
HAL Id: tel-01155513
https://theses.hal.science/tel-01155513

Submitted on 26 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability and complexity of simulation preorder for
data-centric Web services

Lakhdar Akroun

To cite this version:
Lakhdar Akroun. Decidability and complexity of simulation preorder for data-centric Web services.
Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2014. English. �NNT : 2014CLF22523�.
�tel-01155513�

https://theses.hal.science/tel-01155513
https://hal.archives-ouvertes.fr

E D S P I C : 676
N◦ d’ordre : D. U : 2523

UNIVERSITÉ Blaise Pascal Clermont-Ferrand II
U.F.R. Sciences

ÉCOLE DOCTORALE
SCIENENCES POUR L’INGENIEUR DE CLERMONT FERRAND

T H È S E

Présentée par
M. Lakhdar

en vue de l’obtention du grade de

DOCTEUR de l’UNIVERSITÉ BLAISE PASCAL

Spécialité : Informatique

Titre :
Decidability and Complexity of Simulation
Preorder for Data-Centric Web Services.

MEMBRES du JURY :

M. Gwen Salaün HDR Grenoble INP (Rapporteur)
M. Kais Klai HDR Université Paris Nord (Rapporteur)
M. Michael Rusinowitch PR Université de Lorraine (Examinateur)
Mme. Véronique Benzaken PR Université Paris-Sud 11 (Examinateur)
M. Farouk Toumani PR Université Blaise Pascal (Directeur de thèse)
M. Lhouari Nourine PR Université Blaise Pascal (Encadrant)

E D S P I C : 676
N◦ d’ordre : D. U : 2523

UNIVERSITÉ Blaise Pascal Clermont-Ferrand II
U.F.R. Sciences

ÉCOLE DOCTORALE
SCIENENCES POUR L’INGENIEUR DE CLERMONT FERRAND

T H È S E

Présentée par
M. Lakhdar

en vue de l’obtention du grade de

DOCTEUR de l’UNIVERSITÉ BLAISE PASCAL

Spécialité : Informatique

Titre :
Decidability and Complexity of Simulation
Preorder for Data-Centric Web Services.

MEMBRES du JURY :

M. Gwen Salaün HDR Grenoble INP (Rapporteur)
M. Kais Klai HDR Université Paris Nord (Rapporteur)
M. Michael Rusinowitch PR Université de Lorraine (Examinateur)
Mme. Véronique Benzaken PR Université Paris-Sud 11 (Examinateur)
M. Farouk Toumani PR Université Blaise Pascal (Directeur de thèse)
M. Lhouari Nourine PR Université Blaise Pascal (Encadrant)

Acknowledgments

Special thanks are directed to Gwen Salaün and Kais Klai for having accepted to
review my thesis manuscript. My thanks go as well to Michael Rusinowitch for having
accepted to act as examiner of my thesis.

This thesis would not have been possible without my advisors, Farouk Toumani,
Lhouari Nourine and Boualem benatallah.

Thanks to Mr. Alain Quillot for having hosted me at the LIMOS.

Abstract

In this thesis we address the problem of analyzing specifications of data-centric Web
service interaction protocols (also called data-centric business protocols). Specifications
of such protocols include data in addition to operation signatures and messages ordering
constraints. Analysis of data-centric services is a complex task because of the inherently
infinite states of the underlying service execution instances. Our work focuses on charac-
terizing the problem of checking a refinement relation between service interaction protocol
specifications. More specifically, we consider the problem of checking the simulation pre-
order when service business protocols are represented using data-centric state machines.
First we study the Colombo model [BCG+05]. In this framework, a service (i) exchanges
messages using variables; (ii) acts on a shared database; (iii) has a transition based be-
havior. We show that the simulation test for unbounded Colombo is undecidable. Then,
we consider the case of bounded Colombo where we show that simulation is (i) exptime-
complete for Colombo services without any access to the database (noted ColomboDB=∅),
and (ii) 2exptime-complete when only bounded databases are considered (the obtained
model is noted Colombobound). In the second part of this thesis, we define a generic model
to study the impact of various parameters on the simulation test in the context of data-
centric services. The generic model is a guarded transition system acting (i.e., read and
write) on databases (i.e., local and shared) and exchanging messages with its environment
(i.e., other services or users). The model was designed with a database theory perspective,
where all actions are viewed as queries (i.e modification of databases, messages exchanges
and guards). In this context, we obtain the following results (i) for update free guarded
services (i.e., generic services with guards and only able to send empty messages) the
decidability of simulation is fully characterized w.r.t decidability of satisfiability of the
query language used to express the guards augmented with a restrictive form of negation,
(ii) for update free send services (i.e., generic services without guards and able to send
as messages the result of queries over local and shared database), we exhibit sufficient
conditions for both decidability and undecidability of simulation test w.r.t the language
used to compute messages payloads, and (iii) we study the case of insert services (i.e.,
generic services without guards and with the ability of insert the result of queries into the
local and the shared database). In this case, we study the simulation as well as the weak
simulation relations where we show that: (i) the weak simulation is undecidable when the
insertions are expressed as conjunctive queries, (ii) the simulation is undecidable if satis-
fiability of the query language used to express the insertion augmented with a restricted
form of negation is undecidable. Finally, we study the interaction between the queries
used as guards and the ones used as insert where we exhibit a class of services where
satisfiability of both languages is decidable while simulation is undecidable.

Keywords

Formal verification, data-centric Web services, database theory

Resumée

Dans cette thèse nous nous intéressons au problème d’analyse des spécifications des
protocoles d’interactions des services Web orientées données. La spécification de ce type
de protocoles inclue les données en plus de la signature des opérations et des contraintes
d’ordonnancement des messages. L’analyse des services orientés données est complexe car
l’exécution d’un service engendre une infinité d’états.

Notre travail se concentre autour du problème d’existence d’une relation de simula-
tion quand les spécifications des protocoles des services Web sont représentés en utilisant
un system a transition orienté données. D’abords nous avons étudié le model Colombo
[BCG+05]. Dans ce modèle, un service (i) échange des messages en utilisant des variables ;
(ii) modifie une base de donnée partagée ; (iii) son comportement est modélisé avec un
système a transition. Nous montrons que tester l’existence de la relation de simulation
entre deux services Colombo non bornée est indécidable. Puis, nous considérons le cas
où les services sont bornés. Nous montrons pour ce cas que le test de simulation est (i)
exptime-complet pour les services Colombo qui n’accèdent pas a la base de donnée (noté
ColomboDB=∅), et (ii) 2exptime-complet quand le service peut accéder a une base de
donnée bornée (Colombobound). Dans la seconde partie de cette thèse, nous avons définie
un modèle générique pour étudier l’impacte de différents paramètres sur le test de simu-
lation dans le contexte des services Web orientés données. Le modèle générique est un
systeme a transition gardé qui peut lire et écrire a partir d’une base de donnée et échan-
ger des messages avec son environnement (d’autres services ou un client). Dans le modèle
générique toutes les actions sont des requêtes sur des bases de données (modification de
la base de données, messages échangés et aussi les gardes). Dans ce contexte, nous avons
obtenue les résultats suivant : (i) pour les services gardés sans mise a jour, le test de si-
mulation est caractérisé par rapport à la décidabilité du test de satisfiabilité du langage
utilise pour exprimer les gardes augmenté avec une forme restrictive de négation, (ii) pour
les services sans mise a jour mais qui peuvent envoyer comme message le résultat d’une
requête, nous avons trouvé des conditions suffisantes d’indécidabilité et de décidabilité
par rapport au langage utilise pour exprimer l’échange de messages, et (iii) nous avons
étudié le cas des services qui ne peuvent que insérer des tuples dans la base de donnée.
Pour ce cas, nous avons étudié la simulation ainsi que la weak simulation et nous avons
montré que : (a) la weak simulation est indécidable quand les requêtes d’insertion sont
des requêtes conjonctives, (b) le test de simulation est indécidable si la satisfiabilité du
langage de requête utilisé pour exprimer les insertions augmenté avec une certaine forme
de négation est indécidable. Enfin, nous avons étudié l’interaction entre le langage utilisé
pour exprimer les gardes et celui utilisé pour les insertions, nous exhibons une classe de
service où la satisfiabilité des deux langages est décidable alors que le test de simulation
entre les services qui leurs sont associé ne l’est pas.

6

Mots clés

Vérification Formel, service Web orienté données, base de donnée

Table des matières

1 Introduction 9

2 Checking Simulation Preorder in the Colombo Model 17
2.1 Preliminaries . 17
2.2 Overview on the Colombo model . 18
2.3 Undecidability of simulation in unbounded Colombo 24
2.4 Decidability of simulation in DB-less Colombo 31
2.5 Decidability of simulation in Colombobound 45
2.6 Conclusion . 56

3 Data-Centric Generic Model 59
3.1 Notations . 59
3.2 Generic web service . 59
3.3 Guarded services (LT , ∅, ∅) . 65
3.4 Send services (∅, LS , ∅) . 71
3.5 Insert services (∅, ∅, Linsert(LI)

U) . 75

4 Related Work and Conclusion 83
4.1 Related works . 83
4.2 Conclusion . 85

Bibliographie 89

A Appendix 95

Chapitre 1

Introduction

Nowadays companies and organizations build (intra and inter) distributed information
systems by integrating existing independent applications, also called legacy systems
[Kra07]. These applications use proprietary tools and the cost of rewriting them from
scratch would be unreasonable. The use of classical integration solutions (e.g., Enterprise
Application Integration and Middlewares) requires a huge amount of resources and time
to integrate the legacy systems [ACKM04]. Web services [W3C02] are gaining acceptance
as a promising technology to deal with integration challenges. Web services are programs,
that export their descriptions and make the functionality of an application available
through standard web technologies. The use of such standards enable rapid, low-cost
inter-operation and permit the definition of architectures and techniques to build new
functionalities while integrating existing applications. Roughly speaking, a web service is
a program that exports its behavior and can be invoked and executed by other programs
via the web [ACKM04].

Different kinds of standards and models have been proposed to describe and rea-
son on Web services [ACKM04]. Those standards focus on different levels of abstrac-
tion and target different aspects of Web services. In one extreme, a Web service is
viewed as a black box, with its specification limited to the signatures of services ope-
rations. At the other extreme, the internal logic of the Web service is specified using
workflow formalism and is made publicly available. Main stream service description
languages such as WSDL 1 allow descriptions of low-level service operations. Seman-
tic Web-based representation languages (e.g., OWL-S) investigated rich and machine-
understandable descriptions of service properties and capabilities. Business protocol re-
presentation models and languages (e.g., state machines [BFHS03, BCT04b, BCT06],
Petri-nets [NM02, HB03a, Loh08]) are description models which are used for specifying
external behavior of services. Business protocols play an important role, since they provide
to developers information on how to write a client (a service) to correctly interact with
a given service. Business protocols record the intended behavior of the service [HLL+12]
and open the possibility to formally analyze and synthesis services. Recent approaches
address the problem of checking similarity and compatibility of business protocols (e.g.,
[BCT04a, BSBM04, XDMNZ04, PF04, WMFN04]) as well as problems related to verifi-
cation and synthesis of business protocols [NM02, HB03a, BFHS03, BCG+03, GHIS04,
DS05, BCG+05, PTB05, FGG+08, AP07, BCP08, FFM+10, ARN12, MW07].
Business process specifications have recently evolved from process centric approaches to
data-centric approaches. Process-centric models (i.e., state machines, Petri-nets) concen-

1. Web Services Description Language.

10 Chapitre 1. Introduction

trate only on the flow of actions while the data and its modifications by the process opera-
tions are completely hidden. On the other hand, data-centric models for business process
specification describe data and processes at the same level [AN03, Hul08, HSV13, CDM13].
The importance of explicitly representing data in business process specification comes
from the fact that many decisions during the execution of a task depend on data values
[MSW11, CDM13], and there is a strong interaction between the data of an information
system and its operations. In fact, the operations modify the data, and data act as guards
that control the execution of operations.
Incorporation of data into business process specification challenges formal system veri-
fication [CDM13]. The presence of data makes the formal models infinite. As a conse-
quence, the direct use of classical algorithms to analysis them is often not possible. But
the infiniteness of the models does not lead necessarily to undecidablity. For example,
[AVFY98, AVFY00, DSV04, ABGM09, ASV08, ASV09a, ASV09b] consider the problem
of verification of data-centric business processes using semantic or syntactic restrictions
on the model (i.e., bounding the number of values in the database, limiting the access to
the database) in order to obtain decidable fragments.
In this thesis, we consider the problem of analyzing specifications of data-centric business
protocols using the simulation preorder [Mil71]. Simulation preorder is a relation between
state transition systems which ensures that the behavior of a given system can be faith-
fully reproduced by a second one (in this case the first system is said to be simulated by
the second one). Simulation stands out as the most well understood notion to compare
behavior of programs [HHK95]. Checking if a transition system T1 is simulated by a tran-
sition system T2, can be viewed as a game between two players : T1 is called the spoiler
and T2 the duplicator. The spoiler wins the simulation game if it can execute a move that
the duplicator cannot reproduce. In this case, T1 is not simulated by T2. The duplicator
wins the simulation game if it can reproduce each move of the spoiler. In this case, T1 is
simulated by T2.
The relation of simulation has been used to study business protocol compatibility and
substitution problems [BCT06] as well as business protocol synthesis [MW07, BCGP08].
Those problems are reducible to simulation between finite state machines when the busi-
ness protocol is modeled with a finite transition system. The test of simulation between
two finite state machines can be achieved in a polynomial time [HHK95]. The relation
of simulation was also studied in the context of infinite transition systems. For example
in [HNT08] it is shown that the unbounded variant of the protocol synthesis problem is
decidable, i.e., when the number of instances of an available service that can be involved
in a composition is not bounded a priori. This problem has been recasted in [HNT08]
as a problem of deciding simulation between a finite state machine and an infinite state
machine representing a shuffle closure of existing services. When the service is represented
using Petri net [Pet73], the simulation test is ranged from exptime-complete [KM02b] to
undecidable [KM02a]. The problem of simulation is known to be decidable for one-counter
nets [AC98].
The study of simulation when services incorporate a database in their specifications was
addressed only in few works [PG09, BCG+05]. For example, [PG09] studies the simulation
between data-centric services in a restricted framework, where : (i) the language used to
updates the databases is very restrictive, (ii) the size of the allowed database instances is
bounded. The authors prove that the simulation is decidable in this setting. In [BCG+05],
the authors study the composition problem where the decidability is obtained by boun-
ding the number of new values introduced during an execution of a service as well as the
number of accesses to the database. In this context, service composition has been shown

11

to be in 2-exptime.
In this thesis, we study the relation of simulation between data-centric business pro-

tocols. We focus our attention first on the decidability and the complexity issues for an
existing model, namely the Colombo model [BCG+05]. Then, we define a generic model to
study the impact of various parameters on the simulation test in the context of data-centric
services. The generic model is a guarded transition system acting (i.e., read and write) on
databases (i.e., local and shared) and exchanging messages with its environment (i.e., other
services or users). The generic model is inspired from data-centric models proposed in the
literature [ABGM09, BLP11, AD07, AVFY98]. The model was designed with a database
theory perspective, where all actions are viewed as queries (i.e modification of databases,
messages exchanges and guards). With this optic, existing results and tools developed in
the area of database theory provide a great help to understand the impact of including
data into specifications of web services and its effects on decidability of simulation.

Main contributions

We summarize below, the main contributions of this thesis.

Colombo model. Colombo is a pioneer data-centric service model that has been used
to investigate the service composition problem. A Colombo service is specified as a guarded
transition system, augmented with a shared (with other services of the system) database
as well as a set of variables that are used to send and receive messages. The modification
of the database and the variables is achieved through atomic processes. An atomic process
describes actions in terms of its inputs, outputs, preconditions and postconditions. Two
sources of infiniteness make the simulation test difficult in this context :

– the variables take their values from an infinite domain and hence the number of
potential messages (and hence values) that can be received by a service in a given
state may be infinite. As a consequence, the number of successor of a state may be
infinite as well as the number of configurations of a service (this is because a service
execution may visit an infinite number of databases simply by inserting the received
values in the shared database).

– the number of possible initial instances of the shared database is infinite which makes
the number of initial configurations of a service infinite.

At first glance, the Colombo model appears to have a limited expressivity since :
– it restricts accesses to the database only through atomic processes, and
– it supports a very limited database ‘query’ language which consists in simple key-

based access functions.
The table 1.1 summarizes the results of decidability and complexity obtained for different
classes of the Colombo model. More precisely, we show that, checking simulation in a Co-

Table 1.1 – Results of simulation for the Colombo model.

Class of services Simulation
Colombounb Undecidable
ColomboDB=∅

exptime-complete
GV A exptime-complete
Colombobound

2-exptime-complete

lombo model with unbounded accesses to the database, called Colombounb, is undecidable.
The proof is based on a reduction from the halting problem of a two counter machine (a

12 Chapitre 1. Introduction

Minsky machine) [Min67] to the state reachability problem in Colombounb. Even worse,
the way the proof is constructed enables to derive that the reachability and the simulation
problems remain undecidable even in the case of non-communicating Colombounb services
with read-only accesses to the database (i.e., services that cannot send or receive mes-
sages nor update the shared database). Then, we study the simulation problem in the case
of Colombo services with a bounded database (i.e. the class of Colombo services having
shared database with a number of tuples that cannot exceed a given constant k). Such
a class is called Colombobound. We show that the simulation is 2-exptime-complete for
Colombobound. The proof is achieved in two steps :

– First we show that checking simulation is exptime-complete for Colombo ser-
vices without any access to the database (namely DB-less services ColomboDB=∅).
ColomboDB=∅ services are also infinite-state systems, because they manipulate va-
riables which take their values from an infinite domain. A finite symbolic represen-
tation of such services can be obtained by partitioning the original infinite state
space (here a state is characterized by the control state of the transition system
and a valuation of the variables) into a finite number of equivalence classes. Then, a
simulation algorithm can be designed using a symbolic procedure that manipulates
finite sets of states (i.e., the equivalence classes) instead of infinite individual states.
The complexity is obtained by a reduction from the existence of infinite execution
of an alternating Turing machine working on a space polynomially bounded by the
size of its input.

– As a side effect of this work, we establish a correspondence between ColomboDB=∅,
restricted to equality, and Guarded Variable Automata (GVA) [BCR14]. As a conse-
quence, we derive exptime-completeness of simulation for GVA. Note that, an exp-

time upper bound of simulation in GVA is provided in [BCR14].
– Then we show that checking the simulation for Colombobound services can be re-

written into equivalent ColomboDB=∅ while preserving the simulation preorder. The
2-exptime-hardness of checking the simulation for Colombobound services is obtai-
ned by a reduction from the existence of infinite execution of an alternating Turing
machine working on a space exponentially bounded by the size of its input.

Generic model. We define a generic data-centric service as :
– a guarded transition system augmented with the ability of updating (i.e., read and

write) databases (i.e., local and shared). The notion of local database is introduced
to express the fact that some parts of the information are private to a service and
hence are not visible to other services. Operations over a local database are defined as
silent transitions [HB03b, vdADO+08]. For example, modifying the local database is
a silent transition (i.e., not observable from an external point of view). In the context
of the simulation preorder, this notion of observable transitions and non-observable
transitions is captured with weak simulation,

– the service modifies the databases through update queries expressed in the language
LU ,

– the guards are boolean queries over the databases, expressed in a language LT ,
– communication between web services is captured with incoming and outgoing mes-

sages. The incoming messages are databases, and the outgoing messages are expres-
sed using queries over the local and the shared databases, in a language LS .

Example 1. Figure 1.1 depicts an example of services specified using our generic model.
Each service (A and B) has its own local database as well as a shared database. Services
communicate through messages. Note that an outgoing message is the result of a query

13

qc2() | Insert R(qu1)

qc1() | ! m(q(A1,...,An))
True | ? m(A1,...,An)

qc3() | Delete R(qu1)

shared DB
Service A Service B

local DB

l0

l1

l2 l3

s0

s1

s4

s2

s3

local DB

Figure 1.1 – Generic web service framework.

(e.g., the service A sends a message m, which contains a result of the query q). A query q
can be defined over the local as well as the shared database. The transitions are guarded
by boolean queries (qci). Finally, services can modify the databases using update queries
(e.g., the service A inserts the result of the query qu1 into the relation R). In this thesis,
we focus our attention on insert queries and we do not consider delete and modify queries.

In order to isolate and study the impact of the different parameters of the generic
model on the simulation preorder, we investigate the decidability and complexity issues of
the simulation for various classes of our generic model. Each class is characterized by :

– the type of actions supported by the model, e.g., the service can only send messages,
or only insert in the database, ... etc,

– the languages used to instantiate respectively LT , LU and LS ,
– the presence or not of the local database (i.e., in the presence of local database, we

study weak simulation).
Table 1.2 summarizes the considered sub-classes of the generic model as well as the obtai-
ned results. We consider more precisely the following classes :

– Update-free services. This class represents services which are not able to make mo-
difications over the databases. The class of update-free service is decomposed into
two sub-classes :
– Guarded services, this class enables to focus on the role played by the language

of guards (LT) on the decidability of the simulation relation. Our main result
regarding this class lies in a full characterization of the decidability of simulation
in terms of the decidability of checking satisfiability of formulas expressed in the
language LT augmented with a restricted form of negation. We denote this lan-
guage LT ∪ {∧b, ¬b} (i.e., the conjunction and negation is applied on boolean LT

formulas). As for the case of ColomboDB=∅, we use a finite symbolic representa-
tion of update-free services by partitioning the original infinite state space into a
finite number of equivalence classes.

– Send services. This class represents update-free services which send the results of

14 Chapitre 1. Introduction

Table 1.2 – Summarization of results.

Class of services Restrictions Simulation
Guarded services decidable iff satisfiablity

of LT ∪ {∧b, ¬b} is decidable
Send services undecidable if satisfiability

of LS ∪ {∧b, ¬b} is undecidable
Send services decidable if satisfiability

of a partition is decidable
Insert services -insertion Undecidable if satisfiability

of the language of insertion
LI ∪ {∧b, ¬b} is undecidable

Insert services -insertion Undecidable
-LU = GNCQ

Class of services Restrictions Weak simulation
Insert services -insertion Undecidable

-LU = CQ
-local database

queries expressed in the language LS as messages. We focus on the role played by
the language LS . As a result, we show that the test of simulation for send services
is undecidable if satisfiability of formulas in the language LS ∪ {∧b, ¬b} is undeci-
dable (i.e., the conjunction and negation is applied on boolean LS formulas). We
extend the symbolization framework used in the case of guarded services to ob-
tain decidability of simulation between send services. In this case, the simulation
is decidable if testing the satisfiability of a partition is decidable. Note that, in
current state of affairs we are not able to provide a full characterization of simu-
lation in this class since we are only able to provide sufficient conditions for both
decidability and undecidability of simulation in this context.

– Insert services. This class describes services without guards. The considered services
are able to insert data in the shared database. In this context, we study the simu-
lation as well as the weak simulation relations. This later one is considered when
the insertion in the local database is allowed. As a result, the test of simulation for
insert services is undecidable if checking the satisfiability of formulas in the language
LI ∪{∧b, ¬b} is undecidable (i.e., the conjunction and negation is applied on boolean
LI formulas) . We are not able to provide a full characterization of the decidability
of simulation for insert services. We exhibit a language GNCQ (Guarded Negation
Conjunctive Query 2) where testing the satisfiability for boolean GNCQ queries aug-
mented with a restricted form of negation is decidable but the simulation for insert
services using the language GNCQ as insertion query language is undecidable. The
problem remains open when LI=CQ. Finally, we prove that the weak simulation is
undecidable when the language of insertion LI = CQ.

– We also study the interaction of the languages used to express the guards with the
updates. More precisely we show that, testing the simulation relation is undecidable
when generic services use GNCQ as guards and CQ as insertion query language.

2. The Guarded Negation Conjunctive Query (GNCQ) language is included in Guarded Negation First
Order language GNF O [BtCS11]. GNCQ queries are conjunctive queries with guarded negations (i.e., all
variables appearing in negative atoms must appears in a positive atom)

15

Structure of the thesis

This thesis is structured as follows. In Chapter 2 we give an overview of the Colombo
model and present our result regarding the undecidability of simulation for Colombounb.
This chapter addresses then the complexity issue for ColomboDB=∅ and Colombobound. In
Chapter 3, we define our generic model and the relation of (weak)simulation. Then, we
study decidability and complexity issues for Update free services. After that, we focus on
Insert services. Finally, we review related works and conclude in Chapter 4. Additional
proofs and technical details are given in appendix A.

Chapitre 2

Checking Simulation Preorder in
the Colombo Model

This chapter is organized as follows : we start by some preliminaries in section 2.1. In
section 2.2 we overview the Colombo model and defines the associated simulation problem.
Section 2.3 describes our results regarding undecidability of unbounded Colombo. Section
2.4 considers the case of DB-less ColomboDB=∅ services (i.e., Colombo services which are
not able to access to databases) and show decidability and complexity results of simulation
in this context. Section 2.5 is devoted to Colombobound case (i.e., Colombo services with
bounded database). Section 2.6 concludes this chapter.

2.1 Preliminaries

Relational database We assume some familiarity with relational database concepts
(e.g., see [AHV95]). Let U be an infinite set of attributes, V a possibly infinite set of
variables and D an infinite set of constants (values). The sets U , V and D are pairwise
disjoint. Associated with every attribute A ∈ U an attribute domain Dom(A) ⊆ D. A
relational schema R is a set {R1, . . . , Rn} of relation schemas, where each Ri is defi-
ned over a finite set Xi ⊂ U of attributes, Xi={A1, . . . , An} and arity(Ri)=n. We write
schema(Ri) = Xi. An instance r of Ri over the set of attributes {A1, . . . , An} is a finite
subset of the Cartesian product Dom(A1) × . . . × Dom(An). We denote by |r| the cardi-
nality of the relation r (i.e., the total number of tuples in the instance r). An instance I
(database) of the relational schema R is the set {r1, . . . , rn} where each ri is an instance
of Ri ⊂ R. The set of all possible database of R is denoted IR.

Finite state machine A finite state machine M is a tuple 〈ΣM , QM , FM , q0
M , δM 〉

where :
– ΣM is a finite alphabet,
– QM is a set of states,
– FM ⊆ QM is the set of final states,
– q0

M is the initial state,
– δM ⊆ QM × ΣM × QM is the set of transitions.

Simulation preorder for finite state machines Let M = 〈ΣM , QM , FM , q0
M , δM 〉

and M
′ = 〈ΣM ′ , QM ′ , FM ′ , q0

M
′ , δM ′ 〉 be two finite state machines. A state q1 ∈ QM is

simulated by a state q
′
1 ∈ QM ′ noted q1
 q

′
1 iff the following conditions hold :

18 Chapitre 2. Checking Simulation Preorder in the Colombo Model

– ∀a ∈ ΣM and ∀q2 ∈ QM such that (q1, a, q2) ∈ δM there exists a transition
(q′

1, a, q
′
2) ∈ δM ′ such that q2
 q

′
2, and

– if q1 ∈ FM then q
′
2 ∈ FM ′ .

M
 M
′ iff q0

M
 q0
M

′ .
M and M

′ are simulation equivalent, noted M ∼= M
′ iff M
 M

′ and M
′
 M .

2.2 Overview on the Colombo model

We present below a simplified version of the Colombo model which is sufficient to
present our results 1. A detailed description of the Colombo model is given in [BCG+05].

A world database schema, denoted W, is a finite set of relation schemas having the
form Rk(A1, . . . , Ak; B1, . . . , Bn), where Ais, Bjs are attributes and the Ais form a key for
Rk. A world database is an instance over the schema W. Let R(A1, . . . , Ak; B1, . . . , Bn) be
a relation schema in W, then fR

j (A1, . . . , Ak) is an access function that returns the k +j-th
element of the tuple t in R identified by the key (A1, . . . , Ak)(i.e., the j-th element of the
tuple t after the key). Given a set of constants C and variables V , the set of accessible
terms over C and V is defined recursively to include all the terms constructed using C, V
and the fR

j functions.

Example 2. Figure 2.1(c) depicts an example of a world database schema while figure 2.2
shows an instance of such a schema. For example, access to the relation Inventory(code,
available, warehouse, price) is only possible through the access function f Inventory

j (code)
with j ∈ [1, 3]. For instance, using the world database depicted at figure 2.2, the function
f Inventory

2 (“HP15”) returns the value “NGW ”, corresponding to the value of the second
attribute (i.e., the attribute warehouse) of the tuple identified by the code “HP15” in the
relation Inventory.

2.2.1 Atomic processes

In the Colombo model, services actions are achieved using the notion of atomic pro-
cesses. An atomic process is a triplet p = (I, O, CE) where : I and O are respectively
input and output signatures (i.e., sets of typed variables) and CE = {(θ, E)}, is a set of
conditional effects, with :

– Condition θ is a boolean expression over atoms over accessible terms over some
family of constants and the input variables u1, . . . , un in I,

– A set of effects E where each effect e ∈ E is a pair (es, ev) with :
– es, effect on world state, is a set of modifications on the global database, i.e.,

expressions of the form
– insert R(t1, . . . , tk, s1, . . . , sl),
– delete R(t1, . . . , tk),
– modify R(t1, . . . , tk, r1, . . . , rl),
where each ti, with i ∈ [1, k], (respectively, sj with with j ∈ [1, l]) is an accessible
term over some set of constants and input variables u1, . . . , un in I, and where
each rj , with j ∈ [1, l], is either an accessible term or the special symbol “_” which
indicates a position of the identified tuple in R which should remain unchanged.

– ev, effects on output variables, is a set of expressions of the forms : vj := t, ∀vj ∈ O
such that either t = ω or t is an accessible term over some set of constants and

1. In particular, we omit notions like QStore, linkage, ..., which are not relevant for our purposes.

2.2. Overview on the Colombo model 19

?requestOrder(cust, payBy, item, addr)

avail = F / !replyOrder(“fail”)

(a) The guarded automata of a service S1

q0

(avail = T) / no-op

q1

q4

q5

(payBy == CC) � (price > 100) /
! requestCCCheck(cartNum)

approved == T / !requestShip(wh,addr)

approved == F /
! replyOrder(“fail”)

q3

q2

checkItem(item, cust;
avail, wh, price, ord)

(payBy == PREPAID) � (price �

100) / requestShip(wh,addr)

q6

q7

checkItem:

 I: item, cust;

 O: avail; wh; price; ord

Effects:

 if (f1
Inventory(item) = T) then

avail:= T and

wh := f2
Inventory(item) and

price := f3
Inventory(item) and

(if price > 50 and f1
Customers(cust)��

then ord:= new(I, cust) and

insert Orders(ord;item,cust,-)

 else ord:= 0

else avail:= F

(b) Atomic process CheckItem

Inventory (code, availablen warehouse, price)

Customers (cust, name, addr, status)

Orders (ord, item, cust, payment)

(c) Example of a World database schema

?replyCCCheck(approved)

(payBy == PREPAID) � (price >

100) / ! replyOrder(“fail”)

Figure 2.1 – Example of Colombo service (inspired from [BCG+05]).

over the input variables u1, . . . , un. The symbol ω is used to denote an undefined
(or null) value.

Example 3. Figure 2.1(b) shows an example of a specification of an atomic process (the
atomic process CheckItem). This process takes as input an item code (item) and a customer
number (cust) and checks first if the requested item is available in the relation inventory
(condition if f inventory

1 (item) = T). If the requested item is not available, the process Che-
ckItem simply returns the output parameter avail = F . Otherwise, if the requested item
is available, the process returns the warehouse where the item is stocked and the price.
Moreover, if the price of the requested item is greater than 50 and the status of the current
customer is defined (condition if price > 50 and f1

Customers(cust) = ω), then a new order id
is created and inserted in the relation Orders. Otherwise, the process returns the output
parameter ord = 0. Note that, the new order id is created with the function new, this
is just for simplifying the example. In fact, the new value of ord is obtained through a
message, then the service verify if this value is not the value of an existing order id.

2.2.2 Guarded automata

The behavior of a Colombo service is given by the notion of guarded automata as
defined below.

Definition 1. guarded automaton (GA)
A guarded automaton of a service S is a tuple GA(S) = 〈Q, δ, q0, F, LStore(S)〉, where :
– Q is a finite set of control states with q0 ∈ Q the initial state,
– F ⊆ Q is a set of final states,
– LStore(S) is a finite set of typed variables,
– the transition relation δ contains tuples (q, θ, μ, q′) where q, q′ ∈ Q, θ is a condition

over LStore (no access to world instance), and μ has one of the following forms :

20 Chapitre 2. Checking Simulation Preorder in the Colombo Model

– (incoming message) μ =?m(v1, . . . , vn) where m is a message having as signature
m(p1, . . . , pn), and vi ∈ LStore(S), ∀i ∈ [1, n], or

– (send message) μ =!m(b1, . . . , bn) where m is a message having as signature
m(p1, . . . , pn), and ∀i ∈ [1, n], each bi is either a variable of LStore(S) or a
constant, or

– (atomic process invocation) μ = p(u1, . . . , un; v1, . . . , vm, CE) with p an atomic
process having n inputs, m outputs and CE as conditional effects, and ∀i ∈ [1, n],
each ui (respectively, vi) is either a variable of LStore(S) or a constant.

A message type has the form m(p1, . . . , pn) where m is the message name and p1, . . . , pn

are message parameters. Each parameter pi is defined over a domain D.
LStore(S) can be viewed as a working area of a service. The variables of LStore(S) are
used to (i) capture the values of incoming messages, (ii) capture the output values of
atomic processes, (iii) populate the parameters of outgoing messages, and (iv) populate
the input parameters of atomic processes.

Example 4. Figure 2.1(a), inspired from [BCG+05], shows the guarded automata of a
Warehouse service. The states of the automata represent the different phases that the
service may go through during its execution. Transitions are associated with a send or
a receive message or with an atomic process. The Warehouse service is initially at its
initial state (i.e., the state indicated in the figure by an unlabeled entering arrow). The
service starts its execution upon receiving a requestOrder message. Then, depending on
the requested payment mode and the price, respectively given by the values of the received
message parameters payBy and price, the service can make two possible moves : (i) if the
payment mode is CC (credit card) or the price > 10, the service sends a requestCCCheck
message, for example to a bank, in order the check whether the credit card can be used
to make the payment, or (ii) if the payment mode is PREPAID and the price ≤ 10, the
service will execute the atomic process charge in order to achieve the payment. The service
ends its execution at a final state, depicted in the figure by double-circled states.

