
HAL Id: tel-01154542
https://theses.hal.science/tel-01154542

Submitted on 22 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A combinatorial approach to the separation problem for
regular languages

Lorijn van Rooijen

To cite this version:
Lorijn van Rooijen. A combinatorial approach to the separation problem for regular languages. Pro-
gramming Languages [cs.PL]. Université de Bordeaux, 2014. English. �NNT : 2014BORD0229�. �tel-
01154542�

https://theses.hal.science/tel-01154542
https://hal.archives-ouvertes.fr

THÈSE

PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

par

Lorijn van Rooijen

pour obtenir le grade de

Docteur

Spécialité : Informatique

Une approche combinatoire du problème de séparation
pour les langages réguliers

Soutenue le 04-12-2014 au Laboratoire Bordelais de Recherche en Informatique (LaBRI)

devant le jury suivant :

Marie-Pierre Béal Université Paris-Est Marne la vallée Examinatrice

Manfred Kufleitner Université de Stuttgart Examinateur

Wim Martens Université de Bayreuth Rapporteur

Jean-Éric Pin Université Paris Diderot - Paris 7 Rapporteur

Thomas Place Université de Bordeaux Examinateur

Pascal Weil Université de Bordeaux Examinateur

Marc Zeitoun Université de Bordeaux Directeur de thèse

‘Cada idioma es un modo distinto de sentir el universo o de percibir el universo’

-

Jorge Luis Borges

Résumé

Une approche combinatoire du problème de séparation pour les langages réguliers

Le problème de séparation pour une classe de langages S est le suivant : étant donnés deux
langages L1 et L2, existe-t-il un langage appartenant à S, qui contient L1, en étant disjoint
de L2 ?

Si les langages à séparer sont des langages réguliers, le problème de séparation pour la classe
S est plus général que le problème de l’appartenance à cette classe, et nous fournit des
informations plus détaillées sur la classe. Ce problème de séparation apparâıt dans un contexte
algébrique sous la forme des parties ponctuelles, et dans un contexte profini sous la forme
d’un problème de séparation topologique. Pour quelques classes de langages spécifiques, ce
problème a été étudié en utilisant des méthodes profondes de la théorie des semigroupes
profinis.

Dans cette thèse, on s’intéresse, dans un premier temps, à la décidabilité de ce problème pour
plusieurs sous-classes des langages réguliers. Dans un second temps, on s’intéresse à obtenir
un langage séparateur, s’il existe, ainsi qu’à la complexité de ces problèmes.

Nous établissons une approche générique pour prouver que le problème de séparation est
décidable pour une classe de langages donnée. En utilisant cette approche, nous obtenons la
décidabilité du problème de séparation pour les langages testables par morceaux, les langages
non-ambigus, les langages localement testables, et les langages localement testables à seuil.
Ces classes correspondent à des fragments de la logique du premier ordre, et sont parmi les
classes de langages réguliers les plus étudiées. De plus, cette approche donne une description
d’un langage séparateur, pourvu qu’il existe.

Mots clés : Langages réguliers, Séparation, Logiques, Automates, Monöıdes, Langages testa-
bles par morceaux, Langages non-ambigus, Langages localement testables, Langages locale-
ment testables à seuil, Langages algébriques.

iii

Abstract

A combinatorial approach to the separation problem for regular languages

The separation problem, for a class S of languages, is the following: given two input languages,
does there exist a language in S that contains the first language and that is disjoint from the
second language?

For regular input languages, the separation problem for a class S subsumes the classical
membership problem for this class, and provides more detailed information about the class.
This separation problem first emerged in an algebraic context in the form of pointlike sets,
and in a profinite context as a topological separation problem. These problems have been
studied for specific classes of languages, using involved techniques from the theory of profinite
semigroups.

In this thesis, we are not only interested in showing the decidability of the separation problem
for several subclasses of the regular languages, but also in constructing a separating language,
if it exists, and in the complexity of these problems.

We provide a generic approach, based on combinatorial arguments, to proving the decidability
of this problem for a given class. Using this approach, we prove that the separation problem is
decidable for the classes of piecewise testable languages, unambiguous languages, and locally
(threshold) testable languages. These classes are defined by different fragments of first-order
logic, and are among the most studied classes of regular languages. Furthermore, our approach
yields a description of a separating language, in case it exists.

Key words: Regular languages, Separation, Logics, Automata, Monoids, Piecewise testable
languages, Unambiguous languages, Locally testable languages, Locally threshold testable
languages, Context-free languages.

v

Acknowledgments

First of all, I would like to thank my supervisor Marc, for having introduced me to the field
of research in which this thesis is situated, and for always having taken the time to patiently
explain things to me. I am happy to have had the opportunity to learn a lot from both you
and Thomas, and I am grateful to both of you for all of our discussions. I also want to thank
Pascal for the conversations we had, which have helped me a lot. I would like to thank Jean-
Eric and Wim for having accepted to review my thesis and for having read the manuscript
carefully. Also, I would like to thank all the members of the jury for their presence at the
defense.

During these three years, besides working at LaBRI, I also worked on a parallel project at
LIAFA in Paris, and I want to thank Mai and Sam for the collaboration in this project. I
also would like to thank Mai for having brought the possibility of continuing my studies in
France to my mind. I very much enjoyed taking part in the FREC seminar at LIAFA, and
would like to thank all of the participants. Also, I am grateful to Laure, Dora, Florent and
Alexis for brightening up my visits to Paris.

A special word of thanks to all the people who have assisted me with all the administrative
procedures that I encountered after moving to France. I am grateful to Marc, Lebna, Brigitte,
Pierre and Eve for helping me finding my way through the system. I also want to thank Mäıté
and Elia for their kindness and for all their help.

Taking up this PhD position in France also meant leaving behind many people in Holland.
I want to thank my family for supporting my decision to move to Bordeaux and for always
having been understanding. I am happy that you have all found the time to visit my little
home in the castle of Condorcet. I would also very much like to thank my friends back in
Holland for all of their support during these years, and for their friendship. In particular, I
am grateful to Vera, Renée, Sietske, Dineke, Marieke, Inge and Laura for bringing a lot of
true Dutch gezelligheid to Talence during their visits!

Then, I would like to express my gratitude to the people with whom I have spent most time
during these last three years: my colleagues at LaBRI. I would like to thank Pierre, Anäıs,
Petru, Sri, Lorenzo, Anna, Dominik, Sagnik, Razanne, Allyx, Tung, Martin, Jerôme, Andjela,
Pauline and all the others. I especially want to thank Eve, who has helped me a lot to master
the French language, and with whom I have had the chance to spend many great moments
during these three years. Merci pour ton soutien et ton amitié !

Many many thanks are in order to all the girls from the lunch group, Nesrine, Claire, Wafa,
Olfa, Omessaad, Thao, Thanh, Eya, Feten, Khaoula and Samah, for all of the nice moments
we shared inside, but especially outside of LaBRI. I feel lucky to have met all of you and I
would not have been able to complete these three years without you girls, thanks for making
the time in Bordeaux so much more enjoyable!

Finally, I would like to thank my fiancé Maarten for always having been there for me, during
these three years and before. For encouraging me, until the very end, to overcome all difficul-
ties along the way, and for all the great times we have spent together in all of the places where
our work has taken us. My biggest motivation while finishing this thesis was the prospect of
finally being together.

vii

Résumé étendu

Motivations

En informatique, un grand intérêt est porté au raisonnement sur des données et des pro-
grammes. Les mots finis servent de modèles de base et sont parmi les structures les plus
étudiées en informatique. La logique nous fournit une façon formelle et intuitive de raison-
ner sur des mots finis. Un autre formalisme pour décrire les propriétés des mots finis est
le formalisme des automates finis. Ce formalisme est moins intuitif, mais mieux adapté au
traitement algorithmique.

Le théorème de Büchi est un résultat fondamental qui lie le formalisme des automates finis
et la logique. Ce théorème dit qu’un langage est reconnaissable par un automate fini si et
seulement si le langage est définissable par une formule de la logique monadique du second
ordre (MSO). La preuve de cette équivalence est directe et constructive : étant donné un
automate fini reconnaissant un certain langage régulier, la preuve nous donne une construction
d’une formule MSO qui définit ce langage. Réciproquement, en partant d’une formule MSO,
nous pouvons construire un automate fini qui reconnâıt le langage défini par la formule.
Néanmoins, cette dernière transformation peut être d’une mauvaise complexité.

La logique monadique du second ordre, interpretée sur les mots finis, permet d’exprimer des
propriétés des positions et des lettres présentes sur ces positions. De plus, des propriétés
des ensembles des positions peuvent être exprimées. Dans la logique du premier ordre, cette
quantification des ensembles n’est pas permis. Usuellement, on s’intéresse à des propriétés
qui en fait n’ont pas besoin de cette quantification du second ordre. Pour des raisons de
complexité, on préfère avoir des formules les plus simples possible. On s’intéresse donc à
savoir si un langage régulier pourrait être défini dans un fragment plus simple de MSO. Cette
question s’appelle le problème de l’appartenance (à ce fragment plus simple).

Le problème de l’appartenance

Données : Un langage régulier L et un fragment F .

Question : Le langage L est-il définissable dans le fragment F ?

Afin de résoudre le problème de l’appartenance, il faut trouver un ensemble de propriétés
qui ne sont vraies que pour tous les langages définissables dans F , et desquelles la vérité est
décidable. Autrement dit, il faut trouver une caractérisation décidable de F . Trouver une telle
caractérisation nous fournit normalement une compréhension profonde du fragment.

Un fragment naturel qui a été étudié est la logique du premier ordre (FO(<)), dans laquelle

ix

RÉSUMÉ ÉTENDU

la quantification des ensembles n’est pas autorisée. Cette logique étant encore compliquée,
il est naturel aussi d’étudier des restrictions de FO(<). Par exemple, les fragments obtenus
en limitant le nombre de variables permises, ou en limitant l’alternance des quantificateurs
(c’est-à-dire les fragments qu’on trouve dans la quantifier alternation hierarchy), ou encore
en exigeant des propriétés combinatoires sur les langages.

Il y a beaucoup de fragments naturels et intéressants de MSO. Pour chaque fragment, on
aimerait bien avoir une caractérisation décidable. Bien que le théorème de Büchi fournisse
une caractérisation des langages définissables dans MSO d’une façon directe, il se trouve que
pour résoudre les problèmes de l’appartenance à ces fragments, on se sert toujours de l’algèbre
(plus précisément du monöıde syntaxique) comme intermédiaire. Il est important de noter
que, pour un langage régulier, son monöıde syntaxique est une abstraction finie du langage,
qu’on sait calculer à partir du langage.

Un des premiers résultats dans cette ligne de recherche a été le résultat de Schützen-
berger [Sch65] qui dit qu’un langage régulier est un langage sans étoile si et seulement si
le monöıde syntaxique de ce langage est apériodique (c’est-à-dire pour chaque s ∈ M , il
existe n ∈ N tel que sn+1 = sn). Cette preuve est constructive : à partir d’un langage
régulier ayant un monöıde syntaxique apériodique, on obtient une expression sans étoile. De
plus, McNaughton et Papert [MP71] ont montré que les langages sans étoile sont précisément
les langages définissables dans FO(<). Cette preuve est également constructive. Ces deux
résultats ensemble résolvent le problème de l’appartenance à FO(<).

Ensuite, le problème de l’appartenance à la classe de langages testables par morceaux a été
résolu par Simon [Sim75]. Cette classe se trouve dans la quantifier altercation hierarchy sous
la forme de la classe BΣ1. La classe de langages testables par morceaux est donc parmi
les classes les plus bas de la hiérarchie, mais elle pose déjà des défis. Simon a trouvé la
caractérisation algébrique suivante de cette classe : un langage est testable par morceaux si
et seulement si son monöıde syntaxique est J -trivial (c’est à dire pour tout s,m ∈ M , si
MsM = MtM , alors s = t). Vu que les monöıdes avec lesquels nous travaillons sont finis,
ceci est une propriété décidable. Stern [Ste85] a traduit cette caractérisation algébrique à une
caractérisation des automates minimaux, ce qui donne une approche pour tester si un langage
est testable par morceaux en temps polynomial.

La connexion entre les langages réguliers et les monöıdes finis a été développée plus pro-
fondément par Eilenberg [Eil76]. Le théorème d’Eilenberg donne un cadre général aux
résultats précédents : ce théorème dit qu’il existe une correspondance bijective entre les
variétés de langages (ensembles de langages réguliers fermés par les opérations booléennes,
image homomorphe inverse et quotient gauche et quotient droit) et les variétés de monöıdes
finis (ensembles de monöıdes finis fermés par sous-monöıde, image homomorphe et produit
direct fini). De plus, le théorème de Reiterman [Rei82] dit que toute variété de monöıdes finis
peut être définie par un ensemble d’identités (qui sont des équations formelles entre des mots
profinis).

Cette connexion entre les langages réguliers et l’algèbre a été très fructueuse. Néanmoins, le
problème de l’appartenance semble être trop restrictif : il y a des problèmes de l’appertenance
ouvert depuis longtemps. De plus, en n’étudiant que le problème de l’appartenance, on ignore
certaines propriétés pertinentes de la classe. Par exemple, un petit calcul montre que les
langages (aa)∗ et (bb)+ ne sont pas définissables dans FO(<). Mais, on observe tout de

x

RÉSUMÉ ÉTENDU

suite que FO(<) est capable de percevoir que ces langages sont des langages disjoints. La
formule ∀x.a(x) en est un témoin (la formule étant vraie pour tous les mots de (aa)∗, et
fausse pour tous les mots de (bb)+). Cette information n’est pas capturée par le problème de
l’appartenance, ce qui nous mène à regarder un problème plus général.

Le problème de séparation

Le problème de séparation est une généralisation naturelle du problème de l’appartenance,
qui est formulée comme suit :

Le problème de séparation

Données : Deux langages L1 et L2, ainsi qu’une classe S.

Question : Existe-t-il un langage appartenant à S, qui contient L1, en étant disjoint
de L2 ?

L1 L2

A∗
L ∈ S

Figure 1: Le langage L, appartenant à S, sépare L1 et L2.

Si les langages à séparer sont des langages réguliers, le problème de séparation pour la classe
S est plus général que le problème de l’appartenance à cette classe (car L1 appartient à S
si et seulement si il existe un langage appartenant à S, qui contient L1, en étant disjoint de
A∗\L1), et nous fournit des informations plus détaillées sur la classe.

Ce problème de séparation apparâıt dans un contexte algébrique sous la forme des parties
ponctuelles, et dans un contexte profini sous la forme d’un problème de séparation topologique.
Il a été montré par Almeida [Alm99] que ces problèmes sont équivalents à notre problème
de séparation. Pour quelques classes de langages spécifiques, ce problème a été étudié en
utilisant des méthodes profondes de la théorie des semigroupes profinis. Néanmoins, en n’étant
pas constructives, les solutions de ces problèmes algébriques et topologiques ne peuvent que
donner la décidabilité du problème de séparation, et ne peuvent pas donner une description
d’un langage séparateur.

Cette perspective a permis, entre autres, de résoudre les problèmes de séparation pour les
classes suivantes : des langages reconnus par des groupes finis [Ash91, RZ93, Aui04, AS05],
les langages sans étoile [Hen88, HRS10], les langages testables par morceaux [AZ97, ACZ08],
les langages localement testables [Ste01, Nog10], et les langages localement testables à
seuil [Ste98, Ste01].

Contributions

Dans cette thèse, on s’intéresse, dans un premier temps, à la décidabilité du problème de
séparation pour plusieurs sous-classes des langages réguliers, en utilisant des méthodes com-

xi

RÉSUMÉ ÉTENDU

binatoires et constructives. Dans un second temps, on s’intéresse à obtenir un langage
séparateur, s’il existe, ainsi qu’à la complexité de ces problèmes.

Nous établissons une approche générique pour prouver que le problème de séparation est
décidable pour une classe de langages donnée. L’idée fondamentale est de stratifier la classe
S de séparateurs, selon un paramètre qui est pertinent pour cette classe. Par exemple, comme
paramètre, on pourrait choisir la taille des suffixes ou des sous-mots inspectés, ou le rang de
quantification d’un formule, ou bien la taille d’un monöıde reconnaissant le langage. La sous-
classe de S obtenue en fixant le paramètre inférieur ou égal à k est notée comme S[k]. Le
paramètre doit être choisi tel que la classe S[k] soit finie.

Cette stratification donne un semi-algorithme pour décider si deux langages sont séparables
par un langage appartenant à S : en testant subséquemment toutes les classes finies
S[1],S[2], . . . Néanmoins, afin de décider si deux langages ne sont pas séparables, il faut
a priori analyser toutes les classes S[k]. Notre solution pour ce problème est de définir, pour
chaque k, une relation ISk sur les élements d’un monöıde reconnaissant les deux langages, ou
sur les paires d’états d’un automate reconnaissant les deux langages, qui capture le fait que
les langages correspondant aux élements (ou paires d’états) ne peuvent pas être séparés par
un langage de S[k].

Plus précisément, soit M un monöıde fini et ϕ : A∗ → M un morphisme surjectif. Pour
s, t ∈M ,

(s, t) ∈ ISk ⇔ ϕ−1(s) et ϕ−1(t) ne sont pas séparables par S[k].

Ces relations sont ordonnées par inclusion comme suit :

IS =
⋂
n∈N

ISn ⊆ . . . ⊆ ISk+1 ⊆ ISk ⊆ . . . ⊆ IS1 .

Comme ces relations se raffinent, et comme ce sont des relations sur des ensembles finis,
elles finissent par se stabiliser. On s’intéresse à trouver une borne à partir de laquelle toutes
les relations de cette séquence sont égales. Ceci est un problème difficile, et la solution est
spécifique pour chaque classe étudiée dans cette thèse. C’est dans cette étape qu’on utilise des
méthodes combinatoires. Notons que, si on trouve une telle borne k, le problème de séparation
pour la classe S se réduit au problème de séparation pour la sous-classe finie S[k]. De plus,
dans nos preuves pour les bornes, nous trouvons des critères sur l’automate ou le monöıde
pour la S-séparabilité. Ces critères nous donnent des meilleurs rèsultats de complexité que
les approches brute-force (c’est-à-dire en énumérant S[k]) nous auraient donné.

En utilisant cette approche, nous obtenons la décidabilité du problème de séparation pour les
langages testables par morceaux, les langages non-ambigus, les langages localement testables,
et les langages localement testables à seuil. Ces classes correspondent à des fragments de
la logique du premier ordre, et sont parmi les classes de langages réguliers les plus étudiées.
De plus, cette approche donne une description d’un langage séparateur, pourvu qu’il existe.
Nous donnons dans cette thèse également des résultats de complexité pour ces problèmes de
séparation.

xii

Table of contents

Introduction 1

1 Preliminaries 11

1.1 Words and languages . 11

1.2 Automata . 12

1.3 Recognition by semigroups and monoids . 13

1.4 Varieties and free pro-V semigroups . 14

1.4.1 Identities . 14

1.5 Logic on words . 15

1.5.1 Different fragments of FO(<) . 16

2 Introduction to the separation problem 17

2.1 The separation problem . 18

2.2 Different points of view on the separation problem 21

2.2.1 Algebraic view: 2-pointlike sets . 22

2.2.2 Topological view: closures in the free pro-V semigroup 24

2.2.3 Combinatorial view: indistinguishable pairs 26

2.3 Basic examples . 29

2.3.1 Example I: Sl . 29

2.3.2 Example II: K . 32

3 Group languages 37

3.1 Characterizations of group languages . 37

3.2 The separation problem for group languages 38

3.2.1 Closures in the free group . 40

3.2.2 Decidability of G-separability and a construction of a separator 42

3.2.3 Closures in the free monoid . 44

4 Piecewise testable languages 47

4.1 Characterizations of piecewise testable languages 48

4.1.1 Logical characterization . 48

4.1.2 Algebraic characterization . 50

4.1.3 Graphical characterization . 51

4.2 Separation by piecewise testable languages . 51

4.2.1 PT-indistinguishable pairs of states . 52

4.2.2 Common patterns . 53

xiii

TABLE OF CONTENTS

4.2.3 A common pattern yields PT-indistinguishability 54
4.2.4 PT-indistinguishability stems from a common pattern 55
4.2.5 Intermezzo: an alternative method . 61
4.2.6 Separation theorem for piecewise testable languages 63

4.3 Complexity of PT-separability . 64

5 Unambiguous languages 67
5.1 Characterizations of unambiguous languages 68

5.1.1 Logical characterization . 68
5.1.2 Algebraic characterization . 70

5.2 Separation by unambiguous languages . 70
5.2.1 Fixpoint algorithm to compute FO2(<)-indistinguishable pairs 72
5.2.2 Correctness of the fixpoint algorithm 73
5.2.3 Completeness of the fixpoint algorithm 74
5.2.4 Proof of the separation theorem for unambiguous languages 81

5.3 Complexity of separation by unambiguous languages 82

6 Locally testable and locally threshold testable languages 83
6.1 Locally testable and locally threshold testable languages 84

6.1.1 Locally testable languages . 86
6.1.2 Locally threshold testable languages 87

6.2 Separation for a fixed counting threshold . 88
6.2.1 Common d-patterns . 89
6.2.2 Separation theorem for a fixed counting threshold 90
6.2.3 A common d-pattern yields equivalent words for all profile sizes 92
6.2.4 From a common d-pattern in M to a common d-pattern in A 94
6.2.5 Bounding the profile size . 95
6.2.6 Decidability of separation by locally testable languages 99

6.3 Separation for full locally threshold testable languages 100
6.3.1 Decidability of separation by locally threshold testable languages . . . 100
6.3.2 Bounding the counting threshold . 102
6.3.3 Optimality of the bound on the counting threshold 105

6.4 Complexity of LT- and LTT-separability . 107
6.4.1 Upper complexity bounds . 107
6.4.2 Lower complexity bounds . 113

6.5 Separating context-free languages by LT and LTT languages 115

Conclusion and perspectives 121

Bibliography 125

Index 133

xiv

Introduction

Background and motivation

In computer science, one often wants to model data, programs or executions. One of the most
basic structures to model these are finite words, which are therefore among the most used
structures in computer science. Logic provides an intuitive and formal way to reason about
such structures, and it is usually easy to specify a property of finite words via logic. However,
one would also want to be able to use algorithms on logical structures, for example to test
whether the intersection of two sets of words described by logical formulas is empty. Logics
are not designed for such algorithmic treatment, which brings a need for another formalism
to describe properties of finite words that is better suited for algorithmic treatment. Finite
state automata form such a formalism. Compared to logic, it is, however, less intuitive to
specify properties of finite words in this formalism.

A fundamental result relating the formalism of finite state automata and logic is Büchi’s
theorem. This theorem states that a language is recognized by a finite state automaton if
and only if it can be defined by a monadic second-order (MSO) formula. For each regular
language, an MSO-formula can be constructed from a finite state automaton recognizing the
language. Conversely, from an MSO-formula, a finite state automaton that recognizes the
language defined by the formula can be constructed. The proof of this equivalence is direct
and elementary. The transformation from an MSO-formula to a finite state automaton can
however have a bad complexity in the worst case.

The logic MSO has become a standard formalism to reason about structures, such as (infi-
nite) words and trees. When interpreted on words, it can be used to express properties about
positions and about the letters that these positions carry. Furthermore, in MSO, also proper-
ties about sets of positions can be expressed, which is not the case for first-order logic (FO).
However, we are usually interested in properties that do not need this additional power of
MSO. Transforming a formula to an automaton is non-elementary in the size of the formula,
and it is therefore best to express a property by a formula that is as lean as possible. For
example, a fragment of formulas with less quantifier alternations will be more amenable to
efficient algorithmic treatment.

It is thus useful to know whether a regular language can also be defined in a simpler fragment
of MSO. This amounts to studying the expressive power, or the membership problem, of the
simpler fragment. This problem is indeed defined as follows.

1

INTRODUCTION

Membership problem

Input: A regular language L and a fragment F .

Question: Is L definable in the fragment F?

To show that the membership problem is decidable, one has to find a decidable characteriza-
tion for the class of languages definable in the fragment, i.e. one has to find a set of properties,
which are verified by precisely those languages that are definable in the fragment, and which
can be tested algorithmically for a given language. Finding a decidable characterization
usually provides a deep insight in the considered fragment.

A natural fragment that, amongst others, has been studied in this respect is first-order logic,
which only allows quantification over individual variables, and forbids quantification over sets
of variables. Since this logic still allows complicated specifications, it is still natural to look
at restrictions of first-order logic. For example, the quantifier alternation hierarchy provides
natural logical fragments to study. This hierarchy contains fragments of first-order logic with
a specific number of alternations between existential and universal quantifier blocks in the
quantifier prefix, which is followed by a quantifier-free part. An example of a fragment that
is low in this hierarchy is the fragment BΣ1(<). This is the class of FO(<)-formulas that
are boolean combinations of FO(<)-formulas having a quantifier prefix consisting of only
existential quantifiers. A formula is thus in this logic if and only if it has no quantifier
alternations. These formulas can only express a simple combinatorial property, namely the
presence or absence of pieces, i.e. scattered subwords, in words.

Another way to obtain simpler and interesting fragments of FO(<) is to restrict the number of
variable names that may be used in a formula. It follows from a result of Kamp [Kam68] that
restricting to three reusable variable names yields a fragment that has the same expressive
power as FO(<). The fragment of FO(<) in which only two reusable variable names are
allowed is denoted by FO2(<). It was proved in [PW97, TW98] that this fragment has
the same expressive power as one of the fragments occurring in the quantifier alternation
hierarchy.

Instead of logical fragments, one can also study classes defined by combinatorial properties. As
explained above, the fragment BΣ1(<), for example, can also be defined in this way. Another
example is the class of locally testable languages (LT), which consists of languages defined by
the presence or absence of prefixes, infixes and suffixes in the words of the languages.

There are thus many natural fragments of MSO, and we are interested in knowing their
expressive power. Büchi’s theorem gives a characterization of the MSO-definable languages,
but it is not clear which classes of languages are defined by the fragments. For each fragment,
one would like to have an algorithm to test whether a regular language is definable in the
fragment. If it is definable in the fragment, one would like to obtain a formula, from the
fragment, that witnesses this fact. This has been a successful line of research, of which we
will now describe the main achievements.

The membership problem

While Büchi’s theorem can be proved in a direct way, without the use of algebra, this is not
the case for the membership problems for fragments of the logic. Indeed, for these membership

2

INTRODUCTION

problems, algebra is needed as an intermediate structure. This role is played by the syntactic
monoid of a language. This is an abstraction of a language, in which combinatorial properties
of the language are translated to simple algebraic properties. For a regular language, the
syntactic monoid is finite and it is computable from the language.

Solving the membership problem in this way consists of two parts. Given a language definable
in the fragment, one should prove that its syntactic monoid satisfies the characterization. On
the other hand, given a language whose syntactic monoid satisfies the characterization, one
should construct a formula in the fragment, that defines the language. This second part is
particularly difficult and often uses induction on the structure of the monoid.

A remarkable result that formed a starting point in this line of research is Schützenberger’s
theorem. In [Sch65], Schützenberger proved that a regular language is star-free if and only if
its syntactic monoid is aperiodic (i.e. for each s ∈ M , there is n ∈ N such that sn+1 = sn).
This proof is constructive: given a language with an aperiodic syntactic monoid, a star-
free expression is calculated. In [MP71], McNaughton and Papert furthermore showed, also
constructively, that the star-free languages are precisely the languages definable by first-order
logic. Aperiodicity of the syntactic monoid thus is a decidable characterization for first-
order logic. This algebraic characterization can be translated to properties of the minimal
automaton. However, there is no direct way known to characterize the expressive power of
FO(<) without using algebra.

Another important result that uses the connection between regular languages and algebra
was obtained by Simon in [Sim75]. In this paper, a decidable characterization of the piece-
wise testable languages, which are the BΣ1(<)-definable languages, is given. As explained
above, one motivation for studying this class is that it is among the lowest levels of the
quantifier alternation hierarchy, but still is a challenging class. The characterization is again
algebraic: Simon’s theorem says that the syntactic monoids of these languages are exactly
the J -trivial monoids (i.e. the monoids such that for all s, t ∈ M , MsM = MtM implies
s = t). One can observe that, since we are working with finite monoids, this property is
decidable. This algebraic characterization has also been translated to a characterization of
the minimal automata [Ste85]. In general, having a characterization of the minimal automata
gives interesting complexity bounds. For the class of piecewise testable languages, it is shown
in [Ste85] that membership can be decided in Ptime.

The connection between regular languages and their finite abstractions in the form of syntactic
monoids, which capture the properties of a language that are relevant with respect to the
membership problem, was further developed in Eilenberg’s theorem [Eil76]. This theorem
provides a general framework in which Schützenberger’s theorem and Simon’s theorem fit.
It states that there is a one-to-one correspondence between varieties of finite monoids (sets
of finite monoids closed under taking submonoids, homomorphic images and finite direct
products) and varieties of regular languages (sets of regular languages closed under Boolean
operations, taking inverse homomorphic images, and left and right residuals).

Moreover, Reiterman showed in [Rei82] that every variety of finite monoids can be described
by a set of identities, which are formal equalities between profinite words. For example,
aperiodic monoids are defined by the condition that for each s ∈M , there is n ∈ N such that
sn+1 = sn. This variety can be described by a single identity, viz. xω+1 = xω. Most interesting
classes can be given by a finite set of identities, of which it can be tested whether the syntactic

3

INTRODUCTION

monoid satisfies them. Such a characterization of a class yields that the membership problem
for this class is decidable. This connection between regular languages and algebra has been
a fruitful approach to obtaining decidable characterizations.

Drawbacks of this approach

A drawback of this approach to understanding classes of languages, however, is that it is not
modular. That is, even if a class of languages is just slightly modified, one can usually not
reuse the arguments for the original class to conclude something about the new class. As
logical fragments are often defined from weaker fragments, for example by adding a predicate
to the fragment, this is indeed a drawback.

One would want to be able to transfer decidability of a weaker fragment to decidability of a
stronger fragment. For this, one would need two things. First of all, from an algebraic charac-
terization of the first fragment, one should be able to obtain an algebraic characterization of
the second fragment. And secondly, this characterization should be testable, i.e. decidability
of membership should be preserved under this operation. For example, adding the successor
relation to a fragment of FO(<) that is characterized by some variety V often corresponds
to the operation V 7→ V ∗ D. It is shown in [Aui10] that decidability of membership is not
preserved under this operation.

This drawback, as well as the fact that this approach seemed unable to bring decidable charac-
terizations for higher levels of the quantifier alternation hierarchy (i.e. from BΣ2(<) onwards),
indicates that studying the membership problem does not give sufficient understanding of the
fragments.

The separation problem

A natural generalization of the membership problem, which provides more information about
the fragment and which behaves better under operations, is the separation problem. For a
given fragment, this problem asks whether, for two input languages, there exists a language
definable in this fragment which contains one of the input languages and which is disjoint from
the other input language. In this case we say that the two input languages can be separated
by a language definable in this fragment, see also Figure 2. The separation problem is thus
defined as follows.

Separation problem

Input: Two languages L1 and L2, and a fragment F .

Question: Are L1 and L2 separable by a language definable in F?

The membership problem reduces to the separation problem. Indeed, a language is in a given
class if and only if it can be separated from its complement by a language from the class.
The separation problem can thus be used to test the expressive power of a class, but it is
much more informative: it tests whether two input languages are sufficiently disjoint to be
perceived as such from the point of view of this class. It thus also provides information about
languages that are outside of the class. The expressive power (eg. the quantifier rank) needed

4

INTRODUCTION

L1 L2

A∗

L is F-definable

Figure 2: L1 and L2 are separable by a language definable in F .

to separate the languages tells something about how different they are, from the point of view
of the class of separators.

Our approach to the separation problem is to take one monoid (or automaton) that recognizes
both languages, and show for each pair of monoid elements (or pairs of states) whether the
languages determined by these can be separated. If the languages are separable, we give a
description of a separating language, and if the languages cannot be separated, we know which
parts of the languages are responsible for this. Thus, like a positive answer, also a negative
answer to the separation problem provides much finer information about languages outside
of the class than the membership problem would. Indeed, if a language is not definable in
the fragment, an answer to the membership problem would just tell why the fragment cannot
separate it from its complement.

State of the art of the separation problem

As a response to the non-modularity of the membership problem, many properties that are
stronger than decidability of this problem have been introduced. One of the first such prop-
erties is based on the algebraic concept of pointlike sets, studied in [Hen88] for aperiodic
semigroups. Later, Almeida proved in [Alm99] that computing the pointlike sets of size 2 for
a variety V is equivalent to solving the separation problem for the class of V-recognizable lan-
guages. The relation between the V-pointlike sets of size 2 of a monoid M and the separation
problem is the following: a set {m,n} ⊆ M is V-pointlike if and only if ϕ−1(m) and ϕ−1(n)
are not separable by a V-recognizable language, for any morphism ϕ : A∗ →M . In [Alm99],
it is furthermore shown that the separation problem is equivalent to a topological problem.
This topological problem is to test emptiness of the intersection of the topological closures of
two regular languages inside the free pro-V semigroup, a topological space which is usually
uncountable.

One reason for which pointlike sets have received attention is that they can be used to
obtain decidability of the membership problem of varieties built from other varieties. For
instance, in [HMPR91], it is explained that the computability of the pointlike sets for the
variety of groups (denoted by G) is proved in Ash’s proof [Ash91] of the type II conjecture
of Rhodes [Rho87], and that this computability of G-pointlike sets yields that other varieties,
built in a certain way from this one, have a decidable membership problem. This has been
extended in [PW96], where it is shown that if a variety has computable pointlike sets, the
membership problem stays decidable if one applies certain operations to it.

5

INTRODUCTION

Also, from [Ste01], we know that the operation V 7→ V ∗ D even preserves computability of
pointlike sets, thus in particular, if V has computable pointlike sets, the membership problem
for the variety V∗D is still decidable. This is in contrast with the situation for the membership
problem: it was shown in [Aui10] that decidability of the membership problem is not preserved
under this operation.

For a small number of specific varieties, these pointlike sets have been shown to be computable,
yielding that the separation problem for that variety is decidable. This has been shown,
for example, for the following varieties: group languages [Ash91, RZ93, Aui04, AS05], star-
free languages [Hen88, HRS10], piecewise testable languages [AZ97, ACZ08], locally testable
languages [Ste01, Nog10], and locally threshold testable languages [Ste98, Ste01].

There are some important limitations with these approaches to the separation problem. First
of all, the proofs for these results differ from variety to variety, and usually rely on involved
(profinite) semigroup theory. On the one hand, this makes them less accessible, and on
the other hand, this provides less insight in the combinatorial structure of the classes. For
example, one may use topological properties, such as compactness, to obtain decidability of the
problem. These arguments are not constructive, while more combinatorial approaches might
give constructive proofs of decidability, even if these approaches may require more precise
knowledge. Furthermore, one only obtains a yes/no answer to the separation problem. As
mentioned above, if two languages can be separated by a language from a class S, we are
also interested in finding a witness of this fact, i.e. a so-called separator from the class S.
However, these approaches do not give any information about how to actually construct such
a separator if it exists, nor do they give a witness of non-separability in the other case.

Contributions

Our goal in this project was to obtain simple proofs for the decidability of the separation prob-
lem for different subclasses of the regular languages, using combinatorial arguments rather
than involved methods from profinite semigroup theory. We also wanted to obtain algorithms
to decide the separation problem efficiently. Furthermore, rather than just having a yes/no
answer to the separation problem, we were especially interested in finding descriptions of
separating languages in case they exist, as well as witnesses of non-separability in the other
case.

Contribution I: Developing a generic method

Our approach to the separation problem uses combinatorial arguments. The central idea is
to provide a bound on a parameter that is pertinent to the class of separators (such as the
quantifier rank for a class defined in terms of logic), and to show that the separation problem
for the full class of separators reduces to the separation problem for the finite restriction of
this class consisting of separator languages defined by a parameter that is smaller than this
bound.

More precisely, for a class S of separators, we choose a parameter k, which is such that fixing
this parameter gives a strictly smaller and finite subclass of languages (denoted by S[k]), and

6

INTRODUCTION

which is such that increasing the value of k yields a more expressive class of languages. That
is, for all k ∈ N, S[k] (S[k + 1] and S =

⋃
k∈N S[k]. Choices of parameters could be, for

example, the length of the inspected prefixes, suffixes, factors or pieces, or the quantifier rank
of a formula that defines the language. More in general, one could always take the size of the
syntactic monoid of the language as a parameter.

The parameter k gives a means to stratify the class S according to the expressive power. And,
since each subclass S[k] is finite, the separation problem for such a subclass is decidable: one
can enumerate the languages and test all possible candidates.

Such a parameter defines a sequence of congruence relations on A∗ in the following way. For
u, v ∈ A∗, u ∼k v if and only if u and v are not separable by any language from S[k]. Note that
every language in S[k] is a finite union of ∼k-congruence classes. Now, two input languages
are S-separable if and only if there exists k ∈ N such that no word from the first language is
∼k-equivalent to a word from the second language. A priori, this means that all the infinitely
many ∼k-congruences should be checked to be able to conclude that two languages are not
S-separable.

However, by letting the ∼k-congruences induce a relation on a monoid or an automaton (i.e. on
a finite set), we work around this difficulty. We let a ∼k-congruence induce a relation that
will express that the monoid elements, or the pairs of states, determine languages that cannot
be distinguished by S[k]. We call this relation S[k]-indistinguishability. We furthermore say
that two monoid elements, or two pairs of states, are S-indistinguishable if they are S[k]-
indistinguishable for all k ∈ N. This relation precisely characterizes the pairs of monoid
elements, or pairs of pairs of states, that determine languages that are not S-separable. It
thus corresponds to the pointlike sets of size 2 in the above terminology.

A drawback of the notion of S[k]-indistinguishable, compared to the ∼k-congruence on A∗,
is that this relation is not a congruence anymore: it is not transitive. However, this draw-
back is compensated by its big advantage: its stabilizing behavior. Whereas the congruence
relations ∼k on A∗ keep getting more and more refined, this is not the case for the rela-
tion of S[k]-indistinguishability. Since, for every k, S[k + 1]-indistinguishable pairs are also
S[k]-indistinguishable, and since these pairs are from a finite set, there will be some value
κ of the parameter such that for every k ≥ κ, we have that the S[κ]-indistinguishable pairs
are also S[k]-indistinguishable. This gives that if two languages are S-separable, they will
already be S[κ]-separable, for a κ depending on the monoid or automaton recognizing the
languages.

While the existence of such a κ is immediate from the definitions, computing a bound on κ
is a difficult problem. If we would establish such a bound, the S-separation problem would
reduce to the S[κ]-separation problem. The class S[κ] consists of finitely many languages, thus
this would already yield decidability of the S-separation problem: one can use a brute force
algorithm to test all of these languages. Furthermore, such a bound would imply that the
saturation of L1, with respect to ∼κ, is a language from S that separates L1 from L2, in case
these languages are S-separable. We thus obtain a description of a potential separator.

7

INTRODUCTION

Contribution II: Application to several classes

Using this approach, we were able to show that the separation problem for regular input
languages is decidable for the following classes,

- piecewise testable languages,

- unambiguous (i.e. FO2(<)-recognizable) languages,

- locally testable languages,

- and locally threshold testable languages.

For each of these classes, we obtain a description of the complexity of a potential separator,
via the bound on the parameter. This bound only depends on the input languages, and the
parameters that we bound are natural parameters for the classes of separators. For the class of
piecewise testable languages, we bound the size of the pieces that are inspected in a separating
language. For the class of unambiguous languages, we provide a bound on the quantifier rank
of an FO2(<)-formula defining the language. The same bound also works to bound the size
of the unambiguous products that occur in a boolean combination defining a separator. For
the classes of locally testable and locally threshold testable languages, we bound the size of
the prefix, infixes and suffix that are inspected. For locally threshold testable languages, we
furthermore bound the counting threshold.

If separation of two languages is not possible, we obtain a witness of non-separability as
a pattern, specific to the class of separators, in the monoid or automaton recognizing the
languages. This entails an algebraic property of the corresponding variety, which is called
reducibility. This property provides information about the shape of the simplest elements
that are present in the topological closures of two languages in the free pro-V semigroup.
We have thus shown that the varieties corresponding to PT, FO2(<), LT, and LTT have this
property.

These patterns that witness non-separability are furthermore useful to bypass the brute-force
algorithm to test separability that follows from the reduction to a fixed parameter (which
enumerates and tests all the finitely many potential separators that are defined by a parameter
that is smaller than the bound for that parameter). As was the case for decidable algebraic
characterizations, translating from algebra to the level of automata yields better complexity
results.

For the class of piecewise testable languages, we are able to decide separability in Ptime
with respect to both the size of the automaton and the size of the alphabet. For the class
of unambiguous languages, separability can be decided in Exptime. For the class of locally
testable languages, deciding separability can be achieved in co-Nexptime, while we find a
co-NP lower complexity bound. For locally threshold testable languages, we also have a
co-NP lower bound, and we show that separability can be decided in 2-Expspace.

For all of these classes, our proofs only use elementary combinatorial techniques, in contrast
to previous approaches to the separation problem that use involved algebraic and topologic
techniques. We believe that our proofs provide more insight in the structure of these classes.
Indeed, as explained above, our approach yields more than just the decidability of the separa-
tion problem: we also obtain descriptions of potential separators, witnesses of non-separability,

8

INTRODUCTION

and algorithms to decide separability.

We also have some results for the separation problem when input languages do not have to be
regular. For the class of piecewise testable languages, we found an alternative combinatorial
proof that identifies the indistinguishable pairs of states, without bounding the parameter.
This alternative method gives a criterion for non-PT-separability that holds for any pair of
input languages. It was very recently shown in [CM14] that this criterion is decidable for
context-free languages.

For the classes of locally testable and locally threshold testable languages, we also consider
the separation problem for context-free input languages, and show that this is undecidable.
We show that separating context-free languages by locally threshold testable languages with
a fixed size of factors, however, is decidable.

Organization of the dissertation

In Chapter 1, we briefly discuss some preliminaries about words, languages, semigroups and
monoids, varieties, and logic on finite words. This chapter also serves to fix some notation
that we will apply in the rest of the thesis.

We formally introduce the separation problem in Chapter 2. We also introduce the problem
of computing 2-V-pointlike sets of a monoid, and the problem of testing whether the inter-
section of the closures of two regular languages in the free pro-V monoid is empty. It was
shown in [Alm99] that these problems are equivalent to the separation problem for the class
of V-recognizable languages. We provide a proof of these equivalences. In this chapter, we
also give a general outline of the approach that we will take in Chapters 4, 5, and 6: we
introduce the notion of S-indistinguishable pairs of monoid elements and S-indistinguishable
pairs of pairs of states of an automaton, for a class S of regular languages. We show how these
pairs capture the information relevant to separation, and indicate how we usually construct
them. This chapter is concluded with an illustration of different approaches to the separation
problem for two basic examples: the classes of alphabet-testable languages and prefix-testable
languages.

Chapter 3 is a short chapter that discusses the separation problem for the class of group
languages. For this class of languages, we can build on a rich history of research on very
related problems. We therefore do not apply our approach with indistinguishable pairs in
this chapter, but we show how decidability of the separation problem follows from the Ribes-
Zalesskĭı product theorem. A constructive proof of this theorem, provided in [AS05], can be
used to obtain a separating group language, in case it exists.

In Chapter 4, we apply the approach with indistinguishable pairs of states to prove decid-
ability of the separation problem for piecewise testable languages. We prove decidability
of this problem with two methods. One method is based on Simon’s Factorization Forest
theorem, and the other method works by bounding the size of the pieces that are relevant
for separability of the input languages. This bound furthermore yields a description of a
separating language, if it exists. We find this bound by showing that words having the same
pieces of this size must both fit into a certain template. Pumping arguments then allow us to
see that words that have the same pieces of arbitrary length can be read between the pairs

9

INTRODUCTION

of states. We also obtain that two pairs of states are indistinguishable for this class if and
only if between the first and second state of both pairs a pattern of a similar shape is present.
This equivalence allows us to provide an algorithm that decides separability for this class in
Ptime with respect to both the size of the automaton and the size of the alphabet.

Chapter 5 treats the separation problem for unambiguous languages (i.e. FO2(<)-
recognizable languages). We show that this problem is decidable, which yields that the
2-pointlike sets for the variety DA are computable. To show the decidability of the separation
problem, we provide a fixpoint algorithm that computes the FO2(<)-indistinguishable pairs
of monoid elements. In the completeness proof of this algorithm, we find - using combinato-
rial arguments - a bound κ on the quantifier rank of FO2(<)-formulas that are relevant for
separability of the input languages. We get a description of a potential FO2(<)-separator as
a saturation of one of the two languages with respect to a congruence depending on FO2(<)
and κ.

Finally, we discuss the separation problem for the classes of locally testable languages
and locally threshold testable languages in Chapter 6. In this chapter, we also work
by bounding parameters using combinatorial arguments. For the class of locally threshold
testable languages, there are two relevant parameters: the size of the factors, and the counting
threshold. We first solve the separation problem for a fixed counting threshold (in particular,
this solves the problem for the class of locally testable languages). In this case, we obtain
a bound on the size of the factors, of which we show that it still works for the full class of
locally threshold testable languages. We then provide a bound on the counting threshold.
These bounds provide a description of a potential separator. We also exhibit patterns on
the recognizing monoid and the recognizing automaton that are present if and only if the
languages are not separable. Furthermore, upper and lower complexity bounds for the sepa-
ration problems for these classes are discussed. We conclude the chapter with results on the
separation problem for locally testable and locally threshold testable languages on context-free
input languages. We show that these problems are undecidable, but, surprisingly, separating
context-free languages by locally threshold testable languages with a fixed size of factors is
decidable.

10

Chapter 1

Preliminaries

1.1 Words and languages . 11

1.2 Automata . 12

1.3 Recognition by semigroups and monoids 13

1.4 Varieties and free pro-V semigroups 14

1.4.1 Identities . 14

1.5 Logic on words . 15

1.5.1 Different fragments of FO(<) . 16

In this chapter, we briefly present some preliminary notions and fix some notation that we use
in the rest of the thesis. We assume that the reader is familiar with the basics of the theory
of automata, regular languages and semigroups. We refer to [Alm94, Str94, Pin97, Pin11],
for an introduction to this theory.

1.1 Words and languages

An alphabet is a finite set. For an alphabet A, the free monoid over A, denoted by A∗, is
the set of all words endowed with the usual concatenation operation. The concatenation of
two words u, v ∈ A∗ is denoted by u · v, or simply by uv. The empty word is denoted by ε.
The free semigroup over A is the set of all nonempty words, and is denoted by A+. For a
word w ∈ A∗, the smallest subset B ⊆ A such that w ∈ B∗ is called the alphabet of w and is
denoted by alph(w). The number of letters in a word w is the size, or length, of w, denoted
by |w|.

An infix , or factor , of a word w ∈ A∗ is a word w′ such that w = uw′v for some u, v ∈ A∗.
In this case, we say that w′ is a prefix (resp. a suffix) of w if u = ε (resp. if v = ε). A word
w′ is a piece, or scattered subword, of a word w, if there exist letters a1, . . . , ak ∈ A such that
w′ = a1 · · · ak and w = w0a1w1 · · · akwk, for some w0, . . . , wk ∈ A∗.

A language over A is a subset of the free monoid A∗. We extend the definition of the
concatenation operation to languages, by defining L · L′ = {w · w′ | w ∈ L,w′ ∈ L′}, and we
use the Kleene star operation L∗ =

⋃
n∈N L

n.

11

CHAPTER 1. PRELIMINARIES

The collection of regular languages over an alphabet A is defined as the smallest collection of
languages over A that satisfies the following properties.

