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Abstract

The automatic reconstruction of a scene surface from images taken by a moving
camera is still an active research topic. This problem is usually solved in two steps:
first estimate the camera poses and a sparse cloud of 3D points using Structure-from-
Motion, then apply dense stereo to obtain the surface by estimating the depth for
all pixels.

Compared to the previous approaches, ours accumulates the following proper-
ties. The output surface is a 2-manifold, which is useful for applications and post-
processing. It is computed directly from the sparse point cloud provided by the
first step, so as to avoid the second and time consuming step and to obtain a com-
pact model of a complex scene. The computation is incremental to allow access to
intermediary results during the processing.

The principle is the following. At each iteration, new 3D points are estimated
and added to a 3D Delaunay triangulation; the tetrahedra are labeled as free-space
or matter thanks to the visibility information provided by the first step. We also
update a second partition of outside and inside tetrahedra whose boundary is the
target 2-manifold. Under some assumptions, the time complexity of one iteration
is bounded (there is only one previous method with the same properties, but its
complexity is greater than that).

Our method is experimented on synthetic and real sequences, including a 2.5 km.
long urban sequence taken by an omnidirectional camera. The surface quality is
similar to that of the batch method which inspired us. However, the computations
are not yet real-time on a commodity PC. We also study the use of contours in the
reconstruction process.

Key words: Surface reconstruction, Geometry estimation from a set of images,
Sculpture, Delaunay 3D, 2-Manifold.
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Résumé

Un probléme toujours d'actualité est la reconstruction automatique de la surface
d'une scéne a partir du flot d'images prises par une caméra en mouvement. Il se
résout en général en deux étapes : le calcul de la géométrie o les poses de la caméra
et un nuage épars de points 3D de la scéne sont simultanément estimés, et un calcul
de stéréo dense qui permet d'obtenir une surface en estimant la profondeur de tous
les pixels.

L approche que nous proposons se distingue des précédentes en cumulant les
caractéristiques suivantes. La surface est une 2-variété, ce qui est utile pour les trai-
tements ou utilisations ultérieurs. Elle est calculée directement a partir du nuage
épars donné par la premiére étape, afin d'éviter la seconde étape coliteuse et pour
obtenir une modélisation compacte d'une scéne complexe. Le calcul est incrémen-
tal afin d'avoir un résultat pendant la lecture de la vidéo.

Le principe est le suivant. A chaque itération, de nouveaux points 3D sont esti-
més et insérés dans une triangulation de Delaunay 3D. Celle-ci partitionne 1'espace
en tétraédres vides et pleins grice a l'information de visibilité également fournie
par la premiére étape. On met aussi 4 jour une seconde partition en tétraédres in-
térieurs et extérieurs dont le bord est la 2-variété recherchée. Sous certaines hypo-
theses, et contrairement a la seule méthode précédente ayant les méme propriétés
et hypotheéses, la complexité d'une itération est bornée.

Notre méthode a été expérimentée sur des séquences synthétiques et réelles,
dont une séquence longue de 2,5 km prise en milieu urbain avec une caméra om-
nidirectionnelle. La qualité du résultat est proche de celle obtenue par la méthode
globale (non incrémentale) qui a servi d'inspiration, mais le temps de calcul ne per-
met pas actuellement une utilisation en-ligne sur un PC standard. On a aussi étudié
l'intérét d'ajouter des contours dans le processus de reconstruction.

Mots clés : Reconstruction de surface, Estimation de géométrie a partir d'images,
Sculpture, Delaunay 3D, 2-Variété.
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Introduction

Being able to calculate a 3D representation of a surface from a video sequence is a
classical problem in the domain of Computer Vision. The majority of the current
automatic methods proceed in two distinct steps. First, a Structure-from-Motion
(§fM) algorithm is used to compute the cameras poses associated to each input im-
age. Second, a dense stereo step is performed to compute the 3D points (or depths)
associated to each pixel of the input images and a surface is computed from this
dense 3D point cloud. However, SfM already provides a sparse cloud of points as
a byproduct of poses computation. So, it would be interesting, from the computa-
tional point of view, to calculate the surface directly from it. The main objective
of this dissertation is to continue the previous works in this direction.

So, the objective of this work is to develop an algorithm capable of reconstruct-
ing a realistic and long scenes, i.e. a method that takes a sequence of images as its
input and produces a 3D surface that closely approximates the observed scene. We
want this method to be sparse, i.e. to extract a necessary minimum of information
from the input images. We want it to be ncremental, i.e. we want to be able to ac-
cess to the intermediary surfaces during the processing of the input video sequence.
Last, we want the output surface to be z-manifold, i.e. being a suitable input for the
majority of the surface processing algorithms.

Such a method has a lot of potential applications. First of all, a sparse method
would have a reduced memory consumption and an incremental one would have it
bounded, this will allow to reconstruct very large scale scenes. Another potential
application would be the dynamic obstacle detection (for a mobile robot for in-
stance), thanks to the incremental method ability to dynamically update the scene.
Finally, such a method could be useful for correct occlusion handling in augmented
reality.

‘We will begin by reviewing the motivations behind each of the three algorithm
key properties (sparse, incremental, z-manifold) in section I.1 and so why such an algo-
rithm would be interesting. Then, we will review the set of hypothesis that restrain
this work to a reasonable scope in section I.2. Next, section 1.3 will review the ma-
jor and secondary contributions. Last, section I.4 will discuss the general structure
of this dissertation.



2 |. Introduction

.1 Motivations

‘We want to develop a surface reconstruction method having three key properties
at the same time: a method that is sparse, incremental and enforcing the topological
constraints of the output surface (output is a 2-manifold). In this section we explain
why each one of these properties is interesting in practice.

.1.1 Why a 2-manifold?

Although triangulated manifold surfaces are widely used, it is useful to remind their
definition and explain their importance. The importance of the manifold property
is acknowledged in Computer Graphic and Computational Geometry, but Com-
puter Vision works similar to ours {Hiltonos, Labatuto7, Panog, Loviro} have a
tendency to ignore this property.

A surface is said 2-manifold if the neighborhood of each surface point is topolog-
ically a disk {Botschiol. A triangulated manifold without boundary is, in practice,
represented by a list of triangles, each triangle shares each of its edges with exactly
one another triangle of the list. Such a surface divides the space into two distinct
regions: inside and outside (inside can be non connected).

Such a property is needed by the surface denoising and also required by other
post-processing or refinements on the surface like dense stereo and surface fairing.
Assuming that the true scene surface is a smooth z-manifold, the continuous dif-
ferential operators of normal and curvature are well defined. If the triangle list
which approximates the true surface is also a 2-manifold, these operators can be ex-
tended to the discrete case [Meyero3, Botschrol. More generally, a lot of Computer
Graphic algorithms do not apply if the triangle list is not a z2-manifold {Botschiol.
We also use the manifold property as a constraint to search the surface interpolating
the point cloud (and reject some bad points).

.1.2 Why a sparse method?

The majority of the surface reconstruction methods found in the literature are
dense, i.e. they use the totality of the pixels of the input images. This kind of
methods have the advantage to provide good results, i.e. the reconstructions are
both visually appealing and detailed. Nevertheless, a sparse approach, i.e. a method
that only reconstructs in 3D the "interesting" parts of the image would have several
advantages.

The first and the most obvious advantage is the run time improvement. The
dense approaches are usually computationally expensive, because they need to per-
form alot of photo-consistency calculations across a lot of views and for many depth
hypotheses. Sparse approaches on the other hand only work with a limited number
of entries and so perform less 3D computations. When compared on a standard
small scale multi-view data set {Seitzo6, Midl, dense CPU based approaches taking
hours when a sparse one takes seconds {Yuisl. So, a sparse approach would be much
more convenient for the reconstruction of large scale scenes.

The second advantage of a sparse algorithm over a dense one is the memory us-
age. In fact, dense methods usually perform a regular subdivision of space. This is
OK if the observed scene is relatively small but quickly become cumbersome when
the size of the scene grows. Moreover, a regular subdivision of space have another
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troublesome consequence: even the flat portions of the output surface are subdi-
vided in many triangles. So a sparse method would not only consume less memory
during the reconstruction process, but also produces a lighter and more compact
3D model. Once again, this property made it more suitable for the large scale scenes
reconstruction.

These two advantages makes a sparse method useful when the computation time
and the memory usage efficiency is at least as important as the output surface qual-
ity. Particularly, we could cite large scale scenes reconstruction {Lhuillierr3} and
the reconstruction on the devices with limited resources {Pan11]l. Moreover, such
a method could be useful to initialize a more precise, but slower, dense reconstruc-
tion {Estebanog4, Hiepogl.

[.1.3 Why an incremental method?

A surface reconstruction method is said incremental if it reads the input images in
order (from the oldest to the newest one) and provides the intermediary surfaces
for each of these images. Such a method would have several advantages over a more
classical batch approaches.

The first and the more obvious advantage is the ability to give access to the
intermediary surfaces for each input image. This actually allows the algorithm to
be used on-line {Lovirol if the iterations are fast enough. This can be useful for
applications such as mobile robot navigation and obstacle detection. Another po-
tential application is the augmented reality, for example for the correct handling
of the virtual object occlusions. Finally, the real time visualization of the partially
reconstructed surface can allow the user to select the next image taking point in a
way to better retrieve the lacking details {Panog}.

A less obvious advantage lies in the domain of memory consumption. In fact,
for each input image, an éncremental method would only modify a small portion
of the surface. This locality of the modification would theoretically allow to dis-
charge the biggest part of the data structures to a more slow but usually much big-
ger support (i.e. a hard drive). This low and constant memory consumption makes
incremental methods highly useful when reconstructing very large scale scenes.

.2 Hypotheses

Reconstructing a 3D surface from a video sequence in a general context is a too
ambitious problem. To ensure that such a task is feasible, this work is restrained
by a set of hypotheses. These hypotheses are:

1. The observed scene is rigid;

2. The #ntrinsic calibration of the camera used to record the input sequence is
known;

3. The camera used to record the input sequence is omnidirectional.

The first hypothesis ensures the feasibility of the computations. Although
the algorithms reconstructing deformable surfaces exists, they need a set of prior
knowledge about the observed surface. Of course, an observed scene is never 100%
rigid, but mobile objects are intrinsically filtered by the Structure-from-Motion algo-
rithm.
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The knowledge of the intrinsic parameters (the second hypothesis) is a classi-
cal assumption. The geometry estimation can be done without this knowledge
[Hartleyo4l, but the computations would be less accurate and suffer from addi-
tional uncertainties.

Finally, the third hypothesis is here because our main objective is to recon-
struct a large scale complex scene including all its components (ground, buildings,
rooftops, etc.). Although it is possible with a classical camera, it would require
more efforts to capture the entire environment.

[.3 Contributions

During the work on this dissertation, two major and several secondary contribu-
tions were produced. These contributions were presented during three interna-
tional and one national conferences.

The major contributions are:

* A sparse incremental surface reconstruction method that guarantees that out-
put surface is 2-manifold. Contrary to the previous works {Yuiz], the time of
one iteration is bounded in practice even when the input trajectory contains
one or several loops. This work was published in [Litvinovis} and [Litvinovi4al.

* A new algorithm for artifacts removal step. It is almost as efficient as the
previous one [Lhuillier13l, but, at the same time, faster and easier to use in
an incremental context. It was published in {Litvinovi4bl.

The secondary contributions are:

* The batch sparse 3D surface reconstruction algorithm from {Lhuillieris} is
adapted to use a rigid multi-camera system instead of a single catadioptric
camera.

* Key frame selection algorithm from {Mouragnonog} is improved by the intro-
duction of an additional criterion.

* The influence of the input images resolution on the output surface quality is
studied.

* An additional acute tetrahedra removal step is added to the batch and incre-
mental versions of the algorithm. It enhances the quality of the output sur-
face.

* The performance of the batch sparse 3D surface reconstruction method from
[Lhuillier13} is evaluated using the standard multi-view data sets {Seitzo6,
Strechao8l. It was published in {Litvinovr2}.

* The performance of this method is evaluated when curves are added in addi-
tion to interest points. Also published in {Litvinovrz}.

* The overall execution speed is improved with the help of the parallel pro-
cessing.
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.4 Structure of this dissertation

This dissertation is structured in seven chapters. The second chapter is the state of
the art of the image based surface reconstruction. It quickly reviews the different
types of the surface reconstruction methods found in the literature. The works
closest to ours are reviewed in more details.

The next two chapters discuss the core of the subject: the sparse incremental sur-
face reconstruction method. The third chapter details the mathematical modeling
of the rigid multi-camera system and the Structure-from-Motion algorithm used to
compute a 3D cloud of points from a series of images. The fourth chapter dis-
cusses the surface reconstruction algorithm. The algorithm is explained in details
and its complexity is analyzed. In the fifth chapter the algorithm is experimented
on the real and synthetic data sets.

The sixth chapter focuses on a particular step of the algorithm: the artifacts re-
moval step. Itis the slowest part of the algorithm, so finding a faster way to perform
this step is interesting to accelerate the overall algorithm. Two new possible algo-
rithms are presented as well as their complexities. Then, they are experimented on
a real data set and their performances are compared to the old algorithm.

Finally, the seventh chapter studies what happens when the curves are added
to the surface reconstruction pipeline. Different ways to use curves in the domain
of surface reconstruction found in the literature are reviewed. Additional steps
needed to integrate the curves into the reconstruction process are detailed. Finally,
the performance of the algorithm with and without curves is evaluated using some
standard multi-view data sets.
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CHAPTER I

State of the art of image based surface
reconstruction

Multi-view scene reconstruction is a vast topic of the computer vision and it was
discussed in a lot of previous works. This chapter is an attempt to provide an
overview of the literature on the subject. Of course, because of the great number
of publications this overview can't be, and is not meant to be, exhaustive. Only the
works close enough to the subject of this dissertation are discussed. Specifically,
all the works that considers deformable or mobile objects are willingly omitted.
Moreover, we consider only the publications using passive sensors exclusively, i.e.
any kind of camera, but not a radar, lidar or similar technology.

Our main classification criterion will be the density of the image features used
to reconstruct the final surface. Section II.1 considers the methods that use the
totality of the pixels of the input image: the dense modeling methods. Sections I1.2
and I1.3 considers the sparse methods, i.e. the methods that use only a relatively
small number of pixels.

Moreover, we subdivide the previous works in function of the way they access
the input sequence. The methods that use all the images of the sequence at the
same time are called batch methods and are discussed in subsections II.1.1 and I1.1.3
and section I1.2. The methods that access the input images in a chronological order
are called zncremental and are discussed in subsection I1.1.4 and section I1.3.

The reason why the sparse methods have two dedicated sections and the dense
methods only one is because this dissertation main contribution is a new sparse
method. So it seems appropriate to discuss the other sparse methods in greater
detail.

Finally, the classification of the multi-view surface reconstruction methods pro-
posed in this document is, of course, not the only one possible. The curious reader
can refer himself to {Seitzo6} for a more detailed discussion on the possible classi-
fication criteria.
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.1 Dense modeling methods

We begin our overview by the dense family of 3D surface modeling methods. For
memory, a multi-view surface reconstruction method is called dense if it uses the
totality or almost the totality of the pixels of the input images.

Usually, this kind of algorithms requires that the input images are fully cali-
brated, i.e. not only the camera 7ntrinsic parameters, but also the relative trans-
formations (rotations and translations) between images taking points are known.
Finding this calibration is a very classical and well studied problem of the computer
vision. There is alot of algorithms to choose from, depending on the context of the
problem. The reader can refer himself to {Hartleyo4} for an extensive overview.

The batch dense variation of the surface reconstruction algorithms is the most
commonly found in the literature. We can separate these methods into two cat-
egories: those which use the input images directly (subsection II.1.1) and those
which first reconstruct all the pixels (subsection I1.1.2) and then builds the surface
using the dense 3D point cloud (subsection I1.1.3).

I.L1.1 Batch methods using the input images directly

In the first place, let us consider the methods that use the input images directly.
These approaches can be classified by the data structures they use during the re-
construction process. We find the methods using voxels, level sets and triangular
meshes.

The voxel based methods {Seitzgg, Kutulakosoo, Broadhurstoi, Slabaughoy,
Treuilleo4} use a cartesian grid to represent a volume to model. The exact dimen-
sion of the volume must be either provided by the algorithm user or computed by
some other mean. Each individual cell of this volume is called a voxe/ and the en-
tire volume is called a voxel-occupancy function. To decide if a voxel is occupied or
free, the majority of the methods {Kutulakosoo, Seitz99, Slabaughoy, Treuilleo4}
compute its photo-consistency score by back-projecting it to the input images. The
color deviation of the pixels must be inferior to some user defined threshold. The
values of voxel-occupancy function are computed in an order to prevent the occlusion
problems. Finally, the computed grid can be converted to a triangular mesh using
an algorithm such as "marching cubes" [Lorensen871.

The other way to model the scene to reconstruct is to use a level set of a scalar
function f(x) as in {Faugeras98, Lhuilliero3, Jinos, Ponso7l. The surface to model
is an émplicit surface at f(x) = 0. In practice, f(x) is sampled on a cartesian grid.
The basic idea is to initialize f(x) to some initial guess and then to evolve it to
maximize the photo-consistency of the surface with the input images, this is why
these methods are called variational. For example, [Faugeras98l} defines the speed
of evolution of a point x along its normal to the surface based on the similarity
between the back-projections of x to the input images. The final surface mesh can,
again, be computed by an algorithm such as {Lorensen87]. The main interest of this
kind of approaches is the fact that the surface topology can change during workflow
without any side effects.

The same basic principles as in the voxe/ and Jeve/ set based methods can also
be directly applied to a triangular mesh. For memory, a triangular mesh is a set of
vertices connected by edges and triangular faces and it is a most common and effi-
cient way to store and process 3D models. The methods {Vogiatzisos, Hornungo6,
Trano6, Vogiatziso7} represents the cartesian grid of the volume to model as a
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graph. The nodes of the graph are the voxels of the grid and the edges are the
faces separating two voxels. The edges are weighted by a cost function. For exam-
ple, in [Vogiatzisos} the cost of an edge is a mean value of the photo-consistency
of the two connected voxels. The final mesh is directly computed as a minimal cut
(minimal cost) of the graph. On the other hand, the methods {Fuags, Isidoroos,
Estebano4, Francoogl are variational approaches that deforms the mesh directly by
trying to minimize a cost function. For example, in {Fuags} the cost function is a
weighted sum of three terms: a smoothing term, a term of intensity correlation over
a series of input images and a smoothing based on albedo coefficient of adjacent
triangles (ratio of reflected to incident light).

[.1.2 Dense point cloud generation

Instead of using the input images directly, another large family of dense surface re-
construction methods works with a dense cloud of 3D points. Therefore, these
algorithms can be separated into two well distinct steps: dense point cloud gener-
ation and surface reconstruction. In this subsection we will overview the methods
to generate the cloud of points.

To generate a cloud of 3D points from a series of images, a classic way to proceed
is to compute a disparity map for each pair of images. A disparity map is a vector field
that associates a 2D disparity vector to each pixel of the first image. A disparity vec-
tor represents a displacement between the considered pixel and the corresponding
pixel in the second image.

So the problem is to associate the pixels between two images. For a vast ma-
jority of dense matching algorithms, the first step is to rectify the input images for
the disparity vectors to become 1D. Notable exception to this rule are {Collins96,
Lhuillieroz, Yangosl. During the rectification step, the images are deformed in a
way for epipolar lines to become horizontal. For memory, an epipolar line is an in-
tersection of plane containing the two cameras centers and the image plane. This
way, the pixel of the second image associated to the pixel of the first image lie
somewhere on the corresponding line and not anywhere in the image. It can now
be found either using the similarity (Zero Norm Cross-Correlation (ZNCC)) or dis-
similarity (Sum of Squared Difference (SSD)) applied to a window of pixels.

In practice, performing a dense matching using only similarity comparison is
insufficient because of a great number of false positive matches. So, another set of
constraints should be added to the problem such as uniqueness, disparity continu-
ity, matches ordering on the epipolar line, etc. {Dhond89]) So the pixel matching
becomes a cost function optimization problem. The cost function can be mini-
mized locally for each pixel as in {Kanadeg4, Bobickggl. Another approach is to
minimize the global energy function which combines the constraints of individual
pixels as in {Roy98, Brownosl.

Once the disparity maps have been computed, we could compute a depth map
for each input image {Faugerasg3l. A depth map (or Z-buffer) associates a depth
information to each pixel. The depth of a pixel is the euclidian distance between
the camera center and the corresponding 3D point. This value can be computed
thanks to the cameras calibration information and matching.

Some 3D surface reconstruction methods can use the depth maps directly, but
this data structure is not well suited for this problem, fortunately it can easy be
converted to organized or unorganized point clouds. An organized point cloud is a
3D point cloud where the connections between the points are known. Because we
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know the positions of the cameras centers and the distances between the centers
and the observed points for each pixel, the 3D coordinates for each point are easily
computed. Some surface reconstructions algorithms use the additional information
provided by the organized point cloud to enhance the modeling process.

An unorganized point cloud is a cloud where each point is independent. It can be
computed by registering the depth maps into the same coordinate system. This pro-
cess is usually performed using the ICP algorithm {Beslg2}. Let call P; the point
cloud computed from one depth map I;. The transformation (rotation and transla-
tion) between two point clouds P; and P is iteratively refined by minimizing a cost
function. The cost function is a sum of squared distances between the same points
in the different point clouds.

II.L1.3 Batch methods using the dense point cloud

The generation of dense cloud of 3D points has been discussed in the previous sub-
section, so now we proceed to a brief overview of surface reconstruction methods
that uses this cloud of points as their input. This kind of algorithms is quite fre-
quently found in the literature. For the sake of clarity, the input dense cloud of
points will be called P in the remaining of this subsection.

3D Delaunay triangulation based methods

The first type of methods are those which use the 3D Delaunay triangulations and
Voronoi diagrams. The Delaunay triangulation and its properties will be discussed
in details in the chapter IV, but for memory, a Delaunay triangulation 7' is a triangu-
lation of a set P of 3D points such as for any tetrahedron A € T, its circumscribing
sphere doesn't contain any points of P. The Voronoi diagram is the dual of the
Delaunay triangulation. More precisely, the Voronoi diagram V of P is a cellular
complex having several properties. The first property is for each cell ¢ € V it exists
one and only one point p € P such as p € c. The second is for each point x € ¢ and
for each point p’ € P\ {p}, ||p — x|| < ||p’ — x||, i.e. the distance between x and
p is smaller than the distance between x and any other point of P. The Delaunay
triangulation is frequently used in the field of surface reconstruction because it can
be proven that it contains a "good" approximation of the surface ([Cazalso4D.

The methods {Amentagg, Amentaooa} reconstruct the surface using the prop-
erties of the Voronoi diagrams. For a point p € P, we call the poles p* and p~
of p the two furthest vertices of the Voronoi cell of p. The poles of a Voronoi dia-
gram are usually far from the surface to reconstruct, so the algorithms proceed by
computing a Delaunay triangulation of P and the poles of the Voronoi diagram of
P, then by eliminating the triangles which poles as vertices. Finally they eliminate
the irregular triangles. A triangle is irregular if the angles between its normal and
vectors from vertices to poles are large. Finally, a set of triangles such that each
edge has at last two adjacent triangles is constructed and the final surface is grown
inside this set. The method [Amentaooal is a simplification of {Amentaggl which
works directly with a Delaunay triangulation of P.

Another interesting property of Delaunay triangulation that can be used to
reconstruct a surface is the property of Delaunay circumspheres or polar balls
(because they are centered at the poles). The union of these balls can be used to
approximate the surface to compute. This property is exploited by {Amentaor,
Deyo4, Kollurio4l. For example, the method [Amentaorl uses a power diagram.
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This diagram partitions the space into polyhedral cells, one cell per polar ball. Each
cell contains the points such as their distance to the corresponding polar ball is
smaller than the distance to other polar balls. The cells are sorted into two cat-
egories: inner and outer, by using the heuristic from {Amentaoobl. The resulting
surface is the frontier between these two categories.

Finally, a last big family of methods based on Delaunay triangulation are sculpt-
ing methods {Boissonnat84, Edelsbrunner9g4, Bajajos, Veltkampos, Florianig8].
The basic idea of this algorithms is to perform a Delaunay triangulation T" of the
point cloud P and then to remove the tetrahedra from it, thus sculpting the triangu-
lation. The first paper to discuss this approach was [Boissonnat84}. In this article,
the tetrahedra were removed from 7" one-by-one by an order of priority until all
the points of P appear on the exterior surface (boundary) of the triangulation. The
priority criterion was the maximum of distances between the faces of the tetrahe-
dron and the circumscribing sphere of this tetrahedron. An interesting property
of this method is the fact that the resulting surface is 2-manifold, but it's genus
can only be zero. This problem was resolved by [Florianig8} by removing tetra-
hedra by packs instead of one-by-one. More recent sculpting methods can also use
a-shapes {Bajajos, Edelsbrunnerg4l, geometric convection and the Gabriel prop-
erty {Chaineos} or graph cut energy optimization {Labatutog, Jancosekii}l. The
methods {Boissonnat84} and [Amentaocoal can also be used together for better re-
sults as in {Gezahegneosl.

Triangulated mesh based methods

The second type of point cloud based methods are those which form the triangu-
lated mesh directly by connecting the neighboring points. They are very few and
usually require that the input point cloud is sufficiently dense and uniform. In this
family, we could find the BPA (Ball-Pivoting Algorithm) {Bernardinigg} which uses
a fixed size ball pivoting around the edges of the triangles. Each time a ball touches
a point of P, a new triangle is formed by the point and the edge around which the
ball was pivoting. Another work of interest is [Gopiool. It begins by estimating a
tangent plane for each point p € P and by performing a 2D Delaunay triangulation
of projections of its neighbors to this tangent plane. Then, the triangles in 3D are
formed between each set of three points if they are neighbors in one of the 2D
triangulations.

Implicit function based methods

The third category of point cloud based methods are those which model the surface
to reconstruct by an implicit function f : R? — R. Usually, the function f is
constrained in such a way that Vp € P, f(p) = 0 or at last f(p) ~ 0. This kind of
algorithms can further be separated into global and local approaches.

In the global approaches, the function f is a sum of global functions. This can
be a signed distance functions as in {Hoppe92, Boissonnatooa, Alliezo7}. For ex-
ample, [Hoppeg2l used the distance between the considered point and the tangent
plane of the nearest point of P. Or the function f can be a sum of radial basis
functions (RBF5) as in {Savchenkogs, Carror, Turkozl. A RBF is a function whose
value depend only on a distance from some well defined point.

In the local approaches, the function f is defined locally in some restrained
space and then the global function is a blend of these local functions. Notable



12 Il. State of the art of image based surface reconstruction

methods {Ohtakeo3, Morseos} are using compactly supported RBFs. A compactly
supported RBF is a RBF defined in the neighborhood of its center and is zero else-
where. Another notable methods are locally fitting methods {Toboro4, Ohtakeos].
They partition the space into a set of subspaces and, in each subspace, they find a
function that fits the points of P in this subspace.

Another category of methods using an implicit function to model the surface
to reconstruct are Moving Least Squares [Alexao3, Levinog, Kollurio8, Oztireliogl.
They are based on the iterative solution of a least squares problem. For example,
[Levino4} optimizes the errors between the points of P and their projections on
the polynomial locally approximating the surface to find.

Finally, instead of using implicit function such as Vp € P, f(p) = 0, some meth-
ods model the surface to reconstruct using an indicator function such as for any
point x in space f(x) = 1 if the point x is inside an object and f(x) = 0 oth-
erwise. Most notable methods are Poisson reconstruction methods [Kazhdanos,
Kazhdano6}. They take an oriented point cloud as their input, i.e. for eachp € P
its normal vector mn,, is known. So the basic idea of this methods is to compute a

vector field V/ by applying a Gaussian blur to the normals of the input point cloud.

Then to compute a f unction f such as the gradient of f fits the vector field V' by
resolving a Poisson equation.

Organized point cloud based methods

Lastly, the fourth category of point cloud based surface reconstruction methods
are the methods which work with an organized point cloud directly. These al-
gorithms can be further subdivided into the "fusion" methods and the methods us-
ing implicit surfaces. The first kind of methods {Chengz, Turkg4, Soucy9s, Pito96,
Micusikog} begins by reconstructing the mesh for each individual range image, then
they merge all the meshes to form the final surface, hence the name. The meth-
ods [Curless96, Hiltong6, Hiltong7, Zacho7, Fuhrmannit} of the other category
fit an implicit function to all of depth maps and then they extract an isosurface to
obtain the final result.

[.1.4 Incremental methods

In this final subsection of the discussion about dense surface reconstruction meth-
ods, we will discuss about the reconstruction methods working zncrementally. The
definition and advantages of the incremental methods was discussed in details in
the chapter I, but for memory the zncremental algorithms have two main advantages
over their datch counterparts: possibility of on-line reconstruction and the constant
memory consumption. On-line reconstruction is possible because the incremen-
tal methods enhance a previously computed surface with the information from the
newly acquired image and so, if the computation is fast enough, the reconstruction
can be performed real-time. The constant memory consumption is allowed by the
fact that incremental algorithm usually work with a very limited and well defined
portion of the overall data structure. This property allows to work with the very
large scale sequences.

Incremental surface reconstruction methods using the totality or almost the to-
tality of the input image pixels (dense methods) are scarce a in the literature. The
primary reason is the fact that dense methods are usually very computation expen-
sive and so are difficult to implement under a real-time constraint without the us-
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age of a special hardware such as the GPU. Nevertheless, there are some meth-
ods [Allegreo7, Pollefeyso8, Newcombeio} that were developed recently and so in
this subsection we will proceed to their brief overview.

The method described in {Allégreo7} is a 3D Delaunay triangulation based
dense and incremental surface reconstruction method. It uses the same basic ideas
and principles as the geometry convection algorithm described in {Chaineosl. The
basic idea of the method can be separated into two steps. The first step consists
in computing a 3D Delaunay triangulation of a dense input point cloud P. The
second step is to initialize a surface S as the convex hull of the triangulation and
then to iteratively remove the facets (or the tetrahedra) to shrink S until it closely
fit the surface to find.

On the first glance, one may think that this method can easily be converted to an
incremental scheme by simply adding the new 3D points issued from a newly added
input image into the triangulation and then to perform the convection on the newly
added tetrahedra. Unfortunately, addition of the new points into the triangulation
can not only add the new tetrahedra but can also modify the existing ones. The
solution to this problem proposed by {Allegreo7l is to classify the input points into
slices along an arbitrary selected axis. The points are classified in such a way that
the addition of slice o, into the triangulation will not modify the tetrahedra issued
from addition of points of slices 0;,7 < ¢t — 3. Therefore, it is easy to identify the
part of triangulation in which the convection of the surface S should be performed
anew.

This algorithm is fast and can be used with a very large input data sets using
only a limited amount of memory. But the usage of axis aligned slices is difficult in
practice. Firstly because it is difficult to sort the input points into slices without
pre-calculating all of them. Secondly because, for the method to be effective, the
surface to estimate must be significantly longer along one axis than the others.

Another incremental dense surface reconstruction algorithm was described in
[Pollefeyso81. Itis real-time and suitable for modeling of large scale scenes, but it
needs a very costly hardware to function properly ( GPS/INS is not strictly manda-
tory, but highly recommended) and performs a part of the computations on the
GPU to be useable in real-time.

The method can be separated into three distinct stages: cameras poses estima-
tion, preliminary estimation of the 3D planes in the observed scene using a sparse
point cloud and finally the final dense reconstruction. The camera poses are es-
timated by performing a fusion of the information provided by GPS/INS and the
estimation provided by the Structure-from-Motion (SfM) algorithm from the visual
data by a Kalman filter. If the GPS/INS information is not available only the SfM
is used. Secondly, the sparse features tracked by the cameras (and also used by the
SfM) are reconstructed and used to estimate the position and normals of the 3D
planes in the observed scene. Next, a plane sweeping dense reconstruction guided by
the information from the previous step is used to compute a depth map for each in-
put image. Finally the depth maps of the consecutive images are merged to estimate
the final surface.

The advantages of this method is its ability to successfully model a very large
scale scenes and the fact that the computation can be performed in real-time. It
has, however, several drawbacks. First is the fact that the overall system is costly.
The second is the fact that the output surface is not a manifold (i.e. the triangles
are not always connected) and so it is difficult to use as input for the usual surface
processing algorithms.
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Finally, the most recent dense and incremental surface reconstruction method
the author of this work is aware of is the method described in {Newcomberxo}l.
It is somewhat similar in spirit to the algorithm in {Pollefeyso8} in the sense that
it uses a sparse point cloud produced by SfM to guide the dense reconstruction.

The algorithm consists in several steps. First of all the camera poses and a sparse
cloud of points is estimated using an incremental Structure-from-Motion. Then the
sparse point cloud is used to estimate a rough model of the observed surface by
using a RBFs based implicit surface reconstruction. Then the algorithm automati-
cally selects a reference camera C,.. r and a bunch of cameras around it in such a way
that the fields of view of these cameras overlaps. Next the algorithm uses a optical
flow based method to compute a depth map for the camera C,.y by deforming the
rough surface so it become photo-consistent with all the images of the bunch of
cameras. Finally, the resulting partial surface is merged into the global model. Of
course, in practice, all this steps are performed in parallel.

