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Introduction

This chapter gives a broad introduction to the field of sparse linear algebra.
The need for efficient parallel solvers is motivated by concrete examples. The

outline of this thesis as well as a list of its main contributions in the fields of
domain decomposition methods and high-performance computing are available
in section ii.2.

Ce chapitre est une est une brève introduction du domaine de l’algèbre linéaire
creuse. On motive le besoin de solveurs parallèles efficaces par des exemples

concrets. Le plan du manuscrit ainsi qu’une liste des contributions de cette thèse
dans les méthodes de décomposition de domaine et du calcul haute performance
sont disponibles section i.2.
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i Version française

i.1 Contexte
Le domaine du calcul scientifique évolue de manière très rapide depuis les années 1980

grâce à l’aide de projets innovants comme Netlib4, MPI [Snir et al. 1995], PETSc [Balay,
Gropp, et al. 1997], et d’autres. L’ensemble de ces recherches a permis aux mathématiciens
appliqués de créer des outils puissants pour simuler des phénomènes physiques complexes
comme dans [Alimi et al. 2012], en utilisant—si besoin est—un haut niveau d’abstraction. Par
le passé, les performances de ces outils étaient principalement déterminées par la fréquence
des composants sur lesquels les simulations étaient exécutées. Malheureusement, depuis les
années 2000, la fréquence des unités de calcul n’a pas crû de manière aussi soutenue que
par le passé à cause d’une trop grosse consommation énergétique, cf. figure 1. Le calcul
parallèle est ainsi devenu un paradigme important en architecture informatique, comme
indiqué figure 2. Celui-ci est déjà utilisé de manière récurrente en calcul haute performance

4url : http ://www.netlib.org/.

http://www.netlib.org/


2 Introduction

sur les supercalculateurs. De plus, à cause du ralentissement de la croissance des fréquences,
son utilisation devient également nécessaire sur des architectures moins évoluées, comme
les ordinateurs de bureau.

Un effet direct de ce changement est qu’il peut devenir plus délicat de fournir un haut
niveau d’abstraction ou d’expressivité dans les logiciels numériques parallèles. Pour cette
raison, les utilisateurs se tournent vers des algoritmes boîtes noires pour les routines les plus
gourmandes en temps de calcul, par exemple le calcul de la solution d’un système linéaire
dans une méthode de discrétisation implicite comme celle des éléments finis, cf. figure 3.

Historiquement, il existe deux classes deméthodes pour résoudre des systèmes linéaires :
les méthodes directes décrites dans [Duff, Erisman et Reid 1986] et les méthodes itératives
détaillées dans [Saad 2003]. D’une part, les méthodes directes sont connues pour être ca-
pables de résoudre tout système inversible en un nombre fini d’opérations si l’on suppose
l’absence d’erreurs d’arrondis. Ainsi, elles sont les solveurs les plus robustes, mais la quan-
tité de mémoire qu’elles nécessitent pour trouver de telles solutions peut se montrer exces-
sive dans le cas de problèmes très grands ou difficiles. D’autre part, les méthodes itératives
consomment très peu de mémoire puisqu’elles n’ont besoin de stocker que quelques vec-
teurs de la taille du problème à résoudre. En revanche, elles sont moins robustes et peuvent
même ne jamais converger vers une solution adéquate en fonction du système. C’est pour
cette raison qu’il est primordial de préconditionner les systèmes résolus par méthodes ité-
ratives. Ce procédé consiste à modifier les systèmes sus-cités sous une forme qui rend leur
résolution plus aisée. Mathématiquement parlant, si l’on cherche à résoudre un système
algébrique Ax = b en utilisant une méthode itérative, il s’avère souvent être plus efficace
de trouver un préconditionneur M−1 approchant A−1 et de résoudre M−1Ax = M−1b. Le
conditionnement de M−1A est alors bien plus faible que celui de A. Développer ou choisir
le bon préconditionneur pour un problème donné est une tâche délicate mais qui peut di-
minuer de manière conséquente le temps d’exécution des logiciels numériques. Rendre la
construction d’un préconditioneur indépendant du problème sous-jacent tout en gardant
de bonnes propriétés numériques est d’autant plus délicat. On qualifie en général de tels
préconditionneurs de purement algébriques, dont voici une liste succinte de certains des
plus connus : sparse approximate inverse [Grote et Huckle 1997], factorisation incomplète
[Saad 1994]…

Récemment, des préconditionneurs quasi-optimaux ont été introduits dans le domaine
des méthodes multigrilles [Brandt 1977] et dans celui des méthodes de décomposition de
domaine [Giraud et Haidar 2009 ; Smith, Bjørstad et Gropp 2004]. Ces deux classes d’algo-
rithmes sont généralement décrites comme hybrides. Cela s’explique par le fait que leur
but est de préconditionner un système pour une méthode itérative, tout en utilisant des
méthodes directes dans des “sous-systèmes” ou des problèmes auxiliaires pour la définition
du préconditionneur global. Une telle hybridation permet typiquement de s’assurer que ces
méthodes réspectent trois points importants pour les algorithmes parallèles.

1. Le temps nécessaire pour effectuer des opérations concurrentes par des unités de cal-
cul différentes tend à être largement supérieur à celui passé à échanger des informa-
tions entre processus ou à synchroniser. On parle de ratio calcul-sur-communication.

2. La quantité de mémoire additionnelle induite par la parallèlisation des méthodes,
e.g. pour créer des buffers pour les transferts entre processus, est plutôt faible, sur-
tout comparée à des méthodes directes parallèles. Cela permet aussi de garantir une
meilleure localité de la mémoire, ce qui peut réduire l’effet du memory wall, cf. [Wulf
et McKee 1995].
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3. En fonction de la distribution du problème initial, ces algorithmes ont naturellement
une charge équilibrée, ainsi, les unités de calcul ne sont pas sujettes à une surcharge
et peuvent optimiser l’utilisation des ressources, maximiser leur rendement, et mini-
miser le temps de réponse.

Il en résulte des méthodes fortement parallèles qui sont assez robustes pour résoudre des
problèmes complexes, comme par exemple dans [Biros et Ghattas 2005 ; Klawonn et Rhein-
bach 2010 ; Sundar et al. 2012]. Dans cette thèse, desméthodes de décomposition de domaine
pour des types de discrétisation conformes tels que la méthode des différences finies sur
grilles régulières ou la méthode des éléments finis sur maillages conformes seront étudiées.
Elles sont utilisées pour résoudre un problème défini sur un domaine global en le découpant
en plusieurs sous-problèmes de plus petites tailles et en itérant pour uniformiser la solu-
tion entre des sous-domaines voisins. Cette approche est basée sur le paradigme “diviser
pour régner”. Puisque tous les sous-problèmes sont indépendants et que les sous-domaines
communiquent uniquement à travers leur interface ou une petite zone de recouvrement
pour calculer la solution globale, les préconditionneurs par décomposition de domaine ont
ainsi un ratio calcul-sur-communication élevé, cf. item 1. L’utilisation d’un partitionneur
automatique de graphes permet la vérification de critères. Cette dernière rend la décompo-
sition du domaine global équilibrée, cf. item 3, en des sous-domaines ayant par exemple le
même nombre de points de grille ou d’éléments de maillage. Malgré tous ces points forts,
les méthodes de décomposition de domaine sont rarement disponibles de façon autonome,
notamment pour les raisons suivantes :

• les méthodes les plus avancées sont rarement purement algébriques et sont liées à la
méthode de discrétisation sous-jacente nécessaire pour l’assemblage du problème,

• il n’est pas toujours facile de détecter l’interface entre sous-domaines, ni d’avoir une
structure logicielle cohérente pour l’échange de donnés entre ceux-ci.

i.2 Résumé et contributions
Cette thèse contribue aux méthodes de décomposition de domaine et au calcul haute

performance comme détaillé ci-dessous.

Dans le chapitre 1, il est proposé au lecteur une introduction aux préconditionneurs par
décomposition de domaine. En utilisant une approche standard, on montre que leur
formalisme n’est pas nécessairement bien adapté au calcul distribué. La nouvelle for-
mulation proposée permet d’accroître le niveau de parallèlisme tant pour la construc-
tion des préconditionneurs que pour certaines étapes de prétraitement comme la gé-
nération de maillage. Il est par exemple possible, grâce à ce formalisme, d’utiliser un
mailleur et un noyau éléments finis, tous deux séquentiels, tout en effectuant des si-
mulations parallèles à grandes échelles, tant qu’un raffinement adaptatif de maillage
ou de grille n’est pas nécessaire. Cette vision unifiée des méthodes de décomposition
de domaine est particulièrement adaptée pour deux familles majeures de précondi-
tionneurs : les méthodes de Schwarz avec recouvrement et les méthodes par sous-
structuration. Dans leurs versions les plus basiques, ces préconditionneurs peuvent
rencontrer des difficultés pour la résolution de problèmes industriels complexes car
ils ne sont pas assez robustes. Une approche pour pallier à ce problème est également
présentée dans ce premier chapitre. Elle se base sur l’utilisation d’opérateurs de pro-
jection qui sont engendrés par des vecteurs propres calculés parallèlement. On les
obtient a priori en résolvant des problèmes aux valeurs propres généralisées. Il s’agit



4 Introduction

de la méthode GenEO, pour Generalized Eigenvalue problem on the Overlap, et il a
été prouvé dans des travaux antérieurs [Spillane, Dolean, et al. 2013 ; Spillane et Rixen
2013] qu’elle est théoriquement stable.

Dans le chapitre 2, une librairie unifiée pour utiliser les méthodes de décomposition de
domaine comme des solveurs en boîte noire est présentée. On se focalisera principa-
lement sur sa généricité et son abstraction qui permettent :

1. aux utilisateurs d’essayer une méthode ou une autre sans difficulté,

2. aux développeurs de maintenir et d’optimiser plus facilement la librairie,

3. de comparer sur de mêmes cas tests une grande gamme de méthodes,

4. de ne pas être lié à la méthode de discrétisation sous-jacentes pour pouvoir gé-
nérer des préconditionneurs en utilisant des entrées algébriques.

Les ingrédients nécessaires pour utiliser les méthodes de décomposition de domaine
sont rappelés dans un premier temps. La librairie est ensuite expliquée en détail :
implémentée en C++, elle utilise MPI pour le passage de messages ainsi que OpenMP
pour le parallèlisme au niveau des sous-domaines. L’implémentation est en accord
avec le formalisme algébrique introduit dans le premier chapitre. À la fin du chapitre,
un prototype autonome est expliqué. Écrit également en C++, il peut résoudre avec
une méthode de Schwarz avec recouvrement un simple problème aux limites défini
sur une grille rectangulaire en utilisant la méthode des différences finies. Cela permet
d’expliciter les différentes étapes à effectuer pour instancier la libraire.

Dans le chapitre 3, la librairie est interfacée avec deux codes éléments finis bien établis :

• FreeFem++, un langage dédié qui permet la discrétisation de formulations va-
riationnelles d’équations aux dérivées partielles avec la méthode des éléments
finis en utilisant son propre langage interprété,

• Feel++, un langage dédié embarqué dans le C++ qui peut être appelé à partir
d’un code Python ou C++ pour la résolution d’équations aux dérivées partielles
avec des méthodes de Galerkin généralisées.

Encore une fois, les avantages de la reformulation effectuée dans le chapitre 1 et la
généricité de la libraire du chapitre 2 sont bien visibles car les deux codes éléments fi-
nis varient sur plusieurs points. Les méthodes de décomposition de domaine peuvent
être appelées facilement :

• depuis FreeFem++, en rajoutant des mots-clefs dans le langage pour manipuler
les préconditionneurs sans effort,

• dans Feel++, en utilisant judicieusement ses structures de données internes so-
phistiquées et en inférant ainsi les informations nécessaires pour initialiser et
utiliser les préconditionneurs.

Dans le chapitre 4, des stratégies avancées pour améliorer le passage à l’échelle de la li-
brairie introduite dans le chapitre 2 sont présentées. Un nouvel algorithme pour as-
sembler et pour utiliser les opérateurs de projection définis dans le chapitre 1 est
d’abord étudié. Cela engendre une méthode optimale en terme de nombre de mes-
sages et d’échanges entre processus. Ensuite, on montre comment les méthodes de
décomposition de domaine peuvent bénéficier d’un parallèlisme à granularité plus
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fine en utilisant le multithreading pour accélérer des calculs locaux à chaque sous-
domaine. On explique également comment utiliser les opérateurs de projection de
façon asynchrone. C’est un point important pour minimiser la surcharge des pro-
cessus responsables de ces opérateurs, entrainant ainsi une meilleure répartition de
charge. Pour finir, ces améliorations peuvent être combinées pour fournir un solveur
itératif avec peu de synchronisation. Cette classe de méthode devient cruciale pour
le passage à l’échelle sur les architectures extrêmes où le coût des communications
et des synchronisations croient bien plus rapidement que celui du coût arithmétique
de ces méthodes.

Dans le chapitre 5, les performances du code développé lors de cette thèse sont évaluées
et l’on observe des résultats quasi-optimaux jusqu’à 16 384 threads pour résoudre des
problèmes elliptiques bi- et tridimensionnels exécutés sur Curie, un supercalculateur
français PFLOP/s-ique. Un test de passage à l’echelle fort (resp. faible) illustre com-
ment la librairie se comporte lorsque le nombre de processus pour résoudre des pro-
blèmes globaux (resp. des problèmes locaux) de taille fixe augmente. Ce chapitre se
termine par deux comparaisons avec des solveurs de pointe pour certifier le potentiel
de la librairie :

• d’une part, les méthodes de Schwarz avec recouvrement étudiées dans le cha-
pitre 1 et des préconditionneurs multigrilles sont utilisés pour résoudre des sys-
tèmes linéaires distribués sur 4 192 processus,

• d’autre part, les préconditionneurs par sous-structuration et des solveurs directs
sont comparés pour la résolution sur 2 à 64 processus d’un problème global fixe
de cinq millions d’inconnues.

Tous ces résultats numériques prouvent l’efficacité de la méthodologie détaillée dans
les chapitres précédents pour résoudre des problèmes de quelquesmillions à plusieurs
milliards d’inconnues.

En conclusion, des directions pour des recherches futures sont proposées.

! Le reste de ce manuscrit est rédigé en anglais, à l’exception
des chapeaux de chaque chapitre qui sont également traduits.
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ii.1 Context
The field of scientific computing is evolving at an impressive rate since the 1980s thanks
to the help of pioneering projects like Netlib5, MPI [Snir et al. 1995], PETSc [Balay, Gropp,
et al. 1997], and such. Altogether, these pieces of research help applied mathematicians cre-
ate powerful tools for performing advanced numerical simulations as in [Alimi et al. 2012],
using a—possibly—high-level of abstraction. In the past, their throughputs were mainly
determined by the frequencies of the chips on which the simulations were running. Unfor-
tunately, since the mid-2000s, frequencies of computing units have not scaled as steadily as
before due to an increased power consumption, see fig. 1.
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Fig 1: Frequency and number of transistors of some Intel processors clearly
showing the end of frequency scaling around the 3 GHz mark.

Parallel computing has now become the dominant paradigm in computer architecture,
as for example displayed in fig. 2. While it has been employed for many years in the field
of high-performance computing on supercomputers, it is also becoming a necessity on less
sophisticated architectures like desktop computers because of the end of frequency scaling.
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A direct effect of this switch is the fact that it can now be harder to provide a high-level
of abstraction or expressivity with parallel numerical software. For that reason, end-users
are favoring black box algorithms for most time-consuming routines, such as computing
the solution of a linear system in an implicit discretization method like the finite element
method, cf. fig. 3.
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Fig 3:
Wall-clock times spent in various steps of a complete fi-
nite element simulation using Feel++ [Prud’homme 2006]
for solving Stokes equations in three dimensions.

There are historically two classes of
methods for solving linear systems:
direct methods described in [Duff,
Erisman, and Reid 1986] and itera-
tive methods depicted in [Saad 2003].
On the one hand, direct methods are
known to be able to find a solution
to any nonsingular problem in a fi-
nite number of operations, not tak-
ing round-off errors into account. In
that sense, they are the most robust
solvers, but the memory requirements
to compute such a solution can some-
times be excessive when looking at re-
ally large or complex problems. On
the other hand, iterative methods have
really low memory consumption since
they usually only need to store few
problem-sized vectors, but they are less
robust and might not always converge
to an appropriate solution depending on the problem. Therefore, it is of paramount impor-
tance to precondition a system when using iterative methods, that is, to transform the said
system into a form that is more suitable for solution. Mathematically speaking, if one tries
to solve the algebraic system of equationsAx = b using an iterative method, then it is com-
monly far more efficient to find a suitable preconditioner M−1 that approximates A−1 and
solveM−1Ax = M−1b, where the condition number of M−1A is much lower than the one
of A. Developing or choosing the right preconditioner for a given problem is a hard task
in itself but can lead to tremendous improvements in numerical software runtimes. Mak-
ing the construction of a preconditioner oblivious to the problem underlying the system
while maintaining good numerical properties is even harder. Such oblivious precondition-
ers are often referred to as fully algebraic, and here are some of the most established: sparse
approximate inverse [Grote and Huckle 1997], incomplete factorization [Saad 1994]…

Recently, near-optimal preconditioners have been introduced in the field of multigrid
methods [Brandt 1977] and domain decompositionmethods [Giraud andHaidar 2009; Smith,
Bjørstad, and Gropp 2004]. These two groups of algorithms are often described as hybrid
methods. That is because they are ultimately used to precondition a system for an iterative
method, but direct methods are also employed within the definition of the global precon-
ditioner on some smaller “subsystems” or auxiliary problems. Such hybridization usually
ensures that these preconditioners comply with three important features of parallel algo-
rithms.

1. The time spent carrying out concurrent operations by different processing units tends
to be much higher than the one spent exchanging inter-process information or syn-
chronizing. This is referred to as the computation-to-communication ratio.
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2. Thememory overhead induced by the parallelization of thesemethods, e.g. for buffer-
ing inter-process transfers, is rather low, especially when comparing with parallel di-
rect methods. They can also guarantee better locality of reference, which may reduce
the effect of the memory wall, cf. [Wulf and McKee 1995].

3. Depending on the distribution of the initial problem, these algorithms are naturally
load balanced, which means that each processing unit is not subject to overload and
can optimize resource use, maximize throughput, and minimize response time.

This results in highly concurrent methods that are robust enough to solve complex prob-
lems, see [Biros and Ghattas 2005; Klawonn and Rheinbach 2010; Sundar et al. 2012] for
examples. In this thesis, domain decomposition methods for conforming discretization
techniques such as the finite difference method on a regular grid or the finite element
method on conforming meshes will be studied. They are used to solve a problem defined
on a global domain by splitting it into smaller problems on subdomains and iterating to
coordinate the solution between neighboring subdomains: this is based on the “divide &
conquer” paradigm. Because all smaller problems are independent and that neighboring
subdomains only communicate through their interfaces or a small overlapping region for
computing the global solution, domain decomposition preconditioners indeed have a high
computation-to-communication ratio, cf. item 1. Using automatic graph partitioners, it is
possible to verify some criteria that will result in a balanced split of the global domain, cf.
item 3, into subdomains that have for example the same number of grid points or mesh
elements. Despite all these favorable factors, domain decomposition methods are seldom
available as standalone solvers for few reasons:

• most advanced methods are not purely algebraic and are linked to the underlying
discretization technique used to assemble the problem,

• it is not always easy to detect the interface between subdomains and have a coherent
software architecture to exchange data between these.

ii.2 Summary and contributions
This thesis makes contributions to the fields of domain decomposition methods and high-
performance computing as detailed next.

In chapter 1, the reader is introduced to domain decomposition preconditioners. Using a
standard approach, it is shown that the formalism does not necessarily fit with dis-
tributed computing. A new formulation is proposed to provide an increased concur-
rency, both for the setup of the preconditioners, but also for the preprocessing steps
such as mesh generation. As an example, it is possible, thanks to this formulation,
to use a sequential mesher and sequential finite element kernel and still be able to
perform large-scale parallel experiments, as long as there is no need for adaptive grid
or mesh refinement. This unified vision of domain decomposition methods is par-
ticularly well-suited for two major families of preconditioners: overlapping Schwarz
methods and substructuring methods. In their most basic versions, these precondi-
tioners may face difficulties for solving challenging industrial problems because they
are not robust enough. An approach for addressing this hurdle is also described in
the first chapter. It is based on the use of projection operators which are spanned
by eigenvectors computed concurrently. They are obtained a priori by solving lo-
cal generalized eigenvalue problems. This method is called GenEO, for Generalized
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Eigenvalue problem on the Overlap, and was proven to be theoretically scalable in
other prior works [Spillane, Dolean, et al. 2013; Spillane and Rixen 2013].

In chapter 2, a unified framework for using these domain decomposition methods as black
box solvers is presented. Emphasis is put into genericity and abstraction, so that:

1. it is convenient for a user to try one method or another one,

2. it easier to maintain and optimize the framework as a developer,

3. comparing a wide range of methods on the same problem is achievable without
great effort,

4. there is no link with the underlying discretization technique so that the precon-
ditioners can be created using algebraic inputs.

The necessary ingredients for performing domain decomposition methods are re-
called first. Then, the framework is described in great detail: implemented in C++, it
utilizes MPI for message passing as well as OpenMP for subdomain-level parallelism.
The implementation is congruous with the algebraic formalism introduced in the first
chapter. At the end of the chapter, a standalone prototype is explained. Written also
in C++, it can solve with an overlapping Schwarz method a simple boundary value
problem on a rectangular grid using the finite difference method. It is helpful to
present the different steps that need to be conducted to instantiate the framework.

In chapter 3, the framework is interfacedwith two long-established finite element libraries:

• FreeFem++, a domain-specific language that lets users discretize variational for-
mulations of partial differential equations using the finite element method using
its own interpreted language,

• Feel++, a domain-specific embedded language inside C++ that may be called
from Python or directly fromC++ for solving partial differential equations using
generalized Galerkin methods.

Once again, the benefits of the reformulation done in chapter 1 and of the genericity of
the framework in chapter 2 are clearly displayed since both libraries differ in various
aspects. The domain decomposition methods can be easily called:

• in FreeFem++, by adding new keywords in the language to manipulate the pre-
conditioners effortlessly,

• in Feel++, by taking advantage of the sophisticated internal data structures of
the library and inferring the necessary information for initializing and using the
preconditioners.

In chapter 4, advanced strategies for further improving the scalability of the framework in-
troduced in chapter 2 are presented. A novel algorithm for assembling and using the
projection operators defined in chapter 1 is studied first. It leads to an optimal method
in terms of number of messages and inter-process exchanges. Then, it is shown how
domain decomposition method can benefit from fine-grained parallelism using mul-
tithreading for accelerating computations local to each subdomain. It is furthermore
explained how it is possible to use the projection operators asynchronously. This is
important for minimizing the overload of the processes in charge of these operators,
and in the end, induce better load-balancing. Eventually, these enhancements may
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be combined to provide a synchronization-avoiding iterative solver. This class of al-
gorithms is becoming crucial for scaling on extreme-scale architectures where the
communication and synchronization costs are growing at a much faster pace than
the arithmetic cost of these methods.

In chapter 5, the performance of the code developed during this thesis are evaluated and
almost optimal scaling results are observed on up to 16 384 threads for solving bi- and
tridimensional elliptic problems executed onCurie, a French PFLOP/s supercomputer.
A strong (resp. weak) scaling experiment illustrates how the framework behaves
with increasing number of processes and threads for fixed global problem sizes (resp.
fixed problem sizes per processes and threads). Eventually, two comparisons with
cutting-edge solvers assess the potential of the framework:

• on the one hand, overlapping Schwarz methods studied in chapter 1 and multi-
grid preconditioners solve linear systems on 4 192 processes,

• on the other hand, substructuring preconditioners and direct solvers are bench-
marked for solving a fixed global problem of five million unknowns on 2 up to
64 processes.

All these numerical results prove the effectiveness of the workflow detailed in the
preceding chapters for solving problems of few millions up to billions of unknowns.

As a conclusion, some directions for future research are presented.
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Chapter 1
Domain decomposition
preconditioners and

high-performance computing

Some fundamental aspects of domain decomposition methods are recalled in
sections 1.1 and 1.2. Particular emphasis is placed on the reformulation of

these methods, as partially done in [Dolean, Jolivet, and Nataf 2014], so that they
can be used inside a high-performance framework. Section 1.3 gathers ways to
improve standard preconditioners using generalized eigenvalue problems.

Quelques points clefs des méthodes de décomposition de domaine sont rappelés
dans les sections 1.1 et 1.2. On insiste particulièrement sur la reformulation

de ces méthodes, comme déjà partiellement effectuée dans [Dolean, Jolivet et Na-
taf 2014], de sorte qu’elles peuvent être utilisées dans une libraire à haute perfor-
mance. La section 1.3 explique comment améliorer des préconditionneurs basiques
en utilisant des problèmes aux valeurs propres généralisées.

Contents
1.1 Overlapping Schwarz methods . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Towards an efficient formulation for distributed computing . . . 19

1.1.2 One-level methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.3 Two-level methods . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Substructuring methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 Balancing Neumann-Neumann preconditioner . . . . . . . . . . 29

1.2.2 FETI preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Improving preconditioners using spectral information: GenEO . . 33

1.3.1 Overlapping methods . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.2 Substructuring methods . . . . . . . . . . . . . . . . . . . . . . . 35

It is presumed now that the Partial Differential Equation (PDE) being solved on a domain
Ω ⊂ Rd (d = 2 or 3) can be written in variational formulation, that is one needs to:

find u ∈ H1
0 (Ω) such that a(u, v) = l(v) , (1.1)

where a is a bilinear symmetric coercive form and l ∈ H1
0 (Ω)

? lies in the dual space.

Let T =
e⋃

i=1

{Ki} be a mesh of Ω, i.e. a tessellation of Ω made of e triangles, tetrahedra,
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quadrilaterals… on which a finite set of n basis functions {φi}ni=1 spans the finite element
space V so that all functions of u ∈ H1(Ω) can be discretized as:

u ≈ uh =
n∑

i=1

uh[i]φi , (1.2)

where ∀i ∈ J1;nK, uh[i] represents the value of the ith degree of freedom associated with
the finite element function uh. The finite element function uh can be seen as a vector of
scalar in Rn whose ith entry equals uh[i], so that throughout this document, the following
abuse of notation will be made:

uh ≡
n∑

i=1

uiεi ∈ Rn ,

where {εi}ni=1 is the canonical basis of Rn. From now on, it will be accepted that all dis-
cretized functions can be seen as vectors, so that the subscript h will be dropped. The basis
functions are frequently chosen as continuous linear functions (P1 finite elements) or con-
tinuous quadratic functions (P2 finite elements). The finite element method then leads to
the following linear system:

Au = f, (1.3)

where (Aij)16i,j6n =

∫
Ω

a(φj, φi) and (fi)
n
i=1 =

∫
Ω

l(φi).

It is now assumed that all the elements
e⋃

i=1

{Ki} have been partitioned into N disjoint

sets {Ti}Ni=1. Let Ωi be the subdomain associated with Ti, i.e. Ωi =
⋃
τ∈Ti

τ , so that:

Ω =
N⋃
i=1

Ωi,

∀i ∈ J1; eK,∃!j ∈ J1;NK : Ki ∈ Tj.

Let Oi be the set of neighboring subdomains, that is

Oi = {j ∈ J1;NK : at least one element of Tj touches Ti}, (1.4)

and additionally, let Oi = Oi ∪ {i}.
The notion of set will be used to represent an abstract data structure that stores unique
values. Hence, for a set S of #S integers1, the following abuses of notation will be made:

• S(i) will refer to the ith element of the set, ∀i ∈ J1; #SK,

• S−1(s) will refer to the index of element whose value equals s, ∀s ∈ S .

1.1 Overlapping Schwarz methods
Schwarz [1870] was interested in proving the existence of solutions to Poisson’s equation
given a source term f and a complex domain Ω:

−∆u = f in Ω

u = 0 on ∂Ω .
(1.5)

1#S equals to the number of elements in the set S .



1.1 Overlapping Schwarz methods 15

The domain was at that time the union of two subdomains, a rectangle Ω1 and a circle Ω2

displayed fig. 1.1, so that the Fourier [1822] transform could be used independently to solve
the equation on each regular geometry.

Ω1

Ω2

Fig 1.1: Original geometry used to introduce the alternating Schwarz method.

The problem was then to come up with a way to solve the equation on the complete
domain Ω. This can be done by using an iterative method that exchanges information
between subdomains at each step. This is called the alternating Schwarz method. Given a
first iterate u0

2, solve:

−∆um+1
1 = f in Ω1

um+1
1 = 0 on ∂Ω1 ∩ ∂Ω

um+1
1 = um

2 on Ω \ Ω1

−∆um+1
2 = f in Ω2

um+1
2 = 0 on ∂Ω2 ∩ ∂Ω

um+1
2 = um+1

1 on Ω \ Ω2

By its very nature, this approach is not parallel since the solution of Poisson’s equation on
subdomain Ω2 at iteration m + 1 depends on the solution on subdomain Ω1 at the same
iteration. However, a slight modification of the original Schwarz method as studied at the
continuous level by Lions [1988] yields a fully parallel algorithm. Given a first couple of
iterates (u0

1, u
0
2), solve:

−∆um+1
1 = f in Ω1

um+1
1 = 0 on ∂Ω1 ∩ ∂Ω

um+1
1 = um

2 on Ω \ Ω1

−∆um+1
2 = f in Ω2

um+1
2 = 0 on ∂Ω2 ∩ ∂Ω

um+1
2 = um

1 on Ω \ Ω2

This algorithm plays a fundamental role in the rest of this section. It will first be extended
to the case when there are more than two subdomains, and its algebraic formulation will
be given afterwards.

Algebraic tools

The previous example will now be extended to the case of many subdomains. For that rea-
son, it is important to introduce some algebraic notations that will be used throughout this
section.
The decomposition, with one level of overlap

{
T 1
i

}N

i=1
is obtained by including all the ad-

jacent elements of Ti, i.e. all elements of T sharing at least one vertex, one edge or one
face (in R3) with at least one element of Ti, into T 1

i . Recursively, the decomposition with
l levels of overlap

{
T l
i

}N

i=1
can be defined, and the subdomains

{
Ωl

i

}N

i=1
accordingly. All

sets of neighboring subdomains {Oi}Ni=1 defined eq. (1.4) are extended to include indices of
overlapping neighboring subdomains, i.e. ∀i ∈ �1;N�,

Oi = Oi

l−1⋃
m=1

{j ∈ �1;N� : at least one element of T m
j touches T m

i }.
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Figure 1.2 is a simple example of such decompositions for a two-dimensional domain. Note
that the width of the overlap is of characteristic size 2l elements.

(a) Original partition (b) One level of overlap (c) Two levels of overlap

Fig 1.2: Decomposition of Ω = [0; 1]2 into N = 5 color-
coded subdomains with different levels of overlap.

During the recursion, it is possible to define piecewise linear functions thatwill be useful
afterwards. Let

{
χ̃l
i

}N

i=1
be functions of

{
Ωl

i

}N

i=1
defined as such:

χ̃l
i =

{
1 on all nodes of Ω0

i

1− m

l
on all nodes of Ωl

i \ Ω
l−1

i ∀m ∈ �1; l� , (1.6)

For clarity, the number of levels of overlap for the decomposition is considered in this
section to be a fixed positive integer l, and the superscript l will be omitted.
On each Ωi, the finite element space Vi is built using the same basis functions as in eq. (1.2)
which support intersectsΩi. A basis function φk is associated either with an interior degree
of freedom (d.o.f.) of subdomain i if supp(φk) ⊂ Ωi or to a boundary d.o.f. otherwise. Note
that for all boundary d.o.f., the local function χ̃i evaluates to 0. The local number of d.o.f.
of each Vi will be referred to as ni.

Definition 1.1 (restriction operators). In order to write algorithms that act on global solution
vectors in V , restriction operators {Ri}Ni=1 from global functions in V to local functions in
{Vi}Ni=1 are needed. They are, from a discrete point of view, rectangular matrices of size ni×n
filled with zeros and a single nonzero coefficient equal to one per row. Their dual operators, i.e.
the extension operators from functions in {Vi}Ni=1 to V , are simply

{
RT

i

}N

i=1
. Using eq. (1.2)

and identifying once again a finite element function and its vector of degrees of freedom., the
following algebraic definition can be given:

∀(u, i) ∈ Rn × �1;N�, Riu =
∑

j : int(supp(φj))∩Ωi �=∅

u[j]φj =

ni∑
j=1

ujε
(i)
j ∈ Rni , (1.7)

where ∀i ∈ �1;N�, the set
{
ε
(i)
j

}ni

j=1
is the canonical basis of Rni .

The matrices {Ri}Ni=1 are used to fulfill a very specific role: transfer information be-
tween subdomains. They can be used to define additional tools.

Definition 1.2 (numbering). Let {Ni}Ni=1 be defined as:

∀i ∈ �1;N�, Ni is the set (of size ni) of indices of nonzero columns in Ri. (1.8)
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Let (i, j) ∈ J1;NK2. Then if j 6∈ Oi, Ni ∩ Nj = ∅. Moreover, eq. (1.7) can be restated
using the following formulae:

∀(u, i) ∈ Rn × J1;NK, Riu =
∑
j∈Ni

ujε
(i)

N−1
i (j)

∈ Rni ,

∀i ∈ J1;NK,∀u(i) ∈ Rni, RT
i u

(i) =

ni∑
j=1

u
(i)
j εNi(j) ,

=
∑
j∈Ni

u
(i)

N−1
i (j)

εj ∈ Rn .

