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Université de Bordeaux

A thesis submitted for the degree of

PHD

October 2011 - September 2014

Supervised by
Professeure Jenny Benois-Pineau
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Abstract

Image representation is a fundamental question for several computer vision tasks.

The contributions discussed in this thesis extend the basic bag-of-words represen-

tations for the tasks of object recognition and image retrieval.

In the present thesis, we are interested in image description by structural graph

descriptors. We propose a model, named bag-of-bags of words (BBoW), to ad-

dress the problems of object recognition (for object search by similarity), and es-

pecially Content-Based Image Retrieval (CBIR) from image databases. The pro-

posed BBoW model, is an approach based on irregular pyramid partitions over

the image. An image is first represented as a connected graph of local features on

a regular grid of pixels. Irregular partitions (subgraphs) of the image are further

built by using graph partitioning methods. Each subgraph in the partition is then

represented by its own signature. The BBoW model with the aid of graphs, ex-

tends the classical bag-of-words (BoW) model by embedding color homogeneity

and limited spatial information through irregular partitions of an image.

Compared to existing methods for image retrieval, such as Spatial Pyramid Match-

ing (SPM), the BBoW model does not assume that similar parts of a scene always

appear at the same location in images of the same category. The extension of the

proposed model to pyramid gives rise to a method we named irregular pyramid

matching (IPM).

The experiments demonstrate the strength of our approach for image retrieval

when the partitions are stable across an image category. The statistical analysis

of subgraphs is fulfilled in the thesis. To validate our contributions, we report re-

sults on three related computer vision datasets for object recognition, (localized)

content-based image retrieval and image indexing. The experimental results in a

database of 13,044 general-purposed images demonstrate the efficiency and effec-

tiveness of the proposed BBoW framework.



Keywords : Computer vision, Pattern recognition, Image analysis, Image segmen-

tation, Graphs, Graph algorithms, Graph Cuts, Graph partitioning, Graph match-

ing, Kernel k-means, Clustering.

Résumé

Dans cette thèse, nous nous intéressons à la recherche d’images similaires avec

des descripteurs structurés par découpages d’images sur les graphes.

Nous proposons une nouvelle approche appelée “bag-of-bags of words” (BBoW)

pour la recherche d’images par le contenu (CBIR). Il s’agit d’une extension du

modèle classique dit sac-de-mots (bag of words - BoW). Dans notre approche,

une image est représentée par un graphe placé sur une grille régulière de pixels

d’image. Les poids sur les arêtes dépendent de caractéristiques locales de couleur

et texture. Le graphe est découpé en un nombre fixe de régions qui constituent

une partition irrégulière de l’image. Enfin, chaque partition est représentée par

sa propre signature suivant le même schéma que le BoW. Une image est donc

décrite par un ensemble de signatures qui sont ensuite combinées pour la recherche

d’images similaires dans une base de données. Contrairement aux méthodes ex-

istantes telles que Spatial Pyramid Matching (SPM), le modèle BBoW proposé

ne repose pas sur l’hypothèse que des parties similaires d’une scène apparaissent

toujours au même endroit dans des images d’une même catégorie. L’extension

de cette méthode à une approche multi-échelle, appelée Irregular Pyramid Match-

ing (IPM), est également décrite. Les résultats montrent la qualité de notre ap-

proche lorsque les partitions obtenues sont stables au sein d’une même catégorie

d’images. Une analyse statistique est menée pour définir concrètement la notion

de partition stable.

Nous donnons nos résultats sur des bases de données pour la reconnaissance d’objets,

d’indexation et de recherche d’images par le contenu afin de montrer le caractère

général de nos contributions.



Mots-clés : Vision par ordinateur, Reconnaissance de formes, Analyse d’Image,

Segmentation d’Images, Graphes, Algorithmes de graphes, Coupe de graphes, Par-

titionnement de graphe, Appariement de graphes, Noyau k-means, Clustering.
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Chapter 1

Introduction

Object detection and recognition remain outstanding problems for which there is no off-the-

shelf solution, despite a vast amount of literature on the subject. The problem is challenging

since characterizing the appearance of an object does not only involve the object itself but

also extrinsic factors such as illumination, relative position or even cluttered background in the

target image. Currently, object detection and recognition are typically considered as “retrieval”

task over a database of images, where content-based image retrieval is one of the core problems.

Content Based Image Retrieval (CBIR), as its name implies, consists in browsing, search-

ing and navigation of images from image databases based on their visual contents. CBIR has

been an active area of research for more than a decade. Traditional CBIR systems use low level

features like color, texture, shape and spatial location of objects to index and retrieve images

from databases. Low level features can be global or local (region based). Global feature based

CBIR fails to compare the regions or objects in which a user may be interested. Therefore

Region Based Image Retrieval (RBIR) is more effective in reflecting the user requirement. A

detailed survey of CBIR techniques can be found in the literature [3, 14, 15].

Recent methods in Content-Based Image Retrieval (CBIR) mostly rely on the bag-of-

visual-words (BoW) model [16]. The idea, borrowed from document processing, is to build

a visual codebook from all the feature points in a training image dataset. Each image is then

represented by a signature, which is a histogram of quantized visual features-words from the

codebook. Image features are thus considered as independent and orderless. The traditional

BoW model does not embed spatial layout of local features in the image signature. However,

this information has shown to be very useful in tasks like image retrieval, image classification,

and video indexing. Ren et al. [17] put forward a concept of grouping pixels into “superpixels”.
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Leibe et al. proposed to adopt codebooks to vote for object position [13]. Birchfield et al. [18]

introduced the concept of a spatiogram, which generalizes the histogram to allow higher-order

spatial moments to be part of the descriptor. Agarwal et al. [19] proposed “hyperfeatures”, a

multilevel local coding. More specifically, hyperfeatures are based on local histogram model

encoding co-occurrence statistics within each local neighborhood on multilevel image repre-

sentations. Lazebnik et al. [4] partitioned an image into increasingly fine grids and computed

histograms for each grid cell. The resulting spatial pyramid matching (SPM) method clearly

improves the BoW representation. Nevertheless, this method relies on the assumption that a

similar part of a scene generally appears at the same position across different images, which

does not always hold. Recently, many efforts can be found in the literature, e.g. the Fisher

vectors etc. [20, 21] that compete with SPM to give extensions of bag-of-words image repre-

sentations to encode spatial layout.

Graphs are versatile tools to conveniently represent patterns in computer vision applications

and they have been vastly investigated. By representing images with graphs, measuring the

similarities between images becomes equivalent to finding similar patterns inside series of

attributed (sub)graphs representing them. Duchenne et al. [22] introduced an approximate

algorithm based on graph-matching kernel for category-level image classification. Gibert et

al. [23] proposed to apply graph embedding in vector spaces by node attribute statistics for

classification. Bunke et al. [24] provided an overview of the structural and statistical pattern

recognition, and elaborated some of these attempts, such as graph clustering, graph kernels and

embedding etc., towards the unification of these two approaches.

1.1 Problems and Objectives

The thesis addresses issues of image representation for object recognition and categoriza-

tion from images. Compared with the seminal work by Lazebnik et al. [4], we try to address

a challenging question: will an irregular segmentation-like partition of images outperform a

regular partition (SPM)? Intuitively, it is invariant to the rotation and reasonable shift transfor-

mations of image plane. Nevertheless, what can be its resistance to noise and occlusions? How

will it compete with SPM when embedded into pyramidal paradigm?
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1.2 Contributions

This thesis presents a new approach for Content-Based Image Retrieval (CBIR) that ex-

tends the bag-of-words (BoW) model. We aim at embedding joint color-texture homogeneity

and limited spatial information through irregular partitioning of an image into a set of prede-

fined number of (sub)graphs. Each partition results from applying graph partitioning methods

to an initial connected graph, in which nodes are positioned on a dense regular grid of pixels.

The BoW approach is then applied to each of resulting subgraphs independently. An image

is finally represented by a set of graph signatures (BoWs), leading to our new representation

called Bag-of-Bags of Words (BBoW). As in the spatial pyramid matching approach [4], we

also consider a pyramidal representation of images with a different number of (sub)graphs at

each level of the pyramid. The comparison of images in a CBIR paradigm is achieved via

comparison of the irregular pyramidal partitions. We call this pyramidal approach Irregular

Pyramid Matching (IPM).

1.3 Organization of the Thesis

The thesis is structured as follows:

Chapter 1 explains briefly the importance of the topic, the scope and objectives of these

studies and our contributions.

Chapter 2 provides a review of the state-of-the-art.

In Chapter 3, the application of three typical approaches for semi-regular image graph

partitioning is investigated. These methods will pertain to our proposed graph-based image

representation in next Chapter.

The proposed Bag-of-Bags of Words model is described in Chapter 4. The Chapter 5

extends this model to multi-levels, leading to an approach called Irregular Pyramid Matching.

Chapter 6 presents three standard datasets and experimental results on these benchmarks.

We compare our results with those of the notable method Spatial Pyramid Matching (SPM),

showing the promising performance of our approach.

Finally, we conclude the thesis with a discussion of the perspectives of future work in Chap-

ter 7. Complementary results on three image benchmarks can be consulted in appendixes. At

the end of the manuscript, a full list of the literature cited in the text is given. Wherever these
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references have been quoted, they have been cross-referred by their serial number in the list of

references.
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Chapter 2

Related Work

The primary purpose of this chapter is to provide a snapshot of the current state-of-the-

art in image representation and its application to content-based image retrieval (CBIR), as

the general context of the thesis. Particularly, as the present work relates closely to pattern

recognition by using graphs and image representation, especially with regard to Bag-of-Words

model and Spatial Pyramid representation, we elaborate on them so as to facilitate comparisons

with these approaches in Chapter 6.

Firstly, we formulate basic concepts, present the image features, and give a comparative

study of different types of image descriptors in terms of local, semi-local and global features.

Secondly, a brief introduction of content-based image retrieval is presented. A few illustrative

approaches for CBIR are further discussed in detail. Next, we highlight what is known about

image features to emphasize these issues that are pertinent to CBIR. Thirdly, in the context of

image representation, we introduce the bag-of-features (BoF) framework and its most popular

variant the Bag-of-Words (BoW) model. Several typical extensions in pursuit of improving

the basic BoW model are enumerated. The chapter concludes with a discussion of graphs as

a tool for image representation in the literature. Finally we present the application of graphs

to pattern recognition and image indexing, which prompts our proposed Bag-of-Bags of Words

model in the thesis.

2.1 Image Descriptors

Both the effectiveness and the efficiency of content-based image and video retrieval systems

are highly dependent on the image descriptors that are being used. The image descriptor is
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responsible for characterizing the image visual content and for computing their similarities,

making possible the ranking of images and videos based on their visual properties with regard

to a query. In this section, we first formulate the important concepts mathematically. Then we

provide a brief overview of the image descriptors. The present chapter only focuses on a few

of the robust ones, particularly SIFT [2] and its variants.

2.1.1 Formalization

First of all, we formulate basic concepts before the discussion of image descriptors. We

adopt the definitions of Torres et al. [25] in the following formalization.

An image I is a pair (P, ~I), where

• P is a finite set of pixels or points in N2, that is, P ⊂ N2,

• ~I : P→ Rn is a function that assigns a vector ~I(p) ∈ Rn to each pixel p ∈ P.

For example, let us denote the coordinates of a pixel p by p = (xp, yp), then ~I(p) =

(pr, pg, pb) ∈ R3 if a color is assigned to the pixel p ∈ P in the RGB system.

A feature vector νI of an image I is defined as a n-dimensional point in Rn space:

νI = (v1, ..., vn)ᵀ (2.1)

An image descriptor (or visual descriptor)D can be defined as a pair (εD, δD), where εD

is a feature-extraction algorithm and δD is a suitable function for comparing the feature vectors

generated from εD. As illustrated in Figure 2.1,

• εD encodes image visual properties (e.g. color, texture, shape and spatial relationship of

objects) into feature vectors.

• δD : Rn×Rn → R is a similarity (or distance) function (e.g. based on a metric) that com-

putes the similarity of the feature vectors between two images (or the distance between

their corresponding feature vectors, as the opposite).

The examples of possible feature vectors will be discussed in Section 2.1.2.
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2.1 Image Descriptors

Figure 2.1: An example of image descriptor components. The similarities or distances between
images are based on the similarities or distances between the image feature vectors being extracted.
Different types of feature vectors may require different similarity functions. Furthermore, different
similarity/distance functions can be applied to the same feature set. The figure is excerpted from
Penatti et al.[1].

2.1.2 Image Feature Detection

There are many feature detection methods: interest point detection [26], edge detection [27],

corner detection [28], blob detection [29, 30] etc. Each method has its own (dis)advantage. The

most important image features are the localized features, which are often described by the ap-

pearance of patches of pixels around the specific point location. A few of examples are keypoint

features or interest points and corners.

2.1.3 Image Feature Extraction and Description

Feature-extraction algorithm εD is used to quantize image feature(s) into feature vector(s).

According to different feature extraction algorithms, the generated image descriptor(s) can be

either local or semi-local or even global.

An εD can produce either a single feature vector or a set of feature vectors. In the former

case, when a single feature vector must capture the entire information of the visual content,

we say that it is a global descriptor. In the latter case, a set of feature vectors is associated

with different features of the visual content (regions, edges, or small patches around points of

interest). We call it local descriptor.

The image descriptors can also be divided into several types based on image visual prop-

erties such as color, texture, shape, location etc. Three main types are: 1) color descriptors;

2) texture descriptors; 3) shape descriptors.
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In the following sections, we provide a brief overview of these image descriptors.

2.1.4 Local Image Descriptors

Local features have received the most attention in the recent years. The main idea is to fo-

cus on the areas containing the most discriminative information. In particular, the descriptors

are generally computed around the interest points of the image. Therefore, they are often asso-

ciated to an interest point detector. A good local descriptor should be invariant to the lightening

changes and geometric changes such as rotation, translation, scaling typically. In the following

section, we briefly present some typical local image descriptors. For each enumerated descrip-

tor, we give it an acronym in the subsection title.

SIFT Scale Invariant Feature Transform (SIFT), proposed by Lowe [31], has been designed

to match different images or objects of a scene. It has unique advantages: largely invariant to

changes in scale, illumination, noise, rotation, 3D camera viewpoint (i.e., the same keypoint

in different images maps to similar representations) etc., and partially invariant to local affine

distortions. Due to its strong stability and these invariance characteristics, SIFT has become

the most popular local feature description so far.

As described in [2], there are four major stages for extracting SIFT features: 1) scale-

space extrema detection; 2) keypoint localization; 3) orientation assignment; 4) and keypoint

descriptor. An illustration is shown in Figure 2.2.

Figure 2.2: The major stages for extracting SIFT features. (a) Scale-space extrema detection. (b)
Orientation assignment. (c) Keypoint descriptor. The figures are extracted from Lowe’s paper [2].

First, a DoG (Difference of Gaussian) pyramid is built by convolving the image with a

variable-scale Gaussian. Interest points for SIFT features correspond to local extrema of these
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DoG images. After that, low contrast and unstable edge points are eliminated from candidate

keypoints, interference points are further removed using 2 × 2 Hessian matrix that is obtained

from adjacent difference images. Next, to determine the keypoint orientation, an orientation

histogram is computed from the gradient orientations of sample points within 4 × 4 = 16 sub-

regions (8 orientation bins in each) around the keypoint. The contribution of each neighbouring

pixel is weighted by the gradient magnitude. Peaks in the histogram indicate the dominant

orientations. Thereby, SIFT, corresponding to a set of orientation histograms, finally gets 4 ×

4× 8 = 128 dimensional feature vector description from 16 sub-regions, according to a certain

order. This 128-element vector is then normalized to unit length to enhance invariance to

illumination changes.

PCA-SIFT Principal Component Analysis (PCA) is a standard technique for dimensionality

reduction. Ke et al. [32] proposed to use PCA to decorrelate SIFT components, compressing

SIFT dimensions globally from 128 to 20 or even less. PCA-SIFT keeps unchanged the afore-

mentioned first three stages for extracting SIFT features. It mainly contributes to the feature

extraction stage. A 2 × 39 × 39 = 3042 dimensional vector is created by concatenating two

horizontal and vertical gradient maps from the 41 × 41 patch centered at the keypoint. Then a

projection matrix is used to multiply with this vector, linearly projecting the vector to a low-

dimensional feature space. As SIFT, the Euclidean distance is used to compare two feature

vectors of PCA-SIFT.

RootSIFT Recently, a new version of SIFT was proposed by R.Arandjelović et A.Zisserman

in [33], called RootSIFT. As its name implies, RootSIFT is an element wise square root of the

L1 normalized SIFT vectors. Therefore, the conversion from SIFT to RootSIFT can be done

on-the-fly through rootsi f t = sqrt (si f t / sum(si f t)), where sift is the L1 normalized SIFT

vectors. Such an explicit feature mapping makes the smaller bin values more sensitive when

comparing the distance between SIFT vectors. It suggests that a model with constant variance

can be more accurate for discrimination of data, known as “variance stabilizing transformation”

in [34]. The authors claimed that RootSIFT is superior to SIFT in every single setting such as

large scale object retrieval, image classification, and repeatability under affine transformations.

SURF Speeded Up Robust Features (SURF), introduced by Bay et al. [35], is a speeded-up

version of SIFT. In other words, SURF have lower dimension, higher speed of computation
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and matching, but provide better distinctiveness of features. The SURF rely on determinant

of Hessian matrix for both scale and keypoints location. Meanwhile, box filters and integral

images are used to replace the procedure of constructing DoG pyramid in SIFT for finding

scale-space, which are easily calculated in parallel for different scales. This feature describes a

distribution of Haar-wavelet responses of local 4× 4 neighborhood sub-regions centred at each

extrema point. The response of each sub-region is a four-dimensional vector v representing

its underlying intensity structure v =
(∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|

)
, where dx is the Haar wavelet

response in horizontal direction and dy is the Haar wavelet response in vertical direction.
∑
|dx|

and
∑
|dy| are the sum of the absolute values of the responses, |dx| and |dy| respectively. Each

keypoint is then described with a 4 × 4 × 4 = 64 dimensional feature vector based on the

Haar-wavelet responses for all sub-regions.

Sparse and dense features sampling In general, there are two sampling strategies for local

image descriptors: 1) sparse features sampling, also known as interest point approach; 2) dense

features sampling, as its name indicates, local features are computed on a “dense grid”. We will

not detail it here, as a good survey in this respect can be found in the work of Tuytelaars [36].

In this Section, we provide an overview of several notable local image descriptors. They

are: SIFT, PCA-SIFT, RootSIFT and SURF. A comparative study of those image descriptors

can be found in the literature [37].

2.1.5 Semi-local Image Descriptors

Most shape descriptors fall into this category. Shape description relies on the extraction of

accurate contours of shapes within the image or region of interest (ROI). Image segmentation is

usually fulfilled as a pre-processing stage. In order for the descriptor to be robust with regard to

affine transformations of an object, quasi perfect segmentation of shapes of interest is supposed.

The examples of four important shape descriptors are: 1) Fourier descriptors (FD); 2) curvature

scale space (CSS) descriptors; 3) angular radial transform (ART) descriptors; 4) image moment

descriptors. FD [38] and CSS [39] descriptors are contour-based since they are extracted from

the contour, while image moments [40] and ART [41] descriptors are region-based extracted

from the whole shape region. A more complete list of shape descriptors can be found in [42].
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2.1.6 Global Image Descriptors

Global image features are generally based on color, texture or shape cues. In this Section,

we mainly discuss color and texture related features, ignoring shape which is beyond the scope

of this work.

2.1.6.1 Color

Color is an important part of the human visual perception. Before going further into the

description of color features, it is necessary to define the notion of color spaces. A color space

is a mathematical model that enables the representation of colors, usually as a tuple of color

components. There exist several color models. Among them we can cite the RGB (Red Green

Blue), HSV (Hue Saturation Value) and YUV (luminance-chrominance) models, for instance.

In this Section, we will discuss some examples of color descriptors: the general color

histogram and its variants that incorporate color spatial distribution. Most of color features are

global, except one special local descriptors called Color-Structure Descriptor [43], which is

designed for representing local properties.

Color Histogram Probably the most famous global color descriptor is the color histogram [44].

In general, color histogram is divided into: Global Color Histogram (GCH) and Local Color

Histogram (LCH). Here, we briefly review GCH only, since LCH is essentially a variant of

GCH by computing the GCH in pairs of blocks in an image. A color histogram describes the

global color distribution in an image. Each bin of a histogram represents the frequency of a

color value within the image or region of interest. It usually relies on a quantization of the color

values, which may differ from one color channel to another. Histograms are invariant under

geometrical transformations within the region of the histogram computation. However, it does

not include any spatial information, and is not robust to large appearance changes in viewing

positions, background scene etc.

Color Moments Three order moments are another way of representing the color distribution

within the image or a region of the image [45]. The first order moment is the mean which

provides the average value of the pixels of the image. The standard deviation is the second

order moment representing how far color values of the distribution are spread out from each

other. The third order moment, named skewness, can capture the asymmetry degree in the
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distribution. It will be null if the distribution is centred on the mean. Using color moments, a

color distribution can be represented in a very compact way. Given an image in a specific color

space with three channels, the image can be characterized by nine moments: three moments

for each three color channels. Let us denote the value of the j-th image pixel at the i-th color

channel by pi j, and N is the number of the pixels in the image, then three color moments can

be defined as:

Moment 1 - Mean:

Ei =

N∑
j=1

1
N

pi j . (2.2)

Moment 2 - Standard Deviation:

σi =

√√√( 1
N

N∑
j=1

(pi j − Ei)2
)
. (2.3)

Moment 3 - Skewness:

S i =
3

√√√( 1
N

N∑
j=1

(pi j − Ei)3
)
. (2.4)

Other color descriptors that can be mentioned are the Dominant Color Descriptor (DCD) in-

troduced in the MPEG-7 standard.

Color Coherence Vectors Pass et al. [46] proposed to classify each pixel in a given color

bucket as either coherent or incoherent, based on whether or not it is part of a large similarly-

colored region. For a given color, the number of coherent (αi) versus incoherent pixels (βi)

with each color are stored as a vector, in form of < (α1, β1), . . . , (αn, βn) >. The authors call it a

Color Coherence Vectors (CCV). By the separation of coherent pixels from incoherent pixels,

CCV provide finer distinctions than color histograms.

Color Correlogram In spirit of incorporating spatial information in building color histogram,

Huang et al. defined a new color feature called the color correlogram [47] for image indexing.

A color correlogram (henceforth correlogram) is a statistic describing how pixels with a given

color are spatially distributed in the image. Such a statistic is defined as a table (or matrix)

indexed by color pairs, where the k-th entry for the component (i, j) specifies the probability

of finding a pixel of color j at a distance k from a pixel of color i in an image, where k is a

distance chosen from the set of natural numbers N a priori. Let I be an n1 × n2 image, whose
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colors are quantized into m bins C = {c1, . . . , cm}. For pixels p1 = (x1, y1), p2 = (x2, y2), we

define |p1 − p2| , max{|x1 − x2|, |y1 − y2|}. The correlogram of an image I is thus defined as:

γ(k)
ci,c j(I) , Pr

p1∈Ici ,p2∈I

[
p2 ∈ Ic j | |p1 − p2| = k

]
(2.5)

where ci and c j are two color bins from C. By following the same notations as above, we can

define a color histogram of I for i ∈ {1, . . . ,m} (that counts the number of pixels with a given

color bin) as:

hci(I) , n1 · n2 · Pr
p∈I

[p ∈ Ici] (2.6)

Color correlogram outperforms the traditional color histogram method by including the spatial

correlation of colors.

2.1.6.2 Texture

In this subsection, we present several texture cues for global image features. Actually, there

is no precise definition of texture. However, one can define texture as the visual pattern having

the properties of homogeneity that do not result from the presence of only a single color or

intensity. Texture plays an important role in describing innate surface properties of an object

and its relationship with the surrounding regions. There are many texture feature extraction

techniques that have been proposed until now.

A majority of these techniques are based on the statistical analysis of pixel distributions and

others are based on Local Binary Pattern (LBP) [48]. The representative statistical methods are

Gray Level Co-occurrence Matrix (GLCM) [49], Markov Random field (MRF) model [50,

51], Simultaneous Auto Regressive (SAR) model [52], Wold decomposition model [53], Edge

Histogram Descriptor (EHD) [54, 55] and wavelet moments [56, 57].

Local binary pattern Local binary pattern (LBP) descriptors were proposed by Ojala et

al. [48] for texture classification and retrieval. LBP describes the surroundings of a pixel by

generating a bit-code from the binary derivatives of a pixel. In its simplest form, the LBP

operator only considers the 3-by-3 neighbours around a pixel. The operator generates a binary 1

if the neighbour of the centre pixel has larger value than the centre pixel, otherwise it generates

a binary 0 if the neighbour is less than the centre. The eight neighbours of the centre can then be

represented with an 8-bit number such as an unsigned 8-bit integer, making it a very compact

description. A toy example is shown in Figure 2.3.
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Figure 2.3: An example of local binary pattern codes. Take value (5) of the center pixel, and
threshold the values of its neighbors against it. The obtained value (00010011) is called LBP code.

In the general case, given a pixel, the LBP code can be calculated by comparing it with its

neighbors as:

LBPP,R =

P−1∑
p=0

s
(
gp − gc

)
2p, s(x) =

{
1, x > 0
0, x < 0

(2.7)

where gc is the grey-value of the centre pixel and g0, . . . , gP−1 correspond to the grey-values of

neighbouring pixels, P is the total number of neighbours and R is the radius of the neighbour-

hood. After generating the LBP code for each pixel in the image, a histogram of LBP codes is

used to represent the texture image.

Over the years, LBP based methods [58, 59] have gained more popularity for their compu-

tational simplicity and robust performance in terms of gray scale variations on representative

texture databases. More LBP variants can be found in the literature[60].

For instance, to reduce the feature dimension, simple LBPs are further extended to uni-

form LBPs. The uniform patterns are extracted from LBP codes such that they have limited

discontinuities (6 2) in the circular binary representation, i.e. at most two circular 0-1 and 1-0

transitions. In general, a uniform binary pattern has (P × (P − 1) + 3) distinct output values.

To further reduce the feature dimension and achieve rotation invariance, uniform patterns are

reduced to rotation invariant uniform (riu) LBP codes. It can be defined as:

LBPriu2
P,R =


∑P−1

p=0 s
(
gp − gc

)
2p, if U(LBPP,R) 6 2

P + 1, otherwise
(2.8)

where U is defined as the number of spatial transition (0/1) in that pattern. The mapping from

LBPP,R to LBPriu2
P,R , has P + 2 distinct output values, and can be implemented with the help of a

lookup table of 2P elements.
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Co-occurrence matrix Gray Level Co-occurrence Matrix (GLCM), as a statistical approach

to provide valuable information about the relative position of the neighbouring pixels in an

image, was first introduced by Haralick et al. [49] for classifying terrain images.