- The empty set ∅ is regular,

- for every a ∈ A, the set {a} is regular,

- if L and L′ are regular, then L ∪ L′, L · L′, and L∗ are also regular.

1.2 Automata

A nondeterministic finite automaton (NFA) over an alphabet A is denoted by a tuple A =
(A,Q, δ), where Q is the set of states and δ ⊆ Q × A × Q is the transition relation. For a
deterministic finite automaton (DFA), it is furthermore required that δ is a partial function
from Q × A to Q. That is, for every q ∈ Q and a ∈ A, there is at most one state q′ such
that (q, a, q′) ∈ δ. We shall explain below why we use these definitions, which are not the
standard ones. The size |A| of an automaton A is its number of states plus its number of
transitions.

Given a word u ∈ A∗, a subset B of A and two states p, q of A, we denote

- a path from state p to state q labeled by the word u by p
u−−→ q,

- a path from p to q of which all transitions are labeled over B by p
⊆B−−→ q,

- a path from p to q labeled by a word whose alphabet is exactly B by p
=B−−→ q.

We also write (p, u, q) ∈ δ∗ to denote that there is a path p
u−−→ q in A.

Given a language L ⊆ A∗, we say that L is accepted, or recognized, by an NFA A = (A,Q, δ)
if there exist sets I, F ⊆ Q such that

L = {w | ∃qI ∈ I and ∃qF ∈ F such that (qI , w, qF) ∈ δ∗}.

In this case, we call I the set of initial states and F the set of final states for L, and we also
say that I × F determines the language L, and we denote this language by L(A, I, F). For
a language L to be accepted by a DFA A, we ask furthermore that the set I consists of only
one state. We recall Kleene’s theorem that says that a language L ⊆ A∗ is regular if and only
if it is recognized by a finite automaton.

Note that these definitions are not the standard definitions of NFAs and DFAs. Usually,
the sets of initial and final states are fixed in the definition of the automaton. However,
for the study of separation problems, which form the subject of this thesis, it will be
convenient to have a single automaton that accepts the two input languages. Note that
from two given regular languages L1 and L2 over A, recognized by NFAs A1 = (A,Q1, δ1)
resp. A2 = (A,Q2, δ2), one can build an automaton that accepts both L1 and L2, viz. the
automaton A = (A,Q1 ·∪Q2, δ1 ·∪ δ2) of size |A1|+ |A2|.

12

1.3. RECOGNITION BY SEMIGROUPS AND MONOIDS

1.3 Recognition by semigroups and monoids

A semigroup is a set of elements equipped with an associative binary operation. We denote
this operation multiplicatively. A semigroup S is a monoid if it has an identity element, that
is, if there is 1 ∈ S such that for all s ∈ S, 1 · s = s · 1 = s. An element s is idempotent
if s2 = s. For a semigroup (S, ·) (that we will simply denote by S), we denote the set of
its idempotent elements by E(S). In a finite semigroup, every element s has an idempotent
power, which is denoted by sω. For example, if |S| = n, then one can verify that for every
s ∈ S, the element sn! is idempotent.

A mapping ϕ : S → T between semigroups is a semigroup morphism if for all s, s′ ∈ S, it
holds that ϕ(s · s′) = ϕ(s) · ϕ(s′). If S and T are monoids, and it holds furthermore that
ϕ(1S) = 1T , then ϕ is a monoid morphism. If it is clear from the context which kind of
morphism is meant, we also simply write morphism.

A language L over A is recognized by a semigroup S, if there is a morphism ϕ : A+ → S and
a subset P ⊆ S, such that L = ϕ−1(P). In this case, we also say that L is recognized by
ϕ. Given a morphism ϕ : A+ → S, we say that an element s ∈ S determines the language
ϕ−1(s).

Similarly, a language L over A is recognized by a monoidM , if there is a morphism ϕ : A∗ →M
and a subset P ⊆ M , such that L = ϕ−1(P). And, given a morphism ϕ : A∗ → M , we also
say that an element m ∈M determines the language ϕ−1(m).

For example, the language A∗aA∗ is recognized by the finite monoid U1 = {0,1}, with
multiplication given by 0 = 0 · 0 = 0 · 1 = 1 · 0 and 1 = 1 · 1, via the morphism ϕ that sends
a to 0 and sends b to 1. Indeed, A∗aA∗ = ϕ−1(0).

One way to find such a recognizing monoid for a language L (and in fact to find the minimal
one), is to take the quotient of A∗ with respect to the following congruence relation.

u ∼L v if and only if ∀w,w′ ∈ A∗. wuw′ ∈ L ⇔ wvw′ ∈ L.

This congruence is called the syntactic congruence of L, and the corresponding quotient is
called the syntactic monoid of L. One can similarly define the syntactic semigroup of L.

It is well known and easy to show that if a language is regular, then its syntactic monoid
is finite. Another way to construct a recognizing monoid out of an NFA is to construct its
transition monoid. For a DFA, this is the monoid generated by the partial transformations
on Q induced by the letters of A. For an NFA, it can be represented as the monoid generated
by the boolean matrices of order |Q| × |Q|, induced by the letters of A in the following way:
the coordinate (p, q) of the matrix induced by a ∈ A is 1 if and only if (p, a, q) ∈ δ.

Conversely, every language that is recognized by a morphism ϕ : A∗ → M , is recognized by
the DFA (A,M, δ), with δ(, a) : m 7→ m · ϕ(a). To sum up, a language is accepted by an
NFA if and only if it is recognized by a finite monoid.

13

CHAPTER 1. PRELIMINARIES

1.4 Varieties and free pro-V semigroups

Syntactic semigroups form an important connection between regular languages and finite
semigroups. The concept of variety serves to classify regular languages according to algebraic
properties of their syntactic semigroups. Here we introduce a few notions related to the theory
of varieties, but we refer to the text books mentioned above for many important properties
and results that we do not discuss here.

A variety of finite semigroups (also called pseudovariety of (finite) semigroups) is a collection
of semigroups that is closed under taking subsemigroups, homomorphic images and finite
direct products. If a language L is recognized by a semigroup from a variety V, we say that
L is V-recognizable.

Let A be a finite alphabet and let V be a variety. A semigroup S separates u, v ∈ A+ if there
exists a morphism ϕ : A+ → S such that ϕ(u) 6= ϕ(v). Given u, v ∈ A+, we let

rV(u, v) = min
{
|S| | S ∈ V and S separates u and v

}
∈ N ∪ {∞},

with min∅ =∞, and we define

dV(u, v) = 2−rV(u,v),

with 2−∞ = 0. For two given words, there is not necessarily a semigroup in V that is able to
separate them. Thus, dV does not necessarily define a metric on A+. We therefore consider
the congruence relation ∼V, defined by

u ∼V v ⇔ dV(u, v) = 0.

One can verify that dV is a metric on A+/∼V.

We endow every finite semigroup with the discrete topology. A sequence (un)n is a Cauchy
sequence for this metric if and only if for every morphism ϕ : A+ → S, the sequence (ϕ(un))n
is eventually constant. The completion of the metric space (A∗/∼V, dV) is denoted by F̂V(A)
and is called the free pro-V semigroup.

The semigroup operation on F̂V(A) is given by pointwise multiplication of classes of Cauchy
sequences. This transfers the semigroup structure of A+ to F̂V(A), on which the multiplication
is continuous. This will be discussed in more detail in Section 2.2.2.

The semigroup F̂V(A) is profinite, since one can show that the topology on F̂V(A) is the
coarsest topology which makes every morphism from A+ to a finite discrete semigroup S ∈ V
continuous.

One can furthermore show that F̂V(A) satisfies the following universal property. For every
mapping ϕ : A → S ∈ V, there is a unique uniformly continuous morphism ϕ̂ : F̂V(A) → S
that extends ϕ.

1.4.1 Identities

The variety of all finite semigroups is denoted by S. The free pro-S semigroup is also called
the free profinite semigroup and we denote it by F̂ (A). Its elements are called profinite

14

1.5. LOGIC ON WORDS

words. Let u, v ∈ F̂ (A). We say that the identity u = v is satisfied by a finite semigroup
S if and only if, for every continuous morphism ϕ : F̂ (A) → S, it holds that ϕ(u) = ϕ(v).
Reiterman’s theorem states that every variety of finite monoids can be defined by a set of
such identities [Rei82].

For u ∈ F̂ (A), the element limn→∞ u
n! is denoted by uω. This is an idempotent element of

F̂ (A). Recall that in the theory of finite semigroups, sω denotes the idempotent power of an
element s ∈ S. For ϕ : A+ → S and u ∈ A+, it holds that ϕ̂(uω) = ϕ(u)ω, which justifies the
notation for limn→∞ u

n!.

This allows us to describe the varieties that we study in this thesis in a succinct way, by
the identities that are satisfied by their semigroups. For example, in Section 2.3.1, we study
the variety of semilattices. This variety consists of semigroups that are idempotent and
commutative, which can be expressed by the identities x2 = x and xy = yx. In this case, no
profinite words are needed to define the variety. The languages that we study in Chapter 4,
on the other hand, are recognized by semigroups that satisfy the identities xω = xω+1 and
(xy)ω = (yx)ω, or equivalently, that satisfy y(xy)ω = (xy)ω = (xy)ωx.

1.5 Logic on words

We consider first-order logic (denoted by FO(<)) interpreted on words. In this formalism,
variables are interpreted as positions in words, and one may use the following two types of
predicates.

- The binary predicate <, where x < y means that position x occurs before position y,

- for each letter a, a unary predicate a(), where a(x) means that position x carries the
letter a.

An FO-formula defines the language of words for which the formula holds. For instance, the
formula

∃x∃y.
(
x < y ∧ a(x) ∧ b(y) ∧ ∀z.

(
(x < z ∧ z < y)⇒ c(z)

))
(1.1)

defines the language A∗ac∗bA∗.

In this thesis, we consider different fragments of first-order logic. If a language can be defined
by a formula from a fragment F , we also say that the language is F-definable.

A fragment F gives rise to an equivalence relation on words in the following way. For u, v ∈
A∗,

u ∼F v ⇔ u and v satisfy exactly the same formulas of F .

The quantifier rank, or simply rank, of a formula is the maximal number of nested quantifiers
of a formula. For example, the formula from (1.1) has rank 3.

In this thesis, we will often want to ‘stratify’ a class of languages according to its expressive
power. The rank of a formula gives a means to obtain such a stratification for a class of
languages defined by a logic. By L[k], we denote the restriction of the logic L that consists
of only those formulas that have rank ≤ k. Of course, increasing k yields a more expressive
logic, and by definition, L =

⋃
k∈N L[k]. This stratification induces, for a logic L, a sequence

15

CHAPTER 1. PRELIMINARIES

of equivalence relations ∼L[k] on words. It is clear that ∼L=
⋂
k∈N ∼L[k], and for all k ∈ N,

∼L[k+1]⊆∼L[k].

1.5.1 Different fragments of FO(<)

Let us briefly introduce the different fragments of FO(<) that we study in this thesis. The
fragments FO1(<) (see Section 2.3.1) and FO2(<) (see Chapter 5) are obtained by restricting
the number of (reusable) variable names that may be used in a formula. In the fragment
FO1(<) only one variable name is allowed. For example, the formula

∃x. a(x) ∧ ∃x. b(x) ∧ ∀x.¬c(x)

is in FO1(<). For A = {a, b, c}, this formula defines the language of words whose alphabet
is exactly {a, b}. It is not hard to see that this logic can only express such alphabetical
conditions, and boolean combinations of these. In FO2(<), two variable names may be used
in a formula. An example of an FO2(<)-formula is the following formula,

∃x ∃y.
(
b(x) ∧ a(y) ∧ ∀x.

(
¬(y < x)

))
,

which defines the language A∗bA∗a. Note that we reused the variable x. Note that is not clear
right away whether the language A∗ac∗bA∗, defined by (1.1), can be expressed by an FO2(<)-
formula. In Chapter 5, we will see a characterization of the FO2(<)-definable languages, from
which it will be easy to see that this is not the case.

In Chapter 4, we consider the fragment BΣ1(<), which is the fragment of formulas that are
boolean combinations of formulas that use only existential quantifiers. With these formulas,
the presence or absence of pieces in words can be expressed. An example of a BΣ1(<)-
definable language is the language of all words containing the piece aab, that is, the language
A∗aA∗aA∗bA∗. This language is recognized by the following BΣ1(<)-formula,

∃x ∃y ∃z.
(
x < y ∧ y < z ∧ a(x) ∧ a(y) ∧ b(z)

)
.

This language is also defined by the following FO2(<)-formula,

∃x ∃y.
(
x < y ∧ a(x) ∧ a(y) ∧ ∃x.

(
y < x ∧ b(x)

))
.

In fact, we will see in Chapter 5 that every BΣ1(<)-formula is equivalent to an FO2(<)-
formula.

In Chapter 6, we consider yet another fragment, denoted by FO(=,+1). This is a variant
of first-order logic where the binary predicate < is not allowed, but where we have a unary
predicate S() that expresses the successor relation. Here, S(x) = y means that position y is
the first position to the right of position x. These formulas can be used to detect prefixes,
infixes and suffixes of words. For example, the language aA∗bbA∗ is defined by the FO(=,+1)-
formula

∃x ∀y.
(
¬(S(y) = x) ∧ a(x)

)
∧ ∃x ∃y.

(
S(x) = y ∧ b(x) ∧ b(y)

)
.

16

Chapter 2

Introduction to the separation
problem

2.1 The separation problem . 18

2.2 Different points of view on the separation problem 21

2.2.1 Algebraic view: 2-pointlike sets . 22

2.2.2 Topological view: closures in the free pro-V semigroup 24

2.2.3 Combinatorial view: indistinguishable pairs 26

2.3 Basic examples . 29

2.3.1 Example I: Sl . 29

Complexity of separation by Sl-recognizable languages 30

2.3.2 Example II: K . 32

Computing the intersection of the closures in F̂K(A) 32

Computing K-indistinguishable pairs of states 33

In this chapter, we introduce the separation problem and discuss different views on this
problem. The separation problem for a class S of languages is to decide, given two regular
input languages, whether there exists a language from the class S that contains the first
language and is disjoint from the second language.

The separation problem for a class of languages generalizes the membership problem for this
class, and provides a deeper understanding of the class. Furthermore, decidability of the
separation problem is better preserved under operations than decidability of the membership
problem is. Because of these properties, the separation problem for classes of languages
has emerged in different contexts: in an algebraic guise in the study of so-called pointlike
sets with respect to a variety V, and as a topological separation problem in the free pro-V
semigroup.

In Section 2.1, we define the separation problem and discuss the relation with the membership
problem. We continue the following sections with a discussion of results from the literature.
For varieties of languages, solving the separation problem is equivalent to computing certain
algebraic objects. Section 2.2.1 presents this algebraic view on the separation problem. In

17

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

Section 2.2.2, it is shown that deciding the separation problem for varieties of languages is
also equivalent to computing an intersection of certain topological closures. Our approach to
solving the problem is based on the algebraic objects and is presented in Section 2.2.3. This
is the approach that we will apply in Chapters 4, 5, and 6 to different classes of languages.
Finally, in Section 2.3, we present some basic examples to illustrate different approaches to
the separation problem.

2.1 The separation problem

Deciding whether two regular languages, given as regular expressions, are disjoint can be done
by building automata from the expressions, and computing the intersection of these automata.
However, sometimes it is possible to see that two languages are disjoint by extending the
first language to a simpler language, of which it is easier to see that it is disjoint from the
second language. For example, the languages (abb(ab)∗b)∗ and (ab∗aa)∗b are disjoint, because
(abb(ab)∗b)∗ ⊆ ε ∪ A∗bb, while (ab∗aa)∗b ∩ (ε ∪ A∗bb) = ∅. One can thus already conclude
that these regular languages are disjoint by only inspecting their respective sets of suffixes of
size 2.

The class of regular languages for which membership of a word in the language only depends
on its suffix of a certain size is a very restricted class compared to the full class of regular
languages, yet it is still able to witness that (abb(ab)∗b)∗ and (ab∗aa)∗b are disjoint. Of course,
there are also disjoint regular languages which are not sufficiently different, from the point
of view of this class, to be witnessed as disjoint. For example, the languages aa∗ and ba∗

contain, for every n ∈ N , words that have the same suffix of length n, and thus it is not
possible to find a language in this class that witnesses that they are disjoint.

We will see that the problem of deciding whether two languages are perceived as disjoint
by a given class of languages is a natural generalization of the membership problem for this
class. Let us first introduce formally what is meant by being perceived as disjoint.

Definition 2.1. Given languages L,L1, L2, we say that L separates L1 from L2 if

L1 ⊆ L and L2 ∩ L = ∅. (2.1)

Given a class S of languages, we say that the pair (L1, L2) is S-separable if there exists a
language L ∈ S that separates L1 from L2. The language L is then called an S-separator, or
simply separator . Note that (2.1) is equivalent to

L1 ∩ (A∗ \ L) = ∅ and L2 ⊆ A∗ \ L.

Therefore, L separates L1 from L2 if and only if A∗ \ L separates L2 from L1. Hence, for a
class S of separators closed under complement, one observes that (L1, L2) is S-separable if
and only if (L2, L1) is, in which case we simply say that L1 and L2 are S-separable.

For a given class of languages and for two given languages, we are interested in knowing
whether the class is able to separate these languages.

18

2.1. THE SEPARATION PROBLEM

Definition 2.2. The separation problem for a class S of languages, also called the S-
separation problem, can be formulated as follows.

Input: Two languages L1 and L2.

Question: Are L1 and L2 separable by a language from S?

L1 L2

A∗
L ∈ S

Figure 2.1: L1 and L2 are S-separable.

Usually, we only consider the separation problem for input languages that are regular. For
the class S, we will often consider a class of languages that are recognized by some variety
V. If two languages are S-separable with respect to this class, we will say that they are
V-separable. Similarly, we call two languages L-separable if there is a language defined by a
formula from the logic L that separates them.

A positive answer to the separation problem means that L1 and L2 are sufficiently different,
from the point of view of S, to be perceived as disjoint. This means that S is able to
discriminate between the two languages. The separation problem tests the discriminative
power of S. Note that a language L belongs to the class S if and only if L is S-separable from
its complement. We usually consider the separation problem for input languages that are
regular. Since the class of regular languages is closed under complement, the separation prob-
lem subsumes the classical membership problem, which amounts to deciding whether a given
language belongs to a given class. Indeed, the only language that can separate L from A∗\L is
L itself. Thus, L is in S if and only if (L,A∗\L) are S-separable. This gives the following fact.

Fact 2.3. The membership problem for the class S reduces to the separation problem, for
regular input languages, for the class S.

The membership problem tests the expressive power of a class of languages that is described
by combinatorial or logical means. It is considered to be one of the main ways to understand
such a class. By the above, the discriminative power of a class is more informative than the
expressive power of a class. We study the separation problem because it provides a deeper
understanding of a class of languages than the classical membership problem does.

In this thesis, we will see that most natural classes of languages have a decidable separation
problem. Furthermore, it is already known that the separation problem has more robust
properties than the membership problem: in [Ste01], an operation on classes of languages is
described that preserves decidability of the separation problem, while it is shown in [Aui10]
that decidability of the membership problem is not preserved under this operation.

Let us illustrate the notion of separability on small examples.

19

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

Example 2.4. The variety Sl defines the class of languages that can be described in terms
of their alphabet: it consists of all languages that are Boolean combinations of languages of
the form B∗, for finite alphabets B. In Section 2.3.1, we will discuss this class in more detail.
It is easy to see that the languages (a(b ∪ c))+ and (ba)+ are not Sl-separable, since both
languages contain words whose alphabet is {a, b}. On the other hand, the languages (ab)+

and (ac)+ are Sl-separable, since the Sl-recognizable language
{
w ∈ A∗ | alph(w) = {a, b}

}
separates them.

Example 2.5. The languages (ab)+ and ba∗ are FO(<)-separable, since the language defined
by ∃x. ∃y. x < y ∧ a(x) ∧ b(y) contains (ab)+ and is disjoint from ba∗. The languages (aa)∗

and (aa)∗a, on the other hand, are not separable by any language defined by a first-order
formula. This follows from [Str94, Theorem IV.2.1], where an Ehrenfeucht-Fräıssé argument
is used to show that the set of words of even length is not definable in first-order logic.

In [SW76, Hun82], the separation problem was studied for the class of context-free languages
as input languages, and the class of regular languages as separators. In [SW76], the following
theorem is proved by a reduction from the halting problem on Turing machines to this
separation problem. In Chapter 6, we will see that this proof can be adapted to prove
undecidability of separability of context-free languages for other classes of regular separa-
tors, satisfying some conditions, as well. In Theorem 6.51, we give an adaptation of this proof.

Theorem 2.6 ([SW76, Theorem 4.6]). Separability of context-free languages by regular lan-
guages is undecidable.

We conclude this section with a lemma that gives a sufficient condition to conclude that
two languages are S-separable, when the class S is closed under finite union and finite
intersection. In this case, it suffices to decompose the two languages in a finite way such
that the components of the different languages are pairwise S-separable. As varieties of
languages are closed under finite union and finite intersection, this result applies in particular
to varieties of languages.

Lemma 2.7 ([Pin09, Lemma 2.1]). Let (Ki)i∈I and (Lj)j∈J be two finite families of languages.
Let S be a class of languages closed under finite union and finite intersection. If each pair Ki

and Lj is S-separable, then
⋃
i∈I Ki and

⋃
j∈J Lj are S-separable.

Proof. Let Ti,j be an S-recognizable language such that Ki ⊆ Ti,j and Lj ∩ Ti,j = ∅. We
claim that the language T :=

⋃
i∈I
⋂
j∈J Ti,j separates K :=

⋃
i∈I Ki and L :=

⋃
j∈J Lj . Note

that T is S-recognizable since S is closed under finite union and finite intersection.

For every i ∈ I and j ∈ J , by definition, Ki ⊆ Ti,j . Thus, Ki ⊆
⋂
j∈J Ti,j , and K ⊆⋃

i∈I
⋂
j∈J Ti,j . On the other hand, to show that L∩ T = ∅, it suffices to show that for every

k ∈ J , Lk ∩ T = ∅. Fix i ∈ I. Note that Lk ∩
⋂
j∈J Ti,j ⊆ Lk ∩ Ti,k = ∅, by definition. Now,

Lk ∩ T = Lk ∩
⋃
i∈I

⋂
j∈J

Ti,j =
⋃
i∈I

(
Lk ∩

⋂
j∈J

Ti,j
)

= ∅.

It follows that T separates K and L.

20

2.2. DIFFERENT POINTS OF VIEW ON THE SEPARATION PROBLEM

2.2 Different points of view on the separation problem

For classes of languages that correspond to varieties, two different approaches (algebraic and
topological) to the separation problem are known from the literature. In [Alm99], it is shown
that these approaches are equivalent. If the separation problem is decidable for a variety
V, these approaches provide a yes/no answer to the question whether two languages are V-
separable. However, they do not give any information about how to actually construct a
V-recognizable language that separates the two languages in case they are V-separable.

The algebraic approach is based on objects called pointlike sets. A reason for introducing
these pointlike sets was to obtain a property that is better preserved under operations, than
decidability of the membership problem is. For a small number of specific varieties, these
pointlike sets have been shown to be computable, yielding the decidability of the separation
problem for that variety. In particular, this has been shown for the following varieties.

1. Languages recognized by a finite group [Ash91, RZ93, Aui04, AS05],

2. Star-free (that is, FO(<)-definable) languages [Hen88, HRS10],

3. Piecewise testable (that is, BΣ1(<)-definable) languages [AZ97, ACZ08],

4. Languages whose syntactic semigroups are R-trivial, that is, languages such that all
cycles in the graph of the minimal automaton visit just one state [ACZ08],

5. Languages for which membership of a word in the language can be tested by inspecting
the prefix resp. suffix up to some length (folklore, see [Alm94, Section 3.7]),

6. Locally testable languages, that is, languages for which membership of a word in
the language can be tested by inspecting the prefix, suffix and factors up to some
length [Ste01, Nog10],

7. Locally threshold testable languages, that is, languages for which membership of a word
in the language can be tested by inspecting the prefix, suffix and the factors, counted
with a certain threshold, up to some length [Ste98, Ste01].

Our view on the separation problem is described in Section 2.2.3. For a class S of separators
that forms a variety, this view coincides with the algebraic view, that is, we calculate the
pointlike sets of size 2.

For a class S of separators, we choose a parameter k that defines a congruence relation ∼k on
A∗ in such a way that increasing k yields a more and more refined congruence relation, and
such that every S-definable language is a union of ∼k-equivalence classes for some k. Then,
two languages are S-separable if and only if there exists k ∈ N for which there is no word in
the first language that is ∼k-equivalent to a word from the second language.

For example, if S is defined in terms of a logical fragment, the quantifier rank of a formula
provides such a parameter k. In this case, two words are said to be ∼k-equivalent if and
only if they satisfy exactly the same formulas of rank k. Increasing this rank gives more and
more power to discriminate between languages, and thus more and more languages become
distinguishable.

Another example of a parameter that defines such a sequence of congruence relations on A∗

21

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

is the size of the semigroup. That is, if S is the class of V-recognizable languages, then two
words are ∼k-equivalent if and only if, for each morphism into a semigroup of V of size up
to k, their images are the same. In other words, u ∼k v ⇔ dV(u, v) < 2−k, for dV(u, v) as
defined in Section 1.4.

Deciding whether two languages are S-separable amounts to knowing whether there exists
k ∈ N for which there is no word in the first language that is ∼k-equivalent to a word from
the second language. In principle, this means that we would have to know the behavior of all
of the ∼k-congruences to conclude that two languages are not S-separable. However, as we
will explain in Section 2.2.3, when proving decidability of the separation problem for a certain
class S, we usually obtain a bound on the parameter k, such that it suffices to consider the
congruence relation up to that bound. Besides showing the decidability, we then also obtain
a description of a separator if it exists.

2.2.1 Algebraic view: 2-pointlike sets

We now discuss the algebraic counterpart of separation by a variety of languages, as presented
by Almeida in [Alm99]. After the introduction of the relevant notions, we state the result
about the connection with algebra in Theorem 2.11.

Definition 2.8. A relational morphism between monoids M and N is a relation τ ⊆M ×N ,
also written as τ : M → N , such that

i. the projection onto the first coordinate is surjective, i.e. for every m ∈M , τ(m) 6= ∅,

ii. τ is a submonoid of M × N , i.e. for every m1,m2 ∈ M , τ(m1)τ(m2) ⊆ τ(m1m2) and
1N ∈ τ(1M).

A relational morphism between semigroups S and T is defined similarly, by replacing condi-
tion ii by the following condition:

ii’. τ is a subsemigroup of S × T , i.e. for every s1, s2 ∈ S, τ(s1)τ(s2) ⊆ τ(s1s2).

Definition 2.9. A subset S of a monoid M is called V-pointlike if for every monoid N ∈ V
and every relational morphism τ : M → N , it holds that there exists n ∈ N such that for all
s ∈ S, n ∈ τ(s). If furthermore |S| = k, S is said to be k-V-pointlike.

In other words, a subset S of a monoid M is V-pointlike if the elements of S are not perceived
as disjoint sets by any member of V. It is thus not surprising that there is a link between the
pointlike sets with respect to a variety V and the separation problem for V: both concepts
deal with the ability of V to witness differences in objects outside of V itself. This link is
made precise in Theorem 2.11.

Note that to decide, for a given variety V, whether a subset of a monoid is V-pointlike, in
principle one has to check an infinite number of relational morphisms. It is thus a priori not
clear whether this is a decidable property.

Furthermore, it is important to note that when each pair of elements of a set S is 2-V-
pointlike, it does not automatically hold that S is an |S|-V-pointlike set. This is because of

22

2.2. DIFFERENT POINTS OF VIEW ON THE SEPARATION PROBLEM

the following fact, of which an illustration can be found in Example 2.18.

Fact 2.10. The relation of being in a 2-V-pointlike set is not transitive.

The following theorem shows that the 2-pointlike sets with respect to a given variety are
pertinent to the separation problem with respect to this variety. Here, we follow the proof
of [Pin09, Theorem 2.2].

Theorem 2.11 ([Alm99, Lemma 3.2]). Let L1, L2 be regular languages, recognized by a
monoid M via a surjective morphism ϕ. Let P,Q ⊆ M be such that L1 = ϕ−1(P) and
L2 = ϕ−1(Q). Then, L1 and L2 are V-separable if and only if for every p ∈ P and every
q ∈ Q, the set {p, q} is not a 2-V-pointlike set.

Proof. Since L1 =
⋃
p∈P ϕ

−1(p) and L2 =
⋃
q∈Q ϕ

−1(q), it follows from Lemma 2.7 that L1

and L2 are V-separable if and only if for every p ∈ P, q ∈ Q, the languages ϕ−1(p) and ϕ−1(q)
are V-separable. Let p ∈ P and q ∈ Q. We will show that ϕ−1(p) and ϕ−1(q) are V-separable
if and only if {p, q} is not a V-pointlike set. Suppose that ϕ−1(p) and ϕ−1(q) are V-separable.
Then there exists L ⊆ A∗ such that L is recognized by a monoid N ∈ V via a morphism
γ : A∗ → N , ϕ−1(p) ⊆ L and ϕ−1(q) ∩ L = ∅. Define τ = γ ◦ ϕ−1. As ϕ is surjective and
both ϕ and γ are morphisms, clearly, τ is a relational morphism from M to N . Note that
τ(p) = γ(ϕ−1(p)) ⊆ γ(L) and τ(q) = γ(ϕ−1(q)) ⊆ γ(Lc). It follows that τ(p) ∩ τ(q) = ∅,
which implies that {p, q} is not a V-pointlike set.

On the other hand, suppose that {p, q} is not a V-pointlike set. Then there is a monoid
N ∈ V and a relational morphism τ : M → N , such that τ(p) ∩ τ(q) = ∅. Let R denote the
submonoid of M ×N defined by τ , i.e. R = {(m,n) | n ∈ τ(m)}. The projections to each of
the coordinates are denoted by α : R→M and β : R→ N . It follows that τ = β ◦ α−1. For
every m ∈M , we have that τ(m) 6= ∅, hence α is surjective. Thus, there exists a morphism
δ : A∗ → R such that ϕ = α ◦ δ. Now let γ : A∗ → N be the morphism γ = β ◦ δ. The
language L := γ−1(τ(p)) is V-recognizable.

R

M N

A∗

α β

δ

τ

ϕ γ

We claim that L separates ϕ−1(p) from ϕ−1(q). First note that we are now able to express τ
in terms of γ and ϕ, since

γ ◦ ϕ−1 = β ◦ δ ◦ ϕ−1 = β ◦ δ ◦ (α ◦ δ)−1 = β ◦ δ ◦ δ−1 ◦ α−1 = β ◦ α−1 = τ.

Clearly, ϕ−1(p) ⊆ γ−1(γ(ϕ−1(p))) = L. Also, since τ(q) = γ(ϕ−1(q)) and τ(p)∩ τ(q) = ∅, we
have ϕ−1(q)∩γ−1(τ(p)) = ∅. Thus, L witnesses that ϕ−1(p) and ϕ−1(q) are V-separable.

23

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

2.2.2 Topological view: closures in the free pro-V semigroup

In [Alm99], a generic connection between profinite semigroup theory and the separation prob-
lem for varieties of languages is established. In this paper, it is shown that two regular
languages over A are separable by a V-recognizable language if and only if the topological
closures of these two languages inside the free pro-V semigroup, F̂V(A), intersect. We state
this result in Theorem 2.17 and devote this section to providing a proof of this result.

Recall from Section 1.4 that F̂V(A) is the completion of the metric space (A+/∼V, dV)
with the metric given on representatives u, v by dV(u, v) = 2−rV(u,v), with 2−∞ = 0, where
rV(u, v) = min

{
|S| | S ∈ V and S separates u and v

}
∈ N ∪ {∞}. For simplicity, we

assume that every pair of distinct words can be separated by a semigroup from V, that
is, the relation∼V is the equality relation. We first state a useful property about the metric dV.

Lemma 2.12. The metric dV on the space F̂V(A) is an ultrametric.

Proof. We first show that dV on A+ is an ultrametric, that is, that for all u, v, w ∈ A+,
dV(u,w) ≤ max(dV(u, v), dV(v, w)). Let S be a semigroup that separates u and w. Then it also
separates u and v, or it separates v and w, or both. Thus, min(rV(u, v), rV(v, w)) ≤ rV(u,w),
which gives dV(u,w) ≤ max(dV(u, v), dV(v, w)). In a similar fashion to proving that dV on
F̂V(A) is indeed a metric, one can write out the definition of dV on F̂V(A), and use that dV
on A+ is an ultrametric, to find that (F̂V(A), dV) is an ultrametric space.

The following proposition is well known, and can be found, for example, in [Alm94] as
Proposition 3.4.6. Here, we more or less follow the proof of [Pin11, Proposition 2.3].

Proposition 2.13. The space (F̂V(A), dV) is compact.

Proof. We use the fact that a complete metric space that is totally bounded is compact (see
eg. [Mun00, Theorem 45.1]). Recall that a metric space is totally bounded if for all ε > 0,
the space is covered by a finite number of open balls of radius ε. We first prove the following
claim, which yields that it suffices to show that A+ is totally bounded.

Claim. If a metric space (X, d) is totally bounded, then so is its completion (X̂, d).

Let ε > 0. The space (X, d) is totally bounded, thus in particular there exist x1, . . . , xn such
that X ⊆

⋃n
i=1B(xi,

ε
2). Let y be any element of X̂. Since X is dense in X̂, there is x ∈ X

such that d(x, y) < ε
2 . Since X is covered by the open balls of radius ε

2 around the xi’s,
there is an xi such that d(xi, x) < ε

2 . Now, d(xi, y) ≤ d(xi, x) + d(x, y) < ε. It follows that

X̂ ⊆
⋃n
i=1B(xi, ε).

We now show that A+ is totally bounded. Let n ∈ N. We want to show that A+ is covered
by finitely many open balls of radius < 2−n.

Lemma 2.12 allows us to define the following congruence relation on A+,

u ∼n v ⇔ dV(u, v) < 2−n.

By definition, u ∼n v if and only if the words cannot be separated by any semigroup of size
≤ n. Thus, if and only if for all morphisms ϕ : A+ → S, such that S ∈ V and |S| ≤ n, it

24

2.2. DIFFERENT POINTS OF VIEW ON THE SEPARATION PROBLEM

holds that ϕ(u) = ϕ(v). Note that a morphism ϕ : A+ → S is determined by its image on
the letters of A. Since A is finite and since there are only finitely many (finite) semigroups
in V of size ≤ n, there are only finitely many such morphisms. It follows that the congruence
relation ∼n has finite index. Thus, A+ is covered by the finitely many ∼n-congruence classes,
which are open balls of radius < 2−n.

Recall that every S ∈ V is endowed with the discrete topology. The definition of dV makes
every morphism ϕ : A+ → S ∈ V uniformly continuous: for every u, v ∈ A+, if dV(u, v) <
2−|S|, then rV(u, v) > |S|, so S does not separate u and v, which means that ϕ(u) = ϕ(v).
From the universal property of the completion F̂V(A) of A+, it follows that each of the
morphisms ϕ has a unique continuous extension ϕ̂ : F̂V(A)→ S. To be precise, the extension
ϕ̂ is defined as follows: for x ∈ F̂V(A), let (xn)n be a Cauchy sequence in the equivalence
class of x. Then ϕ̂(x) = limn→∞ ϕ(xn)n.

It follows from the fact that dV is an ultrametric on A+ that multiplication on A+ is also
uniformly continuous. For the same reason as above, we then have that multiplication on
F̂V(A) is uniquely defined and continuous. Let x, y ∈ F̂V(A), and (xn)n, (yn)n be Cauchy
sequences in the equivalence classes of x resp. y. Then x · y = limn→∞(xn · yn).

Let us see that the extensions ϕ̂ : F̂V(A) → S are also morphisms. Consider the product
ϕ̂(x) · ϕ̂(y). This is by definition limn→∞ ϕ(xn)n · limn→∞ ϕ(yn)n, which is by continuity
of the multiplication equal to limn→∞(ϕ(xn)n · ϕ(yn)n). Using that ϕ is a morphism gives
limn→∞(ϕ(xn · yn)n). By definition, this is ϕ̂(limn→∞(xn · yn)n). And by definition of the
multiplication on F̂VA, this is ϕ̂(x · y).

For L ⊆ F̂V(A), we denote by L its topological closure in F̂V(A). The following lemma shows
a way to describe closures of V-recognizable languages.

Lemma 2.14. Let ϕ : A+ → S ∈ V and K = ϕ−1(P) for P ⊆ S. Then K = ϕ̂−1(P).

Proof. Since finite union commutes with inverse image and with closure, we have K =⋃
p∈P ϕ

−1(p), K =
⋃
p∈P ϕ

−1(p) =
⋃
p∈P ϕ

−1(p), and
⋃
p∈P ϕ̂

−1(p) = ϕ̂−1(P). It thus suffices

to show that ϕ−1(p) = ϕ̂−1(p).

The semigroup S is endowed with the discrete topology, thus {p} is a clopen set. Since ϕ̂
is continuous, ϕ̂−1(p) is clopen. Also, ϕ−1(p) ⊆ ϕ̂−1(p), so ϕ−1(p) ⊆ ϕ̂−1(p) = ϕ̂−1(p).
Conversely, let u ∈ ϕ̂−1(p). For every n ≥ |S|, pick a word un such that dV(u, un) < 2−n.
These words exist since, by construction, A+ is dense in F̂V(A). Since n ≥ |S|, ϕ(un) = p.
Thus all words un are in ϕ−1(p), and it follows that u ∈ ϕ−1(p).

For K ⊆ A+, we let Kc = A+ \K and (K)c = F̂V(A) \K.

Corollary 2.15. If K is V-recognizable, then Kc = (K)c. If, furthermore, L ⊆ A+ is such
that L ⊆ K, then L ⊆ K.

Proof. For the first statement, let ϕ : A+ → S ∈ V, with K = ϕ−1(P). By Lemma 2.14,
Kc = ϕ̂−1(S \P) = F̂V(A) \ ϕ̂−1(P) = (K)c. To prove the second statement, one can use the
first statement to see that L ∩Kc ⊆ L ∩Kc ⊆ K ∩Kc = K ∩ (K)c = ∅.

25

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

Proposition 2.16 (follows from [Alm94, Theorem 3.6.1]). Closures of V-recognizable lan-
guages form a basis of the topology of F̂V(A).

Proof. By Lemma 2.14, the closure of a V-recognizable language is of the form ϕ̂−1(P) for some
continuous morphism ϕ̂ : F̂V(A)→ S ∈ V. As S is endowed with the discrete topology, ϕ̂−1(P)
is open. To show that these open sets indeed form a basis of the topology of F̂V(A), we will
show that for every element x of every open ball B(u, 2−n) of radius 2−n centered at u, there is
a setOxn that is a closure of a V-recognizable language and is such that x ∈ Oxn ⊆ B(u, 2−n). To
this end, define Oxn = α̂−1

n (α̂n(x)), where αn is the product of all morphisms ϕ : A+ → S ∈ V
for |S| ≤ n. As V is a variety, αn is a morphism into a semigroup of V. By Lemma 2.14, this
means that Oxn is the closure of the V-recognizable language α−1

n (α̂n(x)). By construction,
Oxn is an open set containing x. To show that it is furthermore contained in B(u, 2−n), let
y ∈ Oxn. Then, α̂n(y) = α̂n(x), thus for all morphisms ϕ̂ : F̂V(A)→ S ∈ V such that |S| ≤ n,
ϕ̂(y) = ϕ̂(x). This gives that dV(y, x) < 2−n. We already had dV(x, u) < 2−n, thus it follows
from Lemma 2.12 that dV(y, u) < 2−n. It follows that Oxn ⊆ B(u, 2−n).

We are now ready to prove the following theorem that relates the separation problem for a
variety V to the intersection of topological closures with respect to F̂V(A).

Theorem 2.17 ([Alm99, Lemma 3.2]). The languages L1, L2 ⊆ A+ are V-separable if and
only if L1 ∩ L2 = ∅, where the topological closures are taken in the free pro-V semigroup
F̂V(A).

Proof. Suppose first that L1, L2 are V-separable. Let K be a V-recognizable language such
that L1 ⊆ K and L2 ∩K = ∅. Then, L1 ∩ L2 ⊆ K ∩Kc. By Corollary 2.15, this is equal to
K ∩ (K)c = ∅.

Conversely, if L1 ∩ L2 = ∅, then every u ∈ L1 belongs to the open set (L2)c, so by Propo-
sition 2.16, there exists some V-recognizable language Ku whose closure Ou contains u, and
that is such that Ou ⊆ (L2)c. Therefore L1 ⊆

⋃
u∈L1

Ou. The space F̂V(A) is compact by

Proposition 2.13, and L1 is a closed set in this compact space. Thus, L1 itself is compact and
has a finite cover Ou1 ∪ · · · ∪ Oun . Then K = Ku1 ∪ · · · ∪ Kun is V-recognizable. We have
L1 ⊆ K, so by Corollary 2.15, L1 ⊆ K. Also, K ⊆ Ou1 ∪ · · · ∪Oun ⊆ (L2)c ⊆ Lc2.

To show, for a given variety V, that testing whether L1 ∩L2 = ∅ in the free pro-V semigroup
is decidable, one usually proves two parts. First, one shows that it is sufficient to compute
the closures in a countable subsemigroup of the free pro-V semigroup. Then, one develops
techniques to compute the closures in this subsemigroup. This approach has been fruitful and
works, for example, for the variety of finite groups, as was conjectured in [PR91]. We will dis-
cuss this result for finite groups in more detail in Chapter 3. However, this approach focusing
on the intersection of the topological closures of languages in the free pro-V semigroup, in
general, does not give any information on how to construct a separator, if it exists.

2.2.3 Combinatorial view: indistinguishable pairs

As we explained in the beginning of Section 2.2, our approach to the separation problem for
a class of languages recognized by a variety V is to compute the 2-V-pointlike sets, using

26

2.2. DIFFERENT POINTS OF VIEW ON THE SEPARATION PROBLEM

elementary combinatorial techniques. A first step to achieve this is to stratify the class of
separators from simpler languages to languages that are more and more complicated. Our
goal is to show that the separation problem for the full class of separators can be reduced to
the separation problem for a restriction of this class.

Usually, a class S of separators comes with a natural parameter k, which is such that fixing
this parameter gives a strictly smaller subclass of languages, which we denote by S[k], and
which is such that increasing the value of k yields a more expressive class of languages. That
is, for all k ∈ N, S[k] ⊆ S[k + 1]. For example, looking at the class K of languages for which
membership of a word in a language only depends on the prefix up to a certain length of
the word, a natural choice for the parameter along which to stratify this class would be the
length of the prefix that is inspected. We will discuss the separation problem for this class in
Section 2.3.2.

For other classes of separators, choices of parameters could be, for example, the length of
the inspected suffixes, factors or pieces, or the quantifier rank of a formula that defines the
language. More in general, one could always take the size of the syntactic monoid of the
language as a parameter.

Such a parameter defines a sequence of congruence relations on A∗ in the following way. For
u, v ∈ A∗,

u ∼k v ⇔ u and v are not separable by any language from S[k].

For example, if S = K and two words u and v have the same prefix of size k, but not of size
k + 1, then u ∼k v and u 6∼k+1 v.

If the parameter considered is the size of the syntactic monoid of a language, the following
equivalence holds for the congruence ∼k. For u, v ∈ A∗,

u ∼k v ⇔ dV(u, v) < 2−k,

for dV(u, v) as defined in Section 1.4. As there are only finitely many monoids of size up
to k, the congruence relation ∼k has finite index. This will always be the case when ∼k is
defined from logical or combinatorial properties. Since a language is in S[k] if and only if
it is a finite union of ∼k-classes, S[k] always consists of finitely many languages. Therefore,
S[k]-separability is decidable by a brute-force approach.

Note that a language is in S if and only if it is a finite union of ∼k-equivalence classes for
some k ∈ N. It follows that two input languages are S-separable if and only if there exists
k ∈ N for which there is no word in the first language that is ∼k-equivalent to a word from
the second language. A priori, this means that to be able to say that two languages are not
S-separable, one should check all the infinitely many ∼k-congruences.

We can work around this difficulty, by letting the ∼k-congruences induce a relation on a finite
set. Recall that we are working with one recognizing device (automaton or monoid) for both
input languages. We let a ∼k-congruence induce a relation on a monoid, or on the set of pairs
of states of an automaton, that will express that these monoid elements, or these pairs of pairs
of states, determine languages that cannot be distinguished by S[k]. Since both languages
are finite unions of languages determined by a monoid element (or a pair of states) in one

27

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

and the same monoid (or automaton), this relation carries the relevant information about
S[k]-separability of the languages.

More precisely, let A = (A,Q, δ) be a finite automaton. For (q1, r1), (q2, r2) ∈ Q2,

(q1, r1) and (q2, r2) are S[k]-indistinguishable ⇔ ∃u, v ∈ A∗. (q1, u, r1) ∈ δ∗,
(q2, v, r2) ∈ δ∗, u ∼k v.

Let M be a finite monoid and let ϕ : A∗ → M be a surjective morphism. Then, for s, t ∈
M ,

s and t are S[k]-indistinguishable ⇔ ∃u ∈ ϕ−1(s), v ∈ ϕ−1(t). u ∼k v.

When studying the separation problem for a specific class S, we work either with a monoid
or with an automaton, so there will be no ambiguity in the terminology. We usually write
ISk for the set of S[k]-indistinguishable monoid elements (so then, ISk ⊆ M ×M), or S[k]-
indistinguishable pairs of states (in which case, ISk ⊆ Q2 ×Q2).

We say that two monoid elements, or two pairs of states, are S-indistinguishable if they are
S[k]-indistinguishable for all k ∈ N. The set of S-indistinguishable monoid elements, or pairs
of states, is denoted by IS . This set precisely characterizes which pairs of monoid elements,
or which pairs of pairs of states, determine languages that are not S-separable.

Indeed, by definition, S[k]-indistinguishability for all k implies that there is no language in S
that can separate the languages determined by the monoid elements, or by the pairs of states.
On the other hand, if there is a k for which the monoid elements, or the pairs of states are
not S[k]-indistinguishable, then the saturation, with respect to ∼k, of one of the languages
determined by the monoid elements, or by the pairs of states is an S-separator.

If we work with a monoid, and if the variety corresponding to S is V, it follows from Theo-
rem 2.11 that the set IS is equal to the set of 2-V-pointlike sets.

A drawback of the notion of S[k]-indistinguishability, compared to the sequence of congruences
∼k on A∗, is that it is no longer a congruence relation, as it is no longer transitive. Intuitively,
this is clear: if both r, s and s, t are S[k]-indistinguishable monoid elements, this means that
there are u, v, v′, w ∈ A∗, with u ∼k v and v′ ∼k w, and such that u, v, v′, w are mapped
to r, s, s, t, respectively. If S[k]-indistinguishability were transitive, there would exist words
u, v, w mapped to r, s, t respectively, such that v is equivalent to both u and w. But the
existence of such a triple is not implied by the fact that r, s and s, t are S[k]-indistinguishable.
We will see an example of this in Section 2.3.1.

However, there is an important advantage of this notion over the sequence of congruences
∼k on A∗: the stabilizing behavior. Since we have, for all k ∈ N, that S[k] ⊆ S[k + 1], it
follows that for all k ∈ N, ∼k+1⊆∼k. This implies that, for a given monoid or automaton,
the following inclusions hold.

