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Abstract

This research discusses procurement planning problems engaged in global sourcing. The main
difficulty is caused by the geographically long distance between buyer and supplier, which
results in long lead times when maritime transport is used. Customer demands of finished-
products usually evolve during the shipment, thus extra costs will be produced due to unpre-
dictable overstocks or stockouts. This thesis presents adaptive planning approaches to make
adequate long-distance procurement plans in a cost-efficient manner.

Firstly, an adaptive procurement planning framework is presented. The framework de-
ploys demand forecasting and optimal planning in a rolling horizon scheme. In each sub-
horizon, demands are assumed to follow some known distribution patterns, while the distribu-
tion parameters will be estimated based on up-to-date demand forecasts and forecast accuracy.
Then a portable processing module is presented to transform the sub-horizon planning problem
into an equivalent standard lot-sizing problem with stochastic demands.

Secondly, optimal or near-optimal procurement planning methods are developed to min-
imize expected total costs including setup, inventory holding and stockout penalty in sub-
horizons. Two extreme stockout assumptions are considered: backorder and lost sale (or out-
sourcing). The proposed methods can serve as benchmarks to evaluate other methods. Nu-
merical tests have validated the high efficiency and effectiveness of both sub-horizon planning
methods and the overall adaptive planning approaches.

Keywords: global sourcing, procurement planning, uncertainty, stochastic demand, rolling
horizon, lot sizing, lead time, long distance, cost optimization
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Résumé

Cette thèse porte sur l’optimisation de l’approvisionnement dans les zones géographiquement
lointaines. Au moment de planifier des approvisionnements de matières premières ou de com-
posants dans des pays lointains, la longue distance géographique entre l’acheteur et le four-
nisseur devient un enjeu essentiel à prendre en compte. Puisque le transport se fait souvent
par la voie maritime, le délai d’approvisionnement est si long que les besoins peuvent évoluer
pendant la longue période de livraison, ce qui peut engendrer un risque de rupture élevé. Cette
thèse présente des approches adaptatives afin d’élaborer des plans d’approvisionnements loin-
tains d’une manière rentable.

Tout d’abord, nous proposons un cadre d’adaptation de la planification des approvision-
nements lointains. Il déploie des techniques de prévision de la demande et des méthodes
d’optimisation d’approvisionnements à horizon glissant. En utilisant ce cadre, nous transfor-
mons le problème de la planification sur l’horizon globale en plusieurs problèmes standards
de lotissement avec demandes stochastiques sur des sous-horizons. Ce cadre permet aussi
d’évaluer la performance sur une longue période des méthodes utilisées.

Nous considérons ensuite la planification optimale d’approvisionnement sur les sous-horizons.
Deux hypothèses de ruptures de stocks sont considérées: livraison tardive et vente perdue (ou
sous-traitance). Nous développons des approches optimales ou quasi-optimales pour faire des
plans d’approvisionnement tout en minimisant les coûts totaux prévus de commande, de stock-
age et de rupture sur les sous-horizons. Les méthodes proposées peuvent servir de repères pour
évaluer d’autres méthodes. Pour chaque hypothèse, nous menons des expériences numériques
pour évaluer les algorithmes développés et les approches adaptatives de planification globales.
Les résultats expérimentaux montrent bien leur efficacité.

Mots clés: approvisionnement lointain, planification optimale, incertitude, demande stochas-
tique, horizon glissant, lotissement, longue période de livraison, minimisation des coûts
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Chapter 1

Introduction

1



2 Introduction

1.1 Background

Global sourcing is becoming a common practice in industrial activities. It offers firms op-

portunities to enhance its competitiveness by procuring raw materials and/or components from

supply sources all around the world, usually with lower prices and/or improved quality. Mean-

while, firms that participate in global supply chains are also exposed to increased complexity

and uncertainty compared to those that operate domestically. Global sourcing thus gives rise

to a wide range of issues and impacts different levels of decision making. To address such a

problem, we focus on tactical and operational decision making.

Among many efficiencies brought by global sourcing, cost reduction is probably the most

marked driver. However, this efficiency can be achieved only when global sourcing activities

are well operated, since global sourcing has its key disadvantages including long lead times,

unexpected incidents interrupting supply (weather interference, pirates, etc.) and so on. In

this thesis, we attempt to answer the following questions: How to make procurement plans

for global sourcing activities in a cost efficient manner? Are classical domestic procurement

planning policies also efficient in global sourcing? Two issues should be specified: when to

buy, and how much should buy. The main objective is to minimize expected long-run per-

period total costs. In this thesis, we consider three types of procurement cost: setup, inventory

holding and stockout penalty.

A major concern of global sourcing is the geographically long distance between buyer

and supplier. While maritime transport is the most common transportation mode engaged in

global sourcing, the procurement lead time is often so long that the customer requirements for

finished-products usually evolve during the shipment. Then a large demand uncertainty should

be considered in corresponding procurement planning models.

This thesis follows up on the research work of (Hubert, 2013). In order to improve the

procurement plans, one should, on the one hand, improve the demand forecasting so that it is

close to actual demand, and on the other hand, optimize the procurement planning based on

forecasts. As it is widely admitted, demand forecast is never 100% accurate. This requires

to know how accurate the obtained forecast is. In this way, we can anticipate the demand un-

certainty when establishing the procurement plans. That is why forecast accuracy assessment

is an essential part of the process. The overall process is shown in Figure 1.1. For step À,

Hubert proposed a methodology to select an appropriate forecasting method and to update it

dynamically. For step Á, Hubert proposed a detailed model of forecast accuracy and its evolu-
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tion in function of time horizon involved. This forecast accuracy model is applied to a real-life

flow management problem in global sourcing. The method has been validated by its applica-

tion on real-life data from a world-leading automobile corporation, which has demonstrated a

clear superiority compared to existing ones in terms of both service level and inventory level.

Improve 
demand 
forecast

1 Forecast 
accuracy 

assessment
2

Procurement 
planning 

with demand 
uncertainty

3

Figure 1.1: How to improve procurement plans

The thesis of Hubert contributed very much to the two first steps of the process. This

current thesis focuses on step Â. Based on Hubert’s study, we consider developing an adap-

tive planning approach, which can make cost-efficient procurement plans for global sourcing

activities for the long run. We intend to deploy demand forecasting and procurement planning

techniques in a rolling horizon procedure. The rolling horizon procedure can help in observing

up-to-date demand forecasts and forecast accuracy, using which we can well estimate demand

distributions over a certain horizon in the near future. Then the procurement planning problem

over the above horizon can be modeled as a stochastic lot-sizing problem. Note that stochas-

tic lot-sizing problems are NP-hard (Halman et al., 2012), therefore, we should make effort to

develop efficient and effective methods to find optimal or near-optimal solutions.

In practical procurement planning engaged in global sourcing, stockout often takes place

due to demand uncertainty. In this thesis, we discuss two extreme assumptions for stockouts:

backorder and lost sale. For each assumption, we will develop respective solution procedure to

determine adequate procurement plans that implements global sourcing in a cost efficient man-

ner for the long run. In real-life situations, in case of stockout, part of demand is backordered

while the remaining part is lost. Such situations can be addressed by combining the results of

this thesis.
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1.2 Objective

This work aims at supporting industrial multinationals in determining tactical and operational

procurement plans for raw materials and/or components in distant lands.

The main objective is:

Research Objective:

develop optimal procurement planning policies for global sourcing activities, which

minimize expected long-run per-period total costs including setup, inventory hold-

ing and stockout penalty.

1.3 Methodology

This research is carried out by the following five main steps: surveying existing literature, spec-

ifying the problem under study, formulating the problem, proposing optimization algorithms,

and finally evaluating the proposed solution procedure, as shown in Figure 1.2.

Literature	

Review

Problem	

Description

Mathematical	

Formulation

Optimization	

Algorithm
Evaluation

Figure 1.2: Research methodology

Literature review can help in specifying the problem under study. For a big research topic,

a general survey of existing published works will provide valuable assistance in addressing

central research issues and pointing out the gaps. In addition, the state-of-the-art on a specific

research issue can also help in developing better solution procedures which improve certain

performances (accuracy, efficiency, effectiveness, etc.) of existing procedures.
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Based on literature review, the problem under study is then clearly defined. The following

step is to formulate the problem mathematically. Good mathematical formulations can even

boost development of good solution procedures.

The next step is to develop effective procedures which can find optimal or near-optimal

solutions efficiently. This is the key step of the overall methodology.

Finally, performances of the proposed solution procedures will be evaluated by numerical

tests.

1.4 Contributions

The contributions of this dissertation mainly include two parts.

Firstly, we present an adaptive optimization framework for procurement planning prob-

lems engaged in global sourcing. The framework deploys demand forecasting and short-term

procurement planning in a rolling horizon scheme. By employing the proposed framework,

the procurement planning problem engaged in global sourcing can be split into sub-horizon

stochastic procurement planning problems, which reduces greatly the overall computational

complexity. The proposed adaptive framework can also be used to evaluate the long-run per-

formances of other methods.

Secondly, we develop detailed sub-horizon optimal or near-optimal planning methods for

two extreme cases against stockouts: backorder and lost sale (or outsourcing). The proposed

methods can help in determining optimal or near-optimal procurement plans that minimize ex-

pected total costs including set-up, inventory holding and stockout penalty in sub-horizons.

When implemented with the aforementioned adaptive optimization framework, we can make

adequate procurement plans for global sourcing activities.

To the best of our knowledge, existing literature mainly focuses on qualitative analysis

of procurement planning and global sourcing policies. Due to economic globalization, global

sourcing has become a key cost-control step for many companies. This research work provides

an effective and efficient planning procedure to determine adequate operational procurement

plans for global sourcing activities, which fills a gap of academic research in this field.
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1.5 Thesis Outline

This dissertation is organized as shown in Figure 1.3.

Introduction
Chapter 1

General	Literature	
Review

Chapter 2

Adaptive	Optimization	
Framework

Chapter 3

Backorder
Chapter 4

Lost‐sale	or	
Outsourcing

Chapter 5

Conclusion	&	
Prospective

Chapter 6

Figure 1.3: Dissertation structure

Chapter 2 provides a general literature review of research on procurement planning and

global sourcing. The gaps are pointed out and distinguish this research with existing works.

Chapter 3 develops an adaptive optimization framework to deal with procurement planning

problems engaged in global sourcing. The costs of set-up, inventory holding and stockout

penalty are considered.

Chapter 4 presents optimal and near-optimal sub-horizon procurement planning approaches

for the case that all the unfulfilled demands are backordered.

Chapter 5 presents an effective near-optimal sub-horizon procurement planning approach

for the case that all the unfulfilled demands are lost or outsourced.

Chapter 6 draws conclusions of this research and discusses some potential research direc-

tions.



Chapter 2

Procurement Planning in Global Sourcing:
State-of-the-Art

7
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2.1 Overview

Supply chain management is one of the hottest economic topics in the world today. It spans

the movement and storage of raw materials, work-in-process inventory, and finished products.

Along a supply chain, numerous dependent or independent tasks need to be coordinated, while

a large number of corresponding decisions of different importance should be made. The prepa-

ration work supporting aforementioned decision making activities is planning. Supply chain

planning tasks can be divided into four stages along a product’s life cycle: procurement, pro-

duction, distribution and sales (Rohde et al., 2000). As the starting planning process of a sup-

ply chain, procurement planning is the first cost-control step of overall supply chain planning.

Nowadays, supply chain management is inevitably linked to global sourcing due to economic

globalization. Global sourcing is usually associated with a centralized procurement planning

strategy, which seeks to minimize total procurement costs while achieving a required service

level. In this context, procurement planning in global sourcing has become a key cost-control

step and is worthy of serious consideration.

This chapter gives a general literature review of related issues about procurement planning

in global sourcing. Section 2.2 presents a systematical structure of supply chain planning,

and specifies the importance of procurement planning in overall supply chain planning process.

Section 2.3 investigates the state-of-the-art on procurement planning. When procurement plan-

ning is engaged in global sourcing, the problem will be more complicated. Section 2.4 reviews

the state-of-the-art on global sourcing, and specifies the main features of procurement planning

problems engaged in global sourcing. Moreover, Section 2.5 gives an illustration of procure-

ment planning problem engaged in global sourcing, which will serve for problem description

and formulation in the following chapters. The conclusion is given in Section 2.6.

2.2 Planning in Supply Chain Management

2.2.1 Supply Chain Management (SCM)

A supply chain can be defined as the whole system involved in moving a product or service

from (initial) supplier to (ultimate) customer. It consists of all the organizations, people, ac-

tivities, information and resources related to fulfilling a(n) (ultimate) customer request, that is,

not only suppliers and manufacturers, but also warehouses, transporters, retailers and customers
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themselves. In addition, a supply chain also includes all corresponding functions such as new

product development, marketing, finance, operations, distribution and customer service.

In short, supply chain activities transform natural resources (raw materials) and compo-

nents into a finished product which is delivered to the (ultimate) customer (Nagurney, 2006).

Figure 2.1 illustrates a simplified supply chain network of a manufacturing firm.

Suppliers Manufacturing	Firm 												Distribution									Customers

Factory	Warehouses

Semi‐finished	
Product	

Manufacturing

Final
Assembly

Inner‐Factory	Transport
Unloading

(raw	materials
or	components)

Delivery
(finished	products)

Material	Flow Information	Flow Financial	Flow

Figure 2.1: A supply chain example

Usually, supply chain management (SCM) not only focuses on divergent or convergent

flows within a single chain, but also has to deal with a large number of flows within a complex

network due to different customer orders to be handled in parallel. In order to ease complexity,

a related organization should be established to concentrate on different portions of the overall

supply chain serving to centralized strategic decision making.

In a word, SCM covers the tasks of integrating organizational units along a supply chain,

and coordinating material, information and financial flows in order to fulfill (ultimate) customer

demands with the aim of improving the competitiveness of a supply chain as a whole (Stadtler

and Kilger, 2008).
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2.2.2 Planning in SCM

Along a supply chain, numerous dependent or independent tasks need to be coordinated, while a

large amount of corresponding decisions of different importance should be made. The prepara-

tion work supporting such decision making activities is planning. Planning can be subdivided

into five phases (Meyr and Günther, 2009):

• problem recognition and analysis,

• objective definition,

• future development forecasting,

• feasible solution identification and evaluation,

• good (or best) solution selection.

The planning tasks along a supply chain can be classified according to different rules.

(Rohde et al., 2000) proposed a supply chain planning matrix (SCP-Matrix) which distinguishes

the planning tasks in two dimensions: planning-horizon dimension, and supply-chain-process

dimension.

		Procurement	 				Production 			Distribution 							Sales

Materials	Program
 Supplier	Selection
 Cooperations

 Plant	Location
 Production	System

 Physical	Distribution
				Structure

 Product	Program
 Strategic	Sales
				Planning

 Personnel	Planning
Material
					Requirements
					Planning
 Contracts

Master
					Production
					Scheduling
 Capacity
					Planning

 Distribution
					Planning

Mid‐term
					Sales				
					Planning

 Personnel
					Planning
 Ordering
					Materials

 Lot	Sizing
Machine	Scheduing
 Shop	Floor	Control

Warehouse
					Replenishment
 Transport
					Planning

 Short‐term
					Sales	
					Planning

Long‐Term

Mid‐Term

Short‐Term

Material	Flow Information	Flow

Figure 2.2: Supply chain planning matrix (Rohde et al., 2000)

The SCP-Matrix (see Figure 2.2) shows typical tasks occurred in most common supply

chain types, following a hierarchical structure. Long-term planning decisions are also called

strategic decisions, which usually concern the structural design of a supply chain and have long-

term effects. Mid-term and short-term planning decisions are called operational ones, yet some
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existing literature distinguishes the mid-term planning decisions as tactical ones. In particular,

mid-term planning determines a "contour line" of regular operations, while short-term planning

has to specify all the activities as detailed instructions for immediate execution and control

(Anthony, 1965; Silver et al., 1998).

As shown in Figure 2.2, for each partner along a generalized supply chain network, the

internal supply chain usually consists of four main supply chain processes with substantially

different planning tasks:

• Procurement,

• Production,

• Distribution,

• Sales.

Procurement process includes all the activities that provide necessary resources for produc-

tion. Production process is conducted under the aforementioned resource capacity limitation.

Distribution process bridges the distance between production sites and retailers or downstream

processing firms. And all the above planning decisions are driven by order/demand forecasts

determined by the sales process.

2.2.3 The Cost Structure

A large part of planning problems aim at minimizing total costs incurred in the corresponding

supply chain process, so as to maximize the profit gained. Costs are being charged along a

product’s life cycle (Stevenson and Hojati, 2007). When a replenishment activity is launched,

a replenishment cost (including setup and purchasing) will be assessed. For the inventory man-

agement of stocks, the holding costs are assessed. When the inventory can satisfy a demand, a

profit will be gained; otherwise, an additional penalty cost will be charged.

(1) Replenishment Cost

When an order is placed, the following two costs will be assessed (Freimer et al., 2006).

The first is setup cost. It is the initial cost related to replenishment activities, and can ap-

pear in different forms according to various industries, since the supplier could be manufacturer,

packager, distributor, and so on. For example, if the supplier engages in manufacturing process,

then a series of preparatory work (such as equipment installation and commissioning) should
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be done as soon as an order arrives. This type of expense is just-for-once and fixed, which is

independent of the production quantity. The set-up cost is usually signified by symbol K.

The second is variable cost. It increases proportionally with the replenishment quantity.

The symbol c is often used to denote the production or purchase cost of product (per unit).

Let x denote the replenishment quantity, the total cost of a replenishment activity is calcu-

lated as:

R(x) =

0, x = 0;

K + cx, x > 0.

In real commercial activities, the setup cost is rarely explicitly discussed, since people

actually focus much more on the order quantity and the unit price of product. However, it is

usual that the supplier is not willing to start a production or distribution activity for just a small

order quantity, which reflects implicitly the effect of setup cost. Generally speaking, once a

production or distribution activity is set up, people always want to produce or distribute more in

order to achieve an economy of scale. Moreover, the setup cost is sometimes hard to quantify.

Many suppliers prefer to set the unit price of a product according to the order quantity. In

this situation, the setup cost is actually split onto each unit of product (Allahverdi and Soroush,

2008).

In this dissertation, the setup cost and the variable cost are assumed to be independent and

can be calculated respectively. This assumption is widely used in inventory analysis.

(2) Holding Cost

A holding cost is defined as the expense incurred to maintain a stock of goods, which may be

materials/components awaiting use in production or finished products to be traded and shipped.

The first is capital opportunity cost (Rajan et al., 2000). In general, the capital invested

(to purchase goods, rent warehouses, etc.) will be held until the the goods are sold. If the given

capital was invested in other potential investment activities, a certain rate of return could be

expected. The value of the best alternative forgone is defined as the capital opportunity cost.

Let I denote the expected rate of return, and c denote the order cost of unit goods, then the

capital opportunity cost can be given as Ic (per unit goods, per unit time).
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Other holding costs comprise: the resource consumption during inventory holding, such

as water, electricity and space; the deterioration in the quality of goods, such as the damage

caused by handling, weather, etc.; the loss of goods through mishandling, poor record keeping

or theft; the management of storage, such as the equipment and labor to operate the warehouses;

the insurances, taxes and security, and so on (Raman and Kim, 2002). Let I′ denote the related

cost for per unit value of goods in per unit time, then the related cost is given as I′c (per unit

goods, per unit time).

For many real inventory systems, the capital opportunity cost is much higher than other

holding costs. Moreover, I′ can be mathematically converted into I. As a result, the holding

cost for unit goods in unit time can be given as: h = Ic. Let y denote the average inventory

level, then the holding cost per unit time is: H = hy.

(3) Penalty Cost

The principal function of stock is to satisfy the customers’ requirements in time. When demand

cannot be satisfied, a penalty cost will be charged.

In real life, two basic assumptions have been made to deal with unsatisfied demand: back-

order and lost sale (Graves et al., 1993). For many consumable commodities, customers can

often easily find the alternatives when their demand cannot be satisfied in time. In this case,

the lost-sale assumption is usually used. However, when some customers insist on certain spe-

cific products or brands, they are more likely to wait until the replenishment. In this case, the

backorder assumption is used.

For lost-sale cases, the expected profit that could have gained from the corresponding item

if it was not in shortage is lost. While for backorder cases, although the customer’s order has

been retained, an additional cost concerning order management will be assessed. In both cases,

there is an indirect cost for loss of goodwill. Let p denote the penalty cost due to each stockout,

and z denote the unsatisfied requirement quantity per unit time, then the penalty cost in per unit

time is P = pz.

The penalty cost structure is determined by the stockout assumption. However, the stock-

out assumption decides not only the penalty cost. It is no exaggeration that the change of

stockout assumption will influence the overall cost structure of the inventory system, and will

result in totally different solution procedures.
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2.3 Procurement Planning

As the starting planning process of a supply chain, an adequate procurement planning may

satisfy the raw material or component requirements for production process in a cost efficient

manner, thus procurement planning is the first cost-control step of overall supply chain planning,

and is worthy of serious consideration.

2.3.1 Hierarchical Procurement Planning

According to the length of planning horizon, procurement planning can be divided into long-

term, mid-term and short-term.

Long-term procurement planning comprises materials program, supplier selection and co-

operations (see Figure 2.2). In particular, materials program is often linked to product program

(in long-term sales planning) for supplying raw materials and component parts. The product

program conceives the architecture of whole product range, based on the prospects of existing

product lines, future product developments and potential new sales regions. In materials pro-

gram, price, quality and service (such as availability and reliability) are three key criteria used in

material/component selection. Moreover, suppliers will be evaluated equivalently. Further re-

duction of procurement costs may be achieved by strategic cooperations with suppliers, such as

simultaneous reduction of inventories and backorders using ideas like JIT (just-in-time) supply

and VMI (vendor managed inventory), see (Magad and Amos, 1995; Fry et al., 2010).

In mid-term planning, the potential sale of a product in a specific region is forecasted

at first. Then the master production scheduling (MPS) is applied to decide how to use the

available production capacity of one or more facilities efficiently. The material requirement

planning (MRP) should be implemented to calculate the order quantities of raw materials or

component parts. Besides MRP, mid-term procurement planning also includes the personnel

planning, which calculates the personnel capacity for procurement activities, by considering

the availability of specific personnel groups according to their labor contracts. If there are

not enough available employees to fulfill the work load, personnel planning should give the

necessary amount of additional part-time employees.

Short-term procurement planning accomplishes mid-term planning in a detailed manner.

For example, the short-term personnel planning determines the detailed schedule of each staff

considering the employment agreement and labor costs. Besides, the short-term order planning
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specifies the purchasing activity of every day in order to fulfill the following material/component

requirements in a cost efficient manner.

2.3.2 State-of-the-Art on Procurement Planning

In general, existing research work on procurement planning can be divided in the following

three stages.

General Scheme and Strategic Analysis

In the early work of (Farmer and Taylor, 1975), the idea of mastering resources in a systematic

way instead of taking resources for granted to meet production requirements is proposed. The

authors introduce a new concept of resource management, which is an efficient and effective de-

ployment of resources to meet requirements. This paper mainly concerns benefits of corporate

procurement planning in the long term.

(Spekman, 1981, 1985) specifies the importance of procurement planning to industry, and

attempts to bridge the gap between resource availability and production decisions. The author

presents the notion of strategic procurement planning, and proposes a general framework for

better integration of procurement within a firm’s strategic plans.

Based on analysis and comparison of different strategic procurement models, (Rink and

Fox, 1999) study the relationship between procurement planning and other functions (such

as production planning) across a product’s life cycle, and further clarify the top-management

stature of strategic procurement planning.

Real-Life Case Study

Due to its complexity and variety, many practical applications of procurement planning for real-

life industrial cases have been studied, see Table 2.1. These papers concern different realistic

problems such as the fluctuating prices of raw materials and finished products, long lead times,

capacity limits, and so on, which are introduced as follows.

(Bonser and Wu, 2001; Sun et al., 2010, 2011) study the fuel procurement planning prob-

lem in electrical utilities. In particular, (Bonser and Wu, 2001) reduce the problem complexity

by using practical management insights, and propose an efficient heuristic solution procedure in

two stages: in the first stage, a priori plan is made according to long-term interests; in the sec-
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Table 2.1: Practical applications of procurement planning

Industry Paper Main concerns

Electrical utility (Bonser and Wu, 2001) fluctuating fuel price

(Sun et al., 2010, 2011)

Knockdown production system (Lim and Kim, 2001) plant location; capacity limits

Wafer fabrication facility (Swaminathan, 2002) long lead times

Biorefinery (Yun et al., 2009a,b) fluctuating prices of raw materials & fin-
ished products

Petrochemical industry (Chu et al., 2012) crude oil transportation; capacity limits

Oil refinery (Oddsdottir et al., 2013) nonstop crude oil supply; capacity limits

ond stage, a short-term detailed procurement plan is made by applying a linear programming

technique. On the other side, (Sun et al., 2010, 2011) solve the procurement planning problem

with a two-stage fuzzy programming technique.

(Lim and Kim, 2001) consider an integrated problem of plant location and component pro-

curement planning in knockdown production systems. The knockdown production system is

a global manufacturing system which is widely used in automobile and electronics industries.

It usually consists of a home production site and several globally dispersed local production

sites. In particular, the home production site produces both the final products and the knocked-

down components required to assemble final products; while the local production site performs

only the final assembly operations, using the knocked-down components supplied by home

production site or other suppliers. In this paper, the authors formulate the procurement plan-

ning problem as a mixed integer program, and develop a two-stage solution procedure. In the

solution procedure, the problem is decomposed into two tractable sub-problems (respectively

a dynamic plant location problem and a multi-period capacity planning problem) which are

solved sequentially.

