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II) Résumé en français  

Les désordres intellectuels (DI) représentent une collection très hétérogène de maladies neuro-

développementales qui trouvent leur origine pendant l’enfance. Ils ont une incidence variant 

entre 1 et 3% dans la population générale et les origines sont multiples, combinant des facteurs 

environnementaux et génétiques. Pendant ma thèse, je me suis particulièrement intéressé aux 

DI qui résultent de mutations qui affectent la fonction d’un seul gène. Les produits protéiques 

de ces gènes remplissent des fonctions très différentes dans le fonctionnement du cerveau. De 

plus, ces protéines sont souvent exprimées à la synapse, suggérant que leur absence pourrait 

altérer le fonctionnement synaptique et entraîner ainsi des désordres cognitifs. Mon travail a 

consisté à utiliser un modèle animal de souris génétiquement modifiée mutée pour le gène 

Il1rapl1 ou Interleukin-1 receptor accessory protein-like 1 (souris KO Il1rapl1). En effet, des 

micro-délétions ou mutations dans la séquence d’Il1rapl1 sont directement impliquées dans le 

développement de DI et de certaines formes d’autisme chez l’homme. IL1RAPL1 est une 

protéine transmembranaire qui de par ses interactions avec plusieurs partenaires pré, post et 

trans-synaptiques serait impliquée dans la formation et la stabilisation de synapses excitatrices 

dans le cerveau. Néanmoins, la fonction précise d’IL1RAPL1 à des niveaux intégrés reste peu 

étudiée. Notre stratégie expérimentale visait à trouver des liens forts entre la fonction 

synaptique et déficits comportementaux. Afin de déceler des déficits cognitifs chez la souris KO 

Il1rapl1, j’ai réalisé des expériences comportementales de peur conditionnée. Cette tâche 

consiste à associer la présentation d’un stimulus (son, contexte…) à un événement aversif (choc 

électrique) créant ainsi une forte mémoire. Mes résultats montrent un déficit dans la capacité 

des animaux Il1rapl1 KO à former une mémoire associative au son ainsi qu’une forte baisse de 

l’expression de la peur contextuelle. L’aptitude à former une mémoire de peur à un son ou 

d’exprimer de la peur contextuelle est soutenue par deux noyaux distincts de l’amygdale : le 

noyau latéral de l’amygdale (LA) et le noyau basolatéral de l’amygdale (BLA) respectivement. 

Des enregistrements électrophysiologiques réalisés dans le LA et le BLA ont prouvé l’existence 

d’une dérégulation de la balance entre la transmission inhibitrice et excitatrice (balance I/E) 

suite à l’absence d’IL1RAPL. En effet, l’excitation reçue suite à la stimulation de projections 
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excitatrices contactant les neurones pyramidaux du LA ou du BLA était amoindrie chez les 

animaux Il1rapl1 KO tandis que l’inhibition reçue par les neurones pyramidaux était préservée.  

Dans le LA et le BLA les neurones pyramidaux sont régulés par l’activation d’interneurones 

locaux. L’inhibition des neurones pyramidaux étant préservée, nous avons voulu tester 

l’excitation des interneurones suite à la stimulation des mêmes afférences. En réalisant des 

expériences électrophysiologiques ciblées sur les interneurones du LA, j’ai ainsi pu démontrer 

que l’absence d’IL1RAPL1 n’affectait pas les synapses excitatrices des interneurones et en 

conclure que l’identité de la cellule postsynaptique (excitatrice ou inhibitrice) définit la 

vulnérabilité des synapses suite à l’absence d’IL1RAPL1. 

Nous avons alors fait l’hypothèse que l’altération de la balance I/E était à l’origine des déficits 

comportementaux observés. J’ai ainsi découvert que le déficit des animaux Il1rapl1 KO dans la 

formation de la mémoire de peur au son résultait d’une perte des processus de plasticité 

synaptique qui sous-tendent la formation de la mémoire. En effet, j’ai pu montrer que la 

dérégulation de la balance I/E empêchait l’induction de la potentiation à long terme dans le LA 

expliquant le déficit comportemental. Ensuite, nous avons voulu restaurer le comportement des 

animaux Il1rapl1 KO en utilisant des approches pharmacologiques et optogénétiques censées 

corriger la balance I/E dans l’animal in vivo juste avant la phase de formation de la mémoire. De 

façon surprenante, les deux traitements étaient capables de normaliser la formation de peur 

conditionnée au son chez les animaux Il1rapl1 KO, ceci prouvant des liens étroits entre la 

balance I/E et le déficit comportemental.  

Afin de mieux caractériser le déficit d’expression de peur contextuelle, nous avons analysé 

l’activation du BLA et de l’hippocampe suite à la réexposition d’animaux Il1rapl1 KO à un 

contexte aversif, laquelle entraîne l’expression d’une peur contextuelle. Cette expérience révèle 

une forte diminution de l’activité du BLA et de la zone ventrale de l’hippocampe (vHPC). Le vHPC 

envoie des afférences sur le BLA, or, le rôle de ces projections dans la régulation de l’expression 

de la peur contextuelle restait peu étudié avant nos recherches. Nous avons alors fait 

l’hypothèse que le dysfonctionnement des projections de l’hippocampe ventral sur le BLA 

pourrait être à l’origine du déficit d’expression de la peur contextuelle chez les animaux Il1rapl1 

KO. Pour tester notre hypothèse nous avons appliqué un protocole de potentiation des 
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projections du vHPC sur le BLA par optogénétique, et ce avant la réexposition de l’animal au 

contexte aversif. Cette intervention a permis de restaurer l’expression de la peur contextuelle 

sur les souris mutées, montrant l’importance de cette projection dans la régulation de la peur 

contextuelle. La question se pose : quel rapport y-a-t-il avec la dérégulation de la balance I/E 

dans le BLA ? Nous pensons que la faible activation des cellules pyramidales du BLA lors de la 

réexposition au contexte aversif est une conséquence directe de la modification de la balance 

I/E dans le BLA. La potentiation des projections du vHPC sur le BLA permettrait de contourner 

cette balance I/E ce qui permet l’activation des cellules pyramidales du BLA lors de l’expression 

de la peur contextuelle. 

En conclusion, le disfonctionnement synaptique lié à la modification de la balance I/E peut 

entraîner des déficits cognitifs à plusieurs niveaux. Ainsi, dans le LA cela a pour conséquence 

d’empêcher la formation d’une mémoire de peur en empêchant l’induction de mécanismes de 

plasticité synaptique. Dans le BLA, la balance I/E empêche une population neuronale de 

s’activer bloquant ainsi l’expression de mémoires précédemment formées. Ceci ouvre la 

perspective intéressante que les déficits d’apprentissage et de mémoire pourraient être corrigés 

à plusieurs niveaux. Pour finir, mes travaux montrent l’importance de l’hétérogénéité 

synaptique dans certains aspects pathologiques des désordres intellectuels. En effet, seules les 

synapses excitatrices des neurones pyramidaux excitateurs étaient concernées par l’absence 

d’IL1RAPL1, ce qui suggère un rôle différentiel de la protéine en fonction du type de synapse 

étudiée. De nombreux déficits cognitifs pourraient ainsi être causés par la perte de la fonction 

d’une protéine à divers types synaptiques. Ainsi, la compréhension des désordres intellectuels 

nécessite une stratégie nous permettant d’aborder la question de l’hétérogénéité synaptique en 

utilisant des approches expérimentales in vitro et plus encore in vivo.  
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III) Abstract en français 

Les désordres intellectuels (DI) comprennent une collection hétérogène de désordres 

neurodéveloppementaux qui émergent pendant l’enfance. Ils ont une incidence de 1 à 3% dans 

la population et sont associés avec des déficits dans les fonctions mentales et adaptives. De 

nombreuses mutations ont été identifiées dans des gènes codant pour des protéines qui 

remplissent des fonctions biologiques très diverses dans le cerveau. Parmi ces protéines, 

certaines sont enrichies à la synapse, supposant que les déficits cognitifs associés aux DI 

pourraient être reliés à des déficits synaptiques. L’objectif scientifique de notre équipe et de 

comprendre le rôle de certaines protéines dans la fonction synaptique et la cognition en 

utilisant des souris génétiquement modifiées portant des mutations dans le gène 

correspondant. Je me suis concentré sur Il1rapl1, un gène codant pour la protéine Interleukin-

receptor-accessory-protein-like-1. Des mutations ou micro-délétions dans ce gène sont liés au 

développement de DI chez l’homme. Dans les neurones,  Il1rapl1 code pour une protéine 

transmembranaire qui serait impliquée dans la formation et/ou la stabilisation de synapses 

excitatrices. Les conséquences de l’absence d’IL1RAPL1 à des niveaux plus intégrés restaient 

peu étudiées lors du début de ma thèse. J’ai utilisé une souris déficiente pour IL1RAPL1 (KO) afin 

de comprendre le lien entre les déficits comportementaux et la fonction synaptique. Pour cela, 

j’ai soumis des souris KO à des taches comportementales de peur conditionnée. J’ai ensuite 

utilisé une combinaison d’approches in vitro, ex vivo et in vivo afin de caractériser la fonction 

synaptique dans les circuits neuronaux dédiés : l’amygdale latérale et basolatérale. Des 

enregistrements electrophysiologiques ont montré une dérégulation de la balance entre la 

transmission inhibitrice et excitatrice (I/E) dans l’amygdale de souris Il1rapl1 KO, causant ainsi 

des déficits dans la capacité d’acquérir et d’exprimer la mémoire de peur conditionnée. La 

correction de ce déficit synaptique in vivo par pharmacologie ou par optogénétique a permis de 

restaurer le comportement chez les souris KO.  

Mots clés : IL1RAPL1, désordre intellectuel, balance inhibition/excitation, peur conditionnée, 

amygdale, optogénétique 
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IV)  Abstract 

Intellectual disability (ID) comprises a highly heterogeneous collection of neurodevelopmental 

disorders that arise during childhood. They have an incidence of 1-3% in the population with 

impairments in mental and adaptive functions. While the etiologies of IDs are thought to be 

very heterogeneous, a significant proportion of ID has genetic origins. Mutations in single ID 

genes lead to dysfunctions in proteins that fulfill highly different biological functions in the 

brain. Interestingly, ID-related proteins are often found enriched at synapses, suggesting that 

cognitive impairments defining ID could be related to alterations of synaptic function. The main 

goal of our research team is to understand the role of ID-related proteins in synaptic function 

and cognition using mouse models bearing gene mutations associated to ID in humans. My 

research focused on the study of Il1rapl1, a gene coding for the Interleukin-receptor-accessory-

protein-like-1 protein. Micro-deletions or point mutations in this gene are directly linked to the 

development of ID and autism spectrum disorder in humans. In neurons, Il1rapl1 encodes a 

trans-membrane protein and several in vitro experiments point to its important role in the 

differentiation and formation/stabilization of excitatory synapses trough interactions with 

presynaptic, trans-synaptic or postsynaptic partners. However, the consequences of Il1rapl1 

deficiency at more integrated levels remains poorly understood. The principal objective of my 

thesis is to explore the link between synaptic deficits and behavioral impairments in Il1rapl1-

deficient mice. To achieve that, wild-type and mutant animals were first submitted to fear 

learning tasks. I then used a combination of in vivo, ex vivo and in vitro functional essays to 

characterize synaptic functions in behaviorally relevant neuronal circuits. Ultimately, our 

working hypothesis were challenged in vivo by pharmacological and optogenetic approaches to 

normalize behavioral deficits in Il1rapl1 KO mice. Altogether my work demonstrates that 

Inhibitory/Excitatory imbalances associated with the absence of Il1rapl1 impaired both the 

capacity to form new memories as well as the expression of previously formed memories.  