(1.9)

Definition 1.3 (partition of unity). A set of square diagonal matrices {Di ∈ Rni×ni}Ni=1 is a
partition of unity if the following equality holds:

N∑
i=1

RT
i DiRi = I ∈ Rn×n . (1.10)

Such a set can be algebraically defined as follows:

∀i ∈ J1;NK, (Di)jk16j6ni
16k6ni

=

{
1/#{l ∈ Oi : Ni(j) ∈ Nl} if j = k
0 otherwise.

Based on eq. (1.6), it is possible to give another construction for the diagonal matrices
{Di}Ni=1. Let {X̃(i)}Ni=1 be the finite element interpolations of {χ̃i}Ni=1 from the space of
local piecewise linear functions to each {Vi}Ni=1. Then, define locally

{
X(i)

}N
i=1

which are
functions of each {Vi}Ni=1 such that:

∀i ∈ J1;NK, X(i) =
X̃i

N∑
j=1

X̃
(j)
|Ωi∩Ωj

.

It is straightforward to verify that:

N∑
i=1

X(i) = 1 ,

therefore, the diagonal matrices {Di}Ni=1 defined as follows verify eq. (1.10):

∀i ∈ J1;NK, (Di)jk16j6ni
16k6ni

=

{
X(i)[j] if j = k
0 otherwise.

For exotic finite elements, the discretized partition of unity given below might not lead to
an analytical partition of unity.

A short example of such operators is given below for a two-dimensional domain dis-
cretized with line segments. Nodal continuous piecewise linear finite elements and a de-
composition into three subdomains with one level of overlap are now considered, so the
first step is to number each node of the original mesh and partition it. The finite element
nodes are identified by each end points of the line segments in figs. 1.3 to 1.4.
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1

2 3

4

5

6

7

8

(a) Node numbering of V

Ω1

Ω3Ω2

(b) Nonoverlapping decomposition

Fig 1.3: Initial numbering of the finite element space V
and decomposition of Ω into N = 3 subdomains.

It is now possible to:
a. build the overlapping decomposition as previously and create the numbering of each

local finite element space Vi:

3

2 1

5

4
(a) Node numbering of V1

3

2

1
(b) Node numbering of V2

2

1

3

6

5

4

(c) Node numbering of V3

Fig 1.4: Local numbering of each local finite element space.

b. assemble the restriction matrices {Ri}Ni=1 and the partition of unity {Di}Ni=1 concur-
rently:

R1 =


0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

 R2 =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0

]
R3 =


0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

.
c. create the sets {Ni}Ni=1:

N1 = {3, 2, 1, 5, 8} N2 = {7, 6, 1} N3 = {6, 1, 2, 4, 5, 8} .

Definition 1.4. Let (i, j) ∈ J1;NK2. Then define the rectangular or square matrices

Aij = RiAR
T
j ∈ Rni × Rnj . (1.11a)

Going back to the definition of A in eq. (1.3), these matrices can be computed as follows:

(Aij)kl16k6ni
16l6nj

=

∫
Ω

a(φNj(l), φNi(k)) . (1.11b)

If A is symmetric positive definite, then so are all {Aii}Ni=1.
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Proposition 1.1. Let (i, j) ∈ J1;NK2. Then,

if j 6∈ Oi, RiR
T
j = 0.

Proof. Looking at each coefficient of the matrix-matrix product RiR
T
j , one has:

(RiR
T
j )kl16k6ni

16l6nj

=
n∑

m=1

(Ri)km
(
RT

j

)
ml

=
n∑

m=1

(Ri)km (Rj)lm

=
∑

m∈Ni∩Nj

(Ri)km (Rj)lm

Then j 6∈ Oi =⇒ (RiR
T
j )kl16k6ni

16l6nj

= 0, i.e. Ni ∩Nj = ∅.

1.1.1 Towards an efficient formulation for distributed computing
It is proved in this section how to compute:

• the matrix-vector product Au without explicitly building the complete linear sys-
tem A,

• the dot product (v, u) =
n∑

i=1

viui in parallel.

All vectors
{
u(i)
}N
i=1

are supposed to be stored in a local contiguous block of memory. In
total, storage for

∑N
i=1 ni scalars must be allocated, which is larger than the size n of the

original system. Using the mathematical formalism, duplicated unknowns will have the
same value across processes which could then be accessed without any interprocess com-
munications. These algebraic operations are key in an iterative method, because they could
be called multiple times per iteration. Avoiding the explicit construction of the complete
system A can be quite useful if a decomposition similar to fig. 1.4 is used, and that it is
assumed that local meshes and finite element spaces are distributed among a group of pro-
cesses. In that case, each process i ∈ J1;NK can only assemble easily its own diagonal
block Aii.

Proposition 1.2. Let (u, i) ∈ Rn × J1;NK. Then,

RT
i Riu = u ⇐⇒ ∀j ∈ J1;nK \ Ni, uj = 0 .

Proof. Using eq. (1.9) for (u, i) ∈ Rn × J1;NK, one has:

RT
i Riu =

∑
j∈Ni

ujεj ∈ Rn ,

so that RT
i Riu =

n∑
j=1

ujεj ⇐⇒ uj = 0, ∀j ∈ J1;nK \ Ni.

Proposition 1.3. Let (u, i) ∈ Rn × J1;NK. Then,

∀j ∈ J1;nK \ Ni, (AR
T
i DiRiu)j = 0 .
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Proof. Using eq. (1.9) for (u, i) ∈ Rn × J1;NK and the fact that diagonal entries of Di

associated with boundary d.o.f. are equal to 0 one has:

∀k ∈ J1;nK, (RT
i DiRiu)k 6= 0 =⇒ supp(φk) ⊂ Ωi ,

and because ∀(j, k) ∈ J1;nK2, Ajk 6= 0 =⇒ int (supp(φj)) ∩ int (supp(φk)) 6= ∅, one can
infer that:

∀j ∈ J1;nK, int (supp(φj)) ∩

 ⋃
k : supp(φk)⊂Ωi

supp(φk)


︸ ︷︷ ︸

=Ωi

= ∅ =⇒ (ART
i DiRiu)j = 0 .

By definition, int (supp(φj)) ∩ Ωi = ∅ ⇐⇒ j 6∈ Ni, cf. eq. (1.7).

As a consequence of propositions 1.2 and 1.3, the following theorem is the cornerstone
of the matrix-vector product.

Theorem 1.4. Let u ∈ Rn. Then,

Au =
N∑
i=1

RT
i RiAR

T
i DiRiu

=
N∑
i=1

RT
i AiiDiRiu .

Proof. Using eq. (1.10),

Au =
N∑
i=1

ART
i DiRiu .

Given i ∈ J1;NK, applying prop. 1.3 to the ith term of the previous sum leads to:

∀j ∈ J1;nK \ Ni, (AR
T
i DiRiu)j = 0,

such that, using prop. 1.2 gives:

RT
i RiAR

T
i DiRiu = ART

i DiRiu .

The previous equality being true for all i ∈ J1;NK:
N∑
i=1

RT
i RiAR

T
i DiRiu =

N∑
i=1

ART
i DiRiu .

It is now possible to compute the matrix-vector product without the off-diagonal blocks
of A. This might seem counterintuitive at first, but can be explained by the fact that un-
knowns are duplicated in the overlap, so that part of local stiffness matrices {Aii}Ni=1 are
also duplicated and this can be used in conjunction with the partition of unity.
Because it is assumed that the local finite element spaces are distributed among processes,
there is actually no need to compute the complete vectorAu. Instead, its restriction to each
local finite element space is given by:

∀i ∈ J1;NK, RiAu = Ri

N∑
j=1

RT
j AjjDjRju

=
∑
j∈Oi

RiR
T
j AjjDjRju using proposition 1.1. (1.12)
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In eq. (1.12), there are only local operations, except thematrix-matrix products
{
RiR

T
j

}
16i6N
j∈Oi

.

These operators are used to exchange information on the overlap between subdomains, and
as a consequence, for i ∈ J1;NK and j ∈ Oi, the action of RiR

T
j on a vector u(j) ∈ Rnj can

be computed as:
RiR

T
j u

(j) =
∑

k∈Ni∩Nj

u
(j)

N−1
j (k)

εN−1
i (k) ∈ Rni . (1.13)

A satisfying property of eq. (1.13) is that it does not involve any global information: there
is no need for a numbering of the finite element space V as done fig. 1.3. This is convenient
when there is no actual way to compute the global numbering, when the finite element
kernel is sequential or used as a black box and can only provide elementary finite element
matrices.

Theorem 1.5. Let (u, v) ∈ Rn × Rn. Then,

(u, v) =
N∑
i=1

(Riu,DiRiv) .

Proof. Using eq. (1.10), this is a direct consequence because:

(u, v) =

(
u,

N∑
i=1

RT
i DiRiv

)
=

N∑
i=1

(Riu,DiRiv)

=
N∑
i=1

(
u(i), Div

(i)
)
.

This time, theorem 1.5 displays how it is possible to compute a dot product using local
dot products followed by a summation over all subdomains.

1.1.2 One-level methods
Two preconditioners will now be introduced to solve eq. (1.3). They are based on the idea
illustrated in the introductory paragraph of this section, which is itself based on the “divide
& conquer” paradigm: for solving one very large sparse linear system, it might be adequate
to use a preconditioner using N smaller linear systems. Once again, it will be stressed
how it is possible to avoid global information so that it is feasible to work on simple data
structures.

Additive Schwarz method

The Additive Schwarz Method (ASM) is a preconditioner used for the following fixed-point
iteration:

um+1 = um +M−1
ASM(f − Aum) ,

where M−1
ASM is defined as the sum of all local solvers. That is,

M−1
ASM =

N∑
i=1

RT
i Aii

−1Ri .

If thematrixA is symmetric, thenM−1
ASM is also symmetric. Restricted to a single subdomain,

the left multiplication of a vector u ∈ Rn by this preconditioner yields for i ∈ J1;NK:

RiM
−1
ASMu = Ri

∑
j∈Oi

RT
j Ajj

−1u(j) . (1.14)
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Note that there is no need for global information, only local and transfer operators {Aii}Ni=1,
{RiR

T
j }16i6N

j∈Oi

.

If the subdomains are of characteristic sizeH , and if the level of overlap is kept constant,
it was shown by Le Tallec [1994] that the condition number of the preconditioner system

grows as
1

H
. This means that, for a given domain Ω, if the number of subdomains in the

decomposition increases, their characteristic size will decrease and the condition number
will increase. In the end, an iterative solver preconditioned by such a method will not scale
to large numbers of subdomains because its number of iterations to reach a desired accuracy
will increase.

Restricted additive Schwarz method

The Restricted Additive Schwarz method (RAS) is a variant of ASM which was introduced
by Cai and Sarkis [1999] and is then used for the following fixed-point iteration:

um+1 = um +M−1
RAS(f − Aum) ,

where M−1
RAS is defined as the sum of all local solvers weighted by some partition of unity.

That is,

M−1
RAS =

N∑
i=1

RT
i DiAii

−1Ri .

Even if the matrix A is symmetric, the preconditionerM−1
RAS is not symmetric. Restricted to

a single subdomain, the left multiplication of a vector u ∈ Rn by this preconditioner yields
for i ∈ J1;NK a formulation close to eq. (1.14):

Riu = Ri

∑
j∈Oi

RT
j DjAjj

−1u(j) . (1.15)

Further extensions of RAS have been made, see for example [Cai, Dryja, and Sarkis 2003].

1.1.3 Two-level methods
By looking at eqs. (1.14) and (1.15), it is clear that at each iteration, a subdomain i only
communicates information to its nearest neighbors Oi. This lack of global exchange be-
tween all subdomains explains the condition number of one-level methods that does not
scale as the number of subdomains N increases: the high-frequency errors can be reduced
quickly but low eigenvalues in the preconditioned systems hamper the reduction of low-
frequency errors. The goal is then to introduce an additional operator that will deal with
these low eigenvalues. The way a second level is added to a basic one-level preconditioner
is a standard approach that has many similarities with the field of multigrid methods, see
for example [Vassilevski 2008].

Definition 1.5 (Galerkin operator). LetZ be a full rank, tall and skinnymatrix of dimensions
n×m (m� n). Then, define the Galerkin operator2 E as:

E = ZTAZ ∈ Rm×m . (1.16)

If A is symmetric positive definite (SPD), then so is E.

2Also referred to as RAP (Restriction Prolongation) in the multigrid community.
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Because E is of lower dimension than A, it will be referred to as a coarse operator. It is
used to enrich a one-level method M−1, for example additively:

P−1
AD = ZE−1ZT +M−1 . (1.17)

In section 1.3, an automatic and efficient way to build the deflation subspace matrix Z will
be presented, but a simple approach is given here first. It was introduced by Nicolaides
[1987] where the author chose Z as:

∀(i, j) ∈ Rn × RN , Zij =

{
(Dj)N−1

j (i)N−1
j (i) if i ∈ Nj

0 otherwise.
(1.18)

If on each subdomain j ∈ J1;NK, a constant vector 1i equal to 1 is defined on Vi, then Z is
nothing else than the column-wise concatenation of all {RT

i 1i}Ni=1. This works well in the
case of Poisson’s equation, as this time, unlike one-level methods, P−1

AD theoretically scales
with increasing numbers of subdomains—for a proof, see [Dolean, Jolivet, and Nataf 2014].
Other deflation subspace matrices have been introduced, for example by Sarkis [2003], that
make two-level methods for systems of PDEs, such as the equations of linear elasticity, scale
as well.
Eventually, once the coarse operator is built, there is more than one way to enrich one-
level preconditioners as done eq. (1.17). Tang et al. [2009] compare various coarse operator
corrections. It is theoretically and numerically shown that the following preconditioners
share some properties with P−1

AD :

P−1
A-DEF1 = M−1(I − AQ) +Q (1.19a)

P−1
A-DEF2 = (I −QA)M−1 +Q (1.19b)
P−1

BNN = (I −QA)M−1(I − AQ) +Q , (1.19c)

where Q = ZE−1ZT . A comparison of the performance of these operators is available in
[Jolivet, Dolean, et al. 2012].

For amore in-depth introduction to overlapping Schwarzmethods, the reader is referred
to [Mathew 2008; Quarteroni and Valli 1999; Smith, Bjørstad, and Gropp 2004; Toselli and
Widlund 2005].

1.2 Substructuring methods
While overlapping methods described in the previous section are purely algebraic and can
precondition eq. (1.3) efficiently, they have some drawbacks:

1. due to the duplication of unknowns on the overlap, some redundant work is needed,
and the amount of communication may be high (the greater the overlap level, the
more problematic this can be),

2. when solving a coupled multiphysics problem, a natural way to partition the com-
putational domain Ω would be to split each physics into a subdomain, but that is not
possible with overlapping subdomains,

3. when solving a heterogeneous problem, for example the equations of elasticity with
multiple mechanical parts having different elastic properties, a natural way to parti-
tion Ω would be to split each part into a subdomain, but the same limitation appears,
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4. finally, even in the case of simple and homogeneous problems, building the overlap-
ping decomposition itself is not an easy task, since routines for manipulating meshes
are needed, cf. fig. 1.2.

For these reasons, in the beginning of the 1990s, researchers—mainly in mechanical en-
gineering—have been working on nonoverlapping domain decomposition (or substructur-
ing) methods, see for example [De Roeck and Le Tallec 1991]. Modern introductions to
substructuring methods can be found in [Boiteau 2009; Gosselet and Rey 2006; Klawonn
and Rheinbach 2012; Pechstein 2012; Rheinbach 2009]. In section 1.2.1, a so-called primal
approach will be described: the Balancing Neumann-Neumann method [Mandel 1993]. In
section 1.2.2, a so-called dual approach will be described: the Finite Element Tearing and
Interconnecting (FETI) method [Farhat and Roux 1991]. However, both approaches share
some numerical tools that will now be described in this preliminary section, which is greatly
inspired by [Gosselet and Rey 2006]. The same notations as in section 1.1 will be used, in
particular, the definitions of {Ri}Ni=1 and {Ni}Ni=1 are extended to the case when the level
of overlap is null (l = 0). Moreover,

• all sets {Nj}Nj=1 are split into sets of interior
{
N (j)

i

}N

j=1
and boundary

{
N (j)

b

}N

j=1

d.o.f. indices,

• the number of boundary (resp. interior) d.o.f. of subdomain j ∈ J1;NK will be re-
ferred to as n(j)

b (resp. n(j)
i ) so that nj = n

(j)
i + n

(j)
b = #N (j)

i + #N (j)
b ,

• the set of all boundary d.o.f. will be represented as Nb =
⋃N

j=1N
(j)
b .

Definition 1.6. Given a d.o.f. k ∈ J1;nK, its multiplicity mk equals:

mk = #
{
i ∈ J1;NK : k ∈ Ni

}
.

Obviously, ∀k ∈ Ni, mk = 1 and ∀k ∈ Nb, mk > 2. If mk > 2, the d.o.f. k is said to be a
cross-point.

(a) Original geometry Ω

Ω1

Ω2

Ω3

(b) Nonoverlapping decomposition

Fig 1.5: Substructuring of Ω into N = 3 subdomains.

Definition 1.7 (unassembled operators). Unlike overlapping methods which use assembled
operators {Aii}Ni=1, cf. eq. (1.11), substructuringmethods require unassembled operators

{
Åi

}N
i=1

:

(
Åi

)
jk16j6ni

16k6ni

=

∫
Ωi

a(φNi(k), φNi(j)) . (1.20)
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They are symmetric positive semidefinite. In a similar way,
{
f̊i
}N
i=1

are defined as:

(
f̊i
)
j16j6ni

=

∫
Ωi

l(φNi(k)) .

Proposition 1.6. To better understand the link between assembled and unassembled opera-
tors, the following equalities can be useful:

A =
N∑
i=1

RT
i ÅiRi f =

N∑
i=1

RT
i f̊i .

Definition 1.8 (trace operators). Let {Wi}Ni=1 be the finite element spaces associated with the
interfaces {∂Ω ∩ ∂Ωi}Ni=1. In addition to restriction operators that map global functions in V

to local functions in {Vi}Ni=1, trace operators
{
t(i)
}N
i=1

are needed for functions from {Vi}Ni=1

to {Wi}Ni=1. Algebraically,

∀i ∈ J1;NK,∀u(i) ∈ Vi, t
(i)ui =

∑
k∈N (i)

b

u
(i)

N−1
i (k)

εN−1
i (k) ∈ Rn

(i)
b .

As for the restriction operators,
{
t(i)

T
}N

i=1
will be used to extend by 0 trace functions on {Vi}Ni=1.

1(1)

2(1)
3(1)

4(1)5(1)
1(2)

2(2)3(2)

4(2)
5(2)

6(2)

1(3)
2(3)

3(3)

4(3)

5(3)6(3)

7(3)

(a) Node numbering of each {Vi}Ni=1

1(1)b 3(1)b
2(1)b

4(1)b

1(2)b

3(2)b
2(2)b

4(2)b

3(3)b

1(3)b

2(3)b

(b) Node numbering of each {Wi}Ni=1

t(1) =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 t(2) =


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 t(3) =

0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

 .

Fig 1.6: Trace operators
{
t(i)
}N
i=1

.

The goal of substructuring methods is to eliminate the interior d.o.f. Hence, subdomains
will only exchange information through their interfaces. For that reason, assembly opera-
tors and jump operators, that will play a similar role to restriction operators in the case of
overlapping Schwarz methods, have to be introduced.



26 Chapter 1 Domain decomposition preconditioners and HPC

Definition 1.9. Primal assembly operators are defined as follows:

∀i ∈ J1;NK,
(
B(i)

)
jk16j6#Nb

16k6n
(i)
b

=

{
1 if N (i)

b (k) = j
0 otherwise.

1(1)b 3(1)b
2(1)b

4(1)b

1(2)b

3(2)b
2(2)b

4(2)b

3(3)b

1(3)b

2(3)b

(a) Node numbering of each {Wi}Ni=1

1 3

4

5

2

(b) Node numbering of the interface

B(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 B(2) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 B(3) =


0 0 0
0 0 0
0 1 0
0 0 1
1 0 0

 .

Fig 1.7: Primal assembly operators
{
B(i)

}N
i=1

.

Imposing constraints across each subdomain interface will be needed for substructuring
methods. In particular, the solution u of eq. (1.3) must be continuous at the interface. This
can be written as:

∀(i, j) ∈ J1;NK, i 6= j, ∀k ∈ N (i)
b ∩N

(j)
b , u

(i)

N−1
i (k)

= u
(j)

N−1
j (k)

. (1.21a)

Some of these equality constraints are redundant in the presence of cross-points, but this
can be avoided. Let Sk =

{
i ∈ J1;NK : k ∈ Ni

}
then:

∀k ∈ Nb,∀i ∈ Sk \ {maxSk} , j = Sk
(
S−1
k (i) + 1

)
and u

(i)

N−1
i (k)

= u
(j)

N−1
j (k)

. (1.21b)

The idea behind the previous equation is to impose, at cross-points, equality constraints
only between neighboring subdomains with successive indices. Let M be the number of
constraints imposed by either eqs. (1.21a) or (1.21b) and Λ be an index mapping from
J1;NK2×Nb onto J0;MK—value 0 being reserved for when there is no constraint imposed
by the input triplet (i, j, k) ∈ J1;NK2 ×Nb, for example when j 6∈ Oi.

Proposition 1.7. In the case of eq. (1.21a),

M =

N∑
i=1

∑
k∈N (i)

b

(mk − 1)

2
=
∑
k∈Nb

mk(mk − 1)

2
,
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and in the case of eq. (1.21b),
M =

∑
k∈Nb

(mk − 1) .

Definition 1.10. Dual jump operators are defined as follows and are used to represent in
matrix form the set of constraints eq. (1.21):

∀i ∈ J1;NK,
(
B(i)

)
kl 16k6M

16l6n
(i)
b

=


1 if ∃j ∈ Oi : j > i and Λ

(
i, j,N (i)

b (l)
)
= k

−1 if ∃j ∈ Oi : j < i and Λ
(
i, j,N (i)

b (l)
)
= k

0 otherwise.
(1.22)

From that definition, one can infer that:

∀k ∈ Nb,∀i ∈ Sk,∃!(j, l) ∈ Sk \ {i} × J1;MK :
(
B(i)

)
lN−1

i (k)
= −

(
B(j)

)
lN−1

j (k)
.

1(1)b 3(1)b
2(1)b

4(1)b

1(2)b

3(2)b
2(2)b

4(2)b

3(3)b

1(3)b

2(3)b

(a) Node numbering of each {Wi}Ni=1

1
2

4

5
3

6

7
(b) Numbering of the set of constraints

B(1) =



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 −1


B(2) =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 −1
0 0 0 0


B(3) =



0 0 0
0 0 0
0 0 0
0 1 0
0 1 0
0 0 1
1 0 0


.

Fig 1.8: Redundant jump operators
{
B(i)

}N

i=1
defined using eq. (1.21a).

Proposition 1.8. The assembly and jump operators are orthogonal in the sense that:

N∑
i=1

B(i)B(i)T = 0. (1.23)

Proof. ∀(i, j, k) ∈ J1;NK× J1;MK× J1; #NbK, the coefficient b(i)jk of the matrix B(i)B(i)T is:

b
(i)
jk =

#N (i)
b∑

l=1

(
B(i)

)
jl

(
B(i)

)
kl
.
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Hence,
N∑
i=1

b
(i)
jk =

∑
l∈Sk

(
B(l)

)
jN−1

l (k)
= 0.

In order to write equations that are local to each subdomain, one needs to introduce
reaction unknowns {λi}Ni=1 that are nonzero only on the boundary d.o.f. and that represent
the reaction imposed by neighboring subdomains. In that case, eq. (1.3) is equivalent to:

∀i ∈ J1;NK, Åiui = f̊i + λi (1.24a)
N∑
i=1

B(i)t(i)ui = 0 (1.24b)

N∑
i=1

B(i)t(i)λi = 0 . (1.24c)

Equation (1.24a) relates to the equilibrium of each subdomain under given body and sur-
face forces, eq. (1.24b) relates to the compatibility of the solution across interfaces and is
the algebraic representation of eq. (1.21), and eq. (1.24c) relates to the equilibrium of the
interface (Newton’s 3rd law).
Assuming that the jth unassembled operator can be renumbered so that the first n(j)

i (resp.
last n(j)

b ) rows and columns are associated with interior (resp. boundary) d.o.f., one can
write:

∀j ∈ J1;NK, Åj =

[
Å

(j)
ii Å

(j)
ib

Å
(j)
bi Å

(j)
bb

]
uj =

[
u
(j)
i

u
(j)
b

]
f̊j =

[
f̊
(j)
i

f̊
(j)
b

]
λj =

[
0

λ
(j)
b

]
.

Performing a Gaussian elimination on the interior d.o.f. leads to:

∀j ∈ J1;NK,
(
Å

(j)
bb − Å

(j)
bi Å

(j)−1

ii Å
(j)
ib

)
u
(j)
b = −Å(j)

bi Å
(j)−1

ii f̊
(j)
i + f̊

(j)
b + λ

(j)
b

u
(j)
i = Å

(j)−1

ii

(
f̊
(j)
i − Å

(j)
ib u

(j)
b

)
. (1.25)

Definition 1.11. On each subdomain, the Schur complement, which is a symmetric positive
semidefinite matrix, is defined as:

∀j ∈ J1;NK, Sj = Å
(j)
bb − Å

(j)
bi Å

(j)−1

ii Å
(j)
ib ,

and the condensed body force is defined as:

∀j ∈ J1;NK, gj = f̊
(j)
b − Å

(j)
bi Å

(j)−1

ii f̊
(j)
i .

Substructuring methods heavily rely on these Schur complements, and for this reason,
they are also known as Schur complement domain decomposition methods. Equation (1.24)
can now be written:

∀i ∈ J1;NK, Siu
(i)
b = gi + λ

(i)
b

N∑
i=1

B(i)u
(i)
b = 0

N∑
i=1

B(i)λ
(i)
b = 0 ,
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or using block notations, introducing:

S = diag(S1, . . . , SN) ub =

u
(1)
b
...

u
(N)
b

 g =

g1...
gN

 λb =

λ
(1)
b
...

λ
(N)
b


B =

[
B(1) · · · B(N)

]
B =

[
B(1) · · · B(N)

]
,

then,

Sub = g + λb (1.26a)
Bub = 0 (1.26b)
Bλb = 0 . (1.26c)

Proposition 1.9. In its block formulation, proposition 1.8 reads:

BBT = 0. (1.27)

Two preconditioners will now be described to solve eq. (1.26). The primal approach in
section 1.2.1 introduces a unique interface solution u ∈ R#Nb (such that ub = BTu) satisfy-
ing eq. (1.26b) and aims at finding a solution of eq. (1.26c) iteratively. The dual approach in
section 1.2.2 introduces a unique interface reaction λ ∈ RM (such that λb = BTλ) satisfy-
ing eq. (1.26c) and aims at finding a solution of eq. (1.26b) iteratively. In both approaches,
eq. (1.26a) must be verified at each iteration.
Just as when formulating the overlapping Schwarz methods in section 1.1, it will be shown

how to avoid the explicit construction of operators
{
B(i)

}N
i=1

and
{
B(i)

}N

i=1
, which es-

sentially act as
{
RT

i

}N
i=1

in the case of overlapping preconditioners. Besides, all vectors{
u
(i)
b

}N

i=1
and

{
λ
(i)
b

}N

i=1
are supposed to be stored in local contiguous blocks of memory.

In total, for example when examining the case of the primal interface solution, storage for∑N
i=1 n

(i)
b scalars must be allocated, which is at least twice the number of boundary d.o.f.3.

Using the mathematical formalism, duplicated unknowns will have the same value across
processes which could then be accessed without any interprocess communications. The
same applies for the dual interface reaction, except that now, duplicated unknowns will
have opposite values across processes, cf. proposition 1.8.

1.2.1 Balancing Neumann-Neumann preconditioner
This method was historically introduced in [Mandel 1993] and is also referred to as Balanc-
ing Domain Decomposition (BDD). Given a unique interface solution u ∈ R#Nb such that
ub = BTu, it is known, thanks to eq. (1.27), that Bub = 0, i.e. eq. (1.26b) is always verified.
In eq. (1.26a), this gives SBTu = g+λb and using eq. (1.26c), the primal formulation of the
interface solution is:

BSBTu = Bg,

or alternatively,
N∑
i=1

B(i)SiB
(i)Tu =

N∑
i=1

B(i)gi . (1.28)

3It is exactly twice when there is no cross-point.
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Once the solution on the interface is known, the solution of eq. (1.3) associated with interior
d.o.f. can be computed using eq. (1.25). Restricted to the interface of a single subdomain
i ∈ J1;NK, this yields:

B(i)T
N∑
j=1

B(j)SjB
(j)Tu = B(i)T

N∑
j=1

B(j)gj

=⇒
∑
j∈Oi

B(i)TB(j)Sju
(j)
b =

∑
j∈Oi

B(i)TB(j)gj . (1.29)

In eq. (1.29), there are only local operations, except thematrix-matrix products
{
B(i)TB(j)

}
16i6N
j∈Oi

.

These operators are used to exchange information on the interface between subdomains,
and as a consequence, for i ∈ J1;NK and j ∈ Oi, the action of B(i)TB(j) on a vector
u(j) ∈ Rn

(j)
b can be computed as:

B(i)TB(j)u(j) =
∑

k∈N (i)
b ∩N (j)

b

u
(j)

N−1
j (k)

εN−1
i (k) ∈ Rn

(i)
b . (1.30)

A satisfying property of eq. (1.30) is that it does not involve any global information: there
is no need for a numbering of the set of boundary d.o.f. Nb.
In order to build a preconditioner for eq. (1.28), the inverse of the sum has to be efficiently
approximated. The one-level Neumann-Neumann preconditioner, defined on the skeleton
of the domain decomposition, is the scaled sum of the inverse of each Schur complement:

M−1 =
N∑
i=1

B(i)DiS
†
iDiB

(i)T , (1.31)

where:

• {Di}Ni=1 is a partition of unity, cf. definition 1.3,

•
{
S†
i

}N

i=1
are pseudoinverses of each local Schur complement.

They are many ways to build a partition of unity in the context of substructuring precondi-
tioners, see for example [Farhat and Roux 1994; Rixen and Farhat 1997], but the three more
frequently used are:

• the multiplicity scaling:

∀i ∈ J1;NK, ∀k ∈ J1;n(i)
b K, (Di)kk =

1

mN (i)
b (k)

,

• the stiffness scaling:

∀i ∈ J1;NK, ∀k ∈ J1;n(i)
b K, m = N (i)

b (k) and (Di)kk =

(
Å

(i)
bb

)
kk∑

j∈Sm

(
Å

(j)
bb

)
N−1

j (m)N−1
j (m)

,
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• and the coefficient scaling:

∀i ∈ J1;NK, ∀k ∈ J1;n(i)
b K, m = N (i)

b (k) and (Di)kk =
ρ
(i)
m∑

j∈Sm

ρ(j)m

,

where ρk is a physical coefficient linked to the PDE eq. (1.1), such as a diffusion co-
efficient or Lamé parameters, associated with the d.o.f. k ∈ Nb.

From definition 1.11, it appears that the pseudoinverses of the Schur complement can be
computed as follows:

∀i ∈ J1;NK, S†
i = t(i)Å†

i t
(i)T .

Just as in section 1.1.3, a second level will now be added to eq. (1.31). It will be necessary
to enforce that the residuals remain in each {span(Si)}Ni=1. For that reason, let {Ri}Ni=1 be
defined as the kernel of each Schur complement. A residual r ∈ RNb is said to be balanced
if:

∀i ∈ J1;NK, RT
i DiB

(i)T r = 0.

Let Z =
[
B(1)D1R1 · · · B(N)DNRN

]
, then balancing a residual may be achieved using

the following projection:

P = I − Z
(
ZTBSBTZ

)−1
ZTS. (1.32)

The traditional (two-level) BDD preconditioner is then:

P−1
BDD = P TM−1P

= P T

(
N∑
i=1

B(i)DiS
†
iDiB

(i)T

)
P,

using a starting vector u0 for the iterative method in span(Z):

u0 = Z
(
ZTSZ

)−1
ZTBg.

It was shown by Mandel and Brezina [1996], that the condition number κ(P−1
BDDBSBT ) is

bounded by:

κ(P−1
BDDBSBT ) < C

(
1 + log2

H

h

)
, (1.33)

where H is the characteristic size of the subdomains, h is the characteristic size of the el-
ements in T , and C is a constant independent of the number of subdomains N,H, h, and
the physical coefficients of the underlying PDE.
In recent years, a new variant of the BDD method, called BDDC for Balancing Domain De-
composition by Constraints, has been developed, see for example [Dohrmann 2003; Mandel
and Dohrmann 2003].

