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Résumé

Les grues à tour sont des engins de levage utilisés de manière cyclique sur les chantiers

de construction. De ce fait, la prise en compte du phénomène de fatigue dans le dimen-

sionnement des charpentes de grue est primordiale. La fatigue est usuellement considérée

dans les normes au moyen de règles déterministes ayant pour but de garantir l’intégrité de

la structure sous diverses conditions d’utilisation. Bien que cette approche fournisse des

résultats satisfaisants dans la plupart des cas, celle-ci ne permet pas d’évaluer le niveau de

fiabilité des éléments de charpente en fonction de leur durée d’exploitation. De ce point

de vue, les approches probabilistes permettent de pallier cette difficulté en proposant des

outils pertinents servant à caractériser et à propager les incertitudes liées à la fatigue au

travers d’un modèle mécanique.

Une approche probabiliste originale permettant la prise en compte des incertitudes liées

à la fatigue dans le dimensionnement des charpentes de grues à tour est proposée dans ce

manuscrit. La méthode proposée est basée sur la définition de deux densités de probabilité

représentant respectivement les variabilités liées à la résistance des joints soudés d’une part,

et les nombreuses dispersions associées à la sollicitation des éléments de charpente d’autre

part. La définition de la densité de probabilité de résistance repose sur la capitalisation

d’un grand nombre de résultats d’essais d’endurance sur structures soudées, tandis que la

définition de la distribution de sollicitation est basée sur une modélisation à deux niveaux

tenant compte de divers jeux de données collectés sur chantier. Les résultats de l’analyse de

fiabilité présentée dans ce manuscript démontrent la pertinence des approches probabilistes

dans le cadre du dimensionnement en fatigue des éléments de charpente de grue à tour.

Mots-clés : grues à tour, fatigue des joints soudés, analyse de fiabilité, modélisation du

chargement en fatigue, analyse de sensibilités stochastiques

vii



viii



Abstract

Tower cranes are lifting appliances which are cyclically used on construction sites. Thus,

the consideration of the fatigue phenomenon in the design of crane structural members

is essential. This phenomenon is usually taken into account in standards by means of

deterministic rules enabling to ensure structural safety under various operating conditions.

Although it provides satisfactory results in most cases, the deterministic approach do not

enable to evaluate the reliability of crane structural members according to their operating

time. From this point of view, probabilistic approaches allow to overcome this difficulty

by proposing relevant tools enabling to characterize and propagate uncertainties related

to fatigue through a mechanical model.

An original probabilistic approach enabling the consideration of the uncertainties re-

lated to crane members fatigue design is proposed in this manuscript. It relies on the

definition of two probability density functions related respectively to the strength variabi-

lity of crane welded joints on one hand, and the dispersion of operating conditions (stress)

on this other hand. The definition of the strength distribution stems from the capitali-

zation of various welded joint fatigue test results, while the characterization of the stress

distribution relies on the analysis of various data sets coming from crane monitoring per-

formed on different construction sites. The results coming from the reliability analysis

presented in this manuscript show the relevance of probabilistic approaches in the frame

of tower crane structural members fatigue design.

Keywords : tower cranes, fatigue of welded joints, reliability analysis, fatigue load mo-

deling, stochastic sensitivity analysis
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Résumé étendu

Contexte

Les grues à tour sont des engins de levage capables de lever une grande variété d’outils

et de matériaux de construction sur les chantiers. La charpente d’une grue à tour est

principalement constituée d’éléments structuraux en acier (plaques ou poutres) assemblés

par soudage. Le travail effectué sur chantier étant intrinsèquement cyclique, les grues à

tour sont soumises au phénomène de fatigue au cours de leur utilisation. La prise en compte

de ce phénomène est donc primordiale lors du dimensionnement des structures. La fatigue

est affectée par un grand nombre d’incertitudes provenant de la dispersion intrinsèque du

comportement en fatigue des matériaux d’une part, et du caractère aléatoire du chargement

d’autre part. Le dimensionnement en fatigue de structures industrielles telles que les grues

s’effectue usuellement au moyen de méthodes déterministes basées sur les normes ou sur

le retour d’expérience.

Les normes de dimensionnement en fatigue spécifient généralement des règles déter-

ministes ayant pour but de garantir l’intégrité de la structure sous diverses conditions

d’utilisation. Les incertitudes liées à la fatigue sont alors prises en compte implicitement

au travers de ces règles. Bien que l’approche normative fournisse des résultats satisfai-

sants, elle n’apporte pas de renseignement qualitatif quand au niveau de fiabilité qui en

résulte et par voie de conséquence, sur le niveau optimal de dimensionnement. Cela consti-

tue la principale limite des approches déterministes dans un contexte mondial de plus en

plus concurrentiel où l’optimisation des coûts est devenu un enjeu majeur. Ainsi, le di-

mensionnement de structures fonctionnelles et robustes nécessite l’acquisition de plus de

connaissances permettant de gérer les incertitudes liées au phénomène de fatigue. De ce

point de vue, les approches probabilistes représentent des outils pertinents permettant de

caractériser et de propager au travers d’un modéle mécanique les incertitudes liées à la

fatigue afin d’approcher le dimensionnement optimal vis-à-vis d’un objectif de fiabilité.

Les approches probabilistes restent à l’heure actuelle rarement utilisées dans l’industrie,

principalement à cause du clivage culturel qu’elles peuvent engendrer. Néanmoins, deux

projets français ayant pour objectif de promouvoir ce type d’approches dans un contexte

industriel ont vu le jour respectivement en 2005 et 2008. Le premier projet nommé DEFFI
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(DEmarche Fiabiliste de conception en Fatigue pour l’Industrie) avait pour but de dé-

velopper l’approche “contrainte-résistance” pour le dimensionnement en fatigue de struc-

tures provenant de divers secteurs industriels (aéronautique, aérospatial, ferroviaire, etc)

[1–3]. Le projet APPRoFi (APproche mécano-PRobabiliste pour la conception robuste en

Fatigue) [4] a été lancé quelques années plus tard pour démontrer les intérêts et bénéfices

engendrés par l’utilisation d’approches probabilistes pour le dimensionnement en fatigue.

De nombreux partenaires académiques et industriels ont collaboré à la réalisation de ce

projet. Ces deux projets démontrent l’intérêt grandissant que les entreprises manifestent

à l’égard des approches probabilistes. C’est pourquoi le présent travail de recherche vise à

développer une démarche fiabiliste globale permettant d’évaluer le niveau de fiabilité des

éléments de charpente de grues à tour en fonction de leur durée d’exploitation.

Objectifs

Les axes de travail suivants ont été investigués afin d’atteindre l’objectif principal de cette

étude :

• Analyse des règles déterministes de dimensionnement en fatigue des grues

à tour. Une étude préliminaire de la norme EN 13001 permet de souligner les

concepts de base et les hypothèses principales utilisés dans le processus de validation

en fatigue des éléments de charpente de grue à tour.

• Modélisation stochastique de la résistance en fatigue des joints soudés.

Ce point consiste à développer une méthode de capitalisation de résultats d’essais

d’endurance afin de modéliser les incertitudes liées à la résistance en fatigue des

éléments soudés de charpente de grue à tour.

• Modélisation stochastique de l’utilisation des grues. L’utilisation réelle des

grues sur chantier étant à ce jour mal connue, ce point représente un enjeu majeur

de ce travail puisqu’il consiste à identifier, caractériser et modéliser les incertitudes

et variations liées au chargement des charpentes de grue à tour.

• Analyse de sensibilité des paramètres du modèle d’utilisation de grue.

Etant donné que la dispersion de l’utilisation des grues influence fortement les résul-

tats du calcul de fiabilité en fonction du temps, une analyse de sensibilité est menée

afin d’identifier les paramètres influents intervenant dans le modèle stochastique

d’utilisation des éléments de charpente.

• Evaluation de la fiabilité des éléments de charpente de grue. Une méthode

probabiliste globale est mise en place à partir des modèles de résistance et d’uti-

lisation développés dans les points précédents. Celle-ci a pour objectif d’évaluer le
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niveau de fiabilité des divers éléments structuraux de grue en fonction de leur durée

d’exploitation.

Les grues à tour et leur dimensionnement en fatigue

Cette partie introduit le vocabulaire associé aux grues à tour, souligne les règles détermi-

nistes utilisées pour leur dimensionnement en fatigue et présente les opportunités offertes

par l’utilisation des approches probabilistes pour ce type de problème. Les grues à tour de

chantier sont des engins permettant de transporter des charges. Deux grandes familles de

grues à tour de chantier existent : les grues à montage automatisé et les grues à montage

par éléments, dont la charpente est composée de différents ensembles structuraux. Cette

deuxième famille se subdivise en deux sous-groupes comprenant respectivement les grues

à flèche relevable ainsi que les grues à flèche distributrice. Cette thèse porte exclusivement

sur les grues à montage par éléments à flèche distributrice. Comme le montre la figure 1, la

partie tournante est constituée de la flèche, de la contre-flèche et de lests de contre-flèche,

la mâture est composée de nombreux éléments de mât et la base permet la liaison au sol et

le maintien des lests de stabilité. De plus, les différents mouvements effectués par une grue

à montage par éléments sont respectivement le levage (mouvement vertical du crochet),

la distribution (déplacement du chariot le long de la flèche), l’orientation (rotation de la

partie tournante autour de l’axe d’orient) et la translation quand la grue est montée sur

bogies. L’étude présentée dans cette thèse est restreinte aux trois premiers mouvements,

i.e. le mouvement de translation n’est pas considéré.

La durée de vie en fatigue des éléments de charpente de grue à tour est usuellement

exprimée en nombre de cycles de levage. Un cycle commence lorsque la grue lève une

charge et se termine lorsque la grue est prête à lever une autre charge. Cela suppose qu’il

puisse être décomposé en plusieurs étapes : levage de la charge depuis une position initiale,

déplacement de la charge (distribution et orientation) jusqu’à une nouvelle position, dépose

de la charge, puis mouvements à vide. Le dimensionnement des éléments de charpente de

grue est basé sur cette définition. Leur chargement en fatigue est généralement spécifié

par les normes au travers de spectres de charge ou de contrainte.

Le processus normatif de vérification à la fatigue des éléments de grue s’effectue en

deux étapes. Chaque élément de charpente est d’abord classé dans une “classe de charge-

ment” en fonction de la sévérité des charges auquel celui-ci est supposé être soumis. Les

éléments de charpente de grue à tour appartiennent chacun à l’une des classes S1, S2 ou

S3 de l’EN 13001 [5]. Ensuite, les joints soudés de charpente sont classés en fonction de

leur géométrie dans des classes de détail. Chaque classe stipule une valeur d’étendue de

contrainte caractéristique à 2.106 cycles avec une probabilité de survie égale à 97.7%. Cette

valeur caractéristique est ensuite convertie en une valeur d’étendue de contrainte limite

∆σRd
tenant compte de la sévérité du chargement, i.e. de la classe de chargement auquel
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Figure 1 – Vocabulaire relatif (a) aux principaux ensembles structuraux d’une grue à
montage par éléments et (b) à ses mouvements.

l’élément appartient. Enfin la méthode normative consiste à effectuer un calcul nominal

permettant de trouver l’étendue de contrainte maximale ∆σSd
à comparer avec l’étendue

de contrainte limite ∆σRd
. L’élément de charpente considéré est validé du point de vue de

la fatigue si ∆σSd
est inférieur à ∆σRd

.

Le processus de validation présenté précedemment tient compte d’un chargement dé-

terministe au travers des classes de chargement S1, S2 ou S3 et des classes de détails soudés.

Cependant, de nombreuses incertitudes inhérentes au phénomène de fatigue existent. Le

chargement en fatigue des grues présente notamment un caractère aléatoire, et ce, pour

plusieurs raisons :

• La configuration de la grue est variable d’un chantier à l’autre, puisque la lon-

gueur de flèche ou la hauteur de la matûre sont adaptées en fonction de la topographie

des bâtiments à construire.

• Etant donné que chaque chantier est unique, la topographie des chantiers (po-

sition des bâtiments à construire, zones de chargement/déchargement, zones de sto-

ckage, etc.) est intrinsèquement variable.

• Les matériaux de construction et outils déplacés à l’aide de la grue peuvent

être de nature très différente en fonction des chantiers à réaliser.

• Les durées de chantier et durées de non utilisation entre deux chantiers re-

présentent des paramètres importants qui influent sur la répartition du travail de la

grue dans le temps.
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• Le nombre d’équipes présentes sur le chantier et leur efficience sont inhérentes

aux entreprises de construction et constituent des données variables impactant l’uti-

lisation de la grue.

Toutes les sources d’incertitudes listées précédemment contribuent à montrer que l’utilisa-

tion des grues présente un caractère aléatoire. Celles-ci sont prises en compte implicitement

dans les normes par l’intermédiaire des classes de chargement (S1, S2 ou S3). De même,

les incertitudes liées à la résistance en fatigue des éléments de grue sont considérées au

travers de classes de détails soudés. Bien que l’approche normative fournisse des solutions

satisfaisantes dans la majorité des cas, celle-ci ne permet pas d’optimiser les charpentes de

grue à tour vis-à-vis de la fatigue. De plus, les normes telles que l’EN 13001 ne donnent

aucune information permettant de faire le lien entre le nombre de cycles de chargement

et la durée d’exploitation de la grue. Dès lors, il est difficile, voire impossible, de planifier

de manière pertinente la maintenance des éléments de charpente de grue à tour en fonc-

tion de leur durée d’utilisation. L’obtention de ce type d’information et l’optimisation des

structures nécessitent par conséquent une meilleure connaissance des incertitudes liées à la

fatigue. De ce point de vue, les approches probabilistes représentent des outils pertinents

permettant d’atteindre ce double objectif, étant donné qu’elles visent à caractériser les

incertitudes liées au phénomène de fatigue et à les propager dans tout le processus de

dimensionnement.

Acquisition et traitement de données d’utilisation de grue

Des données d’utilisation de grue sont récoltées et traitées dans le but d’identifier et de

caractériser les nombreuses incertitudes inhérentes au chargement en fatigue des éléments

de charpente de grue à tour. Les données récoltées proviennent de plusieurs sources :

enregistrements effectués sur chantier en conditions réelles, base de données de durées

de chantier fournie par une agence de location de grues, et base de données de plans de

chantier pourvue par une entreprise de construction.

Enregistrements sur chantier en conditions réelles

Des dispositifs expérimentaux d’enregistrement ont été développés lors de cette thèse,

puis placés sur des grues travaillant sur chantier en conditions réelles. Ces dispositifs

permettent la récolte de nombreuses données temporelles d’utilisation de grues telles que

la charge levée, la portée (position du chariot le long de la flèche), l’angle d’orientation

de la flèche, les vitesses des différents moto-variateurs, etc. Les données récoltées sont

traitées numériquement afin d’identifier de manière automatique des cycles de grue et de

les différencier en fonction de la nature du travail effectué sur chantier. L’examen du signal

temporel de charge tracé sur la figure 2 illustre les trois types de cycle caractéristiques qui

ont pu être identifiés sur le chantier. Premièrement, les cycles de coulage sont composés
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Figure 2 – Illustration des trois types de cycle de grue qu’il est possible d’identifier à
partir du signal temporel de charge : (a) coulage, (b) positionnement et (c) transfert.

de deux paliers de charge correspondant respectivement aux situations dites “benne à

béton chargée” et “benne à béton vide”. Deuxièmement, les cycles de positionnement

correspondent aux levage d’éléments lourds (banches, escaliers préfabriqués, etc) devant

être mis en position avec précaution. Cela explique les nombreux paliers de charge sur la

figure 2. Enfin, les cycles dits de transfert sont constitués d’un unique palier de charge,

ce qui correspond au déplacement d’une charge sans précaution particulière d’un endroit

du chantier à l’autre.

Une fois les cycles de grue identifiés en fonction de leur nature, il est possible de pré-

senter les résultats de différentes manières. Il est possible par exemple de tracer les couples

de points d’utilisation {portée,charge} vis-à-vis de la courbe de charge (charge maximale

pouvant être levée en fonction de la portée). Cette représentation permet notamment de

tracer le spectre de charge auquel la grue est soumise. Le deuxième type de représenta-

tion consiste à tracer les coordonnées cartésiennes dans l’espace du chantier des points

de début et fin de cycles en fonction de l’aire de travail de la grue, ce qui permet de se

faire une idée de la topographie du chantier (position des bâtiments, emplacement des

zones de stockage). Enfin, les données peuvent être aussi représentées séparément à l’aide

de divers histogrammes relatifs aux portées de départ et d’arrivée, à l’angle d’orientation

en début et fin de cycle et à la charge maximale levée pendant le cycle. Ce dernier type

de représentation est utilisé dans le chapitre 4 de cette thèse afin de créer un modèle de

sollicitation des éléments de grue tenant compte de la topographie des chantiers.

Données provenant d’une agence de location de grues

Une entreprise spécialisée dans la location d’appareils de manutention et de levage a fourni

lors de ce travail de thèse de nombreuses données inhérentes aux durées de location et de
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non location des grues. Des histogrammes de durées d’utilisation et de non utilisation

des grues sont caractérisés à l’aide de ces données en fonction de la capacité des grues

concernées (très petite, petite et moyenne). Ces histogrammes sont ensuite utilisés afin

que le modèle de sollicitation des éléments de grue développé dans le chapitre 4 tienne

compte de la répartition de l’utilisation de la grue dans le temps, i.e. de sa durée effective

d’exploitation.

Données recueillies à partir de plans de chantier

Une entreprise de construction a fourni dans le cadre de cette thèse plusieurs dizaines de

plans de chantiers. Ces plans constituent une source d’information disponible permettant

de caractériser plusieurs incertitudes inhérentes à l’utilisation des grues. Toud d’abord,

ces plans permettent de connaître la topographie du chantier en termes de position des

bâtiments à construire, de localisation des zones de chargement/déchargement ou des

camions-benne. Ensuite, ils permettent de connaître la configuration de la grue (longueur

de flèche ou hauteur) utilisée en fonction de chaque chantier. Enfin, les volumes prévision-

nels de béton à couler sur le chantier peuvent être estimés à partir des plans et comparés

à posteriori aux volumes de béton réellement coulés une fois le chantier terminé. De la

même manière que les autres types de données décrites précédemment, les données récol-

tées à partir des plans permettent d’enrichir le modèle de sollicitation des éléments de

grue développé dans le chapitre 4.

Evaluation de la fiabilité des éléments de charpente de grue

Le développement d’une méthode “contrainte-résistance” [6] dépendante du temps est

présenté dans le chapitre 4. La méthode proposée nécessite la modélisation stochastique

de deux densités de probabilité tenant compte des incertitudes inhérentes à la résistance

en fatigue des joints soudés d’une part, et à la sollicitation des éléments de charpente de

grue à tour d’autre part. Ces deux distributions, nommées respectivement NR et NS(t)

sur la figure 3, sont exprimées en nombre de cycles à capacité nominale de l’élément de

charpente considéré.

Modélisation stochastique de la résistance

La modélisation stochastique de la résistance des joints soudés de grue est effectuée en

deux temps. La première étape consiste à calibrer plusieurs facteurs (contrainte moyenne,

épaisseur des tôles, indice de flexion) intervenant dans la formule de calcul de durée de

vie en fatigue des assemblages soudés à partir de résultats d’essais de la littérature. La

seconde étape vise à confronter, au travers d’un nuage de points unique, des résultats

expérimentaux avec les durées de vie calculées à partir d’un modèle par éléments finis et

de la formule calibrée précédemment. Le nuage de points ainsi obtenu permet d’évaluer la
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Figure 3 – Méthode de fiabilité dite “contrainte-résistance”.

dispersion globale des durées de vie en fatigue des assemblages soudés couramment utilisés

dans les chapentes de grue à tour. Connaissant cette dernière, la densité de probabilité

liée à la résistance d’un détail soudé particulier est facilement obtenue en effectuant un

unique calcul par éléments finis permettant de prédire sa durée de vie médiane.

Modélisation stochastique de la sollicitation

La modélisation stochastique de la sollicitation des éléments de charpente s’appuie sur

l’ensemble des données présentées dans le chapitre 3. La procédure proposée est basée

sur la définition de diverses densités de probabilité paramétriques tenant compte à la fois

des paramètres dits “intra-chantier” (topographie) et “inter-chantier” (durée de chantier,

configuration de grue, etc). Des cycles de grue sont ensuite générés artificiellement en tirant

successivement des réalisations des paramètres intra-chantier dans leurs distributions res-

pectives (portée de départ et d’arrivée, angle de départ et d’arrivée et charge levée). Cela

suppose que les paramètres de ces distributions soient fixés pour le chantier considéré. La

deuxième phase consiste alors à renouveler l’étape précédente sur de nombreux chantiers

en tirant des réalisations dans les distributions des paramètres inter-chantier (temps de

chantier et d’inter-chantier, longueur de flèche, paramètres des distributions intra-chantier,

etc). Les cycles générés sont ensuite convertis à chaque itération en un effort dans l’élément

de charpente considéré. De ce signal temporel sont extraites des étendues d’effort à l’aide

de la méthode de comptage rainflow [7–9]. Enfin, ces cycles de fatigue sont transformés en

un nombre de cycles équivalents à capacité nominale de l’élément par l’intermédiaire de

la loi d’endommagement de Palmgren-Miner [10, 11]. La méthode décrite précédemment

est réitérée un grand nombre de fois via la méthode de simulation de Monte Carlo [12, 13]

afin d’évaluer la distribution de nombre de cycles de sollicitations en fonction de la durée

d’exploitation de la grue (1 an, 5 ans, 10 ans, etc).

Etude de sensibilités du modèle de sollicitation

Sachant que la dispersion des distributions de la résistance et de la sollicitation a un
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fort impact sur le niveau de fiabilité évalué par la méthode “contrainte-résistance”, et

étant donné que le modèle de sollicitation développé précédemment repose sur un certain

nombre d’hypothèses, une analyse de sensibilité est mise en place. Celle-ci repose sur le

calcul des indices globaux de Sobol’ et a pour objectif d’identifier les paramètres dont la

variance a un impact significatif sur la variance de la distribution de la sollicitation, i.e.

la distribution du nombre de cycles de chargement équivalents à capacité nominale de

l’élément de charpente considéré.

Etude fiabiliste des éléments de charpente de grue à tour

L’étude fiabiliste présentée dans cette thèse est basée sur la méthode “contrainte-résistance”

[6, 14–17] et a pour particularité de dépendre de la durée d’exploitation des grues. Comme

le montre la figure 4, les densités de probabilité de la résistance et de la sollicitation sont

définies séparément. Le modèle de résistance des joints soudés permet, à l’aide d’un calcul

par éléments finis de l’élément de chapente considéré, de caractériser la distribution de la

résistance NR. Dans le même temps, les données provenant du monitoring de grue et des

bases de données de durées et de plans de chantier conduisent à la création d’un modèle de

sollicitation permettant d’obtenir la distribution de sollicitation NS(t). Une fois ces deux

densités de probabilité caractérisées, il est possible d’évaluer la fiabilité R des éléments de

charpente de grue à tour en fonction de leur durée d’exploitation t :

R(t) = 1 − Pf (t) = 1 −
∫ ∞

−∞
fNS

(x, t)FNR
(x)dx (1)

où Pf est la probabilité de défaillance instantanée, fNS
est la fonction de densité de

probabilité liée à la sollicitation et FNR
est la fonction de répartition de la résistance.

Il convient régulièrement d’utiliser dans les études probabilistes une mesure de fiabilité

adimensionnée nommée indice de fiabilité β(t), qui peut être calculé de la façon suivante :

β(t) = −Φ−1 (1 − R(t)) (2)

La procédure présentée en figure 4 permet ainsi d’évaluer le niveau de fiabilité en fatigue

de tous les éléments de charpente de grue en fonction de leur durée d’exploitation.

Applications et résultats

Une application de la méthode présentée précédemment est effectuée à la fin du chapitre 4.

Celle-ci concerne l’élément d’éclissage de membrure supérieure de flèche, cerclé en pointillé

sur la figure 1 (a). Ayant vérifié que ce type d’élément de charpente est exclusivement solli-

cité par les mouvements de distribution et de levage et que son endommagement par fatigue

est gouverné par les cycles de coulage (plus de 70% de l’endommagement total), la modéli-

sation stochastique des paramètres dits “intra-chantier” est réduite aux seules distributions
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Figure 4 – Procédure d’évaluation de l’indice de fiabilité des éléments de charpente de
grues à tour.

de portée et de charge associées uniquement au coulage. C’est pourquoi les distributions

de portée de départ et de charge levée sont respectivement modélisées par des densités de

probabilité normales tandis que la distribution de portée d’arrivée est caractérisée à l’aide

d’une densité triangulaire. Les paramètres “inter-chantier” sont quant à eux modélisés de

la même façon quel que soit l’élément de charpente considéré. La distribution de la sol-

licitation de l’éclissage de membrure supérieure de flèche est ensuite obtenue en utilisant

la méthode itérative décrite précédemment. Dans le même temps, un calcul par éléments

finis permet d’évaluer la résistance médiane, et donc la distribution de la résistance totale,

de cet élément de charpente, étant donné que sa dispersion est connue à l’avance. Une fois

ces densités de probabilité caractérisées, la méthode “contrainte-résistance” développée

durant cette étude permet d’évaluer l’indice de fiabilité de cet élément de grue en fonction

de sa durée d’exploitation. Il s’avère que même après 40 années en service, l’indice de

fiabilité de cet élément de charpente reste élevé (supérieur à 6 après 40 ans). De plus,

l’analyse de sensibilité liée au modèle de sollicitation révèle que les paramètres les plus

influents sur la dispersion de la distribution de sollicitation sont le poids de la benne à

béton, la position des camions-benne, le nombre de mètres cubes de béton coulé par mois

et par équipe, et le nombre de quarts effectués par jour de chantier.

Conclusions et perspectives

Une méthode fiabiliste permettant d’évaluer le niveau de fiabilité d’éléments de charpente

de grue à tour a été développée au cours de ce travail de recherche. Basée sur l’utilisation
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d’une méthode “contrainte-résistance” dépendante du temps, la méthode proposée consiste

à considérer séparément, au travers de deux distributions de probabilité, les incertitudes

liées à la résistance en fatigue des joints soudés de grue et à la variabilité du chargement

dans le temps des éléments de charpente de grue. La capitalisation d’un grand nombre de

résultats d’essais d’endurance au travers d’un nuage de points unique permet de prédire la

distribution de la résistance en fatigue de n’importe quel joint soudé, même pour une géo-

métrie complexe. D’autre part, la modélisation stochastique du chargement des éléments

de charpente tient compte à la fois de la variabilité dite “intra-chantier” (topographie des

chantiers) ainsi que des incertitudes liées au passage d’un chantier à l’autre (paramètres

dits “inter-chantier”). De plus, une analyse de sensibilité globale visant à évaluer l’impact

de la variance de chaque variable aléatoire sur la dispersion de la distribution de sollici-

tation permet de guider a posteriori les inverstigations à réaliser dans le futur concernant

certaines hypothèses de modélisation.

Ce travail de recherche ouvre diverses perspectives. Tout d’abord, l’application de la

méthode fiabiliste proposée dans cette thèse peut être menée sur d’autres éléments de

charpente de grue dont le chargement provient aussi du mouvement d’orientation de la

flèche. Cela suppose de prendre en compte dans le modéle de sollicitation les variations

d’angle d’orientation. Bien que la forme des distributions de charge et de portée soit

sensiblement identique d’un chantier à l’autre, ce n’est pas le cas des distributions d’angle,

ce qui implique d’investiguer la manière de les considérer dans le modèle de sollicitation.

La méthode “contrainte-résistance” proposée dans cette thèse permet de cartographier

le niveau de fiabilité de tous les éléments de charpente de grue à tour, ce qui représente

la première étape du dimensionnement fiabiliste. La seconde étape consiste à définir des

objectifs de fiabilité pour chaque élément de charpente vis-à-vis de divers critères. Ceux-ci

pourraient par exemple considérer la capacité de l’élément à résister à une fissure (redon-

dance), la gravité des conséquences en cas de rupture de l’élément, la capacité à détecter

une fissure (accessibilité en cas d’inspection) ou bien le nombre d’éléments de charpente

identiques en exploitation. Il faut noter que ces objectifs de fiabilité devront être en ac-

cord avec le retour d’expérience provenant de bases de données de retours clients ou de

garanties à long terme.

L’analyse de sensibilité développée dans ce travail de recherche traite de l’évaluation

d’indices de Sobol’ qui permettent de quantifier l’impact de la variance de paramètres

d’entrée sur la dispersion des résultats d’un modèle mathématique ou mécanique. Néan-

moins, ces indices ne permettent pas de juger de l’impact de la valeur moyenne des variables

aléatoires sur la valeur moyenne de la sortie du modèle, or cette information peut s’avérer

utile au même titre que les indices de Sobol’. C’est pourquoi l’évaluation d’autres mesures

de sensibilités telles que les indices de Borgonovo [18] pourrait être mise en place dans le

but de compléter l’analyse de sensibilité réalisée dans cette thèse.
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Introduction

Context

Tower cranes are equipments that enable to hoist a wide variety of building materials

(concrete, steel grids, heavy tools, etc.) on construction sites. They are made of struc-

tural members (steel plates or beams) connected by welding. Due to the cyclic nature of

the work performed on the sites, tower cranes may undergo fatigue failure after a given

operating period. As a result, the consideration of this phenomenon in structural design

is essential. Nonetheless, a substantial number of uncertainties inherent to fatigue may

complicate this task. Various experimental studies showed for instance, that the fatigue

behavior of materials is intrinsically scattered. Moreover, crane users face increasing pres-

sure to shorten drastically the time required to complete a job, which leads to an intensive

crane use. Therefore, the operating conditions (loading levels applied to structures) may

vary significantly depending on customer uses. Industrial structures such as crane struc-

tural members are generally designed for fatigue by means of deterministic procedures

provided by standards and are sometimes completed by additional knowledge acquired

through experience feedback. These methods usually consider deterministic rules that are

supposed to ensure structural safety. Therefore, the uncertainties inherent to fatigue are

implicitly taken into account through these rules. Even though deterministic approaches

provide appropriate results in most cases, they do not give any information concerning

the reliability level of the structure according to the operating period, which represents

their main limit. Thus, the design of optimized structures that remain functional and

safe requires a better understanding and management of the uncertainties influencing the

structural behavior. From this perspective, reliability approaches represent helpful meth-

ods allowing engineers to fulfill this objective. They enable to acquire a better knowledge

of the uncertainties related to fatigue and to propagate them into the mechanical response

of structures.

