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Image representation is a fundamental question for several computer vision tasks.

The contributions discussed in this thesis extend the basic bag-of-words representations for the tasks of object recognition and image retrieval.

In the present thesis, we are interested in image description by structural graph descriptors. We propose a model, named bag-of-bags of words (BBoW), to address the problems of object recognition (for object search by similarity), and especially Content-Based Image Retrieval (CBIR) from image databases. The proposed BBoW model, is an approach based on irregular pyramid partitions over the image. An image is first represented as a connected graph of local features on a regular grid of pixels. Irregular partitions (subgraphs) of the image are further built by using graph partitioning methods. Each subgraph in the partition is then represented by its own signature. The BBoW model with the aid of graphs, extends the classical bag-of-words (BoW) model by embedding color homogeneity and limited spatial information through irregular partitions of an image.

Compared to existing methods for image retrieval, such as Spatial Pyramid Matching (SPM), the BBoW model does not assume that similar parts of a scene always appear at the same location in images of the same category. The extension of the proposed model to pyramid gives rise to a method we named irregular pyramid matching (IPM).

The experiments demonstrate the strength of our approach for image retrieval when the partitions are stable across an image category. The statistical analysis of subgraphs is fulfilled in the thesis. To validate our contributions, we report results on three related computer vision datasets for object recognition, (localized) content-based image retrieval and image indexing. The experimental results in a database of 13,044 general-purposed images demonstrate the efficiency and effectiveness of the proposed BBoW framework.
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Bags of Features

CBIR

Content-Based Image Retrieval, also known as query by image content (QBIC) and contentbased visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases.

Gram matrix A matrix G = V T V, where V is a matrix whose column are the vectors v k .
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Hard Assignment

ISM

Implicit Shape Model [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF] mAP mean Average Precision metric A metric on a set X is a function d : X × X → R that is required to satisfy conditions of non-negativity, identity, symmetry and sub additivity. 
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Introduction

Object detection and recognition remain outstanding problems for which there is no off-theshelf solution, despite a vast amount of literature on the subject. The problem is challenging since characterizing the appearance of an object does not only involve the object itself but also extrinsic factors such as illumination, relative position or even cluttered background in the target image. Currently, object detection and recognition are typically considered as "retrieval" task over a database of images, where content-based image retrieval is one of the core problems.

Content Based Image Retrieval (CBIR), as its name implies, consists in browsing, searching and navigation of images from image databases based on their visual contents. CBIR has been an active area of research for more than a decade. Traditional CBIR systems use low level features like color, texture, shape and spatial location of objects to index and retrieve images from databases. Low level features can be global or local (region based). Global feature based CBIR fails to compare the regions or objects in which a user may be interested. Therefore Region Based Image Retrieval (RBIR) is more effective in reflecting the user requirement. A detailed survey of CBIR techniques can be found in the literature [START_REF] Datta | Image retrieval: Ideas, influences, and trends of the new age[END_REF][START_REF] Arnold | Content-based image retrieval at the end of the early years[END_REF][START_REF] Datta | Content-based image retrieval: approaches and trends of the new age[END_REF].

Recent methods in Content-Based Image Retrieval (CBIR) mostly rely on the bag-ofvisual-words (BoW) model [START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF]. The idea, borrowed from document processing, is to build a visual codebook from all the feature points in a training image dataset. Each image is then represented by a signature, which is a histogram of quantized visual features-words from the codebook. Image features are thus considered as independent and orderless. The traditional BoW model does not embed spatial layout of local features in the image signature. However, this information has shown to be very useful in tasks like image retrieval, image classification, and video indexing. Ren et al. [START_REF] Ren | Learning a classification model for segmentation[END_REF] put forward a concept of grouping pixels into "superpixels".
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Leibe et al. proposed to adopt codebooks to vote for object position [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF]. Birchfield et al. [START_REF] Birchfield | Spatiograms versus Histograms for region-based tracking[END_REF] introduced the concept of a spatiogram, which generalizes the histogram to allow higher-order spatial moments to be part of the descriptor. Agarwal et al. [START_REF] Agarwal | Hyperfeatures -Multilevel local coding for visual recognition[END_REF] proposed "hyperfeatures", a multilevel local coding. More specifically, hyperfeatures are based on local histogram model encoding co-occurrence statistics within each local neighborhood on multilevel image representations. Lazebnik et al. [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] partitioned an image into increasingly fine grids and computed histograms for each grid cell. The resulting spatial pyramid matching (SPM) method clearly improves the BoW representation. Nevertheless, this method relies on the assumption that a similar part of a scene generally appears at the same position across different images, which does not always hold. Recently, many efforts can be found in the literature, e.g. the Fisher vectors etc. [START_REF] Krapac | Modeling spatial layout with fisher vectors for image categorization[END_REF][START_REF] Sánchez | Modeling the spatial layout of images beyond spatial pyramids[END_REF] that compete with SPM to give extensions of bag-of-words image representations to encode spatial layout.

Graphs are versatile tools to conveniently represent patterns in computer vision applications and they have been vastly investigated. By representing images with graphs, measuring the similarities between images becomes equivalent to finding similar patterns inside series of attributed (sub)graphs representing them. Duchenne et al. [START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] introduced an approximate algorithm based on graph-matching kernel for category-level image classification. Gibert et al. [START_REF] Gibert | Graph embedding in vector spaces by node attribute statistics[END_REF] proposed to apply graph embedding in vector spaces by node attribute statistics for classification. Bunke et al. [24] provided an overview of the structural and statistical pattern recognition, and elaborated some of these attempts, such as graph clustering, graph kernels and embedding etc., towards the unification of these two approaches.

Problems and Objectives

The thesis addresses issues of image representation for object recognition and categorization from images. Compared with the seminal work by Lazebnik et al. [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF], we try to address a challenging question: will an irregular segmentation-like partition of images outperform a regular partition (SPM)? Intuitively, it is invariant to the rotation and reasonable shift transformations of image plane. Nevertheless, what can be its resistance to noise and occlusions? How will it compete with SPM when embedded into pyramidal paradigm?

1.2 Contributions

Contributions

This thesis presents a new approach for Content-Based Image Retrieval (CBIR) that extends the bag-of-words (BoW) model. We aim at embedding joint color-texture homogeneity and limited spatial information through irregular partitioning of an image into a set of predefined number of (sub)graphs. Each partition results from applying graph partitioning methods to an initial connected graph, in which nodes are positioned on a dense regular grid of pixels.

The BoW approach is then applied to each of resulting subgraphs independently. An image is finally represented by a set of graph signatures (BoWs), leading to our new representation called Bag-of-Bags of Words (BBoW). As in the spatial pyramid matching approach [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF], we also consider a pyramidal representation of images with a different number of (sub)graphs at each level of the pyramid. The comparison of images in a CBIR paradigm is achieved via comparison of the irregular pyramidal partitions. We call this pyramidal approach Irregular Pyramid Matching (IPM).

Organization of the Thesis

The thesis is structured as follows:

Chapter 1 explains briefly the importance of the topic, the scope and objectives of these studies and our contributions.

Chapter 2 provides a review of the state-of-the-art.

In Chapter 3, the application of three typical approaches for semi-regular image graph partitioning is investigated. These methods will pertain to our proposed graph-based image representation in next Chapter.

The proposed Bag-of-Bags of Words model is described in Chapter 4. The Chapter 5

extends this model to multi-levels, leading to an approach called Irregular Pyramid Matching.

Chapter 6 presents three standard datasets and experimental results on these benchmarks.

We compare our results with those of the notable method Spatial Pyramid Matching (SPM),

showing the promising performance of our approach.

Finally, we conclude the thesis with a discussion of the perspectives of future work in Chapter 7. Complementary results on three image benchmarks can be consulted in appendixes. At the end of the manuscript, a full list of the literature cited in the text is given. Wherever these
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references have been quoted, they have been cross-referred by their serial number in the list of references.

Chapter 2

Related Work

The primary purpose of this chapter is to provide a snapshot of the current state-of-the- 

Image Descriptors

Both the effectiveness and the efficiency of content-based image and video retrieval systems are highly dependent on the image descriptors that are being used. The image descriptor is responsible for characterizing the image visual content and for computing their similarities, making possible the ranking of images and videos based on their visual properties with regard to a query. In this section, we first formulate the important concepts mathematically. Then we provide a brief overview of the image descriptors. The present chapter only focuses on a few of the robust ones, particularly SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] and its variants.

Formalization

First of all, we formulate basic concepts before the discussion of image descriptors. We adopt the definitions of Torres et al. [START_REF] Da | Content-Based Image Retrieval: Theory and Applications[END_REF] in the following formalization.

An image I is a pair (P, I), where

• P is a finite set of pixels or points in N 2 , that is, P ⊂ N 2 ,

• I : P → R n is a function that assigns a vector I(p) ∈ R n to each pixel p ∈ P.

For example, let us denote the coordinates of a pixel p by p = (x p , y p ), then I(p) = (p r , p g , p b ) ∈ R 3 if a color is assigned to the pixel p ∈ P in the RGB system.

A feature vector ν I of an image I is defined as a n-dimensional point in R n space:

ν I = (v 1 , ..., v n ) (2.1)
An image descriptor (or visual descriptor) D can be defined as a pair ( D , δ D ), where D is a feature-extraction algorithm and δ D is a suitable function for comparing the feature vectors generated from D . As illustrated in Figure 2.1,

• D encodes image visual properties (e.g. color, texture, shape and spatial relationship of objects) into feature vectors.

• δ D : R n × R n → R is a similarity (or distance) function (e.g. based on a metric) that computes the similarity of the feature vectors between two images (or the distance between their corresponding feature vectors, as the opposite).

The examples of possible feature vectors will be discussed in Section 2.1.2. 

Image Feature Detection

There are many feature detection methods: interest point detection [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF], edge detection [27],

corner detection [28], blob detection [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]30] etc. Each method has its own (dis)advantage. The most important image features are the localized features, which are often described by the appearance of patches of pixels around the specific point location. A few of examples are keypoint features or interest points and corners.

Image Feature Extraction and Description

Feature-extraction algorithm D is used to quantize image feature(s) into feature vector(s).

According to different feature extraction algorithms, the generated image descriptor(s) can be either local or semi-local or even global.

An D can produce either a single feature vector or a set of feature vectors. In the former case, when a single feature vector must capture the entire information of the visual content, we say that it is a global descriptor. In the latter case, a set of feature vectors is associated with different features of the visual content (regions, edges, or small patches around points of interest). We call it local descriptor.

The image descriptors can also be divided into several types based on image visual properties such as color, texture, shape, location etc. Three main types are: 1) color descriptors;

2) texture descriptors; 3) shape descriptors.
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In the following sections, we provide a brief overview of these image descriptors.

Local Image Descriptors

Local features have received the most attention in the recent years. The main idea is to focus on the areas containing the most discriminative information. In particular, the descriptors are generally computed around the interest points of the image. Therefore, they are often associated to an interest point detector. A good local descriptor should be invariant to the lightening changes and geometric changes such as rotation, translation, scaling typically. In the following section, we briefly present some typical local image descriptors. For each enumerated descriptor, we give it an acronym in the subsection title.

SIFT Scale Invariant Feature Transform (SIFT), proposed by Lowe [31], has been designed to match different images or objects of a scene. It has unique advantages: largely invariant to changes in scale, illumination, noise, rotation, 3D camera viewpoint (i.e., the same keypoint in different images maps to similar representations) etc., and partially invariant to local affine distortions. Due to its strong stability and these invariance characteristics, SIFT has become the most popular local feature description so far.

As described in [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF], there are four major stages for extracting SIFT features: 1) scalespace extrema detection; 2) keypoint localization; 3) orientation assignment; 4) and keypoint

descriptor. An illustration is shown in Figure 2.2. Sparse and dense features sampling In general, there are two sampling strategies for local image descriptors: 1) sparse features sampling, also known as interest point approach; 2) dense features sampling, as its name indicates, local features are computed on a "dense grid". We will not detail it here, as a good survey in this respect can be found in the work of Tuytelaars [START_REF] Tuytelaars | Dense interest points[END_REF].

In this Section, we provide an overview of several notable local image descriptors. They are: SIFT, PCA-SIFT, RootSIFT and SURF. A comparative study of those image descriptors can be found in the literature [START_REF] Wu | A comparative study of SIFT and its variants[END_REF].

Semi-local Image Descriptors

Most shape descriptors fall into this category. Shape description relies on the extraction of accurate contours of shapes within the image or region of interest (ROI). Image segmentation is usually fulfilled as a pre-processing stage. In order for the descriptor to be robust with regard to affine transformations of an object, quasi perfect segmentation of shapes of interest is supposed.

The examples of four important shape descriptors are: 1) Fourier descriptors (FD); 2) curvature scale space (CSS) descriptors; 3) angular radial transform (ART) descriptors; 4) image moment descriptors. FD [START_REF] Zahn | Fourier descriptors for plane closed curves[END_REF] and CSS [START_REF] Mokhtarian | Robust image corner detection through curvature scale space[END_REF] descriptors are contour-based since they are extracted from the contour, while image moments [START_REF] Khotanzad | Invariant image recognition by Zernike moments[END_REF] and ART [START_REF] Ricard | Generalizations of angular radial transform for 2D and 3D shape retrieval[END_REF] descriptors are region-based extracted from the whole shape region. A more complete list of shape descriptors can be found in [START_REF] Amanatiadis | Evaluation of shape descriptors for shape-based image retrieval[END_REF].

Global Image Descriptors

Global image features are generally based on color, texture or shape cues. In this Section, we mainly discuss color and texture related features, ignoring shape which is beyond the scope of this work.

Color

Color is an important part of the human visual perception. Before going further into the description of color features, it is necessary to define the notion of color spaces. A color space is a mathematical model that enables the representation of colors, usually as a tuple of color components. There exist several color models. Among them we can cite the RGB (Red Green Blue), HSV (Hue Saturation Value) and YUV (luminance-chrominance) models, for instance.

In this Section, we will discuss some examples of color descriptors: the general color Color Moments Three order moments are another way of representing the color distribution within the image or a region of the image [START_REF] Stricker | Similarity of color images[END_REF]. The first order moment is the mean which provides the average value of the pixels of the image. The standard deviation is the second order moment representing how far color values of the distribution are spread out from each other. The third order moment, named skewness, can capture the asymmetry degree in the distribution. It will be null if the distribution is centred on the mean. Using color moments, a color distribution can be represented in a very compact way. Given an image in a specific color space with three channels, the image can be characterized by nine moments: three moments for each three color channels. Let us denote the value of the j-th image pixel at the i-th color channel by p i j , and N is the number of the pixels in the image, then three color moments can be defined as:

Moment 1 -Mean:

E i = N j=1 1 N p i j . (2.2)
Moment 2 -Standard Deviation:

σ i = 1 N N j=1 (p i j -E i ) 2 . (2.3)
Moment 3 -Skewness:

S i = 3 1 N N j=1 (p i j -E i ) 3 . (2.4) 
Other color descriptors that can be mentioned are the Dominant Color Descriptor (DCD) introduced in the MPEG-7 standard.

Color Coherence Vectors Pass et al. [START_REF] Pass | Comparing images using color coherence vectors[END_REF] proposed to classify each pixel in a given color bucket as either coherent or incoherent, based on whether or not it is part of a large similarlycolored region. For a given color, the number of coherent (α i ) versus incoherent pixels (β i )

with each color are stored as a vector, in form of < (α 

γ (k) c i ,c j (I) Pr p 1 ∈I c i ,p 2 ∈I p 2 ∈ I c j | |p 1 -p 2 | = k (2.5)
where c i and c j are two color bins from C. By following the same notations as above, we can define a color histogram of I for i ∈ {1, . . . , m} (that counts the number of pixels with a given color bin) as:

h c i (I) n 1 • n 2 • Pr p∈I [p ∈ I c i ] (2.6)
Color correlogram outperforms the traditional color histogram method by including the spatial correlation of colors.

Texture

In this subsection, we present several texture cues for global image features. Actually, there is no precise definition of texture. However, one can define texture as the visual pattern having the properties of homogeneity that do not result from the presence of only a single color or intensity. Texture plays an important role in describing innate surface properties of an object and its relationship with the surrounding regions. There are many texture feature extraction techniques that have been proposed until now.

A majority of these techniques are based on the statistical analysis of pixel distributions and others are based on Local Binary Pattern (LBP) [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF]. The representative statistical methods are Gray Level Co-occurrence Matrix (GLCM) [START_REF] Haralick | Textural features for image classification[END_REF], Markov Random field (MRF) model [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF][START_REF] Geman | Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images[END_REF], Simultaneous Auto Regressive (SAR) model [START_REF] Mao | Texture classification and segmentation using multiresolution simultaneous autoregressive models[END_REF], Wold decomposition model [START_REF] Sriram | Texture coding using a wold decomposition model[END_REF], Edge

Histogram Descriptor (EHD) [START_REF] Park | Core experiments on MPEG-7 edge histogram descriptor[END_REF][START_REF] Dong Kwon | Efficient use of local edge histogram descriptor[END_REF] and wavelet moments [START_REF] Smith | Transform features for texture classification and discrimination in large image databases[END_REF][START_REF] Van De Wouwer | Statistical texture characterization from discrete wavelet representations[END_REF].

Local binary pattern Local binary pattern (LBP) descriptors were proposed by Ojala et al. [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] for texture classification and retrieval. LBP describes the surroundings of a pixel by generating a bit-code from the binary derivatives of a pixel. In its simplest form, the LBP operator only considers the 3-by-3 neighbours around a pixel. The operator generates a binary 1 if the neighbour of the centre pixel has larger value than the centre pixel, otherwise it generates a binary 0 if the neighbour is less than the centre. The eight neighbours of the centre can then be represented with an 8-bit number such as an unsigned 8-bit integer, making it a very compact description. A toy example is shown in Figure 2.3. In the general case, given a pixel, the LBP code can be calculated by comparing it with its neighbors as:
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LBP P,R = P-1 p=0 s g p -g c 2 p , s(x) = 1, x 0 0, x < 0 (2.7)
where g c is the grey-value of the centre pixel and g 0 , . . . , g P-1 correspond to the grey-values of neighbouring pixels, P is the total number of neighbours and R is the radius of the neighbourhood. After generating the LBP code for each pixel in the image, a histogram of LBP codes is used to represent the texture image.

Over the years, LBP based methods [START_REF] Zhu | Local multiple patterns based multiresolution gray-scale and rotation invariant texture classification[END_REF][START_REF] André | Texture analysis and classification: A complex network-based approach[END_REF] have gained more popularity for their computational simplicity and robust performance in terms of gray scale variations on representative texture databases. More LBP variants can be found in the literature [START_REF] Pietikäinen | Computer vision using local binary patterns[END_REF].

For instance, to reduce the feature dimension, simple LBPs are further extended to uniform LBPs. The uniform patterns are extracted from LBP codes such that they have limited discontinuities [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] in the circular binary representation, i.e. at most two circular 0-1 and 1-0 transitions. In general, a uniform binary pattern has (P × (P -1) + 3) distinct output values.

To further reduce the feature dimension and achieve rotation invariance, uniform patterns are reduced to rotation invariant uniform (riu) LBP codes. It can be defined as:

LBP riu2 P,R =            P-1 p=0 s g p -g c 2 p , if U(LBP P,R ) 2 P + 1, otherwise (2.8)
where U is defined as the number of spatial transition (0/1) in that pattern. The mapping from LBP P,R to LBP riu2 P,R , has P + 2 distinct output values, and can be implemented with the help of a lookup table of 2 P elements.

Co-occurrence matrix Gray Level Co-occurrence Matrix (GLCM), as a statistical approach to provide valuable information about the relative position of the neighbouring pixels in an image, was first introduced by Haralick et al. [START_REF] Haralick | Textural features for image classification[END_REF] for classifying terrain images.

Give an image I of size n × m, the co-occurrence matrix C, can be defined as:

C ∆x,∆y (i, j) = n x=1 m y=1        1, if I(x, y) = i and I(x + ∆x, y + ∆y) = j 0, otherwise (2.9) 
where i, j are the image intensity values, (x, y) are the spatial position of the pixel-of-interest;

the offset (x + ∆x, y + ∆y) specifies the distance d between (x,y) and its neighbour.

The co-occurrence matrix (CM) keeps track of the number of pairs of certain pixels that occur at certain separation distances in the image space. By adjusting the distances over which we check co-occurrences, we can adjust the sensitivity of the CM to geometric changes in the objects appearance caused by viewpoint changes, rotation or object flexing. Note that the correlogram defined above in Section 2.1.6.1 can be seen as an extension of GLCM to the color space.

The DCT Coefficient Domain Block discrete cosine transform (DCT) is widely used in image and video compression algorithms. The discrete cosine transform (DCT) is similar to the discrete Fourier transform, i.e. it transforms a signal or image from the spatial domain to the frequency domain. The two-dimensional DCT of an M-by-N matrix A is defined as follows:

d p,q = α p α q M-1 m=0 N-1 n=0 A m,n cos π M m + 1 2 p cos π N n + 1 2 q , with 0 p M -1 0 q N -1 ,
and

α p = 1/ √ M, p = 0 √ 2/M, 1 p M -1 , α q = 1/ √ N, q = 0 √ 2/N, 1 q N -1 . (2.10) 
The values D pq = {d p,q } are called the DCT coefficients of A.

Bar et al. [START_REF] Bae | Image retrieval using texture based on DCT[END_REF] proposed to use some DCT coefficients to characterize texture features, which have proved to give good results at low computational complexity [START_REF] Ng | On local linear transform and Gabor filter representation of texture[END_REF]. In the present work, we adopted DCT coefficients to extract texture patterns. We will discuss it in detail in Section 3.3.3.2 of Chapter 3.

Gist

The GIST descriptor was initially proposed in [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF]. In cognitive psychology, the gist of the scene [START_REF] Oliva | Gist of the scene[END_REF], refers to a short summary of the scene (the scene category, and a description of a few objects that compose the scene). In computer vision, the idea of "gist" is to develop a low dimensional global image representation of the scene, which does not require any form of segmentation. It can include from low-level features (e.g., color, spatial frequencies) to intermediate image properties (e.g., surface, volume) and high-level information (e.g., objects, activation of semantic knowledge).

The GIST descriptors have been used for scene recognition [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF][START_REF] Oliva | Building the gist of a scene: the role of global image features in recognition[END_REF], depth estimation [START_REF] Torralba | Depth estimation from image structure[END_REF],

image retrieval for computer graphics [START_REF] Hays | Scene completion using millions of photographs[END_REF], and for providing contextual information as strong prior for the subsequent object detection [START_REF] Torralba | Context-based vision system for place and object recognition[END_REF][START_REF] Torralba | Contextual priming for object detection[END_REF][START_REF] Torralba | 80 million tiny images: A large data set for nonparametric object and scene recognition[END_REF]. While GIST descriptors is suitable for retrieving similar objects and scenes which are well aligned, they cannot cope with wide variations in rotation, scaling or viewpoint. An evaluation of GIST descriptors can be found in [START_REF] Douze | Evaluation of GIST descriptors for web-scale image search[END_REF].

Similarity Metrics

In this Section, we introduce different similarity metrics to compare feature vectors. As for similarity measure between histograms, especially the notable one: Histogram Intersection, we will discuss them in Section 4. Given these two feature vectors, a number of measures for computing their similarity can be used. We can list a few of them:

L 1 distance (D L 1 ), L 2 distance (D L 2 ), χ 2 distance (D χ2 ),
Kullback-Leibler divergence (D KL ), Jeffrey divergence (D Je ) and Battacharyaa distance(D B ) etc. Note that L 1 distance is also known as city block distance or Manhattan distance. Formally, these distances can be formulated as follows:

L 1 distance : D L 1 (O, U) = B b=1 |o b -u b | . (2.11) L 2 distance : D L 2 (O, U) = B b=1 (o b -u b ) 2 1/2 .
(2.12)

χ 2 distance : D χ2 (O, U) = 1 2 B b=1 (o b -u b ) 2 o b + u b . (2.13)
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Kullback-Leibler divergence :

D KL (O, U) = B b=1 o b log o b u b . (2.14)
Jeffrey divergence :

D Je (O, U) = B b=1 o b log o b m b + u i log u b m b , (2.15) 
where m b = o b +u b 2 . Battacharyaa distance: In statistics, the Bhattacharyya distance, named after mathematician Bhattacharyya [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF], measures the similarity of two discrete or continuous probability distributions. Consider two discrete probability distributions p and q over the same domain X,

x∈X p(x) = 1, x∈X q(x) = 1. The Bhattacharyya distance is defined as: D B (p, q) = -ln BC(p, q) (2.16) 
where BC(p, q) = x∈X (p(x)q(x)) is the Bhattacharyya coefficient. Note that both the chisquare measure and Battacharyaa coefficient can measure the similarity between two distributions. It has been proved in [START_REF] Frank | The Bhattacharyya metric as an absolute similarity measure for frequency coded data[END_REF] that the Bhattacharyya coefficient is considered as an approximation of the chi-square measure.