(Swaminathan, 2002) addresses the issue of tool procurement planning at a semiconduc-

tor wafer fabrication facility which makes specific integrated circuits. The fabrication process

involves building interconnected layers of metal lines and insulation material to produce a re-

quired circuitry on a wafer. The processing time is fairly long that the manufacturer has to

forecast the customer demands in advance. In order to meet the forecasted demand, the manu-
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facurer also needs to procure additional tools and equipment, which are quite costly and usually

have long delivery lead times, for the tools are highly customized and made-to-order. In this

paper, the author presents a stochastic planning model for tool procurement by developing a

strategy that plans for a set of demand scenarios. The problem is formulated as a large-scale

mixed integer program for each demand scenario. Efficient heuristics have been developed to

solve the industrial size problem.

Besides, (Yun et al., 2009a,b) discuss the application of raw material procurement plan-

ning within a biorefinery. The profit of a biorefinery is highly affected by the prices of its raw

materials and the margins of its products. The prices of raw materials change for a variety

of reasons such as seasonal effects, states of harvest and policy changes; while the margins of

products fluctuate due to changing market conditions. In this paper, the authors curtail the risks

by purchasing diversified raw materials and their future contracts. An operational procurement

planning model is proposed to decrease the profit variability of the refinery, by flexibly operat-

ing an integrated production process for multiple products. The optimal procurement plan for

an integrated biorefinery process is determined based on different price scenarios and product

requirements.

Moreover, (Chu et al., 2012; Oddsdottir et al., 2013) investigate crude oil supply problems.

In particular, (Chu et al., 2012) formulate a crude oil transportation problem into a single-item

lot sizing problem with limited production and inventory capacities, and then develop a strongly

polynomial dynamic programming algorithm to solve it. On the other hand, (Oddsdottir et al.,

2013) investigate the crude oil procurement problem in oil refineries. An oil refinery is de-

signed to process a wide range of crude oil types into finished products, such as gasoline,

kerosene and diesel oil. According to fluctuant market conditions, the refinery should have

the flexibility to shift between crude oils and process various crude blends into required prod-

ucts. Oil refineries operate 24h a day, thus a shut down is extremely costly and results in major

material loss, as well as extreme cleaning and security activities. The procurement plan should

make sure that: (1) there is always enough supply of crude blends to avoid shutdowns; (2) the

supply should not exceed the storage capacity of refinery; (3) the quality of the supply has to be

feasible for the downstream processing units. In this paper, the authors introduce a mixed inte-

ger nonlinear programming model, and develop an efficient two-stage solution approach which

can generate a feasible procurement plan within acceptable computational time.

To sum up, studies on real-life procurement planning problems are inevitably linked to

physical characteristics of their systems, such as the fuel supply, refining and wafer fabrication
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processes. In particular, a large part of above papers mainly focus on procurement planning

for raw materials whose prices fluctuate widely, such as fuels and agricultural products, see

(Bonser and Wu, 2001; Sun et al., 2010, 2011; Yun et al., 2009a,b; Oddsdottir et al., 2013).

The authors usually solve the problem in two stages: firstly, make a priori plan according to

long-term interest; secondly, based on spot market trends, develop adequate planning methods

to determine cost-efficient short-term procurement plans. On the other hand, for manufactur-

ing industries such as OEMs (original equipment manufacturers) and ODMs (original design

manufacturers), logistics and inventory management have become the main concerns (Lim and

Kim, 2001; Swaminathan, 2002). Moreover, due to economic globalization, distance and long

lead time are worthy of particular attention when global sourcing is involved.

Academic Operational Analysis

Instead of studies on real-life procurement planning cases, researchers have also published a few

academic papers about operational procurement planning for a specific class of model settings.

(Chauhan et al., 2009) investigate a stochastic-lead-time procurement planning model in-

volved in a customized product assembly scenario. Due to high price fluctuations and techno-

logical advances, some key components for assembling finished customized products are not

suitable for being stocked in advance. Usually, a delivery date of finished products is given,

and a procurement plan to order needed components from different suppliers should be made

to assure assembly of finished products. The authors have developed an effective approach to

determine the ordering time for each component so as to minimize the expected inventory costs

including holding and backorders.

(Geunes et al., 2009) consider a procurement planning problem with price-sensitive de-

mands. An integrated model involving pricing and procurement planning under capacity limits

and scale economy is used. The revenue functions are assumed to be concave. The authors

seek to maximize total profit (revenue minus procurement and inventory holding costs), and

develop polynomial-time solution methods for both the dynamically varying price case and the

constant price case.

In addition, (Balakrishnan and Natarajan, 2013) discuss the coordinated procurement plan-

ning problem for large multi-division firms. Based on firm-wide purchasing power, coordinat-

ing procurement policies across multiple divisions to leverage volume discounts from suppliers

can yield great cost savings. The authors propose an integrated optimization model that consid-

ers firm-wide volume discounts as well as divisional ordering and inventory costs. An effective
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solution procedure is developed. Numerical results show that the proposed method generates

near-optimal solutions within reasonable computational time.

To summarize, for domestic procurement planning, prices of raw materials or components

are of special importance in total cost optimization. The above papers mainly discussed how to

maximize profits when considering impacts of price changes on order decisions. Global sourc-

ing can be an effective way to procure raw materials or components in lower prices, but will also

bring significant difficulties, such as long lead time, and the underlying demand uncertainty.

Conclusion

To conclude, early studies on procurement planning mainly address general definitions, frame-

work structuring and strategic analysis. From the new century, more research work has been

done on real-life industrial cases. As the first cost-control step of supply chain planning, pro-

curement planning has attracted increasing research interest in recent years. In existing lit-

erature, most attention was paid to price fluctuations that impact strongly decision making.

However, due to economic globalization, the number of possible material/component suppliers

has been increasing immensely. Therefore, global sourcing makes effects on material/compo-

nent price reduction. But other difficulties will be produced, such as the long lead time and

large demand uncertainty caused by the long period separating the date of actual consumption

from the date where procurement decision is made, which are the main focuses of this thesis.

2.4 Global Sourcing

2.4.1 Context and Definition

Global sourcing is the practice of sourcing from the global market for goods or services under

certain geopolitical constraints (Antràs and Helpman, 2004). It is a natural product of supply

chain globalization, which is the outcome of today’s ever-expanding global trade markets.

In order to concentrate on core competencies, which signify the unique ability that a firm

inherits or develops and that cannot be easily imitated (Prahalad and Hamel, 1990), many firms

decide to outsource other activities as far as possible. Consequently, the features (functions,

price, quality, etc.) of a product/service sold to customers largely depend on multiple firms

involved in its creation.
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For the purpose of cost control, a lot of developing countries have been brought into con-

sideration for their lower labor and production costs. This brings about new challenges for the

integrated cooperation of legally separated and geographically far-away firms and the coordina-

tion of material, information and financial flows on a global scale.

Thanks to rapid improvements in transport and communication technologies, firms strug-

gling to meet dynamic needs of growing markets and new consumer segments may learn that

suppliers located in the whole planet are achievable. In such an environment, firms are usually

faced with two possible sourcing choices:

(1) choose a local supplier, usually with higher price and short lead time,

(2) choose a distant supplier, usually with lower price and long lead time.

It is noticeable that, despite the net financial profits due to difference of material/component

prices, the latter choice might lose its advantage rapidly owing to heavy import duty, high

shipment cost or severe stockout penalty, and so on. Therefore, how to achieve global sourcing

in a cost efficient manner has become an important issue.

In practice, global sourcing touches upon all multinational firms, while the suppliers usu-

ally cluster in China, India, the Middle East, Russia, and so on. When developing sourcing

strategies on a global scale, companies have to consider not only the manufacturing cost and the

fluctuation of exchange rates but also the availability of infrastructures such as transportation

and energy (Kotabe and Murray, 2004). In addition, the complex nature of global sourcing

introduces many constraints to its successful execution. In particular, logistics, inventory man-

agement and distance have become several major concerns for multinational firms engaged in

global sourcing.

2.4.2 Main Features

Compared to local supply chain management and local sourcing, global supply chain manage-

ment and global sourcing have their own constraints (Cohen and Huchzermeier, 1999; Meixell

and Gargeya, 2005; Dornier et al., 2008).

The most common transportation mode engaged in global sourcing is maritime transport.

However, the corresponding procurement activities can be profitable only when the order quan-

tity exceeds a certain threshold to achieve the economy of scale, that is, the product should fill

the containers as full as possible.
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Consequently, many problems come along. On the one hand, an extra-large quantity of

procurement implies a significant capital requirement and required storage space. On the other

hand, the vagaries during the long-distance maritime transport (such as customs inspection,

weather interference, labor strike, route security, etc.) will bring a great uncertainty in the lead

time, leading to stockout risk. In addition, the cultural and geopolitical differences will also add

to the difficulties. And most importantly, the finished-product demand (determined by sales

process) is hard to forecast resulting from the long lead time of material/component delivery.

The previous features might all influence, directly or indirectly, the procurement order

decisions. Consider the essential factors for planning, the first step should be specifying the

required material/component quantity of each period. In this thesis, we focus on the large

uncertainty of future finished-product demand due to long distance.

2.4.3 State-of-the-Art on Global Sourcing

Outsourcing labor-intensive products to localities with lower labor costs is an implicit success

key for nearly all businesses. This phenomenon usually appeared domestically in early times,

while after World War II, countries of the whole planet seek cooperation in multiple aspects

and national borders are no longer formidable barriers for international trades (Hickman and

Hickman, 1992).

Early study on global sourcing can be dated back to (Barnet and Müller, 1974; Moxon,

1974; Leroy, 1976), in which the authors advocate the prospective future of offshore production

in less developed countries and the power of multinational corporation. Besides, (Levitt, 1983)

reviews the globalization of markets by illustration of multinationals in Japan, Europe and the

United States. (Kotabe and Omura, 1986) analyze the typology of global sourcing strategies.

Further, (Kotabe and Omura, 1989; Kotabe and Murray, 1990; Kotabe, 1992) compare various

sourcing patterns adopted by European and Japanese multinational manufacturing firms. Their

work empirically confirms that competitive advantages can be gained through global sourcing

in precondition of skillful execution.

Synthetic Analysis of Global Sourcing

Since the 1990s, studies on global sourcing have been blooming. The main research work

has been focused on synthetic (organizational, structural) analysis of long-term global sourcing

strategies, see Table 2.2.
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Table 2.2: Synthetic analysis of global sourcing

Class Paper Description

Knowledge building (Cavusgil et al., 1993) motives, location/item selection, sourcing con-
figuration

(Murray et al., 1995) effects of sourcing-related factors

(Samli et al., 1998) opportunistic sourcing v.s. strategic sourcing

(Petersen et al., 2000) critical factors impacting global sourcing effec-
tiveness

Relationship (Palaniswami and Lingaraj, 1994) supplier partnering

(Munson and Rosenblatt, 1997) governmental regulation

(Bozarth et al., 1998) buyer-supplier relationship

Framework & (Meredith Smith, 1999) an item-selection model

Decision-aide model (Arnold, 1999) 3 models for global sourcing organization: cen-
tral purchasing model, coordination model, out-
sourcing model

(Kim et al., 2002) a global manufacturing system

(Quintens et al., 2006) a Global-Purchasing-Strategy (GPS) system

Firstly, the major issues engaged in global sourcing have been addressed.

(Cavusgil et al., 1993) specify the decision variables involved in global sourcing, and de-

scribe how they are interrelated with each other, by addressing three critical issues: motives of

global sourcing activities, selection of locations and materials/components for offshore sourc-

ing, and optimal design on sourcing configuration for a firm’s global operations. (Murray et al.,

1995) investigate the effects of three sourcing-related factors (bargaining power of supplier, pro-

prietary technology, elements of transaction costs) on the relationship between global sourcing

strategy and a product’s market performance. (Samli et al., 1998) indicate the conceptual dis-

tinction between opportunistic and strategic sourcing. The authors appeal that, other than being

considered as a casual gainful opportunity, global sourcing should be taken as a key element in

a firm’s overall corporate strategic plan. (Petersen et al., 2000) find that global sourcing struc-

tures/processes, global sourcing business capabilities, international language capabilities, and

top management commitment to global sourcing are four critical factors that impact global

sourcing strategy effectiveness.

Secondly, relationships (both external and internal) engaged in global sourcing have been

discussed.

(Palaniswami and Lingaraj, 1994) introduce the idea of supplier partnering, in which the
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buyer and supplier form a closer relationship where they mutually participate in advertising,

marketing, branding, product development, and other business functions. The authors discuss

the role of proposed global supplier partnering system in manufacturing firms which plan to

revitalize their operations through strategies such as just-in-time, flexible manufacturing and

total quality management. (Munson and Rosenblatt, 1997) investigate local content purchas-

ing rules which force firms to purchase a certain amount of components from suppliers located

in the country where they wish to operate. Through case studies, (Bozarth et al., 1998) indi-

cate that managing the buyer-supplier relationship is important for global manufacturing firms.

The authors have also analyzed the interrelationships between international sourcing decisions,

sourcing strategies, and supplier performance.

Finally, some decision-aide frameworks and models have been proposed.

(Meredith Smith, 1999) proposes a decision-matrix based model which can provide an

initial scheme for selecting items that may benefit from global sourcing. (Arnold, 1999) devel-

ops three global sourcing organization models: central purchasing model, coordination model,

and outsourcing model. These models can be used to give suggestions for different types of

firms on how to organize global sourcing. (Kim et al., 2002) construct a global manufactur-

ing system for a shoe-making firm. The system helps in allocating production tasks between

remote places (headquarters and manufacturing plants), and generating corresponding procure-

ment plans. (Quintens et al., 2006) develop a global purchasing strategy (GPS) system to ex-

ecute organizational alignment of purchasing functions inside the multinational firms engaged

in global sourcing.

Planning in Global Sourcing

In recent years, there are several published works studying the planning activities engaged in

global sourcing.

Above all, (Hartmann et al., 2008) explain the organizational implications of different

control mechanisms in global sourcing, and indicate that planning is a central mechanism for

coordinating activities of organizational units. Besides, (Golini and Kalchschmidt, 2011) in-

vestigate the impact of global sourcing on inventory levels. The authors show that the negative

impact brought by complex nature of global sourcing on inventory performance can be partially

reduced via proper supply chain planning practices.

Moreover, (Holweg et al., 2011; Hu and Motwani, 2013) contribute on detailed model
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building and algorithm development. In particular, (Holweg et al., 2011) propose an analytical

total cost model for global sourcing. The model has been validated through case studies. And

(Hu and Motwani, 2013) develop a methodology to minimize downside risks in global sourc-

ing under price-sensitive stochastic demand, exchange rate uncertainties, and supplier capacity

constraints.

There are also some researchers who are vigilant to the disadvantages of global sourcing.

(Schaibly, 2004; Kotabe and Murray, 2004; Matthyssens et al., 2006; Steinle and Schiele, 2008;

Kotabe and Mudambi, 2009) explore the potential limitations and negative consequences of

sourcing strategies on a global scale, and propose remedial approaches.

Conclusion

To conclude, the majority of published works have been focused on synthetic analysis of global

sourcing, which can be generally divided into three groups: knowledge building, (external/in-

ternal) relationship, and structural framework/model. However, to the best of our knowledge,

there is little literature discussing how to make procurement plans in a global sourcing context.

Due to economic globalization, optimal planning for global sourcing activities has become

a crucial step in a firm’s cost-control strategy. For real-life applications, tactical and operational

planning of procurement activities on a global scale is fairly important. Therefore, it will be

interesting and meaningful to develop an optimal long-distance procurement planning approach,

which may achieve global sourcing in a cost efficient way. The proposal is based on the gap of

research work about tactical and operational procurement planning engaged in global sourcing.

For convenience, we use "procurement planning" to signify "tactical and operational pro-

curement planning" in the remainder of the dissertation.

2.5 Procurement Planning in Global sourcing: An Illustra-

tion

For nearly every multinational company engaged in global sourcing, a central procurement

organization is established to seek an optimal procurement plan which minimizes total costs.

When cost structure is specified, we use the following example to figure the procurement
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planning problem engaged in global sourcing. See Figure 2.3 for illustration.

Example:

Firm A (in France) plans to procure component X from Supplier B (in China) in order

to produce Product Y. The transport from B to A takes about 1.5-2 months. Once a pro-

curement order is placed, a mandatory set-up cost occurs. When there is a stockout of

component X in A’s production process, the production for final-product Y will be inter-

rupted, therefore the customer demand for Y cannot be fully satisfied. Consequently, a

penalty cost is charged to firm A for unfulfilled demand.

The objective is to draw up an optimal procurement planning, which minimizes the ex-

pected long-run per-period total procurement costs including set-up, inventory holding

and stockout penalty, by specifying two issues: when a procurement order should be

placed, and how many component X should be ordered.

Supplier	B Buyer	A

order	placement

deliver	
component	X

shipment
	(1.5‐2	months)

receive
component	X

produce
product	Y

distribute
product	Y

clientsforecast
demand	of	X

shipment	 time

flows	(material,	finance,	information)	:

procurement
planning

receive	order

market	
analysis

Figure 2.3: Procurement planning problem in global sourcing

To the best of our knowledge, there are few published works discussing long-distance pro-

curement planning problem in global sourcing. In order to make up for the gap of literature, we

tend to expand our literature research to similar operations research issues, such as production

planning.
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Procurement planning is, to some extent, similar to production planning. The major diffi-

culty of procurement planning in global sourcing comes from the long distance between buyer

and supplier. The long distance and the maritime transport mode result in long delivery lead

time, thus a large uncertainty of future customer demand. In recent years, uncertain demand

is more and more considered in production planning problems. Though the scales of uncer-

tainties are different, production planning problem with uncertain demand can provide some

reference to procurement planning problem engaged in global sourcing which is studied in this

dissertation.

Since there are enormous academic papers on production planning, we will survey related

literature according to specific issues in the following chapters.

2.6 Conclusion

Procurement planning in global sourcing has attracted increasing attention. This chapter presents

a general literature review of related research issues. To the best of our knowledge, the pub-

lished papers on procurement planning and global sourcing mainly discussed in a qualitative

manner. There exists a little literature that investigates procurement planning and global sourc-

ing respectively, by employing analytical models. However, research on procurement planning

problems engaged in global sourcing is still a gap in existing literature. Due to its extensive ap-

plication in real life, it is important and meaningful to develop effective and efficient approaches

to make adequate procurement plans for global sourcing activities. This chapter also illustrates

a standard procurement planning problem engaged in global sourcing, which serves as a base

for specifying problem description and formulation in the following chapters.
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3.1 Overview

A major problem of procurement planning in global sourcing is the long lead time caused by the

geographically long distance between supplier and buyer. This requires that an order be placed

long time before it is actually consumed. As a consequence, the demand forecast should be

made long time before. This inevitably induces a large uncertainty. This chapter presents an

adaptive optimization framework, which deploys demand forecasting and optimal procurement

planning in a rolling horizon scheme. By employing this framework, the long-distance pro-

curement planning problem engaged in global sourcing will be split into optimal procurement

planning problems in sub-horizons, which reduces largely the overall computational complex-

ity, and also allows to cope with the demand uncertainty with updated information. Moreover,

this adaptive framework can also be used to evaluate long-run performances of other methods.

The chapter is organized as follows. Firstly, the key factors determining inventory mod-

els are identified for the specific problem under study (Section 3.2.1). The assumptions and

notation are then addressed in Section 3.3. The problem is mathematically formulated in Sec-

tion 3.4. Based on literature review (Section 3.2.2), an adaptive optimization framework is

developed to cope with the large demand uncertainty caused by long distance (Section 3.5).

The proposed adaptive optimization framework is developed to deploy the short-term optimal

planning methods presented in Chapter 4 and Chapter 5. The conclusion is drawn in Section

3.6.

3.2 Literature Review

3.2.1 Model Identification

In this thesis, the long-distance procurement planning problem engaged in global sourcing is

studied. As presented in Chapter 2, we find little direct reference in published works on this

specific issue. Since procurement planning is, in some measure, similar to production plan-

ning, we turn to literature on production planning with uncertain demand for some reference.

However, although we focus our problem on single item and single location, there are still nu-

merous applicable inventory models due to various parameters which determine the models’

structure. For clear model identification, (Graves et al., 1993) addressed three key factors that

influence the essential structure of inventory models, which are summarized as follows.
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Key Factor (1): Demand

Since virtually all the procurement plans are made to satisfy certain customer demand, the

assumptions that we make about demand are, in most cases, the most important in determining

the problem complexity. On the basis of existing literature, the following assumptions are

commonly defined:

(a) Deterministic and stationary. Demand is constant and known. This assumption is usu-

ally made based on the fact that either the demand is expected to stay unchangeable, or

the demand can be predicted in advance. A famous application is the classical economic

order quantity (EOQ) model, which is developed by (Harris, 1913) and popularized by

(Wilson, 1934).

(b) Deterministic and time varying. In this case, the changes in demand are supposed to be

predictable. This demand pattern is widely considered for lot sizing problems, in the

context of manufacturing final products from components and raw materials.

(c) Uncertain. The term "uncertainty" refers particularly to the case that demand distribution

is known, while the exact demand quantities cannot be predicted in advance. Usually, the

demand distribution can be estimated from historical demand data. This demand pattern

is used in majority of the planning problems which consider indeterminate demand.

(d) Unknown. This demand pattern is resulting from the practical condition that demand

uncertainty is so large that even the demand distribution is unknown. A feasible approach

is to assume that demand follows certain distribution form, and update the distribution

parameters according to up-to-date demand observations.

In this thesis, we consider the unknown demand.

Key Factor (2): Costs

The main objective of most planning problems is to minimize total costs. Thus the assumptions

that one makes about costs also play an important role in defining the problem. Section 2.2.3

has addressed the commonly-used cost assumptions. In this thesis, we consider the costs of

setup, inventory holding and stockout penalty.
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Key Factor (3): System’s physical characteristics.

The physical aspects of inventory system will also influence the problem complexity. The

following physical features are often considered:

(a) The review process. Two types of review processes are usually considered: continuous

and periodic. Continuous review process assumes that inventory level is known at all

times, and replenishment order can be placed at any time. It is widely used in modern

supermarkets with scanning devices connected to central inventory management system.

On the other side, periodic review process assumes that inventory level is known only at

discrete time points, and order decisions can only be made at these points. Note that when

period length is extremely tiny, periodic review process can be approximately regarded as

continuous review process.

(b) Lead time assumptions. Lead time is defined as the delay between the placement and

the arrival of a replenishment order. It reports the system response time. A simplest

assumption is instantaneous replenishment, in this case, lead time is assumed to be zero.

This assumption is made when lead time is short enough compared to the time between

reorder decision in practice. In periodic review process, a more general assumption is

that lead time equals some integral multiple of period length.

(c) Stockout assumptions. When demand cannot be fulfilled, a stockout assumption should

be made. The simplest assumption is that all the unsatisfied demand is backordered. The

backordered demand is mathematically described as a negative inventory level. Another

extreme is that the unfulfilled demand is totally lost, which often occurs in retail environ-

ment.

In this thesis, we consider a periodic review process. Lead time is assumed to be some

integral multiple of period length. When a stockout occurs, the backorder and lost-sale as-

sumptions are respectively used in Chapter 4 and Chapter 5.

3.2.2 Rolling Horizon Planning (State-of-the-Art)

In procurement planning problems, the information (on actual demands, inventory states, etc.)

cannot be well observed unless within an appropriate forecast lead time. In order to acquire

up-to-date forecasts, a rolling horizon planning procedure is commonly used.
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The explicit academic research on rolling horizon planning can be dated back to the early

work of (Baker, 1977). The author has designed an experimental study to investigate the effi-

ciency of rolling horizon planning with the classical Wagner-Whitin model (Wagner and Whitin,

1958). In his paper, the standard procedure of rolling horizon planning is described as follows:

" solve the model and implement only the first period’s decisions; for the following period,

update the model to reflect information collected in the interim, re-solve the model, and

again implement only the imminent decision pending subsequent model runs."

Baker has tested the rolling horizon procedure with different demand patterns. He indicates

that for constant or trend demand without seasonal effects, the optimal demand forecast horizon

is the natural cycle derived by EOQ model (Harris, 1913; Wilson, 1934). With the seasonal

demand, the most appropriate demand forecast horizon is the integral multiple of the seasonal

cycle. When demand forecast horizon is properly determined, the effectiveness of a rolling

horizon procedure can be independent of the demand profile. The author has also shown that

the longest demand forecast horizon is not necessarily optimal.

Efficiency Comparison on Exact and Heuristic Algorithms Under Rolling Horizon Policy

(Blackburn and Millen, 1980) implemented the rolling horizon procedure with three well-

known lot sizing methods: Part Period Balancing (PPB), Silver Meal (SM), and Wagner-Whitin

(WW) algorithm. Numerical experiments show that rolling WW method does not always per-

form the best. As a matter of fact, the WW decisions are optimal only in a fixed-horizon prob-

lem. Extending the planning horizon by one period, the optimal decisions might change. This

instability is named "nervousness" in MRP. However, for the heuristic methods such as PPB and

SM, the nervousness degree is probably lower since not all the future information is needed to

make current order decision. Thus under certain conditions, rolling SM approach can produce

lower total costs than rolling WW approach, which has been validated by numerical examples

in the paper.

Nevertheless, (Chand, 1982) presented a modified version of rolling WW approach, which

gives better cost performance than rolling WW approach and rolling SM approach. The im-

provement on rolling WW approach requires very few additional computations.

