Markov decision processes (MDPs) are finite-state probabilistic systems with both strategic and random choices, hence well-established to model the interactions between a controller and its randomly responding environment. An MDP can be mathematically viewed as a 1 1 2 -player stochastic game played in rounds when the controller chooses an action, and the environment chooses a successor according to a fixed probability distribution.

There are two incomparable views on the behavior of an MDP, when the strategic choices are fixed. In the traditional view, an MDP is a generator of sequence of states, called the state-outcome; the winning condition of the player is thus expressed as a set of desired sequences of states that are visited during the game, e.g. Borel condition such as reachability. The computational complexity of related decision problems and memory requirement of winning strategies for the state-outcome conditions are well-studied.

Recently, MDPs have been viewed as generators of sequences of probability distributions over states, called the distribution-outcome. We introduce synchronizing conditions defined on distribution-outcomes, which intuitively requires that the probability mass accumulates in some (group of) state(s), possibly in limit. A probability distribution is p-synchronizing if the probability mass is at least p in some state, and a sequence of probability distributions is always, eventually, weakly, or strongly p-synchronizing if respectively all, some, infinitely many, or all but finitely many distributions in the sequence are p-synchronizing. For each synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a sequence that is, for all ϵ > 0, a (1-ϵ)-synchronizing sequence; (iii) limit-sure winning if for all ϵ > 0, there is a strategy that produces a (1-ϵ)-synchronizing sequence. We consider the problem of deciding whether an MDP is winning, for each synchronizing and winning mode: we establish matching upper and lower complexity bounds of the problems, as well as the memory requirement for optimal winning strategies.

As a further contribution, we study synchronization in probabilistic automata (PAs), that are kind of MDPs where controllers are restricted to use only word-strategies; i.e. no ability to observe the history of the system execution, but the number of choices made so far. The synchronizing languages of a PA is then the set of all synchronizing wordstrategies: we establish the computational complexity of the emptiness problems for all synchronizing languages in all winning modes.

We carry over results for synchronizing problems from MDPs and PAs to two-player turn-based games and non-deterministic finite state automata. Along with the main results, we establish new complexity results for alternating finite automata over a one-letter alphabet. In addition, we study different variants of synchronization for timed and weighted automata, as two instances of infinite-state systems. iii 1. A DFA is equipped with only one initial state q 0 . 1. We sometimes refer to synchronizing condition according to sum T by synchronizing condition in T .

1. Formally, η = min q,q ′ ∈Q,a∈A (δ(q, a)(q ′ )).
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Résumé

Les Markov Decision Process (MDP) sont des systèmes finis probabilistes avec à la fois des choix aléatoires et des stratégiques, et sont ainsi reconnus comme de puissants outils pour modéliser les interactions entre un contrôleur et les réponses aléatoires de l'environment. Mathématiquement, un MDP peut être vu comme un jeu stochastique à un joueur et demi où le contrôleur choisit à chaque tour une action et l'environment répond en choisissant un successeur selon une distribution de probabilités fixée.

Il existe deux représentations incomparables du comportement d'un MDP une fois la stratégie fixée. Dans la représentation classique, un MDP est un générateur de séquences d'états, appelées state-outcome ; les conditions gagnantes du joueur sont ainsi exprimées comme des ensembles de séquences désirables d'états qui sont visités pendant le jeu, e.g. les conditions de Borel. La complexité des problèmes de décision et de mémoire requise des stratégies gagnantes pour les conditions dites state-outcome ont été langement étudiées.

Depuis peu, les MDPs sont aussi considérés comme des générateurs de séquences de distributions de probabilités sur les états, appelées distribution-outcome. Nous introduisons des conditions de synchronisation sur les distributions-outcome, qui intuitivement demandent à ce que la masse de probabilité s'accumule dans un (ensemble d') état, potentiellement de façon asymptotique. Une distribution de probabilités est p-synchrone si la masse de probabilité est d'au moins p dans un état ; et la séquence de distributions de probabilités est toujours, éventuellement, faiblement, ou fortement p-synchrone si, respectivement toutes, au moins une, une infinité ou toutes sauf un nombre fini de distributions dans la séquence sont p-synchrones. Pour chaque type de synchronisation, un MDP peut être (i) sûrement gagnant si il existe une stratégie qui génère une séquence 1-synchrone ; (ii) presque-sûrement gagnant si il existe une stratégie qui génère une séquence (1ϵ)synchrone et cela pour tout ϵ > 0 ; (iii) asymptotiquement gagnant si pour tout ϵ > 0, il existe une stratégie produisant une séquence (1ϵ)-synchrone. Nous considérons le problème consistant à décider si un MDP est gagnant, pour chaque type de synchronisation et chaque mode gagnant : nous établissons les bornes supérieures et inférieures de la complexité de ces problèmes et de la mémoire requise pour une stratégie gagnante optimale.

En outre, nous étudions les problèmes de synchronisation pour les automates probabilistes (PAs) qui sont en fait des instances de MDP où les contrôleurs sont restreints à utiliser uniquement des stratégies-mots ; c.à.d. qu'ils ne peuvent pas observer l'historique de l'exécution du système et ne peuvent connaître que le nombre de choix effectués. Les langages synchrones d'un PA sont donc l'ensemble des stratégies-mots synchrones : nous établissons la complexité des problèmes des langages synchrones vides pour chaque mode gagnant. Nous répercutons nos résultats de synchronisation obtenus sur les MDPs et PAs aux jeux à tours à deux joueurs ainsi qu'aux automates finis non-déterministes. Nous établissons de nouveaux résultats de complexité sur les automates finis alternants avec des alphabets à une lettre. Enfin, nous étudions plusieurs variations de synchronisation sur deux instances de systèmes infinis que sont les automates temporisés et pondérés. The last slice of a pizza is usually too tempting for a child to think of sharing with a sibling, this more delicious than all other slices. The parents' solution to avoid possible arguments could be as easy as tossing a coin and letting fate decide. The two siblings learn what is the chance of winning that last slice: one half. If not this exact story, a familiar story is a player in the backgammon game 1 wishing for a double when getting mars; no matter how much faith he has, he knows within himself that there is only one-sixth of a chance for that wish to come true. Why is that belief vividly carved in each of our minds? Simply, we know that there are thirty six possible pairs of faces for two dice, the desired event of a double is a set of only six pairs, and finally we assume that dice are fair, meaning that when rolling a dice, there is an equally likely chance for each face to come up. In other words, if one repeats the experiment of rolling a dice for a sufficiently large number of rounds, each face will statistically show up in one-sixth of the rounds.

Gambling casino chips on a random combination of outcomes in a game is an entertaining activity for players and a business for the house. The simplest popular gaming 1. One of the oldest board game; excavations in Shahr-e Sukhteh ("The Burnt City") in Iran have shown that the game existed there around 3000 BC. The game is played on a board with black and white checkers for two players. In each round, players in turn throw two dice and move the checkers on the board as many cells as the numbers shown on the dice. A player wins after taking out all her checkers from board. When the loser has no checkers out, he is mars and misses two points. A double is when both dice have the same face up. A player who rolls doubles plays the numbers on the faces twice.

a. General rules of transitions ⟨i, j⟩ for j < 3 ⟨i + 1, 0⟩

⟨i + 1, j + 1⟩

p i 1 -p i ⟨i, 3⟩ ⟨i + 1, 0⟩ ⟨i + 1, 1⟩ p i 1 -p i b.
The Markov chain with few missing transitions

⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩ ⟨0, 3⟩ ⟨1, 0⟩ ⟨1, 1⟩ ⟨1, 2⟩ ⟨1, 3⟩ ⟨2, 0⟩ ⟨2, 1⟩ ⟨2, 2⟩ ⟨2, 3⟩ p 0 1 -p 0 p 0 1 -p 0 p 1 1 -p 1 p 1 1 -p 1 • • • • • • • • • • • • p 2 p 2 1 -p 2 • • • • • • • • • • • • Figure 1
.1: A Markov chain that models a simplified Futurity slot machine where a state ⟨i, j⟩ indicates the internal mode with the i-component: the modes 0 and 2 are mapped to tight and mode 1 is mapped to loose. From a state with mode i, the chain moves to a state with mode i+1 (mod 3). The j-component of states indicates the number of consecutive losses. The probability p i is the probability for the player to win in mode i.

machines are slot machines that take coins and randomly bring up on their reels three symbols out of a set of symbols, and if the outcome consists of three identical symbols, the player wins the bet. The slot machines are usually designed to be slightly favorable to the casino while still letting players trust the fairness of the game. The Futurity slot machine designed by the Mills Novelty Company of Chicago in 1936 [START_REF] Ethier | A Markovian slot machine and parrondo's paradox[END_REF], for instance, has a special feature that is returning back all coins bet if the player loses consecutively for a certain number of times; this feature gives the player the impression of having more chances to win. However, there is another feature invisible to the player: the machine has a cyclic sequence of internal modes consisting of some loose and some tight modes. The machine is programmed to have an expected payoff in favor of the player in the loose mode, and in favor of the casino in the tight mode. The sequence of invisible internal modes for the machine has more tight modes, and so is to the advantage of the casino. To delicately hide this trick and at the same time ensure the profit of the casino in the long run, casino owners wish to analyze the functionality of slot machines before investment. To this aim, a slot machine can be modeled by a (discrete-time) Markov chain, that is a mathematical object to model systems following a sequence of linked events. In the model of a slot machine, the linked events are the consecutive rounds of plays with no win.

A simplified version of a Futurity slot machine is graphically described in Figure 1.1. The Markov chain models a machine with the cyclic sequence of internal modes "tight, loose, tight" and the misleading feature of returning all coins after three consecutive losses. The states of the machine are drawn as boxes and labeled with two components ⟨i, j⟩, see Figure 1.1.b. The i-component encodes the "internal mode" (i.e., the index of internal modes in the cyclic sequence) and j-component stores "the number of consecutive losses". Transitions, drawn as arrows between states, encode the feeding of the machine with a coin and the resulting win or loss that changes the internal mode and may also change the number of consecutive losses. Thus, transitions move the chain from one state to another one. Figure 1.1.a depicts the general rules of transitions. Transitions are augmented with probabilities that indicate how likely the player is to win or lose at states of the chain. A transition starting in some state ⟨i, j⟩ is augmented with probability p i if it encodes a win; it is thus redirected to ⟨i + 1, 0⟩ where the number of consecutive losses is reset. Otherwise, such transition is augmented with probability 1p i and is redirected to ⟨i + 1, j + 1⟩ to store one more loss. The machine must meet a set of requirements and conditions called a specification. For instance, abiding the law, slot machines must be programmed to pay out as winnings at least 75% of the money wagered by players, a safety condition.

Most gamblers find gambling in a casino entertaining as long as the loss is roughly comparable to the gain. Stock brokers though might not feel entertained when losing even a small amount of money in the equity markets. Since markets are usually unstable and subject to dramatic and sudden changes, optimal decisions must be made instantaneously in order to exchange, buy and sell, securities that increase their profits. To predict the sudden changes or predict the effect of a placed exchange in the market, traders must carefully monitor and analyze the history of all trades and fluctuations, as statistical experiments.

Extracting information from such big amounts of data in a short time is error-prone and tiring for humans. On the other hand, enthusiastic human traders commonly rely for their decisions unconsciously on their instincts, in particular after getting exhausted. Automated traders or trading robots are pieces of software designed to perform various calculations and analyze large amounts of data quickly in order to make optimal decisions almost instantly and more precisely than human traders. To design a trading robot, the market is usually modeled as a mathematical object such as a Markov decision process, which is a generalization of Markov chains. In addition to the stochastic aspects of systems that Markov chains can model, Markov decision processes model a kind of non-determinism to show the variety of the robot's choices. A Markov decision process consists of several states and transitions. States encode the financial status of the market such as the price of companies' shares on the stock market. Transitions encode placing orders that may cause changes in the market, thus the current state of the market will be changed to another state. Transitions are augmented with labels 2 and probabilities: labels vary between different possible orders, and the probabilities are computed by statistical analysis. The probability of a transition from one state to a successor state is showing how likely the placed order changes the prices in the market into what is indicated in the successor. A robot trader is programmed to place electronic orders in each state of the model. The robot must meet some specification, e.g., the dealings of a robot of a trading company must never cause dropping the value of the shares of the company in the market (safety condition). Otherwise, the wealth of the company is automatically decreased and not to forget the bad reputation.

The shareholders of a trading company would not gamble in replacing the human element with automatic traders without guarantees that the trading robots perform as well as advertised. Such guarantees ought to promise that the robots make optimal decisions to fulfill the specification. A way to ensure the correctness of the designed robot is testing, which is broadly used in commerce and industry. Testing usually consists of running the robot on artificial markets (or simulations of the market) and observing the outcomes of the robot's decisions. Having a set of correct behaviors, testing thus checks whether the outcome of a simulation contains those correct behaviors. The drawback of the testing approach is its non-completeness, which may cause missing some unexpected situations where the decisions of the robot breach a safety condition and could cause the shareholders to lose some money. Another approach is formal verification, a technique that promises the absolute guarantee for the correctness of a system by providing a mathematical proof (if such a proof exists3 ).

System verification also comes to prominence outside the financial sphere. It becomes even more crucial when any failure even a small deviation from the required behavior for the system is life threatening. In December 2013, it was reported that the first implanted artificial heart stopped beating. This misfortune caused the death of a seventy-six years old man who had received the heart, and the disappointment of French surgeons as well as many patients in need of a heart transplant. The artificial heart was designed to beat for at least five years, though an unexpected circuit shortcut happened after 74 days and caused the dysfunction. A mathematical proof to verify the correctness of the artificial heart would have ideally prevented the previous failure, and hopefully all dysfunctions of the second implanted heart.

Formal verification of reactive systems

Reactive systems, such as artificial organs and stock markets, are non-terminating systems that maintain an ongoing interaction with the environment rather than returning some value upon termination. In the field of formal methods and verification of reactive systems, we abstract reactive systems with mathematical models such as transition systems, finite state automata, Markov chains, Markov decision processes, etc., in order to take out some complexities in the system while retaining enough information to verify the correctness of the design. The behavior of a system is usually viewed as a sequence of interactions between the system and the environment; roughly speaking, the set of all behaviors is the language of the model. Computer-aided verification develops systematic approaches that verify whether all behaviors of the model correctly meet some required specification, that are expressed by mathematical objects such as some formula in some logic (e.g. a temporal logic such as LTL, CTL) or some regular (or ω-regular) language or automata. The cor-rectness relation is usually chosen based on the model of the system and the mathematical object expressing the specification. For the case where both the system and the specification are modeled by automata, language inclusion ensures that all sequences of reactions in the system are desired behaviors in the specification language. Considering language inclusion as the correctness relation, the system behaviors are distinctly partitioned into "correct" and "incorrect" ones, and the verification seeks to guarantee that all behaviors are correct without any nuance. This Boolean and qualitative view on the correctness is classical and is well-suited for modelling systems where no fault can be tolerated, such as artificial organs.

The system model and the specification can be augmented with some quantitative aspects to be suitable for real-life applications. Real-time systems as an example are effectively modeled by timed automata where the model is enriched with some clocks and the transitions are fired with respect to time constraints. Specifications, thus, in this setting may express time operational deadlines or constrain the longest response time [START_REF] Alur | A theory of timed automata[END_REF]. The battery consumption of mobile systems is described by weighted automata where transitions carry weights to reflect the amount of power recharged or discharged on taking each transition, and the evolution of system is subject to constraints on the accumulated weight (that is the power level). Specifications may then describe the power-life resistance in different scenarios [START_REF] Fahrenberg | Energy games in multiweighted automata[END_REF]. As we have seen in systems such as stock markets, probabilities are assigned to possible responses or reactions in an abstracted model of the system in order to statistically predict the behavior of such complex systems; probabilistic automata and Markov models are well-established syntaxes for describing such systems [START_REF] De | Formal Verification of Probabilistic Systems[END_REF][START_REF] Baier | Principles of model checking[END_REF]. Despite quantitative aspects in the system models and specifications, the correctness may follow the Boolean view, and impose a yes/no answer to the verification problem; the quantitative verification though seeks a graduated correctness for systems.

Probabilistic systems

Markov chains and Markov decision processes (MDPs) are widely used in the quantitative and qualitative verification of probabilistic systems [START_REF] Vardi | Automatic verification of probabilistic concurrent finite-state programs[END_REF][START_REF] Courcoubetis | The complexity of probabilistic verification[END_REF][START_REF] Filar | Competitive Markov Decision Processes[END_REF][START_REF] De | Formal Verification of Probabilistic Systems[END_REF][START_REF] Baier | Principles of model checking[END_REF]. Discrete-time Markov chains (or simply Markov chains) are arguably most popular model for verifying the evolution of a self-sufficient random process that has no interaction with its environment. As an extension, MDPs are a well-established syntax for open systems in which interactions between a controller and its stochastic environment happen. In MDPs, both non-deterministic and probabilistic choices thus coexist. We have seen how these Markov models can be used to model casino machines and stock markets. There are also applications in planning, randomized algorithms, communication protocols and biology [START_REF] Aspnes | Fast randomized consensus using shared memory[END_REF][START_REF] Fokkink | Variations on Itai-Rodeh leader election for anonymous rings and their analysis in PRISM[END_REF][START_REF] Baier | On computing fixpoints in well-structured regular model checking, with applications to lossy channel systems[END_REF][START_REF] Kwiatkowska | Using probabilistic model checking in systems biology[END_REF].

The model-checking problem seeks the verification of a given property which can be expressed by qualitative or quantitative properties. The controller synthesis problem asks for computing a control strategy that ensures a specification, and thus is relevant only for MDPs (and not for Markov chains).

State-outcome and distribution-outcome views

There are two incomparable views on Markov models: state-based and distribution-based views.

Markov chains. In the state-based view, Markov chains are treated as transition systems with states to which a fixed probability distribution, that determines the successor states, is assigned. The transition thus happens from one state to another, and a Markov chain is then a generator of sequence of states, called the behavior or the state-outcome of the Markov chain.

In the distribution-based view, Markov chains are treated as transformers of probabilistic distributions over the nodes of the chains. A Markov chain can thus be encoded in a deterministic transition system whose states are probability distributions from which there is a unique outgoing transition to the successor state, i.e., the successor probability distribution. The transition thus happens from one probability distribution to another, and a Markov chain is then a generator of probability distributions, called the distributionoutcome or symbolic-outcome of the Markov chain. The distribution-outcome is an infinite sequence of probability distributions obtained by iteratively applying the probabilistic transition matrix of the chain to the unique initial distribution (over nodes of the chain).

MDPs. The controller in an MDP can be instructed by a strategy (sometimes called scheduler [START_REF] Baier | Principles of model checking[END_REF]). When a strategy is fixed in an MDP, the system induced under the strategy is a Markov chain, and as expected the two views can carry over. The MDP under a fixed strategy thus can be viewed as a state-outcome or distribution-outcome generator.

Comparison of state-outcomes and distribution-outcomes. The state-outcome of stochastic systems is classical and well-studied, for example see [Var85, CY95, FV97, BK98a, BK98b, dAH00, KNP05, BKHW05, BCH + 07, BK08, EKVY08, CD11, BHK + 12, BGB12, CJS12, CHJS13]. Typical state-based properties for Markov models are safety, reachability, Büchi, and coBüchi, which require the system to visit a target state always, once, infinitely often, and ultimately always, respectively. The quantitative and qualitative analysis of such state-based properties and model checking of probabilistic temporal logics such as PCTL, PCTL * has been well-studied for Markov models.

The distribution-outcomes of stochastic systems has recently been used in several works on design and verification of reactive systems [KVAK10, CKV + 11, AAGT12]. This semantics is adequate in many applications, such as systems biology, sensor networks, robot planning, etc. [START_REF] Baldoni | On the solvability of anonymous partial grids exploration by mobile robots[END_REF][START_REF] Doyen | Limit synchronization in Markov decision processes[END_REF][START_REF] Henzinger | Sliding window abstraction for infinite Markov chains[END_REF]. Such system consist of several copies of the same process (molecules, sensors, robots, etc.), and the relevant information along the execution of the system is the number of processes in each state, or the relative frequency (i.e., the probability) of each state.

The logics defined on the two semantics, state-outcome and distribution-outcome, are incomparable, i.e., there are properties that are expressible in one but not the other. In particular, the approaches to decide model-checking problem in one cannot be reduced to the other [START_REF] Vijay | Reasoning about MDPs as transformers of probability distributions[END_REF]. In one hand, intuitively, logics like PCTL and PCTL * do not allow for reasoning about the probability of being at different (groups of) states at the same time, whereas we will see an example of such properties expressed on the distributionoutcome. On the other hand, properties expressible with the distribution-based semantics do not take into account the branching structure of the system. In addition, for probabilistic systems a natural bisimulation relation on the distribution-outcome has recently been introduced [START_REF] Hermanns | Probabilistic bisimulation: Naturally on distributions[END_REF], and has been proved to be incomparable with the standard bisimulation relation (defined on the state-outcome).

Analysis of state-outcomes in Markov chains

In the state-based view, a Markov chain is viewed as a generator of sequences of states. A σ-algebra can be defined on the probability space produced by the sequence of states, and the probability of events that are sets of sequences of states, can be measured. Probabilistic linear time properties and probabilistic temporal logics such as PCTL, PCTL * assert quantitative or qualitative properties as the specification.

Verifying a qualitative property that usually asks whether a certain event will happen almost-surely (i.e., with probability 1) or with non-zero probability, is called the qualitative analysis of Markov chains. An instance of a qualitative property is the PCTL formula

Pr =1 (!♦⟨0, 3⟩) ∧ Pr =1 (!♦⟨1, 3⟩) ∧ Pr =1 (!♦⟨2, 3⟩)
where Pr =1 requires that the events !♦⟨i, 3⟩ happens with probability 1, !♦⟨i, 3⟩ requires that the state ⟨i, 3⟩ is infinitely often visited along the system execution. This formula asserts the following almost-surely property for the model of Futurity slot machine drawn in Figure 1.1 on page 2: "all states encoding the three consecutive losses in the game, are almost-surely visited infinitely often."

Quantitative analysis of Markov chains is similar to model-checking problem of qualitative properties, but constrain the probability or expectation of certain events with regards to any value, not only the extreme bounds4 . An instance of a quantitative property is

Pr <0.05 ! (⟨0, 3⟩ ∨ ⟨1, 3⟩ ∨ ⟨2, 3⟩) → ⃝ ⃝ ⃝(⟨0, 3⟩ ∨ ⟨1, 3⟩ ∨ ⟨2, 3⟩) "
where ⃝ is the temporal operator to assert a property on the next state visited along the system execution. This formula asserts the following quantitative property for the model of Futurity slot machine drawn in Figure 1.1 on page 2: "the scenario where a player loses three times consecutively and gets all his coins returned, must only happen two times in a row with the probability less than 0.05."

In order to model-check qualitative state-based properties, graph-based techniques are employed [START_REF] Baier | Principles of model checking[END_REF]. However, the quantitative analysis usually is reduced to solving a system of linear equations.

Analysis of distribution-outcomes in Markov chains

In the distribution-based view, a Markov chain is viewed as a generator of sequence of probability distributions. The specification can thus assert properties on the current probability of a set of nodes that is not expressible in the state-based logics.

An instance of such a property is ∃t such that X t (q) ≥ 1 where X is, roughly speaking, the chance for the Markov chain to be in q at time t. The above formula asserts that "there is a time t when the Markov chain is almost surely in the state q."

Qualitative and quantitative analysis differ in the distribution-based view like they do in the state-based semantics. Model checking of qualitative limit distribution-based properties in Markov chains usually relies on the computation of stationary distributions and periodicity of the chains, which has been well-studied, e.g. see [START_REF] Kemeny | Finite Markov chains[END_REF][START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF][START_REF] Sericola | Markov Chains: Theory and Applications[END_REF]. In recent works, the verification of quantitative properties of the distribution-based semantics was shown undecidable [START_REF] Vijay | Reasoning about MDPs as transformers of probability distributions[END_REF]. Decidability is obtained for special subclasses [CKV + 11], or through approximations in which distributions are discretized using intervals [START_REF] Manindra Agrawal | Approximate verification of the symbolic dynamics of Markov chains[END_REF].

Analysis of state-outcomes in MDPs

In the state-based semantics, when resolving non-determinism by strategies, there can be different probability spaces in an MDP, and thus the probability of a certain event might be measured unequally [START_REF] Vardi | Automatic verification of probabilistic concurrent finite-state programs[END_REF]. The quantitative analysis of an MDP against a specification, expressed for example by PCTL * or ω-regular properties, amounts to calculating the minimal and maximal probabilities that can be guaranteed when ranging over all strategies. The qualitative analysis simply asks whether there exists a strategy ensuring that the specification holds almost-surely (with probability 1) or limit-surely (with probability arbitrary close to 1); and the synthesis problem seeks the computation of such winning strategies. The calculation of minimal and maximal probabilities is well-studied and is usually achieved by graph algorithms operating on the graph underlying the MDP accompanied with some linear constraints. The obtained linear programs can be solved by means of an iterative approximation algorithm (called value iteration) [START_REF] Baier | Principles of model checking[END_REF]. For traditional ω-regular properties, in particular safety and reachability conditions, memoryless strategies are sufficient as optimal strategies [START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF]. To solve the synthesis problem, such optimal strategies can be constructed by some complementary analysis while computing the probability bounds for model checking.

Analysis of distribution-outcomes in MDPs

Compared to the state-outcome in MDPs, there has been little work on the analysis of the distribution-outcome view. Since the Skolem problem, which has been open for over eighty years, can be reduced5 to the quantitative analysis, studying the qualitative analysis of the distribution-based semantics is more promising.

There is only one logic defined on the distribution-outcomes in MDPs. The logic is defined by propositions using linear inequalities over probability distributions, and using modal operators to reason about temporal behavior [START_REF] Vijay | Reasoning about MDPs as transformers of probability distributions[END_REF]. The verification of the defined logic is in general undecidable even for a restricted class of strategies that determine their choice of actions based on the current state of the system and the number of choices made so far, called counting strategies (or Markovian schedulers). The decidability results are only obtained by imposing some restrictions either on the class of counting strategies, or on the propositions (where the inequality in the proposition is non-zero).

As we will see, the main results of this thesis lie in the direction of the qualitative analysis of the distribution-outcomes in MDPs. We introduce different variants of synchronizing properties on distribution-outcomes of MDPs. In contrast with previous work, we consider the qualitative analysis with the extreme bound 1, and we prove that synchronizing properties are decidable for a general class of strategies that select actions depending on the full history of the system execution, called perfect-information strategies.

Synchronizing problems in MDPs

The main contribution of this thesis is a novel approach to the qualitative analysis and the synthesis problem of the distribution-outcomes in MDPs. We introduce synchronizing properties defined on the distribution-outcomes, which require that the winning strategy brings the MDP in some (group of) state(s) with a large probability, possibly in limit. In other words, the probability mass (say at least probability p > 0) in the distribution, that indicates the likelihood of the system to be in different states at specific states, is accumulated in some target state. We define variants of p-synchronizing conditions on the symbolic-outcomes of an MDP, and study the qualitative analysis of such properties where p = 1 or p tends to 1.

We consider the symbolic-outcome of the behaviors of MDPs as sequences X 0 X 1 X 2 • • • of probability distributions X i : Q → [0, 1] over the finite state space Q of the system, where X i (q) is the probability that the MDP is in state q ∈ Q after i steps. For 0 ≤ p ≤ 1, a distribution is p-synchronized if the probability mass accumulated in a single state (or a group of states) is at least p. An MDP is always (resp., eventually, weakly or strongly) p-synchronizing if the probability p is always (resp., ultimately once, infinitely often, or ultimately at every step) synchronized along the execution. More precisely, a sequence X 0 X 1 • • • of probability distributions is (a) always p-synchronizing if X i is p-synchronized for all i;

(b) eventually p-synchronizing if X i is p-synchronized for some i;

(c) weakly p-synchronizing if X i is p-synchronized for infinitely many i's;

(d) strongly p-synchronizing if X i is p-synchronized for all but finitely many i's.

An MDP is thus eventually, always, weakly or strongly p-synchronizing if there exists some strategy whose symbolic-outcome is accordingly eventually, always, weakly or strongly p-synchronizing. It is easy to see that always p-synchronizing implies strongly p-synchronizing, which implies weakly p-synchronizing. Moreover, weakly p-synchronizing implies eventually p-synchronizing. We show that, in general, this hierarchy is strict. We study the qualitative analysis of synchronizing conditions in such quantitative models. The qualitative synchronizing properties, corresponding to the case where either p = 1 or p tends to 1 are analogous to the traditional safety, reachability, Büchi, and coBüchi conditions (in the state-based semantics). We consider the following qualitative (winning) modes:

(i) sure winning, if there is a strategy that generates an {always, eventually, weakly, strongly} 1-synchronizing sequence;

(ii) almost-sure winning, if there is a strategy that generates a sequence that is, for all ϵ > 0, {always, eventually, weakly, strongly} (1ϵ)-synchronizing;

(iii) limit-sure winning, if for all ϵ > 0, there is a strategy that generates a {always, eventually, weakly, strongly} (1ϵ)-synchronizing sequence.

The definitions are summarized in Table 3.1 on page 47. These three winning modes are classically considered in stochastic games; MDPs can be viewed as 1 1 2 -player stochastic games. Some games in casinos can be analyzed with such 1 1 2 -player stochastic games. Until recently, slot machines were not elaborate enough to have any human interaction other than feeding the machine with the betting coins. However, with microprocessors nowadays ubiquitous, a more interactive gambling game has become widely popular, that is video slot machines. This game can in fact be viewed as a computer game where players interact only via a touch screen and where there is no mechanical constraints. It allows the designers to display more virtual reels and also add some interaction with the player through bonus features. For instance, when the player hits some specific combination on the reels, he may choose to either obtain free spins or hold some reels while the others are re-spun, or bet for another prize, etc. Due to this human interaction in the bonus features, a video slot machine cannot be modeled anymore by a Markov chain but requires an MDP where the random responses of the environment is predicted by a statistical study on human-player psychology. The aim is to synthesize a controller microprocessor for slot machines such that the specifications are met. Thus, the machine is modeled by an MDP, the choices of the microprocessor are the strategic choices and the human choices are resolved randomly based on the probability distributions obtained by statistical experiments.

Moreover, having a distributed network of connected slot machines, designers may offer a new exciting large prize, usually called "jackpot". For instance, in a group of connected machines, the jackpot can be triggered when all connected slot machines bring the same combination of symbols on their reels at the same time. The exciting news is that when jackpot happens, every player wins the total amount bet by all players. When analyzing the MDP of the distributed machines, the global state represent the internal states of all distributed machines, and the jackpot is a kind of synchronization when the MDP is synchronized into the set of states representing identical symbols on the reels of all machines. The aim of the designer is usually to synthesize an optimal strategy that allows for such jackpots infinitely often, and only when the amount of the total bet is smaller than a threshold.

In this thesis, we study the introduced synchronizing conditions in MDPs. We establish the computational complexity of deciding whether a given MDP is always, eventually, weakly or strongly synchronizing by providing matching upper and lower complexity bounds: for each winning mode we show that the problems are in PTIME for the always synchronizing condition, PSPACE-complete for eventually and weak synchronization, and PTIME-complete for strong synchronization. Moreover, we prove that the three winning modes coincide for the always synchronizing condition, though those modes form a strict hierarchy for eventually synchronizing. In particular, there are limit-sure winning MDPs that are not almost-sure winning; this result is unlike the analogue reachability condition in the state-based semantics where the two almost-sure and limit-sure winning modes coincide [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF]. One of the difficult result in this thesis is to show that for weak and strong synchronization the almost-sure and limit-sure modes coincide. It implies that the strong and weak synchronizing conditions are more robust than the eventually synchronizing, and provide conservative approximations of the eventually synchronizing.

We complete the picture by providing optimal memory bounds for winning strategies. We will see that all solutions, for the problems of deciding whether an MDP is synchronizing, are constructive, and provide the construction of the winning strategies that answer the synthesis problems. In always synchronizing MDPs, we show that memoryless strategies are sufficient for all three winning modes. In eventually synchronizing MDPs, for sure winning strategies, exponential memory is sufficient and may be necessary, and that in general infinite memory is necessary for almost-sure winning, and unbounded memory is necessary for limit-sure winning. Moreover, exponential memory is sufficient and may be necessary for sure winning in weak synchronization, infinite memory is necessary for almost-sure winning in weak synchronization, and linear memory is sufficient for strong synchronization in all winning modes.

Regarding the symbolic-outcomes in MDPs, the p-synchronizing conditions defined on the outcome sequence are using a sum function, i.e., the sum of probabilities assigned to target states is at least p. We present a variant of synchronization for which the used function is taking the maximum probability assigned to the set of target states. We also establish some reductions for eventually and weakly synchronization such that the tight complexity bounds for sum functions are carried over to the max variant. For strong synchronization, we see that deciding whether the MDP is winning is again PTIME-complete though memoryless strategies are sufficient.

The obtained results on synchronization in MDPs are summarized in Tables 4.1, 5.1 and 6.1 on pages 67, 90 and 116, respectively.

Relations to games and to alternating finite automata

Some results in this thesis rely on insights related to games and alternating automata that are of independent interest. First, the sure-winning problem for eventually synchronizing in MDPS is equivalent to a two-player game with a synchronized reachability condition, where the goal for the first player is to ensure that a target state is reached after a number of steps that is independent of the strategy of the opponent (and thus this number can be fixed in advance by the first player). This condition is stronger than plain reachability, and while the winner in two-player reachability games can be decided in polynomial time, deciding the winner for synchronized reachability is PSPACE-complete. This result is obtained by turning the synchronized reachability game into a one-letter alternating automaton for which the emptiness problem (i.e., deciding if there exists a word accepted by the automaton) is PSPACE-complete [START_REF] Holzer | On emptiness and counting for alternating finite automata[END_REF][START_REF] Jancar | A note on emptiness for alternating finite automata with a one-letter alphabet[END_REF]. Second, the PSPACE lower bound for the limit-sure winning problem in eventually synchronizing uses a PSPACE-completeness result that we establish for the universal finiteness problem, which is to decide, given a one-letter alternating automata, whether from every state the accepted language is finite.

Synchronizing problems in probabilistic automata

Synchronizing problems were first considered for finite state automata where a synchronizing word is a finite sequence of control actions that can be executed from any unknown or unobservable state of an automaton and brings the automaton to a known specific state (see [START_REF] Mikhail | Synchronizing automata and the Cerny conjecture[END_REF] for a survey of results and applications). The notion of synchronizing automata is motivated by the following natural problem: how can we regain control over a device if we do not know its current state? Since losing the control over a device may happen due to missing the observation on the outputs produced by the system, blind strategies, which are finite sequences (or words) of input letters, are considered while synchronizing systems. As an example think of remote systems connected to a wireless controller that emits the command via wireless waves but expects the observations via physical connectors (it might be excessively expensive to mount wireless senders on the remote systems), and consider that the physical connection to controller is lost due to technical failure. The wireless controller can therefore not observe the current states of the distributed subsystems. In this setting, emitting a synchronizing word as the command leaves the remote system (as a whole) in one particular state no matter in which state each distributed subsystem started; and thus the controller can again regain control.

Synchronizing automata are well-studied in the setting of complete deterministic finitestate automata [Čer64, Pin78, Epp90, IS95, IS99, San04, Vol08, Mar10, AGV10, OU10, Mar12]. While the existence of a synchronizing word is NLOGSPACE-complete for complete deterministic finite state automata, extensive research efforts have been devoted to estab-lishing tight bounds on the length of the shortest synchronizing word, which is conjectured to be (n-1) 2 for automata with n states [START_REF] Černý | Poznámka k homogénnym experimentom s konečnými automatmi[END_REF][START_REF] Pin | Sur les mots synthronisants dans un automate fini[END_REF][START_REF] Mikhail | Synchronizing automata and the Cerny conjecture[END_REF]. Various extensions of the notion of synchronizing word have been proposed for not-complete or non-deterministic finite state automata and were proved to be PSPACE-complete [START_REF] Imreh | Some remarks on directable automata[END_REF][START_REF] Imreh | Directable nondeterministic automata[END_REF][START_REF] Martyugin | Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA[END_REF][START_REF] Martyugin | Synchronization of automata with one undefined or ambiguous transition[END_REF]. We introduce infinite synchronizing words for non-deterministic finite state automata, where the always, eventually, weakly and strongly synchronization require that the automaton is always, once, infinitely often and ultimately always synchronized (into a given target set).

Probabilistic automata (PAs) are a generalization of non-deterministic finite state automata where the non-deterministic choice of successors is resolved with a probabilistic distribution; at the same time, a PA can also be interpreted as an MDP with a blind controller. In this context, an input word for the PA corresponds to the special case of a blind strategy (sometimes called word-strategy) that chooses the control actions in advance. In the example of remote systems, a blind strategy cannot depend on the current states of the distributed subsystems, but only depend on the sequence of wireless commands emitted so far. The set of all winning word-strategies for an always, eventually, weakly and strongly synchronizing PA is respectively the always, eventually, weakly and strongly synchronizing language of the PA. Similar to the MDPs, we study three qualitative modes, sure, almost-sure and limit-sure for synchronizing languages in PAs.

A different definition of synchronizing words for probabilistic automata was proposed by Kfoury, but the associated decision problem is undecidable [START_REF] Kfoury | Synchronizing sequences for probabilistic automata[END_REF]. In contrast, we show that the emptiness problem of almost-sure strongly synchronizing languages is PSPACEcomplete, while the emptiness problem of almost-sure eventually and weakly synchronizing languages are undecidable. Moreover, we show that the emptiness problem of sure languages, for all three eventually, weakly and strongly synchronizations, are PSPACEcomplete, though the emptiness problem of limit-sure languages are undecidable. There are easy arguments to establish the complexity bounds for the always synchronizing languages. The obtained results are summarized in Tables 4.2, 5.2 and 6.2 on pages 81, 103 and 124, respectively.

We also shortly discuss the universality problems for the synchronizing languages in PAs: we show that the universality problems of sure and almost-sure 6 always synchronizing languages are in PTIME. The universality problems of sure eventually, weakly and strongly synchronizing languages are in PSPACE, while for almost-sure eventually, weakly and strongly synchronizing languages, the universality problems are PSPACE-complete. In addition, we show that the results from synchronizing in PAs can carry over to the nondeterministic finite state automata.

6. The universality problem of synchronizing languages in PAs cannot be considered for limit-sure winning mode.

Synchronizing problems in timed and weighted automata

A further contribution of this thesis is introducing synchronization in systems whose behaviors depend on quantitative constraints. We study two classes of such systems, timed automata and weighted automata. We introduce the synchronization problem for timed and weighted automata in several variants to include the quantitative aspects of those models as well as some safety condition while synchronizing. The main challenge is that we are facing automata with infinite state-spaces and infinite branching (e.g. delays in a timed automaton).

For timed automata the synchronization problems are shown to be PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case. The obtained results are summarized in Table 7.1 on 142. In the deterministic case, synchronizing the classical region abstraction is not sound. We propose an algorithm which reduces the (uncountably) infinite set of configurations into a finite set (with at most the number of locations in the automaton), and then pairwise synchronizes the obtained finite set of states.

For weighted automata, states are composed of locations and quantitative values as weights. As weights are merely accumulated in this setting, it is impossible to synchronize to a single state. Instead we search for a location-synchronizing word, that is a word after which all states will agree on the location. In addition, we add a safety condition insisting that during synchronization the accumulated weight (energy) is safe, e.g. a nonnegative safety condition (or energy constraints) that requires a system to never run out of power while synchronizing. Considering the safety condition is what distinguishes our setting from the one presented in [START_REF] Fedor | P(l)aying for synchronization[END_REF]; moreover, in that work weighted automata are restricted to only have non-negative weights on transitions. For deterministic weighted automata, we provide PSPACE-completeness of the synchronization problem under energy constraints, and the membership in 3-EXPSPACE under general safety constraints. The obtained results are summarized in Table 8.1 on 158.

Structure of this manuscript

This thesis is organized as follows.

Chapter 2 Preliminaries. We introduce definitions needed throughout the thesis such as MDPs and PAs. We also recall some classical problems and results on such models.

The results of the following four chapters on synchronization in MDPs and PAs are mostly disseminated in these publications [DMS11a, DMS11b, DMS12, DMS14a, DMS14b]:

Chapter 3 Synchronizing Problems. We recall the definition of finite synchronizing words for finite state automata, and survey decision problems and conjectures about such words. We provide definitions of infinite synchronizing words for non-deterministic finite state automata. We introduce variants of synchronizations in MDPs and PAs by considering synchronizing strategies and synchronizing words. The relations to two-player games and to one-letter alternating finite automata are also discussed.

Chapter 4, Chapter 5 and Chapter 6 Always and Eventually Synchronizing Condition, Weakly Synchronizing Condition and Strongly Synchronizing Condition. We show tight complexity bounds of the membership problem for always, eventually, weakly and strongly synchronizing conditions in MDPs, and provide the memory requirement of winning strategies. Moreover, we establish tight complexity bounds for the emptiness problem of all synchronizing languages for PAs while the universality problem is also shortly discussed.

The results of the following two chapters on synchronization in timed and weighted automata has been published in [DJL + 14]:

Chapter 7 Synchronization in Timed Automata. We introduce synchronizing and location-synchronizing words for timed automata. We focus on deciding the existence of a synchronizing and location-synchronizing word for timed automata, proving tight complexity bounds of the problems for deterministic timed automata, and proving undecidability for non-deterministic timed automata.

Chapter 8 Synchronization in Weighted Automata. We introduce synchronizing and location-synchronizing words for weighted automata. We define safe synchronization for weighted automata where the aim is to synchronize the set of safe states while forbidding the automaton to visit states outside the safety-set during synchronization. We establish complexity results for deciding the existence of synchronizing and location-synchronizing words for weighted automata under different kind of safety conditions.

Chapter 9 Conclusion.

Selected publications by the author Most of the contributions in this manuscript have been already published in international conferences. The following publications partially contain the results of this thesis: 2

[DJL + 14] Laurent

Preliminaries

First sight. In this chapter we introduce definitions and recall results needed throughout the thesis. We first introduce finite automata, Markov decision processes and probabilistic automata. We then mention classical acceptance and winning conditions to define languages and winning regions. We conclude the chapter with the last section devoted to the classical problems and results for each model. We denote by Z the set of integer numbers and by N def ≡ {n ≥ 0 | n ∈ Z} the set of natural numbers. We denote by R the set of real numbers and by R ≥0 def ≡ {x ≥ 0 | x ∈ R} the set of non-negative real numbers. We assume that the reader is familiar with the basic concepts of sets, relations, graphs theories and automata theory [START_REF] Kenneth | Elementary number theory and its applications[END_REF][START_REF] Diestel | Graph Theory[END_REF][START_REF] Sipser | Introduction to the theory of computation[END_REF].

Finite automata and words

Finite automata are defined over finite alphabets to accept input words which are sequences of concatenated letters of the alphabet. Such words could be finite, such as

w 1 = a • b • a • b • b, or could be infinite such as w 2 = a • b • b • b • • •
where a and b are some input letters. Given an alphabet A, we denote by A * the set of all finite words over this alphabet, and by A ω the set of all infinite words. The length of a finite word w ∈ A * is denoted by |w|; for example |w 3 | = 3 for the prefix

w 3 = a • b • b of w 2 .
The empty word ϵ is of length zero, and A + is the set of all non-empty finite words.

Regular and ω-regular languages. A language of finite words over the alphabet A is a subset of A * and a language of infinite words is a subset of A ω . A language (of finite words) is regular if there is a regular expression to express it. Given a finite alphabet A, the following constants are defined as regular expressions:

-∅ denotes the empty language, ϵ denotes the language {ϵ} which contains only the empty word ϵ of length zero, a ∈ A denotes the language {a} containing only the word a of length 1. Given two regular expressions r 1 and r 2 , the expressions r 1 + r 2 , r 1 • r 2 and r * 1 are regular expressions where -(union operator) r 1 + r 2 denotes the language that is obtained by the union of languages expressed by r 1 and r 2 , -(concatenation operator) r 1 • r 2 denotes the language of all words made by concatenation of a word from the language expressed by r 1 followed by a word from r 2 , -(Kleene star operator) r * 1 denotes the smallest language that includes ϵ and r 1 , and that is closed under concatenation operator. A language (of infinite words) is ω-regular if there is an ω-regular expression to express it. Given a regular expression r expressing a regular language not containing the empty word ϵ, the expression r ω that denotes a language of infinite words made by concatenating consecutively the words of r infinitely many times, is ω-regular. Given a regular expression r 1 and two ω-regular expressions r 2 and r 3 , the following expressions are ω-regular:

-(concatenation operator) r 1 • r 2 denotes the language of all infinite words made by concatenation of a finite word from the language expressed by r 1 followed by an infinite word from r 2 . -(union operator) r 2 + r 3 denotes the language that is obtained by the union of languages expressed by r 2 and r 3 . 

q 0 q 1 q 2 q 3 a a a
• b * • a ω is expressing the language {a • b n • a • a • a • • • | n ∈ N}.

▹

Finite automata. A finite automaton recognizes a regular or an ω-regular language:

Definition 2.1 (Finite automata). A non-deterministic finite automaton (NFA) N = ⟨Q, A, ∆⟩ consists of a finite set Q of states, a finite alphabet A of input letters and a transition function

∆ : Q × A → 2 Q .
Given a set of initial states Q 0 and an input word w = a 0 • a 1 • • • , the behavior of an NFA is as follows. One of the initial states q 0 ∈ Q is chosen non-deterministically. The automaton starts in that initial state q 0 and reads the first letter a 0 of the input word w. Inputting the letter a at the time the automaton is in q (that is letter a 0 when it initially is in q 0 ), two cases happen: (1) either ∆(q, a) ̸ = ∅ when the automaton moves to the next state q ′ , that is chosen non-deterministically among the states of ∆(q, a); (2) or ∆(q, a) = ∅ when the automaton "fails" to move and becomes blocked. As long as the automaton is not blocked, in each move the next letter of w = a 0 a 1 • • • , from left to right, is read.

Example 2.2. An NFA is depicted in Figure 2.1, which is a running example used throughout the thesis. The automaton has four states q 0 , q 1 , q 2 and q 3 , and two letters a and b. The transition function ∆ is defined as follows. For all states, the a-transitions shift once the automaton in the loop q 0 q 1 q 2 q 3 ; formally, ∆(q i , a) = {q j } where j ≡ i + 1 (mod 4) for all 0 ≤ i ≤ 3.

The b-transitions in the states q 0 , q 1 , q 2 are self-loops, ∆(q i , b) = {q i } for all 0 ≤ i < 3; the next successor on b-transition in q 3 , however, is q 0 . ▹ In Example 2.2, the transition function maps each pair of state q and letter a only to sets of size at most 1, that implies this automaton is in fact deterministic. A deterministic finite automaton (DFA) is a finite automaton 1 where each state q and input letter a have at most one successor state: |∆(q, a)| ≤ 1. On the other hand, all states and letters of the automaton of Example 2.2 have at least one successor that means this automaton is complete too. A complete finite automaton is an automaton where the function ∆(q, a) is non-empty for each state q and input letter a. A state q is absorbing if ∆(q, a) = {q} for all letters a ∈ A (all transitions are self-loops on q).

We denote by q a -→ q ′ an a-transition that goes from q to q ′ : q ′ ∈ ∆(q, a). Let the relation →⊆ Q × Q be such that q → q ′ if there exists a letter a where q a -→ q ′ . We thus define the transitive closure → + of this relation, that is ∪ 1≤i → i where → i is the i-th power of → by the composition operation in relations. The notation q → + q ′ thus means that there exists a finite word w = a 0 • • • a n-1 such that after inputting w, the automaton initiating in q ends to move in q ′ . The word w, actually, induces a finite run over the automaton; a finite run is a sequence of states q 0 q 1 • • • q n where q 0 = q, q n = q ′ and q i a i -→ q i+1 for all 0 ≤ i < n. An input word w may induce several runs over a (non-deterministic) automaton; it induces however only one run over a DFA. We denote by q w -→ q ′ such cases when w induces some run from q to q ′ . This notation can also be generalized for sets of states S,

S ′ ⊆ Q: S w -→ S ′ that is S ′ = {q ′ ∈ Q | there exists q ∈ S such that q w -→ q ′ }. In Example 2.2, one can verify that q 0 b•a•b --→ q 1 ,
where the run is q 0 q 0 q 1 q 1 , and

{q 0 , q 3 } b•a -→ {q 1 }.
The relation → when defined as a subset of Q×Q relates q to a successor state; however, when the relation → is a subset of 2 Q × 2 Q it relates {q} to the set of all its successors:

q a -→ q ′ if q ′ ∈ ∆(q, a)
and {q} a -→ S if S = ∆(q, a)

A finite automaton can also input infinite words where the words induce infinite runs over the automaton; an infinite run for an infinite word w = a 0 a 1 • • • is a sequence of states q 0 q 1 • • • where q 0 ∈ Q 0 and q i a i -→ q i+1 for all i ∈ N. We refer the reader to [START_REF] Sipser | Introduction to the theory of computation[END_REF] and [START_REF] Baier | Principles of model checking[END_REF] for more details.

Markov decision processes and strategies

Probability distribution. A probability distribution over a finite set S is a function

d : S → [0, 1] such that # s∈S d(s) = 1. The support of d is the set Supp(d) = {s ∈ S | d(s) > 0}. For example, given the alphabet A = {a, b}, the function d(a) = 1 4 and d(b) = 3
4 is a probability distribution over A; we usually denote probability distributions over an alphabet with d. Another example is the function X(q 1 ) = 1 3 , X(q 2 ) = 2 3 and X(q 3 ) = 0 that is a probability distribution X over set S = {q 1 , q 2 , q 3 } of states, where Supp(X) = {q 1 , q 2 }. In this thesis, we usually denote probability distributions over states with X. We denote by D(S) the set of all probability distributions over S. Given a set T ⊆ S and a probability distribution X over S, let X(T ) = # s∈T X(s). For T ̸ = ∅, the uniform distribution on T assigns probability 1

|T | to every state in T . For example, the distribution X(q 1 ) = X(q 2 ) = 1 2 is a uniform distribution on the set {q 1 , q 2 }. Given s ∈ S, the Dirac distribution on s assigns probability 1 to s, and by a slight abuse of notation, we denote it simply by s.

q 0 q 1 q 2 q 3 a : 1 2 a : 1 2 , b b a, b a a, b

Markov decision processes

Markov decision processes are a kind of stochastic games:

Definition 2.2 (Markov decision processes). A Markov decision process (MDP) M = ⟨Q, A, δ⟩ consists of a finite set Q of states, a finite set A of actions and a probabilistic transition function δ :

Q × A → D(Q).
Given an initial distribution X 0 ∈ D(Q), the behavior of an MDP is described as a oneplayer stochastic game played in rounds. The game starts in the state q with probability X 0 (q). In all rounds, the player chooses an action a ∈ A, and if the game is in state q, the next round starts in the successor state q ′ with probability δ(q, a)(q ′ ).

Example 2.3. An MDP is depicted in Figure 2.2 where the states are Q = {q 0 , q 1 , q 2 , q 3 } and the alphabet is A = {a, b}. The probabilistic transition function δ is defined as follows. Both a-transitions and b-transitions in q 1 , q 2 , q 3 are deterministic, that is δ(q i , a) and δ(q i , b) are Dirac distributions: for 0 < i ≤ 3, δ(q 1 , a) = q 1 , δ(q 1 , b) = q 2 and δ(q 2 , c) = δ(q 3 , c) = q 3 for c ∈ {a, b}.

The only probabilistic transition is the a-transition in q 0 where δ(q 0 , a) is a uniform distribution on the set {q 0 , q 1 }. The b-transition in q 0 is a deterministic self-loop: δ(q 0 , b) = q 0 . ▹ In Example 2.3, we say that the state q 3 is absorbing since δ(q 3 , c) is the Dirac distribution on q 3 for all actions c ∈ A. Given q ∈ Q and a ∈ A, denote by post(q, a) the set Supp(δ(q, a)) which contains all states that can be chosen with a positive probability as the next successor of the a-transition in q. In Example 2.3, post(q 0 , a) = {q 0 , q 1 }. Let S ⊆ Q and A ′ ⊆ A. We denote by post(S, a) the set of successors ∪ q∈S post(q, a) of all states q in S and the action a; and similarly by post(S, A ′ ) the set of all successors ∪ a∈A ′ post(S, a) of states in S and actions in A ′ .

Given T ⊆ Q, let Pre(T ) = {q ∈ Q | ∃a ∈ A : post(q, a) ⊆ T } be the set of states from which the player has an action to ensure that the successor state is in T . For k > 0, let Pre k (T ) = Pre(Pre k-1 (T )) with Pre 0 (T ) = T . In Example 2.3, for T = {q 0 , q 3 } one q 0 q 1 q 2 q 3 1 3

1 3 1 3 1 1 1 Figure 2.3:
The Markov chain of Example 2.4 with the initial Dirac distribution q 0 . can verify that Pre(T ) = {q 0 , q 2 , q 3 } and Pre 2 (T ) = {q 0 , q 1 , q 2 , q 3 }. Moreover, Pre k (T ) = Pre 2 (T ) for all k ≥ 2 showing that the sequence of predecessors is ultimately periodic for T . Since the set of states Q is finite, the sequence of predecessors Pre 0 (T ), Pre 1 (T ), Pre 2 (T ), • • • is, indeed, ultimately periodic for all sets T ⊆ Q.

A play (or simply a path) in an MDP M is an infinite sequence π = q 0 q 1 q 2 . . . such that for all i ≥ 0 there exists an action a such that q i+1 ∈ post(q i , a). A finite prefix ρ = q 0 q 1 . . . q n of a path has length |ρ| = n and last state Last(ρ) = q n . In Example 2.3, the play π = q 0 q 1 q 2 (q 3 ) ω has the prefix ρ = q 0 q 1 q 2 where |ρ| = 2 and Last(ρ) = q 2 . We denote by Plays(M) and Pref(M) the set of all plays and finite paths in M, respectively.

Markov chains

A finite-state Markov chain is a special kind of MDPs where the player's choice has no role.

Definition 2.3 (Markov chains).

A finite-state Markov chain M = ⟨Q, δ⟩ consists of a finite set Q of states and a probabilistic transition function δ :

Q → D(Q).
We see that the probability δ(q)(q ′ ) of moving from one state q to the successor q ′ is fixed independently of the actions and the states that the Markov chain went through. The Markov chains defined in Definition 2.3 are sometimes referred as homogeneous (discrete time) Markov chains [START_REF] Kemeny | Finite Markov chains[END_REF][START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF][START_REF] Sericola | Markov Chains: Theory and Applications[END_REF]. In this manuscript, we only consider the homogeneous Markov chains and thus omit the word homogeneous as a qualifier.

Example 2.4. A Markov chains is depicted in Figure 2.3 where the states are Q = {q 0 , q 1 , q 2 , q 3 } and the probabilistic transition function δ is defined as follows. The next successor in q 0 is either q 0 , q 1 or q 2 , each with probability 1 3 . The state q 1 is an absorbing state: δ(q 1 )(q 1 ) = 1. The transitions in q 2 and q 3 are deterministic: δ(q 2 )(q 3 ) = 1 and δ(q 3 )(q 2 ) = 1.

▹

Since Markov chains are a subset of MDPs, we analogously define paths and finite prefixes here.

The states of finite Markov chains can be classified in recurrent and transient states; for that, we define a bidirectional reachability relation ∼ on their state space Q: given the Markov chain M, we say that q and q ′ are related, denoted by q ∼ q ′ , if there are two finite paths in M, one from q to q ′ and another from q ′ to q. In Example 2.4, we see that q 0 ∼ q 0 , q 2 ∼ q 3 and q 1 ̸ ∼ q 2 . The relation ∼ is an equivalence relation since it is reflexive, symmetric and transitive. We denote by [Q] ∼ the partition (equivalence classes) induced by the relation ∼. For the Markov chain described in Example 2.4, the equivalence classes are {q 0 }, {q 1 } and {q 2 , q 3 }. Intuitively, each of these classes is a strongly connected component (SCC) in the digraph induced by the Markov chain. A state q is recurrent if from q there is no path to a state outside the class containing q; formally, a state q ∈ c where c ∈ [Q] ∼ is recurrent if there is no finite path to a state q ′ where q ′ ̸ ∈ c. Otherwise the state q is transient. The definition results in the states of a class being all recurrent or all transient. The Markov chain of Example 2.4 has two recurrent classes {q 1 } and {q 2 , q 3 } and one transient class {q 0 }. In the graph view, a recurrent class is a bottom SCC in the digraph induced by the Markov chain.

Roughly speaking, from a recurrent state q there is no possibility of going to a state q ′ from which there can be no return to q. Therefore, if a Markov chain ever enters in the state q of a recurrent class c, it always stays in c and eventually returns to q with probability 1, and thus keeps returning in q infinitely often. To formalize this observation, let M be a Markov chain and X 0 be an initial distribution; for technical reason, we assume that for all recurrent states q, there is a path from some initial state q 0 ∈ Supp(X 0 ) to q (otherwise we omit the recurrent state q). For all n ∈ N, let the probability distribution M n over the states of the Markov chain M give the probability of being in various states at step n. Thus, M 0 = X 0 and M n+1 (q) = # q ′ ∈Q M n (q ′ ) • δ(q ′ )(q) for all n ∈ N.