In summary, the resemblance between feature vectors can be measured either as a distance (dissimilarity) or a similarity. The distance measures described above are flexible: Most distance measures can be converted into similarities and vice versa.

Image Retrieval in the Real World

Due to recent advances in image acquisition and data storage, it is necessary to develop appropriate computer systems for browsing, searching and retrieving images from large databases of digital images. In this context, image retrieval has received a lot of attention in the computer vision community in the last twenty years [START_REF] Datta | Image retrieval: Ideas, influences, and trends of the new age[END_REF][START_REF] Arnold | Content-based image retrieval at the end of the early years[END_REF][START_REF] Datta | Content-based image retrieval: approaches and trends of the new age[END_REF][START_REF] Da | Content-Based Image Retrieval: Theory and Applications[END_REF][START_REF] Gupta | Visual information retrieval[END_REF][START_REF] Del | Visual information retrieval[END_REF][START_REF] Goodrum | Image information retrieval: An overview of current research[END_REF].

Image retrieval can mainly be divided into two categories: 1) query by text (QBT), often referred to as annotation-based image retrieval (ABIR); 2) query by example (QBE), also known as the Content-Based Image Retrieval (CBIR). The former uses the metadata such as keywords, tags, or descriptions associated with the image to search images. The latter allows to retrieve images based on colors, textures, shapes or any other visual information derived from the image itself. In the following manuscript, we refer image retrieval to the latter (CBIR) only, unless otherwise noted.

An overview of image retrieval is illustrated in 

Image Representation

The image representation is one of key components linked with different tasks, such as object class detection, shape based object recognition [START_REF] Ferrari | From images to shape models for object detection[END_REF], image segmentation [START_REF] Larlus | Category level object segmentation by combining Bag-of-Words models with Dirichlet processes and random fields[END_REF] or image classification in computer vision. In this Section, we will introduce several of these recent advances in the representation of images.

The Bag-of-Words Model

Local-feature based image representations have been successfully applied to many applications in computer vision, such as object recognition, image matching, image categorization and image retrieval. The famous Bag-of-Features (BoF) framework consists in computing and aggregating statistics derived from the local features such as SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] etc. to describe the image content. The bag-of-words model is one of the most popular variant of the BoF framework.

Many approaches in aforementioned tasks rely on the bag-of-words model (BoW) since it was introduced in the seminal papers [START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF][START_REF] Csurka | Visual categorization with bags of keypoints[END_REF].

The BoW model is originated from texture recognition [START_REF] Julesz | Textons, the elements of texture perception, and their interactions[END_REF][START_REF] Leung | Representing and recognizing the visual appearance of materials using three-dimensional textons[END_REF] and document processing [START_REF] Salton | Introduction to modern information retrieval[END_REF]. As its name implies, the model was learned from the idea of texture being characterized by the repetition of 'textons'; as well as from document classification, where a text document is represented as a "bag" of orderless words. For a document, a so-called bag of words is actually a sparse vector of frequencies of words from a dictionary. The dictionary is a vocabulary that consists of keywords occurring in text documents. A document is then represented as a histogram over the vocabulary in the dictionary.

Bag of visual words (BoVW) representation is inspired from the aforementioned document

representation. An image can be treated as a document on the analogy between words/dictionary in document and visual words/dictionary in image. The visual words, are also called codewords, as an analogy to words in text documents. The dictionary in images is also called codebook, as an analogy to a word dictionary in text document. In the remainder of the thesis, we therefore use the words "visual words" and "codewords", "dictionary" and "codebook" in-

terchangeably. An illustration of Bag of Words versus Bag of Visual Words analogy is shown in To achieve image representation based on this analogy in the BoVW model, we need to define the corresponding "visual words" and "dictionary" in images. More precisely, the bag of visual words model involves the following steps:

1. feature detection;

2. feature extraction/description; The first step is the computation of local feature descriptors such as SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF]31] or SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF] for a set of image patches. These patches can be either at the key-point locations or densely sampled on a regular grid of the image. After that, a clustering technique, typically k-means [START_REF] Macqueen | Some methods for classification and analysis of multiVariate observations[END_REF],

is applied to quantize these descriptors into a fixed number of clusters. The centres of these generated clusters are the so-called visual words or codewords. The whole set of cluster centres is the dictionary or codebook. In this thesis, we denote codebook by C = {C 1 , . . . , C B }, where B is the codebook size.

During the second step, each image descriptor in a given image will be associated with the nearest visual word or visual words in the dictionary. If each descriptor is assigned to a single visual word, we call this assignment measure "Hard Assignment" (HA). Otherwise, we call it "Soft Assignment" (SA) [START_REF] Van Gemert | Visual word ambiguity[END_REF][START_REF] Koniusz | Soft assignment of visual words as linear coordinate coding and optimisation of its reconstruction error[END_REF][START_REF] Garg | Bag of visual words: A soft clustering based exposition[END_REF][START_REF] Kuang | Optimizing visual vocabularies using soft assignment entropies[END_REF]. The final image representation is thus made by computing a histogram of codewords occurrences. So an image I j is represented as an histogram of visual Several extensions to the traditional bag-of-words image representation have been proposed. We will discuss the most relevant ones in the next section.

words h j = p(C 1 |I j ), . . . , p(C B |I j ) . The

The State-of-the-art to Improve the Bag-of-Visual-Words Model

The basic Bag-of-Visual-Words model uses histogram as image signatures. Hence, BoVW method discards all the spatial layout of image features. It also ignores how the image features are distributed across images. However, this information is a key attribute for object recognition and scene classification. Many research efforts have been tackled these constraints. In the following, we will enumerate several approaches that have been proposed in the literature to overcome these limitations.

Spatial pyramid image representation

Lazebnik [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] et al. introduced a simple yet effective extension of bag-of-features image representation, named Spatial Pyramid Matching (SPM). The idea is first to recursively subdivide the image into 2 r × 2 r grids at multiple resolutions, then to compute the BoW histograms for each grid sub-block at several spatial granularities, and finally to concatenate histograms of each grid by a formulation of pyramid match kernel:

κ R (I i , I j ) = I R + R-1 r=0 1 2 R-r I r -I r+1
(2.17)

= 1 2 R I 0 + R r=1 1 2 R-r+1 I r .
The weight 1 2 R-r allows for penalizing low resolutions of a partition, reflecting the fact that higher levels localize the features inside smaller regions more precisely, see In such a way, the spatial distribution of these visual features is encoded into the final spatial pyramid image representation with level weighted normalizations. Despite on hypothesis of uniform spatial layout in image, SPM does not only beat the simple BoVW by a large margin but also performs competitively against much elaborate methods.

Superpixels

Ren et al. [START_REF] Ren | Learning a classification model for segmentation[END_REF] put forward a concept of grouping pixels into "superpixels". Superpixels are often used as a preprocessing step in computer vision to reduce the complexity of image analysis for later processing stages. The original superpixel algorithm used Normalized Cuts (NCuts) based on contour and texture cues [START_REF] Mori | Recovering human body configurations: combining segmentation and recognition[END_REF][START_REF] Ren | Learning a classification model for segmentation[END_REF]. Later a variety of new superpixel algorithm have been developed, e.g. TurboPixels [START_REF] Levinshtein | TurboPixels: Fast superpixels using geometric flows[END_REF], Simple Linear Iterative Clustering (SLIC) superpixels [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], Superpixels Extracted via Energy-Driven Sampling (SEEDS) [START_REF] Van Den Bergh | SEEDS: Superpixels extracted via energy-driven sampling[END_REF].

A shortcoming of this approach is: Superpixels are usually expected to align with object boundaries, but this may not hold strictly in practice due to faint object boundaries and cluttered background [START_REF] Schick | Measuring and evaluating the compactness of superpixels[END_REF].

RELATED WORK

Using class-specific codebooks to vote for object position

Leibe et al. [START_REF] Leibe | Combined object categorization and segmentation with an implicit shape model[END_REF] proposed to build a class-specific codebook for the target object category.

The procedure of codebook generation works as follows. 

Spatiograms versus Histograms

Histograms, as graphical representation of the data distribution, have been widely used to describe image regions. However, all spatial information is discarded and only features occurrence counts are retained in such a description. Birchfield et al. [START_REF] Birchfield | Spatiograms versus Histograms for region-based tracking[END_REF] introduced spatiograms as a generalization of the histograms to allow higher-order spatial moments to be part of the descriptor. Conaire et al. [START_REF] Ciarán O Conaire | An improved spatiogram similarity measure for robust object localisation[END_REF] further proposed an improved spatiogram similarity measure that was derived from the Bhattacharyya coefficient [START_REF] Comaniciu | Real-time tracking of non-rigid objects using Mean Shift[END_REF] for spatiogram comparison.

Formally, a histogram can be formulated as: Given a discrete function f : x → z, where

x ∈ X and z ∈ Z, a histogram of f is h f : z → Z * , where Z * is the set of non-negative integers. h f (z) is the number of elements x ∈ X such that f (x) = z.
In contrast, for an image I j , its spatiograms can be expressed by rewriting the aforementioned function f as a two-dimensional mapping I j : P → z, where P = [X, Y] T is a set of pixels of an image, [X, Y] T is a set of their corresponding coordinates in the image. Hence, the (second-order) spatiogram of an image is denoted by:

h I j (b) = n b , µ b , Σ b , b = 1, . . . , B, (2.18) 
where n b is the number of pixels whose values fall into the bth bin, i.e. the set {n b } b=1,...,B corresponds exactly to the histogram. The µ b and Σ b represent the mean vector and covariance matrices of those pixels' coordinates respectively. B is the number of bins in the spatiogram.

Compared with co-occurrence matrices [START_REF] Haralick | Textural features for image classification[END_REF], spatiograms capture the global positions of the pixels rather than their pairwise relationships.

Spatial orientations of visual word pairs to improve Bag-of-Visual-Words model

Khan et al. [START_REF] Khan | Spatial orientations of visual word pairs to improve Bag-of-Visual-Words model[END_REF] proposed to embed global spatial information of visual words into BoW model through the histograms of orientations for any pairs of visual words of the same type.

The authors introduced a notation Pair of Identical visual Words (PIW), which is defined as the set of all the pairs of visual words of the same type. A spatial distribution of visual words is represented as a histogram of orientations of the segments formed by PIW.

Improve BoW model with respect to feature encoding

Features encoding, i.e. transforming local image descriptors into histograms is at the heart of bag-of-visual-words model. A large number of methods have been proposed to improve this encoding process in feature space. Recently, many efforts can be found in the literature regarding this direction. Here we enumerate some notable approaches, such as Fisher vector image representation [START_REF] Krapac | Modeling spatial layout with fisher vectors for image categorization[END_REF][START_REF] Sánchez | Modeling the spatial layout of images beyond spatial pyramids[END_REF][START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF][START_REF] Perronnin | Improving the fisher kernel for large-scale image classification[END_REF][START_REF] Perronnin | Large-scale image retrieval with compressed Fisher vectors[END_REF][START_REF] Simonyan | Fisher vector faces in the wild[END_REF], sparse coding [START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classification[END_REF], locality constrained linear coding (LLC) [START_REF] Wang | Localityconstrained linear coding for image classification[END_REF], spatially local coding [START_REF] Mccann | Spatially local coding for object recognition[END_REF] etc. that compete with SPM to give extensions of bag-of-words image representations to encode spatial layout.

Region-based Image Representation

Many works on region-based image representation (RBIR) can be found in the literature [START_REF] Huang | A review of region-based image retrieval[END_REF][START_REF] Ahuja | From region based image representation to object discovery and recognition[END_REF]. We introduce several notable ones.

Stricker et al. [START_REF] Stricker | Similarity of color images[END_REF] proposed to divide an image into 5 partially overlapping, fuzzy regions.

Next, they compute the first three moments of the color distribution for each region. Finally, an image is represented by a feature vector that is composed of color moments of 5 fuzzy regions for image indexing. That is to say, the index entry consists of 45 (number of regions × number of color channels × three moments, i.e. 5 × 3 × 3) floating numbers per image for indexing.

Based on fuzzy regions, the feature vectors in the index achieve relatively invariance to small translations and small rotations of an image.

Jing et al. reported their work on RBIR [START_REF] Jing | An effective region-based image retrieval framework[END_REF][START_REF] Jing | Learning in region-based image retrieval[END_REF][START_REF] Jing | An efficient and effective regionbased image retrieval framework[END_REF]. They transformed the local features of regions into a compact and sparse representation. Suppose an image I j containing N regions {R 1 , . . . , R N }. The image is described by a vector of the form :

Î = CI R 1 , W R 1 ), . . . , (CI R N , W R N ,
where CI R i and W R i are the codeword index and importance weight of region R i , the sum of importance weights for an image should be equal to 1, i.e.

N i=1 W R i = 1.
The codebook is generated by iteratively clustering the features (the first two color moments) of regions from all images in the database. Each region of an image is labelled by a codeword index corresponding to the cluster it belongs to, defined as I s = (w 1 , . . . , w N ), where N is the number of the codewords,

N i=1 w i = 1.
Omhover et al. [START_REF] Omhover | STRICT: An image retrieval platform for queries based on regional content[END_REF][START_REF] Omhover | Fast gradual matching measure for image retrieval based on visual similarity and spatial relations[END_REF] formulated spatial structure of the regions by fuzzy similarity measure. Each region is described by a set of color and shape features. Two regions are compared by measuring their common and distinctive features in the regions.

Gosselin et al. [START_REF] Henri Gosselin | Kernels on bags of fuzzy regions for fast object retrieval[END_REF] proposed a pairs-of-regions based image representation in specific cases (objects with heterogeneous background). The authors use one color histogram, three texture histograms as the signature of a region. The spatial constraints only apply to pair of adjacency regions, they called this approach "mini-bag".

Vieux et al. [START_REF] Vieux | Content based image retrieval using Bag-Of-Regions[END_REF] [22-24, 112, 113]. In this manuscript, we only cite one instance: Graph Words, which has highly motivated our present work.

Graph Words Karaman proposed a graph-based image representation via "Graph Words" [START_REF] Karaman | Indexation de la vidéo portée : application à l`étude épidémiologique des maladies liées à l`âge[END_REF].

The idea of the method consists in building a set of "small" graphs on multiple nested layers, and then in fitting these graph features to bag-of-visual-words approach, as demonstrated in Figure 2.9. The author defined a maximum of four layers of Graphs Words due to high computational cost of the approach. From bottom to top, the first layer contains only a fixed number of seeds points which are positioned at salient SURF points with higher response [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF]. The second to fourth layer correspond respectively to graphs with 3,6 and 9 nearest neighbours of the seeds. Graph edges are generated by Delaunay triangulation on each layer separately.

Under such definition, the number of graphs at each layer is the same. Graph comparison can be achieved by Context Dependent Kernel (CDK) [START_REF] Sahbi | Object recognition and retrieval by context dependent similarity kernels[END_REF]. In contrast to traditional visual dictionary, each codeword is defined as the median graph that minimizes the distance to all the graphs of the corresponding cluster. The spatial layout is therefore embedded at feature level in such multi-resolution of graph structure.

Conclusion

In Chapter 3

Graph-based Image Representation

As discussed in Chapter 2, graphs are powerful tools to model spatial information in image representation. Graph-based representations are of pivotal importance in computer vision and pattern recognition [START_REF] Hancock | Special issue on graph-based representations in computer vision[END_REF]. Describing the image patterns with such representations is quite natural and find applications in both low level image processing and high level vision tasks.

The patterns and objects in images are identified by decomposing the image into parts and analysing the relationships/structure between them.

In this Chapter, we first introduce the image graph model. Next, we explain how this proposed model is described by a weighted image graph. The weighted image graph is composed of graph nodes, edges and the corresponding edge weights. An edge weight measures the similarity between two nodes of the edge. Then we discuss the weighted graph construction process step by step. Different objective functions for edge weights are designed. Finally, three graph partitioning methods are presented for dividing the image graph into a series of subgraphs.

These subgraphs is then used as image descriptors embedding the color/texture homogeneity and limited spatial information of the image. 

An Overview of the Image Graph Model

Weighted Image Graph Representation

Intuitively, a graph represents a set of elements and a set of pairwise relationships between these elements. The elements are called nodes or vertices, and the pairwise relationships between the nodes are called edges.

A graph G = (V, E) is represented by a set of vertices V and a collection of edges E ⊆ V ×V.

Each edge connects a pair of vertices. If all edges in a graph have no orientation, i.e., the edge (a, b) is identical to the edge (b, a), then this graph is called undirected graph. An edgeweighted graph (or for short, weighted graph), is defined as a pair (G, w) in which w(e) : e → R is a weight function mapping each edge e ∈ E to its weight. Weighted graphs, as a model, are used in numerous problems, such as networks where graph nodes are linked with different weights (distance, cost, etc.). Note that a graph can be viewed as an edge-weighted graph where all edges have a weight equalling to 1.

An input image database Ω, is composed of N RGB images Ω = {I 1 , . . . , I N }. We define

G j = (V j , E j , W j
) as the undirected weighted image graph constructed on the image I j . The set of vertices V j contains a subset of pixels P of the image I j and at the limit can contain all of them. The graph edges E j connect these vertices with a specified neighbourhood system. W j is an affinity matrix of size |V j | × |V j |, whose entry at row p, and column q is W pq , defined as:

W pq = w pq if p, q ∈ E j 0 if p, q E j , (3.1) 
where w pq represents the edge-based similarity between two vertices p and q.

3.3 Graph Construction

Graph Construction

With the above notation, we can now define the graph nodes (vertices), graph edges and graph weights in image graph.

Graph Nodes Selection in Image Graph

We experimented two methods for nodes selection. We describe them in the following.

Prominent keypoints

Feature extraction First, a feature-extraction algorithm is used to extract the feature points either on the whole image or on the mask of the object being retrieved. An example can be seen in Figure 3.2(a), where the SURF points [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF] are chosen in our experiments. A threshold (T hr h ) on the Hessian of the SURF descriptors is set. The larger the threshold value, the less keypoints are selected. A good value for T hr h could be from 300 to 500, depending from the image contrast. By default, the value of T hr h is set to 400.

Key points filtering

Next, all the extracted feature points are further sorted by their feature strengths. In such a way, the most strong/prominent key points with the most representative features remain. In some cases, the extracted points may be very close to each other, which leads to unbalanced graph edges. To avoid that, we filter the feature points by preserving only the most prominent key point over any 10-pixels diametrical region. After filtration, we obtain a set of reduced keypoints P = {p 1 , ..., p n }, see Figure 3.2(b). However, graph nodes obtained in such a way are very sparse and irregular in either the number of nodes or the distances in between, losing interesting information potentially.

Dense sampling strategy

First image pixels are chosen by dense sampling the points at a fixed spacing on a regular grid. Next, the local SIFT features [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] of these points are extracted from their image patches.

We call this approach Bag-of-Features Grid SIFT (BF-GSIFT) [START_REF] Tuytelaars | Dense interest points[END_REF].

This sampling approach gives a constant amount of features per image area since all patches with strong or less contrast contribute equally to the overall image representation. In contrast to the previous strategy, i.e. prominent keypoints selection, that has more arbitrary spatial relations between features, dense sampling keeps simple spatial relations between features in reserve by following a regular pattern. On the downside, dense sampling cannot reach the same level of repeatability as obtained with interest points unless sampling is performed extremely densely but then the number of features quickly grows unacceptably large. In practice, researchers often use an overlap between patches of 50% or less. As in SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF], we adopt 8-pixels spacing, 16-pixels patch size, to reach a compromise between repeatability of interest points and reasonable size of features.

Graph Edges Construction in Image Graph

Once vertices are fixed, we adopt a suitable neighbourhood system to generate graph edges based on the strategy of nodes selection. The purpose is to keep the spatial structure between local features so that it is invariant to image translation, scaling, and rotation.

In general, there are three options for graph edges construction: 1) Delaunay Triangulation,

2) 4-neighbourhood, 3) 8-neighbourhood. 

Graph Weights in Image Graph

Following the aforementioned definitions, let us suppose that the graph edges E connect the vertices with a predefined neighbourhood system. The edge affinity matrix W of size |V| × |V|, is assumed to be non-negative and symmetric.

As discussed in Section 2.1.6, color and texture are two predominant factors to characterize the image features. Therefore, in the present work, we design an edge-weight function that combines joint color-texture features. For an edge between two nodes p and q, its weight is

GRAPH-BASED IMAGE REPRESENTATION

defined as follows:

w pq = e -λ•α•C pq Σ -1 C C T pq • e -λ•(1-α)•T pq Σ -1 T T T pq = w C pq α • w T pq 1-α . (3.2)
where w C pq is a color-related weight term, and w T pq is a texture-related weight term. The parameter α controls the relative impact of local color and texture patterns on the edge weights of the graph and can be adjusted in the optimization process. Edge weights 1) only take color information into account if α = 1; 2) factor color out, considering texture only if α = 0; 3) combine color and texture features if 0 < α < 1.

We adopt the positive definite Gaussian function in Equation (E.1), due to its good property that has been proved in the literature [START_REF] Shi | Normalized Cuts and image segmentation[END_REF][START_REF] Boykov | Markov random fields with efficient approximations[END_REF][START_REF] Fowlkes | Spectral grouping using the nyström method[END_REF][START_REF] Inderjit | Weighted graph cuts without eigenvectors a multilevel approach[END_REF]. In the next two Subsections, we elaborate the color term and texture term respectively.

Color weight

Color Space Selection A color space is used to specify a three-dimensional color coordinate system and a subspace of the system in which colors are represented as three points [START_REF] Del | Visual information retrieval[END_REF]. In the present work, we finally decide to adopt YUV color space instead of RGB color space [START_REF] Wang | A robust CBIR approach using local color histograms[END_REF],

for the following reasons:

YUV color space has independent color channels, in terms of one luma (Y') and two chrominance (UV) components. Moreover, there are couples of main disadvantages [START_REF] Anantharatnasamy | Fusion of colour, shape and texture features for content based image retrieval[END_REF] with the RGB color space: 1) It is not independent, has redundant information in color channels;

2) The RGB color space is not perceptually uniform; 3) All components (R, G, B) have equal importance and, therefore, these values have to be quantized with the same precision.

Given an input color image, we first decorrelate the RGB fields into the YUV color space by Equation (3.3). The Y stands for the luma component (the brightness) and U and V are the chrominance (color) components. We use the YUV color space, since it has independent color channels and allows to better deal with illumination changes.

Y = 0.299R + 0.587G + 0.114B (3.3a) U = (B -Y) * 0.565 (3.3b) V = (R -Y) * 0.713 (3.3c)
The color weights on the edges are defined as:

w C pq = e -λ•C pq Σ -1 C C T pq = e -λ•( Cp -Cq) Σ -1 C ( Cp -Cq) T , (3.4) 
where C pq = Cp -Cq , Cp = ( Ȳp , Ūp , Vp ) and Cq = ( Ȳq , Ūq , Vq ) account for the mean color vector over a n × n patch centred on points p and q respectively in YUV color space. In our experiments, these two vectors are each computed over a 5× 5 region in 4-neighbourhood system centred on p and q. As the aforementioned discussion, we use the YUV color space in order to have independent color channels.

We denote Y p = Y(x, y), respectively U p = U(x, y) and V p = V(x, y), as the color channel values at point p = (x, y) in the coordinate system of the whole image. The mean color vector reads Cp = ( Ȳp , Ūp , Vp ) where:

Ȳp = 1 n 2 n u=-n n v=-n Y(x + u, y + v) , Ūp = 1 n 2 n u=-n n v=-n U(x + u, y + v) , and 
Vp = 1 n 2 n u=-n n v=-n V(x + u, y + v) .
The covariance matrix

Σ C =             σ 2 Y 0 0 0 σ 2 U 0 0 0 σ 2 V            
is computed from, for all three channels, the mean of the mean color vector of all nodes. Moreover, the covariance matrix Σ c is considered diagonal because of channels' independence.

As in [START_REF] Rother | GrabCut -Interactive foreground extraction using iterated Graph Cuts[END_REF], the covariance is defined for each channel as:

σ 2 Y = Ȳp -Ȳq 2 σ 2 U = Ūp -Ūq 2 σ 2 V = Vp -Vq 2
where . denotes the expectation over all the edges (p, q) ∈ E of the image graph G. The texture-related weight term w T pq based on DCT is defined as:

w T pq = e -λ•T pq Σ -1 T T T pq = e -λ•(T p -T q) Σ -1 T (Tp-Tq) T (3.5)
where T pq = T p -T q , T p is a row vector composed of k low frequency AC coefficients in 8 × 8

DCT block centred on point p. T q is defined similarly. The covariance Σ T is computed over DCT blocks for each coefficient independently over each node in G.

