principles and concepts where the former provides control

and management capabilities and the latter deployment capabilities of virtualized

networking functions.

Chapter 1. Introduction 6

1.2 Research Problems and Objectives

In line with the thesis scope, the thesis focuses on virtual infrastructures (networks)

allocation and instantiation with emphasis on related key challenges:

• How to map virtual resources in a distributed cloud environment

while meeting tenant satisfaction. To address this question we aim

at achieving optimal placement of virtual resources (virtual machines and

networking functions)in the physical infrastructure by selecting the hosts

that lead to minimum cost and meet collectively the desired tenant quality

of service. We seek simultaneous node and link mapping to advance the state

of the art that continues to map nodes first and links in a second stage.

• How to support service requirements expressed by the tenants. The

tenant requirements in terms of localization (co-localization and separation)

and topology (connectivity) of their virtual resources have to be embedded

in the models.

• How to ensure networking between nodes deployed in geographi-

cally distributed data centers. Once the mapping of virtual resources

in the providers provisioned clouds is achieved, means to deploy and instan-

tiate (automatically) the virtual resources and their interconnection links

have to be provided. This aspect requires more attention from the scientific

community.

• How to provide on demand SDN and NFV services for user ap-

plications. Once a virtual infrastructure is assigned and reserved, tenants

need a framework to control, configure and manage their dedicated infras-

tructure (or slice), in virtual nodes and links and their connectivity, as well

as the applications they deploy in their slices.

To address the identified and selected problems, the thesis defined a work plan

and a set of key objectives:

• move optimal (smart) placement, which includes virtual network mapping

or embedding, beyond the current state of the art by taking into account

multiple criteria and constraints often neglected in the past. Achieve joint

Chapter 1. Introduction 7

optimization and avoid treating mapping of nodes and links sequentially. De-

velop exact and heuristic mathematical programming models and optimiza-

tion algorithms sufficiently generic (i.e., useful to and usable by providers,

brokers and tenants), in line with the tenants’ and providers’ requirements

and constraints.

• design and implement a control and management framework based on virtu-

alization, SDN and NFV principles to facilitate deployment, instantiation,

configuration, control and management of tenant dedicated virtual infras-

tructures by the tenants themselves. Focus on networking of virtual re-

sources by designing a generic appliance, that acts as a gateway between

the resources and services providers, and on a control framework to deploy,

configure and manage this appliance. Generalize the framework by focussing

on interfaces to ensure compatibility with current networks and clouds.

1.3 Contributions

We summarize for convenience the contributions (achievements) of the thesis with

respect to originally identified challenges and defined research goals.

The first contribution is a new generic and exact model for resource mapping

in distributed clouds. The algorithm addresses both cloud and network resources,

achieves joint mappings of nodes and links, takes into account localization con-

straints, topology and quality of service requirements specified in the tenants’

requests for virtual infrastructures allocation. The model is an enhanced math-

ematical programming formulation of the virtual network embedding problem.

Performance, complexity and scalability of the model are reported. The model

can serve as a reference and benchmark for heuristic algorithms that will typically

scale better and converge faster to a near optimal solution.

The second contribution addresses scalability of the model with increasing vir-

tual and physical infrastructures (graphs) sizes. It consists of an efficient heuristic

algorithm that scales for large virtual and physical networks when multiple service

providers are involved and the focus is on inter cloud networking. This algorithm

maps also jointly nodes and links and provides close to optimal solutions. The

algorithm uses graph decomposition into topology patterns followed by bipartite

graph matching to solve the mapping problem. Decomposition into Patterns leads

Chapter 1. Introduction 8

to smaller structures and lower algorithmic complexity compared to mapping the

entire original requested and physical graphs.

The third contribution concerns the instantiation of virtual infrastructures.

More specifically, the design and implementation of a virtual network instantia-

tion system that comprises an open source Cloud Networking framework [1] used

to establish the virtual network (or slice) proposed by the mapping algorithms.

The system extends cloud and network services control and management to the

end users so they can dynamically connect and adapt their virtual resources. The

framework relies on gateways (called Cloud Networking Gateways, CNGs) seen as

a virtualized network/switching/flow control function, a fundamental VNF, and

a CNG-Manager acting as a controller to establish dynamic connectivity between

cloud and network resources. The CNG-Manager provides the control of applica-

tion networking and supports the deployment of network functions in the tenant

slices. The CNG-Manager ensures the connectivity in a non-intrusive way that

preserves the network configuration of cloud providers. Using this system, tenants

can easily deploy, configure and control network functions and services as well as

the networking between the application components.

1.4 Thesis Organization

The core chapters of this thesis are structured as shown in Figure 1.2:

Figure 1.2: Thesis organization.

Chapter 2 presents the inter domain resource mapping problem within net-

worked clouds addressed by the thesis. The chapter gives an overview of the

state of the art of the resource mapping problem in Cloud computing and reviews

networking challenges in cloud environments.

Chapter 1. Introduction 9

Chapter 3 introduces a new and generic model for cloud and networking re-

sources mapping in distributed and hybrid cloud environments. The problem is

modeled as a virtual network mapping objective to derive an exact algorithm, for-

mulated as a linear integer program, that achieves optimal and simultaneous node

and link mapping.

Chapter 4 develops a novel heuristic algorithm (named pattern centric mapping

algorithm - PCMA) relying on topology patterns and bipartite matching to reduce

complexity and speed up convergence to near optimal solutions. The heuristic

algorithm improves convergence times by several orders of magnitude and find

very often the optimal solutions provided by the exact algorithm. A comparison

to the exact algorithm and another virtual embedding algorithm is also reported

and completes the analysis and performance evaluation.

Chapter 5 describes the architecture and implementation of our Cloud Net-

working Framework that enables the control of connectivity between distributed

resources and provides the on demand deployment of networking functions. The

networking system comprises a controller, called the CNG Manager, and a virtual

and generic appliance acting as a gateway between user resources. The frame-

work is evaluated through an integration with a cloud broker interacting with

heterogeneous cloud providers.

Chapter 6 summarizes the thesis contributions and presents future research

directions and perspectives.

Chapter 2

The State of the Art

2.1 Introduction

Cloud computing and Cloud networking have recently emerged as promising con-

cepts for on demand virtual servers and networking between applications. These

concepts have been enhanced with new models and algorithms that support provi-

sioning of complex services over distributed infrastructures. In parallel, Software-

Defined Networking (SDN) and Network Functions Virtualization (NFV) are en-

abling network programmability and the automated provisioning of virtual net-

working services. Combining these new paradigms can overcome the limitations of

traditional clouds and networks by enhancing their dynamic networking capabili-

ties. Since these evolutions have motivated this thesis and our investigations, this

chapter on the state of the art will provide an overview of cloud computing ar-

chitectures, services and provisioning challenges and reflect the convergence trend

between cloud computing, software networks and the virtualization of networking

functions.

This chapter provides in the first part an overview of the cloud computing

architecture, services and provisioning challenges. The second part describes dif-

ferent steps of resource provisioning in distributed cloud environments and surveys

some existing models and algorithms of resources mapping. Finally, convergence

between cloud computing and both SDN and NFV is discussed in part three.

10

Chapter 2. The State of the Art 11

2.2 Cloud Computing: background and challenges

2.2.1 Cloud Computing

Cloud computing [2], [3], [4] allows the on demand provisioning of virtual resources

and services from a pool of physical resources or data centers by automating the

processes of service deployment. The Cloud computing has become a cost-effective

model for delivering large-scale services over the Internet in recent years [4]. In

Cloud Computing a set of configurable and shared resources: servers, storage,

networks (to a lesser extent), applications and services, are delivered on-demand

to end-users. This set of resources can be rapidly provisioned and delivered with

minimal management efforts. In existing literature, there are many definitions of

cloud computing [5] [6]. We believe that the definition proposed by the National

Institute of Standards and Technology (NIST) in [7] is the most appropriate as it

covers cloud computing more broadly:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction.”

2.2.1.1 Cloud service models

Cloud computing opens up new business opportunities for service providers and

Cloud users, since they can easily deploy complex services directly into a virtual-

ized and networked infrastructure. As described in [8], a cloud can deliver many

services:

Infrastructure as a Service (IaaS):

This model provides users with infrastructure resources like compute, storage

and network as a fully outsourced on demand service. Users can use the allocated

resources to install, manage and run their own software stack. Compute resources

in the cloud can be either virtual or physical. Virtual resources are Virtual Ma-

chines (VMs) if the virtualization technology is hypervisor-based (e.g. KVM, Xen)

or containers in the case of container based technologies (e.g. Linux Containers -

Chapter 2. The State of the Art 12

LXC, Dockers). Users who want to avoid the virtualization layer for better per-

formance and control can use physical servers (if a bare metal service is provided

known as Metal as a Service or MaaS). Maas is not explicitly part of the NIST

definition of cloud computing but shall not be overlooked.

Platform as a Service (PaaS):

This service provides developers with a software platform to deploy their appli-

cations onto the cloud infrastructure without any specialized administration skills.

PaaS users have the control of their deployed applications but have no control of

the underlying infrastructure that is managed by the service provider.

Software as a Service (SaaS):

This service provides users with access to the applications they require (e.g.

Email). In this case, Cloud providers host applications on their infrastructure

and users can get the application functionality and avoid development cost. The

details of implementation and deployment are abstracted from the user and only

a limited configuration control is provided.

Figure 2.1: Cloud layer architecture.

2.2.1.2 Cloud deployment models

There are four main cloud computing deployment models: public, private, commu-

nity and hybrid Clouds. Public cloud providers offer their services to the general

public (and consumers) and are located outside the users’ premises. Private clouds

are exclusively maintained by the user and offer many of the same features and

benefits of public clouds. In this case, the organizations own the infrastructure and

Chapter 2. The State of the Art 13

have full control over the hardware, network and software components. While Pri-

vate Clouds are owned and managed by a single organization, community clouds

are owned by several private contributors. In this scenario, contributors of a

specific community share a common infrastructure on which they deploy their ser-

vices and collaborate. The last Cloud model, hybrid cloud, combines the benefits

of public, private and community models. This model enables organizations to

provide and manage their resources in-house and externally.

2.2.2 Virtualization

These advantages result from the concept of virtualization, a foundational concept

in cloud computing. Virtualization enables the abstraction of physical resources

such as processors, memory, disk, and network capacity into logical or virtual

resources. Virtualization technologies are simplifying cloud infrastructures and

resource management, improving resource utilization by sharing resources among

multiple users and providing isolation of users and resources. There are several vir-

tualization methods. These methods have different purposes and can be classified

into three types:

Server virtualization:

Server virtualization is the most common method of virtualization. This method

allows consolidating multiple virtual servers into one physical server. Server virtu-

alization could be either hypervisor based or container based. If virtualization is

achieved via hypervisor (e.g. KVM, Xen), each virtual machine (VM) has a sepa-

rate operating system as well as other resources capabilities (e.g. network) and is

displayed to users as a separate physical server. This type of virtualization could

further be classified into three categories: full virtualization, para virtualization

and hardware assisted virtualization. The difference between these categories lies

in how the host and guest operating systems are modified to interact with the hy-

pervisor and to support virtualization. Unlike the hypervisor based virtualization,

the container based ones like Docker and LXC are light-weight. Each physical

server runs one kernel with different isolated containers installed on top of it. The

host operating system is shared between the guest instances.

Storage virtualization:

Chapter 2. The State of the Art 14

The concept of storage virtualization is similar to that of server virtualization

since it abstracts the logical storage from the physical ones. Instead of interacting

directly with a storage device, this type of virtualization enables the access to

logical storage without regard to the physical location of data.

Network virtualization:

Network virtualization allows running isolated logical networks on a shared

physical network. It consists in combining multiple network resources, capabili-

ties and functionalities into a single unit known as a virtual network. Similarly

to how server virtualization virtualizes vCPU and vRAM, network Virtualization

provides vNIC, logical switches and routers (for layer 2 and 3) and other net-

working functionalities like logical load Balancers and logical Firewalls (from layer

4 to 7). In cloud environments, network virtualization is often combined with

resource virtualization to provide users with virtualized platforms. Many tech-

nologies have been developed to provide network virtualization. Among the most

common technologies, we cite Vlan,VPN, VXlan, Lisp, GRE,TRILL...

2.2.3 Challenges

Resource Provisioning and especially virtual infrastructure provisioning is an im-

portant and challenging problem in hybrid and distributed cloud computing envi-

ronments. The provisioning process is based on two steps: resource mapping and

resource instantiation.

Resource mapping determines the best placement to find a projection of virtual

compute and network resources onto physical nodes and physical paths while meet-

ing tenant requirements. As of today resource mapping does not address complex

services requests from users that require distributed virtual resources with specific

connectivity. VM placement has received the majority of the attention from the

scientific community.

Resource instantiation consists in deploying and activating resources on shared

cloud and network infrastructures. Server virtualization is a mature technology

that provides computing resources provisioning and includes also the virtualization

of network interfaces from the operating system point of view. Server virtualiza-

tion, however, does not support virtualization of network components such as

Chapter 2. The State of the Art 15

routers, switches and firewalls. Network virtualization technologies enable multi-

ple logical networks to share the same physical network infrastructure but do not

provide the missing inter cloud networking service to link distributed Cloud re-

sources. These two approaches need to be combined to fill the gap between clouds

and networks.

2.3 Cloud and Network provisioning

In this section, we survey relevant research in the literature related to resources

mapping in cloud and network environments. These studies are classified into

three related topics that depend mainly on the type of service provider request.

The first topic is a simple virtual machine mapping, the second one is a virtual

network mapping and the third topic is an interconnected VMs mapping.

2.3.1 VM mapping problem

Virtual machine mapping or placement in large-scale shared service hosting in-

frastructures has been studied in many contexts in the past. This prior art can be

classified into: (1) VM mapping in single-cloud environments and (2) VM mapping

in multi-cloud environments.

The problem of optimal resource placement in single-cloud environments is NP-

Hard. The placement is the process of selecting an optimal set of nodes to host

a set of services with dynamic demands while respecting the resource constraints.

This combinatorial optimization problem is challenging and the time to solve it

grows exponentially with the size of the problem.

To address this problem while achieving a tradeoff between the convergence

time and the quality of the solutions, various works are proposed in the literature.

Authors in [9] propose an algorithm that aims at maximizing the amount of

satisfied application demand, in order to minimize the number of application starts

and stops, and to balance the load across machines.

Hermenier et al. [10] use an Entropy resource manager for homogeneous clusters

to perform dynamic consolidation. The solution is based on constraint program-

ming while considering the cost of VMs migration. In [11], authors propose an

Chapter 2. The State of the Art 16

approach to optimal virtual machine placement within datacenters for predicable

and time-constrained load peaks. The problem is formulated as a Min-Max opti-

mization and solved using a binary integer programming based algorithm. Other

authors aim at lowering electricity cost in high performance computing clouds that

operate multiple geographically distributed data centers.

Le et al. [12] study the possibility of lowering electricity costs for cloud providers

operating geographically distributed data centers. They propose policies that dy-

namically place and migrate virtual machines across data centers to achieve cost

savings and to profit from differences in electricity prices and temperature.

When performing virtual machines placement over geographically distributed

cloud providers, the decisions of placement are just based on the VM instances

types and prices. The details about resource usage and load distribution are not

exposed to the service provider. Hence, VM placement across multiple clouds is

limited to cost aspects.

Chaisiri et al. [13] propose a stochastic integer programming algorithm to

minimize the resource provisioning cost in a cloud computing environment.

Bossche et al. [14] study the workload outsourcing problem in a multi-cloud

setting with constrained deadlines. Their objective is to maximize the utilization

of the internal data center and to minimize the cost of the outsourcing tasks in

the cloud, while respecting the quality of service constraints.

Wubin et al. [15] investigate dynamic cloud scheduling via migrating VMs

across multiple clouds. They propose a linear integer programming model that uses

different levels of migration overhead when restructuring an existing infrastructure.

Tordsson et al. [16], use a cloud brokering mechanism to optimize VM place-

ment to achieve optimal cost-performance tradeoffs across multiple cloud providers.

Similarly, Vozmediano et al. [17] [18] explore the multi-cloud scenario to deploy a

computing cluster on top of a multi-cloud infrastructure to address loosely-coupled

Many-Task Computing (MTC) applications. The cluster nodes are provisioned

with resources from different clouds to improve the cost-effectiveness of the de-

ployment and provide high-availability.

All the previously described work maps VMs in single or multiple cloud providers

without considering the links between the virtual resources. These models are not

Chapter 2. The State of the Art 17

appropriate for complex services where the relations between the virtual resources

are essential for the service or application performance.

2.3.2 Virtual network mapping problem

The virtual network mapping (VNM) problem, extensively addressed in the litera-

ture, maps virtual nodes (mainly routers) and links on physical substrate networks.

The studies consider single domain (i.e., a network owned by a single infrastruc-

ture provider) and multiple domains (i.e., multiple networks managed by different

infrastructure providers). In the single domain, the infrastructure provider maps

virtual networks using multiple objectives: such as minimizing mapping costs [19],

maximizing acceptance ratios and revenues [20], [21], and improving energy effi-

ciency [22], [23].

The virtual network mapping differ primarily in the proposed algorithms. Min-

lan et al. [24] assume a flexible substrate network to resort to path splitting and

migration to achieve better resource utilization and ease computational complexity

without restricting the problem space. Jens et al. [25] reduce the VNM problem to

detecting a subgraph isomorphism with combined node and link mapping. Since

the problem is NP-Complete, they turn to a parameterized combinatorial algo-

rithm where they restrict the mapping of virtual links to physical paths shorter

than a predefined distance ε. The proposed greedy and enumerative algorithm can

find the optimal solution but suffers from long convergence times. The authors

introduced a bound on the number of mapping steps to stop the algorithm and

accept a suboptimal solution. Mosharaf et al. [26] used a mixed integer formu-

lation for virtual network embedding seen also as subgraph isomorphism. They

used a revenue formulation and some constraints. They presented a relaxation

of the integrity constraints to obtain a linear program supplemented by a round-

ing technique. They show that their algorithm reduces the cost for the substrate

network provider. A transformation of the virtual network is used by Gang et

al. [27] to achieve the mapping. This transformation consists in converting the

virtual network into a tree topology using a greedy algorithm for node mapping.

The authors then use the k-shortest paths method to map virtual links. In the

node mapping process authors use the assumption of mapping nodes to the same

physical server. In these investigations, the nodes are mapped first and the links

only in a second stage, once the nodes are selected.

Chapter 2. The State of the Art 18

In the multiple domain case, provisioning is achieved across multiple domains

and infrastructure providers. Houidi et al. [28] proposed a centralized approach

where the service provider first splits the request using Max-Flow Min-Cut based

on prices offered by different infrastructure providers and then decides where to

place the partitions. Chowdhury et al. [29] use a distributed embedding solution

called PolyVine. In PolyVine, the virtual network request is sent to a single Infras-

tructure Provider (InP) that tries to allocate as many resources as possible from

within before forwarding the unserved requests (unassigned nodes and links) to a

neighboring provider. The process continues recursively until the entire request is

embedded.

2.3.3 Virtual networked infrastructure mapping problem

Recent and relevant research on the virtual networked infrastructure mapping

problem, use different representations of the user cloud request and different tech-

niques and algorithms to achieve the mapping. In some representations, the user

cloud request is seen as a Virtual Data Center (VDC) or as a virtual graph com-

posed by interconnected VMs. The proposed mapping techniques described in the

literature are based primarily on node mapping followed afterwards by link map-

ping. In some cases, the approach is to partition the requests into subsequently

mapped smaller requests.

Jielong et al. [30] consider the problem of mapping Virtual Infrastructure (VMs

correlated with their backups) to a physical data center infrastructure graph at

minimum cost subject to resource and bandwidth requirements and constraints.

They divide the problem into VM placement and Virtual Link Mapping. They

address VM placement using a heuristic algorithm and use a linear program to

deal with link mapping.

Ahmed et al. [31] propose a virtual data center embedding algorithm across

a distributed infrastructure. They divide the request into partitions and try to

embed each partition into a single data center. This solution, that does not map

nodes and links jointly, is based on two independent stages (request partitioning

and partition embedding) without any corrective action if the second stage fails.

The authors limit the algorithm performance evaluation to small reference graphs

(4 data centers and 14 network nodes). The work proposed in [31] is similar to

Chapter 2. The State of the Art 19

[32]. Their algorithm also splits a request into partitions using minimum k-cut

before assigning these partitions to different data centers.

Md Golam et al. [33] present a heuristic algorithm to solve the problem of

virtual data center embedding using three phases. The first phase maps the VMs,

the second the virtual switches and third maps finally the virtual links. The

algorithm tries to map topology requests on one physical server. If any of the three

phases fails, they increase the number of physical servers by adding one adjacent

server and try the mapping process again. Because of the number of iteration they

use, this approach does not scale with graph size. In addition their embedding

algorithm can be used only with two types of network topologies requests (star

and VL2 topologies).

Khan-Toan et al. [34] propose three virtual graph mapping algorithms. The

proposed algorithms, for three different input graph topologies (tree, path and

star), minimize a cost function in polynomial time. They build their algorithms on

the assumption that network resources are unlimited. This unrealistic assumption

reduces considerably the virtual graph mapping problem complexity since there

can be many possible solutions. In hybrid clouds where distributed resources need

to be interconnected, the amount of available resources is definitely finite.

2.4 Cloud networking, SDN and NFV

This section reviews two key emerging concepts Software-Defined Networking

(SDN) and Network Functions Virtualization (NFV)that are reshaping networks

and traditional networking. Both paradigms bring into network architectures key

properties and capabilities that have been missing so far. These are programma-

bility and virtualization of networks along with their simplified control and man-

agement. SDN and NFV introduce agility in the systems and ease convergence

with clouds and cloud services that are already agile and elastic.

2.4.1 Software-Defined Networking

SDN is an emerging network architecture where network control is decoupled from

forwarding and is directly programmable [35]. This new approach is considered

Chapter 2. The State of the Art 20

as one of the most promising architecture to realize network virtualization and

enhance management and the control of networks. SDN provides a number of key

and long awaiting features [36]:

• Externalization and separation of the control plane from the data plane;

• Centralized controller and network view;

• Open interfaces between the devices in the control plane (controllers) and

those in the data plane;

• Programmability of the network by external applications.

The Open Networking Foundation (ONF), a leader in SDN standardization,

provides a relevant definition for SDN that we use as a basis:

“Software-Defined Networking (SDN) is an emerging architecture that is dy-

namic, manageable, cost-effective, and adaptable, making it ideal for the high-

bandwidth, dynamic nature of today’s applications. This architecture decouples

the network control and forwarding functions enabling the network control to be-

come directly programmable and the underlying infrastructure to be abstracted for

applications and network services”˙

Irrespective of the obvious bias in the ONF statement: “The OpenFlow protocol

is a foundational element for building SDN solutions” , we recognize the seminal

and fundamental aspect of OpenFlow but do not consider the framework as the

only possible one as described in the sequel.

The main goal of SDN is to move network functionalities from hardware into

software by conceiving configurable interfaces. Thanks to this approach, SDN

facilitates the implementation of network virtualization and increases the pro-

grammability of the hardware. This programmability is provided, for example by

protocols like OpenFlow acting as a standard communications interface between

the control and forwarding layers of an SDN architecture [37]. OpenFlow and re-

lated specifications are handled by ONF. The OpenFlow protocol is implemented

on both sides of the interface between network devices and the SDN control soft-

ware. OpenFlow allows direct access to and manipulation of the forwarding plane

of network devices, such as switches and routers. OpenFlow uses the concept of

Chapter 2. The State of the Art 21

Figure 2.2: SDN architecture.

flows to identify network traffic based on pre-defined matching rules that can be

statically or dynamically programmed by the SDN control software.

As described in [37], an OpenFlow switch must have three components: (1)

a flow table, (2) a secure channel and (3) OpenFlow protocol messages. In the

version 1.0 of OpenFlow [38], the entries of the flow table contain: the header field,

the flow action field and the flow counter field. A flow is defined by any combination

of the header subfields from layer 1 to layer 4 along with possible wildcard fields.

The basic actions supported by the OpenFlow protocol are: forward to port,

forward to controller and drop packet [37]. The third entry of the flow table (flow

counters) is responsible for maintaining the statistic and the counters for each

table, each port, each flow or each queue.

One very important aspect within the SDN architecture is the controller that

keeps the (logically) centralized state of the network. There are many OpenFlow

controller frameworks available as of today such as NOX [39], Maestro [40], Flood-

light [41], POX [42], Beacon [43], Ryu [44], OpenDaylight [45]. These frameworks

provide low-level control over switch flow tables and are typically imperative and

object-oriented. Nettle [46] is also a network controller, but differs from the above

Chapter 2. The State of the Art 22

systems by allowing the low-level control programs to be written in a domain

specific language based on functional reactive programming (FRP) and embedded

in a functional programming language. Onix [47] provides abstractions for par-

titioning and distributing network state onto multiple distributed controllers and

by the same token addresses the scalability and fault-tolerance issues that arise

when using a centralized controller. SNAC [48] provides high-level patterns for

specifying access control policies as well as a graphical monitoring tool. SNAC is

not, however, a general programming environment. Procera [49] proposes a con-

trol architecture for software-defined networking (SDN) that includes a declarative

policy language based on FRP; it uses a policy layer to express high-level network

policies in a variety of network settings. The policy layer acts as a supervisor

reacting to signals about relevant network events and out-of-band signals from

users, administrators, and other sensors such as intrusion detection devices. The

policy layer interacts with programmable switches via controllers. Frenetic [50]

is a network programming language built on NOX with two sub-languages: (1)

a declarative network query language, and (2) a functional and reactive network

policy management library based also on FRP.

