
HAL Id: tel-01157502
https://theses.hal.science/tel-01157502

Submitted on 28 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subwords : automata, embedding problems, and
verification

Prateek Karandikar

To cite this version:
Prateek Karandikar. Subwords : automata, embedding problems, and verification. Other [cs.OH].
École normale supérieure de Cachan - ENS Cachan; Chennai Mathematical Institute, 2015. English.
�NNT : 2015DENS0005�. �tel-01157502�

https://theses.hal.science/tel-01157502
https://hal.archives-ouvertes.fr


Subwords: automata, embedding
problems, and verification

Prateek Karandikar

Chennai Mathematical Institute, Chennai

and

Laboratoire Spécification et Vérification,
École Normale Supérieure, Cachan

supervised by

Narayan Kumar

CMI, Chennai

Philippe Schnoebelen

LSV, CNRS, & ENS Cachan

Doctoral thesis in computer science

Chennai Mathematical Institute

École Doctorale Sciences Pratiques, ENS Cachan

12 February 2015

Members of the jury:

Narayan Kumar (advisor)

Ranko Lazic (examiner)

Madhavan Mukund

Jean-François Raskin

Philippe Schnoebelen (advisor)

Marc Zeitoun (examiner)



2

Abstract

The increasing use of software and automated systems has made it important to ensure their

correct behaviour. Bugs can not only have significant financial costs, but also catastrophic

consequences in mission-critical systems. Testing against a variety of environments and in-

puts helps with discovering bugs, but cannot guarantee their absence. Formal verification is

the technique that establishes correctness of a system or a mathematical model of the system

with respect to properties expressed in a formal language.

Regular model checking is a common technique for verification of infinite-state systems -

it represents infinite sets of configurations symbolically in a finite manner and manipulates

them using these representations. Regular model checking for lossy channel systems (LCS)

brings up basic automata-theoretic questions concerning the subword relation on words

which models the lossiness of the channels. We address these state complexity and deci-

sion problems, and also solve a long-standing problem involving the index of the Simon’s

piecewise-testability congruence.

The reachability problem for lossy channel systems, though decidable, has very high com-

plexity (it is Fωω-complete), well beyond primitive-recursive. In recent times several prob-

lems with this complexity have been discovered, for example in the fields of verification of

weak memory models and metric temporal logic. The Post Embedding Problem (PEP) is an

algebraic abstraction of the reachability problem on LCS, with the same complexity, and is

our champion for a “master” problem for the class Fωω . We provide a common generaliza-

tion of two known variants of PEP and give a simpler proof of decidability. This allows us

to extend the unidirectional channel system (UCS) model with simple channel tests while

having decidable reachability.



Contents

1 Introduction 7

1.1 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Channel systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Well-structured transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Fast-growing complexity, LCS, and UCS . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Technical preliminaries 15

2.1 Subwords and embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Well-quasi-orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 State complexity and related questions 21

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 State complexity of closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Deterministic automata for closures . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 State complexity of closures for languages over small alphabets . . . . . 28

3.3 Exponential state complexity of closures in the 2-letter case . . . . . . . . . . . . 29

3.4 State complexity of interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Upper bounds for interiors and the approximation problem . . . . . . . 32

3.4.2 Lower bound for downward interiors . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Lower bound for upward interiors . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.4 On interiors of languages over a fixed alphabet . . . . . . . . . . . . . . . 37

3.5 Complexity of decision problems on subwords . . . . . . . . . . . . . . . . . . . 38

3.5.1 Deciding closedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Deciding equivalence modulo closure . . . . . . . . . . . . . . . . . . . . . 39

3



4 CONTENTS

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Simon’s congruence 43

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Appendix: first values for Ck (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Post Embedding Problem 53

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Higman’s Lemma and the length of bad sequences . . . . . . . . . . . . . 55

5.2 Deciding PEP
partial
dir , or PEP with partial directness . . . . . . . . . . . . . . . . . 56

5.3 Counting the number of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Universal variants of PEPpartial
dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Undecidability for PEPco&dir and other extensions . . . . . . . . . . . . . . . . . 66

5.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Unidirectional channel systems with tests 73

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.3 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Testing channels and the undecidability of reachability . . . . . . . . . . . . . . 77

6.2.1 Restricted sets of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Simulating queue automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Main theorem and a roadmap for its proof . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Reducing G-G-Reach for UCST[Z , N ] to E-E-Reach for UCST[Z1] . . . . . . . . . 80

6.4.1 Commuting steps in UCST[Z , N ] systems . . . . . . . . . . . . . . . . . . 81

6.4.2 Reducing G-G-Reach[Z , N ] to G-G-Reach[Z1, N1] . . . . . . . . . . . . . . 81

6.4.3 Reducing G-G-Reach[Z1, N1] to E-G-Reach[Z1, N1] . . . . . . . . . . . . . 86

6.4.4 Reducing E-G-Reach[Z1, N1] to E-G-Reach[Z1] . . . . . . . . . . . . . . . 86

6.4.5 Reducing E-G-Reach[Z1] to E-E-Reach[Z1] . . . . . . . . . . . . . . . . . . 87

6.5 Reducing E-E-Reach[Z1] to G-G-Reach[Z l

1 ] . . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS 5

6.6 Reducing E-E-Reach[Z l

1 ] to a Post Embedding Problem . . . . . . . . . . . . . . 91

6.6.1 E-E-Reach[Z l

1 ] reduces to PEP
partial
codir . . . . . . . . . . . . . . . . . . . . . . 91

6.6.2 PEP
partial
codir reduces to E-E-Reach[Z l

1 ] . . . . . . . . . . . . . . . . . . . . . . 95

6.7 Two undecidable problems for UCST[Z , N ] . . . . . . . . . . . . . . . . . . . . . . 96

6.7.1 Recurrent reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7.2 Write-lossy semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Conclusion 103



6 CONTENTS



Chapter 1

Introduction

The increasing use of software and automated systems has made it important to ensure their

correct behaviour. Bugs can not only have significant financial costs, but also catastrophic

consequences in mission-critical systems. Testing against a variety of environments and in-

puts helps with discovering bugs, but cannot guarantee their absence. Concurrency, for ex-

ample, can introduce very subtle and hard-to-discover bugs, and with large complex systems

it is impossible to evaluate by hand whether testing was comprehensive. Formal verifica-

tion is the technique that establishes correctness of a system or a mathematical model of the

system with respect to properties expressed in a formal language. See [64] for an economic

perspective on bugs, testing, and verification and [82] for a survey of formal verification as

applied to hardware design.

Early work on sequential programs worked directly with the program as the system with

properties expressed in very powerful logics, often extensions of first-order logic or even

higher-order logic, tailored to express properties of programs. Establishing the correctness

was through proofs in a proof system (for example, Floyd-Hoare logic [61, 49]). One of the

drawbacks of this approach is that it is not automatic and requires advanced skills in math-

ematical reasoning making it difficult to use in practice. Further it does not extend easily to

handle concurrent programs or reactive programs. The latter are nonterminating programs

that typically provide some service such as device drivers or daemons in an operating system

as well as programs that run on embedded controllers.

In a landmark paper [101], Pnueli proposed the use of temporal logic for specifying and verify-

ing properties of programs, including concurrent, reactive programs. Many properties useful

in practice, such as safety properties (of the form “〈something undesirable〉 will never hap-

pen”) and liveness properties (of the form“〈something desirable〉 will eventually happen”),

are expressed naturally in temporal logic. The use of temporal logic to express properties has

been one of the drivers of formal verification over the last few decades and this is because, for

many interesting classes of programs, these properties can be checked automatically.

7



8 CHAPTER 1. INTRODUCTION

1.1 Model checking

Model checking [34, 41] is the problem of deciding, given a model of a system, whether it

satisfies a given specification. The nature of the system and specification can vary and de-

pends on the application in question. Model checking is often used for verifying correctness

properties of finite-state systems, the properties typically being expressed in a suitable vari-

ant of temporal logic. Tools such as SPIN1 [65] and SMV2 have been successful in practice for

temporal logic verification.

Models of hardware systems tend to be finite-state, which make them amenable to model-

checking-based approaches to verification. Software systems, on the other hand, tend to be

infinite-state, thus harder to verify. Even a sequential recursive program with a finite data do-

main corresponds to an infinite-state transition system because of the unbounded stack size.

Infinite sets of states can be handled symbolically, by formulae, or by constraints, or in par-

ticular by automata as in regular model checking. Even the finitary aspects of the state space

can result in a very large number of states. To delay the effects of this state explosion in veri-

fication, it is usually necessary to work on abstractions of the model. Abstract interpretation

is a standard approach for developing abstractions of complex programs [38]. As a simple

example, one may abstract out an integer variable by remembering only its sign (positive,

zero, or negative). This may result in a loss of precision: the sum of a positive and a negative

number could be either positive or negative. In practice the abstraction used depends on

both the nature of the programs and properties in question. One approach is to start with a

very coarse abstraction and iteratively refine it as needed – this is known as counterexample-

guided abstraction refinement (CEGAR) and is used by Microsoft’s tool SLAM3.

Regular model checking [83, 22, 120, 9] works with infinite subsets of the state space by repre-

senting them finitely and manipulating them via their finite descriptions. The finite descrip-

tions are “regular”, defined via automata, regular expressions, semilinear sets, Presburger for-

mulae, or similar constructs with strong effectiveness and closure properties. Manna and

Pnueli verify parameterized programs in [91] by replacing finiteness with finite representabil-

ity. In [21], regular model checking is applied to pushdown systems, using alternating finite

automata to represent regular sets of configurations. It gives an algorithm to compute, given a

representation of a set of configurations, a representation of the set of all predecessors of this

set. This is applied to model-check pushdown systems against temporal logic specifications.

Another example of regular model checking is the reachability analysis of lossy channel sys-

tems (LCS, see section 1.2), where upward-closed sets of words (a subclass of regular lan-

guages) are used to represent sets of configurations and compute the predecessor sets. Often

such procedures to compute predecessor sets work by iterating the procedure to compute

1❤tt♣✿✴✴s♣✐♥r♦♦t✳❝♦♠✴s♣✐♥✴✇❤❛t✐s♣✐♥✳❤t♠❧
2❤tt♣✿✴✴✇✇✇✳❝s✳❝♠✉✳❡❞✉✴⑦♠♦❞❡❧❝❤❡❝❦✴s♠✈✳❤t♠❧
3❤tt♣✿✴✴r❡s❡❛r❝❤✳♠✐❝r♦s♦❢t✳❝♦♠✴❡♥✲✉s✴♣r♦❥❡❝ts✴s❧❛♠✴

http://spinroot.com/spin/whatispin.html
http://www.cs.cmu.edu/~modelcheck/smv.html
http://research.microsoft.com/en-us/projects/slam/


1.2. CHANNEL SYSTEMS 9

one-step predecessors until the complete set of predecessors is found, that is, till we reach a

fixed-point of the one-step predecessor operation. Thus termination of fixed-point compu-

tations is a central concern with regular model checking. Well-structured transition systems

(see section 1.3) are one setting where termination is guaranteed. Where guaranteed termi-

nation is not available, one may be content with over- or under- approximations. Another

concern is basic data structures for representing regular sets, algorithms for implementing

basic operations on these sets, and for deciding properties such as universality, inclusion,

and so on. These algorithms and data structures would form basic building blocks of regular

model checking algorithms.

1.2 Channel systems

Many systems with otherwise finite-state components have infinitely many configurations

as a result of unbounded communication channels. These channels are queues of messages

which can grow to arbitrary size. We call such systems channel systems. These have been used

for protocol modelling [117], analysis [104, 25, 88, 97, 107, 44], and synthesis [122, 50, 105, 92].

These systems have also been used as an abstract Turing-complete model of computation, in

the form of Post’s tag systems [102]. A typical problem of interest is reachability, which asks

given two configurations of the system, whether the system can reach the second, starting

from the first. A procedure to decide reachability is useful to decide safety properties, that

is, to check if the system can ever reach a bad or unsafe configuration. As a result of Turing-

completeness, reachability and other problems on general channel systems are undecidable.

Finkel discusses several approaches to deal with this in [46]. One such is to require that ev-

ery incoming message can always be “absorbed”, that is, consumed and ignored. At least for

the purposes of reachability, this is equivalent to a relaxation which allows channels to non-

deterministically lose messages, as studied by Abdulla and Jonsson in [7]. They show that

reachability is decidable for these lossy channel systems. This can also be seen as a conse-

quence of Pachl’s result from [97]. The lossiness models unreliability in channels, and can

also be seen as an overapproximation of the behaviours of the system with reliable channels.

Other kinds of unreliability such as duplication and insertion errors, and their combinations

with each other and message losses are considered in [26]. Unreliability has been considered

in other models of computation too, such as noisy Turing machines [11].

Lossy channel systems are a “weak” model of computation, but can compute exactly in cer-

tain restricted settings, for example with space bounded by Fωω [30], or with probabilistic

losses [3]. Channel systems play a central role in some areas of program and system ver-

ification (see [26, 4, 87, 13]) and also provide decidable automata models for problems on

Real-Time and Metric Temporal Logic, modal logics, and data logics [6, 95, 86, 85, 89, 16]. An

example of a channel system is shown in Figure 1.1.



10 CHAPTER 1. INTRODUCTION

s1

s2

s3

s4

p!a

q?a p!b

q?b

q?c

t1

t2

t3p?a

q!b

p?b

q!c

q

p

a b a b a

c b b

Figure 1.1: A snapshot of a channel system with two components and two channels

Several real world protocols have been modelled using lossy channel systems. An example is

the Alternating Bit Protocol (ABP) [17], which allows a sender and a receiver to strictly alter-

nate messages and acknowledgements by using parity tags, even when the channels are lossy.

The High Level Data Link Control (HDLC) procedures are another example [69]. In [2], the

Bounded Retransmission Protocol (BRP) is modelled as a lossy channel system and verified

using a tool LCS developed by the authors. The BRP is a data link protocol which can be seen

as an extended version of the ABP.

LCSes have also been used as a decidable model for solving other problems. The verifica-

tion of finite-state concurrent programs running under weak or relaxed memory models is

achieved by reducing the problem to reachability for LCS in [12]. An example of a weak mem-

ory model is one where in a single thread of execution, a write to a variable may be postponed

past a read from a different variable. In a multithreaded context, this can introduce new pro-

gram behaviours, making analysis nontrivial.

1.3 Well-structured transition systems

Valk and Jantzen had observed in 1985 [118] that “monotonicity” was key to many decision

procedures on Petri nets and vector addition systems. Finkel distilled the key monotonicity,

well-quasi-order, finiteness, an decidability properties that make the Karp-Miller coverabil-

ity tree algorithm [80] work, and used these ideas to extend the Karp-Miller result to “well-

structured transition systems” (WSTS), introduced by him [43, 45]. A WSTS is a transition

system with a well-quasi-order4 between the configurations which is compatible with the

transitions. Lossy channel systems and vector addition systems are typical examples. Finkel

applied the WSTS theory to lossy channel systems where messages can be ignored [46]. In

the meanwhile, Abdulla and Jonsson proposed a model of lossy channel systems which mod-

els lossiness more directly, and a backward exploration regular model checking algorithm for

reachability [7]. In [4] they use loop acceleration for forward analysis of lossy channel sys-

tems, and implement it in a tool TREX. Both the backward and forward analysis approaches

4section 2.2



1.4. FAST-GROWING COMPLEXITY, LCS, AND UCS 11

are examples of regular model checking. In [48] Finkel and Schnoebelen streamline and unify

notions of WSTS with a cleaner, simpler definition which clearly separates structure and ef-

fectiveness issues, leading to greater clarity and simpler algorithms.

Recent developments in the theory of WSTS include the study of comparative expressiveness

[5], and the completion technique for forward-chaining [47]. When it comes to applications,

many new WSTS models have been introduced, in distributed computing, verification, and

other fields. These use well-quasi-orderings based on trees, sequences of vectors, and graphs

(see references in [113]), while vectors of natural numbers and words with the subword rela-

tion were the staple of traditional examples. A survey of the history of well-structured tran-

sition systems is found in [114] and [1]. The complexity analysis of WSTS models and algo-

rithms is another recent development, borrowing nontrivial concepts from proof theory and

ordinal analysis [30, 76, 55, 115].

1.4 Fast-growing complexity, LCS, and UCS

The reachability problem on LCS, though decidable, has astronomically high complexity, in

the complexity class Fωω , well above primitive-recursive functions. Even specifying this com-

plexity needs nontrivial definitions of ordinal-recursive hierarchies such as the fast-growing

hierarchy[76]. Such hierarchies have been used to classify recursive functions in terms of

their growth rate. Proof theory is used to measure the complexity of recursive functions based

on the logical complexity of proofs that they terminate in [42], and the slow-growing and

fast-growing hierarchies arise naturally. In [103] fast-growing functions are used to measure

strengths of axiom systems, for example producing a first-order truth of natural numbers not

provable in Peano arithmetic. However, the use of fast-growing functions to actually charac-

terize the complexity of problems is more recent [30, 55, 111, 76].

In recent years many problems have been found with the same complexity as reachability for

LCS [96, 12, 89]. The quest to find a “master problem” for this class, much like SAT is for NP,

led to the definition of the Post Embedding Problem (PEP) [27]. The problem is shown de-

cidable and a connection with LCSes is established in [27]. In chapter 5 we introduce a more

general problem and show its decidability using simpler techniques. The Fωω complexity for

reachability in LCS is shown in [30], and the bound carries over to PEP.

LCSes have been used to show complexity lower bounds for other problems. For example,

lower bounds for the satisfiability and model checking problems for metric temporal logic

are shown in [96] using channel systems with insertion errors, which are just lossy channel

systems running in reverse.

The decidability of reachability in systems with both lossy and reliable channels has been

considered in [28]. The addition of reliable channels rapidly leads to undecidability. [28]

classifies network topologies by decidability of the corresponding reachability problem. The



12 CHAPTER 1. INTRODUCTION

s1

s2

s3

s4

p!a

q?a p!b

q?b

q?c

t1

t2

t3p?a

q!b

p?b

q!c

q

p

a b a b a

c b b

Figure 1.2: A snapshot of a unidirectional channel system with two components and two

channels

two minimal topologies which result in decidability are the ones with no reliable channels

(this is just LCS), and the topology consisting of two components, Sender and Receiver, and

two parallel channels from Sender to Receiver, one reliable and one lossy. An example of

such a “unidirectional channel system” (UCS) is shown in Figure 1.2, if we consider one of

the two channels to be reliable and the other to be lossy. Another motivation for studying

unidirectional channel systems is that they arise naturally in the connection between PEP

and LCS in [27].

In channel systems, channel tests are guard transitions which can be taken only when the con-

tents of a given channel satisfy a given constraint. Channel tests do not pose a challenge to the

verification of LCSes as LCSes with tests can be simulated with LCSes without tests. Channel

tests are convenient in practice, when describing protocols, but they are omitted for simpli-

fication when analyzing the model mathematically. The situation is different with UCSes as

channel tests are a nontrivial addition to the model. Tests can be used to implement limited

“backward” communication from Receiver to Sender, and can express new behaviours which

cannot be simulated without tests. We investigate channel tests in chapter 6.

1.5 Our contributions

In the context of regular model checking for lossy channel systems, upward and downward

closed sets of configurations and their representations are fundamental. This brings up some

basic automata-theoretic questions concerning the subword relation on words, both state

complexity questions and decision problems. Surprisingly, these very basic questions have

not been considered, or not in detail, in the relevant literature. Apart from our regular model

checking motivations, applications also exist in data processing and bioinformatics [110, 15].

In chapter 3 we show tight state complexity bounds on closures, with both small and un-

bounded alphabets, introducing simpler examples and some new results. Our applications

also suggest other questions, such as computing interiors, which we address in detail. In

trying to solve these questions we encountered the question of estimating the index of Si-

mon’s congruence which relates two words iff they have the same subwords of length upto a



1.6. ACKNOWLEDGEMENTS 13

given threshold [108]. This was a long-standing open problem and even whether the index is

asymptotically single- or double- exponential (or somewhere in between) was not known, in

spite of the index being relevant to questions involving piecewise testable languages. We give

asymptotically tight bounds on this index in chapter 4.

In chapter 5 we define a problem PEP
partial
codir which is a common generalization of both PEP

and PEPcodir defined in [27], and show its decidability using techniques simpler than those

used earlier. We also study further variants and extensions on both sides of the decidability

frontier. In chapter 6 we consider UCSes with tests. We show the decidability of reachability

with the addition of simple emptiness and nonemptiness tests, by a nontrivial sequence of

reductions to PEP
partial
codir . We also show that some further extensions and other kinds of tests

easily lead to undecidability.

1.6 Acknowledgements

Chapter 3 is based on [75], co-authored with Niewerth and Schnoebelen, which is the full

version of [79]. Chapter 4 is based on [74], co-authored with Kufleitner and Schnoebelen.

Chapter 5 is based on [78], co-authored with Schnoebelen, which is the full version of [77].

Chapter 6 is based on [71], co-authored with Jančar and Schnoebelen, which is the full version

of [70].

The author was partially funded by Tata Consultancy Services.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Technical preliminaries

We introduce some technical preliminaries in this chapter.

For an integer n, we use [n] to denote {m ∈ N : 0 ≤ m < n}. For Σ a finite alphabet, a (finite)

word over Σ is a finite sequence w = a0a1 . . . aℓ−1 of elements of Σ. ℓ is called the length of w ,

also denoted as |w |. For i ∈ [|w |], w[i ] denotes ai . We use w1w2 to denote the concatenation

of w1 with w2 and ǫ for the empty word. The set of all finite words over Σ is denoted by Σ
∗.

This forms a monoid under concatenation, with ǫ as the identity. This is the free monoid over

Σ. For a word s = a0 . . . aℓ−1, s̃
def= aℓ−1 . . . a0 is the mirrored word. The mirror of a language R

is R̃
def= {s̃ : s ∈ R}.

2.1 Subwords and embeddings

Definition 2.1. For words v, w , an embedding of v into w is a strictly increasing function

f : [|v |] → [|w |] such that for all i ∈ [|v |], v[i ] = w[ f (i )].

Figure 2.1 shows two embeddings of abca into cabcbca.

Definition 2.2. For words v, w , we say v is a subword of w if there exists an embedding of v

into w . This is denoted as v ⊑ w .

a b c a

c a b c b c a

Figure 2.1: The solid and dashed lines show the leftmost and rightmost embedding respec-

tively of abca into cabcbca.

15



16 CHAPTER 2. TECHNICAL PRELIMINARIES

If v is a subword of w , there might be several embeddings of v into w , but there are two

special ones: the leftmost and the rightmost embedding. If f1 and f2 are two embeddings of

v into w , we say f1 is to the left of f2 (equivalently, f2 is to the right of f1) if for all i , f1(i ) ≤ f2(i ).

Lemma 2.3. If v is a subword of w , then there exists a unique leftmost embedding of v into

w , that is, an embedding which is to the left of all embeddings of v into w . Similarly, there

exists a unique rightmost embedding of v into w , that is, an embedding which is to the right

of all embeddings of v into w .

In fact, a natural left-to-right greedy algorithm to test whether a given word is a subword of

another given word will produce the leftmost embedding, if an embedding exists.

The subword relation ⊑ is a reflexive and transitive relation. It is compatible with concatena-

tion in several ways, as we see below.

Lemma 2.4. For all words y, z, s, t , if y ⊑ s and z ⊑ t , then y z ⊑ st . Moreover, if y z ⊑ st , then

y ⊑ s or z ⊑ t .

Definition 2.5. If w = w1w2, then w1 is a prefix of w and w2 is a suffix of w .

A word of length n has exactly n + 1 prefixes, one each of length 0, . . . ,n, and similarly has

exactly n +1 suffixes, one of every length.

Definition 2.6. If w1 is a prefix of w , w−1
1 w is defined to be the unique w2 such that w =

w1w2, and is undefined otherwise. Similarly, if w2 is a suffix of w , w w−1
2 is defined to be the

unique w1 such that w = w1w2, and is undefined otherwise.

For example, (abb)−1abbab = ab.

The following four lemmas involve “greedy” factorizations and can all be proven by consid-

ering rightmost embeddings.

Lemma 2.7. If y z ⊑ st and z ⊑ t and x is the longest suffix of y such that xz ⊑ t , then y x−1 ⊑ s.

Lemma 2.8. If y z ⊑ st and z 6⊑ t and x is the shortest prefix of z such that x−1z ⊑ t , then

y x ⊑ s.

Lemma 2.9. If y z ⊑ st and z ⊑ t and x is the longest prefix of t such that z ⊑ x−1t , then y ⊑ sx.

Lemma 2.10. If y z ⊑ st and z 6⊑ t and x is the shortest suffix of s such that z ⊑ xt , then

y ⊑ sx−1.

These lemmas combining subwords and iteration will be useful later:

Lemma 2.11. If sx ⊑ y t and t ⊑ s, then sxk ⊑ yk t for all k ≥ 1.



2.2. WELL-QUASI-ORDERS 17

Proof. By induction on k. The statement holds for k = 1. Suppose it holds for k = p. Then

sxp+1 = sxp x ⊑ y p t x ⊑ y p sx ⊑ y p y t = y p+1t

Lemma 2.12. If xs ⊑ t y and t ⊑ s, then xk s ⊑ t yk for all k ≥ 1.

Proof. By induction on k. The statement holds for k = 1. Suppose it holds for k = p. Then

xp+1s ⊑ xxp s ⊑ xt y p ⊑ xs y p ⊑ t y y p = t y p+1

2.2 Well-quasi-orders

Definition 2.13. (X ,≤) is a quasi-order (qo) if ≤ is a reflexive transitive relation on X .

For a qo (X ,≤), we use x < y to denote “x ≤ y and y 6≤ x”. A qo is said to be a partial order if it is

antisymmetric, that is, for all x, y , x ≤ y and y ≤ x implies x = y . The equivalence associated

with a qo (X ,≤) is the relation ∼ given by x ∼ y iff x ≤ y and y ≤ x.

We now give three definitions for the concept of a well-quasi-order (wqo), and show that they

are equivalent.

Definition 2.14 (wqo1). A qo (X ,≤) is said to be a wqo1 if for every infinite sequence x1, x2, . . .

from X , there exist i < j such that xi ≤ x j .

Definition 2.15 (wqo2). A qo (X ,≤) is said to be a wqo2 if for every infinite sequence x1, x2, . . .

from X , there exist infinitely many indices i1 < i2 < . . . such that, for every k, xik ≤ xik+1 .

Definition 2.16 (wqo3). A qo (X ,≤) is said to be a wqo3 if there is no infinite strictly de-

creasing sequence from X and no infinite antichain in X (an antichain is a set of pairwise

incomparable elements).

Lemma 2.17. A qo (X ,≤) is a wqo1 iff it is a wqo2 iff it is a wqo3.

Proof. Clearly wqo2 implies wqo1 and wqo1 implies wqo3. We now show wqo3 implies wqo2,

to complete the argument.

Let x1, x2, . . . be an infinite sequence from X . Let S = {i : not (∃ j > i xi ≤ x j )}. If S is finite, one

gets an infinite increasing subsequence starting from the index 1+max(S). Otherwise, S is

infinite. Let y1, y2, . . . be the subsequence of x1, x2, . . . given by restricting to indices from S.

that for all i , j with i < j , yi 6≤ y j .

We now repeat a similar argument. Define x#y to mean “(not x ≤ y) and (not y ≤ x)”. Let T =
{i : ∀ j > i xi #x j }. If T is infinite, we get a contradiction to wqo3. Otherwise, let i1 = 1+max(T ).

Then there exists i2 > i1 such that yi1 ≤ yi2 or yi2 ≤ yi1 . But the former is not possible, so we

have yi2 < yi1 . Continuing this way, we get a strictly decreasing sequence yi1 > yi2 > yi3 > . . .,

which contradicts wqo3.

One can also prove this by a direct application of the infinite Ramsey theorem.



18 CHAPTER 2. TECHNICAL PRELIMINARIES

Definition 2.18. A qo (X ,≤) is said to be a well-quasi-order if it is any of wqo1, wqo2, or wqo3.

Every finite set with the equality relation is a wqo. One of the simplest infinite wqos is the set

of natural numbers with the usual ordering: for any infinite sequence n1,n2, . . ., let ni be the

smallest element which occurs in the sequence, then the indices i and i+1 form an increasing

pair.

The class of wqos is closed under several operations, for example:

Lemma 2.19 (Dickson’s Lemma). If (X1,≤1) and (X2,≤2) are wqos, so is their product (X1 ×
X2,≤×), where the product ordering is defined componentwise. That is, (a,b) ≤× (c,d)

def⇔ a ≤
c and b ≤ d .

Proof. Given an infinite sequence in X1 × X2, we extract an infinite sequence which is in-

creasing in the first component, and from that, an infinite sequence that is increasing in the

second component.

Thus Nk with the componentwise ordering is a wqo for every k. This is central to the analysis

of Petri nets, vector addition systems, and counter machines.

For a qo (X ,≤), its sequence extension is defined to be the qo (X ∗,≤∗), where X ∗ is the set of all

finite words over X , and v ≤∗ w iff there exists a strictly increasing f : [|v |] → [|w |] such that

for all i , v[i ] ≤ w[ f (i )]. In case ≤ is the equality relation, ≤∗ is simply the subword relation

defined earlier (Definition 2.2).

Theorem 2.20 (Higman’s Lemma, [60]). If (X ,≤) is a wqo, so is (X ∗,≤∗).

Proof. We say that an infinite sequence w1, w2, . . . of words in X ∗ is bad if it has no increasing

pair, that is, no i < j such that wi ≤∗ w j . Our goal is to show there are no bad sequences (we

are using wqo1 here). For the sake of contradiction, suppose there exists a bad sequence. We

will try to identify the “smallest” bad sequence.

Let w1 be a word of minimum length such that there exists a bad sequence starting from

w1 (this must exist). Having picked w1, w2, . . . , wk , a beginning of some bad sequence, pick

wk+1 of smallest length such that there exists a bad sequence starting with w1, . . . , wk+1. Thus

we get an infinite sequence w
def= w1, w2, . . .. For all i < j , since there exists a bad sequence

beginning with w1, . . . , w j , we have wi 6≤∗ w j , and thus the sequence w itself is bad.

Clearly no element of this sequence is ǫ, as ǫ cannot belong to a bad sequence. Write each

wi as ai vi , where ai ∈ X and vi ∈ X ∗. Since (X ,≤) is a wqo, there exists an infinite sequence

i1 < i2 < . . . such that ai1 ≤ ai2 ≤ . . . (we are using wqo2 here). Now let z j be defined as follows:

z j =





w j if j < i1

vi j−i1+1 otherwise



2.2. WELL-QUASI-ORDERS 19

a1 v1

a2 v2

a3 v3

a4 v4

a5 v5

a6 v6

a7 v7

a8 v8

a9 v9

...

a1 v1

a2 v2

a3 v3

v4

v7

v9

...

=⇒

Figure 2.2: Getting a “smaller” bad sequence. The left and right columns show the sequences

w and z respectively. In this example we have a4 ≤ a7 ≤ a9 ≤ . . ..

An example of this construction is shown in Figure 2.2.

It is easy to see that the sequence z1, z2, . . . is a bad sequence. However, its first i1−1 terms are

the same as those of the sequence w , and |zi1 | = |wi1 | −1, which contradicts the way w was

chosen.

A concise self-contained proof of Higman’s Lemma is hard to find; the above proof is due to

Nash-Williams [93]. Notice that the above proof relies on the equivalence of wqo1 and wqo2

established by Lemma 2.17. The most important consequence for us is the case when (X ,≤)

is (Σ,=), a finite alphabet with the equality relation:

Corollary 2.21. For Σ a finite alphabet, the subword relation on Σ
∗ is a wqo.

Definition 2.22. For a qo (X ,≤), a subset S of X is said to be upward closed if for all x, y , if

x ∈ X and x ≤ y , then y ∈ X . Similarly, S is said to be downward closed if for all x, y with x ∈ X

and y ≤ x, we have y ∈ X .

For example, in {a,b,c}∗ with the subword relation as the qo, the set of all words of length at

least 7 is upward closed, while (a +b)∗(c +ǫ)+ c∗ is downward closed.



20 CHAPTER 2. TECHNICAL PRELIMINARIES

Definition 2.23. For a qo (X ,≤) and S ⊆ X , the upward closure of S (denoted ↑S) is the small-

est upward closed set which includes S and the downward closure of S (denoted ↓S) is the

smallest downward closed set which includes S. That is,

↑S = {x : ∃y ∈ S y ≤ x}

↓S = {x : ∃y ∈ S x ≤ y}

For a singleton set, we may write ↑x and ↓x for ↑{x} and ↓{x}.

The following lemma tells us that we can finitely represent upward closed sets in a wqo:

Lemma 2.24. Let (X ,≤) be a wqo, and let S ⊆ X be upward closed. Then there exists a finite

set F ⊆ S such that ↑F = S.

Proof. The idea is to consider all minimal elements of X . However, there might be several,

even infinitely many, equivalent minimal elements, and we need to pick only one of them.

Formally, define x ∈ S to be minimal if there does not exist y such that y < x. Let M be the

set of minimal elements of S. Observe that if x is minimal and y is equivalent to x under ∼,

the equivalence associated to ≤, then y is minimal too. Thus M is a union of equivalence

classes of ∼. Let F be obtained by picking an element from each equivalence class. F is finite,

otherwise we would have infinitely many incomparable elements in X , which is not possible.

Clearly ↑F ⊆ S since S is upward closed. For the reverse inclusion, consider any s ∈ S. If s is

minimal, s is equivalent to some element of F , and hence in ↑F . Otherwise, there exists s1 ∈ S

such that s > s1. If s1 is minimal, we are done, otherwise there exists s2 such that s > s1 > s2.

Continuing this way, this must eventually terminate, otherwise we would have an infinite

strictly decreasing chain in X , which is not possible.

The following lemma is often used to prove termination of algorithms (for example, in [48]) :

Lemma 2.25. In a wqo, there exists no strictly increasing (by set inclusion) sequence of up-

ward closed sets.

Proof. For the sake of contradiction, let U1 (U2 (U3 . . . be a strictly increasing sequence of

upward closed sets. For each i , let xi be an element of Ui+1 \Ui . There exists i , j such that

i < j and xi ≤ x j . x j ∉U j , and since U j is upward closed, xi ∉U j . But xi ∈Ui+1 ⊆U j , since

i +1 ≤ j . This is a contradiction.



Chapter 3

State complexity and related questions

Quoting from [121], “State complexity problems are a fundamental part of automata theory

that has a long history. [. . . ] However, many very basic questions, which perhaps should have

been solved in the sixties and seventies, have not been considered or solved.”

In this chapter, we are concerned with (scattered) subwords and the associated operations

on regular languages: computing closures and interiors (see definitions in Section 3.1). Our

motivations come from automatic verification of channel systems, see, e.g., [4, 53]. Other ap-

plications exist in data processing or bioinformatics [15]. Closures and interiors with respect

to subwords and superwords are very basic operations, and the above quote certainly applies

to them.

It has been known since [56] that ↓ L and ↑ L, the downward closure and, respectively, the

upward closure, of a language L ⊆Σ
∗, are regular for any L.