The vector T p has the following variants depending on the number of coefficients and the channel(s) in the YUV color system from which these coefficients are extract: 

Graph Partitioning

T p = d Y (1, 0) , d Y (0, 1) , d Y (0, 2) , d Y (1, 1) , d Y (2, 0) (3.6) Σ T = diag[σ 2 d(1,0) , σ 2 d(0,1) , σ 2 d(0,2) , σ 2 d(1,1) , σ 2 d(2,0) ] (3.7) T p = d Y (1, 0), d Y (0, 1), d Y (0, 2), d Y (1, 1), d Y (2, 0), d Y (3, 0), d Y (2, 1), d Y (1, 2), d Y (0, 3) (3.8) T p = d Y (1, 0), d Y (0, 1), d Y (0, 2), d Y (1, 1), d Y (2, 0), d U (1, 0), d U (0, 1), d V (1, 0), d V (0, 1) (3.9)

Graph Partitioning

After that the weighted image graph has been built, we can now shift our focus to the problem of graph partitioning. Graph partitioning is also called graph clustering. In this model of clustering, we are given an image graph G j for each image I j in the database. We seek to partition the graph G j into fixed K disjoint unconnected subgraphs {g j,1 , . . . , g j,K }, such that ∀k l, g j,k ∩ g j,l = ∅ and G j = { K k=1 g j,k } ∪ E j , where E j ⊂ E j are the removed edges to divide G j by graph cuttings. The partitioning divides vertices V j into a set of the vertices {v j,1 , . . . , v j,K } in the corresponding subgraphs, such that v j,m ∩ v j,n = ∅ for m n. We denote this K-way partitioning [START_REF] Inderjit | Kernel k-means: spectral clustering and Normalized Cuts[END_REF] by Γ K j = {Γ k j } k=1, ..., K = {g j,1 , . . . , g j,K }.

Graph-based Image Segmentation Problem

Graph partitioning can be considered as a graph-based image segmentation problem as well [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF]. The idea of graph-based image segmentation is that the set of points are represented as a weighted undirected graph G = (V, E, W), where a set of vertices (nodes) V represents the points in the image. E is a set of edges connecting the nodes. W is an affinity matrix of size |V| × |V|, whose entries are the weights of the edges. An entry of W is zero if there is no edge between the corresponding vertices. The weight on each edge W(i, j) is a function of the similarity between the nodes i and j. The graph G is segmented into K disjoint sets by cutting the edges connecting these K parts. The degree of similarity between any two parts is the total weights of the edges that separate them.

Image Graph Labeling Problem

Graph partitioning can also be considered as a labeling problem. Given a set of vertices V and a finite set of labels L = {1, 2, . . . , K}, for any node p ∈ V, we are looking for the optimal label l p ∈ L, such that the joint labeling L = {l 1 , . . . , l |V| } ∈ L |V| satisfies a specified objective function. Reciprocally, an optimal labeling L on the image graph can be represented by an optimal partition P of graph nodes, where P = {P l | l ∈ L}, and P l = {p ∈ P | l p = l} is a subset of graph nodes assigned label l. Obviously, there is a bijective function (mapping) between partition P and labeling L.

Energy minimization Many computer vision problems, including labeling problem can be formulated in terms of energy minimization. For the image graph G = (V, E), the energy function contains two terms: This energy (Equation (3.10)) is often derived in the context of Markov Random Fields (MRF) [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF][START_REF] Geman | Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images[END_REF]: a minimum of energy J(L) corresponds to a maximum a-posteriori (MAP) labeling L.

J(L) = p∈V f p (l p ) + (p,q)∈E f pq (l p , l q ) . ( 3 

Graph Partitioning Approaches

Graph Partitioning Approaches

In this Section, we review three graph partitioning methods, namely, Graph Cuts, Normalized Cuts and kernel k-means. As you will see in the next Chapters, we use and compare these three approaches within our system for image retrieval.

Graph Cuts: energy-based method

The Graph Cut [START_REF] Boykov | An experimental comparison of min-Cut/max-Flow algorithms for energy minimization in vision[END_REF][START_REF] Boykov | Fast approximate energy minimization via Graph Cuts[END_REF][START_REF] Boykov | Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[END_REF][START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF] is a semi-supervised method based on min-cut/max-flow algorithms from combinatorial optimization. This technique can be used to find the global minimum of some multi-dimensional energy functions. The formulation of Graph Cuts can be either perceived from graph partition point of view (Section 3.5.1.1), or regarded as an energy minimization on a graph from energy point of view (Section 3.5.1.3).

Binary labeling

In the context of Graph Cuts, the weighted graph G = (V, E) has two distinguished vertices called the terminals. One of the terminals s ∈ V is called the source and the other one t ∈

V is called the sink. A cut C ⊂ E is a set of edges such that the terminals are separated in the induced graph G(C) = (V, E -C). In addition, no proper subset of C separates the terminals in G(C). The cost of the cut C, denoted |C|, equals the sum of its edge weights.

The minimum cut problem on a graph is to find a cut with the smallest cost among all cuts.

There are a large number of fast algorithms for this problem in the binary labeling case. For example, in combinatorial optimization domain, the minimum s/t cut problem can be solved in polynomial time by finding a maximum flow from the source s to the sink t. This is the socalled max-flow/min-cut algorithm. In practice, the algorithm is based on the Ford-Fulkerson algorithm [START_REF] Ford | Maximal flow through a network[END_REF]. An example is shown in Figure 3.7.

Main idea for Min-cut/Max-flow methods Before introducing the min-cut/max-flow problem, let us give the following definition.

Definition 1. Flow network A flow network is defined as a directed graph where an edge has a non-negative capacity. For an edge (p, q) ∈ E, its capacity is denoted by c(p, q). Definition 2. Flow A flow in G is a real-valued (often integer) function that satisfies the following three properties:

(a) Capacity constraint: for all p, q ∈ V, f (p, q) c(p, q).

(b) Skew symmetry: for all p, q ∈ V, f (p, q) =f (q, p).

(c) Flow conservation: for all p ∈ V \ {s, t} , q∈V f (p, q) = 0.

Definition 3. Capacity The capacity of a flow is the sum of the weights of the edges from two partitions A and B with s ∈ A and t ∈ B.

In theory, the minimum cut problem can be solved by computing the maximum flow between the terminals, according to the following theorem from Ford and Fulkerson [START_REF] Ford | Flows in networks[END_REF].

Theorem 1. Min-cut/max-flow theorem In a flow network, the maximum amount of flow passing from the source to the sink is equal to the minimum capacity that, when removed in a specific way from the network, causes the situation that no flow can pass from the source to the sink. In short, for any directed graph with arc capacity function C and distinct vertices s and t, the maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts. Moreover, a maximum flow on G will saturate a set of edges that gives us the minimum cut.

From this theorem, an algorithm has been proposed. It requires two following definitions to understand it. Find a directed path P from s to t in G f (an augmenting path)

5:

if such an augmenting path P exists then 6:

Update flow f along P 3) All edges which are from a reachable vertex to a non-reachable vertex are minimum cut edges.

Extension to multi-label problems

The weighted graph G = (V, E) may involve more than two terminals. The multi-labeling problem can be considered as the generalization of the minimum s/t cut problem. An exam-ple is the multi-way cut. The problem becomes NP-hard even in the simplest discontinuitypreserving case. Therefore, some approximate methods such as α-β swap and α-expansion [START_REF] Boykov | An experimental comparison of min-Cut/max-Flow algorithms for energy minimization in vision[END_REF][START_REF] Boykov | Fast approximate energy minimization via Graph Cuts[END_REF] are often used. 

Graph Cuts from perspective of energy minimization

In the present work, the Graph Cut is used to minimize energy functions of two terms:

J(L) = J data (L) + J smooth (L) = p∈V J d (p, l p ) + (p,q)∈E J s (p, q) = p∈S J d (l p ) + (p,q)∈E J s (p, q) . (3.11) 
J data (L) is the data term. In our case, it is only applied to user-defined hard constraints (seeds here) imposed on the initialization of Graph Cuts. We denote a set of seed points by S = {s 1 , . . . s K }, where K is the predefined number of subgraphs obtained after graph partitioning.

The seeds are placed on the image before running the Graph Cuts algorithm.

The goal of the data term is to fix the label of the seed points. For instance, the seed point s i must end up with label i after the energy minimization process. This idea can be formulated as in [START_REF] Boykov | Fast approximate energy minimization via Graph Cuts[END_REF]:

J d (l p ) =        0 if p = s i & l p = i ∞ otherwise.
(3.12)

As for the smoothness term J smooth (L), this term measures the discontinuity between node p and its neighboring pixels. The use of α-expansion imposes three constraints on the smoothing term J smooth , see Equation (3.11):

1. J smooth (α, β) = 0 ⇔ α = β or J smooth (α, β) 0 ⇔ α β 2. J smooth (α, β) = J smooth (β, α) ≥ 0 3. J smooth (α, β) ≤ J smooth (α, γ) + J smooth (γ, β)
The first two terms tell that an energy between two different labels α and β should be non-zero.

If it is zero, then two labels are the same. The last term defines the triangle rule. A short cut is always cheaper or similar than taking the whole path. If the smoothness term only satisfies the first two terms, it is called a semi-metric term. If the last term is also satisfied, it is said a metric term. The α-expansion algorithm can only be used with metric terms. Otherwise, the alpha-beta swap can be used with semi-metric or metric terms. Note that in Equation (3.11),

J smooth (L) satisfies the metric term.

To follow the pre-stated requirements, we will encourage that any two neighbouring nodes (p, q) ∈ E are 1) spatially close to each other; 2) if node p and q have similar colors, they tend to have the same label.

J smooth (L) is directly linked to w pq , the edge weights of the image graph. The w pq is defined as in Equation (E.1). In the present work, we propose the following variant definitions for J smooth (L):

J s (p, q) = w pq 1 -δ(l p , l q ) , (3.13) 
or

J s (p, q) = w pq p -q 2 1 -δ(l p , l q ) , (3.14) 
or

J s (p, q) = w pq f d (p, q)(1 -δ( p , q )) , (3.15) 
where δ( p , q ) is the Kronecker's delta:

δ( p , q ) =        0, if p q 1, if p = q . (3.16)
In Equation (3.15), the distance between nodes is introduced via f d (p, q). This distance term f d (p, q) is defined as:

f d (p, q) = exp -λ 2 (p -q)Σ -1 d (p -q) T .
(3.17)

The matrix Σ d is also considered diagonal. Let us denote d(p, q) as the L 2 distance between the node p and q. The d(p, q) = (x px q ) 2 + (y py q ) 2 . We propose several definitions for Σ d as follows:

1)

Σ d =        d E (p, q) 0 0 d E (p, q)        , (3.18) 
where d E (p, q) is the mean distance of all neighbouring points in the graph G, i.e.

∀(p, q) ∈ E, d E (p, q) = (p,q)∈E d(p, q) |E| = (p,q)∈E (x p -x q ) 2 + (y p -y q ) 2 |E| . (3.19)
2)

Σ d = (p,q)∈E d(p, q) -d E (p, q) |E| . (3.20) 
3)

Σ d = (p,q)∈E d(p, q) -d E (p, q) • Pr(E) |E| , (3.21) 
where Pr(E) is the probability of the distance of an edge falls into the bin that d(p, q) belongs to. In our experiments, we set the number of bin size to 10.

Among the above three options for the distance term, the Equation (3.18) is easier to compute and has been proven to achieve better graph cuts result. However, we have also observed that embedding distance factor f d (p, q) in the smoothness term does not give any improvement to partition results; in the case of sparse sampling, it is even worse. Therefore, we decide that f d (p, q) can be factored out of the equations. In our case, we use Equation (3.13), i.e., we only consider color and (or) texture factor(s) in the smoothness term in the following discussion. For the i th seed point p i ∈ S, the data term is defined as:

D(p i , ) =        0 if = i ∞ otherwise. (3.22)
An example is shown in Figure 3.2(c). 

Weakness

Due to the uncontrolled nature of the images available, automatically and precisely selecting seeds from image is still beyond the reach of the state-of-the-art in computer vision.

More precisely, if the seed points are manually selected, then the high level of user interaction makes the Graph Cuts method useless; if the seeds are automatically selected, then the k seed points will be highly dependent on the relationship between the background and the interest object. Hence, in prominent keypoints approach, we applied a mask on the image before running Graph Cuts to generate graph features. Unfortunately, the obtained seeds were still not stable. An shown in Figure 3. The Graph Cuts based methods have wide applications in computer vision community, such as clustering (image segmentation) [START_REF] Wu | An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation[END_REF], image labeling [START_REF] Komodakis | Approximate labeling via Graph Cuts based on linear programming[END_REF][START_REF] Delong | Fast approximate energy minimization with label costs[END_REF], image restoration [START_REF] Boykov | Fast approximate energy minimization via Graph Cuts[END_REF][START_REF] Yan | Image restoration using Graph Cuts with adaptive smoothing[END_REF], multicamera scene reconstruction [START_REF] Boykov | An experimental comparison of min-Cut/max-Flow algorithms for energy minimization in vision[END_REF], registration [START_REF] Tommy | Non-rigid image registration using Graph-cuts[END_REF][START_REF] Ronald | Non-rigid image registration of brain magnetic resonance images using graph-cuts[END_REF], object tracking [START_REF] Papadakis | Tracking with occlusions via Graph Cuts[END_REF], interactive seeded segmentation [START_REF] Rother | GrabCut -Interactive foreground extraction using iterated Graph Cuts[END_REF][START_REF] Boykov | Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[END_REF], reducing metrication errors, filtering, stereo matching [START_REF] Boykov | An experimental comparison of min-Cut/max-Flow algorithms for energy minimization in vision[END_REF],

recovering the deformation map etc.

Normalized Cuts

As a spectral clustering technique, Normalized Cuts (NCuts) [START_REF] Shi | Normalized Cuts and image segmentation[END_REF], is an unsupervised method based on two graph-theoretic criteria: maximize the total dissimilarity between different subgraphs as well as the similarity within each subgraph. Its principle is to find a minimal cut which is a combination of edges having minimal sum of edge values (i.e. find the least alike pairs of nodes). Removing these edges divides the graph G j into unconnected subgraphs, such that the similarity between nodes within a subgraph is greater than the similarity between nodes in separated subgraphs. The advantage of the normalized cut method is that it considers two aspects of graph segmentation: minimal cut (i.e. better separation) and preferring segments of large size.

Basic concepts and theory

The set of points in an arbitrary feature space can be represented as a weighted undirected graph G = (V, E), where the nodes of the graph are the points in the feature space and an edge is formed between every pair of nodes. The weight on each edge, w i j , represents the similarity between nodes i and j. Using a minimum cut as a segmentation criterion does not result in reasonable clusters, since the smallest cuts usually involve isolating a single pixel. Instead of using the value of total edge weight connecting the two partitions, Shi et al. [START_REF] Shi | Normalized Cuts and image segmentation[END_REF] proposed a disassociation measure to compute the cut cost as a fraction of the total edge connections to all the nodes in the graph. It is called the Normalized Cut (NCut). The Normalized Cut examines the affinities (similarities)

between nearby pixels and tries to separate groups that are connected by weak affinities.

Definition 12. Normalized Cut (NCut) The disassociation criterion for normalized cut of A and B is given by

NCut(A, B) = cut(A, B) assoc(A, V) + cut(A, B) assoc(B, V) , (3.26) 
where assoc(A, V) = assoc(A, A) + cut(A, B) = p∈A,q∈V w(p, q) is the total connection from nodes in A to all nodes in the graph and assoc(B, V) is similarly defined.

Definition 13. Normalized association (Nassoc) The normalized association can be defined as

Nassoc(A, B) = assoc(A, A) assoc(A, V) + assoc(B, B) assoc(B, V) , (3.27) 
where assoc(A, A) and assoc(B, B) are total weights of edges connecting nodes within A and B respectively.

Shi et al. [START_REF] Shi | Normalized Cuts and image segmentation[END_REF] have proven that minimizing the disassociation (Equation (3.26)) is equivalent to maximizing the association (Equation (3.27)) within the groups according to Equation (3.28)).

NCut(A, B) = 2 -Nassoc(A, B) . (3.28)
The two equivalent objective functions above can also be interpreted as seeking to minimize the cut relative to the degree of a cluster instead of its size. Hence, the objectives in Equation (3. 

where y = (1 + x) -b(1 -x) /2, b = k 1-k , k = x i >0 d i i d i .
Obviously, y is a vector consisting of 1s and -bs such that y • d = 0. Here in Equation (3.31), y 1 is the second smallest eigenvector corresponding to the 2nd smallest eigenvalue of Equation (3.32).

(D -W)y = λDy .

(3.32)

The Equation (3.32) can be turned into a regular eigenvalue problem:

(I -N)z = λz , (3.33) 
where I is unit matrix and N = D -1 2 WD 1 2 is the normalized affinity matrix and z = D 1 2 y. The matrix (D -W) is called the Laplacian matrix, which is known to be positive semidefinite [137] 1 . 1 The real matrix A is called positive semi-definite if z T Az 0, where z T denotes the transpose of the vector z.

A is a Hermitian matrix all of whose eigenvalues are non-negative.

The grouping algorithm description

Assume that an image is to be segmented via Normalized Cut, the algorithm of Normalized Cut is summarized as follows:

(1) Define the feature description matrix for a given image and a weighting function.

(2) Set up a weighted graph G = (V, E), compute the edge weights and summarize information into W and D, as described in Section 3.5.2.2. The entries of matrix W is W(p, q) = w pq .

Its definition can be referred to Equation (E.1).

(3) Define the matrix D, a N × N diagonal matrix with d(p) = q W(p, q) on its diagonal. ( 4) Solve (D -W)x = λDx for eigenvectors with the smallest eigenvalues.

(5) Use the eigenvector with second smallest eigenvalue to bipartition the graph by finding the splitting points so that NCut is minimized.

(6) Decide whether the current partition is stable and check the value of the resulting NCut. If the current partition should be subdivided, recursively repartition the segmented parts (go to step 2), otherwise exit.

The stability criterion is defined to measure the degree of smoothness in the eigenvector values.

The simplest definition is based on first computing the histogram of the eigenvector values and then computing the ratio between the minimum and maximum values in the bins. In our experiments, we set a threshold on the ratio described above. The eigenvector which is smaller than the threshold is unstable. The value is set to be 0.05 in all our experiments.

Multiclass cuts of general weighted graph

Concerning multiclass K-way partitioning Γ K V j on a given I j , the K-way normalized cut problem [START_REF] Inderjit | Kernel k-means: spectral clustering and Normalized Cuts[END_REF] is to minimize the links that escape a cluster relative to the total "weight" of the cluster. The NCuts objective function, as a generalization of Equation (3.29), is expressed as:

WNcuts(G j ) = min v j,1 , ••• , v j,K K k=1 links(v j,k , V j \ v j,k ) w(v j,k ) (3.34)
Then Equation (3.30) can be rewritten as:

WNassoc(G j ) = max v j,1 , ••• , v j,K K k=1 links(v j,k , v j,k ) w(v j,k ) (3.35)
Again, minimizing the disassociation factor in Equation (3.34) is equivalent to maximizing the association criterion in Equation (3.35).

Beside Normalized Cut objective function, we enumerate three prominent partitioning objectives for reference as follows:

Kernighan-Lin Objective The partitions in Kernighan-Lin (K-L) [START_REF] Kernighan | An efficient heuristic procedure for partitioning graphs[END_REF] are required to be of equal size. Suppose G = (V, E, W) is divided into K partitions, then its objective can be written as

KL(G) = min v j,1 , ••• , v j,K K k=1 links(v j,k , V j \ v j,k ) |v j,k | , (3.36) subject to |v j,k | = |V j |/K, ∀k = 1, . . . , K .
Ratio Cut The Ratio cut [START_REF] Pak | Spectral k-way ratio-cut partitioning and clustering[END_REF] is a generalization of the Kernighan-Lin Objective. It does not require the partitions to be equal (sans cluster size restrictions). Its objective aims to minimize the cut between clusters and the remaining vertices. It is expressed as

RCut(G j ) = min v j,1 , ••• , v j,K K k=1 links(v j,k , V j \ v j,k ) |v j,k | . ( 3 

.37)

Ratio Association The ration association [START_REF] Shi | Normalized Cuts and image segmentation[END_REF], also known as average association, seeks to maximize within-cluster association relative to the size of the cluster. The objective reads as

RAssoc(G j ) = max v j,1 , ••• , v j,K K k=1 links(v j,k , v j,k ) |v j,k | . (3.38)

Normalized Cuts in applications

The Normalized Cut was initially proposed by J.Shi and J.Malik [START_REF] Shi | Normalized Cuts and image segmentation[END_REF] for image segmentation. One the one hand, NCuts treat image segmentation as a graph partitioning problem, many researchers have applied it to (spectral) graph clustering [START_REF] Fowlkes | Spectral grouping using the nyström method[END_REF][START_REF] Inderjit | Weighted graph cuts without eigenvectors a multilevel approach[END_REF][START_REF] Inderjit | Kernel k-means: spectral clustering and Normalized Cuts[END_REF][START_REF] Yu | Multiclass spectral clustering[END_REF]. On the other hand, since NCuts can extract the global impression of an image, it is frequently used as a pre-processing step in image precessing, for example, superpixels [START_REF] Ren | Learning a classification model for segmentation[END_REF].

Kernel Based Multilevel Graph Clustering Algorithms

The Normalized Cut can be quite slow because it requires the solution of large sparse eigenvalue problems. Dhillon et al. [START_REF] Inderjit | Weighted graph cuts without eigenvectors a multilevel approach[END_REF] have developed a fast multilevel algorithm that directly optimizes various weighted graph clustering objectives by kernel k-means (KKM). The authors proved that different objective functions such as those from Ratio cut [START_REF] Pak | Spectral k-way ratio-cut partitioning and clustering[END_REF] and NCuts can be unified mathematically as a matrix trace maximization problem [START_REF] Dhillon | A unified view of kernel k-means, spectral clustering and graph partitioning[END_REF]. Therefore, given a general graph weight matrix W, the graph clustering processes can be refined depending on an updated adjacency matrix for the current level, following three phases: coarsening, basedclustering and refinement. In this thesis, we get the best results when adopting this algorithm for graph partitioning. More detail about this approach and its three phases are described below. Given a set of vectors {a i } N i=1 = {a 1 , . . . , a N }1 , the k-means algorithm seeks to find K clusters π 1 , . . . , π K that minimize the objective function:

D({π k } K k=1 ) = K k=1 a i ∈π k d(a i , m k ) = K k=1 a i ∈π k a i -m k 2 , (3.39) 
where

m k = a i ∈π k a i |π k |
is the centroid (or mean) of the k-th cluster π k for the clustering (or partitioning) {π k } K k=1 , d(a i , m k ) is the distance between the vector a i and the centroid m k . The term a i -m k 2 is a chosen distortion measure (squared Euclidean distance here) between data vector a i and the cluster centre m k .

A disadvantage of k-means is that clusters are only separable by linear hyperplane. A kernel version of k-means is used to counter this weakness, allowing data to be separated in non-linear space.

Kernel k-means

The kernel k-means algorithm [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF], as its name implied, is a kernel version of k-means.

The difference between standard k-means and kernel k-means objective function is that we replace a i in Equation (3.39) with a mapping function φ(a i ), as following:

D({π k } K k=1 ) = K k=1 a i ∈π k d(φ(a i ), m k ) (3.40) = K k=1 a i ∈π k φ(a i ) -m k 2 = K k=1 a i ∈π k φ(a i ) • φ(a i ) - 2 a j ∈π k φ(a i ) • φ(a j ) |π k | + a j ,a l ∈π k φ(a j ) • φ(a l ) |π k | 2 ,
where

m k = a i ∈π k φ(a i ) |π k |
is the centroid of the k-th cluster π k for the clustering {π k } K k=1 , φ(a i ) denotes the data point a i in transformed space. The function φ is essential for mapping data points to a higher dimensional feature space. This mapping results in linear separators in that higher feature space, which correspond to non-linear separators in the original input space.

As explained in [START_REF] Cristianini | An introduction to support Vector Machines: and other kernel-based learning methods[END_REF], a positive semi-definite matrix can be interpreted as a Gram matrix 1 . Hence, any positive semi-definite matrix K can be considered as a kernel matrix. Let us define a kernel matrix K, whose entry andκ(•, •) is a kernel function to map the original points to inner products. Then, the squared Euclidean distances between points and centroids (both are in R m ) can be computed only by inner products, i.e. the elements of kernel matrix. As shown in Equation (3.40), only inner products are used in this computation. We do not even need to know explicit representations of φ(a i ) and φ(a j ) in order to compute the distances between points and centroids. A few of popular kernel functions are listed in Table 3.1. 

K i j = φ(a i ) • φ(a j ) = κ(a i , a j ),

Polynomial Kernel

κ(a i , a j ) = (a i • a j + c) d Gaussian Kernel κ(a i , a j ) = exp -a i -a j 2 /2α 2 Sigmoid Kernel κ(a i , a j ) = tanh c(a i • a j ) + θ

Weighted kernel k-means

In the weighted graph, the edge weights play an important role. For that reason, a weighted version of the kernel k-means is used for graph partitioning in our applications.