IS =
⋂
n∈N

ISn ⊆ . . . ⊆ ISk+1 ⊆ ISk ⊆ . . . ⊆ IS1 . (2.2)

Now we use that the set M ×M , resp. Q2×Q2, in contrast to A∗, is finite. By the inclusions
from (2.2), this means that there must be an index for which the sequence (ISk)k∈N stabilizes.
That is, there exists κ ∈ N such that for every k ≥ κ, we have IS = ISk .

28

2.3. BASIC EXAMPLES

While the existence of such a κ is immediate from the definitions, computing a bound on κ is
a difficult problem. Note that if we establish such a bound (which of course depends on the
input languages), then the S-separation problem reduces to the S[κ]-separation problem. The
class S[κ] consists of finitely many languages, thus this would already yield decidability of
the S-separation problem: one can use a brute force algorithm to test all of these languages.
Furthermore, such a bound would imply that the saturation of L1, with respect to ∼κ, is a
language from S that separates L1 from L2, in case they are S-separable. We thus obtain a
description of a potential separator in terms of this bound.

For the classes that we study in this dissertation, we obtain such a bound by looking at the
presence of patterns in the automaton or monoid, which are specific to the class S, and which
give us a framework to decompose words. This decomposition should be such that pumping
arguments can be applied to it. We then have to show that if there is an S[κ]-indistinguishable
pair, there will be S[k]-indistinguishable pairs, for every k ∈ N.

2.3 Basic examples

In this section, we illustrate the notions discussed above, by presenting the separation problem
for two basic examples: the variety Sl of semilattices, and the variety K of semigroups whose
idempotents are left zeros. In the following chapters, we discuss the separation problem for
more involved classes of languages.

2.3.1 Example I: Sl

A semigroup S that is idempotent and commutative, i.e. that is such that for all s, t ∈ S,
s2 = s and st = ts, is called a semilattice. The variety of all finite semilattices is denoted
by Sl (and it is also known under the name J1). This variety defines the class of languages
that are closed under duplication of letters within a word and under permutation of the
letters of a word. Thus, the class of Sl-recognizable languages consists of those languages
that can be described purely in terms of their alphabets, that is, those languages that are
boolean combinations of languages of the form B∗, where B is a subalphabet. For this reason,
the Sl-recognizable languages are also called the alphabet-testable languages. The logic that
corresponds to this class is FO1(<), the fragment of first-order logic in which each formula can
use only one variable. The Sl-recognizable languages form a strict subclass of the piecewise
testable languages that we will encounter in Chapter 4.

For a language L1, the smallest (with respect to inclusion) Sl-recognizable language that
contains L1 exists: it is the language

⋃
w∈L1

{
v ∈ A∗ | alph(v) = alph(w)

}
. The existence of

such a smallest potential separator, at first sight, seems to largely simplify the question of the
separation problem: to answer the separation problem for L1 and L2, one only has to verify
whether this language is disjoint from L2. However, as we will see in the end of this section,
the complexity of the Sl-separation problem is, surprisingly, much worse than the complexity
of the separation problem for more complicated classes of languages that do not admit such
a smallest separator. In the chapters to come, we will see examples of such more involved
classes for which the complexity of the separation problem is lower.

29

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

The following example spells out the Sl-separability for three pairs of languages. Although
the separation problem for this example is immediately clear, we elaborate a bit more on the
algebraic notions behind this example, as it serves to illustrate that being 2-Sl-pointlike is
not a transitive relation. More in general, being 2-V-pointlike is not a transitive relation.

Example 2.18. Let L1 = {a}, L2 = {a, b}>2, L3 = {b}. Clearly, L1 and L3 are Sl-separable
(for example by the language a+), while neither (L1, L2) nor (L2, L3) are Sl-separable. The
three languages are simultaneously recognized by the semigroup S = {sa, sb, 0}, in which
multiplying any two elements gives 0. If ϕ : A+ → S sends a to sa and b to sb, then
L1 = ϕ−1(sa), L2 = ϕ−1(0) and L3 = ϕ−1(sb). By Theorem 2.11, it follows that {sa, 0}
and {sb, 0} must be Sl-pointlike sets, and that {sa, sb} is not. To see this directly, let T be
any semigroup in Sl and let τ : S → T be any relational morphism. By definition, there
exists t ∈ τ(sa). As T is idempotent, we have t = t2 ∈ τ(sa)τ(sa) ⊆ τ(sasa) = τ(0). Thus,
{sa, 0} ⊆ τ−1(t), i.e. {sa, 0} is a 2-Sl-pointlike set. Similarly, {sb, 0} is a 2-Sl-pointlike set.

To see that {sa, sb}, nevertheless, is not a 2-Sl-pointlike set, consider the semigroup U1 =
{0,1}, with multiplication given by 0 = 0 · 0 = 0 · 1 = 1 · 0 and 1 = 1 · 1. Clearly, U1 is a
semilattice. Define the following relational morphism.

τ : S → U1

sa 7→ {0}
sb 7→ {1}
0 7→ {0,1}

As τ(sa) ∩ τ(sb) = ∅, it follows that {sa, sb} is not a 2-Sl-pointlike set. Note that this also
implies that {sa, sb, 0} is not a 3-Sl-pointlike set.

Complexity of separation by Sl-recognizable languages

We will now analyze the complexity of the separation problem for Sl-recognizable languages.
This analysis can also be found in the appendix of [RZ13]. As we noted before, one can always
compute the smallest Sl-recognizable language containing a given regular language. This en-
tails an algorithm to decide whether two regular languages are separable by an Sl-recognizable
language. Perhaps surprisingly however, separation by an Sl-recognizable language is compu-
tationally harder than, for example, by a piecewise testable language.

Recall that two languages are Sl-separable if and only if they do not contain any words that
share the same alphabet. A consequence of the next lemma, therefore, is that even when
starting from deterministic finite automata, the separation problem is co-NP-complete for
Sl-recognizable languages.

Lemma 2.19. The following problem is NP-complete.

Input: An alphabet A = {a1, a2, . . . , an} and two DFA’s A1,A2 over A.
Question: Do there exist u ∈ L(A1) and v ∈ L(A2) such that alph(u) = alph(v)?

Proof. We will first prove that the problem is NP-hard by giving a reduction from 3-SAT
to this problem. A 3-SAT formula is a formula in conjunctive normal form, where each

30

2.3. BASIC EXAMPLES

conjunct is the disjunction of at most three variables or negations of variables. The problem
of deciding whether there exists a valuation that satisfies a 3-SAT formula is called 3-SAT,
and it is well known that this is an NP-complete problem, see for example [GJ90].

Let ϕ be a 3-SAT formula over the variables {x1, . . . , xn}. Define A as the alphabet
{x1, . . . xn,¬x1, . . . ,¬xn}. Let A1 be the following automaton.

· · ·
x1

¬x1

x2

¬x2

xn

¬xn

Figure 2.2: The automaton A1.

Let A2 be the serial automaton constructed as follows. For every disjunct d in the i-th clause
of ϕ, add an arrow from state i to i + 1, labeled by d. Then concatenate this with a copy
of A1. For example, if ϕ = (x1 ∨ x3 ∨ ¬x4) ∧ . . . ∧ (x4 ∨ ¬x5 ∨ x2), the automaton A2 is the
following.

· · · · · ·

x1

x3

¬x4

x4

¬x5

x2

x1

¬x1

xn

¬xn

Figure 2.3: The automaton A2, for ϕ = (x1 ∨ x3 ∨ ¬x4) ∧ . . . ∧ (x4 ∨ ¬x5 ∨ x2).

We will show that ϕ is satisfiable if and only if the question mentioned above is answered
positively for these A1 and A2.

Suppose ϕ is satisfiable. Then, there is a valuation v : {x1, . . . , xn} → {0, 1} such that ϕ
evaluates to 1 under v. Define u := y1 · · · yn, with yi = xi if v(xi) = 1, and yi = ¬xi if v(xi) =
0. In each of the k clauses of ϕ, there is at least one disjunct d for which v(d) = 1. Define
v := w1 · · ·wku, where wi is any one of the disjuncts in the i-th clause that is evaluated to 1.
Now, u ∈ L(A1), v ∈ L(A2), and by soundness of the valuation function, alph(u) = alph(v).

On the other hand, suppose that for these A1 and A2, there are u ∈ L(A1), v ∈ L(A2) with
alph(u) = alph(v). By construction of A1, for every i, alph(u) contains either xi or ¬xi. By
construction of A2 and since alph(u) = alph(v), we have that v = wu, for some w, for which
alph(w) ⊆ alph(u). Define the valuation

v : {x1, . . . xn} → {0, 1}
xi 7→ 1 if xi ∈ alph(u)
xi 7→ 0 else

Now v sends all variables occurring in w to 1, which gives that ϕ evaluates to 1 under v.
Thus, we have shown that the problem is NP-hard.

Furthermore, to see that the problem is in NP, we can first guess the alphabet C that the
words u and v will use, guess the order of the first occurrences of each of these letters in u,

31

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

and similarly guess this order for v. Verifying whether there exist such u ∈ L(A1), v ∈ L(A2)
can clearly be performed in polynomial time: this now amounts to intersecting A1 with a
DFA Au that accepts all words over C that respect the order of the first occurrences of the
letters as guessed for u, and similarly, intersecting A2 with Av that is defined analogously.
Now, the guess leads to a positive answer if and only if both intersections are nonempty.

Since the question in the previous lemma is answered positively if and only if the languages
are not Sl-separable, we obtain the following corollary.

Corollary 2.20. It is a co-NP-complete problem to decide whether two regular languages,
defined by two deterministic finite automata, are Sl-separable.

2.3.2 Example II: K

We will now look at a variety for which, contrary to the usual case, the free pro-V semigroup
is easy to describe. First, we discuss the topological view on the separation problem for this
variety. This discussion can also be found in [RZ13]. We then present an approach to solve
this separation problem using indistinguishable pairs of states.

An element s of a semigroup S is a left zero if, for all t ∈ S, st = s. The variety of finite
semigroups S in which all idempotents are left zeros is denoted by K. The class of languages
that are K-recognizable consists of the finite boolean combinations of languages of the form
uA∗, for a finite word u. One can verify that these coincide with the languages of the shape
XA∗ ∪ Y , where X and Y are finite subsets of A+. Because membership in this class can be
tested by inspecting the set of prefixes up to a certain length, the K-recognizable languages
are also called the prefix-testable languages.

Computing the intersection of the closures in F̂K(A)

Since K is a variety, Theorem 2.17 gives that testing whether two languages are K-separable
can be done by checking that their topological closures, in the free pro-K semigroup F̂K(A),
have a nonempty intersection. It turns out that for the variety K, this profinite semigroup is
easy to describe (see [Alm94, Section 3.7]). It is A+ ∪A∞, where A∞ denotes the set of right
infinite words over A. Multiplication in this semigroup is defined as follows. Infinite words
are left zeros (v ·w = v if v ∈ A∞), and multiplication on the left by a finite word is the usual
concatenation (v · w = vw if v ∈ A+). Finally, a sequence converges

- to a finite word u if it is ultimately equal to u,

- to an infinite word v if for every finite prefix x of v, the sequence ultimately belongs to
x(A+ ∪A∞).

Thus, by Theorem 2.17, it follows that two disjoint regular languages L1, L2 are not K-
separable if and only if there exists an infinite word v ∈ A∞ such that for every prefix x of v,
there exist w1, w2 ∈ A∗ such that xw1 ∈ L1, xw2 ∈ L2.

This can be tested via Büchi automata (an introduction to these automata can be found, for
example, in [PP04]). From a given NFA A that recognizes a language L for the sets of initial

32

2.3. BASIC EXAMPLES

states I and final states F , one can compute a Büchi automaton recognizing the language of
infinite words that belong to the closure of L, as follows:

1. Trim A, by removing all states that cannot be reached from a state in I or from which
one cannot reach any state in F . This can be performed in linear time wrt. the size of
A, and does not change the language recognized by A.

2. Build the Büchi automaton obtained from the resulting trim automaton by declaring
all states accepting.

Let us see that this Büchi automaton indeed recognizes the language of infinite words from
the closure of L. Let v ∈ A∞ be accepted by this Büchi automaton. Since we trimmed the
automaton A, there is, for every state in the automaton, a path to some state in F . This
means that for every finite prefix x of v, there is a word wx such that x · wx ∈ L. One can
thus construct a sequence of elements from L that converges to v. Conversely, suppose there
is a sequence in L that converges to an infinite word v. Since every finite prefix of v is part
of a path in A, we can build a run for v in the Büchi automaton. Then, the infinite word v
will be accepted, since we declared all states accepting.

This construction yields a Ptime algorithm to decide separability by a prefix-testable
language: first check that L(A1) ∩ L(A2) = ∅. If so, the intersection of the languages
of infinite words belonging to the closures of L(A1) and L(A2) is empty if and only if
the languages are K-separable. This information can be computed by the usual product
construction (since all states are accepting) and a test whether this Büchi automaton accepts
at least one word. We obtain the following proposition.

Proposition 2.21. One can decide in Ptime, with respect to the sizes of the recognizing
automata, whether two languages can be separated by a prefix-testable language.

Computing K-indistinguishable pairs of states

For the variety K, however, one can compute the same information about separability without
appealing to infinite words or Büchi automata. We will show this using the concept of
K-indistinguishable pairs of states. As explained in Section 2.2.3, we will work with one
automaton recognizing both input languages.

An obvious parameter for the class K is the length of the prefixes considered: we say that
two pairs of states are ∼n-equivalent if there are words that share the same prefix of length
n and that can be read between the respective pairs of states, or if the languages defined by
the pairs of states are not disjoint.

Definition 2.22. Let A = (A,Q, δ) be an NFA, and let (q1, r1), (q2, r2) ∈ Q2. Then,

(q1, r1) ∼n (q2, r2) ⇔
{
∃u ∈ An. ∃v, w ∈ A∗. (q1, uv, r1), (q2, uw, r2) ∈ δ∗, or
∃u ∈ A<n. (q1, u, r1), (q2, u, r2) ∈ δ∗,

in which case the pairs (q1, r1) and (q2, r2) are called K[n]-indistinguishable. They are called
K-indistinguishable if for all n ∈ N, (q1, r1) ∼n (q2, r2).

33

CHAPTER 2. INTRODUCTION TO THE SEPARATION PROBLEM

The following lemma shows that this notion of K-indistinguishable pairs indeed captures the
right information.

Lemma 2.23. Let A = (A,Q, δ) be an NFA. Let (q1, r1), (q2, r2) be pairs of states that
determine languages L1 and L2. Then, (q1, r1), (q2, r2) are not K-indistinguishable if and
only if L1 and L2 are K-separable.

Proof. We use the following notation. For i = 1, 2,

Xi,n :=
{
u ∈ An | ∃v ∈ A∗. (qi, uv, ri) ∈ δ∗

}
,

Yi,n :=
{
u ∈ A<n | (qi, u, ri) ∈ δ∗

}
.

That is, the set Xi,n consists of the prefixes of length n occurring in words of Li, and the
set Yi,n consists of the words of Li whose length is strictly smaller than n. Note that by
definition, (q1, r1), (q2, r2) are not K-indistinguishable if and only if there exists n ∈ N, such
that

- X1,n ∩X2,n = ∅, and

- Y1,n ∩ Y2,n = ∅.

Suppose that (q1, r1), (q2, r2) are not K-indistinguishable. Then, by definition, there exists
n ∈ N such that (q1, r1) 6∼n (q2, r2). This means that X1,n ∩X2,n = ∅ and Y1,n ∩ Y2,n = ∅.
Since all words in Xi,n are of length exactly n, it also follows that X1,nA

∗ ∩X2,nA
∗ = ∅.

Since X1,n and Y1,n are finite, the language X1,nA
∗ ∪ Y1,n is K-recognizable and, clearly, it

contains L1. Note that (X1,nA
∗ ∪ Y1,n) ∩ L2 ⊆ (X1,nA

∗ ∪ Y1,n) ∩ (X2,nA
∗ ∪ Y2,n). Clearly,

X1,nA
∗ and Y2,n are disjoint, as well as Y1,n and X2,nA

∗, as their elements have different
length. Thus, (X1,nA

∗ ∪ Y1,n) ∩ (X2,nA
∗ ∪ Y2,n) = (X1,nA

∗ ∩X2,nA
∗) ∪ (Y1,n ∩ Y2,n), which

is empty by assumption. Summing up, X1,nA
∗ ∪ Y1,n is disjoint from L2, thus this language

K-separates L1 from L2.

Now suppose that L1 and L2 are K-separable, and let us show that (q1, r1) and (q2, r2) are not
K-indistinguishable. In particular, L1 and L2 are disjoint. Hence, for all n ∈ N, Y1,n∩Y2,n = ∅.
Let X,Y be finite subsets of A+ such that L = XA∗ ∪ Y separates L1 from L2. Let n be
strictly bigger than the length of the longest word in the finite sets X and Y . Then, since
L1 ⊆ L, it follows that L1 ∩A≥n ⊆ XA∗ and that X1,nA

∗ ⊆ XA∗ ⊆ L. Suppose there exists
u ∈ X1,n ∩X2,n. This means there is v ∈ A∗ such that uv ∈ L2, and that uv ∈ X1,nA

∗ ⊆ L.
But L2 ∩ L = ∅, and thus it follows that X1,n ∩ X2,n = ∅. Thus, (q1, r1), (q2, r2) are not
K-indistinguishable.

In Proposition 2.24, we show that the length of the prefixes that one needs to take into
account to decide K-indistinguishability can be bounded using information about the
automaton recognizing the input languages. One applies a pumping argument to show that
this bound is correct. It follows from Lemma 2.23 that finding the K-indistinguishable pairs
of states in this automaton solves the separation problem for all pairs of languages that
the automaton recognizes, in particular for the two input languages. These proofs provide
an easy example of the method that we will use in later chapters in more complicated contexts.

34

2.3. BASIC EXAMPLES

Proposition 2.24. Let A = (A,Q, δ) be an NFA and let N = |Q|2. Then, the pairs of states
(q1, r1), (q2, r2) are K-indistinguishable if and only if they are K[N]-indistinguishable.

Proof. As before, we denote the set of prefixes of length n, occurring between qi and ri, by
Xi,n. That is,

Xi,n :=
{
u ∈ An | ∃v ∈ A∗. (qi, uv, ri) ∈ δ∗

}
.

By definition, the direction from left to right is true.

Suppose that (q1, r1), (q2, r2) are K[N]-indistinguishable. We want to show that they are K-
indistinguishable, that is, that they are K[n]-indistinguishable, for every n ∈ N. The fact that
(q1, r1), (q2, r2) are K[N]-indistinguishable means that there exist u ∈ AN and v, w ∈ A∗ such
that (q1, uv, r1), (q2, uw, r2) ∈ δ∗, or there exists u ∈ A<N such that (q1, u, r1), (q2, u, r2) ∈ δ∗.
In the second case, the pairs are clearly K-indistinguishable. In the first case, there is u =
u1 · · ·uN ∈ X1,N ∩X2,N . Then the following paths exist in A.

q1 = q0
1

u1−→ q1
1

u2−→ . . .
uN−→ qN1

v
99K r1,

q2 = q0
2

u1−→ q1
2

u2−→ . . .
uN−→ qN2

w
99K r2.

Consider the pairs (qi1, q
i
2), for i ∈ {0, . . . , N}. Among these N + 1 = |Q|2 + 1 pairs, there

is at least one pair occurring twice. Thus there exist i, and 0 < k ≤ N − i, such that
(qi1, q

i
2) = (qi+k1 , qi+k2).

This means that for every n ∈ N, the prefix of length n of the word

u1u2 · · ·ui(ui+1 · · ·ui+k)nui+k+1 · · ·uN
is an element of X1,n ∩X2,n, since there exist paths in A,

q1 = q0
1

u1−→ . . .
ui−→ qi1

(ui+1···ui+k)n

−−−− 99K qi+k1

ui+k+1−−−−→ qi+k+1
1 . . .

uN−→ qN1
v
99K r1,

q2 = q0
2

u1−→ . . .
ui−→ qi2

(ui+1···ui+k)n

−−−− 99K qi+k2

ui+k+1−−−−→ qi+k+1
2 . . .

uN−→ qN2
w
99K r2.

Thus, for every n ∈ N, words can be read between q1 and r1, and between q2 and r2, that
have the same prefix of length n. It follows that (q1, r1), (q2, r2) are K[n]-indistinguishable for
every n, that is, they are K-indistinguishable.

Thus, besides providing the decidability of the separation problem for K, Proposition 2.24
can also be used to obtain a description of a K-separator, whenever the two languages are
K-separable. Namely, the saturation of one of the languages with respect to the congruence
relation ∼|Q|2 , denoted by [L1]∼|Q|2 , is a K-separator. It follows from the proof of Lemma 2.23

that a saturation with respect to the K[n]-indistinguishability relation is easy to compute, and
that [L1]∼|Q|2 is equal to X1,|Q|2A

∗ ∪ Y1,|Q|2 . In general, however, providing an alternative
description of such a saturation is a difficult problem.

The relation between this combinatorial approach and the topological approach previously
described is the following. Note that an element that is in the intersection denoted above as
X1,N∩X2,N , by a pumping argument, gives rise to a sequence of pairs of words whose common
prefix keeps growing. This leads to an infinite word in the intersection of the closures of the
two languages. On the other hand, an infinite word occurs in the intersection of the closures if
there is such a sequence. It is clear that in this case, for every n ∈ N, X1,n ∩X2,n 6= ∅.

35

Chapter 3

Group languages

3.1 Characterizations of group languages 37

3.2 The separation problem for group languages 38

3.2.1 Closures in the free group . 40

3.2.2 Decidability of G-separability and a construction of a separator . . . 42

3.2.3 Closures in the free monoid . 44

In this chapter we study the separation problem for the class of group languages. This class of
languages has been extensively studied and many useful results are known from the literature.
We can apply some of these results directly to solve the separation problem for this class.
For this reason, the approach taken in this chapter differs from the approach described in
Section 2.2.3, which we will take in the following chapters.

We show how decidability of the separation problem for group languages follows from a
theorem of Ribes and Zalesskĭı [RZ93] about closed sets in the free group, which was conjec-
tured in [PR91], and which generalizes a result from [Hal50]. It is shown in [HMPR91] that
this statement is equivalent to a conjecture of Rhodes related to relational morphisms into
groups [Rho87], which was solved by Ash in [Ash91].

A constructive proof of the theorem of Ribes and Zalesskĭı was given in [AS05]. We also show
how to use this constructive proof to find a separating group language, in case it exists.

3.1 Characterizations of group languages

Group languages are languages whose syntactic semigroup is a group, that is, there is an
identity element (e ∈ S such that for all s ∈ S, se = es = s), and for each element s ∈ S,
there is an inverse element (s′ ∈ S such that ss′ = s′s = e). The variety of groups, denoted
by G, is defined by the identity xωy = yxω = y, usually abbreviated as xω = 1.

For example, the language a(aa)∗ is a group language. It is recognized by the finite group
Z/2Z, via the morphism ϕ that sends a to 1 (and thus sends aa to 0). Indeed, a(aa)∗ =
ϕ−1(1).

37

CHAPTER 3. GROUP LANGUAGES

There is also a graphical characterization of group languages: the automata recognizing
group languages are the so-called permutation automata. Let us first introduce these.

Definition 3.1. An automaton A = (A,Q, δ) is a permutation automaton if, for all a ∈ A,
the mapping δ(, a) : Q→ Q is a permutation of Q.

In other words, a permutation automaton is complete, and the transition function is deter-
ministic and co-deterministic.

It is not hard to see that the group languages are precisely the languages recognized by
permutation automata. To this end, let ϕ : A∗ → G ∈ G and let L = ϕ−1(P) for some
P ⊆ G. Define A = (A,G, δ), with δ(g, a) = g · ϕ(a). By construction, A is complete
and deterministic. It follows from the cancellative property of groups that it is also co-
deterministic. Taking I = {1} and F = P , we see that the permutation automaton A
recognizes L. On the other hand, if L is recognized by a permutation automaton, we can
construct its transition monoid M . By definition, M consists of a set of permutations of Q,
closed under multiplication, and where the empty word induces the identity permutation. It
is clear that for all m ∈ M , m|Q|!−1 is the inverse of m. It follows that M is a group that
recognizes L.

3.2 The separation problem for group languages

Applying the result from [Alm99], which we proved in Theorem 2.17, to the variety of groups
gives that two regular languages over A are G-separable if and only if their closures in the
free profinite group F̂G(A) have an empty intersection. In Theorem 3.6, we will show that
for the variety of groups, results from the literature imply that this happens exactly when
their closures in the free group (endowed with the topology induced from the free profinite
group) have an empty intersection. Furthermore, we will show that as a consequence of a
result from [AS05], a separating group language can be effectively constructed whenever two
regular languages are G-separable.

The free group on A, denoted by FG(A), is obtained as follows. Let A be a disjoint copy of
A. Then FG(A) is the quotient of (A ∪ A)∗, in which each word is reduced by the relations
{aa = ε, a = a | a ∈ A ∪ A }. Throughout this section, we endow the free group with the
topology induced from the free profinite group. This is the coarsest topology that makes
every group morphism from FG(A) onto a finite group (endowed with the discrete topology)
continuous.

Every finite group G is a quotient of the free group. We denote the associated canonical
morphism by ϕG : FG(A)→ G. Finding a group language that separates two given languages
L1 and L2 is equivalent to finding a finite group G such that ϕG(L1) ∩ ϕG(L2) = ∅. The
direction from left to right is clear since, by the universal property of the free group, there is a
unique extension of a morphism ϕ : A∗ → G to the domain FG(A). Conversely, if G is a finite
group such that ϕG(L1) ∩ ϕG(L2) = ∅, then the language ϕ−1

G �A∗ (ϕG(L1)) is recognized by
G, contains L1 and is disjoint from L2. Therefore, we also say that the morphism ϕG, or the
group G, separates L1 and L2.

The original result from the literature that we want to use does not explicitly speak about

38

3.2. THE SEPARATION PROBLEM FOR GROUP LANGUAGES

separation, but it speaks about closed sets in the free group. The following lemma shows
that there is a relation between these two notions.

Lemma 3.2. Let H ⊆ FG(A). Then, H is closed in the free group if and only if for all
w ∈ FG(A) such that w /∈ H, there is a finite group that separates w from H.

Proof. Suppose that for all w /∈ H, there exists a finite group that separates w from H. That
is, there exists ϕG : FG(A)→ G such that ϕG(w) /∈ ϕG(H). Then ϕ−1

G (ϕG(w)) ⊆ Hc. Thus,

Hc =
⋃
w/∈H

{w} =
⋃
w/∈H

ϕ−1
G (ϕG(w)).

Since ϕG is continuous and G is endowed with the discrete topology, it follows that Hc is
open, hence H is closed.

On the other hand, suppose that Hc is open and let w ∈ FG(A) be such that w /∈ H. Since
the topology on FG(A) is the subspace topology of the free profinite group, it follows from
Proposition 2.16 that the closures of group languages, taken in the free group, form a basis for
the topology on FG(A). Thus, there exists a set U that is the closure in the free group of a
group language, and that is such that w ∈ U ⊆ Hc. In a similar way as we proved Lemma 2.14,
one can prove that the closures of group languages in the free group are of the shape ϕ−1(P)
for some ϕ : FG(A) → G and P ⊆ G. This means that there exist ϕ : FG(A) → G and
P ⊆ G such that w ∈ ϕ−1(P) = U ⊆ Hc. It follows that ϕ(w) /∈ ϕ(H).

In [Hal50], Hall proved that every finitely generated subgroup of the free group is closed.
By Lemma 3.2, this can be seen as a first separation result for groups. Hall’s result can
be generalized to the following well-known theorem. We will use this theorem to see that
two regular languages are G-separable if and only if their closures in the free group do not
intersect. A more general version of this theorem is proved in [RZ93]. In the following form,
this statement was first raised as a conjecture in [PR91]. In [HMPR91], it is proved that
this statement is equivalent to the so-called type II conjecture of Rhodes [Rho87], which was
solved by Ash in [Ash91].

Theorem 3.3 ([RZ93]). Let H1, . . . ,Hn be finitely generated subgroups of the free group. The
product H1 · · ·Hn is closed in the free group.

By Lemma 3.2, the following statement about separation is equivalent to Theorem 3.3:
For H1, . . . ,Hn finitely generated subgroups of the free group, and w ∈ FG(A) such that
w /∈ H1 · · ·Hn, there exists a finite quotient G of FG(A) for which the canonical morphism
separates w and H1 · · ·Hn.

We want to use Theorem 3.3 to show that two regular languages over A are G-separable if
and only if their closures in the free group have an empty intersection. Our approach is to
construct, from the input languages, a word w in the free group and a product P of finitely
generated subgroups. We want these to be such that the closures in the free group of the
original input languages do not intersect if and only if the word does not lie in the product.
The alternative formulation of Theorem 3.3 then says that this happens if and only if there
exists a finite quotient G of FG(A) for which the canonical morphism separates the word and
the product. We will argue, using the construction of w and P , that this finite group then

39

CHAPTER 3. GROUP LANGUAGES

also separates the input languages. To sum up, we reduce the separability of two languages
to the separability of a word and product constructed from these languages.

Furthermore, it is shown in [AS05] how to construct, from the input data, a finite group as
described in the alternative formulation of Theorem 3.3, i.e. a finite group that separates
a word outside of H1 · · ·Hn from the product H1 · · ·Hn. Applying this construction to
the word w and the product P described above will allow us to give a description of a
group language separating the original input languages, in case it exists. We refer to the
paper [AS05] for the construction of this finite group and just mention the result here.

Theorem 3.4 ([AS05, Theorem 3.3]). Let w ∈ FG(A) and let H1, . . . ,Hn be finitely generated
subgroups of FG(A). If w /∈ H1 · · ·Hn, then a finite group that separates w from H1 · · ·Hn

can effectively be constructed.

In order to be able to construct, from two regular languages L1 and L2, the word w and the
product P with the desired properties (i.e. w /∈ P ⇔ L1 ∩ L2 = ∅), we need to take a
closer look at the closure of a regular language in the free group. In the following section, we
provide the standard construction for these closures.

3.2.1 Closures in the free group

As observed in [Pin91], every regular language (represented by a regular expression or an
automaton) can effectively be written as a finite union of simple sets, which are sets of the
form L∗0u1L

∗
1 · · ·unL∗n, where each ui ∈ A∗, and each Li is a regular language over A. As

closure always commutes with finite union, it suffices to see how to compute the closures of
simple sets.

It is proved in [PR91], that as a consequence of Theorem 3.3 (which was still a conjecture at
the time), the closure in the free group of a simple set L = L∗0u1L

∗
1 · · ·unL∗n is

L = 〈L0〉u1〈L1〉 · · ·un〈Ln〉.

Here, 〈Li〉 denotes the subgroup of the free group that is generated by Li. From a theorem
of Anissimov and Seifert [AS75], it follows in particular that if Li is a regular language in A∗,
the subgroup 〈Li〉 is finitely generated. It is well known (see for example [Gil96]) that one
can effectively compute a finite set of generators for 〈Li〉. This is done using an extension
of automata, in which inverse elements can be read by traversing the arrows backwards. We
briefly discuss this construction now.

Consider an automaton A = (A,Q, δ), which recognizes a language L∗, for I = F = {1}. If
A is not deterministic or not co-deterministic, we first transform it into an automaton that
is, using a process called Stallings foldings. This is described in [KM02], and amounts to
collapsing arrows (and their states) that have the same label and that either both leave or
both enter the same state.

We can thus assume that A is deterministic and co-deterministic. Now, we allow every arrow
in A to be traversed backwards, while reading the inverse of its label. That is, for each
(p, a, q) ∈ δ, we also get (q, a−1, p) ∈ δ. This automaton recognizes 〈L〉, for I = F = {1}.
Now, identify a spanning tree in A with root 1 and with all edges directed away from this

40

3.2. THE SEPARATION PROBLEM FOR GROUP LANGUAGES

root. Consider all arrows (p, a, q) of A that are not part of the spanning tree. By definition
of a spanning tree, there exist paths (1, u, p) and (1, v, q), for some u, v ∈ A∗ in the spanning
tree. Define g = uav−1. We claim that 〈L〉 is generated by the finite set of all such g’s.

Clearly, such a g is in 〈L〉, since it is the label of a path from 1 to 1. For the other direction,
let w ∈ L. Then, there is a run from 1 to 1 labeled w. This run can be written as a product
of g’s, by repeatedly going back to 1. More precisely, decompose w as w = p1a1p2a2 · · · pn,
where the pi’s label edges in the spanning tree, and the ai’s label edges that are not. By
definition of a spanning tree, there is only one path from 1 to the state where the arrow
labeled a1 leaves, and it follows that p1 = u1. Similarly, for 1 < i < n, there is only one path
in the spanning tree from the state where the arrow labeled ai enters, and the state where
the arrow labeled ai+1 leaves. It follows that pi+1 = v−1

i ui+1. Note that pn goes from the
state that an enters to state 1, and thus is v−1

n . Hence,

w = u1a1v
−1
1 u2a2v

−1
2 · · ·unanv

−1
n = g1 · · · gn.

Let us illustrate this construction on an example.

Example 3.5. Consider the language L = (abb(ab)∗b)∗. As we saw above, its closure is
〈abb(ab)∗b〉. The language L itself is recognized by the following automaton A, for I = F =
{1}. Note that A is deterministic and co-deterministic.

1 2 3 4
a b

b

a

b

In order to find a finite set of generators for 〈abb(ab)∗b〉, we first identify the following spanning
tree in A with root 1 and with all edges directed away from this root.

1 2 3 4
a b

b

a

b

We now look at the arrows that are not in the spanning tree. The one from state 4 to
state 3, labeled a, gives rise to the generator abb · a · b−1a−1, and the arrow from state
4 to state 1, labeled b, gives rise to the generator abb · b. By the above, 〈abb(ab)∗b〉
should be equal to 〈abbab−1a−1, abbb〉. Indeed, it is clear that abbb ∈ 〈abb(ab)∗b〉. Also,
abbab−1a−1 = abbabb · (abbb)−1 ∈ 〈abb(ab)∗b〉, thus 〈abbab−1a−1, abbb〉 ⊆ 〈abb(ab)∗b〉. Con-
versely, for every n, we have that abb(ab)nb = (abbab−1a−1)n · abbb, and it follows that
〈abb(ab)∗b〉 ⊆ 〈abbab−1a−1, abbb〉.

41

CHAPTER 3. GROUP LANGUAGES

3.2.2 Decidability of G-separability and a construction of a separator

The following theorem uses the result from [RZ93] to show that the closures in the free
group (rather than the closures in the free profinite group) already suffice to test whether
two regular languages are G-separable.

Theorem 3.6. Let L1 and L2 be regular languages. Then, L1 and L2 are G-separable if and
only if L1 ∩ L2 = ∅, where the topological closures are taken in the free group.

Proof. By Theorem 2.17, two regular languages over A are G-separable if and only if their
closures in the free profinite group F̂G(A) have an empty intersection. This implies that if
L1 and L2 are G-separable, their closures in the free group, in particular, have an empty
intersection. Let us now prove the other direction.

Since every regular language can effectively be written as a finite union of simple sets, it
follows from Lemma 2.7, that we can assume that L1 and L2 are simple sets. As we saw
above, the closures of L1 and L2 in the free group, in this case, are

L1 = 〈L1,0〉u1〈L1,1〉u2 · · · 〈L1,n〉, and

L2 = 〈L2,0〉v1〈L2,1〉v2 · · · 〈L2,m〉.

We denote 〈L1,i〉 by Ii and 〈L2,j〉 by Jj , so that

L1 = I0u1I1u2 · · · In, and

L2 = J0v1J1v2 · · · Jm.

From L1 and L2, we define an auxiliary product P of finitely generated subgroups and a
specific word w, such that L1 ∩ L2 = ∅ if and only if w is outside the auxiliary product. If
L1 ∩ L2 = ∅, we then have by the alternative formulation of Theorem 3.3, that there is a
finite group that separates w from P . We will then proceed by arguing that any group that
separates w from P , will also separate L1 from L2.

Define the auxiliary product P as follows.

P := (I0)(u1I1u
−1
1)(u1u2I2u

−1
2 u−1

1) · · · (u1 · · ·unInu−1
n · · ·u−1

1)(u1 · · ·unJmu−1
n · · ·u−1

1)

(u1 · · ·unv−1
m Jm−1vmu

−1
n · · ·u−1

1) · · · (u1 · · ·unv−1
m · · · v−1

1 J0v1 · · · vmu−1
n · · ·u−1

1).

This is a product of conjugated subgroups, each of which is indicated by brackets. A conju-
gated finitely generated subgroup is again finitely generated, for example by the conjugated
generators of the original subgroup. Thus, P is a product of finitely generated subgroups.

Clearly,

P = I0u1I1u2 · · · In−1unIn · Jmv−1
m Jm−1v

−1
m−1 · · · J2v

−1
2 J1v

−1
1 J0 · v1 · · · vmu−1

n · · ·u−1
1 .

Note that

1 /∈ I0u1I1u2 · · · In · Jm · · · v−1
2 J1v

−1
1 J0 ⇔ v1 · · · vmu−1

n · · ·u−1
1 /∈ P. (3.1)

42

3.2. THE SEPARATION PROBLEM FOR GROUP LANGUAGES

Recall that L1 = I0u1I1u2 · · · In and L2 = J0v1J1v2 · · · Jm. We also have the following
equivalence,

L1 ∩ L2 = ∅ ⇔ 1 /∈ I0u1I1u2 · · · In · Jmv−1
m · · · v−1

2 J1v
−1
1 J0, (3.2)

as can be seen as follows. First, suppose there is x ∈ L1 ∩ L2. Then, there exist jj ∈ Jj ,
for j = 0, . . . ,m, such that x = j0v1j1 · · · vmjm. Thus, x−1 = (j0v1j1 · · · vmjm)−1, which is in
Jmv

−1
m · · · J1v

−1
1 J0. Then, indeed,

1 = xx−1 ∈ I0u1I1u2 · · · In · Jmv−1
m · · · J1v

−1
1 J0.

Conversely, suppose that 1 ∈ I0u1I1u2 · · · In · Jmv−1
m · · · J1v

−1
1 J0. Then, there exist ii ∈ Ii, for

i = 0, . . . , n, and jj ∈ Jj , for j = 0, . . . ,m, such that

1 = i0u1i1u2 · · · in · jmv−1
m · · · j1v−1

1 j0.

Then, j0v1j1v2 · · · jm = i0u1i1u2 · · · in, thus L1 ∩ L2 6= ∅.

Combining (3.1) and (3.2) yields the following equivalence,

L1 ∩ L2 = ∅ ⇔ v1 · · · vmu−1
n · · ·u−1

1 /∈ P.

Assume that L1 ∩ L2 = ∅. Then, it follows from the alternative formulation of Theorem 3.3
that there exists a finite group G with canonical morphism ϕ : FG(A) → G that separates
the word w := v1 · · · vmu−1

n · · ·u−1
1 from the product P .

Claim. The morphism ϕ : FG(A) → G, which separates w from P , also separates the
language L1 from the language L2.

To prove this claim, suppose there is x ∈ ϕ(L1) ∩ ϕ(L2). In particular, x ∈ ϕ(L1) ∩ ϕ(L2).
This means that there exist ii ∈ Ii, for i = 0, . . . , n, and jj ∈ Jj , for j = 0, . . . ,m, such that
ϕ(i0u1i1 · · ·unin) = ϕ(j0v1j1 · · · vmjm).

The following element is in ϕ(P)

ϕ(i0u1i1 · · ·unin · j−1
m v−1

m · · · v−1
1 j−1

0 · v1 · · · vmu−1
n · · ·u−1

1) =

ϕ(i0u1i1 · · ·unin) · ϕ(j−1
m v−1

m · · · v−1
1 j−1

0) · ϕ(v1 · · · vmu−1
n · · ·u−1

1) =

ϕ(i0u1i1 · · ·unin) · ϕ(j0v1j1 · · · vmjm)−1 · ϕ(v1 · · · vmu−1
n · · ·u−1

1).

Since ϕ(i0u1i1 · · ·unin) = ϕ(j0v1j1 · · · vmjm), this gives that

ϕ(v1 · · · vmu−1
n · · ·u−1

1) = ϕ(w) ∈ ϕ(P),

which is a contradiction. Hence, ϕ : FG(A) → G indeed separates the languages L1 and L2

(and gives ϕ−1
G �A∗ (ϕG(L1)) as a separating group language), which proves the claim.

Thus, if L1 ∩ L2 = ∅, where the topological closures are taken in the free group, L1 and L2

are G-separable, and a group language separating them can effectively be constructed.

Since the closure of a regular language in the free group can be computed, we obtain the
following corollary.

43

CHAPTER 3. GROUP LANGUAGES

Corollary 3.7. It is decidable whether two given regular languages are G-separable.

Remark. For two G-separable languages L1 and L2, we obtain a description of a G-separator
from [AS05]. Indeed, we saw in the claim in the proof of Theorem 3.6 that any finite group
that separates the word w and the product P , as constructed from L1 and L2, will also
separate L1 and L2. If L1 and L2 are G-separable, then applying Theorem 3.4 to this w and
P therefore yields a finite group that separates L1 and L2.

3.2.3 Closures in the free monoid

One can also endow the free monoid A∗ with the topology induced from the free profinite
group. This topology on the free monoid was introduced in [Reu79, Reu81]. It is the coarsest
topology that makes every monoid morphism from A∗ onto a finite group (endowed with the
discrete topology) continuous. One can wonder whether a similar statement as Theorem 3.6
still holds when the topological closures are taken in the free monoid. In Example 3.8, we
will show that this is not the case: there exist languages for which the closures in the free
monoid do not intersect, while the closures in the free group do intersect.

The closure in the free monoid of a regular language L, denoted by cl(L), is cl(L) = L ∩A∗,
where L, as before, denotes the closure in the free group. For a simple set L, this means that
cl(L) = 〈L0〉u1〈L1〉 · · ·un〈Ln〉 ∩A∗.

The following example shows that there exist languages for which the closures in the free
monoid do not intersect, while the closures in the free group do intersect.

Example 3.8. Let L1 = (ab∗aa)∗b and L2 = (abb(ab)∗b)∗. Then, L1 = 〈ab∗aa〉b, and
L2 = 〈abb(ab)∗b〉. In Example 3.5, we saw that L2 = 〈abbab−1a−1, abbb〉. In the same way,
we can find a finite set of generators for the subgroup 〈ab∗aa〉. To this end, fix the following
spanning tree.

1 2 3
a a

b

a

The construction from [Gil96] gives that L1 = 〈ab∗aa〉b = 〈aba−1, aaa〉b.

For both L1 and L2, we have that cl(Li) = Li. This is not always the case, but is a consequence
of the fact that the minimal automata of L1 and L2 are deterministic and co-deterministic.
See for example [Reu79].

Note that cl(L1) ∩ cl(L2) = (ab∗aa)∗b ∩ (abb(ab)∗b)∗ = ∅. One way to see this, is from the
fact that (ab∗aa)∗b ∩ (ε ∪ A∗bb) = ∅, while (abb(ab)∗b)∗ ⊆ ε ∪ A∗bb. However, their closures
in the free group are not disjoint. Indeed, the element aba−1b is in L1, but also in L2, since
aba−1b = (abbab−1a−1)−1 · abbb.

44

3.2. THE SEPARATION PROBLEM FOR GROUP LANGUAGES

Hence, an empty intersection of the closures of two languages in the free monoid does not
imply that the intersection of their closures in the free group is empty.

45

Chapter 4

Piecewise testable languages

4.1 Characterizations of piecewise testable languages 48

4.1.1 Logical characterization . 48

4.1.2 Algebraic characterization . 50

4.1.3 Graphical characterization . 51

4.2 Separation by piecewise testable languages 51

4.2.1 PT-indistinguishable pairs of states 52

4.2.2 Common patterns . 53

4.2.3 A common pattern yields PT-indistinguishability 54

4.2.4 PT-indistinguishability stems from a common pattern 55

4.2.5 Intermezzo: an alternative method 61

4.2.6 Separation theorem for piecewise testable languages 63

4.3 Complexity of PT-separability . 64

In this chapter, which is based on the papers [RZ13, PvRZ13b, CMM+14], we study the
separation problem for the class of piecewise testable languages. This class was first introduced
in [Sim72], and consists of those languages for which membership of a word in the language
is determined by the pieces, or scattered subwords, of the word up to a certain length.

In terms of logic, this class can be defined as the fragment of first-order logic that consists
of all formulas that are boolean combinations of formulas that have a quantifier prefix of
existential quantifiers, and do not use any other quantifiers. We explain this in Section 4.1.1.
This class is thus in one of the lower levels of the quantifier alternation hierarchy for first-order
logic. However, it is still a challenging class to study, and has indeed been extensively studied
in the last decades.

It has been shown in [AZ97, ACZ08] that the variety corresponding to this class has com-
putable pointlike sets, which yields that the separation problem is decidable. In [AZ97], an
algorithm to decide the separation problem was given. This algorithm runs in polynomial
time with respect to the size of the automaton, and exponential time with respect to the
alphabet. This approach only gives a yes/no answer.

47

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

Our motivation for studying the separation problem for this class, while it was already known
to be decidable, was to find a combinatorial proof of the decidability, that does not use any
profinite theory. Also, we wanted to obtain a description of a potential separator, rather than
just a yes/no answer to the problem. We obtained these results by computing, from the input
languages, a bound on the length of the pieces that are relevant for separability. This gives
a description of a separator, if it exists. Furthermore, we exhibit forbidden patterns in the
automaton recognizing the input languages. We show that certain paths of the same shape
witness non-separability. This approach yields a better complexity result than the approach
from [AZ97]: we obtain an algorithm that runs in polynomial time with respect to both the
size of the automaton and the size of the alphabet.

We also provide an alternative combinatorial method to prove decidability of the separation
problem, which uses Simon’s Factorization Forest theorem. This method does not work by
bounding the parameter (and does not give a description of a potential separator), but it
works by showing that languages that are not separable contain sequences of words of a
similar shape. For regular languages, these sequences give again the forbidden patterns on
the automaton. However, as observed very recently in [CM14], this method also gives a
criterion for non-separability of input languages that are not regular.

Recently, Czerwiński et. al. [CMM13] studied the separation problem for piecewise testable
languages out of interest in applications in database theory. In this paper, an algorithm to
decide separability by piecewise testable languages is also provided, with the same complexity,
using different proof techniques. A bound on the length of the relevant pieces is not provided
in this paper. Very recently, a construction to build a separating piecewise testable language
from a finite so-called alternating tower was provided in [HJM14], as well as a bound on the
length of the longest such tower in case the languages are separable.

In Section 4.1, we introduce the class of piecewise testable languages. We present our approach
and results to the separation problem for this class in Section 4.2. Finally, in Section 4.3, we
discuss the complexity of the algorithm that follows from our approach.

4.1 Characterizations of piecewise testable languages

4.1.1 Logical characterization

The class Σ1(<) is the class of FO(<)-formulas of the form

∃x1 . . . ∃xk. ϕ(x1, . . . , xk), (4.1)

where x1, . . . , xk are first-order variables and where ϕ is quantifier-free. In the formula ϕ,
the only predicates allowed are the linear order < and the alphabetical predicates. See also
Section 1.5 for more information about first-order logic interpreted on words. This class is
given the name Σ1(<) since only one block of the same quantifiers is allowed (there is no
alternation between different types of quantifiers, hence the ‘1’), and the formulas start with
a block of existential quantifiers (hence the ‘Σ’).

The class of all boolean combinations of Σ1(<)-formulas is denoted by BΣ1(<). The rank of
a BΣ1(<)-formula is the size of the largest block of quantifiers present in the formula. For

48

4.1. CHARACTERIZATIONS OF PIECEWISE TESTABLE LANGUAGES

instance, the Σ1(<)-formula in (4.1) has rank k.