1.2.2 FETI preconditioner
The Finite Element Tearing and Interconnecting method was historically introduced by
Farhat and Roux [1991]. Given a unique interface reaction λ ∈ RM such that λb = BTλ,
it is known, thanks to eq. (1.27), that Bλb = 0, i.e. eq. (1.26c) is always verified. Using
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the same notation as in the previous section, and denoting by S† = diag(S†
1, . . . , S

†
N) and

R = diag(R1, . . . , RN), then a solution of eq. (1.26a) can be decomposed as:

u = S† (g +BTλ)︸ ︷︷ ︸
∈rangeS=kerRT

+ Rα︸︷︷︸
∈kerS

(1.34a)

=⇒ RT (g +BTλ) = 0. (1.34b)

Left multiplying eq. (1.34a) by B yields:

0 = BS†g +BS†BTλ+BRα,

and introducing Z = BR, eq. (1.34) reads:[
BS†BT Z
ZT 0

] [
λ
α

]
=

[
−BS†g
−RT g

]
. (1.35)

This system can be solved using a projection P onto ker(ZT ), i.e. ZTP = 0, and writing
λ as λ = λ0 + λ̃ such that ZTλ0 = −RT g and ZT λ̃ = 0. Let M−1 ∈ RM × RM be a
symmetric matrix that will play the role of a one-level preconditioner such that ZTM−1Z
is SPD. Then P can be chosen as:

P = I −M−1Z
(
ZTM−1Z

)−1
ZT . (1.36)

The system now reads:
BS†BT (λ0 + λ̃) + Zα = −BS†g,

and the unknown α can be eliminated by using P T :

P TBS†BT λ̃ = −P T
(
BS†BTλ0 +BS†g

)
. (1.37)

The preconditioner M−1 can now be used, and because λ̃ must remain in ker(ZT ), the
projection P is applied another time. The traditional (two-level) FETI preconditioner is
then:

P−1
FETI = PM−1P T

using a starting vector λ0 for the iterative method that satisfies the admissibility constraints
ZTλ0 = −RT g:

λ0 = −M−1Z
(
ZTM−1Z

)−1
RT g.

Once λ̃ is known, α can be determined by left multiplying the first line of eq. (1.35) by
ZTM−1:

ZTQS†BTZλ+ ZTM−1Zα = −ZTM−1BS†g

=⇒ α = −
(
ZTM−1Z

)−1
ZTQ(BS†g − S†BTZλ).

They are usually three different ways to define M−1. They all rely on the introduction of

so-called scaled jump operators
{
B̃

(i)
}N

i=1
defined as:

∀i ∈ J1;NK, B̃
(i)

= B(i)Di ,

where {Di}Ni=1 is the same partition of unity as for the BDD preconditioner, cf. page 30.
Then, one can define:
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• the Dirichlet preconditioner:
QD = B̃ SB̃

T
,

• the lumped preconditioner, where each Schur complement is approximated by cancel-
ing the effect of interior d.o.f. on the interface, ∀j ∈ J1;NK, Sj ≈ SL

j = Å
(j)
bb −��������XXXXXXXXÅ

(j)
bi Å

(j)−1

ii Å
(j)
ib :

QL = B̃ diag
(
SL
1 , . . . , S

L
N

)
B̃

T
,

• the superlumped preconditioner, where the effect of boundary d.o.f. on each other is
also canceled, ∀j ∈ J1;NK, Sj ≈ SSL

j = diagonal of
(
Å

(j)
bb

)
QSL = B̃ diag

(
SSL
1 , . . . , SSL

N

)
B̃

T
.

Klawonn and Widlund [2001] proved that using M−1 = QD as a preconditioner, the con-
dition number κ(P−1

FETIBS†BT ) is bounded by:

κ(P−1
FETIBS†BT ) < C

(
1 + log

H

h

)2

,

using the same notations as for the condition number eq. (1.33). This result was first con-
jectured by Farhat, Mandel, and Roux [1994]. Restricted to the set of constraints of a single
subdomain i ∈ J1;NK, the action of the unpreconditioned operator BS†BT on a vector λ
yields:

B(i)TBS†BTλ = B(i)T
N∑
j=1

B(j)S†
jB

(j)Tλ

=
∑
j∈Oi

B(i)TB(j)S†
jλ

(j)
b . (1.38)

In eq. (1.38), there are only local operations, except thematrix-matrix products
{
B(i)TB(j)

}
16i6N
j∈Oi

.

These operators are used to exchange information on the interface between subdomains,
and as a consequence, for i ∈ J1;NK and j ∈ Oi, the action of B(i)TB(j) on a vector
λ(j) ∈ Rn

(j)
b can be computed as:

B(i)TB(j)λ(j) = −
∑

k∈N (i)
b ∩N (j)

b
if Λ(i,j,k)6=0

λ
(j)

N−1
j (k)

εN−1
i (k) ∈ Rn

(i)
b . (1.39)

A satisfying property of eq. (1.39) is that it does not involve any global information: there
is no need for a numbering of all the M constraints. In recent years, other variants of the
FETI method have been developed, see for example [Farhat, Lesoinne, Le Tallec, et al. 2001;
Farhat, Lesoinne, and Pierson 2000; Klawonn and Rheinbach 2007].

1.3 Improving preconditioners using spectral informa-
tion: GenEO4

In the previous sections, various two-level preconditioners have been presented both in the
context of overlapping and nonoverlapping domain decomposition methods. They are all

4GenEO stands for Generalized Eigenvalue problem on the Overlap.
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based on the introduction of a suitable deflation subspace matrix Z , cf. eqs. (1.16), (1.32)
and (1.36). Building such subspace matrices is challenging but they are the backbone of
any multigrid or domain decomposition scalable and robust preconditioner. It is well es-
tablished that in the field of domain decomposition methods, Poincaré–Steklov operators,
also known as Dirichlet-to-Neumann operators, play a crucial role, see for example [Bour-
gat et al. 1988; De Roeck and Le Tallec 1991; Nataf, Rogier, and de Sturler 1994]. For that
reason, a lot of effort have been put into approximating them numerically to enhance basic
preconditioners as done in for example [Dolean, Nataf, et al. 2012; Magoulès, Roux, and
Series 2006; Nataf, Xiang, et al. 2011]. While these methods are efficient and can yield sat-
isfying large-scale numerical results, cf. [Jolivet, Dolean, et al. 2012], some of the previous
works were recently extended in [Spillane, Dolean, et al. 2013; Spillane and Rixen 2013].
They propose a way to design preconditioners that are robust with respect to the number
of subdomains, the heterogeneities in the PDE, and that are algebraic enough to be applied
in both scalar or vectorial spaces, when solving for example system of PDEs. The matrix
Z is built using eigenvectors of generalized eigenvalue problems—such as eq. (2.1)—that
slow down the convergence of iterative methods, so that it is possible in theory to assem-
ble a preconditioner yielding any theoretical convergence rate chosen a priori. The use of
spectral information to enhance preconditioners is not specific to domain decomposition
methods, for example in [Chartier et al. 2003] it is done in the context of multigrid methods.
In the following paragraphs, it is assumed that a threshold criteria, given next, is used to
select {γi}Ni=1 eigenpairs per subdomain.

1.3.1 Overlapping methods
The main result of [Spillane, Dolean, et al. 2013] will now be recalled. The same notations
as in section 1.1 will be used, and additionally, so are the notions of multiplicity of a d.o.f.
given in definition 1.6 and of unassembled operators given in definition 1.7.

Definition 1.12 (restriction on the overlap). The set of matrices
{
D̊i

}N

i=1
is defined such

that entries of each matrix are nonzero only when associated with d.o.f. on the overlap with
their neighboring subdomains:

∀i ∈ J1;NK,
(
D̊i

)
jk16j6ni

16k6ni

=

{
(Di)jk if mNi(j) > 1
0 otherwise.

These are singular diagonal matrices.

The local generalized eigenvalue problems thatwill be used fromnowon are, ∀i ∈ J1;NK:

find the eigenpairs {λ(i)
j , v

(i)
j }

γi
j=1 such that ∀j ∈ J1; γiK, Åiv

(i)
j = λ

(i)
j D̊iÅiD̊iv

(i)
j . (1.40)

Since these sparse problems are purely local, they can be solved concurrently on each sub-
domain, for example by using ARPACK. After obtaining the eigenpairs, it is possible to
build the following deflation subspace matrix Z :

Z =
[
RT

1W1 · · · RT
NWN

]
∈ Rn × R

∑N
i=1 γi , (1.41)

where all {Wi}Ni=1 are dense rectangular matrices in Rni ×Rγi defined as the column-wise
concatenation of all

{
v
(i)
j

}γi

j=1
weighted by the local partition of unity Di:

∀i ∈ J1;NK, Wi =
[
Div

(i)
1 · · · Div

(i)
γi

]
. (1.42)
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Proposition 1.10. If each {γi}Ni=1 is chosen such that:

∀i ∈ J1;NK, γi = min
(
j ∈ J1;niK : λ

(i)
j >

δi
Hi

)
,

and ifm = maxj∈J1;nK(mj), then the following estimate holds for the condition numberκ(P−1
ADA):

κ(P−1
ADA) < (1 +m)

[
2 + (2m2 +m) max

i∈J1;nK

(
1 +

Hi

δi

)]
.

This condition number is independent of the number of subdomains and the discretiza-
tion technique, and is robust with respect to the coefficients of the PDE.

1.3.2 Substructuring methods
The main results of [Dolean, Jolivet, and Nataf 2014] (resp. [Spillane and Rixen 2013]) will
now be recalled for the BDD (resp. FETI) preconditioner. In the case of BDD, the generalized
eigenvalue problems that are used are, ∀i ∈ J1;NK:

find the eigenpairs {λ(i)
j , v

(i)
j }

γi
j=1 such that ∀j ∈ J1; γiK, Siv

(i)
j = λ

(i)
j DiB

(i)TBSBTB(i)Div
(i)
j .

(1.43)
After obtaining the eigenpairs, it is possible to build the following deflation subspace ma-
trix Z :

Z =
[
B(1)W1 · · · B(N)WN

]
∈ R#Nb × R

∑N
i=1 γi , (1.44)

where all {Wi}Ni=1 are dense rectangular matrices inRn
(i)
b ×Rγi defined as the column-wise

concatenation of all
{
v
(i)
j

}γi

j=1
, cf. eq. (1.42). Note that if i ∈ J1;NK is the index of a floating

subdomain, then since Si is semidefinite, eigenvectors associated with zero eigenvalues
span ker(Si). In other words, setting γi = dim(ker(Si)), ∀i ∈ J1;NK will yield the original
two-level BDD preconditioner, cf. eq. (1.32).

Proposition 1.11. Ifm = maxj∈J1;nK(mj), then the following estimate holds for the condition
number κ(P−1

BDDBSBT ):

κ(P−1
BDDBSBT ) < max

(
1,m max

i∈J1;nK

(
1

γi

))
. (1.45)

In case of FETI, the generalized eigenvalue problems that are used are, ∀i ∈ J1;NK:

find the eigenpairs {λ(i)
j , v

(i)
j }

γi
j=1 such that ∀j ∈ J1; γiK, Siv

(i)
j = λ

(i)
j B(i)TM−1B(i)v

(i)
j .

(1.46)
After obtaining the eigenpairs, the authors of the method propose to build the following
deflation subspace matrix Z :

Z =
[
M−1B(1)W1 · · · M−1B(N)WN

]
∈ RM × R

∑N
i=1 γi , (1.47)

where all {Wi}Ni=1 are dense rectangular matrices inRn
(i)
b ×Rγi defined as the column-wise

concatenation of all
{
v
(i)
j

}γi

j=1
, cf. eq. (1.42). While an equivalent estimate as for the BDD

preconditioner eq. (1.45) can be proved, the sparsity pattern of the Galerkin operator as-
sembled using the deflation matrix eq. (1.47) is much denser. Hence, this approach is not
viable for large-scale problems and the BDD preconditioner will be used instead chapter 5.





Chapter 2
A unified framework

A scientific library to perform domain decompositionmethods is now presented.
Choices about the design of the library are explained in section 2.1, and the

actual implementation is described in section 2.2. Eventually, a simple example
for solving a boundary value problem using the finite difference method is given
in section 2.3. Readers only interested in numerical experiments should skip to
chapter 5.

Une librairie de calcul scientifique pour manier des méthodes de décomposition
de domaine est maintenant présentée. Les choix concernant son architecture

sont expliqués section 2.1, et l’implémentation est détaillée section 2.2. Pour finir,
un exemple simple pour résoudre un problème aux limites en utilisant la méthode
des différences finies est donné section 2.3. Le lecteur uniquement intéressé par les
résultats numériques est invité à se rendre chapitre 5.
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2.1 Software design
The purpose of this section is to give a broad overview of current possibilities for designing
high-performance scientific code. In section 2.1.1, the different models of parallelism ap-
propriate for domain decomposition methods are explored. Sections 2.1.2 to 2.1.5 serve as
a comprehensive introduction to necessary numerical tools needed by domain decomposi-
tion preconditioners and in section 2.1.6, some frameworks that perform somehow similar
tasks are presented.

2.1.1 Parallel programming model
Regarding process interaction, the choice of a model is quite straightforward for imple-
menting efficient parallel domain decomposition methods. To ensure efficient data locality,
it is best to distribute each subdomain to different processes that will interact through mes-
sage passing, with systems like MPI [Snir et al. 1995]. If needed, it is possible to use a finer
granularity of process interaction through shared memory multiprocessing programming.
This is particularly useful for speeding up computations related to linear algebra that are
local to each subdomain, for example the solution of local eigenvalue problems (1.40) and
(1.43). It is usually achieved using Pthreads or OpenMP. Both message passing and shared
memory models are available within C++, which will be the language used for the library
designed in this thesis.

2.1.2 Basic linear algebra
In this section, the focus is on basic linear algebra operations such as matrix-vector prod-
ucts. The first paragraph is related to dense linear algebra while the second is related to
sparse linear algebra.

BLAS

Basic Linear Algebra Subprograms are a set of low-level routines that deals with densely
stored vectors and matrices [Blackford et al. 2002]. The framework presented in this thesis
makes extensive use of the following routines1:

1. ?dot: computes a vector-vector dot product xTy.

2. ?scal: computes a scalar-vector product y = αy.

3. ?axpy: computes a scalar-vector product and adds the result to a vector y = αx+ y.

4. ?axpby: computes two scalar-vector products y = αx+ βy.

5. ?gemv: computes a scalar-matrix-vector product y = αAx+ βy.

6. ?symv: computes a symmetric scalar-matrix-vector product y = αAx+ βy.

7. ?gemm: computes a scalar-matrix-matrix product C = αAB + βC .

8. ?symm: computes a symmetric scalar-matrix-matrix product C = αAB + βC .
1The question mark in front of each name corresponds to different character codes indicating the data

type of the input and output of the routines: s (resp. c) indicates single precision while d (resp. z) indicates
double precision real (resp. complex) numbers.
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The difference between item 5 and item 6 (resp. 7 and 8) is that, since in the latter case A
is symmetric, only its upper or lower triangular part is accessed. Items 1 to 6 are memory
bound functions, while items 7 and 8 are compute bound functions.

Sparse linear algebra

Intel Math Kernel Library is a library which includes an implementation of BLAS, but also
routines for sparse linear algebra, statistics, Fast Fourier Transform (FFT)… It is much more
complete than the specification in [Duff, Heroux, and Pozo 2002] but unfortunately only
runs on Intel-compatible processors. The NVIDIA CUDA Sparse Matrix library (cuSPARSE)
provides a collection of basic linear algebra subroutines used for sparse matrices that have
a similar Application Programming Interface (API) to the MKL. It is used to offload compu-
tations on Graphics Processing Units (GPUs). Below is a short description of three common
ways to store sparse matrices that can be interpreted by both the MKL and cuSPARSE as
well as the other third-party libraries that will be presented in section 2.1.3.
Let A be the following sparse matrix where only its nonzero entries (nnz) are displayed:

A =


1 2

3 9
2 1

1 4

 nnz(A) = 8 .

Then A can be represented in:

• COOrdinate format using a triplet (row, col, val) such that all three items are arrays
of size nnz(A) and

∀i ∈ J1; nnz(A)K, Arow[i] col[i] = val[i] .

row = [1, 1, 2, 2, 3, 3, 4, 4] col = [1, 2, 2, 3, 1, 4, 2, 3] val = [1, 2, 3, 9, 2, 1, 1, 4]

• Compressed Sparse Row (CSR) format using a triplet (row_ptr, col, val) such that:

– col (resp. val) is an array of size nnz(A) that stores at entry j the column index
(resp. value) of nonzero entry j.

– row_ptr is an array of size n + 1, where n is the number of rows of A, that
stores at entry j the index of the element in val that is the first nonzero in
row j. row_ptr[n+ 1] is set to nnz(A) + 1.

row_ptr = [1, 3, 5, 7, 9] col = [1, 2, 2, 3, 1, 4, 2, 3] val = [1, 2, 3, 9, 2, 1, 1, 4]

• Compressed Sparse Column (CSC) format using a triplet (col_ptr, row, val) such that:

– row (resp. val) is an array of size nnz(A) that stores at entry j the row index
(resp. value) of nonzero entry j.

– col_ptr is an array of size m + 1, where m is the number of columns of A,
that stores at entry j the index of the element in val that is the first nonzero in
column j. col_ptr[m+ 1] is set to nnz(A) + 1.

col_ptr = [1, 3, 6, 8, 9] row = [1, 3, 1, 2, 3, 2, 4, 4] val = [1, 2, 2, 3, 1, 9, 4, 1]
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If A were to be symmetric, then its CSR and CSC representations would be identical. In
that case though, most sparse linear algebra libraries use only either the upper or the lower
part of the representation. Note that the upper part of a symmetric CSR representation is
identical to the lower part of a CSC representation and vice versa.

The framework presented in this thesis makes extensive use of the following routines2:

1. ?csrmv: computes a scalar-sparse matrix-vector product y = αAx+ βy.

2. ?csrsymv: computes a symmetric scalar-sparsematrix-vector product y = αAx+ βy.

3. ?csrmm: computes a scalar-sparse matrix-matrix product Y = αAX + βY .

2.1.3 Linear solvers
In this section, four state of the art direct solvers used during this thesis will be presented.
Most of them are compared by Gould, Scott, and Y. Hu [2007] where they are used to solve
symmetric linear systems of equations.

PARDISO

PARDISO is a direct solver based on a supernodal factorization algorithm for solving large
sparse symmetric and nonsymmetric linear systems on shared memory and distributed
memory architectures written in Fortran [Schenk and Gärtner 2004, 2006; Schenk, Gärtner,
and Fichtner 2000]. It can also be used to compute the Schur complement of a matrix. Intel
forked the original project to include one of the first version of the software into its own
MKL. The two versions have evolved in different directions ever since, but they both use
the CSR format as input of the matrix.

MUMPS

MUMPS is a MUltifrontal Massively Parallel sparse direct Solver [Amestoy, Duff, et al. 2001;
Amestoy, Guermouche, et al. 2006] written in Fortran. Its main features include the solu-
tion of the transposed system, input of the matrix in COO format, error analysis, iterative
refinement, out-of-core capability, detection of null pivots, basic estimate of rank deficiency
and null space basis for symmetric matrices, and computation of the Schur complement.

PaStiX

PaStiX (Parallel Sparse matriX package) is a parallelized and multithreaded direct solver
written in C that provides also an adaptive blockwise iLU(k) factorization that can be used as
a parallel preconditioner with approximated supernodes to build a coarser block structure
of the incomplete factors [Hénon, Ramet, and Roman 2002]. It can compute the Schur
complement of a matrix and uses the CSR format as input of the matrix.

WSMP

The Watson Sparse Matrix Package [Gupta 2000; Gupta and Avron 2000] is a shared and
distributedmemory parallel linear solver. It is developed at IBMThomas J.Watson Research
Center.

2See footnote 1 page 38.
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2.1.4 Eigenvalue solvers
In this section, two state of the art eigenvalue solvers used during this thesis will be pre-
sented. More precisely, two libraries to solve the following generalized eigenvalue problem
will be presented:

find the eigenpairs {λi, vi}mi=1 such that ∀i ∈ J1;mK, Avi = λiBvi . (2.1)

The first one will be useful when matrices A and B are sparse matrices, the second one
when both are dense matrices. In any case, the matrix B will be invertible so that there
is no infinite eigenvalues. For more on the theory of eigenvalue problems, the interested
reader is referred to [Parlett 1998].

ARPACK

The ARnoldi PACKage [Lehoucq, Sorensen, and C. Yang 1998] is based on the Implicitly
Restarted Arnoldi Method (IRAM) [Arnoldi 1951] and is written in Fortran. One of its most
important features is the Reverse Communication Interface (RCI) so that an end-user is
free to choose any convenient data structure for the representation of matrices. Instead of
solving eq. (2.1), ARPACK solves the following standard eigenvalue problem:

find the eigenpairs {νi, zi}mi=1 such that ∀i ∈ J1;mK, B−1Azi = νizi .

The user must then provide to the RCI a way for ARPACK to applyB−1 to a vector. This can
be achieved by using either a sparse direct solver, cf. section 2.1.3, or an iterative method.

LAPACK

Linear Algebra PACKage is a set of routines that deals with densely stored vectors and
matrices for solving linear systems, linear least squares, eigenvalue problems and singular
value decomposition [Anderson et al. 1999]. For conciseness, the following assumption
will be made concerning eq. (2.1): A is symmetric and B is symmetric positive definite
(SPD). Hence, it is possible to compute the Cholesky decomposition of B, that is find the
unique lower triangular matrix L such thatB = LLT . Equation (2.1) is then reduced to the
following standard eigenvalue problem:

find the eigenpairs {νi, zi}mi=1 such that ∀i ∈ J1;mK, L−1ALT−1
zi = νizi . (2.2)

The following equality holds for finding the eigenvectors of the generalized eigenvalue
problem once problem (2.2) is solved:

∀i ∈ J1;mK, zi = L−1yi .

The traditional workflow for solving a generalized eigenvalue problem is then to call the
following routines3 (in ascending order):

1. ?potrf: computes the Cholesky factorization of a SPD matrix.

2. ?sygst: reduces a symmetric definite generalized eigenvalue problem to a standard
form.

3. ?sytrd: reduces a real symmetric matrix to tridiagonal form.
3See footnote 1 page 38.
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4. ?stebz: computes selected eigenvalues of a real symmetric tridiagonal matrix by bi-
section.

5. ?stein: computes the eigenvectors corresponding to specified eigenvalues of a real
symmetric tridiagonal matrix..

6. ?ormtr: transforms the eigenvectors of the standard problem to the ones of the gen-
eralized problem.

7. ?trtrs: solves a system of linear equations with a triangular matrix.

2.1.5 Graph partitioners
In this section, two state of the art graph partitioners used during this thesis will be pre-
sented.

METIS

METIS, METIS-MT, and ParMETIS is a set of serial, multithreaded, and parallel programs
written in C for partitioning graphs or meshes, and producing fill reducing orderings for
sparsematrices. The algorithms implemented inMETIS are based on themultilevel recursive-
bisection, multilevel k-way, andmulti-constraint partitioning schemes [Karypis and Kumar
1998].

SCOTCH

SCOTCH and PT-SCOTCH are libraries written in C for sequential and parallel graph par-
titioning, static mapping and clustering, sequential mesh and hypergraph partitioning, and
sequential and parallel sparse matrix block ordering [Chevalier and Pellegrini 2008].

2.1.6 Similar libraries
There are mainly three publicly available libraries that provide functionalities that can be
used in the context of domain decomposition.They all have Fortran, C, and C++ interfaces,
however they require the assembly of the global system eq. (1.3) or eq. (1.26).

PETSc

The Portable, Extensible Toolkit for Scientific Computation [Balay, Adams, et al. 2014] is a
suite of data structures and routines developed in C by Argonne National Laboratory for
the parallel solution of scientific applications, modeled by partial differential equations. It
is used by many other packages, ranging from eigenvalue problem solvers [Campos et al.
2013] to finite element libraries like Feel++ [Prud’homme et al. 2012], deal.II [Bangerth,
Hartmann, and Kanschat 2007], libMesh [Kirk et al. 2006], and FEniCS [Logg, Mardal, and
Wells 2012], and has also available interfaces to solvers such as SuperLU [Li 2005] and
hypre [Falgout and U. M. Yang 2002]. PETSc is also used as the algebraic backend of SLEPc
[Campos et al. 2013], a software library for the solution of large-scale sparse eigenvalue
problems, which has an interface to ARPACK, cf. section 2.1.4.
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Trilinos

Trilinos [Heroux et al. 2005] is a collection of open source software libraries, called pack-
ages, intended to be used as building blocks for the development of scientific applications. It
is written in C++ by Sandia National Laboratories and includes multilevel preconditioners
like ML [Gee et al. 2006].

DUNE

TheDistributed andUnifiedNumerics Environment [Bastian, Blatt, Dedner, Engwer, Klöfkorn,
Kornhuber, et al. 2008; Bastian, Blatt, Dedner, Engwer, Klöfkorn, Ohlberger, et al. 2008] is a
modular toolbox for solving partial differential equations with grid-based methods. It sup-
ports the easy implementation of the finite element method, the finite volume method, and
also the finite difference method. The framework consists of a number of modules which
are downloadable as separate packages.

2.2 Necessary objects
All the algorithmic tools needed for performing domain decomposition methods in an
object-oriented context will now be described.

2.2.1 Subdomain
The most basic class will be used to store information regarding a subdomain, with no
particular data about the underlying preconditioner. For this purpose, a pointer to a sparse
matrix is used to access either the local matrix {Aii}Ni=1 eq. (1.11) when using overlapping

methods or
{
Åi

}N

i=1
eq. (1.20) when using nonoverlapping methods, on each process.

Communication buffers

As shown eqs. (1.12), (1.29) and (1.38), communications are needed when simply applying
the global operator (respectively A, BSBT , and BS†BT ) on a global vector (respectively
in Rn, R#Nb , and RM ), whether a preconditioner is used or not. As a consequence it is best
to take care of the necessary components to exchange data between subdomains in the
current class. The first obvious step is the creation of buffers that will be needed by MPI
each time such a global operation is performed (it will be shown afterwards that they can
also be used when applying preconditioners). In practice, on each process i ∈ J1;NK, two
vectors of Oi pointers are stored. One is used for the receive buffers, rb, the other for the
send buffers, sb. For all j ∈ Oi, sb

[
O−1

i (j)
]
and rb

[
O−1

i (j)
]
are allocated so that they can

store up to #Ni ∩ Nj values. An additional object has to be created locally to map local
unknowns into the communication buffers. On each process i ∈ J1;NK, a vector mapping
of Oi pairs of indices and vector of indices is allocated such that:

∀j ∈ J1; #OiK, mapping[j].first = Oi(j)

∀k ∈ J1; #Ni ∩NjK, mapping[j].second[k] = γij(k) , (2.3)

where γij(k) is the index of the kth d.o.f. of the space Γij of Ωi ∩ Ωj in the local space. In
general, γij(k) 6= γji(k), however, the following equality always holds4:

∀k ∈ J1; #Ni ∩NjK, Ni(γij(k)) = Nj(γji(k)) .

4As a reminder, for i ∈ J1;NK and k ∈ J1;niK, Ni(k) represents what would have been the global index
of the kth d.o.f. of the finite element space defined on Ωi.
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Thus, for overlapping methods, the product Au in eq. (1.12) can be computed using the
following steps:

• first perform some local operations,

out = AiiDi in;

Algorithm 2.1: Local operations for applying the global operator in overlapping methods.

• then exchange data through the buffers previously allocated.

for(int i = 0; i < mapping.size(); ++i) {

MPI_Irecv(rb[i], mapping[i].second.size(), MPI_DOUBLE, mapping[i].first, tag, comm, '
& rq + i);

for(int j = 0; j < mapping[i].second.size(); ++j)

sb[i][j] = out[mapping[i].second[j]];

5 MPI_Isend(sb[i], mapping[i].second.size(), MPI_DOUBLE, mapping[i].first, tag, comm, '
& rq + mapping.size() + i);

}

for(int i = 0; i < mapping.size(); ++i) {

int index;

MPI_Waitany(mapping.size(), rq, &index, MPI_STATUS_IGNORE);

10 for(int j = 0; j < mapping[index].second.size(); ++j)

out[mapping[index].second[j]] += rb[index][j];

}

MPI_Waitall(mapping.size(), rq + mapping.size(), MPI_STATUSES_IGNORE);

Algorithm 2.2: Communications for applying the global operator in overlapping methods.

For the BDD method, the product BSBTu in eq. (1.29) can be computed almost exactly as
before by just changing the first step, algorithm 2.2 is exactly the same for the communi-
cations.

out = Si in;

Algorithm 2.3: Local operations for applying the global BDD operator.

For the FETI method, the product BS†BTλ in eq. (1.38) is computed slightly differently
since it involves signed operators so both steps are modified.

u = 0

int i;

MPI_Comm_rank(comm, &i);

for(int j = 0; j < mapping.size(); ++j) {

5 if(mapping[j].first < i) {

for(int k = 0; k < mapping[j].second.size(); ++k)

u[mapping[j].second[k]] -= in[i][j];

}

else {

10 for(int k = 0; k < mapping[j].second.size(); ++k)

u[mapping[j].second[k]] += in[i][j];

}

}

out = S†
i u;

Algorithm 2.4: Local operations for applying the global FETI operator.
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for(int j = 0; j < mapping.size(); ++j) {

MPI_Irecv(rb[j], mapping[j].second.size(), MPI_DOUBLE, mapping[j].first, tag, comm, '
& rq + j);

if(mapping[j].first < i) {

for(int k = 0; k < mapping[j].second.size(); ++k)

5 out[j][k] = -out[mapping[j].second[k]];

}

else {

for(int k = 0; k < mapping[j].second.size(); ++k)

out[j][k] = out[mapping[j].second[k]];

10 }

MPI_Isend(out[j], mapping[j].second.size(), MPI_DOUBLE, mapping[j].first, tag, comm, '
& rq + mapping.size() + j);

}

for(int j = 0; j < mapping.size(); ++j) {

int index;

15 MPI_Waitany(mapping.size(), rq, &index, MPI_STATUS_IGNORE);

for(int k = 0; k < mapping[index].second.size(); ++k)

out[index][mapping[index].second[j]] += rb[index][j];

}

MPI_Waitall(mapping.size(), rq + mapping.size(), MPI_STATUSES_IGNORE);

Algorithm 2.5: Communications for applying the global FETI operator.

While the three previous operations involve global operators, the reformulation done
in chapter 1 was valuable for writing algorithms that only require local numbering and
peer-to-peer communications.

Preconditioner

An additional class is needed to store information related to the preconditioner being ap-
plied. It will manage the data needed for applying the local preconditioner5, as well as a
possible coarse operator. In particular, the local dense rectangular matrices {Wi}Ni=1 de-
fined eqs. (1.41), (1.44) and (1.47) are stored in this class if a two-level method is used. From
this basic class inherit two classes:

1. one used for overlapping Schwarz methods, cf. section 1.1. It stores supplementary
information about each local partition of unity {Di}Ni=1 which are stored as diagonal
matrices (inside a contiguous block of memory of ni scalars), and also about how to
call a third-party library to perform the numerical factorization of each local solver
of the base class {Aii}Ni=1,

2. another one used for nonoverlapping methods. It stores supplementary information
about the local number of constraints imposed page 26. From this class inherit two
more classes that will store a second solver:

(a) one used for primal methods like BDD, cf. section 1.2.1.
(b) another one for dual methods like FETI, cf. section 1.2.2.

The main difference between these two classes is that in the case of BDD, the solver
of the base class represents a numerical factorization of each

{
Åi

}N

i=1
which will be

used to apply the local Schur complements given definition 1.11, and the solver of
the derived class represents a pseudoinverse {S†

i }Ni=1. These two roles are switched
in the context of dual methods.

5Here, shared memory multiprocessing can be useful for increased scalability, cf. section 4.2.
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2.2.2 Coarse operator
All classes needed for performing one-level domain decompositionmethods have now been
introduced. As emphasized in the previous section, it is possible to maintain a certain
level of genericity between overlapping and substructuring methods since they share some
common building blocks such as the communication patterns and the creation of the MPI
buffers or the factorization of the local solvers. The strategy used to extend the framework
for two-level methods will now be explained. Once again, abstraction will play a key role
so that the ideas behind the assembly and the use of the coarse operator will be applicable
for both overlapping and nonoverlapping preconditioners. These ideas have already been
partially published in [Jolivet et al. 2014a].

Assembly

When it comes to overlapping Schwarz methods, an important result has to be given for
justifying the assembly of the coarse operator.

Corollary 2.1 (of proposition 1.3). Let i ∈ J1;NK and u(i) ∈ Rni . Then,

∀j ∈ J1;NK, RjAR
T
i Diu

(i) = RjR
T
i RiAR

T
i Diu

(i)

= RjR
T
i AiiDiu

(i) .

Proof. Let v = ART
i Diu

(i) for i ∈ J1;NK and u(i) ∈ Rni . Using proposition 1.2 after
proposition 1.3 yields RT

i Riv = v, hence Rjv = RjR
T
i Riv.

Recalling that the Galerkin operator given definition 1.5 is E = ZTAZ and using the
deflation matrix given eq. (1.41), it is possible to exhibit a block structure ofE by extending
the notations of section 1.3. First, it is important to notice that E is square matrix of order∑N

i=1 γi where {γi}Ni=1 are the numbers of deflation vectors computed per subdomain using
the generalized eigenvalue problem eq. (1.40). An auxiliary function has to be defined:

R :

t

1;
N∑
k=1

γk

|

→ J1;NK

j 7→ max

{
i :

i∑
k=1

γk < j

}
.

(2.4)

R is the function thatmaps each column (or row) index ofE to its corresponding subdomain
index . If all {γi}Ni=1 equal γ (e.g. when a uniform criterion is chosen proposition 1.10) then
this function can be simplified:

R(i) =
⌊
i

γ

⌋
.