Key words: IL1RAPL1, intellectual disability inhibitory/excitatory balance, fear conditioning, 

amygdala, optogenetics 
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VI) Introduction 

Although the causes of intellectual disabilities (ID) are highly heterogeneous, an increasing 

number of genetic factors have been discovered that contribute to the development of ID in 

humans. Amongst them, single gene mutations lead to the absence or the partial loss of discrete 

proteins that fulfill highly different biological functions in the brain. However, whether and how 

the loss of function of those proteins relates to cognitive impairment remains unclear. The main 

goal of our team is to understand ID pathophysiology at synaptic, neuronal, network and 

behavioral levels by using genetically engineered mice mimicking single gene mutations found in 

human patients. This optimizes the well-established strategy that consists of deciphering normal 

brain function by studying the physiological consequences of perturbing mutations. 

Single gene mutations in ID-related genes impact several biological functions including brain 

development or general brain function. Severity of ID pathology depends on the nature of the 

disrupted biological processes. For example, mutations in genes underlying the initial stages of 

brain development often lead to irreversible changes in brain circuitry and severe deficits in 

cognitive functions. My interest being more to look at the role of synapses in adult circuitry, I 

decided to focus on a mild form of ID caused by the mutation of the Il1rapl1 gene. Indeed, 

Il1rapl1-deficiency is thought to preserve brain development in humans and rodents (at least 

the initial stages), allowing studying the consequences of the mutation in a correctly established 

mature brain. In contrast, Il1rapl1, as many other ID-related genes, is enriched in both pre- and 

postsynaptic compartments, a crucial place for information transfer and processing in neurons. 

This has led to the idea that the specific absence of IL1RAPL1 at synapses may be responsible of 

the reported cognitive impairments. Furthermore, it is well established now that the absence of 

proteins essential for synaptic function leads to lethality. As a consequence, we hypothesize 

that because Il1rapl1 deficiency only leads to mild behavioral changes, IL1RAPL1 may regulate 

more subtle aspects of synaptic physiology and understanding their function is of crucial 

importance. 
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The consequences of ID-related mutations at more integrated levels such as neuronal coding of 

behaviors are far less described. The originality of my contribution was to use Il1rapl1-deficient 

mice to understand how synaptic deficits associated to the absence of IL1RAPL1 affect mice 

behaviors. To achieve that, I used an associative learning task, the pavlovian fear conditioning, 

as it is well understood at neuronal and synaptic levels, and perturbed in Il1rapl1 KO mice. 

Moreover, regulation of fear behavior involves projections between different brain areas and 

interactions between both excitatory and inhibitory cells.  This makes associative fear an ideal 

model to look at the consequences of Il1rapl1 mutation at the circuit, cellular, synaptic and 

behavioral levels. 

The following introductory paragraphs are organized according to my experimental strategy. 

The first part covers intellectual disabilities by providing some general definitions and their 

etiologies. In order to understand ID pathology, one has to understand how the normal brain 

operates. Thus, I’ll describe how brain processes information, as well as the underlying cellular 

and synaptic mechanisms. For the sake of clarity synaptic function has been separated in pre-

and postsynaptic function and a few examples of ID-related mutations illustrate how their 

absence may lead to disruptions in synaptic function. Brain is also subject to morphological 

changes throughout life and depends on the local action of different ID-related proteins. Thus, I 

added a chapter on brain development and how mutations in ID-related genes can interfere 

with this essential biological process. Finally, after discussing briefly how ID is currently studied 

in humans, I’ll show the importance of animal models in the study of the pathology of 

intellectual disabilities and shed some light on current therapeutic perspectives that could 

improve some core symptoms of the disease. 

The second part aims at reviewing the current knowledge on the gene I have studied during my 

PhD: the Il1rapl1 gene. First, I provide some evidence that, in humans, genetic abnormalities in 

Il1rapl1 gene are directly linked with the development of ID and other cognitive disorders like 

autism. I present all current experimental data reporting a role of IL1RAPL1 protein in the 

mammalian brain both in vitro and in vivo. Finally, the last part of the introduction further 

explains my choice in using associative fear learning tasks on Il1rapl1 KO mice. I focus 
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specifically on the neural circuits and the cellular/synaptic mechanisms leading to the formation 

and expression of fear memories. 

1 Intellectual disabilities  

1.1 General definitions 

Intellectual disability (ID) defines a large and heterogeneous collection of neurodevelopmental 

disorders that arise during early childhood. Until recently called mental retardation, these 

disorders are now referred to as intellectual disabilities as the old designation was considered 

outdated by American health services. ID and related cognitive disorders (CD) have a high 

incidence in our modern societies, affecting approximately 1-3% of the population. Patients 

show impairments of general mental abilities that impact adaptive functioning in three areas: 

conceptual (language, reading, writing, reasoning, knowledge and memory), social (empathy, 

social judgment, communication skills…) and practical (self-management, job responsibilities, 

organization…). IDs are chronic and often co-occur with other mental conditions like depression, 

attention-deficit/hyperactivity disorder, and autism spectrum disorder (ASD) (Won et al., 2013). 

ASD is a group of developmental disabilities characterized by abnormal social interaction and 

communication and stereotyped/repeated behaviors with restricted interests. ID and ASD have 

strongly overlapping symptoms, but stereotyped/repeated behaviors with restricted interests 

are specific to ASD. 

Intellectual disabilities are classified in different categories depending on intellectual quotient 

(IQ) levels of the patients. Persons suffering from ID have an IQ lower than 70 (Figure 1) and the 

severity of ID can be divided into mild (IQ between 50 and 69), moderate (IQ between 35 and 

49), severe (IQ between 20 and 34) and profound (IQ lower than 20). Genetic forms of ID are 

often distinguished in two categories: non-syndromic and syndromic ID. Non-syndromic ID 

patients suffer from cognitive impairments solely, whereas syndromic ID patients often show 

other radiological, biological or metabolic defects (van Bokhoven, 2011). However, the 

classification between syndromic and non-syndromic forms of ID is not always easy to establish 

as different individuals can show heterogeneity in symptoms following a mutation in the same 
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genetic locus (Frints et al., 2002). Patients that present syndromic forms of ID often also present 

strong morphological brain abnormalities like micro-and macrocephaly or deficits in neuronal 

migration. These abnormalities are likely to contribute to cognitive deficits, thus preventing 

from understanding the precise role of the gene product in brain cognitive functions.  

 

 

 

 

 

 

 

 

The causes of ID and ASD are highly heterogeneous, including environmental factors (pesticides, 

prenatal alcohol exposure…) that influence the development of the nervous system, and genetic 

causes including single gene mutations, copy number variants or chromosomal abnormalities 

(Chelly et al., 2006). Characterization of the genetic factors that determine ID started in the 90’s 

with the discovery of Fmr2 gene, an X-linked gene which’s mutation causes fragile X syndrome 

(Gecz et al., 1996). Initially, the identification of ID-related genes focused mostly on the X 

chromosome, most likely because their recessive nature and the presence of a single copy in 

male patients facilitates the relation between genetic abnormalities and behaviors (Figure 2). An 

increasing number of ID-related genes were then identified with more than several hundred 

genes discovered to date. However, the number of identified ID genes is expected to increase 

dramatically (several thousand) with the development of next-generation sequencing 

Figure 1: Gaussian representing IQ scores in the general population. The vast majority of human 
IQ profiles vary between 70 and 130. Intellectual disabilities are represented by IQ levels under 
70. Most ID patients (1-3%) have IQ levels between 50 and 70 and 0,3% of them present more 

severe forms of ID. 
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technologies (Gilissen et al., 2014) (Figure 2). Interestingly, these technologies may also for the 

first time give access to a large number of autosomal genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our team, we take advantage of the monogenic aspects that determine development of ID 

mainly because it facilitates the generation of animal models mimicking mutations found in 

human patients. Within that framework, my PhD was dedicated to the study of a non-syndromic 

monogenetic ID model, in order to unravel the link between brain dysfunction and cognitive 

Figure 2: Scheme representing some identified X-linked genes causing ID in humans. On the 
left are presented genes which’s mutation causes non syndromic ID, while the genes on the 

right cause both syndromic and non syndromic ID. The Il1rapl1 gene is depicted in big on 
the left because it causes a non syndromic form of ID. Adapted from Lubs et al. 2012  
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features in ID. Indeed, both non-syndromic human patients and rodent models show no gross 

morphological alterations, which favor the study of functional consequences of mutations on 

roughly normally developed brains. We decided to focus our attention on the X-related Il1rapl1 

gene that encodes Interleukin 1 Receptor Accessory Protein-like 1 (Figure 2).  

Mutations in the Il1rapl1 gene are associated with both ASD and ID in humans. (Carrié et al., 

1999; Piton et al., 2008). The reasons behind genetic heterogeneity in the development of ID 

and ASD remain largely unknown. One possibility could rely in the exact position of the 

mutation within the gene that would lead either to subtle or profound (including the complete 

absence) changes in the protein. In this line, some biological functions/interactions of the 

protein could be preserved, leading to differences in phenotype expression. Alternatively, 

environmental factors may emphasize differences in epigenetic regulation of genes, resulting in 

different phenotypic expression patterns in individuals (Rzhetsky et al., 2014). 

1.2 Function of ID-related genes 

In humans, knowledge about the pathological consequences of ID- and ASD related genes at 

cellular and subcellular levels is limited by ethical issues. Most data available originate from 

post-mortem tissue of ID and ASD patients. They often reveal deficits in the wiring of the brain 

or in the number/morphology of dendritic spines (Kaufmann, 2000; Purpura, 1974). 

ID-related genes code for proteins that can be divided in distinct functional categories including 

enzymes, mediators of signal transduction, transcriptional regulators, transporters, cell 

adhesion and structural molecules, motor proteins… (Vaillend et al., 2008). Proteins belonging 

to these categories fulfill a wide array of cellular functions to regulate neuronal function (van 

Bokhoven, 2011). Interestingly, a lot of ID and ASD-related proteins are often found localized 

and expressed at the synaptic level, thereby emphasizing their biological function at the 

synapse. This has led to the emergence of the term “synaptopathy”, a term implying that global 

function and/or structure of the synaptic compartment is disrupted, at least partly, in ID 

pathology. 
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1.3 Physiology of the brain in health and disease 

Dissecting the neural and cellular mechanisms involved in high cognitive functions is a key yet 

unresolved question in neuroscience. Classically, this has been addressed by identifying and 

dissecting how high cognitive functions are perturbed in ID model. ID patients show strong 

sensory, motor and general cognitive abnormalities, suggesting that the cellular and molecular 

mechanisms underlying information transfer and processing in the brain could be disrupted. 

Because of the high enrichment of ID-related proteins at synapses, this chapter aims at 

reviewing some basic principles of how the brain integrates and treats information by 

emphasizing the role that synapses play in this essential biological process. For the sake of 

clarity, synaptic function has been separated in two parts according to the anatomical 

organization of the synapse, being pre-and postsynaptic compartments. Of course, ID-related 

proteins not only impact mature brain function. A high proportion of ID’s are indeed thought to 

result from deficits in brain development and reorganization of existing connections throughout 

life. Thus, I also added a paragraph on brain development which focuses mainly on the 

mechanisms regulating synaptic formation. 

1.3.1 Synaptic integration  

Probably one of the most exciting yet very complex matter in neuroscience is the understanding 

of how neurons process and integrate information and how this underlies high cognitive 

functions (Spruston, 2008). Synapses are specialized anatomical entities that mediate 

information transfer between neurons. Typically a synapse is composed of tightly apposed pre-

and postsynaptic sites separated by the synaptic cleft (Figure 3), a very thin zone where 

presynaptic neurotransmitter-filled vesicles are released. Synapses can be distinguished by their 

location on the neuron and the identity of the pre-and postsynaptic element. The vast majority 

of synapses in the brain are axo-dendritic synapses: the axon travels through a defined region 

and makes “en passant” boutons that contact the dendrites of postsynaptic neurons. However, 

synapses may also be axo-somatic, axo-axonal, dendro-dendritic, somato-somatic or somato-

dendritic. Interestingly, these different types of synapses fulfill highly different functions in the 
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regulation of neuronal responsiveness and integration and aren’t mediated by the same cellular 

types in the brain. 

