Anaïs, Petru, Sri, Lorenzo Anna Pierre

Dominik, Sagnik, Razanne, Allyx, Tung, Martin, Jerôme Andjela

Keywords: Langages réguliers, Séparation, Logiques, Automates, Monoïdes, Langages testables par morceaux, Langages non-ambigus, Langages localement testables, Langages localement testables à seuil, Langages algébriques Regular languages, Separation, Logics, Automata, Monoids, Piecewise testable languages, Unambiguous languages, Locally testable languages, Locally threshold testable

Une approche combinatoire du problème de séparation pour les langages réguliers Le problème de séparation pour une classe de langages S est le suivant : étant donnés deux langages L 1 et L 2 , existe-t-il un langage appartenant à S, qui contient L 1 , en étant disjoint de L 2 ?

Si les langages à séparer sont des langages réguliers, le problème de séparation pour la classe S est plus général que le problème de l'appartenance à cette classe, et nous fournit des informations plus détaillées sur la classe. Ce problème de séparation apparaît dans un contexte algébrique sous la forme des parties ponctuelles, et dans un contexte profini sous la forme d'un problème de séparation topologique. Pour quelques classes de langages spécifiques, ce problème a été étudié en utilisant des méthodes profondes de la théorie des semigroupes profinis.

Dans cette thèse, on s'intéresse, dans un premier temps, à la décidabilité de ce problème pour plusieurs sous-classes des langages réguliers. Dans un second temps, on s'intéresse à obtenir un langage séparateur, s'il existe, ainsi qu'à la complexité de ces problèmes.

Nous établissons une approche générique pour prouver que le problème de séparation est décidable pour une classe de langages donnée. En utilisant cette approche, nous obtenons la décidabilité du problème de séparation pour les langages testables par morceaux, les langages non-ambigus, les langages localement testables, et les langages localement testables à seuil. Ces classes correspondent à des fragments de la logique du premier ordre, et sont parmi les classes de langages réguliers les plus étudiées. De plus, cette approche donne une description d'un langage séparateur, pourvu qu'il existe.

la quantification des ensembles n'est pas autorisée. Cette logique étant encore compliquée, il est naturel aussi d'étudier des restrictions de FO(<). Par exemple, les fragments obtenus en limitant le nombre de variables permises, ou en limitant l'alternance des quantificateurs (c'est-à-dire les fragments qu'on trouve dans la quantifier alternation hierarchy), ou encore en exigeant des propriétés combinatoires sur les langages.

Il y a beaucoup de fragments naturels et intéressants de MSO. Pour chaque fragment, on aimerait bien avoir une caractérisation décidable. Bien que le théorème de Büchi fournisse une caractérisation des langages définissables dans MSO d'une façon directe, il se trouve que pour résoudre les problèmes de l'appartenance à ces fragments, on se sert toujours de l'algèbre (plus précisément du monoïde syntaxique) comme intermédiaire. Il est important de noter que, pour un langage régulier, son monoïde syntaxique est une abstraction finie du langage, qu'on sait calculer à partir du langage.

Un des premiers résultats dans cette ligne de recherche a été le résultat de Schützenberger [START_REF] Schützenberger | On finite monoids having only trivial subgroups[END_REF] qui dit qu'un langage régulier est un langage sans étoile si et seulement si le monoïde syntaxique de ce langage est apériodique (c'est-à-dire pour chaque s ∈ M , il existe n ∈ N tel que s n+1 = s n). Cette preuve est constructive : à partir d'un langage régulier ayant un monoïde syntaxique apériodique, on obtient une expression sans étoile. De plus, McNaughton et Papert [START_REF] Mcnaughton | Counter-free automata[END_REF] ont montré que les langages sans étoile sont précisément les langages définissables dans FO(<). Cette preuve est également constructive. Ces deux résultats ensemble résolvent le problème de l'appartenance à FO(<).

Ensuite, le problème de l'appartenance à la classe de langages testables par morceaux a été résolu par Simon [START_REF] Simon | Piecewise testable events[END_REF]. Cette classe se trouve dans la quantifier altercation hierarchy sous la forme de la classe BΣ 1 . La classe de langages testables par morceaux est donc parmi les classes les plus bas de la hiérarchie, mais elle pose déjà des défis. Simon a trouvé la caractérisation algébrique suivante de cette classe : un langage est testable par morceaux si et seulement si son monoïde syntaxique est J -trivial (c'est à dire pour tout s, m ∈ M , si M sM = M tM , alors s = t). Vu que les monoïdes avec lesquels nous travaillons sont finis, ceci est une propriété décidable. Stern [START_REF] Stern | Complexity of some problems from the theory of automata[END_REF] a traduit cette caractérisation algébrique à une caractérisation des automates minimaux, ce qui donne une approche pour tester si un langage est testable par morceaux en temps polynomial.

La connexion entre les langages réguliers et les monoïdes finis a été développée plus profondément par Eilenberg [START_REF] Eilenberg | Automata, languages, and machines[END_REF]. Le théorème d'Eilenberg donne un cadre général aux résultats précédents : ce théorème dit qu'il existe une correspondance bijective entre les variétés de langages (ensembles de langages réguliers fermés par les opérations booléennes, image homomorphe inverse et quotient gauche et quotient droit) et les variétés de monoïdes finis (ensembles de monoïdes finis fermés par sous-monoïde, image homomorphe et produit direct fini). De plus, le théorème de Reiterman [START_REF] Reiterman | The Birkhoff theorem for finite algebras[END_REF] dit que toute variété de monoïdes finis peut être définie par un ensemble d'identités (qui sont des équations formelles entre des mots profinis).

Cette connexion entre les langages réguliers et l'algèbre a été très fructueuse. Néanmoins, le problème de l'appartenance semble être trop restrictif : il y a des problèmes de l'appertenance ouvert depuis longtemps. De plus, en n'étudiant que le problème de l'appartenance, on ignore certaines propriétés pertinentes de la classe. Par exemple, un petit calcul montre que les langages (aa) * et (bb) + ne sont pas définissables dans FO(<). Mais, on observe tout de x suite que FO(<) est capable de percevoir que ces langages sont des langages disjoints. La formule ∀x.a(x) en est un témoin (la formule étant vraie pour tous les mots de (aa) * , et fausse pour tous les mots de (bb) +). Cette information n'est pas capturée par le problème de l'appartenance, ce qui nous mène à regarder un problème plus général.

Le problème de séparation

Le problème de séparation est une généralisation naturelle du problème de l'appartenance, qui est formulée comme suit :

Le problème de séparation Données :

Deux langages L 1 et L 2 , ainsi qu'une classe S.

Question :

Existe-t-il un langage appartenant à S, qui contient L 1 , en étant disjoint de L 2 ? Si les langages à séparer sont des langages réguliers, le problème de séparation pour la classe S est plus général que le problème de l'appartenance à cette classe (car L 1 appartient à S si et seulement si il existe un langage appartenant à S, qui contient L 1 , en étant disjoint de A * \L 1), et nous fournit des informations plus détaillées sur la classe.

L 1 L 2 A * L ∈ S
Ce problème de séparation apparaît dans un contexte algébrique sous la forme des parties ponctuelles, et dans un contexte profini sous la forme d'un problème de séparation topologique. Il a été montré par Almeida [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] que ces problèmes sont équivalents à notre problème de séparation. Pour quelques classes de langages spécifiques, ce problème a été étudié en utilisant des méthodes profondes de la théorie des semigroupes profinis. Néanmoins, en n'étant pas constructives, les solutions de ces problèmes algébriques et topologiques ne peuvent que donner la décidabilité du problème de séparation, et ne peuvent pas donner une description d'un langage séparateur.

Cette perspective a permis, entre autres, de résoudre les problèmes de séparation pour les classes suivantes : des langages reconnus par des groupes finis [Ash91, RZ93, Aui04, AS05], les langages sans étoile [START_REF] Henckell | Pointlike sets: the finest aperiodic cover of a finite semigroup[END_REF][START_REF] Henckell | Aperiodic pointlikes and beyond[END_REF], les langages testables par morceaux [AZ97, ACZ08], les langages localement testables [START_REF] Steinberg | A delay theorem for pointlikes[END_REF][START_REF] Veloso | Propriedades algorítmicas envolvendo a pseudovariedade LSl[END_REF], et les langages localement testables à seuil [START_REF] Steinberg | On pointlike sets and joins of pseudovarieties[END_REF][START_REF] Steinberg | A delay theorem for pointlikes[END_REF].

Contributions

Dans cette thèse, on s'intéresse, dans un premier temps, à la décidabilité du problème de séparation pour plusieurs sous-classes des langages réguliers, en utilisant des méthodes comxi binatoires et constructives. Dans un second temps, on s'intéresse à obtenir un langage séparateur, s'il existe, ainsi qu'à la complexité de ces problèmes.

Nous établissons une approche générique pour prouver que le problème de séparation est décidable pour une classe de langages donnée. L'idée fondamentale est de stratifier la classe S de séparateurs, selon un paramètre qui est pertinent pour cette classe. Par exemple, comme paramètre, on pourrait choisir la taille des suffixes ou des sous-mots inspectés, ou le rang de quantification d'un formule, ou bien la taille d'un monoïde reconnaissant le langage. La sousclasse de S obtenue en fixant le paramètre inférieur ou égal à k est notée comme S [k]. Le paramètre doit être choisi tel que la classe S[k] soit finie.

Cette stratification donne un semi-algorithme pour décider si deux langages sont séparables par un langage appartenant à S : en testant subséquemment toutes les classes finies S [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], S [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LTT-separable if and only if there exists d ∈ N such that L(A, I 1 , F 1)[END_REF], . . . Néanmoins, afin de décider si deux langages ne sont pas séparables, il faut a priori analyser toutes les classes S Comme ces relations se raffinent, et comme ce sont des relations sur des ensembles finis, elles finissent par se stabiliser. On s'intéresse à trouver une borne à partir de laquelle toutes les relations de cette séquence sont égales. Ceci est un problème difficile, et la solution est spécifique pour chaque classe étudiée dans cette thèse. C'est dans cette étape qu'on utilise des méthodes combinatoires. Notons que, si on trouve une telle borne k, le problème de séparation pour la classe S se réduit au problème de séparation pour la sous-classe finie S[k]. De plus, dans nos preuves pour les bornes, nous trouvons des critères sur l'automate ou le monoïde pour la S-séparabilité. Ces critères nous donnent des meilleurs rèsultats de complexité que les approches brute-force (c'est-à-dire en énumérant S[k]) nous auraient donné.

En utilisant cette approche, nous obtenons la décidabilité du problème de séparation pour les langages testables par morceaux, les langages non-ambigus, les langages localement testables, et les langages localement testables à seuil. Ces classes correspondent à des fragments de la logique du premier ordre, et sont parmi les classes de langages réguliers les plus étudiées. De plus, cette approche donne une description d'un langage séparateur, pourvu qu'il existe. Nous donnons dans cette thèse également des résultats de complexité pour ces problèmes de séparation.

Table of contents Introduction Background and motivation

In computer science, one often wants to model data, programs or executions. One of the most basic structures to model these are finite words, which are therefore among the most used structures in computer science. Logic provides an intuitive and formal way to reason about such structures, and it is usually easy to specify a property of finite words via logic. However, one would also want to be able to use algorithms on logical structures, for example to test whether the intersection of two sets of words described by logical formulas is empty. Logics are not designed for such algorithmic treatment, which brings a need for another formalism to describe properties of finite words that is better suited for algorithmic treatment. Finite state automata form such a formalism. Compared to logic, it is, however, less intuitive to specify properties of finite words in this formalism.

A fundamental result relating the formalism of finite state automata and logic is Büchi's theorem. This theorem states that a language is recognized by a finite state automaton if and only if it can be defined by a monadic second-order (MSO) formula. For each regular language, an MSO-formula can be constructed from a finite state automaton recognizing the language. Conversely, from an MSO-formula, a finite state automaton that recognizes the language defined by the formula can be constructed. The proof of this equivalence is direct and elementary. The transformation from an MSO-formula to a finite state automaton can however have a bad complexity in the worst case.

The logic MSO has become a standard formalism to reason about structures, such as (infinite) words and trees. When interpreted on words, it can be used to express properties about positions and about the letters that these positions carry. Furthermore, in MSO, also properties about sets of positions can be expressed, which is not the case for first-order logic (FO). However, we are usually interested in properties that do not need this additional power of MSO. Transforming a formula to an automaton is non-elementary in the size of the formula, and it is therefore best to express a property by a formula that is as lean as possible. For example, a fragment of formulas with less quantifier alternations will be more amenable to efficient algorithmic treatment.

It is thus useful to know whether a regular language can also be defined in a simpler fragment of MSO. This amounts to studying the expressive power, or the membership problem, of the simpler fragment. This problem is indeed defined as follows.

INTRODUCTION

Membership problem

Input:

A regular language L and a fragment F.

Question: Is L definable in the fragment F?

To show that the membership problem is decidable, one has to find a decidable characterization for the class of languages definable in the fragment, i.e. one has to find a set of properties, which are verified by precisely those languages that are definable in the fragment, and which can be tested algorithmically for a given language. Finding a decidable characterization usually provides a deep insight in the considered fragment.

A natural fragment that, amongst others, has been studied in this respect is first-order logic, which only allows quantification over individual variables, and forbids quantification over sets of variables. Since this logic still allows complicated specifications, it is still natural to look at restrictions of first-order logic. For example, the quantifier alternation hierarchy provides natural logical fragments to study. This hierarchy contains fragments of first-order logic with a specific number of alternations between existential and universal quantifier blocks in the quantifier prefix, which is followed by a quantifier-free part. An example of a fragment that is low in this hierarchy is the fragment BΣ 1 (<). This is the class of FO(<)-formulas that are boolean combinations of FO(<)-formulas having a quantifier prefix consisting of only existential quantifiers. A formula is thus in this logic if and only if it has no quantifier alternations. These formulas can only express a simple combinatorial property, namely the presence or absence of pieces, i.e. scattered subwords, in words.

Another way to obtain simpler and interesting fragments of FO(<) is to restrict the number of variable names that may be used in a formula. It follows from a result of Kamp [Kam68] that restricting to three reusable variable names yields a fragment that has the same expressive power as FO(<). The fragment of FO(<) in which only two reusable variable names are allowed is denoted by FO 2 (<). It was proved in [START_REF] Pin | Polynomial closure and unambiguous product[END_REF][START_REF] Thérien | Over words, two variables are as powerful as one quantifier alternation[END_REF] that this fragment has the same expressive power as one of the fragments occurring in the quantifier alternation hierarchy.

Instead of logical fragments, one can also study classes defined by combinatorial properties. As explained above, the fragment BΣ 1 (<), for example, can also be defined in this way. Another example is the class of locally testable languages (LT), which consists of languages defined by the presence or absence of prefixes, infixes and suffixes in the words of the languages.

There are thus many natural fragments of MSO, and we are interested in knowing their expressive power. Büchi's theorem gives a characterization of the MSO-definable languages, but it is not clear which classes of languages are defined by the fragments. For each fragment, one would like to have an algorithm to test whether a regular language is definable in the fragment. If it is definable in the fragment, one would like to obtain a formula, from the fragment, that witnesses this fact. This has been a successful line of research, of which we will now describe the main achievements.

The membership problem

While Büchi's theorem can be proved in a direct way, without the use of algebra, this is not the case for the membership problems for fragments of the logic. Indeed, for these membership INTRODUCTION problems, algebra is needed as an intermediate structure. This role is played by the syntactic monoid of a language. This is an abstraction of a language, in which combinatorial properties of the language are translated to simple algebraic properties. For a regular language, the syntactic monoid is finite and it is computable from the language.

Solving the membership problem in this way consists of two parts. Given a language definable in the fragment, one should prove that its syntactic monoid satisfies the characterization. On the other hand, given a language whose syntactic monoid satisfies the characterization, one should construct a formula in the fragment, that defines the language. This second part is particularly difficult and often uses induction on the structure of the monoid.

A remarkable result that formed a starting point in this line of research is Schützenberger's theorem. In [START_REF] Schützenberger | On finite monoids having only trivial subgroups[END_REF], Schützenberger proved that a regular language is star-free if and only if its syntactic monoid is aperiodic (i.e. for each s ∈ M , there is n ∈ N such that s n+1 = s n). This proof is constructive: given a language with an aperiodic syntactic monoid, a starfree expression is calculated. In [START_REF] Mcnaughton | Counter-free automata[END_REF], McNaughton and Papert furthermore showed, also constructively, that the star-free languages are precisely the languages definable by first-order logic. Aperiodicity of the syntactic monoid thus is a decidable characterization for firstorder logic. This algebraic characterization can be translated to properties of the minimal automaton. However, there is no direct way known to characterize the expressive power of FO(<) without using algebra.

Another important result that uses the connection between regular languages and algebra was obtained by Simon in [START_REF] Simon | Piecewise testable events[END_REF]. In this paper, a decidable characterization of the piecewise testable languages, which are the BΣ 1 (<)-definable languages, is given. As explained above, one motivation for studying this class is that it is among the lowest levels of the quantifier alternation hierarchy, but still is a challenging class. The characterization is again algebraic: Simon's theorem says that the syntactic monoids of these languages are exactly the J -trivial monoids (i.e. the monoids such that for all s, t ∈ M , M sM = M tM implies s = t). One can observe that, since we are working with finite monoids, this property is decidable. This algebraic characterization has also been translated to a characterization of the minimal automata [START_REF] Stern | Complexity of some problems from the theory of automata[END_REF]. In general, having a characterization of the minimal automata gives interesting complexity bounds. For the class of piecewise testable languages, it is shown in [START_REF] Stern | Complexity of some problems from the theory of automata[END_REF] that membership can be decided in Ptime.

The connection between regular languages and their finite abstractions in the form of syntactic monoids, which capture the properties of a language that are relevant with respect to the membership problem, was further developed in Eilenberg's theorem [START_REF] Eilenberg | Automata, languages, and machines[END_REF]. This theorem provides a general framework in which Schützenberger's theorem and Simon's theorem fit. It states that there is a one-to-one correspondence between varieties of finite monoids (sets of finite monoids closed under taking submonoids, homomorphic images and finite direct products) and varieties of regular languages (sets of regular languages closed under Boolean operations, taking inverse homomorphic images, and left and right residuals).

Moreover, Reiterman showed in [START_REF] Reiterman | The Birkhoff theorem for finite algebras[END_REF] that every variety of finite monoids can be described by a set of identities, which are formal equalities between profinite words. For example, aperiodic monoids are defined by the condition that for each s ∈ M , there is n ∈ N such that s n+1 = s n . This variety can be described by a single identity, viz. x ω+1 = x ω . Most interesting classes can be given by a finite set of identities, of which it can be tested whether the syntactic INTRODUCTION monoid satisfies them. Such a characterization of a class yields that the membership problem for this class is decidable. This connection between regular languages and algebra has been a fruitful approach to obtaining decidable characterizations.

Drawbacks of this approach

A drawback of this approach to understanding classes of languages, however, is that it is not modular. That is, even if a class of languages is just slightly modified, one can usually not reuse the arguments for the original class to conclude something about the new class. As logical fragments are often defined from weaker fragments, for example by adding a predicate to the fragment, this is indeed a drawback.

One would want to be able to transfer decidability of a weaker fragment to decidability of a stronger fragment. For this, one would need two things. First of all, from an algebraic characterization of the first fragment, one should be able to obtain an algebraic characterization of the second fragment. And secondly, this characterization should be testable, i.e. decidability of membership should be preserved under this operation. For example, adding the successor relation to a fragment of FO(<) that is characterized by some variety V often corresponds to the operation V → V * D. It is shown in [START_REF] Auinger | On the decidability of membership in the global of a monoid pseudovariety[END_REF] that decidability of membership is not preserved under this operation.

This drawback, as well as the fact that this approach seemed unable to bring decidable characterizations for higher levels of the quantifier alternation hierarchy (i.e. from BΣ 2 (<) onwards), indicates that studying the membership problem does not give sufficient understanding of the fragments.

The separation problem

A natural generalization of the membership problem, which provides more information about the fragment and which behaves better under operations, is the separation problem. For a given fragment, this problem asks whether, for two input languages, there exists a language definable in this fragment which contains one of the input languages and which is disjoint from the other input language. In this case we say that the two input languages can be separated by a language definable in this fragment, see also Figure 2. The separation problem is thus defined as follows.

Separation problem

Input: Two languages L 1 and L 2 , and a fragment F.

Question: Are L 1 and L 2 separable by a language definable in F?

The membership problem reduces to the separation problem. Indeed, a language is in a given class if and only if it can be separated from its complement by a language from the class.

The separation problem can thus be used to test the expressive power of a class, but it is much more informative: it tests whether two input languages are sufficiently disjoint to be perceived as such from the point of view of this class. It thus also provides information about languages that are outside of the class. The expressive power (eg. the quantifier rank) needed

INTRODUCTION L 1 L 2 A * L is F-definable
Figure 2: L 1 and L 2 are separable by a language definable in F.

to separate the languages tells something about how different they are, from the point of view of the class of separators.

Our approach to the separation problem is to take one monoid (or automaton) that recognizes both languages, and show for each pair of monoid elements (or pairs of states) whether the languages determined by these can be separated. If the languages are separable, we give a description of a separating language, and if the languages cannot be separated, we know which parts of the languages are responsible for this. Thus, like a positive answer, also a negative answer to the separation problem provides much finer information about languages outside of the class than the membership problem would. Indeed, if a language is not definable in the fragment, an answer to the membership problem would just tell why the fragment cannot separate it from its complement.

State of the art of the separation problem

As a response to the non-modularity of the membership problem, many properties that are stronger than decidability of this problem have been introduced. One of the first such properties is based on the algebraic concept of pointlike sets, studied in [START_REF] Henckell | Pointlike sets: the finest aperiodic cover of a finite semigroup[END_REF] for aperiodic semigroups. Later, Almeida proved in [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] that computing the pointlike sets of size 2 for a variety V is equivalent to solving the separation problem for the class of V-recognizable languages. The relation between the V-pointlike sets of size 2 of a monoid M and the separation problem is the following: a set {m, n} ⊆ M is V-pointlike if and only if ϕ -1 (m) and ϕ -1 (n) are not separable by a V-recognizable language, for any morphism ϕ : A * → M . In [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF], it is furthermore shown that the separation problem is equivalent to a topological problem. This topological problem is to test emptiness of the intersection of the topological closures of two regular languages inside the free pro-V semigroup, a topological space which is usually uncountable.

One reason for which pointlike sets have received attention is that they can be used to obtain decidability of the membership problem of varieties built from other varieties. For instance, in [START_REF] Henckell | Ash's type II theorem, profinite topology and Malcev products[END_REF], it is explained that the computability of the pointlike sets for the variety of groups (denoted by G) is proved in Ash's proof [START_REF] Ash | Inevitable graphs: a proof of the type II conjecture and some related decision procedures[END_REF] of the type II conjecture of Rhodes [START_REF] Rhodes | New techniques in global semigroup theory[END_REF], and that this computability of G-pointlike sets yields that other varieties, built in a certain way from this one, have a decidable membership problem. This has been extended in [START_REF] Pin | Profinite semigroups, Mal'cev products and identities[END_REF], where it is shown that if a variety has computable pointlike sets, the membership problem stays decidable if one applies certain operations to it.

INTRODUCTION

Also, from [START_REF] Steinberg | A delay theorem for pointlikes[END_REF], we know that the operation V → V * D even preserves computability of pointlike sets, thus in particular, if V has computable pointlike sets, the membership problem for the variety V * D is still decidable. This is in contrast with the situation for the membership problem: it was shown in [START_REF] Auinger | On the decidability of membership in the global of a monoid pseudovariety[END_REF] that decidability of the membership problem is not preserved under this operation.

For a small number of specific varieties, these pointlike sets have been shown to be computable, yielding that the separation problem for that variety is decidable. This has been shown, for example, for the following varieties: group languages [Ash91, RZ93, Aui04, AS05], starfree languages [START_REF] Henckell | Pointlike sets: the finest aperiodic cover of a finite semigroup[END_REF][START_REF] Henckell | Aperiodic pointlikes and beyond[END_REF], piecewise testable languages [AZ97, ACZ08], locally testable languages [START_REF] Steinberg | A delay theorem for pointlikes[END_REF][START_REF] Veloso | Propriedades algorítmicas envolvendo a pseudovariedade LSl[END_REF], and locally threshold testable languages [START_REF] Steinberg | On pointlike sets and joins of pseudovarieties[END_REF][START_REF] Steinberg | A delay theorem for pointlikes[END_REF].

There are some important limitations with these approaches to the separation problem. First of all, the proofs for these results differ from variety to variety, and usually rely on involved (profinite) semigroup theory. On the one hand, this makes them less accessible, and on the other hand, this provides less insight in the combinatorial structure of the classes. For example, one may use topological properties, such as compactness, to obtain decidability of the problem. These arguments are not constructive, while more combinatorial approaches might give constructive proofs of decidability, even if these approaches may require more precise knowledge. Furthermore, one only obtains a yes/no answer to the separation problem. As mentioned above, if two languages can be separated by a language from a class S, we are also interested in finding a witness of this fact, i.e. a so-called separator from the class S. However, these approaches do not give any information about how to actually construct such a separator if it exists, nor do they give a witness of non-separability in the other case.

Contributions

Our goal in this project was to obtain simple proofs for the decidability of the separation problem for different subclasses of the regular languages, using combinatorial arguments rather than involved methods from profinite semigroup theory. We also wanted to obtain algorithms to decide the separation problem efficiently. Furthermore, rather than just having a yes/no answer to the separation problem, we were especially interested in finding descriptions of separating languages in case they exist, as well as witnesses of non-separability in the other case.

Contribution I: Developing a generic method

Our approach to the separation problem uses combinatorial arguments. The central idea is to provide a bound on a parameter that is pertinent to the class of separators (such as the quantifier rank for a class defined in terms of logic), and to show that the separation problem for the full class of separators reduces to the separation problem for the finite restriction of this class consisting of separator languages defined by a parameter that is smaller than this bound.

More precisely, for a class S of separators, we choose a parameter k, which is such that fixing this parameter gives a strictly smaller and finite subclass of languages (denoted by S[k]), and

INTRODUCTION

which is such that increasing the value of k yields a more expressive class of languages. That is, for all k ∈ N, S[k] S[k + 1] and S = k∈N S[k]. Choices of parameters could be, for example, the length of the inspected prefixes, suffixes, factors or pieces, or the quantifier rank of a formula that defines the language. More in general, one could always take the size of the syntactic monoid of the language as a parameter.

The parameter k gives a means to stratify the class S according to the expressive power. And, since each subclass S[k] is finite, the separation problem for such a subclass is decidable: one can enumerate the languages and test all possible candidates. Such a parameter defines a sequence of congruence relations on A * in the following way. For u, v ∈ A * , u ∼ k v if and only if u and v are not separable by any language from S[k]. Note that every language in S[k] is a finite union of ∼ k -congruence classes. Now, two input languages are S-separable if and only if there exists k ∈ N such that no word from the first language is ∼ k -equivalent to a word from the second language. A priori, this means that all the infinitely many ∼ k -congruences should be checked to be able to conclude that two languages are not S-separable.

However, by letting the ∼ k -congruences induce a relation on a monoid or an automaton (i.e. on a finite set), we work around this difficulty. We let a ∼ k -congruence induce a relation that will express that the monoid elements, or the pairs of states, determine languages that cannot be distinguished by S[k]. We call this relation S[k]-indistinguishability. We furthermore say that two monoid elements, or two pairs of states, are S-indistinguishable if they are S[k]indistinguishable for all k ∈ N. This relation precisely characterizes the pairs of monoid elements, or pairs of pairs of states, that determine languages that are not S-separable. It thus corresponds to the pointlike sets of size 2 in the above terminology.

A drawback of the notion of S[k]-indistinguishable, compared to the ∼ k -congruence on A * , is that this relation is not a congruence anymore: it is not transitive. However, this drawback is compensated by its big advantage: its stabilizing behavior. Whereas the congruence relations ∼ k on A * keep getting more and more refined, this is not the case for the relation of S[k]-indistinguishability. Since, for every k, S[k + 1]-indistinguishable pairs are also S[k]-indistinguishable, and since these pairs are from a finite set, there will be some value κ of the parameter such that for every k ≥ κ, we have that the S[κ]-indistinguishable pairs are also S[k]-indistinguishable. This gives that if two languages are S-separable, they will already be S[κ]-separable, for a κ depending on the monoid or automaton recognizing the languages.

While the existence of such a κ is immediate from the definitions, computing a bound on κ is a difficult problem. If we would establish such a bound, the S-separation problem would reduce to the S[κ]-separation problem. The class S[κ] consists of finitely many languages, thus this would already yield decidability of the S-separation problem: one can use a brute force algorithm to test all of these languages. Furthermore, such a bound would imply that the saturation of L 1 , with respect to ∼ κ , is a language from S that separates L 1 from L 2 , in case these languages are S-separable. We thus obtain a description of a potential separator.

INTRODUCTION

Contribution II: Application to several classes

Using this approach, we were able to show that the separation problem for regular input languages is decidable for the following classes, -piecewise testable languages, -unambiguous (i.e. FO 2 (<)-recognizable) languages, -locally testable languages, -and locally threshold testable languages.

For each of these classes, we obtain a description of the complexity of a potential separator, via the bound on the parameter. This bound only depends on the input languages, and the parameters that we bound are natural parameters for the classes of separators. For the class of piecewise testable languages, we bound the size of the pieces that are inspected in a separating language. For the class of unambiguous languages, we provide a bound on the quantifier rank of an FO 2 (<)-formula defining the language. The same bound also works to bound the size of the unambiguous products that occur in a boolean combination defining a separator. For the classes of locally testable and locally threshold testable languages, we bound the size of the prefix, infixes and suffix that are inspected. For locally threshold testable languages, we furthermore bound the counting threshold.

If separation of two languages is not possible, we obtain a witness of non-separability as a pattern, specific to the class of separators, in the monoid or automaton recognizing the languages. This entails an algebraic property of the corresponding variety, which is called reducibility. This property provides information about the shape of the simplest elements that are present in the topological closures of two languages in the free pro-V semigroup. We have thus shown that the varieties corresponding to PT, FO 2 (<), LT, and LTT have this property.

These patterns that witness non-separability are furthermore useful to bypass the brute-force algorithm to test separability that follows from the reduction to a fixed parameter (which enumerates and tests all the finitely many potential separators that are defined by a parameter that is smaller than the bound for that parameter). As was the case for decidable algebraic characterizations, translating from algebra to the level of automata yields better complexity results.

For the class of piecewise testable languages, we are able to decide separability in Ptime with respect to both the size of the automaton and the size of the alphabet. For the class of unambiguous languages, separability can be decided in Exptime. For the class of locally testable languages, deciding separability can be achieved in co-Nexptime, while we find a co-NP lower complexity bound. For locally threshold testable languages, we also have a co-NP lower bound, and we show that separability can be decided in 2-Expspace.

For all of these classes, our proofs only use elementary combinatorial techniques, in contrast to previous approaches to the separation problem that use involved algebraic and topologic techniques. We believe that our proofs provide more insight in the structure of these classes. Indeed, as explained above, our approach yields more than just the decidability of the separation problem: we also obtain descriptions of potential separators, witnesses of non-separability, INTRODUCTION and algorithms to decide separability.

We also have some results for the separation problem when input languages do not have to be regular. For the class of piecewise testable languages, we found an alternative combinatorial proof that identifies the indistinguishable pairs of states, without bounding the parameter. This alternative method gives a criterion for non-PT-separability that holds for any pair of input languages. It was very recently shown in [START_REF] Czerwiński | A note on decidable separability by piecewise testable languages[END_REF] that this criterion is decidable for context-free languages.

For the classes of locally testable and locally threshold testable languages, we also consider the separation problem for context-free input languages, and show that this is undecidable. We show that separating context-free languages by locally threshold testable languages with a fixed size of factors, however, is decidable.

Organization of the dissertation

In Chapter 1, we briefly discuss some preliminaries about words, languages, semigroups and monoids, varieties, and logic on finite words. This chapter also serves to fix some notation that we will apply in the rest of the thesis.

We formally introduce the separation problem in Chapter 2. We also introduce the problem of computing 2-V-pointlike sets of a monoid, and the problem of testing whether the intersection of the closures of two regular languages in the free pro-V monoid is empty. It was shown in [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] that these problems are equivalent to the separation problem for the class of V-recognizable languages. We provide a proof of these equivalences. In this chapter, we also give a general outline of the approach that we will take in Chapters 4, 5, and 6: we introduce the notion of S-indistinguishable pairs of monoid elements and S-indistinguishable pairs of pairs of states of an automaton, for a class S of regular languages. We show how these pairs capture the information relevant to separation, and indicate how we usually construct them. This chapter is concluded with an illustration of different approaches to the separation problem for two basic examples: the classes of alphabet-testable languages and prefix-testable languages.

Chapter 3 is a short chapter that discusses the separation problem for the class of group languages. For this class of languages, we can build on a rich history of research on very related problems. We therefore do not apply our approach with indistinguishable pairs in this chapter, but we show how decidability of the separation problem follows from the Ribes-Zalesskiȋ product theorem. A constructive proof of this theorem, provided in [START_REF] Auinger | A constructive version of the Ribes-Zalesskiȋ product theorem[END_REF], can be used to obtain a separating group language, in case it exists.

In Chapter 4, we apply the approach with indistinguishable pairs of states to prove decidability of the separation problem for piecewise testable languages. We prove decidability of this problem with two methods. One method is based on Simon's Factorization Forest theorem, and the other method works by bounding the size of the pieces that are relevant for separability of the input languages. This bound furthermore yields a description of a separating language, if it exists. We find this bound by showing that words having the same pieces of this size must both fit into a certain template. Pumping arguments then allow us to see that words that have the same pieces of arbitrary length can be read between the pairs INTRODUCTION of states. We also obtain that two pairs of states are indistinguishable for this class if and only if between the first and second state of both pairs a pattern of a similar shape is present. This equivalence allows us to provide an algorithm that decides separability for this class in Ptime with respect to both the size of the automaton and the size of the alphabet.

Chapter 5 treats the separation problem for unambiguous languages (i.e. FO 2 (<)recognizable languages). We show that this problem is decidable, which yields that the 2-pointlike sets for the variety DA are computable. To show the decidability of the separation problem, we provide a fixpoint algorithm that computes the FO 2 (<)-indistinguishable pairs of monoid elements. In the completeness proof of this algorithm, we find -using combinatorial arguments -a bound κ on the quantifier rank of FO 2 (<)-formulas that are relevant for separability of the input languages. We get a description of a potential FO 2 (<)-separator as a saturation of one of the two languages with respect to a congruence depending on FO 2 (<) and κ.

Finally, we discuss the separation problem for the classes of locally testable languages and locally threshold testable languages in Chapter 6. In this chapter, we also work by bounding parameters using combinatorial arguments. For the class of locally threshold testable languages, there are two relevant parameters: the size of the factors, and the counting threshold. We first solve the separation problem for a fixed counting threshold (in particular, this solves the problem for the class of locally testable languages). In this case, we obtain a bound on the size of the factors, of which we show that it still works for the full class of locally threshold testable languages. We then provide a bound on the counting threshold. These bounds provide a description of a potential separator. We also exhibit patterns on the recognizing monoid and the recognizing automaton that are present if and only if the languages are not separable. Furthermore, upper and lower complexity bounds for the separation problems for these classes are discussed. We conclude the chapter with results on the separation problem for locally testable and locally threshold testable languages on context-free input languages. We show that these problems are undecidable, but, surprisingly, separating context-free languages by locally threshold testable languages with a fixed size of factors is decidable. In this chapter, we briefly present some preliminary notions and fix some notation that we use in the rest of the thesis. We assume that the reader is familiar with the basics of the theory of automata, regular languages and semigroups. We refer to [START_REF] Almeida | Finite semigroups and universal algebra, volume 3 of Series in Algebra[END_REF][START_REF] Straubing | Finite automata, formal logic, and circuit complexity[END_REF][START_REF] Pin | Syntactic semigroups[END_REF][START_REF] Pin | Mathematical foundations of automata theory[END_REF], for an introduction to this theory.

Words and languages

An alphabet is a finite set. For an alphabet A, the free monoid over A, denoted by A * , is the set of all words endowed with the usual concatenation operation. The concatenation of two words u, v ∈ A * is denoted by u • v, or simply by uv. The empty word is denoted by ε. The free semigroup over A is the set of all nonempty words, and is denoted by A + . For a word w ∈ A * , the smallest subset B ⊆ A such that w ∈ B * is called the alphabet of w and is denoted by alph(w). The number of letters in a word w is the size, or length, of w, denoted by |w|.

An infix , or factor , of a word w ∈ A * is a word w such that w = uw v for some u, v ∈ A * . In this case, we say that w is a prefix (resp. a suffix) of

w if u = ε (resp. if v = ε). A word w is a piece, or scattered subword, of a word w, if there exist letters a 1 , . . . , a k ∈ A such that w = a 1 • • • a k and w = w 0 a 1 w 1 • • • a k w k , for some w 0 , . . . , w k ∈ A * .
A language over A is a subset of the free monoid A * . We extend the definition of the concatenation operation to languages, by defining The collection of regular languages over an alphabet A is defined as the smallest collection of languages over A that satisfies the following properties.

L • L = {w • w | w ∈ L, w ∈ L },
-The empty set ∅ is regular, -for every a ∈ A, the set {a} is regular, -if L and L are regular, then L ∪ L , L • L , and L * are also regular.

Automata

A nondeterministic finite automaton (NFA) over an alphabet A is denoted by a tuple A = (A, Q, δ), where Q is the set of states and δ ⊆ Q × A × Q is the transition relation. For a deterministic finite automaton (DFA), it is furthermore required that δ is a partial function from Q × A to Q. That is, for every q ∈ Q and a ∈ A, there is at most one state q such that (q, a, q) ∈ δ. We shall explain below why we use these definitions, which are not the standard ones. The size |A| of an automaton A is its number of states plus its number of transitions.

Given a word u ∈ A * , a subset B of A and two states p, q of A, we denote -a path from state p to state q labeled by the word u by p u --→ q, -a path from p to q of which all transitions are labeled over B by p ⊆B --→ q, -a path from p to q labeled by a word whose alphabet is exactly B by p =B --→ q.

We also write (p, u, q) ∈ δ * to denote that there is a path p u --→ q in A.

Given a language L ⊆ A * , we say that L is accepted, or recognized, by an NFA A = (A, Q, δ) if there exist sets I, F ⊆ Q such that L = {w | ∃q I ∈ I and ∃q F ∈ F such that (q I , w, q F) ∈ δ * }.

In this case, we call I the set of initial states and F the set of final states for L, and we also say that I × F determines the language L, and we denote this language by L(A, I, F). For a language L to be accepted by a DFA A, we ask furthermore that the set I consists of only one state. We recall Kleene's theorem that says that a language L ⊆ A * is regular if and only if it is recognized by a finite automaton.

Note that these definitions are not the standard definitions of NFAs and DFAs. Usually, the sets of initial and final states are fixed in the definition of the automaton. However, for the study of separation problems, which form the subject of this thesis, it will be convenient to have a single automaton that accepts the two input languages. Note that from two given regular languages L 1 and L 2 over A, recognized by NFAs

A 1 = (A, Q 1 , δ 1) resp. A 2 = (A, Q 2 , δ 2)
, one can build an automaton that accepts both L 1 and L 2 , viz. the automaton

A = (A, Q 1 • ∪ Q 2 , δ 1 • ∪ δ 2) of size |A 1 | + |A 2 |.

Recognition by semigroups and monoids

A semigroup is a set of elements equipped with an associative binary operation. We denote this operation multiplicatively. A semigroup S is a monoid if it has an identity element, that is, if there is 1 ∈ S such that for all s ∈ S,

1 • s = s • 1 = s. An element s is idempotent if s 2 = s.
For a semigroup (S, •) (that we will simply denote by S), we denote the set of its idempotent elements by E(S). In a finite semigroup, every element s has an idempotent power, which is denoted by s ω . For example, if |S| = n, then one can verify that for every s ∈ S, the element s n! is idempotent.

A mapping ϕ : S → T between semigroups is a semigroup morphism if for all s, s ∈ S, it holds that ϕ(s

• s) = ϕ(s) • ϕ(s).
If S and T are monoids, and it holds furthermore that ϕ(1 S) = 1 T , then ϕ is a monoid morphism. If it is clear from the context which kind of morphism is meant, we also simply write morphism.

A language L over A is recognized by a semigroup S, if there is a morphism ϕ : A + → S and a subset P ⊆ S, such that L = ϕ -1 (P). In this case, we also say that L is recognized by ϕ. Given a morphism ϕ : A + → S, we say that an element s ∈ S determines the language ϕ -1 (s).

Similarly, a language L over A is recognized by a monoid M , if there is a morphism ϕ : A * → M and a subset P ⊆ M , such that L = ϕ -1 (P). And, given a morphism ϕ : A * → M , we also say that an element m ∈ M determines the language ϕ -1 (m).