Considering the sequence M 0 M 1 M 2 • • • in a Markov chain M, a distribution X ∈ D(Q) is stationary if there is an infinite sequence n 1 n 2 n 3 • • • such that lim k→∞ M n k
exists and is equal to X. It is known that all finite homogeneous (discrete time) Markov chains always have a non-empty set of stationary distributions [START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF]. Given a Markov chain with m stationary distributions X 1 , • • • , X m , let S i = Supp(X i ) be the support of the stationary distribution X i where 1 ≤ i ≤ m. For all recurrent states q, there exists at least one support S i such that q ∈ S i ; and moreover, none of the supports S i contains some transient state. We refer to the sets S 1 , • • • , S m as periodic supports of recurrent states. For instance, the periodic supports of recurrent states for the Markov chain of Example 2.4 are S 1 = {q 1 , q 2 } and S 2 = {q 1 , q 3 }. As a result, the probability M n (q) in all transient states q vanishes when n → ∞, and all recurrent states are visited infinitely often with probability 1.

Strategies

For an MDP, a strategy is a recipe (a program) that determines the player's choice of action in all different situations of the game played on the MDP. The strategy observes the finite sequence of states visited so far in the game and suggests the player a probability distribution over a designated set of good actions. Definition 2.4 (Strategies). A randomized strategy for an MDP M (or simply a strategy) is a function α : Pref(M) → D(A) that, given a finite path ρ, returns a probability distribution α(ρ) over the action set, used to select a successor state q ′ of ρ with probability # a∈A α(ρ)(a) • δ(q, a)(q ′ ) where q = Last(ρ).

A strategy α is pure if for all ρ ∈ Pref(M), there exists an action a ∈ A such that α(ρ)(a) = 1; and memoryless if α(ρ) = α(ρ ′ ) for all ρ, ρ ′ such that Last(ρ) = Last(ρ ′ ). We view pure strategies as functions α : Pref(M) → A, and memoryless strategies as functions α : Q → D(A).

Example 2.5. Let M be the MDP described in Example 2.3. The strategy α is a randomized strategy for M, that is, given a prefix ρ = p 0 p 1 • • • p n in Pref(M), defined by

α(ρ) = ⎧ ⎨ ⎩ the Dirac distribution on a
if n < 4 and p n ∈ {q 0 , q 1 } the uniform distribution on {a, b} if n < 4 and p n ∈ {q 2 , q 3 } the Dirac distribution on b otherwise,

The strategy α purely plays a for the first four rounds, if the MDP is in q 0 or q 1 ; otherwise in those rounds, it plays either a or b, each with probability 1 2 . For all next rounds, α purely plays b. The strategy β, defined for a given prefix ρ ∈ Pref(M) by

β(ρ) = ' a if n < 4, b
otherwise, is a pure strategy for M; and γ is a memoryless strategy where γ(q 0 ) = a and γ(q i ) = b for all 0 < i ≤ 3.

▹

A strategy α uses finite memory if it can be represented by a finite-state transducer T = ⟨Memory, m 0 , α u , α n ⟩ where Memory is a finite set of modes (the memory of the strategy), m 0 ∈ Memory is the initial mode, α u : Memory × Q → Memory is an update function, that given the current memory and last state updates the memory, and α n : Memory × Q → D(A) is a next-move function that selects the probability distribution α n (m, q) over actions when the current mode is m and the current state of M is q. For pure strategies, we assume that α n : Memory × Q → A. Formally, the strategy α defined by T is such that α(ρ • q) = α n (α u (m 0 , ρ), q) for all ρ ∈ Pref(M) and q ∈ Q, where αu extends α u to finite paths in the usual way. The memory size of the strategy is the number |Memory| of modes.

For an MDP M and a finite-memory strategy α represented by the finite-state transducer T = ⟨Memory, m 0 , α u , α n ⟩, we denote by M(α) = ⟨Q ′ , δ ′ ⟩ the Markov chain obtained as the product of M with the transducer defining α where Q ′ = Memory × Q and a transition from the state ⟨m, q⟩ to a successor ⟨m ′ , q ′ ⟩ with m ′ = α u (m, q) has probability # a∈A α n (m, q)(a) • δ(q, a)(q ′ ).

For instance, we see that the strategy α described in Example 2.5 is actually a finitememory strategy that can be represented by the transducer ⟨Memory, m 0 , α u , α n ⟩ where Memory = {m 0 , m 1 , • • • , m 4 }. The update function is α u (m 4 , q) = m 4 and α u (m i , q) = m i+1 for all 0 ≤ i < 4 and states q ∈ Q. The next-move function α n is defined as follows.

α n (m i , q) = ⎧ ⎨ ⎩ the Dirac distribution on a if 0 ≤ i < 4 and q ∈ {q 0 , q 1 } the uniform distribution on {a, b} if 0 ≤ i < 4 and q ∈ {q 2 , q 3 } the Dirac distribution on b otherwise.

For the finite-memory strategy α, the obtained Markov chain is

M(α) = ⟨Q ′ , δ ′ ⟩ where Q ′ = {m 0 , • • • , m 4 } × {q 0 , • • • , q 3 }
and the transition function is defined as follows. The transitions in ⟨m i , q 0 ⟩ is a uniform distribution on {⟨m i+1 , q 0 ⟩, ⟨m i+1 , q 1 ⟩} for all 0 ≤ i < 4 and the transition in ⟨m 4 , q 0 ⟩ is a self-loop. The transitions in ⟨m i , q 1 ⟩ are deterministic and go to ⟨m i+1 , q 1 ⟩ for all 0 ≤ i < 4 while the transition in ⟨m 4 , q 1 ⟩ is the Dirac distribution on ⟨m 4 , q 2 ⟩. Finally, for all modes m i , the transitions in two states ⟨m i , q 2 ⟩ and ⟨m i , q 3 ⟩ are directed to the same state: to ⟨m i+1 , q 3 ⟩ if 0 ≤ i < 4, and to ⟨m 4 , q 3 ⟩ otherwise.

Probabilistic Automata and randomized word

A natural extension for non-deterministic automata are probabilistic automata where the non-deterministic choice of successors for a pair of states and actions is resolved by randomness.

Reactive systems, by nature, respond to environmental actions. Finite-state automata and probabilistic automata are used to model a kind of reactive systems where the reactions to the environment are fixed by a controller before the system execution. An automaton inputs an infinite word where the letters are, one-by-one, read as the controller's choice among possible reactions. Observing the system execution by controllers is a way to enhance modeling reactive systems; in this case, the controller provides a strategy that is able to choose an action (or a letter) according to the sequence of states visited along the system execution. Considering the power that controller gains by observing the execution, MDPs can be viewed as a generalization of probabilistic automata. An infinite word can be viewed as a pure blind strategy α : N → A that chooses actions (or letters) independently of any observation on the system execution but only depending on the number of previous actions that it has chosen so far. We sometimes consider randomized words that are sequences d 0 d 1 d 2 • • • of probability distributions d i ∈ D(A) over the letters, i.e., randomized blind strategies α : N → D(A). Definition 2.5 (Probabilistic automata). A probabilistic automaton (PA) P = ⟨Q, A, δ⟩ consists of a finite set Q of states, a finite alphabet A of input letters and a probabilistic transition function δ :

Q × A → D(Q).
As we may compare the definitions 2.2 and 2.5, the syntax of PAs and MDPs are the same, but the semantics (the behaviors) are different. Given an initial distribution X 0 ∈ D(Q), the behavior of a PA is as follows. The automaton starts in the state q with probability X 0 (q) and reads the first letter of the input pure word w (or if the input word w = d 0 d 1 d 2 • • • is randomized, it reads the letter a that is chosen among a ∈ Supp(d 0 ) with probability d 0 (a)). The automaton moves to the next state q ′ that is chosen with probability δ(q, a)(q ′ ) if the automaton is in the state q and the inputted letter is a. Then, automaton reads the next letter (or the next probability distribution) of w.

Since PAs are an extension of NFAs, and since input infinite words for PAs are indeed blind strategies for MDPs, all definitions such as runs and prefixes are analogously defined for PAs.

Example 2.6. Consider the automaton depicted in Figure 2.2 on page 21 as an instance of a PA. This automaton is described in Example 2.3 as an MDP. Let w = (a • b) ω be an input pure word that can be described as the pure blind strategy α as follows. For all prefixes ρ with length n,

α(ρ) = ' a if n ≡ 0 (mod 2), b if n ≡ 1 (mod 2).
The word w results in the following set of infinite runs over the PA: q ω 0 + q 0 (q 0 q 0 ) * q 1 q 2 (q 3 ) ω .

▹

Winning and acceptance conditions

A Borel set2 ϕ ⊆ Q ω is a set of infinite sequences of states (an infinite run or a play) in the Cantor topology on Q ω . For an infinite sequence of states π = q 0 q 1 q 2 • • • , define Inf(π) = {q ∈ Q | for all i ≥ 0 there exists j ≥ i such that q j = q} which is the set of states visited infinitely often along π. An important subclass of the Borel sets are the ωregular ones, that are ω-regular languages over Q. We mention reachability, safety, Büchi and coBüchi condition from this subclass:

Reachability and safety conditions. A reachability set T ⊆ Q for a system requires that some target state in T be visited along the system execution. The set ♦T = {q 0 q 1 q 2 • • • ∈ Q ω | there exists i ≥ 0 such that q i ∈ T } is, thus, a set of winning plays or accepting infinite runs for the system with the reachability condition on the target set T . In the same way, a safety set T ⊆ Q for a system requires that only safe states in T be visited along the system execution. The set !T = {q 0 q 1 q 2 • • • ∈ Q ω | for all i ≥ 0 we have q i ∈ T } is, thus, a set of winning plays or accepting infinite runs for the system with the safety condition on T .

Büchi and coBüchi conditions. A Büchi set T ⊆ Q for a system requires that some state in T be visited along the system execution infinitely often. The set !♦T = {π ∈ Q ω | Inf(π) ∩ T ̸ = ∅} is, thus, a set of winning plays or accepting infinite runs for the system with the Büchi condition on the target set T . In the same way, a coBüchi set T ⊆ Q for a system requires that only states in T be visited infinitely often along the system execution; all states outside T can only be visited finitely many times. The set

♦!T = {π ∈ Q ω | Inf(π) ⊆ T } is,
thus, a set of winning plays or accepting infinite runs for the system with the coBüchi condition on T .

Note that the set of winning plays of safety and reachability conditions are dual, that is ♦T = Q ω \ !(Q \ T ); the same holds for the set of winning plays of Büchi and coBüchi conditions:

!♦T = Q ω \ ♦!(Q \ T ).
Example 2.7. Consider the target set T 1 = {q 2 } and T 2 = {q 1 , q 2 } for the MDP M in Example 2.3 on page 21. The set of winning plays (or accepting runs if M behaves as a PA) is

♦T 1 = Q * • q 2 • Q ω and is !T 1 = q ω
2 for reachability and safety condition on T 1 , respectively. As a result, the set of infinite plays in M that achieves the reachability condition ♦T 1 is q * 0 q * 1 q 2 (q 3 ) ω . This set is an empty set for the safety, Büchi and coBüchi conditions. Similarly, the set of plays in M that win ♦T 2 is q * 0 (q 1 ) ω + q * 0 q * 1 q 2 (q 3 ) ω and it is empty for the safety condition. The sets of plays in M that achieves Büchi condition !♦T 2 and coBüchi condition ♦!T 2 is the same set: q * 0 (q 1 ) ω . ▹

Languages of NFAs

A regular language (a subset of L ∈ A * ) is recognizable by a finite automaton N defined over the alphabet A and augmented with an initial set Q 0 of states and a finite acceptance condition F ⊆ Q, if for all finite words w of the language, there is an accepting run over N . A finite run q 0 q 1 • • • q n is accepting for the automaton N if it starts in some state q 0 ∈ Q 0 of the initial set and if the last state of the run visits the acceptance conditions q n ∈ F; the regular language of the automaton is, thus, L(N ) = {w ∈ A * | there exists q 0 , q such that q 0 w -→ q where q 0 ∈ Q 0 and q ∈ F}.

An ω-regular language (a subset of L ∈ A ω ) is recognizable by a finite automaton N defined over the alphabet A and augmented with an initial set Q 0 of states and an ωregular acceptance condition with the set Ω of accepting runs (acceptance conditions such as reachability with Ω = ♦T and Büchi condition with Ω = !♦T ) if for all infinite words w of the language, there is an accepting infinite run in N . Thus,

L Ω (N ) = {w ∈ A ω | w induces an infinite run q 0 q 1 • • • such that q 0 ∈ Q 0 and q 0 q 1 • • • ∈ Ω}.
Example 2.8. Let q 0 be the unique initial state of the automaton described in Example 2.2 on page 19. For the finite acceptance condition F = {q 0 }, we have

L(N ) = b * • (a • b * • a • b * • a • (a + b) • b * ) *
that we name L 1 . Let T = {q 0 } be the target set as well, then L !T (N ) = b ω that we name L 2 . The language for the coBüchi condition of T is

L ♦!T (N ) = L 1 • L 2 .

▹

A Finite automaton with a Büchi or coBüchi acceptance condition is said to be a Büchi or coBüchi automata, respectively.

Path-outcomes of MDPs

Given an initial distribution X 0 ∈ D(Q) and a strategy α in an MDP M, a pathoutcome is an infinite path π = q 0 q 1 . . . in M such that q 0 ∈ Supp(X 0 ) and for all i ≥ 0, the state q i+1 ∈ post(q i , a) for some action a ∈ Supp(α(q 0 . . . q i )). The probability of a finite prefix ρ = q 0 q 1 . . . q n of the play π is

X 0 (q 0 ) • n-1 ( j=0 ) a∈A α(q 0 . . . q j )(a) • δ(q j , a)(q j+1 ).
We denote by Outcomes(X 0 , α) the set of all path-outcomes from X 0 under strategy α. As an example, let X 0 be the Dirac distribution on q 0 for the MDP M in Example 2.3. Consider the pure memoryless strategy γ that plays a in q 0 , and that plays b in all states q ̸ = q 0 (presented in Example 2.5). Thus, Outcomes(q 0 , γ) = (q 0 ) ω + q * 0 q 0 q 1 q 2 (q 3 ) ω , and the probability of the finite prefix q 0 q 0 is 1 4 and the probability of q 0 q 0 q 0 q 1 q 2 is 1 8 . The winning sets Ω of plays for the ω-regular conditions (the set Ω is also called an event in this context) are measurable sets of paths, and thus given an initial distribution X 0 and a strategy α, the probabilities Pr α (Ω) of events Ω are uniquely defined [START_REF] Vardi | Automatic verification of probabilistic concurrent finite-state programs[END_REF]. Hence, Pr α (♦T ) is the probability to reach T under strategy α. For the MDP M of Example 2.3, the Dirac initial distribution q 0 and the strategy γ: the probability of reaching q 2 is Pr γ (♦{q 2 }) = 1 whereas the probability of the safety condition Pr γ (!{q 0 }) = 0. Definition 2.6 (Winning modes for the ω-regular conditions). Given an initial distribution X 0 and an event Ω, we say that an MDP M is:

sure winning if there exists a strategy α such that all path-outcomes are winning: Outcomes(X 0 , α) ⊆ Ω; -almost-sure winning if there exists a strategy α such that Pr α (Ω) = 1; -limit-sure winning if sup α Pr α (Ω) = 1.

For the MDP M of Example 2.3, even though Pr γ (♦{q 2 }) = 1 (from q 0 ) implies that M is almost-sure winning for the reachability condition ♦{q 2 }, the infinite play (q 0 ) ω is a counterexample witness proving that M is not sure-winning for this condition. The definitions result in M being limit-sure winning for the reachability condition ♦{q 2 } since M is almost-sure winning for that condition. Actually, almost-sure and limit-sure winning modes coincide for reachability in MDPs [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF].

Languages of PAs

The classical languages of PAs are defined on pure words: since pure words for probabilistic automata can be viewed as pure blind strategies for MDPs, the set of runs of a finite word in a PA define a measurable event. Given an initial distribution X 0 for a PA P, the probability that a finite run ρ = q 0 q 1

• • • q n of a finite pure word w = a 0 • a 1 • • • a n-1 in P happens, is Pr w (ρ) = X 0 (q 0 ) • n-1 ( j=0 δ(q j , a j )(q j+1 ).
For the finite acceptance condition F, the probability Pr(w) of the word w to be accepted is thus # ρ∈Runs(w,F ) Pr w (ρ) where Runs(w, F ) is the set of accepting runs over the finite word w in P; recall that a run ρ = q 0 q 1 • • • q n is accepting if q n ∈ F . Given a threshold 0 ≤ λ ≤ 1, the language of a PA P over the finite words is

L(P) = {w ∈ A * | Pr(w) ≥ λ}.
For infinite words, we follow all definitions presented for the MDPs. Given an initial distribution X 0 ∈ D(Q) and the infinite word w in the PA P, the set of infinite runs over w in P is Outcomes(X 0 , w) in the MDP M where the behavior of P is interpreted as an MDP. This way, the probabilities Pr w (Ω) of ω-regular acceptance conditions with the set Ω of accepting runs are uniquely defined [START_REF] Vardi | Automatic verification of probabilistic concurrent finite-state programs[END_REF]. The ω-language

L Ω (P) = {w ∈ A ω | Pr w (Ω) > 0}.
is recognizable by a PA P augmented with the initial distribution X 0 and the ω-regular acceptance condition with the set Ω of accepting runs.

Decision Problems

Problems for NFAs

We recall two classical decision problems for NFAs.

Decision problem(s).

The emptiness problem asks, given an NFA N with an acceptance condition, whether the accepted language of N is empty; and universality problem asks whether the accepted language is A * for regular languages or is A ω for ω-regular languages.

Finite acceptance condition. The emptiness problem for NFAs with finite acceptance conditions F is reducible to st connectivity problem in digraphs, that can be determined in NLOGSPACE in the size of the graph (and thus the automaton) [START_REF] Sistla | The complementation problem for Büchi automata with appplications to temporal logic[END_REF][START_REF] Sipser | Introduction to the theory of computation[END_REF]. To decide the emptiness problem, while performing a depth-first search algorithm that visits all accessible states for which there is a directed path from some initial states, one can check whether one of those accessible states is in F.

The universality problem for an NFA N is PSPACE-complete [START_REF] Harry | On the equivalence, containment, and covering problems for the regular and contextfree languages[END_REF]. The proof of the PSPACE-hardness is by a reduction from the space-bounded tiling problem that is known to be PSPACE-complete; and since co-PSPACE is equal to PSPACE, the (N)PSPACE upper bound follows from a non-deterministic algorithm that decides co-universal problem: guess one-by-one letters of a finite word w (with |w| ≤ 2 n where n is the number of states in N ), and check whether w is not accepted by the automaton. The algorithm uses polynomial space to keep track of visited states along the runs induced by inputting w to see if the last state of some of those runs do not visit F. ω-regular acceptance condition. The emptiness problem for an NFA N with a reachability condition ♦T reduces to the same problem with the Büchi condition !♦T where the states q ∈ T are transformed to absorbing states. On the other hand, safety and coBüchi conditions are accordingly duals of reachability and Büchi conditions, thus we only mention the complexity of classical decision problems for NFA with a Büchi acceptance condition.

The emptiness problem for NFA with a Büchi condition !♦T is solved by means of graph algorithms. Such algorithms first run a SCC decomposition, and then see if there is a directed path from an initial state to some SCC that contains at least one cycle and that contains at least one state q ∈ T . It is proved that the emptiness problem for Büchi automata is NLOGSPACE-complete. The universality problem for Büchi automata is though PSPACE-complete [START_REF] Sistla | The complementation problem for Büchi automata with appplications to temporal logic[END_REF].

Problems for MDPs

We recall following decision problems for MDPs.

Decision problem(s).

The membership problem of {sure, almost-sure, limit-sure} modes for ω-regular winning condition Ω asks, given an MDP M and given an initial distribution X 0 , whether M is {sure, almost-sure, limits-sure} winning for Ω from X 0 , respectively.

For the MDP M and the winning condition Ω, the set of all initial distributions from which M is winning, is the winning region. It is known that for reachability, safety, Büchi and coBüchi winning conditions, and for all three winning modes, the membership problems are decidable in PTIME [START_REF] De Alfaro | Concurrent omega-regular games[END_REF][START_REF] Luca De Alfaro | Concurrent reachability games[END_REF][START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF]. For all these winning conditions, it is shown that the randomization is not necessary. Moreover, for all distributions X 0 in the winning region of all these conditions, all Dirac distributions on all the states q ∈ Supp(X 0 ) are winning too. We say that such states are winning states. Moreover for reachability and safety conditions, it is known that memoryless strategies are sufficient for all three winning modes.

The membership problems of almost-sure and limit-sure modes for the winning conditions in MDPs, are mostly studied as qualitative analysis of MDPs [BK98b, BK08, CDH10, CHJS13]. In the sequel, we give some hints on how to decide the membership problem for the different winning modes of all reachability, safety, Büchi and coBüchi winning conditions.

Reachability condition.

Let M be an MDP with state space Q and let T ⊆ Q. The membership problem of sure winning for reachability condition ♦T is reducible to reachability in a turn-based two-player game, where the probabilistic choice of the environment is simulated by an adversary called Player-2 (since the exact values of transitions do not matter). Initially, Player-2 chooses a state q ∈ Supp(X 0 ) where the game starts in. For each round, Player-1 chooses an action a; and then the adversary chooses a successor state among the states in post(q, a). The problem of deciding whether Player-1 has a strategy to ensure reaching a target set T , is known to be PTIME-complete [START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF]. The following fix-point computation is a naive algorithm to compute the set of winning states for sure reachability. For all n ≥ 1, compute win n = Pre(win n-1 ) ∪ win n-1 where win 0 = T . We see that win 0 ⊆ win 1 ⊆ win 2 ⊆ • • • and since Q is finite (and all win i ⊆ Q) then this sequence will stabilize (in at most |Q| iterations) into a set win that is the set of winning states.

The membership problem for almost-sure winning is more tricky than what it is for sure winning mode, see [START_REF] De Alfaro | Concurrent omega-regular games[END_REF][START_REF] Luca De Alfaro | Concurrent reachability games[END_REF][START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF]. We give few hints on how the set of winning states is computed for almost-sure reachability condition ♦T in an MDP M = ⟨Q, A, δ⟩. The computation of winning states for almost-sure reachability condition has the solution of positive reachability in the main core: positive reachability problem asks whether the probability Pr(♦T ) is (strictly) positive. The positive reachability problem can be solved by a simple fix-point computation. To use this problem for reachability though we define a variant of positive reachability that is reaching a target set with some positive probability while keeping the remaining part of probability mass in the winning region (for positive probability condition). Given X, Y ⊆ Q, let APre(X, Y ) : {q ∈ Q | ∃a ∈ A : (post(q, a) ∩ X ̸ = ∅ and post(q, a) ⊆ Y )} be the set of states from which the player has some action a to ensure reaching X with some positive probability, and moreover the set Y is not left with probability 1. A nested fix-point computation gives us the set of winning states win. Let win 0 = Q, and for all m ≥ 0, iterate the following two steps:

(1) for all n ≥ 1 compute X n = APre(X n-1 , win m ) ∪ X n-1 where X 0 = T , until the computation stabilizes into X (i.e., X n = X n+1 = X for some n), and then as the next step let

(2) win m+1 = X. Since Q is finite and win m+1 ⊆ win m then this sequence will stabilize (in at most |Q| iterations) into a set win that is the set of winning states from which there is a positive probability to reach T in at most |Q| rounds, and since win is never left, the probability of eventually reaching T is 1. Thus, win is the set of winning states for almost-sure reachability condition ♦T .

We study another approach, which might be more intuitive, to compute the winning set for almost-sure reachability. Given S ⊆ Q, let Pre some (S) = {q ∈ Q | ∃a ∈ A : post(q, a) ∩ S ̸ = ∅} be the set of states from which the player has some action to ensure reaching S with some (strictly) positive probability; note that Pre some (S) = APre(S, Q). Let Pre all (S) = {q ∈ Q | ∀a ∈ A : post(q, a) ∩ S ̸ = ∅} be the set of states from which the player has no choice unless going to S with some positive probability.

An algorithm to compute the set of winning states for positive reachability condition ♦T is the following fix-point computation. For all n ≥ 1, compute win n = Pre some (win n-1 ) ∪ win n-1 where win 0 = T . We see that win 0 ⊆ win 1 ⊆ win 2 ⊆ • • • and since Q is finite (and all win i ⊆ Q) then this sequence will stabilize (in at most |Q| iterations) into a set win some (♦T ) that is the set of winning states for positive reachability ♦T ; in other words, the set of states from which the player has some strategy to ensure positive reachability ♦T . In a similar way, the following fix-point computation, win n = Pre all (win n-1 ) ∪ win n-1 for all n ≥ 1 where win 0 = T , gives the set of states win all (♦T ) where all strategies of the player are winning for the positive reachability ♦T .

We are now equipped to solve almost-sure reachability ♦T : let M 0 = M be the MDP and Q 0 = Q be the state space. For all i ≥ 0, compute the set

Q i+1 = Q i \ win all (♦(Q i \ win some (♦T )));
where win some and win all are computed on the MDP M i . For all i ≥ 1, the MDP M i is obtained from M i-1 where the state space is Q i ∪ {sink} and the transition function δ i is defined as follows. For all states q and actions a such that post(q, a) ⊆ Q i , let δ i (q, a) = δ i-1 (q, a). Otherwise, δ i (q, a) is the Dirac distribution on sink. The state sink is an absorbing state.

Intuitively, the algorithm first computes all states win some (♦T ) from which M i has a strategy to reach T with some positive probability. Thus, the set Q i \ win some (♦T ) contains all states from which there is no chance to reach T , even with a very small probability. Another important point is, as soon as M i enters in some state of the set Q i \ win some (♦T ) , regardless of the player strategy, it always remains in that set with some positive probability. Thus, all states from which player has no choice unless going to Q i \ win some (♦T ) with some positive probability, must be avoided. We remove such states, that are states in win all (♦(Q i \ win some (♦T )), from M i (and all in-going or outgoing transitions) to obtain M i+1 . We repeat this computation until there is no such state to be removed from the MDP, and as a result the set of winning states for almost-sure reachability ♦T is computed. All the computations can be done in PTIME. We refer the reader to [START_REF] Baier | Principles of model checking[END_REF] for more details and the correctness of both algorithms.

The set of limit-sure winning states for reachability condition coincide with the set of almost-sure winning states [dA97]. The PTIME-hardness results of the membership problems for reachability condition, is by a reduction from monotone Boolean circuit problem, that is known to be PTIME-complete [START_REF] Gibbons | Efficient parallel algorithms[END_REF].

Safety condition. Let M be an MDP with state space Q and let T ⊆ Q. In analogy to reachability, the membership problem of sure winning for safety condition !T is reducible to safety in a turn based two-player game. A naive algorithm to compute the set of winning states for sure safety condition !T in the MDP M is the following fix-point computation. For all n ≥ 1, compute win n = Pre(win n-1 ) ∩ win n-1 where win 0 = T and Pre(S) = {q ∈ Q | ∃a ∈ A : post(q, a) ⊆ S}. We see that win n ⊆ win n-1 , therefore this sequence will stabilize (in at most |T | iterations) into a safe set win that is the set of winning states. It is known for safety conditions !T in MDPs that the three winning modes coincide [START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF].

Büchi and coBüchi conditions. Let M be an MDP with state space Q and let T ⊆ Q. Analogous to reachability, the membership problem of sure winning for Büchi condition !♦T and coBüchi condition ♦!T are reducible to Büchi and coBüchi in a turn based two-player game. A well-known iterative algorithm to compute the set of winning states for Büchi condition !♦T in a turn-based two player games, has the following logic. For all i = 1, 2, • • • , |Q|, the algorithm performs two steps:

(1) computes the set win i of states where the Player-1 has a strategy to ensure a visit to T . Next,

(2) it computes the set lose i of states where the adversary has a strategy to ensure a visit to Q \ win i . The set lose i is removed from the game.

The states that are remaining in the game after the computation are all sure winning for Büchi condition !♦T . We refer the reader to [START_REF] Chatterjee | Algorithms for Büchi games[END_REF] for the detailed algorithm.

For an MDP M, a set C ⊆ Q is closed if for every state q ∈ C, there exists a ∈ A such that post(q, a) ⊆ C. For each q ∈ C, let D C (q) = {a ∈ A | post(q, a) ⊆ C}. The digraph induced by C is M # C = (C, E) where E is the set of edges ⟨q, q ′ ⟩ ∈ C × C such that q ′ ∈ post(q, a) for some a ∈ D C (q). An end component is a closed set U such that the digraph M # U is strongly connected. An end component U ⊆ Q is terminal if post(U, A) ⊆ U . Let endComp(M) be the set of all end components. For the MDP M of Example 2.3, the set of all end components is endComp(M) = {{q 0 }, {q 1 }, {q 3 }}.

The following remarks are folklore results about end components:

Remark 1. Given an MDP M, for all end components U ∈ endComp(M) and all initial distributions X 0 where Supp(X 0 ) ⊆ U , there exists a (finite-memory) strategy such that Pr α (!U ) = 1 and Pr α (!♦{q}) = 1 for all q ∈ U . Roughly speaking, this remark says that for all end components U there is a (finitememory) strategy that almost surely ensures that M stays forever in the end component U and ensures that all states of the end component U are visited, infinitely often. The second folk remark is:

Remark 2. For an MDP M, let Ω = {π ∈ Plays(M) | Inf(π) = U for some U ∈ endComp(M)}.
Then Pr α (Ω) = 1 under all strategies α and from all initial distributions X 0 .

Proof (sketch). Consider an initial distribution X 0 and a strategy α for the MDP M. For all infinite paths π = q 0 q 1 q 2 • • • of the MDP M such that q 0 ∈ Supp(X 0 ), and all q ∈ Inf(π), there is some action a that is played by α, infinitely often, for the prefixes ρ of the play with Last(ρ) = q (prefixes that ends in q). Given the condition that the a-transition in q is taken infinitely often along the play π, for all q ′ ∈ post(q, a), the conditional probability that M moves from q to q ′ for only finitely many times is zero. Therefore, given that the a-transition in q is taken infinitely often along the play π, all successors post(q, a) of the a-transition in q are almost-surely visited infinitely often along π. Hence, for all states q ∈ Inf(π) there is an action a such that post(q, a) ∈ Inf(π) meaning that Inf(π) almost-surely is (strongly connected and) included in an end component.

!

These two remarks enable us to reduce the membership problem of almost-sure mode for Büchi and coBüchi conditions, to the membership problem of almost-sure for reachability. For the Büchi condition !♦T , let U good be the union of all end components U ∈ endComp(M) such that U ∩ T ̸ = ∅; the membership problem of almost-sure for Büchi condition !♦T is reducible to the membership problem of almost-sure mode for reachability condition ♦U good . The reduction is correct since as soon as the MDP M enters the end component U where U ∩ T ̸ = ∅, there is a strategy that ensures, infinitely often, the visits to T .

The following modifications are necessary when reducing the membership problem of almost-sure coBüchi condition ♦!T to the membership problem of almost-sure reachability condition. The reason for the following modifications is because an end component U ∈ endComp(M) of an MDPM where T ⊆ U , may include some bad state q ̸ ∈ T where there is no strategy to avoid visiting that bad state whereas it may have such a state but there is some strategy which visits only the states of U ∩ T , infinitely often. Let M ′ be a copy of M where all states q ′ ̸ ∈ T are replaced with an absorbing state sink, and for all states q ∈ T and all actions a ∈ A, if the successor set of the a-transition in q is not included in T , i.e., post(q, a) ̸ ⊆ T , then the a-transition is redirected to sink. Let U good be the union of all end components U ′ ∈ endComp(M ′ ) of the M ′ such that U ′ ⊆ T . The membership problem of almost-sure for coBüchi condition ♦!T is reducible to the membership problem of almost-sure mode for reachability condition ♦U good in the same MDP M.

As the almost-sure and limit-sure winning states for reachability condition coincide in MDPs, the sets of winning states of almost-sure and limit-sure are the same for Büchi condition too. The same result holds for coBüchi condition.

Problems for PAs

Similar to NFAs, the emptiness problems is a classical decision problem for PAs. We recall that the classical languages of PAs are defined on pure words.

Decision problem(s).

The emptiness problem asks, given a PA P with an acceptance condition, whether the accepted language of P is empty.

The language of finite words for a PA P is defined for a given threshold 0 ≤ λ ≤ 1; recall that L λ (P) = {w ∈ A * | Pr(w) ≥ λ}. The emptiness problem asks, thus, the existence of a finite word w ∈ A * such that Pr(w) ≥ λ. The strict emptiness problem is to decide the existence of a finite word w ∈ A * such that Pr(w) > λ. For the extreme value λ = 0, the answer to the emptiness problem is always yes; and the strict emptiness problem reduces to emptiness problem for NFAs. For the extreme value λ = 1, emptiness problem is reducible to the universality problem for NFAs; and the answer to the strict emptiness problem is always no. For 0 < λ < 1, both emptiness problem and strict emptiness problem are undecidable [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF].

It is known [START_REF] Baier | On decision problems for probabilistic Büchi automata[END_REF][START_REF] Chatterjee | Decidable problems for probabilistic automata on infinite words[END_REF] that the emptiness problem for PAs with positive Büchi acceptance conditions is undecidable, whereas it is PSPACE-complete for almost-sure Büchi acceptance conditions. The emptiness problem for PAs with almost-sure safety and reachability conditions are PSPACE-complete, too.

An interesting problem for PAs with a finite acceptance condition is the value 1 problem, which is used to establish several complexity results throughout this thesis. The value of a PA P augmented with the finite acceptance condition F , is val(P) = sup w∈A * Pr(w).

Decision problem(s).

The value 1 problem asks, given a PA P and a finite acceptance condition, whether val(P) = 1.

Intuitively, it asks whether some words exist with the acceptance probability arbitrarily close to 1. The value 1 problem for PAs is proved undecidable in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF]. Subsection 6.2.5 on page 134 provides some details about this problem.

3 Synchronizing Problems

First sight. In this chapter we define the synchronizing problems we are mainly concerned about in this thesis. We recall the definition of finite synchronizing words for NFAs, and we survey decision problems and conjectures about finite synchronizing words.

We then provide definitions of infinite synchronizing words for NFAs. We introduce variants of synchronizations in MDPs and PAs by considering synchronizing strategies and (finite and infinite) synchronizing words. We study the relation between one-letter finite alternating automata and MDPs. We also briefly discuss the synchronization in two-player turn-based games. 

Synchronization in NFAs

The finite synchronizing words are well-studied for finite automata, for example see [Čer64, Pin78, Epp90, IS95, IS99, San04, Vol08, Mar10, AGV10, OU10, Mar12]; such a word drives the automaton from an unknown or unobservable state to a known specific state. As an example think of remote systems connected to a wireless controller that emits the command via wireless waves but expects the observations via physical connectors (it might be excessively expensive to mount wireless senders on the remote systems), and consider that the physical connection to controller is lost due to some technical failure. The wireless controller can therefore not observe the current states of the distributed subsystems. In this setting, emitting a synchronizing word as the command leaves the remote system (as a whole) in one particular state no matter in which state each distributed subsystem started; and thus the controller again regain control.

For synchronizing words, called directable or reset words as well, applications in planning, control of discrete event systems, bio-computing, and robotics [BAPE + 03, Vol08, DMS11a].

Finite synchronization in NFAs

A finite automaton is synchronizing if there exists an input word, called synchronizing word, that brings the automaton from every state to the same state. Definition 3.1 (Finite synchronizing words). For a complete NFA N = ⟨Q, A, ∆⟩, a finite synchronizing word is a word w ∈ A * for which there exists a state q ∈ Q such that Q w -→ {q}.

The natural decision problem for finite synchronization in NFAs is as follows.

Decision problem(s).

The finite synchronizing problem asks, given an NFA, whether a finite synchronizing word exists.

A straightforward approach to decide finite synchronizing problem is a reduction to the emptiness problem in the subset construction of the NFA. For a complete NFA N = ⟨Q, A, ∆⟩, the subset construction which is usually defined to determinize the automaton, consists in ⟨Q ′ , A, ∆ ′ ⟩ where the state space Q ′ = 2 Q \ {∅} is the set of all cells, i.e., subsets of states in N , and the transition function

∆ ′ : Q ′ × A → Q ′ defined as ∆ ′ (c, a) = c ′ where c a -→ c ′ and a ∈ A.
The finite synchronizing problem for N can be encoded as the emptiness problem for the deterministic subset construction of N equipped with the initial cell c 0 = Q and the set F = {{q} | q ∈ Q} of accepting cells. By this reduction, one can prove that the language of finite synchronizing words for an NFA N , that is Example 3.1. The NFA N depicted in Figure 3.1 has three states q 0 , q 1 , q 2 and has two letters a and b. The a-transitions in q 0 is non-deterministic and bring N into q 0 or q 1 : {q 0 } a -→ {q 0 , q 1 }; the a-transitions in q 1 and q 2 however deterministically go to q 1 . The b-transition in q 2 spreads the current state of the automaton into the state space: {q 2 } b -→ {q 0 , q 1 , q 2 } whereas the b-transitions in q 0 and q 1 are deterministic and moves the automaton into q 0 . The word a • a • b is synchronizing since {q 0 , q 1 , q 2 } a•a•b --→ {q 0 }; it can be verified by Figure 3.2 that illustrates some part of the subset construction to show the run from the initial cell {q 0 , q 1 , q 2 } to the accepting cell {q 0 } over the word a

L synch = {w ∈ A * | w is a finite synchronizing word for N }, is a regular language. q 0 q 1 q 2 a b a,
{q 0 , q 1 , q 2 } {q 0 , q 1 } {q 0 }
• a • b. We see that all words b * • a • a * • b • a * are synchronizing too.

▹

The reduction to emptiness problem for subset construction provides the PSPACE membership of the finite synchronizing problem for NFAs. A reduction from the finite automata intersection that is PSPACE-complete [Koz77, GJ79, San04], has established the matching lower bound to prove that finite synchronizing problem is indeed that costly, even if only one transition in the NFA is non-deterministic [IS99, [START_REF] Martyugin | Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA[END_REF][START_REF] Martyugin | Synchronization of automata with one undefined or ambiguous transition[END_REF]. The same complexity results hold for the finite synchronizing problem of not-complete DFAs, called partial finite automata (PFAs), even if the transition function is undefined only for one state-action pair [START_REF] Martyugin | Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA[END_REF][START_REF] Martyugin | Synchronization of automata with one undefined or ambiguous transition[END_REF]. When the DFA is complete, the finite synchronizing problem lies in NLOGSPACE. Below, we see that the reason of the lower complexity for DFAs is the pair-wise synchronizing technique whose idea comes from a Lemma proved by Černý in the early 1960's [Čer64].

Finite synchronizing word for DFAs. For a given complete deterministic finite automaton N = ⟨Q, A, ∆⟩, there exists a finite synchronizing word if, and only if, for all pairs of states q 1 , q 2 ∈ Q, there exists a state q and a word w such that {q 1 , q 2 } w -→ {q}. This result is by a Lemma from Černý [Čer64, Epp90, Vol08]; one direction of the statement is trivial, by monotonicity for all states q, if Q w -→ {q} implying that w is a synchronizing word for N then {q 1 , q 2 } w -→ {q} for all pairs of states q 1 and q 2 . The reverse direction is provable by an easy observation about DFAs: when runs (over any arbitrarily word) starting in two states q 1 and q 2 cross each other in some state q, those runs stay merged/synchronized forever. In other words, all words w •v ∈ A * are synchronizing when w is a finite synchronizing the automaton of Example 2.2 word followed by v ∈ A * . This observation does not hold in a non-deterministic setting. As a result in DFAs, the state space can be synchronized by consecutive synchronizations of pairs of states. The NLOGSPACE upper bound for DFAs follows from an algorithm repeating pair-wise synchronization as follows:

q 0 q 1 q 2 q 3 {q 0 , q 1 } {q 1 , q 2 } {q 2 , q 3 } {q 1 , q 3 } {q 0 , q 2 } {q 0 , q 3 } a a
(1) choose a pair of states q 1 and q 2 from the set S of must-be-synchronized states, where S is initially set to the state space Q.

(2) find a word w for which there exists q such that {q 1 , q 2 } w -→ {q}; if such a word does not exists, return "no synchronizing word exists". Otherwise, update the set of must-besynchronized states: compute the successor set S ′ after inputting the word w: S w -→ S ′ and let S = S ′ .

(3) if S is a singleton, return "the automaton is synchronizing". The termination of this algorithm is guaranteed by Černý's Lemma. In fact by each iteration, the set S shrinks to a strictly smaller set and the algorithm terminates in at most |Q| iterations. The algorithm is thus in NLOGSPACE that comes from the second step which is finding a word w that merges runs from two states q 1 and q 2 ; this can be reduced to the membership problem in the subset construction of the automaton where the state space (of the subset construction) is restricted only to cells of size at most 2 (equivalently to the reachability problem in the product of two copies of the DFA). Figure 3.3 shows such subset construction, i.e., restricted to cells of size at most 2, for the deterministic automaton described in Example 2.2 on page 19. We see that for all pairs of states, there is a run to the accepting cell {q 0 }. A finite synchronizing word for this automaton is b

• a 3 • b • a 3 • b.
This algorithm constructs a synchronizing word for the input DFA, if any, that is not always the shortest one.

The famous Černý conjecture claims that the length of shortest synchronizing word for a DFA with n > 1 states is at most (n -1) 2 . Despite all attempts in last decades, this conjecture has not been proved or disproved. Černý provided a family of the automaton (over the alphabet {a, b}) where the shortest synchronizing word is exactly the extreme value (n -1) 2 . An n-states automaton in this family has following structure: there is a loop going through q 0 q 1 • • • q n-1 and closing in q 0 . For all states, the a-transitions shift once the automaton in this loop q 0 q 1 • • • q n-1 q 0 . For all states q ̸ = q n-1 , the b-transition is a self-loop on q; the b-transition in q n-1 takes the automaton to q 0 . See Example 2.2 for a formal description for the transition function of the 4-state automaton instance of this family. The shortest synchronizing word for the automaton in Example 2.2 is b • a 3 • b • a 3 • b and for the n-state automaton in this family is (b • a n-1 ) n-2 • b. This family is the only known family satisfying the extreme bound on the length of shortest synchronizing word [START_REF] Mikhail | Synchronizing automata and the Cerny conjecture[END_REF][START_REF] Ananichev | Slowly synchronizing automata and digraphs[END_REF]. The best known upper bound for the shortest synchronizing words of an n-state automaton is 1 6 (n 3n -6), proved by Pin [START_REF] Pin | Sur les mots synthronisants dans un automate fini[END_REF][START_REF] Mikhail | Synchronizing automata and the Cerny conjecture[END_REF]. Trahtman recently tried to provide a better upper bound 1 48 (7n 3 +6n 2 -16n) where the proof was unfortunately erroneous [START_REF] Trahtman | Modifying the upper bound on the length of minimal synchronizing word[END_REF][START_REF] Trahtman | The length of a minimal synchronizing word and the černy conjecture[END_REF]. The related decision problem which asks, given a DFA and the bound k, whether the DFA has a synchronizing word with length less than k, is complete for the class DP [OU10], the closure of NP∪coNP under finite intersections.

Synchronization from a subset in NFAs. A variant of finite synchronization in NFAs is synchronization from a subset S of states.

Decision problem(s).

Given an NFA N = ⟨Q, A, ∆⟩ and a subset S ⊆ Q, the finite synchronizing problem from a subset S asks whether there exists a finite word w ∈ A * and some state q such that S w -→ {q}.

The finite synchronizing problem from a subset is PSPACE-complete, even if the automaton is complete and deterministic [START_REF] Sandberg | Model-Based Testing of Reactive Systems[END_REF]. In DFAs, the pair-wise synchronizing technique provides a NLOGSPACE algorithm for the synchronizing finite problem. This technique fails when synchronizing from a subset is asked because a pair of states q 1 , q 2 ∈ S are not guaranteed to be merged in a state q from which (and the states of the must-be-synchronized set) there is a synchronizing word. Thus, the order in which the pairs of state are chosen for pair-wise synchronization matters. Note that, an NFA might not have a synchronizing word but synchronizing words from S exist for several subsets S of the states.

The PSPACE upper bound for the synchronization from a subset comes trivially from the membership problem of the subset construction. To find a synchronizing word from S, we equip the subset construction with the initial cell c 0 = S and the set F = {{q} | q ∈ Q} of accepting cells. The PSPACE-hardness is by a reduction from finite automata intersection [Koz77, GJ79, San04]; the finite automata intersection asks, given n DFAs equipped with initial states and accepting sets, is there a common finite word that is accepting by all DFAs. For n automaton N 1 , N 2 , • • • , N n over the common alphabet A, let q 1 , q 2 , • • • , q n be the initial states and F 1 , F 2 , • • • , F n be the accepting sets. Let N be the automaton that has one copy of each automaton N i (1 ≤ i ≤ n) and two new absorbing states synch and sink. For a new letter #, let #-transitions in all accepting states q ∈ F 1 ∪ • • • ∪ F n of all automata go to the state synch whereas all #-transitions in all non-accepting states q ̸ ∈ F 1 ∪ • • • ∪ F n go to the state sink. From the subset S = {q 1 , q 2 , • • • , q n , synch}, a synchronizing word cannot escape synch because synch is an absorbing state. Let w be the shortest synchronizing word from S. As a result w must end with #: w = v • # where v ∈ A * ; it holds since the only way that runs starting in the initial states q 1 , q 2 , • • • , q n arrives in synch is inputting # at the right time when those runs are in some accepting states. One can verify that v is an accepting word for all N i (1 ≤ i ≤ n).

Infinite synchronization in NFAs

We provide four definitions of infinite synchronizing words for NFAs to define languages of infinite synchronizing words, in analogy to safety, reachability, Büchi and coBüchi acceptance conditions. For an infinite word w = a 0 • a 1 • a 2 • • • , let w 0 = ϵ be the empty word and for all i ≥ 1, let w i denote the prefix a 0 • • • a i-1 of w consisting in the first i letters.

Definition 3.2 (Infinite synchronizing words). For a complete NFA N = ⟨Q, A, ∆⟩, an infinite word w ∈ A ω is • always synchronizing if for all i ∈ N there exists some state q such that Q

w i -→ {q},
• eventually (or event) synchronizing if there exists i ∈ N and some state q such that Q

w i -→ {q},
• weakly synchronizing if for all n ∈ N there exists i ≥ n and some state q such that Q

w i -→ {q},
• strongly synchronizing if there exists n ∈ N such that for all i ≥ n there exists some state q where Q

w i -→ {q}
where w 0 = ϵ and for i ≥ 1, the word w i is the prefix of w consisting in the first i letters.

Intuitively, the always and eventually synchronization condition require that the NFA is always synchronized or at least once; though the weakly requires infinitely often synchronization, and strongly requires always synchronization except for finitely many times. We say that an NFA N is {always, event, strongly, weakly} synchronizing if there exists a(n) {always, event, strongly, weakly} synchronizing infinite word for N .

For an NFA N , let the language L always , L event , L strongly and L weakly be the set of all always, eventually, strongly and weakly synchronizing words, respectively. As an immediate result of definitions:

Remark 3. For an NFA N , we have L always ⊆ L strongly ⊆ L weakly ⊆ L event .
These inclusions, in general, are strict; see Example 3.2. Note that the language L always is an empty set for all NFAs that have at least two states. In the sequel, we present variations of these definitions where the always synchronization is possible. For a DFA defined over an alphabet A, we have L strongly = L weakly = L event where L event is the set of all words w.v constructed by a finite synchronizing word w concatenated with an infinite word v ∈ A ω . Example 3.2. The NFA N 1 in Figure 3.4 has four states q 0 , q 1 , q 2 , q 3 and two letters a and b. The a-transition in q 0 is non-deterministic {q 0 } a -→ {q 0 , q 1 }; but it is deterministic in other states: q 2 a -→ q 3 , q 3 a -→ q 2 and it is a self-loop on q 1 . The b-transitions in q 0 and q 1 take the automaton to q 2 , and it is a self-loop on q 2 itself. The b-transition in q 3 is non-deterministic: {q 3 } b -→ {q 2 , q 3 }. The word w = b • a is a finite synchronizing word for N 1 , thus any infinite word initiated with w is an eventually synchronizing word, such as b • a • b ω . The word b • a • b ω is a witness to show that L weakly ⊂ L event for N 1 . A strongly and weakly synchronizing word, here, is b • a ω .

q 0 q 1 q 2 q 3 b a,
The NFA N 2 depicted in Figure 3.5 is an example to show that there are NFAs for which the inclusion L strongly ⊂ L weakly is strict. The a-transitions in this automaton synchronizes N in q 0 : q i a -→ q 0 for all 0 ≤ i ≤ 2. The b-transitions in q 1 and q 2 are self-loops; and {q 0 } b -→ {q 1 , q 2 }. The languages of strongly and weakly synchronizing words are

L strongly = (a + b) * a ω and L weakly = L strongly + (a + b) * (b • b * • a • a * ) ω .
▹ Decision problem(s). For all λ ∈ {always, event, strongly, weakly}, the emptiness problem for L λ asks, given an NFA N , whether no infinite λ-synchronizing words exist for N meaning that L λ = ∅.

Similar to finite synchronization, we can define λ-synchronization from an initial subset Q 0 of states. For example, a strongly synchronizing word from Q 0 is a word w ∈ A ω for which there exists n ∈ N such that for all i ≥ n there exists some state

q ∈ Q such that Q 0 w i -→ {q}. Note that if Q 0 is
a singleton, all infinite words are trivially eventually synchronizing. In this case, we are mostly interested in nontrivial synchronization (when synchronization after at least one input is of interest). For the automaton N 2 described in Example 3.2, since there is a weakly synchronizing word from Q, there are weakly synchronizing words from all subsets Q 0 of Q.

For an NFA N with an initial set Q 0 , the set of all infinite runs over an infinite word w = a 0 •a 1 •a 2 • • • can be visualized as an acyclic graph for which there is |Q 0 | roots: all states q 0,j c 4 = {q 2 , q 3 } q 0,0 q 1,2 q 2,3 q 3,2 q 3,3 q 4,2 q 4,3 q 5,2 q 5,3 where q j ∈ Q 0 . The set of vertices is

• • • • • •
V = {q 0,j | q j ∈ Q 0 } ∪ * i∈N {q i+1,j | q j ∈ S where Q 0 w i -→ S}
where w i = a 0 • • • a i is the prefix of w consisting in the first i + 1 letters. There is an edge from q i,j towards q i+1,k , denoted by q i,j → q i+1,k , if q j a i -→ q k , q j , q k ∈ Q. For all i ∈ N, define c i = {q j | q i,j ∈ V }, that is the set of states where the automaton may arrive in after inputting the first i letters. Thus, c 0 = Q 0 and c 1 = ∆(Q 0 , a 0 ). In fact, the sequence

c 0 c 1 c 2 • • • is nothing else than the sequence of sets where c 0 = Q 0 and Q 0 w i -→ c i+1 .
Each infinite path starting in a root, on this acyclic graph is indeed an infinite run induced by the word w. As an example, consider the infinite word b • a • b ω over the NFA N 1 in Example 3.2. The acyclic graph of runs starting from Q 0 = {q 0 } is drawn in Figure 3.6. Now, we can re-formalize the definitions of infinite synchronizing words for the NFAs. Let N be an NFA and Q 0 be an initial set. For example, a strongly synchronizing word from Q 0 is a word w ∈ A ω for which there exists n ∈ N such that for all i ≥ n we have |c i | = 1; a weakly synchronizing word from Q 0 is a word w ∈ A ω such that for all n ∈ N there exists i ≥ n where |c i | = 1. For the NFA N 1 in Example 3.2 the word w = b • a • b ω is neither strongly nor weakly synchronizing from Q 0 = {q 0 }: because |c i | ≥ 2 for all i ≥ 3 (the acyclic graph induced by w is drawn in Figure 3.6). This word w is however a (nontrivial) eventually synchronizing word:

|c 1 | = 1.
We introduce two other variants of infinite synchronization for an NFA. In these variants, the states where the automaton arrives in at synchronization's time is under question. For a target set T , we define the Boolean functions sub T : 2 Q → {true, false} and mem T : 2 Q → {true, false} where for all c ⊆ Q, we have sub

T (c) = true if ∅ ̸ = c ⊆ T and mem T (c) = true if |c| = 1 and c ⊆ T .
Intuitively, the function sub T only decides if the input set is a non-empty subset of T (subset inclusion of c) though the function mem T decides if c is a singleton such as c = {q}, and if q ∈ T (membership of q). Definition 3.3 (Infinite synchronizing words into target sets). For a complete NFA N = ⟨Q, A, ∆⟩ with an initial set Q 0 , a target set T and f ∈ {sub T , mem T }, an infinite word w ∈ A ω from Q 0 according to f is

• always synchronizing if f (c i ) for all i ∈ N,
• eventually (or event) synchronizing if f (c i ) for some i ∈ N,

• weakly synchronizing if for all n ∈ N there exists i ≥ n such that f (c i ),

• strongly synchronizing if there exists n ∈ N such that for all i ≥ n we have f (c i ).

As an instance, consider the automaton N 1 described in Example 3.2 and the unique initial state q 0 . The word b • a • b ω where the induced graph of runs is drawn in Figure 3.6, is not strongly synchronizing from q 0 according to the function mem {q 1 ,q 2 ,q 3 } but it is strongly synchronizing according to sub {q 1 ,q 2 ,q 3 } .

Given an NFA N with the initial set Q 0 of states and the target set T , define the λ-synchronizing ω-language for N according to f to be L λ (f ) = {the set of all infinite λ-synchronizing words for N from Q 0 according to f } where λ ∈ {always, event, strongly, weakly} and f ∈ {sub T , mem T }.

Decision problem(s).

The emptiness problem of the λ-synchronizing ω-language according to f asks, given an NFA N and an initial set of states Q 0 , whether L λ (f ) = ∅.

For the automaton N 2 of Example 3.2 with all possible initial set Q 0 ⊆ Q and for all λ ∈ {event, strongly, weakly}, we have L λ (mem {q 1 ,q 2 } ) = ∅ whereas L λ (sub {q 1 ,q 2 }) ̸ = ∅. For the emptiness problem of λ-synchronizing ω-languages according to a function f , without loss of generality we can assume that the initial set is a singleton set: given an NFA N and an initial set Q 0 , we construct a copy of N with a new initial state q init from which the successor set on all actions is Q 0 (for eventually synchronizing, we need to consider nontrivial synchronization and for always synchronizing, we need to consider the target set T = T ∪ {q init }). We, thus, always equip the automaton with an initial state q init and study synchronization from that unique initial state.

For all singleton target sets T , we have sub T = mem T , thus we have L λ (sub T ) = L λ (mem T ). For the sake of simplicity we usually denote by L λ (q) those sets when T = {q}.

Synchronization in MDPs

For probabilistic systems, a natural extension of words is the notion of strategy that reacts and chooses actions according to the sequence of states visited along the system execution. In this context, we define synchronizing problems in MDPs regarding to strategies (and not words). To this aim, we consider a symbolic-outcome of MDPs viewed as generators of sequences of probability distributions over states [START_REF] Vijay | Reasoning about MDPs as transformers of probability distributions[END_REF]. In contrast to the traditional path-outcomes presented in subsection 2.4.2, the symbolic-outcome of MDPs recently has received attention [KVAK10, CKV + 11, AAGT12, HKK14].

Let us first define two variants of the reachability condition for MDPs: given a set T ⊆ Q of target states and k ∈ N, the event of reaching T after exactly k steps is

♦ k T = {q 0 q 1 q 2 • • • ∈ Plays(M) | q k ∈ T },
and the event of reaching T within k steps is

♦ ≤k T = + j≤k ♦ j T .
In the same way of reachability condition, these events are measurable provided the strategy α and the initial distribution X 0 ; thus, the probabilities Pr α (♦ k T ) and Pr α (♦ ≤k T ) of the events are uniquely defined. As an example, consider the MDP M described in Example 2.3 on page 21 and the memoryless strategy γ where γ(q 0 ) = a and γ(q) = b for all states q ̸ = q 0 (defined in Example 2.5 on page 24). Let X 0 be the Dirac distribution on q 0 , then from

X 0 -Pr γ (♦ k {q 1 }) = 1 2 k for all k ≥ 1: it holds since ♦ k {q 1 } = (q 0 ) k-1 q 1 Q ω and
since on the action a, the probability that M stays in q 0 or leaves q 0 to move into

q 1 is 1 2 p if M is in q 0 with probability p. -Pr γ (♦ ≤k {q 3 }) = 1 -1 2 k-2 for all k ≥ 3. Since q 3 is absorbing, when M arrives in q 3 it can never leave out q 3 . Hence, Pr γ (♦ ≤k {q 3 }) = Pr γ (♦ k {q 3 }).
Symbolic-outcome of MDPs. Let M be an MDP and X 0 ∈ D(Q) be an initial distribution. Under a strategy α, the symbolic-outcome of M from X 0 is the infinite sequence

M α 0 M α 1 M α 2 • • • of probability distributions defined by M α k (q) = P r α (♦ k {q}) for all k ≥ 0 and q ∈ Q. Hence, M α
k is the probability distribution over states after k steps under strategy α. Note that M α 0 = X 0 . As an example, the infinite sequence

q 0 q 1 q 2 q 3 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 2 1 2 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 4 1 4 1 2 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 8 1 8 1 4 1 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 16 1 16 1 8 3 4 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 32 1 32 1 16 7 8 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ • • •
is the symbolic-outcome for the MDP M described in Example 2.3 under the memoryless strategy γ where γ(q 0 ) = a and γ(q) = b for all states q ̸ = q 0 (mentioned in Example 2.5).