Probabilistic approaches are still rarely used in industry due to the cultural breakaway

that they represent. Nonetheless, two French projects involving reliability approaches in

an industrial context was launched respectively in 2005 and 2008. The first project named

DEFFI (DEmarche Fiabiliste de conception en Fatigue pour l’Industrie) was started

by CETIM in 2005. This project aimed at developing the probabilistic stress-strength
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interference approach for mechanical fatigue design of industrial structures from differ-

ent fields (aeronautics, aerospace, railway, etc) [1–3]. A few years later, the APPRoFi

project (APproche mécano-PRobabiliste pour la conception robuste en Fatigue) [4] was

launched in order to promote the potential benefits of reliability approaches in fatigue

design. This project involved academic partners (LaMI-IFMA, LMT-ENS Cachan, Lab-

oratoire Roberval-UTC) in collaboration with companies (Modartt, Phimeca, CETIM,

SNECMA). The DEFFI and APPRoFi projects demonstrate the growing interest that

companies manifest concerning probabilistic approaches. In a similar way, the present

work aims at developing a comprehensive probabilistic procedure enabling to assess the

reliability level of tower crane structural members depending on their operating time.

Thesis objectives

The following points are investigated in this work in order to fulfill the main scientific

objective mentioned above:

• Analysis of fatigue design rules provided by standards. EN 13001 standard

is studied in order to underline the basic principles and main assumptions involved

in the fatigue design validation process of crane structural members.

• Stochastic modeling of crane member strength. This point aims at developing

a procedure enabling the capitalization of fatigue test results and the modeling of

the uncertainties inherent to the strength of crane structural welded details.

• Stochastic modeling of crane member use. Based on crane monitoring data,

a two-level modeling procedure is proposed to identify and characterize the uncer-

tainties related to crane member operating loads according to their operating time.

This point constitutes the first key issue of this research work.

• Sensitivity analysis of the crane member use model. Given that the scatter

of crane member use may have a large influence on reliability results, a sensitivity

analysis must be performed in order to identify the most influencing parameters

involved in the crane member use model.

• Reliability assessment of crane structural members. A general probabilistic

approach is proposed to assess the reliability level of crane structural members ac-

cording to their operating time. This point constitutes the second key issue of this

research work.

Contents

This thesis is divided into four chapters. Chapter 1 is devoted to the presentation of the

opportunities that represent probabilistic approaches for fatigue design of tower cranes.
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The vocabulary related to tower crane structural members and movements is first intro-

duced, and the deterministic procedure provided by standards to validate crane structural

members is detailed. Following this, the different sources of variability that influence tower

crane use on the construction sites are listed, and several opportunities offered by proba-

bilistic approaches are examined.

Chapter 2 is concerned with the fatigue design and reliability assessment under operat-

ing loads. Efficient tools commonly used to assess the fatigue strength of welded details are

first detailed. Three methods enabling the stochastic modeling of fatigue operating loads

are then discussed, and the general principles related to the assessment of the reliability

according to operating time are finally detailed.

Chapter 3 focuses on the characterization of the work performed by the crane on

construction sites. After explaining the methods implemented to handle data coming from

crane monitoring, the results of intra-construction site post-processing are illustrated on

three construction sites. Then, the loading severity assessment procedure is presented and

applied on a given crane structural member. Lastly, data from crane rental agencies and

construction companies are processed in order to characterize the variability induced by

the change of construction site.

Chapter 4 describes the comprehensive probabilistic method proposed in this work to

assess the reliability of crane structural members according to their operating time. The

stochastic modeling of fatigue strength of crane welded details is first detailed. Following

this, a two-level procedure enabling to model the crane member use is proposed, and

the impact of the variability of each input parameter on the scatter of crane use model

is quantified by means of sensitivity analysis. Finally, the global reliability assessment

procedure of crane structural members is detailed and applied to a given crane member.
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1. General aspects and motivations for tower crane probabilistic design

1.1 Introduction

Cranes are machines enabling the transportation of heavy loads beyond the normal capa-

bility of a human. Although first cranes were invented by Greeks in the late 6th century

before Christ, the first cranes using internal combustion, hydraulic or electric engines were

designed during the 20th century. Cranes have become more and more efficient thanks to

the great technological inventions and progresses appeared during the last century. That

explains why they are today essential tools for many types of work. For instance, harbor

cranes are used to load or unload container ships, overhead cranes are usually used to hoist

heavy weights from one place to another in a factory, tower cranes are used in construction

sites, etc. Only tower cranes are studied in the framework of this thesis.

Tower crane structures are principally made of steel plates and beams connected by

welding. The use of tower cranes on construction sites is essential for construction compa-

nies in order to shorten the amount of time needed to complete a work by maximizing the

efficiency of teams. Tower cranes are therefore used in an intensive manner on successive

construction sites during its operating lifespan. Each construction site being unique in

terms of topography and duration, the work performed by the crane can be substantially

different from one construction site to another. Thus, tower crane structures are subjected

to cyclic loading of variable amplitudes, which may lead to fatigue issues after a given

operating period. This explains why the fatigue strength of crane structural members is a

fundamental aspect that must be considered by designers.

Probabilistic approaches are helpful to consider the variability of the crane welded

details strength, which is intrinsically unpredictable, and the uncertainties coming from

various crane uses. They provide engineers with efficient tools enabling to handle these

uncertainties in order to design functional structures that remain safe. This chapter, which

is devoted to the introduction of tower cranes and the presentation of the opportunities

offered by probabilistic approaches, is organized as follows. Section 1.2 briefly describes

the different types of tower cranes, enumerates the main structural joints that constitute

a tower crane and shows the movements that can be performed by the tower crane. Sec-

tion 1.3 introduces the deterministic rules specified by European standards dealing with

the design of tower cranes and section 1.4 presents how construction sites are organized.

Finally, the numerous advantages that probabilistic approaches can bring to the fatigue

design of tower cranes are pointed out in section 1.5.

1.2 Tower cranes and structural members

This section aims at presenting the different tower crane ranges, the main assemblies

constituting a saddle jib tower crane and all the movements that can be performed by a

tower crane.
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1.2. Tower cranes and structural members

Figure 1.1 – Tower crane ranges: (a) luffing jib tower crane, (b) saddle jib tower crane and
(c) self-erecting tower crane.

Tower crane ranges

The first tower crane family includes luffing jib tower cranes and saddle jib tower cranes

denoted respectively by (a) and (b) in figure 1.1. Because their jib have the ability to

tilt, luffing jib tower cranes are useful when the work area is very limited. This is the

case for instance of very tall buildings constructed in big cities where loads cannot be

hoisted above the streets for safety reasons. Saddle jib tower cranes is the most commonly

used for medium-to-big sized construction sites. The main advantage of these cranes is the

possibility to use very different configurations in terms of horizontal or vertical dimensions.

This makes them extremely adjustable in order to fit well the dimensions of the building to

be built. Then, the second tower crane family denoted by (c) in figure 1.1 corresponds to

self-erecting cranes, which are mainly used for small-to-medium sized construction sites.

As their name implies, these cranes have the ability to be assembled without outside help

in a short time-period (a few hours). Although the procedure presented in this thesis is

applicable to any type of tower crane, for the sake of clarity, the following developments

focus exclusively on saddle jib tower cranes.
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Counter-jib
Jib

ballasts

Tower

trolley

lifting 
cable

hook

ballasts

Slewing axis

Trolleying

Hoisting

Traveling

Slewing

Slewing axis

(a) (b)

Figure 1.2 – Saddle jib tower crane vocabulary for (a) crane structural assemblies (a jib
chord member is surrounded by a dotted circle) and (b) crane movements.

Tower crane main assemblies

As presented in figure 1.2 (a), a saddle jib tower crane consists of three main structural

assemblies, namely the jib, the counter-jib and the tower. The jib is on the left side of the

slewing axis (neutral axis of the tower) and the counter-jib on the right side. The function

of the counter-jib is to support ballasts, generally made of reinforced concrete, while the

jib allows the trolley to move from one radius to another. The tower, which consists of

a series of similar elements and is ballasted at its base, supports the total weight of the

slewing assembly made of the jib and the counter-jib plus the hoisted load. Finally, the

lifting wire rope enables the vertical displacement of the hook in order to hoist or lower

a load. Note that all the results deriving from the application of the global procedure

presented in this thesis are fully detailed on a jib chord member connection (see figure

1.2(a)) only, for the sake of clarity.

Tower crane movements

As illustrated in figure 1.2 (b), the first of the four movements performed by the crane

is the hoisting of a load by means of the hook. The second movement, named trolleying,

corresponds to the horizontal displacement of the trolley along the jib. The third movement

is the slewing of the jib around the vertical slewing axis. Sometimes, tower cranes are also

used on bogeys in order to travel on rails, which corresponds to a new crane movement,

namely the traveling. In the frame of this thesis, the traveling movement is not considered.
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1.3. Crane structural members deterministic design

1.3 Crane structural members deterministic design

This section presents the basic concepts and the design process used in standards dealing

with the fatigue design of tower cranes.

Crane design European standards

Steel structures are usually designed by following the rules provided by standards such

as Eurocodes [19] or DNV recommended practices [20] for instance. Note that only the

standards dealing specifically with the design of lifting appliances, including those used in

Manitowoc’s engineering services, are presented in the frame of this thesis.

France and Germany have actively contributed since the 1960’s to the elaboration of

European standards dealing with the design of tower cranes. These standards are all based

on similar basic principles, and the differences that exist lie in the definition of slightly

shifted safety factors. The French national organization for standardization published in

1975 a standard dedicated to the design of tower cranes, namely the NF E 52081 [21].

In addition to this standard, the European Federation of Material Handling published a

manual of recommendations for the design of lifting devices, namely the FEM 1.001 [22].

This manual aims at providing solid foundations enabling the design of any kind of lifting

device by ranking them in use classes. In all these standards or recommendations, cranes

must be validated according to several criteria such as static and fatigue strength, buckling

and rigid body (tipping) stability.

A process emerged in the recent years (about the middle of the 2000’s) in order to

homogenize the standards at European level. This process started in 2004 is currently

ongoing and consists in creating the EN 13001 [5]. Although EN 13001 is still experimental

and starts to be referenced in product standards, this new European standard aims at

replacing in a couple of years the standards and recommendations previously quoted. All

the notions and concepts presented in the following are based on the European standards

and recommendations presented previously, and are focused on fatigue strength validation

only.

Crane lifespan

Although the lifespan of a component is sometimes expressed in terms of operating du-

ration, it is more relevant for tower crane structural members to specify the conventional

lifespan in terms of the number of cycles N .

Crane cycle definition

A crane hoisting cycle conventionally starts when the crane hoists a load and ends when

the crane is ready to hoist another load. It consists of several stages: load hoisting, trolley

in movement with the hoisted load, slewing of the jib around the slewing axis, load drop

off, trolleying and slewing with no load. As depicted in figure 1.3, a simple way to represent
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1. General aspects and motivations for tower crane probabilistic design

Radius

Slewing axis

Figure 1.3 – Illustration of a crane cycle.

a crane cycle is to consider the set of variables {R
(i)
1 , R

(i)
2 , α

(i)
1 , α

(i)
2 , L(i), R

(i+1)
1 , α

(i+1)
1 }

where numbers 1 and 2 refer respectively to initial and final positions. The first part of the

crane cycle is performed from {R
(i)
1 , α

(i)
1 } to {R

(i)
2 , α

(i)
2 } in order to move a load L(i) from

one place to another. The second part of the cycle is done from {R
(i)
2 , α

(i)
2 } to {R

(i+1)
1 ,

α
(i+1)
1 } without load in order to go to the location of another load to be hoisted.

Load chart concept

To understand tower crane loading, the concept of load chart has to be introduced. The

load chart example depicted in figure 1.4 shows the maximum load it is possible to hoist

according to the position of the trolley along the jib, i.e. the radius R. For a given value of

radius R(i) during crane cycle, the load L(i) that can be hoisted by the crane is necessarily

below the load chart, i.e. below L
(i)
max = f(R

(i)
1 ) (see figure 1.4). As depicted in figure 1.4

, the crane cycle loading sequence viewed from the load chart point of view is reduced to

four stages: (1) load hoisting, (2) trolley in movement with the hoisted load, (3) load drop

off, (4) trolleying with no load.

Loading and stress spectra

Most of the time, operating loads of complex structures consist of series of events which

cannot be fully defined by a Constant Amplitude (CA) loading with known characteristics

(e.g. minimum and maximum). Therefore, Variable Amplitude (VA) loadings determined
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1.3. Crane structural members deterministic design

Figure 1.4 – Definition of the load chart.

by using a counting method such as the Rainflow method presented in 2.3.1 can be studied

by using a convenient representation named loading spectrum. As depicted in figure 1.5, a

loading spectrum is a curve characterizing all the VA loads counted during the lifespan of

the structure and ordered by decreasing normalized load ranges ∆Li/∆Lmax depending on

their occurrence i. If the VA loads derive directly from strain gauges signals (i.e. measured

stress), a stress spectrum can be defined in the same manner by using normalized stress

ranges ∆σi/∆σmax. Note that a log-normal scale is sometimes used for the occurrences i

in order to facilitate the understanding of the assessed spectra.

The stress history parameter sc is a value reflecting the severity of the loading on a

structural component. Based on the linear Palmgren-Miner damage accumulation rule pre-

sented in section 2.2.5, this parameter is assessed by using a stress spectrum as presented

before and depends on the S-N curve slope c (see Basquin’s model in section 2.2.4):

sc =
1

Nt

∑

i

[
∆σi

∆σmax

]c

(1.1)

where Nt is the total number of occurrences i of stress ranges ∆σi during the design life

of the crane and ∆σmax is the maximum stress range. Note that in case of linear analysis

of a structural component, i.e. linear relation between internal stress σ and applied force

F , equation (1.1) can be rewritten by replacing ∆σi and ∆σmax respectively by ∆Fi and

∆Fmax.

Fatigue design validation process according to standards

As depicted in figure 1.6, the fatigue strength validation process of a crane structural

member consists of several steps. On one hand, the use of the crane member is determined,

which enables to find the corresponding loading class depending on the value of the stress

history parameter sc. Tower crane structural members usually belong to S1, S2 or S3

classes in EN 13001 [5] (or E2, E3 or E4 in FEM 1.001 [22]). At the same time, the
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Figure 1.5 – Loading spectrum example.

structural member is classified into a notch class depending on its geometry. This leads to

find the characteristic fatigue strength ∆σc, corresponding to the fatigue strength at 2.106

cycles under constant stress range loading, with a probability of survival of 97.7%. Note

that stresses considered here are nominal stresses and that stress concentration factors are

considered through the notch classification process. When both classes are determined, the

limit design stress range ∆σRd
is assessed. On the other hand, knowing the geometry of the

crane member, the nominal maximum stress range induced by its most damaging loading

cycle (∆σSd
= max σ − min σ) is assessed. Finally, the maximum stress range is compared

to the limit design stress range. If ∆σSd
is greater than ∆σRd

, design improvements must

be performed, if not, the crane structural member is validated according to the fatigue

criterion.

1.4 Construction site variabilities

This section introduces the vocabulary related to construction sites and highlights the

different sources of variability related to tower crane use. Figure 1.7 depicts a construction

site drawing illustration where two saddle jib tower cranes are used. As seen in the figure,

four types of area are usually depicted on a construction site drawing:

• The building location is an essential information that indicates where the buildings

are constructed on the site.

• The loading/unloading area designates the location on the site where trucks

transporting raw materials must be parked.

• The storage area is reserved to store the raw materials before use.

• The truck mixer location indicates where the truck mixers are parked before being

emptied.
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Figure 1.6 – Crane structural member validation process according to standards.

storage 
area

loading/
unloading

area
truck mixer

location

area covered

by Crane 1

area covered

by Crane 2

Rjib1

Rjib2

building
location

Figure 1.7 – Construction site vocabulary.
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(a) (b) (c) (d)

Figure 1.8 – Examples of loads hoisted by the crane on the construction site: (a) Concrete
bucket, (b) Forms, (c) Steel frameworks and (d) Prefab stairs.

Thus, the work performed by the crane consists in moving materials and tools from one of

the areas previously mentioned to another. The following paragraphs outline the different

sources of variability inherent to crane uses.

Tower crane configuration

As depicted in figure 1.7, the working areas related to cranes 1 and 2 are not the same,

which is due to the use of different jib lengths (Rjib1
<Rjib2

). As outlined in section 1.2, the

main advantage of saddle jib tower cranes is the ability to be used in variable configurations

depending on the construction site’s topography. Almost ten different jib lengths exist for

a given crane model, and a large number of tower elements can be assembled to reach high

altitudes. Given that the maximum hoisted load that can be hoisted by the crane depends

on these two parameters, the crane use is highly influenced by the broad range of available

crane configurations.

Construction site topography

The second source of crane use variability comes from the construction site configuration.

The organization of each construction site is unique due to several criteria. First, the

location of the buildings is fixed by architects from the beginning and is different for

each construction site. Second, the loading/unloading area or truck mixer location highly

depends on the construction site accessibility. Third, even though a unique storage area is

theoretically defined on the construction site, every place that is not built or that is not

reserved for truck parking is generally used to store raw materials. All these reasons show

that the location of the different areas listed previously is unique for each construction

site and contributes to the randomness of crane use.

Hoisted materials and tools

Figure 1.8 depicts a few types of materials and tools likely to be hoisted on a construction

site. A wide range of loads having different weights can be hoisted by the crane on the site,

including concrete buckets, forms, walkways, prefab walls, prefab stairs, steel frameworks,

18



1.5. Probabilistic approaches opportunities

junk dumpsters, etc. Therefore, a great variety of hoisting situations may occur on the

construction site. For instance, the full concrete bucket or the forms are moved frequently

over the construction site duration while some other loads such as junk dumpsters or

prefab stairs are rarely hoisted, which contributes to influence the crane use dispersion.

Construction site duration

A crane is used on numerous sites during its lifespan and is stored between two jobs.

Actually, two cranes sold at the same time to two different customers will not be used on

the same construction sites, leading to different uses after an identical operating period.

Thus, the construction site duration and the storage period between two consecutive sites

represent other parameters contributing significantly to the variability of crane uses.

Workers

Lastly, another factor that contributes to the crane use dispersion is the human factor.

This factor depends on various parameters such as the efficiency of the teams that work on

the site, the crane operator skills and the scheduled number of shifts (i.e. number of teams

per day). For instance, a construction site performed in three shifts, with an experimented

crane operator and with very efficient workers will be logically finished in a short period

of time. However, this leads at the same time to use the crane very intensively.

All the previous sources of variability on crane use can be organized into two main

groups: the construction site topography and the possible hoisted loads constitute intra-

construction site parameters while the crane configuration, the construction site du-

ration and the workers efficiency belongs to the inter-construction site parameters

category. Chapter 3 is devoted to present the processing of data recorded on three con-

struction sites, the handling of data originated from a rental agency, and the processing

of drawings construction firms.

1.5 Probabilistic approaches opportunities

A substantial number of industrial structures such as cranes may experience fatigue issues

after a given operating period. This progressive deterioration process is caused by the

weakening of a material subjected to repeated loads, which may lead to an irregular func-

tioning of the structure. Therefore, the consideration of this phenomenon in structural

design is a priority for engineers. However, the fatigue behavior of materials is known

to be intrinsically scattered. Concerning tower crane structures, the non-even fabrication

process (welding) leads to material and geometry differences in the structure that affect

the fatigue strength of welded details. In addition, the loading levels applied to structures

may vary considerably due to variable customer uses. This is particularly the case of tower

cranes which are intensively used on various construction sites by numerous customers.
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Thus, the fatigue phenomenon deals with several uncertainties. Standards usually provide

the designers with deterministic rules enabling to account for these uncertainties in the

structural design. These rules are supposed to ensure structural integrity by considering

implicitly the previous uncertainties. Even though these deterministic rules give satisfac-

tory solutions in most cases, they often lead to over-designed structures. Moreover, current

standards commonly specify the fatigue lifespan of crane structures in terms of number

of cycles, regardless of the theoretical crane operating period, which may complicate the

planning of preventive maintenance tasks. Lastly, complex structural modeling requires

simplification assumptions that may result in modeling uncertainties, depending on the

considered analysis techniques. All these reasons explain why the fatigue design of tower

cranes, regarded from a deterministic point of view, leads to non-optimized structures,

and indicates a lack of knowledge concerning the evolution of fatigue damage according to

operating time. Thus, the design of optimized structures that remain functional and safe

requires a better understanding and management of the uncertainties outlined previously.

From this perspective, probabilistic approaches represent convenient tools enabling the

designers to fulfill this double objective.

Several studies have been performed concerning the development of reliability ap-

proaches for fatigue design in industrial applications, such as in the DEFFI (Reliability

Approach in Fatigue Design for Industry) [1] and APPRoFi (Probabilistic Approach to

Robust Fatigue Design) [4] projects. Other reliability approaches have been performed in

various fields (aerospace, aeronautics, automotive industry, railway). For instance, Lorang

et al. [23] assessed the probability of failure of train wheels subjected to different loading

situations (straight and curved railways or switching points), Szerszen et al. [24] deter-

mined the reliability of steel girder bridges stressed by the passage of vehicles (cars or

trucks) and other authors contributed to the dissemination of probabilistic approaches in

the automotive industry [25, 26]. The previous methods, which are presented in chapter 2,

are usually named SSI (Stress-Strength Interference) methods [27] because they share the

same basic principle which consists in separating the stochastic modeling of the Stress S

(demand) on one hand and the strength R (supply) on the other hand. Note that S and R

are commonly expressed by means of a quantity reflecting the structural fatigue behavior

such as a force, a stress or a number of cycles. A structural member is thus supposed to

be reliable if at any time, the applied stress remains below the strength of the component.

Beside the fact that reliability based-design methods are applicable to any industrial

field, they present advantages for several reasons. First, they provide efficient tools en-

abling the management of stress and strength uncertainties. Second, the collection of

statistical data needed to perform the reliability analysis allows a thorough understanding

of the strength and loading characterization which is very useful for the improvement or

development of predictive models. Third, probabilistic analyses provide sensitivity factors

which measure the importance of each input variable on the failure probability of the

20



1.6. Conclusion

structure. This turns out to be particularly helpful to guide future researches and develop-

ments. Fourth, making the link between reliability and operating time is a crucial aspect

enabling to manage inspection strategies of structural assemblies. As done in the studies

previously quoted, the aim of the work presented in this thesis is to take advantage of the

opportunities offered by reliability approaches in order to assess the failure probability of

crane structural members according to their operating period.

1.6 Conclusion

In this chapter, the vocabulary related to main crane structural assemblies and crane

movements has been defined, and the different crane ranges have been presented. Ad-

ditionally, the deterministic rules provided by European standards dealing with fatigue

design of tower cranes have been reminded. The prescriptive approach specifies that the

crane lifespan is expressed in terms of the number of crane cycles and is thus founded on

the concept of stress or loading spectrum. Following this, the validation process of crane

structural members has been discussed by means of a general synoptic. Thereafter, the

multiple sources of variability inherent to crane use have been highlighted through the

description of the work performed on a construction site. These uncertainties can be clas-

sified into two groups, namely the intra- and inter-construction site parameters. Lastly,

the probabilistic approaches have been presented as convenient tools that enable engi-

neers to characterize the uncertainties inherent to fatigue design in order to manage the

reliability of crane members according to their operating period. The following chapter

aims to introduce the concepts regularly used in fatigue strength analysis, discusses three

methods enabling the stochastic modeling of fatigue operating loads, and defines the basic

principles involved in probabilistic approaches.
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Tower cranes are classified into three main groups, namely the luffing jib tower

cranes, the saddle jib tower cranes and the self erecting tower cranes. The move-

ments that can be performed by the crane are called respectively trolleying (move-

ment of the trolley along the jib), slewing, hoisting and traveling (movement of

the crane along rails).

Tower crane structural members are usually classified according to European

standards into element groups, e.g. namely S1, S2 and S3 in EN 13001 [5], cor-

responding to related deterministic groups of design number of cycles depending

on a typical crane application (e.g. crane used for building). Hence, each crane

member belonging to a group is validated in a deterministic manner by comparing

the maximal nominal stress range ∆σSd
induced by its most damaging loading

cycle to an admissible stress range ∆σRd
.

The randomness of construction sites’ topography and duration leads to uncer-

tainties concerning crane use after several years of work. These uncertainties are

implicitly taken into account by standards through the use of deterministic rules.

Therefore, fatigue design of tower cranes, regarded from a deterministic point of

view, leads to undetermined and inhomogeneous reliability level according to the

crane operating period.

The probabilistic approaches are efficient tools enabling engineers to assess the

failure probability (or reliability index) of structures by managing the uncer-

tainties inherent to the structural strength on one hand, and the randomness of

operating loads on the other hand. The global procedure developed in this re-

search work aims to assess and manage the reliability of crane structural members

subjected to fatigue according their operating period.

Chapter summary
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2. Fatigue design and reliability assessment under operating loads

2.1 Introduction

Crane structural members, which are mainly made of steel plates and beams connected by

welding, are subjected to repeated operating loads. Intensive crane use usually stems from

the need to minimize the amount of time required to complete a construction by maximiz-

ing the efficiency of equipments and teams. Therefore, the fatigue design of tower cranes

must be accounted for. As highlighted in chapter 1, the probabilistic approaches represent

promising methods enabling to quantify and manage the reliability of crane structural

members. These methods require the characterization of the uncertainties related to the

fatigue phenomenon of welded joints and fatigue operating loads. Thus, this chapter aims

to introduce the concepts commonly used for modeling fatigue strength and operating

loads on one hand, and to define the basic principles used in reliability analyses, on the

other hand.

This chapter is organized as follows. Starting from a general description of fatigue

phenomenon, section 2.2 lists the major factors influencing fatigue lifespan of welded con-

nections. Afterward, the section presents a local fatigue criterion enabling the prediction

of crack initiation, namely the Dang Van criterion, and introduces the probabilistic S-N

curves. These curves are obtained by repeating fatigue tests at different load levels in

identical conditions, and then plotting the number of cycles to failure versus the applied

stress for each test. This section also describes the linear cumulative damage rule originally

proposed by Palmgren and Miner.

Section 2.3 introduces the rainflow cycle counting method enabling to count fatigue cy-

cles from any time-dependent loading and presents three different loading models suitable

for fatigue analysis. First, the mathematical definitions are given for random processes

with application to fatigue. Second, a method consisting in mixing elementary loads (e.g.

rainflow matrices) coming from on-site recording is detailed. Third, the REBMIX method

initiated by Nagode and Fajdiga is shown as a practical procedure enabling the proba-

bilistic characterization and extrapolation of loading spectra (or rainflow matrices).

Lastly, section 2.4 deals with the notions related to reliability approaches in general.

After introducing the definitions of the time-dependent reliability, the Stress-Strength

Interference (SSI) method is outlined. This section also describes the relationship between

the failure probability and the reliability index, and presents the simplest method allowing

to assess them, namely the Monte Carlo simulations. Finally, this section discusses a

global sensitivity analysis procedure. Considering a given mathematical model, the Sobol’s

method aims at quantifying the sensitivity indices reflecting the impact of the variability

of each input parameters on the mechanical response.
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2.2. Fatigue phenomenon

2.2 Fatigue phenomenon

After introducing the fatigue phenomenon, this section outlines the main factors influenc-

ing the fatigue lifespan of welded details and provides the notions needed to predict crack

initiation and to analyze fatigue test results. Then, the Palmgren-Miner rule is presented

as a simple tool enabling to assess the cumulative damage induced by fatigue loading.

2.2.1 Fatigue of welded details

Fatigue is a localized damage occurring when a structural component is subjected to cyclic

loading and, as outlined in section 1.5, large uncertainties affect this phenomenon. In fact,

the scatter usually observed from fatigue results can be explained by three physical reasons:

• Test bench or operating loading conditions can lead to additional unforeseen thermal

or mechanical loads.

• Inhomogeneities and microscopic defects (inclusions, dislocations) create intrinsic

material discontinuities.

• Manufacturing processes cause geometric variations, surface roughness differences

and residual stresses.

These defects induce plastic deformations at a microscopic scale. Although this seems

negligible for one cycle, the succession of stress cycles generates an accumulation of mi-

croplasticity leading to the appearance of micro-cracks. The propagation of these cracks

leads to the creation of a macroscopic crack (visible with naked eye). Two steps are usually

distinguished concerning the fatigue degradation process:

• Initiation of a macroscopic crack. Fatigue test results dealing with crack initiation

are generally represented by means of S-N curves, as described in section 2.2.4. In

the framework of this thesis, crack initiation is considered as the failure criterion for

crane structural members.

• Propagation of a macroscopic crack which may lead to a sudden fracture at a

critical crack size. Studies dealing with crack propagation belong to the field of

fatigue analyses named fracture mechanics.