In 2009, Gruber et al. explicitly raised the issue of the state complexity of downward and up-

ward closures of regular languages [52] (less explicit precursors exist, e.g. [19]). Given an n-

state automaton A, constructing automata A↓ and A↑ for ↓L(A) and ↑L(A) respectively can

be done by simply adding extra transitions to A. However, when A is a DFA, the resulting

automaton is in general not deterministic, and its determinization may entail an exponential

blowup in general. Gruber et al. proved a 2Ω(
p

n logn) lower bound on the number of states of

any DFA for ↓L(A) or ↑L(A), to be compared with the 2n −1 upper bound that comes from

the simple “closure followed by determinization” algorithm.

Okhotin improved on these results by showing an improved 2
n
2 −2 lower bound for ↓L(A). He

also established the precise state complexity of ↑L(A) by showing a 2n−2+1 upper bound and

proving its tightness [94].

All the above lower bounds assume an unbounded alphabet, and Okhotin in fact showed that

his 2n−2 +1 lower bound on state complexity for ↑L(A) does not hold with fewer than n −2

distinct letters. He then considered the case of languages over a fixed alphabet with |Σ| = 3

21



22 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

letters, in which case he demonstrated exponential 2
p

2n+30−6 and 1
5 4

p
n/2n− 3

4 lower bounds

for ↓L(A) and, respectively, ↑L(A) [94]. The construction and the proof are quite involved,

and they leave open the case where |Σ| = 2 (the 1-letter case is trivial). It turns out that, in

the 2-letter case, Héam had previously proved an Ω(r
p

n) lower bound for ↑L(A), here with

r = ( 1+
p

5
2 )

1p
2 [57]. Regarding ↓L(A), the question remains open whether it may require an

exponential number of states even when |Σ| = 2.

Dual to closures are interiors. The upward interior and downward interior of a language L, de-

noted ßL and þL, are the largest upward-closed and, resp., downward-closed, sets included

in L. Building closures and interiors are essential operations when reasoning with subwords,

e.g., when model-checking lossy channel systems [18]. More generally, one may use closures

as regular overapproximations of more complex languages (as in [54, 14]), and interiors can

be used as regular underapproximations.

The state complexity of interiors has not yet been considered in the literature. When work-

ing with DFAs, complementation is essentially free so that computing interiors reduces to

computing closures, thanks to duality. However, when working with NFAs, the simple com-

plement+closure+complement algorithm only yields a quite large 22n
upper-bound on the

number of states of an NFA for ßL(A) or þL(A) —it actually yields DFAs— and one would

like to improve on this, or to prove a matching lower bound.

Our contribution. Regarding closures with DFAs, we prove in section 3.2 a tight 2n−1 state

complexity for downward closure and show that its tightness requires unbounded alphabets.

In section 3.3 we prove an exponential lower bound on ↓L(A) in the case of a two-letter al-

phabet, answering the open question raised above.

Regarding interiors on NFAs, we show in section 3.4 doubly-exponential lower bounds for

downward and upward interiors, assuming an unbounded alphabet. We also provide im-

proved upper bounds, lower than the naive 22n
but still doubly exponential. Table 3.1 shows

a summary of the known results.

Finally, we provide in section 3.5 the computational complexity of basic decision problems

for sets of subwords or superwords described by automata.

Related work. We already mentioned previous works on the closure of regular languages: it is

also possible to compute closures by subwords or superwords for larger classes like context-

free languages or Petri net languages, see [54, 14, 123] and the references therein for applica-

tions and some results on descriptive complexity.

Interiors and other duals of standard operations have the form “complement, operation, com-

plement” and thus can be seen as special cases of the combined operations studied in [109]

and following papers. Such duals have not yet been considered widely: we are only aware

of [20] studying the dual of L 7→Σ
∗ ·L.



3.1. PRELIMINARIES 23

Table 3.1: A summary of the results on state complexity for closures and nondeterministic

state complexity for interiors, where ψ(n) (≤ 22n
) is the nth Dedekind’s number, see subsec-

tion 3.4.1.

Operation Unbounded alphabet Fixed alphabet

↑L (DFA to DFA) = 2n−2 +1 with |Σ| ≥ n −2 2Ω(n1/2) for |Σ| = 2

↓L (DFA to DFA) = 2n−1 with |Σ| ≥ n −1 2Ω(n1/3) for |Σ| = 2

ßL (NFA to NFA) ≥ 22⌊(n−4)/3⌋ +1 and ≤ψ(n)

þL (NFA to NFA) ≥ 22⌊(n−3)/2⌋
and ≤ψ(n)

3.1 Preliminaries

Recall that for a language L ⊆ Σ
∗, its downward closure is ↓L

def= {x ∈ Σ
∗ | ∃y ∈ L : x ⊑ y}, and

its upward closure operation is ↑L
def= {x ∈ Σ

∗ | ∃y ∈ L : y ⊑ x}. Closures enjoy the following

properties:

↓;=; , L ⊆↓L =↓↓L , ↓
(⋃

i
Li

)
=

⋃

i
↓Li , ↓

(⋂

i
↓Li

)
=

⋂

i
↓Li ,

and similarly for upward closures. A language L is downward-closed (or upward-closed) if

L =↓L (respectively, if L =↑L). Note that L is downward-closed if, and only if, Σ∗\L is upward-

closed.

Upward-closed languages are also called shuffle ideals since they satisfy L = shuffle(L,Σ∗).

They correspond exactly to level 1
2 of Straubing’s hierarchy [99].

Since, by Higman’s Lemma, any L has only finitely many minimal elements with respect to

the subword ordering, one deduces that ↑L, and then ↓L, are regular for any L.

Effective construction of a finite-state automaton for ↓L or ↑L is easy when L is regular (see

section 3.2), is possible when L is context-free [119, 37], and is not possible in general since

this would allow deciding the emptiness of L.

The upward interior of L is ßL
def= {x ∈Σ

∗ | ↑x ⊆ L}. Its downward interior is þL
def= {x ∈Σ

∗ | ↓
x ⊆ L}. Alternative characterizations are possible, e.g., by noting that ßL (respectively, þL)

is the largest upward-closed (respectively, downward-closed) language contained in L, or by

using the following dualities:

þL =Σ
∗\ ↑(Σ∗ \ L) , ßL =Σ

∗\ ↓(Σ∗ \ L) . (3.1)

If L is regular, one may compute automata for the interiors of L by combining complementa-

tions and closures as in Eq. (3.1).



24 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

State complexity When considering a finite automaton A = (Σ,Q,δ, I ,F ), we usually write

n for |Q| (the number of states), k for |Σ| (the size of the alphabet), and L(A) for the language

recognized by A. For a regular language L, nD(L) and nN(L) denote the minimum number

of states of a DFA (resp., an NFA) that accepts L. (We do not assume that DFAs are complete

and this sometimes allows saving one (dead) state.) Obviously nN(L) ≤ nD(L) for any regular

language. In cases where nN(L) = nD(L) we may use nN&D(L) to denote the common value.

We now illustrate a well-known technique for proving lower bounds on nN(L):

Lemma 3.1 (Extended fooling set technique, [51]). Let L be a regular language. Suppose that

there exists a set of pairs of words S = {(xi , yi )}1≤i≤n , called a fooling set, such that for all i , j ,

xi yi ∈ L and at least one of xi y j and x j yi is not in L. Then nN(L) ≥ n.

Proof. Let M be an NFA for L. For each i , xi yi ∈ L, so M has an accepting path ∗ xi−→ qi
yi−→ ∗

starting at some initial state and ending at some accepting state, for some state qi . The states

q1, q2, . . . , qn are all distinct: indeed, if qi = q j for i 6= j then M has accepting paths for both

xi y j and x j yi , which contradicts the assumption.

Lemma 3.2 (An application of the fooling set technique). Fix a nonempty alphabet Σ and

define the following languages:

UΣ

def= {x | ∀a ∈Σ : ∃i : x[i ] = a} , U ′
Σ

def= {x | ∀a ∈Σ : ∃i > 0 : x[i ] = a} , (3.2)

VΣ

def= {x | ∀i 6= j : x[i ] 6= x[ j ]} . (3.3)

Then nN&D(UΣ) = nN&D(VΣ) = 2|Σ| and nN&D(U ′
Σ

) = 2|Σ|+1.

Note that UΣ has all words where every letter in Σ appears at least once, U ′
Σ

has all nonempty

words x where every letter in Σ appears at least once in the first proper suffix x[1..] while

VΣ has all words where no letter appears twice. UΣ and U ′
Σ

are upward-closed while VΣ is

downward-closed.

Proof. It can easily be observed that the upper bounds hold for nD(..): one designs DFAs AU

and AV for, respectively, UΣ and VΣ where each state is some subset Γ ⊆ Σ that corresponds

to the set of letters that have been read so far. In both automata, the initial state is ;. In AU ,

δ(Γ, a) = Γ∪ {a} and we accept when we reach the state Σ. In AV , all states are accepting but

δ(Γ, a) = Γ∪ {a} is only defined when a 6∈ Γ. A DFA for U ′
Σ

is obtained from AU by adding one

additional state to indicate that no letter has been read so far.

We now show the lower bounds for nN(UΣ) and nN(VΣ). With any Γ ⊆ Σ, we associate two

words xΓ and yΓ, where xΓ (respectively, yΓ) has exactly one occurrence of each letter from Γ

(respectively, each letter not in Γ). Then xΓyΓ is in UΣ and VΣ, while for any ∆ 6= Γ one of xΓy∆
and x∆yΓ is not in UΣ (and one is not in VΣ). We may thus let S = {(xΓ, yΓ)}Γ⊆Σ be our fooling

set and conclude with Lemma 3.1.



3.2. STATE COMPLEXITY OF CLOSURES 25

For U ′
Σ

our fooling set will be S = {(a xΓ, yΓ)}Γ⊆Σ∪ {(ǫ, a xΣ)} where a is a fixed letter from Σ. As

above, a xΓyΓ is in U ′
Σ

, while for any ∆ 6= Γ one of a xΓy∆ and a x∆yΓ is not in U ′
Σ

. Furthermore

ǫ ·a xΣ is in U ′
Σ

, while ǫ · yΓ is not in U ′
Σ

for any Γ. One concludes again with Lemma 3.1.

In the following, we use Σk
def= {a1, . . . , ak } to denote a k-letter alphabet, and write Uk and Vk

instead of UΣk and VΣk .

3.2 State complexity of closures

For a regular language L recognized by an NFA A, one may obtain NFAs for the upward and

downward closures of L by simply adding transitions to A, without increasing the number of

states. More precisely, an NFA A↑ for ↑L is obtained by adding to A self-loops q
a−→ q for every

state q of A and every letter a ∈ Σ. Similarly, an NFA A↓ for ↓L is obtained by adding to A

epsilon transitions p
ǫ−→ q for every transition p −→ q of A (on any letter).

3.2.1 Deterministic automata for closures

If now L is recognized by a DFA or an NFA A and we want a DFA for ↑L or for ↓L, we can start

with the NFA A↑or A↓defined above and transform it into a DFA using the powerset construc-

tion. This shows that if L has an n-state DFA, then both its upward and downward closures

have DFAs with at most 2n −1 states.

It is actually possible to provide tighter upper bounds by taking advantage of specific features

of A↑ and A↓.

Proposition 3.3 (State complexity of upward closure). 1. For an n-state NFA A, nD(↑L(A)) ≤
2n−2 +1.

2. Furthermore, for any n > 1 there exists a language Ln with nN&D(Ln) = n and nD(↑Ln) =
2n−2 +1.

Proof. 1. Let A = (Σ,Q,δ, I ,F ) be an n-state NFA for L = L(A). We assume that I ∩F =; (and

I 6= ; 6= F ) otherwise L contains ǫ (or is empty) and ↑L is trivial.

Since A↑has loops on all its states and for any letter, applying the powerset construction yields

a DFA where P
a−→ P ′ implies P ⊆ P ′, hence any state P reachable from I includes I . Further-

more, if P is accepting (i.e., P∩F 6= ;) and P
a−→ P ′, then P ′ is accepting too, hence all accepting

states recognize exactly Σ
∗ and are equivalent. Then there can be at most 2|Q\(I∪F )| states in

the powerset automaton that are both reachable and not accepting. To this we add 1 for the

accepting states since they are all equivalent. Finally nD(↑L) ≤ 2n−2 +1 since |I ∪F | is at least

2 as we observed.



26 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

2. To show that 2n−2 +1 states are sometimes necessary, we assume n > 2 and define Ln
def=

En−2 where

Ek
def= {a a | a ∈Σk } = {a1 a1, . . . , ak ak } . (3.4)

In other words, Ln contains all words consisting of two identical letters from Σ = Σn−2. The

minimal DFA for Ln has n states, see Fig. 3.1. Now ↑ Ln = {x ∈ Σ
≥2 | ∃ j > i : x[i ] = x[ j ]} =

⋃
a∈ΣΣ

∗ · a ·Σ∗ · a ·Σ∗, i.e., ↑Ln has all words in Σ
∗ where some letter reappears, i.e., ↑Ln is

the complement of Vn−2 from Lemma 3.2. A DFA for ↑Ln has to record all letters previously

q0start qi qn−1

q1

qn−2

...

...

a1

ai

an−2

a1

ai

an−2

Figure 3.1: n-state DFA for Ln = En−2 = {a1 a1, a2 a2, . . . , an−2 an−2}.

read in its non-accepting states, and has one accepting state: the minimal DFA has 2|Σ|+1 =
2n−2+1 states. For obtaining nN(Ln) = n, nN(Ln) ≤ n is clear and we can infer nN(Ln) ≥ n just

from nD(↑Ln) = 2n−2 +1 and the first part of the proposition.

When n = 2, taking L2 = {a} over a 1-letter alphabet witnesses both nD(Ln) = n = 2 and

nD(↑Ln) = 2n−2 + 1 = 2. Finally, the 2n−2 + 1 bound is tight even for the upward closure of

DFAs.

Remark 3.4. The above Proposition essentially reproduces Lemma 4.3 from [94] except that

we do not assume that A is a DFA.

Proposition 3.5 (State complexity of downward closure). 1. If A is an n-state NFA with only

one initial state (in particular when A is a DFA) then nD(↓L(A)) ≤ 2n−1.

2. Furthermore, for any n > 1 there exists a language L′
n with nD(L′

n) = n and nD(↓L′
n) = 2n−1.

Proof. 1. We assume, without loss of generality, that all states in A = (Σ,Q,δ, {qinit},F ) are

reachable from the single initial state. From A one derives an NFA A↓ for ↓L(A) by adding

ǫ-transitions to A. With these ǫ-transitions, the language recognized from a state q ∈ Q is a

subset of the language recognized from qinit. Hence, in the powerset automaton obtained

by determinizing A↓, all states P ⊆ Q that contain qinit are equivalent and recognize exactly

↓L(A). There also are 2n−1 states in 2Q that do not contain qinit. Thus 2n−1 + 1 bounds the

number of non-equivalent states in the powerset automaton of A↓, and this includes a sink



3.2. STATE COMPLEXITY OF CLOSURES 27

state (namely ;∈ 2Q ) that will be omitted in the canonical minimal DFA for ↓L(A).

2. To show that 2n−1 states are sometimes necessary, we assume n > 1 and let L′
n

def= Dn−1

where

Dk
def= {x ∈Σ

+
k | ∀i > 0 : x[i ] 6= x[0]} =

⋃

a∈Σk

a ·
(
Σk \ {a}

)∗ . (3.5)

In other words, L′
n has all words in Σ

+
n−1 where the first letter does not reappear.

q0start qi

q1

qn−1

...

...

a1

ai

an−1

{a j | j 6= 1}

{a j | j 6= i }

{a j | j 6= n −1}

Figure 3.2: n-state DFA for L′
n = Dn−1 =

⋃
a∈Σ a · (Σ− {a})∗ with |Σ| = n −1.

The minimal DFA for L′
n has n states, see Figure 3.2. Now ↓ L′

n = {x | ∃a ∈ Σn−1 : ∀i ≥ 1 :

x[i ] 6= a}, i.e., ↓L′
n has all words x such that the first proper suffix x[1..] does not use all letters.

Equivalently x ∈↓L′
n iff x ∈ L′

n or x does not use all letters, i.e., ↓L′
n is the union of L′

n and the

complement of Un−1 from Lemma 3.2. The minimal DFA for ↓L′
n just reads a first letter and

then records all letters encountered after the first, hence needs exactly 2|Σ| states. Thus 2n−1

states may be required for a DFA recognizing the downward closure of an n-state DFA.

Remark 3.6. The condition of a single initial state in Proposition 3.5 cannot be lifted. In

general 2n −1 states may be required for a DFA recognizing the downward closure of an n-

state NFA: the (downward-closed) language Σ
∗
n \Un of all words that do not use all letters is

recognized by an n-state NFA (see Fig. 3.3) but its minimal DFA has 2n −1 states.

q1start · · · qistart · · · qnstart

a2, . . . , an a1, . . . , ai−1, ai+1, . . . , an a1, . . . , an−1

Figure 3.3: n-state NFA for Σ∗
n \Un .



28 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

3.2.2 State complexity of closures for languages over small alphabets

The language families (Ln)n∈N and (L′
n)n∈N used to prove that the upper bounds given in

Propositions 3.3 and 3.5 are tight use linear-sized alphabets.

It is indeed known that the size of the alphabets matter for the state complexity of closure

operations. In fact the automata witnessing tightness in Figs. 3.1 and 3.2 use the smallest

possible alphabets. For example, Okhotin showed that the 2n−2 +1 state complexity for ↑L

cannot be achieved with an alphabet of size smaller than n −2, see [94, Lemma 4.4].

We now prove a similar result for downward closures:

Lemma 3.7. For n > 2 let A = (Σ,Q,δ, {qinit},F ) be an n-state NFA with a single initial state. If

|Σ| < n −1 then nD(↓L(A)) < 2n−1.

Proof. We assume that nD(↓L(A)) = 2n−1 and deduce that |Σ| ≥ n −1.

We write Q = {qinit, q1, . . . , qn−1} to denote the states of A. As we saw with the proof of the first

part of Proposition 3.5, the powerset automaton of A↓ can only have 2n−1 non-equivalent

reachable states if all non-empty subsets of Q \ {qinit} (written Q − qinit for short) are reach-

able. Since A↓ has ǫ-transitions parallel to all transitions from A, every reachable state can

be reached by ǫ transitions in A↓. Thus in the powerset automaton of A↓, we may take Q as

the initial state. Then all edges P
a−→ P ′ in the powerset automaton satisfy P ⊇ P ′. As a conse-

quence, if P
x−→ P ′ for some x ∈Σ

∗ then in particular one can pick x with |x| ≤ |P \ P ′|.
Since every non-empty subset of Q −qinit is reachable from Q there is in particular, for every

i = 1, . . . ,n −1, some xi of length 1 or 2 such that Q
xi−→ Q −qinit −qi . If we pick xi of minimal

Qstart Q −qinit Q −qinit −q j

Q −qinit −qi

Q −qℓ Q −qinit −qℓ

ai

b j

dℓ

c j

eℓ

length then, for a given i , there are three possible cases (see picture): xi = ai is a single letter

(type 1), or xi is some bi ci with Q
bi−→Q −qinit

ci−→Q −qinit −qi (type 2), or xi is some di ei with

Q
di−→Q −qi

ei−→Q −qinit −qi .

We now claim that the ai ’s for type-1 states, the ci ’s for type-2 states and the di ’s for type-3

states are all distinct, hence |Σ| ≥ n −1.

Clearly the ai ’s and the di ’s are pairwise distinct since they take Q to different states in the

deterministic powerset automaton. Similarly, the ci ’s are pairwise distinct, taking Q −qinit to

different states.



3.3. EXPONENTIAL STATE COMPLEXITY OF CLOSURES IN THE 2-LETTER CASE 29

Assume now that ai = c j for a type-1 qi and a type-2 q j . Then Q − qinit
c j−→ Q − qinit − q j and

Q
ai (=c j )
−−−−→Q −qinit −qi contradict the monotonicity of P 7→ δ(P, x) in the powerset automaton

(since Q−qinit−q j and Q−qinit−qi are incomparable sets) . Similarly, assuming dℓ = c j leads

to Q − qinit
c j−→ Q − qinit − q j and Q

c j (=dℓ)
−−−−→ Q − qℓ, again contradicting monotonicity. Thus we

can associate a distinct letter with each state q1, . . . , qn−1, which concludes the proof.

In view of the above results, the main question is whether, in the case of a fixed alphabet,

exponential lower bounds still apply for the state complexity of upward and downward clo-

sures with DFAs as both input and output. The 1-letter case is degenerate since then both

nD(↑L) and nD(↓L) are ≤ nD(L). In the 3-letter case, exponential lower bounds for upward

and downward closures were shown by Okhotin [94].

In the critical 2-letter case, say Σ= {a,b}, an exponential lower bound for upward closure was

shown by Héam with the following witness: For n > 0, let L′′
n = {ai b a2 j b ai | i+ j+1 = n}. Then

nD(L′′
n) = (n +1)2, while nD(↑L′′

n) ≥ 1
7 ( 1+

p
5

2 )n for n ≥ 4 [57, Prop. 5.11]. Regarding downward

closures for languages over a binary alphabet, the question was left open and we answer it in

the next section.

3.3 Exponential state complexity of closures in the 2-letter case

In this section we show an exponential lower bound for the state complexity of downward

closure in the case of a two-letter alphabet. Interestingly, the same languages can also serve

as hard case for upward closure (but it gives weaker bounds than in [57]).

Theorem 3.8 (State complexity of closures with |Σ| = 2). The state complexity of downward

closure for languages over a binary alphabet is in 2Ω(n1/3). The same result holds for upward

closure.

We now prove the theorem. Fix a positive integer n. Let

H = {n,n +1, . . . ,2n} ,

and define morphisms c,d : H∗ → {a,b}∗ with, for any i ∈ H :

c(i )
def= ai b3n−i , d(i )

def= c(i )c(i ) .

Note that c(i ) always has length 3n, begins with at least n a’s, and ends with at least n b’s. If

we now let

Ln
def= {c(i )n | i ∈ H } ,

Ln is a finite language of n + 1 words, each of length 3n2 (and any two words in Ln share a

common prefix of length not more than 2n), so nD(Ln) is in Ω(n3). (In fact, it can be shown



30 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

that nD(Ln) = 3n3 +1.) In the rest of this section we show that both nD(↑Ln) and nD(↓Ln) are

in 2Ω(n).

Lemma 3.9. For i , j ∈ H , the longest prefix of c(i )ω that embeds in d( j ) = c( j )c( j ) is c(i ) if

i 6= j and c(i )c(i ) if i = j .

Proof sketch. The case i = j is clear. Fig. 3.4 displays the leftmost embedding of c(i )ω in d( j )

in a case where i > j . The remaining case, i < j , is similar.

· · ·

a · · · a a a b b b b · · · b a a · · · a a a b b b b · · · b

a · · · a a a a a b b · · · b a · · · a a a a a b b · · · b a · · · a

· · ·

· · ·

· · ·

· · · ?

d( j ):

c(i )ω:

Figure 3.4: Case “i > j ” in Lemma 3.9: here i = n +4 and j = n +2 for n = 5.

For each i ∈ H , let the morphisms ηi ,θi : H∗ → (N,+) be defined by

ηi ( j )
def=





1 if i 6= j ,

2 if i = j ,
θi ( j )

def=





2 if i 6= j ,

1 if i = j .

Thus for σ= p1 p2 · · ·ps ∈ H∗, ηi (σ) is s plus the number of occurrences of i in σ, while θi (σ)

is 2s minus the number of these occurrences of i .

Lemma 3.10. Let σ ∈ H∗. The smallest ℓ such that c(σ) embeds in c(i )ℓ is θi (σ).

Proof. We write σ= p1 p2 · · ·ps and prove the result by induction on s. The case where s = 0

is trivial. The case where s = 1 follows from Lemma 3.9, since for any p1 and i , c(p1) ⊑ c(i ) iff

p1 = i , and c(p1) ⊑ d(i ) = c(i )2 always.

Assume now s > 1, write σ = σ′ps and let ℓ′ = θi (σ′). By the induction hypothesis, c(σ′) 6⊑
c(i )ℓ

′−1 and c(σ′) ⊑ c(i )ℓ
′ = c(i )ℓ

′−1ai b3n−i . Write now c(i )ℓ
′ = w v where w is the shortest

prefix of c(i )ℓ
′

with c(σ′) ⊑ w . Since c(σ′) ends with some b that only embeds in the ai b3n−i

suffix of c(i )ℓ
′
, v is necessarily br for some r . So, for all z ∈ {a,b}∗, c(ps) ⊑ v z if and only if

c(ps) ⊑ z. We have c(ps) ⊑ c(i )θi (ps ) and c(ps) 6⊑ v c(i )θi (ps )−1. Noting that σ = σ′ps , we get

c(σ) ⊑ c(i )θi (σ) and c(σ) 6⊑ c(i )θi (σ)−1.

We now derive a lower bound on nD(↓Ln). For every subset X of H of size n/2 (assume n is

even), let wX ∈ {a,b}∗ be defined as follows: let the elements of X be p1 < p2 < ·· · < pn/2 and

let

wX
def= c(p1p2 · · ·pn/2) .

Note that θi (p1p2 · · ·pn/2) = n if i ∉ X and θi (p1p2 · · ·pn/2) = n −1 if i ∈ X .



3.3. EXPONENTIAL STATE COMPLEXITY OF CLOSURES IN THE 2-LETTER CASE 31

Lemma 3.11. Let X and Y be subsets of H of size n/2 with X 6= Y . There exists a word v ∈
{a,b}∗ such that wX v ∈↓Ln and wY v ∉↓Ln .

Proof. Let i ∈ X \ Y . Let v = c(i ). Then

• By Lemma 3.10, wX ⊑ c(i )n−1, and so wX v ⊑ c(i )n . So wX v ∈↓Ln .

• By Lemma 3.10, the smallest ℓ such that wY v ⊑ c(i )ℓ is n +1. Similarly, for j 6= i , the

smallest ℓ such that wY v ⊑ c( j )ℓ is at least n−1+2 = n+1 (the wY contributes at least

n −1 and the v contributes 2). So wY v ∉↓Ln .

This shows that for any DFA A recognizing ↓Ln , the state of A reached from the start state

by every word in {wX | X ⊆ H , |X | = n/2} is distinct. Thus A has at least
(n+1

n/2

)
states, which is

≈ 2n+3/2
p
πn

.

For nD(↑Ln), the reasoning is similar:

Lemma 3.12. Let σ ∈ H∗. For all i ∈ H , the longest prefix of c(i )ω that embeds in d(σ) is

c(i )ηi (σ).

Proof. By induction on the length of σ and applying Lemma 3.9.

For every subset X of H of size n/2 (assume n is even), let w ′
X ∈ {a,b}∗ be defined as follows:

let the elements of X be p1 < p2 < ·· · < pn/2 and let

w ′
X

def= d(p1p2 · · ·pn/2) = c(p1p1p2p2 · · ·pn/2pn/2) .

Lemma 3.13. Let X and Y be subsets of H of size n/2 with X 6= Y . There exists a word v ∈
{a,b}∗ such that w ′

X v ∈↑Ln and w ′
Y v ∉↑Ln .

Proof. Let i ∈ X \ Y . Let v = c(i )n−(n/2+1) = c(i )n/2−1.

• By Lemma 3.12, c(i )n/2+1 ⊑ w ′
X , thus c(i )n ⊑ w ′

X v , hence w ′
X v ∈↑Ln .

• By Lemma 3.12, the longest prefix of c(i )n that embeds in w ′
Y v is at most c(i )ℓ where

ℓ= n/2+n/2−1 = n −1. The longest prefix of c( j )n that embeds in w ′
Y v for j 6= i is at

most c( j )ℓ where

ℓ=
n

2
+1+

⌈
n/2−1

2

⌉
≤ n −1.

Therefore c( j )n 6⊑ w ′
Y v when j = i and also when j 6= i . Thus w ′

Y v ∉↑Ln .

With Lemma 3.13 we reason exactly as we did for nD(↓Ln) after Lemma 3.11 and conclude

that nD(↑Ln) ≥
(n+1

n/2

)
here too.



32 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

3.4 State complexity of interiors

Recall Eq. (3.1) that expresses interiors with closures and complements. Since complemen-

tation of DFAs does not increase the number of states, the state complexity of interiors, seen

as DFA to DFA operations, is the same as the state complexity of closures (modulo swapping

of up and down).

The remaining question is the nondeterministic state complexity of interiors, now seen as NFA

to NFA operations. For this, Eq. (3.1) provides an obvious 22n
upper bound on the nondeter-

ministic state complexity of both upward and downward interiors, simply by combining the

powerset construction for complementation and the results of Section 3.2. Note that this pro-

cedure yields DFAs for the interiors while we are happy to accept NFAs if it improves the state

complexity.

In the rest of this section, we prove that the nondeterministic state complexity of ßL and þL

are in 22Θ(n)
.

3.4.1 Upper bounds for interiors and the approximation problem

A generic argument lets us improve slightly on the 22n
upper bound:

Proposition 3.14. The (deterministic) state complexity of both the upward interior and the

downward interior is <ψ(n).

Here ψ(n) is the Dedekind number that counts the number of antichains in the lattice of

subsets of an n-element set, ordered by inclusion. Kahn [72, Coro. 1.4] shows

(
n

⌊n
2 ⌋

)
≤ log2ψ(n) ≤

(
1+

2log(n +1)

n

)(
n

⌊n
2 ⌋

)
.

Note that the ψ(n) upper bound is still in 22Θ(n)
, or “doubly exponential”.

We prove Proposition 3.14 in a uniform way for both interiors. For this we adapt a technique

already present in [33, Theo. 6.1]: the state complexity of a language that is a positive Boolean

combination of left-quotients of some regular L is ≤ψ(nN(L)).

Let K0 and K1, . . . ,Kp be arbitrary languages in Σ
∗ (these need not be regular). With the Ki ’s

we associate an alphabet Γ= {b1, . . . ,bp } and a substitution σ given inductively by σ(ǫ)
def= K0

and σ(w bi )
def= σ(w) ·Ki . With a language L ⊆ Σ

∗, we associate the language W ⊆ Γ
∗ defined

by

W
def= {x ∈ Γ

∗ | σ(x) ⊆ L} .



3.4. STATE COMPLEXITY OF INTERIORS 33

Remark 3.15. In the classical setting there is no K0 and σ(ǫ) = {ǫ}, see [36, Chapter 6] and [90,

Section 6]. There W is the best under-approximation of L by sums of products of Ki ’s and it is

known that if L is regular then W is too. We allowed σ(ǫ) = K0 to account directly for upward

interiors.

Proposition 3.16 (State complexity of approximations). If L is regular then W is regular. Fur-

thermore nD(W ) <ψ(nN(L)).

Proof. Assume A1 = (Σ,Q,δ1, I1,F1) is an n-state NFA for L. We first start with a simple con-

struction which gives a DFA for W with 22n
states, and then improve it to ψ(n).

Using the powerset construction on A1, one obtains an equivalent DFA A2 = (Σ,Q2,δ2, i2,F2)

for L. We have as usual Q2 = 2Q , with typical elements S,S′, . . ., i2 = I1, F2 = {S | S ∩F1 6= ;},

and δ2 given by δ2(S, a) =⋃
q∈S δ1(q, a).

We now use A2 to get a DFA A3 = (Γ,Q3,δ3, i3,F3) for W , where

• Q3 = 2Q2 , with typical elements U ,U ′, . . .;

• δ3(U ,b j ) = {δ2(S, z) | S ∈U , z ∈ K j };

• i3 = {δ2(i2, z) | z ∈ K0};

• F3 = 2F2 = {U |U ⊆ F2}.

Claim 3.17. For all words w ∈ Γ
∗, δ3(i3, w) = {δ2(i2, z) | z ∈σ(w)}.

Proof. By induction on w . For the base case, one has δ3(i3,ǫ) = i3 = {δ2(i2, z) | z ∈ K0} by

definition, and σ(ǫ) = K0. For the inductive case, one has

δ3(i3, w b j )

= δ3(δ3(i3, w),b j )

= δ3({δ2(i2, z) | z ∈σ(w)},b j ) (ind. hypothesis)

=
{
δ2(S, z ′) | S ∈ {δ2(i2, z) | z ∈σ(w)}, z ′ ∈ K j

}
(defn. of δ3)

= {δ2(δ2(i2, z), z ′) | z ∈σ(w), z ′ ∈σ(b j )} (rearrange, use σ(b j ) = K j )

= {δ2(i2, z ′′) | z ′′ ∈σ(w b j )} .

Corollary 3.18. The language accepted by A3 is W .

Proof. For all w ∈ Γ
∗, w ∈W iff σ(w) ⊆ L iff ∀z ∈σ(w)[δ2(i2, z) ∈ F2] iff {δ2(i2, z) | z ∈σ(w)} ⊆

F2 iff δ3(i3, w) ∈ F3 iff w is accepted by A3.

So far, we have a DFA A3 for W , with |Q3| = 22n
states. We now examine the construction more

closely to detect equivalent states. Observe that the powerset construction for A2 in terms of



34 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

A1 is “existential”, that is, a state of A2 accepts if and only if at least one of its constituent states

from A1 accepts. In contrast, the powerset construction for A3 in terms of A2 is “universal”,

that is, a state of A3 accepts if and only if all of its constituent states from A2 accept. Suppose

B ⊆C ∈Q2 are two states of A2. Then if some word is accepted by A2 starting from B , it is also

accepted starting from C . If a state of A3 contains both B and C , then B already imposes a

stronger constraint than C , and so C can be eliminated. We make this precise below:

Define an equivalence relation ≡ on Q3 as follows:

U ≡U ′ def⇔ (∀S ∈U : ∃S′ ∈U ′ : S′ ⊆ S)∧ (∀S′ ∈U ′ : ∃S ∈U : S ⊆ S′) .

A state U ∈ Q3 is called an antichain if it does not contain some S,S′ ∈ Q2 with S ( S′. It is

easy to see that every state U ∈Q3 is ≡-equivalent to the antichain Umin obtained by retaining

only the minimal-by-inclusion elements of U . Further, no two distinct antichain states can

be ≡-equivalent.

We now claim that, in A3, ≡-equivalent states accept the same language. First U ≡ V and

U ∈ F3 imply V ∈ F3 (proof: for any S ∈ V , there is a S′ ∈ U which is a subset, and since

S′ ∈ F2, also S ∈ F2). Furthermore, for each b j , δ(U ,b j ) ≡ δ(V ,b j ) (proof: an arbitrary element

of δ3(U ,b j ) is δ2(S, z) for some S ∈ U and z ∈ K j . There exists S′ ∈ V such that S′ ⊆ S, and

then δ2(S′, z) belongs to δ3(V ,b j ) and is a subset of δ2(S, z) because δ2 is monotone in its first

argument. The reasoning in the reverse direction is similar).

Thus we can quotient the DFA A3 by ≡ to get an equivalent DFA for W . The number of states

of A3/ ≡ is exactly the number of subsets of 2Q which are antichains, and this is the Dedekind

number ψ(n). Further, we can remove (the equivalence class of) the sink state {;}.

We instantiate the above for the upward and downward interiors to conclude that the nonde-

terministic state complexity of both is <ψ(n): Choose alphabets Σ= Γ= {b1, . . . ,bk }. For the

upward interior, define K0 =Σ
∗ and Ki =Σ

∗biΣ
∗, and apply Proposition 3.16. For the down-

ward interior, define K0 = {ǫ} and Ki = {bi ,ǫ}, and apply Proposition 3.16. This completes the

proof of Proposition 3.14.