Synchronization. Informally, synchronizing conditions require that the probability of some target state (or some group of target states) tends to 1 in the sequence

M α 0 M α 1 M α 2 • • •
, either always, once, infinitely often, or always after some point. Given a target set T ⊆ Q, we define the functions sum T :

D(Q) → [0, 1] and max T : D(Q) → [0, 1] that compute sum T (X) =
# q∈T X(q) and max T (X) = max q∈T X(q). The function max T (X) is the quantitative version of the function mem(Supp(X)), and sum T (X) is the quantitative version of sub T (Supp(X)).

Always Eventually

Sure ∃α ∀n M α n (T ) = 1 ∃α ∃n M α n (T ) = 1 Almost-sure ∃α inf n M α n (T ) = 1 ∃α sup n M α n (T ) = 1 Limit-sure sup α inf n M α n (T ) = 1 sup α sup n M α n (T ) = 1 Weakly Strongly Sure ∃α ∀N ∃n ≥ N M α n (T ) = 1 ∃α ∃N ∀n ≥ N M α n (T ) = 1 Almost-sure ∃α lim sup n→∞ M α n (T ) = 1 ∃α lim inf n→∞ M α n (T ) = 1 Limit-sure sup α lim sup n→∞ M α n (T ) = 1 sup α lim inf n→∞ M α n (T ) = 1
Table 3.1: Winning modes and synchronizing conditions (where M α n (T ) denotes the probability that under strategy α, after n steps the MDP M is in a state of T ).

Definition 3.4 (Synchronized probability distributions). For the function f ∈ {sum T , max T } and p ∈ [0, 1], we say that a probability distribution X is p-synchronized

according to f if f (X) ≥ p.
We say that a sequence X = X 0 X 1 . . . of probability distributions is:

(a) always p-synchronizing if X i is p-synchronized for all i ≥ 0; (b) event (or eventually) p-synchronizing if X i is p-synchronized for some i ≥ 0;
(c) weakly p-synchronizing if X i is p-synchronized for infinitely many i's; (d) strongly p-synchronizing if X i is p-synchronized for all but finitely many i's.

For p = 1, these definitions are analogous to the traditional safety, reachability, Büchi, and coBüchi conditions [START_REF] De Alfaro | Concurrent omega-regular games[END_REF].

Similar to traditional semantics, the following winning modes can be considered:

Definition 3.5 (Synchronizing MDPs). Let M = ⟨Q, A, δ⟩ be an MDP with the initial distribution X 0 and let f ∈ {sum T , max T }. For the {always, eventually, weakly, strongly} synchronizing condition, M is:

• sure winning if there exists a strategy α such that the symbolic-outcome of α from X 0 is {always, eventually, weakly, strongly} 1-synchronizing according to f ;

• almost-sure winning if there exists a strategy α such that for all ϵ > 0 the symbolicoutcome of α from X 0 is {always, eventually, weakly, strongly} (1-ϵ)-synchronizing according to f ;

• limit-sure winning if for all ϵ > 0, there exists a strategy α such that the symbolicoutcome of α from X 0 is {always, eventually, weakly, strongly} (1-ϵ)-synchronizing according to f .

We often use X(T ) instead of sum T (X), as in Tables 3.1 where the definitions of the various winning modes and synchronizing conditions for f = sum T are summarized, and we use ∥X∥ T instead of max T (X).

For f ∈ {sum T , max T } and λ ∈ {always, event(ually), weakly, strongly}, the winning region ⟨⟨1⟩⟩ λ sure (f ) is the set of initial distributions such that M is sure winning for λsynchronization (we assume that M is clear from the context). We define analogously the winning regions ⟨⟨1⟩⟩ λ almost (f ) and ⟨⟨1⟩⟩ λ limit (f ). For a singleton T = {q}, we have sum T = max T , and we simply write ⟨⟨1⟩⟩ λ µ (q) where µ ∈ {sure, almost, limit}. Example 3.3. Consider the MDP M described in Example 2.3 on page 21 and the memoryless strategy γ where γ(q 0 ) = a and γ(q) = b for all states q ̸ = q 0 (defined in Example 2.5 on page 24). The outcome from the initial Dirac distribution q 0 is as follows

q 0 q 1 q 2 q 3 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 2 1 2 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 4 1 4 1 2 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 8 1 8 1 4 1 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 16 1 16 1 8 3 4 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 32 1 32 1 16 7 8 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ • • • ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 2 k 1 2 k 1 2 k-1 1 -1 2 k-2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ • • •
where k ≥ 3 is the number of steps. We have

sup k∈N M γ k (q 3 ) = sup k∈N (1 -1 2 k-2 ) = 1 showing that q 0 ∈ ⟨⟨1⟩⟩ event almost (q 3
). Consider the pure memoryless strategy β that always plays b in all states: β(q) = b for all states q ∈ Q. The outcome is such that for all k ∈ N, the probability M β k (q 0 ) = 1 from q 0 which trivially gives q 0 ∈ ⟨⟨1⟩⟩ always sure (q 0 ). The MDP M is sure winning for always synchronizing condition since in all steps k, there is a deterministic transition ensuring the existence of a unique successor, and thus ensuring that the probability distribution M β k+1 over states remains a Dirac distribution. By definition, if q 0 is sure winning for always synchronizing condition in {q 0 }, it is sure winning for eventually synchronizing condition too. Thus, ⟨⟨1⟩⟩ event sure (max T ) ̸ = ∅ for the target set T = {q 0 , q 1 }. Now, let us modify the MDP M as follows. The b-transition in q 0 is not deterministic anymore: δ(q 0 , b)(q 0 ) = δ(q 0 , b)(q 1 ) = 1 2 (shown in Figure 3.7). We can easily verify that q 0 ̸ ∈ ⟨⟨1⟩⟩ always sure (q 0 ) and q 0 ̸ ∈ ⟨⟨1⟩⟩ always sure (q 1 ) neither. This two results are sufficient to prove that q 0 ̸ ∈ ⟨⟨1⟩⟩ always sure (max T ) for the target set T = {q 0 , q 1 }. However, a pure memoryless strategy that always plays a for all states q ∈ Q, is a witness to prove q 0 ∈ ⟨⟨1⟩⟩ always sure (sum T ).

▹

The definitions of synchronization result in following hierarchies:

Remark 4. Given an MDP M, for all functions f ∈ {sum T , max T }, for all λ ∈ {always, event, weakly, strongly}, and µ ∈ {sure, almost, limit}, we have:

-⟨⟨1⟩⟩ λ sure (f ) ⊆ ⟨⟨1⟩⟩ λ almost (f ) ⊆ ⟨⟨1⟩⟩ λ limit (f ), -⟨⟨1⟩⟩ always µ (f ) ⊆ ⟨⟨1⟩⟩ strongly µ (f ) ⊆ ⟨⟨1⟩⟩ weakly µ (f ) ⊆ ⟨⟨1⟩⟩ event µ (f ) q 0 q 1 q 2 q 3 a, b : 1 2 a, b : 1 2 b a a, b a, b Figure 3.7: An MDP M such that ⟨⟨1⟩⟩ event
almost (q 2 ) ̸ = ⟨⟨1⟩⟩ event limit (q 2 ) and ⟨⟨1⟩⟩ λ sure (q 1 ) ̸ = ⟨⟨1⟩⟩ λ almost (q 1 ) for all λ ∈ {event, weakly, strongly}.

For the always synchronizing condition we will provide robustness result saying that the three winning modes coincide: ⟨⟨1⟩⟩ always sure (f ) = ⟨⟨1⟩⟩ always almost (f ) = ⟨⟨1⟩⟩ always limit (f ) (See Lemma 4.1 on page 64). For the eventually synchronizing condition as the least robust synchronization, we will prove that the inclusions ⟨⟨1⟩⟩ event sure (f ) ⊂ ⟨⟨1⟩⟩ event almost (f ) ⊂ ⟨⟨1⟩⟩ event limit (f ) are in general strict (See Lemma 3.1 on page 49). The strong and weak synchronization are more robust than eventually synchronization, but less than always synchronization: we see that ⟨⟨1⟩⟩ λ sure (f ) ⊂ ⟨⟨1⟩⟩ λ almost (f ) where λ ∈ {strongly,weakly}; and we will prove that the almost-sure and limit-sure winning modes coincide (See Lemma 3.1 , Theorem 5.3 and Corollaries 6.1 and 6.2 on pages 49, 100, 119 and 123, respectively.).

Lemma 3.1. For all λ ∈ {event, weakly, strongly}, there exists an MDP M and two states q 1 , q 2 such that:

(i) ⟨⟨1⟩⟩ λ sure (q 1 ) ! ⟨⟨1⟩⟩ λ almost (q 1 ) and, (ii) ⟨⟨1⟩⟩ event almost (q 2 ) ! ⟨⟨1⟩⟩ event limit (q 2 ).

Proof. Consider the MDP M with states q 0 , q 1 , q 2 , q 3 and actions a, b as shown in Figure 3.7. All transitions are deterministic except from q 0 where on all actions, the successor is q 0 or q 1 with probability 1 2 . The deterministic a and b-transitions in q 1 , q 2 , q 3 are as follows,

δ(q 1 , a) = q 1 , δ(q 1 , b) = q 2 and δ(q 2 , c) = δ(q 3 , c) = q 3 for c ∈ {a, b}.
Let the initial distribution X 0 be the Dirac distribution on q 0 . To establish (i), since ⟨⟨1⟩⟩ strongly µ (q 1 ) ⊆ ⟨⟨1⟩⟩ weakly µ (q 1 ) ⊆ ⟨⟨1⟩⟩ event µ (q 1 ) for all µ ∈ {sure, almost}, it is sufficient to prove that X 0 ∈ ⟨⟨1⟩⟩ strongly almost (q 1 ) and X 0 ̸ ∈ ⟨⟨1⟩⟩ event sure (q 1 ), as it implies that X 0 ∈ ⟨⟨1⟩⟩ λ almost (q 1 ) and X 0 ̸ ∈ ⟨⟨1⟩⟩ λ sure (q 1 ) for all λ ∈ {event, weakly, strongly}. To prove that X 0 ∈ ⟨⟨1⟩⟩ strongly almost (q 1 ), consider the pure strategy that always plays a. The outcome is such that the probability to be in q 1 after k steps is 1 -1 2 k , showing that M is almost-sure winning for the strongly synchronizing condition in the target set {q 1 } (from X 0 ). On the other hand, X 0 ̸ ∈ ⟨⟨1⟩⟩ event sure (q 1 ) because for all strategies α, the probability in q 0 remains always positive, and thus in q 1 we have M α n (q 1 ) < 1 for all n ≥ 0, showing that M is not sure winning for the eventually synchronizing condition in q 1 (from X 0 ).

To establish (ii), for all k ≥ 0 consider a strategy that plays a for k steps, and then plays b. Then the probability to be in q 2 after k+1 steps is 1-1 2 k , showing that this strategy is eventually (1 -1 2 k )-synchronizing in the target set {q 2 }. Hence, M is limit-sure winning for the eventually synchronizing condition in q 2 (from X 0 ). Second, for all strategies, since

ℓ p q a : 1 5 a : 4 5 a a ⇒ ℓ 1 ℓ 2 p 1 p 2 q 1 10 1 10 4 5 1 10 1 10 4 5 1 2 1 2 1 2 1 2 1 2 1 2
Figure 3.8: State duplication ensures that the probability mass can never be accumulated in a single state except in q (we omit action a for readability).

the probability in q 0 remains always positive, the probability in q 2 is always smaller than 1. Moreover, if the probability p in q 2 is positive after n steps (p > 0), then after any number m > n of steps, the probability in q 2 is bounded by 1p. It follows that the probability in {q 2 } is never equal to 1 and cannot tend to 1 for m → ∞, showing that M is not almost-sure winning for the eventually synchronizing condition in {q 2 } (from X 0 ).

! Decision problem(s).

For λ ∈ {always, event, strongly,weakly} and µ ∈ {sure, almost, limit}, the membership problem of λ-synchronization is to decide, given an MDP M and an initial probability distribution X 0 , whether X 0 ∈ ⟨⟨1⟩⟩ λ µ (f ).

Remark 5. For λ ∈ {eventually, weakly} synchronizing condition and each winning mode, we show that the membership problem with function max T is polynomial-time equivalent to the membership problem with function sum T ′ with a singleton T ′ . First, for µ ∈ {sure, almost, limit}, we have ⟨⟨1⟩⟩ λ µ (max T ) =

+ q∈T ⟨⟨1⟩⟩ λ µ (q),
showing that the membership problems for max are polynomial-time reducible to the corresponding membership problem for sum T ′ with singleton T ′ . The reverse reduction is as follows. Given an MDP M ′ , a singleton T ′ = {q} and an initial distribution X ′ 0 , we can construct an MDP M and initial distribution X 0 such that

X ′ 0 ∈ ⟨⟨1⟩⟩ λ µ (q) if and only if X 0 ∈ ⟨⟨1⟩⟩ λ µ (max T )
where T = Q is the state space of M. The idea is to construct M and X 0 as a copy of M ′ and X ′ 0 where all states except q are duplicated, and the initial and transition probabilities are evenly distributed between the copies (see Figure 3.8). Therefore if the probability tends to 1 in some state, it has to be in the state q. Remark 6. For λ ∈ {always, event, strongly, weakly}, for the membership problem of λsynchronization it is sufficient to consider Dirac initial distributions (i.e., assuming that MDPs have a single initial state) because the answer to the general membership problem for an MDP M with initial distribution X 0 can be obtained by solving the membership problem for a copy of M with a new initial state q init from which the successor distribution on all actions is X 0 . We, thus, always equip the MDP with an initial Dirac distribution q init and study synchronization from q init . Note that in the case of always synchronizing MDPs, the target set is replaced with T ∪ {q init }, and in the case of eventually synchronizing MDPs the non-trivial synchronization is of interest.

Synchronization in PAs

Since words for probabilistic automata can be viewed as blind strategies for MDPs, we define symbolic-runs of PAs as the symbolic outcomes of MDPs with blind strategies. In the context of synchronization, we consider randomized words for PAs.

For an infinite randomized word

w = d 0 d 1 d 2 • • • where d i ∈ D(A)
for all i ∈ N, the symbolic-run P w 0 P w 1 P w 2 • • • of the PA P from the initial distribution X 0 is defined by P w 0 = X 0 , and for all n ∈ N and q ∈ Q, by

P w n+1 (q) = ) a∈A ) q ′ ∈Q P w n (q ′ ) • d n (a) • δ(q ′ , a)(q).
By replacing the path-outcomes with run-outcomes and strategies with randomized words, PAs inherit all definitions of synchronizations (such as sure weakly synchronizing condition) from MDPs. For all λ ∈ {always, eventually, strongly, weakly} and f ∈ {max T , sum T }, we thus define {sure, almost} λ-synchronizing languages according to f for PAs P, as L λ sure (f ) and L λ almost (f ), that are the set of all randomized words (blind strategies) that P is sure and almost-sure winning for the λ-synchronizing condition. We also define the limit-sure L λ limit (f ) λ-synchronizing languages, denoted by L λ limit (f ), that is the set of all families of limit-sure words such that in each family, for all ϵ there is a word w over which P is (1ϵ)-synchronizing for λ-synchronizing condition. Decision problem(s). For λ ∈ {always, event, weakly, strongly} and f ∈ {sum T , max T }, the emptiness problem for {sure, almost, limit} λ-synchronizing languages according to f asks, given a PA P and an initial distribution X 0 , whether the language is empty. By Remark 6, without loss of generality we assume that X 0 is a Dirac distribution on the state q init . Example 3.4. Consider the MDP drawn in Figure 3.9 with the initial state q init . All transitions are deterministic except in q init where on all actions, the successors are q 1 and q 2 each with probability 1 2 . In q 1 and q 2 , the b-transitions are self-loops whereas the a-transitions leave the states to q 2 and q 3 , respectively. The state q 3 is an absorbing state.

q init q 1 q 2 q 3 a, b : 1 2 a, b : 1 2 a a b b a, b
Figure 3.9: An MDP such that q init ∈ ⟨⟨1⟩⟩ event sure (q 2 ) implying that the MDP is sure eventually synchronizing in {q 2 } by some strategy. However, there is no blind strategy under which the MDP is sure eventually synchronizing in {q 2 }, and thus L event sure (q 2 ) = ∅ from q init when interpreting the model as a PA.

We prove that q init ∈ ⟨⟨1⟩⟩ event sure (q 2 ) implying that there is some strategy for M to win sure eventually synchronizing condition in {q 2 }, and we prove that there is no blind strategy to win this condition. This implies that L event sure (q 2 ) = ∅ from q init when interpreting the model as a PA.

Consider the pure memoryless strategy α that plays a in all states except q 2 where it plays b: α(q 2 ) = b and α(q) = a for all states q ̸ = q 2 . The symbolic-outcome of

M under α is q init q 1 q 2 q 3 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 1 2 1 2 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 1 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ • • •
meaning that q init ∈ ⟨⟨1⟩⟩ event sure (q 2 ) in the MDP M. Considering the model as the PA P, the first input letter brings the automaton in q 1 or q 2 with equal probability 1 2 . From now on, if P always inputs b, the probability 1 2 in q 1 never leaks down to q 2 , and P can never be in q 2 with probability 1. On the other hand, as soon as P inputs once a, the automaton moves from q 2 to q 3 with probability 1 2 . Since q 3 is absorbing, the automaton never comes back from q 3 to q 2 ; thus, the probability in q 2 is never more than 1 2 and L event sure (q 2 ) = ∅ from q init . ▹

Relation to one-letter alternating finite automata

Let B + (Q) be the set of positive Boolean formulas over Q, i.e., Boolean formulas built from elements in Q using ∧ and ∨. A set S ⊆ Q satisfies a formula ϕ ∈ B + (Q) (denoted S |= ϕ) if ϕ is satisfied when replacing in ϕ the elements in S by true, and the elements in Q \ S by false.

q 0 δ A (q 0 ) = q 0 ∨ (q 1 ∧ q 2 ) q 1 δ A (q 1 ) = q 2 ∧ q 3 q 2 δ A (q 2 ) = q 2 q 3 δ A (q 3 ) = q 1 ∧ q 2
Figure 3.10: An example of 1L-AFA where the language L(A q 0 ) is not finite.

Definition 3.6 (One-letter alternating finite automaton). A one-letter alternating fi-

nite automaton (1L-AFA) is a tuple A = ⟨Q, δ A , F ⟩ where Q is a finite set of states, δ A : Q → B + (Q)
is the transition function, and F ⊆ Q is the set of accepting states.

We assume that the formulas in transition function are in disjunctive normal form. Note that the alphabet of the automaton is omitted, as it has a single letter. In the language of a 1L-AFA, only the length of words is relevant. For all n ≥ 0, define the set Acc A (n, F ) ⊆ Q of states from which the word of length n is accepted by A as follows:

-

Acc A (0, F ) = F ; -Acc A (n, F ) = {q ∈ Q | Acc A (n -1, F ) |= δ(q)} for all n > 0. The set L(A q ) = {n ∈ N | q ∈ Acc A (n, F )}
is the language accepted by A from initial state q.

Example 3.5. Consider the 1L-AFA depicted in Figure 3.10 which has four states q 0 , q 1 , q 2 and q 3 . The transition function is defined as follows. In q 0 , there is a self-loop and another transition going to q 1 and q 2 : δ A (q 0 ) = q 0 ∨ (q 1 ∧ q 2 ). The state q 2 has a self-loop. In q 1 and q 3 , there are only ∧-transitions: δ A (q 1 ) = q 2 ∧ q 3 and δ A (q 3 ) = q 1 ∧ q 2 . Let F = {q 2 , q 3 } be the set of accepting states. By definition, we have Acc A (0, {q 2 , q 3 }) = {q 2 , q 3 } and

Acc A (1, F ) = {q 1 , q 2 } and Acc A (2, F ) = {q 0 , q 2 , q 3 }.
Since q 0 has a self-loop, then q 0 ∈ Acc A (n, F ) for all next iterations n ≥ 2. It implies that the language L(A q 0 ) of A starting in q 0 is not finite.

▹

For fixed n, we view Acc A (n, •) as an operator on 2 Q that, given a set

F ⊆ Q computes the set Acc A (n, F ). Note that Acc A (n, F ) = Acc A (1, Acc A (n -1, F)) for all n ≥ 1.
Denote by Pre A (•) the operator Acc A (1, •). Then for all n ≥ 0 the operator Acc A (n, •) coincides with Pre n A (•), the n-th iterate of Pre A (•). For the 1L-AFA of Example 3.5, we have Pre 3 A ({q 2 , q 3 }) = {q 0 , q 1 , q 2 } and Pre 4 A ({q 2 , q 3 }) = {q 0 , q 2 , q 3 }. For the next iterations, we see that for all n ≥ 1

Pre 2n+1 A ({q 2 , q 3 }) = Pre 3 A ({q 2 , q 3 }) and Pre 2n+2 A ({q 2 , q 3 }) = Pre 2 A ({q 2 , q 3 }). Thus, the infinite sequence Pre 0 A (F )Pre 1 A (F )Pre 2 A (F ) • • • is ultimately periodic.
This sequence is ultimately periodic for all 1L-AFAs: there exists n, k ∈ N such that Pre n+k A (F ) = Pre n A (F).

Problems for 1L-AFA

We present classical decision problems for alternating automata, namely the emptiness and finiteness problems, and we introduce a variant of the finiteness problem that will be useful to give the complexity of synchronizing problems for (two player games and) MDPs.

Decision problem(s).

Given a 1L-AFA A and an initial state q, the emptiness problem for 1L-AFAs is to decide whether L(A q ) = ∅, and the finiteness problem is to decide whether L(A q ) is finite. The universal finiteness problem is to decide, given a 1L-AFA A, whether L(A q ) is finite for all states q.

In sequel, we discuss all of these three decision problems.

Emptiness problem. Given a 1L-AFA A, the sequence Pre n A (F ) is ultimately periodic: for all n > 2 |Q| there exists k ≤ 2 |Q| such that Pre k A (F ) = Pre n A (F ). Therefore, a simple PSPACE algorithm to decide the emptiness problem is to compute on the fly the sets Pre n A (F) for n ≤ 2 |Q| , and check membership of q. The emptiness problem can be solved by checking whether q ∈ Pre n A (F ) for some n ≥ 0. It is known that the emptiness problem is PSPACE-complete, even for transition functions in disjunctive normal form [START_REF] Holzer | On emptiness and counting for alternating finite automata[END_REF][START_REF] Jancar | A note on emptiness for alternating finite automata with a one-letter alphabet[END_REF].

Finiteness problem. This problem can be solved in (N)PSPACE by guessing n, k ≤ 2 |Q| such that Pre n+k A (F ) = Pre n A (F ) and q ∈ Pre n A (F ). The finiteness problem is PSPACEcomplete by a simple reduction from the emptiness problem: from an instance (A, q) of the emptiness problem, construct (A ′ , q ′ ) where q ′ = q and A ′ = ⟨Q, δ ′ , F ⟩ is a copy of A = ⟨Q, δ, F ⟩ with a self-loop on q (formally, δ ′ (q) = q ∨ δ(q) and δ

′ (r) = δ(r) for all r ∈ Q \ {q}). It is easy to see that L(A q ) = ∅ if and only if L(A ′ q ′ ) is finite.
Universal finiteness problem. This problem can be solved in PSPACE by checking whether

Pre n A (F ) = ∅ for some n ≤ 2 |Q| . Note that if Pre n A (F ) = ∅, then Pre m A (F ) = ∅ for all m ≥ n.
Given the PSPACE-hardness proofs of the emptiness and finiteness problems, it is not easy to see that the universal finiteness problem is PSPACE-hard.

Lemma 3.2. The universal finiteness problem for 1L-AFA is PSPACE-hard. Proof. The proof is by a reduction from the emptiness problem for 1L-AFA, which is

PSPACE-complete [Hol95, JS07]. The language of a 1L-AFA A = ⟨Q, δ, F ⟩ is non-empty if q 0 ∈ Pre i A (F ) for some i ≥ 0. Since the sequence Pre i A (F ) is ultimately periodic, it is sufficient to compute Pre i A (F ) for all i ≤ 2 |Q| . From A, we construct a 1L-AFA B = ⟨Q ′ , δ ′ , F ′ ⟩ with set F ′ of accepting states such that the sequence Pre i B (F ′ ) in B mimics the sequence Pre i A (F ) in A for 2 |Q| steps.
The automaton B contains the state space of A, i.e., Q ⊆ Q ′ . The goal is to have Pre i B (F ′ )∩Q = Pre i A (F) for all i ≤ 2 |Q| , as long as q 0 ̸ ∈ Pre i A (F ). Moreover, if q 0 ∈ Pre i A (F ) for some i ≥ 0, then Pre j B (F ′ ) will contain q 0 for all j ≥ i (the state q 0 has a self-loop in B), and if q 0 ̸ ∈ Pre i A (F ) for all i ≥ 0, then B is constructed such that Pre j B (F ′ ) = ∅ for sufficiently large j (roughly for j > 2 |Q| ). Hence, the language of A is non-empty if and only if the sequence Pre j B (F ′ ) is not ultimately empty, that is if and only if the language of B is infinite from some state (namely q 0 ).

The key is to let B simulate A for exponentially many steps, and to ensure that the simulation stops if and only if q 0 is not reached within 2 |Q| steps. We achieve this by defining B as the gadget in Figure 3.11 connected to a modified copy A ′ of A with the same state space. The transitions in A ′ are defined as follows, where x is the entry state of the gadget (see Figure 3.12): for all q ∈ Q let (i) δ B (q) = x ∧ δ A (q) if q ̸ = q 0 , and (ii)

δ B (q 0 ) = q 0 ∨ (x ∧ δ A (q 0 )).
Thus, q 0 has a self-loop, and given a set S ⊆ Q in the automaton A, if q 0 ̸ ∈ S, then Pre A (S) = Pre B (S ∪ {x}) that is Pre B mimics Pre A when x is in the argument (and q 0 has not been reached yet). Note that if x ̸ ∈ S (and q 0 ̸ ∈ S), then Pre B (S) = ∅, that is unless q 0 has been reached, the simulation of A by B stops. Since we need that B mimics A for 2 |Q| steps, we define the gadget and the set

F ′ to ensure that x ∈ F ′ and if x ∈ Pre i B (F ′ ), then x ∈ Pre i+1 B (F ′ ) for all i ≤ 2 |Q| . In the gadget, the state x has non-deterministic transitions δ B (x) = c 1 0 ∨c 2 0 ∨• • •∨c n 0 to n 55 1L-AFA A q 0 δ A (q 0 ) = q 1 q 1 δ A (q 1 ) = q 2 ∧ q 3 q 2 q 3 ⇒ 1L-AFA A ′ 1L-AFA A q 0 δ B (q 0 ) = q 0 ∨ (x ∧ δ A (q 0 )) q 1 δ B (q 1 ) = x ∧ δ A (q 1 )
q 2 q 3

x Figure 3.12: Detail of the copy A ′ obtained from A in the reduction of Figure 3.11.

components with state space C i = {c i 0 , . . . , c i p i -1 } where p i is the (i + 1)-th prime number, and the transitions

1 δ B (c i j ) = x ∧ c i j+1 form a loop in each component (i = 1, . . . , n). We choose n such that p # n = 2 n i=1 p i > 2 |Q| (take n = |Q|). Note that the number of states in the gadget is 1 + # n i=1 p i ∈ O(n 2 log n) [BS96]
and hence the construction is polynomial in the size of A.

By construction, for all sets S, we have x ∈ Pre B (S) whenever the first state c i 0 of some component C i is in S, and if x ∈ S, then c i j ∈ S implies c i j-1 ∈ Pre B (S). Thus, if x ∈ S, the operator Pre B (S) 'shifts' backward the states in each component; and, x is in the next iteration (i.e., x ∈ Pre B (S)) as long as c i 0 ∈ S for some component C i . Now, define the set of accepting states F ′ in B in such a way that all states c i 0 disappear simultaneously only after p # n iterations. Let

F ′ = F ∪ {x} ∪ + 1≤i≤n (C i \ {c i p i -1 }), thus F ′ contains
all states of the gadget except the last state of each component. It is easy to check that, irrespective of the transition relation in A, we have x ∈ Pre i B (F ′ ) if and only if 0 ≤ i < p # n . Therefore, if q 0 ∈ Pre i A (F ) for some i, then q 0 ∈ Pre j B (F ′ ) for all j ≥ i by the self-loop on q 0 . On the other hand, if q 0 ̸ ∈ Pre i A (F ) for all i ≥ 0, then since x ̸ ∈ Pre i B (F ′ ) for all i > p # n , we have Pre i B (F ′ ) = ∅ for all i > p # n . This shows that the language of A is non-empty if and only if the language of B is infinite from some state (namely q 0 ), and establishes the correctness of the reduction. !

Connection with MDPs.

The underlying structure of a Markov decision process M = ⟨Q, A, δ⟩ is an alternating graph, where the successor q ′ of a state q is obtained by an existential choice of an action a and a universal choice of a state q ′ ∈ Supp(δ(q, a)). Therefore, it is natural that some questions related to MDPs have a corresponding formulation in terms of alternating automata. We show that such connections exist between synchronizing problems for MDPs and language-theoretic questions for alternating automata, such as emptiness and universal finiteness. Given a 1L-AFA A = ⟨Q, δ A , F ⟩, assume without loss of generality that the transition function

q 0 δ A (q 0 ) = q 0 ∨ (q 1 ∧ q 2 ) q 1 δ A (q 1 ) = q 0 ∨ (q 2 ∧ q 3 ) q 2 δ A (q 2 ) = q 2 ∨ q 3 q 3 δ A (q 3 ) = q 3 ∨ (q 1 ∧ q 2 ) a. q 0 q 1 q 2 q 3 b.
δ A is such that δ A (q) = c 1 ∨ • • • ∨ c m has the same number m of conjunctive clauses for all q ∈ Q. From A, construct the MDP M A = ⟨Q, A, δ M ⟩
where A = {a 1 , . . . , a m } and δ M (q, a k ) is the uniform distribution over the states occurring in the k-th clause c k in δ A (q), for all q ∈ Q and a k ∈ A. Then for all n ≥ 0, we have

Acc A (n, F) = Pre n (F ) in the MDP M A .
Similarly, from an MDP M and a set T of states, we can construct a 1L-AFA A = ⟨Q, δ A , F ⟩ with F = T such that for all n ≥ 0 we have Acc A (n, F ) = Pre n (T ) in the MDP M (let δ A (q) = 3 a∈A 4 q ′ ∈post(q,a) q ′ for all q ∈ Q).

Example 3.6. Consider the 1L-AFA A depicted in Figure 3.13.a which has four states q 0 , q 1 , q 2 and q 3 . The transition function is defined as follows. In all states, the transitions have 2 conjunctive clauses. In q 0 , there is a self-loop and another transition going to q 1 and q 2 : δ A (q 0 ) = q 0 ∨ (q 1 ∧ q 2 ). In q 1 , the transition function is δ A (q 1 ) = q 0 ∨ (q 2 ∧ q 3 ). The states q 2 and q 3 , both, have a self-loop and a second transition: δ A (q 2 ) = q 2 ∨ q 3 and δ A (q 3 ) = q 3 ∨ (q 1 ∧ q 2 ). From A, we construct the MDP M A with two letters a, b and the same four states (see Figure 3.13.b). The a-transitions in q 0 , q 2 , q 3 are all self-loops (the Dirac distribution on itself ); and a-transition in q 1 is the Dirac distribution on q 0 . The b-transition in q 2 deterministically goes to q 3 . The b-transitions in q 0 , q 1 , q 3 are respectively uniform distributions over the successors sets {q 1 , q 2 }, {q 2 , q 3 } and {q 1 , q 2 }.

▹

Several decision problems for 1L-AFA can be solved by computing the sequence of sets Acc A (n, F ) of states from which the word of length n is accepted, and we show that some synchronizing problems for MDPs require the computation of the sequence Pre n (F ) in the MDP M. Therefore, the above relation between 1L-AFA and MDPs establishes bridges that we use in Chapter 4 to transfer complexity results from 1L-AFA to MDPs.

Relation to two-player turn-based games.

Remark 7 follows from the characterizations and reductions presented in Chapters 4, 5 and 6 to establish the upper bound of computational complexity for the synchronizing problems in MDPs .

Remark 7. For all three winning modes and all membership problems of {always, event, weakly, strongly} synchronization in MDPs, only the support of the probability distributions in the transition function of the system is relevant (i.e., the exact value of the positive probabilities does not matter).

As a result, we can encode an MDP as an A-labelled transition system

(Q, R) with R ⊆ Q × A × Q such that (q, a, q ′ ) ∈ R is a transition if q ′ ∈ post(q, a).
The A-labeled transition system (Q, R) of an MDP can be interpreted as a game arena. A turn-based two player game G, with Player-1 and adversary Player-2, can be played in rounds. The game starts in an initial state q init ∈ Q. For each round, Player-1 chooses an action a to play in the current state q of the game. Next, Player-2 chooses a successor state among the states q ′ where (q, a, q ′ ) ∈ R, and the game moves to q ′ . The definitions of paths and prefixes follow from the definitions in MDPs. A path q 0 q 1 • • • is an infinite sequence of states where q 0 = q init and for all i ∈ N, there exists an action a such that (q i , a, q i+1 ) ∈ R; the finite prefix of a path is a prefix or simply a finite path. Let Pref(G) be the set of all finite paths in the game. A strategy for Player-1 is a function α : Pref(G) → A that, given a finite path ρ, returns an action. A strategy for adversary Player-2 is a function β : Pref(G) × A → Q that, given a finite path ρ and an action a, returns the successor state. Given the strategy α for Player-1, we say that a finite path q 0 q 1 • • • q n is feasible if there exists some strategy β for the adversary such that q 0 = q init and (q i , a, q i+1 ) ∈ R where a = α(q 0 q 1 • • • q i ) and q i+1 = β(q 0 q 1 • • • q i , a) for all i ∈ N.

Given a strategy α for Player-1, the sequence c 0 c 1 • • • of feasible current sets is defined as follows. For all i ∈ N, let

c i = {Last(ρ) | ρ = q 0 q 1 • • • q i ∈ Pref(G) is a feasible path of length i for α}
where Last(ρ) = q i is the last state q i visited along the path ρ = q 0 q 1 • • • q i . Then, c 0 = {q init } and c 1 = post(q init , a) where a = α(q init ). Now, we can define synchronizing winning conditions of Player-1 in games G. Definition 3.7 (Synchronizing games). Let G be a two-player turn-based game played on ⟨Q, R⟩, q init be the initial state, T a target set and f ∈ {sub T , mem T }. The game G from q init according to f is

• always synchronizing if f (c i ) for all i ∈ N,
• eventually (or event) synchronizing if f (c i ) for some i ∈ N,

• weakly synchronizing if for all n ∈ N there exists i ≥ n such that f (c i ),

• strongly synchronizing if there exists n ∈ N such that for all i ≥ n we have f (c i ) where c 0 c 1 c 2 • • • is the sequence of feasible current sets for some strategy α of the good player.

The following decision problems are of interest.

Decision problem(s)

. For all λ ∈{always, event, weakly, strongly} and the target set T , the λ-synchronizing problem with function f ∈ {max T , sum T } in games asks, given a game G and an initial state q init , whether G is λ-synchronizing from q init according to f . As a result of Remark 7, we have Corollary 3.1.

Corollary 3.1. For λ ∈ {always, event, weakly, strongly}, the λ-synchronizing problem in turn-based two player games is polynomial-time equivalent with the membership problem of sure λ-synchronization in MDPs.

We thus focus on establishing the computation complexities of synchronizing problems only in MDPs, and carry up the results to turn-based two player games.

Discussions

Unlike for Remark 7 stating that the exact value of transitions does not matter while synchronizing in an MDP, this result in general does not hold for emptiness problem of synchronizing languages in PAs. For instance in Chapter 4, we will establish undecidability result of the emptiness problem for almost-sure eventually synchronizing languages in PAs by a reduction from value 1 problem in PAs: the undecidability of value 1 is obtained by providing a PA (see Example 6.2 on page 135) where the PA has value 1 if and only if the probability of some transition is strictly greater than 1 2 . However, Remark 8 follows from the characterizations and reductions presented in Chapters 4, 5 and 6 to establish the upper bound of computational complexity of emptiness problem for sure eventually synchronizing languages in PAs.

Remark 8. For the emptiness problems of sure {always, event, weakly, strongly} synchronizing languages in PAs, only the support of the probability distributions in the transition function of the system is relevant (i.e., the exact value of the positive probabilities does not matter).

Since PAs are a generalization of NFAs where non-deterministic choices of successor are resolved with probabilistic distributions and by Remark 8, Corollary 3.2 follows.

Corollary 3.2. For λ ∈ {always, event, weakly, strongly}, the emptiness problem for λsynchronizing languages in NFAs is polynomial-time equivalent with the emptiness problem of sure λ-synchronizing languages in PAs.

q init q 1 q 2 a b a, b a, b
Figure 3.14: Randomization is necessary to decide the universality problems of synchronizing languages according to max in PAs.

We thus focus on establishing only the computation complexities of emptiness problems for synchronizing languages in PAs, and carry up the results to NFAs.

A further observation that can be deduced from the constructions and reductions presented in Chapters 4, 5 and 6 is that in order to decide emptiness problems of synchronizing languages in PAs it is sufficient to consider only pure words, and the computational complexities would not be more costly than considering randomized words.

The second classical decision problem for languages that one can study is the universality problem. Decision problem(s). For λ ∈ {always, event, weakly, strongly} and f ∈ {sum T , max T }, the universality problem for {sure, almost} λ-synchronizing languages according to f asks, given a PA P and an initial distribution X 0 , whether the language is universal, e.g. whether

L λ sure (f ) = D(A) ω .
This problem cannot be considered for limit-sure winning mode in PAs. The universality problems of synchronizing languages in PAs are mostly obtained by easy arguments, we will discuss these problems shortly, in Sections 4.4, 5.3 and 6.3, and give the main ideas and intuitions.

Unlike for the emptiness problem, in general, it is not sufficient to consider only pure words to decide universality of synchronizing languages. For the max function, Lemma 3.3 provides a PA and target sets where all pure words are {always, eventually, weakly, strongly} synchronizing whereas there is a randomized word that is not {always, eventually, weakly, strongly} synchronizing. An infinite randomized word is the uniformly randomized word over the alphabet A denoted by

w u = d 0 d 1 d 2 • • • where d i is the uniform distribution over A for all i ∈ N.
Lemma 3.3. For all λ ∈ {event, weakly, strongly} and µ ∈ {sure, almost}, there exists a PA P with an initial state q init and two target sets T = {q init , q 1 , q 2 } and T ′ = {q 1 , q 2 } such that: Proof. Consider the PA P with states q init , q 1 and q 2 and actions a, b as shown in Figure 3.14. All transitions are deterministic; two states q 1 and q 2 are absorbing and each is reached deterministically from q init by playing one of the actions: post(q init , a) = {q 1 } and post(q init , b) = {q 2 }.

(i) A ω ⊆ L always µ (max T ) but w u ̸ ∈ L always µ (max T ) and, (ii) A ω ⊆ L λ µ (max T ′ ) but w u ̸ ∈ L λ µ (max T ′ ). q init q 1 q 2 q 3 a b a, b a, b a, b
To establish (i), since sure always synchronizing implies almost-sure always synchronizing, it is sufficient to show that all pure words are sure always synchronizing whereas the uniformly randomized word is not almost-sure always synchronizing. After reading the first letter of an input pure word w, since post(q init , a) = {q 1 } and post(q init , b) = {q 2 }, if w ∈ a•{a, b} ω then P is in q 1 with probability 1; and P is in q 2 with probability 1 otherwise. Since the initial distribution is Dirac and since both states q 1 and q 2 are absorbing, we see that all pure words are sure always synchronizing according to max T with T = {q init , q 1 , q 2 }. On the other hand, by inputting the uniformly randomized word w u both states q 1 and q 2 would be reached with probability 1 2 showing that ∥P wu n ∥ = 1 2 for all n > 1. It proves that w u ̸ ∈ L always almost (max T ). To establish (ii), since L strongly sure (max T ′ ) ⊆ L weakly sure (max T ′ ) ⊆ L eventually sure (max T ′ ) and since sure λ-synchronization implies almost-sure λ-synchronization, it is sufficient to show that

A ω ⊆ L strongly sure (max T ′ ) and w u ̸ ∈ L event almost (max T ′ ), as it implies that A ω ⊆ L λ µ (max T ′ ) but w u ̸ ∈ L λ µ (max T ′
) for all λ ∈ {event, weakly, strongly} and all µ ∈ {sure, almost}. To prove A ω ⊆ L strongly sure (max T ′ ), the same argument used to proved A ω ⊆ L always sure (max T ) is valid: we only need to relax the condition on the initial distribution. To complete the proof, we see that the uniformly randomized word w u is not almost-sure eventually synchronizing according to max T ′ again due to the fact that both absorbing states q 1 and q 2 are reached with probability 1 2 after first input letter. The proof is complete.

!

For the sum function, a similar result holds for eventually and weakly synchronization. Lemma 3.4 provides a PA and some target state where all pure words are {eventually, weakly} synchronizing whereas there is a randomized word that is not {eventually, weakly} synchronizing.

Lemma 3.4. For all λ ∈ {event, weakly} and µ ∈ {sure, almost}, there exists a PA P with an initial state q init such that:

(i) A ω ⊆ L λ µ (q 3 ), but (ii) w u ̸ ∈ L λ µ (q 3 ).
Proof. Consider the PA P depicted in Figure 3.15 with states q init , q 1 , q 2 and q 3 and actions a, b. All transitions are deterministic; in the state q init the a-transition goes to q 1 and the b-transition goes to q 2 , both deterministically. All transitions in q 1 are redirected to q 2 . Two states q 2 and q 3 make a deterministic loop: post(q 2 , c) = {q 3 } and post(q 3 , c) = {q 2 } for all actions c ∈ {a, b}.

To establish (i), since all sure weakly synchronizing words are sure eventually synchronizing, and since sure λ-synchronization implies almost-sure λ-synchronization, it is sufficient to show that all pure words are sure weakly synchronizing in {q 3 }. Since all transitions are deterministic, by inputting a pure word the probability mass would stay in a single state in all steps. For all words w ∈ a • {a, b} ω , the PA P is 1-synchronized in {q 3 } in all even steps; and similarly, it is 1-synchronized in {q 3 } in all odd steps for all words w ∈ b • {a, b} ω . Thus, all pure words are sure weakly synchronizing in {q 3 }.

To establish (ii), it is sufficient to show that the uniformly randomized word w u is not almost-sure eventually synchronizing in {q 3 }. The symbolic-outcome of P over w u is

q init q 1 q 2 q 3 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 1 2 1 2 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 1 2 1 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 1 2 1 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 1 2 1 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ • • •
One can verify that P wu n (q 3 ) ≤ 1 2 for all n ∈ N, and thus w u is neither almost-sure (and thus sure) eventually nor almost-sure (and thus sure) weakly synchronizing in {q 3 }.

! 4

Always and Eventually Synchronizing Condition

First sight. In this chapter we study the always and eventually synchronizing conditions in MDPs and PAs. We provide tight complexity bounds of membership problems for each winning modes {sure, almost-sure and limit-sure} in MDPs, and the memory requirement of winning strategies. We also establish the tight complexity bounds for the emptiness problems of always synchronizing languages for PAs, and for the emptiness problems of sure eventually synchronizing language. We prove undecidability results for the emptiness problem of {almost-sure, limit-sure} synchronizing languages in PAs. 

Always synchronizing condition in MDPs and PAs

We first provide a lemma stating that for always synchronizing condition, the winning regions of the three winning modes {sure, almost-sure, limit-sure} coincide in MDPs. The result also holds in PAs meaning that from an initial state and a target set T , the sure always-synchronizing language is empty if, and only if, the almost-sure (and limit-sure) always-synchronizing language is empty. We also observe that for always synchronization in probabilistic settings, it only matters whether the value of a transition is non-zero (for the sum function) or whether a transition is deterministic (for the max function); deterministic here means there exists a unique successor with probability 1 for the transition. By this observation and provided Lemma 4.1 and Corollary 4.1, the solutions for MDPs and PAs carry up to their counterpart non-probabilistic settings, i.e. two player games and NFAs. Results presented in this section are listed in Tables 4.1 and 4.2.

Lemma 4.1. Let T be a set of states for an MDP M. For all functions f ∈ {max T , sum T }, we have ⟨⟨1⟩⟩ always sure (f ) = ⟨⟨1⟩⟩ always almost (f ) = ⟨⟨1⟩⟩ always limit (f ).

Proof. It follows from the definition of winning modes that ⟨⟨1⟩⟩ always sure (f ) ⊆ ⟨⟨1⟩⟩ always almost (f ) ⊆ ⟨⟨1⟩⟩ always limit (f ). Hence it suffices to show that ⟨⟨1⟩⟩ always limit (f ) ⊆ ⟨⟨1⟩⟩ always sure (f ), that is for all initial distributions X 0 , if M is limit-sure always synchronizing from X 0 (i.e. X 0 ∈ ⟨⟨1⟩⟩ always limit (f )), then M is sure always synchronizing from X 0 (i.e. X 0 ∈ ⟨⟨1⟩⟩ always sure (f )). For f = max T , consider ϵ smaller than the smallest positive probability in the initial distribution X 0 and in the transitions of the MDP M. Then, given an always (1ϵ)synchronizing strategy α (consider a blind strategy for the PA), it is easy to show by induction on k that the distributions M α k are Dirac for all k ≥ 0. Thus, α is an always 1-synchronizing strategy that proves the statement.

A similar argument for f = sum T shows that for sufficiently small ϵ, an always (1ϵ)synchronizing strategy β must produce a sequence

M β 0 M β 1 • • • of distributions with support contained in T , meaning that S k ⊆ T where S k = Supp(M β
k ) for all k ≥ 0, until some support repeats in the sequence. Such supports exist because Q is finite, and so there must be two numbers m > n such that S n = S m . This naturally induces an always 1-synchronizing strategy proving the statement.

!

The proof of Lemma 4.1 is valid even if we restrict the controller in the MDPs to use only blind strategies.

Corollary 4.1. Let T be a set of states for a PA P. For all functions f ∈ {max T , sum T } and all initial state q init , the following three propositions are equivalent:

(i) L always sure (f ) = ∅, (ii) L always almost (f ) = ∅, (iii) L always limit (f ) = ∅. q init q 1 q 2 q 3 a, b : 1 2 a, b : 1 2 a, b b a a b
Figure 4.1: The MDP described in Example 4.1 where for the target set T = {q init , q 1 , q 2 }, we have q init ∈ ⟨⟨1⟩⟩ always sure (sum T ) but q init ̸ ∈ ⟨⟨1⟩⟩ always sure (max T ).

Example 4.1. Consider the MDP depicted in Figure 4.1 that has four states q init , q 1 , q 2 , q 3 and two actions a, b. From the initial state q init , both a-transitions and b-transitions have two successors q 1 and q 2 each with probability 1 2 . The state q 3 is an absorbing state and it is deterministically reachable from q 1 by the action a and from q 2 by b. The b-transition from q 1 goes to q 2 , and the a-transition moves the MDP back from q 2 to q 1 . Let T = {q init , q 1 , q 2 }. Consider the memoryless strategy α that always plays b in q 1 and a in q 2 ; this strategy is a witness to prove that q init ∈ ⟨⟨1⟩⟩ always sure (sum T ). On the other hand, we see that ∥M α i ∥ T ≤ 1 2 for all steps i ≥ 1 and under all strategies α. Thus, q init ̸ ∈ ⟨⟨1⟩⟩ always sure (max T ). For the likewise structured PA, after inputting the first letter both states q 1 and q 2 are assigned with probability 1 2 . However, by the second letter, no matter if it is a or b, the PA will be 1 2 -synchronized in {q 3 }. This observation and the fact that q 3 is absorbing imply that both the languages L always sure (sum T ) and L always sure (max T ) are empty from q init .

▹

Always synchronizing condition in MDPs. Consider an MDP M = ⟨Q, A, δ⟩ and the set T of target states. Let α be an always 1-synchronizing strategy according to max T and M α 0 M α 1 • • • be the outcome. For all k ≥ 0, let q k ∈ T be such that M α k (q k ) = 1. For all k, since M α k and M α k+1 are both Dirac distributions, then there is a deterministic transition from q k to q k+1 (there exists an action a such that the unique successor of q k and a is q k+1 ; formally post(q k , a) = {q k+1 }). In particular X 0 is Dirac, and let q init ∈ T be such that X 0 (q init ) = 1. It follows that there is an infinite path from q init in the digraph ⟨T, E⟩ where (q, q ′ ) ∈ E if there exists an action a ∈ A such that post(q, a) = {q ′ }. The existence of this path entails that there is a loop reachable from q init in the digraph ⟨T, E⟩, and this naturally defines a sure-winning always synchronizing strategy in M. Thus, to decide the membership problem for always synchronizing according to max T (for all winning modes), it is sufficient to check the existence of an infinite path staying in T in the digraph ⟨T, E⟩, which can be decided in PTIME. Note that for the functions max T , pure memoryless strategies are sufficient.

It follows from the proof of Lemma 4.1 that the winning region for always synchronizing according to sum T coincides with the set of winning initial distributions for the safety condition !T in the traditional semantics in MDPs, which can also be computed in PTIME [START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF]. Thus, for the functions sum T , pure memoryless strategies are sufficient.

Theorem 4.1. For always synchronizing condition in MDPs and for all functions f ∈ {max T , sum T }:

1. (Complexity). The membership problem is in PTIME.

(Memory)

. Pure memoryless strategies are sufficient.

Always synchronizing condition in PAs. We have just seen that in MDPs, to decide always synchronizing condition according to max T , it is sufficient to find an infinite path q 0 q 1 q 2 • • • such that there is a deterministic transition from q k to q k+1 for all k ≥ 0 and q 0 is the state where the initial distribution is the Dirac distribution on q 0 (q init = q 0 ). Such transitions give an action a k such that post(q k , a k ) = {q k+1 } for all k ≥ 0. A blind strategy α that plays a k for all k ∈ N is thus always synchronizing according to max T . It means that pure blind strategies are sufficient to decide the membership problem of always synchronizing condition according to max T . It follows that the always synchronizing language according to max T from an initial state q init for the PA P is not empty if and only if q init is winning for the always synchronizing condition in the likewise structured MDP M. As a result, the emptiness problem of always synchronizing language in PAs according to max T can be decided in PTIME.

By a similar argument to the case for MDPs, the always synchronizing language according to sum T in PAs is equal to the ω-language with safety condition !T in the traditional semantics in PAs, where the emptiness problem is PSPACE-complete [START_REF] Chatterjee | Decidable problems for probabilistic automata on infinite words[END_REF].

Theorem 4.2. For always synchronizing language in PAs:

1. The emptiness problem for f = max T is in PTIME.

The emptiness problem for

f = sum T is PSPACE-complete.

Eventually synchronizing condition in MDPs

In this section, we show the PSPACE-completeness of the membership problem for eventually synchronizing conditions in the three winning modes. By Remarks 5 and 6 (on page 50), we consider the membership problem with function sum and Dirac initial distributions (i.e., single initial state). The presented algorithms to solve the membership problem for ⟨⟨1⟩⟩ event µ (sum T ) for arbitrary T and µ ∈ {sure, almost, limit}, can be used for the special case of singleton T , which solves the membership problem for ⟨⟨1⟩⟩ event µ (max T ). Furthermore, we establish PSPACE-completeness of the problems, even in the special case when T is a singleton, which implies PSPACE-completeness of the membership problems for ⟨⟨1⟩⟩ event µ (max T ) too. Results presented in this section are listed in 

Sure eventually synchronization

Given a target set T in an MDP, the membership problem for sure-winning eventually synchronizing condition in T 1 can be solved by computing the sequence Pre n (T ) of iterated predecessors. A state q init is sure-winning for eventually synchronizing in T if and only if q init ∈ Pre n (T ) for some n ≥ 0.

Lemma 4.2. Let M be an MDP and T be a target set. For all states q init , we have q init ∈ ⟨⟨1⟩⟩ event sure (sum T ) if and only if there exists n ≥ 0 such that q init ∈ Pre n M (T ).

Proof. We prove the following equivalence by induction (on the length i): for all initial states q init , there exists a strategy α sure-winning in i steps from q init (i.e., such that M α i (T ) = 1) if and only if q init ∈ Pre i (T ). The case i = 0 trivially holds since for all strategies α, we have M α 0 (T ) = 1 if and only if q init ∈ T . Assume that the equivalence holds for all i < n. For the induction step, show that M is sure eventually synchronizing from q init (in n steps) if and only if there exists an action a such that M is sure eventually synchronizing (in n-1 steps) from all states q ′ ∈ post(q init , a) (equivalently, post(q init , a) ⊆ Pre n-1 (T ) by the induction hypothesis, that is q init ∈ Pre n (T )). First, if all successors q ′ of q init under some action a are sure eventually synchronizing, then so is q init by playing a followed by a winning strategy from each successor q ′ . For the other direction, assume towards contradiction that M is sure eventually synchronizing from q init (in n steps), but for each action a, there is a state q ′ ∈ post(q init , a) that is not sure eventually synchronizing. Then, from q ′ there is a positive probability to reach a state not in T after n -1 steps, no matter the strategy played. Hence from q init , for all strategies, the probability mass in T cannot be 1 after n steps, in contradiction with the fact that M is sure eventually synchronizing from q init in n steps. It follows that the induction step holds, and the proof is complete.

! q init q 2 q 1 q 3 a, b : 1 2 a, b : 1 2 a : 1 2 , b a, b a : 1 2 a, b
Figure 4.2: The MDP described in Example 4.2 where for the target set T = {q 1 , q 3 }, we have q init ∈ ⟨⟨1⟩⟩ event sure (sum T ) but q init ̸ ∈ ⟨⟨1⟩⟩ event sure (q 2 ).

Example 4.2. Consider the MDP M shown in Figure 4.2 that has four states q init , q 1 , q 2 , q 3 and two actions a, b. From the initial state q init , both a-transitions and b-transitions have two successors q 1 and q 2 each with probability 1 2 . The b-transition on the state q 1 is a selfloop, and the a-transition is a uniform distribution on {q 1 , q 3 }. The a and b-transitions in q 2 are both the Dirac distribution on q 3 ; and q 3 is an absorbing state. For the target set {q 2 }, the predecessor is Pre n ({q 2 }) = ∅ for all n ≥ 1. The MDP M is not sure eventually synchronizing in {q 2 } from q init . For the target set T = {q 1 , q 3 }, the predecessor sequence is {q 1 , q 3 }{q 1 , q 2 , q 3 }({q init , q 1 , q 2 , q 3 }) ω .

We see that q init ∈ Pre 2 (T ) which gives q init ∈ ⟨⟨1⟩⟩ event sure (sum T ).

▹ By Lemma 4.2, the membership problem for sure eventually synchronizing is equivalent to the emptiness problem of 1L-AFA, and thus PSPACE-complete. Moreover if q init ∈ Pre n M (T ), a finite-memory strategy with n modes that at mode i in a state q plays an action a such that post(q, a) ⊆ Pre i-1 (T ) is sure winning for eventually synchronizing.

There exists a family of MDPs M n (n ∈ N) over alphabet {a, b} that are sure winning for eventually synchronization, and where the sure winning strategies require exponential memory. The MDP M 2 is shown in Figure 4.3. The structure of M n consists of an initial state q init , n components H 1 , . . . , H n and two states q T and q ⊥ . The goal of construction is to be sure eventually synchronizing in the target set {q T }. Each component H i is a cycle of length p i , the i-th prime number. We name the states of

H i with q i 1 q i 2 • • • q i p i
where the initial state in this cycle is q i 1 and the last state is q i p i . On all actions in q init , the probabilistic transition is a uniform distribution on the initial states q i 1 of the n components H 1 , . . . , H n . On action a, the next state in the cycle H n is reached: post(q i j , a) = {q i j+1 } for all 1 ≤ j < p i and post(q i p i , a) = {q i 1 }. On action b the target state q T is reached but only from the last state q i p i in the cycles. From other states, the action b leads to q ⊥ (transitions not depicted). A sure winning strategy for eventually synchronization in {q T } is to play a in the first p # n = 2 n i=1 p i steps, and then play b. This requires memory of size p # n > 2 n while the size of M n is in O(n 2 log n) [START_REF] Bach | Efficient Algorithms[END_REF]. It can be proved by standard pumping arguments that no strategy of size smaller than p # n is sure winning. The following theorem summarizes the results for sure eventually synchronizing in MDPs. All not-drawn transitions are directed to q ⊥ , for example b-transitions in q 1 1 and q 2 1 .

q init q 1 1 q 1 2 q 2 1 q 2 2 q 2 3 q T q ⊥ H 1 H 2 a, b : 1 2 a, b : 1 2 a a a
Theorem 4.3. For sure eventually synchronizing condition in MDPs and for all functions f ∈ {max T , sum T }:

1. (Complexity). The membership problem is PSPACE-complete.

(Memory)

. Exponential memory is necessary and sufficient for both pure and randomized strategies, and pure strategies are sufficient.

Almost-sure eventually synchronization

This subsection starts with an example of almost-sure eventually synchronizing MDPs where infinite memory is necessary to win the almost-sure eventually synchronizing condition. Example 4.3 describes this MDP and provide a winning strategy that uses infinite memory to win almost-sure eventually synchronizing condition; next in Lemma 4.3, we prove that no finite-memory strategy wins this condition.