Formulas in BΣ1(<) can express the presence or absence of scattered subwords in words. We
call these scattered subwords pieces, that is, we say that a word u is a piece of a word v ∈ A∗,
denoted by

uC v,

if there exist letters a1, . . . , ak ∈ A such that

u = a1 · · · ak, and v ∈ A∗a1A
∗ · · · akA∗.

For instance, ab is a piece, of size (or length) 2, of bbaacba. The language A∗a1A
∗ · · · akA∗

is the set of all words of which a1 · · · ak is a piece, that is, the set {w ∈ A∗ | a1 · · · ak C w}.
We call it a piece language, and we call k its width. This language is defined by the following
Σ1(<)-formula of rank k,

∃x1 . . . ∃xk.
(∧
i<k

(xi < xi+1) ∧
∧
i≤k

ai(xi)
)
. (4.2)

On the other hand, not every Σ1(<)-formula defines a piece language. Consider for example
the following Σ1(<)-formula,

∃x1∃x2 ∃x3 ∃x4.
(
x1 < x2 ∧ x3 < x4 ∧ a(x1) ∧ b(x2) ∧ c(x3) ∧ ¬a(x4)

)
,

which, if A = {a, b, c}, defines the language (A∗aA∗bA∗∩A∗cA∗bA∗)∪(A∗aA∗bA∗∩A∗cA∗cA∗).
However, every Σ1(<)-formula defines a combination (using union and intersection) of piece
languages. To see this, one can first eliminate negations inside the quantifier free part of
the Σ1(<)-formula, by replacing ¬(x < y) by y ≤ x and ¬a(x) by

∨
b 6=a b(x). Then put the

quantifier-free formula ϕ in disjunctive normal form.

It follows that every BΣ1(<)-formula defines a boolean combination of piece languages. One
can verify that starting from a BΣ1(<)-formula of rank k, one gets a boolean combination of
piece languages of width at most k.

We write w .k w′ if every Σ1(<)-formula of quantifier rank k that is satisfied by w is also
satisfied by w′. Equivalently, w .k w′ if every piece of size at most k of w is also a piece of w′.
Clearly, for each k, the relation .k is a preorder, and it is compatible with concatenation:
if u .k u′ and w .k w′, then uw .k u′w′. The equivalence relation ∼k, induced by .k, is
defined as

w ∼k w′ ⇔ w .k w
′ and w′ .k w.

Thus, w ∼k w′ when w and w′ have the same pieces of size up to k. Clearly, the equivalence
relation ∼k is a congruence and it has finite index, since there are only finitely many pieces
of size k or less.

It is easy to see that a language can be defined by a BΣ1(<)-formula of rank k if and
only if it is a union of ∼k-classes. These observations give the following well-known statement.

Lemma 4.1. Let L be a language and let k ∈ N. Then, the following properties are equivalent.

(1) L is defined by a BΣ1(<)-formula of rank at most k,

49

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

(2) L is a boolean combination of piece languages of width at most k,

(3) L is a union of ∼k-classes.

Definition 4.2. A language L is k-piecewise testable (PT[k]) if it satisfies the three equivalent
properties of Lemma 4.1, and is piecewise testable (PT) if it is k-piecewise testable for some
k ∈ N.

Note that a PT[k]-language is a union of ∼k-classes. The original definition of piecewise
testable languages, provided in [Sim72], was actually in terms of unions of ∼k-classes. Note
that for a language L, there is always a smallest (with respect to inclusion) PT[k]-language
that contains L, namely the language

[L]k := {w ∈ A∗ | ∃u ∈ L. u ∼k w}.

It is easy to see that every finite language is PT. This follows from the fact that the ∼k-class
of a word whose length is strictly smaller than k only contains this word. A finite language
is thus a union of ∼k-classes for some k strictly greater than the length of the longest word
in the language.

This implies that, in contrast to PT[k], there is not always a smallest PT language that
contains L. Indeed, as the class PT is closed under boolean operations, removing one word
from a PT language yields again a PT language, and so on.

For example, let L = (ab)∗. Let us first see that this language itself is not PT. For every k,
the word (ab)k ∈ L contains every possible piece of length k. The same holds, for example,
for (ba)k, but this word is not in L. Therefore, L cannot be a union of ∼k-classes for any
k, thus L is not piecewise testable. Now consider a PT language that contains L. It is a
PT[k]-language for some k, and therefore should, amongst other ∼k-equivalent words, also
contain (ba)≥k for this value of k. Increasing k gives a smaller and smaller PT language that
still contains L.

4.1.2 Algebraic characterization

The class of piecewise testable languages is characterized algebraically by Simon’s theo-
rem [Sim75]. Let us briefly recall the relation ∼J , which is one of Green’s relations. Let
M be a monoid and let s, t ∈M . Then,

s ∼J t ⇔ there exist u, v, w, x ∈M, such that s = utv and t = wsx.

A monoid M is J -trivial when, for all s, t ∈ M , s ∼J t implies that s = t. That is, when
the relation ∼J is equal to the equality relation. Clearly, this property can be decided for a
given finite monoid. The following theorem thus provides an effective characterization, and
yields decidability of the membership problem for the class PT. There exist many proofs of
this result, see for example [Pin84, ST88, Alm91, Kĺı11].

Theorem 4.3 (Simon’s theorem). A language is piecewise testable if and only if its syntactic
monoid is J -trivial.

50

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

The class of J -trivial monoids is denoted by J. A monoid is in this class if and only if it
satisfies the identities uω = uω+1 and (uv)ω = (vu)ω, if and only if it satisfies v(uv)ω =
(uv)ω = (uv)ωu.

4.1.3 Graphical characterization

In [Ste85], Stern provided a characterization for the class of piecewise testable languages on
the recognizing minimal automaton. From this characterization, an algorithm can be found
to decide membership in this class, which runs in polynomial time with respect to the size of
the alphabet and the number of states. This algorithm has later been improved in [Tra01b]
to obtain a lower polynomial time complexity result.

To state Stern’s criterion, we need some notation. Let A = (A,Q, δ) be a DFA. For a state
p, the component of p, denoted by C(p), consists of all states accessible from p. That is,
C(p) = {p} ∪ {q | ∃u ∈ A+. (p, u, q) ∈ δ∗}. Stern defines the following order on the states of
an automaton,

p ≤ q ⇔ q ∈ C(p).

An automaton is called acyclic if there are no loops that visit more than one state. The
restriction of A to a subalphabet B ⊆ A is defined by A �B:= (B,Q, δ ∩ (Q×B ×Q)).

Proposition 4.4 ([Ste85, Proposition 1.2]). Let L be a language, accepted by its minimal
automaton A. The language L is piecewise testable if and only if A is acyclic, and, for every
subalphabet B ⊆ A, every component in A �B has a unique maximal state.

This result yields an algorithm to decide if a language is piecewise testable from its minimal
automaton, which runs in polynomial time with respect to the size of the alphabet and
the number of states. Note that this result solves the membership problem without using
algebra.

4.2 Separation by piecewise testable languages

In Section 4.2.1, we define a relation on the set of pairs of states, of which we show in
Lemma 4.6 that it captures all the relevant information concerning PT-separability. This
relation works on a finite set, and it is therefore a convenient tool for studying the separation
problem. The definition of this relation, however, is still very close to the definition of non-
PT-separability, as we will see in the proof of Lemma 4.6.

In Section 4.2.2, we will introduce another relation on pairs of states, in terms of patterns
occurring in the automaton. We use Sections 4.2.3 and 4.2.4 to show that these two relations
are in fact equal, and that we are thus able to use the notion of patterns in order to decide
separability. Furthermore, in order to prove the equality between the two relations on pairs
of states, we will compute a bound on the size of the pieces that need to be considered to
see whether two languages are PT-separable. An alternative method to prove this equality
is described in Section 4.2.5. We summarize these results in Section 4.2.6 in Theorem 4.27,

51

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

a separation theorem for PT. In Section 4.3 we prove that these patterns can be found in
Ptime, with respect to the size of the automaton and the size of the alphabet.

4.2.1 PT-indistinguishable pairs of states

We will define a notion of PT-indistinguishable pairs of states. The idea behind the notion of
indistinguishable pairs is explained in Section 2.2.3. The idea is the same as we have seen in
Section 2.3.2 for the class K. For the class PT, we introduce the following relation on pairs
of states of an automaton.

Definition 4.5. Let A = (A,Q, δ) be an NFA, and let (q1, r1), (q2, r2) ∈ Q2. Then,

(q1, r1) ≈k (q2, r2) ⇔ ∃u1, u2 ∈ A∗. u1 ∼k u2, (q1, u1, r1) ∈ δ∗, (q2, u2, r2) ∈ δ∗,

in which case the pairs (q1, r1) and (q2, r2) are called PT[k]-indistinguishable. They are called
PT-indistinguishable if for all k ∈ N, (q1, r1) ≈k (q2, r2).

The subset of Q2 × Q2 that consists of all PT[k]-indistinguishable pairs of A is denoted by
IPTk [A], or simply, Ik[A]. The set of all PT-indistinguishable pairs of A is denoted by IPT[A],
or I[A].

By definition, we have I[A] =
⋂
k Ik[A]. Since for all k ∈ N, it holds that ∼k+1 ⊆ ∼k, we also

have ≈k+1⊆≈k, and thus the following inclusions hold,

I[A] =
⋂
n∈N

In[A] ⊆ . . . ⊆ Ik+1[A] ⊆ Ik[A] ⊆ . . . ⊆ I1[A].

Note that the set Q2 × Q2 is finite, thus there must be an index for which the sequence
(Ik[A])k∈N stabilizes. That is, there exists κ ∈ N such that for every k ≥ κ, we have I[A] =
Ik[A]. While the existence of κ is immediate from the definitions, computing a bound on κ
is a more difficult problem. We will obtain such a bound in Section 4.2.4, as a byproduct
of the proof that there is a certain pattern in the automaton, whenever two pairs of states
are PT-indistinguishable. This bound depends on the number of states in the automaton
recognizing the input languages and the size of the alphabet A.

Because of the connection between PT-separability and PT-indistinguishable pairs, stated in
Lemma 4.6, computing a stabilization index κ is of particular interest when studying the
separation problem. Indeed, we will see in Theorem 4.27 that every two languages recognized
by A that are PT-separable are already PT[κ]-separable.

The following lemma shows that the PT-indistinguishable pairs defined above indeed capture
the right information about PT-separability.

Lemma 4.6. Let A = (A,Q, δ) be an NFA. Let (q1, r1), (q2, r2) be pairs of states that deter-
mine languages L1 and L2. Then, for all k ∈ N, (q1, r1), (q2, r2) are PT[k]-indistinguishable
if and only if L1 and L2 are not PT[k]-separable. Furthermore, (q1, r1), (q2, r2) are PT-
indistinguishable if and only if L1 and L2 are not PT-separable.

52

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

Proof. Suppose (q1, r1), (q2, r2) are PT[k]-indistinguishable. Then, there are u, v ∈ A∗ such
that u ∼k v, (q1, u, r1) ∈ δ∗ and (q2, v, r2) ∈ δ∗. Since a PT[k]-language is a union of ∼k-
classes, a PT[k]-language L that separates L1 from L2 must contain [L1]k. It follows that
L ∩ L2 6= ∅, thus the languages are not PT[k]-separable. For the converse direction, suppose
L1 and L2 are not PT[k]-separable. Then in particular, [L1]k is not a separator. Clearly
L1 ⊆ [L1]k, and thus [L1]k ∩ L2 6= ∅. This means there are u ∈ L1, v ∈ L2 such that u ∼k v,
thus (q1, r1), (q2, r2) are PT[k]-indistinguishable. The second statement immediately follows
from the first statement.

Thus, Lemma 4.6 shows that it is enough to compute the set I[A] of PT-indistinguishable
pairs to decide PT-separability for two languages recognized by A. In the following sections,
we show how to obtain this set by analyzing the graph of A. In [RZ13], we also studied the
graph of A in order to decide PT-separability. An important ingredient of our proofs there
was Simon’s Factorization Forest theorem [Sim90]. We discuss the approach taken in [RZ13]
as an intermezzo in Section 4.2.5.

In the following sections, we will more or less follow the proof technique of [PvRZ13b] and
only use pumping arguments. This approach is also described in [CMM+14] under the name
of NFA graph algorithm. In that paper, we also provide two other ways to compute the set
I[A]: we present an algorithm based on games, and a top-down fixpoint algorithm that starts
with all pairs in Q2 ×Q2 and removes pairs until a fixpoint is reached and only pairs in I[A]
remain.

4.2.2 Common patterns

We will now define another relation on pairs of states, based on common patterns occurring
in the automaton. In Sections 4.2.3 and 4.2.4, we will prove that this relation is actually
equal to the relation of being PT-indistinguishable. By Lemma 4.6, this means that we are
able to capture non-PT-separability using these patterns in the automaton. Furthermore, in
Section 4.3, we will show that the pairs having a common pattern can be found in Ptime
with respect to the size of the automaton and the size of the alphabet.

Definition 4.7. Let A be an NFA over A. For u0, . . . , up ∈ A∗ and nonempty subalphabets

B1, . . . , Bp ⊆ A, let ~u = (u0, . . . , up) and ~B = (B1, . . . , Bp). We call (~u, ~B) a factorization

pair . Let q and r be states of A. A (~u, ~B)-path between q and r is a path of the form shown
in Figure 4.1.

q r
u0 ⊆ B1 ⊆ B1 u1 up−1 ⊆ Bp ⊆ Bp up

= B1 = Bp

Figure 4.1: A (~u, ~B)-path between q and r.

If (q, r) has a (~u, ~B)-path, then it is clear that {w | q w−−→ r} contains a language of the
form

u0(x1y
∗
1z1)u1 · · ·up−1(xpy

∗
pzp)up,

53

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

with alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi.

Definition 4.8. We say that two pairs of states (q1, r1), (q2, r2) have a common pattern
if there exists a factorization pair (~u, ~B) such that both (q1, r1) and (q2, r2) have a (~u, ~B)-path.

Example 4.9. Consider the NFA depicted in Figure 4.2, consisting of two parts. The pairs
of states (q1, r1), (q2, r2) have a common pattern, since they both have a (~u, ~B)-path, for
~u = (ε, c, ε) and ~B = ({a, b}, {a}).

q1 r1

a

b
c a

a

q2 r2

b

a
b c

a

Figure 4.2: A common pattern for (q1, r1) and (q2, r2): ~u = (ε, c, ε), ~B = ({a, b}, {a}).

As mentioned before, we will show in Sections 4.2.3 and 4.2.4 that two pairs of states are
PT-indistinguishable if and only if they have a common pattern. Let us for now just mention
that the notion of common pattern is a generalization of Stern’s criterion from Section 4.1.3,
in the sense that a language L(A, I, F) satisfies Stern’s criterion if and only if there is no pair
in (I × F)× (I ×Q\F) that has a common pattern.

4.2.3 A common pattern yields PT-indistinguishability

In the following proposition, we prove that if two pairs of states have a common pattern,
then they are PT-indistinguishable.

Proposition 4.10. Let A be an NFA, and let (q1, r1) and (q2, r2) be two pairs of states in A
that have a common pattern. Then, (q1, r1) and (q2, r2) are PT-indistinguishable.

Proof. Let (~u, ~B) be a common pattern for (q1, r1) and (q2, r2). By definition, {w | q1
w−−→ r1}

contains a language of the form

u0(x1y
∗
1z1)u1 · · ·up−1(xpy

∗
pzp)up,

with alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi, and {w′ | q2
w′−−→ r2} contains a language of the

form
u0(x′1y

′
1
∗z′1)u1 · · ·up−1(x′py

′
p
∗z′p)up,

with alph(x′i) ∪ alph(z′i) ⊆ alph(y′i) = Bi. For all k ∈ N, we define the words

wk = u0(x1y
k
1z1)u1 · · ·up−1(xpy

k
pzp)up,

w′k = u0(x′1y
′
1
kz′1)u1 · · ·up−1(x′py

′
p
kz′p)up.

From the above, it follows that (q1, wk, r1), (q2, w
′
k, r2) ∈ δ∗. It remains to show that wk ∼k w′k.

Observe that for all i, xiy
k
i zi and x′iy

′
i
kz′i both contain precisely all words from B≤ki as pieces

of size up to k. It follows that xiy
k
i zi ∼k x′iy′ikz′i. Using that ∼k is a congruence then yields

that wk ∼k w′k.

54

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

4.2.4 PT-indistinguishability stems from a common pattern

While the proof of the fact that a common pattern for two pairs of states implies that these
pairs are PT-indistinguishable worked in a rather straightforward way by unfolding the B-
loops of the pattern, the converse direction, which we will prove in this section, is more
difficult.

From the fact that two pairs of states are PT-indistinguishable, we obtain two sequences of
words that are pairwise ∼k-equivalent, for increasing values of k. We then need to mold
these words into a similar shape, in order to be able to exhibit a common pattern for the
pairs of states. If one would study this problem in a profinite setting, standard compactness
arguments would give the existence of two subsequences that are still pairwise ∼k-equivalent,
for increasing values of k, and that converge to a profinite word. However, we want to
exhibit a common pattern on the automaton. In [RZ13], we obtained this result by manually
extracting subsequences of words with a similar shape, using Simon’s Factorization Forest
theorem [Sim90]. We will come back to this approach in Section 4.2.5, since it yields an
interesting criterion for non-PT-separability of any two input languages.

Here, we choose to first describe the approach of [PvRZ13b], which catches the possible shapes
in which a word can be molded in the notion of template. Roughly, we show that the templates
in which a word fits depend on the pieces of the word. We provide a bound on the length of
the pieces that need to be considered in this respect. Finally, from the NFA, we compute a
bound such that words that have the same pieces of this length, must fit in the same way in
a certain template. It then follows from pumping arguments that we can exhibit a common
pattern in the automaton, along which these words are read.

The advantage of the approach that we present here, is that we also obtain a bound on the
size of the pieces that are relevant for PT-separability.

In Proposition 4.21, we prove that whenever two pairs of states are PT[k]-indistinguishable
for a sufficiently large k, this will be witnessed by a common pattern, for these pairs, in the
automaton. First, we introduce some terminology. We fix an arbitrary order a1 < . . . < am
on A.

Definition 4.11. Let B = {b1, . . . , bn} ⊆ A be a finite alphabet, ordered as b1 < . . . < bn.
Let p ∈ N. A word w ∈ B∗ is called a (B, p)-pattern if w ∈ (B∗b1B

∗ · · · bnB∗)p. Or, in other
words, a word w is a (B, p)-pattern if (b1 · · · bn)p C w ∈ B∗.

For example, let B = {a, b, c} with a < b < c. The word bbaababccacbabaca is a (B, 2)-
pattern but not a (B, 3)-pattern.

The following notion, of `-template, aims to provide a tool to describe, in terms of properties
of words, the (~u, ~B)-paths along which a word could potentially be read. The main idea
behind these `-templates is that they give a framework along which words can be decomposed
in a way that is suitable for pumping arguments.

Definition 4.12. An `-template is a sequence T = t1, . . . , t` of length `, such that every ti
is either a letter from the alphabet A or is a nonempty subset of A. An `-template is said to
be unambiguous if for all i ∈ {1, . . . , ` − 1}, the pair ti, ti+1 either consists of two letters, or

55

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

two incomparable sets, or a set and a letter that is not included in the set.

For example, T1 = a, {b, c}, d, d, {a} is unambiguous, while T2 = b, {b, c}, d, {a} and T3 =
{a, b}, {b, c}, {c}, a are not.

We want to use the pieces of a word to detect whether, and in which way, the word fits in a
certain `-template. It turns out that this is only possible for unambiguous `-templates. Let
us first make the meaning of ‘fitting in an `-template’ more precise in the following definition.

Definition 4.13. A word w ∈ A∗ is a p-implementation of an `-template T = t1, . . . , t` if w
can be decomposed as w = w1 · · ·w`, such that, for all i, either ti = wi ∈ A or ti = B ⊆ A
and wi is a (B, p)-pattern.

For example, abccbbcbdaaa = a · bccbbcb · d · aaa is a 2-implementation of the 4-template
T = a, {b, c}, d, {a}, since bccbbcb is a ({b, c}, 2)-pattern and aaa is a ({a}, 2)-pattern.

One word of warning about the notation: although the notations for `-template and p-
implementation look quite similar, the meaning of the natural number occurring in the nota-
tion is very different. The ` in `-template stands for the length of the template, and the p in
p-implementation indicates to which power the ordered subalphabets of an `-template occur
in the respective factors of a word.

In order to give some intuition about the reason to restrict to unambiguous `-templates,
consider the words wn = b(ab)n and vn = (ab)n. For all n, wn ∼n vn, as both words contain
all possible pieces over {a, b} of length up to n. The word wn is an n-implementation of
the ambiguous 2-template T = b, {a, b}, but vn does not implement this template at all.
Thus, for arbitrarily large n, there are words that are ∼n-equivalent while one of them can
be decomposed along the template, and the other one cannot.

Remark 4.14. Every ambiguous `-template T gives rise to an unambiguous `′-template
T ′, with `′ < `, in the following way: one simply merges every pair ti, ti+1 that causes an
ambiguity. If a word w is a p-implementation of T , then it will also be a p-implementation of
T ′.

For example, the ambiguous 4-template T = {a, b}, {b, c}, {c}, a gives rise to the unambiguous
3-template T ′ = {a, b}, {b, c}, a. The word w = ababa · cbbcbc · cc · a is a 2-template of T ,
and also of T ′, as can be seen from w = ababa · cbbcbccc · a.

If two pairs of states are PT-indistinguishable, then between both pairs of states, for an
arbitrary size of pieces, words containing the same pieces of this size can be read. We will
show that if two words contain the same pieces of a large enough size (depending on p, |A|
and `), then, they are both p-implementations of a common unambiguous `-template. For p
large enough, this will allow us to exhibit, via pumping arguments, a common (~u, ~B)-path
for the pairs of states. In the next lemma, we provide a bound on ` that will suffice in the
search for this common `-template.

Lemma 4.15. Let p ∈ N. Every word over the alphabet A is the p-implementation of some
unambiguous `-template, with ` < NA,p = (|A|p)|A|.

Proof. First note that if a word is a p-implementation of some ambiguous `-template, then by

56

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

Remark 4.14, it is also a p-implementation of an unambiguous `′-template, where `′ < `. It
thus suffices to prove that every word is the p-implementation of some (possibly ambiguous)
`-template for ` < NA,p. Note that a word is always a p-implementation of the `-template
which is just the sequence of its letters. Therefore, it suffices to prove the following claim.

Claim. If a word is a p-implementation of some `-template with ` ≥ NA,p, then it is also a
p-implementation of an `′-template with `′ < `.

We will show this by induction on the size of the alphabet A. For |A| = 1, let T be an
`-template with ` ≥ NA,p = p. Then, every ti is either the letter a or the set {a}. If a word w
is a p-implementation of this `-template, then it is a concatenation of at least ` a’s. Clearly,
w is then also a p-implementation of the 1-template {a}.

Now suppose the claim is true for alphabet sizes up to n. Note that if a subtemplate
ti, ti+1, . . . , tj of T can be shrunk into a template of smaller length in such a way that every
word that is a p-implementation of the subtemplate still is a p-implementation of the shrunken
subtemplate, then T itself can be shrunk while keeping the same property.

Let A be of size n+1, ordered as a1 < . . . < an+1, and let T be an `-template for ` ≥ (|A|p)n+1.
Then T = R,S, for R = t1, . . . , t(|A|p)n+1 and S = t(|A|p)n+1+1, . . . , t`. We will focus on the
(|A|p)n+1-template R and show that every word that is a p-implementation of R is a p-
implementation of an `′-template with `′ < (|A|p)n+1.

For i = 1, . . . , |A|p, we define Ri = t1+(i−1)(|A|p)n , . . . , ti(|A|p)n . That is, every Ri is an (|A|p)n-
template, and R = R1, . . . , R|A|p. There are two cases. Either

(1) there is an Ri that uses an alphabet different from A, or,

(2) every Ri uses the alphabet A.

In the first case, the induction hypothesis on the size of the alphabet gives that Ri can
be shrunk into a template of smaller length, without reducing the set of words that are p-
implementations of it. In the second case, every Ri uses the alphabet A. In this case, R can
be replaced by the 1-template A: if a word is a p-implementation of R, it contains at least
|A|p times the alphabet A and it follows that (a1 · · · an+1)p is a piece of the word. Thus, it is
a p-implementation of the 1-template A.

In both cases, it follows that the length of T can be shrunk in such a way that all words that
are p-implementations of T are still p-implementations of the shorter template.

In Lemma 4.18 and Lemma 4.19, we will show that the unambiguous templates, of
which a word is an implementation, are related to the pieces of the word. We first in-
troduce some terminology on the special pieces that we will use in the proofs of these lemma’s.

Definition 4.16. Let T = t1, t2, . . . , t` be an unambiguous `-template and let p ∈ N. We
denote by vT,p the shortest word that is a p-implementation of T . That is, vT,p = v1 · · · v`,
such that for all i,

vi =

{
ti if ti ∈ A,

(b1 · · · bn)p if ti = {b1, . . . , bn} ⊆ A and b1 < . . . < bn.

57

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

Definition 4.17. Let T = t1, t2, . . . , t` be an unambiguous `-template. Consider vT,1 =
v1 · · · v`, the shortest word that is a 1-implementation of T . A word v is called incompatible
with T when v is of the form v = v1 · · · vi · u · vi+1 · · · v`, where u = u1 · · ·un, such that every
uj ∈ A, and one of the following holds,

- ti and ti+1 are letters

- ti is a letter, ti+1 a set, and there exist j such that uj /∈ ti+1

- ti is a set, ti+1 a letter, and there exist j such that uj /∈ ti

- ti and ti+1 are sets, and there is no j such that {u1, . . . , uj−1} ⊆ ti and {uj , . . . , un} ⊆
ti+1.

Note that if v = v1 · · · vi · u · vi+1 · · · v` is incompatible with T , then there is u′ such that
|u′| ≤ 2 and v′ = v1 · · · vi · u′ · vi+1 · · · v` is already incompatible with T .

Let us start by showing a condition on the pieces of a word that is necessary for the word to
be a p-implementation of some unambiguous template.

Lemma 4.18. Let w ∈ A∗ and let T be an unambiguous `-template. If w is a p-
implementation of T , then vT,p C w and, for all pieces v such that v C w, it holds that v
is not incompatible with T .

Proof. By definition of p-implementation, we have w = w1 · · ·w` such that wi = ti if ti ∈ A,
and wi is a (B, p)-pattern if ti = B ⊆ A. In the latter case, if B = {b1, . . . , bn} is ordered as
b1 < . . . < bn, we have (b1 · · · bn)p C wi ∈ B∗. Thus, vT,p C w.

Now suppose there is v ∈ A∗ that is incompatible with T and that is such that v C w.
By definition, v is of the form v = v1 · · · vi · u · vi+1 · · · v`, where v1 · · · v` = vT,1, and u
satisfies one of the conditions listed in Definition 4.17. We reason by embedding the word
v = v1 · · · vi · u · vi+1 · · · v` as soon as possible, from the left to the right, in w = w1 · · ·w`.
Using that T is an unambiguous template, we show by induction on j that for every j, we
cannot entirely embed vj in wj−1. If tj−1 ⊆ A, it follows from the unambiguity of T that vj
contains at least one letter that is not contained in tj−1, thus vj cannot be a piece of wj−1

which is in tj−1
∗. Else, tj−1 ∈ A and wj−1 = tj−1. By the induction hypothesis, vj−1 is not

read as a piece of wj−2 and thus wj−1 is already used to embed vj−1. In both cases, vj cannot
be entirely embedded in wj−1.

Hence, v1 · · · vi is not a piece of the prefix w1 · · ·wi−1, and at least part of vi and all of
u · vi+1 · · · v` must occur to the right of wi−1, that is, u · vi+1 · · · v` C wi · · ·w`. As the
rules for unambiguity are symmetric, we also have that vi+1 · · · v` is not a piece of the suffix
wi+2 · · ·w`, thus at least part of vi+1 and all of v1 · · · vi ·u must occur to the left of wi+2, that
is, v1 · · · vi ·uCw1 · · ·wi+1. Then, u must lie in wi ·wi+1. By definition of wi, wi+1 and u, this
gives a contradiction. It follows that there is no piece of w that is incompatible with T .

The following lemma is a converse statement: it considers a stronger condition on the pieces
of a word, and states that this is a sufficient condition for the word to be a p-implementation
of an unambiguous `-template.

58

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

Lemma 4.19. Let w ∈ A∗ and let T be an unambiguous `-template. If vT,p+2 C w and,
for all pieces v such that v C w, it holds that v is not incompatible with T , then w is a
p-implementation of T .

Proof. Besides vT,p+2, we make use of the words vT,1 and vT,p, whose factors we denote here by
v1

1, . . . , v
`
1 resp. v1

p, . . . , v
`
p (note that the exponents do not denote powers). We will provide a

decomposition w = w1 · · ·w` and show that it witnesses the fact that w is a p-implementation
of T . First, we define the factors w1, . . . , w` inductively and then show that they indeed form
a decomposition of w that has the desired properties.

Assume that the factors w1, . . . , wi−1 are defined, and that wsi is the remaining suffix of w,
that is, w = w1 · · ·wi−1 · wsi . Now consider ti. This is either a letter or a subset of A. If ti
is a letter, we define wi as the first letter of wsi . If ti is a subset of A, we define wi as the
largest prefix of wsi for which alph(wi) ⊆ ti.

We will show by induction that these factors indeed form a decomposition of w that is a
p-implementation of T .

As an illustration, we first treat the case that i = 1. First consider the case that t1 ∈ A.
Suppose that the first letter of w is b 6= t1. Then, it follows from vT,1Cw that b ·vT,1 is a piece
of w, while it is incompatible with T . This would contradict the assumptions. Thus, the first
letter of w = ws1 is equal to t1. Now consider the case that t1 ⊆ A. Then w1 is the largest
prefix of w such that alph(w1) ⊆ t1. Denote the first letter after w1 by c. By assumption,
we have vT,p+2 C w. Suppose that v1

p is not a piece of w1. Then, in particular, a factor v1
1 of

vT,p+2 must occur after c. This means that c · vT,1 C w. But, by definition, c /∈ t1, thus this
piece is incompatible with T . It follows that v1

p C w1.

Now suppose that the factors w1, . . . , wi−1, defined as above, are such that for all these factors,
vjp C wj . If tj is a set, then by construction wj ∈ tj∗. Thus, this gives that w1, . . . , wi−1 is a
p-implementation of t1, . . . ti−1. By unambiguity of T , the factor wi−1 cannot contain vi−1

p ·vi1,

since wi−1 is either a letter or is in ti−1
∗. It then follows that vip+1 · v

i+1
p+2 · · · v`p+2 C wsi .

Now consider ti. There are two cases that we treat separately.

Case 1. ti ∈ A.
Suppose that the first letter of wsi is b 6= ti. Note that if ti−1 is a set, then by construction
of wsi , b /∈ ti−1. It follows that v1 · · · vi−1 · b · vi · · · v` Cw, and that this piece is incompatible
with T . Thus, the first letter of wsi is equal to ti.

Case 2. ti ⊆ A.
In this case, wi is defined as the largest prefix of wsi such that alph(wi) ⊆ ti. We have to
prove that vip C wi. Denote the first letter after wi by c. Note that c /∈ ti.

Suppose that wi = ε. Then c is the first letter after wi−1, which means that if ti−1 is a set,
then c /∈ ti−1. Then, the piece v1

1 · · · v1
i−1 · c · v1

i · · · v1
` is incompatible with T , and is a piece

of w. Thus, wi 6= ε. Denote the first letter of wi by b. By construction, if ti−1 is a set, then
b /∈ ti−1. Suppose that vip is not a piece of wi. Since we have vip+1 · v

i+1
p+2 · · · v`p+2 C wsi from

the induction hypothesis, this means that one can read vi1 · v
i+1
p+2 · · · v`p+2 in wsi , after the c.

We then have v1
1 · · · v1

i−1 · b · c · v1
i · · · v1

` C w, and this piece is incompatible with T .

59

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

We have thus shown that w1, . . . , w` is a p-implementation of T . By construction, w1 · · ·w`
is a prefix of w. It is easy to see that they are equal. To this end, let s ∈ A∗ be such that
w = w1 · · ·w` · s. If s 6= ε, we have by construction of w` that the first letter b of s is not in
t`, if it is a set. It follows that the piece v1 · · · v` · bC w is incompatible with T .

The following proposition is a consequence of Lemma 4.18 and Lemma 4.19. It shows that
for fixed ` and p, it is possible to describe all the unambiguous `-templates, of which a given
word is a p-implementation, in terms of the pieces of the word.

Proposition 4.20. Let `, p ∈ N. Let K = |A|(p + 2)` and let w,w′ ∈ A∗ be such that
w ∼K w′. Let T be an unambiguous `-template. If w is a (p+ 2)-implementation of T , then
w′ is a p-implementation of T .

Proof. By Lemma 4.18, it follows that vT,p+2 C w and, for all pieces v such that v C w, it
holds that v is not incompatible with T . Note that |vT,p+2| ≤ |A|(p + 2)` = K. As noted in
Definition 4.17, the presence of pieces in a word that are incompatible with T is determined
by the presence of such pieces that have length ≤ |vT,1|+ 2 ≤ |A|`+ 2 < K. Since w ∼K w′,
it follows that vT,p+2 Cw′ and that there is no piece v that is incompatible with T such that
v C w′. Thus, by Lemma 4.19, w′ is a p-implementation of T .

We are now ready to show that whenever two pairs of states are PT-indistinguishable, there
is a common pattern for these pairs of states in the automaton. As announced before, we
actually prove a stronger statement: already if two pairs of states are PT[k]-indistinguishable,
for k large enough, this is witnessed by a common pattern for the pairs of states. This is
made precise in the following proposition.

Proposition 4.21. Let (q1, r1), (q2, r2) be pairs of states of an NFA (A,Q, δ). Let p = |Q|+1
and κ = (|A|(p + 2))|A|+1. If (q1, r1), (q2, r2) are PT[κ]-indistinguishable, then (q1, r1) and
(q2, r2) have a common pattern.

Proof. Assume that (q1, r1), (q2, r2) are PT[κ]-indistinguishable. By definition, there exist
words w1 ∈ {w | q1

w−−→ r1} and w2 ∈ {w | q2
w−−→ r2} such that w1 ∼κ w2. We first

show that there exists an `-template of which both w1 and w2 are p-implementations. Define
NA,p+2 = (|A|(p+ 2))|A|. By Lemma 4.15, w1 is a (p+ 2)-implementation of some `-template
T , with ` < NA,p+2. Since κ = |A|(p + 2)NA,p+2 > |A|(p + 2)`, Proposition 4.20 then yields
that both w1 and w2 are p-implementations of this `-template T .

We now use the fact that p = |Q| + 1 in order to find the appropriate patterns in the
automaton. Define ~B = (B1, . . . , Bn) as the subsequence of elements of T that are sets.
Define ~u = (u0, . . . , un), such that ui is the concatenation of the letters between Bi and Bi+1

in T . By definition, (~u, ~B) is a factorization pair. As w1 is a (|Q|+ 1)-implementation of T ,
the path from q1 to r1 used to read w1 must traverse loops labeled by each of the Bi. Clearly,
this is a (~u, ~B)-path. In the same way, the path from q2 to r2 used to read w2 is a (~u, ~B)-path.
Thus, (q1, r1) and (q2, r2) have a common pattern.

Since PT-indistinguishable pairs are PT[κ]-indistinguishable for all κ, thus in particular for
κ = (|A|(p+ 2))|A|+1, we immediately obtain the following corollary.

60

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

Corollary 4.22. Let A be an NFA, and let (q1, r1) and (q2, r2) be two pairs of states in A
that are PT-indistinguishable. Then, (q1, r1) and (q2, r2) have a common pattern.

4.2.5 Intermezzo: an alternative method

Let us briefly discuss the approach that we took in [RZ13] to obtain the result of Corol-
lary 4.22, which is different from the approach taken in the previous section. Given two
PT-indistinguishable pairs of states (q1, r1) and (q2, r2), there are, by definition, for every
n ∈ N, words vn ∈ {x | q1

x−−→ r1} and wn ∈ {x | q2
x−−→ r2} such that vn ∼n wn. This

gives a sequence (vn, wn)n. Above, we saw that we only need to consider this sequence up to
n = κ.

In [RZ13], however, we do not bound this sequence, but we use combinatorial arguments to
obtain a subsequence of words with a similar shape. An advantage of this approach over the
approach of bounding the parameter is very recently observed and described in [CM14]: it
gives a criterion that is satisfied by two input languages if and only if these languages are not
PT-separable, and this criterion works for all input languages, i.e. even for non-regular input
languages. We state this more general result in Theorem 4.26.

To make precise what we mean by a sequence of words with a similar shape, we introduce
the following notion of adequateness.

Definition 4.23. Given an `-template T , we say that a sequence (wn)n is T -adequate if for
all n ≥ 0, wn is an n-implementation of T . A sequence is called adequate if it is T -adequate
for some T .

By Remark 4.14, it follows that for each adequate sequence, there is some unambiguous
`-template T , such that the sequence is T -adequate.

We use Simon’s Factorization Forest theorem to show that every sequence of words admits an
adequate subsequence. See [Sim90, Kuf08, Col10] for proofs and extensions of this theorem.
Let us first recall this theorem. A factorization tree of a nonempty word x is a finite ordered
unranked tree F (x), whose nodes are labeled by nonempty words, in such a way that

- all leaves of F (x) are labeled by letters,

- all internal nodes of F (x) have at least 2 children,

- if a node labeled y has k children labeled y1, . . . , yk from left to right, then y = y1 · · · yk.

Given a semigroup morphism ϕ : A+ → S into a finite semigroup S, such a factorization
tree is called ϕ-Ramseyan if every internal node has either 2 children, or k children labeled
y1, . . . , yk, in which case ϕ maps all words y1, . . . , yk to the same idempotent of S. Simon’s
Factorization Forest theorem states that every word has a ϕ-Ramseyan factorization tree of
height at most 3|S|.

Lemma 4.24. Every sequence (wn)n of words admits an adequate subsequence.

Proof. Let (wn)n be a sequence of words. We use Simon’s Factorization Forest theorem with
the morphism alph : A+ → P(A). Consider a sequence (F (wn))n, where F (wn) is an alph-

61

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

Ramseyan tree of wn, given by the Factorization Forest theorem. In particular, F (wn) has
height at most 3 ·2|A|. Therefore, extracting a subsequence if necessary, one may assume that
the sequence of depths of the trees F (wn) is a constant H. We argue by induction on H. If
H = 0, then every wn is a letter. Hence, one may extract a constant subsequence from (wn)n,
and this subsequence is adequate (just take the constant letter as `-template).

If H > 0, we denote the arity of the root of F (wn) by arity(wn), and we call it the arity of
wn. Two cases may arise.

Case 1. One can extract from (wn)n a subsequence of bounded arity. Therefore, one may
extract a subsequence of constant arity, say K, from wn. This implies that each wn has a
factorization in K factors

wn = wn,1 · · ·wn,K ,

where wn,i is the label of the i-th child of the root in F (wn). Therefore, the alph-Ramseyan
subtree of each wn,i is of height at most H − 1. By induction, one can extract from (wn,i)n
an adequate subsequence. Proceeding iteratively for i = 1, 2, . . .K, one extracts from (wn)n
a subsequence (wσ(n))n such that every (wσ(n),i)n is adequate. But a finite product of ade-
quate sequences is obviously adequate. Therefore, the subsequence (wσ(n))n of (wn)n is also
adequate.

Case 2. The arity of wn grows to infinity. Therefore, extracting if necessary, one can assume
that for every n, arity(wn) ≥ max(|A| · n, 3). Since all arities of words in the sequence are at
least 3, all children of the root map to the same idempotent in P(A). But this says that each
word from the subsequence is of the form

wσ(n) = wn,1 · · ·wn,Kn ,

with Kn ≥ |A| · n, and where, since the factorization tree is alph-Ramseyan, the alphabet of
wn,i is the same for all i, say B = {b1, . . . , bm}. Since |B| ≤ |A|, it follows that (b1 · · · bm)n C
wσ(n) ∈ B∗, that is, wσ(n) is an n-implementation of the template B. Therefore, (wσ(n))n is
adequate.

Next to the Factorization Forest theorem, we need another combinatorial result to relate
the `-templates of adequate sequences that are pairwise equivalent to each other. We
state this result in the following lemma. The proof of this result is technical and is based
on Lemma 8.2.5 and Theorem 8.2.6 from [Alm94]. We refer to [RZ13] for a proof of this lemma.

Lemma 4.25. Let T be an unambiguous `-template and let T ′ be an unambiguous `′-template.
Let (vn)n and (wn)n be two sequences of words such that

- (vn)n is T -adequate

- (wn)n is T ′-adequate

- vn ∼n wn for every n ≥ 0.

Then, T = T ′.

We now have all the ingredients to state a criterion for non-PT-separability of any two input
languages.

62

4.2. SEPARATION BY PIECEWISE TESTABLE LANGUAGES

Theorem 4.26 (follows from [RZ13, Lemma 6], [CM14, Lemma 2]). Let L1 and L2 be
languages. Then, L1 and L2 are not PT-separable if and only if there exists an `-template T
such that, for all n, there exist words vn ∈ L1 and wn ∈ L2, such that both (vn)n and (wn)n
are T -adequate.

Proof. The direction from right to left is clear: for every n, we have that both vn and wn are
n-implementations of T , whence vn ∼n wn, and it follows that L1 and L2 are not PT-separable.

For the other direction, suppose that L1 and L2 are not PT-separable. Then, for every n ∈ N,
there exist vn ∈ L1 and wn ∈ L2 such that

vn ∼n wn. (4.3)

This defines an infinite sequence of pairs (vn, wn)n, from which we will iteratively extract
infinite subsequences to obtain additional properties, while keeping (4.3). By Lemma 4.24,
one can extract from (vn, wn)n a subsequence whose first component forms an adequate
sequence. From this subsequence of pairs, using Lemma 4.24 again, we extract a subsequence
whose second component is also adequate (note that the first component remains adequate).
Therefore, one can assume that both (vn)n and (wn)n are themselves adequate.

Lemma 4.25 shows that one can choose the same `-template T such that both (vn)n and
(wn)n are T -adequate.

In [CM14], it is shown that this criterion is decidable for a wide range of classes of input
languages, among which the context-free languages.

Let us show that with the approach of Theorem 4.26, we have also obtained in a very
different way (without having used any bound on the parameter) Corollary 4.22 again.
Indeed, let (q1, r1), (q2, r2) be PT-indistinguishable pairs of states of an NFA (A,Q, δ). By
Lemma 4.6, these pairs determine languages that are not PT-separable. Therefore, we
obtain from Theorem 4.26 that there is an `-template T such that for every n, there are
vn ∈ {x | q1

x−−→ r1} and wn ∈ {x | q2
x−−→ r2} that are n-implementations of T . In particular,

this is the case for n = |Q| + 1. Now, we combine this with the second half of the proof of
Proposition 4.21, which says that every two pairs of states, between which words can be read
that are (|Q|+ 1)-implementations of the same `-template T , have a common pattern. This
yields Corollary 4.22 again.

Corollary 4.22. Let A be an NFA, and let (q1, r1) and (q2, r2) be two pairs of states in A
that are PT-indistinguishable. Then, (q1, r1) and (q2, r2) have a common pattern.

4.2.6 Separation theorem for piecewise testable languages

We collect the results of the previous sections in the following separation theorem for
piecewise testable languages.

Theorem 4.27. Let L1 and L2 be regular languages. Let A = (A,Q, δ) be an NFA recognizing
both L1 and L2, with Li = L(A, Ii, Fi). Let κ = (|A|(|Q| + 3))|A|+1. Then, the following
conditions are equivalent.

63

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

(1) L1 and L2 are PT-separable,

(2) L1 and L2 are PT[κ]-separable,

(3) The language [L1]κ separates L1 from L2,

(4) (I1 × F1)× (I2 × F2) ∩ I[A] = ∅,

(5) (I1 × F1)× (I2 × F2) ∩ Iκ[A] = ∅,

(6) There is no pair in (I1 × F1)× (I2 × F2) with a common pattern.

Proof. The implications (3) ⇔ (2) ⇒ (1) are trivial, as well as the implication (5) ⇒ (4).
We proved implication (4) ⇒ (6) in Proposition 4.10, and implication (6) ⇒ (5) in Proposi-
tion 4.21. The equivalences (1)⇔ (4) and (2)⇔ (5) follow from Lemma 4.6.

Since there are finitely many PT[κ]-languages, the equivalence (1)⇔ (2) yields a brute-force
algorithm to test PT-separability. This gives Corollary 4.28. In the following section, we will
show that, using Condition (6), we obtain another algorithm to test PT-separability, which
has a better complexity result.

Corollary 4.28. It is decidable whether two given regular languages are PT-separable.

4.3 Complexity of PT-separability

In this section, we show that the presence of a common pattern for two pairs of states is a
property that can be tested in Ptime with respect to the size of the alphabet and the size of
the automaton. As a consequence, it follows from Theorem 4.27 that PT-separability can be
decided in Ptime with respect to the size of the alphabet and the size of the automaton. We
first introduce some notation.

Given a state p, we denote by scc(p,A) the strongly connected component of p in A (that
is, the set of states that are reachable from p and from which p can be reached), and the
set of labels of all transitions occurring in this strongly connected component is denoted
by alph scc(p,A). Recall that the restriction of A to a subalphabet B ⊆ A is defined by
A �B:= (B,Q, δ ∩ (Q×B ×Q)).

Let us first show that the following problem is in Ptime.

Lemma 4.29. Consider the following problem.

Input: An NFA A over alphabet A, and states p1, q1, r1, p2, q2, r2 of A.

Question: Do there exist a nonempty B ⊆ A and paths pi
⊆B−−→ qi

=B−−→ qi
⊆B−−→ ri in A

for both i = 1, 2?

This can be solved in Ptime with respect to the size of A and the size of the alphabet.

Proof. We will compute a decreasing sequence (Ci)i of alphabets that are overapproximating
the greatest alphabet B that can be chosen for labeling the loops around q1 and q2. Note

64

4.3. COMPLEXITY OF PT-SEPARABILITY

that if there exists such an alphabet B, it should be contained in

C1 := alph scc(q1,A) ∩ alph scc(q2,A).

Using Tarjan’s algorithm to compute strongly connected components in linear time [Tar72],
one can compute C1 in linear time as well. Then, we restrict the automaton to alphabet C1,
and we repeat the process to obtain the sequence (Ci)i. That is, we define

Ci+1 := alph scc(q1,A �Ci) ∩ alph scc(q2,A �Ci).

After a finite number n of iterations, we obtain Cn = Cn+1. Note that n ≤ |A|. If Cn = ∅,
then there exists no nonempty B for which there is an (= B)-loop around both q1 and q2. If
Cn 6= ∅, then Cn is the maximal nonempty alphabet B such that there are (= B)-loops around

both q1 and q2. It then remains to determine whether there exist paths p1
⊆B−−→ q1

⊆B−−→ r1

and p2
⊆B−−→ q2

⊆B−−→ r2, which can be performed in linear time.

To sum up, since the number n of iterations such that Cn = Cn+1 is bounded by |A|, and
since each computation is linear with respect to the size of A, one can decide in Ptime with
respect to both |A| and this size whether such a pair of paths occurs.

The following proposition considers the problem of testing whether two pairs of states have
a common pattern.

Proposition 4.30. Given an NFA A = (A,Q, δ), and two pairs of states, one can determine
in Ptime with respect to the size of A and the size of the alphabet, whether these pairs of
states have a common pattern.