The structure of the coarse operatorE may now bewritten using blocks of size γR(i)×γR(j),
for all row and column indices (i, j) ∈ J1;

∑N
k=1 γkK

2:

ER(i)R(j) = W T
R(i)R

T
R(i)ARR(j)WR(j) ∈ RγR(i) × RγR(j) .

Only the block structure will be used from now on unless stated otherwise, therefore the
functionR will be dropped, instead, for all block indices (i, j) ∈ J1;NK2:

Eij = W T
i R

T
i ARjWj ∈ Rγi × Rγj .
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Proposition 2.2. The sparsity pattern of E is determined by the connectivity of the graph
where each subdomain is a vertex in the said graph and there is an edge between each neigh-
boring subdomains. Moreover, thanks to corollary 2.1, the following equality holds ∀(i, j) ∈
J1;NK2:

Eij = W T
i RiR

T
j AjjWj ∈ Rγi × Rγj . (2.6)

Proof. It is a direct consequence of the block structure of E given eq. (2.6) and of proposi-
tion 1.1.

In eq. (2.6), there are only local operations, except thematrix-matrix product
{
RiR

T
j

}
16i6N
j∈Oi

just as in eq. (1.12). It is really important to note once again that there is no need either of
the global system A or of the global deflation matrix Z .

At this time, it is supposed that E is stored using a row-wise distribution. To minimize
communication overhead, each process i ∈ J1;NK is in charge of assembling all blocks
{Eij}j∈Oi

. This is done concurrently on each subdomain by following a workflow similar
to the one described section 2.2.1:

1. first scale the eigenvectors
{
v
(i)
j

}γi

j=1
by the local partition of unityDi using gemv, cf.

section 2.1.2,

2. then compute the local sparse matrix-matrix product AiiWi using csrmm,

3. send to each neighbor j ∈ Oi the result restricted to the duplicated unknowns
S(i)
j = RjR

T
i AiiWi and receive from each neighborR(i)

j = RiR
T
j AjjWj ,

4. compute the diagonal block Eii = W T
i AiiWi using gemm,

5. compute the off-diagonal block after reception Eij = W T
i R

(i)
j using gemm.

Steps 1 and 2 (resp. 3) are the exact counterparts of algorithm 2.1 (resp. 2.2) when multiple
vectors are used as input. Step 3 can be overlapped with step 4.

The assembly of the coarse operator for nonoverlapping preconditioners will now be
investigated. If the FETI method is being used, then the Galerkin operator is defined asE =
ZTM−1Z . When M−1 = QSL, then using the same block structure as for the assembly of
the coarse operator in overlapping Schwarz methods, for all block indices (i, j) ∈ J1;NK2:

Eij = RT
i B

(i)T
N∑
k=1

B̃
(k)
SSL
k B̃

(k)T

B(j)Rj

= RT
i B

(i)T
∑
k∈Oj

B̃
(k)
SSL
k B̃

(k)T

B(j)Rj ∈ Rdim(ker(Si)) × Rdim(ker(Sj)) .

Since the matrices
{
SSL
i

}N
i=1

are diagonal, the sparsity pattern of E is the same as for
overlapping preconditioners, and the following simplification can be made:

Eij = RT
i B

(i)T
∑

k∈Oi∩Oj

B̃
(k)
SSL
k B̃

(k)T

B(j)Rj .
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When M−1 = QD or QL, the local Schur complement are either not approximated, or
approximated by matrices which have nonzero entries outside their main diagonal. Hence,
the previous simplification is not possible anymore, instead,

Eij = RT
i B

(i)T
∑

k∈Oi∪Oj

B̃
(k)
S?
kB̃

(k)T

B(j)Rj .

where S?
k = Sk or SL

k . The sparsity pattern of E is then determined by the connectiv-
ity of the graph where each subdomain is a vertex in the said graph and there is an edge
between each neighboring subdomain and between each neighboring subdomain of each
neighboring subdomain. As for overlapping methods, each process i ∈ J1;NK is in charge
of assembling all blocks {Eij}j∈Ok

k∈Oi

. This is done concurrently on each subdomain by fol-

lowing a workflow similar to the one described section 2.2.1:

1. send to each neighbor j ∈ Oi the deflation vectors which could only be the rigid
body modes restricted to the common interface S(i)

j = B(j)TB(i)Ri and receive from
each neighborR(i)

j = B(i)TB(j)Rj ,

2. append all received vectors to the local ones in a dense matrix L(i) =
[
Ri R(i)

j

]
j∈Oi

and then scale L(i) by the local partition of unity Di using gemv and left apply the
local preconditioner Si, SL

i , or SSL
i . Scale again the result using gemv.

For the following items in this list, given a local matrix made of restrictions of deflation
vectors L(i), ∀j ∈ J1;NK, L(i)[j] will refer to the block of the matrix made from vectors of
subdomain j. For example, at this point in the algorithm, ∀i ∈ J1;NK, L(i)[i] = DiS

?
i DiRi.

Moreover, ∀i ∈ J1;NK, let Qi = Oi ∪ {k ∈ J1;NK : (∃j ∈ Oi : k ∈ Oj)}. Thus,

3. initialize for all j ∈ Oi,
V(i)
j = L(i)[j] ,

and for all k ∈ Qj \ Oj ,
V(i)
k = 0 ,

4. then send to each neighbor j ∈ Oi the matrices made of
∑

k∈Oi
γk column vectors

S ′(i)
j = B(j)TB(i)L(i) and receive from each neighborR′(i)

j = B(i)TB(j)L(j),

5. and finally, perform the reduction step for all j ∈ Oi,

∀k ∈ Oj, V(i)
k += R′(i)

j [k] ,

followed by a single call to gemm used to left multiply by RT
i :

∀j ∈ Qi ∪ {i}, Eij = RT
i V

(i)
j .6

Steps 1 and 2 are the counterparts of algorithms 2.4 and 2.5 when using scaled jump oper-
ators and multiple vectors as input7. Step 3 can be overlapped with step 4.

6SinceE is stored in CSR format and local blocks of rows ofE are stored contiguously, there is really only
one call to gemm even if the column indices j are not contiguous.

7Using modern linear solvers, it is generally muchmore efficient in terms of memory and FLOP to perform
a single forward elimination and back substitution with multiple right-hand sides, than multiple forward
eliminations and back substitutions with a single RHS each time.
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Action of E−1

Once the Galerkin matrix has been fully assembled, it is only used to solve coarse problems,
that is, the action of E−1 must be known. As explained in the introductory section ii.1, this
may be done using either an iterative method or a direct method. However, since the coarse
problem is involved at each application of a two-level preconditioner, it is important to use
a robust and fast method. As a consequence, a direct solver is usually preferred to first
factorize the sparse matrix E during a preprocessing step, and then to perform forward
eliminations and back substitutions each time the action of E−1 is needed. Because the
number of deflation vectors per subdomain is usually rather low (less than 50), there must
be some kind of transformation operating on E so that its distribution is less fine-grained,
cf. fig. 2.6. Otherwise, direct solvers will communicate too much when trying to factorize
it. Moreover, it might be convenient for the user to choose a number of MPI processes
involved in the factorization of E different than the number of subdomains N .

Coarse correction

It is assumed here that the Galerkinmatrix has been centralized on a singleMPI process that
will be referred to as a master process. This approach is ineffective in practice because the
size of E might become too large to be factorized in a timely manner by only one process,
but that way it is possible to give a simpler insight of the computations and communica-
tions induced by a coarse correction. A more sophisticated approach where the number of
master processes is greater than one is explained section 4.1 and depicted fig. 2.6.

0
2
4
6
8
10
12
14

(a) Finest-grained distribution

0

(b) Coarsest-grained distribution

0

4

8

12

(c) Efficient distribution

Fig 2.6: Different distributions of the coarse operatorE. Each color is associated
with a chunk of row of E stored on a process whose rank is displayed
on the right—for clarity, in fig. 2.6a, the odd ranks are not displayed.

Once the action of E−1 can be computed, the last step is to actually perform a coarse cor-
rection, that is, given a global vector (respectively in Rn, R#Nb , and RM ), apply on the left
the product ZE−1ZT . This is represented fig. 2.7 when an overlapping four-way decompo-
sition is used. Each part of a matrix or vector owned by a subdomain is color-coded: this is
a formal representation since in practice, the deflation matrix Z is not assembled and there
is no notion of distributed vector like u. A coarse correction can then be broken down into
four elementary operations:

1. compute locally v(i) = W T
i u

(i) and gather those values inside v on a master process,

2. compute x = E−1v on a master process,

3. scatter x from a master process inside x(i) on each process and compute locally y(i) =
Wix

(i),
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4. perform the reduction u(i) = Ri

∑
j∈Oi

RT
j y

(j) using peer-to-peer communications8.

n

ZTu = × =
4∑

k=1

γk � n

E−1ZTu = \ =

× = = ZE−1ZTu

Fig 2.7: Representation of the four algebraic operations performed during one coarse correction.

2.2.3 Sparse and dense eigensolvers for GenEO
In the previous paragraph, the deflation vectors used were not defined explicitly, so that a
user could try his/her own coarse operator. The framework provides ways to assemble the
GenEO coarse space by solving eq. (1.40) in the case of overlapping methods, or eq. (1.43)
in the case of the BDD method.

For overlapping preconditioners, the user has to provide each local unassembled oper-

ator
{
Åi

}N

i=1
because it is not possible to retrieve these from the local assembled operators

{Aii}Ni=1 algebraically—the discretization technique plays a crucial role here. The right-
hand side matrix of eq. (1.40) on subdomain i ∈ J1;NK is assembled by:

1. setting the rows and columns of the unassembled operator to 0 for unknowns j ∈ J1;niK
that are outside of the overlap, i.e. mNi(j) = 1,

2. scaling nonzero entries associated with unknowns (j, k) ∈ J1;niK2 that are inside
of the overlap by the values of the local partition of unity associated with these un-
knowns: (Di)jj × (Di)kk.

The matrix pencils
{
(Åi, D̊iÅiD̊i)

}N

i=1
are then passed over to ARPACK which returns the

GenEO deflation vectors that may be used for assembling the Galerkin matrix E.
For nonoverlapping preconditioners, the local generalized eigenvalue problems (1.43)

(resp. (1.46)) involve global structures such as the primal assembly operatorB and the Schur
complement S (resp. the scaled dual jump operator B̃ and either the Schur complement
or one of its approximation defined page 33). It is once again possible to bypass the global
assembly of these operators by taking a closer look at the right-hand side of these problems.
For the sake of simplicity, only the case of the primal problem (1.43) will be considered,
but the same methodology could be applied to the dual problem eq. (1.46). Naively, the
following local operators have to be assembled, ∀i ∈ J1;NK:

S local
i = DiB

(i)TBSBTB(i)Di =
∑
j∈Oi

DiB
(i)TB(j)SjB

(j)TB(i)Di .

8With the BDD method, this becomes u(i) = B(i)
∑

j∈Oi
B(j)T y(j), and with the FETI method, this

becomes u(i) = B(i)∑
j∈Oi

B(j)T y(j).
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S local
i , ∀i ∈ J1;NK, is the scaled restriction of the global Schur complement S to the indices

of boundary d.o.f. of subdomain i. This equation is similar to eq. (1.29), and the matrix-
matrix products

{
B(i)TB(j)

}
16i6N
j∈Oi

represent data transfer between subdomains across in-

terfaces. By using a direct solver such as MUMPS or PARDISO as introduced section 2.1.3,
it is possible for each structure i ∈ J1;NK to retrieve its local Schur complement Si. The
workflow to assemble S local

i is then uncomplicated:

• initialize S local
i = Si,

• send to each neighbor j ∈ Oi the local Schur complement restricted to the common
interface S(i)

j = B(j)TB(i)SiB
(i)TB(j) and receive from each neighbor

R(i)
j = B(i)TB(j)SjB

(j)TB(i), these point-to-point messages have sizes that are the
square of the message sizes when communicating for applying the BDD operator, cf.
algorithm 2.2,

• accumulate the received messages from each neighbor j ∈ Oi into S local
i , i.e.

S local
i +=

∑
j∈Oi
R(i)

j ,

• scale each entry
(
S local
i

)
jk

16j,k6n
(i)
b

by (Di)jj × (Di)kk.

The matrix pencils
{
(Si, S

local
i )

}N
i=1

are then passed over to LAPACK which returns the
GenEO deflation vectors that may be used for assembling the Galerkin matrix E.

2.2.4 Iterative methods
Every aspect of the implementation of the methods introduced and reformulated in chap-
ter 1 has now been considered. The final step when it comes down to these preconditioners
is to use them inside an iterative method.

Preconditioned Conjugate Gradient

The Conjugate Gradient (CG) introduced by Hestenes and Stiefel [1952] is among the most
practical techniques for solving SPD systems of equations. In the context of domain de-
composition methods, this will be particularly convenient when using either the BDD or
FETI method, which can be embedded inside the CG.
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Algorithm 2.8: Preconditioned CG.
Input: uncondensed RHS f and first guess x0, tolerance ε, number of iterations m

1 i← 0
2 initialize(xi, f , yi, ri)
3 zi ←M−1ri
4 εi ←

√
(zi, zi)

5 while
εi
ε0

< ε and i++< m do

6 pi ← Pzi−1 // P is defined eq. (1.32) for the BDD method

// (resp. (1.36)) (resp. FETI)

7 for k ← 0 to i− 2 do
8 αk ← (zk, pi)

9 for k ← 0 to i− 2 do
10 pi ← pi −

αk

βk

pk

11 zi ← Spi
// S = BSBT (resp. BS†BT

) for the BDD (resp. FETI) method

12 βi−1 ← (zi−1, zi) βi ← (ri−1, zi)

13 yi ←
βi

βi−1

pi ri ← −
βi

βi−1

zi

14 ri ← P T ri
15 zi+1 ←M−1ri
16 εi ←

√
(zi, zi)

Function initialize(x, f , y, r): // for the BDD method

1 g ← B(fb − ÅbiÅ
−1
ii fi)

2 y ← Z(ZTBSBTZ)−1ZT g
3 r ← g − Sy

Function initialize(x, f , y, r): // for the FETI method

1 y ←M−1Z(ZTM−1Z)−1RTf
2 x← S†f

3 r ← P TB(x− S†BTy)

Additionally, for computing the final solution x on the interface using the Lagrange
multiplier y at the end of the convergence of the CG when using the FETI method, the
following auxiliary function is needed.

Function solution(x, y):
x← x− S†BTy

x← x−R(ZTM−1Z)−1ZTBTM−1Bx

To ensure orthogonality between search directions, a classical Gram-Schmidt process is
implemented lines 7–10. The scalar products lines 12 and 16 require one global reduction.

Preconditioned Generalized Minimal RESidual method

TheGeneralizedMinimal RESidual method (GMRES) introduced by Saad and Schultz [1986]
may be used for solving nonsymmetric systems of equations. This will be valuable when
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using the Restricted additive Schwarz method introduced section 1.1.2 because the precon-
ditioner is in this case nonsymmetric, even if the original system is.

Algorithm 2.9: Preconditioned GMRES.
Input: RHS f and first guess x0, tolerance ε, number of iterations m
i← 0
w ← P−1f

ε0 ←
√
(w,w)

y ← b− Axi

w ← P−1y

si+1 ←
√

(w,w)

V: i+1 ←
w

si+1

while i++< m and
si
ε0

< ε do

w ← P−1AV: i

for k ← 1 to i do
Hik ← (V: k, w)

for k ← 1 to i do
w ← w −Hi :V: k

Hi i+1 ←
√

(w,w)

V: i+1 ←
w

Hi i+1

for k ← 1 to i− 1 do
γ ← cskHik + snkHi k+1

Hi k+1 ← −snkHik + cskHi k+1

Hik ← γ

δ ←
√

H2
ii +H2

i i+1

csi ←
Hii

δ
sni ←

Hi i+1

δ
Hi i+1 ← csiHii + sniHi i+1

si+1 ← −snisi
si ← sicsi

solution(x0, i, s, V , H)

Function solution(x, i, s, V , H):
for k ← i to 1 do

si ←
si
Hii

s← s− siHi :

return x+
∑i

j=1 sjV: j

In practice, if the maximum number of iterations m is too large, it may be beneficial to
use a smaller number p of Krylov directions to orthogonalize against and restart the GMRES
every p iterations.
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2.3 A simple prototype
Thegoal of this section is to provide a standalone code built on top of the framework detailed
in the previous paragraphs. The problem solved by this code is Poisson’s two-dimensional
eq. (1.5) on a square Ω, using a five-point stencil finite difference discretization on a uni-
form grid. In sections 2.3.1 and 2.3.2, the data structures needed for initializing a two-level
overlapping Schwarz preconditioner are presented. In section 2.3.3, the framework is in-
stantiated and the linear system is solved. It is assumed that the code is called with four
arguments:

• Nx and Ny, the number of discretization points in each direction,

• overlap, the level of overlap,

• stop, the relative residual error that has to be reached for the iterativemethod to stop.

Furthermore, all processes of the default communicator MPI_COMM_WORLD are used in the
decomposition.

2.3.1 Decomposition and partition of unity
A simple Cartesian decomposition of the square Ω = [0;L]2 is used. Accordingly, it is
possible to get the starting and ending indices of the discretization points in each direction
for any subdomain.

37 int rankWorld;

int sizeWorld;

MPI_Comm_size(MPI_COMM_WORLD, &sizeWorld);

MPI_Comm_rank(MPI_COMM_WORLD, &rankWorld);

int xGrid = int(sqrt(sizeWorld));

42 while(sizeWorld % xGrid != 0)

--xGrid;

int yGrid = sizeWorld / xGrid;

int y = rankWorld / xGrid;

47 int x = rankWorld - xGrid * y;

int iStart = std::max(x * Nx / xGrid - overlap, 0);

int iEnd = std::min((x + 1) * Nx / xGrid + overlap, Nx);

int jStart = std::max(y * Ny / yGrid - overlap, 0);

52 int jEnd = std::min((y + 1) * Ny / yGrid + overlap, Ny);

int ndof = (iEnd - iStart) * (jEnd - jStart);

int nnz = ndof * 3 - (iEnd - iStart) - (jEnd - jStart);

Algorithm 2.10: Decomposition of Ω into regular rectangles.

Then, for each subdomain i ∈ J1;NK, it is possible to build the partition of unity Di, as
well as the functions {γij}j∈Oi

introduced eq. (2.3) that will be useful for the communica-
tions between subdomains. The approach used to build the partition of unity is similar to
the one proposed eq. (1.6): first the functions {χ̃i}Ni=1 will be computed, then the framework
will be in charge of exchanging the appropriate values to build the final partition of unity.
Only the construction of these operators restricted to the intersection with the neighboring
subdomains located below in the decomposition is reviewed, the extension to neighboring
subdomains elsewhere—above, on the left and right—is undemanding.
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double* d = new double[ndof]; std::fill(d, d + ndof, 1.0);

std::vector<std::vector<int>*> mapping; mapping.reserve(8);

std::vector<int> o; o.reserve(8); // at most eight neighbors in 2D

if(jStart != 0) { // this subdomain doesn't touch the bottom side of Ω
85 if(iStart != 0) { // this subd. doesn't touch the left side of Ω

o.push_back(rankWorld - xGrid - 1); // subd. on the lower left corner is a neighbor

mapping.push_back(new std::vector<int>());

mapping.back()->reserve(4 * overlap * overlap);

for(int j = 0; j < 2 * overlap; ++j)

90 for(int i = iStart; i < iStart + 2 * overlap; ++i)

mapping.back()->push_back(i - iStart + (iEnd - iStart) * j);

for(int j = 0; j < overlap; ++j) {

for(int i = 0; i < overlap - j; ++i)

d[i + j + j * (iEnd - iStart)] = j / (double)overlap;

95 for(int i = 0; i < j; ++i)

d[i + j * (iEnd - iStart)] = i / (double)overlap;

}

}

else // this subd. touches the left side of Ω
100 for(int j = 0; j < overlap; ++j)

for(int i = 0; i < overlap; ++i)

d[i + j * (iEnd - iStart)] = j / (double)overlap;

o.push_back(rankWorld - xGrid); // subd. below is a neighbor

mapping.push_back(new std::vector<int>());

105 mapping.back()->reserve(2 * overlap * (iEnd - iStart));

for(int j = 0; j < 2 * overlap; ++j)

for(int i = iStart; i < iEnd; ++i)

mapping.back()->push_back(i - iStart + (iEnd - iStart) * j);

for(int j = 0; j < overlap; ++j)

110 for(int i = iStart + overlap; i < iEnd - overlap; ++i)

d[i - iStart + (iEnd - iStart) * j] = j / (double)overlap;

if(iEnd != Nx) { // this subd. doesn't touch the right side of Ω
o.push_back(rankWorld - xGrid + 1); // subd. on the lower right corner is a neighbor

mapping.push_back(new std::vector<int>());

115 mapping.back()->reserve(4 * overlap * overlap);

for(int i = 0; i < 2 * overlap; ++i)

for(int j = 0; j < 2 * overlap; ++j)

mapping.back()->push_back((iEnd - iStart) * (i + 1) - 2 * overlap + j);

for(int j = 0; j < overlap; ++j) {

120 for(int i = 0; i < overlap - j; ++i)

d[(iEnd - iStart) * (j + 1) - overlap + i] = j / (double)overlap;

for(int i = 0; i < j; ++i)

d[(iEnd - iStart) * (j + 1) - i - 1] = i / (double)overlap;

}

125 }

else

for(int j = 0; j < overlap; ++j)

for(int i = 0; i < overlap; ++i)

d[(iEnd - iStart) * (j + 1) - overlap + i] = j / (double)overlap;

130 }

Algorithm 2.11: Construction of the basic structures.
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2.3.2 Finite difference matrices and deflation vectors
A standard second order discretization of the Laplace operator in Poisson’s eq. (1.5) leads
to the following system of linear equations:

∀(i, j) ∈ J1;Nx − 1K× J1;Ny − 1K,
−ui−1 j + 2uij − ui+1 j

∆x2
+
−ui j−1 + 2uij − ui j+1

∆y2
= fij

∀(i, j) ∈ J0;NxK× J0;NyK, ui0 = u0j = uiNy = uNxj = 0 ,

where uij ≈ u(i∆x, j∆y) and fij ≈ f(i∆x, j∆y), ∀(i, j) ∈ J0;NxK × J0;NyK. Ordering
unknowns row-by-row, the solution vector looks like:

u =
[
u00 u10 · · · uNx0 u01 · · · uNx−1Ny uNxNy

]T
,

and this leads to a well-known block triangular SPD linear system Au = f . From this
system, each local matrix {Aii}Ni=1 can be easily constructed concurrently as shown below.
Since these matrices are symmetric, only their upper triangular parts are assembled.

ia = new int[ndof + 1];

ja = new int[nnz];

a = new double[nnz];

212 ia[0] = 0;

ia[ndof] = nnz;

for(int j = jStart, k = 0, nnz = 0; j < jEnd; ++j) {

for(int i = iStart; i < iEnd; ++i) {

if(j > jStart) { // this d.o.f. is not on the bottom side of the subd.

217 a[nnz] = -1 / (dy * dy);

ja[nnz++] = k - (Ny / yGrid);

}

if(i > iStart) { // this d.o.f. is not on the left side of the subd.

a[nnz] = -1 / (dx * dx);

222 ja[nnz++] = k - 1;

}

a[nnz] = 2 / (dx * dx) + 2 / (dy * dy);

ja[nnz++] = k;

ia[++k] = nnz;

227 }

}

Algorithm 2.12: Assembly of the local matrices.

The final step to ensure scalability of the solver is to compute deflation vectors that will
be used for building a coarse operator as in section 2.2.2. These vectors could be computed
by solving the generalized eigenvalue problem eq. (1.40) for example, but since an homo-
geneous problem is being investigated, the coarse space introduced by Nicolaides [1987]
should suffice, cf. eq. (1.18). Note that the deflation vectors will be automatically multi-
plied by the local partition of unity when assembling the coarse operator, hence the initial
vector must be set to 1 at first.

264 double** deflation = new double*[1];

*deflation = new double[ndof];

std::fill(*deflation, *deflation + ndof, 1.0);

Algorithm 2.13: Construction of the local deflation vectors.
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2.3.3 Instantiation of the preconditioner
Each and every object of the framework described in section 2.2 can now be initialized with
the structures computed previously. The first step is to instantiate a preconditioner with
a local solver SUBDOMAIN and a distributed solver COARSEOPERATOR for a potential coarse
operator. Each local solver can be different between subdomains, but the distributed solver
must be the same on the communicator of the decomposition. Additionally, the user can
specify whether the coarse operator is supposed to be symmetric, with the character 'S',
or not, with the character 'G'.

HPDDM::Schwarz<SUBDOMAIN, COARSEOPERATOR, 'G', double> K;

Algorithm 2.14: Instantiation of the preconditioner.

The communication buffers should now be initialized inside the preconditioner, and
thereafter, the local partition of unity can be computed.

K.Subdomain::initialize(A, o.cbegin(), o.cend(), mapping);

for(std::vector<int>* pt : mapping)

delete pt;

276 K.multiplicityScaling(d);

K.initialize(d);

Algorithm 2.15: Initialization of the internal data structures.

It is now time to factorize the local matrices {Aii}Ni=1 as well as assemble, redistribute,
and factorize the coarse operator.

K.callNumfact();

291 std::vector<unsigned short> parm(5);

parm[HPDDM::P] = 1;

parm[HPDDM::TOPOLOGY] = 0;

parm[HPDDM::DISTRIBUTION] = HPDDM::DMatrix::NON_DISTRIBUTED;

parm[HPDDM::STRATEGY] = 3;

296 parm[HPDDM::NU] = 1;

K.setVectors(deflation);

K.super::initialize(1);

K.buildTwo(MPI_COMM_WORLD, parm);

Algorithm 2.16: Factorization of the local linear systems and of the coarse operator.

Eventually, a preconditioned iterative method may now be called to solve the initial
problem.

unsigned short it = 100;

unsigned short restart = 30;

HPDDM::IterativeMethod::GMRES(K, sol, f, restart, it, stop, K.getCommunicator(), '
& rankWorld == 0 ? 1 : 0);

Algorithm 2.17: Use of the preconditioner in the GMRES method.
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How to link the framework presented in chapter 2 with existing software for
the discretization of partial differential equations will now be explained. In

section 3.1, FreeFem++ is briefly introduced and the tools needed for performing
domain decomposition preconditioning are presented, as in [Jolivet, Dolean, et al.
2012]. In section 3.2, the focus is on Feel++.

Le lien entre la libraire présentée chapitre 2 et des outils existants de discrétisa-
tion d’équations aux dérivées partielles est expliqué dans ce chapitre. Dans la

section 3.1, FreeFem++ est brièvement introduit et les outils nécessaires aux mé-
thodes de décomposition de domaine sont détaillés, comme dans [Jolivet, Dolean,
et al. 2012]. Dans la section 3.2, on se concentre sur Feel++.
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Domain decompositionmethods are often used in conjunctionwithGalerkinmethodswhich
are used to convert a continuous problem—such as a system of partial differential equa-
tions—into a discrete problem that can be solved numerically. From the point of view
of a developer, implementing such methods is quite cumbersome when considering high-
order approximations, with discontinuous approximation spaces, and unstructured multi-
dimensional meshes. However, with the rise of metaprogramming, domain specific lan-
guages can be used to efficaciously circumvent such problems. Leveraging comprehensive
interfaces with discretization libraries, it is explained in this chapter how to easily use do-
main decomposition preconditioners.
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3.1 FreeFem++
FreeFem++ [Hecht 2012] is a domain-specific language (DSL) that can be used for perform-
ing various essential tasks related to the finite element method. While all the following
tasks are sequential, they can be called concurrently on different processes.

Mesh construction, using user specified geometries, e.g. non-self-intersecting polytopes,
plus the capability of “gluing” different meshes using the overloaded operator +.

mesh T1(Ω, discretization parameters, label = …)

It is also be possible to define a mesh by truncating another one, i.e. by removing
triangles or tetrahedra, and/or by splitting each triangle or tetrahedron by a given
positive integer s, see fig. 3.1.

T2 ← trunc(T1, boolean function to keep or remove elements, split = s,
label = ...)

(a) T1 = square(2, 2) (b) T2 = trunc(T1, x < 0.5 || y < 0.5, split = 2, label = Γ)

Fig 3.1: A truncated and refined mesh generated by FreeFem++.
The new boundary edges are labeled Γ (dashed line on the right figure).

Finite element space definition, on an arbitrary mesh T with various basis functions
such as P1 or P2 finite elements.

fespace U(T1,P1)
fespace V (T1,P2)

Finite element space linear interpolation, from a space U to another space V in a ma-
trix form.

matrix I ← interpolate(U → V )

Variational formulation instantiation, with the keyword varf. For eq. (1.5), it would
lead to a line of code similar to:

varf V(u, v)←
∫

T
∇u · ∇v −

∫
T
f v + on(L, u = 0)

where u ∈ U is a trial function, v ∈ V is a test function, and the keyword on im-
poses penalized boundary conditions on the boundary elements of T1 labeled L. The
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keyword used for two-dimensional integration is int2d and the one used for three-
dimensional integration is int3d.

Matrix and vector assembly, when the finite element spaces for the trial functions and
for the test functions are defined, the matrix form (resp. right-hand side) of the varf V
may be computed and should be stored in a sparse format (resp. contiguous block of
memory).

matrix A← V(U, V )
vector f ← V(0, V )

Using these keywords, it is possible to perform large-scale experiments even if the FreeFem++
finite element kernel is sequential. Indeed, while there exists a MPI interface inside the
language, there is no level of abstraction for performing parallel mesh construction, matrix
assembly, etc. As such, vectors generated by FreeFem++ are simple containers that encap-
sulate pointers to scalars (double-precision floating-point reals or complexes), and matrices
are represented in CSR format, cf. section 2.1.2. This could be seen as a major setback for
parallel computing, but the approach that will be described in this section has proven to be
very effective.

3.1.1 Mesh generation and decomposition
The obvious initial step as in all finite element method numerical simulations is to load
or discretize a geometry. This can be done using built-in tools as described in the previous
paragraph, but also by loadingmeshes generated offline using a third-party software such as
Gmsh [Geuzaine and Remacle 2009] or TetGen [Si 2013]. Thanks to the ability of FreeFem++
to refine any given mesh, cf. fig. 3.1, it is possible to start with a somehow coarse global
mesh that will be refined after the partitioning step. From the point of view of the finite
element method, a partitioning is a discontinuous piecewise (with respect to T ) constant
P0 function p, meaning that each element of T is given a constant value i ∈ J1;NK that
will correspond to the subdomain Ω0

i to which it belongs, formally: Ω0
i = p−1(i).

User-defined partitioning If the shape of Ω is regular with some symmetry properties
(e.g. rectangles in R2, cuboids in R3), an analytical partitioning of Ω can be defined. As an
example, the partitionings used in some numerical simulations of chapter 5 are given below.

Algorithm 3.2: Partitioning of the unit square.
Input: mesh T , number of subdomains N
i← b

√
Nc

while N 6≡ 0 mod i do
i← i− 1

j ← N

i
fespace P (T ,P0)
Pp← bixcj + bjyc

In algorithms 3.2 and 3.3, x, y and z are P0 func-
tions that return the coordinates of the point at
which it is being evaluated.

Algorithm 3.3: Partitioning of the unit cube.
Input: mesh T , number of subdomains N
i← b 3

√
Nc

while N 6≡ 0 mod i do
i← i− 1

j ←

⌊√
N

i

⌋
while

N

i
6≡ 0 mod j do

j ← j − 1

k ←
⌊
N

ij

⌋
fespace P (T ,P0)
Pp← bixcjk + bjyck + bkzc



62 Chapter 3 Finite element languages

Algorithmic graph partitioning When Ω defines a complex geometry, it is best to use
graph partitioners as introduced section 2.1.5 that will lead to more balanced decomposi-
tions: less communication, similar workload and such. These partitioners can be directly
called from within FreeFem++ DSL.

(a) With a graph partitioner (b) With the user-defined partitioning algorithm 3.2

Fig 3.4: Examples of sixteen-way partitionings of Ω = [0; 1]2.

User-supplied partitioning Another alternative is to directly load a previously parti-
tioned mesh. For example, using a computer-aided design software, it is possible to mesh
complex geometries and split them into multiple parts. This results in a much faster prepro-
cessing as it is now unnecessary to build the global mesh T and the global P0 finite element
space on a single MPI process. The only two drawbacks are the fact that it is a little more
Input/Output intensive and that the list of neighboring subdomains {Oi}Ni=1 must also be
user-supplied.

T 0
i ← trunc(T , |p− i| < 10−6, label = 10) // local operations

Using the nonoverlapping meshes, each subdomain builds an axis-aligned minimum
bounding box that encloses T 0

i , for i ∈ �1;N�. Each dimension of the boxes is increased
by 2 · l ·maxτ∈T 0

i
hτ (where hτ is the characteristic size of element τ ∈ T ) and the global

mesh is now replaced by all elements enclosed by the local box.

T ← trunc(T , x and y and z are coordinates inside the local box)

This is only done in order to free upmemory and speed up preprocessing steps that need
information about neighboring subdomains. In particular, for building the overlapping
decomposition, each process can now define the P0 and P1 finite element spaces on T . This
is possible because the global mesh T has been shrunk locally to fit to each

{
T l
i

}N

i=1
. For

i ∈ �1;N�, on the one hand, a local function 1l
i is defined recursively on the discontinuous

piecewise constant finite element space as such:

1l
i =

{
1 on all elements τ ∈ T l

i

0 otherwise

On the other hand, the local function χ̃l
i introduced eq. (1.6) may also be defined. At this

point in the algorithm, the global mesh T can be completely freed from memory on each
process, and the local subdomain can be refined concurrently.