Example 4.3. Consider the MDP in Figure 4.4 with three states q init , q 1 , q 2 and two actions a, b. The only probabilistic transitions are in the initial state q init where on both actions a and b, the next successor is itself or q 1 each with probability 1 2 . The a-transition in q 1 is a self-loop and the b-transition goes to q 2 where all transitions are deterministically directed to q init . We are interested to study whether q init ∈ ⟨⟨1⟩⟩ event almost (q 2 ). To this aim, we construct a strategy that is almost-sure eventually synchronizing in {q 2 }, showing that q init ∈ ⟨⟨1⟩⟩ event almost (q 2 ) and suggesting that winning strategies for almost-sure eventually synchronization may require infinite memory. First, observe that for all ϵ > 0 we can have probability at least 1ϵ in q 2 after finitely many steps: playing n times a and then b leads to probability 1 -1 2 n in q 2 . Thus the MDP is limit-sure eventually synchronizing in the target set {q 2 }. Moreover the remaining probability mass is in q init and q 1 ; which we recall with the MDP being limit-sure eventually synchronizing in {q 2 } with support {q init , q 1 , q 2 }. It turns out that from any (initial) distribution with support {q init , q 1 , q 2 }, the MDP is again limit-sure eventually synchronizing in the target set {q 2 }, and with support in {q init , q 1 , q 2 } (by strategies with the same logic: playing finitely many consecutive a and then b). Therefore we can take a smaller value of ϵ and play a strategy to have probability at least 1ϵ in q 2 , and repeat this for ϵ → 0. This strategy ensures almost-sure eventually synchronizing in the target set {q 2 }.

q init q 1 q 2 a, b : 1 2 a, b : 1 2 b a a, b

▹

The next Lemma shows that infinite memory is indeed necessary for almost-sure eventually synchronizing strategies for the MDP of Example 4.3.

Lemma 4.3. There exists an almost-sure eventually synchronizing MDP for which all almost-sure eventually synchronizing strategies require infinite memory.

Proof. Consider the MDP M of Example 4.3 which is shown in Figure 4.4. We argued in Example 4.3 that q init ∈ ⟨⟨1⟩⟩ event almost (q 2 ) and we now show that infinite memory is necessary for almost-sure eventually synchronization in {q 2 } from q init . Assume towards contradiction that there exists a finite-memory strategy α that is almost-sure eventually synchronizing in the target set {q 2 }. Consider the Markov chain M(α) obtained by the product of the MDP M with the finite-state transducer defining α as explained in Section 2.2.3. To simply the notation, by X 0 X 1 X 2 • • • we denote the sequence of probability distributions generated by M(α). We know that the probability X k ((m, q)) in transient states (m, q) vanishes for k → ∞ [FV97, [START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF][START_REF] Sericola | Markov Chains: Theory and Applications[END_REF]. A state (m, q) in M(α) is called a q-state. Since α is almost-sure eventually synchronizing (but is not sure eventually synchronizing) in q 2 , there is a q 2 -state in the set of recurrent states of M(α). Since on all actions q init is a successor of q 2 , and q init is a successor of itself, it follows that there is a recurrent q init -state in M(α), and that all periodic supports of recurrent states in M(α) contain a q init -state. Hence, in each stationary distribution there is a q init -state with a (strictly) positive probability, and therefore the probability mass in q init is bounded away from zero. It follows that the probability mass in q 2 is bounded away from 1 thus α is not almost-sure eventually synchronizing in q 2 , a contradiction.

!

It turns out that in general, almost-sure eventually synchronizing strategies can be constructed from a family of limit-sure eventually synchronizing strategies if we can also ensure that the probability mass remains in the winning region (as in the MDP of Example 4.3).

We present a characterization of the winning region for almost-sure winning based on an extension of the limit-sure eventually synchronizing condition with exact support. This condition requires to ensure probability arbitrarily close to 1 in the target set T , and moreover that after the same number of steps the support of the probability distribution is contained in a given set U . Formally, given an MDP M, let ⟨⟨1⟩⟩ event limit (sum T , U ) for T ⊆ U be the set of all initial distributions such that for all ϵ > 0 there exist a strategy α and n ∈ N such that M α n (T ) ≥ 1ϵ and M α n (U ) = 1 (i.e. the support of M α n is contained in U ). We say that α is limit-sure eventually synchronizing in T with support in U .

We will present an algorithmic solution to limit-sure eventually synchronizing condition with exact support in Section 4.2.3. Our characterization of the winning region for almostsure winning is as follows.

Lemma 4.4. Let M be an MDP and T be a target set. For all states q init , we have q init ∈ ⟨⟨1⟩⟩ event almost (sum T ) if and only if there exists a set U such that: q init ∈ ⟨⟨1⟩⟩ event sure (sum U ), and -X U ∈ ⟨⟨1⟩⟩ event limit (sum T , U ) where X U is the uniform distribution over U .

Proof. First, if q init ∈ ⟨⟨1⟩⟩ event almost (sum T ), then there is a strategy α such that sup n∈N M α n (T ) = 1. Then either M α n (T ) = 1 for some n ≥ 0, or lim sup n→∞ M α n (T ) = 1. If M α n (T ) = 1, then q init is sure winning for eventually synchronizing in T , thus q init ∈ ⟨⟨1⟩⟩ event sure (sum T ) and we can take U = T . Otherwise, for all i > 0 there exists

n i ∈ N such that M α n i (T ) ≥ 1 -2 -i
, and moreover n i+1 > n i for all i > 0. Let s i = Supp(M α n i ) be the support of M α n i . Since the state space is finite, there is a set U that occurs infinitely often in the sequence s 0 s 1 . . . , thus for all k > 0 there exists

m k ∈ N such that M α m k (T ) ≥ 1 -2 -k and M α m k (U ) = 1.
It follows that α is sure eventually synchronizing in U from q init , hence q init ∈ ⟨⟨1⟩⟩ event sure (sum U ). Moreover M with initial distribution X 1 = M α m 1 is limit-sure eventually synchronizing in T with exact support in U . Since Supp(X 1 ) = U = Supp(X U ), it follows by Corollary 4.3 that X U ∈ ⟨⟨1⟩⟩ event limit (sum T , U ). To establish the converse, note that since X U ∈ ⟨⟨1⟩⟩ event limit (sum T , U ), it follows from Corollary 4.3 that from all initial distributions with support in U , for all ϵ > 0 there exists a strategy α ϵ and a position n ϵ such that M αϵ nϵ (T ) ≥ 1ϵ and M αϵ nϵ (U ) = 1. We construct an almost-sure limit eventually synchronizing strategy α as follows. Since q init ∈ ⟨⟨1⟩⟩ event sure (sum U ), play according to a sure eventually synchronizing strategy from q init until all the probability mass is in U . Then for i = 1, 2, . . . and following procedure: given the current probability distribution, select the corresponding strategy α ϵ i and play according to α ϵ i for n ϵ i steps, ensuring probability mass at least 1 -2 -i in T , and since after that the support of the probability mass is again in U , play according to α ϵ i+1 for n ϵ i+1 steps, etc. This strategy α ensures that sup n∈N M α n (T ) = 1 from q init , hence q init ∈ ⟨⟨1⟩⟩ event almost (sum T ).

ϵ i = 2 -i , repeat the MDP M q q ⇒ MDP N MDP M q q sink q T A ′ # # A ′

!

Note that from Lemma 4.4, it follows that counting strategies are sufficient to win almost-sure eventually synchronizing condition (a strategy is counting if α(ρ) = α(ρ ′ ) for all prefixes ρ, ρ ′ with the same length and Last(ρ) = Last(ρ ′ )).

As we show in Section 4.2.3 that the membership problem for limit-sure eventually synchronizing with exact support can be solved in PSPACE, it follows from the characterization in Lemma 4.4 that the membership problem for almost-sure eventually synchronizing is in PSPACE, using the following (N)PSPACE algorithm: guess the set U , and check that q init ∈ ⟨⟨1⟩⟩ event sure (sum U ), and that X U ∈ ⟨⟨1⟩⟩ event limit (sum T , U ) where X U is the uniform distribution over U (this can be done in PSPACE by Theorem 4.3 and Theorem 4.5). We present a matching lower bound.

Lemma 4.5. For MDPs, the membership problem for ⟨⟨1⟩⟩ event almost (sum T ) is PSPACE-hard even if T is a singleton.

Proof. The proof is by a reduction from the membership problem for sure eventually synchronization, which is PSPACE-complete by Theorem 4.3. Given an MDP M = ⟨Q, A, δ⟩, an initial state q init ∈ Q, and a state q ∈ Q, we construct an MDP N = ⟨Q ′ , A ′ , δ ′ ⟩ and a state q T ∈ Q ′ such that q init ∈ ⟨⟨1⟩⟩ event sure (q) in M if and only if q init ∈ ⟨⟨1⟩⟩ event almost (q T ) in N . The MDP N is a copy of M with two new states q T and sink reachable only by a new action # (see Figure 4.5). Formally, Q ′ = Q ∪ {q T , sink} and A ′ = A ∪ {#}, and the transition function δ ′ is defined as follows, for all q ∈ Q: δ ′ (q, a) = δ(q, a) for all a ∈ A, δ ′ (q, #)(sink) = 1 if q ̸ = q, and δ ′ (q, #)(q T ) = 1; finally, for all a ∈ A ′ , let δ ′ (q T , a)(sink) = δ ′ (sink, a)(sink) = 1.

The goal is that N simulates M until the action # is played in q to move the probability mass from q to q T , ensuring that if M is sure-winning for eventually synchronizing in {q}, then N is also sure-winning (and thus almost-sure winning) for eventually synchronizing in {q T }. Moreover, the only way to be almost-sure eventually synchronizing in {q T } is to have probability 1 in q T at some point, because the state q T is transient under all strategies, thus the probability mass cannot accumulate and tend to 1 in q T in the long run. It follows that (from all initial states q init ) M is sure-winning for eventually synchronizing in {q} if and only if N is almost-sure winning for eventually synchronizing in {q T }. It follows from this reduction that the membership problem for almost-sure eventually synchronizing condition is PSPACE-hard.

!

The results of this section are summarized as follows.

Theorem 4.4. For almost-sure eventually synchronizing condition in MDPs and for all functions f ∈ {max T , sum T }:

1. (Complexity). The membership problem is PSPACE-complete.

(Memory).

Infinite memory is necessary in general for both pure and randomized strategies, and pure strategies are sufficient.

Limit-sure eventually synchronization

In this subsection, we present the algorithmic solution for limit-sure eventually synchronizing with exact support in MDPs. Note that the limit-sure eventually synchronizing condition is a special case where the support is the state space of the MDP.

Example 4.4. Consider the MDP in Figure 3.7 which is limit-sure eventually synchronizing in {q 2 }, as shown in Lemma 3.1. For i = 0, 1, . . . , the sequence Pre i (T ) of predecessors of T = {q 2 } is ultimately periodic: Pre 0 (T ) = {q 2 }, and Pre i (T ) = {q 1 } for all i ≥ 1. Given ϵ > 0, a strategy to get probability 1ϵ in q 2 first accumulates probability mass in the periodic subsequence of predecessors (here {q 1 }), and when the probability mass is greater than 1ϵ in q 1 , the strategy injects the probability mass in q 2 (through the aperiodic prefix of the sequence of predecessors).

▹

In general, the typical shape of a limit-sure eventually synchronizing strategy is as explained in Example 4.4. To have probability arbitrarily close to 1 in a target set T , a limit-sure eventually synchronizing strategy accumulates the probability mass in the periodic subsequence of predecessors until the probability mass is as large as demanded; and then the strategy synchronously moves the probability mass into the target set T via the prefix subsequence of predecessors. Note that in this scenario, the MDP is also limitsure eventually synchronizing in every set Pre i (T ) of the sequence of predecessors. A special case is when it is possible to get probability 1 in the sequence of predecessors after finitely many steps. In this case, the probability mass injected in T is 1 and the MDP is even surewinning. The algorithm for deciding limit-sure eventually synchronization relies on the above characterization, generalized in Lemma 4.6 to limit-sure eventually synchronizing with exact support, saying that limit-sure eventually synchronization in T with support in U is equivalent to either limit-sure eventually synchronization in Pre k (T ) with support in Pre k (U ) (for arbitrary k), or sure eventually synchronizing in T (and therefore also in U ).

Lemma 4.6. Given an MDP M, for all T ⊆ U and all k ≥ 0, we have

⟨⟨1⟩⟩ event limit (sum T , U ) = ⟨⟨1⟩⟩ event sure (sum T ) ∪ ⟨⟨1⟩⟩ event limit (sum R , Z) where R = Pre k (T ) and Z = Pre k (U ).
Proof. The proof is in two parts. First we show that ⟨⟨1⟩⟩ event sure (sum T )∪⟨⟨1⟩⟩ event limit (sum R , Z) ⊆ ⟨⟨1⟩⟩ event limit (sum T , U ): since T ⊆ U , it follows from the definitions that ⟨⟨1⟩⟩ event sure (sum T ) ⊆ ⟨⟨1⟩⟩ event limit (sum T , U ); to show that ⟨⟨1⟩⟩ event limit (sum R , Z) ⊆ ⟨⟨1⟩⟩ event limit (sum T , U ) in an MDP M, let ϵ > 0 and consider an initial distribution X 0 and a strategy α such that for some i ≥ 0 we have

M α i (R) ≥ 1 -ϵ and M α i (Z) = 1.
We construct a strategy β that plays like α for the first i steps, and then since R = Pre k (T ) and Z = Pre k (U ) plays from states in R according to a sure eventually synchronizing strategy with target T , and from states in Z \ R according to a sure eventually synchronizing strategy with the target set U (such strategies exist by the proof of Lemma 4.2). The strategy β ensures from X 0 that M β i+k (T ) ≥ 1-ϵ and M β i+k (U ) = 1, showing that M is limit-sure eventually synchronizing in T with support in U .

Second we show the converse inclusion, namely that ⟨⟨1⟩⟩ event limit (sum T , U ) ⊆ ⟨⟨1⟩⟩ event sure (sum T ) ∪ ⟨⟨1⟩⟩ event limit (sum R , Z).

Consider an initial distribution X 0 ∈ ⟨⟨1⟩⟩ event limit (sum T , U ) in the MDP M and for ϵ i = 1 i (i ∈ N) let α i be a strategy and

n i ∈ N such that M α i n i (T ) ≥ 1 -ϵ i and M α i n i (U ) = 1.
We consider two cases. (a) If the set {n i | i ≥ 0} is bounded, then there exists a number n that occurs infinitely often in the sequence (n i ) i∈N , and such that for all i ≥ 0, there exists a strategy β i such that

M β i n (T ) ≥ 1 -ϵ i and M β i n (U ) = 1.
Since n is fixed, we can assume w.l.o.g. that the strategies β i are pure, and since there is a finite number of pure strategies over paths of length at most n, it follows that there is a strategy β that occurs infinitely often among the strategies β i and such that for all ϵ > 0 we have

M β n (T ) ≥ 1 -ϵ, hence M β n (T ) = 1,
showing that M is sure winning for eventually synchronization in T , that is X 0 ∈ ⟨⟨1⟩⟩ event sure (sum T ). (b) otherwise, the set {n i | i ≥ 0} is unbounded and we can assume w.l.o.g. that n i ≥ k for all i ≥ 0. We claim that the family of strategies α i ensures limit-sure synchronization in R = Pre k (T ) with support in Z = Pre k (U ). Essentially this is because if the probability in T is close to 1 after n i steps, then k steps before the probability in Pre k (T ) must be close to 1 as well. Formally, we show that α i is such that

M α i n i -k (R) ≥ 1 -ϵ η k and M α i n i -k (Z) = 1
where η is the smallest positive probability in the transitions of M. Towards contradiction, assume that

M α i n i -k (R) < 1 -ϵ η k , then M α i n i -k (Q \ R) > ϵ
η k and from every state q ∈ Q \ R, no matter which sequence of actions is played by α i for the next k steps, there is a path from q to a state outside of T , thus with probability at least η k . Hence the probability in Q \ T after n i steps is greater than ϵ η k • η k , and it follows that M α i n i (T ) < 1ϵ, in contradiction with the definition of α i . This shows that M α i n i -k (R) ≥ 1 -ϵ η k , and an argument analogous to the proof of Lemma 4.2 shows that M α i n i -k (Z) = 1. It follows that X 0 ∈ ⟨⟨1⟩⟩ event limit (sum R , Z) and the proof is complete.

!

Thanks to Lemma 4.6, since membership problem of sure eventually synchronization is already solved in Section 4.2.1, it suffices to solve the membership problem of limit-sure eventually synchronization in the target set R = Pre k (T ) and support Z = Pre k (U ) with arbitrary k, instead of T and U . We can choose k such that both Pre k (T ) and Pre k (U ) lie in the periodic part of the sequence of pairs of predecessors (Pre i (T ), Pre i (U )). We can assume that k ≤ 3 |Q| since Pre i (T ) ⊆ Pre i (U ) ⊆ Q for all i ≥ 0. For such value of k the limit-sure problem is conceptually simpler: once some probability is injected in R = Pre k (T ), it can loop through the sequence of predecessors and visit R infinitely often (every r steps, where r ≤ 3 |Q| is the period of the sequence of pairs of predecessors). It follows that if a strategy ensures with probability 1 that the set R can be reached by finite paths whose lengths are congruent modulo r, then the whole probability mass can indeed synchronously accumulate in R in the limit.

Therefore, limit-sure eventually synchronization in R reduces to standard limit-sure reachability condition ♦R and the additional requirement that the numbers of steps at which the target set is reached be congruent modulo r. In the case of limit-sure eventually synchronization with support in Z, we also need to ensure that no mass of probability leaves the sequence Pre i (Z). In a state q ∈ Pre i (Z), we say that an action a ∈ A is Z-safe at position i if2 post(q, a) ⊆ Pre i-1 (Z). In states q ̸ ∈ Pre i (Z) there is no Z-safe action at position i.

To encode the above requirements, we construct an MDP M Z × [r] that allows only Z-safe actions to be played (and then mimics the original MDP), and tracks the position (modulo r) in the sequence of predecessors, thus simply decrementing the position on each transition since all successors of a state q ∈ Pre i (Z) on a Z-safe action are in Pre i-1 (Z).

Formally, if M = ⟨Q, A, δ⟩ then M Z × [r] = ⟨Q ′ , A, δ ′ ⟩ where -Q ′ = Q × {r -1, . . . , 1, 0} ∪ 
{sink}; intuitively, we expect that q ∈ Pre i (Z) in the reachable states ⟨q, i⟩ consisting of a state q of M and a position i in the predecessor sequence; δ ′ is defined as follows (assuming an arithmetic modulo r on positions) for all ⟨q, i⟩ ∈ Q ′ and a ∈ A: if a is a Z-safe action in q at position i, then δ ′ (⟨q, i⟩, a)(⟨q ′ , i -1⟩) = δ(q, a)(q ′ ), otherwise δ ′ (⟨q, i⟩, a)(sink) = 1 (and sink is absorbing).

Note that the size of the MDP M Z × [r] is exponential in the size of M (since r is at most 3 |Q| ).

Lemma 4.7. Let M be an MDP and R ⊆ Z be two sets of states such that Pre r (R) = R and Pre r (Z) = Z where r > 0. Then a state q init is limit-sure eventually synchronizing in R with support in Z (q init ∈ ⟨⟨1⟩⟩ event limit (sum R , Z)) if and only if there exists 0 ≤ t < r such that ⟨q init , t⟩ is limit-sure winning for the reachability condition

♦(R × {0}) in the MDP M Z × [r].
Proof. For the first direction of the lemma, assume that q init is limit-sure eventually synchronizing in R with support in Z, and for ϵ > 0 let β be a strategy such that M β k (Z) = 1 and M β k (R) ≥ 1ϵ for some number k of steps. Let 0 ≤ t ≤ r such that t = k mod r and let R 0 = R × {0}. We show that from initial state (q init , t) the strategy α in M Z × [r] that mimics (copies) the strategy β is limit-sure winning for the reachability condition ♦R 0 : it follows from Lemma 4.2 that α plays only Z-safe actions, and since

P r α (♦R 0 ) ≥ P r α (♦ k R 0 ) = M β k (R) ≥ 1 -ϵ,
the result follows. For the converse direction, let R 0 = R × {0} and assuming that there exists 0 ≤ t < r such that ⟨q init , t⟩ is limit-sure winning for the reachability condition ♦R 0 in M Z × [r], show that q init is limit-sure synchronizing in target set R with exact support in Z. Since the winning region of limit-sure and almost-sure reachability coincide for MDPs [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF], there exists a (pure) strategy α in M Z ×[r] with initial state ⟨q, t⟩ such that Pr α (♦R 0 ) = 1.

Given ϵ > 0, we construct from α a pure strategy β in M that is (1ϵ)-synchronizing in R with support in Z. Given a finite path ρ = q 0 a 0 q 1 a 1 . . . q n in M (with q 0 = q init ), there is a corresponding path

ρ ′ = ⟨q 0 , k 0 ⟩a 0 ⟨q 1 , k 1 ⟩a 1 . . . ⟨q n , k n ⟩ in M Z × [r]
where k 0 = t and k i+1 = k i -1 for all i ≥ 0. Since the sequence k 0 , k 1 , . . . is uniquely determined from ρ, there is a clear bijection between the paths in M and the paths in M Z × [r] that we often omit to apply and mention. Define the strategy β as follows: if q n ∈ Pre kn (R), then there exists an action a such that post(q n , a) ⊆ Pre kn-1 (R) and we define β(ρ) = a, otherwise let β(ρ) = α(ρ ′ ). Thus β mimics α (thus playing only Z-safe actions) unless a state q is reached at step n such that q ∈ Pre t-n (R), and then β switches to always playing actions that are R-safe (and thus also Z-safe since R ⊆ Z). We now prove that β is limit-sure eventually synchronizing in target set R with support in Z. First since β plays only Z-safe actions, it follows for all k such that tk = 0 (modulo r), all states reached from q init with positive probability after k steps are in Z. Hence M β k (Z) = 1 for all such k. Second, we show that given ϵ > 0 there exists k such that tk = 0 and M β k (R) ≥ 1ϵ, thus also M β k (Z) = 1 and β is limit-sure eventually synchronizing in target set R with support in Z. To show this, recall that Pr α (♦R 0 ) = 1, and therefore Pr α (♦ ≤k R 0 ) ≥ 1ϵ for all sufficiently large k. Without loss of generality, consider such a k satisfying tk = 0 (modulo r). For i = 1, . . . , r -1, let R i = Pre i (R) × {i}. Then trivially Pr α (♦ ≤k + r i=0 R i ) ≥ 1ϵ and since β agrees with α on all finite paths that do not (yet) visit + r i=0 R i , given a path ρ that visits + r i=0 R i (for the first time), only R-safe actions will be played by β and thus all continuations of ρ in the outcome of β will visit R after k steps (in total). It follows that Pr

β (♦ =k R 0 ) ≥ 1 -ϵ, that is M β k (R) ≥ 1 -ϵ.
Note that we used the same strategy β for all ϵ > 0 and thus β is also almost-sure eventually synchronizing in R.

!

The proof of Lemma 4.7 immediately gives the following corollary: Corollary 4.2. Let M be an MDP and R be a set of states such that Pre r (R) = R for some r > 0. Then, ⟨⟨1⟩⟩ event almost (sum R ) = ⟨⟨1⟩⟩ event limit (sum R ).

Since deciding limit-sure reachability is PTIME-complete, it follows from Lemma 4.7 that limit-sure synchronization (with exact support) can be decided in EXPTIME. We show that the problem can be solved in PSPACE by exploiting the special structure of the exponential MDP in Lemma 4.7. We conclude this subsection by showing that limit-sure synchronization with exact support is PSPACE-complete (even in the special case of a trivial support).

Lemma 4.8. For MDPs, the membership problem for limit-sure eventually synchronization with exact support is in PSPACE.

Proof. We present a (non-deterministic) PSPACE algorithm to decide, given an MDP M = ⟨Q, A, δ⟩, an initial state q init , and two sets T ⊆ U ⊆ Q, whether q init is limit-sure eventually synchronizing in T with support in U .

First, the algorithm computes numbers k ≥ 0 and r > 0 such that for R = Pre k (T ) and Z = Pre k (U ) we have Pre r (R) = R and Pre r (Z) = Z. As discussed before, this can be done by guessing k, r ≤ 3 |Q| . By Lemma 4.6, we have ⟨⟨1⟩⟩ event limit (sum T , U ) = ⟨⟨1⟩⟩ event limit (sum R , Z) ∪ ⟨⟨1⟩⟩ event sure (sum T ), and since sure eventually synchronization in T can be decided in PSPACE (by Theorem 4.3), it suffices to decide limit-sure eventually synchronizing in R with support in Z in PSPACE. According to Lemma 4.7, it is therefore sufficient to show that deciding limit-sure winning for the (standard) reachability condition ♦(R×{0}) in the MDP M Z ×[r] can be done in polynomial space. As we cannot afford to construct the exponential-size MDP M Z × [r], the algorithm relies on the following characterization of the limit-sure winning set for reachability conditions in MDPs. It is known that the winning region for limit-sure and almost-sure reachability coincide [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF], and pure memoryless strategies are sufficient. Therefore, we can see that the almost-sure winning set W for the reachability condition ♦(R × {0}) satisfies the following property: there exists a memoryless strategy α : W → A such that (1) W is closed, that is post(q, α(q)) ⊆ W for all q ∈ W , and (2) in the graph of the Markov chain M (α), for every state q ∈ W , there is a path (of length at most |W |) from q to R × {0}.

This property ensures that from every state in W , the target set R × {0} is reached within |W | steps with positive (and bounded) probability, and since W is closed it ensures that R × {0} is reached with probability 1 in the long run. Thus any set W satisfying the above property is almost-sure winning.

Our algorithm will guess and explore on the fly a set W to ensure that it satisfies this property, and contains the state ⟨q init , t⟩ for some t < r. As we cannot afford to explicitly guess W (remember that W could be of exponential size), we decompose W into slices W 0 , W 1 , . . . such that W i ⊆ Q and W i × {-i mod r} = W ∩ (Q × {-i mod r}). We start by guessing W 0 , and we use the property that in M Z × [r], from a state (q, j) under all Z-safe actions, all successors are of the form (•, j -1). It follows that the successors of the states in W i × {-i} should lie in the slice W i+1 × {-i -1}, and we can guess on the fly the next slice W i+1 ⊆ Q by guessing for each state q in a slice W i an action a q such that + q∈W i post(q, a q ) ⊆ W i+1 . Moreover, we need to check the existence of a path from every state in W to R × {0}. As W is closed, it is sufficient to check that there is a path from every state in W 0 × {0} to R × {0}. To do this we guess along with the slices W 0 , W 1 , . . . a sequence of sets P 0 , P 1 , . . . where P i ⊆ W i contains the states of slice W i that belong to the guessed paths. Formally, P 0 = W 0 , and for all i ≥ 0, the set P i+1 is such that post(q, a q ) ∩ P i+1 ̸ = ∅ for all q ∈ P ′ i (where

P ′ i = P i \ R if i is
a multiple of r, and P ′ i = P i otherwise), that is P i+1 contains a successor of every state in P i that is not already in the target R (at position 0 modulo r).

We need polynomial space to store the first slice W 0 , the current slice W i and the set P i , and the value of i (in binary). As M Z × [r] has |Q| • r states, the algorithm runs for |Q| • r iterations and then checks that (1)

W |Q|•r ⊆ W 0 to ensure that W = + i≤|Q|•r W i × {i mod r} is closed, (2) P |Q|•r = ∅
showing that from every state in W 0 × {0} there is a path to R × {0} (and thus also from all states in W ), and (3) the state q init occurs in some slice W i . The correctness of the algorithm follows from the characterization of the almost-sure winning set for reachability in MDPs: if some state ⟨q init , t⟩ is limit-sure winning, then the algorithm accepts by guessing (slice by slice) the almost-sure winning set W and the paths from W 0 × {0} to R × {0} (at position 0 modulo r), and otherwise any set (and paths) correctly guessed by the algorithm would not contain q init in any slice.

!

It follows from the proof of Lemma 4.7 that all winning modes for eventually synchronizing are independent of the numerical value of the positive transition probabilities. To establish the PSPACE-hardness for limit-sure eventually synchronizing in MDPs, we use a reduction from the universal finiteness problem for 1L-AFAs. Lemma 4.9. For MDPs, the membership problem for ⟨⟨1⟩⟩ event limit (sum T ) is PSPACE-hard even if T is a singleton.

Proof. The proof is by a reduction from the universal finiteness problem for one-letter alternating automata (1L-AFA), which is PSPACE-complete (by Lemma 3.2). It is easy to see that this problem remains PSPACE-complete even if the set T of accepting states of the 1L-AFA is a singleton, and given the tight relation between 1L-AFA and MDP (see Subsection 3.4.2), it follows from the definition of the universal finiteness problem that 78 The reduction is as follows (see also Figure 4.6). Given an MDP M = ⟨Q, A, δ⟩ and a singleton T ⊆ Q, we construct an MDP N = ⟨Q ′ , A ′ , δ ′ ⟩ with state space Q ′ = Q 9 {q init } such that Pre n M (T ) ̸ = ∅ for all n ≥ 0 if and only if q init is limit-sure eventually synchronizing in T . The MDP N is essentially a copy of M with alphabet A 9 {#} and the transition function on action # is the uniform distribution on Q from q init , and the Dirac distribution on q init from the other states q ∈ Q. There are self-loops on q init for all other actions a ∈ A. Formally, the transition function δ ′ is defined as follows, for all q ∈ Q:

MDP M T ⊆ Q q 2 . . . q 1 ⇒ MDP N MDP M T ⊆ Q q 2 . . . q 1 q init A # • • • # # #
δ ′ (q, a) = δ(q, a) for all a ∈ A (copy of M), and δ ′ (q, #)(q init ) = 1; δ ′ (q init , a)(q init ) = 1 for all a ∈ A, and δ ′ (q init , #)(q) = 1 |Q| . We establish the correctness of the reduction as follows. For the first direction, assume that Pre n M (T ) ̸ = ∅ for all n ≥ 0. Then since N embeds a copy of M it follows that Pre n N (T ) ̸ = ∅ for all n ≥ 0 and there exist numbers k 0 , r ≤ 2 |Q| such that Pre k 0 +r N (T ) = Pre k 0 N (T ) ̸ = ∅. Using Lemma 4.6 with k = k 0 and R = Pre k 0 N (T ) (and U = Z = Q ′ is the trivial support), it is sufficient to prove that q init ∈ ⟨⟨1⟩⟩ event limit (R) to get q init ∈ ⟨⟨1⟩⟩ event limit (T ) (in N ). We show the stronger statement that q init is actually almost-sure eventually synchronizing in R with the pure strategy α defined as follows, for all play prefix ρ (let m = |ρ| mod r):

-if Last(ρ) = q init , then α(ρ) = #; -if Last(ρ) = q ∈ Q, then -if q ∈ Pre r-m N (R)
, then α(ρ) plays a R-safe action at position rm; -otherwise, α(ρ) = #. The strategy α ensures that the probability mass that is not (yet) in the sequence of predecessors Pre n N (R) goes to q init , where by playing # at least a fraction 1 |Q| of it would reach the sequence of predecessors (at a synchronized position). It follows that after 2i steps, the probability mass in q init is (1 -1 |Q| ) i and the probability mass in the sequence of predecessors is 1 -(1 -1 |Q| ) i . For i → ∞, the probability in the sequence of predecessors tends to 1 and since Pre n N (R) = R for all positions n that are a multiple of r, we get sup n M α n (R) = 1 and q init ∈ ⟨⟨1⟩⟩ event almost (R). For the converse direction, assume that q init ∈ ⟨⟨1⟩⟩ event limit (T ) is limit-sure eventually synchronizing in T . By Lemma 4.6, either (1) q init is limit-sure eventually synchronizing in Pre n N (T ) for all n ≥ 0, and then it follows that Pre n N (T ) ̸ = ∅ for all n ≥ 0, or (2) q init is sure eventually synchronizing in T , and then since only the action # leaves the state q init (and post(q init , #) = Q), the characterization of Lemma 4.2 shows that Q ⊆ Pre k N (T ) for some k ≥ 0, and since Q ⊆ Pre N (Q) and Pre N (•) is a monotone operator, it follows that Q ⊆ Pre n N (T ) for all n ≥ k and thus Pre n N (T ) ̸ = ∅ for all n ≥ 0. We conclude the proof by noting that Pre n M (T ) = Pre n N (T ) ∩ Q and therefore Pre n M (T ) ̸ = ∅ for all n ≥ 0.

!

The example in the proof of Lemma 4.3 can be used to show that the memory needed by a family of strategies to win limit-sure eventually synchronizing condition (in the target set T = {q 2 }) is unbounded.

The following theorem summarizes the results for limit-sure eventually synchronization in MDPs.

Theorem 4.5. For limit-sure eventually synchronizing condition (with or without exact support) in MDPs and for all functions f ∈ {max T , sum T }:

1. (Complexity). The membership problem is PSPACE-complete.

(Memory)

. Unbounded memory is required for both pure and randomized strategies, and pure strategies are sufficient.

Eventually synchronization in PAs

As discussed in the beginning of Section 4.2, to show the complexity results of the membership problem for eventually synchronizing conditions in PAs, we only consider the emptiness problem of the eventually synchronizing languages according to function sum and from Dirac initial distributions too. Results presented in this section are listed in 

Sure eventually synchronization

Given a target set T in a PA, the emptiness problem for sure eventually synchronizing language in T can be solved by means of subset construction, as it is solved for NFAs. For a PA P = ⟨Q, A, δ⟩, the subset construction consists in N P = ⟨Q ′ , A, ∆⟩ where the state space Q ′ = 2 Q \ {∅} is the set of all cells, i.e. subsets of states in P, and the transition function ∆ : Q ′ × A → Q ′ defined as ∆ ′ (c, a) = c ′ where post(c, a) = c ′ and a ∈ A. We equip the subset construction of P with the set F = {S ∈ Q ′ | S ⊆ T } of accepting cells. A state q init is sure-winning for eventually synchronizing in T if and only if the subset construction N P , equipped with initial cell {q init } and F, accepts a word. Lemma 4.10. Let P be a PA and T be a target set. From all states q init , we have L event sure (sum T ) ̸ = ∅ if and only if the language of the subset construction N P , equipped with the initial cell {q init } and set F = {S ∈ Q ′ | S ⊆ T } of accepting cells, is non-empty.

Proof. We prove the following equivalence by induction (on the length i of accepting words): for all initial distributions X 0 , there exists a word w such that P w i (T ) = 1 (we say that the word w is sure-winning in i steps from X 0 ) if and only if there exists an accepting word v with length |v| = i for the subset construction N P equipped with the initial cell Supp(X 0 ) and set F = {S ∈ Q ′ | S ⊆ T } of accepting cells. The case i = 0 trivially holds since for all words w, we have P w 0 (T ) = 1 if and only if X 0 (T ) = 1 implying that the initial cell Supp(X 0 ) is an accepting cell in the subset construction.

Assume that the equivalence holds for all i < n. For the induction step, show that P is sure eventually synchronizing from X 0 (in n steps) if and only if there exists some letter a such that P is sure eventually synchronizing from the distribution d where d(q) = # q ′ ∈Q X 0 (q ′ ) • δ(q ′ , a)(q), meaning that there exists an accepting word v with length n -1 for P equipped with the initial cell Supp(d), and thus the word a • v with length n is accepting for P starting in Supp(X 0 ). First, if P is sure eventually synchronizing from the distribution d by some synchronizing word w ′ , then so is by the input word a • w ′ from X 0 . For the other direction, assume towards contradiction that P is sure eventually synchronizing from X 0 (in n steps), but for all letters a, the distribution d is not sure eventually synchronizing. Thus, no matter the input words, there is no way that the probability mass in T is 1 after n steps from X 0 , in contradiction with the fact that P is

DFA N 1 DFA N 2 q F 1 q 1 q F 2 q 2 ⇒ PA P N 1 N 2 q F 1 q 1 q F 2 q 2 q init sink q T A ′ A ′ # # # # A ′ : 1 2 A ′ : 1 2 Figure 4
.7: Sketch of reduction to show PSPACE-hardness of the emptiness problem for sure eventually synchronizing language in PAs.

sure eventually synchronizing from X 0 in n steps. It follows that the induction step holds, and thus the statement of lemma holds for all initial distributions.

!

By Proof of Lemma 4.10, a PA P is sure eventually synchronizing in the target set T by a pure word w if and only if there exists a finite word v such that w ∈ v•A ω where the subset construction N P equipped with the initial cell {q init } and set F = {S ∈ Q ′ | S ⊆ T } of accepting cells, accepts the finite word v. It implies that the set of all pure sure eventually synchronizing words in a PA is ω-regular. Moreover, the PSPACE upper bounds follows for the emptiness problem of sure eventually synchronizing languages in PAs. The PSPACEhardness is by a reduction from finite automata intersection based on an idea close to the reduction provided to show PSPACE-hardness for finite synchronization from a subset in NFAs (in Subsection 3.1.1).

Lemma 4.11. For PAs, the emptiness problem for L event sure (sum T ) is PSPACE-hard even if T is a singleton.

Proof. The proof is by a reduction from the finite automata intersection for DFAs, which is known to be PSPACE-complete [Koz77, [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Sandberg | Model-Based Testing of Reactive Systems[END_REF]. The finite automata intersection asks, given n DFAs equipped with initial states and accepting sets, whether there exists an accepting finite word for all DFAs. The reduction is as follows: Given n DFAs N 1 , N 2 , • • • , N n over the common alphabet A where N i = ⟨Q i , A, ∆ i ⟩ for all 1 ≤ i ≤ n, and where each N i is equipped with the initial state q i and the set F i of accepting states, we construct the PA P = ⟨Q, A ′ , δ⟩ as sketched in Figure 4.7 for the case n = 2. We augment the alphabet with a new letter: A ′ = A ∪ {#}. We add a new initial state q init , one copy of the state space of each DFA N i , and two new absorbing states q T and sink:

Q = Q 1 ∪ • • • ∪ Q n ∪ {q init , q T , sink}.
For the new letter #, let #-transitions in all accepting states q ∈ F 1 ∪ • • • ∪ F n of all automata go to the state q T whereas all #-transitions in all non-accepting states q ̸ ∈ F 1 ∪ • • • ∪ F n go to the state sink. On all letters in initial state q init , the next successor is randomly chosen from the n initial state q 1 , q 2 , • • • , q n , each with probability 1 n . For all 1 ≤ i ≤ n and all states q ∈ Q i and actions a ∈ A, let δ(q, a) = ∆ i (q, a). Let q T be the target state.

We establish the correctness of the reduction as follows. First direction of proof is straightforward. By construction, for all finite words w accepted by all DFAs, the PA P is sure eventually synchronizing in {q T } from q init , by the infinite word # • w • # ω .

Second, assume that L event sure (q T ) ̸ = ∅ from q init , then there exists w that is a sure eventually synchronizing word from q init in {q T }. After the first input, regardless the choice of letter, we have probability 1 n in each of the states q 1 , q 2 , • • • , q n . Since q T is only reachable via #-transitions, then w has at least one

#. Let w = a • v • # • v ′ where a ∈ A ∪ {#},
v is the subword after the first letter and up to the first following occurrence of # and v ′ ∈ (A + #) ω . We show that v is an accepting word for all DFAs. Towards contradiction, assume that v is not accepted by at least one of the automaton, say N 1 . Thus, the run over v from q 1 is not ending in an accepting state and the probability to be in sink would be 1 n by inputting the letter # right after v. It means that the probability in q T will always be bounded by 1 -1 n contradicting with w being a sure eventually synchronizing word from q init in {q T }.

!

The following theorem summarizes the results for sure eventually synchronizing in PAs.

Theorem 4.6. For sure eventually synchronizing languages in PAs:

1. (Complexity). For all functions f ∈ {max T , sum T }, the emptiness problem is PSPACE-complete.

(Regularity).

For the function sum T , the set of all pure sure eventually synchronizing words is ω-regular.

Almost-sure eventually synchronization

In this subsection, we provide undecidability result for the emptiness problem of almostsure eventually synchronizing languages in PAs.

Theorem 4.7. For all functions f ∈ {max T , sum T }, the emptiness problem of almostsure eventually synchronizing language in PAs is undecidable.

Proof. The proof is by a reduction from the value 1 problem for PAs, which is known to be undecidable (See Subsection 2.5.3). From a PA A = ⟨Q, A, δ⟩ equipped with an initial state q init and a set F of accepting states, we construct another PA P = ⟨Q ′ , A ′ , δ ′ ⟩ and a PA A target state q T such that the PA A has value 1 if and only if L event almost (q T ) ̸ = ∅ from q init in the PA P.

PA P A ⇒ q init q F q init q F q T q n # # # A ∪ {#} A ∪ {#}
The PA P is a copy of A with two new states q n and q T that are reachable only by a new action #. Formally, Q ′ = Q ∪ {q T , q n } and A ′ = A ∪ {#}. The construction is depicted in Figure 4.8. The transition function δ ′ is defined as follows: δ ′ (q, a) = δ(q, a) for all states q ∈ Q and a ∈ A. The #-transition in all accepting states q ∈ F goes to the target state q T : δ ′ (q, #)(q T ) = 1 where q ∈ F . The #-transition in all not-accepting states q ̸ ∈ F goes to q n : δ ′ (q, #)(q n ) = 1 where q ̸ ∈ F . All transitions, in the two new states q T and q n , reset the PA P into the initial state q init meaning that δ ′ (q n , a)(q init ) = δ ′ (q T , a)(q init ) = 1 for all actions a ∈ A ∪ {#}.

We establish the correctness of the reduction as follows. First, assume that the PA A has value 1. Since the definition of value in PAs is val(A) = sup w∈A * Pr(w), if val(A) = 1 then for all ϵ > 0 there exists a finite word w ϵ such that Pr(w ϵ ) ≥ 1ϵ. Consider the decreasing sequence { 1 n } n≥2 and the finite words {w 1 n } n≥2 ; and construct the infinite word

v = w 1 2 •#•#•w 1 3 •#•# • • • w 1 n •#•#•• • • represented as v = {w 1 n •#•#} n≥2 .
We show that v is an almost-sure eventually synchronizing word in {q T } from q init . We repeat the following argument for all n = 2, 3, • • • : the initial (current) distribution is the Dirac distribution on q init , next we input the word w 1 n where Pr(w 1 n ) ≥ 1 -1 n . We thus have probability 1 -1 n in the set F, and inputting the following # leads the mass of probability 1-1 n to the target set {q T } while the remaining mass of probability is in {q n }. Now, the second #-transitions reset the PA P, and the current distribution will be the initial Dirac distribution q init . This argument proves that L event almost (q T ) ̸ = ∅ from q init . For the reverse direction, assume that L event almost (q T ) ̸ = ∅ from q init in the PA P. Consider an infinite word w such that sup n P w n (q T ) = 1. Let ϵ > 0 and let n be such that P w n (q T ) ≥ 1ϵ. Since q T is only reachable via #-transitions then the n-th letter of w must be #. We pick the subword v of w as follows, -if there is no occurrence of # before the (n -1)-th letter, let v be the subword from the beginning up to (n -1)-th letter.

-otherwise, if the last occurrence of # before the (n -1)-th letter happens as the m-th letter, check whether post(q init , w m ) = {q init }:

1. if yes, let v be the subword after the m-th letter up to (n -1)-th letter 2. otherwise, let v be the subword after the (m + 1)-th letter up to the (n -1)-th letter where w m = a 0 • a 1 • • • a m is the prefix of w consisting in the first m + 1 letters. So, the finite word v does not contain # and it is thus a valid word for A. We show that Pr(v) ≥ 1ϵ in the PA A (equipped with the set F of accepting states). The prefix subword of w before v (the first m or m + 1 letters, if there is any #) resets the automaton into q init ; note that if post(q init , w m ) ̸ = {q init }, then we surely have post(q init , w m ) = {q n , q T } and thus post(q init , w m+1 ) = {q init }. Next, inputting the word v followed by # results in having probability 1ϵ in the target state q T . Since q T is only reachable from accepting states q ∈ F , so the probability in F must have been 1ϵ after reading v and right before the last #. This argument proves that for all ϵ ≥ 0, we are able to find a subword v of w that is valid for A and for which Pr(v) ≥ 1ϵ. This completes the proof. !

Limit-sure eventually synchronization

The emptiness problem for limit-sure eventually synchronizing language in PAs is polynomial-time equivalent with value 1 problem in PAs. If a PA P = ⟨Q, A, δ⟩, equipped with the initial state q init and the set F ⊆ Q of accepting states, has value 1, then there exists a family of finite words w i for which the acceptance probability is arbitrarily close to 1. By concatenating any infinite word v ∈ A ω at the end of each finite word w i in this family, a family of limit-sure eventually synchronizing words in the target set F from q init is constructed. In the same way, from a family of limit-sure eventually synchronizing infinite words in the target set F from initial state q init we can construct a family of finite words with acceptance probability arbitrarily close to 1. It happens since the probability in the target set F will be 1ϵ after finitely many steps for the limit-sure eventually synchronizing condition.

The following theorem follows from the above observation.

Theorem 4.8. For all functions f ∈ {max T , sum T }, the emptiness problem of limitsure eventually synchronizing language in PAs is undecidable.

Discussion

In this section, we shortly discuss the universality problems for sure and almost-sure {always, eventually} synchronizing languages in PA.

Universality problems of always synchronizing languages. For the function max T , by Proof of Lemma 4.1, we have established that the symbolic-run of a PA over a sure and almost-sure always synchronizing word w is an always 1-synchronizing sequence. Thus, the states where the probability mass ∥P w i ∥ is accumulated form an infinite sequence q 0 q 1 q 2 • • • where there is a deterministic transition from q i to q i+1 for all i ∈ N. For a PA P with universal sure (and thus almost-sure) always synchronizing language, we claim that there is a unique sequence q 0 q 1 q 2 • • • of states where the probability mass is accumulated along the symbolic runs of P over all words. Toward contradiction, assume that for all deterministic sequences q 0 q 1 q 2 • • • in P, there exists a word w and some n where ∥P w n ∥ < 1. The number of deterministic sequences in P are finite, thus we can enumerate all pair of such words and steps with ⟨w 1 , n 1 ⟩, • • • ⟨w n , n k ⟩ where k is the number of deterministic sequences in P. Thus, the symbolic run of the automaton over the randomized word v = 1 n w 1 + • • • + 1 n w n cannot be 1-synchronized at steps n 1 , • • • , n k implying that v is not sure (and almost-sure) always synchronizing, a contradiction with the fact that the sure (and almost-sure) always synchronizing languages are universal. Thus, to decide the universality problems of always synchronizing languages according to max T , it is sufficient to check for all states q reachable from q init , whether q ∈ T and |post(q, A)| = 1. It implies that the graph underling the PA must be lasso-shaped, which can be checked in PTIME.

A similar argument for the function sum T shows that to decide the universality problem of sure (and almost-sure) always synchronizing language, it is sufficient to check whether q ∈ T for all states q reachable from q init , which can be checked in PTIME.

Universality problem of sure eventually synchronizing language. Consider a PA P such that the sure eventually synchronizing language according to max T is universal. By definition, for all words w the symbolic run P w 0 P w 1 P w 2 • • • is eventually 1-synchronized in a singleton {q} where q ∈ T , i.e. there exists n such that P w n (q) = 1, and by Lemma 4.10, we know that n ≤ 2 |Q| . We claim that there exists some step n ≤ 2 |Q| such that for all words w, we have ∥P w n ∥ T = 1. Toward contradiction, assume that for all steps n ≤ 2 |Q| , there exists a word w n such that ∥P wn n ∥ T ̸ = 1. Then the symbolic run of the automaton over the randomized word

v = 1 k w 1 + • • • + 1 k w k
where k = 2 |Q| is never 1-synchronized, implying that v is not sure eventually synchronizing according to max T , a contradiction with the fact that P has a universal sure eventually synchronizing language according to max T . A similar argument proves that the state q where the probability mass is accumulated at step n is unique for all words too. Thus, to decide the universality problem of sure eventually synchronizing language according to max T , one can compute the sequence s 0 s 1 s 2 • • • where s 0 = {q init } and s i = post(s i-1 , A) for all i ∈ N, and check whether there exists some n such that s n = {q} is a singleton and q ∈ T . The sequence s 0 s 1 s 2 • • • is ultimately periodic meaning that there are k, n ≤ 2 |Q| such that s n = s n+k ; as a result universality problem of sure eventually synchronizing language according to max T can be decided in PSPACE.

A similar argument for the function sum T shows that to decide the universality problem of sure eventually synchronizing language, the sequence s 0 s 1 s 2 • • • where s 0 = {q init } and s i = post(s i-1 , A) for all i ∈ N, can be computed and then one can check whether there exists some n such that s n ⊆ T , which can be done in PSPACE.

We do not provide a matching lower bound for the universality problem of sure eventually synchronizing languages. However, there is a reduction from tautology problem proving that deciding whether all pure words are sure eventually synchronizing according to the function sum T , is co-NP-hard.

Universality problem of almost-sure eventually synchronizing language. We recall that if x = sup n x n for an infinite sequence x 0 x 1 x 2 • • • of bounded values, then x is equal or greater than all x i and either there exists a certain x n such that x = x n or x = lim sup n→∞ x n , For the function max T , consider a PA P that the almost-sure eventually synchronizing language is universal. By definition, sup n∈N ∥P w n ∥ T = 1 for all words w. There are three cases:

-either for all words w, there exists n such that ∥P w n ∥ T = 1 meaning that the universality problem of almost-sure eventually synchronizing language reduces to the universality problem of sure eventually synchronizing language.

-or lim sup n→∞ ∥P w n ∥ T = 1 for all words w, meaning that the universality problem of almost-sure eventually synchronizing language reduces to the universality problem of almost-sure weakly synchronizing language, which is discussed in Section 5.3.

-or there must be two words w and w ′ such that there exists n such that ∥P w n ∥ T = 1 but lim sup n→∞ ∥P w n ∥ T < 1, and ∥P w ′ i ∥ T ̸ = 1 for all i ∈ N but lim sup n→∞ ∥P w ′ n ∥ T = 1. We see that for the randomized word v = 1 2 w + 1 2 w ′ , there exists no n such that ∥P v n ∥ T = 1 and also lim sup n→∞ ∥P v n ∥ T < 1, a contradiction with the fact that P has a universal almost-sure eventually synchronizing language. It proves that the third case never happens. A similar argument for the function sum T shows that to decide the universality problem for almost-sure eventually synchronizing language, it is sufficient to check if the sure eventually synchronizing language of the PA, or if the almost-sure weakly synchronizing language is universal.

Since for both function sum T and max T , the universality problem of almost-sure weakly synchronizing languages is in PSPACE, by Lemma 5.11 on page 111, the PSPACE membership follows for the universality problem of almost-sure eventually synchronizing languages in PAs. Lemma 4.12 provides a matching lower bound.

Lemma 4.12. The universality problem of almost-sure eventually synchronizing language according to sum T in PAs is PSPACE-hard, even if T is a singleton.

Proof. We present a proof using a reduction from a PSPACE-complete problem so called initial state problem. Given an NFA N = ⟨L, A, ∆⟩ and a set of states F , the initial state problem is to decide whether there exists an initial state ℓ 0 ∈ L and an infinite word w ∈ A ω such that all runs ρ = r 0 r 1 r 2 • • • of N starting in ℓ 0 , over w avoid F, i.e. r i ̸ ∈ F for all i ∈ N. From the results of [START_REF] Chadha | On the expressiveness and complexity of randomization in finite state monitors[END_REF][START_REF] Mathieu Tracol | Recurrence and transience for probabilistic automata[END_REF], it follows that the initial state problem is PSPACE-complete. We present a polynomial-time reduction from the initial state problem to the universality problem, establishing the PSPACE-hardness result.

Let N = ⟨L, A, ∆⟩ be an NFA with the set F ̸ = ∅ of states. We assume, without loss of generality, that N is complete and all states in N are all reachable (from some state ℓ 0 ). From N , we construct a PA P = ⟨Q, A, δ⟩ where the set of states is augmented with a new absorbing state synch, formally Q = L ∪ {synch}. The transition function δ is defined as follows, for all q ∈ L and a ∈ A, -if q ̸ ∈ F , then δ(q, a) is the uniform distribution over ∆(q, a), -and if q ∈ F, δ(q, a)(q ′ ) = 1 2|∆(q,a)| for all q ′ ∈ ∆(q, a) and δ(q, a)(synch) = 1 2 . Let q init = ℓ 0 be the state from which all states are reachable. We show that the answer to the initial state problem for N is Yes if and only if the almost-sure eventually synchronizing language of P in {synch} is not universal.

First, assume that the answer to the initial state problem for N is Yes. Thus, there exists some state q and a word w ∈ A ω satisfying the initial state problem. We construct a word that is not almost-sure eventually synchronizing for P. First, consider the |Q|-times repetition of the uniform distribution d u over A. Then, with positive probability the state synch is reached, and also with positive probability the state q is reached, say after k steps. Let w ′ ∈ A ω be such that w = v • w ′ and |v| = |Q|k. Note that from state q the finite word v is played with positive probability by the repetition of uniform distribution d u . Therefore, on the word (d u ) |Q| • w ′ , with some positive probability the state synch is never reached, and thus P is not almost-sure eventually synchronizing in {synch}, and the almost-sure eventually synchronizing language of P is not universal.

Second, assume that the almost-sure eventually synchronizing language of P is not universal. Since synch is an absorbing state the eventually and weakly synchronization coincide, then by the construction in Lemma 5.10 on page 108, there exists a pure word w ∈ A ω such that from the initial state, all runs over w avoid the terminal end component {synch}, and therefore also avoid F . Hence, the answer to the initial state problem for N is Yes.

!

From the above arguments and Lemma 4.12, it appears that for all functions f ∈ {max T , sum T }, the universality problem of almost-sure eventually synchronizing language in PAs is PSPACE-complete.
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Weakly Synchronizing Condition

First sight. In this chapter, we establish the complexity and memory requirement for weakly synchronizing conditions. We show that the membership problem for MDPs is PSPACE-complete for sure and almost-sure winning, that exponential memory is necessary and sufficient for sure winning while infinite memory is necessary for almostsure winning, and we show that limit-sure and almost-sure winning coincide.

Moreover, we show that while the emptiness problem for sure weakly synchronizing languages in PAs is PSPACE-complete, the emptiness decision problems for almost-sure and limit-sure languages are undecidable. The results presented in this chapter are summarized in Table 5 

Weak synchronization in MDPs

By Remarks 5 and 6 (on pages 50 and 50), we consider the membership problem according to function sum and from Dirac initial distributions (i.e., single initial state q init ). The results presented in this section are summarized in Table 5.1.

Sure weak synchronization

In this subsection, we study the membership problem for sure weakly synchronizing condition and show that it is PSPACE-complete . The PSPACE upper bound of the membership problem for sure weak synchronization is obtained by the following characterization.

Lemma 5.1. Let M be an MDP and T be a target set. For all states q init , we have q init ∈ ⟨⟨1⟩⟩ weakly sure (sum T ) if and only if there exists a set S ⊆ T such that q init ∈ Pre m (S) for some m ≥ 0 and S ⊆ Pre n (S) for some n ≥ 1.

Proof. We recall that for all initial distribution X 0 with support S, we have X 0 ∈ ⟨⟨1⟩⟩ event sure (sum T ) if and only if there exists k ≥ 0 such that S ⊆ Pre k M (T ) (See Lemma 4.2). First, if q init ∈ ⟨⟨1⟩⟩ weakly sure (sum T ), then let α be a sure winning weakly synchronizing strategy. Then there are infinitely many positions n such that M α n (T ) = 1, and since the state space is finite, there is a set S of states such that for infinitely many positions n we have Supp(M α n ) = S and M α n (T ) = 1, and thus S ⊆ T . By Lemma 4.2, it follows that q init ∈ Pre m (S) for some m ≥ 0, and by considering two positions n 1 < n 2 where Supp(M α n 1 ) = Supp(M α n 2 ) = S, it follows that S ⊆ Pre n (S) for n = n 2n 1 ≥ 1. The reverse direction is straightforward by considering a strategy α ensuring that M α m (S) = 1 for some m ≥ 0, and then ensuring that the probability mass from all states in S remains in S after every multiple of n steps where n > 0 is such that S ⊆ Pre n (S), showing that α is a sure winning weakly synchronizing strategy in S (and thus in T ) from q init , thus q init ∈ ⟨⟨1⟩⟩ weakly sure (sum T ).

!

The PSPACE upper bound follows from the characterization in Lemma 5.1. A (N)PSPACE algorithm is to guess the set S ⊆ T , and the numbers m, n (with m, n ≤ 90 MDP M

q init q q ⇒ MDP N MDP M q init q q sink p A ′ ♯ ♯ ♯ A ♯ Figure 5
.1: The reduction sketch to show PSPACE-hardness of the membership problem for sure weak synchronization in MDPs.

2 |Q| since the sequence Pre n (S) of predecessors is ultimately periodic), and check that q init ∈ Pre m (S) and S ⊆ Pre n (S). The PSPACE lower bound follows from the PSPACEcompleteness of the membership problem for sure eventually synchronization. Lemma 5.2 gives the PSPACE lower bound.

Lemma 5.2. The membership problem for ⟨⟨1⟩⟩ weakly sure (sum T ) is PSPACE-hard even if T is a singleton.