As depicted in figure 2.1, crack initiation of welded joints may occur at two different

locations where stress concentration is high, namely the weld toe or the weld root. The

crack type (from toe or root) is governed by several factors such as the misalignment of

plates, the ratio between weld throat and plate thickness, the weld shape, the loading

mode, the welding residual stresses, etc. Both crack types are detected depending on their

features because toe cracks initiate in the weld toe line, while root cracks appear on the

weld surface after penetrating the weld throat. Weld toe cracks are usually considered
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2. Fatigue design and reliability assessment under operating loads

Weld toes

Weld roots

Figure 2.1 – Illustration of crack initiation areas on welded details.

to be less dangerous than weld root cracks because they can be observed by a simple

visual inspection. By contrast, weld root cracks cannot be detected before they entirely

propagate into the weld throat and reach the weld surface. Therefore, fatigue strength of

welded structures has to be accounted for by avoiding unexpected fatigue failures in order

to ensure an appropriate reliability level. Although the principles apply to both cases, note

that only the initiation of macroscopic weld toe cracks is considered in the frame of this

work.

2.2.2 Influence factors on fatigue of welded joints

This section aims at giving a brief review of the main factors influencing the fatigue lifespan

of metal components. A detailed overview of these factors is given in [28].

Material strength

As outlined in the book of Maddox [29], although fatigue lifespan of un-welded details

generally increases with the material tensile strength, the latter does not influence sig-

nificantly crack initiation of welded joints. Nevertheless, due to the appearance of new

weldable structural steels of very high yield strength (greater than 1000 MPa) during the

past decade, the previous statement may be reconsidered for these materials.

Mean stress

The mean stress effect has been widely studied during the recent decades. Various authors

[30–34] emphasized the mean stress effect by performing fatigue tests at different stress

ratios κ = σmin/σmax. They have shown that, due to high residual stresses induced by

the welding process, crack initiation of as-welded details is not significantly influenced by

the mean stress. In fact, Krebs and Kassner [33] insisted on the fact that the notch effect

induced by the local geometry of the weld is extremely significant compared to the mean

stress effect. Nonetheless, as shown in the next paragraph, the mean stress may have an
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2.2. Fatigue phenomenon

impact on fatigue lives of welded details in case of stress relieved specimens.

Residual stress relieving

The welding process induces residual stresses in the components due to the local heating

and cooling of the parts being joined. Sometimes stress relieving is performed in order to

reduce or remove the residual stresses in welded assemblies. As shown by several authors

[32, 35], the presence of residual stresses influences fatigue lifespan of welded details in

some cases. They demonstrated from test results that stress relieving improves significantly

the fatigue strength of welded joints in compression (κ = σmin/σmax = −1) while it does

not have any influence in case of tensile loading (κ = 0). In any case, recommendations

published by the International Institute of Welding [34] suggest to account for the effect of

stress ratio (i.e. mean stress) in fatigue design exclusively when reliable data are available

concerning stress relieving.

Plate thickness

The plate thickness effect on fatigue lifespan of welded details has been widely stud-

ied during the last decades [36–38]. The greater the thickness of assembled plates, the

lower the fatigue lifespan for identical surface stress. The plate thickness effect being well-

documented, a conventional approach consists in multiplying the predicted fatigue stress

by a correction factor of the form (e/eref)
γ , where e and eref are respectively the actual and

reference thicknesses and γ is a constant parameter. For instance, IIW recommendations

[34] set eref as equal to 25 mm and specify γ between -0.1 and -0.3 depending on the type

of welded joint.

Stress gradient

The stress gradient is a measure reflecting the local evolution of the stress according to

the geometry of a component. Several authors such as Papadopoulos [39] or Weber [40]

highlighted its beneficial effect on fatigue lifespan and proposed multi-axial fatigue criteria

accounting for this parameter. The presence of a stress gradient has two opposite effects.

On one hand, a high gradient leads to an increase of the local stress level in the material.

On the other hand, the volume of material highly stressed is reduced, which tends to lower

the possibilities of micro-crack appearance starting from material defects.

Loading mode

Literature dealing with the influence of the loading mode (tension, bending, etc.) on fatigue

lifespan is scarce. Nevertheless, a few authors [41, 42] emphasized the loading mode effect

by showing from test results that the fatigue lifespan of welded details subjected to bending

is greater than the life of those loaded in tension. Note that the loading mode reflects the

stress gradient only in one direction, i.e. in the plate thickness.
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2. Fatigue design and reliability assessment under operating loads

Weld post-treatment

As seen before, fatigue cracks appear in high stress concentration areas due to sharp

geometry changes between plates and welding. As a result, surface finishing can play an

important role in fatigue lifespan prediction. This explains why weld post-treatment is

widely studied in fatigue lifespan improvement. All the techniques such as toe grinding,

shot or hammer peening, water-jet eroding, aim at extending fatigue lifespan. For more

information concerning this topic, an extensive review of existing methods is proposed by

Kirkhope et al [43].

Environmental effects

Structures working in extreme conditions are subjected to environmental effects that must

be accounted for in fatigue analysis. This is the case of temperature (in polar regions or

in desert) or corrosion (in marine environment) for instance.

The major factors influencing the fatigue lifespan of metal components were listed

above. Note that only the effects of the mean stress, the plate thickness and the loading

mode are taken into account explicitly in chapter 4. The other factors contribute intrinsi-

cally to the scatter observed in fatigue strength.

2.2.3 Equivalent stress representing fatigue behavior

A great number of fatigue criteria has been proposed during the last century. These criteria,

which aim at predicting as well as possible crack initiation of materials, can be classified

into three groups:

• Empirical criteria, whose first models were defined at the beginning of the 30s,

enable the accurate modeling of experimental results obtained under specific mul-

tiaxial loading (bending or tension generally combined with torsion). Their major

drawback derives from their lack of generality. In fact, these criteria remain valid

solely when similar loading conditions are duplicated.

• Critical plane criteria assume that fatigue damage behavior is governed by a

critical plane which depends on the multiaxial stress state of the structure according

to the time. The main differences between various criteria in this category arise from

the definition of the critical plane and from the scale of interest (microscopic or

macroscopic).

• Global criteria, which include microscopic, macroscopic and energy criteria, pro-

vide more general formulations of the fatigue damage of materials. For instance,

when many critical planes may be equivalently damaged, global criteria may give

better predictions than critical plane methods. However, these criteria may become

difficult to use in some situations because of their complicated formulation.
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2.2. Fatigue phenomenon

Note that only one critical plane criterion is presented in this thesis, namely the Dang Van

criterion. Nonetheless, if the reader wants more information concerning fatigue criteria,

an exhaustive presentation of these methods is given in [40].

Dang Van criterion, which was formulated for the first time in 1972, postulates that

crack initiation is sensitive to both the amplitude of shear stress τa and the hydrostatic

pressure P along the loading time. Therefore, the method consists in finding the critical

plane of normal vector ~h where the damage indicator function E is maximal:

E = max
~h

[
max

t

(
τa(t) + αP (t)

β

)]
(2.1)

The coefficients α and β are usually calibrated by means of two fully reversed tension and

torsion fatigue tests.

The concept of local equivalent stress is sometimes used in practical applications. Start-

ing from equation (2.1), Dang Van [44] defined a local equivalent stress τ0,i, related to a

median number of cycles Ni, as a linear combination of the local shear stress τ in the

critical plane and the hydrostatic pressure P :

τ0,i = τ + aiP (2.2)

Dang Van observed from test results that the parameter ai was almost independent of

Ni in case of high cycle fatigue (ai ≃ a = constant for Ni > 5.105 cycles), leading to the

following expression:

τ0 = τ + aP (2.3)

The previous expression of τ0 is used in chapter 4 in order to correlate the responses of

Finite Element modeling with experimental results.

2.2.4 Probabilistic S-N curves

In fatigue analyses dealing with crack initiation, Wöhler curves constitute a convenient

representation enabling to relate experimental fatigue lives to the applied loads. These

curves, also named S-N curves, are assessed by submitting various specimens to a regular

constant amplitude load until crack initiation. Then, the applied stress (derived from the

applied load and the cross section) and the number of cycles to failure N are plotted in a

S-N diagram. Wöhler curves, which are usually obtained for a given stress ratio κ, consist

generally of three domains (see figure 2.2):

1. Low cycle fatigue: this domain is related to high load ranges leading to significant

plastic deformations of the material, and therefore to a low number of cycles to

failure (N ≤ 104 − 105 cycles).

2. Limited endurance: this corresponds to the high cycle fatigue domain with finite
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Figure 2.2 – Illustration of S-N curve domains: 1 low cycle fatigue, 2 limited endurance
and 3 unlimited endurance.

life where the applied load ranges are lower than those used in the low cycle fatigue

domain. The number of cycles-to-failure in this domain varies between 104 −105 and

106 − 107 cycles.

3. Unlimited endurance: in this domain (N ≥ 106 − 107 cycles), fatigue lifespan

is considered to be infinite because Wöhler curve slope changes significantly and

sometimes tends towards an asymptotic horizontal limit, also named fatigue limit

σD.

As seen in section 2.2.1, several parameters (manufacturing defects, loading conditions,

etc) contribute to the large scatter usually observed on fatigue test results. As a conse-

quence, the fatigue phenomenon deals with large uncertainties that must be accounted for.

Therefore, probabilistic S-N curves can be fully defined by determining the median trend

corresponding to 50% of survivals for the tested specimens, on one hand, and the fatigue

resistance scatter, on the other hand.

Median trend modeling

Various deterministic models D exist in literature to make the link between the number

of cycles-to-failure N and the applied stress range ∆σ. These relations usually take the

form N = D(∆σ) or equivalently ∆σ = D−1(N):

• Wöhler (1870) [45]: N = b exp(−c∆σ)

• Basquin (1910) [46]: N = b(∆σ)−c

• Stromeyer (1924) [47]: N = b(∆σ − σD)−c

• Bastenaire (1960) [48]: N = b exp[−c(∆σ − σD)]/(∆σ − σD) − d
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Figure 2.3 – Illustration of Gaussian probabilistic models of ∆σ with (a) constant standard
deviation of ∆σ at a given N and (b) constant coefficient of variation of ∆σ at a given
N . The solid line represents the median curve (50% probability of survival) obtained
from Basquin’s model while the dashed lines are the isoprobabilistic curves related to the
percentage of failure.

where b, c and d are constant parameters inferred from fatigue tests.

Note that the Bastenaire’s formula enables to account for both low and high cycle

fatigue. The median trend of the S-N curve can be characterized by using one of the

previous deterministic models. The study presented in this thesis being reduced to high

cycle fatigue with finite life (i.e. limited endurance domain), only the Basquin’s model is

used in the following. This leads to express N50% for a given stress range or ∆σ50% for a

given number of cycles to failure as follows:

N50%(∆σ) = b(∆σ)−c (2.4)

∆σ50%(N) = (N/b)−1/c (2.5)

Scatter probabilistic modeling

Once the median trend is characterized, a probabilistic distribution has to be chosen in

order to model the fatigue strength scatter. As noted in the book of Lalanne [49], the

number of cycles to failure N at a given stress range is generally modeled by a lognormal

distribution, while the stress range ∆σ at a given number of cycles to failure is usually

defined by a Gaussian distribution. Note that the dispersion of the distributions of N or

∆σ can be characterized by either a constant standard deviation or a constant coefficient

of variation.

Considering a median trend modeled by Basquin’s relation, figures 2.3 and 2.4 depict

two couples of probabilistic S-N curve models. Figure 2.3 illustrates the modeling of ∆σ(N)

as a Gaussian distribution with (a) a constant standard deviation s∆σ and (b) a constant
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2. Fatigue design and reliability assessment under operating loads

coefficient of variation δ∆σ, respectively. Note that this type of scatter modeling indicates

a lack of consistency compared to the fatigue testing procedure. Specimens are usually

tested under a constant stress range level and the number of cycles-to-failure is the result

of the fatigue test. Thus, the fatigue strength dispersion is intrinsically related to the

number of cycles to failure. As a result, it does not appear logical to model the scatter of

the stress range.

As depicted in figure 2.4, another type of scatter modeling enable to overcome this

contradiction. Figure 2.4 considers the modeling of a lognormal distribution for N(∆σ)

with (a) a constant standard deviation sln N and (b) a constant coefficient of variation δln N ,

respectively. The choice between a constant standard deviation or a constant coefficient of

variation influences the assessment of the isoprobabilistic curves presented in the following.

In the frame of this work, the distribution of number of cycles-to-failure is assumed to be

lognormal with a constant standard deviation of ln(N) at any stress range level (see figure

2.4 (a)). Note that a constant standard deviation of ln(N) stems from a constant coefficient

of variation of N (δN ).

Isoprobabilistic curves

Standards dealing with fatigue usually provide probabilistic S-N curves accounting for

a high percentage of survival q for the studied specimens (e.g. 95% or 97.7%). These

curves, also named isoprobabilistic curves, are assessed by shifting the median curve until

a percentage of failure p, or equivalently a percentage of survival q = 1 − p, is reached. As

detailed in the work of Perrin [50], let F (N) be the function characterizing the probability

p that a specimen fails before N cycles under the stress range level ∆σ. At a given ∆σ,

this function is assumed to vary with N as the CDF of a lognormal random variable

with mean mN (∆σ) and coefficient of variation δN (∆σ). The mean corresponds to the

Basquin’s model (mN (∆σ) = N50%(∆σ)) chosen before and the coefficient of variation

δN (∆σ) is supposed to be constant for any ∆σ, i.e. δN (∆σ) = δN . N(∆σ) being log-

normally distributed, the random variable ln N(∆σ) is normally distributed. As a result,

F (N) reads:

F (N) = Φ

(
ln(N) − mln N (∆σ)

sln N (∆σ)

)
(2.6)

where Φ is the standard Gaussian CDF and:

mln N (∆σ) = ln


mN (∆σ)√

1 + δ2
N


 (2.7)

sln N (∆σ) =
√

ln(1 + δ2
N ) (2.8)

Note that from equation (2.8) a constant coefficient of variation δN for the random variable

N(∆σ) leads to a constant standard deviation sln N (∆σ) for the random variable ln N(∆σ),
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Figure 2.4 – Illustration of lognormal probabilistic models of N with (a) constant standard
deviation of ln(N) at a given ∆σ and (b) constant coefficient of variation of ln(N) at a
given ∆σ. The solid line represents the median curve (50% probability of survival) obtained
from Basquin’s model while the dashed lines are the isoprobabilistic curves related to the
percentage of failure.

i.e. sln N (∆σ) = sln N , and vice versa. Thus, for a p probability of failure (realization of

F (N)), the isoprobabilistic curve Np%(∆σ) is obtained by inverting equation 2.6:

Np%(∆σ) = exp
[
Φ−1(p)sln N + mln N (∆σ)

]
(2.9)

Assuming that the median trend is defined by the Basquin’s model and considering a

percentage of survival of 95% (i.e. a probability of failure of 5%), equation (2.9) becomes:

N95%(∆σ) = exp


Φ−1(0.05)

√
ln(1 + δ2

N ) + ln


 b(∆σ)−c

√
1 + δ2

N




 (2.10)

The previous isoprobabilistic curves are used in chapter 4 in order to compare the approach

proposed in this thesis with European standards dealing with fatigue of tower cranes.

2.2.5 Cumulative damage assessment

Cumulative damage assessment is a topic widely studied since Palmgren [10] introduced the

concept of linear summation of the damage in 1924. Nevertheless, as pointed out by Fatemi

et al [51], none of the existing approaches enable to account for major phenomenological

factors as load dependence, interaction effects, overload effects, load sequence, mean stress,

etc. This explains why the linear damage rule introduced by Palmgren and mathematically

formulated by Miner [11] in 1945 is still mainly used in fatigue design.

The Palmgren-Miner linear damage rule considers the linear summation of partial
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Figure 2.5 – Illustration of the sequential effect on the damage for two consecutive loading
blocks.

damage Di induced by the application of ni cycles of stress range ∆σi:

Di =
ni

Ni
(2.11)

where Ni is the total number of cycles before failure at constant range ∆σi. By considering

that the whole loading of a structure consists of z loading blocks of different levels, the

total damage D is expressed as follows:

D =
z∑

i=1

Di =
z∑

i=1

ni

Ni
(2.12)

Failure is deemed to occur when D reaches 1.

Due to its linear nature, the main drawbacks of this approach lies in the fact that

the damage is independent of the loading level and does not account for the loading

sequence [49]. However, experimental results showed that the total damage can be over-

estimated in case of low-to-high loading sequence and under-estimated for high-to-low

loading sequence. Figure 2.5 depicts three histories leading to identical damage according

to Miner’s definition. Nonetheless, D1 and D3 are respectively under- and over-estimated

in comparison to damage D2 corresponding the reference one-block case. This explains

why many authors intended during the last decades to develop non-linear models (Marco-

Starkey, Henry, Corten-Dolan, etc.) in order to avoid these drawbacks. For further details,

the reader can refer to [51] in order to have a good overview of existing cumulative damage

approaches. For sufficiently random loading with moderate ranges, the Palmgren-Miner

linear damage accumulation rule remains valid, which is the case in this thesis.
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t

Figure 2.6 – Illustration of a constant amplitude stress history.

2.3 Fatigue loading assessment and modeling

In the frame of this thesis, crane operating loads need to be characterized and simulated

in order to reconstruct virtual lives related to various crane structural members. For this

reason, this section is devoted to the assessment and modeling of operating loads related

to fatigue. The rainflow counting procedure is first described as a useful method enabling

to assess fatigue loading cycles. Then, three different methods are presented as convenient

tools enabling the modeling of fatigue operating loads. These methods are respectively

based on the random process theory, the elementary loads mix strategy and the mixture

models of loading spectra.

2.3.1 Rainflow cycle counting method

As seen in chapter 1, fatigue damage appears when a component is cyclically stressed.

Figure 2.6 illustrates an example of Constant Amplitude (CA) stress history. Note that σ

may be replaced in the figure by other time-variant quantities reflecting fatigue loading

(force, strain, etc). As seen in the figure, a stress cycle can be described by the “minimum-

maximum” paired value {σmin, σmax}, the “amplitude-mean” paired value {σa, σm} or the

“range-mean” paired value {∆σ, σm} with:

σm = (σmax + σmin)/2 (2.13)

∆σ = σmax − σmin (2.14)

σa = ∆σ/2 (2.15)

Most of the time, laboratory specimens are tested under CA loading. Nonetheless, in

operating conditions structural loading is characterized by complex time-histories leading

to the question: how to identify fatigue loading cycles from complex variable amplitude

signals?
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Figure 2.7 – Rainflow cycle meaning in terms of fatigue.

Various cycle counting methods such as peak count method, range count method, level-

crossing count method, mean-crossing peak count method, range-pair cycle counting or

rainflow counting method have been developed and implemented during the past decades.

However, Dowling [52] highlighted that excepting the range-pair [53] and the rainflow

[7, 8] methods, all the other counting methods may lead to unrealistic fatigue results in

some situations. In addition, he showed that the range-pair and rainflow methods are

nearly identical. Starting from this observation, this section focuses exclusively on the

description of the widely-used rainflow counting method.

The rainflow method has been proposed in Japan by Endo [7] in 1967 and translated

into English by Mastsuishi and Endo [8] in 1969. The method consists in counting reversals

(half-cycles) or pairs of reversals (cycles) from a stress or load history. The popularity of

this method is due to the fact that rainflow method has a physical meaning in the field of

fatigue lifespan prediction. In fact, as seen in figure 2.7, the counted cycles represent hys-

teresis loops in the stress-strain plane which are directly related to the fatigue degradation

process.

A problem arises in the original method developed by Endo [7] when one wants to

find an analytical expression of the algorithm. A simpler formulation have been given by

Downing and Socie [54] and the procedure was standardized by Amzallag et al. [9]. This

algorithm, namely the "four-point" algorithm, proceeds by following the steps described in

table 2.1, and stops when less than four local extrema remain or if the condition in step

2 is no more satisfied.

One limit of the rainflow procedure lies in the fact that once cycles are counted, the

loading sequence (i.e. order in which cycles appear) is lost. This can be a problem if one is

interested in crack propagation issues or nonlinear fatigue damage. Anthes [55] solved this

problem by proposing a modified rainflow algorithm enabling to keep the loading sequence.

Moreover, shortcomings of the rainflow counting method are pointed out by Hong [56] when

unclosed hysteresis loops are encountered into the stress-strain path. This explains why

he proposed a modified algorithm consisting in rearranging the residual history in order
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2.3. Fatigue loading assessment and modeling

1. Convert the stress history in a sequence of local extrema (series of peaks
and valleys).

2. Consider four consecutive local extrema {1, 2, 3, 4} (see figure 2.7).

3. Calculate the ranges ∆σ12, ∆σ23 and ∆σ34.

4. If ∆σ12 > ∆σ23 and ∆σ23 < ∆σ34:

• Add range ∆σ23 and its corresponding mean to the rainflow matrix.

• Delete local extrema 2 and 3 from the remanent history (also called
residual).

Else

• Re-start from step 2 by considering the four consecutive local extrema
{2, 3, 4, 5} instead of {1, 2, 3, 4}.

5. Duplicate the residual.

6. Re-start from step 2.

Table 2.1 – Four-point algorithm enabling to extract rainflow ranges from a temporal
signal.

to always start or end with the maximum peak or minimum valley. Finally, an alternative

definition of the rainflow counting method was given by Rychlik [57], namely the toplevel-

up cycle (TUC) counting method. Rychlik demonstrated that his method, which considers

the crossing of a stress level during the time interval [−T, T ], is equivalent to the rainflow

counting method and can be convenient if one needs to study the extreme properties of

random processes (e.g. for dynamic loads).

In this section, a relevant counting method enabling the assessment of fatigue loading

cycles from a time series has been presented. The following section deals with the theory

of random processes in the frame of the modeling of fatigue operating loads.
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Figure 2.8 – Gaussian random process: (a) 3D view of the random process joint density
function, (b) Example of one trajectory X(ω0, t).

2.3.2 Random processes models for fatigue loading

This section gives the general characteristics related to random processes, and introduces

a few random process models that can be used in the field of fatigue load modeling.

Random process characteristics

Let (Ω, F , P ) be a probability space, T a metric space and E a state space. X is called

a random process defined on (Ω, F , P ), indexed by T and taking values in E, if X is a

measurable application of Ω in ET :

X : Ω → ET

ω → X(ω) :T → E

t → X(ω, t) (2.16)

Figure 2.8 (a) presents a 3D view of the distribution of a Gaussian random process. For

a given randomness ω0, the application whose t associates X(ω0, t) is a realization of the

process X(ω, t) and is called trajectory (or path) of the process. For instance, figure 2.8

(b) depicts one possible trajectory of a Gaussian random process.

The temporal law of a random process is known if, for all instants (t1, t2, . . . , tn), the

joint probability law f(x, t) of the set of random variables X(ω, t1), X(ω, t2),. . .,X(ω, tn)

is known. In practice, this joint probability law is difficult to assess. Moreover, the mean

of a stochastic process X(ω, t) is a deterministic function mX(t) which, for each value of

t, is equal to the mathematical expectation of the random variable X(ω, t):

mX(t) = E[X(ω, t)] =

∫ ∞

−∞
xf(x, t)dx (2.17)

If mX(t) equals zero for all values of t, the process is said to be centered. The variance of
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2.3. Fatigue loading assessment and modeling

a random process can be defined similarly:

VarX(t) = E

[
{X(ω, t) − mX(t)}2

]
=

∫ ∞

−∞
(x − mX(t))2 f(x, t)dx (2.18)

Note that mX(t) and VarX(t) are functions of t, i.e. they change from one time point to

another.

The definition of the autocovariance and autocorrelation functions should also be given

in addition to the mean and standard deviation description. The autocovariance of a

stochastic process X(ω, t) is the non-random function CovX(t1, t2) which, for each couple

(t1, t2) ∈ T × T , is equal to the covariance of the random pair {X(ω, t1), X(ω, t2)}:

CovX(t1, t2) = E[{X(ω, t1) − mX(t1)}{X(ω, t2) − mX(t2)}] (2.19)

Furthermore, the autocorrelation of a stochastic process X(ω, t) is the non-random func-

tion ΓX(t1, t2), which for each couple (t1, t2) ∈ T ×T , is equal to the second order moment

of the random pair {X(ω, t1), X(ω, t2)}:

ΓX(t1, t2) = E[X(ω, t1)X(ω, t2)] (2.20)

ΓX(t1, t2) represents the correlation coefficient between two pairs of values of X(ω, t)

separated by an interval of length t2 − t1. This is a measure of the stochastic dependency

between the two values of the random process X(ω, t1) and X(ω, t2). In practice, the

autocovariance and autocorrelation functions estimated from observation data give useful

information about which kind of model is the most representative to fit a measured random

process.

Other important definitions concerning random processes are the ergodicity and the

stationarity. On one hand, a random process is defined as a set of random variables indexed

by a parameter t but it can also be seen as a set of functions of t, indexed by the parameter

ω. This means that the process is considered as a union of trajectories. Thus, a random

process is said to be ergodic if all its temporal means exist and have the same value

regardless the considered trajectory, excepted for a set of trajectories of zero probability.

On the other hand, a random process is a strictly stationary process of order N if its

characteristics are invariant for every change of time origin:

F (x1, x2, . . . , xn; t1, t2, . . . , tn) = F (x1, x2, . . . , xn; t1 + τ, t2 + τ, . . . , tn + τ) (2.21)

In practice, the second order stationarity assumption is generally sufficient. This assump-

tion is valid if the two following conditions are verified for the studied process:

• mX(t) = mX , ∀t,

• ΓX(t1, t2) = ΓX(t2 − t1) = ΓX(τ) (the autocorrelation function only depends on the
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2. Fatigue design and reliability assessment under operating loads

time interval τ = t2 − t1).

Stationary processes are generally used to describe signals such as radio signals, vibration,

turbulence, price indices, etc while unstationary processes are useful to represent growth

or decay processes.

Random process families

A random process X(ω, t) is said to be discrete-time if the metric space T is countable

(finite or infinite). In this case, the term process is sometimes replaced by sequence or

series and X(ω, t) is denoted Xt(ω). When T is uncountable, the random process is called

continuous-time process. The main difference between discrete-time and continuous-time

processes lies in the fact that the integrals used in the previous definitions are replaced by

algebraic sums. Moreover, if the random process X(ω, t) takes values in a countable state

space E the process is said to be discrete. Otherwise, the process is said to be continuous.

Accounting for the previous definitions, every random process can be classified into one

of these four families: discrete or continuous random sequence and discrete or continuous

random process.

Random process models

A wide range of random process models were defined during the last century. For sake

of concision, only a few linear discrete-time random process models are presented in this

manuscript. The reader can refer to the books of Priestley [58], Hamilton [59] and Box,

Jenkins and Reinsel [60] for further information.

The white noise, denoted (et)t∈Z, is the most simple stationary random process model.

This purely random process is a sequence of uncorrelated centered (i.e. with zero mean)

real random variables of finite variance σ2. Based on this definition, two other simple

random process models can be described, namely the autoregressive and moving average

random processes. The AutoRegressive (AR) model was first introduced by Yule [61] in

1927. A stationary process (Xt)t∈Z is a p-order autoregressive process denoted AR(p) if

a process (et)t∈Z exists and p real numbers φ1, . . . , φp, φp 6= 0 such as (Xt)t∈Z verifies the

following reccurence equation:

Xt − φ1Xt−1 − . . . − φpXt−p = et (2.22)

An illustration of this model is given in figure 2.9 (a). Furthermore, the Moving Average

(MA) model was first introduced by Slutzky in 1927 and traduced in English in 1937 [62].

A process (Xt)t∈Z is a q-order moving average process denoted MA(q) if a process (et)t∈Z

exists and q real numbers θ1, . . . , θq, θq 6= 0 such as (Xt)t∈Z verifies the following equation:

Xt = et − θ1et−1 − . . . − θqet−q (2.23)
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Figure 2.9 – 500 observations of a (a) AR(1) process of equation: Xt − 0.6Xt−1 = et and
(b) MA(1) process of equation: Xt = et + 1.1et−1 [58].
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Figure 2.10 – 500 observations of a ARMA(2,2) process of equation: Xt + 1.4Xt−1 +
0.5Xt−2 = et − 0.2et−1 − 0.1et−2 [58].

An illustration of this model is given in figure 2.9 (b).

Following these definitions, the combination of an AR process and a MA process results

in an AutoRegressive Moving Average (ARMA) model. A stationary process (Xt)t∈Z is p-

order autoregressive process, a q-order moving average process denoted ARMA(p, q) if a

process (et)t∈Z exists, p real numbers φ1, . . . , φp and q real numbers θ1, . . . , θq such as

(Xt)t∈Z verifies the following equation:

Xt − φ1Xt−1 − . . . − φpXt−p = et − θ1et−1 − . . . − θqet−q (2.24)

with φpθq 6= 0. An illustration of this model is given in figure 2.10.

ARMA models have been found to be helpful for describing stationary nonseasonal

(without trends) time series with a small number of parameters. The fitting of an ARMA(p, q)

model to experimental data is usually performed by following three steps:

• Model identification: this step consists in selecting the orders of the random pro-

cess, namely p and q. This can be performed by using the classical method which
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2. Fatigue design and reliability assessment under operating loads

aims to study the correlogram and partial correlogram diagrams (see the book of Box

anf Jenkins [60]). Even though these diagrams are helpful to determine separately

the order of AR or MA models, they unfortunately do not provide information about

the choice of p and q for an ARMA model. Other more objective methods enable

to choose these parameters by minimizing an information criterion (e.g. Akaike In-

formation Criterion (AIC), Bayesian Information Criterion (BIC), etc). In any case,

the guiding principle to remember during the identification step is the parsimony,

i.e. the model providing an accurate description of the data and that considers the

smallest number of parameters is the most adequate.

• Parameters estimation: when p and q are chosen, the parameters of the process

{φ1, . . . , φp, θ1, . . . , θq} can be estimated by using the Maximum-Likelihood Esti-

mation (MLE) method. After specifying a distribution for the white noise (et)t∈Z,

the log-likelihood function of the joint PDF f is computed in order to estimate the

unknown parameters by means of an optimization procedure.