3.4.2 Lower bound for downward interiors

We first establish a doubly-exponential lower bound for downward interiors:

Proposition 3.19. The nondeterministic state complexity of the downward interior is at least

22⌊ n−3
2 ⌋

.

Let ℓ be a positive integer, and let Σ= {0,1,2, . . . ,2ℓ−1}, so that |Σ| = 2ℓ. Let

L
def= Σ

∗ \ {a a | a ∈Σ} = {w | |w | 6= 2}∪ {a b | a,b ∈Σ, a 6= b} .



3.4. STATE COMPLEXITY OF INTERIORS 35

Then þL consists of all words where every letter is distinct (equivalently, no letter appears

more than once), a language called VΣ in Lemma 3.2, showing nN(þL) ≥ 2|Σ| = 22ℓ

.

Claim 3.20. nN(L) ≤ 2ℓ+3.

Proof. Two letters in Σ, viewed as ℓ-bit sequences, are distinct if and only if they differ in

at least one bit. An NFA can check this by guessing the position in which they differ and

checking that the letters indeed differ in this position. Figure 3.5 shows an NFA for {a b | a 6= b}

with 2ℓ+2 states.

...
...

2+ 2−

1+ 1−

ℓ− ℓ+

instart fi

1,3,5, . .
.

0,2,4, . . .
0,2,4, . . .

1,3,5, . . .

2,3,6,7, . . .

0,1,4,5, . . . 0,1,4,5, . . .

2,3,6,7, . . .

0,1, . . . ,2ℓ−1−12ℓ−1,2ℓ−1+1, . . . ,2ℓ−1 2ℓ
−1 ,2ℓ

−1 +1, . . . ,2ℓ −10,1, . . . ,2ℓ
−1 −1

Figure 3.5: NFA for {a b | a,b ∈Σ2ℓ , a 6= b} with 2ℓ+2 states.

We need to modify this NFA to accept all words whose length is not 2. For this, we add a new

state Z , and add the following transitions, on all letters: from each i+ and i− to Z , from Z

to fi, and from fi to itself. We declare all states other than Z accepting. L is accepted by this

resulting NFA, with 2ℓ+3 states.

Finally, combining nN(L) ≤ 2ℓ+3 with the previously observed nN(þL) ≥ 22ℓ

concludes the

proof of Proposition 3.19.

3.4.3 Lower bound for upward interiors

We now establish the following doubly-exponential lower bound:

Proposition 3.21. The nondeterministic state complexity of the upward interior is≥ 22⌊(n−4)/3⌋+
1.

Our parameter is ℓ ∈ N and we let Γ
def= {0,1, . . . ,2ℓ − 1}, Υ

def= {1, . . . ,ℓ} and Σ
def= Γ∪Υ. The

symbols in Γ, denoted x, y, . . . are disjoint from the symbols in Υ, denoted k,k ′, . . . (e.g., we

can imagine that they have different colors) and one has |Σ| = 2ℓ+ℓ.



36 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

For x, y ∈ Γ and k ∈ Υ, we write x =k y when x and y , viewed as ℓ-bit sequences, have the

same kth bit. We consider the following languages:

L1
def= {x w y k w ′ ∈ Γ ·Σ∗ ·Γ ·Υ ·Σ∗ | x =k y} ,

L2
def= Γ · (Γ ·Υ)∗ ,

L
def= L1 ∪ (Σ∗ \ L2) .

L1 contains all words such that the initial letter x ∈ Γ has one common bit with a later y ∈ Γ

and this bit is indicated by the k ∈ Υ that immediately follows the occurrence of y . Fig. 3.6

displays an NFA for L1: it reads the first letter x, nondeterministically guesses k, and switches

to a state r+
k or r−

k depending on what is x’s kth bit. From there it waits nondeterministi-

cally for the appearance of a factor y k with x =k y before accepting. This uses 3ℓ+2 states.

Combining with an NFA for Σ∗ \ L2, we see that nN(L) ≤ 3ℓ+4.

ti

t1

tℓ

fiinstart

r+
1

r−
1

r+
i

r−
i

r+
ℓ

r−
ℓ

· · ·

· · ·

z ∈ Γ∪Υ

z ∈ Γ∪Υ
z ∈ Γ∪Υ

1,3
,5

, . .
.

0,2,4, . .
.

x ∈ Γ : x[i ]= 1

x ∈ Γ : x[i ]= 00,1, . . . ,2 ℓ−1−1

2 ℓ−1
,2 ℓ−1+

1, . . . ,2 ℓ−
1

y ∈ Γ : y[i ]= 1

y ∈ Γ : y[i ]= 0

i ∈Υ

1 ∈
Υ

ℓ
∈Υ

Figure 3.6: NFA for L1 with 3ℓ+2 states.

We consider the upward interior of L. As in Lemma 3.2, let UΓ ⊆ Γ
∗ be the language that

contains all words over Γ where every letter appears at least once and U ′
Γ
= Γ ·UΓ be the

language that has all words where the first suffix w[2..] is in UΓ.

Claim 3.22. (ßL)∩Γ
∗ =U ′

Γ
.

Proof. We first show (ßL)∩Γ
∗ ⊆U ′

Γ
, by showing the contrapositive. Let w ∈ Γ

∗ \U ′
Γ

. If w = ǫ,

then clearly w ∉ ßL. Otherwise, w = z z1 · · ·zp , where z, zi ∈ Γ. Since z1 · · ·zp is not in UΓ,



3.4. STATE COMPLEXITY OF INTERIORS 37

there is some x ∈ Γ that differs from all the zi ’s. Pick k1, . . . ,kp witnessing this, i.e., such that

x 6=ki zi for all i . If x = z we let w ′ def= z z1 k1 · · ·zp kp so that w ′ ∈ L2 and w ′ 6∈ L1, i.e., w ′ 6∈ L. If

x 6= z we let w ′ def= x z k z1 k1 · · ·zp kp 6∈ L for some k witnessing x 6= z, so that w ′ 6∈ L. In both

cases w ⊑ w ′ 6∈ L and we deduce w 6∈ßL.

We now show U ′
Γ
⊆ (ßL)∩Γ

∗. Let w = z z1 · · ·zp ∈U ′
Γ

. We show that w ∈ ßL by showing that

w ′ ∈ L for every w ′ such that w ⊑ w ′. If w ′ ∉ L2, then w ′ ∈ L. So assume w ′ = x y1 k1 · · · yn kn ∈
L2. There is some i such that x = zi (since w ∈ U ′

Γ
) and some j such that zi = y j (since

w ⊑ w ′). We then have x =k j y j (this does not depend on the actual value of k j ). Hence

w ′ ∈ L1 ⊆ L. Thus w ∈ßL.

Corollary 3.23. nN(ßL) ≥ 22ℓ +1.

Proof. From Lemma 3.2 we know that nN(U ′
Γ

) = 22ℓ +1 and it is easily observed that nN(ßL∩
Γ
∗) ≤ nN(ßL).

Finally, combining nN(ßL) ≥ 22ℓ +1 with the previously observed nN(L) ≤ 3ℓ+4 concludes

the proof of Proposition 3.21.

3.4.4 On interiors of languages over a fixed alphabet

The doubly-exponential lower bounds exhibited in Props. 3.19 and 3.21 rely on alphabets of

exponential size. It is an open question whether, in the case of a fixed alphabet, the nonde-

terministic state complexity of downward and/or upward interior is still doubly-exponential.

At some point we considered the language

Pn =Σ
∗ \ {w # w | |w | = n and w has no #}

over an alphabet of the form Σ= {#}∪ {a1, . . . , ak } for some fixed k. The point is that Pn avoid

words that are “squares” w # w of words w of length n, separated by the special symbol #. As

a consequence, an arbitrary u # v in Σ
∗
k #Σ∗

k is in þPn iff ↓=nu and ↓=n v are disjoint, where

↓=n x denotes the set Σn∩ ↓x of subwords of x having length exactly n.

Let us write u ∼′
n v when ↓=nu =↓=n v and Ck (n) for the number of ∼n-equivalence classes

in Σ
∗
k : obviously Ck (n) ≤ 2kn

.

Claim 3.24. nN(Pn) ≤ (k +1)n +k +3 and nD(þPn) ≥Ck (n).

Proof sketch. One can recognize all words w with w[i ] 6= w[i+n+1] for some position i using

a NFA with k(n +1)+2 states. With n +1 extra states, the NFA also recognizes the words that

are not of the form Σ
n
k #Σn

k .

For nD(þPn) ≥Ck (n), we claim that if C (u) 6=C (v) then δ(qinit,u) 6= δ(qinit, v) in any DFA for

þPn . Indeed, pick some x in ↓=nu\ ↓=n(v) (interchanging u and v if necessary) and note that

u # x 6∈þPn ∋ v # x.



38 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

Thus if Ck (n) is doubly-exponential in n (for some k), Pn witnesses a doubly-exponential

lower bound for downward interiors over a fixed alphabet, at least if we accept an NFA as

input and DFA as output, which would still be an improvement over existing results.

Estimating Ck (n) was an open problem raised by Sakarovitch and Simon more than thirty

years ago in [108, p. 110] and no doubly-exponential lower bound was known. However,

chapter 4 shows that Ck (n) is in 2O(nk ), hence not doubly exponential as hoped. As we will

see, chapter 4 considers a slightly different equivalence relation ∼n by which two words are

equivalent if they have the same subwords of length at most n. The only difference between

the two is that as per ∼n all words of length upto n −1 are inequivalent, while as per ∼′
n they

are all equivalent. The two equivalences agree on words of length at least n.

At the moment we can only demonstrate a 22Ω(
p

n)
lower bound for the nondeterministic state

complexity of restricted interiors over a 3-letter alphabet: this relies on a notion of “restricted”

subwords where the alphabet is partitioned in two sets: letters than can be omitted (as usual)

when building subwords, and letters that must be retained, see [79, Theo. 4.3] for details.

3.5 Complexity of decision problems on subwords

In automata-based procedures for logic and verification, the state complexity of automata

constructions is not always the best measure of computational complexity. In this section we

gather some elementary results on the complexity of subword-related decision problems on

automata: deciding whether the languages they describe are downward (or upward) closed,

and deciding whether they describe the same language modulo downward (or upward) clo-

sure. This is in the spirit of the work done in [73, 106] for closures by prefixes, suffixes, and

factors. Some of the results we give are already known but they remain scattered in the liter-

ature.

3.5.1 Deciding closedness

Deciding whether L(A) is upward-closed, or downward-closed, is unsurprisingly PSPACE-

complete for NFAs, andNL-complete for DFAs. (For upward-closedness, this is already shown

in [57], and quadratic-time algorithms that decide upward-closedness of L(A) for a DFA A al-

ready appear in [10, 99].)

Proposition 3.25. Deciding whether L(A) is upward-closed or downward-closed is PSPACE-

complete when A is an NFA, even in the 2-letter alphabet case.

Proof sketch. A PSPACE algorithm simply tests for inclusion between two automata, A and

A↑ (or A↓). PSPACE-hardness can be shown by adapting the proof for hardness of universality.

Let R be a length-preserving semi-Thue system and x, x ′ two strings of same length. It is



3.5. COMPLEXITY OF DECISION PROBLEMS ON SUBWORDS 39

PSPACE-hard to say whether x
∗−→R x ′, even for a fixed R over a 2-letter alphabet Σ. We reduce

(the negation of) this question to our problem.

Fix x and x ′ of length n > 1: a word x1 x2 · · ·xm of length n ×m encodes a derivation if x1 = x,

xm = x ′, and xi −→R xi+1 for all i = 1, . . . ,m −1. The language L of words that do not encode a

derivation from x to x ′ is regular and recognized by an NFA with O(n) states. Now, there is a

derivation x
∗−→R x ′ iff L 6= Σ

∗. Since L contains all words of length not divisible by n > 1, it is

upward-closed, or downward-closed, iff L =Σ
∗, iff ¬(x

∗−→R x ′).

Proposition 3.26. Deciding whether L(A) is upward-closed or downward-closed is NL-com-

plete when A is a DFA, even in the 2-letter alphabet case.

Proof. Since L is downward-closed if, and only if, Σ∗ \ L is upward-closed, and since one eas-

ily builds a DFA for the complement of L(A), it is sufficient to prove the result for upward-

closedness.

We rely on the following easy lemma: L is upward-closed iff for all u, v ∈ Σ
∗, u v ∈ L implies

u a v ∈ L for all a ∈ Σ. Therefore, L(A) is not upward-closed —for A = (Σ,Q,δ, {qinit},F )—

iff there are states p, q ∈ Q, a letter a, and words u, v such that δ(qinit,u) = p, δ(p, a) = q ,

δ(p, v) ∈ F and δ(q, v) ∉ F . If such words exist, in particular one can take u and v of length

< n = |Q| and respectively < n2. Hence testing (the negation of) upward-closedness can be

done in nondeterministic logarithmic space by guessing u, a, and v within the above length

bounds, finding p and q by running u and then a from qinit, then running v from both p

and q .

For hardness, one may reduce from vacuity of DFAs, a well-known NL-hard problem that is

essentially equivalent to GAP, the Graph Accessibility Problem. Note that for any DFA A (in

fact any NFA) the following holds:

L(A) =; iff L(A)∩Σ
<n =; iff L(A)∩Σ

<n is upward-closed,

where n is the number of states of A. This provides the required reduction since, given a DFA

A, one easily builds a DFA for L(A)∩Σ
<n .

3.5.2 Deciding equivalence modulo closure

The question whether ↓L(A) =↓L(B) or, similarly, whether ↑L(A) =↑L(B), is relevant in some

settings where closures are used to build regular overapproximations of more complex lan-

guages.

Bachmeier et al. recently showed that the above two questions are coNP-complete when A

and B are NFAs [14, Section 5], hence “easier” than deciding whether L(A) = L(B). Here we

give an improved version of their result.



40 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

Proposition 3.27 (after [14]). 1. Deciding whether ↓L(A) ⊆↓L(B) or whether ↑L(A) ⊆↑L(B) is

coNP-complete when A and B are NFAs.

2. Deciding ↓L(A) =↓L(B) or ↑L(A) =↑L(B) is coNP-hard even when A and B are DFAs over a

two-letter alphabet.

3. These problems are NL-complete when restricting to NFAs over a 1-letter alphabet.

Proof. 1. Let B = (Σ,Q,δ, I ,F ) and nB = |Q|. Assume that ↓L(A) 6⊆↓L(B) and pick a shortest

witness x = x1 · · ·xℓ ∈ Σ
∗ with x ∈↓L(A) and x 6∈↓L(B). We claim that |x| < nB : indeed in the

powerset automaton obtained by determinizing B↓, the (unique) run Q = S0
x1−→ S1

x2−→ . . .
xℓ−→ Sℓ

of x is such that S0 ⊇ S1 ⊇ S2 · · · ⊇ Sℓ (recall the proof of Lemma 3.7). If Si−1 = Si for some i ,

a shorter witness is obtained by omitting the i th letter in x (this does not affect membership

in ↓L(A) since this language is downward-closed). One concludes that the Si have strictly

diminishing size, hence ℓ< nB . This provides an NP algorithm deciding ↓L(A) 6⊆↓L(B): guess

x in Σ
<nB and check in polynomial time that it is accepted by A↓ and not by B↓.

For upward closure the reasoning is even simpler and now a shortest witness has length

|x| < nA : if x is longer, we can find a subword x ′ that is still in A↑ (e.g., with pumping lemma),

and this x ′ is not in ↑L(B) since x is not.

2. coNP-hardness is shown by reduction from validity of DNF-formulae. Consider an arbi-

trary DNF formula φ=C1 ∨C2 ∨ . . .∨Cm made of m disjunctive clauses and using k Boolean

variables v1, . . . , vk , e.g., φ = (v1 ∧¬v2 ∧ v4)∨ (v2 ∧ ·· · ) · · · : it is easy to list all the valuations

(seen as words in {0,1}k ) that make φ hold true. In order to recognize them with a DFA Aφ,

C1start

C2

Cm

...

1

v1

0

∧¬v2

0

1

1

∧v4

0

1

0

1

1

v2

1

∧v5

1

1

1

0

0

0

Figure 3.7: DFA Aφ for φ= (v1 ∧¬v2 ∧ v4)∨ (v2 ∧·· ·∧ v5)∨·· ·∨Cm with k = 5 variables. The

wavy and straight transitions and functionally identical.

we prefix each valuation by a string 1ℓ0 where ℓ witnesses the index of a clause Cℓ+1 made

true by the valuation: see Figure 3.7 where the prefix 1ℓ0 uses wavy blue transitions while the

valuation uses straight black letters (this distinction is for the reader only, the automaton only

sees the letters 0 and 1).

Now Aφ has m(k + 2) states and accepts all words 1ℓ0 x1 · · ·xk in {0,1}∗ such that x1 · · ·xk is



3.6. CONCLUDING REMARKS 41

(the code for) a valuation that makes Cℓ+1 true. Let now Bφ be a DFA for L(Aφ)∪1m0(0+1)k ,

i.e., where all valuations are allowed after the 1m0 prefix. It is clear that ↑ L(Aφ) =↑ L(Bφ)

iff all words 1m0 x1 · · ·xk appear in ↑L(A) iff all valuations make φ true iff φ is valid, which

completes the reduction for equality of upward closures.

For downward closures, we modify Aφ by adding a transition Cm
1−→ C1 so that now Aφ ac-

cepts all words 1ℓ0 x1 · · ·xk such that x1 · · ·xk makes C(ℓ+1)%m true. For B we now take a DFA

for 1∗0(0+1)k and see that ↓L(Aφ) =↓L(B) iff all valuations make φ true.

3. In the 1-letter case, comparing upward or downward closures amounts to comparing the

length of the shortest (resp., longest) word accepted by the automata, which is easily done in

nondeterministic logspace. And since ↑L(A) =↓L(A) =; iff L(A) =;, NL-hardness is shown

by reduction from emptiness of NFAs, i.e., a question “is there a path from I to F ” that is just

another version of GAP, the Graph Accessibility Problem.

A special case of language comparison is universality. The question whether ↑L(A) = Σ
∗ is

trivial since it amounts to asking whether ǫ is accepted by A. For downward closures one has

the following:

Proposition 3.28 (after [106]). Deciding whether ↓L(A) = Σ
∗ when A is a NFA over Σ is NL-

complete.

Proof. Rampersad et al. show that the problem can be solved in linear time [106, Section 4.4].

Actually the characterization they use, namely ↓ L(A) = Σ
∗ iff A = (Σ,Q,δ, I ,F ) has a state

q ∈Q with I
∗−→ q

∗−→ F and such that for any a ∈Σ there is a path of the form q
∗−→ a−→ ∗−→ q from q

to itself, is a FO+TC sentence on A seen as a labeled graph, hence can be checked in NL [68].

NL-hardness can be shown by reduction from emptiness of NFAs, e.g., by adding loops p
a−→ p

on any accepting state p ∈ F and for every a ∈Σ.

3.6 Concluding remarks

For words ordered by the (scattered) subword relation, we considered the state complexity of

computing closures and interiors, both upward and downward, of regular languages given by

finite-state automata. These operations are essential when reasoning with subwords, e.g., in

symbolic model checking for lossy channel systems, see [18, Section 6]. We completed the

known results on closures by providing exact state complexities in the case of unbounded

alphabets, and by demonstrating an exponential lower bound on downward closures even in

the case of a two-letter alphabet.

The nondeterministic state complexity of interiors is a new problem that we introduced and

for which we could show doubly-exponential upper and lower bounds.



42 CHAPTER 3. STATE COMPLEXITY AND RELATED QUESTIONS

These results contribute to a more general research agenda: what are the right data structures

and algorithms for reasoning with subwords and superwords? The algorithmics of subwords

and superwords has mainly been developed in string matching and combinatorics [15, 40]

but other applications exist that require handling sets of strings rather than individual strings,

e.g., model-checking and constraint solving [66]. When reasoning about sets of strings, there

are many different ways of representing closed sets and automata-based representation are

not always the preferred option, see, e.g., the SREs used for downward-closed languages

in [4]. The existing trade-offs between all the available options are not yet well understood

and certainly deserve scrutiny. In this direction, let us mention [19, Theo. 2.1(3)] showing that

if nD(L) = n then min(L)
def= {x ∈ L | ∀y ∈ L : y ⊑ x =⇒ y = x} = L \shuffle(L,Σ) may have

nN(min(L)) = (n −2)2n−3 +2, which suggests that it is more efficient to represent ↑L directly

than by its minimal elements.

The new interior operations open up several new avenues of exploration, such as:

• Deciding equivalence modulo interiors, analogous to deciding equivalence modulo

closures from subsection 3.5.2.

• Interiors for other relations, such as prefix, suffix, factor, and the priority order from

[53].

• The use of other automata models such as alternating automata and co-nondetermin-

istic automata (motivated by the duality between interiors and closures).

Finally, a more ambitious extension would be to tree automata and tree embeddings, which

by Kruskal’s tree theorem is a well-quasi-order [93].



Chapter 4

Simon’s congruence

Piecewise testable languages, introduced by Imre Simon in the 1970s, are a family of simple

regular languages that are definable by the presence and absence of given subwords [116,

108, 98]. Formally, a language L ⊆ A∗ is n-piecewise testable if x ∈ L and x ∼n y imply y ∈ L,

where x ∼n y
def⇔ x and y have the same subwords of length at most n. Piecewise testable lan-

guages are important (e.g. in learning theory or computational biology) because they are the

languages defined by BΣ1 formulae, a simple fragment of first-order logic that is prominent

in database queries.

It is easy to see that ∼n is a congruence with finite index and Sakarovitch and Simon raised

the question of how to better characterize or evaluate this number [108, p. 110]. Let us write

Ck (n) for the number of ∼n classes over k letters, i.e., when |A| = k. It is clear that Ck (n) ≥ kn

since two words x, y ∈ A≤n (i.e., of length at most n) are related by ∼n only if they are equal.

In fact, this reasoning gives

Ck (n) ≥ kn +kn−1 +·· ·+k +1 =
kn+1 −1

k −1
(4.1)

(assuming k 6= 1). On the other hand, any congruence class in ∼n is completely characterized

by a set of subwords in A≤n , hence

Ck (n) ≤ 2
kn+1−1

k−1 . (4.2)

Estimating the size of Ck (n) has applications in descriptive complexity, for example for esti-

mating the number of n-piecewise testable languages (over a given alphabet), or for bound-

ing the size of canonical automata for n-piecewise testable languages [39, 84, 100].

Unfortunately the above bounds, summarized as kn ≤Ck (n) ≤ 2kn+1
, leave a large (“exponen-

tial”) gap and it is not clear towards which side is the actual value leaning.1 Eq. (4.1) gives

1Comparing the bounds from Eqs. (4.1) and (4.2) with actual values does not bring much light here since the

magnitude of Ck (n) makes it hard to compute beyond some very small values of k and n, see Table 4.1.

43



44 CHAPTER 4. SIMON’S CONGRUENCE

a lower bound that is obviously very naive since it only counts the simplest classes. On the

other hand, Eq. (4.2) too makes wide simplifications since not every subset of A≤n corre-

sponds to a congruence class. For example, if aa and bb are subwords of some x then neces-

sarily x also has ab or ba among its length 2 subwords. In this chapter, log is with respect to

base 2.

Since the question of estimating Ck (n) was raised in [108] (and to the best of our knowledge)

no progress had been made on the question, until Kátai-Urbán et al. proved the following

bounds:

Theorem 4.1 ([81]). For all k > 1

kn

3n2 log k ≤ log Ck (n) < 3nkn log k if n is even,

kn

3n2 < log Ck (n) < 3nkn if n is odd.

The proof is based on two reductions, one showing Ck+ℓ(n +2) ≥ Cℓ+2
k (n) for proving lower

bounds, and one showing Ck (n +2) ≤ (k +1)2kC 2k−1
k (n) for proving upper bounds. For fixed

n, Theorem 4.1 allows to estimate the asymptotic value of log Ck (n) as a function of k: it is in

Θ(kn) or Θ(kn log k) depending on the parity of n. However, these bounds do not say how, for

fixed k, Ck (n) grows as a function of n, which is a more natural question in settings where the

alphabet is fixed, and where n comes from, e.g., the number of variables in a BΣ1 formula.

In particular, the lower bound is useless for n ≥ k since in this case kn/3n2 < 1.

Our contribution In this chapter, we provide the following bounds:

Theorem 4.2. For all k,n > 1,

(n

k

)k−1
log

(n

k

)
< logCk (n) < k

(
n +2k −3

k −1

)k−1

logn logk .

Thus, for fixed k, logCk (n) is in Θ(nk−1 logn). Compared to Theorem 4.1 our bounds are

much tighter for fixed k (and much wider for fixed n).

The proof of Theorem 4.2 uses two different reductions, in particular our upper bound is

based on an original study of minimal representatives of congruence classes. The chapter is

organized as follows. Section 4.1 recalls the necessary notations and definitions; the lower

bound is proved in Section 4.2 while the upper bound is proved in Section 4.3. An appendix

lists the exact values of Ck (n) for small n and k that we managed to compute.

4.1 Preliminaries

We consider words x, y, w, . . . over a finite k-letter alphabet Σk (sometimes written simply Σ).

For a word w and a letter a, we use |w |a to denote the number of occurrences of a in w .



4.2. LOWER BOUND 45

For any n ∈N, we write x ∼n y when x and y have the same subwords of length ≤ n. For exam-

ple x
def= abacb ∼2 y

def= baaacbb since both words have {ǫ, a,b,c, aa, ab, ac,ba,bb,bc,cb} as

subwords of length ≤ 2. However x 6∼3 y since x ⊒ aba 6⊑ y . Note that ∼0⊇∼1⊇∼2⊇ ·· · , and

that x ∼0 y holds trivially. It is well-known (and easy to see) that each∼n is a congruence since

the subwords of some x y are the concatenations of a subword of x and a subword of y . Si-

mon defined a piecewise testable language as any L ⊆Σ
∗ that is closed by ∼n for some n [116].

These are exactly the languages definable by BΣ1(<, a,b, . . .) formulae, i.e., by Boolean com-

binations of Σ1 first-order formulae with monadic predicates of the form a(i ), stating that the

i -th letter is a. For example, L =Σ
∗aΣ∗bΣ∗ = {x ∈Σ

∗ : ab ⊑ x} is definable with the following

Σ1 formula:

∃i : ∃ j : i < j ∧a(i )∧b( j ) .

The index of ∼n Since there are only finitely many words of length ≤ n, the congruence ∼n

partitions Σ∗
k in finitely many classes, and we write Ck (n) for the number of such classes, i.e.,

the cardinal of Σ∗
k /∼n .

The following is easy to see

C1(n) = n +1 , Ck (0) = 1 , Ck (1) = 2k . (4.3)

Indeed, for words over a single letter a, x ∼n y iff |x| = |y | < n or |x| ≥ n ≤ |y |, hence the first

equality. The second equality restates that ∼0 is trivial, as noted above. For the third equality,

one notes that x ∼1 y if, and only if, the same set of letters is occurring in x and y , and that

there are 2k such sets of occurring letters.

4.2 Lower bound

The first half of Theorem 4.2 is proved by first establishing a combinatorial inequality on the

Ck (n)’s (Proposition 4.5) and then using it to derive Proposition 4.6.

Consider two words x, y ∈Σ
∗ and a letter a ∈Σ.

Lemma 4.3. If x ∼n y , then min(|x|a ,n) = min(|y |a ,n).

Proof sketch. If |x|a = p < n then ap ⊑ x 6⊒ ap+1. From x ∼n y we deduce ap ⊑ y 6⊒ ap+1,

hence |y |a = p.

Fix now k ≥ 2, let A = Ak = {a1, . . . , ak } and assume x ∼n y . If |x|ak
= p < n, then x is some

x0ak x1 · · ·ak xp with xi ∈ A∗
k−1 for i = 0, . . . , p. By Lemma 4.3, y too is some y0ak y1 · · ·ak yp

with yi ∈ A∗
k−1.

Lemma 4.4. xi ∼n−p yi for all i = 0, . . . , p.



46 CHAPTER 4. SIMON’S CONGRUENCE

Proof. Suppose w ⊑ xi and |w | ≤ n −p. Let w ′ def= ai
k w a

p−i
k . Clearly w ′ ⊑ x and thus w ′ ⊑ y

since x ∼n y and |w ′| ≤ n. Now w ′ = ai
k w a

p−i
k ⊑ y entails w ⊑ yi .

With a symmetric reasoning we show that every subword of yi having length ≤ n − p is a

subword of xi and we conclude xi ∼n−p yi .

Proposition 4.5. For k ≥ 2, Ck (n) ≥
∑n

p=0 C
p+1
k−1 (n −p).

Proof. For words x = x0ak x1 . . . xp−1ak xp which have exactly p < n occurrences of ak , we

have Ck−1(n − p) possible choices of ∼n−p equivalence classes for each xi (i = 0, . . . , p). By

Lemma 4.4 all such choices will result in 6∼n words, hence there are exactly C
p+1
k−1 (n−p) classes

of words with p < n occurrences of ak . By Lemma 4.3, these classes are disjoint for different

values of p, hence we can add the C
p+1
k−1 (n −p)’s. There remain words with p ≥ n occurrences

of ak , accounting for at least 1, i.e., C n+1
k−1 (0), additional class.

Proposition 4.6. For all k,n > 0:

logCk (n) >
(n

k

)k−1
log

(n

k

)
. (4.4)

Proof. Eq. (4.4) holds trivially when log( n
k ) ≤ 0. Hence there only remains to consider the

cases where n > k. We reason by induction on k. For k = 1, Eq. (4.3) gives logC1(n) = log(n +
1) > logn =

(n
1

)0 log
(n

1

)
. For the inductive case, Proposition 4.5 yields Ck+1(n) ≥C

p+1
k (n −p)

for all p ∈ {0, . . . ,n}. For p =
⌊ n

k+1

⌋
this yields

logCk+1(n) ≥ (p +1)logCk (n −p)

> (p +1)
(n −p

k

)k−1
log

(n −p

k

)

by ind. hyp., noting that n −p > 0,

≥
n

k +1

( n

k +1

)k−1
log

( n

k +1

)

since n−p
k ≥ n

k+1 ≥ 1,

=
( n

k +1

)k
log

( n

k +1

)

as desired.

4.3 Upper bound

The second half of Theorem 4.2 is again by establishing a combinatorial inequality on the

Ck (n)’s (Proposition 4.9) and then using it to derive Proposition 4.10.



4.3. UPPER BOUND 47

Fix k > 0 and consider words in Σ
∗
k . We say that a word x is rich if all the k letters of Σk occur

in it, and that it is poor otherwise. For ℓ> 0, we further say that x is ℓ-rich if it can be written

as a concatenation of ℓ rich factors. We define x to be 0-rich if x is poor. The richness of x

is the largest ℓ ∈N such that x is ℓ-rich. Note that ∀a ∈ Σk : |x|a ≥ ℓ does not imply that x is

ℓ-rich. We shall use the following easy result:

Lemma 4.7. If x1 and x2 are respectively ℓ1-rich and ℓ2-rich, then y ∼n y ′ implies

x1 y x2 ∼ℓ1+n+ℓ2 x1 y ′x2.

Proof. A subword u of x1 y x2 can be decomposed as u = u1vu2 where u1 is the largest prefix

of u that is a subword of x and u2 is the largest suffix of the remaining u−1
1 u that is a subword

of x2. Thus v ⊑ y since u ⊑ x1 y x2. Now, since x1 is ℓ1-rich, |u1| ≥ ℓ1 (unless u is too short),

and similarly |u2| ≥ ℓ2 (unless u−1
1 u is too short). Finally |v | ≤ n when |u| ≤ ℓ1 +n +ℓ2, and

then v ⊑ y ′ since y ∼n y ′, entailing u ⊑ x1 y ′x2. A symmetrical reasoning shows that subwords

of x1 y ′x2 of length ≤ ℓ1 +n +ℓ2 are subwords of x1 y x2 and we are done.

The rich factorization of x ∈ Σ
∗
k is the decomposition x = x1a1 · · ·xm am y obtained in the fol-

lowing way: if x is poor, we let m = 0 and y = x; otherwise x is rich, we let x1a1 (with a1 ∈Σk )

be the shortest prefix of x that is rich, write x = x1a1x ′ and let x2a2 . . . xm am y be the rich fac-

torization of the remaining suffix x ′. By construction m is the richness of x. E.g., assuming

k = 3, the following is a rich factorization with m = 2:

x︷ ︸︸ ︷
bbaaabbccccaabbbaa =

x1︷ ︸︸ ︷
bbaaabb · c ·

x2︷ ︸︸ ︷
cccaa ·b ·

y︷ ︸︸ ︷
bbaa

Note that, by definition, x1, . . . , xm and y are poor.

Lemma 4.8. Consider two words x, x ′ of richness m with rich factorizations

x = x1a1 . . . xm am y x ′ = x ′
1a1 . . . x ′

m am y ′.

Suppose that y ∼n y ′ and that xi ∼n+1 x ′
i for all i = 1, . . . ,m. Then x ∼n+m x ′.

Proof. By repeatedly using Lemma 4.7, one shows

x1a1x2a2 . . . xm am y ∼n+m x ′
1a1x2a2 . . . xm am y

∼n+m x ′
1a1x ′

2a2 . . . xm am y

...

∼n+m x ′
1a1x ′

2a2 . . . x ′
m am y

∼n+m x ′
1a1x ′

2a2 . . . x ′
m am y ′ ,

using the fact that each factor xi ai is rich.



48 CHAPTER 4. SIMON’S CONGRUENCE

Proposition 4.9. For all n ≥ 0 and k ≥ 2,

Ck (n) ≤ 1+
n−1∑

m=0
km+1 C m

k−1(n −m +1)Ck−1(n −m) .

Furthermore, for k = 2,

C2(n) ≤ 2
2n−1∑

m=0
nm = 2

n2n −1

n −1
. (4.5)

Proof. Consider two words x, x ′ and their rich factorizations

x = x1a1 . . . xm am y x ′ = x ′
1a′

1 . . . x ′
ℓa′

ℓy ′.

By Lemma 4.8 they belong to the same∼n class if ℓ= m, y ∼n−m y ′, and ai = a′
i and xi ∼n−m+1

x ′
i for all i = 1, . . . ,m. Now for every fixed m, there are at most km choices for the ai ’s, C m

k−1(n−
m + 1) non-equivalent choices for the xi ’s, kCk−1(n − m) choices for y and a letter that is

missing in it. We only need to consider m varying up to n −1 since all words of richness ≥ n

are ∼n-equivalent, accounting for one additional possible ∼n class.

For the second inequality, assume that k = 2 and Σ2 = {a,b}. A word x ∈ Σ
∗
2 can be de-

composed as a sequence of m non-empty blocks of the same letter, of the form, e.g., x =
aℓ1 bℓ2 aℓ3 bℓ4 · · ·aℓm (this example assumes that x starts and ends with a, hence m is odd). If

two words like x = aℓ1 bℓ2 aℓ3 bℓ4 · · ·aℓm and x ′ = aℓ′1 bℓ′2 aℓ′3 bℓ′4 · · ·aℓ′m have the same first letter

a, the same alternation depth m, and have min(ℓi ,n) = min(ℓ′i ,n) for all i = 1, . . . ,m, then

they are ∼n-equivalent. For a given m > 0, there are 2 possibilities for choosing the first letter

and nm non-equivalent choices for the ℓi ’s. Finally, all words with alternation depths m ≥ 2n

are ∼n-equivalent, hence we can restrict our attention to 1 ≤ m ≤ 2n−1. The extra summand

2n0 in Eq. (4.5) accounts for the single class with m ≥ 2n and the single class with m = 0.