Give an image I of size n × m, the co-occurrence matrix C, can be defined as:

C∆x,∆y(i, j) =

n∑
x=1

m∑
y=1

1, if I(x, y) = i and I(x + ∆x, y + ∆y) = j
0, otherwise

(2.9)

where i, j are the image intensity values, (x, y) are the spatial position of the pixel-of-interest;

the offset (x + ∆x, y + ∆y) specifies the distance d between (x,y) and its neighbour.

The co-occurrence matrix (CM) keeps track of the number of pairs of certain pixels that

occur at certain separation distances in the image space. By adjusting the distances over which

we check co-occurrences, we can adjust the sensitivity of the CM to geometric changes in

the objects appearance caused by viewpoint changes, rotation or object flexing. Note that the

correlogram defined above in Section 2.1.6.1 can be seen as an extension of GLCM to the color

space.

The DCT Coefficient Domain Block discrete cosine transform (DCT) is widely used in

image and video compression algorithms. The discrete cosine transform (DCT) is similar to

the discrete Fourier transform, i.e. it transforms a signal or image from the spatial domain to the

frequency domain. The two-dimensional DCT of an M-by-N matrix A is defined as follows:

dp,q = αpαq

M−1∑
m=0

N−1∑
n=0

Am,n cos
[
π

M

(
m +

1
2

)
p
]

cos
[
π

N

(
n +

1
2

)
q
]
, with

0 6 p 6 M − 1
0 6 q 6 N − 1 ,

andαp =

{
1/
√

M, p = 0
√

2/M, 1 6 p 6 M − 1 ,
αq =

{
1/
√

N, q = 0
√

2/N, 1 6 q 6 N − 1 .
(2.10)

The values Dpq = {dp,q} are called the DCT coefficients of A.

Bar et al. [61] proposed to use some DCT coefficients to characterize texture features,

which have proved to give good results at low computational complexity [62]. In the present

work, we adopted DCT coefficients to extract texture patterns. We will discuss it in detail in

Section 3.3.3.2 of Chapter 3.

2.1.6.3 Gist

The GIST descriptor was initially proposed in [63]. In cognitive psychology, the gist of

the scene [64], refers to a short summary of the scene (the scene category, and a description
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of a few objects that compose the scene). In computer vision, the idea of “gist” is to develop

a low dimensional global image representation of the scene, which does not require any form

of segmentation. It can include from low-level features (e.g., color, spatial frequencies) to

intermediate image properties (e.g., surface, volume) and high-level information (e.g., objects,

activation of semantic knowledge).

The GIST descriptors have been used for scene recognition [63, 65], depth estimation [66],

image retrieval for computer graphics [67], and for providing contextual information as strong

prior for the subsequent object detection [68–70]. While GIST descriptors is suitable for re-

trieving similar objects and scenes which are well aligned, they cannot cope with wide varia-

tions in rotation, scaling or viewpoint. An evaluation of GIST descriptors can be found in [71].

2.1.7 Similarity Metrics

In this Section, we introduce different similarity metrics to compare feature vectors. As for

similarity measure between histograms, especially the notable one: Histogram Intersection, we

will discuss them in Section 4.2 of the Chapter 4.

Let us denote by O = {o1, . . . , oB} and U = {u1, . . . , uB}, are two normalized feature vectors

with B bins. Particularly, they are normalized to sum to one, i.e.
B∑

b=1

ob =

B∑
b=1

ub = 1.

Given these two feature vectors, a number of measures for computing their similarity can

be used. We can list a few of them: L1 distance (DL1), L2 distance (DL2), χ2 distance (Dχ2),

Kullback-Leibler divergence (DKL), Jeffrey divergence (DJe) and Battacharyaa distance(DB)

etc. Note that L1 distance is also known as city block distance or Manhattan distance. Formally,

these distances can be formulated as follows:

L1 distance :

DL1(O,U) =

B∑
b=1

|ob − ub| . (2.11)

L2 distance :

DL2(O,U) =

( B∑
b=1

(ob − ub)2
)1/2

. (2.12)

χ2 distance :

Dχ2(O,U) =
1
2

B∑
b=1

(ob − ub)2

ob + ub
. (2.13)
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Kullback-Leibler divergence :

DKL(O,U) =

B∑
b=1

oblog
ob

ub
. (2.14)

Jeffrey divergence :

DJe(O,U) =

B∑
b=1

(
oblog

ob

mb
+ uilog

ub

mb

)
, (2.15)

where mb =
ob+ub

2 .

Battacharyaa distance: In statistics, the Bhattacharyya distance, named after mathemati-

cian Bhattacharyya [72], measures the similarity of two discrete or continuous probability dis-

tributions. Consider two discrete probability distributions p and q over the same domain X,∑
x∈X

p(x) = 1,
∑

x∈X
q(x) = 1. The Bhattacharyya distance is defined as:

DB(p, q) = −ln
(
BC(p, q)

)
(2.16)

where BC(p, q) =
∑

x∈X

√
(p(x)q(x)) is the Bhattacharyya coefficient. Note that both the chi-

square measure and Battacharyaa coefficient can measure the similarity between two distribu-

tions. It has been proved in [73] that the Bhattacharyya coefficient is considered as an approx-

imation of the chi-square measure.

In summary, the resemblance between feature vectors can be measured either as a distance

(dissimilarity) or a similarity. The distance measures described above are flexible: Most dis-

tance measures can be converted into similarities and vice versa.

2.2 Image Retrieval in the Real World

Due to recent advances in image acquisition and data storage, it is necessary to develop ap-

propriate computer systems for browsing, searching and retrieving images from large databases

of digital images. In this context, image retrieval has received a lot of attention in the computer

vision community in the last twenty years [3, 14, 15, 25, 74–76].

Image retrieval can mainly be divided into two categories: 1) query by text (QBT), of-

ten referred to as annotation-based image retrieval (ABIR); 2) query by example (QBE), also

known as the Content-Based Image Retrieval (CBIR). The former uses the metadata such as

keywords, tags, or descriptions associated with the image to search images. The latter allows to
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retrieve images based on colors, textures, shapes or any other visual information derived from

the image itself. In the following manuscript, we refer image retrieval to the latter (CBIR) only,

unless otherwise noted.

An overview of image retrieval is illustrated in Figure 2.4. Particularly, CBIR is a challeng-

ing task, with many problems still unresolved. Given a query image, CBIR is aimed at returning

its most similar images in a database. To achieve this goal, we need to choose adapted image

features and to define the similarity measures between images in order to compare them. As

mentioned in Section 2.1.4, the most popular local image features are SIFT descriptors, SURF

etc. Other types of features can also rely on color, texture, shape, spatial location etc. or in

a combination of them [77]. In the present work, we focus on visual signature and similarity

measures parts, shown as two core techniques for image retrieval in the diagram of Figure 2.4.

Figure 2.4: An overview of the many facets of image retrieval as field of research. The figures are
extracted from Dattas paper [3].

2.3 Image Representation

The image representation is one of key components linked with different tasks, such as

object class detection, shape based object recognition [78], image segmentation [79] or image
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classification in computer vision. In this Section, we will introduce several of these recent

advances in the representation of images.

2.3.1 The Bag-of-Words Model

Local-feature based image representations have been successfully applied to many appli-

cations in computer vision, such as object recognition, image matching, image categorization

and image retrieval. The famous Bag-of-Features (BoF) framework consists in computing and

aggregating statistics derived from the local features such as SIFT [2] etc. to describe the image

content. The bag-of-words model is one of the most popular variant of the BoF framework.

Many approaches in aforementioned tasks rely on the bag-of-words model (BoW) since it was

introduced in the seminal papers [16, 80].

The BoW model is originated from texture recognition [81, 82] and document process-

ing [83]. As its name implies, the model was learned from the idea of texture being charac-

terized by the repetition of ‘textons’; as well as from document classification, where a text

document is represented as a “bag” of orderless words. For a document, a so-called bag of

words is actually a sparse vector of frequencies of words from a dictionary. The dictionary

is a vocabulary that consists of keywords occurring in text documents. A document is then

represented as a histogram over the vocabulary in the dictionary.

Bag of visual words (BoVW) representation is inspired from the aforementioned document

representation. An image can be treated as a document on the analogy between words/dic-

tionary in document and visual words/dictionary in image. The visual words, are also called

codewords, as an analogy to words in text documents. The dictionary in images is also called

codebook, as an analogy to a word dictionary in text document. In the remainder of the thesis,

we therefore use the words “visual words” and “codewords”, “dictionary” and “codebook” in-

terchangeably. An illustration of Bag of Words versus Bag of Visual Words analogy is shown in

Figure 2.5.

To achieve image representation based on this analogy in the BoVW model, we need to

define the corresponding “visual words” and “dictionary” in images. More precisely, the bag

of visual words model involves the following steps:

1. feature detection;

2. feature extraction/description;

2http://web.engr.illinois.edu/∼slazebni
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Figure 2.5: The Bag of Words model. The left-most picture illustrates the Bag of Words in docu-
ment. Other pictures show the Bag of Visual Words in image. These pictures are excerpted from
the source of S.Lazebnik.2

3. codebook generation:

(a) vocabulary building;

(b) vocabulary assignment.

We have discussed the first step in Section 2.1.2 and the second step in Section 2.1.3 re-

spectively. Now let us detail the two steps (3(a)and3(b)) in codebook generation for the BoVW

model.

The first step is the computation of local feature descriptors such as SIFT [2, 31] or SURF [35]

for a set of image patches. These patches can be either at the key-point locations or densely

sampled on a regular grid of the image. After that, a clustering technique, typically k-means [84],

is applied to quantize these descriptors into a fixed number of clusters. The centres of these

generated clusters are the so-called visual words or codewords. The whole set of cluster centres

is the dictionary or codebook. In this thesis, we denote codebook byC = {C1, . . . , CB}, where

B is the codebook size.

During the second step, each image descriptor in a given image will be associated with the

nearest visual word or visual words in the dictionary. If each descriptor is assigned to a single

visual word, we call this assignment measure “Hard Assignment” (HA). Otherwise, we call it

“Soft Assignment” (SA) [85–88]. The final image representation is thus made by computing a

histogram of codewords occurrences. So an image I j is represented as an histogram of visual

words h j =
(
p(C1|I j), . . . , p(CB|I j)

)
. The Figure 2.6 shows an example of the BoVW image

representation. There are three examples of images in this figure. Each patch in an image is

mapped to certain codeword (hard assignment) through the clustering process. Each image
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is thus represented by a sparse histogram of the codewords. This approach is the so-called

bag-of-visual-words (BoVW) representation [80].

Figure 2.6: The Bag-of-Visual Words (BoVW) image representation. The figure is from the source
of S.Lazebnik.3

Several extensions to the traditional bag-of-words image representation have been pro-

posed. We will discuss the most relevant ones in the next section.

2.3.2 The State-of-the-art to Improve the Bag-of-Visual-Words Model

The basic Bag-of-Visual-Words model uses histogram as image signatures. Hence, BoVW

method discards all the spatial layout of image features. It also ignores how the image features

are distributed across images. However, this information is a key attribute for object recognition

and scene classification. Many research efforts have been tackled these constraints. In the

following, we will enumerate several approaches that have been proposed in the literature to

overcome these limitations.

3http://web.engr.illinois.edu/∼slazebni
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2.3.2.1 Spatial pyramid image representation

Lazebnik [4] et al. introduced a simple yet effective extension of bag-of-features image

representation, named Spatial Pyramid Matching (SPM). The idea is first to recursively subdi-

vide the image into 2r × 2r grids at multiple resolutions, then to compute the BoW histograms

for each grid sub-block at several spatial granularities, and finally to concatenate histograms of

each grid by a formulation of pyramid match kernel:

κR(Ii, I j) = IR +

R−1∑
r=0

1
2R−r

(
Ir − Ir+1) (2.17)

=
1
2R I

0 +

R∑
r=1

1
2R−r+1 I

r.

The weight 1
2R−r allows for penalizing low resolutions of a partition, reflecting the fact that

higher levels localize the features inside smaller regions more precisely, see Figure 2.7. Using

B visual words in a visual dictionary and C grid cells in SPM will result in a histogram of size

BC as the final image representation.

Figure 2.7: An example of constructing a three-level pyramid. The image has three feature types,
indicated by circles, diamonds, and crosses. At the top, the SPM method subdivides the image at
three different levels of resolution. Next, for each level of resolution and each grid cell, SPM counts
the features that fall in each spatial bin. Finally, SPM weights each spatial histogram according to
Equation (2.17). The figure is excerpted from Lazebnik et al. [4].

In such a way, the spatial distribution of these visual features is encoded into the final spatial

pyramid image representation with level weighted normalizations. Despite on hypothesis of
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uniform spatial layout in image, SPM does not only beat the simple BoVW by a large margin

but also performs competitively against much elaborate methods.

2.3.2.2 Superpixels

Ren et al. [17] put forward a concept of grouping pixels into “superpixels”. The aim of

superpixels is to over-segment image into a large number of coherent, local regions which

retain most of the structure necessary for segmentation at the scale of interest. See an example

in Figure 2.8. The compact superpixels can capture diverse spatially coherent information and

multi-scale visual patterns of a natural image.

(a) (b)

Figure 2.8: An example of superpixels. (a) Input image. (b) A “superpixel” map with 200 super-
pixels via Normalized Cuts algorithm [5]. The figure is excerpted from Mori et al. [6].

Superpixels are often used as a preprocessing step in computer vision to reduce the com-

plexity of image analysis for later processing stages. The original superpixel algorithm used

Normalized Cuts (NCuts) based on contour and texture cues [6, 17]. Later a variety of new su-

perpixel algorithm have been developed, e.g. TurboPixels [89], Simple Linear Iterative Cluster-

ing (SLIC) superpixels [90], Superpixels Extracted via Energy-Driven Sampling (SEEDS) [91].

A shortcoming of this approach is: Superpixels are usually expected to align with object

boundaries, but this may not hold strictly in practice due to faint object boundaries and cluttered

background [92].
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2.3.2.3 Using class-specific codebooks to vote for object position

Leibe et al. [13] proposed to build a class-specific codebook for the target object category.

The procedure of codebook generation works as follows. Firstly, image patches from training

images are extracted with the Harris interest point detector [28]. Secondly, these patches are

treated as individual clusters on which agglomerative clustering is performed initially. The

clustering process stops until the similarity between any patches in different clusters is less

than a certain threshold. Finally, the codebook is generated from the center of each resulting

cluster. The authors called this adapted codebook a Codebook of Local Appearance.

Leibe et al. also define an Implicit Shape Model (ISM) to model the spatial distribution of

each codebook entry under a probabilistic framework. More precisely, IS M(C) =
(
IC , PI,C

)
,

where IC is the aforementioned codebook of local appearance for a given category C, PI,C is

a spatial probability distribution for the codebook entry. PI,C estimates where the codebook

entry may be found on the object in a non-parametric manner. Hence, the class characteristics

are learnt in such a soft-coded way. We can vote for object position or even handle multiple

articulated objects of the same class in testing images.

2.3.2.4 Spatiograms versus Histograms

Histograms, as graphical representation of the data distribution, have been widely used to

describe image regions. However, all spatial information is discarded and only features occur-

rence counts are retained in such a description. Birchfield et al. [18] introduced spatiograms

as a generalization of the histograms to allow higher-order spatial moments to be part of the

descriptor. Conaire et al. [93] further proposed an improved spatiogram similarity measure that

was derived from the Bhattacharyya coefficient [94] for spatiogram comparison.

Formally, a histogram can be formulated as: Given a discrete function f : x → z, where

x ∈ X and z ∈ Z, a histogram of f is h f : z→ Z∗, where Z∗ is the set of non-negative integers.

h f (z) is the number of elements x ∈ X such that f (x) = z.

In contrast, for an image I j, its spatiograms can be expressed by rewriting the aforemen-

tioned function f as a two-dimensional mapping I j : P → z, where P = [X,Y]T is a set of

pixels of an image, [X,Y]T is a set of their corresponding coordinates in the image. Hence, the

(second-order) spatiogram of an image is denoted by:

hI j(b) = 〈nb, µb,Σb〉, b = 1, . . . , B, (2.18)
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where nb is the number of pixels whose values fall into the bth bin, i.e. the set {nb}b=1,...,B

corresponds exactly to the histogram. The µb and Σb represent the mean vector and covariance

matrices of those pixels’ coordinates respectively. B is the number of bins in the spatiogram.

Compared with co-occurrence matrices [49], spatiograms capture the global positions of

the pixels rather than their pairwise relationships.

2.3.2.5 Spatial orientations of visual word pairs to improve Bag-of-Visual-Words model

Khan et al. [95] proposed to embed global spatial information of visual words into BoW

model through the histograms of orientations for any pairs of visual words of the same type.

The authors introduced a notation Pair of Identical visual Words (PIW), which is defined as the

set of all the pairs of visual words of the same type. A spatial distribution of visual words is

represented as a histogram of orientations of the segments formed by PIW.

2.3.2.6 Improve BoW model with respect to feature encoding

Features encoding, i.e. transforming local image descriptors into histograms is at the heart

of bag-of-visual-words model. A large number of methods have been proposed to improve

this encoding process in feature space. Recently, many efforts can be found in the literature

regarding this direction. Here we enumerate some notable approaches, such as Fisher vector

image representation [20, 21, 96–99], sparse coding [100], locality constrained linear coding

(LLC) [101], spatially local coding [102] etc. that compete with SPM to give extensions of

bag-of-words image representations to encode spatial layout.

2.3.3 Region-based Image Representation

Many works on region-based image representation (RBIR) can be found in the litera-

ture [103, 104]. We introduce several notable ones.

Stricker et al. [45] proposed to divide an image into 5 partially overlapping, fuzzy regions.

Next, they compute the first three moments of the color distribution for each region. Finally, an

image is represented by a feature vector that is composed of color moments of 5 fuzzy regions

for image indexing. That is to say, the index entry consists of 45 (number of regions × number

of color channels × three moments, i.e. 5 × 3 × 3) floating numbers per image for indexing.

Based on fuzzy regions, the feature vectors in the index achieve relatively invariance to small

translations and small rotations of an image.
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Jing et al. reported their work on RBIR [105–107]. They transformed the local features of

regions into a compact and sparse representation. Suppose an image I j containing N regions

{R1, . . . ,RN}. The image is described by a vector of the form :

Î =
{ (

CIR1 ,WR1), . . . , (CIRN ,WRN

) }
,

where CIRi and WRi are the codeword index and importance weight of region Ri, the sum of im-

portance weights for an image should be equal to 1, i.e.
N∑

i=1
WRi = 1. The codebook is generated

by iteratively clustering the features (the first two color moments) of regions from all images

in the database. Each region of an image is labelled by a codeword index corresponding to the

cluster it belongs to, defined as Is = (w1, . . . ,wN), where N is the number of the codewords,∑N
i=1 wi = 1.

Omhover et al. [108, 109] formulated spatial structure of the regions by fuzzy similarity

measure. Each region is described by a set of color and shape features. Two regions are

compared by measuring their common and distinctive features in the regions.

Gosselin et al. [110] proposed a pairs-of-regions based image representation in specific

cases (objects with heterogeneous background). The authors use one color histogram, three

texture histograms as the signature of a region. The spatial constraints only apply to pair of

adjacency regions, they called this approach “mini-bag”.

Vieux et al. [111] introduced the Bag-Of-Regions (BOR) model inspired from BoVW to

tackle the challenging “semantic gap” problem - translation between low-level image features

and high-level user perceptions. Low level descriptors are first extracted from segmented re-

gions, represented as BoW histograms. Next, co-occurrence criteria such as min, max, median,

sum etc. are applied to build the BOR signatures. The authors claimed that BOR signatures

are a good counterpart of bag-of-visual-words, and can be more appropriate depending on the

specific queries.

2.3.4 Graph-based Image Representation and its Applications

Graphs have been successfully applied in pattern recognition and computer vision. When a

graph-based representation is adopted for image description or to represent objects in an image,

it frequently entails some form of Graph Matching. Graph matching is a mapping in aim to

find a correspondence between the nodes/edges of one (possibly larger) graph to the other that

model the patterns of interest. Depending on how the matching problem is formulated, graph

matching can be categorized into four classes: 1) Exact graph matching; 2) Inexact graph
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matching; 3) Graph embeddings and graph kernels; 4) Other graph matching techniques. The

first category and the second one are respectively restricted to strict and more or less difference

in the structure of the graphs being matched. The third one are the techniques actually gaining

a growing interest in recent literature [22–24, 112, 113]. In this manuscript, we only cite one

instance: Graph Words, which has highly motivated our present work.

Graph Words Karaman proposed a graph-based image representation via “Graph Words” [7].

The idea of the method consists in building a set of “small” graphs on multiple nested layers,

and then in fitting these graph features to bag-of-visual-words approach, as demonstrated in

Figure 2.9. The author defined a maximum of four layers of Graphs Words due to high compu-

tational cost of the approach. From bottom to top, the first layer contains only a fixed number

of seeds points which are positioned at salient SURF points with higher response [35]. The

second to fourth layer correspond respectively to graphs with 3,6 and 9 nearest neighbours

of the seeds. Graph edges are generated by Delaunay triangulation on each layer separately.

Under such definition, the number of graphs at each layer is the same. Graph comparison can

be achieved by Context Dependent Kernel (CDK) [114]. In contrast to traditional visual dic-

tionary, each codeword is defined as the median graph that minimizes the distance to all the

graphs of the corresponding cluster. The spatial layout is therefore embedded at feature level

in such multi-resolution of graph structure.

2.4 Conclusion

In this Chapter, we have presented image descriptors, image representation and image re-

trieval in real world, particularly Content-Based Image Retrieval (CBIR). With respect to image

representation, we mainly focus on the bag-of-visual-words model and its variants. One of se-

vere limitations of the bag-of-visual-words model is that it ignores the spatial layouts among

the image patches, which are very important information in image representation. Several ef-

fective methods have been proposed to incorporate the spatial information into BoVW. We

enumerated a few of notable ones. In the present work, we are especially interested in using

graphs as a tool to model spatial relationships among image features. This idea has motivated

our direction in the next Chapter.
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Figure 2.9: A hierarchy of “nested” Graph Words on four layers (on the left) in the same example
of image (on the right). Seed is marked as hollow circle in white color, and neighbour nodes are
shown as solid circles in black color. The figures are extracted from [7].
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Chapter 3

Graph-based Image Representation

As discussed in Chapter 2, graphs are powerful tools to model spatial information in image

representation. Graph-based representations are of pivotal importance in computer vision and

pattern recognition [115]. Describing the image patterns with such representations is quite

natural and find applications in both low level image processing and high level vision tasks.

The patterns and objects in images are identified by decomposing the image into parts and

analysing the relationships/structure between them.

In this Chapter, we first introduce the image graph model. Next, we explain how this pro-

posed model is described by a weighted image graph. The weighted image graph is composed

of graph nodes, edges and the corresponding edge weights. An edge weight measures the simi-

larity between two nodes of the edge. Then we discuss the weighted graph construction process

step by step. Different objective functions for edge weights are designed. Finally, three graph

partitioning methods are presented for dividing the image graph into a series of subgraphs.

These subgraphs is then used as image descriptors embedding the color/texture homogeneity

and limited spatial information of the image.

3.1 An Overview of the Image Graph Model

Let us first introduce the key components and concepts of the image graph model for image

retrieval. The processing chain for image graph model includes the following steps: 1) graph

construction; 2) graph partitioning; 3) (sub)graph matching; 4) image retrieval. See Figure 3.1.
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Figure 3.1: An overview of the processing chain for the proposed image graph model. (I)
Image is represented by an initial weighted graph. (II) Graph partitioning consists in finding the
optimal labeling for each graph nodes. (III) Find the best bipartite matched subgraphs between
images pairs (IV) Retrieve images based on signatures that define the similarities between these
subgraphs.

3.2 Weighted Image Graph Representation

Intuitively, a graph represents a set of elements and a set of pairwise relationships between

these elements. The elements are called nodes or vertices, and the pairwise relationships

between the nodes are called edges.

A graph G = (V, E) is represented by a set of vertices V and a collection of edges E ⊆ V×V .

Each edge connects a pair of vertices. If all edges in a graph have no orientation, i.e., the

edge (a, b) is identical to the edge (b, a), then this graph is called undirected graph. An edge-

weighted graph (or for short, weighted graph), is defined as a pair (G,w) in which w(e) : e→ R

is a weight function mapping each edge e ∈ E to its weight. Weighted graphs, as a model, are

used in numerous problems, such as networks where graph nodes are linked with different

weights (distance, cost, etc.). Note that a graph can be viewed as an edge-weighted graph

where all edges have a weight equalling to 1.

An input image database Ω, is composed of N RGB images Ω = {I1, . . . , IN}. We define

G j = (V j, E j,W j) as the undirected weighted image graph constructed on the image I j. The set

of vertices V j contains a subset of pixels P of the image I j and at the limit can contain all of

them. The graph edges E j connect these vertices with a specified neighbourhood system. W j

is an affinity matrix of size |V j| × |V j|, whose entry at row p, and column q is Wpq, defined as:

Wpq =

{
wpq if p, q ∈ E j

0 if p, q < E j,
(3.1)

where wpq represents the edge-based similarity between two vertices p and q.

30



3.3 Graph Construction

3.3 Graph Construction

With the above notation, we can now define the graph nodes (vertices), graph edges and

graph weights in image graph.

3.3.1 Graph Nodes Selection in Image Graph

We experimented two methods for nodes selection. We describe them in the following.

3.3.1.1 Prominent keypoints

Feature extraction First, a feature-extraction algorithm is used to extract the feature points

either on the whole image or on the mask of the object being retrieved. An example can be

seen in Figure 3.2(a), where the SURF points [35] are chosen in our experiments. A threshold

(Thrh) on the Hessian of the SURF descriptors is set. The larger the threshold value, the less

keypoints are selected. A good value for Thrh could be from 300 to 500, depending from the

image contrast. By default, the value of Thrh is set to 400.