The argument whether exact algorithms (such as Wagner-Whitin method) or heuristic al-

gorithms (such as Silver-Meal method) perform better in a rolling horizon environment goes

through the following decade, see (Carlson et al., 1982; Wemmerlöv and Whybark, 1984; Evans,
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1985; Bookbinder and H’ng, 1986; Saydam and McKnew, 1987; Bahl and Taj, 1991). In these

papers, lot sizing under demand uncertainty in a rolling horizon environment is studied. The

uncertainty is usually described in the form of forecast error. The authors distinguish the termi-

nology "demand uncertainty" from "demand variation". As illustrated by Figure 3.1, demand

variation specifies the known or predictable trend that demand follows, which is expressed

by the difference between demand expectations. Otherwise, the actual demand is not exactly

equal to the expectation, but usually in a predictable range deviated from the demand expecta-

tion. This deviation is corresponding to demand uncertainty.

Quantity

Period1 2 3 4

Expectation

Uncertainty

Variation

Actual demand scenarios

Figure 3.1: Demand variation and uncertainty

The authors indicate that demand uncertainty impairs rolling WW approach more than rolling

SM approach, while demand variation impairs rolling SM approach more than rolling WW

approach. Another important conclusion is that when demand uncertainty is involved, more

information on demand variation and uncertainty is better than less for making order decisions.

This result is different from Baker’s conclusion that "less is better than more" for deterministic

models, see (Baker, 1977).

Based on previous works, (Russell and Urban, 1993) developed an improving solution for

rolling WW approach under large demand variation condition. The authors summarize that

rolling SM approach often outperforms rolling WW approach with very short demand forecast

windows. However, when demand variation is large, rolling SM approach is no longer well

applicable. The authors also demonstrate that the performance of rolling WW approach can

be improved significantly even with quite small forecast window extensions (i.e., extending the

forecast window by only a small number of periods). Numerical examples are presented to

confirm the effectiveness of using rolling extensive Wagner-Whitin (EWW) approach to make

order decisions under demand uncertainty.
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Besides, (Stadtler, 2000) introduces the idea of "time between orders (TBO)", which can

be calculated by the heuristic algorithm presented in (Groff, 1979). In a rolling horizon pro-

cedure, let N denote the entire planning horizon length, n denote the myopic planning horizon

length. In most cases, N � n, and the demands in the n-period horizon have already been ac-

quired at the planning time. Let τi (1 ≤ i ≤ n) denote the TBO for period i in which an order is

placed. The author employs modified cost coefficients for the period i such that i + τi−1 > n.

For the period beyond n, a demand forecast is used. Then the same recursion procedure of

Wagner-Whitin is implemented. Numerical tests show that in a rolling horizon environment,

Stadtler’s (ST) approach performs at least as well as well-known heuristics (such as Silver Meal

method) and is fairly insensitive to the planning horizon length.

In a rolling horizon procedure, the optimal planning for the n-period problem is not nec-

essarily optimal for the N-period problem. For example, it is always optimal for the n-period

problem to leave no stock at the end of period n, while this might be not optimal for the N-period

problem. This phenomenon is named "end-effect" (Grinold, 1983) or "truncated horizon effect"

(Federgruen and Tzur, 1994). (Fisher et al., 2001) present an ending inventory valuation (EIV)

method, which includes a valuation term about the end-of-horizon inventory in the objective

function of the n-period problem. Numerical tests show that under several demand patterns,

rolling EIV approach surpasses both rolling WW approach and rolling SM approach.

However, rolling EIV approach assumes the availability of quite accurate future demand

estimates, while rolling WW and SM approaches do not use any demand information beyond the

n-period horizon. (van den Heuvel and Wagelmans, 2005) argue that the superior performance

of rolling EIV approach as illustrated in (Fisher et al., 2001) is, to a large extent, due to the

aforementioned unfairness. The authors have compared rolling EIV, EWW and ST approaches,

and conclude that rolling EWW approach outperforms the other approaches under multiple

different demand patterns and horizon lengths.

Involving Demand Forecasting Techniques in Rolling Horizon Procedure

The above literature mainly discusses about the efficiency of rolling planning procedure. Since

demand uncertainty is much more considered in recent years, the inventory model that explicitly

includes demand forecasting is taken into attention.

(Iida and Zipkin, 2006) published a significant paper describing how the optimal pro-

curement policy depends on current forecasts of future demands. The procurement planning

problem is formulated as a dynamic program with multidimensional state space. The authors
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propose a forecast-corrected base-stock policy which is combined with a variant of MMFE

(martingale model of forecast evolution, see (Heath and Jackson, 1994)). The authors indicate

that near-term forecasts contain more useful information than long-term ones. Based on this

result, a novel myopic policy is developed and is proven to be optimal under certain circum-

stances. Note that setup cost is not considered in this paper.

MMFE is essentially a framework that represents the dynamics of demand forecasts. An

alternative is to employ a demand model based on a specific forecasting technique, such as

time series forecasting techniques. (De Gooijer and Hyndman, 2005) provide a comprehen-

sive review on multiple time series forecasting techniques. Moreover, (Poler and Mula, 2011)

propose an automatic selection method among these techniques for better adapting different

work settings and reducing forecast errors.

Conclusion

To conclude, rolling horizon procedures are effective and widely used in practice, for the situ-

ation that future demand information cannot be completely acquired. In addition, forecasting

techniques can be involved in the procedure so as to better deal with demand uncertainties, since

forecast errors can be continuously revised in a rolling horizon procedure.

In the above papers, the authors use exact planning methods to make myopic plans based

on demand forecasts. However, when demand uncertainty is so large that even demands in

the myopic planning horizon cannot be considered "determinate" as the demand forecasts (see

"unknown demand" defined in Section 3.2.1), the above exact myopic planning methods are no

longer applicable. In this chapter, we investigate the rolling horizon planning procedure with

above-mentioned "unknown demand".

3.3 Problem Description

3.3.1 Assumptions

In order to specify the features of long-distance procurement planning problem engaged in

global sourcing, the following example is used.
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Example:

Firm A (in France) plans to procure component X from Supplier B (in China) in order

to produce Product Y. The transport from B to A takes about 1.5-2 months. Once a pro-

curement order is placed, a mandatory set-up cost occurs. When there is a stockout of

component X in A’s production process, the production for final-product Y will be inter-

rupted, therefore the customer demand for Y cannot be fully satisfied. Consequently, a

penalty cost is charged to firm A for unfulfilled demand.

The objective is to draw up an optimal procurement planning, which minimizes the ex-

pected long-run per-period total procurement costs including set-up, inventory holding

and stockout penalty, by specifying two issues: when a procurement order should be

placed, and how many component X should be ordered.

The following assumptions can be extracted from the above example.

Assumptions:

(a) The planning problem is considered under a periodic-review policy.

(b) The demand quantity in each period is non-negative, independent and unknown. It

might follow certain trend and seasonality which could be forecasted adaptively from

the historical data.

(c) The procurement capacity is unlimited.

(d) Unsatisfied demand is either backordered or lost, according to stockout assumptions.

In any case, a penalty cost will be charged.

(e) The inventory cost is assessed at the end of each period, including holding or stockout

penalty. No disposal of inventory is allowed, and the item considered is not perish-

able.

(f) For each order placed, the lead time L is assumed to be fixed. L is a positive integer

that cannot be neglected. Moreover, demand forecasts will evolve during the delivery

of order.

(g) A mandatory setup cost occurs when a procurement order is placed.
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The mission is to make an optimal procurement plan which can minimize the long-run

per-period total costs including setup, inventory holding and stockout penalty. Two principal

issues should be specified in the solution: (1) in which period should a procurement order be

placed; (2) how much should be ordered.

Figure 3.2 illustrates the specific problem under study.

… P P+1 P+2 … P+n‐2 P+n‐1 …

… P+L P+L+1 P+L+2 … P+L+n‐2 P+L+n‐1 …

planning	 over	 n	 periods	 in	 order	 to	
satisfy	the	demand	over	n	periods	after	L	
periods

… … …1 2

satisfying	demand	of

Objective:	long‐run	optimal	planning			

L	periods			

Figure 3.2: Procurement planning problem engaged in global sourcing

In order to satisfy the demand in a certain period i, the corresponding procurement order

should be placed at least L periods before. In this thesis, we use a rolling horizon procedure to

acquire up-to-date demand forecasts.

Let n denote the planning horizon. The procurement orders made in periods P, P +

1, · · · , P+n−1 are placed, very likely, to satisfy the demands in periods P+L, P+L+1, · · · , P+

L + n− 1. The eventual objective is to make an adequate procurement plan which minimizes

expected long-run per-period total costs.

As presented in Chapter 2, a major difficulty in making procurement plans in a global

sourcing environment is the long lead time caused by the geographically long distance between

supplier and buyer. This requires that an order be placed long time before it is actually con-

sumed. As a consequence, the demand forecast should be made long time before. This in-
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duces a very large demand uncertainty in inventory models, which implies that even the demand

distribution is unknown.

In most existing literature on rolling horizon planning, the authors deploy demand fore-

casting techniques in a rolling horizon procedure, and make interim optimal plans for each

sub-horizon using up-to-date demand forecasts as "determinate demands". While in this the-

sis, the demand uncertainty is so large that the above assumption of "determinate demands" in

the sub-horizon is no longer valid. In this thesis, we assume that actual demands in the sub-

horizon follow some known distribution pattern, and estimate the distribution parameters using

up-to-date demand forecasts and forecast accuracy.

3.3.2 Notation

In this chapter, the following notation is used.

Decision Variable:

xi: The delivery quantity arriving at the beginning of period i.

δi: A binary decision variable. δi = 1 if xi > 0, or 0 otherwise.

Random Variable:

di: The actual demand quantity of period i. The exact value of di cannot be

acquired until the end of period i, thus we define di as a random variable at

the decision-making phase.

Io
i : The actual inventory level at the beginning of period i.

Ii: The actual inventory level at the end of period i. Note that Ii = Io
i+1.

ê
i,k: The forecast on the random variable

e
of period k, which is made at the

end of period i (i < k). Here
e

could be d, Io and I. Note that i is the

observation period number, and k indexes the period of interest in which

demand dk occurs.

An observation period is defined as the period at the end of which that the forecast is made.

Besides, the period of interest specifies the period the demand of which is to be forecasted.

Figure 3.3 gives an illustration of the foresaid time concept.
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Figure 3.3: Observation period and period of interest

Other Parameter:

ε
e

i,k: The estimated standard deviation of
ê

i,k. ε
e

i,k depends on forecast errors. In this

assumption,
e

k ∼ D
(ê

i,k, ε
e

i,k

)
, where D denotes some distribution form. We

make the realistic assumption that ε
e

i,k ≥ ε
e

i+1, k ≥ · · · ≥ ε
e

k,k = 0.

hi: The inventory holding cost (per unit held) which is charged at the end of period i.

pi: The penalty cost (per unit unfulfilled) which is charged at the end of period i.

ci: The purchase cost (per unit purchased) of the order that is placed in period i.

Ki: The mandatory setup cost for each procurement order that is placed in period i.

In order to distinguish the points that an order is placed and that it arrives, the subscript "i− L"

is used to denote the period in which an order is placed to arrive at period i. Period i is called

an "order period" because an order quantity xi arrives. Note that the decision of xi is made

at period i− L, thus the corresponding setup cost and the purchase cost coefficient should be

respectively Ki−L and ci−L.
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3.4 Mathematical Formulation

The objective of procurement planning engaged in global sourcing is to minimize the expected

long-run per-period total costs. For mathematical formulation, we need to specify the order

quantities xi, i = 1, 2, · · · , n, that produce the minimum total cots (including setup, inventory

holding and stockout penalty), that is:

Minimize
n∑

i=1

Ci, (3.1)

where Ci denotes the cost incurred in period i.

Without loss of generality, the structure of Ci is defined as

Ci = Ki−L ·δi + ci−L · xi + hi · I+
i + pi · I−i , (3.2)

where I+
i and I−i respectively denote the overplus and shortage quantities at the end of period i.

Note that I+
i and I−i are both non-negative, and only one of them can be positive. The detailed

definition of I+
i and I−i will be presented in the subsequent chapters, which regards the stockout

assumptions about unsatisfied demands. For stationary purchase cost case, the term "ci−L · xi"

can be eliminated from Ci.

3.5 An Adaptive Optimization Framework

In a long-distance procurement planning problem engaged in global sourcing, the main objec-

tive is to determine the order periods and the corresponding order quantities.

The planning is based on data about future developments. The data may be estimated

by forecast models, while in most cases, the forecast errors cannot be neglected. The forecast

errors are likely to reduce product availability, and thus impair the customer satisfaction targets

that a firm seeks. In order to improve the service level, safety stocks are usually used as buffers

against stockouts. Whereas, safety stock is not the only way to confront uncertainty.

In the very great majority of cases, the actual demands will deviate from the forecasts.

Thus the procurement plans should be revised to reduce avoidable economic loss caused by too

many overstocks or stockouts.
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Although it is virtually impossible to predict future demand accurately, good predictions

can bring a great help in the subsequent procurement planning. Empirically, the forecast of

demand in a certain period k is gradually revised along the time, which can be expressed as

εd
i,k ≥ ε

d
i+1,k ≥ · · · ≥ ε

d
k−1,k ≥ ε

d
k,k = 0, ∀i ≤ k (3.3)

A rolling horizon scheme is proposed in order to acquire the up-to-date forecasts as far as

possible.

3.5.1 The Rolling Horizon Scheme

Let us start with a straightforward example. The ultimate objective is to determine an adequate

procurement plan over one year. The planning horizon is divided into periods (months). In

order to get the up-to-date forecast data as far as possible, a rolling horizon policy is used.

At the beginning of January, a procurement plan is made, which has considered the probable

demands from January to June. Only the order for January is actually released in practice.

Here, January is named "the frozen period". At the beginning of February, a new procurement

plan is made, which covers February to July, using the updated demand information. Note that

the frozen period is February at this moment, and only the updated order decision for February

is actually executed. Thus it goes on.

In the above example, the sub-horizon "February-July" overlaps the sub-horizon "January-

June", but reaches one period (month) further. At the beginning of February, the actual demand

of January is known, then the demand forecast error of January can be estimated in order to

revise the subsequent procurement plan. Moreover, demand forecasts of the following periods

will be updated.

Without loss of generality, the principle of rolling horizon scheme is demonstrated in

Fig.3.4. In a rolling horizon scheme, the entire planning horizon is cut into multiple partly

overlapping sub-horizons along the time axis. In each step, only one sub-horizon of n periods

is considered.

Let ηi denote the sub-horizon including the periods from i to i + n− 1, and ρi denote the

planning problem corresponding to the sub-horizon ηi. In a rolling horizon scheme, the plan-

ning problems ρ1, ρ2, ρ3, · · · are successively solved. Note that the solution to the planning

problem ρi will give an interim optimal plan over the sub-horizon ηi, but only the order decision
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… i i + 1 i + 2 … i+n-1 i + n i+n+1 ... Time

i n-period sub-horizon

1i  n-period sub-horizon

2i  n-period sub-horizon

3i  n-period sub-horizon

…

Figure 3.4: The rolling horizon scheme

for the corresponding frozen period (the first period of ηi) is actually executed.

Since the demand forecasts keep updated over time, and the order decisions for the subse-

quent periods are continuously revised as the planning horizon rolls, the rolling horizon scheme

is naturally an "adaptive" one.

3.5.2 Sub-Horizon Planning

Now consider the procurement planning problem ρi in the sub-horizon ηi. Since the sub-

horizon planning will be implemented repeatedly in a rolling horizon scheme, it would better

be a portable module.

Preprocessor 2 Main Processor

Standardization Optimal planning

net requirements

ixUpdated 
Observation

Preprocessor 1

Demand forecasting

forecasts, accuracy interim plan

Figure 3.5: Sub-horizon planning module

Figure 3.5 illustrates a standard portable planning module for sub-horizon ηi. This mod-

ule will not be launched until the following two conditions are satisfied: (1) the order decision

xi in order to satisfy the demand in period i is urged to be determined (considering the long lead
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time), and (2) the up-to-date demand observations have been acquired.

Basically, the sub-horizon planning module consists of two preprocessors and one main

processor. Firstly, the demand forecasting preprocessor makes demand forecasts and estimates

forecast accuracy, which will help in estimating demand distributions. Then the initial stock

of ηi will be estimated. Afterwards, the net demand quantities are calculated in the standard-

ization procedure. The main processor generates interim optimal procurement plan over the

sub-horizon, and only the order decision for the frozen period (the first period of ηi) will be

extracted and actually executed in practice.

Preprocess 1: Demand Forecasting

Among the various methods for forecasting, the technique of time-series forecasting holds an

important part and is strongly applicable in procurement planning.

A time series is defined as a sequence of data (such as the demands in this dissertation),

measured at successive time instants spaced at uniform time intervals. The time-series fore-

casting is the use of time-series models to predict future values based on previously observed

ones.

The time-series models can have diverse forms which represent different stochastic pro-

cesses. Stationarity, linearity, trend and seasonality are the four major characteristics that de-

termine time-series models (Palit and Popovic, 2005).

A stationary time series implies that the mean value and variance of observation data re-

main constant over time. The demands in our problem are non-stationary. Nevertheless, most

non-stationary time series can be still transformed into the stationary time series by certain

differentiations, such as the removal of trend and seasonality.

A linear time series can be represented as a linear function of its current and past states.

The famous examples include the AR (autoregressive), MA (moving average), ARMA (au-

toregressive moving average) and ARIMA (autoregressive integrated moving average) models.

Similarly, the nonlinear time series can be described by the corresponding nonlinear models.

The trend component of a times series expresses its long-term feature that is affected by the

global evolvement to which the time series data relates. It is usually represented by a detectable

disturbance with upward or downward trend.

The seasonal times series is widely used in economic applications. The seasonality is
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often explicitly described by the periodical fluctuation, since the data pattern repeats hourly,

daily, weekly, monthly or even yearly in real life.

Step (1): Decomposition analysis

In order to make proper demand forecasts, the decomposition analysis of a time series

should be employed at first.

As above mentioned, a time series X(t) is probably constituted by the random component

R(t), the trend component T (t), and the seasonality component S (t). Generally, two types of

model are used: the additive model

X(t) = R(t) + T (t) + S (t), (3.4)

and the multiplicative model

X(t) = R(t)×T (t)×S (t). (3.5)

Both models are useful in practice, which manifest the corresponding effects that the trend and

seasonality act on customer’s requirements.

The decomposition analysis identifies and extracts the partial data that is superimposed to

the main time series data, such as the trend and seasonal components as shown in Figure 3.6.

 X t
, ,R T S

T

Trend Removal Seasonal Removal

Data
Smoothing

Regression
Methods

S

Figure 3.6: Time series decomposition analysis

Multiple mature tools have been developed to implement the time series decomposition

analysis, such as the X-12-ARIMA developed by the United States Census Bureau, and the

TRAMO/SEATS developed by the Bank of Spain.

Step (2): Model building

The decomposition analysis helps in obtaining the residual time series data deprived of
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the trend and seasonal components. In most cases, the residual time series can be considered

as stationary. (Box et al., 2013) developed a systematical methodology to build the stationary

time series models, as presented in Figure 3.7.

Model Identification

Model Estimation

Model Evaluation

Acceptable?

Model Application

Yes

No

Determine the number of parameters

Estimate the parameter values

Check the model accuracy, find possible improvement 

Iterative procedure

Figure 3.7: Box-Jenkins methodology on time series model building

The model identification phase is a rough procedure to profile the collected observa-

tion data, and then define the initial model structure. Usually, an existing model pattern is

employed, and the autocorrelation approach is used to check if the employed model pattern

matches the observation data well enough.

Next, the specific parameter values of the preliminary model will be determined. Some

special statistical techniques are required, such as the maximum-likelihood estimation (MLE)

and the least-squares estimation (LSE).

The model evaluation procedure is to verify if the built model fits well the collected obser-

vation data, and to check the model sensitivity to the input data.

Step (3): Forecasting methods

Once the time series model has been built, an adequate forecasting method should be

selected to acquire as accurate as possible the future demand information.
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There exist many mathematical tools that help in making forecasts, such as the trend anal-

ysis (based on trend line fitting of time series data, using a linear, quadratic, or exponential

function), the regression approaches, the Box-Jenkins methods (forecasting using AR, MA,

ARMA and ARIMA models), and the data smoothing techniques.

For our specific demand forecasting problem involved in procurement planning in a global

sourcing environment, the main difficulty is the likely large forecast errors due to the long

forecast lead times. (Hubert, 2013) proposed a methodology to select an appropriate demand

forecasting method in this context, and developed a detailed model of the forecast accuracy and

its evolution with time. The method has been validated by its application on real-life data from

a world-leading automobile corporation, which has demonstrated a clear superiority compared

to existing ones in terms of both service level and inventory level.

Hubert’s study has laid a solid foundation on demand forecasting for our adaptive procure-

ment planning approach. In his dissertation, the real-life case study has shown that the relative

forecast errors are reduced to 3%. This promising result is due to the dynamically updating

forecasting method that he has developed, which is also compatible with our adaptive planning

framework. Furthermore, he proposed models to estimate the forecast accuracy, which have

been proven to be reliable based on tests of real life data.

Based on Hubert’s work, we can assume that the demand in each period of the myopic

sub-horizon can be considered to follow some distribution pattern. The demand forecast can be

regarded as the mean value of demand distribution, while the forecast accuracy can be regarded

as the standard deviation.

Preprocess 2.1: Initial Stock Estimation

For the sub-horizon ηi, the initial stock is give as

Io
i = Io

i−L +

i−1∑
j=i−L

(x j−d j). (3.6)

The interim procurement plan for ηi is made at period i− L, thus the initial stock Io
i−L and

the decisions x j, j = i− L, · · · , i− 1 are known. The distributions of d j, j = i− L, · · · , i− 1

have been estimated in the previous preprocess, then the distribution of Io
i can be derived.

According to Equation (3.6) and the expectation properties, the mean value of Io
i can be
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given as

Îo
i−L, i = Io

i−L +

i−1∑
j=i−L

(x j− d̂i−L, j), (3.7)

and the standard deviation is

ε Io

i−L, i =

√√√ i−1∑
j=i−L

(
εd

i−L, j

)2
. (3.8)

Preprocess 2.2: Net Requirements Determination

The above preprocesses have estimated the equivalent distributions of the initial stock and de-

mands for the sub-horizon ηi. Then a standardization procedure is employed to obtain the net

demand quantities.

Similar to the Bill of Material (BOM) process used in Material Requirement Planning

(MRP), the distributions of net demands can be estimated as follows.

For simplification, the following notation is used:

Notation:

di
k The net actual demand of the kth period in the sub-horizon ηi.

µi
k The mean value of di

k.

σi
k The standard deviation of di

k.

yi
k The interim order decision which is supposed to arrive at the beginning of

the kth period in the sub-horizon ηi.

Let ri
k denote the expected remaining stock at the end of the kth period in the sub-horizon

ηi, if no order arrives. Then we have

ri
k = max{0, ri

k−1− d̂i−L, i+k−1}. (3.9)
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The mean values µi
k, k = 1, · · · , n can be calculated as

µi
k =

0, ri
k > 0;

d̂i−L, i+k−1 − ri
k−1 , ri

k = 0.
(3.10)

Assume the first positive net demand expectation occurs in the mth (1 ≤ m ≤ n) period of

the sub-horizon ηi. The standard deviation can be calculated according to the square root law:

σi
k =


√(
ε Io

i−L, i

)2
+

∑k
t=1

(
εd

i−L, i+t−1

)2
, k ≤ m;

εd
i−L, i+k−1, k > m.

(3.11)

The actual net demand quantities di
k, k = 1, · · · , n can be regarded to follow probabilistic

distributions with the mean value µi
k and the standard deviation σi

k. Then the planning prob-

lem in sub-horizon ηi can be transformed into a standard lot-sizing problem with stochastic

demands.

Interim Optimal Planning

The interim optimal planning problem in the sub-horizon is equivalently a standard lot-sizing

problem with stochastic demands. The demand in each period follows some probabilistic dis-

tribution pattern with different parameters.

The procurement order decisions are made before the sub-horizon begins, thus it is proba-

ble that a stockout happens during the sub-horizon. Usually, a penalty cost will be charged for

the unsatisfied demand.

The assumptions made for dealing with stockouts influence dominantly the procurement

decisions. Chapter 4 and Chapter 5 will discuss how to make interim optimal procurement

plans for the equivalent stochastic lot sizing problems in the sub-horizon, respectively under the

assumptions of backorders and lost sales (or outsourcing).

Conclusion

To summarize, when the required information (up-to-date demand observation, sub-horizon

definition, etc.) is prepared under a rolling horizon scheme, the interim procurement planning

over the corresponding sub-horizon can be made in the following steps: demand forecasting,
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initial stock estimation, net requirements standardization, optimal planning, and frozen-period

decision extraction (to be executed in practice). The sub-horizon planning procedure will be

repeatedly employed, thus is strongly suggested to be designed as an independent portable

programming module in real-life application.

3.5.3 Ex-Post-Facto Experimental Evaluation

In the above sections, an adaptive optimization approach is developed to make adequate pro-

curement plans in a global sourcing environment. The main difficulty comes from the long

distance between supplier and buyer, due to which the large demand uncertainties will signif-

icantly augment the risk level. In order to acquire as accurate as possible demand forecasts,

a rolling horizon scheme is employed. For the sub-horizon planning problem, a systematical

solution module has been developed.

This section presents an evaluation method to estimate the performance of proposed adap-

tive optimization approach. Since the actual demand of each period can be all known only after

the end of the entire planning horizon, an ex-post-facto experiment is designed to evaluate the

proposed approach. The ex-post-facto evaluation is widely used in forecasting models.

The proposed optimization approach is developed to minimize expected long-run per-

period total costs, therefore, we should generate randomly sufficient demand scenarios with

considerably long planning horizon.