The brain is composed of many different neuronal cell types. However, two types largely 

underlie the vast majority of information processing in the brain: excitatory (principal) neurons 

use glutamate as neurotransmitter and interneurons which mostly exert an inhibitory role by 

releasing GABA. Principal cells developed specialized structures on their dendrites called 

dendritic spines that are supposed to increase the number of possible contacts between 

neurons. In contrast, Inhibitory neurons are usually described as “low spiny” neurons. 

Nonetheless, it has to be noted that some brain structures do possess spiny interneurons, a 

feature not shared by the majority of interneurons in the brain. Excitatory and inhibitory 

neurons not only differ in the way they are contacted, but also in the way they contact other 

cells. For example, the axons of interneurons preferentially make axo-axonic or axo-somatic on 

pyramidal cells to regulate their activity (see below) while principal cells mostly contact other 

cells (pyramidal or interneurons) through axo-dendritic synapses (Tritsch et al., 1998). 

 

 

 

 

 

 

 

 

 

 

Figure 3: Electron microscopy pictures of two typical excitatory glutamatergic synapses of hippocampal cells 
in culture. A: Typical excitatory synapse between a presynaptic bouton and a postsynaptic dendritic spine 
(SP). Docked synaptic vesicles can be seen and the synaptic cleft is indicated by arrowheads. B: Synapse 

with many of the classical features of chemical synapses: a presynaptic bouton containing synaptic vesicles 
(SVs), an electron dense active zone (AZ) and an apposed postsynaptic density (PSD) indicated by asterisks. 

From Waites et al. 2005 
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Excitatory principal cells compose the large majority of neurons in the brain, underlie local 

information processing/storage, and represent the major sources of output to distinct brain 

regions. In addition of these long range projections, principal cells also mutually connect to each 

other, thereby generating excitatory transmission to neighboring neurons through local circuits. 

Interneuron’s axons, however, are often limited to single brain regions, regulating the activity of 

local circuits (Markram et al., 2004). 

A crucial question is to understand how principal cells transform incoming information into 

specific pattern of action potential output. Axon potential initiation occurs in anatomically 

defined zone called the axonal initiation segment which is located close to the soma. Principal 

cell receive a large amount of excitatory and inhibitory synaptic inputs that are spread across 

their dendritic arbor, but also at their soma or axon. Most of the excitatory drive arrives through 

the dendrites. Interestingly, integration of excitatory inputs is greatly influenced by their 

location on the dendrite. Synapses on dendrites that are located far from the soma are thought 

to amplify signals with high gain and over broader time windows to compensate for their 

electrotonic disadvantage, thus having stronger influence over action potential initiation 

(Branco and Häusser, 2010; Williams and Atkinson, 2008). In contrast, the soma and the axon of 

principal cells receive mainly inhibitory GABA-ergic inputs originating from local interneurons, 

regulating output of principal cells.  

Interestingly, distinct populations of interneurons target specific cellular domains on pyramidal 

neurons (Markram et al., 2004). These interneurons not only differ in their morphological aspect 

and their electrophysiological properties (DeFelipe et al., 2013), but especially in the way they 

contact pyramidal cells. For example, while some interneurons clearly target the soma or the 

axon to regulate AP initiation, others exert their effect through inhibition of the dendritic arbor 

of principal cells, regulating the activation of distal synapses (Pouille and Scanziani, 2004). Two 

functional microcircuits involving interneurons and controlling principal cells integration have 

been described: feed-forward or feed-back inhibitory circuits (Figure 4). During feed-forward 

inhibition, interneurons are activated by the same projections that activate principal cells, 

regulating principal cell excitation and output. In contrast, feed-back inhibition is only activated 

when principal cells fire an AP, thus limiting sustained pyramidal-neuron firing. Feed-forward 



20 
 

and feed-back inhibition have been shown to be important physiologically to reduce the 

number of simultaneously active principal cells, working towards the creation of sparse 

representations, but also in the regulation of synaptic plasticity mechanisms. In addition, 

interneurons have been shown to coordinate network oscillations within/between brain areas 

(Isaacson and Scanziani, 2011), a process that has been shown to generate certain behaviors 

(Courtin et al., 2014). The balance between excitatory and inhibitory (E/I balance) transmission 

in the brain is crucial for information processing and output responsiveness (Yizhar et al., 2011). 

Moreover, a growing body of evidence suggests that disrupted E/I balance in the CNS may be 

implicated in the pathology of neurodevelopment disorders including autism and IDs (Baroncelli 

et al., 2011; Gatto and Broadie, 2010).  

 

 

 

 

 

 

 

 

 

 

In conclusion, neuronal integration in a particular network depends on a strong interaction 

between excitatory principal cells and inhibitory interneurons. The relative strength of 

excitation and inhibition and their temporal relationship orchestrates brain function. The large 

diversity of cellular types in the brain and the way they connect to each other allows the brain 

Figure 4: Scheme representing feed-forward (FFI) and feed-back (FBI) 
inhibition of a principal neuron. During FFI, the same axons contact 
principal cell and interneuron. In contrast, FBI is only elicited when 

the principal cell fire an AP. 
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to elaborate a wealth of different cognitive features. This diversity also suggests that multiple 

actors regulating neuronal integration could be differentially impacted following ID gene 

mutations. For example, the disruption of E/I balance in ID could result from differential effects 

of ID-gene mutations on excitatory vs. inhibitory cells; to my knowledge, only a few studies have 

addressed the consequences of ID-related gene mutations on both excitatory and inhibitory 

cells. In my opinion, to understand how ID genes impact neuronal integration and cognition, 

one has to consider all elements of a neuronal circuit to get a clear picture on how synaptic 

proteins may contribute to brain function.  

1.3.2 Synaptic function 

In neuronal cell cultures, ID-related proteins are often found enriched at pre- and/or 

postsynaptic compartments, leading to the hypothesis that cognitive impairments associated 

with ID could be related to local alterations at the synaptic level (Humeau et al., 2009). While in 

some cases, some clear pre-or postsynaptic functions have been attributed to ID proteins, some 

are present in both compartments. Thus, the next chapters focus on pre- and postsynaptic 

function and provide some examples of ID gene mutations that impact these crucial biological 

processes. 

1.3.2.1 Presynaptic function 

Classically, the presynaptic site is composed of the active zone, an electron-dense, protein rich 

zone where vesicles fuse with plasma membrane and release their content in 

neurotransmitters. This tightly regulated ultra-fast mechanism achieves the release of chemical 

compound at high rate and in a very precise manner through the interaction of a large number 

of proteins over several steps (Sudhof, 2004). Moreover, neurotransmitter release can be 

modified by neuronal activity, a phenomenon called synaptic plasticity (see synaptic plasticity 

paragraph below). Neurotransmitter secretion follows a well characterized sequence of events 

including: 1) the filling of vesicles with neurotransmitters, 2) the docking and priming of vesicles 

into the active zone, 3) the calcium-mediated fusion of the vesicle, 4) the release of its content, 

and 5) its recycling (Figure 5). Neurotransmitters first need to be loaded into vesicles by a 

regulated transport. Each vesicle is endowed with specialized transporters that allow charging 
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the vesicle with specific neurotransmitters. For example, VGLUT transporters specifically handle 

the loading of the excitatory neurotransmitter glutamate into the synaptic vesicle (Fremeau et 

al., 2004). Interestingly, three transporters for glutamate have been identified and show 

different expression patterns throughout the brain, which endows certain heterogeneity in the 

identity of presynaptic compartments (Herzog, 2004). 

 

 

 

 

 

 

 

 

 

 

 

Once filled, vesicles are translocated to the presynaptic active zone where they are docked and 

get primed for release. Docking of vesicles to the plasma membrane involves the formation of a 

protein complex composed of SNARE (Soluble N-éthylmaleimide-sensitive-factor Attachment 

protein Receptor) and SM (Sec1/Munc18like proteins) proteins that undergo a cycle of 

association/dissociation during the fusion reaction of the vesicle membrane with the plasma 

membrane (Sudhof, 2013) (Figure 6B). First, the vesicular SNARE (v-SNARE) protein 

synaptobrevin (or VAMP) assembles with syntaxin-1 and SNAP-25 (also called t-SNAREs). This 

binding is tightly regulated by the so called SM proteins Munc18-1 and complexin (Shen et al., 

Figure 5: Scheme representing the key steps in vesicle-mediated neurotransmission. Initially, 
vesicles are filled with neurotransmitters. Then, they are translocated to the active zone, tethered 
(docking) and primed for release. In response to a Ca

2+ 
influx, they undergo exocytosis and release 

neurotransmitters in the synaptic cleft. Finally, vesicles are retrieved by various ways, but the most 
described one is clathrin-mediated endocytosis with (or without) a recycling through the 

endosome. From Gundelfinger et al. 2003 



23 
 

2007; Wragg et al., 2013) (Figure 6B). During membrane fusion, the assembly (before 

transmitter release) and disassembly (after transmitter release) of the SNARE/SM complex is 

regulated by chaperone proteins (Acuna et al., 2014). Once primed to the plasma membrane at 

the level of the active zone, vesicles are ready for pore opening and neurotransmitter release. 

Upon arrival of an action potential in the presynaptic compartment, there is activation of 

voltage-dependent calcium channels (VGCCs) that are located at the active zone. Voltage-gated 

calcium channels are a large family of proteins with multiple members but synchronous release 

is believed to depend mainly on N and P/Q calcium channels (Kamp et al., 2012). Their 

activation leads to a spatially restricted increase in calcium concentration within the active zone 

next to primed vesicles. This leads to binding of Ca2+ ions to the synaptotagmin protein, which 

binds at his turn to the SNARE/SM complex and phospholipids, allowing pore opening and 

release of neurotransmitters in the synaptic cleft (Südhof, 2013). Finally, the families of RIM and 

RIM-binding proteins collaborate to recruit calcium channels to the release sites, allowing the 

fine spatial localization of Ca2+ influx to couple action potential to neurotransmitter release 

(Han et al., 2011; Kaeser et al., 2011).  

RIM proteins bind to vesicular Rab proteins, involved in the trafficking of vesicles to the 

presynaptic terminal. Rab proteins are part of the Ras family of small GTPases, which are 

typically active in their GTP-bound state and inactive in their GDP-bound state (D’Adamo et al., 

2014). The GDP-GTP-bound state is controlled by GTPase-activating proteins (GAPs) and 

guanine-nucleotide-dissociation inhibitors (GDIs), which promote the inactive state and 

guanine-nucleotide-exchange factors (GEFs) that stimulate Rab activity. The interaction of RIM 

with Rab3 (Figure 6B) has an important regulatory role in calcium mediated vesicular fusion with 

the active zone (Han et al., 2011). 