The method provides excellent results in term of surface quality, but it suffers
from several problems. First of all, the method is really slow. Partial surface gen-
eration takes more than a second using several GPUs to perform the computation.
The second drawback is although the resulting surface is not a trzangle soup, it is not
guaranteed to be a 2-manifold.

II.2 Batch sparse modeling methods

In this section, we will begin the discussion of another family of the 3D surface
modeling methods: the sparse methods. More precisely, a sparse method is a method
which reconstruct the surface using only a small fraction of the pixels of the input
images (usually only around 0.5%). The advantages and inconveniences of the sparse
methods compared to the dense ones was discussed in details in the chapter I, but
for memory, the sparse methods are usually much faster and have a much lesser
memory footprint that their dense counterparts because they works with a smaller
amount of data. Moreover, the reconstructed features are usually more precise and
the methods could be applied even for a poorly textured environments. Finally, the
reconstructed model is relatively light (a small number of triangles). The disadvan-
tage of the sparse modeling is the output surface quality that tends to be lower than
that of the dense methods due to the lack of points.

The sparse methods are reconstructing the surface from a sparse cloud of 3D
points (called P for convenience in the remaining of this section) that firstly need
to be computed. For that, we begin by detecting some sparse features in the input
images. The most popular detector is [Harris88}. Then the features are tracked
and reconstructed by an algorithm that is usually called Structure-from-Motion such
as {Lhuilliero8, Mouragnonogl. This process will be described in more details in
the chapter III.

An easy approach would be to attempt to reconstruct the surface from this
sparse cloud of points by using the same algorithms as those used in the dense case.
For example, the methods {Boissonnat84, Veltkampos, Florianig8} could be used.
Unfortunately, the quality of the output will be poor for any complex scene. The
methods specifically developed to work with sparse clouds usually use the visibility
information in addition to the 3D coordinates of each point. Specifically, we call C
the sets of the camera poses that observed the scene and we call R the set of rays
(line segments). If the camera ¢ € C have observed the point p € P, the ray (line
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segment)r € R from c¢ to p exists. So we could help the reconstruction process by
using the heuristic that the space crossed be a ray r is empty.

As for the dense methods, the sparse methods can be separated into batch and in-
cremental. In this section, we will discuss specifically the batch algorithms, i.e. the al-
gorithms that need access to the totality of the input images during the reconstruc-
tion process. These methods can themselves be separated into the methods based
on multiple 2D Delaunay triangulations in the input images (subsection II.2.1) and
the methods using the 3D Delaunay triangulation of the sparse cloud of points (sub-
section I1.2.2).

I1.2.1 2D Delaunay triangulation based methods

‘We begin our discussion of the batch sparse surface reconstruction methods by the
algorithms based on the 2D Delaunay triangulation of the features in the input
images. The basic idea is to back-project the features in space and so to obtain an
initial estimation of the output surface by a connected set of triangles taken from
the triangulation in the image, i.e. two features connected in the image are also
connected in 3D space.

[Morrisoo} use this idea. The main contribution of this publication is a sur-
face optimization algorithm. The user is supposed to select and track the features
in the input images by hand. Then a Structure-from-Motion algorithm is used to
find the 3D position of tracked points as well as the position of the cameras.

Next, an initial estimation of the output surface is computed. For that purpose,
a 2D Delaunay triangulation of the tracked points is computed in one of the input
images (called triangulation image) and then back-projected in the 3D space to ob-
tain the estimation. For a more complex objects, the back-projected triangulation
from several images can be merged. Then an image different from the triangulation
image is chosen and called the reference image. An estimated image is computed
for the estimated surface with the help of the camera calibration and position of
the reference image. The estimated image is compared with the real one and the
result of this comparison defines a score of the triangulation.

The goal of the algorithm is to find the 2D triangulation of the triangulation
image having the best possible score. To compute a new 2D triangulation from an
initial one, the edge swap operator is defined. Two adjacent triangles in the triangu-
lation have one common edge between two vertices and each triangle have a vertex
not in common with the other triangle. The vertices not in common are called op-
posite vertices. The edge swap operator deletes the common edge and creates a new
edge between the two opposite vertices. Using this operator, the method apply a
greedy optimization algorithm to sweep the space of possible 2D triangulations and
expect to find the one with the best score. The projection of the best triangulation
is the final surface.

The advantage of this method is the fact that the output surface is 2-manifold,
but the object to reconstruct is explicitly considered to be of zero genus (having a
spherical topology). This limitation makes the method almost unusable in practice.
Moreover, the methods was only tested in the very simple cases.

Another interesting surface reconstruction algorithm based on the 2D Delau-
nay triangulation inside the input image was published in {Tayloro3}. The main
contribution of this paper is the "Freespace Theorem". Suppose there is three 3D
points P, Q and R. Suppose they are projected in to the image taken by a camera
at point C to the points p, q and r. Finally, suppose that the triangle Apgr is a
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triangle of the 2D Delaunay triangulation in the said image. The theorem says: the
tetrahedron CPQR is entirely free space.

This theorem can be used to define a surface reconstruction method. As the
first step, the features are detected and tracked in a series of input images. Then
some algorithm is used to reconstruct the cameras positions and the 3D coordi-
nates of the features. As the second step, a 2D Delaunay triangulation of the de-
tected features is computed in each input image and the "Freespace Theorem" is used
to compute a set of free space tetrahedra. Then, the free space tetrahedra com-
puted from each individual image are merged together to define an implicit func-
tion f : R3 — {0,1}. f(p) = O if the point p lies within one of the free space
tetrahedra and f(p) = 1 otherwise. To compute the final surface, the space is sub-
divided in a regular grid and an algorithm such as "Marching cubes” {Lorensen871 is
applied.

The main drawback of this algorithm is the fact that a regular subdivision of
space is used. This makes this method difficult to apply to large scale scenes. Nev-
ertheless, the implicit function can directly be used in some applications, for ex-
ample for obstacle avoidance.

A more recent surface reconstruction algorithm based on the 2D Delaunay tri-
angulation is the method proposed in {Salmanog}. This method takes a sparse
3D cloud of points and the corresponding tracks as its input. A track of a 3D point
is a set of cameras that observed the point and the 2D projections of this point
to this cameras. This information can be computed, for example, by a Structure-
from-Motion algorithm.

The method can be subdivided into three distinct steps: initial point cloud fil-
tering, triangle soup computation and the computation of the final mesh. The ini-
tial filtering step is needed to circumvent the errors in the cloud of points produced
by an automatic reconstruction process. It has three steps. First, the 3D points that
are close are merged together. The corresponding tracks are also merged. Second,
some of the 3D points are removed due to the fact that they are too imprecise.
Specifically, the points that are too far away from they neighbors are removed as
well as the points with a small observation angle. Finally, the cloud of points is
smoothed.

The second step of the method is the reconstruction of a triangles soup. For
this purpose, a 2D Delaunay triangulation of the tracked points is computed inside
each input image. Moreover, for better final results, the Delaunay triangulation is
constrained with the contours detected inside the image. Specifically, connections
are forced between the tracked points near the same contour. Finally, each triangle
is back-projected into 3D space using the known coordinates of each tracked point
and so the triangle soup is formed.

The third and final step of the method is the generation of the output surface
mesh. For this, first of all, the triangle soup is filtered. The triangles intersected
by a ray are removed, as well as the triangles with a small angle between the tri-
angle normal and the rays of the triangle vertices. "Big" triangles are also checked
using photo-consistency. Then the Delaunay refinement surface mesh generation
algorithm {Boissonnatos} is applied to the triangle soup to compute the final mesh.

The final surface quality is good, but the method is slow and the input cloud of
points must be relatively dense.
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[1.2.2 3D Delaunay triangulation based methods

In the second part of the discussion about dazch sparse surface reconstruction meth-
ods, we will overview the family of methods based on the 3D Delaunay triangula-
tion. These methods work directly with a sparse cloud of 3D points and the as-
sociated visibility information. The basic idea of these algorithms is to compute a
Delaunay triangulation of the point cloud and to assemble the final surface from
the triangles included in this triangulation.

In the first place, we will discuss the sparse surface reconstruction method pro-
posed by [Faugerasgol}. This method is based on tetrahedra labeling and incre-
mental 2-manifold growing based on {Boissonnat84} and has the advantage to be
simple to implement, but it suffers from numerous drawbacks.

In the paper the method begin by detecting the edges in the input images and
reconstructing them in 3D (the experiments were performed using a stereo pair).
Then a 3D Delaunay triangulation 7" constrained by these edges is computed. The
method can directly be used with the interest points instead of the edges.

The next step is to mark some tetrahedra of T as free-space. We call F' C T  the
set of free-space tetrahedra. A tetrahedra A € F, if and only if it exists aray r € R
that intersects A. Because the authors of the paper works with edges instead of
points, A € F if and only if it exists a triangle ACAB such as the segment AB
have been observed by a camera C' and ACAB N A # (). We also define a set of
unconsidered tetrahedraU =T \ F.

The final step of the algorithm is to classify the unconsidered tetrahedra into
free-space or matter ( called obstacle in the paper, but we call them matter to remain
coherent with the remaining of this document). To achieve this goal, all the tetra-
hedra of U are classified into a series of subsets such that the border of each subset
is 2-manifold. A subset S C T is created by adding some random unconsidered tetra-
hedra A € U. This tetrahedra is then removed from U by U = U \ {A}. Then the
subset S is incrementally grown by adding the tetrahedra in U which share exactly
one, two or three faces with S and all the tetrahedra added to S are removed from
U. Finally, when all the tetrahedra of U were considered, the subsets who share at
last one connected set of triangles are merged. All the triangles in the same subset
must have the same status (free-space or matter). To classify the subsets, the paper
use a heuristic that a subset with a large number of vertices is an obstacle.

The resulting surface is the frontier between free-space and matter tetrahedra.
This method has the advantage of been easy, but it was only experimented on very
simple data sets. Moreover, the used heuristic can provide false results and the
result is a set of disconnected zero genus 2-manifolds, so the method can not be
applied to reconstruct the surfaces of non zero genus.

Another surface reconstruction method based on 3D Delaunay triangulation
was published in {Labatuto7}. As the previous one, it considers the resulting
surface as a frontier between two kind of tetrahedra in the triangulation, but it
relies on a graph-cut algorithm to perform the tetrahedra labeling.

The method begins by detecting the features in the input images using a SIFT
detector [Loweog]. The features are matched between images using the SIFT de-
scriptor and epipolar geometry [Hartleyo4} and the resulting 3D cloud of points is
reconstructed. The Delaunay triangulation of the point cloud is computed incre-
mentally and the redundant points are eliminated in the process. When a new 3D
point is about to be inserted in to the triangulation, the algorithm considers the
nearest neighbor of the point and project it in the input image. If the reprojection
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error between the new and the reference point is small, the points are considered
to be the same and the position of the reference point is updated. Otherwise, the
new point is inserted into the triangulation and new tetrahedra are formed.

Once all the 3D points are reconstructed and the Delaunay triangulation com-
puted, the algorithm proceeds with the labeling step. To achieve this goal, the
triangulation is considered as a graph with tetrahedra as nodes and facets between
tetrahedra as edges. The method considers the output surface S as the frontier
between two kinds of tetrahedra (free-space and matter). This frontier is found by
applying a graph-cut algorithm minimizing an energy function E(S). The energy
function is defined as E(S) = Ey;5(S) + AphotoEphoto(S) + AareaEarea(S). The
first term E,,;5(.S) is the sum of visibility constraints, i.e. the sum of intersections
of rays in R with the oriented surface S. The second term Epp010(S) is the photo-
consistency constraint, it is the sum of photo-consistency measure of each triangle
of S. Finally, the last term Ej,,cq(S) is the area of the surface S and is needed to
enforce the smoothness of the final surface.

The results of the experiments showed in the paper are good, but the resulting
surface is not guaranteed to be 2-manifold and the 3D point cloud is dense com-
pared to other sparse methods.

An on-line surface reconstruction method allowing user feed-back was pro-
posed by {Panogl}. The basic principle is to place the considered object in front
of a fixed camera and to allow the user to turn the object around by visualizing the
currently reconstructed surface. This allows the user to obtain an optimal number
of view to accurately model the object, but the algorithm must be fast enough to
allow on-line function.

The features tracking and the surface reconstruction are two separated tasks
performed in parallel in two different threads. The feature tracking is performed
in real time and allows the camera pose estimation and key frame selection. The
3D surface reconstruction is only performed once per key-frame.

The features tracking and camera poses estimation is performed by several
trackers to allow at the same time the tracking of a maximal number of features
and a drift-free pose estimation. First of all, in a new incoming image, the features
are detected by a FAST detector {Rosteno6} and matched with the previous frame
by SSD matching.

Once a new key frame is selected, the 3D model is totally recomputed. At first,
the 3D cloud of points and the associated visibility information is computed from
the tracked features by using a global bundle adjustment. Next the 3D Delaunay
triangulation of this point cloud is performed. Then the tetrahedra are removed
from the triangulation using the visibility constraints, i.e. a tetrahedra is removed
from the triangulation when it was intersected by a ray. To remove the noise from
the final surface, the algorithm considers that each observation (and so each ray) ex-
hibit Gaussian noise and so the method compute a probability of the intersections
instead of counting them exactly. To accelerate the computations, the algorithm
proceeds iteratively. At each iteration, the intersections probabilities are computed
only for the tetrahedra which has at last one face belonging to the current surface.
Once no more tetrahedra can be removed, the final surface is extracted as the bor-
der of the triangulation and the triangles are reprojected to the input images to
recover the texture information.

This algorithm has the advantage to be an on-line method, but it is not incre-
mental because the model is completely recomputed at each iteration and so it
is unsuited for modeling of large scale scenes. Moreover, the resulting surface is



I.2. Batch sparse modeling methods 19

not guaranteed to be 2-manifold and the experiments was performed only on very
simple objects.

Another sparse batch surface reconstruction method was made available recently
in {Lhuillierx3}. This method is based on a usage of an omnidirectional catadiop-
tric camera and it is suitable for reconstruction of a large scale urban scenes and
has the advantage to produce a 2-manifold output.

The algorithm begins by computing a 3D point cloud and the associated visi-
bility information by using a Structure-from-Motion algorithm. More precisely, the
features are detected in input images using an Harris detector and are matched be-
tween images using ZNCC correlation. Then, the point cloud is computed by a
bundle adjustment.

Then, the method perform a 3D Delaunay triangulation 1" of the point cloud.
The tetrahedra of T  are classified into free-space or matter using visibility constraints.
A tetrahedron A € T is free-space (A € F) if it exist aray r € R such as 7 intersects
A. The frontier between free-space and matter can directly be used as an output
surface, but it is not guaranteed to be manifold, so the algorithm performs another
partition of T'.

The algorithm performs the partition of T into outside (O) and inside (T \ O)
components, such as outside is a subset of free=space (O C F). To achieve this goal,
a method inspired by {Boissonnat84} is used. First, the tetrahedra of free-space are
added to outside one by one in such a way that the border of O remains manifold.
Then, to allow genus changes and not be limited to reconstruction of surfaces with a
spherical topology, the tetrahedra are added by packs, assuring that the border of O
is manifold. Once no more tetrahedra can be added to outside, some post-processing
is executed and the final surface is extracted as the border between outside and inside
regions.

The method is fast, can be applied to large scale outdoor scenes and produces a
2-manifold surface. But, the quality of the resulting surface can suffer from artifacts
that need to be removed by an additional step. Because the work discussed in this
dissertation is heavily inspired by this algorithm, it will be discussed in more details
in the section I'V.1.

To end the discussion about datch sparse surface reconstruction methods a re-
cent publication {Ohrhallingerx3} should be mentioned. The particularity of
this method is the fact that it is fully geometrical, i.e. it compute a surface that fit
a point cloud without any additional visibility information. This can be achived by
a set of heuristics, but the drawback is that the input cloud of points should be a
"good" sampling of the surface to model.

The algorithm begins by computing a Delaunay trinagulation of the input cloud
of points P. Then it constructs a boundary complex BC, by a greedy algorithm. A
boundary complex is a set of triangles included into Delaunay triangulation and for all
points p € P,p € BCj. The greedy algorithm uses the length of the longest edge
of a triangle as a priority criterion when adding triangles to BCjy. The constructed
boundary complex BCj can contain holes that did not exists in the original surface,
so they are detected and covered.

The surface constructed by the previous steps can be non manifold. So an op-
eration called inflating is performed to ensure the output surface is a z-manifold. A
bull H(BC)) is a set of tetrahedra in the Delaunay triangulation which lie inside the
boundary defined by the triangles of BCy. Inflating consists in adding tetrahedra to
the hull so all the "flat" triangles are eliminated from the boundary. Finally the re-
maining artifacts are eliminated and a sculpting method similar to {Boissonnat841
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is applied to compute the final surface.

The advantages of this method (particularly compared to {Boissonnat84}) are
a good visual quality of the output surface, no limitations concerning the genus of
the observed surface and the fact that no visual information is needed. But the
drawbacks are the fact that the input point cloud must provide a regular sampling
in difficult areas of the surface. The method can also have difficulties with certain
kinds of holes and the surface to reconstruct can't have boundaries.

I.3 Incremental sparse modeling methods

In this new section, we will discuss about the surface reconstruction methods which
combine two characteristics: being sparse and being éncremental. For memory, a
method is sparse if it uses only a small fraction of the totality of the pixels of the
input images. And a method is called zncremental if it uses only a small number of
the most recently acquired images and if it updates the final model locally instead of
totally recomputing it. These methods are similar to the method we describe in this
dissertation, but at the same time they are rare in the bibliography. Nevertheless,
we describe in this section the few ones which exist.

The first (to the knowledge of the author) sparse and incremental surface re-
construction algorithm is {Hiltonos}. It is an extension of {Manessisoo}. The
basic idea of this algorithm is to incrementally construct a triangle soup by back-
projecting the 2D Delaunay triangulations of input images and maintain the visi-
bility constraints.

First of all, 3D reconstruction of the features detected in input images and the
successive cameras positions must be incrementally computed. The authors of the
paper used an incremental Structure-from-Motion in their experiments. The features
can be either points or straight lines.

The algorithm begins by initializing the output surface by an empty set of trian-
gles and then for each incoming image it proceed as follow. First of all, the features
are detected and reconstructed. The existing triangles are updated if their vertices
have moved due to the features update. Then the existing triangles are checked
against the visibility constraints introduced by the features detected in the new
image. Then a 2D Delaunay triangulation of the detected features is computed in
the incoming image. Finally, the triangulation is back-projected into 3D space and
the non-redundant triangles are integrated into the output triangle soup.

This method suffers from several important drawbacks. First, the algorithm
output is a triangles soup and so is difficult to use. Second, the experiments are
performed only on very short and simple sequences.

Another sparse incremental method was proposed by ILoviro}. It is part of
the family of space carving approaches and its basic idea is to continuously update
a partition (free-space, matter) of tetrahedra in a 3D Delaunay triangulation. The
method is coupled with an incremental Structure-from-Motion. The authors used an
implementation of {Kleino7l.

At each time, the algorithm maintains a 3D Delaunay triangulation of the cur-
rent 3D point cloud. Some tetrahedra of the triangulation are marked as free-space
because they are intersected by one or several rays. The current output surface is
the frontier between free-space and matter. When the SfM updates the points cloud,
the algorithm reacts in a way dependent on the nature of changes.

First of all, some new points can be added to the cloud of points. The algorithm
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updates the Delaunay triangulation, so some tetrahedra are deleted and some tetra-
hedra are created. The newly created tetrahedra are checked against the previous
visibility information (using an heuristic to improve the speed of the computation).
Then, the tetrahedra crossed by the rays induced by newly inserted point are set to
free-space.

Second kind of event produced by the SfM algorithm are the addition or sup-
pression of rays. If a new ray is added, the tetrahedra crossed by this ray are set to
free-space. If a ray is removed, the tetrahedra crossed by this ray are reset to matter
if they are not crossed by any other ray.

Finally, a point can be deleted from the cloud of points. In this case, the tri-
angulation is updated, the newly created tetrahedra are rechecked against previ-
ous visibility constraints. And finally all the rays induced by the deleted point are
deleted as previously described.

If a position of some 3D point is changed because SfM refined it, the point is
removed then reinserted into the triangulation and the steps described above are
applied.

This method has the advantage to be fully incremental, but it uses several heuris-
tics to accelerate the processing and performs a lot of useless computations. Ac-
tually, only the most currently observed points are updated by SfM. So instead of
inserting and removing them several times, the points can only be inserted when
the SfM doesn't change them.

Another space carving incremental sparse surface reconstruction method was
proposed by {Yux2}. It is a tentative to create an incremental version of the method
from {Lhuillier13l. The basic idea is to compute a partition of the 3D Delaunay
triangulation by region growing so the frontier between the tetrahedra remain 2-
manifold at all times. When the new points are inserted into the triangulation, the
region growing is performed only in the necessary part of the triangulation.

The 3D cloud of points is computed by an incremental Structure-from-Motion al-
gorithm from {Mouragnonog}l. The new points are inserted into the triangulation
only when the are fully stabilized, i.e. when their position is no longer modified by
the SfM.

Two separate partitions of the 3D Delaunay triangulation of the cloud of points
are maintained. The first is the free-space and matter partition (a tetrahedron is free-
space if it was intersected by a ray). The second is the outside and inside partition.
The outside tetrahedra are free-space and the border of outside is the current output
surface and is 2-manifold.

When the new points are inserted into the Delaunay triangulation, some tetra-
hedra are removed and some new tetrahedra are created. Each tetrahedron has a
date associated with him. The date of the newly created tetrahedra is set to the
current date. Moreover, the outside set of tetrahedra O is subdivided into several
layers. A layer O is a set of tetrahedra that was added to O at a time . So we have
Op C O; C --- C Oy and the boundary of every O is z-manifold.

We also compute the earliest date of the removed outside tetrahedra called ¢'.
Them we remove from outside region all the tetrahedra in the layers O; such as
t' < t. Then a region growing algorithm from {Lhuillier13} is applied starting from
the tetrahedra in Op_; to compute the new outside region. This way, the border
between layers remain manifold and so the layers can safely be removed from O as
long as they are removed in order.

This algorithm have the advantage to produce a 2-manifold surface and been
applicable to large scale outdoors scenes, but if the trajectory of the camera taking
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input images contains closed loops, the totality of the loop will be recomputed at
its end. So the complexity of the single iteration is unbounded and the method is
almost batch in the presence of large loops.

Finally, another family of incremental Structure-from-Motion based surface model-
ing methods based on graph-cuts was presented in {Sugiurar3, Hoppei3l. The basic
idea of {Hoppex3l is to use a dynamic graph-cut algorithm to incrementally com-
pute a binary labeling of tetrahedra of a 3D Delaunay triangulation of the cloud of
points. The output surface is the frontier between the two type of tetrahedra.

For each tetrahedra A of the 3D Delaunay triangulation 7', the method defines
anenergy E(A) = Ey (A, RA) + Y aren, Eb(A, A’ Ra) where R is a set of rays
starting from the vertices of A and NV is the set of four neighboring tetrahedra
of A. So the energy function to optimize is ) 5o F(A). Ey(A, Ra) is defined
by the number of rays that intersect A and the number of rays in front of A. If A
is intersected by numerous rays it has a high probability of being free-space. In the
same manner, if a tetrahedron A have a high number of rays in front of it, it has
a high probability of being matter. The term Ey(A, A’, Ra) is enforcing the fact
that two neighboring tetrahedra A and A’ have a very high probability of bearing
the same label, except if they have a common facet intersected by a ray of Ra.

A great property of this energy function is that if a new visibility information is
added, only the energies of tetrahedra adjacent to the vertex that induced the new
ray need to be updated. Moreover, when a new point is inserted into the Delaunay
triangulation, only the values of the newly created tetrahedra need to be recom-
puted. To incrementally update the labeling, the method use a dynamic graph-cut
algorithm {Kohlio7]. This algorithm takes the previously computed labeling as its
input and computes the new one in a time proportional to the number of changed
tetrahedra.

This algorithm is fast and well suited to the reconstruction of a large scale
scenes, but the resulting surface is not a 2-manifold.

[1.4 Conclusion

In this chapter we have surveyed the 3D surface reconstruction methods available
in the literature. We have seen that all of them can be separated into dense and sparse
approaches. We have seen that the sparse approaches are quite rare compared to
their dense counterparts. Moreover, as well dense as sparse can be further separated
into batch and incremental methods and we have seen that incremental methods are
more scarce that the bazch.

The 3D surface reconstruction algorithm described in this dissertation is a sparse
incremental one. The advantages of this properties were described in the chapter I,
but we can see that this kind of methods are the less studied ones. Moreover,
our algorithm produces a 2-manifold surface and the only one sparse and incremen-
tal reconstruction method producing manifold surfaces is {Yurz}. However, this
method have a severe limitation on the trajectory of the camera that observed the
scene and our method has not. So we could conclude that the algorithm studied in
this document is an useful addition to the state of the art.
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3D point cloud computation

The sparse incremental surface reconstruction method described in this dissertation
can be separated into two well distinguishable steps: the computation of the sparse
3D cloud of points with the associated visibility information and the reconstruction
of a polygonal surface (a set of connected triangles) from this cloud. In this chapter
we describe the first step: computing a 3D cloud of points from a series of 2D
images.

The input series of images is taken by a rigid synchronized system of cam-
eras. Although all the experiments are conducted using the Ladybug {Ladl (see
figure IIL.1), any system sharing similar characteristics can be used instead. In sec-
tion ITI.1 we review the mathematical model describing a rigid multi-camera sys-
tem used in this dissertation. In section III.2 we describe the algorithm used to
compute the point cloud from the input images. This kind of algorithms is called
Structure-from-Motion or SfM. The one used in this dissertation is the algorithm de-
scribed in {Mouragnonog}. Finally, in section II1.3 we describe some steps that
could be added to improve the sparse cloud of points.

.1 Multi camera system modeling

In this section the way of mathematically modeling a rigid multi-camera system is
discussed. To simplify the modeling, we consider that all the pictures taken by the
cameras of the multi-camera system are concatenated on the same plane to form the
output image of the multi-camera system (see figure IT1.1b for an example). Given
a set S, we call P,,(S) a set of all the subsets of S with no more than n elements.
Then, given a 3D point q € R3, we want to define a function p : R? — P, (R?)
such as p(q) is the set of pixel(s) of the multi-camera system image containing the
image of q. p(q) = 0 if the point q is invisible by the multi-camera system. Several
pixels of the image can be associated to the same 3D point if the point is observed
by several cameras of the system at the same time. The function p is called the
projection function.

Moreover, we also want to describe a function p~! : R? — P(R?) such as if
q € R? and q' = p(q), then p~'(q) is the half-line starting at an optical center of

23
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(b) Example of an image taken by the camera.

Figure III.1: Ladybug camera and an example image.
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Figure I11.2: Pinhole camera model. ¢ is the camera optical center, ¢’ is it projec-
tion to the image plane. q is an arbitrary point in 3D space, q' is its projection to
the image plane. f is the camera focal length.

one of the cameras and directed to q. The function p~!

the this half-line is called a ray associated to q'.

Because the function p for a complete multi-camera system is complex, it is
build up incrementally. We begin by defining the projection for a simple pinbole
camera placed at the center of the world in the subsection II1.1.1, then we gradually
add complexity to finally define the complete projection in the subsection ITI.1.4.

is called back-projection and

lI.1.1 Pinhole camera located at the center of the world

At first, we will consider the model of the pinbole camera with the optical center lo-
cated at the center of the world coordinate system (see figure I11.2). So we define
the world coordinate system by the triplet of direction vectors {X.,yuw, Zy } cen-
tered at the point ¢ called the optical center. The distance between the optical center
and the image plane is called the focal distance and equals to f. The image plane is the
plane inside which the final camera image is located. This plane has it own coordi-
nate system defined by a pair of vectors {x,y} centered at the top left corner of the
image. The orthogonal projection of the optical center ¢ to the image plane is called
¢’ and is located at (¢, ¢,)" in the camera image.

Given a point q € R® located at (¢.,¢y,¢-)" we want to compute the point
q’ € R? located at (¢}, ¢,)" such as ¢ is the intersection between the segment cq
and the mage plane. The point q' is defined by the following expression:

@ Gz fo s ¢
4| =K |qy| where K= |0 f, ¢, (II1.n)
1 4z 0 0 1
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where = means equals up to a non-zero scale factor, f, and f, are the focal length f
expressed in width and height of the pixels and s is the skew factor to correct the
non rectangular pixels geometry (almost always equals to o).

The values of the focal length f and the central point ¢’ are commonly called in-
trinsic parameters of the camera. These parameters are supposed to be known in
the remaining of this work.

The back-projection function for an pinhole camera is easy to write after the equa-
tion (ITL.1). We only need to compute the inverse of the matrix K. Then we can
write:

d/ q/
d,| =K' |q, (I11.2)
d., 1
The direction of the ray (the direction of the segment between ¢ and q) is computed
by normalizing the vector d’ = (d},, d;,, d)" (|| - || is the euclidean norm):
dy 1 d,
dy| = 7—— |d! (I11.3)
VT Ny | ’

lI.1.2 Distortion modeling

Unfortunately, the pinbole camera model explained in the previous subsection is
usually insufficient to model a real camera, because it doesn't take into account the
distortion introduced into the image by the camera optical lenses. Actually, if we
compute the projection q’ of a 3D point q using the equation (ITL.1), we will notice
that q' is different of the point q? € R? where the image of q is actually lying. So
we must introduce a function d : R? — R? such as q' = d(q?). This function is
called the distortion function [Lavestg8L.

The distortion function can be modeled in several ways. The first way is to use a
look-up table. A look-up table is a two dimensional table that, for each pixel q¢ of the
image gives the coordinates of the corresponding undistorted point q. So this 2D
table allows us to remove the distortion from any pixel with integer coordinates.
For the other pixels, the coordinates of the undistorted point are simply linearly
interpolated from the four neighboring integer pixels.

Another way to model the distortion is to use a polynomial function {Lavest98l.
The distortion is separated into two distinct components: the tangentia/ distortion
and the rzdial distortion. The tangential distortion is neglected. To define the radial
distortion we begin by defining the function r : R? — R as the normal squared
distance between q? and ¢'. Its expression is

T e A e AR kAP
(] = e = (B (B a1y

Then we write the function d(q?) as follow:

d(q") = q" + (as.7(q")° + as.r(qh)* + asz.r(q?)?
+azr(q?)’ +arr(q?))(q" —¢) (ILs)

The polynomial coefficients as, a4, as,az and a; are called the distortion coefhi-
cients.
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l.1.3 The camera at an arbitrary position in space

In the previous subsections, we have written the projection function for a camera
placed at the center of the world coordinate system. This would be fine if we have
to work with a single image. In practice we should be able to write a projection
function for a moving camera.

As in the subsection III.1.1, the world coordinate system is defined by the triplet
of vectors {Xy,, Yu, Z, } and now is centered at some arbitrary point in space called
¢y,. We define the camera coordinate system by the triplet of direction vectors
{X¢,¥c, 2.} centered at the camera optical center ¢. We define the translation be-
tween ¢ and ¢, by avector t¥ and the rotation between {X., y., Z. } and {X, Y, Zw }
by a rotation matrix RY. The pair {RY,t?} is called the camera pose.

Given an arbitrary vector v,, € R? expressed in the world coordinate system,
we call v. € R? the same vector expressed in the camera coordinate system. It can
be computed by v. = R¥T (v, — t¥). And inversely v,, = R¥v. + t*. Using this
expressions and the camera projection equation (IIL.1), we can write the projection
equation for an arbitrary placed camera as follows:

/ qz
Q(lj q
4| = KRV [Is| — €] | (I1L.6)
1 &

The back-projection is simply computed by applying the equation (III.2), then by
multiplying the resulting direction by RY. The camera rotation is enough because
the back-projection returns the direction of the ray associated to the pixel (the ray
origin is always the camera optical center c).

I1.1.4 Rigid multi-camera system modeling

Once we have written the projection and the back-projection functions for an arbi-
trary positioned camera, we can define these functions for a complete rigid multi-
camera system. We begin by associating a coordinate system to each individual
camera. To a camera C,, we associate a coordinate system centered at the cam-
era optical center and defined by the triplet {x¢,,yc,,zc, } (see figure IIL3 for
an example). We also define a Multi-Camera System (MCS) coordinate system cen-
tered at the barycenter of the cameras optical centers and defined by the triplet
{Xmcs,Ymces, Zuces}. The transformations between the cameras coordinate sys-
tems and the multi-camera system coordinate system { Ry, ¢/“5} are supposed
to be known.

Having all this information, we can now define the back-projection function.
Knowing the pixel coordinates (¢, ¢%)”, we can find the number n of the camera
of the multi-camera system in which it was seen (we suppose that the coordinates
of the top left corner of each cameras images are known). We compute then the
undistorted pixel coordinates using d(q?), then we compute the direction of the ray
in the camera coordinate system using the equation (III.2). Finally, the direction
of the ray in the world coordinate system is computed by successively multiplying
the direction of the ray in the camera coordinate system by RY“ and R}, ¢g.