The weighted kernel k-means was first introduced in [START_REF] Inderjit | Kernel k-means: spectral clustering and Normalized Cuts[END_REF], its objective function can be written as the minimization of:

D({π k } K k=1 ) = K k=1 a i ∈π k w i d(φ(a i ), m k ) = K k=1 a i ∈π k w i φ(a i ) -m k 2 , (3.41) 
where

m k = a i ∈π k w i φ(a i ) a i ∈π k w i = argmin z a i ∈π k w i φ(a i ) -z 2
represents the "best" cluster representative, and the weights are non-negative (w i 0). Similarly in Equation (3.40), the clusters can be computed by using the entries of kernel matrix since the term for each graph node a i ∈ V do 4:

w i φ(a i ) -m k 2 = φ(a i ) • φ(a i ) - 2 a j ∈π k w j φ(a i ) • φ(a j ) a j ∈π k w j + a j ,a l ∈π k w j w l φ(a j ) • φ(a l ) ( a j ∈π k w j ) 2 = K ii - 2 a j ∈π k w j K i j a j ∈π k w j + a j ,a l ∈π k w j w l K jl ( a j ∈π k w j ) 2 , ( 3 
for every cluster k do The weights of the super vertices of the coarser graph reflect the weights of the vertices of the finer graph. This procedure is described as in Algorithm 3.

Base clustering phase After the coarsening phase, we get the coarsest graph G m that contains much smaller number of vertices than the initial graph G 0 . We can specify how smaller G m to be by using a pre-defined parameter. In the experiments, we keep coarsening the graph as long as the number of graph nodes is sufficiently larger than max( |V| 5K , 20), where K is a fixed number of desired clusters. Once the coarsening phase is finished, we can apply different graph clustering objectives (see Section 3.5.2.4) on the coarsest graph until K clusters are obtained. We call this phase as "base clustering". In the present work, we use the NCuts objective function, as defined in Equation (3.34). This initial clustering is efficient in terms of speed, since the coarsest graph G m is significantly smaller that the input graph G 0 .

Refinement phase In the final refining phase, given a graph G l , we build the finer graph G l-1 (G l-1 is the same graph used in level l -1 in the coarsening phase). An initial clustering for the graph G l-1 is defined in the following way: If a super vertex is in the cluster k in G l , then all nodes in G l-1 that formed this super vertex are in cluster k. At all levels except the coarsest level of G m , the initial clustering of the graph is extended from the previous coarser level.

As justified in [START_REF] Dhillon | A unified view of kernel k-means, spectral clustering and graph partitioning[END_REF], both a general weighted kernel k-means objective and a weighted graph partitioning objective can be mathematically expressed as matrix trace maximizations problem. This equivalence has important significations: we can directly apply the weighted kernel k-means algorithm, as described in Algorithm 2, to optimize the graph partitioning objectives such as Ratio cut, Normalized cut and ratio association etc, and vice versa. Hence, after the initialization step, we run the weighted kernel k-means algorithm recursively to refine the clustering from the coarsest graph G m to the original graph G 0 . The algorithm can converge very quickly at each level, due to good initial clustering.

Algorithm 3 Graph clustering in coarsening phase

Require: Initial graph G 0 = (V 0 , E 0 , W 0 ). Ensure: Output a series of smaller graphs G 1 , G 2 , . . . , G m on coarse level l = 1, 2, . . . , m.

1: set t ← 0, ∀x ∈ V 0 , unmark(x). for current level l with its corresponding graph G l = (V l , E l , W l ) do for each unmarked x ∈ V l do 7:

if y ∈ V l that is unmarked then In real life data set, the structures are often hard to be separated in linear space. Kernel k-means (KKM) has been suitable to identify clusters that are non-linearly separable in input space. For instance, Dhillon et al. [START_REF] Inderjit | Kernel k-means: spectral clustering and Normalized Cuts[END_REF] applied KKM to diametrical clustering of gene expression and handwriting recognition, and achieved good results. One of disadvantages for KKM is that the number of cluster centres need to be predefined.

Illustrations of Graph Partitioning

In this Section, several examples are enumerated on the graph partitioning results obtained by using the aforementioned three different partitioning methods. The images are selected from six categories: "accordion" (Figure 3.12 and Figure 3.18), "faces" (Figure 3. 

Conclusions

In this Chapter, we have presented three typical graph partitioning approaches: Graph Cuts, Normalized Cuts, and kernel based multilevel graph clustering algorithm. These three methods will be used in our proposed model in the next Chapter 4 and be compared in Chapter 6. Chapter 4

Bag-of-Bags of Words Model

In this chapter, we introduce the proposed 'Bag-of-Bags of Words' model. We aim to model an image by graphs. An image is first represented as an undirected weighted graph. This initial image graph is partitioned into a fixed number of subgraphs that describe similar components in the image. Each subgraph is further described by bag-of-words features. Finally, a novel graph-based image representation model derives from those subgraphs descriptors.

Overview of the Bag-of-Bags of Words Model

Before introducing our model formally, here we explain its general principle and construction. Bag-of-Bags of Words for a given image, is a set of Bag-of-Words (BoWs). Each of BoWs is computed on vertices of image subgraph obtained by irregular partition of image graph. Next, the rationale for our "Bag-of-Bags" is in the correlation with two notable concepts: 1) Bag of Features (BoF) [31], i.e., the unordered set of local descriptors extracted from an image. These local features are extracted from either fixed grid points or detected points of interest in the image. 2) "Bag-of-Words" (BoW) model, as proposed by Sivic et al. [START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF] and Csurka et al. [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]. Indeed, our description is a set of unordered features (BoF), each feature being a BoW built upon an image subgraph.

We will now describe a methodology for the construction of BBoW model. Then in Section 4.1.4, we will formalize the model more thoroughly. In Section 4.3, we present our contribution regarding the use of our BBoW model for image retrieval.

The BBoW model of an image is built as follows: 1) Select a reduced number of pixels V; 

Feature Extraction

Firstly, given an input image I j , we extract local image features from image patch. Different types of popular descriptors such as SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] or SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF] etc., can be used to describe local features as vectors from the patches. The local features are extracted from either prominent keypoints or dense sampling points on regular grid.

In case of prominent keypoints approach, any interest points detection algorithms can be used to extract keypoints. In the present work, we use SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF] as image descriptors to extract feature points under the mask of the image for the interest object. In order to avoid these points are too close to each other in positions, we filter those points by keeping only the most prominent keypoint over any 10-pixels diametrical region. The obtained filtered keypoints P = {p 1 , ..., p n } are selected as vertices of the initial image graph.

Overview of the Bag-of-Bags of Words Model

In case of dense sampling strategy, the image features are computed using only the SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] feature vectors of all dense sampling points. We use an overlap between patches of 50% to reach a compromise between repeatability of interest points and reasonable size of features. Its corresponding pipeline is illustrated in Figure 4.2. 

Graph Construction

Secondly, we build an undirected weighted graph G j = (V j , E j , W j ) on the image I j . We call it the initial image graph.

As defined in Section 3.3.1 and Section 4.1.1, the graph nodes are positioned on either filtered prominent keypoints or on the dense sampling points at a regular grid. Once these graph nodes are localized, we head to generate edges and define the corresponding weights of these edges. The graph edges represent relationship between graph nodes. They are generated by linking these vertices in specified neighbourhood system (see Figure 3.3), as we have discussed in Section 3.3.2. In such a way, one connected image graph is generated for each image.

The edge weight reflects the similarity between the two nodes of that edge. Such a similarity measurement depends on a specified objective function. Let us denote by W, a symmetric matrix of edge weights between all nodes. Then the edge weights are represented by non-zero entries of this affinity matrix W, see Equation (3.1).

Irregular Subgraphs

Thirdly, the initial image graph is separated into a fixed number of K partitions (subgraphs) [START_REF] Karypis | Multilevel k-way partitioning scheme for irregular graphs[END_REF] via graph partitioning.

Case study: prominent keypoints approach in BBoW model Let us denote G = (V, E) a graph generated by the Delaunay triangulation. The vertices set V contains all the feature points, i.e. V = P. The edges set E contains all unordered pairs of points {p, q} that are neighbours in the Delaunay graph. We want to separate graph G into K smaller graphs via Graph Cuts. This can be formulated as a labeling problem: given a points set P in image I j , and a label set L = {l 1 , . . . , l K }, for each p ∈ P, we are looking for its label l(p) = l p ∈ L.

In order to be consistent with the image content, we construct a set of sub-graphs {g j,1 , • • • , g j,K }, according to the following requirements: each sub-graph, 1) should be as compact as possible;

2) should have, as much as possible, a uniform color. To solve this labeling problem, we minimize the energy function defined in Equation (3.11) of Chapter 3, via α-expansion [START_REF] Boykov | An experimental comparison of min-Cut/max-Flow algorithms for energy minimization in vision[END_REF] algorithm in Graph Cuts. An illustration will be given in Section 6.4 of the Chapter 6.

Case study: dense sampling approach in BBoW model Since prominent keypoints approach in BBoW model does not exhibit promising result, we hence go for dense sampling approach in the following discussion. An example of irregular subgraphs obtained by dense sampling approach in BBoW model, is illustrated in Figure 4.3.

As discussed in Section 3.4, we assess three standard approaches for irregular graph partitions in the BBoW model. These methods are: Graph Cuts, Normalized Cuts and kernel-based multilevel weighted graph cuts. Here we stress that the idea of applying graph partitioning methods to image graph is not novel, e.g., [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF][START_REF] Grady | Isoperimetric graph partitioning for image segmentation[END_REF][START_REF] Tolliver | Graph partitioning by spectral rounding: Applications in image segmentation and clustering[END_REF]. Our contribution lies in rigorously demonstrating that irregular (sub)graph-based representation is well-suited to pre-clustering interest points accounting for color and texture similarity, and that this representation extends BoWs model with spatial layouts, combines the advantages of SPM as well.

Bag-of-Bags of Words Description

Fourthly, we compute image signatures by designing a measure for describing these subgraphs. As in the standard BoW approach, we first build a codebook from all image features in a training image dataset. The codebook is computed by using k-means clustering method Let us denote by H j,k a signature of the subgraph g j,k (k = 1, . . . , K) in image I j . H j,k is a Bag-of-Words histogram, obtained by assigning the SIFT (or SURF) features within the subgraph g j,k to the nearest codeword (hard assignment), as in the standard BoW approach.

(Dis-)Similarity Measurement between Histograms

Hence, the BBoW representation of image I j for this partitioning is a histogram vector H j = {H j,1 , . . . , H j,K } of length K, normalized by the number of nodes in the initial image graph G j .

With such a normalization, the larger subgraphs are privileged. We call H j the "Bag-of-Bags of Words" (BBoW) description. See Figure 4.4.

(Dis-)Similarity Measurement between Histograms

A histogram is a collection of bins that count a frequency distribution of data. This important statistical characteristic is useful to represent the distribution of pixel intensity, color and texture of images. The histogram representation has several advantages. It is easy to compute, intuitive and invariant to translation and rotation about view plane etc. When images are characterized by histograms, comparing images is equivalent to computing the distances or (dis-)similarities between their model histograms. the number of bins in the histogram. When the number of bins is high, the distance is discriminative, but not robust. Contrarily, if the number of bins is low, the distance is robust, but not discriminative.

As for the cross-bins distances, two typical cross-bin metrics are Mahalanobis distance [START_REF] Mclachlan | Mahalanobis distance[END_REF] and Earth Mover's Distance (EMD) [START_REF] Rubner | A metric for distributions with applications to image databases[END_REF]. Mahalanobis distance measures the separation of two distributions. Formally speaking, Mahalanobis distance belongs to the family of Quadratic-Form distance [START_REF] Hafner | Efficient Color Histogram Indexing for Quadratic Form Distance Functions[END_REF][START_REF] Pele | The Quadratic-Chi histogram distance family[END_REF]. When two compared distributions are vectors, for example, two histograms, Mahalanobis distance is defined as:

QF A (G, H) = (G -H) T A(G -H) , (4.1) 
where G and H are two histograms with the same bin size and A is the bin-similarity matrix that is the inverse of covariance matrix. Equation (4.1) is a metric (semi-metric) if A is positivedefinitive (positive-semidefinite). The EMD measures the minimal cost that must be paid to transform one distribution into the other. This distance can operate on variable-length representations of the distribution. It is widely used in content-based image retrieval to compute distances between the color histograms of two images [START_REF] Rubner | The Earth Mover's distance as a metric for image retrieval[END_REF].

For couples of the aforementioned distances, they have been formulated in Section 2.1.7

of the Chapter 2. In the following, we will give emphasis to an important similarity measurehistogram intersection, which is adopted in the present work. 

K ∩ (G, H) = B b=1 min(g b , h b ) . (4.2) 
Histogram intersection was first introduced by Swain et al. [START_REF] Michael | Color indexing[END_REF] as a technique of comparing image and model histograms for color indexing. It is a useful similarity measure for images and is even proved to be an effective kernel for machine learning [START_REF] Jou | Efficient matching of large-size histograms[END_REF]. The similarity measures in the BBoW model are based on histogram intersection.

There is an alternative way to compute HI:

K ∩ (G, H) = 1 2 B b=1 (g b + h b -|g b -h b |) , (4.3) 
which improves computation efficiency, e.g. programming for a GPU, since we do not need to explicitly compare the values of each bin. We verify the equivalence of Equation (4.2) and Equation (4.3) in the Appendix D.

BBoW on Single Level for Image Retrieval

We now review how to apply the bag-of-bags of words model for image retrieval on a single level of a partition.

In the framework of content-based image retrieval (CBIR), the most common method for comparing two images is using either a similarity metric or an image distance measure. Both of them can be in various dimensions. And they can consider the similarity of color, texture, shape etc. or in a combination of them in images. The distance measure is negatively correlated with the corresponding similarity metric. That is to say, the more two images are similar, the lower the distance value will be. For example, the distance is zero if two images are exactly matched, i.e., they are identical.

In the BBoW model, after image graph partitioning, each image contains a fixed number of K subgraphs. The image is thus represented by K BoVW histograms (subgraph signatures).

Using histograms to describe subgraphs, a comparison between two images I i and I j becomes equivalent to similarity search when comparing histogram signatures of their subgraphs. We have adopted two strategies to define the similarity between images. We will explain the two strategies in the following Section.

Co-occurrence Criteria

The first strategy to compare the two sets of subgraphs from two images consists in using co-occurrence criteria such as those defined in [START_REF] Vieux | Content based image retrieval using Bag-Of-Regions[END_REF].

We adopt the idea of RootSIFT [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF] by first L1 normalizing the histograms and then computing the histogram intersection of them. Since any image I i is represented by a set of histograms of its subgraphs H i = {H i,1 , • • • , H i,K }; a (dis)similarity measure between two (sub)graphs can be easily computed as we just need to compare their histogram signatures.

In such a way, we relate the similarity between two images with the similarity between BoW histograms of the subgraphs in two images.

We have experimented different strategies to combine the K × K distances between a pair of query image I i , and database image I j from their corresponding histogram sets H i and H j : minimum, resp. sum of min, resp. mean, resp. median, resp. sum, resp. maximum, etc. of all distances.

To compare two images I i and I j that are composed of K subgraphs for each, we define a series of similarity measures. We detail them as follows: 

S min (I i , I j ) = min k={1,...,K} min k ={1,...,K} { B b=1 min(H i,k (b), H j,k (b))} , ( 4 
S sum (I i , I j ) = K k=1 K k =1 { B b=1 min(H i,k (b), H j,k (b))} , (4.8) 
S sum-of-maxima (I i ,

I j ) = K k=1 max k ={1,...,K} { B b=1 min(H i,k (b), H j,k (b))} . (4.9)
Our experiments have shown a better behaviour with Equation (4.4). We will discuss the experimental results later in Section 6.4 of Chapter 6. This promising results based on Equation (4.4) promoted our second strategy in the Section 4.3.2.

In summary, image comparison via the co-occurrence criteria can be described in Algorithm 4.

Algorithm 4 Image comparison via the co-occurrence criteria

Require: Given Image I i with its K subgraphs {g i,k } K k=1 and I j with its K subgraphs {g j,k } K k =1

Ensure: Return a similarity score between image I i and I j 1: for each subgraph g i,k in image I i do 

Weighted Bipartite Graph Matching

As discuss in previous Section, we compare images through comparing histogram signatures of their subgraphs. Indeed, the subgraph attributed to label k can be at any position in the image, see Figure 4.5. The spatial arrangement is lost if an image in a database undergoes rotation, for instance. Hence, in order to overcome this issue, we cannot match histograms of the subgraphs directly after the graph partitioning steps in BBoW model. We therefore need to find optimal subgraphs matching between pairs of images so as to reorganize the histograms in the BBoW description. Given two images I i and I j , and their corresponding subgraphs {g i,k } K k=1 and {g j,k } K k =1 , we are facing an assignment problem: given two sets of (sub)graphs (for two images), we need to find the perfect matching or complete matching which maximizes the similarity between all matched (sub)graphs. This problem may also be phrased as a minimization problem by considering images I i and I j as two partitions of a bipartite graph, the distance between the signatures of subgraphs as a set of edge weights. The classical solution to this assignment problem requires the use of a combinatorial optimization algorithm. For this purpose, we rely on the Hungarian algorithm [START_REF] Kuhn | The Hungarian method for the assignment problem[END_REF] to solve the problem in polynomial time O(K 3 ), where K is the number of subgraphs in the image.

The Hungarian algorithm minimizes the discrete transport cost (edge cost of the bipartite graph) between two sets of objects (histograms of subgraphs in our case). The cost matrix D i, j between the pair of images I i and I j reads:

D i, j =               d 11 i, j . . . d 1K r i, j . . . d K r 1 i, j . . . d K r K r i, j               , (4.10) 
where

d k,l i, j = B b=1 |H i,k (b) -H j,l (b)|
is the L 1 distance between H i,k and H j,l , which corresponds to the use of histogram intersection.

The proof can be found in the Claim B of the Appendix D. 

H i = {H i,a , H i,b , H i,c , H i,d }, H j = {H j,1 , H j,2 , H j,3 , H j,4 },
the histogram distance of any pair of subgraphs between two images are computed. An example of these distance values are shown as entries of a matrix in Figure 4.7. In this example, the histogram distance between the subgraph g i,a of image I i and the subgraph g j,1 of image I j is 11. The Hungarian algorithm finds the minimum cost assignment for the cost matrix.

The subgraph g i,a in image I i is optimal matched with the subgraph g j,1 in image I j , since the transport cost [START_REF] Inderjit | A fast kernel-based multilevel algorithm for graph clustering[END_REF] is the minimum value (underlined in red color) among these values of the first row.

For computational efficiency, this matching step can be pre-computed once and stored.

A distance table and a label table can be constructed optionally, which records the distance between all subgraphs being compared, and their corresponding labels. The distance values are the entries in the aforementioned cost matrix D i, j . With this distance table, the procedure of bipartite graph matching can be simplified to search in the look up tables. The storage space being taken by the lookup tables is offset by the saved time, especially as the size of the subgraphs increases.

After the processing step via the Hungarian algorithm, each label k of subgraph g i,k in image I i is associated to one label k = f i (k) of subgraph g j,k in image I j . We thus reorganize the labels between the two sets of histograms {H i,k } k=1, ..., K and {H j,k } k =1, ..., K in BBoW. Therefore, the pairs of histograms to compare are identified. We call this step bipartite subgraphs matching. Finally, the similarity score of two images I i and I j can be expressed by histogram intersection kernel, formally introduced in Equation (4.2):

K ∩ H i,k , H j,k = B b=1 min H i,k (b), H j,k (b) . (4.11) 
Here k corresponds the k-th subgraph, B is the number of bins.

Essentially, for the first strategy of using co-occurrence criteria, e.g. Equation (4.4) etc., it can be seen as the application of the Histogram Intersection kernel [START_REF] Michael | Color indexing[END_REF][START_REF] Jou | Efficient matching of large-size histograms[END_REF] (Equation (4.11))

directly to the histograms of any orderless subgraphs between two compared images.

To sum up, the second strategy can be interpreted in Algorithm 5. 

Summary of the BBoW model for CBIR

I i is associated to one label k = f i (k) of subgraph g j,k in image I j } 9: Set H i ← {H i,k } k=1,...,K 10: Set H j ← {H i,k } k =1,...,K 11: Similarity(I i , I j ) = K ∩ (H i , H j )

Discussion and Conclusion

In the present Chapter, we have presented a novel model for image representation. The proposed BBoW model with the aid of graphs, extends the classical bag-of-words (BoW ) model, by embedding color homogeneity and limited spatial information through irregular partitions of an image. The model well addresses fundamental limitations of the classical Bag-of-Words model [START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF] and the regular structure of spatial pyramid representation [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. We have also proposed to embed spatial layout into our BBoW representation by bipartite subgraphs matching via Hungarian algorithm. To the best of our knowledge, we are the first to apply Hungarian algorithm to subgraphs matching on the task of spatial layout analysis in image representation.

We have observed that the generated subgraphs are often too small after graph partitioning process. In such cases, subgraphs contain only a few of nodes. This makes the BBoW description less representative. In order to be more effective, we may consider removing these small or inconsistent subgraphs. However, this technique will produce another problem: how to deal with a set of histograms of different size in the final BBoW description. Again, if we choose a different number of resolutions for different type of images, it also involves the same problem: compare set of histograms of different size.

In the next Chapter, we propose to extend our model to multiple levels inspired by previous Chapter 5

Irregular Pyramid Matching

In Chapter 4, we have introduced the proposed bag-of-bags of words (BBoW) model. The BBoW model, is an approach based on irregular partitions over the image. An image is first represented as a connected graph of local features on a regular grid of pixels. Next, irregular partitions (subgraphs) of the image are further built by using graph partitioning methods. Each subgraph in the partition is then represented by its own signature. The BBoW model with the aid of graphs, extends the classical bag-of-words (BoW) model in image space instead of feature space, by embedding color homogeneity and limited spatial information through irregular partitions of an image. In this chapter, we extend this proposed model to pyramid levels, leading to an approach that we call irregular pyramid matching.

BBoW on Pyramid Level

In this Section, we first introduce the graph partitioning scheme on multi-levels in the bagof-bags of words model. Then we describe the procedure of irregular pyramid matching.

Graph Partitioning Scheme

As in Spatial Pyramid Matching [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF], we aim to build a pyramid of partitions at several "resolutions" (r = 0 . . . R). At resolution r of image partitions, the image graph G j is split into a set of K r = 2 2r subgraphs {g r j,1 , . . . , g r j,K }. We name it pyramidal image graph partitioning scheme. An example is shown in Figure 5.1, where the initial image graph is divided into a fixed number of subgraphs at different resolutions. 

Irregular Pyramid Matching

In Section 4.1.4, the BBoW description is based on a fixed number of partitions at a single level on the whole image. After the pyramidal image graph partitioning step, BoW histograms are computed within each subgraph, then the histograms from all subgraphs are concatenated together to generate the final representation of the image. Such an extension of BBoW model to pyramid gives rise to a method we name irregular pyramid matching (IPM). In case where only the level l = 0 is used to compute image signature, BBoW reduces to BoW representation.

BBoW on Pyramid Levels for Image Retrieval

After generating visual signature of the image on pyramid levels in BBoW model, we need to define the corresponding similarity measures to compare images.

BBoW on Pyramid Levels for Image Retrieval

Similarity Measure

Once bipartite subgraphs matching is fulfilled, we can directly apply the level weighted intersection as described in [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] to compare images:

κ(I i , I j ) = I H R i,k , H R j,k + R-1 r=0 1 2 R-r I r -I r+1 = 1 2 R I H 0 i,1 , H 0 j,1 + R r=1 1 2 R-r+1 I H r i,k , H r j,k , (5.1) 
where

I H r i,k , H r j,k = B b=1 min H r i,k (b), H r j,k (b) 
is the histogram intersection function in [START_REF] Jou | Efficient matching of large-size histograms[END_REF], B is the bag of words codebook size, which is related to the L1 norm [START_REF] Michael | Color indexing[END_REF]. k and k here are the indices of the corresponding subgraphs being matched after rearrangement of histograms via Hungarian algorithm. The weight 1 2 R-r allows for penalizing low resolutions of a partition, reflecting the fact that higher levels localize the features inside smaller graphs more precisely. Hence, in our approach, we propose to apply directly the level weighted intersection to irregular partitions obtained by graph cuts methods, following the idea of SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF].

Global Algorithm for Image Retrieval with BBoW model

After discussion, we summarize the global algorithm in BBoW model for its application for image retrieval. 

Discussion and Conclusion

In this Chapter, we have embedded our BBoW model into a pyramid approach. Hence, the final signature of the image has been built as a concatenation of BoW histograms from each level of the pyramid, where each BoW histogram is normalized by the number of nodes in the initial image graph. With such a normalization, the larger subgraphs are privileged. We call it Bag-of-Bags of Words (BBoW) description in pyramid. With such descriptors, we match graph pyramid level by level. Hence, we always match the partitions of the same granularity. The number of pyramid level is chosen to be the same in the database. Therefore, we do not have any problem in matching images with different number of subgraph histograms.