3.1.2 Matrix assembly

When the level of overlap is greater than zero, i.e. l > 0, the local matrices {Aii}Ni=1 defined
in eq. (1.11) must be assembled as they are needed for one-level methods. They might seem
easy to compute using the variational formulation eq. (1.1) on each subdomain {Ωi}Ni=1 but
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it is not that simple since this approach would not take into account the contributions of
the integral outside of the subdomains from boundary d.o.f. Instead, that would yield the

unassembled operators
{
Åi

}N

i=1
given definition 1.7 needed for substructuring methods:

(Aii)jk16j,k6ni
=
∑
τ∈T

a(φNi(k)|τ , φNi(j)|τ )

=
∑
τ∈Ti

a(φNi(k)|τ , φNi(j)|τ )︸ ︷︷ ︸
=
(
Åi

)
jk

+
∑

τ∈T \Ti

a(φNi(k)|τ , φNi(j)|τ )︸ ︷︷ ︸
6=0 =⇒ (j,k)∈N (i)

b ×N (i)
b

.

As described in algorithm 3.5, one approach to build the correct local matrix on each sub-
domain is the following:

1. instantiate the variational formulation on T l+1 instead of T l and assemble the cor-
responding formulation in a matrix A+,

2. build the linear interpolator of the finite element space associated with T l+1 to the
one associated with T l and store the resulting matrix in I ,

3. compute Aii = IA+IT , which amounts to deleting in A+ rows and columns associ-
ated with Ωl+1 \ Ωl.

The local right-hand side is obtained using the same technique.

Algorithm 3.5: Construction of the local matrix and local right-hand side.
Input: meshes T l

i and T l
i+1, finite element P

1 fespace Vi(T l
i ,P)

2 fespace Wi(T l+1
i ,P)

3 matrix I ← interpolate(Wi → Vi)
4 matrix A+ ← V(Wi,Wi)
5 matrix Aii ← IA+IT
6 vector g ← V(0,Wi)
7 vector f ← Ig

In practice, line 5 of the previous algorithm is computed using a much simpler and more
efficient way than actually performing a double sparse matrix-sparse matrix product. If the
number of d.o.f. of each {Wi}Ni=1 is

{
n+
i

}N
i=1

, then this is achieved by copying into Aii only
nonzero entries of A+ whose row and column indices (j, k) ∈ J1;n+

i K2 are associated with
at least one nonzero entry of I , i.e. if there exists m ∈ J1;niK such that (I)mj 6= 0 or
(I)mk 6= 0.

When the level of overlap is zero and substructuring methods are being used, the as-
sembly of the local unassembled matrices are trivial using a variational formulation inside
each subdomain {Ωi}Ni=1.

3.1.3 Transfer operators
For overlapping methods, an automatic and concurrent way of computing the transfer op-
erators on each subdomain i ∈ J1;NK,

{
RiR

T
j

}
j∈Oi

is now explained. What is needed is
the structure mapping used in algorithm 2.2. Unlike in algorithm 2.11, there is no way to
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provide an algebraic construction since this time the decomposition is not known a priori.
Instead, the construction relies on the finite element interpolator.

Algorithm 3.6: Construction of the overlapping transfer operators.
Input: mesh T l

i , set Oi, local partition of unity χi

foreach k ∈ Oi do
mesh Tintersection ← trunc(T l

i , χi|Ωl
i∩Ωl

k
> 0)

fespace Vintersection(Tintersection,P)
matrix Rk ← interpolate(Vintersection → Vi)
mapping[O−1

i (k)].second = column indices of Rk

Two major drawbacks of FreeFem++ are that:

1. one-dimensional meshes are not supported. When dealing with substructuringmeth-
ods in two dimensions, it is however of paramount importance since the dimension
of the interfaces between subdomains is one, and,

2. assembling interpolation matrices between finite element spaces of different geomet-
ric dimensions is not possible, but it is once again necessary for substructuring meth-
ods when defining interfaces of subdomains.

Keeping these limitations in mind, the approach described next is useful for computing the
transfer operators on each subdomain i ∈ J1;NK:

{
B(i)TB(j)

}
16i6N
j∈Oi

for the BDD method,

or
{
B(i)TB(j)

}
16i6N
j∈Oi

for the FETI method. Because the geometric dimension has to stay

the same, the first step is to build a decomposition with a minimum level of overlap equal to
one. It will be used to determine the true interfaces between subdomains which are of lower
geometric dimensions. For that matter, let {T 1

i }
N
i=1 be the overlapping decomposition and

{χi}Ni=1 be the partition of unity. It is assumed next that for each nonoverlapping mesh
Ti, i ∈ J1;NK, the artificial boundary faces (i.e. those that do not have any prescribed
boundary conditions and that are the result of the subdomains tearing) are labeled by a
fixed integer, e.g. 10.
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Algorithm 3.7: Construction of the nonoverlapping transfer operators.
Input: meshes Ti and T 1

i , set Oi, local partition of unity χi

fespace Ui(Ti,P)
varf V(u, v)← on(10, u = 1)
vector f ← V(0, U)
foreach k ∈ Oi do

mesh Tintersection ← trunc(T 1
i , χi|Ω1

i∩Ω1
k
> 0)

fespace Vintersection(Tintersection,P)
matrix Rk ← interpolate(Vintersection → Ui)
int ndofk ← number of d.o.f. in Vintersection
vector gk ← RT

k f
MPI_Isend(gk, ndofk, MPI_DOUBLE, k, rq1[k])
MPI_Irecv(hk, ndofk, MPI_DOUBLE, k, rq2[k])

foreach k ∈ Oi do
MPI_Waitany(#Oi, rq1,&index)
int m = Oi[index]
for l← 1 to ndofm do

if gm[l] = 1 and hm[l] = 1 then
mapping[O−1

i (m)].second.emplace_back(l)

MPI_Waitall(#Oi, rq2)

3.1.4 Interface with the framework
Each and every object of the framework described in section 2.2.1 can now be initialized
with the structures computed with FreeFem++. For better readability, three objects have
been added to the DSL: schwarz, bdd, and feti and they can be initialized inside a FreeFem++
script using the syntax given below.

schwarz A
(
Aii,Oi,

{
RiR

T
j

}
j∈Oi

, scaling = D, communicator = comm
)

This must be a collective call on the MPI communicator comm which is an optional
argument that defaults to MPI_COMM_WORLD. In FreeFem++, the set of transfer operators is
stored as an array of arrays of integer indices, but it is preprocessed by the framework,
alongside Oi, so that internally the structure mapping defined eq. (2.3) is filled correctly.
The call for initializing an object of type bdd or feti is the same, except that the user should
have computed the local unassembled operators.

Attaching a coarse operator

When using either overlapping or nonoverlapping methods, it is possible to attach an ab-
stract coarse operator using user-supplied local deflation vectors. With nonoverlapping
methods, it is also possible to let the framework build a coarse operator using the appro-
priate eigenvectors of eq. (1.43). Since the generalized eigenvalue problem only relies on
operators already partially needed by the BDD method or the FETI method, there is no
additional computation needed by FreeFem++. With overlapping methods, the appropriate
eigenvectors of eq. (1.40) may be used to build a coarse operator. In that case, the user

has to provide the unassembled operators
{
Åi

}N

i=1
which are a priori not needed by such

methods, but which can be computed easily using FreeFem++, cf. section 3.1.2.
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It is then possible to solve the linear system using the appropriate keyword added to
FreeFem++ DSL.

3.1.5 Generating a global numbering
While all previous distributed algorithms do not require a global numbering of the finite
element space or a sophisticated data structure for storing distributed vectors and matrices,
it might still be useful to compute such numbering. In particular, if one were to use for
example PETSc [Balay, Gropp, et al. 1997] which uses a row-wise distribution, this would be
mandatory. Hence, an algorithm for generating a global numbering will now be presented,
and it will be extensively used in section 5.2 when comparing the framework against other
state of the art iterative solvers interfaced with PETSc. It is based on a single sweep method
with ascending order of process ranks. For any given process i ∈ J1;NK:

1. if i = 0, then set start to 0, otherwise, receive start from process i− 1,

2. ∀j ∈ Oi : j < i, receive the global numbering of each neighbor with lower ranks
computed on the overlaps {RiR

T
j },

3. number all local d.o.f., using a start-based numbering, that are inside the subdomain
and that are not duplicated on processes with lower ranks, Ri

∑
j∈Oi : j>i R

T
j , and set

the last index to end,

4. ∀j ∈ Oi : j > i, send the global numbering of each neighbor with higher ranks
computed on the overlap {RiR

T
j },

5. if i 6= N − 1, then send end to process i+ 1,

6. when the global number of d.o.f n is needed by all processes, then, on processN − 1,
set n to end and initiate the following collective communication:

MPI_Bcast(&n, 1, MPI_UNSIGNED, N - 1, comm).

3.1.6 Nonlinear and time-dependent solid mechanics
In section 5.1, the system of linear elasticity will be introduced eq. (5.1). Linear elasticity is a
simplification of the more general nonlinear theory of elasticity where strains are infinites-
imal and there exists linear relationships between the components of stress and strain. In
this paragraph, hyperelasticity will be studied. FreeFem++ can be used to easily manipulate
nonlinear operators by using macros that will mimic automatic differentiation. Let Ω be
a tridimensional reference configuration. The equation of static equilibrium is then in the
Lagrangian formalism, for u ∈ [H1

0 (Ω)]
3:

−∇ · ((I +∇u) Σ) = f, (3.1)

with suitable boundary conditions, where u is the displacement vector, Σ is the second
Piola-Kirchhoff stress tensor, and f are body forces. The weak formulation of eq. (3.1) is,
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for all test functions v ∈ [H1
0 (Ω)]

3:

−
∫

Ω

(I +∇u) Σ : ∇v =

∫
Ω

l(v)

−
∫

Ω

Σ :
(
I +∇uT

)
∇v =

∫
Ω

l(v)

−
∫

Ω

Σ : Dε(u)[v] =

∫
Ω

l(v),

where ε is the Green–Lagrange strain tensor defined as:

ε(u) =
1

2

∇u+∇uT︸ ︷︷ ︸
=2εL(u)

+∇uT∇u︸ ︷︷ ︸
=2εNL(u)

 . (3.2)

εL is the linearized strain tensor:

εL(u) =
1

2

(
∇u+∇uT

)
.

Indeed, since Σ is symmetric,

Σ :
(
I +∇uT

)
∇v =

1

2
Σ :
((
I +∇uT

)
∇v +∇vT (I +∇u)

)
=

1

2
Σ :
(
∇v +∇vT +∇uT∇v +∇vT∇u

)
= Σ : Dε(u)[v] .

(3.3)

Note that the Gâteaux derivative of ε at u ∈ Ω in the direction v ∈ Ω is:

Dε(u)[v] = εL(v) +DεNL(u)[v] .

Within the context of hyperelasticity, it is assumed that the stress-strain relationship de-
rives from a stored energy density functionW such that:

Σ =
∂W
∂ε

.

The total strain energy is then given by:

Π(u) =

∫
Ω

W(ε(u)) ,

and one has:
DΠ(u)[v] =

∫
Ω

∂W
∂ε

: Dε(u)[v] ,

and,

D2Π(u)[v, w] =

∫
Ω

∂2W
∂ε2

: Dε(u)[w] : Dε(u)[v] +

∫
Ω

∂W
∂ε

: D2ε(u)[v, w] .

In its most general form, the relationship between Σ and ε can be nonlinear. In order to
apply a Newton–Rhapson solution process, this relationship needs to be linearized with
respect to u in the direction w. Using the chain rule, one has:

DΣ(ε(u))[w] =
∂Σ

∂ε
(Dε(u)[w]) =

∂2W
∂ε2

(Dε(u)[w]) .
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Because:∫
Ω

(I +∇u+∇w) Σ : ∇v =

∫
Ω

(I +∇u+∇w)

× Σ(ε(u) + ε(w)
1

2
(∇wT∇u+∇uT∇w))) : ∇v ,

the linearization with respect to w yields∫
Ω

(
(I +∇u+∇w)Σ− (I +∇u)Σ

)
: ∇v =

∫
Ω

(I +∇u)DΣ(ε(u))[w] : ∇v

+

∫
Ω

∇w Σ(ε(u)) : ∇v

=

∫
Ω

∂2W
∂ε2

(Dε(u)[w]) :
(
I +∇uT

)
∇v

+

∫
Ω

Σ(ε(u)) : D2ε(u)[v, w]

=

∫
Ω

C : Dε(u)[w] : Dε(u)[v]

+

∫
Ω

Σ(ε(u)) : D2ε(u)[v, w] ,

where:

D2ε(u)[v, w] =
1

2

(
∇wT∇v +∇vT∇w

)
= DεNL(v)[w] = DεNL(w)[v] ,

and C is the four order symmetric tensor defined as:

Cijkl =
1

2

((
∂2W
∂ε2

)
ijkl

+

(
∂2W
∂ε2

)
jikl

)
. (3.4)

In itsmost general form, C has 3× 3× 3× 3= 81 coefficients in three dimensions. However,
thanks to eq. (3.4) and the symmetry of the strain tensor ε,

Cijkl = Cjikl (3.5a)
Cijkl = Cijlk (3.5b)
Cijkl = Cklij , (3.5c)

so that the number of coefficients can be reduced to 6 × 3 × 3, then 6 × 6, and eventually,
21, cf. eq. (3.10).

To sum up this section, when given a specific stored energy functionW , one can com-
pute Σ and C which yield the stiffness matrix:∫

Ω

K(u)[v] = −
∫

Ω

Σ(ε(u)) : Dε(u)[v] dv −
∫

Ω

l(v) dv,

and the tangent stiffness matrix relative to a direction w:∫
Ω

K′(u)[v, w] :=

∫
Ω

C : Dε(u)[w] : Dε(u)[v] + Σ(ε(u)) : D2ε(u)[v, w] dv.

A simple Newton–Rhapson algorithm reads:
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1. initialize u0,

2. loop on n,

(a) find the solution dn of:∫
Ω

K′(un)[v, dn] =

∫
Ω

K(un)[v] , (3.6)

(b) find an appropriate length step αn using for example the backtracking line
search:

i. set j = 0, αn0 = 1, τ = 0.5,
ii. while the Armijo–Goldstein condition,

Π(un + αnj
dn) 6 Π(un) + c1αnj

dTn∇Π(un) ,

is not satisfied, set αnj+1
= ταnj

and increment j by 1.

(c) update the displacement un+1 = un − αndn,

(d) if ||dn|| or αn < ε, break the loop.

Some hyperelastic material models

The simplest hyperelastic material model is the Saint Venant–Kirchhoff model for which
the stored energy function is:

W =
λ

2
(trε)2 + µtr(ε2)

=
λ

2
(ε11 + ε22 + ε33)

2

+ µ
(
ε211 + ε222 + ε233 + 2ε223 + 2ε231 + 2ε212

)
.

This yields:

Σ = λtr(ε)I + 2µε

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (3.7)

In order to present the next material model, another important tensor has to be introduced.
The right Cauchy–Green deformation tensor is defined as:

C(u) := (I +∇u)T (I +∇u) ,

so that:
C = 2ε+ I and

∂W
∂ε

= 2
∂W
∂C

. (3.8)

The invariants of this tensor are:

IC = trC

IIC =
1

2

(
(trC)2 − tr(C2)

)
IIIC = detC = J2 .
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The Mooney–Rivlin [Mooney 1940; Rivlin 1948] model has a stored energy function of the
form:

W = c10(I
?
C − 3) + c01(II

?
C − 3) + d1(J − 1)2 + d2 ln J,

where:

I?C = J−2/3IC

II?C = J−4/3IIC .

The following partial derivatives are needed to compute Σ:

∂IC
∂C

= I

∂IIC
∂C

= ICI − CT

∂IIIC
∂C

= IIICC
−T .

Then,

∂I?C
∂C

= III
−1/3
C

(
I − 1

3
ICC

−T

)
= III

−1/3
C

(
∂IC
∂C
− IC

3IIIC

∂IIIC
∂C

)
∂II?C
∂C

= III
−2/3
C

(
ICI − CT − 2

3
IICC

−T

)
= III

−2/3
C

(
∂IIC
∂C

− 2IIC
3IIIC

∂IIIC
∂C

)
∂J

∂C
=

1

2
III

1/2
C C−T

=
1

2
III

−1/2
C

∂IIIC
∂C

,

and,
∂W
∂I?C

= c10
∂W
∂II?C

= c01
∂W
∂J

= 2d1(J − 1) + d2J
−1 ,

so that:

Σ = 2
∂W
∂I?C

∂I?C
∂C

+ 2
∂W
∂II?C

∂II?C
∂C

+ 2
∂W
∂J

∂J

∂C

= 2c10
∂I?C
∂C

+ 2c01
∂II?C
∂C

+
(
2d1(J

2 − J) + d2
)
C−T .

The following fourth order tensor are then needed to compute C:

∂2IC
∂Cij∂Ckl

= 0 (3.9a)

∂2IIC
∂Cij∂Ckl

= δijδkl − δjkδil (3.9b)

∂2IIIC
∂Cij∂Ckl

= IIIC
(
C−1

ji C
−1
lk − C−1

li C−1
jk

)
. (3.9c)
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Equation (3.9c) comes from the equality:

∂A−1
ij

∂Akl

= −A−1
ik A

−1
lj =⇒

∂A−1
ji

∂Akl

= −A−1
li A−1

jk .

Hence,

∂2I?C
∂Cij∂Ckl

= III
−1/3
C

(
IC
9
C−1

ji C
−1
lk −

1

3

(
C−1

ji δkl + δijC
−1
lk

)
+

IC
3
C−1

li C−1
jk

)
= III

−1/3
C

(
4IC

9III2C

∂IIIC
∂C

⊗ ∂IIIC
∂C

− 1

3IIIC

(
∂IIIC
∂C

⊗ ∂IC
∂C

+
∂IC
∂C
⊗ ∂IIIC

∂C

)
− IC

3IIIC

∂2IIIC
∂C2

)
∂2II?C

∂Cij∂Ckl

= III
−2/3
C

(
δijδkl − δjkδil +

10IIC
9

C−1
ji C

−1
lk

+
2

3

(
C−1

ji (ICδjk − Ckj) + (ICδij − Cji)C
−1
lk

)
− 2IIC

3

(
C−1

ji C
−1
lk − C−1

li C−1
jk

))
= III

−2/3
C

(
∂2IIC
∂C2

+
10IIC
9III2C

∂IIIC
∂C

⊗ ∂IIIC
∂C

+
2

3IIIC

(
∂IIIC
∂C

⊗ ∂IIC
∂C

+
∂IIC
∂C

⊗ ∂IIIC
∂C

)
− 2IIC

3IIIC

∂III2C
∂C2

)
∂2J

∂Cij∂Ckl

=
1

4
III

1/2
C

(
C−1

ji C
−1
lk − 2C−1

li C−1
jk

)
=

1

2
III

−1/2
C

(
∂2IIIC
∂C2

− 1

2IIIC

∂IIIC
∂C

⊗ ∂IIIC
∂C

)
,

and,
∂2W
∂J2

= 2d1 − d2J
−2 .

Eventually:(
∂2W
∂ε2

)
ijkl

= 4

(
∂2W
∂C2

)
ijkl

= 4
∂W
∂I?C

∂2I?C
∂C2

+ 4
∂W
∂II?C

∂2II?C
∂C2

+ 4
∂W
∂J

∂2J

∂C2
+ 4

∂2W
∂J2

∂J

∂C
⊗ ∂J

∂C

= 4c10
∂2I?C

∂Cij∂Ckl

+ 4c01
∂2II?C

∂Cij∂Ckl

+
(
2d1
(
J2 − J

)
+ 2d1J

2
)
C−1

ji C
−1
lk

− 4d1
(
J2 − J

)
C−1

li C−1
jk + d2

((
C−1

ji C
−1
lk − 2C−1

li C−1
jk

)
− C−1

ji C
−1
lk

)
= 4c10

∂2I?C
∂Cij∂Ckl

+ 4c01
∂2II?C

∂Cij∂Ckl

+ 2
(
d1
(
2J2 − J

)
C−1

ji C
−1
lk −

(
d2 + 2d1

(
J2 − J

))
C−1

li C−1
jk

)
.
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Implementation details

Using the considerations of eq. (3.5), it is only necessary to consider the following terms of
the strain tensor: ε11, ε22, ε33, ε23, ε31, ε12. Using Voigt notation, C can be expressed as:

C =


C1111 C1122 C1133 C1123 C1131 C1112
C1122 C2222 C2233 C2223 C2231 C2212
C1133 C2233 C3333 C3323 C3331 C3312
C1123 C2223 C3323 C2323 C2331 C2312
C1131 C2231 C3331 C2331 C3131 C3112
C1112 C2212 C3312 C2312 C3112 C1212

 . (3.10)

In three dimensions, the displacement vector u ∈ [H1
0 (Ω)]

3 can be written as the tensor
product of three finite element functions, each approximating functions of H1

0 (Ω), i.e. u =
(u1, u2, u3) where {ui = gi(x1, x2, x3)}3i=1, so that,

∇u =


∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 ,

and,

2ε(u)11 = 2
∂u1

∂x1

+

(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2

2ε(u)22 = 2
∂u2

∂x2

+

(
∂u1

∂x2

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x2

)2

2ε(u)33 = 2
∂u3

∂x3

+

(
∂u1

∂x3

)2

+

(
∂u2

∂x3

)2

+

(
∂u3

∂x3

)2

2ε(u)23 =
∂u2

∂x3

+
∂u3

∂x2

+
∂u1

∂x2

∂u1

∂x3

+
∂u2

∂x2

∂u2

∂x3

+
∂u3

∂x2

∂u3

∂x3

2ε(u)31 =
∂u3

∂x1

+
∂u1

∂x3

+
∂u1

∂x1

∂u1

∂x3

+
∂u2

∂x1

∂u2

∂x3

+
∂u3

∂x1

∂u3

∂x3

2ε(u)12 =
∂u1

∂x2

+
∂u2

∂x1

+
∂u1

∂x1

∂u1

∂x2

+
∂u2

∂x1

∂u2

∂x2

+
∂u3

∂x1

∂u3

∂x2

.

Linear part εL(u) Nonlinear part εNL(u)
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2DεNL(u)[v]11 = 2

(
∂u1

∂x1

∂v1
∂x1

+
∂u2

∂x1

∂v2
∂x1

+
∂u3

∂x1

∂v3
∂x1

)
2DεNL(u)[v]22 = 2

(
∂u1

∂x2

∂v1
∂x2

+
∂u2

∂x2

∂v2
∂x2

+
∂u3

∂x2

∂v3
∂x2

)
2DεNL(u)[v]33 = 2

(
∂u1

∂x3

∂v1
∂x3

+
∂u2

∂x3

∂v2
∂x3

+
∂u3

∂x3

∂v3
∂x3

)
2DεNL(u)[v]23 =

∂u1

∂x2

∂v1
∂x3

+
∂u2

∂x2

∂v2
∂x3

+
∂u3

∂x2

∂v3
∂x3

+
∂u1

∂x3

∂v1
∂x2

+
∂u2

∂x3

∂v2
∂x2

+
∂u3

∂x3

∂v3
∂x2

2DεNL(u)[v]31 =
∂u1

∂x3

∂v1
∂x1

+
∂u2

∂x3

∂v2
∂x1

+
∂u3

∂x3

∂v3
∂x1

+
∂u1

∂x1

∂v1
∂x3

+
∂u2

∂x1

∂v2
∂x3

+
∂u3

∂x1

∂v3
∂x3

2DεNL(u)[v]12 =
∂u1

∂x1

∂v1
∂x2

+
∂u2

∂x1

∂v2
∂x2

+
∂u3

∂x1

∂v3
∂x2

+
∂u1

∂x2

∂v1
∂x1

+
∂u2

∂x2

∂v2
∂x1

+
∂u3

∂x2

∂v3
∂x1

.

These functions may be computed using FreeFem++ macros, that are similar to macros
interpreted by a compiler preprocessor.

macro EL(u)[dx(u#1),

dy(u#2),

dz(u#3),

dz(u#2) + dy(u#3),

5 dx(u#3) + dz(u#1) ,

dy(u#1) + dx(u#2)]// EOM

macro ENL(u)[0.5*(dx(u#1)^2 + dx(u#2)^2 + dx(u#3)^2),

0.5*(dy(u#1)^2 + dy(u#2)^2 + dy(u#3)^2),

10 0.5*(dz(u#1)^2 + dz(u#2)^2 + dz(u#3)^2),

dy(u#1)*dz(u#1) + dy(u#2)*dz(u#2) + dy(u#3)*dz(u#3),

dx(u#1)*dz(u#1) + dx(u#2)*dz(u#2) + dx(u#3)*dz(u#3),

dx(u#1)*dy(u#1) + dx(u#2)*dy(u#2) + dx(u#3)*dy(u#3)]// EOM

15 macro DENL(u, v)[dx(u#1)*dx(v#1) + dx(u#2)*dx(v#2) + dx(u#3)*dx(v#3),

dy(u#1)*dy(v#1) + dy(u#2)*dy(v#2) + dy(u#3)*dy(v#3),

dz(u#1)*dz(v#1) + dz(u#2)*dy(v#2) + dz(u#3)*dy(v#3),

dy(u#1)*dz(v#1) + dy(u#2)*dz(v#2) + dy(u#3)*dz(v#3)

+ dz(u#1)*dy(v#1) + dz(u#2)*dy(v#2) + dz(u#3)*dy(v#3),

20 dz(u#1)*dx(v#1) + dz(u#2)*dx(v#2) + dz(u#3)*dx(v#3)

+ dx(u#1)*dz(v#1) + dx(u#2)*dz(v#2) + dx(u#3)*dz(v#3),

dx(u#1)*dy(v#1) + dx(u#2)*dy(v#2) + dx(u#3)*dy(v#3)

+ dy(u#1)*dx(v#1) + dy(u#2)*dx(v#2) + dy(u#3)*dx(v#3)]// EOM

25 macro DE(u, v)(EL(v) + DENL(u, v))// EOM

macro E(u)(EL(u) + ENL(u))// EOM

macro D2E(u, v, w)DENL(v, w)// EOM

Algorithm 3.8: Nonlinear elasticity kinematic operators computed with FreeFem++.
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Obviously using eq. (3.8),

C11 = 2ε11 + 1 C23 = 2ε23

C22 = 2ε22 + 1 C31 = 2ε31

C33 = 2ε33 + 1 C12 = 2ε12 .

Hence, if the eigenvalues of C are (λ1, λ2, λ3)
1,

IC = λ2
1 + λ2

2 + λ2
3

IIC = (λ2λ3)
2 + (λ3λ1)

2 + (λ1λ2)
2

IIIC = (λ1λ2λ3)
2 .

These are local tensors that must be retrieved at each node associated with the unknowns
of the finite element spaces: this is a costly step for assembling each linear system, but
since the computations are concurrent, domain decomposition methods allow for signifi-
cant speedups during assembly of the systems. The approach described so far is based on,
first, a linearization of the global problem, followed by a domain decomposition to solve
eq. (3.6). It has proven to be successful, for example in [De Roeck 1993; De Roeck, Le Tallec,
and Vidrascu 1992]. Another approach introduced by Cai and Keyes [2002] for overlapping
Schwarzmethods is based on, first, a decomposition of the global problem, followed by local
linearizations. The latter is more robust, especially when there are unbalanced nonlinear-
ities in the system. Similar techniques have been developed for nonoverlapping methods,
cf. [Klawonn, Lanser, and Rheinbach 2014].

Time-dependent linear elasticity

For unsteady problems, the elastic wave equation involves linear elasticity with variation
in time, and reads for u ∈ [H1

0 (Ω)]
3 and t ∈ [0;T ]:

ρ
∂2u

∂t2
= c

∂u

∂t
+∇ · (C : ε) + f,

where ρ is the density of the material, c is the viscosity, C is the fourth-order stiffness tensor,
and f is a source term. Standard spatial finite element discretization yields the following
system:

M
∂2u

∂t2
= C

∂u

∂t
+Ku+ F .

M (resp. K) is usually referred to as the mass (resp. stiffness) matrix.
The Newmark [1959] scheme reads, with initial temporal boundary conditions (u0, u̇0):

1. initialize ü0 = M−1(Cu̇0 +Ku0 + F),

2. loop on n, with a time step ∆t,

(a) compute explicitly:

un+1/2 = un +∆t u̇n + (1− 2β)
∆t2

2
ün

u̇n+1/2 = u̇n + (1− γ)∆t ün ,

1Computed using a dense eigenvalue solver, e.g. ?sterf from LAPACK.
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(b) solve the following linear system,

(M+ γ∆tC+ β∆t2K)ün+1 = (Kun+1/2 + F) ,

(c) advance speed and displacement:

un+1 = un+1/2 + β∆t2ün+1

u̇n+1 = u̇n+1/2 + γ∆t ün+1 .

Values (γ, β) ∈ R2 such that
1

2
6 γ 6 2β lead to an unconditionally stable scheme. A

common choice for those values is (γ, β) = (1/2, 1/4). Once again, domain decomposition
preconditioners may be used to accelerate the assembly and solution of each linear system.

In the conclusion, page 103, it will be explained why the two previous paragraphs con-
cerning nonlinear and unsteady problems lack numerical experiments: there are currently
too many open questions and there is no clear satisfying answer.

3.2 Feel++
Feel++ [Prud’homme et al. 2012] is a domain-specific embedded language (DSEL) written
in C++ that is suitable for generalized Galerkin methods. Recently [Chabannes 2013], a lot
of effort has been put into efficiently parallelizing the library, so that end-users do not have
to deal with message passing, multithreading, or offloading computations to coprocessors.
Just as for FreeFem++, some tools and operators needed for building domain decomposition
preconditioners will now be explained. However, unlike FreeFem++which is only equipped
with sequential finite element kernels, Feel++ is able to transparently switch from local to
distributed operators. While this must be handled with care since the communications are
now hidden from an end-user, this provide a very effective way for generating the necessary
structures.

Mesh construction, using Gmsh [Geuzaine and Remacle 2009] and .geo files2 either gen-
erated on the fly by Feel++ for simple geometries or created by the user beforehand.

auto unitCube = loadMesh(_mesh = new Mesh<Simplex<3>>);

auto customGeo = createGMSHMesh(_mesh = new mesh_type,

_desc = geo(_filename = "tripod.geo",

_dim = 3, _h = 0.2));

Mesh extraction, using markers assigned to each geometric entities such as points, faces,
or elements. It must be noted that meshes are automatically partitioned by Feel++,
and they store additional information such as so-called ghost elements. It is however
possible to create “sequential meshes” that do not keep these. This will be useful for
computing unassembled operators in the context of substructuring methods.

auto traceCube = createSubmesh(unitCube, boundaryfaces(unitCube)); // distributed mesh

auto localGeo = createSubmesh(customGeo, elements(customGeo),

Environment::worldCommSeq()); // local mesh

2The default file format for describing geometries than can be meshed by Gmsh, see figs. A.1 and A.2 for
examples.
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Finite element space definition, that can either be parallel—which requires communi-
cations and the creation of a global numbering—or purely local to a process.

auto U = FunctionSpace<Mesh<Simplex<3>>, // distributed space

bases<Lagrange<1, Scalar>>>::New(_mesh = unitCube);

auto W = FunctionSpace<Mesh<Simplex<3>>::trace_mesh_type, // distributed space

bases<Lagrange<1, Scalar>>>::New(_mesh = traceCube);

auto V = FunctionSpace<Mesh<Simplex<3>>, // local space

bases<Lagrange<2, Scalar>>>::New(_mesh = localGeo,

_worldscomm = Environment::worldsCommSeq(1));

Finite element space linear interpolation, from a space U to another space W .

auto op = opInterpolation(_domainSpace = U, _imageSpace = W);

// collective or local computations, depending on the underlying meshes

Variational formulation integration, of both linear and bilinear forms. For eq. (1.5), it
would lead to lines of code similar to:

auto u = Vh->element();

auto v = Vh->element();

auto l = form1(_test = U);

l = integrate(_range = elements(unitCube), _expr = f * id(v));

auto a = form2(_trial = U, _test = U);

a = integrate(_range = elements(unitCube), _expr = gradt(u) * trans(grad(v)));

a += on(_range = markedfaces(unitCube, "Dirichlet"), _rhs = l, _element = u,

_expr = cst(0.0));

Parallel solution of linear systems, which is not needed by the framework but is ex-
plained nonetheless since the interface is quite concise and self-explanatory,

a.solve(_rhs = l, _solution = u);

The various steps for interfacing the framework with Feel++ will be explained in the follow-
ing sections. The idea is to use Feel++ capabilities for distributing an initial mesh and get
the extra information stored with the mesh to initialize the correct structures of the precon-
ditioners. After that, Feel++ parallel capabilities are not required, in particular, there is no
need to assemble the global linear system eq. (1.3). Because it is harder to manipulate—glue
or extract—meshes at runtime with Feel++ than with FreeFem++, using the recursion pro-
cess described page 16 for building overlapping decompositions is not achievable with the
former. Thus, only the substructuring preconditioners are supported by this approach.