For example, the language A * aA * is recognized by the finite monoid U 1 = {0, 1}, with multiplication given by 0 = 0 • 0 = 0 • 1 = 1 • 0 and 1 = 1 • 1, via the morphism ϕ that sends a to 0 and sends b to 1. Indeed, A * aA * = ϕ -1 (0).

One way to find such a recognizing monoid for a language L (and in fact to find the minimal one), is to take the quotient of A * with respect to the following congruence relation.

u ∼ L v if and only if ∀w, w ∈ A * . wuw ∈ L ⇔ wvw ∈ L.
This congruence is called the syntactic congruence of L, and the corresponding quotient is called the syntactic monoid of L. One can similarly define the syntactic semigroup of L.

It is well known and easy to show that if a language is regular, then its syntactic monoid is finite. Another way to construct a recognizing monoid out of an NFA is to construct its transition monoid. For a DFA, this is the monoid generated by the partial transformations on Q induced by the letters of A. For an NFA, it can be represented as the monoid generated by the boolean matrices of order |Q| × |Q|, induced by the letters of A in the following way: the coordinate (p, q) of the matrix induced by a ∈ A is 1 if and only if (p, a, q) ∈ δ.

Conversely, every language that is recognized by a morphism ϕ : A * → M , is recognized by the DFA (A, M, δ), with δ(, a) : m → m • ϕ(a). To sum up, a language is accepted by an NFA if and only if it is recognized by a finite monoid.

Varieties and free pro-V semigroups

Syntactic semigroups form an important connection between regular languages and finite semigroups. The concept of variety serves to classify regular languages according to algebraic properties of their syntactic semigroups. Here we introduce a few notions related to the theory of varieties, but we refer to the text books mentioned above for many important properties and results that we do not discuss here.

A variety of finite semigroups (also called pseudovariety of (finite) semigroups) is a collection of semigroups that is closed under taking subsemigroups, homomorphic images and finite direct products. If a language L is recognized by a semigroup from a variety V, we say that L is V-recognizable.

Let A be a finite alphabet and let V be a variety. A semigroup S separates u, v ∈ A + if there exists a morphism ϕ :

A + → S such that ϕ(u) = ϕ(v). Given u, v ∈ A + , we let r V (u, v) = min |S| | S ∈ V and S separates u and v ∈ N ∪ {∞},
with min ∅ = ∞, and we define

d V (u, v) = 2 -r V (u,v) ,
with 2 -∞ = 0. For two given words, there is not necessarily a semigroup in V that is able to separate them. Thus, d V does not necessarily define a metric on A + . We therefore consider the congruence relation ∼ V , defined by

u ∼ V v ⇔ d V (u, v) = 0.
One can verify that d V is a metric on A + /∼ V .

We endow every finite semigroup with the discrete topology. A sequence (u n) n is a Cauchy sequence for this metric if and only if for every morphism ϕ : A + → S, the sequence (ϕ(u n)) n is eventually constant. The completion of the metric space (A * /∼ V , d V) is denoted by F V (A) and is called the free pro-V semigroup.

The semigroup operation on F V (A) is given by pointwise multiplication of classes of Cauchy sequences. This transfers the semigroup structure of A + to F V (A), on which the multiplication is continuous. This will be discussed in more detail in Section 2.2.2.

The semigroup F V (A) is profinite, since one can show that the topology on F V (A) is the coarsest topology which makes every morphism from A + to a finite discrete semigroup S ∈ V continuous.

One can furthermore show that F V (A) satisfies the following universal property. For every mapping ϕ : A → S ∈ V, there is a unique uniformly continuous morphism φ : F V (A) → S that extends ϕ.

Identities

The variety of all finite semigroups is denoted by S. The free pro-S semigroup is also called the free profinite semigroup and we denote it by F (A). Its elements are called profinite 1.5. LOGIC ON WORDS words. Let u, v ∈ F (A). We say that the identity u = v is satisfied by a finite semigroup S if and only if, for every continuous morphism ϕ : F (A) → S, it holds that ϕ(u) = ϕ(v).

Reiterman's theorem states that every variety of finite monoids can be defined by a set of such identities [START_REF] Reiterman | The Birkhoff theorem for finite algebras[END_REF].

For u ∈ F (A), the element lim n→∞ u n! is denoted by u ω . This is an idempotent element of F (A). Recall that in the theory of finite semigroups, s ω denotes the idempotent power of an element s ∈ S. For ϕ : A + → S and u ∈ A + , it holds that φ(u ω) = ϕ(u) ω , which justifies the notation for lim n→∞ u n! .

This allows us to describe the varieties that we study in this thesis in a succinct way, by the identities that are satisfied by their semigroups. For example, in Section 2.3.1, we study the variety of semilattices. This variety consists of semigroups that are idempotent and commutative, which can be expressed by the identities x 2 = x and xy = yx. In this case, no profinite words are needed to define the variety. The languages that we study in Chapter 4, on the other hand, are recognized by semigroups that satisfy the identities x ω = x ω+1 and (xy) ω = (yx) ω , or equivalently, that satisfy y(xy) ω = (xy) ω = (xy) ω x.

Logic on words

We consider first-order logic (denoted by FO(<)) interpreted on words. In this formalism, variables are interpreted as positions in words, and one may use the following two types of predicates.

-The binary predicate <, where x < y means that position x occurs before position y,

-for each letter a, a unary predicate a(), where a(x) means that position x carries the letter a.

An FO-formula defines the language of words for which the formula holds. For instance, the formula ∃x∃y.

x < y ∧ a(x) ∧ b(y) ∧ ∀z. (x < z ∧ z < y) ⇒ c(z) (1.1)
defines the language A * ac * bA * .

In this thesis, we consider different fragments of first-order logic. If a language can be defined by a formula from a fragment F, we also say that the language is F-definable.

A fragment F gives rise to an equivalence relation on words in the following way. For u, v ∈ A * , u ∼ F v ⇔ u and v satisfy exactly the same formulas of F.

The quantifier rank, or simply rank, of a formula is the maximal number of nested quantifiers of a formula. For example, the formula from (1.1) has rank 3.

In this thesis, we will often want to 'stratify' a class of languages according to its expressive power. The rank of a formula gives a means to obtain such a stratification for a class of languages defined by a logic. is in FO 1 (<). For A = {a, b, c}, this formula defines the language of words whose alphabet is exactly {a, b}. It is not hard to see that this logic can only express such alphabetical conditions, and boolean combinations of these. In FO 2 (<), two variable names may be used in a formula. An example of an FO 2 (<)-formula is the following formula, ∃x ∃y. b(x) ∧ a(y) ∧ ∀x. ¬(y < x) , which defines the language A * bA * a. Note that we reused the variable x. Note that is not clear right away whether the language A * ac * bA * , defined by (1.1), can be expressed by an FO 2 (<)formula. In Chapter 5, we will see a characterization of the FO 2 (<)-definable languages, from which it will be easy to see that this is not the case.

In Chapter 4, we consider the fragment BΣ 1 (<), which is the fragment of formulas that are boolean combinations of formulas that use only existential quantifiers. With these formulas, the presence or absence of pieces in words can be expressed. An example of a BΣ 1 (<)definable language is the language of all words containing the piece aab, that is, the language A * aA * aA * bA * . This language is recognized by the following BΣ 1 (<)-formula,

∃x ∃y ∃z. x < y ∧ y < z ∧ a(x) ∧ a(y) ∧ b(z) .
This language is also defined by the following FO 2 (<)-formula,

∃x ∃y. x < y ∧ a(x) ∧ a(y) ∧ ∃x. y < x ∧ b(x) .
In fact, we will see in Chapter 5 that every BΣ 1 (<)-formula is equivalent to an FO 2 (<)formula.

In Chapter 6, we consider yet another fragment, denoted by FO(=, +1). This is a variant of first-order logic where the binary predicate < is not allowed, but where we have a unary predicate S() that expresses the successor relation. Here, S(x) = y means that position y is the first position to the right of position x. These formulas can be used to detect prefixes, infixes and suffixes of words. For example, the language aA * bbA * is defined by the FO(=, +1)formula ∃x ∀y. ¬(S(y) = x) ∧ a(x) ∧ ∃x ∃y. S(x) = y ∧ b(x) ∧ b(y) .

Chapter 2

Introduction to the separation problem In this chapter, we introduce the separation problem and discuss different views on this problem. The separation problem for a class S of languages is to decide, given two regular input languages, whether there exists a language from the class S that contains the first language and is disjoint from the second language.

The separation problem for a class of languages generalizes the membership problem for this class, and provides a deeper understanding of the class. Furthermore, decidability of the separation problem is better preserved under operations than decidability of the membership problem is. Because of these properties, the separation problem for classes of languages has emerged in different contexts: in an algebraic guise in the study of so-called pointlike sets with respect to a variety V, and as a topological separation problem in the free pro-V semigroup.

In Section 2.1, we define the separation problem and discuss the relation with the membership problem. We continue the following sections with a discussion of results from the literature. For varieties of languages, solving the separation problem is equivalent to computing certain algebraic objects. Section 2.2.1 presents this algebraic view on the separation problem. In Section 2.2.2, it is shown that deciding the separation problem for varieties of languages is also equivalent to computing an intersection of certain topological closures. Our approach to solving the problem is based on the algebraic objects and is presented in Section 2.2.3. This is the approach that we will apply in Chapters 4, 5, and 6 to different classes of languages. Finally, in Section 2.3, we present some basic examples to illustrate different approaches to the separation problem.

The separation problem

Deciding whether two regular languages, given as regular expressions, are disjoint can be done by building automata from the expressions, and computing the intersection of these automata. However, sometimes it is possible to see that two languages are disjoint by extending the first language to a simpler language, of which it is easier to see that it is disjoint from the second language. For example, the languages (abb(ab) * b) * and (ab * aa) * b are disjoint, because (abb(ab

) * b) * ⊆ ε ∪ A * bb, while (ab * aa) * b ∩ (ε ∪ A * bb) = ∅.
One can thus already conclude that these regular languages are disjoint by only inspecting their respective sets of suffixes of size 2.

The class of regular languages for which membership of a word in the language only depends on its suffix of a certain size is a very restricted class compared to the full class of regular languages, yet it is still able to witness that (abb(ab) * b) * and (ab * aa) * b are disjoint. Of course, there are also disjoint regular languages which are not sufficiently different, from the point of view of this class, to be witnessed as disjoint. For example, the languages aa * and ba * contain, for every n ∈ N , words that have the same suffix of length n, and thus it is not possible to find a language in this class that witnesses that they are disjoint.

We will see that the problem of deciding whether two languages are perceived as disjoint by a given class of languages is a natural generalization of the membership problem for this class. Let us first introduce formally what is meant by being perceived as disjoint.

Definition 2.1. Given languages L, L 1 , L 2 , we say that L separates

L 1 from L 2 if L 1 ⊆ L and L 2 ∩ L = ∅. (2.1)
Given a class S of languages, we say that the pair (L 1 , L 2) is S-separable if there exists a language L ∈ S that separates L 1 from L 2 . The language L is then called an S-separator, or simply separator . Note that (2.1) is equivalent to For a given class of languages and for two given languages, we are interested in knowing whether the class is able to separate these languages.

L 1 ∩ (A * \ L) = ∅ and L 2 ⊆ A * \ L.

THE SEPARATION PROBLEM

Definition 2.2. The separation problem for a class S of languages, also called the Sseparation problem, can be formulated as follows.

Input:

Two languages L 1 and L 2 .

Question: Are L 1 and L 2 separable by a language from S? Usually, we only consider the separation problem for input languages that are regular. For the class S, we will often consider a class of languages that are recognized by some variety V. If two languages are S-separable with respect to this class, we will say that they are V-separable. Similarly, we call two languages L-separable if there is a language defined by a formula from the logic L that separates them.

L 1 L 2 A * L ∈ S
A positive answer to the separation problem means that L 1 and L 2 are sufficiently different, from the point of view of S, to be perceived as disjoint. This means that S is able to discriminate between the two languages. The separation problem tests the discriminative power of S. Note that a language L belongs to the class S if and only if L is S-separable from its complement. We usually consider the separation problem for input languages that are regular. Since the class of regular languages is closed under complement, the separation problem subsumes the classical membership problem, which amounts to deciding whether a given language belongs to a given class. Indeed, the only language that can separate L from A * \L is L itself. Thus, L is in S if and only if (L, A * \L) are S-separable. This gives the following fact. The membership problem tests the expressive power of a class of languages that is described by combinatorial or logical means. It is considered to be one of the main ways to understand such a class. By the above, the discriminative power of a class is more informative than the expressive power of a class. We study the separation problem because it provides a deeper understanding of a class of languages than the classical membership problem does.

In this thesis, we will see that most natural classes of languages have a decidable separation problem. Furthermore, it is already known that the separation problem has more robust properties than the membership problem: in [START_REF] Steinberg | A delay theorem for pointlikes[END_REF], an operation on classes of languages is described that preserves decidability of the separation problem, while it is shown in [START_REF] Auinger | On the decidability of membership in the global of a monoid pseudovariety[END_REF] that decidability of the membership problem is not preserved under this operation.

Let us illustrate the notion of separability on small examples.

Example 2.4. The variety Sl defines the class of languages that can be described in terms of their alphabet: it consists of all languages that are Boolean combinations of languages of the form B * , for finite alphabets B. In Section 2.3.1, we will discuss this class in more detail. It is easy to see that the languages (a(b ∪ c)) + and (ba) + are not Sl-separable, since both languages contain words whose alphabet is {a, b}. On the other hand, the languages (ab) + and (ac) + are Sl-separable, since the Sl-recognizable language w ∈ A * | alph(w) = {a, b} separates them.

Example 2.5. The languages (ab) + and ba * are FO(<)-separable, since the language defined by ∃x. ∃y. x < y ∧ a(x) ∧ b(y) contains (ab) + and is disjoint from ba * . The languages (aa) * and (aa) * a, on the other hand, are not separable by any language defined by a first-order formula. This follows from [Str94, Theorem IV.2.1], where an Ehrenfeucht-Fraïssé argument is used to show that the set of words of even length is not definable in first-order logic.

In [START_REF] Szymanski | Noncanonical extensions of bottom-up parsing techniques[END_REF][START_REF] Hunt | On the decidability of grammar problems[END_REF], the separation problem was studied for the class of context-free languages as input languages, and the class of regular languages as separators. In [START_REF] Szymanski | Noncanonical extensions of bottom-up parsing techniques[END_REF], the following theorem is proved by a reduction from the halting problem on Turing machines to this separation problem. In Chapter 6, we will see that this proof can be adapted to prove undecidability of separability of context-free languages for other classes of regular separators, satisfying some conditions, as well. In Theorem 6.51, we give an adaptation of this proof.

Theorem 2.6 ([SW76, Theorem 4.6]). Separability of context-free languages by regular languages is undecidable.

We conclude this section with a lemma that gives a sufficient condition to conclude that two languages are S-separable, when the class S is closed under finite union and finite intersection. In this case, it suffices to decompose the two languages in a finite way such that the components of the different languages are pairwise S-separable. As varieties of languages are closed under finite union and finite intersection, this result applies in particular to varieties of languages. Lemma 2.7 ([Pin09, Lemma 2.1]). Let (K i) i∈I and (L j) j∈J be two finite families of languages. Let S be a class of languages closed under finite union and finite intersection. If each pair K i and L j is S-separable, then i∈I K i and j∈J L j are S-separable.

Proof. Let T i,j be an S-recognizable language such that K i ⊆ T i,j and L j ∩ T i,j = ∅. We claim that the language T := i∈I j∈J T i,j separates K := i∈I K i and L := j∈J L j . Note that T is S-recognizable since S is closed under finite union and finite intersection.

For every i ∈ I and j ∈ J, by definition, K i ⊆ T i,j . Thus, K i ⊆ j∈J T i,j , and K ⊆ i∈I j∈J T i,j . On the other hand, to show that L ∩ T = ∅, it suffices to show that for every

k ∈ J, L k ∩ T = ∅. Fix i ∈ I. Note that L k ∩ j∈J T i,j ⊆ L k ∩ T i,k = ∅, by definition. Now, L k ∩ T = L k ∩ i∈I j∈J T i,j = i∈I L k ∩ j∈J T i,j = ∅.
It follows that T separates K and L.

Different points of view on the separation problem

For classes of languages that correspond to varieties, two different approaches (algebraic and topological) to the separation problem are known from the literature. In [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF], it is shown that these approaches are equivalent. If the separation problem is decidable for a variety V, these approaches provide a yes/no answer to the question whether two languages are Vseparable. However, they do not give any information about how to actually construct a V-recognizable language that separates the two languages in case they are V-separable.

The algebraic approach is based on objects called pointlike sets. A reason for introducing these pointlike sets was to obtain a property that is better preserved under operations, than decidability of the membership problem is. For a small number of specific varieties, these pointlike sets have been shown to be computable, yielding the decidability of the separation problem for that variety. In particular, this has been shown for the following varieties. 3. Piecewise testable (that is, BΣ 1 (<)-definable) languages [AZ97, ACZ08], 4. Languages whose syntactic semigroups are R-trivial, that is, languages such that all cycles in the graph of the minimal automaton visit just one state [ACZ08],

5. Languages for which membership of a word in the language can be tested by inspecting the prefix resp. suffix up to some length (folklore, see [Alm94, Section 3.7]), 6. Locally testable languages, that is, languages for which membership of a word in the language can be tested by inspecting the prefix, suffix and factors up to some length [START_REF] Steinberg | A delay theorem for pointlikes[END_REF][START_REF] Veloso | Propriedades algorítmicas envolvendo a pseudovariedade LSl[END_REF],

7. Locally threshold testable languages, that is, languages for which membership of a word in the language can be tested by inspecting the prefix, suffix and the factors, counted with a certain threshold, up to some length [START_REF] Steinberg | On pointlike sets and joins of pseudovarieties[END_REF][START_REF] Steinberg | A delay theorem for pointlikes[END_REF].

Our view on the separation problem is described in Section 2.2.3. For a class S of separators that forms a variety, this view coincides with the algebraic view, that is, we calculate the pointlike sets of size 2.

For a class S of separators, we choose a parameter k that defines a congruence relation ∼ k on A * in such a way that increasing k yields a more and more refined congruence relation, and such that every S-definable language is a union of ∼ k -equivalence classes for some k. Then, two languages are S-separable if and only if there exists k ∈ N for which there is no word in the first language that is ∼ k -equivalent to a word from the second language.

For example, if S is defined in terms of a logical fragment, the quantifier rank of a formula provides such a parameter k. In this case, two words are said to be ∼ k -equivalent if and only if they satisfy exactly the same formulas of rank k. Increasing this rank gives more and more power to discriminate between languages, and thus more and more languages become distinguishable.

Another example of a parameter that defines such a sequence of congruence relations on A * is the size of the semigroup. That is, if S is the class of V-recognizable languages, then two words are ∼ k -equivalent if and only if, for each morphism into a semigroup of V of size up to k, their images are the same. In other words, u

∼ k v ⇔ d V (u, v) < 2 -k , for d V (u, v) as defined in Section 1.4.
Deciding whether two languages are S-separable amounts to knowing whether there exists k ∈ N for which there is no word in the first language that is ∼ k -equivalent to a word from the second language. In principle, this means that we would have to know the behavior of all of the ∼ k -congruences to conclude that two languages are not S-separable. However, as we will explain in Section 2.2.3, when proving decidability of the separation problem for a certain class S, we usually obtain a bound on the parameter k, such that it suffices to consider the congruence relation up to that bound. Besides showing the decidability, we then also obtain a description of a separator if it exists.

Algebraic view: 2-pointlike sets

We now discuss the algebraic counterpart of separation by a variety of languages, as presented by Almeida in [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF]. After the introduction of the relevant notions, we state the result about the connection with algebra in Theorem 2.11. A relational morphism between semigroups S and T is defined similarly, by replacing condition ii by the following condition:

ii'. τ is a subsemigroup of S × T , i.e. for every s 1 , s 2 ∈ S, τ (s 1)τ (s 2) ⊆ τ (s 1 s 2).

Definition 2.9. A subset S of a monoid M is called V-pointlike if for every monoid N ∈ V and every relational morphism τ : M → N , it holds that there exists n ∈ N such that for all s ∈ S, n ∈ τ (s). If furthermore |S| = k, S is said to be k-V-pointlike.

In other words, a subset S of a monoid M is V-pointlike if the elements of S are not perceived as disjoint sets by any member of V. It is thus not surprising that there is a link between the pointlike sets with respect to a variety V and the separation problem for V: both concepts deal with the ability of V to witness differences in objects outside of V itself. This link is made precise in Theorem 2.11.

Note that to decide, for a given variety V, whether a subset of a monoid is V-pointlike, in principle one has to check an infinite number of relational morphisms. It is thus a priori not clear whether this is a decidable property.

Furthermore, it is important to note that when each pair of elements of a set S is 2-Vpointlike, it does not automatically hold that S is an |S|-V-pointlike set. This is because of the following fact, of which an illustration can be found in Example 2.18.

Fact 2.10. The relation of being in a 2-V-pointlike set is not transitive.

The following theorem shows that the 2-pointlike sets with respect to a given variety are pertinent to the separation problem with respect to this variety. Here, we follow the proof of [Pin09, Theorem 2.2].

Theorem 2.11 ([Alm99, Lemma 3.2]). Let L 1 , L 2 be regular languages, recognized by a monoid M via a surjective morphism ϕ. Let P, Q ⊆ M be such that L 1 = ϕ -1 (P) and L 2 = ϕ -1 (Q). Then, L 1 and L 2 are V-separable if and only if for every p ∈ P and every q ∈ Q, the set {p, q} is not a 2-V-pointlike set.

Proof. Since L 1 = p∈P ϕ -1 (p) and L 2 = q∈Q ϕ -1 (q), it follows from Lemma 2.7 that L 1 and L 2 are V-separable if and only if for every p ∈ P, q ∈ Q, the languages ϕ -1 (p) and ϕ -1 (q) are V-separable. Let p ∈ P and q ∈ Q. We will show that ϕ -1 (p) and ϕ -1 (q) are V-separable if and only if {p, q} is not a V-pointlike set. Suppose that ϕ -1 (p) and ϕ -1 (q) are V-separable.

Then there exists L ⊆ A * such that L is recognized by a monoid N ∈ V via a morphism γ :

A * → N , ϕ -1 (p) ⊆ L and ϕ -1 (q) ∩ L = ∅. Define τ = γ • ϕ -1 .
As ϕ is surjective and both ϕ and γ are morphisms, clearly, τ is a relational morphism from M to N . Note that τ (p) = γ(ϕ -1 (p)) ⊆ γ(L) and τ (q) = γ(ϕ -1 (q)) ⊆ γ(L c). It follows that τ (p) ∩ τ (q) = ∅, which implies that {p, q} is not a V-pointlike set.

On the other hand, suppose that {p, q} is not a V-pointlike set. Then there is a monoid N ∈ V and a relational morphism τ : M → N , such that τ (p) ∩ τ (q) = ∅. Let R denote the submonoid of M × N defined by τ , i.e. R = {(m, n) | n ∈ τ (m)}. The projections to each of the coordinates are denoted by α : R → M and β : R → N . It follows that τ = β • α -1 . For every m ∈ M , we have that τ (m) = ∅, hence α is surjective. Thus, there exists a morphism δ :

A * → R such that ϕ = α • δ. Now let γ : A * → N be the morphism γ = β • δ. The language L := γ -1 (τ (p)) is V-recognizable. R M N A * α β δ τ ϕ γ
We claim that L separates ϕ -1 (p) from ϕ -1 (q). First note that we are now able to express τ in terms of γ and ϕ, since

γ • ϕ -1 = β • δ • ϕ -1 = β • δ • (α • δ) -1 = β • δ • δ -1 • α -1 = β • α -1 = τ.
Clearly, ϕ -1 (p) ⊆ γ -1 (γ(ϕ -1 (p))) = L. Also, since τ (q) = γ(ϕ -1 (q)) and τ (p) ∩ τ (q) = ∅, we have ϕ -1 (q) ∩ γ -1 (τ (p)) = ∅. Thus, L witnesses that ϕ -1 (p) and ϕ -1 (q) are V-separable.

Topological view: closures in the free pro-V semigroup

In [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF], a generic connection between profinite semigroup theory and the separation problem for varieties of languages is established. In this paper, it is shown that two regular languages over A are separable by a V-recognizable language if and only if the topological closures of these two languages inside the free pro-V semigroup, F V (A), intersect. We state this result in Theorem 2.17 and devote this section to providing a proof of this result.

Recall from Section 1.4 that F V (A) is the completion of the metric space (A + /∼ V , d V) with the metric given on representatives u, v by v) , with 2 -∞ = 0, where r V (u, v) = min |S| | S ∈ V and S separates u and v ∈ N ∪ {∞}. For simplicity, we assume that every pair of distinct words can be separated by a semigroup from V, that is, the relation ∼ V is the equality relation. We first state a useful property about the metric d V .

d V (u, v) = 2 -r V (u,
Lemma 2.12. The metric d V on the space F V (A) is an ultrametric.

Proof. We first show that d V on A + is an ultrametric, that is, that for all u, v, w

∈ A + , d V (u, w) ≤ max(d V (u, v), d V (v, w)).
Let S be a semigroup that separates u and w. Then it also separates u and v, or it separates v and w, or both. Thus, min(r

V (u, v), r V (v, w)) ≤ r V (u, w), which gives d V (u, w) ≤ max(d V (u, v), d V (v, w)). In a similar fashion to proving that d V on F V (A) is indeed a metric, one can write out the definition of d V on F V (A), and use that d V on A + is an ultrametric, to find that (F V (A), d V) is an ultrametric space.
The following proposition is well known, and can be found, for example, in [START_REF] Almeida | Finite semigroups and universal algebra, volume 3 of Series in Algebra[END_REF] as Proposition 3.4.6. Here, we more or less follow the proof of [Pin11, Proposition 2.3].

Proposition 2.13. The space

(F V (A), d V) is compact.
Proof. We use the fact that a complete metric space that is totally bounded is compact (see eg. [Mun00, Theorem 45.1]). Recall that a metric space is totally bounded if for all ε > 0, the space is covered by a finite number of open balls of radius ε. We first prove the following claim, which yields that it suffices to show that A + is totally bounded.

Claim. If a metric space (X, d) is totally bounded, then so is its completion (X, d).

Let ε > 0. The space (X, d) is totally bounded, thus in particular there exist

x 1 , . . . , x n such that X ⊆ n i=1 B(x i , ε 2). Let y be any element of X. Since X is dense in X, there is x ∈ X such that d(x, y) < ε 2 . Since X is covered by the open balls of radius ε 2 around the x i 's, there is an x i such that d(x i , x) < ε 2 . Now, d(x i , y) ≤ d(x i , x) + d(x, y) < ε. It follows that X ⊆ n i=1 B(x i , ε
). We now show that A + is totally bounded. Let n ∈ N. We want to show that A + is covered by finitely many open balls of radius < 2 -n . Lemma 2.12 allows us to define the following congruence relation on

A + , u ∼ n v ⇔ d V (u, v) < 2 -n .
By definition, u ∼ n v if and only if the words cannot be separated by any semigroup of size ≤ n. Thus, if and only if for all morphisms ϕ : A + → S, such that S ∈ V and |S| ≤ n, it holds that ϕ(u) = ϕ(v). Note that a morphism ϕ : A + → S is determined by its image on the letters of A. Since A is finite and since there are only finitely many (finite) semigroups in V of size ≤ n, there are only finitely many such morphisms. It follows that the congruence relation ∼ n has finite index. Thus, A + is covered by the finitely many ∼ n -congruence classes, which are open balls of radius < 2 -n .

Recall that every S ∈ V is endowed with the discrete topology. The definition of d V makes every morphism ϕ :

A + → S ∈ V uniformly continuous: for every u, v ∈ A + , if d V (u, v) < 2 -|S| , then r V (u, v) > |S|, so S does not separate u and v, which means that ϕ(u) = ϕ(v).
From the universal property of the completion F V (A) of A + , it follows that each of the morphisms ϕ has a unique continuous extension φ : F V (A) → S. To be precise, the extension φ is defined as follows: for x ∈ F V (A), let (x n) n be a Cauchy sequence in the equivalence class of x. Then φ(x) = lim n→∞ ϕ(x n) n .

It follows from the fact that d V is an ultrametric on A + that multiplication on A + is also uniformly continuous. For the same reason as above, we then have that multiplication on F V (A) is uniquely defined and continuous. Let x, y ∈ F V (A), and (x n) n , (y n) n be Cauchy sequences in the equivalence classes of x resp. y.

Then x • y = lim n→∞ (x n • y n).
Let us see that the extensions φ : F V (A) → S are also morphisms. Consider the product φ(x) • φ(y). This is by definition lim

n→∞ ϕ(x n) n • lim n→∞ ϕ(y n) n , which is by continuity of the multiplication equal to lim n→∞ (ϕ(x n) n • ϕ(y n) n). Using that ϕ is a morphism gives lim n→∞ (ϕ(x n • y n) n). By definition, this is φ(lim n→∞ (x n • y n) n).

And by definition of the multiplication on

F V A, this is φ(x • y).
For L ⊆ F V (A), we denote by L its topological closure in F V (A). The following lemma shows a way to describe closures of V-recognizable languages.

Lemma 2.14. Let ϕ : A + → S ∈ V and K = ϕ -1 (P) for P ⊆ S. Then K = φ-1 (P).

Proof. Since finite union commutes with inverse image and with closure, we have

K = p∈P ϕ -1 (p), K = p∈P ϕ -1 (p) = p∈P ϕ -1 (p), and p∈P φ-1 (p) = φ-1 (P). It thus suffices to show that ϕ -1 (p) = φ-1 (p).
The semigroup S is endowed with the discrete topology, thus {p} is a clopen set. Since

φ is continuous, φ-1 (p) is clopen. Also, ϕ -1 (p) ⊆ φ-1 (p), so ϕ -1 (p) ⊆ φ-1 (p) = φ-1 (p). Conversely, let u ∈ φ-1 (p). For every n ≥ |S|, pick a word u n such that d V (u, u n) < 2 -n . These words exist since, by construction, A + is dense in F V (A). Since n ≥ |S|, ϕ(u n) = p.
Thus all words u n are in ϕ -1 (p), and it follows that u ∈ ϕ -1 (p).

For K ⊆ A + , we let K c = A + \ K and (K) c = F V (A) \ K. Corollary 2.15. If K is V-recognizable, then K c = (K) c . If, furthermore, L ⊆ A + is such that L ⊆ K, then L ⊆ K.
Proof. For the first statement, let ϕ : A + → S ∈ V, with K = ϕ -1 (P). By Lemma 2.14,

K c = φ-1 (S \ P) = F V (A) \ φ-1 (P) = (K) c . To prove the second statement, one can use the first statement to see that L ∩ K c ⊆ L ∩ K c ⊆ K ∩ K c = K ∩ (K) c = ∅.
Proposition 2.16 (follows from [Alm94, Theorem 3.6.1]). Closures of V-recognizable languages form a basis of the topology of F V (A).

Proof. By Lemma 2.14, the closure of a V-recognizable language is of the form φ-1 (P) for some continuous morphism φ : F V (A) → S ∈ V. As S is endowed with the discrete topology, φ-1 (P) is open. To show that these open sets indeed form a basis of the topology of F V (A), we will show that for every element x of every open ball B(u, 2 -n) of radius 2 -n centered at u, there is a set O x n that is a closure of a V-recognizable language and is such that

x ∈ O x n ⊆ B(u, 2 -n). To this end, define O x n = α-1 n (α n (x))
, where α n is the product of all morphisms ϕ :

A + → S ∈ V for |S| ≤ n. As V is a variety, α n is a morphism into a semigroup of V. By Lemma 2.14, this means that O x n is the closure of the V-recognizable language α -1 n (αn (x)). By construction, O x n is an open set containing x. To show that it is furthermore contained in B(u, 2 -n), let y ∈ O x n .
Then, αn (y) = αn (x), thus for all morphisms φ :

F V (A) → S ∈ V such that |S| ≤ n, φ(y) = φ(x). This gives that d V (y, x) < 2 -n . We already had d V (x, u) < 2 -n , thus it follows from Lemma 2.12 that d V (y, u) < 2 -n . It follows that O x n ⊆ B(u, 2 -n).
We are now ready to prove the following theorem that relates the separation problem for a variety V to the intersection of topological closures with respect to F V (A).

Theorem 2.17

([Alm99, Lemma 3.2]). The languages L 1 , L 2 ⊆ A + are V-separable if and only if L 1 ∩ L 2 = ∅,
where the topological closures are taken in the free pro-V semigroup

F V (A). Proof. Suppose first that L 1 , L 2 are V-separable. Let K be a V-recognizable language such that L 1 ⊆ K and L 2 ∩ K = ∅. Then, L 1 ∩ L 2 ⊆ K ∩ K c . By Corollary 2.15, this is equal to K ∩ (K) c = ∅. Conversely, if L 1 ∩ L 2 = ∅, then every u ∈ L 1 belongs to the open set (L 2) c
, so by Proposition 2.16, there exists some V-recognizable language K u whose closure O u contains u, and that is such that

O u ⊆ (L 2) c . Therefore L 1 ⊆ u∈L 1 O u .
The space F V (A) is compact by Proposition 2.13, and L 1 is a closed set in this compact space. Thus, L 1 itself is compact and has a finite cover

O u 1 ∪ • • • ∪ O un . Then K = K u 1 ∪ • • • ∪ K un is V-recognizable. We have L 1 ⊆ K, so by Corollary 2.15, L 1 ⊆ K. Also, K ⊆ O u 1 ∪ • • • ∪ O un ⊆ (L 2) c ⊆ L c 2 .
To show, for a given variety V, that testing whether L 1 ∩ L 2 = ∅ in the free pro-V semigroup is decidable, one usually proves two parts. First, one shows that it is sufficient to compute the closures in a countable subsemigroup of the free pro-V semigroup. Then, one develops techniques to compute the closures in this subsemigroup. This approach has been fruitful and works, for example, for the variety of finite groups, as was conjectured in [START_REF] Pin | A conjecture on the Hall topology for the free group[END_REF]. We will discuss this result for finite groups in more detail in Chapter 3. However, this approach focusing on the intersection of the topological closures of languages in the free pro-V semigroup, in general, does not give any information on how to construct a separator, if it exists.

Combinatorial view: indistinguishable pairs

As we explained in the beginning of Section 2.2, our approach to the separation problem for a class of languages recognized by a variety V is to compute the 2-V-pointlike sets, using elementary combinatorial techniques. A first step to achieve this is to stratify the class of separators from simpler languages to languages that are more and more complicated. Our goal is to show that the separation problem for the full class of separators can be reduced to the separation problem for a restriction of this class.

Usually, a class S of separators comes with a natural parameter k, which is such that fixing this parameter gives a strictly smaller subclass of languages, which we denote by S[k], and which is such that increasing the value of k yields a more expressive class of languages. That is, for all k ∈ N, S[k] ⊆ S[k + 1]. For example, looking at the class K of languages for which membership of a word in a language only depends on the prefix up to a certain length of the word, a natural choice for the parameter along which to stratify this class would be the length of the prefix that is inspected. We will discuss the separation problem for this class in Section 2.3.2.

For other classes of separators, choices of parameters could be, for example, the length of the inspected suffixes, factors or pieces, or the quantifier rank of a formula that defines the language. More in general, one could always take the size of the syntactic monoid of the language as a parameter.

Such a parameter defines a sequence of congruence relations on A * in the following way. For u, v ∈ A * , u ∼ k v ⇔ u and v are not separable by any language from S[k].

For example, if S = K and two words u and v have the same prefix of size k, but not of size k + 1, then u ∼ k v and u ∼ k+1 v.

If the parameter considered is the size of the syntactic monoid of a language, the following equivalence holds for the congruence

∼ k . For u, v ∈ A * , u ∼ k v ⇔ d V (u, v) < 2 -k ,
for d V (u, v) as defined in Section 1.4. As there are only finitely many monoids of size up to k, the congruence relation ∼ k has finite index. This will always be the case when ∼ k is defined from logical or combinatorial properties. Since a language is in S[k] if and only if it is a finite union of ∼ k -classes, S[k] always consists of finitely many languages. Therefore, S[k]-separability is decidable by a brute-force approach.

Note that a language is in S if and only if it is a finite union of ∼ k -equivalence classes for some k ∈ N. It follows that two input languages are S-separable if and only if there exists k ∈ N for which there is no word in the first language that is ∼ k -equivalent to a word from the second language. A priori, this means that to be able to say that two languages are not S-separable, one should check all the infinitely many ∼ k -congruences.

We can work around this difficulty, by letting the ∼ k -congruences induce a relation on a finite set. Recall that we are working with one recognizing device (automaton or monoid) for both input languages. We let a ∼ k -congruence induce a relation on a monoid, or on the set of pairs of states of an automaton, that will express that these monoid elements, or these pairs of pairs of states, determine languages that cannot be distinguished by S[k]. Since both languages are finite unions of languages determined by a monoid element (or a pair of states) in one and the same monoid (or automaton), this relation carries the relevant information about S[k]-separability of the languages.

More precisely, let A = (A, Q, δ) be a finite automaton. For (q 1 , r 1), (q 2 , r 2) ∈ Q 2 , (q 1 , r 1) and (q 2 , r 2) are

S[k]-indistinguishable ⇔ ∃u, v ∈ A * . (q 1 , u, r 1) ∈ δ * , (q 2 , v, r 2) ∈ δ * , u ∼ k v.
Let M be a finite monoid and let ϕ : A * → M be a surjective morphism. Then, for s, t ∈ M , s and

t are S[k]-indistinguishable ⇔ ∃u ∈ ϕ -1 (s), v ∈ ϕ -1 (t). u ∼ k v.
When studying the separation problem for a specific class S, we work either with a monoid or with an automaton, so there will be no ambiguity in the terminology. We usually write I S k for the set of S[k]-indistinguishable monoid elements (so then,

I S k ⊆ M × M), or S[k]- indistinguishable pairs of states (in which case, I S k ⊆ Q 2 × Q 2)
. We say that two monoid elements, or two pairs of states, are S-indistinguishable if they are S[k]-indistinguishable for all k ∈ N. The set of S-indistinguishable monoid elements, or pairs of states, is denoted by I S . This set precisely characterizes which pairs of monoid elements, or which pairs of pairs of states, determine languages that are not S-separable.

Indeed, by definition, S[k]

-indistinguishability for all k implies that there is no language in S that can separate the languages determined by the monoid elements, or by the pairs of states. On the other hand, if there is a k for which the monoid elements, or the pairs of states are not S[k]-indistinguishable, then the saturation, with respect to ∼ k , of one of the languages determined by the monoid elements, or by the pairs of states is an S-separator.

If we work with a monoid, and if the variety corresponding to S is V, it follows from Theorem 2.11 that the set I S is equal to the set of 2-V-pointlike sets.

A drawback of the notion of S[k]-indistinguishability, compared to the sequence of congruences ∼ k on A * , is that it is no longer a congruence relation, as it is no longer transitive. Intuitively, this is clear: if both r, s and s, t are S[k]-indistinguishable monoid elements, this means that there are u, v, v , w ∈ A * , with u ∼ k v and v ∼ k w, and such that u, v, v , w are mapped to r, s, s, t, respectively. If S[k]-indistinguishability were transitive, there would exist words u, v, w mapped to r, s, t respectively, such that v is equivalent to both u and w. But the existence of such a triple is not implied by the fact that r, s and s, t are S[k]-indistinguishable. We will see an example of this in Section 2.3.1.

However, there is an important advantage of this notion over the sequence of congruences ∼ k on A * : the stabilizing behavior. Since we have, for all k ∈ N, that S[k] ⊆ S[k + 1], it follows that for all k ∈ N, ∼ k+1 ⊆ ∼ k . This implies that, for a given monoid or automaton, the following inclusions hold.

I S = n∈N I S n ⊆ . . . ⊆ I S k+1 ⊆ I S k ⊆ . . . ⊆ I S 1 . (2.2) Now we use that the set M × M , resp. Q 2 × Q 2 , in contrast to A * , is finite. By the inclusions from (2.
2), this means that there must be an index for which the sequence (I S k) k∈N stabilizes. That is, there exists κ ∈ N such that for every k ≥ κ, we have I S = I S k .

While the existence of such a κ is immediate from the definitions, computing a bound on κ is a difficult problem. Note that if we establish such a bound (which of course depends on the input languages), then the S-separation problem reduces to the S[κ]-separation problem. The class S[κ] consists of finitely many languages, thus this would already yield decidability of the S-separation problem: one can use a brute force algorithm to test all of these languages. Furthermore, such a bound would imply that the saturation of L 1 , with respect to ∼ κ , is a language from S that separates L 1 from L 2 , in case they are S-separable. We thus obtain a description of a potential separator in terms of this bound.

For the classes that we study in this dissertation, we obtain such a bound by looking at the presence of patterns in the automaton or monoid, which are specific to the class S, and which give us a framework to decompose words. This decomposition should be such that pumping arguments can be applied to it. We then have to show that if there is an S[κ]-indistinguishable pair, there will be S[k]-indistinguishable pairs, for every k ∈ N.

Basic examples

In this section, we illustrate the notions discussed above, by presenting the separation problem for two basic examples: the variety Sl of semilattices, and the variety K of semigroups whose idempotents are left zeros. In the following chapters, we discuss the separation problem for more involved classes of languages.