• Diagnostic checking: a model that has been identified and estimated is generally

used to forecast future values. Nonetheless, due to the fact that the fitted model is

just a simplification of the true model, forecasting may lead large errors. Thus, the

last step consists in checking the accuracy of the proposed model by examining the

correlogram of the residuals from the fitted model in order to see if these residuals

represent a white noise.

ARMA models are widely used in the finance field in order to forecast the evolution of

market indices for instance. These ARMA models are convenient for several reasons. Since

various theories are well-developed in the fields of linear differences equations, Gaussian

models and statistical inference, the fitting procedure of this type of model is quite easy

to compute. Moreover, due to the fact that this class of models has gained in popularity in

data analysis and forecasting, several numerical packages are now available for handling

these models. Although ARMA models give satisfactory results in various cases, the main

shortcoming of this type of model lies in the assumption of a constant variance. Thus,

these models are not able to capture some data characteristics such as the volatility (i.e.

changes of variance). Note also that ARMA models can be extended to VARMA (Vector

Autoregressive Moving Average) models in the multivariate case. The following paragraph

gives further details on a particular autoregressive model used for fatigue load modeling,

namely the discrete-time Markov chain.

Discrete-time Markov chains

Markovian processes is a particular family of autoregressive processes. A particular feature

of this type of process, named Markov property, relies into the fact that they are mem-

oryless, i.e. the next state depends solely on the current state and does not depend on
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2.3. Fatigue loading assessment and modeling

the past states. In the following, only the discrete-time Markov processes are presented. A

first order discrete-time Markov chain is a sequence of random variables (Xn)n∈N∗ taking

values in a finite state space E in such a way that the conditional distribution of Xn+1

knowing (Xm)m≤n equals the distribution of Xn+1 knowing Xn:

P (Xn+1 = en+1|Xn = en, Xn−1 = en−1, ..., X1 = e1) = P (Xn+1 = en+1|Xn = en) (2.25)

A Makov chain is said to be time homogeneous, if the conditional probabilities P (Xn+1 =

ek|Xn = el) do not depend on n:

P (Xn+1 = ek|Xn = el) = P (X2 = ek|X1 = el), (ek, el) ∈ E × E (2.26)

A Markov chain is completely defined by its initial distribution P (X1 = el) and its tran-

sition matrix or stochastic matrix, denoted P :

P =




p1,1 p1,2 · · · p1,l · · · p1,K

p2,1 p2,2 · · · p2,l · · · p2,K

...
... · · · ... · · ·

pk,1 pk,2 · · · pk,l · · · pk,K

...
... · · · ... · · ·

pK,1 pK,2 · · · pK,l · · · pK,K




(2.27)

where pk,l is the conditional probability to change from one state ek to another state el

and K = Card(E). Note that P is a non-negative matrix whose rows sum to 1.

The conditional probabilities pk,l can be inferred from observed trajectories of the

process X by means of the MLE method. Let {x1,x2,. . .,xN } be a set of N consecutive

realizations of the Markov chain X. The likelihood function L(pk,l, x1, x2, . . . , xN ) reads:

L(pk,l, x1, x2, . . . , xN ) =
∏

k,l

pk,l
nk,l (2.28)

where nk,l is the number of transitions observed between the states ek and el. The estimates

p̂k,l of the conditional probabilities pk,l can be assessed by maximizing the logarithm of

the likelihood function under the restrictions
∑K

l=1 pk,l = 1 and 0 ≤ pk,l ≤ 1:

p̂k,l =
nk,l∑K

l=1 nk,l

(2.29)

The transition probabilities are computed by dividing the observed number of transition

from ek to el by the total number of transtions starting from the state ek. More details

can be found concerning the transition probability estimation in the article of Anderson

[63]. A few applications of ARMA models and Markov chains to the modeling of fatigue
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operating loads are presented in the following paragraph.

Applications of random processes to fatigue analysis

Random processes are used in a wide range of application fields like econometrics [64],

earthquake engineering [65], fluid mechanics [66], offshore structures and coastal engi-

neering [67–69], material and fracture mechanics [70]. Concerning fatigue analysis, several

authors focused their work on the modeling of sequence of peaks and valleys by means of

random processes and studied the connection which exists between rainflow counting re-

sults and random processes. For instance, Rychlik et al. [71] proposed to model a sequence

of peaks and valleys by means of a Markov chain and demonstrated the interest of their

method on regular and irregular Gaussian stationary processes. Soon after that, Rychlik

[72] dealt with the inverse problem consisting in reconstructing a Markov chain of local

extrema from an average rainflow counting.

Johannesson [73] mainly contributed during his PhD to extend the works done by Rych-

lik by presenting algorithms for the calculation of expected rainflow matrices for random

loads described by switching processes with Markov structure. More recently, Benasciutti

et al. [74] estimated the statistical distribution of fatigue cycles of non-stationary random

loadings. Castillo et al. [69] also extended the rainflow matrices assessment by means of

first-order switching Markov chains to the case of switching second order Markov chains

to model a sequence of sea states in order to improve the design of rumble mound break-

waters. Moreover, in a similar way as performed by Rychlik and Johannesson, Mattrand

et al. [75] experimented the use of discrete-time Markov chains and hidden Markov chains

to model sequences of max-min fatigue stress cycles. Rather than modeling the sequence

of local extrema, i.e. from a min to a max or from a max to a min, Markov chains directly

define the sequence of stress cycles (a cycle being defined as a sequence of a max and a min

together). They have shown that this new Markov chain definition provides satisfactory

results for the modeling of stress cycles of an in-flight aircraft.

A recent work done by Ling et al. [76] consists in testing three methods (rainflow count-

ing, Markov chain, ARMA model) to characterize and reconstruct fatigue load spectra.

The corresponding rainflow matrices, transition probability matrices and ARMA model

parameters are assessed and updated in real time by means of data coming from he-

licopter combat maneuver. Then, artificial load-time histories are re-generated by using

each method. The authors conclude, by means of a Bayes hypothesis testing, that the three

models are comparably suitable to fit well the studied load-time history even though the

ARMA model seems to be the most appropriate model according to the overall confidence

value.

Although stationary Gaussian processes are not detailed in this manuscript, this class

of random processes was found to be suitable for fatigue loads modeling in automotive and

aerospace industry, especially concerning spectral analyses of fatigue loading. For instance,
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Pitoiset [77] and Benasciutti [78] contributed to the development of spectral methods to

perform fatigue analysis of components subjected to Gaussian or non-Gaussian random

loadings.

As detailed before in the case of random processes, the following section presents

another model that enable to consider the uncertainties related to fatigue loading.

2.3.3 Elementary loads mix strategy

The elementary load mix strategy considers that fatigue loading of structural components

is a combination of elementary loads induced by a specific use of the component. This

method, which was used in industrial applications [2, 3, 6], is suitable to model fatigue

loading if two kinds of data are available: the field records of the considered fatigue loading

and the proportion of time spent in each elementary situation.

Lefebvre et al. [2] consider for instance that the use profile of a space launcher com-

ponent can be classified according to three quantities of interest: the space rocket velocity

(three classes: Mach 1, Mach 2 or Mach 3), the incidence angle (three classes) and the

yawing angle (three classes). Thus 27 elementary load situations are defined accounting

for these parameters. In the same way, let us consider the simple example considering two

quantities of interest Ai and Bj depicted in figure 2.11. Ai and Bj consist respectively of

two-by-three classes with their related percentages of occurrence pi and qj (i = {1, 2} and

j = {1, 2, 3}). Therefore, the six possible situations are {A1B1, A1B2, A1B3, A2B1, A2B2,

A2B3}. Several field records are performed in order to assess the elementary loads L
(1)
i,j ,

L
(2)
i,j ,... for each elementary situation AiBj . Note that these field recordings are usually

converted into loading spectra or Rainflow matrices normalized by a chosen reference case

(e.g. A1B1) in order to facilitate further mixing. The proportion of time spent in each

elementary load situation (pi, qj) during the lifespan of the structure is considered as

random, these being generally selected in uniform probability laws.

A mixed loading L can be reconstructed by selecting a virtual life in the possible

elementary situations:

L =
2∑

i=1

3∑

j=1

piqjL
(k)
i,j (2.30)

where k is the kth elementary load randomly selected for each situation. Considering the

example of virtual life depicted in figure 2.11, equation 2.30 becomes:

L = p1q1L
(1)
1,1 + p1q2L

(4)
1,2 + p1q3L

(2)
1,3 + p2q1L

(3)
2,1 + p2q2L

(1)
2,2 + p2q3L

(3)
2,3 (2.31)

The elementary load mix strategy requires to select realizations of random variables

related to the proportions pi and qj on one hand, and discrete probabilities enabling to

choose an elementary load for each situation on the other hand. Note that pi and qj are

fully correlated since there sum must equal 1. In the case of two possibilities of occurrence
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Figure 2.11 – Illustration of the load mix strategy in the case of two quantities of interest.

for an elementary situation as depicted in figure 2.11, p2 can be entirely inferred since p1

is known (p2 = 1 − p1). Nevertheless, this becomes more complex when the number of

classes exceeds 2. This is the case for instance of the elementary situation B that consists

of three classes (see figure 2.11). Given that K is the number of recorded elementary loads

per situation, the kth elementary load selected for a virtual life is chosen by using discrete

probabilities that equal 1/K. As seen in figure 2.11, three elementary loads (L
(k)
1,1 with

k = 1, 2, 3) have been recorded for the situation A1B1. Therefore, the probability to select

one of these loads is equal to 1/3. Then, the probability to choose an elementary load

related to the situation A1B2 equals 1/4, and so on.

Although the elementary load mix strategy is suitable for the modeling of operat-

ing loads, this procedure presents some limits. Actually, if a great number of elementary

loads belongs to each class, the number of random variables to be handled becomes very

high, which leads to increase drastically the computational time needed to perform the

procedure.

In the following section, mixture models of loading spectra are presented as another

convenient method allowing to account for the uncertainties related to fatigue loading.

2.3.4 Mixture models of loading spectra

As presented in the previous section, the elementary load mix strategy requires the mon-

itoring of components over an extended operating period. Nonetheless, the monitoring of

structures may be difficult due to the fact that equipments and devices (e.g. strain gauges)

used to perform field recordings are sometimes expensive and difficult to install when the

structure to monitor is relatively inaccessible. Moreover, if the monitoring period becomes

very long, the amount of data is sometimes too large to be analyzed with ease. These rea-
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Figure 2.12 – Illustration of the mixture model proposed by Nagode and Fajdiga [79].

sons explain why field recordings are generally performed during short time-periods, which

may cause some problems since collected data do not necessarily account for all the cycles

applied to the structure during its service life. The problem of extrapolating with accuracy

field measurements thus arises. One method to solve this problem consists in modeling the

load ranges by means of a uni-modal probability density function. Although this method

may be helpful in the case of stationary random processes, this becomes ineffective for

non-stationary random loads. This explains why during the last decade, some authors

[79–85] were interested in handling the problem of extrapolating the structural fatigue

loading by means of mixture models of Rainflow matrices or loading spectra. Although

the method presented in the following is suitable for the modeling of rainflow matrices,

only the mixture models of loading spectra is presented in this section.

Multi-modal rainflow ranges distribution f(∆σ) is assumed to be modeled by a mixture

of component PDFs as follows :

f(∆σ) =
m∑

l=1

wlfl(∆σ) (2.32)

where ∆σ are the counted ranges, wl is the lth weighting factor with wl ≥ 0 (l = 1, ..., m)

and
∑m

l=1 wl = 1. PDF examples which are listed in table 2.2 correspond to parametric

component PDFs commonly used in mixture models (see Nagode [86]).

As pointed out by Buc̆ar et al. [87], the most efficient methods to assess the number of

component distributions l, the weighting factors wl and the parameters of each component

PDF are respectively the EM algorithm [87] and the REBMIX procedure [86]. For the sake
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Normal 1√
2πσl

exp

{
−1

2

(
∆σ−µl

σl

)2
}

Lognormal 1√
2πξl∆σ

exp

{
−1

2

(
ln(∆σ)−λl

ξl

)2
}

Weibull βl

θl

(
∆σ
θl

)βl−1
exp

{
−
(

∆σ
θl

)βl

}

Gamma 1
Γ[βl]∆σ

(
∆σ
θl

)βl

exp
{

−∆σ
θl

}

Binomial
( θl

∆σ

)
p∆σ

l (1 − pl)
θl−∆σ

Poisson
eθl θ∆σ

l

∆σ!

Dirac

{
1 if ∆σ = θl

0 otherwise

Table 2.2 – Parametric component PDF families commonly used in mixture models [86].

of clarity, only the general principle and the advantages and drawbacks of these estimation

methods are detailed in this thesis. On one hand, the EM (Expectation Maximization)

algorithm is an iterative procedure consisting of two steps. First, the expectation of the

maximum likelihood function is evaluated by considering a set of estimated parameters.

Second, a new set of parameters is found by maximizing the expectation assessed at the

previous step. Then, the new set of parameters is used as an input of the first step and the

procedure is reiterated. The EM algorithm provides a good agreement between observed

and assessed PDFs if the number of component PDFs is properly chosen. Nevertheless, the

results and convergence of this method are highly dependent on the chosen initial condi-

tions leading to a high computational time for a large number of component PDFs. On the

other hand, the REBMIX method consists in identifying the global mode of the multivari-

ate distribution which corresponds to the first component PDF. Then, the observations

belonging to this PDF are automatically clustered and the maximum likelihood method is

used to infer the corresponding PDF parameters. Subsequently, the mode corresponding

to the second component PDF is identified and the procedure is repeated until a sufficient

number of components allows the mixture model to fit well the observed distribution. Al-

though more component PDFs are required in comparison with the EM algorithm in the

mixture model assessment, the REBMIX procedure presents many advantages. Initial con-

ditions (number of components or component parameter initial values) are not required.

The procedure also features numerical stability and high speed convergence. The reader

can refer to [86] and [87] for further details about the implementation of the REBMIX
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2.3. Fatigue loading assessment and modeling

algorithm.

One example of the REBMIX promoted by Nagode and Fajdiga [79] is detailed in the

following. As depicted in figure 2.12, Nagode and Fajdiga originally proposed to use a

mixture of two-parameters Weibull PDFs (see the third line of table 2.2) in order to model

the distribution of rainflow ranges ∆σ. The associated cumulative distribution function

F (∆σ) reads:

F (∆σ) = 1 −
m∑

l=1

wl exp

{
−
(

∆σ

θl

)βl
}

(2.33)

where βl and θl are respectively the shape and scale parameters of the lth Weibull distri-

bution. Therefore, the loading spectrum H(∆σ) is expressed as a function of F (∆σ):

H(∆σ) = H0(1 − F (∆σ)) (2.34)

where H0 is the total number of load cycles. The loading spectra Hij (j = {1, 2, . . . , r})

and the resulting average spectrum Hi depicted in figure 2.13 were determined from r

experimental data sets (measurements on a forklift in operation). Moreover, the loading

spectra assessed by using the model presented above are given for m respectively equal

to 1, 2, 3 and 4. As shown in figure 2.13, a good agreement between the mixture model

and the experimental average loading spectrum is found when m reaches 4, i.e. when four

component PDFs are used. Nagode and Fajdiga [79] showed the efficiency of their method

on several loading spectrum examples having shapes noticeably different. Note that the

proposed method also enables to extrapolate loading spectra outside of the measurement

range.

Beside the fact that the loading sequence is lost in the mixture models proposed by

Nagode and Fajdiga, Tovo [88] highlighted two other drawbacks. He emphasized that at

least three or four component PDFs are needed to properly describe the range distribu-

tions and that there is no unique solution for the unknown parameters estimation because

it strongly depends on the chosen shutoff criterion. By investigating the relationship be-

tween the multi-modal distribution and the damage caused on a structural element, Tovo

proposed to simplify the previous multivariate model into a single Weibull distribution for

the case of stationary load histories having one dominating mode in the damage calcula-

tions. The efficiency of the method is demonstrated by using experimental measurements

coming from a motorcycle frame in off-road riding.

Although Nagode and Fajdiga improved their method [89, 90], another main drawback

remains due to the subjectivity introduced by the user choice of the number of component

PDFs of the mixture model. Klemenc and Fajdiga proposed alternative methods as a

hierarchical clustering of load cycles [83, 91] or a modified EM algorithm [92] enabling to

avoid this problem. Nagode and Fajdiga [93] also introduced a method where the number

of component PDFs is no longer needed and they provided improvements consisting in
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Figure 2.13 – Illustration of spectrum assessed by Nagode and Fajdiga [79] with the mixture
model.

changing the shutoff criterion and treating the residual by using the Bayesian decision

rule. Lastly, note that the unknown parameters and the weighting factors still depend on

the choice of the binning of observations (i.e. class widths of the histogram of rainflow

ranges).

Three different models enabling the modeling of operating loads related to fatigue were

presented in the above sections. The choice of an appropriate method in the case of fatigue

loading of crane members will be performed in chapter 4 after having studied carefully

in chapter 3 the available data related to crane use. The following section is devoted to

the description of the general probabilistic principles and reliability methods used in this

research work.

2.4 General reliability methods

The main objective of this research work is to develop a comprehensive probabilistic proce-

dure enabling to assess the reliability of crane members according to their operating time.

For this purpose, the basic principles of reliability methods needed to achieve this essen-

tial task are discussed in this section. The time-dependent reliability is first introduced

in section 2.4.1 and, section 2.4.2 presents the so-called stress-strength interference (SSI)

methods. Following this, section 2.4.3 gives definitions related to the reliability index, and
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section 2.4.4 describes the Monte Carlo simulations. Lastly, the Sobol sensitivity analysis

method is outlined in section 2.4.5.

2.4.1 Time-dependent reliability

The design of a structure is considered as acceptable when it fulfills the predefined re-

quirements (thermal or mechanical response, volume, etc). Standards usually distinguish

several types of acceptance criteria, known as the limit states:

• The ultimate limit state (ULS) is generally related to the collapse of a structure due

to a loss of capacity (stiffness or strength).

• The serviceability limit state (SLS) is stated in order to guarantee the good operation

of the structure under normal use conditions.

• The fatigue limit state (FLS) is conventionally connected to the fatigue damage

accumulation in structural details subjected to repeated loading.

• The accidental limit state (ALS) is associated to an excessive structural damage due

to accidents (e.g. explosion, collision, earthquake).

Structural reliability consists in predicting the probability (i.e. numerical measure of oc-

currence) of exceeding a limit state at any moment, throughout its lifespan. The limit state

is generally described by a rule (or a set of rules) corresponding to a failure scenario. As

introduced in section 1.5, this can be mathematically expressed by means of a performance

function G involving random variables X(ω, t). ω means that X are random and t sug-

gests that X vary according to the time. As a consequence, the limit state coincides with

G(t, X(ω, t)) = 0 while G(t, X(ω, t)) > 0 and G(t, X(ω, t)) < 0 represent respectively the

safety and failure domains.

Considering a reliability analysis involving random variables X(ω, t) related to a failure

scenario and assuming that there is an instant τ , belonging to the time interval [t1,t2],

for which the structure fails, the general form of the failure probability can be written as

follows:

Pf (t1, t2) = Prob(∃τ ∈ [t1, t2], G(τ, X(τ, ω)) ≤ 0) (2.35)

Assuming the regularity of the process, i.e. if the performance function is equal or lower

than zero (G ≤ 0) only one time during the small time interval [τ ,τ+∆τ ], the previous

formula becomes the exact expression of the cumulative failure probability Pf,c(t1, t2).

Moreover, the instantaneous failure probability Pf,i(t), representing the failure probability

of the structure at the time instant t, is expressed by means of the following relation:

Pf,i(t) = Prob(G(t, X(ω, t)) ≤ 0) (2.36)
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As shown by Céline Andrieu-Renaud during her PhD [94], Pf,i and Pf,c(t1, t2) are theoret-

ically different, excepted if the performance function G decreases monotonically according

to t. This may occur for instance for degradation processes such as corrosion and fatigue

cracking. Once a crack appears, fatigue cracking leads to the degradation of material char-

acteristics until a potential strengthening (re-welding, etc) of the structure. Therefore, in

the case of a performance function strictly decreasing until a time t < ∞, the instantaneous

failure probability is identical to the cumulative failure probability:

Pf,i(t) = Pf,c(0, t) (2.37)

As described in section 2.2.1, only the initiation of macroscopic weld toe cracks is consid-

ered in this work, which leads to assume that the resistance of crane welded details is not

supposed to evolve with time. Thus, given that the crane member fatigue damage induced

by cyclic loading increases with operating time, the margin between the resistance and

the stress of the structure decreases monotonically. Consequently, the probabilities calcu-

lated in the following correspond either to instantaneous or cumulative failure probabilities

and are denoted Pf . Additionally, for the sake of clarity, the notation ω, indicating the

randomness inherent to the variables, is omitted in the following.

2.4.2 Stress-strength interference methods

In industrial context, the most simple failure scenario consists in comparing two random

variables related respectively to a stress S (demand) on one hand and a strength R (supply)

on the other hand. In other words, a structure is safe in accordance with a failure criterion

if, at any time, the applied stress remains below the strength of the component. Methods

based on the separation of S and R are named SSI (Stress-Strength Interference)

methods. As shown in section 2.4.1, S and R can be time-variant depending on the

physical behavior of the studied structure. For instance, R = R(t) if the corrosion of

a metallic component is considered or S = S(t) if a structure is subjected to random

loading. By the way, the performance function G is regularly expressed as a combination of

progressive degradation process R(t) and a random loading S(t): G(t) = S(t)−R(t). More

details about SSI methods are given in [14, 15] and examples of industrial applications

can be found in [6, 16, 17].

The failure criterion considered in this thesis concerns exclusively the initiation of a

macroscopic crack at weld toe. Thus, the material characteristics decrease induced by

crack propagation is not considered here. Furthermore, crane structural assemblies are

painted in order to prevent corrosion problems. As a result, fatigue strength of crane

welded assemblies is supposed to be time-independent. By contrast, as seen in section

1.4, the construction site duration and the time between two jobs imply uncertainties

concerning crane use (i.e. structural loading) leading to the conclusion that crane member
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Strength
Stress

Figure 2.14 – Stress-strength interference method.

loading is highly time-dependent. Hence, the performance function G corresponding to the

reliability method presented in this thesis is expressed as follows:

G(t) = R − S(t) (2.38)

As depicted in figure 2.14 for the case of two Gaussian distributions, the reliability of a

crane structural member can be assessed by characterizing two PDFs related respectively

to the stress S(t) and the strength R. Assuming that these distributions can be determined

and are independent, the failure probability Pf (t) = Prob(G(t) ≤ 0) or equivalently the

reliability R(t), depending on operating time t, is assessed as follows:

R(t) = 1 − Pf (t) = 1 −
∫ ∞

−∞
fS(x, t)FR(x)dx (2.39)

where fS and FR are respectively the stress PDF and the strength CDF.

SSI methods assume that stress and strength distributions are statistically independent

which is not the case in some situations. A second assumption highlighted by Echard

et al. [95] lies in the fact that these distributions cannot be fully observed. Therefore,

reliability results are very sensitive to the PDF models chosen to fit experimental data.

Concerning tower cranes, the intrinsic fatigue strength of crane members is independent

of loading history. The first assumption is therefore verified and, provided that the stress

and strength PDFs can be fully determined, the stress-strength interference method can

be used.

2.4.3 Reliability index

Rather than talking about failure probability, it is sometimes convenient to use a dimen-

sionless measure which reflects the reliability of a structure, namely the reliability index.

Cornell [96] proposed in 1970 to define the reliability index as the inverse of the coefficient
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of variation of the margin Z = R − S:

βC =
µZ

σZ
(2.40)

For instance, concerning the two independent Gaussian distributions presented in section

2.4.2, the previous formula becomes:

βC(t) =
µR − µS(t)√
σ2

R + σS(t)2
(2.41)

Although the Cornell reliability index seems to be convenient in some simple situations

(e.g. Gaussian distributions and linear limit state), this index is sometimes difficult to use

because of its lack of generality. In fact, the most general form of the reliability index was

given by Hasofer and Lind in 1974 [97]. They proposed to convert random variables from

the physical space to a space of standardized independent Gaussian variables (having zero

mean and unit variance) by introducing an isoprobabilistic transformation T . Thus, the

method consists in converting independent physical random variables X (of realizations

x) into independent standard Gaussian variables U (of realizations u) by writing the

mathematical equality of CDFs:

Φ(u) = FX(x) ⇒ x
T−→ u = Φ−1 (FX(x)) (2.42)

where Φ refers to the standard Gaussian CDF. Thereafter, as seen in figure 2.15, the

performance function G is transformed into H in the standardized space, i.e. H(U) ≡
G
(
T −1(U)

)
. Hence, the Hasofer-Lind reliability index β corresponds to the minimum

distance between the origin and the failure domain:

β = βHL =
√

utu under the constraint H(u) ≤ 0 (2.43)

In the case of two independent Gaussian distributions and linear limit state as presented

before, the Hasofer-Lind and Cornell reliability indexes are equivalent and derived from

equation (2.41). Furthermore, when an analytical expression of R exists, β derives directly

from R. Thus, remembering the time-dependent reliability R(t) expression given in section

2.4.2, this leads to:

β(t) = −Φ−1 (1 − R(t)) (2.44)

If no analytical expression exists for R, the reliability index has to be quantified by means

of a numerical method such as Monte Carlo simulations presented in the following section.

More details concerning the reliability index can be found in the book of M. Lemaire [12].

Furthermore, the assessment of the stress S and strength R distributions is detailed in

chapter 4 in this thesis.
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Figure 2.15 – Illustration of an isoprobabilistic transformation.

2.4.4 Monte Carlo simulations

As shown in section 2.4.1, the failure probability reads:

Pf = Prob(G(X) ≤ 0) (2.45)

By introducing the joint probability density function fX(x), Monte Carlo simulations

consist in performing random sampling of variables X in the whole physical space in order

to evaluate the following integral:

Pf =

∫

Df

fX(x)dx1dx2...dxn (2.46)

where Df is the failure domain. By using the isoprobabilistic transformation T , the previ-

ous integral is expressed in the standardized space, leading to recast the failure probability

as:

Pf =

∫

Df

φn(u)du1du2...dun (2.47)

where φn is the joint standard Gaussian PDF. As detailed in the book of Lemaire [98], the

introduction of the indicator function IDf
(u) = {1 if H(u) ≤ 0 and 0 otherwise} enables

to rewrite the previous integral as follows:

Pf =

∫

Df

IDf
(u)φn(u)du1du2...dun (2.48)
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Figure 2.16 – Illustration of Monte Carlo simulations in the case of two standard Gaussian
variables. Gray points mean that the realizations of U1 and U2 are located in the safe
domain while the black points mean that they are located in the failure domain.

Thus, the failure probability defined in equation 2.48 can be approximated as:

Pf = E

[
IDf

(u)
]

≈ P̃f =
1

NMC

NMC∑

i=1

IDf

(
u

(i)
)

(2.49)

where E[.] is the mathematical expectation and NMC is the number of Monte Carlo sim-

ulations. As depicted in figure 2.16 for the case of two standard Gaussian variables, Pf is

assessed by dividing the number of points located in the failure domain (black dots) by

the total number of sampled points. An estimation of the failure probability variance can

be defined from the estimation of Pf :

ṽar
[
P̃f

]
≈ P̃f

NMC

(
1 − P̃f

)
(2.50)

The estimation of P̃f with unknown variance leads to the expression of a two-sided confi-

dence interval:

P̃f − t1− α
2
(ν)

√
var

[
P̃f

]
≤ Pf ≤ P̃f + t1− α

2
(ν)

√
var

[
P̃f

]
(2.51)

where t1− α
2
(ν) is the Student variable of parameter ν = NMC−1 and α is the percentage of

confidence on the estimation. The reliability index β̃ is then assessed by replacing (1−R(t))

by the estimated failure probability P̃f in equation (2.44).

Monte Carlo simulations constitute the most simple and general method to simulate
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random situations because they do not require any simplification assumption enabling to

solve the reliability problem. Nonetheless, the major drawback lies in the fact that this

method is extremely time-consuming. For instance, the assessment of a 10−n probability

with an acceptable confidence interval requires between 10n+2 and 10n+3 simulations.

Hence, this numerical method cannot be used for complicated reliability studies involving

heavy mechanical models. Despite this drawback, the results coming from Monte Carlo

simulations are often used as reference case to judge of the efficiency and precision of

alternative methods. The reader can refer to [12, 13] for more details about Monte Carlo

simulations.

2.4.5 Stochastic sensitivity analysis

Sensitivity analyses enable the evaluation of the impact of random variables on a quantity

of interest. Once integrated in the design process, they constitute efficient tools allowing

to appreciate the significance of each random variable on the model response (e.g. the

reliability index). This becomes particularly convenient when deciding what variables must

be modified first in order to reach a reliability target. Furthermore, sensitivity analyses

aim at avoiding the over-parametrization of a model by setting non-influential parameters

to deterministic values. From this perspective, sensitivity analyses may be useful in the

frame of this research work in order to evaluate the impact of input variables on the crane

use model developed in chapter 4.

Sensitivity analyses can be divided into three main classes. First, local analyses focus on

how a slight perturbation of input variables around a given value (e.g. the mean) influences

the model output. Second, screening methods constitute a generalization of local analyses

and enable the classification of input variables, while keeping a reasonable computational

time. Third, global procedures aim at studying the influence of the whole variability of

input parameters on model outputs. This section covers exclusively this class of method

by presenting the variance-based Sobol’s procedure because the variability of both stress

and strength distributions influence the reliability results of the SSI method developed in

chapter 4. Nonetheless, an overview of sensitivity analyses can be found in the book of

Saltelli [99].