The projection function is more difficult to write because we need to be sure
that the 3D point is actually visible by one of the cameras and to find in which of
the cameras of the multi-camera system it is visible, but fortunately, we never need
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Figure I11.3: Ladybug and its cameras coordinate systems. M C'S is the coordinate
system of the multi-camera system and C; is the coordinate system of the sub-
camera ¢.

it in practice for 3D point cloud computation. Moreover, the distances between
the cameras optical centers and the center of the multi-camera system is, usually,
only around some centimeters. And because our system is designed to reconstruct
large scale scenes and so the observed points are usually further than 3 m. from
the camera, we could consider that for all n, t}/“% = o. This is called the central
approximation {Schmeingii} and it greatly 31mp11ﬁes the computations in the sec-
tion II1.2.

[I.2 Incremental Structure-from-Motion

In this section we will review the algorithm called Structure-from-Motion or SfM
that we use. This algorithm is a part of the family of methods commonly called
Simultaneous Localization and Mapping or SLAM. Given a sequence of images and
the parameters of the camera (or multi-camera system) model (see section IIL1),
the SfM estimates the poses of the camera for each of the images (or for a subset of
them) and a 3D cloud of points observed throughout the sequence. Moreover, the
method presented here is /ncremental, which means that it updates the list of poses
and the point cloud when a new image arrives (instead of recomputing the sequence
entirely) and so it could be performed at the same time as the acquisition.

The §fM can be split in four distinct parts: features detection, features tracking,
camera poses estimation and features reconstruction. Each time a new image is
acquired, the algorithm proceeds as follow:

* Detect the features (interest points in our case) in the newly acquired image.

* Match these features with the features detected in the previous image (sub-
section IIT.2.1).
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» Update the set of features #racks accordingly. A track is a set of occurrences
of a particular feature in the successive images, for example a series of 2D
points in successive images corresponding to the same 3D point in space.

* Decide if the previous image is a key frame (see subsection I11.2.2).
* If the previous image is a key frame, perform the following additional steps:

— Compute an approximate pose of the key frame (see subsection II1.2.3)
using a robust estimation method (RANSAC).

— Refine the poses of the Ny, last key frames and the 3D points visible
from the Ny last key frames by using a bundle adjustment (see subsec-
tion I11.2.7).

* Acquire the next image and go to the beginning.

In the following subsections, we will review all these steps in more ample details.

ll.2.1 Interest points detection and matching

The first task to perform, when a new frame is acquired, is to detect the inter-
est points. By frume we mean the concatenation of the n images acquired by the
cameras of the multi-camera system, see figure IIL.1b for an example

The points of interests are detected in each of the images of the frame using the
Harris interest points detector [Harris88]. They are mainly located in heavily tex-
tured parts of the image and include the projections of the corners of the observed
objects. This later property is particularly interesting for the surface reconstruc-
tion problem. The Harris detector is also invariant to illumination conditions. The
actual implementation details was taken from {Nistéro6}. Each detected point has
a confidence score (numerical value) associated to it by the detector, we keep only
Nyoi points with the best confidence score.

After the features were detected, they are matched with the features from the
previous frame. First of all, we consider that a feature seen by one of the cameras
of the system can only be matched with the feature detected in the same camera.
Second, we consider that the movement between the two images is small, so we
search for a potential match in a X,,; by Y;.,; zone centered at the current point
position. A Zero mean Normalized Cross-Correlation (ZNCC) in a w by w neighbor
hood is computed between the point and all the potential candidates, then the best
candidate is kept. For memory a ZNCC can be written:

ZNCwaw(qn qz) =

Sac, ([(an +d) ~ @) (I(g: + d) ~ I(gs) 1)
\/Zdeuw ql+d Iql) \/Edeuw q2+d) ( ))2
with
&) = LS Hai+ ) (IT1.8)
dev,

where ¢, and g, are the two points to be compared, I(q) is the luminance value of
the point q and v, is the w x w neighborhood.

If the cross-correlation value of the best candidate is less than threshold S,,,, the
match is rejected. If the match is kept, we check if the point we have selected has
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Figure II1.4: Features tracking notations. I; is an image of the sequence with j
as index. k; are the indexes of the key frames. q, is an observation of the point
q in the frame I;,. The regular lines are true matches and the dashed lines are
considered a false matches.

already been matched with another point. If it was not been matched or the cross-
correlation value of the previous match is inferior to the new one, the new match
is kept and the previous match is removed. This technique have the advantage to
avoid a great number of false matches.

I.2.2 Interest points tracking and key frame selection

‘We have seen how the points of interest are detected and matched with the pre-
vious image. In the present subsection we will explain how the points are tracked
throughout the sequence. Moreover, we also introduce the concept of key frame.

The problem with an usual video sequence is that the consecutive images are
very close to each other. If we try to compute the camera positions associated
to each image of the sequence, numerical stability problems occur. To avoid this
problem, we choose to perform these computations only on a subset of images
evenly distributed across the sequence in a way to be not too close and not to far to
each other. These images are called key frames. This technique also helps to detect
the false matches as will be explained later.

First of all, we need to define the concept of 2D #uck. Let n be the number
of the current image, so I; with j € {0,...,n} are the currently processed images
of the video sequence. Moreover, let m be the number of currently selected key
frames. Thus, their indexes (see figure II1.4) are k; with ¢ € {0,...,m} and 0 <
ki < n — 1. Let q € R? be a point in 3D space. If it was observed in the image
I; the corresponding pixel is named q;. A track T, associated to the 3D point q
isaset of pairs Ty = {{ki, qw; }, - - s {km. Qk,,, }- {n — 1, qn-1}, {n, qn }}, each pair
correspond to an observation of q.

‘We begin by considering the matches between the current image I,, and the
previous image I,,_. If q,, and q,,—1 are two matched points and there is T, such
as{n—1,q,-1} € T, then the new observation {n, q,, } is added to T}, otherwise
a new track is formed by {n — 1,q,_1} and {n, q,}.

Then we need to decide if the previous image I,,_; is a key frame. First, if the
previous image is the first image of the sequence then it is always a key frame. Sec-
ond, we compute two values. The value N5 is the number of matches between 7,,_1
and I,,. The value N3 is the number of tracks with the last observation at n and
containing at last three observations. Now, if No < My or N3 < M3 then I,,_ is
a key frame. The values M; and M3 are user defined thresholds.

If the previous image was not a key frame, then we suppress all the observations
at n — 1 from all the currently maintained tracks. This way, the points are contigu-
ously tracked between two key frames Ij, , and Ij,. If there is enough images

1
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between the two consecutive key frames, it is a good way to get rid of false matches.

For an ideal sequence, this ey frames selection mechanism would be enough, but
unfortunately in the real world the vehicle or human transporting the camera needs
to sometimes stop. Because of the noise in the images, the less and less features
will be tracked and if the pause was long enough, a new key frame will be taken at
the same position as the previous one. If this happen, the entire process may fail
because of the unstable computations.

To circumvent this problem, another key frame selection criterion was added.
Let d(qn—1, q») be the euclidean distance between the 2D coordinates of the two
points q,—1 and q,. If the value of d(q,—1,q,) < D; (a user defined threshold)
for 70% of the matches between I,,_; and I,, then I,,_; is not a key frame. This
is based on the following heuristic: if the overall displacement of points inside the
image is short, then the camera displacement was short.

lI.2.3 Epipolar geometry and pose estimation

When a new key frame is selected, our first task is to evaluate the camera pose corre-
sponding to this image. For memory, a camera pose is a pair { RY,t*'} defining the
transformation between the world coordinate system and the camera coordinate
system. Now let q € R? be some arbitrary known point of 3D space observed by
the camera at the undistorted pixel (¢, q,)". According to the equation (II1.6)
and because the matrix K is known, this 3D point provides two equations with
the pair { RY, t¥} as unknown parameters. So if we have enough known 3D points
observed by the camera we can compute the pose. In this subsection, we suppose
that all the matches between the detected features are true (we will see how to
handle false matches later), so only three 3D points is necessary using the Grunert's
method{Haralickg4l. Itis based on the trigonometry relationships inside the tetra-
hedron formed by the camera's optical center and the three observed points.

The problem is more complicated if no 3D point position is known. This case
arises at the beginning of the algorithm when neither pose nor 3D point is being
computed yet. To solve it, we will use a set of constraints that enable to define the
relative transformation between two cameras coordinate systems when the two are
observing the same scene. This set of constraints is called epzpolar geometry and is
illustrated on the figure IIL.5.

‘We consider two cameras with the optical centers at unknown points ¢; and ¢
in the world coordinate system. These two cameras are observing a 3D point q
at unknown coordinates in the undistorted pixels q and g} respectively. Using the
equations (IT1.2) we can compute the direction d; of the ray ¢; q in the first camera
coordinate system and the direction ds of the ray c2q in the second camera coordi-
nate system. So if { R, " } is the unknown pose of the first camera and { R, , t¢,
is the unknown pose of the second camera, the vectors t¢, t, t@ + R d; and
t., + R d; are lying on the same plane. Hence':

d RYTItY —t¥ ] RYdy =0 (I11.9)

with [a]« is a skew-symmetric 3 X 3 matrix of the vector a such as a A b = [a]«b.

If we define a matrix F as E = R¥T [t — t2 ] RY, the equation (IIL.9) is written

"The vectors t¥ , t¥

o toy s te, + RE) do and ¢, + RY, d are coplanar. So the vectors o, tg), —t¢) , RY, di

and t¢), —t¢) + RY) d are coplanar. The equation of the plane is d + n”x = 0. We have d = o since
the vector o is one of the coplanar points. n = (t, —t’ )A(tt, —t, + Ry d2) = [t), —t¥, |« Ry, d2.
So dT R¥T'n = o, hence the equation.



32 lll. 3D point cloud computation

Figure I11.5: Epipolar geometry. ¢; and c3 are the cameras optical centers. I; and
I5 are the image planes of the cameras. e; is the projection of ¢; to I3 and e is
the projection of €2 to I7. q is an arbitrary 3D point, qj is the projection of q to I
and ¢}, to I5. d; is the direction of ¢;q and d is the direction of c2q.

in a simplified form:

d’Ed; = o (I11.10)

The matrix E is called the essential matrix {Faugerasgsl.

If we can compute the matrix F, we obtain R, R and t, — ¢t up to a
scale. Thanks to the equation (II.10) each 3D point observed by the two cameras
provides a constraint on E. If we consider the matches to be perfect, five commonly
observed points is enough. A curious reader can read [Nistéro4} for more details.

At the beginning of the sequence, we define the world coordinate system as
being centered at the first camera pose, so t;, = 0. This gives us the poses { R’ , t\!

c1? TC1
and {RY, t? } of the two cameras.

1.2.4 3D point estimation

When the pose of the newly selected key frame is computed, another problem re-
mains unresolved. We need a way to compute the initial estimation of newly ob-
served 3D points.

At first glance, the problem appears to be simple. Let q € R? be a point ob-
served by two cameras with the optical centers ¢, and ¢2 and known poses. We can
easily compute the directions (in the world coordinate system) of the associated
rays dy and dy. Then the point q is the intersection of the two half-lines [e1;d; [
and [cg; dz[. Unfortunately these half-lines almost never intersects in 3D due to
noise in the observations.

In reality we find ourselves in a case illustrated on the figure I11.6. Let [ be aline
perpendicular to the half-lines [¢1; d; [ and [co; d2[ and intersecting these two half-
lines. Let q be the intersection between [ and [c1; d;[. Let q, be the intersection
between [ and [cz; da]. We define the point q as lying in the middle of the segment
q19q2. This method is called the middle point algorithm {Faugerasgsl.
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Figure I11.6: Middle point triangulation method. ¢; and ¢ are the cameras optical
centers. I; and 5 are the image planes of the cameras. q is the observed 3D point.
d, is the direction of the segment between ¢; and the detected image of q in [;.
d; is the direction of the segment between ¢; and the detected image of q in I5.

l.2.5 Ray-based error function

The computations of the subsections I11.2.3 and II1.2.4 would be enough if we
were sure that the tracking process of the 2D features was perfect, i.e. all the ob-
servations of the same track are of the same 3D point. Unfortunately, the process
described in subsections III.2.1 and III.2.2 is not, so we need a way to detect that
some observations of the track or even the entire track is erroneous. To achieve
this goal we use the same angular error as in {Mouragnonog}.

To be able to reconstruct a 3D point (see subsection II1.2.4) in a robust man-
ner, at last three 2D observations of the point are needed. The first two are used
to estimate the 3D position of the point and all the others are needed to verify this
estimation. Let see the situation on the figure II1.7. We are in the camera coordi-
nate system, q is the 3D position of the observed point and c¢ is the camera optical
center. We call d; the direction of the half-line cq (the projection ray). If q' is the
2D observation of the point q in the camera image plane, we call d, the direction
of the half-line cq’ (the observation ray). We can define the angular error as the
angle o, between d, and dj,.

In practice, instead of computing the angle ¢, directly, we prefer to compute a
2D vector e, such as:

|ley||* = tan*(ay) (ITL.1p)

We use a function 75 : R* — R? as m2((2, 9, 2)7) = (£, %)” and a rotation matrix
Ry suchas Ryd), = (0,0,1)7.

Then:
tan®(a) = tan2(cmgle( d,))
= tan®*(angle(R rd R,d,)) (ITL.12)
= tan®(angle((0,0,1)", R,d,))

And because ||m3((z,y,2)7)|” = 25 = tan*(angle((0,0,1)" (z.y,2)"))
the vector e, can be written:

e, = m(Rydy) (I1L.13)
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Figure II1.7: Angular error. c is the camera optical center. q is an arbitrary 3D
point. ¢’ is the detected image of q in the camera image plane. d, is the direction
of the segment cq. d;, is the direction of the segment ¢q'. «, is the angle between
cqand cq'.

The same equation can also be written using the world coordinate system. If
the camera pose is { R, t?} then the equation become:

€, = WQ(RQIRZ:UT[IP,‘ — tqcﬂ] |:(11:|) (IIII4)

For an observation to be considered true, the angular error associated to this
observation must be less than a given threshold. The usual threshold is an angular
error corresponding to a shift of two pixels in the image plane. It is defined by the
camera 7ntrinsic parameters. An observation with the error less than the threshold
is called 7n/ier and an observation with the error greater than the threshold is called
outlier. A 3D point is considered during the remaining of the reconstruction process
only if the associated #rack contain at last three inlzers.

[.2.6 Robust estimation

The methods of estimation of the camera pose and the positions of 3D points ex-
plained in the subsection III.2.3 and III.2.4 are well suited for the case when all
the matches between consecutive images are true, unfortunately, in the real world
they are not. Moreover, the false matches are quite numerous. So we need some
sort of a mechanism to eliminate the false observations (outliers) during our recon-
struction process. The method we use to robustly estimate the 3D coordinates of
a point or camera pose is called Random SAmple Consensus or RANSAC for short.
This technique was firstly presented in {Fischler81].

We will begin by the computation of the 3D coordinates of a point q (see sub-
section II1.2.4). Suppose that the track T, associated to the point q contains Nops
observations. Only two observations are needed to estimate a point position. To
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find these two observations we will proceed iteratively. At each iteration, we ran-
domly select two observations out of Ny available and estimate the 3D coordi-
nates of the point q as in II1.2.4. Then we compute the value of the angular error
(see ITI.2.5) for each observation of T,. The number of /nliers in the track is the it-
eration score. The final 3D coordinates of the point are the coordinates computed
during the iteration with the largest score.

Assume that we want to find a correct final solution with a probability of p =
0.99 knowing that approximately € percent of the observations are outliers. If we
need m observations to estimate one putative solution (m = 2 in our case), then
the number of RANSAC iterations N can be estimated using the following equa-
tion {Fischler81l}:

log(1 - p)
“log(1—=(1—-€¢m)

The camera pose (subsection II1.2.3) can be robustly estimated using the same
technique. Suppose that the camera image associated to a newly selected ey frame
contains the observations of N3p 3D points. According to the subsection III.2.3,
we only need the observations of 3 3D points to estimate the camerz pose. So during
one iteration of RANSAC, we randomly select three 3D points from N3p and use
them to estimate the pair {RY,t?} (see III.2.3). Then we compute the angular
error for all the observations of the image (see subsection III.2.5) and count the
number of inliers. This gives us a putative camera pose and the associated score (the
number of znliers). The final pose is the pose computed during the iteration with the
largest score.

For the initial estimation of the three first camera poses when no 3D points po-
sitions are known, we proceed in the similar manner [Nistéro4l. The initial poses
estimation is taking place when the first three key frames were selected, hence the
name of the first triplet estimation. Let these three key frames be called Iy, , I, and
1Iy,. During the iteration of RANSAC, we begin by selecting 5 tracks observed in
these three key frames. The five points algorithm referenced in the subsection IT1.2.3
is applied to estimate the positions of the key frames I}, and Ij,. Then the position
of the key frame I}, is estimated using the Grunert's {Haralickg4} algorithm. Finally
the 3D coordinates of the points associated to all the trzcks are computed using the
observations from Iy, and I, as well as the associated errors. The final number of
inliers is the RANSAC iteration score. The final poses are the poses computed during
the iteration with the largest score.

(I1L.15)

l.2.7 Bundle adjustment

The camera pose and the positions of the 3D points estimated using RANSAC as
explained in the previous subsection are not guaranteed to be perfect. Moreover,
we need some way to refine the poses and 3D points coordinates when some new
observations are added in the future. This is why, once a new key frame was selected,
the initial pose estimated and new 3D points reconstructed, an optimization step
called bundle adjustment (BA) is applied.

Let Ly, be the set of the N, last key frames. Let L, be the set of the 3D points
observed in the last Ny key frames. Finally, let Ly, be the set of the observations
of the points of L, in the last Ny key frames. We define ez as the angular error of
the observation of the point q in the key frame Ij;.

The bundle adjustement is a non linear optimization problem with the objective
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function defined by the following equation:

B(LiL)= > llefl? (I11.16)
{k)q}ELobs

The optimized parameters are the poses associated with the key frames of L, and
the coordinates of the 3D points of L,. This problem is numerically solved using
a sparse Levenberg-Magquard method. The description of this method is outside
the scope of this dissertation, a curious reader can read {Mouragnonog} for more
details.

If all the observations are considered directly, the optimization can actually de-
grade the results because it will try to fit to all the constraints, even the false ones.
On the other hand, we need a way to update the #n/ier status of the observations.
So the optimization is performed twice per key frame. First the optimization is per-
formed by considering only the angular errors associated to zn/iers as defined by the
previous optimizations and the last pose estimation. This way, the optimization
is not disturbed by the false matches. Then the zn/ier/outlier status of all the ob-
servations is updated, this usually leads to more zn/iers. Then the optimization is
performed anew with the help of new in/zers.

.3 Sparse 3D point cloud improvement

The 3D cloud of points computed from a sequence of images by the Structure-from-
Motion algorithm as explained in the previous sections can directly be used by the
surface reconstruction algorithm. But this is not always the best solution. In fact,
this algorithm was optimized for the resolution of the camera localization appli-
cation. For surface estimation application instead, the 3D points themselves are
more important than the camera positions.

In this brief section we will explain some optional steps of the §fM algorithm
as described in the section II1.2. They consists in computing the poses of all the
frames in between the key frames (subsection I11.3.1), then in recomputing the cloud
of points using these poses (subsection I11.3.2). This way, even the points observed
between key frames will be reconstructed and so hopefully the quality of the final
surface will be enhanced.

The overall algorithm (the base algorithm plus the additional steps) remains
incremental. The additional steps described here are performed each time a new
key frame was processed by the basic algorithm of the section III.2. The output of
the overall algorithm is not the cloud of points maintained by the base algorithm,
but the cloud of points maintained by the step described in the subsection II1.3.2.

1.3.1 Intermediate poses estimation

The first of the additional steps is the evaluation of the camera poses in between the
key frames of the input sequence. First of all, to achieve this goal, the base algorithm
is performed exactly as described in the section III.2.

There we call I, the lastly selected key frame, Ij,_, the previous one, etc. The
first key frame that won't be modified by the base algorithm any further is I, _ _ .
So once a new key frame is selected and was processed by the base algorithm, we
compute the camera poses associated to the frames between I, _ and I}, (= Npos-+1)

(which will not be updated).
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These frames are processed in order. First the points of interest are detected in
the frame and matched with the previous frame (or I}, Npos for the first frame of the
set). This step is needed because the base algorithm hasn't kept the intermediate
matches. Then, only the tracks corresponding to the 3D points reconstructed by
the base algorithm are kept. Now we have the correspondences between 3D points
and their 2D observations in the frames between the key frames. The initial estima-
tion of the camera pose associated with the considered frame is performed by the
Grunert's algorithm and RANSAC (see subsections I11.2.3 and II1.2.6). Finally, the
camera pose is optimized using a simplified bundle adjustment. The only parameter
to optimize is the pose and the objective function is computed only considering the
observations of the current frame.

ll.3.2 Additional 3D points estimation

When the camera poses associated to the frames in between the key frames are known,
we can proceed to the additional 3D points estimation. In practice, the computa-
tions of this subsection are performed each time the pose of a new intermediary
frame (named Iy in this subsection) is computed by the processing of the subsec-
tion I11.3.1.

First of all, the interest points are detected in the frame /; and matched with
the previous frame /_;. The number of the detected and tracked features is usually
greater than the number used by the conventional SfM. This part of the algorithm
maintains a set of #racks totally isolated from the set of #racks maintained by the
base algorithm.

Once a track is stopped, i.e. it has no observation in the current frame Iy, the
3D coordinates of the corresponding point are computed. To achieve this goal, we
begin by computing an initial estimation of the point coordinates by performing
a RANSAC. Inside an iteration of the RANSAC, we begin by randomly selecting
two observation in the #rzck. Then we triangulate the 3D point position using these
observations and the middle point algorithm (see subsection III.2.4). Finally, the
angular error is computed for each observation of the t7ack and the number of /nfiers
is the iteration score of RANSAC.

‘When the initial estimation of the 3D point position was computed by the
RANSAC, we refine this position using a simplified bundle adjustement. The only
parameter of the optimization problem is the position of the 3D point and the
objective function is computed only considering the observations of the truck.

.4 Conclusion

In this chapter we have reviewed how to compute a sparse 3D cloud of points with
the associated visibility information from an input sequence of images. We have
begun by defining the mathematical model of the rigid multi-camera system. Then
we have described the steps which extract the points of interest from the input im-
ages, match them between the successive frames and finally compute the cameras
and 3D points positions {Mouragnonogl. Moreover, we have talked about an op-
tional extension to the SfM algorithm that allows to compute an improved sparse
cloud of points by taking into account the observations between key frames.

The results of this algorithm on both the real and synthetic sequences will be
presented at the same time as the results of the surface reconstruction algorithm
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in section V.2 of the chapter V.

Of course, this algorithm is not the only option to compute a cloud of points
from a set of images. But, this one is widely used at Institut Pascal and so its
performance and limitations are well known to us. This makes it a good choice.
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Incremental surface reconstruction algorithm

In this chapter the proposed incremental surface reconstruction algorithm is ex-
plained and studied in details. The input of this algorithm is a 3D cloud of points
and the associated set of rays (for memory, a 7zy is a segment between a camera po-
sition and the 3D point observed by this camera). This cloud of points is incremen-
tally produced by the Structure-from-Motion algorithm described in the chapter I11.
Each time the point cloud is modified by the SfM, the surface reconstruction al-
gorithm updates the output surface. The output surface is a set of triangles. This
surface is guaranteed to be z-manifold at all times.

‘We begin by a detailed description of the 2-manifold sparse surface reconstruc-
tion method from {Lhuillier13} in the section IV.1. The algorithm proposed by this
dissertation is heavily inspired by this work and so this description is useful to un-
derstand some basic concepts. Moreover, for the sake of clarity, it is easier to begin
the description of the surface reconstruction process in a batch context.

Section I'V.2 details our incremental surface reconstruction algorithm. Finally,
its time complexity is analyzed in section I'V.3.

IV.1 Detailed description of previous works

In this section we will describe the sparse 2-manifold surface reconstruction algo-
rithm published in [Lhuillierr3}. This is a batch method which takes as input the
final cloud of 3D points P = {p;}, the cameras positions C' = {c;} and the set of
rays V = {c;pi,c; € C,p; € P} as produced by the Structure-from-Motion. The
algorithm output is the 2-manifold surface S, a set of triangles.

‘We consider that the scene observed by the omnidirectional camera is rigid and
opaque. The main idea of the algorithm is to separate the space into two distinct
regions: the free-space region and the matter region. The free-space region is the space
visible by the camera, i.e. intersected by one of the rays of V. The matter region
is the remaining space. We suppose that the surface approximating the observed
scene lies between these two regions. So the objective of the algorithm is to com-
pute a 2-manifold approximation of this surface.

The batch algorithm proceed step by step:

39
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1. A tetrahedral discretization of space is computed by performing a 3D Delau-
nay triangulation of the cloud P. The computed triangulation is called T (see
subsection IV.r.D).

2. A free-space/matter binary labeling of tetrahedra of T" is performed using the
rays of V (see subsection IV.1.2).

3. The binary labeling is refined with the aid of acute tetrahedra removal (see
subsection I'V.1.3).

4. A greedy algorithm is used to perform a second binary labeling of T". This one
is called outside/inside. The outside tetrahedra are free-space tetrahedra, but
the boundary of outside is 2-manifold (see subsection I'V.r.5).

5. The outside/inside binary labeling is refined by an artifacts removal algorithm
(see subsection I'V.1.6).

6. The outside/inside binary labeling is refined by a peak removal algorithm (see
subsection IV.1.7).

7. The final surface S is the border of outside region. It is extracted and smo-
othed (see subsection I'V.1.8).

In the following subsections, all these steps will be reviewed in details.

IV.1.1 Space discretization (3D Delaunay)

The first step of the batch surface reconstruction is to perform the discretization
of space. Before we can explain how this can be achieved we need to mathemat-
ically define what the discretization is. We can use the notion of szmplical com-
plex {Moiseg7, Giblinio}.

First, we define a simplex:

Definition I'V.x (Simplex)
Let P = {po.p1,--- , Pk} be aset of k + 1 points in general position in R". The
k-simplex o p 75 the convex hull of P, i.e.

k k
op = {Z)\lpz,)\z S R+,Z)\i = 1}
=0 =0

We also note o p as pop1 - - - Pk, and k is called the dimension of o p.

InR3, we can find four kind of simplices: vertices (O-simplices), edges (1-simplices),
faces (2-simplices) and tetrahedra (3-simplices). If P’ is a subset of P and contains
k' elements, the simplex o p is a k'-face of o p (we note opr < op).

Then, we can define the simplical complex:
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Definition I'V.2 (Simplical complex)
A simplical complex K is a finite set of simplices such that:

s ifoc Kandt < o,thent € K;

e ifo,71 € Kando N1 # ), then o N 7 is a face of both o and .

The dimension of K is the largest dimension of its simplices. A simplical complex
K’ is a subcomplex of K if K’ C K. Two k-simplices o and 7 of K are incident if
o N7 # (. They are adjacent, if 0 and 7 have the same dimension and o N 7 is a
(k — 1)-simplex of K.

So, we obtain a discretization of space by the computation of a simplical complex
in R? with the points of P as vertices. In practice, we use a 3D Delaunay triangula-
tion which is a basic tool of surface reconstruction from cloud of points {Cazalso4,
Deyo7l. It is defined as follows:

Definition I'V.3 (3D Delaunay triangulation)
Let P = {po, - ,Pn} beasetof n > 4 non coplanar points of R®. A 3D Delaunay
triangulation of P is a 3D simplical complex T such as

o P isthe set of vertices of T
o the union of the tetrabedra of T is the convex bull of P;

o the circumscribing sphere of every tetrabedra of T doesn't contain any vertex in
its interior.

We call T the set of tetrabedra of T.

The advantages of the 3D Delaunay triangulation are that it always exists, it
is unique for a given points set P if P doesn't contain 4 coplanar or 5 cospherical
points and it can be proven that it contains a subcomplex that is a "good" approxi-
mation of the surface that is sampled by P {Amenta99, Boissonnatos}. Moreover,
when a new vertex is inserted into the triangulation, the only modified tetrahedra
are those whose circumscribing sphere contains the vertex. This property will be
used in our /ncremental algorithm (see section IV.2).

We also define the notion of boundary for a subcomplex of the triangulation 7*:

Definition I'V.4 (Triangulation boundary)
Let T be a 3D Delaunay triangulation and L C T . We call the boundary of L:

* A list OL of triangles that are faces of tetrabedra of L;

* Each triangle of OL is included in one and only one tetrabedron of L.
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Figure IV.x: Infinite vertex role inside a Delaunay triangulation (2D case). The
black dots are the vertices of the Delaunay triangulation and the gray dot is the
infinite vertex. The black solid lines are the real edges of the triangulation and the
gray dashed lines are the virtual edges.

An adjacency graph I'r can be associated to the 3D Delaunay triangulation 7.
It is defined as follows:

Definition I'V.5 (Adjacency graph)
The adjacency graph U of the 3D Delaunay triangulation T is a graph such as:

* The vertices of the graph are the tetrabedra of T
* The edges of the graph are the triangles between two tetrabedra of T

As can easily be seen, the graph I'r isn't 4-regular: most of the tetrahedra of T
have 4 neighbors, but some of them have only three or even less. To simplify the
implementation of the algorithms, we use the infinite vertex v, {Boissonnatoobl.
This vertex didn't exists in the triangulation, but virtual tetrahedra are introduced
to I'r that connects each triangle of 9T to v (see figure IV.D). This way I'r be-
comes a 4-regular graph.

Before constructing the 3D Delaunay triangulation of the cloud of points P
produced by the SfM, the set P is filtered to remove the points with bad accuracy.
Consider a point p € P. We call V, = {¢;p, c;p € V}, the set of rays associated
to the point p. If all the rays of V}, is nearly parallel, the accuracy of the point p will
be poor [Hartleyo4]. If there is at least one angle ¢;pc; suchase;p € V, ¢;p € V
and € < ¢;pc; < e —  then the point is kept, otherwise it is removed. The angle
e is a user defined threshold.
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Figure I'V.2: The principle of the free-space/matter binary labeling 2D case). White
triangles are freespace, gray triangles are matter. The numbers inside the triangles
are their number of intersections /(A). The gray dots are the cameras and the gray
lines are the rays.

IV.1.2 Free-space/Matter binary labeling

After the space was discretized by performing a 3D Delaunay triangulation 7' of
the input set of points P, we need to perform a binary labeling of the tetrahedra of
T. We say that a tetrahedron is free-space if we can see through, i.e. it is traversed
by at least one ray of V. Otherwise, the tetrahedron is matter.

We define a function I : 7 — R that for each tetrahedron A € 7T associates the
number of rays that intersect A. This way, if I(A) = 0 then A is matter, otherwise
it is free-space. We define the set of free-space tetrahedra F' = {A € T,I(A) > 0}.
So the problem of binary labeling becomes the problem of computing the values of
I(A) (see figure IV.2 for an example).

In practice, we use the algorithm called ray tracing. In short, we follow each ray
of V from the camera to the point and increment I(A) of each tetrahedron en-
countered in the way. Following a ray ¢;p; € V means traveling in the adjacency
graph I'r. We begin in the tetrahedron containing ¢;, then we walk to the tetra-
hedron adjacent by the face intersected by the segment ¢;p; and so on. We stop
when the tetrahedron containing p; as one of its vertices is reached.

As can be noted, the rays are followed from the camera to the 3D point. Of
course, they can also be followed from the 3D point to the camera. We also suppose
that the ray is always inside the convex hull of the triangulation. This is true in
practice because our camera omnidirectional. More precisely, let ¢ € C and P, =
{pi,cp; € V'} is the set of points observed by the camera c. Because the camera
is omnidirectional (it observes the points in all directions around it), the point ¢ is
located somewhere in the convex hull of the point cloud P.. Then, it is included
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(a) Example of an acute matter tetrahedron in the middle of the free=space (2D case). White triangles
are free-space and gray triangles are matter. Thick black line is the longest edge e; and « is the angle
inferior to €gcute.

(b) Real example of acute tetrahedra in the middle of the free-space region. The artifacts are encircled
by black traits.The illustration shows the border of free-space region (OF) computed by processing the
aubiere sequence (see chapter V). The colors encode the triangles normals.

Figure IV.3: The illustration of the kinds of artifacts handled by the acute tetrahe-
dra removal post-processing step.

in the convex hull of 7'.
This kind of algorithms can easily be converted to the parallel processing, a
curious reader can refer himself to the appendix A for details.

IV.1.3 Acute tetrahedra removal

Before performing the 2-manifold generation step, the binary labeling is enhanced
using the acute tetrahedra removal heuristic. This step is an enhancement com-
pared to [Lhuillierr3].

The case of the acute tetrahedron is illustrated on the figure I'V.3. If one of the
angles formed by the edges of a tetrahedron is very acute and at the same time one
of the edges of the tetrahedron is long, the area of the corresponding tetrahedron
facet is small. This means that the probability of the tetrahedron to be intersected
by a ray is diminished. If such a tetrahedron is traversing a large free-space region, it
has a high probability to remain matter and disturb the 2-manifold generation.