Proof. The proof is by a reduction from the membership problem for ⟨⟨1⟩⟩ event sure (sum T ) with a singleton T , which is PSPACE-complete (See Theorem 4.3). From an MDP M = ⟨Q, A, δ⟩ with initial state q init and target state q, we construct another MDP N = ⟨Q ′ , A ′ , δ ′ ⟩ and a target state p such that q init ∈ ⟨⟨1⟩⟩ event sure (q) in M if and only if q init ∈ ⟨⟨1⟩⟩ weakly sure (p) in N . The MDP N is a copy of M with two new states p and sink that are reachable only by a new action ♯ (see Figure 5.1). Formally, Q ′ = Q ∪ {p, sink} and A ′ = A ∪ {♯}. The transition function δ ′ is defined as follows: δ ′ (q, a) = δ(q, a) for all states q ∈ Q and a ∈ A, δ(q, ♯)(sink) = 1 for all q ∈ Q ′ \ {q} and δ(q, ♯)(p) = 1. The state sink is absorbing and from state p all other transitions lead to the initial state, i.e., δ(sink, a)(sink) = 1 and δ(p, a)(q init ) = 1 for all a ∈ A.

We establish the correctness of the reduction as follows. First, if q init ∈ ⟨⟨1⟩⟩ event sure (q) in M, then let α be a sure winning strategy in M for eventually synchronization in {q}. A sure winning strategy in N for weak synchronization in {p} is to play according to α until the whole probability mass is in q, then play ♯ followed by some a ∈ A to visit p and get back to the initial state q init , and then repeat the same strategy from q init . Hence q init ∈ ⟨⟨1⟩⟩ weakly sure (p) in N . Second, if q init ∈ ⟨⟨1⟩⟩ weakly sure (p) in N , then consider a strategy α such that N α n (p) = 1 for some n ≥ 0. By construction of N , it follows that N α n-1 (q) = 1, that is all path-outcomes of α of length n-1 reach q, and α plays ♯ in the next step. If α never plays ♯ before position n -1, then α is a valid strategy in M up to step n -1 and it shows that q init ∈ ⟨⟨1⟩⟩ event sure (q) is sure winning in M for eventually synchronization in {q}. Otherwise let m be the largest number such that there is a finite path-outcome ρ of α of length m < n -1 such that ♯ ∈ Supp(α(ρ)). Note that the action ♯ can be played by α only in the state q, and thus the initial state is reached again after one more step. It follows that in some path-outcome ρ ′ of α of length m + 2, we have Last(ρ ′ ) = q init , and by the choice of m, the action ♯ is not played by α until position n -1 where all the probability mass is in q. Hence the strategy that plays like α from ρ ′ in N is a valid strategy from q init in M, and is a witness that q init ∈ ⟨⟨1⟩⟩ event sure (q).

q init q 1 1 q 1 2 q 2 1 q 2 2 q 2 3 q T H 1 H 2 a, b : 1

!

The proof of Lemma 5.1 suggests an exponential-memory strategy for sure weakly synchronization that in q ∈ Pre n (S) plays an action a such that post(q, a) ⊆ Pre n-1 (S), which can be realized with exponential memory since n ≤ 2 |Q| . It can be shown that exponential memory is necessary in general. The argument is very similar to the proof of exponential memory lower bound for sure eventually synchronization (See Section 4.2). For the sake of completeness, we present a family of MDPs M n (n ∈ N) over alphabet {a, b} that are sure winning for weak synchronization, and where the sure winning strategies require exponential memory. The MDP M 2 is shown in Figure 5.2. The structure of M n is an initial uniform probabilistic transition to n components H 1 , . . . , H n where H i is a cycle of length p i the i-th prime number. On action a, the next state in the cycle is reached, and on action b the target state q T is reached, only from the last state in the cycles. From other states, the action b leads to an absorbing sink state (transitions not depicted). A sure winning strategy from q init for weak synchronization in {q T } is to play a in the first p # n = 2 n i=1 p i steps, and then play bb to reach q init again, through q T . This requires memory of size p # n > 2 n while the size of M n is in O(n 2 log n) [START_REF] Bach | Efficient Algorithms[END_REF]. It can be proved that all winning strategies for weak synchronization need to be, from q init , sure eventually synchronizing in {q T } (consider the last occurrence of q init along a play before all the probability mass is in q T ) and this requires memory of size at least p # n by standard pumping arguments as in the sure eventually case.

Theorem 5.1. For sure weak synchronization in MDPs and for all functions f ∈ {sum T , max T }:

1. (Complexity). The membership problem is PSPACE-complete.

(Memory)

. Exponential memory is necessary and sufficient for both pure and randomized strategies, and pure strategies are sufficient.

Almost-sure weak synchronization

Let x = sup n∈N x n for a bounded sequence (x n ) n∈N ; then x is equal or greater than all x i and either there exists a certain n such that x n = x or x = lim sup n→∞ x n . Since all entries in a probability distribution are bounded by 1, we can see that for an MDP M and a target set T , -⟨⟨1⟩⟩ event almost (f ) = ⟨⟨1⟩⟩ event sure (f ) ∪ ⟨⟨1⟩⟩ weak almost (f ) where f ∈ {max T , sum T }. Despite this mathematical connection, in the sequel, we give the intuitive characterization to decide the membership problem of almost-sure weak synchronization.

We present a characterization of almost-sure weak synchronization that gives a PSPACE upper bound for the membership problem. Our characterization uses the limit-sure eventually synchronizing conditions with exact support. Recall that this condition requires that the probability mass tends to 1 in a target set T , and moreover that after the same number of steps the support of the probability distribution is contained in a given set U . Formally, given an MDP M, let ⟨⟨1⟩⟩ event limit (sum T , U ) for T ⊆ U be the set of all initial distributions such that for all ϵ > 0 there exists a strategy α and n ∈ N such that M α n (T ) ≥ 1ϵ and M α n (U ) = 1. We show that an MDP is almost-sure weakly synchronizing in target T if (and only if), for some set U , there is a sure eventually synchronizing strategy in target U , and from the probability distributions with support U there is a limit-sure winning strategy for eventually synchronizing in Pre(T ) with support in Pre(U ). This ensures that from the initial state we can have the whole probability mass in U , and from U have probability 1ϵ in Pre(T ) (and in T in the next step), while the whole probability mass is back in Pre(U ) (and in U in the next step), allowing to repeat the strategy for ϵ → 0, thus ensuring infinitely often probability at least 1ϵ in T (for all ϵ > 0). Lemma 5.3. Let M be an MDP and T be a target set. For all states q init , we have q init ∈ ⟨⟨1⟩⟩ weakly almost (sum T ) if and only if there exists a set U such that q init ∈ ⟨⟨1⟩⟩ event sure (sum U ), and
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-X U ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) , Pre(U )) where X U is the uniform distribution over U .

Proof. First, if q init ∈ ⟨⟨1⟩⟩ weakly almost (sum T ), then there exists a strategy α such that for all i ≥ 0 there exists n i ∈ N such that M α n i (T ) ≥ 1 -2 -i , and moreover n i+1 > n i for all i ≥ 0. Let s i = Supp(M α n i ) be the support of M α n i . Since the state space is finite, there is a set U that occurs infinitely often in the sequence s 0 s 1 . . . , thus for all k > 0 there exists

m k ∈ N such that M α m k (T ) ≥ 1-2 -k and M α m k (U ) = 1.
It follows that α is sure eventually synchronizing in U from q init , i.e., q init ∈ ⟨⟨1⟩⟩ event sure (sum U ). Moreover, we can assume that m k+1 > m k for all k > 0 and thus M is also limit-sure eventually synchronizing in Pre(T ) with exact support in Pre(U ) from the initial distribution X 1 = M α m 1 . By Corollary 4.3, since Supp(X 1 ) = U = Supp(X U ) and since only the support of the initial probability distributions is relevant for the limit-sure eventually synchronizing condition, it follows that X U ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) , Pre(U )). To establish the converse, note that since X U ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) , Pre(U )), it follows from Corollary 4.3 that from all initial distributions with support in U , for all ϵ > 0 there exists a strategy α ϵ and a position n ϵ such that M αϵ nϵ (T ) ≥ 1ϵ and M αϵ nϵ (U ) = 1. We construct an almost-sure weakly synchronizing strategy α as follows. Since q init ∈ ⟨⟨1⟩⟩ event sure (sum U ), play according to a sure eventually synchronizing strategy from q init until all the probability mass is in U . Then for i = 1, 2, . . . and ϵ i = 2 -i , repeat the following procedure: given the current probability distribution, select the corresponding strategy α ϵ i and play according to α ϵ i for n ϵ i steps, ensuring probability mass at least 1 -2 -i in Pre(T ) and support of the probability mass in Pre(U ). Then from states in Pre(T ), play an action to ensure reaching T in the next step, and from states in Pre(U ) ensure reaching U . Continue playing according to α ϵ i+1 for n ϵ i+1 steps, etc. Since n ϵ i + 1 > 0 for all i ≥ 0, this strategy ensures that lim sup n→∞ M α n (T ) = 1 from q init , hence q init ∈ ⟨⟨1⟩⟩ weak almost (sum T ).

!

Note that from Lemma 5.3, it follows that counting strategies are sufficient to win almost-sure weakly synchronizing condition (a strategy is counting if α(ρ) = α(ρ ′ ) for all prefixes ρ, ρ ′ with the same length and Last(ρ) = Last(ρ ′ )).

Since the membership problems for sure eventually synchronizing and for limit-sure eventually synchronizing with exact support are PSPACE-complete (See Theorem 4.4 and Theorem 4.5), the membership problem for almost-sure weak synchronization is in PSPACE by guessing the set U , and checking that q init ∈ ⟨⟨1⟩⟩ event sure (sum U ), and checking that X U ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) , Pre(U )). We establish a matching PSPACE lower bound.

Lemma 5.4. The membership problem for ⟨⟨1⟩⟩ weakly almost (sum T ) is PSPACE-hard even if T is a singleton.

Proof. The proof is by the same reduction from the universal finiteness problem as presented in Lemma 4.9 where from an MDP M and a singleton T , we constructed N and q init , and showed that Pre n M (T ) ̸ = ∅ for all n ≥ 0 if and only if q init is limit-sure eventually synchronizing in T (with support trivially in the state space Q ′ of N ). We show that Pre n M (T ) ̸ = ∅ for all n ≥ 0 if and only if q init is almost-sure weakly synchronizing in T , proving that the membership problem for almost-sure weakly synchronization is PSPACEhard.

First, if q init is almost-sure weakly synchronizing in T , then q init is also limit-sure eventually synchronizing in T , and therefore Pre n M (T ) ̸ = ∅ for all n ≥ 0 by the arguments in the proof of Lemma 4.9.

Second, if Pre n M (T ) ̸ = ∅ for all n ≥ 0, then q init is limit-sure eventually synchronizing in T (with support in the state space Q ′ = Q ∪ {q init } of N ), and since the state q init is reached from all states in Q by playing the action ♯ and from q init by playing any action in A, it follows that the uniform distribution over Q ′ is also limit-sure eventually synchronizing in T (with support in Q ′ ) by first going to q init and then playing a limit-sure eventually synchronizing strategy. By the characterization of Lemma 5.3 and since q init is trivially sure eventually synchronizing in Q ′ , it follows that q init ∈ ⟨⟨1⟩⟩ weakly almost (sum T ).

!

We provide an example of an MDP such that all strategies to win almost-sure weakly synchronizing conditions require infinite memory. The example and argument are analogous to the proof that infinite memory is necessary for almost-sure eventually synchronizing, see Lemma 4.3.

Lemma 5.5. There exists an almost-sure weakly synchronizing MDP for which all almostsure weakly synchronizing strategies require infinite memory.

Proof. Consider the MDP M shown in Figure 4.4 with three states q init , q 1 , q 2 and two actions a, b. The only probabilistic transition is in q init on action a that has successors q init and q 1 with probability 1 2 . The other transitions are deterministic. Let q init be the initial state. We construct a strategy that is almost-sure weakly synchronizing in {q 2 }, showing that q init ∈ ⟨⟨1⟩⟩ weakly almost (q 2 ). First, observe that for all ϵ > 0 we can have probability at least 1ϵ in q 2 after finitely many steps from q init : playing n times a and then b leads to probability 1 -1 2 n in q 2 . Note that after that, the current probability distribution has support {q init , q 2 } and that from such a distribution, we can as well ensure probability at least 1ϵ in q 2 . Thus for a fixed ϵ, the MDP is (1ϵ)-synchronizing in {q 2 } (after finitely many steps), and by taking a smaller value of ϵ, we can continue to play a strategy to have probability at least 1ϵ in q 2 , and repeat this for ϵ → 0. This strategy ensures almostsure weak synchronization in {q 2 }. Below, we show that infinite memory is necessary for almost-sure winning in this MDP.

Assume towards contradiction that there exists a finite-memory strategy α that is almost-sure weakly synchronizing in {q 2 }. Consider the Markov chain M(α) (the product of the MDP M with the finite-state transducer defining α). A state (q, m) in M(α) is called a q-state. Since α is almost-sure weakly synchronizing in {q 2 }, there is a q 2 -state in the recurrent states of M(α). Since on all actions q init is a successor of q 2 , and q init is a successor of itself, it follows that there is a recurrent q init -state in M(α), and that all periodic supports of recurrent states in M(α) contain a q init -state. Hence, in each stationary distribution there is a q init -state with a positive probability, and therefore the probability mass in q init is bounded away from zero. It follows that the probability mass in q 2 is bounded away from 1 thus α is not almost-sure weakly synchronizing in {q 2 }, a contradiction.

!

From previous lemmas, we obtain Theorem 5.2 stating that the membership problem for almost-sure weakly synchronizing, is PSPACE-complete.

Theorem 5.2. For almost-sure weak synchronization in MDPs and all functions f ∈ {max T , sum T }:

1. (Complexity). The membership problem is PSPACE-complete.

(Memory).

Infinite memory is necessary in general for both pure and randomized strategies, and pure strategies are sufficient.

Limit-sure weak synchronization

We show that the winning regions for almost-sure and limit-sure weak synchronization coincide. The result is not intuitively obvious (recall that it does not hold for eventually synchronizing) and requires a careful analysis of the structure of limit-sure winning strategies to show that they always induce the existence of an almost-sure winning strategy. The construction of an almost-sure winning strategy from a family of limit-sure winning strategies is illustrated in the following example.

Example 5.1. Consider the MDP M in Figure 5.3 with initial state q init and target set T = {q 4 }. Note that there is a relevant strategic choice only in q 3 , and that q init is limitsure winning for eventually synchronization in {q 4 } since we can inject a probability mass arbitrarily close to 1 in q 3 (by always playing a in q 3 ), and then switching to playing b in q 3 gets probability 1ϵ in T (for arbitrarily small ϵ). Moreover, the same holds from state q 4 . These two facts are sufficient to show that q init is limit-sure winning for weak synchronization in {q 4 }: given ϵ > 0, play from q init a strategy to ensure probability at least p 1 = 1 -ϵ 2 in q 4 (in finitely many steps), and then play according to a strategy that ensures from q 4 probability p 2 = p 1 -ϵ 4 in q 4 (in finitely many, and at least one step), and repeat this process using strategies that ensure, if the probability mass in q 4 is at least p i , that the probability in q 4 is at least p i+1 = p i -ϵ 2 i+1 (in at least one step). It follows that

p i = 1 -ϵ 2 -ϵ 4 -• • • -ϵ 2 i > 1 -ϵ for all i ≥ 1
, and thus lim sup i→∞ p i ≥ 1ϵ showing that q init is limit-sure weakly synchronizing in target {q 4 }.

It follows from the result that we establish in this section (Theorem 5.3) that q init is actually almost-sure weakly synchronizing in target {q 4 }. To see this, consider the sequence Pre i (T ) for i ≥ 0: {q 4 }, {q 3 }, {q 2 }, {q 3 }, . . . is ultimately periodic with period r = 2 and q init q 1 q 2 q 3 q 4 q 5 q 6

a, b : 3: An example to show q init ∈ ⟨⟨1⟩⟩ weakly limit (q 4 ) implies q init ∈ ⟨⟨1⟩⟩ weakly almost (q 4 ).

R = {q 3 } = Pre(T ) is such that R = Pre 2 (R).
The period corresponds to the loop q 2 q 3 in the MDP. It turns out that limit-sure eventually synchronizing in T implies almost-sure eventually synchronizing in R, see Corollary 4.2, thus from q init a single strategy ensures that the probability mass in R is 1, either in the limit or after finitely many steps. Note that in both cases since R = Pre r (R) this even implies almost-sure weakly synchronizing in R. The same holds from state q 4 . Moreover, note that all distributions produced by an almost-sure weakly synchronizing strategy are themselves almost-sure weakly synchronizing. An almost-sure winning strategy for weak synchronization in {q 4 } consists in playing from q init an almost-sure eventually synchronizing strategy in target R = {q 3 }, and considering a decreasing sequence ϵ i such that lim i→∞ ϵ i = 0, when the probability mass in R is at least 1ϵ i , inject it in T = {q 4 }. Then the remaining probability mass defines a distribution (with support {q 1 , q 2 } in the example) that is still almost-sure eventually synchronizing in R, as well as the states in T . Note that in the example, (almost all) the probability mass in T = {q 4 } can move to q 3 in an even number of steps, while from {q 1 , q 2 } an odd number of steps is required, resulting in a shift of the probability mass. However, by repeating the strategy two times from q 4 (injecting large probability mass in q 3 , moving to q 4 , and injecting in q 3 again), we can make up for the shift and reach q 3 from q 4 in an even number of steps, thus in synchronization with the probability mass from {q 1 , q 2 }.

▹

This idea behind Example 5.1, which is constructing an almost-sure winning strategy from a family of limit-sure winning strategies by annihilating the shifts at proper times, is formalized in the rest of this subsection, and we prove that we can always make up for the shifts, which requires a carefully analysis of the allowed amounts of shifting.

The result is easier to prove when the target T is a singleton, as in Example 5.1. For an arbitrary target set T , we need to get rid of the states in T that do not contribute a significant (i.e., bounded away from 0) probability mass in the limit, that we call the vanishing states. We show that they can be removed from T without changing the winning region for limit-sure winning. When the target set has no vanishing state, we can construct an almost-sure winning strategy as in the case of a singleton target set.

q init q 1 q 2 q 3 a : 1 2 a, b : 1 2 b : 1 2 a b a, b a, b
Figure 5.4: The state q 2 is a vanishing state for the target set T = {q 2 , q 3 } and the family of stagiest (α) i∈N described in Example 5.2.

Definition 5.1. Given an MDP M with initial state q init ∈ ⟨⟨1⟩⟩ weakly limit (sum T ) that is limit-sure winning for the weakly synchronizing condition in target set T , let (α i ) i∈N be a family of limit-sure winning strategies such that lim sup n→∞ M α i n (T ) ≥ 1ϵ i where lim i→∞ ϵ i = 0. Hence by definition of lim sup, for all i ≥ 0 there exists a strictly increasing sequence

k i,0 < k i,1 < • • • of positions such that M α i k i,j (T ) ≥ 1 -2ϵ i for all j ≥ 0. A state q ∈ T is vanishing if lim inf i→∞ lim inf j→∞ M α i k i,j (q) 
= 0 for some family of limit-sure weakly synchronizing strategies (α i ) i∈N .

Intuitively, the contribution of a vanishing state q to the probability in T tends to 0 and therefore M is also limit-sure winning for the weakly synchronizing condition in target set T \ {q}.

Example 5.2. Consider the MDP in Figure 5.4 with four states and two actions a, b. All transitions are deterministic except in q init : the a-transitions have two successors q init and q 1 each with probability 1 2 , as well as the b-transitions with two successors q init and q 2 . The a-transition in q 1 is a self-loop whereas the b-transition deterministically goes to q 3 . All transitions in q 2 are directed to q init , and all in q 3 are directed to q 1 . Let T = {q 2 , q 3 } be the target set and for all i ∈ N, let α i be the strategy that repeats the following template forever: playing i times a and then playing two times b. The family of strategies (α i ) i∈N is a witness to show that q init ∈ ⟨⟨1⟩⟩ weakly limit (sum T ) where the state q 2 is a vanishing state. We see that the contribution of q 2 in accumulating the probability mass in {q 2 , q 3 } tends to 0 when i → ∞. Thus, q init ∈ ⟨⟨1⟩⟩ weakly limit (q 3 ) too.

▹

Lemma 5.6. If an MDP M is limit-sure weakly synchronizing in target set T , then there exists a set T ′ ⊆ T such that M is limit-sure weakly synchronizing in T ′ without vanishing states.

Proof. If there is no vanishing state for (α i ) i∈N , then take T ′ = T and the proof is complete. Otherwise, let (α i ) i∈N be a family of limit-sure winning strategies such that lim sup n→∞ M α i n (T ) ≥ 1ϵ i where lim i→∞ ϵ i = 0 and let q be a vanishing state for (α i ) i∈N . We show that (α i ) i∈N is limit-sure weakly synchronizing in T \ {q}. For every i ≥ 0 let k i,0 < k i,1 < • • • be a strictly increasing sequence such that (a) M α i k i,j (T ) ≥ 1 -2ϵ i for all i, j ≥ 0, and (b) lim inf i→∞ lim inf j→∞ M α i k i,j (q) = 0. It follows from (b) that for all ϵ > 0 and all x > 0 there exists i > x such that for all y > 0 there exists j > y such that M α i k i,j (q) < ϵ, and thus

M α i k i,j (T \ {q}) ≥ 1 -2ϵ i -ϵ
by (a). Since this holds for infinitely many i's, we can choose i such that ϵ i < ϵ and we have lim sup

j→∞ M α i k i,j (T \ {q}) ≥ 1 -3ϵ
and thus lim sup

n→∞ M α i n (T \ {q}) ≥ 1 -3ϵ
since the sequence (k i,j ) j∈N is strictly increasing. This shows that (α i ) i∈N is limit-sure weakly synchronizing in T \ {q}.

By repeating this argument as long as there is a vanishing state (thus at most |T | -1 times), we can construct the desired set T ′ ⊆ T without vanishing state.

!

For a limit-sure weakly synchronizing MDP in target set T (without vanishing states), we show that from a probability distribution with support T , a probability mass arbitrarily close to 1 can be injected synchronously back in T (in at least one step), that is X T ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) ). The same holds from the initial state q init of the MDP. This property is the key to construct an almost-sure weakly synchronizing strategy.

Lemma 5.7. If an MDP M with initial state q init is limit-sure weakly synchronizing in a target set T without vanishing states, then q init ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) ) and X T ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) ) where X T is the uniform distribution over T .

Proof. Since q init ∈ ⟨⟨1⟩⟩ weakly limit (sum T ) and ⟨⟨1⟩⟩ weakly limit (sum T ) ⊆ ⟨⟨1⟩⟩ event limit (sum T ), we have q init ∈ ⟨⟨1⟩⟩ event limit (sum T ) and thus it suffices to prove that X T ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) ). This is because then from q init , probability arbitrarily close to 1 can be injected in Pre(T ) through a distribution with support in T (since by Corollary 4.3 only the support of the initial probability distribution is important for limit-sure eventually synchronizing).

Let (α i ) i∈N be a family of limit-sure winning strategies such that lim sup n→∞ M α i n (T ) ≥ 1ϵ i where lim i→∞ ϵ i = 0, and such that there is no vanishing state. For every i ≥ 0 let k i,0 < k i,1 < • • • be a strictly increasing sequence such that M α i k i,j (T ) ≥ 1 -2ϵ i for all i, j ≥ 0, and let B = min q∈T lim inf i→∞ lim inf j→∞ M α i k i,j (q). Note that B > 0 since there is no vanishing state. It follows that there exists x > 0 such that for all i > x there exists y i > 0 such that for all j > y i and all q ∈ T we have

M α i k i,j (q) ≥ B 2 .
Given ν > 0, let i > x such that ϵ i < νB 4 , and for j > y i , consider the positions n 1 = k i,j and n 2 = k i,j+1 . We have n 1 < n 2 and M α i n 1 (T ) ≥ 1 -2ϵ i and M α i n 2 (T ) ≥ 1 -2ϵ i , and M α i n 1 (q) ≥ B 2 for all q ∈ T . Consider the strategy β that plays like α i plays from position n 1 and thus transforms the distribution M α i n 1 into M α i n 2 . For all states q ∈ T , from the Dirac distribution on q under strategy β, the probability to reach Q \ T in n 2n 1 steps is thus at most

M α i n 2 (Q \ T ) M α i n 1 (q) ≤ 2ϵ i B/2 < ν.
Therefore, from an arbitrary probability distribution with support T (over set T ) we have M β n 2 -n 1 (T ) > 1ν, showing that X T is limit-sure eventually synchronizing in T and thus in Pre(T ) since n 2n 1 > 0 (it is easy to show that if the mass of probability in T is at least 1ν, then the mass of probability in Pre(T ) one step before is at least 1 -ν η where η is the smallest positive probability in M).

!

To show that limit-sure and almost-sure winning coincide for weakly synchronizing conditions, from a family of limit-sure winning strategies we construct an almost-sure winning strategy that uses the eventually synchronizing strategies of Lemma 5.7. The construction consists in using successively strategies that ensure probability mass 1ϵ i in the target T , for a decreasing sequence ϵ i → 0. Such strategies exist by Lemma 5.7, both from the initial state and from the set T . However, the mass of probability that can be guaranteed to be synchronized in T by the successive strategies is always smaller than 1, and therefore we need to argue that the remaining masses of probability (of size ϵ i ) can also get synchronized in T , and despite their possible shift with the main mass of probability.

Two main key arguments are needed to establish the correctness of the construction: (1) eventually synchronizing implies that a finite number of steps is sufficient to obtain a probability mass of 1-ϵ i in T , and thus the construction of the strategy is well defined, and (2) by the finiteness of the period r (such that R = Pre r (R) where R = Pre k (T ) for some k) we can ensure to eventually make up for the shifts, and every piece of the probability mass can contribute (synchronously) to the target infinitely often.

Theorem 5.3. ⟨⟨1⟩⟩ weakly limit (sum T ) = ⟨⟨1⟩⟩ weakly almost (sum T ) for all MDPs and target sets T .

Proof. Since ⟨⟨1⟩⟩ weakly almost (sum T ) ⊆ ⟨⟨1⟩⟩ weakly limit (sum T ) holds by the definition, it is sufficient to prove that ⟨⟨1⟩⟩ weakly limit (sum T ) ⊆ ⟨⟨1⟩⟩ weakly almost (sum T ) and by Lemma 5.6 it is sufficient to prove that if q init ∈ ⟨⟨1⟩⟩ weakly limit (sum T ) is limit-sure weakly synchronizing in T without vanishing state, then q init is almost-sure weakly synchronizing in T . If T has vanishing states, then consider T ′ ⊆ T as in Lemma 5.6 and it will follows that q init is almost-sure weakly synchronizing in T ′ and thus also in T . We proceed with the proof that q init ∈ ⟨⟨1⟩⟩ weakly limit (sum T ) implies q init ∈ ⟨⟨1⟩⟩ weakly almost (sum T ).

For i = 1, 2, . . . consider the sequence of predecessors Pre i (T ), which is ultimately periodic: let 1 ≤ k, r ≤ 2 |Q| such that Pre k (T ) = Pre k+r (T ), and let R = Pre k (T ). Thus R = Pre k+r (T ) = Pre r (R).

Claim 1. We have q init ∈ ⟨⟨1⟩⟩ event almost (sum R ) and X T ∈ ⟨⟨1⟩⟩ event almost (sum R ).

Proof of Claim 1. By Lemma 5.7, since there is no vanishing state in T we have q init ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) ) and X T ∈ ⟨⟨1⟩⟩ event limit (sum Pre(T ) ), and it follows from the characterization of Lemma 4.6 and Corollary 4.2 that: either (1) q init ∈ ⟨⟨1⟩⟩ event sure (sum Pre(T ) ) or (2) q init ∈ ⟨⟨1⟩⟩ event almost (sum R ), and either (a) X T ∈ ⟨⟨1⟩⟩ event sure (sum Pre(T ) ) or (b) X T ∈ ⟨⟨1⟩⟩ event almost (sum R ). Note that (a) implies (b) (and thus (b) holds) since (a) implies T ⊆ Pre i (T ) for some i ≥ 1 (by Lemma 4.2) and thus T ⊆ Pre n•i (T ) for all n ≥ 0 by monotonicity of Pre i (•), which entails for n • i ≥ k that T ⊆ Pre m (R) where m = (n • ik) mod r and thus X T is sure (and almost-sure) winning for the eventually synchronizing condition in target R.

Note also that (1) implies (2) since by (1) we can play a sure-winning strategy from q init to ensure in finitely many steps probability 1 in Pre(T ) and in the next step probability 1 in T , and by (b) play an almost-sure winning strategy for eventually synchronizing in R. Hence q init ∈ ⟨⟨1⟩⟩ event almost (sum R ) and thus (2b) holds, which concludes the proof of Claim 1.

We now show that there exists an almost-sure winning strategy for the weakly synchronizing condition in target T .

Recall that Pre r (R) = R and thus once some probability mass p is in R, it is possible to ensure that the probability mass in R after r steps is at least p, and thus that (with period r) the probability in R does not decrease. By the result of Lemma 4.7, almost-sure winning for eventually synchronizing in R implies that there exists a strategy α such that the probability in R tends to 1 at periodic positions: for some 0 ≤ h < r the strategy α is almost-sure eventually synchronizing in R with shift h, that is ∀ϵ > 0

• ∃N • ∀n ≥ N : n ≡ h mod r =⇒ M α n (R) ≥ 1 -ϵ.
We also say that the initial distribution X 0 = M α 0 is almost-sure eventually synchronizing in R with shift h.

Claim 2.

(⋆) If M α 0 is almost-sure eventually synchronizing in R with some shift h, then M α i is almost-sure eventually synchronizing in R with shift hi mod r. (⋆⋆) Let t such that X T is almost-sure eventually synchronizing in R with shift t. If a distribution is almost-sure eventually synchronizing in R with some shift h, then it is also almost-sure eventually synchronizing in R with shift h + k + t mod r (where we chose k such that R = Pre k (T )).

Proof of Claim 2. The result (⋆) immediately follows from the definition of shift, and we prove (⋆⋆) as follows. We show that almost-sure eventually synchronizing in R with shift h implies almost-sure eventually synchronizing in R with shift h + k + t mod r.

Intuitively, the probability mass that is in R with shift h can be injected in T in k steps, and then from T we can play an almost-sure eventually synchronizing strategy in target R with shift t, thus a total shift of h + k + t mod r. Precisely, an almost-sure winning strategy α is constructed as follows: given a finite prefix of play ρ, if there is no state q ∈ R that occurs in ρ at a position n ≡ h mod r, then play in ρ according to the almost-sure winning strategy α h for eventually synchronizing in R with shift h. Otherwise, if there is no q ∈ T that occurs in ρ at a position n ≡ h + k mod r, then we play according to a sure winning strategy α sure for eventually synchronizing in T , and otherwise we play according to an almost-sure winning strategy α t from T for eventually synchronizing in R with shift t. To show that α is almost-sure eventually synchronizing in R with shift h + k + t, note that α h ensures with probability 1 that R is reached at positions n ≡ h mod r, and thus T is reached at positions h + k mod r by α sure , and from the states in T the strategy α t ensures with probability 1 that R is reached at positions h + k + t mod r. This concludes the proof of Claim 2.

Construction of an almost-sure winning strategy. We construct strategies α ϵ for ϵ > 0 that ensure, from a distribution that is almost-sure eventually synchronizing in R (with some shift h), that after finitely many steps, a distribution d ′ is reached such that d ′ (T ) ≥ 1ϵ and d ′ is almost-sure eventually synchronizing in R (with some shift h ′ ). Since q init is almost-sure eventually synchronizing in R (with some shift h), it follows that the strategy α as that plays successively the strategies (each for finitely many steps) α 1 2 , α 1 4 , α 1 8 , . . . is almost-sure winning from q init for the weakly synchronizing condition in target T . We define the strategies α ϵ as follows. Given an initial distribution that is almost-sure eventually synchronizing in R with a shift h and given ϵ > 0, let α ϵ be the strategy that plays according to the almost-sure winning strategy α h for eventually synchronizing in R with shift h for a number of steps n ≡ h mod r until a distribution d is reached such that d(R) ≥ 1ϵ, and then from d it plays according to a sure winning strategy α sure for eventually synchronizing in T from the states in R (for k steps), and keeps playing according to α h from the states in Q \ R (for k steps). The distribution d ′ reached from d after k steps is such that d ′ (T ) ≥ 1ϵ and we claim that it is almost-sure eventually synchronizing in R with shift t. This holds by definition from the states in Supp(d ′ ) ∩ T , and by (⋆) the states in Supp(d ′ ) \ T are almost-sure eventually synchronizing in R with shift h -(h + k) mod r, and by (⋆⋆) with shift h -

(h + k) + k + t = t.
It follows that the strategy α as is well-defined and ensures, for all ϵ > 0, that the probability mass in T is infinitely often at least 1ϵ, thus is almost-sure weakly synchronizing in T . This concludes the proof of Theorem 5.3.

!

From previous lemmas and Theorem 5.3, we obtain the following result.

Weakly

Sure

PSPACE-complete

Almost-sure undecidable

Limit-sure undecidable Table 5.2: Computational complexity of the emptiness problem of weakly synchronizing languages in PAs.

Theorem 5.4. For limit-sure weak synchronization in MDPs and all functions f ∈ {max T , sum T }:

1. (Complexity). The membership problem is PSPACE-complete.

(Memory).

Infinite memory is necessary in general for both pure and randomized strategies, and pure strategies are sufficient.

Weak synchronization in PAs

Again by Remarks 5 and 6 (on pages 50 and 50), we consider the emptiness problem for weakly synchronizing languages in PAs only according to function sum and initialized from Dirac distributions. The results presented in this section are summarized in Table 5.2.

Sure weak synchronization

We show that the emptiness problem for sure weakly synchronizing languages in PAs, is PSPACE-complete. The PSPACE upper bound is an immediate result from the following intuitive Lemma.

Lemma 5.8. Let P be a PA and T be a target set. For all initial state q init , we have L weakly sure (sum T ) ̸ = ∅ if and only if there are two words w, v ∈ A ω and a set S ⊆ T such that w is sure eventually synchronizing in S from q 0 , v is non-trivially sure eventually synchronizing in S from an arbitrary distribution with support S.

Proof. First, if L weakly sure (sum T ) ̸ = ∅ from q init , then let w be a sure weakly synchronizing word. Then, there are infinitely many positions n such that P w n (T ) = 1, and since the state space is finite, there is a set S of states such that for infinitely many positions n we have Supp(P w n ) = S and P w n (T ) = 1, and thus S ⊆ T . It thus follows that w is sure eventually synchronizing in S from q 0 too. Moreover by considering two positions n 1 < n 2 where Supp(P w n 1 ) = Supp(P w n 2 ) = S, it follows that there is a non-empty word v ′ such that all words v ∈ v ′ • A ω are non-trivially sure eventually synchronizing in S from the distribution P w n 1 with support S. The reverse direction is straightforward. Let w n = a 0 • • • a n-1 be the prefix of w, which consists of the first n-th letters, where n is such that P w n (S) = 1 from q 0 . Let v m = b 0 • • • b m-1 be the non-empty prefix of v, which consists of the first m-th letters, where m is such that P v m (S) = 1 from an arbitrary distribution with support S. By characterization presented in Lemma 4.10, we know that only the support of an initial distribution matters for sure eventually synchronizing languages in PAs, then

w n • (v m ) ω ∈ L weak sure (sum T ) from q 0 .

!

The PSPACE upper bound follows from the characterization in Lemma 5.8 and the fact that emptiness problem for sure eventually synchronizing languages in PAs, is PSPACEcomplete (See Theorem 4.6). The PSPACE-hardness is by a reduction from finite automata intersection that is the same reduction to obtain hardness result for the emptiness problem of sure eventually synchronizing languages in PAs (See Lemma 4.11).

Lemma 5.9. The emptiness problem for L weakly sure (sum T ) in PAs, is PSPACE-hard even if T is a singleton.

Proof. The proof is by the same reduction from finite automata intersection problem that is presented in Lemma 4.11 where from n DFAs N 1 , N 2 , • • • , N n we constructed a PA P, an initial state q init and a target state q T and showed that all n DFAs accept a common word if, and only if, L event sure (q T ) ̸ = ∅ from q init . Now we show that, in the constructed PA P, we have L event sure (q T ) = L weakly sure (q T ) from q init , proving that the emptiness problem for sure weakly synchronizing languages is PSPACEhard.

First direction is straightforward since by definition, L weakly sure (q T ) ⊆ L event sure (q T ) from all initial states.

Second, if w ∈ L event sure (q T ), then there is i ∈ N such that P w i (q T ) = 1. Let w i = a 0 a 1 • • • a i-1 be the prefix of w that consists of the first i-th letter. Since all transitions in q T are self-loops, then all ω-words w i • (A ′ ) ω are sure weakly synchronizing from q init (See Lemma 5.8) As a result, w ∈ L weakly sure (q T ) from q init that completes the proof.

!

From the previous lemmas, we obtain the following Theorem.

Theorem 5.5. For all functions f ∈ {sum T , max T } the emptiness problem for sure weakly synchronizing languages in PAs is PSPACE-complete.

Almost-sure weak synchronization

In this subsection, we provide undecidability result for the emptiness problem of almostsure weakly synchronizing languages in PAs.

Theorem 5.6. For all functions f ∈ {max T , sum T }, the emptiness problem of almostsure weakly synchronizing language in PAs is undecidable.

Proof. The proof is by the same reduction from value 1 problem in PAs that is presented in Theorem 4.7 where from a PA A equipped with an initial state q init and a set F of accepting states, we constructed another PA P and a target state q T ; and we showed that the PA A has value 1 if and only if L event almost (q T ) ̸ = ∅ from q init in the PA P. Now we prove that the PA A has value 1 if and only if L weak almost (q T ) ̸ = ∅ from q init in the PA P too. First, assume that A has value 1. In the proof of Theorem 4.7, we have argued that the infinite word

v = w 1 2 • # • # • w 1 3 • # • # • • • w 1 n • # • # • • • • is almost-sure
eventually synchronizing in {q T } from q init . The same argument showing that for all n ≥ 2, the mass of probability 1 -1 n is accumulated in q T after reading the prefix of v (from beginning) up to the subword w 1 n • ♯, is valid here and implies that v is also almost-sure weakly synchronizing in q T . The reverse direction is straightforward since we know L weak almost (q T ) ⊆ L event almost (q T ) from all initial states, and since we have proven that if L event almost (q T ) ̸ = ∅ from q init , then A has value 1. !

Limit-sure weak synchronization

In this subsection, we provide undecidability result for the emptiness problem of limitsure weakly synchronizing languages in PAs.

Theorem 5.7. For all functions f ∈ {max T , sum T }, the emptiness problem of limitsure weakly synchronizing language in PAs is undecidable.

Proof. The proof is by the same reduction from value 1 problem in PAs that is presented in Theorem 4.7 and Theorem 5.6 where from a PA A equipped with an initial state q init and a set F of accepting states, we constructed another PA P and a target state q T ; and we showed that the PA A has value 1 if and only if L event almost (q T ) ̸ = ∅ from q init if and only if L weak almost (q T ) ̸ = ∅ from q init in the PA P. Now we prove that the PA A has value 1 if and only if L weak limit (q T ) ̸ = ∅ from q init in the PA P too. First, assume that A has value 1. In the proof of Theorem 5.6, we have shown that there exists some almost-sure weakly synchronizing word v ∈ L weak almost (q T ) from q init . By definition, since v is almost-sure weakly synchronizing, so is limit-sure weakly synchronizing. Thus, L weak limit (q T ) ̸ = ∅ from q init . Second, assume that L weak limit (q T ) ̸ = ∅ from q init . Therefore, for all ϵ > 0 there exists an infinite word w such that lim sup n→∞ P w n (q T ) ≥ 1ϵ. For ϵ > 0, let the word w and the number n be such that P w n (q T ) ≥ 1 -2ϵ. Since q T is only reachable via #-transitions then the n-th letter of w must be #.

We pick the subword v of w as we have done in the proof of Theorem 4.7:

-if there is no occurrence of # before the (n -1)-th letter, let v be the subword from the beginning up to (n -1)-th letter. -otherwise, if the last occurrence of # before the (n -1)-th letter happens as the m-th letter, check whether post(q init , w m ) = {q init }:

1. if yes, let v be the subword after m-th letter up to (n -1)-th letter 2. otherwise, let v be the subword after (m + 1)-th letter up to (n -1)-th letter where w m = a 0 • a 1 • • • a m is the prefix of w consisting in the first m + 1 letters. By a similar argument (as one in the proof of Theorem 4.7), we have Pr(v) ≥ 1 -2ϵ implying that there is a family of words whose accepting probability in A is arbitrarily close to 1. This means A has value 1 and the proof is complete.

!

Discussion

In this section, we briefly discuss the universality problems for sure and almost-sure weakly synchronizing languages in PAs.

Universality problems of sure weakly synchronizing language. Consider a PA P with the universal sure weakly synchronizing language according to max T . By definition, for all words w the symbolic run P w 0 P w 1 P w 2 • • • is infinitely often 1-synchronized in a singleton {q} where q ∈ T . We claim that there exist n, m ≤ 2 |Q| such that for all words w, and all i ∈ N we have ∥P w k ∥ = 1 where k = n + i • m. Toward contradiction, assume that for all n, m ≤ 2 |Q| there exists some word w n,m such that for some i ∈ N, we have

∥P w k ∥ < 1 where k = n + i • m.
Then, the symbolic run of the automaton over the ran-

domized word v = 1 k 2 w 1,1 + • • • + 1 k 2 w k,k
where k = 2 |Q| is never weakly 1-synchronized implying that v is not sure weakly synchronizing according to max T , a contradiction with the fact that P has a universal sure weakly synchronizing language according to max T . A similar argument proves that the state q where the probability mass is accumulated at steps of the sequence n, n + m, n + 2m, • • • is unique for all words too. In order to decide the universality problem of sure weakly synchronizing language according to max T , one can compute the sequence s 0 s 1 s 2 • • • where s 0 = {q init } and s i = post(s i-1 , A) for all i ∈ N. The sequence s 0 s 1 s 2 • • • is ultimately periodic meaning that there are n, m ≤ 2 |Q| such that s n = s n+m ; thus it is sufficient to check if there is some s i in the periodic part of the sequence s 0 s 1 s 2 • • • such that s i = {q} is a singleton with q ∈ T , which can be decided in PSPACE.

A similar argument for the function sum T shows that to decide the universality problem of sure weakly synchronizing language, the sequence s 0 s 1 s 2 • • • where s 0 = {q init } and s i = post(s i-1 , A) for all i ∈ N, can be computed and then one can check whether there exists some s i in the periodic part of the sequence s 0 s 1 s 2 • • • such that s i ⊆ T , which can be done in PSPACE.

We do not provide a matching lower bound for the universality problem of sure weakly synchronizing languages. However, there is a reduction from tautology problem proving that deciding whether all pure words are sure weakly synchronizing according to the function sum T , is co-NP-hard.

Universality problems of almost-sure weakly synchronizing language. Recall that for a PA P, an end component U ⊆ Q is terminal if post(U, A) ⊆ U ; and an infinite randomized word is the uniformly randomized word over the alphabet A denoted by

w u = d 0 d 1 d 2 • • • if d i is the uniform distribution over A for all i ∈ N.
For the function max T , a PA P with a universal almost-sure weakly synchronizing language, must only have a unique terminal end component. Otherwise, the uniformly randomized word w u would reach all terminal end components with some positive probability, and thus P would not be almost-sure weakly synchronizing by w u . Example 5.3 provides an instance of a PA to show that even though having only one terminal end component is necessary for universality of almost-sure weakly synchronizing language, it is not sufficient.

Example 5.3. The PA P depicted in Figure 5.5 has four states q init , q 1 , q 2 and q 3 and two actions a, b. All transitions in q init have two successors q 1 and q 2 , each with probability 1 2 . Two states q 1 and q 2 are somewhat symmetric: both have one transition directed to another, and one transition directed to the absorbing state q 3 ; however, the a-transition of one acts like the b-transition of the other.

The PA P has only one terminal end component {q 3 }, but the almost-sure weakly synchronizing language is not universal. As a counterexample word, consider w = a • (a • b) ω where P is weakly 1 2 -synchronizing in two sets {q 1 , q 2 } and {q 3 } (according to max ). It implies that having one terminal end component is not sufficient to have a universal almostsure weakly synchronizing language.

▹

In order to have a universal almost-sure weakly synchronizing language, a PA must ensure that for all randomized words, the probability mass tends to accumulate in a unique terminal end component; we express this property for a terminal end component as being absorbing. A terminal end component U is absorbing if lim n→∞ P w n (U ) = 1 for all infinite randomized words w ∈ D(A) ω . Example 5.4 shows an instance of a PA where the unique terminal end component is absorbing and the almost-sure weakly synchronizing language is universal. Example 5.4. The PA P shown in Figure 5.6 has five states q init , q 1 , q 2 , q 3 and q 4 and two actions a, b. All transitions in q init and q 3 have two successors q 1 and q 2 , each with probability 1 2 . Two states q 1 and q 2 are somewhat symmetric: both have one transition directed to q 3 , and one transition directed to the absorbing state q 4 ; however, the a-transition of one acts like the b-transition of the other.

q init q 1 q 2 q 3 a, b : 1 2 a, b : 1 2 a b b a a, b
q init q 1 q 2 q 3 q 4 a, b : 1 2 a, b : 1 2 a b a, b : 1 2 a, b : 1 2 b a a, b
The PA P has only one terminal end component {q 4 }, which is absorbing: lim n→∞ P w n (q 4 ) = 1 for all infinite randomized words w. The end component {q 4 } is absorbing because for the other end components {q 1 , q 2 , q 3 }, even though there are strategies to ensure that once the PA enters in the end component, it stays there (the requirement to be an end component), there is no blind strategy (word) to ensure this property with non-zero probability. We see that after the first input, P arrives either in q 1 or q 2 each with probability 1 2 . Next, after every two consecutive inputs some positive probability leaks down to the absorbing end component {q 4 } while the remaining probability is in the end components {q 1 , q 2 , q 3 }. Repeating this forever, the probability mass is gradually accumulated in {q 4 } implying that the almost-sure weakly synchronizing language of P is universal.

▹ Decision problem(s).

The absorbing decision problem asks, given a PA and an end component, whether the end component is absorbing for the PA. Lemma 5.10 provides the PSPACE membership of the absorbing problem.

Lemma 5.10. The absorbing problem for PAs is decidable in PSPACE.

Proof. Given a terminal end component U of a PA P, we construct an NFA N equipped with an initial state and a coBüchi acceptance condition such that U is absorbing if and only if the language of N is empty. The automaton N is exponential in the size of P, and since the emptiness problem of NFAs with coBüchi conditions is NLOGSPACE-complete, the PSPACE membership of absorbing problem follows.

Intuitively, the NFA N guesses a word such that the symbolic-outcome of P over that word, from some point on, keeps assigning a (strictly) positive probability p > 0 to sets of states which are disjoint with U . The alphabet of N is 2 A where A is the alphabet of P. An infinite word over 2 A is a sequence of sets of letters which can be viewed as the sequence of supports of a randomized word. The states of N are pairs (s, b) consisting of a set s ⊆ Q of states of P and a Boolean flag b ∈ {0, 1}. A pair (s, b) is 0-flagged if b = 0; and it is 1-flagged otherwise. The flag b is set to 1 when N guesses that from now on, P is always outside of U with some positive probability p. The NFA N begins in the pair ({q init }, 0) where q init is the initial state of P. On an input A ′ ⊆ A, N not-deterministically moves from a 0-flagged state (s, 0) into -either another 0-flagged state (s ′ , 0) where s ′ = post(s, A ′ ) is the set of successors of s and the input, -or a 1-flagged state (c, 1) where c is a non-empty subset of post(s, A ′ ) \ U ; note that c is disjoint with U , i.e., c ∩ U = ∅. After reaching the first 1-flagged pair (c, 1), N only checks whether the successors of c (where the probability p was assigned) always has an empty intersection with U . The coBüchi acceptance condition requires that N visits only 1-flagged pairs, infinitely often.

From the PA P = ⟨Q, A, δ⟩ with the initial state q init and the end component U , we construct N = ⟨L, 2 A \ {∅}, ∆⟩ where L = 2 Q × {0, 1} is the set of pairs and 2 A \ {∅} is the alphabet. The transition function ∆ : L × 2 Σ → 2 L is defined as follows. For all subsets s ⊆ Q and A ′ ⊆ A, let s ′ = post(s, A ′ ), and -define ∆((s, 0), and∆((s, 1)) = ∅ otherwise. We equip N with the initial pair ({q init }, 0) and the coBüchi condition ♦!F where F = 2 Q × {1}.

A ′ ) = {(s ′ , 0)} ∪ {(c, 1) | c ̸ = ∅ and c ⊆ s ′ \ U }, -define ∆((s, 1), A ′ ) = {(s ′ , 1)} if s ′ ∩ U = ∅,
To establish the correctness of the reduction, we show that the coBüchi language of N is empty if and only if the terminal end component U is absorbing. First, assume that the terminal end component U is absorbing for the PA P. Toward contradiction, assume that the coBüchi language of N is not empty. Therefore, there exists some infinite word v and n ∈ N such that for the run ρ = r 0 r 1 . . . of N over v and for all i > n, we have r i ∈ F. From the accepting word v = A 0 A 1 . . . for coBüchi condition ♦!F , we construct a randomized word w and claim that the symbolic-run of P over w tends to accumulate some positive probability outside U . Define w = d 0 d 1 . . . such that d i is the uniform distribution over A i , thus Supp(d i ) = A i . Let P w 0 P w 1 • • • be the symbolic-run of P over w. Since F = 2 Q × {1} and by the construction of N , we know that for all i > n, the pair r n = (s i , 1) is 1-flagged and s i+1 = post(s i , A i ). By construction of w, we see that s n ⊆ Supp(P w n ); therefore, each s i is a subset of the support Supp(P w i ) of the symbolic-outcome at step i. Since ∅ ̸ = s n ⊆ Supp(P w n ), we have P w n (s n ) = p > 0. Since s i+1 = post(s i , A i ) for all i > n, the probability P w i (s i ) is always at least p. On the other hand, we have s i ⊆ Q \ U which gives

P w i (Q \ U ) ≥ p > 0.
Therefore lim i→∞ P w i (U ) < 1p < 1, a contradiction with the fact that U is an absorbing end component.

Second, assume that the coBüchi language of N is empty. We prove that U is absorbing by showing that lim n→∞ P w n (U ) = 1 for all randomized words w. We claim that for all randomized words w = d 0 d 1 • • • , for all n ∈ N and for all states q ∈ Supp(P w n ) where P w 0 P w 1 • • • is the symbolic-run of P over w, there exists a w-path from q to U with length k ≤ 2 |Q| ; a w-path from q ∈ Supp(P w n ) to U is a path ℓ 0 ℓ 1 • • • ℓ k such that ℓ 0 = q, ℓ k ∈ U and for all 0 ≤ i < k, there exists a ∈ Supp(d n+i ) such that ℓ i+1 ∈ post(ℓ i , a). Towards contradiction, assume that there exists w and m ∈ N, and some state q m ∈ Supp(P w m ) such that all w-paths starting in q m and with length less than 2 |Q| do not end in U . From the randomized word w = d 0 d 1 • • • , we construct an ultimately periodic run r of the automaton N which is accepting. For the first m -1 transitions, this run ρ visits the 0-flagged states (s i , 0) where s i = Supp(P w i ) for all i < m. At step m, the NFA N guesses that the positive probability assigned to q m will never contribute to the accumulated probability in U , thus the accepting run visits the 1-flagged state ({q m }, 1). Within the next transitions, this run deterministically visits 1-flagged states (c m+1 , 1)(c m+2 , 1) . . . (c m+k , 1) where k = 2 |Q| and c m+i = post(c m+i-1 , Supp(d m+i-1 )) for all i ≤ k. Since from q m there is no w-path to U with length less than k, all sets c m+i with i ≤ k are disjoint with U . Since the automaton N has only k 1-flagged states, therefore based on pigeonhole principle, at least one state (c, 1) has been visited twice. This means there is a cycle from (c, 1) to itself which includes only accepting states. Next, the run ρ only visits the states of this cycle which implies that ρ is an accepting run, a contradiction with the fact that the coBüchi language of N is empty.

Above, we have shown that for all randomized words w = d 0 d 1 • • • , for all n ∈ N and for all states q ∈ Supp(P w n ) where P w 0 P w 1 • • • is the symbolic-run of P over w, there exists a w-path from q to U with length k ≤ 2 |Q| . Therefore, for all words w and i ∈ N, from all states q ∈ Supp(P w i ), the end component U is reached within k = 2 |Q| steps: Pr(♦ ≤k U ) ≥ η k from all states q ∈ Supp(P w i ) where η is the smallest probability of taking a transition in P. For all randomized words w, thus,

P w k (Q \ U ) ≤ 1 • (1 -η k )
, because 1 is an upper bound of P w 0 (Q\U ) and (1-η k ) is an upper bound for the probability mass which does not move to U within k steps. Similarly,

P w 2•k (Q \ U ) ≤ (1 -η k ) • (1 -η k ) where (1 -η k ) is an upper bound of P w 2•k (Q \ U ) and (1 -η k
) is an upper bound for the probability mass which does not move to U within k steps. After j repetitions, we have

P w j•k (Q \ U ) ≤ (1 -η k ) j . Since 0 ≤ 1 -η k < 1, we have lim j→∞ P w j•k (Q \ U ) = 0.
The above arguments immediately prove that lim n→∞ P w n (U ) = 1 for all words w, meaning that U is an absorbing end component. The proof is complete.

!

Another necessary condition for a PA P to have a universal almost-sure weakly synchronizing language is that P is almost-sure weakly synchronizing by the uniformly randomized word. For instance, the automaton presented in Lemma 3.4 has the absorbing end component {q 2 , q 3 }, but since the P is not almost-sure weakly synchronizing in {q 3 } by the uniformly randomized word, the almost-sure weakly synchronizing language is not universal.

Lemma 5.11. The universality problem of almost-sure weakly synchronizing languages according to max T in PAs is in PSPACE.

Proof. Given a PA P = ⟨Q, A, δ⟩ with the initial state q init and the function max T , the almost-sure weakly synchronizing language is universal if and only if (i) there is a (then necessarily unique) absorbing end component U , and

(ii) P is almost-sure weakly synchronizing by the uniformly randomized word w u .

One direction is straightforward. For the reverse direction, assume that both of the conditions (i) and (ii) are fulfilled in the PA P. We show that the almost-sure weakly synchronizing language (according to max T ) of P is universal. Since P is almost-sure weakly synchronizing according to max T by the uniformly randomized word w u , there exists q ∈ T ∩ U such that for all ϵ > 0 and all m ∈ N, there exists n > m where P wu n (q) > 1ϵ. Let c 0 = {q} and define the sequence of sets c 1 c 2 • • • as follows; c i+1 = post(c i , A) for all i ∈ N. Let n be the smallest number such that the absorbing end component U = ∪ 0≤i<n c i is covered with the first n subsets of the sequence c 0 c 1 • • • . We claim that these sets c 0 , c 1 , • • • , c n-1 are disjoint. There are two cases (1) c n = {q} or (2) c n ̸ = {q}.

(1) Assume that c n = {q}. Suppose that there exists some state q and 0 ≤ i < j < n such that q ∈ c i and q ∈ c j . Thus q ∈ c i+n-j . Since n is the smallest number such that U = ∪ 0≤i<n c i , so c 0 ⊂ c i+n-j . Since the set of all successors reached from c i+n-j in ji steps is c n = {q}, so is the set of successors from c 0 ⊂ c i+n-j . Hence, c j-i = {q} which contradicts with the fact that n is the smallest number.

(2) Assume that c n ̸ = {q}. There are two cases: either q ∈ c n or there exists some 0 < i < n such that q ∈ c i . In both cases, there exists 0 < i ≤ n such that q ∈ c i . Since c 0 ⊂ c i , then c j ⊆ c i+j for all j ∈ N. Hence, there exists some k ≥ i such that {q} ⊂ c k and c k = c k+n . This argument also implies that there exists no k ′ ≥ i where c k ′ = {q}. Thus, there exists another state q ̸ = q such that {q, q} ⊆ c k . Let ϵ < η n 1+η n where η is the smallest probability of taking a transition in P. Let n 0 > 0 be such that P wu n 0 (q) > 1-ϵ and c k ⊆ Supp(P wu n 0 ). Thus, P wu n 0 +n (q) ≥ η n (1ϵ) and P wu n 0 +n (q) < 1η n (1ϵ). We can repeat the arguments for all j ∈ N and show that P wu n 0 +jn (q) < 1η n (1ϵ) < 1ϵ which is a contradiction with the fact that w u is almost-sure weakly synchronizing according to max T .

We have shown that the sets c 0 , c 1 , • • • , c n-1 are disjoints and c n = c 0 = {q} where q ∈ T . Towards contradiction with the universality of the almost-sure weakly synchronizing language of P, assume that there exists an infinite word w that is not almost-sure weakly synchronizing according to max T . Let P w 0 P w 1 • • • be the symbolic-run of P over w; and P wu 0 P wu 1 • • • be the symbolic-run over the uniformly randomized word w u . Since U is absorbing and it consists of n disjoint sets c 0 , c 1 , • • • , c n-1 where c 0 ⊆ T is a singleton, there exists m ∈ N such that for all n > m there are two subsets c and c ′ (from the sets c 0 , c 1 , • • • , c n-1 covering U ) where c ∪ c ′ ⊆ Supp(P w n ); otherwise w would be almost-sure weakly synchronizing. By assumption, the uniformly randomized word w u is almost-sure weakly synchronizing. All states reachable by w are also reachable by w u : Supp(P w n ) ⊆ Supp(P wu n ). Hence, for all n > m there are two subsets c and c ′ (from the sets c 0 , c 1 ,

• • • , c n-1 covering U ) such that c ∪ c ′ ⊆ Supp(P wu n ) too.
Since the probabilities assigned to these disjoint sets c and c ′ always loop through the sequence c 0 c 1 • • • c n , the probability mass could never accumulate in the singleton c 0 (or any of singletons c ⊆ T in the sequence c 0 c 1 • • • c n ), a contradiction with condition (ii) stating that w u is almost-sure weakly synchronizing. Condition (i) can be checked in PSPACE by Lemma 5.10, and condition (ii) can be checked in PTIME by steady state analysis of the Markov chain induced by the PA under the uniformly randomized word. The PSPACE bound follows.