To launch the experiments, a large amount of demand scenarios should be randomly gen-

erated at first. Since trend and seasonality are common cases in practical procurement process,

the following formula is used to generate actual demand scenarios:

dt = aT (t) + (b + c× randn)
[
d + sin

(
2π
e
× (t +

f
4

)
)]

(3.12)

where t is the time period, T (t) is a polynomial function of t, a,b,c,d,e, f are constant integer

parameters, and randn is a random number that follows standard normal distribution.

For each demand scenario, an ex-post-facto optimal solution can be determined at the end

of the scenario (when the demand quantities of all the periods in this scenario are known), by

employing any existing deterministic dynamic lot-sizing algorithm.

Let C∗ denote the ex-post-facto minimum total cost figured out as aforementioned for
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some demand scenario. Let C denote the actual total cost applying the proposed adaptive op-

timization approach to the same demand scenario. Regarding the randomness of the problem,

the final evaluation of the proposed approach should be a statistical result and not decided by a

single demand scenario. Letting κ denotes the number of demand scenarios that are randomly

generated following the same parameter setting, we use two measures to evaluate the proposed

approach, expressed respectively as

Rκ1 = C/C∗−1 , and Rκ2 = C/C∗−1, (3.13)

where a symbol with an overline bar represents the mean value of the quantity represented by

the same symbol without the overline bar. Note that Rκ1 and Rκ2 especially represent the ratio

of the mean values, and the mean value of the ratios.

3.6 Conclusion

This chapter has presented an adaptive optimization framework for procurement planning prob-

lems engaged in global sourcing. The feasibility and high efficiency of rolling horizon planning

procedure to deal with uncertain demand have been proven in existing literature. However,

when demand uncertainty is very large, existing rolling horizon planning methods are no longer

applicable. In order to deal with the large demand uncertainties due to the geographically long

distance between buyer and supplier in a global sourcing environment, we estimate the demand

distributions instead of using directly the demand forecasts as "determinate demands" to make

myopic plans in the near future. This chapter established a structural framework that deploys

demand forecasting and optimal procurement planning in a rolling horizon procedure. The de-

tailed optimal sub-horizon procurement planning methods will be presented in Chapter 4 and

Chapter 5. Besides, the proposed adaptive framework can also be used to evaluate long-run

performances of other methods.
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4.1 Overview

For planning problems with demand uncertainty, a penalty rule is usually predefined in case of

unsatisfied demand. In this chapter, the unfulfilled demand is assumed to be all backordered,

with a time-varying expense charged for each backordered item per unit time. As a matter of

fact, backorder is regarded as the most common consideration when demand exceeds supply,

while the other extreme is that all excess demand is lost (see Chapter 5).

This chapter is organized as follows. Section 4.2 surveys existing publications on plan-

ning problems with demand uncertainty and backorders. The problem is described in Section

4.3, and mathematically formulated in Section 4.4. Section 4.5 presents optimization algo-

rithms to solve sub-horizon procurement planning problems, which can be deployed with the

rolling-horizon framework presented in Chapter 3. Numerical results are presented in Section

4.6, validating the high efficiency and effectiveness of both the proposed sub-horizon planning

methods, and the overall adaptive procurement planning procedure. Conclusion is given in

Section 4.7.

4.2 Literature Review

4.2.1 The Backorder Systems

When a customer places an order for an item that the supplier does not have enough in stock,

typically, the supplier will inform the customer of the probable stockout, and the estimated

waiting time for the replenishment of the required item. The customer can choose to cancel the

order immediately or wait for the item until it is available again. When the item is irreplaceable

and hard to find an adequate substitute, the customer is usually willing to wait.

A backorder is defined as a customer order that cannot be currently filled or shipped, but

for which the customer is prepared to wait until the item becomes available again. The per-

centage of the order postponed and the backorder time are important measures of a company’s

customer service quality and inventory management effectiveness (Silver et al., 1998).

When a customer demand is backordered, a penalty cost will be charged. The cost in-

cludes the management operations for unfulfilled orders, the possible negative customer re-

lations, the interest expenses, and so on. Sometimes the items are backordered longer than
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expected, then the suppliers may waive the shipping costs or offer other compensations to en-

courage customers’ patience of waiting, in order to retain the customer loyalty.

Although customers can be willing to wait for the unsatisfied order in certain situations,

they generally want their orders to be filled immediately. Thus the suppliers are always trying

to avoid backorders. However, due to the uncertain nature of the demand, backorder cannot

be completely avoided, unless with a huge amount of safety stock, which leads obviously to a

huge inventory holding cost.

Companies are always trying to balance their stock so as to minimize total costs including

inventory holding and backorder penalty.

4.2.2 State-of-the-Art on Backorder Models

For multi-period planning problems, lot sizing is a mature and effective technique to find opti-

mal solutions.

The Standard Lot-Sizing Model with Backorders

The study of backorder models can be dated back to the early work of (Zangwill, 1966), in which

a deterministic multi-facility, multi-period production planning model is analyzed. The author

assumes that each facility can backlog the total demand of its product for a certain integral

number of periods. By determining the general form of minimum cost production schedule, a

2-facility 3-period planning case is specifically studied.

Zangwill accomplished his study on backorders in (Zangwill, 1969). In this paper, the

author extended the famous Wagner-Whitin model (Wagner and Whitin, 1958) with backo-

rder permission. The objective is to find a production schedule that minimizes total produc-

tion and inventory costs (including holding and backorders). Based on reformulated recursion

equations, an efficient dynamic programming algorithm for calculating the optimal production

schedule is developed. Note that in this paper, the marginal production cost is assumed to be

independent of the amount produced in each period, and the fixed charges, the inventory holding

and shortage costs can differ from period to period.

With the backward O(n2) (n is the number of periods involved in the planning horizon)

algorithm presented in (Zangwill, 1969), the optimal decision of period 1 can be specified pro-

vided that all information about demands and costs over the entire planning horizon is given.
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(Blackburn and Kunreuther, 1974) improved this algorithm by developing planning horizon the-

orems. The planning horizon here refers in particular the length t that the optimal production

quantities in periods 1, 2, · · · , t remain optimal for the problems with length t + j for all j > 0.

If such planning horizons can be found, the optimal decision for some periods can be deter-

mined by limited demand and cost information, which is rather computation-reducing. After

developing several planning horizon properties, the author developed a forwardO(n2) algorithm

to find the optimal production quantities. The proposed algorithm has been applied to the same

example used in (Zangwill, 1969), and yields an alternative optimal solution which is different

from the one obtained by Zangwill.

Important contribution on reducing the computational complexity is published by (Feder-

gruen and Tzur, 1993). The authors developed a simple O(n logn) algorithm for the standard

Wagner-Whitin model with backorders. The fixed set-up cost is considered, and the unit hold-

ing and backorder costs are supposed to be linear. In some special situations, the method could

even be O(n).

Some Variants for Real Application

The standard lot-sizing model assumes that demand of a given period should be fulfilled in the

period. If backorder is not allowed, the demand of a given period should be delivered at a

determinate time. If backorder is allowed, the demand can be delivered later at the expense of

backorder cost. The Wagner-Whitin model with backorders is just a simplified paraphrase of

what might actually happen in real life. In the following years, many more realistic applications

have been studied.

(Lee et al., 2001) studied the demand time window case. In daily lives, customers usually

offer a grace period during which a specific demand can be fulfilled without penalty. This

grace period is named "demand time window". In other words, for each demand, the customer

specifies acceptable earliest and latest delivery dates. The authors developed a polynomial time

algorithm to compute the optimal solution for the dynamic lot sizing problem with demand time

windows. The complexity of the proposed method is O(n3) when backorder is allowed.

(Li et al., 2004) studied two important variants which are applicable to a wide range of

real-world situations: batch ordering and delivery truckload discount. In the model with batch

ordering, production in each period is restricted to a multiple number of a constant batch size

Q. This model is applicable to situations when the items are produced in a batch process with a

fixed capacity Q, or the production is performed to fill up multiple truckloads of finished prod-
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ucts. The authors have developed anO(n logn) algorithm to solve the problem with backorders.

In the model with truckload discount, the authors consider a replenishment cost structure that

includes a fixed setup cost, a variable unit production or purchase cost, and a delivery cost with

a truckload discount scheme. Under the truckload discount scheme, the total transportation

cost for a truck will no longer increase when a specific proportion of the truck is filled. The

authors developed an O(n3 logn) method to solve the problem with backorders. In addition,

(Grunder, 2010) considered a single-item batch scheduling problem with batch-size-dependant

setup times. The author developed an efficient dynamic programming method to determine

production and transportation plans in order to meet customer demands at minimum total costs.

(Chu and Chu, 2007, 2008; Chu et al., 2013) addressed production planning problems,

which can be formulated as single-item dynamic lot-sizing problems with backlogging, out-

sourcing and inventory capacity. The costs of set-up, inventory holding, backlogging and out-

sourcing are considered. The backlogging level at each period is also limited. The goal is

to satisfy all demands in the planning horizon at minimal total cost. The authors developed

polynomial time algorithms respectively for backlogging, outsourcing and combined cases.

Lot-Sizing Models with Demand Uncertainties and Backorder Permissions

The above papers concentrate on deterministic lot-sizing problems with backorders. In these

problems, the demand of each period is given, and the backorders are tactically permitted in

order to find better balance between storage and shortage costs. In other words, the supplier

can always satisfy the customers’ punctual delivery requirements if he likes.

However, in real life, the customer demand is unpredictable. Since the procurement plan-

ning should be determined before the actual demand is known, the situation that supply cannot

satisfy demand often occurs. In this case, the backorder is not alike that in the deterministic

problems, but is a specific measure to counter the unavoidable stockout. Moreover, the objec-

tive of optimal planning turns into minimizing the expected total costs, which is a statistical

result instead of a specific scenario.

In Section 3.2.1, the customer demand has been divided into four classes: (1) deterministic

and stationary, (2) deterministic and time varying, (3) uncertain, (4) unknown. Demand uncer-

tainty is inevitable in real life. Practically, the assumptions (3) and (4) have described different

magnitudes of demand uncertainty.

In recent years, research on lot-sizing problems with demand uncertainties has become
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a new trend. In particular, assumption (3) is widely used in the literature, of which the two

following branches are mainly studied.

(1) Probabilistically distributed demand

In many published papers concerning uncertain demand, a common hypothesis is that the

customer demand follows some widely used continuous or discrete probability distributions,

such as the famous uniform distribution and normal distribution (Gaussian distribution).

Lot sizing with uncertain demand is recognized to be a very difficult problem to solve.

(Porteus, 1990) provides a good review of the early work done in this area. The common

practice is to separate the problem into simpler sub-problems. In each sub-problem, the de-

mand of each period is set equal to the forecasted value, and a buffering mechanism (such as a

safety stock) is used to provide a certain protection against the shortage risk. Then the prob-

lem is solved as a deterministic lot sizing problem, and usually deployed with a rolling horizon

scheme. Other prevailing approaches suppose that the actual demand in the sub-problem fol-

low the same probability distribution, which leads to considerable simplicity of solving proce-

dures.

The approaches cited by (Porteus, 1990) all require appropriate forecasts of customer de-

mand. Quantile regression is widely used to estimate the demand quantities. This type of

regression introduces on purpose a bias in the result, instead of seeking simply the average

value of the variable to be predicted. Quantile regression can give the median and any other

quantiles (or percentiles) of a stochastic variable. Figure 4.1 illustrates three distinct forecasts:

a 25% quantile forecast in violet, a 50% quantile (mean) forecast in green, and a 75% quantile

forecast in red.

(Gélinas et al., 1995) reviewed and compared three available methods to compute the

demand quantiles for planning problems with uncertain demand. The authors also developed

a new forecasting procedure based on smoothed order statistics. In this paper, the concept of

cumulative quantity is firstly proposed. When backorder is allowed, the inventory level at the

end of a certain period equals the cumulative delivered order quantity minus the cumulative

demand quantity since the first period, provided that the initial stock is zero.

(Sox, 1997) reformulated the dynamic lot sizing problem with random demand and non-

stationary costs. By using the cumulative quantities and assuming that the distribution of the

cumulative demand is given, the problem can be mathematically modeled as a mixed integer
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Figure 4.1: Illustration of quantiles

nonlinear problem. The author developed a forward dynamic programming (DP) method to

find the optimal order sequence for the reformulated problem. The proposed method is, in

some respect, similar to the Wagner-Whitin algorithm for deterministic planning problem, but

with some additional feasibility constraints. The author also demonstrated that the lot sizes

determined with a rolling-horizon scheme of the proposed method will be bounded below the

optimal lot sizes determined directly with a stochastic dynamic programming formulation.

When the holding cost and backorder cost of each period is proportional, (Vargas, 2009)

proved that the cumulative order quantity is nondecreasing with the period number. The result

implies that the corresponding order quantity of each period is nonnegative, which confirms the

feasibility in practice. When demand follows normal distribution, the author proposed a DP

procedure to find the optimal solution. This paper provides a means to calculate the optimal

objective function value for related planning problems with uncertain demand, thus can serve

as a basis to evaluate the new and existing heuristics.

Moreover, (Babai et al., 2011) analyzed a single-item inventory system where the demand

and the lead time are stochastic. Demand is modeled as a compound Poisson process. The

stock is controlled according to a continuous time order-up-to (OUT) level policy. The ob-

jective is to minimize total inventory costs including holding and backorders. The authors

proposed a method for determining the optimal OUT level, and validated its high efficiency by

numerical tests.

Besides, some meta-heuristic methods have been applied on lot sizing problems with un-

certain demand, as shown in Table 4.1.
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Table 4.1: Meta-heuristic examples (literature)

Publication Meta-Heuristic Method

(Piperagkas et al., 2012) Particle Swarm Optimization (PSO)

Differential Evolution (DE)

Harmony Search (HS)

(Wong et al., 2012) Artificial Neural Network (ANN)

modified Ant Colony Optimization (ACO)

(Şenyigit et al., 2013) Artificial Neural Network (ANN)

Genetic Algorithm (GA)

Bee Algorithm (BA)

(Piperagkas et al., 2012) are the first to tackle the specific problem by applying three pop-

ular meta-heuristic methods descending from evolutionary computation and swam intelligence,

namely particle swarm optimization (PSO), differential evolution (DE) and harmony search

(HS). The authors manipulated the three methods properly to fit the problem, and investigated

their performance (in terms of run-time and solution accuracy) on test cases. The method de-

veloped by (Vargas, 2009) was used to evaluate the performance of the previous meta-heuristics,

and the planning horizon are varying from 12 up to 48 periods. Computational results show

that the used meta-heuristics can give promising solutions in both efficiency and accuracy, if

they are properly configured.

(Wong et al., 2012) studied a stochastic dynamic lot sizing problem with asymmetric de-

teriorating commodity. The objective is to determine the optimal unit cost of material and

unit holding cost. The problem comprises a sub-problem of replenishment planning which is

NP-hard. The authors use a decision system based on an artificial neural network (ANN) and

modified ant colony optimization (ACO) to solve the problem. In particular, ANN is used to

learn the simulation results, and the modified ACO is used to find the optimal decision variables.

Computational results show that the proposed solving procedure outperforms the classical re-

sponse surface methodology.

(Şenyigit et al., 2013) attempted to solve the stochastic single-item lot sizing problem by

using a variety of artificial neural networks (such as the feed-forward neural network, FF-NN)

trained with meta-heuristics (such as the genetic algorithm, GA; and the bee algorithm, BA).

The combined approaches were compared with three classical heuristics, respectively the re-
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vised Silver Meal (RSM), the revised least unit cost (RLUC), and the cost benefit (CB). Compu-

tational results show that RLUC and FF-NN trained with BA outperform the other approaches.

(2) Scenario-based demand

Besides the probabilistically distributed demand assumption, another part of existing lit-

erature uses the scenario-based demand assumption, among which some key work has been

contributed by (Guan et al., 2006; Guan and Miller, 2008; Guan and Liu, 2010; Guan, 2011).

In Guan’s papers, the problem parameters (such as costs, demands and lead times) are

assumed to evolve as discrete-time stochastic processes with finite probability space. Let n

denote the number of periods in the problem horizon, 1≤ i≤ t ≤ n. Then the whole information

structure can be interpreted as a scenario tree with n stages.

Figure 4.2 illustrates a simple example of scenario tree (also called decision tree). The

nodes represent the states of system at a particular instant, while the arcs represent different

realizations of random variables (such as demands), and each arc is associated with a realization

of stochastic process and a probability of occurrence. For example, as shown in Figure 4.2,

the node i in stage t of the tree gives the state of the system that can be distinguished by the

information available up to time stage t.

… …

…

… …

i

…

… …

Stage  1

Stage  2

Stage  t

Stage  t+1

Stage  n

Figure 4.2: A simple illustration of scenario tree

By introducing the architecture of scenario tree, the authors proved a named production-

path property which is analogous to the Wagner-Whitin optimality property for the determin-

istic case. Based on this property, the authors developed a polynomial-time algorithm to find

the minimum expected total costs for the single-item uncapacitated lot-sizing problem with

scenario-based uncertain demand. The algorithm could be more efficient if the setup cost is

not considered.
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Service-Level Constraint

In the above papers, the authors suppose that the customer demand should be fulfilled in time,

otherwise a penalty cost will be charged. In real-life application, there is an alternative hypoth-

esis that a prescribed service level should be achieved.

In some production systems, the stoppage due to the shortage in material or component

supply is quite costly. Moreover, the stockout penalty on the side of the unfulfilled customer

demand is expensive. In this case, people often use a service-level constraint instead of the

charges of penalty cost which is difficult to evaluate in practice.

Table 4.2 gives the definition of three widely used service levels. In real-life situations, it

often happens that on-hand stock cannot fulfill demand and the expected order doesn’t arrive in

time, then a stockout occurs. Let γ denote the probability of stockout at a certain period, then

the service level S L1 = 1−γ. Besides, Figure 4.3 gives a simple illustration to S L2 and S L3.

When a service level is considered, it is important to clarify its definition, and follow up the real

customer service according to the required level.

Table 4.2: Three service level definitions

Symbol Alias Description

S L1 - probability of "no stockout" per order cycle, or probability
that an order arrives in time

S L2 fill rate fraction of demand that can be satisfied immediately from
stock on hand

S L3 ready rate fraction of time with positive stock on hand

To the best of our knowledge, S L1 (see Table 4.2) is mostly studied in the literature, and

is usually denoted by the Greek letter α.

(Bookbinder and Tan, 1988) remark that for high service-level constraints (α ≥ 0.9), the

probability of observing stockouts at the end of a period is negligible, therefore, the shortage

cost can be ignored in the model. On the other side, (Silver et al., 1998) show that high α is a

realistic assumption when the stockout penalty is high and independent of the stockout duration.

With the introduction of adequate α, the backorder cost term could be eliminated from

the objective function. (Tarim and Kingsman, 2004; Tarim et al., 2011; Tempelmeier, 2011)

developed efficient computational solutions on this issue. In addition, (Rekik and Sahin, 2012)
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Figure 4.3: Illustration of fill rate and ready rate

investigated the real-life situation that the inventory records in the IT system are inaccurate.

The authors compared four scenarios of inventory management systems and provided an opti-

mal joint ordering and inspection policy for each scenario under a service-level constraint.

Conclusion

To conclude, the stochastic lot sizing models with backorders are really different from the deter-

ministic ones. For deterministic models, the backorder may be allowed if it proves cost-saving.

When backorder is not allowed, we need to find a good balance between the setup cost and the

inventory holding cost. However, when backorder is allowed, the balance should be found

among the setup cost, the holding cost and the backorder cost. It is possible to find better

reorder points when backorder is allowed, as well as a lower total cost. While for stochastic

models, the backorder is more considered as a "defense mechanism" against the unavoidable

stockouts caused by unpredictable actual customer requirements. But some natural properties

are the same, such as the cost structure and the calculation formula of inventory position.

In particular, there are a few papers investigating the stochastic lot-sizing models (see

above sections). When demand is uncertain but with known distributions, some effective solv-

ing procedures were proposed in the literature, which provide a good basis for the problem with

unknown demand studied in the current thesis. Besides, some authors use the service-level

constraint to eliminate the backorder cost term in the objective function, which might also be

useful to simplify the stochastic model. Note that the objective of stochastic lot-sizing prob-
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lems is to minimize the expected total costs, which is a statistical result instead of a specific

demand scenario.

4.3 Problem Description

4.3.1 Assumptions

In order to describe the procurement planning problem with backorder permissions, the similar

example as presented in Chapter 2 is used.

Example:

Firm A (in France) plans to procure component X from Supplier B (in China) in order

to produce Product Y. The transport from B to A takes about 1.5-2 months. Once a pro-

curement order is placed, a mandatory set-up cost occurs. When there is a stockout of

component X in A’s production process, the production for final-product Y will be inter-

rupted, therefore the customer demand for Y cannot be fully satisfied. The unsatisfied

demand is totally backordered and a penalty cost is charged per unit.

The objective is to draw up an optimal procurement planning, which minimizes the ex-

pected long-run per-period total procurement costs including set-up, inventory holding

and backorders, by specifying two issues: when a procurement order should be placed,

and how many component X should be ordered.

The following assumptions are extracted from the example.

Assumptions:

(a) The planning problem is considered under a periodic-review policy.

(b) The demand quantity in each period is non-negative, independent and unknown. It

might follow certain trend and seasonality which could be forecasted adaptively from

the historical data.

(c) The procurement capacity is unlimited.
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(d) Unsatisfied demand is totally backordered. A penalty cost will be charged for each

item backordered per period.

(e) The inventory cost is assessed at the end of each period, including holding cost or

backorder cost. No disposal of inventory is allowed, and the item considered is not

perishable.

(f) For each order placed, the lead time L is assumed to be fixed. L is a positive inte-

ger that cannot be neglected. Moreover, the demand forecasts will evolve during the

delivery of order.

(g) A mandatory setup cost occurs when a procurement order is placed.

The mission is to make an optimal procurement plan, with the objective of minimizing

the expected long-run per-period total costs including setup, inventory holding and backorders.

Two principal issues should be specified in the solution: (1) in which period should a procure-

ment order be placed; and (2) how much should be ordered.

4.3.2 Notation

In this chapter, the following notation is used.

Decision Variable:

xi: The delivery quantity arriving during period i.

δi: A binary decision variable. δi = 1 if xi > 0, or 0 otherwise.

Xi: The cumulative delivery quantity arriving from period 1 up to and including

period i. Xi =
∑i

t=1 xt.

Random Variable:

di: The actual demand of period i. The exact value of di cannot be acquired

until the end of period i, thus we define di as a random variable at the

decision-making phase.
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Di: The actual cumulative demand quantity counting from period 1 up to and

including period i. Di =
∑i

t=1 dt.

Io
i : The actual inventory level at the beginning of period i.

Ii: The actual inventory level at the end of period i. Note that Ii = Io
i+1.

Other Parameter:

hi: The inventory holding cost (per unit held) which is charged at the end of

period i.

bi: The backorder cost (per unit unfulfilled) which is charged at the end of

period i.

ci: The purchase cost (per unit purchased) of the order that is placed in period

i.

Ki: The mandatory setup cost for each procurement order that is placed in pe-

riod i.

In order to distinguish the points that an order is placed and that it arrives, the subscript

"i− L" is used to denote the period in which an order is placed to arrive at period i. Period i

is called an "order period" because an order quantity xi arrives. Note that the decision of xi is

made at period i−L, thus the corresponding setup cost and the purchase cost coefficient should

be respectively Ki−L and ci−L.

4.4 Mathematical Formulation

4.4.1 The Cumulative Inventory Property (CIP) of Backorder Models

As cited in Section 4.2.2, (Gélinas et al., 1995) are the first to apply the idea of cumulative

quantities in the reformulation of planning problems with backorder permissions.

In this dissertation, we use the capital letters to denote the cumulative quantities. The
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cumulative delivery quantity arriving from period 1 to period i is

Xi =

i∑
t=1

xt.

The actual cumulative demand quantity counting from period 1 to period i is

Di =

i∑
t=1

dt.

Using the cumulative quantities, the inventory level at the end of period i can be simplified as

Ii = Io
1 +

i∑
t=1

(xt −dt) = Io
1 + Xi−Di,

where Io
1 is the inventory level at the beginning of period 1, named the initial stock.

The objective of classical lot sizing problems is often to specify the order quantities xi

that minimize the total costs. By introducing the cumulative quantities, the problem can be

reformulated and the objective turns into finding the optimal sequence of Xi.

4.4.2 Mathematical Formulation

When the backorder assumption is used, the procurement planning problem with unknown de-

mand can be formulated as follows:

P

min
n∑

i=1

[
Ki−Lδi + E

(
hi · I+

i + bi · I−i
)
+ ci−L · xi

]
(4.1)

s.t. Ii = Ii−1 + xi−di, ∀i (4.2)

I+
i = max{Ii,0}, ∀i (4.3)

I−i = max{−Ii,0}, ∀i (4.4)

0 ≤ xi ≤ Mδi, ∀i (4.5)

δi ∈ {0,1}, ∀i (4.6)
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where E(t) denotes the expectation of the random variable t.

As presented in the above section, by using the cumulative quantities, the recursion for-

mula (4.2) can be rewritten as

Ii = Io
1 + Xi−Di. (4.7)

Then the inventory levels become

I+
i = max{Io

1 + Xi−Di,0}, (4.8)

and

I−i = max{Di− Io
1 −Xi,0}. (4.9)

Therefore, the inventory variables Ii, I+
i and I−i can be eliminated from the formulation P.

Let Li denote the expected inventory cost (including holding and backorder) incurred in

period i, we have

Li(Xi) = E
(
hi · I+

i + bi · I−i
)

= E
(
hi ·max{Io

1 + Xi−Di,0} + bi ·max{Di− Io
1 −Xi,0}

)
= hi ·

∫ Io
1+Xi

−∞

(Io
1 + Xi−Di) fi(Di) dDi + bi ·

∫ +∞

Io
1+Xi

(Di− Io
1 −Xi) fi(Di) dDi, (4.10)

where fi(Di) denotes the probability density function (PDF) of Di.