In practice, we proceed by checking each matter tetrahedron A € 7. We search
the longest edge ¢; of A and check the four angles adjacent to e;. If one of the four
angles is inferior to a user defined threshold €,cy¢e, the tetrahedron A is considered
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acute. For example, on the figure IV.3a, the tetrahedron is considered acute if & <
€acute- If A is acute, we check the status of the other tetrahedra adjacent to its
longest edge. If one of these tetrahedra is free-space, the I(A) is forced to 1 and so
A become free-space.

IV.1.4 2-Manifold definition

A 2-Manifold is a particular case of a topological space IMoise97). The topological space
is defined as follow:

Definition I'V.6 (Topological space)
Let X be aset andY be a set of subsets of X. The pair (X,Y) is a topological space if

c)eYandX €Y;
* Every union of elements of Y is also an element of Y ;
* every finite intersection of elements of Y is also an element of Y .

For each k € N, R¥ is a topological space.

Y is the topology for X and the elements of Y are called open sets.
We call d : R¥ — R the Euclidian distance in R*. We define an gpen ball with
the center ¢ € R” and radius 7 > 0 as a set of points defined by

Byi(c,7) = {x € R* d(x,¢) < 1} (Iv.)

The open balls of R¥ generate a topology of R¥, i.e. R* is a topological space.

Let M C Xand Yy ={VNM,V €Y}. (M,Y)) is a subspace of (X,Y) and
Y is an induced topology of M by Y. If X = R3 and Y is the topology generated
by d, the subspace (M, Y)s) is 2-manifold if its dimension is 2. To mathematically
formulate this property, we need the notion of homeomorphism:

Definition IV.7 (Homeomorphism)
Let (X1,Y1) and (X2,Y>) be two topological spaces. The function f : X1 — Xois
a homeomorphism between these two spaces if

o The function f is bijective;
o The function f is continuous, i.e. VYV € Ya, f~1(V) € Yy;
o The function f =1 is continuous, i.e. VYV € Yy, f(V) € Ya.

If it exist an homeomorphism between the spaces (X7,Y7) and (X3, Ys) they
are called homeomorphic.
Then, the &-manifold is defined as follow:
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(@) A sphere. Genus is 0. (b) A torus. Genus is 1. (0) A triple torus. Genus is 3.

Figure IV.4: Examples of 2-manifold surfaces in R®.

Definition I'V.8 (k-manifold)

Let M C R™and k € Nsuch that 1 < k < n. The topological space (M, YY) isa
k-manifold iz R, if every x € M is contained in an open set V. € Yy such that V is
bomeomorphic to Bi(0,1).

In short, a k-manifold is a topological space that locally looks like R*. In our
case, a z-manifold is a set of points in R? that is locally homeomorphic to a disk.
Some examples of a 2-manifold surfaces in R? are shown in the figure [V.4.

The manifolds of R? are classified by their genus:

Definition I'V.9 (Manifold genus)

Let M be a compact and connected 2-manifold in R3. There is an unique h € N such

that M is homeomorphic to a 2-sphere with h bandle(s). h is called the genus of M.
More precisely, M is homeomorphic to

o AsphereS? = {(z,y,2)T € R3 22 +y?+22 = 1}ifh = 0 Gee figure IV 4a);

o AtorusT? = {(x,y,2)T € R®,2%2 + (Va2 +y2 —1)? = é}th = 1 (see
Sfigure IV 4b);

* A 2-manifold defined by h tori T? joined by h — 1 tubes if h > 2 (ee fig-
ure IV 4¢).

IV.1.5 2-Manifold extraction

The binary labeling step previously described have computed the values of I(A)
for each tetrahedron A of the 3D Delaunay triangulation T'. If I(A) > 0, the tetra-
hedron is called free-space. For memory, we define the set of free-space tetrahedra
F ={A e€T,I(A) > 0}. The boundary OF of F can be used as the first approxi-

mation of the final surface S.
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(a) v is regular. (b) v is singular. (o) v is singular

Figure I'V.5: Examples of regular and singular vertices.

Unfortunately, we have no guarantees that OF is z-manifold. Our goal is to
compute another binary labeling of T (outsidelinside) such as the boundary of this
second labeling will be guaranteed to be z-manifold. We want this property be-
cause most of the surface processing algorithms have it as their applicability condi-
tion {Botschrol. Furthermore, this property acts as a regularization constraint to
search the surface.

Problem formulation

Our problem is to find a binary labeling of the tetrahedra of the 3D Delaunay tri-
angulation T" with the following characteristics:

¢ Tetrahedra are labeled outside or inside. We call O the set of outside tetrahedra.
* O C F. For memory, F is the set of free-space tetrahedra.
* The border 0O of the outside region is 2-manifold.

We want the set O to be as big as possible (ideally, we want O = F). In this
sense, the ideal surface 9O is the closest 2-manifold approximation of the surface
OF. We begin by extending the function "number of intersections" I(A) to a set
of tetrahedra:

1(0) = > I(A) (IV.2)
A€O

So for the set O to be as big as possible, we want the value of I(O) to be as high
as possible. This way, if we can't put all the tetrahedra of free-space into O, we put in
priority the tetrahedra with the higher number of intersections. Our goal can then
be formulated as follow:

O=arg( o c p maz(I(0")) (IV.3)
{ 00’ is 2-manifold.

From this equation, we can see that our problem is formulated as an optimiza-
tion problem.

2-Manifold tests

Before discussing the optimization algorithm we need a way to check that the
boundary of O is 2-manifold. We call singular, the vertices of T' at which the man-
ifold constraint of 0O is violated. The other vertices are called regular. The fig-
ure I'V.5 gives us examples of regular and singular vertices.
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The detailed discussion about 2-manifold tests is given in the appendix B. What
we need to known here is that we have two manifold tests: the fzst and the sbow
one. The fast test tells us if 0O remains 2-manifold after the addition of a single
tetrahedron to O. The slow one is more general, it tells us if the addition of a pack
of tetrahedra is possible without violating the manifold constraint, but, as its name
tells us, it is slower.

Region growing

To compute the outside region as defined by the equation I'V.3 we use a greedy opti-
mization algorithm called "region growing". The basic idea is quite simple: we start
from O = (), we choose the tetrahedron A of F'\ O with the higher value of I(A)
and we check if it can be added to O without violating the 2-manifold constraint
of 00 wusing the fast manifold test. If A can be added to O, it is done. Then, we
proceed by trying to add another tetrahedron of F' and so on.

In practice, the algorithm can start from O = ) or from any O C F such that
00 is 2-manifold. The usefulness of the second starting will become clear shortly.
To avoid getting stuck in local extrema, we only try to insert the tetrahedra of
F\ O directly adjacent to O (except the case of O = (), this way the set O grows
continuously. The algorithm ends when no more tetrahedra can be added.

The details can be found in the algorithm I'V.r and an example of its application
is given in the figure IV.6. The parameter @) is used to give a set of tetrahedra from
where the growing should begin in the case where O # ().

Limitations of the region growing

Unfortunately, the region growing algorithm is not always able to provide a good
solution to the problem formulated by the equation IV.3. Let see the example on
the figure IV.7. When the region growing algorithm have finished execution, there
is no single tetrahedron that can be added to outside without breaking its 2-manifold
property. But, as clearly can be seen, there exists a pack of free-space tetrahedra that
can be added to O and 0O remains manifold nevertheless.

The problem of the region growsng is that it can't change the genus of the surface
00 and because the initial surface always have a spherical topology (we begin by a
single tetrahedron), the algorithm is limited to the reconstruction of 0 genus sur-
faces. We need a way, once the region growing is stuck, to check if a genus change
can unstuck it.

Topology extension

To unstuck the region growing we use another algorithm called topology extension. Its
main idea is to try to add a pack of free-space tetrahedra to O when it is possible
without breaking the manifold property of 0O. The algorithm takes the outside set
O as its input and returns the updated O and the seed ()y. The seed is needed to
bootstrap the new region growing process after the topology extension.

The details are given in the algorithm IV.2. The algorithm proceed by a traver-
sal of all vertices of JO. For each vertex, we compute the list L of tetrahedra
including this vertex, not in the outside region and free-space. The tetrahedra of La
are forced to outside. If OO remains z-manifold (checked by the slow test), we have
succeeded and the region growing is launched with Qg set to a list of neighbors of
L. Otherwise, another vertex is tried.
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Algorithm IV.x. The region growing

: procedure REcIoN_GRrOWING(F, O, Qo)

I
2: Let @ be a priority queue sorted by I(A) > Initialization
3 Q=0
4 if O = () then
5: Let A € Fsuchas VA’ € F,I(A") < I(A)
6: rusH(Q, A)
7: else
8: for each A € Qo N F do
o: if A ¢ O and A is adjacent to a tetrahedron in O then
10: pusH(Q, A)
1I: end if
12: end for
13: end if
14:  while not empTY(Q) do > Region growing
15: A + ror(Q)
16: if A ¢ O then
17: O+ 0U{A}
18: if O is z-manifold then
19: for each A’ adjacent to A do
20: ifA’eF\Othen
210 rusH(Q, A
22: end if
23: end for
24: else
25: O+ O \ {A}
26: end if
27: end if

28: end while
29: end procedure

Algorithm IV.2. The topology extension

- function ToroLoGY_ExTENSION(E, O)

2: for each vertex v of 00 do

3: L < tetrahedrain F'\ O having v as vertex

4 O+ OULA

5: if 00 is z-manifold then

6: Qo + tetrahedra adjacent to the tetrahedra of La
7: return Q()

8: else

9: 0+ 0 \ La
10: end if

1I: end for

2: end function
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Figure IV.6: An example of the application of the
case). Gray triangles are matter, the white ones are free=space. The numbers inside

alues of I(A). The thick line is the frontier of outside region
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(a) The triangulation after the region growing. (b) If one of the two remaining free-space triangles
The annulus isn't closed. is added to O, a singular vertex will appear (black
dashed circle).

(o) If the two free=space triangles are added at the
same time, the surface remain manifold.

Figure IV.7: An example of the region growing limitations: an annulus 2D case of
a tore). Gray triangles are matter, the white ones are free-space. The thick line is the
frontier of outside region 0O.
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In practice we alternate the region growing and the topology extension until no
more free-space tetrahedra can be added to O. This way the reconstructed surface
can have an arbitrary genus.

Another important remark is that the topology extension is slower than the re-
gion growing. But we was able to accelerate this step with the help of the parallel
processing, see the appendix A for details.

IV.1.6 Artifacts removal

At this point, we can consider that the output surface is the boundary of the outside
region O produced by the previous step. It is a z-manifold approximation of the
border of the free-space region F' and so it is a good solution to our problem. Unfor-
tunately, if no additional steps are taken, this solution suffers from visual artifacts.
An example of a visual artifact is shown on the figure IV.8. A bunch of triangles
appear on the final surface, but didn't exist in reality.

These artifacts are due to the fact that sometimes the z-manifold growing al-
gorithm get stuck in a local extremum. To remove them, an additional step called
artifacts removal is performed. This algorithm can be separated into three distinct
phases: detect, force and repair. We will now review each of them.

Detect

A visual artifact is a connected (in term of adjacency graph) set of tetrahedra A, such
as A C F'\ O, i.e. Ais free=space, but included in the inside volume. Checking the
entire triangulation T for the visual artifacts would be too computationally expen-
sive. So it is preferable to detect only the visual artifacts easily visible by the human
eye.

To achieve this goal, we define the notion of visually critical edge. Let e be an
edge of T with end-vertices e, and e;. e is a visually critical edge if the following
conditions are met:

* All the tetrahedra including e are free-space;
* At last one of the tetrahedra including e is inside;

* There is a camera location ¢; € C such that angle €,c,€, > o, where o is an
user defined threshold.

All the visually critical edges of T are stored in the list L,. The greater the
threshold «, the smaller is the list L,. The next two steps of the algorithm are
applied to each edge of L.

Force

To enhance the probability that we would be able to exit from the local extremum
of the region growing (the cause of the apparition of the visual artifact), we begin
by modifying the local configuration of the tetrahedra. We need to define the no-
tion of a Steiner point: this is a vertex added into the 3D Delaunay triangulation 7'
that have no visibility information attached to it. We insert such a point into the
middle of the considered critical edge e. The tetrahedra created by this insertion
inherits their status (free-space/matter and outside/inside) from the initial tetrahedron
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Figure IV.8: An example of a visual artifact. The first row shows the surface with
an visual artifact and the second row shows the same surface with the artifact re-
moved. The left column shows the surface with color encoded normals and the
right column shows the same surface with the appropriate texture. The example is
taken from [Lhuillierr3}.
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(a) Before insertion. (b) After insertion.

Figure IV.9: An example of the edge splitting by Steiner vertex insertion (2D case).
Dark gray triangles are matter. Light gray triangles are inside free-space. White trian-
gles are outside. The big dot is the newly inserted Steiner point and the thick lines
are the edges created by the insertion.

(see figure IV.g for an example). Thus the resulting triangulation 7" is not guaran-
teed to be Delaunay, but the boundary of the outside region 0O remains z-manifold.
This operation is called the edge splitting.

We call v, the Steiner vertex inserted by the edge splitting operation. So we
create a list G of free-space and 7nside tetrahedra including the vertices e,, e;, and v;.
Then we apply the algorithm IV.3. We force the tetrahedra of G to outside. This
will create a certain amount of singular vertices ns. So our task is to try to remove
this singularities by inserting additional tetrahedra in the outside region. This is the
repair step.

Repair

To remove the singularities created by the force step we use an algorithm similar
to the region growing of the subsection IV.r.5, but with two key differences. First
of all, we can't use the fast z-manifold test because the boundary 9O is already non
manifold at the beginning of the algorithm. Instead, we ensure that the number 7,
of singular vertices decreases. The second difference is that we can't be sure that
our goal (n; = 0) is achievable and so the repair process can fail. In practice, we
also limit the maximum number of iterations because of the computation time.

Otherwise, the process is mostly the same as the usual region growing (see algo-
rithm IV.4 for details). We begin from the pack of forced tetrahedra (called G). We
take a free-=space tetrahedron A in the neighborhood of G and add it to the outside
region. Then, we count a new number of singularities n. If n > ng, A is removed
from outside. Either way, we proceed to the next tetrahedron.

The process is stopped if either ny; = 0 or the maximum number of iterations
Jmaz 1 reached.
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Algorithm I'V.3. The artifacts removal

: procedure Artiracts_RemovaL(F, O, L,)

2:
3:
4

W

12:
13:
14:
15:
16:
17:
18:
19:

Lvert — @
for eache € L, do
v, < Epce_SpriT(e)

Lyert < Lyert U{vs} U{ the two vertices of e}
end for

for eachv € L,.,;: do
G + the set of free-space inside tetrahedra adjacent to v

O+ 0OUdG > Force
if not Repair(F, O, G) then
0+ 0O\G

for each A € Gdo
O+ 0ou{A} > Force a single tetrahedron
if not Rerair(F, O, {A}) then

O« O\ {A}

end if

end for

end if
end for

20: end procedure
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Algorithm I'V.4. The repair process

r function RepraIr(F, O, G)

2:
3
4

17:
18:

19:

20:
21

22:

23:
24:
25:

26:
27:
28:
29:
30:
31
32:
33:
34:
35:

36:
37:
38:
39:
40:

Let @ be a priority queue sorted by I(A) > Initialization
Q+ 0

ng < the number of singular vertices of 00

for ecach A € G do
for each A’ adjacent to A do
if A’ € Fand A’ ¢ O then
pus(Q, A
end if
end for
end for

while not empTY(Q) do > Repair process
A — por(Q)
if A ¢ O then
Let b? = 1, if the i-th vertex of A is singular, b = 0 otherwise
no < Z?:1 by
O+ OU{A}
Let b} = 1, if the i-th vertex of A is singular, b} = 0 otherwise

4 1
ny < b

if ng > ny and Vi € [1;4],00 > b} then
G« GU{A}

Ng < Ng +N1 — Nyg

if the size of G is g4, then
break > Too many iterations
end if

for each A’ adjacent to A do
if A’ € Fand A’ ¢ O then
pusu(Q, A)
end if
end for
else
0+ 0\ {A}
end if
end if
end while

if n, # 0 then
O+ 0\G
return false

end if

return true

41: end function
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(a) Example of a outside peak. (b) Example of a inside peak.

(c) Example of a inside peak. Left image shows the surface computed with the peak removal enabled. The
central image shows the surface without peak removal, the artifact is encircled by a black trait. The right
image shows the textured surface for reference. The illustrations shows the final surface computed by
processing the aubiere sequence (see chapter V). The colors encode the triangles normals.

Figure IV.ro: The illustration of the kinds of artifacts removed by the peaks re-
moval heuristic. White triangles are free-space and gray triangles are matter.

IV.1.7 Peak removal

The peaks removal problem is illustrated on the figure IV.ro. The problem arises
from the fact that the 3D points generated by the SfM algorithm are not guaranteed
to be correct. If a false 3D point is located behind the observed surface, it will
generate a spurious concavity as on the figure IV.ioa. If the density of the true
points in enough, the solid angle at the apex of the spurious concavity is small and
so this tetrahedron can easily be detected and forced to znside.

In practice, we check all the vertices of 9O. For all vertex v of 90, we compute
the list Ly of outside tetrahedra having v as vertex. For each tetrahedron A € Ly,
we compute the solid angle aa at v. Then we compute the sum of these angles:
o= ZAeLmO aa. If & < €peqr Where €peqy is a user defined threshold, the set Ly
is a peak.

‘We force the tetrahedra of Ly to be énside and check that 0O remains 2-manifold.
If it is the case, we have removed a peak. Otherwise, A is added back to outside and
we try another vertex of 0O.

The case of the znside peak as on the figure IV.10b is handled in a similar manner.

IV.1.8 Surface post-processing

The previous steps have established the inside/outside binary labeling. The final sur-
face is the boundary 0O of the outside region. This surface is a 2-manifold approx-
imation of the observed surface and so can directly be considered as the output
surface of our algorithm. Nevertheless, we could perform some additional steps to
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enhance the visual quality and facilitate the visualization.
The post-processing steps are the following:

* The smoothing of the final surface;
* Removing the sky triangles to facilitate the visualization;
* Computation of the triangles textures.

The smoothing step is useful because, as with any other type of acquisition
hardware or reconstruction methods, the final surface taken directly is noisy. But,
thanks to the z-manifold property, there is a lot of options to perform the smooth-
ing. In practice, we use the uniform Laplacian flow operator { Taubings} because of
its simplicity.

Let v be a vertex of O be the original position of the vertex and v’ is its smo-
othed position. We define N'(v) = {v1,va, - ,v,} the set of neighboring vertices
of von 00 (i.e. there is an edge of 90 between v and v;). We define the displace-
ment operator A as follow:

1
Av=— 3 i .
V= (vi — V) (IV.4)
viEN (V)

Then the Laplacian flow operator is written as:
vV =v+ ) \Av (IVs)

To smooth the surface 9O, the Laplacian operator is applied to each vertex v of 00
where A is a user defined threshold.

The sky triangles removal is useful to allow a bird view visualization of the fi-
nal surface. It is also performed easily thanks to the camera positions and rotation
provided by the SfM. As can be seen from the figure II1.3 of the chapter III, the
vector z)scs defines the direction of the sky. So we begin by removing the trian-
gles intersected by each z);c s of each camera pose ¢; € C. Then we remove the
neighbors of the removed triangles and so on, ngg, times. 71y, is a user defined
threshold. The obtained surface is a 2-manifold with border (holes in the sky).

Finally, we could also find a texture corresponding to each triangle of 0O. Let
t € 00 be a triangle. For each camera position ¢; € C, we project ¢ to the camera
image. If the 2D triangle ¢, corresponding to ¢ is entirely contained in the image,
the camera position ¢; is added to the list of candidate cameras L¢qn, (t). Then, we
search the camera ¢; € L4, (t) which maximizes the area of ¢,. The texture of
te, is the texture of the 3D triangle .

V.2 New incremental 2-manifold surface reconstruction

In the previous section, a sparse surface reconstruction algorithm issued from pre-
vious works was explained. In this section, we will details the main contribution of
our work: an incremental sparse surface reconstruction algorithm. It is an incre-
mental extension of [Lhuillier13} and was published in {Litvinovisl.

The basic idea of the incremental algorithm is to locally update the output sur-
face each time the SfM algorithm of the chapter III processes a new key frame. So,
when the key frame I}, 1 was processed by the SfM, the surface reconstruction algo-
rithm receives as it input a new camera pose ¢x1, the set of new 3D points Pj41
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and the associated set of rays Vj,1. Moreover, at this point in time, the following
data structures were created by the previous iterations:

* The 3D Delaunay triangulation T};
* The free-space/matter binary labeling of T},: Fj, is the set of free-space tetrahedra;

* The outside/inside binary labeling of T: Oy, is the set of outside tetrahedra; We
have Oy, C F}, and the boundary 0Oy, of the outside region is z-manifold.

In practice, it is difficult to modify the position of a vertex inside 3D Delau-
nay triangulation because it can modify a lot of tetrahedra around it (for example,
see {Lovirol). So the 3D points are considered by the surface reconstruction al-
gorithm only once they are not modified by the SfM any more. So, actually, the
surface reconstruction process have N, iterations lag compared to the cloud of
points (see chapter IID), i.e. at key frame I;. 1 we process the points of Pri1_n,,.
But, to simplify the notations, we will consider that we process the points of Pj41
in the remaining of this document.

One iteration of the surface reconstruction algorithm can be separated into sev-
eral steps as illustrated on the figure IV.11. This section will begin by formulating
the problem of inserting the new points inside an existing 3D Delaunay triangu-
lation (subsection IV.2.1). Then, we detail each step of the surface reconstruction
iteration. Finally, we will finish this section by an explanation of how the algorithm
is initialized (subsection IV.2.9).

IV.2.1 Problem formulation

Let consider a 3D point q € Py 1. Our problem is to update the surface 0O}, using
this new point. If we insert q into the 3D Delaunay triangulation T}, directly; it
destroys some tetrahedra and creates new ones. Let call Dg the set of tetrahedra
destroyed by the insertion of the point q into the triangulation 7.

Any newly created tetrahedron A is initialized with I(A) = 0. So we have
Fii1 = Fi \ Dgand Oy1 = Oy \ Dq. More generally, when a set of 3D points
P41 is inserted into T}, we call D the list of destroyed tetrahedra. So we have
Fk+1 = Fk \ D and Ok+1 = Ok \D

There is no problem for F', but the boundary 0O of the outside region must be 2-
manifold at all times. However, we have no such guarantees for the boundary 0011
because arbitrary suppression of some of the tetrahedra can lead to singularities (see
sub-figure I'V.11f for an example).

So, our problem is to find a way to insert new points inside Delaunay triangula-
tion without disturbing the outside region Oy,.

IV.2.2 Enclosing destroyed tetrahedra

The easiest way to solve this problem is to modify the outside region Oy, in a con-
trolled manner (ensuring that Oy, remains manifold) in such a way that O, N D = ()
without inserting the points of Py into the triangulation.

In practice, we prefer to work with a set £ such as D C E. We want E to be
as small as possible, but at the same time we want the boundary of OF to be as
"smooth" as possible (i.e. like a ball, not a star). The later property is needed to
ensure that it would be easy to shrink the outside.
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a. Initial state

b. Enclosure/shrinking f. Direct insertion (bad)

c. Insertion

s

d. Free-space update e. Growing

Figure IV.ix: An overview of the incremental surface reconstruction method 2D
case). White triangles are free-space, gray triangles are matter. Thick black line is
the frontier of the outside region. Light gray dots are the new points to insert and
the light gray circle is the enclosing sphere E.
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(a) Triangulation without Steiner vertices.  (b) The same triangulation with a regular grid of Steiner
vertices.

Figure IV.12: Bounding the size of tetrahedra using a grid of Steiner points (2D
case). Black dots are reconstructed vertices and the gray dots are Steiner vertices.

First of all, because we want E to be as small as possible we need a way to limit
the maximum size of a tetrahedron. Inside a usual Delaunay triangulation, the
tetrahedra can be extremely large. If such a tetrahedron comes to be destroyed by
an insertion of a new point, the set £ will be big. To avoid this kind of problems,
we introduce a regular grid of Stezner vertices.

As was defined in the subsection IV.1.6, a Steiner vertex is a 3D point introduced
inside a Delaunay triangulation that has no visibility information attached to it.
‘We introduce a regular grid of such vertices inside our Delaunay triangulation T
in such a way that all of the points of P = Py U - - - U P, are lying inside this grid.
Every time a new set of points is inserted, the grid is updated and the new Steiner
vertices are inserted as needed. The step g of the regular grid is a user defined
parameter of the algorithm.

Thanks to the grid, the diameter of the circumscribing sphere of a tetrahedron
is limited to v/3g (see figure IV.12 and {Lhuillier13} for proof). After the definition
of the Delaunay triangulation, when a point q is inserted, the tetrahedra that can
be modified by this insertion are those whose circumscribing sphere contains q. So
they are lying inside a ball centered at q with radii equal to v/3g.

According to this, we can define the union of the balls centered at each point of
Pyy1 with /3¢ radii: B = Uger... B(a, V/3g). A great advantage of a set defined
this way is that it is easy to enclose in practice. We simply compute a tight bounding
sphere of the 3D points of Py (easy thanks to [CGAJ]) and add v/3g to it radii.
We call By(Py+1) the ball contained within this sphere. Then finally, we define £
as a set of tetrahedra with at last one vertex contained in By (Py41). It is easy to
see that D C E.

IV.2.3 Shrinking of the outside region

Now that we know the set of tetrahedra potentially destroyed by the insertion of
the new points, we want to remove them from the outside region. More precisely, we
want to compute Oy41 such that Oy1 C Oy \ E. This way we will find ourselves
in the configuration of the figure IV.r1b and the points of P11 could safely be
inserted into the triangulation.

We begin by initializing Oy1 = Oy, and progressively remove tetrahedra from
Ok+1 in such a way that 9Oy, remains manifold until Oy1 N E = (. The Oy
shrinking is an inverse of growing from the section IV.r.5. Let @ be the list (prior-
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ity queue prioritized by I(A)) of tetrahedra in O;41 N E which have a triangle in
00k41.

First we apply an one by one shrinking. We remove from () the tetrahedron A
which has the smallest intersection counter I(A). If A ¢ Oy 1 or A does not have
a triangle in 00y 41, we take another A in (). Then we try to remove A from Oy
such that 0Oy1 remains 2-manifold using the fast subtraction test (it is the inverse
and have the same performance and limitations as the fast test. See appendix B for
further details). In case of success, we add to ) the tetrahedra of O, N FE which
are adjacent to A. We continue until @ = (). This shrinking is fast thanks to the
fast subtraction test, but we can obtain E N Oy # 0 (e.g. if E N Opy1 = 0 implies
that 9011 genus changes).

At a second time, we apply a shrinking by pack to allow genus changes. We find
avertex v which is both in a triangle of 0Oy, and in a tetrahedron of E, define L
as the list of tetrahedra in Oy having v as vertex, apply Oy4+1 < Oky1 \ L, and
apply the slow test for 00,1 at every vertex of L. In case of success, we redefine a
list @ with the adjacent tetrahedra of L, and redo the one by one shrinking above. In
case of failure, we apply Oj41 < O4+1 U L and try another v. The overall process
stops when we can not find a successful v.

We have chosen to use I(A) as the priority criterion when choosing which tetra-
hedron to remove from Oy. This choice appears appropriate because this way
the shrinking process is close to the inverse of the growing and so we can hope it
will be efficient. Nevertheless, other choices of the priority criterion are possible.
They will be compared in the experimental study in the section V..

Another important remark is that we can't theoretically guarantee that this al-
gorithm will lead to O3 N E = 0. It is possible that some tetrahedra of F will
remain in Oy 1. We hope that this case rarely occurs in practice and we will explain
in the next subsection how to process these border cases.

IV.2.4 New points insertion

Now, we find ourselves in the configuration of the figure IV.x1b and so we can pro-
ceed to the insertion of the points of P41 into the Delaunay triangulation. We
initialize Ty, 1 = T} and Fj41 = Fj,. We filter the set Py to remove the points
with bad accuracy in the same manner as in the subsection IV.r.1. Then for each
point q € Py we apply the steps that follow.

Because we are unsure that O;1; N E = (), we begin by computing the list Dq
of tetrahedra destroyed by the insertion of the point q without actually inserting
it. It is easy in practice thanks to CGAL {CGAL

If Dg N Ogy1 = () we add q to Ty (see figure IV.rrc). This does not mod-
ify Og41 and so 0Oy remains 2-manifold. This insertion also implicitly perform
Fit1 < Fiq1\ Dq because for each freshly created tetrahedron A, I(A) = 0 and
so it is matter. We still have Og41 C Fj11. We associate the creation date k£ + 1
to each newly created tetrahedron, this information will be used during the next
steps.

If DgN Op41 # 0 it would be difficult to update Oy 41 is such a way that 9Oy
remains manifold and T}, is still a Delaunay triangulation. Since this case is rare
in practice, we decide not to insert q in this case. When this happens, we also
perform P11 < Pi11\ {q}.
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Figure IV.13: Fast rays elimination using the cameras bounding boxes illustration
(2D case). Thick bounding box is By and the black bounding boxes are B.,. We
can see that the rays originating at ¢y can be eliminated without the need to follow
them.

IV.2.5 Update of free-space/matter binary labeling

After the insertion of new points we need to update the numbers of intersections
of tetrahedra of 7). First of all, the points of Py have the associated set of
rays Vj;4+1. These rays have not yet been taken into account and so they are needed
to be processed. We follow each of them using the algorithm described in the
subsection I'V.1.2 and update the numbers of intersections accordingly.

Now, let N be a set of newly created tetrahedra (i.e. the set of tetrahedra with
k + 1 as their creation time). We need to check the intersection of each of these
tetrahedra with the rays generated by the previously inserted points (the rays of V;
with i € {0,---,k}). The easy solution would be to trace all the rays and update
the numbers of intersections for each intersected tetrahedron of V. Unfortunately,
in practice this would be too long and, moreover, the computation time would
grow with the number of processed key frames. This will be contradictory with
incremental property of our algorithm.

So we need a method to rapidly eliminate the rays of V; with i € {0,--- ,k}
that can't intersect the tetrahedra of N. We begin by computing the bounding box
By of tetrahedra of N. Then, for each camera location ¢; with i € {0,--- ,k} we

maintain a bounding box B,, of 3D points visible by this camera. This way all the
rays originating at ¢; are entirely included in B,,.

Now;, for each i € {0, -, k} we check the intersection of B, with By. This
computation is very fast. If the two bounding boxes have no intersection, all the
rays originating at ¢; are rejected (see figure IV.13). On the other hand, if the two
bounding boxes have an intersection, the rays originating at ¢; can eventually in-
tersect the tetrahedra of N. We call V., the set of rays originating at c;.

For each ray r € V,,, we compute the intersection of r and By. Again, this
computation is very fast. If the ray r didn't intersect By, it is rejected. Other
wise, this ray is followed using the algorithm of the subsection IV.r.2. Only the
intersections of the tetrahedra of N are updated.

When this process is finished, the free-space/matter binary labeling is updated
and we find ourselves in the configuration of the figure IV.rrd. We also apply the
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acute tetrahedra removal as describe in the subsection IV.1.3 to the tetrahedra of
N.

IV.2.6 Working zone definition

Before we proceed to the next steps we need to define the notion of working zone
W. We want our algorithm to be incremental, so we need to avoid working with
the entire data structure. We need a way to compute the area (or zone) inside the
Delaunay triangulation where the changes are taking place.

‘We begin from the sphere defined by the tight bounding box of the points of
Py.+1 with radii increased by v/3g: B, (Py+1) (see subsection IV.2.2). We define W
as a set of tetrahedra with at last one vertex contained within B, (Py41). The set
W is called the working zone in the remaining of this document. It is noteworthy
that, although similar, W # E. In fact, a part of the tetrahedra of E didn't exist
anymore because they was destroyed by the insertion of the new points, so we need
to recompute a new set.

This definition of the working zone isn't enough because, after the subsec-
tion IV.2.3, W N Opy1 = 0 or almost (). However, the region growing must begin
from the neighbors of the outside tetrahedra to update the outside efficiently. So we
will enlarge the working zone a little bit.

Let A be a set of tetrahedra. We define N'(A) as the set of tetrahedra with at
last one adjacent tetrahedron in A. So we add to W all the free-space tetrahedra of
N (W). This way the working zone will contain a small part of the outside region to
bootstrap the region growing.

As can easily be seen, the size of the working zone is essentially determined by
the step g of the regular grid of Steiner vertices. So we want it to be as small as
possible. But, at the other hand, if the step is to small, the Steiner vertices will
perturb the resulting surface {Lhuillier13}. The impact of the various values of g
will be studied in the chapter V.

IV.2.7 Update of inside/outside binary labeling

After the free-space/matter binary labeling was updated, we update the znside/outside
binary labeling by growing Oj1 in free=space Fj,11 by adding tetrahedra one by one
(using the fast manifold test) and by pack (using the general manifold test). As required
Op+1 C Fiy1 and 0Oy 41 is 2-manifold (see figure IV.1re).