In the following we sometimes use exp(x) for 2x .

Proposition 4.10. For all k,n > 1:

Ck (n) < 2k
(

n+2k−3
k−1

)k−1
logn logk .

Proof. By induction on k. For k = 2, Eq. (4.5) yields:

C2(n) ≤ 2
n2n −1

n −1
< n

n2n+1

1
since n ≥ 2,

= n2n+2 = 22(n+1)logn

= exp

(
k

(
n +2k −3

k −1

)k−1

logn logk

)
.



4.3. UPPER BOUND 49

For the inductive case, Proposition 4.9 yields:

Ck+1(n) ≤ 1+
n−1∑

m=0
(k +1)m+1C m

k (n −m +1)Ck (n −m)

= 1+ (k +1)Ck (n)

+
n−1∑

m=1
(k +1)m+1C m

k (n −m +1)Ck (n −m)

< (k +1)nCk (n)+
n−1∑

m=1
(k +1)nC m+1

k (n −m +1)

since Ck (q) ≤Ck (q +1),

< (k +1)n2k
(

n+2k−3
k−1

)k−1
logn logk

+
n−1∑

m=1
(k +1)n2k(m+1)

(
n−m+2k−2

k−1

)k−1
logn logk

by ind. hyp.,

< (k +1)n
n−1∑

m=0
2k(m+1)

(
n−m+2k−2

k−1

)k−1
logn logk .

Since (m + 1)
(

n−m+2k−2
k−1

)k−1
≤

(
n+2k−1

k

)k
for all m ∈ {0, . . . ,n −1} (see Lemma 4.11), we may

proceed with:

Ck+1(n) < (k +1)n
n−1∑

m=0
2k

(
n+2k−1

k

)k
logn logk

= n(k +1)n2k
(

n+2k−1
k

)k
logn logk

= exp

(
logn +n log(k +1)+k

(
n +2k −1

k

)k

logn logk

)

< exp

((
logn +n +k

(
n +2k −1

k

)k

logn

)
log(k +1)

)

< exp

(
(k +1)

(
n +2k −1

k

)k

logn log(k +1)

)

since logn +n <
(

n+2k−1
k

)k
logn (see below). This is the desired bound.

To see that logn +n <
(

n+2k−1
k

)k
logn, we use

(
n +2k −1

k

)k

>
(n

k
+1

)k
=

k∑

j=0

(
k

j

)
·
(n

k

) j

= 1+k ·
(n

k

)
+·· · ≥ n +1 .

This completes the proof.



50 CHAPTER 4. SIMON’S CONGRUENCE

The following technical lemma used above remains to be proven:

Lemma 4.11. (m +1)
(

n−m+2k−2
k−1

)k−1
≤

(
n+2k−1

k

)k
for all m = 0, . . . ,n −1.

Proof. For k > 0 and x, y ∈R, let

Fk (x)
def=

(
x +2k −1

k

)k

,

Gk,x (y)
def= (y +1)Fk (x − y +1) =

(y +1)(x − y +2k)k

kk
.

Let us check that Gk,x
(k+x

k+1

)
= Fk+1(x) for any k > 0 and x ≥ 0:

Gk,x

(
k +x

k +1

)
=

(
k +x

k +1
+1

)
1

kk

(
x −

k +x

k +1
+2k

)k

=
x +2k +1

k +1

1

kk

(
kx +2k2 +k

k +1

)k

=
x +2k +1

k +1

1

kk

(
k

k +1

)k

(x +2k +1)k

=
(

x +2k +1

k +1

)k+1

= Fk+1(x) . (†)

We now claim that Gk,x (y) ≤ Fk+1(x) for all y ∈ [0, x]. For n,k ≥ 2, the claim entails Gk−1,n(m) ≤

Fk (n), i.e. (m +1)
(

n−m+2k−2
k−1

)k−1
≤

(
n+2k−1

k

)k
, for m = 0, . . . ,n −1 as announced.

We now prove this claim. Let ymax
def= k+x

k+1 . We prove that Gk,x (y) ≤ Gk,x (ymax) and conclude

using Eq. (†): Gk,x is well-defined and differentiable over R, its derivative is

G ′
k,x (y) =

(x − y +2k)k − (y +1)k(x − y +2k)k−1

kk

=
(x − y +2k)k−1

kk

(
(x − y +2k)− (y +1)k

)

=
(x − y +2k)k−1

kk

(
x +k − y(k +1)

)
.

Thus G ′
k,x (y) is 0 for y = ymax, is strictly positive for 0 ≤ y < ymax, and strictly negative for

ymax < y ≤ x. Hence, over [0, x], Gk,x reaches its maximum at ymax.

By combining the two bounds in Propositions 4.6 and 4.10 we obtain Theorem 4.2, implying

that log Ck (n) is in Θ(nk−1 log n) for fixed alphabet size k.



4.4. CONCLUDING REMARKS 51

4.4 Concluding remarks

We proved that, over a fixed k-letter alphabet, Ck (n) is in 2Θ(nk−1 log n). This shows that Ck (n)

is not doubly exponential in n as Eq. (4.2) and Theorem 4.1 would allow. It also is not simply

exponential, bounded by a term of the form 2 f (k)·nc
where the exponent c does not depend

on k.

We are still far from having a precise understanding of how Ck (n) behaves and there are ob-

vious directions for improving Theorem 4.2. For example, its bounds are not monotonic in

k (while the bounds in Theorem 4.1 are not monotonic in n) and it only partially uses the

combinatorial inequalities given by Propositions 4.5 and 4.9.

4.5 Appendix: first values for Ck(n)

We computed the first values of Ck (n) by a brute-force method. The cells left blank in the

tables below were not computed for lack of memory.

Consider Σ∗
≥n , the set of all words over Σ of length at least n. On Σ

∗
≥n , define the equivalence

relation x ∼′
n y iff x and y have the same subwords of length exactly n. Observe that for x and

y in Σ
∗
≥n , x ∼n y if and only if x ∼′

n y . We have, with |Σ| = k,

∣∣Σ∗/ ∼n
∣∣=

∣∣Σ∗
≥n/ ∼′

n

∣∣+kn−1 +kn−2 + . . .+k +1

and thus computing the index of ∼n reduces to computing the index of ∼′
n . Let Sn(w) denote

the set of all n-length subwords of w . For a word w of length at least n and a letter a, observe

that

Sn(w a) =
⋃

v∈Sn (w)
Sn(va)

Thus to compute Sn of arbitrary words of length at least n, it suffices to compute it for words

of length n and n + 1, and take unions. For a word w of length n and a letter a, define

next(w, a) to be Sn(w a).

To compute the index of ∼′
n , the algorithm works as follows:

1. Fix an enumeration ofΣ∗
=n , the set of all words of length n. The order doesn’t matter, but

it is important to fix it. A subset of Σ∗
=n is now represented as a bit vector of length kn .

2. Precompute next.

3. Define a tagged word to be a pair (w,Sn(w)), for some w ∈ Σ
∗
≥n . Initalize a queue with

all tagged word corresponding to words of length n.

4. As long as the queue is nonempty, repeatedly do the following: extract a tagged word

(z, A) from the queue. For every letter c ∈Σ,



52 CHAPTER 4. SIMON’S CONGRUENCE

Compute Bc
def= ⋃

t∈A next(t ,c). If Bc has not been seen before as the sec-

ond component of a tagged word, mark it as seen and push (zc,Bc ) onto the

queue.

Note that this needs maintinaing a global set of seen sets.

Finally, Ck (n) is simply the number of elements pushed onto the set. This algorithm is essen-

tially a breadth-first exploration of a suitable graph.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k

n = 0 1 1 1 1 1 1 1 1

n = 1 2 4 8 16 32 64 128 2k

n = 2 3 16 152 2326 52132 1602420 64529264

k = 1 k = 2 k = 3 k = 4 k = 5 k

n = 3 4 68 5312 1395588 1031153002

n = 4 5 312 334202

n = 5 6 1560 38450477

n = 6 7 8528

n = 7 8 50864

n = 8 9 329248

n = 9 10 2298592

n = 10 11 17203264

n = 11 12 137289920

n n +1

Table 4.1: Computed values of Ck (n)



Chapter 5

Post Embedding Problem

The Regular Post Embedding Problem (PEP for short, named by analogy with Post’s Corre-

spondence Problem, aka PCP) is the problem of deciding, given two morphisms on words

u, v : Σ∗ → Γ
∗ and a regular language R ∈ Reg(Σ), whether there is σ ∈ R such that u(σ) is a

(scattered) subword of v(σ). One then calls σ a solution of the PEP instance. We will drop the

“Regular” and use “Post Embedding Problem” to refer to this problem.

Equivalently, PEP is the question whether a rational relation, or a transduction, T ⊆ Γ
∗×Γ

∗

intersects non-vacuously the subword relation [16], hence it is a special case of the intersec-

tion problem for two rational relations.

This problem, introduced in [27], is quite remarkable: it is decidable but surprisingly hard

since it is not primitive-recursive.1 The problem is in fact Fωω-complete [76], that is, it sits at

the first level above multiply-recursive in the Ordinal-Recursive Complexity Hierarchy [111].

A variant problem was introduced in [27]: PEPdir asks for the existence of a direct solution,

i.e., some σ ∈ R such that u(τ) ⊑ v(τ) for every prefix τ of σ. It turns out that PEP and PEPdir

are inter-reducible (though not trivially) [29] and have the same complexity.

In this chapter we introduce PEPpartial
dir , or “PEP with partial directness”: Instead of requiring

u(τ) ⊑ v(τ) for all prefixes of a solution (as in PEPdir), or for none (as in PEP), PEPpartial
dir lets

us select, by means of a regular language, which prefixes should verify the requirement. Thus

PEP
partial
dir generalizes both PEP and PEPdir.

Our main result is that PEPpartial
dir and the mirror problem PEP

partial
codir are decidable. The proof

combines two ideas. Firstly, by Higman’s Lemma (Theorem 2.20), a long solution must even-

tually contain “comparable” so-called cutting points, from which one deduces that the solu-

tion is not minimal (or unique, or . . . ). Secondly, the above notion of “eventually”, that comes

from Higman’s Lemma, can be turned into an effective upper bound thanks to a Length Func-

1But the problem becomes easy, decidable in linear-time and logarithmic space [27], when restricted to R =Σ
+

as in PCP.

53



54 CHAPTER 5. POST EMBEDDING PROBLEM

tion Theorem [112].

The decidability of PEPpartial
dir not only generalizes the decidability of PEP and PEPdir: it is

also simpler than the earlier proofs forPEP orPEPdir, and it easily leads to an Fωω complexity

upper bound.

In a second part of the chapter, we extend our main result and show the decidability of uni-

versal and/or counting versions of the extended PEP
partial
dir problem. We also explain how our

attempts at further generalisation, most notably by considering the combination of direct-

ness and codirectness in a same instance, lead to undecidable problems.

Applications to channel machines. Our interest in PEP and its variants comes from their

close connection with channel systems. Here, PEP and its variants provide abstract versions

of problems on channel machines, bringing greater clarity and versatility in both decidability

and undecidability (more generally, hardness) proofs.

In this context, a further motivation for considering PEP
partial
dir is that it allows solving the

decidability of UCSTs, i.e., unidirectional channel systems (with one reliable and one lossy

channel) extended with the possibility of testing the contents of channels (see chapter 6). We

recall that PEP was introduced for UCSs, unidirectional channel systems where tests on

channels are not supported [29, 28], and that PEPdir corresponds to LCSs, i.e., lossy chan-

nel systems, for which decidability uses techniques from WSTS theory [7, 48]. Fig. 5.1 depicts

the resulting situation.

PEP PEPdir

PEP
partial
dir

UCS LCS

UCST

≃ ≃

≃

two-way reductions

genera
liz

es generalizes

decidability

via blockers [27]

decidability via

cuttings (this chapter)

decidability by

WSTS theory [8, 48]

Figure 5.1: Three decidability proofs for PEP and variants

Outline of the chapter. Section 5.1 recalls basic notations and definitions. Section 5.1.1

explains the Length Function Theorem for Higman’s Lemma. Section 5.2 contains the main

result of the chapter, a direct decidability proof for PEPpartial
dir , a problem subsuming both

PEP and PEPdir. Section 5.3 builds on this result and shows the decidability of counting

problems on PEP
partial
dir . Section 5.4 further shows the decidability of universal variants of



5.1. PRELIMINARIES 55

these questions. Section 5.5 contains undecidability results for some extensions ofPEPpartial
dir .

5.1 Preliminaries

With a language R ⊆ Γ
∗ one associates a congruence (with respect to concatenation) given

by s ∼R t
def⇔ ∀x, y(xs y ∈ R ⇔ xt y ∈ R) and called the Myhill congruence (also, the syntactic

congruence). This equivalence has finite index if (and only if) R is regular. For regular R, let

µ(R) denote this index: it satisfies µ
(
R̃

)
= µ(Γ∗ \ R) = µ(R) and µ(R ∩R ′) ≤ µ(R)µ(R ′). Also,

µ(R) is computable from R, and in particular, µ(R) ≤ mm when R is recognized by an m-state

complete DFA [62].

5.1.1 Higman’s Lemma and the length of bad sequences

Recall that the subword relation ⊑ on words over a finite alphabet is a wqo (Higman’s Lemma,

Corollary 2.21). For n ∈ N, we say that a sequence (finite or infinite) of words is n-good if it

contains an increasing subsequence of length n. It is n-bad otherwise. Higman’s Lemma

states that every infinite sequence is n-good for every n. Hence every n-bad sequence is

finite.

It is often said that Higman’s Lemma is “non-effective” or “non-constructive” since it does not

come with any explicit information on the maximal length of bad sequences. Consequently,

when one uses Higman’s Lemma to prove that an algorithm terminates, no meaningful up-

per bound on the algorithm’s running time is derived from the proof. However, the length of

bad sequences can be bounded if one takes into account the complexity of the sequences,

or more precisely, of the process that generates bad sequences. The interested reader can

consult [112, 113] for more details. In this chapter we only use the simplest version of these

results, i.e., the statement that when sequences only grow in a restricted way then the maxi-

mal length of bad sequences is computable, as we now explain.

For k ∈N, we say that a sequence of words x1, x2, . . . is k-controlled if |xi | ≤ i k for all i = 1,2, . . .

Let H(n,k,Γ) be the maximum length (if it exists) of an n-bad k-controlled sequence of words

over a finite alphabet Γ.

Theorem 5.1 (Length Function Theorem). H is a computable (total) function. Furthermore,

H is monotonic in its three arguments.

Proof. Any prefix of a finite k-controlled n-bad sequence is k-controlled and n-bad. In par-

ticular, the empty sequence is. We arrange the set of all finite k-controlled n-bad sequences

into a tree denoted Tn,k,Γ, or simply T , where the empty sequence is the root of T , and where

a non-empty sequence of the form x1, . . . , xl+1 is a child of its immediate prefix x1, . . . , xl .



56 CHAPTER 5. POST EMBEDDING PROBLEM

If T has an infinite path, this path is a chain of finite bad sequences linearly ordered by the

prefix ordering and with which we can build an infinite k-controlled n-bad sequence by

taking a limit. Thus T has no infinite paths since, by Higman’s Lemma, Γ∗ has no infinite

bad sequences. Furthermore T is finitely branching, since the sequences it contains are k-

controlled and Γ is finite. Thus, by Kőnig’s Lemma, T is finite and H(n,k,Γ) exists: it is the

length of the longest sequence appearing in T , and also the length of T ’s longest path from

the root.

H is computable since Tn,k,Γ can be constructed effectively, starting from the root and listing

the finitely many ways a current n-bad sequence can be extended in a k-controlled way. Fi-

nally, H is monotonic since, when n′ ≤ n and k ′ ≤ k, the n-bad k-controlled sequences over

Γ include in particular all the n′-bad k ′-controlled sequences over a subalphabet.

Remark 5.2. Note that there is in general no maximum length of n-bad sequences over Γ if

one does not restrict to k-controlled sequences. However, the proof of the Length Function

Theorem can accommodate more liberal notions of controlled sequences, e.g., having |xi | ≤
f (i ) for all i , where f is a given computable function.

Note also that if |Γ| = |Γ′| then H(n,k,Γ) = H(n,k,Γ′): only the number of different letters in

Γ matters, and we sometimes write H(n,k, p) for H(n,k,Γ) where p = |Γ|. Upper bounds on

H(n,k, p) can be derived from the results given in [112] but these bounds are enormous, hard

to express and hard to understand. In this chapter we content ourselves with the fact that H

is computable.

Below, we use the Length Function Theorem contrapositively: a k-controlled sequence of

length greater than H(n,k,Γ) is necessarily n-good, i.e., contains an increasing subsequence

xi1 ⊑ xi2 ⊑ ·· · ⊑ xin of length n.

5.2 Deciding PEP
partial
dir , or PEP with partial directness

We introduce PEP
partial
dir , a problem generalizing both PEP and PEPdir, and show its decid-

ability. This is proved by showing that if a PEP
partial
dir instance has a solution, then it has a

solution whose length is bounded by a computable function of the input. This is simpler and

more direct than the earlier decidability proof (for PEP only) based on blockers [27].

Definition 5.3. PEP
partial
dir is the problem of deciding, given morphisms u, v : Σ∗ → Γ

∗ and

regular languages R,R ′ ∈Reg(Σ), whether there is σ ∈ R such that u(σ) ⊑ v(σ) and u(τ) ⊑ v(τ)

for all prefixes τ of σ belonging to R ′ (in which case σ is called a solution).

PEP
partial
codir is the variant problem of deciding whether there is σ ∈ R such that u(σ) ⊑ v(σ) and

u(τ) ⊑ v(τ) for all suffixes τ of σ that belong to R ′.



5.2. DECIDING PEPPARTIAL
DIR , OR PEP WITH PARTIAL DIRECTNESS 57

Both PEP and PEPdir are special cases of PEPpartial
dir , obtained by taking R ′ =; and R ′ =Σ

∗ re-

spectively. Obviously PEPpartial
dir and PEP

partial
codir are two equivalent presentations, modulo mir-

roring, of a same problem. Given aPEPpartial
dir orPEPpartial

codir instance, we let Ku
def= maxa∈Σ|u(a)|

denote the expansion factor of u and define

L
def= H(µ(R)µ(R ′)+1,Ku ,Γ)

(recall that µ(R) and µ(R ′) are the indexes of the Myhill congruences associated with R and

R ′, while H(n,k,Γ) is defined with the Length Function Theorem).

In this section we prove:

Theorem 5.4. A PEP
partial
codir instance has a solution if, and only if, it has a solution of length at

most 2L.

This entails that PEPpartial
codir is decidable.

Decidability is an obvious consequence since the length bound is computable, and since it is

easy to check whether a candidate σ is a solution.

For the proof of Theorem 5.4, we consider an arbitraryPEPpartial
codir instance (Σ,Γ,u, v,R,R ′) and

a solution σ. Write N = |σ| for its length, σ[0, i ) and σ[i , N ) for, respectively, its prefix of length

i and its suffix of length N − i . Two indices i , j ∈ [0, N ] are congruent if σ[i , N ) ∼R σ[ j , N ) and

σ[i , N ) ∼R ′ σ[ j , N ). When σ is fixed, as in the rest of this section, we use shorthand notations

like u0,i and vi , j to denote the images, here u(σ[0, i )) and v(σ[i , j )), of factors of σ.

We prove two “cutting lemmas” giving sufficient conditions for “cutting” a solutionσ=σ[0, N )

along certain indices a < b, yielding a shorter solution σ′ =σ[0, a)σ[b, N ), i.e., σ with the fac-

tor σ[a,b) cut out. Here the following notation is useful. We associate, with every suffix τ of

σ′, a corresponding suffix, denoted S(τ), of σ: if τ is a suffix of σ[b, N ), then S(τ)
def= τ, other-

wise, τ=σ[i , a)σ[b, N ) for some i < a and we let S(τ)
def= σ[i , N ). In particular S(σ′) =σ.

An index i ∈ [0, N ] is said to be blue if ui ,N ⊑ vi ,N , it is red otherwise. In particular, N is blue

trivially, 0 is blue since σ is a solution, and i is blue whenever σ[i , N ) ∈ R ′. If i is a blue index,

let li ∈ Γ
∗ be the longest suffix of u0,i such that li ui ,N ⊑ vi ,N and call it the left margin at i .

Lemma 5.5 (Cutting lemma for blue indices). Let a < b be two congruent and blue indices.

If la ⊑ lb , then σ′ =σ[0, a)σ[b, N ) is a solution (shorter than σ).

Proof. Clearly σ′ ∈ R since σ ∈ R and a and b are congruent. Also, for all suffixes τ of σ′,

S(τ) ∈ R ′ iff τ ∈ R ′.

We claim that, for any suffix τ of σ′, if u(S(τ)) ⊑ v(S(τ)) then u(τ) ⊑ v(τ). This is obvious

when τ= S(τ), so we assume τ 6= S(τ), i.e., τ=σ[i , a)σ[b, N ) and S(τ) =σ[i , N ) for some i < a.

Assume u(S(τ)) ⊑ v(S(τ)), i.e., ui ,N ⊑ vi ,N . Now both ui ,a and la are suffixes of u0,a , so that

one is a suffix of the other, which gives two cases.



58 CHAPTER 5. POST EMBEDDING PROBLEM

1. If ui ,a is a suffix of la , then

u(τ) = ui ,a ub,N ⊑ la ub,N since ui ,a is a suffix of la ,

⊑ lb ub,N since la ⊑ lb by assumption,

⊑ vb,N by definition of lb ,

⊑ vi ,a vb,N = v(τ) .

2. Otherwise, ui ,a = x la for some x, as illustrated in Fig. 5.2 where slanted arrows follow the

rightmost embedding of u(σ) into v(σ). Here ui ,N ⊑ vi ,N rewrites as x la ua,N ⊑ vi ,a va,N .

(rightmost embedding)

0 i a b N

u(σ):
u0,i ui ,a ua,b ub,N

v(σ):

v0,i
︷ ︸︸ ︷

vi ,a
︷ ︸︸ ︷

va,b
︷ ︸︸ ︷

vb,N
︷ ︸︸ ︷

x la lb

Figure 5.2: Schematics for Lemma 5.5, with la ⊑ lb

Now, and since la is (by definition) the longest suffix for which la ua,N ⊑ va,N , Lemma 2.7

entails x ⊑ vi ,a . Then

u(τ) = ui ,a ub,N = x la ub,N

⊑ vi ,a lb ub,N since x ⊑ vi ,a and la ⊑ lb ,

⊑ vi ,a vb,N = v(τ) by definition of lb .

We can now infer u(τ) ⊑ v(τ) for any suffix τ ∈ R ′ (or for τ = σ′) from the corresponding

u(S(τ)) ⊑ v(S(τ)). This shows that σ′ is a solution.

If i is a red index, i.e., if ui ,N 6⊑ vi ,N , let ri ∈ Γ
∗ be the shortest prefix of ui ,N such that r−1

i ui ,N ⊑
vi ,N (equivalently ui ,N ⊑ ri vi ,N ) and call it the right margin at i .

Lemma 5.6 (Cutting lemma for red indices). Let a < b be two congruent and red indices. If

rb ⊑ ra , then σ′ =σ[0, a)σ[b, N ) is a solution (shorter than σ).

Proof. Write x for r−1
b ub,N . Then ub,N = rb x and x ⊑ vb,N . We proceed as for Lemma 5.5

and show that u(S(τ)) ⊑ v(S(τ)) implies u(τ) ⊑ v(τ) for all suffixes τ of σ′. Assume u(S(τ)) ⊑
v(S(τ)) for some τ. The only interesting case is when τ 6= S(τ), i.e., when τ=σ[i , a)σ[b, N ) for

some i < a (see Figure 5.3).



5.2. DECIDING PEPPARTIAL
DIR , OR PEP WITH PARTIAL DIRECTNESS 59

(rightmost embedding)

0 i a b N

u(σ):
u0,i ui ,a ua,b ub,N

v(σ):

v0,i
︷ ︸︸ ︷

vi ,a
︷ ︸︸ ︷

va,b
︷ ︸︸ ︷

vb,N
︷ ︸︸ ︷

ra rb x

Figure 5.3: Schematics for Lemma 5.6, with rb ⊑ ra

From ui ,N = ui ,a ua,N ⊑ vi ,a va,N = vi ,N , i.e., u(S(τ)) ⊑ v(S(τ)), and ua,N 6⊑ va,N (since a is a

red index), Lemma 2.8 entails ui ,a ra ⊑ vi ,a by definition of ra . Then

u(τ) = ui ,a ub,N = ui ,a rb x ⊑ ui ,a ra vb,N since rb ⊑ ra and x ⊑ vb,N ,

⊑ vi ,a vb,N = v(τ) since ui ,a ra ⊑ vi ,a .

For the next step let g1 < g2 < ·· · < gN1 be all the blue indices in σ, and let b1 < b2 < ·· · < bN2

be the red indices. Observe that N1 +N2 = N +1 since each index in 0, . . . , N is either blue or

red. We consider the corresponding sequences (lgi )i=1,...,N1 of left margins and (rbi )i=1,...,N2 of

right margins.

Lemma 5.7. |lgi | ≤ (i−1)×Ku for all i = 1, . . . , N1, and |rbi | ≤ (N2−i+1)×Ku for all i = 1, . . . , N2.

In other words, the sequence of left margins and the reversed sequence of right margins are

Ku-controlled.

Proof. We prove that |lgi | ≤ (i−1)×Ku by induction on i , showing |lg1 | = 0 and |lgi |−|lgi−1 | ≤ Ku

for i > 1.

The base case i = 1 is easy: obviously g1 = 0 since 0 is a blue index, and l0 = ǫ since it is the

only suffix of u0,0 = ǫ, so that |lg1 | = 0.

For the inductive step i > 1, write p for gi−1 and q for gi . By definition, lp is the longest suffix

of u0,p with lp up,N = lp up,q uq,N ⊑ vp,N . Since lq uq,N ⊑ vq,N ⊑ vp,N , lq must be a suffix of

lp up,q , hence |lq | ≤ |lp | + |up,q | ≤ |lp | +Ku(q − p). This proves the claim in the case where

q = p +1, i.e., when p and p +1 are blue.

There remains the case where q > p +1 and where all the indices from p +1 to q −1 are red.

Thus in particular uq−1,N = uq−1,q uq,N 6⊑ vq−1,N . On the other hand q is blue and lq uq,N ⊑
vq,N ⊑ vq−1,N . We conclude that lq must be a suffix of uq−1,q , so that |lq | ≤ Ku which proves

the claim.

The reasoning for |rbi | is similar:

If bi+1 = bi +1, then both bi and the next index are red. Then rbi is a prefix of ubi ,bi+1 rbi+1 so

that |rbi | ≤ Ku +|rbi+1 |.



60 CHAPTER 5. POST EMBEDDING PROBLEM

If bi+1 > bi +1, then bi +1 is blue and rbi is a prefix of ubi ,bi+1 so that |rbi | ≤ Ku .

For the base case, we have bN2 < N since N is blue. Hence bN2 +1 is blue and |rbN2
| ≤ Ku as

above.

Finally, |rbi | ≤ (N2 +1− i )×Ku for all i = 1, . . . , N2.

We are now ready to conclude the proof of Theorem 5.4. Let Nc
def= µ(R)µ(R ′)+ 1 and L

def=
H(Nc ,Ku ,Γ) and assume that N > 2L. Since N1 +N2 = N +1, either σ has at least L +1 blue

indices and, by definition of L and H , there exist Nc blue indices a1 < a2 < ·· · < aNc with

la1 ⊑ la2 ⊑ ·· · ⊑ laNc
, or σ has at least L + 1 red indices and there exist Nc red indices a′

1 <
a′

2 < ·· · < a′
Nc

with ra′
Nc

⊑ ·· · ⊑ ra′
2
⊑ ra′

1
(since it is the reversed sequence of right margins

that is controlled). Out of Nc = µ(R)µ(R ′)+1 indices, two must be congruent, fulfilling the

assumptions of either Lemma 5.5 or Lemma 5.6. Therefore σ can be cut to obtain a shorter

solution.

Since PEP
partial
dir and PEP

partial
codir are equivalent problems modulo mirroring of R, u and v , we

deduce that PEPpartial
dir too is decidable, and more precisely:

Corollary 5.8. A PEP
partial
dir instance has a solution if, and only if, it has a solution of length at

most 2L.

5.3 Counting the number of solutions

We consider two counting questions: ∃∞PEP
partial
dir is the question whether a PEP

partial
dir in-

stance has infinitely many solutions (a decision problem), while #PEPpartial
dir is the problem

of computing the number of solutions of the instance (a number in N∪ {∞}). For techni-

cal convenience, we often deal with the (equivalent) codirected versions, ∃∞PEP
partial
codir and

#PEPpartial
codir .

For an instance (Σ,Γ,u, v,R,R ′), we let Kv
def= maxa∈Σ|v(a)| and define

M
def= H(µ(R)µ(R ′)+1,Kv ,Γ) , M ′ def= H

(
(2M +2)µ(R)µ(R ′)+1,Ku ,Γ

)
.

In this section we prove:

Theorem 5.9. For a PEP
partial
dir or PEPpartial

codir instance, the following are equivalent:

(a) it has infinitely many solutions;

(b) it has a solution of length N with 2M < N ;

(c) it has a solution of length N with 2M < N ≤ 2M ′.



5.3. COUNTING THE NUMBER OF SOLUTIONS 61

This entails the decidability of ∃∞PEP
partial
dir and ∃∞PEP

partial
codir , and also the computability of

#PEPpartial
dir and #PEPpartial

codir .

As with Theorem 5.4, the length bounds 2M and 2M ′ are computable, so that ∃∞PEP
partial
dir

and ∃∞PEP
partial
codir can be decided by finite enumeration. When the number of solutions is

finite, counting them can also be done by finite enumeration since we know all solutions

have then length at most 2M .

For the proof of Theorem 5.9, we first observe that if the instance has a solution of length

N > 2M , it has a solution with R replaced by R> def= R ∩Σ
2M+1

Σ
∗. The syntactic congruence

associated with R> has index at most (2M +2)µ(R). From Theorem 5.4, we deduce that the

modified instance has a solution of length at most 2M ′. Hence (b) and (c) are equivalent.

It remains to show that (b) implies (a) since obviously (a) implies (b). For this we fix an arbi-

trary PEP
partial
codir instance (Σ,Γ,u, v,R,R ′) and consider a solution σ, of length N . We develop

two so-called “iteration lemmas” that are similar to the cutting lemmas from section 5.2, with

the difference that they expand σ instead of reducing it.

As before, an index i ∈ [0, N ] is said to be blue if ui ,N ⊑ vi ,N , and red otherwise. With a blue

(resp., a red) index i ∈ [0, N ] we associate a word si (resp., ti ) in Γ
∗. The si ’s and ti ’s are

analogous to the li ’s and ri ’s from section 5.2, however they are factors of v(σ), not of u(σ)

like li or ri , and this explains the difference between M and L. The terms “left margin” and

“right margin” will be reused here for these factors.

We start with blue indices. For a blue index i ∈ [0, N ], let si be the longest prefix of vi ,N such

that ui ,N ⊑ s−1
i vi ,N (equivalently, such that si ui ,N ⊑ vi ,N ) and call it the right margin at i .

Lemma 5.10. Suppose a < b are two blue indices with sb ⊑ sa . Then for all k ≥ 1, sa(ua,b)k ⊑
(va,b)k sb .

Proof. sa ua,N ⊑ va,N expands as (sa ua,b)ub,N ⊑ va,b vb,N . Since b is blue, ub,N ⊑ vb,N and, by

definition of sb , Lemma 2.9 further yields sa ua,b ⊑ va,b sb . One concludes with Lemma 2.11,

using sb ⊑ sa .

Lemma 5.11 (Iteration lemma for blue indices). Let a < b be two congruent blue indices. If

sb ⊑ sa , then for every k ≥ 1, σ′ =σ[0, a).σ[a,b)k .σ[b, N ) is a solution.

Proof. Let τ be any suffix of σ′. We show that u(τ) ⊑ v(τ) when τ ∈ R ′ or τ = σ′, which will

complete the proof. There are three cases, depending on how long τ is.

• τ is a suffix of σ[a, N ). Then τ is a suffix of σ itself, and this case is trivial since σ is a

solution.



62 CHAPTER 5. POST EMBEDDING PROBLEM

• τ is σ[i ,b)σ[a,b)pσ[b, N ) for some p ≥ 1 and a < i ≤ b. Since a and b are congruent,

τ ∈ R ′ implies σ[i , N ) ∈ R ′. Thus ui ,N ⊑ vi ,N , hence ui ,b ⊑ vi ,b sb (since ub,N ⊑ vb,N ).

u(τ) = ui ,b(ua,b)p ub,N

⊑ vi ,b sb(ua,b)p ub,N

⊑ vi ,b sa(ua,b)p ub,N since sb ⊑ sa

⊑ vi ,b(va,b)p sb ub,N by Lemma 5.10

⊑ vi ,b(va,b)p vb,N by definition of sb

= v(τ) .

• τ is σ[i , a)σ[a,b)kσ[b, N ) for some 0 ≤ i < a. Since a and b are congruent, τ ∈ R ′ (or

τ= σ) implies ui ,N ∈ R ′ (or ui ,N = σ) so that ui ,N ⊑ vi ,N , from which we deduce ui ,a ⊑
vi ,a sa as in the previous case. Then, using Lemma 5.10 and sb ub,N ⊑ vb,N , we get

u(τ) = ui ,a(ua,b)k ub,N

⊑ vi ,a sa(ua,b)k ub,N

⊑ vi ,a(va,b)k sb ub,N by Lemma 5.10

⊑ vi ,a(va,b)k vb,N by definition of sb

= v(τ) .

Now to red indices. For a red index i ∈ [0, N ], let ti be the shortest suffix of v0,i such that

ui ,N ⊑ ti vi ,N . This is called the left margin at i . Thus, for a blue j such that j < i , u j ,N ⊑ v j ,N

implies u j ,i ti ⊑ v j ,i by Lemma 2.10.

Lemma 5.12 (Iteration lemma for red indices). Let a < b be two congruent red indices. If

ta ⊑ tb , then for every k ≥ 1, σ′ =σ[0, a).σ[a,b)k .σ[b, N ) is a solution.

Proof. Let τ be any suffix of σ′. We show that u(τ) ⊑ v(τ) when τ ∈ R ′ or τ = σ′, which will

complete the proof. There are three cases, depending on how long τ is.

• τ is a suffix of σ[a, N ). Then τ is a suffix of σ itself, and this case is trivial since σ is a

solution.