Variance decomposition

Let f be an integrable function on the p-dimensional interval Ip:

f : Rp −→ R

X 7−→ Y = f(X)
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Assuming a model having independent inputs, Sobol’ [100] introduced the decomposition

of the variance of f into a sum of variance functions of increasing order:

V = Var(Y ) =
p∑

i=1

Vi +
∑

1≤i<j≤p

Vij + . . . + V1...p (2.52)

with





Vi = Var(E[Y |Xi])

Vij = Var(E[Y |Xi, Xj ]) − Vi − Vj

V1...p = V −∑p
i=1 Vi −∑

1≤i<j≤p Vij − . . . −∑
1≤i1<...<ip−1≤p Vi1...ip−1

where Vi is the conditional variance of Y knowing Xi, Vij is the conditional variance of

Y knowing Xi and Xj and so on. This decomposition of the variance of f enables to

appreciate the impact of input random variables on the variance of Y by defining the

following ratios:

Si =
Vi

V
(2.53)

Sij =
Vij

V
(2.54)

Si and Sij are named respectively first and second order Sobol’ indices. When the number

of input variables p is high, the number of sensitivity indices to assess increases rapidly,

which may complicate their interpretation. Starting from this observation, Homma and

Saltelli [101] introduced new global sensitivity indices, namely the total sensitivity indices

STi
. They represent a measure of the total sensitivity of Y to Xi, i.e. this is the sum of all

the Sobol’ indices involving the variable Xi. For instance, in case of three input random

variables, ST1
is the sum of S1, S12, S13 and S123. The total indices STi

can be assessed

by using the following relation:

STi
= 1 − V∼i

V
(2.55)

where V∼i is the variance of the output resulting from the variation of all parameters

excepted Xi.

Sobol’ indices estimation

A simple method to estimate Sobol’ indices consists in using Monte Carlo simulations

as presented in section 2.4.4. Let M1 and M2 be two independent N × p matrices of N

realizations of the p input variables. The estimation of first order and total Sobol’ indices

can be performed by estimating the total variance V̂ as follows:

V̂ =
1

N − 1

N∑

m=1

[
f2(x(1)(m))

]
− f̂2

0 (2.56)
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with

f̂2
0 =

1

N

N∑

m=1

[
f(x(1)(m))f(x(2)(m))

]
(2.57)

where x(1)(m) and x(2)(m) are respectively the sample sets coming from M1 and M2, re-

spectively. Then, the variances V̂i and V̂∼i can be determined as follows:

V̂i =
1

N − 1

N∑

m=1

[
f(x(1)(m))f(x

(2)(m)
∼i )

]
− f̂2

0

V̂∼i =
1

N − 1

N∑

m=1

[
f(x(1)(m))f(x

(1)(m)
∼i )

]
− f̂2

0

V̂ij =
1

N − 1

N∑

m=1

[
f(x(1)(m))f(x

(2)(m)
∼i,j )

]
− f̂2

0 − V̂i − V̂j

where x
(2)(m)
∼i is the sample set coming from M2, excepted for Xi taken from M1. This

means that all the input parameters vary, excepted Xi. Similarly, x
(1)(m)
∼i is the sample set

coming from M1, excepted for Xi taken from M2. In this case, only the input variable Xi

varies. Lastly, x
(2)(m)
∼i,j is the sample set coming from M2, excepted for Xi and Xj which

are picked from M1. Subsequently, the first order, second order and total Sobol’ indices

are determined through equations (2.53), (2.55) and (2.54) by replacing Vi, V∼i, Vij and

V respectively by their estimates V̂i, V̂∼i, V̂ij and V̂ .

Sobol’ indices are fairly easy to interpret because they are all positives and their

sum is equal to one. Hence, the greater the Sobol’ index, the higher the impact of the

variable on the variance of the result. By contrast, even though total Sobol’ indices are

also positives, their sum exceeds one. Nonetheless, these indices are useful to judge if

a variable, apparently non-influential alone, turns to be important when combined with

other variables.

The Sobol’s method has grown in popularity thanks to the increase of computational

capacities that occurred during the last decade. This global sensitivity analysis presents

some advantages. First, no assumption is required concerning the linearity, additivity or

monotonicity of the model. Second, this method accounts for the shape and the scale of

input parameters as well as the possible interactions between them. Third, the Sobol’s

method provides the opportunity to manage grouped variables as if they were single pa-

rameters. Fourth, this method enables to identify the input variables that need to be

well-characterized, which is very useful in the frame of this work. The main drawback of

this method lies in the fact that the number of model evaluations needed to provide accu-

rate sensitivity results is high. One possible alternative enabling to enhance convergence

of Sobol’ indices consists in performing Quasi-Monte Carlo simulations.
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2.5 Conclusion

This chapter enabled us to define through three main topics (fatigue, loading and relia-

bility) the basic principles used to fulfill the objectives of this research work. First, the

fatigue phenomenon of welded connections has been introduced and the main influence

factors on fatigue lifespan have been listed. Thereafter, the Dang Van fatigue criterion and

S-N curves have been presented as a convenient tool to predict and analyze crack initiation

of materials. Second, the concepts related to the assessment and modeling of fatigue load-

ing have been outlined. Loading cycles can be counted by using the widely-used Rainflow

procedure and cumulative damage can be quantified by means of the Palmgren-Miner’s

rule. Following these definitions, three methods enabling the modeling of fatigue loading

have been detailed. The first model is based on random processes while the two others

(elementary loads mix strategy and loading spectra mixture model) use the results com-

ing from the Rainflow counting. Third, general notions concerning reliability have been

illustrated through the definition of the time-dependent reliability, SSI methods and reli-

ability index. Additionally, Monte Carlo simulations have been presented as the simplest

method enabling the assessment of the reliability of a structural component. Finally, a

global sensitivity analysis procedure, namely the Sobol’s method, has been detailed. Most

of the notions, concepts and methods presented in this chapter are used in chapter 3 and

chapter 4.
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The fatigue phenomenon consists generally of two main steps: crack initiation

and propagation. Furthermore, fatigue cracks of welded connections always ap-

pear either on the toe or the root of the welding depending on several factors

(loading mode, surface roughness, ect.). In this thesis, crack initiation of weld

toes is considered as the failure criterion for crane structural members. The Dang

Van fatigue criterion, which considers crack initiation, aims at calculating an

equivalent local stress at weld toe. Moreover, the results coming from constant

amplitude tests are usually represented by means of S-N curves, the latter con-

sisting in plotting the number of cycles to failure versus the stress range applied

to the tested specimens. Standards dealing with fatigue usually provide proba-

bilistic S-N curves guaranteeing a low failure risk for a great number of welded

details. In addition, the fatigue damage of structures are usually quantified by

using the Palmgren-Miner’s rule to sum partial damages caused by fatigue cycles

of different amplitudes.

The prediction of the fatigue behavior of components requires the assessment and

modeling of the structural fatigue loading. Fatigue cycles of variable amplitude

can be counted by using the Rainflow counting method. Furthermore, several

modeling procedures exist to reproduce the fatigue loading reflecting the oper-

ating conditions. A first method consists in modeling the temporal evolutions of

fatigue loads by means of random processes. Another method aims at perform-

ing on-site recording of multiple elementary loads and to pick them randomly

in order to reconstruct several virtual lives for a structural component. The last

method consists in quantifying the randomness of loading spectra from several

measurements in order to simulate virtual loading spectra reflecting the real use

of the structure.

As pointed out in chapter 1, the crane use depends on several uncertainties vary-

ing with time. The fatigue phenomenon being a non regenerative degradation pro-

cess, the instantaneous and cumulative failure probability of structural members

are equivalent. This probability, or its related reliability index, can be assessed

by using a stress-strength interference method combined with Monte Carlo sim-

ulations. Stress-strength interference methods consist in calculating the failure

probability of a structural member by studying separately uncertainties related

to its use and to its resistance. Finally, the Sobol’ sensitivity analysis method

represents an efficient and interesting tool enabling to quantify the impact of

input parameters on the outcomes (e.g. reliability index) of a model.

Chapter summary
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Chapter 3

Crane work data analysis
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3. Crane work data analysis

3.1 Introduction

As shown in section 1.4, the great variety of construction sites’ topography and dura-

tion leads to crane use uncertainties that are classified into two groups (intra- and inter-

construction site parameters). As seen in chapter 2, whatever the method that is chosen,

the modeling of crane operating loads requires the understanding and the quantification of

these uncertainties. This can be performed by collecting data by means of on-site record-

ing, database collection, customer surveys, etc. In the frame of this research work, data

coming from several sources have been collected. Recording was first performed on three

similar tower cranes, working on different construction sites. Moreover, a database con-

taining construction site durations was collected from a crane rental agency, and numerous

construction site drawings were provided by a construction firm. Thus, this chapter gives

the reader an overview of how these data were handled in order to develop the crane

member use model in chapter 4. Section 3.2 presents the construction site data processing

which consists in identifying and distinguishing crane cycles, while section 3.3 summa-

rizes the global characteristics of the three studied construction sites. Then, section 3.4

focuses on various possible representations of the results reflecting the work performed by

the crane on the sites, and section 3.5 discusses the quantification of the loading severity

related to crane structural members. Section 3.6 finally deals with the handling of crane

rental agency data and construction site drawings in order to quantify the variability of

inter-construction site parameters.

3.2 Construction site data processing

This section details the crane cycle identification that is performed from records according

to the definition given in section 1.3, and outlines the method used to distinguish crane

cycles per type of work related to the possible hoisted loads presented in section 1.4.

3.2.1 Construction site data recording

An in-house recording device was developed during this PhD in order to record a large

amount of temporal data. This device is able to record (each 250 ms) data such as time,

radius (position of the trolley along the jib), height of the hook, hoisted load value, slewing

angle, wind speed, drives speed (trolleying, slewing, hoisting), etc, which represents a file

of almost 20 Mo for a 8-hours working day. Figure 3.1 depicts the useful data for the

analysis of crane member loading over a time period of 280 min: load, radius, hook height

and slewing angle. As seen in the figure, the periodical nature of these signals confirms that

crane structural members are cyclically loaded and suggests that crane cycles identification

is relevant.
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Figure 3.1 – 280 min in-site data: hoisted load, radius, hook height and slewing angle.
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Figure 3.2 – Signal pre-processing considering a sample rate of four points per second.

3.2.2 Crane cycle identification

As defined in section 1.3, a crane cycle starts when the crane hoists a load and ends when

the crane is ready to hoist another load. Thus, the first step of data analysis consists in

identifying crane cycles by post-processing the load-time history recorded for each working

day.

Crane cycle identification is performed in the following order. First, as depicted in figure

3.2, the raw signal (dot-dash line) is preprocessed. The load-time history is smoothed using

a 5-seconds running average filter (dashed line) in order to reduce the number of dynamic

oscillations which do not correspond to significant load changes. Then, a sequence of peaks

and valleys (solid line) corresponding to local extrema is identified from the smoothed

signal. Second, let Li and Li+1 be two consecutive local extrema of the previous sequence

of peaks and valleys. If the ratio (Li+1 − Li)/ max(Li+1, Li) is higher than 0.5 (i.e. if a

significative positive load change is identified), the point corresponding to the the load

value Li is stored as a possible crane cycle starting point. The previous value was found

by successive iterations on various data sets.

As seen in figure 3.3, three possible starting points (black dots named 1, 2 and 3) verify

the previous condition. Nonetheless, the point 2 is not an effective crane cycle starting point

because during the first part of the signal, the crane hoists partially the load while workers

help to control the load before moving it. Therefore, a new condition must be defined in

order to delete points such as point 2. Let M be the maximum reached between two

consecutive starting points (e.g. points 1 and 2 in figure 3.3). ∆L1M and ∆L2M represent

66



3.2. Construction site data processing

140130128 132 134 136 138127 129 131 133 135 137 139

0

20

40

10

30

50

5

15

25

35

45

55

Figure 3.3 – First iteration of the identification of effective crane cycle starting points.
The condition ∆L1M /∆L2M ≤ 1.2 is not satisfied, leading to delete point 2.

respectively the load ranges between M and each of these possible starting points. If the

ratio ∆L1M /∆L2M is lower than 1.2, the point 2 is identified as an effective starting

point. Otherwise, the point 2 is deleted and the procedure is repeated by starting from

the remaining possible starting points. The value of 1.2 was found by successive iterations

on various data sets. Concerning the illustrative example depicted in figure 3.3, given that

the point 1 was already identified as an effective crane cycle starting point, the previous

condition is not satisfied and point 2 is deleted during the first iteration. Then, points 1

and 3 are considered together in a second iteration (see figure 3.4), which leads to identify

the point 3 as an effective crane cycle starting point.

The use of the two previous conditions enables the identification of the starting points

of all crane cycles occurring during a given period of time. The following section shows

how these cycles can be classified into three categories depending on the type of work

performed by the crane on the site.

3.2.3 Crane cycle per type of work

As seen in section 1.4, various loads of different type are moved by the crane from one

construction site location to another. Thus, the identification of different types of crane

cycles may be relevant to detect which type of load has been hoisted by the crane during

a cycle. Three main characteristic types of cycles were distinguished by analyzing the

load-time history depicted in figure 3.5. The first cycle (in figure 3.5 (a)) corresponds to

“concrete pouring cycles” where the concrete bucket is moved from the concrete mixing
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Figure 3.4 – Second iteration of the identification of effective crane cycle starting points.
The condition ∆L1M /∆L3M ≤ 1.2 is satisfied, leading to identify point 3 as an effective
starting point.

plant or the truck mixer position to the wall or the floor to be cast. Such a cycle is

formed by two load levels corresponding respectively to full (or partially full) and empty

concrete bucket. Figure 3.5 (b) shows that the second type of cycle has various load levels,

which means that the loads have to be hoisted in several steps. This is the case of forms,

walkways or prefabs which are quite difficult to put in place and are partially set down

while workers help to control them with caution. All these cycles belong to the “positioning

cycles” category. By contrast, figure 3.5 (c) shows “transfer cycles” which represent the

most simple type of crane cycle occurring on the construction site where a load (e.g. steel

framework) is simply moved from one place to another.

Some assumptions are made from the previous observations in order to distinguish each

type of cycles depending on the type of the work performed on the site. One important

aspect to consider is that all the concrete pouring cycles start or end at the drop position

of the concrete bucket (i.e. in the concrete loading area), which is helpful to differentiate

concrete pouring cycles from all the identified crane cycles. This position is fixed if a

concrete mixing plant is used on the construction site or slightly differs if the concrete is

brought by means of mixer trucks. For instance, figure 3.6 depicts the crane working area

on a construction site where a concrete mixing plant is used. As seen in the figure, the

positions of crane cycle starting or ending points are depicted by means of gray circles.

Note that all the crane cycles that are located at the position of the concrete mixing plant

(see gray points in figure 3.6) are classified into the concrete pouring category.
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Figure 3.5 – Examples of cycle per type of work: (a) concrete pouring, (b) positioning and
(c) transfer.
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Figure 3.6 – Illustration of the distinction of concrete pouring cycles from all crane cycles
for one day. The gray points indicate that crane cycles have started or ended at the drop
position of the concrete bucket.

69



3. Crane work data analysis

32 00031 800 31 900 32 100

20

10

5

15

25

0 20105 15

5

10

15

20

25

Figure 3.7 – Identification of load levels in a crane cycle. The black bars indicates that the
load classes are considered as significant.

When concrete pouring cycles are well identified, other crane cycle characteristics are

used to categorize the positioning and transfer cycles. Given that transfer cycles consist

of a single non-zero load level, the main idea is to count the number of load levels related

to each type of cycle in order to separate them. The identification of the number of load

levels is performed by converting the load history into a histogram as given in figure 3.7.

Each bar of the histogram represents the percentage of occurrence of a given load point

relatively to the total number of points. For instance, given that the load history consists

of 1519 time points, the first horizontal bar on the right side of the figure located between 0

and 0.5 kN equals almost 11% of total number of points of the crane cycle, i.e. it represents

167 time points.

When all the points of the load history are organized into classes, a threshold of 2% is

defined in order to select only the most significant histogram classes (black horizontal bars

figure 3.7). If consecutive significant classes are identified, they are considered together in

the definition of a single load level. As seen in figure 3.7, the four identified load levels

equal approximately 0.1 kN, 3 kN, 14 kN and 23.6 kN.

As seen before, transfer cycles consist theoretically of a single load level. Nonetheless,

the definition of a threshold in the previous method leads sometimes to the identification

of several very close load levels even if the crane cycle apparently belongs to the transfer

cycle category. Therefore, without considering the lowest loading level whose value is close

to zero, the following rules apply to classify each crane cycle in the right category:

• If the load levels don’t deviate from their mean value by more than 20%, the crane

cycle belongs to the transfer cycle category.
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Figure 3.8 – Synoptic of the crane cycle identification procedure.

• If a single load level is identified, the crane cycle belongs to the transfer cycle cate-

gory.

• Otherwise, the crane cycle belongs to the positioning category.

Figure 3.8 summarizes the different steps needed to identify and classify crane cycles

according to the type of work performed in the construction site. As seen in the figure,

the load-time history L(t) is first filtered by means of a 5-second running average. Then,

peaks and valleys are extracted from the previous signal and crane cycle starting points

are identified. If crane cycles start or end into the concrete loading area, they are classify

into the concrete pouring cycle category. Otherwise, the different load levels constituting

each crane cycle are obtained by means of the histogram method presented above, which

enables us to classify the positioning and transfer cycles into two different categories. In

the following sections, it is shown that the separation of cranes cycles per type of work is

helpful to analyze more accurately the crane use.

3.3 Construction sites characteristics

As seen in section 3.1, recording was performed on three top-slewing tower cranes working

on different construction sites. Table 3.1 describes the characteristics of each construction

site in terms of duration Tconstruction site, jib length ratio Rjib/Rjibmax
(i.e. chosen jib length

divided by the maximum possible jib length for the considered crane model), number of

teams Nteams working on the construction site, median number of cycles per day Ncycles/day

and concrete bucket capacity Cbucket. Moreover, schematic drawings representing the global

topography of each construction site are given in figure 3.9. As seen in the figure, the

topography of the three studied construction sites is very different.

Table 3.1 shows that the jib length ratio is somewhat different and is always lower

than one, which means that, for the studied construction sites, the longest possible jib

was not used. The jib configuration (i.e. jib length) constitutes an important aspect in
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3. Crane work data analysis

Tconstruction site Ncycles Rjib/Rjibmax
Nteams Ncycles/day Cbucket

month day hour - - - - m3

Site 1 5 108 1232 15322 0.92 2 142 1

Site 2 8 150 1154 10381 0.77 1 69 1.5

Site 3 6 107 839 7314 0.85 1 68 2

Table 3.1 – Studied construction sites characteristics.

(a) Construction site 1 (b) Construction site 2 (c) Construction site 3

Figure 3.9 – Schematic view of the three studied construction sites. The gray areas repre-
sent the floors, while the dashed lines define the underground levels.

terms of crane use due to load chart limitations. As seen in table 3.1, the median number

of cycles per day Ncycles/day and the number of teams Nteams working on the site seems to

be correlated. The higher the number of workers on the site, the greater the number of

crane cycles per day.

After classifying crane cycles by means of the method presented in section 3.2.3, table

3.2 gives the proportion of each type of work related to the total number of cycles and

the total construction site duration. As seen in this table, the portion of positioning cycles

remains small compared to the concrete pouring and transfer cycles both in terms of num-

ber of cycles or construction site duration. Furthermore, although transfer cycles represent

between 53.9% and 66% of the total number of crane cycles, they always represent less

than 50% of the construction site duration. The following section aims to describe three

different representations of the results coming from crane cycles identification.

3.4 Intra-construction site data post-processing

As outlined in section 1.3, a crane cycle can be easily represented by the set of variables

{R
(i)
1 , R

(i)
2 , α

(i)
1 , α

(i)
2 , L(i), R

(i+1)
1 , α

(i+1)
1 }. Since crane cycles are identified by using the

procedure introduced in section 3.2, the collected data can be presented differently. Thus,
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Concrete pouring Positioning Transfer

%cycles %hours %cycles %hours %cycles %hours

Construction site 1 35.4 43 10.7 17.2 53.9 39.8

Construction site 2 16.6 27.1 15.4 24.2 68 48.7

Construction site 3 25.1 37.4 8.9 19.8 66 42.8

Table 3.2 – Proportion of each type of cycle in terms of crane cycles number and of total
duration.

this section gives three possible illustrations of the results coming from crane cycle iden-

tification, each of them showing various advantages in terms of behavior understanding.

3.4.1 Data versus load chart

In this section, the recorded data are compared to the load chart of each monitored

crane. Therefore, angle variations are not considered here, which leads to reduce the set of

variables defined in section 1.3 to the triplet {R
(i)
1 , R

(i)
2 , L(i), R

(i+1)
1 }. As depicted in figure

3.10, the initial and final radii and the hoisted load are retrieved for all identified crane

cycles and the corresponding points are plotted versus the load chart. Note that since

more than one load level can be identified for concrete pouring or positioning cycles, L(i)

is defined as the maximum load value reached during the cycle. Moreover, a particularity

of concrete pouring cycles lies into the fact that these cycles start and end at the same

position, namely the location of the concrete mixing plant or the truck mixer. Therefore,

for these cycles, it is more relevant to retrieve and analyze R
(i)
2 at the location where the

concrete is poured rather than where the cycle ends (see figure 3.5).

Horizontal trends can be observed on figure 3.10 at different loading levels which

corresponds to the different types of hoisted loads described previously. As seen in the

figure for the three construction sites, although the maximum hoisted load equals 100 kN,

heavy loads (more than 50 kN) are seldom hoisted.

Figure 3.10 is useful to understand the performed work according to the physical limits

induced by the load chart. Nonetheless, if one is interested in the damage of structural

members exclusively stressed by the hoisting and trolleying movements, a more relevant

representation of the results is needed. In fact, the damage of this kind of crane members

stems from the maximum moment range reached during the crane cycle, i.e. from the

sequence of the minimum moment Mmin and maximum moment Mmax. These moments

being obtained by the combination of a given load at a given radius, the pairs {RMmin
,

LMmin
} and {RMmax

, LMmax
} are plotted versus the load chart in figure 3.11. As seen in the

figure for the three construction sites, the minimum moment comes from the combination

of a lifted load value close to zero and a small radius value while the maximum moment

occurs at any radius for loads mainly ranging between 0 and 60 kN.
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Construction site 1

(a) initial position (b) final position

Construction site 2

(c) initial position (d) final position

Construction site 3

(e) initial position (f) final position

Figure 3.10 – Recorded data versus load chart for the pairs {R1, L} and {R2, L} for the
three construction sites; the solid and dashed line correspond respectively to the 100%
and 110% moment load charts.
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Although plotting crane cycles versus the load chart is relevant, this does not give

any information concerning the topography of the construction site. Thus, the following

section shows how crane cycles can also be illustrated versus the crane working area to

solve that issue.

3.4.2 Data versus construction site working area

As described before, the plotting of crane cycles versus the load chart reveals to be useful

in some situations. Nonetheless, this does not give any information about angle variations

or construction site’s topography. A complementary representation of the data consists in

calculating the Cartesian coordinates corresponding to the initial and final positions of

the hook for each crane cycle. This is done respectively in figures 3.12, 3.13 and 3.14 for

each construction site, where crane cycles are represented separately according to the type

of work performed on the site.

These figures are helpful for several reasons. First, as seen in section 3.2.2 the position

of the concrete mixing plant or truck mixers can be easily identified by using figures

3.12(a), 3.13(a) and 3.14(a). Second, the comparison of figure 3.9 with figures 3.12(b),

3.13(b) and 3.14(b) shows that the topography of the site can be assessed by viewing the

final position of concrete pouring cycles. Note that this observation remains valid, even

if the construction site drawing is not available. Third, in the same way, other relevant

information such as the location of loading/unloading areas or prefabrication areas can be

determined by using this type of figure.

Even though this kind of representation is useful to understand the topography of the

construction site, one may want to depict separately each crane cycle feature (radius, angle

or load), as described in the following section.

3.4.3 Data depicted by using histograms

As defined in the previous sections, the variables R
(i)
1 , R

(i)
2 , α

(i)
1 , α

(i)
2 , L(i) are helpful to

provide information about crane use in terms of both load chart limits and construction

site topography. Those variables can also be studied separately by plotting the histograms

of R1, R2, α1, α2 and L, as depicted in figures 3.15, 3.16 and 3.17 for the three construction

sites and for each type of work.

As already observed in the previous section, concrete pouring cycles start at a given

initial position, i.e. fixed radius and angle; this position corresponding to the position

of the concrete mixing plant or truck mixer on the construction site. Therefore R1- and

α1-distributions are logically restricted to localized radius and angle values. Note that for

construction sites 2 and 3, two different truck mixer positions were used. This explains the

two modes of the R1-distribution in figure 3.16(a) and the two modes of the α1-distribution

in figure 3.17(a). R2-distributions of concrete pouring cycles present triangular profiles,
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Construction site 1

(a) Minimum moment (b) Maximum moment

Construction site 2

(c) Minimum moment (d) Maximum moment

Construction site 3

(e) Minimum moment (f) Maximum moment

Figure 3.11 – Recorded data versus load chart for the pairs {RMmin
, LMmin

} and
{RMmax

, LMmax
} for the three construction sites; the solid and dashed line correspond

respectively to the 100% (solid line) and 110% (dashed line) moment load charts.
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Concrete pouring

(a) initial position (b) final position

Positioning

(c) initial position (d) final position

Transfer

(e) initial position (f) final position

Figure 3.12 – Initial and final hook position for concrete pouring, positioning and transfer
cycles for the construction site 1.
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Concrete pouring

(a) initial position (b) final position

Positioning

(c) initial position (d) final position

Transfer

(e) initial position (f) final position

Figure 3.13 – Initial and final hook position for concrete pouring, positioning and transfer
cycles for the construction site 2.
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Concrete pouring

(a) initial position (b) final position

Positioning

(c) initial position (d) final position

Transfer

(e) initial position (f) final position

Figure 3.14 – Initial and final hook position for concrete pouring, positioning and transfer
cycles for the construction site 3.
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the mode being located between the minimum and the maximum radius (i.e. the jib

length Rjib). α2-distributions of concrete pouring cycles are different depending on the

considered construction site. Nonetheless, these distributions reflect the topography of the

construction site, i.e. the proportion of building around the crane in terms of slewing

angle. The uninterrupted α2-distribution of figure 3.15(a) shows for instance that there

were buildings all around the crane. Furthermore, α2-distribution of figure 3.17(a) confirms

that the crane worked mainly on a 180° area.

The other initial and final distributions of both radius and angle corresponding to

positioning and transfer cycles are relatively close to the distributions of concrete pouring

cycles. This seems to be logical since the casting of a wall or a floor requires the same

material to be put in place successively: steel frameworks (transfer cycles), floor or wall

forms (positioning cycles) and concrete (concrete pouring cycles).

L-distributions on figures 3.15(a), 3.16(a) and 3.17(a) represent the maximum load

histogram recorded during the concrete pouring cycles. The mean of the distribution equals

respectively around 23, 37 and 51 kN. This corresponds to the concrete bucket weight,

the latter increasing linearly with its capacity (1 m3, 1.5 m3 and 2 m3). As seen in figures

3.15(b), 3.16(b) and 3.17(b), the maximum load histogram recorded during the positioning

cycles is much more widespread. It can be explained by the fact that there is a lot of

possible combinations of forms, walkways and prefabs. Most of the time, there are three

standardized form sizes on European construction sites (2.5 m, 1.25 m and 0.625 m). A 2.5

m width equipped form weighs around 17 kN, dynamic overload included. It explains for

instance the peaks approximately located at 34 kN, 17 kN and 8.5 kN in figure 3.15(b). The

rest of the variability is due to the lifting of walkways or prefabs (balconies, stairs, etc.).

Figures 3.15(c), 3.16(c) and 3.17(c) show that the hoisted load distribution corresponding

to the transfer cycles present similar profiles. As seen in these figure, the weight of the

material to hoist during this kind of cycles (steel frameworks, junk dumpsters, etc.) rarely

exceeds 30 kN.

The histograms presented in this section are used in chapter 4 in order to develop

a crane use model that accounts for the uncertainties related to intra-construction site

parameters. The following section is concerned with a procedure enabling the assessment

of the loading severity of crane structural members.

3.5 Intra-construction site loading severity assessment

As detailed before, the data collected from crane monitoring can be processed in order to

understand the work performed by the crane on construction sites. This section aims to

demonstrate how the previous data can also be used to assess the loading severity of crane

structural members. A case study related to jib top member connections is then used to

illustrate the procedure presented in this section.
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Figure 3.15 – R1, R2, α1, α2 and L histograms for the construction site 1.
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3. Crane work data analysis

(a) Concrete pouring
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Figure 3.16 – R1, R2, α1, α2 and L histograms for the construction site 2.
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3.5. Intra-construction site loading severity assessment

(a) Concrete pouring
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Figure 3.17 – R1, R2, α1, α2 and L histograms for the construction site 3.
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3. Crane work data analysis
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Figure 3.18 – Structural member damage calculation principle.

3.5.1 Severity calculation procedure

As depicted in figure 3.18, the severity assessment (i.e. damage calculations) of a crane

structural member consists of three steps. First, the force-time history F (t) of the struc-

tural member is assessed by performing static calculations (using analytical functions)

on the raw temporal data (i.e. not smoothed) coming from crane monitoring (R(t), L(t),

α(t)). This means that all the dynamic oscillations are considered in the force-time history

of the crane member. Note also that the number of variables involved in the force history

assessment depends on the studied structural member. Second, fatigue cycles are counted

from the force history by means of the widely-used rainflow counting method presented

in section 2.3.1. Third, the Palmgren-Miner rule (see section 2.2.5) is used to determine

the damage of the structural member; the latter being expressed in terms of equivalent

number of cycles Neq.