A last crucial step involves the recycling of emptied vesicles. This step is mandatory to maintain 

the pool of available vesicles in order to further allow continuous neurotransmission (Rizzoli, 

2014). This mainly occurs through clathrin-mediated endocytosis, a conserved mechanism that 

involves the coating of vesicles with clathrin through the coordinated assembly of a large 

number of proteins (Godlee and Kaksonen, 2013). Once endocytosis occurred, vesicles may 
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either transit through the endosomes or bypass this route (Figure 5). Alternatively, some 

vesicles are supposed to be recycled just after the release of their neurotransmitters without 

leaving the active zone, a process called kiss and run. However, the existence of this process 

remains unclear (Alabi and Tsien, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not surprisingly, genetic abnormalities of proteins involved in all steps leading to 

neurotransmission have severe consequences in humans. For example, mutations in the Stxbp1 

gene, which codes for Munc18-1, are the cause of Ohtahara syndrome, encompassing infantile 

epileptic encephalopathy and severe ID (Hamdan et al., 2011). Interestingly, two proteins 

involved in the regulation of Rab protein activity have been associated with ID: GDIα and 

Figure 6: (A) Drawing of a synapse with synaptic vesicles (SV, red), an active zone containing Ca2+ 

channels (blue), and a postsynaptic cluster of receptors (orange). (B) Schematic of the molecular 

machinery mediating Ca2+-triggered vesicle fusion. On the right is depicted the SNARE/SM complex 

composed of vesicular protein synaptobrevin (VAMP) interacting with Syntaxin and SNAP-25, a 

recognition itself regulated by Munc18 and Complexin. The Ca2+ sensor synaptotagmin-1 is depicted in 

the middle. On the left are RIM and RIM-BP proteins recruit Ca2+ channels close to release sites by 

binding with vesicular Rab proteins. From Sudhöf 2013 
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Rab3GAP. GDIα is located on the X chromosome and maintains Rab proteins in the inactive 

state by binding Rab-GDP. GDI1 KO mice have deficits in the synaptic vesicle pools and short 

term-synaptic plasticity defects (Bianchi et al., 2009). However, mutations seem to have little 

effect on Rab3a, and the cognitive defects might be exerted through other neuronal Rab 

proteins. For example, mutations in Rab39B lead to a form of non syndromic ID with deficits in 

the number of neurite growth cones and presynaptic boutons, suggesting that Rab39B could be 

involved in synaptic formation and maintenance (Giannandrea et al., 2010). Rab3GAP, another 

direct regulator of presynaptic Rab proteins, specifically limits the amount of GTP bound to 

Rab3A. Mutations in Rab3GAP are found in Warburg-Micro syndrome, a recessive ID syndrome 

comprising microcephaly, eye anomalies, and hypogenitalism (Aligianis et al., 2005). 

Recently, re-sequencing of a large number of X-linked ID patients has identified  (Tarpey et al., 

2009) new mutations in the gene coding for the synaptophysin protein. The replication of these 

mutations in cultured cells revealed that synaptophysin may control the retrieval of 

synaptobrevin during endocytosis of vesicles, suggesting that the recycling of vesicles could be 

perturbed in certain forms of ID (Gordon and Cousin, 2013). Mutations in OPHN1 protein are 

directly linked to the development of ID in humans. OPHN1 encodes a synaptic Rho-GAP protein 

that is expressed throughout the brain and the protein product is present in axons, dendrites 

and spines, pointing to a role of the protein at both the presynaptic and postsynaptic site. At the 

presynaptic site, OPHN1 was shown to interact with endophilin A1, a protein involved in 

recruiting other protein to mediate membrane curvature during endocytosis. Following shRNA-

mediated knockdown of OPHN1, there was a reduction in the endocytosis of presynaptic 

synaptic vesicles in cortical neurons (Nakano-Kobayashi et al., 2009). This suggests that 

presynaptic recycling of vesicles might contribute to the pathogenesis of ID. Recently, absence 

of Rsk2 (Rsk2 encodes a serine/threonine kinase called ribosomal S6 serine/threonine kinase) 

was shown to impair neurite outgrowth in cultured cortical cells, possibly through the activation 

of PLD1. PLD1 is a phospholipase protein involved in the hydrolysis of membrane lipids and its 

activation by RSK2 is thought to have a regulatory role in vesicular fusion at the active zone 

(Ammar et al., 2013). 



26 
 

In conclusion, several mechanisms can be disrupted following mutations in presynaptic 

proteins: docking and fusion of the vesicle with presynaptic plasma membrane, calcium-

mediated release, recycling of vesicles after release of their neurotransmitter content... In line 

with this, some mouse models of ID present some electrophysiological properties that can be 

explained by alteration in presynaptic function. For example, Ophn1 KO mice have a reduction 

in paired pulse facilitation in CA1 region of hippocampus (Khelfaoui et al., 2007). However, the 

pathophysiological consequences of ID pathophysiology at the presynaptic site remain largely 

unexplored. This can probably be explained by the fact that a lot of mutations of presynaptic 

proteins are lethal in mice (Atasoy et al., 2007) limiting the study of ID-related genes to proteins 

that are not absolutely essential for synaptic function but that would be regulating this essential 

process in more subtle ways. 

1.3.2.2 Postsynaptic function 

As stated earlier, the postsynaptic compartment can be distinguished either by the anatomical 

location of the contact (dendrite, soma, and axon) or the identity of the postsynaptic cell 

(excitatory or inhibitory). This potentially leads to an array of synaptic subtypes in the brain 

which could be differentially impacted by ID gene mutations. Indeed, most attention regarding 

the synaptic role of ID-related proteins has been on the study of excitatory transmission, 

although deficits in inhibitory GABA transmission have also been implicated in ID and ASD 

(Deidda et al., 2014). However, at excitatory and inhibitory synapses, the identity of the 

postsynaptic cell has been neglected in most physiological studies.  Thus, increasing our 

knowledge of ID pathology would probably profit from an approach were the study of 

pathological consequences wouldn’t be limited to excitatory transmission as this likely doesn’t 

reflect the complexity of mechanisms leading to disease. Instead, the consequences of protein 

absence should be studied at all postsynaptic compartments and on the different cellular types 

that compose a circuit. Nonetheless, as a large majority of postsynaptic sites contacted by 

glutamatergic synapses are dendritic spines and the next paragraph will use this synapse as an 

example to explain the functioning and the elements that compose the postsynaptic site. 



27 
 

Dendritic spines are tiny protrusions composed of a spine head that is anchored to the dendritic 

shaft through a thin neck. Most importantly, they are supposed to be the anatomical proxies for 

synaptic plasticity mechanisms and memory storage. Indeed, dendritic spines may experience 

structural changes in response to synaptic plasticity protocols, with stimuli that induce long-

term potentiation (LTP) causing spine growth (Matsuzaki et al., 2004; De Roo et al., 2008) and 

stimuli that induce long-term depression (LTD) causing spine shrinkage (Zhou et al., 2004). Both 

spine head enlargement and shrinkage are mediated by NMDA receptors. Interestingly, spines 

are continuously generated and eliminated in the naïve adult cortex. This phenomenon may be 

enhanced by learning or sensory experience, indicating that morphological changes of spines 

are activity-dependent and highly dynamic (Holtmaat and Svoboda, 2009). Dendritic spines are 

therefore thought to be central to the brain’s capacity to change its connectivity, increasing the 

dendrites ability to connect with axons that are not in direct contact with the dendritic shaft. 

Thus, connections are continuously remodeled in the adult brain and this underlies cognitive 

fitness. 

The head of the dendritic spine contains an electron-dense zone called the postsynaptic density 

(PSD) containing the postsynaptic receptors that bind released neurotransmitters, but also a 

large amount of proteins regulating dendritic spine morphology and function (Nair et al., 2013). 

The two main types of ionotropic glutamate receptors are AMPA and NMDA receptors. AMPARs 

are heterotetramers that are usually formed of two different subunits. The different subunits 

are GluR1, GLuR2, GluR3 and GluR4. Most receptors in the CNS are GluR1/R2 or GluR2/R3 

receptors. The glutamate-mediated transmission of AMPA receptors is influenced by their 

subunit composition, post-transcriptional and post-traductional mechanisms, the number of 

AMPA receptors at the membrane and their interactions with auxiliary proteins. NMDA 

receptors are heterotetramer combinations of GluN1, GLuN2 (GluN2A, B, C and D) and GluN3 

subunits. Functional receptors are composed of two GluN1 subunits and a combination of 

GluN2 and/or GluN3 subunits. AMPA receptors mediate fast excitatory neurotransmission (they 

are permeable to Na+ and K+ ions) in the brain and their number on the surface of the dendritic 

spine determines synaptic strength. They also play a key role in synaptic plasticity, as this 

mechanism often involves the trafficking and insertion of new receptors in the postsynaptic 
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membrane (Fanselow and Poulos, 2005). NMDA receptors also play a key role in synaptic 

plasticity by mediating calcium entry in the postsynaptic compartment, but only after the relief 

of the Mg2+-block following initial depolarization of the membrane by AMPA receptors (see 

synaptic plasticity paragraph). Interestingly, principal cells and interneurons have differences in 

the subunit composition of AMPA and NMDA receptors at their glutamatergic synapses, leading 

to differences in synaptic function and plasticity mechanisms in these two cell populations 

(Spampanato et al., 2011). 

AMPA and NMDA receptors are anchored to the underlying PSD by a variety of interactions with 

scaffolding proteins allowing them to be positioned directly above their signaling machinery and 

the actin cytoskeleton (Figure 7). The actin cytoskeleton is a key player in the general 

morphology of dendritic spines (Bosch and Hayashi, 2012; Sala and Segal, 2014). MAGUK 

(membrane-associated guanylate kinases) and other PDZ-containing domain proteins have a 

major role in scaffolding the PSD and in the trafficking of ion channels and postsynaptic 

receptors. Indeed, AMPA and NMDA receptors are continuously travelling in and out of the 

membrane by exo-and endocytosis events that occur at extrasynaptic sites but also by lateral 

diffusion in the plasma membrane (Choquet and Triller, 2013). Among the large family of 

scaffold proteins, PSD-95 and SAP-102 associate to NMDA receptors and other major PSD 

proteins, such as HOMER, calmodulin-dependent protein kinase II (CAMKII), guanylate kinase-

associated protein (GKAP) and several SH3 and multiple ankyrin repeat domain proteins 

(SHANKs) (Figure 7). HOMER and SHANK are very abundant in the PSD and form a polymeric 

network structure serving as an assembly platform for other PSD proteins (Sheng and Kim, 

2011). GKAP is involved in linking PSD-95 and NMDA receptors to underlying HOMER and 

SHANK complexes (Shin et al., 2012). Dynamics of AMPA receptors also dependent on several 

interactions with scaffold proteins (Anggono and Huganir, 2012). For example, interaction of 

GluR1 subunit with SAP-97 underlies dynamics of AMPA receptors (Waites et al., 2009). GRIP 

(AMPA binding proteins) proteins are involved in the dynamics of GluR2/R3 AMPA receptors at 

the synapse (Dong et al., 1997). In addition, several post traductional modifications are involved 

in the regulation of AMPARs dynamics. Phosphorylation of GluR1 subunit by PKA leads to an 

increase of the delivery of AMPARs to the plasma membrane (Esteban et al., 2003). 
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Interestingly, NMDA receptors are also the target of post traductional modifications like 

phosphorylation (Murphy et al., 2014). Thus, the dynamics of AMPA and NMDA receptors 

involve a large wealth of interactions with scaffold proteins but also post-traductional 

modifications that are under dependence of neuronal activity. 

Unlike excitatory synapses, inhibitory synapses are characterized by the presence of 

postsynaptic GABAA, GABAB receptors and glycine receptors and are formed on dendritic shafts 

or near the cell body. Interestingly, recent evidence suggests that GABARs could also be present 

on some dendritic spines (Gambino and Holtmaat, 2012). GABAA receptors are ionotropic and 

hyperpolarize the postsynaptic site by entry of Cl- ions while GABAB receptors are metabotropic 

and exert their effects at both the pre-and postsynaptic site (Pinard et al., 2010). 