3.2.1 Preprocessing steps
The first step is to actually generate and distribute a mesh. Then, only the mesh local to the
current process is extracted and it is used to build a finite element space.

using namespace HPDDM;

auto mesh = loadMesh(_mesh = new Mesh<Simplex<Dim>>);

auto localMesh = createSubmesh(mesh, elements(mesh), Environment::worldCommSeq());

64 auto VhLocal = FunctionSpace<Mesh<Simplex<Dim>>,

bases<Lagrange<Order, Type>>>::New(_mesh = localMesh,

_worldscomm = Environment::worldsCommSeq(1));

Algorithm 3.9: Initialization of the local finite element space.
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3.2.2 Transfer operators
Using the structure for distributed meshes of Feel++ , it is quite easy to build the transfer
operators by looping through subdomains that share at least one geometric entity with the
local mesh.

std::vector<std::vector<int>*> map(mesh->faceNeighborSubdomains().size()); // #Oi

for(int i = 0; i < map.size(); ++i) { // foreach neighbor

79 std::set<rank_type>::iterator it = mesh->faceNeighborSubdomains().begin();

std::advance(it, i);

auto trace = createSubmesh(mesh, interprocessfaces(mesh, *it),

Environment::worldCommSeq()); // create the interface

auto Xh = FunctionSpace<typename Mesh<Simplex<Dim>>::trace_mesh_type,

84 bases<Lagrange<Order, Type>>>::New(_mesh = trace,

_worldscomm = Environment::worldsCommSeq(1));

// define the corresponding space

auto l = Xh->element();

std::iota(l.begin(), l.end(), 1.0); // initialize the function on the interface

89
auto op = opInterpolation(_domainSpace = VhLocal,

_imageSpace = Xh,

_backend = backend(_worldcomm = Environment::worldCommSeq()),

_ddmethod = true);

94 auto opT = op->adjoint(MATRIX_TRANSPOSE_UNASSEMBLED);

// no need for an explicit assembly

uLocal = (*opT)(l); // interpolate the function on the subd.

// nonzero values of this function are on the interface

map[i] = new std::vector<int>(Xh->nDof());

99 for(int j = 0; j < VhLocal->nDof(); ++j)

if(std::round(uLocal[j]) != 0)

(*map[i])[std::round(uLocal[j]) - 1] = j;

// this is the numbering in the local subd.

// a renumbering in the local trace is needed afterwards

104 }

Algorithm 3.10: Numbering of the interfaces with the neighboring subdomains.

The structure mapping can now be renumbered to provide the same connectivity infor-
mation as in algorithm 2.11 that are needed for the transfer operators on each subdomain
i ∈ J1;NK:

{
B(i)B(j)T

}
j∈Oi

for the BDD method or
{
B(i)B(j)T

}
j∈Oi

for the FETI method.

std::set<int> unique;

// remove duplicates by using a set

for(std::vector<int>* pt : map)

for(int& i : *pt)

112 unique.insert(i);

interface.insert(interface.begin(), unique.cbegin(), unique.cend());

std::unordered_map<int, int> mapping;

mapping.reserve(interface.size());

int j = 0;

117 for(const int& i : interface) // create a permutation from subd. to trace

mapping[i] = j++;

for(std::vector<int>* pt : map)

for(int& i : *pt) // permute the numbering

i = mapping[i];

Algorithm 3.11: Renumbering of the transfer operators.
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3.2.3 Retrieving a local matrix
Because Feel++ uses PETSc internally, it is necessary to access the raw representation of
the sparse matrices and vectors after assembly of the local linear systems, and copy those
inside simpler structures. This is detailed in the following algorithm.

boost::shared_ptr<Backend<double>> ptr_backend = Backend<double>::build(BACKEND_PETSC, '
& Environment::worldCommSeq());

Backend<double>::sparse_matrix_ptrtype A = ptr_backend->newMatrix(VhLocal, VhLocal);

129 Backend<double>::vector_ptrtype f = ptr_backend->newVector(VhLocal);

auto a = form2(_trial = VhLocal, _test = VhLocal, _matrix = A);

a = integrate(_range = elements(localMesh), _expr = gradt(uLocal) * trans(grad(vLocal)));

auto l = form1(_test = VhLocal, _vector = f);

l = integrate(_range = elements(localMesh), _expr = id(vLocal));

134 if(nelements(markedfaces(localMesh, "Dirichlet")) > 0)

a += on(_range = markedfaces(localMesh, "Dirichlet"), _rhs = l, _element = uLocal,

_expr = cst(0.0));

A->close(); // assemble the local linear system

Mat PetscA = static_cast<MatrixPetsc<double>*>(&*A)->mat(); // PETSc matrix

139 Vec PetscF = static_cast<VectorPetsc<double>*>(&*f)->vec(); // PETSc vector

PetscInt n;

const PetscInt* ia;

const PetscInt* ja;

PetscScalar* array;

144 PetscBool done;

MatGetRowIJ(PetscA, 0, PETSC_FALSE, PETSC_FALSE, &n, &ia, &ja, &done);

MatSeqAIJGetArray(PetscA, &array);

// retrieve (row_ptr, col, val), cf. section 2.1.2

int nnz = ia[n];

149 double* c = new double[nnz];

int* ic = new int[n + 1];

int* jc = new int[nnz];

std::copy(array, array + nnz, c);

std::copy(ia, ia + n + 1, ic);

154 std::copy(ja, ja + nnz, jc);

MatrixCSR<double>* pt = new MatrixCSR(n, n, nnz, c, ic, jc, 0); // internal structure

MatSeqAIJRestoreArray(PetscA, &array);

MatRestoreRowIJ(PetscA, 0, PETSC_FALSE, PETSC_FALSE, &n, &ia, &ja, &done);

Algorithm 3.12: Assembling and retrieving the local matrix and right-hand side.

3.2.4 Calling the solver
First, the solver must be instantiated and a choice has to be made whether the FETI or
the BDD method is to be used. Just as in algorithm 2.14, SUBDOMAIN is a local solver and
COARSEOPERATOR is a distributed solver for a potential coarse operator.

#ifdef FETI

162 Feti<SUBDOMAIN, COARSEOPERATOR, FetiPrcdtnr::DIRICHLET, 'S', double> K;

#else

Bdd<SUBDOMAIN, COARSEOPERATOR, 'S', double> K;

#endif

Algorithm 3.13: Instantiation of the substructuring preconditioner.

Then, it is necessary to compute the rigid bodymodes that will be needed by an eventual
coarse operator in case no generalized eigenvalue problem is solved locally—in which case
the kernel of each local Schur complement is supposed to be retrieved algebraically.
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bool isFloating = (nelements(markedfaces(localMesh, "Dirichlet")) == 0);

if(isFloating) {

auto rbm = VhLocal->element();

174 rbm = vf::project(VhLocal, elements(localMesh), cst(1.0));

unsigned short nbRbm = 1;

ev = new double*[nbRbm];

*ev = new double[nbRbm * VhLocal->nDof()];

for(unsigned short i = 0; i < nbRbm; ++i) {

179 ev[i] = *ev + i * VhLocal->nDof();

std::copy(rbm.begin(), rbm.end(), ev[i]);

}

K.setVectors(ev);

K.super::super::initialize(nbRbm);

184 }

else

K.super::super::initialize(0);

Algorithm 3.14: Building the local rigid body modes.

It is now time to factorize the local matrices
{
Åi

}N

i=1
as well as assemble, redistribute,

and factorize the coarse operator.

K.renumber(interface, b);

K.callNumfactPreconditioner();

201 std::string scaling = soption("scaling");

K.buildScaling(scaling[0]);

std::vector<unsigned short> parm(5);

parm[Parameter::P] = ioption("p");

parm[Parameter::TOPOLOGY] = ioption("topology");

206 parm[Parameter::DISTRIBUTION] = NON_DISTRIBUTED;

parm[Parameter::STRATEGY] = ioption("strategy");

parm[Parameter::NU] = K.getLocal();

K.callNumfact();

K.buildTwo(parm);

Algorithm 3.15: Factorization of the local linear systems and of the coarse operator.

Eventually, the preconditioned CG may now be called to solve the substructured prob-
lem.

unsigned short iter = ioption("it");

double eps = doption("eps");

IterativeMethod::PCG(K, x, b, iter, eps, MPI_COMM_WORLD, Environment::isMasterRank());

216 K.originalNumbering(interface, x);

Algorithm 3.16: Calling the preconditioned CG.





Chapter 4
Improving scalability

The performance of the framework presented in chapter 2 is further increased
in this chapter. In particular, some scalability issues when running at very

large-scale are tackled. Some of these results, mainly in section 4.1, were initially
published in [Jolivet et al. 2013]. Sections 4.3 and 4.4 gather techniques that are
particularly efficient when the cost of synchronization is high, for example when
using accelerators such as GPU. Readers only interested in numerical experiments
should skip to chapter 5.

On propose dans ce chapitre des moyens d’améliorer les performances de la li-
brairie présentée chapitre 2. Des problèmes de passage à l’échelle pour de très

grandes simulations sont notamment réglés. Certains de ces résultats, en particu-
lier ceux de la section 4.1, ont été initialement publiés dans [Jolivet et al. 2013].
Les sections 4.3 et 4.4 rassemblent des techniques particulièrement intéressantes
lorsque le coût des synchronisations devient trop important, par exemple lorsque
l’on utilise des accélérateurs comme les GPU. Le lecteur uniquement intéressé par
les résultats numériques est invité à se rendre directement au chapitre 5.
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Ensuring proper scaling of parallel code is of paramount importance if the code is to be used
on large architectures. One particular key feature of implementations of domain decom-
position preconditioners or multigrid methods is the handling of coarse operators. That is
because a naive approach would lead to all-to-one and one-to-all types of communications.
This chapter proposes various ways to improve and leverage the communication pattern
necessary to perform coarse grid correction.

4.1 Distribution of the coarse operator
Some of the ideas behind the assembly and the use of the coarse operator described sec-
tion 2.2.2 are not very new to the field of domain decomposition methods since they were
already introduced in some prior works, cf. [Bhardwaj, Day, et al. 2000; Bhardwaj, Pierson,
et al. 2002; Roux and Farhat 1998]. The problem with these static implementations though,
is that they cannot scale to large numbers of subdomains because having only one process
to handle the coarse operator can quickly become an issue. In more recent work, people
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have tried to distribute the coarse operator and theywere able to significantly speedup their
code.

1. Klawonn and Rheinbach [2010] use PETSc to redistribute the coarse operator, and
then call BoomerAMG [Henson and U. M. Yang 2002] to solve the coarse problem in
parallel. A similar approach is described by Kozubek et al. [2013].

2. Badia, Martín, and Príncipe [2013] use one MPI process with multiple threads to han-
dle the coarse operator.

These approaches can provide great results but lack genericity. Another technique pre-
sented in [Jolivet et al. 2013, 2014b] can be used to assemble the coarse operator on an arbi-
trary number of master processes, without the need to redistribute the Galerkinmatrix. The
idea is to use only a “small” group of processes that will be in charge of factorizing the coarse
operator and that will afterwards be called for computing solutions of systems involving
E−1 using a distributed sparse direct solver. This is inspired by the famous master/slave
approach. The following notations will be thoroughly used in the following sections. For
the sake of completeness, their type in the actual implementation are provided:

• unsigned short P : the number of masters, chosen at runtime by the user,

• MPI_Comm masterComm: a communicator between all masters, set to MPI_COMM_NULL

on slaves, on which will be instantiated the distributed solver,

• MPI_Comm splitComm: a communicator between a master and its slaves in which the
rank of the master is always 0, and the ranks of the slaves follow the same order as
in the default communicator.

A representation of such communicators has already been given fig. 2.6 and will also be
depicted fig. 4.3. Prior to factorizing E, the first step is to assemble the operator in a dis-
tributed matrix on the masters. Each master will have to assemble all the values of its
slaves. It is assumed that the distributed matrix is stored in plain distributed CSR or COO
format. Few codes could scale to important numbers of subdomains without a sparse data
structure for the coarse operator, for example in [Grigori, Stompor, and Szydlarski 2012],
the Galerkin matrix E is stored in a dense array and replicated on each MPI process: this
is only possible because there is just one deflation vector per process, so its size is quite
small compared to the one assembled and factorized in the context of domain decomposi-
tion preconditioners. Since the structure of the matrix is sparse, for each nonzero value,
the absolute row and column indices of the given value in the matrix E must be known.
For a process i ∈ J1;NK, the global row indices of all the blocks {Ei,j}j∈Oi

range from ri

to ri + νi, where ri =
∑i−1

j=1 γj , and the global column indices of all the blocks {Ej,i}j∈Oi

range from ri to ri + νi. The simplest approach would then be to:

1. call MPI_Allgather(γi) on the global communicator to be able to compute the cumu-
lative sums {rj}j∈Oi

and to allocate the buffers S(i)
j andR(i)

j defined section 2.2.2 for
all j ∈ Oi,

2. assemble locally {Ei,j}j∈Oi
as previously and store the values in sparse format, for

example using CSR storage into (row_ptri, coli, vali),

3. call MPI_Gatherv(row_ptri), MPI_Gatherv(coli), and MPI_Gatherv(vali) on splitComm

with rank 0 as root.
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The number of nonzero values for a process i is:

size(vali) = γi × γi︸ ︷︷ ︸
diagonal values Eii

+ γi ×
∑
j∈Oi

γj︸ ︷︷ ︸
off-diagonal values {Eij}j∈Oi

, (4.1)

meaning that prior to the three MPI_Gatherv in step 3, a call to MPI_Gatherv(Oi) on split-

Commwith rank 0 as root must be made to allocate the right arrays for the distributed sparse
data structure on each master. While this approach is somehow natural for assembling the
distributed matrix on the masters (because of the ordering of the rank of the slaves, calling
MPI_Gatherv is similar to concatenating all local chunks of E) it implies a lot of unnec-
essary communications. In particular, why should slaves send to masters the global row
and column indices ? Indeed, at the end of assembly, only the masters have access to the
distributed coarse operator, so it is their responsibility to compute the indices. The slaves
should not have to store or compute anything related to the distributed format. The fol-
lowing approach has the advantage of transferring only what is needed from one slave i to
its master: the array of scalar vali. The indices will be computed after reception by each
master, meaning that the memory overhead on the slaves is null: no integer is allocated for
storing any index. An improved workflow is:

1. perform a neighborhood collective operation MPI_Ineighbor_alltoall(νi)1 on the
communicator to which the distributed graph topology information of the connec-
tivity between subdomains is attached (MPI_Dist_graph_create_adjacent). Then al-
locate accordingly the buffers S(i)

j andR(i)
j for all j ∈ Oi,

2. call MPI_Gather(
[
γi #Oi

]
) (array of 2 integers) on splitComm with rank 0 as root so

thatmasters can preallocate the distributed sparse data structure (row_ptri, coli, vali),

3. first, prepend to the beginning of a message the values of Oi. Then, assemble locally
{Eij}j∈Oi

as previously and send the values to the master, i.e. the final size of the
message is #Oi + (4.1).

Additionally, the masters must concatenate all γi gathered in step 2, using MPI_Allgatherv

on commMaster to be able to compute all cumulative sums ri, for all i ∈ splitComm. This call
is equivalent to the MPI_Allgather in step 1 of the initial algorithm, but this time it does not
involve any slave. When amaster receives a message from a slave i, it knows that the global
row index ranges from ri to ri + γi, and because the first values of the received message
are a copy of Oi, it can compute the correct global column indices for the neighboring
subdomains of this slave. The complete algorithm for assembling the coarse operator is
summarized in algorithms 4.1 (construction of all local blocks of E) and 4.2 (distributed
assembly on the masters).

1New to the MPI-3 standard, www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
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Algorithm 4.1: Schematic construction of Eij , ∀i ∈ J1;NK and ∀j ∈ Oi.
MPI_Ineighbor_alltoall(γi)
MPI_Gather(

[
γi #Oi

]
, splitComm, 0)

compute(Ti) // Ti = AiiWi or DiS
?
i DiWi

foreach j ∈ Oi do
MPI_Isend(S(i)

j , j)
MPI_Irecv(R(i)

j , j, default communicator, rq[j])
compute(Eii) // diagonal block

foreach j ∈ Oi do
MPI_Waitany(rq, &index)
compute(Ei index) // off-diagonal block

Algorithm 4.2: Schematic assembly of E on master processes.
1 buildComm(P , splitComm, masterComm)
2 if masterComm != MPI_COMM_NULL then // master

3 MPI_Allgatherv(νi) // now receive all messages from the slaves

4 for j ← 1 to MPI_Comm_size(splitComm) do
5 MPI_Irecv(msgFromSlave[j], j − 1, splitComm, rq[j])
6 assemble(Eii)
7 for k ← 1 to #Oi do
8 assemble(Eik)

// blocks local to the masters have been assembled

9 for j ← 1 to MPI_Comm_size(splitComm) do
10 MPI_Waitany(rq, &index)
11 assemble(Eindex index)
12 for k ← 1 to #Oindex do
13 assemble(Eindex msgFromSlave[index][k])

// blocks from the slaves have been assembled

14 numericalFactorization(E)
15 else // slave

16 msgToMaster = Oi

17 concatenate(msgToMaster, Eii)
18 foreach k ∈ Oi do
19 concatenate(msgToMaster, Eik)
20 MPI_Isend(msgToMaster, 0, splitComm)

// send Oi and the local values of E computed in algorithm 4.1

The procedure compute in algorithm 4.1 is in charge of returning a dense array of values
corresponding to a local block of E given in argument, while the procedure assemble in
algorithm 4.2 is in charge of computing the global row and column indices of the values
of a block of E given in argument and store them in the distributed sparse matrix data
structure.
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Electing the masters

In the previous paragraph, the masters are defined in a rather abstract way, as the processes
that have a rank equal to 0 in splitComm. Two ways to define the aforementioned MPI
communicator will now be explained. The first is the natural distribution: processes are
spread uniformly and contiguously into P groups, the masters are of rank i · N/P , for
all i ∈ �0;P − 1�. The second distribution is a little more advanced and better suited for
assembling symmetric coarse operators. In that case, one only needs to assemble the upper
part of the distributed sparse structure, so that only the following blocks are computed and
assembled:

Eij , ∀i ∈ �1;N� and ∀j ∈ Oi : j � i .

Moreover, only the upper parts of the dense diagonal blocks {Eii}Ni=1 are needed. To ensure
load balancing between masters, processes are now spread contiguously but nonuniformly,
with masters of rank pi, where pi is defined by the following sequence to ensure heuristi-
cally that the number of values within each quadrilateral in fig. 4.3 is the same:

p0 = 0

∀i ∈ �1;P − 1�, pi =
⌊
N −

√
(pi−1 −N)2 −N2/P + 0.5

⌋
.

0

4

8

12

(a) Uniform distribution

2
5

8

0

(b) Nonuniform distribution

Fig 4.3: Sixteen subdomains split among four masters. Each color represents a different split-
Comm, each number represents the rank of the master (in the default communicator) of a
splitComm. On the right figure, the number of values per splitComm is roughly the same
if the lower triangular part of the matrix is dropped (symmetric Galerkin matrix).

Coarse correction

The workflow explained page 49 and depicted fig. 2.7 for computing a coarse correction
with a single process can easily be extended to the case of multiple master processes. This
time, the preprocessing step will consist of the parallel factorization of the sparse matrix E
which is distributed on the MPI communicator made of P processes masterComm. A coarse
correction can then by broken down into four elementary operations:

1. compute locally v(i) = W T
i u

(i) and gather those values inside v on process 0 of split-
Comm,

2. compute x = E−1v on masterComm using a distributed right-hand side and solution,

3. scatter x from process 0 of splitComm inside x(i) on each process and compute locally
y(i) = Wix

(i),

4. perform the reduction in the same way as in step 4 page 50.
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A nice property of this approach is that there is no global communication involving the
default communicator made of N processes when applying a two-level preconditioner. In-
stead, global communications are made on all P communicators splitComm.

4.2 Subdomain-level parallelism
So far, the only parallel programming model detailed in the framework is message passing.
Another model that can be beneficial in the context of domain decomposition methods is
shared memory multiprocessing programming. This is useful for speeding up tasks that
must be performed concurrently on each subdomain, such as factorizing local systems of
linear equations or solving generalized eigenvalue problems. Since the framework depends
on BLAS, LAPACK, and a direct solver, most of its computational intensive kernels are al-
ready multithreaded as long as those third-party dependencies are. This is usually the case
when using vendor implementations of these libraries, such as IBM Engineering and Scien-
tific Subroutine Library . In chapter 5, the numerical experiments are performed using the
MKL and MUMPS or PARDISO as direct solvers, so that all numerical algebraic operations
in the framework are multithreaded. It is also possible to parallelize the assembly of the
coarse operatorE. In particular, threads may be forked for the loop lines 9–13 in algorithm
4.2. This should decrease the time needed for assembly, especially if the MPI implementa-
tion supports a level of thread support equal to MPI_THREAD_MULTIPLE. An important point
to take into account when running at large-scale is to ensure the right placement of MPI
processes. In the numerical experiments of the following section, each subdomain is bound
to a socket, and sequential MPI processes are on adjacent processor cores2.

4.3 Separation of tasks
In this section, it is assumed that a one-level preconditioner is enriched with a coarse op-
erator additively. Such a preconditioner is given eq. (1.17). Substructuring preconditioners
presented in section 1.2 do not satisfy this assumption, however, it is possible to modify
them so that only an additive coarse correction is needed, cf. [Badia, Martín, and Principe
2013]. In that case, one can write P−1 = Ξ−1 + M−1, where M−1 is a one-level pre-
conditioner and Ξ−1 is a coarser second level preconditioner. With overlapping Schwarz
methods, M−1 can be chosen as

∑N
i=1 R

T
i DiAii

−1Ri while Ξ−1 = ZTE−1Z . Using the
work of section 4.1, while factorizing or solving a linear system involving the Galerkin ma-
trix E, the P processes of masterComm are calling a distributed solver, while the N − P
slaves are idle. Moreover, master processes have no less than two systems to solve: at least
one from the one-level preconditioner M−1, and another one concerning E−1. To avoid
this load imbalance, one idea is to separate fine-grained local tasks of the first level from
coarse-grained global tasks of the second level. This can be done by excluding the masters
from the initial domain partitioning. That way,

• factorizing E and the local matrices {Aii}Ni=1 is done concurrently during the setup
of the preconditioner,

• applying the one-level preconditioner M−1 only requires local computations from
slaves and point-to-point communications between slaves only,

2With OpenMPI [Gabriel et al. 2004], this can be achieved using the following command-line arguments:
--bind-to-socket --bycore. WithMPICH [Balaji et al. 2014], the arguments are: -bind-to socket -map-by

hwthread.
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• computing a coarse correction using Ξ−1 still requires communication from slaves to
master and vice versa, but only computations from masters.

To avoid the synchronizations needed by the gathering and scattering of values by master
processes steps 1 and 3 of the workflow explained page 85, it is possible to use asynchronous
collective operations. When P−1 has to be applied, the first step slaves must do is compute
local v(i) as in step 1 of the previous algorithm, and then start asynchronous communica-
tions for both sending and receiving the coarse correction from their master. Meanwhile,
masters gather values received from their slaves, compute the coarse correction using the
distributed solver, and scatter the solution vector back to their slaves. Asynchronously,
slaves apply the one-level preconditioner M−1 and afterwards, wait for the completion of
the asynchronous collective operations. This leads to highly scalable preconditioners. In
fact, if applying M−1 takes long enough, computing the coarse correction with Ξ−1 can be
fully overlapped. Similar work has recently been conducted for additive variants of alge-
braic multigrid (AMG) preconditioners, cf. [Vassilevski and U. M. Yang 2014].
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Fig 4.4: Time diagram showing various tasks performed by a two-level method.

4.4 Synchronization-avoiding Krylov solver
The communication cost of an algorithm often dominates its arithmetic cost, and technolog-
ical trends indicate this cost gap will increase. In the past [Chronopoulos and Gear 1989;
de Sturler and Van der Vorst 1995], people have been trying to reduce the communica-
tion overhead introduced by inner products in iterative methods—which are limiting their
scalability [Bhatele et al. 2011]—at the cost of performing some additional computations.
Another approach consists in avoiding unnecessary synchronization by using nonblocking
collective operations which provide the ability to overlap communication with computa-
tion [Hoefler, Gottschling, et al. 2007; Hoefler, Lumsdaine, and Rehm 2007]. A new variant
of the GMRES was recently introduced by Ghysels, Ashby, et al. [2013]. It decreases the
number of inner products per iteration of the computational loop from two to one3, as
detailed in algorithm 4.5, as well as facilitates communication/computation overlap using
nonblocking collective operations.

3In the original paper, the authors only investigate the case of the unpreconditioned GMRES.
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Fig 4.5: Computational loop of the p1-GMRES.
1 for i← 0 to m do
2 w ← P−1Avi
3 if i > 1 then
4 vi−1 ← vi−1/hi−1,i−2

5 zi ← zi/hi−1,i−2

6 w ← w/hi−1,i−2

7 hi−1,i−1 ← hi−1,i−1/h
2
i−1,i−2

8 hj−1,i−1 ← hj−1,i−1/h
2
i−1,i−2, j = 0, . . . , i− 2

9 zi+1 ← w −
∑i−1

j=0 hj,i−1zj+1

10 if i > 0 then
11 vi ← zi −

∑i−1
j=0 hj,i−1vj

12 hi,i−1 ← ||vi||2
13 hj,i ← 〈zi+1, vj〉, j = 0, . . . , i

The inner products lines 12 and 13 may be computed together, so that there is effectively
only one global all-to-all reduction per iteration. Moreover, the results are not needed un-
til line 4 for the next iteration, thus, the communications involved by the reduction can
be overlapped with the computations of the preconditioner-sparse matrix-vector product
line 2. As exhibited eqs. (1.12), (1.29) and (1.38), sparse matrix-vector products only re-
quire asynchronous point-to-point communications. When preconditioning with simple
one-level methods, cf. section 1.1.2 and eq. (1.31), then the same remark holds when apply-
ing such preconditioners to the left. However, a two-level method implies a more complex
communication pattern, cf. section 2.2.2 and fig. 2.7. It is possible to use this pattern to fuse
some communications as explained next. The idea is to reduce values while computing
coarse corrections. In the rest of this paragraph, it will be assumed that the symbol • repre-
sents a binary operation that can be interpreted as a MPI_Op for a call to MPI_Allreduce for
performing an in-place reduction ofm values stored locally in an array h. In the context of
the p1-GMRES, • = MPI_SUM and h represents the latest column of the Hessenberg matrix
produced by the Arnoldi recurrence—line 13 of algorithm 4.5—and the previous subdiago-
nal entry—line 12—that both need to be orthonormalized. Then, instead of performing this
plain all-to-all reduction followed by a coarse correction, both operations can be executed
at the same time. For that, the workflow presented in section 4.1 has to be rewritten. A
fused coarse correction–reduction can then by broken down into eight elementary steps:

1. compute locally v(i) = W T
i u

(i), append to this vector them elements of h, and gather
all those values inside v on process 0 of splitComm,

2. rearrange on each master process v which is now of size m × size(splitComm) +∑
i∈splitComm γi so that the right-hand side is stored contiguously while the first step

of the reduction is performed for all the extra m× size(splitComm) values received,

3. perform the second step of the reduction which is a call to MPI_Allreduce on the
communicator made of P processes masterComm,

4. compute x = E−1v on masterComm using a distributed right-hand side and solution,

5. rearrange on each master process x and duplicate the reduced values of h,

6. scatter x from process 0 of splitComm inside x(i) on each process and compute locally
y(i) = Wix

(i),
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7. perform the reduction in the same way as in step 4 page 50,

8. retrieve the reduced values of h in-place, i.e. at the end of y(i).
A graphical explanation of this workflow is given fig. 4.6b.
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Fig 4.6: Two possible workflows for the p1-GMRES using six subdomains and two masters.
The right-hand side and solution vectors are kept distributed on master processes.

With this fused algorithm, there is not a single communication on the global communica-
tor. The only communications needed are between masters and between one master and
its slaves, putting aside point-to-point communications needed by one-level methods. In
conjunction with the separation of tasks described in the previous section for the additive
correction, steps 2–5 are executed on master processes while slaves are in charge of one-
level preconditioning if the collective operations which gather and scatter vectors can be
replaced by nonblocking collective operations. For symmetric problems in substructuring
methods, the same approachmay be used for the preconditioned CG [Ghysels and Vanroose
2013].





Chapter 5
Numerical experiments

Extensive experiments will now be carried out using the framework previously
described in chapter 2 and further improved in chapter 4. These experiments

assess its ability to solve both hard and large problems. In sections 5.2 and 5.3, a
comparison with other state of the art linear solvers is drawn.

Des essais numériques extensifs vont être présentés en utilisant la librairie dé-
crite précédemment dans le chapitre 2 et retravaillée dans le chapitre 4. Ces

essais démontrent sa capacité à résoudre des problèmes complexes de grande taille.
Dans les sections 5.2 et 5.3, elle sera comparée à d’autres solveurs linéaires de
pointe.
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They are many ways to evaluate the performances of a parallel code. In particular, two
common metrics will be studied.

1. Strong scaling gives an insight on how a code performs when the number of pro-
cessing units is increased for solving a fixed size global problem. In a finite element
framework, this can be computed by using a global mesh with a fixed number of
elements, and just increasing the number of subdomains for partitioning the mesh.

2. Weak scaling shows how a code behaves when the number of processing units in-
creases, while maintaining local problems with constant sizes. In a finite element
framework, this is done by using a global mesh that is refined locally on each sub-
domain while increasing the number of subdomains for partitioning the mesh. That
way, the local numbers of elements remain constant.

Throughout this chapter, only the timings relative to the construction and the use of the
preconditioners are considered. In particular, the time spent in the finite element backend
is not evaluated.

5.1 Test bed
Results concerning overlapping preconditioners as introduced section 1.3 were obtained on
Curie, a Tier-0 system for PRACE1, with a peak performance of 1.7 PFLOP/s. They have been
first published in the article [Jolivet et al. 2013] nominated for the best paper award at SC132

1Partnership for Advanced Computing in Europe. url: http://www.prace-ri.eu/.
2Among five other papers out of 90 accepted papers out of 457 submissions.

http://www.prace-ri.eu/
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andwere also disseminated in PRACEAnnual Report 2013 [Oorsprong et al. 2014, pp. 22–23]
as a “success story”. Curie is composed of 5 040 nodes made of two eight-core Intel Sandy
Bridge processors clocked at 2.7 GHz. Its interconnect is an InfiniBand QDR full fat tree
[Leiserson 1985] and the MPI implementation was BullxMPI version 1.1.16.5. Intel compil-
ers andMath Kernel Library in their version 13.1.0.146 were used for all binaries and shared
libraries, and as the linear algebra backend for both dense and sparse computations in the
framework. Finite element matrices are obtained with FreeFem++. The speedup and effi-
ciency are displayed in terms of number of MPI processes. In these experiments, each MPI
process is assigned a single subdomain and two OpenMP threads following the bindings
proposed section 4.2. Because the preconditioner is not symmetric, the underlying itera-
tive method is the GMRES, which is stopped when a relative 10−6 decrease of the initial
residual is reached.

First, the system of linear elasticity with highly heterogeneous elastic moduli is solved
with a minimal geometric overlap of one mesh element in dD (d = 2 or 3). It can be derived
from eq. (3.1) when assuming that there is a relationship between the stress tensor and the
strain tensor such thatΣ = C : ε, where C is fourth-order tensor defined eq. (3.7), and using
a linear approximation. Then, the system consists in finding u ∈ [H1

0 (Ω)]
d such that:

−∇ · ((I +∇u) Σ) = −∇ · ((I +∇u) C : (εL + εNL)) ≈ −∇ · (C : εL) = f .

After usingGreen’s formula, its variational formulation is, for all test functions v ∈ [H1
0 (Ω)]

d:

a(u, v) =

∫
Ω

Eν

(1 + ν)(1− 2ν)
∇ · u∇ · v + E

1 + ν
εL(u) : εL(v)

l(v) =

∫
Ω

f · v +
∫

∂Ω

g · v ,
(5.1)

where:
• Young’s modulusE and Poisson’s ratio ν vary between two sets of values, (E1, ν1) =
(2 · 1011, 0.25), and (E2, ν2) = (107, 0.45),

• εL is the linearized strain tensor introduced eq. (3.2), f are the body forces (in this
case, only the gravity), and g are the surface force (in this case, a vertical loading is
imposed on some parts of the geometries).

Fig 5.1: Variations of thematerial coefficients used for the
three-dimensional strong scaling experiments.