This step is similar to that of the batch method in the subsection IV.r.5. The
only notable differences are that we begin the region growing from the tetrahedra ad-
jacent to the tetrahedra of Oy 1 NW instead of beginning from ex nibilo. The other
difference is that we only add the tetrahedra from Fj11 N W, the other free-space
tetrahedra are forbidden to set an upper limit to the single iteration computation
time. For memory, we re-give an overview of the algorithm here.

First, we apply an one by one growing. A priority queue () stores the tetrahedra in
Fi+1 \ Og41 which have a triangle in 90,41 (we initialize Q) with a tetrahedron in
Fy.11NW). At each step, @ provides tetrahedron A with the largest ray intersection
counter I(A). We try to add A to Oy using the fast manifold test. If this is
successful, the tetrahedra in Fj,;1 \ O41 which are adjacent to A are added to Q.
The process stops when @ is empty. This growing is fast thanks to the fast test, but
it can not change the 00 genus.
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Second, we apply a growing by pack to allow genus changes. We find a vertex v of
a tetrahedron of W and in 0Oy such that all v-incident tetrahedra are in Fj 41,
and try to add to Oy those tetrahedra which are in F, 1 \ Ok1 using the general
test. If this is successful, we try to start one by one growing from these tetrahedra.
The overall process stops when we can not find a successful v.

IV.2.8 Post-processing steps

‘When the update of the znsideloutside binary labeling is complete, the outside region
Op+1 and the resulting surface can further be refined by some number of the post-
processing steps.

First of all, the artifacts removal as described in the subsection IV.1.6 is per
formed. The difference with the batch case is that we can't add Steiner vertices in
the middle of the critical edges. The insertion of a vertex in the middle of an edge
can break the Delaunay property of the triangulation. This wasn't a problem in
the batch case because the triangulation wasn't modified afterward. However, in
the incremental case, new points will be added to the triangulation during the next
iteration and so the triangulation must remain Delaunay at all times (see subsec-
tion IV.L.1). The other difference is that the visually critical edges are only detected
in the working zone W.

Secondly, the peaks removal step is performed on the tetrahedra of W. It is
performed exactly as in the batch case (see subsection I'V.1.7).

Finally, we can also perform some final surface 00y refinement steps as in the
subsection IV.1.8, namely smoothing, sky triangles removal and triangles texture
computation. The only difference with the datch case is that they are applied to W
instead of the entire triangulation.

IV.2.9 Algorithm initialization

The previous subsections described the different steps of an iteration of the incre-
mental surface reconstruction algorithm. As can be seen, one of the user defined
parameters of the algorithm is the regular Steiner vertices grid step g. So, one prob-
lem remain: how the user can define this value?

Setting this value directly is not an option because of the scale factor problem.
The 3D cloud of points and the associated camera poses are reconstructed by the
Structure-from-Motion algorithm up to a scale. So even for the exactly same scene
reconstructed with different parameters of the SfM, the optimal value of g can be
different.

On the other hand, the distance between the camera poses of the key frames is
quite constant (at last for the same type of scenes) thanks to the key frames selection
algorithm. So, our solution is to define g as a multiple of the mean distance between
successive camera poses.

But a new problem arise: how to compute the mean distance between camera
poses at the very beginning of the algorithm? The solution that we adapted is to
instead of beginning the surface computation at the key frame K, begin it at K
where Ny, is a user defined value.

Thus we have key frame pose of Ko, K1,...,Kn,,,,—1, SO we can compute the
mean distance between them and initialize the grid. Then, we apply the iteration
of the surface reconstruction algorithm with all the 3D points reconstructed so far,

init
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sowith Py, ,, = PpU---U Py,,.,—1 (i.e. we use the batch method with Py, ,, as
input to initialize the algorithm). Then the algorithm can process normally.

IV.3 Time complexity analysis

In the two previous sections we have explained in details the incremental surface
reconstruction algorithm proposed by this dissertation. In this section, we perform
the theoretical time complexity analysis of the different steps of this algorithm.
The complete time complexity analysis of the batch sparse surface reconstruction
algorithm was already performed in {Lhuillieri3}. We use some of these results in
the complexity analysis of our own method.

The complexity analysis be performed in the worst case, but using a two sets of
assumptions. The loose set is a bare minimum of assumptions which are the direct
consequences of the properties of the Structure-from-Motion algorithm. The tight
set contains more assumptions, but the results computed using this set are closer
to reality.

‘We begin our analysis by establishing a list of properties and assumptions that
we need in the subsection IV.3.1. Then we perform the complexity analysis of each
step of an iteration of our surface reconstruction algorithm. The steps are not
necessary treated in order but instead from easiest to the more complicated.

IV.3.1 Assumptions

We begin by establishing a list of assumptions that are used to establish the loose
and tight time complexities of different steps of our algorithm. Those of these
assumptions that are not trivial were proved in the sections 5 and 6 of {Lhuillieri3l.

For alist L, we use | L| to note the number of elements contained in this list. For
the iteration corresponding to the key frame k+1 (see section I'V.2 for notations), we
note |Py1| = ng41 and d the maximum vertex degree (the maximum number of
tetrahedra adjacent to a single non infinite vertex) of the 3D Delaunay triangulation
Ti11. We also use notation Ni 1 = Zf:o n; for the total number of 3D points
added to Delaunay triangulation from the beginning of the processing up to the
current key frame.

In the loose case scenario, we use the following assumptions:

e Lx: Let q € Pry1. We call Vg the list of rays terminating at q. We suppose
that for all q € Pry1, |[Vg| = O(1).

* L2: We suppose that |Py41] = O(1).

In the tight case scenario, the following assumptions are added to the previous
ones:

* Tx: The density of the currently reconstructed 3D cloud of points P = Py U
-+ +U Pj41 is bounded. More precisely, there are m > 0 and n > 0 such that
every m-ball (a ball with m as radius) contains at most n 3D points.

* T2: Let c;; be the camera pose associated to the key frame k. We call V}, the
list of rays originating at ¢,. We suppose that |V;| = O(1).

* T3: For all » € Vj44, let |r| be the length of the ray r, i.e. the number of
tetrahedra intersected by . We suppose that for all r € Vi1, |r] = O(1).
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(2) XY projection of the triangulation. (b) YZ projection of the triangulation.

Figure IV.14: Illustration of a regular Steiner grid encompassing a horizontal tra-
jectory. The Steiner points are located at the intersections of black dashed lines.
The gray region is the outside and the thick black line is its border.

Moreover, we also suppose that the euclidean length of all the r € Vi is
also bounded.

» T4: We suppose that the camera trajectory is relatively horizontal and so
the regular Steiner grid have a constant number of vertical layers (see fig-
ure IV.14), i.e. the maximum height difference between the camera poses is
inferior to the grid step g.

* Ts5: The density of tetrahedra in T} ; is bounded, i.e. there are m > 0 and
n > 0 such that every m-ball intersects at most 7 tetrahedra.

* T6: The maximum vertex degree meets d = O(1).
* T7: Adding a 3D point q to T;+1 has O(1) complexity {Faugerasgo, Yursl.

The assumption T1 comes from the fact the the 3D cloud of points is recon-
structed from 2D znterest points and the textures in the observed scene are such that
the density of these interest points is bounded. This would be false if the observed
texture were fractal like, but we assume that this doesn't happens in practice.

The assumptions T5 and T6 are the consequences of the assumption T1. The
reader can refer himself to the appendix D of {Lhuillier13} for proof.

The assumption L1 come from the fact that each 2D interest point is tracked
in a limited number of input images. The assumptions T2 and L2 are reasonable
because the number of interest points detected in a single image is constant. And
finally, the assumption T3 comes from the false points filtering of the input cloud
of points (see subsection IV.r.1) and T5 (proof in the appendix E.1 of [Lhuillierr3]).

IV.3.2 New points insertion

First of all, the new points need to be filtered. The check of one single 3D point
using the aperture angle is O(1) because of the assumption L1, so the complexity
of the filtering is O(1) in the loose and tight cases (thanks to assumption L2).
First, we suppose that the regular grid of Steiner vertices doesn't need to be
updated. In the loose case, the 3D Delaunay triangulation T}, contains O (k) vertices
because, according to assumption L2, O(1) vertices are added to the triangulation
at each iteration of the algorithm. So the triangulation contains O(k?) tetrahedra.
Then, the complexity of a single vertex insertion is O(k?) [Boissonnatogl. So, in
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the loose case, the complexity of the new points insertion is O(k?). In the tight
case, this complexity becomes O(1), thanks to the assumption T7.

If the Steiner grid needs to be updated, we usually need to add one or several
rows or columns of Steiner vertices. So if we call my11 the number of Steiner
vertices that need to be added to the triangulation at key frame k+ 1, the complexity
of grid update is O(mj, ;) in the loose case and O(my41) in tight one. According
to the assumption T4, we can safely suppose that m;41 = k because we only add
one or several rows or columns and not an entire horizontal layer of vertices. So

the Steiner grid update complexity is O(k?) and O(k) in the loose and tight cases.

IV.3.3 Update of free-space/matter binary labeling
The loose case

We begin by estimating the complexity of the free-space/matter binary labeling
update in the loose case. For memory, updating the free-space/matter labeling is
to update the number of intersections value I(A) for each tetrahedron A of the
3D Delaunay triangulation. To achive this goal we follow each ray that need to be
updated and increment the number of intersections of the encountered tetrahedra.

In the loose case, a ray intersects the totality of the tetrahedra of the triangu-
lation [Shewchuko4]. This number can vary from O(n) to O(n?) where n is the
number of vertices {Berng4}. Thanks to the assumption L2, the Delaunay triangu-
lation T}, 1 contains O((k +1)?) = O(k?) tetrahedra in our case. So the loose case
complexity of following a single ray is O(k?).

Because we are in the loose case, the totality of the rays are needed to be up-
dated. Each 3D point has O(1) associated rays thanks to the assumption L1. So
we need to follow O(k) rays. So, in the loose case scenario, the complexity of free-
space/matter binary labeling is O(k?).

The tight case

The tight case is more interesting. Thanks to the assumption T3, a ray intersects
O(1) tetrahedra, so the complexity of following a single ray is O(1) in the tight
case. We always need to follow the rays associated to the currently added 3D points.
Thanks to the assumption L2, | Py41| = O(1), so the complexity of following the
newly added rays is O(1).

Now we study the complexity of following the old rays. For memory, each cam-
era pose has an associated bounding box B;. This is a bounding box of the 3D points
observed by this camera. It contains all the rays departing from this particular cam-
era. We only follow these rays if the camera bounding box intersects the bounding
box of the newly created tetrahedra (see subsection I'V.2.5).

‘We want to prove that the density of the camera bounding boxes is bounded,
i.e. the following lemma:

Lemma IV.x There are m > 0andn > 0, such that every m-ball intersects at most n
bounding boxes B,;.

Proof- Thanks to the assumption T3, all the cameras bounding boxes B; have bounded
size. Let m > 0 and x € R3. The set L of bounding boxes B; intersecting the m
radii ball centered at x is included in a bounded sphere S. Thanks to the assump-
tion T1, the number of 3D points contained in the sphere S is bounded. Or, this
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number of points is larger that the number of bounding boxes contained in L, so
m is bounded. O

According to the assumption T3 and the bounded size of tetrahedra (thanks
to the Steiner grid), the bounding box of the newly created tetrahedra is bounded.
Combined with the lemma I'V.1, we see that the newly created tetrahedra bounding
box intersect O(1) cameras bounding boxes.

According to the assumption T2, the number of rays inside a single camera
bounding box is O(1). So we need to follow O(1) old rays to update the numbers of
intersections. So, the complexity of the free-space/matter binary labeling update
in the tight case is O(1).

IV.3.4 The working zone size

Before we estimate the complexities of the remaining steps of our incremental al-
gorithm iteration, we need to estimate the size of the working zone (see subsec-
tion I'V.2.6) in the loose and tight cases. For memory, the working zone is a set of
tetrahedra intersecting the tight bounding sphere of the newly inserted points with
radius augmented by a constant. The constant in question is the Steiner grid step.

In the loose case scenario we have no choice but to suppose that the bounding
sphere of the newly inserted points contains the totality of the Delaunay triangu-
lation T}, 11. So the working zone has O(k?) tetrahedra.

In the tight case the bounding sphere of the points of Pj1 has O(1) radius
thanks to the assumption T3. And thanks to the assumption T1, the density of
the currently reconstructed 3D points is bounded. So the number of vertices in
this sphere is bounded. Moreover, after the assumption T6, the maximum vertex
degree is also bounded. So the number of tetrahedra in the working zone is O(1).

IV.3.5 Acute tetrahedra removal

‘We begin by estimating the complexity of the acute tetrahedra removal in the loose
case scenario. This step checks each tetraheron of the working zone. The work-
ing zone contains O(k?) tetrahedra in the loose case. Finding the longest edge of
a tetrahedron and checking the four angles has O(1) complexity. Moreover, each
tetrahedron have exactly four neighbors, so the complexity of checking the neigh-
bors of a tetrahedron is O(1). So the loose case complexity of the acute tetrahedra
removal is O(k?).

In the tight case, the working zone contain O(1) tetrahedra. So, the complexity
of the acute tetrahedra removal is O(1).

IV.3.6 Region growing

The region growing algorithm is the algorithm IV.1. According to the section 5.3
of {Lhuillier13} it has the following complexity:

O(X + g(log(g) + d)) IV.6)

where ¢ is the number of grown tetrahedra, i.e. the difference between |Oj1]
before and after the algorithm. X is the size |Qo] of the set of tetrahedra where the
initial tetrahedron is selected. Finally, d is the maximum vertex degree.

We begin by computing the complexity of this algorithm in the loose case. The
region growing can only add the tetrahedra in the working zone, so g = O(k?). The
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list Qo is the list of tetrahedra in the working zone and their immediate neighbors. So
because a tetrahedron have exactly four neighbors, X = O(k?). Finally, d = O(k)
according to the appendix C. So, in the loose case, the complexity of the region
growing is

O(k + k2(log(k?) + k)) Ivy)
= O(k?)

In the tight case, the size of the working zone is O(1). So g = O(1) and because
each tetrahedron have exactly four neighbors X = O(1). Moreover, thanks to
the assumption T6, d = O(1). So, in the tight case, the complexity of the region
growing is O(1).

IV.3.7 Topology extension
The loose case

For memory, the topology extension consists in trying for each vertex of 001 in the
working zone to add the neighboring tetrahedra to Oy1. If we succeed, we perform
a region growing from these tetrahedra, otherwise we return to the previous state
and try another vertex.

The border 0Oy contains O(k) vertices in the working zone. Adding a pack
of tetrahedra to Oy is to perform a series of s/ow manifold tests. The complexity
of these tests is O(nd) in the loose case (see appendix B). We add the tetrahedra
adjacent to a vertex, so we add d = O(k) tetrahedra. So the complexity of a single
topology extension in the loose case is O(k?).

If we combine the region growing and the topology extension, we perform a
region growing each time a successful topology extension is performed. So, in the
loose case scenario, we perform a region growing for each vertex of 0Oy in the
working zone. For the i-th vertex, the complexity of the region growing is O((g; +
¢i)(log(g; + gi) + d)) (see appendix E.2 of [Lhuillieri3]). >, g; = O(k?) because
the working zone contains O(k?) tetrahedra. Moreover, >, O(¢q;) = >, O(d) =
O(kd) = O(k?).

So, if we combine the computations at all vertices:

Z(gi + qi)(log(gi + @) +d) < (Z(Qi + Qi))(ZOQ(Z gi + Z q;) +d)

= (O(k*) + O(k*))(log(O(k*) + O(k?)) + O(k))

= O(k*)(log(O(K?)) + O(K))) avg
= O(K*) +O(K)
= O

To conclude, the complexity of the total growing step of an iteration of our
incremental algorithm is O(k?) in the loose case.

The tight case

In the tight case, the number of vertices tried by the topology extension is O(1)
because the working zone is bounded. Moreover, the maximum vertex degree d =
O(1) thanks to the assumption T6. So the complexity of a single topology extension
is O(1) in the tight case.
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The region growing has O(1) complexity in the tight case and it is performed
for O(1) vertices, so the total complexity of the growing step of an iteration in the
tight case is O(1).

IV.3.8 Artifacts removal

According to the subsection 6.2.2.6 of {Yuisl, the complexity of the artifacts re-
moval in the loose case is O(n*) where n is the total number of vertices. Because
we apply this algorithm to the working zone, its complexity is O(k*) in the loose
case.

To compute this complexity in the tight case, we will need the following lemma:

Lemma IV.2 The number of camera poses that can observe a critical edge of the working
zone is O(1).

Proof- The diameter of a single tetrahedron is bounded thanks to the regular grid.
This implies that the length of a critical edge ab is bounded.

We define a zone Z = {x € R3,axb > € where € > 0}. Because the length
of ab is bounded, the size of Z is bounded. Thus, zone Z is covered by a finite
number of m-balls. According to lemma IV, Z is intersected by a finite number
of bounding boxes B;. So, Z contains a finite number of cameras poses ¢;. So the
critical edges of the working zone are observed by a finite number of cameras.[]

In the tight case, the complexity of the artifacts removal is O(nm) (subsec-
tion 6.3.2.5) where m is the number of camera poses. In our case, n = O(1). More-
over, m is also O(1) since we only consider the cameras that can observe the edges
of the working zone and this number is limited thanks to the lemma IV.2. So the
complexity in the tight case is O(1).

IV.3.9 Remaining steps

To compute the tetrahedra that need to be removed from outside region before
inserting the new points, we use an algorithm that is almost the same as the actual
insertion. So the enclosure time complexities are the same as for the insertion step,
i.e. O(k?) and O(1) in the loose and tight cases.

The shrinking algorithm is the inverse of the growing algorithm and so the
shrinking step has the same complexities as growing. So the shrinking step has
O(k3) and O(1) complexities in the loose and tight cases.

The peaks removal has the complexities O(n?) and O(n) in the loose and tight
cases according to [Yur3l. Since we apply the peaks removal on the tetrahedra of
the working zone, its complexities are O(k®) and O(1) in the loose and tight cases.

IV.3.10 Conclusion

To conclude this section, the complexities of all the steps of an iteration of our
incremental surface reconstruction algorithm in both the loose and tight cases are
collected in the table IV.1. As can be seen, in the tight case, an iteration of our
algorithm has the complexity of O(1) for all the steps except the update of the
regular grid of Steiner vertices.

Fortunately, as will be seen in the next chapter, the computation time of the
grid update step is small compared to the other steps of the algorithm. Moreover,
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Algorithm step Loose case | Tight case
Enclosure O(k?) o(1)
Shrinking O(k?) o(1)
New points insertion O(k3) o)
Steiner grid update O(k?) O(k)
Free-spacelmatter update O(k3) o)
Acute tetrahedra removal O(k?) o)
Growing O(k3) O(1)
Artifacts removal O(k*) o)
Picks removal O(k?) o(1)

Table IV.r: Overview of the loose and tight cases complexities of the different
steps of one iteration of the incremental surface reconstruction algorithm. & is the
number of currently processed key frames.

in practice the number of Steiner vertices is very small compared to the number
of SfM points. Thus, the complexity of this step can be considered as bounded in
practice.

IV.4 Conclusion

In this chapter, we have begun by reviewing in depth the sparse batch surface re-
construction algorithm from {Lhuillier13}. This algorithm is an inspiration for our
own work and it allowed us to more clearly explain the basic concepts that we
used. Then, we have explained our own sparse incremental surface reconstruction
algorithm producing a 2-manifold surface. After that, we have established its com-
plexity under loose and tight assumptions.

The execution time of an iteration of our algorithm is independent of the ge-
ometry of the camera trajectory. This is a huge advantage over our main concur-
rent work [ Yur2} which recomputes the surface of the entire loop if the trajectory
crosses itself.

In the next chapter, we will evaluate the quality and the real execution time of
our algorithm.



CHAPTER V

Experimental study

The previous chapter details our incremental surface reconstruction algorithm and
its complexity analysis. In this chapter we review the results of different experi-
mentation performed using a synthetic and a real world sequences.

All the experiments in this document are performed on a machine with an Intel
Core i7 processor at 3.33 GHz with 6 cores and 24 GB of RAM.

‘We begin by describing the video sequences that are used during this chapter
in section V1. Section V.2 reviews the results of the Structure-from-Motion of the
chapter I11. Then we study the influence of the density of the input cloud of points
in section V.3, the influence of the working zone size in section V.5 and the utility
of the acute tetrahedra removal in the section V.6. Finally, we experiment different
tetrahedra ordering during the shrinking phase in section V.7.

V.1 Description of experimental data sets

‘We begin by describing the data sets or experimental video sequences that are used
in our experiments. Of course, we experiment with a real world video sequence
taken in a classical urban environment, but unfortunately the lack of the ground
truth restricts us to a qualitative analysis. So we also experiment with a synthetic
video sequence, a sequence that was generated from an existing 3D model. This
way, a quantitative analysis can also be performed.

V.1.1 Synthetic data set: synth

To generate the synthetic video sequence used in our experiments we use a 3D
model provided by the CRISTAL' project. This is a textured 3D model of an urban
environment. It represents a part of the city center of the city of Clermont-Ferrand.
The virtual buildings have the same dimensions as the real ones and the textures of
the buildings are generated using the real world pictures.

'An innovation project about the future public transport conducted by LOHR Industry, Transitec,
INRIA, Vulog, UTBM and Institut Pascal.
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The experimental video sequence pictures are generated using a virtual Ladybug
2 omnidirectional camera. The poses of this camera forms a 621 m. closed loop. To
generate each pixel of the output image, we compute the associated ray using the
same calibration information as our real Ladybug camera. Then we find the first
(relative to the camera) intersection of this ray with the 3D surface. The color of
the pixel is the color of the 3D model at the intersection point.

The final video sequence contains 1553 distinct images. The 3D model used to
generate the sequence as well as some representative final images can be see on the
figure V.1.

V.1.2 How to compare the results with the ground truth?

To obtain quantitative results we need a way to compare the reconstructed sur-
face with the 3D model used to generate the synthetic sequence. To achieve this
result, we need to solve two problems. First, because the SfM algorithm of the
chapter III reconstructs the cloud of points up to a scale, we need a way to map
the reconstructed surface to the ground truth coordinate system. Second, we need
a way to compare the two surfaces.

Let Cy = {cJ,cf,...,c%} be the list of virtual camera poses used to gener
ate the images of the synthetic sequence (N is the length of this sequence). Let
Ce = {cf,cf,...,c%} is the list of poses reconstructed by the SfM. We estimate

the similarity transformation matrix Z (; DOF) between the reconstructed model
and the ground truth using 3 points RANSAC {Fischler811. Then the transfor
mation is refined using the Levenberg-Maquard algorithm minimizing E(Z) =
il l1Z(es) — €.

After the reconstructed surface and the ground truth surface are in the same
coordinate system, we need a way to compare them. For this, we select a random
uniform distribution of points P¢ on the reconstructed surface. For each point
p¢ € P¢, we search the closest (in terms of euclidean distance) point pY of the
ground truth surface. Then an error e(p®) = ||p? — p°|| is computed. If e(p®) >
Lo, the matching between p° and p? is considered outlier, otherwise it is kept (in
practice, we use p9 = 6 m.). The distribution of e for all the points of P¢ is our
quantitative comparison between two surfaces.

V.1.3 Real data set: aubiere

To perform a realistic qualitative experiments we record a video sequence in a real
world complex suburban environment: the city of Aubiere where the Institut Pascal
headquarters are located.

To perform the recording we use a PointGrey Ladybug 2 omnidirectional camera.
This camera provides six 1024 x 768 images at 15 frames/second. The camera is
installed high above the experimental vehicle using a rigid pole. The installation
can be seen on the figure V.2. Each of the six cameras composing the Ladybug has an
independent auto adapting shutter, so the luminosity of the sub-images of a single
Ladybug image can be different.

The recorded trajectory is 2.5 km. long and contains a 2.3 km. loop. The final
video sequence contains 7735 images. The recorded environment contains all the
classical objects found in an average suburban area: buildings, vegetation, parked
cars, stairs, etc...Some representative images can be seen on the figure V.2. The
recording takes place under challenging illumination conditions (bright sunshine
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Figure V.i: The top image shows a bird view of the 3D model used to generate
the synthetic video sequence. The three other images shows some representative
pictures from the generated video sequence.
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Figure V.2: The top image shows the experimental vehicle equipped with the La-
dybug omnidirectional camera used to acquire the aubiere real world sequence. The
three following images shows some representative pictures.
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The set ‘ Npoi ‘ X'roi ‘ Yroi ‘ w ‘ Sm ‘ M2 ‘ Md ‘ Npos ‘ Nobs
divz 6000 80 120 | 11 | 0.8 | 1500 | 1000 3 10
normal | 24000 | 160 | 240 | 11 | 0.8 | 6000 | 4000 3 10
poses 1250 80 120 | 11 | 0.8

Table V.i: Summary of the sets of SfM parameters. See the chapter III for the
notations.

and shade) and in an average traffic, so there are moving cars and pedestrians. The
experimental vehicle speed isn't constant (less then 30 km./h.).

V.2 Structure-from-Motion results

The first step of our surface reconstruction algorithm is to reconstruct a 3D cloud
of points with the associated visibility information from the input sequence of im-
ages. This is performed by the Structure-from-Motion algorithm described in the
chapter I11.

To study the influence of the density of the 3D point cloud and at the same time
of the resolution of the input images the SfM algorithm was executed using three
different experimental configurations: d7vz, normal and extended. The numerical
values can be seen in the table V.. The normal set of parameters is used when the
computations are performed using the original input images directly. The divz set
of parameters is used when the input images resolution was divided by two. Finally,
we call the extended experimental configuration the case when the additional steps
of the section II1.3 are performed (the base SfM uses the parameters from d7vz in
this case). poses parameters are used during the computation of the intermediary
poses, the additional 3D points are computed using the parameters from normal
set. The value of N,,; parameter in the case of poses is small compared to other sets
because quite a few points is enough in practice to compute a pose.

During these computations, an additional step was added to the algorithm as
described in this dissertation. Because of the scale factor, the positions at the end
of the trajectories are not coincident with the same positions at the beginning.
So when the experimental trajectories contains a loop (and this is the case) it is
not properly closed. This is a known limitation of the incremental Structure-from-
Motion and can add a significant bias to the experimental results. So we performed a
single global (and so non incremental) bundle adjustment at the end of the SfM com-
putations to close the loop. This way the experimental data are easier to interpret.

V.2.1 Synthetic data set: synth

First of all, we have applied the Structure-from-Motion algorithm to the synthetic
sequence in the three experimental configurations described earlier. This way we
are not only able to compare the number of produced 3D points, but also the quality
of the computed camera poses.

The different numerical results can be observed in the table V.2 and the top view
of the resulting clouds of points can be seen on the figure V.3. The main conclusion
is that the d7vz experimental configuration is the faster one, but it produces the
sparser point cloud. On the other hand, the extended and normal configuration have
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Figure V.3: The top view of the cloud of points and the camera poses produced by
SfM algorithm from synthetic data set. The experimental configurations used to
produce the clouds of points are from top to bottom: dvz2, normal and extended.
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The set Num. of | Num. of | Mean Max Total Mean

key frames | 3D points | time | time time error

div2 345 143960 | 0.14s. | 0.96s. | 3 min. 39s. | 0.11 m.

normal 383 596801 | 1.09s. | 4.6s. | 28 min. 46s. | 0.19 m.

extended: 1553 2845044 28 min. 42's. | 0.12 m.
poses 0.05s. | 0.07s. | 1min.31s.
points 0.91s. | 1.49s. | 23 min. 32 s.

Table V.2: Numerical results of the SfM algorithm applied to the synthetic sequence
in different experimental configurations. The mean and max times are per input
image. The total time is the total computation time.

The set Num. of | Num. of | Mean Max Total
key frames | 3D points | time | time time

divz 1308 457368 | 0.12s. | 0.69s. 16 min.
normal 1934 | 2243444 | 1.13s. | 5.46s. | 2 h. 26 min.
extended: 7508 | 13173793 2 h. 37 min.
poses 0.07s. | 0.51s. | 9min. 12s.
points 1.06s. | 1.76s. | 2 h. 12 min.

Table V.3: Numerical results of the SfM algorithm applied to the real world se-
quence in different experimental configurations. The mean and max times are per
input image. The total time is the total computation time.

almost the same execution time, but extended produces the higher amount of 3D
points.

‘When we compare the error between the computed and the real camera poses
we could see that the d7vz configuration produces the best results. This could be
explained by the fact that in this configuration we detect less points of interest and
so the matching is easier and the final matches are of better quality (compared to
normal). The extended configuration is almost as good as the dfv2 because it uses
the poses from it to localize the intermediary cameras.

V.2.2 Real data set: aubiere

In a second time, we have applied the Structure-from-Motion algorithm to our real
world sequence. The numerical results produced by these experiments are summa-
rized in the table V.3 and a top view of the 3D cloud of points produced using the
normal experimental configuration can be seen on the figure V.4.

We come to the same conclusion as for the synthetic data set. The dfv2 exper
imental configuration produces the less 3D points, but is the fastest. On the other
side, the extended experimental configuration produces a lot of 3D points, but is the
slowest.

Unfortunately, we have no means to evaluate the quality of the poses because of
the lack of ground truth for this sequence.
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Figure V.4: The top view of the cloud of points and the camera poses produced by
SfM algorithm from real world data set in normal experimental configuration.
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Figure V.5: The map showing the trajectory followed by the experimental vehicle
during the acquisition of the aubiere data set.
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Error distribution
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Figure V.6: Error distribution for the synth data set reconstructed with batch
method from the cloud of points produced using different experimental config-
urations. 100% of the rays have an error inferior to 6 m.

Sequence | The set | Num. of triangles | Computation time
synth divz2 200750 45.51 s.
normal 841055 2 min. 35 s.

extended 1784896 6 min. 45 s.

aubiere div2 608915 4 min. 36 s.
normal 2674060 15 min. 24 s.

extended 7640046 48 min. 54 s.

Table V.4: A summary of some numerical results of the batch surface reconstruc-
tion from the point clouds produced using different experimental sets.

V.3 Study of the influence of points density of the input
cloud

To evaluate how the density of the input cloud of 3D points influences the quality of
the output surface we have applied the batch version of the surface reconstruction
algorithm to the cloud of points of the previous subsection. We performed this
computation using the batch version because it is faster and the comparison results
are the same in the incremental case. The number of triangles in the final surface
and the computation times can be found in the table V.4.

First, we have evaluated the quality of the output surface reconstructed from
the synthetic sequence using the method from subsubsection V.1.2. The distribu-
tion of errors for the three experimental set can be seen on the figure V.6. The
normal and extended experimental sets performs clearly better then the d7vz. On
the other hand, the difference between normal and extended is quite small. This is
probably caused by two factors. First, the ground truth 3D model is simple and
have few relief, the difference of results between different experimental sets is dif-
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Figure V.7: The overviews of the surfaces produced by the batch algorithm from the
synth data set. The experimental configurations used to produce the input clouds
of points are from top to bottom: dfvz, normal and extended. Triangle colors encode
the normals. Best viewed in color.
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Figure V.8: Some close views of the surfaces produced by the batch algorithm from
the aubiere data set. The experimental configurations used to produce the input
clouds of points are from top to bottom: divz, normal and extended. The bottom
view is the textured version of the extended surface. Triangle colors encode the
normals. Best viewed in color.
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Figure V.9: Error distribution for the synth data set reconstructed with batch and
incremental versions of the surface reconstruction algorithm. 100% of the rays have
an error inferior to 6 m.

ficult to perceive as can be seen on the figure V.. Second, the majority of errors in
normal and extended cases have the same magnitude as the poses registration errors
(see table V.2).

In a second time, we have qualitatively evaluated the results of the reconstruc-
tion algorithm applied to the zubiere data set. Some representative views of the
final surface can be seen on the figure V.8. Here, the differences between differ-
ent experimental sets are clear. Extended is the best one and able to reconstruct
even small details of the observed surface. On the other hand, d7vz only captures a
simplified shape of the objects.

The extended experimental set clearly provides the best results, but unfortu-
nately it is slow. Moreover, our objective is to develop a sparse surface reconstruc-
tion algorithm, so it is interesting to perform the experiments using the fewest
density of points. For these two reasons, the remaining experiments will be per-
formed using the point clouds produced by the divz experimental set (as in our
publications {Litvinovi3, Litvinovi4al).

V.4 Comparison between batch and incremental algorithms

To evaluate the performance of the incremental surface reconstruction algorithm
proposed in this dissertation, we have applied it to d7vz cloud of points from synth
and aubiere sequences. Then we compared the resulting surfaces with those pro-
duced by the batch version of the algorithm.

First, we have compared the errors distributions for the synth surfaces between
batch and incremental versions. The results can be seen on the figure V.g. It is easy
to note that the performance of the incremental version is slightly lower that that
of the batch algorithm. This can be explained by two factors. First, the artifacts
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Figure V.10: Some close views of the surfaces produced by the batch and the in-
cremental versions of the algorithm from the aubiere data set. The top is the batch
version and the middle is the incremental version. The bottom view is the textured
version of the batch reconstructed surface. Triangle colors encode the normals.
Best viewed in color.
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Figure V.ir: Incremental algorithm execution times for each iteration when the
algorithm was applied to the aubiere video sequence. The colored area height cor
responds to the iteration execution time. The area of each color corresponds to
the execution time of each step. Best viewed with colors.

removal step of the incremental version doesn't add Steiner points in the middle
of the critical edges, this can significantly reduce its performance. Second, the
region growing is artificially limited to the working zone in the incremental case to
ensure a bounded complexity. This can however diminish the final surface quality.
Nevertheless, the difference between the batch and incremental results is small.