Note that the Spatial Pyramid Matching [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] scheme partitions an image recursively into a coarse-to-fine (sub)regions, i.e., their partitions are nested, as introduced in Section 2.3.2.1 of Chapter 2. In contrast, our partitions are independent at each level in the BBoW model, see Figure 5.2. Moreover, we keep the same resolution of images during partitioning. That means we do not use a Gaussian pyramid [START_REF] Peter | Fast filter transform for image processing[END_REF][START_REF] Peter | Fast algorithms for estimating local image properties[END_REF][START_REF] Burt | The laplacian pyramid as a compact image code[END_REF] as main concept of pyramid does. The main reason that we have adopted this strategy is attributed to avoid obtaining isolated (too small) subgraphs, leading to the BBoW description less representative.

In the next Chapter, we will evaluate our model in different respects, especially, its application for image retrieval. 

Results and Discussion

In this chapter, we present an evaluation of different aspects of our model with respect to graph partitioning and the application to image retrieval, i.e., to retrieve all images that are similar to a given image from a database.

First of all, we introduce three datasets and their experimental settings for dictionary computation, image queries will be explained. Next, we introduce metrics for evaluation of image retrieval efficiency with our BBoW model. Then some experiments are reported on the comparison of similarity metrics used in image matching. For selected graph-cut algorithms, we will report on optimal parameters selection for graph construction. Our irregular partition model will then be compared to the famous SPM approach which deploys regular embedding of quantized features and we will discuss the perspectives of the proposed model at the end.

Image Datasets

In this Section, we present the datasets used for this work. The proposed Bag-of-Bags of Words model was evaluated on three benchmarks: SIVAL1 dataset [START_REF] Rahmani | Localized content based image retrieval[END_REF], Caltech-1012 dataset [START_REF] Li | Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories[END_REF] and the People Playing Musical Instrument (PPMI)3 dataset [START_REF] Yao | People Playing Musical Instrument (PPMI) dataset[END_REF][START_REF] Yao | Grouplet: A structured image representation for recognizing human and object interactions[END_REF].

The SIVAL (Spatially Independent, Variable Area, and Lighting) benchmark contains 1500 images among 25 different categories, 60 images per category. Each image is 1024 pixels in width and 768 pixels in height, has a total of 1024 × 768 = 786, 432 pixels. Each category consists of images of single objects photographed against highly diverse backgrounds. The objects may occur anywhere spatially in the image and also may be photographed at a wideangle or close up. This benchmark emphasizes the task of localized Content-Based Image Retrieval [START_REF] Rahmani | Localized content-based image retrieval[END_REF], where the user is only interested in a portion of the image (object), and the rest of the image (background) is irrelevant. Therefore, it allows to clearly identify the content of images for which the method has good performance, and for which it does not. An excerpt of SIVAL dataset is presented in Figure 6.1. 

Experimental Settings

We now detail experimental settings defined on these three datasets respectively.

All the experiments are performed on a computer with Intel i7 CPU, 2.8GHz processor, 8 GB RAM, Linux Ubuntu 12.04.3 LTS as operating system.

Many kinds of image features may be used in the BBoW model. However, since our objective is to test the BBoW model and to study the influence of the stability of image partitions on image retrieval rather than to evaluate features, we decide to choose popular yet not sophisti-cated local image descriptors. In the current implementation, we use SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] and SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF],

which have been proven to be robust end effective [START_REF] Wu | A comparative study of SIFT and its variants[END_REF]. Furthermore, for each database, we have experimentally selected an appropriate dictionary size (visual words obtained via hard assignment) and use it in all experiments. Note that we do not report on this selection, as it is already a well-studied problem [START_REF] Van Gemert | Visual word ambiguity[END_REF][START_REF] Koniusz | Soft assignment of visual words as linear coordinate coding and optimisation of its reconstruction error[END_REF][START_REF] Garg | Bag of visual words: A soft clustering based exposition[END_REF][START_REF] Kuang | Optimizing visual vocabularies using soft assignment entropies[END_REF]. A better setting could be used for performance tuning as in [START_REF] Chatfield | The devil is in the details: an evaluation of recent feature encoding methods[END_REF].

Experimental Settings on SIVAL

In the context of Graph Cuts, the motivation of running experiments on SIVAL is threefold.

Firstly, we need to verify if an image graph composed of prominent keypoints is representative enough to describe an object in an image, compared with the bag-of-words model. Secondly, we aim to check if interest points can be well clustered based on their color similarity. Thirdly, we hope to examine the influence of different parameters on graph partitions. In practice, we use a library1 from Boykov and Kolmogorov [START_REF] Boykov | An experimental comparison of min-Cut/max-Flow algorithms for energy minimization in vision[END_REF][START_REF] Boykov | Fast approximate energy minimization via Graph Cuts[END_REF][START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF] as the implementation of α-expansion for Graph Cuts.

For each category, we use 30 images for training, the rest 30 images for image retrieval.

We use an extended 128 dimension version of SURF-128 feature descriptor, as described in Bay et al. [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF]. The sums of d x and |d x | are computed separately for d y < 0 and d y ≥ 0.

Similarly, the sums of d y and |d y | are split up according to the sign of d x , thereby doubling the number of features. We randomly sample SURF vectors from training images and learn a quantization codebook using k-means with 500 and 1000 clusters respectively. More precisely, the codebook is first computed using k-means clustering method over all SURF descriptors of the filtered keypoints from the masked images2 in a learning database. The codewords C then correspond to the centres of the learned clusters.

In order to compare prominent keypoints approach in BBoW model with the traditional bag-of-words (BoW) model, we computed BoW histograms on exactly the same feature points set to build the initial image graphs. A bag-of-visual-words representation, i.e., a histogram of word frequencies, is thus assigned to each subgraph obtained by graph partitioning via Graph Cuts. evaluation protocols are used directly in CBIR.

We review some basic notions for an IR system. The query can be considered as a binary decision problem. The decision can be represented in a structure known as a confusion matrix or contingency table. The confusion matrix has four categories: true positives (TP), false positives (FP), true negatives (TN), false negatives (FN). A confusion matrix is shown in Table 6.1.

Table 6.1: The basic notions for information retrieval systems.

Relevant

Not relevant Retrieved true positives (TP) false positives (FP) Not retrieved false negative (FN) true negatives (TN)

In the context of evaluation of unranked retrieval sets, the two most frequent measures for IR effectiveness are precision and recall. Precision and recall are single-value metrics based on the whole list of documents returned by an IR system. They are defined for the case where an IR system returns a set of documents for a given query.

Precision (P) is the fraction of retrieved documents that are relevant, defined in Equation (6.1). Recall (R) is the fraction of relevant documents that are retrieved, as in Equation (6.2).

Precision =

# (relevant items retrieved) # (retrieved items) = P (relevant | retrieved) . (6.1)

Recall = # (relevant items retrieved) # (relevant items) = P (retrieved | relevant) . (6.2) 
Mathematically, it is possible to interpret precision and recall not as ratios (fractions), but as probabilities: precision is the probability that a (randomly selected) retrieved document is relevant; recall is the probability that a (randomly selected) relevant document is retrieved in a search.

Given the confusion matrix defined in Table 6.1, we are able to rewrite the precision and recall metrics as:

Precision = T P T P + FP , (6.3 
)

Recall = T P T P + FN , (6.4) 
in Equation 6.3 and 6.4 respectively.

Average precision

The Average Precision (AP) is the average of the precision value obtained for the set of top k documents existing after each relevant document is retrieved, and this value is then averaged over information needs.

AP = k i=1 Precision(i) × rel(i) # (relevant items) (6.5)
where rel(k) is an indicator function equalling to one if the item at rank k is a relevant document, zero otherwise. Precision(k) means the precision at cut-off k in the item list.

Mean average precision The mean Average Precision (mAP) for a set of queries is the mean of the average precision scores for each query. It is defined as:

mAP = Q q=1 AP q Q (6.6)
where Q is the number of queries.

To assess the stability of the proposed BBoW model, given particular similarity metrics used in image matching, we also compute the standard deviation (std) of APs in image retrieval.

Partition Precision (PP)

In order to qualify the performance of our approach, we introduce a new measure. We call it Partition Precision (PP) at n first retrieved images. For a particular query image I j , we denote We define a η × K matrix M, its entry is:

N
M d,k = 1 if η(d)
∈ rel and g j,k , g η(d),k match, 0 otherwise (6.7)

to describe the stability of partitioning G j into Γ K j = {Γ k j } k=1,...,K = {g j,1 , • • • , g j,K }, i.e. K-way partitioning.

The Partition Precision (PP) at n = |η| is thus given by a vector of length K:

{Precision(Γ k j )} k=1,...,K = 1 |η| d=1...|η| M d,k (6.8) 
where M d,k is an element of matrix M.

The partition precision of intra-class (see Table 6.18 and Table 6. [START_REF] Agarwal | Hyperfeatures -Multilevel local coding for visual recognition[END_REF]) is defined as:

{P(Γ k j )} k=1,...,K = 1 |N rel | d=1...|Ω| M d,k (6.9) 
where M d,k is an element of matrix M.

In essence, {Precision(Γ k j )} k=1,...,K = [1, . . . ,

] if all n images are relevant, and all the corresponding subgraphs are matched across image category that I j belongs in. Each vector element (corresponding to each subgraph g j,k ) of this measure lies in the range of 0 to 1.

Comparison of Co-occurrence Measures for Image Matching in the BBoW Model

In this section we present the results of experiments we conducted on the SIVAL dataset with the approach of sparse sampling via keypoints detection. The whole experiment was performed with the approach of Delaunay triangulation of graph nodes. The Graph Cuts algorithm was therefore used for graph partitioning, as explained in Section 3.3 of Chapter 3 (Graph Construction) for specific definition of our energy potentials on Delaunay triangulated graph.

A (dis)similarity measure between two (sub)graphs can be easily computed as we just need to compare two histograms. We here adopt the idea of RootSIFT [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF] by first L1 normalizing the histograms and then compute the histogram intersection (HI) of them. Nevertheless, we still need to compute the similarity between two images, knowing that they both contain K subgraphs, i.e. K histograms for K subgraphs.

We have experimented different strategies to combine the K × K distances between a pair of query image I i and database image I j from their corresponding histogram sets H i and H j : Performance of image retrieval is measured by calculating precision, recall, and the mAP over each category, since that mixing of all categories has no sense for disparity of the object appearance across categories.

For three categories : "stripednotebook", "goldmedal", "woodrollingpin" among 25 categories, the proposed BBoVW method performs better than BoVW. Two examples are presented in Figure 6.5, demonstrating the results for a "good" category and a "bad" category. In Fig- The results via Graph Cuts hold the clue to the causes of the unfavourable result. As can be observed in Figure 6.6, the number of graph nodes in each label set is unbalanced; the points in the same label are not clustered into one image region; there exist isolated points that are far from their corresponding similar component; one subgraph (these points with the same label) can cross object and background.

The experiments demonstrate that the approach of using prominent keypoints as graph nodes is sensitive to the stability of feature points. However, this stability is not ensured since interest points often appear on the border between object and background or the regions of high contrast. Moreover, the distance factor in energy term, i.e. f d (p, q) in Equation (3.15), does not

(a) (b) (c) (d) (e) (f) 
give any improvement, in most cases, is even worse.

Based on the above reasons, we drop the prominent keypoints approach, adopt dense sampling pixels as graph nodes for further experiments. Furthermore, the SIVAL database is limited in complexity of scenes; it is not sufficiently large and thus is not used widely as a common benchmark. Hence in the follow-up of this Chapter, we will present results on Caltech-101 and PPMI databases.

Parameters Evaluation

In this Section, we study the impact of the different parameters in the BBoW model on image retrieval performance.

Patch Size and Contribution of Color Term

We start by testing the parameters' influence of our method for image retrieval. Two parameters have been evaluated: the patch size n defined in section 3. These results highlight that these parameters do not have much influence on the quality of results using either Graph Cuts (GC) or Normalized Cuts (NC). For the following experiments, we therefore decided to use n = 5 and λ = 5.

6.6 Influence of Neighbourhood Systems 6.5.2 Influence of Texture Term

In order to improve the stability of the graph partitions, we try incorporating texture features w T pq into graph weights w pq , by assigning α 1 in Equation (E.1). For this purpose, we conducted an experiment in a reduced dataset of Caltech-101, including 201 images for query, 403 images for retrieval. By setting α = 0, 0.5, 0.6, 0.7, 0.8, 0.9, 1, respectively in Equation (E.1), we are able to investigate the evolution of retrieval performance as less texture features were jointly embedded into graph weights with local color in BBoW model.

As explained in Table 6.4, the best performance in retrieval reaches as α = 0.8 in Equation (E.1). However, the best mAP value just gives slightly improvement from considering only color features in edges weights. Furthermore, take a close examination of the partitioned image (sub)graphs, for example, a case study in Figure 6.7, the obtained subgraphs are more reasonable in separating image regions.

Indeed, the performance of image retrieval in mAP demonstrates that the use of complementary texture features in DCT domain generally did not improve the retrieval accuracy in our experiments. We can explain this by the different nature of these features and insufficiency of a direct application of them in a joint probability manner in the graph-cut objective function. We studied the influence of different neighbourhood systems on the graph partitions.

As can be seen in Figure 6.8, the first row shows graph partitions on a synthetic image, α = 0.7 α = 0.8 α = 0.9 α = 1 (only color) 

α = 0 α = 0.5 α = 0.8 α = 1
Caltech-101 dataset. We can observe that labels propagate in more reasonable ways along edges or around the border of areas of contrast under 4-connected neighbourhood system.

We have testified that such favourable behaviours happen only when texture factor is considered in Equation (E.1), i.e. α 0. The neighbourhood system has no obvious effect on graph partitions if only color factor is embedded in edge weights. 

Partition Analysis

Now we present a detailed analysis of the stability of graph partitions, and how does this stability influence the performance of image retrieval.

Stability of Graph Partitions

In order to understand results in previous Section 6.8 more clearly, let us further look at the obtained graph partitions in BBoW model.

The explanatory case studies of graph partitions First of all, we review the six typical categories ("accordion", "faces", "pagoda","trilobite", "cellphone", "motorbikes") that have been enumerated in Section 3.6 of the Chapter 3. We now do further analysis of these images with the aim of discovering the relationship between the graph partitions and the performance of image retrieval.

Taking each image as a query, retrieval performance was evaluated in mAP on subset of Caltech-101 dataset composed of 5975 images from database for retrieval. The patch size is set to n = 5. λ = 5. We here only give a concise evaluation on the case of 4 partitions. The corresponding mAPs are listed in Table 6.8 resp. Figure 3.12, Table 6.9 resp. Figure 3.13, Table 6.10 resp. Figure 3.14, Table 6.11 resp. Figure 3.15, Table 6.12 resp. Figure 3.16, Table 6.13 resp. Figure 3.17 1 .

It is shown that our BBoW model clearly outperforms SPM for all examples of images listed in Figure 3.12, Figure 3.13, Figure 3.14 and Figure 3.15, from four different categories: "accordion", "faces", "pagoda","trilobite". Particularly for the "faces" category, BBoW via KKM gives the best results. As can be seen on the third column of Figure 3.13, our method is able to represent the "faces" with only one or two subgraphs. The other subgraphs in the background are also stable in the sense that almost the same subgraphs can be found in each high-ranking retrieved image within "faces" category. More details can be referred to the Table B The statistical analysis of subgraphs In order to give a deeper understanding on why our method suits for certain categories and not for the others, let us go through again the other three case studies: a "good" category ("minaret"), and two "bad" ones ("cellphone", "dollar bill").

Figure 6.12 presents the partitioning results at level 1, i.e. 4 subgraphs. The first row of the Figure 6.12 illustrates good queries from "minaret" class in which BBoW outperforms SPM. Once again, our method is able to represent the "minaret" (object) with only one or two subgraph(s). The other subgraphs in the background are also stable. The second row of the Figure 6.12 shows four bad queries from cellphone and dollar bill categories in which SPM achieves better performance than our method. We have the same observation on the obtained partitions, i.e., the partitions are not consistent across the images from the same category. Obviously, we cannot expect any good retrieval as well.

We now detail the retrieval performance and the statistics of the (sub)graphs for these eight query images. One can see in Figure 6.13 (Graph Cuts), Figure 6.14 (NCuts) and Figure 6.15(KKM) that our method outperforms SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] in "good" categories. In this case, the partitions from either NCuts or Graph Cuts are stable across the images of the same category.

The mean number of nodes in "correctly" matched subgraphs together with the standard deviation are presented in Figure 6.16. The standard deviation is high for "bad" categories, whereas it is more uniform for "good" category. The precision of 8 typical query images: 1st-4th query images are from a "good" categoryminaret, 5th-8th query images are from "bad" categories: cellphone and dollar bill.

Quality of Subgraphs Matching

To access subgraphs matching, we use the partition precision introduced in Section 6.3.2.

The partition precision (PP) of 4 subgraphs for 8 typical queries (|η| = 30) are shown in table 6.14 and table 6.15. We find that in "good" categories, the Precision(Γ k j ) for each subgraph g j,k is close to 1, signifies that the subgraphs are matched correctly more often. That illustrates the discriminative power of graph descriptors among inter-class. While {P(Γ k j )} k=1,...,4 are high, it means the image graph partitions tend to be more stable. In "bad" categories, this happens less often.

In the context of intra-category, the Partition Precision (PP) for query image I j is thus given by a row vector of length K:

{P(g j,k )} k=1, ..., K = 1 |N rel | d=1...|N rel | M d,k (6.11) 
where M d,k is an element of matrix M. The above vector thus characterizes the goodness of match of each subgraph in a query image to the subgraphs of images of the same category in the database Ω. Table 6.18 and 6.19 show figures for the partition precision of 4 typical queries of a "good" category and of two "bad" categories. The corresponding number of nodes for each subgraph, as illustrated in Figure 6.16, is also listed in Table 6.16 and Table 6.17 respectively in detail. Note that in Table 6.17, the standard deviation on a number of nodes is generally larger than that one in Table 6. [START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF].

In Table 6.18, one can see that in the "good" categories, the worst matching percentage (the numbers in bold) is better than that in "bad" queries. Hence, this correlates with better stability of nodes' numbers, as in Figure 6. [START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF], where the number of nodes within the matched subgraphs is quite imbalance in the "bad" categories. 

Conclusion

In this Chapter, we provided our experimental results on three image benchmarks, to validate the proposed BBoW model. We also compared BBoW with a notable approach spatial pyramid matching. As compared with Spatial Pyramid Matching (SPM), the BBoW model overcomes the practical limitations of assuming similar parts of scenes very often appear in similar regular grid cells. Particularly, we emphasize that the partitions in BBoW are not nested across multiple levels.

We also gave an analysis of the images sampled from four "good" categories and two "bad" categories in Caltech-101 dataset, as case studies to reveal the relationship between the stability of graph partitions and the performance of image retrieval. We have found: despite that the BBoW model does not perform as good as SPM overall, the strength of our method is promising for image retrieval when the partitions are stable across an image category, e.g. "accordion", "faces", "pagoda", "trilobite" categories in Caltech-101 dataset, see Section 6.9.1 and Appendix B for reference. The experiments demonstrate that our proposed method is globally more stable and performs better than SPM in 19 objects categories.

Chapter 7 Conclusion and Perspectives

In this chapter, we will summarize the contributions made in the present work and then enumerate possible directions for the future research.

Summary of the Work in this Dissertation

In this thesis, we have proposed a novel model as a way of graph-based image representation, namely Bag-of-Bags of Words (BBoW), to incorporate both the appearance and spatial information under its description. Basically, BBoW is a bag of signatures, each of which is built on a subgraph in image. The construction of BBoW model is composed of four steps:

1) Local features extraction; 2) Image graph construction; 3) Irregular subgraphs generation; and 4) BBoW description. The BBoW description is a combination of a bag of signatures. Each signature is built on a subgraph in the image.

In the process of graph construction, we mainly adopted two approaches: 1) prominent keypoints; 2) dense sampling for graph nodes selection. We have also designed several objective functions to define the weights of edges in the image graph. These objective functions are related to either color information or texture features of graph nodes, and they may combine both of them as well, i.e. like joint color-texture descriptors. Furthermore, we formulated different types of edge-weight terms, then analysed their influences on the stability of image graph partitioning in the following step.

We then evaluated three graph partitioning methods: Graph Cuts, Normalized Cuts and kernel k-means to optimize multilevel weighted graph cuts (KKM), for irregular image partition in the third step. A criterion for measuring the stability of subgraphs has been defined. It has been shown that KKM approach achieved better result than the other two partitioning methods. This finding suggests that better graph partitioning strategy can improve the performance for the BBoW model.

In BBoW model, each subgraph is described by a bag-of-visual-words histogram as its signature. An image is thus represented by concatenating those signatures together with level weighted normalizations. For matching BBoWs, a crucial technique, called bipartite subgraphs matching was used. With this technique, the BBoW achieves spatial invariance in image representation.

In contrast to the state-of-the-art technique such as Fisher vector image representation [START_REF] Krapac | Modeling spatial layout with fisher vectors for image categorization[END_REF][START_REF] Sánchez | Modeling the spatial layout of images beyond spatial pyramids[END_REF][START_REF] Simonyan | Fisher vector faces in the wild[END_REF] and spatially local coding [START_REF] Mccann | Spatially local coding for object recognition[END_REF] etc. that compete with SPM to give extensions of bagof-words image representations to encode spatial layout, our model takes into account spatial constraints in the image space instead of feature space. Our approach incorporates color and limited spatial information into image representation for image retrieval. To formally evaluate the performance of the model, we have introduced a new vector features: partition precision. It characterizes the quality of matching of each subgraph in the image graph. Scalar metrics could be induced from partition precision, but require a thorough study of their properties. We formalized the model, proposed the methodological chain for its construction in images, developed a comparison methodology for matching images by BBoW in a CBIR framework.

We have further extended the model to its pyramidal extension, where a non-nested multilevels scheme of image partitions was proposed. The irregular partitions at each level are independent of those at other level(s). An image represented by a pyramid of fixed number of partitions is described by a bottom-up reordered collection of BBoW for all levels. The matching of these descriptions has been called irregular pyramid matching (IPM).

Future Work

As future work, we consider defining an information fusion scheme based on the "vertical" property across multiple resolutions of image graph partitions, and applying a multi-class classifier to the proposed BBoW model for image classification. Adding more discriminative texture features in BBoW, in addition to studying effective ways to embed texture information is another interesting direction. A comparison to state-of-the-art algorithms like deep learning [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Henri | Machine learning and content-based multimedia retrieval[END_REF] would obviously be important to carry on in the future.

In summary, we plan to improve and extend our BBoW model mainly in the following four directions:

Objective Functions in Edges Weights

As discussed in Section 6.9 of Chapter 6, the stability of graph partitions is nevertheless not always ensured with the predefined functions for edge weights. To improve this stability, we plan to use other objective functions for edge weights in graph partitioning methods. We also aim to test other discriminative texture features, such as Local binary patterns (LBP) [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] and Multi-factal spectrum (MFS) [START_REF] Xu | Scale-space texture description on SIFT-like textons[END_REF][START_REF] Quan | A distinct and compact texture descriptor[END_REF], then study different ways to combine color and texture features in edge weights.

Improving Segmentation Methods

The BBoW model can potentially adopt any automatic image segmentation methods combined with the bag-of-words model. With such extensions, many interesting options remain to be explored. For example, in the context of Graph Cuts, we can adaptively change the regularization parameter λ, as justified in Candemir et al. [START_REF] Candemir | Adaptive regularization parameter for Graph Cut segmentation[END_REF]: using adaptive regularization parameters for the different parts of the image improves the segmentation result than using a single regularization parameter. The proposed method adjusts the effect of the regularization parameter using the probabilities of pixels being part of the boundary. Intuitively, it can produce better segmentation results than the original graph cut approach for the best λ.

Fusion across Graph Partitions

Agarwal et al. [START_REF] Agarwal | Hyperfeatures -Multilevel local coding for visual recognition[END_REF] proposed a multilevel local coding method called "hyperfeatures", which are "features of (local sets of) features (from lower level)". This approach is based on local histogram model encoding co-occurrence statistics within each local neighbourhood at multilevel. The level 0 (base level) contains bag of features (BoF) histograms, i.e. global histograms over quantized image descriptors. The higher level consists of local histograms generated by repeatedly aggregating local BoF histograms from previous lower level features.

The codebook of hyperfeatures is learned from all features at the corresponding level during training.

In contrast, current implementation of BBoW model does not feed lower level features into the computational process of higher levels. At each resolution of the image partitions, subgraphs are built independently on single level basis. The BoW approach is next applied to individual resulting subgraphs independently as well. That is to say, the signatures (histograms) of (sub)graphs are independent of the resolutions of image partitions. Moreover, the codebook in BBoW is independent from any partitioning scheme. Inspired by "hyperfeatures", we may as well build our "hyperfeatures" in BBoW by the fusion of features across graph partitions.