If a given guarded automaton GA(S) uses only transitions of the form (q, θ, μ, q′) with μ
is an atomic process, in this case the corresponding service S is called a non-communicating
service (since S cannot exchange messages with its environment). Moreover, if all the
atomic processes used in a guarded automaton GA(S) have no effects on world states (i.e.,
the set es of each atomic process is empty), in this case the service S is called a read-only
Colombo service.

2.2.3 Service runs

We use the notion of an extended automata to define the semantics of a Colombo
service. At every point in time, the behavior of an instance of a Colombo service S is
determined by its instantaneous description (or simply, configuration). A configuration of
a service is given by a triplet id = (l, I, α) where l is its current control state, I a world
database instance and α is a valuation over the variables of LStore.

Definition 2. (service runs)
Let GA(S) = 〈Q, δ, l0, F, LStore(S)〉 be a guarded automata of a service S. A run

σ of S is a finite sequence σ = id0
μ0−→ id1

μ1−→ . . .
μn−1−→ idn wich satisfy the following

conditions :
– (Initiation) id0 = (l0, I0, α0) is an initial configuration of the run with I0 is an

arbitrary database over W and α0(x) = ω, ∀x ∈ LStore(S).

2.2. Overview on the Colombo model 21

– (Consecution) ∀i ∈ [1, n], idi = (li, Ii, αi) and there is a transition (li, θ, μ, li+1) ∈ δ
such that αi(θ) ≡ true and one of the following conditions holds :
– μ =?m(v1, . . . , vn) and μi =?m(c1, . . . , cn), with cj a constant ∀j ∈ [1, n], then

Ii+1 = Ii and αi+1(vj) = cj and ∀v ∈ LStore(S) \ {v1, . . . , vn}, αi+1(v) = αi(v),
– μ =!m(b1, . . . , bn) and μi =!m(αi(b1), . . . , (αi(bn))) then Ii+1 = Ii and ∀v ∈

LStore(S), αi+1(v) = αi(v), and
– μ = p(u1, . . . , un; v1, . . . , vm, CE) and μi =

p(αi(u1), . . . , αi(un); αi+1(v1), . . . , αi+1(vm), CE) then
– if there is no (c, E) ∈ CE s.t. αi(c) ≡ true (or there is more than one such

(c, E)) then Ii+1 = Ii and ∀v ∈ LStore(S), αi+1(v) = αi(v), or
– let (c, E) be the unique conditional effects in CE s.t. αi(c) ≡ true, and let

(es, ev) be a non-deterministically chosen element of E, then :
– for each statement insert R(t1, . . . , tk, s1, . . . , sl), delete R(t1, . . . , tk), or

modify R(t1, . . . , tk, s1, . . . , sl) in es, apply the corresponding modification
obtained by replacing ti (respectively, si) by αi(ti) (respectively, αi(si)) on
the instance Ii. The obtained instance is the database Ii+1.

– ∀vj := t ∈ ev, αi+1(vj) = αi(t) and αi+1(v) = αi(v) for all the other variables
v of LStore(S).

An execution of a service S starts at an initial configuration id0 = (l0, I0, α0), with
l0 the initial control state of GA(S), I0 an arbitrary database over W and α0(x) = ω,
∀x ∈ LStore(S). Then, a service moves from an idi to idj according to the mechanics
defined by the set of transitions of GA(S). If idi

μi−→ idj satisfies the consecution condition
above, we say that μi is allowed from idi. More specifically, we have the following cases :

– μ =?m(v1, . . . , vn) then only (v1, . . . , vn) receive new values. The other variables and
the database do no change.

– μ =!m(b1, . . . , bn) then there is no modification on the variables nor the database.
– μ = p(u1, . . . , un; v1, . . . , vm, CE) then

– if there is no (c, E) ∈ CE where c is verified (or there is more than one) then there
is no modification of the variables nor the database.

– let (c, E) be the unique conditional effects in CE s.t c is verified, and let (es, ev)
be a non-deterministically chosen element of E, then :
– for each statement insert R(t1, . . . , tk, s1, . . . , sl), delete R(t1, . . . , tk), or

modify R(t1, . . . , tk, s1, . . . , sl) in es, apply the corresponding modifications.
The obtained instance is the database Ii+1.

– for all vj := t in ev, execute the assignment, all the other variables v of
LStore(S) do not change.

HP15 T NGW 65

HS72 F SW 10

HX7 T NGW 50

code available warehouse price

Relation Inventory

1 John NW 5

2 Smith AU 10

3 Bob AR 14

cust name addr status

Relation Customers

O001 HP15 1 -

B125 HP15 3 -

K31 HX7 3 -

ord item cust payment
Relation Orders

Variable Initial value

(evalation α0)

cust ω

payBy ω

item ω

addr ω

avail ω

wh ω

price ω

ord ω

LStore(S1) Initial World database I0

Current state : q0

Figure 2.2 – Example of an initial configuration id0 = (l0, I0, α0).

22 Chapitre 2. Checking Simulation Preorder in the Colombo Model

Example 5. We illustrate in this example a run of our sample Warehouse service S1
depicted at figure 2.1. Figure 2.2 shows a possible initial configuration of the Ware-
house service S1. This configuration is made of : (i) the initial state q0 of the guar-
ded automaton of S1, (ii) an initial world database over the relation schemas Inven-
tory, Customers and Orders, and (iii) the local store LStore(S1) having all its variables
set to ω (i.e., the variables are initially undefined). Upon the reception of the mes-
sage requestOrder(cust := ‘1”, payBy := “cc”, item := “HP15”, addr := “NW”) the service S1
moves from configuration id0 = (l0, I0, α0) to the configuration id1 = (l1, I1, α1) depic-
ted at figure 2.3. Note that at configuration id1, the world database is left unchanged
while the values conveyed by the message requestOrder are stored in the corresponding
variables in LStore(S1). Then, upon the execution of the atomic process CheckItem, the
service moves from configuration id1 to the configuration id2 = (l2, I2, α2) depicted at
figure 2.4. As explained in the previous example, the atomic process CheckItem (c.f., fi-
gure 2.1(b)), takes as input parameter the variable item whose value at configuration
id1 is α1(item) = “HP15”. Hence, the condition (if f Inventory

1 (item) = T) in the specifica-
tion of the effects of the CheckItem process is evaluated to true. Therefore, the output
parameters avail, wh and price of the CheckItem process are updated as follows : avail :=
T, wh := f Inventory

2 (“HP15”) = “NGW” and price := f Inventory
3 (“HP15”) = “65”. Moreover, the

condition (if price > 50 and f1
Customers(cust) = ω) is also evaluated to true at configuration

id1. Hence, a new order id is generated (e.g., the order L021) and inserted in the relation
Orders.

HP15 T NGW 65

HS72 F SW 10

HX7 T NGW 50

code available warehouse price

Relation Inventory

1 John NW 5

2 Smith AU 10

3 Bob AR 14

cust name addr status

Relation Customers

O001 HP15 1 -

B125 HP15 3 -

K31 HX7 3 -

ord item cust payment
Relation Orders

Variable Current value

(α1)

cust 1

payBy cc

item HP15

addr NW

avail ω

wh ω

price ω

ord ω

LStore(S1) World database I1

Current state : q1

Figure 2.3 – The configuration id1 = (l1, I1, α1) after reception of the message
requestOrder.

HP15 T NGW 65

HS72 F SW 10

HX7 T NGW 50

code available warehouse price

Relation Inventory

1 John NW 5

2 Smith AU 10

3 Bob AR 14

cust name addr status

Relation Customers

O001 HP15 1 -
B125 HP15 3 -

K31 HX7 1 -

L021 HP15 1 -

ord item cust payment
Relation Orders

Variable Current value

(α2)

cust 1

payBy cc

item HP15

addr NW

avail T

wh NGW

price 65

ord L021

LStore(S1) World database I2

Current state : q2

Figure 2.4 – The configuration id2 = (l2, I2, α2) after the execution of the checkItem
process.

2.2. Overview on the Colombo model 23

2.2.4 Extended state machine

The semantics of a Colombo service can be captured by the following notion of an
extended infinite state machine.

Definition 3. (extended state machine) Let GA(S) = 〈Q, δ, l0, F, LStore(S)〉 be a guarded
automata of a service S. The associated infinite state machine, noted E(S), is a tuple
E(S) = (Q,Q0,F, Δ) where :

– Q = {(l, I, α)} with l ∈ Q, I a database over W and α a valuation over the variables
of LStore. The set Q contains all the possible configurations of E(S).

– Q0 = {(l0, I0, α0)}, with I0 an arbitrary database over W and α0(x) = ω, ∀x ∈
LStore(S). Q0 is the infinite set of initial configurations of E(S).

– F = {(lf , I, α) | lf ∈ F}. F is the set of final configurations of E(S).
– Δ is an (infinite) set of transitions of the form τ = (li, Ii, αi)

μi−→ (lj , Ij , αj) such
that μi is allowed from (li, Ii, αi) (i.e., τ satisfies the consecution condition of defi-
nition 2).

Any configuration of the extended state machine belongs in a path from an initial
configuration to a final configuration. A run of E(S) is any finite path from an initial
configuration of E(S) to one of its final configurations. Given an initial configuration id0
of E(S), all the possible runs of E(S) starting from id0 form an (infinite) execution tree
having id0 as its root. Hence, due to the infinite number of initial databases, all the runs
of service S are captured in an (infinite) forest, that contains all possible execution trees
of E(S) (i.e., the set of trees having as a root an initial configuration id with id ∈ Q0).

2.2.5 Simulation relation

We define now the notion of simulation between two Colombo services.

Definition 4. (Simulation) Let S and S′ be two Colombo services and let E(S) =
(Q,Q0,F, Δ) and E(S′) = (Q′,Q′

0,F′, Δ′) be respectively there associated extended state
machines.

• Let (id, id′) ∈ Q×Q′. The configuration id = (l, I, α) is simulated by id′ = (l′, I ′, α′),
noted id
 id′, iff :
– if id ∈ F then id

′ ∈ F
′ and

– I = I ′, and
– ∀id

μ−→ idj ∈ Δ, there exists id′ μ′
−→ id′

l ∈ Δ′ such that μ = μ′ and idj
 id′
l

• The extended state machine E(S) is simulated by the extended state machine E(S′),
noted E(S)
 E(S′), iff ∀id0 ∈ Q0, ∃id′

0 ∈ Q′
0 such that id0
 id′

0

• A Colombo service S is simulated by a Colombo service S′, noted S
 S′, iff E(S)

E(S′).

Informally, if S
 S′, this means that S′ is able to faithfully reproduce the external
visible behavior of S. The external visible behavior of a service is defined here with respect
to the content of the world database as well as the exchanged concrete messages (i.e.,
message name together with the values of the message parameters). The existence of a
simulation relation ensures that each execution tree of S is also an execution tree of S′ (in
fact, a subtree of S′), modulo a relabeling of control states.

Example 6. Consider the Colombo services S2 and S3 depicted at figure 2.5. We assume
that these services use the same world database schema as the service S1 of figure 2.1. An

24 Chapitre 2. Checking Simulation Preorder in the Colombo Model

(a) The guarded automata of a service S2

l4

l5

?requestOrder(cust,
payBy, item, addr)

l0 l1

(avail == T) � (price > 100) /
! requestCCCheck(cartNum)

approved == T /
requestShip(wh,addr)

approved == F /
! replyOrder(“fail”)

l3l2

(payBy == PREPAID) /
checkItem(item; avail, wh, price)

l6

l7

(payBy == CC) /
checkItem(item, cust;
avail, wh, price, ord)

(avail = F) � (price �

100)/ !replyOrder(“fail”)

(avail = F) � (price >

100)/ !replyOrder(“fail”)

(avail = T) � (price � 100)/
requestShip(wh,addr)

?replyCCCheck(approved)

?requestOrder(cust,
payBy, item, addr)

m0 m1

m2

checkItem(item, cust;
avail, wh, price, ord)

m3

(avail = F) /
!replyOrder(“fail”)

(b) The guarded automata of a service S3

m6

m9m8

approved == T /
requestShip(wh,addr)

m4

 (payBy == CC) / !
requestCCCheck(cartNum)

(avail == T) � (ord ��) /
no-op(avail == T) � (ord =�)/

requestShip(wh,addr)

m5

(payBy == PREPAID)/
requestShip(wh,addr)

m7

?replyCCCheck(approved)

approved == F /
! replyOrder(“fail”)

Figure 2.5 – Examples of Colombo services.

interesting question is to compare the three services with respect to there external visible
behaviours. For example, although the automata of the services S1 and S2 look different,
service S1 is in fact simulated by service S2 (i.e., S1
 S2) which means that any behaviour
of S1 can be reproduced by S2.

In contrast, even if service S3 looks more general than S1, the two services are in fact
not comparable w.r.t. simulation relation (i.e., S1
 S3 and S3
 S1). One can see that
S1 does not simulate S3 because S3 allows the PREPAID payment mode for any item while
S1 accepts the PREPAID payment mode only for items having a price less than 100. The
service S3 does not simulate S1 because if a payment by credit card (payment mode CC)
is approved, the service S1 sends a message !requestShip(wh, addr) before terminating the
execution while service S3 never sends such a message.

2.3 Undecidability of simulation in unbounded Colombo

We shall show that the simulation problem is undecidable for Colombo services.

Problem 1. Let S and S′ be two Colombo services. The simulation problem, noted
CheckSim(S, S′), is the problem of deciding whether S
 S′.

We start by establishing a connection between the problems of state reacheability and
checking simulation between services. We exploit then this connection to establish unde-
cidability of simulation.

Let us first define the state reachability problem for Colombo services.

Problem 2. Let S be a Colombo service and E(S) = (Q,Q0,F, Δ) its extended state ma-
chine. Let l ∈ Q be a control state in GA(S). The reachability problem, noted reach(E(S),
l), is the following : Is there a database J over the scheme W and a valuation α over
LStore(S) such that the configuration (l, J , α) appears in a run of E(S) ?

Example 7. An example of a reachability problem is to ask whether the configuration
id2 = (l2, I2, α2) depicted at figure 2.4 is reachable by our simple Warehouse service S1. The

2.3. Undecidability of simulation in unbounded Colombo 25

answer in this case is yes since, as illustrated in the previous example, the configuration
id2 can be reached from the initial configuration id0 shown at figure 2.2.

We exhibit the following straightforward link between simulation and reachability.

Theorem 1. If the reachability problem for a given class of Colombo service is undecidable
so the simulation is also undecidable in this class.

Démonstration. (sketch)
Let S be a Colombo service and l be a state in GA(S). w.l.o.g., we assume that for any

transition (l′, c, μ, l) of GA(S), the label μ is unique (i.e., μ do not appear in any another
transition of GA(S)). Then, given the reachability problem reach(E(S), l), we build a new
service S′, such that GA(S′) is obtained from GA(S) by deleting the state l. Consider
now the simulation problem CheckSim(S, S′). Hence in this case, it is easy to prove that
S
 S′ iff l is not reachable in E(S).

Let us consider now the reachability problem in Colombo.

Lemma 1. The reachability problem in Colombo is undecidable.

The proof of this lemma is achieved by a reduction from halting problem of a Minsky
machine [Min67]. A Minsky machine M consists of two nonnegative counters, cpt1 and

L0: cpt1= cpt1 + 1; goto L1;

L1: cpt2= cpt2 + 1 goto L0;

L2: halt;

(b) A Minky machine M2 that never halts.

L0: cpt1 = cpt1 + 1; goto L1;

L1: cpt1 = cpt1 + 1; goto L2;

L2: cpt2= cpt2 + 1 goto L3;

L3: cpt2= cpt2 + 1 goto L4;

L4: cpt2= cpt2 + 1 goto L5;

L5: cpt2= cpt2 + 1 goto L6;

L6: cpt2= cpt2 + 1 goto L7;

L7: if cpt1 = 0 then goto L9 else cpt1 := cpt1 - 1; goto L8;

L8: cpt2= cpt2 - 1 goto L7;

L4: halt;

(a) A Minky machine M1 which computes cpt2=5-2

Figure 2.6 – Example of two Minsky machines.

cpt2, and a sequence of labelled instructions :

L0 : instr0; L1 : instr1; . . . Ln-1 : instrn-1; Ln : halt

where each of the first n instructions has one of the following forms :

1. Li : cptk := cptk + 1; goto Lj , or
2. Li : if cptk = 0 then goto Lj else cptk := cptk-1; goto Ll.

with k ∈ {1, 2}, i ∈ [0, n-1] and j, l ∈ [0, n].

A machine M starts its execution with counters cpt1 = cpt2 = 0 and the control at
label L0. Then, when the control is at a label Li, i ∈ [0, n-1], the machine executes the
instruction instri and jumps to the appropriate label as specified in this instruction. The
machine M halts if the control reaches the halt instruction at label Ln.

26 Chapitre 2. Checking Simulation Preorder in the Colombo Model

Example 8. Figure 2.6(a) shows an example of a Minsky machine M1 which computes
the difference operation 5 − 2 at the counter cpt2. The seven first lines L0 to L6 of M1
are used to initialize the counters cpt1 := 2 and cpt2 = 5. Then, the machine M1 loops on
the lines L7 and L8 to compute the difference cpt2 − cpt1 and halts. Figure 2.6(b) shows a
Minsky machine M2 that never halts. An execution of such a machine leads to an infinite
sequence : (L0, cpt1 = 0, cpt2 = 0), (L1, cpt1 = 1, cpt2 = 0), (L0, cpt1 = 1, cpt2 = 1), . . .

It is known that the halting problem of Minsky machines, i.e., whether the execution of
a given machine halts, is undecidable even in the case when the two counters are initialized
to zero [Min67].

Given a Minsky machine M , we construct a Colombo service SM that captures the
execution of M . SM uses a world database schema containing a single binary relation
schema (i.e., W = {R(A; B)}). The main idea to simulate a machine M is to make SM

0 1

1 2

2 3

A B

Relation R

(a) A 3-standard database.

f 1

1 2

2 3

A B

Relation R

(c) A non standard

database.

0 a

a f

f k

l 10

10 21

A B

Relation R

(b) Another 3-standard

database.

0 a

a b

b c
c b

6 7

A B

Relation R

(d) Another non standard

database.

Figure 2.7 – Examples of standard and non-standard world databases.

working only on parts of instances of R that form a chain having the constant 0 as a root.
A chain of length k is any set Υk = {(c0, c1), . . . , (ck−1, ck) | ∀i ∈ [0, k-1], ci is a constant}.
The constant c0 is called the root of Υk. For a pair (cl-1, cl) ∈ Υk, we note by d(cl) = l
the distance of cl with respect to the root c0 in the chain Υk. An instance I of R is said
k-standard if there exists a chain Υk such that Υk ⊆ I and c0 = 0. Hence, a k-standard
instance contains a chain of length k that starts with pair (0, c1).

Example 9. Figures 2.7(a) and (b) show examples of two 3-standard databases. Each of
the relations of these figures contains a chain of length 3 starting from the root 0 : the
chain Υ3 = {(0, 1), (1, 2), (2, 3)} of figure 2.7(a) and the chain Υ3 = {(0, a), (a, f), (f, k)}
of figure 2.7(b). Note that, the relation R of figure 2.7(b) contains two additional tuples
(l, 10) and (10, 20) that do not belong to the chain Υ3 = {(0, a), (a, f), (f, k)}. These two
tuples will never be accessed by the constructed Colombo services (i.e., the constructed
Colombo services can see only the elements of a chain rooted at the constant 0). Fi-
gures 2.7(c) and (d) show examples of non-standard databases. The database at figure
2.7(c) is non 1-standard because it does not contain the constant 0 while the database
at figure 2.7(d) is non-standard because it includes a chain with a cycle (i.e., the chain
Υ3 = {(0, a), (a, b), (b, c), (c, b)}).

2.3. Undecidability of simulation in unbounded Colombo 27

To simulate the counters cpt1 and cpt2 during an execution of M , SM uses respectively
two variables, namely x1 and x2 (hereafter called counter variables), of its LStore. The
variables x1 and x2 are initially set to 0. Intuitively, a value of a counter cptj , with
j ∈ {1, 2}, is captured by the distance between the current value of the variable xj w.r.t. to
the root 0 of the chain (i.e., cptj = d(xj)). Hence, a given counter cptj of a minsky machine
M is equal to 0 iff its corresponding counter variable xj is equal to 0 (with j ∈ {1, 2}).
Incrementing a counter cptj is captured in SM by moving forward the corresponding
variable xj in the chain Υk while decreasing a counter amounts to moving xk backward
in the chain.

Example 10. Figure 2.8 shows some configurations of a Colombo service SM1 used to
simulate the Minsky machine M1 of figure 2.6(a). The local store of SM1 includes among
others the variables x1 and x2 which are respectively used to simulate the counters cpt1 and
cpt2 of M1. The initial state of M1, i.e., cpt1 = cpt2 = 0, corresponds to the configuration
of SM1 depicted at figure 2.8 (a). In this configuration, both x1 and x2 are set to 0. Figure
2.8 (b) shows the configuration of SM1 after the incrementation of the counter cpt1 of M1
while figure 2.8 (c) shows a configuration of SM1 corresponding to a state of M1 where
cpt1 = 1 and cpt2 = 5.

Moreover, to be able to simulate correctly an execution of a Minsky machine M ,
a service SM requires an input database which is at least kmax-standard where kmax

is the maximum value reached by the counters cpt1 and cpt2 of M in the considered
execution. Hence, during its execution a service SM needs to continuously check that

Variable Value

x1 0
x2 0

... ...

LStore(SM1)

(a) A configuration of SM1 corresponding to the

initial state of M1 (i.e., cpt1=0 and cpt2=0).

0 a

a b

b c

c d

d e

A B

Relation R

Variable Value

x1 a
x2 0

... ...

LStore(SM1)

(b) Configuration of SM1 after the

incrementation of the counter cpt1.

0 a

a b

b c

c d

d e

A B

Relation R

Variable Value

x1 a
x2 e
... ...

LStore(SM1)

(c) Configuration of SM1 corresponding to

cpt1=1 and cpt2=5

0 a

a b

b c

c d

d e

A B

Relation R

Figure 2.8 – Examples of configurations of a service SM1 which simulates the Minsky
Machine M1.

the current database is kmax-standard. Due to the limited expressivity of the Colombo
model, the implementation of such verification operations as well as the incrementation
and decrementation of the counter variables x1 and x2 are not straightforward. We explain
below in more details how the service SM is constructed.

Let M be a Minsky machine defined as above. We associate to M , a Colombo ser-
vice SM , called the corresponding service of M , with the guarded automata GA(SM) =
〈Q, δ, qstart, F, LStore(S)〉. The set of states Q contains among other states, a state qLi for
each label Li in M , with i ∈ [1, n-1], the initial state qstart and two final states qfail and

28 Chapitre 2. Checking Simulation Preorder in the Colombo Model

qhalt. The state qhalt corresponds to the label Ln of the halt instruction of M . An execution
of SM ends at the final state qhalt if the corresponding Minsky machine execution halts.
An execution of SM reaches the final state qfail every time it is given as input an initial
database which is not kmax-standard. To achieve this task, the service SM uses a boolean
variable noted xflag to control the conformity of the current database : xflag is initialized
to true and then it is set to false if during a given execution the service finds out that
the current database is not kmax-standard. Setting the boolean variable xflag to false, will
make the execution moving to the final state qfail.

qstart qtemp

qL0qfail

True / Init(-; Xflag, x1, x2)

Xflag / no-op()Xflag / no-op()

(a) Initialisation part of SM

qLi checkLj

loopLjqfail

qLj

Xflag / INCr(xk; Xflag, Xcheck, Xtemp1)

xflag xcheck /
Copy(xtemp2; xtemp1)

xflag /
CheckValue(xk, xtemp1; Xflag, xcheck, xtemp2)

xflag / no-op()
xflag xcheck /
perm(xtemp1; xk)

(b) Instruction Li: cptk := cptk+1; goto Lj

qLi DKLi BKLi

qLj
qLl

xk = 0 / Init-DECr(-; xcheck, xtemp1) xcheck / DECr(xk, xtemp1; xcheck, xtemp2)

xcheck / Copy(xtemp2; xtemp1)
xcheck /
copy(xtemp2; xk)

(c) Instruction Li: if cptk = 0 then goto Lj Else cptk := cptk - 1; goto Ll

qfail

xflag / no-op()

Figure 2.9 – Sub-processes of SM .

Init(-; Vflag, Vtemp1, Vtemp2)
 if f1R(0) = Then
 Vtemp1 := 0;
 Vtemp2:= 0;
 Vflag:= true;
 Else
 Vflag:= false;

INCr(V1; Vflag, Vcheck, Vtemp1)

 if f1R(V1) = f1R(V1) = 0 Then
 Vtemp1 := 0;
 Vcheck:= false;
 Else
 Vflag:= false;

CheckValue(V1,Vtemp1; Vflag, Vcheck, Vtemp2)
 if Vtemp1 = V1 Then Vcheck := true;
 Else If
 f1R(V1) = f1R(Vtemp1) Then Vflag := false;
 Else
 Vtemp2:= f1R(Vtemp1);

Init-DECr(-; Vcheck, Vtemp1)
 Vcheck := false;
 Vtemp1:= 0;

DECr(V1,Vtemp1; Vflag, Vtemp1, Vtemp2)
 if V1=f1R(Vtemp1) Then
 Vtemp2:= Vtemp1;
 Vcheck:= true;
 Else
 Vtemp2:= f1R(Vtemp1);

Copy(Vtemp1; Vtemp2)
 Vtemp2 := Vtemp1;

Perm(Vtemp1; U1)
 U1 := f1R(Vtemp1);

Figure 2.10 – Atomic processes of the Colombo service SM .

Figure 2.9 shows fragment of a Colombo service used to model the two kinds of instruc-
tions used by Minsky machines while figure 2.10 describes the associated atomic processes.
Figure 2.9 (a) depicts the initialisation of a service SM . An execution of such a service
starts by executing the atomic process init and moves to the state qtemp. The init process
checks that the initial database is 1-standard (i.e., it contains a tuple (0, c1)) and in this
case sets the counter variables to 0 and the boolean variable xflag to true. In case the

2.3. Undecidability of simulation in unbounded Colombo 29

initial database is not 1-standard, the variable xflag is set to false which will make the
execution moving from state qtemp to the final state qfail.

Example 11. Consider again a Colombo service SM1 which simulates the Minsky Machine
M1. By construction, the guarded automaton of such a service includes the initialisation
part depicted at figure 2.9(a). Therefore, if the service SM1 is given as initial database
the non 1-standard database of figure 2.7(c), the service starts by executing the atomic
process Init of figure 2.10 and moves to the state qtemp. As an effect of the execution of the
atomic process Init, the variable Vflag is set to false during this transition. Indeed, when
evaluated over the non 1-standard database of figure 2.7(c), the condition (fR

1 (0) = ω) of
the Init process returns false and hence the effect Vflag := false specified in the Else branch
is applied. At state qtemp, the only possible transition for service SM1 is to move to the
final state qfail and terminate the execution. Hence, when given any non 1-standard initial
database, the service SM1 always terminates at state qfail (and can never reach the state
qhalt).

Figure 2.9(b) depicts part of a service that implements Minsky machine instructions
of type 1 : Li : cptk := cptk + 1; goto Lj (i.e., incrementation of a counter cptk, with k ∈
{1, 2}). As explained above, incrementation amounts to moving forward in the chain the
corresponding counter variable xk. Assume that the current value of the variable xk is
xk = cl, with cl a constant. The incrementation of xk requires to : (i) first check that
fR

1 (xk) = ω (i.e., the chain is long enough to handle the new value of the counter), and (ii)
check that fR

1 (cl) is a new value which has not already appeared in the chain. These two
conditions ensure that the considered database is k-standard (with k = d(cl)+1). The first
condition is easy to check (c.f., atomic process INCr) while the second one is handled by
reading the chain starting from the root until the tuple (cl−1, cl) and checking at each step
whether the value fR

1 (cl) has already appeared or not. To achieve this task, an execution
of SM enters the state checkLj and then recursively calls the atomic process CheckValue
starting from the root (0, c1) of the chain (c.f., loop between the states CheckLj and LoopLj

in figure 2.9(b)). The execution exits from the loop in two cases : (i) either it reaches to
tuple (cl−1, cl), which means that the current database is k-standard (with k = d(cl)+1)
and hence the service moves to the state qLj and continue the execution, or (ii) it reaches
a tuple (ci, fR

1 (cl)) in the chain which means that the database is not k-standard (with
k = d(cl)+1) and hence the service moves to the final state qfail.

Example 12. Let us illustrate the incrementation of a counter on the non-standard
database of figure 2.7(d). Consider the state of the Minsky machine M1 of figure 2.6
after the execution of the lines L0 to L4 : the current values of the counters are cpt1 = 2
and cpt2 = 3 and the current line is L5. This state corresponds to a configuration of the SM1
service with a current state qL5 and the counter variables having as values : x1 = b and x2 =
c. Note that, in the considered database, the distance of the constant b to the root is equal
to 2 while the distance of c to the root is equal to 3 (i.e., d(b) = 2 and d(c) = 3). Hence,
such a configuration corresponds to a state of the Minsky machine M1 with the counter
cpt1 equal to 2 and the counter cpt2 equal to 3 . The line L5 of M1 increments cpt2 and
moves to line L6. Let us see how such an incrementation is implemented by the Colombo
service SM1. Following the automaton of figure 2.9(b), SM1 calls the atomic process INCr
and moves from state qL5 to state checkL6 . The execution of the atomic process INCr checks
that the current chain is long enough to handle the new value of the counter. This is the
case in the considered database since the condition (fR

1 (x2) = ω) ∧ (fR
1 (x2) = 0) evaluates to

true over the non-standard database of figure 2.7(d) (indeed, we have (fR
1 (x2) = fR

1 (c) = b).
But before assigning the constant b to the variable x2, the service SM1 enters the state

30 Chapitre 2. Checking Simulation Preorder in the Colombo Model

checkL6 and checks whether or not b is a new constant in the chain (i.e., b does not already
appear in the chain). This verification is achieved by iterating on the chain from the root
0 to the current value x2 (i.e., the constant c) and checking at each iteration that the
constant b do not belong to the chain (loop between the states checkL6 and loopL6 and
call to the atomic process CheckValue in the automaton of figure 2.9(b)). In the considered
database, the first iteration reads the tuple (0, a) of the chain while the second iteration
reads the tuple (a, b). The service SM1 is then able to detect that there is cycle in the chain
because the constant b appears twice and hence the considered database is not standard.
Hence, the service will move to state qfail and terminates the execution.

We consider now the implementation of instructions of type 2 :
Li : if cptk = 0 then goto Lj else cptk := cptk-1 then goto Ll (c.f. figure 2.9(c)). The
main difficulty here lies in the implementation of the decrementation operation (which
amounts to moving back the counter xk in the chain). Assume that the current value of
xk is cl. Decrementing xk amounts to assigning to xk the constant c such that fR

1 (c) = cl.
To find the constant c one needs to read again the chain starting from the root. In the
service SM this is implemented by first entering the state DkLi

, by executing the Init-Decr
process, and then recursively calling the atomic process DECRr (c.f., loop between the
states DkLi

and BkLl
of figure 2.9(c)) to explore the chain starting from the root and

stopping at the tuple (c, cl) (we are sure that such a tuple exist because during the
incrementation step to reach the value cl, the database has been checked to be at least
d(cl)-standard).

Example 13. Consider again a configuration of the SM1 service with the database of
figure 2.7(d) and the counter variable x2 = c (i.e., corresponding to the counter cpt2 = 3).
To decrement x2, the service SM1 reads the chain from the root 0 and stops the tuple (b, c)
(third tuple of the database) because we have (fR

1 (b) = c (and hence d(b) = d(c) − 1 = 2).
The constant b is then assigned as the new value for the variable x1 (which corresponds
to a counter cpt2 = 2).

We give now the main property of the proposed construction that enables to prove
lemma 1.

Lemma 2. Let M be a Minsky machine and SM the corresponding Colombo service, then :
M halts iff reach(E(SM), qhalt)

This result is obtained from the connection that exists between executions of M and
the executions of SM that use as input a k-standard databases. In particular, the different
values taken by the counter cpt1 and cpt2 during an execution of M are captured by
the distances of the counter variables x1 and x2 during the execution of SM . Hence, it is
possible to map any execution of M into an execution of SM on a k-standard database and
conversely. Moreover, it is easy to show that if there exists an execution of M that halts
and in which kmax is the maximum value reached by the counters of M , then the execution
of the corresponding service SM using a kmax-standard initial database terminates at the
final state qhalt. On the other side, by construction, SM terminates at the final state qhalt

iff it takes as initial database a k-standard database (which hence can be mapped into an
execution of M that halts).

From theorem 1 and lemma 1, we obtain the following main result regarding simulation
in the Colombo model.

Theorem 2. Let S and S′ be two Colombo services, then CheckSim(S, S′) is undecidable.

2.4. Decidability of simulation in DB-less Colombo 31

Finally, the following theorem can be straightforwardly derived from the previous proof
since the constructed service SM is a non-communicating read-only Colombo service.

Theorem 3. Let S and S′ be two non-communicating services with read-only accesses to
the world database and let l be a control state in GA(S), then both CheckSim(S, S′) and
reach(E(S), l) are undecidable.

The reduction from the halting problem of Minsky machine is possible because a
non-communicating Colombo services with read-only accesses can access to an unbounded
number of tuples in the database. In the next sections, we will prove that when the number
of tuples acceded is bounded the simulation for Colombo model is decidable. This is done
by a semantic restriction on the Colombo model and the resulting model is Colombobound.
A Colombobound service has a shared database with a number of tuples that cannot exceed
a given constant k). To prove the decidability of the simulation for Colombobound services,
we use an intermediary class named ColomboDB=∅. ColomboDB=∅ services or DB-less
services are Colombo services without any access to the database.

2.4 Decidability of simulation in DB-less Colombo

We investigate in this section the simulation problem in the setting of a Colombo mo-
del without a global database (i.e., we assume the world schema W = ∅).
Let S be a Colombodb=∅ service. The associated state machine is a tuple E(S) =
(Q,Q0,F, Δ). A configuration of E(S) has the form id = (l, ∅, α) while there is only
one initial configuration id0 = (l0, ∅, α0) with α0(x) = ω, ∀x ∈ LStore(S). Moreover, in
Colombodb=∅ services, atomic processes can only assign constants to variables of LStore(S)
or assign value of a variable to another. Note that E(S) is still an infinite state system. This
is due to the presence of input messages with parameters taking their values from a possi-
bly infinite domain. We describe below a symbolization technique that allows to abstract
from concrete values and hence turns extended machines associated with Colombodb=∅

services into finite state machines.