Proof. We extend the automaton A in the following way, to obtain a new automaton Ã. For
each 6-tuple τ = (p1, q1, r1, p2, q2, r2) ∈ Q6, we test whether there exist nonempty B ⊆ A and

paths pi
⊆B−−→ qi

=B−−→ qi
⊆B−−→ ri in A for i = 1, 2. If this is the case, we add a new letter aτ to

the alphabet, and we add the “summary” transitions p1
aτ−→ r1 and p2

aτ−→ r2. Lemma 4.29
shows that for each 6-tuple, this test can be performed in Ptime. Since there are |Q|6 of
these tuples, computing Ã can then be done in Ptime.

Let (s1, t1) and (s2, t2) be pairs of states. By construction, we have the following. There
exists some pair (~u, ~B) such that there is a (~u, ~B)-path between both s1 and t1 and between
s2 and t2, if and only if {w | s1

w−−→ t1 in Ã} ∩ {w | s2
w−−→ t2 in Ã} 6= ∅. Since Ã can be

built in Ptime, this can be decided in polynomial time as well.

Combining Theorem 4.27 and Proposition 4.30, we obtain the following theorem.

Theorem 4.31. It is decidable whether two regular languages, recognized by an NFA, are
PT-separable. This can be achieved in Ptime with respect to the size of the alphabet and the
size of the NFA.

Recall from Section 2.3.1 that deciding whether two languages, recognized by a DFA, are
Sl-separable is co-NP-complete. What is different for Sl, compared to PT, is that a common
pattern for Sl just consists of two words that have the same alphabet, whereas for PT the
paths should have a certain shape: the different parts should occur in the same order, and

65

CHAPTER 4. PIECEWISE TESTABLE LANGUAGES

there should be loops for the alphabets of ~B. Thus, the patterns for PT are more complicated,
but determining whether they exist has a lower complexity.

66

Chapter 5

Unambiguous languages

5.1 Characterizations of unambiguous languages 68

5.1.1 Logical characterization . 68

Ehrenfeucht-Fräıssé games for FO2(<) 69

5.1.2 Algebraic characterization . 70

5.2 Separation by unambiguous languages 70

5.2.1 Fixpoint algorithm to compute FO2(<)-indistinguishable pairs . . . 72

5.2.2 Correctness of the fixpoint algorithm 73

5.2.3 Completeness of the fixpoint algorithm 74

Decompositions for (B, p)-patterns 75

Completeness result using (B, p)-decompositions 77

5.2.4 Proof of the separation theorem for unambiguous languages 81

5.3 Complexity of separation by unambiguous languages 82

In this chapter, we present our results on the separation problem for the class of unambiguous
languages. In particular, we show that this is a decidable problem. As we have seen in
Section 2.2.1, this result yields that the 2-pointlike sets for the variety corresponding to the
class of unambiguous languages are computable. To our knowledge, this is a result shown for
the first time in the paper [PvRZ13b], on which this chapter is based.

In Section 5.1, we first describe the class of languages that we study in this chapter. Section 5.2
forms the main part of this chapter. In this section, we introduce a fixpoint algorithm and
we show how the information computed by this algorithm solves the separation problem for
this class of languages. We also prove in this section that this algorithm is indeed correct
and complete. As a byproduct, we obtain a description of a separator, if it exists. Finally,
in Section 5.3, we briefly discuss the complexity of the separation problem for the class of
unambiguous languages.

67

CHAPTER 5. UNAMBIGUOUS LANGUAGES

5.1 Characterizations of unambiguous languages

The class of languages that we study in this chapter is the class of unambiguous languages,
i.e. the class of languages defined using unambiguous products. A product

L = B∗0a1B
∗
1 · · ·B∗k−1akB

∗
k

is called unambiguous if every word of L admits exactly one factorization witnessing its
membership in L. The number k is called the size of the product. An unambiguous language
is a finite union of disjoint unambiguous products. The class of unambiguous languages is
related to the class of piecewise testable languages studied in Chapter 4. Indeed, piecewise
testable languages are boolean combinations of languages of the form A∗b1A

∗ · · ·A∗bkA∗. The
latter languages are unambiguous, as is witnessed by the product

(A \ {b1})∗b1(A \ {b2})∗ · · · (A \ {bk})∗bkA∗.

Moreover, Schützenberger proved in [Sch76] that the class of unambiguous languages is closed
under boolean operations. Therefore, piecewise testable languages form a subclass of the un-
ambiguous languages. This inclusion is strict, as can be seen, for example, from the language
A∗a. This is an unambiguous language (for any alphabet A), but for A ⊇ {a, b}, it cannot be
defined in terms of pieces: for every n, there are words inside and outside of A∗a that have
the same pieces up to size n, for example the words (ab)n and (ab)na.

Many characterizations for unambiguous languages have been found, both in terms of logical
fragments and in terms of algebraic properties. We refer to [TT02, DGK08] for a detailed
overview of these characterizations.

5.1.1 Logical characterization

From a logical point of view, unambiguous languages can be defined as a fragment of first-
order logic both in terms of quantifier alternations and in terms of the number of variables
of a formula. Also, characterizations have been found as fragments of temporal logic: the
fragment using only the unary temporal operators ‘next’, ‘previously’, ‘sometime in the fu-
ture’, and ‘sometime in the past’ [EVW97, EVW02], and the fragment of so-called ranker
languages [WI09].

We will now describe the characterizations as fragments of first-order logic in more detail. A
Σ2(<)-formula is a first-order formula of the form

∃x1 . . . ∃xn ∀y1 . . . ∀ym ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is quantifier-free. A Π2(<)-formula is a formula whose negation is a Σ2(<)-formula.
Finally, the class ∆2(<) is the intersection of these two classes. Thus, a language is ∆2(<)-
definable if it can be defined both by a Σ2(<)-formula and the negation of a Σ2(<)-formula. It
was shown in [PW97] that a language is unambiguous if and only if it is ∆2(<)-definable.

Another logical characterization of the unambiguous languages was given in [TW98]. In this
paper, it is shown that the fragment ∆2(<) corresponds to the fragment of those first-order
logic formulas that use only two (reusable) variable names. This fragment of first-order logic
is denoted by FO2(<).

68

5.1. CHARACTERIZATIONS OF UNAMBIGUOUS LANGUAGES

Example 5.1. Consider the language A∗bA∗a. The unambiguous product (A/b)∗bA∗a wit-
nesses that this is an unambiguous language. It is defined by the following FO2(<)-formula,

∃x ∃y.
(
b(x) ∧ a(y) ∧ ∀x.

(
¬(y < x)

))
.

It is also defined by the following Σ2(<)-formula,

∃x ∃y ∀z.
(
b(x) ∧ a(y) ∧ ¬(y < z)

)
,

and the following Π2(<)-formula,

∀x ∃y ∃z.
(

(a(x) ∨ x < y) ∧ b(z)
)
,

which shows that it is ∆2(<)-definable.

It turns out that the characterization of unambiguous languages as FO2(<)-definable lan-
guages provides a suitable framework for our proofs. In particular, this formulation allows
us to use Ehrenfeucht-Fräıssé games for FO2(<) in our proofs. We will define these games
now.

Ehrenfeucht-Fräıssé games for FO2(<)

Ehrenfeucht-Fräıssé games form a widely applicable method from model theory to show that
two structures are equivalent, or not, with respect to a certain logic.

The game is played by two players, called Spoiler and Duplicator. Given a logical fragment,
the intuition is that Spoiler wants to show that the words can be distinguished by this
fragment, and Duplicator wants to show that this is not the case. That is, Duplicator
wants to show that they look the same with respect to the logical fragment. Here, we only
introduce a version of the games instantiated for FO2(<).

Definition 5.2. An Ehrenfeucht-Fräıssé game for FO2(<) (or short, EF game) is a game
played by two players, called Spoiler and Duplicator. The game is played on two words. In
front of each of the words, initially one pebble is placed. The game lasts for at most k rounds,
where k is fixed beforehand. Each of the rounds is played according to the following rules:

- Spoiler chooses one of the words, picks up the pebble placed on or in front of this word
and moves it, to the left or to the right, to a position in the same word.

- Duplicator answers by moving the other pebble in the other word, mimicking both the
direction and the letter chosen by Spoiler.

If Duplicator is unable to answer, she loses. She wins if she is able to answer in each of the
k rounds.

As before, we define a sequence of congruence relations on words in A∗, that indicates how
similar the words are from the perspective of the logic FO2(<). For u, v ∈ A∗, we have

u ∼k v ⇔ u and v satisfy the same FO2(<)-formulas up to quantifier depth k.

69

CHAPTER 5. UNAMBIGUOUS LANGUAGES

The EF games are particularly useful as they provide a tool to show that two words are
∼k-equivalent, or not, as follows from the following well-known theorem.

Theorem 5.3 ([Imm82, Imm99]). Duplicator has a winning strategy in the k-round EF
game for FO2(<) on the words w,w′ if and only if w ∼k w′.

Example 5.4. Consider the words aba and abba. Clearly, whichever letter Spoiler choses to
place a pebble on in the first round, Duplicator is able to answer by placing a pebble on the
same letter in the other word. It follows that aba ∼1 abba. However, if Spoiler places a pebble
on the first b in the word abba in the first round, Duplicator has to place a pebble on the b in
aba. Spoiler can then move the pebble from abba to the right and again place it on a b, but
Duplicator cannot mimic this move in aba. Thus, aba �2 abba.

5.1.2 Algebraic characterization

The variety of finite monoids for which every regular D-class (that is, every D-class that
contains an idempotent) is an aperiodic semigroup, is called DA. A monoid M is a member
of DA if and only if it satisfies the identity (xy)ωy(xy)ω = (xy)ω. The variety DA forms a
proper subclass of the variety A of aperiodic monoids.

In [Sch76], it is shown that unambiguous languages are precisely the DA-recognizable lan-
guages.

5.2 Separation by unambiguous languages

To show that the separation problem for FO2(<)-definable languages is decidable, we fol-
low the approach discussed in Section 2.2.3 and work with FO2(<)-indistinguishable pairs
of monoid elements. We will provide a fixpoint algorithm that, given a monoid M and a
surjective morphism α : A∗ → M , computes the FO2(<)-indistinguishable pairs of M , that
is, the 2-pointlike sets of M for the variety DA. These pairs of course do not depend on the
morphism α, but the algorithm needs such a fixed morphism to perform its computations.
We therefore denote these pairs by IFO

2(<)(α). Since this chapter only deals with the logic
FO2(<), we also write I(α) for this set of pairs.

We will use the fact that the logic can be stratified according to the quantifier depth of a
formula. The fragment of FO2(<) that consists of formulas of quantifier depth up to k is
denoted by FO2(<)[k]. For every k ∈ N, we define the following congruence relation, which
is of finite index. For words u, v ∈ A∗,

u ∼k v ⇔ u and v satisfy the same FO2(<)-formulas up to quantifier depth k.

The set of pairs of monoid elements that are FO2(<)[k]−indistinguishable is denoted by

I
FO2(<)
k (α), or simply Ik(α). That is,

Ik(α) = {(s, s′) ∈M2 | ∃w ∈ α−1(s). ∃w′ ∈ α−1(s′). w ∼k w′}.

70

5.2. SEPARATION BY UNAMBIGUOUS LANGUAGES

For reasons that will become apparent in Sections 5.2.2 and 5.2.3, we need to keep track of the
alphabet of words that map onto the monoid elements. Thus, for α : A∗ →M and s, t ∈M ,
we define

(s, s′) ∈ Ik(α,B) ⇔ there are w ∈ α−1(s), w′ ∈ α−1(s′) such that
alph(w) = alph(w′) = B and w ∼k w′.

Since a formula of rank 1 is already able to distinguish between words that have a different
alphabet, it follows that Ik(α) =

⋃
B⊆A Ik(α,B). And, as always, I(α) =

⋂
k∈N Ik(α). The

following inclusions hold by definition,

I(α) =
⋂
n∈N

In(α) ⊆ . . . ⊆ Ik+1(α) ⊆ Ik(α) ⊆ . . . ⊆ I1(α).

The difficulty in computing I(α) lies in knowing the limit behavior of the sequence (Ik(α))k∈N.
Note that all elements of this sequence are in the finite set P(M×M), and since the sequence is
decreasing with respect to the inclusion order, there must be an index for which the sequence
stabilizes. It turns out that we can compute such a stabilization index for this sequence,
which depends on the size of the monoid M and the size of the alphabet A.

Let us briefly sketch the content of the rest of this section. In Section 5.2.1, we will provide
a fixpoint algorithm of which we claim that it computes the FO2(<)-indistinguishable pairs.
Given a surjective morphism α : A∗ →M , the output of this algorithm is denoted by Alg(α).
In Section 5.2.2, we will prove that the presented algorithm is indeed correct: all of the pairs
that the algorithm outputs are FO2(<)-indistinguishable pairs, i.e. Alg(α) ⊆ I(α). Finally,
we prove in Section 5.2.3 that for κ = (2|M |2 + 3)|A|2, the FO2(<)[κ]−indistinguishable pairs
occur as output of the algorithm. Completeness of the algorithm follows, since by definition,
I(α) ⊆ Iκ(α). To summarize, we then have the following inclusions.

I(α) ⊆ Iκ(α)
5.2.3
⊆ Alg(α)

5.2.2
⊆ I(α). (5.1)

The value κ = (2|M |2 +3)|A|2 thus serves as a stabilization index for the sequence mentioned
above. In Section 5.2.4, we will prove the following theorem that contains the main results
of this chapter.

Theorem 5.5. Let M be a monoid, let P and Q be subsets of M , and let α : A∗ → M be a
surjective morphism. Let κ = (2|M |2 + 3)|A|2. Then, the following conditions are equivalent.

(1) The languages α−1(P) and α−1(Q) are FO2(<)-separable,

(2) The languages α−1(P) and α−1(Q) are FO2(<)[κ]-separable,

(3) The language [α−1(P)]∼κ separates α−1(P) from α−1(Q),

(4) P ×Q ∩ I(α) = ∅.

While a proof of this theorem is provided in Section 5.2.4, let us for now just mention that
the implications (3) ⇒ (2) ⇒ (1) are trivial, and that the implication (1) ⇒ (4) is immediate
from the definition of FO2(<)-indistinguishable pairs. The difficult direction of the theorem is
(4) ⇒ (3). Note that this direction would follow from the inclusion Iκ(α) ⊆ I(α), announced
in (5.1). Indeed, if P × Q ∩ I(α) = ∅, the inclusion gives that also P × Q ∩ Iκ(α) = ∅.
This means that there are no words w ∈ α−1(P), w′ ∈ α−1(Q) such that w ∼κ w′. Thus,

71

CHAPTER 5. UNAMBIGUOUS LANGUAGES

[α−1(P)]∼κ ∩ α−1(Q) = ∅. To prove Theorem 5.5, it thus suffices to show that Iκ(α) ⊆ I(α).
This inclusion will follow from the results in Sections 5.2.2 and 5.2.3.

When starting from two regular languages L1 and L2, recall that one can always construct a
monoid that recognizes both languages. It follows that the languages are FO2(<)-separable
if and only if they are FO2(<)[κ]−separable, where κ is calculated as in the theorem. In case
the languages are separable, a description of a separator would be [L1]∼κ, the saturation of
the first language by the ∼κ-equivalence. To test FO2(<)-separability, one could thus use a
brute-force approach and test all of the finitely many FO2(<)[κ]−definable languages. This
yields Corollary 5.6. However, it turns out that exploiting Condition (4) yields a better
complexity result. Besides providing a means to prove the inclusion Iκ(α) ⊆ I(α), this
exploitation of Condition (4) is another purpose of the fixpoint algorithm that we present in
Section 5.2.1.

Corollary 5.6. It is decidable whether two regular languages can be separated by an
FO2(<)-definable language.

Remark. In Theorem 5.5, we provide a bound κ on the quantifier rank of FO2(<)-formulas
that need to be considered to define a potential separator. It turns out that the same value
κ also works to bound unambiguous products: there exists an FO2(<)-separator if and only
if there exists a separator defined by a boolean combination of unambiguous products of size
κ. This approach of bounding the size of unambiguous products rather than the quantifier
rank of FO2(<)-formulas was taken in the paper [PvRZ13b].

5.2.1 Fixpoint algorithm to compute FO2(<)-indistinguishable pairs

For a monoid M , and a surjective morphism α : A∗ → M , we define the following fixpoint
algorithm that computes a set Alg(α) ⊆M ×M .

Initialize by adding, for all a ∈ A, the pair (α(a), α(a)) to Alg(α, {a}). Then, saturate the
set Alg(α) =

⋃
B⊆A Alg(α,B) with the following two operations.

(1) If (s, s′) ∈ Alg(α,B) and (t, t′) ∈ Alg(α,C), then add (st, s′t′) to Alg(α,B ∪ C).

(2) If both (s, s′) and (t, t′) belong to Alg(α,B), and, furthermore, there exist w,w′ ∈ B∗

such that α(w) = r, α(w′) = r′, then add (sωrtω, s′ωr′t′ω) to Alg(α,B).

Note that there are finitely many subsets B of A, and that during the execution of the
algorithm, for every such B, the set Alg(α,B) only gets larger with respect to inclusion. As
the sets are all bounded from above by M ×M , the algorithm will terminate.

Remark. Operation (1) takes care of the fact that the ∼k-relations are congruences. Such
an operation will be needed in any fixpoint algorithm calculating the indistinguishable pairs
of a monoid with respect to a variety of languages. Operation (2), however, is specific for the
class of unambiguous languages.

72

5.2. SEPARATION BY UNAMBIGUOUS LANGUAGES

5.2.2 Correctness of the fixpoint algorithm

In this section, we show that the fixpoint algorithm only outputs pairs of elements that
are indeed FO2(<)-indistinguishable. It will follow from the fact that the ∼k-relations are
congruences that Operation (1), applied to two FO2(<)-indistinguishable pairs, yields an
FO2(<)-indistinguishable pair. To show that the pairs generated by Operation (2) from
FO2(<)-indistinguishable pairs are again FO2(<)-indistinguishable, we will use Lemma 5.8.
Let us first state a related simpler result.

Lemma 5.7. Let u, v, w ∈ B∗ and let k ∈ N. If alph(u) = alph(v) = B, then ukwvk ∼k ukvk.

Proof. We prove this using the formalism of EF games for FO2(<). The following strategy
for Duplicator is a winning strategy: if Spoiler plays inside w, Duplicator plays a position in
the last copy of u or the first copy of v, labeled by the same letter as the one that Spoiler
chose. In this way, she will still have at least k − 1 occurrences of each letter of B both to
her left and to her right. It follows that she is able to survive all k rounds of the game. And,
if Spoiler does not play inside w, clearly, Duplicator can mimic his moves in the other word.
It follows from Theorem 5.3 that ukwvk ∼k ukvk.

We now slightly generalize Lemma 5.7.

Lemma 5.8. Let u1, u2, v1, v2, w1, w2 be words in B∗ and let k ∈ N. If u1 ∼k u2, v1 ∼k v2,
and alph(u1) = alph(u2) = alph(v1) = alph(v2) = B, then, for all p ≥ k, up1w1v

p
1 ∼k u

p
2w2v

p
2.

Proof. Lemma 5.7 implies that uk1w1v
k
1 ∼k uk1vk1 ∼k uk1w2v

k
1 . Since ∼k is a congruence and

since u1 ∼k u2, v1 ∼k v2, it follows that uk1w1v
k
1 ∼k uk2w2v

k
2 . And, for the same reasons, we

then have up1w1v
p
1 ∼k u

p
2w2v

p
2 .

The correctness of the fixpoint algorithm is proved in the next proposition. In the proof,
we make use of the fact that the fixpoint algorithm keeps track of information about the
alphabet. This information allows us to perform an induction on the number of applications
of the operations.

Proposition 5.9. The fixpoint algorithm described in Section 5.2.1 is correct.

Proof. One has to show that Alg(α) ⊆ I(α). That is, that for all (m,n) ∈ Alg(α), it holds
that for all k ∈ N, there exist w1 ∈ α−1(m), w2 ∈ α−1(n) such that w1 ∼k w2. Note that
Alg(α) =

⋃
B⊆A Alg(α,B), and thus, for all (m,n) ∈ Alg(α), there exists B ⊆ A such that

(m,n) ∈ Alg(α,B).

Therefore, the following claim is stronger than the proposition, as it also states something
about the alphabet of the words in the preimages. We will prove this stronger statement.

Claim. For every B ⊆ A, for all (m,n) ∈ Alg(α,B), and for all k ∈ N, there exist w1 ∈
α−1(m), w2 ∈ α−1(n) such that w1 ∼k w2 and alph(w1) = alph(w2) = B.

We prove this claim by induction on the number of applications of the operations used to
obtain that (m,n) ∈ Alg(α). If no application of the operations is used to obtain that

73

CHAPTER 5. UNAMBIGUOUS LANGUAGES

(m,n) ∈ Alg(α), then (m,n) was added during the initialization phase. This means there is
a ∈ A such that (m,n) ∈ Alg(α, {a}), and m = α(a) = n. Clearly, for all k ∈ N, a ∼k a and
alph(a) = {a}.

If operations were applied, suppose first that the last operation applied to obtain (m,n) ∈
Alg(α) was Operation (1), and that (m,n) ∈ Alg(α,B). Then, there are s, t, s′, t′ ∈ M such
that m = st, n = s′t′ and, (s, s′) ∈ Alg(α,C), (t, t′) ∈ Alg(α,C ′), for some C,C ′, such that
C ∪ C ′ = B. By the induction hypothesis, for all k ∈ N, there are

u ∈ α−1(s), u′ ∈ α−1(s′),
v ∈ α−1(t), v′ ∈ α−1(t′),

such that alph(u) = alph(u′) = C, alph(v) = alph(v′) = C ′, alph(u) ∪ alph(v) = B, and
u ∼k u′, v ∼k v′. Then uv ∈ α−1(st) = α−1(m), and u′v′ ∈ α−1(s′t′) = α−1(n). Since ∼k is a
congruence, uv ∼k u′v′. Also, alph(uv) = alph(u′v′) = B. This shows the claim for this case.

Finally, suppose the last operation applied to obtain (m,n) ∈ Alg(α) was Operation (2), and
that (m,n) ∈ Alg(α,B). Then, there are w,w′ ∈ B∗ with α(w) = r, α(w′) = r′, and there
are s, t, s′, t′ ∈ M such that m = sωrtω, n = s′ωr′t′ω and, (s, s′), (t, t′) ∈ Alg(α,B). By the
induction hypothesis, for all k ∈ N, there are

u ∈ α−1(s), u′ ∈ α−1(s′),
v ∈ α−1(t), v′ ∈ α−1(t′),

such that alph(u) = alph(u′) = alph(v) = alph(v′) = B, and u ∼k u′, v ∼k v′. Fix k ∈ N and
let p = k·|M |!. For every x ∈M , we then have xp = xω. It follows that α(upwvp) = sωrtω, and
α(u′pw′v′p) = s′ωr′t′ω. Both words have alphabet B, and by Lemma 5.8, upwvp ∼k u′pw′v′p.
This concludes the proof of the claim and of the proposition.

5.2.3 Completeness of the fixpoint algorithm

This section is devoted to proving the completeness of the fixpoint algorithm presented in
Section 5.2.1. In order to do this, we prove a stronger statement. Namely, we fix a specific
κ ∈ N and prove that for this value of κ, all FO2(<)[κ]-indistinguishable pairs occur as output
of the fixpoint algorithm. In this section, we first work with a fixed subalphabet B. In
Proposition 5.16, we show how the desired general statement easily follows from the other
results.

Roughly, our approach to show that the FO2(<)[κ]-indistinguishable pairs occur as output of
the fixpoint algorithm, is the following. We first define a notion of pattern on words. Then,
we show that if the images of two words form an FO2(<)[κ]-indistinguishable pair, they will
either both contain a big pattern, or both contain only a small pattern. We decompose the
words along these patterns, in such a way that the factors use only a strict subalphabet, and
are pairwise equivalent up to some quantifier rank. We then use induction on the size of the
alphabet. If the words only contained a small pattern, Operation (1) will suffice to recompose
the factors and find that the original pair was in Alg(α). If the words contained a big pattern,
the proof is more complicated, as we will have to mold the factors in the right shape to be able
to apply Operation (2). An ingredient used to obtain this is the pigeonhole principle, which
entails that a sufficiently long product of monoid elements contains a factor of consecutive
elements that can be repeated without changing the value of the product.

74

5.2. SEPARATION BY UNAMBIGUOUS LANGUAGES

Decompositions for (B, p)-patterns

The notion of (B, p)-pattern, that we introduced in Chapter 4, also plays a central role in
the proofs of this section. Let us first recall this notion.

Definition 5.10. Let B = {b1, . . . , bn} be a finite alphabet, ordered as b1 < . . . < bn, and let
p ∈ N. A word w ∈ B∗ is a (B, p)-pattern if w ∈ (B∗b1B

∗ · · · bnB∗)p. Or, in other words, if
this w contains the subword (b1 · · · bn)p.

Using the concept of (B, p)-patterns, we will introduce a notion of decomposition for words
that fits well with our purposes, due to their following useful properties. First of all, FO2(<)-
formulas of sufficiently large quantifier rank can express the property of allowing a certain
decomposition. We are thus able to detect the decompositions that words allow. Also, if
two words both can be decomposed in a certain way, the factors of the decompositions will
be pairwise related. Furthermore, the decompositions break the words up into factors that
use a strictly smaller alphabet. These properties permit us to prove the completeness of the
fixpoint algorithm using induction on the size of the alphabet. We will make this more precise
in the remainder of this section.

The alphabet B = {b1, . . . , bn}, ordered as b1 < . . . < bn, is fixed for the rest of this section.
Let w be a (B, p)-pattern, that is, w ∈ (B∗b1B

∗ · · · bnB∗)p. Then, w can be decomposed into
a product of factors witnessing its membership in (B∗b1B

∗ · · · bnB∗)p. For example, as

w =
(pn∏
i=1

wi · bi mod n

)
· wpn+1,

where, for ease of notation, if n divides i, we write bi mod n to denote the letter bn. We apply
this notation throughout this section.

For a given word w, we are interested in the left-most decomposition of w along the marked
product (B∗b1B

∗ · · · bnB∗)p b1B∗ · · · b` mod nB
∗, where p and ` are as big as possible.

Definition 5.11. If w ∈ B∗, then there is a unique number ` ∈ N, such that

(1) w =
(∏`

i=1wi · bi mod n

)
· w`+1, and

(2) for all i ∈ {1, . . . , `+ 1}, bi mod n /∈ alph(wi).

Let p ∈ N be such that pn ≤ ` < (p+ 1)n. Then, the decomposition of Condition (1) is called
the (B, p)-decomposition of w. In this case, we also say that w admits a (B, p)-decomposition.
The number ` is called the length of the decomposition.

Note that there is just one value of p for which a word w ∈ B∗ admits a (B, p)-decomposition.
This is precisely the value of p for which w is a (B, p)-pattern, but not a (B, p + 1)-
pattern.

Let us illustrate these notions by giving two examples.

Example 5.12. The word w = bcacbbcccaccbaa over B = {a, b, c}, ordered as a < b < c,
admits a (B, 1)-decomposition, since it is a (B, 1)-pattern, but not a (B, 2)-pattern. The

75

CHAPTER 5. UNAMBIGUOUS LANGUAGES

length of its (B, 1)-decomposition is 5:

bc︸︷︷︸ a c︸︷︷︸ b b︸︷︷︸ c cc︸︷︷︸ a cc︸︷︷︸ b aa︸︷︷︸
w1 w2 w3 w4 w5 w6

The word w = aacbacbaabcaaa over the same ordered alphabet admits a (B, 2)-decomposition.
The length of this decomposition is 7:

ε︸︷︷︸ a ac︸︷︷︸ b a︸︷︷︸ c b︸︷︷︸ a a︸︷︷︸ b ε︸︷︷︸ c ε︸︷︷︸ a aa︸︷︷︸
w1 w2 w3 w4 w5 w6 w7 w8

As announced before, a useful result about (B, p)-decompositions is that they can be detected
using an FO2(<)-formula of sufficiently big quantifier rank. We prove this result in the
following lemma. Recall that B is a fixed ordered alphabet of size n.

Lemma 5.13. Let p, k ∈ N be such that (p + 1)|B| ≤ k. Let u, v be words such that u ∼k
v. Then, u admits a (B, p)-decomposition if and only if v admits a (B, p)-decomposition.
Moreover, the associated (B, p)-decompositions (in the sense of Definition 5.11) have the
same length.

Proof. Let us first prove that whenever u admits a (B, p)-decomposition, v does too. The
converse of this statement then follows by symmetry. We prove this using EF games for
FO2(<). Since u ∼k v, it follows from Theorem 5.3 that Duplicator has a winning strategy
in the k-round EF game on u and v.

Assume that u admits a (B, p)-decomposition, and that the decomposition is

u =
(∏̀
i=1

ui · ci
)
· u`+1,

where, for all i, ci denotes the first occurrence of the letter bi mod n after ui. The number of
ci’s in this decomposition is ` < (p+ 1)|B| ≤ k. Let Spoiler subsequently play on c1, c2, . . . , c`
in u. Since ` < (p + 1)|B| ≤ k, Duplicator can answer in v to each of Spoiler’s moves in u,
thus identifying c1 · · · c` as a scattered subword in v. It follows that v is a (B, p)-pattern. If
v were also to contain the scattered subword c1 · · · c`c`+1, then Spoiler could next move the
pebble in v to this c`+1, but Duplicator would then not be able to answer this move in u, since
the length of the (B, p)-decomposition of u is just `. Since ` + 1 ≤ k, this would contradict
the fact that u ∼k v. It follows that v is not a (B, p + 1)-pattern, and that the length of its
(B, p)-decomposition is `.

Not only can (B, p)-decompositions be detected using an FO2(<)-formula of sufficiently big
quantifier rank, but one can also obtain information about the FO2(<)-formulas that are
satisfied by the factors in the (B, p)-decomposition. This is made precise in the next lemma.

Lemma 5.14. Let p, k, k′ ∈ N be such that (p + 1)|B| + k′ ≤ k. Let u, v be words such that
u ∼k v, and such that both admit a (B, p)-decomposition that has length `:

u =
(∏`

i=1 ui · bi mod n

)
· u`+1,

v =
(∏`

i=1 vi · bi mod n

)
· v`+1.

76

5.2. SEPARATION BY UNAMBIGUOUS LANGUAGES

Then, for all i ∈ {1, . . . , `+ 1}, ui ∼k′ vi.

Proof. As before, we denote the marked occurrences of bi mod n by ci, for all i. Recall that
by definition of the decompositions, for each j, cj /∈ alph(uj) and cj /∈ alph(vj). Let i be in
{1, . . . , ` + 1}. We will use EF games to show that ui ∼k′ vi. Let Spoiler play inside ui and
vi during k′ rounds in the EF game on u and v. As u ∼k v, we know that Duplicator is able
to answer to these moves. In order to conclude that indeed ui ∼k′ vi, we need to show that
she is able to answer by playing within ui and vi. In fact, we will show that if she would play
outside of this area, she would lose. Since she has a winning strategy, it then follows that she
is able to play within ui and vi.

Suppose that at a certain point Duplicator plays on a position outside of ui and vi, to the
left, say on v. Then Spoiler can move the pebble in u subsequently to ci−1, ci−2, . . . , c1 (using,
in total, at most i − 1 + k′ ≤ ` + k′ < (p + 1)|B| + k′ ≤ k moves). Since for all j, we have
cj /∈ alph(vj), and since the pebble in v is already located to the left of vi, Duplicator will
subsequently have to play in (possibly strict prefixes of) v1c1v2 · · · ci−2, v1c1v2 · · · ci−3, and so
on. It follows that she is not able to answer when Spoiler plays on c1.

Now suppose that Duplicator plays on a position outside of ui and vi, to the right, say on v.
Then Spoiler can move the pebble in v subsequently to ci, ci−1, ci−2, . . . , c1 (using, in total, at
most i+ k′ ≤ k moves). For similar reasons as before, Duplicator will not be able to answer
in u to each of these moves.

It follows that during the k′ rounds that Spoiler plays inside ui and vi, Duplicator does too.
Thus, ui ∼k′ vi.

Completeness result using (B, p)-decompositions

The next proposition contains the essential ingredients to prove the completeness of the
fixpoint algorithm described in Section 5.2.1. Here, we consider two words that are
FO2(<)[k]-equivalent for a specific k. We show how one can use the (B, p)-decompositions to
break these words into suitable factors, to which one can apply induction on the size of the
alphabet in order to obtain that pairs of the images of these factors are in the set Alg(α),
the output of the fixpoint algorithm. We then show how recombining these factors, using
Operations (1) and (2) of the algorithm, yields that the pair of images of the original words
is also in Alg(α).

Proposition 5.15. Let M be a monoid, and α : A∗ → M a surjective morphism. Let
f(n) = (2|M |2 + 3)n2. For all X ⊆ A, and all u, v ∈ X∗ such that alph(u) = alph(v) = X
and u ∼f(|X|) v, it holds that (α(u), α(v)) ∈ Alg(α).

Proof. We prove this by induction on the size of the alphabet. Let B ⊆ A. Our induction
hypothesis is that for all X ⊆ A such that |X| < |B|, the statement holds. Define κ :=
f(|B|) = (2|M |2 + 3)|B|2, and κ′ := f(|B|−1) = (2|M |2 + 3)(|B|−1)2. Let u, v ∈ B∗ be such
that alph(u) = alph(v) = B and u ∼κ v. We want to prove that (α(u), α(v)) ∈ Alg(α).

Note that for all p ≤ 2(|M |2 + 1), we have

(p+ 1)|B| ≤ (2|M |2 + 3)|B| ≤ (2|M |2 + 3)|B|2 = κ.

77

CHAPTER 5. UNAMBIGUOUS LANGUAGES

Thus, by Lemma 5.13, for all p ≤ 2(|M |2 + 1), u admits a (B, p)-decomposition if and only if
v admits a (B, p)-decomposition. There are thus two cases: either there is a p ≤ 2(|M |2 + 1)
such that u, v both admit a (B, p)-decomposition, or both u and v do not admit a (B, p)-
decomposition for any p ≤ 2(|M |2 + 1). We treat these cases separately.

Case 1. There is a p ≤ 2(|M |2 + 1) such that both u and v admit a (B, p)-decomposition.

Again by Lemma 5.13, both (B, p)-decompositions have the same length `, and they are given
by

u =
(∏`

i=1 ui · bi mod n

)
· u`+1,

v =
(∏`

i=1 vi · bi mod n

)
· v`+1.

By definition of (B, p)-decompositions, for all i ∈ {1, . . . , ` + 1}, we have bi mod n /∈ alph(ui)
and bi mod n /∈ alph(vi). We may apply Lemma 5.14, since, as |B| ≥ 1,

(p+ 1)|B|+ κ′ ≤ (2|M |2 + 3)|B|+ (2|M |2 + 3)(|B| − 1)2

= (2|M |2 + 3)(|B|2 − |B|+ 1) ≤ (2|M |2 + 3)|B|2 = κ.

It follows that for all i, ui ∼κ′ vi. In particular, ui and vi have the same alphabet, which is
strictly smaller than B since the letter bi mod n is not in it. Since κ′ = f(|B| − 1), we can
thus use the induction hypothesis to conclude that (α(ui), α(vi)) ∈ Alg(α, alph(ui)). Recall
from Section 5.2.1 that during the initialization phase, in particular, all pairs of the shape
(α(bi mod n), α(bi mod n)) are added to Alg(α, {bi mod n}). Using that α is a morphism, multiple
application of Operation (1) now yields that (α(u), α(v)) ∈ Alg(α,B) ⊆ Alg(α).

Case 2. Neither u nor v admits a (B, p)-decomposition for any p ≤ 2(|M |2 + 1).

Since alph(u) = alph(v) = B, u and v are both (B, 0)-patterns. The fact that they do not
admit a (B, p)-decomposition, for any p ≤ 2(|M |2 + 1), thus means that they are at least
(B, 2|M |2 + 3)-patterns.

We define the words ul and vl as the minimal prefix of u resp. v that contains the subword
(b1b2 · · · bn)|M |

2+1. Thus, by construction, ul and vl are (B, |M |2 + 1)-patterns and admit a
(B, |M |2 + 1)-decomposition, which is of length |B| · (|M |2 + 1). These decompositions are

ul =
∏`
i=1 ul,i · bi mod n,

vl =
∏`
i=1 vl,i · bi mod n,

where ` = |B| · (|M |2 + 1) and for all i ∈ {1, . . . , ` + 1}, we have bi mod n /∈ alph(ul,i) and
bi mod n /∈ alph(vl,i).

Let k̄ = κ − |B| · (|M |2 + 1). We claim that ul ∼k̄ vl. This can be proved using EF games,
in a similar fashion as Lemma 5.14. Let Spoiler play inside ul and vl during k̄ rounds, in the
EF game on u and v. Since u ∼κ v, Duplicator is able to answer to each of these moves. We
show that if she plays outside of ul and vl, she will lose. It thus follows that she is able to
answer inside ul and vl. Suppose that Duplicator plays outside ul and vl, i.e. to the right, say
on word u. Now Spoiler can keep moving the pebble on u to the left by playing subsequently
on b|B|(|M |2+1) mod n, . . . , b1 mod n. When Spoiler starts playing this sequence of moves, the

78

5.2. SEPARATION BY UNAMBIGUOUS LANGUAGES

pebble on v is at, or to the left of, b|B|(|M |2+1) mod n. Since, for all i, bi mod n /∈ alph(ul,i), she
will lose. Note that at most k̄ + |B|(|M |2 + 1) = κ rounds have been played. It follows that

ul ∼k̄ vl. (5.2)

We define ur and vr in a symmetric way, as the minimal suffix of u resp. v that contains the
subword (b1b2 · · · bn)|M |

2+1. Again, by construction, these are (B, |M |2 + 1)-patterns. Note
that one can adapt our notion of (B, p)-decomposition to define a right-most decomposition.
By construction of ur and vr, their right-most decompositions are

ur =
(∏`

i=1 bi mod n · ur,i
)
,

vr =
(∏`

i=1 bi mod n · vr,i
)
,

where, ` = |B| · (|M |2 + 1), and, for all i, bi mod n /∈ alph(ur,i). Using this notion, we can apply
an argument symmetric to the one above, and obtain, for k̄ = κ− |B| · (|M |2 + 1), that

ur ∼k̄ vr. (5.3)

Now, since u and v are (B, 2|M |2 + 3)-patterns, there must be words uc and vc such that
u = ulucur and v = vlvcvr (i.e. the defined prefix and suffix do not overlap). Since alph(u) =
alph(v) = B, we have that alph(uc) ⊆ B and alph(vc) ⊆ B.

Our approach now is the following. We want to divide u and v into parts on which we can
use the induction hypothesis, and which are suitable to apply the operations of the fixpoint
algorithm to. Contrary to Case 1, we no longer have an upper bound on the decompositions
that u and v admit. Thus, it no longer suffices to just use Operation (1), as worked in Case
1. We will need to use Operation (2), and, therefore, we will break the words up as shown in
Figure 5.1, in such a way that we can harmlessly repeat ue, uf , ve and vf , that is, without
changing the image of the words under α.

u :

ul uc ur

uw ue ux uy uf uz

v :

vl vc vr

vw ve vx vy vf vz

Figure 5.1: Desired factorizations of u and v.

Consider the decompositions of ul and vl. By construction, these look like

ul =
∏`
i=1 ul,i · bi mod n,

vl =
∏`
i=1 vl,i · bi mod n,

79

CHAPTER 5. UNAMBIGUOUS LANGUAGES

where ` = |B| · (|M |2 + 1). Denote α(ul,ibi mod n) by si and α(vl,ibi mod n) by ti. We consider
the following two sequences of |M |2 + 1 monoid elements, which are the images of longer and
longer prefixes of the decompositions.

s1 · · · s|B|, s1 · · · s|B|·2, s1 · · · s|B|·3, . . . , s1 · · · s|B|(|M |2+1), and

t1 · · · s|B|, t1 · · · t|B|·2, t1 · · · t|B|·3, . . . , t1 · · · t|B|(|M |2+1).

Note that there are only |M |2 different pairs of elements of M . It follows that there must be
g, h such that g < h, and both

s1 · · · s|B|·g = s1 · · · s|B|·gs|B|·g+1 · · · s|B|·h, and

t1 · · · t|B|·g = t1 · · · t|B|·gt|B|·g+1 · · · t|B|·h.

Applying these equalities multiple times gives that

s1 · · · s|B|·g = s1 · · · s|B|·g(s|B|·g+1 · · · s|B|·h)ω, and

t1 · · · t|B|·g = t1 · · · t|B|·g(t|B|·g+1 · · · t|B|·h)ω.

The factors that give rise to s|B|·g+1 · · · s|B|·h resp. t|B|·g+1 · · · t|B|·h will be our ue resp. ve.
That is, we define,

uw =
∏|B|·g
i=1 ul,i · bi mod n, vw =

∏|B|·g
i=1 vl,i · bi mod n,

ue =
∏|B|·h
i=|B|·g+1 ul,i · bi mod n, ve =

∏|B|·h
i=|B|·g+1 vl,i · bi mod n,

ux =
∏`
i=|B|·h+1 ul,i · bi mod n, vx =

∏`
i=|B|·h+1 vl,i · bi mod n.

Note that the factors ue and ve contain the following distinguished letters,

b|B|·g+1 mod n, b|B|·g+2 mod n, . . . , b|B|·h mod n.

Since g < h, this means that they contain all letters from B, and it follows that alph(ue) =
alph(ve) = B.

In (5.2), we saw that ul ∼k̄ vl. We want to use Lemma 5.14 to see how the factors of ul and
vl are related. Let us first verify that Lemma 5.14 may be applied to ul and vl. Indeed, for
κ′ = f(|B| − 1) = (2|M |2 + 3)(|B| − 1)2, since |B| ≥ 1, we have

(|M |2 + 2)|B|+ κ′ = (|M |2 + 2)|B|+ (2|M |2 + 3)(|B| − 1)2

= (2|M |2 + 3)|B| − |B|(|M |2 + 1) + (2|M |2 + 3)(|B| − 1)2

= −|B|(|M |2 + 1) + (2|M |2 + 3)|B|2 + (2|M |2 + 3)(1− |B|)
≤ −|B|(|M |2 + 1) + (2|M |2 + 3)|B|2 = k̄.

Thus, for all i ∈ {1, . . . , |B| · (|M |2 +1)}, Lemma 5.14 gives that ul,i ∼κ′ vl,i, and in particular
that alph(ul,i) = alph(vl.i). By definition, these factors of the decompositions use an alphabet
strictly smaller than B. Therefore, for all i ∈ {1, . . . , |B| · (|M |2 + 1)}, we have by induction
hypothesis that (α(ul,i), α(vl,i)) ∈ Alg(α, alph(ui)).

Similar to Case 1, the pairs (α(ul,i), α(vl,i)) can then be recombined by multiple applica-
tion of Operation (1), to obtain that (α(uw), α(vw)) ∈ Alg(α, alph(uw)) and (α(ue), α(ve)) ∈
Alg(α,B).

80

5.2. SEPARATION BY UNAMBIGUOUS LANGUAGES

Since ur and vr are also (B, |M |2 + 1)-patterns, and since we saw in (5.3) that ur ∼k̄ vr,
we can construct in a similar way the factorizations ur = uyufuz and vr = vyvfvz, such
that α(uy)α(uf)ω = α(uy), α(vy)α(vf)ω = α(vy), (α(uz), α(vz)) ∈ Alg(α, alph(uz)) and
(α(uf), α(vf)) ∈ Alg(α,B).

Clearly, we also have that alph(ux) ∪ alph(vx) ∪ alph(uy) ∪ alph(vy) ∪ alph(uc) ∪ alph(vc) ⊆ B.
Therefore, we can apply Operation (2) to (α(ue), α(ve)), uxucuy, vxvcvy, and (α(uf), α(vf)).
This yields that

(α(ue)
ωα(uxucuy)α(uf)ω, α(ve)

ωα(vxvcvy)α(vf)ω) ∈ Alg(α,B).

Finally, Operation (1) gives

(α(uw)α(ue)
ωα(uxucuy)α(uf)ωα(uz), α(vw)α(ve)

ωα(vxvcvy)α(vf)ωα(vz)) ∈ Alg(α,B).

By the above, this term is equal to (α(u), α(v)), and thus, (α(u), α(v)) ∈ Alg(α).

It is just a very small step from the previous proposition to the completeness result of the
fixpoint algorithm. This is described in the following proposition.

Proposition 5.16. The fixpoint algorithm described in Section 5.2.1 is complete.

Proof. We have to show that I(α) ⊆ Alg(α). Let (s, t) ∈ I(α). Then, for every k ∈ N, there are
u ∈ α−1(s), v ∈ α−1(t) such that u ∼k v, and there is B ⊆ A such that alph(u) = alph(v) = B.
This holds in particular for k = (2|M |2 + 3)|A|2. Let u and v be the words corresponding
to this k. Note that for f as in Proposition 5.15, k ≥ f(|B|). Thus, u ∼k v implies that
u ∼f(|B|) v, and Proposition 5.15 then yields that (s, t) = (α(u), α(v)) ∈ Alg(α).

5.2.4 Proof of the separation theorem for unambiguous languages

We are now ready to prove Theorem 5.5, the main theorem of this chapter. Let us first
restate the theorem.

Theorem 5.5. Let M be a monoid, let P and Q be subsets of M , and let α : A∗ →M be a
surjective morphism. Let κ = (2|M |2 + 3)|A|2. Then, the following conditions are equivalent.

(1) The languages α−1(P) and α−1(Q) are FO2(<)-separable,

(2) The languages α−1(P) and α−1(Q) are FO2(<)[κ]-separable,

(3) The language [α−1(P)]∼κ separates α−1(P) from α−1(Q),

(4) P ×Q ∩ I(α) = ∅.

Proof. As we noted before, the implications (3) ⇒ (2) ⇒ (1) are trivial. Also, implication
(1) ⇒ (4) follows by definition of FO2(<)-indistinguishable pairs: if α−1(P) and α−1(Q) are
FO2(<)-separable, then there is some n ∈ N, such that there is an FO2(<)[n]-formula that
defines a separator. Then there can be no elements of P and Q that form an FO2(<)[n]-
indistinguishable pair. Since, by definition, I(α) ⊆ In(α), it follows that P ×Q ∩ I(α) = ∅.

81

CHAPTER 5. UNAMBIGUOUS LANGUAGES

The only implication that remains to be proven is (4) ⇒ (3). It follows from Proposition 5.9
that Alg(α) ⊆ I(α), and from the proof of Proposition 5.16 that Iκ(α) ⊆ Alg(α), for κ =
(2|M |2 + 3)|A|2. Thus, P × Q ∩ Iκ(α) ⊆ P × Q ∩ I(α), which is empty by assumption.
It follows that there are no words w ∈ α−1(P), w′ ∈ α−1(Q) such that w ∼κ w′. Thus,
[α−1(P)]∼κ ∩ α−1(Q) = ∅.

5.3 Complexity of separation by unambiguous languages

Our objective in this chapter was to show that the separation problem for the class of un-
ambiguous languages is decidable. We proved this by providing an algorithm that solves this
question. The output of this fixpoint algorithm, described in Section 5.2.1, can be seen as
a subset of M ×M × P(A). This set is of exponential size with respect to the size of the
alphabet, and polynomial size with respect to the size of the monoid. Therefore, the fixpoint
algorithm will terminate in at most exponentially many steps. Thus, the separation problem
can be decided in Exptime with respect to the size of an NFA recognizing the languages.
Note that if we take the alphabet as a fixed parameter, the algorithm runs in Ptime with
respect to the size of the monoid.

Finding a lower bound for the complexity of this problem, as well as finding a sharp upper
bound, are questions that we did not pose ourselves. It is likely that the upper bound that
we found can still be improved.