Presynaptically, activation of GABAB receptors regulates calcium channels and 

neurotransmission while postsynaptically they regulate mainly the activity of inwardly-rectifying 

K+-channels leading to hyperpolarization. The PSD of inhibitory synapses appears fainter on 

electron microscopy, suggesting that the postsynaptic specialization is less elaborate than for 

excitatory synapses. GABAA and glycine receptors interact with gephyrin, a well-known 

postsynaptic scaffold of inhibitory synapses (Tyagarajan and Fritschy, 2014). A lot of binding 

partners of gephyrin have been identified, allowing close apposition with the actin cytoskeleton 

and thus regulation of the morphology of the postsynaptic site. For example, gephyrin has been 

shown to interact with proteins such as profilin and Mena/VASP, linking postsynaptic GABARs 

with the actin cytoskeleton (Tyagarajan and Fritschy, 2014). Thus, various scaffold proteins in 

the PSD of inhibitory and excitatory synapses underlie the close apposition of postsynaptic 

receptors with the actin cytoskeleton. 

Remarkably, a high number of genetic abnormalities associated with cognitive disorders have 

been identified in proteins regulating the organization of the PSD. Mutations in AMPA subunit 

GluR3 and in NMDA subunits NR2A and NR2B are associated with ID and epilepsy (Endele et al., 

2010; Wu et al., 2007). SHANK2 and SHANK3 mutations cause ID and autism in humans (Berkel 

et al., 2012; Durand et al., 2012). In addition, mutations in SAP-102 have been found in ID 

patients (Tarpey et al., 2004). At the postsynaptic site, OPHN1 has been shown to control 

synapse maturation and plasticity by stabilizing AMPA receptors (Nadif Kasri et al., 2009). This 
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effect is activity dependent and thought to be mediated by local changes in RhoA signaling, a 

major downstream target of OPHN1 implicated in the dynamics of the actin cytoskeleton 

(Khelfaoui et al., 2007). In addition, OPHN1 has been shown to be important for the endocytosis 

of AMPA receptors by interacting with endophilin A2/3 and reducing internalized AMPA 

receptors (Nadif Kasri et al., 2011). Recently, L Van Aelst group has reported a role of the 

interaction of OPHN1 with homer 1b/c in the positioning of the endocytic zone and the 

regulation of internalization of AMPA receptors (Nakano-Kobayashi et al., 2014). Disruption of 

this pathway leads to deficits in synaptic maturation and plasticity. 

In conclusion, mutations in several proteins regulating the stability and organization of the PSD 

are found to cause ID and/or ASD, suggesting that some changes in the morphology of dendritic 

spines in ID patient’s brains could be linked to a disruption of the mechanisms regulating the 

organization of the postsynaptic site. Noteworthy, morphological remodeling of the dendritic 

spines is not only limited to the initial formation of synapses. Instead, spines are believed to be 

highly dynamic throughout life, a process which has been shown to depend on activity and/or 

experience (Holtmaat and Svoboda, 2009). This suggests that mutations in ID-related genes 

could also potentially disrupt activity-dependent remodeling and dendritic spine turnover 

throughout life. 
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1.3.3 Brain development and ID 

The human brain is an amazingly complex organ composed of trillions of neurons. During 

development, connections are made creating highly complex neuronal networks that will 

underlie future cognitive and learning abilities. The biological mechanisms leading to the 

development and formation of brain circuitry are highly regulated. Development of the brain 

starts during embryogenesis and continues throughout early life with the formation of synaptic 

contacts. Indeed, embryogenesis is characterized by the production of new neurons 

(neurogenesis) and their migration to their final location while the formation of new synapses is 

specific to post-natal stages. Obviously mutations in genes that regulate neurogenesis and the 

Figure 7: Scheme representing major partners in the organization of the post synaptic density (PSD) of an 

excitatory synapse. Some proteins are depicted with their functional domains, other by simple shapes. The 

PSD is composed of postsynaptic receptors (AMPA and NMDA mainly), but also ion channels. The scaffold 

proteins PSD-95, Shank family and Homer family are very abundant in the PSD. Shank and PSD-95 are bridged 

by the GKAP protein. Shank-family scaffolds are linked to the actin cytoskeleton by adaptor proteins. The 

presynaptic and postsynaptic membranes are connected by cell-adhesion molecules (neurexin/neuroligin; N-

caherins; Ephrin and EphR…). Are also represented some cell signaling proteins that interact with PSD 

proteins. From Feng and Zhang 2009 
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migration of neurons have profound consequences on normal brain anatomy and patients 

usually exhibit severe forms of ID with strong morphological abnormalities (Chelly et al., 2006; 

Vaillend et al., 2008).  

Neurogenesis is achieved by the cooperative action of several gene products that encode 

mitotic proteins mediating neuronal proliferation but also transcriptional regulators controlling 

cell cycle division. For example, microcephaly involves at least four genes: microcephalin 

(MCPH1), Abnormal spindle-like microcephaly-associated protein (ASPM), cyclin-dependent 

kinase 5 regulatory associated protein 2 (CDK5RAP2) and centromere-associated protein J 

(CENPJ) (Vaillend et al., 2008). All of them contribute to neuron generation by controlling cell 

cycle and thus ultimately brain size. Another important function that can be affected in ID is 

neuronal migration, a process where newly produced neurons migrate to their final location. 

Abnormalities in neuronal migration often arise from mutations in microtubule-associated 

proteins or in proteins mediating interactions between the cytoskeleton, membrane and 

extracellular matrix (Vaillend et al., 2008).  

As we decided to focus on a non-syndromic form of ID, I will not further discuss these early 

phases of brain development which are thought to be unaltered in Il1rapl1 patients (see below). 

While production and migration of neurons is mostly prenatal, postnatal development is 

characterized by the formation of new synapses. This is a particularly important phase in brain 

development, especially when one keeps in mind the large heterogeneity of synapses 

underlying integration of neuronal information (see synaptic integration). Thus, during postnatal 

development, the brain could be particularly sensitive (“critical period”) to mutations in genes 

mediating synaptogenesis, leading to irreversible deficits in normal brain wiring (Kroon et al., 

2013). This suggests that a lot of cognitive dysfunctions associated with ID could originate in 

deficits that occur during synaptogenesis.  

1.3.3.1 Synaptogenesis 

The formation of synapses in vertebrates spans from embryogenesis to early postnatal life. 

However, recent reports show that synapses can also appear (or disappear) during adult life and 

some reports suggested that ID-related genes could perturb the formation of synapses at 
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different phases in life including adulthood (Isshiki et al., 2014). Synaptogenesis refers to all 

processes involved in the formation of synapses.  This includes cell-cell contact, differentiation 

of nascent pre- and postsynaptic terminals, development of morphological specializations and 

ultimately the organization of mature synaptic inputs (Figure 8). 

Initially, when neurons differentiate, they extend axonal and dendritic processes and expression 

of synaptic proteins is turned on. This results in the formation, accumulation and directional 

trafficking of vesicles carrying pre-and postsynaptic protein complexes (Waites et al., 2005). 

During this time, axons and dendrites make transient contacts, a mechanism involving a large 

diversity of secreted factors, receptors and signaling molecules that make neurons receptive to 

form synapses. This is also facilitated by sets of cell surface adhesion molecules (CAMs), a large 

family of transmembrane proteins expressed at both the pre-and postsynaptic site that interact 

in a pair wise fashion across the synaptic cleft (Dalva et al., 2007) (Figure 8). Several sub groups 

of CAMs have been discovered: N-cadherins, neurexin/neuroligin, Ephrin receptors and their 

ligands, IgCAMs (immunoglobulin cell adhesion molecules)…  CAMs are involved in cell-cell 

recognition and induce signals that trigger the initial stages of synapse formation, leading to the 

formation of pre-and postsynaptic specializations. Indeed, during this phase, there is an 

accumulation/delivery of both pre-and postsynaptic components at the synapse. At the pre-

synapse this is characterized by accumulation of presynaptic scaffold proteins like Piccolo, 

Bassoon or Rab3. At the post-synapse, there is a gradual increase of PSD-95 levels and other 

scaffold proteins like Shank or Homer family of proteins. In addition to the clear role of CAMs in 

synaptogenesis, it has also been shown that CAMs are important in mature synapses 

(Thalhammer and Cingolani, 2014), regulating synaptic function and/or modulating synaptic 

plasticity (Figure 8). 

Genetic abnormalities or mutations in proteins that regulate synaptogenesis can have profound 

effects on mental health. This is well illustrated by the neurexin/neuroligin adhesion couple 

proteins, as mutations in both neuroligin3 and neuroligin4 have been associated with ID and 

ASD (Jamain et al., 2003). Neurexins are specific to the presynaptic site and recognize 

postsynaptic neuroligins (Sudhof, 2008). They have been shown to be important in synaptic 

differentiation and specifically in the specification of excitatory versus inhibitory synapses (Craig 
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and Kang, 2007). Indeed, synaptic specificity seems to result from the action of specific splice 

variants of neurexin and neuroligin that are specifically involved in the formation of excitatory 

and inhibitory synapses (Graf et al., 2004). Interestingly, other CAM proteins are specific to 

excitatory or inhibitory synapses, showing the strong heterogeneity in mechanisms mediating 

synapse specification. The specification of excitatory vs. inhibitory synapses is particularly 

important because proper brain function requires the integration of excitatory and inhibitory 

inputs at the level of individual neurons but also at the level of neural circuits (Xue et al., 2014). 

Thus, it has been proposed that diseases like ID and autism could be considered as “critical 

period diseases”, the mutations in several genes associated with ID/ASD (for example 

neuroligins/neurexins) possibly affecting the early inhibition-excitation balance necessary for 

development of brain areas related to sensory coding, motor learning or cognition (Fernandez 

and Garner, 2007).  

Several animal models of ID have been shown to have I/E imbalances in the brain. For example, 

in Mecp2 mutant mice there is a shift of the balance towards inhibition due to a specific impact 

of the mutation on miniature excitatory currents (mEPSCs), leaving miniature inhibitory currents 

intact (Dani et al., 2005). Interestingly, Shank3 mutant mice also show a reduction of excitation 

at cortico-striatal synapses (Peca et al., 2011), although inhibition wasn’t specifically addressed. 

In a mouse model of Down Syndrome, the Ts65Dn mouse, there is an increased inhibition due 

to a specific decrease of excitatory synapses. Interestingly, lowering inhibitory load with an 

GABAA antagonist was able to restore cognitive function and LTP in hippocampus (Fernandez et 

al., 2007). In contrary, inhibition/excitation balance can also be shifted to higher excitation, 

which also affects information processing in the brain (Yizhar et al., 2011).  

In conclusion, ID pathophysiological studies demonstrated that mutations in genes that mediate 

or regulate synaptogenesis have deleterious consequences in adult brain function. Furthermore, 

the impact of the mutations at adult synapses may depend on the anatomical location and 

intrinsic nature of the neurons. In this line, the consequences of mutations in ID-related genes in 

synaptogenesis could be limited to certain synaptic types, cells or even particular periods 

throughout life were synapses appear and/or disappear. For example, the initial formation in 
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early life could be disrupted while the activity-dependent remodeling and formation of synapses 

might be preserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 Animal models of ID 

The technological advances in genetics and molecular biology have allowed creating animal 

models of IDs, reproducing the genetic mutations observed in human patients. The most widely 

used laboratory species are undoubtedly rodents. Due to the relative phylogenetic proximity 

with other mammals, they provide insights linking specific genes to high cognitive functions and 

are the most amenable to genetic manipulations. However, to consider a genetically 

manipulated mouse as being a valid model for human disease, three criteria have to be met 

(Banerjee et al., 2014). First, the etiology of the disorder has to be similar between the animal 

Figure 8: Scheme representing the importance of cell adhesion molecules at the synapse. a: During 
synaptogenesis, synaptic adhesion molecules stabilize the initial contact between axons and 

dendrites by transsynaptic interactions. Their binding leads to clustering and recruitment of specific 
pre-and postsynaptic proteins via specific binding domains. Interactions between adhesion 
molecules can also lead to the activation of signaling pathways involved in dendritic spine 

maturation and morphology (e.g. actin cytoskeleton). b: In the mature synapse, synaptic adhesion 
molecules can modulate synaptic function, either by interacting with synaptic proteins or by the 

activation of signaling pathways. From Dalva et al. 2007 
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model and the disorder in humans (same genetic mutation…). Second, the symptoms in the 

animal model have to share similar behavioral and physical outputs to the human disorder. It 

becomes clear that appropriate phenotyping, including behavioral characterization is critical. 