• τ is σ[i ,b)σ[a,b)pσ[b, N ) for some p ≥ 1 and a < i ≤ b. Since a and b are congruent,

τ ∈ R ′ implies σ[i , N ) ∈ R ′ and so ui ,N ⊑ vi ,N . By definition of ta , we have ua,bub,N ⊑
(ta va,b)vb,N . Using Lemma 2.10 and the definition of tb we get ua,b tb ⊑ ta va,b , and



5.3. COUNTING THE NUMBER OF SOLUTIONS 63

then (ua,b)p tb ⊑ ta(va,b)p with Lemma 2.12. Then

u(τ) = ui ,b(ua,b)p ub,N

⊑ ui ,b(ua,b)p tb vb,N by definition of tb

⊑ ui ,b ta(va,b)p vb,N as above

⊑ ui ,b tb(va,b)p vb,N since ta ⊑ tb

⊑ vi ,b(va,b)p vb,N since ui ,N ⊑ vi ,N , b is red, Lemma 2.10

= v(τ) .

• τ is σ[i , a)σ[a,b)kσ[b, N ) for some 0 ≤ i < a and k ≥ 1. Since a and b are congruent,

τ ∈ R ′ (or τ = σ) implies ui ,N ∈ R ′ (or ui ,N = σ) so that ui ,N ⊑ vi ,N , from which we

deduce ui ,a ta ⊑ vi ,a as in the previous case. Then

u(τ) = ui ,a(ua,b)k ub,N

⊑ ui ,a(ua,b)k tb vb,N by definition of tb

⊑ ui ,a ta (va,b)k vb,N as before

⊑ vi ,a(va,b)k vb,N as above

= v(τ) .

We may now prove that the PEPpartial
codir instance has infinitely many solutions if it has solution

of length N > 2M , i.e., that (b) implies (a) in Theorem 5.9.

Lemma 5.13. Suppose a < b are two blue indices. Then sa is a prefix of va,b sb .

Proof. Both sa and va,b sb are prefixes of va,N , hence one of them is a prefix of the other.

Assume, by way of contradiction, that va,b sb is a proper prefix of sa , say sa = va,b sb x for some

x 6= ǫ. Then sa ua,N ⊑ va,N rewrites as va,b sb x ua,N ⊑ va,b vb,N . Cancelling va,b on both sides

gives sb x ua,N ⊑ vb,N , i.e., (sb x ua,b)ub,N ⊑ vb,N , which contradicts the definition of sb .

Suppose there are N1 blue indices in σ, say g1 < g2 < ·· · < gN1 ; and N2 red indices, say b1 <
b2 < ·· · < bN2 .

Lemma 5.14. |sgi | ≤ (N1 − i + 1)×Kv for all i = 1, . . . , N1, and |tbi | ≤ (i − 1)×Kv for all i =
1, . . . , N2. That is, the reversed sequence of right margins and the sequence of left margins are

Kv -controlled.

Proof. We start with blue indices and right margins.

We now show that sgN1
, . . . , sg1 is Kv -controlled. N is a blue index, and |sN | = 0. For i ∈ [0, N ),

if both i and i +1 are blue indices, then by Lemma 5.13, |si | ≤ |si+1|+Kv . If i is blue and i +1



64 CHAPTER 5. POST EMBEDDING PROBLEM

is red, then it is easy to see that si is a prefix of v(σi ), and hence |si | ≤ Kv . So we get that

sgN1
, . . . , sg1 is Kv -controlled.

Now to red indices and left margins. 0 is not a red index. For i ∈ [0, N ), if both i and i +1 are

red, then it is easy to see that ti+1 is a suffix of ti v(σi ), and so |ti+1| ≤ |ti | +Kv . If i is blue

and i +1 is red, then ti+1 is a suffix of v(σi ), and so |ti+1| ≤ Kv . So we get that tb1 , . . . , tbN2
is

Kv -controlled.

Assume thatσ is a long solution of length N > 2M . At least M+1 indices among [0, N ] are blue,

or at least M +1 are red. We apply one of the two above claims, and from either sgN1
, . . . , sg1 (if

N1 > M) or tb1 , . . . , tbN2
(if N2 > M) we get an increasing subsequence of length µ(R)µ(R ′)+1.

Among these there must be two congruent indices. Then we get infinitely many solutions by

Lemma 5.11 or Lemma 5.12.

5.4 Universal variants of PEP
partial
dir

We consider universal variants of PEPpartial
dir (or rather PEPpartial

codir for the sake of uniformity).

Formally, given instances (Σ,Γ,u, v,R,R ′) as usual, ∀PEPpartial
codir is the question whether every

σ ∈ R is a solution, i.e., satisfies both u(σ) ⊑ v(σ) and u(τ) ⊑ v(τ) for all suffixes τ that belong

to R ′. Similarly, ∀∞PEP
partial
codir is the question whether “almost all”, i.e., all but finitely many, σ

in R are solutions, and #¬PEPpartial
codir is the associated counting problem that asks how many

σ ∈ R are not solutions.

These universal questions can also be seen as Post non-embedding problems, asking whether

there exists some σ ∈ R such that u(σ) 6⊑ v(σ)? Introduced in [32] with ∀PEP, they are signif-

icantly less challenging than the standard PEP problems, and decidability is easier to estab-

lish. For this reason, we just show in this chapter how ∀PEPpartial
codir and ∀∞PEP

partial
codir reduce

to ∀∞PEP whose decidability was shown in [32]. The point is that partial codirectness con-

straints can be eliminated since universal quantifications commute with conjunctions (and

since the codirectness constraint is universal itself).

Lemma 5.15. ∀PEPpartial
codir and ∀∞PEP

partial
codir many-one reduce to ∀∞PEP.

Corollary 5.16. ∀PEPpartial
codir and ∀∞PEP

partial
codir are decidable, #¬PEPpartial

codir is computable.

We now prove Lemma 5.15. First, ∀PEPpartial
codir easily reduces to ∀∞PEP

partial
codir : add an extra

letter z to Σ with u(z) = v(z) = ǫ and replace R and R ′ with R.z∗ and R ′.z∗. Hence the second

half of the lemma entails its first half by transitivity of reductions.

For reducing ∀∞PEP
partial
codir , it is easier to start with the negation of our question:

∃∞σ ∈ R :
(
u(σ) 6⊑ v(σ) or σ has a suffix τ in R ′ with u(τ) 6⊑ v(τ)

)
. (∗)



5.4. UNIVERSAL VARIANTS OF PEPPARTIAL
DIR 65

Call σ ∈ R a type 1 witness if u(σ) 6⊑ v(σ), and a type 2 witness if it has a suffix τ ∈ R ′ with

u(τ) 6⊑ v(τ). Statement (∗) holds if, and only if, there are infinitely many type 1 witnesses

or infinitely many type 2 witnesses. The existence of infinitely many type 1 witnesses (call

that “case 1”) is the negation of a ∀∞PEP question. Now suppose that there are infinitely

many type 2 witnesses, say σ1,σ2, . . . For each i , pick a suffix τi of σi such that τi ∈ R ′ and

u(τi ) 6⊑ v(τi ). The set {τi | i = 1,2, . . .} of these suffixes can be finite or infinite. If it is infinite

(“case 2a”), then

u(τ) 6⊑ v(τ) for infinitely many τ ∈ (
−→
R ∩R ′) , (∗∗)

where
−→
R is short for

−−→≥0R and for k ∈ N,
−−→
≥k R

def= {y | ∃x : (|x| ≥ k and x y ∈ R)} is the set of the

suffixes of words from R one obtains by removing at least k letters. Observe that, conversely,

(∗∗) implies the existence of infinitely many type 2 witnesses (for a proof, pick τ1 ∈ −→
R ∩R ′

satisfying the above, choose σ1 ∈ R of which τ1 is a suffix. Then choose τ2 such that |τ2| > |σ1|,
and proceed similarly).

On the other hand, if {τi | i = 1,2, . . .} is finite (“case 2b”), then there is a τ ∈ R ′ such that

u(τ) 6⊑ v(τ) and σ′τ ∈ R for infinitely many σ′. By a standard pumping argument, the second

point is equivalent to the existence of some such σ′ with also |σ′| > kR , where kR is the size of

a NFA for R (taking kR = µ(R) also works). Write now R̂ for
−−−→
>kR R: if {τi | i = 1,2, . . .} is finite,

then u(τ) 6⊑ v(τ) for some τ in (R ′∩ R̂), and conversely this implies the existence of infinitely

many type 2 witnesses.

To summarize, and since
−→
R and R̂ are regular and effectively computable from R, we have

just reduced ∀∞PEP
partial
codir to the following conjunction

∀∞σ ∈ R : u(σ) ⊑ v(σ) (not case 1)
∧

∀∞τ ∈ (
−→
R ∩R ′) : u(τ) ⊑ v(τ) (not case 2a)

∧
∀τ ∈ (R̂ ∩R ′) : u(τ) ⊑ v(τ) . (not case 2b)

This is now reduced to a single ∀∞PEP instance by rewriting the ∀PEP into a ∀∞PEP (as

explained in the beginning of this proof) and relying on a distributivity property of the form

n∧

i=1

[
∀∞σ ∈ Ri : u(σ) ⊑ v(σ)

]
≡ ∀∞σ ∈

[ n⋃

i=1
Ri

]
: u(σ) ⊑ v(σ)

to handle the resulting conjunction of 3 ∀∞PEP instances.

To see that #¬PEPpartial
codir is computable, consider a given instance (Σ,Γ,u, v,R,R ′). We need

to compute the number of σ ∈ R which are not solutions. First we use ∀∞PEP
partial
codir to find

whether this number is finite or infinite. If it is infinite, we are done. Otherwise, we find a

bound on the length of the longest non-solution: it is the smallest n such that replacing R by

R ∩ {w : |w | > n} results in a “yes” instance of ∀PEPpartial
codir . This n is guaranteed to exist. Then

the set of non-solutions in R can be counted by explicit enumeration.



66 CHAPTER 5. POST EMBEDDING PROBLEM

5.5 Undecidability for PEPco&dir and other extensions

The decidability of PEPpartial
dir is a non-trivial generalization of previous results for PEP. It

is a natural question whether one can further generalize the idea of partial directness and

maintain decidability. In this section we describe two attempts that lead to undecidability,

even though they remain inside the regular PEP framework.2

Allowing non-regular R ′. One direction for extending PEP
partial
dir is to allow more expres-

sive R ′ sets for partial (co)directness. Let PEPpartial[DCFL]
codir and PEP

partial[Pres]
codir be like PEP

partial
codir

except that R ′ can be any deterministic context-free R ′ ∈ DCFL(Σ) (resp., any Presburger-

definable R ′ ∈ Pres(Σ), i.e., a language consisting of all words whose Parikh image lies in a

given Presburger, or semilinear, subset of N|Σ|). Note that R ∈Reg(Σ) is still required.

Theorem 5.17 (Undecidability). PEP
partial[DCFL]
codir and PEP

partial[Pres]
codir are Σ

0
1-complete.

Since both problems clearly are in Σ
0
1, one only has to prove hardness by reduction, e.g.,

from PCP, Post’s Correspondence Problem. Let (Σ,Γ,u, v) be a PCP instance (where the

question is whether there exists x ∈ Σ
+ such that u(x) = v(x)). Extend Σ and Γ with new

symbols: Σ
′ def= Σ∪ {1,2} and Γ

′ def= Γ∪ {#}. Now define u′, v ′ : Σ′∗ → Γ
′∗ by extending u, v

on the new symbols with u′(1) = v ′(2) = ǫ and u′(2) = v ′(1) = #. Define now R = 12Σ+ and

R ′ = {τ2τ′ | τ,τ′ ∈ Σ
∗ and |u(ττ′)| 6= |v(ττ′)|}. Note that R ′ is deterministic context-free and

Presburger-definable.

Lemma 5.18. The PCP instance (Σ,Γ,u, v) has a solution if and only if the PEPpartial[Pres]
codir and

PEP
partial[DCFL]
codir instance (Σ′,Γ′,u′, v ′,R,R ′) has a solution.

Proof. Suppose σ is a solution to the PCP problem. Then σ 6= ǫ and u(σ) = v(σ). Now

σ′ def= 12σ is a solution to the partially codirected problem since 12σ ∈ R, u′(12σ) = #u(σ) ⊑
v ′(12σ) = #v(σ), and σ′ has no suffix in R ′ (indeed 2σ 6∈ R ′ since |u(σ)| = |v(σ)|).

Conversely, suppose σ′ is a solution to the partially codirected problem. Then σ′ = 12σ for

some σ 6= ǫ. Since u′(σ′) = #u(σ) ⊑ v ′(σ′) = #v(σ), we have u(σ) ⊑ v(σ). If |u(σ)| 6= |v(σ)|,
then 2σ ∈ R ′, and so we must have u′(2σ) = #u(σ) ⊑ v ′(2σ) = v(σ). This is not possible as #

does not occur in v(σ). So |u(σ)| = |v(σ)|, and u(σ) = v(σ). Thus σ is a solution to the PCP

problem.

Combining directness and codirectness. Another direction is to allow combining direct-

ness and codirectness constraints. Formally, PEPco&dir is the problem of deciding, given

Σ, Γ, u, v , and R ∈ Reg(Σ) as usual, whether there exists σ ∈ R such that u(τ) ⊑ v(τ) and

2 PEP is undecidable if we allow constraint sets R outside Reg(Σ) [27]. Other extensions, like ∃x ∈ R1 : ∀y ∈ R2 :

u(x y) ⊑ v(x y), for R1,R2 ∈Reg(Σ), have been shown undecidable [31].



5.5. UNDECIDABILITY FOR PEPCO&DIR AND OTHER EXTENSIONS 67

u(τ′) ⊑ v(τ′) for all decompositions σ= τ.τ′. In other words, σ is both a direct and a codirect

solution.

Note that PEPco&dir has no R ′ parameter (or, equivalently, has R ′ = Σ
∗) and requires direct-

ness and codirectness at all positions. However, this restricted combination is already unde-

cidable:

Theorem 5.19 (Undecidability). PEPco&dir is Σ0
1-complete.

Membership in Σ
0
1 is clear and we prove hardness by reducing from the Reachability Problem

for length-preserving semi-Thue systems.

A semi-Thue system S = (Υ,∆) has a finite set ∆ ⊆ Υ
∗×Υ

∗ of string rewrite rules over some

finite alphabet Υ, written ∆= {l1 → r1, . . . , lk → rk }. The one-step rewrite relation −→∆ ⊆Υ
∗×

Υ
∗ is defined as usual with x−→∆y

def⇔ x = zl z ′ and y = zr z ′ for some rule l → r in ∆ and strings

z, z ′ in Υ
∗. We write x

m−→∆y and x
∗−→∆y when x can be rewritten into y by a sequence of m

(respectively, any number, possibly zero) rewrite steps.

The Reachability Problem for semi-Thue systems is “Given S = (Υ,∆) and two regular lan-

guages P1,P2 ∈ Reg(Υ), is there x ∈ P1 and y ∈ P2 s.t. x
∗−→∆y?”. It is well-known (or easy to

see by encoding Turing machines in semi-Thue systems) that this problem is undecidable

(in fact, Σ0
1-complete) even when restricted to length-preserving systems, i.e., systems where

|l | = |r | for all rules l → r ∈∆.

We now construct a many-one reduction to PEPco&dir. Let S = (Υ,∆), P1, P2 be a length-

preserving instance of the Reachability Problem. W.l.o.g., we assume ǫ 6∈ P1 and we restrict to

reachability via an even and non-zero number of rewrite steps. With any such instance we

associate a PEPco&dir instance u, v : Σ∗ → Γ
∗ with R ∈Reg(Σ) such that the following Correct-

ness Property holds:

∃x ∈ P1, ∃y ∈ P2, ∃m s.t. x
m−→∆y (and m > 0 is even)

iff ∃σ ∈ R s.t. σ= ττ′ implies u(τ) ⊑ v(τ) and u(τ′) ⊑ v(τ′) .
(CP)

The reduction uses letters like a, b and c taken from Υ, and adds † as an extra letter. We use six

copies of each such “plain” letter. These copies are obtained by priming and double-priming

letters, and by overlining. Hence the six copies of a are a, a′, a′′, a, a′, a′′. As expected, for a

“plain” word (or alphabet) x, we write x ′ and x to denote a version of x obtained by priming

(respectively, overlining) all its letters. Formally, letting Υ† being short for Υ∪ {†}, one has

Σ= Γ
def= Υ† ∪Υ

′
† ∪Υ

′′
† ∪Υ† ∪Υ

′
† ∪Υ

′′
† .

We define and explain the reduction by running it on the following example:

Υ= {a,b,c} and ∆= {ab → bc, cc → aa}. (Sexmp)



68 CHAPTER 5. POST EMBEDDING PROBLEM

Assume that abc ∈ P1 and baa ∈ P2. Then P1
∗−→∆P2 since abc

∗−→∆baa as witnessed by the

following (even-length) derivation π = “abc−→∆bcc−→∆baa”. In our reduction, a rewrite step

like “abc−→∆bcc” appears in the PEP solution σ as the letter-by-letter interleaving abbccc,

denoted abc |||bcc, of a plain string and an overlined copy of a same-length string.

Write T◮(∆), or just T◮ for short, for the set of all x ||| y such that x−→∆y . Obviously, and since

we are dealing with length-preserving systems, T◮ is a regular language, as seen by writing it

as T◮ =
(∑

a∈Υ aa
)∗.

{
l |||r | l → r ∈ ∆

}
.
(∑

a∈Υ aa
)∗, where {l |||r | l → r ∈ ∆} is a finite, hence

regular, language.

T◮ accounts for odd-numbered steps. Symmetrically, for even-numbered steps like bcc−→∆

baa in π above, we use bbacac, i.e., baa |||bcc. Here too T◭

def= {y |||x | x−→∆y} is regular.

Finally, a derivation π of the general form

x0−→∆x1−→∆x2 . . .−→∆x2k ,

where K
def= |x0| = . . . = |x2k |, is encoded as a solution σπ of the form

σπ = ρ0σ1ρ1σ2 . . .ρ2k−1σ2kρ2k

that alternates between the encodings of steps (the σi ’s) in T◮ ∪ T◭, and fillers, (the ρi ’s)

defined as follows:

σi
def=

{
xi−1 |||xi for odd i ,

xi |||xi−1 for even i ,

ρ0
def= x ′′

0 |||†
′′K ,

ρ2k
def= x ′′

2k |||†
′′K ,

ρi
def=

{
†′K |||x ′

i for odd i ,

x ′
i |||†

′K for even i 6= 0,2k .

Note that the extremal fillers ρ0 and ρ2k use double-primed letters, when the internal fillers

use primed letters. Continuing our example, the σπ associated with the derivation abc−→∆

bcc−→∆baa is

σπ = a′′†′′b′′†′′c ′′†′′︸ ︷︷ ︸
a′′b′′c ′′ |||†′′†′′†′′

abbccc︸ ︷︷ ︸
abc |||bcc

†′b′†′c ′†′c ′︸ ︷︷ ︸
†′†′†′ |||b′c ′c ′

bbacac︸ ︷︷ ︸
baa |||bcc

b′′†′′a′′†′′a′′†′′︸ ︷︷ ︸
b′′a′′a′′ |||†′′†′′†′′

.

The point with primed and double-primed copies is that u and v associate them with differ-

ent images. Precisely, we define

u(a) = a, u(a′) = †, u(†′) = †, u(a′′) = ǫ, u(†′′) = ǫ,

v(a) = †, v(a′) = a, v(†′) = wΥ, v(a′′) = a, v(†′′) = wΥ,

where a is any letter in Υ, and where wΥ is a word listing all letters in Υ. E.g., w{a,b,c} = abc

in our running example. The extremal fillers use special double-primed letters because we



5.5. UNDECIDABILITY FOR PEPCO&DIR AND OTHER EXTENSIONS 69

want u(ρ0) = u(ρ2k ) = ǫ (while v behaves the same on primed and double-primed letters).

Finally, overlining is preserved by u and v : u(x)
def= u(x) and v(x)

def= v(x).

This ensures that, for i > 0, u(σi ) ⊑ v(ρi−1) and u(ρi ) ⊑ v(σi ), so that a σπ constructed as

above is a direct solution. It also ensures u(σi ) ⊑ v(ρi ) and u(ρi−1) ⊑ v(σi ) for all i > 0, so

that σπ is also a codirect solution. One can check it on our running example by writing u(σπ)

and v(σπ) alongside:

σπ =

ρ0︷ ︸︸ ︷
a′′†′′b′′†′′c ′′†′′

σ1︷ ︸︸ ︷
abbccc

ρ1︷ ︸︸ ︷
†′b′†′c ′†′c ′

σ2︷ ︸︸ ︷
bbacac

ρ2︷ ︸︸ ︷
b′′†′′a′′†′′a′′†′′

u(σπ) = abbccc †††††† bbacac

v(σπ) = a abc b abc c abc †††††† abc b abc c abc c †††††† b abc a abc a abc

There remains to define R. Since ρ0 ∈
(
Υ

′′†′′
)+, since σi ∈ T◮ for odd i , etc., we let

R
def=

(
Υ

′′†′′
)+.T ∩P1

◮
.
(
†′Υ′)+.

(
T◭.

(
Υ

′†′
)+.T◮.

(
†′Υ′)+

)∗
.T ∩P2

◭
.
(
Υ

′′†′′
)+ ,

where T ∩P1
◮

def= {x ||| y | x−→∆y ∧ x ∈ P1} = T◮∩ {x ||| y | x ∈ P1 ∧|x| = |y |} is clearly regular when

P1 is, and similarly for T ∩P2
◭

def= {y |||x | x−→∆y ∧ y ∈ P2}. Since σπ ∈ R when π is an even-length

derivation from P1 to P2, we deduce that the left-to-right implication in (CP) holds.

We now prove the right-to-left implication, which concludes the proof of Theorem 5.19.

Assume that there is a σ ∈ R such that u(τ) ⊑ v(τ) and u(τ′) ⊑ v(τ′) for all decompositions

σ= ττ′. By definition of R, σ must be of the form

σ= ρ0σ1ρ1(σ2ρ2σ3ρ3) . . . (. . .σ2k−1ρ2k−1)σ2kρ2k

for some k > 0, withρ0 ∈
(
Υ

′′†′′
)+, withσi ∈ T◮ for odd i andσi ∈ T◭ for even i , etc. These 4k+

1 non-empty factors, (σi )1≤i≤2k and (ρi )0≤i≤2k , are called the “segments” of σ, and numbered

s0, . . . , s4k in order.

Lemma 5.20. u(sp ) ⊑ v(sp−1) and u(sp−1) ⊑ v(sp ) for all p = 1, . . . ,4k.

Proof. First note that the definition of u and v ensures that u(sp ) and v(sp ) use disjoint al-

phabets. More precisely, all u(σi )’s and v(ρi )’s are in (ΥΥ)∗, while the v(σi )’s and the u(ρi )’s

are in (††)∗, with the special case that u(ρ0) = u(ρ2k ) = ǫ since ρ0 and ρ2k are made of double-

primed letters.

Since σ is a direct solution, u(s0 . . . sp ) ⊑ v(s0 . . . sp ) for any p, and even

u(s0 . . . sp ) ⊑ v(s0 . . . sp−1), (Ap )



70 CHAPTER 5. POST EMBEDDING PROBLEM

since v(sp ) has no letter in common with u(sp ). We now claim that, for all p = 1, . . . ,4k

u(s0s1 . . . sp ) 6⊑ v(s0s1 . . . sp−2), (Bp )

as we prove by induction on p. For the base case, p = 1, the claim is just the obvious u(s0s1) 6⊑
ǫ. For the inductive case p > 1, one combines u(s0 . . . sp−1) 6⊑ v(s0 . . . sp−3) (ind. hyp.) with

u(sp ) 6⊑ v(sp−2) (different alphabets) and gets u(s0 . . . sp ) 6⊑ v(s0 . . . sp−2).

We now combine (Ap ), i.e., u(s0 . . . sp ) ⊑ v(s0 . . . sp−1), and (Bp−1), i.e., u(s0s1 . . . sp−1) 6⊑ v(s0s1

. . . sp−3), yielding u(sp ) ⊑ v(sp−2sp−1), hence u(sp ) ⊑ v(sp−1) since u(sp ) and v(sp−2) share no

letter: we have proved one half of the Lemma. The other half is proved symmetrically, using

the fact that σ is also a codirect solution.

Lemma 5.21. |s1| = |s2| = . . . = |s4k−1|.

Proof. For any p with 0 < p < 4k, u(sp ) ⊑ v(sp−1) (Lemma 5.20) implies |sp | ≤ |sp−1|, as can

easily be seen either when sp is some x ||| y or when sp is some filler like †′L |||x ′. Thus |s0| ≥
|s1| ≥ · · · ≥ |s4k−1|. Similarly, the other half of Lemma 5.20, i.e., u(sp−1) ⊑ v(sp ), entails |s1| ≤
|s2| ≤ · · · ≤ |s4k |.

Now pick any i ∈ {1, . . . ,2k}. If i is odd, then by definition of R, σi ∈ T◮ is some xi−1 ||| yi with

xi−1−→∆yi and σi+1 ∈ T◭ is some yi+1 |||xi with xi−→∆yi+1. Furthermore, ρi is some †′|zi | |||z ′
i .

With Lemma 5.20, we deduce yi ⊑ zi and xi ⊑ zi . With Lemma 5.21, we further deduce |yi | =
|zi | = |xi |, hence yi = xi . A similar reasoning shows that yi = xi also holds when i is even,

so that the steps xi−1−→∆yi can be chained. Finally, we deduce from σ the existence of a

derivation x0−→∆x1−→∆ · · ·−→∆x2k . Since σ0 ∈ T ∩P1
◮

and σ2k ∈ T ∩P2
◭

, we further deduce x0 ∈ P1

and x2k ∈ P2. Hence the existence of σ entails P1
2k−→∆P2, which concludes the proof.

5.6 Complexity

Complexity-wise, PEP and PEP
partial
dir lie at level Fωω of the fast-growing hierarchy [76, 30].

Further, PEP with an alphabet size of k +2 is Fωk -hard and in Fωk+1+1. For the lower bound,

one encodes computations of a Fωω-space-bounded Turing machine (or more simply, semi-

Thue system) as a rational relation in a way that is robust to losses, which then is easily trans-

lated to PEP. This requires an elaborate encoding of ordinals upto ωωk
which is robust to

losses. See [76] for details. For the upper bound, one uses Theorem 5.4, and the bounds on

the Length Function H provided in [112].



5.7. CONCLUDING REMARKS 71

5.7 Concluding remarks

We introduced partial directness in Post Embedding Problems and proved the decidability

of PEPpartial
codir and PEP

partial
dir by showing that an instance has a solution if, and only if, it has a

solution of length bounded by a computable function of the input.

This generalizes and simplifies earlier proofs for PEP and PEPdir. The added generality is

non-trivial and leads to decidability for UCST, or UCS (that is, unidirectional channel sys-

tems) extended with tests (chapter 6). The simplification lets us deal smoothly with counting

or universal versions of the problem. Finally, we showed that combining directness and codi-

rectness constraints leads to undecidability.



72 CHAPTER 5. POST EMBEDDING PROBLEM



Chapter 6

Unidirectional channel systems with

tests

Unidirectional channel systems, “UCSes” for short, are channel systems where a Sender pro-

cess communicates to a Receiver process via one reliable and one lossy channel, see Fig. 6.1.

q1

q2

q3

q4

(Receiver)
l?b

r?b l?b

r?b

r?a

l?c

p1

p2

p3

(Sender)

l!c

r!b

l!b

r!a

r (reliable channel)

l (lossy channel)

a b a b a

c b b

Figure 6.1: UCS = buffered one-way communication via one reliable and one lossy channels

UCSes are limited to one-way communication: there are no channels going from Receiver to

Sender. One-way communication appears, e.g., in half-duplex protocols [67] or in the acyclic

networks of [87, 13].

UCSes were introduced by Chambart and Schnoebelen [28] who identified them as a mini-

mal setting to which one can reduce reachability problems for more complex combinations

of lossy and reliable channels. The reachability problem for UCSes is quite challenging: it

was proved decidable by reformulating it more abstractly as PEP, the (Regular) Post Embed-

ding Problem, which is easier to analyze (chapter 5). While PEP is a natural variant of Post’s

Correspondence Problem, it was only identified through questions on UCSes.

Testing channel contents

Basic channel machines are not allowed to inspect the contents of the channels. However,

it is sometimes useful to enrich the basic setup with tests. For example, a multiplexer pro-

73



74 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

cess will check each of its input channels in turn and will rely on emptiness and/or non-

emptiness tests to ensure that this round robin policy does not block when one input chan-

nel is empty [107]. In other settings, channel systems with insertion errors becomes more

expressive when emptiness tests are allowed [23].

In this chapter we consider such emptiness and non-emptiness tests, as well as more general

tests given by arbitrary regular predicates on channel contents. A simple example is given

below in Figure 6.2 (see page 78) where some of Sender’s actions depend on the parity of the

number of messages currently in the reliable channel r. When verifying plain UCSes, one

can reorder steps and assume a two-phase behaviour where all Sender steps occur before all

Receiver steps. When one has tests, one can no longer assume this.

Our contribution

We extend UCSes with the possibility of testing channel contents with regular predicates (Sec-

tion 6.1). This makes reachability undecidable even with restricted sets of simple tests (sec-

tion 6.2). Our main result (Theorem 6.4) is that reachability is decidable for UCSes extended

with emptiness and non-emptiness tests. The proof goes through a series of reductions, some

of them nontrivial, that leave us with UCSes extended by only emptiness tests on a single side

of a single channel, called “Z l

1 tests” (sections 6.4 and 6.5). This minimal extension is then

reduced (Section 6.6) to PEP
partial
codir , or “PEP with partial codirectness”, a nontrivial extension

of PEP that is proved decidable in chapter 5. This last reduction extends the reduction from

UCS to PEP in [29]. Finally, Section 6.7 proves that emptiness and/or non-emptiness tests

strictly enrich the basic UCS model.

Related work.

Emptiness and non-emptiness tests have been considered already in [107], while Promela

(SPIN’s input language) offers head tests (that test the first available message without con-

suming it) [63]. Beyond such specific tests, we are not aware of results that consider models

with a general notion of tests on channel contents (except in the case of LCSes where very

general tests can be allowed without compromising the main decidability results, see [18,

sect. 6]).

Regarding unidirectional channels, the decidability results in [13, 87, 59, 58, 35] apply to

systems where communication between two agents is limited to a single one-way channel

(sometimes complemented with a finite shared memory, real-time clock, integer-valued counter,

or local pushdown stack).

6.1 Preliminaries



6.1. PRELIMINARIES 75

6.1.1 Syntax

A UCST is a tuple S = (Ch,M,Q1,∆1,Q2,∆2), where M is the finite alphabet of messages, Q1, Q2

are the disjoint finite sets of states of Sender and Receiver, respectively, and ∆1, ∆2 are the

finite sets of rules of Sender and Receiver, respectively. Ch = {r,l} is a fixed set of channel

names, just channels for short, where r is reliable and l is lossy (since messages in l can

spontaneously disappear).

A rule δ ∈∆i is a tuple (q,c,α, q ′) ∈Qi ×Ch×Act×Qi where the set of actions Act contains tests,

checking whether the contents of c ∈ Ch belongs to some regular language R ∈ Reg(M), and

communications (sending a message a ∈ M to c in the case of Sender’s actions, reading it for

Receiver’s). Allowed actions also include the empty action (no test, no communication) that

will be treated as “sending/reading the empty word ǫ”; formally we put Act
def= Reg(M)∪M∪{ǫ}.

We also write a rule (q,c,α, q ′) as q
c,α−→ q ′, or specifically q

c:R−→ q ′ for a rule where the action

is a test on c, and q
c!a−→ q ′ or q

c?a−→ q ′ when the action is a communication by Sender or by

Receiver, respectively. We also write just q −→ q ′ or q
⊤−→ q ′ when the action is empty.

In graphical representations like Fig. 6.1, Sender and Receiver are depicted as two disjoint

directed graphs, where states appear as nodes and where rules q
c,α−→ q ′ appear as edges from

q to q ′ with the corresponding labellings.

6.1.2 Operational Semantics

The behaviour of a UCST is defined via an operational semantics along standard lines. A

configuration of S = (Ch,M,Q1,∆1,Q2,∆2) is a tuple C ∈ Conf S
def= Q1 ×Q2 × M

∗ × M
∗. In C =

(q1, q2,u, v), q1 and q2 are the current states of Sender and Receiver, respectively, while u and

v are the current contents of r and l, respectively.

The rules in ∆1 ∪∆2 give rise to transitions in the expected way. We use two notions of tran-

sitions, or “steps”, between configurations. We start with so-called “reliable” steps: given two

configurations C = (q1, q2,u, v), C ′ = (q ′
1, q ′

2,u′, v ′) and a rule δ= (q,c,α, q ′), there is a reliable

step denoted C
δ−→C ′ if, and only if, the following four conditions are satisfied:

states q = q1 and q ′ = q ′
1 and q2 = q ′

2 (for Sender rules), or q = q2 and q ′ = q ′
2 and q1 = q ′

1 (for

Receiver rules);

tests if δ is a test rule q
c:R−→ q ′, then c = r and u ∈ R, or c = l and v ∈ R, and furthermore

u′ = u and v ′ = v ;

writes if δ is a writing rule q
c!x−→ q ′ with x ∈ M∪ {ǫ}, then c= r and u′ = u x and v ′ = v , or c= l

and u′ = u and v ′ = v x;

reads if δ is a reading rule q
c?x−→ q ′, then c= r and u = x u′ and v ′ = v , or c= l and u′ = u and

v = x v ′.



76 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

This reliable behaviour is completed with message losses. For v, v ′ ∈ M
∗, we write v ′ ⊑1 v

when v ′ is obtained by deleting a single (occurrence of a) symbol from v , and we let ⊑ de-

note the reflexive-transitive closure of ⊑1. Thus v ′ ⊑ v when v ′ is a scattered subword, i.e., a

subsequence, of v . (E.g., aba ⊑1 abba, aa ⊑ abba.) This is extended to configurations and

we write C ′ ⊑1 C or C ′ ⊑C when C ′ = (q1, q2,u, v ′) and C = (q1, q2,u, v) with v ′ ⊑1 v or v ′ ⊑ v ,

respectively. Now, whenever C ′ ⊑1 C , the operational semantics of S includes a step from C to

C ′, called a message loss step, and denoted C
los−→C ′, considering that “los” is an extra, implicit

rule that is always allowed.

Thus a step C
δ−→ C ′ of S is either a reliable step, when δ ∈ ∆1 ∪∆2, or a (single) message loss,

when δ= los.

Remark 6.1 (On reliable steps). As is usual with unreliable channel systems, the reliable se-

mantics plays a key role even though the object of our study is reachability via not necessarily

reliable steps. First it is a normative yardstick from which one defines the unreliable seman-

tics by extension. Then many hardness results on lossy systems are proved via reductions

where a lossy system simulates in some way the reliable (and Turing-powerful) behaviour:

proving the correctness of such reductions requires having the concept of reliable steps.

Remark 6.2 (UCSTs and well-structured systems). It is well-known that (M∗,⊑) is a well-

quasi-order (a wqo): any infinite sequence v0, v1, v2, . . . of words over M contains an infinite

increasing subsequence vi0 ⊑ vi1 ⊑ vi2 ⊑ ·· · This classic result, called Higman’s Lemma, plays

a fundamental role in the algorithmic verification of lossy channel systems and other well-

structured systems [48, 113]. However, we note that (Conf ,⊑) is not a wqo since C ⊑ D re-

quires equality on channel r, so that UCSTs are not well-structured systems despite the pres-

ence of a lossy channel.