Key points filtering Next, all the extracted feature points are further sorted by their feature

strengths. In such a way, the most strong/prominent key points with the most representative

features remain. In some cases, the extracted points may be very close to each other, which

leads to unbalanced graph edges. To avoid that, we filter the feature points by preserving only

the most prominent key point over any 10-pixels diametrical region. After filtration, we obtain

a set of reduced keypoints P = {p1, ..., pn}, see Figure 3.2(b). However, graph nodes obtained

in such a way are very sparse and irregular in either the number of nodes or the distances in

between, losing interesting information potentially.

3.3.1.2 Dense sampling strategy

First image pixels are chosen by dense sampling the points at a fixed spacing on a regular

grid. Next, the local SIFT features [2] of these points are extracted from their image patches.

We call this approach Bag-of-Features Grid SIFT (BF-GSIFT) [36].

This sampling approach gives a constant amount of features per image area since all patches

with strong or less contrast contribute equally to the overall image representation. In contrast

to the previous strategy, i.e. prominent keypoints selection, that has more arbitrary spatial

relations between features, dense sampling keeps simple spatial relations between features in
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(a) (b) (c)

(d) (e) (f)
Figure 3.2: Graph construction. (a) Initial SURF keypoints. (b) Filtered keypoints. (c) Seeds
selection. (d) Delaunay triangulation over filtered feature points. (e) Graph-cuts result. (f) Labeling
result.

reserve by following a regular pattern. On the downside, dense sampling cannot reach the same

level of repeatability as obtained with interest points unless sampling is performed extremely

densely but then the number of features quickly grows unacceptably large. In practice, re-

searchers often use an overlap between patches of 50% or less. As in SPM [4], we adopt

8-pixels spacing, 16-pixels patch size, to reach a compromise between repeatability of interest

points and reasonable size of features.

3.3.2 Graph Edges Construction in Image Graph

Once vertices are fixed, we adopt a suitable neighbourhood system to generate graph edges

based on the strategy of nodes selection. The purpose is to keep the spatial structure between

local features so that it is invariant to image translation, scaling, and rotation.
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In general, there are three options for graph edges construction: 1) Delaunay Triangulation,

2) 4-neighbourhood, 3) 8-neighbourhood.

(a) Delaunay triangulation (b) 4-neighbourhood (c) 8-neighbourhood

Figure 3.3: Options for the neighbourhood system of image graph.

In the context of prominent keypoints, a Delaunay triangulation (DT) [116] is performed

over all filtered points set P to generate the edges of image graph. The DT process aims to

maximize the minimum angle of all triangles’ angles. Therefore, it avoids skinny triangles

between edges. More precisely, the Delaunay triangulation of a point set is a collection of

edges satisfying an “empty circle” property: For each edge we can find a circle containing the

edge’s endpoints but not containing any other points. This kind of triangulation is equivalent

to the nerve of the cells in a Voronoi diagram. An example of Delaunay triangulation on top

of the Voronoi diagram (in dotted lines) can be seen in Figure 3.3(a). Another example of DT

over the vertices of an image graph is shown in Figure 3.2(d). This technique is used for the

prominent keypoints approach.

For the dense sampling approach, a regular d-neighbourhood (d = 4 or d = 8) system

is used. The 4-neighbourhood of vertice p are the four pixels to the north (p2), south (p6),

east (p4), and west (p8), see Figure 3.3(b). The 8-neighbourhood of node p also includes the

diagonals, namely pixels p1, . . . , p8, see Figure 3.3(c).

3.3.3 Graph Weights in Image Graph

Following the aforementioned definitions, let us suppose that the graph edges E connect the

vertices with a predefined neighbourhood system. The edge affinity matrix W of size |V | × |V |,

is assumed to be non-negative and symmetric.

As discussed in Section 2.1.6, color and texture are two predominant factors to characterize

the image features. Therefore, in the present work, we design an edge-weight function that

combines joint color-texture features. For an edge between two nodes p and q, its weight is
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3. GRAPH-BASED IMAGE REPRESENTATION

defined as follows:

wpq = e−λ·α·CpqΣ−1
C CT

pq · e−λ·(1−α)·TpqΣ−1
T T T

pq

=
(
wC

pq

)α
·
(
wT

pq

)1−α
. (3.2)

where wC
pq is a color-related weight term, and wT

pq is a texture-related weight term. The param-

eterα controls the relative impact of local color and texture patterns on the edge weights of the

graph and can be adjusted in the optimization process. Edge weights 1) only take color infor-

mation into account if α = 1; 2) factor color out, considering texture only if α = 0; 3) combine

color and texture features if 0 < α < 1.

We adopt the positive definite Gaussian function in Equation (E.1), due to its good property

that has been proved in the literature [5, 117–119]. In the next two Subsections, we elaborate

the color term and texture term respectively.

3.3.3.1 Color weight

Color Space Selection A color space is used to specify a three-dimensional color coordinate

system and a subspace of the system in which colors are represented as three points [75]. In the

present work, we finally decide to adopt YUV color space instead of RGB color space [120],

for the following reasons:

YUV color space has independent color channels, in terms of one luma (Y’) and two

chrominance (UV) components. Moreover, there are couples of main disadvantages [121] with

the RGB color space: 1) It is not independent, has redundant information in color channels;

2) The RGB color space is not perceptually uniform; 3) All components (R,G, B) have equal

importance and, therefore, these values have to be quantized with the same precision.

Given an input color image, we first decorrelate the RGB fields into the YUV color space

by Equation (3.3). The Y stands for the luma component (the brightness) and U and V are the

chrominance (color) components. We use the YUV color space, since it has independent color

channels and allows to better deal with illumination changes.

Y = 0.299R + 0.587G + 0.114B (3.3a)

U = (B − Y) ∗ 0.565 (3.3b)

V = (R − Y) ∗ 0.713 (3.3c)
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3.3 Graph Construction

The color weights on the edges are defined as:

wC
pq = e−λ·CpqΣ−1

C CT
pq = e−λ·(C̄p−C̄q)Σ−1

C (C̄p−C̄q)T
, (3.4)

where Cpq = C̄p − C̄q, C̄p = (Ȳp, Ūp, V̄p) and C̄q = (Ȳq, Ūq, V̄q) account for the mean color

vector over a n × n patch centred on points p and q respectively in YUV color space. In our

experiments, these two vectors are each computed over a 5× 5 region in 4-neighbourhood

system centred on p and q. As the aforementioned discussion, we use the YUV color space in

order to have independent color channels.

We denote Yp = Y(x, y), respectively Up = U(x, y) and Vp = V(x, y), as the color channel

values at point p = (x, y) in the coordinate system of the whole image. The mean color vector

reads C̄p = (Ȳp, Ūp, V̄p) where:

Ȳp =
1
n2

n∑
u=−n

n∑
v=−n

Y(x + u, y + v) ,

Ūp =
1
n2

n∑
u=−n

n∑
v=−n

U(x + u, y + v) ,

and

V̄p =
1
n2

n∑
u=−n

n∑
v=−n

V(x + u, y + v) .

The covariance matrix

ΣC =


σ2

Y 0 0
0 σ2

U 0
0 0 σ2

V


is computed from, for all three channels, the mean of the mean color vector of all nodes.
Moreover, the covariance matrix Σc is considered diagonal because of channels’ independence.
As in [122], the covariance is defined for each channel as:

σ2
Y =

〈(
Ȳp − Ȳq

)2
〉

σ2
U =

〈(
Ūp − Ūq

)2
〉

σ2
V =

〈(
V̄p − V̄q

)2
〉

where 〈.〉 denotes the expectation over all the edges (p, q) ∈ E of the image graph G.
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3. GRAPH-BASED IMAGE REPRESENTATION

Figure 3.4: Block DCT on 8 × 8 pixel patch.

Figure 3.5: A block of 8×
8 pixel on DCT, the solid
dot in black denotes the
graph node, the 64 DCT
coefficients are scanned in
a “zig-zag” fashion.

3.3.3.2 Texture weight

Texture based on DCT Given an image graph, the 2D block DCT-based transform is pro-

cessed on 8×8 blocks of pixels around each graph node with level shift. As shown in Figure 3.4,

each block contains one DC coefficient (in green) and 63 other AC coefficients (in red). The

DC coefficient represents the average intensity value of the patch, and carries most of the en-

ergy and the perceptual information. The AC coefficients contain frequency information. The

position of graph node within the block is shown in Figure 3.5.

The texture-related weight term wT
pq based on DCT is defined as:

wT
pq = e−λ·TpqΣ−1

T T T
pq = e−λ·(Tp−Tq)Σ−1

T (Tp−Tq)T
(3.5)

where Tpq = Tp −Tq, Tp is a row vector composed of k low frequency AC coefficients in 8× 8

DCT block centred on point p. Tq is defined similarly. The covariance ΣT is computed over

DCT blocks for each coefficient independently over each node in G.

The vector Tp has the following variants depending on the number of coefficients and the

channel(s) in the YUV color system from which these coefficients are extract: 1) five low fre-

quency coefficients in luma (Y) component (Equation (3.6)), its corresponding covariance is

defined in Equation (3.7), see Figure 3.6; 2) ten low frequency coefficients in luma (Y) compo-

nent (Equation (3.8)); 3) five low frequency coefficients in luma (Y) component, plus two low

frequency coefficients in chrominance components (U and V) respectively (Equation (3.9)).
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3.4 Graph Partitioning

Tp =
(
dY (1, 0) , dY (0, 1) , dY (0, 2) , dY (1, 1) , dY (2, 0)

)
(3.6)

ΣT = diag[σ2
d(1,0), σ

2
d(0,1), σ

2
d(0,2), σ

2
d(1,1), σ

2
d(2,0)] (3.7)

Tp =
(
dY (1, 0), dY (0, 1), dY (0, 2), dY (1, 1), dY (2, 0), dY (3, 0), dY (2, 1), dY (1, 2), dY (0, 3)

)
(3.8)

Tp =
(
dY (1, 0), dY (0, 1), dY (0, 2), dY (1, 1), dY (2, 0), dU(1, 0), dU(0, 1), dV (1, 0), dV (0, 1)

)
(3.9)

Figure 3.6: The DCT (Discrete Cosine Transform) block is scanned in a diagonal zigzag pattern
starting at the DC coefficient d(0,0) to produce a list of quantized coefficient values. Here only five
AC coefficients d(1,0), d(0,1), d(0,2), d(1,1), d(2,0) in luma (Y’) component of YUV system are
considered due to their good discriminative properties.

3.4 Graph Partitioning

After that the weighted image graph has been built, we can now shift our focus to the

problem of graph partitioning. Graph partitioning is also called graph clustering. In this

model of clustering, we are given an image graph G j for each image I j in the database. We

seek to partition the graph G j into fixed K disjoint unconnected subgraphs {g j,1, . . . , g j,K},

such that ∀k , l, g j,k∩g j,l = ∅ and G j = {
⋃K

k=1 g j,k}∪E j, where E j ⊂ E j are the removed edges

to divide G j by graph cuttings. The partitioning divides vertices V j into a set of the vertices

{v j,1, . . . , v j,K} in the corresponding subgraphs, such that v j,m ∩ v j,n = ∅ for m , n. We denote

this K-way partitioning [123] by ΓK
j = {Γk

j}k=1, ..., K = {g j,1, . . . , g j,K}.
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3. GRAPH-BASED IMAGE REPRESENTATION

3.4.1 Graph-based Image Segmentation Problem

Graph partitioning can be considered as a graph-based image segmentation problem as

well [124]. The idea of graph-based image segmentation is that the set of points are represented

as a weighted undirected graph G = (V, E, W), where a set of vertices (nodes) V represents

the points in the image. E is a set of edges connecting the nodes. W is an affinity matrix of

size |V | × |V |, whose entries are the weights of the edges. An entry of W is zero if there is no

edge between the corresponding vertices. The weight on each edge W(i, j) is a function of the

similarity between the nodes i and j. The graph G is segmented into K disjoint sets by cutting

the edges connecting these K parts. The degree of similarity between any two parts is the total

weights of the edges that separate them.

3.4.2 Image Graph Labeling Problem

Graph partitioning can also be considered as a labeling problem. Given a set of vertices V

and a finite set of labels L = {1, 2, . . . ,K}, for any node p ∈ V , we are looking for the optimal

label lp ∈ L, such that the joint labeling L = {l1, . . . , l|V |} ∈ L|V | satisfies a specified objective

function. Reciprocally, an optimal labeling L on the image graph can be represented by an

optimal partition P of graph nodes, where P = {Pl | l ∈ L}, and Pl = {p ∈ P | lp = l} is a subset

of graph nodes assigned label l. Obviously, there is a bijective function (mapping) between

partition P and labeling L.

Energy minimization Many computer vision problems, including labeling problem can be

formulated in terms of energy minimization. For the image graph G = (V, E), the energy

function contains two terms:

J(L) =
∑
p∈V

fp(lp) +
∑

(p,q)∈E

fpq(lp, lq) . (3.10)

lp denotes the label of graph node p ∈ V that must belong to a finite label set L. The unary

terms fp(·) encode the data penalty functions, and the pairwise terms fpq(· , ·) are interaction

potentials.

This energy (Equation (3.10)) is often derived in the context of Markov Random Fields

(MRF) [50, 51]: a minimum of energy J(L) corresponds to a maximum a-posteriori (MAP)

labeling L.
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3.5 Graph Partitioning Approaches

3.5 Graph Partitioning Approaches

In this Section, we review three graph partitioning methods, namely, Graph Cuts, Normal-

ized Cuts and kernel k-means. As you will see in the next Chapters, we use and compare these

three approaches within our system for image retrieval.

3.5.1 Graph Cuts: energy-based method

The Graph Cut [8, 9, 125, 126] is a semi-supervised method based on min-cut/max-flow

algorithms from combinatorial optimization. This technique can be used to find the global

minimum of some multi-dimensional energy functions. The formulation of Graph Cuts can be

either perceived from graph partition point of view (Section 3.5.1.1), or regarded as an energy

minimization on a graph from energy point of view (Section 3.5.1.3).

3.5.1.1 Binary labeling

In the context of Graph Cuts, the weighted graph G = (V, E) has two distinguished vertices

called the terminals. One of the terminals s ∈ V is called the source and the other one t ∈

V is called the sink. A cut C ⊂ E is a set of edges such that the terminals are separated

in the induced graph G(C) = (V, E − C). In addition, no proper subset of C separates the

terminals in G(C). The cost of the cut C, denoted |C|, equals the sum of its edge weights.

The minimum cut problem on a graph is to find a cut with the smallest cost among all cuts.

There are a large number of fast algorithms for this problem in the binary labeling case. For

example, in combinatorial optimization domain, the minimum s/t cut problem can be solved

in polynomial time by finding a maximum flow from the source s to the sink t. This is the so-

called max-flow/min-cut algorithm. In practice, the algorithm is based on the Ford-Fulkerson

algorithm [127]. An example is shown in Figure 3.7.

Main idea for Min-cut/Max-flow methods Before introducing the min-cut/max-flow prob-

lem, let us give the following definition.

Definition 1. Flow network A flow network is defined as a directed graph where an edge has
a non-negative capacity. For an edge (p, q) ∈ E, its capacity is denoted by c(p, q).
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3. GRAPH-BASED IMAGE REPRESENTATION

Figure 3.7: An example of binary labeling on an image graph via Graph Cuts. The graph corre-
sponds to an image that consists of a 3× 3 pixels set P, with observed color intensities Ip in certain
color space for each p ∈ P. Given binary labels L = {0, 1}, an optimal labeling L assigns label
lp ∈ L to each pixel p. One part of this image is excerpted from [8].

Definition 2. Flow A flow in G is a real-valued (often integer) function that satisfies the fol-
lowing three properties:

(a) Capacity constraint: for all p, q ∈ V , f (p, q) 6 c(p, q).

(b) Skew symmetry: for all p, q ∈ V , f (p, q) = − f (q, p).

(c) Flow conservation: for all p ∈
{
V \ {s, t}

}
,
∑

q∈V
f (p, q) = 0.

Definition 3. Capacity The capacity of a flow is the sum of the weights of the edges from two
partitions A and B with s ∈ A and t ∈ B.

In theory, the minimum cut problem can be solved by computing the maximum flow be-

tween the terminals, according to the following theorem from Ford and Fulkerson [128].

Theorem 1. Min-cut/max-flow theorem In a flow network, the maximum amount of flow pass-
ing from the source to the sink is equal to the minimum capacity that, when removed in a
specific way from the network, causes the situation that no flow can pass from the source to the
sink. In short, for any directed graph with arc capacity function C and distinct vertices s and t,
the maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts. Moreover,
a maximum flow on G will saturate a set of edges that gives us the minimum cut.
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3.5 Graph Partitioning Approaches

From this theorem, an algorithm has been proposed. It requires two following definitions

to understand it.

Definition 4. Augmenting path A path from the source s to the sink t that can deliver an
increased flow is called a flow augmenting path.

Definition 5. Residual Graph of a flow network is a graph which indicates additional possible
flow. If there is a path from the source to the sink in a residual graph, then it is possible to add
flow. Every edge of a residual graph has a value called residual capacity which is equal to
original capacity of the edge minus current flow. Residual capacity is basically the current
capacity of the edge.

The min-cut/max-flow algorithm can now be given: The minimum cut edges can be ob-

Algorithm 1 Max-flow/Min-cut Algorithm
Require: Graph G = (V, E), source s, terminal t, capacity C
Ensure: Return f as the Max-flow, and (X,V − X) as the Min-cut

1: set P← 0 (flow 0 on all edges), set opt ← f alse
2: while not opt do
3: Construct the residual graph G f

4: Find a directed path P from s to t in G f (an augmenting path)
5: if such an augmenting path P exists then
6: Update flow f along P
7: else
8: set opt ← true
9: set X the set of vertices in G f reachable from s

10: end if
11: end while

tained by the following steps: 1) Run Ford-Fulkerson Algorithm 1 and consider the final resid-

ual graph. 2) Find the set of vertices that are reachable from the source in the residual graph.

3) All edges which are from a reachable vertex to a non-reachable vertex are minimum cut

edges.

3.5.1.2 Extension to multi-label problems

The weighted graph G = (V, E) may involve more than two terminals. The multi-labeling

problem can be considered as the generalization of the minimum s/t cut problem. An exam-
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3. GRAPH-BASED IMAGE REPRESENTATION

ple is the multi-way cut. The problem becomes NP-hard even in the simplest discontinuity-

preserving case. Therefore, some approximate methods such as α-β swap and α-expansion [8,

9] are often used.

Definition 6. α-β swap Given a pair of labels α, β, a move from a partition P (labeling L) to a
new partition P ′ (labeling L′) is called an α-β swap if Pl = P′l for any label l , α, β.

Definition 7. α-expansion Given a label α, a move from a partition P (labeling L) to a new
partitionP ′ (labeling L′) is called an α-expansion if Pα ⊂ P′α and P′l ⊂ Pl for any label l , α.

(a) (b) (c)

Figure 3.8: Example of α-β swap and α-expansion. (a) initial labeling: α in red, β in green, γ
in blue. (b) α-β swap: only number of pixels with label α or β change their labels, pixels with
label γ remain unchanged. (c) α-expansion: pixels with different labels can change their labels
simultaneously. The figures are excerpted from [9]. This figure is better viewed in color.

3.5.1.3 Graph Cuts from perspective of energy minimization

In the present work, the Graph Cut is used to minimize energy functions of two terms:

J(L) = Jdata(L) + Jsmooth(L)

=
∑
p∈V

Jd(p, lp) +
∑

(p,q)∈E

Js(p, q)

=
∑
p∈S

Jd(lp) +
∑

(p,q)∈E

Js(p, q) . (3.11)

Jdata(L) is the data term. In our case, it is only applied to user-defined hard constraints (seeds

here) imposed on the initialization of Graph Cuts. We denote a set of seed points by S =

{s1, . . . sK}, where K is the predefined number of subgraphs obtained after graph partitioning.

The seeds are placed on the image before running the Graph Cuts algorithm.
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3.5 Graph Partitioning Approaches

The goal of the data term is to fix the label of the seed points. For instance, the seed point
si must end up with label i after the energy minimization process. This idea can be formulated
as in [9]:

Jd(lp) =

 0 if p = si & lp = i
∞ otherwise.

(3.12)

As for the smoothness term Jsmooth(L), this term measures the discontinuity between node p

and its neighboring pixels. The use of α-expansion imposes three constraints on the smoothing

term Jsmooth, see Equation (3.11):

1. Jsmooth(α, β) = 0⇔ α = β or Jsmooth(α, β) , 0⇔ α , β

2. Jsmooth(α, β) = Jsmooth(β, α) ≥ 0

3. Jsmooth(α, β) ≤ Jsmooth(α, γ) + Jsmooth(γ, β)

The first two terms tell that an energy between two different labels α and β should be non-zero.

If it is zero, then two labels are the same. The last term defines the triangle rule. A short cut

is always cheaper or similar than taking the whole path. If the smoothness term only satisfies

the first two terms, it is called a semi-metric term. If the last term is also satisfied, it is said a

metric term. The α-expansion algorithm can only be used with metric terms. Otherwise, the

alpha-beta swap can be used with semi-metric or metric terms. Note that in Equation (3.11),

Jsmooth(L) satisfies the metric term.

To follow the pre-stated requirements, we will encourage that any two neighbouring nodes

(p, q) ∈ E are 1) spatially close to each other; 2) if node p and q have similar colors, they tend

to have the same label.

Jsmooth(L) is directly linked to wpq, the edge weights of the image graph. The wpq is

defined as in Equation (E.1). In the present work, we propose the following variant definitions

for Jsmooth(L):

Js(p, q) = wpq
(
1 − δ(lp, lq)

)
, (3.13)

or

Js(p, q) =
wpq

‖p − q‖2
(
1 − δ(lp, lq)

)
, (3.14)

or

Js(p, q) = wpq fd(p, q)(1 − δ(`p, `q)) , (3.15)
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where δ(`p, `q) is the Kronecker’s delta:

δ(`p, `q) =

0, if `p , `q

1, if `p = `q .
(3.16)

In Equation (3.15), the distance between nodes is introduced via fd(p, q). This distance term

fd(p, q) is defined as:

fd(p, q) = exp
(
−λ2(p − q)Σ−1

d (p − q)T
)
. (3.17)

The matrix Σd is also considered diagonal. Let us denote d(p, q) as the L2 distance between the

node p and q. The d(p, q) =

√
(xp − xq)2 + (yp − yq)2. We propose several definitions for Σd

as follows:
1)

Σd =

 dE(p, q) 0
0 dE(p, q)

 , (3.18)

where dE(p, q) is the mean distance of all neighbouring points in the graph G, i.e.

∀(p, q) ∈ E, dE(p, q) =

∑
(p,q)∈E

d(p, q)

|E|

=

∑
(p,q)∈E

√
(xp − xq)2 + (yp − yq)2

|E|
. (3.19)

2)

Σd =

∑
(p,q)∈E

(
d(p, q) − dE(p, q)

)
|E|

. (3.20)

3)

Σd =

∑
(p,q)∈E

((
d(p, q) − dE(p, q)

)
· Pr(E)

)
|E|

, (3.21)

where Pr(E) is the probability of the distance of an edge falls into the bin that d(p, q) belongs

to. In our experiments, we set the number of bin size to 10.

Among the above three options for the distance term, the Equation (3.18) is easier to com-

pute and has been proven to achieve better graph cuts result. However, we have also observed

that embedding distance factor fd(p, q) in the smoothness term does not give any improvement

to partition results; in the case of sparse sampling, it is even worse. Therefore, we decide that

fd(p, q) can be factored out of the equations. In our case, we use Equation (3.13), i.e., we only

consider color and (or) texture factor(s) in the smoothness term in the following discussion.
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3.5.1.4 Seed selection

1) In the case of prominent keypoints approach: to ensure that seeds with different labels will

fall into heterogeneous regions in the image, we select seeds in such a way:

a) The fixed number of seed points S ⊂ P are chosen among the most prominent keypoints

in P; b) Different seeds should not be too close to each other and they should fall into

heterogeneous region of their own in the image. To achieve this purpose, we set empirically

both color and distance threshold to differentiate one seed from the other chosen ones.

For the ith seed point pi ∈ S, the data term is defined as:

D(pi, `) =

0 if ` = `i

∞ otherwise.
(3.22)

An example is shown in Figure 3.2(c).

2) In the context of dense sampling: The seed points are chosen from nodes that are the closest

to the barycentre of each regular cell, see Figure 3.9.

More complex seeds selection measures (such as, choosing interest points that have the

most strong response; separating different seeds with enough distance based on image size or

resolution) have been investigated, without improving the performance.

Figure 3.9: Seed points are in hollow circle of different colors. The graph nodes are in red solid
points.

3.5.1.5 Weakness

Due to the uncontrolled nature of the images available, automatically and precisely se-

lecting seeds from image is still beyond the reach of the state-of-the-art in computer vision.
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More precisely, if the seed points are manually selected, then the high level of user interac-

tion makes the Graph Cuts method useless; if the seeds are automatically selected, then the k

seed points will be highly dependent on the relationship between the background and the in-

terest object. Hence, in prominent keypoints approach, we applied a mask on the image before

running Graph Cuts to generate graph features. Unfortunately, the obtained seeds were still

not stable. An shown in Figure 3.10, three seeds between two images “fluor5Banana095” and

“fluor5Banana097” are relatively stable. In contrast, all three seeds in image “fluor5Banana098”

have fallen into background. Moreover, two of these seeds are not matched with these ones in

other two images.
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Seeds Labeling results

Figure 3.10: Examples of seeds selection in prominent keypoints approach. The stability of seeds
is hardly reached due to the uncontrolled nature of the images available. All examples of images
are from SIVAL dataset [10]. There are three seeds in each image, and these seeds are labelled with
their own colors (in red, orange and yellow). This figure is better viewed in color.
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3.5.1.6 Graph Cuts in applications

The Graph Cuts based methods have wide applications in computer vision community, such

as clustering (image segmentation) [129], image labeling [130, 131], image restoration [9, 132],

multicamera scene reconstruction [8], registration [133, 134], object tracking [135], interactive

seeded segmentation [122, 125], reducing metrication errors, filtering, stereo matching [8],

recovering the deformation map etc.

3.5.2 Normalized Cuts

As a spectral clustering technique, Normalized Cuts (NCuts) [5], is an unsupervised method

based on two graph-theoretic criteria: maximize the total dissimilarity between different sub-

graphs as well as the similarity within each subgraph. Its principle is to find a minimal cut

which is a combination of edges having minimal sum of edge values (i.e. find the least alike

pairs of nodes). Removing these edges divides the graph G j into unconnected subgraphs, such

that the similarity between nodes within a subgraph is greater than the similarity between nodes

in separated subgraphs. The advantage of the normalized cut method is that it considers two

aspects of graph segmentation: minimal cut (i.e. better separation) and preferring segments of

large size.