Notation and basic notions. Let X be a set of variables taking their values from
an infinite domain D ∪ {ω}. Let θ be a condition on a set of variables X and let α be
a valuation over X. Then θ(α) is the condition obtained by replacing each variable x
appearing in θ by α(x). We say that α satisfies θ, noted α |= θ, if θ(α) = true. A valuation
α satisfies a set Θ of conditions, noted α |= Θ, if α |= θ, ∀θ ∈ Θ.

Let K = {c1, . . . , ck} with c1 < . . . < ck be a set of constants in D. We define the
set IK of elementary intervals over K as IK = {[ω, ω],] − ∞, c1[,]ck, +∞[} ∪ {[cl, cl], l ∈
[1, k]} ∪ {]cl, cl+1[, l ∈ [1, k − 1]}. Note that, a set of intervals IK forms a partition of the
domain D ∪ {ω} (i.e., intervals in IK are pairwise disjoint).

Example 14. For K = {4, 10}, the associated set of elementary intervals is IK =
{[ω, ω],] − ∞, 4[, [4, 4],]4, 10[, [10, 10],]10, +∞[}

Let X be a set of variables and op ∈ {=, <}. We denote by ψ a set of conditions, where
each condition is defined as follows :
∀x, y ∈ X, ψ contains {x = ω} or {y = ω} or {x op y}. ψ is called a v-order over X. A
v-order ψ is said consistent iff it exists at least one valuation α over the variables of X
such that α |= ψ. We note by vo(X) the set of all v-orders on X.

Example 15. Let X = {x, y}, then examples of v-orders over X are :

32 Chapitre 2. Checking Simulation Preorder in the Colombo Model

– ψ0 = {x = ω, y = ω}
– ψ1 = {x = y}
– ψ2 = {x = ω}
– ψ3 = {y = ω}
– ψ4 = {x < y}
We use below the notion of regions to extend intervals to a set of variables.

Definition 5. (Regions) Let X= {x1, ..., xn} be a set of variables and K a set of
constants. We assume variables in X ordered according to the lexicographic order. A region
of X w.r.t K is a tuple r = (τx1 , . . . , τxn , ψ) with ψ ∈ vo(X) and τxi ∈ IK , ∀i ∈ [1, n].

The set of all possible regions of X w.r.t. K is denoted Rg(X, K).

Hence a region r = (τx1 , . . . , τxn , ψ) associates an elementary interval τxi with each
variable xi ∈ X.

Example 16. Let us consider the set of constants K = {4, 10} and the set of variables
X = {x, y}, with their associated elementary intervals and v-orders. The set Rg(X, K)
includes the following regions :

– rω = ([ω, ω], [ω, ω], ψ0)
– r1 = (]4, 10[,]4, 10[, ψ1)
– r2 = ([ω, ω],] − ∞, 4[, ψ2)
– r3 = ([10, 10], [ω, ω], ψ3)

In the sequel, we abuse of notation and write r ∧θ instead of (τx1 , . . . , τxn , ψ ∧θ) where
θ is a condition. We introduce below some notation regarding regions.

– A valuation α over X belongs to a region r = (τx1 , . . . , τxn , ψ) of X, denoted α ∈ r,
iff α(xi) ∈ τxi , ∀i ∈ [1, n] and α |= ψ. The set of valuations that belong to a region
r is noted val(r),

– A region r is inconsistent, noted r |= ⊥, if val(r) = ∅. In the previous example, the
region r3 is inconsistent.

– Let r = (τx1 , . . . , τxn , ψ) be a region of X. A projection of r on a set {xi1 , . . . , xik
} ⊆

X, noted π{xi1 ,...,xik
}(r), is the region π{xi1 ,...,xik

}(r) = (τxi1 , . . . , τxik
, ψ|xi1 ,...,xik

),
where ψ|xi1 ,...,xik

is the subset of ψ that contains only the conditions over
{xi1 , . . . , xik

} ∪ D ∪ {ω}.
– Let r = (τx1 , . . . , τxn , ψ) and r′ = (τx1 , . . . , τxn , ψ′) be two regions of X. We say that

r coincides with r′ on a set of variables {x1, . . . , xk} ⊆ X, noted r ≡{x1,...,xk} r′ , if
π{xi1 ,...,xik

}(r) = π{xi1 ,...,xik
}(r′)

In the sequel, w.l.o.g., we assume that the set Rg(X, K) contains only consistent regions.
Note that, if X and K are both finite sets so Rg(X, K) is also a finite set.

Lemma 3. Let X be a finite set of variables and K a finite set of constants in Θ. Let
r ∈ Rg(X, K), then : ∀α1, α2 ∈ r, ∀Θ′ ⊆ Θ, ifα1 |= Θ′ then α2 |= Θ′.

Démonstration. Suppose α1 |= Θ′ with Θ′ = θ1 ∧ θ2 ... θk. It is sufficient to prove the
property for a condition θ ∈ Θ′. Let ψ be the v-order of r. We distinguish 4 cases :

1. θ is the condition x = y, then α1 |= x = y implies (x = y) ∈ ψ , otherwise r is not
consistent (by construction of r). Thus α2 |= (x = y) since α2 |= ψ.

2. θ is the condition x > y. Similar to case 1.
3. θ is the condition x = c, with c ∈ K, then α1 |= x = c implies τx = [c, c] in r (by

construction of the elementary intervals). Thus α2 |= (x = c) since α2 ∈ r.

2.4. Decidability of simulation in DB-less Colombo 33

4. θ is the condition x > c, with c ∈ K, then α1 |= x > c implies that ∀c′ ∈ τx, c′ > c
(by construction of the elementary intervals). Thus α2 |= (x > c) since α2(x) ∈ τx.

Canonic representation of Colombodb=∅ services. Given a Colombo service S, the
main idea is to use the notion of regions to group together extended states of E(S).
Interestingly, the obtained representation, called a Colombo region automaton (defined
below), is a finite state machine. We define below such state machines and then we show
how they can be used to test simulation between Colombodb=∅ services.

W.l.o.g., we consider in the sequel only Colombo services with atomic processes having :
– disjoint input and output variables (i.e., services S that use atomic processes of the

form p(u1, . . . , un; v1, . . . , vm) with {u1, . . . , un}∩{v1, . . . , vn}∩LStore(S) = ∅), and
– a unique conditional effects (c, E) with E = {(es, ev)} s.t. es = ∅

(since there are no modification on the dabase) and ev = {vi :=
t, with t is either a constant or ω or an input variable}.

Definition 6. (Colombodb=∅ region automata) Let GA(S) = 〈Q, δ, q0, F, LStore(S)〉
be a guarded automata of a Colombodb=∅ service S with X = LStore(S) = {x1, . . . , xn},
and let Θ be a set of atomic conditions in GA(S). Let K be a set of constants ap-
pearing in Θ. The associated Colombodb=∅ region automaton is a finite state machine
RS = (QS , qS

0 , F S , δS , Rg(X, K)) defined as follows :
– QS ⊆ Q × Rg(X, K), the set of states of RS,
– qS

0 = (q0, rω), the initial state, where rω = ([w, w], ..., [w, w], {(xi = ω), i ∈ [1, n]}).
– F S ⊆ F × Rg(X, K), the set of final states,
– Let r ∈ Rg(X, K). For each state (q, r) of RSand for each transition (q, θ, μ, q′) ∈ δ

such that r ∧ θ is consistent then :
(a) if μ =!m(v1, . . . , vm), we have ((q, r), μ, (q′, r)) ∈ δS.
(b) if μ =?m(v1, . . . , vm) we have ((q, r), μ, (q′, r′)) ∈ δS for each r′ ∈ Rg(X, K)

which coincides with r on the variables LStore(S) \ {v1, . . . , vm}.
(c) If μ = p(u1, . . . , un; v1, . . . , vm, {c, E}), we have two cases :
(c-1) if r ∧ θ ∧ c is consistent then ((q, r), p(u1, . . . , un; v1, . . . , vm), (q′, r′)) ∈ δS

where r′ coincides with r on the variables LStore(S) \ {v1, . . . , vm} and :
for each i ∈ [1, m]
– If vi := c ∈ E, then r′ includes τvi = [c, c].
– If vi := uj ∈ E then r′ includes τvi = τuj and ψ

′ of r′ includes vi = uj.
– If vi := ω ∈ E then r′ includes τvi = [ω, ω]

(c-2) if r∧θ∧¬ c is consistent, we have ((q, r), p(u1, . . . , un; v1, . . . , vm), (q′, r)) ∈ δS.

It is worth noting that a region automaton constructed according to definition 6 must
be cleaned to remove states that are not included in a path from the initial state to a final
state. We illustrate the construction of a region automaton on the simple Colombo service
depicted at figure 2.11

Example 17. The service S of figure 2.11 uses :
– a set of variables X = LStore(S) = {x, y},
– a set of conditions Θ = {(x > 5), (y > 5)} used as guards in transitions or condition

in the atomic process Perm.
– a set K = {5} of constants that appear in Θ.

34 Chapitre 2. Checking Simulation Preorder in the Colombo Model

(a) GA(S) (b) atomic process Perm

Figure 2.11 – A Colombodb=∅ service S.

Hence, the set of elementary intervals over K is :

IK = {[ω, ω],] − ∞, 5[, [5, 5],]5, +∞[}
while the set Rg(X, K) includes, among others, the following regions :
– rω = ([ω], [ω], {x = ω, y = ω}
– r1 = ([ω],] − ∞, 5[, {x = ω, y = y}
– r2 = (]5, +∞[,]5, +∞[, {y < x}
– r3 = (]5, +∞[,]5, +∞[, {y = x}
– r4 = (]5, +∞[,]5, +∞[, {x < y}
– r5 = (]5, +∞[, [5, 5], {y < x}
– r6 = (]5, +∞[,] − ∞, 5[, {y < x}
– . . .
The corresponding region automaton RS is depicted at figure 2.12. The initial state of

RS is made of the pair (q0, rω). We illustrate below the cases (a), (b) and (c) of definition
6 on this region automaton.

– the transition (q0, ?m1(x, y), q1) of GA(S) (c.f., figure 2.11), is translated into a set
of transitions ((q0, rω), ?m1(x, y), (q, r)) with r ∈ Rg(X, K) (case (b) of definition 6).
This captures the fact that on a reception of a message ?m1(x, y), any new values
may be associated to the variables x and y.

– the transition (q1, x > 5 | Perm(y; x), q2) of GA(S), enables to a create new transi-
tion from the state (q1, r2) of RS as illustrated below :
– ((q1, r2), P erm(y; x), (q2, r3)), this is because the region r2 satisfies both the guard

x > 5 of the transition and the condition u1 > 5 of the atomic process (case (c-1) of
definition 6). Hence, in this case the atomic process Perm is executed. The atomic
process Perm assigns variable y to the variable x, hence the region automata moves
to a region where τx := τy and requires to have x = y in the associated v-order.
In our example, region r3 satisfies both conditions.

– ((q1, r5), P erm(y; x), (q2, r5)), this is because the region r5 satisfies the guard x > 5
of the transition but does not satisfy the condition u1 > 5 of the atomic process
Perm (case (c-2) of definition 6). According to the Colombo semantics, the transi-
tion is fired but the atomic process Perm execute a no-op operation (no operation).
As a consequence, the region automata moves to state q2 while staying in the same
region r5.

– the transition ((q2, r5), !m2(x,), (q3, r5)) (case (a) of definition 6). A send of a message
does not modify values of the variables, hence upon sending the message !m2(x),

2.4. Decidability of simulation in DB-less Colombo 35

the region automaton RS moves into a new state (q3, r5) while staying in the same
region r5.

Figure 2.12 – A region automaton RS .

In the following we show that the region automata RS constitutes a compact represen-
tation of the extended state machine of E(S) and hence it faithfully abstracts the original
Colombo service S. To do so, we define the notion of unfolding of a region automaton
Unfold(RS) as given below.

Definition 7. (unfolding of region automata) Let RS = (QS , qS
0 , F S , δS , Rg(X, K)) be a

region automata of a service S. The associated extended state machine, noted Unfold(RS),
is a tuple Unfold(RS) = (Qg,Qg

0,Fg, Δg) where :
– Qg =

⋃
r∈Rg(X,K){(q, α) s.t (q, r) ∈ QS , α ∈ r}.

– Q
g
0 = {(q0, αw)}, with αw(x) = ω, ∀x ∈ LStore(S).

– Fg =
⋃

r∈Rg(X,K){(q, α) s.t (q, r) ∈ F S , α ∈ r}..
– ∀(q, r) μi−→ (q′, r′) ∈ δS, a new transition (q, α) μi−→ (q′, α′) is added to Δ such that

α ∈ r, α′ ∈ r′ and :
(a) if μ =!m(v1, . . . , vm), then α′ = α.
(b) if μ =?m(v1, . . . , vm) then ∀x ∈ LStore(S)\{v1, . . . , vm}, we have α′(x) = α(x).
(c) If μ = p(u1, . . . , un; v1, . . . , vm, {c, E}), we have two cases :
(c-1) if r ∧ θ ∧ c is consistent then ∀x ∈ LStore(S) \ {v1, . . . , vm}, we have α′(x) =

α(x) and for each i ∈ [1, m], we have :
– If vi := k ∈ E, with k ∈ D ∪ {ω}, then α′(vi) = k
– If vi := uj ∈ E then α′(vi) = α(ui)

(c-2) if r ∧ θ ∧ ¬ c is consistent, then α′ = α.

A run of Unfold(RS) is any finite path from an initial configuration of E(RS) to one
of its final configurations.

Example 18. Figure 2.13(b) depicts part of the extended automata obtained by unfol-
ding the region automata of figure 2.13(a) which corresponds to a fragment of the region
automata of figure 2.12.

36 Chapitre 2. Checking Simulation Preorder in the Colombo Model

(a) Fragment of RS (b) Fragment of Unfold(RS)

Figure 2.13 – Unfolding a region automaton.

The following lemma states that RS preserves the semantics of the original Colombo
service S in the sense that an unfolding of a region automaton coincides with the extended
automaton of the original Colombo service.

Lemma 4. Let E(S) = (Q,Q0,F, Δ) and RS = (QS , qS
0 , F S , δS , Rg(X, K)) with X and

K defined as in definition 6. Then E(S) = Unfold(RS).

Démonstration. It is sufficient to show that a transition (q, ∅, α) μ−→ (q′, ∅, α′) ∈ Δ iff
(q, α) μ−→ (q′, α′) ∈ Δg.

By construction we have (q0, ∅, α0) ∈ Q0 and qS
0 = (q0, rw). Now, take (q, ∅, α) μ−→

(q′, ∅, α′) ∈ Δ. Hence, there exists (q, θ, μ, q′) ∈ GA(S) s.t. α |= θ. Let r, r′ ∈
Rg(X, K) such that α ∈ r and α′ ∈ r′. We show that (q, r) μ−→ (q′, r′) ∈ δS which im-
plies that (q, α) μ−→ (q′, α′) ∈ Δg. We distinguish the following three cases :

1. μ =!m(c1, . . . , cn). We have α = α′ and therefore (q, r) μ−→ (q′, r) ∈ δS by definition
6.

2. μ =?m(c1, . . . , cn). By definition 3, we have :

α′(x) =
{

α(x) if x ∈ LStore(S) \ {x1, . . . , xn}
ci if x = xi with i ∈ [1, n]

⇒ r′ concides with r on LStore(S) \ {x1, . . . , xn}
Moreover, we have r |= θ since α |= θ. So (q, r) μ−→ (q′, r′) ∈ δS .

3. μ = p(α(u1), . . . , α(un); α′(v1), . . . , α′(vm), {c, E}). We consider two cases.
(a) α |= r ∧ θ ∧ ¬c : By lemma 3 all α1 ∈ r, α1 |= r ∧ θ ∧ ¬c and thus r |= r ∧ θ ∧ ¬c.

So α = α′ and therefore (q, r) μ−→ (q′, r) ∈ δS by Definition 6.
(b) α |= r ∧ θ ∧ c : By definition 3, we have

– α
′(ui) = α(ui)

– α
′(vi) = α(ui) or α

′(vi) = c, where c ∈ K.
So, r′ concides with r on LStore(S) \ {v1, . . . , vm}. Moreover τvi = τuj or τvi =
[c, c]. Thus By definition 6 we have (q, r) μ−→ (q′, r′) ∈ δS .

The other direction of the proof can be derived using a similar scheme.

2.4. Decidability of simulation in DB-less Colombo 37

2.4.1 Simulation between regions automata

In this section, we define a simulation relation between region automata and then we
show how such a relation can be used to check simulation between two Colombo services.

Definition 8. (Simulation of Colombodb=∅ region automata) Let S and S′ be
two Colombodb=∅ services, X = LStore(S), X ′ = LStore(S′) and let ΘS (resp. ΘS′)
be the set of atomic conditions used in GA(S) (resp. GA(S′)). Let K be the set of all
constants appearing in ΘS ∪ ΘS′ and let RS = (QS , qS

0 , F S , δS , Rg(X, K)) and RS′ =
(LS′

, lS
′

0 , F S′
, δS′

, Rg(X ′, K)) be, respectively, the region automata associated with S and
S′.

– Let ((q, r1), (l, r2)) ∈ QS × LS′ and β is a subset of the set of equalities of variables in
S and S′, i.e. {x = x′ s.t. x ∈ X, x ∈ X ′}. The configuration ((q, r1), β) is simulated
by ((l, r2), β) noted ((q, r1), β)
g ((l, r2), β) iff :
– ∀(q, r1) μ−→ (q′

, r
′
1) ∈ δS, there exists (l, r2) μ′

−→ (l′
, r

′
2) ∈ δS′ such that

1. if μ =!m(x1, . . . , xn) then μ′ =!m(y1, . . . , yn) and r1 ∧ r2 ∧ β ⇒ xi = yi where
i ∈ [1, n] and ((q′

, r
′
1), β)
g ((l′

, r
′
2), β).

2. if μ =?m(x1, . . . , xn) then μ′ =?m(y1, . . . , yn) and r
′
1 ∧ r

′
2 ∧ β′ is consistent

and ((q′
, r

′
1), β′)
g ((l′

, r
′
2), β′) where β′ = {xi = yi, i ∈ [1, n]} ∪ {z = t ∈

β s.t. z = xi, z = yi, t = xi, t = yi}.
3. if μ = p(x1, . . . , xn; y1, . . . , ym, {c, E}) then μ′ =

p(u1, . . . , un; v1, . . . , vm, {c, E}) and r1 ∧ r2 ∧ β ⇒ xi = ui and
– if r1 ∧ c is consistent then r

′
1 ∧ r

′
2 ∧ β′ ⇒ yi = vi and ((q′

, r
′
1), β′)
g

((l′
, r

′
2), β′) where β′ = {β} \ {z = t ∈ β s.t. z = yi, z = vi, t = yi, t = vi}.

– if r1 ∧ ¬c is consistent then ((q′
, r

′
1), β)
g ((l′

, r
′
2), β)

– RS
g RS′ iff ((q0, rω), ∅)
g ((l0, rω), ∅)

The following lemma ensures that the relation
g captures correctly the simulation
preorder on Colombo services.

Lemma 5. Let S and S′ be two Colombodb=∅ services and X = LStore(S) ∪ LStore(S′)
and ΘS (resp. θS′) be the set of atomic conditions appearing in the guards of GA(S)
(resp. GA(S′)), and K be the sets of all constants appearing in ΘS ∪ ΘS′. Let RS =
(QS , qS

0 , F S , δS , Rg(X, K)) and RS′ = (QS′
, qS′

0 , F S′
, δS′

, Rg(X, K)), then :

Unfold(RS)
 Unfold(RS′
) iff RS
g RS′

Démonstration. Let Unfold(RS) = (Qg,Qg
0,Fg, Δg) and Unfold(RS′) = (Q′g,Q′g

0,F′g, Δ′g).
(⇐) Assume that RS
g RS′ . Take
 = {((q, α1), (l, α2)) s.t. ((q, r1), (l, r2), β) ∈
g

, with α1 ∈ r1, α2 ∈ r2 and (α1, α2) |= β}. We show that
 is a simulation relation
(i.e., Unfold(RS)
 Unfold(RS′)).
Clearly ((q, αw), (l, αw)) ∈
 since ((q, rw), (l, rw), ∅) ∈
g. Now, suppose that
((q, α1), (l, α2)) ∈
. We show that for any transition ((q, α1), μ, (q′, α′

1)) ∈ Δg,
there exists a transition ((l, α2), μ′, (l′, α′

2)) ∈ Δ′g such that ((q′, α′
1), (l′, α′

2)) ∈
.
Let ((q, α1), μ, (q′, α′

1)) ∈ Δg. Then, by lemma 4, there exists a transition
((q, r1), μ, (q′, r′

1)) ∈ δS such that α1 ∈ r1 and α′
1 ∈ r′

1.
By construction of
, there exists β and (l, r2) ∈ QS′ s.t. ((q, r1), (l, r2), β) ∈
g. Thus
there exists a transition ((l, r2), μ′, (l′, r′

2)) ∈ δ′S such that ((q′, r′
1), (l′, r′

2), β′) ∈
g,
since RS
g RS′ . It suffices to take α′

2 in r′
2 s.t. (α′

1, α′
2) |= β′ (this is always possible

since r′
1 ∧ r′

2 ∧ β′ is consistent). This implies that ((q′, α′
1)(l′, α′

2)) ∈
.

38 Chapitre 2. Checking Simulation Preorder in the Colombo Model

(⇒) Assume that Unfold(RS)
 Unfold(RS′). Following the same schema as previously,
one can show that it is possible to derive from the relation
 a relation
g which
can be used as a witness to deduce that RS is simulated by RS′ . The relation
g is
constructed inductively, starting with
g= {((q, rw), (l, rw), ∅)} and then recursively
augmenting it with new elements by exploiting the relation
 to identify target
states and regions at each step and carefully defining the β conditions in order to
cope with conditions of definition 8. The construction of
g stops when a fix point
is reached.

We provide below the main result of this section by showing that simulation bet-
ween Colombodb=∅ services can be reduced to simulation between the corresponding re-
gion automata. This ensures the decidability of simulation in Colombodb=∅ setting since
Colombodb=∅ region automata are finite state machines and hence exhaustive exploration
of the state-space of such machines is possible.

Theorem 4. Let S and S′ be two Colombodb=∅ services then S
 S′ iff RS
g RS′.

2.4.2 Complexity of simulation in DB-less services

This section is devoted to the complexity analysis of the simulation in DB-less Co-
lombo model. We shall show that the simulation in DB-less Colombo services is exptime-
complete. We first show that the problem is in exptime, then the exptime-hardness is
showed by a reduction inspired from the work of [MW07]. The reduction is obtained from
the existence of an infinite execution of an alternating Turing machine M working on a
space polynomially bounded by the input word size [CKS81]. That is, starting from M
with an input word w of size n, we construct a test of simulation between two DB-less
Colombo services Sspoiler and Sduplicator . We prove that there exists an infinite execution
of M on w iff Sspoiler
 Sduplicator.

Proposition 1. Testing the simulation for Colombodb=∅ services is exptime.

Démonstration. Let S1 and S2 be two Colombodb=∅ services. Let K be the set of constants
and X be the set of variables in S1 and S2. We suppose that |K|=n is the number
of constants and |X|=m is the number of variables. The number of intervals (resp. v-
orders) is bounded by O(n) (resp. O(!m)). The number of regions is bounded by O(nm ×
m!) and therefore the number of states in the region automata is bounded by O(|Q| ×
nm × m!) = O(2log (|Q1|× nm× m!))= O(2log |Q1|+mlog n+log m!). Knowing that, m! ≤ mm,
then we have O(2log |Q1|+mlog n+mlog m) which is equal to O(2log |Q1|+m(log n+log m)) We
conclude that the size of the region automata associated to S1 and S2 are respectively
O(22.(log |Q1|+m(log n+log m))) and O(22.(log |Q2|+m(log n+log m))).

The proof of exptime-hardness is achieved by a reduction from the problem of existence
of an infinite execution of an alternating Turing machine M working on space polynomially
bounded by an input word w of size n. This problem is know to be exptime-hard [CKS81,
MW07]. We provide below a reduction from this problem to a test of simulation between
two DB-less Colombo services Sspoiler and Sduplicator.
We first recall the definition of an alternating Turing machine M, then we give the intuition
of the reduction. After that, we explain the construction of the services Sduplicator and
Sspoiler. Finally, we give the construction of the test of simulation Sspoiler
 Sduplicator and
prove that M has an infinite execution on w iff Sspoiler
 Sduplicator.

2.4. Decidability of simulation in DB-less Colombo 39

Alternating Turing machine M An alternating Turing machine M [CKS81] is a tuple
(Q, q0, Γ, δ, mode) where :

– Q is the set of control states.
– q0 is the initial state.
– Γ is the set of tape symbols.
– mode : Q −→ {∀, ∃, accept , reject } is the labelling function of control state.
– δ : Q x Γ −→ P(Q x Γ x {L, R}).

A configuration C of M is of the form y1, ..., qyj , ..., yn, where q is a state of the machine,
and the head points actually on the j’th letter on the tape (i.e., yi are the letters of the
word on the tape). A transition qa −→ bRq

′ is applicable from a configuration C if the
letter pointed by the head is equal to a (yj=a), then the successor C ′ of C is equal to
y

′
1, ...y

′
j , q

′
y

′
j+1, ..., y

′
n s.t yk= y

′
k for k ∈ [1,n] and k = j and y

′
j = b. We note this step

C
qa/bRq

′
−→ C

′ or (y1, ..., qyj , ..., yn)qa/bRq
′

−→ (y′
1, ...y

′
j , q

′
y

′
j+1, ..., y

′
n). The machine M starts on

C0 = qy1, ..., yn, where yi=wi, the i’th letter of the input word w.
The definition of acceptance of an alternating Turing machine is recursive :

– If the configuration C is in an accepting control state q, then C is accepting.
– If the configuration C is in an rejecting control state q, then C is rejecting.
– If the configuration C is in a universal control state q, then C is accepting if all

the configurations reachable from C in one step are accepting and rejecting if some
configurations reachable from C in one step are rejecting.

– If the configuration C is in an existential control state q, then C is accepting if some
configurations reachable in one step are accepting and rejecting when all configu-
rations reachable in one step are rejecting (the case of classical non-deterministic
Turing machine correspond to an alternating machine where all states are existen-
tial).

M is said to accept an input word w if the initial configuration of M is accepting, and
to reject w if the initial configuration is rejecting. A configuration reachable in one step
from configuration C is called a successor of C and the set of successors of C is denoted
successors(C).

q0

q2

q1

a/aR

b/bL

b/aL

a/aR b/bL b/aL

AND

OR OR

(a) Turing machine M (b) execution of M

AND

Figure 2.14 – Alternating Turing machine M .

We consider the problem of the existence of an infinite execution of an alternating
Turing machine M on an input word w = y1, ..., yn, where yi’s are letters from Γ. That is
given a word w as input, M can make choices of existential transitions such that whatever
the transitions chosen by universal states the machine continues the execution. Assume

40 Chapitre 2. Checking Simulation Preorder in the Colombo Model

that, the rejecting states are states without outgoing transitions. The machine works on
a space bounded by the size n of the input word w. Hence, if the head points on y1 the
machine is not allowed to move to the left (i.e., execute a transition labelled with L), and
if the head points on yn the machine is not allowed to move to the right (i.e., execute a
transition labelled with R).

Example 19. Figure 2.14(a) depicts an alternating Turing machine M , where the initial
state q0 is universal, and q1, q2 are existential states. Suppose w=ab, then starting from the
initial configuration C0 = (q0ab), the machine has two successors : C0

qa/aRq1−→ C1 = (aq1b),
and C0

qa/aRq2−→ C2 = (aq2b). C1 has two successors, one reads b and replaces it by itself
leading to the configuration C0, the other replaces b by a, hence the machine reaches C3.
The two successors of C3 are blocking. Starting from the initial state, for all choices of the
universal state, there is a successor of the existential state s.t the machine continue the
execution. So the machine M has an infinite execution on the input word ab.

The idea of the proof is that, starting from the machine M , we construct the service
Sspoiler which is able to execute any action of the machine infinitely often. The service
Sduplicator encodes exactly the execution of M on the word w. During the execution of M ,
if M is in a configuration without successors then the corresponding configuration of the
service Sduplicator does not have successors. For each configuration of C with successors,
the corresponding configuration of the service Sduplicator has also successors. Now, because
Sspoiler can execute any action infinitely often, Sduplicator must contain also an infinite
execution to simulate Sspoiler and this is possible if and only if the machine M has an
infinite execution. Additional transitions will be added to Sduplicator. Those transitions
will be used to prevent the Sspoiler of cheating, because this service can execute any action
at any time. Then, at a given step of execution of Sduplicator, if Sduplicator can execute a
transition representing a transition of M , then Sspoiler must follow it. If Sspoiler tries to
execute a transition not allowed by the machine M , then Sspoiler looses the simulation
game. Sspoiler wins the simulation game if and only if Sduplicator blocks during an execu-
tion, which means the machine M blocks and does not contains an infinite execution on w.

Given a machine M bounded by the size n of the input word w. Sduplicator will use n
variables to simulate the n cells. The position of the head is encoded in a variable called
head. A state q of M is encoded as a state lq in Sduplicator. A transition q

a/bR−→ q′ of M ,
is encoded in a transition (lq, xi = a ∧ head = i, qabq

′
Ri(∅; xi, head), lq′)(i.e., if the actual

value of the i’th variable is equal to a and the variable head contains i, then executes the
atomic process qabq

′
Ri(∅; xi, head) which increments the variable head and modifies the

value of xi to b). Because during the execution of the machine we do not control which cell
is read, we create n − 1 transitions in Sduplicator from lq to lq′ (the head cannot move to
the right of the last variable this why i is ranged in [1,n-1]). If the direction is L, the same
construction is made, but now the atomic process decrements the head and i is ranged in
[2,n].

Example 20. Figure 2.15(a) depicts the transition in Sduplicator which encodes the tran-

sition q0
a/aR−→ q1 of the machine M in example 19. The atomic process qabq

′
R1(∅; x1, head)

is depicted in Figure 2.15(b). There is only one transition, because in this example the
size of w=2 hence it is not possible to move to the right from the second cell.

Sduplicator starts by initializing the variables x1, ..., xn to the input word w and assigning
1 to the variable head.

2.4. Decidability of simulation in DB-less Colombo 41

lq0 lq1

(a) in Sduplicator

(b) the atomic process q0aaq1R1

a/aRq0 q1

Figure 2.15 – A transition in Sduplicator corresponding to a transition of M .

lstart lq0

...

(a) initialization of the variables

(b) atomic process init

Figure 2.16 – initialization of variables in Sduplicator.

Example 21. Figure 2.16 depicts the initialization of the service Sduplicator corresponding
to the machine M of the example 19, where x1 :=a, x2 := b and head :=1.

Before giving the construction of Sduplicator, we need to introduce some notations :
– P is the set of all atomic processes used to encode actions of the machine M , it

contains the following sets :
– {qabq

′
Ri(∅; xi, head) | q

a/bR−→ q
′

in M and i ∈ [1, n − 1]}
For each transition of the machine labelled with a move to the right, we create
n-1 atomic processes to encode it.

– {qabq
′
Li(∅; xi, head) | q

a/bL−→ q
′

in M and i ∈ [2, n]}
For each transition of the machine labelled with a move to the left, we create n-1
atomic processes to encode it.

The atomic process qabq
′
Ri(∅; xi, head) has no condition, it assigns to xi the value b

and increments the head. The atomic process qabq
′
Li(∅; xi, head) has no conditions,

it assigns to xi the value b and decrements the head.
– ga

i is a condition of the form xi =a ∧ head= i. It will be used as guard on transitions
of Sduplicator.

The incrementation is not allowed in the definition of the Colombo model. When
defining the effects of the atomic process, we write the result of the sum rather than the
operation of incrementation. For example, in the atomic process qabq

′
R1(∅; x1, head),

42 Chapitre 2. Checking Simulation Preorder in the Colombo Model

which represents the transition q
a/bR−→ q′ depicted at figure 2.15, the variable head receives

2 instead of 1+1.

In the sequel, we make P i
qa the subset of P restricted to the atomic processes modifying

the variable xi and representing only the transitions of the machine M from the state q
and reading the letter a.

Construction of Sduplicator : Each configuration of M that is reachable during the
execution of the machine on w corresponds to an id of Sduplicator. During an execution of
M, the actual configuration of the machine M has a successor if the corresponding id of
an execution of Sduplicator has a successor. If the execution of M blocks on a configura-
tion, then the service also blocks on the corresponding id. We will use a set of additional
transitions to force the spoiler to follow the actions chosen by the duplicator during an
execution.
Let GA(Sduplicator be the guarded automaton of the service Sduplicator where
GA(Sduplicator) = 〈Qduplicator, δduplicator, l

′
start, LStore(Sduplicator)〉 and :

– the set of states of Sduplicator are :
– {lq | q ∈ Q}.
– the initial state of M is a final state in Sduplicator.
– a state lcopy, which is also a final state.

– {choiceqbdq′ | q
a/bd−→ q

′
and q an exitential state and d = R/L}

– l
′
start is the initial state.

– Lstore(Sduplicator) = {x1, ..., xn} ∪ {head}, where n = |w|
– δduplicator is made of the following sets of transitions :

– (l′
start, true, init(∅; head, x1, ..., xn), lq), where q the initial state of M .

– (lcopy, true, a, lcopy), where a ∈ P ∪ {!m()} and P is the set of all atomic processes
in Sspoiler.

– For each transition q
a/bd−→ q

′ in M , where q is a universal state :
– if d = R then :

– {(lq, ga
i , qabq

′
Ri(∅; xi, head), lq′) | i ∈ [1, n − 1]}.

– {(lq, true, !m(), lcopy)}.
– {(lq, ga

i , P \ P i
qa, lcopy) | i ∈ [1, n − 1]}.

– if d = L then :
– {(lq, ga

i , qabq
′
Li(∅; xi, head), lq′) | i ∈ [2, n]}.

– {(lq, true, !m(), lcopy)}.
– {(lq, ga

i , P \ P i
qa, lcopy) | i ∈ [2, n]}.