6.1.3 Reachability

A run from C0 to Cn is a sequence of chained steps C0
δ1−→ C1

δ2−→ C2 · · ·
δn−→ Cn , abbreviated as

C0
∗−→Cn (or C0

+−→Cn when we rule out zero-length runs).

The (Generalized) Reachability Problem, or just “G-G-Reach” for short, is the question, given a

UCST S = (Ch,M,Q1,∆1,Q2,∆2), some states pin, pfi ∈Q1, qin, qfi ∈Q2, some regular languages

U ,V ,U ′,V ′ ∈Reg(M), whether there are some u ∈U , v ∈V , u′ ∈U ′ and v ′ ∈V ′ such that S has

a run Cin = (pin, qin,u, v)
∗−→Cfi = (pfi, qfi,u′, v ′).

Since U , V , U ′, V ′ can be taken as singleton sets, the G-G-Reach problem is more general than

asking whether S has a run Cin
∗−→Cfi for some given initial and final configurations. We shall

need the added generality in section 6.5 in particular. However, sometimes we will also need

to put restrictions on U , V , U ′, V ′. We use E-G-Reach to denote the reachability problem

where U =V = {ǫ}, i.e., where Cin has empty channels (E is for “Empty”), while U ′,V ′ ∈Reg(M)

are not constrained. We will also consider the E-E-Reach restriction where U =V =U ′ =V ′ =



6.2. TESTING CHANNELS AND THE UNDECIDABILITY OF REACHABILITY 77

{ǫ}. It is known —see [28, Theo 3.1]— that E-E-Reach is decidable for UCSes, i.e., UCSTs that

do not use tests.

6.2 Testing channels and the undecidability of reachability

Despite their similarities, UCSes and LCSes (lossy channel systems) behave differently. The

algorithms deciding reachability for LCSes can easily accommodate regular (or even more

expressive) tests [18, Sect. 6]. By contrast, UCSes become Turing-powerful when equipped

with regular tests. The main result of this section is the undecidability of reachability for

UCSTs. To state the respective theorem in a stronger version, we first introduce a notation for

restricting the (regular) tests.

6.2.1 Restricted sets of tests

When T ⊆Reg(M), we write UCST[T ] to denote the class of UCSTs where only tests, i.e. lan-

guages, belonging to T are allowed. Thus UCSTs and UCSes coincide with UCST[Reg(M)] and

UCST[;], respectively. We single out some simple tests (i.e., languages) defined via regular

expressions:

Even
def= (M.M)∗, Odd

def= M.Even, Z
def= ǫ, N

def= M
+, Ha

def= a.M∗.

Thus P = {Even,Odd} is the set of parity tests, Z is the emptiness (or “zero”) test, N is the

non-emptiness test and H = {Ha | a ∈ M} is the set of head tests (that allows checking what is

the first message in a channel without consuming it). Note that the non-emptiness test can

be simulated with head tests.

Before proving (in later sections) the decidability of G-G-Reach for UCST[{Z , N }], we start by

showing that E-E-Reach is undecidable for both UCST[P ] and UCST[H ]: this demonstrates

that we get undecidability not only with simple “global” tests (parity tests) whose outcome

depends on the entire contents of a channel, but also with simple “local” tests (head tests).

In fact, we even show the stronger statement that E-E-Reach is undecidable for UCST[P r

1 ]

and UCST[H r

1 ], where the use of subscripts and/or superscripts means that we consider re-

stricted systems where only Sender (for subscript 1, only Receiver for subscript 2) may use

the tests, and that the tests may only apply on channel r or l (depending on the superscript).

E.g., in UCST[P r

1 ] the only allowed tests are parity tests performed by Sender on channel r.

Theorem 6.3. Reachability (E-E-Reach) is undecidable for both UCST[P r

1 ] and UCST[H r

1 ].

We now proceed to prove Theorem 6.3 by simulating queue automata with UCSTs.



78 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

6.2.2 Simulating queue automata

Like queue automata, UCSes have a reliable channel but, unlike them, Sender (or Receiver)

cannot both read and write from/to it. If Sender could somehow read from the head of r, it

would be as powerful as a queue automaton, i.e., Turing-powerful. Now we show that parity

tests used by Sender on r allow us to construct a simple protocol making Receiver act as a

proxy for Sender and implement read actions on its behalf. See Figure 6.2 for an illustrating

example of how Sender simulates a rule p1
r?a−→ p2.

qproxy

l?a

r?a

l?c r?c

l?b

r?b p1

p2

r:Odd

l!a

r:Even

r:Even

l!a

r:Odd

r

l

a b c a c

a

Figure 6.2: Sender simulates “p1
r?a−→ p2” with parity tests and proxy Receiver

Described informally, the protocol is the following:

1. Channel l is initially empty.

2. In order to “read” from r, Sender checks and records whether the length of the current

contents of r is odd or even, using a parity test on r.

3. It then writes on l the message that it wants to read (a in the example).

4. During this time Receiver waits in its initial qproxy state and tries to read from l. When

it reads a message a from l, it understands it as a request telling it to read a from r

on behalf of Sender. Once it has performed this read on r (when a really was there), it

returns to qproxy and waits for the next instruction.

5. Meanwhile, Sender checks that (equivalently, waits until) the parity of the contents of

r has changed, and on detecting this change, concludes that the read was successful.

6. Channel l is now empty and the simulation of a read by Sender is concluded.

If no messages are lost on l, the protocol allows Sender to read on r; if a message is lost on l,

the protocol deadlocks. Also, Sender deadlocks if it attempts to read a message that is not at

the head of r, in particular when r is empty; i.e., Sender has to be guessing correctly.

Our simulation of a queue automaton thus introduces many possible deadlocks, but it still

suffices for proving undecidability of reachability, namely of E-E-Reach for UCST[P r

1 ].

To prove undecidability for UCST[H r

1 ] we just modify the previous protocol. We use two

copies of the message alphabet, e.g., using two “colours”. When writing on r, Sender strictly



6.3. MAIN THEOREM AND A ROADMAP FOR ITS PROOF 79

alternates between the two colours. If now Sender wants to read a given letter, say a, from r,

it checks that an a (of the right colour) is present at the head of r by using H
r

1 tests. It then

asks Receiver to read a by sending a message via l. Since colours alternate in r, Sender can

check (i.e., wait until), again via head tests, that the reading of a occurred .

6.3 Main theorem and a roadmap for its proof

We will omit set-brackets in the expressions like UCST[{Z , N }], UCST[{Z1, N1}], UCST[{Z l

1 }];

we thus write UCST[Z , N ], UCST[Z1, N1], UCST[Z l

1 ], etc. We now state the main theorem of

this chapter:

Theorem 6.4. Reachability (G-G-Reach) is decidable for UCST[Z , N ].

Hence adding emptiness and nonemptiness tests to UCSes still maintains the decidability of

reachability (unlike what happens with parity or head tests).

Our proof of Theorem 6.4 is quite long, being composed of several consecutive reductions,

some of which are nontrivial. A scheme of the proof is depicted in Figure 6.3, and we give a

brief outline in the rest of this section.

We first recall that the reachability problem for UCSes (i.e., for UCST[;]) was shown decidable

via a reduction to PEP (Post’s Embedding Problem) in [29]. Relying on this earlier result (by

reducing UCST[Z , N ] to UCST[;]) or extending its proof (by reducing UCST[Z , N ] to PEP

directly) does not seem at all trivial. PEPpartial
codir from chapter 5 is used as an intermediate step

instead.

Having the decidability of PEPpartial
codir , our proof for Theorem 6.4 is composed of two main

parts:

1. One part, given in Section 6.6, is a reduction of E-E-Reach for UCST[Z l

1 ] to PEP
partial
codir .

It is relatively compact, since we have found a suitable intermediate notion between

runs of UCST[Z l

1 ] and solutions of PEPpartial
codir .

2. The other part, given in sections 6.4 and 6.5, reduces G-G-Reach for UCST[Z , N ] to E-

E-Reach for UCST[Z l

1 ]. It has turned out necessary to decompose this reduction in a

series of smaller steps (as depicted in Figure 6.3) where features such as certain kinds

of tests, or general initial and final conditions, are eliminated step by step. The particu-

lar way in which these features are eliminated is important. For example, we eliminate

Z2 and N2 tests by one simulation reducing G-G-Reach[Z , N ] to G-G-Reach[Z1, N1]

(Sec. 6.4.2); the simulation would not work if we wanted to eliminate Z2 and N2 sepa-

rately, one after the other.

One of the crucial steps in our series is the reduction from E-E-Reach[Z1] to G-G-Reach[Z l

1 ].

This is a Turing reduction, while we otherwise use logspace many-one reductions. Even



80 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

G-G-Reach[Z , N ]

G-G-Reach[Z1, N1]

E-G-Reach[Z1, N1]

E-G-Reach[Z1]

E-E-Reach[Z1] G-G-Reach[Z l

1 ]

E-E-Reach[Z l

1 ]

PEP
partial
codir

Sec. 6.4.2

Sec. 6.4.3

Sec. 6.4.4

Sec. 6.4.5

Sec. 6.5
Turing reduction

reuse

Sec. 6.6

Figure 6.3: Roadmap of the reductions from G-G-Reach[Z , N ] to PEP
partial
codir

though we start with a problem instance where the initial and final configurations have empty

channel contents, we need oracle calls to a problem where the initial and final conditions are

more general. This alone naturally leads to considering the G-G-Reach instances.

It seems also worth noting that all reductions in Section 6.4 treat the two channels in the

same way; no special arrangements are needed to handle the lossiness of l. The proofs of

correctness, of course, do need to take the lossiness into account.

6.4 Reducing G-G-Reach for UCST[Z , N ] to E-E-Reach for UCST[Z1]

This section describes four simulations that, put together, entail Point 1 in Theorem 6.5 be-

low. Moreover, the last three simulations also yield Point 2. We note that the simulations are

tailored to the reachability problem: they may not preserve other behavioural aspects like,

e.g., termination or deadlock-freedom.

Theorem 6.5.

(1) G-G-Reach[Z , N ] many-one reduces to E-E-Reach[Z1].

(2) G-G-Reach[Z l

1 ] many-one reduces to E-E-Reach[Z l

1 ].

Before proceeding with the four reductions, we present a simple Commutation Lemma that

lets us reorder runs and assume that they follow a specific pattern.



6.4. REDUCING G-G-REACH FOR UCST[Z , N ] TO E-E-REACH FOR UCST[Z1] 81

6.4.1 Commuting steps in UCST[Z , N ] systems

We say that two consecutive steps C
δ1−→C ′ δ2−→C ′′ (of some S) commute if C

δ2−→ D
δ1−→C ′′ for some

configuration D of S. The next lemma lists some conditions that are sufficient for commuting

steps in an arbitrary UCST[Z , N ] system S:

Lemma 6.6 (Commutation). Two consecutive steps C
δ1−→ C ′ δ2−→ C ′′ commute in any of the

following cases:

1. No contact: if δ1 is a read/write/test by Sender or Receiver acting on one channel c (or

a message loss on c= l), while δ2 is a rule of the other agent acting on the other channel

(or is a loss).

2. Postponable loss: if δ1 is a message loss that does not occur at the head of (the current

content of) l.

3. Advanceable Sender: if δ1 is a Receiver’s rule or a loss, and δ2 is a Sender’s rule but not

a Z1-test.

4. Advanceable loss: if δ2 is a loss and δ1 is not an “l:N ” test or a Sender’s write on l.

Proof. By a simple case analysis. For example, for (2) we observe that if δ1 loses a symbol

behind the head of l, then there is another message at the head of l, and thus commuting is

possible even if δ2 is an “l?a” read or an “l:Z ” test.

We will use Lemma 6.6 several times and in different ways. For the time being, we consider in

particular the convenient restriction to “head-lossy” runs. Formally, a message loss C
los−→ C ′

is head-lossy if it is of the form (p, q,u, av)
los−→ (p, q,u, v) where a ∈ M (i.e., the lost message

was the head of l). A run Cin
∗−→Cfi is head-lossy if all its message loss steps are head-lossy, or

occur only after all the reliable steps in the run (it is convenient to allow unconstrained losses

at the end of the run). Repeated use of Point (2) in Lemma 6.6 easily yields the next corollary:

Corollary 6.7. If there is a run from Cin to Cfi then there is a head-lossy run from Cin to Cfi.

6.4.2 Reducing G-G-Reach[Z , N ] to G-G-Reach[Z1, N1]

Our first reduction eliminates Z and N tests by Receiver. These tests are replaced by reading

two special new messages, “z” and “n”, that Sender previously put in the channels.

Formally, we consider an instance of G-G-Reach[Z , N ], made of a given UCST S = ({r,l},M,Q1,

∆1,Q2,∆2), given states pin, pfi ∈ Q1, qin, qfi ∈ Q2, and given languages U ,V ,U ′,V ′ ∈ Reg(M).

We construct a new UCST S′ from S as follows (see Fig. 6.4):

1. We add two special new messages z,n to M, thus creating the alphabet M′
def= M⊎ {n, z}.



82 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

2. For each channel c ∈ {r,l} and each Sender’s state p ∈Q1 we add new states p1
c

, p2
c

and

an “(emptiness) testing loop” p
c:Z−→ p1

c

c!z−→ p2
c

c:Z−→ p (i.e., three new rules).

3. For every Sender’s writing rule θ of the form p
c!x−→ p ′ we add a new state pθ and the

following three rules: p
⊤−→ pθ, pθ

c!n−→ pθ (a “padding loop”), and pθ
c!x−→ p ′.

4. For every Receiver’s rule q
c:Z−→ q ′ (testing emptiness of c) we add the rule q

c?z−→ q ′.

5. For every Receiver’s rule q
c:N−−→ q ′′ (testing non-emptiness of c) we add the rule q

c?n−→ q ′′.

6. At this stage, the resulting system is called Saux.

7. Finally we remove all Receiver’s tests, i.e., the rules q
c:Z−→ q ′ and q

c:N−−→ q ′′. We now have

S′.

q

q ′ q ′′

c:Z c′:N

p

p ′

c!a

S

r

l

a
⇒

q

q ′ q ′′

c?z c′?n

p

p ′

pθ

p1
c

p2
c

p1
c′

p2
c′

c:Z
c!z

c:Z

c!a
⊤

c!a

c!n

S ′

r

l

n a

z

Figure 6.4: Reducing G-G-Reach[Z , N ] to G-G-Reach[Z1, N1]: eliminating Receiver’s tests

The intuition behind S′ is that Sender runs a small protocol signalling to Receiver what the

status of the channels is. When a channel is empty, Sender may write a z to it that Receiver can

read in place of testing for emptiness. For correctness, it is important that Sender does not

proceed any further until this z has disappeared from the channel. For non-emptiness tests,

Sender can always write several extraneous n messages before writing an original message.

Receiver can then read these n’s in place of testing for nonemptiness.

For w = a1a2 . . . aℓ ∈ M
∗, we let pad(w)

def= n∗a1n∗a2 . . .n∗aℓ denote the set (a regular lan-

guage) of all paddings of w , i.e., words obtained by inserting any number of n’s in front of the

original messages. Note that pad(ǫ) = {ǫ}. This is extended to arbitrary languages in the usual

way: for L ⊆ M
∗, pad(L) = ⋃

w∈L pad(w) and we note that, when L is regular, pad(L) is regular

too. Furthermore, one easily derives an FSA (a finite-state automaton) or a regular expression

for pad(L) from an FSA or a regular expression for L.

By replacing S, U , V with S′, pad(U ), pad(V ) (and keeping pin, pfi, qin, qfi, U ′, V ′ unchanged),

the initial G-G-Reach[Z , N ] instance is transformed into a G-G-Reach[Z1, N1] instance. The

correctness of this reduction is captured by the next lemma, that we immediately proceed to

prove in the rest of section 6.4.2:



6.4. REDUCING G-G-REACH FOR UCST[Z , N ] TO E-E-REACH FOR UCST[Z1] 83

Lemma 6.8. For any u, v,u′, v ′ ∈ M∗, S has a run (pin, qin,u, v)
∗−→ (pfi, qfi,u′, v ′) if, and only if,

S′ has a run (pin, qin, û, v̂)
∗−→ (pfi, qfi,u′, v ′) for some padded words û ∈ pad(u) and v̂ ∈ pad(v).

Though we are ultimately interested in S and S′, it is convenient to consider special runs of

Saux since Saux “contains” both S and S′. We rely on Corollary 6.7 and tacitly assume that all

runs are head-lossy. We say that a (head-lossy) run C0
δ1−→ C1

δ2−→ ·· · δn−→ Cn of Saux is faithful if

C0 = (p0, q0,u0, v0) with u0, v0 ∈ pad(M∗), Cn = (pn , qn ,un , vn) with un , vn ∈ M
∗, p0, pn ∈ Q1,

q0, qn ∈Q2, and the following two properties are satisfied (for all i = 1,2, . . . ,n):

– if δi is some p
c:Z−→ p1

c
then δi+1, δi+2, and δi+3 are p1

c

c!z−→ p2
c

, q
c?z−→ q ′, p2

c

c:Z−→ p (for

some q, q ′ ∈ Q2). In this case, the subrun Ci−1
∗−→ Ci+3 is called a P1-segment of the

run.

(P1)

– if δi is some p
⊤−→ pθ then there is some j > i such that δi+1,δi+2, . . . ,δ j are pθ

c!n−→
pθ

c!n−→ ·· · c!n−→ pθ
c!a−→ p ′ for some a ∈ M and p ′ ∈ Q1. The subrun Ci−1

∗−→ C j is called a

P2-segment.

(P2)

Informally, a run is faithful if it uses the new rules (introduced in Saux) in the “intended” way:

e.g., P1 enforces that each z written by Sender (necessarily via a rule pc

1
c!z−→ pc

2) is immediately

read after being written in the empty channel. We note that any run of S is trivially faithful

since it does not use the new rules.

We now exhibit two reversible transformations of runs of Saux, one for Z tests in §6.4.2, the

other for N tests in §6.4.2, that preserve faithfulness. This will allow us to translate runs of S,

witnessing the original instance, to faithful runs of S′, witnessing the created instance, and

vice versa. Finally we show in §6.4.2 that if there is a run of S′ witnessing the created instance,

then there is a faithful one as well.

When describing the two transformations we shall assume, in order to fix notations, that we

transform a test on channel l; the case for the channel r is completely analogous. For both

transformations we assume a faithful (head-lossy) run π of Saux in the following form:

(pin, qin,u0, v0) =C0
δ1−→C1

δ2−→C2 · · ·
δn−→Cn = (pfi, qfi,un , vn) (π)

where δ1, . . . ,δn can be rules of Saux or the “los” symbol for steps where a message is lost. For

i = 0,1, . . . ,n, we let Ci = (pi , qi ,ui , vi ).

Trading Z2 tests for P1-segments.

Assume that the step Cm
δm+1−−→ Cm+1 in π is a Z2-test (an emptiness test by Receiver), hence

has the form (p, q, w,ε)
l:Z−→ (p, q ′, w,ε) if we assume c= l. We may replace this step with the

following steps

(p, q, w,ε)
l:Z−→ (p1

l
, q, w,ε)

l!z−→ (p2
l

, q, w, z)
l?z−→ (p2

l
, q ′, w,ε)

l:Z−→ (p, q ′, w,ε) (6.1)



84 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

using the rules introduced in Saux. This transforms (the faithful run) π into another faithful

run π′, decreasing the number of Receiver’s tests (by one occurrence of a Z2-test). In the

other direction, if π contains a P1-segment Cm−1
∗−→Cm+3, it must be of the form (6.1), when

the involved channel is c= l, and we can replace it with one step Cm−1
c:Z−→Cm+3, preserving

faithfulness.

Trading N2 tests for occurrences of n.

Now assume that the step Cm
δm+1−−→ Cm+1 is an Nl

2 -test, hence has the form (p, q,u, x v)
l:N−−→

(p, q ′,u, x v) for some message x ∈ M
′. Now x 6= z since there was no z’s in v0 and, as noted

above, any z written by Sender in a faithful run is immediately read. Hence x ∈ M∪ {n}. We

want to replace the q
l:N−−→ q ′ test (by Receiver) with a q

l?n−→ q ′ but this requires inserting one n

in l, i.e., using a new rule pθ
l!n−→ pθ at the right moment.

We now follow the (occurrence of) x singled out in Cm and find the first configuration, say

Ck , where this x appears already; we can thus write vi = wi x w ′
i , i.e., Ci = (pi , qi ,ui , wi x w ′

i ),

for i = k,k + 1, . . . ,m. Here x always depicts the same occurrence, and e.g., wm x w ′
m = x v

entails wm = ǫ and w ′
m = v . By adding n in front of x in each Ci for i = k,k + 1, . . . ,m, we

obtain new configurations C ′
k ,C ′

k+1, . . . ,C ′
m given by C ′

i = (pi , qi ,ui , wi n x w ′
i ). Now C ′

k
δk+1−−→

C ′
k+1

δk+2−−→ ·· · δm−→C ′
m is a valid run of Saux since x is not read during Ck

∗−→Cm and since, thanks

to the presence of x, adding one n does not change the (non)emptiness status of l in this

subrun. Moreover, since q
l:N−−→ q ′ is a rule of S, there is a rule q

l?n−→ q ′ in Saux, where C ′
m =

(p, q,u,n x v)
l?n−→ (p, q ′,u, x v) =Cm+1 is a valid step.

If k = 0 (i.e., if x is present at the beginning of π), we have exhibited a faithful run C ′
0

∗−→
C ′

m
l?n−→Cm+1

∗−→Cn , starting from C ′
0 = (pin, qin,u0, w0 nx w ′

0), where w0nxw ′
0 ∈ pad(v0) since

v0 = w0 x w ′
0. If k > 0, the highlighted occurrence of x necessarily appears in Ck via δk =

pk−1
l!x−→ pk and we have vk = vk−1x. If δk is a rule of S, we may exhibit a sequence Ck−1

∗−→C ′
k

using the new rules

Ck−1
⊤−→ (pδk , qk−1,uk−1, vk−1)

l!n−→ (pδk , qk−1,uk−1, vk−1 n)
l!x−→ (pk , qk−1,uk−1, vk−1 n x) =C ′

k ,

while if δk is a new rule pθ
l!x−→ pk , we can use Ck−1

l!n−→l!x−→C ′
k . In both cases we can use Ck−1

∗−→
C ′

k to construct a new faithful run C0
∗−→ Ck−1

∗−→ C ′
k

∗−→ C ′
m −→ Cm+1

∗−→ Cn . We have again

decreased the number of Receiver’s tests, now by one occurrence of an N2-test.

For the backward transformation we assume that n occurs in a configuration of π. We select

one such occurrence and let Ck ,Ck+1, . . . ,Cm (0 ≤ k ≤ m < n) be the part of π where this

occurrence of n appears. For i = k,k+1, . . . ,m, we highlight this occurrence of n by writing vi

in the form wi n w ′
i (assuming without loss of generality that the n occurs in l), i.e., we write

Ci = (pi , qi ,ui , wi n w ′
i ). Removing the n yields new configurations C ′

k ,C ′
k+1, . . . ,C ′

m given by

C ′
i = (pi , qi ,ui , wi w ′

i ).



6.4. REDUCING G-G-REACH FOR UCST[Z , N ] TO E-E-REACH FOR UCST[Z1] 85

We claim that C ′
k

δk+1−−→ C ′
k+1 · · ·

δm−→ C ′
m is a valid run of Saux. For this, we only need to check

that removing n does not make channel l empty in some C ′
i where δi+1 is an Nl-test. If k = 0

then n in v0 = w0nw ′
0 is followed by a letter x ∈ M∪ {n} since v0 ∈ pad(M∗). This x remains

in l until at least Cm+1 since it cannot be read while n remains, nor can it be lost before the

Ci −→ Ci+1 step since the run is head-lossy. If k > 0, then our n appeared in a step of the

form Ck−1 = (pθ, qk−1,uk−1, vk−1)
l!n−→ Ck = (pθ, qk−1,uk−1, vk−1n) (for some write rule θ of S,

inducing pθ
l!n−→ pθ in Saux). Since p0 = pin is not pθ, a rule pℓ

⊤−→ pθ was used before step k,

and π has a P2-segment Cℓ
⊤−→ ·· ·Ck−1

l!n−→Ck
l!x−→ ·· ·Cℓ′ where ℓ′ ≤ m and x ∈ M∪ {n} is present

in all Ck+1, . . . ,Cm . As before, this x guarantees that Ck−1 = C ′
k

δk+1−−→ C ′
k+1 · · ·

δm−→ C ′
m is a valid

run of Saux.

We now recall that m < n and that δm+1 is either qm
l?n−→ qm+1 or the loss of n. In the first case,

Saux has a step C ′
m

l:N−−→Cm+1, while in the second case C ′
m =Cm+1.

The corresponding run C ′
0

∗−→ C ′
m

∗−→ Cm+1
∗−→ Cn in the case k = 0 or C0

∗−→ Ck−1 −→ C ′
k+1

∗−→
C ′

m
∗−→ Cm+1

∗−→ Cn in the case k > 0 is a faithful run; we have thus removed an occurrence of

n, possibly at a cost of introducing one N2 test.

Handling S′ runs and faithfulness.

Since a witness run of S is (trivially) faithful, the above transformations allow us to remove one

by one all occurrences of Receiver’s Z and N tests, creating a (faithful) witness run for S′ (with

a possibly padded C0). We have thus proved the “only-if” part of Lemma 6.8. The “if” part is

shown analogously, now using the two transformations in the other direction and removing

occurrences of the new z and n messages, with one proviso: we only transform faithful runs.

We thus need to show that if S′ has a (head-lossy) run (pin, qin, û, v̂)
∗−→ (pfi, qfi,u′, v ′) then it

also has a faithful one.

Let us assume thatπ above, of the form C0
∗−→Cn , is a witness run of S′, not necessarily faithful,

having minimal length. We show how to modify it locally so that the resulting run is faithful.

Assume that some rule δi = p
⊤−→ pθ is used in π, and that P2 fails on this occurrence of δi .

Since π does not end in state pθ, Sender necessarily continues with some (possibly zero)

pθ
c!n−→ pθ steps, followed by some δ j = pθ

c!x−→ p ′. Now all Receiver or message loss steps

between δi and δ j can be swapped and postponed after δ j since Receiver has no tests and

Sender does not test between δi and δ j (recall Lemma 6.6(3)). After the transformation, δi

and the rules after it form a P2-segment. Also, since message losses have been postponed,

the run remains head-lossy.

Consider now a rule δi of the form p
c:Z−→ p1

c
in π and assume that P1 fails on this occurrence.

Sender necessarily continues with some δ j = p1
c

c!z−→ p2
c

and δk = p2
c

c:Z−→ p, interleaved with

Receiver’s steps and/or losses. It is clear that the z written on c by δ j must be lost, or read by

a Receiver’s δℓ = q
c?z−→ q ′ before δk can be used. The read or loss occurs at some step ℓ with



86 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

j < ℓ < k. Note that Receiver does not read from c between steps i and k, except perhaps

at step ℓ. Since Sender only tests for emptiness of c between steps i and k, all Receiver’s

steps and losses between steps i and ℓ can be swapped and put before δi . The run remains

head-lossy since the swapped losses do not occur on c, which is empty at step i . Similarly, all

non-Sender steps between steps ℓ and k can be swapped after δk , preserving head-lossiness.

The obtained run has a segment of the form C
c:Z−→c!z−→c?z−→c:Z−→C ′ that is now a P1-segment, or of

the form C
c:Z−→c!z−→los−→c:Z−→C ′ =C , i.e., a dummy loop C

+−→C that contradicts minimality of π.

6.4.3 Reducing G-G-Reach[Z1, N1] to E-G-Reach[Z1, N1]

A G-G-Reach[Z1, N1] instance where the initial contents of r and l are restricted to (regular

languages) U and V respectively can be transformed into an equivalent instance where U

and V are both replaced with {ǫ}. For this, one adds a new (fresh) initial state to Sender, from

which Sender first generates a word in U nondeterministically, writing it on r, then generates

a word in V , writing it on l, and then enters the original initial state.

Stating the correctness of this reduction has the form

S has a run (pin, qin,u, v)
∗−→C for some u ∈U and v ∈V iff S′ has a run (pnew, qin,ǫ,ǫ)

∗−→C ,

(⋆)

where S′ is the new system and pnew its new starting state. Now, since S′ can do (pnew, qin,ǫ,

ǫ)
∗−→ (pin, qin,u, v) for any u ∈U and v ∈ V , the left-to-right implication in (⋆) is clear. Note

that, in the right-to-left direction, it is essential that Receiver has no tests. Indeed, the absence

of Receiver tests allows us to reorder any S′ run from (pnew, q,ǫ,ǫ) so that all steps that use the

new “generating” rules (from pnew to pin) happen before any Receiver steps.

6.4.4 Reducing E-G-Reach[Z1, N1] to E-G-Reach[Z1]

When there are no Receiver tests and a run starts with the empty channels, then N1 tests can

be easily eliminated by a buffering technique on Sender’s side. Each channel c ∈ {r,l} gets its

one-letter buffer Bc, which can be emptied any time by moving its content to c. Sender can

only write to an empty buffer; it passes a Z c

1 test if both channel c and Bc are empty, while

any Nc

1 test is replaced with the (weaker) “test” if Bc is nonempty.

Formally, we start with some instance (S, pin, pfi, qin, qfi, {ǫ}, {ǫ},U ′,V ′) of E-G-Reach[Z1, N1],

where S = ({r,l},M,Q1,∆1,Q2,∆2), and we create S′ = ({r,l},M,Q ′
1,∆′

1,Q2,∆2) arising from S as

follows (see Fig. 6.5). We put Q ′
1 =Q1×(M∪{ǫ})×(M∪{ǫ}); the components x, y in a state 〈q, x, y〉

denote the contents of the buffers for r and l, respectively. We now replace each rule q
r!x−→ q ′

with 〈q,ǫ, y〉 ⊤−→ 〈q ′, x, y〉 for all y ∈ M∪ {ǫ} (Fig. 6.5 uses “⊤!” to highlight these transformed

rules). Each q
r:N−−→ q ′ is replaced with 〈q, x, y〉 ⊤−→ 〈q ′, x, y〉 for all x, y where x 6= ǫ (Fig. 6.5 uses

“⊤N ”). Each q
r:Z−→ q ′ is replaced with 〈q,ε, y〉 r:Z−→ 〈q ′,ǫ, y〉 (for all y). Analogously we replace



6.4. REDUCING G-G-REACH FOR UCST[Z , N ] TO E-E-REACH FOR UCST[Z1] 87

p

q r

S (Sender only)

l!a

l:N r!a

r:Z

⇒

p,a,a

p,a,ǫ p,ǫ,a

p,ǫ,ǫ

q,a,a

q,a,ǫ q,ǫ,a

q,ǫ,ǫ

r,a,a

r,a,ǫ r,ǫ,a

r,ǫ,ǫS ′

r!a l!a
r!al!a

r!a l!a
r!al!a

r!a l!a
r!al!a

⊤!

⊤!

⊤!

⊤!

⊤N

⊤N

r:Z

r:Z

Figure 6.5: Reducing E-G-Reach[Z1, N1] to E-G-Reach[Z1]

all q
l!x−→ q ′, q

l:N−−→ q ′, and q
l:Z−→ q ′. Moreover, we add the rules 〈q, x, y〉 r!x−→ 〈q,ǫ, y〉 (for x 6= ǫ)

and 〈q, x, y〉 l!y−→〈q, x,ǫ〉 (for y 6= ǫ). Our desired reduction is completed, by the next lemma:

Lemma 6.9. S has a run Cin = (pin, qin,ǫ,ǫ)
∗−→ (pfi, qfi,u′, v ′) = Cfi if, and only if, S′ has a run

C ′
in = (〈pin,ǫ,ǫ〉,〈qin,ǫ,ǫ〉,ǫ,ǫ)

∗−→ (〈pfi,ǫ,ǫ〉,〈qfi,ǫ,ǫ〉,u′, v ′) =C ′
fi.

Proof. ⇐ : A run C ′
in =C ′

0

δ′
1−→C ′

1

δ′
2−→C ′

2 · · ·
δ′

n−→C ′
n =C ′

fi of S′ can be simply translated to a run of

S by the transformation: each C ′
i = (〈pi , x, y〉, qi ,ui , vi ) is translated to Ci = (pi , qi ,ui x, vi y),

each step C ′
i−1

δ′
i−→C ′

i where δ′i is 〈q,ǫ, y〉 ⊤−→〈q ′, x, y〉 is replaced with Ci−1
δ−→Ci where δ is q

r!x−→
q ′, etc. It can be easily checked that the arising run C0

∗−→ Cn is indeed a valid run of S (that

can be shorter because it “erases” the steps by the rules 〈q, x, y〉 r!x−→ 〈q,ǫ, y〉 and 〈q, x, y〉 l!y−→
〈q, x,ǫ〉).

⇒ : A run Cin = C0
δ1−→ C1

δ2−→ C2 · · ·
δn−→ Cn = Cfi of S can be translated to a run of S′ by a

suitable transformation, starting with C ′
0 = (〈pin,ǫ,ǫ〉,〈qin,ǫ,ǫ〉,ǫ,ǫ). Suppose that C0

∗−→ Ci =
(p, q,ux, v y) has been translated to C ′

0
∗−→C ′

i = (〈p, x, y〉, q,u, v) (for x, y ∈ M∪{ǫ}). Ifδi+1 is p
r!a−→

p ′, then we translate Ci
δi−→ Ci+1 in the case x = ǫ to C ′

i −→ C ′
i+1 = (〈p ′, a, y〉, q,u, v) (using the

rule 〈p,ǫ, y〉 ⊤−→〈p ′, a, y〉), and in the case x 6= ǫ to C ′
i −→ (〈p,ǫ, y〉, q,ux, v) −→ (〈p ′, a, y〉, q,ux, v) =

C ′
i+1 (using the rules 〈p, x, y〉 r!x−→ 〈p,ǫ, y〉 and 〈p,ǫ, y〉 ⊤−→ 〈p ′, a, y〉). We handle the other forms

of δi+1 in the obvious way; e.g., if δi+1 is a loss at (the head of) l while C ′
i = (〈p, x, y〉, q,u,ǫ),

then we also use two steps: C ′
i −→ (〈p, x,ǫ〉, q,u, y)

los−→ (〈p, x,ǫ〉, q,u,ǫ) = C ′
i+1. This process

obviously results in a valid run of S′.

6.4.5 Reducing E-G-Reach[Z1] to E-E-Reach[Z1]

The idea of the reduction is similar to what was done in section 6.4.3. The regular final condi-

tions “u′ ∈U ′” and “v ′ ∈ V ′” are checked by Receiver consuming the final channel contents.

When Sender (guesses that it) is about to write the first message that will be part of the final



88 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

u′ in r (respectively, the final v ′ in l), it signals this by inserting a special symbol # just before.

After it has written # to a channel, Sender is not allowed to test that channel anymore.

Formally we start with an instance (S, pin, pfi, qin, qfi, {ǫ}, {ǫ},U ′,V ′) of E-G-Reach[Z1], where

S = ({r,l},M,Q1,∆1,Q2,∆2). With S we associate S′ where M
′ = M⊎ {#}, as sketched in Fig. 6.6.