In addition, the total purchase cost can be rewritten as

n∑
i=1

ci−L · xi =

n∑
i=1

ci−L · (Xi−Xi−1) =

n∑
i=1

(ci−L− ci−L+1) ·Xi, (4.11)

where we define cn−L+1 = c−L = 0.

Then the problem P can be reformulated as:

RP
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min
n∑

i=1

[Ki−Lδi + Li(Xi) + (ci−L− ci−L+1) ·Xi] (4.12)

s.t. 0 ≤ Xi−Xi−1 ≤ Mδi, ∀i (4.13)

(4.6), (4.10)

For procurement planning problems in global sourcing, the most distinctive feature is the

significant demand uncertainty due to long distance. Although it is virtually impossible to

forecast the future demand accurately, good demand forecasts can bring a great help in the

subsequent procurement planning.

Section 3.5 has presented an adaptive optimization framework to solve the long-distance

procurement planning problem. The proposed framework is based on the fact that the demand

forecasts are being regularly updated. In particular, Section 3.5.1 has described the rolling-

horizon scheme applied to the overall procurement planning problem, and Section 3.5.2 has

specified the concrete processing steps to solving each sub-problem.

As presented in Section 3.5.2, after the preprocessing of demand forecasting and standard-

ization (see Figure 3.5), the planning problem in the sub-horizon ηi can be transformed into a

standard single-item stochastic lot-sizing problem.

In order to formulate the sub-problem, the following notation is used.

Notation:

di
k: The actual net demand quantity of the kth period in sub-horizon ηi.

Di
k: The actual cumulative net demand quantity counting from the 1st to the kth

period in sub-horizon ηi.

µi
k: The mean value of random variable di

k.

σi
k: The standard deviation of di

k.

yi
k: The interim order decision which is supposed to arrive during the kth period

in sub-horizon ηi.

Y i
k: The interim cumulative order decision counting from the 1st to the kth period
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in sub-horizon ηi.

zk: A binary variable. zk = 1, if yi
k > 0; 0 otherwise.

Besides, the cost parameters K,h,b,c are still used to denote respectively the setup cost,

the unit inventory holding cost, the unit backorder cost and the unit purchase cost. In order to

distinguish them from the cost parameters corresponding to the overall planning problem, we

use a superscript i to indicate sub-horizon ηi, and a subscript k to denote the kth period in the

sub-horizon. As a result,

hi
k = hi+k−1, bi

k = bi+k−1.

And

Ki
k = Ki+k−1−L, ci

k = ci+k−1−L,

here for simplification, we eliminate the term "−L" from the subscript by adequate mathematical

transformation.

The planning problem in the sub-horizon ηi can be formulated as:

Sub-P

min
n∑

k=1

[
Ki

kzk + Li
k(Y i

k) + (ci
k − ci

k+1) ·Y i
k

]
(4.14)

s.t. 0 ≤ Y i
k −Y i

k−1 ≤ Mzk, ∀k (4.15)

zk ∈ {0,1}, ∀k (4.16)

Li
k(Y i

k) = hi
k ·

∫ Y i
k

−∞

(Y i
k −Di

k) f i
k(Di

k) dDi
k + bi

k ·

∫ +∞

Y i
k

(Di
k −Y i

k) f i
k(Di

k) dDi
k, ∀k

(4.17)

where f i
k denotes the PDF of Di

k. Note that in the transformed standard stochastic lot-sizing

problem in the sub-horizon, the initial stock equals to zero.
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Equation (4.17) can be simplified:

Li
k(Y i

k) = hi
k ·

∫ Y i
k

−∞

(Y i
k −Di

k) f i
k(Di

k) dDi
k + bi

k ·

∫ +∞

−∞

(Di
k −Y i

k) f i
k(Di

k) dDi
k −

∫ Y i
k

−∞

(Di
k −Y i

k) f i
k(Di

k) dDi
k


= (hi

k + bi
k) ·

∫ Y i
k

−∞

(Y i
k −Di

k) f i
k(Di

k) dDi
k − bi

k · (Y
i
k −U i

k), (4.18)

where U i
k denotes the mean of Di

k, U i
k =

∫ +∞

−∞
Di

k f i
k(Di

k) dDi
k.

Assuming that s and t + 1 (1 ≤ s ≤ t ≤ n) are two consecutive periods in which a pro-

curement order lot arrives, we have Y i
s−1 < Y i

s = Y i
s+1 = · · · = Y i

t < Y i
t+1. For simplification, we

use Y to substitute Y i
s. The expected total cost incurred in the periods {s, s + 1, · · · , t} of the

sub-horizon ηi is given as

G(Y, s, t) = Ki
s +

t∑
k=s

Li
k(Y) + (ci

s− ci
t+1) ·Y. (4.19)

Let Yst denote the cumulative order quantity from the 1st period up to and including the

tth period in the sub-horizon, while s is the last order period before period t + 1. Suppose

k1,k2, · · · ,kl are the order periods that zk = 1, where 1 ≤ k1 ≤ k2 ≤ · · · ≤ kl ≤ n. The objective

function (4.14) can be rewritten as

min
l∑

τ=1

G
(
Ykτ,(kτ+1)−1 , kτ , (kτ+1)−1

)
. (4.20)

Note that k0 = 0, and kl+1 = n + 1.

4.5 Optimization Algorithm

By substituting Equation (4.18) into Equation (4.19), we have

G(Y, s, t) = Ki
s +

t∑
k=s

[
(hi

k + bi
k) ·

∫ Y

−∞

(Y −Di
k) f i

k(Di
k) dDi

k − bi
k · (Y −U i

k)
]
+ (ci

s− ci
t+1) ·Y

=

Ki
s +

t∑
k=s

(
bi

k ·U
i
k

) +

ci
s− ci

t+1−

t∑
k=s

bi
k

 ·Y +

t∑
k=s

[
(hi

k + bi
k) ·

∫ Y

−∞

(Y −Di
k) f i

k(Di
k) dDi

k

]
.

(4.21)
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Li
k(Y i

k) is smooth and convex, then G(Y, s, t) is smooth and convex. Therefore, G(Y, s, t)

is derivable:

d G(Y, s, t)
dY

=

ci
s− ci

t+1−

t∑
k=s

bi
k

 +

t∑
k=s

(hi
k + bi

k) ·
∫ Y

−∞

f i
k(Di

k) dDi
k

=

ci
s− ci

t+1−

t∑
k=s

bi
k

 +

t∑
k=s

(hi
k + bi

k) ·Fi
k(Y), (4.22)

where Fi
k denotes the cumulative distribution function (CDF) of Di

k, Fi
k(Y) =

∫ Y
−∞

f i
k(Di

k) dDi
k.

We define A(Y, s, t) =
∑t

k=s(h
i
k + bi

k) ·Fi
k(Y), and B(s, t) =

∑t
k=s bi

k + ci
t+1− ci

s. Then

d G(Y, s, t)
dY

= A(Y, s, t)−B(s, t) , G′(Y, s, t).

Note that the CDF of a distribution is always nondecreasing, and Fi
k(Y) ∈ (0,1), Fi

k(−∞) =

0, Fi
k(+∞) = 1. Thus A(Y, s, t) is nondecreasing, and A(Y, s, t) ∈

(
0,

∑t
k=s(h

i
k + bi

k)
)
.

Proposition 4.1 Suppose s, t + 1 (1 ≤ s ≤ t ≤ n) are the two consecutive order periods, zs =

zt+1 = 1, zs+1 = · · · = zt = 0. Let (Y∗, z∗) be the optimal solution of Sub-P. Y∗ = (Y∗1 ,Y
∗
2 , · · · ,Y

∗
n),

z∗ = (z∗1,z
∗
2, · · · ,z

∗
n).

(1) If B(s, t) ≤ 0, there does not exist an optimal solution (Y∗, z∗) such that z∗s = z∗t+1 = 1

and z∗s+1 = · · · = z∗t = 0;

(2) If B(s, t) ∈
(
0,

∑t
k=s(h

i
k + bi

k)
)
, and if there exists an optimal solution (Y∗, z∗) such

that z∗s = z∗t+1 = 1 and z∗s+1 = · · · = z∗t = 0, then G′(Y∗s , s, t) = 0;

(3) If B(s, t) ≥
∑t

k=s(h
i
k + bi

k), there does not exist an optimal solution (Y∗, z∗) such that

z∗s = z∗t+1 = 1 and z∗s+1 = · · · = z∗t = 0.

Proof. Suppose there exists an optimal solution (Y∗, z∗) for Sub-P such that z∗s = z∗t+1 = 1 and

z∗s+1 = · · · = z∗t = 0.

(1) If B(s, t) ≤ 0, then G′(Y, s, t) > 0, therefore G(Y, s, t) is monotonically increasing.

The mathematically optimal solution to minimize G(Y, s, t) is Y∗s = −∞. However, it is more

convenient to set Y∗s = Y∗s−1 according to Equation (4.15), then s is not an order period, z∗s = 0,

which is a contradiction.
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(2) If B(s, t) ∈
(
0,

∑t
k=s(h

i
k + bi

k)
)
, then G′(Y, s, t) = 0 is solvable. Since G′(Y, s, t) is

nondecreasing with Y , let Y∗st be its smallest root, then G(Y, s, t) gets its mathematical minimum

at Y∗st. If Y∗st > Y∗s−1, then Y∗s = Y∗st; otherwise, we can prove that the solution (Y, z) such that

zs = zt+1 = 1 and zs+1 = · · · = zt = 0 is not optimal for Sub-P, see proof in Section 4.5.1.

(3) If B(s, t) ≥
∑t

k=s(h
i
k + bi

k), then G′(Y, s, t) < 0, therefore G(Y, s, t) is monotonically

decreasing. The mathematically optimal solution to minimizeG(Y, s, t) is Y∗s = +∞. However,

with the following transformation:

B(s, t) ≥
t∑

k=s

(hi
k + bi

k)⇐⇒
t∑

k=s

bi
k + ci

t+1− ci
s ≥

t∑
k=s

(hi
k + bi

k)⇐⇒ ci
s +

t∑
k=s

hi
k ≤ ci

t+1,

we find that, it is more economic to buy the item at unit price ci
s and hold the inventory until the

end of period t (i.e. the beginning of period t + 1) than to buy it directly at unit price ci
t+1. In

other words, period t + 1 cannot be an optimal order period. Let q denote the supposed order

quantity to arrive at period t + 1, then we can save a cost of ci
t+1 − (ci

s +
∑t

k=s hi
k) > 0 per unit if

we add a quantity q to the order period s, besides, the setup cost corresponding to period t + 1

can also be saved. Therefore, we have z∗t+1 = 0, which is a contradiction. �

Lemma 4.1 If Y∗r, s−1 > Y∗st for some r, s, t (1 ≤ r < s ≤ t ≤ n), then there does not exist an

optimal solution (Y∗, z∗) for Sub-P such that z∗r = z∗s = z∗t+1 = 1, z∗r+1 = z∗r+2 = · · · = z∗s−1 = z∗s+1 =

z∗s+2 = · · · = z∗t = 0.

Proof. Suppose there exists an optimal solution (Y∗, z∗) such that for some r, s, t (1 ≤ r < s ≤

t ≤ n), z∗r = z∗s = z∗t+1 = 1, z∗r+1 = z∗r+2 = · · · = z∗s−1 = z∗s+1 = z∗s+2 = · · · = z∗t = 0, and Y∗r, s−1 > Y∗st.

According to Proposition 4.1(2), we have Y∗s−1 = Y∗r, s−1 > Y∗st = Y∗s , which does not satisfy the

constraint equation (4.15) of Sub-P. �

4.5.1 An Optimal Solution Procedure

Proposition 4.1 and Lemma 4.1 give the instructions to find the interim optimal cumulative

order quantity Y∗st, provided that s and t+1 are consecutive order periods. As a result, a forward

dynamic programming procedure can be used to solve Sub-P.

Let Γt denote the minimum expected total cost incurring from the 1st to the tth period in
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the sub-horizon. We have:

Γ0 = 0;

Γt = min
1≤s≤t,

Y∗s−1<Y∗st

{
Γs−1 +G∗(s, t)

}
, (4.23)

where G∗(s, t) is the minimal value of G(Y, s, t), G∗(s, t) = G(Y∗st, s, t).

Now we will prove that when Y∗st ≤ Y∗s−1, the solution (Y, z) such that zs = zt+1 = 1 and

zs+1 = · · · = zt = 0 can not be optimal for Sub-P, which is a complementary proof for Proposition

4.1(2).

Proof. Suppose there exists an optimal solution (Y∗, z∗) for Sub-P such that z∗s = z∗t+1 = 1

and z∗s+1 = · · · = z∗t = 0. Let Ys−1 and Yst denote respectively the cumulative order quantity

at period s− 1 and periods s, · · · , t. We define Γs,t = Γs−1(Ys−1) +G(Yst, s, t). Γs−1(Ys−1) is

convex and has its minimum at Y∗s−1. G(Yst, s, t) is also convex and has its minimum at Y∗st. If

Y∗st > Y∗s−1, let Ys−1 = Y∗s−1 and Yst = Y∗st, then Γs,t gets its minimum. If Y∗st ≤ Y∗s−1, there exists

a Y∗∗ at which Γs,t gets its minimum, and Y∗∗ ∈ (Y∗st,Y
∗
s−1). Therefore, let Ys−1 = Yst = Y∗∗, Γs,t

will get its minimum. In this case, zs = 0, which is a contradiction. �

Figure 4.4 describes the detailed computing procedure for an optimal solution (Y∗,z∗). In

particular, the flow chart (1) is used to calculate the minimum expected total cost incurred in the

sub-horizon, and the flow chart (2) is used to find the optimal order periods and corresponding

order quantities.

As shown in Figure 4.4, the key step is to find Y∗st at which the step expected cost G(Y, s, t)

is minimized. Here s and t + 1 are assumed to the consecutive order periods. Since we use

a forward solution procedure, the interim optimal cumulative order quantity Y∗jk is known, for

any 1 ≤ j ≤ k < s.

For each s≤ t, B(s, t) can be calculated. Proposition 4.1(1)(3) and Lemma 4.1 can be used

to eliminate a part of unfeasible (s, t) pairs including which the overall order sequence cannot

be optimal.

For the remaining (s, t) pairs, A(s, t) can be specified. Proposition 4.1(2) can be used

to find Y∗st, if any. For a given (s, t), since we use a forward solution procedure, the interim
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Figure 4.4: The dynamic programming procedure

optimal solution considering only the first s−1 periods of the sub-horizon has been determined.

Let Y∗s−1 denote the interim optimal cumulative order quantity of period s− 1. If B(s, t) ∈(
0,

∑t
k=s(h

i
k + bi

k)
)

and Y∗st > Y∗s−1, let Y∗s = Y∗st; the other cases are unnecessary to consider, since

the order sequence such that zs = zt+1 = 1 and zs+1 = · · · = zt = 0 cannot be optimal.

For the feasible (s, t) pairs, the recursion formula (4.23) is used to find the minimum ex-

pected total cost incurred in the sub-horizon, that is, Γn. Afterwards, using a back-tracing

procedure, the optimal order periods and the corresponding order quantities can be specified.

4.5.2 A Simplified 2-Stage Heuristic Method (S2S Method)

The above section has presented an optimal solution procedure for Sub-P. It can be regarded as

a benchmark to evaluate other near-optimal methods.

The most time-consuming step is to solve the nonlinear equation G′(Y, s, t) = 0. Note that

1 ≤ s ≤ t ≤ n, the number of such nonlinear equations is on the order of n2. Moreover, the

solution procedure for Sub-P will be practically deployed with a rolling horizon scheme as

presented in Chapter 3. In order to improve computational efficiency, we have developed a
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simplified heuristic algorithm as follows.

The core idea of the proposed heuristic is to decouple the deterministic part (i.e. means)

and the stochastic part (i.e. standard deviations) in Sub-P, and determine the optimal procure-

ment plan of the sub-horizon in two stages:

(1) determine the interim optimal procurement plan yi
1, yi

2, · · · , yi
n while considering the

"determinate" demands µi
1, µ

i
2, · · · , µ

i
n;

(2) find an adequate safety stock to cope with the probable stockout caused by demand

uncertainties.

The interim optimal plan yi
1, yi

2, · · · , yi
n can be easily determined by employing any clas-

sical deterministic dynamic lot sizing algorithm. However, the selection of safety stock is not

really explicit.

The Safety Stock (SS) Policy

A safety stock (SS), or buffer stock, is a level of extra inventory held as a buffer against the mis-

match between the forecast and actual demand due to uncertainties. It can also be interpreted as

an additional stock that can be used as a protection against demand variations (Axsäter, 2006).

In many practical applications, companies often use an identical safety stock through the

entire planning horizon. In recent years, dynamic safety stocks have been considered. (Kanet

et al., 2009) performed an empirical study in 190 U.S. producers and retailers, among which

most companies think that improving service level is the primary goal of inventory management.

The study also demonstrates that significant savings can be achieved by employing dynamically

planned safety stocks.

Adequate safety stocks permit business operations to proceed according to their plans,

serving as an insurance against stockouts (Monk and Wagner, 2008). Too much safety stock

can result in high inventory holding cost, while too little safety stock may result in stockout

penalty. Therefore, finding the adequate safety stock is essential.

Existing Safety Stock Determining Approaches

A large amount of research has focused on determining safety stocks, of which the majority is

based on statistical analysis and simplifications. The safety stocks can also be approximately
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calculated, which has sufficient accuracy and ensures a slightly higher stock availability.

In many applications, the safety stock is determined under a prescribed service level (SL)

constraint. The commonly used service level definitions can be found in Table 4.2. For dif-

ferent definitions of service level, the safety stock is differently determined.

For the service level defined as S L1 in Table 4.2, a frequently used rule for calculating the

safety stock is

S S 1 = S F(S L1) ·σd, (4.24)

where the demand is supposed to be normally distributed with average µd and standard deviation

σd, and S F denotes the service factor that depends on the service level S L1 (Graves et al., 1993).

In Equation (4.24), the safety stock S S 1 is defined as a proportional function of the service

level S L1 which can be mathematically expressed as the percentage of total demands that is

served punctually. The service factor S F can be determined by the inverse standard normal

distribution:

S F(x) = Φ−1(x). (4.25)

Approximately, the service factor can be calculated as S F(α) ≈ (2α−1)/(1−α)0.2 for α > 50%.

For the fill rate and ready rate constraints (respectively defined as S L2 and S L3 in Table

4.2), when a (R,Q) policy is used, we can approximately calculate the service level as follows:

S L2 = S L3 ≈ 1−
σd

Q
G

(
R−µd

σd

)
, (4.26)

where Q denotes the order quantity, R denotes the reorder point, and the loss function G(x) =∫ +∞

x (t− x)ϕ(t)dt. ϕ(t) is the probability density function of standard normal distribution. See

(Axsäter, 2006) for detailed discussion. In this case, the reorder point R can be considered as

a safety stock.

Among the three service levels as described in Table 4.2, S L1 is also called "α-availability",

interpreted as the ability to deliver during the replenishment time, while S L2 is as well called

"β-availability", interpreted as the stock availability.
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(Alicke, 2005) extended the method (4.24) by introducing the lead time L:

S S (1)
1 = S F(S L1) ·σd ·

√
L. (4.27)

He also provided a similar calculation rule using forecast errors:

S S (2)
1 = S F(S L1) ·σ f ·

√
L, (4.28)

where σ f denotes the standard deviation of the demand forecast errors during the lead time L.

σ f is calculated statistically based on historical demand data, thus is independent of a specific

demand scenario.

(Axsäter, 2006) considered both stochastic demands and stochastic lead times. The author

proved that when demand quantities and lead times are independent, an optimal safety stock

policy can be given as:

S S (3)
1 = S F(S L1) ·

√
σ2

d ·µL +µ2
d ·σ

2
L, (4.29)

where µL and σL denote respectively the average and standard deviation of lead time L. The

method expressed by (4.29) is derived from the theorem of large numbers, as well as the law

of error propagation and the fluctuation law. Further discussions could be referred to (Song,

1994; Zipkin, 2000).

(Gudehus and Kotzab, 2012) proposed an approach to calculate the service factor S Fβ for

the required β-availability situation:

S Fβ(S L2) = Φ−1
(
1−

(1−S L2) ·Q
L ·µd

)
. (4.30)

As a result, when demands and lead times are both stochastic, the safety stock can be

calculated by:

S S 2 = S Fβ(S L2) ·
√
σ2

d ·µL +µ2
d ·σ

2
L. (4.31)

The alternative to a service level is the stockout cost, such as the backorder cost per unit

per period in this chapter. (Axsäter, 2006) proved that the relation between service levels and
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backlogging cost is:

S L2 = S L3 =
b

h + b
, (4.32)

where h and b denote respectively the inventory holding and backorder cost per unit per period.

Formula (4.32) is very useful in practice, when the service level constraints or stockout

costs are not explicit in practical inventory management. Besides, formula (4.32) can also be

used to evaluate whether a certain shortage cost is reasonable or not.

An Optimal Approach to Determine Safety Stock for Sub-P

The above section has surveyed the existing widely-used methods to determine safety stocks.

In the Sub-P studied in this chapter, a time-varying backorder cost is charged instead of using a

service-level constraint, under a periodic-review policy. Due to the lack of applicable solution

in the literature, we develop the following method to determine the optimal safety stock.

As the proposed S2S heuristic method is applied to Sub-P, the interim optimal plan yi
1,y

i
2, · · · ,y

i
n

is firstly determined. Since the backorder is allowed, it is possible that yi
1 = 0.

Proposition 4.2 If yi
1 = 0 in the interim optimal plan determined by the first stage, it is unnec-

essary to find an optimal safety stock for the sub-horizon ηi.

Proof. Consider Sub-P for the sub-horizon ηi. If yi
1 = 0, then the demand of the 1st period is

fully backordered. The expected backorder cost assessed at the end of this period is bi
1µ

i
1.

If we start a compulsory order for the safety stock, then at least a setup cost Ki
1 is charged.

Since yi
1, · · · ,y

i
n is the interim optimal plan considering the "determinate" demands µi

1, · · · ,µ
i
n, it

is obvious that bi
1µ

i
1 < Ki

1. Note that if bi
1µ

i
1 ≥ Ki

1, it will be more economic to order µi
1 units

at the 1st period, that is, yi
1 > 0, which is a contradiction.

Therefore, it is not optimal to place an order specifically for the safety stock at the 1st

period. Since only the order decision for the 1st period of the sub-horizon will be actually

executed in a rolling horizon scheme, there is no need to find safety stocks applicable to the

subsequent periods of the sub-horizon. �
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When yi
1, · · · ,y

i
n have been determined, the objective function (4.14) can be rewritten as

min
n∑

k=1

Li
k(S S ), (4.33)

where S S denotes the safety stock, and

Li
k(S S ) = (hi

k + bi
k) ·

∫ S S +Y i
k

−∞

(S S + Y i
k −Di

k) f i
k(Di

k) dDi
k − bi

k · (S S + Y i
k −U i

k). (4.34)

Note that Y i
k =

∑k
j=1 yi

k, Li
k(S S ) is smooth and convex, then

∑n
k=1 Li

k(S S ) is also smooth

and convex. We have

d
∑n

k=1 Li
k(S S )

d S S
=

n∑
k=1

(hi
k + bi

k) ·Fi
k(S S + Y i

k) −
n∑

k=1

bi
k. (4.35)

The optimal safety stock can be determined by solving the following equation:

n∑
k=1

(hi
k + bi

k) ·Fi
k(S S + Y i

k) =

n∑
k=1

bi
k. (4.36)

4.5.3 The Normal Distribution Case

When the demands di
1, · · · ,d

i
n follow independent normal distributions, the cumulative demand

Di
k =

∑k
j=1 di

j also follows normal distribution, with the mean:

U i
k =

k∑
j=1

µi
j,

and the standard deviation:

ρi
k =

√√√√ k∑
j=1

(
σi

j

)2
.

Let ϕ and Φ respectively denote the PDF and CDF of the standard normal distribution, we
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have

ϕ(t) =
1
√

2π
e−

1
2 t2 ,

and

Φ(x) =

∫ x

−∞

φ(t)dt.

Then the PDF and CDF of Di
k can be described as

f i
k(t) =

1
ρi

k

ϕ

 t−U i
k

ρi
k

 ,
and

Fi
k(x) = Φ

 x−U i
k

ρi
k

 .
Note that for normal distribution, if x ≥ U i

k + 3ρi
k, Fi

k(x) is very nearly equal to 1. Then

Equation (4.36) will be fairly simple to solve.

4.6 Numerical Examples

This section illustrates numerical examples of the proposed solution methods.

4.6.1 A 5-Period Planning Example and the Optimal Solution

Consider a 5-period planning problem as follows. For simplification, the holding cost hi is

taken to be 1 (per unit per period) in all periods, while the backorder cost bi is taken to be 9 (per

unit per period). We suppose that the demand in each period is normally distributed. Take

the demand forecast as the mean demand, and the forecast accuracy as the standard deviation.

Table 4.3 presents a sample set of data. Note that the cumulative demand Di =
∑i

t=1 dt also

follows a normal distribution, whose average and standard deviation are also shown in Table

4.3.