Note that instead of using the whole force-time history to assess Neq, rainflow counting

is performed for each type of identified crane cycle (concrete pouring, positioning, transfer),

assuming that crane cycles are independent of each other:

Neq =
M∑

i=1

N∑

j=1

(
∆F (i,j)

∆Fref

)c

(3.1)

where ∆F (i,j) is the force range of the jth stress cycle identified inside the ith crane cycle,

c is the S-N curve slope given by standards (c = 3 in EN 13001 [5] for welded details under

consideration in this thesis) and ∆Fref (= |F (A) − F (B)|) is the crane member reference

force. The counted cycles contain both the “dynamic” and “static” components of the

loading. An interesting feature of the rainflow counting residual is that it contains the

biggest force range encountered in the force-time history for each crane cycle. This force

range can be seen as the maximum value reached during a crane cycle (i.e. it represents

only the “static part” of the loading). Therefore, an equivalent number of cycles N res
eq

containing only the largest force ranges of all crane cycles can be defined as follows:

N res
eq =

M∑

i=1

(
∆F

(i)
max

∆Fref

)c

(3.2)
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3.5. Intra-construction site loading severity assessment

Figure 3.19 – Jib top member reference cycle from European standards: (A) maximum load
at jib end and (B) unloaded jib. F is the force applied to the jib top member connection
under consideration in this section.

where ∆F
(i)
max is the maximum residual force range identified by the rainflow algorithm

inside the ith crane cycle. Note that performing rainflow counting for each crane cycle

presents a collateral benefit because this enables to quantify the contribution of each

type of crane cycle on the crane member equivalent number of cycles Neq. This benefit

is demonstrated in the following section, where the general procedure presented before is

applied to jib top member connections.

3.5.2 Severity assessment of a jib top member connection

The procedure presented in the previous section is used to calculate the severity of jib

top member connections whose loading depends exclusively on the hoisting and trolleying

movements. This leads to consider only the radius and load histories (R(t), L(t)) for the

damage calculations. The most damaging loading cycle of this kind of crane structural

member occurs when extreme loads (A) and (B) are reached successively (see figure 3.19).

In this case, (A) refers to the hoisting of the maximum load at the jib end, while (B)

indicates the unloaded jib with the trolley located at the minimum radius. Note that (A)

and (B) load cases change if another crane member (stressed differently) is studied.

Figures 3.20 (a) and (b) depict the jib member loading and damage spectra for the three

studied construction sites. In fatigue analyses, it is often admitted that stress cycles lower

than a threshold do not contribute to the damage of the material. The endurance limit of

the material is usually used as threshold when a stress spectrum is chosen to characterize

the fatigue loading of a structure. The conversion of the endurance limit into a force

applied to the jib top member leads to a normalized threshold value of approximately 0.1

(10 % of the reference force range ∆Fref). Note that this choice is justified a posteriori

because the damage induced by cycles whose force range is lower than 0.1 represent less
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3. Crane work data analysis

(a) Loading spectrum (b) Damage spectrum
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Figure 3.20 – Loading and damage spectra of the jib top member connection for the three
construction sites.

than 1% of the total damage, regardless the considered construction site. As seen in figure

3.20 (a), the loading spectra corresponding to construction sites 2 and 3 have similar

profiles; the main difference being the maximum force range which is much higher for the

construction site 3. This difference becomes much more significant in terms of damage

spectrum. In addition, figure 3.20 (b) shows that although the maximum damage ranges

reached during construction site 1 are lower than those reached during construction site 3,

the total number of damaging cycles (more than 5% damage in the range [103,104] cycles)

is higher for construction site 1. Finally, the ratio N res
eq /Neq found for the three studied

construction sites equals respectively 95%, 97% and 98%. The small difference between Neq

and N res
eq leads us to conclude that, for the studied construction sites, dynamic oscillations

can be neglected in the crane use model of a jib top member connection.

As said before, performing Rainflow counting for each crane cycle enables to quantify

the contribution of each type of crane cycle on the jib member equivalent number of

cycles. As depicted in figure 3.21, concrete pouring cycles seem to be the most damaging

compared to positioning and transfer cycles because the number of damaging cycles is

greater than the one of the other categories. Table 3.3 enables to verify the previous

observation by seeing that concrete pouring cycles represent almost 70% of Neq for the

three studied construction sites, while they represent less than 36% of the total number

of crane cycles (see table 3.2). These construction sites being very different in terms of

topography, it seems that, for usual constructions made principally of concrete, the jib

top member damage is mainly governed by concrete pouring cycles. This result is easily

understandable because directly related to the concrete bucket which is hoisted very often

during construction site. Note that the use of a big concrete bucket can reduce the total

number of damaging cycles which will increase the efficiency on the construction site.

Nevertheless this also increases the cycle ranges leading to fatigue deterioration more
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3.6. Inter-construction site variability quantification

Concrete pouring Positioning Transfer

Construction site 1 71.1% 9.3% 19.6%
Construction site 2 68.3% 12.8% 18.9%
Construction site 3 69% 11.2% 19.8%

Table 3.3 – Jib member damage with respect to the type of work done on each construction
site.

rapidly. Therefore, the concrete bucket choice have an impact on both the job efficiency

and the crane fatigue loading severity.

The procedure presented before and applied in this section shows how the loading

severity of crane structural members can be assessed. The following section describes

the quantification of the uncertainties related to inter-construction site parameters by

using data coming from a crane rental agency, on one hand, and drawings coming from a

construction firm, on the other hand.

3.6 Inter-construction site variability quantification

As seen in section 3.4, data coming from crane monitoring reflect the variability of con-

struction sites’ topography (i.e. intra-construction site parameters). Nevertheless, the

number of monitored cranes remaining small, no global information is available concern-

ing the inter-construction site variability in terms of construction sites’ durations, times

between two construction sites, jib configurations, etc. This kind of data can be collected

by performing customer surveys, by gathering data from crane rental agencies or by ana-

lyzing construction site drawings. This section covers the data processing of construction

site durations from a crane rental agency and the analysis of multiple construction site

drawings collected from a construction firm.

3.6.1 Inter-construction site durations from crane rental agency data

The data processed in this section was provided by a crane rental agency containing

information related to rental and non-rental periods from 1996 up to now for self-erecting

and saddle jib tower cranes (see figure 1.1) exclusively used in France. This thesis being

exclusively focused on saddle jib tower cranes, only the handling of data related to this

range is discussed in the following. Most of the time, construction companies require rental

agencies to provide a crane able to hoist a maximum load (full concrete bucket or prefab

stairs) at a given radius, regardless of the crane model. This means that crane’s choice is

mainly governed by crane capacity C and/or maximum load Lmax. For this reason, crane

rental data were classified into three groups according to these parameters in table 3.4.

A crane being used on various sites during its life and not used between two jobs, let

Ton-site and Tstored be respectively the duration of a job and the time between two jobs.

87



3. Crane work data analysis

(a) Construction site 1
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Figure 3.21 – Jib member damage spectra depending on the type of work.
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3.6. Inter-construction site variability quantification

Group 1 Group 2 Group 3

Capacity (kN.m) C ≤ 900 900 < C ≤ 2200 2200 < C ≤ 4000

Maximum load (kN) Lmax ≤ 60 60 < Lmax ≤ 100 100 < Lmax ≤ 160

Table 3.4 – Classification of cranes by nominal capacity and maximum load.

Group 1 Group 2 Group 3
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Figure 3.22 – Number of rental duration results according to each crane group.

Figure 3.22 shows the amount of data available for each crane group. As seen in the figure,

more than 100 results are available for each crane group, thus constituting a significant

statistical database for cranes whose capacity is lower than 4000 kN.m. Moreover, group

2 involves the greatest number of results due to the fact that it contains the most popular

mid-range cranes.

Figure 3.23 depicts histograms of Ton-site and Tstored for each group. Overall, the distri-

butions show similar profiles for Ton-site and Tstored. The main differences between groups

arise from the estimated statistical parameters (mean and standard deviation) given in

table 3.5. As seen in the table, groups 2 and 3 have close values of mean and standard

deviation for both Ton-site and Tstored. This means that crane models belonging to groups

2 and 3 are rented approximately 7 months and remain unused during 2.5 months, on

average. Group 1’s results are slightly different because the mean and standard deviation

of Ton-site are lower than for groups 2 and 3 while they are greater for Tstored. This implies

that crane models belonging to group 1 may be more difficult to rent than those belonging

to other groups because their non-use period mean and scatter are larger than those of

groups 2 and 3.

3.6.2 Inter-construction site configuration parameters from drawings

In the frame of this thesis, a construction company has accepted to provide a great number

of “typical” concrete construction drawings such as the one presented in figure 1.7 in

chapter 1. In total, 63 construction drawings were collected which represents almost 82

cranes, due to the presence of several cranes on various construction sites. Note that
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3. Crane work data analysis
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Figure 3.23 – Distributions of Ton-site and Tstored obtained from the crane rental agency
database for (a) group 1, (b) group 2 and (c) group 3, respectively.
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3.6. Inter-construction site variability quantification

Group 1 Group 2 Group 3

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Ton-site (month) 5.7 2.9 6.8 3.6 7.0 4.2

Tstored (month) 5.0 7.1 2.4 3.9 2.7 4.0

Table 3.5 – Estimated mean and standard deviation for every crane group.

the studied cranes coming from this new database can be classified into the groups 2

and 3 presented in table 3.4. Construction drawings are helpful to retrieve statistical

data reflecting the inter-construction site variability, such as jib configuration (jib length),

loading/unloading area location, site’s topography (building location), etc. This section

aims at presenting the procedure developed for the assessment of these statistical data.

Numerical routines have been developed in this thesis in order to retrieve and analyze

statistical data from construction drawings. First, a graphic user interface enables to re-

trieve data from drawings and store them in a text file with minimum effort. Second, the

storage file is read and the data sets collected during the previous step are processed. For

the sake of clarity, only the results obtained from the processing of the drawing database is

presented in the following. Nonetheless, annex A provides the reader with further informa-

tion concerning the routines developed during this PhD to process construction drawings.

Jib configuration

As outlined in section 1.4, various crane configurations exist depending on the topogra-

phy of each construction site. Thus, a unique crane model can be used with different jib

lengths during its life. Therefore, assuming that all the studied cranes belong to the same

population of cranes, the jib length ratio Rjib/Rjibmax
(jib length divided by the maximum

possible jib length for the considered crane model) distributions corresponding respectively

to groups 2 and 3 are depicted in figure 3.24. The mean (standard deviation) inferred from

these distributions equal respectively 0.73 (0.95) and 0.85 (0.97).

As seen in the figure, cranes belonging to group 2 are usually used with shorter jibs

than those belonging to group 3. This can be explained by the fact that the longer the

jib, the lower the tip load. Therefore, beyond a certain jib length, the tip load of cranes

belonging to group 2 becomes too low in comparison with the weight of materials and tools

used on the site (full concrete bucket, prefab beams, ect). Cranes belonging to group 3 can

be used with longer jibs than those of group 2 due to bigger allowable tip loads. Finally,

whatever the group to which cranes belong, cranes are seldom used in their maximum

configuration, i.e. maximum jib length.

Concrete loading area

Concrete mixing plants or truck mixers supply concrete throughout the duration of a
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3. Crane work data analysis

(a) Group 2 (b) Group 3
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Figure 3.24 – Jib length ratio inferred from drawings for (a) group 2 and (b) group 3.
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Figure 3.25 – Center of gravity of concrete loading areas assessed from 63 construction
drawings.

construction site. Therefore, their location influences both the organization of the work

performed on the site and the damage of crane structural members. As a result, studying

concrete loading areas from construction site drawings becomes relevant. The location

of these areas (i.e. coordinates) was assessed by using the simple graphic user interface

presented in annex A. Starting from these coordinates, several relevant data can be plotted.

Figure 3.25 depicts for instance the distribution of the normalized distance dCG/Rjib. Note

that the previous distance dCG is measured for each construction site between the center

of gravity of concrete loading areas and the location of the crane on the drawing (i.e.

location of the slewing axis). As seen in the figure, the distribution is almost flat and

is close to a uniform density function, indicating that the center of gravity of concrete

loading areas is uniformly distributed between the minimum radius and maximum radius

(i.e. jib length) for the studied drawings database. This observation conforms with the

fact that the topography and accessibility of construction sites are random parameters

from one site to another.
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3.6. Inter-construction site variability quantification

(a) Concrete volume versus radius (b) Concrete volume versus angle
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Figure 3.26 – Comparison of the concrete volume assessed from in-site data and determined
theoretically from the drawing for the construction site 1.

Correlation between construction site data and drawing

Concerning the construction sites 1 and 3 presented in section 3.4.2, on-site data and

construction drawings are both available. This enables to compare the actual concrete

volume cast during the construction with the expected volume inferred from the drawings.

On one hand, the maximum load reached during the concrete pouring cycles identified in

section 3.2.3 is combined with the concrete bucket capacity in order to infer the actual

concrete volume. On the other hand, the graphic user interface detailed in annex A allows

us to retrieve the expected cast areas (floors, walls, beams or columns).

As shown in figures 3.26 and 3.27, the results can be depicted either versus the nor-

malized radius or versus the angle. In these figures, the actual concrete volume histogram

is plotted in gray while the total and partial (floors only) concrete volumes inferred from

drawings are respectively depicted by means of solid and dashed lines. Note that, although

detailed layout drawings were available for construction site 1, only the overall layout plan

was accessible concerning construction site 3. Thus, only the expected concrete volume

related to floors can be assessed for construction site 3. As seen in figures 3.26 and 3.27,

even though the expected concrete volume accounting for floors (dashed lines) underes-

timates the total concrete volume, the global shape of radius and angle distributions is

conserved. This may be interesting in the sense that, even if a crane cannot be monitored

for several reasons, the work performed on the site can be estimated by simply using

general construction drawings.

Construction drawings represent a readily available means enabling the estimation of

relevant information concerning cranes’ work. Even though only three different illustrations

of drawings processing have been presented before, other information can be assessed.

For instance, this is the case of interference areas (area common to two close cranes),

unloading/loading zones, concrete bucket cleaning areas, etc.
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3. Crane work data analysis

(a) Concrete volume versus radius (b) Concrete volume versus angle
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Figure 3.27 – Comparison of the concrete volume assessed from in-site data and determined
theoretically from the drawing for the construction site 3.

3.7 Conclusion

In this chapter, a general overview of the nature of available data concerning tower cranes

use has been provided. After presenting the crane monitoring device, the data process-

ing method consisting of two main steps was described in detail. Subsequently, the main

characteristics of the three studied construction sites have been listed and three differ-

ent illustrations of the results of crane cycles identification have been presented, each of

them having distinct advantages. Following the presentation of crane use data, the loading

severity assessment procedure was explained and applied to a particular crane member (jib

top member connection). Then, data coming from a crane rental agency were compiled

and processed in order to assess the duration histograms of use and non-use depend-

ing on crane capacity ranges. Finally, relevant crane use information have been retrieved

from construction site drawings collected from a construction firm. The intra- and inter-

construction site data analyzed previously in order to define a probabilistic model of crane

member use involved in the time-dependent reliability method presented in chapter 4.
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3.7. Chapter summary

A recording device was developed during the PhD in order to monitor three tower

cranes located on different construction sites. The objective was to record tempo-

ral data such as time, radius, hoisted load, slewing angle in order to characterize

and model crane members loading. These data are handled in order to recog-

nize and classify automatically crane cycles depending on the type of the work

performed on the construction site (concrete pouring, positioning, transfer).

Once crane cycles are well-identified, various ways of illustrating the results exist.

First, crane cycles can be depicted versus the load chart, which enables to com-

pare crane use with the load chart limits. Second, the results can be presented

versus the crane working area. This provides a good idea of the construction site’s

topography (built areas, loading/unloading areas, etc.). Third, the variables as-

sociated to a crane cycle (load, radius or angle) can be depicted separately by

means of histograms.

The recorded data also provide engineers with the knowledge of the loading sever-

ity (i.e. fatigue damage) of crane structural members. Loading severity assessment

is performed through rainflow cycle counting and Palmgren-Miner’s rule applied

to crane member force-time history. The application of this method on a jib top

member connection shows that the loading severity of this kind of crane mem-

ber is mainly governed by concrete pouring cycles. Moreover, it is shown that

the contribution of dynamic oscillations represent a negligible part of the crane

member fatigue damage.

Then, the processing of data coming from a crane rental agency enables the as-

sessment of histograms of use and non-use durations depending on crane capacity

ranges. Finally, relevant crane use information (jib configurations, concrete load-

ing area location, etc) are assessed from construction site drawings collected from

a construction firm.

The data presented above are used in chapter 4 in order to define a realistic

model reflecting crane member operating loads. The previous stochastic model is

then used to assess the reliability of crane members according to their operating

time by means of the stress-strength interference procedure developed during this

PhD.

Chapter summary
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Chapter 4

Reliability assessment of crane
members using a time-dependent
SSI method
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4. Reliability assessment of crane members using a time-dependent SSI method

4.1 Introduction

Standards dealing with fatigue design consider deterministic rules usually based on engi-

neering practice. The use of these rules aims to ensure structural reliability by covering

the uncertainties inherent to both the structural fatigue strength and the random fatigue

loads. Although deterministic rules are convenient to use, they may lead to an unknown

effective reliability level. Furthermore, the influence of each design parameter on the struc-

tural reliability remains unknown. As outlined in chapter 1, probabilistic approaches offer

great opportunities enabling to better understand crane structural behavior. Thus, this

chapter aims to present the time-dependent stress-strength interference method devel-

oped to assess the reliability of existing crane structural members over time. Moreover,

the strength stochastic modeling is compared to the standards and a sensitivity analysis

related to the crane use stochastic modeling is performed in order to ensure the relevance

of the probabilistic method proposed in this chapter.

This chapter is organized as follows. Section 4.2 describes the stochastic modeling of the

strength PDF of crane members. After describing the assessment of the average fatigue

lifespan of crane welded details, this section shows how the dispersion of the strength

PDF is determined and accounted for. Thereafter, section 4.3 presents the stochastic

modeling of crane use. Based on the data collected in chapter 3, the method aims to define

probability density functions related to intra- and inter-construction site parameters in

order to assess the distribution of equivalent number of cycles of use according to operating

time. Moreover, a global sensitivity analysis is performed in section 4.4 in order to quantify

the impact of the variability of every input parameter on the developed crane use model.

Lastly, section 4.5 covers the time-dependent reliability procedure developed in this thesis.

A general synoptic describing the reliability assessment of any crane structural member is

described and the proposed method is illustrated on a jib top member connection.

4.2 Crane member strength stochastic modeling

This section describes the assessment procedure of a fatigue strength distribution for crane

welded details. After presenting the finite element model used in this thesis, an average

fatigue lifespan expressed in number of cycles at nominal capacity is determined by using

the Dang Van criterion. The strength distribution is then obtained by correlating numerical

and experimental results.

4.2.1 Welded details FE modeling

As seen in section 2.2.1, the fatigue strength prediction of welded structural joints is

of great importance in industrial context [102–104]. Sometimes, the fatigue strength of

structural members can be assessed by performing endurance tests. Nonetheless, full-scale
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4.2. Crane member strength stochastic modeling
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Figure 4.1 – Illustration of the hot-spot stress method.

tests of industrial structures may be infeasible due to welded details size exceeding the

dimensions of classical testing benches or due to very expensive specimens. Therefore,

engineers need efficient modeling tools with reasonable computational time that enable to

predict crack initiation. Starting from this observation, a wide range of procedures using

a FE software has been proposed during the last decade to model welded joints. Even

though only a few methods are detailed in the following, the reader can refer to [105, 106]

for detailed overviews of existing methods.

Nominal stress approach

Standards generally specify that the fatigue strength validation of welded details can be

made by using the nominal stress approach together with notch classes. This analytical

method aims at calculating nominal stresses without considering any stress increase in-

duced by local geometry changes close to the weld. Then, a reference stress is obtained by

categorizing the studied welded detail into a notch class. The calculated nominal stresses

are finally compared to the reference stress in order to validate or not the welded detail.

Hot-spot stress approach

The hot-spot stress approach, also named structural stress approach, considers the stress

increase due to the macro-geometry of the studied welded detail. As depicted in figure

4.1, the method aims at extrapolating stresses evaluated by finite element modeling at

fixed distances from the weld toe without considering the stress concentration induced by

the notch effect. These distances are always defined from weld toe location and generally

depend on plate thickness e (e.g. 0.4e and 1.0e). In a similar way as done for the nominal

stress method, the hot-spot stress approach is based on various detail categories. The

main difference between these methods lies in the fact that the number of detail classes is

reduced for the hot-spot stress approach.
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4. Reliability assessment of crane members using a time-dependent SSI method

radius = 1 mm

Figure 4.2 – Illustration of the effective notch stress approach.

Effective notch stress approach

As depicted in figure 4.2, the effective notch stress approach consists in modeling the

irregular geometry of weld toe or root by an effective notch of radius equal to 1 mm.

Finite element or boundary element analyses may be used to determined the effective

notch stress. This method presents several advantages such as the possibility to predict

either weld toe or weld root cracks and the ability to account for the effects of weld toe

angle or leg lengths, which is not the case for the previous methods. However, the main

limit of this method derives from the high computational effort required in some situations

where solid elements and/or local remeshing are necessary to obtain accurate stress results.

Modeling method based on MPC equations

The nominal stress approach becomes unsuitable when nominal stresses cannot be deter-

mined with ease in complex structures. Moreover, in such cases, welded assemblies usually

differ greatly from the notch classes provided by standards, which complicates the vali-

dation process. As seen previously, the hot-spot stress and effective notch stress methods

use finite element analysis. Nonetheless, both methods are very sensitive to the meshing

(element type, size and arrangement), leading to high computational efforts required in

the modeling or processing steps. As a result, these methods may be difficult to use for

the prediction of the fatigue strength of crane structural members, which implies the use

of another modeling method in this thesis.

Crane structures are principally made of metal plates connected by welding. Further-

more, shell theory represents a good balance between prediction quality and computational

time for modeling structural members. Therefore, as shown in figure 4.3, steel plates are

modeled by their mid-surface and Multi-Point Constraint (MPC) equations [107] of type

RBE3 are used to reflect the mechanical behavior of welds. RBE3, which are typically

used to model the connection between dissimilar meshes, distribute linearly loads and

mass from one node (master) to a set of nodes (slaves), the displacement of the master
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RBE3

shell elements

slave nodes

master nodes

Figure 4.3 – Illustration of the modeling method that is used in this PhD. The method is
based on MPC equations.

node being constrained by the average displacement of the slave nodes. The following sec-

tion shows that the use of this modeling method with the Dang Van criterion enables the

prediction of crack initiation at weld toe of structural joints.

4.2.2 Fatigue lifespan prediction using shell elements with MPC equa-
tions

As seen in section 2.2.3, a local equivalent stress τ0, deriving from the Dang Van criterion

[44], may be used in practical applications. The local shear stress amplitude and hydro-

static pressure involved in the evaluation of τ0 at weld toe is detailed in the following for

welded structural members modeled with the modeling method discussed in the previous

section. Concerning tower cranes, the relevant reference loads are those which result in

the maximum fatigue damage for a given crane member. For instance, as illustrated in

figure 3.19 for jib top member connections, those loads correspond to the maximum load

at the end of the jib (A) and the unloaded jib (B). Hence, linear FE analysis enables the

assessment of the corresponding reference stress tensors at weld toe:

¯̄σA =




σA
1,1 σA

1,2 σA
1,3

σA
2,1 σA

2,2 σA
2,3

σA
3,1 σA

3,2 σA
3,3


 and ¯̄σB =




σB
1,1 σB

1,2 σB
1,3

σB
2,1 σB

2,2 σB
2,3

σB
3,1 σB

3,2 σB
3,3


 (4.1)

Assuming a proportional stress state, the amplitude tensor between the (A) and (B) loads

can be constructed by the linear combination of the tensors given in equation (4.1):

¯̄σ
A−B

2 =
¯̄σA − ¯̄σB

2
=




σ
A−B

2

1,1 σ
A−B

2

1,2 σ
A−B

2

1,3

σ
A−B

2

2,1 σ
A−B

2

2,2 σ
A−B

2

2,3

σ
A−B

2

3,1 σ
A−B

2

3,2 σ
A−B

2

3,3




(4.2)

101



4. Reliability assessment of crane members using a time-dependent SSI method

The maximum shear stress amplitude in the critical plane is assessed by considering the

greatest and smallest principal stresses σ
A−B

2

I and σ
A−B

2

III derived from the previous tensor:

τ
A−B

2
max =

σ
A−B

2

I − σ
A−B

2

III

2
(4.3)

Note that although τ
A−B

2
max is evaluated for every node of the finite element model, its

maximum value is usually found close to the weld toe. Then, considering the tensors

expressed in equation (4.1), the maximum hydrostatic pressure between the (A) and (B)

loads reads:

P (A,B)
max = max

A,B

(
σA

1,1 + σA
2,2 + σA

3,3

3
,
σB

1,1 + σB
2,2 + σB

3,3

3

)
(4.4)

Finally, the equivalent local stress τ0 given in equation (2.3) becomes:

τ0 = τ
A−B

2
max + a0P (A,B)

max (4.5)

Dang Van et al. [44] determined a value of a0 close to 1/3 for thin metal sheet specimens

(approximately 2 to 5 mm thick) commonly used in the automotive industry. The thickness

of crane members being always larger than 6 mm, the previous value is considered to be

unknown in this work and has to be calibrated from test results.

A median number of cycles to fatigue damage Ncal is determined from τ0 by using the

Basquin relation presented in section 2.2.4:

Ncal = b (τ0)−c (4.6)

By introducing the reference number of cycles Nref and the reference stress τref such as

b = Nref/τ−c
ref , the previous relation reads:

Ncal = Nref

(
τ0

τref

)−c

(4.7)

FEM 1.001 [22] and EN 13001 [5] give respectively c = 3.322 and c = 3 for most of welded

details. In this study, the value of c is considered to be unknown and has to be calibrated

from test results.

As listed in section 2.2.2, other secondary factors (base material, plate thickness, etc)

influence fatigue lifespan of welded structures. These factors are implicitly taken into

account in European standards (FEM 1.001 or EN 13001) through the ranking of every

welded details in various notch classes. In this research work, two influence factors are

considered explicitly, namely the plate thickness and the loading mode. As detailed in

section 2.2.2, the classical approach enabling to account for plate thickness effect consists

in defining a correction factor on τ0 of the form (e/eref)
γ . Hence, the calculated fatigue
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lifespan expressed in equation (4.7) becomes:

Ncal = Nref

(
τ0

τref

(
e

eref

)γ)−c

= Nref

(
τ0

τref

)−c ( e

eref

)−a1

(4.8)

with a1 (equals to cγ) a real coefficient; e and eref are respectively the actual and reference

thicknesses. In this work, eref is set to 6 mm and a1 has to be calibrated. As outlined

in section 2.2.2, the loading mode also influences fatigue lifespan of welded members.

To our best knowledge, very few authors have taken this effect into account to correct

the predicted fatigue lifespan. Dong [42], whose approach to welded component fatigue is

founded on fracture mechanics issues, defined a dimensionless correction factor I(r0) for

the calculated local stress. I(r0) is a function of the crack length and the bending index

r0, with:

r0 =
∆σs − ∆σm

∆σs
(4.9)

where ∆σs is the structural (weld toe) stress and ∆σm is the membrane stress. Since

fracture mechanics theory is not used in this thesis, I(r0) cannot be used as it is. However,

in the same manner as Dong [42], a bending index can be defined from the maximum shear

stress amplitude τ
A−B

2
max :

r =

(
τ

A−B
2

max

)

s
−
(

τ
A−B

2
max

)

m(
τ

A−B
2

max

)

s

(4.10)

The use of the finite element modeling described previously leads to the assessment of

(τ
(A−B)/2
max )s and (τ

(A−B)/2
max )m respectively on the top and middle surfaces of shell elements.

Note that r ranges between 0 and 1 and equals 0 in pure tension, implying that pure tension

is the reference case. The correction factor relative to the bending index is assumed to vary

in accordance to a power function. Hence the calculated fatigue lifespan Ncal is multiplied

by 10a2r (a2 being a constant parameter), leading to:

Ncal = Nref

(
τ0

τref

)−c ( e

eref

)−a1

10a2r (4.11)

In summary, four influence factors are explicitly accounted for in the assessment of

Ncal. First, the linear FE analysis presented in section 4.2.1 enables the assessment of

the maximum shear stress amplitude and the hydrostatic pressure (reflecting the mean

stress). Second, the plate thickness and loading mode effects are considered through cor-

rection factors on calculated fatigue lifespan. Moreover, as pointed out in section 2.2.2,

material yield strength does not influence significantly crack initiation of welded assem-

blies made of usual structural steels, which explains why this parameter is not considered
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Reference Type e (mm)
Loading

ratio
Loading

mode
Number
of results

Lieurade et al. [108] X-joint 10 0.1 Tension 17

Kihl et al. [36] X-joint 6/11/19/25 -1 Tension 24

Huther [109] X-joint 8/15 0.2/0.5 Tension 144

Maddox [110] X-joint 13 0 Tension 10

Lindqvist [37] X-joint 6/12 0
Tension
Bending

17

Gustafsson [38] X-joint 6/12 0/0.75
Tension
Bending

73

Janosch [111] T-joint 10 0.1 Bending 24

Huther et al. [112]
Longitudinal

Stiffener
20 0.1 Bending 24

Trufiakov et al. [113] T-joint 20 0.1 Bending 12

Galtier et al. [114] T-joint 6 0.1 Bending 13

Pedersen et al. [115] T-joint 6 0.1 Bending 17

Table 4.1 – Summary of fatigue test results used for the calibration of constant parameters
involved in equation 4.11.

in the following. Lastly, other influence factors such as residual stresses or weld shape are

generally unknown and contribute intrinsically to the scatter observed in fatigue strength.