This yields the instance (S′, p ′
in, p ′

fi, qin, qf , {ǫ}, {ǫ}, {ǫ}, {ǫ}) of E-E-Reach[Z1], for the new final

Receiver state qf .

qfi

p

p ′

l:Z

S

r

l

a

⇒

qfi

qc,1

qc,2

· · ·

qf

r?#

l?#

r?u ∈U ′

l?v ′
∈V ′

p⊤,⊤

p#,⊤

p⊤,#

p#,#

p ′⊤,⊤

p ′#,⊤

p ′⊤,#

p ′#,#

r!#

r!#

r!#

r!#

l!#

l!#

l!#

l!#

l:Zl:Z

S ′

r

l

# a

#

Figure 6.6: Reducing E-G-Reach[Z1] to E-E-Reach[Z1]

We define S′ = ({r,l},M′,Q ′
1,∆′

1,Q ′
2,∆′

2) with the Receiver part Q ′
2,∆′

2 obtained from Q2,∆2 by

adding qf and other necessary states and so called cleaning rules so that qf is reachable from

qfi precisely by sequences of read-steps r?#, l?#, r?a1, r?a2, . . . , r?am1 , l?b1, l?b2, . . . , l?bm2 ,

where u′ = a1a2 . . . am1 ∈ U ′ and v ′ = b1b2 . . .bm2 ∈ V ′. (The new states and cleaning rules

mimic finite-state automata accepting {#} ·U ′ and {#} ·V ′.)

The Sender part Q ′
1, ∆′

1 of S′ is obtained from Q1,∆1 as follows. We put Q ′
1

def= Q1×{⊤,#}×{⊤,#},

and p ′
in = 〈pin,⊤,⊤〉, p ′

fi = 〈pfi,#,#〉. A state 〈p, x, y〉 “remembers” if # has been already written

to r (x = #) or not (x = ⊤); similarly for l (by y = # or y = ⊤). For changing the status (just

once for each channel), ∆′
1 contains the rules 〈p,⊤, y〉 r!#−→ 〈p,#, y〉 and 〈p, x,⊤〉 l!#−→ 〈p, x,#〉 for

each p ∈ Q1 and x, y ∈ {⊤,#}. Moreover, any rule p
c,α−→ p ′ in ∆1 induces the rules 〈p, x, y〉 c,α−→

〈p ′, x, y〉, except for the rules 〈p,#, y〉 r:Z−→ . . . and 〈p, x,#〉 l:Z−→ . . . (i.e., Z c

1 tests are forbidden

after # has been written to c). The next lemma shows that the above reduction is correct.

Lemma 6.10. S has a run (pin, qin,ǫ,ǫ)
∗−→ (pfi, qfi,u′, v ′) for some u′ ∈ U ′ and v ′ ∈ V ′ if, and

only if, S′ has a run (〈pin,⊤,⊤〉, qin,ǫ,ǫ)
∗−→ (〈pfi,#,#〉, qf ,ǫ,ǫ).

Proof. “⇒”: Suppose C0 = (pin, qin,ǫ,ǫ)
δ1−→ C1 · · ·

δn−→ Cn = (pfi, qfi,u′, v ′), where u′ ∈ U ′, v ′ ∈
V ′, is a run of S. We first transform it into a mimicking run C ′

0 = (〈pin,⊤,⊤〉, qin,ǫ,ǫ)
∗−→

C ′
n = (〈pfi,#,#〉, qfi,#u′,#v ′). This amounts to find some right points for inserting two steps of

the forms (〈p,⊤, y〉, q,u, v)
r!#−→ (〈p,#, y〉, q,u#, v) and (〈p, x,⊤〉, q,u, v)

l!#−→ (〈p, x,#〉, q,u, v#) (in

some order). For the first one, if u′ 6= ǫ then we find the least index i1 such that Ci1

r!a−→ Ci1+1

and the written occurrence of a is permanent, i.e., it is the first symbol-occurrence in u′ in



6.5. REDUCING E-E-REACH[Z1] TO G-G-REACH[Z L

1 ] 89

Cn = (pfi, qfi,u′, v ′); if u′ = ǫ then we find the least i1 such that no r!a and no r:Z are per-

formed in C j
δ j+1−−→C j+1 with j ≥ i1. For l (and v ′) we find i2 analogously. In either case, after

i1 (respectively, i2) the channel r (respectively, l) is not tested for r:Z .

Having C ′
0

∗−→C ′
n = (〈pfi,#,#〉, qfi,#u′,#v ′), the “cleaning rules” are used to continue with C ′

n
∗−→

(〈pfi,#,#〉, qf ,ǫ,ǫ).

“⇐”: Consider a run C0 = (〈pin,⊤,⊤〉, qin,ǫ,ǫ)
∗−→ (〈pfi,#,#〉, qf ,ǫ,ǫ) = Cn of S′. Since Receiver

is in state qin at the beginning and in qf at the end, the Receiver step sequence must be

composed of two parts: the first from qin to qfi, and the second from qfi to qf ; the latter

corresponds to a sequence of cleaning (reading) rules. The cleaning steps can be commuted

after message losses (recall Lemma 6.6(4)), and after Sender’s rules (Lemma 6.6(3)) since the

first cleaning steps are r?# and l?# and Sender does not test the channels after having written

# on them.

Hence we can assume that the run C0
∗−→Cn of S′ has the form

C0 = (〈pin,⊤,⊤〉, qin,ǫ,ǫ)
∗−→ Cm = (〈pfi,#,#〉, qfi,#u′,#v ′)

∗−→ Cn = ((〈pfi,#,#〉, qfi,ǫ,ǫ)

with only Receiver steps in Cm
∗−→Cn , which entails u′ ∈U ′ and v ′ ∈ V ′. If we now just ignore

the two mode-changing steps in the subrun C0
∗−→ Cm (relying on the fact that S′ has no N

tests) we obtain a new run C0
∗−→ C ′

m with C ′
m = (〈pfi,⊤,⊤〉, qfi,u′, v ′). This new run can be

directly translated into a run (pin, qin,ǫ,ǫ)
∗−→ (pfi, qfi,u′, v ′) in S.

6.5 Reducing E-E-Reach[Z1] to G-G-Reach[Z l

1 ]

We describe an algorithm deciding E-E-Reach[Z1] instances, assuming a procedure deciding

instances of G-G-Reach[Z l

1 ]. This is a Turing reduction. The main idea is to partition a run of

a UCST[Z1] system into subruns that do not use the Z r

1 tests (i.e., that only use the Z l

1 tests)

and connect them at configurations where r is known to be empty.

For a UCST S = ({r,l},M,Q1,∆1,Q2,∆2), we let Conf
r=ǫ be the subset of configurations in

which r is empty; they are thus of the form (p, q,ǫ, v). We have put C = (p, q,u, v) ⊑ C ′ =
(p ′, q ′,u′, v ′) iff p = p ′, q = q ′, u = u′, and v ⊑ v ′. Hence Conf

r=ǫ is well-quasi-ordered by ⊑,

unlike Conf .

Slightly abusing terminology, we say that a subset W ⊆ Conf
r=ǫ is regular if there are some

state-indexed regular languages (Vp,q )p∈Q1,q∈Q2 in Reg(M) such that W = {(p, q,ǫ, v) | v ∈Vp,q }.

Such regular subsets of Conf
r=ǫ can be finitely represented using, e.g., regular expressions or

finite-state automata.

W ⊆ Conf
r=ǫ is upward-closed (in Conf

r=ǫ) if C ∈W , C ⊑C ′ and C ′ ∈ Conf
r=ǫ imply C ′ ∈W . It

is downward-closed if Conf
r=ǫ\W is upward-closed. The upward-closure ↑W of W ⊆ Conf

r=ǫ
is the smallest upward-closed set that contains W . A well-known consequence of Higman’s

Lemma (see Remark 6.2) is that upward-closed and downward-closed subsets of Conf
r=ǫ are



90 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

regular, and that upward-closed subsets can be canonically represented by their finitely many

minimal elements.

For W ⊆ Conf
r=ǫ, we let Pre∗(W )

def= {C ∈ Conf
r=ǫ | ∃D ∈ W : C

∗−→ D}: note that Pre∗(W ) ⊆
Conf

r=ǫ by our definition.

Lemma 6.11. If S is a UCST[Z l

1 ] system and W is a regular subset of Conf
r=ǫ, then Pre∗(W ) is

upward-closed; moreover, given an oracle for G-G-Reach[Z l

1 ], Pre∗(W ) is computable from S

and W .

Proof. We note that Pre∗(W ) is upward-closed since C ⊑ D is equivalent to D(
los−→)∗C , hence

D ∈ Pre∗(C ).

We now assume that an oracle for G-G-Reach[Z l

1 ] is available, and we construct a finite set

F ⊆ Pre∗(W ) whose upward-closure ↑ F is Pre∗(W ). We build up F in steps, starting with

F0 =;; clearly ↑F0 =;⊆ Pre∗(W ). The (i+1)th iteration, starting with Fi , proceeds as follows.

We put U
def= Conf

r=ǫ\ ↑Fi ; note that U is regular. We check whether there exist some C ∈U

and D ∈ W such that C
∗−→ D ; this can be decided using the oracle (it is a finite disjunction of

G-G-Reach[Z l

1 ] instances, obtained by considering all possibilities for Sender and Receiver

states). If the answer is “no”, then ↑Fi = Pre∗(W ); we then put F = Fi and we are done.

Otherwise, the answer is “yes” and we look for some concrete C ∈ U s.t. C
∗−→ D for some

D ∈ W . This can be done by enumerating all C ∈ U and by using the decidability of G-G-

Reach[Z l

1 ] again. We are bound to eventually find such C since U ∩Pre∗(W ) is not empty.

Once some C is found, we set Fi+1
def= Fi ∪ {C }. Clearly Fi+1, and so ↑ Fi+1, is a subset of

Pre∗(W ). By construction, ↑F0 (↑F1 (↑F2 ( · · · is a strictly increasing sequence of upward-

closed sets. By the well-quasi-ordering property, this sequence cannot be extended indefi-

nitely: eventually we will have ↑Fi = Pre∗(W ), signalled by the answer “no”.

Lemma 6.12. E-E-Reach[Z1] is Turing reducible to G-G-Reach[Z l

1 ].

Proof. Assume S = ({r,l},M,Q1,∆1,Q2,∆2) is a UCST[Z1], and we ask if there is a run Cin =
(pin, qin,ǫ,ǫ)

∗−→ (pfi, qfi,ǫ,ǫ) = Cfi. By S′ we denote the UCST[Z l

1 ] system arising from S by

removing all Z r

1 rules. Hence Lemma 6.11 applies to S′. The set of configurations of S and S′

is the same, so there is no ambiguity in using the notation Conf and Conf
r=ǫ.

We aim at computing Pre∗({Cfi}) for S. For k ≥ 0, let Tk ⊆ Conf
r=ǫ be the set of C ∈ Conf

r=ǫ
for which there is a run C

∗−→ Cfi of S with at most k steps that are Z r

1 tests; hence ↑ {Cfi} ⊆ T0

(by message losses). For each k, Tk is upward-closed and Tk ⊆ Tk+1. Defining T = ⋃
k∈N Tk ,

we note that Cin
∗−→Cfi iff Cin ∈ T . Since Conf

r=ǫ is well quasi-ordered, the sequence T0 ⊆ T1 ⊆
T2 ⊆ ·· · eventually stabilizes; hence there is n such that Tn = Tn+1, which implies that Tn = T .

By Lemma 6.11, and using an oracle for G-G-Reach[Z l

1 ], we can compute Pre∗S′({Cfi}), where

the “S′” subscript indicates that we consider runs in S′, not using Z r

1 tests. Hence T0 =



6.6. REDUCING E-E-REACH[Z L

1 ] TO A POST EMBEDDING PROBLEM 91

Pre∗S′({Cfi}) is computable. Given Tk , we compute Tk+1 as follows. We put

T ′
k = {C ∈ Conf

r=ǫ | ∃D ∈ Tk : C
r:Z−→ D}

= {(p, q,ǫ, w) | ∃p ′ ∈Q1 : p
r:Z−→ p ′ ∈∆1 and (p ′, q,ǫ, w) ∈ Tk } .

Thus T ′
k ⊆ Conf

r=ǫ is the set of configurations from which one can reach Tk with one (re-

liable) Z r

1 step. Clearly T ′
k is upward-closed (since Tk is) and can be computed from a fi-

nite representation of Tk , e.g., its minimal elements. Then Tk+1 = Tk ∪Pre∗S′(T ′
k ), and we use

Lemma 6.11 again to compute it.

Iterating the above process, we compute the sequence T0,T1, . . ., until the first n such that

Tn = Tn+1 (recall that Tn = T then). Finally we check if Cin ∈ Tn .

6.6 Reducing E-E-Reach[Z l

1 ] to a Post Embedding Problem

As stated in Theorem 6.5 (see also Figure 6.3), our series of reductions from G-G-Reach[Z1, N1]

to E-E-Reach[Z1] also reduces G-G-Reach[Z l

1 ] to E-E-Reach[Z l

1 ]; this can be easily checked

by recalling that the respective reductions do not introduce new tests. In subsection 6.6.1 we

show a (polynomial) many-one reduction from E-E-Reach[Z l

1 ] to PEP
partial
codir , a generalization

of Post’s Embedding Problem. Since PEP
partial
codir was shown decidable in chapter 5, our proof

of Theorem 6.4 will be thus completed. We also add subsection 6.6.2 that shows a simple

reduction in the opposite direction, from PEP
partial
codir to E-E-Reach[Z l

1 ].

6.6.1 E-E-Reach[Z l

1 ] reduces to PEP
partial
codir

We recall the definition of PEPpartial
codir :

Definition 6.13 (Post embedding with partial codirectness (chapter 5)). PEP
partial
codir is the ques-

tion, given two finite alphabets Σ,Γ, two morphisms u, v : Σ∗ → Γ
∗, and two regular languages

R,R ′ ∈Reg(Σ), whether there is σ ∈ R (called a solution) such that u(σ) ⊑ v(σ), and such that

furthermore u(σ′) ⊑ v(σ′) for all suffixes σ′ of σ that belong to R ′.

Lemma 6.14. E-E-Reach[Z l

1 ] reduces to PEP
partial
codir (via a polynomial reduction).

We now prove the lemma. The reduction from E-E-Reach[Z l

1 ] to PEP
partial
codir extends an earlier

reduction from UCS to PEP [29]. In our case the presence of Z l

1 tests creates new difficulties.

We fix an instance S = ({r,l},M,Q1,∆1,Q2,∆2), Cin = (pin, qin,ǫ,ǫ), Cfi = (pfi, qfi,ǫ,ǫ) of E-E-

Reach[Z l

1 ], and we construct a PEP
partial
codir instance P = (Σ,Γ,u, v,R,R ′) intended to express

the existence of a run from Cin to Cfi.



92 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

We first put Σ
def= ∆1 ∪∆2 and Γ

def= M so that words σ ∈Σ
∗ are sequences of rules of S, and their

images u(σ), v(σ) ∈ Γ
∗ are sequences of messages. With any δ ∈Σ, we associate write_r(δ) de-

fined by write_r(δ) = x if δ is a Sender rule of the form p
r!x−→ p ′, and write_r(δ) = ǫ in all other

cases. This is extended to sequences with write_r(δ1 · · ·δn) = write_r(δ1) · · ·write_r(δn). In

a similar way we define write_l(σ) ∈ M
∗, the message sequence written to l by the rule se-

quence σ, and read_r(σ) and read_l(σ), the sequences read by σ from r and l, respectively.

We define Er ∈Reg(Σ) as Er

def= E1 ∪E2 where

E1
def= {δ ∈Σ | write_r(δ) = read_r(δ) = ǫ} ,

E2
def= {δ1δ2 ∈Σ

2 | write_r(δ1) = read_r(δ2) 6= ǫ} .

In other words, E1 gathers the rules that do not write to or read from r, and E2 contains all

pairs of Sender/Receiver rules that write/read the same letter to/from r.

Let now P1 ⊆ ∆
∗
1 be the set of all sequences of Sender rules of the form pin = p0

..−→ p1
..−→

p2 · · ·
..−→ pn = pfi, i.e., the sequences corresponding to paths from pin to pfi in the graph de-

fined by Q1 and ∆1. Similarly, let P2 ⊆ ∆
∗
2 be the set of all sequences of Receiver rules that

correspond to paths from qin to qfi. Since P1 and P2 are defined by finite-state systems, they

are regular languages. We write P1‖P2 to denote the set of all interleavings (shuffles) of a

word in P1 with a word in P2. This operation is regularity-preserving, so P1‖P2 ∈Reg(Σ). Let

Tl ⊆∆1 be the set of all Sender rules that test the emptiness of l (which are the only test rules

in S). We define R and R ′ as the following regular languages:

R = E∗
r
∩ (P1‖P2), R ′ = Tl ·

(
∆1 ∪∆2

)∗.

Finally, the morphisms u, v : Σ∗ → Γ
∗ are given by u

def= read_l and v
def= write_l. This finishes

the construction of the PEP
partial
codir instance P = (Σ,Γ,u, v,R,R ′).

We will now prove the correctness of this reduction, i.e., show that S has a run Cin
∗−→Cfi if, and

only if, P has a solution. Before starting with the proof itself, let us illustrate some aspects of

the reduction by considering a schematic example (see Figure 6.7).

qin q1 qfi
δ′1 δ′2

l?b r?c pin p1 p2 p3 pfi
δ1 δ2 δ3 δ4

l!a r!c l!b l:Z

r

l

Figure 6.7: A schematic UCST[Z l

1 ] instance

Let us consider σsol = δ1δ
′
1δ2δ

′
2δ3δ4 and check whether it is a solution of the P instance

obtained by our reduction. For this, one first checks that σsol ∈ R, computes u(σsol) = read_l(

σsol) = b and check that b ⊑ v(σsol) = write_l(σsol) = ab. There remains to check the suffixes



6.6. REDUCING E-E-REACH[Z L

1 ] TO A POST EMBEDDING PROBLEM 93

of σsol that belong to R ′, i.e., that start with a l:Z rule. Here, only σ′ = δ4 is in R ′, and indeed

u(σ′) = ǫ⊑ v(σ′). Thus σsol is a solution.

However, a solution like σsol does not directly correspond to a run of S. For instance, any run

Cin
∗−→Cfi in the system from Figure 6.7 must use δ3 (write b on l) before δ′1 (read it).

Reciprocally, a run Cin
∗−→ Cfi does not directly lead to a solution. For example, on the same

system the following run

Cin
δ1−→C1

δ2−→C2
δ3−→C3 = (p3, qin,c, ab)

los−→C4 = (p3, qin,c,b)
δ′

1−→C5
δ4−→C6

δ′
2−→Cfi (π)

has an action in “C3
los−→ C4” that is not accounted for in Σ and cannot appear in solutions

of P . Also, the Σ-word σπ = δ1δ2δ3δ
′
1δ4δ

′
2 obtained from π is not a solution. It belongs to

P1‖P2 but not to E∗
r

(which requires that each occurrence of δ2 is immediately followed by

some .
r?c−→ . rule). Note that σsol had δ2 followed by δ′2, but it is impossible in a run Cin

∗−→Cfi

to have δ2 immediately followed by δ′2.

With these issues in mind, we introduce a notion bridging the difference between runs of S

and solutions of P . We call σ ∈ (∆1 ∪∆2)∗ a pre-solution if the following five conditions hold:

(c1) σ ∈ P1‖P2;

(c2) read_r(σ) = write_r(σ);

(c3) read_r(σ1) is a prefix of write_r(σ1) for each prefix σ1 of σ;

(c4) read_l(σ) ⊑ write_l(σ);

(c5) read_l(σ2) ⊑ write_l(σ2) for each factorization σ=σ1δσ2 where δ ∈ Tl (i.e., δ is a l:Z

rule).

A pre-solution need not be a solution of P , as it need not be in E∗
r

. A pre-solution need not

correspond to any run of S, as it may have reads on l before their corresponding writes. In

the reverse direction, it is easy to see that every solution of P is also a pre-solution. Similarly,

every run of S corresponds to a pre-solution obtained by reading off all the rules along the

run (ignoring losses).

A pre-solution σ has a Receiver-advancing switch if σ = σ1δδ
′σ2 where δ is a Sender rule,

δ′ is a Receiver rule, and σ′ = σ1δ
′δσ2 is again a pre-solution. A Receiver-postponing switch

is defined analogously, for δ being a Receiver rule and δ′ being a Sender rule. For example,

the sequence σπ above is a pre-solution. It has a Receiver-advancing switch on δ3 and δ′1,

and one on δ4 and δ′2. Note that when σ is a pre-solution, checking whether a potential

Receiver-advancing or Receiver-postponing switch leads again to a pre-solution only requires

checking (c3) or, respectively, (c5). Considering another example, σsol, being a solution is

a pre-solution. It has two Receiver-postponing switches but only one Receiver-advancing

switch since switching δ2 and δ′2 does not maintain (c3).



94 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

It is obvious that if there is a pre-solution σ then there is an advance-stable pre-solution σ′,

which means that σ′ has no Receiver-advancing switch; there is also a postpone-stable pre-

solution σ′′ which has no Receiver-postponing switch.

Claim 6.15. Any advance-stable pre-solution σ is in E∗
r

, and it is thus a solution of P .

Proof. Let us write an advance-stable pre-solution σ as σ1σ2 where σ1 is the longest prefix

such that σ1 ∈ E∗
r

; hence read_r(σ1) = write_r(σ1) by the definition of Er = E1 ∪E2. Now

suppose σ2 6= ǫ. Then σ2 = δ1δ2 · · ·δk where δ1 6∈ E1. Since read_r(σ1) = write_r(σ1), δ1 must

be of the form .
r!x−→ . to guarantee (c3). Let us pick the smallest ℓ such that δℓ = .

r?x−→ . —

which must exist by (c2)— and note that ℓ> 2 since δ1δ2 6∈ E2 by maximality of σ1. If we now

pick the least j in {1, . . . ,ℓ−1} such that δ j is a Sender rule and δ j+1 is a Receiver rule, then

switching δ j and δ j+1 leads again to a pre-solution as can be checked by inspecting (c1–c5).

This contradicts the assumption that σ is an advance-stable pre-solution.

Claim 6.16. If σ= δ1 . . .δn is a postpone-stable pre-solution, S has a run of the form Cin
δ1−→los∗−−→

·· · δn−→los∗−−→Cfi.

Proof. Assume that we try to fire δ1, . . . ,δn in that order, starting from Cin, and sometimes

inserting message losses. Since σ belongs to P1‖P2, we can only fail because at some point

the current channel contents does not allow the test or the read action carried by the next

rule to be fired, i.e., not because we end up in a control state that does not carry the next rule.

So let us consider channel contents, starting with r. For i = 0, . . . ,n, let xi = read_r(δ1 . . .δi )

and yi = write_r(δ1 . . .δi ). Since σ satisfies (c3), yi is some xi x ′
i (and x ′

0 = ǫ). One can easily

verify by induction on i that after firing σ1 . . .σi from Cin, r contains exactly x ′
i . In fact (c3)

implies that if δi+1 reads on r, it must read the first letter of x ′
i (and δi+1 cannot be a read on

r when x ′
i = ǫ).

Now, regarding the contents of l, we can rely on (c4) and conclude that the actions in σ write

on l everything that they (attempt to) read, but we do not know that messages are written

before they are needed for reading, i.e., we do not have an equivalent of (c3) for l. For this, we

rely on the assumption that σ is postpone-stable. Write σ under the form σ0z1σ1z2σ2 . . . zkσk

where the zi ’s are the test rules from Tl, and where the σi ’s factors contain no test rules. Note

that, inside a σi , all Sender rules occur before all Receiver rules thanks to postpone-stability.

We claim that read_l(σi ) ⊑ write_l(σi ) for all i = 0, . . . ,k: assume, by way of contradiction,

that read_l(σi ) 6⊑ write_l(σi ) for some i ∈ {0, . . . ,k} and let δ be the last rule in σi . Nec-

essarily δ is a reading rule. Now (c4) and (c5) entail i < k and read_l(σi zi+1σi+1 . . .σk ) ⊑
write_l(σi zi+1σi+1 . . .σk ). Then read_l(σi ) 6⊑ write_l(σi ) entails

read_l(δzi+1σi+1 . . . zkσk ) ⊑ write_l(σi+1 . . . zkσk ) . (⋆⋆)



6.6. REDUCING E-E-REACH[Z L

1 ] TO A POST EMBEDDING PROBLEM 95

There is now a Receiver-postponing switch since (⋆⋆) ensures that (c5) holds after switching

δ and zi+1, which contradicts the assumption that σ is postpone-stable.

Now, with read_l(σi ) ⊑ write_l(σi ), it is easy to build a run Cin
δ1−→los∗−−→ ·· · δn−→los∗−−→Cfi and guar-

antee that l is empty before firing any zi rule.

We now see that our reduction is correct. Indeed, if Cin
σ−→Cfi is a run of S then σ with all oc-

currences of los removed is a pre-solution; and there is also an advance-stable pre-solution,

i.e., a solution of P . On the other hand, if σ is a solution of P then σ is a pre-solution, and

there is also a postpone-stable pre-solution, which corresponds to a run Cin
∗−→ Cfi of S. This

finishes the proof of Lemma 6.14, and of Theorem 6.4.

6.6.2 PEP
partial
codir reduces to E-E-Reach[Z l

1 ]

We now prove a converse of Lemma 6.14, thus showing that PEPpartial
codir and E-E-Reach[Z l

1 ]

are equivalent problems. Actually, PEPpartial
codir can be easily reduced to E-E-Reach[Z c

i ] for any

i ∈ {1,2} and c ∈ Ch, but we only show a reduction for i = 1 and c = l explicitly. (The other

reductions would be analogous.)

Lemma 6.17. PEP
partial
codir reduces to E-E-Reach[Z l

1 ] (via a polynomial reduction).

Proof. Given aPEPpartial
codir -instance (Σ,Γ,u, v,R,R ′), we construct a UCST[Z l

1 ] system (denoted

S) with distinguished states pin, pfi, qloop, such that

the instance has a solution iff S has a run (pin, qloop,ǫ,ǫ)
∗−→ (pfi, qloop,ǫ,ǫ) . (⋆⋆⋆)

The idea is simple: Sender nondeterministically guesses a solution σ, writing u(σ) on r and

v(σ) on l, and Receiver validates it, by reading identical sequences from r and l (some mes-

sages from l might be lost). We now make this idea more precise.

Let M and M ′ be deterministic FSAs recognizing R and the complement of R ′, respectively.

Sender stepwise nondeterministically generates σ = a1a2 . . . , am , while taking the “commit-

ment” that σ belongs to R; concretely, after generating a1a2 . . . ai Sender also remembers the

state reached by M via a1a2 . . . ai , and Sender cannot enter pfi when the current state of M

is non-accepting. Moreover, for each i ∈ {1,2, . . . ,m}, i.e., at every step, Sender might decide

to take a further commitment, namely that ai ai+1 . . . , am 6∈ R ′; for each such commitment

Sender starts a new copy of M ′, remembering the states visited by M ′ via ai ai+1 . . . am , and

it cannot enter pfi if a copy of M ′ is in a non-accepting state. Though we do not bound the

number of copies of M ′, it suffices to remember just a bounded information, namely the set

of current states of all these copies.

When generating ai , Sender writes u(ai ) on r and v(ai ) on l. To check that r contains a sub-

word of l, Receiver behaves as in Figure 6.8 (that illustrates another reduction). So far we have



96 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

guaranteed that there is a run (pin, qloop,ǫ,ǫ)
∗−→ (pfi, qloop,ǫ,ǫ) iff there is σ = a1a2 . . . , am ∈ R

such that u(σ) ⊑ v(σ) (using the lossiness of l where v(σ) has been written).

We finish by adding a modification guaranteeing u(ai ai+1 . . . , am) ⊑ v(ai ai+1 . . . , am) for each

i ∈ {1,2, . . . ,m} where Sender does not commit to ai ai+1 . . . , am 6∈ R ′. For such steps, and be-

fore writing u(ai ) and v(ai ), Sender must simply wait until l is empty, i.e., Sender initiates

step i by (nondeterministically) either committing to ai ai+1 . . . , am 6∈ R ′ or by taking a Z l

1 -

step.

It is now a routine exercise to verify that (⋆⋆⋆) holds.

Remark 6.18 (On complexity). Based on known results on the complexity ofPEPpartial
codir (see [112,

76]), our reductions prove that reachability for UCST[Z , N ] is Fωω-complete, using the ordinal-

recursive complexity classes introduced in [111].

6.7 Two undecidable problems for UCST[Z , N ]

The main result of this chapter is Theorem 6.4, showing the decidability of the reachability

problem for UCST[Z , N ]. In this section we argue that the emptiness and non-emptiness tests

(“Z ” and “N ”) strictly increase the expressive power of UCSes. We do this by computational

arguments, namely by exhibiting two variants of the reachability problem that are undecid-

able for UCST[Z , N ]. Since these variants are known to be decidable for plain UCSes (with

no tests), we conclude that there is no effective procedure to transform a UCST[Z , N ] into an

equivalent UCS in general. Subsection 6.7.1 deals with the problem of recurrent reachabil-

ity of a control state. In Subsection 6.7.2 we consider the usual reachability problem but we

assume that messages can be lost only during writing to l (i.e., we assume that channel l is

reliable and that the unreliability is limited to the writing operation).

6.7.1 Recurrent reachability

The Recurrent Reachability Problem asks, when given S and its states pin, qin, p, q , whether S

has an infinite run Cin = (pin, qin,ǫ,ǫ)
∗−→ (p, q,u1, v1)

+−→ (p, q,u2, v2)
+−→ (p, q, . . .) · · · visiting the

pair (p, q) infinitely often (NB: with no constraints on channel contents), called a “pq∞-run”

for short.

The next theorem separates UCSes from UCSTs, even from UCST[Z r

1 ], i.e., UCSTs where the

only tests are emptiness tests on r by Sender. It implies that Z r

1 tests cannot be simulated by

UCSes.

Theorem 6.19. Recurrent reachability is decidable for UCSes, and is Σ0
1-complete (hence un-

decidable) for UCST[Z r

1 ].



6.7. TWO UNDECIDABLE PROBLEMS FOR UCST[Z , N ] 97

We start with the upper bounds. Consider a UCST[Z r

1 ] system S and assume it admits a pq∞-

run π. There are three cases:

case 1 If π uses infinitely many Z tests, it can be written under the form

Cin
∗−→ D1

r:Z−→ ∗−→ (p, q, . . .)
∗−→ D2

r:Z−→ ∗−→ (p, q, . . .) · · · ∗−→ Dn
r:Z−→ ∗−→ (p, q, . . .) · · ·

Observe that D1,D2, . . . belong to Conf
r=ǫ since they allow a r:Z test. By Higman’s

Lemma, there exists two indexes i < j such that Di ⊑ D j . Then D j (
los−→)∗Di

∗−→ (p, q, . . .)
∗−→

D j and we conclude that S also has a “looping” pq∞-run, witnessed by a finite run of

the form Cin
∗−→ (p, q,u, v)

+−→ (p, q,u, v).

case 2 Otherwise, if π only uses finitely many Z tests, it can be written under the form Cin
∗−→

C = (p, q,u, v) −→ ·· · such that no test occur after C . After C , any step by Sender can

be advanced before Receiver steps and message losses, according to Lemma 6.6(3). As-

suming that π uses infinitely many Sender steps, we conclude that S has a pq∞ run that

eventually only uses Sender rules (but no Z tests). At this point, we can forget about the

contents of the channels (they are not read or tested anymore). Hence a finite witness

for such pq∞-runs is obtained by the combination of a finite run Cin
∗−→ (p, q,u, v) and

a loop p = p1
δ1−→ p2

δ2−→ ·· ·pn
δn−→ p1 in Sender’s rules that does not use any testing rule.

case 3 The last possibility is that π uses only finitely many Sender rules. In that case, the

contents of the channels is eventually fixed hence there is a looping pq∞-run of the

form Cin
∗−→C = (p, q,u, v)

+−→C such that the loop from C to C only uses Receiver rules.

A finite witness for such cases is a finite run Cin
∗−→ (p, q,u, v) combined with a loop

q = q1
δ1−→ q2

δ2−→ ·· ·qn
δn−→ q1 in Receiver’s rules that only uses rules reading ǫ.

Only the last two cases are possible for UCSes: for these systems, deciding Recurrent reacha-

bility reduces to deciding whether some (p, q, ...) is reachable and looking for a loop (neces-

sarily with no tests) starting from p in Sender’s graph, or a loop with no reads starting from q

in Receiver’s graph.

For UCST[Z r

1 ], one must also consider the general looping “case 1”, i.e., ∃u, v : Cin
∗−→ (p, q,u,

v)
+−→ (p, q,u, v). Since reachability is decidable, this case is in Σ

0
1, as is Recurrent reachability

for UCST[Z r

1 ].

Now for the lower bound. We prove Σ
0
1-hardness by a reduction from the looping problem for

semi-Thue systems.

A semi-Thue system T = (Γ,R) consists of a finite alphabet Γ and a finite set R ⊆ Γ
∗×Γ

∗ of

rewrite rules; we write α→ β instead of (α,β) ∈ R. The system gives rise to a one-step rewrite

relation →R ⊆ Γ
∗×Γ

∗ as expected: x →R y
def⇔ x and y can be factored as x = zαz ′ and y = zβz ′



98 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

for some rule α→β and some strings z, z ′ ∈ Γ
∗. As usual, we write x

+−→R y if x can be rewritten

into y by a nonempty sequence of steps.

We say that T = (Γ,R) is length-preserving if |α| = |β| for each rule in R, and that it has a loop if

there is some x ∈ Γ
∗ such that x

+−→R x. The following is standard (since the one-step relation

between Turing machine configurations can be captured by finitely many length-preserving

rewrite rules).

Fact 6.20. The question whether a given length-preserving semi-Thue system has a loop is

Σ
0
1-complete.

We now reduce the existence of a loop for length-preserving semi-Thue systems to the recur-

rent reachability problem for UCST[Z r

1 ].

Let T = (Γ,R) be a given length-preserving semi-Thue system. We construct a UCST S, with

message alphabet M
def= Γ⊎ {#}. The reduction is illustrated in Figure 6.8, assuming Γ = {a,b}.

The resulting S behaves as follows:

(a) Sender starts in state pin, begins by nondeterministically sending some y0 ∈ Γ
∗ on l, then

moves to state ploop. In state ploop, Sender performs the following steps in succession:

1. check that (equivalently, wait until) r is empty;

2. send # on l;

3. nondeterministically send a string z ∈ Γ
∗ on both l and r;

4. nondeterministically choose a rewrite rule α→β (from R) and send α on r and β on l;

5. nondeterministically send a string z ′ ∈ Γ
∗ on both l and r;

6. send # on r;

7. go back to ploop (and repeat 1–7).

qloop

l?a

r?a

l?# r?#

l?b

r?b pinploop

...
...

l!a

l!b

r:Z

l!#

l!ar!a
l!b

r!b

l!ar!a

l!b

r!b

r!α1 l!β1

r!αk l!βk

r!#

r

l

a b a # a a

a a

Figure 6.8: Solving the looping problem for semi-Thue systems

The above loop 1–7 can be also summarized as: check that r is empty, nondeterministically

guess two strings x and y such that x →R y , writing x# on r and #y on l.



6.7. TWO UNDECIDABLE PROBLEMS FOR UCST[Z , N ] 99

(b) Receiver starts in state qloop from where it reads any pair of identical symbols from r and

l, returns to qloop, and repeats this indefinitely.