Network virtualization with OpenFlow can be achieved by using an OpenFlow

hypervisor such as FlowVisor [51]. FlowVisor is a Java-based controller that en-

ables multiple OpenFlow controllers to share the same network resources. FlowVi-

sor delegates the control of subsets of network resources and/or traffic, called slice,

to other Network Operators or Users.

FlowVisor virtualizes a network between user controllers and slice resources:

• Bandwidth: giving a fraction of bandwidth to each slice

• Topology: each slice should have its own view of network nodes

• Device CPU: computational resources of switches and routers must be sliced

• Forwarding Tables: isolate forwarding entries between slices

FlowVisor acts as a transparent intermediate (layer) between user controllers

and network elements. From the perspective of a user controller, it has full own-

ership over the network slice it has been allocated. From the perspective of Open-

Flow switches, the FlowVisor acts as the unique controller. Thanks to FlowVisor,

Chapter 2. The State of the Art 23

the user controllers are effectively abstracted from the network elements and vice

versa.

2.4.2 Network functions virtualization

In classical network equipment, network functions are implemented as combina-

tions of vendor specific hardware and software. In evolution to the traditional

networks, Network Functions Virtualization (NFV) introduces a new approach to

network service provisioning in telecommunications networks. The main goal of

NFV is to decouple the software, and especially the network functions, from the

hardware.

NFV transforms the way network operators architect networks by evolving stan-

dard IT virtualization technology. NFV virtualizes network functions using Virtual

Network Functions (VNFs) that provide exactly the same functional behaviour and

interfaces like the equivalent Network Function (NF) they refelect or implement.

NFV in essence consolidates in its framework functions such as: network address

translation (NAT), firewall, intrusion detection, domain name service (DNS), etc.

onto industry standard high volume servers, switches and storage, which could

be located in data centers, Network Nodes and in end user premises [52]. NFV

will allow network functions to be provided as software residing on commodity

hardware.

NFV aims also at increasing the flexibility when launching new network services

and reducing the cost of operating these services. In essence, NFV offers a new

way to design, deploy and manage networking services.

To define the requirements and architecture for the virtualization of network

functions, several network operators created in November 2012 an ETSI Indus-

try Specification Group for NFV [53]. One of the documents produced by ETSI

describes the high-level functional architectural framework of virtualized network

functions and of the supporting infrastructure [54]. This document describes the

three main components identified in the NFV framework:

• Virtualized Network Function (VNF): An implementation of a net-

work function that can be deployed on a Network Function Virtualization

Infrastructure (NFVI) [55].

Chapter 2. The State of the Art 24

Figure 2.3: NFV architecture (based on [54]).

• Network Function Virtualization Infrastructure (NFVI): NFVI is

the pool of resources that VNFs can exploit. NFVI includes compute, net-

work and storage resources that are virtualized.

• NFV Management and Orchestration: Focuses on management tasks

and covers the orchestration and life-cycle management of physical and/or

software resources that support the infrastructure virtualization, and the

life-cycle management of VNFs [55].

A recently launched new project called Open Platform for NFV (OPNFV) [56]

focuses on accelerating the evolution of NFV by providing an open source platform

for deploying NFV solutions.

2.4.3 Cloud Networking

Network virtualization is essential for the success of cloud computing since it

enables the coexistence of multiple virtual networks on the same physical infras-

tructure (data centers and physical servers). The emergence of cloud computing

Chapter 2. The State of the Art 25

and network virtualization is naturally leading to cloud networking that will ex-

tend network virtualization beyond the data center towards distributed clouds

(distributed in terms of domains and geographical locations).

Cloud networking provides features that include communication between vir-

tual machines, configuration of private and public IP addresses and mechanisms

for connecting user to cloud services by setting up the required ports and firewalls.

One of the most popular cloud component or service dedicated to networking

is Neutron [57]. This OpenStack Networking service is a stand alone component

supports extensible and differentiated network applications and services over a vir-

tualized cloud infrastructures. Neutron provides mechanisms enabling the use of

different network technologies. These mechanisms use drivers to support multiple

and heterogeneous network technologies (e.g. VLAN, GRE, VxLAN [58]...). Neu-

tron also provides APIs that help tenants with the establsihment (or setting up) of

networking policies. Neutron supports adding and integrating new plug-ins that

introduce advanced networking capabilities. Some of the commonly used plugins

are Open vSwitch [59], Linux bridge, Mellanox, Cisco UCS/Nexus, OpenDaylight

and VMware.

For network abstraction, neutron defines four types of resources:

• Network: isolated layer-2 broadcast domain.

• Subnet: pool of IP addresses associated with a network.

• Port: virtual switch port on a network. The virtual interface of the VM

(VIF) is connected to the network through the port.

• Router: connects networks.

Neutron also supports monitoring of network protocols using Netflow, sFlow

and SPAN/RSPAN. Other cloud management software such as OpenNebula [60]

and VMware also use various drivers such as Open vSwitch to create the virtual

networks.

Networking of distributed resources in clouds is crucial to provide communica-

tion between user services. The control of connectivity is accordingly important.

OpenNebula [60] and OpenStack Neutron [57] proposed recently an appliance

Chapter 2. The State of the Art 26

that provides networking services to handle networking in their cloud managers.

OpenNebula and OpenStack Neutron refer to these appliances as Virtual Router

appliance [61] and Provider Router [62] respectively. These solutions handle con-

nectivity between virtual machines deployed in the same data center.

In [63] Perera et al. propose a cloud services gateway enabling users to expose

their private services, residing inside a firewall, to outside clients but focus only

on the hybrid cloud architecture. Meridian [64] proposes an SDN-based controller

framework for cloud networking. Raghavendra et al. [65] propose the same for

Cloud network management. These two approaches focus only on providing cloud

networking between resources managed by a single cloud provider.

Despite these contributions, efficient solutions for inter-cloud networking are

still lacking. A number of proposals have been put forward to address intra and

inter networking problems for data centers [66], [67], [68], [69] but have not re-

ported any explicit solutions for cloud networking at this stage.

VICTOR [70] proposes an architecture for Virtual Machines’ mobility using

OpenFlow. The work relies on a set of distributed forwarding elements connecting

virtual machines and users. Their network architecture is fixed and pre-configured,

does not address nor provides on demand provisioning of network nodes between

distributed data centers.

Amazon Virtual Private Cloud (VPC) [71] enables users to access Amazon

Elastic Compute Cloud (Amazon EC2[72]) resources over an IPsec tunnel. This

solution allows the use of hybrid Clouds. Wood et al. [73] propose CloudNet, a

cloud platform architecture which utilizes virtual private networks to securely and

seamlessly link cloud and enterprise sites. This solution tries to meet requirements

of an enterprise connected to cloud computing environments using VPCs.

2.5 Conclusions

In recent years, the convergence between networking and IT is becoming a key

trend in information and the communications technology landscape. This trend

has been enhanced by the virtualization of IT infrastructures through cloud tech-

nologies, the evolution of network services through Network Functions Virtualiza-

tion (NFV) and the decoupling of network control and data planes proposed by

Chapter 2. The State of the Art 27

SDN. All these new concepts and technologies have been introduced in this chap-

ter that also describes the resource mapping problem to lay the background and

foundation for the thesis work. The next chapters describe the thesis contributions

in terms of resource mapping mathematical models and optimization algorithms

and regarding a cloud networking framework for network services instantiation.

Chapter 3

Exact Algorithm

This chapter presents an exact analytical graph-based model for resources mapping

in distributed cloud environment. In this approach, we aim to provide an opti-

mal resource mapping and placement that assist the optimal creation of a virtual

infrastructure from a shared distributed infrastructure from multiple providers.

3.1 Introduction

As cloud computing and network virtualization paradigms become more accessible

and popular, a natural and expected evolution is to extend the concepts of service,

platform and infrastructure as a service to the on demand provisioning of cloud

networking services to support connectivity between virtual machines, resources

and services beyond what is currently possible in clouds.

This is especially relevant and needed in private and hybrid clouds involving

a single or multiple providers. Private clouds involving multiple sites and centers

need to federate and slice their resources to make better use of their infrastructures,

share them and deploy (possibly isolate) their applications across slices. A slice

is defined as a virtual infrastructure with compute, communications and storage

resources. A resource is defined as a concrete resource such as real world resources

including virtual machines, networks, services, etc.

In hybrid clouds, resources are acquired from both private and public clouds

and need to be combined (connected) into a dedicated infrastructure to support

an information system from a private enterprise or public body for instance. The

28

Chapter 3. Exact Algorithm 29

same needs arises in cloud federations where cloud services from the members are

used to compose the desired (tenant or consumer) service. With the advent of

software networks and network function virtualization in addition to system vir-

tualization, it is possible and foreseeable that slices are composed on demand and

dynamically. Achieving such a goal requires advances at all levels in the cloud

and network stack, starting from a dynamic SLA negotiation all the way down to

the deployment, instantiation and management of service instances. This chapter

contributes to one of the steps in this global process, namely, optimal resource

mapping and placement to assist the optimal creation of a slice from a shared

distributed infrastructure from multiple providers. All other steps are assumed as

covered by the rest of the process, and our contribution in this chapter focuses

only on the design of algorithms adequate for the dynamic creation of virtual

infrastructures (or slices) in distributed clouds. We hence make the assumption

that the physical infrastructure can be specified and used as input to the proposed

algorithms. This can be done in a federation for instance via a service repository

where all providers announce their available services and quotas for all the mem-

bers. Further, we assume that the substrate graphs has been annotated with all

the key performance requirements and attributes of each node and link. These

assumptions are realistic and justified as this is exactly how current (distributed)

clouds are composed.

Figure 3.1: Input and output of the Exact algorithm.

Figure 3.1 depicts the scope of the study and illustrates the input and out-

puts of the proposed optimization algorithms (2 data centers, 1 network provider

and 2 public providers for the example). The reference graph is the visible set of

resources from private and public clouds to the Exact algorithm. In the private

realms the local resources and networks can be to some extent accessed, inspected,

Chapter 3. Exact Algorithm 30

manipulated and managed. The public clouds on the contrary provide a service

and the underlying physical and concrete resources are hidden. The resources are

represented in this second case by a service node with attributes and provided

functions and are seen as a container or a hosting platform containing the service

with associated agreement and quality of service. The reference graph therefore

consists of all the visible resources to the algorithm and this is determined by

the combination and concatenation of all the resources revealed or disclosed (pub-

lished) by the providers.

For the hybrid cloud context, the size of the problem in nodes (servers) and

links will be in the order of thousands as the typical private data centers sizes in

number of servers are much smaller than the sizes of public clouds. In addition,

one has to realize that the input graph to the algorithm is composed of only

valid candidate resources since resources not likely to meet the request can be

eliminated prior to building the request (input) graph. The input request can be

from a single tenant or composite for multiple tenants. All the requests, in an

allocation round, can be lumped into one unique input graph with relationships

(links with weights reflecting scheduling constraints and incompatibilities) between

subgraphs. In conclusion, we always have the same problem to solve, only the

size of the input graph varies, and we are hence faced with the same system

and mathematical model and this holds for a single provider, a broker and a

federation with multiple providers. This emphasizes the importance of solving the

resource mapping problem in the most generic way while enabling specialization

on a scenario and case by case basis. These observations have motivated our work,

and guided our derivation of the mathematical model and the design of optimal

and efficient algorithm.

As depicted in Figure 3.1, the model (algorithm) maps an input graph composed

of nodes and links to the reference infrastructure (composed of available providers’

resources). The model uses a generic objective function that combines multiple

criteria and a notion of distance that measures the closeness between the requested

and selected resources. Compared to [74], [75], [76] that do not consider latency,

our algorithms embed end to end latency between VMs and map nodes and links

jointly in contrast to previous work [25], [26], [77], [24], [78] and [79] mapping

nodes and links sequentially. Multiple criteria can be added to our models via

a configurable function acting as a weight to steer the optimization depending

on priorities and objectives. Another original contribution is our introduction of

Chapter 3. Exact Algorithm 31

localization constraints on the optimal placement of virtual resources so they can

be co-located in the same physical host or assigned to different hosts. Further, we

allow both in data center and in-network hosting by considering network nodes

that can offer compute and storage resources in addition to switching and routing

functions.

This chapter starts with an introduction of the system model used in the design

of the exact mapping algorithm. Then, a number of constraints represented in the

form of valid equalities and inequalities are introduced to formulate our integer

linear program model in section 3.3. This model support three types of service

location by introducing a set of constraints that assist cloud tenant to specify nodes

location or nodes localization and separation. Section 4.4 reports the results of

performance for the exact algorithm for different scenario of node localization.

3.2 System model

For the virtual infrastructure mapping problem depicted in Figure 3.1, the objec-

tive is to map an undirected graph, expressed by tenants to connect their resources,

referred as the input graph, to the providers’ physical infrastructures, described

by one or more physical or substrate graphs.

This problem is close to the well known subgraph isomorphism problem de-

scribed in [80] that aims at finding an optimal mapping between nodes and edges

of two given graphs G1 and G2 with the number of vertices of G1 smaller than the

number of vertices of G2. The subgraph isomorphism problem NP-Completeness

was shown a while ago by [81]. The difference with the subgraph isomorphism is

the mapping of links to the best substrate paths (those with minimum latency for

instance) as opposed to subgraph isomorphism that maps to one unique link in

the reference graph. This makes our problem combinatorially more complex than

the subgraph isomorphism.

With the stated objectives and requirements, the modeling starts by considering

requests as graphs composed of nodes (or vertices) representing VMs and links

(or edges) reflecting the traffic flow (interaction, connectivity requirements) needs

between the VMs. The edges are virtual links characterized by the latency they

incur on data flows. The requested graph is the virtual graph for which a match

and a mapping must be found in the larger infrastructure graph or physical graph.

Chapter 3. Exact Algorithm 32

Since we are aiming at connecting distributed VMs (or virtual resources) located

in distributed data centers via transport networks embedding in-network services,

we also specify and define these resources. Recall that we assume the availabil-

ity of open and programmable routers and servers capable of hosting cloud and

networking services next to more conventional routers and switches that act as

simple forwarders. Each vertex of this physical graph thus represents one of the

three considered types of nodes in our investigation:

1. Type 1: a server, whose main purpose is to host VMs. The server is

characterized by its compute and memory capacities;

2. Type 2: a router, this is a standard router, that does not host VMs, and

whose unique role is to partake in routing traffic from source to destination.

Virtual nodes (or edges) can not be deployed on this type of resource;

3. Type 3: a server/router, a hybrid resource that can host VMs and route

traffic and hence can even host software defined routing and switching stacks.

This resource can operate as a simple software hosting platform and as a

software defined router running in the resource hardware.

Note type 1 nodes (server nodes) can be used as a cloud (or data center) abstrac-

tion of compute, memory and storage quotas made available or assigned to tenants

in hybrid cloud contexts where there is no visibility on some of the resources. As

shown in Figure 3.1, a tenant requests a mapping of a service composed of 4

interconnected VMs. Based on the available capacity in the physical infrastruc-

ture, each node of the tenant requested graph will be mapped on a server or a

server/router by our algorithms. In the case where we do not have control of (or

visibility on) the data centers (e.g. Public Cloud), our algorithm will optimize the

mapping based on quotas made available to the tenants. In Figure 3.1, one node is

mapped on Cloud Provider 2. For each virtual link, our algorithms will choose the

path (concatenation of segments or physical links) respecting the tenant (latency)

requirements. We consequently introduce a distance metric between the virtual

nodes and links and the physical nodes and physical paths (since virtual links are

a concatenation of physical links forming a physical path supporting the virtual

link). This metric that drives the selection of resources is now formally defined.

The distance is a binary metric that eliminates infeasible mappings between vir-

tual and physical resources. A mapping is considered feasible if and only if the

Chapter 3. Exact Algorithm 33

requested capacity for a virtual node is less than the remaining capacity of a can-

didate physical node and the latency of a virtual link is greater than the latency

of a candidate physical path or link. The distance metric measures the closeness

between the requested virtual resource and the physical resource. The algorithms

will then select the best mapping among all the candidates.

3.2.1 Virtual Infrastructure Mapping problem

Before we describe the exact algorithm in section 3.3, we provide background

definitions used in our model and list the variables and constants in Table 3.1.

Recall that the exact algorithm consists in defining constraints in the form of

valid inequalities that describe partially the convex hull of the incidence vectors

of the solution to speed up the optimization.

Definition 3.1. A graph G = (VG, EG) is a set of vertices VG and an edge set

E ⊆ VG×VG where each edge links pairs of nodes (u, v). In our work, we consider

only undirected graphs, and all extensions to the directed graphs are not in the

paper scope.

Definition 3.2. of the Virtual Infrastructure Mapping problem

The problem consists in mapping an input graph G = (VG, EG) to a reference

graph H = (VH , EH) in nodes and links (in vertices and edges). The objective is

hence to look for a injective function I : VG → VH that maps each node in VG to

a node in VH , and that matches edges in EG to edges in EH(or paths in our case).

That is ∀(u, v) ∈ EG, (u, v) will be matched to (I(u), I(v)).

3.3 The exact algorithm

In the following we present a mathematical programming approach based on a

linear integer programming. We address a Branch and Bound algorithm describing

a set of valid inequalities of the Virtual Infrastructure Mapping problem cited

above. We give the objective function to optimize under linear constraints. Some

of these constraints are obtained according to practical applications in cloud data

centers resource allocation.

Chapter 3. Exact Algorithm 34

Table 3.1: Table of Notations

Reference graph

T=(VT ,ET) Reference graph RG
VT Set of physical nodes VT = {S ∪ SR ∪R}
ET Set of physical links
S Set of available servers
R Set of available routers
SR Set of available servers/routers
CPUj Available CPU in a physical node j
MEMj Available memory in a physical node j
STOj Available storage in a physical node j
LATk1,kn Latency between physical nodes k1 and kn
Pk1,kn Physical path of length n interconnecting physical nodes k1 and

kn
Input graph

P=(VP ,EP) Input graph IG
VP Set of virtual nodes.
EP Set of virtual links
cpui The amount of requested CPU by VM i
memi The amount of requested memory by VM i
stoi The amount of requested storage by VM i
lati,j Requested latency between node i and j

Mapping model

xik A boolean variable indicating whether VM i is assigned to phys-
ical node k

yij,k1,kn A boolean variable indicating whether virtual link (i,j) is
mapped to physical path between physical nodes k1 and kn

zkij A boolean variable indicating whether VM i and VM j are
assigned to physical node k

lik A boolean variable indicating whether VM i must be assigned
to physical node k

To derive the exact analytical model for the virtual infrastructure mapping

problem, we define the input and reference graphs representing the tenant request

and the physical infrastructure respectively.

The input graph (or tenant requested virtual infrastructure) is represented by

P = (VP , EP).

The physical, reference or infrastructure graph defined as T = (VT , ET) is com-

posed of data center and network nodes and all interconnecting physical links. The

nodes considered by the model are simple routers (acting as forwarders), servers

(host virtual machines or act as application hosting platforms) and servers/routers

(open and programmable nodes that can host networking protocol piles). The set

Chapter 3. Exact Algorithm 35

of available servers in the data centers is noted as S. The set of routers is repre-

sented by R and the set of servers/routers by SR. Using these notations, the set of

vertices of the physical or reference graph T is represented as VT = {S ∪SR∪R}.

To derive the exact algorithms, a number of equivalent expressions between

maximum (capacity) and remaining (available or free) compute, storage and com-

munications resources are used and are summarized in a set of equations relating

virtual node i and physical node j. These equivalences are needed to introduce a

notion of distance between demand (requested virtual resources or CPU, storage

and memory) and offer (selected physical resources) corresponding to input graph

and reference graph resources.

CPU(i, j)⇔ (cpui ≤ CPUj) (3.1)

STO(i, j)⇔ (stoi ≤ STOj) (3.2)

MEM(i, j)⇔ (memi ≤ MEMj) (3.3)

In this set, cpui (stoi and memi) is the amount of requested CPU (storage and

memory) by VM i while CPUj (STOj and MEMj) is the available (free) CPU

(storage and memory) in a physical node j.

To assess the quality of the mapping of virtual resources to physical resources,

we introduce the notion of distance for each realized mapping of a virtual node to

a physical node of type 1 (servers) and 3 (servers/routers). Recall that type 2 are

simple routers that do not provide resources. This distance metric, defined earlier

in section 3.2, measures the closeness or similarity between the requested virtual

resource and the selected physical resource. The objective functions minimize this

distance criterion to achieve the optimal match. This distance can be weighted

by node and link depend functions (see fnode(i, k) and flink(ij, k1kn) in equation

3.7) whose attributes depend on the goals of the involved actors, scenarios and

use cases. Energy efficiency, cost, price of resources and SLA extracted attributes

can populate this function to include as many required criteria as needed in the

optimization. For example a simple cost model based on [26] and [24] can be used

to minimize the infrastructure provider costs by setting the functions as follows:

fnode(i, k) = αk ×Nodecap(i)

Chapter 3. Exact Algorithm 36

flink(ij, k1kn) =
∑n

l=1 β(klkl+1) × Linkcap(i, j)

where Nodecap(i) and Linkcap(i, j) denote the requested node and link capacity

weighted respectively by parameters αk and β(klkl+1) to tune the costs of physical

node k and physical path/link (klkl+1). More elaborate (e.g. per resource type)

cost functions can be used.

Candidate nodes for selection are all the nodes that meet the mapping con-

ditions of equations (3.1), (3.2) and (3.3). This is expressed using the mapping

distance:

d(i, k) =


1, if CPU(i, k) &

STO(i, k)&

MEM(i, k);

0, otherwise.

(3.4)

where i ∈ VP and k ∈ VT \R. This distance will remove all unfeasible nodes.

We also consider two additional mapping distances to handle link mapping

between the requested virtual links and the physical paths selected to support

these virtual links.

The mapping distances have to be minimized to find the closest and optimal

matches. Note that a physical path is composed of multiple (connected) physical

links. This can reduce to one physical link when a one to one mapping between

the virtual link and the selected physical link meets the goal. When the virtual

resources (or machines) are co-located or on the same node, this link is internal to

a node of type S or SR. Hence, we allow the virtual link to collapse to a physical

node in our expressions of the introduced distances.

These distances measure how close a physical path is from the originally re-

quested virtual link. The request necessarily specifies the source and destination

nodes. These nodes can sometimes be on the same node or in the same cluster.

The cluster case requires the establishment of a VLAN. These two distances are

respectively given by d1 and d2:

Chapter 3. Exact Algorithm 37

d1(ij, Pk1,kn) =



1, if CPU(i, k1) and CPU(j, kn) &

STO(i, k1) and STO(j, kn)&

MEM(i, k1) and MEM(j, kn)&

latij ≥ LATk1,kn ;

0, otherwise.

(3.5)

d2(ij, k1) =

{
1, if cpui + cpuj ≤ CPUk1 ;

0, otherwise.
(3.6)

where i, j ∈ VP and k1, kn ∈ VT \ R. Pk1,kn represents a path of length n with

k1 and kn as the endpoints.

Distance d1 covers the interconnection between two separate nodes k1 and kn

when the virtual resources have to reside on different nodes if imposed by the ten-

ant. When no constraints on the co-localization or separation of virtual resources

is expressed by the tenants, no constraints are put on nodes k1 and kn. In fact the

input graph must be parsed for all the requirements concerning virtual resources

and application constraints in order to configure the overall objective function.

The goal is to maximize the tenants’ satisfaction when mapping their requests.

The satisfaction is measured as the percentage of virtual resources in the requests

that are mapped to the physical resources while respecting the tenants’ expressed

requirements. The objective is to be as close as possible to 100% proper map-

ping. Consequently, the algorithm will choose a mapping between virtual links

and physical paths that will connect a virtual resource i hosted by a physical node

k1 to another virtual resource j hosted by a physical node kn while maximizing

the number of successful mappings (this is equivalent to minimizing the distance

metric as defined earlier).

Distance d2 handles requests for co-localization of the virtual resources i and

j on the very same node (or cluster). Distance d2 is used to verify that required

resources by virtual resource i and j are available on node kq. We set in our

expressions subscript q to 1 with no loss of generality to stress that the source

node is also the destination node for such requests, i.e. k1.

Using these three distances d, d1 and d2, we can express our objective function

to find the closest match in nodes and links simultaneously for the input graph in

the physical graph.

Chapter 3. Exact Algorithm 38

minZ = min[
∑
i∈VP

∑
k∈VT \R

fnode(i, k)× d(i, k)× xik+

∑
(ij)∈EP

∑
k1∈VT \R
k1 6=kn

∑
kn∈VT \R

flink(ij, k1kn)× d1(ij, Pk1,kn)× yij,k1,kn+

∑
(ij)∈EP

∑
k1∈VT \R

flink(ij, k1k1)× d2(ij, k1)× yij,k1,k1]

(3.7)

where the used bivalent variables are defined as follows:

xik =

{
1, if the VM i is mapped to k ∈ S ∪ SR;

0, otherwise.
(3.8)

yij,k1,kn =


1, if i is mapped to k1, j is mapped to kn

and ij is mapped to Pk1,kn ;

0, otherwise.

(3.9)

The first term in the objective function makes sure that the needed resources are

available on a candidate physical node k so it can be selected. It also ensures that

the best node or optimal node will be retained thanks to the overall optimization.

The second term in the objective function finds the optimal physical path Pk1,kn

to support the virtual link (i, j). The third term handles all the requests for

co-localization of the virtual resources i and j on the same node k1.

In order to enhance performance and reduce the search space for the optimal

graph, we introduce a number of equalities and inequalities for the virtual infras-

tructure mapping problem. These linear constraints will speed up convergence to

some extent for the exact approach.