!

We have proved that, given a PA P with the initial state q init and the function max T , the almost-sure weakly synchronizing language (according to max T ) of P is universal if and only if (i) there is an absorbing end component U , and (ii) P is almost-sure weakly synchronizing by the uniformly randomized word w u . As we have shown in the proof of Lemma 5.11, these two conditions enforce a special shape to the absorbing end component U ; the end component U is partitioned into n disjoints sets c 0 , c 1 • • • , c n where one of them is singleton, and for the symbolic-run of the PA over the uniformly randomized word, all supports can only contain one of these disjoint sets c i (0 ≤ i < n). One can observe that these disjoint sets are indeed the periodic supports of recurrent states in the Markov chain induced by the PA under the uniformly randomized word.

For the function sum T , a similar argument shows that the universality of almost-sure weakly synchronizing language (according to sum T ) of P is decidable in PSPACE. The requirement of having an absorbing end component is not necessary for the function sum T ; in fact, states in all end components U can contribute in accumulating the probability mass in the target set T . Each end component U can be treated as an absorbing end component by removing all outgoing transitions, and the periodic supports of recurrent states c 0 , c 1 , • • • , c n can be computed in PSPACE. From those supports, a randomized word w can be constructed such that it is a linear combinations from all pure words where the PA stays in U with some positive probability, once it has entered in U (by those pure words); and check whether P is almost-sure weakly synchronizing by w. After repeating these arguments for all end components U , the PA must be almost-sure weakly synchronizing by the uniformly randomized word w u too.

The above arguments provided the PSPACE membership of the the universality problem of almost-sure weakly synchronizing languages for both function sum T and max T , a matching lower bound can be proved by the same reduction presented in Lemma 4.12 for eventually synchronizing languages. In the presented reduction, the constructed PA is almost-sure eventually synchronizing in the singleton {synch} if and only if it is almost-sure weakly synchronizing.

From the above arguments and Lemma 5.11, it turns out that for all functions f ∈ {max T , sum T }, the universality problem of almost-sure weakly synchronizing language in PAs is PSPACE-complete. 113 6

Strongly Synchronizing Condition

First sight. In this chapter, we show that the membership problem for strongly synchronizing conditions in MDPs is PTIME-complete, for all winning modes, and both with function max T and function sum T . We show that linear-size memory is necessary in general for max T , and memoryless strategies are sufficient for sum T . It follows from our results that the limit-sure and almost-sure winning modes coincide for strong synchronization.

Moreover, we study the emptiness problem for strongly synchronizing languages in PAs. We prove that for sure and almost-sure languages according to both functions max T and sum T , the emptiness problem is PSPACE-complete whereas the problems for limit-sure languages are undecidable. The results presented in this chapter are summarized in Table 6 6.1: Computational complexity of the membership problem of strongly synchronization in MDPs, and memory requirement for the winning strategies (Two winning modes almost-sure and limit-sure coincide).

Strong synchronization in MDPs

For strong synchronization the membership problem with function max T reduces to the membership problem with function max Q where Q is the entire state space, by a construction similar to the proof of Remark 5: states in Q \ T are duplicated, in such a way that a state q ∈ Q \ T contains some probability p if and only if the duplication of that state q contain the exact probability p too. This construction ensures that only states in T are used to accumulate the probability mass tending to 1.

The results presented in this section are summarized in Table 6.1.

Strong synchronization with function max

In this subsection, to prove the PTIME-completeness for the membership problem of strong synchronization with function max T , we solve the problem with function max Q that establishes the upper bound. We provide the matching lower bound by proving PTIMEhardness for the membership problem of strong synchronization with function max T where T is a singleton.

The strongly synchronizing condition with function max requires that from some point on, almost all the probability mass is at every step in a single state. The sequence of states that contain almost all the probability corresponds to a sequence of deterministic transitions in the MDP, and thus eventually to a cycle of deterministic transitions.

The graph of deterministic transitions of an MDP M = ⟨Q, A, δ⟩ is the directed graph

G = ⟨Q, E⟩ where E = {⟨q 1 , q 2 ⟩ | ∃a ∈ A : δ(q 1 , a)(q 2 ) = 1}. For ℓ ≥ 1, a deterministic cycle in M of length ℓ is a finite path qℓ qℓ-1 • • • q0 in G (that is, ⟨q i , qi-1 ⟩ ∈ E for all 1 ≤ i ≤ ℓ) such that q0 = qℓ . The cycle is simple if qi ̸ = qj for all 1 ≤ i < j ≤ ℓ.
We show that sure (resp., almost-sure and limit-sure) strong synchronization is equivalent to sure (resp., almost-sure and limit-sure) reachability to a state in such a cycle, with the requirement that it can be reached in a synchronized way, that is by finite paths whose lengths are congruent modulo the length ℓ of the cycle. To check this, we keep track of a modulo-ℓ counter along the play.

Define the MDP M ×

[ℓ] = ⟨Q ′ , A, δ ′ ⟩ where Q ′ = Q × {0, 1, • • • , ℓ -1} and δ ′ (⟨q, i⟩, a)(⟨q ′ , i -1⟩) = δ(
q, a)(q ′ ) (where i -1 is ℓ -1 for i = 0) for all states q, q ′ ∈ Q, actions a ∈ A, and 0 ≤ i ≤ ℓ -1. Lemma 6.1. Given an MDP M, let η be the smallest positive probability in the transitions of M and let 1 1+η < p ≤ 1. There exists a strategy α such that lim inf n→∞ ∥M α n ∥ ≥ p from an initial state q init if and only if there exists a simple deterministic cycle qℓ qℓ-1 • • • q0 in M and a strategy β in M × [ℓ] such that Pr β (♦{⟨q 0 , 0⟩}) ≥ p from ⟨q init , 0⟩.

Proof. First, assume that there exists a simple deterministic cycle qℓ qℓ-1 • • • q0 with length ℓ and a strategy β in M×[ℓ] that ensures the target set ♦{⟨q 0 , 0⟩} is reached with probability at least p from the state ⟨q init , 0⟩. Since randomization is not necessary for reachability conditions, we can assume that β is a pure strategy. We show that there exists a strategy α such that lim inf n→∞ ∥M α n ∥ ≥ p from q init . From β, we construct a pure strategy α in M. Given a finite path ρ = q 0 a 0 q 1 a 1 . . . q n in M (with q 0 = q init ), there is a corresponding path

ρ ′ = ⟨q 0 , k 0 ⟩a 0 ⟨q 1 , k 1 ⟩a 1 . . . ⟨q n , k n ⟩ in M × [ℓ]
where k i = -i mod ℓ. Since the sequence k 0 k 1 . . . is uniquely determined from ρ, there is a clear bijection between the paths in M and the paths in M × [ℓ] that we often omit to apply and mention. For ρ, we define α as follows: if q n = qkn , then there exists an action a such that post(q kn , a) = {q k n+1 } = {q n+1 } and we define α(ρ) = a, otherwise let α(ρ) = β(ρ ′ ). Thus α mimics β unless a state q is reached at step n such that q = qk where k = -n mod ℓ, and then α switches to always playing actions that keeps M in the simple deterministic cycle qℓ qℓ-1 • • • q0 . Below, we prove that given ϵ > 0 there exists k such that for all n ≥ k, we have ∥M α n ∥ ≥ pϵ. It follows that lim inf n→∞ ∥M α n ∥ ≥ p from q init . Since Pr β (♦{⟨q 0 , 0⟩}) ≥ p, there exists k such that Pr β (♦ ≤k {⟨q 0 , 0⟩}) ≥ p-ϵ. We assume w.l.o.g. that k mod ℓ = 0. For i = 0, 1, . . . , ℓ-1, let R i = {⟨q i , i⟩}. Then trivially Pr β (♦ ≤k + ℓ-1 i=0 R i ) ≥ pϵ and since α agrees with β on all finite paths that do not (yet) visit + ℓ-1 i=0 R i , given a path ρ that visits + ℓ-1 i=0 R i (for the first time), only actions that keep M in the simple cycle qℓ qℓ-1 • • • q0 are played by α and thus all continuations of ρ in the outcome of α will visit q0 after k steps (in total). It follows that Pr

β (♦ k {⟨q 0 , 0⟩}) ≥ p -ϵ, that is M α k (q 0 ) ≥ p -ϵ. Thus, ∥M α k ∥ ≥ p -ϵ.
Since next, α will always play actions that keeps M looping through the cycle qℓ qℓ-1

• • • q0 , we have ∥M α n ∥ ≥ p -ϵ for all n ≥ k.
Second, assume that there exists a strategy α such that lim inf n→∞ ∥M α n ∥ ≥ p from q init . Thus, for all ϵ > 0 there exists k ∈ N such that for all n ≥ k we have

∥M α n ∥ ≥ p -ϵ. Fix ϵ < p -1 1+η .
Let k be such that for all n ≥ k, there exists a unique state pn such that M α n (p n ) ≥ pϵ. Below, we prove that for all n ≥ k, there exists some action a ∈ A such that post(p n , a) = {p n+1 }. Assume towards contradiction that there exists j > k such that for all a there exists q ̸ = pj+1 such that {q, pj+1 } ⊆ post(p j , a). Therefore,

M α j+1 (q) ≥ M α j (p j ) • η ≥ (p -ϵ) • η. Hence, M α j+1 (p j+1 ) ≤ 1 -M α j+1 (q) ≤ 1 -(p -ϵ) • η. Thus, p-ϵ ≤ ∥M α j+1 ∥ ≤ 1-(p-ϵ)•η that gives ϵ ≥ p-1 1+η
, a contradiction. This argument proves that for all n ≥ k, there exists an action a ∈ A such that post(p n , a) = {p n+1 }. The finiteness of the state space Q entails that in the sequence pk pk+1 • • • , some state and thus some simple deterministic cycle occur infinitely often. Let qℓ qℓ-1 • • • q0 be a cycle that occurs infinitely often in the sequence pk pk+1 • • • (in the right order). For all j, let i j be the position of q0 in all occurrences of the cycle qℓ qℓ-1 • • • q0 in the sequence pk pk+1 • • • ; and let t j = i j mod ℓ. In the sequence t 0 t 1 • • • , there exists 0 ≤ t < ℓ that appears infinitely often. Let the cycle r ℓ r ℓ-1 • • • r 0 be such that r (i+t) mod ℓ = qi . Then, the cycle r ℓ r ℓ-1 • • • r 0 happens infinitely often in the sequence pk pk+1 • • • such that the positions of r 0 are infinitely often 0 (modulo ℓ). Therefore, the probability of M to be in r 0 in positions (modulo ℓ) equals to 0, is infinitely often equal or greater than p. Hence, for a strategy β in M × [ℓ] that copies all the plays of the strategy α, we have Pr β (♦{⟨r 0 , 0⟩}) ≥ p from ⟨q init , 0⟩.

!

It follows directly from Lemma 6.1 with p = 1 that almost-sure strong synchronization is equivalent to almost-sure reachability to a deterministic cycle in M × [ℓ]. The same equivalence holds for the sure and limit-sure winning modes. Lemma 6.2. Given an MDP M, a state q init is sure (resp., almost-sure or limit-sure) winning for the strongly synchronizing condition (according to max Q ) if and only if there exists a simple deterministic cycle qℓ qℓ-1 • • • q0 such that ⟨q init , 0⟩ is sure (resp., almost-sure or limit-sure) winning for the reachability condition

♦{⟨q 0 , 0⟩} in M × [ℓ].
Proof. The proof is organized in three sections:

(1) sure winning mode: First, assume that there exists a simple deterministic cycle qℓ qℓ-1 • • • q0 with length ℓ such that ⟨q init , 0⟩ is sure winning for the reachability condition ♦{⟨q 0 , 0⟩}. Thus, there exists a pure memoryless strategy β such that Outcomes(⟨q init , 0⟩, β) ⊆ ♦{⟨q 0 , 0⟩}. Since β is memoryless, there must be k ≤ |Q| × ℓ such that Outcomes(⟨q init , 0⟩, β) ⊆ ♦ ≤k {⟨q 0 , 0⟩} meaning that all infinite paths starting in ⟨q init , 0⟩ and following β reach ⟨q 0 , 0⟩ within k steps. From β, we construct a pure finite-memory strategy α in M that is represented by T = ⟨Memory, i, α u , α n ⟩ where Memory = {0, • • • , ℓ -1} is the set of modes. The idea is that α simulates what β plays in the state ⟨q, i⟩, in the state q of M and mode i of T (there is only one exception). Thus, the initial mode is 0. The update function only decreases modes by 1 (α u (i, a, q) = (i -1) mod ℓ for all states q and actions a) since by taking any transition the mode is decreased by 1. The next-move function α n (i, q) is defined as follows: α n (i, q) = β(⟨q, i⟩) for all states q and modes 0 ≤ i < ℓ, except when q = qi , in this case let α n (i, q) = a where post(q i , a) = {q i-1 }. Thus β mimics α unless a state q is reached at step n such that q = q-n mod ℓ , and then α switches to always playing actions that keeps M in the simple deterministic cycle qℓ qℓ-1 • • • q0 . Now we prove that q init is sure winning for the strongly synchronizing condition according to max Q . Let j ≥ k be such that j mod ℓ = 0. Let R = {⟨q i , i⟩ | 0 ≤ i < ℓ}. Thus obviously Outcomes(⟨q init , 0⟩, β) ⊆ ♦R. and since α agrees with β on all finite paths that do not (yet) visit R, given a path ρ that visits R (for the first time), only actions that keep M in the simple cycle qℓ qℓ-1 • • • q0 are played by α and thus all continuations of ρ in the outcome of α will visit q0 after j steps. It follows that Pr β (♦ j {⟨q 0 , 0⟩}) = 1, that is M α j (q 0 ) = 1. Thus, ∥M α j ∥ = 1. Since next, α will always play actions that keeps M looping through the cycle qℓ qℓ-1 • • • q0 , we have ∥M α n ∥ = 1 for all n ≥ j.

Second, assume that there exists a strategy α and k such that for all n ≥ k we have ∥M α n ∥ = 1 from the initial state q init . For all n ≥ k, let pn be a state such that M α n (p n ) = 1. The finiteness of the state space Q entails that in the sequence pk pk+1 • • • , some state and thus some simple deterministic cycle occur infinitely often. Let qℓ qℓ-1 • • • q0 be a cycle that occurs infinitely often in the sequence pk pk+1 • • • (in the right order). For all j, let i j be the position of q0 in all occurrences of the cycle qℓ qℓ-1 • • • q0 in the sequence pk pk+1 • • • ; and let t j = i j mod ℓ. In the sequence t 0 t 1 • • • , there exists 0 ≤ t < ℓ that appears infinitely often. Let the cycle r ℓ r ℓ-1 • • • r 0 be such that r (i+t) mod ℓ = qi . Then, the cycle r ℓ r ℓ-1 • • • r 0 happens infinitely often in the sequence pk pk+1 • • • such that the positions of r 0 are infinitely often 0 (modulo ℓ). Hence, for a strategy β in M × [ℓ] that copies all the plays of the strategy α, we have Outcomes(⟨q init , 0⟩, β) ⊆ ♦{⟨r 0 , 0⟩} from the initial state ⟨q init , 0⟩.

(2) almost-sure winning mode: This case is an immediate result from Lemma 6.1, by taking p = 1.

(3) limit-sure winning mode: First, assume that there exists a simple deterministic cycle qℓ qℓ-1 • • • q0 with length ℓ such that ⟨q init , 0⟩ is limit-sure (and thus almost-sure) winning for the reachability condition ♦{⟨q 0 , 0⟩}). Since ⟨q init , 0⟩ is almost-sure for reachability condition, then q init is almost-sure (and thus limit-sure) for strongly synchronizing condition. Second, assume that q init is limit-sure winning for the strongly synchronizing condition (according to max Q ). It means that for all i there exists a strategy α i such that lim inf n→∞ ∥M α i n ∥ ≥ 1-2 -i . Let k be such that 1-2 -k ≥ 1 1+η . By Lemma 6.1, for all i ≥ k there exists a simple deterministic cycle c i = pℓ i pℓ i -1 • • • p0 with length ℓ i and a strategy β i in M × [ℓ i ] such that Pr β i (♦{⟨q 0 , 0⟩}) ≥ 1 -2 -i from ⟨q init , 0⟩. Since the number of simple deterministic cycle is finite, there exists some simple cycle c that occurs infinitely often in the sequence c k c k+1 c k+2 • • • . We see that for the cycle c = qℓ qℓ-1 • • • q0 , the states ⟨q init , 0⟩ is limit-sure winning for the reachability condition ♦{⟨q 0 , 0⟩}).

!

Since the winning regions of almost-sure and limit-sure winning coincide for reachability conditions in MDPs [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF], the next corollary follows from Lemma 6.2. Corollary 6.1. ⟨⟨1⟩⟩ strongly limit (max T ) = ⟨⟨1⟩⟩ strongly almost (max T ) for all MDPs M and target sets T . If there exists a cycle c satisfying the condition in Lemma 6.2, then all cycles reachable from c in the graph G of deterministic transitions also satisfies the condition. Hence it is sufficient to check the condition for an arbitrary simple cycle in each strongly connected component (SCC) of G. It follows that strong synchronization can be decided in PTIME (SCC decomposition can be computed in PTIME, as well as sure, limit-sure, and almostsure reachability in MDPs). The length of the cycle gives a linear bound on the memory needed to win, and the bound is tight. Lemma 6.3. For all sure, almost-sure and limit-sure winning modes, the membership problem for strongly synchronizing condition according to max T in MDPs is in PTIME.

Proof. Given an MDP M = ⟨Q, A, δ⟩ and a state q init , we say a simple deterministic cycle c = qℓ qℓ-1 • • • q0 is sure winning (resp., almost-sure and limit-sure) for strong synchronization from q init if ⟨q init , 0⟩ is sure winning (resp., almost-sure and limit-sure) for the reachability condition ♦{⟨q 0 , 0⟩} in M × [ℓ]. We show that if c is sure winning (resp., almost-sure and limit-sure) for strong synchronization from q init , then so are all simple cycles c ′ = pℓ ′ pℓ ′ -1 • • • p0 reachable from c in the deterministic digraph induced by M.

(1) sure winning: Since c is sure winning for strong synchronization from q init , M is 1-synchronized in q0 . Since there is a path via deterministic transitions from q0 to p0 , M is 1-synchronized in p0 too. So the cycle c ′ is sure winning for strong synchronization from q init , too.

(2) limit-sure winning: Assume that c is limit-sure winning for strong synchronization from q init . By definition, for all i ∈ N, there exists n such that for all j > n we have M is 1 -2 -i-j in q0 . It implies that for all i there exists n such that M is 1 -2 -2isynchronized in q0 . Since there is a path via deterministic transitions from q0 to p0 , then M is 1 -2 -2i -synchronized in p0 for all i. So the cycle c ′ is limit-sure winning for strong synchronization from q init , too.

(3) almost-sure winning: By corollary 6.1, since a cycle is almost-sure winning for strong synchronization from q init if and only if it is limit-sure winning, the results follows.

The above arguments prove that if a simple deterministic cycle c is sure winning (resp., almost-sure and limit-sure) for strongly synchronizing condition from q init , then all simple cycles reachable from c in the graph of deterministic transitions G induced by M, are sure winning (resp., almost-sure and limit-sure). In particular, it holds for all simple cycles in the bottoms SCCs reachable from c in G. Therefore, to decide membership problem for strongly synchronizing condition, it suffices to only check whether one cycle in each bottom SCC of G is sure winning (resp., almost-sure and limit-sure). Since the SCC decomposition for a digraph is in PTIME, and since the number of bottom SCCs in a connected digraph is at most the size of the digraph (the number of states |Q|), the PTIME upper bound follows.

!

Since memoryless strategies are sufficient for reachability conditions in MDPs, it follows from the proof of Lemma 6.1 and Lemma 6.2 that the (memoryless) winning strategies in M × [ℓ] can be transferred to winning strategies with memory {0, 1, • • • , ℓ -1} in M. Since ℓ ≤ |Q|, linear-size memory is sufficient to win strongly synchronizing conditions. We present a family of MDPs M n (n ∈ N) that are sure winning for strongly synchronization (according to max Q ), and where the sure winning strategies require linear memory. The MDP M 2 is shown in Figure 6.1, and the MDP M n is obtained by replacing the cycle q 2 q 3 of deterministic transitions by a simple cycle of length n. Note that only in q 1 there is a real strategic choice. Since after the first action the two states q 1 and q 2 always contain some probability, we need to wait in q 1 (by playing b) until we play a when the probability

q init q 1 q 2 q 3 target set T a, b : 1 2 a, b : 1 2 b a a, b a, b
Figure 6.1: An MDP that all strategies to win sure strongly synchronizing with function max {q 2 ,q 3 } require memory.

in q 2 comes back in q 2 through the cycle. We need to play n -1 times b, and then a, thus linear memory is sufficient and it is easy to show that it is necessary to ensure strongly synchronization.

Lemma 6.4. For µ ∈ {sure, almost, limit}, the membership problem for ⟨⟨1⟩⟩ strongly µ (max T ) in MDPs is PTIME-hard even for a singleton T .

Proof. For all µ ∈ {sure, almost, limit} the proof is by a reduction from monotone Boolean circuit problem (MBC). Given an MBC with an underlying binary tree, the value of leaves are either 0 or 1 (called 0 or 1-leaves), and the value of other vertices, labeled with ∧ or ∨, are computed inductively. It is known that deciding whether the value of the root is 1 for a given MBC, is PTIME-complete [START_REF] Gibbons | Efficient parallel algorithms[END_REF]. From an MBC, we construct an MDP M where the states are the vertices of the tree with three new absorbing states synch, q 1 and q 2 , and two actions L, R. On both actions L and R, the next successor of the 1-leaves is only synch, and the next successor of the 0-leaves is q 1 or q 2 with probability 1 2 . The next successor of a ∧-state is each of their children with equal probability, on all actions. The next successor of a ∨-state is its left (resp., right) child by action L (resp., action R). We can see that M can be synchronized only in synch.

We call a subtree complete if (1) root is in the subtree, (2) at least one child of all ∨-vertices is in the subtree, (3) both children of all ∧-vertices are in the subtree. There is a bijection between a complete subtree and a strategy in M. The value of root is 1 if and only if there is a complete subtree such that it has no 0-leaves (all leaves are 1-leaves). For such subtrees, all plays under the corresponding strategy reach some 1-leaf and thus are synchronized in synch. It means that root ∈ ⟨⟨1⟩⟩ strongly µ (synch) if and only if the value of root is 1. The proof is complete and the PTIME-hardness result is established.

!

From previous lemmas and arguments, Theorem 6.1 follows.

q init q 1 q 2 a : 1 2 a : 1 2 a a Figure 6
.2: An MDP such that q init is sure-winning for coBüchi condition in T = {q init , q 2 } but not for sure strong synchronization according to sum T .

Theorem 6.1. For the three winning modes of strong synchronization according to max T in MDPs:

1. (Complexity). The membership problem is PTIME-complete.

(Memory)

. Linear memory is necessary and sufficient for both pure and randomized strategies, and pure strategies are sufficient.

Strong synchronization with function sum

The strongly synchronizing condition with function sum T requires that eventually all the probability mass remains in T . We show that this is equivalent to a traditional reachability condition with target defined by the set of sure winning initial distributions for the safety condition !T .

It follows that almost-sure (and limit-sure) winning for strong synchronization is equivalent to almost-sure (or equivalently limit-sure) winning for the coBüchi condition ♦!T . However, sure strong synchronization is not equivalent to sure winning for the coBüchi condition. Example 6.1 provides an MDP and a target set T such that the MDP is sure winning for coBüchi condition ♦!T , but not for sure strongly synchronizing with sum T . Example 6.1. Consider the MDP M depicted in Figure 6.2 that has three states q init , q 1 , q 2 and one letter a. All a-transitions are deterministic except in q init where the a-transition has two successors q init and q 1 each with probability 1 2 . The MDP M is sure winning for the coBüchi condition ♦!{q init , q 2 } from q init , but not sure winning for the reachability condition ♦S where S = {q 2 } is the winning region for the safety condition !{q init , q 2 } and thus not sure strongly synchronizing.

The MDP M in Example 6.1 is almost-sure strongly synchronizing in target T = {q init , q 2 } from q init , and almost-sure winning for the coBüchi condition ♦!T , as well as almost-sure winning for the reachability condition ♦S where S = {q 2 }. Lemma 6.5. Given a target set T , an MDP M is sure (resp., almost-sure or limit-sure) winning for the strongly synchronizing condition according to sum T if and only if M is sure (resp., almost-sure or limit-sure) winning for the reachability condition ♦S where S is the sure winning region for the safety condition !T .

Proof. First, assume that a state q init of M is sure (resp., almost-sure or limit-sure) winning for the strongly synchronizing condition according to sum T , and show that q init is sure (resp., almost-sure or limit-sure) winning for the reachability condition ♦S.

(i) Limit-sure winning. For all ϵ > 0, let ϵ ′ = ϵ |Q| • η |Q| where η is the smallest positive probability in the transitions of M. By the assumption, from q init there exists a strategy α and N ∈ N such that for all n ≥ N , we have M α n (T ) ≥ 1ϵ ′ . We claim that at step N , all non-safe states have probability at most ϵ |Q| , that is M α N (q) ≤ ϵ |Q| for all q ∈ Q\S. Towards contradiction, assume that M α N (q) > ϵ |Q| for some non-safe state q ∈ Q \ S. Since q ̸ ∈ S is not safe, there is a path of length ℓ ≤ |Q| from q to a state in Q \ T , thus with probability at least η |Q| . It follows that after N + ℓ steps we have

M α N +ℓ (Q \ T ) > ϵ |Q| • η |Q| = ϵ ′
, in contradiction with the fact M α n (T ) ≥ 1ϵ ′ for all n ≥ N . Now, since all non-safe states have probability at most ϵ |Q| at step N , it follows that M α N (Q \ S) ≤ ϵ |Q| • |Q| = ϵ and thus Pr α (♦S) ≥ 1ϵ. Therefore M is limit-sure winning for the reachability condition ♦S from q init .

(ii) Almost-sure winning. Since almost-sure strongly synchronizing implies limit-sure strongly synchronizing, it follows from (i) that M is limit-sure (and thus also almostsure) winning for the reachability condition ♦S, as limit-sure and almost-sure reachability coincide for MDPs [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF].

(iii) Sure winning. From q init there exists a strategy α and N ∈ N such that for all n ≥ N , we have M α n (T ) = 1. Hence α is sure winning for the reachability condition ♦Supp(M α N ), and from all states in Supp(M α N ) the strategy α ensures that only states in T are visited. It follows that Supp(M α N ) ⊆ S is sure winning for the safety condition !T , and thus α is sure winning for the reachability condition ♦S from q init .

For the converse direction of the lemma, assume that a state q init is sure (resp., almostsure or limit-sure) winning for the reachability condition ♦S. We construct a winning strategy for strong synchronization in T as follows: play according to a sure (resp., almostsure or limit-sure) winning strategy for the reachability condition ♦S, and whenever a state of S is reached along the play, then switch to a winning strategy for the safety condition !T . The constructed strategy is sure (resp., almost-sure or limit-sure) winning for strong synchronization according to sum T because for sure winning, after finitely many steps all paths from q init end up in S ⊆ T and stay in S forever, and for almost-sure (or equivalently limit-sure) winning, for all ϵ > 0, after sufficiently many steps, the set S is reached with probability at least 1ϵ, showing that the outcome is strongly (1ϵ)synchronizing in S ⊆ T , thus the strategy is almost-sure (and also limit-sure) strongly synchronizing.

!

Corollary 6.2. For an MDP M and all target sets T , we have ⟨⟨1⟩⟩ strongly limit (sum T ) = ⟨⟨1⟩⟩ strongly almost (sum T ).

The following result follows from Lemma 6.5 and the fact that the winning region for sure safety, sure reachability and almost-sure reachability can be computed in PTIME for MDPs [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF]. Moreover, memoryless strategies are sufficient for these conditions. that L event sure (q n 0 ) ̸ = ∅ from q init . On the other hand, let v = a n 0 a n 0 +1 • • • be the subword of w = a 0 a 1 • • • obtained by cutting the first n 0 letters. Starting in q n 0 , we see that for all i ∈ N there is always a unique state qn 0 +i such that P v i (q n 0 +i ) = 1, and thus L always sure (max Q ) ̸ = ∅ from q n 0 . Second, assume that there exists some state q such that L event sure (q) ̸ = ∅ from q init and L always sure (max Q ) ̸ = ∅ from q. Let w be the word that is sure eventually synchronizing in {q} from q init , and n be such that P w n (q) = 1. Take the word v = a 0 a 1 • • • a n-1 that is the prefix of w = a 0 a 1 • • • consisting of the first n letters. Let v ′ be the word that is sure always synchronizing according to max Q from q. By definition, for all i ∈ N there is always a unique state qi ∈ Q such that P v ′ i (q i ) = 1. Concatenating the infinite word v ′ at the end of v, we have P v•v ′ n+i (q i ) = 1 for all i ≥ n meaning that L strongly sure (max Q ) ̸ = ∅ from the initial state q init . ! As we show in Theorem 4.6, the emptiness problem for sure eventually synchronizing languages in PAs is in PSPACE and as we show in Theorem 4.2, the emptiness problem for sure always synchronizing languages with function max is in PTIME, it follows from the characterization in Lemma 6.6 that the membership problem for sure strongly synchronizing language is in PSPACE, using the following (N)PSPACE algorithm: guess the state q, and check that L event sure (q) ̸ = ∅ from q init and L always sure (max Q ) ̸ = ∅ from q. Lemma 6.7 presents a matching lower bound by a reduction from the non-universality problem in NFAs. As an alternative to the reduction from the non-universality problem in NFAs, we could use the same reduction from the finite automata intersection problem established to prove PSPACE-hardness of the emptiness problem of sure eventually synchronizing languages in Lemma 4.11.

Lemma 6.7. The emptiness problem of L strongly sure (max T ) in PAs is PSPACE-hard even if T is a singleton.

Proof. We present a proof using a reduction from the universality problem for NFAs that is known to be PSPACE-complete [START_REF] Harry | On the equivalence, containment, and covering problems for the regular and contextfree languages[END_REF]. Given a NFA N = ⟨Q, A, ∆⟩ equipped with an initial state q init and a set F of accepting states, we construct a PA P and a singleton target set T such that the language of N is universal if and only if L strongly sure (max T ) = ∅ from q init . The reduction is illustrated in Figure 6.3.

The non-deterministic transitions of N become probabilistic in P with a uniform distribution over successors. The target set is the absorbing state T = {q T }, a singleton. Therefore, a sure strongly synchronizing word needs to inject all that probability into q T . This can be done with the new letter # from the non-accepting states of the NFA. From the accepting states, the #-transitions lead to a sink state sink from which there is no way to synchronize into q T

The construction of the PA P = ⟨Q ′ , A ′ , δ⟩ is such that the state space Q ′ = Q ∪ {q T , sink} has two new states which are only accessible with a new letter #, and A ′ = A ∪ {#}. For all q ∈ Q and a ∈ A, the probabilistic transition function δ(q, a)(q ′ ) = 1 |∆(q,a)| if q ′ ∈ ∆(q, a), and δ(q, a)(q ′ ) = 0 otherwise. For all a ∈ A ∪ {#}, the a-transition in both states q T and sink are self-loops meaning that both these states are absorbing. The #-transitions in all non-accepting states q ∈ Q \ F bring the PA deterministically into q T , while the #-transitions in all accepting states q ∈ F is redirected to sink.

To establish the correctness of the reduction, we first assume that the language of N is not universal. Thus, there exists some finite word w such that all runs of N over w end in a non-accepting state, and inputting w • # to P the state q T is reached with probability 1. Therefore, w • (#) ω is a sure strongly synchronizing word in {q T } for P from q init . Second, assume that there exists some infinite word v such that v ∈ L strongly sure (q T ) from q init in P. Let P v 0 P v 1 P v 2 • • • be the symbolic run of P over v and let n 0 be such that P v n (q T ) = 1 for all n > n 0 . The word v must contain #, as this is the only transition to the target state q T . Let w ∈ A * be the prefix of v before the first occurrence of #. We claim that w is not accepted by the NFA N . By contradiction, if there is an accepting run ρ of N over w, then positive probability is injected in sink by the finite word w • # and stays there forever, in contradiction with the fact that P v n (q T ) = 1 for all n > n 0 . Therefore w is not accepted by the NFA N , and the language of the NFA is not universal.

!

From previous Lemmas and argument, Theorem 6.3 follows.

Theorem 6.3. The emptiness problem for sure strongly synchronizing languages with function max T in PAs is PSPACE-complete.

Almost-sure strong synchronization with function max

We present a construction to reduce the emptiness problem for almost-sure strongly synchronizing languages according to max Q in PAs to the emptiness problem for ω-automata with Büchi condition. The construction is exponential; however thanks to NLOGSPACEcompleteness of the emptiness problem for Büchi automata, PSPACE upper bound follows. We also prove a matching lower bound. Lemma 6.8. The emptiness problem of almost-sure strongly synchronization with function max Q in PAs, is in PSPACE.

Proof. Given a PA P = ⟨Q, A, δ⟩ with an initial state q init , we construct an automaton N equipped with an initial state ℓ 0 and a Büchi condition !♦F such that L strongly almost (max Q ) = ∅ from q init if and only if L !♦F (N ) = ∅. The automaton N is exponential in the size of P, and thus the PSPACE bound follows from the NLOGSPACE-completeness of the emptiness problem for Büchi automata.

The construction of N relies on the following intuition. The symbolic run of the PA P under an almost-sure strongly synchronizing word w is the sequence P w 0 P w 1 P w 2 • • • of probability distributions P w i (i ∈ N) in which the probability mass tends to accumulate in a single state qi at step i. We prove that for all sufficiently large i, there exists a deterministic transition from qi to qi+1 meaning that there exists some a ∈ A such that post(q i , a) = {q i+1 } in the PA P. The Büchi automaton N will guess the witness sequence qi qi+1 . . . and check that the probability mass is injected into this sequence. The automaton N keeps track of the support s i = Supp(P w i ) of the symbolic run, and at some point guesses that the witness sequence qi qi+1 . . . starts. Then, using an obligation set o i ⊆ s i , it checks that every state in s i eventually injects some probability mass in the witness sequence. When the obligation set gets empty, it is recharged with the current support s i .

We construct the Büchi automaton N = ⟨L, A, ∆⟩ as follows. The set

L = 2 Q ∪ (2 Q × 2 Q × Q)
is the set of states. A state s ⊆ Q is the support of the current probability distribution. A state (s, o, q) ∈ 2 Q × 2 Q × Q consists of the support s, the obligation set o ⊆ s, and a state q ∈ s of the witness sequence. The alphabet A is in common with the PA P. The transition function ∆ : L × Σ → 2 L is defined as follows.

-For all s ∈ 2 Q and a ∈ A, let s ′ = post(s, a), and define

∆(s, a) = {s ′ } ∪ {(s ′ , s ′ , q) | q ∈ s ′ }.
A transition in the state s which leads to a state (s ′ , s ′ , q), guesses q as the initial state of the witness sequence. -For all (s, o, q) ∈ 2 Q × 2 Q × Q and a ∈ A, let s ′ = post(s, a). If post(q, a) is not a singleton, then ∆((s, o, q), a) = ∅, otherwise let {q ′ } = post(q, a), and:

-If o ̸ = ∅, then ∆((s, o, q), a) = {(s ′ , o ′ \ {q ′ }, q′ ) | ∀q ∈ o : o ′ ∩ post(q, a) ̸ = ∅}.
These transitions deterministically choose the next state q′ of the witness sequence, and in addition, non-deterministically take care of paths from the obligation set o to the witness sequence. For this sake, the constraint o ′ ∩ post(q, a) ̸ = ∅ is required for all q ∈ o. n ≥ n 0 ; we therefore denote this state by qn . Moreover, it is easy to see that the state qn is independent of ϵ.

We prove that for all n ≥ n 0 , the state qn+1 is the unique successor of q n and a n : post(q n , a n ) = {q n+1 }. Let ϵ < η 1+η where η is the smallest probability in the transitions of P. Towards contradiction, assume that there exists some n > n 0 such that post(q n , a n ) ̸ = {q n+1 }; in other words, there exists another state q ̸ = qn+1 such that {q, qn+1 } ⊆ post(q n , a n ). By next transition, the probability in q then is

P w n+1 (q) ≥ δ(q n , σ n )(q) • P w n (q n ) ≥ η • (1 -ϵ).
The probability P w n+1 (q n+1 ) in the witness state qn+1 is thus at most 1η • (1ϵ). The computed upper bound for the probability in the witness state qn+1 and the lower bound coming from the definition of almost-sure strongly synchronizing gives

1 -ϵ ≤ ∥P w n+1 ∥ ≤ 1 -η • (1 -ϵ) that results in ϵ ≥ η
1+η , a contradiction. Therefore for all n ≥ n 0 , the state qn+1 is the unique successor of qn and a n .

For a given state q and word v ∈ A + , we define post(q, v) as the natural extension of post(q, a) over words: post(q, v) = post(post(q, v ′ ), a) where v = v ′ • a and v ′ ∈ A + . To complete the proof, we construct an accepting run ρ of N over w. For the first n 0 transitions, the run ρ visits s i where s i = Supp(P w i ) and 0 ≤ i < n 0 . At step n 0 , the run ρ visits (s n 0 , s n 0 , qn 0 ) where qn 0 is the unique state in which the mass of probability ∥P w n 0 ∥ is accumulated at step n 0 . Below, we prove that for all n ≥ n 0 and all states in q ∈ s n , there exists some path p 0 p 1 • • • p k with length k that is from q to the witness state qn+k where p 0 = q and p q = qn+k . Towards contradiction, assume that for some n ≥ n 0 , there exists q ∈ s n from which there is no path to the witness sequence. Since q ∈ s n , this state contains some strictly positive probability p at step n where p = P w n (q) > 0. Since the probability mass accumulated in the witness sequence would be bounded by 1p for all next steps after n, a contradiction arises with the fact that w is almost-sure strongly synchronizing. As a result of above argument, for all n ≥ n 0 and all states in q ∈ s n , there exists some path p 0 p 1 • • • p k that is from q to the witness sequence; let k(q) = k denote the length of this path and let p(q, i) = p i denote the i-th state visited along this path. Let K = max q∈sn k(q) be the length of the longest paths starting from some state q ∈ s n to the witness sequence. The accepting run r after the state (s n 0 , o n 0 , qn 0 ) visits the following K states (s n 0 +1 , o n 0 +1 , qn 0 +1 ) • • • (s n 0 +K , o n 0 +K , qn 0 +K ) consecutively, where for all 0 < i ≤ K, -the set s n 0 +i = Supp(P w n 0 +i ) is the support of the symbolic run at step i, -the obligation set o n 0 +i = O \ {q n 0 +i } with O = + q∈sn 0 :k(q)≥i {p(q, i)}, and qn 0 +i is the witness state at step n 0 + i. By the choice of obligation sets, we see that o n 0 +K = ∅ and r n 0 +K ∈ F. The automaton N , by next transition, deterministically, reset the obligation set with s n 0 +K+1 . With a similar construction, the run r visits the accepting states infinitely often and w is accepting. ! Lemma 6.9. The emptiness problem of L strongly almost (max T ) in PAs is PSPACE-hard even if T is a singleton.

Proof. The proof is by the same reduction from the non-universality problem for NFAs that is presented in Lemma 6.7 where from a NFA N = ⟨Q, A, ∆⟩ equipped with an initial state q init and a set F of accepting states, we construct a PA P and a singleton target state q T such that the language of N is universal if and only if L strongly sure (q T ) = ∅ from q init . We now argue that in the constructed PA P, the sure and almost-sure strongly synchronizing languages with function max q T are equal: L strongly sure (q T ) = L strongly almost (q T ). By definition, we know that all sure strongly synchronizing words are almost-sure strongly synchronizing too. To complete the proof, we thus assume that w is an almost-sure strongly synchronizing word in {q T }, and prove that w ∈ L strongly sure (q T ) too. Let ϵ > 0. Since w is almost-sure strongly synchronizing, there exists some n ∈ N such that P w n (q T ) ≥ 1-ϵ. All #-transitions in P are redirected to either sink or q T : post(Q ′ , #) = {sink, q T }. This and the fact that q T is only reachable by #-transitions give that Supp(P w n ) ⊆ {q T , sink}. Hence, the remaining probability mass at step n is accumulated in either of those states q T , sink. On the other hand since sink is a self-loop, if P w n (sink) > 0 then P w i (sink) > 0 for all next steps i > n. It means that in the case sink contains some positive probability p at step n, the probability in q T is bounded away from 1 for all next steps i > n: P w i (q T ) < 1p, a contradiction with the fact that w is almost-sure strongly synchronizing in q T . Hence, the probability in q T at step n is 1, and we see that it remains 1 forever irrespective to the next inputs. It proves that w is a sure strongly synchronizing word in q T too.

!

From the Lemma 6.8 and Lemma 6.9, we conclude Theorem 6.4. Theorem 6.4. The emptiness problem for almost-sure strongly synchronizing languages with function max T in PAs is PSPACE-complete.

In subsection 6.2.5, we provide undecidability result for the emptiness problem of limitsure strong synchronization with both functions max and sum.

Sure strong synchronization with function sum

In the sequel, we prove that the emptiness problem of sure strongly synchronizing languages with function sum T is PSPACE-complete. The PSPACE upper bound of the problem is obtained by Lemma 6.10. Since the hardness result in Lemma 6.7 is proved for singleton target set T , the result holds for both functions max T and sum T . Lemma 6.10. Let P be a PA and T be a target set. We have L strongly sure (sum T ) ̸ = ∅ from an initial state q init if and only if there exists some set S ⊆ T such that -L event sure (sum S ) ̸ = ∅ from q init , -and L always sure (sum T ) ̸ = ∅ from an arbitrary distribution over S.

Proof. First, we assume that the sure strongly synchronizing language L strongly sure (sum T ) for the PA P is not empty. By definition, there exists a word w and n 0 ∈ N such that for all n ≥ n 0 , the probability mass P w n (T ) is 1 at every step n. For all steps n ≥ n 0 , let S n ⊆ T be the set of states q ∈ T with strictly positive probability: S n = Supp(P w n ). Let S = S n 0 . Then P w n 0 (S) = 1 implying that L event sure (sum S ) ̸ = ∅ from q init . On the other hand, let v = a n 0 a n 0 +1 • • • be the subword of w = a 0 a 1 • • • obtained by cutting the first n 0 letters. Starting in the distribution d where d = P w n 0 with support S, we see that for all i ∈ N there is always a subset S n 0 +i ⊆ T such that P v i (S n 0 +i ) = 1, and thus L always sure (sum T ) ̸ = ∅ from d. Second, assume that there exists some set S ⊆ T such that L event sure (sum S ) ̸ = ∅ from q init and L always sure (sum T ) ̸ = ∅ from some distribution d over S. Let w be the word that is sure eventually synchronizing in S from q init , and n be such that P w n (S) = 1. Let d ′ = P w n with support S. By Remark 8, we know that d ∈ L always sure (sum T ) if and only if d ′ ∈ L always sure (sum T ) Take the word v = a 0 a 1 • • • a n-1 that is the prefix of w = a 0 a 1 • • • consisting of the first n 0 letters. Let v ′ be the word that is sure always synchronizing in S from d ′ . By definition, for all i ∈ N there is always a set S i ⊆ T such that P v ′ i (S i ) = 1. Concatenating the infinite word v ′ at the end of v, we have P v•v ′ n+i (T ) = 1 for all i ≥ n meaning that L strongly sure (sum T ) ̸ = ∅ from the initial state q init .

!

As we show in Theorem 4.6 and Theorem 4.2 that the emptiness problems for both sure eventually synchronizing languages and sure always synchronizing languages with function sum are in PSPACE, it follows from the characterization in Lemma 6.10 that the membership problem for sure strongly synchronizing language is in PSPACE, using the following (N)PSPACE algorithm: guess the subset S ⊆ T , and check that L event sure (sum S ) ̸ = ∅ from q init and L always sure (sum S ) ̸ = ∅ from the uniform distribution on S. From previous Lemma and discussion, Theorem 6.5 follows.

Theorem 6.5. The emptiness problem for sure strongly synchronizing languages with function sum T in PAs is PSPACE-complete.

Almost-sure strong synchronization with function sum

We present a reduction from the emptiness problem for almost-sure strongly synchronizing languages with function sum T to the emptiness problem for Büchi automata. The construction is similar to Proof of Lemma 6.8 and it is exponential in the size of the PA. The (N)PSPACE membership thus follows from the NLOGSPACE-completeness of the emptiness problem for Büchi automata.

Lemma 6.11. The emptiness problem of almost-sure strongly synchronization with function sum T in PAs, is in PSPACE.

Proof. Given a PA P = ⟨Q, A, δ⟩ with an initial state q init , we construct an automaton N equipped with an initial state ℓ 0 and a Büchi condition !♦F such that L strongly almost (sum T ) = ∅ from q init if and only if L !♦F (N ) = ∅. The automaton N is exponential in the size of P; however thanks to the NLOGSPACE-completeness of the emptiness problem, the PSPACE membership follows.

The construction of N relies on the following intuition (similarly to Proof of Lemma 6.8 where the Büchi automaton guesses the single state q in which the mass of probability is accumulated, here the automaton guesses the set c of target states which contribute in accumulating the probability mass). The symbolic run of the PA P under an almost-sure strongly synchronizing word w is the sequence P w 0 P w 1 P w 2 • • • of probability distributions P w i (i ∈ N) in which the probability mass tends to accumulate in some subset c i ⊆ T of the target set T at step i. We prove that for all sufficiently large i, there exists some a-transition from c i to c i+1 such that c i+1 = post(c i , a) in the PA P. The Büchi automaton N will guess the witness sequence c i c i+1 . . . and check that the probability mass is injected into this sequence. The automaton N keeps track of the support s i = Supp(P w i ) of the symbolic run, and at some point guesses that the witness sequence c i c i+1 . . . starts. Then, using an obligation set o i ⊆ s i , it checks that every state in s i eventually injects some probability mass in the witness sequence. When the obligation set gets empty, it is recharged with the current support s i .

We construct the Büchi automaton N = ⟨L, A, ∆⟩ as follows. The set -For all s ∈ 2 Q and a ∈ A, let s ′ = post(s, a), and define

L = 2 Q ∪ (2 Q × 2 Q × 2 Q ) is the set of states. A state s ⊆ Q is the support of the current probability distribution. A state (s, o, c) ∈ 2 Q × 2 Q × 2 Q consists of
∆(s, a) = {s ′ } ∪ {(s ′ , s ′ , c) | c ⊆ T ∩ s ′ }.
A transition in the state s which leads to a state (s ′ , s ′ , c), guesses c as the initial state of the witness sequence. -For all (s, o, c) ∈ 2 Q × 2 Q × 2 Q and a ∈ A, let s ′ = post(s, a). If post(c, a) ̸ ⊆ T is not included in T , then ∆((s, o, c), a) = ∅, otherwise let c ′ = post(c, a), and:

-If o ̸ = ∅, then ∆((s, o, c), a) = {(s ′ , o ′ \ c ′ , c ′ ) | ∀q ∈ o : o ′ ∩ post(q, a) ̸ = ∅}.
These transitions deterministically choose the next subset c ′ of the witness sequence, and in addition, non-deterministically take care of paths from the obligation set o to the witness sequence. For this sake, the constraint o ′ ∩ post(q, a) ̸ = ∅ is required for all q ∈ o.

-If o = ∅, then ∆((s, o, c), a) = {(s ′ , s ′ , c ′ )}. This transition is to recharge the obligation set with the current support s ′ when it gets empty. The automaton N is equipped with the initial state ℓ 0 = {q init } and with the Büchi condition !♦F where

F = {(s, o, c) ∈ 2 Q × 2 Q × 2 Q | o = ∅}
is the set of states with an empty obligation set o.

To establish the correctness of the reduction, we first assume that L !♦F (N ) ̸ = ∅ and show that L strongly almost (sum T ) ̸ = ∅ from q init . Since the Büchi language of N is not empty, there exists some infinite word w = a 0 a 1 a 2 • • • inducing an ultimately periodic run ρ = r 0 r 1 . . . r n-1 (r n . . . r m-1 ) ω over N such that r n ∈ F. Let r m = r n and κ = mn be the size of the cycle from r n to itself. From the construction of Büchi automaton, we know that all r i (where n ≤ i ≤ m) are states of the form (s i , o i , c i ) where s i = Supp(P w i ) is the support of the symbolic run at step i (and also at steps i + (j • κ) for all j ∈ N). As a result, P w i (q) > 0 for all states q ∈ s i . Since c n ⊆ s n , all the states q ∈ c n are reached at step n with some positive probability p > 0. Since c i+1 = post(c i , a i ) , we have P w i+1 (c i+1 ) ≥ P w i (c i ) ≥ p, and we will prove that lim inf i→∞ P w i (c i ) = 1. Since r n ∈ F, this state is of the form (s n , ∅, c n ) where the obligation set is empty. Consequently r n+1 = (s n+1 , s n+1 , c n+1 ) where the obligation set

o n+1 = s n+1 is recharged. Let o ′ i = o i ∪ c i for all n ≤ i ≤ m.
By a backward induction, we show that there are paths going through each state of o i and ending in some state q ∈ c m . The base of induction holds because o ′ m = c m and post(q ′ , a m-1 ) ∩ o ′ m ̸ = ∅ for all q ′ ∈ o m-1 . The induction holds for all n ≤ i ≤ m too, thanks to the fact that post(q ′ , a i-1 ) ∩ o ′ i ̸ = ∅ for all q ′ ∈ o i-1 . Therefore, from all states q ′ ∈ s n+1 some state q ∈ c m is reached within mn steps, with some positive probability that is at least η κ where κ = mn and η is the smallest probability of taking a transition in P. Recall that P w n (c n ) = p and

P w n (Q \ c n ) ≤ 1 -p. We thus have P w m (Q \ c m ) ≤ (1 -p) • (1 -η κ ).
Visiting the states in the periodic part of the run ρ for j times leads to

P w m+j•κ (Q \ c m+j•κ ) ≤ (1 -p)(1 -η κ ) j .
The probability outside the witness sequence then tends to 0 when j → ∞. That means lim j→∞ P w m+j•κ (Q \ c m+j•κ ) = 0 implying that lim i→∞ P w i (T ) = 1. Second, assume that the almost-sure strongly synchronizing language with function sum T of P is not empty. Let S be the set of initial states q such that L always sure (sum T ) ̸ = ∅. We know that the set S is equivalently the set of all initial states from which the ω-language for the safety condition !T in P is non-empty. Let w ∈ L strongly almost (sum T ) from q init . We assume that w = a 0 a 1 a 2 . . . is pure3 . Let P w 0 P w 1 . . . be the symbolic run of w over P. Consider ϵ > 1 2 and let ϵ ′ = ϵ |Q| • η |Q| where η is the smallest positive probability in the transitions of P. By definition, there exists N ∈ N such that for all n ≥ N , we have P w n (T ) ≥ 1ϵ ′ . We claim that at step N , all non-safe states q ∈ Q \ S have probability at most ϵ |Q| , that is P w N (q) ≤ ϵ |Q| for all q ∈ Q \ S. Towards contradiction, assume that P w N (q) > ϵ |Q| for some non-safe state q ∈ Q \ S. Since q ̸ ∈ S is not safe, there is a path of length ℓ ≤ |Q| from q to a state in Q \ T , thus with probability at least η |Q| . It follows that after N + ℓ steps we have P For a given state q and word v ∈ A + , we define post(q, v) as the natural extension of post(q, a) over words: post(q, v) = post(post(q, v ′ ), a) where v = v ′ • a and v ′ ∈ A + . To complete the proof, we construct an accepting run ρ of N over w. For the first N transitions, the run ρ visits s i where s i = Supp(P w i ) and 0 ≤ i < N . At step N , the run ρ visits (s N , s N , S). Let c N c N +1 c N +2 • • • be the witness sequence where c N = S and c

w N +ℓ (Q \ T ) > ϵ |Q| • η |Q| = ϵ ′ ,
N +i = post(S, v) where v = a N • • • a N +i-1 is the subword of w = a 0 • a 1 • • • from the N -
th letter up to (N + i)-th letter. Below, we prove that for all n ≥ N and all states in q ∈ s n , there exists some path p 0 p 1 • • • p k with length k that is from q to the witness state c n+k where ℓ 0 = q and ℓ q ∈ c n+k . Towards contradiction, assume that for some n ≥ n 0 , there exists q ∈ s n from which there is no path to the witness sequence. Since q ∈ s n , this state contains some strictly positive probability p at step n where p = P w n (q) > 0. Since the probability mass accumulated in the witness sequence would be bounded by 1p for all next steps after n, a contradiction arises with the fact that w is almost-sure strongly synchronizing. As a result of above argument, for all n ≥ n 0 and all states in q ∈ s n , there exists some path p 0 p 1 • • • p k that is from q to the witness sequence; let k(q) = k denote the length of this path and let p(q, i) = p i denote the i-th state visited along this path. Let K = max q∈sn k(q) be the length of the longest paths starting from some state q ∈ s n to the witness sequence. The accepting run r after the state (s N , o N , c N ) visits the following K states

(s N +1 , o N +1 , c N +1 ) • • • (s N +K , o N +K , c N +K ) consecutively,
where for all 0 < i ≤ K, -the set s N +i = Supp(P w N +i ) is the support of the symbolic run at step i, -the obligation set o n 0 +i = O \ {q N +i } with O = + q∈s N :k(q)≥i {p(q, i)}, and c N +i is the witness state at step N + i. By the choice of obligation sets, we see that o N +K = ∅ and r N +K ∈ F. The automaton N , by next transition, deterministically, reset the obligation set with s N +K+1 . With a similar construction, the run r visits the accepting states infinitely often and w is accepting. ! Lemma 6.11 gives the (N)PSPACE upper bound of the emptiness problem for almostsure strongly synchronizing languages with function sum T , the matching lower bound is an immediate result of Lemma 6.9. Thus, Theorem 6.6 follows.

Theorem 6.6. The emptiness problem for almost-sure strongly synchronizing languages with function sum T in PAs is PSPACE-complete.

Limit-sure strong synchronization

We prove that the emptiness problems for limit-sure strongly synchronizing languages according to both functions max T and sum T are undecidable, by a similar construction used in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF] to establish the undecidability result for the value 1 problem in PAs.

q init q 1 q 2 q 3 q 4 q 5 q 6 a, b : 1 2 a, b : 1 2 a, b a, b a a b b a : 1 -x a : x a : x a : 1 -x b b
Figure 6.4: An automaton presented in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF], that has value 1 if and only if x > 1 2 .

Recall that, given a PA N and a threshold 0 < λ < 1, the strict emptiness problem is undecidable: this problem asks whether the language L λ (N ) = {w ∈ A * | Pr(w) > λ} is empty. To prove undecidability of value 1 problem, a PA P is presented where the probability of some transitions are parametrized with x; and it is proved that P has value 1 if and only if x > 1 2 ; see Example 6.2. The undecidability of value 1 problem follows from combining P and another PA N such that x > 1 2 if and only if L λ (N ) = ∅ with λ = 1 2 . We refer the reader to [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF] for details. Example 6.2. Let P = ⟨Q, A, δ⟩ be the PA depicted in Figure 6.4 where A = {a, b} and Q = {q init , q 1 , • • • , q 6 }. On all letters, the successors of q init are q 1 and q 4 each with probability 1 2 . Two states q 1 and q 4 are in some sense symmetric. The a-transitions have two successors one with probability x and another with probability 1x: in q 1 , the next successor is q 1 with probability x and is q 2 with probability 1x whereas in q 4 , the next successor is itself with probability 1x and is q 5 with probability x. The b-transitions are redirected to q 3 and q 6 , respectively. Two states q 2 and q 5 are also somehow symmetric: the a-transitions are self-loops while the b-transitions are deterministically redirected to q 1 and q 4 , accordingly. Two states q 3 and q 6 are symmetrically absorbing states.