Example I: Sl

A semigroup S that is idempotent and commutative, i.e. that is such that for all s, t ∈ S, s 2 = s and st = ts, is called a semilattice. The variety of all finite semilattices is denoted by Sl (and it is also known under the name J 1). This variety defines the class of languages that are closed under duplication of letters within a word and under permutation of the letters of a word. Thus, the class of Sl-recognizable languages consists of those languages that can be described purely in terms of their alphabets, that is, those languages that are boolean combinations of languages of the form B * , where B is a subalphabet. For this reason, the Sl-recognizable languages are also called the alphabet-testable languages. The logic that corresponds to this class is FO 1 (<), the fragment of first-order logic in which each formula can use only one variable. The Sl-recognizable languages form a strict subclass of the piecewise testable languages that we will encounter in Chapter 4.

For a language L 1 , the smallest (with respect to inclusion) Sl-recognizable language that contains L 1 exists: it is the language

w∈L 1 v ∈ A * | alph(v) = alph(w) .
The existence of such a smallest potential separator, at first sight, seems to largely simplify the question of the separation problem: to answer the separation problem for L 1 and L 2 , one only has to verify whether this language is disjoint from L 2 . However, as we will see in the end of this section, the complexity of the Sl-separation problem is, surprisingly, much worse than the complexity of the separation problem for more complicated classes of languages that do not admit such a smallest separator. In the chapters to come, we will see examples of such more involved classes for which the complexity of the separation problem is lower.

The following example spells out the Sl-separability for three pairs of languages. Although the separation problem for this example is immediately clear, we elaborate a bit more on the algebraic notions behind this example, as it serves to illustrate that being 2-Sl-pointlike is not a transitive relation. More in general, being 2-V-pointlike is not a transitive relation.

Example 2.18. Let L 1 = {a}, L 2 = {a, b} 2 , L 3 = {b}. Clearly, L 1 and L 3 are Sl-separable (for example by the language a +), while neither (L 1 , L 2) nor (L 2 , L 3) are Sl-separable. The three languages are simultaneously recognized by the semigroup S = {s a , s b , 0}, in which multiplying any two elements gives 0. If ϕ : A + → S sends a to s a and b to s b , then

L 1 = ϕ -1 (s a), L 2 = ϕ -1 (0) and L 3 = ϕ -1 (s b)
. By Theorem 2.11, it follows that {s a , 0} and {s b , 0} must be Sl-pointlike sets, and that {s a , s b } is not. To see this directly, let T be any semigroup in Sl and let τ : S → T be any relational morphism. By definition, there exists t ∈ τ (s a). As T is idempotent, we have

t = t 2 ∈ τ (s a)τ (s a) ⊆ τ (s a s a) = τ (0). Thus, {s a , 0} ⊆ τ -1 (t), i.e. {s a , 0} is a 2-Sl-pointlike set. Similarly, {s b , 0} is a 2-Sl-pointlike set.
To see that {s a , s b }, nevertheless, is not a 2-Sl-pointlike set, consider the semigroup U 1 = {0, 1}, with multiplication given by 0 = 0

• 0 = 0 • 1 = 1 • 0 and 1 = 1 • 1.
Clearly, U 1 is a semilattice. Define the following relational morphism.

τ : S → U 1 s a → {0} s b → {1} 0 → {0, 1}
As τ (s a) ∩ τ (s b) = ∅, it follows that {s a , s b } is not a 2-Sl-pointlike set. Note that this also implies that {s a , s b , 0} is not a 3-Sl-pointlike set.

Complexity of separation by Sl-recognizable languages

We will now analyze the complexity of the separation problem for Sl-recognizable languages. This analysis can also be found in the appendix of [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF]. As we noted before, one can always compute the smallest Sl-recognizable language containing a given regular language. This entails an algorithm to decide whether two regular languages are separable by an Sl-recognizable language. Perhaps surprisingly however, separation by an Sl-recognizable language is computationally harder than, for example, by a piecewise testable language.

Recall that two languages are Sl-separable if and only if they do not contain any words that share the same alphabet. A consequence of the next lemma, therefore, is that even when starting from deterministic finite automata, the separation problem is co-NP-complete for Sl-recognizable languages.

Lemma 2.19. The following problem is NP-complete.

Input:

An alphabet A = {a 1 , a 2 , . . . , a n } and two DFA's A 1 , A 2 over A. Question: Do there exist u ∈ L(A 1) and v ∈ L(A 2) such that alph(u) = alph(v)?

Proof. We will first prove that the problem is NP-hard by giving a reduction from 3-SAT to this problem. A 3-SAT formula is a formula in conjunctive normal form, where each conjunct is the disjunction of at most three variables or negations of variables. The problem of deciding whether there exists a valuation that satisfies a 3-SAT formula is called 3-SAT, and it is well known that this is an NP-complete problem, see for example [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF].

Let ϕ be a 3-SAT formula over the variables {x 1 , . . . , x n }. Define A as the alphabet {x 1 , . . . x n , ¬x 1 , . . . , ¬x n }. Let A 1 be the following automaton.

• • • x 1 ¬x 1 x 2 ¬x 2 x n ¬x n Figure 2.2: The automaton A 1 .
Let A 2 be the serial automaton constructed as follows. For every disjunct d in the i-th clause of ϕ, add an arrow from state i to i + 1, labeled by d. Then concatenate this with a copy of A

1 . For example, if ϕ = (x 1 ∨ x 3 ∨ ¬x 4) ∧ . . . ∧ (x 4 ∨ ¬x 5 ∨ x 2), the automaton A 2 is the following. • • • • • • x 1 x 3 ¬x 4 x 4 ¬x 5 x 2 x 1 ¬x 1 x n ¬x n Figure 2.3: The automaton A 2 , for ϕ = (x 1 ∨ x 3 ∨ ¬x 4) ∧ . . . ∧ (x 4 ∨ ¬x 5 ∨ x 2).
We will show that ϕ is satisfiable if and only if the question mentioned above is answered positively for these A 1 and A 2 .

Suppose ϕ is satisfiable. Then, there is a valuation v : {x 1 , . . . , x n } → {0, 1} such that ϕ evaluates to 1 under v.

Define u := y 1 • • • y n , with y i = x i if v(x i) = 1, and y i = ¬x i if v(x i) = 0. In each of the k clauses of ϕ, there is at least one disjunct d for which v(d) = 1. Define v := w 1 • • • w k u
, where w i is any one of the disjuncts in the i-th clause that is evaluated to 1. Now, u ∈ L(A 1), v ∈ L(A 2), and by soundness of the valuation function, alph(u) = alph(v).

On the other hand, suppose that for these A 1 and A 2 , there are

u ∈ L(A 1), v ∈ L(A 2) with alph(u) = alph(v)
. By construction of A 1 , for every i, alph(u) contains either x i or ¬x i . By construction of A 2 and since alph(u) = alph(v), we have that v = wu, for some w, for which alph(w) ⊆ alph(u). Define the valuation

v : {x 1 , . . . x n } → {0, 1} x i → 1 if x i ∈ alph(u) x i → 0 else
Now v sends all variables occurring in w to 1, which gives that ϕ evaluates to 1 under v. Thus, we have shown that the problem is NP-hard.

Furthermore, to see that the problem is in NP, we can first guess the alphabet C that the words u and v will use, guess the order of the first occurrences of each of these letters in u, and similarly guess this order for v. Verifying whether there exist such u ∈ L(A 1), v ∈ L(A 2) can clearly be performed in polynomial time: this now amounts to intersecting A 1 with a DFA A u that accepts all words over C that respect the order of the first occurrences of the letters as guessed for u, and similarly, intersecting A 2 with A v that is defined analogously. Now, the guess leads to a positive answer if and only if both intersections are nonempty.

Since the question in the previous lemma is answered positively if and only if the languages are not Sl-separable, we obtain the following corollary.

Corollary 2.20. It is a co-NP-complete problem to decide whether two regular languages, defined by two deterministic finite automata, are Sl-separable.

Example II: K

We will now look at a variety for which, contrary to the usual case, the free pro-V semigroup is easy to describe. First, we discuss the topological view on the separation problem for this variety. This discussion can also be found in [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF]. We then present an approach to solve this separation problem using indistinguishable pairs of states.

An element s of a semigroup S is a left zero if, for all t ∈ S, st = s. The variety of finite semigroups S in which all idempotents are left zeros is denoted by K. The class of languages that are K-recognizable consists of the finite boolean combinations of languages of the form uA * , for a finite word u. One can verify that these coincide with the languages of the shape XA * ∪ Y , where X and Y are finite subsets of A + . Because membership in this class can be tested by inspecting the set of prefixes up to a certain length, the K-recognizable languages are also called the prefix-testable languages.

Computing the intersection of the closures in F

K (A)
Since K is a variety, Theorem 2.17 gives that testing whether two languages are K-separable can be done by checking that their topological closures, in the free pro-K semigroup F K (A), have a nonempty intersection. It turns out that for the variety K, this profinite semigroup is easy to describe (see [Alm94, Section 3.7]). It is A + ∪ A ∞ , where A ∞ denotes the set of right infinite words over A. Multiplication in this semigroup is defined as follows. Infinite words are left zeros (v

• w = v if v ∈ A ∞)
, and multiplication on the left by a finite word is the usual concatenation (v

• w = vw if v ∈ A +).
Finally, a sequence converges -to a finite word u if it is ultimately equal to u, -to an infinite word v if for every finite prefix x of v, the sequence ultimately belongs to

x(A + ∪ A ∞).
Thus, by Theorem 2.17, it follows that two disjoint regular languages L 1 , L 2 are not Kseparable if and only if there exists an infinite word v ∈ A ∞ such that for every prefix x of v, there exist

w 1 , w 2 ∈ A * such that xw 1 ∈ L 1 , xw 2 ∈ L 2 .
This can be tested via Büchi automata (an introduction to these automata can be found, for example, in [START_REF] Perrin | Infinite words: automata, semigroups, logic and games[END_REF]). From a given NFA A that recognizes a language L for the sets of initial states I and final states F , one can compute a Büchi automaton recognizing the language of infinite words that belong to the closure of L, as follows:

1. Trim A, by removing all states that cannot be reached from a state in I or from which one cannot reach any state in F . This can be performed in linear time wrt. the size of A, and does not change the language recognized by A.

2. Build the Büchi automaton obtained from the resulting trim automaton by declaring all states accepting.

Let us see that this Büchi automaton indeed recognizes the language of infinite words from the closure of L. Let v ∈ A ∞ be accepted by this Büchi automaton. Since we trimmed the automaton A, there is, for every state in the automaton, a path to some state in F . This means that for every finite prefix x of v, there is a word w x such that x • w x ∈ L. One can thus construct a sequence of elements from L that converges to v. Conversely, suppose there is a sequence in L that converges to an infinite word v. Since every finite prefix of v is part of a path in A, we can build a run for v in the Büchi automaton. Then, the infinite word v will be accepted, since we declared all states accepting.

This construction yields a Ptime algorithm to decide separability by a prefix-testable language: first check that L(A 1) ∩ L(A 2) = ∅. If so, the intersection of the languages of infinite words belonging to the closures of L(A 1) and L(A 2) is empty if and only if the languages are K-separable. This information can be computed by the usual product construction (since all states are accepting) and a test whether this Büchi automaton accepts at least one word. We obtain the following proposition.

Proposition 2.21. One can decide in Ptime, with respect to the sizes of the recognizing automata, whether two languages can be separated by a prefix-testable language.

Computing K-indistinguishable pairs of states

For the variety K, however, one can compute the same information about separability without appealing to infinite words or Büchi automata. We will show this using the concept of K-indistinguishable pairs of states. As explained in Section 2.2.3, we will work with one automaton recognizing both input languages.

An obvious parameter for the class K is the length of the prefixes considered: we say that two pairs of states are ∼ n -equivalent if there are words that share the same prefix of length n and that can be read between the respective pairs of states, or if the languages defined by the pairs of states are not disjoint.

Definition 2.22. Let A = (A, Q, δ) be an NFA, and let (q 1 , r 1), (q 2 , r 2) ∈ Q 2 . Then,

(q 1 , r 1) ∼ n (q 2 , r 2) ⇔ ∃u ∈ A n . ∃v, w ∈ A * . (q 1 , uv, r 1), (q 2 , uw, r 2) ∈ δ * , or ∃u ∈ A <n . (q 1 , u, r 1), (q 2 , u, r 2) ∈ δ * ,
in which case the pairs (q 1 , r 1) and (q 2 , r 2) are called K[n]-indistinguishable. They are called K-indistinguishable if for all n ∈ N, (q 1 , r 1) ∼ n (q 2 , r 2).

The following lemma shows that this notion of K-indistinguishable pairs indeed captures the right information.

Lemma 2.23. Let A = (A, Q, δ) be an NFA. Let (q 1 , r 1), (q 2 , r 2) be pairs of states that determine languages L 1 and L 2 . Then, (q 1 , r 1), (q 2 , r 2) are not K-indistinguishable if and only if L 1 and L 2 are K-separable.

Proof. We use the following notation. For i = 1, 2,

X i,n := u ∈ A n | ∃v ∈ A * . (q i , uv, r i) ∈ δ * , Y i,n := u ∈ A <n | (q i , u, r i) ∈ δ * .
That is, the set X i,n consists of the prefixes of length n occurring in words of L i , and the set Y i,n consists of the words of L i whose length is strictly smaller than n. Note that by definition, (q 1 , r 1), (q 2 , r 2) are not K-indistinguishable if and only if there exists n ∈ N, such that

-X 1,n ∩ X 2,n = ∅, and -Y 1,n ∩ Y 2,n = ∅.
Suppose that (q 1 , r 1), (q 2 , r 2) are not K-indistinguishable. Then, by definition, there exists

n ∈ N such that (q 1 , r 1) ∼ n (q 2 , r 2). This means that X 1,n ∩ X 2,n = ∅ and Y 1,n ∩ Y 2,n = ∅. Since all words in X i,n are of length exactly n, it also follows that X 1,n A * ∩ X 2,n A * = ∅.
Since X 1,n and Y 1,n are finite, the language

X 1,n A * ∪ Y 1,n is K-recognizable and, clearly, it contains L 1 . Note that (X 1,n A * ∪ Y 1,n) ∩ L 2 ⊆ (X 1,n A * ∪ Y 1,n) ∩ (X 2,n A * ∪ Y 2,n).
Clearly, X 1,n A * and Y 2,n are disjoint, as well as Y 1,n and X 2,n A * , as their elements have different length. Thus, (X

1,n A * ∪ Y 1,n) ∩ (X 2,n A * ∪ Y 2,n) = (X 1,n A * ∩ X 2,n A *) ∪ (Y 1,n ∩ Y 2,n), which is empty by assumption. Summing up, X 1,n A * ∪ Y 1,n is disjoint from L 2 , thus this language K-separates L 1 from L 2 .
Now suppose that L 1 and L 2 are K-separable, and let us show that (q 1 , r 1) and (q 2 , r 2) are not K-indistinguishable. In particular, L 1 and L 2 are disjoint. Hence, for all

n ∈ N, Y 1,n ∩Y 2,n = ∅. Let X, Y be finite subsets of A + such that L = XA * ∪ Y separates L 1 from L 2 .
Let n be strictly bigger than the length of the longest word in the finite sets X and Y . Then, since

L 1 ⊆ L, it follows that L 1 ∩ A ≥n ⊆ XA * and that X 1,n A * ⊆ XA * ⊆ L. Suppose there exists u ∈ X 1,n ∩ X 2,n . This means there is v ∈ A * such that uv ∈ L 2 , and that uv ∈ X 1,n A * ⊆ L.
But L 2 ∩ L = ∅, and thus it follows that X 1,n ∩ X 2,n = ∅. Thus, (q 1 , r 1), (q 2 , r 2) are not K-indistinguishable.

In Proposition 2.24, we show that the length of the prefixes that one needs to take into account to decide K-indistinguishability can be bounded using information about the automaton recognizing the input languages. One applies a pumping argument to show that this bound is correct. It follows from Lemma 2.23 that finding the K-indistinguishable pairs of states in this automaton solves the separation problem for all pairs of languages that the automaton recognizes, in particular for the two input languages. These proofs provide an easy example of the method that we will use in later chapters in more complicated contexts.

Proposition 2.24. Let A = (A, Q, δ) be an NFA and let N = |Q| 2 . Then, the pairs of states (q 1 , r 1), (q 2 , r 2) are K-indistinguishable if and only if they are K[N]-indistinguishable.

Proof. As before, we denote the set of prefixes of length n, occurring between q i and r i , by

X i,n . That is, X i,n := u ∈ A n | ∃v ∈ A * . (q i , uv, r i) ∈ δ * .
By definition, the direction from left to right is true.

Suppose that (q 1 , r 1), (q 2 , r 2) are K[N]-indistinguishable. We want to show that they are Kindistinguishable, that is, that they are K[n]-indistinguishable, for every n ∈ N. The fact that (q 1 , r 1), (q 2 , r 2) are K[N]-indistinguishable means that there exist u ∈ A N and v, w ∈ A * such that (q 1 , uv, r 1), (q 2 , uw, r 2) ∈ δ * , or there exists u ∈ A <N such that (q 1 , u, r 1), (q 2 , u, r 2) ∈ δ * . In the second case, the pairs are clearly K-indistinguishable. In the first case, there is u =

u 1 • • • u N ∈ X 1,N ∩ X 2,N .
Then the following paths exist in A.

q 1 = q 0 1 u 1 -→ q 1 1 u 2 -→ . . . u N -→ q N 1 v r 1 , q 2 = q 0 2 u 1 -→ q 1 2 u 2 -→ . . . u N -→ q N 2 w r 2 .
Consider the pairs (q i 1 , q i 2), for i ∈ {0, . . . , N }. Among these N + 1 = |Q| 2 + 1 pairs, there is at least one pair occurring twice. Thus there exist i, and 0 < k ≤ N -i, such that (q i 1 , q i 2) = (q i+k 1 , q i+k 2). This means that for every n ∈ N, the prefix of length n of the word

u 1 u 2 • • • u i (u i+1 • • • u i+k) n u i+k+1 • • • u N is an element of X 1,n ∩ X 2,n
, since there exist paths in A,

q 1 = q 0 1 u 1 -→ . . . u i -→ q i 1 (u i+1 •••u i+k) n ---- q i+k 1 u i+k+1 ----→ q i+k+1 1 . . . u N -→ q N 1 v r 1 , q 2 = q 0 2 u 1 -→ . . . u i -→ q i 2 (u i+1 •••u i+k) n ---- q i+k 2 u i+k+1 ----→ q i+k+1 2 . . . u N -→ q N 2 w r 2 .
Thus, for every n ∈ N, words can be read between q 1 and r 1 , and between q 2 and r 2 , that have the same prefix of length n. It follows that (q 1 , r 1), (q 2 , r 2) are K[n]-indistinguishable for every n, that is, they are K-indistinguishable.

Thus, besides providing the decidability of the separation problem for K, Proposition 2.24 can also be used to obtain a description of a K-separator, whenever the two languages are K-separable. Namely, the saturation of one of the languages with respect to the congruence relation

∼ |Q| 2 , denoted by [L 1] ∼ |Q| 2 , is a K-separator.
It follows from the proof of Lemma 2.23 that a saturation with respect to the K[n]-indistinguishability relation is easy to compute, and

that [L 1] ∼ |Q| 2 is equal to X 1,|Q| 2 A * ∪ Y 1,|Q| 2 .
In general, however, providing an alternative description of such a saturation is a difficult problem.

The relation between this combinatorial approach and the topological approach previously described is the following. Note that an element that is in the intersection denoted above as X 1,N ∩X 2,N , by a pumping argument, gives rise to a sequence of pairs of words whose common prefix keeps growing. This leads to an infinite word in the intersection of the closures of the two languages. On the other hand, an infinite word occurs in the intersection of the closures if there is such a sequence. It is clear that in this case, for every n ∈ N, X 1,n ∩ X 2,n = ∅.

Chapter 3

Group languages

3. In this chapter we study the separation problem for the class of group languages. This class of languages has been extensively studied and many useful results are known from the literature. We can apply some of these results directly to solve the separation problem for this class. For this reason, the approach taken in this chapter differs from the approach described in Section 2.2.3, which we will take in the following chapters.

We show how decidability of the separation problem for group languages follows from a theorem of Ribes and Zalesskiȋ [START_REF] Ribes | On the profinite topology on a free group[END_REF] about closed sets in the free group, which was conjectured in [START_REF] Pin | A conjecture on the Hall topology for the free group[END_REF], and which generalizes a result from [START_REF] Hall | A topology for free groups and related groups[END_REF]. It is shown in [START_REF] Henckell | Ash's type II theorem, profinite topology and Malcev products[END_REF] that this statement is equivalent to a conjecture of Rhodes related to relational morphisms into groups [START_REF] Rhodes | New techniques in global semigroup theory[END_REF], which was solved by Ash in [START_REF] Ash | Inevitable graphs: a proof of the type II conjecture and some related decision procedures[END_REF].

A constructive proof of the theorem of Ribes and Zalesskiȋ was given in [START_REF] Auinger | A constructive version of the Ribes-Zalesskiȋ product theorem[END_REF]. We also show how to use this constructive proof to find a separating group language, in case it exists.

Characterizations of group languages

Group languages are languages whose syntactic semigroup is a group, that is, there is an identity element (e ∈ S such that for all s ∈ S, se = es = s), and for each element s ∈ S, there is an inverse element (s ∈ S such that ss = s s = e). The variety of groups, denoted by G, is defined by the identity x ω y = yx ω = y, usually abbreviated as x ω = 1.

For example, the language a(aa) * is a group language. It is recognized by the finite group Z/2Z, via the morphism ϕ that sends a to 1 (and thus sends aa to 0). Indeed, a(aa

) * = ϕ -1 (1).
There is also a graphical characterization of group languages: the automata recognizing group languages are the so-called permutation automata. Let us first introduce these.

Definition 3.1. An automaton A = (A, Q, δ) is a permutation automaton if, for all a ∈ A, the mapping δ(, a) :

Q → Q is a permutation of Q.
In other words, a permutation automaton is complete, and the transition function is deterministic and co-deterministic.

It is not hard to see that the group languages are precisely the languages recognized by permutation automata. To this end, let ϕ :

A * → G ∈ G and let L = ϕ -1 (P) for some P ⊆ G. Define A = (A, G, δ), with δ(g, a) = g • ϕ(a)
. By construction, A is complete and deterministic. It follows from the cancellative property of groups that it is also codeterministic. Taking I = {1} and F = P , we see that the permutation automaton A recognizes L. On the other hand, if L is recognized by a permutation automaton, we can construct its transition monoid M . By definition, M consists of a set of permutations of Q, closed under multiplication, and where the empty word induces the identity permutation. It is clear that for all m ∈ M , m |Q|!-1 is the inverse of m. It follows that M is a group that recognizes L.

The separation problem for group languages

Applying the result from [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF], which we proved in Theorem 2.17, to the variety of groups gives that two regular languages over A are G-separable if and only if their closures in the free profinite group F G (A) have an empty intersection. In Theorem 3.6, we will show that for the variety of groups, results from the literature imply that this happens exactly when their closures in the free group (endowed with the topology induced from the free profinite group) have an empty intersection. Furthermore, we will show that as a consequence of a result from [START_REF] Auinger | A constructive version of the Ribes-Zalesskiȋ product theorem[END_REF], a separating group language can be effectively constructed whenever two regular languages are G-separable.

The free group on A, denoted by F G(A), is obtained as follows. Let A be a disjoint copy of A. Then F G(A) is the quotient of (A ∪ A) * , in which each word is reduced by the relations {aa = ε, a = a | a ∈ A ∪ A }. Throughout this section, we endow the free group with the topology induced from the free profinite group. This is the coarsest topology that makes every group morphism from F G(A) onto a finite group (endowed with the discrete topology) continuous.

Every finite group G is a quotient of the free group. We denote the associated canonical morphism by ϕ G : F G(A) → G. Finding a group language that separates two given languages L 1 and L 2 is equivalent to finding a finite group G such that ϕ G (L 1) ∩ ϕ G (L 2) = ∅. The direction from left to right is clear since, by the universal property of the free group, there is a unique extension of a morphism ϕ :

A * → G to the domain F G(A). Conversely, if G is a finite group such that ϕ G (L 1) ∩ ϕ G (L 2) = ∅, then the language ϕ -1 G A * (ϕ G (L 1)
) is recognized by G, contains L 1 and is disjoint from L 2 . Therefore, we also say that the morphism ϕ G , or the group G, separates L 1 and L 2 .

The original result from the literature that we want to use does not explicitly speak about separation, but it speaks about closed sets in the free group. The following lemma shows that there is a relation between these two notions. Lemma 3.2. Let H ⊆ F G(A). Then, H is closed in the free group if and only if for all w ∈ F G(A) such that w / ∈ H, there is a finite group that separates w from H.

Proof. Suppose that for all w / ∈ H, there exists a finite group that separates w from H. That is, there exists

ϕ G : F G(A) → G such that ϕ G (w) / ∈ ϕ G (H). Then ϕ -1 G (ϕ G (w)) ⊆ H c . Thus, H c = w / ∈H {w} = w / ∈H ϕ -1 G (ϕ G (w)).
Since ϕ G is continuous and G is endowed with the discrete topology, it follows that

H c is open, hence H is closed.
On the other hand, suppose that H c is open and let w ∈ F G(A) be such that w / ∈ H. Since the topology on F G(A) is the subspace topology of the free profinite group, it follows from Proposition 2.16 that the closures of group languages, taken in the free group, form a basis for the topology on F G(A). Thus, there exists a set U that is the closure in the free group of a group language, and that is such that w ∈ U ⊆ H c . In a similar way as we proved Lemma 2.14, one can prove that the closures of group languages in the free group are of the shape ϕ -1 (P) for some ϕ : F G(A) → G and P ⊆ G. This means that there exist ϕ :

F G(A) → G and P ⊆ G such that w ∈ ϕ -1 (P) = U ⊆ H c . It follows that ϕ(w) / ∈ ϕ(H).
In [START_REF] Hall | A topology for free groups and related groups[END_REF], Hall proved that every finitely generated subgroup of the free group is closed. By Lemma 3.2, this can be seen as a first separation result for groups. Hall's result can be generalized to the following well-known theorem. We will use this theorem to see that two regular languages are G-separable if and only if their closures in the free group do not intersect. A more general version of this theorem is proved in [START_REF] Ribes | On the profinite topology on a free group[END_REF]. In the following form, this statement was first raised as a conjecture in [START_REF] Pin | A conjecture on the Hall topology for the free group[END_REF]. In [START_REF] Henckell | Ash's type II theorem, profinite topology and Malcev products[END_REF], it is proved that this statement is equivalent to the so-called type II conjecture of Rhodes [START_REF] Rhodes | New techniques in global semigroup theory[END_REF], which was solved by Ash in [START_REF] Ash | Inevitable graphs: a proof of the type II conjecture and some related decision procedures[END_REF].

Theorem 3.3 ([RZ93]). Let
• • • H n .
We want to use Theorem 3.3 to show that two regular languages over A are G-separable if and only if their closures in the free group have an empty intersection. Our approach is to construct, from the input languages, a word w in the free group and a product P of finitely generated subgroups. We want these to be such that the closures in the free group of the original input languages do not intersect if and only if the word does not lie in the product. The alternative formulation of Theorem 3.3 then says that this happens if and only if there exists a finite quotient G of F G(A) for which the canonical morphism separates the word and the product. We will argue, using the construction of w and P , that this finite group then also separates the input languages. To sum up, we reduce the separability of two languages to the separability of a word and product constructed from these languages. Furthermore, it is shown in [START_REF] Auinger | A constructive version of the Ribes-Zalesskiȋ product theorem[END_REF] how to construct, from the input data, a finite group as described in the alternative formulation of Theorem 3.3, i.e. a finite group that separates a word outside of

H 1 • • • H n from the product H 1 • • • H n .
Applying this construction to the word w and the product P described above will allow us to give a description of a group language separating the original input languages, in case it exists. We refer to the paper [START_REF] Auinger | A constructive version of the Ribes-Zalesskiȋ product theorem[END_REF] for the construction of this finite group and just mention the result here.

Theorem 3.4 ([AS05, Theorem 3.3]). Let w ∈ F G(A) and let H 1 , . . . , H n be finitely generated subgroups of F G(A). If w / ∈ H 1 • • • H n , then a finite group that separates w from H 1 • • • H n can effectively be constructed.
In order to be able to construct, from two regular languages L 1 and L 2 , the word w and the product P with the desired properties (i.e. w / ∈ P ⇔ L 1 ∩ L 2 = ∅), we need to take a closer look at the closure of a regular language in the free group. In the following section, we provide the standard construction for these closures.

Closures in the free group

As observed in [START_REF] Pin | Topologies for the free monoid[END_REF], every regular language (represented by a regular expression or an automaton) can effectively be written as a finite union of simple sets, which are sets of the form

L * 0 u 1 L * 1 • • • u n L * n ,
where each u i ∈ A * , and each L i is a regular language over A. As closure always commutes with finite union, it suffices to see how to compute the closures of simple sets.

It is proved in [START_REF] Pin | A conjecture on the Hall topology for the free group[END_REF], that as a consequence of Theorem 3.3 (which was still a conjecture at the time), the closure in the free group of a simple set

L = L * 0 u 1 L * 1 • • • u n L * n is L = L 0 u 1 L 1 • • • u n L n .
Here, L i denotes the subgroup of the free group that is generated by L i . From a theorem of Anissimov and Seifert [START_REF] Anissimov | Zur algebraischen Charakteristik der durch kontext-freie Sprachen definierten Gruppen[END_REF], it follows in particular that if L i is a regular language in A * , the subgroup L i is finitely generated. It is well known (see for example [START_REF] Robert | Formal languages and infinite groups[END_REF]) that one can effectively compute a finite set of generators for L i . This is done using an extension of automata, in which inverse elements can be read by traversing the arrows backwards. We briefly discuss this construction now.

Consider an automaton A = (A, Q, δ), which recognizes a language L * , for I = F = {1}. If A is not deterministic or not co-deterministic, we first transform it into an automaton that is, using a process called Stallings foldings. This is described in [START_REF] Kapovich | Stallings foldings and subgroups of free groups[END_REF], and amounts to collapsing arrows (and their states) that have the same label and that either both leave or both enter the same state.

We can thus assume that A is deterministic and co-deterministic. Now, we allow every arrow in A to be traversed backwards, while reading the inverse of its label. That is, for each (p, a, q) ∈ δ, we also get (q, a -1 , p) ∈ δ. This automaton recognizes L , for I = F = {1}. Now, identify a spanning tree in A with root 1 and with all edges directed away from this root. Consider all arrows (p, a, q) of A that are not part of the spanning tree. By definition of a spanning tree, there exist paths (1, u, p) and (1, v, q), for some u, v ∈ A * in the spanning tree. Define g = uav -1 . We claim that L is generated by the finite set of all such g's.

Clearly, such a g is in L , since it is the label of a path from 1 to 1. For the other direction, let w ∈ L. Then, there is a run from 1 to 1 labeled w. This run can be written as a product of g's, by repeatedly going back to 1. More precisely, decompose w as

w = p 1 a 1 p 2 a 2 • • • p n ,
where the p i 's label edges in the spanning tree, and the a i 's label edges that are not. By definition of a spanning tree, there is only one path from 1 to the state where the arrow labeled a 1 leaves, and it follows that p 1 = u 1 . Similarly, for 1 < i < n, there is only one path in the spanning tree from the state where the arrow labeled a i enters, and the state where the arrow labeled a i+1 leaves. It follows that p i+1 = v -1 i u i+1 . Note that p n goes from the state that a n enters to state 1, and thus is v -1 n . Hence,

w = u 1 a 1 v -1 1 u 2 a 2 v -1 2 • • • u n a n v -1 n = g 1 • • • g n .
Let us illustrate this construction on an example.

Example 3.5. Consider the language L = (abb(ab) * b) * . As we saw above, its closure is abb(ab) * b . The language L itself is recognized by the following automaton A, for I = F = {1}. Note that A is deterministic and co-deterministic. In order to find a finite set of generators for abb(ab) * b , we first identify the following spanning tree in A with root 1 and with all edges directed away from this root. We now look at the arrows that are not in the spanning tree. The one from state 4 to state 3, labeled a, gives rise to the generator abb • a • b -1 a -1 , and the arrow from state 4 to state 1, labeled b, gives rise to the generator abb • b. By the above, abb(ab) * b should be equal to abbab -1 a -1 , abbb . Indeed, it is clear that abbb ∈ abb(ab) * b . Also, abbab -1 a -1 = abbabb • (abbb) -1 ∈ abb(ab) * b , thus abbab -1 a -1 , abbb ⊆ abb(ab) * b . Conversely, for every n, we have that abb(ab) n b = (abbab -1 a -1) n • abbb, and it follows that abb(ab) * b ⊆ abbab -1 a -1 , abbb .

Decidability of G-separability and a construction of a separator

The following theorem uses the result from [START_REF] Ribes | On the profinite topology on a free group[END_REF] to show that the closures in the free group (rather than the closures in the free profinite group) already suffice to test whether two regular languages are G-separable.

Theorem 3.6. Let L 1 and L 2 be regular languages. Then, L 1 and L 2 are G-separable if and only if L 1 ∩ L 2 = ∅, where the topological closures are taken in the free group.

Proof. By Theorem 2.17, two regular languages over A are G-separable if and only if their closures in the free profinite group F G (A) have an empty intersection. This implies that if L 1 and L 2 are G-separable, their closures in the free group, in particular, have an empty intersection. Let us now prove the other direction.

Since every regular language can effectively be written as a finite union of simple sets, it follows from Lemma 2.7, that we can assume that L 1 and L 2 are simple sets. As we saw above, the closures of L 1 and L 2 in the free group, in this case, are

L 1 = L 1,0 u 1 L 1,1 u 2 • • • L 1,n , and
L 2 = L 2,0 v 1 L 2,1 v 2 • • • L 2,m .
We denote L 1,i by I i and L 2,j by J j , so that

L 1 = I 0 u 1 I 1 u 2 • • • I n , and
L 2 = J 0 v 1 J 1 v 2 • • • J m .
From L 1 and L 2 , we define an auxiliary product P of finitely generated subgroups and a specific word w, such that L 1 ∩ L 2 = ∅ if and only if w is outside the auxiliary product. If L 1 ∩ L 2 = ∅, we then have by the alternative formulation of Theorem 3.3, that there is a finite group that separates w from P . We will then proceed by arguing that any group that separates w from P , will also separate L 1 from L 2 .

Define the auxiliary product P as follows.

P := (I 0)(u 1 I 1 u -1 1)(u 1 u 2 I 2 u -1 2 u -1 1) • • • (u 1 • • • u n I n u -1 n • • • u -1 1)(u 1 • • • u n J m u -1 n • • • u -1 1) (u 1 • • • u n v -1 m J m-1 v m u -1 n • • • u -1 1) • • • (u 1 • • • u n v -1 m • • • v -1 1 J 0 v 1 • • • v m u -1 n • • • u -1 1).
This is a product of conjugated subgroups, each of which is indicated by brackets. A conjugated finitely generated subgroup is again finitely generated, for example by the conjugated generators of the original subgroup. Thus, P is a product of finitely generated subgroups.

Clearly,

P = I 0 u 1 I 1 u 2 • • • I n-1 u n I n • J m v -1 m J m-1 v -1 m-1 • • • J 2 v -1 2 J 1 v -1 1 J 0 • v 1 • • • v m u -1 n • • • u -1 1 .
Note that

1 / ∈ I 0 u 1 I 1 u 2 • • • I n • J m • • • v -1 2 J 1 v -1 1 J 0 ⇔ v 1 • • • v m u -1 n • • • u -1 1 / ∈ P. (3.1) Recall that L 1 = I 0 u 1 I 1 u 2 • • • I n and L 2 = J 0 v 1 J 1 v 2 • • • J m .
We also have the following equivalence,

L 1 ∩ L 2 = ∅ ⇔ 1 / ∈ I 0 u 1 I 1 u 2 • • • I n • J m v -1 m • • • v -1 2 J 1 v -1 1 J 0 , (3.2)
as can be seen as follows. First, suppose there is x ∈ L 1 ∩ L 2 . Then, there exist j j ∈ J j , for j = 0, . . . , m, such that

x = j 0 v 1 j 1 • • • v m j m . Thus, x -1 = (j 0 v 1 j 1 • • • v m j m) -1 , which is in J m v -1 m • • • J 1 v -1 1 J 0 . Then, indeed, 1 = xx -1 ∈ I 0 u 1 I 1 u 2 • • • I n • J m v -1 m • • • J 1 v -1 1 J 0 .
Conversely, suppose that 1

∈ I 0 u 1 I 1 u 2 • • • I n • J m v -1 m • • • J 1 v -1 1 J 0 .
Then, there exist i i ∈ I i , for i = 0, . . . , n, and j j ∈ J j , for j = 0, . . . , m, such that

1 = i 0 u 1 i 1 u 2 • • • i n • j m v -1 m • • • j 1 v -1 1 j 0 .
Then,

j 0 v 1 j 1 v 2 • • • j m = i 0 u 1 i 1 u 2 • • • i n , thus L 1 ∩ L 2 = ∅.
Combining (3.1) and (3.2) yields the following equivalence,

L 1 ∩ L 2 = ∅ ⇔ v 1 • • • v m u -1 n • • • u -1 1 / ∈ P. Assume that L 1 ∩ L 2 = ∅.
Then, it follows from the alternative formulation of Theorem 3.3 that there exists a finite group G with canonical morphism ϕ :

F G(A) → G that separates the word w := v 1 • • • v m u -1 n • • • u -1
1 from the product P . Claim. The morphism ϕ : F G(A) → G, which separates w from P , also separates the language L 1 from the language L 2 .

To prove this claim, suppose there is x ∈ ϕ(L 1) ∩ ϕ(L 2). In particular, x ∈ ϕ(L 1) ∩ ϕ(L 2). This means that there exist i i ∈ I i , for i = 0, . . . , n, and j j ∈ J j , for j = 0, . . . , m, such that

ϕ(i 0 u 1 i 1 • • • u n i n) = ϕ(j 0 v 1 j 1 • • • v m j m).
The following element is in ϕ(P)

ϕ(i 0 u 1 i 1 • • • u n i n • j -1 m v -1 m • • • v -1 1 j -1 0 • v 1 • • • v m u -1 n • • • u -1 1) = ϕ(i 0 u 1 i 1 • • • u n i n) • ϕ(j -1 m v -1 m • • • v -1 1 j -1 0) • ϕ(v 1 • • • v m u -1 n • • • u -1 1) = ϕ(i 0 u 1 i 1 • • • u n i n) • ϕ(j 0 v 1 j 1 • • • v m j m) -1 • ϕ(v 1 • • • v m u -1 n • • • u -1 1). Since ϕ(i 0 u 1 i 1 • • • u n i n) = ϕ(j 0 v 1 j 1 • • • v m j m), this gives that ϕ(v 1 • • • v m u -1 n • • • u -1 1) = ϕ(w) ∈ ϕ(P),
which is a contradiction. Hence, ϕ : F G(A) → G indeed separates the languages L 1 and L 2 (and gives ϕ -1 G A * (ϕ G (L 1)) as a separating group language), which proves the claim. Thus, if L 1 ∩ L 2 = ∅, where the topological closures are taken in the free group, L 1 and L 2 are G-separable, and a group language separating them can effectively be constructed.

Since the closure of a regular language in the free group can be computed, we obtain the following corollary.

Corollary 3.7. It is decidable whether two given regular languages are G-separable.

Remark. For two G-separable languages L 1 and L 2 , we obtain a description of a G-separator from [START_REF] Auinger | A constructive version of the Ribes-Zalesskiȋ product theorem[END_REF]. Indeed, we saw in the claim in the proof of Theorem 3.6 that any finite group that separates the word w and the product P , as constructed from L 1 and L 2 , will also separate L 1 and L 2 . If L 1 and L 2 are G-separable, then applying Theorem 3.4 to this w and P therefore yields a finite group that separates L 1 and L 2 .

Closures in the free monoid

One can also endow the free monoid A * with the topology induced from the free profinite group. This topology on the free monoid was introduced in [START_REF] Reutenauer | Une topologie du monoïde libre[END_REF][START_REF] Reutenauer | Sur mon article: "Une topologie du monoïde libre[END_REF]. It is the coarsest topology that makes every monoid morphism from A * onto a finite group (endowed with the discrete topology) continuous. One can wonder whether a similar statement as Theorem 3.6 still holds when the topological closures are taken in the free monoid. In Example 3.8, we will show that this is not the case: there exist languages for which the closures in the free monoid do not intersect, while the closures in the free group do intersect.

The closure in the free monoid of a regular language L, denoted by cl(L), is cl(L) = L ∩ A * , where L, as before, denotes the closure in the free group. For a simple set L, this means that

cl(L) = L 0 u 1 L 1 • • • u n L n ∩ A * .
The following example shows that there exist languages for which the closures in the free monoid do not intersect, while the closures in the free group do intersect. The construction from [START_REF] Robert | Formal languages and infinite groups[END_REF] gives that L 1 = ab * aa b = aba -1 , aaa b.