1. Node mapping constraint: One typical constraint or requirement is

to map one virtual node on one physical node. This can be imposed by

the tenant or the application that can not or need not be distributed. When

such a constraint applies, each virtual node is mapped to exactly one physical

node of type 1 or 3. This is expressed by:

Chapter 3. Exact Algorithm 39

∑
k∈VT \R

xik = 1,∀i ∈ VP (3.10)

2. CPU capacity constraint: The total amount of requested compute re-

sources can not exceed the maximum available compute power (remaining

or free CPU) of the physical node. Or equivalently, each physical node of

type 1 or 3 can not host more than a maximum number of virtual machines

depending on remaining resources on the physical node. This leads to the

following inequality:

∑
i∈VP

cpui × xik ≤ CPUk,∀k ∈ VT \R (3.11)

where cpui is the CPU requested by VM i, and CPUk is the available CPU

in physical node k.

3. Memory capacity constraint: As in (3.11), physical nodes are limited in

memory and storage capabilities in terms of maximum possible capacity and

remaining or free memory or storage space. This provides an additional set of

constraints in the memory and storage dimensions. The memory constraints

is expressed as:

∑
i∈VP

memi × xik ≤MEMk,∀k ∈ VT \R (3.12)

where memi is the memory requested by VM i, and MEMk is the available

memory in physical node k.

4. Limited storage constraint: Each physical node (of type 1 and 3) has

a limited amount of storage space available to share across all the resource

requests. This allows it to host only a limited number of virtual nodes (VMs).

∑
i∈VP

stoi × xik ≤ STOk,∀k ∈ VT \R (3.13)

where stoi is the requested storage by VM i, and STOk is the available

storage in physical node k.

Chapter 3. Exact Algorithm 40

5. Link mapping constraint: Usually and most commonly virtual links will

be mapped to one physical path composed of concatenated networking seg-

ments (or physical links). Hence, each virtual link (i, j) will be mapped to

exactly one physical path Pk1,kn where k1 and kn are the virtual link end

points. As usual physical nodes k1 and kn hosting the end to end applica-

tions can only be of type 1 or 3. Intermediate nodes can of course be simple

routers of type 2 along the physical path.

∑
k1∈VT \R

∑
kn∈VT \R

yij,k1,kn = 1,∀(ij) ∈ EP (3.14)

6. Node and link mapping constraint (source type or 1): When a virtual

node i is mapped to a physical node k1 of type 1 or 3, each virtual link (i, j)

has to be mapped to a physical path with k1 as one of its endpoint or

extremity (source). The other endpoint is a kn.

∑
kn∈VT \R

yij,k1,kn = xik1 ,∀(ij) ∈ EP ,∀k1 ∈ VT \R (3.15)

7. Node and link mapping constraint (destination type or 2): Similarly

to (3.15), if a virtual node j is mapped to a physical node kn of type 1 or 3,

then each virtual link (i, j) has to be mapped to a physical path having kn

as one of its endpoints (destination).

∑
k1∈VT \R

yij,k1,kn = xjkn ,∀(ij) ∈ EP ,∀kn ∈ VT \R (3.16)

8. Latency constraint: If a virtual link (i, j) is mapped to a physical path

Pk1,kn , the cumulated latency on this path can not exceed the required one

on link (i, j).

LATk1,kn × yij,k1,kn ≤ lati,j,∀(ij) ∈ EP ,∀k1, kn ∈ VT \R, k1 6= kn (3.17)

9. Node location constraint: This constraint supports the scenario where

virtual resources have to be mapped onto particular locations (set of physical

nodes) in order to minimize the delay between end users and the location

of the virtual resources for example or simply due to tenant requirements or

Chapter 3. Exact Algorithm 41

application constraints. The set of pairs (i, k) of virtual nodes i that must

be mapped onto physical nodes k of type 1 and 3 are listed in Loc. This

constraint is also useful in case of performance degradation of a subset of

nodes that composes tenant graph/request. It keeps the placement of nodes

which are not affected by this degradation, so we can initiate the optimization

by launching our algorithm to find new placement for the affected nodes.

lik ≤ xik,∀i ∈ Loc, ∀k ∈ VT \R (3.18)

10. Node separation constraint: This constraint corresponds to situations

where virtual resources (virtual machines) have to be separated and mapped

onto distinct nodes for security reasons for example or simply due to tenant

requirements or application constraints. This is indicated as a subset Sep

of virtual resources (i, j) that must be mapped onto different physical nodes

k of type 1 and 3. In this case virtual resources from the pair (i, j) will be

mapped into nodes k1 and kn with k1 6= kn.

xik + xjk ≤ 1,∀i, j ∈ Sep, ∀k ∈ VT \R (3.19)

Figure 3.2: Example of a request mapping with node separation constraints
of all virtual nodes.

Chapter 3. Exact Algorithm 42

Figure 3.2 depicts a mapping with separation requirements of all virtual

nodes into distinct physical nodes of type 1 and 3.

11. Co-localization constraint: This is the opposite requirement of the pre-

vious one when tenants and applications impose for their dedicated virtual

resources to be co-located on the same physical node. The set of services

that must be co-located on the same node k is noted J . This can also occur

due to operating system requirements for the application components or if

high performance computing with very high speed interconnects or commu-

nications are required. This translates mathematically into setting xik = 1

and xjk = 1 jointly and simultaneously in the objective function. To avoid

quadratic formulations of the type (xikxjk = 1) due to this joint setting, we

introduce also a new variable:

∑
k∈VT \R

zkij = 1,∀i, j ∈ J (3.20)

xik + xjk = 2zkij, ∀i, j ∈ J,∀k ∈ VT \R (3.21)

Figure 3.3: Example of a request mapping with the constraint of deploying
nodes 1, 2, 3 on the same physical node.

Chapter 3. Exact Algorithm 43

Figure 3.3 illustrates a mapping request for 5 virtual nodes and 5 virtual links

(each with their specified latency requirement) and a co-localization constraint to

host virtual nodes 1, 2, 3 on the same physical node.

3.4 Performance evaluation

The linear programming solver CPLEX [82] was used to assess performance of the

exact solution.

The performance assessment would not be complete without the evaluation of

the influence of separation and co-localization constraints (expressed in equation

3.19 and equations 3.20) and (3.21 respectively) on the performance of the Branch

and Bound algorithm. For this purpose simulations with RG graphs with 50 and

100 physical nodes for an IG of 20 virtual nodes were used to collect the results

depicted in Figure 3.4. The performance results in Figure 3.4 correspond to the

cases of: default mapping (no constraints on the mapping process), node sepa-

ration constraint (node pairs that must reside or be hosted by different physical

nodes), and co-location constraint (virtual node pairs to be hosted by the same

physical node). The average number of node pairs that must be separated or co-

located is set to 7 in multiple independent runs, with 100 runs averaged for each

reported point.

For small graph instances the Branch and Bound algorithm exhibits similar per-

formance irrespective of the constraints. For large graphs, however, more impor-

tant differences appear with “mapping with node separation constraints” standing

out as an easier VNM problem to solve. With node separation constraint the

space of feasible solutions is the smallest as more subspaces are removed from the

VNM problem polytope. For 150 nodes in the RG, solutions with node separation

constraints are found in 1300 sec while it takes 2900 seconds to find the optimal

solution with no mapping constraints. When some virtual nodes have to be hosted

by the same physical node, co-location constraint case, finding the optimal solu-

tions requires 3500 sec on the average. When nodes have to be co-located, link

mapping becomes harder to achieve between these co-located clusters and other

nodes or clusters while satisfying all latency requirements.

Chapter 3. Exact Algorithm 44

50 100 150
0

1,000

2,000

3,000

Size RG

C
on

ve
rg

en
ce

T
im

e
(s

ec
on

d
)

Mapping with node separation constraints (IG=20)
Mapping with co-localization constraints (IG=20)
Default mapping (IG=20)

Figure 3.4: Branch and Bound algorithm’s time execution with and without
separation and co-localizations’ constraints.

3.5 Conclusions

In this chapter, an integer linear program (ILP) model have been proposed to solve

the problem of virtual infrastructure mapping in distributed cloud environments.

The model introduces new localization constraints on the optimal placement of vir-

tual resources so resources can be co-located in the same physical host or assigned

to different hosts or assigned to a specific hosts. In addition, the exact model is

generic enough to optimize the mapping for infrastructure providers or for service

providers thanks to the use of a generic objective function that combines multiple

criteria and a notion of distance metric.

The proposed model performs well for small and medium-sized problem in-

stances but the formulated ILP is still NP-hard. Therefore, we propose in the

next chapter a new efficient and scalable heuristic algorithm based on topology

patterns and bipartite matching to solve the virtual infrastructure mapping prob-

lem.

Chapter 4

Pattern Centric Matching

Algorithm

4.1 Introduction

The previous chapter introduced an exact mathematical formulation to the virtual

networked infrastructure mapping problem. This solution is optimal and performs

well for small and medium-sized problem instances but exhibits exponential con-

vergence times for large-scale instances. To address larger scale problems and

manage the plethora of requirements in networks and clouds, a heuristic solution

is needed to find optimal and near optimal solutions in polynomial time.

Figure 4.1: Input and output of the Heuristic algorithm.

In this chapter, we present a heuristic approach, based on topology patterns

and bipartite matching, to optimally create slices over multiple providers while

45

Chapter 4. Pattern Centric Matching Algorithm 46

meeting the specified QoS requirements. The presented solution achieves simulta-

neous mapping of nodes and links, provides close to optimal solutions and reduce

mapping delays. To show the effectiveness of our heuristic, we benchmark it with

the exact algorithm and with other approaches. Simulations were conducted and

results indicate our proposed heuristic is close to optimal and improves the per-

formance by several orders of magnitudes.

The remainder of the chapter is organized as follows. The next section presents

in details our Pattern Centric Matching Algorithm (PCMA). The complexity of

our solution is analyzed in section 4.3, followed by an evaluation and analysis of

the obtained experimental results in Section 4.4. The chapter is concluded with

Section 4.5 providing a summary of results and contributions.

4.2 Pattern Centric Matching Algorithm (PCMA)

The exact algorithm performs well for small input and reference graph instances

and as usual, similarly to NP-Hard subgraph isomorphism problems, exact al-

gorithms will not scale with increasing graph sizes. They exhibit exponential

convergence times and this compels us to search for heuristic algorithms that find

optimal and near optimal solutions in polynomial time. To avoid the large conver-

gence times and to scale as much as possible with graph sizes and handle graphs of

hundreds to thousands of nodes, we resort to decomposition of the input and ref-

erence graphs into Patterns and apply bipartite matching to the produced graph

patterns.

The principle is to transform the original graphs in a form where each node is

considered as a root to build a tree from this root specifying all its connections

to other nodes. These trees are used to achieve the desired matching and the

search for the optimal solutions (the hosting nodes and their links: (k1, kn)) for

all pairs (i, j) in the request graph. Instead of searching in the initial graphs as

is, the match is exerted on the patterns that form the derived trees for the input

and reference graphs. This requires building the Patterns before launching the

optimization that will again rely on distance metrics to ensure closest match at

minimum end to end latency. The heuristic algorithm can be summarized into four

steps visible in Algorithm 4 acting as the main routine calling the intermediate

steps handled by Algorithms 1 to 3:

Chapter 4. Pattern Centric Matching Algorithm 47

1. decomposition of the virtual and physical graphs into topology patterns

whose roots represent each node of the original graph and links reflect the

relationships of these roots with other pattern nodes (see Figure 4.2);

2. computation of a similarity distance across all virtual and physical pattern

graphs;

3. creation of a complete bipartite graph based on the computed distance fol-

lowed by mapping of the virtual graph onto the physical graph according to

the minimum distance;

4. refinement of the mapping making sure virtual nodes and links are mapped

correctly.

Since the original graphs have to be decomposed into Patterns, we start the

description of our heuristic algorithm, named pattern centric matching algorithm

(PCMA), with the needed background on graph decomposition, patterns and on

bipartite graphs (used to conduct the matching).

4.2.1 Graph decomposition

Definition 4.1. A Pattern is considered as an undirected graphGPattern = (VPattern, EPattern)

where VPattern is a set of nodes and EPattern is the set of edges.

Figure 4.2: Example of a graph decomposition to 4 patterns.

Chapter 4. Pattern Centric Matching Algorithm 48

Figure 4.2 depicts a Pattern as a one level tree represented by a node acting

as root and all other nodes connected to this node forming branches representing

the edges in the initial graph involving the root and the nodes to which the root

has a connection.

Figure 4.2 depicts a decomposition of a graph composed of 4 nodes into 4

Patterns. At each step of this decomposition, each node from the original graph

is selected as a root to construct the Pattern for this node using all its neighbors

(nodes to which the root node has a connection).

Node 2, for example, has {1, 3, 4} as neighbors. The Pattern is constructed by

adding the edges {(2, 1), (2, 3), (2, 4)} to this root in the tree representation. This

is repeated for all 4 original graph nodes to build the complete decomposition.

A detailed decomposition algorithm of a graph G = (VG, EG) with an adjacency

matrix A = (aij) , i, j = 1, . . . , |VG| is given by algorithm 1 and is summarized

below:

Algorithm 1 Graph Decomposition (graph G = (VG, EG))

Input: graph G = (VG, EG).
Output: graph G decomposed into Patterns.

1: for i = 1→ |VG| do
2: Pattern[i] = {}
3: end for
4: for i = 1→ |VG| do
5: for j = 1→ |VG| do
6: if aij 6= 0 then
7: Pattern[i] = Pattern[i] ∪ {i, j}
8: end if
9: end for

10: end for

The complexity of this decomposition is O(|VG|2). We use this decomposition

algorithm and a bipartite graph approach to build our PCMA algorithm that will

match input graph patterns to patterns in the physical infrastructure or graph.

This decomposition into Patterns leads to smaller structures and lower algorithmic

complexity compared to matching the entire original graph. The matching is

conducted in our approach on bipartite graphs to find candidate patterns and

select the optimal.

Chapter 4. Pattern Centric Matching Algorithm 49

4.2.2 Maximum matching on bipartite graph

In bipartite graphs a matching is a set of pairwise disjoint edges. Details on

matching theory and on the most popular algorithms can be found in [83].

Definition 4.2. A bipartite graph G = (U ∪W,EG) is a graph in which the set

of vertices is the union of two disjoint sets U and W . Each edge in the bipartite

graph is a link between vertices u ∈ U and w ∈ W .

The first step in the construction of the bipartite graph is to derive the IG

patterns that will compose the first set U and the RG patterns to form the second

set W . The second step interconnects each IG pattern in U with all the RG

patterns in W (see figure 4.3). Note that each edge of the bipartite graph is

weighted by a distance (equation 4.1) that is described later and used to meet

capacity requirements in the original IG request.

Figure 4.3: Construction of the bipartite graph.

The PCMA algorithm is a maximum bipartite matching for the graph G =

(U ∪W,EG) formally defined in Algorithm 2:

Figure 4.4 depicts the result of the maximum bipartite matching algorithm

which consists in finding a subset of edges connecting each pattern of the input

graph (IG) with a single pattern of the reference graph (RG).

Chapter 4. Pattern Centric Matching Algorithm 50

Algorithm 2 Max Matching Bipartite Graph (bipartite graph G = (U ∪W,EG))

Input: bipartite graph G = (U ∪W,EG) where U = IG patterns and W = RG
patterns.
Output: the optimal matching between IG and RG patterns.

1: M = {e}, such that e ∈ EG is the edge with the minimum weight. e is directed
from U to W ;

2: Redirect all edges e ∈M from W to U with a weight −we

3: Redirect all edges e′ not belonging to M , from U to W , with a weight +we;
4: Let UM = {u ∈ U \M}; and WM = {u ∈ W \M}
5: Find an existing shortest path P from UM to WM ;
6: Put M ′ = M∆P (M∆P = (M ∪ P) \ (M ∩ P)), and repeat steps 2, 3 and 4;
7: M ′ is the optimal matching.

Figure 4.4: Bipartite graph matching.

4.2.3 Description of a distance metric

To finalize our heuristic algorithm (PCMA), we introduce a distance metric to

assess similarity or closeness of two Patterns with one associated to the input

graph (virtual graph) and the other with the reference graph (physical graph).

We assume that the number of pendent vertices (leaves or nodes attached to

the roots in the Pattern representations) in the input graph (IG) is lower than the

number in the reference graph (RG). The leaves are in fact nodes connected to

the root nodes resulting from the Pattern decompositions. A natural assumption

Chapter 4. Pattern Centric Matching Algorithm 51

is that a router that does not host virtual nodes can not represent a Pattern root

node.

We measure the distance between two Patterns (Pattern1 and Pattern2) by

computing the distance between the roots of these Patterns dist nodes(nr, vr) and

adding a distance measure between their branches dist branches(branches(Pattern1),

branches (Pattern2)). This overall distance is expressed in equation (4.1). Note

that a branch is considered as a composition of two nodes and one edge (see figure

4.5).

Distance(Pattern1, Pattern2) = dist nodes(nr, vr)+

dist branches(branches(Pattern1), branches(Pattern2))
(4.1)

If all the tenant required CPU, storage and memory are satisfied then dist nodes(nr, vr)

is equal to 0 or to 1 otherwise. The distance between branches of two Patterns

(figure 4.5) dist branches(branches(Pattern1),branches(Pattern2)) is introduced

to emphasize the cost of joint mapping of nodes and links. This distance between

branches is the distance between all the edges of the two Patterns. It is set to 0

in algorithm 3 if the latency requirement requested in Pattern1 (in IG) is met by

Pattern2 (selection in RG). This is added to the distance between leaves to obtain

the overall cost or distance from optimal (or required graph with minimum weight

and maximum match in required resources).

Figure 4.5: Example of two Patterns with p and k leaves.

Chapter 4. Pattern Centric Matching Algorithm 52

Algorithm 3 distance2Patterns (Pattern IG, Pattern RG)

Input: IG pattern, RG pattern.
Output: mapping cost of IG Pattern into RG Pattern.

1: if size(Pattern RG) < size(Pattern IG) then
2: Distance = INFINITE
3: else
4: if nr ∈ R then # check if nr is router or not
5: Distance = INFINITE
6: else
7: Distance = dist nodes(nr, vr) + dist branches(branches(Pattern RG),

branches(Pattern IG))
8: end if
9: end if

10: dist nodes(s, t)=


0, CPU(s,t)&

MEM(s,t)&
STO(s,t);

1, otherwise.

11: dist edges(e, e′)=

{
0, latency(e) < latency(e′);
1, otherwise.

12: distance branches(branches(Pattern IG),branches(Pattern RG))
13: for f = 1→ p do
14: for h = 1→ k do
15: dist branches matrix[f, h] = dist nodes(nf , vh) + dist edges(bf , eh)
16: end for
17: end for
18: Determine the mapping of all leaves of Pattern IG on Pattern RG leaves

according to minimum distance given by dist branches matrix;
19: Return cost of mapping;

The next step consists in constructing a complete weighted bipartite graph

G = (U ∪W,EG) in which U represents the Patterns of the input graph (IG) and

W is the set of Patterns of the reference graph (RG). For each edge from U to W

we associate a weight corresponding to the distance of mapping a Pattern in U to

a Pattern in W .

Computing a maximum matching with minimum weight on the bipartite graph

G will return a minimum distance representing the mapping cost of IG Patterns

into RG Patterns. Algorithm 3 summarizes the steps needed to compute the

distance metric between two Patterns. We use the same notations as in equations

(3.1), (3.2) and (3.3) to check compliance of nodes to the CPU, storage and memory

requirements.

Chapter 4. Pattern Centric Matching Algorithm 53

4.2.4 Description of the heuristic approach (PCMA)

The heuristic algorithm proposed in this chapter uses all the described above

notions as subroutines to finally realize simultaneous mapping of nodes and links.

The heuristic algorithm first decomposes the input graph (IG) and the reference

graph (RG) to Patterns as described in Algorithm 1 and then constructs the

distance matrix dist matrix between the derived Patterns in step one.

From the distance matrix, the heuristic algorithm constructs in a third step a

complete weighted bipartite graph G = (U ∪W,EG) as indicated in Algorithm 4.

The set of vertices U is composed by the Patterns of IG while W is the set of Pat-

terns of RG. The existing edge between each vertex of U and W is weighted by the

mapping cost taken from the previously constructed distance matrix dist matrix.

The next step consists in extracting all the minimum weight maximum match-

ings on the constructed bipartite graph to collect all the matched Patterns (po-

tential candidates to fulfil the IG request) using Algorithm 2.

Note that the results of matching the IG on the RG correspond to the matching

of the IG Patterns on the RG patterns produced by the bipartite graph matching.

At this stage, only root nodes of all IG Patterns are mapped exactly on the root

nodes of the Patterns of RG. In order to meet the objective of simultaneous node

and link mapping, we verify if these mappings of roots on roots comply also with

the latency requirements. If the target latency is not met, we check all virtual

nodes labeled with root and leaves in the following order:

1. mapping as a root with leaves: first by searching and finding a shortest

path between the IG root (for which latency compliance could not be con-

firmed after the root to root mapping in the bipartite graph step involving

IG and RG) and a leaf in the RG Patterns in the reference graph;

2. mapping as a leaf with roots: second by computing a shortest path

between this root taken as a leaf in the other Patterns with the other roots

and keeping only the first root that satisfies the latency requirements;

3. mapping as a leaf with leaves: last, by finding also a shortest path

between the leaf representation of this root in other Patterns and all other

leaves since steps 1 and 2 failed.

Chapter 4. Pattern Centric Matching Algorithm 54

Algorithm 4 summarizes and provides details on the key steps used by the

heuristic approach to map nodes and links onto the physical graph or infrastruc-

ture.

Algorithm 4 Pattern Centric Mapping Algorithm

1: list Patterns IG = Graph Decomposition (IG)
2: list Patterns RG = Graph Decomposition (RG)
3: for i = 1→ size(list Patterns IG) do
4: for j = 1→ size(list Patterns RG) do
5: dist matrix[i, j] = distance2Patterns(list Patterns IG[i],list Patterns RG[j])
6: end for
7: end for
8: Construct the complete weighted bipartite graph G based on the dist matrix

9: // Get the maximum matching of the weighted bipartite graph
10: Max Matching Bipartite Graph (G);

4.3 Computational complexity

To assess the ability of the heuristic algorithm to find exact solutions for the virtual

infrastructure mapping problem with large-scale graph instances in reasonable

(practical) times, this section analyzes the complexity of the algorithm. A number

of known characteristics of the VNM problem are added for completeness.

Theorem 4.3. The described VNM problem is NP-Hard.

The VNM problem considered in our work bears some specificities as it consists

of mapping a virtual network (nodes and undirected links) onto a physical network

or infrastructure. The modifications compared to the classical VNM are:

1. Many virtual nodes can be mapped to exactly one physical node;

2. Different types of physical nodes are considered: servers, routers and server-

s/routers, but virtual nodes can only be mapped to physical nodes of type

servers and servers/routers.

3. All links in the input and reference graphs are weighted to reflect latency

requirements.

Chapter 4. Pattern Centric Matching Algorithm 55

4. Capacity is always capped by maximum available resource and currently

available resources in each node (in CPU, memory, storage)and available

link bandwidth;

5. A virtual link can also be mapped to a server and/or a router/server when

co-location constraints or data centers or clusters are involved (the notion of

resource abstraction is of course assumed in these cases).

These modifications increase complexity compared to the classical VNM prob-

lem that is known to be NP-Hard in its original form in for example [81].

If we relax all our introduced modifications (from 1 to 5), the problem corre-

sponds to an instance of the subgraph isomorphism problem where one maps all

virtual nodes and links to a physical graph. This problem is known to be NP-

Hard [84], [81]. Our problem is thus a generalization of this problem and hence

we deduce also NP-Hardness for our VNM addressed or specific problem.

As shown in subsection 3.3, mathematical programming based on Branch and

Bound techniques can be used to derive exact solutions for the VNM problem.

These solutions provide bounds on graph sizes that can be managed at reasonable

and practical convergence times by exact methods and serve as a benchmark for

alternate or approximate solutions. In our case, we have proposed a heuristic

algorithm that can perform near optimal, compared to the exact algorithm for

small and medium size graphs, in considerably faster times. As shown in the

performance and results sections, the heuristic algorithm can also handle large

graph sizes with converge times feasible for operational conditions.

To assess the complexity of the heuristic algorithm we define n as the number

of virtual nodes and m as the number of physical nodes (capable of hosting virtual

machines) with n ≤ m. This evaluation is based on the maximum match with

minimum weight (cost or latency).

The heuristic algorithm consists of three main or key steps:

1. Decomposition: This step consists in decomposing both the input and

target graphs into Patterns. The time complexity of this step is O(n2 +m2).

Each node has to be treated as a root to derive the Patterns, leading to the

n2 and m2 costs.

Chapter 4. Pattern Centric Matching Algorithm 56

2. Distance computation: This step is more complex and requires computing

the distance between all Patterns of the input and reference graphs. This

leads to O(n×m) time complexity to consider all combinations or couples.

Matching these two sets with a maximum bipartite matching algorithm is

achievable in O(n × m). This leads to a total complexity of O(n2 × m2)

which can be equivalent to O(m4) in the worst case. We repeat these steps

for a minimum number of IG and RG Patterns to map. One may have to

deal with m Patterns in the worst case, however. This leads to a complexity

that will not exceed O(m5) time complexity.

3. Node and Link mapping: This step maps nodes and links simultaneously

once all other steps are finalized. This mapping is based on a maximum

matching algorithm on a bipartite graph weighted by the distance computa-

tions. It is executed in O(m2 + n2) in the worst case. It is hence negligible

compared to the rest of the complexity.

In summary, the average computational complexity of the proposed heuristic

algorithm for finding solutions to the VNM problem is O(m5) in the worst case.