Applications of the BBoW Model

From a more fundamental point of view, there are some other aspects of the proposed model that we are interested in tackling in the future. First of all, we are interested to see how robust our model is against noisy data. Secondly, we intend to further develop statistical analysis of subgraphs in order to interpret these graph descriptors (subgraphs) and to study further their stability with respect to graph partitioning. Thirdly, many distance metrics and similarity functions can be applied to define similarity measures for comparing the images.

From an applicative point of view, we aim to validate the generality of this model on wide range of data sets for tasks of object image classification and scene classification. Another applicative foreseen work is to apply BBoW to images with large resolutions, as the graph descriptors can be more representative in terms of larger image space. and the claim is proven.

Claim B:

Histogram Intersection is equivalent to the use of the sum of absolute differences or cityblock metric, i.e. L 1 distance.

Proof :

Given two L1 normalized histograms G = {g 1 , . . . , g B } and H = {h 1 , . . . , h B } with B bins, i.e. Hence, we have:

K ∩ (G, H) = 1 2         B b=1 g b + B b=1 h b - B b=1 | g b -h b |         = 1 2         1 + 1 - B b=1 | g b -h b |         = 1 - 1 2 B b=1 | g b -h b | = 1 - 1 2 D L 1 (G, H) .
and the claim is proven.

those query images.

We investigate that by carrying out a one sample t-test, and we also construct a confidence interval at confidence coefficient 95%.

E.2.1 Data preparation

Conditions to satisfy:

1. Pair data assumption: The sample data being tested by two methods SPM and BBoW are not independent. So we can not use two-sample t-test because they fail to sample independence conditions. We have a good reason to pair the data, as each pair of average precision values are related to the same query image. Hence, the data are paired by subject.

2. Random conditions: The subject (images) were not chosen randomly (i.e. images from intra-class), so we will have to assume these results are representative.

Nearly normal:

The distribution (see histogram/box plots) of differences is uni-model and symmetric.

E.3 Matched Paired t-test and interval

Question: What is the magnitude of the difference for image from 'faces' category in performance of image retrieval between SPM and BBoW (via KKM) individuals?

Step 1: Hypothesis Step 3: Rejection region (R.R) get critical value t α/2 (α = 0.05), compare t and t α/2 .

Step 4: Decision

If the test statistic fall into R.R, then reject H 0 , else fail to reject H 0 .

Step But sample data is always (at best) an estimate or approximation of the large population from which it is selected.

E.4.2 Sample size

As our sample size n becomes small, we are less certain that it is representative of our entire population; there is greater risk of error. Hopefully it is intuitive that the larger our sample size, the more confident we are -that it is representative of the entire population.

In a large sample, we are likely to capture the natural variation and diversity in the population data. A small sample increases the chance that we either miss that variation or overemphasize it. However, sample size, in most cases, does adhere to the "Law of Diminishing Returns". There is a point when increasing the sample size offers no more statistical benefits, which is good because it makes research more "doable".

E.4.3 Data preparation

Is My Data Normal? Why? Many statistical techniques assume the data fits a normal distribution. How could we tell if the data fits this shape: The normal standard curve. Does our data have "goodness of fit" relative to the normal distribution? Tools to visualize data:

1. Histograms: the frequency of values over certain intervals is called "bins"; bar width.

Histogram can be misleading. The look of a histogram is largely dependent on the "bins" size; the space between the tick marks. Since we do not know the population variance and standard deviation, we have to use our sample variance and standard deviation. So the degrees of freedom is a way of adjusting that estimations. What it does, in practice, is that it gives a slightly larger margin of error or "wiggle room" in our estimates. Other than that, just roll with it; it is a statistical adjustment.
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  art in image representation and its application to content-based image retrieval (CBIR), as the general context of the thesis. Particularly, as the present work relates closely to pattern recognition by using graphs and image representation, especially with regard to Bag-of-Words model and Spatial Pyramid representation, we elaborate on them so as to facilitate comparisons with these approaches in Chapter 6. Firstly, we formulate basic concepts, present the image features, and give a comparative study of different types of image descriptors in terms of local, semi-local and global features. Secondly, a brief introduction of content-based image retrieval is presented. A few illustrative approaches for CBIR are further discussed in detail. Next, we highlight what is known about image features to emphasize these issues that are pertinent to CBIR. Thirdly, in the context of image representation, we introduce the bag-of-features (BoF) framework and its most popular variant the Bag-of-Words (BoW) model. Several typical extensions in pursuit of improving the basic BoW model are enumerated. The chapter concludes with a discussion of graphs as a tool for image representation in the literature. Finally we present the application of graphs to pattern recognition and image indexing, which prompts our proposed Bag-of-Bags of Words model in the thesis.
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 21 Figure 2.1: An example of image descriptor components. The similarities or distances between images are based on the similarities or distances between the image feature vectors being extracted. Different types of feature vectors may require different similarity functions. Furthermore, different similarity/distance functions can be applied to the same feature set. The figure is excerpted from Penatti et al.[1].

Figure 2 . 2 :

 22 Figure 2.2: The major stages for extracting SIFT features. (a) Scale-space extrema detection. (b) Orientation assignment. (c) Keypoint descriptor. The figures are extracted from Lowe's paper [2].

Figure 2 . 3 :

 23 Figure 2.3: An example of local binary pattern codes. Take value (5) of the center pixel, and threshold the values of its neighbors against it. The obtained value (00010011) is called LBP code.

2 of the Chapter 4 .

 4 Let us denote by O = {o 1 , . . . , o B } and U = {u 1 , . . . , u B }, are two normalized feature vectors with B bins. Particularly, they are normalized to sum to one, i.e.

Figure 2 . 4 .

 24 Particularly, CBIR is a challenging task, with many problems still unresolved. Given a query image, CBIR is aimed at returning its most similar images in a database. To achieve this goal, we need to choose adapted image features and to define the similarity measures between images in order to compare them. As mentioned in Section 2.1.4, the most popular local image features are SIFT descriptors, SURF etc. Other types of features can also rely on color, texture, shape, spatial location etc. or in a combination of them[START_REF] Idris | Review of image and video indexing techniques[END_REF]. In the present work, we focus on visual signature and similarity measures parts, shown as two core techniques for image retrieval in the diagram of Figure2.4.
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 24 Figure 2.4: An overview of the many facets of image retrieval as field of research. The figures are extracted from Dattas paper [3].
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 2 Figure 2.5.

Figure 2 . 5 :

 25 Figure 2.5: The Bag of Words model. The left-most picture illustrates the Bag of Words in document. Other pictures show the Bag of Visual Words in image. These pictures are excerpted from the source of S.Lazebnik. 2

Figure 2 .

 2 6 shows an example of the BoVW image representation. There are three examples of images in this figure. Each patch in an image is mapped to certain codeword (hard assignment) through the clustering process. Each image is thus represented by a sparse histogram of the codewords. This approach is the so-called bag-of-visual-words (BoVW) representation [80].

Figure 2 . 6 :

 26 Figure 2.6: The Bag-of-Visual Words (BoVW) image representation. The figure is from the source of S.Lazebnik.3

  Figure 2.7. Using B visual words in a visual dictionary and C grid cells in SPM will result in a histogram of size BC as the final image representation.

Figure 2 . 7 :

 27 Figure 2.7: An example of constructing a three-level pyramid. The image has three feature types, indicated by circles, diamonds, and crosses. At the top, the SPM method subdivides the image at three different levels of resolution. Next, for each level of resolution and each grid cell, SPM counts the features that fall in each spatial bin. Finally, SPM weights each spatial histogram according to Equation (2.17). The figure is excerpted from Lazebnik et al. [4].
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 28 Figure 2.8: An example of superpixels. (a) Input image. (b) A "superpixel" map with 200 superpixels via Normalized Cuts algorithm [5]. The figure is excerpted from Mori et al. [6].

  Firstly, image patches from training images are extracted with the Harris interest point detector [28]. Secondly, these patches are treated as individual clusters on which agglomerative clustering is performed initially. The clustering process stops until the similarity between any patches in different clusters is less than a certain threshold. Finally, the codebook is generated from the center of each resulting cluster. The authors called this adapted codebook a Codebook of Local Appearance. Leibe et al. also define an Implicit Shape Model (ISM) to model the spatial distribution of each codebook entry under a probabilistic framework. More precisely, IS M(C) = I C , P I,C , where I C is the aforementioned codebook of local appearance for a given category C, P I,C is a spatial probability distribution for the codebook entry. P I,C estimates where the codebook entry may be found on the object in a non-parametric manner. Hence, the class characteristics are learnt in such a soft-coded way. We can vote for object position or even handle multiple articulated objects of the same class in testing images.

  this Chapter, we have presented image descriptors, image representation and image retrieval in real world, particularly Content-Based Image Retrieval (CBIR). With respect to image representation, we mainly focus on the bag-of-visual-words model and its variants. One of severe limitations of the bag-of-visual-words model is that it ignores the spatial layouts among the image patches, which are very important information in image representation. Several effective methods have been proposed to incorporate the spatial information into BoVW. We enumerated a few of notable ones. In the present work, we are especially interested in using graphs as a tool to model spatial relationships among image features. This idea has motivated our direction in the next Chapter.
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 29 Figure 2.9: A hierarchy of "nested" Graph Words on four layers (on the left) in the same example of image (on the right). Seed is marked as hollow circle in white color, and neighbour nodes are shown as solid circles in black color. The figures are extracted from [7].

  Let us first introduce the key components and concepts of the image graph model for image retrieval. The processing chain for image graph model includes the following steps: 1) graph construction; 2) graph partitioning; 3) (sub)graph matching; 4) image retrieval. See Figure3.1.
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 31 Figure 3.1: An overview of the processing chain for the proposed image graph model. (I) Image is represented by an initial weighted graph. (II) Graph partitioning consists in finding the optimal labeling for each graph nodes. (III) Find the best bipartite matched subgraphs between images pairs (IV) Retrieve images based on signatures that define the similarities between these subgraphs.

Figure 3 . 2 :

 32 Figure 3.2: Graph construction. (a) Initial SURF keypoints. (b) Filtered keypoints. (c) Seeds selection. (d) Delaunay triangulation over filtered feature points. (e) Graph-cuts result. (f) Labeling result.
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 33 Figure 3.3: Options for the neighbourhood system of image graph.

Figure 3 . 4 :

 34 Figure 3.4: Block DCT on 8 × 8 pixel patch.

Figure 3 . 5 :

 35 Figure 3.5: A block of 8× 8 pixel on DCT, the solid dot in black denotes the graph node, the 64 DCT coefficients are scanned in a "zig-zag" fashion.

1 )

 1 five low frequency coefficients in luma (Y) component (Equation (3.6)), its corresponding covariance is defined in Equation (3.7), see Figure 3.6; 2) ten low frequency coefficients in luma (Y) component (Equation (3.8)); 3) five low frequency coefficients in luma (Y) component, plus two low frequency coefficients in chrominance components (U and V) respectively (Equation (3.9)).

Figure 3 . 6 :

 36 Figure 3.6: The DCT (Discrete Cosine Transform) block is scanned in a diagonal zigzag pattern starting at the DC coefficient d(0,0) to produce a list of quantized coefficient values. Here only five AC coefficients d(1,0), d(0,1), d(0,2), d(1,1), d(2,0) in luma (Y') component of YUV system are considered due to their good discriminative properties.

. 10 )

 10 l p denotes the label of graph node p ∈ V that must belong to a finite label set L. The unary terms f p (•) encode the data penalty functions, and the pairwise terms f pq (• , •) are interaction potentials.

Figure 3 . 7 :

 37 Figure 3.7: An example of binary labeling on an image graph via Graph Cuts. The graph corresponds to an image that consists of a 3 × 3 pixels set P, with observed color intensities I p in certain color space for each p ∈ P. Given binary labels L = {0, 1}, an optimal labeling L assigns label l p ∈ L to each pixel p. One part of this image is excerpted from [8].

Definition 4 . 3 :

 43 Augmenting path A path from the source s to the sink t that can deliver an increased flow is called a flow augmenting path. Definition 5. Residual Graph of a flow network is a graph which indicates additional possible flow. If there is a path from the source to the sink in a residual graph, then it is possible to add flow. Every edge of a residual graph has a value called residual capacity which is equal to original capacity of the edge minus current flow. Residual capacity is basically the current capacity of the edge. The min-cut/max-flow algorithm can now be given: The minimum cut edges can be ob-Algorithm 1 Max-flow/Min-cut Algorithm Require: Graph G = (V, E), source s, terminal t, capacity C Ensure: Return f as the Max-flow, and (X, V -X) as the Min-cut 1: set P ← 0 (flow 0 on all edges), set opt ← f alse 2: while not opt do Construct the residual graph G f 4:

  X the set of vertices in G f reachable from s 10: end if 11: end while tained by the following steps: 1) Run Ford-Fulkerson Algorithm 1 and consider the final residual graph. 2) Find the set of vertices that are reachable from the source in the residual graph.

Definition 6 .Figure 3 . 8 :

 638 Figure 3.8: Example of α-β swap and α-expansion. (a) initial labeling: α in red, β in green, γ in blue. (b) α-β swap: only number of pixels with label α or β change their labels, pixels with label γ remain unchanged. (c) α-expansion: pixels with different labels can change their labels simultaneously. The figures are excerpted from [9]. This figure is better viewed in color.

3. 5 . 1 . 4 selection 1 )

 5141 Seed In the case of prominent keypoints approach: to ensure that seeds with different labels will fall into heterogeneous regions in the image, we select seeds in such a way:a) The fixed number of seed points S ⊂ P are chosen among the most prominent keypoints in P; b) Different seeds should not be too close to each other and they should fall into heterogeneous region of their own in the image. To achieve this purpose, we set empirically both color and distance threshold to differentiate one seed from the other chosen ones.

2 )

 2 In the context of dense sampling: The seed points are chosen from nodes that are the closest to the barycentre of each regular cell, see Figure 3.9. More complex seeds selection measures (such as, choosing interest points that have the most strong response; separating different seeds with enough distance based on image size or resolution) have been investigated, without improving the performance.

Figure 3 . 9 :

 39 Figure 3.9: Seed points are in hollow circle of different colors. The graph nodes are in red solid points.

Figure 3 . 10 :

 310 Figure 3.10: Examples of seeds selection in prominent keypoints approach. The stability of seeds is hardly reached due to the uncontrolled nature of the images available. All examples of images are from SIVAL dataset [10]. There are three seeds in each image, and these seeds are labelled with their own colors (in red, orange and yellow). This figure is better viewed in color.

ADefinition 9 .

 9 graph can be partitioned into two disjoint sets A and B, with A ∩ B = V and A ∪ B = ∅, by removing edges connecting the two parts. Definition 8. Link Let us denote links(A, B) to be the sum of the edge weights between nodes in two disjoint sets A and B. Degree We furthermore define the degree of A as the links of nodes in A to all the vertices in the graph G, that is, degree(A) = links(A, V). Definition 10. Association The association (sum of all the weights) within the cluster A is denoted by assoc(A, A) = p∈A,q∈A w pq .(3.24)Definition 11. Cut The degree of dissimilarity between A and B can be measured by cut(A, B), which is defined as the sum of all the weights being cut,

2

 2 [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF] and Equation(3.27) can be expressed as Equation(3.29) and Equation (3.30) respectively, Computing NCut by eigen-value decomposition Unfortunately, computing the optimal NCut is NP-complete. Instead, Shi et al. suggested solving NCuts as a regular eigenvalue problem by computing a real-valued assignment of nodes to groups. Let x be an indicator vector of |V| dimension, where x p = 1 if node p is in A and x p = -1 otherwise. W is an |V| × |V| symmetrical matrix with W(p, q) = w pq . l = {1, . . . , 1} is an |V| × 1 vector of all ones. Let d = Wl be the row sums of the symmetrical matrix W, d(p) = q w pq , be the total connection from node p to all other nodes, and D = diag(d) is the corresponding |V| × |V| diagonal matrix with d on its diagonal, D pp = |V| q=1 w pq .With the above notations, Shi et al.[START_REF] Shi | Normalized Cuts and image segmentation[END_REF] have proved that minimizing the Normalized Cut over all possible indicator vectors x is equivalent to minimizing the Rayleigh quotient[START_REF] Golub | Matrix computations[END_REF] in the following Equation (3.31). arg min NCut(x) = arg min y(p)∈{1,-b},y T Dl=0 y T (D -W)y y T Dy = y 1 . (3.31)

3. 5 . 3 . 1

 531 The standard k-means clustering algorithm K-means[START_REF] Macqueen | Some methods for classification and analysis of multiVariate observations[END_REF] is an unsupervised learning algorithm that solves the well known clustering problem. The standard k-means procedure classifies a given data set through k clusters fixed a priori.

5 : 9 :

 59 compute w i d(φ(a i ), m k ) in Equation (3* (a i ) = argmin k w i d(φ(a i ) Update the clusters as π (t+1) c = {a : c * (a i ) = c} .

3 . 5 . 3 . 4

 3534 scheme for irregular graphs is shown in Figure3.11.

Figure 3 . 11 :

 311 Figure 3.11: An overview of the kernel-based multilevel algorithm for graph clustering proposed by Dhillon et al.[START_REF] Inderjit | A fast kernel-based multilevel algorithm for graph clustering[END_REF], here K = 6. A part of this image is excerpted from[START_REF] Karypis | Multilevel k-way partitioning scheme for irregular graphs[END_REF].

2 :

 2 while l < m do 3:

5

 5 vertex z ← merge x and y 12:w(z) = w(x) + w(y) Kernel k-means in applications

  13 and Figure 3.19), "pagoda" (Figure 3.14 and Figure 3.20), "trilobite" (Figure 3.14 and Figure 3.20), "cellphone" (Figure 3.16 and Figure 3.22), and "motorbikes" (Figure 3.17 and Figure 3.23) in Caltech-101 dataset [144]. Here we only list five examples per category. More details will be discussed in Section 6.9.1 of the Chapter 6.

Figure 3 . 12 ,

 312 Figure 3.12, Figure 3.13, Figure 3.14, Figure 3.15, Figure 3.16 and Figure 3.17 present images that are divided into 4 subgraphs with three different methods: either Graph Cuts (GC) or Normalized Cuts (NC) or kernel k-means (KKM). The name of each image is marked on the left side of the figure. In like manner, Figure 3.18, Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22 and Figure 3.23 illustrate the partitioning results in which each image is composed of 16 irregular subgraphs. The 1-3 columns in each figure correspond to the partitioning results obtained via Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM) respectively. Some observations on these (eight) figures: 1) There exist very small subgraphs that contain only a few of isolated points in partitions, e.g. an isolated green point on image accordion0031 (GC) in the Figure 3.12; two scattered red points in pagoda0035 (GC) and pagoda0047 (GC) in Figure 3.14; two isolated points in blue and garnet red color respectively in faces0039 (GC) in Figure 3.19 etc. 2) In case of 4 partitions per image, object of interest can be represented by only one or two subgraphs. 3) Despite the weights (objective function) defined on the graph edges are the same, the partitioning results (obtained subgraphs) vary from individual to individual in the same image.

Figure 3 . 12 :Figure 3 . 13 :

 312313 Figure 3.12: Examples of graph partitioning in 4 irregular subgraphs on five examples in category "accordion" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 14 :

 314 Figure 3.14: Examples of graph partitioning in 4 irregular subgraphs on five examples in category "pagoda" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 15 :

 315 Figure 3.15: Examples of graph partitioning in 4 irregular subgraphs on five examples in category "trilobite" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 16 :

 316 Figure 3.16: Examples of graph partitioning in 4 irregular subgraphs on five examples in category "cellphone" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 17 :

 317 Figure 3.17: Examples of graph partitioning in 4 irregular subgraphs on five examples in category "motorbikes" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 18 :Figure 3 . 19 :Figure 3 . 20 :

 318319320 Figure 3.18: Examples of graph partitioning in 16 irregular subgraphs on five examples in category "accordion" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 21 :

 321 Figure 3.21: Examples of graph partitioning in 16 irregular subgraphs on five examples in category "trilobite" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 22 :

 322 Figure 3.22: Examples of graph partitioning in 16 irregular subgraphs on five examples in category "cellphone" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

Figure 3 . 23 :

 323 Figure 3.23: Examples of graph partitioning in 16 irregular subgraphs on five examples in category "motorbikes" from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM). This figure is better viewed in color.

2 )

 2 Build an initial image graph G; 3) Partition the graph G into K subgraphs; 4) Compute a signature for each subgraph. The signature of a subgraph is a histogram of codeword occurrences, obtained by assigning the feature vector of each graph node in this subgraph to the closest visual word in the codebook. Hence, an image composed of K subgraphs is characterized by a set of K histograms. An overview of the proposed framework is shown in Figure 4.1. In the following, we will detail how to construct the BBoW model step by step.

Figure 4 . 1 :

 41 Figure 4.1: The diagram of construction of Bag-of-Bags of Words model.

Figure 4 . 2 :

 42 Figure 4.2: The dense points sampling approach in BBoW model.

Figure 4 . 3 :

 43 Figure 4.3: The obtained irregular subgraphs via graph partitioning.

Figure 4 . 4 :

 44 Figure 4.4: The "Bag-of-Bags of Words" description.

Histogram intersection:= 1 .

 1 Let us denote by G = {g 1 , . . . , g B } and H = {h 1 , . . . , h B }, are two normalized histograms with B bins. Particularly, these two histograms are normalized to one, Histogram intersection (HI) is defined as:

. 4 )

 4 S sum-of-mins (I i ,I j ) = i,k (b), H j,k (b))} ,(4.5)S sum-of-means (I i ,I j ) = K k=1 mean k ={1,...,K} { B b=1 min(H i,k (b), H j,k (b))} ,(4.6)S sum-of-medians (I i , I j ) = K k=1 median k ={1,...,K} { B b=1 min(H i,k (b), H j,k (b))} , (4.7)

2 :

 2 compute the BoVW histogram h i,k of the corresponding subgraph 3: end for 4: for each subgraph g j,k in image I j do 5: compute the BoVW histogram h j,k of the corresponding subgraph 6: end for 7: Similarity(I i , I j ) = S ( * ) (I i , I j ), where ( * ) is one of the co-occurrence criteria defined in Section 4.3.1.

Labels = 4 Labels = 16 Figure 4 . 5 :

 41645 Figure 4.5: Examples of image graph partitions from category 'accordion' in Caltech-101 dataset. The partitions of 4 subgraphs are visible in the first row of the figure. The second row of the figure shows 16 subgraphs in the partitioning. The nodes in each subgraph are labelled with the same color. This figure is better viewed in color.

Figure 4 .

 4 Figure 4.6 shows a toy example illustrating the subgraph matching process. Given two image I i and I j and their BBoW descriptionH i = {H i,a , H i,b , H i,c , H i,d }, H j = {H j,1 , H j,2 , H j,3 , H j,4 },

Figure 4 . 6 :

 46 Figure 4.6: Find optimal subgraph matching via Hungarian algorithm.

Figure 4 . 7 :

 47 Figure 4.7: An optimal assignment for a given cost matrix.

Figure 4 .

 4 Figure 4.8 demonstrates the procedure of image comparison in Bag-of-Bags of Words model from an image database. Note that both Algorithm 4 and Algorithm 5 require computing the bag-of-visual-words histogram for each subgraph.

Figure 4 . 8 :Algorithm 5 1 :

 4851 Figure 4.8: The process of CBIR from database in BBoW model.

Figure 5 . 1 :

 51 Figure 5.1: A schematic illustration of the BBoW representation at each level of the pyramid. At level 0, the decomposition has a single graph, and the representation is equivalent to the classical BoW. At level 1, the image is subdivided into four subgraphs, leading to four features histograms, and so on. Each subgraph is represented by its own color in this figure. This figure is better viewed in color.

1 .

 1 Local features extraction at interest point locations, or nodes in a dense grid. (a) Prominent keypoints (b) Dense points sampling 2. Codebook generation (dictionary is level independent, built off line).

3 .

 3 Graph Construction (define graph nodes, weighted edges) for each image.

4 .

 4 Partition the initial image graph into a fixed number of irregular subgraphs on multiple resolution for each image. 5. Build BoW histograms of the subgraphs. 6. Compare images based on specific similarities measure.

Figure 5 . 2 :

 52 Figure 5.2: The comparison of partitioning scheme between SPM and BBoW. At the left side of the figure shows the partitioning scheme of Spatial Pyramid Matching (SPM). At the right side of the figure illustrates the partitioning scheme of the BBoW. Contrary to SPM with nested regular partitions, our partitions are irregular and independent at each level. We keep the same resolution of the image across multilevel. This figure is better viewed in color.