For both L 1 and L 2 , we have that cl(L i) = L i . This is not always the case, but is a consequence of the fact that the minimal automata of L 1 and L 2 are deterministic and co-deterministic. See for example [START_REF] Reutenauer | Une topologie du monoïde libre[END_REF].

Note that cl(L 1) ∩ cl(L 2) = (ab * aa) * b ∩ (abb(ab) * b) * = ∅. One way to see this, is from the fact that (ab * aa) * b ∩ (ε ∪ A * bb) = ∅, while (abb(ab) * b) * ⊆ ε ∪ A * bb. However, their closures in the free group are not disjoint. Indeed, the element aba

-1 b is in L 1 , but also in L 2 , since aba -1 b = (abbab -1 a -1) -1 • abbb.
Hence, an empty intersection of the closures of two languages in the free monoid does not imply that the intersection of their closures in the free group is empty.

Chapter 4

Piecewise testable languages In this chapter, which is based on the papers [RZ13, PvRZ13b, CMM + 14], we study the separation problem for the class of piecewise testable languages. This class was first introduced in [START_REF] Simon | Hierarchies of events with dot-depth one[END_REF], and consists of those languages for which membership of a word in the language is determined by the pieces, or scattered subwords, of the word up to a certain length.

In terms of logic, this class can be defined as the fragment of first-order logic that consists of all formulas that are boolean combinations of formulas that have a quantifier prefix of existential quantifiers, and do not use any other quantifiers. We explain this in Section 4.1.1. This class is thus in one of the lower levels of the quantifier alternation hierarchy for first-order logic. However, it is still a challenging class to study, and has indeed been extensively studied in the last decades.

It has been shown in [START_REF] Almeida | The pseudovariety J is hyperdecidable[END_REF][START_REF] Almeida | Pointlike sets with respect to R and J[END_REF] that the variety corresponding to this class has computable pointlike sets, which yields that the separation problem is decidable. In [START_REF] Almeida | The pseudovariety J is hyperdecidable[END_REF], an algorithm to decide the separation problem was given. This algorithm runs in polynomial time with respect to the size of the automaton, and exponential time with respect to the alphabet. This approach only gives a yes/no answer.

Our motivation for studying the separation problem for this class, while it was already known to be decidable, was to find a combinatorial proof of the decidability, that does not use any profinite theory. Also, we wanted to obtain a description of a potential separator, rather than just a yes/no answer to the problem. We obtained these results by computing, from the input languages, a bound on the length of the pieces that are relevant for separability. This gives a description of a separator, if it exists. Furthermore, we exhibit forbidden patterns in the automaton recognizing the input languages. We show that certain paths of the same shape witness non-separability. This approach yields a better complexity result than the approach from [AZ97]: we obtain an algorithm that runs in polynomial time with respect to both the size of the automaton and the size of the alphabet.

We also provide an alternative combinatorial method to prove decidability of the separation problem, which uses Simon's Factorization Forest theorem. This method does not work by bounding the parameter (and does not give a description of a potential separator), but it works by showing that languages that are not separable contain sequences of words of a similar shape. For regular languages, these sequences give again the forbidden patterns on the automaton. However, as observed very recently in [START_REF] Czerwiński | A note on decidable separability by piecewise testable languages[END_REF], this method also gives a criterion for non-separability of input languages that are not regular.

Recently, Czerwiński et. al. [START_REF] Czerwiński | Efficient separability of regular languages by subsequences and suffixes[END_REF] studied the separation problem for piecewise testable languages out of interest in applications in database theory. In this paper, an algorithm to decide separability by piecewise testable languages is also provided, with the same complexity, using different proof techniques. A bound on the length of the relevant pieces is not provided in this paper. Very recently, a construction to build a separating piecewise testable language from a finite so-called alternating tower was provided in [START_REF] Holub | On upper and lower bounds on the length of alternating towers[END_REF], as well as a bound on the length of the longest such tower in case the languages are separable.

In Section 4.1, we introduce the class of piecewise testable languages. We present our approach and results to the separation problem for this class in Section 4.2. Finally, in Section 4.3, we discuss the complexity of the algorithm that follows from our approach.

Characterizations of piecewise testable languages

Logical characterization

The class Σ 1 (<) is the class of FO(<)-formulas of the form

∃x 1 . . . ∃x k . ϕ(x 1 , . . . , x k), (4.1)
where x 1 , . . . , x k are first-order variables and where ϕ is quantifier-free. In the formula ϕ, the only predicates allowed are the linear order < and the alphabetical predicates. See also Section 1.5 for more information about first-order logic interpreted on words. This class is given the name Σ 1 (<) since only one block of the same quantifiers is allowed (there is no alternation between different types of quantifiers, hence the '1'), and the formulas start with a block of existential quantifiers (hence the 'Σ').

The class of all boolean combinations of Σ 1 (<)-formulas is denoted by BΣ 1 (<). The rank of a BΣ 1 (<)-formula is the size of the largest block of quantifiers present in the formula. For

CHARACTERIZATIONS OF PIECEWISE TESTABLE LANGUAGES

instance, the Σ 1 (<)-formula in (4.1) has rank k.

Formulas in BΣ 1 (<) can express the presence or absence of scattered subwords in words. We call these scattered subwords pieces, that is, we say that a word u is a piece of a word v ∈ A * , denoted by u v, if there exist letters a 1 , . . . , a k ∈ A such that

u = a 1 • • • a k , and v ∈ A * a 1 A * • • • a k A * .
For instance, ab is a piece, of size (or length) 2, of bbaacba. The language

A * a 1 A * • • • a k A * is the set of all words of which a 1 • • • a k is a piece, that is, the set {w ∈ A * | a 1 • • • a k w}.
We call it a piece language, and we call k its width. This language is defined by the following Σ 1 (<)-formula of rank k,

∃x 1 . . . ∃x k . i<k (x i < x i+1) ∧ i≤k a i (x i) . (4.2)
On the other hand, not every Σ 1 (<)-formula defines a piece language. Consider for example the following Σ 1 (<)-formula,

∃x 1 ∃x 2 ∃x 3 ∃x 4 . x 1 < x 2 ∧ x 3 < x 4 ∧ a(x 1) ∧ b(x 2) ∧ c(x 3) ∧ ¬a(x 4) , which, if A = {a, b, c}, defines the language (A * aA * bA * ∩A * cA * bA *)∪(A * aA * bA * ∩A * cA * cA *).
However, every Σ 1 (<)-formula defines a combination (using union and intersection) of piece languages. To see this, one can first eliminate negations inside the quantifier free part of the Σ 1 (<)-formula, by replacing ¬(x < y) by y ≤ x and ¬a(x) by b =a b(x). Then put the quantifier-free formula ϕ in disjunctive normal form.

It follows that every BΣ 1 (<)-formula defines a boolean combination of piece languages. One can verify that starting from a BΣ 1 (<)-formula of rank k, one gets a boolean combination of piece languages of width at most k.

We write w k w if every Σ 1 (<)-formula of quantifier rank k that is satisfied by w is also satisfied by w . Equivalently, w k w if every piece of size at most k of w is also a piece of w .

Clearly, for each k, the relation k is a preorder, and it is compatible with concatenation: if u k u and w k w , then uw k u w . The equivalence relation ∼ k , induced by k , is defined as w ∼ k w ⇔ w k w and w k w.

Thus, w ∼ k w when w and w have the same pieces of size up to k. Clearly, the equivalence relation ∼ k is a congruence and it has finite index, since there are only finitely many pieces of size k or less.

It is easy to see that a language can be defined by a BΣ 1 (<)-formula of rank k if and only if it is a union of ∼ k -classes. These observations give the following well-known statement.

Lemma 4.1. Let L be a language and let k ∈ N. Then, the following properties are equivalent.

(1) L is defined by a BΣ 1 (<)-formula of rank at most k,

(2) L is a boolean combination of piece languages of width at most k,

(3) L is a union of ∼ k -classes.

Definition 4.2. A language L is k-piecewise testable (PT[k]) if it satisfies the three equivalent properties of Lemma 4.1, and is piecewise testable (PT) if it is k-piecewise testable for some k ∈ N.

Note that a PT[k]-language is a union of ∼ k -classes. The original definition of piecewise testable languages, provided in [START_REF] Simon | Hierarchies of events with dot-depth one[END_REF], was actually in terms of unions of ∼ k -classes. Note that for a language L, there is always a smallest (with respect to inclusion) PT[k]-language that contains L, namely the language

[L] k := {w ∈ A * | ∃u ∈ L. u ∼ k w}.
It is easy to see that every finite language is PT. This follows from the fact that the ∼ k -class of a word whose length is strictly smaller than k only contains this word. A finite language is thus a union of ∼ k -classes for some k strictly greater than the length of the longest word in the language.

This implies that, in contrast to PT[k], there is not always a smallest PT language that contains L. Indeed, as the class PT is closed under boolean operations, removing one word from a PT language yields again a PT language, and so on.

For example, let L = (ab) * . Let us first see that this language itself is not PT. For every k, the word (ab) k ∈ L contains every possible piece of length k. The same holds, for example, for (ba) k , but this word is not in L. Therefore, L cannot be a union of ∼ k -classes for any k, thus L is not piecewise testable. Now consider a PT language that contains L. It is a PT[k]-language for some k, and therefore should, amongst other ∼ k -equivalent words, also contain (ba) ≥k for this value of k. Increasing k gives a smaller and smaller PT language that still contains L.

Algebraic characterization

The class of piecewise testable languages is characterized algebraically by Simon's theorem [START_REF] Simon | Piecewise testable events[END_REF]. Let us briefly recall the relation ∼ J , which is one of Green's relations. Let M be a monoid and let s, t ∈ M . Then, s ∼ J t ⇔ there exist u, v, w, x ∈ M, such that s = utv and t = wsx.

A monoid M is J -trivial when, for all s, t ∈ M , s ∼ J t implies that s = t. That is, when the relation ∼ J is equal to the equality relation. Clearly, this property can be decided for a given finite monoid. The following theorem thus provides an effective characterization, and yields decidability of the membership problem for the class PT. There exist many proofs of this result, see for example [Pin84, ST88, Alm91, Klí11].

Theorem 4.3 (Simon's theorem). A language is piecewise testable if and only if its syntactic monoid is J -trivial.

The class of J -trivial monoids is denoted by J. A monoid is in this class if and only if it satisfies the identities u ω = u ω+1 and (uv) ω = (vu) ω , if and only if it satisfies v(uv) ω = (uv) ω = (uv) ω u.

Graphical characterization

In [START_REF] Stern | Complexity of some problems from the theory of automata[END_REF], Stern provided a characterization for the class of piecewise testable languages on the recognizing minimal automaton. From this characterization, an algorithm can be found to decide membership in this class, which runs in polynomial time with respect to the size of the alphabet and the number of states. This algorithm has later been improved in [START_REF] Trahtman | Piecewise and local threshold testability of DFA[END_REF] to obtain a lower polynomial time complexity result.

To state Stern's criterion, we need some notation. Let A = (A, Q, δ) be a DFA. For a state p, the component of p, denoted by C(p), consists of all states accessible from p. That is,

C(p) = {p} ∪ {q | ∃u ∈ A + . (p, u, q) ∈ δ * }.
Stern defines the following order on the states of an automaton, p ≤ q ⇔ q ∈ C(p).

An automaton is called acyclic if there are no loops that visit more than one state. The restriction of A to a subalphabet B ⊆ A is defined by

A B := (B, Q, δ ∩ (Q × B × Q)). Proposition 4.4 ([Ste85, Proposition 1.2]).
Let L be a language, accepted by its minimal automaton A. The language L is piecewise testable if and only if A is acyclic, and, for every subalphabet B ⊆ A, every component in A B has a unique maximal state.

This result yields an algorithm to decide if a language is piecewise testable from its minimal automaton, which runs in polynomial time with respect to the size of the alphabet and the number of states. Note that this result solves the membership problem without using algebra.

Separation by piecewise testable languages

In Section 4.2.1, we define a relation on the set of pairs of states, of which we show in Lemma 4.6 that it captures all the relevant information concerning PT-separability. This relation works on a finite set, and it is therefore a convenient tool for studying the separation problem. The definition of this relation, however, is still very close to the definition of non-PT-separability, as we will see in the proof of Lemma 4.6.

In Section 4.2.2, we will introduce another relation on pairs of states, in terms of patterns occurring in the automaton. We use Sections 4.2.3 and 4.2.4 to show that these two relations are in fact equal, and that we are thus able to use the notion of patterns in order to decide separability. Furthermore, in order to prove the equality between the two relations on pairs of states, we will compute a bound on the size of the pieces that need to be considered to see whether two languages are PT-separable. An alternative method to prove this equality is described in Section 4.2.5. We summarize these results in Section 4.2.6 in Theorem 4.27, a separation theorem for PT. In Section 4.3 we prove that these patterns can be found in Ptime, with respect to the size of the automaton and the size of the alphabet.

PT-indistinguishable pairs of states

We will define a notion of PT-indistinguishable pairs of states. The idea behind the notion of indistinguishable pairs is explained in Section 2.2.3. The idea is the same as we have seen in Section 2.3.2 for the class K. For the class PT, we introduce the following relation on pairs of states of an automaton.

Definition 4.5. Let A = (A, Q, δ) be an NFA, and let (q 1 , r 1), (q 2 , r 2) ∈ Q 2 . Then,

(q 1 , r 1) ≈ k (q 2 , r 2) ⇔ ∃u 1 , u 2 ∈ A * . u 1 ∼ k u 2 , (q 1 , u 1 , r 1) ∈ δ * , (q 2 , u 2 , r 2) ∈ δ * ,
in which case the pairs (q 1 , r 1) and (q 2 , r 2) are called

PT[k]-indistinguishable. They are called PT-indistinguishable if for all k ∈ N, (q 1 , r 1) ≈ k (q 2 , r 2). The subset of Q 2 × Q 2 that consists of all PT[k]-indistinguishable pairs of A is denoted by I PT k [A], or simply, I k [A]. The set of all PT-indistinguishable pairs of A is denoted by I PT [A], or I[A].
By definition, we have

I[A] = k I k [A]
. Since for all k ∈ N, it holds that ∼ k+1 ⊆ ∼ k , we also have ≈ k+1 ⊆ ≈ k , and thus the following inclusions hold,

I[A] = n∈N I n [A] ⊆ . . . ⊆ I k+1 [A] ⊆ I k [A] ⊆ . . . ⊆ I 1 [A].
Note that the set Q 2 × Q 2 is finite, thus there must be an index for which the sequence (I k [A]) k∈N stabilizes. That is, there exists κ ∈ N such that for every k ≥ κ, we have

I[A] = I k [A]
. While the existence of κ is immediate from the definitions, computing a bound on κ is a more difficult problem. We will obtain such a bound in Section 4.2.4, as a byproduct of the proof that there is a certain pattern in the automaton, whenever two pairs of states are PT-indistinguishable. This bound depends on the number of states in the automaton recognizing the input languages and the size of the alphabet A.

Because of the connection between PT-separability and PT-indistinguishable pairs, stated in Lemma 4.6, computing a stabilization index κ is of particular interest when studying the separation problem. Indeed, we will see in Theorem 4.27 that every two languages recognized by A that are PT-separable are already PT[κ]-separable.

The following lemma shows that the PT-indistinguishable pairs defined above indeed capture the right information about PT-separability.

Lemma 4.6. Let A = (A, Q, δ) be an NFA. Let (q 1 , r 1), (q 2 , r 2) be pairs of states that determine languages L 1 and L 2 . Then, for all k ∈ N, (q 1 , r 1), (q 2 , r 2) are PT[k]-indistinguishable if and only if L 1 and L 2 are not PT[k]-separable. Furthermore, (q 1 , r 1), (q 2 , r 2) are PTindistinguishable if and only if L 1 and L 2 are not PT-separable.

Proof. Suppose (q 1 , r 1), (q 2 , r 2) are PT[k]-indistinguishable. Then, there are u, v ∈ A * such that u ∼ k v, (q 1 , u, r 1) ∈ δ * and (q 2 , v, r 2)

∈ δ * . Since a PT[k]-language is a union of ∼ k - classes, a PT[k]-language L that separates L 1 from L 2 must contain [L 1] k . It follows that L ∩ L 2 = ∅,
] k ∩ L 2 = ∅. This means there are u ∈ L 1 , v ∈ L 2 such that u ∼ k v, thus (q 1 , r 1), (q 2 , r 2) are PT[k]-indistinguishable.
The second statement immediately follows from the first statement.

Thus, Lemma 4.6 shows that it is enough to compute the set I[A] of PT-indistinguishable pairs to decide PT-separability for two languages recognized by A. In the following sections, we show how to obtain this set by analyzing the graph of A. In [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF], we also studied the graph of A in order to decide PT-separability. An important ingredient of our proofs there was Simon's Factorization Forest theorem [START_REF] Simon | Factorization forests of finite height[END_REF]. We discuss the approach taken in [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF] as an intermezzo in Section 4.2.5.

In the following sections, we will more or less follow the proof technique of [START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF] and only use pumping arguments. This approach is also described in [CMM + 14] under the name of NFA graph algorithm. In that paper, we also provide two other ways to compute the set I[A]: we present an algorithm based on games, and a top-down fixpoint algorithm that starts with all pairs in Q 2 × Q 2 and removes pairs until a fixpoint is reached and only pairs in I[A] remain.

Common patterns

We will now define another relation on pairs of states, based on common patterns occurring in the automaton. In Sections 4.2.3 and 4.2.4, we will prove that this relation is actually equal to the relation of being PT-indistinguishable. By Lemma 4.6, this means that we are able to capture non-PT-separability using these patterns in the automaton. Furthermore, in Section 4.3, we will show that the pairs having a common pattern can be found in Ptime with respect to the size of the automaton and the size of the alphabet.

Definition 4.7. Let A be an NFA over A. For u 0 , . . . , u p ∈ A * and nonempty subalphabets B 1 , . . . , B p ⊆ A, let u = (u 0 , . . . , u p) and B = (B 1 , . . . , B p). We call (u, B) a factorization pair . Let q and r be states of A. A (u, B)-path between q and r is a path of the form shown in Figure 4.1. If (q, r) has a (u, B)-path, then it is clear that {w | q w --→ r} contains a language of the form

q r u 0 ⊆ B 1 ⊆ B 1 u 1 u p-1 ⊆ B p ⊆ B p u p = B 1 = B p
u 0 (x 1 y * 1 z 1)u 1 • • • u p-1 (x p y * p z p)u p , with alph(x i) ∪ alph(z i) ⊆ alph(y i) = B i .
Definition 4.8. We say that two pairs of states (q 1 , r 1), (q 2 , r 2) have a common pattern if there exists a factorization pair (u, B) such that both (q 1 , r 1) and (q 2 , r 2) have a (u, B)-path.

Example 4.9. Consider the NFA depicted in Figure 4.2, consisting of two parts. The pairs of states (q 1 , r 1), (q 2 , r 2) have a common pattern, since they both have a (u, B)-path, for u = (ε, c, ε) and B = ({a, b}, {a}). A common pattern for (q 1 , r 1) and (q 2 , r 2): u = (ε, c, ε), B = ({a, b}, {a}).

As mentioned before, we will show in Sections 4.

A common pattern yields PT-indistinguishability

In the following proposition, we prove that if two pairs of states have a common pattern, then they are PT-indistinguishable.

Proposition 4.10. Let A be an NFA, and let (q 1 , r 1) and (q 2 , r 2) be two pairs of states in A that have a common pattern. Then, (q 1 , r 1) and (q 2 , r 2) are PT-indistinguishable.

Proof. Let (u, B) be a common pattern for (q 1 , r 1) and (q 2 , r 2). By definition, {w | q 1 w --→ r 1 } contains a language of the form

u 0 (x 1 y * 1 z 1)u 1 • • • u p-1 (x p y * p z p)u p , with alph(x i) ∪ alph(z i) ⊆ alph(y i) = B i , and {w | q 2 w --→ r 2 } contains a language of the form u 0 (x 1 y 1 * z 1)u 1 • • • u p-1 (x p y p * z p)u p , with alph(x i) ∪ alph(z i) ⊆ alph(y i) = B i .
For all k ∈ N, we define the words

w k = u 0 (x 1 y k 1 z 1)u 1 • • • u p-1 (x p y k p z p)u p , w k = u 0 (x 1 y 1 k z 1)u 1 • • • u p-1 (x p y p k z p)u p .
From the above, it follows that (q 1 , w k , r 1), (q 2 , w k , r 2) ∈ δ * . It remains to show that w k ∼ k w k .

Observe that for all i, x i y k i z i and x i y i k z i both contain precisely all words from B ≤k i as pieces of size up to k. It follows that x i y k i z i ∼ k x i y i k z i . Using that ∼ k is a congruence then yields that w k ∼ k w k .

PT-indistinguishability stems from a common pattern

While the proof of the fact that a common pattern for two pairs of states implies that these pairs are PT-indistinguishable worked in a rather straightforward way by unfolding the Bloops of the pattern, the converse direction, which we will prove in this section, is more difficult.

From the fact that two pairs of states are PT-indistinguishable, we obtain two sequences of words that are pairwise ∼ k -equivalent, for increasing values of k. We then need to mold these words into a similar shape, in order to be able to exhibit a common pattern for the pairs of states. If one would study this problem in a profinite setting, standard compactness arguments would give the existence of two subsequences that are still pairwise ∼ k -equivalent, for increasing values of k, and that converge to a profinite word. However, we want to exhibit a common pattern on the automaton. In [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF], we obtained this result by manually extracting subsequences of words with a similar shape, using Simon's Factorization Forest theorem [START_REF] Simon | Factorization forests of finite height[END_REF]. We will come back to this approach in Section 4.2.5, since it yields an interesting criterion for non-PT-separability of any two input languages.

Here, we choose to first describe the approach of [START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF], which catches the possible shapes in which a word can be molded in the notion of template. Roughly, we show that the templates in which a word fits depend on the pieces of the word. We provide a bound on the length of the pieces that need to be considered in this respect. Finally, from the NFA, we compute a bound such that words that have the same pieces of this length, must fit in the same way in a certain template. It then follows from pumping arguments that we can exhibit a common pattern in the automaton, along which these words are read.

The advantage of the approach that we present here, is that we also obtain a bound on the size of the pieces that are relevant for PT-separability.

In Proposition 4.21, we prove that whenever two pairs of states are PT[k]-indistinguishable for a sufficiently large k, this will be witnessed by a common pattern, for these pairs, in the automaton. First, we introduce some terminology. We fix an arbitrary order a 1 < . . . < a m on A.

< . . . < b n . Let p ∈ N. A word w ∈ B * is called a (B, p)-pattern if w ∈ (B * b 1 B * • • • b n B *) p . Or, in other words, a word w is a (B, p)-pattern if (b 1 • • • b n) p w ∈ B * .
For example, let B = {a, b, c} with a < b < c. The word bbaababccacbabaca is a (B, 2)pattern but not a (B, 3)-pattern.

The following notion, of -template, aims to provide a tool to describe, in terms of properties of words, the (u, B)-paths along which a word could potentially be read. The main idea behind these -templates is that they give a framework along which words can be decomposed in a way that is suitable for pumping arguments. Definition 4.12. An -template is a sequence T = t 1 , . . . , t of length , such that every t i is either a letter from the alphabet A or is a nonempty subset of A. An -template is said to be unambiguous if for all i ∈ {1, . . . , -1}, the pair t i , t i+1 either consists of two letters, or two incomparable sets, or a set and a letter that is not included in the set.

For example, T 1 = a, {b, c}, d, d, {a} is unambiguous, while T 2 = b, {b, c}, d, {a} and T 3 = {a, b}, {b, c}, {c}, a are not.

We want to use the pieces of a word to detect whether, and in which way, the word fits in a certain -template. It turns out that this is only possible for unambiguous -templates. Let us first make the meaning of 'fitting in an -template' more precise in the following definition. Definition 4.13. A word w ∈ A * is a p-implementation of an -template T = t 1 , . . . , t if w can be decomposed as w = w 1 • • • w , such that, for all i, either t i = w i ∈ A or t i = B ⊆ A and w i is a (B, p)-pattern.

For example, abccbbcbdaaa = a • bccbbcb • d • aaa is a 2-implementation of the 4-template T = a, {b, c}, d, {a}, since bccbbcb is a ({b, c}, 2)-pattern and aaa is a ({a}, 2)-pattern.

One word of warning about the notation: although the notations for -template and pimplementation look quite similar, the meaning of the natural number occurring in the notation is very different. The in -template stands for the length of the template, and the p in p-implementation indicates to which power the ordered subalphabets of an -template occur in the respective factors of a word.

In order to give some intuition about the reason to restrict to unambiguous -templates, consider the words w n = b(ab) n and v n = (ab) n . For all n, w n ∼ n v n , as both words contain all possible pieces over {a, b} of length up to n. The word w n is an n-implementation of the ambiguous 2-template T = b, {a, b}, but v n does not implement this template at all. Thus, for arbitrarily large n, there are words that are ∼ n -equivalent while one of them can be decomposed along the template, and the other one cannot.

Remark 4.14. Every ambiguous -template T gives rise to an unambiguous -template T , with < , in the following way: one simply merges every pair t i , t i+1 that causes an ambiguity. If a word w is a p-implementation of T , then it will also be a p-implementation of T .

For example, the ambiguous 4-template T = {a, b}, {b, c}, {c}, a gives rise to the unambiguous 3-template T = {a, b}, {b, c}, a. The word w = ababa • cbbcbc • cc • a is a 2-template of T , and also of T , as can be seen from w = ababa • cbbcbccc • a.

If two pairs of states are PT-indistinguishable, then between both pairs of states, for an arbitrary size of pieces, words containing the same pieces of this size can be read. We will show that if two words contain the same pieces of a large enough size (depending on p, |A| and), then, they are both p-implementations of a common unambiguous -template. For p large enough, this will allow us to exhibit, via pumping arguments, a common (u, B)-path for the pairs of states. In the next lemma, we provide a bound on that will suffice in the search for this common -template.

Lemma 4.15. Let p ∈ N. Every word over the alphabet A is the p-implementation of some unambiguous -template, with < N A,p = (|A|p) |A| .

Proof. First note that if a word is a p-implementation of some ambiguous -template, then by Remark 4.14, it is also a p-implementation of an unambiguous -template, where < . It thus suffices to prove that every word is the p-implementation of some (possibly ambiguous) -template for < N A,p . Note that a word is always a p-implementation of the -template which is just the sequence of its letters. Therefore, it suffices to prove the following claim.

Claim. If a word is a p-implementation of some -template with ≥ N A,p , then it is also a p-implementation of an -template with < .

We will show this by induction on the size of the alphabet A. For |A| = 1, let T be an -template with ≥ N A,p = p. Then, every t i is either the letter a or the set {a}. If a word w is a p-implementation of this -template, then it is a concatenation of at least a's. Clearly, w is then also a p-implementation of the 1-template {a}. Now suppose the claim is true for alphabet sizes up to n. Note that if a subtemplate t i , t i+1 , . . . , t j of T can be shrunk into a template of smaller length in such a way that every word that is a p-implementation of the subtemplate still is a p-implementation of the shrunken subtemplate, then T itself can be shrunk while keeping the same property.

Let A be of size n+1, ordered as a 1 < . . . < a n+1 , and let T be an -template for ≥ (|A|p) n+1 . Then T = R, S, for R = t 1 , . . . , t (|A|p) n+1 and S = t (|A|p) n+1 +1 , . . . , t . We will focus on the (|A|p) n+1 -template R and show that every word that is a p-implementation of R is a pimplementation of an -template with < (|A|p) n+1 .

For i = 1, . . . , |A|p, we define R i = t 1+(i-1)(|A|p) n , . . . , t i(|A|p) n . That is, every R i is an (|A|p) ntemplate, and R = R 1 , . . . , R |A|p . There are two cases. Either [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF] there is an R i that uses an alphabet different from A, or, (2) every R i uses the alphabet A.

In the first case, the induction hypothesis on the size of the alphabet gives that R i can be shrunk into a template of smaller length, without reducing the set of words that are pimplementations of it. In the second case, every R i uses the alphabet A. In this case, R can be replaced by the 1-template A: if a word is a p-implementation of R, it contains at least |A|p times the alphabet A and it follows that (a 1 • • • a n+1) p is a piece of the word. Thus, it is a p-implementation of the 1-template A.

In both cases, it follows that the length of T can be shrunk in such a way that all words that are p-implementations of T are still p-implementations of the shorter template.

In Lemma 4.18 and Lemma 4.19, we will show that the unambiguous templates, of which a word is an implementation, are related to the pieces of the word. We first introduce some terminology on the special pieces that we will use in the proofs of these lemma's. Definition 4.16. Let T = t 1 , t 2 , . . . , t be an unambiguous -template and let p ∈ N. We denote by v T,p the shortest word that is a p-implementation of

T . That is, v T,p = v 1 • • • v , such that for all i, v i = t i if t i ∈ A, (b 1 • • • b n) p if t i = {b 1 , . . . , b n } ⊆ A and b 1 < . . . < b n .
We have thus shown that w 1 , . . . , w is a p-implementation of T . By construction, w 1 • • • w is a prefix of w. It is easy to see that they are equal. To this end, let s ∈ A * be such that w = w 1 • • • w • s. If s = ε, we have by construction of w that the first letter b of s is not in t , if it is a set. It follows that the piece

v 1 • • • v • b w is incompatible with T .
The following proposition is a consequence of Lemma 4.18 and Lemma 4.19. It shows that for fixed and p, it is possible to describe all the unambiguous -templates, of which a given word is a p-implementation, in terms of the pieces of the word.

Proposition 4.20. Let , p ∈ N. Let K = |A|(p + 2) and let w, w ∈ A * be such that w ∼ K w . Let T be an unambiguous -template. If w is a (p + 2)-implementation of T , then w is a p-implementation of T .

Proof. By Lemma 4.18, it follows that v T,p+2 w and, for all pieces v such that v w, it holds that v is not incompatible with T . Note that |v T,p+2 | ≤ |A|(p + 2) = K. As noted in Definition 4.17, the presence of pieces in a word that are incompatible with T is determined by the presence of such pieces that have length ≤ |v T,1 | + 2 ≤ |A| + 2 < K. Since w ∼ K w , it follows that v T,p+2 w and that there is no piece v that is incompatible with T such that v w . Thus, by Lemma 4.19, w is a p-implementation of T .

We are now ready to show that whenever two pairs of states are PT-indistinguishable, there is a common pattern for these pairs of states in the automaton. As announced before, we actually prove a stronger statement: already if two pairs of states are PT[k]-indistinguishable, for k large enough, this is witnessed by a common pattern for the pairs of states. This is made precise in the following proposition.

Proposition 4.21. Let (q 1 , r 1), (q 2 , r 2) be pairs of states of an NFA (A, Q, δ). Let p = |Q| + 1 and κ = (|A|(p + 2)) |A|+1 . If (q 1 , r 1), (q 2 , r 2) are PT[κ]-indistinguishable, then (q 1 , r 1) and (q 2 , r 2) have a common pattern.

Proof. Assume that (q 1 , r 1), (q 2 , r 2) are PT[κ]-indistinguishable. By definition, there exist words w 1 ∈ {w | q 1 w --→ r 1 } and w 2 ∈ {w | q 2 w --→ r 2 } such that w 1 ∼ κ w 2 . We first show that there exists an -template of which both w 1 and w 2 are p-implementations. Define N A,p+2 = (|A|(p + 2)) |A| . By Lemma 4.15, w 1 is a (p + 2)-implementation of some -template T , with < N A,p+2 . Since κ = |A|(p + 2)N A,p+2 > |A|(p + 2) , Proposition 4.20 then yields that both w 1 and w 2 are p-implementations of this -template T .

We now use the fact that p = |Q| + 1 in order to find the appropriate patterns in the automaton. Define B = (B 1 , . . . , B n) as the subsequence of elements of T that are sets. Define u = (u 0 , . . . , u n), such that u i is the concatenation of the letters between B i and B i+1 in T . By definition, (u, B) is a factorization pair. As w 1 is a (|Q| + 1)-implementation of T , the path from q 1 to r 1 used to read w 1 must traverse loops labeled by each of the B i . Clearly, this is a (u, B)-path. In the same way, the path from q 2 to r 2 used to read w 2 is a (u, B)-path. Thus, (q 1 , r 1) and (q 2 , r 2) have a common pattern.

Since PT-indistinguishable pairs are PT[κ]-indistinguishable for all κ, thus in particular for κ = (|A|(p + 2)) |A|+1 , we immediately obtain the following corollary.

Corollary 4.22. Let A be an NFA, and let (q 1 , r 1) and (q 2 , r 2) be two pairs of states in A that are PT-indistinguishable. Then, (q 1 , r 1) and (q 2 , r 2) have a common pattern.

Intermezzo: an alternative method

Let us briefly discuss the approach that we took in [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF] to obtain the result of Corollary 4.22, which is different from the approach taken in the previous section. Given two PT-indistinguishable pairs of states (q 1 , r 1) and (q 2 , r 2), there are, by definition, for every

n ∈ N, words v n ∈ {x | q 1 x --→ r 1 } and w n ∈ {x | q 2 x --→ r 2 } such that v n ∼ n w n .
This gives a sequence (v n , w n) n . Above, we saw that we only need to consider this sequence up to n = κ.

In [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF], however, we do not bound this sequence, but we use combinatorial arguments to obtain a subsequence of words with a similar shape. An advantage of this approach over the approach of bounding the parameter is very recently observed and described in [START_REF] Czerwiński | A note on decidable separability by piecewise testable languages[END_REF]: it gives a criterion that is satisfied by two input languages if and only if these languages are not PT-separable, and this criterion works for all input languages, i.e. even for non-regular input languages. We state this more general result in Theorem 4.26.

To make precise what we mean by a sequence of words with a similar shape, we introduce the following notion of adequateness. Definition 4.23. Given an -template T , we say that a sequence (w n) n is T -adequate if for all n ≥ 0, w n is an n-implementation of T . A sequence is called adequate if it is T -adequate for some T . By Remark 4.14, it follows that for each adequate sequence, there is some unambiguous -template T , such that the sequence is T -adequate.

We use Simon's Factorization Forest theorem to show that every sequence of words admits an adequate subsequence. See [START_REF] Simon | Factorization forests of finite height[END_REF][START_REF] Kufleitner | The height of factorization forests[END_REF][START_REF] Colcombet | Factorization forests for infinite words and applications to countable scattered linear orderings[END_REF] for proofs and extensions of this theorem. Let us first recall this theorem. A factorization tree of a nonempty word x is a finite ordered unranked tree F (x), whose nodes are labeled by nonempty words, in such a way that -all leaves of F (x) are labeled by letters, -all internal nodes of F (x) have at least 2 children, -if a node labeled y has k children labeled y 1 , . . . , y k from left to right, then

y = y 1 • • • y k .
Given a semigroup morphism ϕ : A + → S into a finite semigroup S, such a factorization tree is called ϕ-Ramseyan if every internal node has either 2 children, or k children labeled y 1 , . . . , y k , in which case ϕ maps all words y 1 , . . . , y k to the same idempotent of S. Simon's Factorization Forest theorem states that every word has a ϕ-Ramseyan factorization tree of height at most 3|S|. Lemma 4.24. Every sequence (w n) n of words admits an adequate subsequence.

Proof. Let (w n) n be a sequence of words. We use Simon's Factorization Forest theorem with the morphism alph : A + → P(A). Consider a sequence (F (w n)) n , where F (w n) is an alph-Ramseyan tree of w n , given by the Factorization Forest theorem. In particular, F (w n) has height at most 3 • 2 |A| . Therefore, extracting a subsequence if necessary, one may assume that the sequence of depths of the trees F (w n) is a constant H. We argue by induction on H. If H = 0, then every w n is a letter. Hence, one may extract a constant subsequence from (w n) n , and this subsequence is adequate (just take the constant letter as -template).

If H > 0, we denote the arity of the root of F (w n) by arity(w n), and we call it the arity of w n . Two cases may arise.

Case 1. One can extract from (w n) n a subsequence of bounded arity. Therefore, one may extract a subsequence of constant arity, say K, from w n . This implies that each w n has a factorization in K factors

w n = w n,1 • • • w n,K ,
where w n,i is the label of the i-th child of the root in F (w n). Therefore, the alph-Ramseyan subtree of each w n,i is of height at most H -1. By induction, one can extract from (w n,i) n an adequate subsequence. Proceeding iteratively for i = 1, 2, . . . K, one extracts from (w n) n a subsequence (w σ(n)) n such that every (w σ(n),i) n is adequate. But a finite product of adequate sequences is obviously adequate. Therefore, the subsequence (w σ(n)) n of (w n) n is also adequate.

Case 2. The arity of w n grows to infinity. Therefore, extracting if necessary, one can assume that for every n, arity(w n) ≥ max(|A| • n, 3). Since all arities of words in the sequence are at least 3, all children of the root map to the same idempotent in P(A). But this says that each word from the subsequence is of the form Next to the Factorization Forest theorem, we need another combinatorial result to relate the -templates of adequate sequences that are pairwise equivalent to each other. We state this result in the following lemma. The proof of this result is technical and is based on Lemma 8.2.5 and Theorem 8.2.6 from [START_REF] Almeida | Finite semigroups and universal algebra, volume 3 of Series in Algebra[END_REF]. We refer to [START_REF] Van Rooijen | The separation problem for regular languages by piecewise testable languages[END_REF] for a proof of this lemma.

w σ(n) = w n,1 • • • w n,
Lemma 4.25. Let T be an unambiguous -template and let T be an unambiguous -template. Let (v n) n and (w n) n be two sequences of words such that

-(v n) n is T -adequate -(w n) n is T -adequate -v n ∼ n w n for every n ≥ 0.
Then, T = T .

We now have all the ingredients to state a criterion for non-PT-separability of any two input languages. In [START_REF] Czerwiński | A note on decidable separability by piecewise testable languages[END_REF], it is shown that this criterion is decidable for a wide range of classes of input languages, among which the context-free languages.

Let us show that with the approach of Theorem 4.26, we have also obtained in a very different way (without having used any bound on the parameter) Corollary 4.22 again. Indeed, let (q 1 , r 1), (q 2 , r 2) be PT-indistinguishable pairs of states of an NFA (A, Q, δ). By Lemma 4.6, these pairs determine languages that are not PT-separable. Therefore, we obtain from Theorem 4.26 that there is an -template T such that for every n, there are

v n ∈ {x | q 1 x --→ r 1 } and w n ∈ {x | q 2
x --→ r 2 } that are n-implementations of T . In particular, this is the case for n = |Q| + 1. Now, we combine this with the second half of the proof of Proposition 4.21, which says that every two pairs of states, between which words can be read that are (|Q| + 1)-implementations of the same -template T , have a common pattern. This yields Corollary 4.22 again.

Corollary 4.22. Let A be an NFA, and let (q 1 , r 1) and (q 2 , r 2) be two pairs of states in A that are PT-indistinguishable. Then, (q 1 , r 1) and (q 2 , r 2) have a common pattern.

Separation theorem for piecewise testable languages

We collect the results of the previous sections in the following separation theorem for piecewise testable languages.

Theorem 4.27. Let L 1 and L 2 be regular languages. Let A = (A, Q, δ) be an NFA recognizing both L 1 and L 2 , with L i = L(A, I i , F i). Let κ = (|A|(|Q| + 3)) |A|+1 . Then, the following conditions are equivalent.

(1) L 1 and L 2 are PT-separable,

(2) L 1 and L 2 are PT[κ]-separable, (3) The language [L 1] κ separates L 1 from L 2 , (4) (I 1 × F 1) × (I 2 × F 2) ∩ I[A] = ∅, (5) (I 1 × F 1) × (I 2 × F 2) ∩ I κ [A] = ∅, (6
) There is no pair in (I 1 × F 1) × (I 2 × F 2) with a common pattern.

Proof. The implications (3) ⇔ (2) ⇒ (1) are trivial, as well as the implication (5) ⇒ (4). We proved implication (4) ⇒ (6) in Proposition 4.10, and implication (6) ⇒ (5) in Proposition 4.21. The equivalences (1) ⇔ (4) and (2) ⇔ (5) follow from Lemma 4.6.

Since there are finitely many PT[κ]-languages, the equivalence (1) ⇔ (2) yields a brute-force algorithm to test PT-separability. This gives Corollary 4.28. In the following section, we will show that, using Condition (6), we obtain another algorithm to test PT-separability, which has a better complexity result.

Corollary 4.28. It is decidable whether two given regular languages are PT-separable.

Complexity of PT-separability

In this section, we show that the presence of a common pattern for two pairs of states is a property that can be tested in Ptime with respect to the size of the alphabet and the size of the automaton. As a consequence, it follows from Theorem 4.27 that PT-separability can be decided in Ptime with respect to the size of the alphabet and the size of the automaton. We first introduce some notation. Given a state p, we denote by scc(p, A) the strongly connected component of p in A (that is, the set of states that are reachable from p and from which p can be reached), and the set of labels of all transitions occurring in this strongly connected component is denoted by alph scc(p, A). Recall that the restriction of A to a subalphabet B ⊆ A is defined by

A B := (B, Q, δ ∩ (Q × B × Q)).
Let us first show that the following problem is in Ptime.