– For each transition q
a/bd−→ q

′ in M , where q is a existential state :
– if d = R then :

– {(lq, true, !m(), choiceqbRq′)}
– {(lq, true, P \ {!m()}, lcopy)}.
– {(choiceqbRq′ , ga

i , qabq
′
Ri(∅; xi, head), lq′) | i ∈ [1, n − 1]}.

– {(choiceqbRq′ , true, P \ {qabq
′
Ri(∅; xi, head)}, lcopy) | i ∈ [1, n − 1]}.

– if d = L then :
– {(lq, true, !m(), choiceqbLq′)}
– {(lq, true, P \ {!m()}, lcopy)}.
– {(choiceqbLq′ , ga

i , qabq
′
Li(∅; xi, head), lq′) | i ∈ [2, n]}.

– {(choiceqbLq
′ , true, P \ {qabq

′
L(∅; xi, head)}, lcopy) | i ∈ [2, n]}.

2.4. Decidability of simulation in DB-less Colombo 43

Note that, if the machine reads or writes the special blank character B during a transition,
then we replace the constants a,b by the special symbol ω, in the construction of the
corresponding transition.

Sduplicator starts by initializing the variables representing the cells with the input

word. If M has a transition q
a/bR−→ q

′ and q is a universal state, then the service contains
n − 1 transitions from lq to lq′ labelled with condition/action : if xi=a and the head
points on i then we can execute the atomic process which modifies xi to b and increments
the head. So, Sduplicator can only execute the atomic process representing the transition

q
a/bR−→ q

′ if the actual value of xi=a and the head points on i. Note that, for any actual
valuation of variables, there is only one transition from the "n-1" transitions which can
be executed. This is due to the guards where several xi can verify the condition but the
head points only to one cell.
If q is an existential state, then Sduplicator sends a message m before executing the atomic
process. The state lcopy contains a set of self loop labelled with all atomic processes P
and !m() (if Sduplicator reaches this state, it wins the simulation). All transitions which
reach the state lcopy are used to prevent Sspoiler from cheating during the test of simulation.

The next lemma asserts that each configuration of M on the input word w has a
corresponding configuration in the extended state machine of Sduplicator. The proof is
obtained by induction (details are given in appendix A).

Lemma 6. Each configuration C of the execution of an alternating Turing machine M on
an input w has a corresponding configuration in the extended state machine of Sduplicator.

Example 22. The Figure 2.17 depicts the part of service Sduplicator corresponding to the

transition q0
a/aR−→ q1 where q0 is universal, and the two transitions q1

b/bL−→ q0 and q1
b/aL−→ q0

where q1 is an existential state of the machine M of example 19.

lstart

lq0

lcopy

lq1

choice1

choice2

Figure 2.17 – A part of the service Sduplicator.

44 Chapitre 2. Checking Simulation Preorder in the Colombo Model

Construction of Sspoiler : The spoiler uses n variables z1, ..., zn and the variable
head. It starts as Sduplicator by initializing the variables to the letters of the word w and
the head to 1. Sspoiler encodes all transitions that the machine M can do. If M has a

transition q
a/bR−→ q

′ and q is a universal state, then the service has (n-1) self loop on state
quniv labelled with qabq

′
Ri(∅; zi, head). If q is an existential state, first the service goes

to an intermediate state qexist by sending the message m(). Then, the service has n − 1
transitions labelled with atomic processes qabq

′
Ri(∅; zi, head) from qexist to quniv. The

transitions are not guarded. Hence, Sspoiler can choose to execute any actions (infinitely
often) without constraints on actual values of variables.

The guarded automata of Sspoiler is given below. GA(Sspoiler) =
〈Qspoiler, δspoiler, qstart, quniv, LStore(Sspoiler)〉 where :

– Qspoiler= {qstart, quniv, qexist} , where qstart is the initial state and quniv the final
state.

– Lstore(Sspoiler) = {z1, ..., zn} ∪ {head}.
– δspoiler is made of the following sets of transitions :

– (qstart, true, init(∅; head, z1, ..., zn), quniv),
where init initializes head to 1 and zi to wi (the i’th) letter of w.

– (quniv, true, !m(), qexist).
– For each transition q

a/bd−→ q
′ in M , where q is a universal state :

– if d = R then :
– {(quniv, true, qabq

′
Ri(∅; zi, head), quniv) | i ∈ [1, n − 1]},

where zi receives b and head receives i + 1 (moves to the right).
– if d = L then :

– {(quniv, true, qabq
′
Li(∅; zi, head), quniv) | i ∈ [2, n]},

where zi receives b and head receives i − 1 (moves to the left).
– For each transition q

a/bd−→ q
′ where q is a existential state :

– if d = R then :
– {(qexist, true, qabq

′
Ri(∅; zi, head), quniv) | i ∈ [1, n − 1]}.

– if d = L then :
– {(qexist, true, qab

′
Li(∅; zi, head), quniv) | i ∈ [2, n]}.

Example 23. The Figure 2.18 depicts the part of the service Sspoiler corresponding to :

– the transition q0
a/aR−→ q1 where q0 is universal and

– the two transitions q1
b/bL−→ q0 and q1

b/aL−→ q0 where q1 is an existential state of the
machine M in example 19.

Given an alternating Turing machine M an input word w, we call the services Sspoiler

and Sduplicator constructed as explained previously, respectively the Spoiler and the Dupli-
cator associated to M and w. The next lemma shows the connection between the existence
of infinite execution of the machine M over the word w and the test of simulation between
Sspoiler and Sduplicator. The proof is given in appendix A.

Lemma 7. Let M be an alternating Turing machine working in space bounded by the size
of an input word w, and let Sspoiler and Sduplicator the services associated to M and w.
Then, M has an infinite computation on w iff Sspoiler
 Sduplicator.

From lemma 7 and knowing that the problem of existence of an infinite execution of
an alternating Turing machine work on a space polynomially bounded by the size of the
input is exptime-hard [CKS81] we can derive the following lemma :

2.5. Decidability of simulation in Colombobound 45

lstart

luniv

lexist

True | !m()

Figure 2.18 – part of Sspoiler.

Lemma 8. Given two DB-less Colombo services S, S
′, checking whether S
 S

′ is
exptime-hard.

Hence, the following theorem can now be claimed from proposition 1 and lemma 8

Theorem 5. Given two DB-less Colombo services S, S
′, checking whether S
 S

′ is
exptime-complete.

2.5 Decidability of simulation in Colombobound

We study in this section the simulation problem in the setting of a Colombo model
with a bounded global database (i.e., the size of the instance over W is at most equal to a
constant k). Given two services S and S

′ , S is k-bounded simulated by S
′ means that S

′ is
able to reproduce the behavior of S on all executions where the size of the database is at
most equal to k. We will prove that the simulation is decidable in this setting by providing
a reduction to a test of simulation between two DB-less ColomboDB=∅ services. This is
done by encoding the bounded database using a finite set of variables. First we start by
giving the definition of k-bounded extended state machines, which is used to capture the
notion of k-bounded simulation. Then we give the construction of the DB-less service and
prove the equivalence of the two tests.

2.5.1 k-bounded extended state machine Ek(S) and k-bounded simula-
tion

Let k be an integer. We call a database instance I k-bounded if |I| � k. The k-bounded
extended state machine Ek(S) of a Colombo service S is the extended state machine E(S)
of S restricted to configurations having k-bounded instances.

Definition 9. Let S be a Colombo service and E(S) = (Q,Q0,F, Δ) the associated exten-
ded state machine, then Ek(S) = (Qk,Qk

0,Fk, Δk) is the k-bounded extended state machine
of S where :

– Qk = {(l, I, α) | (l, I, α) ∈ Q and |I| ≤ k}.

The k-bounded extended state machine of S is the part of E(S) where all configura-
tions contain only k-bounded databases. Like E(S), a run σ of Ek(S) is a finite sequence

46 Chapitre 2. Checking Simulation Preorder in the Colombo Model

σ = id0
μ0−→ id1

μ1−→ . . .
μn−1−→ idn where id0 is an initial configuration and idn a final

configuration but |Ii| ≤ k for i ∈ [0, n] where idi=((li, Ii, αi)). Due to infinite number of
k-bounded initial databases, all runs of Ek(S) form a forest.

q0

q1

(a) service S

(b) atomic process add

(c) Global database schema

Figure 2.19 – A Colombo service S.

Example 24. Figure 2.19 depicts a simple Colombo service S which receives two
variables x and y. The service S uses the atomic process add to insert the tuple (x,y) in
the database R. The service can make an infinite loop during an execution and inserts an
unbounded number of tuples in R.

Figure 2.20 depicts two execution paths of E(S). The execution path depicted at
figure 2.20(a) starts with an instance of R which contains one tuple 〈6, h〉 then inserts
the tuple 〈7, 2〉. This execution path of E(S) is also an execution path of the 2-bounded
extended state machine E2(S). The second execution path (figure 2.20(b)) starts with an
instance containing only the tuple 〈8, 1〉, then inserts the tuple 〈9, 3〉, and finally inserts
the tuple 〈1, 2〉. The second path does not belong to E2(S) because the database of the
last configuration does not satisfies the condition |R| ≤ 2.

�������������

��

�	
���

��

���
���

�������������

��

�	
����

��

���
����

��

�	
���

��

���
���

��
��

�

�

�

�

�

�

�

�

������������

������

������

������

������

������

������������

������

������

������

������������

�����������
������������

�����������
������������
�����������

������������
�����������

������������
�����������

������������

�����������
������������

�����������
������������
������������

�����������
������������
������������

�����������

������������
������������
�����������

������������

������������

������������
������������

������������
�����������

������������

�����������

Figure 2.20 – example of an execution path in E2(S) and an execution path not in E2(S).

We define now the notion of k-bounded simulation, denoted
k.

Definition 10. A Colombo service S is k-bounded simulated by a Colombo service S′,
noted S
k S′, iff Ek(S)
 Ek(S′).

It is worth noting that if S
 S
′ then S
k S

′ but the converse is not true.

2.5. Decidability of simulation in Colombobound 47

2.5.2 Mapping bounded Colombo services into Colombo DB-less ser-
vices

We will prove that the decidability of k-bounded simulation by proving that, for any
two colombo services S and S

′ , testing k-bounded simulation S
k S
′ is equivalent to

testing M(S)
 M(S′), where M(S) and M(S′) are two DB-less services.

The main idea is to use a set of variables to encode k-bounded database instances.
Assume that W = {R} and arity(R)= n, then the maximum number of values that can
be stored in a k-bounded database is n∗k. Hence, all k-bounded instances can be encoded
with n ∗ k variables. We will use the following example to explain the transformation from
a bounded Colombo service into a DB-less service.

��

��

��

�� ��

��	
��������
���������

�
����
������
�������������������
�

�������������
�!�"����
���
�������
��
��������������	
�
!�"�#$��������%�
�����������

�
����
�&
����'���&���
������
���(��&������������

�)��
�	&
���������#�
#�$������
���*��������
#�
������������&����
��#+
���������
�&�����#�
#�$������
����
���
�	
�������#�
#�$������
���������
#
������������&��,��	
��#+�
������-
�
�
�'#�
#�$������
����
���
�	
�������&�����	
�
���

�%����$�����$
		
	

'#�
#�$����$+
�����
���� �#������

���.$��+�+���%�	
�	�
������/
���
�/
���

Figure 2.21 – Colombo services Search.

Example 25. Figure 2.21(a) depicts the Colombo service Search. Search makes use of
the atomic process check-item depicted at figure 2.21(b) in order to retrieve a product for
a client in the global relation Inventory (figure 2.21(c)) and sends the price of the product
if the quantity requested is available. If the quantity of the product is equal to zero, then
the product is deleted from the inventory.

Database variables DV

As said earlier, the number of variables used to encode the database depends on the
arity of the database schema and the bound k. To simplify the presentation, and w.l.o.g,
from now we suppose that W contains only one relation R(A1; B1, . . . , Bm). The set of
variables used to encode the bounded database instances are called database variables
(DV) and denoted dvij , where i and j are integers.

Definition 11. Let R(A1; B1, . . . , Bm) be a world database schema and k be a constant.
Then DV={dvij | i ∈ [1, k] and j ∈ [1, m + 1]}.

Note that the variables dvi1, here often called key variables, represent the possible
values of the keys (the attribute A1). Figure 2.22 depicts two instances of the relation
schema Inventory and the corresponding set DV . The elements of the tuple 〈HP5, 31, 200〉
of the first instance (figure 2.22(a)) are stored respectively in the variables dv11, dv12, dv13
and those of the tuple 〈XS3, 48, 159〉 are stored in dv21, dv22, dv23 (the valuation of DV is
depicted at figure 2.22(d)). The tuple 〈HS7, 23, 120〉 of the second instance (figure 2.22(b))
is stored in dv11, dv12, dv13 (the second valuation of DV depicted at figure 2.22(e)).

48 Chapitre 2. Checking Simulation Preorder in the Colombo Model

���� ���� ����

���� ���� ����

��	 �� �

��� � �	�
��� �� ��

�������������������������

����� !��

�"������#�$�����������
����������������������

���������%���&����'� !�� ���������#�$���%���&����'� !��

�

� �	�

�� ��

(�%��&���)������$*

��	

���

�� ���

���� +$&�� ,����&�*

(�%��&���)������$*

���� +$&�� ,����&�*

Figure 2.22 – Instances of the database Inventory and the corresponding sets of variables
DV .

Initialization of DV

The execution of a Colombo service starts with a null valuation (ω) for all variables
in the Lstore. An additional state and a transition are added in order to enable the
initialization of the database. Let S be a Colombo service, the corresponding DB-less
service will start with a transition labelled with ?database(dv1j , ...dv1m+1, ..., dvkm+1).
It should be noted that, during the execution of a Colombo service, only database instances
satisfying the key constraints ca be used. w.l.o.g, we assume that, the key constraints are
always satisfied in our case. Indeed, it is possible to add to DB-less services a test to check
that the values of the database variables correspond to a database instance that satisfies
the key constraints.

Atomic process transformation

We recall that, a Colombo service accesses to the database only using atomic processes,
either to retrieve information or modify it. An atomic process is a triplet p = (I, O, CE)
where : I=u1, ..., un are the input variables and O=v1, ..., vm are the output variables
and CE = {(θ, es, ev)} is a set of conditional effects with θ a condition, ev the set of
modifications of output variables and es (state effects) are the modifications of the da-
tabase instance. An atomic process accesses to the values of a database using the access
function fR

j through the condition θ or in ev by assigning a value of the database to an
output variable. The atomic process can also modify the database using the state effects
es(Insert,Delete,Modify).
In the following, We will explain how to transform an atomic process p = (I, O, CE) acting
on a database R to an atomic process pv = (Iv, Ov, CEv) acting on the set of variables
DV . We start by the access function fR

j then the outputs effects ev and finally we explain
how to transform the state effects.

1. Encoding fR
j

Let "fR
j (t) op t′" be a condition in θ. The corresponding pv will contain k conditions

θvi with i ∈ [1,k] of the form :
– θvi= { (dvi1 = t) ∧ (dvij+1 op t

′) }
fR

j (t) returns the value of the j+1’th element of the tuple having the key equal to
t, and then compares this value with t

′ . To encode this action, we need to check if
the key variable dvi1 (i ∈ [1,k]) is equal to t, then compare dvij+1 to t′ according to
op. This test is repeated k times.

2.5. Decidability of simulation in Colombobound 49

For example, the atomic process check-item depicted in figure 2.21(b), contains a
condition f Inventory

2 (item) ≥ qty. This test will be transformed into θv1, θv2 where :
– θv1 : (dv11 = item) ∧ (dv13 ≥ qty).
– θv2 : (dv21 = item) ∧ (dv23 ≥ qty).

2. Encoding ev
Let "vl := fR

j (t)". Here the output variable vl receives the value of fR
j (t). As for

the condition θ, we need first to retrieve the key variable dvi1 equal to t and then
assign dvij+1 to vl. The test and the assignment is made k times. The corresponding
atomic process will contain a set of pairs (θi, evi) where :
– θi : dvi1 = t and
– evi : vl := dvij+1
Continuing with the atomic process check-item. The assignment price :=
f Inventory

1 (item), will be mapped into two pairs (θi, evi) :
– (θ1, ev1) : (dv11 = item, price := dv12).
– (θ2, ev2) : (dv21 = item, price := dv22).

3. Encoding es

– insert R(t1, s1, . . . , sm). The insertion is encoded by retrieving a variable dvi1 = ω,
then assigning respectively t1, s1, . . . , sm to dvi1, dvi2, . . . , dvm+1. pv will contain
k pairs of the form (θi, evi) where
– θi = dvi1 = ω and
– evi = { dvij := sl | j ∈ [2, m + 1] and l ∈ [1, m] } ∪ {dvi1 := t1 }.

– delete R(t1). The deletion is made by retrieving the key variable dvi1 equal to t1
then assigning to the variable dvi1 the value ω. The new atomic process pv will
contain k pairs of the form (θi, evi) :
– θi = dvi1 = t1 and
– evi = dvi1 := ω.

– modify R(t1, r1, . . . , rm). To simulate the modification we need to find the key
variable dvi1 equal to t1, then assign to dvij the corresponding rl if rl is different
from “_” . As for the previous cases, we add k pairs of the form (θi, evi) :
– θi = dvi1 = t1 and
– evi = { dvij := rl | rl = ”_” and l = j + 1 }.

For example, the atomic process check-item deletes a product if its quantity is equal
to zero (i.e., with the state effect Delete Inventory(item)). This action on database
will be transformed into two pairs (θi, evi) :
– (θ1, ev1) : (dv11 = 0, v11 := ω).
– (θ2, ev2) : (dv21 = 0, dv21 := ω).

Let p = (I, O, CE) be an atomic process updating the database R(A1; B1, . . . , Bm).
then pv = (Iv, Ov, CEv) is constructed as follows :

– Iv= I ∪ DV .
– Ov= O ∪ DV .
– The set CEv is obtained by applying the rules defined before.
The Figure 2.23(b) depicts the atomic process check-itemv.
Now we will give the definition of the mapping from a bounded Colombo service S to

a corresponding DB-less service M(S).

Definition 12. Let GA(S) = 〈Q, δ, l0, F, LStore(S)〉 be a guarded automata of a service S
and k a constant. Then GA(M(S)) = 〈QM(S), δM(S), linit, FM(S), LStore(M(S))〉 where :

– QM(S) = Q ∪ {linit}. M(S) contains all states of S and an additional state linit

50 Chapitre 2. Checking Simulation Preorder in the Colombo Model

��

��

��

�� ��

��	
��������
���������

�
����
����������	�
�������	�������

����������� ��!�"���������������������
��������������
!�"�#$�����%�����������

�������������������

�#��

����%���������	������	������	�����	�����	�������
�����������
���� ���!�����	������	������	�����	�����	�����	������	�
����
���"��!����	������

�#������!
��������������������������$��
������#�
���������!���� ��#�������!��������
��������������������������$��
������#�
���������!���� ��#�������!�������
���������������������������%����#
���������!��&����#�������!�������
�����������������������������%����#
����������!��&����#�������!�������
����������!��&�����

�%��'�$������$����������������

Figure 2.23 – M(Search).

– linit is the initial state of M(S).
– FM(S) = F is the set of final states.
– LStore(M(S))=LStore(S) ∪ DV .
– δM(S) is constructed as follows :

– A transition from linit to l0 labelled with the reception of the message
?database(v11, ..., vij), where i ∈ [1, k] and j ∈ [1, m + 1].

– If (l, θ, μ, l
′) ∈ δ and μ is a send or a reception of a message, then (l, θ, μ, l

′) ∈
δM(S).

– If (l, θ, μ, l
′) ∈ δ and μ is the atomic process p(u1, ..., ui; v1, ..., vj , (ψ, E)), then

(l, θ, pv, l
′) ∈ δM(S).

Figure 2.23 depicts the DB-less service M(Search). The service starts by initializing
the set of variables DV . The atomic process check-itemv modifies the values of the
variables of the set DV instead of the database R.

The next two lemmas show the equivalence between testing k-bounded simulation and
the test of simulation between the corresponding DB-Less services. The proof is given in
appendix A. Note that a valuation of variables α restricted to a subset of variables m is
denoted α|m.

Lemma 9. Let S be a Colombo service, Ek(S) = (Qk,Qk
0,Fk, Δk) its k-bounded extended

state machine and E(M(S)) the extended state machine of DB-less M(S), then
– If (qi, Ii, αi) ∈ Qk then ∃ (qi, α

′
i) ∈ QM(S) s.t α

′
i|Lstore = αi and α

′
i|DV = Ii and

– ∀ (qi, Ii, αi)
μi−→ (qj , Ij , αj), ∃ (qi, α

′
i)

μ
′
i−→ (q′

j , α
′
j) s.t α

′
j|Lstore = αj and α

′
j|DV =

Ij.

Lemma 9 asserts that for each state in the k-bounded state machine of S there exists
a corresponding state in the extended state machine of M(S) s.t the valuation of DV is
equal to database I and the valuation of variables of Lstore in the two states are equal.

Lemma 10. Let S be a Colombo service, Ek(S) = (Qk,Qk
0,Fk, Δk) its k-bounded extended

state machine and E(M(S)) the extended state machine of DB-less M(S), then
– If (qi, α

′
i) ∈ QM(S) then ∃ (qi, Ii, αi) ∈ Qk s.t α

′
i|Lstore=αi and α

′
i|DV =Ii and

– ∀ (qi, α
′
i)

μ
′
i−→ (q′

j , α
′
j), ∃ (qi, Ii, αi)

μi−→ (qj , Ij , αj) s.t α
′
j|Lstore = αj and α

′
j|DV =

Ij.

Hence, from lemma 10 and lemma 9 we can derive the following theorem :

2.5. Decidability of simulation in Colombobound 51

Theorem 6. Let S, S′ two Colombo services, then S
k S′ iff M(S)
 M(S′).

2.5.3 Complexity of k-bounded simulation

In this section, we will prove the 2-exptime completeness of checking k-bounded
simulation. First, we show the membership in 2-exptime. Then, the 2-exptime hardness
is proved by reduction from the problem of the existence of an infinite execution of an
exponentially space bounded alternating Turing machine M (for an input word w of size
n, M can explore 2n cells).

Proposition 2. Let S1 and S2 be two Colombo services, testing S1
k S2 is in 2-exptime.

Démonstration. Let S1 and S2 be two Colombo services with C is the set of constants
and X the set of variables in S1 and S2. Testing S1
k S2 is achieved by testing
M(S1)
 M(S2), where M(S1) and M(S2) are two DB-less services. We sup-
pose that n is the number of constants and m + (k × l) the number of variables,
with l the arity of W and m number of variables in S1, S2. A region is a set of
intervals and a v-order on X ∪ {ω}. The number of intervals (resp. v-orders) is
bounded by O(n) (resp. O((m + (k × l))!)). The number of regions is bounded by
O(nm+(k×l) × (m + (k × l))!) and therefore the number of states in the region automata is
bounded by O(|Q1|×nm+(k×l) ×(m+(k× l))!) = O(2log |Q1|+(m+(k×l))(log n+log (m+(k×l)))).
We conclude that the size of the region automata associated to M(S1) and
M(S2) are respectively O(22.(log |Q1|+(m+(2log k×l))(log n+log (m+(2log k×l))))) and
O(22.(log |Q2|+(m+(2log k×l))(log n+log (m+(2log k×l))).

We will prove the 2-exptime-hardness of the problem by proving that, given a Turing
machine M working on an exponential space bounded by the size n of an input word w,
we can construct two Colombo services Sspoiler and Sduplicator such that the machine M
has an infinite execution on w iff Sspoiler
k Sduplicator, where k= 2n.

The proof is in the same spirit of the proof of lemma 8. But knowing that the machine
M can reach 2n cells, where n is the size of the input word w. If we use directly two
DB-less services in the reduction, we need 2n variables to store the 2n cells. Hence, the
construction is exponential. To avoid this problem, the services Sspoiler and Sduplicator will
use a database schema R(A1, ..., An; W) to encode the 2n cells. The key is on n attributes.
Taking the domain of A′i to be {0, 1}, the key is a binary number on n position. Hence,
the services can reach 2n tuples where their keys are ranged from (0, ..., 0) to (1, ..., 1).
To simulate the head, the services will use n variables where the value of each variable is
either 0 or 1. Then, the actual values of x1, ..., xn correspond to the binary number x1...xn.
Hence, a valuation of the variables x1, ..., xn is a key for an instance of R. The move to
the right of the machine is made by incrementing the binary number x1...xn, then the
new binary number points on the next tuple. Similarly, the move to the left is made by
decrementing the binary number x1...xn and the new valuation of the variables x1, ..., xn

points on the previous tuple. The attribute W is used to store the letter of the cell. Assume
that, the machine M is at a configuration C and the head points on a cell containing a

and q
a/bR−→ q

′ is a transition of M . This transition will be executed by 3 transitions in
Sduplicator :

– first the service tests if the actual tuple contains a,
– then writes b in the attribute W of this tuple,

52 Chapitre 2. Checking Simulation Preorder in the Colombo Model

q0 q1

a/aR

(a) transition of M

(b) corresponding transition in Sde(c) Atomic processes

Figure 2.24 – transitions corresponding to q0
a/aR−→ q1 in M .

– finally moves to the next tuple by executing a binary addition on x1...xn.

Example 26. Figure 2.24(a) depicts a transition of the machine M of example 19. If
the actual value of the cell pointed by the head is equal to a and the machine is in
the state q0, the machine writes a, and moves to the next cell and reaches the state q1.
Suppose the input word is ab, so n=2. The part of Sduplicator representing this transition
starts by storing the value of the attribute W corresponding to the tuple identified with
the key x1x2 in the variable letter (i.e., letter := fR

n+1(x1, x2)) using the atomic process
get_cell. Then, the service tests if letter = a and writes in the current tuple the new value
of W with set_cell. After that, the service increments the binary number x1x2 using
the atomic process NEXT. As a consequence, x1x2 points on the next tuple. The guard
¬(x1 = 1 ∧ x2 = 1) prevents a move to the right if the service points on the last cell. Note
that, when encoding a transition of M , the service Sspoiler will not contain the guard letter
= a, because Sspoiler will encode all transitions that the machine can do infinitely often.

The services Sduplicator and Sspoiler will start with an initialization part where they :
1. Check if all tuples identified with key from (0, ..., 0) to (1, ..., 1) contain the symbol B,

which means the 2n cells are empty. In following, we will call the database instances
which satisfy this condition standard instances and those that do not satisfy it non-
standard instances.

2. initialize the n first tuples with the n letters of the input word w.

Example 27. Continuing with our example, figure 2.25 depicts the initialization part of
the two services. The services start by assigning zero to x1 and x2, then check if the value
of the attribute W of the actual tuple identified with the key x1x2 is equal to B. If x1x2
points on an empty tuple and it is not the last tuple (key equal 11), the services increment
the key and test the next tuple. If one of them does not contain B, then the database is
non-standard and there is simulation. If all tuples ranged from 00 to 11 contain B, the
services reinitialize the variables to zero.

For all executions starting with a non-standard database, Sspoiler
 Sduplicator is true,
because the two services have the same initialization part. Figure 2.26 depicts examples of

2.5. Decidability of simulation in Colombobound 53

lstart

lzero

linit

lstart

linit

lq0

lfaillfail

Figure 2.25 – initialization part of Sduplicator and Sspoiler.

standard and non-standard databases. As we can see, the order of tuples is not important
for standard databases (Figure 2.26(a) and figure 2.26(b)). The database depicted at figure
2.26(c) fails in the initialization part because fR

3 (1, 1) and fR
3 (0, 1) are equal to ω, and the

database depicted at figure 2.26(d) is non-standard because there are tuples with values
different from B for the attribute W .

�� �� �
����	
���

� �

� �

� �

� �

�

�

�

�

����	��������	������

�� �� �
����	
���

� �

� �

� �

� �

�

�

�

�

������	����	��������	������

�� �� �
����	
���

� �

� �

�

�

������	�	��������	������

�� �� �
����	
���

� �

� �

� �

� �

�

�

�

������	��������	������
��	������

�

Figure 2.26 – Standard database.

Now we will give the formal definition of atomic processes.

Atomic processes P is the set of all atomic processes used to encode the actions of the
machine M :

– for each transition q
a/bR−→ q

′ in M :
– get_cellqabq′ R(x1, ..., xn; letter, CE) is an atomic process with one conditional ef-

fect :
– θ : true.
– ev : letter :=fR

n+1(x1, ..., xn).
– set_cellqabq′ R(x1, ..., xn, b) is an atomic process with one conditional effect :

54 Chapitre 2. Checking Simulation Preorder in the Colombo Model

– θ : true.
– ev : MODIFY R(x1, ..., xn; b).

– NEXT(x1, ..., xn; x1, ..., xn, {CE}) is an atomic process with n conditional effect
where CE= {(θn, vn)} ∪ {(θk, vk) | k ∈ [n − 1, 1]} and
– θn : xn=0

vn : xn := 1
– θk : xn = 1 ∧ xn−1 = 1 ∧ ... ∧ xk−1 = 1 ∧ xk = 0

vk : xn := 0 ∧ xn−1 := 0 ∧ ... ∧ xk−1 := 0 ∧ xk := 1
– for each transition q

a/bL−→ q
′ in M

– get_cellqabq′ L(x1, ..., xn; letter, CE) is an atomic process with one conditional ef-
fect :
– θ : true.
– ev : letter :=fR

n+1(x1, ..., xn).
– set_cellqabq′ L(x1, ..., xn, b) is an atomic process with one conditional effect :

– θ : true.
– ev : MODIFY R(x1, ..., xn; b).

– PREVIOUS(x1, ..., xn; x1, ..., xn, {CE}) is an atomic process with n conditional
effect
where CE= {(θn, vn)} ∪ {(θk, vk) | k ∈ [n − 1, 1]} and
– θn : xn=1

vn : xn := 0
– θk : xn = 0 ∧ xn−1 = 0 ∧ ... ∧ xk−1 = 0 ∧ xk = 1

vk : xn := 1 ∧ xn−1 := 1 ∧ ... ∧ xk−1 := 1 ∧ xk := 0
Now we give the formal definition of the service Sduplicator

Service Sduplicator. Let GA(Sduplicator) = 〈Qduplicator, δduplicator, l
′
start, LStore(Sduplicator)〉

where :
– the set of states of Sduplicator are the following

– For each state q in M , a state lq.
– a set of states lcopy, lzero, linit, lfail, where lfail is final.

– {choiceqbdq
′ | q

a/bd−→ q
′

in M and q an exitential state and d = R/L}
– {l

′
qbdq

′ , l
′′
qbdq

′ | q
a/bd−→ q

′
in M and d = R/L}

– l
′
start is the initial state.

– for each wi (i’th letter of the input word) a state lwi .
– Lstore(Sduplicator) = {x1, ..., xn} ∪ {letter}.
– δduplicator is composed of the following sets of transitions :

– (l′
start, true, init(∅; letter, x1, ..., xn), lzero).

– (lzero, true, get_cell(x1, ..., xn; letter), linit).
– (linit, letter = B ∧ ¬(x1 = 1 ∧ ... ∧ xn = 1), NEXT (x1, ..., xn; x1, ..., xn), lzero).
– (linit, letter = B, no-op, lfail).
– (linit, letter = B ∧ x1 = 1 ∧ ... ∧ xn = 1, init(∅; letter, x1, ..., xn), lw1).
– (lcopy, true, P ∪{!m()}, lcopy), where P is the set of all atomic process in Sduplicator.
– for each wi (i’th letter of the input word) two transition :

– (lwi−1 , true, Insert(x1, ..., xn, wi), lwi)
– (lwi , true, NEXT(x1, ..., xn), lwi+1)

– For each transition q
a/bd−→ q

′ in M , where q is a universal state :
– if d = R then :

2.5. Decidability of simulation in Colombobound 55

– {(lq, true, get_cellqabq
′
R(x1, ..., xn; letter), l

′
qbRq′)}.

– {(l′
qbRq′ , letter = a, set_cellqabq′ R(x1, ..., xn, b; ∅), l

′′
qbRq′)}.

– {(l′′
qbRq′ , ¬(x1 = 1 ∧ ... ∧ xn = 1), NEXT (x1, ..., xn; x1, ..., xn), lq′)}.

– {(lq, true, !m(), lcopy)}.
– {(lq, true, P\Ptest_cellq, lcopy)}. Ptest_cellq is the set of atomic process test_cell

used to encode transition from state q of M .
– if d = L then :

– {(lq, true, get_cellqabq′ L(x1, ..., xn; letter), l
′
qbRq′)}.

– {(l′
qbRq′ , letter = a, set_cellqabq′ L(x1, ..., xn, b; ∅), l

′′
qbRq′)}.

– {(l′′
qbRq′ , ¬(x1 = 0 ∧ ... ∧ xn = 0), P revious(x1, ..., xn; x1, ..., xn), lq′)}.

– {(lq, true, !m(), lcopy)}.
– {(lq, true, P\Ptest_cellq, lcopy)}. Ptest_cellq is the set of atomic process test_cell

used to encode transition from state q of M .
– For each transition q

a/bd−→ q
′ in M , where q is a existential state :

– if d = R then :
– {(lq, true, !m(), choiceqbRq′)}
– {(lq, true, P \ {!m()}, lcopy)}.
– {(choiceqbRq′ , true, get_cellqabq′ R(x1, ..., xn; letter), l

′
qbRq′)}.

– {(l′
qbRq′ , letter = a, set_cellqabq′ R(x1, ..., xn, b), l

′′
qbRq′)}.

– {(l′′
qbRq′ , ¬(x1 = 1 ∧ ... ∧ xn = 1), NEXT (x1, ..., xn; x1, ..., xn), lq′)}.

– {(choiceqbRq′ , true, P \ {get_cellqabq
′
R(x1, ..., xn; letter)}, lcopy)}.

– if d = L then :
– {(lq, true, !m(), choiceqbLq

′)}
– {(lq, true, P \ {!m()}, lcopy)}.
– {(choiceqbLq′ , true, get_cellqabq′ L(x1, ..., xn; letter), l

′
qbLq′)}.

– {(l′
qbLq′ , letter = a, set_cellqabq′ L(x1, ..., xn, b), l

′′
qbLq′)}.

– {(l′′
qbLq′ , ¬(x1 = 0 ∧ ... ∧ xn = 0), PREV IOUS(x1, ..., xn; x1, ..., xn), lq′)}.