Poisson’s ratio being rel-
atively far from the incom-
pressible limit of 0.5, it is
not necessary to switch to
a mixed finite element for-
mulation since there is no
locking effect as described
by Babuška and Suri [1992].
Such an equation typically
arises in computational solid
mechanics, formodeling small
deformations of compressible
bodies. In 2D, piecewise cubic
basis functions are used and
the system of equations has
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approximately 33 nonzero entries per row. It is of constant size equal close to two bil-
lions unknowns. In 3D, piecewise quadratic basis functions are used and the system of
equations has approximately 83 nonzero entries per row. The system is of constant size
equal close to 300 million unknowns. These are so-called strong scaling experiments.
Both geometries are displayed figs. A.1a and A.2a and partitioned with METIS. After the
partitioning step, each local mesh is refined concurrently by splitting each triangle or
tetrahedron into multiple smaller elements as done fig. 3.1. This means that the simu-
lation starts with a relatively coarse global mesh (26 million triangles in 2D, 10 million
tetrahedra in 3D), which is then refined in parallel (thrice in 2D, twice in 3D). A nice
speedup is obtained from 1 024 × 2 = 2 048 to 8192 × 2 = 16 384 threads as shown fig. 5.2a.
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According to fig. 5.2c, the costly op-
erations in the construction of the
two-level preconditioner are the so-
lution of each local eigenvalue prob-
lem eq. (1.40), column Deflation, and
the factorization of each local solver
{Aii}Ni=1, column Factorization. In 3D,
the complexity of such operations typ-
ically grows superlinearly with respect
to the number of unknowns, hence
it is possible to achieve superlinear
speedups. At peak performance, on
16 384 threads, the speedup relative to
2 048 threads equals

530.56
51.76

which is
approximately a tenfold decrease in
runtime. In 2D, the local computation
costs are lower, and tend to scale better
with the number of unknowns, which

makes it harder to achieve high speedups for larger numbers of subdomains. At peak per-
formance, on 16 384 threads, the speedup relative to 2 048 threads equals

213.20
34.54

which is
approximately a sixfold decrease in runtime. In both cases, the solution of the eigenproblem
is the limiting factor for achieving better speedups. This can be explained by the fact that
the Lanczos [1950] method, on which ARPACK is based, tends to perform better for larger

ratios
{
ni

γi

}N

i=1

, but these values decrease as subdomains get smaller. The local number

of deflation vectors is uniform across subdomains and ranges from twenty to fifteen. For
larger but fewer subdomains, the time to compute the solution, column Solution, i.e. the
time for the GMRES to converge, is almost equal to the one spent in local forward elimi-
nations and back substitutions. When the decompositions become bigger, subdomains are
smaller, hence each local solution is computed faster and global communications have to
be taken into account. To get a more precise idea of the communication-to-computation
ratio, fig. 5.2b is quite useful, since the first two steps for computing the local factorizations
and deflation vectors are purely concurrent and do not involve any communication. Thus,
it is straightforward to get a lower bound of the aforementioned ratio. The time spent for
assembling the coarse operator and for the Krylov method to converge is comprised of both
communications and computations.



94 Chapter 5 Numerical experiments

1 024
2 048

4 096
8 192

0%

20%

40%

60%

80%

100%

# of processes

Ra
tio

1 024
2 048

4 096
8 192

0%

20%

40%

60%

80%

100%

# of processes

Factorization
Deflation

Coarse operator
Krylov method

(b) Comparison of the time spent in various steps for building
and using the preconditioner in 2D (left) and 3D (right).

N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

1 024 177.9 s 264.0 s 77.4 s 28 530.6 s

293.98 · 1062 048 62.7 s 97.3 s 20.4 s 23 186.0 s
4 096 19.6 s 35.7 s 9.7 s 20 73.1 s
8 192 6.3 s 22.1 s 6.0 s 27 51.8 s

2D

1 024 37.0 s 131.8 s 34.3 s 28 213.2 s

2.14 · 1092 048 17.5 s 53.8 s 17.5 s 28 95.1 s
4 096 6.9 s 27.1 s 8.6 s 23 47.7 s
8 192 2.0 s 20.8 s 4.8 s 23 34.5 s

(c) Breakdown of the timings used for the figure on top

Fig 5.2: Strong scaling experiments.

To assess the need for such a sophisticated preconditioner, the convergence histogram of a
simple one-level method versus this two-level method is displayed fig. 5.3. One can easily
understand that, while the cost of building the preconditioner cannot be neglected, it is
necessary to ensure the convergence of the Krylov method: after more than 10 minutes,
the one-level preconditioner barely decreases the relative error to 2 × 10−5, while it takes
213.20 seconds for the two-level method to converge to the desired tolerance, cf. fig. 5.2c
row #5. That is at least a threefold speedup. Because one-level methods are not numerically
scalable as explained section 1.1.2, it is expected to get an even better speedup for larger
decompositions.

0 100 200 300 400

10−6

10−5

10−4

10−3

10−2

# of iterations

Re
la
tiv

e
re
si
du

al
er
ro
r

M−1
RAS eq. (1.15)

P−1
A-DEF1 eq. (1.19a)

Fig 5.3:
Convergence of the restarted GMRES(40)
for a 2D problem of linear elasticity us-
ing 1 024 subdomains. Timings for the
setup and solution phases usingP−1

A-DEF1 are
available in fig. 5.2, using M−1

RAS, the con-
vergence is not reached after 10 minutes.
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Moving on to the weak scaling properties of the framework, the problem now being
solved is a scalar equation of diffusivity with highly heterogeneous coefficients κ varying
from 1 to 3 · 106 as displayed in fig. 5.4. The partitioned domain is Ω = [0; 1]d (d = 2 or
3) with piecewise quartic basis functions in 2D yielding linear systems with approximately
23 nonzero entries per row, and piecewise quadratic basis functions in 3D yielding linear
systems with approximately 27 nonzero entries per row. This equation reads, find u ∈
H1

0 (Ω) such that:
−∇ · (κ∇u) = 1 in Ω

u = 0 on [0; 1]× {0} .

After using Green’s formula, its variational formulation is, for all test functions v ∈ H1
0 (Ω):

κ(x, y)

3 · 106

2 ·106

106

1

Fig 5.4: Diffusivity κ used for the two-dimensional weak
scaling experiments with channels and inclusions.

a(u, v) =

∫
Ω

κ∇u · ∇v

l(v) =

∫
Ω

f · v ,

where f is a source term.
Such an equation typically
arises for modeling flows in
porous media, or in compu-
tational fluid dynamics. No
change is needed in the frame-
work, since all operations are
algebraic. The only work
needed outside of the frame-
work is changing the mesh
used for computations, as
well as the variational for-
mulation of the problem in
FreeFem++ DSL. On average, there is a constant number of degrees of freedom per sub-
domain equal to roughly 280 thousands in 3D, and near 2.7 millions in 2D. As for the strong
scaling experiment, after building and partitioning a global coarse mesh with few millions
of elements, each local mesh is refined independently to ensure a constant size system
per subdomain as the decomposition becomes bigger. The efficiency remains near the 90%
mark, thanks to almost no variability in the time for the factorization of the local problems
and for the construction of the deflation vectors. In 3D, the initial problem of 74 million un-
knowns is solved in 200 seconds on 512 threads. Using 16 384 threads, the problem is now
made of approximately 2.3 billion unknowns, and it is solved in 215 seconds, which yields
an efficiency of approximately 90%. In 2D, the initial problem of 695 million unknowns
is solved in 175 seconds on 512 threads. Using 16 384 threads, the problem is now made
of approximately 22.3 billions unknowns, and it is solved in 187 seconds, which yields an
efficiency of approximately 96%. At such scales, the most penalizing step in the algorithm
is the construction of the coarse operator, specially in 3D, with a nonnegligible increase in
the time spent to assemble the Galerkin matrix E.
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(b) Comparison of the time spent in various steps for building and using the preconditioner

Eventually, the timings of the assembly and the factorization of the coarse operator E
for all the previous simulations are now presented. Tables 5.2c and 5.5c already included
these timings in their last column Total (> Factorization + Deflation + Solution), but for a
more in-depth analysis, they are reported next separately. Figure 5.6 includes all timings
relative to algorithms 4.1 and 4.2 described section 4.1: the construction of the communi-
cators, the assembly of E, and its numerical factorization. The local number of deflation
vectors computed and assembled in the coarse operator is once again uniform across sub-
domains. The most consuming part of the algorithm is the actual transfer and the assembly
by the masters. Especially in 3D, when the coarse operator is becoming less and less sparse,
a property that is directly linked with the average value of {#Oi}Ni=1, it is likely to become
a problem for even larger decomposition. This bottleneck is addressed in the context of al-
gebraic multigrid methods [Falgout and Schroder 2014]. Note that the MPI implementation
used for these experiments is not thread compliant and in particular, it does not support
a level of thread support equal to MPI_THREAD_MULTIPLE, meaning that some unnecessary
#pragma omp critical had to be used by the masters during the assembly. At these scales,
another problem is the factorization of E. Indeed, increasing the number of masters P
does not always have a beneficial effect for this concern because distributed solvers have
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N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

256 64.2 s 117.7 s 15.8 s 13 200.6 s 74.6 · 106
512 64.0 s 112.2 s 19.9 s 18 199.4 s 144.7 · 106
1 024 63.2 s 118.6 s 16.2 s 14 202.4 s 288.8 · 106
2 048 59.4 s 117.6 s 21.3 s 17 205.3 s 578.0 · 106
4 096 58.1 s 110.7 s 27.9 s 20 207.5 s 1.2 · 109
8 192 55.0 s 116.6 s 23.6 s 17 215.2 s 2.3 · 109

2D

256 29.4 s 111.3 s 25.7 s 29 175.8 s 696.0 · 106
512 29.6 s 111.5 s 28.0 s 28 179.1 s 1.4 · 109
1 024 29.4 s 112.2 s 33.6 s 28 185.2 s 2.8 · 109
2 048 29.2 s 112.2 s 33.7 s 28 185.2 s 5.6 · 109
4 096 29.8 s 113.7 s 31.0 s 26 185.4 s 11.2 · 109
8 192 29.8 s 113.8 s 30.7 s 25 187.6 s 22.3 · 109

(c) Breakdown of the timings used for the figure on top

Fig 5.5: Weak scaling experiments.

difficulties scaling beyond 128 processes. The cost of factorization represents the maximum
memory space needed by one master process for the linear solver to store the factorized
matrix E−1. This value is returned by MUMPS, which was the distributed solver used in
these experiments.

N P dim(E) #Oi avg. Cost of fact. Time

256 2 5 376 5.5 21 MB 9.39 s
512 4 10 240 5.6 32 MB 9.96 s
1 024 10 8 20 480 24 576 5.7 5.5 65 MB 57 MB 9.92 s 10.14 s
2 048 14 12 38 912 40 960 5.8 5.7 94 MB 83 MB 10.05 s 6.20 s
4 096 22 18 81 920 73 728 5.9 5.8 99 MB 73 MB 10.87 s 5.10 s
8 192 36 36 163 840 122 880 5.9 5.8 152 MB 118 MB 13.27 s 6.96 s

(a) Two-dimensional test cases

N P dim(E) #Oi avg. Cost of fact. Time

256 4 5 120 11.5 38 MB 2.78 s
512 6 10 240 12.4 78 MB 3.35 s
1 024 8 8 20 480 22 528 13.0 12.0 156 MB 93 MB 4.42 s 11.25 s
2 048 12 12 40 960 40 960 13.8 12.9 332 MB 138 MB 6.91 s 5.68 s
4 096 18 22 73 728 73 728 14.2 13.7 434 MB 172 MB 10.75 s 8.04 s
8 192 64 48 131 072 131 072 14.7 14.6 420 MB 241 MB 19.92 s 17.30 s

(b) Three-dimensional test cases

Fig 5.6: Timings for assembling and factorizing the coarse operator in the two previous
experiments. Results are gathered two-by-two, the first column with a gray over-
lay is for the diffusivity problem, the second column is for the elasticity problem.
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5.2 Comparison with multigrid solvers
The framework will now be put to the test against both selective and aggregative algebraic
multigrid solvers that are supposedly some of the most effective preconditioners on today’s
large-scale architectures: BoomerAMG [Baker et al. 2012] and GAMG, partially based on
some previous work [Adams et al. 2004]. Once again, the domain decomposition precondi-
tioner employed is a Restricted Additive Schwarz methodwith aminimal geometric overlap
of one mesh element, enhanced with twenty deflation vectors per subdomain computed us-
ing eq. (1.40). The first problem solved is Poisson’s three-dimensional eq. (1.5) discretized
with piecewise linear finite elements on a square Ω using 4 096 processes and only one
thread per process. The linear system has 217 million d.o.f. and is well conditioned since
there is no heterogeneity. This results in a nice convergence of all three preconditioners as
displayed fig. 5.7a. The parameters GAMG are:

• no relative threshold for dropping edges in the aggregation graphs,

• a one-dimensional near-null space set to a constant function.

The parameters for BoomerAMG are:

• Hybrid Modified Independent Set coarsening [De Sterck, U. M. Yang, and Heys 2006],

• extended classical interpolation [De Sterck, Falgout, et al. 2008],

• no C-F relaxation,

• two levels of aggressive coarsening,

• truncated interpolation to four entries per row.

While these are recommended for best practices and were also suggested by the hypre team
via email, they resulted in slower convergence as shown fig. 5.7b. When it comes down to
the overlapping Schwarz preconditioner and the smoothed aggregation multigrid precon-
ditioner, they perform similarly. The setup cost of the domain decomposition method is
slightly higher, but there is less communication involved when applying this precondi-
tioner during the iterative method because the grid hierarchy is much simpler, therefore
the solution step is a bit faster than with GAMG.
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Fig 5.7: Comparison of iterative solvers for solving Poisson’s equation.
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The second problem is the system of linear elasticity, cf. eq. (5.1), with highly hetero-
geneous coefficients and discretized using piecewise quadratic finite elements, yielding a
linear system of 262 million d.o.f. The parameters for the domain decomposition precondi-
tioners are exactly the same as before, whereas those for GAMG are now:

• a relative threshold for dropping edges in the aggregation graphs of 0.2,

• a six-dimensional near-null space set to the rigid body modes—three translations and
three rotations.

Another choice for the threshold—0.25—led to a slower convergence, but a more robust
preconditioner, cf. fig. 5.8. Adequately tuning GAMG was done thanks to fruitful conver-
sations and exchanges with Jed Brown (Argonne National Laboratory), Luke Olson (Uni-
versity of Illinois at Urbana-Champaign), and Mark Adams (Lawrence Berkeley National
Laboratory). One key issue that had to be untangled is the fact that matrices had some
extremely large values on their diagonal when penalizing Dirichlet boundary conditions,
as done in FreeFem++. This lead to a bad coarsening with the smoothed aggregation of
GAMG. Obviously this is not a problem for domain decomposition preconditioners with di-
rect solvers used inside each subdomain since they can handle such a penalization3. Switch-
ing to another approach for imposing boundary conditions, among other adjustments that
they suggested, led to better results displayed in this thesis. The remark made in the pre-
vious comparison still holds: the setup (resp. convergence to the solution) is slightly faster
(resp. slower) with GAMG than with the overlapping Schwarz method.
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Fig 5.8: Comparison of iterative solvers for solving the system of linear elasticity.

5.3 Comparison with direct solvers
Eventually, the framework is now compared on much smaller decompositions with direct
solvers: MUMPS and SuperLU_DIST [Li and Demmel 2003]. This time, the domain decom-
position preconditioners are the BDD method, as well as the BDD method enhanced with
deflation vectors computed using eq. (1.43). The finite element backend was FreeFem++,
but the same computations could be carried out with Feel++. The problem being solved

3Out of all the linear solvers presented section 2.1.3, PaStiX was the only one having slight issues and
performing unnecessary pivoting during the numerical factorization of the local problems with Dirich-
let boundary conditions. Thanks to the help of Xavier Lacoste and Pierre Ramet, tuning the parameter
DPARM_EPSILON_MAGN_CTRL fixed this.
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is Poisson’s two-dimensional eq. (1.5) discretized with piecewise quartic finite elements
on a square Ω. The linear system has five million d.o.f. before substructuration and the
simulation is run on a much less efficient hardware architecture than the one of Curie,
a small NUMA system hosted at Laboratoire Jacques-Louis Lions and assembled by SGI.
Direct solvers spend much of their time in the setup phase. For substructuring methods,
with the standard BDD method, the local Schur complements needed by the global Schur
complement eq. (1.28) are not computed explicitly. In this experiment, MUMPS was used

to factorize in each subdomain j ∈ J1;NK local Dirichlet matrices
{
Å

(j)−1

ii

}N

j=1
. It turned

out that the consecutive matrix multiplications and forward eliminations and back substi-
tutions, cf. definition 1.11, were computed rather slowly, as displayed in fig. 5.9b. On the
other hand, when using the BDDmethod enhanced with GenEO deflation vectors, the local
Schur complements must be retrieved explicitly for the local generalized eigenvalue prob-
lems 1.43. In that case, the setup phase is likely to be slower, but the solution phase is much
quicker, since the local workload for applying the Schur complement decreases from three
sparse matrix-vector product and one forward elimination and back substitution to only a
BLAS call to ?symv, cf. section 2.1.2.
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Fig 5.9: Comparison with direct solvers for solving Poisson’s equation.
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Substructuring methods tend to be much less robust than overlapping Schwarz meth-
ods when using automatic graph partitioners, because the former sometimes behaves er-
ratically in presence of rough interfaces between subdomains, see [Klawonn, Rheinbach,
and Widlund 2008] for an in-depth justification. For that reason, they are no additional
numerical results with substructuring methods. A strategy introduced by Samake [2014]
for alleviating this problem consists in:

• creating a really coarse mesh with as many elements as subdomains,

• then refining each superelement concurrently.

The first step ensures that interfaces between subdomains are smooth enough, in fact they
are either connected through the vertex or a linear edge or planar face of a superelement,
while the second step makes it possible to perform large-scale experiments. Because this
method was first used in conjunction with the mortar method [Bernardi, Maday, and Patera
1993], there is no concern about conformity of each local mesh through the interfaces, this
is however a necessity for the substructuring preconditioners introduced in section 1.2.





Conclusion

While recent hardware advances in the parallel computing community have led to a greater
and greater level of concurrency, it is not always easy for scientists using implicit solvers in
their software to efficiently handle such architectures. In this context, applied mathemati-
cians have looked into the “divide & conquer” paradigm to accelerate numerical simula-
tions. The past decades have brought numerous efficient preconditioners based on domain
decompositionmethods. In this thesis, two of themost prominentmethods, the overlapping
Schwarz preconditioners and the substructuring preconditioners have been unified into an
abstract parallel framework. Manipulating algebraic equalities, it was established how it
is possible to perform extreme-scale experiments with domain decomposition methods,
even with a sequential discretization kernel like FreeFem++, a software for finite element
discretizations. At those scales, it is of paramount importance to ensure that the precon-
ditioners are numerically robust. For domain decomposition methods, this is usually done
by introducing an auxiliary problem known as a coarse problem. Its goal is to couple all
subdomains efficiently in order to guarantee a fast convergence of preconditioned iterative
methods, in terms of number of iterations. This coupling introduces strong data depen-
dencies and tends to diminish the algorithmic performance of the said preconditioners.
The novel construction of the coarse operator presented in this thesis shows great scalabil-
ity on Curie, a Tier-0 supercomputer for PRACE. A comparison with multigrid and direct
solvers is also carried out. It shows that the framework presented has comparable or better
performances than state of the art third-party libraries. Most of the results presented in
this document have already led to publications, but they also raised some important new
points that are described in the following paragraph.

Perspectives and open questions

• When looking at overlapping Schwarz methods, the two methods studied were the
additive Schwarz method and the restricted additive Schwarz method. It is some-
times useful to switch to optimized Schwarz methods which have more sophisticated
transmission conditions and can solve harder problems, as in [Nourtier-Mazauric and
Blayo 2010]. Moreover, as described by St-Cyr, Gander, and Thomas [2007], they fol-
low, from an algebraic point of view, the same workflow as standard overlapping
Schwarz methods.

• The construction of the coarse operator has a level of abstraction high enough so
that it is easy for an end-user to try any kind of deflation vector, as well as change
the definition of the Galerkin operator. The framework may thus validate other pre-
conditioners based on deflation techniques, such as a recent one introduced for the
Helmholtz equation [Conen et al. 2014].

• While the GenEO approach based on the solution of local generalized eigenvalue
problems leads to robust preconditioners, the time spent in solving these eigenvalue
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problems is not neglectable. There are then at least two possible directions of research
to circumvent this bottleneck.

– Mixed precision could lead to less computations for the eigensolvers and for
the assembly of the coarse operator, as it is the case in most scientific compu-
tations, e.g. [Baboulin et al. 2009]. Indeed, the framework currently only deals
with double-precision floating-point scalars, but it might be interesting to see
the numerical and algorithmic impact of switching to single-precision floating-
point deflation vectors for instance.

– Adaptive methods without the a priori construction of the eigenvectors are also
appealing. This is already applied in the multigrid community, cf. [Brandt et al.
2011; Brezina et al. 2004], where some preconditioners are able to adjust the
coarsening process throughout the convergence of an iterative method.

• In the context of nonlinear iterations or unsteady problems, it is not clear if it is
possible to recycle the coarse space, see [Gosselet, Rey, and Pebrel 2013; Parks et al.
2006] for examples. On the one hand, it would be beneficial to avoid the computation
of new eigenvectors at each iteration, but on the other hand, could it still be possible
to have condition number estimates for successive linear systems ?

• A follow up question concerns adaptive mesh refinement (AMR), cf. [Berger and
Colella 1989; Deiterding 2005], which brings another form of variability when solv-
ing multiple linear systems. The approach presented in this thesis is particularly
helpful for assembling large problems when only a sequential mesher or grid genera-
tor is available. However, if AMR is used throughout a simulation, it is currently not
possible to ensure a proper load-balancing between subdomains. Even though this
limitation is more directly tied to the discretization library that handles the mesh or
grid structures, this is an important point to keep in mind.

• Eventually, for achieving sustainable performance at even larger scale, if targeting for
example simulations with up to one hundred thousand subdomains, a multilevel ex-
tension of the current coarse operator is necessary. However, such extensions in the
domain decomposition community tend to lead to poor algorithmic performances, cf.
[Šístek et al. 2013]. A modification of the structure of the Galerkin operator might
also lead to less inter-process interactions [Falgout and Schroder 2014], which in the
end would increase the scalability of the various steps related to deflation in the con-
struction of the preconditioner.
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A Gmsh geometries

X

Y

Z
(a) Generated mesh

height = 1;

length = 1.5;

offset = 0.5;

tip = 0.2;

5 lc = 0.015;

ratio = 0.8;

Point(1) = {0, 0, 0, lc};

Point(2) = {0, height, 0, lc};

Point(3) = {0, height-offset/2, 0, lc};

10 Point(4) = {0, offset/2, 0, lc};

Point(5) = {length, (height+tip)/2, 0, lc};

Point(6) = {length, (height-tip)/2, 0, lc};

Point(7) = {0, height/2, 0, lc};

Circle(1) = {4, 7, 3};

15 Point(8) = {2.5, 0.1, -0, lc};

Point(9) = {2.5, 0.9, -0, lc};

Ellipse(3) = {2, 1, 8, 5};

Ellipse(4) = {1, 2, 9, 6};

Line(5) = {3, 2};

20 Line(6) = {4, 1};

Line(7) = {6, 5};

Dilate {{0.95, 0.525, 0}, 0.45} {

Duplicata { Line{3}; }

}

25 Dilate {{0.95, 0.475, 0}, 0.45} {

Duplicata { Line{4}; }

}

Translate {0, -0.1, 0} {

Point{15};

30 }

Translate {0, 0.1, 0} {

Point{11};

}

Line(10) = {13, 17};

35 Ellipse(11) = {14, 7, 11, 10};

Line Loop(12) = {3, -7, -4, -6, 1, 5};

Line Loop(13) = {8, 10, -9, 11};

Plane Surface(14) = {12, 13};

Physical Line(15) = {5, 6};

40 Physical Line(16) = {7};

height = 1;

length = 1.5;

offset = 0.5;

tip = 0.2;

5 lc = 0.015;

ratio = 0.8;

Point(1) = {0, 0, 0, lc};

Point(2) = {0, height, 0, lc};

Point(3) = {0, height-offset/2, 0, lc};

10 Point(4) = {0, offset/2, 0, lc};

Point(5) = {length, (height+tip)/2, 0, lc};

Point(6) = {length, (height-tip)/2, 0, lc};

Point(7) = {0, height/2, 0, lc};

Circle(1) = {4, 7, 3};

15 Point(8) = {2.5, 0.1, -0, lc};

Point(9) = {2.5, 0.9, -0, lc};

Ellipse(3) = {2, 1, 8, 5};

Ellipse(4) = {1, 2, 9, 6};

Line(5) = {3, 2};

20 Line(6) = {4, 1};

Line(7) = {6, 5};

Dilate {{0.95, 0.525, 0}, 0.45} {

Duplicata { Line{3}; }

}

25 Dilate {{0.95, 0.475, 0}, 0.45} {

Duplicata { Line{4}; }

}

Translate {0, -0.1, 0} {

Point{15};

30 }

Translate {0, 0.1, 0} {

Point{11};

}

Line(10) = {13, 17};

35 Ellipse(11) = {14, 7, 11, 10};

Line Loop(12) = {3, -7, -4, -6, 1, 5};

Line Loop(13) = {8, 10, -9, 11};

Plane Surface(14) = {12, 13};

Physical Line(15) = {5, 6};

40 Physical Line(16) = {7};

(b) Input .geo file

Fig A.1: A two-dimensional cantilever.
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X

Y

Z

(a) Generated mesh

lc = 0.025;

offset = 0.075;

ratio = 1.;

Point(1) = {offset, 0.0, 0, lc};

5 Point(2) = {offset+0.1, 0.0, 0, lc};

Point(3) = {offset+0.1, 0.1, 0, lc};

Line(2) = {1, 2};

Line(3) = {2, 3};

Point(5) = {offset+0.08, 0.1, 0, lc*ratio};

10 Point(6) = {offset+0.08, 0.12, 0, lc*ratio};

Circle(4) = {3, 5, 6};

Point(7) = {offset+0.015, 0.14, 0, lc*ratio};

Point(8) = {offset+0.035, 0.12, 0, lc*ratio};

Point(9) = {offset+0.035, 0.14, 0, lc*ratio};

15 Point(10) = {offset, 0.14, 0, lc*ratio};

Line(5) = {6, 8};

Line(6) = {7, 10};

Line(7) = {10, 1};

Circle(8) = {8, 9, 7};

20 Line Loop(9) = {8, 6, 7, 2, 3, 4, 5};

Plane Surface(10) = {9};

angle = Pi/12;

Rotate {{0, 1, 0}, {0, 0, 0}, angle} {

Surface{10};

25 }

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{10};

}

Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

30 Duplicata { Surface{47}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{48};

}

35 Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

Duplicata { Surface{92}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{93};

40 }

length = 0.3;

Point(173) = {length, 0, (offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Point(174) = {length, 0, -(offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Line(278) = {168, 173};

45 Line(279) = {173, 174};

Line(280) = {174, 2};

Translate {0, 0.12, 0} {

Duplicata { Point{174}; }

}

50 Translate {0, 0.12, 0} {

Duplicata { Point{173}; }

}

Line(281) = {6, 178};

Line(282) = {178, 174};

55 Line(283) = {179, 173};

Line(284) = {179, 178};

Line(287) = {179, 177};

Line Loop(288) = {283, 279, -282, -284};

Plane Surface(289) = {288};

60 height = 0.1;

Extrude {{0, 0, 1}, {length, -height, 0}, -Pi/2} {

Surface{289};

}

Delete {

65 Volume{4};

}

Delete {

Surface{289, 298, 306};

}

70 Delete {

Line{283, 282};

}

Delete {

Volume{3, 1, 2};

75 }

Delete {

Surface{137, 10, 93, 92, 47, 48};

}

Delete {

80 Surface{124, 34, 79, 46, 136, 91, 26, 71, 116};

}

Delete {

Line{97, 60, 105, 2, 108, 5, 100, 63, 55, 18, 15, 52, '
& 50, 13, 103, 6, 95, 58};

}

85 Delete {

Surface{112, 75, 67, 22, 30, 120};

}

Delete {

Line{57, 94, 96, 59, 49, 51, 14, 12, 8, 7, 102, 104};

90 }

Circle(312) = {112, 49, 136};

Circle(313) = {108, 49, 132};

Circle(314) = {106, 47, 130};

Circle(315) = {84, 49, 13};

95 Circle(316) = {88, 49, 17};

Circle(317) = {82, 47, 11};

Circle(318) = {160, 49, 10};

Circle(319) = {156, 49, 7};

Circle(320) = {154, 47, 8};

100 Delete {

Line{110, 320, 20, 21, 25, 319, 111, 115, 318, 312, 313, '
& 314, 70, 78, 66, 65, 317, 315, 316};

}

Delete {

Point{154, 106, 11, 13, 17, 156, 160, 112, 108};

105 }

Circle(316) = {10, 49, 136};

Circle(317) = {136, 49, 88};

Circle(318) = {88, 49, 10};

Circle(319) = {132, 49, 84};

110 Circle(320) = {84, 49, 7};

Circle(321) = {7, 49, 132};

Circle(322) = {130, 47, 82};

Circle(323) = {82, 47, 8};

Circle(324) = {8, 47, 130};

115 Line Loop(325) = {323, 324, 322};

Line Loop(326) = {320, 321, 319};

Circle(327) = {84, 83, 82};

Circle(328) = {132, 131, 130};

Circle(329) = {7, 9, 8};

120 Line Loop(330) = {323, -329, -320, 327};

Ruled Surface(331) = {330};

Line Loop(332) = {322, -327, -319, 328};

Ruled Surface(333) = {332};

Line Loop(334) = {328, -324, -329, 321};

125 Ruled Surface(335) = {334};

Line Loop(336) = {318, 316, 317};

Plane Surface(337) = {326, 336};

Rotate {{0, 1, 0}, {0, 0, 0}, 2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

130 }

Rotate {{0, 1, 0}, {0, 0, 0}, -2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

}

Line Loop(366) = {355, 98, 99, 353, 360, -362, -357};

135 Plane Surface(367) = {366};

Line Loop(368) = {354, 358, -364, -359, 352, -62, -61};

Plane Surface(369) = {368};

Line Loop(370) = {341, 53, 54, 339, 346, -348, -343};

Plane Surface(371) = {370};

140 Line Loop(372) = {345, 350, -344, -340, 16, 17, -338};

Plane Surface(373) = {372};

Line Loop(374) = {280, 3, 4, 281, 305, -293, -301};

Plane Surface(375) = {374};

Line Loop(376) = {296, 291, -297, -278, 106, 107, -287};

145 Plane Surface(377) = {376};

Line Loop(378) = {364, 363, 362, 365};

Plane Surface(379) = {378};

Line Loop(380) = {348, 351, 350, 349};

Plane Surface(381) = {380};

150 Line Loop(382) = {357, -363, -358, 356};

Ruled Surface(383) = {382};

Line Loop(384) = {360, 365, -359, 361};

Ruled Surface(385) = {384};

Line Loop(386) = {346, 351, -345, 347};

155 Ruled Surface(387) = {386};

Line Loop(388) = {343, -349, -344, 342};

Ruled Surface(389) = {388};

Delete {

Line{74, 29, 119};

160 }

Delete {

Point{116, 21, 164, 12, 155, 107};

}

Circle(390) = {140, 65, 92};

165 Circle(391) = {92, 65, 1};

Circle(392) = {1, 65, 140};

Line(393) = {136, 140};

Line(394) = {88, 92};

Line(395) = {10, 1};

170 Line Loop(396) = {353, -361, 352, -86, 339, -347, 338, '
& -41, 281, -284, 287, -131};

Plane Surface(397) = {325, 396};

Line Loop(398) = {78, 354, 356, 355, 123, 278, 279, 280, '
& 33, 340, 342, 341};

Line Loop(399) = {390, 391, 392};

Plane Surface(400) = {398, 399};

175 Line Loop(401) = {395, -391, -394, 318};

Ruled Surface(402) = {401};

Line Loop(403) = {394, -390, -393, 317};

Ruled Surface(404) = {403};

Line Loop(405) = {392, -393, -316, 395};

180 Ruled Surface(406) = {405};

Surface Loop(407) = {83, 371, 400, 369, 383, 367, 128, '
& 132, 397, 331, 335, 333, 337, 404, 402, 406, 377, '
& 310, 311, 302, 375, 38, 42, 373, 387, 381, 389, '
& 87, 385, 379};

Volume(408) = {407};

Physical Surface(409) = {311, 381, 379};

Physical Surface(410) = {367, 383, 369, 385, 331, 333, '
& 335, 397, 38, 42, 377, 310, 375, 302, 400, 132, '
& 128, 83, 87, 371, 373, 389, 387};

185 Physical Surface(411) = {406, 404, 402, 337};

Physical Volume(412) = {408};

lc = 0.025;

offset = 0.075;

ratio = 1.;

Point(1) = {offset, 0.0, 0, lc};

5 Point(2) = {offset+0.1, 0.0, 0, lc};

Point(3) = {offset+0.1, 0.1, 0, lc};

Line(2) = {1, 2};

Line(3) = {2, 3};

Point(5) = {offset+0.08, 0.1, 0, lc*ratio};

10 Point(6) = {offset+0.08, 0.12, 0, lc*ratio};

Circle(4) = {3, 5, 6};

Point(7) = {offset+0.015, 0.14, 0, lc*ratio};

Point(8) = {offset+0.035, 0.12, 0, lc*ratio};

Point(9) = {offset+0.035, 0.14, 0, lc*ratio};

15 Point(10) = {offset, 0.14, 0, lc*ratio};

Line(5) = {6, 8};

Line(6) = {7, 10};

Line(7) = {10, 1};

Circle(8) = {8, 9, 7};

20 Line Loop(9) = {8, 6, 7, 2, 3, 4, 5};

Plane Surface(10) = {9};

angle = Pi/12;

Rotate {{0, 1, 0}, {0, 0, 0}, angle} {

Surface{10};

25 }

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{10};

}

Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

30 Duplicata { Surface{47}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{48};

}

35 Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

Duplicata { Surface{92}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{93};

40 }

length = 0.3;