3.5.2.1 Basic concepts and theory

The set of points in an arbitrary feature space can be represented as a weighted undirected

graph G = (V, E), where the nodes of the graph are the points in the feature space and an edge

is formed between every pair of nodes. The weight on each edge, wi j, represents the similarity

between nodes i and j.

A graph can be partitioned into two disjoint sets A and B, with A∩B = V and A∪B = ∅,

by removing edges connecting the two parts.

Definition 8. Link Let us denote links(A,B) to be the sum of the edge weights between nodes
in two disjoint sets A and B.

links(A,B) =
∑

p∈A,q∈B

wpq . (3.23)

Definition 9. Degree We furthermore define the degree of A as the links of nodes in A to all
the vertices in the graph G, that is, degree(A) = links(A,V).
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Definition 10. Association The association (sum of all the weights) within the cluster A is
denoted by

assoc(A,A) =
∑

p∈A,q∈A

wpq . (3.24)

Definition 11. Cut The degree of dissimilarity between A and B can be measured by cut(A,B),
which is defined as the sum of all the weights being cut,

cut(A,B) =
∑

p∈A,q∈B

wpq . (3.25)

Using a minimum cut as a segmentation criterion does not result in reasonable clusters,

since the smallest cuts usually involve isolating a single pixel. Instead of using the value of total

edge weight connecting the two partitions, Shi et al. [5] proposed a disassociation measure to

compute the cut cost as a fraction of the total edge connections to all the nodes in the graph. It

is called the Normalized Cut (NCut). The Normalized Cut examines the affinities (similarities)

between nearby pixels and tries to separate groups that are connected by weak affinities.

Definition 12. Normalized Cut (NCut) The disassociation criterion for normalized cut of A
and B is given by

NCut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)
assoc(B,V)

, (3.26)

where assoc(A,V) = assoc(A,A) + cut(A,B) =
∑

p∈A,q∈V
w(p, q) is the total connection from

nodes in A to all nodes in the graph and assoc(B,V) is similarly defined.

Definition 13. Normalized association (Nassoc) The normalized association can be defined
as

Nassoc(A,B) =
assoc(A,A)
assoc(A,V)

+
assoc(B,B)
assoc(B,V)

, (3.27)

where assoc(A,A) and assoc(B,B) are total weights of edges connecting nodes within A and
B respectively.

Shi et al. [5] have proven that minimizing the disassociation (Equation (3.26)) is equiv-

alent to maximizing the association (Equation (3.27)) within the groups according to Equa-

tion (3.28)).

NCut(A,B) = 2 − Nassoc(A,B) . (3.28)

The two equivalent objective functions above can also be interpreted as seeking to minimize the

cut relative to the degree of a cluster instead of its size. Hence, the objectives in Equation (3.26)
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and Equation (3.27) can be expressed as Equation (3.29) and Equation (3.30) respectively, as

follows:

minA,B
( links(A,B)

degree(A)
+

links(B,A)
degree(B)

)
(3.29)

maxA,B
( links(A,A)

degree(A)
+

links(B,B)
degree(B)

)
(3.30)

3.5.2.2 Computing NCut by eigen-value decomposition

Unfortunately, computing the optimal NCut is NP-complete. Instead, Shi et al. suggested

solving NCuts as a regular eigenvalue problem by computing a real-valued assignment of nodes

to groups. Let x be an indicator vector of |V | dimension, where xp = 1 if node p is in A and

xp = −1 otherwise. W is an |V | × |V | symmetrical matrix with W(p, q) = wpq. l = {1, . . . , 1}ᵀ

is an |V | × 1 vector of all ones. Let d = Wl be the row sums of the symmetrical matrix W,

d(p) =
∑

q wpq, be the total connection from node p to all other nodes, and D = diag(d) is the

corresponding |V | × |V | diagonal matrix with d on its diagonal, Dpp =
|V |∑

q=1
wpq.

With the above notations, Shi et al. [5] have proved that minimizing the Normalized Cut

over all possible indicator vectors x is equivalent to minimizing the Rayleigh quotient [136] in

the following Equation (3.31).

arg min NCut(x) = arg miny(p)∈{1,−b},yT Dl=0
yT (D −W)y
yT Dy

= y1 . (3.31)

where y =
(

(1 + x) − b(1 − x)
)
/2, b = k

1−k , k =

∑
xi>0 di∑

i di
. Obviously, y is a vector consisting of

1s and -bs such that y · d = 0. Here in Equation (3.31), y1 is the second smallest eigenvector

corresponding to the 2nd smallest eigenvalue of Equation (3.32).

(D −W)y = λDy . (3.32)

The Equation (3.32) can be turned into a regular eigenvalue problem:

(I − N)z = λz , (3.33)

where I is unit matrix and N = D−
1
2 WD

1
2 is the normalized affinity matrix and z = D

1
2y.

The matrix (D − W) is called the Laplacian matrix, which is known to be positive semi-

definite [137] 1.
1The real matrix A is called positive semi-definite if zT Az > 0, where zT denotes the transpose of the vector z.

A is a Hermitian matrix all of whose eigenvalues are non-negative.
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3.5.2.3 The grouping algorithm description

Assume that an image is to be segmented via Normalized Cut, the algorithm of Normalized

Cut is summarized as follows:

(1) Define the feature description matrix for a given image and a weighting function.

(2) Set up a weighted graph G = (V, E), compute the edge weights and summarize information

into W and D, as described in Section 3.5.2.2. The entries of matrix W is W(p, q) = wpq.

Its definition can be referred to Equation (E.1).

(3) Define the matrix D, a N × N diagonal matrix with d(p) =
∑

q W(p, q) on its diagonal.

(4) Solve (D −W)x = λDx for eigenvectors with the smallest eigenvalues.

(5) Use the eigenvector with second smallest eigenvalue to bipartition the graph by finding the

splitting points so that NCut is minimized.

(6) Decide whether the current partition is stable and check the value of the resulting NCut. If

the current partition should be subdivided, recursively repartition the segmented parts (go

to step 2), otherwise exit.

The stability criterion is defined to measure the degree of smoothness in the eigenvector values.

The simplest definition is based on first computing the histogram of the eigenvector values

and then computing the ratio between the minimum and maximum values in the bins. In our

experiments, we set a threshold on the ratio described above. The eigenvector which is smaller

than the threshold is unstable. The value is set to be 0.05 in all our experiments.

3.5.2.4 Multiclass cuts of general weighted graph

Concerning multiclass K-way partitioning ΓK
V j

on a given I j, the K-way normalized cut

problem [123] is to minimize the links that escape a cluster relative to the total “weight” of the

cluster. The NCuts objective function, as a generalization of Equation (3.29), is expressed as:

WNcuts(G j) = min
v j,1, ··· , v j,K

K∑
k=1

links(v j,k,V j \ v j,k)
w(v j,k)

(3.34)

Then Equation (3.30) can be rewritten as:

WNassoc(G j) = max
v j,1, ··· , v j,K

K∑
k=1

links(v j,k, v j,k)
w(v j,k)

(3.35)
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Again, minimizing the disassociation factor in Equation (3.34) is equivalent to maximizing

the association criterion in Equation (3.35).

Beside Normalized Cut objective function, we enumerate three prominent partitioning ob-

jectives for reference as follows:

Kernighan-Lin Objective The partitions in Kernighan-Lin (K-L) [138] are required to be

of equal size. Suppose G = (V, E, W) is divided into K partitions, then its objective can be

written as

KL(G) = minv j,1, ··· , v j,K

K∑
k=1

links(v j,k,V j \ v j,k)
|v j,k|

, (3.36)

subject to |v j,k| = |V j|/K, ∀k = 1, . . . ,K .

Ratio Cut The Ratio cut [139] is a generalization of the Kernighan-Lin Objective. It does not

require the partitions to be equal (sans cluster size restrictions). Its objective aims to minimize

the cut between clusters and the remaining vertices. It is expressed as

RCut(G j) = minv j,1, ··· , v j,K

K∑
k=1

links(v j,k,V j \ v j,k)
|v j,k|

. (3.37)

Ratio Association The ration association [5], also known as average association, seeks to

maximize within-cluster association relative to the size of the cluster. The objective reads as

RAssoc(G j) = maxv j,1, ··· , v j,K

K∑
k=1

links(v j,k, v j,k)
|v j,k|

. (3.38)

3.5.2.5 Normalized Cuts in applications

The Normalized Cut was initially proposed by J.Shi and J.Malik [5] for image segmen-

tation. One the one hand, NCuts treat image segmentation as a graph partitioning problem,

many researchers have applied it to (spectral) graph clustering [118, 119, 123, 140]. On the

other hand, since NCuts can extract the global impression of an image, it is frequently used as

a pre-processing step in image precessing, for example, superpixels [17].
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3.5.3 Kernel Based Multilevel Graph Clustering Algorithms

The Normalized Cut can be quite slow because it requires the solution of large sparse

eigenvalue problems. Dhillon et al. [119] have developed a fast multilevel algorithm that di-

rectly optimizes various weighted graph clustering objectives by kernel k-means (KKM). The

authors proved that different objective functions such as those from Ratio cut [139] and NCuts

can be unified mathematically as a matrix trace maximization problem [141]. Therefore, given

a general graph weight matrix W, the graph clustering processes can be refined depending on

an updated adjacency matrix for the current level, following three phases: coarsening, based-

clustering and refinement. In this thesis, we get the best results when adopting this algorithm

for graph partitioning. More detail about this approach and its three phases are described below.

3.5.3.1 The standard k-means clustering algorithm

K-means [84] is an unsupervised learning algorithm that solves the well known clustering

problem. The standard k-means procedure classifies a given data set through k clusters fixed a

priori.

Given a set of vectors {ai}
N
i=1 = {a1, . . . ,aN}

1, the k-means algorithm seeks to find K

clusters π1, . . . ,πK that minimize the objective function:

D({πk}
K
k=1) =

K∑
k=1

∑
ai∈πk

d(ai,mk) =

K∑
k=1

∑
ai∈πk

‖ ai −mk ‖
2 , (3.39)

where

mk =

∑
ai∈πk ai

|πk|

is the centroid (or mean) of the k-th cluster πk for the clustering (or partitioning) {πk}
K
k=1,

d(ai,mk) is the distance between the vector ai and the centroid mk. The term ‖ ai −mk ‖
2 is

a chosen distortion measure (squared Euclidean distance here) between data vector ai and the

cluster centremk.

A disadvantage of k-means is that clusters are only separable by linear hyperplane. A

kernel version of k-means is used to counter this weakness, allowing data to be separated in

non-linear space.

1ai is a point in Rm
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3.5.3.2 Kernel k-means

The kernel k-means algorithm [142], as its name implied, is a kernel version of k-means.

The difference between standard k-means and kernel k-means objective function is that we

replace ai in Equation (3.39) with a mapping function φ(ai), as following:

D({πk}
K
k=1) =

K∑
k=1

∑
ai∈πk

d(φ(ai), m̃k) (3.40)

=

K∑
k=1

∑
ai∈πk

‖ φ(ai) − m̃k ‖
2

=

K∑
k=1

∑
ai∈πk

(
φ(ai) · φ(ai) −

2
∑

a j∈πk φ(ai) · φ(a j)

|πk|
+

∑
a j,al∈πk φ(a j) · φ(al)

|πk|
2

)
,

where

m̃k =

∑
ai∈πk φ(ai)
|πk|

is the centroid of the k-th cluster πk for the clustering {πk}
K
k=1, φ(ai) denotes the data point ai in

transformed space. The function φ is essential for mapping data points to a higher dimensional

feature space. This mapping results in linear separators in that higher feature space, which

correspond to non-linear separators in the original input space.

As explained in [143], a positive semi-definite matrix can be interpreted as a Gram ma-

trix 1. Hence, any positive semi-definite matrix K can be considered as a kernel matrix. Let

us define a kernel matrix K, whose entry Ki j = φ(ai) · φ(a j) = κ(ai,a j), and κ(·, ·) is a kernel

function to map the original points to inner products. Then, the squared Euclidean distances

between points and centroids (both are in Rm) can be computed only by inner products, i.e. the

elements of kernel matrix. As shown in Equation (3.40), only inner products are used in this

computation. We do not even need to know explicit representations of φ(ai) and φ(a j) in order

to compute the distances between points and centroids. A few of popular kernel functions are

listed in Table 3.1.

1Given a set of vectors {ai}
N
i=1 = {a1, . . . ,aN} (points in Rm), the Gram matrix G is the matrix of all possible

inner products of {ai}
n
i=1, i.e., gi j = aT

i a j ,where (·)T denotes the transpose.
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Table 3.1: Examples of commonly used kernel functions.

Polynomial Kernel κ(ai,a j) = (ai · a j + c)d

Gaussian Kernel κ(ai,a j) = exp
(
− ‖ ai − a j ‖

2 /2α2)
Sigmoid Kernel κ(ai,a j) = tanh

(
c(ai · a j) + θ

)

3.5.3.3 Weighted kernel k-means

In the weighted graph, the edge weights play an important role. For that reason, a weighted

version of the kernel k-means is used for graph partitioning in our applications.

The weighted kernel k-means was first introduced in [123], its objective function can be

written as the minimization of:

D({πk}
K
k=1) =

K∑
k=1

∑
ai∈πk

wi d(φ(ai), m̃k) =

K∑
k=1

∑
ai∈πk

wi ‖ φ(ai) − m̃k ‖
2 , (3.41)

where

m̃k =

∑
ai∈πk wiφ(ai)∑

ai∈πk wi
= argminz

∑
ai∈πk

wi ‖ φ(ai) − z ‖2

represents the “best” cluster representative, and the weights are non-negative (wi > 0). Sim-

ilarly in Equation (3.40), the clusters can be computed by using the entries of kernel matrix

since the term

wi ‖ φ(ai) − m̃k ‖
2 = φ(ai) · φ(ai) −

2
∑

a j∈πk w jφ(ai) · φ(a j)∑
a j∈πk w j

+

∑
a j,al∈πk w jwlφ(a j) · φ(al)

(
∑

a j∈πk w j)2

= Kii −
2
∑

a j∈πk w jKi j∑
a j∈πk w j

+

∑
a j,al∈πk w jwlK jl

(
∑

a j∈πk w j)2 , (3.42)

only requires computing inner products.

The basic graph partitioning procedure by weighted kernel k-means is illustrated in Algo-

rithm 2. If the number of data points is n, the data dimension is m, the total number of iterations

is τ, then the time complexity of the algorithm is O(n2(τ + m)). The complexity can be further

reduced to O(nz · τ), if kernel matrix K is a sparse matrix, with nz as the number of nonzero

entries in the matrix (nz = n2 for a dense kernel matrix).
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Algorithm 2 Graph clustering by weighted kernel k-means

Require: Weighted graph G = (V, E,W), kernel matrix K, fixed clusters number K, optional
initial clusters {π(0)

c }
k
c=1, iteration counter t, optional maximum number of iterations tmax.

Ensure: Output final clusters {πk}
K
k=1 .

1: set t ← 0, initialize the K clusters π0
1, . . . , π

0
K if not given.

2: while t < tmax or not converged do
3: for each graph node ai ∈ V do
4: for every cluster k do
5: compute wi d(φ(ai), m̃k) in Equation (3.42)
6: end for
7: c∗(ai) = argmink

(
wi d(φ(ai)

)
8: end for
9: Update the clusters as π(t+1)

c = {a : c∗(ai) = c} .
10: set t ← t + 1
11: end while
12: output final clusters {π(t)

k }
K
k=1 .

3.5.3.4 Multilevel weighted kernel k-means algorithm

The multilevel scheme Dhillon et al. developed a general graph clustering algorithm based

on multilevel methods [11]. This algorithm works for a wide class of graph clustering ob-

jectives. It includes three phases: coarsening, based-clustering and refinement. We describe

each of these phases in more detail below. An illustration of this multilevel K-way partitioning

scheme for irregular graphs is shown in Figure 3.11.

Coarsening phase Let us denote the edge weight between vertices x and y by e(x, y), weights

of vertices x and y are w(x) and w(y) respectively. We define the weight of a vertex as its degree

(see Definition 9), in case of Normalized Cuts.

Starting with the initial graph G0 = (V0, E0,W0), the coarsening phase repeatedly trans-

forms the graph into smaller graphs G1,G2, . . . ,Gm such that |V0| > |V1| > . . . > |Vm|. During

coarsening phase, a set of nodes of the graph Gl is combined into a single super vetex in a

coarser graph Gl+1. The super vertex is formed in such a way: Given an unmarked vertex x in

graph Gl = (Vl, El,Wl), we seek to combine the vertex x with another vertex y ∈ Vl that assures
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Figure 3.11: An overview of the kernel-based multilevel algorithm for graph clustering proposed
by Dhillon et al. [11], here K = 6. A part of this image is excerpted from [12].

the following criterion:

max
(
e(x, y)
w(x)

+
e(x, y)
w(y)

)
. (3.43)

The weights of the super vertices of the coarser graph reflect the weights of the vertices of the

finer graph. This procedure is described as in Algorithm 3.

Base clustering phase After the coarsening phase, we get the coarsest graph Gm that contains

much smaller number of vertices than the initial graph G0. We can specify how smaller Gm to be

by using a pre-defined parameter. In the experiments, we keep coarsening the graph as long as

the number of graph nodes is sufficiently larger than max( |V |5K , 20), where K is a fixed number of

desired clusters. Once the coarsening phase is finished, we can apply different graph clustering

objectives (see Section 3.5.2.4) on the coarsest graph until K clusters are obtained. We call this

phase as “base clustering”. In the present work, we use the NCuts objective function, as defined

in Equation (3.34). This initial clustering is efficient in terms of speed, since the coarsest graph

Gm is significantly smaller that the input graph G0.

Refinement phase In the final refining phase, given a graph Gl, we build the finer graph Gl−1

(Gl−1 is the same graph used in level l − 1 in the coarsening phase). An initial clustering for

the graph Gl−1 is defined in the following way: If a super vertex is in the cluster k in Gl, then
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all nodes in Gl−1 that formed this super vertex are in cluster k. At all levels except the coarsest

level of Gm, the initial clustering of the graph is extended from the previous coarser level.

As justified in [141], both a general weighted kernel k-means objective and a weighted

graph partitioning objective can be mathematically expressed as matrix trace maximizations

problem. This equivalence has important significations: we can directly apply the weighted

kernel k-means algorithm, as described in Algorithm 2, to optimize the graph partitioning ob-

jectives such as Ratio cut, Normalized cut and ratio association etc, and vice versa. Hence,

after the initialization step, we run the weighted kernel k-means algorithm recursively to refine

the clustering from the coarsest graph Gm to the original graph G0. The algorithm can converge

very quickly at each level, due to good initial clustering.

Algorithm 3 Graph clustering in coarsening phase
Require: Initial graph G0 = (V0, E0,W0).
Ensure: Output a series of smaller graphs G1,G2, . . . ,Gm on coarse level l = 1, 2, . . . ,m.

1: set t ← 0, ∀x ∈ V0, unmark(x).
2: while l < m do
3: for current level l with its corresponding graph Gl = (Vl, El,Wl) do
4: unmark(x), x ∈ Vl

5: repeat
6: for each unmarked x ∈ Vl do
7: if @y ∈ Vl that is unmarked then
8: mark(x)
9: else

10: find y that satisfies the Equation (3.43)
11: super vertex z← merge x and y
12: w(z) = w(x) + w(y)
13: end if
14: end for
15: until marked(x) is true, ∀x ∈ Vl

16: end for
17: end while
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3.5.3.5 Kernel k-means in applications

In real life data set, the structures are often hard to be separated in linear space. Kernel

k-means (KKM) has been suitable to identify clusters that are non-linearly separable in input

space. For instance, Dhillon et al. [123] applied KKM to diametrical clustering of gene expres-

sion and handwriting recognition, and achieved good results. One of disadvantages for KKM

is that the number of cluster centres need to be predefined.

3.6 Illustrations of Graph Partitioning

In this Section, several examples are enumerated on the graph partitioning results obtained

by using the aforementioned three different partitioning methods. The images are selected

from six categories: “accordion” (Figure 3.12 and Figure 3.18), “faces” (Figure 3.13 and Fig-

ure 3.19), “pagoda” (Figure 3.14 and Figure 3.20), “trilobite” (Figure 3.14 and Figure 3.20),

“cellphone” (Figure 3.16 and Figure 3.22), and “motorbikes” (Figure 3.17 and Figure 3.23) in

Caltech-101 dataset [144]. Here we only list five examples per category. More details will be

discussed in Section 6.9.1 of the Chapter 6.

Figure 3.12, Figure 3.13, Figure 3.14, Figure 3.15, Figure 3.16 and Figure 3.17 present

images that are divided into 4 subgraphs with three different methods: either Graph Cuts (GC)

or Normalized Cuts (NC) or kernel k-means (KKM). The name of each image is marked on the

left side of the figure.

In like manner, Figure 3.18, Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22 and Fig-

ure 3.23 illustrate the partitioning results in which each image is composed of 16 irregular

subgraphs. The 1-3 columns in each figure correspond to the partitioning results obtained via

Graph Cuts (GC), Normalized Cut (NC), kernel k-means (KKM) respectively.

Some observations on these (eight) figures: 1) There exist very small subgraphs that contain

only a few of isolated points in partitions, e.g. an isolated green point on image accordion0031

(GC) in the Figure 3.12; two scattered red points in pagoda0035 (GC) and pagoda0047 (GC)

in Figure 3.14; two isolated points in blue and garnet red color respectively in faces0039 (GC)

in Figure 3.19 etc. 2) In case of 4 partitions per image, object of interest can be represented

by only one or two subgraphs. 3) Despite the weights (objective function) defined on the

graph edges are the same, the partitioning results (obtained subgraphs) vary from individual to

individual in the same image.
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Figure 3.12: Examples of graph partitioning in 4 irregular subgraphs on five examples in category
“accordion” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.13: Examples of graph partitioning in 4 irregular subgraphs on five examples in category
“faces” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.

3.7 Conclusions

In this Chapter, we have presented three typical graph partitioning approaches: Graph Cuts,

Normalized Cuts, and kernel based multilevel graph clustering algorithm. These three methods

will be used in our proposed model in the next Chapter 4 and be compared in Chapter 6.
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Figure 3.14: Examples of graph partitioning in 4 irregular subgraphs on five examples in category
“pagoda” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.15: Examples of graph partitioning in 4 irregular subgraphs on five examples in category
“trilobite” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.16: Examples of graph partitioning in 4 irregular subgraphs on five examples in category
“cellphone” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.

63



3. GRAPH-BASED IMAGE REPRESENTATION

m
ot

or
bi

ke
s0

04
2

m
ot

or
bi

ke
s0

04
3

m
ot

or
bi

ke
s0

04
7

m
ot

or
bi

ke
s0

05
5

m
ot

or
bi

k e
s0

05
9

Graph Cuts Normalized Cut KKM

Figure 3.17: Examples of graph partitioning in 4 irregular subgraphs on five examples in category
“motorbikes” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.18: Examples of graph partitioning in 16 irregular subgraphs on five examples in category
“accordion” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.19: Examples of graph partitioning in 16 irregular subgraphs on five examples in category
“faces” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.20: Examples of graph partitioning in 16 irregular subgraphs on five examples in category
“pagoda” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.21: Examples of graph partitioning in 16 irregular subgraphs on five examples in category
“trilobite” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.

68



3.7 Conclusions

ce
llp

ho
ne

00
32

ce
llp

ho
ne

00
35

ce
llp

ho
ne

00
49

ce
llp

ho
ne

00
51

ce
llp

ho
ne

00
59

Graph Cuts Normalized Cut KKM

Figure 3.22: Examples of graph partitioning in 16 irregular subgraphs on five examples in category
“cellphone” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.
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Figure 3.23: Examples of graph partitioning in 16 irregular subgraphs on five examples in category
“motorbikes” from Caltech-101 dataset by three methods: Graph Cuts (GC), Normalized Cut (NC),
kernel k-means (KKM). This figure is better viewed in color.

70



Chapter 4

Bag-of-Bags of Words Model

In this chapter, we introduce the proposed ‘Bag-of-Bags of Words’ model. We aim to model

an image by graphs. An image is first represented as an undirected weighted graph. This initial

image graph is partitioned into a fixed number of subgraphs that describe similar components

in the image. Each subgraph is further described by bag-of-words features. Finally, a novel

graph-based image representation model derives from those subgraphs descriptors.

4.1 Overview of the Bag-of-Bags of Words Model

Before introducing our model formally, here we explain its general principle and construc-

tion. Bag-of-Bags of Words for a given image, is a set of Bag-of-Words (BoWs). Each of

BoWs is computed on vertices of image subgraph obtained by irregular partition of image

graph. Next, the rationale for our “Bag-of-Bags” is in the correlation with two notable con-

cepts: 1) Bag of Features (BoF) [31], i.e., the unordered set of local descriptors extracted from

an image. These local features are extracted from either fixed grid points or detected points of

interest in the image. 2) “Bag-of-Words” (BoW) model, as proposed by Sivic et al. [16] and

Csurka et al. [80]. Indeed, our description is a set of unordered features (BoF), each feature

being a BoW built upon an image subgraph.

We will now describe a methodology for the construction of BBoW model. Then in Sec-

tion 4.1.4, we will formalize the model more thoroughly. In Section 4.3, we present our contri-

bution regarding the use of our BBoW model for image retrieval.

The BBoW model of an image is built as follows: 1) Select a reduced number of pixels V;

2) Build an initial image graph G; 3) Partition the graph G into K subgraphs; 4) Compute a
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4. BAG-OF-BAGS OF WORDS MODEL

signature for each subgraph.

The signature of a subgraph is a histogram of codeword occurrences, obtained by assigning

the feature vector of each graph node in this subgraph to the closest visual word in the code-

book. Hence, an image composed of K subgraphs is characterized by a set of K histograms. An

overview of the proposed framework is shown in Figure 4.1. In the following, we will detail

how to construct the BBoW model step by step.

Figure 4.1: The diagram of construction of Bag-of-Bags of Words model.

4.1.1 Feature Extraction

Firstly, given an input image I j, we extract local image features from image patch. Different

types of popular descriptors such as SIFT [2] or SURF [35] etc., can be used to describe local

features as vectors from the patches. The local features are extracted from either prominent

keypoints or dense sampling points on regular grid.