Starting in q 1 the probability of the word a n • b to be accepted in {q 3 } is x n , and similarly starting in q 4 the probability of the word a n • b to be accepted in {q 6 } is (1x) n . By construction of the automaton, all accepting words are in the shape w

= (a + b) • (a + b) • (a * • b) * • a * . For a sequence n 0 n 1 n 2 • • • and for all i ∈ N, let w i = a n 0 • b • a n 1 • b • • • a n i
be a finite word. Starting in q 1 the probability of the word w i to be accepted in {q 3 } is

(1 - ( 0≤j<i (1 -x n j )).
Starting in q 4 the probability of the word w i to be accepted in {q 6 } is

(1 - ( 0≤j≤i (1 -(1 -x) n j ) < ) 0≤j≤i (1 -x n j ).
-From all copies of states q ∈ Q 1 ∪ Q 4 of N 1 and N 4 except initial states q 1 and q 4 , add a b-transition directed to the absorbing state q 6 . -For all copies of states q ∈ Q 1 of N 1 , the ⋆-transition goes to the (initial) state q 1 if q is an accepting state for N 1 , and goes to the state q 2 otherwise. -For all copies of states q ∈ Q 4 of N 4 , the ⋆-transition goes to the state q 5 if q is an accepting state for N 4 , and goes to the (initial) state q 4 otherwise. To establish the correctness of reduction. Assume that there exists some word w for N such that Pr(w) > 1 2 . To prove that B has value 1, let ϵ > 0 and let 

v = b•a n 0 •b•a n 2 • • • a n i •b
• (w • ⋆) n 0 • b • (w • ⋆) n 2 • • • (w • ⋆) n i • b is accepted by B with probability 1 -ϵ. Thus, B has value 1.
Second, assume that B has value 1. Towards contradiction, assume that for all words w the probability to be accepted by N is equal or less than one half: Pr(w) ≤ 1 2 . Let w ′ ∈ A ′ ∪ {b, ⋆} be an arbitrarily finite accepting word for B. By construction of B, the word w ′ can be written as

u 0 • v 0 • ⋆ • u 1 • v 1 • ⋆ • • • where u i ∈ b * and v i ∈ A ′ *
. By construction of B, the automaton B accepts w with the probability less than the acceptance probability of w = u 0 • a • u 1 • a • • • by P where x ≤ 1 2 , that is less than 1 2 . It gives a contradiction with the fact that B has value 1. ! Theorem 6.7 provides the undecidability result of the emptiness problems for limit-sure strongly synchronizing languages with both functions max T and sum T . Theorem 6.7. For all functions f ∈ {max T , sum T }, the emptiness problem of limitsure strongly synchronizing language in PAs is undecidable.

Proof. The proof is by a similar construction used in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF] to establish the undecidability result for the value 1 problem in PAs. Consider the PA P described in Example 6.2. From the PA P = ⟨Q, A, δ⟩, we construct another PA P ′ and a target set q T such that P has value 1 if and only if P ′ is limit-sure strongly synchronizing in {q T }.

The construction of P ′ = ⟨Q ′ , A ′ , δ ′ ⟩ is as follows. The PA P ′ is a copy of P where two new absorbing states q T and sink are added that are only accessible by a new letter #. Formally, Q ′ = Q ∪ {q T , sink} and A ′ = A ∪ {#}. All transitions in P are copied to P ′ , so δ ′ (q, a) = δ(q, a) for all q ∈ Q and a ∈ A. The following transitions are added: all #-transitions in accepting states q 3 and q 5 are directed to q T ; all #-transitions in nonaccepting states q ∈ Q \ {q 3 , q 5 } are directed to sink. Both new states q T and sink are absorbing.

Below, we prove that P has value 1 if and only if P ′ is limit-sure strongly synchronizing in {q T }. First, assume that P has value 1. By definition, for all ϵ > 0 there exists a word w such that Pr(w) ≥ 1ϵ. Taking the #-transition after such words w, we see that v ∈ w • (#) ω is (1ϵ)-synchronized in q T . Thus, P ′ is limit-sure strongly synchronizing in {q T }. Now, assume that L strongly sure (q T ) ̸ = ∅. Let ϵ > 0, and let w be such that w is (1ϵ)synchronized in q T . Since the only in-going transitions to q T are #-transitions, then w must have some #. Let v be the prefix of w from the beginning up to the first occurrence of #, so that v does not contain any # and is a valid word for P.

Since post(Q ′ , #) = {q T , sink}, after reading the prefix v • # of w the only states assigned with some possibly positive probability are sink and q T . Since both of these states are absorbing, then the assigned probabilities would never changed, no matter what is the next input letters. Thus, if w is (1ϵ)-synchronized in q T , then v is (1ϵ)-synchronized in {q 3 , q 5 } implying that Pr(v) ≥ 1ϵ.

The above argument proves that P has value 1 if and only if P ′ is limit-sure strongly synchronizing in {q T }. The same reduction, presented in Remark 9, from the strict emptiness problem to the value 1 problem is used to complete the proof. !

Discussion

In this section, we briefly discuss the universality problems for sure and almost-sure strongly synchronizing languages in PAs.

Universality problems of sure strongly synchronizing language. Consider a PA P with the universal sure strongly synchronizing language according to max T . By definition, for all words w the symbolic run P w 0 P w 1 P w 2 • • • is ultimately always 1-synchronized in a singleton {q} where q ∈ T , i.e., there exists some n 0 ≤ 2 |Q| (where Q is the state space of P) such that for all n > n 0 there exists some state q ∈ T where P w n (q) = 1. We claim that for all n ≥ 2 |Q| there exists a unique state qn such that for all words w we have P w n (q n ) = 1. Toward contradiction, assume that there exists n, two states q and q ′ and two words w and w ′ such that P w n (q) = 1 and P w n (q ′ ) = 1. Thus, the symbolic run of the automaton over the randomized word v = 1 2 w + 1 2 w ′ is not 1-synchronized in any state; i.e., ∥P v n ∥ T ̸ = 1 implying that v is not sure strongly synchronizing according to max T , a contradiction with the fact that P has a universal sure strongly synchronizing language according to max T . By above arguments, we see that to decide the universality problem of sure strongly synchronizing language according to max T , one can check whether the graph underlying the PA has a unique bottom SCC consisting of a simple cycle, and whether the periodic supports of recurrent states in the Markov chain induced by the PA under the uniformly randomized word, are all singletons sets. This can be done in PTIME.

A similar argument for the function sum T shows that to decide the universality problem of sure strongly synchronizing language, the sequence s 0 s 1 s 2 • • • where s 0 = {q init } and s i = post(s i-1 , A) for all i ∈ N, can be computed and then one can check whether s i ⊆ T for all n ≤ i ≤ n + m, which can be done in PSPACE.

and q ′ such that {q, q ′ } ⊆ Supp(P wu i ) too. Since the probabilities assigned to these state q and q ′ always loop through the sequence q 0 q 1 • • • q |U | , the probability mass could never accumulate in a singleton anymore, a contradiction with condition (ii) stating that w u is almost-sure strongly synchronizing. Condition (i) can be checked in PSPACE by Lemma 5.10, and condition (ii) can be checked in PTIME by steady state analysis of the Markov chain induced by the PA under the uniformly randomized word. The PSPACE bound follows.

!

We have proved that, given a PA P with the initial state q init and the function max T , the almost-sure strongly synchronizing language (according to max T ) of P is universal if and only if (i) there is an absorbing end component U , and (ii) P is almost-sure strongly synchronizing by the uniformly randomized word w u . As we have shown in the proof of Lemma 6.12, these two conditions enforce a special shape to the absorbing end component U ; the end component U consists of a simple cycle, and for the symbolic-run of the PA over the uniformly randomized word, all supports can only contain one of the states of U . One can observe that these conditions indeed imply that the periodic supports of recurrent states in the Markov chain induced by the PA under the uniformly randomized word, are all singletons sets.

For the function sum T , a similar argument shows that the almost-sure strongly synchronizing language (according to sum T ) of P is decidable in PSPACE. The requirement of having an absorbing end component is not necessary for the function sum T ; in fact, states in all end components U can contribute in accumulating the probability mass in the target set T . Each end component U can be treated as an absorbing end component by removing all outgoing transitions, and the periodic supports of recurrent states c 0 , c 1 , • • • , c n can be computed in PSPACE. From those supports, a randomized word w can be constructed such that it is a linear combinations from all pure words where the PA stays in U with some positive probability, once it has entered in U (by those pure words); and check whether P is almost-sure strongly synchronizing by w. After repeating these arguments for all end components U , the PA must be almost-sure strongly synchronizing by the uniformly randomized word w u too.

The above arguments provided the PSPACE membership of the universality problem of almost-sure strongly synchronizing languages for both function sum T and max T , a matching lower bound can be proved by the same reduction presented in Lemma 4.12 for eventually synchronizing languages. In the presented reduction, the constructed PA is almost-sure eventually synchronizing in the singleton {synch} if and only if it is almost-sure strongly synchronizing.

From the above arguments and Lemma 6.12, it turns out that for all functions f ∈ {max T , sum T }, the universality problem of almost-sure strongly synchronizing language in PAs is PSPACE-complete.

Synchronization in Timed Automata

First sight. In this chapter, we introduce variants of synchronizing words for timed automata. Timed automata are finite automata enriched with some clocks and the transitions are fired with respect to some time constraints. The behavior of a timed automaton thus depends on such quantitative constraints, and this is one of the challenges when considering synchronization. Moreover, the automaton must be brought into the same state no matter what is the initial state as it does when synchronizing a finite automaton, however the initial state here ranges among possibly infinite set of states.

We focus on deciding the existence of different variants of synchronizing word for timed automata, proving PSPACE-completeness of the problems for deterministic timed automata, and proving undecidability for non-deterministic timed automata. The results presented in this chapter are summarized in Table 7 The semantics of a TA A = ⟨L, C, E⟩ is the labeled transition system !A" = ⟨Q, R⟩ over the alphabet

ℓ 0 ℓ 1 ℓ 2 ℓ 3 x ≥ 1, a, x := 0 x < 1, a x > 2, a, x := 0 x ≤ 2, a x < 1 ∨ x > 2, a 1 ≤ x ≤ 2,
Γ = R ≥0 ∪ A 1 where Q = L × (C → R ≥0 ), and ((ℓ, v), γ, (ℓ ′ , v ′ )) ∈ R if -either γ ∈ R ≥0
, and ℓ = ℓ ′ and v ′ = v + γ; -or γ ∈ A, and there is an edge (ℓ, g, γ, r,

ℓ ′ ) ∈ E such that v |= g and v ′ = v[r].
A timed word is a sequence w = a 0 a 1 • • • a n with a i ∈ A ∪ R ≥0 for all 0 ≤ i ≤ n. For a timed word, the length is the number of letters in A it contains, and the granularity is infinite if the word involves non-rational delays, and it is the largest denominator if the timed word only involves rational delays. As an example consider the timed word w = d(3) • a 3 • d(1) • a where d(t) with t ∈ R ≥0 denotes the quantitative delays, and the length of w is 4.

Example 7.1. The TA drawn in Figure 7.1 has four locations ℓ 0 , ℓ 1 , ℓ 2 , ℓ 3 , one letter a and one clock x. In the location ℓ 0 , if the letter a is read when the clock valuation x < 1 is still less than 1, the automaton moves to ℓ 1 ; otherwise, the automaton stays in ℓ 0 but resets the clock x. In the location ℓ 1 , if the letter a is input when the clock valuation x ≤ 2 is less than or equal to 2, the automaton moves to ℓ 2 ; otherwise it goes to ℓ 0 and resets the clock x too. In the location ℓ 2 , reading the letter a leads the automaton to end up in ℓ 3 or move to ℓ 1 depending on the guards: ℓ 2 1≤x≤2,a -----→ ℓ 3 and ℓ 2 x<1∨x>2,a ------→ ℓ 1 where the disjunction in the guard of a transition is obtained by several interval guarded transitions. The location ℓ 3 is a sink state since no transitions leave it. Consider the timed word w = d(3) • a 3 • d(1) • a where d(t) with t ∈ R ≥0 denotes the quantitative delays. A valid run of the automaton from the state (ℓ 0 , 0) to the state (ℓ 3 , 1) over w is

(ℓ 0 , 0) d(3) --→ (ℓ 0 , 3) a -→ (ℓ 0 , 0) a -→ (ℓ 1 , 0) a -→ (ℓ 2 , 0) d(1) --→ (ℓ 2 , 1) a -→ (ℓ 3 , 1).

▹

The TA A is deterministic if for all states (ℓ, v) ∈ Q, for all edges (ℓ, g 1 , a, r 1 , ℓ 1 ) and (ℓ, g 2 , b, r 2 , ℓ 2 ) in E, if a = b, and v |= g 1 and v |= g 2 , then r 1 = r 2 and ℓ 1 = ℓ 2 ; it is complete if for all (ℓ, v) ∈ Q and all a ∈ A, there exists an edge (ℓ, g, a, r, ℓ ′ ) ∈ E such that v |= g. For instance, consider the TA in Example 7.1. Since for all locations ℓ and all valuations for the only clock x, there is only one a-transition the TA is deterministic. 

p q x ≥ 1, a, x := 0 a x < 1, a p, x = 0 p, 0 < x < 1 p, x = 1 p, 1 < x q, x = 0 q, 0 < x < 1 q, x = 1 q, 1 < x d d d d d d

Decision problem(s).

The reachability problem in TAs asks, given a TA and two locations ℓ i and ℓ f , whether there exists a run from (ℓ i , 0) to some state (ℓ f , v) (with arbitrary valuation v).

The reachability problem is PSPACE-complete where the PSPACE membership follows from reachability in the region automata which has exponentially many states in the size of the input TA. The PSPACE-hardness is obtained by a reduction from halting problem for linear bounded automata (Turing machines that use only a polynomial number of cells on their tape).

Given a TA equipped with an initial location ℓ i and a set F of accepting locations, the timed language of the automaton is the set of timed words for which there exists some run from the initial state (ℓ i , 0) reaching some accepting state (ℓ f , v) where ℓ f ∈ F and v is an arbitrary clock valuation.

Decision problem(s).

The universality problem in TAs asks, given a TA equipped with an initial state and a set of accepting states, whether the timed language contains all timed words.

The universality problem is known to be undecidable in (non-deterministic) TAs by encoding the computation of a Minsky Machine [START_REF] Alur | A theory of timed automata[END_REF].

Synchronization in TA

We generalize the finite synchronizing words in NFAs, presented in Definition 3.1 on page 38, to TAs. PSPACE, we first prove the existence of a short witness (in the sequel, a timed word is short when its length and granularity are in O(2 |C| × |L| × |R|)). The built short witness starts with a finitely-synchronizing word, a word that brings the infinite set of states of the automaton to a finite set, and continues by synchronizing the states of this finite set pairwise.

Example 7.4. Consider the TA described in Example 7.1 that is a complete automaton. To find a synchronizing word for the TA, our proposed algorithm consists in two phases: first reducing the (uncountably) infinite set of configurations into a finite set (with at most the number of locations in the TA) by finding a finitely-synchronizing word, and then pairwise synchronizing the obtained finite set of states. The word d(3)•a•a is a finitely synchronizing word that synchronizes the infinite set of states into a finite set: whatever the initial state, inputting the word d(3) • a • a the automaton ends up in one of the states (ℓ 0 , 0), (ℓ 1 , 0) or (ℓ 3 , 0). On the other hand, since ℓ 3 is an absorbing state (all transitions are self-loop on ℓ 3 ), all synchronizing words must synchronize the automaton in a state (ℓ 3 , x) with location ℓ 3 and x ∈ R ≥0 . It then suffices to input a • d(1) • a • a • a to end up in (ℓ 3 , 0), whatever the initial state. Our algorithm thus returns the synchronizing word d(3) • a 3 • d(1) • a 3 for the TA, which always leads to the state (ℓ 3 , 0).

▹

We fix a complete deterministic TA A = ⟨L, C, E⟩ with the maximal constant M appearing in the guards in absolute value. We begin with two folklore remarks on TAs. For all locations ℓ, we denote by L ℓ = {(ℓ, v) | v(x) > M for all clocks x ∈ C} the set of states with location ℓ and where all clocks are unbounded. Then the clock valuations in L ℓ form a region (and L ℓ is one of the states in the region automata of A).

Remark 10. For all locations ℓ and for all timed words w, the set loc(post(L ℓ , w)) is a singleton and post(L ℓ , w) is included in a single region.

Proof. The proof is by an induction on the length of the timed words w. We reinforce the statement of the remark as follows. For all locations ℓ ∈ L, for all pairs of states q 1 , q 2 ∈ L ℓ and all timed words w, let us write post(q 1 , w) = {(ℓ 1 , u 1 )} and post(q 2 , w) = {(ℓ 2 , u 2 )}. After inputting the timed word w from both states q 1 and q 2 , the automaton -ends up in the same location: ℓ 1 = ℓ 2 , and -for all clocks x ∈ C, either the clock in both valuations is unbounded

u 1 (x) > M ⇔ u 2 (x) > M,
or the clocks have the same value: u 1 (x) = u 2 (x). The base of induction clearly holds: since after inputting the empty word ϵ we have u 1 (x) > M and u 2 (x) > M for all clocks x ∈ C. Assuming that the statement holds for all timed words w, one can easily see that it still holds after a delay transition. In case of a lettertransition (such as a-transition where a ∈ A), the clock values are preserved, except for the clocks x that are reset by taking the transition. Both those clocks then have value zero in both valuations (both u 1 (x) and u 2 (x)).

By Remark 10, inputting the same timed word from any state of L ℓ always leads to the same transition resetting x. Moreover, all such runs end up in the same region. Note that by Remark 11, w ℓ,x can be chosen to have length and granularity at most |L| × |R|.

Below, we construct the short finitely synchronizing word w f for A where S is the infinite set of states to be (finitely) synchronized (meaning that post(S, w f ) must be a finite set). Repeat the following procedure until S is synchronized to a finite set.

1. Choose a location ℓ ∈ loc(S) such that there is an infinite set S ℓ ⊆ S of states (ℓ, v)

with that location ℓ and some clock valuation v, included in S.

2. For all clocks x ∈ C, iteratively, input a word that consists of a (M + 1)-time-unit delay followed by the word w ℓ,x . The timed word of M + 1 delay brings the infinite set S ℓ to the unbounded region L ℓ . Next, inputting the word w ℓ,x makes the runs starting from S ℓ end up in a single region where clock x has the same value for all runs (since it has been reset). The word w ℓ = (d(M + 1) • w ℓ,x ) x∈C synchronizes the infinite set S ℓ to a single state by resetting all clocks, one-by-one, and it also shrinks S.

3. Apply the word w ℓ to S and update this set by S = post(S, w ℓ ). Among all reached locations, choose the next location ℓ ′ ∈ loc(S) such that there is an infinite set S ℓ ⊆ S of states (ℓ, v) with that location ℓ and some clock valuation v, included in S. Repeat the second and third step until S is synchronized to a finite set.

Note that for all locations ℓ, the word w ℓ has length at most |C| × |L| × (|R| + 1) and granularity at most |L| × |R|. Thus the finitely-synchronizing word w f , obtained by concatenating the successive words w ℓ , has length bounded by |C| × |L| 2 × (|R| + 1) and granularity at most |L| × |R|, so that it is short. By construction, the word w f finitelysynchronizes A, which concludes our proof.

!

From the proof of Lemma 7.1, we see that for all synchronizing TAs, there exists a finitely-synchronizing word which, in a sense, synchronizes the clock valuations. Precisely: Corollary 7.1. For all synchronizing deterministic TAs, there exists a short finitelysynchronizing word w f such that for all locations ℓ, this word w f synchronizes the set {ℓ} × (C → R ≥0 ) into a single state. Lemma 7.2 uses Corollary 7.1 to construct a short synchronizing word for a synchronizing TA. Short synchronizing words consist of a finitely-synchronizing word followed by a pairwise synchronizing word (i.e., a word that iteratively synchronizes pairs of states). Lemma 7.2. All synchronizing deterministic TAs have a short synchronizing word.

Proof. Let A = ⟨L, C, E⟩ be a complete deterministic TA with the maximal constant M appearing in the guards in absolute value. By Corollary 7.1, we know that for A there exists a short finitely synchronizing word w f that synchronizes the clock valuations. Thus, to synchronize A it is sufficient (and necessary) to synchronize the set S = post(L × (C → R ≥0 ), w f ) obtained by shrinking the infinite state space L × (C → R ≥0 ) after inputting w f . We assume, w.l.o.g., that all clock valuations of states in S are in the unbounded region (since otherwise we can concatenate the timed word of M + 1 delay at the end of w f ). Since S has finite cardinality at most n = |L|, we enumerate its elements and denote it by

S n = {(ℓ 1 , v 1 ), (ℓ 2 , v 2 ), • • • , (ℓ n , v n )}.
Consider the timed automaton A 2 obtained as the product of two copies of A: this automaton has 2 |C| clocks and |L| 2 locations where we denote the clocks in A 2 by (x j ) j∈{1,2},x∈C . To synchronize S n to a single state, we repeat the following procedure for all i = n, n -1, • • • , 1. Take a pair of states in S i , say (ℓ 1 , v 1 ) and (ℓ 2 , v 2 ). Consider the state (L, V ) of A 2 defined by these states where L = (ℓ 1 , ℓ 2 ) and V (x j ) = v j (x) for j ∈ {1, 2} and x ∈ C. Since A has a synchronizing word, there is a run from (L, V ) in A 2 to a symmetric state of the form (L ′ , V ′ ) with L ′ = (ℓ ′ , ℓ ′ ) for some ℓ ′ and V (x 1 ) = V (x 2 ) for all x ∈ C. Write w i for the corresponding word, and let S i-1 = post(S i , w i ). Repeat the same procedure for i -1. We see that S i contains at most i states, thus the word w = w n • w n-1 

!

A naive algorithm for deciding the existence of a synchronizing word would consist in non-deterministically picking a short timed word, and checking whether it is synchronizing. However, the latter cannot be done easily, because we have infinitely many states to check, and the region automaton is not sound for this.

Lemma 7.3. The synchronizing problem in deterministic TAs is in PSPACE.

Proof. To have a PSPACE algorithm to decide the synchronizing problem in TAs, we cannot simply guess a short timed word and check whether it is synchronizing since we have infinitely many states to check if the runs starting from those states end up in a single state after reading the short witness.

Let A = ⟨L, C, E⟩ be a complete deterministic TA with the maximal constant M appearing in the guards in absolute value. We thus first consider the set S 0 = {(ℓ, 0) | ℓ ∈ L} and compute the set of successors reached from S 0 after reading a finitely-synchronizing word w f (built in the proof of Lemma 7.1); that is, we simply compute the set post(S 0 , w f ). This can be achieved using polynomial space, since S 0 contains polynomially many states and w f can be guessed on-the-fly. The important point here is that since w f begins with a delay of M + 1 time unit, the set post(S 0 , w f ) is equal to the set post(Q, w f ) where

Q = L × R C
≥0 is the state space of the semantic !A" of the TA A. The set post(S 0 , w f ) contains at most |L| states, and this set post(S 0 , w f ) can now be synchronized pairwise. This pairwise-synchronization phase can be achieved by computing the product automaton A 2 and solving reachability problems in that automaton (similar to the proof of Lemma 7.2). This algorithm runs in polynomial space, and successfully terminates if, and only if, A has a synchronizing word.

TA A ℓ i ℓ ℓ ′ ℓ f ⇒ TA A ′ TA A ℓ i ℓ ℓ ′ ℓ f ℓ 0 # A ∪ {#} A ∪ {#} # #

!

Using similar arguments, we obtain the following result stating the PSPACE membership of the location-synchronizing problem in TAs.

Lemma 7.4. The location-synchronizing problem in deterministic TAs is in PSPACE.

Proof. Let A = ⟨L, C, E⟩ be a complete deterministic TA with the maximal constant M appearing in the guards in absolute value. To location-synchronize the TA A, we propose the following.

-The location-synchronizing word w starts with (M + 1)-time-unit delay, in such a way that after this delays all the clocks x ∈ C end up with values above the maximal constant M . -We see that for all locations ℓ, all timed words w and all pairs of region-equivalent valuations v and v ′ , the states in post((ℓ, v), w) and post((ℓ, v ′ ), w) still have the same location and region-equivalent valuations. Hence location-synchronization can be achieved by just considering the set {(ℓ, v M +1 ) | ℓ ∈ L}, where the valuation v M +1 maps all clocks to M + 1. These states can be location-synchronized pairwise. There is one important point to take into account: two states q and q ′ that have been location-synchronized might later de-synchronize, since they do not end up in the same region. However, this problem is easily avoided by letting M + 1 time unit elapse after location-synchronizing each pair of states. Using the same arguments as for synchronizing word the above procedure runs in polynomial space. The membership of locationsynchronizing problem in PSPACE follows.

!

TA A ℓ i ℓ ℓ f ⇒ TA A ′ TA A ℓ i ℓ ℓ f s d ⋆ A ∪ {#} A ∪ {#, ⋆} ⋆ ⋆ ⋆ # # # Figure 7
.4: The reduction sketch to show undecidability of the (location-)synchronizing problem in TAs where in this example: {ℓ i , ℓ f } ⊆ F .

To establish the correctness of the reduction, we first assume that the timed language of A is not universal. So there exists a word w that is not accepted by A. Then all runs of A over w starting in (ℓ i , 0) end in copies of non-accepting states. Hence in A ′ , the word ⋆ • w • # reaches the state (s, 0), whatever the starting state. It shows that A ′ has a synchronizing word.

Second, assume that A ′ has a synchronizing word. Let w be one of the shortest synchronizing words (in terms of the number of transitions). As s has no outgoing transitions, A ′ can only be synchronized in s. Since entering s is only possible by reading the letter #, it must be the case that w has at least one occurrence of #. Similarly, the states with the location d are also able to synchronize into s, it must be the case that w contains at least one occurrence of ⋆ which is followed by one occurrence of #. Let w 1 be the subword of w between the last ⋆ that is followed by an occurrence of #, up to the first subsequent occurrence of #. So w 1 contains neither # nor ⋆, and w can be written as w 0

• ⋆ • w 1 • # • w 2 ,
where w 2 contains no ⋆ (otherwise w would not be one of the shortest synchronizing word). We show that the word w 1 is not accepting by A (and thus, the timed language of A is not universal). Towards a contradiction, assume that w 1 is accepted by A. It cannot be the case that w 0 is synchronizing, as w was chosen to be one of the shortest such words. Hence there must be two states (ℓ, v) and (ℓ ′ , v ′ ) where ℓ ′ ̸ = s, such that there is a run from (ℓ, v) to (ℓ ′ , v ′ ) over the word w 0 . Reading ⋆ from (ℓ ′ , v ′ ) leads to (ℓ i , 0), from which there is a run over the word w 1 that goes to a state (ℓ ′′ , v ′′ ) with ℓ ′′ ∈ F . From (ℓ ′′ , v ′′ ), reading # leads to (d, 0). Since w 2 contains no ⋆, there is no path from (d, 0) to location s by w 2 . This means that we have found a state (ℓ, v) from which reading w does not lead to s, contradicting the fact that w is synchronizing in A ′ . Hence w 1 is not accepted by A and A is thus not synchronizing.

The same reduction is used to show undecidability of the location-synchronizing problem; note that all transitions going to s (the only possible location to synchronize) always reset all clocks. Therefore, the TA A ′ is synchronizing if and only if it is location synchronizing. (ℓ, b, z 2 , ℓ 2 ) ∈ E, if a = b, then z 1 = z 2 and ℓ 1 = ℓ 2 ; it is complete if for all ℓ ∈ L and all a ∈ A, there exists an edge (ℓ, a, z, ℓ ′ ) ∈ E. --→ ℓ 1 ; other transitions in ℓ 2 are however self-loops with weight 0 except the self-loop of the c-transition that has weight -10. All transitions in ℓ 3 are self-loops with weights 0 or 1; except the b-transition that leaves this state and goes to ℓ 1 by decreasing the energy level by -10.

One can verify that the WA in Figure 8.1 is complete and deterministic. Thus, for all words w there is only one possible run of the automaton over w. Starting in the location ℓ 3 with the energy level 1, the run of the WA over the word w = a 

Minsky machine and vector addition systems with states

We recall the definitions of Minsky machine and vector addition systems, plus two decision problems that are used in this chapter.

Minsky machine

A Minsky machine has two non-negative counters c 0 and c 1 , and it consists of a sequence of numbered instructions 1 : inst 1 ; 2 : inst 2 ; . . . n : inst n ; where inst n = halt and other instructions inst i are an increment or a guarded decrement:

(increment) i : c j := c j + 1; goto k; (guarded decrement) i : if c j = 0 goto k else (c j := c j -1; goto k ′ ); where 0 < i < n, 0 < k, k ′ ≤ n and j ∈ {0, 1}. A configuration is a tuple (i, v) where i is the current instruction and v = (e 0 , e 1 ) stores the values of the counters c 0 , c 1 in e 0 , e 1 , accordingly. Minsky machines start in configuration (1, (0, 0)) and halt in halt.

Decision problem(s).

The halting problem asks, given a Minsky machine, whether it halts.

It is well-known that the halting problem for (two-counter) Minsky machines is undecidable [START_REF] Lee | Computation: Finite and Infinite Machines[END_REF].

Vector addition systems with states A Vector addition system with states (VASS) is a finite-state machine VASS = ⟨Q, T ⟩ where the transitions carry vectors of integers of some fixed dimension d. A configuration of a VASS is (s, v) where s ∈ Q is a state and v is a d-dimension vector of non-negative integers. A transition t : s v ′ -→ s ′ can be taken from the configuration (s, v) to (s ′ , v + v ′ ) if v + v ′ is bigger than the 0-vector (the vector with 0 for all d dimensions).

Decision problem(s).

The coverability problem asks, given a VASS with an initial configuration (s init , v init ) and final configuration (s end , v end ), whether starting from (s init , v init ), a configuration (s, v) with s = s end and v ≥ v end is reachable.

If the answer to coverability problem is positive and in particular such configuration (s, v) exists, we say that (s end , v end ) is covered by (s init , v init ). It is known that the coverability problem in VASSs is EXPSPACE-complete [START_REF] Lipton | The reachability problem requires exponential space[END_REF][START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF].

Synchronization in WA

We generalize the finite synchronizing words in NFAs, presented in Definition 3.1 on page 38, to WAs. Definition 8.2 (Synchronizing and location-synchronizing words for WAs). Given a complete WA A = ⟨L, E⟩ over the alphabet A and with the semantic (the labeled transition system) !A" = ⟨Q, R⟩, a word w ∈ A + is synchronizing in the labeled transition system ⟨Q, R⟩ if post(Q, w) is a singleton, and it is location-synchronizing if loc(post(Q, w)) is a singleton.

A synchronizing word can be read from every state and bring the WA to a single state. As weights are merely accumulated in WA, it is impossible to synchronize to a single state: consider two states (ℓ, e 1 ) and (ℓ, e 2 ) involving the same location ℓ but different initial energies e 2 > e 1 . At least two of the runs starting from these two states go through the states involving the same location and the energy levels preserving the difference e 2e 1 (for deterministic WAs there are only two runs, but for non-deterministic WAs there might be more than two runs starting from those states). So two states (ℓ, e 1 ) and (ℓ, e 2 ) can never be synchronized, and thus WAs trivially never have a synchronizing word. Instead we define location-synchronizing words; inputting such words result in the WA reaching states that agree only on the location.

A location-synchronizing word brings the WA to a (set of states where all have a) single location with possibly different energy levels. In this setting, the location-synchronization in WAs is equivalent to synchronization of finite-state automata (i.e., weights play no role). Consequently, deciding whether, a given WA, has a location-synchronizing word is NLOGSPACE-complete if WA is deterministic, and is PSPACE-complete if WA is nondeterministic. A more realistic extension is to consider safe synchronization where we add a safety condition insisting that during synchronization the accumulated weight (energy) must be safe, e.g. a non-negative safety condition that requires the system to never run out of power while synchronizing. Considering the safety condition is what distinguishes our setting from the one presented in [START_REF] Fedor | P(l)aying for synchronization[END_REF]; moreover, in that work WAs are restricted to have only non-negative weights on transitions.

Given U ⊆ Q, a word w is synchronizing (resp., location-synchronizing) in ⟨Q, R⟩ with safety condition U if post(U, w) is a singleton (resp., loc(post(U, w)) is a singleton), and post(U, v) ⊆ U for all prefixes v of w. The safety condition U requires that the states in Q \ U are never visited while reading the synchronizing word. Let I be the set of intervals with integer or infinite endpoints. We consider safety conditions of the form Safe : L → I, therefore the safe set is U = {(ℓ, x) ∈ Q | x ∈ Safe(ℓ)}. We denote an interval [y, z] by y ≤ e ≤ z, an interval [z, +∞) by e ≥ z, etc. where e is an energy variable.

A WA A is (location-)synchronizing under the safety condition if there exists some (location-)synchronizing word under the safety condition for it. Decision problem(s). The (location-)synchronizing problem with a safety condition asks, given a WA A and a safety condition Safe, whether A is (location-)synchronizing under Safe.

Example 8.2. Consider the WA A described in Example 8.1, and let the safety condition Safe be non-negative e ≥ 0 for all four locations. We sometimes call such safety conditions an energy condition. family of words w 0 • (w 1 ) i (i ∈ N) such that inputting the word w 0 • (w 1 ) i accumulates energy i for the run starting in some location ℓ ∈ S, while having non-negative effects along the runs starting from the other locations in S.

As an example consider the WA described in Examples 8.1 and 8.2. Since in the digraph G 2 , there is no safe path from (ℓ 0 , ℓ 2 ) to synch, there is a family of words (b • c) i such that each iteration of b • c increase the energy level in ℓ 2 by 1.

Claim 1. For all 1 < m ≤ |L|, for all vertices x of the digraph G m , there is either a safe simple path from x to synch, or a simple cycle where all edges are non-negative and at least one is positive, which is reachable from x via a safe path.

Proof of Claim 1. Since A has a location-synchronizing word, then from all vertices of the digraph G m , there must be a safe path to synch. Take a vertex x ∈ V m and assume that all simple paths from x to synch are unsafe. Write G for the digraph obtained from G m by removing all negative edges. Thus, there is no path from x to synch in G. Consider one of the bottom SCCs reached from x in G. Since there is no path from the bottom SCC to synch in G, we see that one of the edges in this bottom SCC must be positive. Otherwise, if all edges in this bottom SCC are zero-effect then for all vertices y of the bottom SCC, there is no way to synchronize the m-locations of y with initial energy 0. Thus the statement of claim holds, and the proof of Claim 1 is complete.

The next claim states that A has a location-synchronizing word if it has a short one, of length at most Z |L| × |L| 3+|L| 2 . Claim 2. For the synchronizing WA A, there exists a short location-synchronizing word.

Proof of Claim 2. The proof is by an induction: we prove that for all 2 ≤ k ≤ |L| and all subsets S of locations with |S| = k, there is a word w S of length(k) ≤ Z k |L| 3+k 2 that location-synchronizes (under non-negative safety condition) the subset S into a single location.

Base case. We prove that for all subsets S of locations with |S| = 2, the length of the word w S is at most 4Z 2 |L| 6 . Let S = {ℓ 1 , ℓ 2 } and consider the digraph G 2 . If there is a safe simple path from (ℓ 1 , ℓ 2 ) to synch, the base of induction trivially holds. Otherwise by Claim 1, for one of the locations in S, say ℓ 1 , for all i > 0 there exists an i-recharging word w 0 • (w 1 ) i . Recall that an i-recharging word that recharges energy in ℓ 1 is a word such that inputting this word keeps the energy levels non-negative along the runs starting from the states in S; however it accumulates energy i along the run starting from ℓ 1 . Let ℓ ′ 1 and ℓ ′ 2 be the locations reached from ℓ 1 and ℓ 2 , accordingly, after inputting the i-recharging word with i = Z(2 |L| 2 + Z |L| 4 ). A slightly different argument from the one used to prove Claim 1 gives us another word w 2 • (w 3 ) j that recharges energy in run starting in ℓ ′ 2 at least Given a WA A = ⟨L, E⟩ over an alphabet A, a subset S ⊆ L of locations and a non-negative safety condition Safe, we construct a VASS with two configurations (s init , v init ) and (s end , v end ) such that the automaton A under Safe condition has a location-synchronizing word from S if and only if the configuration (s end , v end ) is covered from (s init , v init ) in VASS.

The encoding is straightforward. Let the set S have cardinality |S| = m, we thus write S = {p 1 , • • • , p m }. We construct the vector addition system VASS = ⟨Q, T ⟩ with vectors of dimension m as follows.

-The state space Q = L m ∪ {s end } where L m is all m-tuples of locations.

-From a state s = (ℓ 1 , • • • , ℓ m ) there is a transition to s ′ = (ℓ ′ 1 , • • • , ℓ ′ m ) carrying the vector v = (z 1 , • • • , z m ), if for some a ∈ A and all 0 < i ≤ m we have ℓ i a,z i --→ ℓ ′ i . -From all states s = (ℓ, • • • , ℓ) with the identical location ℓ in all components, there is a transition to s end with 0-vector. Let s init = (p 1 , • • • , p m ) and both vectors v init and v end be 0-vectors. There is a oneto-one corresponding between a sequence of transitions t 0 t 1 • • • t n in VASS with a word w = a 0 a 1 • • • a n in A. Since the only way to reach s end is via states (ℓ, • • • , ℓ) with the identical components ℓ and positive energy level, we can easily see that the configuration (s end , v end ) is covered from (s init , v init ) if and only if there is a location-synchronizing word w from S in A. This construction uses exponential space in size of A, then it proves that location-synchronizing problem is decidable in 2-EXPSPACE.

!

Lemma 8.4. The location-synchronizing problem from a subset S of locations under lowerbounded safety conditions in WAs, is EXPSPACE-hard.

Proof. The EXPSPACE-hardness proof is by a reduction from the coverability problem in vector addition systems. From a given VASS = ⟨Q, T ⟩ equipped with two configurations (s init , v init ) and (s end , v end ), we construct a WA A, a lower-bounded safety condition Safe and a set S of locations such that (s end , v end ) is covered from (s init , v init ) if and only if the automaton A under the Safe condition has a location-synchronizing word from S.

The intuition behind the reduction is that we add d copies of VASS to A such that the weights in the i-th copy is taken from the i-th dimension of vectors in VASS. An absorbing location called synch is added that is only reachable from the locations s end of each copy. The set S contains synch and the locations s init of all copies, A thus can only be location-synchronized in synch. Therefore, to location-synchronize S all d copies must run in parallel and try to reach copies of s end .

We assume that all states s of VASS have exactly the same number m of outgoing transitions (otherwise we add self-loops with 0-vectors). We consider m letters a 1 , a 2 , • • • , a m and label each outgoing transition t in s with a unique letter a i where 0 < i ≤ m (all pairs of outgoing transitions have different labels). The construction of A = ⟨L, E⟩ over A is as follows.

-The alphabet is A = {a 1 , • • • , a m , ⋆, #}. -For all s ∈ Q and 0 < i ≤ d, the ⋆-transition in ⟨s, i⟩ is a self-loop with weight 0.

The construction is depicted in Figure 8.2. Let S = {⟨s init , i⟩ | 0 < i ≤ d} ∪ {synch} be such that the location-synchronizing from S is of interest. The safety condition is non-negative for all locations except in synch where Safe(synch) = {e ≥ 1}.

First, assume that (s end , v end ) is covered from (s init , v init ) in VASS. Thus, there is a sequence of transitions t 0 t 1 • • • t n that are taken from (s init , v init ) to cover (s end , v end ). Let w = a 0 • a 1 • • • a n be the sequence of the labels of those transitions t 0 t 1 • • • t n where a i is the label of t i for all 0 ≤ i ≤ n. The word w • ⋆ • # reaches the location synch with non-negative energy level, no matter its origin (in S) and the initial energy. So A has a location-synchronizing word under the condition Safe.

Second, assume that A has a location-synchronizing word w. Since synch is absorbing, and since synch ∈ S then A is location-synchronized in synch. Entering synch is only possible by reading #, so it must be the case that w contains some #. Moreover, reading # in synch is only possible after at least one ⋆; otherwise the safety condition in the location synch is violated (with energy level 1). Let w ′ be the subword of w that is obtained by omitting all letters ⋆ from the prefix of w until the first #. Thus, the word w ′ has neither # nor ⋆. The first ⋆ increases the energy level at location synch by 1, and thus the #-transition becomes affordable in synch (to location-synchronize other states in synch). Since from all locations ⟨s, i⟩ where s ̸ = s end , the #-transitions lead to sink where there is no way to synchronize, the first # of w must be read when all copies of VASS are in the locations ⟨s end , i⟩ where 0 < i ≤ d. Let v = v endv init and write v = ⟨z 1 , • • • , z d ⟩. The location ⟨s end , i⟩ needs to have at least energy level z i to afford reading # (and not violate the safety condition in synch). Therefore the sequence of transitions in VASS corresponding to the word w ′ , starting from the configuration (s init , v init ) must end up in a configuration that covers (s end , v end ). The above argument shows the correctness of the presented reduction to establish the EXPSPACE-hardness.

!

Lemma 8.3 and Lemma 8.4 provide reductions to and from the coverability problem in vector addition systems to establish the following result.

Theorem 8.2. The location-synchronizing problem from a subset S of locations under lower-bounded safety conditions in WAs, is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

Location-synchronization under general safety condition

We now discuss location-synchronization under the general safety condition where the energy constraint for each location can be a bounded interval, lower or upper-bounded, or trivial (always true). We proceed in two steps: first, we prove that the PSPACEcompleteness results in case of non-negative safety condition is preserved in locationsynchronization under safety condition with only lower-bounded or trivial constraints. Second, we extend our techniques to establish results for general safety conditions. To obtain results for the general case, we use the variant location-synchronization from a subset, that is discussed in all cases as well.

In Example 8.3, we see that even though a back-edge might be taken along runs over some location-synchronizing words such as a • b • b, there are alternative locationsynchronizing words that does not fire a back-edge transition, for instance the word a • a • b. We prove, by Lemma 8.5, that such alternative words always exist implying that taking back-edge transitions while synchronizing is avoidable in deterministic WAs.

Lemma 8.5. Let A be a deterministic WA and Safe be a safety condition with only lowerbounded or trivial constraints. There is a location-synchronizing word in A if and only if there is one in the automaton obtained from A by removing all back-edge transitions.

Proof. First direction is trivial. To prove the reverse, assume that A has a locationsynchronizing word w under Safe, such that there exists some state starting in which the run over w takes a back-edge, say the back-edge ℓ 1 b -→ ℓ 2 with ℓ 1 ∈ L ↔ and ℓ 2 ∈ L , → . We denote by [n, +∞) the lower-bounded safety constraint in ℓ 2 . Let (ℓ 0 , e 0 ) be some state such that starting from (ℓ 0 , e 0 ), the run over w takes the back-edge ℓ 1 b -→ ℓ 2 earliest (among all the runs starting from all safe states). We split the word w = w 0 • b • w 1 such that b is the letter firing the back-edge ℓ 1 b -→ ℓ 2 in the run starting from (ℓ 0 , e 0 ) first. We prove that ℓ 0 ∈ L , → meaning that ℓ 0 has lower-bounded safety condition. Towards contradiction, assume that ℓ 0 ∈ L ↔ . Since w location-synchronizes all safe states, then the runs starting from all states (ℓ 0 , e) where e ∈ Z would never violate the safety condition. Let e = n -Z • |w 0 | -1 where Z is the maximum value appearing as weight in transitions in absolute, and where n is the minimum allowed energy level at the location ℓ 2 . Inputting the word w 0 • b from the state (ℓ 0 , e) brings A to the state (ℓ 2 , n ′ ) with n ′ < n, violating the safety condition at ℓ 2 . It contradicts with the fact that w is a location-synchronizing word under Safe. It proves then ℓ 0 ∈ L , → .

We denote by U the set of all safe states: U = {(ℓ, e) | e ∈ Safe(ℓ)}. Let S = loc(post(U, w 0 )) be the set of all reached locations after inputting w 0 . Since the runs starting from the location ℓ 0 ∈ L , → are ending in ℓ 1 ∈ L ↔ by the word w 0 , and since w 0 does not fire any back-edge transition, then S ∩ L , → ⊂ L , → meaning that the number of locations with a lower-bounded safety constraint is decreased after reading w 0 . Since the word w 0 does not violate the safety condition and keeps the automaton in the safe set post(U, w 0 ) ⊆ U , then w 0 • w is also a location-synchronizing word. Therefore, w 0 • w is a location-synchronizing word such that there are less runs over it firing a back-edge, compared to the number of runs over w. We can repeat the above argument for all back-edges (at most |L , → | times) that are taken while synchronizing A by w, and construct a location-synchronizing word w ′ • w such that no back-edge transition is fired while reading w ′ . Moreover, all reached locations after reading w ′ have trivial safety constraints loc(post(U, w ′ ) ⊆ L ↔ . Hence, the word w ′ •w is a location-synchronizing word that no runs starting from some safe state over it takes a back-edge transition. It completes the proof. --→ ℓ 1 . It remains to ensure that there is indeed a way of location-synchronizing into the location ℓ 3 , which is inputting c twice.

▹ By Lemma 8.5, location-synchronizing a given WA A under a safety condition with only lower-bounded or trivial constraints can be achieved in two steps:

-first location-synchronizing all the states with lower-bounded safety constraints into the set of states with trivial constraints. It can be done in PSPACE by using Theorem 8.1, -second location-synchronizing the states with trivial safety constraints where the weights play no role.

Lemma 8.6. The location-synchronizing problem in WAs under lower-bounded or trivial safety condition is PSPACE-complete.

Proof. Let A = ⟨L, E⟩ be a complete deterministic WA over the alphabet A where Z is the maximum value appearing as weight in transitions in absolute. Let Safe be the safety condition with only lower-bounded or trivial constraints. By Lemma 8.5, we can assume that A has no back-edge. We also assume that L ↔ is not empty. Since there is no back-edge in A, the automaton is synchronized in some location ℓ ∈ L ↔ with trivial safety constraint. Thus, there exists some word w such that by reading this word w, the set of states (ℓ, e) with some location ℓ ∈ L , → having a lower-bounded safety constraint end up in the set L ↔ ; formally, loc(post(S, w)) ⊆ L ↔ where S = {(ℓ, e) | ℓ ∈ L , → , e ∈ Safe(ℓ)}. After reading such words, weights play no role while locationsynchronizing the reached set post(S, w) of states. Thus, we propose following PSPACE algorithm:

-We obtain the WA A ′ from A by replacing all locations ℓ ∈ L ↔ with some absorbing location synch. All ingoing-transition to some location ℓ ∈ L ↔ is redirected to synch. At the location synch, we define the safety constraint e ≥ m -Z where m is the minimum allowed energy level for all locations with a lower-bounded safety constraints: m = min{e | there exists ℓ ∈ L , → such that e ∈ Safe(ℓ)}.

We choose m -Z as the minimum allowed energy level at synch since the least energy level for locations in L , → is m, and the energy level cannot be decreased more than Z by taking the transitions going to synch . We find a location-synchronizing word w for A ′ by using Lemma 8.1. -We obtain the DFA N from A by removing all locations ℓ ∈ L , → and omitting the weights of transitions. We find a synchronizing word v for the DFA N . By above arguments, the word w • v is a location-synchronizing word for A. The proof is complete.

!

The proof of Lemma 8.6 carries on for synchronizing from a subset of locations, except using Lemma 8.3 instead of Theorem 8.1, and requiring that the automaton has no backedge.

Lemma 8.7. Given a WA A with no back-edges, the location-synchronizing problem from a subset S of locations under lower-bounded or trivial safety condition is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

Location-synchronization under general safety conditions.

Let us relax the restrictions on the safety condition Safe, and let some of the locations have bounded intervals to indicate the safe range of energy. The set L of locations is partitioned into L , -! , L , → and L ↔ where locations in L , -! have safety conditions such as e ∈ [n 1 , n 2 ] where n 1 , n 2 ∈ Z. In this setting, transitions from locations in L , → or L ↔ to locations in L , -! are considered as back-edge too. Since taking back-edge transitions while synchronizing from a subset S of locations is not avoidable, we can use bounded safety conditions to establish a reduction from the halting problem in Minsky machines to provide the following undecidability result.

Theorem 8.3. The location-synchronizing problem from a set S of locations in WAs under a general safety condition is undecidable.

Proof. The proof is by a reduction from the halting problem in two-counter Minsky machine. Below, without loss of generality, we assume that the Minsky machine has at least two guarded decrement instructions, one on each counter.

From a Minsky machine, we construct a deterministic WA A, a general safety condition Safe and a subset S such that Minsky machine halts if and only if A has a locationsynchronizing word from S under the condition Safe. The automaton A is constructed from two disjoint automaton B 0 and B 1 (and some other locations such as synch) with the same number of locations and transitions. A run over automaton B j simulate the value of counter c j along a sequence of configurations in the Minsky machine. The only way to synchronize these two disjoint automata is arriving to their halt, simultaneously, and then play a special letter # to reach the location synch. To let the counters to get freely any non-negative value, the safety condition in all location of B 0 and B 1 are non-negative except some particular locations that are reserved to check the correctness of a guarded decrement. The guarded decrement instructions are simulated by taking a back-edge and visiting locations with the safety condition of form e = 0. To synchronize all locations with different kind of safety conditions, we add a gadget that forces all location-synchronizing words for A to always begin with the letter ⋆.

The construction of A over the alphabet A is as follows. An instance of reduction is depicted in Figure 8.6.

-The alphabet has four letters A = {a, b, #, ⋆}.

-For each increment instructions i : c j := c j + 1; goto k; we have two locations i j , k j and the transitions i j c,1

-→ k j in B j and two locations i 1-j , k 1-j and the transitions i 1-j c,0 -→ k 1-j in B 1-j where c ∈ {a, b}. See instructions 1 and 3 in Figure 8.6 and the corresponding locations and transitions in Figure 8.7.

-For each guarded decrement instructions i : if c j = 0 goto k else (c j := c j -1; goto k ′ ); we have four locations i j , k j , k ′ j , f i,j and the transitions 

Conclusion

Summary. The main contribution of this thesis is a novel approach to the qualitative analysis and the synthesis problem of the distribution-outcomes in probabilistic systems.

We introduced synchronizing properties defined on the distribution-outcomes of Markov decision processes (MDPs) and probabilistic automata (PAs), that require that the winning strategy (or the input word) brings the system in some (group of) state(s) with a large probability, possibly in limit. In other words, the probability mass in the distribution, that indicates the likelihood of the system to be in different states at specific states, is accumulated in some target state. We defined always, eventually, weakly and strongly synchronizing properties that respectively are in analogy with safety, reachability, Büchi and coBüchi conditions in state-semantics. We considered three qualitative winning modes: sure, almost-sure and limit-sure modes, and we provided matching upper and lower complexity bounds of the existence problem of a winning strategy for synchronizing conditions, as well as the memory requirement for optimal winning strategies. In addition to the existence problem of a winning word-strategy in PAs that has been considered as the emptiness problems of synchronizing languages, we also discussed the universality problems. We carried over results for synchronizing problems from MDPs and PAs to two-player turn-based games and non-deterministic finite state automata. Along with the main results, we established new complexity results for alternating finite automata over a one-letter alphabet. As a further contribution, we introduced the synchronization for timed automata (TAs) and weighted automata (WAs). We provided results for several variants and combinations of these: including deterministic and non-deterministic timed and weighted automata, synchronization to unique location with possibly different clock valuations or accumulated weights, as well as synchronization with a safety condition forbidding the automaton to visit states outside a safety-set during synchronization (e.g. energy constraints).

Future works. Partially-observable Markov decision processes (POMDPs) are a generalization of MDPs where the controller, which makes the strategic choices, is not able to distinguish states, but groups of states through an observation [START_REF] Chatterjee | Qualitative analysis of partially-observable Markov decision processes[END_REF]. Thus, the states of systems are grouped (or sometimes partitioned) in different observations, and the controller choice only relies on partial information about the history of the system execution, namely, on the past sequence of observations. As one direction for further investigation, synchronizing properties in POMDPs can be considered. In particular, since PAs are a kind of POMDPs where the set of observations is a singleton, the undecidability results for the emptiness problem of some synchronizing languages in PAs, immediately give the undecidability for the existence problem of a winning observation-based strategy in POMDPs. On the other hand, MDPs are a kind of POMDPs where the set of observations is equal to the state space, and we have seen that all synchronizing problems are decidable in MDPs. Going from decidability to undecidability of synchronizing problems in these two extreme kinds of POMDPs, one can see which type of observations functions arise a decidable class of synchronizing properties in POMDPs; particularly, studying the sets of (practically meaningful) restrictions on the class of winning strategies with decidable synchronizing problems is interesting.

MDPs can be viewed as 1 1 2 -player stochastic games, and thus a natural generalization of them is 2 1 2 -player stochastic games where in addition to strategic choices of a controller (Player-1) and random responses of its environment, strategic choices for an adversary (Player-2) exist [START_REF] Chatterjee | A survey of stochastic ω-regular games[END_REF]. Along the results for the synchronizing properties in MDPs, we have established results for turn based two player games, that is kind of 2 1 2 -player stochastic games where the environment always responds deterministically. The links between synchronizing properties in MDPs to turn based two player games are established by the fact that the exact value of probabilities in transitions of MDPs do not matter while synchronization. It would be very interesting to see whether this result holds in 2 1 2 -player stochastic games, and to study the role of a de-synchronizing adversary and the memory requirement for the strategies of the adversary.

It is known that an irreducible finite Markov chain has a set of stationary distributions [START_REF] Kemeny | Finite Markov chains[END_REF][START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF][START_REF] Sericola | Markov Chains: Theory and Applications[END_REF]. For an MDP and a strategy, a distribution X can be defined as a stationary distribution when in the distribution-outcome, there is an infinite subsequence of distributions converging to X. Given a set of target stationary distributions and an MDP, one can study limit conditions in analogy to Büchi and coBüchi conditions: does there exists a strategy for the MDP such that some or all stationary distributions are from the target set? The weakly and strongly synchronizing conditions are kind of limit conditions; for example, for the function max T the set of target distributions in limit condition is the set of Dirac distributions on states of T . Another interesting point could be observing the behavior of the maximal subsequence of the distribution-outcome con-verging to a stationary distribution X. In particular, taking intervals probabilities and assigning symbols to each interval distribution, the language obtained in the convergence of a maximal subsequence to a stationary distribution X, is irregular for Markov chains and if only one entry of X is of interest [START_REF] Manindra Agrawal | Approximate verification of the symbolic dynamics of Markov chains[END_REF]. It is interesting to find the class of strategies such that the MDP shows a regular behavior when converging to a stationary distribution.

In this thesis, we have studied synchronizing and location-synchronizing problems for TAs and WAs. We left an open question in the thesis: decidability of the locationsynchronizing problem in non-deterministic WAs. We showed that the technique used to solve location-synchronizing problem in deterministic WAs fails when applying for nondeterministic WAs, that is namely avoiding back-edges. Avoiding back-edges is not also possible when location-synchronizing from a subset of locations in deterministic WAs; though in that case we provided the undecidability result. It would be interesting to fill this gap and complete the extensive study done on synchronization of WAs. Recently, the study of synchronizing strategies under partial observation has been motivated in turnbased games [START_REF] Kim Guldstrand Larsen | Synchronizing strategies under partial observability[END_REF]. In this direction, a further topic to explore is defining synchronizing conditions in timed and weighted games, considering perfect-information and partial observation strategies for the players.

The concept of synchronization has been found useful in applications such as planning, control of discrete event systems, bio-computing, and robotics [BAPE + 03, Vol08, DMS11a]. The usage of synchronization also shows promises in the verification of cryptographic protocols. Cryptographic protocols are small programs that are specifically designed to ensure the security of private communications on public networks such as wireless ad-hoc networks. Contrary to classical networks using routers and access-points, ad-hoc networks consist of communicating members that broadcast a message one to another. Messages sent by a source member of the network is typically forwarded by other members until the message reaches its destination. Onion protocols have been specifically developed to ensure the anonymity of the members sending messages, meaning that a malicious member of the network should not be able to determine the identity of the sender from the forwarded messages [START_REF] Chrétien | Formal analysis of privacy for routing protocols in mobile ad hoc networks[END_REF]. By design, before forwarding a message, a member adds an encrypted layer of routing information to the message which increases the size of the message. The malicious member thus can determine the length of the path the message has gone through from the sender to himself. Using the concept of synchronization in the topology of small examples of networks, one can see that a sender, from which all paths to the malicious member have the same length, can be identified implying a breach on the anonymity property supposedly guaranteed by onion protocols. A further work could be to formally specify the synchronization requirements on the topology of ad-hoc networks and combine them with classic verification techniques on cryptographic protocols [START_REF] Chrétien | Formal analysis of privacy for routing protocols in mobile ad hoc networks[END_REF] to ensure the security of onion protocols.

"

  We are like dice thrown on the plains of destiny." -Rita Mae Brown
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 2 Figure 2.1: The NFA described in Example 2.2 with initial state q 0 .

Figure 2 . 2 :

 22 Figure 2.2: The MDP described in Example 2.3 with the initial Dirac distribution q 0 .

Figure 3

 3 Figure 3.1: The NFA described in Example 3.1 with synchronizing word a • a • b.

Figure 3 . 2 :

 32 Figure 3.2: The subset construction of the NFA in Example 3.1 (restricted to the part showing the run over a • a • b).

Figure 3 . 3 :

 33 Figure 3.3: The subset construction of the NFA in Example 2.2 on page 19 (where the state space is restricted only to cells of size at most 2).
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 33 Figure 3.4: The NFA N 1 of Example 3.2 with the strongly and eventually synchronizing words b • a ω and b • a • b ω .

Figure 3 . 6 :

 36 Figure 3.6: The acyclic graph of runs induced by the word b • a • b ω over the automaton N 1 described in Example 3.2.
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 311 Figure 3.11: Sketch of reduction to show PSPACE-hardness of the universal finiteness problem for 1L-AFA.
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 3 Figure 3.13: An example of 1L-AFA A with the connected MDP M A .
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 3 Figure 3.15: Randomization is necessary to decide the universality problems of {event, weakly} synchronizing languages according to sum in PAs.

Figure 4

 4 Figure4.3: The MDP M 2 . All not-drawn transitions are directed to q ⊥ , for example b-transitions in q 1 1 and q 2 1 .

Figure 4

 4 Figure 4.4: An MDP where infinite memory is necessary for almost-sure eventually synchronizing strategies.
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 45 Figure 4.5: Sketch of the reduction to show PSPACE-hardness of the membership problem for almost-sure eventually synchronizing in MDPs.