Lemma 4.29. Consider the following problem.

Input:

An NFA A over alphabet A, and states p 1 , q 1 , r 1 , p 2 , q 2 , r 2 of A.

Question: Do there exist a nonempty B ⊆ A and paths

p i ⊆B --→ q i =B --→ q i ⊆B --→ r i in A for both i = 1, 2?
This can be solved in Ptime with respect to the size of A and the size of the alphabet.

Proof. We will compute a decreasing sequence (C i) i of alphabets that are overapproximating the greatest alphabet B that can be chosen for labeling the loops around q 1 and q 2 . Note

COMPLEXITY OF PT-SEPARABILITY

that if there exists such an alphabet B, it should be contained in C 1 := alph scc(q 1 , A) ∩ alph scc(q 2 , A). Using Tarjan's algorithm to compute strongly connected components in linear time [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF], one can compute C 1 in linear time as well. Then, we restrict the automaton to alphabet C 1 , and we repeat the process to obtain the sequence (C i) i . That is, we define

C i+1 := alph scc(q 1 , A C i) ∩ alph scc(q 2 , A C i).
After a finite number n of iterations, we obtain C n = C n+1 . Note that n ≤ |A|. If C n = ∅, then there exists no nonempty B for which there is an (= B)-loop around both q 1 and q 2 . If C n = ∅, then C n is the maximal nonempty alphabet B such that there are (= B)-loops around both q 1 and q 2 . It then remains to determine whether there exist paths p 1

⊆B --→ q 1 ⊆B --→ r 1 and p 2 ⊆B --→ q 2 ⊆B --→ r 2 ,
which can be performed in linear time.

To sum up, since the number n of iterations such that C n = C n+1 is bounded by |A|, and since each computation is linear with respect to the size of A, one can decide in Ptime with respect to both |A| and this size whether such a pair of paths occurs.

The following proposition considers the problem of testing whether two pairs of states have a common pattern.

Proposition 4.30. Given an NFA A = (A, Q, δ), and two pairs of states, one can determine in Ptime with respect to the size of A and the size of the alphabet, whether these pairs of states have a common pattern.

Proof. We extend the automaton A in the following way, to obtain a new automaton Ã. For each 6-tuple τ = (p 1 , q 1 , r 1 , p 2 , q 2 , r 2) ∈ Q 6 , we test whether there exist nonempty B ⊆ A and

paths p i ⊆B --→ q i =B --→ q i ⊆B --→ r i in A for i = 1, 2.
If this is the case, we add a new letter a τ to the alphabet, and we add the "summary" transitions p 1 aτ -→ r 1 and p 2 aτ -→ r 2 . Lemma 4.29 shows that for each 6-tuple, this test can be performed in Ptime. Since there are |Q| 6 of these tuples, computing à can then be done in Ptime.

Let (s 1 , t 1) and (s 2 , t 2) be pairs of states. By construction, we have the following. There exists some pair (u, B) such that there is a (u, B)-path between both s 1 and t 1 and between s 2 and t 2 , if and

only if {w | s 1 w --→ t 1 in Ã} ∩ {w | s 2 w --→ t 2 in Ã} = ∅.
Since à can be built in Ptime, this can be decided in polynomial time as well.

Combining Theorem 4.27 and Proposition 4.30, we obtain the following theorem.

Theorem 4.31. It is decidable whether two regular languages, recognized by an NFA, are PT-separable. This can be achieved in Ptime with respect to the size of the alphabet and the size of the NFA.

Recall from Section 2.3.1 that deciding whether two languages, recognized by a DFA, are Sl-separable is co-NP-complete. What is different for Sl, compared to PT, is that a common pattern for Sl just consists of two words that have the same alphabet, whereas for PT the paths should have a certain shape: the different parts should occur in the same order, and there should be loops for the alphabets of B. Thus, the patterns for PT are more complicated, but determining whether they exist has a lower complexity.

Characterizations of unambiguous languages

The class of languages that we study in this chapter is the class of unambiguous languages, i.e. the class of languages defined using unambiguous products. A product

L = B * 0 a 1 B * 1 • • • B * k-1 a k B * k
is called unambiguous if every word of L admits exactly one factorization witnessing its membership in L. The number k is called the size of the product. An unambiguous language is a finite union of disjoint unambiguous products. The class of unambiguous languages is related to the class of piecewise testable languages studied in Chapter 4. Indeed, piecewise testable languages are boolean combinations of languages of the form

A * b 1 A * • • • A * b k A * .
The latter languages are unambiguous, as is witnessed by the product

(A \ {b 1 }) * b 1 (A \ {b 2 }) * • • • (A \ {b k }) * b k A * .
Moreover, Schützenberger proved in [START_REF] Schützenberger | Sur le produit de concaténation non ambigu[END_REF] that the class of unambiguous languages is closed under boolean operations. Therefore, piecewise testable languages form a subclass of the unambiguous languages. This inclusion is strict, as can be seen, for example, from the language A * a. This is an unambiguous language (for any alphabet A), but for A ⊇ {a, b}, it cannot be defined in terms of pieces: for every n, there are words inside and outside of A * a that have the same pieces up to size n, for example the words (ab) n and (ab) n a.

Many characterizations for unambiguous languages have been found, both in terms of logical fragments and in terms of algebraic properties. We refer to [START_REF] Tesson | Diamonds are forever: The variety DA[END_REF][START_REF] Volker Diekert | A survey on small fragments of first-order logic over finite words[END_REF] for a detailed overview of these characterizations.

Logical characterization

From a logical point of view, unambiguous languages can be defined as a fragment of firstorder logic both in terms of quantifier alternations and in terms of the number of variables of a formula. Also, characterizations have been found as fragments of temporal logic: the fragment using only the unary temporal operators 'next', 'previously', 'sometime in the future', and 'sometime in the past' [START_REF] Etessami | First-order logic with two variables and unary temporal logic[END_REF][START_REF] Etessami | First-order logic with two variables and unary temporal logic[END_REF], and the fragment of so-called ranker languages [START_REF] Weis | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF].

We will now describe the characterizations as fragments of first-order logic in more detail. A Σ 2 (<)-formula is a first-order formula of the form

∃x 1 . . . ∃x n ∀y 1 . . . ∀y m ϕ(x 1 , . . . , x n , y 1 , . . . , y m),
where ϕ is quantifier-free. A Π 2 (<)-formula is a formula whose negation is a Σ 2 (<)-formula. Finally, the class ∆ 2 (<) is the intersection of these two classes. Thus, a language is ∆ 2 (<)definable if it can be defined both by a Σ 2 (<)-formula and the negation of a Σ 2 (<)-formula. It was shown in [START_REF] Pin | Polynomial closure and unambiguous product[END_REF] that a language is unambiguous if and only if it is ∆ 2 (<)-definable.

Another logical characterization of the unambiguous languages was given in [START_REF] Thérien | Over words, two variables are as powerful as one quantifier alternation[END_REF]. In this paper, it is shown that the fragment ∆ 2 (<) corresponds to the fragment of those first-order logic formulas that use only two (reusable) variable names. This fragment of first-order logic is denoted by FO 2 (<).

Example 5.1. Consider the language A * bA * a. The unambiguous product (A/b) * bA * a witnesses that this is an unambiguous language. It is defined by the following FO 2 (<)-formula, ∃x ∃y. b(x) ∧ a(y) ∧ ∀x. ¬(y < x) .

It is also defined by the following Σ 2 (<)-formula,

∃x ∃y ∀z. b(x) ∧ a(y) ∧ ¬(y < z) ,
and the following Π 2 (<)-formula,

∀x ∃y ∃z. (a(x) ∨ x < y) ∧ b(z) ,
which shows that it is ∆ 2 (<)-definable.

It turns out that the characterization of unambiguous languages as FO 2 (<)-definable languages provides a suitable framework for our proofs. In particular, this formulation allows us to use Ehrenfeucht-Fraïssé games for FO 2 (<) in our proofs. We will define these games now.

Ehrenfeucht-Fraïssé games for FO 2 (<)

Ehrenfeucht-Fraïssé games form a widely applicable method from model theory to show that two structures are equivalent, or not, with respect to a certain logic.

The game is played by two players, called Spoiler and Duplicator. Given a logical fragment, the intuition is that Spoiler wants to show that the words can be distinguished by this fragment, and Duplicator wants to show that this is not the case. That is, Duplicator wants to show that they look the same with respect to the logical fragment. Here, we only introduce a version of the games instantiated for FO 2 (<).

Definition 5.2. An Ehrenfeucht-Fraïssé game for FO 2 (<) (or short, EF game) is a game played by two players, called Spoiler and Duplicator. The game is played on two words. In front of each of the words, initially one pebble is placed. The game lasts for at most k rounds, where k is fixed beforehand. Each of the rounds is played according to the following rules:

-Spoiler chooses one of the words, picks up the pebble placed on or in front of this word and moves it, to the left or to the right, to a position in the same word.

-Duplicator answers by moving the other pebble in the other word, mimicking both the direction and the letter chosen by Spoiler.

If Duplicator is unable to answer, she loses. She wins if she is able to answer in each of the k rounds.

As before, we define a sequence of congruence relations on words in A * , that indicates how similar the words are from the perspective of the logic FO 2 (<). For u, v ∈ A * , we have u ∼ k v ⇔ u and v satisfy the same FO 2 (<)-formulas up to quantifier depth k.

The EF games are particularly useful as they provide a tool to show that two words are ∼ k -equivalent, or not, as follows from the following well-known theorem.]). Duplicator has a winning strategy in the k-round EF game for FO 2 (<) on the words w, w if and only if w ∼ k w .

Theorem 5.3 ([Imm82, Imm99
Example 5.4. Consider the words aba and abba. Clearly, whichever letter Spoiler choses to place a pebble on in the first round, Duplicator is able to answer by placing a pebble on the same letter in the other word. It follows that aba ∼ 1 abba. However, if Spoiler places a pebble on the first b in the word abba in the first round, Duplicator has to place a pebble on the b in aba. Spoiler can then move the pebble from abba to the right and again place it on a b, but Duplicator cannot mimic this move in aba. Thus, aba 2 abba.

Algebraic characterization

The variety of finite monoids for which every regular D-class (that is, every D-class that contains an idempotent) is an aperiodic semigroup, is called DA. A monoid M is a member of DA if and only if it satisfies the identity (xy) ω y(xy) ω = (xy) ω . The variety DA forms a proper subclass of the variety A of aperiodic monoids.

In [START_REF] Schützenberger | Sur le produit de concaténation non ambigu[END_REF], it is shown that unambiguous languages are precisely the DA-recognizable languages.

Separation by unambiguous languages

To show that the separation problem for FO 2 (<)-definable languages is decidable, we follow the approach discussed in Section 2.2.3 and work with FO 2 (<)-indistinguishable pairs of monoid elements. We will provide a fixpoint algorithm that, given a monoid M and a surjective morphism α : A * → M , computes the FO 2 (<)-indistinguishable pairs of M , that is, the 2-pointlike sets of M for the variety DA. These pairs of course do not depend on the morphism α, but the algorithm needs such a fixed morphism to perform its computations. We therefore denote these pairs by I FO 2 (<) (α). Since this chapter only deals with the logic FO 2 (<), we also write I(α) for this set of pairs.

We will use the fact that the logic can be stratified according to the quantifier depth of a formula. The fragment of FO 2 (<) that consists of formulas of quantifier depth up to k is denoted by FO 2 (<) [k]. For every k ∈ N, we define the following congruence relation, which is of finite index. For words u, v ∈ A * , u ∼ k v ⇔ u and v satisfy the same FO 2 (<)-formulas up to quantifier depth k.

The set of pairs of monoid elements that are FO 2 (<)[k]-indistinguishable is denoted by

I FO 2 (<) k (α), or simply I k (α). That is, I k (α) = {(s, s) ∈ M 2 | ∃w ∈ α -1 (s). ∃w ∈ α -1 (s). w ∼ k w }.
For reasons that will become apparent in Sections 5.2.2 and 5.2.3, we need to keep track of the alphabet of words that map onto the monoid elements. Thus, for α : A * → M and s, t ∈ M , we define (s, s) ∈ I k (α, B) ⇔ there are w ∈ α -1 (s), w ∈ α -1 (s) such that alph(w) = alph(w) = B and w ∼ k w .

Since a formula of rank 1 is already able to distinguish between words that have a different alphabet, it follows that I k (α) = B⊆A I k (α, B). And, as always, I(α) = k∈N I k (α). The following inclusions hold by definition,

I(α) = n∈N I n (α) ⊆ . . . ⊆ I k+1 (α) ⊆ I k (α) ⊆ . . . ⊆ I 1 (α).
The difficulty in computing I(α) lies in knowing the limit behavior of the sequence (I k (α)) k∈N .

Note that all elements of this sequence are in the finite set P(M ×M), and since the sequence is decreasing with respect to the inclusion order, there must be an index for which the sequence stabilizes. It turns out that we can compute such a stabilization index for this sequence, which depends on the size of the monoid M and the size of the alphabet A.

Let us briefly sketch the content of the rest of this section. In Section 5.2.1, we will provide a fixpoint algorithm of which we claim that it computes the FO 2 (<)-indistinguishable pairs. Given a surjective morphism α : A * → M , the output of this algorithm is denoted by Alg(α).

In Section 5.2.2, we will prove that the presented algorithm is indeed correct: all of the pairs that the algorithm outputs are FO 2 (<)-indistinguishable pairs, i.e. Alg(α) ⊆ I(α). Finally, we prove in Section 5. ⊆ I(α).

(5.1)

The value κ = (2|M | 2 + 3)|A| 2 thus serves as a stabilization index for the sequence mentioned above. In Section 5.2.4, we will prove the following theorem that contains the main results of this chapter.

Theorem 5.5. Let M be a monoid, let P and Q be subsets of M , and let α :

A * → M be a surjective morphism. Let κ = (2|M | 2 + 3)|A| 2 .
Then, the following conditions are equivalent.

(1) The languages α -1 (P) and α -1 (Q) are FO 2 (<)-separable,

(2) The languages α -1 (P) and

α -1 (Q) are FO 2 (<)[κ]-separable, (3) The language [α -1 (P)] ∼κ separates α -1 (P) from α -1 (Q), (
) P × Q ∩ I(α) = ∅. 4
While a proof of this theorem is provided in Section 5.2.4, let us for now just mention that the implications (3) ⇒ (2) ⇒ (1) are trivial, and that the implication (1) ⇒ (4) is immediate from the definition of FO 2 (<)-indistinguishable pairs. The difficult direction of the theorem is (4) ⇒ (3). Note that this direction would follow from the inclusion I κ (α) ⊆ I(α), announced in (5.1). Indeed, if P × Q ∩ I(α) = ∅, the inclusion gives that also

P × Q ∩ I κ (α) = ∅.
This means that there are no words w ∈ α -1 (P), w ∈ α -1 (Q) such that w ∼ κ w . Thus, [α -1 (P)] ∼κ ∩ α -1 (Q) = ∅. To prove Theorem 5.5, it thus suffices to show that I κ (α) ⊆ I(α). This inclusion will follow from the results in Sections 5.2.2 and 5.2.3.

When starting from two regular languages L 1 and L 2 , recall that one can always construct a monoid that recognizes both languages. It follows that the languages are FO 2 (<)-separable if and only if they are FO 2 (<)[κ]-separable, where κ is calculated as in the theorem. In case the languages are separable, a description of a separator would be [L 1] ∼κ , the saturation of the first language by the ∼ κ -equivalence. To test FO 2 (<)-separability, one could thus use a brute-force approach and test all of the finitely many FO 2 (<)[κ]-definable languages. This yields Corollary 5.6. However, it turns out that exploiting Condition (4) yields a better complexity result. Besides providing a means to prove the inclusion I κ (α) ⊆ I(α), this exploitation of Condition (4) is another purpose of the fixpoint algorithm that we present in Section 5.2.1.

Corollary 5.6. It is decidable whether two regular languages can be separated by an FO 2 (<)-definable language.

Remark. In Theorem 5.5, we provide a bound κ on the quantifier rank of FO 2 (<)-formulas that need to be considered to define a potential separator. It turns out that the same value κ also works to bound unambiguous products: there exists an FO 2 (<)-separator if and only if there exists a separator defined by a boolean combination of unambiguous products of size κ. This approach of bounding the size of unambiguous products rather than the quantifier rank of FO 2 (<)-formulas was taken in the paper [START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF].

Fixpoint algorithm to compute FO 2 (<)-indistinguishable pairs

For a monoid M , and a surjective morphism α : A * → M , we define the following fixpoint algorithm that computes a set Alg(α) ⊆ M × M .

Initialize by adding, for all a ∈ A, the pair (α(a), α(a)) to Alg(α, {a}). Then, saturate the set Alg(α) = B⊆A Alg(α, B) with the following two operations.

(1) If (s, s) ∈ Alg(α, B) and (t, t) ∈ Alg(α, C), then add (st, s t) to Alg(α, B ∪ C).

(2) If both (s, s) and (t, t) belong to Alg(α, B), and, furthermore, there exist w, w ∈ B * such that α(w) = r, α(w) = r , then add (s ω rt ω , s ω r t ω) to Alg(α, B).

Note that there are finitely many subsets B of A, and that during the execution of the algorithm, for every such B, the set Alg(α, B) only gets larger with respect to inclusion. As the sets are all bounded from above by M × M , the algorithm will terminate.

Remark. Operation (1) takes care of the fact that the ∼ k -relations are congruences. Such an operation will be needed in any fixpoint algorithm calculating the indistinguishable pairs of a monoid with respect to a variety of languages. Operation (2), however, is specific for the class of unambiguous languages.

Correctness of the fixpoint algorithm

In this section, we show that the fixpoint algorithm only outputs pairs of elements that are indeed FO 2 (<)-indistinguishable. It will follow from the fact that the ∼ k -relations are congruences that Operation (1), applied to two FO 2 (<)-indistinguishable pairs, yields an FO 2 (<)-indistinguishable pair. To show that the pairs generated by Operation (2) from FO 2 (<)-indistinguishable pairs are again FO 2 (<)-indistinguishable, we will use Lemma 5.8. Let us first state a related simpler result.

Lemma 5.7. Let u, v, w ∈ B * and let k ∈ N. If alph(u) = alph(v) = B, then u k wv k ∼ k u k v k .
Proof. We prove this using the formalism of EF games for FO 2 (<). The following strategy for Duplicator is a winning strategy: if Spoiler plays inside w, Duplicator plays a position in the last copy of u or the first copy of v, labeled by the same letter as the one that Spoiler chose. In this way, she will still have at least k -1 occurrences of each letter of B both to her left and to her right. It follows that she is able to survive all k rounds of the game. And, if Spoiler does not play inside w, clearly, Duplicator can mimic his moves in the other word. It follows from Theorem 5.3 that

u k wv k ∼ k u k v k .
We now slightly generalize Lemma 5.7.

Lemma 5.8. Let u 1 , u 2 , v 1 , v 2 , w 1 , w 2 be words in B * and let k ∈ N. If u 1 ∼ k u 2 , v 1 ∼ k v 2 , and alph(u 1) = alph(u 2) = alph(v 1) = alph(v 2) = B, then, for all p ≥ k, u p 1 w 1 v p 1 ∼ k u p 2 w 2 v p 2 .
Proof. Lemma 5.7 implies that u k

1 w 1 v k 1 ∼ k u k 1 v k 1 ∼ k u k 1 w 2 v k 1 . Since ∼ k is a congruence and since u 1 ∼ k u 2 , v 1 ∼ k v 2 , it follows that u k 1 w 1 v k 1 ∼ k u k 2 w 2 v k 2 .
And, for the same reasons, we then have

u p 1 w 1 v p 1 ∼ k u p 2 w 2 v p 2 .
The correctness of the fixpoint algorithm is proved in the next proposition. In the proof, we make use of the fact that the fixpoint algorithm keeps track of information about the alphabet. This information allows us to perform an induction on the number of applications of the operations.

Proposition 5.9. The fixpoint algorithm described in Section 5.2.1 is correct.

Proof. One has to show that Alg(α) ⊆ I(α). That is, that for all (m, n) ∈ Alg(α), it holds that for all k ∈ N, there exist

w 1 ∈ α -1 (m), w 2 ∈ α -1 (n) such that w 1 ∼ k w 2 .
Note that Alg(α) = B⊆A Alg(α, B), and thus, for all (m, n) ∈ Alg(α), there exists

B ⊆ A such that (m, n) ∈ Alg(α, B).
Therefore, the following claim is stronger than the proposition, as it also states something about the alphabet of the words in the preimages. We will prove this stronger statement.

Claim. For every B ⊆ A, for all (m, n) ∈ Alg(α, B), and for all k ∈ N, there exist

w 1 ∈ α -1 (m), w 2 ∈ α -1 (n) such that w 1 ∼ k w 2 and alph(w 1) = alph(w 2) = B.
We prove this claim by induction on the number of applications of the operations used to obtain that (m, n) ∈ Alg(α). If no application of the operations is used to obtain that (m, n) ∈ Alg(α), then (m, n) was added during the initialization phase. This means there is a ∈ A such that (m, n) ∈ Alg(α, {a}), and m = α(a) = n. Clearly, for all k ∈ N, a ∼ k a and alph(a) = {a}.

If operations were applied, suppose first that the last operation applied to obtain (m, n) ∈ Alg(α) was Operation [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], and that (m, n) ∈ Alg(α, B). Then, there are s, t, s , t ∈ M such that m = st, n = s t and, (s, s) ∈ Alg(α, C), (t, t) ∈ Alg(α, C), for some C, C , such that C ∪ C = B. By the induction hypothesis, for all k ∈ N, there are

u ∈ α -1 (s), u ∈ α -1 (s), v ∈ α -1 (t), v ∈ α -1 (t), such that alph(u) = alph(u) = C, alph(v) = alph(v) = C , alph(u) ∪ alph(v) = B, and u ∼ k u , v ∼ k v . Then uv ∈ α -1 (st) = α -1 (m), and u v ∈ α -1 (s t) = α -1 (n). Since ∼ k is a congruence, uv ∼ k u v . Also, alph(uv) = alph(u v) = B.
This shows the claim for this case.

Finally, suppose the last operation applied to obtain (m, n) ∈ Alg(α) was Operation (2), and that (m, n) ∈ Alg(α, B). Then, there are w, w ∈ B * with α(w) = r, α(w) = r , and there are s, t, s , t ∈ M such that m = s ω rt ω , n = s ω r t ω and, (s, s), (t, t) ∈ Alg(α, B). By the induction hypothesis, for all k ∈ N, there are

u ∈ α -1 (s), u ∈ α -1 (s), v ∈ α -1 (t), v ∈ α -1 (t), such that alph(u) = alph(u) = alph(v) = alph(v) = B, and u ∼ k u , v ∼ k v . Fix k ∈ N and let p = k•|M |!.
For every x ∈ M , we then have x p = x ω . It follows that α(u p wv p) = s ω rt ω , and α(u p w v p) = s ω r t ω . Both words have alphabet B, and by Lemma 5.8, u p wv p ∼ k u p w v p . This concludes the proof of the claim and of the proposition.

Completeness of the fixpoint algorithm

This section is devoted to proving the completeness of the fixpoint algorithm presented in Section 5.2.1. In order to do this, we prove a stronger statement. Namely, we fix a specific κ ∈ N and prove that for this value of κ, all FO 2 (<)[κ]-indistinguishable pairs occur as output of the fixpoint algorithm. In this section, we first work with a fixed subalphabet B. In Proposition 5.16, we show how the desired general statement easily follows from the other results.

Roughly, our approach to show that the FO 2 (<)[κ]-indistinguishable pairs occur as output of the fixpoint algorithm, is the following. We first define a notion of pattern on words. Then, we show that if the images of two words form an FO 2 (<)[κ]-indistinguishable pair, they will either both contain a big pattern, or both contain only a small pattern. We decompose the words along these patterns, in such a way that the factors use only a strict subalphabet, and are pairwise equivalent up to some quantifier rank. We then use induction on the size of the alphabet. If the words only contained a small pattern, Operation (1) will suffice to recompose the factors and find that the original pair was in Alg(α). If the words contained a big pattern, the proof is more complicated, as we will have to mold the factors in the right shape to be able to apply Operation (2). An ingredient used to obtain this is the pigeonhole principle, which entails that a sufficiently long product of monoid elements contains a factor of consecutive elements that can be repeated without changing the value of the product.

Decompositions for (B, p)-patterns

The notion of (B, p)-pattern, that we introduced in Chapter 4, also plays a central role in the proofs of this section. Let us first recall this notion.

1 • • • b n) p .
Using the concept of (B, p)-patterns, we will introduce a notion of decomposition for words that fits well with our purposes, due to their following useful properties. First of all, FO 2 (<)formulas of sufficiently large quantifier rank can express the property of allowing a certain decomposition. We are thus able to detect the decompositions that words allow. Also, if two words both can be decomposed in a certain way, the factors of the decompositions will be pairwise related. Furthermore, the decompositions break the words up into factors that use a strictly smaller alphabet. These properties permit us to prove the completeness of the fixpoint algorithm using induction on the size of the alphabet. We will make this more precise in the remainder of this section.

The alphabet B = {b 1 , . . . , b n }, ordered as b 1 < . . . < b n , is fixed for the rest of this section.

Let w be a (B, p)-pattern, that is, w

∈ (B * b 1 B * • • • b n B *) p .
Then, w can be decomposed into a product of factors witnessing its membership in

(B * b 1 B * • • • b n B *) p . For example, as w = pn i=1 w i • b i mod n • w pn+1 ,
where, for ease of notation, if n divides i, we write b i mod n to denote the letter b n . We apply this notation throughout this section.

For a given word w, we are interested in the left-most decomposition of w along the marked product

(B * b 1 B * • • • b n B *) p b 1 B * • • • b mod n B *
, where p and are as big as possible.

Definition 5.11. If w ∈ B * , then there is a unique number ∈ N, such that

(1) w = i=1 w i • b i mod n • w +1 , and (2)
for all i ∈ {1, . . . , + 1}, b i mod n / ∈ alph(w i).

Let p ∈ N be such that pn ≤ < (p + 1)n. Then, the decomposition of Condition (1) is called the (B, p)-decomposition of w. In this case, we also say that w admits a (B, p)-decomposition.

The number is called the length of the decomposition.

Note that there is just one value of p for which a word w ∈ B * admits a (B, p)-decomposition. This is precisely the value of p for which w is a (B, p)-pattern, but not a (B, p + 1)pattern.

Let us illustrate these notions by giving two examples.

Example 5.12. The word w = bcacbbcccaccbaa over B = {a, b, c}, ordered as a < b < c, admits a (B, 1)-decomposition, since it is a (B, 1)-pattern, but not a (B, 2)-pattern. The length of its (B, 1)-decomposition is 5:

bc a c b b c cc a cc b aa w 1 w 2 w 3 w 4 w 5 w 6
The word w = aacbacbaabcaaa over the same ordered alphabet admits a (B, 2)-decomposition. The length of this decomposition is 7:

ε a ac b a c b a a b ε c ε a aa w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8
As announced before, a useful result about (B, p)-decompositions is that they can be detected using an FO 2 (<)-formula of sufficiently big quantifier rank. We prove this result in the following lemma. Recall that B is a fixed ordered alphabet of size n.

Lemma 5.13. Let p, k ∈ N be such that (p + 1)|B| ≤ k. Let u, v be words such that u ∼ k v. Then, u admits a (B, p)-decomposition if and only if v admits a (B, p)-decomposition. Moreover, the associated (B, p)-decompositions (in the sense of Definition 5.11) have the same length.

Proof. Let us first prove that whenever u admits a (B, p)-decomposition, v does too. The converse of this statement then follows by symmetry. We prove this using EF games for FO 2 (<). Since u ∼ k v, it follows from Theorem 5.3 that Duplicator has a winning strategy in the k-round EF game on u and v.

Assume that u admits a (B, p)-decomposition, and that the decomposition is

u = i=1 u i • c i • u +1 ,
where, for all i, c i denotes the first occurrence of the letter b i mod n after u i . The number of c i 's in this decomposition is < (p + 1)|B| ≤ k. Let Spoiler subsequently play on c 1 , c 2 , . . . , c in u. Since < (p + 1)|B| ≤ k, Duplicator can answer in v to each of Spoiler's moves in u, thus identifying c 1 • • • c as a scattered subword in v. It follows that v is a (B, p)-pattern. If v were also to contain the scattered subword c 1 • • • c c +1 , then Spoiler could next move the pebble in v to this c +1 , but Duplicator would then not be able to answer this move in u, since the length of the (B, p)-decomposition of u is just . Since + 1 ≤ k, this would contradict the fact that u ∼ k v. It follows that v is not a (B, p + 1)-pattern, and that the length of its (B, p)-decomposition is .

Not only can (B, p)-decompositions be detected using an FO 2 (<)-formula of sufficiently big quantifier rank, but one can also obtain information about the FO 2 (<)-formulas that are satisfied by the factors in the (B, p)-decomposition. This is made precise in the next lemma.

Lemma 5.14. Let p, k, k ∈ N be such that (p + 1)|B| + k ≤ k. Let u, v be words such that u ∼ k v, and such that both admit a (B, p)-decomposition that has length :

u = i=1 u i • b i mod n • u +1 , v = i=1 v i • b i mod n • v +1 .
Thus, by Lemma 5.13, for all p ≤ 2(|M | 2 + 1), u admits a (B, p)-decomposition if and only if v admits a (B, p)-decomposition. There are thus two cases: either there is a p ≤ 2(|M | 2 + 1) such that u, v both admit a (B, p)-decomposition, or both u and v do not admit a (B, p)decomposition for any p ≤ 2(|M | 2 + 1). We treat these cases separately.

Case 1. There is a p ≤ 2(|M | 2 + 1) such that both u and v admit a (B, p)-decomposition.

Again by Lemma 5.13, both (B, p)-decompositions have the same length , and they are given by

u = i=1 u i • b i mod n • u +1 , v = i=1 v i • b i mod n • v +1 .
By definition of (B, p)-decompositions, for all i ∈ {1, . . . , + 1}, we have b i mod n / ∈ alph(u i) and b i mod n / ∈ alph(v i). We may apply Lemma 5.14, since, as |B| ≥ 1,

(p + 1)|B| + κ ≤ (2|M | 2 + 3)|B| + (2|M | 2 + 3)(|B| -1) 2 = (2|M | 2 + 3)(|B| 2 -|B| + 1) ≤ (2|M | 2 + 3)|B| 2 = κ.
It follows that for all i, u i ∼ κ v i . In particular, u i and v i have the same alphabet, which is strictly smaller than B since the letter b i mod n is not in it. Since κ = f (|B| -1), we can thus use the induction hypothesis to conclude that (α(u i), α(v i)) ∈ Alg(α, alph(u i)). Recall from Section 5.2.1 that during the initialization phase, in particular, all pairs of the shape (α(b i mod n), α(b i mod n)) are added to Alg(α, {b i mod n }). Using that α is a morphism, multiple application of Operation (1) now yields that (α(u), α(v)) ∈ Alg(α, B) ⊆ Alg(α). We define the words u l and v l as the minimal prefix of u resp. v that contains the subword

(b 1 b 2 • • • b n) |M | 2 +1
. Thus, by construction, u l and v l are (B, |M | 2 + 1)-patterns and admit a (B, |M | 2 + 1)-decomposition, which is of length |B| • (|M | 2 + 1). These decompositions are

u l = i=1 u l,i • b i mod n , v l = i=1 v l,i • b i mod n , where = |B| • (|M | 2 + 1
) and for all i ∈ {1, . . . , + 1}, we have b i mod n / ∈ alph(u l,i) and

b i mod n / ∈ alph(v l,i). Let k = κ -|B| • (|M | 2 + 1
). We claim that u l ∼k v l . This can be proved using EF games, in a similar fashion as Lemma 5.14. Let Spoiler play inside u l and v l during k rounds, in the EF game on u and v. Since u ∼ κ v, Duplicator is able to answer to each of these moves. We show that if she plays outside of u l and v l , she will lose. It thus follows that she is able to answer inside u l and v l . Suppose that Duplicator plays outside u l and v l , i.e. to the right, say on word u. Now Spoiler can keep moving the pebble on u to the left by playing subsequently on b |B|(|M | 2 +1) mod n , . . . , b 1 mod n . When Spoiler starts playing this sequence of moves, the where = |B| • (|M | 2 + 1). Denote α(u l,i b i mod n) by s i and α(v l,i b i mod n) by t i . We consider the following two sequences of |M | 2 + 1 monoid elements, which are the images of longer and longer prefixes of the decompositions.

s 1 • • • s |B| , s 1 • • • s |B|•2 , s 1 • • • s |B|•3 , . . . , s 1 • • • s |B|(|M | 2 +1
) , and

t 1 • • • s |B| , t 1 • • • t |B|•2 , t 1 • • • t |B|•3 , . . . , t 1 • • • t |B|(|M | 2 +1) .
Note that there are only |M | 2 different pairs of elements of M . It follows that there must be g, h such that g < h, and both

s 1 • • • s |B|•g = s 1 • • • s |B|•g s |B|•g+1 • • • s |B|•h , and t 1 • • • t |B|•g = t 1 • • • t |B|•g t |B|•g+1 • • • t |B|•h .
Applying these equalities multiple times gives that

s 1 • • • s |B|•g = s 1 • • • s |B|•g (s |B|•g+1 • • • s |B|•h) ω , and t 1 • • • t |B|•g = t 1 • • • t |B|•g (t |B|•g+1 • • • t |B|•h) ω .
The factors that give rise to

s |B|•g+1 • • • s |B|•h resp. t |B|•g+1 • • • t |B|•h will be our u e resp. v e .
That is, we define,

u w = |B|•g i=1 u l,i • b i mod n , v w = |B|•g i=1 v l,i • b i mod n , u e = |B|•h i=|B|•g+1 u l,i • b i mod n , v e = |B|•h i=|B|•g+1 v l,i • b i mod n , u x = i=|B|•h+1 u l,i • b i mod n , v x = i=|B|•h+1 v l,i • b i mod n .
Note that the factors u e and v e contain the following distinguished letters,

b |B|•g+1 mod n , b |B|•g+2 mod n , . . . , b |B|•h mod n .
Since g < h, this means that they contain all letters from B, and it follows that alph(u e) = alph(v e) = B.

In (5.2), we saw that u l ∼k v l . We want to use Lemma 5.14 to see how the factors of u l and v l are related. Let us first verify that Lemma 5.14 may be applied to u l and v l . Indeed, for

κ = f (|B| -1) = (2|M | 2 + 3)(|B| -1) 2 , since |B| ≥ 1, we have (|M | 2 + 2)|B| + κ = (|M | 2 + 2)|B| + (2|M | 2 + 3)(|B| -1) 2 = (2|M | 2 + 3)|B| -|B|(|M | 2 + 1) + (2|M | 2 + 3)(|B| -1) 2 = -|B|(|M | 2 + 1) + (2|M | 2 + 3)|B| 2 + (2|M | 2 + 3)(1 -|B|) ≤ -|B|(|M | 2 + 1) + (2|M | 2 + 3)|B| 2 = k.
Thus, for all i ∈ {1, . . . , |B| • (|M | 2 + 1)}, Lemma 5.14 gives that u l,i ∼ κ v l,i , and in particular that alph(u l,i) = alph(v l.i). By definition, these factors of the decompositions use an alphabet strictly smaller than B. Therefore, for all i ∈ {1, . . . , |B| • (|M | 2 + 1)}, we have by induction hypothesis that (α(u l,i), α(v l,i)) ∈ Alg(α, alph(u i)).

Similar to Case 1, the pairs (α(u l,i), α(v l,i)) can then be recombined by multiple application of Operation [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], to obtain that (α(u w), α(v w)) ∈ Alg(α, alph(u w)) and (α(u e), α(v e)) ∈ Alg(α, B).

Since u r and v r are also (B, |M | 2 + 1)-patterns, and since we saw in (5.3) that u r ∼k v r , we can construct in a similar way the factorizations u r = u y u f u z and v

r = v y v f v z , such that α(u y)α(u f) ω = α(u y), α(v y)α(v f) ω = α(v y), (α(u z), α(v z)) ∈ Alg(α, alph(u z)) and (α(u f), α(v f)) ∈ Alg(α, B).
Clearly, we also have that alph

(u x) ∪ alph(v x) ∪ alph(u y) ∪ alph(v y) ∪ alph(u c) ∪ alph(v c) ⊆ B.
Therefore, we can apply Operation (2) to (α(u e), α(v e)), u x u c u y , v x v c v y , and (α(u f), α(v f)). This yields that

(α(u e) ω α(u x u c u y)α(u f) ω , α(v e) ω α(v x v c v y)α(v f) ω) ∈ Alg(α, B).
Finally, Operation (1) gives

(α(u w)α(u e) ω α(u x u c u y)α(u f) ω α(u z), α(v w)α(v e) ω α(v x v c v y)α(v f) ω α(v z)) ∈ Alg(α, B).
By the above, this term is equal to (α(u), α(v)), and thus, (α(u), α(v)) ∈ Alg(α).

It is just a very small step from the previous proposition to the completeness result of the fixpoint algorithm. This is described in the following proposition.

Proposition 5.16. The fixpoint algorithm described in Section 5.2.1 is complete.

Proof. We have to show that I(α) ⊆ Alg(α). Let (s, t) ∈ I(α). Then, for every k ∈ N, there are

u ∈ α -1 (s), v ∈ α -1 (t) such that u ∼ k v, and there is B ⊆ A such that alph(u) = alph(v) = B.
This holds in particular for k = (2|M | 2 + 3)|A| 2 . Let u and v be the words corresponding to this k. Note that for f as in Proposition 5.15, k ≥ f (|B|). Thus, u ∼ k v implies that u ∼ f (|B|) v, and Proposition 5.15 then yields that (s, t) = (α(u), α(v)) ∈ Alg(α).

Proof of the separation theorem for unambiguous languages

We are now ready to prove Theorem 5.5, the main theorem of this chapter. Let us first restate the theorem.

Theorem 5.5. Let M be a monoid, let P and Q be subsets of M , and let α :

A * → M be a surjective morphism. Let κ = (2|M | 2 + 3)|A| 2 .
Then, the following conditions are equivalent.

(1) The languages α -1 (P) and α

-1 (Q) are FO 2 (<)-separable, (2)
The languages α -1 (P) and α

-1 (Q) are FO 2 (<)[κ]-separable, (3)
The language [α -1 (P)] ∼κ separates α -1 (P) from α -1 (Q),

(4) P × Q ∩ I(α) = ∅.
Proof. As we noted before, the implications (3) ⇒ (2) ⇒ (1) are trivial. Also, implication (1) ⇒ (4) follows by definition of FO 2 (<)-indistinguishable pairs: if α -1 (P) and α -1 (Q) are FO 2 (<)-separable, then there is some n ∈ N, such that there is an FO 2 (<)[n]-formula that defines a separator. Then there can be no elements of P and Q that form an FO 2 (<)[n]indistinguishable pair. Since, by definition, I(α) ⊆ I n (α), it follows that

P × Q ∩ I(α) = ∅.
The only implication that remains to be proven is (4) ⇒ (3). It follows from Proposition 5.9 that Alg(α) ⊆ I(α), and from the proof of Proposition 5.16 that I κ (α) ⊆ Alg(α), for κ = (2|M | 2 + 3)|A| 2 . Thus, P × Q ∩ I κ (α) ⊆ P × Q ∩ I(α), which is empty by assumption. It follows that there are no words w ∈ α -1 (P),

w ∈ α -1 (Q) such that w ∼ κ w . Thus, [α -1 (P)] ∼κ ∩ α -1 (Q) = ∅.

Complexity of separation by unambiguous languages

Our objective in this chapter was to show that the separation problem for the class of unambiguous languages is decidable. We proved this by providing an algorithm that solves this question. The output of this fixpoint algorithm, described in Section 5.2.1, can be seen as a subset of M × M × P(A). This set is of exponential size with respect to the size of the alphabet, and polynomial size with respect to the size of the monoid. Therefore, the fixpoint algorithm will terminate in at most exponentially many steps. Thus, the separation problem can be decided in Exptime with respect to the size of an NFA recognizing the languages.

Note that if we take the alphabet as a fixed parameter, the algorithm runs in Ptime with respect to the size of the monoid.

Finding a lower bound for the complexity of this problem, as well as finding a sharp upper bound, are questions that we did not pose ourselves. It is likely that the upper bound that we found can still be improved.

Chapter 6

Locally testable and locally threshold testable languages In this chapter, which is based on the papers [PvRZ13a, PvRZ14], we investigate the separation problem for locally testable and locally threshold testable languages. A language is locally testable (LT) if membership of a word in the language only depends on the set of infixes, prefixes and suffixes up to some fixed length that occur in the word. For a language that is locally threshold testable (LTT), membership may also depend on the number of occurrences of such infixes, which may be counted up to some fixed threshold.