In a second time, we have qualitatively compared the output surfaces for the
aubiere data set. Some representative scenes can be seen on the figure V.ro. As was
expected, we can find some typical visual artifacts that was removed in the batch,
but not in the incremental case (as in the first column of the figure). Otherwise,
there are no significant differences between the two surfaces: they looks slightly
different but we are unable to say which one is the best.

Third, we have compared the computation times between the batch and the
incremental case. The incremental algorithm took 15 min. 13 s. to reconstruct the
synthetic sequence and 58 min. 14 s. to reconstruct the aubiere sequence. Com-
pared to the batch algorithm (see table V.4), the incremental version is slower by
almost a factor of 10. This is explained by the fact that the distance between the
key frames is small, so the incremental algorithm reconstructs the same part of the
surface again and again.

We have also studied the computation times of individual iterations. They can
be seen on the figure V.i1. The peak at the end of the trajectory can be explained
by the fact that we pass in an area where we have passed before, so the density of
the SfM points is three times the normal. Another interesting observation is that
slowest step of the processing is the artifacts removal. If we can accelerate it we
could gain a significant amount of computation time. This problem is studied in
the chapter VI

Finally, we have compared the computation time of the update of the regular
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grid of Steiner points. For memory, it is the only step of an iteration which is not
bounded under the tight assumptions. The mean computation time of this step is
0.004 s. and the maximum time is 0.08 s. As can be seen it is negligible compared
to the total computation time of an iteration. Moreover, the mean computation
time of the insertion of normal points is 0.186 s. and maximal time is 0.77 s. So the
update of the grid is even negligible compared to the normal points insertion.

V.5 Influence of the working zone size

The main user defined parameter of our incremental surface reconstruction algo-
rithm is the step of the regular grid of Steiner vertices (¢). For memory; it is ex-
pressed in the number of mean euclidean distances between successive cameras
poses. This value is important because it indirectly defines the maximum size of a
tetrahedron edge inside the triangulation and so the size of the working zone (see
subsection I'V.2.6). So we have tried different values of g to find the optimal one.

To perform the comparison we have applied the incremental algorithm to the
cloud of points generated from the synth data set with d7vz set of parameters. We
have applied the algorithm using different values of g, namely 2, 5, 10, 15, 20. Then
we have compared the resulting surfaces with the ground truth as explained in the
subsection V.1.2. The results can be seen on the figure V.12. As expected, the greater
the value of ¢, the smallest are the errors. This is the expected result since a bigger g
means bigger working zone and the region growing algorithm is limited to the working
zone to ensure a bounded iteration time. So, the bigger is the working zone, the more
opportunities to grow has the region growing step.

Then we have compared the computation times for each value of g. The results
can be seen on the figure V.13. In average, a bigger g means slower computations.
One notable exception is the value of g = 2. It is often slower than g = 5 and even
the slowest of all for the central part of the trajectory. This can be explained by
the fact that, because the working zone is small, the region growing is unable to cor-
rectly fill the empty space with outside tetrahedra (the central part of the trajectory
corresponds to a large place, see figure V.3) and this lead to a final surface having a
complicated topology. This is why the value of g shouldn't be too small.

In conclusion, considering the results in terms of output surface quality and of
the computation times, the value of g = 10 provides a good balance between the
two. Higher values are significantly slower for only a slight quality enhancement.

V.6 Influence of acute tetrahedra removal

One of the secondary contributions of this work is the acute tetrahedra removal
step as described in the subsection I'V.1.3. This step is based on the heuristic that if
the area of the tetrahedron face is small it has a few chances been intersected by a
ray. If a matter tetrahedron with such a facet is located in the middle of the free-space
region it is probably a free-space tetrahedron. So we force it to free-space.

To study what influence such a heuristic would have on the quality of the final
surface we have applied our zncremental surface reconstruction algorithm with and
without acute tetrahedra removal step on the aubiere data set. The comparison be-
tween some close views of the resulting surface can be observed on the figure V.14.
As could easily be noted, this new step allows to remove some big and very eas-
ily visible artifacts. This comes from the fact that the removal of the false matter



V.6. Influence of acute tetrahedra removal 89

Error distribution
90

v

80 -

70 -

50

40 -

Num. of points (%)

20 F-ff

10 -4 . : : 4

Error (m.)

Figure V.12: Error distribution for the synth data set reconstructed using different
values of the grid step size g (and so the working zone size). 100% of the rays have
an error inferior to 6 m.
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Figure V.13: One reconstruction iteration times for the synth data set reconstructed
using different values of the grid step size g (and so the working zone size).
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Figure V.14: Some close views of the surfaces produced by the éncremental algorithm
with and without acute tetrahedra removal from the aubiere data set. The top is the
surface produced without acute tetrahedra removal. The middle is the same surface
produced with the acute tetrahedra removal. Triangle colors encode the normals.
The bottom images is the textured version of the surface for reference. Best viewed
with colors.
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Figure V.15: One reconstruction iteration times for the synth data set reconstructed
using different shrinking priorities.

tetrahedra allowed to the region growing algorithm to fill the free-space region more
easily.

The mean execution time of the acute tetrahedra removal step is 0.004 s. and
the maximum time is 0.07 s. The mean iteration time of the zncremental algorithm is
around 2 s., so we can safely conclude that the addition of this step has no influence
on the overall execution time.

In conclusion, the acute tetrahedra removal step significantly enhances the out-
put surface quality and at the same time doesn't increase the algorithm computa-
tion time, so it is an useful addition that can be used in the batch and incremental
version.

V.7 Influence of the shrinking order

As was explained in the subsection IV.2.3, the shrinking step of an iteration of the
incremental surface reconstruction algorithm consist in removing from the outside
region the tetrahedra that can potentially be modified by the insertion of new 3D
points inside the Delaunay triangulation. It proceed in a way similar to the out-
side/inside binary labeling. First, we try to remove the tetrahedra one &y one using
the fast manifold test. Then, to allow genus changes, the tetrahedra are removed by
packs. The two steps are alternated until all the designated tetrahedra are removed
or the removal of the remaining tetrahedra is impossible.

The question is: In what order the tetrahedra should be removed from the
outside during the one by one phase? The obvious response to this question is in the
inverse order of the number of intersections /(A). Not only this order is easy to
implement, but it would be an inverse of the addition of the tetrahedra during the
growing step.

Nevertheless, we could think of another shrinking order. For memory, the tetra-
hedra scheduled for removal are contained in a spherical zone (see subsection IV.2.2).
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Figure V.16: One reconstruction iteration times for the azubiere data set recon-
structed using different shrinking priorities.

‘We can begin by removing the tetrahedra further away from the center of the zone,
i.e. the removal priority is the distance between the tetrahedra barycenter and the
center of the new points bounding sphere. This way, the process is similar to onion
peeling.

To compare the two possible priority and decide which one to use, we apply our
incremental algorithm to the synthetic sequence. Then, we compare the produced
surfaces with the ground truth 3D model. The quality of the output surface was
identical in the two cases. The computation times per iteration can be seen on the
figure V.15. We remark that the algorithm is usually slightly faster when the number
of intersection is used as priority.

To confirm these results, we perform the same experiments, but this time using
the aubiere data set. The results are the sames as in the previous case. The output
surfaces are visually identical and using the number of intersections as priority is
slightly faster (see figure V.16).

To further compare the tetrahedra removal efliciency of the two priorities, we
have compared the number of SfM that was rejected because it insertion would
modify an outside tetrahedron (see subsection I'V.2.4). During the processing of the
synth sequence only 1 point was rejected from 143960. This result was the same in
the two cases. For the aubiere sequence, the results was 1 point out of 457368 in
the two cases.

Considering these results, we conclude that the number of intersections is a
good choice as priority criterion during the shrinking step.

V.8 Conclusion

In this chapter we have studied the performance of our incremental surface recon-
struction algorithm using synthetic and real world data sets. First of all, we have
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studied the influence of the input images resolution on the quality of the output
surface. A bigger resolution leads to better results, but the computation time of
the algorithm grows. Then, we have compared the results of the incremental algo-
rithm with the results of the batch: the output surface quality is almost the same.
‘We have also proved the utility of the acute tetrahedra removal and found a good
value of g (step of the Steiner grid) and the outside shrinking order to use.

‘We have seen in the previous chapter that the complexity of a single iteration of
our algorithm is O(k) under the tight assumptions. This complexity is due to the
Steiner grid update, the complexity of all the other steps are bounded. However,
when we observe the computation times of our algorithm applied to a real data
setin the section V.4, the duration of this step is negligeable.

Unfortunately, the computation time is too slow for a real time application.
This limits the practical utility of this algorithm. We reviewed the computation
times for every step and see that the slowest part of the algorithm is the artifacts
removal. If we enhance the processing time of this step, the overall algorithm will
be accelerated. This is the problem studied in the next chapter.
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CHAPTER VI

Study of artifacts removal

In the previous chapter, we have experimented the new incremental sparse surface
reconstruction method proposed by this dissertation. Unfortunately, it has a sig-
nificant drawback: as can be seen in section V.4, the method is slow. This reduces
its practical interest. When we refer ourselves to the details of the computation
times (see figure V.11), we can see that the slowest step in an iteration is the artifacts
removal. So if we can reduce the time of this step, we could significantly improve
the global computation time.

The artifacts removal step is used to remove the artifacts (hence the name) found
on the final surface. These artifacts are caused by the local maxima of the objective
function optimized by a greedy optimization algorithm to create the outside region
(see subsection IV.1.5). In this chapter, we briefly review the previously proposed
methods to overcome this problem and we present two new methods. Their per-
formances are compared with that of the previous one using a real world sequence.
The method presented here is published in [Litvinovigbl.

‘We begin by defining what we seek to remove in section VI.1. Then we quickly
review the previously proposed methods in section VI.2. We detail the newly pro-
posed ones in sections V1.3 and VI.4. And finally we compare them with the pre-
vious ones in section V1.5.

VI.1 Visual artifact definition

The visual artifacts problem that we try to solve is illustrated on the figure VI.1.
The artifact that connects the wall of the building to the ground on the left part of
the figure does not exist in reality and should be removed as shown on the central
part. This is only one example of situations when the problem arise. It can also
occur in other contexts {Chaineo3, Woodo4, Zhouo7}l.

Before we discuss the different artifacts removal methods, we should precisely
define what we seek to remove. In this chapter, we use the notations of the chap-
ter IV, more precisely of the subsection IV.r.1. For memory, the 3D Delaunay
triangulation T is encoded by an adjacency graph I'r in which the nodes are the
tetrahedra of 7" and the edges are the triangles between two tetrahedra. In the

95
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Figure VI.1: A visual artifact example. On the left image the surface contains an
easily visible visual artifact. On the central image the visual artifacts was removed
from the surface. Colors encode the triangles normals. On the right image the
visual artifact is removed and the surface is textured.

(@) A general artifact. (b) A handle.

Figure V1.2: A schematic illustration of what is a visually critical artifact (2D case).
White triangles are free-space outside. Light gray triangles are free-space inside. Gray
triangles are matter. Thick black line is a visually critical edge.
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same manner, for any set S C 7 of tetrahedra, I's C I'r is the corresponding
adjacency graph.

We define a visual artifact Aby A C F \ O and I'4 is connected, i.e. a set
of tetrahedra that is included in the inside volume (A N O = (), but not in the
scene matter (A C F). Unfortunately, detecting and removing all the artifacts
in the resulting model using this definition alone would be too slow to be useful
in practice. So we define a visually critical edge {Lhuillier13} as an edge ab such as
a € P,b € Pand 3c € C such that ab is an edge of a tetrahedron in F' \ O and

acb > « where « is a user defined threshold (we use o = 5° in practice). Then, we
define a visually critical artifact as a visual artifact which has (at least) a tetrahedron
containing a visually critical edge (see figure V1.2 for an illustration).

The artifacts removal methods discussed in this chapter seek to remove as
many visually critical artifacts as they can. We do not use the term spurious handle
as in {Lhuillier13l, because it is too restrictive. Our algorithms deal with more than
just ““handles".

VI.2 Previous methods

As can be seen in the chapter I, there are multiple surface reconstruction methods
based on the 3D Delaunay triangulation and regéon growing. And we are not the first
who have acknowledged the problem. Several previous tentative exists to solve it.

First, there are computational geometry only approaches {Woodo4, Zhouo7}
that use scanner data and suppress only a particular, but very usual kind of visual
artifact, namely a spurious handle. They don't have our visibility information, so
they need to introduce an heuristic: they consider that spurious handles are usually
small by contrast to the real world handles that would be large. This works with the
scanner data because the 3D cloud of points is dense. Unfortunately, this assump-
tion is false in our case because, with the sparse input cloud of points, spurious
handles, and more generally visual artifacts, can be as large as any other feature of
the surface.

Another method that is very simple and more adapted to our case was first
proposed in [ Yuril. This isn't exactly a visual artifacts removal method, but instead
a way to reduce their risk of apparition. The idea is to split large tetrahedra that
can be involved in a visual artifacts by adding some Steiner (artificial) vertices in the
Delaunay triangulation T before the surface is reconstructed.

These artificial vertices are added in the region that is highly visible by the hu-
man observing the final surface: in the close neighborhood of the camera locations.
For each camera pose, a small number n; of Steiner points is added at random lo-
cations inside a ball centered at this pose. The ball radius is a user defined value
rs. The risk with this method is the apparition of invalid matter tetrahedra because
we increase the number of tetrahedra without increasing the number of rays. But,
since the Steiner points are inserted in regions (the camera locations) with a high
density of rays, this risk is low.

The advantage of this method is its simplicity and its speed. But the problem
is that it isn't very efficient in terms of the final surface quality.

Finally, another method was proposed in {Lhuillier13} and detailed in the sub-
section IV.1.6 of this document. Here we remember the principle.

The input of this algorithm is the list £, of the visually critical edges. Each edge
of E, is split in its middle by adding a Steiner point. Each tetrahedron including
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f(O3) > f(O1) > f(Os)

Figure VI1.3: Example of an escape from local extremum thanks to our new artifacts
removal (2D case). White tetrahedra are outside, gray tetrahedra are inside. The
number in tetrahedron A is I(A). The light gray dot is the vertex considered by
the algorithm and thick lines are visually critical edges. Left: O before removal.
Middle: force neighboring tetrahedra out of O. Right: local growing of O.

the edge is also split in two, and the two resulting tetrahedra are assigned the same
number of intersections and status as the initial one. This way, we reduce the size
of tetrahedra and hope to locally unlock region growing in the neighborhood of this
edge. Furthermore, 0O is still manifold. The drawback is that the triangulation is
not guaranteed to be Delaunay anymore.

Then we try to remove each visual artifact by forcing its tetrahedra to outside.
This creates some singularities (i.e. vertices where the surface isn't z-manifold).
Then, we try to remove these singularities by a local region growing (repair step of
subsection IV.1.6). More precisely, we try to add free-space inside tetrahedra to out-
side in a way to lower the number of singularities. If we succeed (i.e. the number of
singularities becomes zero), a visual artifact was removed, otherwise all the tetrahe-
dra added to O are removed from it.

The advantage of this method is that it is efficient in terms of output surface
quality. But it is slow. This comes from the fact that it tends to perform a lot of
operations before concluding that the number of singularities can't become zero,
so all these operations turn to be useless, but consume the computation time.

Moreover, the edges should not be split when the algorithm is applied in the
incremental case because of the triangulation becoming non Delaunay and we need
some properties of the Delaunay triangulation to ensure the correct functioning of
our algorithm (see subsection IV.r.1). So, its efficiency is reduced.

VI.3 New artifacts removal method

In this section, we propose a faster visual artifacts removal method that doesn't re-
quire Steiner points insertion. We begin by describing the algorithm, then we study
its theoretical complexity under the loose and tight assumptions.

VI.3.1 The algorithm

The region growing described in the subsection IV.1.5 is a greedy optimization al-
gorithm that maximizes

F0)= 3" 18 (VLD

A€O
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929

Algorithm VI.x. New visual artifacts removal algorithm

r: function REGION GROWING(A()

> Local region growing in G,

Let @ be a priority queue of tetrahedra based on I(A)

2:

3 pusH(Q, Ag)

4 Logq <0

5t while Q # () do

6: A + por(Q)

7: if A ¢ O and 9(O U {A}) is manifold then
8: O+ 0u {A}

9: Loaa < Loga U {A}
10: for all tetrahedra A’ adjacent to A do
I if A’ € G, and A/ ¢ O then

12 rusu(Q, A)

13: end if

14: end for

150 end if

16: end while
17: return L,qq
18: end function

19: procedure ARTIFACTS REMOVAL

> The main artifacts suppression algorithm

20: Sold, S, 1t < 0

21 repeat

22: Sold < S

23: for all vertex v of both 90 and G, do
24: Ny < all the tetrahedra incident to v
25: Loy < ON Ny

26: Lgeed < (Go N Ny)\ O

27: Loga <0

28: 0+ 0 \ Lsup

29: if 90 is manifold then

30: forall A € L,..q do

30 Lodq < LagqdU REGION GROWING(A)
32: end for

33 Rgup < EAewa I(A)

34 Roaa < ZAELadd I(A)

35: if Ryp > Ryqq then

36: O+ O \ Laga

37: O+~ OU Lz

38: else

39: 8¢ s+ Roaq — Rsup

40: end if

41: else

42: O+ OU Lgy

43: end if

44: end for

45: it 1t +1

46: until s,y # s or it < it

47: end procedure

> Local shrinking

> Local growing
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in the discrete search space of tetrahedra lists O such that O C F and 90O is a 2-
manifold. In {Lhuillier13}, we have a steepest descent heuristic for function — f(O)
(by region growing of O) which can get stuck to a local maximizer of f(O). A visual
artifact (e.g. spurious handle) can be seen in this situation. The basic idea of our
new method is to remove some tetrahedra from O (and so to decrease f(O)) to
kick the algorithm out of its local extrema.

As in the previous section, we call E,, the list of visually critical edges. Let G,be
the set of tetrahedra A € F' which have an edge in E,. Then, for every vertex
v of both 0O and G, we force neighboring tetrahedra out of O and we try local
region growing which begins from neighboring tetrahedra included in G. If the
final value of f(O) is greater than the initial one, we are able to escape from a
local maximum, otherwise we revert everything to the initial state and try another
vertex v. See the figure V1.3 for an example and the algorithm VI.1. Once we tried
all 0O vertices, we complete the result using region growing and topology extension
(restricted to the tetrahedra included in the working zone W in the incremental
case (see section I'V.2)).

The details are in the algorithm VI.1.

VI1.3.2 Complexity analysis
Loose assumptions

We begin the complexity study of the algorithm VI.1 by an analysis in the loose
case. The notations and assumptions are those of the section IV.3 and we suppose
that the algorithm is executed during an iteration of the incremental pipeline.

We consider that all the edges of the working zone are visually critical for a
worst case complexity analysis. So |G,| = O(k?) (subsection 1V.3.4) and the for
loop at the line 23 has O(k) iterations (working zone contains O(k) vertices). We
suppose that for each local shrinking OO remains z-manifold. | Lgc.q) = O(k) because
|N,| = O(k) (see appendix C). So the local region growing at line 31 is performed
O(k) times.

The region growing complexity is given by the equation IV.6: O((g+qo)(log(g+
go)+d)). The number of added tetrahedra g is O(k?) because the growing is limited
to the working zone. The initial size of the queue ¢ is 1 and the maximum vertex
degree d is O(k). So one local growing has the complexity of O(k*(log(k?) + k)) =
O(k?). So the for loap of the line 23 has the complexity of O(k°).

Finally, the complexity of the main loop at line 21 is bounded thanks to the max-
imum number of iterations it,,q,. So the complexity of the new artifacts removal
algorithm in the loose case is O(k®).

Tight assumptions

Now we will compute the complexity of the algorithm V1.1 using tight assumptions.
In this scenario, the size of the working zone is O(1). We still suppose that all the
edges of the working zone are visually critical. This gives us |G,| = O(1). Thus the
loop at line 23 has O(1) iterations.

The maximum vertex degree is O(1) thanks to T6, so |Lseca| = O(1). So the
local region growing is performed O(1) times. And the complexity of one growing is
O(1) because we are in the tight case (see subsection IV.3.6). So one iteration of
the main loop at line 21 has the complexity of O(1).
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1 2 3

Figure VI.4: An example of application of spurious handle removal 2D case).
White tetrahedra are outside, gray tetrahedra are inside, light gray tetrahedra are
free-space inside. The thick line is a visually critical edge, the dashed line is plane 7 and
the triangles with thick borders are selected tetrahedra.

Finally, the number of iterations of the main loop is bounded thanks to it,,qz.
This gives us the complexity of the new artifacts removal algorithm in the tight
case: O(1).

VI.4 Handles removal method

In addition to the new artifacts removal method described in the previous section,
we propose here a more specialized approach: an algorithm to remove the handles.
This kind of visual artifacts are more easily visible by the human eye. As in the pre-
vious method, we begin by describing the algorithm, then we study its complexity.

VI.4.1 The algorithm

This algorithm is a specialization of the subsection IV.1.6 method. The latter is slow
mainly because it consists in many attempts to remove a small pack of tetrahedra
and the majority of these attempts are unsuccessful. So, the idea is to remove bigger
packs of tetrahedra. This is possible because we are in a more restrained context.

Instead of trying to remove the visually critical artifacts, we seek to remove a
particular kind of artifact: the handle. The second column of figure V1.6 shows an
example. This is the most visible kind of artifact for the human eye.

The basic idea of the algorithm is to remove the handle (by contrast to the sub-
section I'V.1.6 where we remove all the tetrahedra including a vertex) and then try
to restore the manifold property of O by a local region growing. To do that, we begin
as usual, by computing the list E,, of visually critical edges. For each edge ab € F,,
we check if it is contained in a handle.

We define a plane 7 perpendicular to ab and intersecting segment ab at some
points. In practice we try several planes intersecting ab in 2212 ath 5,4 %.
Let L, be the list of the tetrahedra intersected by m. Let Nyp be the list of the
tetrahedra including edge ab. A handle H is a set of tetrahedra forming a visual
artifact, so H C F'\ O. With this definition, we begin to form our handle by H <
(Nab n Lﬂ) N (F \ O)

Let Ny be the list of the tetrahedra directly adjacent to the set H (i.e. A € Ny,
if and only if A has a 4-neighbor in H). We iteratively grow H by performing
H +— HU(NgnNL;N(F\ O)) until no more tetrahedra can be added or the
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number of iterations becomes greater then an user defined value. Then we check
that the final H is surrounded by O in plane 7 (see the the figure V1.4),ie. VA €
(NenL;)\H,A€O0.

Once we have detected a handle H, we try to remove it as in subsection IV.1.6.
First we force H in O (i.e O <+~ OUH), then we try to restore the 2-manifold property
of 9O using the repair step initialized by the tetrahedra in Ny N (F\ O).

The repair step is the same as in the algorithm of the subsection IV.1.6. We
seek to add a bunch of free-space tetrahedra to O such that 0O become manifold
once again. To achieve this goal, we apply a local region growing (the repair step of the
subsection I'V.1.6) algorithm to O in F starting in the neighborhood of Ny N(F\O)
and which decreases the number n of singular vertices. The algorithm stops if a
number of iterations g (fixed by the user) has been reached or no more tetrahedra
can be added to O.

If the repair step succeeds (.e. n = 0: 9O is z-manifold), we are able to remove
a visual artifact and proceed to the next vertex. Otherwise, we restore O to the
previous state and try another edge in E,,.

VI.4.2 Complexity analysis
Loose assumptions

‘We begin the complexity analysis of the handle removal algorithm by an analysis in
the loose case. As for the new artifacts removal algorithm we use the same nota-
tions and assumptions as used in the section I'V.3.

We suppose that all the edges are visually critical for a worst case complexity
analysis. Because all our computations are taking place in the working zone, there
are O(k?) visually critical edges (consequence of the assumption L2).

For each visually critical edge, we use an iterative growing to construct a handle.
Because the number of iterations of this growing is bounded, its complexity is O(1).
To check that constructed handle is enclosed by the outside region we need to check
the neighbors of this pack of tetrahedra. Because each tetrahedron has exactly 4
neighbors, the complexity of this step is O(1). So the total complexity of the handle
detection step is O(1) in the loose case.

Once a handle is detected it is forced to outside and a greedy region growing al-
gorithm is used to repair the singularities. The complexity of the region growing is
bounded by a maximum number of iterations go, so the complexity of the repasr
step is O(1) in the loose case.

In conclusion, the complexity of one handle detection and removal is O(1). Ina
worst case complexity analysis, we suppose that each visually critical edge is adjacent
to a handle. So the complexity of the handles removal algorithm is O(k?) in the
loose case.

Tight assumptions

Now we will estimate the complexity of the handle removal algorithm in the tight
case. As in the loose case, we suppose that all the edges of the working zone are
visually critical. Because the size of the working zone is bounded, there are O(1)
visually critical edges.

To check if a visually critical edge is contained inside a handle we perform an iter-
ative growing and we check the neighborhood of the computed pack of tetrahedra.
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Removal Artifacts removal | Num.

method computation time | artif.
None 0s. 52
A without Steiner vertices 55.22's. 28
A with Steiner vertices 2 min. 46.27 s. 23

Table VI.x: Numerical results of the old artifact removal method (called A) with
and without Steiner vertices. The experiments are performed using the batch
method.

Because the iterative growing is bounded by a user defined threshold, the complex-
ity of one handle detection is O(1).

Once a handle is detected, it is forced to outside region and the singular vertices
are repaired using a Jocal region growing. The complexity of the region growing is O(1)
in the tight case because it is bounded by a maximum number of iterations. So the
complexity of the handles removal algorithm is O(1) in the tight case.

VI.5 Experimental study

In this section, we perform a comparison between the two new artifacts removal
methods detailed in the previous sections and the previous artifacts removal method
proposed by [Lhuillier13}. To perform the comparison, we use the Aubiere real video
sequence described in the subsection V.1.

‘We begin by a discussion on the way to compare the different artifacts removal
methods in the subsection VI.5.1, then we study the influence of Steiner points in-
sertion on the quality of the final surface when the old artifacts removal method
is used in the subsection VI.5.2. The comparison between the different artifacts
removal methods is performed in the subsection V1.5.3. And finally the influence
of the value of the visually critical edges detection angle is studied in the subsec-
tion VI.5.4.

VI.5.1 How to compare the artifact removal methods?

Every removal method is integrated in the surface post-processing step of the in-
cremental surface reconstruction method (see subsection IV.2) (before peaks re-
moval). To compare the methods in terms of output surface quality, we manually
count the visually critical artifacts (see section VI.1) remaining on the final surface.
Because we seek to remove in priority the artifacts that are visually critical (and so
are easily noticed by a human eye), we consider this number as a good quantitative
metric. The figure V1.6 shows examples of artifacts that are manually counted.

Moreover, we also estimate the final number of free-space inside tetrahedra (i.e.
the union of the visual artifacts) and the final value of the objective function f (equa-
tion VL1). The latter quantifies the ability of every method to unlock the region
growing and topology extension steps (see subsection IV.1.5), or in other words, the
ability to escape from local extremum of f.
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Removal | Mean | Max. | Num. | Sizeof | f= Y I(A)

A€O
method | time | time | artif. | F\O | (M = 10°)
None 0 0 18 156288 32.506M
A 1.19s. | 4.74 s 11 154152 32.522M

B 0.32s. | 1.07s 12 147281 32.552M
C 0.21s. | 0.70's 14 155413 32.511M
B&C | 046s. | 1.40s 9 147181 32.556M

Table VI.2: Numerical results of different artifacts removal methods. A is the old
artifacts removal method, B is the new artifacts removal method from the sec-
tion V1.3 and C is the handle removal method from the section VI1.4.

VI.5.2 Comparison of the old method with and without Steiner vertices

One of the advantages of the new artifacts removal methods discussed here is the
fact that they don't need the insertion of Steiner vertices. So, before comparing
the old method with the new ones, we evaluated the influence of these points on
the quality of the previous algorithm (this is not done in { Yur3, Lhuillier13D.

To achieve this goal, we have applied the azch algorithm without artifacts re-
moval step, with the old artifacts removal algorithm, and without Steiner points in-
sertion and finally with the old artifacts removal performed normally. Then, we
compare their computation times and the number of manually counted tetrahedra
(see table VI.1). We don't compare the numbers of free-space inside tetrahedra and
the values of the objective function because the insertion of Steiner vertices changes
the number of tetrahedra. So the comparison between these values is meaningless.

When we observe the values of the table V1.1, we conclude that the insertion
of Steiner vertices increases the efficiency of the old artifacts removal algorithm,
but at the same time the computation time becomes almost 3 times slower. So the
Steiner vertices insertion could be omitted, even in the batch case, if the computa-
tion time is very important.

VI.5.3 Comparison of the three methods

We evaluate five visual artifacts removal methods: None (no removal method), A
(the old method from [Lhuillierr3} detailed in the subsection IV.1.6), B (escape
from local extremum using the method from the section VI1.3), C (handle removal
using the method from the section VI.4), B & C (use C after B).

The results are summarized in the table VI.2. The removal methods A, B, C
and B & C provide improvements (increases) of the objective function f. The
differences between them are small, but we see that B is slightly better than A.
Furthermore, we see that the combination of B and C is even better, and this is
confirmed by both the number of tetrahedra in F' \ O (union of all visual artifacts)
and the number of artifacts that are manually detected. The figure VI.6 compares
the results of all methods at four locations in the reconstruction and is consistent
with these comparisons. We note that B has important visual artifacts (as the one
in the second column of this figure) although it has a good (small) F'\ O, and C can
correct them in spite of its greater F'\ O. Then we think that the combination B
& C is a good choice.

A difference between the four methods is the computation time. Indeed, B,
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Time statistics
5 T T

A—
B&C ——

Time (s)

|
I L
MHH i M\‘\“»\\J‘ W

800

1400
Key frame

Figure V1.5: Computation times at every key frame for both the previous (A, red)
and the new (B & C, green) visual artifact removal methods.

Value of Mean | Max. | Num. | Sizeof | f= Y I(A)
A€O
detection angle | time | time | artif | F\O | (M =10
None 0 0 18 156288 | 32.506M
1° 0.58s | 1.73s 9 145558 | 32.558M
5° 0.46s | 1.40s 9 147181 32.555M
10° 0.34s | 1.06 s 9 150364 32.535M
15° 0.28s | 0.95s 15 152126 32.530M
20° 0.25s | 0.81s 17 152570 | 32.532M

Table VI.3: Numerical results for different values of the visually critical edges detec-
tion angle a.

C and B & C are significantly faster than A since their mean time per keyframe is
about 2.5-4 times smaller (table V1.2 and the figure VL5).

VI.5.4 Study of the influence of the value of the detection angle

The artifacts removal algorithms discussed here remove visually critical artifacts. A
visually critical artifact is an artifact including a visually critical edge (see section V1.1).
And the visually critical edges are detected using an user defined threshold c. In the
experiments of this dissertation we used o = 5° to use the same value as [Lhuillier13}.
But, we also perform a series of experiments to find the optimal value of this pa-
rameter.

To achieve this goal, we apply the incremental algorithm to aubiere data set using
the combination of B and C visual artifacts removal algorithms. We vary the value
of @ and compared the results as explained in the subsection VI1.5.1. The different
numerical values are in table VI.3.

As expected, the smaller is the value of «, the slower are the computations.
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Figure VI.6: Results of artifacts removal methods at four locations (one location
per column). Lines from top to bottom: textured scene, no artifacts removal,
method A, method B, method C, method B & C.
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Figure VI.7: Computation times at every keyframe for the steps of our incremental
surface reconstruction method including B & C as visual artifact removal method.
Note that these times are accumulated for steps shrink, ..., artifact removal. Times
are smaller than in figure V.1r.

Moreover, if we compare the number of free-space inside tetrahedra and the final
value of the objective function, we see that a smaller value of o means better results.
But, if we compare the number of manually counted artifacts, we see that setting
the threshold « to a value smaller than 10 provides no visually perceptible enhance-
ment to the final surface. So we can conclude that a good value of « is 10.

VI.6 Conclusion

This chapter has studied the artifacts removal step of the sparse incremental sur-
face reconstruction algorithm proposed by this dissertation. We have defined the
notion of an visual artifact and have briefly reviewed the previous attempts to solve
this problem.

The artifacts removal method that was previously proposed is good in terms of
surface quality. But it is slow and needs the insertion of Steiner points for maximum
efficiency. Unfortunately, the later is difficult in our incremental context.