Table 4.4 presents the optimal cumulative order quantity Yst that minimizes the expected



80 Procurement Planning with Backorders

Table 4.3: Demand data set

Period Set-up Cost Period Demand Cumulative Demand

i Ki−L Mean (µi) Stand.Dev. (σi) Meana (Ui) Stand.Dev.b

(ρi)

1 85 69 7.7 69 7.7

2 102 29 3.2 98 8.3

3 102 36 4.0 134 9.2

4 101 61 6.8 195 11.5

5 98 61 6.8 256 13.3

aThis is the cumulative sum of mean demand.
bThe standard deviation of a sum follows a square root law

total costsG(Y, s, t) incurred in periods s, s+1, · · · , t, knowing that the consecutive procurement

orders are placed in period s and t + 1, and y1, y2, · · · , ys−1 have already been determined to

minimize the expected total costs Γs−1 incurred in periods 1, 2, · · · , s−1.

Table 4.4: Optimal accumulative order quantity Yst

HHH
HHHs

t
1 2 3 4 5

1 79 105 139 198 256

2 109 142 201 259

3 146 205 263

4 210 267

5 273

Table 4.5 presents the minimum expected total cost G∗st corresponding to the optimal cu-

mulative order quantity Yst as listed in Table 4.4.

Then the following expected costs can be calculated: Γst = Γs−1 +G∗st.

Using recursion formula (4.23):

Γ0 = 0,

Γt = min
1≤s≤t

Γst,

we find the optimal order sequence is: z∗1 = z∗2 = z∗4 = 1, z∗3 = z∗5 = 0 (see Table 4.6). The order
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quantities are respectively:

y∗4 = Y45−Y24 = 66,

y∗2 = Y24−Y11 = 122,

y∗1 = Y11 = 79.

The minimum expected total cost of planning horizon is C∗ = 417.6.

Table 4.5: Cost G∗st associated with optimal order cycles

H
HHH

HHs
t

1 2 3 4 5

1 98.5 137.3 218.1 413.3 666.1

2 116.6 164.0 299.9 494.7

3 118.2 195.1 331.5

4 121.1 199.4

5 121.5

Table 4.6: Network optimization, minimum expected costs Γst

XXXXXXXXXXXXs
t

1 2 3 4 5

1 98.5 137.3 218.1 413.3 666.1

2 215.1 262.5 298.4 593.2

3 255.5 332.5 468.8

4 339.2 417.6

5 453.9

Predecessor period s 1 1 1 2 4

Minimum cost up to t 98.5 137.3 218.1 298.4 417.6

4.6.2 Results of Simplified 2-Stage Heuristic Method (S2S Method)

The same demand data set in the above section is used.

By employing the famous Wagner-Whitin algorithm, we find the interim optimal pro-

curement plan as: y1 = 134, y4 = 122, y2 = y3 = y5 = 0. Then we have Y1 = Y2 = Y3 = 134,

Y4 = Y5 = 256.
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According to Equation 4.36, we have

Φ

(
S S + 65

7.7

)
+Φ

(
S S + 36

8.3

)
+Φ

(S S
9.2

)
+Φ

(
S S + 61

11.5

)
+Φ

( S S
13.3

)
= 4.5.

Due to its physical meaning, S S ≥ 0. For standard normal distribution, we have Φ(τ) ≈ 1

for τ > 3. Thus we have the approximate equation as follows:

Φ

(S S
9.2

)
+Φ

( S S
13.3

)
= 1.5. (4.37)

By solving the approximate equation, we obtain S S = 7. The the final procurement plan

is: y1 = 141, y4 = 122, y2 = y3 = y5 = 0.

Using this procurement plan, we can calculate the expected inventory cost of each period:

C1 = 72, C2 = 43, C3 = 18.8, C4 = 68, C5 = 32.2.

The expected total cost of the planning horizon is: C = K1 + K4 +
∑5

t=1 Ct = 420.

Compared to the optimal planning algorithm presented in Section 4.5.1, the relative error

of simplified heuristic is:∣∣∣∣∣C−C∗

C∗

∣∣∣∣∣ ≈ 0.6%.

Note that in the optimal planning method, we need to solve O(n2) nonlinear equations (n

is the number of periods involved in the planning horizon). While in the simplified heuristic

method, only one nonlinear equation like (4.37) needs to be solved. Therefore, the proposed

simplified heuristic can give a near-optimal procurement plan in a much more efficient manner,

by sacrificing a tiny profit.

4.6.3 A 200-Period Planning Example and Results of Proposed Adaptive
Planning Approach

For procurement planning problems engaged in global sourcing, the proposed optimization

method will be deployed with an adaptive planning framework as presented in Chapter 3.

Section 3.5 has specified detailed solution procedures of both the rolling horizon scheme
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and sub-horizon planning. By employing rolling horizon scheme, the overall planning prob-

lem is split into stochastic procurement planning problems in each sub-horizon. In particular,

for sub-horizon planning, the sub-problem is processed by three successive steps: demand fore-

casting, standardization and interim optimal planning (see Figure 3.5).

(Hubert, 2013) proposed a methodology to select an appropriate demand forecasting method,

and developed a detailed model of the forecast accuracy and its evolution with time. The

method has been validated by a real-life application on a set of date involving different prod-

ucts from a world-leading automobile corporation (with a forecast lead time of 48 days), whose

results show that the relative forecast errors are reduced to 3%.

Moreover, the standardization step has been described in Section 3.5, and the interim op-

timal planning methods for sub-horizon problems are presented in this chapter and Chapter 5,

respectively for backorder and lost-sale case.

We use the following example to illustrate the overall adaptive planning procedure for a

long-distance procurement planning problem engaged in global sourcing.

The actual demand scenarios are generated by Equation (3.12) (c.f. Section 3.5.3):

dt = aT (t) + (b + c× randn)
[
d + sin

(
2π
e
× (t +

f
4

)
)]
,

in which we set a = 0.02, T (t) = −0.001t3 + t2−160t +9000, b = 25, c = 30, d = 0.3, e = 8, f =

−20. Figure 3.5.3 illustrates a demand scenario generated by this setting.

Period

Demand

Illustrated	
portion

Figure 4.5: A randomly generated demand scenario

Due to page size limit, we only illustrate an extracted portion of 12-period planning in
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detail. Here we assume that a period signifies a week in real life, and the lead time L = 7. For

simplification, the holding cost hi is taken to be 1 (per unit per period) in all periods, while the

backorder cost bi is taken to be 9 (per unit per period). Table 4.7 shows actual demand and

setup cost of each period in the portion.

Table 4.7: An actual demand scenario (extracted portion)

Period i -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Setup cost Ki−L 140 192 120 87 154 87 93 185 193 115 195 180 199 115 86 220 188 200 255

actual demand di 100 53 120 101 135 132 123 51 52 84 113 130 97 150 136 164 110 108 66

Set the sub-horizon length n = 5. Consider the planning problem in sub-horizon 1 (periods

1-5). At period -6, we forecast the demand in sub-horizon 1 (=-6+7) as in Table 4.8. Note

that in the table, the number in green means the actual demand.

Table 4.8: Demand forecasts made at period -6

period number -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

demand forecast 100 54 121 102 134 131 121 54 55 83 111 133

abs. forecast error - 0.5 1.2 0.7 1.1 1.3 2.2 2.6 3.4 1.5 2.2 2.9

From previous planning, the inventory level at the end of period 0 is estimated to be 5. Its

standard deviation σ1
0 can be calculated following a square root law:

σ1
0 =

√
0 + 0.52 + 1.22 + 0.72 + 1.12 + 1.32 + 2.22 = 3.1.

Then the net requirements can be estimated as in Table 4.9.

Table 4.9: Net requirements

period number 1 2 3 4 5

net.req., mean 54−5 = 49 55 83 111 133

net.req., stand.dev.
√

3.12 + 2.62 = 4.0 3.4 1.5 2.2 2.9

cumul.net.req., mean 49 104 187 298 431

cumul.net.req., stand.dev. 4.0 5.3 5.5 5.9 6.6

Consider the mean of net requirements as "determinate" demands, by applying Wagner-

Whitin algorithm, the interim optimal plan is: y1
1 = 104, y1

3 = 194, y1
5 = 133, y1

2 = y1
4 = 0. Using
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the proposed method, we find an optimal safety stock of 6. Therefore, at period -6, we should

place an order of 110 units.

At period -5, the demand forecasts are updated as in Table 4.10. Note that the actual

demand of period -5 has been acquired, and the demand forecast of period 1 has been revised.

Table 4.10: Updated demand forecasts (Observed at Period -5)

period number -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

demand forecast 100 53 121 102 134 131 121 53 55 83 111 133

abs.forecast error - - 0.6 0.5 0.8 1.1 1.8 2.1 2.9 1.3 2.0 2.6

Based on updated demand forecasts, the inventory level at the end of period 1 can be

estimated: Io
1 = 5 + (54− 53) + 110− 53 = 63. Knowing that the updated demand forecast of

period 2 is 55. We do not need to place an order at period -5.

Table 4.11: Procurement plan to be executed

period number 1 2 3 4 5 6 7 8 9 10 11 12

adaptive planning 110 0 188 0 232 0 149 298 0 293 0 0

ex-post-facto optimal planning 103 0 197 0 227 0 150 300 0 284 0 0

Table 4.12 describes the overall adaptive procurement planning procedure for the portion

of 12-period planning horizon.

Table 4.11 shows the procurement plan by using proposed adaptive planning procedure,

and the ex-post-facto optimal plan when the actual demand of each period has been known.

The total costs including setup, inventory holding and backorders are respectively 1600 and

1535. By applying the proposed adaptive planning procedure, the total cost of finally executed

procurement plan is slightly higher than the ex-post-facto optimal plan by a relative ratio of

4.2%.

By implementing a numerical test of 500 actual 200-period demand scenarios which are

generated with the same parameter setting, we obtain:

R500
1 = C/C∗−1 = 4.35% , and R500

2 = C/C∗−1 = 4.35%.

Here C denotes the total cost incurred by finally executed procurement plan determined with

proposed adaptive planning procedure, and C∗ denotes the total cost incurred by ex-post-facto
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optimal procurement plan for the same demand scenario. R500
1 and R500

2 especially represent

the ratio of the mean values, and the mean value of the ratios, which are both statistical results

of 500 randomly generated demand scenarios.

Note that the results can be considered promising, since the "absolutely" optimal procure-

ment plan to a certain demand scenario can only be obtained ex post facto. In addition, the

ex-post-facto optimal plan for one demand scenario will be, in most cases, no longer optimal to

another demand scenario.

4.7 Conclusion

For procurement planning problems engaged in global sourcing, the shortage situation that

demand exceeds stock often occurs. In this chapter, the unfulfilled demand is assumed to

be fully backordered. An optimal planning method is developed to minimize expected total

costs including setup, inventory holding and backorders in sub-horizons. This method can be

considered as a benchmark for other planning methods. In addition, for efficiency improve-

ment, a near-optimal 2-stage heuristic method is proposed with a safety stock policy. The

presented methods can be deployed with the adaptive planning framework described in Chapter

3. Numerical results have shown the high efficiency and effectiveness of both the proposed

sub-horizon planning methods and the overall adaptive procurement planning framework.
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Table 4.12: Adaptive procurement planning
period number -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

sub-horizon 1 inv.level,mean 5
inv.level,stand.dev. 3.1

obsv.period:-6 demand forecast 54 55 83 111 133
abs.forecast error 2.6 3.4 1.5 2.2 2.9

net.req.,mean 49 55 83 111 133
net.req.,stand.dev. 4.0 3.4 1.5 2.2 2.9

cumul.net.req.,mean 49 104 187 298 431
cumul.net.req.,stand.dev. 4.0 5.3 5.5 5.9 6.6

interim planning 104 0 194 0 133
cumul.order.quantity 104 104 298 298 431

safety stock 6
exe.order quantity 110

sub-horizon 2 forecast revision 0 1 0 0 0 0 0
inv.level,mean 63

obsv.period:-5 demand forecast 53 55 83 111 133 99
abs.forecast error 3.0 1.3 2.0 2.6 2.3

net.req.,mean 0 75 111 133 99
exe.order quantity 0

sub-horizon 3 forecast.revision 1 1 1 0 0 -1 1
inv.level,mean 11

obsv.period:-4 inv.level,stand.dev. 3.6
demand forecast 55 83 111 132 99 153

abs.forecast error 1.2 1.8 2.3 2.0 3.3
net.req.,mean 72 111 132 99 153

net.req.,stand.dev. 3.8 1.8 2.3 2.0 3.3
cumul.net.req.,mean 72 183 315 414 567

cumul.net.req.,stand.dev. 3.8 4.2 4.8 5.2 6.1
interim planning 183 0 231 0 153

cumul.order.quantity 183 183 414 414 567
safety stock 5

exe.order quantity 188
sub-horizon 4 forecast.revision 0 0 -1 0 0 1 1

inv.level,mean 117
obsv.period:-3 demand forecast 83 111 132 99 153 141

abs.forecast error 1.6 2.1 1.8 3.0 4.4
net.req.,mean 0 126 99 153 141

exe.order quantity 0
sub-horizon 5 forecast.revision 0 0 -1 0 0 0 0

inv.level,mean 4
obsv.period:-2 inv.level,stand.dev. 2.7

demand forecast 112 132 99 153 140 160
abs.forecast error 1.8 1.6 2.7 4.0 3.5

net.req.,mean 128 99 153 140 160
net.req.,stand.dev. 3.2 1.6 2.7 4.0 3.5

cumul.net.req.,mean 128 227 380 520 680
cumul.net.req.,stand.dev. 3.2 3.6 4.5 6.0 7.0

interim planning 227 0 153 300 0
cumul.order.quantity 227 227 380 680 680

safety stock 5
exe.order quantity 232

sub-horizon 6 forecast.revision 0 0 -1 0 1 0 0
inv.level,mean 104

obsv.period:-1 demand forecast 132 98 152 140 161 114
abs.forecast error 1.5 2.4 3.6 3.2 3.6

net.req.,mean 0 146 140 161 114
exe.order quantity 0

sub-horizon 7 forecast.revision 0 0 1 0 0 0 1
inv.level,mean 8

obsv.period:0 inv.level,stand.dev. 2.3
demand forecast 98 152 139 161 113 113

abs.forecast error 2.1 3.2 2.9 3.3 4.7
net.req.,mean 144 139 161 113 113

net.req.,stand.dev. 3.1 3.2 2.9 3.3 4.7
cumul.net.req.,mean 144 283 444 557 670

cumul.net.req.,stand.dev. 3.1 4.5 5.3 6.2 7.8
interim planning 144 300 0 226 0

cumul.order.quantity 144 444 444 670 670
safety stock 5

exe.order quantity 149
sub-horizon 8 forecast.revision 0 0 1 -1 0 0 0

inv.level,mean 5
obsv.period:1 inv.level,stand.dev. 2.5

demand forecast 152 139 161 113 112 70
abs.forecast error 2.8 2.6 2.9 4.3 3.6

net.req.,mean 134 161 113 112 70
net.req.,stand.dev. 2.3 2.6 2.9 4.3 3.6

cumul.net.req.,mean 134 295 408 520 590
cumul.net.req.,stand.dev. 2.3 3.4 4.5 6.2 7.2

interim planning 295 0 295 0 0
cumul.order.quantity 295 295 590 590 590

safety stock 3
exe.order quantity 298

sub-horizon 9 forecast.revision 0 0 0 -1 0 0 0
inv.level,mean 164

obsv.period:2 demand forecast 138 162 113 112 69
abs.forecast error 2.2 2.6 3.8 3.3

net.req.,mean 0 111 112 69
exe.order quantity 0

sub-horizon 10 forecast.revision 0 0 0 0 0 1 0
inv.level,mean 3

obsv.period:3 inv.level,stand.dev. 3.2
demand forecast 162 112 112 69

abs.forecast error 2.3 3.4 3.0
net.req.,mean 109 112 69

net.req.,stand.dev. 3.9 3.4 3.0
cumul.net.req.,mean 109 221 290

cumul.net.req.,stand.dev. 3.9 5.2 6.0
interim planning 290 0 0

cumul.order.quantity 290 290 290
safety stock 3

exe.order quantity 293
sub-horizon 11 forecast.revision 0 0 1 1 0 0 0

inv.level,mean 186
obsv.period:4 demand forecast 112 111 69

abs.forecast error 3.0 2.6
net.req.,mean 0 0

exe.order quantity 0 0
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5.1 Overview

In Chapter 4, the unsatisfied demands are assumed to be fully backordered (i.e., the customers

keep waiting for a new delivery to arrive), and a time-varying backorder cost is assessed per unit

per period as a stockout penalty. The backorder assumption is widely used in the literature,

especially for applications in manufacturing industry.

However, in some circumstances, lost-sale assumption is more relevant. Besides imme-

diate lost sales, suppliers can also recover the deficit by purchasing the stockout item from an

external source at a higher price, and then supply it to the customer. As a result, the problem

modeled with outsourcing assumption can be comprised into that with lost-sale assumption.

This chapter is organized as follows. Section 5.2 investigates the existing literature on

lost-sale inventory models. The specific research problem is described in Section 5.3, and

mathematically formulated in Section 5.4. An heuristic planning method is developed in Sec-

tion 5.5, which minimizes expected total costs including setup, inventory holding and lost sales.

Numeral examples are given in Section 5.6. Research work of this chapter is concluded in

Section 5.7.

5.2 Literature Review

5.2.1 The Lost-Sale Systems

Lost sale is a common phenomena in real life, especially in retail industry.

A famous survey funded by Procter & Gamble shows that during customers’ shopping trips

in the supermarkets, one of every 13 items on the shopper’s list tends to be unavailable, and 21%

of a shopper’s time is wasted on looking for an OOS (out-of-stock) item (Gruen and Corsten,

2007). Gruen’s report also reveals that only 15% of the customers faced stockouts will wait for

the items until replenishment, while the remaining 85% will either choose an alternative (45%),

or visit another store (31%), or move the item out from the shopping list (9%), thus a lost sale

occurs. (Verhoef and Sloot, 2006) provides similar conclusions, confirming that most of the

unsatisfied demands could be considered as lost sales in many practical settings, especially in

retail environment.

(Aastrup and Kotzab, 2010) surveys the recent 40-year research on stockouts, from both
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demand side and supply side, with the objective of analyzing the customer responses to OOS

items and the causes of OOS situations. The report indicates that the OOS rates have fallen

into an average level at about 7-8% as a result of 40-year research, but seem to be at a standstill

for further improvement.

Therefore, lost sales are inevitable and considerable phenomena that need to be taken

into account. In real life, the supplier can recover the deficit by purchasing the stockout item

from an external source at a certain (usually higher) price, and then supply it to the customer.

Therefore, the outsourcing case can be comprised into the lost-sale case.

To the best of our knowledge, in spite of the early starting of academic research on lost-

sale inventory systems around the 1960s (Hadley and Whitin, 1963; Fabrycky and Banks, 1967),

there are fewer publications considering lost sales than that consider backorders.

The lost-sale inventory models perform differently from the backorder models, and lead to

much more modeling difficulties. In an inventory model considering lost sales, the inventory

level cannot be negative. Figure 5.1 illustrates the difference between backorder and lost-sale

inventory systems under (R, Q) policy.

 Lead Time 

R

R+Q

Time

Inventory

O

 Lead Time 

R

R+Q

TimeO

Inventory

(a) Backorder System (b) Lost-Sale System

Figure 5.1: Backorder and lost-sale inventory systems

Figure 5.1(a) illustrates a simple backorder inventory system. According to Chapter 4, in

a backorder system, the inventory level equals the cumulative order quantities that have arrived

since the beginning of planning horizon, plus the initial stock, and minus the cumulative demand
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quantities, i.e.,

Ii = Io
1 + Xi−Di.

This feature helps in eliminating the variables denoting different inventory states (such as I+
i for

overstock, and I−i for stockout) in problem formulation, and simplifies the solution procedure.

However, in a lost-sale inventory system as shown in Figure 5.1(b), the unsatisfied de-

mands are supposed to be totally lost instead of being backordered. In other words, the in-

ventory level will not decrease when a stockout occurs but remain zero until a new delivery,

which is likely to bring about singularities in inventory costs calculation. In such an inventory

system, the inventory level is calculated as

I1 = max{0, Io
1 + x1−d1},

It = max{0, It−1 + xt −dt} (t > 1), (5.1)

where Io
1 denotes the initial stock of period 1, It denotes the inventory holding level at the end

of period t, xt denotes the order quantity that arrives at the beginning of period t, and dt denotes

the demand quantity in period t.

Equations (5.1) implies that it is virtually impossible to preview the future inventory states

merely with on-hand inventory and demand information. Consequently, in order to calculate

the future inventory costs, an information vector with the same length of lead time should be

necessarily required. Moreover, the state space that describes the inventory system will grow

exponentially with the vector’s length.

Therefore, the lost-sale inventory models are usually much more complicated than the

backorder ones.

5.2.2 State-of-the-Art on Lost-Sale Models

Optimal Approaches

The academic research on lost-sale inventory systems can be dated back to the early work of

(Bellman et al., 1955). They formulated the lost-sale inventory management problem under

periodic-review policy, in which demands are assumed to follow the same distribution, while

setup and holding costs are not considered. Complete solutions are obtained for some special
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cases, such as the 1-period-lead-time case, with the objective to minimize the expected total

costs including purchasing and lost-sale penalty. Bellman’s model is less applicable in practice,

due to its limits on cost structure and restrictions on lead times.

(Arrow, 1958) has extended Bellman’s model with holding costs and released the restric-

tions on lead times. In Arrow’s model, the lead time is assumed to be a fixed integral multiple

of review periods. An exact dynamic programming method is developed. Moreover, for the

1-period-lead-time case, the cost function and optimal order quantities are proven to be well-

defined and bounded. (Yaspan, 1961) publishes similar results about the boundedness.

Furthermore, (Morton, 1969) extends Arrow’s conclusion inductively to a more general

case, in which the lead time is any integral multiple of review period length. The assumptions

of linear and proportional holding, purchasing and penalty costs are made, while no fixed setup

cost is considered.

Based on Arrow and Morton’s work, (Zipkin, 2008) has reformulated the problem with

transformed state variables, and demonstrated that the newly-defined optimal cost function pos-

sesses L-natural-convexity (i.e. the function is convex and submodular, plus an additional prop-

erty related to diagonal dominance). The author indicates that the optimal order quantities are

monotone in the transformed state variables, with limited sensitivity. Additional bounds on the

optimal policy are derived, and the conclusion has been extended with introduction of capacity

constraints, stochastic lead times and so on. Note again that this result prohibits fixed setup

costs.

(Yaspan, 1961) compares the optimal replenishment policies between backorder and lost-

sale systems. The author indicates that for the same inventory status observed, the optimal

order quantity of lost-sale system is smaller. Besides, (Janakiraman et al., 2007) sets the same

cost parameters (inventory holding and shortage penalty) to an average-cost model considering

respectively backorders and lost sales, and demonstrates that the lost-sale model dominates the

backorder model for any start state in infinite-horizon planning.

Near-Optimal Policies

Among the above-mentioned literature, the main research work has been performed in deriving

properties and bounds of the optimal order quantities for lost-sale systems under periodic review

policy. Since it requires quite some computational effort to find the optimal solution (especially

for large inventory systems), many near-optimal replenishment policies have been developed.
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(Morton, 1971) has proposed a myopic policy based on his early work. The upper bound

of the optimal order quantity derived in (Morton, 1969) is executed as the actual order quantity.

In this policy, the order quantity needs to be sufficient to satisfy the demand until the next

delivery. Thus the holding costs tend to be considerable. A recursive procedure is developed

to calculate the solutions.

The base-stock policy is commonly used in practice. In a base-stock policy, we make a

replenishment order once the inventory position is below the base-stock level R. Based on the

early work of (Gaver, 1959) and (Morse and Teichmann, 1958), (Pressman, 1977) extends their

1-period-lead-time model to the general case where the lead time is any integral multiple of

review period. (Downs et al., 2001) have demonstrated that when fixed lead times are consid-

ered, the expected total cost function is convex with the order-up-to level. In order to find the

optimal order-up-to level, a bisection method could be used.

The performances of base-stock policies in both lost-sale and backorder systems have been

evaluated by (Janakiraman et al., 2007) and (Huh et al., 2009). The authors indicate that the

optimal order-up-to level for the backorder model is asymptotically optimal for the lost-sale

model. This implies that when the lost-sale penalty cost is high enough, the backorder model

can be used as approximation for the lost-sale model. However, (Reiman, 2004) has already

shown that the base-stock policies perform worse than a constant order quantity policy in the

aforementioned case.

Besides, (Johansen, 2001) proposes a modified base-stock policy, in which the pair (S , t)

is specified as decisions. S is the base stock, and t is a minimum number of review periods

between two consecutive orders. Numerical examples show that the modified base-stock policy

may realize the major part of cost reduction that would be achieved by using the pure base-stock

policy.

The objective of all the policies as mentioned so far is to minimize the sum of expected

holding and penalty costs. Holding costs are assessed due to the risk of ordering too much,

while penalty costs are charged due to the risk of ordering too few units. (Levi et al., 2008)

have developed a dual-balancing policy, which balances the two above-mentioned risks. The

authors indicate that the expected total cost is, at the worst, twice of the cost using optimal

policy.
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Other Models: Service, Lead Times

In addition to the cost model, the service model is also used for lost-sale inventory systems.

(van Donselaar et al., 1996) apply base-stock policies to satisfy a target fill rate. In this paper,

a dynamic procedure is developed to set the order-up-to levels.

Moreover, stochastic lead times are considered in lost-sale inventory systems.

Generally, the lead times are assumed to be independent random variables, and the or-

ders are assumed to be received in the same sequence that they are placed. (Nahmias, 1979)

has developed an approximation policy based on dynamic programming equations. (Janakira-

man and Roundy, 2004) have established some sample-path properties. They have proven the

convexity of expected on-hand inventory level at the beginning of each period in function of

the order-up-to level, which justifies the use of common search techniques to find the optimal

order-up-to levels.