As we have seen in Section 2.2.1, it was proved in [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] that solving the separation problem for a class of separators amounts to computing the 2-pointlike sets for the algebraic variety corresponding to this class. It has been shown that both the varieties corresponding to locally testable languages and to locally threshold testable languages have computable pointlike sets. This is a consequence of [START_REF] Carlos | Complete reducibility of the pseudovariety LSl[END_REF][START_REF] Carlos | Free profinite locally idempotent and locally commutative semigroups[END_REF] for LT, and of [START_REF] Beauquier | Languages and scanners[END_REF][START_REF] Straubing | Finite semigroup varieties of the form V * D[END_REF][START_REF] Steinberg | On pointlike sets and joins of pseudovarieties[END_REF][START_REF] Steinberg | A delay theorem for pointlikes[END_REF] for LTT. These results prove the decidability of the separation problem for these classes. For LTT, however, this is done in an indirect way. Besides working in an algebraic setting, one uses that LTT corresponds to the variety Acom * D. The decidability then follows from the transfer result that states that computability of pointlikes is preserved under the operation V → V * D.

Our approach to show that the LTand LTT-separation problems are decidable is by reduction to fixed parameters. The class LTT comes with two parameters: a first parameter for the length of the factors that determine membership, and a second one for the threshold up to which these factors are counted. The class LT only has the first parameter. In Section 6.1, we provide definitions for both classes. Our approach is then to establish bounds, which depend on the input languages, on the parameters holding for potential separators. For fixed parameters there are only finitely many languages, and thus providing such bounds proves that the separation problems are decidable. Contrary to the algebraic approach, this method also gives a description of a separator in case it exists, in terms of these parameters.

Recently, some of the results in this chapter have been reproved in a generic way in the paper [START_REF] Place | Separation and the successor relation[END_REF], which gives transfer results for the separation problem for different fragments of FO, to which the successor relation has been added as a predicate. The class LTT corresponds to the logical fragment FO(=) with the successor relation added, and is one of the fragments to which this transfer result applies.

In Section 6.2, we first restrict ourselves to the class of LTT languages with a fixed threshold. For this situation, we are able to provide a bound on the length of the factors. As a consequence, this solves the LT-separation problem, since the class LT is equal to LTT with fixed threshold 1. It turns out, as we show in Section 6.3, that the same bound still works for the full class LTT. In this section, we also provide a bound on the threshold. In Section 6.4, we give upper and lower complexity bounds for the LTand LTT-separation problems. The upper bounds are based on forbidden patterns in the NFA or monoid recognizing the input languages. Finally, in Section 6.5, we consider separation by LT and LTT languages when the class of input languages is the class of context-free languages, rather than the class of regular languages.

Locally testable and locally threshold testable languages

In order to introduce the classes of languages that we consider in this chapter, let us first make some definitions. For a word w ∈ A * , recall that we denote the length or size of w as |w|. When w is nonempty, we view w as a sequence of |w| positions labeled over A. In this chapter, we number the positions from 0, for the leftmost position, to |w|-1, for the rightmost position. Recall also that an infix of a word w ∈ A * is a word w such that w = u • w • v for some u, v ∈ A * , and that in this case, we say that w is a prefix (resp. a suffix

) of w, if u = ε (resp. if v = ε).
Let 0 ≤ x < y ≤ |w|. We write w[x, y] for the infix of w starting at position x and ending at position y -1. For example, if w = abcdabc, then w[2, 5] = cda. By convention, we also define w[x, x] = ε. Observe that by definition, when x ≤ y ≤ z, we have w

[x, z] = w[x, y] • w[y, z].
The following definition allows us to work with one single notion instead of the three notions of prefix, infix and suffix. For example, in w = abcdabc, the 3-profile of x = 2 is (b, cd). See also Figure 6.1. The set of k-profiles over A is denoted by A k . Note that its size is

|A k | = |A| O(k) . bacccaabcbaabba x y z
(ε, bac) (aab, cba) (aab, ba) 6-profiles of x, y and z: A k-profile is thus a description of an infix of w that is centered at position x. As can be seen in Figure 6.1, the k-profiles of positions close to the beginning or to the end of the word are shorter. Thus, we may use the k-profiles that occur in a word to identify the prefixes and suffixes of length ≤ k -1 of this word.

To this end, suppose that |w| ≥ k -1 and consider the k-profile of the position k -1. This is (w , w r), for w = w[0, k -1] and

w r = w[k -1, k -1]. Then, w • w r = w[0, k -1] is the prefix of w of length k -1. Similarly, we obtain the suffix of length k -1 from the k-profile of the position |w| -k r + 1. In this case, w • w r = w |w| -(k -1), |w| is the suffix of length k -1.
Note that, if k = 2, then the position |w| -k r + 1 = |w|, and therefore lies outside of the word. Since we also want to be able to read the suffix of length 1 from the set of 2-profiles of a word, we introduce a dummy position |w|, and define its k-profile as (w , w r), for w = w[max(0, |w| -k), |w|] and w r = w[|w|, min(|w|, |w| + k r)] = ε. Definition 6.2. A k-profile (w , w r) occurs in a word w if there exists some position x ∈ {0, 1, . . . , |w|} whose k-profile is (w , w r). If n is a natural number, we say that (w , w r) occurs n times in w if there are n distinct positions in {0, 1, . . . , |w|} where (w , w r) occurs. In this case, we write |w| (w ,wr) = n.

The set of all k-profiles over the alphabet A is denoted by

A k . Its size is |A k | = |A| O(k) .
Definition 6.3. We say that two numbers n, m ∈ N are equal up to threshold d if n = m, or both n, m ≥ d. For two words w, w , we write w ≡ d k w , if for every k-profile (w , w r), it holds that the numbers |w| (w ,wr) and |w | (w ,wr) are equal up to threshold d.

One can verify that ≡ d

k is an equivalence relation (and actually a congruence) of finite index. The ≡ d k -equivalence class of a word w is denoted as [w] d k .

Locally testable languages

A language is called locally testable if, indeed, it can be tested locally whether a word belongs to the language or not. To be more precise, membership of a word in a locally testable language can be tested by inspecting its prefixes, suffixes and infixes up to some length (which depends on the language). Definition 6.4. A language is locally testable (LT) if it is a finite boolean combination of languages of the following form.

1. uA * = {w | u is a prefix of w}, for some u ∈ A * . 2. A * u = {w | u is a suffix of w}, for some u ∈ A * . 3. A * uA * = {w | u is an infix of w}, for some u ∈ A * .
The next lemma allows us to describe the class of locally testable languages in terms of k-profiles rather than prefixes, infixes and suffixes.

Lemma 6.5 (adaptation of [BP91, Proposition 2.1]). The class of locally testable languages is the class of languages that are unions of ≡ 1 k -classes, for some k ∈ N.

Proof. Let L be a locally testable language. Let i be the maximal length of the infixes occurring in the boolean expression for L, and let p resp. s be the maximal length of prefixes resp. suffixes occurring in this expression. Define k = max(i, p + 1, s + 1). Let w ∈ L and let w ≡ 1 k w . By definition of the ≡ 1 k -equivalence, w and w have the same prefixes of length ≤ k -1 ≤ p, the same suffixes of length ≤ k -1 ≤ s and the same infixes of length ≤ k ≤ i. It follows that w ∈ L. For the converse direction, it suffices to show that every class of the form [w] 1 k is a finite boolean combination of languages as above. To this end, define

P w = {u ∈ A ≤ k-1 | ∃v ∈ A * . w = uv}, S w = {u ∈ A ≤ k-1 | ∃v ∈ A * . w = vu}, I w = {u ∈ A ≤ k | ∃v, v ∈ A * . w = vuv }, and J w = {u ∈ A ≤ k | ∀v, v ∈ A * . w = vuv }. Now, [w] 1 k = u∈Pw uA * ∩ u∈Sw A * u ∩ u∈Iw A * uA * u∈Jw A * uA * .
Since every LT language is a finite boolean combination of languages of the form uA * , A * uA * and A * u, the class LT is a subclass of the FO(<)-definable languages. For example, uA * , for u = u 1 • • • u n with all u i 's in A, is defined by the following FO(<)-formula,

∃x 1 ∃x n . ∀y. ¬(y < x 1) ∧ i=2,...,n x i-1 < x i ∧ ∀y. ¬(x i-1 < y ∧ y < x i) ∧ u 1 (x 1) ∧ . . . u n (x n) .
However, no simple description of LT in terms of first-order logic is known. In terms of linear temporal logic, LT languages are exactly those defined by formulas involving only the operators F (eventually) and X (next), with no nesting of F operators.

For all k ∈ N, we denote the set of languages that are unions of

≡ 1 k -classes by LT[k]. Thus, LT = k LT[k]. Given L ⊆ A * and k ∈ N, the smallest LT[k]-language containing L is [L] 1 k = {w ∈ A * | ∃u ∈ L such that u ≡ 1 k w}.
However, there is in general no smallest LT language containing a given regular language.

For example consider the language L = (aa) * over A = {a}. Let L be an LT language that contains L. Then, L is an LT[k]-language for some k. Now, for n such that |(aa) n | ≥ k, we have that, for every m ∈ N, (aa) n ≡ 1 k (aa) n a m . Thus, L is of the shape (aa) n a * ∪ F , with F finite. There is no smallest LT language of this shape: one can always remove a 2n+1 from L to obtain a smaller LT language that still contains (aa) * .

The membership problem for the class of locally testable languages was raised by McNaughton and Papert [START_REF] Mcnaughton | Counter-free automata[END_REF], and solved independently by Zalcstein, Brzozowski and Simon, and Mc-Naughton [START_REF] Zalcstein | Locally testable languages[END_REF][START_REF] Brzozowski | Characterizations of locally testable events[END_REF][START_REF] Mcnaughton | Algebraic decision procedures for local testability[END_REF]. This was done by characterizing the syntactic semigroups of locally testable languages. A language is locally testable if and only if its syntactic semigroup is in LSl. This is the variety of all finite locally idempotent and commutative semigroups, also called local semilattices. This means that a semigroup S belongs to LSl if and only if, for every idempotent e ∈ S, the semigroup eSe belongs to Sl. Therefore, LSl consists of all finite semigroups that satisfy, for all e ∈ E(S) and for all s, t ∈ S, esese = ese and esete = etese.

If the input language is given by a deterministic automaton, the membership problem for LT is in Ptime [KMM89].

Locally threshold testable languages

An extension of the class of locally testable languages is the class of locally threshold testable languages. In this class, the occurrence of infixes is counted up to some threshold. Definition 6.6. A language is locally threshold testable (LTT) if it is a finite boolean combination of languages of the following form. Again, since the k-profiles of a word not only determine the infixes of length k, but also determine the prefixes and suffixes of length ≤ k -1 of the word, an LTT language can be defined purely in terms of k-profiles counted up to a threshold. Similar to Lemma 6.5, one can prove that this class is exactly the class of languages that are unions of ≡ d k -classes, for some k, d ∈ N depending on the language. The natural number d is called the counting threshold . As before, there is in general no smallest LTT language containing a given regular language.

The same example with L = (aa) * over A = {a} also works to show this for the class of LTT languages.

The class of LTT languages can be defined in terms of first-order logic: a language is LTT if and only if it can be defined by an FO(=, +1)-formula, i.e., a first-order logic formula using predicates for the equality and the successor relation, but not for the linear order. See [START_REF] Beauquier | Languages and scanners[END_REF][START_REF] Thomas | Classifying regular events in symbolic logic[END_REF]. It was shown in [START_REF] Thérien | Graph congruences and wreath products[END_REF] that the fragment FO(=, +1) corresponds to the class of languages recognized by the semidirect product Acom * D. This gives a decidable characterization for the class of locally threshold testable languages. Membership can be tested in Ptime [START_REF] Pin | The expressive power of existential first order sentences of Büchi's sequential calculus[END_REF][START_REF] Pin | Expressive power of existential first-order sentences of Büchi's sequential calculus[END_REF][START_REF] Trahtman | An algorithm to verify local threshold testability of deterministic finite automata[END_REF], if the input language is given by a deterministic automaton.

Separation for a fixed counting threshold

Before studying the full LTT-separation problem in Section 6.3, we first restrict ourselves to a simpler problem. It turns out that the results for this simpler problem will be very useful when dealing with the full LTT-separation problem. In this section, we fix d ∈ N and look at the separation problem for the class of locally threshold testable languages with counting threshold d. We prove that this is a decidable problem. That is, we prove that, for a fixed d ∈ N and two regular languages, it is decidable whether there exists a k ∈ N such that the languages are separable by an LTT[k, d]-language. In particular, this proves the decidability of the separation problem for LT, as this class corresponds to LTT with counting threshold d = 1. All results in this section are for an arbitrary fixed d. Theorem 6.12 states the main results of this section. It contains the following two contributions.

(1) First, we establish a bound k on the size of profiles, such that it suffices to consider only profiles up to this size in order to see whether the input languages can be separated. This bound only depends on the size of a monoid recognizing these languages, and it can be computed. One can use this bound in a brute-force algorithm that tests separability by all the finitely many LTT[k, d]-languages.

(2) The second contribution is a criterion on the input languages to check whether there exists a k such that the languages are LTT[k, d]-separable. This criterion can be defined equivalently on an automaton or a monoid recognizing the input languages, in terms of the absence of common patterns. Using this criterion, we bypass the brute force algorithm and obtain a better complexity result. We will discuss this complexity result in Section 6.4.1.

We will see in Section 6.3 that the bound k on the size of the profiles from (1) actually also works for the full LTT-separation problem.

In Section 6.2.1, we define the criterion on automata or monoids recognizing the input languages. This criterion identifies the so-called d-indistinguishable pairs of monoid elements, or of pairs of states. We will come back to this in Section 6.2.2. Our separation theorem for the class of LTT languages with a fixed counting threshold is also stated in Section 6.2.2. In Sections 6.2.3, 6.2.4, and 6.2.5, we prove the different implications of this theorem.

Common d-patterns

In this section, we define a criterion that must be satisfied by two languages in order for these to be LTT[k, d]-separable for some k. One can equivalently define the criterion on an automaton or on a monoid recognizing the languages. Here, we present both of these definitions. The criterion states the absence of common patterns of a certain shape, determined by d. Recall that d is fixed throughout Section 6.2. The patterns will identify factors that can be pumped without changing the syntactical value of a word, such that a common pattern leads to witnesses of non-LTT[k, d]-separability for arbitrarily large k. To make this more precise, we first introduce the relevant notions. Definition 6.9. Let w be a word and let P be a d-pattern. We say that w admits a Pdecomposition if w can be decomposed as w = u 0 v 1 u 1 v 2 • • • v n u n with n ≥ 0 and such that either n = 0 and P = u 0 = w, or P = (p, f, s) and the following conditions are verified,

1. p = (u 0 , v 1) and s = (v n , u n), 2. for every block b, if f (b) < d, then {i | (v i , u i , v i+1) = b} = f (b), 3. for every block b, if f (b) = d, then {i | (v i , u i , v i+1) = b} ≥ d.
We may say P-decomposition to mean a P-decomposition of some word. In the following definition we use d-patterns to express that some factors of a word may be pumped without changing the syntactical value of the word.

word that may be pumped without changing the syntactical value of the word. A common d-pattern implies that this may be done simultaneously in both words. We will show that this means that for any k, words in the languages can be constructed that are ≡ d k -equivalent. In fact, we will show that the property of a pair (s 1 , s 2) ∈ M × M of having a common d-pattern is necessary and sufficient for the languages α -1 (s 1) and α -1 (s 2) to not be separable by an LTT[k, d]-language, for any k. A similar statement holds for common d-patterns in NFAs. The difficult part of the proof is showing that this condition is necessary. Furthermore, having a common d-pattern is a decidable property, which makes it particularly useful for our purposes. The next theorem contains the main results of this section, and states the relation between the absence of common d-patterns and the existence of an ∈ N such that the languages are LTT[, d]-separable. We devote Sections 6.2.3, 6.2.4, and 6.2.5 to the proof of this theorem. Theorem 6.12. Fix d ∈ N. Let L 1 , L 2 be regular languages. Let α : A * → M be a morphism into a finite monoid M recognizing both L 1 and L 2 . Let A be an NFA recognizing both L 1 and L 2 , with L i = L(A, I i , F i). Let k = 4(|M | + 1). Then, the following conditions are equivalent.

(1) L 1 and L 2 are LTT[, d]-separable for some ,

(2) L 1 and L 2 are LTT[k, d]-separable, (3) The language [L 1] d k separates L 1 from L 2 ,
(4) There is no pair in α(L 1) × α(L 2) with a common d-pattern,

(5) There is no pair in (I 1 × F 1) × (I 2 × F 2) with a common d-pattern.

Observe that equivalence (1) ⇔ (2) of this theorem is like a delay theorem [START_REF] Straubing | Finite semigroup varieties of the form V * D[END_REF][START_REF] Steinberg | A delay theorem for pointlikes[END_REF], for separation restricted to the class of LTT with fixed d, since we prove that the size of profiles that a potential separator needs to consider can be bounded by a function of the size of the monoids recognizing the languages.

The equivalence (1) ⇔ (2) yields an algorithm to decide LTT-separability for a fixed threshold. Indeed, an algorithm that tests all the finitely many LTT[k, d]-languages, for k = 4(|M | + 1), as potential separators solves this question. This gives Corollary 6.13. However, this brute-force approach yields a very costly procedure. It turns out that a more practical algorithm can be obtained from Conditions (4) and (5). We postpone the presentation of this algorithm to Section 6.4.1.

Corollary 6.13. Let d ∈ N. It is decidable whether two given regular languages are LTT[, d]separable for some ∈ N.

Instantiating Theorem 6.12 for d = 1 gives five equivalent conditions for LT-separability, and in particular yields an algorithm to decide LT-separability. Since this is an interesting result in itself, we focus on this result in Section 6.2.6. After a brief intermezzo about indistinguishable pairs, we will prove Theorem 6.12 for arbitrary, fixed, d. Note that the implications (3) ⇒ (2) ⇒ (1) are immediate by definition. In Sections 6.2.3, 6.2.4, and 6.2.5, we will subsequently prove the implications (1) ⇒ (5) ⇒ (4) ⇒ (3).

Intermezzo: Relation with the concept of indistinguishable pairs

Before proving the separation theorem for LTT languages with fixed counting threshold d, let us briefly mention the relation between the approach to studying the LTT-separation problem that we take here, and our approach from Section 2.2.3.

Let α : A * → M be a morphism. If a pair (s 1 , s 2) ∈ M × M has a common d-pattern for α, it follows from Theorem 6.12, which we will prove in the following sections, that the languages α -1 (s 1) and α -1 (s Note that a d-pattern P = (p, f, s) gives rise to a (d -1)-pattern P = (p, f , s), simply by defining

f (b) = f (b) if f (b) < d -1 d -1 if f (b) ≥ d -1
It is immediate that a P-decomposition of a word w is also a P -decomposition. Recall that a pair (s 1 , s 2) ∈ M ×M has a common d-pattern if there is a d-pattern P and words w 1 , w 2 that have (α, s 1)-resp. (α, s 2)-compatible P-decompositions. This yields that a d-indistinguishable pair (s 1 , s 2) is also (d -1)-indistinguishable, and we thus have the following inclusions. When dealing with LTT for a fixed counting threshold d, we are interested in computing one single level of this sequence. However, in Section 6.3, we consider the full class of LTT languages and we are interested in the limit behavior of this sequence. From the fact that this sequence is growing with respect to the inclusion order, while all elements of the sequence are in the finite set P(M × M), it follows that there must be an index for which the sequence stabilizes. In Section 6.3.2, we establish a bound on d which gives such a stabilization index for the sequence. This bound depends on the size of the recognizing monoid or the number of states in the automaton, and the size of the alphabet.

A common d-pattern yields equivalent words for all profile sizes

We now prove the implication (1) ⇒ (5) of Theorem 6.12, by contraposition. That is, we prove that if there exists a pair (p 1 , q 1), (p 2 , q 2) ∈ (I 1 × F 1) × (I 2 × F 2) that has a common d-pattern, then there does not exist any ∈ N such that L 1 and L 2 are LTT[, d]-separable. In fact, we prove that if (p 1 , q 1), (p 2 , q 2) has a common d-pattern, then precisely these states will, for every , give rise to words that are too closely related to be LTT[, d]-separable. Let us formulate this in the following proposition.

such that w 1 ≡ d w 2 . Since, for i = 1, 2, L(A, {p i }, {q i }) ⊆ L(A, I i , F i), it follows that these languages are not LTT[, d]-separable, for any .

6.2.4 From a common d-pattern in M to a common d-pattern in A

This section is devoted to the proof of the implication (5) ⇒ (4) of Theorem 6.12. We will prove this by contraposition. That is, we prove that if there is a pair of monoid elements (s 1 , s 2) ∈ α(L 1) × α(L 2) that has a common d-pattern, then there is also a pair of pairs of states (p 1 , q 1), (p 2 , q 2) ∈ (I 1 × F 1) × (I 2 × F 2) that has a common d-pattern. This will follow from the following proposition, which states that the presence of a pair (s 1 , s 2) ∈ α(L 1) × α(L 2) that has a common d-pattern does not depend on the choice of the recognizing monoid or on the choice of the recognizing monoid morphism.

F i = α(L i) and G i = β(L i). Let P be a common d-pattern of (s 1 , s 2) ∈ F 1 × F 2 . If P = w ∈ A * , then, by definition, w ∈ α -1 (F 1) ∩ α -1 (F 2) = L 1 ∩ L 2 = α -1 (G 1) ∩ α -1 (G 2), so P is a common d-pattern of (β(w), β(w)) ∈ G 1 × G 2 .
Otherwise, P is of the form (p, f, s). There exist w 1 , w 2 ∈ A * that admit (α, s 1)-resp. (α, s 2)compatible P-decompositions. Let these P-decompositions be the following.

w 1 = u 0 v 1 u 1 • • • v n u n , w 2 = x 0 y 1 x 1 • • • y m x m . (6.2)
By construction, p = (u 0 , v 1) = (x 0 , y 1) and s = (v n , u n) = (y m , x m).

From P = (p, f, s), we define a new d-pattern P that will be common to some (t

1 , t 2) ∈ G 1 × G 2 . Define ω = |N |! .
Then, for all s ∈ N , s ω is idempotent. For a block b = (v , u, v r), we write b ω for (v ω , u, v ω r). Note that in contrast to the ω-power of a monoid element, the ω-power of a word is just a number of repetitions of the word and does not get reduced. Thus one can always retrieve the original word. It follows that the mapping b → b ω is injective.

Let P = (p , f, s) be the d-pattern defined as follows.

p = (u 0 , v ω 1) and s = (v ω n , u n), -For all blocks b, if there exists c such that c ω = b, then f (b) = f (c), and else, f (b) = 0. Note that f is well defined, since b → b ω is an injective mapping. Now, consider the words

z 1 = u 0 v ω 1 u 1 • • • v ω n u n , z 2 = x 0 y ω 1 x 1 • • • y ω m x m .
(6.3)

Define t 1 = β(z 1) and t 2 = β(z 2). Since the decompositions of w 1 resp. w 2 in (6.2) were (α, s 1)-resp. (α, s 2)-compatible, duplicating v i 's resp. y j 's in these decompositions does not change the image under α. It follows that z 1 ∈ L 1 , thus β(z 1) ∈ G 1 , and similarly, β(z 2) ∈ G 2 .

We will prove that the decompositions given in (6.3) are (β, t 1)-resp. (β, t 2)-compatible Pdecompositions. Clearly, the conditions on p and s are satisfied. To see that f (b) indeed counts the number of occurrences of b, up to threshold d, in z i (for i = 1, 2), we use the following. By construction, each of the f (c) occurrences in the P-decomposition of w i gives rise to a specific occurrence of b in z i , and each occurrence of b in z i must come from a factor c occurring in w i . It follows that the decompositions from (6.3) are indeed P -decompositions. It remains to show that these decompositions are (β, t i)-compatible. We show this for i = 1. For all l ∈ {1, . . . , n}, since ω = |N |! ,

β(u 0 • • • v ω l) • β(v ω l) = β(u 0 • • • u l-1)β(v l) ω • β(v l) ω = β(u 0 • • • u l-1)β(v l) ω = β(u 0 • • • v ω l).
Thus, we have shown that (t 1 , t 2) ∈ G 1 × G 2 has a common d-pattern.

We now show how the implication (5) ⇒ (4) of Theorem 6.12 follows from Proposition 6.15. Assume that (s 1 , s 2) ∈ α(L 1) × α(L 2) has a common d-pattern. Let N be the transition monoid of A, and let β : A * → N be the associated morphism. Since β recognizes L 1 and L 2 , it follows from Proposition 6.15 that there exists (t 1 , t 2) ∈ β(L 1) × β(L 2) with a common d-pattern. By definition of a transition monoid, it is then immediate to build, from (t 1 , t 2), a pair (p 1 , q 1), (p 2 , q 2) ∈ (I 1 × F 1) × (I 2 × F 2) that has a common d-pattern.

Bounding the profile size

This section deals with implication (4) ⇒ (3) of Theorem 6.12. We will prove the following statement, which is the contraposition of this implication: if, for k = 4(|M | + 1), the language [L 1] d k does not separate L 1 from L 2 , then there exists a pair (s 1 , s 2) ∈ α(L 1)×α(L 2) that has a common d-pattern. As this is the first time in our proofs of the implications of Theorem 6.12 that the bound k on the size of the profiles comes into play, this implication forms an important part of the theorem, and it is not surprising that this implication is the most involved one to prove.

Our approach is the following. The fact that [L 1] d k does not separate L 1 from L 2 implies that there exist words w 1 ∈ L 1 and w 2 ∈ L 2 such that w 1 ≡ d k w 2 . From these two words, we will show how to construct a d-pattern P and two words w 1 ∈ L 1 , w 2 ∈ L 2 that admit P-decompositions that are (α, s 1)-resp. (α, s 2)-compatible, for some s 1 , s 2 ∈ M . The construction of w 1 , w 2 amounts to duplicating certain infixes in w 1 , w 2 that verify special properties. We first define these special infixes, called k-loops. Throughout this section, we use the value 4(|M | + 1) for k. Definition 6.16. Let w ∈ A * , let x be a position in w, and let (w , w r) be the k/2-profile of x. We say that x admits a k-loop for α if there exists a nonempty prefix u of w r such that α(w) = α(w • u). In this case, the smallest such u is called the k-loop of x for α. See Figure 6.3. Usually, the morphism α is clear from the context and we do not mention it explicitly.

For our construction to work, three specific properties of k-loops are important. The first two properties are immediate from the definition: k-loops are determined by profiles, and k-loops can be duplicated without modifying the image of the word under α. Fact 6.17. Let x be a position of a word. Whether x admits a k-loop, and if so, which k-loops x admits, only depends on the k/2-profile of x. In particular, the k-loop of two positions with the same k/2-profile is the same. Fact 6.18. Let w be a word and let x be a position of w that admits a k-loop u. Then, we have α(w[0, x]) = α(w[0, x]) • α(u).

The last property we need is that k-loops occur frequently enough in words, which means for us that for k = 4(|M | + 1), at least one of |M | + 1 consecutive positions must admit a k-loop. We will show this in the following lemma, using pumping arguments.

≤ i < j ≤ x |M |+1 , such that α(w[x 1 , x i]) = α(w[x 1 , x j]
). We will prove that x i admits a k-loop. The k/2-profile of x i is (w , w r) with w = w[max(0, x i -(|M | + 1)), x i] and w r = w[x i , min(

x i + |M | + 1, |w|). Since |w[x 1 , x i]| < |M | + 1, w[x 1 , x i] is a suffix of w . Write v for the word in A * such that w = v • w[x 1 , x i]. Let u = w[x i , x j]. Then, α(w) = α(v) • α(w[x 1 , x i]) = α(v) • α(w[x 1 , x j]) = α(w • u). Also, since |u| < |M | + 1, u is a prefix of w r . Therefore x i admits u as a k-loop.
Note that u is not necessarily the k-loop of x i , as there might be a smaller word that satisfies the definition as well.

The construction of w 1 and w 2 will make use of the following notions. Definition 6.20. Let w, u ∈ A * , and let x be a position of w. The word constructed from w by inserting u at position x is the word w

[0, x] • u • w[x, |w|].
For example, inserting cab at position 3 of the word abdabd gives the word abdcababd.

It follows from Fact 6.18 that inserting the k-loop of a position at that position does not change the image under α of the word. Because of this fact, the following definition will play a role when showing that we can construct words, in the respective languages, that are Note that x + k/4 < k/2. Thus,

x + k/4 ≤ k/2 -1 = 2|M | + 1 ≤ 4|M | + 2 = k -2,
which is the last position of the prefix w[0, k -1]. It follows that the k/2-profile of x lies within the prefix of length k -1. Thus, the corresponding position x in the prefix of w 2 has the same k/2-profile as x, and by Fact 6.17, it follows that the k-loop of x is v 1 . Note that, automatically, x is the first position in w 2 that admits a k-loop. Otherwise, by symmetry, the same argument would yield an earlier position in w 1 admitting a k-loop, which would yield a contradiciton. It follows that (u 0 , v 1) = (u 0 , v 1) = p. In a similar way, we obtain that (v m , u m) = s. Now let x be a position of w 1 , that is inside some u i , for i / ∈ {0, n}. Let x and x r be positions that admit a k-loop and that are the closest such positions to x, to the left (for x) resp. to the right (for x r). By construction, the k-loop of x is v i , and the k-loop of x r is v i+1 . By Lemma 6.19, it follows that x -x < k/4 and x r -x ≤ k/4. The k-profile of x is

w 1 [max(0, x -k/2), x], w 1 [x, min(x + k/2, |w 1 |)] .
Since x -x < k/4, we have x -k/2 < x -k/4, and it follows that the k/2-profile of x , that is,

w 1 [max(0, x -k/4), x], w 1 [x , min(x + k/4, |w 1 |)] ,
is contained in the k-profile of x. Similarly, from x r -x ≤ k/4, we obtain that x r +k/4 ≤ x+k/2 and it follows that the k/2-profile of x r is contained in the k-profile of x. For a sketch of the situation, see Let y be a position, either of w 1 or of w 2 , that has the same k-profile as x. Say that y is in w 2 , in some factor u j . Let x , x r be the corresponding positions relative to y (that is, the positions that are at the same distance to y as x , x r are to x). By the above, the k/2-profiles of x and x r are inside the k-profile of y, and are the same as the k/2-profiles of x resp. x r . Thus, using Fact 6.17, x , x r have k-loops v i resp. v i+1 . As before, it follows that there are no positions closer to y that admit a k-loop. It follows that (v i , u i , v i+1) = (v j , u j , v j+1). Note that this also says that the k-profile of a position x determines the positions of x and x r , relative to x, and thus determines the relative position of x inside u. This means that for each factor u i and u j , all positions of the factor have different k-profiles.

Thus, when taking the k-unfolding of a word, only the k-profile of a position x of this word determines the block b = (v , u, v r) in which this x will end up inside u, in the factor v • u • v r .

For simplicity, we say in this case that position x ends up in b.

v 1 u 1 v 2 • • • v m u m is a P-decomposition for w 2 .

Decidability of separation by locally testable languages

Let us now focus on the class of locally testable languages. As mentioned before, decidability of the separation problem for locally testable languages follows immediately from Theorem 6.12 (one simply instantiates the theorem for d = 1). In view of the relevance of this class, we explicitly state the conditions equivalent to being LT-separable in the following theorem.

Theorem 6.23. Let L 1 , L 2 be regular languages. Let α : A * → M be a morphism into a finite monoid M recognizing both L 1 and L 2 . Let A be an NFA recognizing both L 1 and L 2 , with L i = L(A, I i , F i). Let k = 4(|M | + 1). Then, the following conditions are equivalent.

(1) L 1 and L 2 are LT-separable,

(2) L 1 and L 2 are LT[k]-separable, (3) The language [L 1] k separates L 1 from L 2 ,
(4) There is no pair in α(L 1) × α(L 2) with a common 1-pattern, (5) There is no pair in (I 1 × F 1) × (I 2 × F 2) with a common 1-pattern.

As before, this theorem yields an algorithm to decide LT-separability, by testing all the finitely many LT[k]-languages, for k = 4(|M | + 1), as potential separators. Again, this brute-force approach yields a very costly procedure. In Section 6.4.1, we will see that Conditions (4) and (5) can be exploited to obtain a more practical algorithm. Corollary 6.24. It is decidable whether two given regular languages are LT-separable.

Separation for full locally threshold testable languages

In Section 6.3.1, we focus on showing that the separation problem for locally threshold testable languages is decidable. We will show that the bound on k, found in Theorem 6.12 when looking at LTT restricted to a fixed d, also works for the class of full LTT. This enables us to adapt an algorithm from [START_REF] Miko | A new algorithm for testing if a regular language is locally threshold testable[END_REF] and show that the separation problem for LTT is decidable. This result, however, does not give any insight about an actual separator yet. Next, in Section 6.3.2, we provide a bound on the counting threshold d. This result, together with the bound on k that we already had, yields another (brute-force) algorithm to test LTT-separability, and, more importantly, it yields a description of a separator in case it exists. Finally, in Section 6.3.3, we discuss the optimality of our bound on the counting threshold.

Decidability of separation by locally threshold testable languages

From Theorem 6.12, it follows in particular that for two regular languages L 1 , L 2 , both recognized by some monoid M , for d ∈ N and for k = 4(|M | + 1), the following equivalence holds. Our proof for the decidability builds on the above formulation of LTT-separability, and on an adaptation of an algorithm to decide membership for LTT, presented in [START_REF] Miko | A new algorithm for testing if a regular language is locally threshold testable[END_REF]. In this paper, it was proved that for a fixed k, one can use Parikh's theorem [START_REF] Rohit | On context-free languages[END_REF] to translate the property of a language of being in a class LTT[k, d], for some d, to a computable Presburger formula. Presburger arithmetic is decidable [START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF][START_REF] Skolem | Über einige Satzfunktionen in der Arithmetik[END_REF]. In order to use this fact to prove that membership in LTT is decidable, two ingredients are used in [START_REF] Miko | A new algorithm for testing if a regular language is locally threshold testable[END_REF],

∃ ∈ N. L 1 , L 2 are LTT[, d]-separable ⇔ L 1 , L 2 are LTT[k, d]-separable.
-a bound on k, -the translation to Presburger arithmetic.

By the formulation of LTT-separability in (6.4), we already have a bound for k that works in our setting. It turns out that the translation to Presburger arithmetic, as applied in the paper, can easily be adapted to express separability rather than membership in a Presburger formula. The reason why this easy adaptation is possible is that the formula testing membership was actually already formulated as testing separability between the input language and its complement. In the rest of this section, we will generalize the arguments from [START_REF] Miko | A new algorithm for testing if a regular language is locally threshold testable[END_REF] and explain how to construct the suitable Presburger formula. The notion of commutative image, also called Parikh image, is important in this context. Let us first recall this notion.

Definition 6.25. Let A = {a 1 , a 2 , . . . , a n } be an alphabet, ordered as a 1 < a 2 < . . . < a n . Let w ∈ A * . The commutative image of w, denoted by π(w), is a vector (m 1 , m 2 , . . . , m n) of natural numbers, such that for all i, m i is the number of occurrences of a i in w. For a language L, the set π(L) = {π(w) | w ∈ L} is called the commutative image of L.

For our purposes, it will be useful to count profiles occurring in a word, rather than just letters. Recall that the set of all k-profiles is denoted by A k . We assume this set is ordered, for example, by an order induced by the order on A. A well-known result about commutative images is Parikh's theorem, stated in [START_REF] Rohit | On context-free languages[END_REF], which says that if L is context-free (thus, in particular, if L is regular), then π(L) is semilinear. Recall that a set of vectors is semilinear if it is a finite union of linear sets of vectors, and that a set of vectors is linear if it is of the form {x 0

+ i 1 x 1 + . . . + i m x m | i 1 , . . . , i m ∈ N, x 0 , . . . , x m ∈ N n }.
By [GS66, Theorem 1.3], the fact that π(L) is semilinear implies that π(L) is Presburger definable. As explained in [Boj07], Parikh's theorem extends without difficulty to k-images. Let us prove this in the following theorem. Theorem 6.28. Let L be a context-free language and let k ∈ N. Then, π k (L) is semilinear. Moreover, a Presburger formula for this semilinear set can be computed from L.

Proof. If k = 1, then π k (L) = π(L), and by Parikh's theorem, this set is semilinear and can be effectively calculated. When k > 1, consider the following language L over the alphabet A k of k-profiles: a word w is in L if and only if there exists w ∈ L of the same length (measured in terms of their own respective alphabets) and such that a position in w is labeled by the k-profile of the same position in w. The language L is context-free and, by construction, the k-image π k (L) of L is the commutative image π(L) of L . By Parikh's theorem, π(L) is semilinear and can be effectively calculated. It then follows from [GS66, Theorem 1.3] that one can compute a Presburger formula for the set π k (L).

We can now explain how to decide LTT-separability. Theorem 6.29. It is decidable whether two regular languages are LTT-separable.

Proof. Given two regular languages L 1 and L 2 , and a monoid M recognizing both of these languages, we let k = 4(|M | + 1). By the formulation in (6.4), L 1 , L We first look at the following lemma, that shows that whenever k-profiles occur 'many' times in a word w of a language L, one can obtain, by pumping appropriate factors of w, an equivalent word that is still in L and in which these k-profiles occur as often as one wants. This result will be useful later on, when we want to use witnesses of non-LTT[k, d]-separability (for d fixed as above), to construct witnesses of non-LTT[k, d]-separability, for every d .

Lemma 6.30. Let L be a language and let α :

A * → M be a morphism into a finite monoid M recognizing L. Let k = 4(|M | + 1) and let n = |M | + 1. Let h, h ∈ N, such that h ≥ 1 and h ≥ n • |A k | • h. Let w ∈ L.
Then, for all c ∈ N, one can construct a word w ∈ L such that w ≡ h k w and such that every k-profile that occurs h or more times in w, occurs c or more times in w .

Proof. A naive approach would be the following. As soon as a k-profile occurs at more than n = |M | + 1 positions in w, the same monoid element occurs twice in the sequence of the images of the prefix of w up to these positions. Therefore, one can pump the corresponding infix of w that occurs between these positions to generate c copies of the k-profile, without affecting membership in L. However, we also want to maintain that w ≡ h k w. Thus, one needs to be more careful and avoid duplicating k-profiles that occur strictly less than h times in w. This is why we use the much higher constant h , rather than n, to find the infixes that can be pumped in order to construct w .

If there is no k-profile that occurs more than h times in w, then it suffices to take w = w. Else, let (w , w r) be such a k-profile that occurs more than h times in w. We will explain how, by pumping factors in w, one can obtain a word w that contains more than c copies of (w , w r), while at the same time w ≡ h k w. This construction can then be repeated to treat all k-profiles that occur more than h times in w, in order to get the desired w . Let x 1 < . . . < x h be h positions where (w , w r) occurs. Note that there are at most |A k |(h -1) positions in w such that the k-profile at this position occurs strictly less than h times in w. We look at the positions that are in between consecutive positions from the list x 1 , . . . , x h . By choice of h , there are at least n|A k |h -1 such regions of positions that are between x i and x i+1 for some 1 ≤ i < h . Since there are at most |A k |(h -1) positions in w that have a k-profile which occurs strictly less than h times in w, it follows that there exist at least n consecutive positions in the list, say x i , . . . , x i+(n-1) , such that no intermediate position between x i and x i+(n-1) has a k-profile that occurs less than h times in w. (For, if there would not be such n positions, we would need one position with a k-profile that occurs less than h times for each sequence of n consecutive regions. Since there are at least n|A k |h-1 regions, this means we would need at least |A k |h -1 positions in w that have a k-profile which occurs strictly less than h times in w. But as

|A k | > 1, we have that |A k |h -1 > |A k |(h -1)
, giving a contradiction). Now look at the following list of n monoid elements, α(w[0, x i]), α(w[0, x i+1]), . . . , α(w[0, x i+(n-1)]).

Since n = |M | + 1, there are positions x p , x q from the list, such that x i ≤ x p < x q ≤ x i+(n-1) and α(w[0, x p]) = α(w[0, x q]). This means that the infix w[x p , x q] can be repeated to generate c copies of (w , w r), without affecting membership in L. Furthermore, since none of the positions in between x i , . . . , x i+(n-1) had a k-profile occurring less than h times in w, the pumping did not duplicate any such k-profile. Therefore, the resulting word w also has the desired property w ≡ h k w.

Note that in the lemma above, one could also have taken n = |Q| + 1, for A = (A, Q, δ), instead of n = |M | + 1. The same reasoning would then yield that two positions among x i , . . . , x i+(n-1) would visit the same state in the run of w in A. Pumping the corresponding infix would then give the same result.

The following proposition forms, together with equivalence (6.4), the key ingredient for our separation theorem for the class of full LTT. The algorithms to decide LTresp. LTT-separability for the special case of k = 1 are different for the two classes. We provide algorithms, for this special case of k = 1, which run in co-Np for LT and in Expspace for LTT.

Note that one could also consider the bound k on the size of k-profiles, presented in Theorems 6.23 and 6.32, in order to reduce the problem of LTresp. LTT-separability to the case of k = 1. Indeed, once k is fixed, it suffices to modify the input NFA to work on the alphabet of k-profiles. This would also give a reduction to the case of k = 1. However, this technique might yield an NFA that is doubly exponential in the size of the input NFA.