A fatigue test database has been established during this PhD in order to calibrate the

constant parameters involved in the assessment of Ncal in equation 4.11. The studies col-

lected from literature are listed in table 4.1 and concern constant amplitude tests on simple

welded details (X-joints, T-joints, longitudinal stiffeners) whose geometry is comparable

to the shape of welded details commonly used in crane structural design. Specimens are

tested either in tension or bending, stress ratio is mainly greater than zero, plate thickness

ranges between 6 mm and 25 mm and cracks initiate at weld toe. The calibration process

consists in minimizing the squared logarithmic difference between the experimental and

predicted lifespans:

min
pg

f(pg) =
n∑

h=1

(
log N (h)

exp − log N
(h)
cal (pg)

)2
(4.12)

where pg is the gth parameter to calibrate, and N
(h)
exp and N

(h)
cal are the hth fatigue lives

obtained respectively by testing and modeling. The parameters to calibrate in equation

(4.12) are p = {τref, c, a0, a1, a2} considering that eref and Nref are fixed respectively at

6 mm and 250000 stress cycles.
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Eq. Slope τref c a0 a1 a2

Before calibration (4.7) Constrained 44∗ 3∗ 0.33∗ - -

After calibration
(4.11) Unconstrained 71 3.37 0.005 1.07 0.61

(4.11) Constrained 70 3∗ -0.014 0.97 0.54

∗ fixed values

Table 4.2 – Parameters sets respectively before and after calibration.

The scatter plot of calculated lives versus experimental results for literature specimens

respectively before and after factor calibration are depicted in figure 4.4 (a) and (b),

and the corresponding parameters sets are listed in table 4.2. The parameters used before

calibration by using equation (4.7) are given in the first line of the table. The two other sets

are the parameters calibrated by means of equation (4.11), with respectively unconstrained

and constrained S-N curve slopes (i.e. parameter c). The obtained value of c is close to 3

in the first case, which is the usual value given by European standards dealing with fatigue

of welded details. The second case consists in fixing the value of c as 3 and performing

the calibration on the parameter set p = {τref , a0, a1, a2}. Note that in this case the

evaluated parameters are almost identical to those found with a unconstrained S-N curve

slope. Moreover, in both cases the small value of a0 shows that the coefficient related to

hydrostatic pressure has a very small influence for the studied specimens.

4.2.3 Strength distribution of crane welded details

The assessment of a strength model for the welded joints in the literature is reduced to the

modeling of the scatter plot depicted in figure 4.4 (b). For each point (h) of the scatter plot,

the difference between the logarithms of the experimental and predicted lives is expressed

as follows:

ǫ(h) = log
[
N (h)

exp

]
− log

[
N

(h)
cal

]
(4.13)

Thus, the problem consists of characterizing the scatter of the predictive model error

ǫ illustrated in figure 4.5. Assuming that the predictive model error ǫ follows a normal

probability law, the mean µǫ and standard deviation σǫ of the fitted PDF respectively equal

0.0 and 0.528 for c = 3.37 (unconstrained slope) and 0.0 and 0.54 for c = 3 (constrained

slope). ǫ being normally distributed, η = Nexp/Ncal is log-normally distributed, with mean

µη and standard deviation ση given by:

µη = eµǫ+σ2
ǫ /2 (4.14)

ση = µη

√
eσ2

ǫ − 1 (4.15)
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(a) (b)

95
%

5%

(c)

Figure 4.4 – Scatter plots obtained for literature specimens respectively (a) before and (b)
after factor calibration and (c) scatter plot related to industrial structures (not used in
the factor calibration). The dashed lines in (b) represent the 5% and 95% quantiles of the
scatter plot.
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Figure 4.5 – Distribution of predictive model error.

The coefficient of variation (δη = ση/µη) of the strength distribution (in number of cycles)

of the literature specimens equals respectively 57% for c = 3.37 and 58% for c = 3.

These values are higher than those usually found in studies that focus on single types of

joints studied separately. This high scatter is the logical consequence of gathering multiple

welded joint test results, thus accounting for a variety of geometries, materials, welders

and models. The difference between the values for δη of unconstrained and constrained

S-N curve slopes remaining small, the value of c is fixed as 3 in the following.

Literature specimens were used before to calibrate the parameters involved in equa-

tion (4.11). The next step aims at assessing Ncal for Manitowoc structures in order to

validate the prediction model and to quantify the strength randomness of crane welded

details. Some results are available for industrial structures [116, 117] in the literature and

a few others come from Manitowoc testing fields. Therefore, Ncal is calculated for these

structures by using equation (4.11) with the set of optimal parameters found for the liter-

ature specimens in case of constrained S-N curve slope (see third line of table 4.2). Points

{N
(h)
exp, N

(h)
cal }, corresponding to industrial structures, are thus depicted in figure 4.4 (c).

As seen in the figure, the fatigue test database for industrial structures is too small to

allow the accurate definition of a crane member strength model, as done previously for

literature specimens. At this stage of knowledge, the authors make the assumption that

the strength of the literature specimens is representative of the population of industrial

welded structures, including welded details used in tower cranes.

As seen before, the random distribution ǫ is modeled by a normal PDF. Assuming

that the scatter in the log-log plot is constant, a generic strength distribution is obtained

for all crane members, regardless their geometry, materials and loading modes. Note that

this corresponds to the case of a strength number of cycles log-normally distributed with a

constant coefficient of variation at any stress level, as presented in figure 2.4 (b). Thus, this

coefficient of variation being known (δη = 58%), any crane member strength distribution

can be assessed by finding a median strength number of cycles by FE modeling. For
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EN 13001 Proposed approach

Probability of survival 97.7% 50%

Prediction stress Nominal stress range ∆σc Shear stress amplitude τ0

Reference plate thickness ≤ 12 mm 6 mm

Reference number of cycles 2.106 250000

Table 4.3 – Comparison of the reference assumptions respectively used in EN 13001 [5]
and in the proposed approach.

instance, if the median number of cycles of strength µη equals 105 cycles, the scatter of

the strength distribution NR ∼ LN (µη, ση) is given by ση = δηµη = 0.58 · 105 = 58000

cycles.

Comparison of the proposed approach with EN13001

The following procedure aims at showing how the fatigue strength assessment approach

proposed in this work can be compared with European standards such as EN 13001 [5].

The main differences between EN 13001 and the proposed approach are listed in table

4.3. On one hand, the procedure provided by EN 13001 considers a characteristic fatigue

strength ∆σc corresponding to a given notch class. ∆σc is a stress range given at 2.106

cycles under constant amplitude uniaxial loading with a 97.7% probability of survival.

On the other hand, the fatigue strength distribution assessed in the proposed approach

was calibrated by considering a shear stress amplitude τ0 at 250000 cycles with a 50%

probability of survival:

N50% = Ncal = Nref−50%

(
τ0

τref

)−c ( e

eref

)−a1

10a2r (4.16)

where Nref−50% is the reference number of cycles corresponding to a 50% probability of

survival. Thus, for the sake of comparison, EN 13001 is considered as reference and the

previous formula is adapted in order to account for the same assumptions. This is done

by performing the following steps:

1. Assessment of the formula corresponding to N97.7% instead of N50% at a given τ0.

This consists in finding the reference number of cycles Nref−97.7% by means of the

isoprobabilistic curve equation given in section 2.2.4.

2. Conversion of the reference shear stress amplitude τ0 into a reference stress range

∆σ in the formula assessed in step 1 and eventual simplification depending on the

considered assumptions (plate thickness, bending index).

3. Evaluation of the reference stress range ∆σ corresponding to 2.106 cycles with a

97.7% probability of survival by inverting the formula found in step 2.
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S-�
curve
slope

Figure 4.6 – Reference welded detail taken from EN 13001 [5].

Illustration of the comparison of the proposed approach with EN13001

The notch class 3.28 of EN 13001 is selected to illustrate the comparison of these ap-

proaches on a practical example. As depicted in figure 4.6, the reference detail is a T-joint

subjected to uniaxial tensile stress (i.e. pure tension) and the S-N curve slope equals 3.

The specimen is assumed to conform with the specified basic conditions, i.e. the plate

thickness is lower or equal to 12 mm. In addition, the welding quality level is supposed to

be at least B. Hence, considering all the previous assumptions, the characteristic fatigue

strength ∆σc equals 100 MPa.

Step 1. Equation (4.16) is thus adapted in the case of the detail belonging to notch

class 3.28. As detailed before, the first step consists in using the isoprobabilistic curve

equation given in section 2.2.4 in order to find the reference number of cycles Nref−97.7%

related to a 97.7% probability of survival:

Nref−97.7% = exp


Φ−1(0.023)

√
ln(1 + δ2

N ) + ln


Nref−50%√

1 + δ2
N




 (4.17)

Considering from section 4.2.3 that δN equal to 0.58, the previous formula enables to find

that the reference number of cycles Nref−97.7% is equal to 73844 cycles. Hence, equation

(4.16) can be written as follows:

N97.7% = Nref−97.7%

(
τ0

τref

)−c ( e

eref

)−a1

10a2r (4.18)

Step 2. Remembering that the hydrostatic pressure is negligible in the assessment of

τ0 (i.e. a0 ∼ 0), and considering an uniaxial loading regardless the value of stress ratio κ,
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2.106

Step 1

Step 3

Figure 4.7 – Illustration of the comparison of safety margins induced respectively by the
proposed approach and the standards.

equation (4.5) becomes:

τ0 = τ
A−B

2
max =

∆σ

4
(4.19)

where ∆σ is the nominal stress range in the welded joint. Then, considering that the T-

joint has a plate thickness e equal to 6 mm and is subjected to pure tension (i.e. r = 0),

the predicted number of cycles N97.7% at 97% probability of survival can be simplified as

follows:

N97.7% = Nref−97%

(
∆σ

4τref

)−c

(4.20)

Step 3. The final step consists in inverting equation (4.20) in order to assess the

nominal stress range ∆σ corresponding to N97.7% = 2.106 cycles:

∆σ = 4τref

(
N97.7%

Nref−97%

)−1/c

(4.21)

Given that τref = 70 MPa and Nref−97% = 73844 cycles, the previous equation leads to

∆σ = 93 MPa. This value is lower than the value of 100 MPa specified by EN 13001,

meaning that in this particular case, the proposed approach is conservative in comparison

with EN 13001. Note that figure 4.7 provides an illustration of the proposed comparison

approach in order to facilitate understanding.

As the previous example shows, the proposed procedure for the assessment of crane

member strength leads to a safety level comparable to the one specified by standards,

whilst avoiding the step required to classify a welded detail into a notch class. This proves

to be particularly convenient when welded structural members cannot be classified with
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ease due to their complex geometry. Furthermore, influence parameters such as plate thick-

ness or loading mode are considered by means of continuous correction factors on fatigue

lifespan, while standards consider these factors through discrete notch class changes. Ad-

ditionally, FE analysis enables to deal with other influence parameters on crack initiation

and contributes to improve fatigue lifespan prediction of welded joints.

4.3 Crane use stochastic modeling

This section describes the general procedure enabling the stochastic modeling of crane

use, and highlights an application example related a jib top member connection.

4.3.1 Crane use distribution

Three fatigue load modeling methods were detailed in chapter 2 and the collected data

obtained by crane monitoring were presented in chapter 3. This section discusses the choice

of an appropriate method for the crane use modeling considering the available data.

Choice of appropriate fatigue loading model

As seen in section 2.3.2, random processes such as ARMA models or Markov chains are

convenient when the value of a random variable observed at time t is supposed to be

affected by the observed past values. This feature may be particularly helpful in crack

propagation analyses in order to see the impact of fatigue loading on crack opening.

Nonetheless, the failure criterion considered in this PhD concerns exclusively the initiation

of macroscopic cracks at weld toe. From another perspective, random processes might also

be used to model the dynamic oscillations occurring during each crane cycle, because

these oscillations are known to be highly correlated over time. Nevertheless, as seen in

section 3.5, almost all the fatigue damage of crane structural members comes from the

‘static part’ of crane cycles, i.e. dynamic oscillations are negligible. Furthermore, although

random processes may be used to model the temporal correlation between crane cycles

(e.g. sequence of cycles), those are supposed to be independent from each other because

the fatigue damage accumulation rule used in this work (the Palmgren-Miner linear rule)

does not account for the crane cycles sequence. For all these reasons, random processes

don’t seem to be suitable to model fatigue operating loads in the frame of this PhD.

As shown in section 2.3.4, the variability of fatigue loading can be assessed by per-

forming several short time-period field recording in similar operating conditions in order

to model fatigue loading spectra by means of multi-modal mixture PDFs. The efficiency

of this method was demonstrated on various examples where a sufficient number of ex-

perimental data sets was available. As seen in chapter 3, three cranes were monitored on

different construction sites. Therefore, three experimental data sets are theoretically avail-

able, which remains small to estimate accurately the model parameters. Moreover, as seen
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Figure 4.8 – Synoptic of the crane member use modeling procedure.

in section 3.5.2 for the jib member connection, the shape of loading spectra differs signifi-

cantly, meaning that operating conditions vary from one construction site to another. As a

result, the mismatch between required and available data shows that the mixture models

of loading spectra are not suitable for the modeling of crane members fatigue loading.

As seen in section 2.3.3, the elementary load mix strategy enables to reconstruct virtual

lives of structural members by mixing elementary loads assessed by measurements and/or

simulations. An important aspect to consider in this approach is the ability to account for

main events leading to fatigue damage in order to model accurately the operating load

scatter. The classification of crane cycles per type of work (concrete pouring, positioning,

transfer) performed in chapter 3 may look like a possible starting point which could justify

the use of the elementary load mix strategy. However, as seen in section 3.3, the percentage

of occurrence of each type of crane cycle is substantially different from one construction

site to another, which may complicate the use of this method. In addition, as highlighted in

section 1.4, crane use is also greatly influenced by the change of construction site (duration,

topography, etc.). The measurements performed on few cranes during this PhD are thus

not sufficient to reflect all the possible elementary life situations supposed to occur during

the crane lifespan.

As seen previously, none of the models presented in chapter 2 is suitable for the model-

ing of crane members operating loads. Nonetheless, as presented in chapter 3, data coming

from several sources (crane monitoring, crane rental agency, construction drawings) are

available concerning crane use. The proposed method consists in using these data to re-

construct artificial construction sites by considering that the work performed by the crane

on a unique construction site is almost deterministic. Thus, the crane use randomness is

assumed to originate exclusively from the construction sites’ changes. Figure 4.8 depicts

the general synoptic describing the assessment method of crane member use, the latter

being expressed in terms of number of cycles according to the time in service NS(t). The

procedure consists of three steps, the first step being optional: the problem reduction, the

modeling of distributions related to both intra and inter-construction site parameters (i.e.

two-level modeling) and the simulation of crane member lives.

Step 0. Reduction of the problem dimension

Although the proposed procedure remains suitable in the general case, the reduction of
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Figure 4.9 – Illustration of the problem reduction in the case of jib top member connec-
tions.

the modeling procedure to the case of a specific crane member may be convenient because

this enables to manage a reduced number of random variables. Considering a specific crane

member, this step is performed by addressing two questions :

• Where do load variations in the crane member originate from? Variations of hoisted

load, trolley radius or jib angle?

• What is the most damaging crane cycle type (concrete pouring, positioning, trans-

fer)?

The first question can be answered by studying the variables involved in the analytical

transfer function used to assess the force applied to the crane member from load, radius and

angle temporal data. For instance, given that the loading of jib top member connections is

not influenced by angle variations, the modeling of α1- and α2-distributions can be avoided

for this type of crane member. The second question can be clarified by using the fatigue

damage assessment method described in section 3.5 in order to determine if one of the

three types of work is susceptible to govern the structural member damage. Considering

for instance the results presented in section 3.5.2, the fatigue damage of jib top member

connections is mainly governed by concrete pouring cycles. Thus, as illustrated in figure

4.9 for this type of crane member, the proposed procedure can be reduced to the modeling

of radius and load distributions for concrete pouring cycles exclusively.

Note that even though the number of distributions to be modeled is significantly re-

duced concerning jib top member connections, this is not necessarily the case for other

crane structural members. For instance, if none of the cycle type predominates and if the

loading of the considered crane member depends on load, radius and angle variations, the

number of distributions to be modeled is equal to 15 (3 × 5). Moreover, as seen in chapter

3, the shape of α1- and α2- distributions is significantly different from one construction

site to another, which may complicate the modeling of angle distributions.
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Step 1. Two-level modeling of construction site parameters

Following the optional preliminary step, the proposed method consists in choosing the

probability density functions in order to model intra- and inter-construction site parame-

ters in accordance with the data presented in chapter 3. Two types of distribution related

to each modeling level are thus required:

• Intra-construction site parameters: artificial crane cycles reflecting the work

performed within one construction site are replicated by selecting randomly values

of load, radius and angle in distributions of R1, R2, α1, α2 and L for each type of

work (concrete pouring, positioning, transfer).

• Inter-construction site parameters: the parameters characterizing the previous

distributions and other variables such as construction site duration or crane con-

figuration are assumed to vary from one construction site to another. Therefore,

distributions are defined to account for the variability reflecting the change of con-

struction site, i.e. the randomness of inter-construction site parameters.

Considering a given construction site (i.e. inter-construction site parameters fixed),

figure 4.10 illustrates how a crane cycle is artificially reproduced by selecting randomly a

set of realizations of load, radius and angle in the corresponding distributions. As seen in

the figure, the loading sequence consists of four steps. Assuming that the initial values of

radius and angle are known from the previous cycle, step (1) aims to choose a realization

of load in the L-distribution. Then, realizations of R
(i)
2 and α

(i)
2 are simultaneously selected

in R2- and α2-distributions during step (2), and the hoisted load is dropped off in step

(3) meaning that L = 0. Finally, step (4) consists in selecting R
(i+1)
1 and α

(i+1)
1 in R1-

and α1-distributions. Note that these realizations constitute either the end of i or the

beginning of i + 1. Finally, assuming that the crane performs Nk cycles on the site k, one

possible realization of the work done on this construction site is determined by reiterating

the previous four steps until Nk is reached.

Once the work on one construction site is characterized, all the variabilities resulting

from the change of site must be accounted for, including changes of materials and tools,

crane configuration, construction site duration, time between two construction sites, lo-

cation of loading/unloading areas or buildings location. Figure 4.11 depicts examples of

distributions related respectively to intra and inter-construction site parameters. As seen

in the figure, a generic parametric PDF denoted X represents one of the intra-construction

site parameters (L, R1, R2, α1, α2), involving theoretically m (∈ N) parameters denoted

θX,m. Therefore, a change of construction site leads to a change of θX,m, these parame-

ters being randomly selected in inter-construction site parameters distributions denoted

ΘX,m. Furthermore, other inter-construction site parameters such as the construction site

duration Ton-site, the time between two jobs Tstored or the jib length Rjib are also mod-

eled by means of parametric distributions. Note that a few of these inter-construction site
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Figure 4.10 – Illustration of the generation of crane cycles for a given construction site
and a given type of work.

parameter distributions are modeled regardless the studied crane member.

At this point, parametric distributions related respectively to intra and inter-construction

site parameters were defined. As explained in the next step, these distributions enable the

generation of artificial crane cycles for various cranes performing multiple construction

sites.

Step 2. Virtual life simulations

As described in figure 4.12, this step aims at reconstituting virtual lives of a crane member

by using the distributions modeled in the previous step. First, one realization of inter-

construction site parameters is randomly selected in their corresponding distributions,

which leads to characterize one construction site. Therefore, the intra-construction site

variables (L, R1, R2, α1, α2) are fully defined. Second, the work performed by the crane on

the site is simulated by generating crane cycles from the previous distributions. Third, the

sequence of load, radius and angle variations describing crane cycles are transformed into

force or stress variations in the crane member by means of structural analyses. These force

or stress variations are usually determined analytically. Nonetheless, when the member

geometry is excessively complex, a linear FE analysis must be performed in order to link

the applied force with the local stress in the crane member. Fourth, a cycle counting

method, such as the Rainflow procedure presented in section 2.3.1, is used to extract

force ranges from the generated force-time history. Finally, the assessed force ranges are

converted into a number of cycles of stress NS(t) according to operating time by means

of a damage accumulation rule such as the Palmgren-Miner method illustrated in section
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Figure 4.11 – Illustration of the definition of distributions related to each modeling level
(i.e. intra- and inter-construction site parameters).

2.2.5. Note that NS(t) corresponds to an equivalent number of cycles performed at the

nominal capacity of the crane member.

Thereafter, the Monte Carlo (MC) simulation method described in section 2.4.4 is used

to assess the stress (i.e. use) distribution NS(t) for a given crane element group (E2, E3

and E4 or S1, S2 and S3). This consists in reiterating the procedure previously described

for a large number of cranes knowing that, for each crane, various construction sites are

randomly selected until a given number of years of use is reached (e.g. 40 years). Thus, as

illustrated in figure 4.12, the procedure presented in this work includes two loops related

respectively to crane cycles and construction sites. Note that the number of MC simulations

NMC must be adequate to assess the parameters (mean and standard deviation) of the

number of cycles distribution NS(t) with sufficient confidence.

In the following section, the proposed procedure is illustrated for the case of a specific

crane member belonging to the S1-class according to EN 13001 [5], namely a jib top

member connection.

4.3.2 Application to a jib top member connection

As illustrated in Step 0 of the previous section, the use of jib top member connections

can be modeled by means of radius and load distributions for concrete pouring cycles

exclusively. Starting from this observation, a use model is presented in this section in the
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Figure 4.12 – Illustration of crane member virtual life simulation procedure. The inner
loop consists in generating crane cycles for a given construction site while the outer loop
aims at randomly selecting construction site parameters.

case of jib top member connections used in cranes belonging to group 3, i.e. 2200 kN.m

≤ C ≤ 4000 kN.m (see section 3.6.1).

Modeling of intra-construction site parameters

The distributions of initial radius, final radius and maximum hoisted load related to con-

crete pouring cycles presented in chapter 3 are remembered in figures 4.13, 4.14 and 4.15.

As shown in these figures, R1-, R2- and L-histograms present similar profiles for the three

studied construction sites. Therefore, assuming that these sites are representative of usual

concrete constructions built in European cities, parametric PDFs are chosen to fit the em-

pirical distributions. R1/Rjib and L are modeled by means of Gaussian PDFs parametrized

by their mean (µR1
/Rjib and µL) and standard deviation (σR1

and σL) while R2/Rjib is

modeled by means of a triangular distribution accounting for three parameters (lower

bound aR2
/Rjib, upper bound bR2

/Rjib and mode cR2
/Rjib). Note that these parameters

depend on the location of the crane on the construction site. The chosen PDF models

are depicted on the right-hand side of figures 4.13, 4.14 and 4.15 and their corresponding

parameters inferred from the studied construction sites are listed in table 4.4. At this

point, the intra-construction site variables R1, R2 and L are entirely parameterized by 7

variables, namely µR1
/Rjib, σR1

/Rjib, aR2
/Rjib, bR2

/Rjib, cR2
/Rjib, µL and σL. Note that

the previous distributions remain valid for the modeling of the use of any other crane
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Figure 4.13 – R1-distributions for concrete pouring cycles for the construction sites 1, 2
and 3 and chosen PDF model.
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Figure 4.14 – R2-distributions for concrete pouring cycles for the construction sites 1, 2
and 3 and chosen PDF model.

structural member.

Modeling of inter-construction site parameters

Considering that the order in which crane cycles appear has no influence on fatigue lifes-

pan, load and radius time-histories can be reconstructed for each construction site by

random sampling in the distributions modeled before. Therefore, the change of construc-

tion site consists in varying their parameters. As depicted in figure 4.16, µR1
/Rjib is uni-

formly selected between 0.05 (minimum normalized radius) and 1 (maximum normalized

radius). Note that this conforms with the histogram of location of the center of gravity of

loading/unloading areas obtained from construction drawings in section 3.6.2. Moreover,

σR1
is fixed to 2.5 by expert opinion, and the normalized parameters aR2

/Rjib, bR2
/Rjib
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Figure 4.15 – L-distributions for concrete pouring cycles for the construction sites 1, 2 and
3 and chosen PDF model.

Law Construction site Estimation

µR1
/Rjib σR1

(m) -

R1 Normal

Construction site 1 0.84 0.50 -

Construction site 2 0.56 ; 0.76 2.25 ; 2.65 -

Construction site 3 0.45 2.97 -

aR2
/Rjib bR2

/Rjib cR2
/Rjib

R2 Triangular

Construction site 1 0.11 0.96 0.54

Construction site 2 0.00 0.72 0.46

Construction site 3 0.01 1.00 0.78

µL σL/µL -

L Normal

Construction site 1 23 0.05 -

Construction site 2 37 0.06 -

Construction site 3 51 0.07 -

Table 4.4 – Parameters for the fitted distributions of R1/Rjib, R2/Rjib and L for each
construction site.

Capacity (m3) 1 1.5 2

µL (kN) 23 37 51

σL/µL 0.05 0.06 0.07

Table 4.5 – Standardized concrete bucket characteristics.
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Figure 4.16 – Modeling of µR1
/Rjib by fitting a continuous uniform PDF on the distribution

of dCG/Rjib assessed from 63 construction drawings (82 cranes).
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Figure 4.17 – Modeling of Ton-site and Tstored by means of lognormal PDFs for group 3 (see
section 3.6.1).

and cR2
/Rjib are randomly selected in uniform probability laws, respectively U(0.04, 0.15),

U(0.85, 1), U(0.4, 0.8). Finally, µL and σL/µL are chosen by uniformly selecting a standard

concrete bucket (1, 1.5 or 2 m3 capacity) in table 4.5.

As seen in section 3.6, other inter-construction site parameters contributing to the

variability of crane use (i.e. of jib top member connections) must be accounted for. Due

to the studied crane capacity (2200 kN.m ≤ C ≤ 4000 kN.m), the histograms of Ton-site

and Tstored presented in section 3.6.1 for group 3 are remembered in figure 4.17. As seen

in the figure, Ton-site- and Tstored-distributions present lognormal profiles, which justifies

the use of two lognormal PDFs to model them. The inferred mean equal respectively 7.1

and 2.7 months and their standard deviation respectively equal 4.2 and 4.0.

The construction site duration Ton-site needs to be converted into a number of cycles in

order to generate Nconcrete concrete pouring cycles in the simulation process. Nonetheless,

as seen in table 3.1 (chapter 3), the number of crane cycles per day can vary signifi-

cantly depending on the construction site. Therefore, the relationship between Ton-site and

Nconcrete is not straightforward. Actually, the number of concrete pouring cycles performed
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on one construction site depends on three main parameters which are:

• the number of shifts Nshifts per day on the site (1, 2 or 3 teams per day). The work

performed by two or three teams in one day is logically greater than the work done

by only one team.

• the “efficiency” of these teams measured in volume of concrete poured per month

and per shift Vconcrete (m3/month/shift).

• the concrete bucket capacity Cbucket. The higher the concrete bucket capacity, the

lower the number of concrete pouring cycles to be performed.

This leads to express the relationship between the construction site duration and the

number of concrete pouring cycles as follows:

Nconcrete =
Ton-siteNshiftsVconcrete

Cbucket
(4.22)

Thus, Nshifts, Vconcrete and Cbucket must be modeled by random variables in order to reflect

the variability of crane use in terms of number of concrete pouring cycles. Therefore, for

each construction site, Nshifts is randomly selected between 1, 2 and 3 shifts by considering

a discrete probability law (p = {3/7; 3/7; 1/7}). Note that the probability to work with

three shifts in one day on the construction site is lower than the others. This is due to the

underlying assumption which considers that most of the time, the work is organized in 1

or 2 shifts but rarely in 3 shifts. Moreover, Vconcrete is chosen in a uniform distribution

of bounds respectively equal to 150 and 650 m3/month/shift according to expert opinion.

Lastly, the concrete bucket capacity Cbucket is picked for each construction site from table

4.5 by means of a discrete uniform probability law. This means that each concrete bucket

has the same odds to be randomly selected (p = {1/3; 1/3; 1/3}).

Finally, as outlined in section 1.4, a unique crane model can be used with different con-

figurations in terms of jib length or tower height. The latter does not influence the use of

jib top members. Thus, the last inter-construction site parameter to be accounted for is the

jib length Rjib , or equivalently the jib length ratio Rjib/Rjibmax
. Figure 4.18 remembers

the jib length ratio histogram related to group 3 which was obtained from construction

drawings in section 3.6.2. As seen in the figure, a truncated Gaussian distribution (dashed

line) fits quite well the empirical histogram. Its mean and standard deviation equal respec-

tively 0.85 and 0.1 and the lower and upper bounds are respectively defined as 0.3 and 1.

The jib length of a tower crane being a discrete variable, the jib length ratio Rjib/Rjibmax

is randomly selected in a discrete probability law defined by the quantiles of the fitted

truncated Gaussian PDF (gray lines ended by points). This means that long jibs have

more probability to be chosen than short ones. This reflects the underlying assumption

which considers that a crane is generally chosen to be suitable for a given construction site
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Figure 4.18 – Modeling of Rjib/Rjibmax
by means of discrete quantiles of a normal PDF

truncated between 0.3 and 1. Rjibmax
is the maximum jib length that can be used for a

given crane model.

in terms of loading capacity and radius variations, i.e. extended construction sites require

large cranes and vice-versa.

Table 4.6 summarizes the assumptions described before concerning inter-construction

site parameters. At this point, all the assumptions required to artificially reconstruct

virtual lives of a jib top members have been detailed. The following section highlights the

simulation procedure illustrated in figure 4.12 in the case of jib top member connections.