In case of prominent keypoints approach, any interest points detection algorithms can be

used to extract keypoints. In the present work, we use SURF [35] as image descriptors to

extract feature points under the mask of the image for the interest object. In order to avoid

these points are too close to each other in positions, we filter those points by keeping only the

most prominent keypoint over any 10-pixels diametrical region. The obtained filtered keypoints

P = {p1, ..., pn} are selected as vertices of the initial image graph.
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4.1 Overview of the Bag-of-Bags of Words Model

In case of dense sampling strategy, the image features are computed using only the SIFT [2]

feature vectors of all dense sampling points. We use an overlap between patches of 50% to

reach a compromise between repeatability of interest points and reasonable size of features. Its

corresponding pipeline is illustrated in Figure 4.2.

Figure 4.2: The dense points sampling approach in BBoW model.

4.1.2 Graph Construction

Secondly, we build an undirected weighted graph G j = (V j, E j,W j) on the image I j. We

call it the initial image graph.

As defined in Section 3.3.1 and Section 4.1.1, the graph nodes are positioned on either

filtered prominent keypoints or on the dense sampling points at a regular grid. Once these graph

nodes are localized, we head to generate edges and define the corresponding weights of these

edges. The graph edges represent relationship between graph nodes. They are generated by

linking these vertices in specified neighbourhood system (see Figure 3.3), as we have discussed

in Section 3.3.2. In such a way, one connected image graph is generated for each image.

The edge weight reflects the similarity between the two nodes of that edge. Such a similarity

measurement depends on a specified objective function. Let us denote by W, a symmetric

matrix of edge weights between all nodes. Then the edge weights are represented by non-zero

entries of this affinity matrix W, see Equation (3.1).
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4. BAG-OF-BAGS OF WORDS MODEL

4.1.3 Irregular Subgraphs

Thirdly, the initial image graph is separated into a fixed number of K partitions (sub-

graphs) [12] via graph partitioning.

Case study: prominent keypoints approach in BBoW model Let us denote G = (V, E)

a graph generated by the Delaunay triangulation. The vertices set V contains all the feature

points, i.e. V = P. The edges set E contains all unordered pairs of points {p, q} that are

neighbours in the Delaunay graph. We want to separate graph G into K smaller graphs via

Graph Cuts. This can be formulated as a labeling problem: given a points set P in image I j,

and a label set L = {l1, . . . , lK}, for each p ∈ P, we are looking for its label l(p) = lp ∈ L.

In order to be consistent with the image content, we construct a set of sub-graphs {g j,1, · · · , g j,K},

according to the following requirements: each sub-graph, 1) should be as compact as possible;

2) should have, as much as possible, a uniform color. To solve this labeling problem, we

minimize the energy function defined in Equation (3.11) of Chapter 3, via α-expansion [8]

algorithm in Graph Cuts. An illustration will be given in Section 6.4 of the Chapter 6.

Case study: dense sampling approach in BBoW model Since prominent keypoints ap-

proach in BBoW model does not exhibit promising result, we hence go for dense sampling

approach in the following discussion. An example of irregular subgraphs obtained by dense

sampling approach in BBoW model, is illustrated in Figure 4.3.

As discussed in Section 3.4, we assess three standard approaches for irregular graph parti-

tions in the BBoW model. These methods are: Graph Cuts, Normalized Cuts and kernel-based

multilevel weighted graph cuts. Here we stress that the idea of applying graph partitioning

methods to image graph is not novel, e.g., [124, 145, 146]. Our contribution lies in rigorously

demonstrating that irregular (sub)graph-based representation is well-suited to pre-clustering

interest points accounting for color and texture similarity, and that this representation extends

BoWs model with spatial layouts, combines the advantages of SPM as well.

4.1.4 Bag-of-Bags of Words Description

Fourthly, we compute image signatures by designing a measure for describing these sub-

graphs. As in the standard BoW approach, we first build a codebook from all image features

in a training image dataset. The codebook is computed by using k-means clustering method
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4.2 (Dis-)Similarity Measurement between Histograms

Figure 4.3: The obtained irregular subgraphs via graph partitioning.

over these features vectors, therefore, it is independent from any partitioning scheme. The

codewords C then correspond to the centres of the learned clusters. A bag of visual word

representation, i.e. a histogram of word frequencies, is then assigned to each subgraph.

Let us denote by H j,k a signature of the subgraph g j,k (k = 1, . . . ,K) in image I j. H j,k

is a Bag-of-Words histogram, obtained by assigning the SIFT (or SURF) features within the

subgraph g j,k to the nearest codeword (hard assignment), as in the standard BoW approach.

Hence, the BBoW representation of image I j for this partitioning is a histogram vector H j =

{H j,1, . . . ,H j,K} of length K, normalized by the number of nodes in the initial image graph G j.

With such a normalization, the larger subgraphs are privileged. We call H j the “Bag-of-Bags

of Words” (BBoW) description. See Figure 4.4.

4.2 (Dis-)Similarity Measurement between Histograms

A histogram is a collection of bins that count a frequency distribution of data. This im-

portant statistical characteristic is useful to represent the distribution of pixel intensity, color

and texture of images. The histogram representation has several advantages. It is easy to com-

pute, intuitive and invariant to translation and rotation about view plane etc. When images

are characterized by histograms, comparing images is equivalent to computing the distances or

(dis-)similarities between their model histograms.
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4. BAG-OF-BAGS OF WORDS MODEL

Figure 4.4: The “Bag-of-Bags of Words” description.

A number of measures for computing the histogram distance have been proposed. There

exist two main categories of distances between histograms: the bin-by-bin distances and the

cross-bin distances.

The bin-by-bin type of distances require histograms with the same number of bins. We can

list a few of them: L1 distance (Equation (2.11)), L2 distance (Equation (2.12)), χ2 statistics

(Equation (2.13)), histogram intersection (Equation (4.2)), Kullback-Leibler divergence (Equa-

tion (2.14)), Jeffrey divergence (Equation (2.15)) etc. They are labeled as DL1 , DL2 , Dχ2, K∩,

DKL and DJe, respectively in this thesis. The performance of bin-by-bin distance depends on

the number of bins in the histogram. When the number of bins is high, the distance is discrim-

inative, but not robust. Contrarily, if the number of bins is low, the distance is robust, but not

discriminative.

As for the cross-bins distances, two typical cross-bin metrics are Mahalanobis distance [147]

and Earth Mover’s Distance (EMD) [148]. Mahalanobis distance measures the separation of

two distributions. Formally speaking, Mahalanobis distance belongs to the family of Quadratic-

Form distance [149, 150]. When two compared distributions are vectors, for example, two

histograms, Mahalanobis distance is defined as:

QFA(G,H) =
√

(G − H)T A(G − H) , (4.1)

where G and H are two histograms with the same bin size and A is the bin-similarity matrix that

is the inverse of covariance matrix. Equation (4.1) is a metric (semi-metric) if A is positive-

definitive (positive-semidefinite). The EMD measures the minimal cost that must be paid to
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4.3 BBoW on Single Level for Image Retrieval

transform one distribution into the other. This distance can operate on variable-length repre-

sentations of the distribution. It is widely used in content-based image retrieval to compute

distances between the color histograms of two images [151].

For couples of the aforementioned distances, they have been formulated in Section 2.1.7

of the Chapter 2. In the following, we will give emphasis to an important similarity measure -

histogram intersection, which is adopted in the present work.

Histogram intersection: Let us denote by G = {g1, . . . , gB} and H = {h1, . . . , hB}, are two

normalized histograms with B bins. Particularly, these two histograms are normalized to one,

i.e.
B∑

b=1

gb =

B∑
b=1

hb = 1. Histogram intersection (HI) is defined as:

K∩(G,H) =

B∑
b=1

min(gb, hb) . (4.2)

Histogram intersection was first introduced by Swain et al. [44] as a technique of comparing

image and model histograms for color indexing. It is a useful similarity measure for images and

is even proved to be an effective kernel for machine learning [152]. The similarity measures in

the BBoW model are based on histogram intersection.

There is an alternative way to compute HI:

K∩(G,H) =
1
2

B∑
b=1

(gb + hb − |gb − hb|) , (4.3)

which improves computation efficiency, e.g. programming for a GPU, since we do not need

to explicitly compare the values of each bin. We verify the equivalence of Equation (4.2) and

Equation (4.3) in the Appendix D.

4.3 BBoW on Single Level for Image Retrieval

We now review how to apply the bag-of-bags of words model for image retrieval on a single

level of a partition.

In the framework of content-based image retrieval (CBIR), the most common method for

comparing two images is using either a similarity metric or an image distance measure. Both

of them can be in various dimensions. And they can consider the similarity of color, texture,

shape etc. or in a combination of them in images. The distance measure is negatively correlated
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4. BAG-OF-BAGS OF WORDS MODEL

with the corresponding similarity metric. That is to say, the more two images are similar, the

lower the distance value will be. For example, the distance is zero if two images are exactly

matched, i.e., they are identical.

In the BBoW model, after image graph partitioning, each image contains a fixed number

of K subgraphs. The image is thus represented by K BoVW histograms (subgraph signatures).

Using histograms to describe subgraphs, a comparison between two images Ii and I j becomes

equivalent to similarity search when comparing histogram signatures of their subgraphs. We

have adopted two strategies to define the similarity between images. We will explain the two

strategies in the following Section.

4.3.1 Co-occurrence Criteria

The first strategy to compare the two sets of subgraphs from two images consists in using

co-occurrence criteria such as those defined in [111].

We adopt the idea of RootSIFT [33] by first L1 normalizing the histograms and then

computing the histogram intersection of them. Since any image Ii is represented by a set

of histograms of its subgraphs Hi = {Hi,1, · · · ,Hi,K}; a (dis)similarity measure between two

(sub)graphs can be easily computed as we just need to compare their histogram signatures.

In such a way, we relate the similarity between two images with the similarity between BoW

histograms of the subgraphs in two images.

We have experimented different strategies to combine the K × K distances between a pair

of query image Ii, and database image I j from their corresponding histogram sets Hi and H j:

minimum, resp. sum of min, resp. mean, resp. median, resp. sum, resp. maximum, etc. of all

distances.

To compare two images Ii and I j that are composed of K subgraphs for each, we define a

series of similarity measures. We detail them as follows:

S min(Ii, I j) = min
k={1,...,K}

min
k′={1,...,K}

{

B∑
b=1

min(Hi,k(b),H j,k′(b))} , (4.4)

S sum-of-mins(Ii, I j) =

K∑
k=1

min
k′={1,...,K}

{

B∑
b=1

min(Hi,k(b),H j,k′(b))} , (4.5)

S sum-of-means(Ii, I j) =

K∑
k=1

meank′={1,...,K}{

B∑
b=1

min(Hi,k(b),H j,k′(b))} , (4.6)
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S sum-of-medians(Ii, I j) =

K∑
k=1

mediank′={1,...,K}{

B∑
b=1

min(Hi,k(b),H j,k′(b))} , (4.7)

S sum(Ii, I j) =

K∑
k=1

K∑
k′=1

{

B∑
b=1

min(Hi,k(b),H j,k′(b))} , (4.8)

S sum-of-maxima(Ii, I j) =

K∑
k=1

max
k′={1,...,K}

{

B∑
b=1

min(Hi,k(b),H j,k′(b))} . (4.9)

Our experiments have shown a better behaviour with Equation (4.4). We will discuss the

experimental results later in Section 6.4 of Chapter 6. This promising results based on Equa-

tion (4.4) promoted our second strategy in the Section 4.3.2.

In summary, image comparison via the co-occurrence criteria can be described in Algo-

rithm 4.

Algorithm 4 Image comparison via the co-occurrence criteria

Require: Given Image Ii with its K subgraphs {gi,k}
K
k=1 and I j with its K subgraphs {g j,k′}

K
k′=1

Ensure: Return a similarity score between image Ii and I j

1: for each subgraph gi,k in image Ii do
2: compute the BoVW histogram hi,k of the corresponding subgraph
3: end for
4: for each subgraph g j,k′ in image I j do
5: compute the BoVW histogram h j,k′ of the corresponding subgraph
6: end for
7: Similarity(Ii, I j) = S (∗)(Ii, I j), where (∗) is one of the co-occurrence criteria defined in

Section 4.3.1.

4.3.2 Weighted Bipartite Graph Matching

As discuss in previous Section, we compare images through comparing histogram signa-

tures of their subgraphs. Indeed, the subgraph attributed to label k can be at any position in

the image, see Figure 4.5. The spatial arrangement is lost if an image in a database undergoes

rotation, for instance. Hence, in order to overcome this issue, we cannot match histograms of

the subgraphs directly after the graph partitioning steps in BBoW model. We therefore need to

find optimal subgraphs matching between pairs of images so as to reorganize the histograms in

the BBoW description.
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Figure 4.5: Examples of image graph partitions from category ‘accordion’ in Caltech-101 dataset.
The partitions of 4 subgraphs are visible in the first row of the figure. The second row of the figure
shows 16 subgraphs in the partitioning. The nodes in each subgraph are labelled with the same
color. This figure is better viewed in color.

Given two images Ii and I j, and their corresponding subgraphs {gi,k}
K
k=1 and {g j,k′}

K
k′=1, we

are facing an assignment problem: given two sets of (sub)graphs (for two images), we need

to find the perfect matching or complete matching which maximizes the similarity between

all matched (sub)graphs. This problem may also be phrased as a minimization problem by

considering images Ii and I j as two partitions of a bipartite graph, the distance between the

signatures of subgraphs as a set of edge weights. The classical solution to this assignment

problem requires the use of a combinatorial optimization algorithm. For this purpose, we rely

on the Hungarian algorithm [153] to solve the problem in polynomial time O(K3), where K is

the number of subgraphs in the image.

The Hungarian algorithm minimizes the discrete transport cost (edge cost of the bipartite

graph) between two sets of objects (histograms of subgraphs in our case). The cost matrix Di, j
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between the pair of images Ii and I j reads:

Di, j =


d11

i, j . . . d1Kr
i, j

...

dKr1
i, j . . . dKrKr

i, j

 , (4.10)

where

dk,l
i, j =

B∑
b=1

|Hi,k(b) − H j,l(b)|

is the L1 distance between Hi,k and H j,l, which corresponds to the use of histogram intersection.

The proof can be found in the Claim B of the Appendix D.

Figure 4.6 shows a toy example illustrating the subgraph matching process. Given two im-

age Ii and I j and their BBoW description Hi = {Hi,a,Hi,b,Hi,c,Hi,d}, H j = {H j,1,H j,2,H j,3,H j,4},

the histogram distance of any pair of subgraphs between two images are computed. An exam-

ple of these distance values are shown as entries of a matrix in Figure 4.7. In this example,

the histogram distance between the subgraph gi,a of image Ii and the subgraph g j,1 of image

I j is 11. The Hungarian algorithm finds the minimum cost assignment for the cost matrix.

The subgraph gi,a in image Ii is optimal matched with the subgraph g j,1 in image I j, since the

transport cost (11) is the minimum value (underlined in red color) among these values of the

first row.

For computational efficiency, this matching step can be pre-computed once and stored.

A distance table and a label table can be constructed optionally, which records the distance

between all subgraphs being compared, and their corresponding labels. The distance values

are the entries in the aforementioned cost matrix Di, j. With this distance table, the procedure

of bipartite graph matching can be simplified to search in the look up tables. The storage

space being taken by the lookup tables is offset by the saved time, especially as the size of the

subgraphs increases.

After the processing step via the Hungarian algorithm, each label k of subgraph gi,k in im-

age Ii is associated to one label k′ = fi(k) of subgraph g j,k′ in image I j. We thus reorganize the

labels between the two sets of histograms {Hi,k}k=1, ..., K and {H j,k′}k′=1, ..., K in BBoW. There-

fore, the pairs of histograms to compare are identified. We call this step bipartite subgraphs

matching.
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Figure 4.6: Find optimal subgraph matching
via Hungarian algorithm.

Figure 4.7: An optimal assignment
for a given cost matrix.

Finally, the similarity score of two images Ii and I j can be expressed by histogram inter-

section kernel, formally introduced in Equation (4.2):

K∩
(
Hi,k,H j,k

)
=

B∑
b=1

min
(
Hi,k(b),H j,k(b)

)
. (4.11)

Here k corresponds the k-th subgraph, B is the number of bins.

Essentially, for the first strategy of using co-occurrence criteria, e.g. Equation (4.4) etc., it

can be seen as the application of the Histogram Intersection kernel [44, 152] (Equation (4.11))

directly to the histograms of any orderless subgraphs between two compared images.

To sum up, the second strategy can be interpreted in Algorithm 5.

4.4 Summary of the BBoW model for CBIR

Figure 4.8 demonstrates the procedure of image comparison in Bag-of-Bags of Words

model from an image database. Note that both Algorithm 4 and Algorithm 5 require com-

puting the bag-of-visual-words histogram for each subgraph.

Figure 4.8: The process of CBIR from database in BBoW model.

82



4.5 Discussion and Conclusion

Algorithm 5 Image comparison via Hungarian algorithm to reorganize histograms

Require: Given Image Ii with its K subgraphs {gi,k}
K
k=1 and I j with its K subgraphs {g j,k}

K
k=1

Ensure: Return a similarity score between image Ii and I j

1: for each subgraph gi,k in image Ii do
2: compute the BoVW histogram hi,k of the corresponding subgraph
3: end for
4: for each subgraph g j,k in image I j do
5: compute the BoVW histogram h j,k of the corresponding subgraph
6: end for
7: Build Di, j in Equation (4.10)
8: Run the Hungarian algorithm to reorganize histograms of subgraphs {i.e., each label k of

subgraph gi,k in image Ii is associated to one label k′ = fi(k) of subgraph g j,k′ in image I j}

9: Set Hi ← {Hi,k}k=1,...,K

10: Set H j ← {Hi,k′}k′=1,...,K

11: Similarity(Ii, I j) = K∩(Hi,H j)

4.5 Discussion and Conclusion

In the present Chapter, we have presented a novel model for image representation. The pro-

posed BBoW model with the aid of graphs, extends the classical bag-of-words (BoW ) model,

by embedding color homogeneity and limited spatial information through irregular partitions

of an image. The model well addresses fundamental limitations of the classical Bag-of-Words

model [16] and the regular structure of spatial pyramid representation [4]. We have also pro-

posed to embed spatial layout into our BBoW representation by bipartite subgraphs matching

via Hungarian algorithm. To the best of our knowledge, we are the first to apply Hungarian

algorithm to subgraphs matching on the task of spatial layout analysis in image representation.

We have observed that the generated subgraphs are often too small after graph partitioning

process. In such cases, subgraphs contain only a few of nodes. This makes the BBoW descrip-

tion less representative. In order to be more effective, we may consider removing these small

or inconsistent subgraphs. However, this technique will produce another problem: how to deal

with a set of histograms of different size in the final BBoW description. Again, if we choose a

different number of resolutions for different type of images, it also involves the same problem:

compare set of histograms of different size.

In the next Chapter, we propose to extend our model to multiple levels inspired by previous
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4. BAG-OF-BAGS OF WORDS MODEL

works, such as Montanvert et al. [154].
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Chapter 5

Irregular Pyramid Matching

In Chapter 4, we have introduced the proposed bag-of-bags of words (BBoW) model. The

BBoW model, is an approach based on irregular partitions over the image. An image is first

represented as a connected graph of local features on a regular grid of pixels. Next, irregular

partitions (subgraphs) of the image are further built by using graph partitioning methods. Each

subgraph in the partition is then represented by its own signature. The BBoW model with

the aid of graphs, extends the classical bag-of-words (BoW) model in image space instead

of feature space, by embedding color homogeneity and limited spatial information through

irregular partitions of an image. In this chapter, we extend this proposed model to pyramid

levels, leading to an approach that we call irregular pyramid matching.

5.1 BBoW on Pyramid Level

In this Section, we first introduce the graph partitioning scheme on multi-levels in the bag-

of-bags of words model. Then we describe the procedure of irregular pyramid matching.

5.1.1 Graph Partitioning Scheme

As in Spatial Pyramid Matching [4], we aim to build a pyramid of partitions at several

“resolutions” (r = 0 . . .R). At resolution r of image partitions, the image graph G j is split into

a set of Kr = 22r subgraphs {gr
j,1, . . . , gr

j,K}. We name it pyramidal image graph partitioning

scheme. An example is shown in Figure 5.1, where the initial image graph is divided into a

fixed number of subgraphs at different resolutions.
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5. IRREGULAR PYRAMID MATCHING

Figure 5.1: A schematic illustration of the BBoW representation at each level of the pyramid. At
level 0, the decomposition has a single graph, and the representation is equivalent to the classical
BoW. At level 1, the image is subdivided into four subgraphs, leading to four features histograms,
and so on. Each subgraph is represented by its own color in this figure. This figure is better viewed
in color.

5.1.2 Irregular Pyramid Matching

In Section 4.1.4, the BBoW description is based on a fixed number of partitions at a single

level on the whole image. After the pyramidal image graph partitioning step, BoW histograms

are computed within each subgraph, then the histograms from all subgraphs are concatenated

together to generate the final representation of the image. Such an extension of BBoW model

to pyramid gives rise to a method we name irregular pyramid matching (IPM). In case where

only the level l = 0 is used to compute image signature, BBoW reduces to BoW representation.

5.2 BBoW on Pyramid Levels for Image Retrieval

After generating visual signature of the image on pyramid levels in BBoW model, we need

to define the corresponding similarity measures to compare images.
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5.2 BBoW on Pyramid Levels for Image Retrieval

5.2.1 Similarity Measure

Once bipartite subgraphs matching is fulfilled, we can directly apply the level weighted

intersection as described in [4] to compare images:

κ(Ii, I j) = I
(
HR

i,k,H
R
j,k′

)
+

R−1∑
r=0

1
2R−r

(
Ir − Ir+1)

=
1
2R I

(
H0

i,1,H
0
j,1
)

+

R∑
r=1

1
2R−r+1 I

(
Hr

i,k,H
r
j,k′

)
, (5.1)

where

I
(
Hr

i,k,H
r
j,k′

)
=

B∑
b=1

min
(
Hr

i,k(b),Hr
j,k′(b)

)
is the histogram intersection function in [152], B is the bag of words codebook size, which is

related to the L1 norm [44]. k and k′ here are the indices of the corresponding subgraphs being

matched after rearrangement of histograms via Hungarian algorithm. The weight 1
2R−r allows

for penalizing low resolutions of a partition, reflecting the fact that higher levels localize the

features inside smaller graphs more precisely. Hence, in our approach, we propose to apply

directly the level weighted intersection to irregular partitions obtained by graph cuts methods,

following the idea of SPM [4].

5.2.2 Global Algorithm for Image Retrieval with BBoW model

After discussion, we summarize the global algorithm in BBoW model for its application

for image retrieval.

1. Local features extraction at interest point locations, or nodes in a dense grid.

(a) Prominent keypoints

(b) Dense points sampling

2. Codebook generation (dictionary is level independent, built off line).

3. Graph Construction (define graph nodes, weighted edges) for each image.

4. Partition the initial image graph into a fixed number of irregular subgraphs on multiple

resolution for each image.

5. Build BoW histograms of the subgraphs.

6. Compare images based on specific similarities measure.
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5.3 Discussion and Conclusion

In this Chapter, we have embedded our BBoW model into a pyramid approach. Hence, the

final signature of the image has been built as a concatenation of BoW histograms from each

level of the pyramid, where each BoW histogram is normalized by the number of nodes in the

initial image graph. With such a normalization, the larger subgraphs are privileged. We call it

Bag-of-Bags of Words (BBoW) description in pyramid. With such descriptors, we match graph

pyramid level by level. Hence, we always match the partitions of the same granularity. The

number of pyramid level is chosen to be the same in the database. Therefore, we do not have

any problem in matching images with different number of subgraph histograms.

Note that the Spatial Pyramid Matching [4] scheme partitions an image recursively into a

coarse-to-fine (sub)regions, i.e., their partitions are nested, as introduced in Section 2.3.2.1 of

Chapter 2. In contrast, our partitions are independent at each level in the BBoW model, see

Figure 5.2. Moreover, we keep the same resolution of images during partitioning. That means

we do not use a Gaussian pyramid [155–157] as main concept of pyramid does. The main

reason that we have adopted this strategy is attributed to avoid obtaining isolated (too small)

subgraphs, leading to the BBoW description less representative.

In the next Chapter, we will evaluate our model in different respects, especially, its appli-

cation for image retrieval.
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5.3 Discussion and Conclusion

Figure 5.2: The comparison of partitioning scheme between SPM and BBoW. At the left side of
the figure shows the partitioning scheme of Spatial Pyramid Matching (SPM). At the right side of
the figure illustrates the partitioning scheme of the BBoW. Contrary to SPM with nested regular
partitions, our partitions are irregular and independent at each level. We keep the same resolution
of the image across multilevel. This figure is better viewed in color.
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Chapter 6

Results and Discussion

In this chapter, we present an evaluation of different aspects of our model with respect to

graph partitioning and the application to image retrieval, i.e., to retrieve all images that are

similar to a given image from a database.

First of all, we introduce three datasets and their experimental settings for dictionary com-

putation, image queries will be explained. Next, we introduce metrics for evaluation of image

retrieval efficiency with our BBoW model. Then some experiments are reported on the compar-

ison of similarity metrics used in image matching. For selected graph-cut algorithms, we will

report on optimal parameters selection for graph construction. Our irregular partition model

will then be compared to the famous SPM approach which deploys regular embedding of quan-

tized features and we will discuss the perspectives of the proposed model at the end.

6.1 Image Datasets

In this Section, we present the datasets used for this work. The proposed Bag-of-Bags

of Words model was evaluated on three benchmarks: SIVAL 1 dataset [10], Caltech-101 2

dataset [144] and the People Playing Musical Instrument (PPMI) 3 dataset [158, 159].

The SIVAL (Spatially Independent, Variable Area, and Lighting) benchmark contains 1500

images among 25 different categories, 60 images per category. Each image is 1024 pixels in

width and 768 pixels in height, has a total of 1024 × 768 = 786, 432 pixels. Each category

consists of images of single objects photographed against highly diverse backgrounds. The

1http://www.cs.wustl.edu/∼sg/multi-inst-data/
2http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html
3http://ai.stanford.edu/∼bangpeng/ppmi.html
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objects may occur anywhere spatially in the image and also may be photographed at a wide-

angle or close up. This benchmark emphasizes the task of localized Content-Based Image

Retrieval [160], where the user is only interested in a portion of the image (object), and the rest

of the image (background) is irrelevant. Therefore, it allows to clearly identify the content of

images for which the method has good performance, and for which it does not. An excerpt of

SIVAL dataset is presented in Figure 6.1.

Figure 6.1: Example images from the SIVAL database.