We first present and prove the reduction to the case of k = 1. After this, we explain how to decide both problems in this special case, and we show which upper complexity bounds, for LTresp. LTT-separability, this approach yields.

Reduction to the case of k = 1

Let A = (A, Q, δ) be an NFA. It follows from Theorem 6.23 (resp. Theorem 6.32) that to determine whether L(A, I 1 , F 1) and L(A, I 2 , F 2) are not LT-separable (resp. not LTTseparable), it suffices to verify whether there exists a pair in (I 1 × F 1) × (I 2 × F 2) that has a common 1-pattern (resp. whether there exists d ∈ N such that there exists a pair in (I 1 × F 1) × (I 2 × F 2) that has a common d-pattern). This requires verifying whether there exist a pattern P, a P-decomposition that is compatible with a pair in I 1 × F 1 , and a P-decomposition that is compatible with a pair in

I 2 × F 2 .
A first step in our reduction to the case of k = 1 is to view P-decompositions as words over the alphabet of blocks. This is illustrated in the following example. Note that, for such a correspondence between P-decompositions and words over the alphabet of blocks to make sense, we should only consider words of blocks that satisfy the following compatibility condition:

u 0 v 1 u 1 v 2 u 2 v 3 u 3 v 4 u 4 Now, p = (u 0 , v 1), s = (v 4 , u 4) and (v 1 , u 1 , v 2), (v 3 , u 3 , v 4) = (b, aa, bb) and (v 2 , u 3 , v 3) = (bb
if (u, v) or (v, u, v) is followed by (v , u , v) or (v , u), then v = v .
The main idea behind the reduction is to construct a new NFA A, which recognizes words over the alphabet of blocks that represent special P-decompositions. Namely, those Pdecompositions that are, for some P, compatible with pairs of states of I 1 × F 1 and of I 2 × F 2 in A. There are two issues with this idea. The first one we addressed above, that is, a word of blocks should satisfy the compatibility condition in order to correspond to a P-decomposition. This compatibility property for consecutive blocks cannot be simply encoded in the states, since there are infinitely many words. The second issue is that the alphabet of blocks is infinite.

We take care of these issues using a similar argument for both. Let us first discuss the issue that the alphabet of blocks is infinite. Recall that we are only interested in P-decompositions that are compatible with pairs of states of I 1 × F 1 and of I 2 × F 2 in A. Observe that for a block (v, u, v) to appear in such a decomposition, there need to exist states q, q in A with loops around these states labeled by v resp. v , and a path from q to q labeled by u. Instead of dealing with a specific block, it thus suffices to deal with the set of pairs of states verifying this property. The number of such sets is bounded by 2 |Q| 2 , in particular, there are only finitely many such sets. Making the abstraction from blocks to these sets thus yields a finite alphabet.

The same argument can be used to deal with the compatibility issue. All words v that need to be considered for the compatibility condition need to label a loop around some state q.

Instead of taking the specific word v into account, we will use the set of states having such a loop labeled by v. Again, this abstraction retains the relevant information from an infinite set (of words) and encodes it in a finite set (of subsets of states of A). As we will show in the formal construction, this information can then be encoded in the states of A.

Before providing the formal construction of A in Construction 6.38, we introduce some relevant notions. First, we define the notion used to encode the compatibility condition in the automaton.

Definition 6.36. Let A = (A, Q, δ) be an NFA and let R ⊆ Q. We say that R is synchronizable if there exists a nonempty word v ∈ A * such that, for all q ∈ R, there exists a loop around q labeled by v.

The following definition introduces the ingredients of the new alphabet that will encode the relevant information about the blocks.

Definition 6.37. Let A = (A, Q, δ) be an NFA and let T ⊆ Q 2 . We denote the set of states that are left (resp. right) members of pairs in T by (T) (resp. by r(T)). We say that T is synchronizable if (a) there exists a word u ∈ A * such that, for all (q, q) ∈ T , there exists a run from q to q labeled by u, (b) (T) is synchronizable, and

(c) r(T) is synchronizable,
where the notion of synchronizable in (b) and (c) refers to Definition 6.36. In order to deal with prefixes and suffixes, we generalize the notion for T to these limit cases. We say that T is prefix synchronizable (resp. suffix synchronizable) if (a) and (c) (resp. (a) and (b)) hold. Finally, we say that T is weakly synchronizable if (a) holds.

We can now show how to construct the new NFA A from A = (A, Q, δ) and sets of states

I 1 , F 1 , I 2 , F 2 .
Construction 6.38. Let A = (A, Q, δ) be an NFA and let I 1 , F 1 , I 2 , F 2 ⊆ Q. Let B w , B p , B i and B s be the sets of weakly synchronizable, prefix synchronizable, synchronizable and suffix synchronizable sets of pairs of states, respectively. We let the alphabet B of the new automaton A be the disjoint union of the sets B w , B p , B i and B s . The new set of states Q is defined as follows.

Q = {(r, R) | r ∈ R ⊆ Q, R is synchronizable} ∪ I 1 ∪ F 1 ∪ I 2 ∪ F 2 .
We now define the transitions. Let j = 1, 2. As we saw above, a letter b ∈ B w is a set of pairs of states between which the same word can be read. For all b ∈ B w , we add a transition labeled by b from q ∈ I j to r ∈ F j , whenever (q, r) ∈ b. For all b ∈ B p , we add a transition labeled by b from q ∈ I j to the state (r, R) if (q, r) ∈ b and R ⊆ r(b). Similarly, for all b ∈ B s , we add a transition labeled by b from (r, R) to q ∈ F j if (r, q) ∈ b and R ⊆ (b). Finally, for all b ∈ B i , we add a transition labeled by b from (r, R) to (s, S) if (r, s) ∈ b, R ⊆ (b) and S ⊆ r(b).

Observe that the size of A is exponential in the size of A. We now prove that the computation can be done in Exptime.

Lemma 6.39. Let A = (A, Q, δ) be an NFA and let I 1 , F 1 , I 2 , F 2 ⊆ Q. The automaton A, defined as above from this input, can be constructed in Exptime.

Proof. Testing synchronizability of a set of states, as well as testing this for a set of pairs of states, can easily be reduced to checking whether a set of NFA's has nonempty intersection. For example, given a set R = {r 1 , . . . , r n } ⊆ Q, we can define A i as the NFA A, with I = F = {r i }. Now R is synchronizable if and only if n i=1 A i = ∅. Deciding whether a set of NFA's has a nonempty intersection is known to be a Pspace-complete problem (this follows from [START_REF] Kozen | Lower bounds for natural proof systems[END_REF]). It follows that computing the synchronizable sets can be done in Exptime. It is then clear that the remaining computations can also be done in Exptime.

We now prove that the construction is correct, that is, that it gives a reduction from LTand LTT-separability to the special case that k = 1. Proposition 6.40. Let A = (A, Q, δ) be an NFA, and let I 1 , F 1 , I 2 , F 2 ⊆ Q. Let A be the NFA resulting from Construction 6.38 on this input. Then, of Theorem 6.32, in A, there exists a pair in (I 1 × F 1) × (I 2 × F 2) that has a common d-pattern P. That is, there are words w 1 ∈ L(A, I 1 , F 1) and w 2 ∈ L(A, I 2 , F 2) such that w 1 = u 0 v 1 u 1 . . . v n u n and w 2 = u 0 v 1 u 1 . . . v m u m are P-decompositions, compatible with some (q 1 , r 1) ∈ I 1 × F 1 in A, respectively with (q 2 , r 2) ∈ I 2 × F 2 in A. There are two cases: either n = 0 or n > 0.

In the first case, n = 0, which implies that P = u 0 . Then, the P-decompositions w 1 and w 2 are both equal to u 0 . It follows that b = {(q 1 , r 1), (q 2 , r 2)} ∈ B w . Then, by construction, b ∈ L(A, I 1 , F 1) ∩ L(A, I 2 , F 2), thus the languages L(A, I 1 , F 1) and L(A, I 2 , F 2) are not LTT[1, d]separable.

In the second case, n > 0. Define

w 1 = pb 1 • • • b n-1 s, where p = (u 0 , v 1), s = (v n , u n) and, for all i, b i = (v i , u i , v i+1). Similarly, we define w 2 = p b 1 • • • b m-1 s .
Since we started from P-decompositions for a d-pattern P, we have that p = p , s = s , and the number of times that a block b occurs in w 1 and in w 2 is equal up to threshold d. It follows by construction that, over the alphabet of blocks, w 1 ≡ d 1 w 2 . We will use these words to construct w 1 , w 2 ∈ B * such that w 1 ∈ L(A, I 1 , F 1), w 2 ∈ L(A, I 2 , F 2), and

w 1 ≡ d 1 w 2 .
Let b be a block that appears in w 1 , w 2 . Define T b ⊆ Q 2 as the set of all pairs of states in A that are used to read occurrences of b in the runs of w 1 and w 2 . Since the P-decompositions are compatible with their respective initial and final states, by definition, T b is synchronizable. Similarly, if p (resp. s) is a prefix (resp. suffix) block occurring in w 1 , w 2 , we get a prefix (resp. suffix) synchronizable set T p (resp. T s). We now define the following words over the alphabet B:

w 1 = T p T b 1 • • • T b n-1 T s and w 2 = T p T b 1 • • • T b m-1 T s .
By definition of A and the fact that the P-decompositions w 1 and w 2 are (q 1 , r 1)-resp. (q 2 , r 2)-compatible, w 1 ∈ L(A, I 1 , F 1) and w 2 ∈ L(A, I 2 , F 2). Moreover, since w 1 ≡ d 1 w 2 , we have w 1 ≡ d 1 w 2 . We conclude that L(A, I 1 , F 1) and L(A, I 2 , F 2) are not LTT[1, d]-separable.

Conversely, assume that for all d ∈ N, L(A, I 1 , F 1) and L(A, I 2 , F 2) are not LTT[1, d]separable. We prove that for all d ∈ N, there exists a pair in (I 1 × F 1) × (I 2 × F 2) that has a common d-pattern P. Let d ∈ N. By assumption, there exist w 1 ∈ L(A, I 1 , F 1) and w 2 ∈ L(A, I 2 , F 2), such that w 1 ≡ d 1 w 2 . Again, we have two cases. By definition of A, either w 1 , w 2 ∈ B w or w 1 , w 2 ∈ B p (B i) * B s . In the first case, w 1 ≡ d 1 w 2 implies that w 1 = w 2 and this means, by definition of B w , that there is a word w that can be read both between a pair in I 1 × F 1 and between a pair in I 2 × F 2 . Then it suffices to take P = w. . By definition of B p , B i , B s , to each label appearing in w 1 , w 2 we can associate a block, prefix block or suffix block. Since w 1 and w 2 label runs in A, these blocks can be chosen in such a way that the corresponding words over the alphabet of blocks satisfy the compatibility condition. We define P = (p, f, s) as the following d-pattern: p, s are the prefix and suffix blocks associated to b p and b s , respectively. Since w 1 ≡ d 1 w 2 , for all blocks b, the number of occurrences of labels b such that b is associated to b is the same in w 1 and w 2 up to threshold d. We define f (b) as this number.

Finally, let q i ∈ I i and r i ∈ F i be such that w i labels a path from q i to r i in A. Let b = (v, u, v) be the block chosen to correspond to b. A transition labeled b from (p, P) to (s, S) implies in particular that, in A, there is a loop labeled v resp. v around p resp. around s, and that the word u can be read from p to s. Recall that the word of blocks corresponding to w 1 satisfies the compatibility condition. Projecting to the first coordinate of the states in the path of w 1 thus yields a path for a P-decomposition w 1 in A that is (q 1 , r 1)-compatible by construction. Similarly, from w 2 , we obtain a (q 2 , r 2)-compatible run for a P-decomposition w 2 in A.

Deciding LTand LTT-separability for k = 1

We explain how LTand LTT-separability can be decided when the size of k-profiles is fixed to 1. Observe that in this case, the k-profile of a position is just its label. As we explained in Section 6.3.1, decidability of LTT-separability in general (and, similarly, of LT-separability) follows from Parikh's theorem and decidability of Presburger arithmetic. However, applying these results naively yields a high complexity. We explain here how, when k is fixed to 1, these arguments can be refined in order to obtain Expspace and co-Np complexities. Lemma 6.41. Given an NFA accepting the languages L 1 and L 2 , deciding whether there exists d ∈ N such that L 1 and L 2 are LTT[1, d]-separable is in Expspace.

Proof. Let π(L 1), π(L 2) be the commutative images of L 1 and L 2 . As we explained in Section 6.3.1, non-LTT [1, d]-separability is equivalent to the following Presburger property: 'for all d ∈ N there exist x1 ∈ π(L 1), x2 ∈ π(L 2) that are equal, componentwise, up to threshold d.' By [SSMH04, Theorem 1], existential Presburger formulas for π(L 1), π(L 2) can be computed in linear time, with respect to the size of the NFA (see also [START_REF] Kumar | On the complexity of equational Horn clauses[END_REF], where the same technique is applied to context-free grammars). Therefore, a Presburger formula for our property can also be computed in linear time. Moreover, by definition, this property has exactly one quantifier alternation. It then follows from [START_REF] Reddy | Presburger arithmetic with bounded quantifier alternation[END_REF] that it can be decided in Expspace. Thus, LTT [1, d]-separability can be decided in co-Expspace, which is Expspace.

For LT, a similar proof works. However, since d is equal to 1 for this class, the situation is a bit simpler, as we will see in the following lemma. Lemma 6.42. Deciding whether two regular languages, given by an accepting NFA, are LT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]separable is in co-Np.

Proof. Let π(L 1), π(L 2) be the commutative images of the languages L 1 and L 2 . Since d is now fixed to be equal to 1, non-LT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]-separability is equivalent to the following Presburger property: 'there exist x1 ∈ π(L 1), x2 ∈ π(L 2) that are equal, componentwise, up to threshold 1.' The Presburger formula corresponding to this property is existential. It is known that existential Presburger formulas can be decided in Np (see [START_REF] Borosh | Bounds on positive integral solutions of linear Diophantine equations[END_REF][START_REF] Von | A bound on solutions of linear integer equalities and inequalities[END_REF]). We conclude that LT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]-separability is in co-Np.

However, taking a closer look at the class LT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], one notes that membership of a word in a language of this class depends only on the set of letters that the word contains. This is since, for k = 1, the k-profile of each position of the word has the same length, and one can thus not deduce any information from the k-profiles about the different kinds of positions (that is, whether they are in the beginning, middle or ending of the word). Thus, LT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF] is equal to the class Sl of alphabet-testable languages that we encountered in Section 2.3.1. We can instance of 3-SAT, we construct two DFA's and prove that the corresponding languages are not LTresp. LTT-separable if and only if the 3-SAT instance is satisfiable. Proposition 6.46. The following two problems are co-Np-hard.

Input:

An alphabet A = {a 1 , a 2 , . . . , a n } and two languages L 1 , L 2 , recognized by DFA's A 1 resp. A 2 over A. Question 1: Are L 1 and L 2 LT-separable? Question 2: Are L 1 and L 2 LTT-separable?

Proof. We will prove the statement about LTT-separability. The reduction is identical for the case of LT. Let ϕ be a 3-SAT formula over the variables {x 1 , x 2 , . . . , x n }. Let A be the alphabet {#, x 1 , . . . , x n , ¬x 1 , . . . , ¬x n }. We will construct two DFA's and prove that the corresponding languages are not LTT-separable if and only if the 3-SAT instance ϕ is satisfiable. Let A 1 be the automaton depicted in Figure 6.5. Let L 1 be the language that is recognized by this automaton, by the initial and final states marked in the picture. The automaton A 2 is contructed as a concatenation of m subautomata, each corresponding to a clause C in ϕ. For every disjunct in the clause, there will be a path in the subautomaton that reads precisely that disjunct and the symbol #. This sequence of subautomata is then concatenated with a copy of the automaton A 1 . In Figure 6.6, we illustrate how to construct A 2 precisely. The language that is recognized by the marked initial and final states, is called L 2 .

x 1 ¬ x 1 # # x 2 ¬ x 2 # # x n ¬ x n # # . . .
We will show that ϕ is satisfiable if and only if L 1 and L 2 are not LTT-separable. To this end, we first prove the following claim.

Claim. There exist u ∈ L 1 and v ∈ L 2 such that alph(u) = alph(v) if and only if for all k, d ∈ N, there are u ∈ L 1 and v ∈ L 2 such that u ≡ d k v .

For the direction from right to left, let d = k = 1. The corresponding u and v then, in particular, have the same alphabet. For the converse direction, let k, d ∈ N, and let u, v be as in the assumption. Inserting #-loops in the runs of u and of v sufficiently often (for example, k times for every possible loop), one can ensure that every k-profile contains at most one letter from A \ {#}. Note that this also makes sure that the prefixes and suffixes of length k of the new words are the same, namely # k . Then, one inserts loops labeled by x i resp. ¬x i (whichever is already present in the run) in combination with #-loops, in such a way that these k-profiles occur equally often (counted up to threshold d) in both words. This process yields the desired words u and v such that u ≡ d k v . Now, suppose that some valuation satisfies ϕ. One uses this valuation to define a word u in the language L 1 , in the following way. Let u = a 1 #a 2 # . . . a n #. If x i is sent to 1 by the valuation, a i = x i . Else, a i = ¬x i . Since the valuation satisfies ϕ, there is in each of the m clauses a disjunct d that is sent to 1. Define a word v in L 2 as y 1 #y 2 # . . . y m #u, where y i is such a disjunct of C i that is sent to 1. By soundness of the valuation, we have alph(u) = alph(v). Hence, by the claim above, for all k, d ∈ N, there are u ∈ L 1 and v ∈ L 2 such that u ≡ d k v . That is, L 1 , L 2 are not LTT-separable. On the other hand, suppose that L 1 , L 2 are not LTT-separable. In particular, this means that there exist u ∈ L 1 and v ∈ L 2 such that alph(u) = alph(v). Note that by construction of A 1 , we have that for all i ∈ {1, . . . , n}, either x i ∈ alph(u) or ¬x i ∈ alph(u). The word u ∈ L 1 thus defines the following valuation on the set of variables. val : {x 1 , . . . x n } → {0, 1}

x i → 1 if x i ∈ alph(u)

x i → 0 else
The fact that alph(v) = alph(u) thus implies that all non-# letters in v are sent to 1. It follows by the construction of A 2 that in each of the clauses of ϕ, there is a disjunct that evaluates to 1. Thus, ϕ is satisfiable.

Separating context-free languages by LT and LTT languages

In Section 6.3.1, we showed that LTT-separability for regular languages is decidable, using the following ingredients:

(1) Condition (2) of Theorem 6.12, k -1. It follows that ua ≡ d k va, and since v ∈ L/a, it follows that u ∈ L/a as well. Thus, L/a ∈ LTT[k, d].

Theorem 6.49. The membership problem for context-free languages in the class LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF] is undecidable.

Proof. We reduce the undecidable problem of universality of context-free languages to this membership problem. Let L be a context-free language over A and let # ∈ A. Let K be a context-free language that is not in LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], and define

L 1 = (K • # • A *) ∪ (A * • (# • L) +).
Clearly, a context-free grammar for L 1 can be computed from context-free grammars for L and K. We show that L = A * if and only if L 1 ∈ LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF].

If L = A * , then L 1 = (K •#•A *)∪(A * •(#•A *) +) = A * •(#•A *) + = (A∪{#}) * •#•(A∪{#}) * .
The first-order formula ∃x. #(x) then witnesses that L 1 ∈ LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF].

For the converse direction, we use Lemma 6.48. By assumption, L 1 ∈ LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]. Suppose that L = A * . Let w ∈ A * \L. Consider the quotient L 1 /#w = {v | v#w ∈ L 1 }. By definition of L 1 , this quotient is equal to K. Lemma 6.48 implies that K = L 1 /#w ∈ LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], which contradicts the definition of K. It follows that L = A * .

In a similar fashion, we obtain that the membership problems for context-free languages in the classes LT and LTT are undecidable as well.

Theorem 6.50. The membership problems for context-free languages in the classes LT and LTT are undecidable.

Proof. This can be shown by replacing each occurrence of LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF] in the proof of Theorem 6.49 by LT resp. LTT. This works since Lemma 6.48 holds for these classes too, and, whenever L = A * , the language L 1 is also in LT and in LTT.

The results of Theorem 6.47 and Theorem 6.49 may seem contradictory. Indeed, in the setting of regular languages, a language belongs to a class if and only if this class can separate the language from its complement. It follows that membership can be reduced to separability. However, the class of context-free languages is not closed under complement, such that the reduction no longer holds in this broader setting.

An interesting question is whether full LTand LTT-separability of context-free languages is decidable as well. In view of Theorem 6.50, this would also be surprising. As we saw before, two out of three ingredients of our method from Section 6.3.1 still work in the setting of context-free languages. A possible approach to proving decidability of LTresp. LTTseparability of context-free languages would thus be to generalize Condition (2) of Theorem 6.12. This amounts to finding a bound on the size of the profiles that a potential separator has to consider. However, as we will show in Theorem 6.51, it turns out that LTand LTT-separability of context-free languages are undecidable. In particular, this implies that generalizing Condition (2) of Theorem 6.12 to context-free languages is not possible.

As we have mentioned in Chapter 2, it is proven in [START_REF] Szymanski | Noncanonical extensions of bottom-up parsing techniques[END_REF] that separability of context-free languages by regular languages is undecidable. The proof of this fact, as provided in [SW76, Theorem 4.6], is a reduction from the halting problem on Turing machines to this separation problem. It turns out that this reduction actually works for any class of regular separators that contains all languages of the form K 1 A * ∪ K 2 , where K 1 , K 2 are finite languages. Since this is clearly the case for both LT and LTT, the undecidability of LTand LTT-separability of context-free languages follows along the same lines. In Theorem 6.51 we provide a version of this proof tailored to the classes of LT and LTT. Now assume that v is the prefix of c or c R for some configuration c of M. By Claim 1, c is such that c 1 , c 2 , . . . , c i-1 , c i , c are the first i + 1 configurations of the run of M starting from the empty input. Since M halts in steps, this means that i + 1 ≤ and that each configuration has length ≤ + 1. Thus, |u| ≤ (-1)(+ 1) + -1 and |v| ≤ + 1. It follows that u 1 = u 2 is of length ≤ (+ 1) + -1, which gives again a contradiction with the definition.

We will now show how Claim 3 can be used to define an LT language that separates L 1 from L 2 . Let K 1 be the language of words of L 1 of strictly smaller length than (+ 1) + 2 . Let K 2 be the set of prefixes of length (+ 1) + 2 of words in L 1 . Now define L = K 1 ∪ K 2 • B * . By definition, K 1 , K 2 are finite languages, hence L is clearly in LT (and therefore in LTT). We will prove that L separates L 1 from L 2 .

By definition, L 1 ⊆ L. Now let w ∈ L 2 . Clearly, w cannot be in K 1 , since, by definition of L 1 , all words in K 1 are of the form

c 1 #c R 2 #c 3 #c R 4 • • • #c 2k-1 #c R 2k #γ k .
But, as w ∈ L 2 , it has twice as many letters γ at the end. And, w can neither be in K 2 • B * , because of the following. By definition, K 2 • B * contains all words for which there is a word in L 1 that has the same prefix of length (+ 1) + 2 . By Claim 3, this is not the case for w.

It follows that L ∩ L 2 = ∅.

We deduce that L 1 , L 2 are LT-separable, and therefore also LTT-separable.

Conclusion and perspectives

This thesis reflects the results of our study of the separation problem for various subclasses of the regular languages. For regular input languages, this problem subsumes the classical membership problem, which is considered to be one of the main tools to understand a class of languages described in terms of logic or combinatorial properties. The separation problem is a tool to study the ability of a class of languages to perceive phenomena outside of this class of languages. More precisely, it asks whether a class of languages can witness the fact that two languages, that can be outside of the class, are disjoint. Besides that solving this problem provides more information about the class than solving the membership problem does, it also seems to be a more robust notion. For example, it is known from [START_REF] Auinger | On the decidability of membership in the global of a monoid pseudovariety[END_REF] that decidability of the membership problem is not preserved under the operation V → V * D, while this is the case for decidability of the separation problem [START_REF] Steinberg | A delay theorem for pointlikes[END_REF].

The separation problem for classes of languages emerged first in an algebraic context in the form of pointlike sets, and in a profinite context as a topological separation problem. In Chapter 2, we discussed the result of [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] that says that the separation problem for a variety V is equivalent to the algebraic problem of finding the 2-V-pointlike sets, and to the topological problem of testing whether closures of two regular languages in the free pro-V semigroup are disjoint. These problems have been studied for various classes of languages, using involved techniques from the theory of profinite semigroups.

Contributions

In this dissertation, we focused on the separation problem for the following four classes of languages: piecewise testable languages, unambiguous languages, locally testable languages and locally threshold testable languages. For the class of unambiguous languages, it was not yet known whether the separation problem was decidable. In Theorem 5.5, we show that this is indeed the case. For the other classes of languages, the decidability of the separation problem had already been proved using algebraic or topological arguments. These arguments only provide a yes/no answer to these separation problems, and do not provide separating languages. Our motivation for studying this problem was to find proofs that do not rely on the profinite theory behind these problems, but only use combinatorial arguments. We believe that these proofs provide more insight in the separation problems. Indeed, our approach also provides separating languages in case they exist.

Our contribution to this field of research is threefold. First of all, we provide combinatorial proofs of the decidability of the PT-, FO 2 (<)-, LT-, and LTT-separation problems. Our proofs only use elementary combinatorial techniques, and are therefore much simpler than the previously known proofs. We also provide some complexity results for these separation problems. For example, we showed that the PT-separation problem can be decided in Ptime with respect to both the size of a recognizing automaton and the size of the alphabet. This improved the existing upper bound, which was Ptime with respect to the size of the automaton, but Exptime with respect to the size of the alphabet.

Secondly, our approach to these problems is to establish bounds on parameters of the class of languages (such as the length of the pieces, the length of the prefixes, infixes and suffixes, or the quantifier rank). These are such that only languages whose parameters are below the bounds are relevant to decide the separation problem. An advantage of this approach is that one immediately obtains a brute force algorithm to test separability, and, more importantly, one obtains a description of a separator in case it exists.

Finally, this combinatorial approach gives an outline along which one can try to solve the separation problem for other classes as well. For example, recently, this has successfully been done for the class of languages recognizable by FO(<) in [START_REF] Place | Separating regular languages with first-order logic[END_REF].

Recent developments and future directions

Recently, our result about the decidability of LTT-separability has been generalized in [START_REF] Place | Separation and the successor relation[END_REF], to obtain a transfer result that works for natural fragments of first-order logic. This result says that the decidability of separability by a fragment of the form F(<, +1, min, max) reduces to the decidability of separability by a fragment of the form F(<).

Improving results

Some questions still remain open. One question concerns the description of the separators.

The descriptions that we have found are in the form of a saturation of one of the two languages, with respect to a congruence relation that depends on the class of languages that we study, and on the bound established on the parameters of this class. While these descriptions of separators form a new contribution, it is usually not clear how to find a more insightful description of such a separator. One could for example try to find a recognizing automaton or semigroup for this separator to obtain more information about it.

Also, there are still some complexity gaps in our results. Most importantly, we did not try to find a lower bound for FO 2 (<). Also, the lower bound we found for both LT and LTT is co-NP, while the upper bounds we found are co-Nexptime resp. 2-Expspace.

A different notion

Recall that if two languages are S-separable, for a class S, then, from the point of view of S, these languages are sufficiently different to be perceived as disjoint. The separation problem tests the discriminative power of S, which is more informative than the expressive power.

One could pursue this generalization one step further, and call a language L 1 S-different from a language L 2 if these are perceived as different by S. That is, if there exists a language L ∈ S such that L 1 ∩ L = ∅ and L 2 ∩ L = ∅. Clearly, L 1 is S-different from L 2 if and only if L 1 contains a word w such that {w} is S-separable from L 2 . If S contains the languages consisting of a single word, then this notion does not have much content. This is not the case, for example, for the class of languages recognized by finite groups, and there is a relation between this notion for these languages and Hall's theorem [START_REF] Hall | A topology for free groups and related groups[END_REF]. It is not clear right away what, in general, the logical counterpart of this notion would be, and whether it would be interesting to study this notion.

Other classes of separators

It would be interesting to see what our approach would give for the class of group languages and compare this with existing results. As we saw in Chapter 3, the separation problem for group languages is decidable and one can even explicitly describe the separating group languages if it exists.

A possible variation of the class LTT would be to add modulo predicates. The infixes can then be counted modulo constants. It is to be expected that a bound on these constants can be established in a way similar to the bounds that we found on the size of the infixes and on the counting threshold. Solving the separation problem for this class might give insight in the separation problem for other classes to which modulo predicates are added as well, in the same fashion as studying the separation problem for LTT (which corresponds to FO(=, +1)) gave insight in the separation problems for other fragments to which the successor relation is added.

It is also to be expected that the separation problem for the class of strongly locally testable languages, i.e. the class of languages for which membership of a word depends on the infixes of a certain length occurring in the word (and not on the prefixes or suffixes), could be solved by making adjustments to the proofs of Chapter 6. This would be especially interesting since the semigroups recognizing these languages do not form a variety.

More in general, it would be interesting to study the separation problem for classes of languages that do not form a variety, such as lattices of languages. It is shown in [START_REF] Gehrke | Duality and equational theory of regular languages[END_REF] that these classes admit an equational description, and it would be interesting to see how our approach with indistinguishable pairs can be adapted to apply to such classes of separators. A step in this direction was recently made in [START_REF] Place | Going higher in the first-order quantifier alternation hierarchy on words[END_REF], where the class Σ 2 (<) is studied. This is a class of languages that is not closed under complement, and to accommodate for this, the relation of indistinguishability is replaced by an asymmetric relation.

Besides widening the class of separators, one could also study the separation problem for more involved structures, such as regular tree languages, rather than regular language over finite words. This is expected to be much more difficult, since the theory of algebraic characterizations for these languages is less advanced.

Possible applications

Our motivation for studying this problem was purely theoretical interest. However, if the separation problem is decidable for a class S, which usually is a simple class, then this can give a simple way to express the fact that two -possibly very complicated -languages are disjoint. This could be useful in applications as verification or database theory (see also [START_REF] Czerwiński | Efficient separability of regular languages by subsequences and suffixes[END_REF]), for example, if one wants to over-approximate a complicated specification by a simpler one, while avoiding a second, complicated, forbidden specification. To this end, one could implement algorithms to decide separability for simple classes of separators, for example the classes of piecewise testable languages, prefix-and suffix-testable languages.

Index

Figure 1 :

 1 Figure 1: Le langage L, appartenant à S, sépare L 1 et L 2 .

 [k]. Notre solution pour ce problème est de définir, pour chaque k, une relation I S k sur les élements d'un monoïde reconnaissant les deux langages, ou sur les paires d'états d'un automate reconnaissant les deux langages, qui capture le fait que les langages correspondant aux élements (ou paires d'états) ne peuvent pas être séparés par un langage de S[k]. Plus précisément, soit M un monoïde fini et ϕ : A * → M un morphisme surjectif. Pour s, t ∈ M , (s, t) ∈ I S k ⇔ ϕ -1 (s) et ϕ -1 (t) ne sont pas séparables par S[k]. Ces relations sont ordonnées par inclusion comme suit : I S = n∈N I S n ⊆ . . . ⊆ I S k+1 ⊆ I S k ⊆ . . . ⊆ I S 1 .

Chapter 1 Preliminaries 1 . 1

 111 Words and languages . 11 1.2 Automata . 12 1.3 Recognition by semigroups and monoids 13 1.4 Varieties and free pro-V semigroups 14 1.4.1 Identities . 14 1.5 Logic on words . 15 1.5.1 Different fragments of FO(<) . 16

 and we use the Kleene star operation L * = n∈N L n .

Figure 2 . 1 :

 21 Figure 2.1: L 1 and L 2 are S-separable.

Fact 2 . 3 .

 23 The membership problem for the class S reduces to the separation problem, for regular input languages, for the class S.

1 .

 1 Languages recognized by a finite group [Ash91, RZ93, Aui04, AS05], 2. Star-free (that is, FO(<)-definable) languages [Hen88, HRS10],

Definition 2 .

 2 8. A relational morphism between monoids M and N is a relation τ ⊆ M × N , also written as τ : M → N , such that i. the projection onto the first coordinate is surjective, i.e. for every m ∈ M , τ (m) = ∅, ii. τ is a submonoid of M × N , i.e. for every m 1 , m 2 ∈ M , τ (m 1)τ (m 2) ⊆ τ (m 1 m 2) and 1 N ∈ τ (1 M).

 Example 3.8. Let L 1 = (ab * aa) * b and L 2 = (abb(ab) * b) * . Then, L 1 = ab * aa b, and L 2 = abb(ab) * b . In Example 3.5, we saw that L 2 = abbab -1 a -1 , abbb . In the same way, we can find a finite set of generators for the subgroup ab * aa . To this end, fix the following spanning tree.

4. 1

 1 Characterizations of piecewise testable languages 4.1.1 Logical characterization . 4.1.2 Algebraic characterization . 4.1.3 Graphical characterization .

4. 2

 2 Separation by piecewise testable languages 4.2.1 PT-indistinguishable pairs of states 4.2.2 Common patterns . 4.2.3 A common pattern yields PT-indistinguishability 4.2.4 PT-indistinguishability stems from a common pattern 4.2.5 Intermezzo: an alternative method 4.2.6 Separation theorem for piecewise testable languages 4.3 Complexity of PT-separability .

Figure 4 . 1 :

 41 Figure 4.1: A (u, B)-path between q and r.

 Figure 4.2:A common pattern for (q 1 , r 1) and (q 2 , r 2): u = (ε, c, ε), B = ({a, b}, {a}).

 Definition 4.11. Let B = {b 1 , . . . , b n } ⊆ A be a finite alphabet, ordered as b 1

 Kn , with K n ≥ |A| • n, and where, since the factorization tree is alph-Ramseyan, the alphabet of w n,i is the same for all i, say B = {b 1 , . . . , b m }. Since |B| ≤ |A|, it follows that (b 1 • • • b m) n w σ(n) ∈ B * , that is, w σ(n) is an n-implementation of the template B. Therefore, (w σ(n)) n is adequate.

 2.3 that for κ = (2|M | 2 + 3)|A| 2 , the FO 2 (<)[κ]-indistinguishable pairs occur as output of the algorithm. Completeness of the algorithm follows, since by definition, I(α) ⊆ I κ (α). To summarize, we then have the following inclusions. I(α) ⊆ I κ (α)

Definition 5. 10 .

 10 Let B = {b 1 , . . . , b n } be a finite alphabet, ordered as b 1 < . . . < b n , and let p ∈ N. A word w ∈ B * is a (B, p)-pattern if w ∈ (B * b 1 B * • • • b n B *) p . Or, in other words, if this w contains the subword (b

Case 2 .

 2 Neither u nor v admits a (B, p)-decomposition for any p ≤ 2(|M | 2 + 1). Since alph(u) = alph(v) = B, u and v are both (B, 0)-patterns. The fact that they do not admit a (B, p)-decomposition, for any p ≤ 2(|M | 2 + 1), thus means that they are at least (B, 2|M | 2 + 3)-patterns.

6. 4

 4 Complexity of LTand LTT-separability 6.4.1 Upper complexity bounds . Reduction to the case of k = 1 . Deciding LTand LTT-separability for k = 1 Results on upper complexity bounds 6.4.2 Lower complexity bounds . 6.5 Separating context-free languages by LT and LTT languages . . .

Definition 6. 1 .

 1 For k ∈ N, let k = k/2 and k r = k -k . A k-profile is a pair of words (w , w r), with |w | ≤ k and |w r | ≤ k r . Given w ∈ A * and a position x of w, the k-profile of x is the pair (w , w r) defined as follows: w = w[max(0, x -k), x] and w r = w[x, min(x + k r , |w|)].

Figure 6 . 1 :

 61 Figure 6.1: Illustration of the notion of k-profile for k = 6.

1 .

 1 uA * = {w | u is a prefix of w}, for some u ∈ A * . 2. A * u = {w | u is a suffix of w}, for some u ∈ A * .3. {w | u occurs at least d times as an infix of w}, for some u ∈ A * and d ∈ N.

For

 k, d ∈ N, let us denote by LTT[k, d] the set of the finitely many languages that are unions of ≡ d k -classes. By definition, we have LTT = k,d LTT[k, d]. Given L ⊆ A * , the smallest LTT[k, d]-language containing L is [L] d k = {w ∈ A * | ∃u ∈ L such that u ≡ d k w}.

Definition 6. 7 .

 7 A block is a triple of words b = (v , u, v r) where v , v r = ε. A prefix block is a pair of words p = (u, v r) with v r = ε, and a suffix block is a pair of words s = (v , u) with v = ε. Definition 6.8. Let d ∈ N. A d-pattern P is either a word w, or is a triple (p, f, s) where p and s are respectively a prefix and a suffix block, and f is a function from the set of blocks to the set {0, . . . , d}, such that all but finitely many blocks are mapped to 0.An example of a 3-pattern is P = ((a, b), f, (b, a)), with f sending (b, a, b) to 3, and all other blocks to 0.

For

 example, consider the 3-pattern P = ((a, b), f, (b, a)), with f sending (b, a, b) to 3, and all other blocks to 0. All words of the shape w = a(bab) ≥ 3 a admit a P-decomposition. To see this, take, for every i, u i = a and vi = b. Then, w = u 0 v 1 u 1 v 2 • • • v n u n for some n,and (u 0 , v 1) = (a, b), (v n , u n) = (b, a), and {i | (v i , u i , v i+1) = (b, a, b)} ≥ 3.

I

 (α) = n∈N I n (α) ⊆ . . . ⊆ I d (α) ⊆ I d-1 (α) ⊆ . . . ⊆ I 1 (α).(6.1)

 Figure 6.3: A position x admitting a k-loop u, that is, α(w) = α(w • u).

Lemma 6. 19 .

 19 Let w ∈ A * , let α : A * → M be a morphism, and let k = 4(|M | + 1). Let x 1 , . . . , x |M |+1 be |M | + 1 consecutive positions in w. Then, there exists at least one position x i , with 1 ≤ i < |M | + 1, that admits a k-loop for α. Proof. Consider the sequence α(w[x 1 , x 1]), α(w[x 1 , x 2]), . . . , α(w[x 1 , x |M |+1]), which consists of |M | + 1 elements of M . By the pigeonhole principle, there are i, j ∈ N with 1

Figure

 Figure 6.4: Construction in Proposition 6.22.

 Consider a block b = (v , u, v r). Let S b be the set of all k-profiles, occurring in w 1 and w 2 , of positions that end up in b. If u i is a factor whose positions end up in b, all |u i | = |u| positions of this factor have a different k-profile. Thus, if S b = ∅, then |S b | ≥ |u|. Since w 1 ≡ d k w 2 , we have for every k-profile in S b that the number of positions that have this k-profile is equal, up to threshold d, in w 1 and w 2 . Let b i be the number of times that b occurs in the decomposition of w i (so, f (b) = b 1 , up to d). Note that if a position x in some factor u j ends up in b, then all positions in u j end up in b, and u j = u. It follows that the number of positions in w i that have a k-profile from S b is b i • |u|. By the above, b 1 • |u| = b 2 • |u|, up to d. We want to show that b 1 = b 2 , up to threshold d. If both are greater than or equal to d, this is true. Also, if S b = ∅, then it is clear that b 1 = b 2 = 0. Therefore, suppose that b 1 < d and that |S b | ≥ |u|. This means that the number of positions in w 1 that have a k-profile from S b is b 1 •|u| < d•|u|. By the pigeonhole principle, this means that there are at most |u|-1 k-profiles that occur ≥ d times in w 1 . All other profiles occur exactly the same number of times in w 2 . Since each occurrence of b in w 2 gives rise to the occurrence of |u| different k-profiles from S b in w 2 , and since w 1 and w 2 differ in the occurrence of at most |u| -1 k-profiles from S b , it follows that each k-profile from S b occurs equally often in w 1 and in w 2 . Thus, b 1 < d implies that b 1 = b 2 , and by symmetry, b 2 < d also implies that b 1 = b 2 . It follows that b 1 = b 2 , up to threshold d. In other words, f (b) is the number of times the block b occurs in the decomposition of w 2 , and it follows that u 0

Example 6. 35 .

 35 Let P = (p, f, s) be the following 2-pattern. The prefix block p = (a, b) and the suffix block s = (bb, a). The function f sends the block (b, aa, bb) to 2, the block (bb, a, b) to 1 and all other blocks to 0. Let w be the word abaabbabaabba. Clearly, w is a P-decomposition, as it can be decomposed as follows. w = a b aa bb a b aa bb a

 , a, b). We now view w as the following word of blocks, (a, b)(b, aa, bb)(bb, a, b)(b, aa, bb)(bb, a).