82

Chapter 6

Locally testable and locally
threshold testable languages

6.1 Locally testable and locally threshold testable languages 84

6.1.1 Locally testable languages . 86

6.1.2 Locally threshold testable languages 87

6.2 Separation for a fixed counting threshold 88

6.2.1 Common d-patterns . 89

6.2.2 Separation theorem for a fixed counting threshold 90

Intermezzo: Relation with the concept of indistinguishable pairs . . 92

6.2.3 A common d-pattern yields equivalent words for all profile sizes . . . 92

6.2.4 From a common d-pattern in M to a common d-pattern in A 94

6.2.5 Bounding the profile size . 95

6.2.6 Decidability of separation by locally testable languages 99

6.3 Separation for full locally threshold testable languages 100

6.3.1 Decidability of separation by locally threshold testable languages . . 100

6.3.2 Bounding the counting threshold . 102

6.3.3 Optimality of the bound on the counting threshold 105

6.4 Complexity of LT- and LTT-separability 107

6.4.1 Upper complexity bounds . 107

Reduction to the case of k = 1 . 108

Deciding LT- and LTT-separability for k = 1 112

Results on upper complexity bounds 113

6.4.2 Lower complexity bounds . 113

6.5 Separating context-free languages by LT and LTT languages . . . 115

In this chapter, which is based on the papers [PvRZ13a, PvRZ14], we investigate the sep-
aration problem for locally testable and locally threshold testable languages. A language
is locally testable (LT) if membership of a word in the language only depends on the set

83

CHAPTER 6. LT AND LTT LANGUAGES

of infixes, prefixes and suffixes up to some fixed length that occur in the word. For a lan-
guage that is locally threshold testable (LTT), membership may also depend on the number
of occurrences of such infixes, which may be counted up to some fixed threshold.

As we have seen in Section 2.2.1, it was proved in [Alm99] that solving the separation problem
for a class of separators amounts to computing the 2-pointlike sets for the algebraic variety
corresponding to this class. It has been shown that both the varieties corresponding to locally
testable languages and to locally threshold testable languages have computable pointlike sets.
This is a consequence of [CN09, Cos01] for LT, and of [BP91, Str85, Ste98, Ste01] for LTT.
These results prove the decidability of the separation problem for these classes. For LTT,
however, this is done in an indirect way. Besides working in an algebraic setting, one uses that
LTT corresponds to the variety Acom∗D. The decidability then follows from the transfer result
that states that computability of pointlikes is preserved under the operation V 7→ V∗D.

Our approach to show that the LT- and LTT-separation problems are decidable is by reduction
to fixed parameters. The class LTT comes with two parameters: a first parameter for the
length of the factors that determine membership, and a second one for the threshold up to
which these factors are counted. The class LT only has the first parameter. In Section 6.1,
we provide definitions for both classes. Our approach is then to establish bounds, which
depend on the input languages, on the parameters holding for potential separators. For fixed
parameters there are only finitely many languages, and thus providing such bounds proves
that the separation problems are decidable. Contrary to the algebraic approach, this method
also gives a description of a separator in case it exists, in terms of these parameters.

Recently, some of the results in this chapter have been reproved in a generic way in the
paper [PZ14c], which gives transfer results for the separation problem for different fragments of
FO, to which the successor relation has been added as a predicate. The class LTT corresponds
to the logical fragment FO(=) with the successor relation added, and is one of the fragments
to which this transfer result applies.

In Section 6.2, we first restrict ourselves to the class of LTT languages with a fixed thresh-
old. For this situation, we are able to provide a bound on the length of the factors. As a
consequence, this solves the LT-separation problem, since the class LT is equal to LTT with
fixed threshold 1. It turns out, as we show in Section 6.3, that the same bound still works for
the full class LTT. In this section, we also provide a bound on the threshold. In Section 6.4,
we give upper and lower complexity bounds for the LT- and LTT-separation problems. The
upper bounds are based on forbidden patterns in the NFA or monoid recognizing the input
languages. Finally, in Section 6.5, we consider separation by LT and LTT languages when the
class of input languages is the class of context-free languages, rather than the class of regular
languages.

6.1 Locally testable and locally threshold testable lan-
guages

In order to introduce the classes of languages that we consider in this chapter, let us first
make some definitions. For a word w ∈ A∗, recall that we denote the length or size of w as
|w|. When w is nonempty, we view w as a sequence of |w| positions labeled over A. In this

84

6.1. LT AND LTT LANGUAGES

chapter, we number the positions from 0, for the leftmost position, to |w|−1, for the rightmost
position. Recall also that an infix of a word w ∈ A∗ is a word w′ such that w = u · w′ · v for
some u, v ∈ A∗, and that in this case, we say that w′ is a prefix (resp. a suffix) of w, if u = ε
(resp. if v = ε).

Let 0 ≤ x < y ≤ |w|. We write w[x, y] for the infix of w starting at position x and ending
at position y − 1. For example, if w = abcdabc, then w[2, 5] = cda. By convention, we
also define w[x, x] = ε. Observe that by definition, when x ≤ y ≤ z, we have w[x, z] =
w[x, y] · w[y, z].

The following definition allows us to work with one single notion instead of the three notions
of prefix, infix and suffix.

Definition 6.1. For k ∈ N, let k` = bk/2c and kr = k − k`. A k-profile is a pair of words
(w`, wr), with |w`| ≤ k` and |wr| ≤ kr. Given w ∈ A∗ and a position x of w, the k-profile of x is
the pair (w`, wr) defined as follows: w` = w[max(0, x−k`), x] and wr = w[x,min(x+kr, |w|)].

For example, in w = abcdabc, the 3-profile of x = 2 is (b, cd). See also Figure 6.1. The set of
k-profiles over A is denoted by Ak. Note that its size is |Ak| = |A|O(k).

bacccaabcbaabba

x y z

(ε, bac) (aab, cba) (aab, ba)6-profiles of x, y and z:

Figure 6.1: Illustration of the notion of k-profile for k = 6.

A k-profile is thus a description of an infix of w that is centered at position x. As can be seen
in Figure 6.1, the k-profiles of positions close to the beginning or to the end of the word are
shorter. Thus, we may use the k-profiles that occur in a word to identify the prefixes and
suffixes of length ≤ k − 1 of this word.

To this end, suppose that |w| ≥ k − 1 and consider the k-profile of the position k` − 1. This
is (w`, wr), for w` = w[0, k` − 1] and wr = w[k` − 1, k − 1]. Then, w` · wr = w[0, k − 1] is the
prefix of w of length k − 1. Similarly, we obtain the suffix of length k − 1 from the k-profile
of the position |w| − kr + 1. In this case, w` ·wr = w

[
|w| − (k− 1), |w|

]
is the suffix of length

k − 1.

Note that, if k = 2, then the position |w| − kr + 1 = |w|, and therefore lies outside of the
word. Since we also want to be able to read the suffix of length 1 from the set of 2-profiles
of a word, we introduce a dummy position |w|, and define its k-profile as (w`, wr), for
w` = w[max(0, |w| − k`), |w|] and wr = w[|w|,min(|w|, |w|+ kr)] = ε.

Definition 6.2. A k-profile (w`, wr) occurs in a word w if there exists some position x ∈
{0, 1, . . . , |w|} whose k-profile is (w`, wr). If n is a natural number, we say that (w`, wr) occurs
n times in w if there are n distinct positions in {0, 1, . . . , |w|} where (w`, wr) occurs. In this
case, we write |w|(w`,wr) = n.

The set of all k-profiles over the alphabet A is denoted by Ak. Its size is |Ak| = |A|O(k).

85

CHAPTER 6. LT AND LTT LANGUAGES

Definition 6.3. We say that two numbers n,m ∈ N are equal up to threshold d if n = m, or
both n,m ≥ d. For two words w,w′, we write w ≡dk w′, if for every k-profile (w`, wr), it holds
that the numbers |w|(w`,wr) and |w′|(w`,wr) are equal up to threshold d.

One can verify that ≡dk is an equivalence relation (and actually a congruence) of finite index.
The ≡dk-equivalence class of a word w is denoted as [w]dk.

6.1.1 Locally testable languages

A language is called locally testable if, indeed, it can be tested locally whether a word belongs
to the language or not. To be more precise, membership of a word in a locally testable
language can be tested by inspecting its prefixes, suffixes and infixes up to some length
(which depends on the language).

Definition 6.4. A language is locally testable (LT) if it is a finite boolean combination of
languages of the following form.

1. uA∗ = {w | u is a prefix of w}, for some u ∈ A∗.

2. A∗u = {w | u is a suffix of w}, for some u ∈ A∗.

3. A∗uA∗ = {w | u is an infix of w}, for some u ∈ A∗.

The next lemma allows us to describe the class of locally testable languages in terms of
k-profiles rather than prefixes, infixes and suffixes.

Lemma 6.5 (adaptation of [BP91, Proposition 2.1]). The class of locally testable languages
is the class of languages that are unions of ≡1

k-classes, for some k ∈ N.

Proof. Let L be a locally testable language. Let i be the maximal length of the infixes
occurring in the boolean expression for L, and let p resp. s be the maximal length of prefixes
resp. suffixes occurring in this expression. Define k = max(i, p + 1, s + 1). Let w ∈ L
and let w ≡1

k w
′. By definition of the ≡1

k-equivalence, w and w′ have the same prefixes of
length ≤ k − 1 ≤ p, the same suffixes of length ≤ k − 1 ≤ s and the same infixes of length
≤ k ≤ i. It follows that w′ ∈ L. For the converse direction, it suffices to show that every
class of the form [w]1k is a finite boolean combination of languages as above. To this end,
define Pw = {u ∈ A≤ k−1 | ∃v ∈ A∗. w = uv}, Sw = {u ∈ A≤ k−1 | ∃v ∈ A∗. w = vu},
Iw = {u ∈ A≤ k | ∃v, v′ ∈ A∗. w = vuv′}, and Jw = {u ∈ A≤ k | ∀v, v′ ∈ A∗. w 6= vuv′}. Now,

[w]1k =
(⋂
u∈Pw

uA∗ ∩
⋂
u∈Sw

A∗u ∩
⋂
u∈Iw

A∗uA∗
)∖ ⋃

u∈Jw

A∗uA∗.

Since every LT language is a finite boolean combination of languages of the form uA∗, A∗uA∗

and A∗u, the class LT is a subclass of the FO(<)-definable languages. For example, uA∗, for
u = u1 · · ·un with all ui’s in A, is defined by the following FO(<)-formula,

∃x1. . . .∃xn.
(
∀y. ¬(y < x1) ∧

∧
i=2,...,n

(
xi−1 < xi ∧ ∀y. ¬(xi−1 < y ∧ y < xi)

)
∧ u1(x1) ∧ . . . un(xn)

)
.

86

6.1. LT AND LTT LANGUAGES

However, no simple description of LT in terms of first-order logic is known. In terms of
linear temporal logic, LT languages are exactly those defined by formulas involving only the
operators F (eventually) and X (next), with no nesting of F operators.

For all k ∈ N, we denote the set of languages that are unions of ≡1
k-classes by LT[k]. Thus,

LT =
⋃
k LT[k]. Given L ⊆ A∗ and k ∈ N, the smallest LT[k]-language containing L is

[L]1k = {w ∈ A∗ | ∃u ∈ L such that u ≡1
k w}.

However, there is in general no smallest LT language containing a given regular language.
For example consider the language L = (aa)∗ over A = {a}. Let L′ be an LT language that
contains L. Then, L′ is an LT[k]-language for some k. Now, for n such that |(aa)n| ≥ k, we
have that, for every m ∈ N, (aa)n ≡1

k (aa)nam. Thus, L′ is of the shape (aa)na∗ ∪ F , with
F finite. There is no smallest LT language of this shape: one can always remove a2n+1 from
L′ to obtain a smaller LT language that still contains (aa)∗.

The membership problem for the class of locally testable languages was raised by McNaughton
and Papert [MP71], and solved independently by Zalcstein, Brzozowski and Simon, and Mc-
Naughton [Zal72, BS73, McN74]. This was done by characterizing the syntactic semigroups of
locally testable languages. A language is locally testable if and only if its syntactic semigroup
is in LSl. This is the variety of all finite locally idempotent and commutative semigroups,
also called local semilattices. This means that a semigroup S belongs to LSl if and only
if, for every idempotent e ∈ S, the semigroup eSe belongs to Sl. Therefore, LSl consists
of all finite semigroups that satisfy, for all e ∈ E(S) and for all s, t ∈ S, esese = ese and
esete = etese.

If the input language is given by a deterministic automaton, the membership problem for LT
is in Ptime [KMM89].

6.1.2 Locally threshold testable languages

An extension of the class of locally testable languages is the class of locally threshold testable
languages. In this class, the occurrence of infixes is counted up to some threshold.

Definition 6.6. A language is locally threshold testable (LTT) if it is a finite boolean combi-
nation of languages of the following form.

1. uA∗ = {w | u is a prefix of w}, for some u ∈ A∗.

2. A∗u = {w | u is a suffix of w}, for some u ∈ A∗.

3. {w | u occurs at least d times as an infix of w}, for some u ∈ A∗ and d ∈ N.

Again, since the k-profiles of a word not only determine the infixes of length k, but also
determine the prefixes and suffixes of length ≤ k − 1 of the word, an LTT language can be
defined purely in terms of k-profiles counted up to a threshold. Similar to Lemma 6.5, one
can prove that this class is exactly the class of languages that are unions of ≡dk-classes, for
some k, d ∈ N depending on the language. The natural number d is called the counting
threshold .

87

CHAPTER 6. LT AND LTT LANGUAGES

For k, d ∈ N, let us denote by LTT[k, d] the set of the finitely many languages that are unions
of ≡dk-classes. By definition, we have LTT =

⋃
k,d LTT[k, d]. Given L ⊆ A∗, the smallest

LTT[k, d]-language containing L is

[L]dk = {w ∈ A∗ | ∃u ∈ L such that u ≡dk w}.

As before, there is in general no smallest LTT language containing a given regular language.
The same example with L = (aa)∗ over A = {a} also works to show this for the class of LTT
languages.

The class of LTT languages can be defined in terms of first-order logic: a language is LTT
if and only if it can be defined by an FO(=,+1)-formula, i.e., a first-order logic formula
using predicates for the equality and the successor relation, but not for the linear order.
See [BP91, Tho82]. It was shown in [TW85] that the fragment FO(=,+1) corresponds to
the class of languages recognized by the semidirect product Acom ∗D. This gives a decidable
characterization for the class of locally threshold testable languages. Membership can be
tested in Ptime [Pin96, Pin05, Tra01a], if the input language is given by a deterministic
automaton.

6.2 Separation for a fixed counting threshold

Before studying the full LTT-separation problem in Section 6.3, we first restrict ourselves to
a simpler problem. It turns out that the results for this simpler problem will be very useful
when dealing with the full LTT-separation problem. In this section, we fix d ∈ N and look
at the separation problem for the class of locally threshold testable languages with counting
threshold d. We prove that this is a decidable problem. That is, we prove that, for a fixed
d ∈ N and two regular languages, it is decidable whether there exists a k ∈ N such that the
languages are separable by an LTT[k, d]-language. In particular, this proves the decidability
of the separation problem for LT, as this class corresponds to LTT with counting threshold
d = 1. All results in this section are for an arbitrary fixed d. Theorem 6.12 states the main
results of this section. It contains the following two contributions.

(1) First, we establish a bound k on the size of profiles, such that it suffices to consider only
profiles up to this size in order to see whether the input languages can be separated. This
bound only depends on the size of a monoid recognizing these languages, and it can be
computed. One can use this bound in a brute-force algorithm that tests separability by
all the finitely many LTT[k, d]-languages.

(2) The second contribution is a criterion on the input languages to check whether there
exists a k such that the languages are LTT[k, d]-separable. This criterion can be defined
equivalently on an automaton or a monoid recognizing the input languages, in terms
of the absence of common patterns. Using this criterion, we bypass the brute force
algorithm and obtain a better complexity result. We will discuss this complexity result
in Section 6.4.1.

We will see in Section 6.3 that the bound k on the size of the profiles from (1) actually also
works for the full LTT-separation problem.

88

6.2. SEPARATION FOR A FIXED COUNTING THRESHOLD

In Section 6.2.1, we define the criterion on automata or monoids recognizing the input lan-
guages. This criterion identifies the so-called d-indistinguishable pairs of monoid elements,
or of pairs of states. We will come back to this in Section 6.2.2. Our separation theorem for
the class of LTT languages with a fixed counting threshold is also stated in Section 6.2.2. In
Sections 6.2.3, 6.2.4, and 6.2.5, we prove the different implications of this theorem.

6.2.1 Common d-patterns

In this section, we define a criterion that must be satisfied by two languages in order
for these to be LTT[k, d]-separable for some k. One can equivalently define the criterion
on an automaton or on a monoid recognizing the languages. Here, we present both of
these definitions. The criterion states the absence of common patterns of a certain shape,
determined by d. Recall that d is fixed throughout Section 6.2. The patterns will identify
factors that can be pumped without changing the syntactical value of a word, such that a
common pattern leads to witnesses of non-LTT[k, d]-separability for arbitrarily large k. To
make this more precise, we first introduce the relevant notions.

Definition 6.7. A block is a triple of words b = (v`, u, vr) where v`, vr 6= ε. A prefix block is
a pair of words p = (u, vr) with vr 6= ε, and a suffix block is a pair of words s = (v`, u) with
v` 6= ε.

Definition 6.8. Let d ∈ N. A d-pattern P is either a word w, or is a triple (p, f, s) where p
and s are respectively a prefix and a suffix block, and f is a function from the set of blocks
to the set {0, . . . , d}, such that all but finitely many blocks are mapped to 0.

An example of a 3-pattern is P = ((a, b), f, (b, a)), with f sending (b, a, b) to 3, and all other
blocks to 0.

Definition 6.9. Let w be a word and let P be a d-pattern. We say that w admits a P-
decomposition if w can be decomposed as w = u0v1u1v2 · · · vnun with n ≥ 0 and such that
either n = 0 and P = u0 = w, or P = (p, f, s) and the following conditions are verified,

1. p = (u0, v1) and s = (vn, un),

2. for every block b, if f(b) < d, then
∣∣{i | (vi, ui, vi+1) = b}

∣∣ = f(b),

3. for every block b, if f(b) = d, then
∣∣{i | (vi, ui, vi+1) = b}

∣∣ ≥ d.

We may say P-decomposition to mean a P-decomposition of some word.

For example, consider the 3-pattern P = ((a, b), f, (b, a)), with f sending (b, a, b) to 3, and
all other blocks to 0. All words of the shape w = a(bab)≥ 3a admit a P-decomposition. To
see this, take, for every i, ui = a and vi = b. Then, w = u0v1u1v2 · · · vnun for some n, and
(u0, v1) = (a, b), (vn, un) = (b, a), and

∣∣{i | (vi, ui, vi+1) = (b, a, b)}
∣∣ ≥ 3.

In the following definition we use d-patterns to express that some factors of a word may be
pumped without changing the syntactical value of the word.

89

CHAPTER 6. LT AND LTT LANGUAGES

Definition 6.10. Let α : A∗ → M be a morphism into a monoid M , and let s ∈ M . A
P-decomposition of a word w is said to be (α, s)-compatible if α(w) = s and, for all 1 ≤ i ≤ n,
α(u0 · · · vi) = α(u0 · · · vi) · α(vi). Similarly, if p, q are two states of an automaton A, a P-
decomposition of the word w is (p, q)-compatible if there is a run from p to q for w, such that
for all 1 ≤ i ≤ n, each infix vi labels a loop in the run, as depicted in Figure 6.2. Here, edges
denote transition sequences.

p q
u0 u1 ui−1 ui+1 un−1ui un

v1 vi vi+1 vn

Figure 6.2: A (p, q)-compatible P-decomposition of w = u0v1 · · · vnun.

The intuition behind the d-patterns is the following. If a d-pattern is compatible with elements
of a recognizing set of a monoid, or with initial-final pairs of states of an automaton, then
it defines a subset of the regular language recognized by the monoid or the automaton. For
automata, this subset is the language recognized by the automaton of Figure 6.2, with p as
an initial and q as a final state. This language thus gives information about the prefix, suffix
and infixes, occurring up to threshold d, present in words of the language. For instance, the
(p, q)-compatible P-decomposition of Figure 6.2 implies that for every m ∈ N, there is a word
in the language that has prefix u0v

m
1 , a word that has suffix vmn un, and the same for infixes

(with counting) corresponding to the d-pattern.

Since two languages are LTT[k, d]-separable if and only if there are no words in the two
respective languages that share the same prefix and suffix of length k − 1 and infixes of
length k up to threshold d, it is interesting to compare the d-patterns of the two languages.
To this end, we define the following notion.

Definition 6.11. Let d ∈ N and α : A∗ → M be a morphism into a finite monoid. We say
that a pair (s1, s2) ∈M×M has a common d-pattern for α if there exist a d-pattern P and two
P-decompositions of (possibly different) words that are respectively (α, s1)-compatible and
(α, s2)-compatible. Usually, the morphism α is clear from the context and we just speak about
a common d-pattern, without mentioning α. Also, if A is an automaton, and p1, q1, p2, q2 are
states of A, we say that the pair

(
(p1, q1), (p2, q2)

)
has a common d-pattern if there exist a

d-pattern P and two P-decompositions of words that are respectively (p1, q1)-compatible and
(p2, q2)-compatible.

In particular, the pair
(
(p1, q1), (p2, q2)

)
has a common 1-pattern if and only if there are

paths in A of the form shown in Figure 6.2 with the same set of triples (vi, ui, vi+1) and same
beginning and ending, going respectively from p1 to q1 and from p2 to q2. The notion of 1-
pattern is pertinent to the separation problem for the class of locally testable languages.

6.2.2 Separation theorem for a fixed counting threshold

The reason why common d-patterns are interesting when studying the separation problem
for locally threshold testable languages, is the following. A d-pattern identifies factors of a

90

6.2. SEPARATION FOR A FIXED COUNTING THRESHOLD

word that may be pumped without changing the syntactical value of the word. A common
d-pattern implies that this may be done simultaneously in both words. We will show that this
means that for any k, words in the languages can be constructed that are ≡dk-equivalent. In
fact, we will show that the property of a pair (s1, s2) ∈M ×M of having a common d-pattern
is necessary and sufficient for the languages α−1(s1) and α−1(s2) to not be separable by an
LTT[k, d]-language, for any k. A similar statement holds for common d-patterns in NFAs.
The difficult part of the proof is showing that this condition is necessary.

Furthermore, having a common d-pattern is a decidable property, which makes it particularly
useful for our purposes. The next theorem contains the main results of this section, and
states the relation between the absence of common d-patterns and the existence of an ` ∈ N
such that the languages are LTT[`, d]-separable. We devote Sections 6.2.3, 6.2.4, and 6.2.5 to
the proof of this theorem.

Theorem 6.12. Fix d ∈ N. Let L1, L2 be regular languages. Let α : A∗ →M be a morphism
into a finite monoid M recognizing both L1 and L2. Let A be an NFA recognizing both L1 and
L2, with Li = L(A, Ii, Fi). Let k = 4(|M |+ 1). Then, the following conditions are equivalent.

(1) L1 and L2 are LTT[`, d]-separable for some `,

(2) L1 and L2 are LTT[k, d]-separable,

(3) The language [L1]dk separates L1 from L2,

(4) There is no pair in α(L1)× α(L2) with a common d-pattern,

(5) There is no pair in (I1 × F1)× (I2 × F2) with a common d-pattern.

Observe that equivalence (1)⇔ (2) of this theorem is like a delay theorem [Str85, Ste01], for
separation restricted to the class of LTT with fixed d, since we prove that the size of profiles
that a potential separator needs to consider can be bounded by a function of the size of the
monoids recognizing the languages.

The equivalence (1) ⇔ (2) yields an algorithm to decide LTT-separability for a fixed
threshold. Indeed, an algorithm that tests all the finitely many LTT[k, d]-languages, for
k = 4(|M | + 1), as potential separators solves this question. This gives Corollary 6.13.
However, this brute-force approach yields a very costly procedure. It turns out that a
more practical algorithm can be obtained from Conditions (4) and (5). We postpone the
presentation of this algorithm to Section 6.4.1.

Corollary 6.13. Let d ∈ N. It is decidable whether two given regular languages are LTT[`, d]-
separable for some ` ∈ N.

Instantiating Theorem 6.12 for d = 1 gives five equivalent conditions for LT-separability,
and in particular yields an algorithm to decide LT-separability. Since this is an interesting
result in itself, we focus on this result in Section 6.2.6. After a brief intermezzo about
indistinguishable pairs, we will prove Theorem 6.12 for arbitrary, fixed, d. Note that the
implications (3)⇒ (2)⇒ (1) are immediate by definition. In Sections 6.2.3, 6.2.4, and 6.2.5,
we will subsequently prove the implications (1)⇒ (5)⇒ (4)⇒ (3).

91

CHAPTER 6. LT AND LTT LANGUAGES

Intermezzo: Relation with the concept of indistinguishable pairs

Before proving the separation theorem for LTT languages with fixed counting threshold d, let
us briefly mention the relation between the approach to studying the LTT-separation problem
that we take here, and our approach from Section 2.2.3.

Let α : A∗ → M be a morphism. If a pair (s1, s2) ∈ M × M has a common d-pattern
for α, it follows from Theorem 6.12, which we will prove in the following sections, that
the languages α−1(s1) and α−1(s2) are not LTT[`, d]-separable, for any ` ∈ N. Using our
terminology from Section 2.2.3, we can thus call such a pair d-indistinguishable for α, or
simply d-indistinguishable. We denote the set of such pairs by Id(α). One could similarly
define the d-indistinguishable pairs of pairs of states in Q2×Q2. If a pair is d-indistinguishable
for every d ∈ N, we say that it is an indistinguishable pair. We denote the set of these pairs
by I(α).

Note that a d-pattern P = (p, f, s) gives rise to a (d − 1)-pattern P ′ = (p, f ′, s), simply by
defining

f ′(b) =

{
f(b) if f(b) < d− 1
d− 1 if f(b) ≥ d− 1

It is immediate that a P-decomposition of a word w is also a P ′-decomposition. Recall that a
pair (s1, s2) ∈M×M has a common d-pattern if there is a d-pattern P and words w1, w2 that
have (α, s1)- resp. (α, s2)-compatible P-decompositions. This yields that a d-indistinguishable
pair (s1, s2) is also (d− 1)-indistinguishable, and we thus have the following inclusions.

I(α) =
⋂
n∈N

In(α) ⊆ . . . ⊆ Id(α) ⊆ Id−1(α) ⊆ . . . ⊆ I1(α). (6.1)

When dealing with LTT for a fixed counting threshold d, we are interested in computing
one single level of this sequence. However, in Section 6.3, we consider the full class of LTT
languages and we are interested in the limit behavior of this sequence. From the fact that this
sequence is growing with respect to the inclusion order, while all elements of the sequence are
in the finite set P(M ×M), it follows that there must be an index for which the sequence
stabilizes. In Section 6.3.2, we establish a bound on d which gives such a stabilization index
for the sequence. This bound depends on the size of the recognizing monoid or the number
of states in the automaton, and the size of the alphabet.

6.2.3 A common d-pattern yields equivalent words for all profile sizes

We now prove the implication (1) ⇒ (5) of Theorem 6.12, by contraposition. That is, we
prove that if there exists a pair

(
(p1, q1), (p2, q2)

)
∈ (I1 × F1)× (I2 × F2) that has a common

d-pattern, then there does not exist any ` ∈ N such that L1 and L2 are LTT[`, d]-separable. In
fact, we prove that if

(
(p1, q1), (p2, q2)

)
has a common d-pattern, then precisely these states

will, for every `, give rise to words that are too closely related to be LTT[`, d]-separable. Let
us formulate this in the following proposition.

92

6.2. SEPARATION FOR A FIXED COUNTING THRESHOLD

Proposition 6.14. Let d ∈ N and let A be an NFA. Let p1, q1, p2, q2 be states of A.
If
(
(p1, q1), (p2, q2)

)
has a common d-pattern, then, for all ` ∈ N, there exist w1 ∈

L(A, {p1}, {q1}), w2 ∈ L(A, {p2}, {q2}), such that w1 ≡d` w2.

Proof. Let L1 = L(A, {p1}, {q1}) and L2 = L(A, {p2}, {q2}). The pair
(
(p1, q1), (p2, q2)

)
has

a common d-pattern, thus by definition, there exists a d-pattern P, and words z1 ∈ L1,
z2 ∈ L2 that admit (p1, q1)- resp. (p2, q2)-compatible P-decompositions. If P = w ∈ A∗, then,
z1 = w = z2, and, clearly, z1 ≡d` z2, for all ` ∈ N.

Otherwise, P = (p, f, s). Let z1 = u0v1u1v2 · · · vnun and z2 = x0y1x1y2 · · · ymxm be the
(p1, q1)- resp. (p2, q2)-compatible P-decompositions of z1 and z2. For ` ∈ N, define

w1 = u0v
`(d+1)
1 u1v

`(d+1)
2 · · · v`(d+1)

n un,

w2 = x0y
`(d+1)
1 x1y

`(d+1)
2 · · · y`(d+1)

m xm.

It follows from the definition of compatibility that w1 ∈ L1 and w2 ∈ L2. We claim that
w1 ≡d` w2.

Since the P-decompositions of z1 and z2 use the same d-pattern P, we deduce that u0 = x0,
v1 = y1, vn = ym, and un = xm. Recall that by definition of a d-pattern, all vi’s and yi’s are
nonempty. Thus, in particular, w1 and w2 have the same prefix of length `− 1, and the same
suffix of length `− 1.

To show the claim, we furthermore have to show that each word of length at most ` occurs
the same number of times, up to threshold d, as an infix in w1 and in w2. Let u be an infix
of length at most ` of, say, w1. There are two cases.

(1) There is an index i such that u is an infix of v
`(d+1)
i . Then, u occurs at least d times

in v
`(d+1)
i , that is, at least d times in w1. Since the decompositions of z1, z2 are P-

decompositions, there exists j such that yj = vi. Therefore, u occurs at least d times as

an infix in y
`(d+1)
j , hence also in w2.

(2) The word u is not an infix of any of the v
`(d+1)
i ’s. Then, it must use one of the ui’s.

Since |u| ≤ ` and, for all i, |vi| ≥ 1, this means that it is either an infix of u0v
`(d+1)
1 , of

v
`(d+1)
n un, or there is an index i such that u is an infix of v

`(d+1)
i uiv

`(d+1)
i+1 . If it is an infix

of u0v
`(d+1)
1 , then also of x0y

`(d+1)
1 = u0v

`(d+1)
1 , and if it is an infix of v

`(d+1)
n un, then also

of y
`(d+1)
m xm = v

`(d+1)
n un.

Now assume that u is an infix of some v
`(d+1)
i uiv

`(d+1)
i+1 . Since the decompositions of z1, z2

are P-decompositions, the number of triples (vi, ui, vi+1) in the decomposition of w1 and
the number of triples (yj , xj , yj+1) in that of w2 which are equal to a given triple is the
same, up to threshold d. Thus, u occurs the same number of times up to threshold d in
both w1 and w2.

It follows that w1 ≡d` w2.

The implication (1) ⇒ (5) of Theorem 6.12 is a direct consequence of this proposition. Let(
(p1, q1), (p2, q2)

)
∈ (I1 × F1) × (I2 × F2) be such that this pair has a common d-pattern.

By Proposition 6.14, for all ` ∈ N, there exist w1 ∈ L(A, {p1}, {q1}), w2 ∈ L(A, {p2}, {q2}),

93

CHAPTER 6. LT AND LTT LANGUAGES

such that w1 ≡d` w2. Since, for i = 1, 2, L(A, {pi}, {qi}) ⊆ L(A, Ii, Fi), it follows that these
languages are not LTT[`, d]-separable, for any `.

6.2.4 From a common d-pattern in M to a common d-pattern in A

This section is devoted to the proof of the implication (5) ⇒ (4) of Theorem 6.12. We
will prove this by contraposition. That is, we prove that if there is a pair of monoid
elements (s1, s2) ∈ α(L1) × α(L2) that has a common d-pattern, then there is also a pair
of pairs of states

(
(p1, q1), (p2, q2)

)
∈ (I1 × F1) × (I2 × F2) that has a common d-pattern.

This will follow from the following proposition, which states that the presence of a pair
(s1, s2) ∈ α(L1)× α(L2) that has a common d-pattern does not depend on the choice of the
recognizing monoid or on the choice of the recognizing monoid morphism.

Proposition 6.15. Let d ∈ N. Let α : A∗ → M and β : A∗ → N be monoid morphisms
recognizing both L1 and L2. If there exists (s1, s2) ∈ α(L1) × α(L2) that has a common
d-pattern, then there exists (t1, t2) ∈ β(L1)× β(L2) that also has a common d-pattern.

Proof. Let α : A∗ → M and β : A∗ → N be morphisms recognizing both Li, for i = 1, 2,
and let Fi = α(Li) and Gi = β(Li). Let P be a common d-pattern of (s1, s2) ∈ F1 × F2. If
P = w ∈ A∗, then, by definition, w ∈ α−1(F1)∩ α−1(F2) = L1 ∩L2 = α−1(G1)∩ α−1(G2), so
P is a common d-pattern of (β(w), β(w)) ∈ G1 ×G2.

Otherwise, P is of the form (p, f, s). There exist w1, w2 ∈ A∗ that admit (α, s1)- resp. (α, s2)-
compatible P-decompositions. Let these P-decompositions be the following.

w1 = u0v1u1 · · · vnun,
w2 = x0y1x1 · · · ymxm.

(6.2)

By construction, p = (u0, v1) = (x0, y1) and s = (vn, un) = (ym, xm).

From P = (p, f, s), we define a new d-pattern P ′ that will be common to some (t1, t2) ∈
G1 ×G2. Define ω = |N |! . Then, for all s ∈ N , sω is idempotent. For a block b = (v`, u, vr),
we write bω for (vω` , u, v

ω
r). Note that in contrast to the ω-power of a monoid element, the

ω-power of a word is just a number of repetitions of the word and does not get reduced. Thus
one can always retrieve the original word. It follows that the mapping b 7→ bω is injective.

Let P ′ = (p′, f, s′) be the d-pattern defined as follows.

- p′ = (u0, v
ω
1) and s′ = (vωn , un),

- For all blocks b, if there exists c such that cω = b, then f ′(b) = f(c), and else, f ′(b) = 0.

Note that f ′ is well defined, since b 7→ bω is an injective mapping.

Now, consider the words
z1 = u0v

ω
1 u1 · · · vωnun,

z2 = x0y
ω
1 x1 · · · yωmxm.

(6.3)

Define t1 = β(z1) and t2 = β(z2). Since the decompositions of w1 resp. w2 in (6.2) were
(α, s1)- resp. (α, s2)-compatible, duplicating vi’s resp. yj ’s in these decompositions does not
change the image under α. It follows that z1 ∈ L1, thus β(z1) ∈ G1, and similarly, β(z2) ∈ G2.

94

6.2. SEPARATION FOR A FIXED COUNTING THRESHOLD

We will prove that the decompositions given in (6.3) are (β, t1)- resp. (β, t2)-compatible P ′-
decompositions. Clearly, the conditions on p′ and s′ are satisfied. To see that f ′(b) indeed
counts the number of occurrences of b, up to threshold d, in zi (for i = 1, 2), we use the
following. By construction, each of the f(c) occurrences in the P-decomposition of wi gives
rise to a specific occurrence of b in zi, and each occurrence of b in zi must come from a factor
c occurring in wi. It follows that the decompositions from (6.3) are indeed P ′-decompositions.
It remains to show that these decompositions are (β, ti)-compatible. We show this for i = 1.
For all l ∈ {1, . . . , n}, since ω = |N |! ,

β(u0 · · · vωl) · β(vωl) = β(u0 · · ·ul−1)β(vl)
ω · β(vl)

ω = β(u0 · · ·ul−1)β(vl)
ω = β(u0 · · · vωl).

Thus, we have shown that (t1, t2) ∈ G1 ×G2 has a common d-pattern.

We now show how the implication (5)⇒ (4) of Theorem 6.12 follows from Proposition 6.15.
Assume that (s1, s2) ∈ α(L1) × α(L2) has a common d-pattern. Let N be the transition
monoid of A, and let β : A∗ → N be the associated morphism. Since β recognizes L1 and
L2, it follows from Proposition 6.15 that there exists (t1, t2) ∈ β(L1)× β(L2) with a common
d-pattern. By definition of a transition monoid, it is then immediate to build, from (t1, t2), a
pair

(
(p1, q1), (p2, q2)

)
∈ (I1 × F1)× (I2 × F2) that has a common d-pattern.

6.2.5 Bounding the profile size

This section deals with implication (4) ⇒ (3) of Theorem 6.12. We will prove the following
statement, which is the contraposition of this implication: if, for k = 4(|M |+1), the language
[L1]dk does not separate L1 from L2, then there exists a pair (s1, s2) ∈ α(L1)×α(L2) that has a
common d-pattern. As this is the first time in our proofs of the implications of Theorem 6.12
that the bound k on the size of the profiles comes into play, this implication forms an important
part of the theorem, and it is not surprising that this implication is the most involved one to
prove.

Our approach is the following. The fact that [L1]dk does not separate L1 from L2 implies
that there exist words w1 ∈ L1 and w2 ∈ L2 such that w1 ≡dk w2. From these two words,
we will show how to construct a d-pattern P and two words w′1 ∈ L1, w′2 ∈ L2 that admit
P-decompositions that are (α, s1)- resp. (α, s2)-compatible, for some s1, s2 ∈ M . The
construction of w′1, w

′
2 amounts to duplicating certain infixes in w1, w2 that verify special

properties. We first define these special infixes, called k-loops. Throughout this section, we
use the value 4(|M |+ 1) for k.

Definition 6.16. Let w ∈ A∗, let x be a position in w, and let (w`, wr) be the k/2-profile
of x. We say that x admits a k-loop for α if there exists a nonempty prefix u of wr such
that α(w`) = α(w` · u). In this case, the smallest such u is called the k-loop of x for α. See
Figure 6.3. Usually, the morphism α is clear from the context and we do not mention it
explicitly.

For our construction to work, three specific properties of k-loops are important. The first
two properties are immediate from the definition: k-loops are determined by profiles, and
k-loops can be duplicated without modifying the image of the word under α.

95

CHAPTER 6. LT AND LTT LANGUAGES

a b aa cb c ba a c

x

k/2-profile of x

k-profile of x

w` wr
u

α(w`) = α(w`) · α(u)

Figure 6.3: A position x admitting a k-loop u, that is, α(w`) = α(w` · u).

Fact 6.17. Let x be a position of a word. Whether x admits a k-loop, and if so, which
k-loops x admits, only depends on the k/2-profile of x. In particular, the k-loop of two
positions with the same k/2-profile is the same.

Fact 6.18. Let w be a word and let x be a position of w that admits a k-loop u. Then, we
have α(w[0, x]) = α(w[0, x]) · α(u).

The last property we need is that k-loops occur frequently enough in words, which means
for us that for k = 4(|M | + 1), at least one of |M | + 1 consecutive positions must admit a
k-loop. We will show this in the following lemma, using pumping arguments.

Lemma 6.19. Let w ∈ A∗, let α : A∗ → M be a morphism, and let k = 4(|M | + 1). Let
x1, . . . , x|M |+1 be |M |+ 1 consecutive positions in w. Then, there exists at least one position
xi, with 1 ≤ i < |M |+ 1, that admits a k-loop for α.

Proof. Consider the sequence α(w[x1, x1]), α(w[x1, x2]), . . . , α(w[x1, x|M |+1]), which consists
of |M | + 1 elements of M . By the pigeonhole principle, there are i, j ∈ N with 1 ≤ i < j ≤
x|M |+1, such that α(w[x1, xi]) = α(w[x1, xj]). We will prove that xi admits a k-loop. The
k/2-profile of xi is (w`, wr) with w` = w[max(0, xi − (|M |+ 1)), xi] and wr = w[xi,min(xi +
|M | + 1, |w|). Since |w[x1, xi]| < |M | + 1, w[x1, xi] is a suffix of w`. Write v for the word
in A∗ such that w` = v · w[x1, xi]. Let u = w[xi, xj]. Then, α(w`) = α(v) · α(w[x1, xi]) =
α(v) · α(w[x1, xj]) = α(w` · u). Also, since |u| < |M | + 1, u is a prefix of wr. Therefore xi
admits u as a k-loop.

Note that u is not necessarily the k-loop of xi, as there might be a smaller word that satisfies
the definition as well.

The construction of w′1 and w′2 will make use of the following notions.

Definition 6.20. Let w, u ∈ A∗, and let x be a position of w. The word constructed from w
by inserting u at position x is the word w[0, x] · u · w[x, |w|].

For example, inserting cab at position 3 of the word abdabd gives the word abdcababd.

It follows from Fact 6.18 that inserting the k-loop of a position at that position does not
change the image under α of the word. Because of this fact, the following definition will
play a role when showing that we can construct words, in the respective languages, that are

96

6.2. SEPARATION FOR A FIXED COUNTING THRESHOLD

≡dk-equivalent.

Definition 6.21. Let w ∈ A∗. Let x be a position of w that admits a k-loop, and let zx be
the k-loop of x. Let w′ be the word constructed from w by simultaneously inserting in w, for
all such positions x, the infixes zx. The word w′ is called the k-unfolding of w.

We will prove the implication (4) ⇒ (3) of Theorem 6.12 by contraposition. Recall that by
definition of [L1]dk, we have that if this language does not separate L1 from L2, then there
exist w1 ∈ L1, w2 ∈ L2 with w1 ≡dk w2. Define s1 = α(w1) and s2 = α(w2). The following
proposition now shows that the pair (s1, s2) then, indeed, has a common d-pattern.

Proposition 6.22. Let α : A∗ → M be a morphism, let k = 4(|M | + 1) and let d ∈
N. Let w1, w2 be words such that w1 ≡dk w2. Then, there exists a d-pattern P, a word
with an (α, α(w1))-compatible P-decomposition, and a word with an (α, α(w2))-compatible
P-decomposition.

Proof. If w1 = w2, one can use the d-pattern P = w1. The words w1 and w2 then give the
desired (α, α(w1))- resp. (α, α(w2))-compatible P-decompositions.

We can thus assume that w1 6= w2. We will construct two new words w′1, w
′
2 from w1, w2 and

prove that there exists a d-pattern P = (p, f, s), for which w′1 admits an (α, α(w1))-compatible
P-decomposition and w′2 admits an (α, α(w2))-compatible P-decomposition. To this end, for
i = 1, 2, define w′i as the k-unfolding of wi. Since w1 6= w2 and w1 ≡dk w2, it follows in
particular that |w1|, |w2| > k/4 = |M | + 1. By Lemma 6.19, at least one insertion has thus
occurred both in the construction of w′1, and in the construction of w′2.

Let us now define the d-pattern that we will use. By construction, the word w′1 can be
decomposed as w′1 = u0v1u1v2 · · · vnun, where w1 = u0u1 · · ·un and the words vj are the
k-loops inserted during the construction. Since at least one insertion was made, it holds that
n ≥ 1 and we can define p = (u0, v1), s = (vn, un). We define f as the function that maps
a block (v`, u, vr) to the number of times that it occurs in the decomposition of w′1, up to
threshold d. That is, f sends the block (v`, u, vr) to

∣∣{1 ≤ i < n | (vi, ui, vi+1) = (v`, u, vr)}
∣∣,

counted with threshold d. Define P = (p, f, s). By definition, u0v1u1v2 · · · vnun is a P-
decomposition for w′1. Also, by Fact 6.18, it is (α, α(w1))-compatible. It remains to prove
that, for P as just defined, w′2 admits an (α, α(w2))-compatible P-decomposition.

By construction, the word w′2 can be decomposed in a similar way as w′1, that is, w′2 =
u′0v
′
1u
′
1v
′
2 · · · v′mu′m, where w2 = u′0u

′
1 · · ·u′m and the words v′j are the k-loops inserted during

the construction of w′2. If we prove that this is a P-decomposition, then by Fact 6.18, it will
be (α, α(w2))-compatible.

Let us first see that, indeed, (u′0, v
′
1) = p and (v′m, u

′
m) = s. We will use the fact that, since

w1 ≡dk w2, the words w1 and w2 have the same prefix of length k − 1, and the same suffix
of length k − 1. Recall that the positions of w1 are numbered from 0 to |w1| − 1. Let x
be the first position of w1 that admits a k-loop. By construction, the k-loop of x is v1. By
Lemma 6.19, x < k/4. The k/2-profile of x is(

w1[max(0, x− k/4), x], w1[x,min(x+ k/4, |w1|)]
)
.

97

CHAPTER 6. LT AND LTT LANGUAGES

Note that x + k/4 < k/2. Thus, x + k/4 ≤ k/2 − 1 = 2|M | + 1 ≤ 4|M | + 2 = k − 2, which
is the last position of the prefix w[0, k − 1]. It follows that the k/2-profile of x lies within
the prefix of length k − 1. Thus, the corresponding position x′ in the prefix of w′2 has the
same k/2-profile as x, and by Fact 6.17, it follows that the k-loop of x′ is v1. Note that,
automatically, x′ is the first position in w2 that admits a k-loop. Otherwise, by symmetry,
the same argument would yield an earlier position in w1 admitting a k-loop, which would
yield a contradiciton. It follows that (u′0, v

′
1) = (u0, v1) = p. In a similar way, we obtain that

(v′m, u
′
m) = s.

Now let x be a position of w1, that is inside some ui, for i /∈ {0, n}. Let x` and xr be positions
that admit a k-loop and that are the closest such positions to x, to the left (for x`) resp. to
the right (for xr). By construction, the k-loop of x` is vi, and the k-loop of xr is vi+1. By
Lemma 6.19, it follows that x− x` < k/4 and xr − x ≤ k/4. The k-profile of x is(

w1[max(0, x− k/2), x], w1[x,min(x+ k/2, |w1|)]
)
.

Since x−x` < k/4, we have x− k/2 < x`− k/4, and it follows that the k/2-profile of x`, that
is, (

w1[max(0, x` − k/4), x`], w1[x`,min(x` + k/4, |w1|)]
)
,

is contained in the k-profile of x. Similarly, from xr−x ≤ k/4, we obtain that xr+k/4 ≤ x+k/2
and it follows that the k/2-profile of xr is contained in the k-profile of x. For a sketch of the
situation, see Figure 6.4.

a c bc cc ca ac b

x

k
4 positions k

4 positions

w` wr

k-profile of x

These factors contain x`, xr, whose
k/2-profiles are included in w`, wr

Figure 6.4: Construction in Proposition 6.22.

Let y be a position, either of w1 or of w2, that has the same k-profile as x. Say that y is in
w2, in some factor u′j . Let x′`, x

′
r be the corresponding positions relative to y (that is, the

positions that are at the same distance to y as x`, xr are to x). By the above, the k/2-profiles
of x′` and x′r are inside the k-profile of y, and are the same as the k/2-profiles of x` resp. xr.
Thus, using Fact 6.17, x′`, x

′
r have k-loops vi resp. vi+1. As before, it follows that there are no

positions closer to y that admit a k-loop. It follows that (vi, ui, vi+1) = (v′j , u
′
j , v
′
j+1). Note

that this also says that the k-profile of a position x determines the positions of x` and xr,
relative to x, and thus determines the relative position of x inside u. This means that for
each factor ui and u′j , all positions of the factor have different k-profiles.

Thus, when taking the k-unfolding of a word, only the k-profile of a position x of this word
determines the block b = (v`, u, vr) in which this x will end up inside u, in the factor v` ·u ·vr.
For simplicity, we say in this case that position x ends up in b.