– {(choiceqbLq′ , true, P \ {get_cellqabq′ L(x1, ..., xn; letter)}, lcopy)}.
The next lemma asserts that, each configuration C of the execution of an alternating

Turing machine M on the input w has a corresponding configuration in the extended state
machine of Sduplicator. The proof is by induction (the details are given in appendix A).

Lemma 11. Each configuration C of the execution of an alternating Turing machine
M on the input w has a corresponding configuration in the extended state machine of
Sduplicator.

Service Sspoiler. Let GA(Sspoiler) = 〈Qspoiler, δspoiler, qstart, LStore(Sspoiler)〉 where :
– the set of states of Sspoiler are following

– a set of states qstart, qzero, qinit, qfail, q∀, q∃, where qfail is final.

– {qqbdq′ , q
′
qbdq′ | q

a/bd−→ q
′

in M}
– q

′
start is the initial state.

– for each wi (i’th letter of the input word) a state qwi .
– Lstore(Sduplicator) = {z1, ..., zn} ∪ {letter}.
– δduplicator is as follows :

– The part of initialization of the input word and checking the database is the same
as in Sduplicator, the difference is after storing the last letter of the input word w,

56 Chapitre 2. Checking Simulation Preorder in the Colombo Model

Sspoiler goes to the state q∀.
– (q∀, true, !m(), q∃).
– For each transition q

a/bd−→ q
′ in M , where q is a universal state :

– if d = R then :
– {(q∀, true, get_cellqabq

′
R(z1, ..., zn; letter), qqbdq

′)}.
– {(qqbdq′ , true, set_cellqabq′ R(z1, ..., zn, b; ∅), q

′
qbdq′)}.

– {(q′
qbdq′ , ¬(z1 = 1 ∧ ... ∧ zn = 1), NEXT (z1, ..., zn; z1, ..., zn), q∀)}.

– if d = L then :
– {(q∀, true, get_cellqabq′ L(z1, ...,z n; letter), qqbdq′)}.
– {(qqbdq

′ , true, set_cellqabq
′
L(z1, ..., zn, b; ∅), q

′
qbdq′)}.

– {(q′
qbdq′ , ¬(z1 = 0 ∧ ... ∧ zn = 0), P revious(z1, ..., zn; z1, ..., zn), q∀)}.

– For each transition q
a/bd−→ q

′ in M , where q is a existential state :
– if d = R then :

– {(q∃, true, get_cellqabq′ R(z1, ..., zn; letter), qqbdq′)}.
– {(qqbdq′ , true, set_cellqabq′ R(z1, ..., zn, b; ∅), q

′
qbdq′)}.

– {(q′
qbdq′ , ¬(z1 = 1 ∧ ... ∧ zn = 1), NEXT (z1, ..., zn; z1, ..., zn), q∀)}.

– if d = L then :
– {(q∃, true, get_cellqabq′ L(z1, ..., zn; letter),q qbdq

′)}.
– {(qqbdq′ , true, set_cellqabq′ L(z1, ..., zn, b; ∅), q

′
qbdq′)}.

– {(q′
qbdq′ , ¬(z1 = 1 ∧ ... ∧ zn = 1), PREV V IOUS(z1, ..., zn; z1, ...,z n), q∀)}.

Lemma 12 shows the connection between the existence of infinite execution of the
machine M on the word w and the test of simulation between Sspoiler and Sduplicator. The
proof is given in appendix A.

Lemma 12. Given an alternating Turing machine M working in space bounded by the
size of the input w, M has an infinite computation on w iff Sspoiler
 Sduplicator.

From lemma 12 and knowing that the problem of existence of an infinite execution of
an alternating Turing machine working on a space exponentially bounded by the size of
the input word is 2-exptime-hard, we can derive the following lemma :

Lemma 13. Given two Colombo services S, S
′, checking whether S
k S

′ is 2-exptime-
hard.

Hence, the following theorem can now be derived from lemma 13 and proposition 2 :

Theorem 7. Given two Colombo services S, S
′, checking whether S
k S

′ is 2-exptime-
complete.

2.6 Conclusion

In this chapter, we studied the decidability and the complexity issues related to the
simulation problem in the framework of the Colombo model. Our results, ranging from
exptime to undecidability show that the marriage between data and web service business
protocols gives rise to some challenging issues. The decidability and complexity results,
exptime-complete for ColomboDB=∅ and 2-exptime-complete for Colombobound are far
from being straightforward, due to the fact we are dealing with infinite state systems.

2.6. Conclusion 57

This chapter proposed also a symbolic procedure based on the notion of region automata
to handle the infiniteness of the framework.

The next chapter will be devoted to the definition of a generic framework that genera-
lizes the Colombo model, where the messages exchanged as well as the updates over the
databases are expressed using queries. The main goal is to identify the parameters that
impact the decidability and the complexity of the simulation for data-centric web services.

Chapitre 3

Data-Centric Generic Model

This chapter is organized as follows : we start by some preliminaries in section 3.1. In
section 3.2 we introduce a generic data centric model and define the associated simula-
tion problem. Section 3.3 describes our results regarding decidability and complexity of
simulation for guarded services (i.e., generic services with guards and empty send mes-
sages). Section 3.4 considers the case of send services (i.e., unguarded generic services
with send messages) and show decidability and complexity results of simulation in this
context. Section 3.5 is devoted to insert services (i.e., unguarded generic services with
insert actions).

3.1 Notations

Let L be a query language, R ∈ R be a relation schema and let I be a database over
R with r ∈ I a relation over R. Let q, q′ be L queries with schema(q) = schema(q′) =
schema(R). An update language, noted LU , defines the update queries that can be used
to modify a database. In this thesis, we focus our attention on insertions. An insert query
is an expression U = insert R (q). The semantics is that the answers of q are inserted in
R (i.e., U(r) = r ∪ q(I)). If q is a query and I a database, we write q(I) to denote the
set of answers of q when it is executed on I. In the similar way, if U is an update query,
we write U(I) to denote the database obtained after the application of the insert U on
I. We use Linsert(I) to denote an update language restricted to insertions expressed in the
language I. Let L be a boolean query language, we denote by ∧b and ¬b the conjunction
and negation operators applied on L formulas. A formula θ in L ∪ {∧b, ¬b} is constructed
with the following recursive definition : θ : := θ ∧ θ | (¬)β where β ∈ L.

3.2 Generic web service

We start this section with the formal definition of a generic web service and give its
semantics, then we define the relation of simulation in the context of this model.

3.2.1 Generic web service model

A generic data-centric web service is a state machine :
– acting on a global database (shared with all services of the system) and a local

(private) database.
– labelled with guards on the transitions. The guards are boolean queries defined over

the databases and expressed in a language LT .

60 Chapitre 3. Data-Centric Generic Model

– the service communicate through messages. The messages exchanged are relations
where the outgoing messages are queries defined over the local and the global data-
bases expressed in a language LS .

– the service can modify the databases (local and global), through update queries
expressed in the language LU .

Definition 13. generic web service Let LT be a boolean query language, LS a query
language and LU an update query language. An (LT , LS , LU)?,p service S is a tuple S =
〈Σ, W, L, l0, F, δ〉 where :

– Σ is a set of messages. We associated to a message m(p1, . . . , pn) the relation schema
Rm where schema(Rm) = (A1, . . . , An).

– W = Wl ∪ Wg ∪ Wm is a relational schema made of three disjoint schemas :
– Wl the local schema of the service,
– Wg the global schema (i.e., visible to all other services) and
– Wm the set of messages schema.

– L is a finite set of locations (or control states) with l0 ∈ L the initial state, and
F ⊆ L a set of final states,

– The transition relation δ contains tuples (l, q, μ, l′) where l, l′ ∈ L, q is a boolean
query in LT defined over W, and μ has one of the following forms :
– μ =?m(p1, ..., pn) (incoming message) or
– μ = !m(q′) (send message). q′ is a query expressed in the language LS and defined

over W such that schema(m)= schema(q′) or
– μ = u where u is an update query expressed in the language LU and defined over

Wl ∪ Wg.

Example 28. Figure 3.1 depicts a service Warehouse. This service starts when receiving
a message req_search containing the product, the quantity requested and the ID of the
customer. Then the service checks whether the product is listed in the database Inventory
and the quantity requested is grater than 10 and grater the available stock. If it is the
case, the service processes the shipment by adding a row in the database Shipment and
records the customer ID, the item code and the actual location (initially the warehouse).
Finally, it sends the message Shipment_status containing the actual status of the order.
In this example, the global database schema Wg={Inventory}, the local database schema
Wl={Shipment} and the message database schema is Wm= {Rreq_search}. The languages
LU , LS are conjunctive queries (CQ) and the language of guards LT is boolean conjunctive
queries with arithmetic comparisons.

3.2.2 Extended state machines

We use the notion of an extended automata to define the semantic of a generic web
service. At every point in time, the behavior of an instance of a generic service (or simply
a service) is determined by its instantaneous description (ID). An ID of a service is given
by a pair id = (l, I) where l is its current location (or control state) and I the current
database instance over the schema W. We note I = Il ∪ Ig ∪ Im, with Il the local database
(i.e., the database over the schema Wl), Ig the global database (i.e., the database over the
schema Wg), and Im the messages database over the schema Wm. In the sequel, we use
the notation iddb to refer to the database associated with the instantaneous description id
(i.e., iddb = I) and iddbl , iddbg , iddbm to refer respectively to the local database Il, global
database Ig and messages database Im.

3.2. Generic web service 61

l0

l1

l2

l3

item price quantity
A.G.7

E.F.9

.

blue

yellow

.

35

20

.

color

. . .

1023

3500

5098

1598

item
A.G.7

E.F.9

.

.

customer
C201

C009

.

.

location
Warehouse

Paris

.

.

(b) Inventory and Shipement database

 Inventory (item, color, price, quantity) Shipment (customer, item, location)

(a) Generic Warehouse service

Figure 3.1 – Data-centric generic web service Warehouse.

A run of a generic service starts with an arbitrary instance over Wg and Wl and an
empty instance of Wm. The database representing the incoming message is not cumulative,
in the sense that each time the service receives a message m, the associated instance Rm

is overwritten.

Definition 14. service runs (executions) Let S = 〈W, L, l0, F, δ〉 be a service. A run
σ of S is a finite sequence σ = id0

μ0−→ id1
μ1−→ . . .

μn−1−→ idn which satisfies the following
conditions :

– (Initiation) id0 = (l0, I0) is the initial state of the run and I0 is an arbitrary instance
over Wg and Wl. Wm starts empty.

– (Consecution) ∀i ∈ [0, n−1], there is a transition (li, q, μ, li+1) ∈ δ such that iddb
i |= q

and one of the following conditions holds :
– μ =?m() then μi =?m(rmi+1), with rmi+1 an instance over Rm and idi+1 =

(li+1, Ili , Igi , Imi+1) with Imi+1 = (Imi \ {rmi}) ∪ {rmi+1} and rmi the instance
of Rm in iddbm

i .
– μ =!m(qm) then μi =!m(qm(iddb

i)) and idi+1 = (li+1, iddb
i).

– μ = u then μi = “u” and idi+1 = (li+1, u(iddb
i)).

A service moves from an idi to idj according to the mechanics defined by its set of
transitions. If idi

μi−→ idj satisfies the consecution condition above, we say that μi is allowed
from idi.

Example 29. Figure 3.2 depicts a run of the service Warehouse. The service starts with
an arbitrary instance of inventory, all the others relations are empty (figure 3.2.a). Then,
the service receives the message ?req_search and moves to the control state q1 with the
same global database but with a new instance of Rreq_search, representing the instance
received (figure 3.2.b). Then, if the conditions are verified, the service adds a tuple in
the database Shipment (figure 3.2.c). Finally, it sends the shipment status in the message
Shipment_status, the result of the query qShipment_status is depicted in figure 3.2.d. At

62 Chapitre 3. Data-Centric Generic Model

item price quantity
A.G.7

E.F.9

L.D.7

blue

yellow

red

35

20

90

color

E.F.9 black 110

1023

3500

5098

1598

Inventory

q0

q1

item price quantity
A.G.7

E.F.9

L.D.7

blue

yellow

red

35

20

90

color

E.F.9 black 110

1023

3500

5098

1598

 Inventory

item customer
A.G.7 15

volume

 Rreq_serch

C201

item price quantity
A.G.7

E.F.9

L.D.7

blue

yellow

red

35

20

90

color

E.F.9 black 110

1023

3500

5098

1598

 Inventory

 Rreq_serch

item
A.G.7

customer
C201

location
Warehouse

 Shipment

item customer
A.G.7 15

volume
C201

q2 q3

item price quantity
A.G.7

E.F.9

L.D.7

blue

yellow

red

35

20

90

color

E.F.9 black 110

1023

3500

5098

1598

Inventory

 Rreq_serch

 results for qShipment_statut

item
A.G.7

customer
C201

location
Warehouse

 Shipment

item customer
A.G.7 15

volume
C201

A.G.7C201 Warehouse

(a) initial configuration (b) second configuration

(c) third configuration (d) fourth configuration

Figure 3.2 – A run of the data-centric generic web service Warehouse.

this point of execution, if the service receives another message req_search, the previous
instance of Rreq_search is deleted and replaced by the new one.

The semantics of a generic service can be captured by the following notion of an
extended infinite state machine.

Definition 15. extended state machine Let S = 〈W, L, l0, F, δ〉 be a generic service.
The associated infinite state machine, noted E(S), is a tuple E(S) = (L,L0,F, Δ) where :

– L = {(l, I)} is the set of all instantaneous description.
– L0 = {(l0, I)} is the set of initial configurations, with I an arbitrary database over

W where the messages database are empty.
– F = {(l, I) | l ∈ F} is the set of final instantaneous description.
– Δ is an (infinite) set of transitions of the form τ = (li, Ii)

μi−→ (lj , Ij) such that μi

is allowed from (li, Ii) (i.e., τ satisfies the consecution condition).

A finite run of E(S) is any finite path from an initial state of E(S) to a final state.
Given an initial state id0 of E(S), all the possible runs of E(S) starting from id0 can be
captured by an (infinite) execution tree noted tree(id0) having as its root id0.

Example 30. Figure 3.3(a) depicts the infinite tree of executions of the service Warehouse
for a initial instance over the global (Inventory) and the local (Shipment) schema. The

3.2. Generic web service 63

(a) infinite tree of a fixed initial database

(b) infinite transition system E(Warehouse)

Figure 3.3 – E(Warehouse)

source of infiniteness comes from the infinite number of instances that the service can
receive with the message req_search. Another source of infiniteness, is the number of
initial databases as depicted in figure 3.3(b).

3.2.3 Simulation and weak simulation

We introduce now the notion of weak transition, weak simulation and then the relation
of simulation for generic services.

Weak Simulation

When the modification of the local database (Wl) is allowed, we talk about weak
simulation. This is because this kind of modification, called hereafter silent transitions, is
not observable from an external point of view (i.e., another service or the client). Before
giving the definition of the weak simulation, we introduce the notion of weak transition :

Definition 16. Weak transition Let S = 〈W, L, l0, F, δ〉 be a data-centric generic
service, and E(S) = (L,L0,F, Δ) its extended state machine.

A weak transition denoted by (id1) μn=⇒ (idn+1) is the path (id1) μ1−→ (id2) μ2−→ ...
μn−→

(idn+1) in E(S) where μi = u(iddbl
i)) with i ∈ [1, n − 1] and μn is not a silent transition.

A weak transition collapses a path where only observable actions are kept (i.e., the
modification of the global database as well as the exchanged messages).

Definition 17. Let S and S′ be two (LT , LS , LU)?,p services defined over the same global
database schema and let E(S) = (L,L0,F, Δ) and E(S′) = (L′,L′0,F′, Δ′) be respectively
their associated extended state machines.

– Let (idi, id′
i) ∈ L × L′. The state idi weakly simulates id′

i, noted idi
w id′
i, iff :

– if idi ∈ F then id
′
i ∈ F

′ and

64 Chapitre 3. Data-Centric Generic Model

– id
dbg

i = id
′dbg

i , and
– ∀idi

μi=⇒ idj ∈ Δ, there exists id′
i

μ′
i=⇒ id′

j ∈ Δ′ such that
– if μi = ?m(rm) then μ

′
i = ?m(rm) and idj
w id′

j.
– if μi = !m(q) then μ

′
i = !m(q′) and q(iddb

i) = q
′(id′db

i) and idj
w id′
j.

– if μi = u then μ
′
i = u′ and u(iddbg

i) = u(id
′dbg

i) and idj
w id′
j

– E(S)
w E(S′) iff ∀id0 ∈ L0, ∃id′
0 ∈ L′0 such that id0
w id′

0
– S
w S′ iff E(S)
w E(S′)

When we study the simulation, the local database is always empty. The relation of
simulation is defined as the weak simulation, but we replace
w by
 and =⇒ by −→
(i.e., when the database is empty, this means there is no silent transition, hence no weak
transitions). The external visible behavior of a service is defined here with respect to the
content of the global database as well as the exchanged concrete messages (i.e., message
name together with the instance exchanged).

The existence of a simulation relation ensures that each execution tree of S is also an
execution tree of S′ (in fact, a subtree of S′), modulo a relabeling of control states.

3.2.4 Analyzing various classes of the generic model

We investigate the decidability and the complexity issues of simulation for various
classes of our generic model, each class is characterized by :

– the type of actions supported in the model ,e.g., the service can only send messages
or can only insert in the database, ...etc,

– the languages used to instantiate respectively LT , LU and LS (e.g., CQ, etc...),
– the presence or not of the local database (i.e., in the presence of local database, we

study the weak simulation).

Table 3.1 – sub-models.

Class of services A Wg Wl

(LT , ∅, ∅) ! + -
(∅, LS , ∅) ! + -

(∅, ∅, Linsert(LI)
U) Insertion + -

(∅, ∅, Linsert(LI)
U)p Insertion + +

(LT , ∅, Linsert(LI)
U) Insertion + -

Table 3.1 depicts the different classes we study. We consider the following parameters :
– A specifies the type of actions allowed. For example, (LT , ∅, ∅) denotes the class of

services that are able to send messages (symbolized by ! in the table 3.1), but the
messages are empty because LS= ∅. (∅, ∅, Linsert(LI)

U) denotes the services that are
only able to make insertion in the database using the language LI .

– Regarding the other columns of table 3.1, the symbol + denotes the presence of the
component in the considered class while the symbol − indicates that the correspon-
ding component is not provided by the class.

We consider more precisely the following classes :
– Update-free services. This class represents services which are not able to modify the

databases. This class enables to focus on the role played by the language of guards

3.3. Guarded services (LT , ∅, ∅) 65

(LT) and the query language used to send messages (LS) on the decidability of the
simulation. The main sub-classes investigated in this class are described below :
– Guarded services (LT , ∅, ∅). This class deals with guards expressed in a language

LT . An (LT , ∅, ∅) service can only send empty messages. Our purpose is to study
the impact of the guards language on checking the simulation. The ability of
sending empty messages is added for convenience to simplify the proofs.

– Send services (∅, LS , ∅). This class represent services which can only send messages.
The content of an outgoing message is the result of a query expressed in the
language LS . This class enables to analyze the impact of LS on the simulation.

– Insert services. This class describes services without guards. The considered services
are able to insert data in the global database. In this context, we study the simulation
as well as the weak simulation relation. The main sub-classes investigated in this
context are described below :
– (∅, ∅, Linsert(LI)

U) services. This class focuses on services able to insert data in the
global database (there is no other action than the insertion in the global database).
In this case a service can encode, for example, a recursive program. As we shall see,
this is an important property that it will be exploited to prove the undecidability
of simulation for some instances of this class.

– (∅, ∅, Linsert(LI)
U)p services. This class is used to study the weak simulation. A service

can insert in the global and the local database. An insertion in the local database is
considered as a silent transition. We show that, the weak simulation is undecidable
when LI = CQ.

– (LT , ∅, Linsert(LI)
U) services. This class is used to study the interaction between the

guards language and the update language.
The analysis of the aforementioned classes is presented in the subsequent sections.

3.3 Guarded services (LT , ∅, ∅)
We study in this section the impact of the language LT on the decidability of the

simulation for guarded services. For this purpose, we consider the sub-class (LT , ∅, ∅) of
Update-free services having transitions guarded with boolean queries expressed in the
language LT .

Example 31. Figure 3.4(a) depicts an example of two (LT , ∅, ∅) services over the same
global database R , where the guards are boolean conjunctive queries (figure 3.4(b)). The
service S1 sends m1() either if the instance contains a tuple (guard q1) or if it contains a
tuple with the same value for the two attributes (guard q2).

3.3.1 Characterization of simulation for guarded services

We will prove that, the simulation of (LT , ∅, ∅) services is decidable iff checking the
satisfiability of formula in LT ∪{∧b, ¬b} is decidable, where LT is a boolean query language.

From definition of simulation (c.f., definition 17), one can expect two sources of diffi-
culties to test simulation between two guarded services S and S′ :

1. the problem of testing whether id
 id′ with id (respectively, id′) an instantaneous
description of S (respectively, S′). We refer to this test as simID.

2. the possibly infinite number of simID tests required to check whether S
 S′.

66 Chapitre 3. Data-Centric Generic Model

l0

q1 | ! m1()

l3

S1

l1

True | ! m2()

q2 | ! m1()

l4

l2

True | ! m3()

q0

True| ! m1()

q1

True | ! m2()

q2

q3 | ! m3()

q3

S2

q1():- R(X,Y)

q2():- R(X,X)

q3():- R(X,Y),R(Y,Z)

(a) update-free services. (b) boolean conjunctive queries.

Figure 3.4 – (LT , ∅, ∅) services S1, S2 and their corresponding guards.

The test simID is clearly decidable since every (eventually infinite) execution tree
tree(id0) of an (LT , ∅, ∅) service S can be represented by a finite state machine FSMid0(S).
Hence, checking simulation between FSMid0(S) and FSMid0(S′) can be reduced to a si-
mulation test between two finite state machines.

Definition 18. Let S = 〈W, L, l0, F, δ, Σ〉 be a (LT , ∅, ∅) service. Let I be an instance
over Wg. We denote by FSMI(S) = 〈W, L, l0, F, δI , ΣI〉 a finite state machine such that :

(i) δI = {(l, am, l′) | ∃(l, q, !m(), l′) ∈ δ and q(I) = true}.
(ii) ∀l ∈ δI , there is a path from l0 to a final state through l.

Note that, each message !m() of S is renamed in the state machine FSMI(S) to a
string am. ΣI represents the alphabet obtained by renaming the messages. The point (ii)
ensures that each state of FSMI(S) is reachable from the initial state and reaches a final
state. We denote by tree(FSMI(S)) the possibly infinite execution tree of FSMI(S).

Hence, to define a simulation algorithm for the class (LT , ∅, ∅) it remains to cope
with the problem 2, i.e., to handle an infinite number of simID tests. Let S and S′ be
two (LT , ∅, ∅) services defined over the same global database schema Wg. To cope with
problem 2, the main idea is to partition the infinite set of instances over Wg into a finite
set of partitions such that :

(i) the number of partitions is finite (but a given partition may represent an infinite
number of instances over Wg),

(ii) the simulation between S and S′ can be reduced to a set of simulation tests between
partitions, and

(iii) the simulation test between two partitions is decidable, since it can be recast to
test of simulation between finite state machines.

Example 32. Figure 3.5(a) depicts the FSMI(S1) and the FSMI(S2), (S1 and S2 are
depicted at figure 3.4). According to definition 18 : since I |= q2, there is no transition
from l0 to l2, hence there is no valid path from l0 to l4. On another hand, since I |= q1,
we have a path from l0 to l3. The messages !m1() and !m2() are renamed as am1 and am2

respectively. Note that, FSMI(S1)
 FSMI(S2).

Lemma 14. Let S = 〈W, L, l0, F, δ, Σ〉 be a (LT , ∅, ∅) service and id0 = (l0, I, ∅) an initial
configuration of S, with I an arbitrary instance over Wg, then tree(id0) ∼= tree(FSMI(S)).

3.3. Guarded services (LT , ∅, ∅) 67

l0

am1

l3

l1

q0

q1

q2

am1

q3

A B
1 2
2 3
5 7
0 4

(b) The instance I (a) FSMI(S1) and FSMI(S2)

am2
am2 am3

Figure 3.5 – FSMI(S1), FSMI(S2).

Démonstration. The lemma is a direct consequence of the construction of FSMI(S) (c.f.,
definition 18).

As a direct consequence of lemma 14, simulation between two (LT , ∅, ∅) services S and
S′ can be rephrased as follows :

Lemma 15. Let S and S′ be two (LT , ∅, ∅) services over the same global schema Wg,
then S
 S′ iff for every instance I over Wg, we have FSMI(S)
 FSMI(S′)

Definition 19. Let G be a set of LT boolean queries over a database schema Wg and let
g ⊆ G. Let IW be the infinite set of all the possible instances over Wg. We denote by qg

G

the formula obtained by the conjunction of the queries in g and the negation of the queries
of G not in g, i.e., : qg

G := (
∧

q∈g q) ∧ (
∧

q∈G\g ¬q)

Example 33. Let G be the set of boolean queries of the service S1 depicted at figure 3.4 :
- If g={q1} then qg

G()= R(X1, Y1) ∧ ¬(R(X2, X2)).
- If g={q2} then qg

G()= R(X1, X1) ∧ ¬(R(X2, Y2)), which is unsatisfiable, because q2
⊆ q1.

Given such a formula qg
G, we define the following associated sets :

– Pg(IW) = {I ∈ IW | qg
G(I) = true}, this set denotes the set of instances of W which

returns a positive answer to the boolean query qg
G, and

– PG = {Pg(IW) | g ∈ 2G}, where 2G denotes the powerset of G. The set PG forms a
partition of IW since :
– ∀g, g′ ∈ 2G, with g = g′, we have qg

G ∧ qg′
G is unsatisfiable (and hence Pg(IW) ∩

Pg′(IW) = ∅), and
– the query

∨
g∈2G qg

G is valid (and hence
⋃

g∈2G Pg(IW) = IW).

Lemma 16. Let S be a (LT , ∅, ∅) service over the schema Wg and let GS be the set of
boolean queries used as guards in S. Then, ∀g ⊆ GS, we have ∀I, I ′ ∈ Pg(IW), FSMI(S) ∼=
FSMI′(S)

Démonstration. The lemma is a direct consequence of the definition of FSMI(S) and the
definition of a partition (c.f., definition 19 and 18).

In the sequel, given a partition Pg(IW) that satisfies the conditions of lemma 16, we
denote by FSMPg(IW)(S) the FSM representing, modulo simulation equivalence, the finite
state machines of the instances of IW contained in the partition Pg(IW). FSMPg(IW)(S)

68 Chapitre 3. Data-Centric Generic Model

is obtained by constructing the finite state machine of an arbitrary database that belong
to the partition Pg(IW).

Lemma 17. Let S and S′ be two (LT , ∅, ∅) services over the same schema Wg and let G
be the set of boolean queries used as guards in S or S′. Then : S
 S′ iff ∀Pg(IW) ∈ PG,
such that Pg(IW) is not empty, we have FSMPg(IW)(S)
 FSMPg(IW)(S′)

Démonstration. The lemma is a direct consequence of lemma 15 and lemma 16.

�%

�

��

�� ��

� �

	

�

	� 	�

� �

	� 	�

�

������� �������

��
�

�

��

�� ��

� �

	

�

	�

�

	�

������� �������

��

������� �������

��
�

�

��

��

�

������� �������

��
	

�

	�

�

	�

�

�

��

��

�

Figure 3.6 – The set of satisfiable partitions and their associated FSMP (S1), FSMP (S2).

Example 34. Let S1, S2 the two services depicted at figure 3.4, then G={q1, q2, q3}. The
set PG contains the following elements :

– P1=q1 ∧ q2 ∧ q3.
– P2=q1 ∧ q2 ∧ ¬q3. P2 is unsatisfiable because q2 ⊆ q3
– P3=q1 ∧ q3 ∧ ¬q2.
– P4=q1 ∧ ¬q2 ∧ ¬q3.
– P5=q2 ∧ q3 ∧ ¬q1. P5 is unsatisfiable because q2 ⊆ q1 and q3 ⊆ q1.
– P6=q2 ∧ ¬q3 ∧ ¬q1. P6 is unsatisfiable because q2 ⊆ q3
– P7=q3 ∧ ¬q1 ∧ ¬q2. P7 is unsatisfiable because q3 ⊆ q1
– P8=¬q3 ∧ ¬q1 ∧ ¬q2. P8 is satisfiable by the empty instance.
Figure 3.6 depicts the set of satisfiable partitions {P1, P3, P4, P8} and their correspon-

ding FSM for S1 and S2. From lemma 17 we can conclude that S1
 S2.

Lemma 17 asserts that, the simulation between two guarded services is decidable if
checking the satisfiability of the query associated to a partition is decidable (i.e., the
partition is not empty). The query associated to a partition is a formula expressed in the
language LT ∪{∧b, ¬b}. To provide a full characterization of simulation in this context, we
shall prove now that simulation in (LT , ∅, ∅) is undecidable if checking the satisfiability of
a formula expressed in the language LT ∪ {∧b, ¬b} is undecidable.

3.3. Guarded services (LT , ∅, ∅) 69

Lemma 18. Let P be a formula expressed in the language LT ∪ {∧b, ¬b}. Then, there
exists two (LT , ∅, ∅) services S1 and S2 such that the formula P is satisfiable iff S1
 S2

Démonstration. The proof is based on the observation that the test of satisfiability of the
formula P can be reduced to a test of simulation between two (LT , ∅, ∅) services. P is of
the form q1() ∧ q2()... ∧ qi() ∧ ¬qi+1() ∧¬qn() where each qj where j ∈ [1, n] is a boolean
query expressed in the language LT . For k ∈ [1, i], qk is a positive boolean query of the form
qk() :-bodyk. We construct the boolean query qpos=

∧
k∈[1,i] bodyk. Note that, the obtained

query qpos is a boolean query expressed in the language LT . The figure 3.7 depicts the
obtained services S1 and S2. The service S1 contains one transition guarded by the query
qpos and sends the message m(). The service S2 contains n-i transitions (i.e. the number
of negated queries), where each transition is guarded by a query qk with k ∈ [i + 1, n]
and sends the message m(). Hence S1
 S2 iff there exists an instance I such that I |=
qpos and for each k ∈ [i + 1, n] I |= qk. This is the case if the formula P is satisfiable.
Hence, simulation in (LT , ∅, ∅) services is undecidable if satisfiability in LT ∪ {∧b, ¬b} is
undecidable.

Hence, from lemma 17 and lemma 18, we can derive the following theorem :

Theorem 8. Simulation of (LT , ∅, ∅) services is decidable iff checking the satisfiability of
formula in LT ∪ {∧b, ¬b} is decidable.

l0

l1

S1

q0

qi

S2

qi+2 qn

Figure 3.7 – Connection between simulation and the language LT .

In the following, we study the complexity of simulation for guarded services when
LT is propositional logic, noted PL. we will prove that, for this case the complexity of
simulation is ranged between co-np-hard and Πp

2 where Πp
2 represents the set of decision

problems solvable by a non deterministic Turing machine augmented with an oracle for
some co-np-complete problems.

Problem 3. ������ (LP L, ∅, ∅)
Inputs : two (LP L, ∅, ∅) services S and S′.
Question : S
 S′ ?

Proposition 3. co-sim (LP L, ∅, ∅) is in Σp
2.

Démonstration. Let S and S′ be two (LP L, ∅, ∅) services and let G be the set of propo-
sitional logic queries (i.e, boolean queries containing only constants) used as guards in S
and S′. Given a partition P ∈ PG and an oracle for checking the satisfiability of partitions
of PG, it is possible to check in polynomial time whether S is not simulated by S′. Indeed,
it is sufficient to check the consistency of the partition P and then check the simulation

70 Chapitre 3. Data-Centric Generic Model

between the two finite state machines FSMP (S) and FSMP (S′). Since satisfiability of a
propositional logic formula is NP-complete, co-sim (LP L, ∅, ∅) is in Σp

2.

We shall prove now the NP-hardness of the problem co-sim in the case of (LP L, ∅, ∅)
services using a reduction from 3-SAT problem [Coo71]. The 3-SAT problem is stated as
following : given n boolean variables {x1, ..., xn}, 3-SAT problem is the problem of tes-
ting the satisfiabilty of a formula composed of a conjunction of clauses where each clause
contains a disjunction of exactly three boolean (or it negation) variables (called also a lite-
ral). Given a 3-SAT problem, we construct two services S3SAT −spoiler and S3SAT −duplicator

and reduce 3-SAT to a simulation test between these services.

Lemma 19. Given a 3-SAT problem instance with n boolean variables, the problem has a
solution iff S3SAT −spoiler
 S3SAT −duplicator, where S3SAT −spoiler and S3SAT −duplicator are
(LP L, ∅, ∅) services.

Démonstration. Let the formula ϕ be a 3-SAT problem instance with n variables. The
idea of the proof is that, S3SAT −spoiler will have a transition guarded with ϕ and the
action will be the send of the message m(). If there exists a database instance I over Wg

such that ϕ is true then S3SAT −spoiler can make an action which cannot be simulated by
S3SAT −duplicator, hence there is no simulation. Now we will detail the construction.
Wg contains n boolean relational schema {R1, ..., Rn}. An instance I over Wg corresponds
to a set of instance {IR1 , ..., IRn}. The relations R does not have any attribute, and there
are only two possible instances : one containing the empty tuple, then we say that R is
evaluated to true, the other instance is empty then we say that R is evaluated to false.
S3SAT −spoiler contains only one transition (l0, qϕ, !m(), l1) and S3SAT −duplicator contains
one state u0 without any transition. A literal xi (or its negation ¬xi) in ϕ is transformed
to Ri() (¬Ri()) in qϕ. If there exists an instance I |= ϕ (hence, 3-SAT has a solution), then
S3SAT −spoiler sends the message m() while S3SAT −duplicator cannot reproduce this action.
Hence, S3SAT −spoiler
 S3SAT −duplicator. If 3-SAT does not accept any solution, there is
no database instance I which satisfies the guard qϕ, hence there is simulation. The figure
3.8 depicts the test of simulation between S3SAT −spoiler and S3SAT −duplicator.

l0

| ! m()

l1

S3SAT-spoiler

u0

S3SAT-duplicator

Figure 3.8 – Reduction from 3-SAT problem to co-sim (LP L, ∅, ∅).

Theorem 9. co-sim (LP L, ∅, ∅) is NP-hard.

Démonstration. From lemma 19 and knowing that 3-SAT problem is NP-hard [Coo71].