We replace this step by the same method restricted on particular cases of vi-
sual artifacts (handles) and preceded by another method which escapes from local
extrema of the objective function. The methods are compared using aubiere exper-
imental data set. The conclusion is that the processing time of the artifacts removal
step was greatly reduced without loss of surface quality. The new computation
times (see figure V1.7) are smaller compared to the old method (see figure V.1r).
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cHAPTER VI

Adding contours to the reconstruction process

When we think about the primitives to use for sparse surface reconstruction, we
usually think about interest points. The question is: Is it the only type of primitive
useful to solve this problem? The response is, of course, no. The other types of
possible primitives are line segments, curves, planes, etc...

In this chapter we explore the usefulness of adding curves (in supplement to
the 3D points) to our surface reconstruction pipeline. The curves are less explored
in the literature than the points, but they have some potential advantages. The
environments created by humans are often low textured and so it can be difficult
to find a sufficient number of stable interest points. On the other hand, such envi-
ronments usually provide a high amount of curves.

The results of this study were published in {Litvinovi2}. Although, the evalua-
tion of the batch sparse surface reconstruction using the standard Middlebury {Seitzo6}
data set are in {Yursl, it is our contribution.

We begin by a review of the previous works using the curves for surface re-
construction in section VIL.1. It is followed by a general outline of the surface
reconstruction algorithm when the curves are used in section VII.2. Then, some
detailed explanations are provided for the two parts that are added to the original
algorithm: curves detection and matching (section VII.3) and 3D curve reconstruc-
tion (section VII.4). Finally, the results of the algorithm with and without curves
are compared in the section VIL3.

VII.1 Previous works

The usage of the curves for surface reconstruction is a relatively less explored topic.
Our objective is to evaluate the added value provided by the curves compared to the
interest points alone when integrated in our method. So we begin by performing
an overview of the different approaches to contours based surface reconstruction
to see which one can easily be integrated in our pipeline.

109
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VII.L1.1 Contours based surface reconstruction methods

The first type of algorithms that make use of curves for (at least partial) surface
reconstruction are the occluding contours based approaches. An occluding
contour is a depth discontinuity in the image. More precisely it is a region of the
observed surface where the dot product between camera view direction and the sur-
face normal is zero. In this category we find {Koenderink84, Cipollag2, Vaillantgz,
Zhengg4} and others. The basic idea of this kind of methods is to deduce the
geometrical properties of the observed surface by observing the deformation of
contours with the camera motion. The majority of these methods only allow the
reconstruction of small surface patches around the curves with the notable excep-
tion of {Zhengg4} who reconstruct the complete 3D model.

In {Zhengg4l, the input sequence of images is acquired from a turntable mo-
tion. The object to reconstruct is placed in front of a well distinct background, so
the silhouette contours can easily be detected. These contours are then parametrized
following the direction parallel to the rotation axis (y axis, in practice). The study of
the evolution of these points allows to reconstruct a 3D point cloud and ultimately
a 3D model of the observed object. An interesting property of this algorithm is
that it detects the concavities, parts of the surface that can't be reconstructed by
this method, and so some other approach can be used to complete the surface.

The main problem of this kind of algorithms are that they don't work well with
concave surfaces, the need for a highly controlled acquisition processes and the
fact that usually only a set of patches are reconstructed. The advantage is that they
work well with smooth objects.

Another way to use occluding contours is to construct an approximate sur-
face for initializing a dense reconstruction. Examples of this kind of methods are
[Laurentinig4, Kutulakosoo, Bottinoo4, Estebanog4l.

Their principle is simple. Given an input image, it is segmented into two dis-
tinct zones: the object and the background. The rays corresponding to the object
pixels are back-projected and forms a cone like shaped zone in 3D space. We know
that the the observed object is inside this zone. Once this computation is per-
formed for each image of the input sequence, these visibility zones are intersected.
The computed intersection is an approximate surface (visual hull) of the object.

The drawbacks of these methods is that the resulting surface is only a loose
approximation of the really observed object, the observed scene must contain only
a single object and generally the acquisition must be highly controlled (green/blue
background). Also the concave parts of the object can't be reconstructed.

Finally, a different use of the curves for surface reconstruction is to reconstruct
the image curves in 3D thus forming a 3D sketch (or wire-frame model). We could
cite [Faugerasgo, Kahlo3, Wuos, Liuo6, Martinssono7, Hofer13l. Once the sketch
is reconstructed, it is possible to integrate it into the 3D Delaunay triangulation
and perform the surface reconstruction.

For example, {Faugerasgol shows that it is possible to subdivide a segment into
a set of points in such a way that when they are inserted into a Delaunay triangula-
tion, the triangulation will contain the said segment as the union of some its edges.
To achieve this goal, the segment should be subdivided into D/2d — 1 points where
D is the length of the segment and d is the minimal distance between the segment
and the nearest other primitive (segment or point) of the triangulation.

[Faugerasgo} also extends the classical visibility constraint to the case of line
segments. If a camera c sees a segment ab, all the tetrahedra of the Delaunay trian-
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gulation intersected by the triangle acb are free-space. The method is experimented
on a synthetic and real examples. In the case of real sequences, the line segments
are matched using the method from [Ayache87]. The results are interesting, but
the experimented sequences are limited to three view.

Another example of such an approach is [Wuosl. This method is not automatic.
The end user indicates by hand the interest points and curves in the input images.
Moreover, the user also indicates the matches between points and curves in differ-
ent input images. Then, the algorithm computes the camera poses associated with
the input images using a Structure-from-Motion and the points correspondences. The
2D points of each pair of matched curves are matched using the epzpolar constraint.
These matches are used to reconstruct the 3D sketch. Finally, this sketch is used
to define a set of surface patches and each patch is refined using photo-consistency
to obtain the final 3D surface. The quality of the resulting surface is very good, but
the inconvenient of this method is, of course, the fact that it is non automatic.

For a more recent example, we could cite [Hoferr3l. It is an incremental and
real-time 3 sketch reconstruction method. There are two steps. First, the cam-
era pose is evaluated for each incoming image using interest points and a SfM al-
gorithm. Second, it detects straight line segments inside the upcoming images,
matches them with the previous views and enhances the sketch with the new in-
formation.

The matching between segments is performing using only geometrical consid-
erations, namely epipolar constraints and reprojections. For each putative match,
the end points of one of the segment are matched with the points of the second
segment using epipolar constraints and reconstructed in 3D to obtain the corre-
sponding putative 3D segment. Then, the putative 3D segment is reprojected to
other images to see if it has enough supporting 2D segments. This way even dense
wiry structures (such as electrical pylons) can successfully be reconstructed.

The 3D sketches produced by this algorithm of good quality, but it only re-
constructs straight line segments which is a bit restrictive.

The occluding contours approaches are too different to point based recon-
structions and can't be easily integrated into our pipeline because, in our case, it is
very difficult to distinguish foreground from the background. On the other hand,
our 3D point cloud can be enhanced by a 3D sketch and the results of {Wuos}
indicates that this could lead to a significant surface quality increase. However, we
seek to develop an automatic method and so we need a way to match the curves of
different input images in a fully automatic way:.

VII.1.2 Curves matching methods

In this subsection we overview the solutions of the problem of 3D sketch compu-
tation from the curves detected in a series of images. More precisely, focus on the
problem of finding the correspondences of curves between images observing the
same scene.

The first publications concerning the problem of curve matching are for two
views with known intrinsic and extrinsic parameters. Among these publications
we could cite {Arnold8o, Brintgo, Nasrabadig2}. To resolve the problem of dis-
ambiguation of correspondences, they try to use some additional geometric con-
straints. For example, the method in {Arnold8o} use the curve tangents. It uses
a heuristic that the tangents directions in images tend to be similar at the cor
responding points of two curves. Unfortunately, it is only true for a very short
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baseline and this is a general problem for the two view matching methods. They
need to make use of heuristics that severely limits they range of applicability.

If we have three views with known intrinsic and extrinsic parameters the prob-
lem of biased heuristics can elegantly be avoided. The idea proposed by {Ayache871
is to uses the points and tangents at these points from two potentially correspond-
ing curves to compute the corresponding point and tangent in the third view, then
to compare it with observations. The works [Robertgr, Schmidoo} use the same
technique but with the curvature instead of tangent. Finally, these techniques were
generalized to N-view and a complete curve reconstruction pipeline was proposed
by [Fabbrirol. Another advantage of this pipeline is that the cameras calibration
can be approximate.

It is noteworthy that the 3D sketch can also be computed without performing
the curve matching, for example by voxel like technique {Teney12].The advantage
of this approach is that no correspondences between curves need to be performed.
Drawback of this method is the fact that it is voxel based. This makes it difficult
to use for large scale scenes and so it is not really interesting for us.

VII.2 Algorithm outline

The final objective of this study is to evaluate how the quality of the final surface
changes if the curves detected in the input images are added to the reconstruction
process. So we modify the global bath surface reconstruction process in order to
integrate this new information. To achieve this goal, additional steps are added
after Structure-from-Motion step and before the surface reconstruction itself.

The modified algorithm has the following steps:

1. The Structure-from-Motion algorithm is applied to the input video sequence.
This algorithm is described in the chapter III. After this step, a set of key
frames is selected in the entire sequence. The cameras poses associated to each
key frames are computed, as well as the 3D cloud of points and the correspond-
ing visibility information.

2. The curves are detected and matched in the consecutive key frames in order
to create a set of curves tracks. This is discussed in the section VIL.3.

3. The curves are reconstructed in 3D, i.e. for each curve track, we compute the
corresponding curve in the 3D space. Each 3D curve is represented by a set
of 3D points by sampling. This way they are straightforward to integrate to
the existing 3D cloud of points provided by the SfM. This step is discussed
in the section VII.4.

4. Finally, the 3D cloud of points computed by the initial SfM and augmented by
the sampled 3D curves of the previous step is processed by the batch surface
reconstruction algorithm of the section IV.1 in order to produce the final
output surface.

As can be seen, the tests of this chapter was performed in a batch context for
practical reasons. But, as can easily be seen, this algorithm is straightforward to
convert to an incremental scheme. The Structure-from-Motion algorithm is already
incremental. Each time a new ey frame is selected and the corresponding camera
pose is computed, we can detect the curves in the corresponding input image and
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Figure VIL.1: An example of curves detection. On the left side you can seen the
original image. On the right side you can see the curves detected in it. The red
dots are the ending points of individual curves.

match them with the previous &ey frame. Then, we can reconstruct the curves that
are no longer tracked and integrate them into the cloud of points. Finally, we can
apply the incremental surface reconstruction algorithm of the chapter IV as usual.
This is why the results of this chapter can directly be applied to the incremental
case.

VII.3 Curves detection and matching

After the Structure-from-Motion algorithm has selected the key frames and computed
the corresponding camera poses, the extraction of the curves from the input images
begins. First, the curves are detected and parametrized. This step is explained in
the subsection VII.3.1 Then, the detected curves are matched with the ones from
the previous key frame. This is detailed in the subsection VII.3.2.

VII.3.1 Curves detection

First, we perform an edge detection in the incoming image. It is performed by
a slightly simplified version of the well known Canny algorithm {Canny86}. The
simplification consists in dropping the hysteresis edge tracing step because it was
found almost useless (the enhancement provided by this step was unnoticeable).
The algorithm output is a binary image. The pixel value of fz/se means that the pixel
is not a part of a curve, true means it is. The secondary outputs of the algorithm
are the gradient value and its orientation for each pixel of the input image. The
main parameter of Canny is the detection threshold, it is calculated by the formula:
t x max(G), where t is the value supplied by the user and G is the set of gradient
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() Image ¢t — 1 (b) Image ¢

Figure VII.2: An example of application of the curves matching algorithm. Black
dots are the points sampled on the curve to match, dashed lines are the epipolar lines
corresponding to these points in the next image. Thick curves are the potential
match candidates. Thin curve is not.

values of each pixel of the input image.

The next step after the detection of edges in the incoming image is to convert
the resulting bitmap into a set of parametric curves: the edge vectorization. In fact
this is a two step process: first the image is processed from top to bottom to trace
the curves with horizontal parametrization, then the image is processed again but,
this time, from left to right and vertically parametrized curves are traced. The two
algorithms are almost identical, so we only review the horizontal edge tracing.

The algorithm itself is easy to understand. It scans each line in search of de-
tected points that appears to be a beginning of an almost horizontal curve (all point
neighbors are on its right side). When one is found, the algorithm follows the edge
from pixel to pixel and stores the result. The only user supplied parameter is L,,;,:
the minimal length a curve should have in order to be processed in the next stages.
It allows to filter the unneeded noise (and also speed up the processing) and ensures
that all the curves are long enough so their reconstruction quality can be verified.

An example of the curves detected and extracted from an image can be seen on
the figure VIL.1.

VII.3.2 Curves matching

The next step is to math the curves with those in the previous key frame. Unfortu-
nately, curve geometry based matching method as described in {Fabbriro} exhib-
ited bad performance when the images have a lot of densely located similar curves
(for example, as in the Ladybug datasets, see the section VIL.5), it just can't make a
matching decision based on curve geometry alone. So, we use a correlation based
method heavily inspired by a classical points matching.

To perform a curve matching between images I;,_; and I, we proceed as fol-
low: for each curve C; in I,_; we construct an epzpolar lines strip in the image Ij,
(see figure VII.2 for an example). An epipolar lines strip is a set of epipolar lines (see
subsection III.2.3) corresponding to each point of the curve C;. This is possible
because the SfM already computed the poses corresponding to each key frame. It is
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Figure VII.3: A comparison between the sets of 3D curves reconstructed with dif-
ferent curve initialization methods in use.

not useful to compute the lines for each pixel of the curve, an uniform sampling of
points is enough.

Then we reject all the curves not intersected by epzpolar lines of this strip. The
remaining curves of I;, form a list of candidates L.. For each curve C; in L. we
compute a zero-normalized cross-correlations (ZNCC) between intersections of C
with the epipolar lines (in I;11) and the points of C; that produced them (in I}).
Finally, the mean value of all these correlations define the score of the curve C;. C;
is matched with the curve of L. having the best score if this curve wasn't already
matched or the score of the previous match is inferior.

The output of this step is a list of curve tracks. A curve track is a list of matched
curves Cy, . .., Ci_1, Cy, such that C; is in the i-th key frame.

VIl.4 3D curves reconstruction

The next step is to transform each completed curve track (curve track that wasn’t
updated during the processing of the last frame) to the corresponding 3D curve.
This step can be divided into 3 successive stages: inter-curve points matching,
points initialization and points reconstruction.

The curve tracks generated by the previous step are converted to lists of image
points tracks thanks to the epipolar constraints. A point track is a list of matched
points po, . . ., Prk—1, Px Where p; is in the i-th key frame: py, is obtained from pj_1
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Temple Fountain-Pxx Herzjesu-P8
Image resolution 1x640x480 1x3072x2048 1x3072x2048
Key-frames (total frames) | 312 (312) 11 (11) 8(8)
Harris points per frame 1.5k 60k 50k
curve sampling size s 4 8 8
SfM 3D Points (curves) 46k (71F) 67k (71k) 29k (33k)
Final triangles (curves) 63k (96k) 120k (127k) 53k (59k)
Time: 3D points (vcurves) | 12s. (+28s.) | 100s. (+71s.) 64s. (+47s.)
Time: Surface (curves) 195s. (30's) 19s. (24's) 19s. 21s)
hall aubiere-2
Image resolution 6x1024x768 6x1024x768
Key-frames (total frames) 117 (1211) 493 (2443)
Harris points per frame 24k 24k
curve sampling size s 8 8
SfM 3D Points (curves) 86k (145k) 295k (374k)
Final triangles (curves) 83k (305k) 399k (520k)
Time: 3D points (+curves) 17 min. (+102's) | 55 min. (+8 min.)
Time: Surface 47s. 81s.

Table VII.r: Numerical results for our experiments with curves for different data
sets (1k= 1000).

by the intersection of C}, and the epipolar line of p;,—; in the k-ith key frame. If the
angle between the epzpolar line and the C), tangent at py, is small, the intersection is
inaccurate and the point track is truncated (a point track can be shorter than the
curve track).

Then, for every point track, an initial 3D point position is initialized by RANSAC
(see subsection II1.2.6) for robustness. Unfortunately, using this direct approach
leads to some strange artifacts (see the figure VII.3a for an example using the Temple
dataset from the section VIL5). In fact, all the points of the same curve don't nec-
essarily use the same views to initialize themselves by RANSAC. This difference in
initial position leads to zigzag like 3D curves. To avoid this problem, we perform
a two-step initialization: first, all the points are initialized independently; then, at
the second stage, we select the two views that were used the most often and all the
points are initialized using these two views. As can be seen on the figure VII.3b,
this approach greatly improves the quality of the reconstructed curves.

Once the point position is initialized, it is refined using a simplified bundle ad-
Jjustment in a way identical to subsection III.3.2. For memory it is a Levenberg-
Marquardt optimization: The estimated parameter is the position of the 3D point
and the objective function is computed only considering the observations of the
point truck.

Finally, we only retain for surface estimation one reconstructed point over s
points for every curve track. The step size s is large enough to preserve speed and
sparsity of the global algorithm and at the same time small enough to ensure that
curves are correctly integrated into the Delaunay triangulation {Faugerasgol.
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() Points only. (b) Points and curves. (0) Ground truth.

Figure VII.4: Temple data set reconstruction results.

VIL.5 Experimental study

To compare the batch surface reconstruction method results with and without the
usage of curves we have performed the evaluation on five different data sets: Temple
dataset [Seitzo6l, Fountain-Prr and Herzjesu-P8 data sets [Strechao8l, and finally our
own hall and aubiére-z dataset. Please note that the aubiére-z data set is different
than the aubiere data set from subsection V.. The first three are provided with
the ground truth so this allows us to quantitatively evaluate the performance of
the algorithm and to compare it with the others. The ha/l and aubiére-z allow us
to qualitatively evaluate the surface reconstruction method on a cluttered interior
and a residential scene. All the processing times are evaluated on a 4xIntel Xeon
W3s30 at 2.8 GHz. A summary of important values about every dataset presented
in this section can be found in table VII.1.

Note that the batch surface reconstruction method was initially designed for
the reconstruction of complete environments using omnidirectional cameras as in
our own (hal/ and aubiére-2) data sets. In this case, the camera positions are assumed
to be inside the convex hull of the reconstructed scene points. In the other cases
(first, second and third data sets) a workaround is needed: we add Stezner vertices
(extra points) at the border of a large bounding box of the object (Témple) or behind
the camera (Fountain-Herzjesu) to the Delaunay triangulation, then we apply our
method and remove the triangles which are incident to these Stezner vertices.

VIL5.1 Temple data set

The Temple provided by {Seitzo6l is a standard multi-view reconstruction data set
(312 separate views). In this evaluation, we use the camera positions provided with
the data set to reconstruct the 3D points (we do as the other methods evaluated
using this data set). We also used the visually critical handles detection threshold of
1°, because the usual value of 5° leaved some easily visible artifacts.

Two models were sent for evaluation to the data set creators. The first (see
figure VII.4a) is reconstructed using the points only and the second one (see fig-
ure VII.4b) is reconstructed using points and curves. The ground truth image is
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provided for reference on the figure VII.4c The point-only model is reconstructed
in 31 s. and provides an accuracy of 0.59 mm. (for 90% of reconstructed points)
and completeness of 97% (for 1.25 mm. error). The points and curves reconstruc-
tion takes 59 s. and provides an accuracy of 0.53 mm. and completeness of 97.6%.
(These values can be compared to those of other algorithms at {MidD.

This lead us to two conclusions. Firstly, the use of the curves provides indeed an
enhancement to the resulting model. Secondly, compared to other methods eval-
uated using the same data sets, the batch sparse surface reconstruction algorithm
is, from the best of our knowledge, the fastest CPU based reconstruction method,
and the resulting precision is not so bad compared to majority of the dense stereo
algorithms (accuracy of 0.34 mm. for 25 min. of computation for the best method
at this time, the majority have an accuracy of 0.40 — 0.60 mm.). This makes this
method a good candidate for initialization of some dense stereo methods.

VIL.5.2 Fountain-P11 and Herzjesu-P8 data sets

Fountain-Pr1 and Herzjesu-P8§ are another standard set of multi-view stereo data sets
provided with their respective ground truths (courtesy of {Strechao8}). They con-
tain, respectively, 11 and 8 high-resolution images. In this evaluation, we use the
camera positions provided with the data set to reconstruct the 3D points.

To evaluate the error distribution against the ground truth we subdivide our
output mesh with a very thin step and, for each points of the output mesh, we
calculate the distance to the nearest point of the ground truth mesh. (see subsec-
tion V.r.2).

The results for the fountain-prr data set can be seen on the figure VII.6. There is
no noteworthy difference between the surface computed with the 3D points alone
and the surface computed using the mix of points and curves. The distribution of
errors obtained by comparing the output with the ground truth can be seen on the
figure VII.5a. The surface computed with the points alone is slightly better than
the surface produced by points and curves, but the difference between the two is
small (about 2 — 5 mm.).

The results for the berzjesu-p8 can be seen on the figure VII.7. Once again,
there is almost no visual difference between the two surfaces. The results of the
comparison with the ground truth are visible on the figure VII.sb. This time the
difference between the surface with and without curves is even smaller.

In conclusion, the &atch sparse surface reconstruction method provides honor-
able results for these data sets, so it can be a good choice when the speed of com-
putation is at least as important as precision. On the other hand, adding curves
provides no significant improvement for these examples.

VI.5.3 Hall and Aubiére-2 data sets

Hall and aubiére-2 data sets are two large data sets taken in and in the proximity
of Institut Pascal with a PointGrey Ladybug 2 omnidirectional camera. For memory,
Ladybug is a rigid multi-camera system consisting of six synchronized cameras each
of which takes 1024x768 images at 15 frames/second. Unfortunately, ground truth
is not available for these acquisitions, so we provide only qualitative results. This
allows us to evaluate the influence of the curve related additional steps on the final
surface quality in a realistic setting.
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(a) Surface reconstructed using the 3D points only.

(b) Surface reconstrcuted using the 3D points and curves.

Figure VII.6: Fountain-P11 data set reconstruction results.
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(a) Surface reconstructed using the 3D points only.

(b) Surface reconstrcuted using the 3D points and curves.

Figure VII.7: Herzjesu-P8 dataset reconstruction results.
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Hall sequence is roughly 20 m. long and contains 1211 frames. It was taken in
one of the rooms of the Institut Pascal building and is a typical highly cluttered
robotic laboratory hall. There are 117 selected key frames; the total processing time
is about 19 min. including curves (the main computation part is due to SfM). Re-
construction of the representative scene can be seen on the figure VII.8: the sub-
figure VII.8a contains a real image of the scene for reference. We see that mixing
points and curves provides a better result than the usage of the points alone.

Aubiere-2 sequence is around 700 m. long and contains 3140 frames. It is a
typical urban environment similar to the aubiére sequence of the subsection Vi,
but is shorter. There are 655 selected key frames and the total processing time is
about 56 min. (once again, the main computation part is due to SfM). The results
are in the figure VII.g9. Contrary to the previous sequence, the curves don't provide
any significant improvement over the points alone.

VI.6 Conclusion

This chapter have reviewed the results of our attempt to integrate curves to the
surface reconstruction pipeline. The contributions that arise from this PhD work
and published in {Litvinovr2} are:

1. The evaluation of the 2-manifold surface sparse reconstruction method de-
scribed in {Lhuillier13} against ground truth in some common multi-view stereo
data sets;

2. The evaluation of the enhancement provided by mixing the input point cloud
of this algorithm with reconstructed curves.

According to the comparison of the output surface with the ground truth, the
precision achieved by the sparse surface reconstruction method cannot yet com-
pete with the dense stereo methods, but we think that it is sufficient to be used
as initialization of dense stereo. Furthermore, given the achieved speed, the algo-
rithm is indeed a good choice not only for this purpose but also for the applications
where the speed is at least as important as the precision.

On the other hand, mixing the curves with the points of interest provides some
significant enhancement if input images are slightly textured as in Temple and hall.
But it is of little interest in the textured case, as for Fountain-Prr and Herzjesu-PS.
So there are currently no general conclusion and the real benefits must be evaluated
for each sequence individually. Nevertheless, it will be interesting to perform more
investigations on this topic as better results can certainly be achieved.

All the experiments of this chapter were performed using the batch algorithm.
There are two reasons: the curves reconstruction is easier to implement in this
context and the computation are faster.

We haven't performed the incremental experiments because the impact of the
curves on the final surface quality wasn't deemed enough.
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(¢) Scene reconstructed using points and curves.

Figure VIL.8: Hall data set reconstruction results.
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(©) Resulting mesh using points and curves.

Figure VII.9: Aubiére-z data set reconstruction results.



cHAaPTER VI

Conclusion

Now we summarize the results obtained during the work on this dissertation, dis-
cuss its potential applications and overview the possibilities of further research.

VIIL1 Summary

The objective of this work was to develop a surface reconstruction method having
three key characteristics: being sparse, being incremental and producing a 2-manifold
output surface. We have begun by reviewing the other works about surface recon-
struction in chapter II. We have seen that the number of the sparse methods is
relatively low compared to the number of dense ones. In the same manner, there
are relatively few zncremental methods. We have found only one other method hav-
ing the same characteristics { Yurz}, but it has a severe limitation: if the camera
trajectory crosses itself, the entire loop must be reconstructed. So, we have con-
cluded that a sparse, incremental and 2-manifold enforcing method would be a useful
addition to the state of the art.

Therefore, we have developed such a method inspired by a batch method from
[Lhuillier13l. The overall processing has two steps: cloud of 3D points computa-
tion from the input video sequence and surface computation from the point cloud.
The Structure-from-Motion algorithm used to compute the cloud of points and the
associated visibility information is described in chapter I11. Moreover, we have also
described optional additional steps useful to enhance the output cloud. Then, in
the first section of chapter IV, we have reviewed in details the base-line éatch sur-
face reconstruction algorithm. Finally, our own zncremental surface reconstruction
algorithm is described in the section I'V.2.

Once the algorithm was detailed, we have performed a study of its complexity
(section IV.3). We have concluded that under the tight assumptions, the complex-
ity of all the steps of a single iteration (except the Steiner grid update) are bounded.
This is interesting since the complexity of the algorithm is independent of the cam-
era trajectory properties (compared to { Yur2)). We have also run experiments with
the algorithm using real and synthetic data sets. We have seen, that the ncremental
version output surface quality is very similar to the quality of the base-line batch
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algorithm. Unfortunately, the computation speed is, albeit being bounded, too
long for reconstruction to be performed on-line. This limits the usefulness of the
algorithm. We have also seen that optional additional steps of the Structure-from-
Motion can significantly improve the surface quality, but the processing becomes
even slower.

Hence, we have made a tentative to solve this problem. When looking at the
execution times of each step of a single iteration, it was seen that the slowest part
of the algorithm is the artifacts removal post-processing step. Therefore, the most
obvious way to boost the algorithm computation speed is to improve the speed of
the artifacts removal. This is the goal of chapter VI. Here we propose two other al-
gorithms to solve this problem, they are detailed and their complexities are studied.
Their tight complexity is bounded. Then, they are experimented on a real video se-
quence. The new methods are much faster than the previous algorithm, but taken
separately, they provide lower quality. When combined they are still faster and the
output quality is almost the same as previously measured. So, we have concluded
that the combination of the two new methods is a good drop-in replacement of the
previous algorithm even for the bazch base-line algorithm {Lhuillier13}.

Finally, we add curves in addition to the interest points to our surface recon-
struction pipeline in the hope that this improve the output surface quality. This
work is detailed in chapter VII. We have reviewed the previous works on the sur-
face reconstruction methods that make use of curves and we developed our own
steps to add them to the reconstruction process. Then we have performed the ex-
perimentations. First, we have tested our algorithm on the classical multi-view data
sets. We have shown that the curves can improve the output surface quality if the
input surface has low texture. The same experiments were performed on interior
and exterior data sets and the conclusion was the same.

VIIl.2 Results and potential applications

The work on this thesis was published in three international {Litvinoviz, Litvinovis,
Litvinovi4b} and one french {Litvinovi4al publications. The two major contribu-
tions are an incremental sparse z-manifold surface reconstruction method and new
visual artifacts/handle removal algorithms useful in the zncremental and batch cases.
The secondary contributions are adaptation of the batch surface reconstruction
method from {Lhuillier13} to the rigid multi-camera system, study of the influence
of the input resolution on the output surface quality, additional acute tetrahedra
removal step, evaluation of the datch method on the standard data sets, and study
of the curves integration on the output surface quality.

An obvious practical application for an ncremental method would be an on-line
surface reconstruction, but unfortunately, even after coding optimization, the com-
putation time of a single iteration is too large for real time processing. Nevertheless,
our method has an interesting application due to the bounded nature of its itera-
tions.Since all the processing is confined to the working zone (except the Steiner grid
update), only the data structures containing these tetrahedra must be in memory
at every given time. This means that not only the time, but the space complexity
is also bounded.

In practice, if the algorithm is correctly implemented, its memory consumption
is constant, so it is naturally well suited for the reconstruction of the very large scale
scenes. Moreover, the memory consumption is further reduced by the fact that our
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method is sparse and so its data structures are more compact.

VIIl.3 Future works

The work performed during the preparation of this dissertation have lead to some
interesting results, but of course, there are still a lot of open topics waiting to be
explored. Now, we present a non exhaustive list of interesting directions for further
works.

VIIL.3.1 Structure-from-Motion

There is a problem inherent to the bundle adjustment based Structure-from-Motion al-
gorithms. The numerical errors tend to accumulate over time, and so the computed
camera positions drifts slightly from the real ones. In practice, this means that when
the camera passes two or more times at the same spot, the points won't be recon-
structed at the same place and so the output surface quality will be degraded and
even lead to a totally erroneous reconstruction.

A solution to this problem is to detect when the camera passes by an already
reconstructed place, perform an image matching between the images of the same
point of the scene and perform a global bundle adjustment with the additional con-
straints provided by this matching. This process is called loop detection and clo-
sure. So it would be interesting to solve this problem in an /ncremental/ manner.

It would also be interesting to experiment with the other interest points detec-
tion and matching algorithms for our Structure-from-Motion implementation. Cur-
rently, we use Harris [Harris88} points detector and ZNCC based matching. But,
other detectors (such as SIFT {Loweo4l, SURF {Bayo6} or EAST {Rosteno6]) and
matching algorithms could be used and eventually enhance the output surface qual-
ity or the reconstruction speed.

VIII.3.2 Surface reconstruction

There are also several ways to improve the surface reconstruction algorithm. The
first direction would be the theoretical foundations of the method. In fact, cur
rently we are unable to prove that the region growing algorithm (subsection I'V.1.5)
is able to reach every possible surface in the 3D Delaunay triangulation. This is
also true in the simple case when the surface to reconstruct is homeomorphic to
a sphere. There is the same problem for the shrinking step (subsection IV.2.3): we
are unable to prove that any surface can correctly be shrunk.

Another direction for the further works would be the algorithm computational
time. The computation time is currently too long for on-line applications. We
could, for example, try to replace the ray tracing based binary labeling step by an
energy based algorithm such as {Hoppe13} that could be faster.

Finally, the output surface quality of the method could also be improved. For
example, we can use a more sophisticated denoising method (Laplacian-Beltrami
[Botschiol, for instance). We can also try to make use of the uncertainty infor-
mation that can be provided by the Structure-from-Motion in our reconstruction
pipeline.
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VIII.3.3 Curves

Finally, there are still a lot of work to do concerning the integration of curves in the
surface reconstruction pipeline. Our initial experimentation have confirmed that
the curves can significantly improve the reconstructed surface quality in some par-
ticular cases, namely when the observed scene is slightly textured. However, results
of papers such as [ Wuosl suggests that much better results could be achieved.

For this, the curves matching algorithm performance should be improved or a
better a way to reconstruct the curves without matching should be found. For ex-
ample, we could try to develop a more large scale scenes friendly version of [ Teneyr2}:
i.e. a method that wouldn't require a regular subdivision of space.

Finally, a better way to sub-sample the curves into a set of points when inserting
them into the Delaunay triangulation can be found. Currently, one point over s in
a curve is inserted where s is a user defined threshold. It would be interesting to
find a way to dynamically adjust s so that we have a guarantee that the edge exists
in the Delaunay.
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Notes on the parallel processing

In the recent years, a general tendency in the computer hardware was to multiply
the number of CPU cores, i.e. the number of the processing units available to the
user program. So today, for an algorithm to use the modern hardware capacity in
an optimal manner, it is important to be easily adaptable to the parallel processing,
i.e. to execute several parts of the algorithm simultaneously.

In the present appendix we provide a brief overview of the parallel processing
opportunities available in our incremental surface reconstruction algorithm. They
are located in the free-space/matter binary labeling part (see section A.1), in the zopol-
ogy extension (see section A.2) and in the Structure-from-Motion (see section A.3). Fi-
nally; a small example of how to implement a parallel code in practice is given in
section A.4. All the experiments found in this dissertation were performed on a
six cores computer taking advantage of the parallel processing techniques presented
here.

A1 Free-space/matter binary labeling

The first opportunity to take advantage of the multiple CPU cores during the ex-
ecution of our surface reconstruction algorithm is located in the free-space/matter
binary labeling part. For memory, the free-space/matter binary labeling step (see
subsection I'V.1.2) consists in updating the number of intersections for each tetra-
hedron of the Delaunay triangulation. For this, we select the rays that eventually
intersect new tetrahedra and we follow them. Each time a new tetrahedron is in-
tersected, its number of intersections value is incremented.