Figure 6 . 1 :

 61 Figure 6.1: Example images from the SIVAL database.

Figure 6 . 3 :

 63 Figure 6.3: A snapshot of images from PPMI+ of the PPMI dataset that contains a person playing the instrument.

6. 4

 4 Comparison of Co-occurrence Measures for Image Matching in the BBoW Model maximum, resp. minimum, resp. mean, resp. median, resp. sum, etc. of all distances in operation, as explained in Section 4.3.1 of Chapter 4. As shown in Figure 6.4, the similarity measure in Equation (4.4) corresponds to the best discriminative distance measure between two images. We recall this measure: d(I i , I j ) = 1min u={1, ..., K} min v={1, ..., K} B b=1 min H i,u (b), H j,v (b) . (6.10) A complete comparison of different measures including that of classical Bag-of-Words model can be found in more detail in Table A.1, Figure A.1 and Figure A.2 of the Appendix A respectively.

Figure 6 . 4 :

 64 Figure 6.4: Comparison of a series of image similarity measures.

ure 6 .Figure 6 . 5 :

 665 Figure 6.5: Comparision between BoW and BBoW on SIVAL benchmark. (a) The precisionrecall curve for a "good" category : "stripednotebook". (b) The precision-recall curve for a "bad" category : "banana". (c) Graph descriptors from "stripednotebook". (d) Graph descriptors from "banana".

Figure 6 . 9 :

 69 Figure 6.9: The margin of mean Average Precision (mAP) for not surpassing categories in Caltech-101 dataset. The margin = mAP(S PM)-mAP(KK M) mAP(KK M)

Figure 6 . 10 :

 610 Figure 6.10: Mean Average Precision for surpassing categories in Caltech-101 dataset.

Figure 6 . 11 :

 611 Figure 6.11: The mean Average Precision for 16 typical categories in Caltech101 subgraphs. Normalized Cut, however, can produce relatively balanced sub-graph size. But it requires eigenvalue computation which is time-consuming and overloads memory easily as size of image graph increases. By using multilevel kernel based graph clustering method, we are able to avoid disadvantages of the two other methods.

Figure 3 .

 3 Figure 3.16 and Figure3.17 on the other hand represents two categories ("cellphone" and "motorbikes") for which our method fails. The partitions obtained almost do not exhibit any consistency across the images from the same category. The resulting histograms are therefore each time very different. Obviously, we cannot expect any good retrieval.

Figure 6 . 12 :

 612 Figure 6.12: The first row shows the 4 irregular subgraphs from "good" query images at level 1. The second row shows the 4 irregular subgraphs from "bad" query images at level 1. The nodes of individual subgraphs are labelled with the same color (in red, blue, green, brown). This figure is better viewed in color.

Figure 6 . 13 :

 613 Figure 6.13: A case study of BBoW (via Normalized Cuts). The precision of 8 typical query images: 1st-4th query images are from a "good" categoryminaret, 5th-8th query images are from "bad" categories: cellphone and dollar bill.

Figure 6 . 14 :

 614 Figure 6.14: A case study of BBoW (via Graph Cuts). The precision of 8 typical query images: 1st-4th query images are from a "good" categoryminaret, 5th-8th query images are from "bad" categories: cellphone and dollar bill.

Figure 6 . 15 :

 615 Figure 6.15: A case study of BBoW (via Kernel k-means). The precision of 8 typical query images: 1st-4th query images are from a "good" categoryminaret, 5th-8th query images are from "bad" categories: cellphone and dollar bill.

Figure 6 . 16 :

 616 Figure 6.16: The mean and standard deviation of nodes' numbers of corresponding subgraphs for intra-category, for 8 typical queries in Caltech-101 dataset -at single level 1, i.e. 4 subgraphs.

Finally, we validated

  the BBoW model for a given task of image retrieval in three datasets (SIVAL, PPMI, Caltech-101) with a total of 13, 044 images. The obtained results are encouraging, especially when the obtained partitions are stable across the images from the same category. The experiments on one of the most well-known benchmark Caltech-101 demonstrate that applying kernel k-means to graph clustering process produces better image retrieval results, as compared with other graph partitioning methods such as Graph Cuts and Normalized Cuts for BBoW model. Moreover, this proposed method achieves comparable results and outperforms SPM in 19 object categories on the whole Caltech-101 dataset.

Figure A. 1 :

 1 Figure A.1: The overall Precision-Recall curve for a comparison between BBoVW and BoVW in SIVAL dataset [10]. BBoVW: Bag-of-Bags of Visual Word. BoVW: Bag-of-Visual Words.Each image is composed of 4 subgraphs in BBoW. The dictionary of size 1000, as described in Section 6.2.1 of the Chapter 6, is learnt over 30 sample images per class using k-means. The query images are chosen from the rest of the SIVAL dataset for retrieval. In this figure, the red curve corresponds to application of co-occurrence measure defined in Equation (4.4) for image matching in the BBoW Model. The blue/red curve correspond to BoVW with/without points filtration.

Figure A. 2 :

 2 Figure A.2: A complete comparison of similarity measures by using co-occurrence criteria in BBoW, as defined in Section 4.3.1 of the Chapter 4. Each image is composed of 4 subgraphs. There are six curves in this figure: "Min Histogram Distances" with respect to Equation (4.4) (Curve 1), "Sum-of-mins Histogram Distances" with respect to Equation (4.5) (Curve 2), "Sum-of-maxima Histogram Distances" with respect to Equation (4.9) (Curve 3), "Sums of Histogram Distances" with respect to Equation (4.8) (Curve 4), "Sum-of-means Histogram Distances" with respect to Equation (4.6) (Curve 5), "Sum-of-medians Histogram Distances" with respect to Equation (4.7) (Curve 6). The Curve 4 and 5 are coincident.

Figure B. 6 :

 6 Figure B.6: The distribution of average precision values for query images in 19 surpassing classes + a category "car side" that only contains grayscale images, on the whole Caltech-101 dataset. The comparison is evaluated between SPM and BBoW (KKM) at level 1. Each image is partitioned into 4 subgraphs.

Case 2 :=

 2 if g b < h b , b ∈ [1, B], then 1 2 (g b + h b -|g bh b |) = 1 2 (g b + h bh b + g b ) min (g b , h b ) .

  1 and ∀b ∈ [1, B], g b ≥ 0, h b ≥ 0, as proven in Claim A, the histogram intersection between G and H: K ∩ (G, H) = B b=1 min(g b , h b ) + h b -|g bh b |) .

H 0 :H 1 Step 2 := x d 2 -( x d ) 2 n d n d - 1 = x d 2 - 2 n d - 1 .

 01221221 BBoW (KKM) does not improve the performance of image retrieval µ d = 0 BBoW (KKM) does improve the performance of image retrieval µ d > 0 (right tailed t-test) Compute test statistic S d n d (x d )

5 : 2 S d √ n d and x d + t α 2 S d √E. 4

 52d2d4 Confidence Interval 95% Confidence Interval (C.I), ⇒ α = 1 -0.95 = 0.05 ⇒ α/2 = 0.025 compute point estimate ± margin of error: x d ± t α We are 95% confidence that BBoW (KKM) does improve the performance of image retrieval between x dt α n d . If p-value is small << α, we reject (fail to reject) the null hypothesis. There is strong (no) evidence that BBoW can improve the image retrieval performance than SPM in the specific category. Measurement in theory E.4.1 The limits of data in research Due to time and cost, we almost always use sample data to represent the large population.

2 .

 2 Box Plots (Box and Whisker Plots) : Box plots display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution: box plots are non-parametric. The spacings between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data, and show outliers.

3 .

 3 Stem and Leaf Plots 4. P-P Plots 5. Q-Q Plots Degrees of freedom Degrees of freedom is one of the most difficult things to explain in statistics. My explanation: Degrees of freedom is an adjustment to the sample size (n -1) or in other areas of state (n -2) or more. It is linked to the idea that we are estimating something about a larger population; often a population with variance/standard deviation is unknown.

  Semi-supervised Learning In computer science, semi-supervised learning is a class of machine learning techniques that make use of both labelled and unlabelled data for training -typically a small amount of labelled data with a large amount of unlabelled data.SIFTScale-invariant feature transform (SIFT) is an algorithm in computer vision to detect and describe local features in images. The algorithm was published by David Lowe in 1999.

			GLOSSARY
		ROI	Region of Interest
		SA	Soft Assignment
		Segmentation In computer vision, segmentation refers to the process of partitioning a digital image
			into multiple segments (sets of pixels).
		Red, Green, Blue color space
	ROC	Receiver Operating Characteristic
			xviii

SPM Spatial Pyramid Matching SURF Speeded Up Robust Features, which is a robust local feature detector, proposed by Herbert Bay et al. in 2006 SVM Support Vector Machine YUV Color space, which is composed of luma (Y') and two chrominance (U,V) components. xix Chapter 1

  , d y , |d x |, |d y | , where d x is the Haar wavelet response in horizontal direction and d y is the Haar wavelet response in vertical direction. |d x | and |d y | are the sum of the absolute values of the responses, |d x | and |d y | respectively. Each keypoint is then described with a 4 × 4 × 4 = 64 dimensional feature vector based on the Haar-wavelet responses for all sub-regions.

	DoG images. After that, low contrast and unstable edge points are eliminated from candidate and matching, but provide better distinctiveness of features. The SURF rely on determinant
	keypoints, interference points are further removed using 2 × 2 Hessian matrix that is obtained of Hessian matrix for both scale and keypoints location. Meanwhile, box filters and integral
	from adjacent difference images. Next, to determine the keypoint orientation, an orientation images are used to replace the procedure of constructing DoG pyramid in SIFT for finding
	histogram is computed from the gradient orientations of sample points within 4 × 4 = 16 sub-scale-space, which are easily calculated in parallel for different scales. This feature describes a
	regions (8 orientation bins in each) around the keypoint. The contribution of each neighbouring distribution of Haar-wavelet responses of local 4 × 4 neighborhood sub-regions centred at each
	pixel is weighted by the gradient magnitude. Peaks in the histogram indicate the dominant extrema point. The response of each sub-region is a four-dimensional vector v representing
	orientations. Thereby, SIFT, corresponding to a set of orientation histograms, finally gets 4 × 4 × 8 = 128 dimensional feature vector description from 16 sub-regions, according to a certain its underlying intensity structure v = d x
	order. This 128-element vector is then normalized to unit length to enhance invariance to
	illumination changes.
	PCA-SIFT Principal Component Analysis (PCA) is a standard technique for dimensionality
	reduction. Ke et al. [32] proposed to use PCA to decorrelate SIFT components, compressing
	SIFT dimensions globally from 128 to 20 or even less. PCA-SIFT keeps unchanged the afore-
	mentioned first three stages for extracting SIFT features. It mainly contributes to the feature
	extraction stage. A 2 × 39 × 39 = 3042 dimensional vector is created by concatenating two
	horizontal and vertical gradient maps from the 41 × 41 patch centered at the keypoint. Then a
	projection matrix is used to multiply with this vector, linearly projecting the vector to a low-
	dimensional feature space. As SIFT, the Euclidean distance is used to compare two feature
	vectors of PCA-SIFT.
	RootSIFT Recently, a new version of SIFT was proposed by R.Arandjelović et A.Zisserman
	in [33], called RootSIFT. As its name implies, RootSIFT is an element wise square root of the
	L1 normalized SIFT vectors. Therefore, the conversion from SIFT to RootSIFT can be done
	on-the-fly through rootsi f t = sqrt (si f t / sum(si f t)), where sift is the L1 normalized SIFT
	vectors. Such an explicit feature mapping makes the smaller bin values more sensitive when
	comparing the distance between SIFT vectors. It suggests that a model with constant variance
	can be more accurate for discrimination of data, known as "variance stabilizing transformation"
	in [34]. The authors claimed that RootSIFT is superior to SIFT in every single setting such as
	large scale object retrieval, image classification, and repeatability under affine transformations.
	SURF Speeded Up Robust Features (SURF), introduced by Bay et al. [35], is a speeded-up
	version of SIFT. In other words, SURF have lower dimension, higher speed of computation

First, a DoG (Difference of Gaussian) pyramid is built by convolving the image with a variable-scale Gaussian. Interest points for SIFT features correspond to local extrema of these

  1 , β 1 ), . . . , (α n , β n ) >. The authors call it a of color j at a distance k from a pixel of color i in an image, where k is a distance chosen from the set of natural numbers N a priori. Let I be an n 1 × n 2 image, whose colors are quantized into m bins C = {c 1 , . . . , c m }. For pixels p 1 = (x 1 , y 1 ), p 2 = (x 2 , y 2 ), we define |p 1p 2 | max{|x 1x 2 |, |y 1y 2 |}. The correlogram of an image I is thus defined as:

	Color Coherence Vectors (CCV). By the separation of coherent pixels from incoherent pixels,
	CCV provide finer distinctions than color histograms.
	Color Correlogram In spirit of incorporating spatial information in building color histogram,
	Huang et al. defined a new color feature called the color correlogram [47] for image indexing.
	A color correlogram (henceforth correlogram) is a statistic describing how pixels with a given
	color are spatially distributed in the image. Such a statistic is defined as a table (or matrix)
	indexed by color pairs, where the k-th entry for the component (i, j) specifies the probability
	of finding a pixel

  Graph embeddings and graph kernels; 4) Other graph matching techniques. The first category and the second one are respectively restricted to strict and more or less difference in the structure of the graphs being matched. The third one are the techniques actually gaining a growing interest in recent literature

	Graphs have been successfully applied in pattern recognition and computer vision. When a
	graph-based representation is adopted for image description or to represent objects in an image,
	it frequently entails some form of Graph Matching. Graph matching is a mapping in aim to
	find a correspondence between the nodes/edges of one (possibly larger) graph to the other that

introduced the Bag-Of-Regions (BOR) model inspired from BoVW to tackle the challenging "semantic gap" problem -translation between low-level image features and high-level user perceptions. Low level descriptors are first extracted from segmented regions, represented as BoW histograms. Next, co-occurrence criteria such as min, max, median, sum etc. are applied to build the BOR signatures. The authors claimed that BOR signatures are a good counterpart of bag-of-visual-words, and can be more appropriate depending on the specific queries.

2.3.4 Graph-based Image Representation and its Applications

model the patterns of interest. Depending on how the matching problem is formulated, graph matching can be categorized into four classes: 1) Exact graph matching; 2) Inexact graph 2.4 Conclusion matching; 3)

Table 3 . 1 :

 31 Examples of commonly used kernel functions.

  rel as the number of relevant images rel for this query. The set of ranked retrieved images is denoted by η, η(d) is the retrieved image at rank d. I j is excluded from η. η(d) ∈ rel if I j and η(d) are from the same category. We say that g j,k and g η(d),k are matched, if they are bipartite matching subgraphs after rearrangement of histograms via Hungarian algorithm; moreover they fall into same region types (background, object, etc.) of the image I j and η(d) respectively.In general, only "object" and "heterogeneous background" are considered. The criterion of heterogeneous background is defined case by case, since in many cases, the background is cluttered in the target image being compared. It is hard to tell if subgraph g j,k in image I j is matched exactly with subgraph g η(d),k in image I η(d) . For example, 1) If g j,k falls into one part of the object, subgraph g η(d),k almost covers all the object, these two subgraphs are considered as 'matched'. 2) If a generated subgraph is not stable (it either stretches across object/background or contains isolated points), this subgraph will not match any subgraph of the other image.

  3.3.1 and the parameter λ from the edges weight (in Equation (3.4)). For efficiency, the experiments were conducted on a subset of Caltech-101 database that contains 4 images per category, for a total of 404 images. The parameter α is set to one in Equation (E.1). Here we present the results for Graph Cuts and Normalized Cuts methods.

	The performance is evaluated by mean Average Precision (mAP) values, and is shown in
	tables 6.2 and 6.3.

Table 6 . 2 :

 62 Influence of parameter λ (Equation (3.4)) on image retrieval. For each value, the mean average precision is given. For this experiment, the patch size is set to n = 5.

		Mean Average Precision for the IMPK approach with 3 levels
		λ = 0	5	20	100
	NC	0.386079	0.389737	0.386185	0.380554
	GC	0.373073	0.382115	0.377872	0.375660

Table 6 . 3 :

 63 Influence of parameter n (section 3.3.3.1) on image retrieval. For each value, the mean average precision is given. For this experiment, λ = 5.

		Mean Average Precision for the IMPK approach with 3 levels
		n = 3	5	7	9
	NC	0.380546	0.388987	0.389456	0.388229
	GC	0.379723	0.382115	0.377215	0.375741

Table 6 . 4 :

 64 Evaluation of embedding joint color-texture energy in graph weights for image retrieval. Graph weights account for more color features as value of parameter α in Equation (E.1) increases. The mAPs are given for each single level and pyramid. The patch size is set to n = 5. λ = 5. The size of visual codebook is 400. By contrast, the mAP for SPM is 0.409.

		α = 0 (only texture)	α = 0.5	α = 0.6	α = 1 (only color)
	Level Single	Pyramid Single	Pyramid Single	Pyramid Single	Pyramid
		level		level		level		level	
	L=0	0.3779	0.3779	0.3779	0.3779
	L=1	0.3739	0.3761	0.3603	0.3761	0.3636	0.3778	0.3731	0.3800
	L=2	0.3731	0.3787	0.3820	0.3826	0.3744	0.3831	0.3837	0.3857
	6.6 Influence of Neighbourhood Systems			

  .4 resp.Figure B.1, Table B.5 resp. Figure B.2, Table B.6 resp. Figure B.3, Table B.7 resp. Figure B.4, Table B.8 resp.Figure B.5 in Appendix B. The same case holds in category "trilobite", where BBoW via Normalized Cut surpasses SPM. The second column of Figure 3.15 presents the partitioning results on five images from the "trilobite" category. Once again, it can be observed that the partitions are stable.

Table 6 . 8 :

 68 The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via KKM) vs SPM on 4 partitions of five examples of images from category "accordion". See Figure 3.12.

	Image	GC	NCuts	KKM	SPM
	accordion0031	0.3439	0.6328	0.5835	0.0718
	accordion0032	0.6238	0.6047	0.5994	0.3693
	accordion0041	0.7535	0.6080	0.6401	0.4414
	accordion0053	0.4886	0.6382	0.5673	0.2957
	accordion0055	0.7175	0.6119	0.6211	0.1909

Table 6 . 9 :

 69 The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via KKM) vs SPM on 4 partitions of five examples of images from category "faces". See Figure3.13.

	Image	GC	NCuts	KKM	SPM
	faces0032	0.6979	0.6729	0.9086	0.5949
	faces0036	0.6431	0.5716	0.9146	0.5139
	faces0038	0.6240	0.4250	0.9314	0.4991
	faces0039	0.5938	0.6098	0.9042	0.6094
	faces0049	0.5453	0.4881	0.9091	0.5404

Table 6 .

 6 10: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via KKM) vs SPM on 4 partitions of five examples of images from category "pagoda". See Figure 3.14.

	Image	GC	NCuts	KKM	SPM
	pagoda0035	0.2647	0.3246	0.6960	0.5297
	pagoda0040	0.5955	0.5449	0.6894	0.6722
	pagoda0043	0.8271	0.3784	0.7534	0.6794
	pagoda0046	0.4102	0.5622	0.7596	0.7169
	pagoda0047	0.6674	0.4556	0.7185	0.5542

Table 6 .

 6 11: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via KKM) vs SPM on 4 partitions of five examples of images from category "trilobite". See Figure 3.15.

	Image	GC	NCuts	KKM	SPM
	trilobite0037	0.5975	0.7040	0.6342	0.4386
	trilobite0041	0.3561	0.6575	0.6612	0.5174
	trilobite0056	0.6229	0.8055	0.6550	0.5787
	trilobite0064	0.3551	0.6805	0.6645	0.5087
	trilobite0072	0.6823	0.8540	0.6186	0.2240

Table 6 .

 6 12: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via KKM) vs SPM on 4 partitions of five examples of images from category "cellphone". See Figure 3.16.

	Image	GC	NCuts	KKM	SPM
	cellphone0032	0.2372	0.2439	0.1448	0.3429
	cellphone0035	0.1742	0.0567	0.1018	0.3215
	cellphone0049	0.1153	0.1832	0.1197	0.3117
	cellphone0051	0.2644	0.5100	0.3845	0.7288
	cellphone0059	0.2768	0.3254	0.2098	0.3637

Table 6 .

 6 13: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via KKM) vs SPM on 4 partitions of five examples of images from category "motorbikes". See Figure 3.17.

	Image	GC	NCuts	KKM	SPM
	motorbikes0042	0.3622	0.2407	0.2347	0.4885
	motorbikes0043	0.4249	0.2950	0.2308	0.5262
	motorbikes0047	0.3024	0.2630	0.1998	0.5967
	motorbikes0055	0.3668	0.2704	0.1691	0.4293
	motorbikes0059	0.3943	0.1734	0.3839	0.5856

Table 6 .

 6 

	Query image I j	g j,1	g j,2	g j,3	g j,4
	minaret0036	0.933 0.867 0.833 0.867
	minaret0037	1.0	0.9	0.833 0.933
	minaret0069	1.0	0.967	0.9	1.0
	minaret0071	0.967	0.9	0.833	0.8

14: 

The PP {Precision(Γ k j )} k=1,2,3,4 = {P(g j,k )} k=1,2,3,4 of corresponding subgraphs for 4 typical "good" queries. Method: BBoW via Normalized Cut.

Table 6 .

 6 BBoW via Normalized Cut.

	Query image I j	g j,1	g j,2	g j,3	g j,4
	cellphone0034 0.433 0.467	0.3	0.433
	cellphone0045	0.3	0.3	0.267 0.267
	dollar bill0035 0.133	0.2	0.167 0.133
	dollar bill0039 0.133 0.233 0.133	0.2

15: 

The PP {Precision(Γ k j )} k=1,2,3,4 = {P(g j,k )} k=1,2,3,4 of corresponding subgraphs for 4 typical "bad" queries. Method:

Table 6 .

 6 

	I j	Precision	g j,1	g j,2	g j,3	g j,4
	minaret0036	0.7864	433 ±180 99 ±38	145 ±88 228 ±148
	minaret0037	0.8694	307 ±185 105 ±70 168 ±116 326 ±207
	minaret0069	0.8699	419 ±196 123 ±73 123 ±79 243 ±147
	minaret0071	0.9252	228 ±153 113 ±58 202 ±157 365 ±217

16: 

The mean of node numbers and its standard deviation for corresponding matched subgraphs of intra-category minaret, for 4 typical good queries in Caltech-101 dataset, at single level 1, i.e. 4 subgraphs. Method: BBoW via Normalized Cut.

Table 6 .

 6 17: The mean of node numbers and its standard deviation for corresponding matched subgraphs of intra-category cellphone and dollar bill, for 4 typical bad queries in Caltech-101 dataset, at single level 1, i.e. 4 subgraphs. Method: BBoW via Normalized Cut.

	I j	Precision	g j,1	g j,2	g j,3	g j,4
	cellphone0034	0.4412	703 ±239 82 ±73 157 ±147	43 ±43
	cellphone0045	0.4576	703 ±233 96 ±97	80 ±97	104 ±111
	dollar bill0035	0.1263	164 ±111 72 ±83	34 ±50	355 ±132
	dollar bill0039	0.1540	374 ±111 123 ±94	74 ±78	53 ±63

Table 6 .

 6 18: The {P(g j,k )} k=1,...,4 of corresponding subgraphs for 4 typical "good" queries. Method: BBoW via Normalized Cut.

	Query image I j	g j,1	g j,2	g j,3	g j,4
	minaret0036	0.773 0.746 0.626	0.6
	minaret0037	0.786 0.72 0.626	0.6
	minaret0069	0.773 0.44	0.6	0.613
	minaret0071	0.8	0.506	0.6	0.413

Table 6 .

 6 19: The {P(g j,k )} k=1,...,4 of corresponding subgraphs for 4 typical "bad" queries. Method: BBoW via Normalized Cut.

	Query image I j	g j,1	g j,2	g j,3	g j,4
	cellphone0034 0.724 0.638 0.569 0.241
	cellphone0045 0.724 0.362 0.569 0.552
	dollar bill0035 0.431 0.686 0.392 0.176
	dollar bill0039 0.275 0.824 0.06 0.418

Table A . 1 :

 A1 The precision-recall values of experimental results, as complementary information of Figure A.2. The experiments were run in SIVAL dataset with the aim of comparing a series of similarity measures (co-occurrence criteria) versus the classical bag-of-words model for image retrieval. The fist column lists recall values ranging from 0 to 1.0 of 11 intervals. The 2nd-8th columns correspond to the precision values for seven different measures.Table B.1: KKM versus SPM at single level 1 (4 partitions per image). Performance is measured by calculating the mean Average Precision (mAP) for category-based queries. In addition, the mean of Standard deviation (Std) of Average Precisions (APs) for category-based queries is given. The class names of 20 surpassing categories in which BBoW outperforms SPM are in bold in this table. Table B.2: Evaluation of BBoW via KKM in Caltech-101 dataset. Retrieval performance was evaluated in mean Average Precision (mAP) on subset of Caltech-101 dataset composed of 2945 query images and 5975 images from database for retrieval. The size of codebook is 400. Table B.3: Evaluation of BBoW (via GC) vs BBoW (via NCuts) vs SPM in Caltech-101 dataset. Retrieval performance was evaluated in mean Average Precision (mAP) on subset of Caltech-101 dataset composed of 2945 query images and 5975 images from database for retrieval. The size of codebook is 400. The highest results for each kind of level are shown in bold.