4.4 Performance evaluation

The linear programming solver CPLEX [82] was used to assess performance of the

exact solution. For NP-Hard problems, we expect the exact algorithm (limitations

of the Branch and Bound method) not to scale with problem size or with input

and reference graph sizes. The objective of the performance evaluation is hence

to identify the limits beyond which the exact algorithm convergence time becomes

unfeasible for operational networks or systems. This evaluation also aims at com-

paring the heuristic algorithm solutions with the optimal ones found by the exact

algorithm in convergence time, scalability and optimality.

As the heuristic algorithm will not always find the optimal mapping, the evalu-

ation provides an estimate of the percentage of times the heuristic algorithm finds

the optimal solutions. The results will show that the heuristic algorithm converges

much faster with a three to four orders of magnitude improvement with a high

percentage of concordance with the optimal solutions provided by the exact algo-

rithm. In addition, the heuristic algorithm handles large graph sizes for which the

exact method can not find solutions in acceptable time.

Chapter 4. Pattern Centric Matching Algorithm 57

In the results that are reported throughout this performance evaluation section,

we will use Input Graph (IG) and Reference Graph (RG) instead of “Virtual

graph” and “Target or Physical graph or Infrastructure” respectively.

4.4.1 Simulation and Evaluation Conditions and Settings

The algorithms were evaluated using a 2.53 GHz Quad Core server with 24 GBytes

of available RAM. The GT-ITM tool [85] was used to generate the input and

reference graphs. These graphs are partial mesh with an average connectivity of

0.5 or 50%. The number of generations of these graphs was set to 100 in the

GT-ITM tool resulting in 100 independent runs for each simulated point in all the

reported results or performance curves. All the reported results have a confidence

interval of 95% that is not reported in the figures because it would be too small

to visualize and will blur the legends on each curve.

In the simulations and evaluations, only compute resources (CPU) were used

for simplicity in virtual and physical nodes without any loss of generality. In

order to span arbitrarily the entire optimization space, random resource requests

and physical resources topologies were used to avoid any statistical bias and make

all input and reference graph settings arbitrary and equiprobable. Random CPU

capacity requests between 1 and 5 units were generated for each virtual node and

random latency requirements between 1 and 100 time units were drawn for each

virtual link. The hosting capacity of the physical nodes and the physical links

latencies were was also generated randomly between 1 and 10 CPU units and 1

and 50 delay units respectively. For all the scenarios, 100 independent runs were

averaged to produce each performance point. In addition, with no impact on

complexity and no loss in generality, fnode(i, k) and flink(ij, k1kn) are both fixed to

1 for the exact algorithm (whose distance metric eliminates infeasible candidate)

and to 0 for the heuristic-PCMA algorithm (since it minimizes distance between

patterns).

4.4.2 Results

Through extensive experiments, we first evaluate the effectiveness of our algo-

rithms in terms of scalability and convergence time with large instances of input

Chapter 4. Pattern Centric Matching Algorithm 58

60 80 100 120 140 160 180 200
101

102

103

104

105

106

Size RG

C
on

ve
rg

en
ce

T
im

e
(m

il
li
se

co
n
d
s)

Heuristic-PCMA (IG=15)
Exact Algorithm (IG=15)

Figure 4.6: Time execution comparison between Exact and Heuristic Ap-
proaches when RG is varying

and reference graphs. In this evaluation we compare our Exact and heuristic-

PCMA algorithms with another approach based on the two stage VNM algorithm

[24]. Then, we study the optimality of our heuristic-PCMA in terms of tenant

satisfaction and we compare our approach with the two stage approach.

4.4.2.1 Heuristic-PCMA algorithm scalability

The first experiment consists in comparing the exact and heuristic algorithms for

an IG size fixed at 15 virtual nodes. The behaviour as a function of increasing

RG graph size is reported for both algorithms for reasonably small to medium

RG graph sizes in the [50, 200] range. As suspected for the exact algorithm that

relies on the Branch and Bound method and despite the use of a set of constraints

to confine the problem convex hull to find the optimal solutions faster, the con-

vergence times are in the order of tens of seconds as depicted in Figure 4.6. The

heuristic algorithm designed to reduce convergence times and scale for large graphs

exhibits far better performance and finds optimal solutions in less than 100 msec

for all evaluated scenarios (actually in less than 30 msec for 200 physical nodes in

Figure 4.6). The main difference between the algorithms is: the exact algorithm

does not have to resort to any decomposition or Pattern representations to find

the optimal solution.

Chapter 4. Pattern Centric Matching Algorithm 59

6 8 10 12 14 16 18 20 22 24 26 28 30

101

102

103

104

105

106

≈ 103

Size IG

C
on

ve
rg

en
ce

T
im

e
(m

il
li
se

co
n
d
s)

Heuristic-PCMA (RG=50)
Exact Algorithm (RG=50)

Figure 4.7: Time execution comparison between Exact and Heuristic Ap-
proaches when IG is varying

The strength of the heuristic algorithm is its ability to find solutions much faster

with a 103 to a 104 convergence time improvement ratio compared to the exact

method. This gap increases with the number of physical nodes (gap is closer to

104 for 200 physical nodes in RG). The heuristic algorithm scales better already

for these graph sizes and will be shown to be far more robust for much larger

sizes in ensuing scenarios and simulations. In order to improve the performance of

the exact algorithm, that always finds the optimal solution but unfortunately in

exponential times, more valid inequalities need to be introduced to obtain better

descriptions of the virtual infrastructure mapping problem convex hull. In essence,

the virtual infrastructure mapping problem polyhedral study should be extended

to propose new bounds to reduce the solution space further.

In Figure 4.7, the number of physical nodes is held constant at 50 to study

the behaviour of the algorithms for increasing sizes of input graph IG from 5 to

30 virtual nodes. The gap between the algorithms is in the [103, 104] improve-

ment factor in favor of the heuristic algorithm. The exact algorithm performance

gradually degrades with input graph size and will exponentially grow for sizes not

shown in Figure 4.7. This will nevertheless be revealed by additional experiments

and simulations with larger graphs.

This scalability analysis starts with an evaluation with input graphs ranging

from 5 to 40 virtual nodes and reference graphs of size 100 and 150 physical nodes

Chapter 4. Pattern Centric Matching Algorithm 60

5 10 15 20 25 30 35 40

101

102

103

104

105

106

107

≈ 104

Size IG

C
on

ve
rg

en
ce

T
im

e
(m

il
li
se

co
n
d
s)

Heuristic-PCMA (RG=100)
Exact Algorithm (RG=100)

Figure 4.8: Time execution comparison between Exact and Heuristic Ap-
proaches for RG size of 100 nodes

corresponding to the results reported in Figures 4.8 and 4.9. Figure 4.8 depicts and

confirms the expected stable relative performance between the exact and heuristic

algorithms in the 5 to 40 virtual nodes interval. This corresponds to the range

where the exact algorithm performs well and has not reached its limits. Beyond

40 virtual nodes, the exact algorithm experiences exponential convergence times

not feasible with most practical and operational systems as hours to several days

are needed to find the optimal solution as the graph sizes increase. The heuristic

algorithm is quite robust with marginal increases in convergence times that remain

in the order of hundreds of milliseconds and thus stands out as a viable approach for

deployment and use in operational cloud and network infrastructures to conduct

virtual infrastructure mapping dynamically and on demand.

Figures 4.9 and 4.10 extend the study and confirm these behaviors for RG with

150 and 200 physical nodes. The limits in the input graph size that the exact

algorithm can handle drop from 40 virtual nodes to 35 nodes from Figure 4.9 to

Figure 4.10 results. Clearly the exact algorithm in its current version with our set

of introduced constraints in equations 3.10 to 3.21 can handle a few tens of virtual

nodes in the tenants requests and this limit will drop further as the number of

physical nodes in the reference graph increases.

If the limits of the exact algorithm are in tens to hundreds of nodes in the

input and reference graphs, what are these limits for the heuristic algorithm? The

Chapter 4. Pattern Centric Matching Algorithm 61

5 10 15 20 25 30 35 40

101

102

103

104

105

106

107

108

≈ 104

Size IG

C
on

ve
rg

en
ce

T
im

e
(m

il
li
se

co
n
d
s)

Heuristic-PCMA (RG=150)
Exact Algorithm (RG=150)

Figure 4.9: Time execution comparison between Exact and Heuristic Ap-
proaches for RG size of 150 nodes

answers are reported in Figure 4.11 that depicts performance of the heuristic algo-

rithm for input graph sizes of 50 and 100 and for reference graphs of thousands of

physical nodes (50 to 1500). Even if there is a noticeable performance degradation

from IG with 50 to IG with 100 virtual nodes, the heuristic algorithm returns a

solution within a maximum of 80 seconds for the (IG,RG) = (100, 1500). For

small graphs the response time is in milliseconds. The heuristic approach is much

more robust to increasing graph sizes and continues to return solutions in a few

minutes for large graphs (100 nodes for the user request to map to infrastructures

with 1000 nodes).

In Figure 4.12 we compare the convergence time between our proposed heuristic

algorithm, the exact approach and the two stage mapping algorithm in [24] that

uses the implementation of Ref. [86]. The idea of [24] is to do the node mapping

in a greedy manner in a first stage and only after that move to link mapping by

solving the multi-commodity flow problem. For this comparison the RG size is

fixed at 200 nodes while the IG size varies between 5 and 40 nodes. We compare

only to the standard two-stage algorithm of [24] since we do not use path splitting

nor migrations in our case. Our experimental evaluation shows that the heuristic

algorithm is faster than the two stage approach, especially for large input graphs

which are hard to map. In comparison with the two stage approach (Figure 4.12)

the heuristic algorithm reduces mapping delays by three orders of magnitude for a

Chapter 4. Pattern Centric Matching Algorithm 62

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
101

102

103

104

105

106

107

108

≈ 104

Size IG

C
on

ve
rg

en
ce

T
im

e
(m

il
li
se

co
n
d
s)

Heuristic-PCMA (RG=200)
Exact Algorithm (RG=200)

Figure 4.10: Time execution comparison between Exact and Heuristic Ap-
proaches for RG size of 200 nodes

200 400 600 800 1,000 1,200 1,400

50

100

150

200

Size RG

C
on

ve
rg

en
ce

T
im

e
(s

ec
on

d
s) Heuristic-PCMA (IG=50)

Heuristic-PCMA (IG=100)

Figure 4.11: Heuristic algorithm’s time execution for large-scale instances

Chapter 4. Pattern Centric Matching Algorithm 63

5 10 15 20 25 30 35 40
0

1

2

3

·106

Size IG

C
on

ve
rg

en
ce

T
im

e
(m

il
li
se

co
n
d
s)

Heuristic-PCMA (RG=200)
2-stage Algorithm (RG=200)
Exact Algorithm (RG=200)

Figure 4.12: 2stage mapping versus optimal mapping of virtual networks

size of 35 nodes for the IG. For an IG of size 40 nodes, our heuristic algorithm maps

all nodes and links in 0.156 seconds (or 156 msec) while the two stage algorithm

maps the same requests in 382 seconds (around 6 minutes).

4.4.2.2 Tenant satisfaction

To pursue the performance evaluation of the heuristic algorithm, IGs with 40%

connectivity (partial mesh) with 5 to 200 nodes were used to estimate the percent-

age of optimal mappings (known and found by the exact algorithm) the heuris-

tic algorithm achieves. Figure 4.13 depicts the percentage of optimal mappings

achieved by the heuristic algorithm during the simulations with 100 independent

runs for each reported point in each curve. Recall that the satisfaction is measured

as the percentage of virtual resources in the requests that are mapped, in compli-

ance with requirements, to the physical resources. For small input graph instances

(5 virtual nodes), the percentage of optimal solutions found by the heuristic al-

gorithm can be as high as 98.1%. This percentage remains higher than 85% for

input graphs with less than 10 virtual nodes. The lowest experienced percentage

of optimal mappings are in the 20 to 30 virtual nodes range for all simulated RG

sizes (from 50 to 500 physical nodes).

Chapter 4. Pattern Centric Matching Algorithm 64

For higher IG sizes (more than 30 virtual nodes), the heuristic algorithm per-

forms consistently better for all RG sizes and achieves the best mapping percentage

for RG of 500 nodes.

As the input graph size increases the set of possible solutions meeting the

objectives and constraints decreases. In this region the heuristic algorithm tends

to match more often the optimal solution achieved by the exact algorithm. This is

directly related to the Patterns that are grouped in a confined region of the overall

reference graph for large IG sizes. Consequently, optimal link mappings become

more likely.

The lower performance in the 10 to 30 IG nodes range is due to the presence

of more candidates to map to with higher likelihood of widely dispersed candidate

nodes that need to be linked to each other while respecting latency requirements.

This will make compliance with virtual link latency difficult to match on neces-

sarily longer physical paths. The heuristic algorithm will have to resort to leaf

with roots and leaf with leaves mappings between the IG and RG patterns to find

solutions. This will produce the 19% suboptimal solutions depicted in the valley

region of Figure 4.13 (IG size around 20). Hopefully, the heuristic algorithm finds

81% of the optimal mappings which remains a very good performance when taking

into consideration the times needed to find these optima (milliseconds to tens of

seconds for the heuristic algorithm compared to the minutes to hours needed by

the exact algorithm, see Figures 4.10 and 4.11). Note also that the heuristic algo-

rithm performs closer to optimal as the input graph sizes become more important

(above 90% for IG > 80 irrespective of RG sizes in the [50, 500] for the evaluated

scenarios).

Note that an actual comparison between the exact and heuristic approach has

been conducted for small IG graph instances (|IG| ≤ 20) since the exact algorithm

finds the optimal solution in acceptable time. For large instances the solutions

found by the heuristic algorithm are compared in terms of gap with the ideal solu-

tion (the exact solution would find but in unacceptable time) that meets exactly

the input graph request (100% horizontal line in Figure 4.13).

The performance of the heuristic algorithm compared to the optimal solutions in

terms of requirements satisfaction is represented as a gap defined as the difference

in percentage between the optimal and the heuristic algorithm solutions:

Chapter 4. Pattern Centric Matching Algorithm 65

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Size IG

M
ap

p
in

g
p

er
ce

n
ta

ge
(%

)

Heuristic-PCMA (RG=50)
Heuristic-PCMA (RG=200)
Heuristic-PCMA (RG=300)
Heuristic-PCMA (RG=400)
Heuristic-PCMA (RG=500)
Exact Algorithm

Figure 4.13: Heuristic versus optimal mapping

The performance of the heuristic algorithm compared to the optimal solutions

is represented as a gap defined as the difference in percentage between the optimal

and the heuristic algorithm solutions:

gap(%) =
ESol −HSol

ESol

× 100 = 100−HSol (4.2)

where ESol = 100 is the percentage of exact solutions provided by the Branch

and Bound algorithm (or 100%) and HSol is the fraction of heuristic mappings

that correspond to optimal solutions. Note that HSol corresponds to the achieved

tenant satisfaction by the heuristic algorithm. Note also that the exact algorithm

provides 100% tenant satisfaction when it converges or when an optimal solution

is found.

One hundred (100) independent runs were used to produce each entry in Table

4.1. The average over these runs is provided. For some combinations of graph sizes

there are no solutions for both algorithms as a condition for finding any solution

is: |IG| < |RG|. In addition some network nodes, routers do not host any virtual

resources or application.

The same performance behaviour as depicted previously in Figure 4.13 is re-

vealed by Table 4.1. For simulated instances in the ranges |IG| from 5 to 15 and

for |RG| from 50 to 500, the heuristic algorithm performs close to optimal and

Chapter 4. Pattern Centric Matching Algorithm 66

can match optimal solutions 98% to 82% of the runs in fairly adverse conditions;

recall that drawings are uniform in requested capacity per virtual node as well as

in available capacity per physical node.

In the range [|IG| = 20, |IG| = 40], the heuristic algorithm encounters some

difficulty in finding the optimal solution. For this range, the problem size is

important and the number of patterns is not rich enough to favor better matching.

The performance for this less favorable set of scenarios lies in the [81%, 85%] range.

Even if Pattern roots are well identified and matched it is more difficult in these

cases to find the best links meeting the latency requirements.

Table 4.1: Gaps between exact and heuristic mappings

XXXXXXXXXX| IG |
| RG |

50 200 300 400 500

5 4.28 4.86 6.62 4.55 1.83
10 8.39 8.88 15.30 11.84 10.34
15 16.23 12.58 17.94 14.26 15.13
20 17.92 15.56 18.79 17.45 18.30
30 17.74 18.49 17.46 16.79 15.69
40 16.56 16.52 15.88 15.13 14.48
50 – 14.14 14.02 13.91 13.10
100 – 8.95 8.55 8.36 8.54
150 – 6.40 6.35 6.24 6.25
200 – – 4.96 4.89 4.86

To explain the decrease in tenant satisfaction when mapping the input graphs,

let us explore Figure 4.14, which presents the satisfaction for nodes and links of

IG for different sizes of IG and RG. This figure indicates clearly that nodes of

IG are always mapped optimally (respecting tenants’ requirements) for RG sizes

between 200 and 500 nodes. However, the heuristic algorithm does not always find

an optimal solution when mapping links. This is the origin of the performance

degradation observed in Figure 4.13 and Table 4.1. The limitation is due to

suboptimal link mapping for the heuristic algorithm.

In the continuity of the comparison between our solutions with other approach,

Table 4.2 depicts the performance of the two stage mapping algorithm of Ref. [24]

compared to the optimal solutions and our proposed Heuristic-PCMA algorithm.

This comparison is a gap defined as the difference in percentage of solutions that

are optimal between these algorithms when referenced to the exact solution (whose

gap is zero since the exact solution always finds the optimal). This gap is computed

using equation 4.2. As shown in table 4.2, the gap between these approaches

increases as the input graph (IG) size increases. The performance degradation of

Chapter 4. Pattern Centric Matching Algorithm 67

10 20 30 40 50
0

20

40

60

80

100

Size IG

M
ap

p
in

g
p

er
ce

n
ta

ge
(%

)

Node & link mapping (RG=200)
Node mapping (RG=200)
Link mapping (RG=200)

10 20 30 40 50
0

20

40

60

80

100

Size IG

M
ap

p
in

g
p

er
ce

n
ta

ge
(%

)

Node & link mapping (RG=300)
Node mapping (RG=300)
Link mapping (RG=300)

10 20 30 40 50
0

20

40

60

80

100

Size IG

M
ap

p
in

g
p

er
ce

n
ta

ge
(%

)

Node & link mapping (RG=400)
Node mapping (RG=400)
Link mapping (RG=400)

10 20 30 40 50
0

20

40

60

80

100

Size IG

M
ap

p
in

g
p

er
ce

n
ta

ge
(%

)

Node & link mapping (RG=500)
Node mapping (RG=500)
Link mapping (RG=500)

Figure 4.14: Impact of node mapping and link mapping on the optimality of
the PCMA heuristic

the two stage algorithm shows that it does not scale with infrastructure size (with

gaps that become unacceptably high from 9% to 58% of solutions not matching

the optimal). Our heuristic on the contrary scales much better than the two stage

approach when the input and reference graphs increase thanks to the joint node

and link mapping (5% to 19% gap only with respect to the exact algorithm).

Table 4.2: 2-stage & Heuristic gaps, | RG |=200

| IG | 5 10 15 20 25 30
2-stage 9.66 17.62 26.42 37.24 49.21 58.61

Heuristic-PCMA 4.86 8.88 12.58 15.56 17.28 18.49
Exact = optimal 0 0 0 0 0 0

Chapter 4. Pattern Centric Matching Algorithm 68

4.5 Conclusions

This chapter presented and evaluated a heuristic algorithm for virtual infrastruc-

ture mapping across distributed Cloud and network providers.

The presented solution, using topology patterns and bipartite matching, per-

forms closer to the exact formulation solutions presented in previous chapter and

shows scalability and higher performance comparing to two-stage mapping algo-

rithms suggested in the literature. Moreover, The proposed heuristic algorithm

improves convergence time by several orders of magnitude compared to the exact

algorithm and handles graphs of thousands of nodes as opposed to algorithms in

the current literature that can handle only graphs of less than a hundred nodes in

practical convergence times. By developing this solution we addressed the chal-

lenge of slice mapping. To go further with the complete provisioning process, slice

instantiation, control and automation challenges need to be addressed.

The next chapter introduces a Cloud Networking Framework that represents the

missing piece responsible for the network instantiation, network programmability

and network device deployment in the virtual distributed infrastructure.

Chapter 5

Network Instantiation

5.1 Introduction

The on-demand dynamic allocation and interconnection of user services in dis-

tributed cloud environments includes several major steps that still need to evolve

beyond what is currently offered in the cloud and networking communities to fa-

cilitate networking automation. This concern or need is being addressed by both

communities, especially the OpenStack community (via Neutron) [57], OpenFlow

[37] and more recently SDN (Software Defined Networking) [35].

The objective of our proposed cloud networking framework is to complement

these efforts by facilitating the establishment of connectivity between distributed

cloud and network resources through cloud networking gateways. We set as re-

quirement: compatibility with these efforts and more traditional networking tech-

nologies including IP. An additional requirement is to remain compliant and com-

patible with OCCI (Open Cloud Computing Interface) [87] that has become a

key standard interface between client applications and clouds. We focus on the

instantiation step required for the on-demand establishment of connectivity be-

tween inter-cloud resources. The instantiation step consists in deploying the list

of requested VMs and networking them. This VMs interconnection establishment

needs to be open and transparent to the applications while hiding the underlying

networking technologies used by the cloud providers. This becomes also a goal in

the design of the CNGs and the CNG Manager.

69

Chapter 5. Network Instantiation 70

Even if current cloud computing and clouds services efficiently provide on de-

mand IT resources with a focus on compute and storage resources provisioning

from shared physical infrastructures, the networking of the virtual resources dedi-

cated to applications, end users or tenants deserves more attention. Existing cloud

network models focus mostly on assigning IP addresses to user VMs and insuf-

ficiently support inter cloud and inter data center connectivity. Facilitating the

control, configuration and instantiation of connectivity of application components

and tenant resources requires further work to take full advantage of compute,

storage and network virtualization altogether. The proposed cloud networking

framework in this paper addresses specifically this objective of enabling users and

applications to gain some control on the establishment of connectivity between

their dedicated resources with a focus on deployment, control, configuration and

instantiation of cloud networking services.

Our solution is designed to be integrated easily with cloud brokers, cloud fed-

eration frameworks or cloud providers handling resources in multiple data centers.

We assume that Service Level Agreements (SLAs) between brokers and providers

are already in place to drive and govern the amount of authorized control provided

to the end users so they can invoke (or ask) the proposed cloud networking frame-

work to establish links between their dedicated nodes and services. The proposed

networking architecture relies on two main components:

• Cloud Networking Gateway Manager (CNG Manager)

• Virtual and generic appliance acting as a gateway between user resources

(named Cloud Networking Gateway, CNG)

The advantage of the CNG Manager is to establish connectivity between user

resources regardless of connectivity type (via dedicated links or the Internet) and to

ensure connectivity in a non-intrusive way that preserves the network configuration

of cloud providers. The solution is thus compatible with (and usable by) providers.

The CNG Manager presents a northbound interface to users and applications

connectivity requests and a southbound interface relying on a set of drivers to offer

heterogeneous virtual machines connectivity as a service. The VMs themselves are

acquired through clouds managers, such as OpenStack 1 or OpenNebula 2, from

1The OpenStack Cloud platform. http://www.openstack.org
2The OpenNebula Cloud platform. http://www.opennebula.org

http://www.openstack.org
http://www.opennebula.org

Chapter 5. Network Instantiation 71

the data centers. The open source implementations of the CNG Manager and

the gateways have been integrated in an open source Cloud Broker 3 offering

compatibility, arbitrage and aggregation services to/from multiple heterogeneous

cloud providers.

The remainder of the chapter is organized as follows. The next section 5.2

presents the proposed cloud networking architecture that relies on the CNG Man-

ager and the gateways to establish dynamic connectivity between cloud and net-

work resources. Section 5.3 describes the benefits of using SDN with the CNG

Manager. The impact on networking performance when introducing our solution

in existing systems is reported in section 5.4.

5.2 Cloud Networking Architecture

Our solution aims at:

• Ensuring connectivity between resources acquired from distributed and in-

dependent cloud providers irrespective of the used networking technologies

• Giving partial or complete control of connectivity to the users. The overall

goal is to allow users to handle networking of their applications.

The proposed architecture is composed of three (3) levels: a central compo-

nent, the CNG Manager core, a northbound interface towards applications and

a southbound interface interacting with transport technologies through drivers.

These three levels are used to control, configure and program the CNGs deployed

in the infrastructure.

The CNG Manager northbound interface presents to applications or users (ap-

plication developers, customers or consumers) an extended OCCI[87] interface.

At the CNG Manager southbound interface, communications with the underlying

networks is achieved though specific drivers. For the CNG Manager core, we have

developed the required functions and actions to handle networking demands from

users (received via the northbound interface) and to select the appropriate drivers,

in line with user expressed networking requirements, to interact with the desired

networking technology.

3CompatibleOne Project. http://www.compatibleone.org

http://www.compatibleone.org

Chapter 5. Network Instantiation 72

Figure 5.1: CNG Manager architecture.

The southbound interfaces towards the underlying networking technologies re-

quire technology specific drivers (such as OpenVPN, GRE, IPsec services, NAT or

possibly network configuration frameworks) as depicted in Figure 5.1. The CNG

Manager relies on the designed drivers to remotely configure the gateways (CNGs)

deployed in the infrastructure layer. In fact, the CNG is an appliance acting as

a gateway compatible with multiple cloud computing platforms (such as Open-

Nebula, OpenStack...). This appliance exposes an OCCI interface so it can be

configured remotely by the CNG Manager.