It is easy to see that following a ray is totally independent from following an-
other ray, this process didn't modify any data structure during it execution. So
several rays can be followed in parallel without any risk. Moreover, checking that a
tetrahedron is new is also without side effects and so can be performed in parallel
without any problems.

The only potentially dangerous operation during this process is the update of
the number of intersections. Fortunately, this is not a problem in practice because
most of the multi-processing frameworks out there (such as OpenMP {Ope} that
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we used) allows to perform an increment of an integer as an afomic operation. The
operation is said to be atomic if it is guaranteed that the current process won't be
interrupted during it execution.

In conclusion, the free-space/matter binary labeling is an excellent opportunity
for parallel processing because it is easy to achieve in practice and following of
each ray is a perfectly independent operation.

A.2 Topology extension

There are other interesting opportunities for parallelization: the topology extension
(which is used in both the outside region growing and shrinking steps).

In fact, one by one region growing is a bad choice for parallel processing for two
reasons. First, adding a new tetrahedron operation depends heavily on the results
of the previous one. Adding a new tetrahedron to outside enables eventually the
addition of another. Second reason is that this sub-step is fast compared to topology
extension and so, even if we parallelize it, the computation time gain will be small.

On the other hand, zopology extension presents an interesting opportunity. For
memory, during the zopology extension (see subsection IV.1.5) we check each vertex
located on the boundary of the outside region. For each vertex, we try to add the free-
space inside tetrahedra incident to it to the outside. Then we check if the boundary
00 of the outside is still z-manifold. If it is true, we have succeeded and the algorithm
stops, otherwise we check another vertex.

The majority of the computation time of this step is the unsuccessful trials of
different vertices. So we save a lot of time if we perform several trials in parallel.
Unfortunately, this is not trivial because these operations are interdependent. In
fact, when we add a pack of tetrahedra to the outside, it modifies our capacity to
add another pack without breaking the manifold property.

Fortunately, there is a way to get rid of this problem. In fact, the only interde-
pendency is during a trial of a particular vertex. So the problem can be solved by
using a particular version of the manifold test. Instead of adding the tetrahedra to
the outside region (and so modify the global data structures) and then performing a
test, we can perform a test without modifying the triangulation.

To achieve this goal, we pass to the test routine the list of tetrahedra we want
to add. During its internal processing, the routine will consider these tetrahedra as
outside even if they are labeled /nside in the triangulation. This way, each check could
be performed independently. Once a good vertex was found, the process stops and
only the status of tetrahedra around this vertex is changed to outside.

In conclusion, the topology extension provides a good opportunity for taking ad-
vantage of the several CPU cores provided by the modern processors because it
is relatively easy to implement. The only problem is that the algorithm becomes
non deterministic: there are in general multiple packs of tetrahedra that can be
added to outside without breaking its manifold property. However, when multiple
trials are performed in parallel, the pack which is actually chosen becomes random.
During one particular execution, the algorithm will choose one particular pack of
tetrahedra at a given time. When the algorithm is executed a second time, the pack
chosen at this given time is different.
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A.3 Structure-from-Motion

Another set of opportunities to take advantage of the multiple CPU cores during
the execution of our surface reconstruction algorithm are located in the Structure-
from-Motion part. Particularly, we can cite the interest points matching and the
bundle adjustment.

During the interest points matching step (see subsection III.2.1), for each point
q; of the current image I; we find the corresponding point q;_ of the previous im-
age I;_1 if it exists. To achieve this goal, we compute the correlation value (ZNCC)
between q; and the list of potential candidates. Then, the candidate with the high-
est correlation value is chosen. As can easily be seen, the search of match for a
given point has no side effects. So the matching of several points can be performed
in parallel.

The same reasoning holds for the robust new pose initial estimation (see subsec-
tion I11.2.6). The pose is estimated many times using different selection of points,
then the pose having the best score is kept. Each estimation is completely inde-
pendent and have no side effects. So we can safely perform many estimation in
parallel.

Finally, we parallelize the estimation of the Hessian matrix during the bundle
adjustment step (see subsection I11.2.7). Computations of the cells of this matrix
are independent and so we can perform many of them in parallel.

A.4 Parallel processing in practice

Multiple CPU possessing machines have appeared a long time ago. But, writing a
parallel application was a difficult task. Fortunately, nowadays, there are a lot of
frameworks facilitating it as much as possible.

During the work on this dissertation, the algorithms were written in C++. To
actually implement the parallel processing considerations of this appendix, we have
used the OpenMP {Opel framework. This is a language extension and a library im-
plemented today by all the major compilers. It has the advantage to be very easy
to use in simple cases.

We illustrate it on the matrix multiplication example. Consider two matrices:
Ay, and By, ,,. We want to compute a matrix Cyy, ,,, such as C = A x B. For
memory, each cell C(7,j) with i € [1;m] and j € [1;m] of the resulting matrix is
computed using the following equation:

C(i,j) = i:A(i, k) x B(k,j) (A.D

k=1
In plain C++, a function computing this matrix will look like this:

void matrix_multiply(int m, int n, float* A, float* B, float* C) {
for(int j = 0; j < m; ++j)
for(int i = 0; i < m; ++i) {
Cli + mxj] = 0;
for(int k = 0; k < n; ++k)
Cli + mxj] += A[i + m*k]*B[k + n*j];
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The main loop of this function is composed of two for statements iterating
over the lines and columns of the output matrix. The body of the loop computes
the value of a given cell. It is easy to see that this computation is independent of
the results of other cells. So each iteration of the main loop can be performed in
parallel.

Thanks to OpenMP, we only need to add a single line of code to say it to the
compiler:

void matrix_multiply(int m, int n, float* A, float* B, float* C) {
#pragma omp parallel for
for(int j = 0; j < m; ++j)
for(int i = 0; i < m; ++i) {
Cli + mxj] = 0;
for(int k = 0; k < n; ++k)
Cli + mxj] += A[i + mxk]*B[k + nxj];

The pragma statement tells to the compiler that the iterations of the following
for statement can be performed in parallel. So when the code is executed, the pro-
gram will use all the available CPU cores to lunch in parallel as much iteration as
possible.

This code must be compiled with -fopenmp option if GCC compiler is used. For
other compilers, refer yourself to their documentation.
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Details of the 2-manifold tests

In the incremental surface reconstruction algorithm (the chapter IV) we need a
way to check if the addition of a single tetrahedron or a bunch of tetrahedra won't
modify the z-manifold property of the boundary 0O of the outside region. For this,
we use several implementations of the manifold tests.

At first glance, only one implementation of the manifold test is enough: the
general one that can check the addition or removal of the arbitrary number of
tetrahedra. But in practice, we find that the manifold tests consume the majority
of the computation time of the region growing process. So we implemented a faster
test that is only applicable when a single tetrahedron is added to or removed from
the outside region.

In this appendix, we review the implementation details and the complexity of
the 2-manifold tests. We begin by the slow general test (section B.1), then the fast
single tetrahedron addition and subtraction tests (section B.2).

B.1 General manifold test

B.1.1 General test implementation

In theory, avertexv € 9O is regular (i.e. the surface is 2-manifold around this vertex)
if and only if the triangles in JO including v can be ordered as ty, - - - ,t;_1 such as
ti N t(i+1) mod k is an edge, and such an edge is included in exactly two triangles t;
and t; {Goodmanog4l.

Unfortunately, a direct implementation of such a test would be slow. Instead,
we prefer to use the algorithm proposed in {Lhuillierr3}. The idea is to use the
adjacency graph I'r of the Delaunay triangulation T'. For a vertex v of 0O, we note
~ C I'p the graph of tetrahedra having v as vertex. In {Lhuillier13l, it was proven
that the vertex v is regular if and only if all the znside tetrahedra of +y are connected
and all the outside tetrahedra of ~y, are connected.

So, in practice, to check that a vertex v is regular, it is sufficient to remove the
edges between énside and outside tetrahedra in 7, and check that it contains exactly
2 connected components. Because CGAL already encodes the Delaunay triangula-

133



134 B. Details of the 2-manifold tests

tion as a graph, the implementation of this algorithm is fast and straightforward.

B.1.2 Complexity analysis

Checking a single non infinite vertex v is traversing the graph 1y. So the complexity
of checking a single vertex is O(d) under the loose assumptions. Under the tight
assumptions, d = O(1) thanks to assumption T6, so the complexity of testing a
single non infinite vertex is O(1).

We use a general test to check the manifold property when adding or substract-
ing a pack of tetrahedra. Let n be the number of tetrahedra in this pack. Each
tetrahedron have exactly 4 vertices, so the number of vertices in the pack is O(n).
Thus the complexity of a general manifold test is O(nd) under the loose and O(n)
under the tight assumptions.

B.2 Addition/subtraction tests for one tetrahedron

If the boundary 0O of the outside region is already z-manifold and we want to add a
single tetrahedron to it, we can use a faster implementation of the 2-manifold test.
This fast test is based on the z-manifold test proposed in [Boissonnat84}. The basic
idea is to check that the tetrahedron can be added using a condition based on the
neighborhood configuration of the tetrahedron.

‘When we want to add a tetrahedron, we use the following test:

Property B.1 (Addition test)

Assume that 0O is 2-manifold. Let A be a finite tetrabedron in T \ O and f be the
number of A-triangles included in 0O. Then, the boundary 0(O U {A}) of O U {A}
is 2-manifold if and only if one of the following conditions is meet (we note Oy, the set of
outside tetrabedra having v as vertex):

o if [ = 0and every A-vertex v meets Oy = (;
* if [ = 1 and the A-vertex v which is not in 0O meets Oy = (;

* if [ = 2 andthe A-edge which is not in OO has end-vertices v and w such that
Oy N Oy = 0;

s if f=30rd

This addition test is efficient because we only need to access the list of the out-
sidelinside status of the tetrahedra incident to each of the vertices of the tetrahedron
to test. This avoids us the incidence graph traversal. Under the loose assumptions,
the complexity of this test is O(1) if f = 3 or 4 and O(d) otherwise. So the com-
plexity of the test is O(d). It is O(1) under the tight assumptions thanks to the
assumption T6.

When we want to subtract a tetrahedron, we can use a similar test:
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Property B.2 (Subtraction test)

Assume that OO is 2-manifold. Let A be a finite tetrabedron in O and f be the number
of A-triangles included in 0O. Then, the boundary 0(O \ {A}) of O \ {A} is 2-
manifold 7 and only if one of the following conditions is meet (we note Oy, the set of
inside tetrabedra having v as vertex):

* if f = 0and every A-vertex v meets Oy = 0;
* if f = 1andthe A-vertex v which is not in 0O meets Oy = 0;

* if [ = 2 and the A-edge which is not in 0O has end-vertices v and w such that
Oy N Oy = 0

s if f=3o0r4

This test has the same complexity as the addition test, namely O(d) and O(1)
under the loose and tight assumptions.
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apPENDIX C

Proof of the maximum vertex degree

In this brief appendix, we provide a proof of the maximum vertex degree d (the
maximum number of tetrahedra incident to a single non infinite vertex) under the
loose assumptions. We call n the number of vertices in the 3D Delaunay trian-
gulation. Trivially, d = O(n?) because the number of tetrahedra in the Delaunay
triangulation is O(n?). Here, we show that d = O(n).

Let v be a vertex of the 3D Delaunay triangulation 7', s0 V # V.

Casex: If v ¢ 9T (figure C.12), vis an internal vertex of T" and the set of tetrahe-
dravt; (where t; is a triangle) are such that the set of t; forms a 2-sphere [Boissonnatg8}.

For a manifold surface (and a z-sphere is manifold), we call n,, the number of ver-
tices, n. the number of edges, n; the number of triangles and g it genus. We use
the Euler equation {Botschiol:

Ny — Ne + 1 = 2(1 — g) (C.)

In our case g = 0. n; = d because each triangle of the 2-sphere corresponds
to a single tetrahedron adjacent to v. Moreover, because each edge is adjacent to

@v¢or b)veoT

Figure C.1: Illustration of why the set of tetrahedra having v as vertex forms a 2-bal/
(2D case). Thick black line is the border of the triangulation.
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exactly two triangles 2n. = 3n;. So the equation become:

Ny — =Nt +ng = 2

2
ng = 2n,—4 (C.2)

As was said before n; = d and n,, = O(n). Thus d = O(n).

Case 2: If v € 9T (figure C.1b), the set of t; form a 2-ball whose boundary
edges e1, ..., e, meets ve; € OT. After the corollary 11.2.3 of {Boissonnatg8l, the
number of triangles in planar triangulation (of a 2-bal/, for instance) is linear to the
number of vertices. Thus, d = O(n).



ANNEXE D

Résumé étendu en francais

D.1 Introduction

Le calcul de la surface d'une scéne a partir d'un ensemble d'images est un probleme
classique en vision par ordinateur. La majorité des algorithmes existants peuvent
étre décomposés en deux étapes. Premieérement, les poses de la caméra associées
aux prises de vue sont estimées par un algorithme dit de Structure-from-Motion (ou
SfM). Dans un deuxiéme temps, la profondeur de chaque pixel de chaque image est
calculée, cela définit un nuage de points 3D dense, et la surface finale est estimée
a partir de ce nuage de points. Cependant, le SfM fournit déja un nuage de points
épars calculé simultanément avec les poses, qu'il serait intéressant d'utiliser direc-
tement dans I'étape d'estimation de surface. Ceci est un des objectifs principaux de
ce travail de these.

On a développé un algorithme de reconstruction des surfaces qui combine trois
caractéristiques principales : il est épars, incrémental, et produit une surface ayant la
propriété de z-variété. Par épars, on comprend que les calculs 3D s'effectuent uni-
quement sur une minorité de pixels bien choisis dans les images (Ia ou il y a le plus
d'information), plutdt que d'appliquer uniformément le méme traitement a I'en-
semble des pixels. Ceci permet a la fois de réduire les temps de calculs, la place
mémoire et de stockage de la surface, mais aussi d'obtenir des modeles 3D com-
pacts (car simplifiés) pour des scénes complexes. La méthode est dite incrémentale
parce qu'elle traite les images au fur et 2 mesure de leurs arrivée. Plus précisément,
la surface de la scéne est complétée a chaque nouvelle image lue dans la vidéo. Fina-
lement, la surface obtenue a tout instant est une z-var#été, c'est a dire que tout point
de la surface a un voisinage dans la surface topologiquement équivalent a un disque.
Cette propriété permet de nombreux traitements et utilisations ultérieures.

D.2 Contributions

Dans ce travail de thése, il y a deux contributions majeures et un certain nombre de
contributions secondaires. Elles ont été présentées dans trois conférences interna-
tionales et une conférence nationale. Les contributions majeures sont :
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* Une méthode incrémentale et éparse de reconstruction de surfaces avec la ga-
rantie que la surface produite est une z-variété. Contrairement au travail pré-
cédent{Yurz}, le temps d'une itération (pour chaque nouvelle image) est borné
en pratique, méme si la trajectoire comprend une ou plusieurs boucles. Ce
travail a été publié dans {Litvinovi3} et {Litvinovi4al.

* Un nouvel algorithme de suppression d'artefacts visuels. Ses performances
sont similaires 2 l'existant {Lhuillierr3}, mais il est beaucoup plus rapide et
plus facile a utiliser dans notre contexte incrémental. Il a été publié dans
[Litvinovigbl.

Les contributions secondaires sont :

* Lalgorithme de reconstruction de surfaces épars de [Lhuillier13} a été adapté
pour l'utilisation d'un systéme rigide de plusieurs caméras au lieu d'une ca-
méra catadioptrique.

* Lalgorithme de sélection d'images c/és de [Mouragnonog} a été amélioré grace
a l'introduction d'un critére supplémentaire.

* Linfluence de la résolution des images d'entrée a été étudiée.

* Une étape supplémentaire (suppression des tétraédres aigus) améliorant la
qualité du résultat final a été mise au point.

* Les performances de la méthode non incrémentale {Lhuillier13} ont été éva-
luées en utilisant les jeux de données standards {Seitzo6, Strechao8]. Ceci
permet la comparaison avec les autres méthodes. Les résultats ont été pu-
bliés dans {Litvinoviz}.

* Lintérét d'introduire des courbes (en supplément des points d'intérét) dans
le processus de reconstruction a été étudié. Les résultats ont été publiés dans
[Litvinovizl.

* Certains des calculs sont effectués en paralléle sur plusieurs processeurs (dis-
ponibles sur les PC standards) ce qui accélére notre méthode.

D.3 Ftat de lart

La reconstruction de surfaces a partir d'images est un vaste sujet qui a donné lieu
a un tres grand nombre de publications. Globalement, les méthodes existantes
peuvent étre séparées en deux grandes catégories : les méthodes denses et les mé-
thodes éparses. Les méthodes denses utilisent 1'ensemble des pixels des images d'en-
trée, alors que les méthodes éparses essayent de trouver des parties << intéressantes >>.
Chacune de ces deux catégories peut étre subdivisée en méthodes globales et incré-
mentales. Les méthodes globales ont besoin de I'ensemble de la séquence d'image
pour produire une surface, tandis que les méthodes incrémentales mettent a jour une
surface au fur et 4 mesure que les images sont lues dans la vidéo.

Les méthodes denses sont les plus nombreuses, particulierement globales. On peut
les subdiviser en méthodes travaillant avec les images directement et les méthodes
interpolant/approximant un nuage de points denses. Parmi les méthodes travaillant
directement avec les images, on peut citer, par exemple, les méthodes basées sur les
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voxels {Slabaugho4, Treuilleo4} ou basées sur les surfaces de niveau {Jinos, Ponso7}
(ou Level Sets). Parmi les méthodes travaillant a partir d'un nuage des points, on
trouve celles basées sur la triangulation de Delaunay [Boissonnat84, Amentaor,
Labatutog} et celles basées sur les fonctions implicites {Alliezo7} ou indicatrices
[Kazhdano6l. Les méthodes denses incrémentales sont assez peu nombreuses, on peut
citer {Pollefeyso8, Newcomberol.

Le nombre de méthodes éparses est bien inférieur au nombre de méthodes denses.
Les méthodes globales entrant dans cette catégorie peuvent étre séparées en mé-
thodes utilisant la triangulation de Delaunay 2D {Morrisoo, Salmanog} ou 3D {Panoo,
Lhuillieri3}. Les méthodes éparses incrémentales sont peu nombreuses : {Hiltonos,
Loviro, Yurz, Hoppei3l. Parmi ces méthodes, uniquement {Yurz} produit une sur-
face z-variété.

Létude de I'état de I'art sur le sujet nous a donc amené a la conclusion qu'il existe
une seule méthode [ Yur2} réunissant toutes les caractéristiques de la méthode qu'on
a développé durant cette these. Cependant, cette méthode posséde une limitation
importante : lorsque la trajectoire de la caméra filmant la scéne passe par un en-
droit déja vu, la surface de la boucle ainsi formée doit étre complétement recalcu-
lée. Notre méthode n'a pas ce genre de limitations. Elle est donc une contribution
intéressante a I'état de I'art.

D.4 Calcul du nuage de points 3D

Notre méthode de reconstruction de surfaces a partir d'une vidéo d'images peut
étre séparée en deux parties : le calcul du nuage de points 3D a partir des images et
le calcul de la surface a partir du nuage des points. Pour calculer le nuage des points
on utilise un algorithme de Structure-from-Motion [Mouragnonogl.

Lalgorithme est zncrémental : il met a jour le nuage de points a chaque fois qu'une
nouvelle image est acquise par la caméra. Une nouvelle image est traitée en utilisant
les étapes suivantes :

* Les points d'intérét sont détectés dans la nouvelle image.

* Ces points sont mis en correspondance avec les points d'intérét de I'image
précédente.

* Les résultats de la mise en correspondance sont utilisés pour mettre a jour
l'ensemble des pistes. Une piste est |'ensemble des points 2D (ou observations)
dans les images successives correspondant 4 un méme point 3D de I'espace.

* On décide si l'image précédente est une image c/é. Uniquement les observa-
tions des images c/és sont conservées et traitées par les étapes suivantes. Ceci
permet de diminuer le temps de traitement et de stabiliser numériquement
les calculs.

* Sil'image précédente est c/¢, on effectue deux étapes supplémentaires :

— On calcule la pose approximative de la caméra correspondant a la nou-
velle image ¢/ et les positions approximatives de nouveaux points 3D
que I'on vient de détecter et de mettre en correspondance.

— On raffine les poses et les points 3D les plus récents en appliquant un
algorithme d'optimisation (appelé ajustement de faisceaux local).
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Cet algorithme n'est pas le seul algorithme de Structure-from-Motion existant,
mais I'avantage de celui-ci est qu'il a été mis au point et est trés largement utilisé a
['Institut Pascal. On connait donc bien ses avantages et limitations.

Par défaut, on calcule et utilise uniquement les points visibles dans les images
clés. En option, on peut ajouter des étapes supplémentaires pour calculer les poses
des images intermédiaires et enrichir le nuage de points (qui reste épars). Mais cela
aun prix : le temps de calcul augmente.

D.5 Reconstruction de la surface

Lalgorithme de Structure-from-Motion décrit dans la section précédente nous fourni
un certain nombre d'informations : la pose de la caméra correspondant a chaque
image c/é, un ensemble de points 3D et un ensemble de rayons. Un rayon est un
segment reliant un point 3D a une position de la caméra qui I'a observé. On utilise
toutes ces informations pour estimer une surface correspondant a la scéne observée.
A chaque nouvelle image ¢/, le SfM calcule la pose de la caméra correspondante,
un ensemble de nouveaux points 3D et un ensemble de nouveaux rayons. Notre but
est de mettre a jour la surface a I'aide de ces informations. On procede de la fagon
présentée sur la Fig. D.1. On détaille maintenant chaque étape de ce processus.

D.5.1 Etat initial

Vu que notre méthode est incrémentale, son objectif principal est de mettre a jour
la surface compte tenu de nouvelles informations, plutét que de construire une
nouvelle surface ex nibilo. On suppose donc qu'une partie de la surface a déja été
reconstruite a partir un nuage de points 3D correspondant au début de la séquence
d'images.

A l'état initial (Fig. D.1.a), l'espace est subdivisé de facon non uniforme en un en-
semble de tétraedres grice a une triangulation de Delaunay 3D du nuage de points.
Chaque tétraédre est soit vide soit matiére. Si un tétraedre est intersecté par au
moins un rayon, on peut voir a travers, donc il est vide. Autrement, il est matiére.

En premiére approximation, on peut considérer que la frontiére entre les tétra-
eédres vides et matiére est la surface recherchée. Mais la surface ainsi obtenue n'est
pas une 2-variété. On introduit donc une deuxi¢me classification des tétraédres : les
tétraédres extérieurs et intérieurs. Les tétraédres extérieurs sont vides et la frontiere
entre extérieur et intérieur est une 2-variété. Cette frontiére est la surface que I'on
cherche.

D.5.2 Insertion des nouveau points 3D

On doit maintenant insérer un certain nombre de nouveaux points 3D. Quand on
insére ces points dans la triangulation de Delaunay, des tétra¢dres sont détruits et
d'autres sont créés. Les tétraédres nouvellement crées sont initialisés matiére (on
n'a pas encore testé leurs intersections avec des rayons), donc le fait d'insérer des
nouveaux points élimine des tétraedres vides et donc aussi élimine des tétrahedres
extérieurs. Le bord de I'extérieur peut donc perdre sa propriété de z-variété (Fig. D.1.9).

Pour éviter ce cas, on utilise une décroissance contrélée. On calcule une sphere
contenant I'ensemble des tétraedres qui peuvent potentiellement étre détruits par
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>

a. Etat initial

b. Décroissance f. Insertion directe (mauvaise)

c. Insertion

s

d. Mise a jour du vide e. Croissance

Ficure D.1 — Vue d'ensemble de notre algorithme de reconstruction de surface
a partir d'un nuage de points épars (ici en 2D). Les triangles blancs sont vides, les
triangles gris sont zatiére. La ligne noire en gras est la frontiére de la région extérieur.
Les points gris clairs sont les nouveaux points 3D 2 insérer et le cercle gris clair est
la sphére contenant les tétraédres potentiellement modifiés.
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F1Gure D.2 — Vue globale du nuage des points 3D calculée a partir du jeu des don-
nées réelles, ainsi qu'un exemple d'une image produite par la caméra utilisée.

l'insertion des nouveaux points. Ceci est possible parce que la triangulation est De-
launay. Puis, on enléve progressivement les tétraédres contenus dans cette zone de
l'ensemble des extérieurs en s'assurant que la frontiére reste une 2-variété (Fig. D.1.b).

Une fois que ceci est fait, on peut insérer les nouveaux points dans la triangula-
tion (Fig. D.1.0), ceci ne modifie pas le bord de l'extérieur.

D.5.3 Mise a jour de la surface

Quand les nouveaux points ont été insérés, on met a jour la classification vide/matiére
des tétraédres. Les nouveaux points 3D sont associés a de nouveaux rayons. On met
a vide tous les tétraédres intersectés par ces rayons. On calcule aussi les intersec-
tions entre les nouveaux tétraédres et les anciens rayons et on met a jour cette
classification en conséquence (Fig. D.1.d).

Ensuite, on met a jour la classification extérieur/intérieur. Pour ceci, on essaye
d'ajouter un maximum des tétraédres vides dans l'ensemble des tétrahedres exzé-
rieurs, tout en s'assurant que le bord de l'extérieur reste une z-variété. Finalement,
on applique un certain nombre de post-traitements (en particulier, la suppression
d'artefacts visuels) pour raffiner ce bord. On obtient finalement la mise a jour de la
surface (Fig. D.1.e).

D.6 Etude expérimentale

On a effectué un certain nombre d'expériences pour évaluer la performance de
notre méthode. On a utilisé deux jeux de données : un synthétique et un réel. Le
jeu de données synthétique est un ensemble d'images généré a partir d'un modele
3D existant de milieu urbain. On peut donc comparer la surface calculée avec ce
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Ficure D.3 — Comparaison de la distribution des erreurs pour la surface produite
par la méthode globale et la notre, pour le jeu de données synthétique.

modele et obtenir I'erreur numérique. Le jeu de données réel (Fig. D.2) permet
d'évaluer qualitativement la performance de la méthode en conditions réelles.

En particulier, pour le jeu de données synthétique, on a comparé la qualité de
la surface reconstruite par notre méthode avec celle reconstruite par la méthode
globale {Lhuillierr3} (qui nous a servi de base d'inspiration pour notre méthode #n-
crémentale). Comme on peut le constater sur la Fig. D.3, la qualité de la notre est
légerement inférieur a la qualité de la méthode globale, I'écart est néanmoins faible
(la longueur de la trajectoire de la caméra est de 621 m).

On a aussi appliqué notre méthode au jeu des données réelles, en faisant varier la
résolution des images d'entrée (la résolution divisée par 2 ou la résolution originale)
et en activant ou pas les étapes supplémentaires de SfM (voir Sec. D.4). On peut
observer quelques vues de la surface obtenue sur la Fig. D.4.

Globalement, les résultats sont visuellement corrects, surtout quand on utilise
la pleine résolution. Cependant les temps de calcul sont assez long. Pour les images
d'entrée divisées par deux, il est de 20 min sur un PC standard (la longueur de la
trajectoire de la caméra est 2,5 km, il y a 7700 6-uplets d'images 1024 x 768). Si
on utilise les images de taille originale et si on active les étapes supplémentaires, le
temps de calcul total devient 3 h. 10 min.

En conclusion, notre méthode produit des résultats intéressants et permet de
reconstruire de trés grandes scénes. Malheureusement, les temps de calculs ne per-
mettent pas I'utilisation en-ligne de I'algorithme. Ceci limite le champ d'application
de la méthode. On a étudié en détails les temps de traitement de chaque sous-étape
d'une itération, et avons constaté que la majorité du temps est consommé par la
suppression d'artefacts visuels. On a donc cherché a améliorer cette sous-étape.
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F1GUre D.4 — Quelques vues de la surface finale reconstruite avec différentes réso-
lutions d'images en entrée. De haut en bas : images clés de dimensions divisées par
2, images clés de dimension originale, toutes les images (clés ou pas) de dimension
originale, la surface avec sa texture. Les normales sont encodées avec des couleurs.
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Ficure D.5 — Lexemple d'un artefact visuel. De gauche a droite : artefact a eliminer
(les normales de la surface sont encodées par de la couleur), artefact éliminé, texture
(sol en bas, mur 2 droite).

Méthode | Temps | Temps | Nombre
moyen | maximal | d'artefacts
Aucun 0 0 18
A 1,19s. | 4,745 11
B 0,32s. | 1,07s 12
C 0,21s. 0,70 s 14
B&C | 0,46s. | 1,40s 9

TasLE D.1 — Résultat de comparaison entre différentes méthodes de suppression
d'artefacts visuels. A est la méthode précédante, B et C sont les nouvelles.

D.7 Suppression d'artefacts visuels

Un artefact visuel est un ensemble de tétra¢dres vides qui n'ont pas pu étre insérés
dans l'extérieur par 'algorithme. Cela peut conduire a une perturbation tres visible
sur la surface, comme dans la Fig. D.5. On a donc besoin d'un post-traitement pour
I'éliminer.

Une méthode précédante a déja été proposée pour cela dans {Lhuillier13}. Mais
malheureusement elle est trés lente. On a donc mis au point deux autres méthodes
et on les a comparées avec la précédante en utilisant le jeu des données réel.

On a donc exécuté notre algorithme de reconstruction incrémentale de sur-
face avec plusieurs méthodes de suppressions d'artefacts : la précédante, chacune
des deux nouvelles méthodes, ainsi que la combinaison des deux nouvelles. Puis
on a compté manuellement les artefacts visuels restants. Méme si cette méthode
de comparaison peut paraitre subjective, elle nous a paru judicieuse parce que I'on
cherche a éliminer les artefacts visuels facilement remarqués par I'oeil humain. Les
résultats peuvent étre observés sur la table D.1.

On peut constater que les deux nouvelles méthodes prises séparément sont bien
plus rapides que la précédante, mais elles sont moins performantes. Par contre, la
combinaison des deux est meilleure que la méthode précédante et reste néanmoins
trois fois plus rapide. On remplace donc la méthode précédante par cette combi-
naison.
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F1icure D.6 — Surfaces obtenues a partir du jeu de données standard Temple. De
gauche a droite : avec les points d'intérét seulement, avec les points et les courbes,
et la vérité terrain (modele 3D de référence).

D.8 Les courbes

On a aussi voulu savoir si le fait d'utiliser les courbes dans les images, pour compléter
le nuage de points épars, pouvait améliorer la qualité de la surface reconstruite. Les
courbes (ou contours) forment I'ensemble de points dans les images ou le gradient
de luminance est maximal dans le sens du gradient.

On a donc ajouté des étapes supplémentaires dans notre algorithme. Quand une
nouvelle image /¢ est détectée, le SfM calcule la pose de la caméra correspondante.
A ce moment, on détecte les courbes dans la nouvelle image et les mettons en cor-
respondance avec les courbes détectées dans 1'image ¢/ précédente. Une fois que
ceci est fait, on met en correspondance les pixels entre les deux courbes correspon-
dantes. Ceci nous permet de reconstruire I'ensemble des points 3D correspondants
aux courbes. Ces points 3D sont sous-échantillonnés puis insérés dans le nuage de
points 3D utilisé pour reconstruire la surface.

Pour évaluer quantitativement l'apports des courbes a la qualité de la surface,
on a appliqué notre algorithme 4 un certain nombre d'exemples standards dans la
communauté de vision par ordinateur. Par exemple, la Fig. D.6 montre les surfaces
produites par l'algorithme appliqué au jeu de données Temple {Seitzo6} (312 images
de taille 640 x 480). La reconstruction avec les points d'intérét prend 31 s. et la
reconstruction avec les courbes dure 59 s. Lerreur maximale est de 0,59 mm. pour
les points seulement et de 0,53 mm. pour les points et courbes (la boite englobante
de l'objet fait de l'ordre de 10 cm de coté). Lajout des courbes au processus de re-
construction peut donc améliorer la qualité de la surface, méme si on a pu observer
qu'il y a des cas assez fréquents de scénes d'extérieurs texturées pour lesquelles les
courbes n'améliorent pas de fagon significative la qualité de la surface.

D.9 Conclusion

Ce travail de thése présente une méthode de reconstruction de surface qui est a la
fois éparse, incrémentale, et dont le résultat possede la propriété de z-variézé. De plus,
une étape de suppression d'artefacts visuels a été améliorée, et on a évalué l'apport
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des courbes a la qualité de la surface finale. Finalement, un certain nombre d'amé-
liorations plus techniques ont été apportées par rapport aux travaux précédants
ayant eu lieu a l'institut Pascal (détails dans la Sec. D.2). La vitesse d'exécution de
notre méthode ne permet malheureusement pas son utilisation en-ligne. Des tra-
vaux futurs sont possibles a toutes les étapes, notamment le calcul automatique et
incrémental des boucles dans le §fM, l'expérimentation de différent types de dé-
tecteurs de points et courbes, l'accélération du calcul de surface, I'amélioration des
méthodes de mises en correspondance pour les points et les courbes.
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