98

6.2. SEPARATION FOR A FIXED COUNTING THRESHOLD

Consider a block b = (v`, u, vr). Let Sb be the set of all k-profiles, occurring in w1 and w2, of
positions that end up in b. If ui is a factor whose positions end up in b, all |ui| = |u| positions
of this factor have a different k-profile. Thus, if Sb 6= ∅, then |Sb| ≥ |u|. Since w1 ≡dk w2, we
have for every k-profile in Sb that the number of positions that have this k-profile is equal, up
to threshold d, in w1 and w2. Let bi be the number of times that b occurs in the decomposition
of w′i (so, f(b) = b1, up to d). Note that if a position x in some factor uj ends up in b, then
all positions in uj end up in b, and uj = u. It follows that the number of positions in wi that
have a k-profile from Sb is bi · |u|. By the above, b1 · |u| = b2 · |u|, up to d.

We want to show that b1 = b2, up to threshold d. If both are greater than or equal to d, this
is true. Also, if Sb = ∅, then it is clear that b1 = b2 = 0. Therefore, suppose that b1 < d and
that |Sb| ≥ |u|. This means that the number of positions in w1 that have a k-profile from Sb is
b1 · |u| < d · |u|. By the pigeonhole principle, this means that there are at most |u|−1 k-profiles
that occur ≥ d times in w1. All other profiles occur exactly the same number of times in w2.
Since each occurrence of b in w′2 gives rise to the occurrence of |u| different k-profiles from Sb
in w2, and since w1 and w2 differ in the occurrence of at most |u| − 1 k-profiles from Sb, it
follows that each k-profile from Sb occurs equally often in w1 and in w2. Thus, b1 < d implies
that b1 = b2, and by symmetry, b2 < d also implies that b1 = b2. It follows that b1 = b2, up
to threshold d.

In other words, f(b) is the number of times the block b occurs in the decomposition of w′2,
and it follows that u′0v

′
1u
′
1v
′
2 · · · v′mu′m is a P-decomposition for w′2.

6.2.6 Decidability of separation by locally testable languages

Let us now focus on the class of locally testable languages. As mentioned before, decid-
ability of the separation problem for locally testable languages follows immediately from
Theorem 6.12 (one simply instantiates the theorem for d = 1). In view of the relevance of
this class, we explicitly state the conditions equivalent to being LT-separable in the following
theorem.

Theorem 6.23. Let L1, L2 be regular languages. Let α : A∗ → M be a morphism into a
finite monoid M recognizing both L1 and L2. Let A be an NFA recognizing both L1 and L2,
with Li = L(A, Ii, Fi). Let k = 4(|M |+ 1). Then, the following conditions are equivalent.

(1) L1 and L2 are LT-separable,

(2) L1 and L2 are LT[k]-separable,

(3) The language [L1]k separates L1 from L2,

(4) There is no pair in α(L1)× α(L2) with a common 1-pattern,

(5) There is no pair in (I1 × F1)× (I2 × F2) with a common 1-pattern.

As before, this theorem yields an algorithm to decide LT-separability, by testing all the
finitely many LT[k]-languages, for k = 4(|M | + 1), as potential separators. Again, this
brute-force approach yields a very costly procedure. In Section 6.4.1, we will see that
Conditions (4) and (5) can be exploited to obtain a more practical algorithm.

99

CHAPTER 6. LT AND LTT LANGUAGES

Corollary 6.24. It is decidable whether two given regular languages are LT-separable.

6.3 Separation for full locally threshold testable languages

In Section 6.3.1, we focus on showing that the separation problem for locally threshold testable
languages is decidable. We will show that the bound on k, found in Theorem 6.12 when looking
at LTT restricted to a fixed d, also works for the class of full LTT. This enables us to adapt an
algorithm from [Boj07] and show that the separation problem for LTT is decidable. This result,
however, does not give any insight about an actual separator yet. Next, in Section 6.3.2, we
provide a bound on the counting threshold d. This result, together with the bound on k that
we already had, yields another (brute-force) algorithm to test LTT-separability, and, more
importantly, it yields a description of a separator in case it exists. Finally, in Section 6.3.3,
we discuss the optimality of our bound on the counting threshold.

6.3.1 Decidability of separation by locally threshold testable lan-
guages

From Theorem 6.12, it follows in particular that for two regular languages L1, L2, both rec-
ognized by some monoid M , for d ∈ N and for k = 4(|M | + 1), the following equivalence
holds.

∃` ∈ N. L1, L2 are LTT[`, d]-separable ⇔ L1, L2 are LTT[k, d]-separable.

Since two regular languages are LTT-separable if and only if there exist d, ` ∈ N such that the
languages are LTT[`, d]-separable, the above equivalence yields, for k = 4(|M |+ 1),

L1, L2 are LTT-separable ⇔ ∃d ∈ N. L1, L2 are LTT[k, d]-separable. (6.4)

Our proof for the decidability builds on the above formulation of LTT-separability, and on
an adaptation of an algorithm to decide membership for LTT, presented in [Boj07]. In this
paper, it was proved that for a fixed k, one can use Parikh’s theorem [Par66] to translate the
property of a language of being in a class LTT[k, d], for some d, to a computable Presburger
formula. Presburger arithmetic is decidable [Pre29, Sko31]. In order to use this fact to prove
that membership in LTT is decidable, two ingredients are used in [Boj07],

- a bound on k,

- the translation to Presburger arithmetic.

By the formulation of LTT-separability in (6.4), we already have a bound for k that works
in our setting. It turns out that the translation to Presburger arithmetic, as applied in the
paper, can easily be adapted to express separability rather than membership in a Presburger
formula. The reason why this easy adaptation is possible is that the formula testing member-
ship was actually already formulated as testing separability between the input language and
its complement. In the rest of this section, we will generalize the arguments from [Boj07] and
explain how to construct the suitable Presburger formula. The notion of commutative image,
also called Parikh image, is important in this context. Let us first recall this notion.

100

6.3. SEPARATION FOR FULL LTT LANGUAGES

Definition 6.25. Let A = {a1, a2, . . . , an} be an alphabet, ordered as a1 < a2 < . . . < an.
Let w ∈ A∗. The commutative image of w, denoted by π(w), is a vector (m1,m2, . . . ,mn)
of natural numbers, such that for all i, mi is the number of occurrences of ai in w. For a
language L, the set π(L) = {π(w) | w ∈ L} is called the commutative image of L.

For our purposes, it will be useful to count profiles occurring in a word, rather than just
letters. Recall that the set of all k-profiles is denoted by Ak. We assume this set is ordered,
for example, by an order induced by the order on A.

Definition 6.26. Let k ∈ N. The k-image of w, denoted by πk(w), is the Ak-indexed vector
of natural numbers that counts, for every k-profile (w`, wr), the number of positions in w
with this k-profile. If L is a language, we define the k-image of L as the set {πk(w) | w ∈ L},
which we will denote by πk(L).

By definition of the relation ≡dk, we have the following fact.

Fact 6.27. Let w,w′ ∈ A∗ and let k, d ∈ N. Then w ≡dk w′ if and only if πk(w) and πk(w
′)

are componentwise equal up to threshold d.

A well-known result about commutative images is Parikh’s theorem, stated in [Par66], which
says that if L is context-free (thus, in particular, if L is regular), then π(L) is semilinear. Recall
that a set of vectors is semilinear if it is a finite union of linear sets of vectors, and that a set of
vectors is linear if it is of the form {x0 + i1x1 + . . .+ imxm | i1, . . . , im ∈ N, x0, . . . , xm ∈ Nn}.
By [GS66, Theorem 1.3], the fact that π(L) is semilinear implies that π(L) is Presburger
definable. As explained in [Boj07], Parikh’s theorem extends without difficulty to k-images.
Let us prove this in the following theorem.

Theorem 6.28. Let L be a context-free language and let k ∈ N. Then, πk(L) is semilinear.
Moreover, a Presburger formula for this semilinear set can be computed from L.

Proof. If k = 1, then πk(L) = π(L), and by Parikh’s theorem, this set is semilinear and can be
effectively calculated. When k > 1, consider the following language L′ over the alphabet Ak
of k-profiles: a word w′ is in L′ if and only if there exists w ∈ L of the same length (measured
in terms of their own respective alphabets) and such that a position in w′ is labeled by the
k-profile of the same position in w. The language L′ is context-free and, by construction,
the k-image πk(L) of L is the commutative image π(L′) of L′. By Parikh’s theorem, π(L′) is
semilinear and can be effectively calculated. It then follows from [GS66, Theorem 1.3] that
one can compute a Presburger formula for the set πk(L).

We can now explain how to decide LTT-separability.

Theorem 6.29. It is decidable whether two regular languages are LTT-separable.

Proof. Given two regular languages L1 and L2, and a monoid M recognizing both of these
languages, we let k = 4(|M | + 1). By the formulation in (6.4), L1, L2 are LTT-separable if
and only if there exists d ∈ N such that they are LTT[k, d]-separable. This is the case if and
only if there exists d ∈ N such that there are no words w1 ∈ L1, w2 ∈ L2 with w1 ≡dk w2.

101

CHAPTER 6. LT AND LTT LANGUAGES

By Fact 6.27, this can be expressed in terms of k-images in the following way: there exists
d ∈ N such that there do not exist any vectors x1 ∈ πk(L1), x2 ∈ πk(L2) that are equal,
componentwise, up to threshold d.

By Theorem 6.28, there are computable Presburger formulas for the sets πk(L1) and πk(L2). It
follows that the above statement can be expressed as a computable Presburger formula. From
the decidability of Presburger arithmetic [Pre29, Sko31], it then follows that LTT-separability
is decidable.

Besides the decidability of the LTT-separation problem, we are also interested in finding an
efficient algorithm that tests LTT-separability, and in finding an LTT-separator if it exists.
Finding an LTT-separator is the subject of the next section.

6.3.2 Bounding the counting threshold

In this section, we focus on finding a bound on the counting threshold d, which is such that
two languages, recognized by a monoid M , are LTT-separable if and only if they are LTT[k, d]-
separable, for k = 4(|M | + 1) and for the bound on d. Finding such a bound would yield
another proof of the fact that the separation problem for LTT is decidable. An important
advantage, however, of this approach, rather than the one taken in Section 6.3.1, is that it
also yields a description of a separator, if it exists.

Recall that Ak denotes the set of all k-profiles. Let n be either |M | + 1 or |Q| + 1, for
M a monoid and A = (A,Q, δ) an automaton that recognize both languages. We claim
that d = (|Ak|n)|Ak| has the desired property. It will follow from Theorem 6.32, which is
a separation theorem for the full class of LTT languages, that the proposed bound on d is
indeed correct.

We first look at the following lemma, that shows that whenever k-profiles occur ‘many’
times in a word w of a language L, one can obtain, by pumping appropriate factors of w, an
equivalent word that is still in L and in which these k-profiles occur as often as one wants.
This result will be useful later on, when we want to use witnesses of non-LTT[k, d]-separability
(for d fixed as above), to construct witnesses of non-LTT[k, d′]-separability, for every d′.

Lemma 6.30. Let L be a language and let α : A∗ →M be a morphism into a finite monoid
M recognizing L. Let k = 4(|M |+ 1) and let n = |M |+ 1. Let h, h′ ∈ N, such that h ≥ 1 and
h′ ≥ n · |Ak| · h. Let w ∈ L. Then, for all c ∈ N, one can construct a word w′ ∈ L such that
w′ ≡hk w and such that every k-profile that occurs h′ or more times in w, occurs c or more
times in w′.

Proof. A naive approach would be the following. As soon as a k-profile occurs at more than
n = |M | + 1 positions in w, the same monoid element occurs twice in the sequence of the
images of the prefix of w up to these positions. Therefore, one can pump the corresponding
infix of w that occurs between these positions to generate c copies of the k-profile, without
affecting membership in L. However, we also want to maintain that w′ ≡hk w. Thus, one
needs to be more careful and avoid duplicating k-profiles that occur strictly less than h times

102

6.3. SEPARATION FOR FULL LTT LANGUAGES

in w. This is why we use the much higher constant h′, rather than n, to find the infixes that
can be pumped in order to construct w′.

If there is no k-profile that occurs more than h′ times in w, then it suffices to take w′ = w.
Else, let (w`, wr) be such a k-profile that occurs more than h′ times in w. We will explain
how, by pumping factors in w, one can obtain a word w′ that contains more than c copies of
(w`, wr), while at the same time w′ ≡hk w. This construction can then be repeated to treat
all k-profiles that occur more than h′ times in w, in order to get the desired w′.

Let x1 < . . . < xh′ be h′ positions where (w`, wr) occurs. Note that there are at most
|Ak|(h − 1) positions in w such that the k-profile at this position occurs strictly less than h
times in w. We look at the positions that are in between consecutive positions from the list
x1, . . . , xh′ . By choice of h′, there are at least n|Ak|h − 1 such regions of positions that are
between xi and xi+1 for some 1 ≤ i < h′. Since there are at most |Ak|(h− 1) positions in w
that have a k-profile which occurs strictly less than h times in w, it follows that there exist
at least n consecutive positions in the list, say xi, . . . , xi+(n−1), such that no intermediate
position between xi and xi+(n−1) has a k-profile that occurs less than h times in w. (For, if
there would not be such n positions, we would need one position with a k-profile that occurs
less than h times for each sequence of n consecutive regions. Since there are at least n|Ak|h−1
regions, this means we would need at least |Ak|h−1 positions in w that have a k-profile which
occurs strictly less than h times in w. But as |Ak| > 1, we have that |Ak|h− 1 > |Ak|(h− 1),
giving a contradiction).

Now look at the following list of n monoid elements,

α(w[0, xi]), α(w[0, xi+1]), . . . , α(w[0, xi+(n−1)]).

Since n = |M |+ 1, there are positions xp, xq from the list, such that xi ≤ xp < xq ≤ xi+(n−1)

and α(w[0, xp]) = α(w[0, xq]). This means that the infix w[xp, xq] can be repeated to generate
c copies of (w`, wr), without affecting membership in L. Furthermore, since none of the
positions in between xi, . . . , xi+(n−1) had a k-profile occurring less than h times in w, the
pumping did not duplicate any such k-profile. Therefore, the resulting word w′ also has the
desired property w′ ≡hk w.

Note that in the lemma above, one could also have taken n = |Q| + 1, for A = (A,Q, δ),
instead of n = |M | + 1. The same reasoning would then yield that two positions among
xi, . . . , xi+(n−1) would visit the same state in the run of w in A. Pumping the corresponding
infix would then give the same result.

The following proposition forms, together with equivalence (6.4), the key ingredient for
our separation theorem for the class of full LTT. It states that one only needs to consider
LTT languages with counting threshold d = (|Ak|n)|Ak| in order to check whether the input
languages are LTT[k, d′]-separable for some d′.

Proposition 6.31. Let L1, L2 be regular languages. Let α : A∗ → M be a morphism into a
finite monoid M recognizing both L1 and L2. Let A = (A,Q, δ) be an NFA recognizing both
L1 and L2. Let n be either |M | + 1 or |Q| + 1. Let k = 4(|M | + 1) and let d = (|Ak|n)|Ak|.
If there exists d′ ∈ N such that L1 and L2 are LTT[k, d′]-separable, then the language [L1]dk
separates L1 from L2.

103

CHAPTER 6. LT AND LTT LANGUAGES

Proof. We will prove the contraposition of the statement, that is, if [L1]dk does not separate
L1 from L2 for the values of k and d defined in the proposition, then, for all d′ ∈ N, L1 and
L2 are not LTT[k, d′]-separable.

Assume that [L1]dk is not a separator. By definition, this means that there exist w1 ∈ L1 and
w2 ∈ L2 such that w1 ≡dk w2. Fix d′ ∈ N. Using Lemma 6.30, we will show that one can
construct words w′1 ∈ L1, w

′
2 ∈ L2 such that w′1 ≡d

′
k w′2. By definition of ≡d′k , this means that

L1 and L2 are not LTT[k, d′]-separable.

Recall that n = |M |+1 or n = |Q|+1. For simplicity, we only treat the case that n = |M |+1.
The other case, however, can be proved in the same way, since Lemma 6.30 works for both of
these cases. Let m = |Ak|n, so that d = m|Ak|. Let ` ∈ N. We denote the following statement
by P(`).

P(`)

For all u1 ∈ L1, u2 ∈ L2, and d′ ∈ N, if u1 ≡m
`

k u2 and the number of k-profiles

that do not occur ≥ d′ times in both u1 and u2 is smaller than `,

then, there exist words u′1 ∈ L1 and u′2 ∈ L2 such that u′1 ≡d
′
k u′2.

We want to prove P(|Ak|). Let us first note that by definition of d = m|Ak|, we have that

w1 ≡m
|Ak|

k w2. Also, we have for all d′ ∈ N that the number of k-profiles that do not occur
≥ d′ times in both w1 and w2 is smaller than the number of all k-profiles, i.e. smaller than
|Ak|. Therefore, P(|Ak|) entails that, for all d′, there exist words w′1, w

′
2 such that the desired

property w′1 ≡d
′
k w′2 holds. This exactly means that for all d′ ∈ N, the languages L1 and L2

are not LTT[k, d′]-separable. We will prove, by induction on `, that P(`) holds for all ` ≤ |Ak|.

First, let ` = 0. If u1, u2 and d′ verify the premise in P(`), then, in particular, the number of
k-profiles that do not occur more than d′ times in both u1 and u2 is 0. Thus, all k-profiles in
u1, u2 occur more than d′ times in both words, and therefore u1 ≡d

′
k u2.

Now, assume that ` > 0. Let u1, u2 and d be such that the premise in P(`) is verified. If

u1 ≡d
′
k u2, then it suffices to take u′1 = u1 and u′2 = u2. Otherwise, since u1 ≡m

`

k u2, there
must exist at least one k-profile (w`, wr) that occurs more than m` times in both u1 and u2

but strictly less than d′ times in at least one of the two words.

We apply Lemma 6.30 to both u1 and u2, for h = m`−1 and h′ = m`. Note that, by definition
of m, indeed, h′ ≥ n|Ak|h. The lemma yields that there are u′′1 ∈ L1, u′′2 ∈ L2 such that

u′′1 ≡m
`−1

k u1, u′′2 ≡m
`−1

k u2, and, every k-profile that occurs more than m` times in u1 resp. u2,

occurs more than d′ times in u′′1 resp. u′′2. First note that, since also u1 ≡m
`

k u2, we obtain

that u′′1 ≡m
`−1

k u′′2. Furthermore, (w`, wr) now occurs more than d′ times in both u′′1 and u′′2.
Therefore, the number of k-profiles that do not occur more than d′ times in both u′′1 and u′′2
is smaller than ` − 1. Hence, we can apply the induction hypothesis to u′′1, u

′′
2 and d′, and it

follows that the desired u′1 and u′2 exist.

We are now ready to prove our separation theorem for the class of locally threshold testable
languages.

Theorem 6.32. Let L1, L2 be regular languages. Let α : A∗ → M be a morphism into a
finite monoid M recognizing both L1 and L2. Let A = (A,Q, δ) be an NFA recognizing both

104

6.3. SEPARATION FOR FULL LTT LANGUAGES

L1 and L2, such that Li = L(A, Ii, Fi). Let n be either |M |+ 1 or |Q|+ 1. Let k = 4(|M |+ 1)
and let d = (|Ak|n)|Ak|. Then, the following conditions are equivalent.

(1) L1 and L2 are LTT-separable,

(2) There exists d′ ∈ N such that L1 and L2 are LTT[k, d′]-separable,

(3) There exists d′ ∈ N such that no pair in α(L1)× α(L2) has a common d′-pattern,

(4) There exists d′ ∈ N such that no pair in (I1 × F1)× (I2 × F2) has a common d′-pattern,

(5) L1 and L2 are LTT[k, d]-separable,

(6) The language [L1]dk separates L1 from L2.

Proof. The implications (6) ⇔ (5) ⇒ (2) ⇒ (1) are immediate by definition. Also, we have
already seen in (6.4) that Theorem 6.12 implies that (2) ⇔ (1). Note that from (2), we
obtain by Theorem 6.12 that for the same value for d′, there is no pair in α(L1)×α(L2) with
a common d′-pattern. Thus, Condition (2) implies Condition (3). In the same way, we obtain
(3)⇒ (4)⇒ (2). Finally, we have proved implication (2)⇒ (6) in Proposition 6.31.

Note that Condition (5) provides another proof of the decidability of LTT-separability: one
uses a brute-force algorithm to test all the finitely many LTT[k, d]-languages. As it was the
case for a fixed counting threshold, this algorithm is slow and we will present a faster algorithm
using Conditions (3) and (4) in Section 6.4.1.

Note also that, since Theorem 6.12 implies that the value of d of Condition (5) works as value of
d′ in Conditions (3) and (4), we have obtained the stabilization index of sequence (6.1). That
is, the sequence of d-indistinguishable pairs (Id(α))d∈N stabilizes at d = (|Ak|n)|Ak|.

6.3.3 Optimality of the bound on the counting threshold

The bound for the counting threshold in Theorem 6.32, i.e. (|Ak|n)|Ak| (for n = |M | + 1 or
|Q| + 1), is exponential in the size of the set of all k-profiles, Ak. Since k = 4(|M | + 1), the
size of Ak itself is exponential in the size of the monoid. This section is concerned with the
question whether this bound on the counting threshold can be improved.

Note that our proof of Theorem 6.32 treats the bounding of k and d independently. We first
provide a bound on k in Theorem 6.12. Then, instead of studying words over A, we look
at the corresponding words over the alphabet Ak of k-profiles, in order to bound d. This
technique ignores important properties of k-profiles. In particular, the k-profiles of adjacent
positions are of course strongly related, and this fact is not exploited by our proof.

In this subsection, we show that if one would want to improve the bound on the counting
threshold, this would require taking these additional properties into account. With this aim,
we look at k = 1, since this means that the k-profile of a position is just the letter that it car-
ries, and, contrary to the case for higher values of k, there are no relations between k-profiles
of adjacent positions. We show that we can construct LTT[1, d]-separable languages, for which
the separator is required to have a counting threshold that is exponential in |A|.

105

CHAPTER 6. LT AND LTT LANGUAGES

Let us first provide an example, which we will generalize in Lemma 6.34. For readability,
we write here |a|w to denote the number of times that the letter a occurs in the word w
(deviating from the notation applied in the beginning of this chapter).

Example 6.33. Consider the following languages over the alphabet {a, b, c, d}.

L1 = a(bcc)∗(ddd)∗,

L2 = (abb)∗(cdd)∗,

L =
{
w
∣∣ |a|w < 2⇒ |b|w = 2 · |a|w, and |c|w < 5⇒ |d|w = 2 · |c|w

}
.

We will show that the language L separates L2 from L1. First of all, note that L2 ⊆ L. Now,
suppose that w ∈ L1 ∩ L. Using that (1). w ∈ L1 and that (2). w ∈ L, we obtain

|a|w = 1
(2)
=⇒ |b|w = 2 · |a|w = 2

(1)
=⇒ |c|w = 4

(2)
=⇒ |d|w = 2 · |c|w = 8.

But, by (1), |d|w is also a multiple of 3. It follows that L1 ∩ L = ∅. The language L is in
LTT[1, 9]. To see this, let w ∈ L, and let w′ be a word such that w′ ≡9

1 w. Either |a|w′ ≥ 2,
which is fine, or |a|w′ < 2. Then, |a|w = |a|w′ < 2, such that |b|w = 2 · |a|w < 9 and
|b|w′ = |b|w = 2 · |a|w′ . In the same way, if |c|w′ < 5, then one obtains |d|w′ = |d|w = 2 · |c|w′ ,
since this is still smaller than the threshold 9. It follows that w′ ∈ L. The languages L1

and L2 are not LTT[1, 8]-separable (consider the words w1 = abc2bc2d24 ∈ L1 and w2 =
ab2cd2cd2cd2cd2 ∈ L2, for which w1 ≡8

1 w2 holds). Thus, the counting threshold of the
LTT[1, 9]-separator L is optimal.

Now, let us generalize this example. We want to construct, for every A, two languages that
are separable by an LTT language with a counting threshold d that is exponential in |A|, and
that are not separable by any LTT language with a counting threshold lower than d.

For convenience, we assume that the alphabet A is of even size and write A = {a1, . . . , a2m}.

Lemma 6.34. The languages

L1 = a1 · (a2a3a3)∗(a4a5a5)∗ · · · (a2m−2a2m−1a2m−1)∗ · (a2ma2ma2m)∗,
L2 = (a1a2a2)∗(a3a4a4)∗ · · · (a2m−1a2ma2m)∗

are LTT[1, d]-separable for some d, but are not LTT[1, 22m−1]-separable.

Proof. We prove that L1, L2 are LTT[1, d]-separable for d = 22m−1 +1. Consider the following
language L.

L =
{
w
∣∣ for all odd i, |ai| < 2i−1 + 1⇒ |ai+1|w = 2 · |ai|w

}
.

Thus, a word w belongs to L if and only if for all odd i, either w contains at least 2i−1 + 1
copies of ai, or the number of copies of ai+1 in w is exactly twice the number of copies of ai
in w.

To check whether a word w is a member of the language L, we will have to count a maximum
number of occurrences of a letter in the case that |a2m−1|w = 22m−2. In this case, one needs
to verify that |a2m|w = 2 · |a2m−1|w = 22m−1. To check this equality, we need a counting

106

6.4. COMPLEXITY OF LT- AND LTT-SEPARABILITY

threshold of d = 22m−1 + 1. With the power of this d, one is clearly also able to verify the
conditions on the ai’s for smaller i. It follows that L ∈ LTT[1, 22m−1 + 1].

Let us now show that L is a separator. By definition, L2 ⊆ L. Suppose that w ∈ L∩L1. Since
w ∈ L1, it contains only one copy of a1. Then, since w ∈ L, it must contain two copies of a2.
Iterating this argument yields that w must contain 22m−1 copies of a2m, which is impossible
since this number must be multiple of 3, by definition of L1. Thus, L∩L1 = ∅, and it follows
that L is a separator.

It remains to prove that L1, L2 are not LTT[1, 22m−1]-separable. To this end, consider the
words

w1 = a1(a2a
2
3)2 · · · (a2m−2a

2
2m−1)22m−3

(a2m)3·22m−1 ∈ L1,

w2 = (a1a
2
2)(a3a

2
4)4 · · · (a2m−1a

2
2m)22m−2 ∈ L2.

For every i ∈ {1, . . . , 2m− 1}, we have |ai|w1 = 2i−1 = |ai|w2 . The letter a2m occurs 3 · 22m−1

times in w1, and 22m−1 times in w2. When counting with threshold 22m−1, these numbers are
considered equal. Thus, w1 ≡22m−1

1 w2. Therefore L1, L2 are not LTT[1, 22m−1]-separable.

It follows from the previous lemma that without taking additional properties of k-profiles into
account, one cannot find a bound on the counting threshold that is better than exponential
in |A|.

6.4 Complexity of LT- and LTT-separability

In this section, we present lower and upper complexity bounds for the separation problem
for LT and LTT languages. Both the lower and upper bounds use the pattern criteria of
Theorems 6.23 and 6.32. We are able to prove that starting from an NFA or DFA recognizing
the input languages, deciding separability can be achieved in co-Nexptime for LT and
in 2-Expspace for LTT. This is shown in Section 6.4.1. In Section 6.4.2, we show how
generalizing the reduction of Section 2.3.1 gives a co-Np lower bound for both problems.

6.4.1 Upper complexity bounds

We first look at complexity upper bounds for the separation problems for LT and LTT. The
algorithms that we use rely on Condition (5) of Theorem 6.23 and on Condition (4) of The-
orem 6.32. These conditions are the criteria about the absence of certain patterns in the
automata. We will show that deciding whether two languages, accepted by some NFA, are LT-
separable can be achieved in co-Nexptime, while deciding whether they are LTT-separable
can be achieved in 2-Expspace.

Both algorithms work by reducing the problems to the special case of k = 1, that is, to the
problem of verifying whether there exists an LT- resp. LTT-separator that considers only 1-
profiles. The reduction is identical in both cases, and the proofs of the fact that the reduction
is correct are similar. These proofs rely on Condition (5) in Theorem 6.23, for LT, and on
Condition (4) in Theorem 6.32, for LTT. The computations involved in the reduction can be
done in Exptime, and the newly constructed NFA is of size exponential in the input NFA.

107

CHAPTER 6. LT AND LTT LANGUAGES

The algorithms to decide LT- resp. LTT-separability for the special case of k = 1 are different
for the two classes. We provide algorithms, for this special case of k = 1, which run in co-Np
for LT and in Expspace for LTT.

Note that one could also consider the bound k on the size of k-profiles, presented in Theo-
rems 6.23 and 6.32, in order to reduce the problem of LT- resp. LTT-separability to the case
of k = 1. Indeed, once k is fixed, it suffices to modify the input NFA to work on the alphabet
of k-profiles. This would also give a reduction to the case of k = 1. However, this technique
might yield an NFA that is doubly exponential in the size of the input NFA.

We first present and prove the reduction to the case of k = 1. After this, we explain how to
decide both problems in this special case, and we show which upper complexity bounds, for
LT- resp. LTT-separability, this approach yields.

Reduction to the case of k = 1

Let A = (A,Q, δ) be an NFA. It follows from Theorem 6.23 (resp. Theorem 6.32) that
to determine whether L(A, I1, F1) and L(A, I2, F2) are not LT-separable (resp. not LTT-
separable), it suffices to verify whether there exists a pair in (I1 × F1) × (I2 × F2) that
has a common 1-pattern (resp. whether there exists d ∈ N such that there exists a pair
in (I1 × F1) × (I2 × F2) that has a common d-pattern). This requires verifying whether
there exist a pattern P, a P-decomposition that is compatible with a pair in I1 × F1, and a
P-decomposition that is compatible with a pair in I2 × F2.

A first step in our reduction to the case of k = 1 is to view P-decompositions as words over
the alphabet of blocks. This is illustrated in the following example.

Example 6.35. Let P = (p, f, s) be the following 2-pattern. The prefix block p = (a, b)
and the suffix block s = (bb, a). The function f sends the block (b, aa, bb) to 2, the block
(bb, a, b) to 1 and all other blocks to 0. Let w be the word abaabbabaabba. Clearly, w is a
P-decomposition, as it can be decomposed as follows.

w = a︸︷︷︸ b︸︷︷︸ aa︸︷︷︸ bb︸︷︷︸ a︸︷︷︸ b︸︷︷︸ aa︸︷︷︸ bb︸︷︷︸ a︸︷︷︸
u0 v1 u1 v2 u2 v3 u3 v4 u4

Now, p = (u0, v1), s = (v4, u4) and (v1, u1, v2), (v3, u3, v4) = (b, aa, bb) and (v2, u3, v3) =
(bb, a, b). We now view w as the following word of blocks,

(a, b)(b, aa, bb)(bb, a, b)(b, aa, bb)(bb, a).

Note that, for such a correspondence between P-decompositions and words over the alphabet
of blocks to make sense, we should only consider words of blocks that satisfy the following
compatibility condition: if (u, v′) or (v, u, v′) is followed by (v′′, u′, v′′′) or (v′′, u′), then v′ =
v′′.

The main idea behind the reduction is to construct a new NFA Ã, which recognizes words
over the alphabet of blocks that represent special P-decompositions. Namely, those P-
decompositions that are, for some P, compatible with pairs of states of I1×F1 and of I2×F2

108

6.4. COMPLEXITY OF LT- AND LTT-SEPARABILITY

in A. There are two issues with this idea. The first one we addressed above, that is, a word of
blocks should satisfy the compatibility condition in order to correspond to a P-decomposition.
This compatibility property for consecutive blocks cannot be simply encoded in the states,
since there are infinitely many words. The second issue is that the alphabet of blocks is
infinite.

We take care of these issues using a similar argument for both. Let us first discuss the issue
that the alphabet of blocks is infinite. Recall that we are only interested in P-decompositions
that are compatible with pairs of states of I1 × F1 and of I2 × F2 in A. Observe that for a
block (v, u, v′) to appear in such a decomposition, there need to exist states q, q′ in A with
loops around these states labeled by v resp. v′, and a path from q to q′ labeled by u. Instead
of dealing with a specific block, it thus suffices to deal with the set of pairs of states verifying
this property. The number of such sets is bounded by 2|Q|

2
, in particular, there are only

finitely many such sets. Making the abstraction from blocks to these sets thus yields a finite
alphabet.

The same argument can be used to deal with the compatibility issue. All words v that need
to be considered for the compatibility condition need to label a loop around some state q.
Instead of taking the specific word v into account, we will use the set of states having such
a loop labeled by v. Again, this abstraction retains the relevant information from an infinite
set (of words) and encodes it in a finite set (of subsets of states of A). As we will show in the
formal construction, this information can then be encoded in the states of Ã.

Before providing the formal construction of Ã in Construction 6.38, we introduce some
relevant notions. First, we define the notion used to encode the compatibility condition in
the automaton.

Definition 6.36. Let A = (A,Q, δ) be an NFA and let R ⊆ Q. We say that R is synchro-
nizable if there exists a nonempty word v ∈ A∗ such that, for all q ∈ R, there exists a loop
around q labeled by v.

The following definition introduces the ingredients of the new alphabet that will encode the
relevant information about the blocks.

Definition 6.37. Let A = (A,Q, δ) be an NFA and let T ⊆ Q2. We denote the set of states
that are left (resp. right) members of pairs in T by `(T) (resp. by r(T)). We say that T is
synchronizable if

(a) there exists a word u ∈ A∗ such that, for all (q, q′) ∈ T , there exists a run from q to q′

labeled by u,

(b) `(T) is synchronizable, and

(c) r(T) is synchronizable,

where the notion of synchronizable in (b) and (c) refers to Definition 6.36. In order to deal
with prefixes and suffixes, we generalize the notion for T to these limit cases. We say that
T is prefix synchronizable (resp. suffix synchronizable) if (a) and (c) (resp. (a) and (b)) hold.
Finally, we say that T is weakly synchronizable if (a) holds.

We can now show how to construct the new NFA Ã from A = (A,Q, δ) and sets of states

109

CHAPTER 6. LT AND LTT LANGUAGES

I1, F1, I2, F2.

Construction 6.38. Let A = (A,Q, δ) be an NFA and let I1, F1, I2, F2 ⊆ Q. Let Bw, Bp, Bi
and Bs be the sets of weakly synchronizable, prefix synchronizable, synchronizable and suffix
synchronizable sets of pairs of states, respectively. We let the alphabet B of the new automa-
ton Ã be the disjoint union of the sets Bw, Bp, Bi and Bs. The new set of states Q̃ is defined
as follows.

Q̃ = {(r,R) | r ∈ R ⊆ Q, R is synchronizable} ∪ I1 ∪ F1 ∪ I2 ∪ F2.

We now define the transitions. Let j = 1, 2. As we saw above, a letter b ∈ Bw is a set of
pairs of states between which the same word can be read. For all b ∈ Bw, we add a transition
labeled by b from q ∈ Ij to r ∈ Fj , whenever (q, r) ∈ b. For all b ∈ Bp, we add a transition
labeled by b from q ∈ Ij to the state (r,R) if (q, r) ∈ b and R ⊆ r(b). Similarly, for all b ∈ Bs,
we add a transition labeled by b from (r,R) to q ∈ Fj if (r, q) ∈ b and R ⊆ `(b). Finally, for
all b ∈ Bi, we add a transition labeled by b from (r,R) to (s, S) if (r, s) ∈ b, R ⊆ `(b) and
S ⊆ r(b).

Observe that the size of Ã is exponential in the size of A. We now prove that the computation
can be done in Exptime.

Lemma 6.39. Let A = (A,Q, δ) be an NFA and let I1, F1, I2, F2 ⊆ Q. The automaton Ã,
defined as above from this input, can be constructed in Exptime.

Proof. Testing synchronizability of a set of states, as well as testing this for a set of pairs of
states, can easily be reduced to checking whether a set of NFA’s has nonempty intersection.
For example, given a set R = {r1, . . . , rn} ⊆ Q, we can define Ai as the NFA A, with
I = F = {ri}. Now R is synchronizable if and only if

⋂n
i=1Ai 6= ∅. Deciding whether a set of

NFA’s has a nonempty intersection is known to be a Pspace-complete problem (this follows
from [Koz77]). It follows that computing the synchronizable sets can be done in Exptime.
It is then clear that the remaining computations can also be done in Exptime.

We now prove that the construction is correct, that is, that it gives a reduction from LT- and
LTT-separability to the special case that k = 1.

Proposition 6.40. Let A = (A,Q, δ) be an NFA, and let I1, F1, I2, F2 ⊆ Q. Let Ã be the
NFA resulting from Construction 6.38 on this input. Then,

1. The languages L(A, I1, F1), L(A, I2, F2) are LT-separable if and only if L(Ã, I1, F1),
L(Ã, I2, F2) are LT[1]-separable.

2. The languages L(A, I1, F1), L(A, I2, F2) are LTT-separable if and only if there exists

d ∈ N such that L(Ã, I1, F1), L(Ã, I2, F2) are LTT[1, d]-separable.

Proof. Here, we will provide the proof for LTT, using Condition (4) from Theorem 6.32. The
proof for LT is obtained similarly, using Condition (5) from Theorem 6.23.

Suppose that L(A, I1, F1) and L(A, I2, F2) are not LTT-separable. We prove that for all
d ∈ N, L(Ã, I1, F1) and L(Ã, I2, F2) are not LTT[1, d]-separable. Fix d ∈ N. By Condition (4)

110

6.4. COMPLEXITY OF LT- AND LTT-SEPARABILITY

of Theorem 6.32, in A, there exists a pair in (I1 × F1) × (I2 × F2) that has a common
d-pattern P. That is, there are words w1 ∈ L(A, I1, F1) and w2 ∈ L(A, I2, F2) such that
w1 = u0v1u1 . . . vnun and w2 = u′0v

′
1u
′
1 . . . v

′
mu
′
m are P-decompositions, compatible with some

(q1, r1) ∈ I1 × F1 in A, respectively with (q2, r2) ∈ I2 × F2 in A. There are two cases: either
n = 0 or n > 0.

In the first case, n = 0, which implies that P = u0. Then, the P-decompositions w1 and w2

are both equal to u0. It follows that b = {(q1, r1), (q2, r2)} ∈ Bw. Then, by construction, b ∈
L(Ã, I1, F1)∩L(Ã, I2, F2), thus the languages L(Ã, I1, F1) and L(Ã, I2, F2) are not LTT[1, d]-

separable.

In the second case, n > 0. Define ŵ1 = pb1 · · · bn−1s, where p = (u0, v1), s = (vn, un) and,

for all i, bi = (vi, ui, vi+1). Similarly, we define ŵ2 = p′b′1 · · · b′m−1s
′. Since we started from

P-decompositions for a d-pattern P, we have that p = p′, s = s′, and the number of times

that a block b occurs in w1 and in w2 is equal up to threshold d. It follows by construction

that, over the alphabet of blocks, ŵ1 ≡d1 ŵ2. We will use these words to construct w̃1, w̃2 ∈ B∗
such that w̃1 ∈ L(Ã, I1, F1), w̃2 ∈ L(Ã, I2, F2), and w̃1 ≡d1 w̃2.

Let b be a block that appears in ŵ1, ŵ2. Define Tb ⊆ Q2 as the set of all pairs of states in A
that are used to read occurrences of b in the runs of w1 and w2. Since the P-decompositions are

compatible with their respective initial and final states, by definition, Tb is synchronizable.

Similarly, if p (resp. s) is a prefix (resp. suffix) block occurring in ŵ1, ŵ2, we get a prefix

(resp. suffix) synchronizable set Tp (resp. Ts). We now define the following words over the

alphabet B: w̃1 = TpTb1 · · ·Tbn−1Ts and w̃2 = Tp′Tb′1 · · ·Tb′m−1
Ts′ . By definition of Ã and

the fact that the P-decompositions w1 and w2 are (q1, r1)- resp. (q2, r2)-compatible, w̃1 ∈
L(Ã, I1, F1) and w̃2 ∈ L(Ã, I2, F2). Moreover, since ŵ1 ≡d1 ŵ2, we have w̃1 ≡d1 w̃2. We

conclude that L(Ã, I1, F1) and L(Ã, I2, F2) are not LTT[1, d]-separable.

Conversely, assume that for all d ∈ N, L(Ã, I1, F1) and L(Ã, I2, F2) are not LTT[1, d]-

separable. We prove that for all d ∈ N, there exists a pair in (I1 × F1) × (I2 × F2) that

has a common d-pattern P. Let d ∈ N. By assumption, there exist w̃1 ∈ L(Ã, I1, F1) and

w̃2 ∈ L(Ã, I2, F2), such that w̃1 ≡d1 w̃2. Again, we have two cases. By definition of Ã, either

w̃1, w̃2 ∈ Bw or w̃1, w̃2 ∈ Bp(Bi)∗Bs. In the first case, w̃1 ≡d1 w̃2 implies that w̃1 = w̃2 and

this means, by definition of Bw, that there is a word w that can be read both between a pair

in I1 × F1 and between a pair in I2 × F2. Then it suffices to take P = w.

Otherwise, w̃1 = bpb1 · · · bnbs and w̃2 = bpb
′
1 · · · b′mbs. By definition of Bp, Bi, Bs, to each label

appearing in w̃1, w̃2 we can associate a block, prefix block or suffix block. Since w̃1 and w̃2

label runs in Ã, these blocks can be chosen in such a way that the corresponding words over

the alphabet of blocks satisfy the compatibility condition. We define P = (p, f, s) as the

following d-pattern: p, s are the prefix and suffix blocks associated to bp and bs, respectively.

Since w̃1 ≡d1 w̃2, for all blocks b, the number of occurrences of labels b such that b is associated

to b is the same in w̃1 and w̃2 up to threshold d. We define f(b) as this number.

Finally, let qi ∈ Ii and ri ∈ Fi be such that w̃i labels a path from qi to ri in Ã. Let b = (v, u, v′)

be the block chosen to correspond to b. A transition labeled b from (p, P) to (s, S) implies in

particular that, in A, there is a loop labeled v resp. v′ around p resp. around s, and that the

word u can be read from p to s. Recall that the word of blocks corresponding to w̃1 satisfies

111

CHAPTER 6. LT AND LTT LANGUAGES

the compatibility condition. Projecting to the first coordinate of the states in the path of w̃1

thus yields a path for a P-decomposition w1 in A that is (q1, r1)-compatible by construction.

Similarly, from w̃2, we obtain a (q2, r2)-compatible run for a P-decomposition w2 in A.

Deciding LT- and LTT-separability for k = 1

We explain how LT- and LTT-separability can be decided when the size of k-profiles is fixed
to 1. Observe that in this case, the k-profile of a position is just its label. As we explained in
Section 6.3.1, decidability of LTT-separability in general (and, similarly, of LT-separability)
follows from Parikh’s theorem and decidability of Presburger arithmetic. However, applying
these results naively yields a high complexity. We explain here how, when k is fixed to 1,
these arguments can be refined in order to obtain Expspace and co-Np complexities.

Lemma 6.41. Given an NFA accepting the languages L1 and L2, deciding whether there
exists d ∈ N such that L1 and L2 are LTT[1, d]-separable is in Expspace.

Proof. Let π(L1), π(L2) be the commutative images of L1 and L2. As we explained in Sec-
tion 6.3.1, non-LTT[1, d]-separability is equivalent to the following Presburger property: ‘for
all d ∈ N there exist x̄1 ∈ π(L1), x̄2 ∈ π(L2) that are equal, componentwise, up to threshold d.’
By [SSMH04, Theorem 1], existential Presburger formulas for π(L1), π(L2) can be computed
in linear time, with respect to the size of the NFA (see also [VSS05], where the same tech-
nique is applied to context-free grammars). Therefore, a Presburger formula for our property
can also be computed in linear time. Moreover, by definition, this property has exactly one
quantifier alternation. It then follows from [RL78] that it can be decided in Expspace. Thus,
LTT[1, d]-separability can be decided in co-Expspace, which is Expspace.

For LT, a similar proof works. However, since d is equal to 1 for this class, the situation is a
bit simpler, as we will see in the following lemma.

Lemma 6.42. Deciding whether two regular languages, given by an accepting NFA, are LT[1]-
separable is in co-Np.

Proof. Let π(L1), π(L2) be the commutative images of the languages L1 and L2. Since d is
now fixed to be equal to 1, non-LT[1]-separability is equivalent to the following Presburger
property: ‘there exist x̄1 ∈ π(L1), x̄2 ∈ π(L2) that are equal, componentwise, up to thresh-
old 1.’ The Presburger formula corresponding to this property is existential. It is known that
existential Presburger formulas can be decided in Np (see [BT76, GS78]). We conclude that
LT[1]-separability is in co-Np.

However, taking a closer look at the class LT[1], one notes that membership of a word in a
language of this class depends only on the set of letters that the word contains. This is since,
for k = 1, the k-profile of each position of the word has the same length, and one can thus
not deduce any information from the k-profiles about the different kinds of positions (that
is, whether they are in the beginning, middle or ending of the word). Thus, LT[1] is equal
to the class Sl of alphabet-testable languages that we encountered in Section 2.3.1. We can

112

6.4. COMPLEXITY OF LT- AND LTT-SEPARABILITY

reuse Corollary 2.20 to see that Lemma 6.42 cannot be improved.

Corollary 6.43. It is a co-NP-complete problem to decide whether two regular languages,
defined by two deterministic finite automata, are LT[1]-separable.

Results on upper complexity bounds

Summarizing the results of this section, we obtain the following two propositions concerning
the upper complexity bounds.

Proposition 6.44. Deciding whether two languages, accepted by an NFA, are LTT-separable
can be achieved in 2-Expspace.

Proof. By Lemma 6.39, the NFA Ã is built from A in Exptime. Proposition 6.40 states
that L1 and L2 are LTT-separable if and only if there exists a d ∈ N such that L̃1 and L̃2

are LTT[1, d]-separable. By Lemma 6.41, this latter property can be decided in Expspace,
with respect to the size of Ã, which is exponential in the size of A. It follows that deciding
LTT-separability can be achieved in 2-Expspace.

And, for LT-separability, we obtain the following proposition.

Proposition 6.45. Deciding whether two languages L1 and L2, accepted by an NFA, are
LT-separable can be achieved in co-Nexptime.

Proof. As before, Lemma 6.39 yields that the NFA Ã is built from A in Exptime. Also,
Proposition 6.40 states that L1 and L2 are LT-separable if and only if L̃1 and L̃2 are LT[1]-
separable. By Lemma 6.42, this latter property can be decided in co-Np, with respect to the
size of Ã, which is exponential in the size of A. It follows that deciding whether L1 and L2

are LT-separable can be achieved in co-Nexptime.

As we saw, Lemma 6.42 cannot be improved. Improving the co-Nexptime upper bound
from Proposition 6.45 would thus require improving the reduction.

For LTT, the situation is different. It is likely that a sharper analysis of the Presburger formula
would yield a better complexity result in Lemma 6.41. Indeed, while deciding Presburger
formulas with one quantifier alternation is very costly in general, we only consider a very
specific formula. A better complexity result in Lemma 6.41 could yield a better upper bound,
even without improving the reduction.

6.4.2 Lower complexity bounds

In this section, we will prove co-Np lower bounds for both LT- and LTT-separability. The
bounds hold when the input languages are given as NFA’s or DFA’s. Our method for proving
these bounds is an extension of the method that we applied in Lemma 2.19 in Section 2.3.1,
in order to show that Sl-separability is co-NP-complete. We will again give a reduction of
3-SAT, but now to the problem of LT- resp. LTT-non-separability. That is, from an arbitrary

113

CHAPTER 6. LT AND LTT LANGUAGES

instance of 3-SAT, we construct two DFA’s and prove that the corresponding languages are
not LT- resp. LTT-separable if and only if the 3-SAT instance is satisfiable.