Otherwise, w 1 =

 1 b p b 1 • • • b n b s and w 2 = b p b 1 • • • b m b s

#, ¬x 1 #, ¬x 2 #, ¬x nFigure 6 . 5 :

 1265 Figure 6.5: The automaton A 1 .

#, x 1 #, x 9 Clause C 1 C 2

 1912 Figure 6.6: The automaton A 2 , for ϕ= (x 4 ∨ x 7 ∨ ¬x 1) ∧ (¬x 2 ∨ x 9 ∨ ¬x 7) ∧ (¬x 8 ∨ x 1 ∨ x 9).

 By L[k], we denote the restriction of the logic L that consists of only those formulas that have rank ≤ k. Of course, increasing k yields a more expressive logic, and by definition, L = k∈N L[k]. This stratification induces, for a logic L, a sequence of equivalence relations ∼ L[k] on words. It is clear that ∼ L = k∈N ∼ L[k] , and for all k ∈ N, ∼ L[k+1] ⊆ ∼ L[k] .

	1.5.1 Different fragments of FO(<)
	Let us briefly introduce the different fragments of FO(<) that we study in this thesis. The
	fragments FO 1 (<) (see Section 2.3.1) and FO 2 (<) (see Chapter 5) are obtained by restricting
	the number of (reusable) variable names that may be used in a formula. In the fragment
	FO 1 (<) only one variable name is allowed. For example, the formula
	∃x. a(x) ∧ ∃x. b(x) ∧ ∀x.¬c(x)

 Therefore, L separates L 1 from L 2 if and only if A * \ L separates L 2 from L 1 . Hence, for a class S of separators closed under complement, one observes that (L 1 , L 2) is S-separable if and only if (L 2 , L 1) is, in which case we simply say that L 1 and L 2 are S-separable.

 thus the languages are not PT[k]-separable. For the converse direction, suppose L 1 and L 2 are not PT[k]-separable. Then in particular, [L 1] k is not a separator. Clearly L 1 ⊆ [L 1] k , and thus [L 1

 Theorem 4.26 (follows from [RZ13, Lemma 6], [CM14,Lemma 2]). Let L 1 and L 2 be languages. Then, L 1 and L 2 are not PT-separable if and only if there exists an -template T such that, for all n, there exist words v n ∈ L 1 and w n ∈ L 2 , such that both (v n) n and (w n) n are T -adequate.Proof. The direction from right to left is clear: for every n, we have that both v n and w n are n-implementations of T , whence v n ∼ n w n , and it follows that L 1 and L 2 are not PT-separable.For the other direction, suppose that L 1 and L 2 are not PT-separable. Then, for every n ∈ N, there exist v n ∈ L 1 and w n ∈ L 2 such thatv n ∼ n w n . (4.3)This defines an infinite sequence of pairs (v n , w n) n , from which we will iteratively extract infinite subsequences to obtain additional properties, while keeping (4.3). By Lemma 4.24, one can extract from (v n , w n) n a subsequence whose first component forms an adequate sequence. From this subsequence of pairs, using Lemma 4.24 again, we extract a subsequence whose second component is also adequate (note that the first component remains adequate). Therefore, one can assume that both (v n) n and (w n) n are themselves adequate.

Lemma 4.25 shows that one can choose the same -template T such that both (v n) n and (w n) n are T -adequate.

 2) are not LTT[, d]-separable, for any ∈ N. Using our terminology from Section 2.2.3, we can thus call such a pair d-indistinguishable for α, or simply d-indistinguishable. We denote the set of such pairs by I d (α). One could similarly define the d-indistinguishable pairs of pairs of states in Q 2 ×Q 2 . If a pair is d-indistinguishable for every d ∈ N, we say that it is an indistinguishable pair. We denote the set of these pairs by I(α).

 Proposition 6.15. Let d ∈ N. Let α : A * → M and β : A * → N be monoid morphisms recognizing both L 1 and L 2 . If there exists (s 1 , s 2) ∈ α(L 1) × α(L 2) that has a common d-pattern, then there exists (t 1 , t 2) ∈ β(L 1) × β(L 2) that also has a common d-pattern.Proof. Let α : A * → M and β : A * → N be morphisms recognizing both L i , for i = 1, 2, and let

 Definition 6.26. Let k ∈ N. The k-image of w, denoted by π k (w), is the A k -indexed vector of natural numbers that counts, for every k-profile (w , w r), the number of positions in w with this k-profile. If L is a language, we define the k-image of L as the set {π k (w) | w ∈ L}, which we will denote by π k (L). Fact 6.27. Let w, w ∈ A * and let k, d ∈ N. Then w ≡ d k w if and only if π k (w) and π k (w) are componentwise equal up to threshold d.

	By definition of the relation ≡ d k , we have the following fact.

 2 are LTT-separable if and only if there exists d ∈ N such that they are LTT[k, d]-separable. This is the case if and only if there exists d ∈ N such that there are no wordsw 1 ∈ L 1 , w 2 ∈ L 2 with w 1 ≡ d k w 2 .By Fact 6.27, this can be expressed in terms of k-images in the following way: there exists d ∈ N such that there do not exist any vectors x 1 ∈ π k (L 1), x 2 ∈ π k (L 2) that are equal, componentwise, up to threshold d.By Theorem 6.28, there are computable Presburger formulas for the sets π k (L 1) and π k (L 2). It follows that the above statement can be expressed as a computable Presburger formula. From the decidability of Presburger arithmetic[START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF][START_REF] Skolem | Über einige Satzfunktionen in der Arithmetik[END_REF], it then follows that LTT-separability is decidable.Besides the decidability of the LTT-separation problem, we are also interested in finding an efficient algorithm that tests LTT-separability, and in finding an LTT-separator if it exists. Finding an LTT-separator is the subject of the next section.

	6.3.2 Bounding the counting threshold

In this section, we focus on finding a bound on the counting threshold d, which is such that two languages, recognized by a monoid M , are LTT-separable if and only if they are LTT[k, d]separable, for k = 4(|M | + 1) and for the bound on d. Finding such a bound would yield another proof of the fact that the separation problem for LTT is decidable. An important advantage, however, of this approach, rather than the one taken in Section 6.3.1, is that it also yields a description of a separator, if it exists.

Recall that A k denotes the set of all k-profiles. Let n be either |M | + 1 or |Q| + 1, for M a monoid and A = (A, Q, δ) an automaton that recognize both languages. We claim that d = (|A k |n) |A k | has the desired property. It will follow from Theorem 6.32, which is a separation theorem for the full class of LTT languages, that the proposed bound on d is indeed correct.

 It states that one only needs to consider LTT languages with counting threshold d = (|A k |n) |A k | in order to check whether the input languages are LTT[k, d]-separable for some d . Proposition 6.31. Let L 1 , L 2 be regular languages. Let α : A * → M be a morphism into a finite monoid M recognizing both L 1 and L 2 . Let A = (A, Q, δ) be an NFA recognizing both L

1 and L 2 . Let n be either |M | + 1 or |Q| + 1. Let k = 4(|M | + 1) and let d = (|A k |n) |A k | . If there exists d ∈ N such that L 1 and L 2 are LTT[k, d]-separable, then the language [L 1] d k separates L 1 from L 2 .

Acknowledgments

up my visits to Paris.

Definition 4.17. Let T = t 1 , t 2 , . . . , t be an unambiguous -template. Consider v T,1 = v 1 • • • v , the shortest word that is a 1-implementation of T . A word v is called incompatible with T when v is of the form

such that every u j ∈ A, and one of the following holds, -t i and t i+1 are letters -t i is a letter, t i+1 a set, and there exist j such that u j / ∈ t i+1 -t i is a set, t i+1 a letter, and there exist j such that u j / ∈ t i -t i and t i+1 are sets, and there is no j such that {u 1 , . . . , u j-1 } ⊆ t i and {u j , . . . , u n } ⊆ t i+1 .

Note

Let us start by showing a condition on the pieces of a word that is necessary for the word to be a p-implementation of some unambiguous template.

Lemma 4.18. Let w ∈ A * and let T be an unambiguous -template. If w is a pimplementation of T , then v T,p w and, for all pieces v such that v w, it holds that v is not incompatible with T .

Proof. By definition of p-implementation, we have w = w 1 • • • w such that w i = t i if t i ∈ A, and w i is a (B, p)-pattern if t i = B ⊆ A. In the latter case, if B = {b 1 , . . . , b n } is ordered as b 1 < . . . < b n , we have (b 1 • • • b n) p w i ∈ B * . Thus, v T,p w. Now suppose there is v ∈ A * that is incompatible with T and that is such that v w. By definition, v is of the form

, and u satisfies one of the conditions listed in Definition 4.17. We reason by embedding the word

as soon as possible, from the left to the right, in w = w 1 • • • w . Using that T is an unambiguous template, we show by induction on j that for every j, we cannot entirely embed v j in w j-1 . If t j-1 ⊆ A, it follows from the unambiguity of T that v j contains at least one letter that is not contained in t j-1 , thus v j cannot be a piece of w j-1 which is in t j-1 * . Else, t j-1 ∈ A and w j-1 = t j-1 . By the induction hypothesis, v j-1 is not read as a piece of w j-2 and thus w j-1 is already used to embed v j-1 . In both cases, v j cannot be entirely embedded in w j-1 .

Hence, v 1 • • • v i is not a piece of the prefix w 1 • • • w i-1 , and at least part of v i and all of u

As the rules for unambiguity are symmetric, we also have that v i+1 • • • v is not a piece of the suffix w i+2 • • • w , thus at least part of v i+1 and all of v 1 • • • v i • u must occur to the left of w i+2 , that is,

Then, u must lie in w i • w i+1 . By definition of w i , w i+1 and u, this gives a contradiction. It follows that there is no piece of w that is incompatible with T .

The following lemma is a converse statement: it considers a stronger condition on the pieces of a word, and states that this is a sufficient condition for the word to be a p-implementation of an unambiguous -template.

Lemma 4.19. Let w ∈ A * and let T be an unambiguous -template. If v T,p+2 w and, for all pieces v such that v w, it holds that v is not incompatible with T , then w is a p-implementation of T .

Proof. Besides v T,p+2 , we make use of the words v T,1 and v T,p , whose factors we denote here by v 1 1 , . . . , v 1 resp. v 1 p , . . . , v p (note that the exponents do not denote powers). We will provide a decomposition w = w 1 • • • w and show that it witnesses the fact that w is a p-implementation of T . First, we define the factors w 1 , . . . , w inductively and then show that they indeed form a decomposition of w that has the desired properties.

Assume that the factors w 1 , . . . , w i-1 are defined, and that w s i is the remaining suffix of w, that is, w = w 1 • • • w i-1 • w s i . Now consider t i . This is either a letter or a subset of A. If t i is a letter, we define w i as the first letter of w s i . If t i is a subset of A, we define w i as the largest prefix of w s i for which alph(w i) ⊆ t i .

We will show by induction that these factors indeed form a decomposition of w that is a p-implementation of T .

As an illustration, we first treat the case that i = 1. First consider the case that t 1 ∈ A. Suppose that the first letter of w is b = t 1 . Then, it follows from v T,1 w that b • v T,1 is a piece of w, while it is incompatible with T . This would contradict the assumptions. Thus, the first letter of w = w s 1 is equal to t 1 . Now consider the case that t 1 ⊆ A. Then w 1 is the largest prefix of w such that alph(w 1) ⊆ t 1 . Denote the first letter after w 1 by c. By assumption, we have v T,p+2 w. Suppose that v 1 p is not a piece of w 1 . Then, in particular, a factor v 1 1 of v T,p+2 must occur after c. This means that c • v T,1 w. But, by definition, c / ∈ t 1 , thus this piece is incompatible with T . It follows that v 1 p w 1 . Now suppose that the factors w 1 , . . . , w i-1 , defined as above, are such that for all these factors, v j p w j . If t j is a set, then by construction w j ∈ t j * . Thus, this gives that w 1 , . . . , w i-1 is a p-implementation of t 1 , . . . t i-1 . By unambiguity of T , the factor

Now consider t i . There are two cases that we treat separately.

Case 1. t i ∈ A.

Suppose that the first letter of

and that this piece is incompatible with T . Thus, the first letter of w s i is equal to t i .

Case 2. t i ⊆ A.

In this case, w i is defined as the largest prefix of w s i such that alph(w i) ⊆ t i . We have to prove that v i p w i . Denote the first letter after w i by c. Note that c / ∈ t i .

Suppose that w i = ε. Then c is the first letter after w i-1 , which means that if

and is a piece of w. Thus, w i = ε. Denote the first letter of w i by b. By construction, if In this chapter, we present our results on the separation problem for the class of unambiguous languages. In particular, we show that this is a decidable problem. As we have seen in Section 2.2.1, this result yields that the 2-pointlike sets for the variety corresponding to the class of unambiguous languages are computable. To our knowledge, this is a result shown for the first time in the paper [START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF], on which this chapter is based.

In Section 5.1, we first describe the class of languages that we study in this chapter. Section 5.2 forms the main part of this chapter. In this section, we introduce a fixpoint algorithm and we show how the information computed by this algorithm solves the separation problem for this class of languages. We also prove in this section that this algorithm is indeed correct and complete. As a byproduct, we obtain a description of a separator, if it exists. Finally, in Section 5.3, we briefly discuss the complexity of the separation problem for the class of unambiguous languages.

Then, for all i ∈ {1, . . . , + 1}, u i ∼ k v i .

Proof. As before, we denote the marked occurrences of b i mod n by c i , for all i. Recall that by definition of the decompositions, for each j, c j / ∈ alph(u j) and c j / ∈ alph(v j). Let i be in {1, . . . , + 1}. We will use EF games to show that u i ∼ k v i . Let Spoiler play inside u i and v i during k rounds in the EF game on u and v. As u ∼ k v, we know that Duplicator is able to answer to these moves. In order to conclude that indeed u i ∼ k v i , we need to show that she is able to answer by playing within u i and v i . In fact, we will show that if she would play outside of this area, she would lose. Since she has a winning strategy, it then follows that she is able to play within u i and v i .

Suppose that at a certain point Duplicator plays on a position outside of u i and v i , to the left, say on v. Then Spoiler can move the pebble in u subsequently to c i-1 , c i-2 , . . . , c 1 (using, in total, at most i -1 + k ≤ + k < (p + 1)|B| + k ≤ k moves). Since for all j, we have c j / ∈ alph(v j), and since the pebble in v is already located to the left of v i , Duplicator will subsequently have to play in (possibly strict prefixes of)

, and so on. It follows that she is not able to answer when Spoiler plays on c 1 . Now suppose that Duplicator plays on a position outside of u i and v i , to the right, say on v. Then Spoiler can move the pebble in v subsequently to c i , c i-1 , c i-2 , . . . , c 1 (using, in total, at most i + k ≤ k moves). For similar reasons as before, Duplicator will not be able to answer in u to each of these moves.

It follows that during the k rounds that Spoiler plays inside u i and v i , Duplicator does too. Thus, u i ∼ k v i .

Completeness result using (B, p)-decompositions

The next proposition contains the essential ingredients to prove the completeness of the fixpoint algorithm described in Section 5.2.1. Here, we consider two words that are FO 2 (<)[k]-equivalent for a specific k. We show how one can use the (B, p)-decompositions to break these words into suitable factors, to which one can apply induction on the size of the alphabet in order to obtain that pairs of the images of these factors are in the set Alg(α), the output of the fixpoint algorithm. We then show how recombining these factors, using Operations (1) and (2) of the algorithm, yields that the pair of images of the original words is also in Alg(α).

Proposition 5.15. Let M be a monoid, and α :

Proof. We prove this by induction on the size of the alphabet. Let B ⊆ A. Our induction hypothesis is that for all X ⊆ A such that |X| < |B|, the statement holds. Define κ :=

We want to prove that (α(u), α(v)) ∈ Alg(α).

Note that for all p ≤ 2(|M | 2 + 1), we have (5.2)

We define u r and v r in a symmetric way, as the minimal suffix of u resp. v that contains the subword (b

. Again, by construction, these are (B, |M | 2 + 1)-patterns. Note that one can adapt our notion of (B, p)-decomposition to define a right-most decomposition. By construction of u r and v r , their right-most decompositions are

where, = |B| • (|M | 2 + 1), and, for all i, b i mod n / ∈ alph(u r,i). Using this notion, we can apply an argument symmetric to the one above, and obtain, for k

(5.3) Now, since u and v are (B, 2|M | 2 + 3)-patterns, there must be words u c and v c such that u = u l u c u r and v = v l v c v r (i.e. the defined prefix and suffix do not overlap). Since

Our approach now is the following. We want to divide u and v into parts on which we can use the induction hypothesis, and which are suitable to apply the operations of the fixpoint algorithm to. Contrary to Case 1, we no longer have an upper bound on the decompositions that u and v admit. Thus, it no longer suffices to just use Operation (1), as worked in Case 1. We will need to use Operation (2), and, therefore, we will break the words up as shown in Figure 5.1, in such a way that we can harmlessly repeat u e , u f , v e and v f , that is, without changing the image of the words under α.

u : Consider the decompositions of u l and v l . By construction, these look like

Definition 6.10. Let α : A * → M be a morphism into a monoid M , and let s ∈ M . A P-decomposition of a word w is said to be (α, s)-compatible if α(w) = s and, for all 1

Similarly, if p, q are two states of an automaton A, a Pdecomposition of the word w is (p, q)-compatible if there is a run from p to q for w, such that for all 1 ≤ i ≤ n, each infix v i labels a loop in the run, as depicted in Figure 6.2. Here, edges denote transition sequences.

The intuition behind the d-patterns is the following. If a d-pattern is compatible with elements of a recognizing set of a monoid, or with initial-final pairs of states of an automaton, then it defines a subset of the regular language recognized by the monoid or the automaton. For automata, this subset is the language recognized by the automaton of Figure 6.2, with p as an initial and q as a final state. This language thus gives information about the prefix, suffix and infixes, occurring up to threshold d, present in words of the language. For instance, the (p, q)-compatible P-decomposition of Figure 6.2 implies that for every m ∈ N, there is a word in the language that has prefix u 0 v m 1 , a word that has suffix v m n u n , and the same for infixes (with counting) corresponding to the d-pattern.

Since two languages are LTT[k, d]-separable if and only if there are no words in the two respective languages that share the same prefix and suffix of length k -1 and infixes of length k up to threshold d, it is interesting to compare the d-patterns of the two languages. To this end, we define the following notion. Definition 6.11. Let d ∈ N and α : A * → M be a morphism into a finite monoid. We say that a pair (s 1 , s 2) ∈ M ×M has a common d-pattern for α if there exist a d-pattern P and two P-decompositions of (possibly different) words that are respectively (α, s 1)-compatible and (α, s 2)-compatible. Usually, the morphism α is clear from the context and we just speak about a common d-pattern, without mentioning α. Also, if A is an automaton, and p 1 , q 1 , p 2 , q 2 are states of A, we say that the pair (p 1 , q 1), (p 2 , q 2) has a common d-pattern if there exist a d-pattern P and two P-decompositions of words that are respectively (p 1 , q 1)-compatible and (p 2 , q 2)-compatible.

In particular, the pair (p 1 , q 1), (p 2 , q 2) has a common 1-pattern if and only if there are paths in A of the form shown in Figure 6.2 with the same set of triples (v i , u i , v i+1) and same beginning and ending, going respectively from p 1 to q 1 and from p 2 to q 2 . The notion of 1pattern is pertinent to the separation problem for the class of locally testable languages.

Separation theorem for a fixed counting threshold

The reason why common d-patterns are interesting when studying the separation problem for locally threshold testable languages, is the following. A d-pattern identifies factors of a Proposition 6.14. Let d ∈ N and let A be an NFA. Let p 1 , q 1 , p 2 , q 2 be states of A. If (p 1 , q 1), (p 2 , q 2) has a common d-pattern, then, for all ∈ N, there exist

The pair (p 1 , q 1), (p 2 , q 2) has a common d-pattern, thus by definition, there exists a d-pattern P, and words z 1 ∈ L 1 , z 2 ∈ L 2 that admit (p 1 , q 1)-resp. (p 2 , q 2)-compatible P-decompositions. If P = w ∈ A * , then, z 1 = w = z 2 , and, clearly, z 1 ≡ d z 2 , for all ∈ N.

It follows from the definition of compatibility that w 1 ∈ L 1 and w 2 ∈ L 2 . We claim that w 1 ≡ d w 2 .

Since the P-decompositions of z 1 and z 2 use the same d-pattern P, we deduce that u 0 = x 0 , v 1 = y 1 , v n = y m , and u n = x m . Recall that by definition of a d-pattern, all v i 's and y i 's are nonempty. Thus, in particular, w 1 and w 2 have the same prefix of length -1, and the same suffix of length -1.

To show the claim, we furthermore have to show that each word of length at most occurs the same number of times, up to threshold d, as an infix in w 1 and in w 2 . Let u be an infix of length at most of, say, w 1 . There are two cases.

(1) There is an index i such that u is an infix of v , that is, at least d times in w 1 . Since the decompositions of z 1 , z 2 are Pdecompositions, there exists j such that y j = v i . Therefore, u occurs at least d times as an infix in y (d+1) j , hence also in w 2 .

(2) The word u is not an infix of any of the v (d+1) i 's. Then, it must use one of the u i 's. Since |u| ≤ and, for all i,

, and if it is an infix of v

. Since the decompositions of z 1 , z 2 are P-decompositions, the number of triples (v i , u i , v i+1) in the decomposition of w 1 and the number of triples (y j , x j , y j+1) in that of w 2 which are equal to a given triple is the same, up to threshold d. Thus, u occurs the same number of times up to threshold d in both w 1 and w 2 .

It follows that w 1 ≡ d w 2 .

The implication (1) ⇒ (5) of Theorem 6.12 is a direct consequence of this proposition. Let (p 1 , q 1), (p 2 , q 2) ∈ (I 1 × F 1) × (I 2 × F 2) be such that this pair has a common d-pattern. By Proposition 6.14, for all ∈ N, there exist

Definition 6.21. Let w ∈ A * . Let x be a position of w that admits a k-loop, and let z x be the k-loop of x. Let w be the word constructed from w by simultaneously inserting in w, for all such positions x, the infixes z x . The word w is called the k-unfolding of w.

We will prove the implication (4) ⇒ (3) of Theorem 6.12 by contraposition. Recall that by definition of [L 1] d k , we have that if this language does not separate L 1 from L 2 , then there exist

) and s 2 = α(w 2). The following proposition now shows that the pair (s 1 , s 2) then, indeed, has a common d-pattern. Proposition 6.22. Let α : A * → M be a morphism, let k = 4(|M | + 1) and let d ∈ N. Let w 1 , w 2 be words such that w 1 ≡ d k w 2 . Then, there exists a d-pattern P, a word with an (α, α(w 1))-compatible P-decomposition, and a word with an (α, α(w 2))-compatible P-decomposition.

Proof. If w 1 = w 2 , one can use the d-pattern P = w 1 . The words w 1 and w 2 then give the desired (α, α(w 1))-resp. (α, α(w 2))-compatible P-decompositions.

We can thus assume that w 1 = w 2 . We will construct two new words w 1 , w 2 from w 1 , w 2 and prove that there exists a d-pattern P = (p, f, s), for which w 1 admits an (α, α(w 1))-compatible P-decomposition and w 2 admits an (α, α(w 2))-compatible P-decomposition. To this end, for i = 1, 2, define w i as the k-unfolding of w i . Since

. By Lemma 6.19, at least one insertion has thus occurred both in the construction of w 1 , and in the construction of w 2 .

Let us now define the d-pattern that we will use. By construction, the word w 1 can be decomposed as

and the words v j are the k-loops inserted during the construction. Since at least one insertion was made, it holds that n ≥ 1 and we can define p = (u 0 , v 1), s = (v n , u n). We define f as the function that maps a block (v , u, v r) to the number of times that it occurs in the decomposition of w 1 , up to threshold d. That is, f sends the block (v , u, v r) to

is a Pdecomposition for w 1 . Also, by Fact 6.18, it is (α, α(w 1))-compatible. It remains to prove that, for P as just defined, w 2 admits an (α, α(w 2))-compatible P-decomposition.

By construction, the word w 2 can be decomposed in a similar way as w 1 , that is,

and the words v j are the k-loops inserted during the construction of w 2 . If we prove that this is a P-decomposition, then by Fact 6.18, it will be (α, α(w 2))-compatible.

Let us first see that, indeed, (u 0 , v 1) = p and (v m , u m) = s. We will use the fact that, since w 1 ≡ d k w 2 , the words w 1 and w 2 have the same prefix of length k -1, and the same suffix of length k -1. Recall that the positions of w 1 are numbered from 0 to |w 1 | -1. Let x be the first position of w 1 that admits a k-loop. By construction, the k-loop of x is v 1 . By Lemma 6.19, x < k/4. The k/2-profile of x is

Proof. We will prove the contraposition of the statement, that is, if [Recall that n = |M |+1 or n = |Q|+1. For simplicity, we only treat the case that n = |M |+1. The other case, however, can be proved in the same way, since Lemma 6.30 works for both of these cases. Let m = |A k |n, so that d = m |A k | . Let ∈ N. We denote the following statement by P().

P()

For all u 1 ∈ L 1 , u 2 ∈ L 2 , and d ∈ N, if u 1 ≡ m k u 2 and the number of k-profiles that do not occur ≥ d times in both u 1 and u 2 is smaller than , then, there exist words

We want to prove P(|A k |). Let us first note that by definition of d = m |A k | , we have that

. Also, we have for all d ∈ N that the number of k-profiles that do not occur ≥ d times in both w 1 and w 2 is smaller than the number of all k-profiles, i.e. smaller than |A k |. Therefore, P(|A k |) entails that, for all d , there exist words w 1 , w 2 such that the desired property w 1 ≡ d k w 2 holds. This exactly means that for all d ∈ N, the languages L 1 and L 2 are not LTT[k, d]-separable. We will prove, by induction on , that P() holds for all ≤ |A k |.

First, let = 0. If u 1 , u 2 and d verify the premise in P(), then, in particular, the number of k-profiles that do not occur more than d times in both u 1 and u 2 is 0. Thus, all k-profiles in u 1 , u 2 occur more than d times in both words, and therefore u 1 ≡ d k u 2 . Now, assume that > 0. Let u 1 , u 2 and d be such that the premise in P() is verified. If u 1 ≡ d k u 2 , then it suffices to take u 1 = u 1 and u 2 = u 2 . Otherwise, since u 1 ≡ m k u 2 , there must exist at least one k-profile (w , w r) that occurs more than m times in both u 1 and u 2 but strictly less than d times in at least one of the two words.

We apply Lemma 6.30 to both u 1 and u 2 , for h = m -1 and h = m . Note that, by definition of m, indeed, h ≥ n|A k |h. The lemma yields that there are

and, every k-profile that occurs more than m times in u 1 resp. u 2 , occurs more than d times in u 1 resp. u 2 . First note that, since also u 1 ≡ m k u 2 , we obtain that u 1 ≡ m -1 k u 2 . Furthermore, (w , w r) now occurs more than d times in both u 1 and u 2 . Therefore, the number of k-profiles that do not occur more than d times in both u 1 and u 2 is smaller than -1. Hence, we can apply the induction hypothesis to u 1 , u 2 and d , and it follows that the desired u 1 and u 2 exist.

We are now ready to prove our separation theorem for the class of locally threshold testable languages.

Theorem 6.32. Let L 1 , L 2 be regular languages. Let α : A * → M be a morphism into a finite monoid M recognizing both L 1 and L 2 . Let A = (A, Q, δ) be an NFA recognizing both Proof. The implications (6) ⇔ (5) ⇒ (2) ⇒ (1) are immediate by definition. Also, we have already seen in (6.4) that Theorem 6.12 implies that (2) ⇔ (1). Note that from (2), we obtain by Theorem 6.12 that for the same value for d , there is no pair in α(L 1) × α(L 2) with a common d -pattern. Thus, Condition (2) implies Condition (3). In the same way, we obtain (3) ⇒ (4) ⇒ (2). Finally, we have proved implication (2) ⇒ (6) in Proposition 6.31.

Note that Condition (5) provides another proof of the decidability of LTT-separability: one uses a brute-force algorithm to test all the finitely many LTT[k, d]-languages. As it was the case for a fixed counting threshold, this algorithm is slow and we will present a faster algorithm using Conditions (3) and (4) in Section 6.4.1.

Note also that, since Theorem 6.12 implies that the value of d of Condition (5

Optimality of the bound on the counting threshold

The bound for the counting threshold in Theorem 6.32, i.e. (|A k |n)

, is exponential in the size of the set of all k-profiles, A k . Since k = 4(|M | + 1), the size of A k itself is exponential in the size of the monoid. This section is concerned with the question whether this bound on the counting threshold can be improved.

Note that our proof of Theorem 6.32 treats the bounding of k and d independently. We first provide a bound on k in Theorem 6.12. Then, instead of studying words over A, we look at the corresponding words over the alphabet A k of k-profiles, in order to bound d. This technique ignores important properties of k-profiles. In particular, the k-profiles of adjacent positions are of course strongly related, and this fact is not exploited by our proof.

In this subsection, we show that if one would want to improve the bound on the counting threshold, this would require taking these additional properties into account. With this aim, we look at k = 1, since this means that the k-profile of a position is just the letter that it carries, and, contrary to the case for higher values of k, there are no relations between k-profiles of adjacent positions. We show that we can construct LTT[1, d]-separable languages, for which the separator is required to have a counting threshold that is exponential in |A|.

Let us first provide an example, which we will generalize in Lemma 6.34. For readability, we write here |a| w to denote the number of times that the letter a occurs in the word w (deviating from the notation applied in the beginning of this chapter).

Example 6.33. Consider the following languages over the alphabet {a, b, c, d}. We will show that the language L separates L 2 from L 1 . First of all, note that L 2 ⊆ L. Now, suppose that w ∈ L 1 ∩ L. Using that (1). w ∈ L 1 and that (2). w ∈ L, we obtain

=⇒ |c| w = 4

(2)

But, by (1), |d| w is also a multiple of 3. It follows that L 1 ∩ L = ∅. The language L is in LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]9]. To see this, let w ∈ L, and let w be a word such that w ≡ 9 1 w. Either |a| w ≥ 2, which is fine, or |a| w < 2. Then, |a| w = |a| w < 2, such that |b| w = 2 • |a| w < 9 and |b| w = |b| w = 2 • |a| w . In the same way, if |c| w < 5, then one obtains |d| w = |d| w = 2 • |c| w , since this is still smaller than the threshold 9. It follows that w ∈ L. The languages L 1 and L 2 are not LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]8]-separable (consider the words w 1 = abc 2 bc 2 d 24 ∈ L 1 and w 2 = ab 2 cd 2 cd 2 cd 2 cd 2 ∈ L 2 , for which w 1 ≡ 8 1 w 2 holds). Thus, the counting threshold of the LTT[1, 9]-separator L is optimal. Now, let us generalize this example. We want to construct, for every A, two languages that are separable by an LTT language with a counting threshold d that is exponential in |A|, and that are not separable by any LTT language with a counting threshold lower than d.

For convenience, we assume that the alphabet A is of even size and write A = {a 1 , . . . , a 2m }.

Lemma 6.34. The languages

Thus, a word w belongs to L if and only if for all odd i, either w contains at least 2 i-1 + 1 copies of a i , or the number of copies of a i+1 in w is exactly twice the number of copies of a i in w.

To check whether a word w is a member of the language L, we will have to count a maximum number of occurrences of a letter in the case that |a 2m-1 | w = 2 2m-2 . In this case, one needs to verify that

To check this equality, we need a counting threshold of d = 2 2m-1 + 1. With the power of this d, one is clearly also able to verify the conditions on the a i 's for smaller i.

Let us now show that L is a separator. By definition, L 2 ⊆ L. Suppose that w ∈ L∩L 1 . Since w ∈ L 1 , it contains only one copy of a 1 . Then, since w ∈ L, it must contain two copies of a 2 . Iterating this argument yields that w must contain 2 2m-1 copies of a 2m , which is impossible since this number must be multiple of 3, by definition of L 1 . Thus, L ∩ L 1 = ∅, and it follows that L is a separator.

It remains to prove that L 1 , L 2 are not LTT[1, 2 2m-1]-separable. To this end, consider the words

For every i ∈ {1, . . . , 2m -1}, we have

The letter a 2m occurs 3 • 2 2m-1 times in w 1 , and 2 2m-1 times in w 2 . When counting with threshold 2 2m-1 , these numbers are considered equal. Thus,

It follows from the previous lemma that without taking additional properties of k-profiles into account, one cannot find a bound on the counting threshold that is better than exponential in |A|.

Complexity of LTand LTT-separability

In this section, we present lower and upper complexity bounds for the separation problem for LT and LTT languages. Both the lower and upper bounds use the pattern criteria of Theorems 6.23 and 6.32. We are able to prove that starting from an NFA or DFA recognizing the input languages, deciding separability can be achieved in co-Nexptime for LT and in 2-Expspace for LTT. This is shown in Section 6.4.1. In Section 6.4.2, we show how generalizing the reduction of Section 2.3.1 gives a co-Np lower bound for both problems.

Upper complexity bounds

We first look at complexity upper bounds for the separation problems for LT and LTT. The algorithms that we use rely on Condition (5) of Theorem 6.23 and on Condition (4) of Theorem 6.32. These conditions are the criteria about the absence of certain patterns in the automata. We will show that deciding whether two languages, accepted by some NFA, are LTseparable can be achieved in co-Nexptime, while deciding whether they are LTT-separable can be achieved in 2-Expspace.

Both algorithms work by reducing the problems to the special case of k = 1, that is, to the problem of verifying whether there exists an LTresp. LTT-separator that considers only 1profiles. The reduction is identical in both cases, and the proofs of the fact that the reduction is correct are similar. These proofs rely on Condition (5) in Theorem 6.23, for LT, and on Condition (4) in Theorem 6.32, for LTT. The computations involved in the reduction can be done in Exptime, and the newly constructed NFA is of size exponential in the input NFA.

reuse Corollary 2.20 to see that Lemma 6.42 cannot be improved.

Corollary 6.43. It is a co-NP-complete problem to decide whether two regular languages, defined by two deterministic finite automata, are LT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]-separable.

Results on upper complexity bounds

Summarizing the results of this section, we obtain the following two propositions concerning the upper complexity bounds. As we saw, Lemma 6.42 cannot be improved. Improving the co-Nexptime upper bound from Proposition 6.45 would thus require improving the reduction.

For LTT, the situation is different. It is likely that a sharper analysis of the Presburger formula would yield a better complexity result in Lemma 6.41. Indeed, while deciding Presburger formulas with one quantifier alternation is very costly in general, we only consider a very specific formula. A better complexity result in Lemma 6.41 could yield a better upper bound, even without improving the reduction.

Lower complexity bounds

In this section, we will prove co-Np lower bounds for both LTand LTT-separability. The bounds hold when the input languages are given as NFA's or DFA's. Our method for proving these bounds is an extension of the method that we applied in Lemma 2.19 in Section 2.3.1, in order to show that Sl-separability is co-NP-complete. We will again give a reduction of 3-SAT, but now to the problem of LTresp. LTT-non-separability. That is, from an arbitrary

(2) Theorem 6.28,

(3) decidability of Presburger arithmetic.

Once the size k of the profiles was fixed by Condition (2) of Theorem 6.12, Theorem 6.28 allowed us to write LTT-separability as a computable Presburger formula. The decidability of LTT-separability for regular languages then followed from the decidability of Presburger arithmetic.

Theorem 6.28, which is an extension of Parikh's theorem to k-images, not only holds for regular languages, but also for context-free languages. We can thus reuse the arguments from Section 6.3. . By Fact 6.27, this can be expressed in terms of k-images as the following statement: there exists d ∈ N such that there do not exist any vectors x 1 ∈ π k (L 1), x 2 ∈ π k (L 2) that are equal, componentwise, up to threshold d. By Theorem 6.28, there are computable Presburger formulas for the sets π k (L 1) and π k (L 2). The above statement can thus be expressed as a computable Presburger formula. Since Presburger arithmetic is decidable [START_REF] Presburger | Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt[END_REF][START_REF] Skolem | Über einige Satzfunktionen in der Arithmetik[END_REF], it follows that LTT[k]-separability of contextfree languages is decidable.

An interesting consequence of Theorem 6.47 is that LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF]-separability of context-free languages is decidable. A language is in LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF] if and only if it can be defined by a first-order logic formula that can test equality between positions, but cannot test ordering. This result is surprising, since membership of a context-free language in this class is undecidable. We prove this in Theorem 6.49. Our proof follows the lines of the proof of Greibach's theorem [START_REF] Greibach | A note on undecidable properties of formal languages[END_REF], which is used in particular to prove that it is undecidable whether a context-free language is regular. In order to adapt the proof of Greibach's theorem to the class of LTT [START_REF]The languages L(A, I 1 , F 1), L(A, I 2 , F 2) are LT-separable if and only if L(A, I 1 , F 1)[END_REF], we need that this class is closed under right residuals. Proof. We will reduce the halting problem on Turing machines to LT-separability and LTTseparability of context-free languages. The reduction is the same for both LT and LTT. Consider a deterministic Turing machine M. We prove that it is possible to compute contextfree languages L 1 , L 2 from M, such that M halts on the empty input if and only if L 1 , L 2 are LT-separable, if and only if L 1 , L 2 are LTT-separable.

Let A be the alphabet of M, let Q be its set of states, and let

The word (u, (a, q), v) means that M is in state q, the tape holds u • a • v, and the head currently scans the distinguished a position. Finally, if w ∈ B * , we denote by w R the mirror image of w.

We now define the context-free languages L 1 , L 2 over B. The language L 1 contains all words of the form

, that are such that c 1 , . . . , c 2k are encodings of configurations of M, and for all i ≤ k, c 2i-1 M c 2i (that is, c 2i is the configuration of M that is reached after one computation step from configuration c 2i-1). Similarly, L 2 contains all words of the form

that are such that c 1 , . . . , c 2k are encodings of configurations of M, c 1 is the initial configuration of M starting with an empty input and for all i ≤ k -1, c 2i M c 2i+1 . One can verify that L 1 , L 2 are indeed context-free languages and that grammars for L 1 , L 2 can be computed from M (for example, using [START_REF] Hartmanis | Context-free languages and Turing machine computations[END_REF]). We will regard prefixes that are common to both languages. To this end, let c 1 , c 2 , . . . , c i-1 , c i be a sequence of configurations and let w ∈ B * be the word defined as

If w is both a prefix of a word in L 1 and of a word in L 2 , then c 1 , c 2 , . . . , c i are the first i configurations of the run of M starting from the empty input. Moreover, if i = 2k and

is a prefix of a word in L 2 , then c is configuration (i + 1) in the run. And, if i = 2k + 1 and

is a prefix of a word in L 1 , then c is configuration (i + 1) in the run.

The claim follows by definition of L 1 and L 2 . Since w is a prefix of some word w 2 in L 2 , c 1 is the initial configuration of M starting with an empty input. Then, since w is a prefix of some word w 1 in L 1 , c 1 M c 2 , and again since w is a prefix of w 2 , c 2 M c 3 , and so on. Thus, c 1 , c 2 , . . . , c i are the first i configurations of the run of M starting from the empty input. If i = 2k, and w • c • # is a prefix of a word in L 2 , we have c 2k M c by definition of L 2 , and thus c is configuration (i + 1) in the run. The result for the case i = 2k + 1 is obtained similarly.

We will now prove that this indeed gives a reduction, that is, that M halts on the empty input if and only if L 1 , L 2 are LT-separable, if and only if L 1 , L 2 are LTT-separable.

Assume first that M does not halt on the empty input. This means that the run of M is an infinite sequence of configurations c 1 , c 2 , c 3 , Then by definition of L 1 , L 2 , for all k ∈ N,

It then follows from the following claim that L 1 , L 2 cannot be separated by an LT or LTT language, as they cannot even be separated by a regular language.

Claim 2. If M does not halt on the empty input, the languages L 1 and L 2 cannot be separated by a regular language. This is exactly [SW76, Theorem 4.6, case 1]. Suppose there is a DFA A that separates L 1 and L 2 . Let n -1 be its number of states. Let c 1 , c 2 , c 3 , . . . , c 2•n! be the first 2 • n! configurations of the run of M on the empty input. Define

By the above, the words zγ n! ∈ L 1 , and zγ 2•n! ∈ L 2 . It follows by pumping arguments that A cannot separate these words.

For the other direction of the reduction, assume that M halts on the empty input within steps, i.e., its run is c 1 M c 2 M . . . M c and c is the halting configuration. Before providing an LT-separator for this case, we observe that sufficiently long prefixes of words of L 1 , L 2 are distinct. Claim 3. Let w 1 ∈ L 1 and w 2 ∈ L 2 be words that have prefixes u 1 resp. u 2 of length (+ 1) + 2 . Then u 1 = u 2 .

We prove this claim by contradiction. Assume that u 1 = u 2 , and let u be the largest prefix of u 1 = u 2 that is either of the form

depending on whether i is even or not. By definition, u 1 = u 2 = u • v, where v is either of the form γ j with j ≤ i/2, or is a prefix of c or c R for some configuration c of M.

Assume first that v = γ j , with j ≤ i/2. By Claim 1, c 1 , c 2 , . . . , c i-1 , c i are the first i configurations of the run of M starting from the empty input. Since M halts in steps, this means that i ≤ and that each of the i configurations has length ≤ +1. It follows that u is of length ≤ (+ 1) + .