In summary, our solution, depicted in Figure 5.1, exposes two (2) OCCI inter-

faces (at the dashed separation lines): one in the CNG Manager (for user cloud

Chapter 5. Network Instantiation 73

networking requests) and the second in the CNG appliance (for network config-

urations within the cloud and network infrastructures). This ensures that our

proposed cloud networking is achievable in an OCCI compliant manner and is in

line with current practices in the OpenStack cloud community (for example Open-

Stack 4 and [57]). This also considerably eases integration into cloud and network

software architectures using the OCCI RESTful paradigms.

The Open Cloud Computing Interface (OCCI)[87], on which our solution is

based, is a RESTful protocol and API for cloud resource management. The OCCI

Core model introduces the notion of “Category Type” that is used by the OCCI

classification system [88] and the framework for facilitating interoperability and

integration of heterogeneous cloud services. Each category instance is character-

ized by a CRUD (Create, Retrieve, Update, Delete) RESTful interface and also

by an interface referencing the category’s own set of actions that can hopefully be

invoked externally to achieve custom behavior.

5.2.1 CNG: Cloud Networking Gateway

The CNG is a virtual appliance providing cloud networking services for layer 2,

layer 3 and higher layers with equal weight and emphasis. The CNG is generic

enough to cover interconnection of virtual resources using VLANs, VPNs as well as

virtual networks that can rely more closely on the underlying networking technolo-

gies and systems. The CNG integrates software defined networking frameworks

(such as NOX5/OpenFlow[37]) to enable flow control and management between

resources interconnected by the CNG.

The CNG exposes an OCCI RESTful interface [89] based on OCCI so it can

be configured and programmed by the CNG Manager. This interface is generic,

supports all kinds of configuration rules and allows fine control and configuration

of the gateway. Through this interface the communication between the CNG

Manager and the CNG Appliance is performed securely.

The CNG can be used to manage the connectivity in one or between data

centers. In a cloud environment, the allocation of public addresses is expensive and

sometimes limited by a finite number of available addresses. In the case of Amazon,

4The OpenStack Cloud platform. http://www.openstack.org
5NOX controller. http://www.noxrepo.org

http://www.openstack.org
http://www.noxrepo.org

Chapter 5. Network Instantiation 74

all accounts are by default limited to 5 Elastic IP addresses [90]. In addition, most

new applications need Internet access in order to be executed. However, exposing

all resources to the Internet via a public address must be controlled, traceable and

secure. Adopting public addresses for all service components imposes consequently

the implementation of security policies, decision and enforcement points. The

benefits in using CNG is to hide this network resource management complexity.

The CNG can provide access to the Internet for the VMs without exposing them

to the outside world with public addresses through NATing. The user will use a

single public IP address to serve all VMs deployed in the same data center. Since

all VMs go through the CNG to reach the outside world, traffic management

and implementation of security policies become easier. Besides saving public IP

addresses, the CNG can offer other services such as DHCP and DNS.

The CNG is also used to establish dynamic and secure VPNs between resources

deployed in different clouds. Users will need only a minimum number of public

IP addresses equal to the number of cloud providers hosting user services instead

of allocating as many addresses as there are VMs running these services. This is

especially useful and practical for the scarce IPv4 addresses that are still largely

used and deployed. VPN tunnels created between CNGs (in the infrastructure

layer of Figure 5.1) have two important properties: they support a wide variety of

network layer protocols including non-IP and multicast protocols and they provide

end to end secure communications via the Internet.

5.2.2 CNG Manager

The CNGs are controlled, configured and managed by the CNG Manager that

hides heterogeneity of underlying networking technologies. As depicted in Figure

5.1, the CNG Manager is composed of three entities: interface, drivers and core

elements.

5.2.2.1 CNG Manager Components

The CNG Manager is composed of three components:

• The first component is the CNG Manager interface containing 2 elements

responsible for the configuration of gateways and the links between them. In

Chapter 5. Network Instantiation 75

our implementation we decided to model these 2 elements as OCCI categories

for the previously stated reasons. The first category called “CNG” represents

the network component acting as a gateway for a service user and that is

typically running in data centers (at the edge). In the CNG Manager this

category will contain the information of the VM in which the CNG appliance

is running. One attribute of this category “connection” contains the number

of links established from this gateway. Based on the value of this attribute,

we can decide to shutdown this gateway when it is not used or to add another

gateway when the number of connection exceeds the gateway capabilities or

capacity. The second category “linkCNG” represents a link interconnecting

two gateways. This category contains the information needed for configuring

and establishing a tunnel between gateways.

• The second component of the CNG Manager is the core that manages the

list of OCCI categories through the handling of a database related to the in-

stances of these categories. We have implemented in this entity the RESTful

CRUD functions and the necessary actions of the exposed categories. The

CNG Manager Core chooses the appropriate networking technology driver

to configure and inject rules into the gateways.

• The CNG Manager drivers, representing the third element, hide the het-

erogeneity of the networking technologies. A specific driver is used per

technology by this component to enable handling of multiple routing and

switching protocols and systems. Each Driver is responsible for communi-

cating with the underlying technology used in the gateway (OpenFlow, BGP,

OSPF, MPLS, etc...). The CNG Manager in fact interacts with drivers to

configure the connectivity between sites. The underlying framework can be

software or hardware based (software switching and routing technologies or

programmable hardware). As described in Figure5.1, we distinguish two

main family of drivers. The first one provides the dynamic establishment of

tunnels between CNG gateways (e.g. IPsec, GRE, OpenVPN, Capsulator...).

The second one enables the configuration of Network Functions Virtualiza-

tion VNF [52] like Firewall, NAT, DNS... In addition, our proposed model

is flexible and can be extended to support other network technologies by

developing appropriate drivers like OpenFlow and NOX that have been in-

tegrated in our solution. With the emergence of commercial programmable

Chapter 5. Network Instantiation 76

network equipment, we can even go further by supporting the configuration

of the hardware by designing suitable drivers.

Figure 5.2: Interactions between CNG Manager components and Cloud Bro-
ker to establish connectivity between CNGs.

Figure 5.2 depicts, in a flow diagram, the interactions between a Cloud Broker

(when a broker is used to coordinate and aggregate resources from the same or

various providers) and the CNG Manager components needed to establish connec-

tivity between CNGs deployed in one or in different cloud providers. We assume

that the cloud broker instantiates CNG nodes and user nodes in the appropriate

cloud provider and knows the CNG public addresses and the topology of user

nodes. The cloud broker invokes the CNG manager interface to instantiate the

CNG categories (see Figure 5.2 steps 1 and 2) with key parameters such as the

CNG address and the network functions to activate on the gateway (e.g. firewall,

Nat, DNS...).

In step (3) the CNG Manager instantiates the associated link to be established

between CNGi and CNGj. Finally the Cloud Broker sends the action “start”

(Figure 5.2 step 4) to the CNG Manager to launch the configuration of CNGs and

links.

Once all the needed information is provided to the CNG Manager and the

action “start” is sent by the broker, the CNG Manager deals with the NFV driver

Chapter 5. Network Instantiation 77

to configure the CNGs (corresponding to Figure 5.2 step 5). The CNG Manager

can now configure the data plane by establishing the requested tunnel between

CNGs (step 6) using the tunnel driver that injects the appropriate rules in each

CNG. Finally the CNG Manager configures the control plane (step 7) by specifying

the protocol to use between the CNGs (static or dynamic “ospf, bgp...” links) or

by connecting the OpenFlow node (CNG) to the OpenFlow controller.

5.2.2.2 Isolation using CNG Manager

The CNG Manager provides two isolation levels (Figure 5.3) to enable separation

of users and applications:

• The first level is the isolation between users’ services through the creation

of a gateway per user;

• The second level isolates services and applications of a single user through a

tunnel/VPN per user service.

Figure 5.3: Isolation between user services.

Figure 5.3 depicts how two users are isolated using CNGs when acquiring

cloud resources from multiple providers. The provisioning of resources may be

achieved by a cloud broker that would interact on behalf of the users with the

Chapter 5. Network Instantiation 78

cloud providers involved in service provisioning in this example. The cloud broker

goes through the CNG Manager to configure each user dedicated CNG or tunnels.

User 1 makes two requests (request 1 and request 2 for user 1) and user 2 makes

only one request (request 1 for user 2). User 1 services or applications are isolated

using tunnels between the CNGs assigned to user 1. User 2 is assigned another

pair of CNGs located in cloud provider 2 and 3 in the illustration. The isolation

between user 1 and user 2 is ensured by the creation of dedicated gateways per

user.

5.3 CNG Manager and network deployment

The CNG Manager is designed to handle configuration and instantiation of net-

working to fulfill users’s resources (VMs for the performance evaluation) connec-

tion requests. The CNG Manager can deploy 2 types of networks:

• Traditional networks : For these networks, the CNGs, deployed in different

data centers, manage not only the forwarding functions but also the routing

and control decisions and actions in line with the information injected by

the CNG Manager (see Figure 5.4).

• SDN networks (e.g., based on the OpenFlow technology): For this type of

networks the control and data plane are decoupled. The CNGs act as for-

warding elements and another CNG (driven by the CNG Manager) controls

them (see Figure 5.5).

5.3.1 CNG Manager for traditional network deployment

The CNG Manager deploys and configures the data plane (by establishing tunnels

between the CNGs) and the routing rules according to the topology and user

application requirements. The routing decision can be achieved by injecting static

routing rules on each CNG or by activating a routing algorithm in the CNGs

(like OSPF or BGP). The CNG Manager uses the programmable interface for all

the previously cited configurations to fulfill the requested application topology.

Figure 5.4 depicts a scenario where the CNG Manager configures two gateways,

CNGj and CNGk deployed respectively in cloud j and cloud k. Thanks to this

configuration users’ VMs are allowed to communicate securely with each other.

Chapter 5. Network Instantiation 79

Figure 5.4: Connectivity via non SDN/OpenFlow.

5.3.2 CNG Manager used for SDN deployment

Since the CNG supports the OpenFlow[37] technology, it can establish OpenFlow

based connectivity between user resources. Figure 5.5 depicts a scenario where the

CNG Manager relies on an OpenFlow driver to configure two (2) CNGs acting as

OpenFlow switches connected to an OpenFlow controller called NOX. The NOX

controller is running in a CNG and it is configured through the CNG Manager

so the “NOX in a VM” controls remotely the OpenFlow switches. The CNG

Manager establishes tunnels dynamically between the OpenFlow switches. The

NOX controller handles routing and switching decisions between the OpenFlow

switches by injecting rules. In this case the control of connectivity can also be

achieved by activating the appropriate module in the OpenFlow controller.

5.4 Experimental results

The evaluation of the CNG Manager has been performed with two objectives in

mind. The first assesses the ease of integration of the CNG Manager with OCCI

centric clouds. The second evaluation focuses on the additional delay introduced

Chapter 5. Network Instantiation 80

Figure 5.5: Connectivity via OpenFlow.

by the CNG architecture when interconnecting distributed services across multiple

providers.

5.4.1 CNG Manager in a real framework

To assess ease of integration in OCCI centric clouds, a specific instance of the

CNG Manager, named CONETS (COmpatibleOne NEtwork Services), has been

integrated in an open source cloud broker known as CompatibleOne 6. This cloud

broker provides a model, CORDS (CompatibleOne Resource Description System)

[91], and a platform, ACCORDS (Advanced Capabilities for CORDS) [92], respec-

tively for the description and federation of different clouds comprising resources

provisioned by heterogeneous cloud service providers.

CompatibleOne’s flexible service architecture is independent of any Cloud Ser-

vice Provider (OpenStack, OpenNebula , Azure7...) and addresses all types of

cloud services (IaaS, PaaS...) and any type of cloud service deployment (public,

private, community and hybrid). The overall architecture provides consequently

an appropriate framework to evaluate the CNG Manager.

6CompatibleOne Project. http://www.compatibleone.org
7Azure Windows Azure. http://www.windowsazure.com

http://www.compatibleone.org
http://www.windowsazure.com

Chapter 5. Network Instantiation 81

The broker relies on a set of specific modules to achieve provisioning goals from

various technology providers. For networking services, the CompatibleOne broker

invokes and uses CONETS (which corresponds to an instance of the CNG Man-

ager) to establish connectivity as expressed by the end user in an initial manifest.

CONETS provides connectivity services between the endpoints specified by the

broker. In more complex scenarios CONETS establishes all the links between

nodes or cloud resources of a specified network connectivity graph. Each service

of the ACCORDS platform is an OCCI server. This server manages a list of OCCI

categories by handling the database related to the instances of these categories. To

ensure communication between these services, the ACCORDS platform provides a

publication service called publisher. Other platform components use the publisher

to announce their service offers via the OCCI categories they manage.

In the case of the CONETS service, the integration requires two steps. In the

first step CONETS publishes the list of categories that it manages (linkCNG and

CNG). During the second step, CONETS using the publisher informs the broker

that it is responsible for the network provisioning and provides the broker key

information such as its name and address... Thanks to this procedure CONETS (a

simple CNG Manager instance) will be called automatically by the Cloud Broker.

Figure 5.6 depicts how CONETS is integrated with CompatibleOne and de-

scribes a scenario where the cloud broker deals with two cloud providers to aggre-

gate services acquired from these providers (e.g. VM1, VM2 and VM3 in Figure

5.6).

The user first formulates and sends a service request to the CompatibleOne

Broker. The request is described (e.g. using CORDS) as a manifest composed of

a list of nodes and relations between these nodes (e.g. links). One of these nodes

will describe all the parameters (CPU, memory, storage...) needed to instantiate a

VM acting as a gateway to offer connectivity. After parsing and validating the user

manifest using the CompatibleOne parser, a list of CompatibleOne components

(such as placement, billing and provisioning modules...) are invoked to select,

reserve and instantiate nodes of a service.

The CONETS module is invoked to establish the connectivity between the

service nodes. CONETS uses three steps to achieve connectivity:

Chapter 5. Network Instantiation 82

Figure 5.6: Integration of CONETS (an instance of CNG Manager) in the
CompatibleOne architecture.

1. Instantiation at runtime of the VM acting as a CNG in the appropriate cloud

provider following placement decisions. This instantiation consists in creat-

ing a gateway manifest containing information (CPU, memory, storage...)

extracted from the original (initial) user request derived manifest.

2. Configuration of the CNGs by CONETS that injects the rules and policies

to establish the desired connectivity between the CNGs according to the

user applications and services requirements. Note that the communication

between CONETS and the CNGs is secure.

3. Redirection of the user VM traffic to the CNG as default gateway. This

redirection is conducted by CONETS (or equivalently the CNG Manager).

In order to redirect the user VM traffic to the CNG, CONETS configures

the routing table of the VM via the CNG by putting the CNG as the default

gateway. If a DHCP service is activated in the CNG, the user VM will get an

address from this DHCP server. In this case an isolation mechanism needs

to be put in place by the cloud provider.

Chapter 5. Network Instantiation 83

5.4.2 CNG evaluation

The objective of the evaluation is to estimate the delay penalty introduced by

the CNG Manager architecture when it is used to establish connectivity between

distributed services or VMs. This evaluation will indicate if the proposed CNG

architecture introduces marginal degradation when it is integrated into an existing

system. Since our main objective is to assess only the additional delay penalty, we

do not seek or conduct comparisons with similar approaches that may be available

in the literature (in fact there are no vendor independent frameworks we can

compare meaningfully our proposal to).

Since the CNG is designed and packaged in a VM and used as a gateway in each

cloud provider, we need to assess the delay added by this implementation. In our

evaluation, we suppose that the placement of user resources or services , the CNGs

in our case, in the cloud providers is handled by the cloud broker. OpenNebula

has been used to instantiate the CNGs but any other cloud resource and service

manager can be used (such as the more popular OpenStack).

The analysis is conducted for sequential “gateways and links establishments”

(thus providing a worst case performance reference, or very pessimistic assess-

ment) and for parallel establishments where simultaneous actions take place in

the gateways under the command, control and coordination of the CNG Manager

(optimistic assessment that is nevertheless very close to actual/practical instanti-

ation and configuration delays).

We evaluate in Figure 5.7 the required time to instantiate the CNGs needed to

interconnect distributed user services in the hosting providers. The worst case cor-

responding to instantiations of the CNGs one after the other, i.e. sequentially, is

reported. We distinguish two types of networking, traditional and SDN networks.

The first one is an OpenFlow based network (SDN type) while the second is tra-

ditional (no SDN). In these experiments the number of cloud providers involved

in the provisioning varies between 1 and 10 providers. The instantiation times of

CNGs are collected and reported in Figure 5.7 that depicts the time required to

deploy the network based on OpenFlow next to the traditional networking tech-

nology. In both cases, the networking services are not pre-deployed. The collected

delays include consequently all the steps (including the VM image deployment

and activation). The relevant metric for comparison is therefore the difference

in performance between the OpenFlow/SDN and the traditional approaches. The

Chapter 5. Network Instantiation 84

1 2 4 6 8 10
0

200

400

600

Penalty for parallel
instantiation

Number of Cloud Providers

In
st

an
ti

at
io

n
ti

m
e(

s)

OpenFlow/SDN type Network
Traditional/NO SDN Network

Figure 5.7: Sequential and parallel instantiation delay comparison

time needed to instantiate the OpenFlow type network is around 50 seconds higher

than the time needed to instantiate the traditional network. This difference is due

to the deployment of the OpenFlow controller, itself packaged in a VM. When the

CNGs are deployed in parallel, the instantiation delay drops to 50 seconds. This

corresponds to the performance observed in Figure 5.7 for the number of cloud

providers equal to one (1). Since all instantiations occur in parallel, the delay is

the one experienced by one provider.

When two cloud providers are involved in inter-cloud networking, the CNG

Manager deploys an SDN controller (NOX for the evaluation) and the two CNGs

(one per provider) to interconnect. The sequential deployment and instantiation

penalty in this case is 3 times that of the parallel instantiation or 150 s. For

the parallel instantiation, the delay drops to 50 s (this includes deployment and

activation that take place in parallel). Once a CNG is deployed and activated the

delay reduces to the configuration penalty which is rather small (around 8 seconds

as depicted in Figure 5.8).

In the second experimentation, we evaluate the delays in configuring the CNGs’

interconnection graph. Each node of the network graph represents a cloud provider.

The focus is on the configuration delay induced by the CNG Manager. The net-

work graph topologies are randomly generated using the GT-ITM tool [85]. The

average network graph connectivity is fixed at 0.5. In this experiment the number

of links between CNGs varies between 1 and 16 links since the number of links to

Chapter 5. Network Instantiation 85

1 4 6 12 16
0

20

40

60

Penalty for parallel
configuration

Number of links

C
on

fi
gu

ra
ti

on
ti

m
e(

s)

OpenFlow/SDN type Network
Traditional/NO SDN Network

Figure 5.8: Sequential and parallel configuration delay comparison

establish determines actually the performance for one provider with distributed

resources or multiple providers. The configuration of the CNG is achieved using

the CNG interface while configuration of the routing and flow control mechanisms

in the CNGs is achieved using the OpenFlow (NOX and OpenFlow protocol)

framework in the case of dynamic gateway and link establishments. As depicted

in Figure 5.8, the time required to configure the network based on the OpenFlow

technology is less than the traditional network. The OpenFlow network needs

only to configure the data plane between the CNGs since the OpenFlow controller

injects dynamically the routing rules. This takes a few seconds, corresponding to

the time required to inject a rule.

In the last experiment, we compare the configuration and instantiation delays

between the OpenFlow and traditional networks. Figure 5.9 depicts a negligible

configuration delay compared to the instantiation delay. As expected, Figure 5.9

shows that the OpenFlow solution that operates dynamically requires a marginal

additional delay to achieve instantiation while it can achieve configuration a little

bit faster that the traditional case. This is a very small price to pay overall when

compared to the flexibility and programmability benefits provided by the proposed

CNG architecture (and more generally software defined networking approaches).

Chapter 5. Network Instantiation 86

2 4 6 8 10
0

200

400

600

800

Number of Cloud Providers

T
im

e(
s)

Configuration of Traditional Network
Configuration of OpenFlow Network

Instantiation of Traditional Network

Instantiation of OpenFlow Network

Figure 5.9: Sequential and parallel configuration and instantiation delay of
OpenFlow and traditional network

5.5 Conclusions

This chapter has presented a design and implementation of a Cloud Networking

framework to achieve dynamic and on demand distributed clouds networking using

any kind of underlying networking technology. This cloud networking architecture,

the CNG Manager framework, was successfully tested and integrated with an open

source cloud broker to confirm its ease of integration with cloud and network

infrastructures.

The framework is shown to establish on-demand connectivity between virtual

resources at marginal additional instantiation delays. The CNG Manager provides

the needed programmability and flexibility to support easily other network tech-

nologies including programmable networks (hardware switches). As confirmed by

our experiments, the introduced configuration and instantiation delays to intercon-

nect distributed services across multiple providers using the proposed networking

architecture are marginal.

Chapter 6

Conclusions and Perspectives

This chapter summarizes the research work and contributions of the thesis on net-

worked virtual infrastructures provisioning over distributed clouds. The chapter

then outlines some perspectives for future investigations.

6.1 Conclusions and discussions

This thesis addresses the research challenges of virtual networked infrastructures

provisioning over distributed hybrid clouds in response to growing requirements in

cloud computing with respect to: a) the networking of distributed virtual resources

across multiple providers and infrastructures and b)the need of users and tenants

to control, configure and manage their dedicated resources. The central goal for

the thesis has been to provide a comprehensive solution that covers the challenge

of (optimally) mapping requests for virtual resources on physical infrastructures

and of providing the means to control, configure and manage the user or tenant

dedicated resources and services. The key contributions of the thesis, listed below,

reflect these objectives:

• An exact algorithm for virtual networked infrastructure mapping in dis-

tributed cloud environments, formulated and solved using linear integer

programming (ILP) that achieves optimal resource mapping and placement

to enable the creation of a virtual infrastructures from shared physical re-

sources. The model extends prior art by including localization constraints

87

Chapter 7. Conclusions and Future Research Directions 88

on virtual resources and optimizes nodes and links jointly. The proposed so-

lution is generic enough to be used by infrastructure and service providers;

• A Pattern Centric Matching heuristic algorithm has been developed to ad-

dress scalability and complexity. The heuristic operates on the virtual and

physical infrastructures topology patterns and bipartite matching to reduce

convergence times by several orders of magnitude;

• A cloud networking framework (CNG-Manager) [1] was implemented using

SDN principles and the Open Cloud Computing Interface (OCCI) to facili-

tate the instantiation, configuration, control and management of networking

services by the users and tenants. This framework enables tenants to take

control and full advantage of their dedicated slices especially when they are

composed of distributed and interconnected services across multiple sites and

infrastructure providers;

• The proposed cloud networking framework would not be complete without

the means to deploy networking functions easily in the tenant virtual infras-

tructure (or slice). The thesis did not overlook this aspect and designed (and

implemented) a generic appliance (the CNG) acting as a gateway between

tenant resources. This appliance is in fact a virtualized network function

that corresponds to a VNF in the ETSI specified NFV framework. The

gateway is in addition compatible with multiple cloud computing platforms

and exposes an interface so it can be configured remotely by the tenants.

• The cloud networking architecture (i.e., the CNG Manager framework) was

successfully tested and integrated with an open source cloud broker to con-

firm its compatibility with cloud and network infrastructures. The frame-

work is shown to establish on-demand connectivity between virtual resources

at marginal additional instantiation delays.

6.2 Future Research Directions

Beyond the key contributions of this thesis we foresee a number of additional

investigations and perspectives for future work:

Chapter 7. Conclusions and Future Research Directions 89

• A natural extension and improvement of the exact algorithm is to introduce

additional constraints to improve convergence times as this will confine even

more the problem convex hull;

• The heuristic algorithm can also be improved by matching roots (of the

virtual graph patterns) on many roots (of the physical graph patterns) during

b-matching instead of limiting the matching to roots to roots only. This will

improve the quality of the solutions and reduce the gap between the heuristic

and the exact algorithms;

• The Cloud networking framework, especially the “CNG-Manager ” a key

contribution in separation of control and forwarding and in network abstrac-

tion, should be distributed more formally to address more thoroughly inter

domain and network providers interactions and cooperation;

• The CNG-Manager should be extended to work across different network

technologies running in the gateways (CNGs or networking functions). The

CNGs will simply use different networking technology ports to achieve inter-

technology mappings and connectivity according to the involved heteroge-

neous “network segments” technologies.

• Another natural extension of the work is to produce additional VNFs and

the appropriate related drivers;

• last but not least, since this is a much broader and longer term perspec-

tive, an orchestration framework on top of the CNG-manager framework is

required to automate service provisioning, ensure service chaining and to

accelerate the production of applications and services that take advantage

of software networks principles and properties.

Appendix A

Thesis Publications

International Journal

• M. Mechtri, M. Hadji, and D. Zeghlache, ”Exact and Heuristic Resource

Mapping Algorithms for Distributed and Hybrid Clouds,” Submitted to

Journal of IEEE Transactions on Cloud Computing, 2014.

International Conferences

• M. Mechtri, D. Zeghlache, E. Zekri, and I.J. Marshall, ”Inter and intra

Cloud Networking Gateway as a service,” Cloud Networking (CloudNet),

2013 IEEE 2nd International Conference on , vol., no., pp.156,163, 11-13

Nov. 2013.

• M. Mechtri, D. Zeghlache, E. Zekri, and I.J. Marshall, ”Inter-cloud Net-

working Gateway Architecture,” Cloud Computing Technology and Science

(CloudCom), 2013 IEEE 5th International Conference on , vol.2, no., pp.188,194,

2-5 Dec. 2013.

• M. Mechtri, I. Houidi, W. Louati, and D. Zeghlache, ”SDN for Inter Cloud

Networking,” Future Networks and Services (SDN4FNS), 2013 IEEE SDN

for , vol., no., pp.1,7, 11-13 Nov. 2013.