The Caltech-101 dataset includes 101 distinct objects categories with high intra-class ap-

pearance and shape variability, plus a background class for a total of 102 categories. The

number of images in each category varies from 31 to 800. The whole database contains 9,144

images overall. The average size of the images is around 300 × 300 pixels. This dataset is one

of the most diverse and thoroughly studied databases for object recognition. A wide range of

studies have chosen this popular database for experimental validation. Therefore, this bench-

mark acts as a common standard for comparison of different state-of-the-art algorithms without

bias due to different datasets. An excerpt of Caltech-101 dataset is presented in Figure 6.2.

The PPMI dataset contains images of humans interacting with twelve different musical in-

struments. They are: bassoon, cello, clarinet, erhu, flute, French horn, guitar, harp, recorder,

saxophone, trumpet, and violin. For each instrument, it contains images of people either play-

ing (PPMI+) or just holding (PPMI-) the instrument. The PPMI dataset emphasizes on under-

standing subtle interactions between humans and objects. The twelve binary classes (PPMI+

images) are used in our experiments. PPMI+ is composed of twelve categories. Each category

contains 200 images, i.e. for a total of 12 × 200 = 2400 images. All images in PPMI+ are
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Figure 6.2: A snapshot of images from Caltech-101.

normalized, in resolution of 258 × 258 pixels. A snapshot of the PPMI+ dataset is shown in

Figure 6.3.

Figure 6.3: A snapshot of images from PPMI+ of the PPMI dataset that contains a person playing
the instrument.

6.2 Experimental Settings

We now detail experimental settings defined on these three datasets respectively.

All the experiments are performed on a computer with Intel i7 CPU, 2.8GHz processor, 8

GB RAM, Linux Ubuntu 12.04.3 LTS as operating system.

Many kinds of image features may be used in the BBoW model. However, since our objec-

tive is to test the BBoW model and to study the influence of the stability of image partitions on

image retrieval rather than to evaluate features, we decide to choose popular yet not sophisti-
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cated local image descriptors. In the current implementation, we use SIFT [2] and SURF [35],

which have been proven to be robust end effective [37]. Furthermore, for each database, we

have experimentally selected an appropriate dictionary size (visual words obtained via hard

assignment) and use it in all experiments. Note that we do not report on this selection, as it is

already a well-studied problem [85–88]. A better setting could be used for performance tuning

as in [161].

6.2.1 Experimental Settings on SIVAL

In the context of Graph Cuts, the motivation of running experiments on SIVAL is threefold.

Firstly, we need to verify if an image graph composed of prominent keypoints is representative

enough to describe an object in an image, compared with the bag-of-words model. Secondly,

we aim to check if interest points can be well clustered based on their color similarity. Thirdly,

we hope to examine the influence of different parameters on graph partitions. In practice, we

use a library 1 from Boykov and Kolmogorov [8, 9, 126] as the implementation of α-expansion

for Graph Cuts.

For each category, we use 30 images for training, the rest 30 images for image retrieval.

We use an extended 128 dimension version of SURF-128 feature descriptor, as described in

Bay et al. [35]. The sums of dx and |dx| are computed separately for dy < 0 and dy ≥ 0.

Similarly, the sums of dy and |dy| are split up according to the sign of dx, thereby doubling

the number of features. We randomly sample SURF vectors from training images and learn a

quantization codebook using k-means with 500 and 1000 clusters respectively. More precisely,

the codebook is first computed using k-means clustering method over all SURF descriptors of

the filtered keypoints from the masked images 2 in a learning database. The codewordsC then

correspond to the centres of the learned clusters.

In order to compare prominent keypoints approach in BBoW model with the traditional

bag-of-words (BoW) model, we computed BoW histograms on exactly the same feature points

set to build the initial image graphs. A bag-of-visual-words representation, i.e., a histogram of

word frequencies, is thus assigned to each subgraph obtained by graph partitioning via Graph

Cuts.

1http://vision.csd.uwo.ca/code/
2The image mask falls on the object of interest in the image.
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6.2.2 Experimental Settings on Caltech-101

In Caltech-101 database, we randomly sample 30 images per category for training and up

to 50 images per category for testing. We could use SURF [35], as the settings in SIVAL. But

we finally adopt SIFT features [2] instead, in order to follow the approach in SPM [4]. To

be more precise, we use the dense sampling grid points from the whole image to build initial

connected graphs. The local SIFT features [2] are then extracted from these grid points based

on 8-pixels spacing and 16-pixels patch size. A dictionary of size 400 is learnt over 30 sample

images per class using k-means. The query images are chosen from the rest of the dataset for

retrieval evaluation. For all experiments in Caltech-101 dataset, we use the same codebook

built as above.

Performance is measured by calculating the mean Average Precision (mAP) for all queries,

as described in TREC-style evaluation1. In addition, the mean of Standard deviation (Std) of

Average Precisions (APs) for category-based queries is given.

6.2.3 Experimental Settings on PPMI

For each class, 100 normalized PPMI+ images are randomly selected for training and the

remaining 100 images are considered to be the testing set. We fix the dictionary size as 1024.

As Caltech-101, we use the dense SIFT as image features for BBoW descriptions.

6.3 Evaluation Metrics

Performance Evaluation (PE) is of crucial importance in producing robust techniques. To

assess the performance of our model for image retrieval, we use classical evaluation metrics

for information retrieval. We also introduce a new metric that is specifically designed for

evaluating the stability of partitions and subgraphs matching, with the aim of evaluating three

different methods in the BBoW model for graph partitioning. These metrics are introduced as

follows.

6.3.1 Performance Measures for Image Retrieval

Evaluation of retrieval performance is a crucial problem in Content-based image retrieval

(CBIR). Since CBIR and information retrieval (IR) have close relationship, many standard IR

1http://trec.nist.gov/
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evaluation protocols are used directly in CBIR.

We review some basic notions for an IR system. The query can be considered as a bi-

nary decision problem. The decision can be represented in a structure known as a confusion

matrix or contingency table. The confusion matrix has four categories: true positives (TP),

false positives (FP), true negatives (TN), false negatives (FN). A confusion matrix is shown in

Table 6.1.

Table 6.1: The basic notions for information retrieval systems.

Relevant Not relevant
Retrieved true positives (TP) false positives (FP)

Not retrieved false negative (FN) true negatives (TN)

In the context of evaluation of unranked retrieval sets, the two most frequent measures for

IR effectiveness are precision and recall. Precision and recall are single-value metrics based

on the whole list of documents returned by an IR system. They are defined for the case where

an IR system returns a set of documents for a given query.

Precision (P) is the fraction of retrieved documents that are relevant, defined in Equa-

tion (6.1). Recall (R) is the fraction of relevant documents that are retrieved, as in Equa-

tion (6.2).

Precision =
# (relevant items retrieved)

# (retrieved items)
= P (relevant | retrieved) . (6.1)

Recall =
# (relevant items retrieved)

# (relevant items)
= P (retrieved | relevant) . (6.2)

Mathematically, it is possible to interpret precision and recall not as ratios (fractions), but

as probabilities: precision is the probability that a (randomly selected) retrieved document is

relevant; recall is the probability that a (randomly selected) relevant document is retrieved in a

search.

Given the confusion matrix defined in Table 6.1, we are able to rewrite the precision and

recall metrics as:

Precision =
T P

T P + FP
, (6.3)

Recall =
T P

T P + FN
, (6.4)

in Equation 6.3 and 6.4 respectively.
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Average precision The Average Precision (AP) is the average of the precision value obtained

for the set of top k documents existing after each relevant document is retrieved, and this value

is then averaged over information needs.

AP =

∑k
i=1

(
Precision(i) × rel(i)

)
# (relevant items)

(6.5)

where rel(k) is an indicator function equalling to one if the item at rank k is a relevant document,

zero otherwise. Precision(k) means the precision at cut-off k in the item list.

Mean average precision The mean Average Precision (mAP) for a set of queries is the mean

of the average precision scores for each query. It is defined as:

mAP =

∑Q
q=1 AP

(
q
)

Q
(6.6)

where Q is the number of queries.

To assess the stability of the proposed BBoW model, given particular similarity metrics

used in image matching, we also compute the standard deviation (std) of APs in image retrieval.

6.3.2 Partition Precision (PP)

In order to qualify the performance of our approach, we introduce a new measure. We call

it Partition Precision (PP) at n first retrieved images. For a particular query image I j, we denote

Nrel as the number of relevant images rel for this query. The set of ranked retrieved images is

denoted by η, η(d) is the retrieved image at rank d. I j is excluded from η. η(d) ∈ rel if I j and

η(d) are from the same category. We say that g j,k and gη(d),k′ are matched, if they are bipartite

matching subgraphs after rearrangement of histograms via Hungarian algorithm; moreover

they fall into same region types (background, object, etc.) of the image I j and η(d) respectively.

In general, only “object” and “heterogeneous background” are considered. The criterion of

heterogeneous background is defined case by case, since in many cases, the background is

cluttered in the target image being compared. It is hard to tell if subgraph g j,k in image I j is

matched exactly with subgraph gη(d),k′ in image Iη(d). For example, 1) If g j,k falls into one part of

the object, subgraph gη(d),k′ almost covers all the object, these two subgraphs are considered as

‘matched’. 2) If a generated subgraph is not stable (it either stretches across object/background

or contains isolated points), this subgraph will not match any subgraph of the other image.

97



6. RESULTS AND DISCUSSION

We define a η × K matrix M, its entry is:

Md,k =

{
1 if η(d) ∈ rel and g j,k, gη(d),k′ match,
0 otherwise

(6.7)

to describe the stability of partitioning G j into ΓK
j = {Γk

j}k=1,...,K = {g j,1, · · · , g j,K}, i.e. K-way

partitioning.

The Partition Precision (PP) at n = |η| is thus given by a vector of length K:

{Precision(Γk
j)}k=1,...,K =

1
|η|

∑
d=1...|η|

Md,k (6.8)

where Md,k is an element of matrix M.

The partition precision of intra-class (see Table 6.18 and Table 6.19) is defined as:

{P(Γk
j)}k=1,...,K =

1
|Nrel|

∑
d=1...|Ω|

Md,k (6.9)

where Md,k is an element of matrix M.

In essence, {Precision(Γk
j)}k=1,...,K = [1, . . . , 1︸    ︷︷    ︸

K

] if all n images are relevant, and all the

corresponding subgraphs are matched across image category that I j belongs in. Each vector

element (corresponding to each subgraph g j,k) of this measure lies in the range of 0 to 1.

6.4 Comparison of Co-occurrence Measures for Image Matching
in the BBoW Model

In this section we present the results of experiments we conducted on the SIVAL dataset

with the approach of sparse sampling via keypoints detection. The whole experiment was per-

formed with the approach of Delaunay triangulation of graph nodes. The Graph Cuts algorithm

was therefore used for graph partitioning, as explained in Section 3.3 of Chapter 3 (Graph Con-

struction) for specific definition of our energy potentials on Delaunay triangulated graph.

A (dis)similarity measure between two (sub)graphs can be easily computed as we just need

to compare two histograms. We here adopt the idea of RootSIFT [33] by first L1 normalizing

the histograms and then compute the histogram intersection (HI) of them. Nevertheless, we

still need to compute the similarity between two images, knowing that they both contain K

subgraphs, i.e. K histograms for K subgraphs.

We have experimented different strategies to combine the K × K distances between a pair

of query image Ii and database image I j from their corresponding histogram sets Hi and H j:
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maximum, resp. minimum, resp. mean, resp. median, resp. sum, etc. of all distances in

operation, as explained in Section 4.3.1 of Chapter 4.

As shown in Figure 6.4, the similarity measure in Equation (4.4) corresponds to the best

discriminative distance measure between two images. We recall this measure:

d(Ii, I j) = 1 −
{

min
u={1, ..., K}

min
v={1, ..., K}

( B∑
b=1

min
(
Hi,u(b),H j,v(b)

) )}
. (6.10)

A complete comparison of different measures including that of classical Bag-of-Words model

can be found in more detail in Table A.1, Figure A.1 and Figure A.2 of the Appendix A respec-

tively.

Figure 6.4: Comparison of a series of image similarity measures.

Performance of image retrieval is measured by calculating precision, recall, and the mAP

over each category, since that mixing of all categories has no sense for disparity of the object

appearance across categories.

For three categories : “stripednotebook”, “goldmedal”, “woodrollingpin” among 25 cate-

gories, the proposed BBoVW method performs better than BoVW. Two examples are presented

in Figure 6.5, demonstrating the results for a “good” category and a “bad” category. In Fig-

ure 6.5 (c) and Figure 6.5 (d), the four subgraphs are generated via Graph Cuts. They are

displayed in red, green, yellow, and orange colors respectively. The mean improvement of

mAP on these three relevant categories is of 8%. As for “bad” categories, the discrepancy of
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results is too high to make a meaningful statistics. The complete results for all 25 categories of

SIVAL dataset are presented in Figure A.3 of the Appendix A.

(a) (b)

(c) (d)

Figure 6.5: Comparision between BoW and BBoW on SIVAL benchmark. (a) The precision-
recall curve for a “good” category : “stripednotebook”. (b) The precision-recall curve for a “bad”
category : “banana”. (c) Graph descriptors from “stripednotebook”. (d) Graph descriptors from
“banana”.

The results via Graph Cuts hold the clue to the causes of the unfavourable result. As can be

observed in Figure 6.6, the number of graph nodes in each label set is unbalanced; the points

in the same label are not clustered into one image region; there exist isolated points that are far

from their corresponding similar component; one subgraph (these points with the same label)

can cross object and background.

The experiments demonstrate that the approach of using prominent keypoints as graph

nodes is sensitive to the stability of feature points. However, this stability is not ensured since

interest points often appear on the border between object and background or the regions of high

contrast. Moreover, the distance factor in energy term, i.e. fd(p, q) in Equation (3.15), does not
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Two examples of graph partioning via Graph Cuts. The first row shows result of image
‘AjaxOrange079.jpg’, the second row is result of image ‘AjaxOrange049.jpg’. Both of images
are from category “AjaxOrange” in SIVAL dataset. (a)(d) Seeds. (b)(e) Initial image graph with
chosen seeds. (c)(f) Labeling result.

give any improvement, in most cases, is even worse.

Based on the above reasons, we drop the prominent keypoints approach, adopt dense sam-

pling pixels as graph nodes for further experiments. Furthermore, the SIVAL database is limited

in complexity of scenes; it is not sufficiently large and thus is not used widely as a common

benchmark. Hence in the follow-up of this Chapter, we will present results on Caltech-101 and

PPMI databases.
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6.5 Parameters Evaluation

In this Section, we study the impact of the different parameters in the BBoW model on

image retrieval performance.

6.5.1 Patch Size and Contribution of Color Term

We start by testing the parameters’ influence of our method for image retrieval. Two pa-

rameters have been evaluated: the patch size n defined in section 3.3.3.1 and the parameter λ

from the edges weight (in Equation (3.4)). For efficiency, the experiments were conducted on

a subset of Caltech-101 database that contains 4 images per category, for a total of 404 images.

The parameter α is set to one in Equation (E.1). Here we present the results for Graph Cuts

and Normalized Cuts methods.

The performance is evaluated by mean Average Precision (mAP) values, and is shown in

tables 6.2 and 6.3.

Table 6.2: Influence of parameter λ (Equation (3.4)) on image retrieval. For each value, the mean
average precision is given. For this experiment, the patch size is set to n = 5.

Mean Average Precision for the IMPK approach with 3 levels
λ = 0 5 20 100

NC 0.386079 0.389737 0.386185 0.380554

GC 0.373073 0.382115 0.377872 0.375660

Table 6.3: Influence of parameter n (section 3.3.3.1) on image retrieval. For each value, the mean
average precision is given. For this experiment, λ = 5.

Mean Average Precision for the IMPK approach with 3 levels
n = 3 5 7 9

NC 0.380546 0.388987 0.389456 0.388229

GC 0.379723 0.382115 0.377215 0.375741

These results highlight that these parameters do not have much influence on the quality of

results using either Graph Cuts (GC) or Normalized Cuts (NC). For the following experiments,

we therefore decided to use n = 5 and λ = 5.
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6.6 Influence of Neighbourhood Systems

6.5.2 Influence of Texture Term

In order to improve the stability of the graph partitions, we try incorporating texture features

wT
pq into graph weights wpq, by assigning α , 1 in Equation (E.1). For this purpose, we con-

ducted an experiment in a reduced dataset of Caltech-101, including 201 images for query, 403

images for retrieval. By setting α = 0, 0.5, 0.6, 0.7, 0.8, 0.9, 1, respectively in Equation (E.1),

we are able to investigate the evolution of retrieval performance as less texture features were

jointly embedded into graph weights with local color in BBoW model.

As explained in Table 6.4, the best performance in retrieval reaches as α = 0.8 in Equa-

tion (E.1). However, the best mAP value just gives slightly improvement from considering

only color features in edges weights. Furthermore, take a close examination of the partitioned

image (sub)graphs, for example, a case study in Figure 6.7, the obtained subgraphs are more

reasonable in separating image regions.

Indeed, the performance of image retrieval in mAP demonstrates that the use of comple-

mentary texture features in DCT domain generally did not improve the retrieval accuracy in

our experiments. We can explain this by the different nature of these features and insufficiency

of a direct application of them in a joint probability manner in the graph-cut objective function.

Table 6.4: Evaluation of embedding joint color-texture energy in graph weights for image retrieval.
Graph weights account for more color features as value of parameter α in Equation (E.1) increases.
The mAPs are given for each single level and pyramid. The patch size is set to n = 5. λ = 5. The
size of visual codebook is 400. By contrast, the mAP for SPM is 0.409.

α = 0 (only texture) α = 0.5 α = 0.6 α = 1 (only color)

Level Single
level

Pyramid Single
level

Pyramid Single
level

Pyramid Single
level

Pyramid

L=0 0.3779 0.3779 0.3779 0.3779

L=1 0.3739 0.3761 0.3603 0.3761 0.3636 0.3778 0.3731 0.3800
L=2 0.3731 0.3787 0.3820 0.3826 0.3744 0.3831 0.3837 0.3857

6.6 Influence of Neighbourhood Systems

We studied the influence of different neighbourhood systems on the graph partitions.

As can be seen in Figure 6.8, the first row shows graph partitions on a synthetic image,

the second row displays the partitioning results on nature image “accordion0001.jpg” from
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α = 0.7 α = 0.8 α = 0.9 α = 1 (only color)

Level Single
level

Pyramid Single
level

Pyramid Single
level

Pyramid Single
level

Pyramid

L=0 0.3779 0.3779 0.3779 0.3779

L=1 0.3666 0.3791 0.3630 0.3738 0.3622 0.3725 0.3731 0.3800
L=2 0.3775 0.3838 0.3804 0.3860 0.3831 0.3843 0.3837 0.3857
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α = 0 α = 0.5 α = 0.8 α = 1

Figure 6.7: An example of image graph partitions on the image minaret0032.jpg from Caltech-101
dataset, when joint color-texture is embedded in edge weights. The 1th - 4th columns correspond to
graph partitions by setting α = 0, 0.5, 0.8, 1 in Equation (E.1) severally. The first row of this figure
shows the results of partitions at resolution r = 1, where each image is composed of 4 subgraphs.
The second row corresponds to 16 partitions at resolution r = 2, i.e. 16 subgraphs per image. This
figure is better viewed in color.

Caltech-101 dataset. We can observe that labels propagate in more reasonable ways along

edges or around the border of areas of contrast under 4-connected neighbourhood system.

We have testified that such favourable behaviours happen only when texture factor is con-

sidered in Equation (E.1), i.e. α , 0. The neighbourhood system has no obvious effect on

graph partitions if only color factor is embedded in edge weights.
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Figure 6.8: Example of graph partitions of two images as texture factor is considered in edge
weights under different neighbourhood systems. This figure is better viewed in color.

6.7 Influence of Distance Metric for Histogram Comparison

In this Section, we study the influence of distance metrics on BBoW model. As shown

in Table 6.5, applying L1 distance achieves in overall better performance than L2 distance.

Furthermore, the former can be beneficial to computational complexity than the latter. We

therefore decide to use L1 metric for the following experiments. Out of consistence, we adopt

L1 distance in Hungarian algorithm as well, as mentioned in Section 4.3.2 of Chapter 4.

Table 6.5: The influence of distance metrics to compute a cost matrix for graph matching via
Hungarian algorithm. Note that the partitions are obtained by KKM. The experiments were run in
PPMI dataset, and its settings have been described in Section 6.2.3.

KKM (L1 metric) KKM (L2 metric)
Level Single level Pyramid Single level Pyramid

L=1 0.1126 ±0.0185 0.1134 ±0.0193 0.1146 ±0.0202 0.1146 ±0.0204

L=2 0.1117 ±0.0178 0.1122 ±0.0185 0.1140 ±0.0198 0.1140 ±0.0200
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6.8 Irregular Graph Representation versus SPM for Image Re-
trieval

As discussed in the Section 3.5 of Chapter 3, we apply three methods to build irregular

pyramid partitions in the BBoW model. These three approaches are: Graph Cuts, Normalized

Cuts and kernel k-means to optimize multilevel weighted graph cuts, respectively. In this sec-

tion, we will evaluate the impact of these three graph partitioning methods in BBoW model on

the performance of image retrieval. Moreover, we compare the proposed Bag-of-Bags of Words

model to notable image representation in Spatial Pyramid Matching (SPM).

Firstly, we run experiment on the PPMI dataset. As shown in Table 6.6, the performance

of BBoW (via KKM) is very close to SPM, yet our model is globally more stable, as smaller

std values attest.

Table 6.6: The retrieval performance (mAP ± standard deviation of APs) on PPMI dataset.

Level 0 (BoW) Level 1 Level 2 Pyramid

NC 0.109 ±0.031 0.104 ±0.022 0.106 ±0.025 0.108 ±0.027

GC 0.109 ±0.031 0.104 ±0.022 0.106 ±0.024 0.108 ±0.027

KKM 0.109 ±0.031 0.113 ±0.019 0.113 ±0.019 0.115 ±0.020
SPM 0.109 ±0.031 0.115 ±0.036 0.121 ±0.043 0.118 ±0.041

Secondly, we compare the BBoW model with SPM on popular Caltech-101 benchmark.

We also give a comparative study of three graph partitioning methods in an attempt to reach a

better stability during the graph partitioning process. The experimental validation of our model

will be discussed below as well.

As can be seen in Table 6.7, comparative analysis of this experimental results proves that

the multilevel KKM algorithm is more effective than the other two methods in BBoW model.

Its success justifies important contribution by kernel k-means in refinement phase of graph

clustering. It also suggests that better graph partitioning strategy can improve image retrieval

performance for the proposed BBoW model. The relative poor performance of Graph Cuts in

BBoW indicates the need of improving seed selection strategy.
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Table 6.7: Retrieval performance on subset of Caltech-101 dataset composed of 2945 query images
and 5975 images from database for retrieval. We set α = 1 in Equation (E.1), i.e. only consider
color-related term wC

pq in wpq. A postscript: SPM wins BBoW (with KKM) by a small margin
with a mAP value of 0.14, versus 0.1327 for KKM, while SPM has higher std as value of 0.0660.

Methods Kernel k-means Graph cuts Normalized Cuts

mAP ± mean Std 0.1327 ±0.0445 0.0989 ±0.0467 0.1074 ±0.0484

Based on the results shown in Table 6.7, we decide to adopt multilevel KKM algorithm for

graph partitioning in BBoW. We aim at answering a challenging question: will an irregular,

segmentation-like partition (BBoW) of images outperform a regular partition (SPM) [4] of

images for image retrieval? In order to answer this question, we run a comparative experiment

on the whole Caltech-101 dataset (α = 1 in Equation (E.1), i.e. only consider color-related

term wC
pq in wpq).

The experimental results show that BBoW achieves less performance than SPM with a

margin of 18.5% in overall retrieval mAP. The distribution of mAP margin for not surpassing

categories can be found in Figure 6.9. However, if we take a further look at the corresponding

APs(±std) values per category, we find that in 19 categories (in red color) out of 101 classes,

BBoW performs better than SPM (in blue color), as can be seen in Figure 6.10. Note that

category “car side” is composed of all gray-level images, therefore we do not count it as a

contribution of surpassing category.

A comparison between BBoW (via GC or NC) and SPM is presented on figure 6.11, il-

lustrated by the mAPs values on sixteen categories excerpted from Caltech-101 dataset. The

result highlights the fact that for the most of the categories, SPM has a much higher retrieval

performance than BBoW (via GC) or BBoW (via NC). These categories explain the importance

difference in the global performance on all the database (as described previously). However,

for certain categories, BBoW (via either Graph Cuts or Normalized Cuts) is as good as or better

than SPM.

In summary, despite that BBoW model under performs SPM in overall performance, our

proposed model (via Graph Cuts or NCuts or KKM) can still achieve better results in 25 cat-

egories than SPM. We found that kernel-based multilevel weighted graph cuts algorithm out-

performs Graph Cuts and Normalized Cuts in both computation time and partitioning results.

Graph Cuts, derived from its energy minimization nature, is unavoidable to get unbalanced
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Figure 6.9: The margin of mean Average Precision (mAP) for not surpassing categories in Caltech-
101 dataset. The margin =

mAP(S PM)−mAP(KKM)
mAP(KKM) %.

Figure 6.10: Mean Average Precision for surpassing categories in Caltech-101 dataset.
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Figure 6.11: The mean Average Precision for 16 typical categories in Caltech101

subgraphs. Normalized Cut, however, can produce relatively balanced sub-graph size. But

it requires eigenvalue computation which is time-consuming and overloads memory easily as

size of image graph increases. By using multilevel kernel based graph clustering method, we

are able to avoid disadvantages of the two other methods.

6.9 Partition Analysis

Now we present a detailed analysis of the stability of graph partitions, and how does this

stability influence the performance of image retrieval.

6.9.1 Stability of Graph Partitions

In order to understand results in previous Section 6.8 more clearly, let us further look at the

obtained graph partitions in BBoW model.

The explanatory case studies of graph partitions First of all, we review the six typical

categories (“accordion”, “faces”, “pagoda”,“trilobite”, “cellphone”, “motorbikes”) that have

been enumerated in Section 3.6 of the Chapter 3. We now do further analysis of these images

with the aim of discovering the relationship between the graph partitions and the performance

of image retrieval.
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Taking each image as a query, retrieval performance was evaluated in mAP on subset of

Caltech-101 dataset composed of 5975 images from database for retrieval. The patch size is

set to n = 5. λ = 5. We here only give a concise evaluation on the case of 4 partitions. The

corresponding mAPs are listed in Table 6.8 resp. Figure 3.12, Table 6.9 resp. Figure 3.13,

Table 6.10 resp. Figure 3.14, Table 6.11 resp. Figure 3.15, Table 6.12 resp. Figure 3.16,

Table 6.13 resp. Figure 3.17 1.