3.4. Send services (∅, LS , ∅) 71

Hence, from proposition 3 and theorem 9 we can state that simulation in (LP L, ∅, ∅) is
ranged between co-np-hard and Πp

2.

3.4 Send services (∅, LS, ∅)

l0

True | ! m1(q1)

l3

S1

l2

True | ! m2(q2)

True | ! m1(q1)

l5

l4

True | ! m3(q3)

q0

True | ! m1(q1')

q1

True | ! m2(q2')

q2

True | ! m3(q3')

q3

S2

q1 : q(X,Y) :- R(X,Y)
q1' : q(X,Y) :- R(X,Y) , R(X,X)

q2 : q(X,Y) :- R(Y,X), R(X,Z)
q2' : q(X,Y) :- R(Y,X), R(W,X), R(X,U)

q3 : q(X,Y) :- R(Y,X), R(Z,X), R(W,X), R(X,U)
q3' : q(X,Y) :- R(Y,X), R(X,U)

Figure 3.9 – (∅, LS , ∅) services S1 and S2.

An (∅, LS , ∅) service denotes an unguarded service that is only able to send messages.
The content of a message sent correspond to the result of the associated query when
executed over the current global database. Note that, different queries expressed in LS

can be associated to the same message. As an example, figure 3.9 depicts two service S1
and S2 defined over the same schema Wg where q1 and q

′
1 are associated to the same

message m1 respectively in S1, S2.

Undecidability of simulation between send services We will show the connection
between the decidability of checking the simulation for (∅, LS , ∅) services and the query
language LS used to send the messages. The next theorem states that, simulation in
(∅, LS , ∅) services is undecidable if satisfiability of formula expressed in the language LS ∪
{∧b, ¬b} is undecidable, where LS is a boolean query language. The proof is similar to the
proof of lemma 18. It is based on a reduction from the problem of testing satisfiablity of a
formula to the problem of checking simulation between two (∅, LS , ∅) services (the proof
is given in appendix A).

Theorem 10. Simulation in (∅, LS , ∅) services is undecidable if satisfiability of formula
in LS ∪ {∧b, ¬b} is undecidable, where LS is a boolean query language.

3.4.1 Decidability of simulation between send services.

In this section, we will present a framework that enables to check the simulation bet-
ween two (∅, LS , ∅) services. As for the previous class, we will use a partitioning approach
to reduce the test of simulation between two (∅, LS , ∅) services to a set of tests between
finite state machines.

Example 35. Figure 3.10 depicts two (∅, LS , ∅) services. S1 sends the result of the query
q1. S2 sends either the result of q2 or q3. The language LS= CQ. Hence, S1
 S2 iff ∀ I
q1(I)=q2(I) or q1(I)=q3(I). Observe that, the test of simulation cannot be reduced to a
test of equivalence between union of conjunctive queries. In fact in this example there is
simulation but q1 ≡ q2 ∪ q3

72 Chapitre 3. Data-Centric Generic Model

s0

True | ! m(q2)

s1

l0

True | ! m(q1)

l1

S1 S2

s2

True | ! m(q3)

q1 : q(X) :- R(X,Y), S(Z,W)

q2 : q(X) :- R(X,Y)

q3 : q(X) :- S(X,Y)

Figure 3.10 – two (∅, LS , ∅) services S1 and S2.

Let S1 and S2 be two (∅, LS , ∅) services. Every execution tree tree(id0)(S1) (resp.
tree(id′

0)(S2)) of service S1 (resp. S2) can be represented by a finite state machine
FSMI(S1) (FSMI(S2)) where the transitions are labelled with the answers of queries
on I. Then, checking the simulation between FSMI(S1) and FSMI(S2) is equivalent to
check the equality between answers of queries for the same database. Note that, this
transformation is applicable because there is no modification of the database during the
execution of the service.

Definition 20. Let S = 〈W, L, l0, F, δ, Σ〉 be a (∅, LS , ∅) service. Let I be an instance
over Wg. We denote by FSMI(S) = 〈W, L, l0, F, δI , ΣI〉 a finite state machine such that :

(i) δI = {(l, q(I), l′) | ∃(l, T rue, !m(q), l′)}. δI is a transition relation where we replace
the message m(q) by the answers of q on I.

(ii) ΣI = {q(I) | q is a query appearing in S }

Lemma 20. Let S = 〈W, L, l0, F, δ, Σ〉 be a (∅, LS , ∅) service and id0 = (l0, I, ∅) an initial
configuration of S, with I an arbitrary instance over Wg, then tree(id0) ∼= tree(FSMI(S)).

Démonstration. The lemma follows the construction of FSMI(S) (c.f., definition 20).

As a direct consequence of lemma 20, simulation between two send services S and S′

can be rephrased as follows :

Lemma 21. Let S and S′ be two (∅, LS , ∅) services over the same schema Wg, then :
S
 S′ iff for every instance I over Wg, we have FSMI(S)
 FSMI(S′).

The number of instances over Wg is infinite. Hence, the number of finite state
machines FSMI(S)′s is infinite. To handle this problem, we provide below an abstraction
technique. This abstraction framework allows to regroup the infinite number of finite
state machines into a finite set of FSM.

Let Q be the a set of queries and p = {b1, b2, ..., bn} be a partition of Q, then each bi

is a subset of Q and all bi are pairwise disjoint.

Definition 21. Let S1 and S2 be two (∅, LS , ∅) services over the same global database
schema Wg. Let Q be the set of queries appearing in the two services and p be a partition
of Q then :
IW(p) = {I ∈ IW | ∀qj , qk ∈ bi then qj(I) = qk(I) and ∀qj ∈ bi and qk ∈ bl then qj(I) =
qk(I) where i = l and i, l ∈ [1, n]}

3.4. Send services (∅, LS , ∅) 73

We call the subset b of a partition a bucket. An instance I of Wg belongs to a partition
p of Q if and only if the answers of queries on I in the same bucket are equal and the
answers of queries on I from different buckets are different.
We denote by PQ the set of partitions of the set Q. Note that, an instance cannot be in
two different partitions and a partition may be empty.

We associate to each partition a formula such that the formula is unsatisfiable iff the
partition is empty.

Definition 22. Let p = {b1, b2, ..., bn} be a partition. The formula fp associated to p is
constructed as follows :

fp=
n∧

i=1

|bi|∧
j=1

(qi1 = qij) ∧
n∧

i=1

n∧
j=i+1

(qi1 = qj1)

Example 36. Continuing with the example depicted at figure 3.10, the set of partitions
PQ is :

– p1= {(q1), (q2), (q3)}
– p2= {(q1, q2), (q3)}
– p3= {(q1, q3), (q2)}
– p4= {(q2, q3), (q1)}
– p5= {(q1, q2, q3)}

Each instance I belonging to p2 satisfies the following formula fp2 : (q1(I) = q2(I)) ∧
(q1(I) = q3(I)).

Definition 23. Let S1=〈Wg, L1, l10, F 1, δ1, Σ1〉 and S2=〈Wg, L2, l20, F 2, δ2, Σ2〉 be two
(∅, LS , ∅) services. Let Q be the set of queries appearing in the two services and p =
{b1, b2, ..., bn} be a partition of Q. Then FSMp(S1) = 〈L1, l10, F 1, δ1

p, Σp〉 is a finite state
machine such that :

– δ1
p = {(l, bi, l′) | ∃(l, T rue, !m(qj), l′) ∈ δ1 and qj ∈ bi} and

– Σp = {b1, b2, ..., bn}.

Because answers of queries in the same bucket are equal for a fixed instance, we can
reduce the test of simulation between two (∅, LS , ∅) services to a set of simulation tests
between finite state machines representing the partitions.

Lemma 22. Let S be a (∅, LS , ∅) service and p a partition of the set of query Q. Then
for each database instance I over Wg such that I ∈ p, we have FSMI(S) ∼= FSMp(S).

The previous lemma is a direct consequence of the definition of FSMp (c.f., definition
23). It asserts that the finite state machines of the instances belonging to a same partition
are all simulation equivalent to the finite state machine of the partition.
Because the number of queries in the service is finite, the number of partitions is also
finite. Hence, we can reduce the test of simulation between two send services to a set of
simulation tests between finite state machines.

Example 37. The figure 3.11 depicts the set of tests of simulation for S1 and S2 (from
example 35). The partitions p1 and p4 are not satisfiable.

Lemma 23. Let S and S′ be two (∅, LS , ∅) services over the schema Wg and
let PQ be the set of queries used in S or S′. Then, S
 S′ iff ∀p ∈
PQ such that p is not empty, we have FSMp(S)
 FSMp(S′)

Démonstration. This lemma is a direct consequence of lemma 21 and lemma 22.

74 Chapitre 3. Data-Centric Generic Model

l0

b1

l1

s0

b1

s2 s1

b2

FSMP2(S1) FSMP2(S2)

P2

l0

b1

l1

s0

b2

s2 s1

b1

FSMP3(S1) FSMP3(S2)

P3

l0

b1

l1

s0

b1

s2 s1

b1

FSMP5(S1) FSMP5(S2)

P5

Figure 3.11 – set of tests of simulation.

Now, we can derive the following theorem :

Theorem 11. Checking the simulation between two (∅, LS , ∅) services is decidable if che-
cking the satisfiablity of formula fp associated to a partition as constructed above is deci-
dable.
Démonstration. from lemma 23.

Unfortunately, theorem 10 and theorem 11 do not provide a full characterization of
simulation between send services. This is due to the fact that, in current state of affairs,
we are not able to reduce the test of satisfiability of a formula associated to a partition
to a test of simulation between two send services.

The next subsection is devoted to the complexity of simulation between send services
when LS is the propositional logic. We prove that, for this case the problem of simulation
is ranged between co-np-hard and Πp

2. Because the proofs of the next proposition and
theorem are respectively similar to the proofs of proposition 3 and theorem 9, we give
them in appendix A.

Problem 4. ������� (∅, LLP , ∅)
Inputs : two (∅, LLP , ∅) services S and S′. Question : S
 S′ ?

Proposition 4. the problem co-send (∅, LLP , ∅) is in Σp
2

Theorem 12. co-send (∅, LLP , ∅) is NP-hard

Hence, from proposition 4 and theorem 12 we can state that simulation in (∅, LP L, ∅)
is ranged between co-np-hard and Πp

2.

3.5. Insert services (∅, ∅, Linsert(LI)
U) 75

3.5 Insert services (∅, ∅, Linsert(LI)
U)

In this section we study the simulation for generic services without guards. The consi-
dered services are able to insert data in the global database. In this context, we study the
simulation as well as the weak simulation relation.

The next theorem shows the connection between satisfiability of the insert language
LI and simulation.

Theorem 13. Simulation in (∅, ∅, Linsert(LI)
U) services is undecidable if checking satisfia-

bility of formulas in LI ∪ {∧b, ¬b} is undecidable.

The proof is given in appendix A.
From theorem 13, one can expect to characterize decidability of simulation by establishing
a correspondence with decidability of satisfiability of formulas in LI ∪ {∧b, ¬b}. Next, we
will show that this is not true. In fact, there exists a language LI = GNCQ such that
satisfiability in GNCQ ∪ {∧f , ¬f } is decidable while simulation in (∅, ∅, LInsert(GNCQ)

U) is
undecidable. The Guarded Negation Conjunctive Query (GNCQ) language is included in
Guarded Negation First Order language GNFO [BtCS11]. GNCQ queries are conjunctive
queries with guarded negations (i.e., all free variables appearing in a negative atom must
appear in a positive atom). Next, we will give the proof of undecidability of simulation for
(∅, ∅, LInsert(GNCQ)

U) services. The proof is by reduction from the problem of containment
between two Datalog programs [Shm93].

3.5.1 Undecidability of simulation for (∅, ∅, LInsert(GNCQ)
U) services

Figure 3.12 – A Datalog program and its corresponding (∅, ∅, LInsert(CQ)
U) service.

In this section we prove the undecidability of simulation for (∅, ∅, Linsert(GNCQ)
U) ser-

vices by a reduction from the containment problem of Datalog programs [Shm93]. A Da-
talog program can be simulated by an insert service using CQ as insertion language.
The figure 3.12(a) shows a simple Datalog program P with a query predicate R that com-
putes the transitive closure of a relation r. A fragment of the corresponding service SP is
shown at figure 3.12 (b). The service starts by copying the relation r in R, then moves
to the state l1 and calculates the transitive closure. Hence, it is easy to check that any

76 Chapitre 3. Data-Centric Generic Model

answer computed by P can also be computed by SP . There are two difficulties to ensure
that any answer computed by P can also be computed by SP :

– all the IDB (i.e., intentional predicates, which appear in the head of a rule of the
program Datalog) must be initially empty.

– enforce fixpoint semantics of Datalog program in a given service. SP can compute
only partial answers of P and stops. This is because during an execution of the
service SP , each time the service reaches the final state l1, SP can decide either
to terminate or to compute additional answers. Therefore, to reduce Datalog query
containment to simulation, one have to deal with this problem.

Starting from a test of containment of two Datalog programs P1 � P2, we construct a
test of simulation between two (∅, ∅, Linsert(GNCQ)

U) services Sspoiler and Sduplicator such
that P1 � P2 iff Sspoiler
 Sduplicator.

The figure 3.13 depicts the two services Sspoiler and Sduplicator. Sspoiler starts by execu-
ting the part of the service encoding the program P1, then executes the part encoding the
program P2 and finally calculate the intersection between the goal relations of P1 and P2,
respectively noted goalP1 and goalP2 , and inserts the result in a relation G. The service
Sduplicator will also start by executing the part of service encoding P1, then executes the
part encoding the program P2 but instead of calculating the intersection of the goals of P1
and P2, it copies the goal of P1 in G. Clearly, P1 � P2 iff all the instances of the relation
G calculated by Sspoiler is equal to the instance G calculated by Sduplicator. A rule of a
Datalog program of the form R(x) :-T1(x1), ..., Tk(xk), where Tj is an IDB or an EDB
and the set of variables x ⊆ ⋃k

i=1 xi, is encoded with a transition labelled with INSERT
R (qR(x) :-T1(x1), ..., Tk(xk)).
It should be noted that, at this step of construction, Sspoiler can cheat to win the simu-

l0

ln+1

lf

r1 rn

ln+3

q0

qn+1

qf

r1 rn

qn+3

Figure 3.13 – reduction of containment of Datalog program to test of simulation between
two (∅, ∅, LInsert(GNCQ)

U) services.

3.5. Insert services (∅, ∅, Linsert(LI)
U) 77

lation game. This is because after executing some actions of P1, Sspoiler can decide to not
execute the transitions of P2. Hence when Sspoiler calculates the intersection between the
two goals, the result is always empty, while Sduplicator will insert some answers of P1 in G,
hence there is no simulation. To handle this problem we have to force Sspoiler to calculate
the fix point (i.e., all the answers are calculated) of P2. This is done by using a set of
additional relations.

Figure 3.14 – forcing the spoiler to calculate the fix point of P2.

The figure 3.14 depicts the part of services Sspoiler and Sduplicator encoding the
execution of P2. Assume that, P2 contains n rules r1, ..., rn which modify m IDB. We
denote an IDB by R and we add m relation Rcopy

i where i ∈ m. For each rule r of P2, the
services contain a cycle made of two transitions. The first transition copies the content of
the head R in Rcopy. Then, the second transition executes the rule r. We will also add m
relation Ri-empty where i ∈ [1, m]. After the part encoding P2, for each IDB R of P2, we
add a transition in Sspoiler. This transition inserts true into the relation Ri-empty using
the query qtrue (qtrue() :-). In the same time, Sduplicator will contain two transitions, one
execute the same transition as Sspoiler, the other one inserts true in Ri-empty if there
exists a tuple in Ri which does not exist in Rcopy

i (i.e. the transition inserts the result of
the query qR

i-empty() :-Ri(x) ∧ ¬Rcopy
i (x)) and reaches a state which simulated Sspoiler.

Assume that, during its execution, Sspoiler does not calculate the fix point of P2. Then
there exists in some Ri a tuple which does not exist in Rcopy

i . When Sspoiler executes the
transition leblled with qtrue, the service inserts true in Ri-empty. Sduplicator can simulate
this transition by executing the two transitions and reaches a state which simulates
Sspoiler (the transition on the right depicted at figure 3.14). Hence, Sspoiler looses the
simulation game. Assume now, Sspoiler calculates the fix point of P2, then for each
transition labelled with qtrue (for i ∈ [1, m]) the service inserts true in the corresponding
relation Ri-empty. In the same time, to maintain simulation Sduplicator must execute the
same transition labelled with qtrue. if Sduplicator chooses to execute the transition labelled
with qR

i-empty, it looses the simulation game (because there is no tuple in Rcopy
i which

is not in Ri, hence it inserts noting in Ri-empty).
With this construction, we ensure that, before calculating the intersection of the goals of

78 Chapitre 3. Data-Centric Generic Model

P1 and P2, Sspoiler is simulated by Sduplicator iff Sspoiler calculate the fix point of P2.

Now, we come back to the first problem : how to ensure that the IDBs and the
additional relations added are initially empty. Assume that R is an IDB of P1 or P2. The
figure 3.15 depicts the part of Sspoiler and Sduplicator which ensures that R starts empty.
The service Sduplicator insert true into the relation emptyR using the query qtrue. Sduplicator

will have two transitions, one inserts true in emptyR iff R is not empty and reaches a state
which simulates Sspoiler. The other one inserts true in emptyR using qtrue(i.e., the same
transition of Sspoiler). Assume that, R is not empty, when Sspoiler executes the transition
labbeled with qtrue, Sduplicator can simulates Sspoiler by choosing the transition which
inserts true if R is not empty. Hence, Sspoiler looses the simulation game. Now, assume
that R is empty, Sspoiler insert true in emptyR, to maintain the simulation, Sduplicator must
execute the transition labelled with qtrue, otherwise Sduplicator looses the simulation.

Insert EmptyR(q(True):-)

l0

l1

Insert EmptyR(q(True):-) Insert EmptyR(q(True):- R(X))

q0

q1

S1 S2

(a) Testing emptiness of RS

Figure 3.15 – initialization part.

Now we can state the following lemma :

Lemma 24. Let P1 and P2 be two Datalog programs. P1 � P2 iff Sspoiler
 Sduplicator,
where Sspoiler and Sduplicator are (∅, ∅, Linsert(GNCQ)

U) services constructed as described
above.

Hence, from lemma 24 and knowing that the problem of containment between two
Datalog programs is undecidable [Shm93], we can derive the following theorem :

Theorem 14. Checking simulation between two (∅, ∅, Linsert(GNCQ)
U) services is undeci-

dable.

3.5.2 Undecidability of weak simulation for (∅, ∅, LInsert(CQ)
U)p services

In this section we prove the undecidability of weak simulation for (∅, ∅, Linsert(CQ)
U)p by

a reduction from the containment problem of Datalog programs [Shm93]. As we have seen
before, a Datalog program can be simulated by an insert service using CQ as insertion
language.
Like the proof of undecidability of simulation for insert services where LI = GNCQ,
starting from a test of containment between two Datalog program P1 � P2, we construct
a test of weak simulation between two (∅, ∅, Linsert(CQ)

U)p services Sspoiler
w Sduplicator.
The difference with the previous proof is that P2 will only be executed by Sduplicator, where
the service stores the answers in a local database.

Lemma 25. Let P1, P2 be two Datalog programs then there exists two (∅, ∅, Linsert(CQ)
U)p

services Sspoiler and Sduplicator such that P1 � P2 iff Sspoiler
w Sduplicator.

Démonstration. As depicted in figure 3.16, Service Sspoiler has 3 steps : (i) the initializa-
tion part is used to verify the emptiness of all IDB of P1 and an additional relation G (ii)

3.5. Insert services (∅, ∅, Linsert(LI)
U) 79

Sspoiler executes P1 (iii) finally, Sspoiler copies the answers of P1 into a new relation G.
Service Sduplicator executes the two first steps as Sspoiler, but then executes the program
P2, where the corresponding IDB of P2 are local databases, and finally copies the
intersection of answers of P1 and P2 into the relation G.
Assume that, all IDB and G are empty. Sspoiler and Sduplicator execute P1, then Sspoiler

copies the answers of P1 into the global database G while Sduplicator can execute P2
then copies in G the intersection of P1 and P2. There is a weak simulation if and only
if the two services calculates the same global database G (which implies that P1 � P2).
Sduplicator must calculate the fix point of P2 to have a chance to win the simulation game.
On the other hand, Sspoiler must calculate the fix point of P1 trying to find answers not
calculated by P2. Note that, Sspoiler does not have a local database, and all transitions
which involve P2 are considered as silent transitions in Sduplicator.

initialization

True | insert G (q(x):- P1(x))

r1 rn P1

True | insert G (q(x):- P1(x),P2(x))

r1 rn

r'1 r'm

P1

P2

initialization

Figure 3.16 – S1 and S2.

Now we come back to the initialization part. To ensure the emptiness of the global
databases (G, and IDB of P1) we use the same construction as for (∅, ∅, Linsert(GNCQ)

U).
We face, however, on additional problems since we have to ensure that the IDB of P2
start empty, knowing that they belong to the local databases. Figure 3.17 depicts the part
of initialization which fix this problem. To achieve this goal, we introduce the following
construction : the service Sspoiler inserts noting in emptyP2 , while Sduplicator inserts true
in emptyP2 if RP2 is not empty (where emptyP2 is a shared database, and RP2 an IDB of
P2). Hence, Sduplicator looses the simulation game if it starts with an IDB instance RP2

which is not empty. This construction is repeated for all the IDBs of P2.

From lemma 25 and knowing that the problem of containment between two Datalog
programs is undecidable [Shm93], we can derive the following theorem :

Theorem 15. Checking weak simulation for (∅, ∅, Linsert(CQ)
U)p services is undecidable.

80 Chapitre 3. Data-Centric Generic Model

Insert EmptyP2 ()

l0

l1

q0

q1

(a) Testing emptiness of IDB of P2

Insert EmptyP2 (q(True):- RP2(X))

Figure 3.17 – Initialization part.

3.5.3 (LT , ∅, Linsert(LI)
U) Services

This class enables to study the connection between the insertion language and the
guards language. We will prove that, the simulation for (GNCQ, ∅, Linsert(CQ)

U) is un-
decidable. The reduction is obtained from the problem of containment of datalog pro-
grams. Given two Datalog programs P1 and P2 we construct a test of simulation bet-
ween two (GNCQ, ∅, Linsert(CQ)

U) namely Sspoiler and Sduplicator and we prove that, P1 �
P2 iff Sspoiler
 Sduplicator. The construction is similar to the one used for the case of
(∅, ∅, Linsert(GNCQ)

U) services (Theorem 16), with the only difference being in the part that
force Sspoiler to calculate the fix point of P2.

Lemma 26. Let P1 and P2 be two Datalog programs. Then, there exists two
(CQ�=, ∅, Linsert(CQ

U) services Sspoiler and Sduplicator such that : P1 � P2 iff Sspoiler

Sduplicator.

True | !m()

l0

l1

True | !m() | !m()

q0

q1 copyS1

S1 S2

(b) Testing the key on r

Figure 3.18 – testing if Sspoiler calculates the fix point of P2.

Démonstration. We present below the part of services which tests if the service Sspoiler

calculates the fix point of P2. Figure 3.18 depicts the part of the two services Sspoiler and
Sduplicator used to ensure that Sspoiler calculates the fix point of P2. Assume that R is
an IDB of P2. The service Sspoiler sends the empty message m without any restriction
(guard), while Sduplicator has two cases : (i) Sspoiler has reached a fix point, hence R and
Rcopy contain the same set of tuples. In this case, the transition on the right is not allowed
(i.e., this transition is allowed if and only if there exist a tuple in R which is not in
Rcopy). So, Sduplicator sends the empty message m and the game of simulation continues,
or (ii) Sspoiler has not yet reached the fix point of P2, then Sduplicator can execute the two
transitions, but the transition on the right ensures that Sduplicator will win the simulation
game. Hence, to have a chance to win the simulation game, Sspoiler must calculate the fix
point of P2.

Hence, we ca state the following theorem :

Theorem 16. Checking simulation between two (GNCQ, ∅, Linsert(CQ)
U) services is unde-

cidable.

3.5. Insert services (∅, ∅, Linsert(LI)
U) 81

Note that the result of theorem 16 is interesting in the sense that it exhibits a class of
services where the satisfiability of guards is decidable while simulation is not.

Chapitre 4

Related Work and Conclusion

In this chapter we review related works then we conclude by summarizing the main
results of this thesis and drawing few future research directions.

4.1 Related works

Up to our knowledge, there are only very few works that address the simulation
problem in the context of data-centric services. We review below closed works related
to data-centric service composition and, independently from the web service area, we
mention also similar works in the formal verification area.

[BCG+05] investigates the service composition problem using a very constrained class
of Colombo, called Colombok,b, which poses several semantic restrictions : (i) the number
of accesses to the database, and (ii) the number of new incoming values. As a consequence,
Colombok,b is included in k-bounded Colombo service (i.e., k-bounded Colombo can access
infinitely often to a bounded database, which is not the case for Colombok,b). The main
result of [BCG+05] is to show that service composition is 2-exptime in Colombok,b. This
is done using a symbolization framework which abstracts the infinite number of configu-
rations into finite numbers of symbolic configurations. The values of variables as well as
the domain of instances are taken from a finite symbolic domain. This domain is construct
with respect to the constants appearing in the services and the bounds, respectively, k
and b.

In [PG09], the authors study the composition problem for data-centric services using
an approach based on the simulation relation. More precisely, [PG09] models a service as
a finite transition system modifying a shared binary relation. During an execution of a
service, the service can only receive one parameter from the outside. The expressiveness of
the model is also restricted, for example y := fR

1 (x) cannot be encoded in this model. The
obtained framework is still an infinite transition system, where a configuration of a service
is made of a control state and an instance of the shared database. The authors shown that,
when the database instance is bounded, the service composition problem can be reduced
into a simulation test between finite state transition systems. They use a symbolization
framework to prove the decidability of simulation. They construct a finite symbolic domain
with respect to the bound, then construct the transition systems using this finite symbolic
domain and test the simulation between them. The used model is less expressive than
k-bounded Colombo model.

[LPT14] addresses the problem of checking simulation between probabilistic data-
centric services. He considered the case of data-centric services which take as input a

84 Chapitre 4. Related Work and Conclusion

fixed probabilistic database and shows that in this context the simulation problem is in
2-exptime and is exptime-hard.

The simulation problem between infinite transition systems has also been addressed
independently from the web service area. This problem is shown undecidable in the general
case but there are few classes, e.g., one-counter nets [AC98], automate with finite memory
[KF94], where the problem is known to be decidable.

[GKS10] introduces a new formalism called Variable Automata (VA). A VA is a finite
state machine where a transition is labelled either with a constant or a variable. The set of
variable in a VA is made of only one free variable and a set of bounded variables. During an
execution, the values of the bounded variables is fixed (the value does not change during an
execution) while the value of the free variable changes each time the automata execute a
transition labelled with this free variable. [GKS10] proved that the language containment
in this context is undecidable.

In [BCR13], the authors define Fresh Variable Automata (FVA). In a FVA, the tran-
sitions are labelled with constants or variables. Here, during an execution the value of a
variable changes in specific states, called refresh states. In [BCR14], the authors extend
fresh-variable automata with guards on transitions (conjunction of equality and inequality
over variables and constants). The model is called guarded variable automata (GVA). FVA
are not comparable with VA and the two models are included in GVA. The authors study
the simulation for the two models FVA and GVA. They prove that the problem of simu-
lation is in exptime for GVA. The authors prove the decidability of simulation for the
guarded variables automata by proving the equivalence between the test of simulation for
infinite machines and the test of simulation between two finite state machines. They use a
finite symbolic domain representing the constants appearing in the two services and a set
of new constant representing the set of variables. As mentioned earlier, as a side effect of
our work on DB-less Colombo service, we can derive the exptime-hardness of simulation
for GVA. More precisely, we can use the same reduction from existing infinite execution
for an Alternating Turing machine work on a space polynomially bounded by the size of
its input to test of simulation between two GVA. A GVA can be encoded in a DB-less
Colombo service.

Data-centric services attracted a lot of attention from the formal verification commu-
nity these recent years (see [CDM13] for a detailed survey). The most important models
include :

– relation transducer [AVFY98], generalized by M.Spielmann in [Spi00] with the Abs-
tract State Machine (ASM) model. The verification problems are undecidable in the
general case. M.Spielmann in [Spi00] proves positive results (regarding decidability)
of verification problems using a syntactic restriction on the model. This restriction,
namely input boundedness, ensures that, during an execution, the machine can only
access to a bounded number of tuples, hence an input-bounded ASM works only
on a bounded database. The same restrictions is also used in another data-centric
model proposed by [DSV04]. The authors propose a framework to model a web ser-
vice interacting with a user. A service is described as a guarded transition system,
where control states represent web pages. Each control state provides a set of input
choices to the user, based on queries over a fixed database (i.e., does not change
during the execution) and a dynamic database (i.e., can be updated during the
execution). Transition from one state to another depends on user’s choices and the
actual instances of the dynamic and static databases.

– The artifact-centric approach was introduced by IBM research in [AN03] and studied
in many works [BGL+05, BCK+07, BGH+07, GS07, KRG07, KLW08, DHPV09,

4.2. Conclusion 85

DDHV11, DDV11]. A Business artifact record key business-relevant entities. They
are augmented with a data model and they are modified with a set of actions. An
artifact evolves through its life-cycle (i.e.,transition system) and can interact with
other artifacts or external users (see [CH09, Hul08] for a survey on research directions
and challenges for this approach). In [BLP11], the authors consider the problem
of verifying artifact system against specifications expressed in quantified temporal
logic. In this framework, an artifact is made of a database schema, an initial database
instance and a set of actions which modify the database. An action is modeled as
a precondition and a set of postconditions over the database schema. During an
execution, an artifact can introduce new values into the database instance through
the actions. The verification problem is undecidable in the general setting. So, the
paper considers a semantic restriction by bounding the number of values stored in a
state of the system during a given execution. The authors use a specific abstraction
technique to construct a finite symbolic system which is bisimilar to the original
infinite system. By this way, model checking can be carried out over the (finite)
symbolic model instead of the original infinite artefact system. The upper bound time
complexity of the proposed procedure is doubly exponential. More precisely, the size
of the symbolic system is doubly exponential in the arity of the database schema and
the bound, which coincide with our upper bound for simulation. [HCD+13] proposes
a syntactic restriction based on the notion of weak acyclicity studied in data exchange
[FKMP05] ensuring the boundedness of the database instances during an execution
of the artifact.

Note that, the common point between those works on data-centric models is that : the
positive results (of the different problems of verification studied) are ensured by bounding
the database instance used by the model.

4.2 Conclusion

In this work, we focus on the decidability and complexity of the (weak) simulation
preorder for data-centric web services, i.e., checking if the behaviour of a service can be
reproduced by another one. We considered services that export their behaviour using state
machines augmented with data.

Table 4.1 – Summarization of actual results.

Class of services Simulation
ColomboUnb Undecidable
ColomboDB=∅

exptime-complete
GVA exptime[BCR14]-complete
Colombobound

2-exptime-complete
(LT , ∅, ∅) decidable iff satisfiability of LT ∪ {∧b, ¬b} is decidable
(∅, LS , ∅) Undecidable if satisfiability of LS ∪ {∧b, ¬b} is undecidable
(∅, LS , ∅) decidable if satisfiability of a partition in LS is decidable
(∅, ∅, Linsert(LI)

U) Undecidable if satisfiability of LI ∪ {∧b, ¬b} is undecidable
(∅, ∅, LInsert(GNCQ)

U) Undecidable
(∅, ∅, LInsert(CQ)

U)p Undecidable
(GNCQ, ∅, LInsert(CQ)

U) Undecidable

86 Chapitre 4. Related Work and Conclusion

Table 4.1 summarizing the results of this work. In Chapter 2 we studied the Colombo
framework [BCG+05]. A Colombo service is specified as a guarded transition system dea-
ling with a shared database and a set of variables used to send and receive messages. The
modification of the database and the variables is achieved through atomic processes. An
atomic process describes actions in terms of its inputs, outputs, preconditions and post-
conditions. In this context, we showed that the simulation is undecidable for Colombounb

i.e., services able to read an unbounded number of tuples in the shared database. Then,
we focused on the simulation of Colombo services with a bounded database (i.e. the class
of Colombo services having global databases with a number of tuples that cannot exceed a
given constant k). Such a class is called Colombobound. Hence, by definition, Colombobound

cannot read an unbounded number of information from the database. We showed that
the simulation is 2-exptime-complete for Colombobound. The proof is achieved in 2 steps.
First, we showed the exptime completeness of the simulation for Colombo services wi-
thout any access to the database (namely DB-less services ColomboDB=∅). As a side effect
of this work, we establish a correspondence between ColomboDB=∅, restricted to equa-
lity, and Guarded Automata (GVA) [BCR14]. As a consequence, we derived exptime

completeness of simulation for GVA. Then, we showed that checking the simulation for
Colombobound services can be rewritten into equivalent ColomboDB=∅ while preserving
the simulation preorder. Up to our knowledge, it is the first results of lower bound for the
simulation problem in the context of data-centric web services.

The second part of the thesis tackled the problem of simulation for our generalization
of the Colombo model, namely the generic model, where a generic service (LT , LS , LU)?,p

uses a local database instead of a set of variables. The messages exchanged are databases,
where the outgoing messages are results of queries expressed in a language LS . The guards
are also expressed as boolean queries in a language LT . Finally, the updates are represented
with queries over the language LU . In this context, we provide first results regarding the
decidability of simulation w.r.t the presence or not of each parameter i.e., guards, updates
and send query languages. We detailed the results in the following :

– Guarded services (LT , ∅, ∅). For this class, we obtained a full characterization of the
decidability of simulation w.r.t to the satisfiability of the language LT ∪ {∧b, ¬b}.

– Send services (∅, LS , ∅). Unlike guarded services, we do not obtain a full characteriza-
tion of decidability of simulation for send services. We provided sufficient conditions
of undecidability of simulation w.r.t to the language LS . More specifically, the si-
mulation is undecidable if the test of satisfiability in the language LS ∪ {∧b, ¬b} is
undecidable. In the other hand, the simulation is decidable if the satisfiability of a
formula representing a partition is decidable. The language of the formula represen-
ting a partition is more expressive than LS ∪{∧b, ¬b}. For guarded ans send services
we define a symbolization technique enabling the reduction of test of simulation bet-
ween two infinite state machine to a finite set of tests of simulation between finite
state machines w.r.t the satisfiability of the language considered. This reduction is
applicable because the database does not change during the execution of a guarded
or send service. Note also that, for the send services, when we consider only the
boolean queries over the language LS then we obtain a full characterization of the
simulation w.r.t the decidability of the satisfiability of the language LS ∪ {∧b, ¬b}.