• I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache, ”Cloud Service Delivery

across Multiple Cloud Platforms,” Services Computing (SCC), 2011 IEEE

International Conference on , vol., no., pp.741,742, 4-9 July 2011.

90

Appendix A. Thesis Publications 91

Open source software

• M. Mechtri, and D. Zeghlache, ”Cloud Networking Gateway Manager,”

https://github.com/MarouenMechtri/CNG-Manager.

Technical Reports

• P. Murray et al., ”Cloud Network Architecture Description,” Technical re-

port, SAIL – Scalable and Adaptable Internet Solutions, http://www.sail-project.

eu/wp-content/uploads/2012/06/D-D.1v2.0-final-public.pdf, 2012.

• H. Puthalath et al., ”Description of Implemented Prototype,” Technical

report, SAIL – Scalable and Adaptable Internet Solutions, http://www.

sail-project.eu/wp-content/uploads/2012/10/SAIL_DD2_v1_1_final_

public.pdf, 2012.

• I.J. Marshall et al., ”CompatibleOne Resource Description System (CORDS),”

Technical report, CompatibleOne, http://www.compatibleone.com/community/

wp-content/uploads/2014/05/CordsReferenceManualV2.15.pdf, 2013.

• R. Krishnaswamy et al., ”ODISEA: Open Distributed Networked Storage

Architecture,” Technical report, ODISEA, 2014.

• G. Cunha et al., ”D2.2 - Revised Architecture definition and components,”

Technical report, EASI-CLOUDS, 2013.

• C. Pelegrin-Bomel et al., ”S3.4 – Final Version of the Extended Software

Stack,” Technical report, EASI-CLOUDS, 2014.

https://github.com/MarouenMechtri/CNG-Manager
http://www.sail-project.eu/wp-content/uploads/2012/06/D-D.1v2.0-final-public.pdf
http://www.sail-project.eu/wp-content/uploads/2012/06/D-D.1v2.0-final-public.pdf
http://www.sail-project.eu/wp-content/uploads/2012/10/SAIL_DD2_v1_1_final_public.pdf
http://www.sail-project.eu/wp-content/uploads/2012/10/SAIL_DD2_v1_1_final_public.pdf
http://www.sail-project.eu/wp-content/uploads/2012/10/SAIL_DD2_v1_1_final_public.pdf
http://www.compatibleone.com/community/wp-content/uploads/2014/05/CordsReferenceManualV2.15.pdf
http://www.compatibleone.com/community/wp-content/uploads/2014/05/CordsReferenceManualV2.15.pdf

Appendix B

CNG Manager: Installation,

Configuration and utilization

B.1 Introduction

The CNG Manager provides connectivity between resources acquired from dis-

tributed cloud providers and hides heterogeneity in networking technologies. The

CNG Manager controls and configures virtual gateways called CNGs. The CNG

Manager manages a list of OCCI [87] categories to configure connectivity. Since

the CNG Manager is based on the OCCI specification and service model, we have

used PyOCNI [93] as the OCCI server.

The CNG Manager has a northbound interface towards client requesting con-

nectivity and a southbound interface interacting with transport technologies through

drivers.

1. The northbound interface is composed of 3 elements responsible for the con-

figuration of gateways and links between these gateways. These elements

are OCCI categories (cng, linkcng and intercng).

2. The southbound interfaces towards the underlying networking technologies

require technology specific drivers (such as OpenVPN, GRE, IPsec, NAT,

OpenFlow ... drivers). The CNG Manager relies on the designed drivers

to remotely configure the gateways (CNGs) deployed in the infrastructure

layer.

92

Appendix B. CNG Manager: Installation, Configuration and utilization 93

To test the CNG Manager framework, you have to download the CNG image

(qcow2 format) and to download CNG Manager source code. Using this command:

git clone git@github.com:MarouenMechtri/CNG -Manager.git

B.2 Getting the CNG image file

In fact, the CNG is a virtual appliance that provides a set of network technolo-

gies and functions. The CNG also provides a RESTful interface to enable the

configuration and the programmability of its features by the CNG Manager.

Download CNG image file from:

http://sourceforge.net/projects/cngmanager/files/cngimages/cngImage.qcow2/download

Download a contextualized CNG image file prepared for OpenNebula from:

http://sourceforge.net/projects/cngmanager/files/cngimages/cngImage-OpenNebula.qcow2/download

B.3 Installing CNG Manager

Prerequisite Packages:

sudo apt -get install python -setuptools

sudo apt -get install python -all -dev

Couchdb and pyOCNI installation:

sudo apt -get install couchdb

sudo python setup.py install

B.4 Starting CNG Manager

Start pyOCNI server:

sudo python start.py

Appendix B. CNG Manager: Installation, Configuration and utilization 94

Start CNG-Manger server:

sudo python start_CNG -M.py

B.5 Network configuration example

In the example below, we aim to interconnect VMs in site 1 with VMs in site 2.

Todo we have to deploy one CNG per site and after we configure them using CNG

Manager framework.

As depicted in the figure below B.1, the CNG Manager configures two gateways

CNG 1 and CNG 2 deployed respectively in site 1 and site 2.

Figure B.1: Network configuration example with CNG-Manager framework.

The most important information needed for configuration is:

1. publicaddrCNGsrc: external IP address of CNG 1 (1.1.1.1)

2. privateaddrCNGsrc: private IP address of CNG 1 (192.168.1.1)

3. privateNetToCNGsrc: network address of VMs connected to CNG 1

(192.168.1.0/24)

4. publicaddrCNGdst: external IP address of CNG 2 (2.2.2.2)

5. privateaddrCNGdst: private IP address of CNG 2 (10.10.10.1)

6. privateNetToCNGdst: network address of VMs connected to CNG 2

(10.10.10.0/24)

Appendix B. CNG Manager: Installation, Configuration and utilization 95

7. linkType: the type of network between CNGs which can be ”openvpn, ipsec

and openflow”

Configuration file: intercng.json:

1 {"resources":[{
2 "kind":"http:// schemas.ogf.org/occi/infrastructure#

intercng",

3 "attributes":{
4 "occi":{
5 "intercng":{
6 "name": "First Network Configuration Example",

7 "publicaddrCNGsrc": "1.1.1.1",

8 "privateaddrCNGsrc": "192.168.1.1",

9 "privateNetToCNGsrc": "192.168.1.0/24",

10 "ethernameCNGsrc": "eth0",

11 "providerCNGsrc": "site1",

12 "publicaddrCNGdst": "2.2.2.2",

13 "privateaddrCNGdst": "10.10.10.1",

14 "privateNetToCNGdst": "10.10.10.0/24",

15 "ethernameCNGdst": "eth0",

16 "providerCNGdst": "site2",

17 "linkType": "openvpn",

18 "reusable": "1",

19 "account": "userTest"

20 }
21 }
22 }
23 }]
24 }

Network configuration using cURL commands. The first cURL command in-

stantiates an ”intercng” instance and the second command launches the configu-

ration process:

curl -X POST -d@intercng.json -H ’content -type:

application/occi+json ’ -H ’accept: application/occi+

json ’ -v http ://127.0.0.1:8085/ intercng/

Appendix B. CNG Manager: Installation, Configuration and utilization 96

Response of the command:

1 {"Location":[
2 "http://127.0.0.1:8085/intercng/8e007fe9-e535-4e1f-979

4-b526fdb05d29"

3]}

To bring connectivity between CNGs up:

curl -X POST http ://127.0.0.1:8085/ intercng /8e007fe9 -

e535 -4e1f -9794 - b526fdb05d29?action=start

To bring connectivity between CNGs down:

curl -X POST http ://127.0.0.1:8085/ intercng /8e007fe9 -

e535 -4e1f -9794 - b526fdb05d29?action=stop

Appendix C

Résumé en Français

C.1 Introduction

L’informatique en nuage (Cloud Computing) a émergé comme un nouveau paradigme

pour offrir des ressources informatiques à la demande et pour externaliser des in-

frastructures logicielles et matérielles. Le Cloud Computing est rapidement et

fondamentalement en train de révolutionner la façon dont les services informa-

tiques sont mis à disposition et gérés. Ces services peuvent être demandés à partir

d’un ou plusieurs fournisseurs de Cloud d’où le besoin de la mise en réseau en-

tre les composants des services informatiques distribués dans des emplacements

géographiquement répartis. Les utilisateurs du Cloud veulent aussi déployer et

instancier facilement leurs ressources entre les différentes plateformes hétérogènes

de Cloud Computing.

Les fournisseurs de Cloud assurent la mise à disposition des ressources de cal-

cul sous forme des machines virtuelles à leurs utilisateurs. Par contre, ces clients

veulent aussi la mise en réseau entre leurs ressources virtuelles. En plus, ils veu-

lent non seulement contrôler et gérer leurs applications, mais aussi contrôler la

connectivité réseau et déployer des fonctions et des services de réseaux complexes

dans leurs infrastructures virtuelles dédiées. Les besoins des utilisateurs avaient

évolué au-delà d’avoir une simple machine virtuelle à l’acquisition de ressources et

de services virtuels complexes, flexibles, élastiques et intelligents.

97

Appendix C. Résumé en Français 98

L’objectif de cette thèse est de permettre le placement et l’instanciation des

ressources complexes dans des infrastructures de Cloud distribués tout en per-

mettant aux utilisateurs le contrôle et la gestion de leurs ressources. En plus,

notre objectif est d’assurer la convergence entre les services de cloud et de réseau.

Pour atteindre ces objectifs, cette thèse propose des algorithmes de mapping

d’infrastructures virtuelles dans les centres de données et dans le réseau tout en

respectant les exigences des utilisateurs.

Avec l’apparition du Cloud Computing, les réseaux traditionnels sont étendus

et renforcés avec des réseaux logiciels reposant sur la virtualisation des ressources

et des fonctions réseaux. En plus, le nouveau paradigme d’architecture réseau

(SDN : Software Defined Networks) est particulièrement pertinent car il vise à

offrir la programmation du réseau et à découpler, dans un équipement réseau, la

partie plan de données de la partie plan de contrôle.

Dans ce contexte, la première partie de la thèse propose des algorithmes op-

timaux (exacts) et heuristiques de placement pour trouver le meilleur mapping

entre les demandes des utilisateurs et les infrastructures sous-jacentes, tout en re-

spectant les exigences exprimées dans les demandes. Cela inclut des contraintes de

localisation permettant de placer une partie des ressources virtuelles dans le même

nœud physique. Ces contraintes assurent aussi le placement des ressources dans

des noeuds distincts. Les algorithmes proposés assurent le placement simultané

des nœuds et des liens virtuels sur l’infrastructure physique. Nous avons pro-

posé aussi un algorithme heuristique afin d’accélérer le temps de résolution et de

réduire la complexité du problème. L’approche proposée se base sur la technique

de décomposition des graphes et la technique de couplage des graphes bipartis.

Dans la troisième partie de la thèse, nous proposons un cadriciel open source

(framework) permettant d’assurer la mise en réseau dynamique entre des ressources

Cloud distribués et l’instanciation des fonctions réseau dans l’infrastructure virtuelle

de l’utilisateur. Ce cadriciel permettra de déployer et d’activer les composants

réseaux afin de mettre en place les demandes des utilisateurs. Cette solution se

base sur un gestionnaire des ressources réseaux ”Cloud Network Gateway Manager

(CNG-Manager)” et des passerelles logicielles permettant d’établir la connectivité

dynamique et à la demande entre des ressources cloud et réseau. Le CNG-Manager

offre le contrôle de la partie réseau et prend en charge le déploiement des fonctions

réseau nécessaires dans l’infrastructure virtuelle des utilisateurs.

Appendix C. Résumé en Français 99

C.2 Algorithme exact

Dans cette section, nous décrivons le modèle analytique proposé qui se base sur

la théorie de graphe et ayant pour objectif d’assurer le mapping des ressources

dans des environnements Cloud distribués. Dans cette approche, nous visons à

fournir un mapping optimal des ressources afin d’assurer un déploiement optimal

des infrastructures virtuelles dans des infrastructures partagées et distribuées entre

plusieurs fournisseurs.

Figure C.1: Les entrées sorties de l’algorithme exact.

La figure C.1 décrit un exemple d’entrée et sortie du modèle proposé (le graphe

substrat est composé de 2 centres de données, 1 fournisseur réseau et 2 fournisseurs

de cloud publics). Les entrées du modèle sont représentées sous forme des graphes.

Le graphe de référence décrit l’ensemble des ressources des fournisseurs privés et

publics visible par l’algorithme exact. Pour les clouds privés les ressources de

(ex. calcul, mémoire, réseau...) disponibles peuvent être consultées, inspectées,

manipulées et gérées. Par contre pour les clouds publics, les ressources physiques

sont invisibles et elles sont représentées dans le graphe de référence par un noeud

avec des capacités. Le graphe de la requête représente les demandes d’un ou

plusieurs utilisateurs. Ces demandes, représentées par des sous-graphes, peuvent

être regroupées dans un seul graphe de requête avec des pondérations sur les liens.

Comme le montre la figure C.1, le modèle (algorithme) mappe le graphe de la

requête composé de noeuds et de liens sur l’infrastructure de référence (composé

des ressources des fournisseurs). Le modèle utilise une fonction objective générique

qui combine plusieurs critères et une notion de distance qui mesure la proximité

entre les ressources demandées et sélectionnées. Par rapport à ces travaux [74],

[75], [76], notre algorithme intègre la latence de bout en bout entre les VMs.

Appendix C. Résumé en Français 100

En plus, notre modèle mappe les noeuds et les liens conjointement contrairement

aux travaux précédents [25], [26], [77], [24], [78] et [79] où les noeuds et les liens

sont mappés séquentiellement. En plus, nous introduisons dans notre modèle des

contraintes de localisation des ressources virtuelles dans l’infrastructure physique.

Ces contraintes permettent de co-localisé les ressources virtuelles de l’utilisateur

dans le même noeud physique ou dans des neouds différents. Nous permettons

aussi le placement des ressources à la fois dans les centres de données et dans le

réseau d’hébergement.

Avec les objectifs et les exigences cités ci dessus, le graphe de la requête sera

composé des noeuds représentant les machines virtuelles et des liens pour les in-

terconnecter. En plus, puisque nous visons à interconnecter des VMs situées dans

les centres de données ou dans le réseau d’interconnexion, nous avons décrit dans

le graphe de référence 3 types de noeuds physiques:

1. Type 1: serveur, capable d’accueillir des machines virtuelles. Le serveur

est caractérisé par ses capacités de calcul, de mémoire et de stockage. Cette

ressource peut représenter aussi un Cloud (ou centre de données) où les

capacités de calculer, de mémoire et de stockage sont des quotas affectés aux

utilisateurs;

2. Type 2: routeur, c’est un routeur standard, qui n’héberge pas des machines

virtuelles, et son rôle unique est l’acheminement du trafic de la source vers

la destination;

3. Type 3: serveur/routeur, c’est une ressource hybride qui peut à la fois

héberger des machines virtuelles et assurer l’acheminement du trafic. Cette

ressource peut jouer le rôle d’une plate-forme d’hébergement des VMs.

L’algorithme exact proposé choisira pour chaque lien virtuel le chemin (con-

caténation des segments ou des liens physiques) qui respecte la latence demandée.

Pour ce faire, nous introduisons une métrique ”distance” permettant la sélection

du meilleur mapping entre les ressources virtuelles et physiques. Cette distance

est une mesure binaire permettant d’éliminer la mise en correspondance infaisable

entre les ressources physiques et virtuelles. Sachant qu’un mapping est considéré

faisable si et seulement si la capacité demandée pour un noeud virtuel est inférieur

à la capacité restante d’un noeud physique candidat et le temps de latence d’un

Appendix C. Résumé en Français 101

lien virtuel est supérieur à la latence du chemin ou lien physique candidat. La dis-

tance mesure le rapprochement entre la ressource virtuelle demandée et la ressource

physique. Par la suite, l’algorithme exact sélectionnera le meilleure mapping parmi

tous les candidats retenus.

Avant de décrire les équations et les contraintes de notre algorithme, nous

décrivons dans la table de notations C.1 la liste des variables et des constantes

utilisées dans notre modèle.

Table C.1: Table de Notations

Graphe de référence

T=(VT ,ET) Graphe de référence RG
VT Ensemble de noeuds physiques VT = {S ∪ SR ∪R}
ET Ensemble de liens physiques
S Ensemble de serveurs disponibles
R Ensemble de routeurs disponibles
SR Ensemble de serveurs/routeurs disponibles
CPUj Capacité de calcule disponible dans le noeud physique j
MEMj Capacité de mémoire disponible dans le noeud physique j
STOj Capacité de stockage disponible dans le noeud physique j
LATk1,kn Latence entre noeud physique k1 et kn
Pk1,kn Le chemin de taille n entre les noeuds physiques k1 et kn

Graphe de la requête

P=(VP ,EP) Graphe de la requête IG
VP Ensemble de noeuds virtuels
EP Ensemble de liens virtuels
cpui La quantité de CPU demandée par la VM i
memi La quantité de mémoire demandée par la VM i
stoi La quantité de stockage demandée par la VM i
lati,j Latence demandée entre les noeuds i et j

Modèle de Mapping

xik Variable booléenne indiquant si VM i est affectée au noeud
physique k

yij,k1,kn Variable booléenne indiquant si le lien virtuel (i, j) est mappé
avec le chemin physique entre les noeuds physiques K1 et kn

zkij Variable booléenne indiquant si VM i et VM j sont affectées
au même noeud physique k

lik Variable booléenne indiquant si la VM i doit être mapper sur
le noeud physique k

Dans ce qui suit, nous présentons notre modèle mathématique basé sur la pro-

grammation linéaire en nombres entiers. Ce modèle est composé d’une fonction

objective et d’un ensemble d’équations et d’inégalités valides décrivant le problème

de mapping d’infrastructure virtuelle dans un environnement cloud distribué. Le

Appendix C. Résumé en Français 102

modèle proposé sera résolu par la suite en utilisant la technique Branch and Bound.

En plus, nous avons proposé des expressions C.1, C.3, C.2 décrivant la satisfac-

tions des demandes en terme de capacité. Ces expressions sont nécessaires pour

introduire la notion de distance entre les ressources virtuelles et physiques.

CPU(i, j)⇔ (cpui ≤ CPUj) (C.1)

STO(i, j)⇔ (stoi ≤ STOj) (C.2)

MEM(i, j)⇔ (memi ≤ MEMj) (C.3)

La variable cpui (stoi et memi) représente la quantité de CPU demandée (de

stockage et de mémoire) par la VM i, tandis que CPUj (STOj et MEMj) est la

quantité de CPU restante (stockage et mémoire) dans un noeud physique j.

Rappelons que la métrique distance mesure la similitude entre la ressource

virtuelle demandée et la ressource physique sélectionnée. Cette distance est min-

imisée dans la fonction objective afin d’obtenir le mapping optimal. Cette distance

peut être pondérée par des fonctions génériques (fnode(i, k) et flink(ij, k1kn) dans

l’équation C.7) qui servent à optimiser le problème par rapport au type d’acteur,

de scénario et de cas d’utilisation. Par exemple, l’efficacité énergétique, le coût

et le prix des ressources peuvent allimenter ces fonctions pour inclure autant de

critères requis selon les besoins dans l’optimisation. Par exemple, un modèle sim-

ple de coût basé sur [26] et [24] peut être utilisé pour minimiser les coûts des

fournisseurs d’infrastructure en définissant les fonctions comme suit:

fnode(i, k) = αk ×Nodecap(i)

flink(ij, k1kn) =
∑n

l=1 β(klkl+1) × Linkcap(i, j)

où Nodecap(i) et Linkcap(i, j) représentent la capacité de noeud et de lien de-

mandée pondérés respectivement par les paramètres αk et β(klkl+1) pour fixer les

coûts des noeuds physiques k et des chemins/liens physiques (klkl+1). On peut

utiliser aussi d’autre fonctions (par exemple par type de ressource) de coûts plus

élaborées.

Pour choisir les noeuds physiques candidats pour héberger les noeuds virtuels,

il faut satisfaire les équations suivantes (C.1), (C.2) et (C.3). La sélection est

exprimée en utilisant cette distance d:

Appendix C. Résumé en Français 103

d(i, k) =


1, si CPU(i, k) &

STO(i, k)&

MEM(i, k);

0, sinon.

(C.4)

où i ∈ VP et k ∈ VT \R. Cette distance éliminera tous les noeuds qui n’ont pas

la capacité demandée.

Nous considérons aussi deux distances pour gérer le mapping des liens virtuels

sur des chemins physiques d1 et des liens virtuels sur le même noeud physique d2:

d1(ij, Pk1,kn) =



1, si CPU(i, k1) et CPU(j, kn) &

STO(i, k1) et STO(j, kn)&

MEM(i, k1) et MEM(j, kn)&

latij ≥ LATk1,kn ;

0, sinon.

(C.5)

d2(ij, k1) =

{
1, si cpui + cpuj ≤ CPUk1 ;

0, sinon.
(C.6)

où i, j ∈ VP et k1, kn ∈ VT \ R. Pk1,kn représente un chemin de longueur n et

d’extrémité k1 et kn. .

Avec ces trois distances d, d1 et d2, nous pouvons introduire notre fonction

objective. Cette fonction permettra le mapping des noeuds et des liens virtuels

conjointement sur l’infrastructure physique.

minZ = min[
∑
i∈VP

∑
k∈VT \R

fnode(i, k)× d(i, k)× xik+

∑
(ij)∈EP

∑
k1∈VT \R
k1 6=kn

∑
kn∈VT \R

flink(ij, k1kn)× d1(ij, Pk1,kn)× yij,k1,kn+

∑
(ij)∈EP

∑
k1∈VT \R

flink(ij, k1k1)× d2(ij, k1)× yij,k1,k1]

(C.7)

où les variables utilisées sont définies comme suit:

Appendix C. Résumé en Français 104

xik =

{
1, si la VM i est mappé sur k ∈ S ∪ SR;

0, sinon.
(C.8)

yij,k1,kn =


1, si i est mappé sur k1, j est mappé sur kn

et ij est mappé sur Pk1,kn ;

0, sinon.

(C.9)

Le premier terme de la fonction objective assure que les ressources demandées

sont disponibles sur un noeud physique candidat k. Il assure également que le

meilleur noeud sera conservé grâce à l’optimisation globale. Le second terme de la

fonction objectif cherche le chemin physique optimal Pk1,kn sur lequel le lien virtuel

(i, j) sera mappé. Le troisième terme gère toutes les demandes de co-localisation

des ressources virtuelles i et j sur le même noeud physique k1.

Pour améliorer les performances et pour réduire l’espace de recherche de la

solution optimale, nous introduisons dans notre modèle un ensemble d’égalités et

inégalités.

1. Contrainte de placement des noeuds:

∑
k∈VT \R

xik = 1,∀i ∈ VP (C.10)

2. Contrainte de CPU limitée:

∑
i∈VP

cpui × xik ≤ CPUk,∀k ∈ VT \R (C.11)

où cpui est le CPU demandé par la VM i, et CPUk est la quantité de CPU

disponible dans le noeud physique k.

3. Contrainte de mémoire limitée:

∑
i∈VP

memi × xik ≤MEMk,∀k ∈ VT \R (C.12)

où memi est la mémoire demandée par la VM i, et MEMk est la quantité

de mémoire disponible dans le noeud physique k.

Appendix C. Résumé en Français 105

4. Contrainte de stockage limitée:

∑
i∈VP

stoi × xik ≤ STOk,∀k ∈ VT \R (C.13)

où stoi est le stockage demandé par la VM i, et STOk est le stockage

disponible dans le noeud physique k.

5. Contrainte de placement des liens:

∑
k1∈VT \R

∑
kn∈VT \R

yij,k1,kn = 1,∀(ij) ∈ EP (C.14)

6. Contrainte de placement de noeud et de lien à partir de la 1ere

extrémité du lien:

∑
kn∈VT \R

yij,k1,kn = xik1 ,∀(ij) ∈ EP ,∀k1 ∈ VT \R (C.15)

7. Contrainte de placement de noeud et de lien à partir de la 2ere

extrémité du lien:

∑
k1∈VT \R

yij,k1,kn = xjkn ,∀(ij) ∈ EP ,∀kn ∈ VT \R (C.16)

8. Contrainte de latence:

LATk1,kn × yij,k1,kn ≤ lati,j,∀(ij) ∈ EP ,∀k1, kn ∈ VT \R, k1 6= kn (C.17)

9. Contrainte de localisation des noeuds virtuels:

lik ≤ xik,∀i ∈ Loc, ∀k ∈ VT \R (C.18)

10. Contrainte de placement des noeuds virtuels sur des noeuds physique

différents:

xik + xjk ≤ 1,∀i, j ∈ Sep, ∀k ∈ VT \R (C.19)

11. Contrainte de co-localisation des noeuds virtuels sur des noeuds

physiques:

Appendix C. Résumé en Français 106

∑
k∈VT \R

zkij = 1,∀i, j ∈ J (C.20)

xik + xjk = 2zkij, ∀i, j ∈ J,∀k ∈ VT \R (C.21)

C.3 Algorithme de couplage basé sur les pat-

terns de graphe (PCMA)

L’algorithme exact fonctionne bien pour des petites instances de graphe de requête

et de graphe de référence. Par contre, avec l’augmentation de la taille des graphes,

l’algorithme exact ne passera pas à l’échelle. Il présente des temps de convergence

exponentielles, ce qui nous oblige à rechercher des algorithmes heuristiques pour

trouver des solutions optimales et proche de l’optimales dans un temps polynomial.