		Category	Category Category	KKM	KKM KKM	SPM	SPM SPM
		lobster	dollar bill 0.038376 ±0.000053 0.155946 ±0.015800 0.046944 ±0.000315 0.257488 ±0.021435 tick 0.054855 ±0.000598 0.127073 ±0.010927
		lotus		dolphin 0.057295 ±0.001080 0.043022 ±0.000691 0.084398 ±0.003726 0.048055 ±0.000533 trilobite 0.402440 ±0.030194 0.320938 ±0.025972
	dragonfly 0.034653 ±0.000181 0.033162 ±0.000130 0.051805 ±0.001065 0.067029 ±0.002376 umbrella 0.056691 ±0.001422 0.067263 ±0.003963 They are (1) Bag-of-Words (BoW), without filtering points in graph nodes selection; (2) BoW, select graph nodes by mandolin electric guitar 0.027219 ±0.000052 0.034073 ±0.000333 mayfly 0.038675 ±0.000191 0.033540 ±0.000060 watch 0.063100 ±0.001088 0.208610 ±0.019351 BBoW via KKM
	elephant 0.042762 ±0.000631 0.046102 ±0.000169 0.111245 ±0.011053 0.068008±0.001012 water lilly 0.052405 ±0.000660 0.067605 ±0.002194 Level menorah Single-level Pyramid points filtration; (3) Bag-of-Bag-of-Visual-Words (BBoVW), using Equation (4.4); (4) BBoVW, using Equation (4.5); (5) BBoVW, using Equation (4.6) or its equivalent by using Equation (4.8); Category KKM SPM emu 0.095289 ±0.001826 0.080677 ±0.000648 metronome 0.146016 ±0.017831 0.248172 ±0.035696 wheelchair 0.050173 ±0.000360 0.090569 ±0.005537 0 (BoW) 0.1177
	(6) BBoVW, using Equation (4.7); (7) BBoVW, using Equation (4.9) respectively. accordion 0.385293 ±0.034851 0.207360 ±0.013254 euphonium 0.077108 ±0.005508 0.143292 ±0.013213 minaret 0.563488 ±0.065599 0.761386 ±0.036978 wild cat 0.042200 ±0.000045 0.046515 ±0.000066 1 (4 subgraphs) 0.1327 0.1468
		airplanes motorbikes windsor chair 0.134152 ±0.013343 0.413404 ±0.022305 0.497083 ±0.017586 ewer 0.028828 ±0.000059 0.050840 ±0.000547 0.346897 ±0.029450 0.484363 ±0.024733 0.484939 ±0.050621 2 (16 subgraphs) 0.1346 0.1487
	Recall	BoW (with points anchor points BoW (sans faces easy BBoVW (min) 0.031988 ±0.000033 BBoVW (sum-of-min) 0.466651 ±0.013404 BBoVW (mean) (sum) 0.038990 ±0.017586 BBoVW (median) 0.792831 ±0.014526 nautilus 0.044776 ±0.000464 0.058587 ±0.000915 wrench 0.099297 ±0.003050 0.044359 ±0.000353 BBoVW barrel 0.038911 ±0.000252 ferry 0.062891 ±0.000586 0.054964 ±0.000384 okapi 0.067656 ±0.000787 0.072923 ±0.000662 0.048919 ±0.000331 (max) ant 0.032702 ±0.000024 0.038593 ±0.000160 faces 0.625172 ±0.024970 0.507579 ±0.011634 octopus 0.061111 ±0.002890 0.065611 ±0.002946 yin yang 0.112368 ±0.007473 0.387628 ±0.070575
		filtra-pagoda filtra-bass flamingo head 0.053898 ±0.000817 0.035115 ±0.000130 0.035672 ±0.000153 0.048436 ±0.000405 0.513619 ±0.036199 0.425830 ±0.041670
		tion) beaver panda	tion) flamingo 0.044052 ±0.000208 0.041907 ±0.000323 0.040120 ±0.000176 0.042201 ±0.000357 0.053463 ±0.000800 0.090087 ±0.004122
	0	0.6077 binocular 1.0000 garfield 0.082245 ±0.003426 1.0000 1.0000 0.150050 ±0.014269 0.9794 0.088818 ±0.002682 0.9571 0.249209 ±0.032951 0.6180 pigeon 0.039460 ±0.000170 0.073331 ±0.004327
	0.1	0.6077 bonsai 1.0000 gerenuk 0.056256 ±0.000536 1.0000 1.0000 0.118079 ±0.002724 0.9794 0.081623 ±0.002495 0.9571 0.117126 ±0.002524 0.6180 pizza 0.060974 ±0.000669 0.119683 ±0.003788
	0.2	0.5854 brain platypus 0.9722 gramophone 1.0000 0.097014 ±0.002912 1.0000 0.036627 ±0.000292 0.9198 0.209377 ±0.010595 0.8430 0.057139 ±0.001890 0.5914 0.049821 ±0.000454 0.058274 ±0.001475 Level GC NCuts SPM
	0.3	0.5699 brontosaurus 0.9356 grand piano 0.9722 0.038470 ±0.000132 0.9500 0.101731 ±0.005926 0.9198 0.043102 ±0.000624 0.7832 0.256620 ±0.046962 0.5545 pyramid 0.037786 ±0.000275 0.047032 ±0.000553 0 (BoW) 0.1177 0.1177 0.1177
	0.4	0.5699 buddha 0.9007 hawksbill 0.9356 0.038242 ±0.000293 0.9426 0.099645 ±0.004240 0.8489 0.062125 ±0.001258 0.7246 0.089760 ±0.002817 0.4319 revolver 0.041841 ±0.000527 0.139438 ±0.014844 1 (4 subgraphs) 0.0988 0.1074 0.1440
	0.5	0.5625 butterfly 0.8667 headphone 0.9007 0.032844 ±0.000075 0.9136 0.070314 ±0.001214 0.8489 0.051467 ±0.001036 0.6687 0.071579 ±0.001249 0.4299 rhino 0.053988 ±0.000427 0.070488 ±0.000643 2 (16 subgraphs) 0.1138 0.1252 0.1623
	0.6	0.5393 camera 0.8077 hedgehog 0.8667 0.079828 ±0.002130 0.8966 0.073309 ±0.001101 0.8217 0.083248 ±0.002157 0.6201 0.066357 ±0.000632 0.4193 rooster 0.038159 ±0.000067 0.070629 ±0.002187 Pyramid (3 levels) 0.1220 0.1290 0.1571
	0.7	0.5289 cannon 0.7815 helicopter 0.040772 ±0.000158 0.8077 0.8039 0.054875 ±0.000964 0.7695 0.043540 ±0.000154 0.5659 0.059860 ±0.000730 0.4079 saxophone 0.051035 ±0.000975 0.056405 ±0.002127
	0.8	0.5039 car side 0.7345 ibis schooner 0.051375 ±0.000954 0.7815 0.7562 0.936784 ±0.009839 0.046930 ±0.000297 0.7330 0.502484 ±0.026168 0.4910 0.067726 ±0.000855 0.4026 0.108890 ±0.004279
	0.9	0.4606 ceiling fan 0.6910 inline skate 0.7345 0.033498 ±0.000116 0.6690 0.218006 ±0.022726 0.5875 0.046372 ±0.000839 0.4421 0.255739 ±0.039931 0.4008 scissors 0.067095 ±0.001286 0.072949 ±0.002014
	1.0	0.4441 cellphone 0.6270 joshua tree 0.6910 0.123537 ±0.005341 0.6203 0.112597 ±0.008576 0.4543 0.585297 ±0.047094 0.3765 0.069606 ±0.001067 0.4008 scorpion 0.048849 ±0.000461 0.054160 ±0.000542
		chair sea horse	0.028742 ±0.000030 kangaroo 0.076910 ±0.000999 0.038689 ±0.000184 0.084116 ±0.001101 0.052618 ±0.000627 0.045046 ±0.000303
		chandelier snoopy		0.046490 ±0.000700 ketch 0.074639 ±0.002689 0.079150 ±0.002979 0.125492 ±0.006056 0.105323 ±0.003779 0.153791 ±0.007804
		cougar body soccer ball	0.048053 ±0.000572 lamp 0.025754 ±0.000025 0.047543 ±0.000537 0.036246 ±0.000239 0.066348 ±0.001613 0.167095 ±0.014295
		cougar face stapler	0.108225 ±0.004573 laptop 0.050636 ±0.001054 0.145203 ±0.007586 0.094036 ±0.004868 0.071884 ±0.002658 0.176760 ±0.017047
		crab starfish		0.045433 ±0.000216 leopards 0.193289 ±0.008734 0.050637 ±0.000217 0.505134 ±0.037995 0.057088 ±0.000645 0.078110 ±0.001997
		crayfish stegosaurus 0.049275 ±0.000891 0.030563 ±0.000054 llama 0.062376 ±0.000347 0.036594 ±0.000183 0.067072 ±0.000470 0.059037 ±0.001392
		crocodile head 0.069741 ±0.000469 stop sign 0.094728 ±0.007429	0.058625 ±0.000183 0.181281 ±0.028480
		crocodile strawberry		0.055612 ±0.000281 0.054906 ±0.000795	0.047820 ±0.000137 0.075049 ±0.002515
		cup sunflower			0.031344 ±0.000090 0.057008 ±0.000710	0.043547 ±0.000423 0.118955 ±0.007903
		dalmatian		0.080749 ±0.002716	0.057390 ±0.000782

Table B . 4 :

 B4 Retrieval result of image faces0032. There are 5975 images from a subset of Caltech-101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each image is omitted. The size of codebook is 400. Table B.5: Retrieval result of image faces0036. There are 5975 images from a subset of Caltech-101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each image is omitted. The size of codebook is 400. Table B.6: Retrieval result of image faces0038. There are 5975 images from a subset of Caltech-101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each image is omitted. The size of codebook is 400. Table B.7: Retrieval result of image faces0039. There are 5975 images from a subset of Caltech-101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each image is omitted. The size of codebook is 400. Table B.8: Retrieval result of image faces0049. There are 5975 images from a subset of Caltech-101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each image is omitted. The size of codebook is 400.

		Query Image: faces0032 Query Image: faces0036 Query Image: faces0038 Query Image: faces0039 Query Image: faces0049
	Rank Rank	Rank Retrieved Image Retrieved Image Similarity Score Similarity Score Rank Retrieved Image Similarity Score Retrieved Image Similarity Score Rank Retrieved Image Similarity Score
	0 0 (13) "hawksbill"	0 faces0036 faces0032 0 faces0038 faces0039 0 faces0049 (14) "hedgehog" 1.000000 1.000000	1.000000 1.000000 1.000000 (15) "joshua tree"
	1 1	1 faces0028 faces0036 1 faces easy0038 faces easy0039 1 faces easy0049	0.452821 0.492047	0.433973 0.431964 0.491986
	2 2	2 faces0037 faces0041 2 faces0024 faces0037 2 faces0052	0.451399 0.453770	0.417084 0.409894 0.485214
	3 3	3 faces0019 faces0030 3 faces easy0039 faces0036 3 faces0037	0.439082 0.433855	0.416204 0.409855 0.464228
	4 4	4 faces0030 faces0019 4 faces0001 faces0024 4 faces0068	0.436981 0.431958	0.414498 0.408111 0.447968
	5 5	5 faces0024 faces0049 5 faces0035 faces0031 5 faces0058	0.435277 0.420975	0.411848 0.406003 0.441230
	6 6	6 faces0032 faces0037 6 faces0036 faces0041 6 faces0024	0.433973 0.418923	0.410790 0.403834 0.438325
	7 7	7 faces0039 faces0031 7 faces0072 faces0025 7 faces0048	0.433855 0.418823	0.408819 0.399052 0.437363
	8 8	8 faces0035 faces0024 8 faces0037 faces0035 8 faces0019	0.427126 0.415585	0.406523 0.398655 0.436970
	9 9	9 faces0041 faces0052 9 faces0028 faces0001 9 faces0006	0.424875 0.409270	0.406178 0.397389 0.436073
	10 10	10 faces easy0027 faces0039 10 faces0060 faces0030 10 faces0034	0.415037 0.406591	0.405109 0.397364 0.432234
	11 11	11 faces easy0036 faces0022 11 faces0019 faces0032 11 faces0030	0.414607 0.405109	0.403870 0.393373 0.423637
	12 12	12 faces0013 faces easy0032 12 faces0058 faces0052 12 faces0031	0.413940 0.402744	0.402360 0.392206 0.420341
	13 13	13 faces0060 faces0028 13 faces0041 faces0028 13 faces0005	0.413052 0.402086	0.401460 0.391568 0.416484
	14 14	14 faces0001 faces0056 14 faces0031 faces0022 14 faces0080	0.411890 0.402020	0.401203 0.387039 0.415709
	15 15	15 faces0052 faces0025 15 faces0076 faces0044 15 faces0032	0.411418 0.396445	0.397665 0.384997 0.411848
	16 16	16 faces0025 faces0007 16 faces0039 faces0040 16 faces0059	0.410744 0.394949	0.393696 0.384812 0.411334
	17 17	17 faces0007 faces0077 17 faces0073 faces0012 17 faces0012	0.406628 0.394629	0.391315 0.383936 0.408574
	18 18	18 faces0005 faces0013 18 faces0023 faces0019 18 faces0007	0.405569 0.393024	0.391071 0.382831 0.408158
	19 19	19 faces0049 faces0068 19 faces0029 faces0006 19 faces0044	0.404169 0.390893	0.390517 0.382656 0.406146
	20 20	20 faces0038 faces0034 20 faces0069 faces0013 20 faces0013	0.403834 0.389758	0.389672 0.380980 0.405245

[START_REF] Sivic | Video Google: a text retrieval approach to object matching in videos[END_REF] 

"mayfly" (17) "pagoda" (18) "sea horse" (

19

) "trilobite" (20) "wrench"

Table C . 1 :

 C1 The retrieval performance (mAP) on PPMI dataset, using L1 distance as cost matrix value for graph matching via Hungarian algorithm.Table C.2:The retrieval performance (mAP) on PPMI dataset, using L2 distance as cost matrix value for graph matching Hungarian algorithm.

	D. PROOFS						
	Category	BBoW Category	BBoW BBoW	BBoW BBoW	BBoW BBoW	BBoW	SPM	SPM
		Single Level Single Level Single Level Single Level Pyramid	Pyramid Pyramid	Pyramid Pyramid	Pyramid
		1	1	2	2	Level 1	Level 2 Level 1	Level 2 Level 2	Level 2
	bassoon	0.111035 bassoon	0.113260 0.110804	0.109303 0.111185	0.110617 0.109103	0.135067 0.110027	0.135067
	cello	0.119489 cello	0.112404 0.119039	0.115846 0.111707	0.115524 0.115819	0.126036 0.115575	0.126036
	clarinet	0.116817 clarinet	0.110903 0.114322	0.117761 0.109811	0.116395 0.116659	0.114140 0.115271	0.114140
	erhu	0.106178 erhu	0.102879 0.105380	0.107562 0.102210	0.106756 0.107372	0.129702 0.106662	0.129702
	flute	0.107483 flute	0.106279 0.107309	0.109405 0.106516	0.109117 0.109183	0.110948 0.108834	0.110948
	frenchhorn frenchhorn 0.106507	0.113634 0.106298	0.107040 0.111488	0.108762 0.107063	0.129498 0.108518	0.129498
	guitar	0.132001 guitar	0.123785 0.128309	0.139362 0.121247	0.136860 0.137139	0.143438 0.134486	0.143438
	harp	0.116316 harp	0.121244 0.115931	0.125459 0.122908	0.125616 0.125046	0.161372 0.125451	0.161372
	recorder	0.124170 recorder	0.114372 0.121758	0.126650 0.113676	0.125308 0.125542	0.116781 0.124338	0.116781
	saxophone saxophone 0.103004	0.109306 0.102728	0.099857 0.108641	0.101788 0.099691	0.108571 0.101784	0.108571
	trumpet	0.114199 trumpet	0.112452 0.111228	0.114173 0.111266	0.114380 0.112511	0.109890 0.113247	0.109890
	violin	0.104072 violin	0.110334 0.103785	0.102756 0.109715	0.104535 0.102760	0.105030 0.104304	0.105030

http://web.engr.illinois.edu/∼slazebni

http://web.engr.illinois.edu/∼slazebni

a i is a point in R m

Given a set of vectors {a i } N i=1 = {a 1 , . . . , a N } (points in R m ), the Gram matrix G is the matrix of all possible inner products of {a i } n i=1 , i.e., g i j = a T i a j ,where (•) T denotes the transpose.

BAG-OF-BAGS OF WORDS MODELworks, such as Montanvert et al.[START_REF] Annick Montanvert | Hierarchical image analysis using irregular tessellations[END_REF].

http://www.cs.wustl.edu/∼sg/multi-inst-data/

http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html

http://ai.stanford.edu/∼bangpeng/ppmi.html

http://vision.csd.uwo.ca/code/

The image mask falls on the object of interest in the image.

http://trec.nist.gov/

The file extension of each image is omitted in these Tables and Figures. The highest value of mAPs is shown in bold for each query image.
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List of Algorithms

In Caltech-101 database, we randomly sample 30 images per category for training and up to 50 images per category for testing. We could use SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF], as the settings in SIVAL. But we finally adopt SIFT features [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] instead, in order to follow the approach in SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. To be more precise, we use the dense sampling grid points from the whole image to build initial connected graphs. The local SIFT features [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] are then extracted from these grid points based on 8-pixels spacing and 16-pixels patch size. A dictionary of size 400 is learnt over 30 sample images per class using k-means. The query images are chosen from the rest of the dataset for retrieval evaluation. For all experiments in Caltech-101 dataset, we use the same codebook built as above.

Performance is measured by calculating the mean Average Precision (mAP) for all queries, as described in TREC-style evaluation 1 . In addition, the mean of Standard deviation (Std) of Average Precisions (APs) for category-based queries is given.

Experimental Settings on PPMI

For each class, 100 normalized PPMI+ images are randomly selected for training and the remaining 100 images are considered to be the testing set. We fix the dictionary size as 1024.

As Caltech-101, we use the dense SIFT as image features for BBoW descriptions.

Evaluation Metrics

Performance Evaluation (PE) is of crucial importance in producing robust techniques. To assess the performance of our model for image retrieval, we use classical evaluation metrics for information retrieval. We also introduce a new metric that is specifically designed for evaluating the stability of partitions and subgraphs matching, with the aim of evaluating three different methods in the BBoW model for graph partitioning. These metrics are introduced as follows.

Performance Measures for Image Retrieval

Evaluation of retrieval performance is a crucial problem in Content-based image retrieval (CBIR). Since CBIR and information retrieval (IR) have close relationship, many standard IR 

Influence of Distance Metric for Histogram Comparison

In this Section, we study the influence of distance metrics on BBoW model. As shown in Table 6.5, applying L1 distance achieves in overall better performance than L2 distance.

Furthermore, the former can be beneficial to computational complexity than the latter. We therefore decide to use L1 metric for the following experiments. Out of consistence, we adopt L1 distance in Hungarian algorithm as well, as mentioned in Section 4.3.2 of Chapter 4. We also give a comparative study of three graph partitioning methods in an attempt to reach a better stability during the graph partitioning process. The experimental validation of our model will be discussed below as well.

As can be seen in Table 6.7, comparative analysis of this experimental results proves that the multilevel KKM algorithm is more effective than the other two methods in BBoW model.

Its success justifies important contribution by kernel k-means in refinement phase of graph clustering. It also suggests that better graph partitioning strategy can improve image retrieval performance for the proposed BBoW model. The relative poor performance of Graph Cuts in BBoW indicates the need of improving seed selection strategy.

Irregular Graph Representation versus SPM for Image Retrieval

Table 6.7: Retrieval performance on subset of Caltech-101 dataset composed of 2945 query images and 5975 images from database for retrieval. We set α = 1 in Equation (E.1), i.e. only consider color-related term w C pq in w pq . A postscript: SPM wins BBoW (with KKM) by a small margin with a mAP value of 0.14, versus 0.1327 for KKM, while SPM has higher std as value of 0.0660. Based on the results shown in Table 6.7, we decide to adopt multilevel KKM algorithm for graph partitioning in BBoW. We aim at answering a challenging question: will an irregular, segmentation-like partition (BBoW) of images outperform a regular partition (SPM) [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] of images for image retrieval? In order to answer this question, we run a comparative experiment on the whole Caltech-101 dataset (α = 1 in Equation (E.1), i.e. only consider color-related term w C pq in w pq ). The experimental results show that BBoW achieves less performance than SPM with a margin of 18.5% in overall retrieval mAP. The distribution of mAP margin for not surpassing categories can be found in Figure 6.9. However, if we take a further look at the corresponding APs(±std) values per category, we find that in 19 categories (in red color) out of 101 classes, BBoW performs better than SPM (in blue color), as can be seen in Figure 6.10. Note that category "car side" is composed of all gray-level images, therefore we do not count it as a contribution of surpassing category.

Methods

A comparison between BBoW (via GC or NC) and SPM is presented on figure 6.11, illustrated by the mAPs values on sixteen categories excerpted from Caltech-101 dataset. The result highlights the fact that for the most of the categories, SPM has a much higher retrieval performance than BBoW (via GC) or BBoW (via NC). These categories explain the importance difference in the global performance on all the database (as described previously). However, for certain categories, BBoW (via either Graph Cuts or Normalized Cuts) is as good as or better than SPM.

In summary, despite that BBoW model under performs SPM in overall performance, our proposed model (via Graph Cuts or NCuts or KKM) can still achieve better results in 25 categories than SPM. We found that kernel-based multilevel weighted graph cuts algorithm outperforms Graph Cuts and Normalized Cuts in both computation time and partitioning results.

Graph Cuts, derived from its energy minimization nature, is unavoidable to get unbalanced In this Appendix, we are interested in the influence of these two metrics on image retrieval in BBoW model. We also present the performance of SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] as a side-by-side comparison.

The impact of L1 and L2 metrics on performance of image retrieval is investigated in 

Appendix D Proofs

Claim A: 

is the equivalent of the Equation (4.3) in Chapter 4

Proof :

Paired samples t-interval

We trust that the samples we take are random. Instead of taking independent samples, we choose pair of samples, and we try to make the pair of samples as homogeneous as possible.

In ideal case, test on samples themselves.

E.2 Matched Paired t-test

We have two observations on each query image. So here we have dependant samples, and methods based on independent samples would not be appropriate here. We are going to use the paired difference procedure to analyse this data. To do so we first take the differences within each pair. We would end up with these n d differences, where n d is the number of query image from the same category, for example, 'faces' class in Caltech-101. Then, these n d differences represent as single sample so that we can use one sample t-test to analyse these differences.

We denote x d as the mean of the differences for sample, µ d as the mean of the differences for population, the standard deviation of those differences of the samples is S d ; the standard deviation of those differences for population is σ d ; degree of freedom d f = n d -1. We denote the Confidence Interval as CI.

Let us examine these differences (either in box plot or in histogram) to make sure they are nearly normal distribution.

We compute the mean of the differences between our observed sample from two methods (KKM vs SPM). We want to know if there is a significant difference between two methods on

E.4.4 The t distribution

When our sample size is n 30 and/or we do not know the variance/standard deviation of the population, we use the t-distribution instead of the z-distribution (standard normal distribution).

The t-distribution allows us to use small samples; n 30. But to do so we sacrifice some certainty in our calculations; margin-of-error trade-off. It is dynamic, it takes sample size into account using n -1 degree of freedom; there is a different t-distribution for any given sample size. The bell curve shape is down ("squished") in the middle and "fatter" on the end (tails);

squishier and fatter the sample size.

However, as n > 30 and definitely by n 100, the t-distribution and standard normal zdistribution become indistinguishable. They converge. i.e., when the sample size goes above 30, the t distribution and z distribution converges. Hence, t-distribution is more useful as sample size is below 30.

Conditions for using t-test 

E.4.5 p-value method

Traditional methods use something called critical values, z score, p-value method does not use them at all.

E.4.5.1 Basic of Hypothesis Testing

Null Hypothesis H 0 :

Alter. Hypothesis H 1 :

The p-value is a measure of the strength of the evidence against the null hypothesis. The p-value is the probability of getting the observed value of the test statistic, or a value with even greater evidence against H 0 , if the null hypothesis is actually true. The smaller the p-value, the greater the evidence against the null hypothesis.

E.4.5.2 Level of significance

Conventionally, α = 0.01, α = 0.05, α = 0.10. Yi REN