  Corollary 4.3. Let M be an MDP and T ⊆ U be two sets of states. For all winning modes µ ∈ {sure, almost, limit}, and for all two pairs of distributions d, d ′ with Supp(d) = Supp(d ′ ), we have d ∈ ⟨⟨1⟩⟩ event µ (sum T , U ) if and only if d ′ ∈ ⟨⟨1⟩⟩ event µ (sum T , U ).

Figure 4 . 6 :

 46 Figure 4.6: Sketch of reduction to show PSPACE-hardness of the membership problem for limit-sure eventually synchronizing.

Figure 4 . 8 :

 48 Sketch of reduction to show undecidability of the emptiness problem for almostsure eventually synchronizing languages in PAs.

  Figure 5.2: The MDP M 2 .

  Figure 5.3: An example to show q init ∈ ⟨⟨1⟩⟩ weakly limit (q 4 ) implies q init ∈ ⟨⟨1⟩⟩ weakly almost (q 4 ).
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 5 Figure 5.5: Non-absorbing end component.

Figure 5 . 6 :

 56 Figure 5.6: Absorbing end component.

Figure 6 . 3 :

 63 Figure 6.3: The reduction sketch to show PSPACE-hardness of the emptiness problem for sure strongly synchronizing languages in PAs.

  the support s, the obligation set o ⊆ s, and the subset c ⊆ s ∩ T of the witness sequence. The alphabet A is in common with the PA P. The transition function ∆ : L × Σ → 2 L is defined as follows.

a a, x := 0 Figure 7

 07 Figure 7.1: A 1-letter TA with synchronizing word d(3) • a 3 • d(1) • a 3 where d is a special letter indicating quantitative delays.

Figure 7

 7 Figure 7.2: A TA and its region automaton (d is a special letter indicating delay transitions). The region automaton is synchronized by the word a • a • d • d • d, but the TA cannot be synchronized (because there is no way to reset the clock x when starting in the location q).

Figure 7 . 3 :

 73 Figure 7.3: The reduction sketch to show PSPACE-hardness of the (location-)synchronizing problem in TAs.

Figure 8

 8 Figure 8.1: A complete deterministic WA with the synchronizing word a 10 • b • (c • b) 2 • d under the energy safety condition.

  Example 8.1. The WA drawn in Figure8.1 has four locations ℓ 0 , ℓ 1 , ℓ 2 , ℓ 3 and four letters a, b, c, d. The state ℓ 0 is an absorbing state where all transitions have weight 0. In the state ℓ 1 , the d-transition brings the automaton to the absorbing state ℓ 0 with weight -2, while the c-transition is redirected to ℓ 2 . The a and b-transitions are self-loops in ℓ 1 . The b-transition in ℓ 2 goes to ℓ 1 : ℓ 2 b:+1

  10 • b • (c • b) 2 • d is (ℓ 3 , 1) a:+1 --→ (ℓ 3 , 2) a:+1 --→ • • • a:+1 --→ (ℓ 3 , 11) b:-10 ---→ (ℓ 1 , 1) c:0 -→ (ℓ 2 , 1) b:+1 --→ (ℓ 1 , 2) c:0 -→ (ℓ 2 , 2) b:+1 --→ (ℓ 1 , 3) d:-2--→ (ℓ 0 , 1).

▹

  

Figure 8 -

 8 Figure 8.2: (Schematic) reduction from the coverability problem in vector addition systems with states to location-synchronizing problem from a subset S of locations under lowerbounded safety conditions in WAs.

!

  Figure 8.5: Unavoidable back-edges to synchronize non-deterministic WAs.

  k ′ j in B j and similarly, four locations i j , k j , k ′ j , f i,j and following transitions i in B 1-j where c ∈ {a, b}. See instruction 4 in Figure8.6 and the corresponding locations and transitions in Figure8.7.
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			Always	Eventually
		Complexity	Required memory	Complexity	Required memory
	Sure			PSPACE-complete	exponential
	Almost-sure	PTIME	memoryless	PSPACE-complete	infinite
	Limit-sure			PSPACE-complete	unbounded
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	Always		Eventually
	sum	max
	Sure		PSPACE-complete
	Almost-sure PSPACE-complete PTIME	undecidable
	Limit-sure		undecidable
	Table 4.2: Computational complexity of the emptiness problem of always and eventually
	synchronizing languages in PAs.	
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  • • • w 1 synchronizes S n to a single state. For all i, the word w i is chosen to have length at most 2 |C| × |L| 2 × (|R 2 | + 1) and granularity at most |L| × |R 2 |, where |R 2| ≤ (4M + 1) 2|C| × (2 |C|)! ≤ |R| |C|+1, so that w has length and granularity polynomial in |L| and M , and exponential in |C|. Thus, w f • w is a synchronizing word for A, and it is short.

Mahsa so thankful, after her first Thanksgiving dinner at Tony's place Paris, FMSH library December 2014.

It is the main difference between Markov chains and Markov decision processes: transitions in Markov chains are only augmented with probabilities, though they are augmented with both labels and probabilities in Markov decision process.

The verification problem for some cases is undecidable.

In qualitative analysis, the only allowed probability bounds are the extreme bounds, one and zero: Pr =1 (almost-surely) and Pr >0 (non-zero).

The results also holds for Markov chains, where the quantitative verification of the distributionoutcome semantics is in general already undecidable.

Generally speaking, a Borel set is any set in a topological space that is built on open sets (or equivalently on closed sets) by countable unions, countable intersections and relative complement. We refer the reader to[START_REF] Martin | An extension of borel determinacy[END_REF][START_REF] Martin | The determinacy of blackwell games[END_REF] for more details.

In expression c i j , we assume that j is interpreted modulo p i .

This result, in general, does not hold for the universality of always and strongly synchronizing languages according to sum. Discussions of Chapters 4, 5 and 6 are devoted to the universality problems of synchronizing languages, where we will show that the universality problem of sure and almost-sure always synchronizing languages, are in PTIME. The universality problems of sure eventually, weakly and strongly synchronizing languages are in PSPACE, while for almost-sure eventually, weakly and strongly synchronizing languages, the universality problems are PSPACE-complete.

Since Pre r (Z) = Z and Pre r (R) = R, we assume a modular arithmetic for exponents of Pre, that is Pre x (•) is defined as Pre x mod r (•). For example Pre -1 (Z) is Pre r-1 (Z).

To generalize the results to consider randomized words, the alphabet of the Büchi automaton N could be defined 2 A where A is the alphabet of P. An infinite word over 2 A is a sequence of sets of letters which can be viewed as the sequence of supports of a randomized word. For the sake of simplicity, we prove the results for pure words.

To generalize the results to consider randomized words, the alphabet of the Büchi automaton N could be defined 2 A where A is the alphabet of P. An infinite word over 2 A is a sequence of sets of letters which can be viewed as the sequence of supports of a randomized word. For the sake of simplicity, we prove the results for pure words.

We assume that A ∩ R ≥0 = ∅.

# #, ⋆ #, ⋆ ⋆ ⋆ ⋆

Limit-sure undecidable Table 6.2: Computational complexity of the emptiness problem of strongly synchronizing languages in PAs.

Theorem 6.2. For the three winning modes of strong synchronization according to sum T in MDPs:

1. (Complexity). The membership problem is PTIME-complete.

(Memory)

. Pure memoryless strategies are sufficient.

Strong synchronization in PAs

The same reduction mentioned to reduce the membership problem of strong synchronization with function max T to membership problem with function max Q in MDPs (see the beginning of Section 6.1), is valid for the emptiness problem of strongly synchronizing languages according to max in PAs. In the sequel, we thus study the emptiness problem of strongly synchronizing languages only according to max Q . The results presented in this section are summarized in Table 6.2.

Sure strong synchronization with function max

In this subsection, we prove that the emptiness problem of sure strongly synchronizing languages with function max Q is PSPACE-complete. The PSPACE upper bound of the problem is obtained by the following intuitive characterization. Lemma 6.6. For a PA P, we have L strongly sure (max Q ) ̸ = ∅ from an initial state q init if and only if there exists some state q such that -L event sure (q) ̸ = ∅ from q init , -and L always sure (max Q ) ̸ = ∅ from q.

Proof. First, we assume that the sure strongly synchronizing language L strongly sure (max Q ) for the PA P is not empty. By definition, there exists a word w and n 0 ∈ N such that for all n ≥ n 0 , the probability mass ∥P w n ∥ = 1 is 1 at every step n. For all steps n ≥ n 0 , let qn be the state in which the probability mass is accumulated: P w n (q n ) = 1. So we see -If o = ∅, then ∆((s, o, q), a) = {(s ′ , s ′ , q′ )}. This transition is to recharge the obligation set with the current support s ′ when it gets empty. The automaton N is equipped with the initial state ℓ 0 = {q init } and with the Büchi condition !♦F where

is the set of states with an empty obligation set o.

To establish the correctness of the reduction, we first assume that L !♦F (N ) ̸ = ∅ and show that L strongly almost (max Q ) ̸ = ∅ from q init . Since the Büchi language of N is not empty, there exists some infinite word w = a 0 a 1 a 2 • • • inducing an ultimately periodic run ρ = r 0 r 1 . . . r n-1 (r n . . . r m-1 ) ω over N such that r n ∈ F. Let r m = r n and κ = mn be the size of the cycle from r n to itself. From the construction of Büchi automaton, we know that all r i (where n ≤ i ≤ m) are states of the form (s i , o i , qi ) where s i = Supp(P w i ) is the support of the symbolic run at step i (and also at steps i + (j • κ) for all j ∈ N). As a result, P w i (q) > 0 for all states q ∈ s i . Since qn ∈ s n , the state qn is reached at step n with some positive probability p > 0. Since for all n ≤ i < m, the state qi+1 is the unique successor of qi and a i , the sequence qn qn+1 . . . qm-1 qm forms a deterministic cycle in P. Hence, P w i+1 (q i+1 ) ≥ P w i (q i ) ≥ p, and we will prove that lim inf i→∞ P w i (q i ) = 1. Since r n ∈ F , this state is of the form (s n , ∅, qn ) where the obligation set is empty. Consequently r n+1 = (s n+1 , s n+1 , qn+1 ) where the obligation set o n+1 = s n+1 is recharged. Let o ′ i = o i ∪ {q i } for all n ≤ i ≤ m. By a backward induction, we show that there are paths going through each state of o i and ending in qm . The base of induction holds because o ′ m = {q m } and post(q, a m-1 ) ∩ o ′ m ̸ = ∅ for all q ∈ o m-1 . The induction holds for all n ≤ i ≤ m too, thanks to the fact that post(q, a i-1 ) ∩ o ′ i ̸ = ∅ for all q ∈ o i-1 . Therefore, the state qm is reached from all states q ∈ s n+1 within mn steps, with some positive probability that is at least η κ where κ = mn and η is the smallest probability of taking a transition in P 1 . Recall that P w n (q n ) = p and P w n (Q \ {q n }) ≤ 1p. We thus have

Visiting the states in the periodic part of the run ρ for j times leads to

The probability outside the witness sequence then tends to 0 when j → ∞, i.e., lim j→∞ P w m+j•κ (Q \ {q m+j•κ }) = 0 implying that lim i→∞ ∥P w i ∥ = 1. Second, assume that w ∈ L strongly almost (max Q ) from q init . We assume that w = a 0 a 1 a 2 . . . is pure 2 . Let P w 0 P w 1 . . . be the symbolic run of w over P. Since w is almost-sure strongly synchronizing, then ∀ϵ > 0 there exists n 0 ∈ N such that for all n ≥ n 0 there exists some state q such that P w n (q) > 1ϵ. By assuming ϵ < 1 2 , the state q is unique in each step

Let F = {q 3 , q 5 } be the accepting states and q init be the initial state. We see that after the first input letter, two states q 1 and q 4 both contains probability 1 2 . Starting from q init , the probability of the words v i ∈ (a + b) • w i to be accepted in F thus is

There are two cases:

By the above computation, considering the accepting set {q 3 }, after inputting a word the probability in q 3 is less than the probability in q 6 . As a result, the probability of accepting all words is less than 1 2 . (ii.) Let x > 1 2 . It is proved that for all ϵ > 0 there exists some increasing sequence

It means that there is a careful way of choosing the sequence n 1 n 2 n 3 • • • where after reading each subword a * • b of v i (for sufficiently large i) q 3 contains larger probability than what is lost in q 6 . Hence, the probability of the words v i to be accepted in F is at least 1ϵ.

It proves that P has value 1 if and only if x > 1 2 . This example is presented in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF] to establish the undecidability result of the value 1 problem.

▹

We briefly recall the reduction from the strict emptiness problem to the value 1 problem [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF].

Remark 9. The value 1 problem in PAs is undecidable.

Proof (sketch). Let P = ⟨Q, A, δ⟩ be the PA described in Example 6.2 and let N be a PA whose alphabet A ′ has no intersection with A. The automaton N is equipped with an initial state and the set F of accepting states.

Let

The sketch of constriction is as follows.

-Let the alphabet of B be

-Copy all states of P into B. Add all b-transitions in P to B.

-Copy all states of N 1 and N 4 into B such that the initial state of N 1 is the (copy of) state q 1 of P and the initial state of N 4 is the (copy of) state q 4 of P. For all a ∈ A ′ , add all a-transitions in N 1 and N 4 to B. -For all a ∈ A ′ , add a self-loop a-transition in all states q ∈ {q init , q 2 , q 3 , q 5 , q 6 } to B.

We do not provide a matching lower bound for the universality problem of sure strongly synchronizing languages according to the function sum T .

Universality problems of almost-sure strongly synchronizing language. Given a PA P with the initial state q init and the function max T , Lemma 6.12 proves that the almost-sure strongly synchronizing language of P is universal if and only if (i) there is an absorbing end component U , and (ii) P is almost-sure strongly synchronizing by the uniformly randomized word w u , which provides the PSPACE membership of this problem. Lemma 6.12. The universality problem of almost-sure strongly synchronizing languages according to max T in PAs is in PSPACE.

Proof. Given a PA P = ⟨Q, A, δ⟩ with the initial state q init and the function max T , the almost-sure strongly synchronizing language is universal if and only if (i) there is a (then necessarily unique) absorbing end component U , and

(ii) P is almost-sure strongly synchronizing by the uniformly randomized word w u .

One direction is straightforward. For the reverse direction, assume that both of the conditions (i) and (ii) are fulfilled in the PA P. We show that the almost-sure strongly synchronizing language (according to max T ) of P is universal. Let U = {q 0 , q 1 , . . . , q |U |-1 }, for convenience also let q |U | = q 0 . We claim that post(q i , A) = {q i+1 } is singleton for all 0 ≤ i < |U |, which means U consists of a simple cycle. Let ϵ = η (1+η) where η is the smallest probability of taking a transition in P. Since w u is almost-sure strongly synchronizing, there exists n 0 ∈ N such that for all n ≥ n 0 , there exists some state q where P wu n (q) > 1ϵ. Let n 1 ∈ N be such that for all n > n 1 , the total probability to be in states Q \ U is smaller than ϵ:

Then, for all k > max(n 0 , n 1 ), there exists a unique state q ∈ U such that P wu k (q) ≥ 1ϵ. Assume towards contradiction that q has two successors q 1 , q 2 ∈ U with q 1 ̸ = q 2 , that is {q 1 , q 2 } ⊆ post(q, A). Then, P wu k+1 (q 1 ) ≥ P wu k (q) • δ(q, a)(q 1 ) > (1ϵ) • η = ϵ where q 1 ∈ post(q, a). By a symmetric argument, we have P wu k+1 (q 2 ) > ϵ, showing that ∥P wu k+1 ∥ < 1ϵ, a contradiction. This arguments proves that the absorbing end component U consists of a simple cycle.

We have shown that the absorbing end component U = {q 0 , q 1 , . . . , q |U |-1 } consists of a simple cycle. Towards contradiction with the universality of the almost-sure strongly synchronizing language of P, assume that there exists an infinite word w that is not almostsure strongly synchronizing according to max T . Let P w 0 P w 1 • • • be the symbolic-run of P over w; and P wu 0 P wu 1 • • • be the symbolic-run over the uniformly randomized word w u . Since U is absorbing and consists of a simple cycle, there exists n ∈ N such that for all i > n the support Supp(P w i ) contains more than one state q ∈ U , say two states q, q ′ ; otherwise w would be almost-sure strongly synchronizing. By assumption, the uniformly randomized word w u is almost-sure strongly synchronizing. All states reachable by w are also reachable by w u : Supp(P w i ) ⊆ Supp(P wu i ). Hence, for all i > n there are two states q Synchronization Location-synchronization Deterministic TAs PSPACE-complete PSPACE-complete Non-deterministic TAs undecidable Table 7.1: Computational complexity of the synchronizing and location-synchronizing problem in TAs.

Preliminaries

We first introduce labeled transitions systems with possibly infinitely many states:

Definition 7.1 (Labeled transition systems). A labeled transition system over a (possibly infinite) alphabet Γ is a pair ⟨Q, R⟩ where Q is a set of states and R ⊆ Q×Γ×Q is a transition relation. The state space Q = L × X consists of a finite set L of locations and a possibly infinite set X of quantitative values.

Given a state q = (ℓ, x), let loc(q) = ℓ be the location of q, and for a ∈ Γ, let post(q, a) = {q ′ | (q, a, q ′ ) ∈ R}. For P ⊆ Q, let loc(P ) = {loc(q) | q ∈ P } and post(P, a) = + q∈P post(q, a). For nonempty words w, w ′ ∈ Γ + where w = a • w ′ , define inductively post(q, w) = post(post(q, a), w ′ ). A run (or path) in a labeled transition system ⟨Q, R⟩ over Γ is a finite sequence q 0 q 1 • • • q n such that there exists a word a 0 a 1 • • • a n-1 ∈ Γ * for which (q i , a i , q i+1 ) ∈ R for all 0 ≤ i < n.

In the sequel, we consider labeled transition systems induced by timed automata.

Timed automata and timed words

Let C = {x 1 , . . . , x |C| } be a finite set of clocks. A (clock) valuation is a mapping v : C → R ≥0 that assigns to each clock a non-negative real number. We denote by 0 C (or 0 when the set of clocks is clear from the context) the valuation that assigns 0 to every clock.

Let I be the set of intervals with integer or infinite endpoints. A guard g = (I 1 , . . . ,

For t ∈ R ≥0 , we denote by v + t the valuation defined by (v + t)(x) = v(x) + t for all x ∈ C, and for a set r ⊆ C of clocks, we denote by v[r] the valuation such that v[r](x) = 0 for all x ∈ r, and v[r](x) = v(x) for all x ∈ C \ r. Definition 7.2 (Timed automata). A timed automaton (TA) over a finite alphabet A is a tuple ⟨L, C, E⟩ consisting of a finite set L of locations, a finite set C of clocks, and

When E is clear from the context, we denote by ℓ g,a,r --→ ℓ ′ the edge (ℓ, g, a, r, ℓ ′ ) ∈ E, which represents a transition on the letter a from location ℓ to ℓ ′ with the guard g and set r of clocks to reset.

Problems in TAs

The decidability of several classical problems in TAs are proved by the classical notion of region equivalence, see [START_REF] Alur | A theory of timed automata[END_REF]. The region equivalence partitions the set of clock valuations into finitely many classes called regions where two states in the same location and same region are time-abstract bisimilar.

For a TA ⟨L, C, E⟩ over the finite alphabet A, let M be the maximal constant that appears in the guards in absolute value. The region equivalence ∼ = on valuations is defined as follows. For all pairs of clock valuations v and v ′ , we define v ∼ = v ′ if and only if the three following conditions hold for all pairs of clocks x, y ∈ C:

2. if the clock x in one of the valuations is less than M , then the integer part of the clock x in both valuations is equal, and moreover the fractional part is zero only if it is zero in both valuations v and v

if both clocks

x, y in one of the valuations are less than M , then the value of clock x is more than clock y in v if and only if the same holds in the valuation

where frac(v(x)) = v(x) -⌊v(x)⌋ denotes the fractional part of the clock valuation. The equivalence class of a valuation v for the relation ∼ = is a region of A. By R we denote the set of regions where its size |R| is O(2 |C| ×|C|!×(2M +1) |C| ), i.e. exponential in the size of the TA A. The region automaton is then a finite-state automaton obtained by quotienting the original TA with the region equivalence (where delay transitions are abstracted by a d-transition). We refer to [START_REF] Alur | A theory of timed automata[END_REF] for more details on the region abstraction for TAs.

Example 7.2. The TA depicted in Figure 7.2 has two locations p, q, one letter and one clock x. The a-transitions in the location p either stay there and reset the clock x; or if the clock x is less than 1, the a-transition brings the automaton from p to q. The state q is a self-loop that the only transition is always available. The region automaton of the TA has eight states as it is shown in Figure 7.2. The d-transitions abstract away the exact values of delays. For instance, from the state (p, 0 < x < 1) the d-transition is directed to (p, x = 1) and from there, an a-transition is directed to (p, x = 0). However, we can see that for each state (p, x) with 0 < x < 1 in the TA, the exact value of delay that allows the transition p x≥1,a,x:=0

------→ p to be fired and moves the TA to the state (p, 0) is different from delays for the other states (p, x ′ ) with x ̸ = x ′ . ▹ Definition 7.3 (Synchronizing and location-synchronizing words for TAs). Given a complete TA A = ⟨L, C, E⟩ over the alphabet A and with the semantic (the labeled transition system) !A" = ⟨Q, R⟩, a timed word w is synchronizing if post(Q, w) is a singleton, and it is location-synchronizing if loc(post(Q, w)) is a singleton.

Thus a synchronizing word can be read from every state and bring the TA to a single state, and a location-synchronizing word brings the TA to a (set of states where all agree on a) single location with possibly different clock valuations. A TA is (location-)synchronizing if there exists some (location-)synchronizing word for it. Decision problem(s). The (location-)synchronizing problem asks, given a TA A, whether it is (location-)synchronizing.

For instance, consider the TA described in Example 7.1. We have infinitely many states to synchronize using the letter a and quantitative delays d(t) (t ∈ R ≥0 ). One can verify that the timed word d(3) • a 3 • d(1) • a 3 synchronizes the TA into the state (ℓ 3 , 0). Note that a synchronizing word, in general, is location-synchronizing too. However, in this example, since the a-transition in the location ℓ 3 is always available and always resets the clock x (ℓ 3 a,x:=0 ---→ ℓ 3 ), concatenating one more a at the end of each location-synchronizing word gives a synchronizing word, and thus synchronization and location-synchronization coincide.

In following, Example 7.3 illustrates a TA where the region equivalence is not sound to find a synchronizing word: the region automata is synchronizing while the TA has no synchronizing word. This unsoundness is due to the fact that region equivalence abstracts away the exact value of the clocks (as explained in Example 7.2), while synchronizing needs to keep track of them.

Example 7.3. Consider the TA described in Example 7.2. Since the a-transition in the location q never reset the clock x, so two runs starting from two states (q, v 1 ) and (q, v 2 ) where v 1 (x) ̸ = v 2 (x) are never able to end up in the same state. The automaton thus has no synchronizing word whereas the region automata is synchronizing by the word a

▹

There are simple examples showing that corner point abstraction, another known abstraction in TAs [START_REF] Bouyer | Optimal infinite scheduling for multi-priced timed automata[END_REF], is not sound to find synchronizing words in TAs too.

Synchronization in deterministic TAs

In this section, we prove that deciding whether there exists a synchronizing word for a given complete deterministic TA, is PSPACE-complete. To establish the membership in ! Notice that Remark 10 is a special property of the state L ℓ , and in general: elapsing the same delay from two region-equivalent valuations may lead to non-equivalent valuations.

Remark 11 is technical and provides the length and granularity of timed words that are considered when solving reachability problem in TAs.

Remark 11. For all locations ℓ ∈ L, let r ∈ R where L ℓ = (ℓ, r) in the region automaton of A. For all locations ℓ ′ ∈ L and regions r ′ ∈ R such that (ℓ ′ , r ′ ) is reachable from the state (ℓ, r) in the region automaton, there exists a short timed word w of length at most

Since the path ρ is simple (there is no cycles), it has size less than the number of states in the region automaton, namely n ≤ |L| × |R|. Let v ∈ r be a valuation in the region r, then (ℓ, v) ∈ L ℓ . We denote the sequence of letters read along the run ρ with a 0 • a 1 • • • a m where a i ∈ A for all 0 ≤ i ≤ m, and m ≤ n. Considering the timestamps t i (for all 0 ≤ i ≤ m) and letting t -1 = 0, we define the timed word

) and let b 2i+1 = a i . The guards that have to be satisfied along the path ρ entail conditions of the form t nt m ∼ c, which defines a convex zone of possible timestamps. This zone has at most |ρ| integer vertices (which may not belong to the zone itself, but only to its closure). The center of these vertices belongs to the zone, and has the expected granularity, which proves the result.

!

Lemma 7.1. All synchronizing deterministic TAs have a short finitely-synchronizing word.

Proof. Let A = ⟨L, C, E⟩ be a complete deterministic TA with the maximal constant M appearing in the guards in absolute value. Assume that the TA A has a synchronizing word, we build a short finitely-synchronizing word w f for A. The built word has a key property: for all clocks x ∈ C, irrespective of the starting state, the run over w f takes some transition resetting x. We first argue that for all clocks x ∈ C, from all states with the clock valuations v(x) ̸ = 0 not equal to zero, there exists a reachable x-resetting transition. Towards contradiction, assume that there exist some state (ℓ, v) and clock x such that x will never be reset along any run from (ℓ, v). Runs starting from states with the same location ℓ but different clock valuations, say (ℓ, v ′ ) with v ′ (x) ̸ = v(x), over a synchronizing word w, may either (1) reset x, and thus the final values of x on two runs from (ℓ, v) and (ℓ, v ′ ) are different, or (2) not reset x, so that the difference between v(x) and v ′ (x) is preserved along the runs over w. Both cases give contradiction, and thus for all clocks x ∈ C, from all states with v(x) ̸ = 0, there exists a reachable x-resetting transition.

Let ℓ ∈ L be some location and x ∈ C be some clock. Let time word w ℓ,x be a word built by applying the argument presented above to an arbitrary state q of L ℓ and the clock x.

Lemma 7.5. The (location-)synchronizing problem in deterministic TAs is PSPACE-hard.

Proof. The proof is by a reduction from the reachability problem in TA, which is known to be PSPACE-complete [START_REF] Alur | A theory of timed automata[END_REF].

Given a deterministic TA A = ⟨L, C, E⟩ (without loss of generality, we assume that A is complete) defined over a finite alphabet A and equipped with two locations ℓ i and ℓ f , we construct another TA A ′ such that there is some clock valuation v such that there exists a run in A starting from (ℓ i , 0) reaching the state (ℓ f , v) if and only if the automaton A ′ has a (location-)synchronizing word.

The TA 7.3. All transitions in A are copied to A ′ except the transitions in the location ℓ f . The following transitions are added, that are always available and reset all the clocks, -an a-transition in ℓ f for all letters a ∈ A ∪ {#} which is a self-loop:

-an a-transition from the new location ℓ 0 to ℓ i for all letters a ∈ A ∪ {#}:

-a #-transition in ℓ i which is a self-loop:

-from all locations ℓ ∈ L ′ \ {ℓ 0 , ℓ i , ℓ f } except ℓ 0 , ℓ i and ℓ f , a #-transition to ℓ 0 :

(ℓ, true, #, C, ℓ 0 ).

The resulting automaton A ′ is deterministic and complete. We establish the correctness of the reduction as follows. First assume that A ′ has a synchronizing word w. We prove that there exists some clock valuation v such that A has a run from (ℓ i , 0) to (ℓ f , v). On reading the synchronizing word w by the automaton A ′ , the final location necessarily is (ℓ f , v) where v is some clock valuation, as ℓ f has no outgoing transition. Thus, the run starting in (ℓ i , 0) over this word w also reaches (ℓ f , v); however this run might possibly take some #-transitions, which are not valid transitions in A. Consider the shortest subrun going from (ℓ i , 0) to (ℓ f , v). That run does not contain any #-transition, since any such transition either corresponds to the self-loop on ℓ f or ℓ i , or leads to ℓ 0 and will be followed by another visit to (ℓ i , 0), both options contradicting the fact that we have considered the shortest subrun from

Second, assume that there exists a clock valuation v such that there is a run in A from (ℓ i , 0) to (ℓ f , v) over some timed word w. Then the word # • # • w • # necessarily synchronizes the whole state space of the TA A ′ into the state (ℓ f , 0): indeed, -since there are only self-loops in the location ℓ f , we have post((ℓ f , v ′ ), w) = (ℓ f , 0) for all clock valuations v ′ . -moreover for all clock valuations v ′ , from (ℓ i , v ′ ) reading two times # brings the automaton into (ℓ i , 0), and then following the word w the state (ℓ f , v) is reached.

The last # resets all the clocks and the automaton end up in (ℓ f , 0).

-for all clock valuations v ′ , from (ℓ 0 , v ′ ) the automaton end up in (ℓ i , 0) by taking the #-transitions. Next, inputting the word w • # synchronizes the automaton into (ℓ f , 0) as discussed in the former case. -for all clock valuations v ′ , from (ℓ, v) where ℓ / ∈ {ℓ 0 , ℓ i , ℓ f }, the first #-transition leads to (ℓ 0 , 0), and the second one goes to (ℓ i , 0). Inputting the word w •# afterward synchronizes the automaton into (ℓ f , 0) as discussed in the former case. The proof is complete and the PSPACE-hardness follows. Note that the same reduction is correct to establish the result for the location-synchronizing problem: in fact since all transitions in ℓ f (the only possible location to synchronize) always reset all clocks. Therefore, A ′ is synchronizing if and only if it is location-synchronizing.

!

From previous Lemmas, the following Theorem 7.1 is obtained.

Theorem 7.1. The synchronizing and location-synchronizing problems in deterministic TAs are PSPACE-complete.

Synchronization in non-deterministic TAs

We now show the undecidability of the synchronizing problem for nondeterministic TAs. The proof is by a reduction from the non-universality problem of timed language for non-deterministic TAs, which is known to be undecidable [START_REF] Alur | A theory of timed automata[END_REF].

Theorem 7.2. The (location-)synchronizing problem in non-deterministic TAs is undecidable.

Proof. Let A = ⟨L, C, E⟩ be a non-deterministic TA over an alphabet A equipped with an initial location ℓ i and a set F of accepting locations (w.l.o.g. we assume that A is complete). From A, we construct another TA A ′ over A ′ such that the language of A is not universal if and only if A ′ has a location-synchronizing word.

The construction of the TA A ′ = ⟨L ′ , C, E ′ ⟩ defined over a new alphabet A ′ is as follows (See Figure 7.4). There are two new states s and d and the alphabet is augmented with two new letters # and ⋆. Formally, L ′ = L∪{d, s} (assuming d, s / ∈ L) and A ′ = A∪{#, ⋆}. All transitions in A are copied to A ′ and the following new transitions are added.

-Location s is a sink location, carrying a self-loop for all letters a ∈ A ∪ {#, ⋆}.

Location d is a departure location: it also carries a self-loop for all letters, except for ⋆, which leads to ℓ i . All those transitions reset all the clocks. -From all locations ℓ ∈ L, there is a ⋆-transition to ℓ i along which all the clocks are reset. From the states not in F, there is a #-transition to s along which all clocks are reset. From the states in F, the #-transition goes to d resetting all clocks.
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Synchronization in Weighted Automata

First sight. In this chapter, we introduce variants of synchronizing words for weighted automata. Weighted automata are finite automata where transitions are augmented with some weights that are mostly considered as the resource (or energy) consumptions. We define safe synchronization for weighted automata where the aim is to synchronize the set of safe states while forbidding the automaton to visit states outside the safetyset during synchronization. One of the challenges to synchronize weighted automata is having a possibly infinite set of states to synchronize, as it is for timed automata. We focus on deciding the existence of different variants of synchronizing words for weighted automata (with safety conditions). For deterministic weighted automata, the synchronizing problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under general safety constraints. The results presented in this chapter are summarized in 

Preliminaries

In this section, we provide the definitions of weighted automata, Minsky machine and vector addition systems with states.

Weighted automata

We present the definition of weighted automata as an instance of a labeled transition system with possibly infinite states.

Let us first recall the definition of labeled transition systems, which we have provided in Definition 7.1. A labeled transition system over an alphabet Γ is a pair ⟨Q, R⟩ where Q is a set of states and R ⊆ Q×Γ×Q is a transition relation. The state space Q = L×X consists of a finite set L of locations and a possibly infinite set X of quantitative values. Given a state q = (ℓ, x), let loc(q) = ℓ be the location of q, and for a ∈ Γ, let post(q, a) = {q ′ | (q, a, q ′ ) ∈ R}. For P ⊆ Q, let loc(P ) = {loc(q) | q ∈ P } and post(P, a) = + q∈P post(q, a). For nonempty words w ∈ Γ + , define inductively post(q, aw) = post(post(q, a), w). A run (or path) in a labeled transition system ⟨Q, R⟩ over Γ is a finite sequence q 0 q 1 • • • q n such that there exists a word a 0 a 1 • • • a n-1 ∈ Γ * for which (q i , a i , q i+1 ) ∈ R for all 0 ≤ i < n.

In the sequel, we consider labeled transition systems induced by weighted automata.

Definition 8.1 (Weighted automata). A weighted automaton (WA) over a finite alphabet A is a tuple A = ⟨L, E⟩ consisting of a finite set L of locations, and a set

When E is clear from the context, we denote by ℓ a:z -→ ℓ ′ the edge (ℓ, a, z, ℓ ′ ) ∈ E, which represents a transition on letter a from location ℓ to ℓ ′ with weight z. We view the weights as the resource (or energy) consumption of the system.

The semantics of a WA A = ⟨L, E⟩ is the labeled transition system !A" = ⟨Q, R⟩ on the alphabet A where Q ⊆ L × Z and ((ℓ, e), a, (ℓ ′ , e ′ )) ∈ R if (ℓ, a, e ′e, ℓ ′ ) ∈ E. In a state (ℓ, e), we call e the energy level. The WA A is deterministic if for all edges (ℓ, a, z 1 , ℓ 1 ),

In order to location-synchronize the automaton, we have to deal with infinitely many states (ℓ i , e) where e ∈ R ≥0 . The only way to location-synchronize some state (ℓ 3 , e) with states (ℓ, e ′ ) involving other locations ℓ ̸ = ℓ 3 is to input b. However, if b is provided initially, this will drop the energy level by -10 violating the non-negative safety condition for (ℓ 3 , 0). Fortunately, the letter a recharges the energy level at ℓ 3 and has no negative effect at other locations. After reading a 10 • b, all states are location-synchronized in ℓ 0 and ℓ 1 with energy at least 0. Next, a d-transition can location-synchronize states involving ℓ 0 and ℓ 1 , but it drops the energy level at ℓ 1 by -2. Again, we try to find a word that recharges the energy at ℓ 1 . Supplying c • b twice makes a d-transition safe to be taken to location-synchronize safe states involving ℓ 0 and ℓ 1 . So, the word a 10 • b • (c • b) 2 • d location-synchronizes the automaton with non-negative safety condition.

▹

As mentioned, it is impossible to synchronize WAs in the absence of a safety condition. In the presence of safety conditions, synchronization is also most-often impossible, for the same reason: the only exception is when safety condition is punctual. A punctual safety condition assigns at most one safe energy level to each location, thus there would not be two safe states (ℓ, e 1 ) and (ℓ, e 2 ) with the same location ℓ but different energy levels e 1 ̸ = e 2 . The synchronization with a punctual safety condition in WAs is equivalent to synchronizing partial (not-complete) finite-state automata, which is PSPACE-complete [START_REF] Martyugin | Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA[END_REF]. We thus focus on location-synchronizing problem with safety conditions; we establish complexity bounds for this problem for deterministic WAs. The location-synchronizing problem with safety conditions for non-deterministic WAs is left open, however we provide an example to explain why the used techniques for deterministic WA cannot be directly applied to the non-deterministic WAs (See Example 8.4).

Location-synchronization in deterministic WAs

We first solve the location-synchronizing problem for deterministic WAs with lowerbounded safety condition, which are safety conditions that assign conditions of the form e ≥ n with n ∈ Z, to all locations. We provide tight complexity bounds for the locationsynchronizing problem for deterministic WAs with lower-bounded safety condition. Next, we study this problem with general safety condition (with no constraints on the condition).

Location-synchronization under lower-bounded safety condition

In this subsection we assume that the safety condition is lower bounded where all the locations have some condition of the form e ≥ n with n ∈ Z. This is equivalent to having only safety conditions of the form e ≥ 0: it suffices to add -n to the weight of all incoming transitions and to add +n to the weight of outgoing transitions. As an instance, consider the WA A described in Example 8.1 and the transition ℓ 3 b:-10 ---→ ℓ 1 . Let the safety constraint for ℓ 1 be e ≥ 3, and for ℓ 3 be e ≥ -7. We change the weight of the transition to -20 when considering energy condition for both locations.

Below, we thus study the location-synchronizing problem with safety conditions of the form e ≥ 0, which we call non-negative safety conditions or energy condition.

Lemma 8.1. The location-synchronizing problem under non-negative safety condition in WAs, is in PSPACE.

Proof. Let A = ⟨L, E⟩ be a complete deterministic WA over the alphabet A where Z is the maximum value appearing as weight in transitions, in absolute. Runs starting from two states (ℓ, e 1 ) and (ℓ, e 2 ) with same location ℓ but two different energy levels e 2 > e 1 , always go through the states involving the same locations and the energy levels preserving the difference e 2e 1 . Therefore, to decide whether A is location-synchronizing under non-negative safety condition, it suffices to check if there is a word that synchronizes all locations with the initial energy 0, into a single location. We show that deciding whether such word w exists is in PSPACE by providing an upper bound for the length of w.

Below, we assume that A has a location-synchronizing word. For all subsets S ⊆ L with cardinality m > 2, there is a word that synchronizes S into some strictly smaller set. To characterize the properties of such words, we consider the weighted digraph G m where m = |S|. The digraph G m is induced by the product between m copies of A, where all vertices with at least two identical locations, are replaced with a new vertex synch. All ingoing transitions to some vertice (ℓ 1 , . . . , ℓ m ) with at least two identical locations are redirected to synch. There is only a self-loop transition in synch. Formally, G m = ⟨V m , E m ⟩ is a weighted digraph where the set of vertices

includes all m-tuples of distinct locations and another vertex synch.

-For all pairs of vertices x, y ∈ V m , there is an edge from x = (ℓ 1 , . . . , ℓ m ) to y = (ℓ ′ 1 , . . . , ℓ ′ m ) with weight ⟨z 1 , . . . , z m ⟩ if there exists some letter a such that for all

-For all vertices x = (ℓ 1 , . . . , ℓ m ) ∈ V m , there is an edge from x to synch with weight ⟨z 1 , . . . , z m ⟩ if there exists some location ℓ and letter a such that for all 0 < i ≤ m we have ℓ i a:z i --→ ℓ. An edge with weight ⟨z 1 , . . . , z m ⟩ is non-negative (resp., zero-effect) if z i ≥ 0 for all dimensions 1 ≤ i < m (resp., z i = 0); and it is negative otherwise. A non-negative edge is positive if z i is positive for some dimension i. There is a one-to-one correspondence between a path x 0 x 1 • • • x n in G m and a group of m runs ρ 1 . . . ρ m in A such that all runs ρ i are in shape of ρ i = ℓ i 0 • • • ℓ i n where x j = (ℓ 1 j , . . . , ℓ m j ) for all 0 ≤ j ≤ n. A path is safe if all corresponding m runs ρ i starting from ℓ i 0 with energy level 0, always keep a non-negative energy level while going through all the locations ℓ i 1 • • • ℓ i n along the run. The following claim is a key to compute an upper bound for the length of locationsynchronizing words. Roughly speaking, it states that for all subsets S of locations, either there is a short word w that synchronizes S into a strictly smaller set, or there exists a to to an arbitrary value j by not considering the negative effect it may cause on the other run.

Let ℓ ′′ 1 and ℓ ′′ 2 be the locations reached from ℓ ′ 1 and ℓ ′ 2 , accordingly, after inputting the word w 2 • (w 3 ) j with j = Z |L| 2 . Let w 4 be a shortest synchronizing word for ℓ ′′ 1 and ℓ ′′ 2 in A by interpreting it as a DFA. We argue that the word w = w 0 • (w 1 ) i • w 2 • (w 3 ) j • w 4 is a location-synchronizing word for the subset S. By reading the word w 0 • (w 1 ) i , two states (ℓ 1 , 0) and (ℓ 2 , 0) go to (ℓ ′ 1 , e 1 + i) and (ℓ ′ 2 , e 2 ) where e 1 , e 2 ≥ 0. Since there is a high energy at ℓ ′ 1 , it can tolerate the negative effect caused after reading the word w 2 • (w 3 ) j . Next, reading w 2 • (w 3 ) j leads two states (ℓ ′ 1 , e 1 + i) and (ℓ ′ 2 , e 2 ) to the states (ℓ ′′ 1 , e 3 + j) and (ℓ ′′ 2 , e 4 + j) where e 3 , e 4 ≥ 0. Both states (ℓ ′′ 1 , e 3 + j) and (ℓ ′′ 2 , e 4 + j) can tolerate the word w 4 , and get synchronized while maintaining the energy level positive meaning that w is a location-synchronizing word for S. Hence, length(2) ≤ 4Z 2 |L| 6 and the base of the induction holds.

Inductive step. We prove the inductive step for n. Assume that for all k < n and all subsets S ′ of locations with cardinality k, the statement of the induction holds, meaning that there is a word w S ′ of size length(k) ≤ Z k |L| 3+k 2 that location-synchronizes the subset

synch, the step of the induction trivially holds. Otherwise by Claim 1, for one of the locations in S, say ℓ n , for all i > 0 there exists an i-recharging word w 0 • (w 1 ) i . A location-synchronizing word can start with a [Z • length(n -1)]-recharging word to accumulate at least Z • length(n -1) energy in the run starting from ℓ n . For all 0 < i ≤ n, let ℓ ′ i be the location reached from ℓ i after reading the [Z • length(n -1)]-recharging word. Then, the location-synchronizing word can be followed with a word w S ′ that location-synchronizing word

} because it has already accumulated enough energy at ℓ ′ n to tolerate the negative effect caused while synchronizing the other states, even if all taken transitions decrease the energy level of the run starting in ℓ ′ n by the maximum negative weight Z. Let the subset S ′ get synchronized in the location x, and y be the location reached from ℓ ′ n by reading w S ′ . At last, the location-synchronizing word must only synchronize x and y. Thus,

So, length(n) ≤ Z n |L| 3+n 2 and the induction holds. Thus A has a location-synchronizing word with length at most length(|L|). This concludes the proof of Claim 2.

Claim 2 proves that A has a location-synchronizing word if it has one of length at most Z |L| × |L| 3+|L| 2 . Since this value can be stored in polynomial space, an (N)PSPACE algorithm can decide whether the given WA A is location-synchronizing.

!

We use an intuitive reduction from synchronizing problem for partial finite automaton to establish the matching lower bound. WAs, is PSPACE-hard.

Proof. To show PSPACE-hardness, we use a reduction from synchronizing word problem for deterministic finite automata with partially defined transition function that is PSPACEcomplete [START_REF] Martyugin | Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA[END_REF].

From a partial finite state automaton N = ⟨Q, A, ∆⟩, we construct a WA A over the alphabet A such that N has a synchronizing word if and only if A has a locationsynchronizing word under an energy condition.

The construction of A = ⟨L, E⟩ is as follows.

-All defined transitions of N are augmented with the weight 0 in A: for all states q ∈ Q and letters a ∈ A, let q a:0 -→ q ′ if ∆(q, a) = q ′ in the automaton N . -To complete A, all non-defined transitions are added as self-loops with weight -1: for all states q ∈ Q and letters a ∈ A, let q a:-1 --→ q if the a-transition in q is not defined in N . Since the safety condition is non-negative in all locations, none of the transitions with weight -1 are allowed to be used along synchronization in A. So N has a synchronizing word if and only if A has a location-synchronizing word.

!

From previous Lemmas and arguments, Theorem 8.1 follows.

Theorem 8.1. The location-synchronizing problem under lower-bounded safety conditions in WAs, is PSPACE-complete.

We generalize the location-synchronizing problem to location-synchronization from a subset, where the aim is to synchronize a given subset of locations. This variant is used to decide location-synchronization under general safety condition. Given a subset S ⊆ L of locations, we prove Lemma 8.3 and Lemma 8.4 using reductions to and from the coverability problem in vector-addition systems.

Lemma 8.3. The location-synchronizing problem from a subset S of locations under nonnegative safety conditions in WAs, is decidable in 2-EXPSPACE.

Proof. We present a construction to reduce location-synchronizing problem from a subset S of locations under non-negative safety conditions in WAs, to the coverability problem in vector addition systems. The construction is exponential in the size of the WA, and by the fact that the coverability problem is in EXPSPACE, the 2-EXPSPACE membership of location-synchronizing problem from a subset S of locations under non-negative safety conditions follows. -→ ℓ 2 is avoidable.

Location-synchronization under lower-bounded or trivial safety conditions.

Let the safety condition Safe assign to each location of L either an interval of the form [n, +∞) or true. Accordingly, we partition the set L of locations into two classes L , → and L ↔ such that L ↔ is the set of all locations with true safety constraints, and L , → is the set of all locations with a lower-bounded safety constraints. A back-edge is a transition ℓ → ℓ ′ that goes from some location ℓ ∈ L ↔ with true safety constraints to some location ℓ ′ ∈ L , → with lower-bounded safety constraints. An important observation is that while locationsynchronizing, all runs starting from some location ℓ ∈ L ↔ with true safety constraints can never pass through some location ℓ ′ ∈ L , → ; otherwise, the runs starting in some state (ℓ, e) where e < 0 is a sufficiently small integer, even after taking several transitions with positive weights to increase the energy level, arrive in the location ℓ ′ with negative energy level violating the safety condition. Those back-edge transitions though might be fired along the runs starting from locations with lower-bounded safety constraints. See Example 8.3.

Example 8.3. Consider the WA drawn in Figure 8.3 with four locations and two letters. All transitions have weight 0, and the WA is deterministic. From the state ℓ 0 , all transitions bring the WA into ℓ 1 . The a-transition in the state ℓ 1 goes to ℓ 3 ; and the b-transition goes to ℓ 2 . The b-transition leaves ℓ 2 and moves to ℓ 3 while the a-transition stays there. The state ℓ 3 is absorbing. The safety condition is non-negative in ℓ 0 and ℓ 2 , and is trivial in ℓ 1 and ℓ 3 : L , → = {ℓ 0 , ℓ 2 } and L ↔ = {ℓ 1 , ℓ 3 }. Thus, the transition ℓ 1 b:0 -→ ℓ 2 is a back-edge. but we are only interested to location-synchronize it from two locations S = {ℓ 0 , ℓ 1 }. The safety condition for those two locations is non-negative L , → = S, however the safety constraint at ℓ 2 is trivial. Obviously, it is possible to location-synchronize from S, and this would not be possible without taking the back-edge ℓ 2 a:0 -→ ℓ 1 . Lemma 8.5 also fails for non-deterministic WAs. We provides a non-deterministic WA in Example 8.4 such that for all location-synchronizing word, a back-edge transition must be fired. --→ (ℓ 1 , -1) violating the non-negative safety condition at the location ℓ 1 , -cannot be c because (ℓ 1 , 0) c:-1 --→ (ℓ 0 , -1) violating the non-negative safety condition at the location ℓ 0 . Thus, w starts with the letter a (See Figure 8.5.b.). Inputting a shrinks the safe set

Minsky machine -From the stay location s, n 0 and n 1 where the n-th instruction is halt, the #-transition goes to synch with weight 0, but from all other locations the #-transition goes to the location sink. -From all locations in B j , the ⋆-transition leads to synch except in locations f i,j if the instruction i is a guarded decrement on counter c j . From these locations, the ⋆-transition goes to location 1 j (where j ∈ {0, 1}). The safety condition for synch and sink is trivial, and for all locations f i,j in B j , it is of the form e = 0 if the instruction i is a guarded decrement on the counter c j (for 0 < i < n and j ∈ {0, 1}). For all other locations, the safety condition is non-negative. The subset S includes all locations except the stay and sink locations s, sink.

To establish the correctness of the reduction, first assume that Minsky machine halts. Thus, there is a sequence of m configurations starting from (1, (0, 0)) and reaching halt: 

an increment or a guarded decrement on c j when e j > 0 in the valuation v i = (e 0 , e 1 ), w i = b • b if instruction i is a guarded decrement on c j when e j = 0 in v i = (e 0 , e 1 ). We see that w is a location-synchronizing word for A.

Second, assume that A has a location-synchronizing word w. Since in the departure location d the only letter that does not violate the safety condition is ⋆, w must start with the letter ⋆. Reading ⋆ shrinks the set S into the locations 1 0 , 1 1 with energy level 0, s with all non-negative energy levels, and synch with all integer energy levels:

Since synch is absorbing, thus A is location-synchronized in synch; this location is only reachable by # and ⋆. On the other hand, due to the safety condition at the stay location s, inputting more ⋆'s is impossible. Thus, w must have some occurrence of # to locationsynchronize the set S 1 into synch. Let w ′ = a 1 • a 2 • • • a n be the subword of w after the first ⋆ and up to the first #, w ′ thus has neither # nor ⋆. Below, we show that there is a sequence of configurations such that the Minsky machine halts by operating this sequence. Consider (1, (0, 0)) to be the first configuration of the Minsky machine. For all 1 < k ≤ n where n is the length of w ′ : 1. let (ℓ, e j ) = post((1 j , 0), a 1 • • • a k ) in the automaton B j for both j = {1, 2}, 2. if ℓ is of the form f i,j skip the next step, 3. define the next configuration (ℓ, v) of the Minsky machine such that v = (e 1 , e 2 ).

We know that after the subword w ′ , there is an immediate # in the locationsynchronizing word w. The #-transitions in all locations of B 1 and B 2 except halt locations n 1 and n 2 , bring A to the location sink (where there is no way to be synchronized with synch). Thus, after reading w ′ both automaton must be in their halt; otherwise w is not a location-synchronizing word. It implies that the constructed sequence of configurations for Minsky machine halts. Moreover, that is a valid configuration thanks to the zero safety constraints at the locations simulating the guarded decrement instructions and non-negative safety constraints in other locations of B 0 and B 1 .

!

In the absence of back-edges, we can get rid of the bounded safety constraints by explicitly encoding the energy values in the locations at the expense of an exponential blowup. We thus assign non-negative safety constraints to the encoded location and reduce to Lemma 8.6.

Lemma 8.8. Given a WA A with no back-edges, the location-synchronizing problem from a subset S of locations under safety condition with bounded, lower-bounded or trivial constraints is decidable in 3-EXPSPACE, and it is EXPSPACE-hard.

Proof. Let the WA A = ⟨L, E⟩ and the safety condition Safe be such that the set of locations are partitioned as follows L = L , -! ∪ L , → ∪ L ↔ . Without loss of generality, assume that L ↔ ⊆ S. We build another WA A ′ in which the locations of L , -! are augmented with the explicit value of the energy levels.

The construction of A ′ = ⟨L ′ , E ′ ⟩ is as follows. The set of locations

contains all locations in L , → ∪ L ↔ and a location ⟨ℓ, e⟩ for all pairs of locations ℓ ∈ L , -! and possible safe energy level for that location ℓ. There are following transitions in A ′ : -for all pairs ⟨ℓ, e⟩, ⟨ℓ ′ , e + z⟩ ∈ L ′ , there is a transition (⟨ℓ, e⟩, a, 0, ⟨ℓ ′ , e + z⟩) ∈ E ′ from ⟨ℓ, e⟩ to ⟨ℓ ′ , e + z⟩ with weight 0 in A ′ if (ℓ, a, z, ℓ ′ ) ∈ E, -for all ⟨ℓ, e⟩ ∈ L ′ and ℓ ′ ∈ L , → ∪ L ↔ , there is a transition (⟨ℓ, e⟩, a, e + z, ℓ ′ ) ∈ E ′ from ⟨ℓ, e⟩ to ℓ ′ with weight e + z in A ′ if (ℓ, a, z, ℓ ′ ) ∈ E, -for all pairs of locations ℓ, ℓ ′ ∈ L , → ∪ L ↔ , there is a transition (ℓ, a, z, ℓ ′ ) ∈ E ′ in A ′ if (ℓ, a, z, ℓ ′ ) ∈ E. We then define the safety condition Safe ′ over L ′ by letting Safe ′ ((ℓ, e)) = [0, +∞), and Safe ′ (ℓ) = Safe(ℓ) for all ℓ ∈ L , → ∪ L ↔ . Finally, given a set of locations S ⊆ L containing L ↔ , we let

Assuming that L , → ∪L ↔ ̸ = ∅, we prove that a location-synchronizing word in A ′ from S ′ under safety condition Safe ′ is also a location-synchronizing word in A from S under safety condition Safe, and vice-versa.

First, assume that A ′ has a location-synchronizing word w. Let ℓ f ∈ L ′ be the location where A ′ is synchronized in from S ′ : ℓ f = loc(post(S ′ , w)). Consider a state (ℓ, e) of A where ℓ ∈ S. There are two cases: (i) the location ℓ ∈ L , → ∪ L ↔ has lower-bounded or trivial safety constraint, then (ℓ, e) is a valid state in A ′ . Moreover, all states and transitions visited along the run of w over A ′ are valid states and transitions in A too. Thus, inputting w from (ℓ, e) in A brings the automaton in the same location ℓ f . (ii) the location ℓ ∈ L , -! has bounded safety constraint. The run of A over the word w from the state (ℓ, e) is mimicked by run of A ′ but starting from (⟨ℓ, e⟩, 0). As a consequence, this run ends in ℓ f too.

The converse implication is similar. Assume that there is a location-synchronizing word w in A that merges all runs starting from S into the same location ℓ f . We show that w is location-synchronizing in A ′ too. For all locations in S ∩ (L , → ∪ L ↔ ), as well as for the states of the form ((ℓ, e), 0), it is easy to see that the run of A over w is mimicked with the run of A ′ . Moreover, since there are only lower-bound or trivial constraints in Safe ′ condition for A ′ , it is the case from states of the form ((ℓ, e), f ) with f > 0 too.

We then apply the methods used in Lemma 8.7 to the WA A ′ . Since the construction of A ′ involves an exponential blowup in the number of locations, we end up with a 3-EXPSPACE algorithm. The EXPSPACE lower bound proved in Lemma 8.4 still applies here.

!

Now, we consider general safety conditions where the constraints can be bounded, lower-bounded, upper-bounded or trivial constraints. The set L of locations is partitioned into L , -! , L , → , L ←! and L ↔ where locations in L ←! have upper-bounded safety constraints such as e ≤ n where n ∈ Z. In this setting, transitions between locations in L ←! and locations in both of L , → and L ↔ are taken as back-edge too.

Lemma 8.9. The location-synchronizing problem in WAs under a general safety condition is decidable in 3-EXPSPACE.

Proof. Let A = ⟨L, E⟩ be a WA over the alphabet A, and let Safe be a general safety condition. Considering the safety condition, we partition the set of locations into L = L , -! ∪ L , → ∪ L ←! ∪ L ↔ . Using similar arguments as presented in the proof of Lemma 8.5, we remove all back-edges. Since all back-edges are removed, for all words w, starting from some location ℓ ∈ L , -! the run over w either visit locations in L ←! or location in L , → . We thus can turn the upper-bound constraints to the lower-bound constraints by negating the weights of transitions in all locations ℓ ∈ L ←! with such upper-bound constraints.

The following non-deterministic algorithm decides whether the WA A has a locationsynchronizing word w under Safe. It first non-deterministically partitions L , -! into two sets L ←! , -! and L , →

, -! such that the locations from which the run over w only visits location in L ←! are guessed and are contained in L ←! , -! , and the locations from which the run over w only visits location in L , → are contained in L , → , -! . The algorithm next builds another WA A ′ = ⟨L ′ , E ′ ⟩ from A and Safe as follows. The set of locations is

and -for all x ∈ {-1, 1}, the transition (⟨ℓ, x⟩, a, x × z, ⟨ℓ ′ , x⟩) ∈ E ′ is in A ′ if and only if (ℓ, a, z, ℓ ′ ) ∈ E;

-for all locations ℓ ∈ L , -! ∪ L ←! and ℓ ′ ∈ L ↔ , the transition (⟨ℓ, -1⟩, a, -z, ⟨ℓ ′ , 1⟩) ∈ E ′ is in A ′ if and only if (ℓ, a, z, ℓ ′ ) is in E. Now we change the safety conditions and define Safe ′ such that e ∈ Safe ′ (⟨ℓ, y⟩) if and only if ye ∈ Safe(ℓ). Notice that Safe ′ then only has bounded, lower-bounded or trivial safety constraints.

This construction has the following property: a word w is a location-synchronizing word in A with safety constraint Safe if and only if it is also a location-synchronizing word in A ′ from the subset S = (L ←! , -! ∪ L ←! ) × {-1} ∪ (L , → , -! ∪ L , → ∪ L ↔ ) × {1} with safety constraint Safe ′ . Both implications are straightforwardly proven, and since A ′ has no back-edges the 3-EXPSPACE result follows.

!

From previous Lemmas and arguments, Theorem 8.4, stating the complexity bounds of location-synchronizing word in WAs under a general safety condition, follows. Regarding the PSPACE-hardness result, the reduction from partial transition function used in Lemma 8.2 can be adapted to use lower-bounded and interval safety constraint, which entails the result.

Theorem 8.4. The location-synchronizing problem in WAs under a general safety condition is decidable in 3-EXPSPACE, and it is PSPACE-hard.