Claim 6.21 (Correctness of the reduction). S has an infinite run starting from Cin = (pin, qloop,

ǫ,ǫ) and visiting the control pair (ploop, qloop) infinitely often if, and only if, x
+−→R x for some

x ∈ Γ
∗.

Proof. For the “⇐” direction we assume that T has a loop x = x0 →R x1 →R . . . →R xn = x

with n > 0. Let Ci
def= (ploop, qloop,ǫ, xi ). S obviously has a run Cin

∗−→ C0, sending x0 on l.

For each i ≥ 0, S has a run Ci
+−→ Ci+1: it starts with appending the pair xi →R xi+1 on the

channels, hence visiting (., ., xi #, xi # xi+1), from which Receiver can read the xi # prefix on

both channels, thus reaching Ci+1. Note that no messages are lost in these runs. Chaining

them gives an infinite run that visits (ploop, qloop) infinitely many times.

For the “⇒” direction, we assume that S has an infinite run starting from Cin that visits

(ploop, qloop) infinitely often. Since Sender checks the emptiness of r before running through

its loop, we conclude that no # character written to l is lost during the run. Let y0 be written

on l before the first visit of ploop; for i ≥ 1, let (xi , yi ) be the pair of strings guessed by Sender

during the i th iteration of its loop 1–7 (xi written on r and yi on l). Receiver can only empty

the reliable channel r if xi ⊑ yi−1 for all i ≥ 1. This implies |xi | ≤ |yi−1|. We also have |xi | = |yi |
since T is length-preserving. Therefore eventually, say for all i ≥ n, all xi and yi have the same

length. Then xi = yi−1 for i > n (since xi ⊑ yi−1 and |xi | = |yi−1|). Hence T admits an infinite

derivation of the form

xn →R yn = xn+1 →R yn+1 = xn+2 →R · · ·

Since there are only finitely many strings of a given length, there are two positions m′ > m ≥ n

such that xm = xm′ ; hence T has a loop xm
+−→R xm .

6.7.2 Write-lossy semantics

As another illustration of the power of tests, we consider UCSTs with write-lossy semantics,

that is, UCSTs with the assumption that messages are only lost during steps that write them

to l. Once messages are in l, they are never lost. If we start with the empty channel l and

we only allow the emptiness tests on l, then any computation in normal lossy semantics can

be mimicked by a computation in write-lossy semantics: any occurrence of a message that

gets finally lost will simply not be written. Adding the non-emptiness test makes a difference,

since the reachability problem becomes undecidable.

We now make this reasoning more formal, using the new transition relation C −→wrlo C ′ that is

intermediary between the reliable and the lossy semantics.

Each l-writing rule δ of the form p
l!x−→ p ′ in a UCST S will give rise to write-lossy steps of

the form (p, q,u, v)
wrlo−−→ (p ′, q,u, v), where δ is performed but nothing is actually written. We



100 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

write C −→wrlo C ′ when there is a reliable or a write-lossy step from C to C ′, and use C −→rel C ′

and C −→los C ′ to denote the existence of a reliable step, and respectively, of a reliable or a

lossy step. Then −→rel ⊆−→wrlo ⊆
∗−→los.

Now we make precise the equivalence of the two semantics when we start with the empty l

and only use the emptiness tests:

Lemma 6.22. Assume S is a UCST[Z ] system. Let Cin = (p, q,u,ǫ) be a configuration (where

l is empty). Then, for any Cfi configuration, Cin
∗−→los Cfi iff Cin

∗−→wrlo Cfi.

Proof. The “⇐” direction is trivial. For the “⇒” direction we claim that

if C −→wrlo C ′ ⊒1 C ′′, then also C ⊒ D −→wrlo C ′′ for some D . (†)

Indeed, if (the occurrence of) the message in C ′ that is missing in C ′′ occurs in C , then it is

possible to first lose this message, leading to D , before mimicking the step that went from C

to C ′ (we rely here on the fact that S only uses Z tests). Otherwise, C ′′ is obtained by losing

the message that has just been (reliably) written when moving from C to C ′, and taking D =C

is possible.

Now, since
∗−→los is

(
−→wrlo ∪⊒1

)∗ and since
(
⊒1

)∗ is ⊒, we can use (†) and conclude that C
∗−→los

D implies that C ⊒C ′ ∗−→wrlo D for some C ′. Finally, in the case where C =Cin and l is empty,

only C ′ =Cin is possible.

Corollary 6.23. E-G-Reachability is decidable for UCST[Z ] with write-lossy semantics.

The write-lossy semantics is meaningful when modeling unreliability of the writing actions

as opposed to unreliability of the channels. In the literature, write-lossy semantics is mostly

used as a way of restricting the nondeterminism of message losses without losing any essen-

tial generality, relying on equivalences like Lemma 6.22 (see, e.g., [30, section 5.1]).

However, for our UCST systems, the write-lossy and the standard lossy semantics do not co-

incide when N tests are allowed. In fact, Theorem 6.4 does not extend to write-lossy systems.

Theorem 6.24. E-E-Reach is undecidable for UCST[Z l

1 , Nl

1 ] with write-lossy semantics.

Proof Idea. As in subsection 6.2.2, Sender simulates a queue automaton using tests and the

help of Receiver. See Figure 6.9. Channel l is initially empty. To read, say, a from r, Sender

does the following: (1) write a on l; (2) check that l is nonempty (hence the write was not

lost); (3) check that, i.e., wait until, l is empty. Meanwhile, Receiver reads identical letters

from r and l.

Thus, at least in the write-lossy setting, we can separate UCST[Z ] and UCST[Z l

1 , Nl

1 ] with

respect to decidability of reachability.



6.8. CONCLUDING REMARKS 101

qproxy

l?a

r?a

l?c r?c

l?b

r?b p1

p2

l!a

l:N

l:Z

r

l

a b c a c

Figure 6.9: Write-lossy Sender simulates “p1
r?a−→ p2” with N and Z tests and proxy Receiver

6.8 Concluding remarks

UCSes are communicating systems where a Sender can send messages to a Receiver via one

reliable and one unreliable, lossy, channel, but where no direct communication is possible in

the other direction. We introduced UCSTs, an extension of UCSes where steps can be guarded

by tests, i.e., regular predicates on channel contents. This extension introduces limited but

real possibilities for synchronization between Sender and Receiver. For example, Sender (or

Receiver) may use tests to detect whether the other agent has read (or written) some mes-

sage. As a consequence, adding tests leads to undecidable reachability problems in gen-

eral. Our main result is that reachability remains decidable when only emptiness and non-

emptiness tests are allowed. The proof goes through a series of reductions from UCST[Z , N ]

to UCST[Z l

1 ] and finally to PEP
partial
codir , an extension of Post’s Embedding Problem that was

motivated by the concerns of this chapter.

These partial results do not yet provide a clear picture of what tests on channel contents make

reachability undecidable for UCSTs. Currently, the two most pressing questions we would like

to see answered are:

1. What about occurrence and non-occurrence tests, defined as {Oa , NOa | a ∈ M} with

Oa = M
∗.a.M∗ and NOa = (M \ {a})∗? Such tests generalize N and Z tests and have

been considered for channel systems used as a tool for questions on Metric Tempo-

ral Logic [24].

2. What about UCSTs with tests restricted to the lossy l channel? The undecidable reach-

ability questions in Theorem 6.3 all rely on tests on the reliable r channel.

We have made partial progress on the decidability of non-occurrence tests: we can adapt the

reduction from E-E-Reach[Z l

1 ] to PEP
partial
codir from section 6.6 to work with non-occurrence

tests NOa . This needs a slight variant of PEPpartial
codir . For words x and y and a letter a, say

x ⊑a y if every suffix of x beginning with an a is a subword of y . Equivalently, x ⊑a y iff a does

not occur in x or if a does occur and the longest suffix of x starting with an a is a subword

of y . Then by a reduction very similar to that from section 6.6, the E-E-Reach problem for

UCST equipped with NOa tests by the sender on l can be reduced to the following variant of



102 CHAPTER 6. UNIDIRECTIONAL CHANNEL SYSTEMS WITH TESTS

PEP
partial
codir :

Given morphisms u, v : Σ∗ → Γ
∗, regular languages R,R ′ ⊆ Σ

∗, and a letter a ∈ Γ,

does there exist σ ∈ R such that u(σ) ⊑ v(σ) and for every suffix σ′ of σ which

belongs to R ′, u(σ′) ⊑a v(σ′)?

This variant of PEPpartial
codir is decidable; the proof proceeds along almost the same lines as the

proof of decidability of PEPpartial
codir (Theorem 5.4 from section 5.2), by cutting a long solution

to obtain a bound on the length of the shortest solution if one exists.

This can be easily extended to UCST with non-occurrence tests on multiple letters. Thus we

can show that E-E-reachability for UCST with non-occurrence tests by sender on l is decid-

able. However this is far from satisfactory, as for general N and Z tests (and arbitrary regular

initial and final channel contents) we have an intricate sequence of reductions, and it is not

clear how to proceed in the presence of non-occurrence tests. For example the Turing reduc-

tion from section 6.5 which eliminates emptiness Z r

1 tests does not adapt to non-occurrence

tests. Handling even “simple” [non-]occurrence tests remains a challenging problem.



Conclusion

We considered three main problems, all related to the verification of systems analyzable with

theory of well-structured transition systems (section 1.3, [48])and well-quasi-orders (sec-

tion 2.2), and in particular the subword relation.

We addressed fundamental state complexity questions involving closures and interiors of

languages represented by finite-state automata with respect to the subword relation. We im-

proved upon existing results by providing exact bounds for closures, and showed new results

for the two-letter case, as well as for the new problem of computing interiors. These results

point to more general questions: what are the right data structures for reasoning with (sets

of) subwords and superwords? Further directions of research suggested by our work also

include investigating interiors for other orders such as prefix, suffix, factor, and the priority

order from [53], as well as decision problems involving interiors.

The Post Embedding Problem is a convenient problem at level Fωω in the fast-growing hi-

erarchy, and along with its new generalization PEP
partial
dir can also be seen as an algebraic

abstraction of the reachability problem for LCSes and UCSes. We showed that PEPpartial
dir and

its equivalent mirror PEPpartial
codir are decidable, by bounding the length of the smallest solu-

tion, if one exists. We also showed decidability for the universal and counting versions of the

problem, and that combining directness and codirectness leads to undecidability. Further

directions of research include using PEP for lower bounds where reachability on LCS was

used earlier, with the goal of obtaining bounds for new problems, and having simpler proofs,

possibly parameterized by the alphabet size [76]. PEP-like problems for other wqos and their

use in lower bounds is another area open to exploration.

In UCSes, Sender communicates to Receiver over one lossy and one reliable channel. This

model is closely related to the Post Embedding Problem. In addition, UCSes are a minimal

setting to which one can reduce reachability problems for more complex combinations of

lossy and reliable channels. We extended the basic UCS model with channel tests, which al-

low limited synchronization between Sender and Receiver. We showed through a series of re-

ductions that reachability is decidable for UCS extended with emptiness and non-emptiness

tests. It was surprisingly hard to show decidability for emptiness and nonemptiness tests,

and extending these results, either positively or negatively, to more general tests remains a

103



104 CONCLUSION

challenging open problem.



Bibliography

[1] Parosh Aziz Abdulla. Well (and better) quasi-ordered transition systems. Bulletin of Symbolic Logic,

16(4):457–515, December 2010.

[2] Parosh Aziz Abdulla, Aurore Annichini, and Ahmed Bouajjani. Symbolic Verification of Lossy Channel

Systems: Application to the Bounded Retransmission Protocol. In Proc. TACAS 1999, volume 1579 of Lecture

Notes in Computer Science, pages 208–222. Springer, 1999.

[3] Parosh Aziz Abdulla, Christel Baier, S. Purushothaman Iyer, and Bengt Jonsson. Simulating perfect chan-

nels with probabilistic lossy channels. Information and Computation, 197(1-2):22–40, February 2005.

[4] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Using Forward

Reachability Analysis for Verification of Lossy Channel Systems. Formal Methods in System Design,

25(1):39–65, July 2004.

[5] Parosh Aziz Abdulla, Giorgio Delzanno, and Laurent Van Begin. A classification of the expressive power of

well-structured transition systems. Information and Computation, 209(3):248–279, March 2011.

[6] Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, and James Worrell. Decidability and complexity re-

sults for timed automata via channel machines. In Proc. ICALP 2005, volume 3580 of Lecture Notes in

Computer Science, pages 1089–1101. Springer, 2005.

[7] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. In Proc. LICS 1993.

IEEE, 1993.

[8] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. Information and

Computation, 127(2):91–101, June 1996.

[9] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena. A survey of regular model

checking. In Proc. CONCUR 2004, volume 3170 of Lecture Notes in Computer Science, pages 35–48. Springer,

2004.

[10] M. Arfi. Polynomial Operations on Rational Languages. In Proc. STACS 1987, volume 247 of Lecture Notes

in Computer Science, pages 198–206. Springer, 1987.

[11] Eugene Asarin and Pieter Collins. Noisy Turing Machines. In Automata, Languages and Programming SE -

83, volume 3580 of Lecture Notes in Computer Science, pages 1031–1042. Springer, 2005.

[12] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. On the verifica-

tion problem for weak memory models. ACM SIGPLAN Notices, 45(1):7, January 2010.

[13] Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. On the Reachability Analysis of Acyclic Net-

works of Pushdown Systems. In Proc. CONCUR 2008, volume 5201, pages 356–371. Springer, 2008.

[14] G. Bachmeier, M. Luttenberger, and M. Schlund. Finite Automata for the Sub- and Superword Closure of

CFLs: Descriptional and Computational Complexity. arXiv:1410.2737 [cs.FL], October 2014.

105



106 BIBLIOGRAPHY

[15] Ricardo A Baeza-Yates. Searching subsequences. Theoretical Computer Science, 78(2):363–376, January

1991.

[16] Pablo Barcelo, Diego Figueira, and Leonid Libkin. Graph Logics with Rational Relations. Logical Methods

in Computer Science, 9(3), July 2013.

[17] Keith A Bartlett, Roger A Scantlebury, and Peter T Wilkinson. A note on reliable full-duplex transmission

over half-duplex links. In Communications of the ACM, volume 12, pages 260–261, May 1969.

[18] Nathalie Bertrand and Philippe Schnoebelen. Computable fixpoints in well-structured symbolic model

checking. Formal Methods in System Design, 43(2):233–267, August 2012.

[19] Jean-Camille Birget. Partial orders on words, minimal elements of regular languages, and state complexity.

Theoretical Computer Science, 119(2):267–291, October 1993.

[20] Jean-Camille Birget. The state complexity of Σ∗L and its connection with temporal logic. Information

Processing Letters, 58(4):185–188, May 1996.

[21] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of Pushdown Automata: Applica-

tion to Model-Checking. In Proc. CONCUR 1997, volume 1243 of Lecture Notes in Computer Science, pages

135–150. Springer, 1997.

[22] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular Model Checking. In Proc.

CAV 2000, Lecture Notes in Computer Science, pages 403–418. Springer, 2000.

[23] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, Philippe Schnoebelen, and James Worrell. On termination

and invariance for faulty channel machines. Formal Aspects of Computing, 24(4-6):595–607, June 2012.

[24] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. The Cost of Punctuality. In Proc. LICS

2007, pages 109–120. IEEE, 2007.

[25] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal of the ACM,

30(2):323–342, April 1983.

[26] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable Channels Are Easier to Verify Than

Perfect Channels. Information and Computation, 124(1):20–31, January 1996.

[27] Pierre Chambart and Philippe Schnoebelen. Post Embedding Problem Is Not Primitive Recursive, with

Applications to Channel Systems. In Proc. FSTTCS 2007, volume 4855 of Lecture Notes in Computer Science,

pages 265–276. Springer, 2007.

[28] Pierre Chambart and Philippe Schnoebelen. Mixing lossy and perfect fifo channels. In Proc. CONCUR

2008, volume 5201 of Lecture Notes in Computer Science, pages 340–355, 2008.

[29] Pierre Chambart and Philippe Schnoebelen. The ω-Regular Post Embedding Problem. In Proc. FOSSACS

2008, volume 4962 of Lecture Notes in Computer Science, pages 97–111. Springer, 2008.

[30] Pierre Chambart and Philippe Schnoebelen. The Ordinal Recursive Complexity of Lossy Channel Systems.

In Proc. LICS 2008, pages 205–216. IEEE, June 2008.

[31] Pierre Chambart and Philippe Schnoebelen. Computing blocker sets for the Regular Post Embedding Prob-

lem. In Proc. DLT 2010, volume 6224 of Lecture Notes in Computer Science, pages 136–147. Springer, 2010.

[32] Pierre Chambart and Philippe Schnoebelen. Pumping and counting on the Regular Post Embedding Prob-

lem. In Proc. ICALP 2010, volume 6199 of Lecture Notes in Computer Science, pages 64–75. Springer, 2010.

[33] Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In Proc. FOCS 1976, pages 98–108. IEEE, October

1976.

[34] Edmund Clarke, Olna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.



BIBLIOGRAPHY 107

[35] Lorenzo Clemente, Frédéric Herbreteau, Amelie Stainer, and Grégoire Sutre. Reachability of communi-

cating timed processes. In Proc. FOSSACS 2013, volume 7794 of Lecture Notes in Computer Science, pages

81–96, 2013.

[36] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, UK, 1971.

[37] Bruno Courcelle. On constructing obstruction sets of words. EATCS Bulletin, 44:178–185, 1991.

[38] Patrick Cousot and Radhia Cousot. Abstract interpretation. In Proc. POPL 1977, pages 238–252. ACM Press,

1977.

[39] Wojciech Czerwiński, Wim Martens, and Tomáš Masopust. Efficient separability of regular languages by

subsequences and suffixes. In Proc. ICALP 2013, volume 7966 of Lecture Notes in Computer Science, pages

150–161. Springer, 2013.

[40] Cees Elzinga, Sven Rahmann, and Hui Wang. Algorithms for subsequence combinatorics. Theoretical

Computer Science, 409:394–404, 2008.

[41] E. Allen Emerson. The Beginning of Model Checking: A Personal Perspective. In 25 Years of Model Checking

SE - 2, volume 5000 of Lecture Notes in Computer Science, pages 27–45. Springer, 2008.

[42] M Fairtlough and S S Wainer. Hierarchies of provably recursive functions. In S Buss, editor, Handbook

of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics, chapter III, pages

149–207. Elsevier Science, 1998.

[43] Alain Finkel. A generalization of the procedure of Karp and Miller to well-structured transition systems. In

Proc. ICALP 1987, volume 267 of Lecture Notes in Computer Science, pages 499–508. Springer, 1987.

[44] Alain Finkel. A new class of analyzable CFSMs with unbounded FIFO channels. In Proc. PSTV 1988. North-

Holland, 1988.

[45] Alain Finkel. Reduction and covering of infinite reachability trees. Information and Computation,

89(2):144–179, December 1990.

[46] Alain Finkel. Decidability of the termination problem for completely specified protocols. Distributed Com-

puting, 7(3):129–135, March 1994.

[47] Alain Finkel and Jean Goubault-Larrecq. Forward Analysis for WSTS, Part II: Complete WSTS. Logical

Methods in Computer Science, 8(3), September 2012.

[48] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theoretical Com-

puter Science, 256(1-2):63–92, 2001.

[49] Robert W Floyd. Assigning meanings to programs. Mathematical aspects of computer science, 19(19-32):1,

1967.

[50] Mohamed G. Gouda. Synthesis of Communicating Finite-State Machines with Guaranteed Progress. IEEE

Transactions on Communications, 32(7):779–788, July 1984.

[51] Hermann Gruber and Markus Holzer. Finding Lower Bounds for Nondeterministic State Complexity Is

Hard. In Proc. DLT 2006, volume 4036 of Lecture Notes in Computer Science, pages 363–374. Springer, 2006.

[52] Hermann Gruber, Markus Holzer, and Martin Kutrib. More on the size of Higman-Haines sets: effective

constructions. Fundamenta Informaticae, pages 1–17, 2009.

[53] Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The Power of Priority Channel Systems. In

Proc. CONCUR 2013, volume 8052 of Lecture Notes in Computer Science, pages 319–333. Springer, 2013.

[54] Peter Habermehl, Roland Meyer, and Harro Wimmel. The Downward-Closure of Petri Net Languages. In

Proc. ICALP 2010, volume 6199 of Lecture Notes in Computer Science, pages 466–477. Springer, 2010.

[55] Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The Ordinal-Recursive Complexity of Timed-

arc Petri Nets, Data Nets, and Other Enriched Nets. In Proc. LICS 2012, pages 355–364. IEEE, June 2012.



108 BIBLIOGRAPHY

[56] Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial Theory,

6(1):94–98, January 1969.

[57] Pierre-Cyrille Héam. On shuffle ideals. RAIRO-Theoretical Informatics and Applications, 36(2002):359–384,

2002.

[58] Alexander Heußner, Tristan Le Gall, and Grégoire Sutre. Safety Verification of Communicating One-

Counter Machines. In Proc. FSTTCS 2012, volume 18 of Leibniz International Proceedings in Informatics,

pages 224–235. Leibniz-Zentrum für Informatik, 2012.

[59] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability Analysis of Commu-

nicating Pushdown Systems. Logical Methods in Computer Science, 8(3), September 2012.

[60] Graham Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London Mathematical

Society, s3-2(1):326–336, January 1952.

[61] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–

580, October 1969.

[62] Markus Holzer and Barbara König. On deterministic finite automata and syntactic monoid size. Theoretical

Computer Science, 327(3):319–347, November 2004.

[63] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[64] Gerard J. Holzmann. Economics of software verification. In Proc. PASTE 2001, pages 80–89. ACM Press,

2001.

[65] Gerard J. Holzmann. The SPIN model checker: Primer and reference manual, volume 1003. Addison-Wesley

Reading, 2004.

[66] Pieter Hooimeijer and Margus Veanes. An Evaluation of Automata Algorithms for String Analysis. In Proc.

VMCAI 2011, volume 6538 of Lecture Notes in Computer Science, pages 248–262. Springer, 2011.

[67] Oscar H Ibarra, Zhe Dang, and Pierluigi San Pietro. Verification in loosely synchronous queue-connected

discrete timed automata. Theoretical Computer Science, 290(3):1713–1735, January 2003.

[68] Neil Immerman. Languages that Capture Complexity Classes. SIAM Journal on Computing, 16(4):760–778,

August 1987.

[69] International Standards Organization. Data Communications - HDLC Procedures - Elements of Proce-

dures. Technical report, Geneva, 1979.

[70] Petr Jančar, Prateek Karandikar, and Philippe Schnoebelen. Unidirectional Channel Systems Can Be Tested.

In Proc. IFIP TCS 2012, volume 7604 of Lecture Notes in Computer Science, pages 149–163. Springer, 2012.

[71] Petr Jančar, Prateek Karandikar, and Philippe Schnoebelen. On Reachability for Unidirectional Channel

Systems Extended with Regular Tests. Logical Methods in Computer Science (in press), 2014.

[72] Jeff Kahn. Entropy, independent sets and antichains: A new approach to Dedekind’s Problem. Proceedings

Of The American Mathematical Society, 130:371–378, 2002.

[73] Jui-Yi Kao, Narad Rampersad, and Jeffrey Shallit. On NFAs where all states are final, initial, or both. Theo-

retical Computer Science, 410(47-49):5010–5021, November 2009.

[74] Prateek Karandikar, Manfred Kufleitner, and Philippe Schnoebelen. On the index of Simon’s congruence

for piecewise testability. Information Processing Letters, November 2014.

[75] Prateek Karandikar, Matthias Niewerth, and Philippe Schnoebelen. On the state complexity of closures and

interiors of regular languages with subwords. CoRR, abs/1406.0, 2014.

[76] Prateek Karandikar and Sylvain Schmitz. The parametric ordinal-recursive complexity of Post embedding

problems. In Proc. FOSSACS 2013, volume 7794 of Lecture Notes in Computer Science, pages 273 – 288, 2013.



BIBLIOGRAPHY 109

[77] Prateek Karandikar and Philippe Schnoebelen. Cutting through regular Post embedding problems. In Proc.

CSR 2012, volume 7353 of Lecture Notes in Computer Science, pages 229–240. Springer, 2012.

[78] Prateek Karandikar and Philippe Schnoebelen. Generalized Post Embedding Problems. Theory of Comput-

ing Systems, September 2014.

[79] Prateek Karandikar and Philippe Schnoebelen. On the state complexity of closures and interiors of regular

languages with subwords. In Proc. DCFS 2014, volume 8614 of Lecture Notes in Computer Science, pages

234–245. Springer, 2014.

[80] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer and System

Sciences, 3(2):147–195, 1969.

[81] Kamilla Kátai-Urbán, Péter Pál Pach, Gabriella Pluhár, András Pongrácz, and Csaba Szabó. On the word

problem for syntactic monoids of piecewise testable languages. Semigroup Forum, 84(2):323–332, Novem-

ber 2011.

[82] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware design: a survey. ACM Transac-

tions on Design Automation of Electronic Systems, 4(2):123–193, April 1999.

[83] Yonit Kesten, Oded Maler, Monica Marcus, Amir Pnueli, and Elad Shahar. Symbolic model checking with

rich assertional languages. Theoretical Computer Science, 256:93–112, 2001.

[84] Ondřej Klíma and Libor Polák. Alternative Automata Characterization of Piecewise Testable Languages. In

Proc. DLT 2013, volume 7907 of Lecture Notes in Computer Science, pages 289–300. Springer, 2013.

[85] Boris Konev, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Dynamic topological logics

over spaces with continuous functions. In Advances in Modal Logic, volume 6, pages 299–318. College

Publications, 2006.

[86] Agi Kurucz. Combining Modal Logics. In Handbook of Modal Logics, volume 3, chapter 15, pages 869–926.

Elsevier Science, 2006.

[87] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-Bounded Analysis of Concurrent Queue

Systems. In Proc. TACAS 2008, volume 4963, pages 299–314. Springer, 2008.

[88] Simon S. Lam and A. Udaya Shankar. Protocol Verification via Projections. IEEE Transactions on Software

Engineering, SE-10(4):325–342, July 1984.

[89] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Transactions on Computational

Logic, 9(2):1–27, March 2008.

[90] Sylvain Lombardy and Jacques Sakarovitch. The universal automaton. In Logic and Automata: History and

Perspectives, volume 2 of Texts in Logic and Games, pages 457–504. Amsterdam University Press, 2008.

[91] Zohar Manna and Amir Pnueli. Verification of Parameterized Programs. In Specification and Validation

Methods, pages 167–230. University Press, 1995.

[92] Raymond E. Miller. The construction of self-synchronizing finite state protocols. Distributed Computing,

2(2):104–112, June 1987.

[93] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Mathematical Proceedings of the Cambridge

Philosophical Society, 59(04):833, October 1963.

[94] Alexander Okhotin. On the state complexity of scattered substrings and superstrings. Fundamenta Infor-

maticae, 99:325–338, 2010.

[95] Joël Ouaknine and James Worrell. On Metric Temporal Logic and Faulty Turing Machines. In Proc. FOSSACS

2006, volume 3921 of Lecture Notes in Computer Science, pages 217–230. Springer, 2006.

[96] Joël Ouaknine and James Worrell. On the decidability and complexity of Metric Temporal Logic over finite

words. Logical Methods in Computer Science, 3(1):1–27, February 2007.



110 BIBLIOGRAPHY

[97] Jan K. Pachl. Protocol Description and Analysis Based on a State Transition Model with Channel Expres-

sions. In Proc. PSTV 1987, pages 207–219. North-Holland, May 1987.

[98] Jean-Éric Pin. Varieties of Formal Languages. Plenum, New-York, 1986.

[99] Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of Computing Sys-

tems, 30(4):383–422, July 1997.

[100] Thomas Place, Lorijn Van Rooijen, and Marc Zeitoun. Separating regular languages by piecewise testable

and unambiguous languages. In Proc. MFCS 2013, volume 8087 of Lecture Notes in Computer Science, pages

729–740. Springer, 2013.

[101] Amir Pnueli. The temporal logic of programs. In Proc. FOCS 1977, pages 46–57. IEEE, 1977.

[102] Emil L. Post. Formal Reductions of the General Combinatorial Decision Problem. American Journal of

Mathematics, 65(2):197, April 1943.

[103] Hans Jürgen Prömel and Wolfgang Thumser. Fast growing functions based on Ramsey theorems. Discrete

Mathematics, 95(1-3):341–358, December 1991.

[104] Jean Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in CESAR. In

International Symposium on Programming SE - 22, volume 137 of Lecture Notes in Computer Science, pages

337–351. Springer, 1982.

[105] C. V. Ramamoorthy, Y. Yaw, R. Aggarwal, and J. Song. Synthesis of two-party error-recoverable protocols. In

Proc. SIGCOMM 1986, pages 227–235. ACM Press, 1986.

[106] Narad Rampersad, Jeffrey Shallit, and Zhi Xu. The computational complexity of universality problems for

prefixes, suffixes, factors, and subwords of regular languages. Fundamenta Informaticae, 116:223–236, July

2012.

[107] Louis E Rosier and Hsu-Chun Yen. Boundedness, empty channel detection, and synchronization for com-

municating finite automata. Theoretical Computer Science, 44(1):69–105, January 1986.

[108] Jacques Sakarovitch and Imre Simon. Subwords. In M Lothaire, editor, Combinatorics on words, volume 17

of Encyclopedia of Mathematics and Its Applications, chapter 6, pages 105–142. Cambridge University Press,

1983.

[109] Arto Salomaa, Kai Salomaa, and Sheng Yu. State complexity of combined operations. Theoretical Computer

Science, 383(2-3):140–152, September 2007.

[110] David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules. Addison-Wesley Read-

ing, 1983.

[111] Sylvain Schmitz. Complexity Hierarchies Beyond Elementary. CoRR, abs/1312.5:36, December 2013.

[112] Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper bounds with Higman’s Lemma. In

Proc. ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 441–452. Springer, 2011.

[113] Sylvain Schmitz and Philippe Schnoebelen. Algorithmic Aspects of WQO Theory. HAL, cel-007270, 2012.

[114] Sylvain Schmitz and Philippe Schnoebelen. The Power of Well-Structured Systems. In Proc. CONCUR 2013,

volume 8052 of Lecture Notes in Computer Science, pages 5–24. Springer, 2013.

[115] Philippe Schnoebelen. Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets.

In Proc. MFCS 2010, volume 6281 of Lecture Notes in Computer Science, pages 616–628. Springer, 2010.

[116] Imre Simon. Piecewise testable events. In Automata Theory and Formal Languages 2nd GI Conference,

volume 33 of Lecture Notes in Computer Science, pages 214–222. Springer, 1975.

[117] Carl A. Sunshine. Formal Modeling of Communication Protocols. In Kommunikation in verteilten Systemen

SE - 24, volume 40 of Informatik-Fachberichte, pages 406–428. Springer, 1981.



BIBLIOGRAPHY 111

[118] Rüdiger Valk and Matthias Jantzen. The residue of vector sets with applications to decidability problems

in Petri nets. Acta Informatica, 21(6):643–674, March 1985.

[119] Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete Mathematics,

21(3):237–252, January 1978.

[120] Pierre Wolper and Bernard Boigelot. Verifying Systems with Infinite but Regular State Spaces. In Proc. CAV

1998, volume 1427 of Lecture Notes in Computer Science, pages 88–97. Springer, 1998.

[121] Sheng Yu. State Complexity: Recent Results and Open Problems. Fundamenta Informaticae, 64(1–4):471–

480, 2005.

[122] P. Zafiropulo, C. West, H. Rudin, D. Cowan, and D. Brand. Towards Analyzing and Synthesizing Protocols.

IEEE Transactions on Communications, 28(4):651–661, April 1980.

[123] Georg Zetzsche. Computing downward closures for stacked counter automata. arxiv:1409.7922 [cs.FL],

September 2014.



Index

Fωω , 11

channel systems, 9

channel systems, lossy, 9

channel tests, 73

closures, 19

complexity

fast-growing, 11

state, 21

controlled sequences, 55

cutting lemmas, 57

Dedekind numbers, 32

Dickson’s Lemma, 18

downward interior, 23

embedding, 15

leftmost, 16

rightmost, 16

extended fooling set technique, 24

fast-growing complexity, 11

fooling set technique, 24

Higman’s Lemma, 18

interiors, 23

iteration lemmas, 61

languages, piecewise testable, 43

length function theorem, 55

lossy channel systems, 9

model checking, 8

Myhill-Nerode congruence, 55

PEP, see Post Embedding Problem

PEP with partial codirectness, 53, 56

PEP with partial directness, 53, 56

piecewise testable languages, 43

Post Embedding Problem, 11, 53

Regular Post Embedding Problem, 53

Simon’s congruence, 43, 44

lower bound, 45

upper bound, 46

state complexity, 21

subword, 15

UCS, 11

UCST, 74

unidirectional channel system with tests, 74

unidirectional channel systems, 11, 73

upward interior, 23

well-quasi-orders, 17

well-structured transition systems, 10

wqo, 17

write-lossy, 99

WSTS, 10

112


	Introduction
	Model checking
	Channel systems
	Well-structured transition systems
	Fast-growing complexity, LCS, and UCS
	Our contributions
	Acknowledgements

	Technical preliminaries
	Subwords and embeddings
	Well-quasi-orders

	State complexity and related questions
	Preliminaries
	State complexity of closures
	Deterministic automata for closures
	State complexity of closures for languages over small alphabets

	Exponential state complexity of closures in the 2-letter case
	State complexity of interiors
	Upper bounds for interiors and the approximation problem
	Lower bound for downward interiors
	Lower bound for upward interiors
	On interiors of languages over a fixed alphabet

	Complexity of decision problems on subwords
	Deciding closedness
	Deciding equivalence modulo closure

	Concluding remarks

	Simon's congruence
	Preliminaries
	Lower bound
	Upper bound
	Concluding remarks
	Appendix: first values for Ck(n)

	Post Embedding Problem
	Preliminaries
	Higman's Lemma and the length of bad sequences

	Deciding  PEP partialdir, or  PEP  with partial directness
	Counting the number of solutions
	Universal variants of  PEP partialdir
	Undecidability for  PEP co&dir and other extensions
	Complexity
	Concluding remarks

	Unidirectional channel systems with tests
	Preliminaries
	Syntax
	Operational Semantics
	Reachability

	Testing channels and the undecidability of reachability
	Restricted sets of tests
	Simulating queue automata

	Main theorem and a roadmap for its proof
	Reducing G-G-Reach for UCST[Z,N] to E-E-Reach for UCST[Z1]
	Commuting steps in UCST[Z,N] systems
	Reducing G-G-Reach[Z,N] to G-G-Reach[Z1,N1]
	Reducing G-G-Reach[Z1,N1] to E-G-Reach[Z1,N1]
	Reducing E-G-Reach[Z1,N1] to E-G-Reach[Z1]
	Reducing E-G-Reach[Z1] to E-E-Reach[Z1]

	Reducing E-E-Reach[Z1] to G-G-Reach[Z1l]
	Reducing E-E-Reach[Z1l] to a Post Embedding Problem
	E-E-Reach[Z1l] reduces to  PEP partialcodir
	 PEP partialcodir reduces to E-E-Reach[Z1l]

	Two undecidable problems for UCST[Z,N]
	Recurrent reachability
	Write-lossy semantics

	Concluding remarks

	Conclusion