It is shown that our BBoW model clearly outperforms SPM for all examples of images listed

in Figure 3.12, Figure 3.13, Figure 3.14 and Figure 3.15, from four different categories: “ac-

cordion”, “faces”, “pagoda”,“trilobite”. Particularly for the “faces” category, BBoW via KKM

gives the best results. As can be seen on the third column of Figure 3.13, our method is able to

represent the “faces” with only one or two subgraphs. The other subgraphs in the background

are also stable in the sense that almost the same subgraphs can be found in each high-ranking

retrieved image within “faces” category. More details can be referred to the Table B.4 resp.

Figure B.1, Table B.5 resp. Figure B.2, Table B.6 resp. Figure B.3, Table B.7 resp. Figure B.4,

Table B.8 resp. Figure B.5 in Appendix B. The same case holds in category “trilobite”, where

BBoW via Normalized Cut surpasses SPM. The second column of Figure 3.15 presents the

partitioning results on five images from the “trilobite” category. Once again, it can be observed

that the partitions are stable.

Figure 3.16 and Figure 3.17 on the other hand represents two categories (“cellphone” and

“motorbikes”) for which our method fails. The partitions obtained almost do not exhibit any

consistency across the images from the same category. The resulting histograms are therefore

each time very different. Obviously, we cannot expect any good retrieval.

The statistical analysis of subgraphs In order to give a deeper understanding on why our

method suits for certain categories and not for the others, let us go through again the other three

case studies: a “good” category (“minaret”), and two “bad” ones (“cellphone”, “dollar bill”).

Figure 6.12 presents the partitioning results at level 1, i.e. 4 subgraphs. The first row

of the Figure 6.12 illustrates good queries from “minaret” class in which BBoW outperforms

SPM. Once again, our method is able to represent the “minaret” (object) with only one or two

subgraph(s). The other subgraphs in the background are also stable.

1The file extension of each image is omitted in these Tables and Figures. The highest value of mAPs is shown
in bold for each query image.
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Table 6.8: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via
KKM) vs SPM on 4 partitions of five examples of images from category “accordion”. See Fig-
ure 3.12.

Image GC NCuts KKM SPM

accordion0031 0.3439 0.6328 0.5835 0.0718

accordion0032 0.6238 0.6047 0.5994 0.3693

accordion0041 0.7535 0.6080 0.6401 0.4414

accordion0053 0.4886 0.6382 0.5673 0.2957

accordion0055 0.7175 0.6119 0.6211 0.1909

Table 6.9: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via
KKM) vs SPM on 4 partitions of five examples of images from category “faces”. See Figure 3.13.

Image GC NCuts KKM SPM

faces0032 0.6979 0.6729 0.9086 0.5949

faces0036 0.6431 0.5716 0.9146 0.5139

faces0038 0.6240 0.4250 0.9314 0.4991

faces0039 0.5938 0.6098 0.9042 0.6094

faces0049 0.5453 0.4881 0.9091 0.5404

Table 6.10: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via
KKM) vs SPM on 4 partitions of five examples of images from category “pagoda”. See Figure 3.14.

Image GC NCuts KKM SPM

pagoda0035 0.2647 0.3246 0.6960 0.5297

pagoda0040 0.5955 0.5449 0.6894 0.6722

pagoda0043 0.8271 0.3784 0.7534 0.6794

pagoda0046 0.4102 0.5622 0.7596 0.7169

pagoda0047 0.6674 0.4556 0.7185 0.5542

The second row of the Figure 6.12 shows four bad queries from cellphone and dollar bill

categories in which SPM achieves better performance than our method. We have the same
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Table 6.11: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via
KKM) vs SPM on 4 partitions of five examples of images from category “trilobite”. See Fig-
ure 3.15.

Image GC NCuts KKM SPM

trilobite0037 0.5975 0.7040 0.6342 0.4386

trilobite0041 0.3561 0.6575 0.6612 0.5174

trilobite0056 0.6229 0.8055 0.6550 0.5787

trilobite0064 0.3551 0.6805 0.6645 0.5087

trilobite0072 0.6823 0.8540 0.6186 0.2240

Table 6.12: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via
KKM) vs SPM on 4 partitions of five examples of images from category “cellphone”. See Fig-
ure 3.16.

Image GC NCuts KKM SPM

cellphone0032 0.2372 0.2439 0.1448 0.3429
cellphone0035 0.1742 0.0567 0.1018 0.3215
cellphone0049 0.1153 0.1832 0.1197 0.3117
cellphone0051 0.2644 0.5100 0.3845 0.7288
cellphone0059 0.2768 0.3254 0.2098 0.3637

Table 6.13: The comparison of mAPs for BBoW (via GC) vs BBoW (via NCuts) vs BBoW (via
KKM) vs SPM on 4 partitions of five examples of images from category “motorbikes”. See Fig-
ure 3.17.

Image GC NCuts KKM SPM

motorbikes0042 0.3622 0.2407 0.2347 0.4885
motorbikes0043 0.4249 0.2950 0.2308 0.5262
motorbikes0047 0.3024 0.2630 0.1998 0.5967
motorbikes0055 0.3668 0.2704 0.1691 0.4293
motorbikes0059 0.3943 0.1734 0.3839 0.5856
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minaret0036.jpg minaret0037.jpg minaret0069.jpg minaret0071.jpg

cellphone0034.jpg cellphone0045.jpg dollarbill0035.jpg dollarbill0039.jpg

Figure 6.12: The first row shows the 4 irregular subgraphs from “good” query images at level 1.
The second row shows the 4 irregular subgraphs from “bad” query images at level 1. The nodes of
individual subgraphs are labelled with the same color (in red, blue, green, brown). This figure is
better viewed in color.

observation on the obtained partitions, i.e., the partitions are not consistent across the images

from the same category. Obviously, we cannot expect any good retrieval as well.

We now detail the retrieval performance and the statistics of the (sub)graphs for these

eight query images. One can see in Figure 6.13 (Graph Cuts), Figure 6.14 (NCuts) and Fig-

ure 6.15(KKM) that our method outperforms SPM [4] in “good” categories. In this case, the

partitions from either NCuts or Graph Cuts are stable across the images of the same category.

The mean number of nodes in “correctly” matched subgraphs together with the standard devia-

tion are presented in Figure 6.16. The standard deviation is high for “bad” categories, whereas

it is more uniform for “good” category.

113



6. RESULTS AND DISCUSSION

Figure 6.13: A case study of BBoW (via Normalized Cuts). The precision of 8 typical query
images: 1st-4th query images are from a “good” category - minaret, 5th-8th query images are
from “bad” categories: cellphone and dollar bill.

6.9.2 Quality of Subgraphs Matching

To access subgraphs matching, we use the partition precision introduced in Section 6.3.2.

The partition precision (PP) of 4 subgraphs for 8 typical queries (|η| = 30) are shown in ta-

ble 6.14 and table 6.15. We find that in “good” categories, the Precision(Γk
j) for each subgraph

g j,k is close to 1, signifies that the subgraphs are matched correctly more often. That illustrates

the discriminative power of graph descriptors among inter-class. While {P(Γk
j)}k=1,...,4 are high,

it means the image graph partitions tend to be more stable. In “bad” categories, this happens

less often.

In the context of intra-category, the Partition Precision (PP) for query image I j is thus

given by a row vector of length K:

{P(g j,k)}k=1, ..., K =
1
|Nrel|

∑
d=1...|Nrel |

Md,k (6.11)

where Md,k is an element of matrix M. The above vector thus characterizes the goodness of

match of each subgraph in a query image to the subgraphs of images of the same category in
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Figure 6.14: A case study of BBoW (via Graph Cuts). The precision of 8 typical query images:
1st-4th query images are from a “good” category - minaret, 5th-8th query images are from “bad”
categories: cellphone and dollar bill.

Table 6.14: The PP {Precision(Γk
j)}k=1,2,3,4 = {P(g j,k)}k=1,2,3,4 of corresponding subgraphs for 4

typical “good” queries. Method: BBoW via Normalized Cut.

Query image I j g j,1 g j,2 g j,3 g j,4

minaret0036 0.933 0.867 0.833 0.867
minaret0037 1.0 0.9 0.833 0.933
minaret0069 1.0 0.967 0.9 1.0
minaret0071 0.967 0.9 0.833 0.8

the database Ω. Table 6.18 and 6.19 show figures for the partition precision of 4 typical queries

of a “good” category and of two “bad” categories. The corresponding number of nodes for each

subgraph, as illustrated in Figure 6.16, is also listed in Table 6.16 and Table 6.17 respectively

in detail. Note that in Table 6.17, the standard deviation on a number of nodes is generally

larger than that one in Table 6.16.

In Table 6.18, one can see that in the “good” categories, the worst matching percentage

(the numbers in bold) is better than that in “bad” queries. Hence, this correlates with better
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Figure 6.15: A case study of BBoW (via Kernel k-means). The precision of 8 typical query
images: 1st-4th query images are from a “good” category - minaret, 5th-8th query images are
from “bad” categories: cellphone and dollar bill.

Table 6.15: The PP {Precision(Γk
j)}k=1,2,3,4 = {P(g j,k)}k=1,2,3,4 of corresponding subgraphs for 4

typical “bad” queries. Method: BBoW via Normalized Cut.

Query image I j g j,1 g j,2 g j,3 g j,4

cellphone0034 0.433 0.467 0.3 0.433
cellphone0045 0.3 0.3 0.267 0.267
dollar bill0035 0.133 0.2 0.167 0.133
dollar bill0039 0.133 0.233 0.133 0.2

stability of nodes’ numbers, as in Figure 6.16, where the number of nodes within the matched

subgraphs is quite imbalance in the “bad” categories.
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Figure 6.16: The mean and standard deviation of nodes’ numbers of corresponding subgraphs
for intra-category, for 8 typical queries in Caltech-101 dataset - at single level 1, i.e. 4 subgraphs.

Table 6.16: The mean of node numbers and its standard deviation for corresponding matched
subgraphs of intra-category minaret, for 4 typical good queries in Caltech-101 dataset, at single
level 1, i.e. 4 subgraphs. Method: BBoW via Normalized Cut.

I j Precision g j,1 g j,2 g j,3 g j,4

minaret0036 0.7864 433 ±180 99 ±38 145 ±88 228 ±148
minaret0037 0.8694 307 ±185 105 ±70 168 ±116 326 ±207
minaret0069 0.8699 419 ±196 123 ±73 123 ±79 243 ±147
minaret0071 0.9252 228 ±153 113 ±58 202 ±157 365 ±217

Table 6.17: The mean of node numbers and its standard deviation for corresponding matched
subgraphs of intra-category cellphone and dollar bill, for 4 typical bad queries in Caltech-101
dataset, at single level 1, i.e. 4 subgraphs. Method: BBoW via Normalized Cut.

I j Precision g j,1 g j,2 g j,3 g j,4

cellphone0034 0.4412 703 ±239 82 ±73 157 ±147 43 ±43
cellphone0045 0.4576 703 ±233 96 ±97 80 ±97 104 ±111
dollar bill0035 0.1263 164 ±111 72 ±83 34 ±50 355 ±132
dollar bill0039 0.1540 374 ±111 123 ±94 74 ±78 53 ±63
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Table 6.18: The {P(g j,k)}k=1,...,4 of corresponding subgraphs for 4 typical “good” queries. Method:
BBoW via Normalized Cut.

Query image I j g j,1 g j,2 g j,3 g j,4

minaret0036 0.773 0.746 0.626 0.6
minaret0037 0.786 0.72 0.626 0.6
minaret0069 0.773 0.44 0.6 0.613
minaret0071 0.8 0.506 0.6 0.413

Table 6.19: The {P(g j,k)}k=1,...,4 of corresponding subgraphs for 4 typical “bad” queries. Method:
BBoW via Normalized Cut.

Query image I j g j,1 g j,2 g j,3 g j,4

cellphone0034 0.724 0.638 0.569 0.241
cellphone0045 0.724 0.362 0.569 0.552
dollar bill0035 0.431 0.686 0.392 0.176
dollar bill0039 0.275 0.824 0.06 0.418

6.10 Conclusion

In this Chapter, we provided our experimental results on three image benchmarks, to val-

idate the proposed BBoW model. We also compared BBoW with a notable approach spatial

pyramid matching. As compared with Spatial Pyramid Matching (SPM), the BBoW model

overcomes the practical limitations of assuming similar parts of scenes very often appear in

similar regular grid cells. Particularly, we emphasize that the partitions in BBoW are not nested

across multiple levels.

We also gave an analysis of the images sampled from four “good” categories and two

“bad” categories in Caltech-101 dataset, as case studies to reveal the relationship between the

stability of graph partitions and the performance of image retrieval. We have found: despite

that the BBoW model does not perform as good as SPM overall, the strength of our method

is promising for image retrieval when the partitions are stable across an image category, e.g.

“accordion”, “faces”, “pagoda”, “trilobite” categories in Caltech-101 dataset, see Section 6.9.1

and Appendix B for reference. The experiments demonstrate that our proposed method is

globally more stable and performs better than SPM in 19 objects categories.
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Chapter 7

Conclusion and Perspectives

In this chapter, we will summarize the contributions made in the present work and then

enumerate possible directions for the future research.

7.1 Summary of the Work in this Dissertation

In this thesis, we have proposed a novel model as a way of graph-based image represen-

tation, namely Bag-of-Bags of Words (BBoW), to incorporate both the appearance and spatial

information under its description. Basically, BBoW is a bag of signatures, each of which is

built on a subgraph in image. The construction of BBoW model is composed of four steps:

1) Local features extraction; 2) Image graph construction; 3) Irregular subgraphs generation;

and 4) BBoW description. The BBoW description is a combination of a bag of signatures. Each

signature is built on a subgraph in the image.

In the process of graph construction, we mainly adopted two approaches: 1) prominent

keypoints; 2) dense sampling for graph nodes selection. We have also designed several ob-

jective functions to define the weights of edges in the image graph. These objective functions

are related to either color information or texture features of graph nodes, and they may com-

bine both of them as well, i.e. like joint color-texture descriptors. Furthermore, we formulated

different types of edge-weight terms, then analysed their influences on the stability of image

graph partitioning in the following step.

We then evaluated three graph partitioning methods: Graph Cuts, Normalized Cuts and

kernel k-means to optimize multilevel weighted graph cuts (KKM), for irregular image partition

in the third step. A criterion for measuring the stability of subgraphs has been defined. It has
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been shown that KKM approach achieved better result than the other two partitioning methods.

This finding suggests that better graph partitioning strategy can improve the performance for

the BBoW model.

In BBoW model, each subgraph is described by a bag-of-visual-words histogram as its

signature. An image is thus represented by concatenating those signatures together with level

weighted normalizations. For matching BBoWs, a crucial technique, called bipartite subgraphs

matching was used. With this technique, the BBoW achieves spatial invariance in image repre-

sentation.

In contrast to the state-of-the-art technique such as Fisher vector image representation [20,

21, 99] and spatially local coding [102] etc. that compete with SPM to give extensions of bag-

of-words image representations to encode spatial layout, our model takes into account spatial

constraints in the image space instead of feature space. Our approach incorporates color and

limited spatial information into image representation for image retrieval.

Finally, we validated the BBoW model for a given task of image retrieval in three datasets

(SIVAL, PPMI, Caltech-101) with a total of 13, 044 images. The obtained results are encour-

aging, especially when the obtained partitions are stable across the images from the same cat-

egory. The experiments on one of the most well-known benchmark Caltech-101 demonstrate

that applying kernel k-means to graph clustering process produces better image retrieval re-

sults, as compared with other graph partitioning methods such as Graph Cuts and Normalized

Cuts for BBoW model. Moreover, this proposed method achieves comparable results and out-

performs SPM in 19 object categories on the whole Caltech-101 dataset.

To formally evaluate the performance of the model, we have introduced a new vector fea-

tures: partition precision. It characterizes the quality of matching of each subgraph in the

image graph. Scalar metrics could be induced from partition precision, but require a thorough

study of their properties. We formalized the model, proposed the methodological chain for its

construction in images, developed a comparison methodology for matching images by BBoW

in a CBIR framework.

We have further extended the model to its pyramidal extension, where a non-nested multi-

levels scheme of image partitions was proposed. The irregular partitions at each level are

independent of those at other level(s). An image represented by a pyramid of fixed number

of partitions is described by a bottom-up reordered collection of BBoW for all levels. The

matching of these descriptions has been called irregular pyramid matching (IPM).
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7.2 Future Work

7.2 Future Work

As future work, we consider defining an information fusion scheme based on the “verti-

cal” property across multiple resolutions of image graph partitions, and applying a multi-class

classifier to the proposed BBoW model for image classification. Adding more discriminative

texture features in BBoW, in addition to studying effective ways to embed texture information

is another interesting direction. A comparison to state-of-the-art algorithms like deep learn-

ing [162, 163] would obviously be important to carry on in the future.

In summary, we plan to improve and extend our BBoW model mainly in the following four

directions:

7.2.1 Objective Functions in Edges Weights

As discussed in Section 6.9 of Chapter 6, the stability of graph partitions is nevertheless

not always ensured with the predefined functions for edge weights. To improve this stability,

we plan to use other objective functions for edge weights in graph partitioning methods. We

also aim to test other discriminative texture features, such as Local binary patterns (LBP) [48]

and Multi-factal spectrum (MFS) [164, 165], then study different ways to combine color and

texture features in edge weights.

7.2.2 Improving Segmentation Methods

The BBoW model can potentially adopt any automatic image segmentation methods com-

bined with the bag-of-words model. With such extensions, many interesting options remain to

be explored.

For example, in the context of Graph Cuts, we can adaptively change the regularization

parameter λ, as justified in Candemir et al. [166]: using adaptive regularization parameters

for the different parts of the image improves the segmentation result than using a single reg-

ularization parameter. The proposed method adjusts the effect of the regularization parameter

using the probabilities of pixels being part of the boundary. Intuitively, it can produce better

segmentation results than the original graph cut approach for the best λ.

7.2.3 Fusion across Graph Partitions

Agarwal et al. [19] proposed a multilevel local coding method called “hyperfeatures”,

which are ”features of (local sets of) features (from lower level)”. This approach is based
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7. CONCLUSION AND PERSPECTIVES

on local histogram model encoding co-occurrence statistics within each local neighbourhood

at multilevel. The level 0 (base level) contains bag of features (BoF) histograms, i.e. global

histograms over quantized image descriptors. The higher level consists of local histograms

generated by repeatedly aggregating local BoF histograms from previous lower level features.

The codebook of hyperfeatures is learned from all features at the corresponding level during

training.

In contrast, current implementation of BBoW model does not feed lower level features

into the computational process of higher levels. At each resolution of the image partitions,

subgraphs are built independently on single level basis. The BoW approach is next applied to

individual resulting subgraphs independently as well. That is to say, the signatures (histograms)

of (sub)graphs are independent of the resolutions of image partitions. Moreover, the codebook

in BBoW is independent from any partitioning scheme. Inspired by “hyperfeatures”, we may

as well build our “hyperfeatures” in BBoW by the fusion of features across graph partitions.

7.2.4 Applications of the BBoW Model

From a more fundamental point of view, there are some other aspects of the proposed

model that we are interested in tackling in the future. First of all, we are interested to see

how robust our model is against noisy data. Secondly, we intend to further develop statistical

analysis of subgraphs in order to interpret these graph descriptors (subgraphs) and to study

further their stability with respect to graph partitioning. Thirdly, many distance metrics and

similarity functions can be applied to define similarity measures for comparing the images.

From an applicative point of view, we aim to validate the generality of this model on wide

range of data sets for tasks of object image classification and scene classification. Another

applicative foreseen work is to apply BBoW to images with large resolutions, as the graph

descriptors can be more representative in terms of larger image space.
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Appendix A

Experimental Results in SIVAL

Bag-of-Bags of Visual Word (BBoVW) versus Bag-of-Visual Words (BoVW) in SIVAL dataset

In this Appendix, we enumerate experimental results in SIVAL dataset. In Figure A.1,

BoVW and BBoW are compared. Figure A.2 demonstrates the impact of different co-occurrence

criteria (see Section 4.3.1) on the performance of image retrieval. More details can also be re-

ferred in Table A.1. An the end of the appendix, we list the category-based Precision-Recall

curve for 25 categories in SIVAL dataset.
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A. EXPERIMENTAL RESULTS IN SIVAL

Figure A.1: The overall Precision-Recall curve for a comparison between BBoVW and BoVW
in SIVAL dataset [10]. BBoVW: Bag-of-Bags of Visual Word. BoVW: Bag-of-Visual Words.
Each image is composed of 4 subgraphs in BBoW. The dictionary of size 1000, as described in
Section 6.2.1 of the Chapter 6, is learnt over 30 sample images per class using k-means. The query
images are chosen from the rest of the SIVAL dataset for retrieval. In this figure, the red curve
corresponds to application of co-occurrence measure defined in Equation (4.4) for image matching
in the BBoW Model. The blue/red curve correspond to BoVW with/without points filtration.
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Figure A.2: A complete comparison of similarity measures by using co-occurrence criteria in
BBoW, as defined in Section 4.3.1 of the Chapter 4. Each image is composed of 4 subgraphs. There
are six curves in this figure: “Min Histogram Distances” with respect to Equation (4.4) (Curve 1),
“Sum-of-mins Histogram Distances” with respect to Equation (4.5) (Curve 2), “Sum-of-maxima
Histogram Distances” with respect to Equation (4.9) (Curve 3), “Sums of Histogram Distances”
with respect to Equation (4.8) (Curve 4), “Sum-of-means Histogram Distances” with respect to
Equation (4.6) (Curve 5), “Sum-of-medians Histogram Distances” with respect to Equation (4.7)
(Curve 6). The Curve 4 and 5 are coincident.
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A. EXPERIMENTAL RESULTS IN SIVAL

Table A.1: The precision-recall values of experimental results, as complementary information
of Figure A.2. The experiments were run in SIVAL dataset with the aim of comparing a series
of similarity measures (co-occurrence criteria) versus the classical bag-of-words model for image
retrieval. The fist column lists recall values ranging from 0 to 1.0 of 11 intervals. The 2nd-8th
columns correspond to the precision values for seven different measures. They are (1) Bag-of-
Words (BoW), without filtering points in graph nodes selection; (2) BoW, select graph nodes by
points filtration; (3) Bag-of-Bag-of-Visual-Words (BBoVW), using Equation (4.4); (4) BBoVW,
using Equation (4.5); (5) BBoVW, using Equation (4.6) or its equivalent by using Equation (4.8);
(6) BBoVW, using Equation (4.7); (7) BBoVW, using Equation (4.9) respectively.

Recall BoW
(with
points
filtra-
tion)

BoW
(sans
points
filtra-
tion)

BBoVW
(min)

BBoVW
(sum-of-

min)

BBoVW
(mean)
(sum)

BBoVW
(median)

BBoVW
(max)

0 0.6077 1.0000 1.0000 1.0000 0.9794 0.9571 0.6180

0.1 0.6077 1.0000 1.0000 1.0000 0.9794 0.9571 0.6180

0.2 0.5854 0.9722 1.0000 1.0000 0.9198 0.8430 0.5914

0.3 0.5699 0.9356 0.9722 0.9500 0.9198 0.7832 0.5545

0.4 0.5699 0.9007 0.9356 0.9426 0.8489 0.7246 0.4319

0.5 0.5625 0.8667 0.9007 0.9136 0.8489 0.6687 0.4299

0.6 0.5393 0.8077 0.8667 0.8966 0.8217 0.6201 0.4193

0.7 0.5289 0.7815 0.8077 0.8039 0.7695 0.5659 0.4079

0.8 0.5039 0.7345 0.7815 0.7562 0.7330 0.4910 0.4026

0.9 0.4606 0.6910 0.7345 0.6690 0.5875 0.4421 0.4008

1.0 0.4441 0.6270 0.6910 0.6203 0.4543 0.3765 0.4008
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(1) “ajaxorange” (2) “apple” (3) “banana”

(4) “bluescrunge” (5) “candlewithholder” (6) “cardboardbox”

(7) “checkeredscarf” (8) “cokecan” (9) “dataminingbook”

(10) “dirtyrunningshoe” (11) “dirtyworkgloves” (12) “fabricsoftenerbox”

(13) “feltflowerrug” (14) “glazedwoodpot” (15) “goldmedal”
Figure is continued on next page
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A. EXPERIMENTAL RESULTS IN SIVAL

(16) “greenteabox” (17) “juliespot” (18) “largespoon”

(19) “rapbook” (20) “smileyfacedoll” (21) “spritecan”

(22) “stripednotebook” (23) “translucentbowl” (24) “wd40can”

(25) “woodrollingpin”

Figure A.3: The category-based Precision-Recall curve for 25 categories in SIVAL dataset.
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Appendix B

Experimental Results in Caltech-101

Irregular partition versus regular partition (4 partitions) in Caltech-101 dataset

In this Appendix, we enumerate experimental results in Caltech-101 dataset [144]. Firstly,

we provide a thorough comparison between BBoW via KKM and SPM at single level 1, i.e.,

4 partitions per image. The category-based average precisions (APs) and their corresponding

standard deviation (Std) are given in Table B.1. Secondly, we list global retrieval performance

of BBoW via KKM (see Table B.2), BBoW via Graph Cuts, BBoW via Normalized Cut, vs

SPM (see Table B.3) in Caltech-101 dataset. Thirdly, we give a case study in “faces” category,

on five image samples: face0032.jpg, face0036.jpg, face0038.jpg, face0039.jpg, face0049.jpg.

The retrieval result of these images can be referred in Table B.8, Table B.8, Table B.8, Table B.8

and Table B.8. The twenty high-ranking retrieved images are shown in Figure B.1, Figure B.2,

Figure B.3, Figure B.4 and Figure B.5 respectively. The Figure B.6 at the end of the Appendix

demonstrates the distribution of average precision values of image retrieval from 20 surpassing

classes on the whole Caltech-101 dataset, which corresponds to the comparison between SPM

and BBoW (via KKM) in Figure 6.10 of Chapter 6.
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B. EXPERIMENTAL RESULTS IN CALTECH-101

Table B.1: KKM versus SPM at single level 1 (4 partitions per image). Performance is measured
by calculating the mean Average Precision (mAP) for category-based queries. In addition, the
mean of Standard deviation (Std) of Average Precisions (APs) for category-based queries is given.
The class names of 20 surpassing categories in which BBoW outperforms SPM are in bold in this
table.