In the above-mentioned papers, lead time is assumed to be integral multiple of review

period. However, there still exists some literature studying fractional lead times (i.e., the lead

time is smaller than the length of one review period). Markov chain is usually used to model

such inventory systems, see (Chiang, 2006; Sezen, 2006).

Setup Costs

Setup costs are not considered in the above literature. When delivery is instantaneous, the

(s, S ) policy has been proven to be optimal for lost-sale inventory systems, while a fixed order

cost is charged for each order placed, see (Veinott and Wagner, 1965; Veinott, 1966; Shreve,

1976; Cheng and Sethi, 1999; Xu et al., 2010).

However, for positive lead-time cases, there is no simple optimal order policy. Based on

numerical examples, (Hill and Johansen, 2006) show that neither an (R, Q) nor an (s, S ) policy

is optimal for a lost-sale inventory system which considers both setup costs and positive lead

times.

Nevertheless, the (R, Q) and (s, S ) policies are near-optimal and easy-running in real-

world practice.

(Johansen and Hill, 2000) applies an (R, s, Q) policy in a periodic-review continuous-

demand lost-sale model with a fixed lead time, assuming that at most one order is excess at
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any time. The optimal s and Q are determined by a policy iteration algorithm. Numerical

examples show that the approach is close to optimal in certain practical applications.

(Bijvank and Vis, 2012) establish a service model for a periodic-review lost-sale system,

with no restrictions in lead times or the number of excess orders. The optimal policies such as

base stock and (R, s, S ) are used, and new heuristic procedures are developed to set the reorder

level and base-stock level.

Conclusion

To conclude, there are two major factors that influence the searching procedure of optimal

solutions for periodic-review lost-sale inventory models: lead time and setup cost.

For the cases that no setup cost is considered, much research work has been performed on

deriving properties and bounds on the optimal order quantities. Usually, the lead time is as-

sumed to be integral multiple of review period length. Since it takes quite some computational

effort to find the optimal order quantities, many alternative and efficient replenishment polices

have been developed.

For the cases that zero lead time and fixed order costs are considered, the (R, s, S ) policy

has been proven to be optimal.

However, for the cases considering both positive lead times and setup costs, no explicit

optimal solution has been proposed. This is the main focus in this chapter.

5.3 Problem Description

5.3.1 Assumptions

In order to describe the long-distance procurement planning problem with lost sales (or out-

sourcing) engaged in global sourcing, the similar example as presented in Chapter 2 is used.



Problem Description 97

Example:

Firm A (in France) plans to procure component X from Supplier B (in China) in order

to produce Product Y. The transport from B to A takes about 1.5-2 months. Once a pro-

curement order is placed, a mandatory set-up cost occurs. When there is a stockout of

component X in A’s production process, the production for final-product Y will be inter-

rupted, therefore the customer demand for Y cannot be fully satisfied. In this case, all

the unsatisfied demands are lost (or outsourced) and a penalty cost is charged.

The objective is to draw up an optimal procurement planning, which minimizes the ex-

pected long-run per-period total procurement costs including set-up, inventory holding

and penalty, by specifying two issues: when a procurement order should be placed, and

how many component X should be ordered.

The following assumptions are extracted from the example.

Assumptions:

(a) The planning problem is considered under a periodic-review policy.

(b) The demand quantity in each period is non-negative, independent and unknown. It

might follow certain trend and seasonality which could be forecasted adaptively from

the historical data.

(c) The procurement capacity is unlimited.

(d) Unsatisfied demand is totally lost (or outsourced), and a penalty cost will be charged

for each unfulfilled item.

(e) The inventory cost is assessed at the end of each period, including holding cost or

penalty cost. No disposal of inventory is allowed, and the item is not perishable.

(f) For each order placed, the lead time L is assumed to be fixed. L is a positive integer

that cannot be neglected. Moreover, demand forecasts will evolve during the delivery

of order.

(g) A mandatory setup cost occurs when a procurement order is placed.
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The mission is to make an optimal procurement plan over the entire planning horizon,

with the objective of minimizing the expected long-run per-period total costs including setup,

inventory holding and lost sales (or outsourcing). Two principal issues should be specified in

the solution: (1) in which period should a procurement order be placed, (2) how much should

be ordered.

5.3.2 Notation

In this chapter, the following notation is used.

Decision Variable:

xi: The delivery quantity arriving during period i.

δi: A binary decision variable. δi = 1 if xi > 0, or 0 otherwise.

xi, j: The vector of order quantities arriving in the periods i, i + 1, · · · , j.

xi, j = (xi, xi+1, · · · , x j)T .

Xi, j: The cumulative order quantity arriving in the periods i, i + 1, · · · , j.

Xi, j =
∑ j

t=i xt.

Random Variable:

di: The actual demand quantity of period i. The exact value of di can-

not be known until the end of period i, therefore, we consider di as

a random variable at the decision-making phase.

Di, j: The cumulative actual demand quantity counting from the beginning

of period i to the end of period j (i ≤ j). Di, j =
∑ j

t=i dt.

Io
i : The inventory level at the beginning of period i.

Iνi : The calculated inventory level at the end of period i. Iνi = Io
i + xi−di.

Ii: The inventory holding level at the end of period i. Ii = max{Iνi , 0},

and Ii = Io
i+1.
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Probability Symbol:

Ui(x1,i): The probability that a lost sale occurs at the end of period i ≥ 1,

knowing the supply vector x1,i. For initial state, U0 = 1.

W−i, j(xi, j): The probability that a lost sale occurs at the end of period j, while

no lost sale occurs in any of the periods i, i + 1, · · · , j−1, knowing

that the previous lost sale occurs at the end of period i−1.

W+
i, j(xi, j): The probability that no lost sale occurs in any of the periods i, i +

1, · · · , j, knowing that a lost sale occurs at the end of period i−1.

Qi, j(xi, j,h): The probability density function (PDF) of the calculated inventory

level h at the end of period j, while no lost sale occurs in the periods

i, i+1, · · · , j−1, knowing that a lost sale occurs at the end of period

i−1.

Other Parameter:

hi: The inventory holding cost (per unit held) charged at the end of pe-

riod i.

pi: The per-unit lost-sale (or outsourcing) cost at period i.

Ki: The mandatory setup cost for each order that is placed in period i.

M: A sufficiently large positive number.

In order to distinguish the points that an order is placed and that it arrives, the subscript

"i−L" is used to denote the period in which an order is placed to arrive at period i. Period i is

called an "order period" because an order quantity xi arrives. Note that the decision about xi

is made at period i−L, thus the corresponding setup cost should be Ki−L.
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5.4 Mathematical Formulation

The procurement planning problem with lost sales (or outsourcing) can be formulated as fol-

lows:

Q

min
n∑

i=1

[
Ki−Lδi + E

(
hi · Ii + pi · I−i

)]
(5.2)

s.t. Iνi = Ii−1 + xi−di, ∀i (5.3)

Ii = max{Iνi ,0}, ∀i (5.4)

I−i = max{−Iνi , 0}, ∀i (5.5)

0 ≤ xi ≤ Mδi, ∀i (5.6)

δi ∈ {0,1}, ∀i (5.7)

where L denotes the lead time, E(t) denotes the expected value of random variable t. Iνi is

named calculated inventory level, which equals the algebraic result of (Ii−1 + xi−di). I−i is the

lost-sale quantity.

5.4.1 The Backward Inventory Property (BIP) of Lost-Sale Models

The lost-sale inventory model is much more complex than the backorder model. The recursive

maximum functions in Equation (5.1):

I1 = max{0, Io
1 + x1−d1},

It = max{0, It−1 + xt −dt} (t > 1)

have explained how the inventory system reacts to excess demands. We are not able to describe

the inventory level of each period in such an explicit way as

Ii = Io
1 + Xi−Di

which describes the inventory level for a backorder system.
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Figure 5.2 enumerates the possible states of inventory level at the end of each period.

In the figure, the node 0 denotes initial state, while each node (i, j) denotes the jth possible

inventory state at the end of period i.
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2,1

2,2

2,3

2,4

n,1

n,2

n,3

n, 2n-1

n, 2n
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fulfill	sale

lose	sale

lose	sale fulfill	sale

lose	sale

fulfill	sale

lose	sale

fulfill	sale

fulfill	sale

lose	sale

…

…

…

…

n,4

n-1,2
lose	sale

…

n-1, 2n-1

…

Figure 5.2: Inventory states of a lost-sale system

According to Equations (5.1), for each node (i, j) which denotes one inventory state, the subse-

quent states could have only two possibilities, respectively signifying whether a lost sale occurs

or not.

Let I0 denote the initial inventory level of the planning horizon. The inventory level at

the end of period 1 is I1 = max{0, I0 + x1−d1}, thus I1 has 2(= 21) possible states. Similarly, I2

has 4(= 22) possible states, I3 has 8(= 23) possible states, and so on. As a result, the number of

possible inventory states at the end of period n can be given as 2n. Thus the state space grows

exponentially with the length of planning horizon, which implies huge computational burden

for further solution procedure.

In order to avoid exponentially-growing calculations, we reconsider the problem in a back-

ward direction.

Suppose the latest lost sale occurring before period i has taken place at the end of period

χ(i). It is natural that 0 ≤ χ(i) < i. Since the demand exceeds supply in period χ(i), and the

unsatisfied demand is totally lost, the initial stock of period χ(i) + 1 is zero. By definition of

χ(i), no sale will be lost from the beginning of period χ(i) + 1 until the end of period i−1, thus
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Figure 5.3: The Backward Inventory Property of lost-sale models

the inventory level at the end of period i is given as

Ii = max

0,
i∑

t=χ(i)+1

(xt −dt)

 , (5.8)

where
∑t

k=χ(i)+1(xk −dk) ≥ 0 for any k ∈ [χ(i) + 1, i−1].

Since χ(i) ∈ {0, 1, 2, · · · , i− 1}, the inventory holding level at the end of period i has

i + 1 possible states:
∑i

t=1(xt −dt),
∑i

t=2(xt −dt), · · · , (xi−1 + xi)− (di−1 + di), xi−di, 0. Here 0

signifies that a lost sale occurs at the end of period i.

This property is named "Backward Inventory Property (BIP)", for the possible inventory

states are counted from an inverse time path. BIP has reduced the growth of inventory state

space from exponential (O(2n)) to polynomial (O(n)), thus implies a possible optimal solution

for our problem.
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5.4.2 Mathematical Formulation

According to the Backward Inventory Property (BIP), the inventory level at the end of period j

is

I j = max

0,
j∑

t=χ( j)+1

(xt −dt)

 ,
where χ( j) ∈ {0, 1, · · · , j−1}.

Whether a lost sale will occur at the end of period j depends on the location of χ( j), the

demand quantities in periods χ( j) + 1, · · · , j, and the orders arriving during these periods, that

is,

P

Iνj =

j∑
t=i

(xt −dt)

 = P (i = χ( j) + 1) ,

or equivalently,

P

Iνj =

j∑
t=i

(xt −dt)

 = P

Iνi−1 < 0
⋂

xi−di ≥ 0
⋂
· · ·

⋂ j−1∑
t=i

(xt −dt) ≥ 0

 .
In Chapter 3, an adaptive planning framework has been presented to acquire the approxi-

mate demand distributions. In the following sections of this chapter, we focus on developing

optimal procurement planning method for a sub-horizon of n periods. For concise writing,

the notation used after here signifies the same physical feature (demand, inventory state,etc.) in

the sub-horizon. We suppose that the procurement planning problem in the sub-horizon has

already been standardized in previous processes.

Let fi denote the PDF (probability density function) of di, and fi, j denote the PDF of the

cumulative demand quantity Di, j, Di, j =
∑ j

t=i dt (i ≤ j).

Suppose χ( j) = i− 1, then the expected total inventory cost incurred in period j can be

calculated as follows:

Ci
j(xi, j)

∣∣∣∣
χ( j)=i−1

= h j ·

∫ Xi, j

−∞

(Xi, j−q) fi, j(q)dq + p j ·

∫ +∞

Xi, j

(q−Xi, j) fi, j(q)dq, (5.9)
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where Xi, j is the cumulative order quantities arriving during the periods i, i + 1, · · · , j, Xi, j =∑ j
t=i xt.

Note that Ci
j signifies that the inventory cost of period j is calculated provided that the

initial stock of period i is zero, and no lost sale occurs in the periods i, i + 1, · · · , j, thus the

calculated inventory level at the end of period j can be written as Iνj = Xi, j−Di, j. For concise

writing, the symbol q is used to replace Di, j in Equation (5.9).

Therefore, the expected total cost incurred in period j is

C j(x1, j) = K j−Lδ j +

j∑
i=1

[
P (i = χ( j) + 1) ·Ci

j(xi, j)
]
. (5.10)

The probability factor P (i = χ( j) + 1) is the key component in Equation (5.10). In order

to calculate P (i = χ( j) + 1), a recursive method is developed as follows.

Suppose a lost sale occurs at the end of period i−1.

Let Qi, j(xi, j,h) denote the PDF of the calculated inventory level h at the end of period

j, provided that no lost sale occurs during the periods i, i + 1, · · · , j− 1. Let g denote the

calculated inventory level at the end of period j− 1. Since no lost sale occurs at period j− 1

(g ≥ 0), we have

h = g + x j−d j,

or equivalently,

d j = g + x j−h. (5.11)

By definition, Qi, j−1(xi, j−1,g) denotes the PDF of the calculated inventory level g at the

end of period j−1, provided that no lost sale occurs during the periods i, i+1, · · · , j−2. Then

the PDF of h can be derived as

Qi, j(xi, j,h) =

∫ +∞

0
Qi, j−1(xi, j−1,g) f j(g + x j−h)dg. (5.12)
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Figure 5.4 illustrates the recursive feature of calculated inventory level distributions.
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Figure 5.4: Recursive calculated inventory level distributions

The initial state Qi,i(xi,h) can be derived as follows.

Let Fνi denote the CDF (cumulative distribution function) of the calculated inventory level

Iνi at the end of period i. By definition of Qi,i(xi,h), a lost sale occurs at the end of period i−1,

thus Iνi = xi−di, and

Fνi (h) = P(Iνi ≤ h) = P(xi−di ≤ h) = P(di ≥ xi−h) =

∫ +∞

xi−h
fi(t)dt. (5.13)

Qi,i(xi,h) is defined as the PDF of Iνi , provided that Iνi−1 < 0, we have

Qi,i(xi,h) =
dFνi (h)

dh
= − fi(xi−h) ·

d(xi−h)
dh

= fi(xi−h). (5.14)

Still suppose a lost sale occurs at the end of period i−1.

Let W−i, j(xi, j) denote the probability that the next lost sale occurs at the end of period j,

while no lost sale occurs during the periods i, i + 1, · · · , j− 1, knowing the supply vector xi, j.
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Thus W−i, j(xi, j) is equivalently an integral of Qi, j(xi, j,h) over the interval (−∞, 0), we have

W−i, j(xi, j) =

∫ 0

−∞

Qi, j(xi, j,h)dh, (i ≤ j). (5.15)

Correspondingly, let W+
i, j(xi, j) denote the probability that no lost sales occurs during the

periods i, i + 1, · · · , j. Then we have

W+
i, j(xi, j) =

∫ +∞

0
Qi, j(xi, j,h)dh, (i ≤ j). (5.16)

Note that the sum of W−i, j(xi, j) and W+
i, j(xi, j) equals the probability that no lost sales occurs

during the periods i, i + 1, · · · , j−1, that is,

W+
i, j−1(xi, j−1) = W−i, j(xi, j) + W+

i, j(xi, j), i f i < j; (5.17)

and

W−i,i(xi,i) + W+
i,i(xi,i) = 1. (5.18)

Therefore, the probability that a lost sale occurs at the end of period j is given as:

U j(x1, j) = P(Iνj < 0) =

j∑
i=1

Ui−1(x1,i−1) ·W−i, j(xi, j), (5.19)

and for initial condition, U0 = 1.

Let I ν denote the state vector of the calculated inventory level Iνi at the end of period i

in a lost-sale inventory system. According to the BIP (backorder inverse property, see Section

5.4.1) of lost-sale models, we have

I ν =



∑i
t=1(xt −dt)∑i
t=2(xt −dt)

...

(xi + xi−1)− (di + di−1)

xi−di


.
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Let Pν denote the corresponding probability state vector of Iνi , we have

Pν =



W+
1,i−1(x1,i−1)

U1(x1,1) ·W+
2,i−1(x2,i−1)
...

Ui−2(x1,i−2) ·W+
i−1,i−1(xi−1,i−1)

Ui−1(x1,i−1)


.

Note that Pν(k) (k = 1, 2, · · · , i) denotes the probability of Iνi = I ν(k). Compared to

Equation (5.10), the expected total cost incurred in period j can be rewritten as

C j(x1, j) = K j−Lδ j +

j∑
i=1

{
Ui−1(x1,i−1) ·W+

i, j−1(xi, j−1) ·Ci
j(xi, j)

}
, (5.20)

and for concise writing, let W+
j, j−1(xi, j) = 1.

Therefore, the sub-horizon planning problem can be formulated as:

Sub-Q

min
n∑

j=1

C j(x1, j)

s.t. (5.6), (5.7), (5.9), (5.12), (5.14), (5.15), (5.16), (5.19), (5.20).

5.5 A Forward Procedure

Let Γ j denote the minimum expected cumulative total costs incurred in periods 1, 2, · · · , j. By

the definition, Γ0 = 0.

Consider the two consecutive order periods s and t + 1 (s ≤ t), that is, an order arrives at

the beginning of period s, and no order arrives in the periods s + 1, s + 2, · · · , t. The expected

total costs incurred in periods s, s + 1, · · · , t is:

Cs,t(x1,t) = Ks−L +

t∑
j=s

j∑
i=1

{
Ui−1(x1,i−1) ·W+

i, j−1(xi, j−1) ·Ci
j(xi, j)

}
. (5.21)
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Cs,t(x1,t) is defined for 1 ≤ s ≤ t ≤ n. When t = n, no replenishment subsequent to period s

occurs during the horizon.

The minimum expected cumulative costs incurred in periods 1, 2, · · · , t can be determined

by

Γt = min
1≤s≤t,

x1,··· ,xs≥0
xs+1=···=xt=0

{
Γs−1 (x1,s−1) +Cs,t ( x1,s)

}
(5.22)

Our objective is to specify xi, i = 1, · · · ,n, in order to minimize the expected total costs

over the sub-horizon, in other words, to find Γn and the corresponding order vector x1,n.

We develop a forward heuristic method to find near-optimal solutions, using the relaxed

recursion formula as follows:

Γ0 = 0;

Γt = min
1≤s≤t,

x1,s−1 is given

 Γs−1 + min
xs≥0

xs+1=···=xt=0

Cs,t (xs)

 . (5.23)

In the recursion formula (5.23), xs is the unique decision variable, since x1, x2, · · · , xs−1

have already been derived from the searching procedure of Γs−1, and xs+1 = xs+2 = · · · = xt =

0. As a result, the key problem is to find the optimal x∗s which minimizes Cs,t. Cs,t(xs) is

continuous on the closed interval [0, M], by Extreme Value Theorem, the global minimum

C∗s,t = Cs,t(x∗s) exists.

Proposition 5.1 For any s < i < j ≤ t, W+
i, j = W−i, j = 0.

Proof. Note that x1, x2, · · · , xs−1 are known at this stage, and xs+1 = xs+2 = · · · = xt = 0, thus

xs is the unique variable in W+
i, j(xi, j−1) and W−i, j(xi, j−1). By definition,

W+
i, j(xs) = P

xi−di ≥ 0
⋂

(xi + xi+1)− (di + di+1) ≥ 0
⋂
· · ·

⋂ j∑
t=i

(xt −dt) ≥ 0


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= P

di ≤ xi

⋂
di+1 ≤ xi + xi+1−di

⋂
· · ·

⋂
d j ≤

j∑
t=i

xt −

j−1∑
t=i

dt


=

∫ xi

0
fi(di)ddi

∫ xi+xi+1−di

0
fi+1(di+1)ddi+1 · · ·

∫ ∑ j
t=i xt−

∑ j−1
t=i dt

0
f j(d j)dd j

,

∫ xi

0
fi(τi)dτi

∫ xi+xi+1−τi

0
fi+1(τi+1)dτi+1 · · ·

∫ ∑ j
t=i xt−

∑ j−1
t=i τt

0
f j(τ j)dτ j. (5.24)

For s < i < j ≤ t, we have xi = · · · = x j = 0, thus W+
i, j =

∫ 0

0
fi(τi)dτi

∫
· · · = 0. Similarly,

W−i, j(xs) =

∫ xi

0
fi(τi)dτi

∫ xi+xi+1−τi

0
fi+1(τi+1)dτi+1 · · ·

∫ +∞

∑ j
t=i xt−

∑ j−1
t=i τt

f j(τ j)dτ j, (5.25)

and W−i, j = 0 for s < i < j ≤ t.

As a matter of fact, since the initial stock of period i is zero according to Wi, j
′s definition,

and no order will arrive during the periods i, i+1, · · · , j, the demands in periods i, i+1, · · · , j−

1 are impossible to be fulfilled and will be totally lost. Therefore, neither W+
i, j nor W−i, j makes

practical sense, due to their presupposition that "no lost sale occurs during the periods i, i +

1, · · · , j−1". �

Lemma 5.1 For any s < i ≤ t, W+
i,i = 0, and W−i,i = 1.

Proof. If s < i ≤ t, the initial stock of period i is zero, and no order will arrive in the period i.

Then the demand of period i will be certainly lost, in other words, W+
i,i = 0, and W−i,i = 1. �

From the above results, we have the following lemma:

Lemma 5.2

Cs,t(xs) = Ks−L +

s∑
i=1

[Ui−1 ·W+
i,s−1 ·C

i
s(xs)] +

t∑
j=s+1

{ s∑
i=1

[
Ui−1 ·W+

i, j−1(xs) ·Ci
j(xs)

]
+ U j−1(xs) ·C

j
j

}
.

(5.26)

Lemma 5.3 For s < j ≤ t, C j
j = p j ·µ j.
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Proof. Similar to the proof of Lemma 5.1, if s < j ≤ t, the demand of period j will be certainly

lost. Consequently, the expected total cost incurred in period j is the totally lost-sale penalty

cost. Since µ j denotes the average demand of period j, we have C j
j = p j ·µ j. �

Proposition 5.2 For any i ≤ s ≤ j ≤ t, W+
i, j(xs) is monotone nondecreasing.

Proof. Equation (5.24) implies that W+
i, j(xs) is continuous and derivable over the whole real

domain.

For i ≤ s < j ≤ t,

dW+
i, j(xs)

dxs
=

∫ xi

0
fi(τi)dτi

∫
· · ·

∫ ∑s
k=i xk−

∑ j−2
k=i τk

0
f j−1(τ j−1) · f j

 s∑
k=i

xk −

j−1∑
k=i

τk

dτ j−1.

For i ≤ s = j ≤ t,

dW+
i,s(xs)

dxs
=

∫ xi

0
fi(ti)dti

∫
· · ·

∫ ∑s−1
k=i xk−

∑s−2
k=i tk

0
fs−1(ts−1) · fs

 s∑
k=i

xk −

s−1∑
k=i

τk

dτs−1.

Note that the PDF fi is nonnegative over the whole real domain, thus for any i ≤ s ≤ j ≤ t, we

have
dW+

i, j(xs)

dxs
≥ 0, that is, W+

i, j(xs) is monotone nondecreasing.

As a matter of fact, increasing xs will certainly raise the possibility that demands in periods

s, s+1, · · · , j are satisfied rather than lost, knowing that period s is the last period that an order

arrives before period t + 1. �

Proposition 5.3 For any s ≤ j ≤ t, U j(xs) is monotone nonincreasing.

Proof. According to Equation (5.19), we have

U j(xs) =

s∑
i=1

Ui−1 ·W−i, j(xs) + U j−1(xs)

=

s∑
i=1

Ui−1 ·W−i, j(xs) +

s∑
i=1

Ui−1 ·W−i, j−1(xs) + U j−2(xs)

= · · ·
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=

s∑
i=1

Ui−1 ·
[
W−i, j(xs) + W−i, j−1(xs) + · · ·+ W−i,s(xs)

]
+ Us−1.

Besides, Equations (5.17) and (5.18) imply that:

W−i, j(xs) + W−i, j−1(xs) + · · ·+ W−i,s(xs)

=
[
XXXXXW+

i, j−1(xs)−W+
i, j(xs)

]
+

[
XXXXXW+

i, j−2(xs)−
XXXXXW+

i, j−1(xs)
]
+ · · ·+

[
XXXXW+

i,s(xs)−
XXXXXW+

i,s+1(xs)
]
+

[
W+

i,s−1−
XXXXW+

i,s(xs)
]

= W+
i,s−1−W+

i, j(xs).

Therefore, the expression of U j(xs) can be simplified as:

U j(xs) =

s∑
i=1

Ui−1 ·
[
W+

i,s−1−W+
i, j(xs)

]
+ Us−1. (5.27)

Note that Uk is positive and known for k < s, since x1, · · · , xk have been determined in the

previous processes. Besides, W+
i,s−1 is nonnegative and independent with xs, W+

i, j(xs) is nonde-

creasing for any i ≤ s ≤ j ≤ t. Then

dU j(xs)
dxs

= −

s∑
i=1

Ui−1 ·
dW+

i, j(xs)

dxs
≤ 0.

Thus U j(xs) is monotone nonincreasing, if s ≤ j ≤ t. �

5.5.1 The Normal Distribution Case

When demands follow normal distributions, the following proposition is developed.

Proposition 5.4 There exists some xβs that for any xs ≥ xβs , Cs,t(xs) ≥Cs,t(xβs).