Pour ce faire, notre solution sera basée sur la décomposition des graphes de requête

et des graphes de référence en des patrons (Patterns) de graphe. Notre algorithme

heuristique est composé de quatre étapes décrites dans l’algorithme 7. Ces étapes

sont:

1. décomposition des graphes virtuels et physiques en des patterns dont les

racines représentent chaque noeud du graphe;

2. calcul des distances de similarité entre les patterns des graphes de la requête

et des graphes de référence;

3. création d’un graphe biparti complet en se basant sur la distance calculée

précédemment suivie par le calcule du couplage maximum de distance min-

imale sur le graphe biparti afin de déterminer le mapping du graphe virtuel

sur le graphe physique;

4. raffinement du mapping afin d’assurer que les noeuds et les liens virtuels

sont mappés correctement.

Dans les parties suivantes, nous allons décrire en détail les étapes de l’algorithme

heuristique proposé.

Appendix C. Résumé en Français 107

C.3.1 Graph decomposition

Definition C.1. Un pattern est considéré comme un graphe non orientéGPattern =

(VPattern, EPattern) où VPattern est un ensemble de noeuds et EPattern est un ensem-

ble des arêtes.

Figure C.2: Exemple d’une décomposition du graphe en 4 patterns.

La figure C.2 représente une décomposition d’un graphe composé de 4 noeuds

en 4 patterns. Chaque noeud du graphe original est sélectionné en tant que racine

du pattern et connectée à tous ses noeuds voisins. La décomposition d’un graphe

G = (VG, EG) est détaillé dans l’algorithme 5 ci-dessous:

Algorithm 5 Graph Decomposition (graph G = (VG, EG))

Input: graph G = (VG, EG).
Output: graph G decomposed into Patterns.

1: for i = 1→ |VG| do
2: Pattern[i] = {}
3: end for
4: for i = 1→ |VG| do
5: for j = 1→ |VG| do
6: if aij 6= 0 then
7: Pattern[i] = Pattern[i] ∪ {i, j}
8: end if
9: end for

10: end for

Appendix C. Résumé en Français 108

La complexité de cette décomposition est O(|VG|2). Dans la partie suivante,

nous décrivons les étapes de construction et de couplage du graphe biparti.

C.3.2 Maximum matching on bipartite graph

La première étape consiste à construire les sous-ensembles U et W du graphe

biparti. La partition U est formée des patterns de IG et la deuxième partition W

est composée des patterns de RG. La deuxième étape relie chaque pattern de U

avec tous les patterns de W (voir la figure C.3). Chaque arête du graphe biparti

est pondérée par une distance calculée à partir de l’équation C.22.

Figure C.3: La construction du graphe biparti.

La figure C.4 décrit le résultat de l’algorithme de calcul du couplage maximale

du graphe biparti. Cet algorithme trouvera un sous-ensemble des arêtes reliant

chaque pattern du graphe de la requête (IG) avec un seul pattern du graphe de

référence (RG),

C.3.3 Description de la métrique de distance

Pour finaliser la description de notre algorithme heuristique (PCMA), nous intro-

duisons une distance pour évaluer la similarité ou la proximité de deux patterns

du graphe de référence (RG) et du graphe de la requête (IG).

Appendix C. Résumé en Français 109

Figure C.4: Couplage du graphe biparti.

La distance entre deux patterns (Pattern1 et Pattern2) est la somme des dis-

tances entre les racines des pattern dist nodes(nr, vr) et la distance entre leurs

branches dist branches(branches(Pattern1), branches (Pattern2)). Cette distance

est exprimée dans l’équation (C.22). Notez qu’une branche est considérée comme

une composition de deux noeuds et un lien entre eux (voir figure C.5).

Distance(Pattern1, Pattern2) = dist nodes(nr, vr)+

dist branches(branches(Pattern1), branches(Pattern2))
(C.22)

Figure C.5: Example of two Patterns with p and k leaves.

Appendix C. Résumé en Français 110

Algorithm 6 distance2Patterns (Pattern IG, Pattern RG)

Input: IG pattern, RG pattern.
Output: mapping cost of IG Pattern into RG Pattern.

1: if size(Pattern RG) < size(Pattern IG) then
2: Distance = INFINITE
3: else
4: if nr ∈ R then # check if nr is router or not
5: Distance = INFINITE
6: else
7: Distance = dist nodes(nr, vr) + dist branches(branches(Pattern RG),

branches(Pattern IG))
8: end if
9: end if

10: dist nodes(s, t)=


0, CPU(s,t)&

MEM(s,t)&
STO(s,t);

1, otherwise.

11: dist edges(e, e′)=

{
0, latency(e) < latency(e′);
1, otherwise.

12: distance branches(branches(Pattern IG),branches(Pattern RG))
13: for f = 1→ p do
14: for h = 1→ k do
15: dist branches matrix[f, h] = dist nodes(nf , vh) + dist edges(bf , eh)
16: end for
17: end for
18: Determine the mapping of all leaves of Pattern IG on Pattern RG leaves

according to minimum distance given by dist branches matrix;
19: Return cost of mapping;

La prochaine étape de l’algorithme consiste à construire un graphe biparti

complète G = (U ∪W,EG) où U représente les patterns du graphe de la requête

(IG) et W est l’ensemble des patterns du graphe de référence (RG). Pour chaque

lien entre U de W , nous associons un poids correspondant à la distance de mapping

d’un pattern de U avec un pattern de W .

C.3.4 Description de l’approche heuristique (PCMA)

L’algorithme heuristique proposée utilise toutes les notions et les procédures décrites

ci-dessus pour réaliser la mapping simultanée des noeuds et des liens. L’algorithme

heuristique décompose d’abord le graphe de la requête (IG) et le graphe de référence

Appendix C. Résumé en Français 111

(RG) en des patterns comme décrit dans l’algorithme 5. Ensuite, l’algorithme con-

struit une matrice de distance dist matrix entre les patterns de IG et RG.

En se basant sur la matrice de distance, l’algorithme heuristique construit

un graphe biparti pondéré et complet G = (U ∪ W,EG) comme indiqué dans

l’algorithme 7. L’ensemble des sommets de U est composée par les patterns de IG

alors que W est composé des patterns de RG. Le lien entre chaque sommet de U

et W est pondéré par le coût de mapping déjà calculé dans la matrice de distance

dist matrix. La dernière étape consiste à calculer le couplage maximum à coût

minimum sur le graphe biparti.

A noté que le résultat de mise en correspondance entre IG et RG correspondent

à la mise en correspondance entre les patterns d’IG et RG faite par le couplage du

graphe biparti. A ce stade, seuls les nœuds racine de tous les patterns d’IG sont

mappés exactement sur les nœuds racine des patterns de RG. Afin de répondre à

l’objectif de mapping simultané des noeuds et des liens, nous vérifions si le mapping

des racines sur les racines est également conforme aux exigences de latence. Si la

latence demandée n’est pas satisfaite, nous vérifions les noeuds virtuels marqués

comme racines et feuilles dans l’ordre suivant:

1. Mappé une racine sur une feuille: premièrement en cherchant un map-

ping entre la racine d’un pattern de IG sur une feuille d’un pattern de RG;

2. Mappé une feuille sur une racine: deuxièmement en cherchant un map-

ping entre la racine d’un pattern de IG prise comme une feuille dans les

autres patterns avec une racine d’un pattern de RG;

3. Mappé une feuille sur une feuille: enfin, on cherche un mapping de la

feuille d’IG sur une feuille de RG si les étapes 1 et 2 ont échoué.

L’algorithme 7 résume et donne des détails sur les étapes utilisées par l’approche

heuristique pour mapper les noeuds et les liens virtuels sur le graphe physique.

C.4 Architecture du Cloud Networking

L’allocation dynamique et l’interconnexion des services de l’utilisateur dans les en-

vironnements Cloud distribués comprend plusieurs étapes majeures qui ont encore

Appendix C. Résumé en Français 112

Algorithm 7 Pattern Centric Mapping Algorithm

1: list Patterns IG = Graph Decomposition (IG)
2: list Patterns RG = Graph Decomposition (RG)
3: for i = 1→ size(list Patterns IG) do
4: for j = 1→ size(list Patterns RG) do
5: dist matrix[i, j] = distance2Patterns(list Patterns IG[i],list Patterns RG[j])
6: end for
7: end for
8: Construct the complete weighted bipartite graph G based on the dist matrix

9: // Get the maximum matching of the weighted bipartite graph
10: Max Matching Bipartite Graph (G);

besoin d’évoluer au-delà de ce qui est actuellement offert dans les communautés

de Cloud et réseaux pour faciliter l’automatisation de la mise en réseau. Cette

préoccupation est abordée par les deux communautés, notamment la communauté

OpenStack (via neutron)[57], OpenFlow [37] et plus récemment SDN (Software

Defined Networking) [35].

L’objectif de notre cadriciel de Cloud Networking est de compléter ces efforts

en facilitant la mise en place de la connectivité dynamique et à la demande entre

des ressources Cloud et réseau via des passerelles logicielles. Nous avons fixé

comme condition: la compatibilité avec les technologies de réseau traditionnelles.

Une exigence supplémentaire est de rester conforme et compatible avec OCCI

(Open Interface Cloud Computing) [87] qui est devenue une interface standard

clé entre les applications clientes et le Cloud. Nous nous concentrons sur l’étape

d’instanciation nécessaire pour la mise en place de la connectivité à la demande

entre les ressources inter-Cloud. L’étape d’instanciation consiste à déployer la

liste des machines virtuelles demandées et à mettre en place la connectivité entre

eux. Cet établissement d’interconnexion entre les machines virtuelles doit être

ouvert et transparent aux applications tout en masquant les technologies de réseau

sous jacentes utilisées par les fournisseurs de Cloud. L’architecture du Cloud

Networking proposée repose sur deux éléments principaux:

• Un gestionnaire de passerelle pour le Cloud Networking (nommé Cloud Net-

working Gateway Manager, CNG Manager)

• Une brique applicative ”software appliance” virtuelle et générique qui agit

comme une passerelle entre les ressources de l’utilisateur (nommé Cloud

Networking Gateway, CNG)

Appendix C. Résumé en Français 113

Notre solution vise à:

• Assurer la connectivité entre les ressources acquises auprès des fournisseurs

de Cloud distribués indépendamment des technologies réseau utilisées;

• Donner le contrôle partiel ou complet de la connectivité pour les utilisateurs.

L’objectif général est de permettre aux utilisateurs de gérer la mise en réseau

de leurs applications.

L’architecture proposée est composée de trois (3) niveaux: un élément central, le

gestionnaire de passerelle ”CNG Manager”, une interface nord en interaction avec

les applications et une interface sud en interaction avec les technologies de trans-

port par le biais des pilotes logiciels. Ces trois niveaux sont utilisés pour contrôler,

configurer et programmer les passerelles ”CNGs” déployées dans l’infrastructure.

Notre solution, illustrée à la figure C.6, expose deux (2) interfaces OCCI: une

au niveau du gestionnaire de passerelle ”CNG Manager” (pour les demandes de

mise en réseau de l’utilisateur) et la seconde au niveau des passerelles ”CNGs”

(pour les configurations de réseau dans le Cloud et dans les infrastructures de

réseaux). Cela garantit que notre solution du Cloud Netwroking est réalisable

d’une manière conforme à OCCI et aussi en ligne avec les pratiques actuelles

de la communauté OpenStack (par exemple OpenStack 1 et [57]). Cela facilite

considérablement l’intégration dans le Cloud et avec les architectures SDN en

utilisant les paradigmes RESTful.

C.4.1 CNG: passerelle générique pour le Cloud Network-

ing

CNG est une brique logicielle permettant de fournir une connectivité dynamique

de couche 2, 3 et des couches supérieures entre des ressources Cloud et réseau.

Le CNG est suffisamment générique pour couvrir l’interconnexion des ressources

virtuelles à l’aide de VLAN, VPN ainsi que les réseaux virtuels qui peuvent

s’appuyer davantage sur les technologies et les systèmes de réseau sous-jacents.

Le CNG intègre des architectures SDN (tels que NOX2/OpenFlow[37]) pour per-

mettre le contrôle et la gestion des flux.

1The OpenStack Cloud platform. http://www.openstack.org
2NOX controller. http://www.noxrepo.org

http://www.openstack.org
http://www.noxrepo.org

Appendix C. Résumé en Français 114

Figure C.6: Architecture du CNG Manager.

Le CNG expose une interface RESTful OCCI [89] basée sur OCCI afin d’être

configuré et programmé par le gestionnaire ”CNG Manager”. Cette interface est

générique, supporte toutes sortes de règles de configuration et permet un contrôle

précis et la configuration de la passerelle. Grâce à cette interface la communication

entre le gestionnaire ”CNG Manager” et la brique logicielle CNG est effectuée en

toute sécurité.

Le CNG peut être utilisé pour gérer la connectivité dans un ou entre plusieurs

centres de données. Dans un environnement de Cloud Computing, l’attribution

des adresses publiques est coûteuse et limitée parfois par un nombre fini d’adresses

disponibles. Dans le cas d’Amazon, tous les comptes sont limités par défaut à

cinq adresses IP élastiques [90]. En outre, la plupart des nouvelles applications

Appendix C. Résumé en Français 115

ont besoin d’accéder à Internet afin d’être exécuté. Cependant, exposer toutes

les ressources à Internet via une adresse publique doit être contrôlé et sécurisé.

Attribuer des adresses publiques pour tous les composants de service impose par

conséquent, l’implémentation des politiques de sécurité et de contrôle. L’avantage

d’utiliser le CNG est de masquer cette complexité de gestion des ressources réseau.

Le CNG peut connecter des machines virtuelles à Internet sans les exposer au

monde extérieur avec des adresses publiques via la technologie de translation

d’adresse (NAT). L’utilisateur peut utiliser une adresse IP publique unique pour

connecter toutes les machines virtuelles déployées dans le même centre de données.

Comme toutes les machines virtuelles passent par le CNG pour se connecter à In-

ternet, la gestion du trafic et l’implémentation des politiques de sécurité sont

devenu plus facile. En plus d’économiser les adresses IP publiques, le CNG peut

offrir d’autres services tels que DHCP et DNS.

Le CNG est également utilisé pour établir des VPNs dynamiques et sécurisés

entre les ressources déployées dans différents Clouds. Les tunnels VPN créé entre

les CNGs (au niveau de la couche d’infrastructure, Figure C.6) ont deux propriétés

importantes: ils supportent une grande variété de protocoles de couches réseau y

compris les protocoles multicast et ils fournissent des communications sécurisées

de bout en bout via Internet.

C.4.2 CNG Manager: gestionnaire de passerelle

Les CNGs sont contrôlés, configurés et gérés par le CNG Manager afin de masque

l’hétérogénéité des technologies réseaux sous-jacents. Comme le montre la Figure

C.6, le CNG Manager est composé de trois entités: l’interface, les pilotes et le

noyau.

C.4.2.1 Les composants de CNG Manager

Le CNG Manager est composé de trois entités:

• Le premier composant est l’interface du CNG Manager qui contient deux

éléments responsables de la configuration des passerelles et des liens entre

eux. Dans notre implémentation nous avons décidé de modéliser ces deux

éléments comme des catégories OCCI pour les raisons décrites précédemment.

Appendix C. Résumé en Français 116

• Le deuxième composant du CNG Manager est le noyau qui gère la liste

des catégories OCCI. Nous avons implémenté dans cette entité les fonctions

CRUD RESTful et les actions nécessaires des catégories exposées. Le noyau

du CNG Manager choisit le pilote réseau approprié pour configurer et injecter

les règles dans les passerelles.

• Les pilotes de CNG Manager masquent l’hétérogénéité des technologies réseau

et gérent plusieurs protocoles de routage. Un pilote spécifique est utilisé pour

chaque technologie réseau. Chaque pilote est responsable de la communica-

tion avec la technologie sous-jacente utilisée par la passerelle (OpenFlow,

BGP, OSPF, MPLS, etc ...). On distingue deux types de pilotes. Le pre-

mier fournit la création dynamique de tunnels entre les passerelles ”CNGs”

(par exemple IPsec, GRE, OpenVPN, Capsulator ...). Le second permet la

configuration du réseau et des fonctions de virtualisation VNF [52](comme

pare-feu, NAT, DNS ...). De plus, notre modèle proposé est flexible et peut

être étendu pour supporter d’autres technologies réseau en développant des

pilotes appropriés comme OpenFlow et NOX qui ont été déjà intégré dans

notre solution.

Figure C.7: Interactions between CNG Manager components and Cloud Bro-
ker to establish connectivity between CNGs.

Appendix C. Résumé en Français 117

La figure C.7 représente les interactions entre un service de courtage Cloud

”Broker” (le courtier est utilisé pour coordonner et agréger les ressources à partir

d’un seul ou différent fournisseur) et les composants du CNG manager nécessaires

pour établir la connectivité entre les CNGs déployés dans un ou dans différents

fournisseurs de Cloud. Nous supposons que le courtier instancie les noeuds CNG et

les noeuds de l’utilisateur dans le Cloud approprié et connâıt les adresses publiques

des CNGs et la topologie de la demande de l’utilisateur. Le Broker invoque

l’interface du CNG Manager pour instancier les catégories (Figure C.7 étapes

1 et 2) avec des paramètres tels que l’adresse des CNGs et les fonctions réseau à

activer au niveau de la passerelle (par exemple, pare-feu, NAT, DNS ...).

Dans l’étape (3) le CNG Manager instancie le lien qui va être établi entre CNGi

et CNGj. Enfin, le broker envoie l’action “start” (Figure C.7 étape 4) au CNG

Manager pour lancer la configuration des CNGs et des liens.

Une fois toutes les informations nécessaires sont fournies au CNG Manager

et l’action “start” est envoyée par le broker, le CNG Manager utilise le pilote

NFV pour configurer les CNGs (Figure C.7 étape 5). Ensuite, le CNG Manager

configure le plan de données en créant le tunnel demandé entre les CNGs (étape 6)

en utilisant le pilote de mise en tunnel qui injecte les règles appropriées à chaque

CNG. Enfin, le CNG Manager configure le plan de contrôle (étape 7) en spécifiant

le protocole à utiliser entre les CNGs ou en connectant le noeud OpenFlow (CNG)

au contrôleur OpenFlow.

C.4.2.2 Isolation en utilisant le CNG Manager

Le CNG Manager offre deux niveaux d’isolation (Figure C.8) pour permettre la

séparation des flux des utilisateurs et des applications:

• Le premier niveau est l’isolement entre les services des utilisateurs grâce à

la création d’une passerelle par utilisateur;

• Le deuxième niveau isole les services et les applications d’un seul utilisateur

à travers un tunnel/VPN.

Appendix C. Résumé en Français 118

Figure C.8: Isolation between user services.

C.4.3 Le deployment réseau via CNG Manager

Le CNG Manager est conçu pour gérer la configuration et l’instanciation de réseau

pour répondre aux demandes d’interconnexion des ressources des utilisateurs. Le

CNG Manager peut déployer deux types de réseaux:

• Les réseaux traditionnels : grâce aux CNGs déployés dans différents centres

de données, le réseau gère non seulement l’acheminement des données mais

aussi les décisions de routage.

• Les réseaux SDN (e.x., basé sur la technologie OpenFlow): Pour ce type de

réseaux, le plan de contrôle et le plan de données sont découplés. Les CNGs

agissent comme des noeuds d’acheminement de données et un autre CNG

joue le rôle d’un contrôleur.

C.5 Conclusion

Cette thèse traite les défis du provisionnement des infrastructures virtuelles inter-

connectées dans des Clouds hybrides et distribués tout en respectant les besoins

de: a) la mise en réseau des ressources virtuelles répartis sur plusieurs fournisseurs

Appendix C. Résumé en Français 119

et infrastructures et b) le besoin de contrôle, configuration et gestion des ressources

par les utilisateurs. L’objectif central de la thèse est donc de fournir une solution

complète qui couvre les défis de mapping (optimal) des ressources virtuelles sur

des infrastructures physiques et d’offrir des solutions pour contrôler, configurer et

gérer les ressources réseaux des utilisateurs. Les principales contributions de la

thèse, énumérées ci-dessous, reflètent ces objectifs:

• Un algorithme exact pour le mapping des infrastructures virtuelles intercon-

nectées sur des Clouds hybrides et distribués. Cet algorithme est formulé et

résolu en utilisant la programmation linéaire en nombres entiers (ILP) qui

assure le mapping optimal des ressources pour la création des infrastructures

virtuelles à partir des ressources physiques distribuées. Ce modèle enrichit

l’état de l’art en incluant des contraintes de localisation sur les ressources

virtuelles et en optimisant le mapping des noeuds et des liens conjointe-

ment. La solution proposée est suffisamment générique pour être utilisée

par les fournisseurs d’infrastructures et de services;

• Un algorithme heuristique basé sur les patterns de graphe a été proposé et

développé pour répondre à la scalabilité et la complexité du problème. Cette

heuristique s’appuie sur la technique de couplage du graphe biparti composé

des patterns afin de réduire le temps de convergence de plusieurs ordres de

grandeur;

• Un cadriciel de Cloud Networking (CNG-Manager) [1] a été implémenté en

utilisant les principes de SDN et OCCI afin de faciliter l’instanciation, la con-

figuration, le contrôle et la gestion des services réseau par les utilisateurs.

Ce cadriciel permet aux utilisateurs de prendre le contrôle de leurs infras-

tructures virtuelles surtout quand elles sont composées de services distribués

et interconnectés à travers plusieurs sites et fournisseurs d’infrastructures;

• Le cadriciel de Cloud Networking proposé ne serait pas complet sans ajouter

les moyens de déploiement simple et facile des fonctions réseau dans les

infrastructures virtuelles des utilisateurs. Cette thèse n’a pas négligé cet

aspect et on a conçu (implémenté) une brique logicielle générique (CNG)

agissant comme une passerelle entre les ressources des utilisateurs. Cette

brique logicielle est une fonction réseau virtualisée qui correspond à une VNF

dans le cadre de l’ETSI spécifié NFV. La passerelle est en outre compatible

Appendix C. Résumé en Français 120

avec plusieurs plates-formes de Cloud Computing et elle expose une interface

configurable à distance par les utilisateurs;

• L’architecture de Cloud Networking a été testée avec succès et intégrée dans

un framework de courtage Cloud open source pour montrer sa compatibilité

avec les Clouds et les infrastructures de réseaux. Le cadriciel peut établir

une connectivité à la demande entre les ressources virtuelles.

Bibliography

[1] Marouen Mechtri. Cloud networking gateway manager. https://github.

com/MarouenMechtri/CNG-Manager. Accessed August 15, 2013.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-

ica, and Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):

50–58, April 2010. ISSN 0001-0782. doi: 10.1145/1721654.1721672. URL

http://doi.acm.org/10.1145/1721654.1721672.

[3] M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A Vakali. Cloud

computing: Distributed internet computing for it and scientific research.

Internet Computing, IEEE, 13(5):10–13, Sept 2009. ISSN 1089-7801. doi:

10.1109/MIC.2009.103.

[4] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-

art and research challenges. Journal of Internet Services and Applications,

1(1):7–18, 2010. ISSN 1867-4828. doi: 10.1007/s13174-010-0007-6. URL

http://dx.doi.org/10.1007/s13174-010-0007-6.

[5] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.

A break in the clouds: Towards a cloud definition. SIGCOMM Comput.

Commun. Rev., 39(1):50–55, December 2008. ISSN 0146-4833. doi: 10.1145/

1496091.1496100. URL http://doi.acm.org/10.1145/1496091.1496100.

[6] Lutz Schubert, Keith G Jeffery, and Burkard Neidecker-Lutz. The Future

of Cloud Computing: Opportunities for European Cloud Computing Beyond

2010:–expert Group Report. European Commission, Information Society and

Media, 2010.

[7] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud

computing. Technical report, Gaithersburg, MD, United States, 2011.

121

https://github.com/MarouenMechtri/CNG-Manager
https://github.com/MarouenMechtri/CNG-Manager
http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/s13174-010-0007-6
http://doi.acm.org/10.1145/1496091.1496100

Bibliography 122

[8] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology of cloud

computing. In Grid Computing Environments Workshop, 2008. GCE ’08,

pages 1–10, Nov 2008. doi: 10.1109/GCE.2008.4738443.

[9] Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and Giovanni Paci-

fici. A scalable application placement controller for enterprise data centers.

In Proceedings of the 16th International Conference on World Wide Web,

WWW ’07, pages 331–340, New York, NY, USA, 2007. ACM. ISBN 978-1-

59593-654-7. doi: 10.1145/1242572.1242618. URL http://doi.acm.org/10.

1145/1242572.1242618.

[10] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and

Julia Lawall. Entropy: A consolidation manager for clusters. In Proceed-

ings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Vir-

tual Execution Environments, VEE ’09, pages 41–50, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-375-4. doi: 10.1145/1508293.1508300. URL

http://doi.acm.org/10.1145/1508293.1508300.

[11] Wubin Li, Johan Tordsson, and Erik Elmroth. Virtual machine place-

ment for predictable and time-constrained peak loads. In Proceedings of

the 8th International Conference on Economics of Grids, Clouds, Systems,

and Services, GECON’11, pages 120–134, Berlin, Heidelberg, 2012. Springer-

Verlag. ISBN 978-3-642-28674-2. doi: 10.1007/978-3-642-28675-9 9. URL

http://dx.doi.org/10.1007/978-3-642-28675-9_9.

[12] Kien Le, Ricardo Bianchini, Jingru Zhang, Yogesh Jaluria, Jiandong Meng,

and Thu D. Nguyen. Reducing electricity cost through virtual machine place-

ment in high performance computing clouds. In Proceedings of 2011 Inter-

national Conference for High Performance Computing, Networking, Stor-

age and Analysis, SC ’11, pages 22:1–22:12, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0771-0. doi: 10.1145/2063384.2063413. URL

http://doi.acm.org/10.1145/2063384.2063413.