Virtual life simulations - Distribution of NS(t)

In this section, the jib top member use distribution expressed in terms of equivalent num-

ber of cycles is assessed assuming that the order in which crane cycles occur has no

influence on fatigue lifespan. The general simulation procedure presented in the previous

section is detailed in figure 4.19 for the case of jib top member connections. Considering

a given crane, the inter-construction site parameters are randomly selected in the distri-

butions presented before. Then, equation 4.22 is used to convert Ton-site, Nshifts, Vconcrete

and Cbucket into a number of concrete pouring cycles performed during the construction

site. Moreover, the realizations of µR1
/Rjib, aR2

/Rjib, bR2
/Rjib, cR2

/Rjib, Rjib/Rjibmax
and

Cbucket characterize the three distributions related to L, R1 and R2. After that, crane

cycles are generated considering the sampled construction site and the force applied to

the jib top member connection is assessed by structural analyses. Then, cycle counting is

performed in order to find the force variations ∆F (i) in the structural member and the

linear Palmgren-Miner damage accumulation rule enables the assessment of an equivalent
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Variable Type Law Parameters

µR1
/Rjib Continuous Uniform U(0.05, 1)

aR2
/Rjib Continuous Uniform U(0.04, 0.15)

bR2
/Rjib Continuous Uniform U(0.85, 1)

cR2
/Rjib Continuous Uniform U(0.4, 0.8)

Ton-site Continuous Lognormal LN (7.1, 4.2)

Tstored Continuous Lognormal LN (2.7, 4.0)

Nshifts Discrete - p = {3/7; 3/7; 1/7}
Vconcrete Continuous Uniform U(150, 650)

Cbucket Discrete Uniform p = {1/3; 1/3; 1/3}

Rjib/Rjibmax
Discrete

Quantiles of trun-
cated Gaussian

N (0.85, 0.1)

Table 4.6 – Summary of the assumptions made concerning inter-construction site param-
eters.
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Figure 4.19 – Crane cycles generation procedure in the case of a jib top member connection.
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Figure 4.20 – Jib member equivalent number of cycles after 10, 20, 30 and 40 years of
work.

number of cycles N
(k)
S for the construction site k:

N
(k)
S =

1

w

Nconcrete∑

i=1

(
∆F (i)

∆Fref

)c

(4.23)

with c = 3 (EN 13001 [5]) and w = 0.7. The latter value which was defined in section 3.5.2

corresponds to the contribution of concrete pouring cycles on the total damage of the jib

top member connections.

Afterward, NS(t) is obtained for a given crane by reiterating the previous procedure

for various construction sites until a given number of years of work is reached (e.g. 40

years). This can be expressed by the following relationship:

NS(t) =
K∑

k=1

N
(k)
S with t =

K∑

k=1

t
(k)
on-site ≥ 40 (4.24)

Lastly, the distribution of NS(t) is assessed by repeating the whole procedure for 10 000

cranes (NMC = 10000). Figure 4.20 depicts the use distributions assessed after 10, 20, 30

and 40 years of work for the jib top member connection. As seen in the figure, lognormal

PDFs can be used to fit the empirical distributions, for which the mean µS(t) and standard

deviation σS(t) are listed in table 4.7.

As seen previously, data coming from crane monitoring, construction drawings or a

crane rental agency have been used to model parametric distributions of intra and inter-

construction site parameters. Afterward, these distributions enabled to reconstruct virtual

lives for jib top member connections and to assess the distribution of equivalent number

of cycles NS(t) according to the time by performing Monte Carlo simulations. In the next

section, a sensitivity analysis is conducted in order to evaluate the significance of the
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t 10 20 30 40

µS(t) 14620 29343 44066 58876

σS(t) 4916 7069 8570 9997

Table 4.7 – Mean and standard deviation of the distribution of NS(t) according to the
operating time.

variability of each input variable on the scatter of the distribution of NS(t).

4.4 Sensitivity analysis of jib member use distribution

A crane use model has been created in the previous section by making assumptions con-

cerning intra and inter-construction site parametric distributions. However, it remains

important to evaluate the significance of these assumptions on the dispersion of the dis-

tribution of equivalent number of cycles NS(t) according to the operating time. As seen in

section 2.4.5, sensitivity analyses constitute efficient tools allowing to perform this task. In

this section, Sobol’s indices are calculated in order to judge of the impact of the variability

of each input variable involved in the crane use model on the dispersion of the distribution

of NS(t).

The method presented in section 2.4.5 is applied to the crane use modeling procedure

presented before. The aim is to avoid over-parametrization of the model by fixing non-

influential variables to deterministic values, on one hand and, to identify those which need

to be studied more carefully due to their great influence on the final result, on the other

hand. As seen in figure 4.19, the input variables involved in the jib chord member use model

have different influences. First, Tstored, Ton-site, Vconcrete and Nshifts influence directly the

number of crane cycles performed on a construction site. Therefore, these variables have

an impact on the distribution of equivalent number of cycles NS over the operating time

t. Second, Rjib/Rjibmax
, µR1

/Rjib, aR2
/Rjib, bR2

/Rjib, cR2
/Rjib reflect the topography of

each construction site, i.e. the distribution of crane use over the working area. Third, the

concrete bucket capacity Cbucket influences both the equivalent number of cycles NS(t)

and the distribution of hoisted loads on each construction site. The higher the concrete

bucket capacity, the heavier the loads to be hoisted but the lower the number of crane

cycles. Therefore, the sensitivity analysis presented in this thesis consists in evaluating the

impact of the scatter of each of these input variables on the scatter of NS(t).

The first-order and total Sobol’ indices are assessed by means of Monte Carlo simula-

tions. As depicted in figure 4.21, the convergence of the estimator of the first-order Sobol’

indices is checked by plotting their sum versus several values of Monte Carlo iterations

N . As seen in the figure, the sum of these indices converges after 20 000 iterations to

0.75, which means that the variance of input variables taken separately explain 75% of
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Figure 4.21 – Convergence of the sum of first-order Sobol’ indices versus N .

the scatter of the distributions of NS(t).

Figure 4.22 depicts the results of the sensitivity analysis in terms of first order and total

Sobol’ indices. The remaining 25% of the variance of NS(t) comes from the interactions

between variables. Therefore, as a second step, second order Sobol’ indices Sij are assessed

by means of the formulas given in section 2.4.5. This leads to determine 45 second order

Sobol’ indices whose estimates are listed in table 4.8 for 20 000 iterations. The indices

whose value is greater than 1% are written with bold font in the table. This enables us

to highlight the most influential pairs of variables on the scatter of NS(t). Although some

pairs slightly influence the scatter of the distribution of number of cycles of use, there is

no predominant pair of variables. Moreover, the sum of all second order indices equals

20% meaning that almost 95% of the variance of NS(t) is explained by first and second

order Sobol’ indices exclusively.

Influence of the scatter of inter-construction site parameters

As seen in figure 4.22, the first order Sobol’ indices related to the distributions of Ton-site,

Tstored and Rjib/Rjibmax
remain below 6%, meaning that the influence of the scatter of these

three variables taken separately is limited. Nonetheless, note that their impact becomes

greater when associated with other variables because their corresponding total Sobol’

indices are greater than the first order indices. In addition, the influence of Vconcrete,

Nshifts and Cbucket equal respectively 13%, 17% and 15%, meaning that the impact of

the dispersion of these variables is much more significant than the impact of the others

on the scatter of NS(t). Remembering the calculation of the number of concrete pouring

cycles in equation (4.22), the previous observation becomes readily understandable since

a change of number of shifts (1, 2 or 3 teams per day) and/or concrete bucket capacity

(1, 1.5 or 2 m3) leads to a significant change of number of concrete pouring cycles. As

noticed in figure 4.22, the total Sobol’ indices related to Vconcrete, Nshifts and Cbucket are
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Figure 4.22 – Results coming from the Sobol’ sensitivity analysis after 20 000 iterations.
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Ton-site 0.4 0 0 0 0 0 0 0 0.2

Tstored - 0.6 0.8 1.0 0.4 0 0 0 0.4

Vconcrete - - 1.9 1.4 1.0 0 0.1 0 2.4

Nshifts - - - 2.8 0.8 0 0 0 3.3

Cbucket - - - - 0 0 0 0.2 1.6

Rjib/Rjibmax
- - - - - 0 0 0.1 0.1

aR2
/Rjib - - - - - - 0 0 0

bR2
/Rjib - - - - - - - 0 0.2

cR2
/Rjib - - - - - - - - 0.3

Table 4.8 – Estimates of second-order Sobol’ indices (in %) assessed for 20 000 iterations.
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also important which means that the scatter of these three random variables becomes

more significant when mixed in equation (4.22). The results given in table 4.8 confirm

this observation given that the second-order indices related to the pairs involving these

variables are higher than 1%.

Influence of the scatter of intra-construction site parameters

As seen in figure 4.22 and table 4.8, the variability of aR2
/Rjib, bR2

/Rjib and cR2
/Rjib have

clearly no influence on the scatter of NS(t). This means that the variance of the distribution

of final radius R2, which is directly related the buildings location on the site, have no

influence on the scatter of the jib chord member equivalent number of cycles distribution.

Nevertheless, the unique intra-construction site parameter whose scatter greatly influences

the dispersion of NS(t) is the truck mixer location µR1
/Rjib (see figure 4.22). Moreover,

the impact of the scatter of this variable becomes more significant when paired with other

input variables such as Vconcrete, Nshifts or Cbucket (see table 4.8).

As seen previously, the sensitivity analysis performed in this work reveals that the

scatter of the distribution of R2 have no impact on the dispersion of the damage of jib top

member connections. Moreover, further efforts may be concentrated on variables such as

the volume of concrete poured per month and per team, the number of shifts per day, the

concrete bucket capacity, the jib length and the location of truck mixers. The assumptions

related to the latter may be verified by studying more construction drawings. In addition,

customer surveys may be conducted in order to get significant statistical data enabling

to to corroborate the assumptions made concerning other influential variables (Vconcrete,

Nshifts, Cbucket and Rjib).

Given that, at this stage, the strength and stress distributions are determined, the

following section aims to describe the procedure developed in this work to assess the

reliability index of crane welded details.

4.5 Reliability assessment of crane welded details

The assessment of strength and stress distributions have been detailed before. In this

section, the stress-strength Interference method proposed in this thesis is applied. Af-

ter describing the general synoptic summarizing the reliability procedure, the proposed

method is applied to jib chord member connections.

4.5.1 General synoptic of the proposed SSI method in the design stage

As detailed in sections 4.2 and 4.3, the distributions of strength NR and stress NS(t)

can be determined for any crane structural member. Since both distributions are assessed

by considering the same reference cycle (see figure 3.19), the stress-strength Interference

method described in section 2.4.2 can be used in order to assess the reliability of a given
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Figure 4.23 – Crane structural member reliability assessment procedure in the design stage.

structural member. This section aims at describing the proposed SSI method in the general

case.

The reliability procedure proposed in this thesis for fatigue design of crane welded

members can be summarized through the general synoptic depicted in figure 4.23. On

one hand all available data are analyzed in chapter 3 in order to define a representative

crane member use model. These data, which may be obtained from crane monitoring, from

rental agency databases and from construction site drawings, are used to characterize intra

and inter-construction site parameters. Then, random sampling is performed to generate

crane cycles which are finally converted into an equivalent number of cycles of use at

nominal capacity NS(t) according to the crane operating period (see section 4.3.2). On

the other hand the study of a fatigue test database enables to calibrate fatigue lifespan

parameters leading to define a unique strength model for all crane structural members.

Thus, the geometry of the studied crane welded detail is used in the Finite Element

Analysis (FEA) in order to determine a median number of cycles related to the strength

distribution NR (see section 4.2). Since NR and NS(t) distributions are fully determined,

the reliability R(t) or its corresponding index β(t) are evaluated as described in section

2.4.2. Finally, the last step of the method consists in using the previous results during

the design stage by comparing the obtained reliability index with an admissible value, i.e.

with a target reliability index. If the condition β(t) ≥ βadm is satisfied, the design of the

crane structural member is validated according to the probabilistic criterion. Otherwise,

design improvements must be performed (e.g. changes of geometry) until the probabilistic

condition is satisfied. The next section focuses on the application of the proposed SSI
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Figure 4.24 – Calculated reliability index of the jib member over time.

method to the case of jib chord member connections.

4.5.2 Application on jib top member connections

An application of the reliability method presented previously is outlined in this section.

The case study focuses on jib top member connections which are classified S1 in EN 13001

[5] (or E2 in FEM 1.001 [22]).

As seen in section 2.4.2, fatigue strength of crane welded joints is supposed to be time-

independent while crane structural members loading evolves according to operating time.

Therefore, the performance function expressed in equation 2.38 can be written in terms

of equivalent number of cycles at nominal capacity:

G(t) = NR − NS(t) (4.25)

As detailed respectively in sections 4.2.3 and 4.3.2, the distributions of strength NR and

stress NS(t) considered in the previous equation are lognormal. Considering that G(t) is

linear, the reliability index β(t) can be expressed by means of the analytical relation, as

detailed in section 2.4.3:

β(t) =
λNR

− λNS
(t)√

ξ2
NR

+ ξ2
NS

(t)
(4.26)

where λX and ξX are respectively the mean and standard deviation of the random variable

ln(X). Figure 4.24 depicts the jib top member reliability index versus the time t in years

and the corresponding values are listed in table 4.9. Bearing in mind all the assumptions

made before concerning the strength and stress distributions, note that the calculated

reliability index of the jib top member connections is high, regardless of the number of

years of crane service (greater than 6 even after 40 years).

The case study presented in this section showed that the reliability of crane structural

members can be assessed by using the SSI method proposed in this thesis. Thus, the whole
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t (years) 5 10 15 20 25 30 35 40

β(t) 8.16 7.86 7.51 7.20 6.93 6.70 6.48 6.29

Table 4.9 – Reliability index according to operating time.

procedure presented in figure 4.23 for jib chord member connections can be reiterated for

other crane structural members which are classified differently according to standards, e.g.

S2 or S3 in EN 13001 [5]. The loading of these crane members can also depend on the

slewing movement (e.g. mast chord member) in addition to the hoisting and trolleying

movements. Therefore, angle variations must be considered in the same way as done in

section 4.3.2 for load and radius variations, and the procedure presented in figure 4.19

is repeated in order to assess the stress distribution depending on time in service. Since

the strength model is valid for all crane welded details, a unique FE analysis of the crane

member is performed in order to estimate the median number of cycles of the strength

distribution. Lastly, the reliability index of the considered crane member can be assessed

in the same manner as defined in this section.

4.6 Conclusion

A probabilistic approach was developed in this chapter to determine the reliability of tower

crane members. The stress-strength interference method applied in this thesis requires the

precise definition of strength (resistance) and stress (use) models. First, influential pa-

rameters on fatigue lifespan (bending index, plate thickness, etc) were calibrated by using

fatigue test results combined with finite element analyses. Then, a strength distribution

was assessed by making the assumption that the fatigue resistance of literature specimens

was representative of the strength of crane welded details. Second, recording made over

several months on three different cranes enabled an understanding of the work performed

by a crane on a construction site. In addition, rental data and construction drawings were

analyzed in order to understand the crane use variability induced by the change of con-

struction site. Then, assuming that the monitored construction sites were representative

of concrete construction sites, a procedure was elaborated to assess the distribution of

equivalent number of cycles of use at nominal capacity according to time in service. Fur-

thermore, a sensitivity analysis was performed in order to identify the most influential

variables on the scatter of the stress distribution NS(t). Finally, the stress-strength in-

terference method enabling the assessment of the reliability index of any crane structural

member was detailed and jib top member connections was used as a case study.

Assumptions have been made concerning the assessment of the strength and stress

distributions involved in the reliability procedure. The consolidation of these assumptions

constitutes a perspective of this work. The bias introduced by the assumption related
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to the representativeness of literature specimens fatigue strength will be updated in the

future when a sufficient amount of data will be available for crane welded details, i.e.

when FE results coming from industrial welded details will be included in the Nexp − Ncal

scatter plot. Moreover, the assumptions related to crane members use modeling will be

confirmed (or not) by studying more data from all possible sources. Additional cranes will

be monitored and other data from crane rental companies or construction firms will be

analyzed in order to refine the assumptions related to the stress distribution. Note that

the sensitivity analysis conducted in the studied crane structural member will help to

concentrate the efforts on the most relevant and significant data in the future. In addition,

another perspective of this work aims at defining admissible reliability indices βadm related

to each crane structural member. The final step of the probabilistic procedure proposed

in this thesis consists in comparing the assessed reliability index with a target in order to

judge if the studied crane member is sufficiently reliable. If not, the crane member design

must be changed until the admissible index is reached. Note, for instance, that βadm may

be defined by considering the capacity to detect a crack, the ability of the part to resist

fatigue crack, the consequences of the failure of the member and the number of identical

parts in the impacted zone. Lastly, the correlation between theoretical reliability results

and experience feedback related to cranes in operations for several decades constitutes

another task which may be done in the future. For instance, this task could be performed

by analyzing various data such as the claims or long term warranty databases.
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4.6. Chapter summary

The reliability analysis developed in this chapter aims at assessing the reliability

of crane structural members. The procedure consists in determining two proba-

bility density functions related to the strength (resistance) of crane members on

one hand and their stress (loading) on the other hand.

Fatigue test results from literature enable the calibration of parameters (plate

thickness, loading mode, etc) involved in the fatigue lifespan prediction model

of welded details. Then, the scatter of the strength distribution related to crane

welded details is assessed by assuming that the resistance of literature specimens

is representative of the fatigue lifespan of industrial welded details. After that, a

median number of cycles of strength is determined by performing a finite element

analysis in order to fully define the strength distribution related to a given crane

member.

Following this, a general procedure is developed to assess the stress distribution

of crane structural members according to the time in service. The procedure

consists in using the data processed in chapter 3 in order to define parametric

distributions reflecting the work done within a construction site on one hand

and the variability induced by the change of construction site on the other hand.

After that, artificial crane cycles are iteratively generated by randomly selecting

realizations from these distributions. Then, the force applied to the studied crane

member is assessed through a linear analysis and the Rainflow procedure is used

to count stress cycles which are converted into an equivalent number of cycles at

nominal capacity by means of the Palmgren-Miner damage accumulation rule.

A sensitivity analysis using Sobol’ indices is performed in order to quantify the

impact of the scatter of each input variable on the scatter of the assessed stress dis-

tribution. Once both strength and stress distributions are entirely characterized,

the stress-strength interference method is applied in order to assess the reliability

of a given crane structural member. Lastly, the illustration of the whole reliabil-

ity procedure on a specific crane member (jib top member connection) shows the

relevance and the efficiency of the reliability approach proposed in this work.

Chapter summary

133



4. Reliability assessment of crane members using a time-dependent SSI method

134



Conclusion and future works

Conclusion

The fatigue design of crane structures is usually considered in standards by means of

deterministic rules supposed to ensure structural integrity. Although these approaches

give a satisfactory design in most cases, they do not enable to evaluate the reliability level

of structural members. Furthermore, they give no information concerning the impact of

design parameter uncertainties on structural safety. From that perspective, probabilistic

approaches represent efficient tools allowing designers to acquire this additional knowledge.

The research presented in this thesis represents a promising probabilistic approach enabling

to assess the reliability of crane structural members depending on their operating time,

and to quantify the importance of the uncertainties inherent to crane use. The proposed

procedure is based on the development of a time-dependent stress-strength interference

method. This probabilistic approach considers separately the stochastic modeling of the

uncertainties inherent to the strength of crane members, on one hand, and the stochastic

modeling of the uncertainties related to their use, on the other hand.

The first contribution of this research work is the development of a procedure enabling

the capitalization of fatigue test results in order to predict the fatigue strength of crane

members. Welded details are usually classified by standards into notch classes, which

aims at providing the fatigue strength of simple welded joints with known characteristics,

and tested under specific loading conditions (e.g. uniaxial loading). Knowing that real

operating conditions are generally more complex than a simple uniaxial loading and, that

the geometry of crane details does not always correspond to the usual simple geometries

given by notch classes, the fatigue design of crane welded details may become extremely

complicated in various cases. As a result, the capitalization procedure proposed in this

thesis overcomes the previous limits by defining a unique scatter plot accounting for the

strength variability of all crane welded details. The main advantage is to avoid the notch

classification while satisfying the required structural safety level.

The second contribution of this work concerns the stochastic modeling of crane oper-

ating loads. Standards generally specify the loading of crane members in accordance with

two main parameters, namely the loading severity level and the theoretical fatigue lifespan

expressed in number of cycles. However, they do not link this number of cycles to the crane
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operating time, which makes the structural reliability unpredictable after a given period

of time. Moreover, various uncertainties that affect the evolution of crane use with time

are not considered in standards. For these reasons, the present thesis proposes a general

method enabling to assess the distribution of crane member use according to operating

time. The method is based on the analysis of several data sets coming from various sources

(e.g. crane monitoring, rental agency and construction drawings) enabling the characteri-

zation of the uncertainties related to crane member operating loads. A two-level iterative

procedure consisting in performing random sampling in parametric distributions is sug-

gested to reconstruct numerically the work performed by a crane on various construction

sites. The main advantage of this modeling procedure lies in the fact that both construc-

tion sites topography and crane operating time are considered in the crane member use

distribution assessment.

In the proposed approach, the scatter of the distributions of strength and stress may

influence the reliability results according to the crane operating time. Assuming that a

sufficient amount of experimental results can be correlated with the corresponding finite

element models, the strength dispersion is established once and for all, and is not supposed

to evolve with time. However, more attention needs to be paid concerning the various

assumptions which were made for the parameters involved in the crane use predictive

model. This research work thus proposes the use of a global sensitivity analysis enabling

to identify the parameters whose scatter has a significant effect on the dispersion of crane

member use distribution. The method aims to evaluate the so-called Sobol’ indices by

means of Monte Carlo simulations in order to quantify the impact of the scatter of input

parameters on the variance of the model output. The main benefit of this sensitivity

analysis lies in the ability to guide further investigations, because it provides designers

with a decision-making tool enabling to focus only on the most influential parameters.

Finally, the last contribution of this research work is the development of a time-

dependent stress-strength interference method enabling to assess the crane structural

member reliability according to their operating time. The procedure is applied to an

illustrative example dealing with jib chord member connections. Given that the uncer-

tainties related to the strength and stress distributions are accounted for by means of two

lognormal probability density functions, the reliability index of crane structural members

is evaluated according to the crane operating period. The proposed method represents a

significant step forward in comparison with standards, because it provides engineers with

the possibility to link structural reliability to crane operating time. This may be helpful

for instance to improve the maintenance plan of crane structures.
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Future works

Following the conclusion on the benefits arising from the time-dependent reliability pro-

cedure developed in this research work, further investigations should be conducted in the

stochastic modeling of the strength and stress distributions. On one hand, the bias intro-

duced by the assumption concerning the representativeness of literature specimen fatigue

strength should be first corrected. This long-term task consists in modeling a large number

of crane structural details whose experimental lifespan is known from fatigue tests in order

to enrich the Nexp-Ncal scatter plot related to industrial structures. On the other hand, the

assumptions made about the crane member use stochastic modeling should be confirmed

by monitoring more cranes on real construction sites and by collecting more duration and

drawing databases. This data collection should be guided by the conclusions of the sen-

sitivity analysis performed in this thesis by focusing on the most significant parameters

involved in the crane use model.

The research work presented in this document is concerned with the application of a

time-dependent probabilistic method to jib top member connections. The application of

this procedure to other crane details should be performed in order to map the reliability

level of every existing crane structural members. The loading of other crane members

such as mast chord members depends also on the slewing movement in addition to the

hoisting and trolleying. Although the developed crane use model enables us to account for

angle variations, further investigations should be conducted concerning the modeling angle

distributions since they are significantly different from one construction site to another.

The results assessed by means of the proposed reliability approach are helpful to map

the reliability level of existing crane structures. Reliability-based design constitutes a step

forward for a better management of the design of crane structural members in terms

of cost and safety. This may be performed by defining during the design stage reliability

targets related to each crane member according to several criteria. These reliability targets

may for instance consider the capacity of the structural member to resist a crack (e.g.

redundancy), the gravity of the consequences in case of total failure, the ability to detect

a crack (e.g. accessibility of the member when inspected) and the number of identical

crane members in operation. The reliability objectives to be defined during the design

stage should also conform with the experience feedback coming from claims or long-term

warranty databases.

In this research work, sensitivities are calculated using the Sobol’s method. This

method aims at evaluating the contribution of the variance of input parameters on the

dispersion of a mathematical model or the mechanical response of a structure. Neverthe-

less, Sobol’ indices do not provide any information concerning the influence of the mean

value of random variables on the mean value of the random structural response. Other

sensitivity measures such as Borgonovo indices [18] should thus be assessed in order to

enhance the global sensitivity analysis conducted in this work.
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Appendix A

Construction site drawing
processing

In this research work, we have developed numerical routines enabling to retrieve and

process data from construction site drawings. As detailed in this appendix, this includes

a Graphic User Interface (GUI) enabling to acquire relevant data from drawings and

numerical functions allowing to handle these data automatically.

A.1 Data collection from construction site drawings

The first step of the procedure consists in creating a GUI enabling to retrieve relevant

data from a construction site drawing with minimum effort. The developed GUI enables

us to:

• Open a construction site drawing (in PNG or JPEG format).

• Specify a crane coordinate system.

• Define surfaces (poured floors, loading/unloading areas, etc.).

• Register automatically the coordinate system parameters (origin, orientation, scale)

and the surface features (coordinates of edge vertices, thickness, etc.).

As seen in Figure A.1, the three first points listed above can be easily performed by the user

by clicking the buttons named respectively “Open drawing”, “Specify coordinate system”

and “Define surfaces”.

Drawing opening

Construction drawings are usually provided in DWG or PDF format. However, the de-

veloped GUI only support PNG or JPEG format. Therefore, the DWG drawing must be

converted into a PDF file. Then, an image file can be obtained from a PDF file by pressing
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Figure A.1 – Illustration of the data collection performed from construction site drawings.
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the button “printscreen” on the keyboard and registering the created image in the right

format (PNG or JPEG).

Coordinate system specification

When the construction drawing is loaded in the GUI window, the user must specify the

characteristics (origin, orientation, scale) of the crane coordinate system (see Figure A.1):

1. The origin of both coordinate systems is obtained by clicking on crane location on

the drawing (see point P1).

2. The orientation of one coordinate system relative to the other is assessed by clicking

on one point defining the direction of the positive X-axis of the crane coordinate

system (see point P2).

3. The scale of the construction site drawing is calculated by:

• retrieving the coordinates of one point defining the crane working area (see

point P3),

• writing the jib length in an editor box.

The three steps mentioned before enable the full definition of the crane coordinate system

relative to the drawing coordinate system (see Figure A.1). Note that, in order to facilitate

further processing, the data retrieved during the following step are expressed in the crane

coordinate system, the latter being considered as the reference. At the end of this step,

the origin coordinates, the orientation angle and the scale of the construction drawing are

stored automatically in a text file.

Surface definition

After specifying entirely the crane coordinate system, various surfaces (loading/unloading

areas, building locations, etc.) can be defined with minimum effort. To achieve this, the

user must click on the button named “Define surfaces” and click on the successive vertices

that define the edge of the surface. When he validates, an editor box appears with various

surface features that must be specified. For instance, the user can set the number of iden-

tical surfaces if several floors are defined from the same edge, the thickness of the surface,

if any, and the height of the surface calculated from the reference floor. An illustration of

the result obtained after performing this step is given in Figure A.1. When the user has

finished to define a surface, the coordinates of the vertices and the surface features are

automatically stored in the text file created before. The following section explains how the

data collected from construction drawings can be processed.

151



A. Construction site drawing processing

A.2 Processing of the collected data

This section describes how the data collected from drawings and stored in a text file

can be processed to estimate surfaces and volumes of concrete according to the working

radius or working angle. The basic principle of the processing method is to discretize the

crane working area into numerous four-sided polygons, and to detect if these polygons are

located inside the surface edges retrieved during the data collection step. This leads to

verify if the corners and the center of gravity of the four-sided polygons are located inside

the surface edge. A simple way to achieve this consists in using the following geometry

property:

A point is located inside a convex polygon if the sum of the angles

calculated from it and each vertex of the polygon equals 360◦.

Therefore, given a surface edge identified in the previous section, the method consists of

several steps:

1. Discretize the crane working area into four-sided polygons having the same area.

2. Detect the elements which are entirely located inside the surface edge and those

located at the limit of the edge (see Figure A.2(a)):

• If the four corners and the center of gravity of the polygon are all located inside

the surface edge, the polygon is entirely inside the surface edge.

• If at least one corner or the center of gravity of the polygon is located inside

the surface edge, the polygon is considered as a borderline element.

• Otherwise, the polygon is located outside the surface edge.

3. Refine the borderline elements into smaller four-sided polygons and detect if these

polygons are also located inside the surface edge (see Figure A.2(b)).

4. Calculate the proportion of borderline element area that is inside the surface edge

by summing all the small polygon areas located inside the surface edge.

Once the four steps listed before are completed, various results can be plotted. As

depicted in Figure A.3, the estimated volume of concrete that must be poured theoretically

can be plotted in accordance with the crane working area, i.e. in three dimensions. The

results can also be presented by plotting separately the estimated concrete volume versus

the working radius or versus the working angle, as shown in Figure A.4.

As seen in this annex, useful data can be extracted from construction drawings by using

a simple graphic user interface, and processed by means of numerical routines enabling

to estimate for instance the volume of concrete that must be theoretically poured on the

construction site.
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Figure A.2 – Identification of elements that are entirely within the surface or those which
are located at the limit of the edge respectively during (a) step 2 and (b) step 3.

153



A. Construction site drawing processing

0

−60
−40

−20

20
40

60

0

−60

−40

−20

20

40

60

0e00

1e−01

Figure A.3 – Illustration of the 3D results obtained after the data processing according to
the crane working area.
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Figure A.4 – Illustration of the results obtained after the data processing according to
working radius and angle, respectively.
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