Category KKM SPM

accordion 0.385293 ±0.034851 0.207360 ±0.013254

airplanes 0.413404 ±0.022305 0.497083 ±0.017586

anchor 0.031988 ±0.000033 0.038990 ±0.017586

ant 0.032702 ±0.000024 0.038593 ±0.000160

barrel 0.038911 ±0.000252 0.048919 ±0.000331

bass 0.035115 ±0.000130 0.035672 ±0.000153

beaver 0.044052 ±0.000208 0.040120 ±0.000176

binocular 0.082245 ±0.003426 0.088818 ±0.002682

bonsai 0.056256 ±0.000536 0.081623 ±0.002495

brain 0.097014 ±0.002912 0.209377 ±0.010595

brontosaurus 0.038470 ±0.000132 0.043102 ±0.000624

buddha 0.038242 ±0.000293 0.062125 ±0.001258

butterfly 0.032844 ±0.000075 0.051467 ±0.001036

camera 0.079828 ±0.002130 0.083248 ±0.002157

cannon 0.040772 ±0.000158 0.043540 ±0.000154

car side 0.936784 ±0.009839 0.502484 ±0.026168

ceiling fan 0.033498 ±0.000116 0.046372 ±0.000839

cellphone 0.123537 ±0.005341 0.585297 ±0.047094

chair 0.028742 ±0.000030 0.038689 ±0.000184

chandelier 0.046490 ±0.000700 0.079150 ±0.002979

cougar body 0.048053 ±0.000572 0.047543 ±0.000537

cougar face 0.108225 ±0.004573 0.145203 ±0.007586

crab 0.045433 ±0.000216 0.050637 ±0.000217

crayfish 0.030563 ±0.000054 0.036594 ±0.000183

crocodile head 0.069741 ±0.000469 0.058625 ±0.000183

crocodile 0.055612 ±0.000281 0.047820 ±0.000137

cup 0.031344 ±0.000090 0.043547 ±0.000423

dalmatian 0.080749 ±0.002716 0.057390 ±0.000782
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dollar bill 0.155946 ±0.015800 0.257488 ±0.021435

dolphin 0.043022 ±0.000691 0.048055 ±0.000533

dragonfly 0.033162 ±0.000130 0.067029 ±0.002376

electric guitar 0.027219 ±0.000052 0.034073 ±0.000333

elephant 0.046102 ±0.000169 0.068008±0.001012

emu 0.095289 ±0.001826 0.080677 ±0.000648

euphonium 0.077108 ±0.005508 0.143292 ±0.013213

ewer 0.028828 ±0.000059 0.050840 ±0.000547

faces easy 0.466651 ±0.013404 0.792831 ±0.014526

faces 0.625172 ±0.024970 0.507579 ±0.011634

ferry 0.062891 ±0.000586 0.054964 ±0.000384

flamingo head 0.053898 ±0.000817 0.048436 ±0.000405

flamingo 0.041907 ±0.000323 0.042201 ±0.000357

garfield 0.150050 ±0.014269 0.249209 ±0.032951

gerenuk 0.118079 ±0.002724 0.117126 ±0.002524

gramophone 0.036627 ±0.000292 0.057139 ±0.001890

grand piano 0.101731 ±0.005926 0.256620 ±0.046962

hawksbill 0.099645 ±0.004240 0.089760 ±0.002817

headphone 0.070314 ±0.001214 0.071579 ±0.001249

hedgehog 0.073309 ±0.001101 0.066357 ±0.000632

helicopter 0.054875 ±0.000964 0.059860 ±0.000730

ibis 0.046930 ±0.000297 0.067726 ±0.000855

inline skate 0.218006 ±0.022726 0.255739 ±0.039931

joshua tree 0.112597 ±0.008576 0.069606 ±0.001067

kangaroo 0.076910 ±0.000999 0.084116 ±0.001101

ketch 0.074639 ±0.002689 0.125492 ±0.006056

lamp 0.025754 ±0.000025 0.036246 ±0.000239

laptop 0.050636 ±0.001054 0.094036 ±0.004868

leopards 0.193289 ±0.008734 0.505134 ±0.037995

llama 0.062376 ±0.000347 0.067072 ±0.000470
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Category KKM SPM

lobster 0.038376 ±0.000053 0.046944 ±0.000315

lotus 0.057295 ±0.001080 0.084398 ±0.003726

mandolin 0.034653 ±0.000181 0.051805 ±0.001065

mayfly 0.038675 ±0.000191 0.033540 ±0.000060

menorah 0.042762 ±0.000631 0.111245 ±0.011053

metronome 0.146016 ±0.017831 0.248172 ±0.035696

minaret 0.563488 ±0.065599 0.761386 ±0.036978

motorbikes 0.346897 ±0.029450 0.484363 ±0.024733

nautilus 0.044776 ±0.000464 0.058587 ±0.000915

octopus 0.061111 ±0.002890 0.065611 ±0.002946

okapi 0.067656 ±0.000787 0.072923 ±0.000662

pagoda 0.513619 ±0.036199 0.425830 ±0.041670

panda 0.053463 ±0.000800 0.090087 ±0.004122

pigeon 0.039460 ±0.000170 0.073331 ±0.004327

pizza 0.060974 ±0.000669 0.119683 ±0.003788

platypus 0.049821 ±0.000454 0.058274 ±0.001475

pyramid 0.037786 ±0.000275 0.047032 ±0.000553

revolver 0.041841 ±0.000527 0.139438 ±0.014844

rhino 0.053988 ±0.000427 0.070488 ±0.000643

rooster 0.038159 ±0.000067 0.070629 ±0.002187

saxophone 0.051035 ±0.000975 0.056405 ±0.002127

schooner 0.051375 ±0.000954 0.108890 ±0.004279

scissors 0.067095 ±0.001286 0.072949 ±0.002014

scorpion 0.048849 ±0.000461 0.054160 ±0.000542

sea horse 0.052618 ±0.000627 0.045046 ±0.000303

snoopy 0.105323 ±0.003779 0.153791 ±0.007804

soccer ball 0.066348 ±0.001613 0.167095 ±0.014295

stapler 0.071884 ±0.002658 0.176760 ±0.017047

starfish 0.057088 ±0.000645 0.078110 ±0.001997

stegosaurus 0.049275 ±0.000891 0.059037 ±0.001392

stop sign 0.094728 ±0.007429 0.181281 ±0.028480

strawberry 0.054906 ±0.000795 0.075049 ±0.002515

sunflower 0.057008 ±0.000710 0.118955 ±0.007903
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tick 0.054855 ±0.000598 0.127073 ±0.010927

trilobite 0.402440 ±0.030194 0.320938 ±0.025972

umbrella 0.056691 ±0.001422 0.067263 ±0.003963

watch 0.063100 ±0.001088 0.208610 ±0.019351

water lilly 0.052405 ±0.000660 0.067605 ±0.002194

wheelchair 0.050173 ±0.000360 0.090569 ±0.005537

wild cat 0.042200 ±0.000045 0.046515 ±0.000066

windsor chair 0.134152 ±0.013343 0.484939 ±0.050621

wrench 0.099297 ±0.003050 0.044359 ±0.000353

yin yang 0.112368 ±0.007473 0.387628 ±0.070575

133
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Table B.2: Evaluation of BBoW via KKM in Caltech-101 dataset. Retrieval performance was
evaluated in mean Average Precision (mAP) on subset of Caltech-101 dataset composed of 2945
query images and 5975 images from database for retrieval. The size of codebook is 400.

BBoW via KKM
Level Single-level Pyramid

0 (BoW) 0.1177

1 (4 subgraphs) 0.1327 0.1468

2 (16 subgraphs) 0.1346 0.1487

Table B.3: Evaluation of BBoW (via GC) vs BBoW (via NCuts) vs SPM in Caltech-101 dataset.
Retrieval performance was evaluated in mean Average Precision (mAP) on subset of Caltech-101
dataset composed of 2945 query images and 5975 images from database for retrieval. The size of
codebook is 400. The highest results for each kind of level are shown in bold.

Level GC NCuts SPM

0 (BoW) 0.1177 0.1177 0.1177

1 (4 subgraphs) 0.0988 0.1074 0.1440
2 (16 subgraphs) 0.1138 0.1252 0.1623

Pyramid (3 levels) 0.1220 0.1290 0.1571

134



Table B.4: Retrieval result of image faces0032. There are 5975 images from a subset of Caltech-
101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each
image is omitted. The size of codebook is 400.

Query Image: faces0032
Rank Retrieved Image Similarity Score

0 faces0032 1.000000

1 faces0036 0.433973

2 faces0041 0.417084

3 faces0030 0.416204

4 faces0019 0.414498

5 faces0049 0.411848

6 faces0037 0.410790

7 faces0031 0.408819

8 faces0024 0.406523

9 faces0052 0.406178

10 faces0039 0.405109

11 faces0022 0.403870

12 faces easy0032 0.402360

13 faces0028 0.401460

14 faces0056 0.401203

15 faces0025 0.397665

16 faces0007 0.393696

17 faces0077 0.391315

18 faces0013 0.391071

19 faces0068 0.390517

20 faces0034 0.389672
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Table B.5: Retrieval result of image faces0036. There are 5975 images from a subset of Caltech-
101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each
image is omitted. The size of codebook is 400.

Query Image: faces0036
Rank Retrieved Image Similarity Score

0 faces0036 1.000000

1 faces0028 0.452821

2 faces0037 0.451399

3 faces0019 0.439082

4 faces0030 0.436981

5 faces0024 0.435277

6 faces0032 0.433973

7 faces0039 0.433855

8 faces0035 0.427126

9 faces0041 0.424875

10 faces easy0027 0.415037

11 faces easy0036 0.414607

12 faces0013 0.413940

13 faces0060 0.413052

14 faces0001 0.411890

15 faces0052 0.411418

16 faces0025 0.410744

17 faces0007 0.406628

18 faces0005 0.405569

19 faces0049 0.404169

20 faces0038 0.403834
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Table B.6: Retrieval result of image faces0038. There are 5975 images from a subset of Caltech-
101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each
image is omitted. The size of codebook is 400.

Query Image: faces0038
Rank Retrieved Image Similarity Score

0 faces0038 1.000000

1 faces easy0038 0.431964

2 faces0024 0.409894

3 faces easy0039 0.409855

4 faces0001 0.408111

5 faces0035 0.406003

6 faces0036 0.403834

7 faces0072 0.399052

8 faces0037 0.398655

9 faces0028 0.397389

10 faces0060 0.397364

11 faces0019 0.393373

12 faces0058 0.392206

13 faces0041 0.391568

14 faces0031 0.387039

15 faces0076 0.384997

16 faces0039 0.384812

17 faces0073 0.383936

18 faces0023 0.382831

19 faces0029 0.382656

20 faces0069 0.380980
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Table B.7: Retrieval result of image faces0039. There are 5975 images from a subset of Caltech-
101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each
image is omitted. The size of codebook is 400.

Query Image: faces0039
Rank Retrieved Image Similarity Score

0 faces0039 1.000000

1 faces easy0039 0.492047

2 faces0037 0.453770

3 faces0036 0.433855

4 faces0024 0.431958

5 faces0031 0.420975

6 faces0041 0.418923

7 faces0025 0.418823

8 faces0035 0.415585

9 faces0001 0.409270

10 faces0030 0.406591

11 faces0032 0.405109

12 faces0052 0.402744

13 faces0028 0.402086

14 faces0022 0.402020

15 faces0044 0.396445

16 faces0040 0.394949

17 faces0012 0.394629

18 faces0019 0.393024

19 faces0006 0.390893

20 faces0013 0.389758
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Table B.8: Retrieval result of image faces0049. There are 5975 images from a subset of Caltech-
101 dataset for retrieval. Each image is partitioned into 4 subgraphs. The file extension of each
image is omitted. The size of codebook is 400.

Query Image: faces0049
Rank Retrieved Image Similarity Score

0 faces0049 1.000000

1 faces easy0049 0.491986

2 faces0052 0.485214

3 faces0037 0.464228

4 faces0068 0.447968

5 faces0058 0.441230

6 faces0024 0.438325

7 faces0048 0.437363

8 faces0019 0.436970

9 faces0006 0.436073

10 faces0034 0.432234

11 faces0030 0.423637

12 faces0031 0.420341

13 faces0005 0.416484

14 faces0080 0.415709

15 faces0032 0.411848

16 faces0059 0.411334

17 faces0012 0.408574

18 faces0007 0.408158

19 faces0044 0.406146

20 faces0013 0.405245
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Figure B.1: Retrieval results of image “faces0032”. This figure is better viewed in color.
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Figure B.2: Retrieval results of image “faces0036”. This figure is better viewed in color.
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Figure B.3: Retrieval results of image “faces0038”. This figure is better viewed in color.
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Figure B.4: Retrieval results of image “faces0039”. This figure is better viewed in color.
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Figure B.5: Retrieval results of image “faces0049”. This figure is better viewed in color.
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(1) “accordion” (2) “beaver” (3) “car side”

(4) “cougar body” (5) “crocodile head” (6) “crocodile”

(7) “dalmatian” (8) “emu” (9) “faces”

(10) “ferry” (11) “flamingo head” (12) “gerenuk”
Figure is continued on next page
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(13) “hawksbill” (14) “hedgehog” (15) “joshua tree”

(16) “mayfly” (17) “pagoda” (18) “sea horse”

(19) “trilobite” (20) “wrench”

Figure B.6: The distribution of average precision values for query images in 19 surpassing classes
+ a category “car side” that only contains grayscale images, on the whole Caltech-101 dataset. The
comparison is evaluated between SPM and BBoW (KKM) at level 1. Each image is partitioned into
4 subgraphs.
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Appendix C

Experimental Results in PPMI

BBoVW versus SPM in 12 binary category of PPMI

In PPMI dataset [158, 159], we have used two different distance metrics: L1 distance or L2

distance, as the measure to compute the cost matrix value (see Equation (4.10)) for (sub)graphs

matching via Hungarian algorithm.

In this Appendix, we are interested in the influence of these two metrics on image retrieval

in BBoW model. We also present the performance of SPM [4] as a side-by-side comparison.

The impact of L1 and L2 metrics on performance of image retrieval is investigated in Table C.1

and Table C.2.
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Table C.1: The retrieval performance (mAP) on PPMI dataset, using L1 distance as cost matrix
value for graph matching via Hungarian algorithm.

Category BBoW
Single Level

1

BBoW
Single Level

2

BBoW
Pyramid
Level 1

BBoW
Pyramid
Level 2

SPM
Pyramid
Level 2

bassoon 0.111035 0.113260 0.109303 0.110617 0.135067
cello 0.119489 0.112404 0.115846 0.115524 0.126036

clarinet 0.116817 0.110903 0.117761 0.116395 0.114140

erhu 0.106178 0.102879 0.107562 0.106756 0.129702
flute 0.107483 0.106279 0.109405 0.109117 0.110948

frenchhorn 0.106507 0.113634 0.107040 0.108762 0.129498
guitar 0.132001 0.123785 0.139362 0.136860 0.143438
harp 0.116316 0.121244 0.125459 0.125616 0.161372

recorder 0.124170 0.114372 0.126650 0.125308 0.116781

saxophone 0.103004 0.109306 0.099857 0.101788 0.108571

trumpet 0.114199 0.112452 0.114173 0.114380 0.109890

violin 0.104072 0.110334 0.102756 0.104535 0.105030
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Table C.2: The retrieval performance (mAP) on PPMI dataset, using L2 distance as cost matrix
value for graph matching Hungarian algorithm.

Category BBoW
Single Level

1

BBoW
Single Level

2

BBoW
Pyramid
Level 1

BBoW
Pyramid
Level 2

SPM
Pyramid
Level 2

bassoon 0.110804 0.111185 0.109103 0.110027 0.135067
cello 0.119039 0.111707 0.115819 0.115575 0.126036

clarinet 0.114322 0.109811 0.116659 0.115271 0.114140

erhu 0.105380 0.102210 0.107372 0.106662 0.129702
flute 0.107309 0.106516 0.109183 0.108834 0.110948

frenchhorn 0.106298 0.111488 0.107063 0.108518 0.129498
guitar 0.128309 0.121247 0.137139 0.134486 0.143438
harp 0.115931 0.122908 0.125046 0.125451 0.161372

recorder 0.121758 0.113676 0.125542 0.124338 0.116781

saxophone 0.102728 0.108641 0.099691 0.101784 0.108571

trumpet 0.111228 0.111266 0.112511 0.113247 0.109890

violin 0.103785 0.109715 0.102760 0.104304 0.105030
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Appendix D

Proofs

Claim A:

Given two L1 normalized histograms G = {g1, . . . , gB} and H = {h1, . . . , hB} with B bins,

i.e.
B∑

b=1

gb = 1,
B∑

b=1

hb = 1 and ∀b ∈ [1, B], gb ≥ 0, hb ≥ 0, we have:

Histogram intersection Equation (4.2) in Chapter 4

K∩(G,H) =

B∑
b=1

min(gb, hb) ,

is the equivalent of the Equation (4.3) in Chapter 4

K∩(G,H) =
1
2

B∑
b=1

(gb + hb − |gb − hb|) .

Proof :

Case 1: if gb ≥ hb, b ∈ [1, B], then

1
2

(gb + hb − |gb − hb|) =
1
2

(gb + hb − gb + hb)

=
1
2

(2hb)

= hb

= min (gb, hb) .
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Case 2: if gb < hb, b ∈ [1, B], then

1
2

(gb + hb − |gb − hb|) =
1
2

(gb + hb − hb + gb)

=
1
2

(2gb)

= gb

= min (gb, hb) .

and the claim is proven. �

Claim B:

Histogram Intersection is equivalent to the use of the sum of absolute differences or city-

block metric, i.e. L1 distance.

Proof :

Given two L1 normalized histograms G = {g1, . . . , gB} and H = {h1, . . . , hB} with B bins,

i.e.
B∑

b=1

gb = 1,
B∑

b=1

hb = 1 and ∀b ∈ [1, B], gb ≥ 0, hb ≥ 0, as proven in Claim A, the histogram

intersection between G and H:

K∩(G,H) =

B∑
b=1

min(gb, hb)

=
1
2

B∑
b=1

(gb + hb − |gb − hb|) .

Hence, we have:

K∩(G,H) =
1
2

 B∑
b=1

gb +

B∑
b=1

hb −

B∑
b=1

| gb − hb |


=

1
2

1 + 1 −
B∑

b=1

| gb − hb |


= 1 −

1
2

B∑
b=1

| gb − hb |

= 1 −
1
2

DL1 (G,H) .

and the claim is proven. �
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Appendix E

Statistical Test

E.1 Paired samples t-interval

We trust that the samples we take are random. Instead of taking independent samples, we

choose pair of samples, and we try to make the pair of samples as homogeneous as possible.

In ideal case, test on samples themselves.

E.2 Matched Paired t-test

We have two observations on each query image. So here we have dependant samples, and

methods based on independent samples would not be appropriate here. We are going to use the

paired difference procedure to analyse this data. To do so we first take the differences within

each pair. We would end up with these nd differences, where nd is the number of query image

from the same category, for example, ‘faces’ class in Caltech-101. Then, these nd differences

represent as single sample so that we can use one sample t-test to analyse these differences.

We denote xd as the mean of the differences for sample, µd as the mean of the differences

for population, the standard deviation of those differences of the samples is S d; the standard

deviation of those differences for population is σd; degree of freedom d f = nd − 1. We denote

the Confidence Interval as CI.

Let us examine these differences (either in box plot or in histogram) to make sure they are

nearly normal distribution.

We compute the mean of the differences between our observed sample from two methods

(KKM vs SPM). We want to know if there is a significant difference between two methods on
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those query images.

We investigate that by carrying out a one sample t-test, and we also construct a confidence

interval at confidence coefficient 95%.

E.2.1 Data preparation

Conditions to satisfy:

1. Pair data assumption: The sample data being tested by two methods SPM and BBoW

are not independent. So we can not use two-sample t-test because they fail to sample

independence conditions. We have a good reason to pair the data, as each pair of average

precision values are related to the same query image. Hence, the data are paired by

subject.

2. Random conditions: The subject (images) were not chosen randomly (i.e. images from

intra-class), so we will have to assume these results are representative.

3. Nearly normal: The distribution (see histogram/box plots) of differences is uni-model

and symmetric.

E.3 Matched Paired t-test and interval

Question: What is the magnitude of the difference for image from ‘faces’ category in

performance of image retrieval between SPM and BBoW (via KKM) individuals?

Step 1: Hypothesis

H0: BBoW (KKM) does not improve the performance of image retrieval µd = 0

H1 BBoW (KKM) does improve the performance of image retrieval µd > 0 (right tailed

t-test)

Step 2: Compute test statistic

S d =

√√∑
xd

2 −
(
∑

xd)2

nd

nd − 1

=

√∑
xd

2 − nd(xd)2

nd − 1
. (E.1)
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t =
xd(

S d
/√

nd
) (E.2)

Step 3: Rejection region (R.R)

get critical value tα/2 (α = 0.05), compare t and tα/2.

Step 4: Decision

If the test statistic fall into R.R, then reject H0, else fail to reject H0.

Step 5: Confidence Interval

95% Confidence Interval (C.I),⇒ α = 1 − 0.95 = 0.05⇒ α/2 = 0.025

compute point estimate ± margin of error:

xd ± t α
2

S d
√

nd
(E.3)

Conclusion: We are 95% confidence that BBoW (KKM) does improve the performance of

image retrieval between xd − t α
2

S d√
nd

and xd + t α
2

S d√
nd

.

If p-value is small << α, we reject (fail to reject) the null hypothesis. There is strong (no)

evidence that BBoW can improve the image retrieval performance than SPM in the specific

category.

E.4 Measurement in theory

E.4.1 The limits of data in research

Due to time and cost, we almost always use sample data to represent the large population.

But sample data is always (at best) an estimate or approximation of the large population from

which it is selected.

E.4.2 Sample size

As our sample size n becomes small, we are less certain that it is representative of our entire

population; there is greater risk of error. Hopefully it is intuitive that the larger our sample size,

the more confident we are - that it is representative of the entire population.

In a large sample, we are likely to capture the natural variation and diversity in the pop-

ulation data. A small sample increases the chance that we either miss that variation or over-

emphasize it. However, sample size, in most cases, does adhere to the “Law of Diminishing
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Returns”. There is a point when increasing the sample size offers no more statistical benefits,

which is good because it makes research more “doable”.

E.4.3 Data preparation

Is My Data Normal? Why? Many statistical techniques assume the data fits a normal distri-

bution. How could we tell if the data fits this shape: The normal standard curve. Does our data

have “goodness of fit” relative to the normal distribution? Tools to visualize data:

1. Histograms: the frequency of values over certain intervals is called “bins”; bar width.

Histogram can be misleading. The look of a histogram is largely dependent on the “bins”

size; the space between the tick marks.

2. Box Plots (Box and Whisker Plots) : Box plots display variation in samples of a statisti-

cal population without making any assumptions of the underlying statistical distribution:

box plots are non-parametric. The spacings between the different parts of the box indi-

cate the degree of dispersion (spread) and skewness in the data, and show outliers.

3. Stem and Leaf Plots

4. P-P Plots

5. Q-Q Plots

Degrees of freedom Degrees of freedom is one of the most difficult things to explain in

statistics. My explanation: Degrees of freedom is an adjustment to the sample size (n − 1) or

in other areas of state (n − 2) or more. It is linked to the idea that we are estimating something

about a larger population; often a population with variance/standard deviation is unknown.

Since we do not know the population variance and standard deviation, we have to use our

sample variance and standard deviation. So the degrees of freedom is a way of adjusting that

estimations. What it does, in practice, is that it gives a slightly larger margin of error or “wiggle

room” in our estimates. Other than that, just roll with it; it is a statistical adjustment.
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E.4.4 The t distribution

When our sample size is n 6 30 and/or we do not know the variance/standard deviation of

the population, we use the t-distribution instead of the z-distribution (standard normal distribu-

tion).

The t-distribution allows us to use small samples; n 6 30. But to do so we sacrifice some

certainty in our calculations; margin-of-error trade-off. It is dynamic, it takes sample size into

account using n − 1 degree of freedom; there is a different t-distribution for any given sample

size. The bell curve shape is down (“squished”) in the middle and “fatter” on the end (tails);

squishier and fatter the sample size.

However, as n > 30 and definitely by n > 100, the t-distribution and standard normal z-

distribution become indistinguishable. They converge. i.e., when the sample size goes above

30, the t distribution and z distribution converges. Hence, t-distribution is more useful as sample

size is below 30.

Conditions for using t-test

1. The population standard deviation is unknown

2. The sample size is less than 30

Sample size does not matter for t-Test. If the sample is less than 30, we should always

do t-test and not Z-Scores. However the reverse is not true. You can still do t-Test even if

the sample size is greater than 30. Main reason to do t-tests are when you do not know the

population statistics like mean, standard deviation (SD) and they have to be estimated form the

sample. Whereas in z-Scores, you need to know the population mean and SD.

E.4.5 p-value method

Traditional methods use something called critical values, z score, p-value method does not

use them at all.

E.4.5.1 Basic of Hypothesis Testing

Null Hypothesis H0:
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P = #

µ = #

σ = #

Alter. Hypothesis H1:

P < #

µ > #

σ , #

left-tailed: H1 :<

right-tailed: H1 :>

two-tailed: H1 ,>

The p-value is a measure of the strength of the evidence against the null hypothesis. The

p-value is the probability of getting the observed value of the test statistic, or a value with even

greater evidence against H0, if the null hypothesis is actually true. The smaller the p-value, the

greater the evidence against the null hypothesis.

E.4.5.2 Level of significance

Conventionally, α = 0.01, α = 0.05, α = 0.10.

1. If we have a given significance level α, then reject H0 if p-value 6 α (cut-off for signifi-

cance).

2. If we do not have a given significance level, then it is not as cut-and-dried. Check the

distribution of p-value if H0 is true.

E.4.5.3 A very rough guideline

1. p-value < 0.01, very strong evidence against H0.

2. 0.01 < p-value < 0.05, strong evidence against H0.

3. 0.05 < p-value < 0.10, some weak evidence against H0.

4. p-value > 0.10, little or no evidence against H0.
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E.4.5.4 Summary

1. If the P-value is low, the null must go (reject H0).

2. If the P-value is high, the null must fly (fail to reject H0, keep H0).
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• Yi Ren, Aurélie Bugeau and Jenny Benois-Pineau. Bag-of-Bags of Words

: Irregular graph pyramids vs spatial pyramid matching for image retrieval,

2014.
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