[13] S. Chaisiri, Bu-Sung Lee, and D. Niyato. Optimal virtual machine placement

across multiple cloud providers. In Services Computing Conference, 2009.

APSCC 2009. IEEE Asia-Pacific, pages 103–110, Dec 2009. doi: 10.1109/

APSCC.2009.5394134.

[14] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal

scheduling in hybrid iaas clouds for deadline constrained workloads. In Cloud

http://doi.acm.org/10.1145/1242572.1242618
http://doi.acm.org/10.1145/1242572.1242618
http://doi.acm.org/10.1145/1508293.1508300
http://dx.doi.org/10.1007/978-3-642-28675-9_9
http://doi.acm.org/10.1145/2063384.2063413

Bibliography 123

Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages

228–235, July 2010. doi: 10.1109/CLOUD.2010.58.

[15] Wubin Li, J. Tordsson, and E. Elmroth. Modeling for dynamic cloud schedul-

ing via migration of virtual machines. In Cloud Computing Technology and

Science (CloudCom), 2011 IEEE Third International Conference on, pages

163–171, Nov 2011. doi: 10.1109/CloudCom.2011.31.

[16] Johan Tordsson, Rubén S. Montero, Rafael Moreno-Vozmediano, and Igna-

cio M. Llorente. Cloud brokering mechanisms for optimized placement of vir-

tual machines across multiple providers. Future Gener. Comput. Syst., 28(2):

358–367, February 2012. ISSN 0167-739X. doi: 10.1016/j.future.2011.07.003.

URL http://dx.doi.org/10.1016/j.future.2011.07.003.

[17] R. Moreno-Vozmediano, R.S. Montero, and IM. Llorente. Multicloud deploy-

ment of computing clusters for loosely coupled mtc applications. Parallel and

Distributed Systems, IEEE Transactions on, 22(6):924–930, June 2011. ISSN

1045-9219. doi: 10.1109/TPDS.2010.186.

[18] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente.

Elastic management of web server clusters on distributed virtual infrastruc-

tures. Concurr. Comput. : Pract. Exper., 23(13):1474–1490, September 2011.

ISSN 1532-0626. doi: 10.1002/cpe.1709. URL http://dx.doi.org/10.1002/

cpe.1709.

[19] M. Chowdhury, M.R. Rahman, and R. Boutaba. Vineyard: Virtual network

embedding algorithms with coordinated node and link mapping. Networking,

IEEE/ACM Transactions on, 20(1):206–219, Feb 2012. ISSN 1063-6692. doi:

10.1109/TNET.2011.2159308.

[20] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan

Luo, and Jie Wang. Virtual network embedding through topology-aware node

ranking. SIGCOMM Comput. Commun. Rev., 41(2):38–47, April 2011. ISSN

0146-4833. doi: 10.1145/1971162.1971168. URL http://doi.acm.org/10.

1145/1971162.1971168.

[21] I Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. Vne-ac: Virtual

network embedding algorithm based on ant colony metaheuristic. In Com-

munications (ICC), 2011 IEEE International Conference on, pages 1–6, June

2011. doi: 10.1109/icc.2011.5963442.

http://dx.doi.org/10.1016/j.future.2011.07.003
http://dx.doi.org/10.1002/cpe.1709
http://dx.doi.org/10.1002/cpe.1709
http://doi.acm.org/10.1145/1971162.1971168
http://doi.acm.org/10.1145/1971162.1971168

Bibliography 124

[22] J.F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A Fischer, and

H. De Meer. Energy efficient virtual network embedding. Communica-

tions Letters, IEEE, 16(5):756–759, May 2012. ISSN 1089-7798. doi:

10.1109/LCOMM.2012.030912.120082.

[23] Sen Su, Zhongbao Zhang, Xiang Cheng, Yiwen Wang, Yan Luo, and Jie Wang.

Energy-aware virtual network embedding through consolidation. In Computer

Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference

on, pages 127–132, March 2012. doi: 10.1109/INFCOMW.2012.6193473.

[24] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking vir-

tual network embedding: substrate support for path splitting and migration.

SIGCOMM Comput. Commun. Rev., 38(2):17–29, March 2008. ISSN 0146-

4833. doi: 10.1145/1355734.1355737. URL http://doi.acm.org/10.1145/

1355734.1355737.

[25] J. Lischka and H. Karl. A virtual network mapping algorithm based on

subgraph isomorphism detection. In Proceedings of VISA’09 the 1st ACM

workshop on Virtualized infrastructure systems and architectures, New York,

NY, USA c©2009, pages 81–88, Washington, DC, USA, 2009. ISBN 978-1-

60558-595-6. doi: 10.1145/1592648.1592662.

[26] Chowdhury N.M..M. Kabir, Rahman M. Raihan, and Boutaba Raouf. Virtual

network embedding with coordinated node and link mapping. In Networking,

IEEE/ACM Transactions on, pages 206–219, 2012. doi: 10.1109/TNET.2011.

2159308.

[27] Gang Wang, Zhenmin Zhao, Zhaoming Lu, Yi Tong, and Xiangming Wen.

A virtual network embedding algorithm based on mapping tree. In Com-

munications and Information Technologies (ISCIT), 2013 13th International

Symposium on, pages 243–247, Sept 2013. doi: 10.1109/ISCIT.2013.6645857.

[28] Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal Zeghlache. Vir-

tual network provisioning across multiple substrate networks. Computer

Networks, 55(4):1011 – 1023, 2011. ISSN 1389-1286. doi: http://dx.doi.

org/10.1016/j.comnet.2010.12.011. URL http://www.sciencedirect.com/

science/article/pii/S1389128610003786. Special Issue on Architectures

and Protocols for the Future Internet.

http://doi.acm.org/10.1145/1355734.1355737
http://doi.acm.org/10.1145/1355734.1355737
http://www.sciencedirect.com/science/article/pii/S1389128610003786
http://www.sciencedirect.com/science/article/pii/S1389128610003786

Bibliography 125

[29] Mosharaf Chowdhury, Fady Samuel, and Raouf Boutaba. Polyvine: Policy-

based virtual network embedding across multiple domains. In Proceedings of

the Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems

and Architectures, VISA ’10, pages 49–56, New York, NY, USA, 2010. ACM.

ISBN 978-1-4503-0199-2. doi: 10.1145/1851399.1851408. URL http://doi.

acm.org/10.1145/1851399.1851408.

[30] J. Xu, J. Tang, K. Kevin, W. Zhang, and G. Xue. Survivable virtual infras-

tructure mapping in virtualized data centers. In IEEE Fifth International

Conference on Cloud Computing, pages 196–203, 2012. doi: 10.1109.

[31] A. Amokrane, M.F. Zhani, R. Langar, R. Boutaba, and G. Pujolle. Green-

head: Virtual data center embedding across distributed infrastructures. Cloud

Computing, IEEE Transactions on, 1(1):36–49, Jan 2013. ISSN 2168-7161.

doi: 10.1109/TCC.2013.5.

[32] Yufeng Xin, Ilia Baldine, Anirban Mandal, Chris Heermann, Jeff Chase, and

Aydan Yumerefendi. Embedding virtual topologies in networked clouds. In

Proceedings of the 6th International Conference on Future Internet Technolo-

gies, CFI ’11, pages 26–29, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0821-2. doi: 10.1145/2002396.2002403. URL http://doi.acm.org/10.

1145/2002396.2002403.

[33] M.G. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-

benedetti Granville, and R. Boutaba. On tackling virtual data center em-

bedding problem. In Integrated Network Management (IM 2013), 2013

IFIP/IEEE International Symposium on, pages 177–184, May 2013.

[34] Tran Khan-Toan, Agoulmine Nazim, and Iraqi Youssef. Cost-effective com-

plex service mapping in cloud infrastructures. In Network Operations and

Management Symposium (NOMS), 2012 IEEE, pages 1–8, 2012. ISBN 978-

1-4673-0267-8. doi: 10.1109/NOMS.2012.6211876.

[35] Software-defined networking: The new norm for networks. In ONF White Pa-

per, April 2012. URL https://www.opennetworking.org/images/stories/

downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf.

[36] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao. Are we ready for sdn? implementation

http://doi.acm.org/10.1145/1851399.1851408
http://doi.acm.org/10.1145/1851399.1851408
http://doi.acm.org/10.1145/2002396.2002403
http://doi.acm.org/10.1145/2002396.2002403
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

Bibliography 126

challenges for software-defined networks. Communications Magazine, IEEE,

51(7):36–43, July 2013. ISSN 0163-6804. doi: 10.1109/MCOM.2013.6553676.

[37] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation in

campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March

2008. URL http://doi.acm.org/10.1145/1355734.1355746.

[38] Openflow switch specification. . URL http://archive.openflow.org/

documents/openflow-spec-v1.0.0.pdf.

[39] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado,

Nick McKeown, and Scott Shenker. Nox: Towards an operating system for

networks. SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.

ISSN 0146-4833. doi: 10.1145/1384609.1384625. URL http://doi.acm.org/

10.1145/1384609.1384625.

[40] T. S. Eugene Ng Zheng Cai, Alan L. Cox. Maestro: Balancing fairness, latency

and throughput in the openflow control plane. Technical Report TR11-07,

Rice University, December 2011.

[41] Floodlight: Java-based openflow controller. http://www.

projectfloodlight.org/floodlight/. Accessed September 20, 2014.

[42] Pox: Python-based openflow controller. http://www.noxrepo.org/pox/

about-pox/. Accessed September 20, 2014.

[43] David Erickson. The beacon openflow controller. In Proceedings of the Second

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,

HotSDN ’13, pages 13–18, New York, NY, USA, 2013. ACM. ISBN 978-1-

4503-2178-5. doi: 10.1145/2491185.2491189. URL http://doi.acm.org/10.

1145/2491185.2491189.

[44] Ryu. http://osrg.github.io/ryu/. Accessed September 20, 2014.

[45] Open daylight. http://www.opendaylight.org/, . Accessed September 20,

2014.

[46] Andreas Voellmy and Paul Hudak. Nettle: Taking the sting out of pro-

gramming network routers. In Proceedings of the 13th International Confer-

ence on Practical Aspects of Declarative Languages, PADL’11, pages 235–249,

http://doi.acm.org/10.1145/1355734.1355746
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://doi.acm.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2491185.2491189
http://osrg.github.io/ryu/
http://www.opendaylight.org/

Bibliography 127

Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-18377-5. URL

http://dl.acm.org/citation.cfm?id=1946313.1946339.

[47] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon

Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,

Takayuki Hama, and Scott Shenker. Onix: A distributed control platform

for large-scale production networks. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI’10, pages

1–6, Berkeley, CA, USA, 2010. USENIX Association. URL http://dl.acm.

org/citation.cfm?id=1924943.1924968.

[48] Snac. http://www.openflowhub.org/display/Snac/SNAC+Home. Accessed

September 20, 2014.

[49] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A language

for high-level reactive network control. In Proceedings of the First Workshop

on Hot Topics in Software Defined Networks, HotSDN ’12, pages 43–48, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1477-0. doi: 10.1145/2342441.

2342451. URL http://doi.acm.org/10.1145/2342441.2342451.

[50] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-

nifer Rexford, Alec Story, and David Walker. Frenetic: A network program-

ming language. In Proceedings of the 16th ACM SIGPLAN International Con-

ference on Functional Programming, ICFP ’11, pages 279–291, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.2034812.

URL http://doi.acm.org/10.1145/2034773.2034812.

[51] K. Yap G. Appenzeller M. Casado N. McKeown R. Sherwood, G. Gibb and

G. Parulkar. Flowvisor: A network virtualization layer. Technical report,

OpenFlow Switch Consortium, 2009.

[52] Nfv network functions virtualisation. http://portal.etsi.org/NFV/NFV_

White_Paper2.pdf. Accessed June 16, 2013.

[53] Etsi. http://www.etsi.org/technologies-clusters/technologies/nfv.

Accessed September 25, 2014.

[54] Network functions virtualisation (nfv); architectural framework.

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_

60/gs_NFV002v010101p.pdf, . Accessed September 28, 2014.

http://dl.acm.org/citation.cfm?id=1946313.1946339
http://dl.acm.org/citation.cfm?id=1924943.1924968
http://dl.acm.org/citation.cfm?id=1924943.1924968
http://www.openflowhub.org/display/Snac/SNAC+Home
http://doi.acm.org/10.1145/2342441.2342451
http://doi.acm.org/10.1145/2034773.2034812
http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf

Bibliography 128

[55] Network functions virtualisation (nfv); terminology for main concepts in

nfv. http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.

01_60/gs_NFV003v010101p.pdf, . Accessed September 28, 2014.

[56] Open plateform for nfv. https://www.opnfv.org/. Accessed September 28,

2014.

[57] Openstack neutron. https://wiki.openstack.org/wiki/Neutron. Ac-

cessed July 10, 2013.

[58] M.Mahalingam, D.Dutt, K.Duda, P.Agarwal, L. Kreeger, T. Sridhar,

M.Bursell, and C.Wright. Vxlan: A framework for overlaying virtualized

layer 2 networks over layer 3 networks. In IETF Draft draft-mahalingam-

dutt-dcops-vxlan-04.txt, May 2013. URL http://tools.ietf.org/html/

draft-mahalingam-dutt-dcops-vxlan-04.

[59] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Kopo-

nen, and Scott Shenker. Extending networking into the virtualization

layer. In Eight ACM Workshop on Hot Topics in Networks (HotNets-

VIII), HOTNETS ’09, New York City, NY, USA, October 22-23, 2009,

2009. URL http://conferences.sigcomm.org/hotnets/2009/papers/

hotnets2009-final143.pdf.

[60] The opennebula cloud platform. http://www.opennebula.org, . Accessed

July 15, 2013.

[61] Virtual router. http://www.opennebula.org/documentation:rel3.8:

router, . Accessed July 06, 2013.

[62] Provider router. http://docs.openstack.org/folsom/

openstack-network/admin/content/use_cases_single_router.html,

. Accessed July 03, 2013.

[63] S. Perera, R. Kumarasiri, S. Kamburugamuva, S. Fernando, S. Weerawarana,

and P. Fremantle. Cloud services gateway: A tool for exposing private services

to the public cloud with fine-grained control. pages 2237–2246, May 2012.

[64] M. Banikazemi, D. Olshefski, A Shaikh, J. Tracey, and Guohui Wang. Merid-

ian: an sdn platform for cloud network services. Communications Magazine,

IEEE, 51(2):120–127, February 2013.

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_NFV003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.01.01_60/gs_NFV003v010101p.pdf
https://www.opnfv.org/
https://wiki.openstack.org/wiki/Neutron
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-04
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-04
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf
http://www.opennebula.org
http://www.opennebula.org/documentation:rel3.8:router
http://www.opennebula.org/documentation:rel3.8:router
http://docs.openstack.org/folsom/openstack-network/admin/content/use_cases_single_router.html
http://docs.openstack.org/folsom/openstack-network/admin/content/use_cases_single_router.html

Bibliography 129

[65] Ramya Raghavendra, Jorge Lobo, and Kang-Won Lee. Dynamic graph query

primitives for sdn-based cloudnetwork management. pages 97–102, 2012. URL

http://doi.acm.org/10.1145/2342441.2342461.

[66] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The

cost of a cloud: Research problems in data center networks. SIGCOMM

Comput. Commun. Rev., 39(1):68–73, December 2008. ISSN 0146-4833. doi:

10.1145/1496091.1496103. URL http://doi.acm.org/10.1145/1496091.

1496103.

[67] AI Avetisyan, R. Campbell, I Gupta, M.T. Heath, S.Y. Ko, G.R. Ganger,

M.A Kozuch, D. O’Hallaron, M. Kunze, T.T. Kwan, K. Lai, M. Lyons, D.S.

Milojicic, Hing Yan Lee, Yeng Chai Soh, Ng Kwang Ming, J-Y. Luke, and

Han Namgoong. Open cirrus: A global cloud computing testbed. Computer,

43(4):35–43, April 2010. ISSN 0018-9162. doi: 10.1109/MC.2010.111.

[68] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow.

Blueprint for the intercloud - protocols and formats for cloud computing in-

teroperability. In Internet and Web Applications and Services, 2009. ICIW

’09. Fourth International Conference on, pages 328–336, May 2009. doi:

10.1109/ICIW.2009.55.

[69] Sail project. www.sail-project.eu. Accessed September 9, 2014.

[70] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song. Enhancing dynamic

cloud-based services using network virtualization. SIGCOMM Comput. Com-

mun. Rev., 40(1):67–74, January 2010. URL http://doi.acm.org/10.1145/

1672308.1672322.

[71] “Amazon Virtual Private Cloud”. [Online; accessed on 03/07/2013]. http:

//awsdocs.s3.amazonaws.com/VPC/latest/vpc-gsg.pdf.

[72] “Amazon elastic computing cloud”. [Online; accessed on 03/07/2013]. http:

//aws.amazon.com/ec2.

[73] T. Wood, A. Gerber, K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe.

The case for enterprise-ready virtual private clouds. 2009. URL http://dl.

acm.org/citation.cfm?id=1855533.1855537.

http://doi.acm.org/10.1145/2342441.2342461
http://doi.acm.org/10.1145/1496091.1496103
http://doi.acm.org/10.1145/1496091.1496103
www.sail-project.eu
http://doi.acm.org/10.1145/1672308.1672322
http://doi.acm.org/10.1145/1672308.1672322
http://awsdocs.s3.amazonaws.com/VPC/latest/vpc-gsg.pdf
http://awsdocs.s3.amazonaws.com/VPC/latest/vpc-gsg.pdf
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://dl.acm.org/citation.cfm?id=1855533.1855537
http://dl.acm.org/citation.cfm?id=1855533.1855537

Bibliography 130

[74] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong.

Enacloud: An energy-saving application live placement approach for cloud

computing environments. In IEEE CLOUD, pages 17–24, 2009.

[75] B. Speitkamp and M. Bichler. A mathematical programming approach for

server consolidation problems in virtualized data centers. Services Computing,

IEEE Transactions on, 3(4):266 –278, oct.-dec. 2010. ISSN 1939-1374. doi:

10.1109/TSC.2010.25.

[76] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: Power and

migration cost aware application placement in virtualized systems. In Mid-

dleware, pages 243–264, 2008.

[77] Muntasir Raihan Rahman, Issam Aib, and Raouf Boutaba. Survivable vir-

tual network embedding. In Proceedings of the 9th IFIP TC 6 interna-

tional conference on Networking, NETWORKING’10, pages 40–52, Berlin,

Heidelberg, 2010. Springer-Verlag. ISBN 3-642-12962-5, 978-3-642-12962-

9. doi: 10.1007/978-3-642-12963-6 4. URL http://dx.doi.org/10.1007/

978-3-642-12963-6_4.

[78] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources

to virtual network components. In INFOCOM 2006. 25th IEEE International

Conference on Computer Communications. Proceedings, pages 1 –12, april

2006. doi: 10.1109/INFOCOM.2006.322.

[79] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia

Lawall. Entropy: a consolidation manager for clusters. In Proceedings of the

2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments, VEE ’09, pages 41–50, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-375-4. doi: 10.1145/1508293.1508300. URL http://doi.acm.

org/10.1145/1508293.1508300.

[80] Zampelli Stephane, Deville Yves, and Solnon Christine. Solving subgraph

isomorphism problems with constraint programming. volume 15, pages 327–

353. Springer, July 2010. doi: 10.1007/s10601-009-9074-3. URL http://

liris.cnrs.fr/publis/?id=4328.

[81] M. Garey and D. Johnson. Computers and intractability. Freeman and Co.,

New York, 1979.

http://dx.doi.org/10.1007/978-3-642-12963-6_4
http://dx.doi.org/10.1007/978-3-642-12963-6_4
http://doi.acm.org/10.1145/1508293.1508300
http://doi.acm.org/10.1145/1508293.1508300
http://liris.cnrs.fr/publis/?id=4328
http://liris.cnrs.fr/publis/?id=4328

Bibliography 131

[82] IBM ILOG CPLEX (june 2012). http://www.aimms.com/cplex-solver-for-

linear-programming2?gclid=CLKI-56wrbACFVMetAodGRPLVA.

[83] B. Korte and J. Vygen. Combinatorial optimization: theory and algorithms.

2005.

[84] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation

of the vf graph matching algorithm. In ICIAP ’99: Proceedings of the 10th

International Conference on Image Analysis and Processing, page 1172. IEEE

Computer Society, Washington, DC, USA, 1999.

[85] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee. How to model an internet-

work. 2:594–602 vol.2, Mar 1996.

[86] Virtual Network Embedding Simulator. https://github.com/minlanyu/embed.

[87] . “Open Cloud Computing Interface OCCI”. [Online; accessed on

13/07/2013]. http://occi-wg.org/about/specification/.

[88] Occi core model. http://ogf.org/documents/GFD.183.pdf, . Accessed July

15, 2013.

[89] “CompatibleOne Software Appliance Configuration Services”. [Online; ac-

cessed on 03/07/2013]. http://gitorious.ow2.org/ow2-compatibleone/

accords-platform/trees/master/cosacs/.

[90] Elastic ip address limitation in amazon. http://aws.amazon.com/articles/

1346. Accessed July 16, 2013.

[91] “CompatibleOne Resource Description Schema (CORDS)”. [Online; accessed

on 03/07/2013]. http://compatibleone.org/bin/download/Download/

Software/CordsReferenceManualV2.15.pdf.

[92] “Advanced Capabilities for CORDS”. [Online; accessed on 03/07/2013].

http://compatibleone.org/bin/download/Download/Software/

AccordsPlatformv1.4.pdf.

[93] Houssem Medhioub. Python open cloud networking interface. https://

github.com/jordan-developer/pyOCNI. Accessed Junary 9, 2012.

http://occi-wg.org/about/specification/
http://ogf.org/documents/GFD.183.pdf
http://gitorious.ow2.org/ow2-compatibleone/accords-platform/trees/master/cosacs/
http://gitorious.ow2.org/ow2-compatibleone/accords-platform/trees/master/cosacs/
http://aws.amazon.com/articles/1346
http://aws.amazon.com/articles/1346
http://compatibleone.org/bin/download/Download/Software/CordsReferenceManualV2.15.pdf
http://compatibleone.org/bin/download/Download/Software/CordsReferenceManualV2.15.pdf
http://compatibleone.org/bin/download/Download/Software/AccordsPlatformv1.4.pdf
http://compatibleone.org/bin/download/Download/Software/AccordsPlatformv1.4.pdf
https://github.com/jordan-developer/pyOCNI
https://github.com/jordan-developer/pyOCNI

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Virtual networked infrastructures provisioning
	1.2 Research Problems and Objectives
	1.3 Contributions
	1.4 Thesis Organization

	2 The State of the Art
	2.1 Introduction
	2.2 Cloud Computing: background and challenges
	2.2.1 Cloud Computing
	2.2.1.1 Cloud service models
	2.2.1.2 Cloud deployment models

	2.2.2 Virtualization
	2.2.3 Challenges

	2.3 Cloud and Network provisioning
	2.3.1 VM mapping problem
	2.3.2 Virtual network mapping problem
	2.3.3 Virtual networked infrastructure mapping problem

	2.4 Cloud networking, SDN and NFV
	2.4.1 Software-Defined Networking
	2.4.2 Network functions virtualization
	2.4.3 Cloud Networking

	2.5 Conclusions

	3 Exact Algorithm
	3.1 Introduction
	3.2 System model
	3.2.1 Virtual Infrastructure Mapping problem

	3.3 The exact algorithm
	3.4 Performance evaluation
	3.5 Conclusions

	4 Pattern Centric Matching Algorithm
	4.1 Introduction
	4.2 Pattern Centric Matching Algorithm (PCMA)
	4.2.1 Graph decomposition
	4.2.2 Maximum matching on bipartite graph
	4.2.3 Description of a distance metric
	4.2.4 Description of the heuristic approach (PCMA)

	4.3 Computational complexity
	4.4 Performance evaluation
	4.4.1 Simulation and Evaluation Conditions and Settings
	4.4.2 Results
	4.4.2.1 Heuristic-PCMA algorithm scalability
	4.4.2.2 Tenant satisfaction

	4.5 Conclusions

	5 Network Instantiation
	5.1 Introduction
	5.2 Cloud Networking Architecture
	5.2.1 CNG: Cloud Networking Gateway
	5.2.2 CNG Manager
	5.2.2.1 CNG Manager Components
	5.2.2.2 Isolation using CNG Manager

	5.3 CNG Manager and network deployment
	5.3.1 CNG Manager for traditional network deployment
	5.3.2 CNG Manager used for SDN deployment

	5.4 Experimental results
	5.4.1 CNG Manager in a real framework
	5.4.2 CNG evaluation

	5.5 Conclusions

	6 Conclusions and Perspectives
	6.1 Conclusions and discussions
	6.2 Future Research Directions

	A Thesis Publications
	B CNG Manager: Installation, Configuration and utilization
	B.1 Introduction
	B.2 Getting the CNG image file
	B.3 Installing CNG Manager
	B.4 Starting CNG Manager
	B.5 Network configuration example

	C Résumé en Français
	C.1 Introduction
	C.2 Algorithme exact
	C.3 Algorithme de couplage basé sur les patterns de graphe (PCMA)
	C.3.1 Graph decomposition
	C.3.2 Maximum matching on bipartite graph
	C.3.3 Description de la métrique de distance
	C.3.4 Description de l'approche heuristique (PCMA)

	C.4 Architecture du Cloud Networking
	C.4.1 CNG: passerelle générique pour le Cloud Networking
	C.4.2 CNG Manager: gestionnaire de passerelle
	C.4.2.1 Les composants de CNG Manager
	C.4.2.2 Isolation en utilisant le CNG Manager

	C.4.3 Le deployment réseau via CNG Manager

	C.5 Conclusion

	Bibliography