Ideally, the testing of a genetically modified mouse is realized by subjecting them to a battery of 

behavioral tests that assess motor and sensory, as well as cognitive functions. Finally, the 

predictive validity indicates a similar response in the mouse model to an intervention that is 

known to be effective in human patients with the disorder. This last criterion is very difficult to 

achieve as there are currently very few treatments available in humans to treat these disorders 

(Delorme et al., 2013). Thus, the best animal model would be one where the etiology and the 

symptoms share common features with the human disease. Eventually, this would allow 

unveiling the pathophysiological mechanisms of the disease and opening the possibility to 

develop therapeutic interventions that could eventually be used in human patients. 

Several mouse models of ID and ASD have already been created and replicate some of the 

symptoms observed in humans with syndromic ID. For example, knockout mice for Mecp2 

reproduce the motor and social interaction deficits observed in humans affected by Rett 

syndrome (Moretti et al., 2006) as well as social and feeding behavior (Fyffe et al., 2008). 

Knockout mice for SHANK3 exhibit deficits in social interaction, a recurrent trait of ID (Peca et 

al., 2011). Fmr1 mutant mice also display deficits in social behavior, as well as motor deficits and 

synaptic dysfunctions (Ronesi et al., 2012). Moreover, these mice also replicate some 

morphological deficits like macro-orchidy. 

1.5 Towards ID therapeutics? 

IDs and ASD are highly heterogeneous diseases with different etiologies, phenotypic outcomes 

and ages of onset. The first cognitive disabilities associated with ID are often detected after the 

critical time periods where the brain is subject to plasticity and is particularly sensitive to 

mutations of specific genes. Thus, for a long time, ID and ASD have been considered as 

neurodevelopmental disorders with irreversible cognitive deficits. However, an increasing 

number of studies in mouse models of ASD have shown that certain neuronal defects can be 

reversed in the mature mouse brain (Delorme et al., 2013), and that certain phenotypical 
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characteristics can be improved. Moreover, many ID-related proteins converge on similar 

molecular and signaling pathways, suggesting that some treatments could alleviate symptoms 

associated with different genetic causes (Pavlowsky et al., 2012). 

Different “correcting” strategies have been undertaken, ranging from genetic manipulation and 

cellular therapeutics, to pharmacological treatments or environmental stimulation. Most studies 

investigating the possibility of treating mouse models of ASD or ID have been performed on two 

most highly occurring monogenic syndromes: fragile X syndrome and Rett syndrome. Patients 

suffering from Fragile X present genetic abnormalities in the FMR1 gene coding for the FMRP 

protein, which acts as a RNA-binding protein allowing local regulation of translation (Darnell and 

Klann, 2013). Thus, when translational control is lost illegitimate translation occurs in the 

absence of stimuli (Maurin et al., 2014). Expression of a human form of FMR1 gene in Fmr1 KO 

mice restored social behavior and sensory gating (Paylor et al., 2008; Spencer et al., 2008). 

Pharmacological treatments aiming at counteracting the excessive mGluR5 signaling following 

FMR1 removal were also ameliorating certain cognitive features in FMR1 KO mice (Michalon et 

al., 2012; Yan et al., 2005).  

Rett syndrome is caused by a de novo mutation in the MECP2 gene coding for the methyl-CpG-

binding protein which acts as a transcriptional modulator. In Mecp2 mutated mice, reactivation 

of the gene by Cre-lox technology allowed improving morphological defects in the motor cortex 

and led to a marked improvement in respiratory and sensorimotor functions (Guy et al., 2007). 

Moreover, a pharmacological treatment aiming at restoring functional plasticity during 

development in Mecp2 mutant mice was able to alleviate certain symptoms and synaptic 

functioning (Tropea et al., 2009). Mice that are mutated for Shank2 present NMDA receptor 

hypofunction and pharmacological treatments aiming at correcting this deficit was able to 

restore social interactions and AMPA/NMDA ratio, but had globally no effect on social 

recognition (Won et al., 2012). 

In conclusion, correcting or curing ID requires a fine understanding of the cellular and synaptic 

dysfunctions caused by the absence of a certain protein, including the compensatory 

mechanisms that have been activated by the loss of function of the gene product. Given the 
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high heterogeneity in phenotypic outcomes in ID it is probably optimistic to think that 

therapeutic strategies in adults would have some effects on all aspects of the disease. However, 

improving some core symptoms of the disease like sensory and motor deficits would definitely 

improve the life quality of patients.  
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2 A model of intellectual disability: mutations in the 

Il1rapl1 gene 

As stated above, animal models are crucial to improve our understanding of the 

pathophysiology of ID as they allow us to use “invasive” methods that can’t be applied on 

human patients, but which are mandatory to study the link between synaptic function and 

cognition. During my PhD thesis, I focused on a knock out mouse for the IL1RAPL1 protein (see 

material and methods). In humans, a similar loss of function has been recurrently associated 

with ID or ASD (Carrié et al., 1999; Piton et al., 2008). Although previous findings of our team 

and others suggested a role of IL1RAPL1 in synaptic function, its precise integrated function 

remained largely unexplored when I started my project. Next paragraphs will review the current 

knowledge on IL1RAPL1 in brain function and disease.  

2.1 Structure of IL1RAPL1 

In humans, the IL1RAPL1 gene is composed by 11 exons and is located on the p arm of X 

chromosome. It encodes a transmembrane protein of 696 amino acids called Interleukin-1 

Receptor Accessory Protein Like-1 (IL1RAPL1). IL1RAPL1 shows strong homology with 

interleukin-1 receptor accessory protein (IL1RaP) family, except for the C-terminal 150 amino 

acid domain, which is present only in IL1RAPL1. This led to the idea that IL1RAPL1 could have a 

role in the mediation of the immune response (Carrié et al., 1999). However, IL1RAPL1 does not 

seem to be involved in interleukin-1 (IL-1) pathway (Bahi, 2003; Born et al., 2000), although the 

activation of a IL-1-mediated signaling cascade through IL1RAPL1 has been reported previously 

(Pavlowsky et al., 2010a). Altogether, this suggests that IL1RAPL1 could function as a new class 

of receptors within this family.  

Structurally, IL1RAPL1 protein contains an extracellular domain with three extracellular 

immunoglobulin-like (Ig) motifs, an intracellular Toll/Il-1 Receptor (TIR) domain and a specific 

150 amino acids extension at C-terminal (CT domain) (Figure 9 and 10). In situ hybridization 

revealed a ubiquitous low level expression in the fetal and adult brain (Carrié et al., 1999). 

Overall, the highest expression of Il1rapl1 transcripts was observed in brain structures that 

correspond to the primary olfactory cortex, entorhinal cortex, hippocampus including the 
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dentate gyrus, perirhinal and occipito-parietal cortices. These brain areas are known to be 

involved in learning and memory processes, suggesting a role of IL1RAPL1 in cognitive features. 

In cultured cells, IL1RAPL1 protein can localize to both pre-and postsynaptic compartments 

(Pavlowsky et al., 2010b; Valnegri et al., 2011; Yoshida et al., 2011) suggesting that IL1RAPL1 

could exert its role at both sites. However, the exact localization of IL1RAPL1 in vivo remains 

controversial and the lack of specific antibodies haven’t helped in this matter. 

2.2 IL1RAPL1 and ID in humans 

The first report of the involvement of IL1RAPL1 in the pathology of ID dates back to 1999, when 

microdeletions were discovered in the coding region of IL1RAPL1 in multiple patients (Carrié et 

al., 1999). For most patients, these microdeletions span exons 3-7, leading to the absence of the 

protein and the development of ID (Figure 9). In the same report, another patient was shown to 

have a nonsense mutation in exon 11 leading to a premature STOP codon and a protein lacking 

half of the TIR domain and the entire C-terminal domain. Similarly, the fine analysis of a family 

with ID revealed the presence of a point mutation leading to a truncated IL1RAPL1 protein 

lacking half of the TIR domain and the entire CT domain (Tabolacci et al., 2006). Interestingly, it 

was shown that point mutations and intragenic deletions of Il1rapl1 are associated with the 

development of autism spectrum disorder (ASD) (Piton et al., 2008). Globally, however, most of 

IL1RAPL1-deficient patients are only diagnosed with ID and it remains difficult to link the loss of 

particular IL1RAPL1 domains with disease severity. 

Several other reports have shown intragenic deletions in the parts coding for the extracellular 

Ig-like domains (Behnecke et al., 2011; Whibley et al., 2010) or spanning the Ig-like domains 

until the CT domain (Youngs et al., 2012). All these deletions lead to ID in concerned patients. 

Interestingly, most affected patients are males, as the gene is located on the X chromosome. 

Originally, patients with genetic abnormalities in the IL1RAPL1 gene were considered as non-

syndromic. However, several patients also present some morphological deficits (facial 

abnormalities, body size…), but show global normal brain morphology. How mutations in 

Il1rapl1 lead to inter-individual variability remains unknown. One possibility is the influence of 

environmental factors; another is the location where the mutation occurred, disrupting certain 
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interactions of IL1RAPL1 with other partners and leaving others unaltered. Surely, research 

would benefit from studies that would link the presence of a particular mutation with the 

disruption of specific signaling pathways that underlie synaptic function. Eventually this could 

allow developing personalized treatments to improve life quality or at least some core 

symptoms of the disease in ID patients.  

 

 

 

 

 

2.3 Biological role of IL1RAPL1 

Most experimental data on IL1RAPL1 function has been obtained from cultured cell models and 

suggest that IL1RAPL1 is enriched at the synapse. Its synaptic functions have been shown to 

depend on several protein/protein interactions between specific domains of IL1RAPL1 and its 

binding partners leading to the activation of distinct signaling. The next paragraphs review all 

Figure 9: Scheme representing Il1rapl1 mRNA (11 exons) and the associated protein sequence with the main 
functional domains. Some mutations are point mutations, leading to the substitution of a single base and the 

traduction of incomplete proteins. Others lead to deletions of larger fragments that can encompass one or 
several exons and lead to the complete absence of the protein. Most mutations are located within the first exons 

that code for the extracellular Ig-like domains. Adapted from M. Ramos 
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current knowledge about the possible role of IL1RAPL1 at the synapse and, for the sake of 

clarity, have been separated according to the anatomical organization of the synapse. 

2.3.1  Presynaptic 

Using a yeast two-hybrid screening it was shown that IL1RAPL1 interacts with the neuronal 

calcium sensor-1 (NCS-1) protein trough the CT domain (Bahi, 2003) (Figure 10). This interaction 

was also confirmed in non-neuronal mammalian cells. NCS-1 belongs to a large Ca2+-binding 

protein family implicated in the regulation of Ca2+-dependent exocytosis and in the modulation 

of Ca2+ channels trafficking and activity (Burgoyne, 2007). An overexpression experiment of 

IL1RAPL1 in PC-12 cells revealed a negative effect on an exocytosis assay. Using PC-12 cells 

again, it was shown that NCS-1/IL1RAPL1 interaction is important for the regulation of N-type 

voltage-gated calcium channel activity (Gambino et al., 2007). These channels are important for 

regulation of neurotransmitter release at the presynaptic terminal, proving that IL1RAPL1-NCS-1 

interaction could be important to regulate this process. On top of this, IL1RAPL1 lowered Nerve 

Growth factor (NGF)-mediated neurite elongation in PC-12 cells, an effect that depended on 

functional NCS-1/IL1RAPL1 interaction.  