– (∅, ∅, Linsert(LI)
U). For this class, we proved that testing the simulation is undecidable if

satisfiability of formula expressed in the insert language LI ∪{∧b, ¬b} is undecidable.
Unfortunately, we are not able to provide a full characterization of the decidability of
the simulation regarding the insert language LI . In fact the simulation is undecidable
for (∅, ∅, LInsert(GNCQ))

U) services, while satisfiability of boolean query over GNCQ∪

4.2. Conclusion 87

{∧b, ¬b} is decidable. We left the problem open when LI = CQ.
– (∅, ∅, LInsert(CQ)

U)p. We proved that, the weak simulation is undecidable for this class.
– (LT , ∅, Linsert(LI)

U). This class enables to study the interaction between the guards
language and updates language. We proved that the simulation is undecidable when
LT = GNCQ and the language of insertion is LI = CQ.

Up to our knowledge, the results on generic model are the first results that characterize
the problem of simulation for data-centric model w.r.t the satisfiablity of the languages
of guards, send messages and updates. We note also that, our abstraction techniques
(for Colombo cases and generic model) are not just a way to prove the decidability of
the problem of simulation for the different cases, but also a crucial step leading to the
implementation of simulation algorithms.

Below, we give some future directions :
– We give tight results on decidability and complexity of the relation of simulation for

the Colombo model, but a major assumption we made is that all services share the
same database. This scenario is realistic when the web services come from the same
company, but when we move to an inter-organization framework, the assumption
made is not adequate. We plane to handle this case by considering the inclusion
rather than the equality between the shared databases of the two services. The same
remark can be done for the generic model.

– Another direction we plane to explore is instead of imposing semantic restriction to
ensure decidability of simulation of Colombo model (i.e Colombobound), is to find syn-
tactic restriction ensuring the boundedness of the database instance. In this context,
we are interested to use the weak acyclicity studied in data exchange [FKMP05]
framework (e.g., used to prove the decidability of verification problems in artifact
models [HCD+13]). The use of weak acyclicity is not direct and straightforward and
need more investigations.

– Finally, we believe that our techniques to prove lower bounds of complexity of simu-
lation for Colombobound and ColomboDB=∅ can be extended to prove the complexity
of verification problem in other models where the lower bound is left open (i.e.
[HCD+13, BLP11]).

– For the generic model, we plane to address the following problems :
– The decidability of simulation when the generic service can update the shared

database using CQ queries.
– Find semantics or structural restrictions (i.e., restrictions on the structure of the

service : with only self loops) leading to the decidability of the simulation problem.
For example, the result on the decidability of verification problems when data-
centric services satisfy the weak acyclicity, suggest that this property can be used
to prove that generic services that verify weak acyclicity ensure the decidability
of the simulation preorder.

Bibliographie

[ABGM09] Serge Abiteboul, Pierre Bourhis, Alban Galland, and Bogdan Marinoiu. The
axml artifact model. In TIME, pages 11–17, 2009.

[AC98] P.A. Abdulla and K. Cerans. Simulation Is Decidable for One-Counter Nets
(Extended Abstract). Proceedings of CONCUR’98, Lecture Notes in Com-
puter Science 1466 : 253–268, pages 26–8, 1998.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machiraju. Web
Services - Concepts, Architectures and Applications. Springer, 2004.

[AD07] V. Vianu A. Deutsch, L. Sui. Specification and verification of data-driven
web applications. J. Comput. Syst. Sci., pages 442–474, 2007.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[AN03] NS. Caswell A. Nigam. Business artifacts : An approach to operational
specification. IBM Systems Journal, 3(42) :428–445, 2003.

[AP07] Danilo Ardagna and Barbara Pernici. Adaptive service composition in
flexible processes. IEEE Trans. Software Eng., 33(6) :369–384, 2007.

[ARN12] Mohammad Alrifai, Thomas Risse, and Wolfgang Nejdl. A hybrid approach
for efficient web service composition with end-to-end qos constraints. ACM
Trans. Web, 6(2) :7 :1–7 :31, Jun 2012.

[ASV08] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis of active
xml systems. In PODS, pages 221–230, 2008.

[ASV09a] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Modeling and verifying
active xml artifacts. IEEE Data Eng. Bull., 32(3) :10–15, 2009.

[ASV09b] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis of active
xml systems. ACM Trans. Database Syst., 34(4), 2009.

[AVFY98] Serge Abiteboul, Victor Vianu, Bradley S. Fordham, and Yelena Yesha. Re-
lational transducers for electronic commerce. In PODS, pages 179–187, 1998.

[AVFY00] Serge Abiteboul, Victor Vianu, Bradley S. Fordham, and Yelena Yesha.
Relational transducers for electronic commerce. J. Comput. Syst. Sci.,
61(2) :236–269, 2000.

[BCG+03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenze-
rini, and Massimo Mecella. Automatic composition of e-services that export
their behavior. In ICSOC, pages 43–58, Dec. 2003.

[BCG+05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and
Massimo Mecella. Automatic composition of transition-based semantic web
services with messaging. In VLDB, pages 613–624, 2005.

90 Bibliographie

[BCGP08] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio Patrizi.
Automatic service composition via simulation. IJFCS, 19(2) :429–451, 2008.

[BCK+07] Kamal Bhattacharya, Nathan S. Caswell, Santhosh Kumaran, Anil Nigam,
and Frederick Y. Wu. Artifact-centered operational modeling : Lessons from
customer engagements. IBM Systems Journal, 46(4) :703–721, 2007.

[BCP08] Antonio Brogi, Sara Corfini, and Razvan Popescu. Semantics-based
composition-oriented discovery of web services. ACM Trans. Internet Tech-
nol., 8(4) :19 :1–19 :39, Oct. 2008.

[BCR13] Walid Belkhir, Yannick Chevalier, and Michaël Rusinowitch. Fresh-variable
automata : Application to service composition. In 15th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, SY-
NASC 2013, Timisoara, Romania, September 23-26, 2013, pages 153–160,
2013.

[BCR14] W. Belkhir, Y. Chevalier, and M. Rusinowitch. Guarded variable automata
over infinite alphabets. In to appear in Journal of Symbolic Computation,
2014.

[BCT04a] B.Benatallah, F. Casati, and F. Toumani. Analysis and management of
web service protocols. In ER conference, Shanghai, China, volume 3288 of
Lecture Notes in Computer Science, pages 524–541. Springer, 2004.

[BCT04b] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Web service
conversation modeling : A cornerstone for e-business automation. IEEE
Internet Computing, 08(1) :46–54, 2004.

[BCT06] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Representing,
analysing and managing web service protocols. DKE, 58(3) :327–357, 2006.

[BFHS03] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification : a new
approach to design and analysis of e-service composition. In WWW’03.
ACM, 2003.

[BGH+07] Kamal Bhattacharya, Cagdas Evren Gerede, Richard Hull, Rong Liu, and
Jianwen Su. Towards formal analysis of artifact-centric business process
models. In BPM, pages 288–304, 2007.

[BGL+05] Kamal Bhattacharya, Robert Guttman, Kelly Lyman, Fenno F. Heath III,
Santhosh Kumaran, Prabir Nandi, Frederick Y. Wu, Prasanna Athma,
Christoph Freiberg, Lars Johannsen, and Andreas Staudt. A model-driven
approach to industrializing discovery processes in pharmaceutical research.
IBM Systems Journal, 44(1) :145–162, 2005.

[BLP11] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. Verification of
deployed artifact systems via data abstraction. In ICSOC, pages 142–156,
2011.

[BSBM04] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are two Web
Services Compatible ?). In VLDB TES’04. Toronto, Canada, 2004.

[BtCS11] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. In
Automata, Languages and Programming - 38th International Colloquium,
ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II,
pages 356–367, 2011.

[CDM13] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. Foundations
of data-aware process analysis : a database theory perspective. In PODS,
pages 1–12, 2013.

Bibliographie 91

[CH09] David Cohn and Richard Hull. Business artifacts : A data-centric approach
to modeling business operations and processes. IEEE Data Eng. Bull.,
32(3) :3–9, 2009.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation.
J. ACM, 28(1) :114–133, 1981.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC,
pages 151–158, 1971.

[DDHV11] Elio Damaggio, Alin Deutsch, Richard Hull, and Victor Vianu. Automatic
verification of data-centric business processes. In BPM, pages 3–16, 2011.

[DDV11] Elio Damaggio, Alin Deutsch, and Victor Vianu. Artifact systems with data
dependencies and arithmetic. In ICDT, pages 66–77, 2011.

[DHPV09] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of
data-centric business processes. ICDT, pages 252–267, 2009.

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services com-
position. International Journal of Web and Grid Services, 1(1) :1–30, 2005.

[DSV04] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification
of data-driven web services. In PODS, pages 71–82, 2004.

[FFM+10] Gerhard Friedrich, Mariagrazia Fugini, Enrico Mussi, Barbara Pernici, and
Gaston Tagni. Exception handling for repair in service-based processes.
IEEE Transactions on Software Engineering, 36(2) :198–215, 2010.

[FGG+08] W. Fan, F. Geerts, W. Gelade, F. Neven, and A. Poggi. Complexity and
composition of synthesized web services. In ACM PODS, pages 231–240.
ACM New York, NY, USA, 2008.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange : semantics and query answering. Theor. Comput. Sci., 336(1) :89–
124, 2005.

[GHIS04] Cagdas Evren Gerede, Richard Hull, Oscar H. Ibarra, and Jianwen Su. Au-
tomated composition of e-services : lookaheads. In ICSOC, pages 252–262,
2004.

[GKS10] Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable automata
over infinite alphabets. In LATA, pages 561–572, 2010.

[GS07] Cagdas E. Gerede and Jianwen Su. Specification and verification of artifact
behaviors in business process models. In ICSOC, pages 181–192, 2007.

[HB03a] R. Hamadi and B. Benatallah. A Petri net-based model for web service
composition. Australasian Database Conference, pages 191–200, 2003.

[HB03b] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web
service composition. In ADC, pages 191–200, 2003.

[HCD+13] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin
Deutsch, and Marco Montali. Verification of relational data-centric dynamic
systems with external services. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2013, New York, NY, USA - June 22 - 27, 2013, pages 163–174, 2013.

[HHK95] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Com-
puting simulations on finite and infinite graphs. pages 453–462. IEEE Com-
puter Society Press, 1995.

92 Bibliographie

[HLL+12] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and
Matthew J. Parkinson. Behavioral interface specification languages. ACM
Comput. Surv., 44(3) :16, 2012.

[HNT08] Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani. Protocol-
based web service composition. In ICSOC, pages 38–53, 2008.

[HSV13] Richard Hull, Jianwen Su, and Roman Vaculín. Data management pers-
pectives on business process management : tutorial overview. In SIGMOD
Conference, pages 943–948, 2013.

[Hul08] R. Hull. artifact-centric business process models : Brief survey of research
results and challenges. Lecture Notes in Computer Science, 5332/2008 :1152–
1163, 2008.

[KF94] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor.
Comput. Sci., 134(2) :329–363, 1994.

[KLW08] Santhosh Kumaran, Rong Liu, and Frederick Y. Wu. On the duality of
information-centric and activity-centric models of business processes. In
CAiSE, pages 32–47, 2008.

[KM02a] A. Kucera and R. Mayr. Simulation preorder over simple process algebras.
Information and Computation, 173(2) :184–198, 2002.

[KM02b] Anton ?n Kucera and Richard Mayr. On the complexity of semantic equi-
valences for pushdown automata and bpa. In In Proceedings of the 27th In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS’02), volume 2420 of LNCS, pages 433–445. Springer-Verlag, 2002.

[Kra07] Sacha Krakowiak. Middleware architecture with patterns and frameworks,
2007.

[KRG07] Jochen Malte Küster, Ksenia Ryndina, and Harald Gall. Generation of
business process models for object life cycle compliance. In BPM, pages
165–181, 2007.

[Loh08] N. Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL 2.0.
LNCS, 4937 :77, 2008.

[LPT14] Haizhou Li, François Pinet, and Farouk Toumani. Probabilistic simulation
for probabilistic data-aware business processes. In Language and Automata
Theory and Applications - 8th International Conference, LATA 2014, Ma-
drid, Spain, March 10-14, 2014. Proceedings, pages 503–515, 2014.

[Mil71] Robin Milner. An algebraic definition of simulation between programs. In
IJCAI, pages 481–489, 1971.

[Min67] M. Minsky. Computation Finite and Infinite Machines. Prentice-Hall, 1967.
[MSW11] A. Meyer, S. Smirnov, and M. Weske. Data in business processes. technical

report 50, 2011. http ://opus.kobv.de/ubp/volltexte/2011/5304/.
[MW07] Anca Muscholl and Igor Walukiewicz. A lower bound on web services com-

position. In FOSSACS, volume 4423 of LNCS, pages 274–287. Springer,
2007.

[NM02] S. Narayanan and S.A. McIlraith. Simulation, verification and automated
composition of web services. WWW’02, pages 77–88, 2002.

[Pet73] C.A. Petri. Concepts of net theory. In Proceedings of MFCS, volume 73,
pages 137–146, 1973.

Bibliographie 93

[PF04] S. R. Ponnekanti and A. Fox. Interoperability among Independently Evol-
ving Web Services). In Middleware ’04, Toronto, Canada, 2004.

[PG09] F. Patrizi and G. De Giacomo. Composition of services that share an infinite-
state blackboard (extended abstract). In IIWEB, 2009.

[PTB05] M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web
Services by Planning in Asynchronous Domains. ICAPS, 2005.

[Shm93] Oded Shmueli. Equivalence of datalog queries is undecidable. J. Log. Pro-
gram., 15(3) :231–241, 1993.

[Spi00] Marc Spielmann. Verification of relational transducers for electronic com-
merce. In PODS, pages 92–103, 2000.

[vdADO+08] Wil M. P. van der Aalst, Marlon Dumas, Chun Ouyang, Anne Rozinat,
and Eric Verbeek. Conformance checking of service behavior. ACM Trans.
Internet Techn., 8(3), 2008.

[W3C02] W3C. Web service architecture requirements. Technical report, http :
//www.w3.org/TR/wsa-reqs/, 2002.

[WMFN04] A. Wombacher, B. Mahleko, P. Fankhauser, and E. Neuhold. Matchma-
king for Business Processes based on Choreographies). In EEE’04, Taipei,
Taiwan, 2004.

[XDMNZ04] A.Y. Halevy X. Dong, J. Madhavan, E. Nemes, and J. Zhang. Similarity
Search for Web Services). In VLDB’04. Toronto, Canada, pages 372–383,
2004.

Annexe A

Appendix

Proofs of Chapter 2

Lemma 6 Each configuration C of the execution of an alternating Turing machine
M on the input w has a corresponding configuration in the extended state machine of
Sduplicator

Démonstration. We will prove that, each configuration C of M correspond to a configu-
ration of the extended state machine of Sduplicator and each configuration of the extended
state machine of Sduplicator correspond to a configuration C of M . The proof is by induc-
tion :

– The base : The initial configuration of M is C0=qy1, ..., yn. Assume that q is univer-
sal. After the part of initialization, E(Sduplicator) is in an id=(lq, α(Lstore)) where
α(xi)=wi (i.e., the i’th letter of w) and α(head)=1. Assume that there exists a move

C0
qa/bRq

′
−→ C

′ , that means y1=a, so α(x1)=a. From construction of Sduplicator there

exists a transition lq
ga

1 | qabq
′
R1(∅;x1,head)−−−−−−−−−−−−−−−−→ lq′ where g1 : x1 = a ∧ head = 1, so

(lq, α(Lstore)) qabq
′
R1(∅;α′ (x1),α′ (head))−−−−−−−−−−−−−−−−→ (lq′ , α

′(Lstore)) where : (i) α
′(x1)= y

′
1=b,

and α
′(head)=2.

– iteration i : Now Assume that M is in configuration C=y1, ..., qyj , ..., yn, and
there exists in E(Sduplicator) an id=(lq, α(Lstore)), where yi=α(xi) and α(head)=j.

If C
qa/bRq

′
−→ C

′ exists, then yj=a, y
′
j=b and α(xj)=a. From construction of

Sduplicator, we know there is a transition lq
ga

1 | qabq
′
Rj(∅;xj ,head)−−−−−−−−−−−−−−−−→ lq′ where

g1 : x1 = a ∧ head = j, so there exists in E(Sduplicator) a transition

(lq, α(Lstore))
qabq

′
Rj(∅;α′ (xj),α′ (head))−−−−−−−−−−−−−−−−→ (lq′ , α

′(Lstore)) where : (i) α
′(xj)= y

′
j=b,

and α
′(head)=j+1.

The same reasoning is used if M is in a configuration where the state is existential, the
only difference is Sduplicator starts by sending the message m(), then executes the atomic
process qabq

′
Rj(∅; xj , head), this additional transition does not change the values of the

variables.
Now, we will prove the second direction, i.e.,each configuration of the extended state
machine of Sduplicator correspond to a configuration C of M .

– The base : From the construction of Sduplicator, after the part of initialization the exe-
cution of the service reaches an id=(lq, α(Lstore)), where q is the initial state of M ,

96 Annexe A. Appendix

Assume that it is universal. α(xi)=wi and α(head)=1. If in E(Sduplicator) there exists

a transition (lq, α(Lstore)) qabq
′
R1(∅;α′ (x1),α′ (head))−−−−−−−−−−−−−−−−→ (lq′ , α

′(Lstore)), then α
′(x1)=b

and α
′(head)=2. From construction of Sduplicator, there exists C0

qa/bRq
′

−→ C
′ where

y1=a and y
′
1=b.

– Iteration i : Assume that in E(Sduplicator) there is an id=(lq, α(Lstore)), where q is
an universal state of M and α(xi)=wi. Assume that α(head)=j and there is a confi-
guration of M , C=y1, ..., qyj , ..., yn, where α(xi)=yi. If in E(Sduplicator), there exists

a transition (lq, α(Lstore))
qabq

′
Rj(∅;α′ (xj),α′ (head))−−−−−−−−−−−−−−−−→ (lq′ , α

′(Lstore)), then α
′(xj)=b

and α
′(head)=j+1. From construction of Sduplicator, there exists C

qa/bRq
′

−→ C
′ where

yj=a and y
′
1=b.

Lemma 7 Given an alternating Turing machine M working in space bounded by the
size of the input w, M has an infinite computation on w iff Sspoiler
 Sduplicator.

Démonstration. The services Sspoiler and Sduplicator start by initializing the variables.

If M has a transition q
a/bR−→ q

′ and q universal,then Sspoiler has n − 1 loops :

quniversal
qabq

′
Ri(∅;xi,head)−−−−−−−−−−−−→ quniversal and the service Sduplicator contains n − 1 transitions

from lq
ga

i | qabq
′
Ri(∅;xi,head)−−−−−−−−−−−−−−−−→ lq′ . Hence, the difference with Sspoiler is that Sduplicator

can only execute one transition representing the action q
a/bR−→ q

′ if the actual value of xi=a
and the head points on i. Assume that the condition is verified, then if Sspoiler chooses to
execute any transition different from qabq

′
Ri(∅; xi, head), the service Sduplicator wins the

game by choosing the transition which reaches the state lcopy. If Sspoiler chooses to execute
qabq

′
Ri(∅; xi, head), then Sduplicator executes qabq

′
Ri(∅; xi, head) and the game continue.

Now, Assume that the condition is not verified, the service Sduplicator is blocked, then
Sspoiler wins the game by executing qabq

′
Ri(∅; xi, head).

If q is existential, Sspoiler has a transition quniv
!m()−→ qexist and n − 1 transitions from

qexist
qabq

′
Ri(∅;xi,head)−−−−−−−−−−−−−−−−→ quniv . Sduplicator contains a transition from lq

!m()−→ lqbRq′

and n − 1 transitions lqbRq′
ga

i | qabq
′
Ri(∅;xi,head)−−−−−−−−−−−−−−−−→ lq′ . Assume that the actual values of

the variables verify the condition. If Sspoiler chooses another action different from sending
the message it looses. If it sends the message, it reaches the state qexist. Then Sduplicator

reaches an intermediate state lqabRq
′ by sending the message. Sspoiler can do any action

but if it chooses an action different from qabq
′
Ri(∅; xi, head) it loose the game, if it chooses

the action q
a/bR−→ q

′ , then the game continues.
Note that, after sending the message m(), Sspoiler reaches lexist. This transition can be
simulated by many transition of Sduplicator because Sduplicator may have several transitions
labelled with sending m() at lq. So, there is no simulation if all tests of simulation are
false. That means Sduplicator is blocked whatever it chooses. If one choice is not blocking
the game continue and hence there is simulation iff the duplicator can always chooses a
non blocking state for existential transitions of M and does not block for all universal
transition of M . Which means M during its execution has always a successor, so there
exists an infinite computation.

97

Lemma 9 Let S be a Colombo service and Ek(S) = (Qk,Qk
0,Fk, Δk) its k-bounded

extended state machine and E(M(S)) the extended state machine of DB-less M(S), then
– If (qi, Ii, αi) ∈ Qk then ∃ (qi, α

′
i) ∈ QM(S) s.t α

′
i|Lstore = αi and α

′
i|DV = Ii and

– ∀ (qi, Ii, αi)
μi−→ (qj , Ij , αj), ∃ (qi, α

′
i)

μ
′
i−→ (q′

j , α
′
j) s.t α

′
j|Lstore = αj and α

′
j|DV =

Ij.
Lemma 9 asserts that for each state in the k-bounded state machine of S there exists

a corresponding state in the extended state machine of M(S) s.t the valuation of DV is
equal to database I and the valuation of variables of Lstore in the two states are equal.
The proof is by induction.

Démonstration. The base :

1. Assume that (q0, I0, α0) ∈ Qk, from the construction of M(S) there exists a state
(q0, α

′
0) ∈ QM(S) s.t (i)α′

0|Lstore = α0= ∅ and(ii) α
′
0|DV = I0. The first point is

easy to see, from the definition of an execution of a service, all variables start with
null value. The second point come from the construction of M(S), where there is a
transition from qinit to q0 labelled with reception of messages containing values of
DV .

2. Let (q0, I0, α0) μ0−→ (qj , Ij , αj) a transition in Δk, then from the construction of

M(S) and 1, we know there exists a transition (q0, α
′
0)

μ
′
0−→ (q′

j , α
′
j) where :

– if μ0=?m(αj(u1), ..., αj(un)), then μ
′
0=?m(α′

j(u1), ..., αj
′(un)) where :

– α
′
j|Lstore−{v1,...,vn} = αj|Lstore−{v1,...,vn}.

– α
′
j(vk) = αj(vk) for k ∈ [1, ..., n]. This is due to the fact the two substitution

have the same infinite co-domain.
– α

′
j|DV = Ij because : I0= Ij , α

′
0|DV = I0 and α

′
j|DV = α

′
0|DV .

– if μ0=!m(α0(u1), ..., α0(un)), then μ
′
0=!m(α′

0(u1), ..., α0′(un)) where :
– α

′
j|Lstore = αj : because α0 = αj and α0 = α

′
0|Lstore and α

′
0= α

′
j .

– α
′
j|DV = Ij : because I0 = α

′
0|DV and I0 = Ij and α

′
0= α

′
j .

– if μ0=p(α0(u1), ..., α0(un), α0(DV); αj(v1), ..., αj(vm), αj(DV)), then
μ

′
0=p(α′

0(u1), ..., α
′
0(un), α

′
0(DV); α

′
j(v1), ..., α

′
j(vm), α

′
j(DV)) where :

– α
′
j|DV = Ij : from construction of M(S) and α

′
0|Lstore = α0 and α

′
0|DV = I0,

DV is modified regarding to updates made by p, where the values of variables
depends on inputs and the database.

– α
′
j|Lstore−{v1,...,vm} = αj|Lstore−{v1,...,vm} because : α

′
i|Lstore−{v1,...,vm}

= α
′
j|Lstore−{v1,...,vm} and αi|Lstore−{v1,...,vm}= αj|Lstore−{v1,...,vm} and

α
′
i|Lstore−{v1,...,vm} = αi|Lstore−{v1,...,vm}.

– α
′
j|{v1,...,vm} = αj|{v1,...,vm} : From the construction of pv and αi= α

′
i and α

′
i|DV

= I0.

The iteration i :

1. Assume that (qi, Ii, αi) ∈ Qk, and there exists (qi, α
′
i) ∈ ΔM(S) where Ii = α

′
i|DV

and αi = α
′
i|Lstore, then for each transition (qi, Ii, αi)

μi−→ (qj , Ij , αj) in Δk, we know

there exists a transition (q0, α
′
0)

μ
′
0−→ (q′

j , α
′
j) from the construction of M(S) and 1

where :

98 Annexe A. Appendix

– if μi=?m(αj(u1), ..., αj(un)), then μ
′
i=?m(α′

j(u1), ..., αj
′(un)) where :

– α
′
j|Lstore−{v1,...,vn} = αj|Lstore−{v1,...,vn} : because αi|Lstore−{v1,...,vm}

= α
′
i|Lstore−{v1,...,vm} and αi|Lstore−{v1,...,vm} = αj|Lstore−{v1,...,vm} and

α
′
i|Lstore−{v1,...,vm} = α

′
j|Lstore−{v1,...,vm}.

– α
′
j(vk) = αj(vk) for k ∈ [1, ..., n]. This is due to the fact the two substitution

have the same infinite co-domain.
– α

′
j|DV = Ij because : Ii= Ij , α

′
i|DV = Ii and α

′
j|DV = α

′
i|DV .

– if μi=!m(αi(u1), ..., αi(un)), then μ
′
i=!m(α′

i(u1), ..., αi
′(un)) where :

– α
′
j|Lstore = αj : because αi = αj and αi = α

′
i|Lstore and α

′
i= α

′
j .

– α
′
j|DV = Ij : because Ii = α

′
i|DV and Ii = Ij and α

′
i= α

′
j .

– if μi=p(αi(u1), ..., αi(un), αi(DV); αj(v1), ..., αj(vm), αj(DV)), then
μ

′
i=p(α′

i(u1), ..., α
′
i(un), α

′
i(DV); α

′
j(v1), ..., α

′
j(vm), α

′
j(DV)) where :

– α
′
j|DV = Ij : from construction of M(S) and α

′
i|Lstore = αi and α

′
i|DV = Ii,

DV are modified regarding to updates made by p, where the values of variables
depends on inputs and the database.

– α
′
j|Lstore−{v1,...,vm} = αj|Lstore−{v1,...,vm} because : α

′
0|Lstore−{v1,...,vm}

= α
′
j|Lstore−{v1,...,vm} and α0|Lstore−{v1,...,vm}= αj|Lstore−{v1,...,vm} and

α
′
0|Lstore−{v1,...,vm} = α0|Lstore−{v1,...,vm}.

– α
′
j|{v1,...,vm} = αj|{v1,...,vm} : because α0= α

′
0 and α

′
0|DV = I0.

Lemma10 Let S be a Colombo service and Ek(S) = (Qk,Qk
0,Fk, Δk) its k-bounded

extended state machine and E(M(S)) the extended state machine of DB-less M(S), then
– If (qi, α

′
i) ∈ QM(S) then ∃ (qi, Ii, αi) ∈ Qk s.t α

′
i|Lstore=αi and α

′
i|DV =Ii and

– ∀ (qi, α
′
i)

μ
′
i−→ (q′

j , α
′
j), ∃ (qi, Ii, αi)

μi−→ (qj , Ij , αj) s.t α
′
j|Lstore = αj and α

′
j|DV =

Ij.

Démonstration. The proof of this lemma is in the same spirit of the previous one, we will
prove by induction the correspondence between the two extended state machines :
The base :

1. Assume that (q0, α
′
0) ∈ QM(S) , from the construction of M(S) there exists a state

(q0, I0, α0) ∈ Qk s.t (i) α
′
0|Lstore = α0= ∅ and (ii) α

′
0|DV = I0. (i) comes from the

definition of an execution of a service, all variables of Lstore start with null values.
(ii) comes from the construction of M(S), where there is a transition from qinit to q0
labelled with reception of messages over all variables of DV , because the variables
and the database are range over the same infinite domain, necessarily there exists a
valuation of the variables of the message α

′
0(DV)=I0.

2. Let (q0, α
′
0)

μ
′
0−→ (q′

j , α
′
j) a transition in ΔM(S) , then from the construction of M(S)

and 1, we know there exists a transition (q0, I0, α0) μ0−→ (qj , Ij , αj) in Δk where :
– if μ

′
0=?m(α′

j(u1), ..., αj
′(un)), then μ0=?m(αj(u1), ..., αj(un)) where :

– αj|Lstore−{v1,...,vn} = α
′
j|Lstore−{v1,...,vn}.

– αj(vk) = α
′
j(vk) for k ∈ [1, ..., n]. This is due to the fact the two substitution

have the same infinite co-domain.
– Ij = α

′
j|DV because : α

′
j|DV = α

′
0|DV , α

′
0|DV = I0 and I0= Ij .

99

– if μ
′
0=!m(α′

0(u1), ..., α0′(un)), then μ0=!m(α0(u1), ..., α0(un)) where :
– αj = α

′
j|Lstore : because α

′
0= α

′
j and α0 = α

′
0|Lstore and α0 = αj .

– Ij =α
′
j|DV : because α

′
0= α

′
j and I0 = Ij and I0 = α

′
0|DV .

– if μ
′
0=p(α′

0(u1), ..., α
′
0(un), α

′
0(DV); α

′
j(v1), ..., α

′
j(vm), α

′
j(DV)), then

μ0=p(α0(u1), ..., α0(un), α0(DV); αj(v1), ..., αj(vm), αj(DV)) where :
– Ij =α

′
j|DV : from construction of M(S) and α

′
0|Lstore = α0 and α

′
0|DV = I0,

DV is modified regarding to updates made by p, where the values of variables
depends on inputs and the database.

– αj|Lstore−{v1,...,vm} =α
′
j|Lstore−{v1,...,vm} because : α

′
i|Lstore−{v1,...,vm}

= αi|Lstore−{v1,...,vm} and αi|Lstore−{v1,...,vm}= αj|Lstore−{v1,...,vm} and
α

′
i|Lstore−{v1,...,vm} = α

′
j|Lstore−{v1,...,vm} .

– αj|{v1,...,vm} = α
′
j|{v1,...,vm} : From the construction of pv and α

′
i|DV = I0 and

αi= α
′
i.

The iteration i :

1. Assume that (qi, α
′
i) ∈ ΔM(S), and there exists (qi, Ii, αi) ∈ Qk where α

′
i|DV = Ii

and α
′
i|Lstore = αi, then for each transition (q0, α

′
0)

μ
′
0−→ (q′

j , α
′
j), we know there exists

a transition (qi, Ii, αi)
μi−→ (qj , Ij , αj) in Δk from the construction of M(S) and 1

where :
– if μ

′
i=?m(α′

j(u1), ..., αj
′(un)), then μi=?m(αj(u1), ..., αj(un)) where :

– αj|Lstore−{v1,...,vn} = α
′
j|Lstore−{v1,...,vn} : because α

′
j|Lstore−{v1,...,vm}

= α
′
i|Lstore−{v1,...,vm} and αi|Lstore−{v1,...,vm} = αj|Lstore−{v1,...,vm} and

α
′
i|Lstore−{v1,...,vm} = αi|Lstore−{v1,...,vm}.

– αj(vk) = α
′
j(vk) for k ∈ [1, ..., n]. This is due to the fact the two substitution

have the same infinite co-domain.
– Ij = α

′
j|DV because : α

′
j|DV = α

′
i|DV , α

′
i|DV = Ii and Ii= Ij .

– if μ
′
i=!m(α′

i(u1), ..., αi
′(un)), then μi=!m(αi(u1), ..., αi(un)) where :

– αj = α
′
j|Lstore : because α

′
i= α

′
j and αi = α

′
i|Lstore and αi = αj .

– Ij = α
′
j|DV : because α

′
i= α

′
j and Ii = Ij and Ii = α

′
i|DV .

– if μ
′
i=p(α′

i(u1), ..., α
′
i(un), α

′
i(DV); α

′
j(v1), ..., α

′
j(vm), α

′
j(DV)), then

μi=p(αi(u1), ..., αi(un), αi(DV); αj(v1), ..., αj(vm), αj(DV)) where :
– Ij = α

′
j|DV : from construction of M(S) and α

′
i|Lstore = αi and α

′
i|DV = Ii,

DV are modified regarding to updates made by p, where the values of variables
depends on inputs and the database.

– αj|Lstore−{v1,...,vm} = α
′
j|Lstore−{v1,...,vm} because : α

′
0|Lstore−{v1,...,vm}

= α0|Lstore−{v1,...,vm} and α0|Lstore−{v1,...,vm}= αj|Lstore−{v1,...,vm} and
α

′
0|Lstore−{v1,...,vm} = α

′
j|Lstore−{v1,...,vm}.

– αj|{v1,...,vm} = α
′
j|{v1,...,vm} : because α

′
0|DV = I0 and α0= α

′
0.

Lemma 11 Each configuration C of the execution of an alternating Turing machine
M on the input w has a corresponding configuration in the extended state machine of
Sduplicator.

Démonstration. We will prove that, each configuration C of M correspond to a configu-
ration of the extended state machine of Sduplicator and each configuration of the extended

100 Annexe A. Appendix

state machine of Sduplicator correspond to a configuration C of M . Here a configuration C
of M is y1, ..., qyj , ..., y2n , where the head points on the j’th cell. The proof is by induction :

– the base : Assume that the initial configuration of M is C0=qy1, ..., y2n and q univer-
sal, from construction of Sduplicator, after checking the database and initializing n first
tuples with the word w, E(Sduplicator) is in id=(lq, α(Lstore), I), where the binary
number α(x1)...α(xn) points on the first tuple and fR

n+1(α(x1, ..., α(xn))=y1. Assume

that C0
qabRq

′
−→ C

′ exists, that means y1=a in C0, so fR
n+1(α(x1), ..., α(xn) = a. From

construction of Sduplicator there is a transition lq
true | get_cell

qabq
′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−−−−−−→

l
′
qbdq′ so id

get_cell
qabq

′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−→ id′ exist where letter in id′ is equal to a.