Proof. According to Lemma 5.2 and Equation (5.27), Cs,t(xs) can be rewritten as

Cs,t(xs)

= Ks−L +

s∑
i=1

[Ui−1 ·W+
i,s−1 ·C

i
s(xs)] +

t∑
j=s+1

 s∑
i=1

[
Ui−1 ·W+

i, j−1(xs) ·Ci
j(xs)

]
+

 s∑
i=1

Ui−1 ·
[
W+

i,s−1−W+
i, j−1(xs)

]
+ Us−1

 ·C j
j


= Ks−L +

t∑
j=s+1

Us−1 +

s∑
i=1

Ui−1 ·W+
i,s−1

 ·C j
j +

s∑
i=1

[
Ui−1 ·W+

i,s−1 ·C
i
s(xs)

]
+

t∑
j=s+1

s∑
i=1

[
Ui−1 ·W+

i, j−1(xs) ·
(
Ci

j(xs)−C j
j

)]
.
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We define Ai, j,s(xs) ,W+
i, j−1(xs) ·

(
Ci

j(xs)−C j
j

)
, where 1 ≤ i ≤ s < j ≤ t. The derivative of

Ai, j,s(xs) is:

dAi, j,s(xs)
dxs

=
dW+

i, j−1(xs)

dxs
·
(
Ci

j(xs)−C j
j

)
+ W+

i, j−1(xs) ·
dCi

j(xs)

dxs
,

where Φ(x) is the cumulative distribution function (CDF) of standard normal distribution, and

dCi
j(xs)

dxs
= (h j + p j)Φ

(
Xi, j−µi, j

σi, j

)
− p j. (5.28)

The function Φ

(
Xi, j−µi, j

σi, j

)
is monotone increasing with xs (xs is implicitly involved in Xi, j,

Xi, j =
∑s−1

m=i xm + xs). Let xr
s denote the unique root of the equation

dCi
j(xs)

dxs
= 0. Then

dCi
j(xs)

dxs
< 0

for xs < xr
s, and

dCi
j(xs)

dxs
> 0 for xs > xr

s. Therefore, the nonnegative function Ci
j(xs) is convex

and has its minimum at xr
s. Moreover, Ci

j(xs) is monotone increasing on the interval [xr
s, +∞).

Let xu
s denote the greater root of equation Ci

j(xs)−C j
j = 0, if any. It is obvious that Ci

j(xs)−

C j
j is nonnegative and increasing on the interval [xu

s , +∞).

Let xi, j
s = max{xr

s, xu
s} (1≤ i≤ s< j≤ t). Note that W+

i, j−1(xs)≥ 0 and
dW+

i, j−1(xs)
dxs

≥ 0. Then
dAi, j,s(xs)

dxs
≥ 0 on the interval [xi, j

s , +∞), thus Ai, j,s(xs) is nondecreasing on the interval.

Similarly, Ci
s(xs) (1 ≤ i ≤ s) is increasing on the interval [xi,s

s , +∞), where xi,s
s is the root

of equation dCi
s(xs)

dxs
= 0.

Let xβs = max
1≤i≤s
s< j≤t

{xi, j
s }. Since the probability factors U ≥ 0,W+ ≥ 0, we havedCs,t(xs)

dxs
≥ 0.

Thus Cs,t(xs) is nondecreasing on the interval [xβs , +∞). �
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Proposition 5.4 implies that the minimum Cs,t(xs) locates on the interval [0, xβs]. In order
to find the minimum Cs,t(xs), we can use the necessary condition dCs,t(xs)

dxs
= 0, where

dCs,t(xs)
dxs

=

s∑
i=1

[
Ui−1 ·W+

i,s−1 ·
dCi

s(xs)
dxs

]
+

t∑
j=s+1

s∑
i=1

Ui−1 ·

dW+
i, j−1(xs)

dxs
·
(
Ci

j(xs)−C j
j

)
+ W+

i, j−1(xs) ·
dCi

j(xs)

dxs

 .
(5.29)

Since dCs,t(xs)
dxs

is continuous on the interval [0, xβs], the equation dCs,t(xs)
dxs

= 0 has a finite number

of roots. By comparing the corresponding local minimum values of Cs,t(xs), we can obtain the

optimal x∗s and the global minimum C∗s,t(x∗s).

In real application, many numerical computing softwares (such as Mathematica and Mat-

lab) can help to find the optimal x∗s rapidly.

5.5.2 The Programming Structure

The heuristic solution procedure can be programmed as follows:

Stage 1:

Γ0 = 0.

For t = 1,2, · · · ,N

For s = 1,2, · · · , t

Compute C∗s,t(x∗s) := min
xs≥0

xs+1=···=xt=0

Cs,t(xs).

Γs,t := Γs−1 +C∗s,t(x∗s).

Γt := min
1≤s≤t

{
Γs,t

}
.

Stage 2:

t := N.

While t > 1

s := arg min
1≤κ≤t

{
Γκ,t

}
.

zs := 1.

For κ = s + 1, · · · , t, zκ := 0.

For κ = s + 1, · · · , t, xκ := 0.

t := s−1.
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5.6 Numerical Examples

This section illustrates numerical examples of the proposed solution method.

5.6.1 A 5-Period Planning Example and Results of Proposed Heuristic
Method

Consider a 5-period planning problem as follows. For simplification, the holding cost hi is

taken to be 1 in all periods, while the lost-sale penalty pi is taken to be 20. We suppose that the

demand in each period is normally distributed. Take the demand forecast as the mean demand,

and the forecast accuracy as the standard deviation. Table 5.1 presents a sample set of data.

Table 5.1: 5-period planning example data set

Period Setup Cost Demand

(i) (Ki−L) Mean (µi) Stand.Dev.(σi)

1 85 69 7.7

2 102 29 3.2

3 102 36 4.0

4 101 61 6.8

5 98 61 6.8

The cumulative demand di, j =
∑ j

t=i dt also follows a normal distribution, whose average

and standard deviation are shown in Table 5.2.

Table 5.3 presents the optimal order quantity x∗s that minimizes the expected total costs

Cs,t(xs) incurred in periods s, s+1, · · · , t, knowing that the consecutive procurement orders are

placed in period s and t +1, and x1, x2, · · · , xs−1 have already been determined to minimize the

expected total costs Γs−1 incurred in periods 1, 2, · · · , s−1.

Table 5.4 presents the minimum expected total cost C∗s,t(x∗s) corresponding to the optimal

order quantities as listed in Table 5.3.

The following example is presented to illustrate the detailed calculation process of x∗s and

C∗s,t(x∗s).

Suppose s = 3, t = 4. The order quantities of period 1 and 2 have been determined in
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Table 5.2: Cumulative demand data set

Mean a (µi, j)

HH
HHHHi

j
1 2 3 4 5

1 69 98 134 195 256

2 29 65 126 187

3 36 97 158

4 61 122

5 61

Standard Deviation b (σi, j)

H
HHH

HHi
j

1 2 3 4 5

1 7.7 8.3 9.2 11.5 13.3

2 3.2 5.1 8.5 10.9

3 4.0 7.9 10.4

4 6.8 9.6

5 6.8

aThis is the cumulative sum of mean demand.
bThe standard deviation of a sum follows a square root law.

Table 5.3: Optimal procurement order quantity x∗s

HHH
HHHs

t
1 2 3 4 5

1 82 109 144 205 265

2 31 65 129 189

3 41 102 155

4 71 125

5 69

the previous procedures: x1 = 109, x2 = 0. Note that x4 = 0. Thus x3 is the unique decision

variable to be determined here.

Let Φ(x) denote the cumulative probability function of standard normal distribution, for

the normal distribution with mean µ and standard deviation σ, the cumulative probability F(x) =
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Table 5.4: Cost C∗s,t(x∗s) associated with optimal order cycles

HHH
HHHs

t
1 2 3 4 5

1 101.0 143.5 229.6 434.6 699.5

2 119.2 171.3 314.4 517.5

3 120.3 203.6 247.6

4 123.7 181.4

5 124.9

Φ
( x−µ
σ

)
. According to the Empirical Rule of normal distribution, for x < µ−3σ, F(x) ≈ 0; for

x > µ+ 3σ, F(x) ≈ 1. Thus U1 = 0. Since x2 = 0, by definition, W+
2,2 = 0, W+

2,3 = 0, W−2,3 = 0.

Besides, it is easy to calculate that W+
1,2 = 0.906, U2 = 0.094.

Let φ(x) denote the probability density function of standard normal distribution, φ(x) =

1√
2π

e−
t2
2 . For the normal distribution with mean µ and standard deviation σ, the density f (x) =

1
σφ

( x−µ
σ

)
. According to Equations (5.24) and (5.25), we have

W+
1,3(x3) =

∫ x1

0
f1(τ1)dτ1

∫ x1+x2−τ1

0
f2(τ2)dτ2

∫ x1+x2+x3−τ1−τ2

0
f3(τ3)dτ3,

W−1,3(x3) =

∫ x1

0
f1(τ1)dτ1

∫ x1+x2−τ1

0
f2(τ2)dτ2

∫ +∞

x1+x2+x3−τ1−τ2

f3(τ3)dτ3,

W+
3,3(x3) = Φ

(
x3−µ3

σ3

)
,

W−3,3(x3) = 1−Φ

(
x3−µ3

σ3

)
,

where fi(x) = 1
σi
φ
( x−µi
σi

)
.

According to Equation (5.19), U3(x3) = W−1,3(x3) + U2 ·W−3,3(x3). According to Lemma

5.2, we have

C3,4(x3) = K3−L + W+
1,2 ·C

1
3(x3) + U2 ·C3

3(x3) + W+
1,3(x3) ·C1

4(x3) + U2 ·W+
3,3(x3) ·C3

4(x3) + U3(x3) ·C4
4.

Figure 5.5 shows the evolution of function C3,4(x3). It is obvious that the minimum cost

occurs at x∗3 = 102, and C∗3,4(x∗3) = 203.6.
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Table 5.5 shows the details of shortest path optimization through this network. The

optimal order sequence is determined in a backward direction. It is easy to find that Γ5 =

min
1≤s≤5

{Γs,5} = 391.1, where the predecessor order period is 3. Then we find Γ2 = min
1≤s≤2

{Γs,2} =

143.5, where the predecessor order period is 1. Thus the optimal order policy is to procure 109

units at period 1-L, and 155 units at period 3-L. Therefore, the minimum expected total cost

over the whole planning horizon is 391.1.

C
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Figure 5.5: Cost C3,4(x3)

Table 5.5: Network optimization, minimum expected costs Γst

XXXXXXXXXXXXs
t

1 2 3 4 5

1 101.0 143.5 229.6 434.6 699.5

2 220.3 272.4 415.5 618.6

3 263.8 347.1 391.1

4 353.3 411.0

5 472.0

Predecessor period s 1 1 1 3 3

Minimum cost up to t 101.0 143.5 229.6 347.1 391.1
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5.6.2 A 200-Period Planning Example and Results of Proposed Adaptive
Planning Approach

For procurement planning problems engaged in global sourcing, the proposed heuristic method

will be deployed with the adaptive planning framework presented in Chapter 3.

In Section 4.6.3, we have illustrated how to implement the proposed adaptive planning pro-

cedure for a long-distance procurement planning problem engaged in global sourcing, provided

that all unfulfilled demand is assumed to be backordered.

In this section, we study the same problem with lost-sale assumption. For data setting,

we suppose that a penalty of 20 will be charged for each lost sale (or outsourced item) instead

of the backorder cost used in Section 4.6.3.

The overall adaptive planning framework is the same as presented in Section 4.6.3. The

only difference is that, in this section, we use the forward planning approach presented in Sec-

tion 5.5 for sub-horizon interim optimal planning.

By implementing a numerical test of 500 actual 200-period demand scenarios which are

generated with the same parameter setting as in Section 4.6.3, we obtain:

R500
1 = C/C∗−1 = 4.11% , and R500

2 = C/C∗−1 = 4.11%.

Here C denotes the total cost incurred by finally executed procurement plan determined with

proposed adaptive planning procedure, and C∗ denotes the total cost incurred by ex-post-facto

optimal procurement plan for the same demand scenario. Rκ1 and Rκ2 especially represent the

ratio of the mean values, and the mean value of the ratios, which are both statistic results of 500

randomly generated demand scenarios.

5.7 Conclusion

In this chapter, the procurement planning problem in global sourcing is considered. For unful-

filled demand, the lost-sale (or outsourcing) assumption is used. In this chapter, we developed

a forward heuristic method based on a relaxed recursion formula, which can provide near-

optimal solutions for sub-horizon planning problems. The proposed approach can serve as a

benchmark for other planning heuristics. When deployed with the adaptive planning frame-
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work in Chapter 3, the proposed solution procedure can help in making adequate procurement

plans for global sourcing activities, whose effectiveness has been validated by numerical tests.
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6.1 Conclusion

Due to economic globalization, global sourcing has become one of the most important cost-

control measures in virtually every industry. Businesses have learnt that they are now all part

of some extended enterprizes with trading partners from all around the world. Companies of all

scales may find that some part along their supply chain contains suppliers in distant locations,

where the costs of primary products or services are considerably low. In such an environment,

global sourcing has become a major issue that is worthy of attention.

Global sourcing is often associated with a centralized procurement planning system that

seeks a balance among costs of setup, inventory holding and stockout penalty. How to make

adequate procurement plans for global sourcing activities has attracted our attention for its ex-

tensive applications in real life.

Maritime transport is the most used transportation mode in global sourcing. The long de-

livery lead time due to geographically long distance between the buyer and the supplier has be-

come our main concern. Long lead times lead to great difficulties in demand forecasting, thus

companies might probably face unavoidable shortages and subsequent negative effects (such as

the drop in customer loyalty and the damage on a firm’s reputation).

In Chapter 2, a general literature review of research on procurement planning and global

sourcing is presented. The majority of published papers in this field focus on qualitative anal-

ysis and strategic planning. For operational analysis that makes concrete procurement plans,

little research work has been published.

In order to fill the above-mentioned gap of literature, we propose an adaptive procure-

ment framework in Chapter 3. In this framework, demand forecasting and optimal planning

techniques are deployed with a rolling horizon procedure. By employing the framework, the

procurement planning problem in global sourcing can be split into optimal procurement plan-

ning problems in sub-horizons. For each sub-horizon, a systematical processing procedure is

presented to transform the sub-horizon planning problem into an equivalent standard lot-sizing

problem with stochastic demands. Besides, an evaluation method is proposed to test the pro-

posed framework through numerical experiments.

Shortages are inevitable for practical procurement planning in global sourcing. In this

dissertation, we consider a penalty cost for each stockout item. Chapter 4 and Chapter 5

have discussed respectively the backorder and lost-sale assumptions for shortages. For each
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case, optimal or near-optimal planning methods minimize expected total costs (including setup,

inventory holding and shortage penalty) are developed. When implemented with the frame-

work presented in Chapter 3, we achieve in determining adequate procurement plans for global

sourcing activities in a cost efficient manner. Numerical results show that the overall solution

procedure is effective and efficient.

6.2 Future Research

Procurement planning in global sourcing is receiving increasing attention due to its extensive

application in real life. This dissertation contributes a general adaptive planning framework

and detailed sub-horizon optimal or near-optimal planning methods for backorder and lost-sale

cases, which can help in determining adequate procurement plans for global sourcing activities

in a cost efficient manner. However, there is still enough room for conducting further research.

In what follows, we discuss some potential research questions that are interesting from both

theoretical and practical perspectives.

In Chapter 4, we present an optimal sub-horizon procurement planning method that can

minimize expected total costs for the backorder case. For efficiency improvement, we also de-

velop a near-optimal heuristic method that can reduce computational time effectively. In Chap-

ter 5, we have developed an effective near-optimal sub-horizon procurement planning method

for the lost-sale case. However, due to problem complexity of lost sales, we haven’t found an

efficient alternative for computational time reduction. It is worthwhile to continue the devel-

opment of efficient heuristics that can find near-optimal solutions rapidly. As a matter of fact,

the planning methods presented in this dissertation can serve as benchmarks to evaluate other

methods.

In addition, we evaluate the proposed approaches by numerical tests. Future research

can be conducted in analytical analysis on performances of proposed approaches, such as the

boundedness of the proposed adaptive framework, the worst-case performance, and so on.

Moreover, this thesis focuses on large demand uncertainties due to long distance, while

lead time is considered to be fixed and known. In future research, it will be interesting to

consider random lead time, which is more close to real life.

Besides, other shortage assumptions can be considered, such as a joint model with partial

backorders and partial lost sales (or outsourcing).
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Şenyigit, E., Dügenci, M., Aydin, M. E., and Zeydan, M. (2013). Heuristic-based neural net-

works for stochastic dynamic lot sizing problem. Applied Soft Computing, 13(3):1332–1339.

Sezen, B. (2006). Changes in performance under various lengths of review periods in a periodic

review inventory control system with lost sales: a simulation study. International Journal

of Physical Distribution & Logistics Management, 36(5):360–373.



BIBLIOGRAPHY 135

Shreve, S. (1976). Abbreviated proof [in the lost sales case]. Dynamic Programming and

Stochastic Control, pages 105–106.

Silver, E. A., Pyke, D. F., and Peterson, R. (1998). Inventory management and production

planning and scheduling, volume 3. Wiley New York.

Song, J.-S. (1994). The effect of leadtime uncertainty in a simple stochastic inventory model.

Management Science, 40(5):603–613.

Sox, C. R. (1997). Dynamic lot sizing with random demand and non-stationary costs. Opera-

tions Research Letters, 20(4):155–164.

Spekman, R. E. (1981). A strategic approach to procurement planning. Journal of Purchasing

and Materials Management, 17(4):3–9.

Spekman, R. E. (1985). Competitive procurement strategies: building strength and reducing

vulnerability. Long Range Planning, 18(1):94–99.

Stadtler, H. (2000). Improved rolling schedules for the dynamic single-level lot-sizing problem.

Management Science, 46(2):318–326.

Stadtler, H. and Kilger, C. (2008). Supply chain management and advanced planning: con-

cepts, models, software, and case studies. springer.

Steinle, C. and Schiele, H. (2008). Limits to global sourcing?: Strategic consequences of

dependency on international suppliers: Cluster theory, resource-based view and case studies.

Journal of Purchasing and Supply Management, 14(1):3–14.

Stevenson, W. J. and Hojati, M. (2007). Operations management, volume 8. McGraw-Hill/Irwin

Boston.

Sun, G., Liu, Y., and Lan, Y. (2011). Fuzzy two-stage material procurement planning problem.

Journal of Intelligent Manufacturing, 22(2):319–331.

Sun, G.-J., Liu, Y.-K., and Lan, Y.-F. (2010). Optimizing material procurement planning prob-

lem by two-stage fuzzy programming. Computers & Industrial Engineering, 58(1):97–107.

Swaminathan, J. M. (2002). Tool procurement planning for wafer fabrication facilities: a

scenario-based approach. IIE Transactions, 34(2):145–155.



136 BIBLIOGRAPHY

Tarim, S. A., Dogru, M. K., Özen, U., and Rossi, R. (2011). An efficient computational method

for a stochastic dynamic lot-sizing problem under service-level constraints. European Jour-

nal of Operational Research, 215(3):563–571.

Tarim, S. A. and Kingsman, B. G. (2004). The stochastic dynamic production/inventory lot-

sizing problem with service-level constraints. International Journal of Production Eco-

nomics, 88(1):105–119.

Tempelmeier, H. (2011). A column generation heuristic for dynamic capacitated lot sizing with

random demand under a fill rate constraint. Omega, 39(6):627–633.

van den Heuvel, W. and Wagelmans, A. P. M. (2005). A comparison of methods for lot-sizing

in a rolling horizon environment. Operations Research Letters, 33(5):486–496.

van Donselaar, K., de Kok, T., and Rutten, W. (1996). Two replenishment strategies for the

lost sales inventory model: A comparison. International Journal of Production Economics,

46¨C47(0):285–295.

Vargas, V. (2009). An optimal solution for the stochastic version of the wagner¨cwhitin dynamic

lot-size model. European Journal of Operational Research, 198(2):447–451.

Veinott, A. F. and Wagner, H. M. (1965). Computing optimal (s, s) inventory policies. Man-

agement Science, 11(5):525–552.

Veinott, Jr, A. F. (1966). On the opimality of (s,s) inventory policies: New conditions and a

new proof. SIAM Journal on Applied Mathematics, 14(5):1067–1083.

Verhoef, P. and Sloot, L. (2006). Out-of-Stock: Reactions, Antecedents, Management Solu-

tions, and a Future Perspective, chapter 16, pages 239–253. Springer Berlin Heidelberg.

Wagner, H. M. and Whitin, T. M. (1958). Dynamic version of the economic lot size model.

Management Science, 5(1):89–96.

Wemmerlöv, U. and Whybark, D. C. (1984). Lot-sizing under uncertainty in a rolling schedule

environment. The International Journal Of Production Research, 22(3):467–484.

Wilson, R. (1934). A scientific routine for stock control. Harvard Business Review, 13(1):116–

129.



BIBLIOGRAPHY 137

Wong, J.-T., Su, C.-T., and Wang, C.-H. (2012). Stochastic dynamic lot-sizing problem us-

ing bi-level programming base on artificial intelligence techniques. Applied Mathematical

Modelling, 36(5):2003–2016.

Xu, Y., Bisi, A., and Dada, M. (2010). New structural properties of (s, s) policies for inventory

models with lost sales. Operations Research Letters, 38(5):441–449.

Yaspan, A. (1961). An inclusive solution to the inventory problem. Operations Research,

9(3):371–382.

Yun, C., Kim, Y., Park, J., and Park, S. (2009a). Integrated Procurement and Operational

Planning of a Biorefinery Considering Contracts and Futures, volume Volume 27, pages

1821–1826. Elsevier.

Yun, C., Kim, Y., Park, J., and Park, S. (2009b). Integrated Procurement and Operational

Planning of a Biorefinery Considering Contracts and Futures, volume Volume 27, pages

1821–1826. Elsevier.

Zangwill, W. I. (1966). A deterministic multiproduct, multifacility production and inventory

model. Operations Research, 14(3):486–507.

Zangwill, W. I. (1969). A backlogging model and a multi-echelon model of a dynamic economic

lot size production system-a network approach. Management Science, 15(9):506–527.

Zipkin, P. (2008). On the structure of lost-sales inventory models. Operations Research,

56(4):937–944.

Zipkin, P. H. (2000). Foundations of inventory management.



 

 

Résumé : 

Cette thèse porte sur l'optimisation de l'approvisionnement dans les zones géographiquement lointaines. 
Au moment de planifier des approvisionnements de matières premières ou de composants dans des pays 
lointains, la longue distance géographique entre l'acheteur et le fournisseur devient un enjeu essentiel à 
prendre en compte. Puisque le transport se fait souvent par la voie maritime, le délai d'approvisionnement 
est si long que les besoins peuvent évoluer pendant la longue période de livraison, ce qui peut engendrer 
un risque de rupture élevé. Cette thèse présente des approches adaptatives afin d'élaborer des plans 
d'approvisionnements lointains d'une manière rentable. 

Tout d'abord, nous proposons un cadre d'adaptation de la planification des approvisionnements 
lointains. Il déploie des techniques de prévision de la demande et des méthodes d'optimisation 
d'approvisionnements à horizon glissant. En utilisant ce cadre, nous transformons le problème de la 
planification sur l'horizon globale en plusieurs problèmes standards de lotissement avec demandes 
stochastiques sur des sous-horizons. Ce cadre permet aussi d'évaluer la performance sur une longue période 
des méthodes utilisées. 

Nous considérons ensuite la planification optimale d'approvisionnement sur les sous-horizons. Deux 
hypothèses de ruptures de stocks sont considérées: livraison tardive et vente perdue (ou sous-traitance). 
Nous développons des approches optimales ou quasi-optimales pour faire des plans d'approvisionnement 
tout en minimisant les coûts totaux prévus de commande, de stockage et de rupture sur les sous-horizons. 
Les méthodes proposées peuvent servir de repères pour évaluer d'autres méthodes. Pour chaque hypothèse, 
nous menons des expériences numériques pour évaluer les algorithmes développés et les approches 
adaptatives de planification globales. Les résultats expérimentaux montrent bien leur efficacité.  

Mots clés : approvisionnement lointain, planification optimale, incertitude, demande stochastique, horizon 
glissant, lotissement, longue période de livraison, minimisation des coûts 

Abstract: 

This research discusses procurement planning problems engaged in global sourcing. The main 
difficulty is caused by the geographically long distance between buyer and supplier, which results in long 
lead times when maritime transport is used. Customer demands of finished-products usually evolve during 
the shipment, thus extra costs will be produced due to unpredictable overstocks or stockouts. This thesis 
presents adaptive planning approaches to make adequate long-distance procurement plans in a cost-
efficient manner. 

Firstly, an adaptive procurement planning framework is presented. The framework deploys demand 
forecasting and optimal planning in a rolling horizon scheme. In each sub-horizon, demands are assumed 
to follow some known distribution patterns, while the distribution parameters will be estimated based on 
up-to-date demand forecasts and forecast accuracy. Then a portable processing module is presented to 
transform the sub-horizon planning problem into an equivalent standard lot-sizing problem with stochastic 
demands. 

Secondly, optimal or near-optimal procurement planning methods are developed to minimize expected 
total costs including setup, inventory holding and stockout penalty in sub-horizons. Two extreme stockout 
assumptions are considered: backorder and lost sale (or outsourcing). The proposed methods can serve as 
benchmarks to evaluate other methods. Numerical tests have validated the high efficiency and 
effectiveness of both sub-horizon planning methods and the overall adaptive planning approaches.  

Keywords: global sourcing, procurement planning, uncertainty, stochastic demand, rolling horizon, lot 
sizing, long distance, cost optimization 
 