Using an olfactory sensory neuron-specific gene manipulation system in combination with in 

vivo imaging of transparent zebrafish embryos, the group of Mishina has shown the role of the 

zebrafish orthologue of human IL1RAPL1, IL1RAPL1b, in presynaptic differentiation of olfactory 

sensory neurons looking at both synaptic vesicle accumulation and subsequent morphological 

remodeling (Yoshida and Mishina, 2008). Interestingly, these two processes appeared to be 

mediated by distinct domains, namely the CT and TIR domain respectively. 

Taken together, these papers suggest that, presynaptically, IL1RAPL1 could be involved in both 

synaptic activity and/or building-up in the nervous system. Noteworthy, these effects were 

mediated by the CT and/or the TIR domain of IL1RAPL1, pointing their crucial role in these 

biological processes. Nonetheless, caution should be taken in the interpretation of these results 

as the precise localization of endogenous IL1RAPL1 at the presynaptic site is still not clear and 

presynaptic effects could merely be the result of post- and/or transsynaptic consequences of 

IL1RAPL1 absence. 
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2.3.2 Postsynaptic 

Most of the work aiming at understanding IL1RAPL1 function has been realized at the 

postsynaptic site, because of its high enrichment at the PSD (Pavlowsky et al., 2010b). A yeast 

two-hybrid experiment conducted on human fetal c-DNA library revealed a specific interaction 

of IL1RAPL1 with PSD-95 through a noncanonical PDZ-binding motif (Pavlowsky et al., 2010b) 

(Figure 10). PSD-95 is a major component of excitatory postsynaptic compartment and serves as 

an anchoring protein for synaptic proteins. IL1RAPL1/PSD-95 interaction was confirmed using 

transfection in cultured cells and with co-immunoprecipitation experiments. As said above, in 

cultured hippocampal neurons, IL1RAPL1 colocalized with PSD-95 at postsynaptic excitatory 

dendritic spines. In addition, overexpression of IL1RAPL1 led to an increase of excitatory 

synapse number (seen by PSD-95 clusters) both in vitro and in vivo. Moreover, this was 

accompanied by an increase in the frequency of miniature EPSCs (mEPSCs), indicating that these 

synapses are functional. The increase in spine number was shown to be mediated by the CT 

domain of IL1RAPL1 which positively regulates c-Jun N-terminal kinase (JNK) signaling activity in 

neurons. JNK has been shown to phosphorylate PSD-95 in neurons, regulating its synaptic 

localization (Pavlowsky et al., 2010b). Loss of IL1RAPL1 led to a constitutive decrease of JNK 

activity, ultimately leading to lower phosphorylation of PSD-95 and its recruitment to the 

postsynaptic density. Finally, a lack of maintenance of theta-burst induced synaptic plasticity at 

SC-CA1 synapses was observed in Il1rapl1 KO mice (Pavlowsky et al., 2010b). Together, these 

results suggest an involvement of IL1RAPL1 in promoting the formation or in the stabilization of 

excitatory synapses and in the correct function of these contacts. It remains to be studied how 

IL1RAPL1 can activate JNK, as no ligand has been characterized until now.  

Recently, with the aim of further characterizing the partners of IL1RAPL1 important for the 

formation and maintenance of spines, a team has used affinity chromatography on mouse 

forebrain and could identify several new proteins (Hayashi et al., 2013). Amongst them, they 

identified MCF2L, which binds to IL1RAPL1 through the TIR domain (Figure 10). MCF2L is a Rho 

guanine nucleotide exchange factor (RhoGEF) that activates Rho-A and CDC42. Rho-A has been 

previously shown to control the cytoskeletal dynamics that induce structural change of 

excitatory spines and actin cytoskeletal dynamics are regulated by Rho-A dependent activation 
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of ROCK (Govek et al., 2005). This suggests that IL1RAPL1 could control dendritic spine 

formation though MCF2L/RhoA/ROCK pathway. Indeed, treatment with a shRNA against Mcf2l 

or treatment with a ROCK inhibitor was able to reduce IL1RAPL1-induced increase of dendritic 

protrusions (Hayashi et al., 2013). In addition they showed that overexpression of IL1RAPL1 

increased the replacement of GluA1-containing AMPA receptors with GluA2/A3-containing ones 

at newly formed spines. This effect was shown to be dependent on MCF2L/RhoA/ROCK signaling 

pathway, providing the first evidence that IL1RAPL1 could control glutamate receptor dynamics. 

Other proteins were also shown to interact with the intracellular domain of IL1RAPL1: PKCε with 

the TIR domain and PLCβ1, SNIP, RASAL1 with the CT domain. However, this paper didn’t focus 

on the role of these protein/protein interactions, suggesting that additional signaling pathways 

besides MCF2L/RhoA/ROCK could coexist. Noteworthy, PSD-95 and RhoGAP2 were not 

identified with their affinity chromatography, probably because of different experimental 

conditions.  

2.3.3 Transsynaptic 

Recently, two studies aimed at understanding how IL1RAPL1 regulates the formation of synaptic 

contacts and trough which domains of the protein (Valnegri et al., 2011; Yoshida et al., 2011). 

Valnegri et al. expressed two constructs in hippocampal neurons that mimic some mutations 

found in human patients. One construct lacked a part of the TIR domain and the full CT domain 

while the other one was missing a part of the extracellular Ig-like domains. Transfection 

experiments revealed that the extracellular domain is required to induce presynaptic formation 

although both the extracellular and intracellular domains are required for inducing dendritic 

spine formation. Yoshida et al. found similar results when expressing different IL1RAPL1 

constructs in cortical neurons and were also able to show a reduction in this effect when 

expression of Il1rapl1 was abolished by cellular expression of a specific shRNA. These results 

suggested the existence of a presynaptic partner through which postsynaptic IL1RAPL1 could 

induce presynaptic differentiation and that the intracellular domains act in concert to control 

the formation of the postsynaptic spines. Affinity chromatography between a tagged IL1RAPL1 

protein and synaptosomal fraction of rat brains (Valnegri et al., 2011) or total mouse brain 

proteins (Yoshida et al., 2011) revealed an interaction between the extracellular domain of 
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IL1RAPL1 and a new unidentified partner: the protein tyrosine phosphatase delta (PTPδ) which 

is located at the presynaptic site and widely expressed in the mouse brain (Kwon et al., 2010). 

PTPδ is part of the LAR family of proteins which bind to netrin-G ligand-3 (NGL-3) (Woo et al., 

2009) and induce pre- and postsynaptic differentiation in neurons. The interaction between 

IL1RAPL1 and PTPδ is very strong and is determined through their respective extracellular Ig-like 

domains, making this a transsynaptic interaction. Moreover, co-culture of transfected IL1RAPL1 

cells with cortical neurons from PTPδ KO mice was unable to induce presynaptic differentiation, 

unambiguously showing the role of IL1RAPL1/PTPδ in this process (Yoshida et al., 2011). The 

role of this interaction was also proved in vivo, as infection of layer 2/3 cortical neurons with 

IL1RAPL1 protein lacking the Ig-like domains reduced spine density. Nonetheless, these results 

don’t tell us what postsynaptic proteins and/or signaling cascades could be activated to mediate 

dendritic spine formation. 

In order to identify which partners could interact with the intracellular domains of IL1RAPL1 and 

that might be required for dendritic spine formation, Valnegri and colleagues used a yeast two-

hybrid system that could show that the C-terminal domain of IL1RAPL1 interacted with 

RhoGAP2, a novel RhoGTPase-activating protein II (Valnegri et al., 2011). Pull-down and co-

immunoprecipitation experiments revealed that this interaction also depends on the TIR 

domain of IL1RAPL1, showing that the interaction between both proteins involves different 

parts of the C-terminal domain of IL1RAPL1. RhoGAP2 is expressed in cortex, hippocampus and 

cerebellum and its overexpression in neurons leads to the accumulation of different 

postsynaptic markers through Rho signaling pathway (Govek et al., 2005). Other overexpression 

experiments revealed that the interaction between IL1RAPL1 and PTPδ is necessary for 

recruitment of RhoGap2 to the synapse (Valnegri et al., 2011). In conclusion, IL1RAPL1 can be 

considered as a synaptogenic protein that promotes presynaptic differentiation and formation 

of excitatory spines through transsynaptic interactions, a mechanism that closely resembles the 

role of adhesion molecules (Sakisaka and Takai, 2005), some of them being closely related to ID 

and/or ASD (Sudhof, 2008). 
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2.3.4 In vivo role of IL1RAPL1 

Neuronal cultures have unveiled a large amount of information on the role of IL1RAPL1 at the 

synapse and have allowed identifying several possible binding partners through which IL1RAPL1 

could exert its function. However, studies on the in vivo consequences of IL1RAPL1 deficiency 

were still lacking when I started my PhD. Thus, there was an urge to understand what could be 

the precise function of IL1RAPL1 in the brain, and how its absence could lead to cognitive 

Figure 10: Scheme representing the proposed role of IL1RAPL1 at the synapse. Presynaptically, IL1RAPL1 
interacts with the calcium sensor NCS-1, regulating the activity of N-type VGCCs. Postsynaptically, 

IL1RAPL1 interacts with RhoGAP2, possibly regulating Rac1 activity, a protein involved in cytoskeletal 
organization. RhoGAP2’s interaction with IL1RAPL1 depends on the transsynaptic interaction between 

presynaptic PTPδ and postsynaptic IL1RAPL1. This interaction involves the Ig-like domains of both 
partners. At the postsynaptic level, IL1RAPL1 also interacts with PSD-95 and this interaction is possibly 

regulated through the regulation of JNK activity. Finally, postsynaptic IL1RAPL1 also interacts with 
MCF2L, leading to the regulation of RhoA/ROCK pathway, a signaling pathway regulating cytoskeletal 

organization.  
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deficits in ID patients. Although some small effects on spine density were noticed in vivo, the 

pathophysiological mechanisms underlying functional and behavioral impairments following 

Il1rapl1 deletion remain poorly studied, especially in intact organisms.  

Previous work from our lab has started addressing the role of IL1RAPL1 ex vivo by looking at the 

consequences of Il1rapl1 deletion in cerebellum-containing brain slices of Il1rapl1 KO mice 

(Gambino et al., 2009). Indeed, cerebellar abnormalities are often found in autistic patients 

(Carper, 2002). Following IL1RAPL1 removal there was a higher excitability of molecular layer 

interneurons (MLI) that control the activity of Purkinje cells in early development (P10-P12). The 

latter cells are large GABA-ergic cells that control the activity of deep cerebellar neurons (DCNs), 

the main output cells of the cerebellum. The higher inhibition received by Purkinje cells resulted 

in a disinhibition of DCN neurons. How exactly MLI neurons became more excitable is still 

unclear but doesn’t seem to result from higher excitatory drive on MLIs.  

Interestingly, this was the first paper to show a deregulation of I/E balance following IL1RAPL1 

removal, an effect that was consecutive to the specific effect of the mutation on a particular cell 

type within a circuit. In line with this paper, I decided to further characterize Il1rapl1 KO mice in 

order to make causal links between synaptic function and behavior by using the neural circuits 

of associative fear conditioning as a model. 
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3 Associative learning as a tool to measure cognition on 

an ID model 

Cognition refers to all higher order mental processes like reasoning, memory, decision making 

and executive functions, but also more general processes like perception, motricity and 

emotions. Cognitive aspects are often disrupted in ID patients but the underlying 

pathophysiological mechanisms are not well understood. For obvious reasons, cognition is a 

quite difficult phenomenon to study in animals, as none of them show high order mental 

processes as they exist in humans. Nonetheless, simple behavioral paradigms have been 

developed that allow assessment of learning and memory processes in animals. A classical and 

robust form of learning that is often used in animal models is associative learning where animals 

memorize the co-occurrence of two events and was first developed by the researcher Pavlov. 