Point(173) = {length, 0, (offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Point(174) = {length, 0, -(offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Line(278) = {168, 173};

45 Line(279) = {173, 174};

Line(280) = {174, 2};

Translate {0, 0.12, 0} {

Duplicata { Point{174}; }

}

50 Translate {0, 0.12, 0} {

Duplicata { Point{173}; }

}

Line(281) = {6, 178};

Line(282) = {178, 174};

55 Line(283) = {179, 173};

Line(284) = {179, 178};

Line(287) = {179, 177};

Line Loop(288) = {283, 279, -282, -284};

Plane Surface(289) = {288};

60 height = 0.1;

Extrude {{0, 0, 1}, {length, -height, 0}, -Pi/2} {

Surface{289};

}

Delete {

65 Volume{4};

}

Delete {

Surface{289, 298, 306};

}

70 Delete {

Line{283, 282};

}

Delete {

Volume{3, 1, 2};

75 }

Delete {

Surface{137, 10, 93, 92, 47, 48};

}

Delete {

80 Surface{124, 34, 79, 46, 136, 91, 26, 71, 116};

}

Delete {

Line{97, 60, 105, 2, 108, 5, 100, 63, 55, 18, 15, 52, '
& 50, 13, 103, 6, 95, 58};

}

85 Delete {

Surface{112, 75, 67, 22, 30, 120};

}

Delete {

Line{57, 94, 96, 59, 49, 51, 14, 12, 8, 7, 102, 104};

90 }

Circle(312) = {112, 49, 136};

Circle(313) = {108, 49, 132};

Circle(314) = {106, 47, 130};

Circle(315) = {84, 49, 13};

95 Circle(316) = {88, 49, 17};

Circle(317) = {82, 47, 11};

Circle(318) = {160, 49, 10};

Circle(319) = {156, 49, 7};

Circle(320) = {154, 47, 8};

100 Delete {

Line{110, 320, 20, 21, 25, 319, 111, 115, 318, 312, 313, '
& 314, 70, 78, 66, 65, 317, 315, 316};

}

Delete {

Point{154, 106, 11, 13, 17, 156, 160, 112, 108};

105 }

Circle(316) = {10, 49, 136};

Circle(317) = {136, 49, 88};

Circle(318) = {88, 49, 10};

Circle(319) = {132, 49, 84};

110 Circle(320) = {84, 49, 7};

Circle(321) = {7, 49, 132};

Circle(322) = {130, 47, 82};

Circle(323) = {82, 47, 8};

Circle(324) = {8, 47, 130};

115 Line Loop(325) = {323, 324, 322};

Line Loop(326) = {320, 321, 319};

Circle(327) = {84, 83, 82};

Circle(328) = {132, 131, 130};

Circle(329) = {7, 9, 8};

120 Line Loop(330) = {323, -329, -320, 327};

Ruled Surface(331) = {330};

Line Loop(332) = {322, -327, -319, 328};

Ruled Surface(333) = {332};

Line Loop(334) = {328, -324, -329, 321};

125 Ruled Surface(335) = {334};

Line Loop(336) = {318, 316, 317};

Plane Surface(337) = {326, 336};

Rotate {{0, 1, 0}, {0, 0, 0}, 2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

130 }

Rotate {{0, 1, 0}, {0, 0, 0}, -2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

}

Line Loop(366) = {355, 98, 99, 353, 360, -362, -357};

135 Plane Surface(367) = {366};

Line Loop(368) = {354, 358, -364, -359, 352, -62, -61};

Plane Surface(369) = {368};

Line Loop(370) = {341, 53, 54, 339, 346, -348, -343};

Plane Surface(371) = {370};

140 Line Loop(372) = {345, 350, -344, -340, 16, 17, -338};

Plane Surface(373) = {372};

Line Loop(374) = {280, 3, 4, 281, 305, -293, -301};

Plane Surface(375) = {374};

Line Loop(376) = {296, 291, -297, -278, 106, 107, -287};

145 Plane Surface(377) = {376};

Line Loop(378) = {364, 363, 362, 365};

Plane Surface(379) = {378};

Line Loop(380) = {348, 351, 350, 349};

Plane Surface(381) = {380};

150 Line Loop(382) = {357, -363, -358, 356};

Ruled Surface(383) = {382};

Line Loop(384) = {360, 365, -359, 361};

Ruled Surface(385) = {384};

Line Loop(386) = {346, 351, -345, 347};

155 Ruled Surface(387) = {386};

Line Loop(388) = {343, -349, -344, 342};

Ruled Surface(389) = {388};

Delete {

Line{74, 29, 119};

160 }

Delete {

Point{116, 21, 164, 12, 155, 107};

}

Circle(390) = {140, 65, 92};

165 Circle(391) = {92, 65, 1};

Circle(392) = {1, 65, 140};

Line(393) = {136, 140};

Line(394) = {88, 92};

Line(395) = {10, 1};

170 Line Loop(396) = {353, -361, 352, -86, 339, -347, 338, '
& -41, 281, -284, 287, -131};

Plane Surface(397) = {325, 396};

Line Loop(398) = {78, 354, 356, 355, 123, 278, 279, 280, '
& 33, 340, 342, 341};

Line Loop(399) = {390, 391, 392};

Plane Surface(400) = {398, 399};

175 Line Loop(401) = {395, -391, -394, 318};

Ruled Surface(402) = {401};

Line Loop(403) = {394, -390, -393, 317};

Ruled Surface(404) = {403};

Line Loop(405) = {392, -393, -316, 395};

180 Ruled Surface(406) = {405};

Surface Loop(407) = {83, 371, 400, 369, 383, 367, 128, '
& 132, 397, 331, 335, 333, 337, 404, 402, 406, 377, '
& 310, 311, 302, 375, 38, 42, 373, 387, 381, 389, '
& 87, 385, 379};

Volume(408) = {407};

Physical Surface(409) = {311, 381, 379};

Physical Surface(410) = {367, 383, 369, 385, 331, 333, '
& 335, 397, 38, 42, 377, 310, 375, 302, 400, 132, '
& 128, 83, 87, 371, 373, 389, 387};

185 Physical Surface(411) = {406, 404, 402, 337};

Physical Volume(412) = {408};
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lc = 0.025;

offset = 0.075;

ratio = 1.;

Point(1) = {offset, 0.0, 0, lc};

5 Point(2) = {offset+0.1, 0.0, 0, lc};

Point(3) = {offset+0.1, 0.1, 0, lc};

Line(2) = {1, 2};

Line(3) = {2, 3};

Point(5) = {offset+0.08, 0.1, 0, lc*ratio};

10 Point(6) = {offset+0.08, 0.12, 0, lc*ratio};

Circle(4) = {3, 5, 6};

Point(7) = {offset+0.015, 0.14, 0, lc*ratio};

Point(8) = {offset+0.035, 0.12, 0, lc*ratio};

Point(9) = {offset+0.035, 0.14, 0, lc*ratio};

15 Point(10) = {offset, 0.14, 0, lc*ratio};

Line(5) = {6, 8};

Line(6) = {7, 10};

Line(7) = {10, 1};

Circle(8) = {8, 9, 7};

20 Line Loop(9) = {8, 6, 7, 2, 3, 4, 5};

Plane Surface(10) = {9};

angle = Pi/12;

Rotate {{0, 1, 0}, {0, 0, 0}, angle} {

Surface{10};

25 }

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{10};

}

Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

30 Duplicata { Surface{47}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{48};

}

35 Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

Duplicata { Surface{92}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{93};

40 }

length = 0.3;

Point(173) = {length, 0, (offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Point(174) = {length, 0, -(offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Line(278) = {168, 173};

45 Line(279) = {173, 174};

Line(280) = {174, 2};

Translate {0, 0.12, 0} {

Duplicata { Point{174}; }

}

50 Translate {0, 0.12, 0} {

Duplicata { Point{173}; }

}

Line(281) = {6, 178};

Line(282) = {178, 174};

55 Line(283) = {179, 173};

Line(284) = {179, 178};

Line(287) = {179, 177};

Line Loop(288) = {283, 279, -282, -284};

Plane Surface(289) = {288};

60 height = 0.1;

Extrude {{0, 0, 1}, {length, -height, 0}, -Pi/2} {

Surface{289};

}

Delete {

65 Volume{4};

}

Delete {

Surface{289, 298, 306};

}

70 Delete {

Line{283, 282};

}

Delete {

Volume{3, 1, 2};

75 }

Delete {

Surface{137, 10, 93, 92, 47, 48};

}

Delete {

80 Surface{124, 34, 79, 46, 136, 91, 26, 71, 116};

}

Delete {

Line{97, 60, 105, 2, 108, 5, 100, 63, 55, 18, 15, 52, '
& 50, 13, 103, 6, 95, 58};

}

85 Delete {

Surface{112, 75, 67, 22, 30, 120};

}

Delete {

Line{57, 94, 96, 59, 49, 51, 14, 12, 8, 7, 102, 104};

90 }

Circle(312) = {112, 49, 136};

Circle(313) = {108, 49, 132};

Circle(314) = {106, 47, 130};

Circle(315) = {84, 49, 13};

95 Circle(316) = {88, 49, 17};

Circle(317) = {82, 47, 11};

Circle(318) = {160, 49, 10};

Circle(319) = {156, 49, 7};

Circle(320) = {154, 47, 8};

100 Delete {

Line{110, 320, 20, 21, 25, 319, 111, 115, 318, 312, 313, '
& 314, 70, 78, 66, 65, 317, 315, 316};

}

Delete {

Point{154, 106, 11, 13, 17, 156, 160, 112, 108};

105 }

Circle(316) = {10, 49, 136};

Circle(317) = {136, 49, 88};

Circle(318) = {88, 49, 10};

Circle(319) = {132, 49, 84};

110 Circle(320) = {84, 49, 7};

Circle(321) = {7, 49, 132};

Circle(322) = {130, 47, 82};

Circle(323) = {82, 47, 8};

Circle(324) = {8, 47, 130};

115 Line Loop(325) = {323, 324, 322};

Line Loop(326) = {320, 321, 319};

Circle(327) = {84, 83, 82};

Circle(328) = {132, 131, 130};

Circle(329) = {7, 9, 8};

120 Line Loop(330) = {323, -329, -320, 327};

Ruled Surface(331) = {330};

Line Loop(332) = {322, -327, -319, 328};

Ruled Surface(333) = {332};

Line Loop(334) = {328, -324, -329, 321};

125 Ruled Surface(335) = {334};

Line Loop(336) = {318, 316, 317};

Plane Surface(337) = {326, 336};

Rotate {{0, 1, 0}, {0, 0, 0}, 2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

130 }

Rotate {{0, 1, 0}, {0, 0, 0}, -2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

}

Line Loop(366) = {355, 98, 99, 353, 360, -362, -357};

135 Plane Surface(367) = {366};

Line Loop(368) = {354, 358, -364, -359, 352, -62, -61};

Plane Surface(369) = {368};

Line Loop(370) = {341, 53, 54, 339, 346, -348, -343};

Plane Surface(371) = {370};

140 Line Loop(372) = {345, 350, -344, -340, 16, 17, -338};

Plane Surface(373) = {372};

Line Loop(374) = {280, 3, 4, 281, 305, -293, -301};

Plane Surface(375) = {374};

Line Loop(376) = {296, 291, -297, -278, 106, 107, -287};

145 Plane Surface(377) = {376};

Line Loop(378) = {364, 363, 362, 365};

Plane Surface(379) = {378};

Line Loop(380) = {348, 351, 350, 349};

Plane Surface(381) = {380};

150 Line Loop(382) = {357, -363, -358, 356};

Ruled Surface(383) = {382};

Line Loop(384) = {360, 365, -359, 361};

Ruled Surface(385) = {384};

Line Loop(386) = {346, 351, -345, 347};

155 Ruled Surface(387) = {386};

Line Loop(388) = {343, -349, -344, 342};

Ruled Surface(389) = {388};

Delete {

Line{74, 29, 119};

160 }

Delete {

Point{116, 21, 164, 12, 155, 107};

}

Circle(390) = {140, 65, 92};

165 Circle(391) = {92, 65, 1};

Circle(392) = {1, 65, 140};

Line(393) = {136, 140};

Line(394) = {88, 92};

Line(395) = {10, 1};

170 Line Loop(396) = {353, -361, 352, -86, 339, -347, 338, '
& -41, 281, -284, 287, -131};

Plane Surface(397) = {325, 396};

Line Loop(398) = {78, 354, 356, 355, 123, 278, 279, 280, '
& 33, 340, 342, 341};

Line Loop(399) = {390, 391, 392};

Plane Surface(400) = {398, 399};

175 Line Loop(401) = {395, -391, -394, 318};

Ruled Surface(402) = {401};

Line Loop(403) = {394, -390, -393, 317};

Ruled Surface(404) = {403};

Line Loop(405) = {392, -393, -316, 395};

180 Ruled Surface(406) = {405};

Surface Loop(407) = {83, 371, 400, 369, 383, 367, 128, '
& 132, 397, 331, 335, 333, 337, 404, 402, 406, 377, '
& 310, 311, 302, 375, 38, 42, 373, 387, 381, 389, '
& 87, 385, 379};

Volume(408) = {407};

Physical Surface(409) = {311, 381, 379};

Physical Surface(410) = {367, 383, 369, 385, 331, 333, '
& 335, 397, 38, 42, 377, 310, 375, 302, 400, 132, '
& 128, 83, 87, 371, 373, 389, 387};

185 Physical Surface(411) = {406, 404, 402, 337};

Physical Volume(412) = {408};

lc = 0.025;

offset = 0.075;

ratio = 1.;

Point(1) = {offset, 0.0, 0, lc};

5 Point(2) = {offset+0.1, 0.0, 0, lc};

Point(3) = {offset+0.1, 0.1, 0, lc};

Line(2) = {1, 2};

Line(3) = {2, 3};

Point(5) = {offset+0.08, 0.1, 0, lc*ratio};

10 Point(6) = {offset+0.08, 0.12, 0, lc*ratio};

Circle(4) = {3, 5, 6};

Point(7) = {offset+0.015, 0.14, 0, lc*ratio};

Point(8) = {offset+0.035, 0.12, 0, lc*ratio};

Point(9) = {offset+0.035, 0.14, 0, lc*ratio};

15 Point(10) = {offset, 0.14, 0, lc*ratio};

Line(5) = {6, 8};

Line(6) = {7, 10};

Line(7) = {10, 1};

Circle(8) = {8, 9, 7};

20 Line Loop(9) = {8, 6, 7, 2, 3, 4, 5};

Plane Surface(10) = {9};

angle = Pi/12;

Rotate {{0, 1, 0}, {0, 0, 0}, angle} {

Surface{10};

25 }

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{10};

}

Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

30 Duplicata { Surface{47}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{48};

}

35 Rotate {{0, 1, 0}, {0, 0, 0}, 2*angle} {

Duplicata { Surface{92}; }

}

Extrude {{0, 1, 0}, {0, 0, 0}, 2*Pi/3-2*angle} {

Surface{93};

40 }

length = 0.3;

Point(173) = {length, 0, (offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Point(174) = {length, 0, -(offset+0.035)*Sin[3/2*angle], '
& lc*length*3};

Line(278) = {168, 173};

45 Line(279) = {173, 174};

Line(280) = {174, 2};

Translate {0, 0.12, 0} {

Duplicata { Point{174}; }

}

50 Translate {0, 0.12, 0} {

Duplicata { Point{173}; }

}

Line(281) = {6, 178};

Line(282) = {178, 174};

55 Line(283) = {179, 173};

Line(284) = {179, 178};

Line(287) = {179, 177};

Line Loop(288) = {283, 279, -282, -284};

Plane Surface(289) = {288};

60 height = 0.1;

Extrude {{0, 0, 1}, {length, -height, 0}, -Pi/2} {

Surface{289};

}

Delete {

65 Volume{4};

}

Delete {

Surface{289, 298, 306};

}

70 Delete {

Line{283, 282};

}

Delete {

Volume{3, 1, 2};

75 }

Delete {

Surface{137, 10, 93, 92, 47, 48};

}

Delete {

80 Surface{124, 34, 79, 46, 136, 91, 26, 71, 116};

}

Delete {

Line{97, 60, 105, 2, 108, 5, 100, 63, 55, 18, 15, 52, '
& 50, 13, 103, 6, 95, 58};

}

85 Delete {

Surface{112, 75, 67, 22, 30, 120};

}

Delete {

Line{57, 94, 96, 59, 49, 51, 14, 12, 8, 7, 102, 104};

90 }

Circle(312) = {112, 49, 136};

Circle(313) = {108, 49, 132};

Circle(314) = {106, 47, 130};

Circle(315) = {84, 49, 13};

95 Circle(316) = {88, 49, 17};

Circle(317) = {82, 47, 11};

Circle(318) = {160, 49, 10};

Circle(319) = {156, 49, 7};

Circle(320) = {154, 47, 8};

100 Delete {

Line{110, 320, 20, 21, 25, 319, 111, 115, 318, 312, 313, '
& 314, 70, 78, 66, 65, 317, 315, 316};

}

Delete {

Point{154, 106, 11, 13, 17, 156, 160, 112, 108};

105 }

Circle(316) = {10, 49, 136};

Circle(317) = {136, 49, 88};

Circle(318) = {88, 49, 10};

Circle(319) = {132, 49, 84};

110 Circle(320) = {84, 49, 7};

Circle(321) = {7, 49, 132};

Circle(322) = {130, 47, 82};

Circle(323) = {82, 47, 8};

Circle(324) = {8, 47, 130};

115 Line Loop(325) = {323, 324, 322};

Line Loop(326) = {320, 321, 319};

Circle(327) = {84, 83, 82};

Circle(328) = {132, 131, 130};

Circle(329) = {7, 9, 8};

120 Line Loop(330) = {323, -329, -320, 327};

Ruled Surface(331) = {330};

Line Loop(332) = {322, -327, -319, 328};

Ruled Surface(333) = {332};

Line Loop(334) = {328, -324, -329, 321};

125 Ruled Surface(335) = {334};

Line Loop(336) = {318, 316, 317};

Plane Surface(337) = {326, 336};

Rotate {{0, 1, 0}, {0, 0, 0}, 2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

130 }

Rotate {{0, 1, 0}, {0, 0, 0}, -2*Pi/3} {

Duplicata { Line{287, 281, 278, 280, 279, 301, 297, 296, '
& 305, 284, 293, 292, 291, 294}; }

}

Line Loop(366) = {355, 98, 99, 353, 360, -362, -357};

135 Plane Surface(367) = {366};

Line Loop(368) = {354, 358, -364, -359, 352, -62, -61};

Plane Surface(369) = {368};

Line Loop(370) = {341, 53, 54, 339, 346, -348, -343};

Plane Surface(371) = {370};

140 Line Loop(372) = {345, 350, -344, -340, 16, 17, -338};

Plane Surface(373) = {372};

Line Loop(374) = {280, 3, 4, 281, 305, -293, -301};

Plane Surface(375) = {374};

Line Loop(376) = {296, 291, -297, -278, 106, 107, -287};

145 Plane Surface(377) = {376};

Line Loop(378) = {364, 363, 362, 365};

Plane Surface(379) = {378};

Line Loop(380) = {348, 351, 350, 349};

Plane Surface(381) = {380};

150 Line Loop(382) = {357, -363, -358, 356};

Ruled Surface(383) = {382};

Line Loop(384) = {360, 365, -359, 361};

Ruled Surface(385) = {384};

Line Loop(386) = {346, 351, -345, 347};

155 Ruled Surface(387) = {386};

Line Loop(388) = {343, -349, -344, 342};

Ruled Surface(389) = {388};

Delete {

Line{74, 29, 119};

160 }

Delete {

Point{116, 21, 164, 12, 155, 107};

}

Circle(390) = {140, 65, 92};

165 Circle(391) = {92, 65, 1};

Circle(392) = {1, 65, 140};

Line(393) = {136, 140};

Line(394) = {88, 92};

Line(395) = {10, 1};

170 Line Loop(396) = {353, -361, 352, -86, 339, -347, 338, '
& -41, 281, -284, 287, -131};

Plane Surface(397) = {325, 396};

Line Loop(398) = {78, 354, 356, 355, 123, 278, 279, 280, '
& 33, 340, 342, 341};

Line Loop(399) = {390, 391, 392};

Plane Surface(400) = {398, 399};

175 Line Loop(401) = {395, -391, -394, 318};

Ruled Surface(402) = {401};

Line Loop(403) = {394, -390, -393, 317};

Ruled Surface(404) = {403};

Line Loop(405) = {392, -393, -316, 395};

180 Ruled Surface(406) = {405};

Surface Loop(407) = {83, 371, 400, 369, 383, 367, 128, '
& 132, 397, 331, 335, 333, 337, 404, 402, 406, 377, '
& 310, 311, 302, 375, 38, 42, 373, 387, 381, 389, '
& 87, 385, 379};

Volume(408) = {407};

Physical Surface(409) = {311, 381, 379};

Physical Surface(410) = {367, 383, 369, 385, 331, 333, '
& 335, 397, 38, 42, 377, 310, 375, 302, 400, 132, '
& 128, 83, 87, 371, 373, 389, 387};

185 Physical Surface(411) = {406, 404, 402, 337};

Physical Volume(412) = {408};

(b) Input .geo file

Fig A.2: A three-dimensional tripod.
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B Structural UML diagram of the library

HP-DDM — high-performance unified framework for domain decomposition methods

Distributed solvers

Solvers

Subdomain

# rbuff : std::vector<double*>
# sbuff : std::vector<double*>
# rq : MPI_Request*
# communicator : MPI_Comm
# dof : int
# map : std::vector<std::pair<unsigned int, std::vector<unsigned int»>
# a : MatrixCSR*

+ initialize(MatrixCSR* const&, Iterator const&, Iterator const&, std::vector<Container*>const&) : void
+ getCommunicator() const : const MPI_Comm*
+ getMap() const : const std::vector<std::pair<unsigned int, std::vector<unsigned int>>>&
+ exchange(double* const) const : void

Preconditioner

# s : Solver
# co* : CoarseOperator
# ev : double**
# uc : double*

+ initialize(const unsigned short&) : void

Solver, CoarseOperator

Schwarz

- d : double*

+ initialize() : void
+ initializePreconditioner(const bool&) : void
+ callNumfact(MatrixCSR* const&) : void
+ buildTwo(std::vector<unsigned short >&) : void
+ apply(double* const, double* const) const : void
+ solveGEVP(MatrixCSR* const&, unsigned short&)
+ GMV(const double* const, double* const) const : void
+ deflation(const double* const, double* const) const : void
+ getScaling() const : const double*

Schur

# p : Solver
# bb : MatrixCSR*
# ii : MatrixCSR*
# bi : MatrixCSR*
# work : double*
# structure : double*
# rankWorld : int
# mult : unsigned int
# signed : unsigned short

+ initialize() : void
+ callNumfact() : void
+ callNumfactPreconditioner() : void
+ originalNumbering(const Container&, double* const) const : void
+ renumber(const Container&, double* const&) : void
+ stiffnessScaling(double* const&) const : void
+ getMult() const : unsigned int
+ getSigned() const : unsigned short
+ applyLocalSchurComplement(double* const) const : void
+ applyLocalLumpedMatrix(double* const) const : void
+ applyLocalSuperlumpedMatrix(double* const) const : void
+ getRank() const : signed int
+ getLDR() const : unsigned int
+ extractDiagonal(double*&) const : void
+ condensateEffort(const double* const, double* const) const : void

Bdd Feti

CoarseOperator

# rankWorld : int
# sizeWorld : int
# sizeSplit : int
# gatherComm : MPI_Comm
# splitComm : MPI_Comm
# local : int
# sizeRHS : unsigned int
# offset : bool

- constructionCommunicator(const MPI_Comm&, unsigned short&) : void
- constructionCollective(const unsigned short*, unsigned short, const unsigned short*) : void
- constructionMap(unsigned short, const unsigned short*) : void
- constructionMatrix(const MPI_Comm &, unsigned short) : void
+ construction() : void
+ callSolver(double*, const unsigned short&) : void
+ getRank() const : int
+ getLocal() const : int
+ getAddrLocal() const : const int*
+ setLocal(unsigned short) : void
+ getSizeRHS() const : unsigned int
+ reallocateRHS(double*&, const unsigned short&) const : void

Solver, S

DMatrix

# n : int
# rank : int
# communicator : MPI_Comm
# distribution : unsigned char
# ldistribution : int*
# idistribution : int*
# mapRecv
# mapSend
# mapOwn
# gatherCounts : int*
# gatherSplitCounts : int*
# displs : int*
# displsSplit : int*

# initializeMap(const int&, const int* const, double* const, double* const) : void
# redistribute(double* const, double* const) : void
+ getDistribution() : unsigned char

MklPardiso Mumps Pastix SuiteSparse

MklPardisoSub MumpsSub PastixSub SuiteSparseSub

Eigensolver

# n : int
# nu : unsigned short
# tol : double
# threshold : double

+ selectNu(const double*, const MPI_Comm*) : void
+ getNu() const : unsigned short
+ getTol() const : double

Arpack

- it : unsigned short

solve<Solver>(MatrixCSR* const&, MatrixCSR* const&, Solver const&,
intern_array_vector_scalar*, const MPI_Comm&) : void

Lapack

reduce(double* const&, double* const&) : void
expand(double* const&, double* const* const&) : void
solve(double* const&, double**&, double*&, int*,

const MPI_Comm&) : void

Fig B.1: Structural UML diagram of the library.



B Structural UML diagram of the library 109

HP-DDM — high-performance unified framework for domain decomposition methods

Distributed solvers

Solvers

Subdomain

# rbuff : std::vector<double*>
# sbuff : std::vector<double*>
# rq : MPI_Request*
# communicator : MPI_Comm
# dof : int
# map : std::vector<std::pair<unsigned int, std::vector<unsigned int»>
# a : MatrixCSR*

+ initialize(MatrixCSR* const&, Iterator const&, Iterator const&, std::vector<Container*>const&) : void
+ getCommunicator() const : const MPI_Comm*
+ getMap() const : const std::vector<std::pair<unsigned int, std::vector<unsigned int>>>&
+ exchange(double* const) const : void

Preconditioner

# s : Solver
# co* : CoarseOperator
# ev : double**
# uc : double*

+ initialize(const unsigned short&) : void

Solver, CoarseOperator

Schwarz

- d : double*

+ initialize() : void
+ initializePreconditioner(const bool&) : void
+ callNumfact(MatrixCSR* const&) : void
+ buildTwo(std::vector<unsigned short >&) : void
+ apply(double* const, double* const) const : void
+ solveGEVP(MatrixCSR* const&, unsigned short&)
+ GMV(const double* const, double* const) const : void
+ deflation(const double* const, double* const) const : void
+ getScaling() const : const double*

Schur

# p : Solver
# bb : MatrixCSR*
# ii : MatrixCSR*
# bi : MatrixCSR*
# work : double*
# structure : double*
# rankWorld : int
# mult : unsigned int
# signed : unsigned short

+ initialize() : void
+ callNumfact() : void
+ callNumfactPreconditioner() : void
+ originalNumbering(const Container&, double* const) const : void
+ renumber(const Container&, double* const&) : void
+ stiffnessScaling(double* const&) const : void
+ getMult() const : unsigned int
+ getSigned() const : unsigned short
+ applyLocalSchurComplement(double* const) const : void
+ applyLocalLumpedMatrix(double* const) const : void
+ applyLocalSuperlumpedMatrix(double* const) const : void
+ getRank() const : signed int
+ getLDR() const : unsigned int
+ extractDiagonal(double*&) const : void
+ condensateEffort(const double* const, double* const) const : void

Bdd Feti

CoarseOperator

# rankWorld : int
# sizeWorld : int
# sizeSplit : int
# gatherComm : MPI_Comm
# splitComm : MPI_Comm
# local : int
# sizeRHS : unsigned int
# offset : bool

- constructionCommunicator(const MPI_Comm&, unsigned short&) : void
- constructionCollective(const unsigned short*, unsigned short, const unsigned short*) : void
- constructionMap(unsigned short, const unsigned short*) : void
- constructionMatrix(const MPI_Comm &, unsigned short) : void
+ construction() : void
+ callSolver(double*, const unsigned short&) : void
+ getRank() const : int
+ getLocal() const : int
+ getAddrLocal() const : const int*
+ setLocal(unsigned short) : void
+ getSizeRHS() const : unsigned int
+ reallocateRHS(double*&, const unsigned short&) const : void

Solver, S

DMatrix

# n : int
# rank : int
# communicator : MPI_Comm
# distribution : unsigned char
# ldistribution : int*
# idistribution : int*
# mapRecv
# mapSend
# mapOwn
# gatherCounts : int*
# gatherSplitCounts : int*
# displs : int*
# displsSplit : int*

# initializeMap(const int&, const int* const, double* const, double* const) : void
# redistribute(double* const, double* const) : void
+ getDistribution() : unsigned char

MklPardiso Mumps Pastix SuiteSparse

MklPardisoSub MumpsSub PastixSub SuiteSparseSub

Eigensolver

# n : int
# nu : unsigned short
# tol : double
# threshold : double

+ selectNu(const double*, const MPI_Comm*) : void
+ getNu() const : unsigned short
+ getTol() const : double

Arpack

- it : unsigned short

solve<Solver>(MatrixCSR* const&, MatrixCSR* const&, Solver const&,
intern_array_vector_scalar*, const MPI_Comm&) : void

Lapack

reduce(double* const&, double* const&) : void
expand(double* const&, double* const* const&) : void
solve(double* const&, double**&, double*&, int*,

const MPI_Comm&) : void
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C Two published papers
Here are included two papers published during this thesis.

• The first one published in Journal of Numerical Mathematics [Jolivet, Dolean, et al.
2012] gathers some results presented during the third workshop on FreeFem++.

• The second one presented during the Supercomputing conference in 2013 [Jolivet et
al. 2013] was one of the six papers nominated for the best paper award out of 90
accepted papers out of 457 submissions. It was republished in [Jolivet et al. 2014b].

Sorry, this version does not include the aforementioned papers.
You can access them at the following urls:

• http://www.degruyter.com/view/j/jnma.2012.20.

issue-3-4/jnum-2012-0015/jnum-2012-0015.xml,

• http://dl.acm.org/citation.cfm?id=2503212.

http://www.degruyter.com/view/j/jnma.2012.20.issue-3-4/jnum-2012-0015/jnum-2012-0015.xml
http://www.degruyter.com/view/j/jnma.2012.20.issue-3-4/jnum-2012-0015/jnum-2012-0015.xml
http://dl.acm.org/citation.cfm?id=2503212
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Pierre Jolivet

Méthodes de décomposition de domaine.
Application au calcul haute performance.

Abstract
This thesis introduces a unified framework for various domain decomposition methods:
those with overlap, so-called Schwarz methods, and those based on Schur complements,
so-called substructuring methods. It is then possible to switch with a high-level of ab-
straction between methods and to build different preconditioners to accelerate the iterative
solution of large sparse linear systems. Such systems are frequently encountered in indus-
trial or scientific problems after discretization of continuous models. Even though these
preconditioners naturally exhibit good parallelism properties on distributed architectures,
they can prove inadequate numerical performance for complex decompositions or multi-
scale physics. This lack of robustness may be alleviated by concurrently solving sparse or
dense local generalized eigenvalue problems, thus identifying modes that hinder the con-
vergence of the underlying iterative methods a priori. Using these modes, it is then possible
to define projection operators based on what is usually referred to as a coarse solver. These
auxiliary tools tend to solve the aforementioned issues, but typically decrease the paral-
lel efficiency of the preconditioners. In this dissertation, it is shown in three points that
the newly developed construction is efficient: 1) by performing large-scale numerical ex-
periments on Curie—a European supercomputer, and by comparing it with state of the art
2) multigrid and 3) direct solvers.
Keywords: linear algebra, preconditioner, high-performance computing, domain decomposition.

Résumé
Cette thèse présente une vision unifiée de plusieurs méthodes de décomposition de do-
maine : celles avec recouvrement, dites de Schwarz, et celles basées sur des compléments
de Schur, dites de sous-structuration. Il est ainsi possible de changer de méthodes de ma-
nière abstraite et de construire différents préconditionneurs pour accélérer la résolution
de grands systèmes linéaires creux par des méthodes itératives. On rencontre régulière-
ment ce type de systèmes dans des problèmes industriels ou scientifiques après discrétisa-
tion de modèles continus. Bien que de tels préconditionneurs exposent naturellement de
bonnes propriétés de parallélisme sur les architectures distribuées, ils peuvent s’avérer être
peu performants numériquement pour des décompositions complexes ou des problèmes
physiques multi-échelles. On peut pallier ces défauts de robustesse en calculant de façon
concurrente des problèmes locaux creux ou denses aux valeurs propres généralisées. D’au-
cuns peuvent alors identifier des modes qui perturbent la convergence des méthodes itéra-
tives sous-jacentes a priori. En utilisant ces modes, il est alors possible de définir des opé-
rateurs de projection qui utilisent un problème dit grossier. L’utilisation de ces outils auxi-
liaires règle généralement les problèmes sus-cités, mais tend à diminuer les performances
algorithmiques des préconditionneurs. Dans ce manuscrit, on montre en trois points que
la nouvelle construction développée est performante : 1) grâce à des essais numériques à
très grande échelle sur Curie—un supercalculateur européen, puis en le comparant à des
solveurs de pointe 2) multi-grilles et 3) directs.
Mots-clefs : algèbre linéaire, préconditionneur, calcul haute performance, décomposition de domaine.
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