There is also a transition l
′
qbdq′

letter=a | set_cell
qabq

′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq

′ , so id′

set_cell
qabq

′
R

(x1,...,xn,b;∅
−−−−−−−−−−−−−−−−→ id′′ because letter=a. y1 in C ′ is equal to b and the head
point in the second cell. fR

n+1(x1, ..., xn)=b in id′′. in Sduplicator there is a tran-

sition l
′′
qbdq′

¬(x1=1∧...∧xn=1) | NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−−−−−−→ lq′ so there is a transition id′′

NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−→ id′′′, where the binary number x1...xn in id′′′ is equal to 2.
We can conclude that C ′ is encoded in id′′′.
If C0

qa/bRq
′

−→ C
′ does not exist, then letter is different from a in id′ and the condi-

tion of l
′
qbdq′

letter=a | set_cell
qabq

′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq′ is not verified so the execution of

Sduplicator blocks.
– the iteration i : Now Assume that the execution of M is in configuration C=

y1, ..., qyj , ..., y2n where q is universal and there exists an id in E(Sduplicator) where
the binary number x1...xn is equal to j and the control state is lq. Assume that

C
qabRq

′
−→ C

′ exists, that means yj=a in C, so fR
n+1(α(x1), ..., α(xn)) = a. From

construction of Sduplicator there is a transition lq
true | get_cell

qabq
′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−−−−−−→

l
′
qbdq′ so id

get_cell
qabq

′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−→ id′ exist where letter in id′ is equal to a.

There is also a transition l
′
qbdq′

letter=a | set_cell
qabq

′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq′ , so id′

set_cell
qabq

′
R

(x1,...,xn,b;∅
−−−−−−−−−−−−−−−−→ id′′ because letter=a. yj in C ′ is equal to b and the head
point in the j +1’th cell. fR

n+1(x1, ..., xn)=b in id′′ in Sduplicator there is a transi-

tion l
′′
qbdq′

¬(x1=1∧...∧xn=1) | NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−−−−−−→ lq′) so there is a transition id′′

NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−→ id′′′, where the binary number x1...xn in id′′′ is equal to
j + 1. We can conclude that C ′ is encoded in id′′′.

Now, we will prove the second direction, i.e.,each configuration of the extended state
machine of Sduplicator correspond to a configuration C of M .

– the base : From construction of Sduplicator, after the part if initialisation, the execu-
tion of the service is in an id, with the control state lq where q is the initial state
of M , Assume that it is universal. all xi are equal to zero, and the n first tuples
contains the letters of the input word w, then id correspond to C0 in the execu-
tion of M , and y1=fR

n+1(α(x1, ..., α(xn)). If there exists in E(Sduplicator) transitions

id
get_cell

qabq
′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−→ id′ set_cell

qabq
′
R

(x1,...,xn,b;∅
−−−−−−−−−−−−−−−−→ id′′ NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−→

id′′′, then from construction of Sduplicator, there exists a transition q
a/bR−→ q

′ in M .

101

We know also fR
n+1(α(x1, ..., α(xn))=a in id and letter=a in d′ so y1=a. Then C0

qabRq
′

−→ C
′ . fR

n+1(α′′(x1, ..., α
′′(xn))=b in id′′. Then y1 in C ′=b, and the head point on

2, because after executing next x1...xn=1.
– iteration i : Assume that E(Sduplicator) contains an id where the control state

correspond to an universal state of the machine and id correspond to a confi-

guration C of the machine. Let a set of transition id
get_cell

qabq
′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−→

id′ set_cell
qabq

′
R

(x1,...,xn,b;∅
−−−−−−−−−−−−−−−−→ id′′ NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−→ id′′′. From construction of

Sduplicator, there is a transition q
a/bR−→ q

′ in M . yj=fR
n+1(α(x1, ..., α(xn)) in id. let-

ter=a in d′ so yj=a, then C
qabRq

′
−→ C

′ , fR
n+1(α′′(x1, ..., α

′′(xn))=b in id′′. Then yj in
C ′=b, and the head point on j+1, because after executing NEXT, the binary number
x1...xn=j.

The same reasoning is used where q is existential with the difference that Sduplicator

has an additional transition before executing get_cell, it send the message m(), which
does not change the values of the variables nor the database. Also for the action labelled
with L, we just replace NEXT by PREVIOUS.

Lemma 12 Given an alternating Turing machine M working in space exponentially
bounded by the size n of the input word w. M has an infinite computation on w iff Sspoiler

 Sduplicator.

Démonstration. Sspoiler, Sduplicator start by checking the database and initializing the n

first tuple with the input word w. If M has a transition q
a/bR−→ q′ and q universal,then Sspoiler

has a loop : l∀
true | get_cell

qabq
′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−−−−−−→ lqbdq′

true | set_cell
qabq

′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→

l
′
qbdq′

¬(x1=1∧...∧xn=1) | NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−−−−−−→ l∀

and the service Sduplicator contains transitions lq
true | get_cell

qabq
′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−−−−−−→

l
′
qbdq′

letter=a | set_cell
qabq

′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq′

¬(x1=1∧...∧xn=1) | NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−−−−−−→ lq′ .
So the difference with Sspoiler is that, Sduplicator can only execute the transition

l
′
qbdq

′
letter=a | set_cell

qabq
′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq

′ if x1...xn points on a tuple with value
of W=a. Assume that the condition is verified, then if Sspoiler chose to execute any
transition with label different from get_cellqabq′ R(x1, ..., xn; letter), Sduplicator wins the
game by choosing the transition which reaches the state lcopy, if Sspoiler chooses to execute
get_cellqabq′ R(x1, ..., xn; letter), then Sduplicator execute get_cellqabq′ R(x1, ..., xn; letter)
and it can execute set_cellqabq′ R(x1, ..., xn, b; ∅) and the game continue. Now, assume
that the condition is not verified, then if Sspoiler chose to execute any transition
with label different from get_cellqabq

′
R(x1, ..., xn; letter), Sduplicator wins the game by

choosing the transition which reaches the state lcopy, if Sspoiler chooses to execute
get_cellqabq′ R(x1, ..., xn; letter), then Sduplicator execute get_cellqabq′ R(x1, ..., xn; letter)
but it can not execute set_cellqabq

′
R(x1, ..., xn, b; ∅), because the condition is not verified,

so there is not simulation.
If M has a transition q

a/bR−→ q
′ and q existential, Sspoiler has transitions

l∀
true,!m()−→ l∃

true | get_cell
qabq

′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−−−−−−→ lqbdq′

true | set_cell
qabq

′
R

(x1,...,xn,b)
−−−−−−−−−−−−−−−−−−−−−→

l
′
qbdq′

(x1=1∧...∧xn=1) | NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−−−−−−→ l∀. Sduplicator has transitions

102 Annexe A. Appendix

lq
true | !m()−−−−−−−−−−−−−−−−→ choiceqbdq′)

true | get_cell
qabq

′
R

(x1,...,xn;letter)
−−−−−−−−−−−−−−−−−−−−−→

l
′
qbdq′

letter=a | set_cell
qabq

′
R

(x1,...,xn,b)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq′

(x1=1∧...∧xn=1) | NEXT (x1,...,xn;x1,...,xn)−−−−−−−−−−−−−−−−−−−−−→ lq′ .
So the difference with Sspoiler is that, Sduplicator can only execute the transition

l
′
qbdq′

letter=a | set_cell
qabq

′
R

(x1,...,xn,b;∅)
−−−−−−−−−−−−−−−−−−−−−→ l

′′
qbdq′ if x1...xn points on a tuple with value of

W=a. Assume that the condition is verified. If Sspoiler does not execute the transi-
tion with sending message, it looses the simulation, because Sduplicator can execute
the transition to lcopy. Assume that Sspoiler sends the message m(), then Sduplicator

also sends the message. At this step Sspoiler reaches the state l∃, if it chooses a
transition different from get_cellqabq′ R(x1, ..., xn; letter), Sduplicator wins the game by
choosing the transition which reaches the state lcopy. If Sspoiler chooses to execute
get_cellqabq′ R(x1, ..., xn; letter), then Sduplicator executes get_cellqabq′ R(x1, ..., xn; letter)
and it can execute set_cellqabq

′
R(x1, ..., xn, b; ∅) and the game continue. Now, assume

that the condition is not verified, if Sspoiler at state l∀ does not choose sending the
message it loose the simulation. Assume that it sends the message and reaches l∃, then
Sduplicator also sends the message. Then if Sspoiler choose to execute any transition
with label different from get_cellqabq′ R(x1, ..., xn; letter), Sduplicator wins the game by
choosing the transition which reaches the state lcopy. If Sspoiler chooses to execute
get_cellqabq′ R(x1, ..., xn; letter), then Sduplicator executes get_cellqabq′ R(x1, ..., xn; letter)
but it can not execute set_cellqabq′ R(x1, ..., xn, b; ∅), because the condition is not verified,
so there is not simulation. Because when Sspoiler send the message m(), there is many
transition at state lq which can send the message m(), there is no simulation if all
transition of lq labelled with sending m() will block.

Proofs of Chapter 3

l0

l1

S1

q0

qi

S2

qi+2 qn qfalse

Figure A.1 – connection between simulation and the language LS

Lemma 27. Let P be a formula expressed in the language LS ∪ {∧b, ¬b}, where LS is a
boolean query language. Then, there exists two (∅, LS , ∅) services S1 and S2 such that the
formula P is satisfiable iff S1
 S2

Démonstration. the proof follow the same spirit as the proof of lemma 18. It is based on a
reduction from the problem of testing satisfiablity of a formula to the problem of checking
simulation between two (∅, LS , ∅) services. P is of the form q1() ∧ q2()... ∧ qi() ∧ ¬qi+1() ∧
....¬qn() where each qj where j ∈ [1, n] is a boolean query expressed in the language LS .
For k ∈ [1, i], qk is a positive boolean query of the form qk() :-bodyk. We construct the

103

boolean query qpos=
∧

k∈[1,i] bodyk. qpos still a boolean query expressed in the language LS .
The figure A.1 depicts the test of simulation constructed, where the service S1 sends the
message m(qpos). The service S2 will have n − i + 1 transitions (i.e. the number of negated
queries plus one), where each transition is labbeled with m(qk) with k ∈ [i + 1, n]. The
last transition of S2 is labbeled with !m() (i.e., send the empty message). Hence S1

S2 iff there exists an instance I such that I |= qpos and for each k ∈ [i + 1, n] I |= qk.
So, the formula P is satisfiable. Hence, Simulation in (∅, LS , ∅) services is undecidable
if satisfiability in LS ∪ {∧b, ¬b} is undecidable. Note that the transition labbeled with
!m() is used to handle the case where S1 chooses an instance I |= qpos and I |= qk for
k ∈ [i + 1, n].

Theorem 10 Simulation in (∅, LS , ∅) services is undecidable if satisfiability of formula
in LS ∪ {∧b, ¬b} is undecidable, where LS is a boolean query language.

Démonstration. The theorem is a direct consequence of lemma 27.

Complexity of the simulation for (∅, LLP , ∅)

Problem 5. ������� (∅, LLP , ∅)
Inputs : two (∅, LLP , ∅) services S and S′. Question : S
 S′ ?

Proposition 4 the problem co-send (∅, LLP , ∅) is in Σp
2

Démonstration. Let S and S′ be two (∅, LLP , ∅) services and let PQ be the set of partitions
of the propositional logic queries (i.e, boolean queries containing only constants) used in
S or in S′. Given a partition p ∈ PQ and an oracle checking the satisfiability of partitions
of PQ, it is possible to check in polynomial time whether S is not simulated by S′. Indeed,
it is sufficient to check the consistency of the partition p and then check the simulation
between the two finite state machines FSMp(S) and FSMp(S′). Because satisfiability of
a propositional logic formula is NP-complete, co-send (∅, LLP , ∅) is in Σp

2.

We will prove the NP-hardness of the problem co-sim (∅, LLP , ∅) using a reduc-
tion from . The reduction is nearly the same as for the complexity of simulation for
(LP L, ∅, ∅) services. Starting from an instance ϕ of 3-SAT problem using n boolean va-
riables {x1, ..., xn}, we construct a test of simulation between two (∅, LP L, ∅) services
namely Sspoiler and Sduplicator.

Lemma 28. Given a 3-SAT problem instance with n boolean variables, the problem has a
solution iff S3SAT −spoiler
 S3SAT −duplicator, where S3SAT −spoiler and S3SAT −duplicator are
(∅, LP L, ∅) services.

Démonstration. Let the formula ϕ be a 3-SAT problem instance with n variables. The
idea of the proof is that, S3SAT −spoiler will have a transition which sends the message
m(qϕ). qϕ is a boolean query having ϕ as body. S3SAT −duplicator will have a transition
which sends the empty message !m(). Hence, if there exists a database instance I over Wg

such that ϕ is true then S3SAT −spoiler sends true in the message m() and S3SAT −duplicator

sends m empty. Then, there is no simulation. Now we will detail the construction.
Wg will contain n boolean relational schema {R1, ..., Rn}. An instance I over Wg corres-
ponds to a set of instance {IR1 , ..., IRn}. The relations R do not have any attribute, and
there are only two possible instance : one containing the empty tuple, then we say R is
evaluated to true, the other instance is empty then we say R is evaluated to false.

104 Annexe A. Appendix

l0

True | ! m()

l1

S3SAT-spoiler

u1

S3SAT-duplicator

u0

True | ! m()

Figure A.2 – Reduction from 3-SAT problem to simulation.

S3SAT −spoiler will contain only one transition (l0, T rue, !m(qϕ), l1) and S3SAT −duplicator

contains one transition (u0, T rue, !m(), u1). A literal xi (or its negation ¬xi) in ϕ will be
transformed to Ri() (¬Ri()) in qϕ.
If there exists an instance I |= ϕ (hence, 3-SAT has a solution), then S3SAT −spoiler

sends the message m(true) while S3SAT −duplicator sends the empty message !m(). Hence,
S3SAT −spoiler
 S3SAT −duplicator. If 3-SAT does not accept any solution, there is no da-
tabase instance I which satisfies the query qϕ, hence there is simulation. The figure A.2
depicts the test of simulation between S3SAT −spoiler and S3SAT −duplicator.

Theorem 12 co-send (∅, LLP , ∅) is NP-hard

Démonstration. From lemma 28 and knowing that the 3-SAT problem is NP-hard

[Coo71].

connection between simulation for (∅, ∅, Linsert(LI)
U) and satisfiability of LI ∪

{∧b, ¬b}
Lemma 29. Let P be a formula expressed in the language LI ∪ {∧b, ¬b}, where LI is a
boolean query language. Then, there exists two (∅, ∅, Linsert(LI)

U) services S1 and S2 such
that the formula P is satisfiable iff S1
 S2.

l0

l1

S1

q0

qi

S2

qi+2 qn qfalse

Figure A.3 – Connection between simulation of (∅, ∅, Linsert(LI)
U) services and the language

LI

105

Démonstration. the proof follow the same spirit as the proof of lemma 18. It is based
on a reduction from the problem of testing satisfiablity of a formula to the problem of
checking simulation between two (∅, ∅, Linsert(LI)

U) services. P is of the form q1() ∧ q2()... ∧
qi() ∧ ¬qi+1() ∧¬qn() where each qj with j ∈ [1, n] is a boolean query expressed in the
language LI . For k ∈ [1, i], qk is a positive boolean query of the form qk() :-bodyk. We
construct the boolean query qpos=

∧
k∈[1,i] bodyk. qpos still a boolean query expressed in the

language LI . The figure A.3 depicts the test of simulation constructed, where the service
S1 inserts the result of qpos() in R. The service S2 will have n − i + 1 transitions (i.e. the
number of negated queries plus one), where each transition inserts the result of qk() in R
with k ∈ [i + 1, n]. The last transition of S2 inserts nothing in R. Hence S1
 S2 iff there
exists an instance I such that I |= qpos and for each k ∈ [i+1, n] I |= qk. So, the formula P

is satisfiable. Hence, Simulation in (∅, ∅, Linsert(LI)
U) services is undecidable if satisfiability

in LI ∪ {∧b, ¬b} is undecidable. Note that the last transition of S2 is used to handle the
case where S1 chooses an instance I |= qpos and I |= qk for k ∈ [i + 1, n] or an instance of
R containing True.

Theorem 13 Simulation in (∅, ∅, Linsert(LI)
U) services is undecidable if checking satis-

fiability of formulas in LI ∪ {∧b, ¬b} is undecidable.

Démonstration. From lemma 29.

13

qc2() | Insert R(qu1)

qc1() | ! m(q(A1,...,An))
True | ? m(A1,...,An)

qc3() | Delete R(qu1)

shared DB
Service A Service B

local DB

l0

l1

l2 l3

s0

s1

s4

s2

s3

local DB

Figure 1.1 – Generic web service framework.

(e.g., the service A sends a message m, which contains a result of the query q). A query q
can be defined over the local as well as the shared database. The transitions are guarded
by boolean queries (qci). Finally, services can modify the databases using update queries
(e.g., the service A inserts the result of the query qu1 into the relation R). In this thesis,
we focus our attention on insert queries and we do not consider delete and modify queries.

In order to isolate and study the impact of the different parameters of the generic
model on the simulation preorder, we investigate the decidability and complexity issues of
the simulation for various classes of our generic model. Each class is characterized by :

– the type of actions supported by the model, e.g., the service can only send messages,
or only insert in the database, ... etc,

– the languages used to instantiate respectively LT , LU and LS ,
– the presence or not of the local database (i.e., in the presence of local database, we

study weak simulation).
Table 1.2 summarizes the considered sub-classes of the generic model as well as the obtai-
ned results. We consider more precisely the following classes :

– Update-free services. This class represents services which are not able to make mo-
difications over the databases. The class of update-free service is decomposed into
two sub-classes :
– Guarded services, this class enables to focus on the role played by the language

of guards (LT) on the decidability of the simulation relation. Our main result
regarding this class lies in a full characterization of the decidability of simulation
in terms of the decidability of checking satisfiability of formulas expressed in the
language LT augmented with a restricted form of negation. We denote this lan-
guage LT ∪ {∧b, ¬b} (i.e., the conjunction and negation is applied on boolean LT

formulas). As for the case of ColomboDB=∅, we use a finite symbolic representa-
tion of update-free services by partitioning the original infinite state space into a
finite number of equivalence classes.

– Send services. This class represents update-free services which send the results of

34 Chapitre 2. Checking Simulation Preorder in the Colombo Model

(a) GA(S) (b) atomic process Perm

Figure 2.11 – A Colombodb=∅ service S.

Hence, the set of elementary intervals over K is :

IK = {[ω, ω],] − ∞, 5[, [5, 5],]5, +∞[}
while the set Rg(X, K) includes, among others, the following regions :
– rω = ([ω], [ω], {x = ω, y = ω}
– r1 = ([ω],] − ∞, 5[, {x = ω, y = y}
– r2 = (]5, +∞[,]5, +∞[, {y < x}
– r3 = (]5, +∞[,]5, +∞[, {y = x}
– r4 = (]5, +∞[,]5, +∞[, {x < y}
– r5 = (]5, +∞[, [5, 5], {y < x}
– r6 = (]5, +∞[,] − ∞, 5[, {y < x}
– . . .
The corresponding region automaton RS is depicted at figure 2.12. The initial state of

RS is made of the pair (q0, rω). We illustrate below the cases (a), (b) and (c) of definition
6 on this region automaton.

– the transition (q0, ?m1(x, y), q1) of GA(S) (c.f., figure 2.11), is translated into a set
of transitions ((q0, rω), ?m1(x, y), (q, r)) with r ∈ Rg(X, K) (case (b) of definition 6).
This captures the fact that on a reception of a message ?m1(x, y), any new values
may be associated to the variables x and y.

– the transition (q1, x > 5 | Perm(y; x), q2) of GA(S), enables to a create new transi-
tion from the state (q1, r2) of RS as illustrated below :
– ((q1, r2), P erm(y; x), (q2, r3)), this is because the region r2 satisfies both the guard

x > 5 of the transition and the condition u1 > 5 of the atomic process (case (c-1) of
definition 6). Hence, in this case the atomic process Perm is executed. The atomic
process Perm assigns variable y to the variable x, hence the region automata moves
to a region where τx := τy and requires to have x = y in the associated v-order.
In our example, region r3 satisfies both conditions.

– ((q1, r5), P erm(y; x), (q2, r5)), this is because the region r5 satisfies the guard x > 5
of the transition but does not satisfy the condition u1 > 5 of the atomic process
Perm (case (c-2) of definition 6). According to the Colombo semantics, the transi-
tion is fired but the atomic process Perm execute a no-op operation (no operation).
As a consequence, the region automata moves to state q2 while staying in the same
region r5.

– the transition ((q2, r5), !m2(x,), (q3, r5)) (case (a) of definition 6). A send of a message
does not modify values of the variables, hence upon sending the message !m2(x),

2.4. Decidability of simulation in DB-less Colombo 35

the region automaton RS moves into a new state (q3, r5) while staying in the same
region r5.

Figure 2.12 – A region automaton RS .

In the following we show that the region automata RS constitutes a compact represen-
tation of the extended state machine of E(S) and hence it faithfully abstracts the original
Colombo service S. To do so, we define the notion of unfolding of a region automaton
Unfold(RS) as given below.

Definition 7. (unfolding of region automata) Let RS = (QS , qS
0 , F S , δS , Rg(X, K)) be a

region automata of a service S. The associated extended state machine, noted Unfold(RS),
is a tuple Unfold(RS) = (Qg,Qg

0,Fg, Δg) where :
– Qg =

⋃
r∈Rg(X,K){(q, α) s.t (q, r) ∈ QS , α ∈ r}.

– Q
g
0 = {(q0, αw)}, with αw(x) = ω, ∀x ∈ LStore(S).

– Fg =
⋃

r∈Rg(X,K){(q, α) s.t (q, r) ∈ F S , α ∈ r}..
– ∀(q, r) μi−→ (q′, r′) ∈ δS, a new transition (q, α) μi−→ (q′, α′) is added to Δ such that

α ∈ r, α′ ∈ r′ and :
(a) if μ =!m(v1, . . . , vm), then α′ = α.
(b) if μ =?m(v1, . . . , vm) then ∀x ∈ LStore(S)\{v1, . . . , vm}, we have α′(x) = α(x).
(c) If μ = p(u1, . . . , un; v1, . . . , vm, {c, E}), we have two cases :
(c-1) if r ∧ θ ∧ c is consistent then ∀x ∈ LStore(S) \ {v1, . . . , vm}, we have α′(x) =

α(x) and for each i ∈ [1, m], we have :
– If vi := k ∈ E, with k ∈ D ∪ {ω}, then α′(vi) = k
– If vi := uj ∈ E then α′(vi) = α(ui)

(c-2) if r ∧ θ ∧ ¬ c is consistent, then α′ = α.

A run of Unfold(RS) is any finite path from an initial configuration of E(RS) to one
of its final configurations.

Example 18. Figure 2.13(b) depicts part of the extended automata obtained by unfol-
ding the region automata of figure 2.13(a) which corresponds to a fragment of the region
automata of figure 2.12.

2.4. Decidability of simulation in DB-less Colombo 39

Alternating Turing machine M An alternating Turing machine M [CKS81] is a tuple
(Q, q0, Γ, δ, mode) where :

– Q is the set of control states.
– q0 is the initial state.
– Γ is the set of tape symbols.
– mode : Q −→ {∀, ∃, accept , reject } is the labelling function of control state.
– δ : Q x Γ −→ P(Q x Γ x {L, R}).

A configuration C of M is of the form y1, ..., qyj , ..., yn, where q is a state of the machine,
and the head points actually on the j’th letter on the tape (i.e., yi are the letters of the
word on the tape). A transition qa −→ bRq

′ is applicable from a configuration C if the
letter pointed by the head is equal to a (yj=a), then the successor C ′ of C is equal to
y

′
1, ...y

′
j , q

′
y

′
j+1, ..., y

′
n s.t yk= y

′
k for k ∈ [1,n] and k = j and y

′
j = b. We note this step

C
qa/bRq

′
−→ C

′ or (y1, ..., qyj , ..., yn)qa/bRq
′

−→ (y′
1, ...y

′
j , q

′
y

′
j+1, ..., y

′
n). The machine M starts on

C0 = qy1, ..., yn, where yi=wi, the i’th letter of the input word w.
The definition of acceptance of an alternating Turing machine is recursive :

– If the configuration C is in an accepting control state q, then C is accepting.
– If the configuration C is in an rejecting control state q, then C is rejecting.
– If the configuration C is in a universal control state q, then C is accepting if all

the configurations reachable from C in one step are accepting and rejecting if some
configurations reachable from C in one step are rejecting.

– If the configuration C is in an existential control state q, then C is accepting if some
configurations reachable in one step are accepting and rejecting when all configu-
rations reachable in one step are rejecting (the case of classical non-deterministic
Turing machine correspond to an alternating machine where all states are existen-
tial).

M is said to accept an input word w if the initial configuration of M is accepting, and
to reject w if the initial configuration is rejecting. A configuration reachable in one step
from configuration C is called a successor of C and the set of successors of C is denoted
successors(C).

q0

q2

q1

a/aR

b/bL

b/aL

a/aR b/bL b/aL

AND

OR OR

(a) Turing machine M (b) execution of M

AND

Figure 2.14 – Alternating Turing machine M .

We consider the problem of the existence of an infinite execution of an alternating
Turing machine M on an input word w = y1, ..., yn, where yi’s are letters from Γ. That is
given a word w as input, M can make choices of existential transitions such that whatever
the transitions chosen by universal states the machine continues the execution. Assume

2.4. Decidability of simulation in DB-less Colombo 41

lq0 lq1

(a) in Sduplicator

(b) the atomic process q0aaq1R1

a/aRq0 q1

Figure 2.15 – A transition in Sduplicator corresponding to a transition of M .

lstart lq0

...

(a) initialization of the variables

(b) atomic process init

Figure 2.16 – initialization of variables in Sduplicator.

Example 21. Figure 2.16 depicts the initialization of the service Sduplicator corresponding
to the machine M of the example 19, where x1 :=a, x2 := b and head :=1.

Before giving the construction of Sduplicator, we need to introduce some notations :
– P is the set of all atomic processes used to encode actions of the machine M , it

contains the following sets :
– {qabq

′
Ri(∅; xi, head) | q

a/bR−→ q
′

in M and i ∈ [1, n − 1]}
For each transition of the machine labelled with a move to the right, we create
n-1 atomic processes to encode it.

– {qabq
′
Li(∅; xi, head) | q

a/bL−→ q
′

in M and i ∈ [2, n]}
For each transition of the machine labelled with a move to the left, we create n-1
atomic processes to encode it.

The atomic process qabq
′
Ri(∅; xi, head) has no condition, it assigns to xi the value b

and increments the head. The atomic process qabq
′
Li(∅; xi, head) has no conditions,

it assigns to xi the value b and decrements the head.
– ga

i is a condition of the form xi =a ∧ head= i. It will be used as guard on transitions
of Sduplicator.

The incrementation is not allowed in the definition of the Colombo model. When
defining the effects of the atomic process, we write the result of the sum rather than the
operation of incrementation. For example, in the atomic process qabq

′
R1(∅; x1, head),

2.4. Decidability of simulation in DB-less Colombo 43

Note that, if the machine reads or writes the special blank character B during a transition,
then we replace the constants a,b by the special symbol ω, in the construction of the
corresponding transition.

Sduplicator starts by initializing the variables representing the cells with the input

word. If M has a transition q
a/bR−→ q

′ and q is a universal state, then the service contains
n − 1 transitions from lq to lq′ labelled with condition/action : if xi=a and the head
points on i then we can execute the atomic process which modifies xi to b and increments
the head. So, Sduplicator can only execute the atomic process representing the transition

q
a/bR−→ q

′ if the actual value of xi=a and the head points on i. Note that, for any actual
valuation of variables, there is only one transition from the "n-1" transitions which can
be executed. This is due to the guards where several xi can verify the condition but the
head points only to one cell.
If q is an existential state, then Sduplicator sends a message m before executing the atomic
process. The state lcopy contains a set of self loop labelled with all atomic processes P
and !m() (if Sduplicator reaches this state, it wins the simulation). All transitions which
reach the state lcopy are used to prevent Sspoiler from cheating during the test of simulation.

The next lemma asserts that each configuration of M on the input word w has a
corresponding configuration in the extended state machine of Sduplicator. The proof is
obtained by induction (details are given in appendix A).

Lemma 6. Each configuration C of the execution of an alternating Turing machine M on
an input w has a corresponding configuration in the extended state machine of Sduplicator.

Example 22. The Figure 2.17 depicts the part of service Sduplicator corresponding to the

transition q0
a/aR−→ q1 where q0 is universal, and the two transitions q1

b/bL−→ q0 and q1
b/aL−→ q0

where q1 is an existential state of the machine M of example 19.

lstart

lq0

lcopy

lq1

choice1

choice2

Figure 2.17 – A part of the service Sduplicator.

2.5. Decidability of simulation in Colombobound 45

lstart

luniv

lexist

True | !m()

Figure 2.18 – part of Sspoiler.

Lemma 8. Given two DB-less Colombo services S, S
′, checking whether S
 S

′ is
exptime-hard.

Hence, the following theorem can now be claimed from proposition 1 and lemma 8

Theorem 5. Given two DB-less Colombo services S, S
′, checking whether S
 S

′ is
exptime-complete.

2.5 Decidability of simulation in Colombobound

We study in this section the simulation problem in the setting of a Colombo model
with a bounded global database (i.e., the size of the instance over W is at most equal to a
constant k). Given two services S and S

′ , S is k-bounded simulated by S
′ means that S

′ is
able to reproduce the behavior of S on all executions where the size of the database is at
most equal to k. We will prove that the simulation is decidable in this setting by providing
a reduction to a test of simulation between two DB-less ColomboDB=∅ services. This is
done by encoding the bounded database using a finite set of variables. First we start by
giving the definition of k-bounded extended state machines, which is used to capture the
notion of k-bounded simulation. Then we give the construction of the DB-less service and
prove the equivalence of the two tests.

2.5.1 k-bounded extended state machine Ek(S) and k-bounded simula-
tion

Let k be an integer. We call a database instance I k-bounded if |I| � k. The k-bounded
extended state machine Ek(S) of a Colombo service S is the extended state machine E(S)
of S restricted to configurations having k-bounded instances.

Definition 9. Let S be a Colombo service and E(S) = (Q,Q0,F, Δ) the associated exten-
ded state machine, then Ek(S) = (Qk,Qk

0,Fk, Δk) is the k-bounded extended state machine
of S where :

– Qk = {(l, I, α) | (l, I, α) ∈ Q and |I| ≤ k}.

The k-bounded extended state machine of S is the part of E(S) where all configura-
tions contain only k-bounded databases. Like E(S), a run σ of Ek(S) is a finite sequence

52 Chapitre 2. Checking Simulation Preorder in the Colombo Model

q0 q1

a/aR

(a) transition of M

(b) corresponding transition in Sde(c) Atomic processes

Figure 2.24 – transitions corresponding to q0
a/aR−→ q1 in M .

– finally moves to the next tuple by executing a binary addition on x1...xn.

Example 26. Figure 2.24(a) depicts a transition of the machine M of example 19. If
the actual value of the cell pointed by the head is equal to a and the machine is in
the state q0, the machine writes a, and moves to the next cell and reaches the state q1.
Suppose the input word is ab, so n=2. The part of Sduplicator representing this transition
starts by storing the value of the attribute W corresponding to the tuple identified with
the key x1x2 in the variable letter (i.e., letter := fR

n+1(x1, x2)) using the atomic process
get_cell. Then, the service tests if letter = a and writes in the current tuple the new value
of W with set_cell. After that, the service increments the binary number x1x2 using
the atomic process NEXT. As a consequence, x1x2 points on the next tuple. The guard
¬(x1 = 1 ∧ x2 = 1) prevents a move to the right if the service points on the last cell. Note
that, when encoding a transition of M , the service Sspoiler will not contain the guard letter
= a, because Sspoiler will encode all transitions that the machine can do infinitely often.

The services Sduplicator and Sspoiler will start with an initialization part where they :
1. Check if all tuples identified with key from (0, ..., 0) to (1, ..., 1) contain the symbol B,

which means the 2n cells are empty. In following, we will call the database instances
which satisfy this condition standard instances and those that do not satisfy it non-
standard instances.

2. initialize the n first tuples with the n letters of the input word w.

Example 27. Continuing with our example, figure 2.25 depicts the initialization part of
the two services. The services start by assigning zero to x1 and x2, then check if the value
of the attribute W of the actual tuple identified with the key x1x2 is equal to B. If x1x2
points on an empty tuple and it is not the last tuple (key equal 11), the services increment
the key and test the next tuple. If one of them does not contain B, then the database is
non-standard and there is simulation. If all tuples ranged from 00 to 11 contain B, the
services reinitialize the variables to zero.

For all executions starting with a non-standard database, Sspoiler
 Sduplicator is true,
because the two services have the same initialization part. Figure 2.26 depicts examples of

2.5. Decidability of simulation in Colombobound 53

lstart

lzero

linit

lstart

linit

lq0

lfaillfail

Figure 2.25 – initialization part of Sduplicator and Sspoiler.

standard and non-standard databases. As we can see, the order of tuples is not important
for standard databases (Figure 2.26(a) and figure 2.26(b)). The database depicted at figure
2.26(c) fails in the initialization part because fR

3 (1, 1) and fR
3 (0, 1) are equal to ω, and the

database depicted at figure 2.26(d) is non-standard because there are tuples with values
different from B for the attribute W .

�� �� �
����	
���

� �

� �

� �

� �

�

�

�

�

����	��������	������

�� �� �
����	
���

� �

� �

� �

� �

�

�

�

�

������	����	��������	������

�� �� �
����	
���

� �

� �

�

�

������	�	��������	������

�� �� �
����	
���

� �

� �

� �

� �

�

�

�

������	��������	������
��	������

�

Figure 2.26 – Standard database.

Now we will give the formal definition of atomic processes.

Atomic processes P is the set of all atomic processes used to encode the actions of the
machine M :

– for each transition q
a/bR−→ q

′ in M :
– get_cellqabq′ R(x1, ..., xn; letter, CE) is an atomic process with one conditional ef-

fect :
– θ : true.
– ev : letter :=fR

n+1(x1, ..., xn).
– set_cellqabq′ R(x1, ..., xn, b) is an atomic process with one conditional effect :