Proposition 6.46. The following two problems are co-Np-hard.

Input: An alphabet A = {a1, a2, . . . , an} and two languages L1, L2, recognized by
DFA’s A1 resp. A2 over A.

Question 1: Are L1 and L2 LT-separable?
Question 2: Are L1 and L2 LTT-separable?

Proof. We will prove the statement about LTT-separability. The reduction is identical for
the case of LT. Let ϕ be a 3-SAT formula over the variables {x1, x2, . . . , xn}. Let A be
the alphabet {#, x1, . . . , xn,¬x1, . . . ,¬xn}. We will construct two DFA’s and prove that
the corresponding languages are not LTT-separable if and only if the 3-SAT instance ϕ is
satisfiable. Let A1 be the automaton depicted in Figure 6.5. Let L1 be the language that is
recognized by this automaton, by the initial and final states marked in the picture.

x1

¬x
1

#

#

x2

¬x
2

#

#

xn

¬x
n

#

#

. . .

#

#, x1 #, x2 #, xn

#, ¬x1 #, ¬x2 #, ¬xn

Figure 6.5: The automaton A1.

The automaton A2 is contructed as a concatenation of m subautomata, each corresponding
to a clause C in ϕ. For every disjunct in the clause, there will be a path in the subautomaton
that reads precisely that disjunct and the symbol #. This sequence of subautomata is then
concatenated with a copy of the automaton A1. In Figure 6.6, we illustrate how to construct
A2 precisely. The language that is recognized by the marked initial and final states, is called
L2.

We will show that ϕ is satisfiable if and only if L1 and L2 are not LTT-separable. To this
end, we first prove the following claim.

Claim. There exist u ∈ L1 and v ∈ L2 such that alph(u) = alph(v) if and only if for all
k, d ∈ N, there are u′ ∈ L1 and v′ ∈ L2 such that u′ ≡dk v′.

For the direction from right to left, let d = k = 1. The corresponding u′ and v′ then, in
particular, have the same alphabet. For the converse direction, let k, d ∈ N, and let u, v be as
in the assumption. Inserting #-loops in the runs of u and of v sufficiently often (for example,
k times for every possible loop), one can ensure that every k-profile contains at most one
letter from A \ {#}. Note that this also makes sure that the prefixes and suffixes of length k
of the new words are the same, namely #k. Then, one inserts loops labeled by xi resp. ¬xi

114

6.5. SEPARATING CONTEXT-FREE LANGUAGES BY LT AND LTT LANGUAGES

A1. . .

#x 4

x7

¬x
1

#

#

#

#, x4

#, x7

#, ¬x1

¬x
2

x9

¬x
7

#

#

#

#, ¬x2

#, x9

#, ¬x7

¬x
8

x1

x
9

#

#

#

#, ¬x8

#, x1

#, x9

Clause C1 Clause C2 Clause Cm

Figure 6.6: The automaton A2, for ϕ = (x4 ∨ x7 ∨¬x1)∧ (¬x2 ∨ x9 ∨¬x7)∧ (¬x8 ∨ x1 ∨ x9).

(whichever is already present in the run) in combination with #-loops, in such a way that
these k-profiles occur equally often (counted up to threshold d) in both words. This process
yields the desired words u′ and v′ such that u′ ≡dk v′.

Now, suppose that some valuation satisfies ϕ. One uses this valuation to define a word u
in the language L1, in the following way. Let u = a1#a2# . . . an#. If xi is sent to 1 by
the valuation, ai = xi. Else, ai = ¬xi. Since the valuation satisfies ϕ, there is in each of
the m clauses a disjunct d that is sent to 1. Define a word v in L2 as y1#y2# . . . ym#u,
where yi is such a disjunct of Ci that is sent to 1. By soundness of the valuation, we have
alph(u) = alph(v). Hence, by the claim above, for all k, d ∈ N, there are u′ ∈ L1 and v′ ∈ L2

such that u′ ≡dk v′. That is, L1, L2 are not LTT-separable.

On the other hand, suppose that L1, L2 are not LTT-separable. In particular, this means
that there exist u ∈ L1 and v ∈ L2 such that alph(u) = alph(v). Note that by construction of
A1, we have that for all i ∈ {1, . . . , n}, either xi ∈ alph(u) or ¬xi ∈ alph(u). The word u ∈ L1

thus defines the following valuation on the set of variables.

val : {x1, . . . xn} → {0, 1}
xi 7→ 1 if xi ∈ alph(u)
xi 7→ 0 else

The fact that alph(v) = alph(u) thus implies that all non-# letters in v are sent to 1. It
follows by the construction of A2 that in each of the clauses of ϕ, there is a disjunct that
evaluates to 1. Thus, ϕ is satisfiable.

6.5 Separating context-free languages by LT and LTT lan-
guages

In Section 6.3.1, we showed that LTT-separability for regular languages is decidable, using
the following ingredients:

(1) Condition (2) of Theorem 6.12,

115

CHAPTER 6. LT AND LTT LANGUAGES

(2) Theorem 6.28,

(3) decidability of Presburger arithmetic.

Once the size k of the profiles was fixed by Condition (2) of Theorem 6.12, Theorem 6.28
allowed us to write LTT-separability as a computable Presburger formula. The decidability
of LTT-separability for regular languages then followed from the decidability of Presburger
arithmetic.

Theorem 6.28, which is an extension of Parikh’s theorem to k-images, not only holds for
regular languages, but also for context-free languages. We can thus reuse the arguments
from Section 6.3.1, to prove that it is decidable whether context-free languages are separable
by an LTT language with a fixed profile size k. This is shown in the following theorem. For
k a fixed natural number, we write LTT[k] =

⋃
d∈N LTT[k, d].

Theorem 6.47. Let L1, L2 be context-free languages and k ∈ N. It is decidable whether
L1, L2 are LTT[k]-separable.

Proof. The proof is similar to the proof of Theorem 6.29. The languages L1, L2 are LTT[k]-
separable if and only if there exists d ∈ N such that they are LTT[k, d]-separable. This is the
case if and only if there exists d ∈ N such that there are no words w1 ∈ L1, w2 ∈ L2 with
w1 ≡dk w2. By Fact 6.27, this can be expressed in terms of k-images as the following statement:
there exists d ∈ N such that there do not exist any vectors x1 ∈ πk(L1), x2 ∈ πk(L2) that are
equal, componentwise, up to threshold d.

By Theorem 6.28, there are computable Presburger formulas for the sets πk(L1) and πk(L2).
The above statement can thus be expressed as a computable Presburger formula. Since Pres-
burger arithmetic is decidable [Pre29, Sko31], it follows that LTT[k]-separability of context-
free languages is decidable.

An interesting consequence of Theorem 6.47 is that LTT[1]-separability of context-free
languages is decidable. A language is in LTT[1] if and only if it can be defined by a first-order
logic formula that can test equality between positions, but cannot test ordering. This result is
surprising, since membership of a context-free language in this class is undecidable. We prove
this in Theorem 6.49. Our proof follows the lines of the proof of Greibach’s theorem [Gre68],
which is used in particular to prove that it is undecidable whether a context-free language is
regular. In order to adapt the proof of Greibach’s theorem to the class of LTT[1], we need
that this class is closed under right residuals.

Lemma 6.48. For every k, d ∈ N, the class LTT[k, d] is closed under right residuals. Fur-
thermore, the classes LTT, LTT[k], LT, and LT[k] are closed under right residuals.

Proof. Note that the second statement is an immediate consequence of the first statement,
as these classes are unions of classes of the form LTT[k, d], for certain choices of k and d. To
prove the first statement, let k, d ∈ N and let L ∈ LTT[k, d]. Let v ∈ L/a = {w | wa ∈ L}
and let u ∈ A∗ be such that u ≡dk v. Note that u ≡dk v implies that u and v have the
same suffix of length k − 1. Concatenating both u and v with the letter a thus influences
the sets of k-profiles of the words in the same way: every k-profile in which this new letter
occurs, contains only positions of the original word that were inside the suffix of length

116

6.5. SEPARATING CONTEXT-FREE LANGUAGES BY LT AND LTT LANGUAGES

k − 1. It follows that ua ≡dk va, and since v ∈ L/a, it follows that u ∈ L/a as well. Thus,
L/a ∈ LTT[k, d].

Theorem 6.49. The membership problem for context-free languages in the class LTT[1] is
undecidable.

Proof. We reduce the undecidable problem of universality of context-free languages to this
membership problem. Let L be a context-free language over A and let # 6∈ A. Let K be a
context-free language that is not in LTT[1], and define L1 = (K · # · A∗) ∪ (A∗ · (# · L)+).
Clearly, a context-free grammar for L1 can be computed from context-free grammars for L
and K. We show that L = A∗ if and only if L1 ∈ LTT[1].

If L = A∗, then L1 = (K ·#·A∗)∪(A∗ ·(#·A∗)+) = A∗ ·(#·A∗)+ = (A∪{#})∗ ·#·(A∪{#})∗.
The first-order formula ∃x. #(x) then witnesses that L1 ∈ LTT[1].

For the converse direction, we use Lemma 6.48. By assumption, L1 ∈ LTT[1]. Suppose that
L 6= A∗. Let w ∈ A∗\L. Consider the quotient L1/#w = {v | v#w ∈ L1}. By definition
of L1, this quotient is equal to K. Lemma 6.48 implies that K = L1/#w ∈ LTT[1], which
contradicts the definition of K. It follows that L = A∗.

In a similar fashion, we obtain that the membership problems for context-free languages in
the classes LT and LTT are undecidable as well.

Theorem 6.50. The membership problems for context-free languages in the classes LT and
LTT are undecidable.

Proof. This can be shown by replacing each occurrence of LTT[1] in the proof of Theorem 6.49
by LT resp. LTT. This works since Lemma 6.48 holds for these classes too, and, whenever
L = A∗, the language L1 is also in LT and in LTT.

The results of Theorem 6.47 and Theorem 6.49 may seem contradictory. Indeed, in the setting
of regular languages, a language belongs to a class if and only if this class can separate the
language from its complement. It follows that membership can be reduced to separability.
However, the class of context-free languages is not closed under complement, such that the
reduction no longer holds in this broader setting.

An interesting question is whether full LT- and LTT-separability of context-free languages
is decidable as well. In view of Theorem 6.50, this would also be surprising. As we saw
before, two out of three ingredients of our method from Section 6.3.1 still work in the setting
of context-free languages. A possible approach to proving decidability of LT- resp. LTT-
separability of context-free languages would thus be to generalize Condition (2) of Theo-
rem 6.12. This amounts to finding a bound on the size of the profiles that a potential sepa-
rator has to consider. However, as we will show in Theorem 6.51, it turns out that LT- and
LTT-separability of context-free languages are undecidable. In particular, this implies that
generalizing Condition (2) of Theorem 6.12 to context-free languages is not possible.

As we have mentioned in Chapter 2, it is proven in [SW76] that separability of context-free
languages by regular languages is undecidable. The proof of this fact, as provided in [SW76,

117

CHAPTER 6. LT AND LTT LANGUAGES

Theorem 4.6], is a reduction from the halting problem on Turing machines to this separation
problem. It turns out that this reduction actually works for any class of regular separators
that contains all languages of the form K1A

∗ ∪K2, where K1,K2 are finite languages. Since
this is clearly the case for both LT and LTT, the undecidability of LT- and LTT-separability
of context-free languages follows along the same lines. In Theorem 6.51 we provide a version
of this proof tailored to the classes of LT and LTT.

Theorem 6.51. The LT-separation problem and the LTT-separation problem are undecidable
problems for context-free languages.

Proof. We will reduce the halting problem on Turing machines to LT-separability and LTT-
separability of context-free languages. The reduction is the same for both LT and LTT.
Consider a deterministic Turing machineM. We prove that it is possible to compute context-
free languages L1, L2 from M, such that M halts on the empty input if and only if L1, L2

are LT-separable, if and only if L1, L2 are LTT-separable.

Let A be the alphabet ofM, let Q be its set of states, and let B = A∪(A×Q)∪{#, γ} where
#, γ 6∈ A. As usual, a configuration ofM is encoded as a word in A∗ · (A×Q) ·A∗ ⊆ B∗. The
word (u, (a, q), v) means that M is in state q, the tape holds u · a · v, and the head currently
scans the distinguished a position. Finally, if w ∈ B∗, we denote by wR the mirror image of
w.

We now define the context-free languages L1, L2 over B. The language L1 contains all words
of the form

c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#γ
k,

that are such that c1, . . . , c2k are encodings of configurations ofM, and for all i ≤ k, c2i−1 `M
c2i (that is, c2i is the configuration of M that is reached after one computation step from
configuration c2i−1). Similarly, L2 contains all words of the form

c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#γ
2k,

that are such that c1, . . . , c2k are encodings of configurations of M, c1 is the initial config-
uration of M starting with an empty input and for all i ≤ k − 1, c2i `M c2i+1. One can
verify that L1, L2 are indeed context-free languages and that grammars for L1, L2 can be
computed from M (for example, using [Har67]). We will regard prefixes that are common
to both languages. To this end, let c1, c2, . . . , ci−1, ci be a sequence of configurations and let
w ∈ B∗ be the word defined as

w =

{
c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#, if i = 2k, and

c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#c2k+1#, if i = 2k + 1.

Claim 1. If w is both a prefix of a word in L1 and of a word in L2, then c1, c2, . . . , ci are the
first i configurations of the run of M starting from the empty input. Moreover, if i = 2k and

w · c ·# = c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#c#

is a prefix of a word in L2, then c is configuration (i+ 1) in the run. And, if i = 2k + 1 and

w · cR ·# = c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#c2k+1#cR#

is a prefix of a word in L1, then c is configuration (i+ 1) in the run.

118

6.5. SEPARATING CONTEXT-FREE LANGUAGES BY LT AND LTT LANGUAGES

The claim follows by definition of L1 and L2. Since w is a prefix of some word w2 in L2, c1 is
the initial configuration ofM starting with an empty input. Then, since w is a prefix of some
word w1 in L1, c1 `M c2, and again since w is a prefix of w2, c2 `M c3, and so on. Thus,
c1, c2, . . . , ci are the first i configurations of the run of M starting from the empty input. If
i = 2k, and w · c ·# is a prefix of a word in L2, we have c2k `M c by definition of L2, and thus
c is configuration (i+ 1) in the run. The result for the case i = 2k + 1 is obtained similarly.

We will now prove that this indeed gives a reduction, that is, that M halts on the empty
input if and only if L1, L2 are LT-separable, if and only if L1, L2 are LTT-separable.

Assume first that M does not halt on the empty input. This means that the run of M is an
infinite sequence of configurations c1, c2, c3, Then by definition of L1, L2, for all k ∈ N,

c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#γ
k ∈ L1,

c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#γ
2k ∈ L2.

It then follows from the following claim that L1, L2 cannot be separated by an LT or LTT
language, as they cannot even be separated by a regular language.

Claim 2. If M does not halt on the empty input, the languages L1 and L2 cannot be
separated by a regular language.

This is exactly [SW76, Theorem 4.6, case 1]. Suppose there is a DFA A that separates L1 and
L2. Let n− 1 be its number of states. Let c1, c2, c3, . . . , c2·n! be the first 2 · n! configurations
of the run of M on the empty input. Define z = c1#cR2 #c3#cR4 · · ·#c2·n!−1#cR2·n!#. By the

above, the words zγn! ∈ L1, and zγ2·n! ∈ L2. It follows by pumping arguments that A cannot
separate these words.

For the other direction of the reduction, assume that M halts on the empty input within
` steps, i.e., its run is c1 `M c2 `M . . . `M c` and c` is the halting configuration. Before
providing an LT-separator for this case, we observe that sufficiently long prefixes of words of
L1, L2 are distinct.

Claim 3. Let w1 ∈ L1 and w2 ∈ L2 be words that have prefixes u1 resp. u2 of length `(` +
1) + 2`. Then u1 6= u2.

We prove this claim by contradiction. Assume that u1 = u2, and let u be the largest prefix
of u1 = u2 that is either of the form

u = c1#cR2 #c3#cR4 · · ·#ci−1#cRi #, or of the form

u = c1#cR2 #c3#cR4 · · ·#cRi−1#ci#,

depending on whether i is even or not. By definition, u1 = u2 = u · v, where v is either of the
form γj with j ≤ i/2, or is a prefix of c or cR for some configuration c of M.

Assume first that v = γj , with j ≤ i/2. By Claim 1, c1, c2, . . . , ci−1, ci are the first i configu-
rations of the run of M starting from the empty input. Since M halts in ` steps, this means
that i ≤ ` and that each of the i configurations has length ≤ `+1. It follows that u is of length
≤ `(`+ 1) + `. Therefore, |u1| = |u2| ≤ `(`+ 1) + `+ j ≤ `(`+ 1) + `+ i/2 ≤ `(`+ 1) + `+ `/2.
This gives a contradiction, because by definition, u1, u2 are of length `(`+ 1) + 2`.

119

CHAPTER 6. LT AND LTT LANGUAGES

Now assume that v is the prefix of c or cR for some configuration c ofM. By Claim 1, c is such
that c1, c2, . . . , ci−1, ci, c are the first i + 1 configurations of the run of M starting from the
empty input. SinceM halts in ` steps, this means that i+ 1 ≤ ` and that each configuration
has length ≤ `+ 1. Thus, |u| ≤ (`− 1)(`+ 1) + `− 1 and |v| ≤ `+ 1. It follows that u1 = u2

is of length ≤ `(`+ 1) + `− 1, which gives again a contradiction with the definition.

We will now show how Claim 3 can be used to define an LT language that separates L1 from
L2. Let K1 be the language of words of L1 of strictly smaller length than `(`+ 1) + 2`. Let
K2 be the set of prefixes of length `(`+ 1) + 2` of words in L1. Now define L = K1 ∪K2 ·B∗.
By definition, K1,K2 are finite languages, hence L is clearly in LT (and therefore in LTT).
We will prove that L separates L1 from L2.

By definition, L1 ⊆ L. Now let w ∈ L2. Clearly, w cannot be in K1, since, by definition of
L1, all words in K1 are of the form

c1#cR2 #c3#cR4 · · ·#c2k−1#cR2k#γ
k.

But, as w ∈ L2, it has twice as many letters γ at the end. And, w can neither be in K2 ·B∗,
because of the following. By definition, K2 · B∗ contains all words for which there is a word
in L1 that has the same prefix of length `(`+ 1) + 2`. By Claim 3, this is not the case for w.
It follows that L ∩ L2 = ∅.

We deduce that L1, L2 are LT-separable, and therefore also LTT-separable.

120

Conclusion and perspectives

This thesis reflects the results of our study of the separation problem for various subclasses
of the regular languages. For regular input languages, this problem subsumes the classical
membership problem, which is considered to be one of the main tools to understand a class of
languages described in terms of logic or combinatorial properties. The separation problem is
a tool to study the ability of a class of languages to perceive phenomena outside of this class
of languages. More precisely, it asks whether a class of languages can witness the fact that
two languages, that can be outside of the class, are disjoint. Besides that solving this problem
provides more information about the class than solving the membership problem does, it also
seems to be a more robust notion. For example, it is known from [Aui10] that decidability of
the membership problem is not preserved under the operation V 7→ V ∗ D, while this is the
case for decidability of the separation problem [Ste01].

The separation problem for classes of languages emerged first in an algebraic context in the
form of pointlike sets, and in a profinite context as a topological separation problem. In
Chapter 2, we discussed the result of [Alm99] that says that the separation problem for a
variety V is equivalent to the algebraic problem of finding the 2-V-pointlike sets, and to the
topological problem of testing whether closures of two regular languages in the free pro-V
semigroup are disjoint. These problems have been studied for various classes of languages,
using involved techniques from the theory of profinite semigroups.

Contributions

In this dissertation, we focused on the separation problem for the following four classes of
languages: piecewise testable languages, unambiguous languages, locally testable languages
and locally threshold testable languages. For the class of unambiguous languages, it was not
yet known whether the separation problem was decidable. In Theorem 5.5, we show that
this is indeed the case. For the other classes of languages, the decidability of the separation
problem had already been proved using algebraic or topological arguments. These arguments
only provide a yes/no answer to these separation problems, and do not provide separating
languages. Our motivation for studying this problem was to find proofs that do not rely on
the profinite theory behind these problems, but only use combinatorial arguments. We believe
that these proofs provide more insight in the separation problems. Indeed, our approach also
provides separating languages in case they exist.

Our contribution to this field of research is threefold. First of all, we provide combinatorial

121

CONCLUSION AND PERSPECTIVES

proofs of the decidability of the PT-, FO2(<)-, LT-, and LTT-separation problems. Our proofs
only use elementary combinatorial techniques, and are therefore much simpler than the previ-
ously known proofs. We also provide some complexity results for these separation problems.
For example, we showed that the PT-separation problem can be decided in Ptime with re-
spect to both the size of a recognizing automaton and the size of the alphabet. This improved
the existing upper bound, which was Ptime with respect to the size of the automaton, but
Exptime with respect to the size of the alphabet.

Secondly, our approach to these problems is to establish bounds on parameters of the class
of languages (such as the length of the pieces, the length of the prefixes, infixes and suffixes,
or the quantifier rank). These are such that only languages whose parameters are below the
bounds are relevant to decide the separation problem. An advantage of this approach is that
one immediately obtains a brute force algorithm to test separability, and, more importantly,
one obtains a description of a separator in case it exists.

Finally, this combinatorial approach gives an outline along which one can try to solve the
separation problem for other classes as well. For example, recently, this has successfully been
done for the class of languages recognizable by FO(<) in [PZ14b].

Recent developments and future directions

Recently, our result about the decidability of LTT-separability has been generalized in [PZ14c],
to obtain a transfer result that works for natural fragments of first-order logic. This result says
that the decidability of separability by a fragment of the form F(<,+1,min,max) reduces to
the decidability of separability by a fragment of the form F(<).

Improving results

Some questions still remain open. One question concerns the description of the separators.
The descriptions that we have found are in the form of a saturation of one of the two languages,
with respect to a congruence relation that depends on the class of languages that we study,
and on the bound established on the parameters of this class. While these descriptions of
separators form a new contribution, it is usually not clear how to find a more insightful
description of such a separator. One could for example try to find a recognizing automaton
or semigroup for this separator to obtain more information about it.

Also, there are still some complexity gaps in our results. Most importantly, we did not try
to find a lower bound for FO2(<). Also, the lower bound we found for both LT and LTT is
co-NP, while the upper bounds we found are co-Nexptime resp. 2-Expspace.

A different notion

Recall that if two languages are S-separable, for a class S, then, from the point of view of S,
these languages are sufficiently different to be perceived as disjoint. The separation problem
tests the discriminative power of S, which is more informative than the expressive power.

122

CONCLUSION AND PERSPECTIVES

One could pursue this generalization one step further, and call a language L1 S-different from
a language L2 if these are perceived as different by S. That is, if there exists a language
L ∈ S such that L1 ∩ L 6= ∅ and L2 ∩ L = ∅. Clearly, L1 is S-different from L2 if and only
if L1 contains a word w such that {w} is S-separable from L2. If S contains the languages
consisting of a single word, then this notion does not have much content. This is not the case,
for example, for the class of languages recognized by finite groups, and there is a relation
between this notion for these languages and Hall’s theorem [Hal50]. It is not clear right away
what, in general, the logical counterpart of this notion would be, and whether it would be
interesting to study this notion.

Other classes of separators

It would be interesting to see what our approach would give for the class of group languages
and compare this with existing results. As we saw in Chapter 3, the separation problem
for group languages is decidable and one can even explicitly describe the separating group
languages if it exists.

A possible variation of the class LTT would be to add modulo predicates. The infixes can
then be counted modulo constants. It is to be expected that a bound on these constants can
be established in a way similar to the bounds that we found on the size of the infixes and on
the counting threshold. Solving the separation problem for this class might give insight in
the separation problem for other classes to which modulo predicates are added as well, in the
same fashion as studying the separation problem for LTT (which corresponds to FO(=,+1))
gave insight in the separation problems for other fragments to which the successor relation is
added.

It is also to be expected that the separation problem for the class of strongly locally testable
languages, i.e. the class of languages for which membership of a word depends on the infixes
of a certain length occurring in the word (and not on the prefixes or suffixes), could be solved
by making adjustments to the proofs of Chapter 6. This would be especially interesting since
the semigroups recognizing these languages do not form a variety.

More in general, it would be interesting to study the separation problem for classes of lan-
guages that do not form a variety, such as lattices of languages. It is shown in [GGP08]
that these classes admit an equational description, and it would be interesting to see how our
approach with indistinguishable pairs can be adapted to apply to such classes of separators.
A step in this direction was recently made in [PZ14a], where the class Σ2(<) is studied. This
is a class of languages that is not closed under complement, and to accommodate for this, the
relation of indistinguishability is replaced by an asymmetric relation.

Besides widening the class of separators, one could also study the separation problem for
more involved structures, such as regular tree languages, rather than regular language over
finite words. This is expected to be much more difficult, since the theory of algebraic charac-
terizations for these languages is less advanced.

123

CONCLUSION AND PERSPECTIVES

Possible applications

Our motivation for studying this problem was purely theoretical interest. However, if the
separation problem is decidable for a class S, which usually is a simple class, then this can give
a simple way to express the fact that two - possibly very complicated - languages are disjoint.
This could be useful in applications as verification or database theory (see also [CMM13]), for
example, if one wants to over-approximate a complicated specification by a simpler one, while
avoiding a second, complicated, forbidden specification. To this end, one could implement
algorithms to decide separability for simple classes of separators, for example the classes of
piecewise testable languages, prefix- and suffix-testable languages.

124

Bibliography

[ACZ08] Jorge Almeida, José Carlos Costa, and Marc Zeitoun. Pointlike sets with respect
to R and J. J. Pure Appl. Algebra, 212(3):486–499, 2008. Cited on pages xi, 6,
21, and 47.

[Alm91] Jorge Almeida. Implicit operations on finite J -trivial semigroups and a conjecture
of I. Simon. J. Pure Appl. Algebra, 69(3):205–218, 1991. Cited on page 50.

[Alm94] Jorge Almeida. Finite semigroups and universal algebra, volume 3 of Series in
Algebra. World Scientific, 1994. Cited on pages 11, 21, 24, 26, 32, and 62.

[Alm99] Jorge Almeida. Some algorithmic problems for pseudovarieties. Publ. Math.
Debrecen, 54(suppl.):531–552, 1999. Automata and formal languages, VIII
(Salgótarján, 1996). Cited on pages xi, 5, 9, 21, 22, 23, 24, 26, 38, 84, and 121.

[AS75] Anatolij W. Anissimov and Franz D. Seifert. Zur algebraischen Charakteristik
der durch kontext-freie Sprachen definierten Gruppen. Elektronische Informa-
tionsverarbeitung und Kybernetik, pages 695–702, 1975. Cited on page 40.

[AS05] Karl Auinger and Benjamin Steinberg. A constructive version of the Ribes-
Zalesskĭı product theorem. Mathematische Zeitschrift, 250(2):287–297, 2005.
Cited on pages xi, 6, 9, 21, 37, 38, 40, and 44.

[Ash91] Chris J. Ash. Inevitable graphs: a proof of the type II conjecture and some related
decision procedures. Internat. J. Algebra Comput., 1:127–146, 1991. Cited on
pages xi, 5, 6, 21, 37, and 39.

[Aui04] Karl Auinger. A new proof of the Rhodes type II conjecture. International
Journal of Algebra and Computation, 14(05n06):551–568, 2004. Cited on pages
xi, 6, and 21.

[Aui10] Karl Auinger. On the decidability of membership in the global of a monoid
pseudovariety. Internat. J. Algebra Comput., 20(2):181–188, 2010. Cited on
pages 4, 6, 19, and 121.

[AZ97] Jorge Almeida and Marc Zeitoun. The pseudovariety J is hyperdecidable. RAIRO
Inform. Théor. Appl., 31(5):457–482, 1997. Cited on pages xi, 6, 21, 47, and 48.

[Boj07] Miko laj Bojańczyk. A new algorithm for testing if a regular language is locally
threshold testable. Inf. Process. Lett., 104(3):91–94, 2007. Cited on pages 100
and 101.

125

BIBLIOGRAPHY

[BP91] Danièle Beauquier and Jean-Éric Pin. Languages and scanners. Theoret. Comput.
Sci., 84(1):3–21, 1991. Cited on pages 84, 86, and 88.

[BS73] J.A. Brzozowski and I. Simon. Characterizations of locally testable events. Dis-
crete Mathematics, 4(3):243–271, 1973. Cited on page 87.

[BT76] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear
Diophantine equations. Proc. Amer. Math. Soc., 55(2):299–304, 1976. Cited on
page 112.

[CM14] Wojciech Czerwiński and Wim Martens. A note on decidable separability by
piecewise testable languages. http://arxiv.org/pdf/1410.1042.pdf, 2014.
Cited on pages 9, 48, 61, and 63.

[CMM13] Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability
of regular languages by subsequences and suffixes. In Proc. of ICALP’13, volume
7966 of Lect. Notes Comp. Sci., pages 150–161. Springer, 2013. Cited on pages
48 and 124.

[CMM+14] Wojciech Czerwiński, Wim Martens, Tomáš Masopust, Thomas Place, Lorijn van
Rooijen, and Marc Zeitoun. On separation by piecewise testable languages. In
preparation, 2014. Cited on pages 47 and 53.

[CN09] José Carlos Costa and Conceição Nogueira. Complete reducibility of the pseu-
dovariety LSl. Internat. J. Algebra Comput., 19(02):247–282, 2009. Cited on
page 84.

[Col10] Thomas Colcombet. Factorization forests for infinite words and applications
to countable scattered linear orderings. Theor. Comput. Sci., 411(4-5):751–764,
2010. Cited on page 61.

[Cos01] José Carlos Costa. Free profinite locally idempotent and locally commutative
semigroups. J. Pure Appl. Algebra, 163(1):19–47, 2001. Cited on page 84.

[DGK08] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small fragments
of first-order logic over finite words. International Journal of Foundations of
Computer Science, 19(3):513–548, June 2008. Cited on page 68.

[Eil76] Samuel Eilenberg. Automata, languages, and machines. Vol. B. Academic Press
[Harcourt Brace Jovanovich, Publishers], New York-London, 1976. With two
chapters (“Depth decomposition theorem” and “Complexity of semigroups and
morphisms”) by Bret Tilson, Pure and Applied Mathematics, Vol. 59. Cited on
pages x and 3.

[EVW97] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with
two variables and unary temporal logic. In LICS, pages 228–235. IEEE Computer
Society, 1997. Cited on page 68.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two
variables and unary temporal logic. Information and Computation, 179(2):279 –
295, 2002. Cited on page 68.

126

http://arxiv.org/pdf/1410.1042.pdf

BIBLIOGRAPHY

[GGP08] Mai Gehrke, Serge Grigorieff, and Jean-Eric Pin. Duality and equational theory
of regular languages. In ICALP, pages 246–257, 2008. Cited on page 123.

[Gil96] Robert H. Gilman. Formal languages and infinite groups. In Geometric and com-
putational perspectives on infinite groups (Minneapolis, MN and New Brunswick,
NJ, 1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
pages 27–51. Amer. Math. Soc., Providence, RI, 1996. Cited on pages 40 and 44.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990. Cited on page 31.

[Gre68] Sheila Greibach. A note on undecidable properties of formal languages. Mathe-
matical systems theory, 2(1):1–6, 1968. Cited on page 116.

[GS66] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and
languages. Pacific Journal of Mathematics, 16(2):285–296, 1966. Cited on page
101.

[GS78] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear
integer equalities and inequalities. Proc. Amer. Math. Soc., 72:155–158, 1978.
Cited on page 112.

[Hal50] Marshall Hall, Jr. A topology for free groups and related groups. Ann. of Math.
(2), 52:127–139, 1950. Cited on pages 37, 39, and 123.

[Har67] Juris Hartmanis. Context-free languages and Turing machine computations. Proc.
Sympos. Appl. Math., 19:42–51, 1967. Cited on page 118.

[Hen88] Karsten Henckell. Pointlike sets: the finest aperiodic cover of a finite semigroup.
J. Pure Appl. Algebra, 55(1-2):85–126, 1988. Cited on pages xi, 5, 6, and 21.

[HJM14] Stepan Holub, Galina Jirásková, and Tomáš Masopust. On upper and lower
bounds on the length of alternating towers. In MFCS, pages 315–326, 2014.
Cited on page 48.

[HMPR91] Karsten Henckell, Stuart W. Margolis, Jean-Éric Pin, and John Rhodes. Ash’s
type II theorem, profinite topology and Malcev products. I. Internat. J. Algebra
Comput., 1(4):411–436, 1991. Cited on pages 5, 37, and 39.

[HRS10] Karsten Henckell, John Rhodes, and Benjamin Steinberg. Aperiodic pointlikes
and beyond. IJAC, 20(2):287–305, 2010. Cited on pages xi, 6, and 21.

[Hun82] Harry B. Hunt, III. On the decidability of grammar problems. J. ACM, 29(2):429–
447, 1982. Cited on page 20.

[Imm82] Neil Immerman. Upper and lower bounds for first order expressibility. Journal
of Computer and System Sciences, 25(1):76 – 98, 1982. Cited on page 70.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999. Cited on page 70.

[Kam68] Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, Los Angeles (California), 1968. Cited on page 2.

127

BIBLIOGRAPHY

[Kĺı11] Ondřej Kĺıma. Piecewise testable languages via combinatorics on words. Discrete
Math., 311(20):2124–2127, 2011. Cited on page 50.

[KM02] Ilya Kapovich and Alexei Myasnikov. Stallings foldings and subgroups of free
groups. Journal of Algebra, 248(2):608 – 668, 2002. Cited on page 40.

[KMM89] Sam Kim, Robert McNaughton, and Robert McCloskey. A polynomial time
algorithm for the local testability problem of deterministic finite automata. In
Algorithms and Data Structures, number 382 in Lect. Notes Comp. Sci., pages
420–436. Springer, 1989. Cited on page 87.

[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266.
IEEE Computer Society, 1977. Cited on page 110.

[Kuf08] Manfred Kufleitner. The height of factorization forests. In MFCS, volume 5162
of LNCS, pages 443–454. Springer, 2008. Cited on page 61.

[McN74] Robert McNaughton. Algebraic decision procedures for local testability. Math.
Systems Theory, 8(1):60–76, 1974. Cited on page 87.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. The M.I.T.
Press, 1971. Cited on pages x, 3, and 87.

[Mun00] James R. Munkres. Topology. Prentice Hall, Incorporated, 2000. Cited on page
24.

[Nog10] Conceição Veloso Nogueira. Propriedades algoŕıtmicas envolvendo a pseudovar-
iedade LSl. PhD thesis, available at http://hdl.handle.net/1822/12277, 2010.
Cited on pages xi, 6, and 21.

[Par66] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. Cited
on pages 100 and 101.

[Pin84] Jean-Éric Pin. Variétés de langages formels. Études et Recherches en Informa-
tique. Masson, Paris, 1984. With a preface by M. P. Schützenberger. Cited on
page 50.

[Pin91] Jean-Éric Pin. Topologies for the free monoid. Journal of Algebra, 137(2):297 –
337, 1991. Cited on page 40.

[Pin96] Jean-Éric Pin. The expressive power of existential first order sentences of Büchi’s
sequential calculus. In Proc. of ICALP’96, number 1099 in Lect. Notes Comp.
Sci., pages 300–311. Springer, 1996. Cited on page 88.

[Pin97] Jean-Éric Pin. Syntactic semigroups. In Handbook of language theory, Vol. I,
pages 679–746. Springer, 1997. Cited on page 11.

[Pin05] Jean-Éric Pin. Expressive power of existential first-order sentences of Büchi’s
sequential calculus. Discrete Math., 291(1–3):155–174, 2005. Cited on page 88.

[Pin09] Jean-Éric Pin. Relational morphisms and pointlike sets. Not published, 2009.
Cited on pages 20 and 23.

[Pin11] Jean-Éric Pin. Mathematical foundations of automata theory. Lecture notes,
2011. Cited on pages 11 and 24.

128

http://hdl.handle.net/1822/12277

BIBLIOGRAPHY

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups,
logic and games. Pure and applied mathematics. Academic, London, San Diego
(Calif.), 2004. Cited on page 32.

[PR91] Jean-Éric Pin and Christophe Reutenauer. A conjecture on the Hall topology for
the free group. Bull. London Math. Soc., 23(4):356–362, 1991. Cited on pages
26, 37, 39, and 40.

[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In Comptes Rendus du I congrès de Mathématiciens des Pays Slaves. Warszawa,
pages 92–101, 1929. Cited on pages 100, 102, and 116.

[PvRZ13a] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular lan-
guages by locally testable and locally threshold testable languages. In FSTTCS,
pages 363–375, 2013. Cited on page 83.

[PvRZ13b] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular lan-
guages by piecewise testable and unambiguous languages. In MFCS, pages 729–
740, 2013. Cited on pages 47, 53, 55, 67, and 72.

[PvRZ14] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. On separation by locally
testable and locally threshold testable languages. Logical Methods in Computer
Science, 10(3), 2014. Cited on page 83.

[PW96] Jean-Éric Pin and Pascal Weil. Profinite semigroups, Mal’cev products and iden-
tities. J. Algebra, 182:604–626, 1996. Cited on page 5.

[PW97] Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product.
Theory of Computing Systems, 30(4):383–422, 1997. Cited on pages 2 and 68.

[PZ14a] T. Place and M. Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In ICALP’14, 2014. Cited on page 123.

[PZ14b] Thomas Place and Marc Zeitoun. Separating regular languages with first-order
logic. In CSL-LICS’14, 2014. Cited on page 122.

[PZ14c] Thomas Place and Marc Zeitoun. Separation and the successor relation. In
preparation, 2014. Cited on pages 84 and 122.

[Rei82] Jan Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis,
14(1):1–10, 1982. Cited on pages x, 3, and 15.

[Reu79] Christophe Reutenauer. Une topologie du monöıde libre. Semigroup Forum,
18(1):33–49, 1979. Cited on page 44.

[Reu81] Christophe Reutenauer. Sur mon article: “Une topologie du monöıde libre”
[Semigroup Forum 18 (1979), no. 1, 33–49; MR 80j:20075]. Semigroup Forum,
22(1):93–95, 1981. Cited on page 44.

[Rho87] John Rhodes. New techniques in global semigroup theory. In Semigroups and
their applications (Chico, Calif., 1986), pages 169–181. Reidel, Dordrecht, 1987.
Cited on pages 5, 37, and 39.

129

BIBLIOGRAPHY

[RL78] C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier
alternation. In STOC’78, pages 320–325. ACM, 1978. Cited on page 112.

[RZ93] Luis Ribes and Pavel A. Zalesskĭı. On the profinite topology on a free group. Bull.
London Math. Soc., 25:37–43, 1993. Cited on pages xi, 6, 21, 37, 39, and 42.

[RZ13] Lorijn van Rooijen and Marc Zeitoun. The separation problem for regular lan-
guages by piecewise testable languages. http://arxiv.org/abs/1303.2143,
2013. Cited on pages 30, 32, 47, 53, 55, 61, 62, and 63.

[Sch65] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965. Cited on pages x and 3.

[Sch76] Marcel-Paul Schützenberger. Sur le produit de concaténation non ambigu. Semi-
group Forum, 13:47–75, 1976. Cited on pages 68 and 70.

[Sim72] Imre Simon. Hierarchies of events with dot-depth one. PhD thesis, University of
Waterloo, 1972. Cited on pages 47 and 50.

[Sim75] Imre Simon. Piecewise testable events. In Proc. of the 2nd GI Conf. on Automata
Theory and Formal Languages, pages 214–222. Springer, 1975. Cited on pages
x, 3, and 50.

[Sim90] Imre Simon. Factorization forests of finite height. Th. Comp. Sci., 72(1):65 – 94,
1990. Cited on pages 53, 55, and 61.

[Sko31] Thoralf Skolem. Über einige Satzfunktionen in der Arithmetik. Skr. Norske Vid.-
Akad., Oslo, Math.-Naturv. Kl. No.7, 1-28 (1931)., 1931. Cited on pages 100,
102, and 116.

[SSMH04] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Count-
ing in trees for free. In ICALP’04, volume 3142 of Lect. Notes Comp. Sci., pages
1136–1149. Springer, 2004. Cited on page 112.

[ST88] Howard Straubing and Denis Thérien. Partially ordered finite monoids and a
theorem of I. Simon. J. Algebra, 119(2):393–399, 1988. Cited on page 50.

[Ste85] Jacques Stern. Complexity of some problems from the theory of automata. In-
formation and Control, 66(3):163–176, 1985. Cited on pages x, 3, and 51.

[Ste98] Benjamin Steinberg. On pointlike sets and joins of pseudovarieties. Internat. J.
Algebra Comput., 8(2):203–231, 1998. Cited on pages xi, 6, 21, and 84.

[Ste01] Benjamin Steinberg. A delay theorem for pointlikes. Sem. Forum, 63(3):281–304,
2001. Cited on pages xi, 6, 19, 21, 84, 91, and 121.

[Str85] Howard Straubing. Finite semigroup varieties of the form V ∗ D. J. Pure Appl.
Algebra, 36(1):53–94, 1985. Cited on pages 84 and 91.

[Str94] Howard Straubing. Finite automata, formal logic, and circuit complexity.
Progress in Theoretical Computer Science. Birkhäuser Boston, Inc., Boston, MA,
1994. Cited on pages 11 and 20.

130

http://arxiv.org/abs/1303.2143

BIBLIOGRAPHY

[SW76] T. G. Szymanski and J. H. Williams. Noncanonical extensions of bottom-up
parsing techniques. SIAM J. Comput., 5(2):231–250, 1976. Cited on pages 20,
117, and 119.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. Cited on page 65.

[Tho82] Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Com-
puter and System Sciences, 25(3):360–376, 1982. Cited on page 88.

[Tra01a] A. N. Trahtman. An algorithm to verify local threshold testability of deterministic
finite automata. In Automata Implementation, volume 2214 of Lect. Notes Comp.
Sci., pages 164–173. Springer, 2001. Cited on page 88.

[Tra01b] A. N. Trahtman. Piecewise and local threshold testability of DFA. In Proc.
FCT’01, pages 347–358. Springer, 2001. Cited on page 51.

[TT02] Pascal Tesson and Denis Therien. Diamonds are forever: The variety DA. In
Semigroups, Algorithms, Automata and Languages, pages 475–500. World Scien-
tific, 2002. Cited on page 68.

[TW85] Denis Thérien and Alex Weiss. Graph congruences and wreath products. J. Pure
Appl. Algebra, 36:205–215, 1985. Cited on page 88.

[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful
as one quantifier alternation. In Proc. of STOC’98, pages 234–240. ACM, 1998.
Cited on pages 2 and 68.

[VSS05] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity
of equational Horn clauses. In Proc. of CADE’05, volume 3632 of Lect. Notes
Comp. Sci., pages 337–352, 2005. Cited on page 112.

[WI09] Philipp Weis and Neil Immerman. Structure theorem and strict alternation hier-
archy for FO2 on words. Logical Methods in Computer Science, 5(3), 2009. Cited
on page 68.

[Zal72] Yechezkel Zalcstein. Locally testable languages. Journal of Computer and System
Sciences, 6(2):151–167, 1972. Cited on page 87.

131

Index

(α, s)-compatible, 90
A, 70
alphabet, 11
alphabet-testable languages, see Sl
automaton, 12

(B, p)-pattern, 55, 75
BΣ1(<), 16, 48
block, 89

prefix block, 89
suffix block, 89

common pattern, 54
commutative image, 101
complexity

of FO2(<)-separation, 82
of K-separation, 32–33
of LT-separation, 107–115
of LTT-separation, 107–115
of PT-separation, 64–66
of Sl-separation, 30–32

context-free languages, 20, 115–120
counting threshold, 87

d-pattern, 89
DA, see FO2(<)
∆2(<), see FO2(<)
DFA, 12
discriminative power, 19

Ehrenfeucht-Fräıssé games, 69–70
expressive power, 19

factor, 11
factorization pair, 53
factorization tree, 61
first-order logic, see FO(<)
FO(<), 15, 20
FO1(<), 16, 29
FO2(<), 16, 67–82

FO(=,+1), 16, 88
free group, 38
free pro-V semigroup, 14, 24

G, 37–45
group languages, see G

indistinguishable pairs, 26–29
infix, 11, 85

J, 51
J1, see Sl

K, 32–35
k-image, 101
k-loop, 95
k-profile, 85
k-unfolding, 97

`-template, 55
left zero, 32
locally testable languages, 83–120
locally threshold testable languages, 83–

120
LSl, 87
LT, see locally testable languages
LTT, see locally threshold testable lan-

guages

NFA, 12

(p, q)-compatible, 90
P-decomposition, 89
Π2(<), 68
p-implementation, 56
Parikh image, see commutative image
permutation automaton, 38
piece, 11, 49
piecewise testable languages, 47–66, 68
pointlike sets, 22

k-pointlike sets, 22

133

INDEX

prefix, 11, 85
prefix-testable languages, see K
PT, see piecewise testable languages

rank, 15
relational morphism, 22

Σ1(<), 48
Σ2(<), 68
semilattice, 29
separable, 18

L-separable, 19
S-separable, 18
V-separable, 19

separation problem, 19
separator, 18
Sl, 20, 29–32, 65, 112, 113
suffix, 11, 85
synchronizable, 109

prefix synchronizable, 109
suffix synchronizable, 109

(~u, ~B)-path, 53
unambiguous languages, see FO2(<)

variety, 14

134

	Introduction
	Preliminaries
	Words and languages
	Automata
	Recognition by semigroups and monoids
	Varieties and free pro-V semigroups
	Identities

	Logic on words
	Different fragments of FO(<)

	Introduction to the separation problem
	The separation problem
	Different points of view on the separation problem
	Algebraic view: 2-pointlike sets
	Topological view: closures in the free pro-V semigroup
	Combinatorial view: indistinguishable pairs

	Basic examples
	Example I: Sl
	Example II: K

	Group languages
	Characterizations of group languages
	The separation problem for group languages
	Closures in the free group
	Decidability of G-separability and a construction of a separator
	Closures in the free monoid

	Piecewise testable languages
	Characterizations of piecewise testable languages
	Logical characterization
	Algebraic characterization
	Graphical characterization

	Separation by piecewise testable languages
	PT-indistinguishable pairs of states
	Common patterns
	A common pattern yields PT-indistinguishability
	PT-indistinguishability stems from a common pattern
	Intermezzo: an alternative method
	Separation theorem for piecewise testable languages

	Complexity of PT-separability

	Unambiguous languages
	Characterizations of unambiguous languages
	Logical characterization
	Algebraic characterization

	Separation by unambiguous languages
	Fixpoint algorithm to compute FO2(<)-indistinguishable pairs
	Correctness of the fixpoint algorithm
	Completeness of the fixpoint algorithm
	Proof of the separation theorem for unambiguous languages

	Complexity of separation by unambiguous languages

	Locally testable and locally threshold testable languages
	Locally testable and locally threshold testable languages
	Locally testable languages
	Locally threshold testable languages

	Separation for a fixed counting threshold
	Common d-patterns
	Separation theorem for a fixed counting threshold
	A common d-pattern yields equivalent words for all profile sizes
	From a common d-pattern in M to a common d-pattern in A
	Bounding the profile size
	Decidability of separation by locally testable languages

	Separation for full locally threshold testable languages
	Decidability of separation by locally threshold testable languages
	Bounding the counting threshold
	Optimality of the bound on the counting threshold

	Complexity of LT- and LTT-separability
	Upper complexity bounds
	Lower complexity bounds

	Separating context-free languages by LT and LTT languages

	Conclusion and perspectives
	Bibliography
	Index