Associative fear learning has been particularly useful in the last decades to unveil learning and 

memory mechanisms in rodents. Most importantly, the neural circuits as well as the cellular and 

synaptic mechanisms underlying associative fear are well characterized, making this an ideal 

model to link behavior with synaptic function. The previous expertise of our team in fear 

conditioning and associated synaptic mechanisms accelerated our choice to use this behavioral 

paradigm to characterize learning and memory in Il1rapl1 KO mice. 

3.1 Fear conditioning 

Fear is a basic emotion present in all mammals and has a protective role, thus providing an 

evolutionary advantage. A lot of psychiatric illnesses are associated with dysregulations of the 

mechanisms regulating fear behavior, leading to anxiety disorders. The neuronal substrates of 

fear behavior and the cellular and molecular mechanisms governing them are starting to be well 

documented (Pape and Pare, 2010). During associative fear conditioning, animals learn to 

associate the presentation of a neutral sensory stimulus (conditioned stimulus or CS) with a 

coinciding aversive stimulus (unconditioned stimulus or US). Subsequent exposure to the CS 

alone after conditioning elicits a conditioned fear response (CR) with associated physiological 

autonomic components: increased heart rate and blood pressure, release of stress hormones, 

analgesia… During the conditioned fear response rodents adopt an immobile posture called 
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freezing. Freezing is easy to quantify with adapted devices and its duration reflects the strength 

of fear memory.  

Cued fear conditioning is a behavioral protocol where the CS is a cue, typically a sound, which is 

associated with a mild foot shock, the US, to the paw of the animal. This type of learning is 

rapidly acquired, needs few associations and is long lasting. However, the US is also typically 

associated with the context in which it has been applied creating a contextual fear memory. A 

context is broadly defined as the set of circumstances around an event (Maren et al., 2013). This 

context is often composed of different sensory modalities and is continuously present during an 

experiment. Conditioned fear can also be decreased by a process called extinction (Herry et al., 

2010). During extinction procedures, the subject is submitted multiple times with the previously 

conditioned CS alone, which typically leads to a progressive decline of the conditioned response. 

Importantly, extinction is believed to generate a new associative learning (“CS/safety”) that 

doesn’t completely erase the previous associative fear memory. Thus, fear and extinction co-

exist and interact to regulate fear behavior. 

3.2 Neuronal substrates 

A tremendous amount of studies have attempted to define the neuronal substrates of fear and 

the mechanisms involved in the regulation of fear behavior. Those studies all point to the crucial 

role of the amygdala, a component of the limbic system and the main structure involved in 

emotional learning (McGaugh, 2004)(Berlau and McGaugh, 2006). Multiple reports indicate that 

the amygdala is involved in the formation, extinction and expression of associative fear 

memories (Herry et al., 2010; Pape and Pare, 2010). The amygdala has extensive connections 

with other brain structures allowing fine regulation of fear behavior. Among them, two actors 

emerge: the hippocampus and the medial prefrontal cortex (mPFC). The mPFC is known for its 

role in fear extinction and fear expression (Courtin et al., 2013) while the hippocampus 

regulates contextual aspects of fear memory (Maren et al., 2013). In the next chapters I decided 

to focus mainly on the amygdala and the hippocampus because of their involvement in cued 

fear conditioning and contextual fear conditioning, two learning tasks that I characterized in 

Il1rapl1 KO mice.  
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3.2.1 The amygdala 

3.2.1.1 General anatomy and connectivity 

The amygdala is located in the anterior portion of the temporal lobe and is comprised of 

different nuclei that can be separated upon their cellular composition or connectivity (Pape and 

Pare, 2010) (Figure 11). These nuclei mainly include the lateral amygdala (LA; can be divided in a 

dorsal and ventral part), the basolateral amygdala (BA; also called BLA), the central amygdala 

(CE; can be further subdivided in CeL and CeM) and the intercalated cell masses (ITC). Amygdala 

has strong intra-nuclear connections and extensive inter-nuclear connections that follow a 

dorsal to ventral direction. Indeed, LA sends projections to the BA which in turn sends 

projections to the CE (Figure 11). The CE is the main the output station of the amygdala and 

sends projections to the hypothalamus and different structures in the brainstem to orchestrate 

conditioned autonomic and motor responses. 

 

 

 

The amygdala is also strongly innervated by cortical and sub-cortical structures. The LA serves as 

the primary sensory interface as it receives inputs carrying information about the CS and the US 

Figure 11: A: Scheme representing the main nuclei composing the amygdala. The three main nuclei 
are depicted: the LA (light orange), the BA (dark orange) and the central amygdala (green). Are also 

depicted the ITC cell clusters that border the LA and BA. The CE can be further divided in CEl and CEm. 
The LA receives sensory input from the thalamus and the cortex. From Ehrlich et al. 2009 
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originating from thalamus and cortex. Thalamic projections originate from the posterior 

intralaminar nucleus (PIN) and the medial geniculate nucleus (MGm) while cortical projections 

mainly originate from temporal auditory cortical fields (Pape and Pare, 2010) (that is for 

auditory cues). Axonal projections from cortical fields are located in a dense fiber bundle called 

the external capsule that borders the LA laterally. Thalamic projections are more diffuse and 

reach the amygdala through the internal capsule which is positioned medially to the LA and 

dorsally to the CE. It is now widely accepted that the association/storage of CS and US takes 

place in LA and that this process involves synaptic plasticity mechanisms (Pape and Pare, 2010). 

Moreover, pharmacological inactivation of LA is sufficient to impair cued fear acquisition in 

rodents (Maren and Quirk, 2004). In addition, electrophysiological recordings have shown an 

increase in auditory evoked firing of LA principal cells after fear conditioning (Quirk et al., 1997). 

More recently, an elegant study using a cellular imaging technique with immediate early genes 

(catFISH) suggested that CS and US information converge on the same populations of neurons in 

LA (Barot et al., 2009). 

The BA not only receives information from the LA but is also strongly interconnected with other 

brain regions like hippocampus and mPFC. Axonal projections from the hippocampus to the BA 

all originate from the ventral hippocampus while BA sends projections to all different parts of 

hippocampus (PITKÄNEN et al., 2006). An important anatomical distinction exists in the mPFC 

which is subdivided in two parts: prelimbic cortex (PL) and infralimbic cortex (IL). Importantly, 

both divisions have strong reciprocal, but different connections with BA. This suggests that BA 

could function as a hub orchestrating fear behavior and extinction (Herry et al., 2008). 

3.2.1.2 Cellular composition 

The different nuclei of amygdala are highly differing in their cell type compositions: while the LA 

and the BA are mostly composed of excitatory cells (about 80%, the remaining 20% being 

inhibitory), CE and ITCs are composed only of inhibitory cells (Figure 11 and 12). Excitatory 

principal cells of amygdala have large somata and are densely covered with spines while 

inhibitory interneurons have smaller somata and have spine-sparse dendrites.  
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Interneurons are composed of multiple subtypes and up to date very little knowledge exist on 

their specific contributions to the different aspects of fear conditioning and extinction (Ehrlich 

et al., 2009). Recently a paper has attempted to classify LA interneurons based upon their 

molecular and electrophysiological properties (Sosulina et al., 2010). Although this led to the 

classification of interneurons in 5 subtypes, no evidence clearly shows their involvement in fear 

conditioning. Recently, however, a study from the Lüthi group has shown the role of a 

disinhibitory circuit of amygdala interneurons regulating fear conditioning (Wolff et al., 2014). 

It has to be noted that the different interneuron subtypes make contacts on different areas of 

principal neurons, thus regulating excitability and plasticity at different levels (Muller et al., 

2007; Woodruff and Sah, 2007). In addition, interneurons are under strong neuromodulatory 

control (Pinard et al., 2008; Zhang et al., 2013) which may allow to adapt inhibition depending 

on the emotional/behavioral state of the animal. Interneurons can be further subdivided based 

on the expression of specific markers, different electrophysiological parameters or on projection 

properties (Sosulina et al., 2010). In recent years considerable progress has been made in the 

Figure 12: Brain slice representing interneurons in the amygdala. The slice was 
taken from a GAD67-eGFP mouse, where all interneurons are green. LA and 

BA are mostly composed of excitatory cells, with a smaller proportion of 
inhibitory cells. CE is composed solely of interneurons, as are the ITC clusters. 

From Spampanato et al. 2011 
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development of genetically modified animals allowing the visualization and manipulation of 

specific interneuron subtypes (Taniguchi, 2014). With no doubt the use of these animal models 

will allow unraveling the complexity and diversity of interneuron function in learning and 

memory processes.  

3.2.2 Hippocampus  

3.2.2.1 General anatomy 

The hippocampus is a brain structure located in the medial temporal lobe. Briefly, the 

hippocampus can be subdivided in four main fields: the dentate gyrus (DG), the CA3 (Cornu 

Ammonis 3), the CA2 and the CA1 (Figure 13). DG and CA1-3 areas are filled with granule and 

pyramidal cells respectively and communicate in a unidirectional way. That is, granule cells of 

the DG send their axons (mossy fibers) to CA3, and pyramidal cells of CA3 send their axons 

(Schaffer collaterals) to CA2 and CA1. Sensory information reaches the hippocampus through 

projections originating from the entorhinal cortex (perforant path), specifically the medial and 

lateral layers II and III (Figure 13). CA1 then sends projections back to layer V of entorhinal 

cortex. The hippocampus has a strong caudal extension and can be further divided in dorsal 

(DH) and ventral hippocampus (VH). Thus, the different fields of hippocampus all have dorsal 

and ventral extensions. Interestingly, dorsal and ventral hippocampus are thought to underlie 

different aspects of cognition (Fanselow and Dong, 2010). Interestingly, the dorsal and ventral 

hippocampus show distinct extrinsic connectivity and projections to the amygdala all originate 

from the ventral hippocampus. The ventral CA1 sends axons to a structure called the subiculum 

which is the main output region of the hippocampus and sends strong projections to the BLA 

(see material and methods).  

The hippocampus is known for its role in declarative memory as pharmacological lesions 

interfere with previously formed memories (Sanders et al., 2003). Moreover, decades of 

experimental evidence have shown a role of hippocampus in spatial representation and 

navigation (Smith and Bulkin, 2014). Hippocampus sends and receives projections from both 

amygdala and mPFC suggesting that it could also be involved in the regulation of fear behavior. 
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Here I focus mainly on the role of hippocampus in the representation of contextual information 

and how this information can be used to regulate fear behavior. 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.2 Hippocampus in contextual coding 

Unlike discrete cues (e.g. sound), contexts are multisensory, diffuse and continuously present. 

When performing a fear conditioning task on an animal, the initial step for the association to 

occur is the encoding/representation of the context in the animal’s brain. Indeed, if the animal 

is shocked before it had time to explore the context, no association occurs with the context. 

Several pharmacological studies have pointed to the role of hippocampus in contextual 

encoding, consistent with the large amount of literature showing its role in spatial 

representation and navigation (Smith and Bulkin, 2014). Interestingly, each context is encoded 

by distinct neural ensembles within the hippocampus, as was shown elegantly using in vivo 

recordings in rats (Kelemen and Fenton, 2010). 

Figure 13: General anatomy of the hippocampus in rodents. The wiring diagram of the hippocampus is 
traditionally presented as a tri-synaptic loop. The major input originates from entorhinal cortex sending axons 
through the perforant path to DG granule cells (in orange). Granule cells of DG contact CA3 (in blue) pyramidal 

cells by projections called mossy fibers. Finally CA3 pyramidal cells, contact CA1 (in green) pyramidal cells 
through projections called Schaffer collaterals. Note that CA1 cells also receive projections from the entorhinal 

cortex. Finally, CA1 sends afferents back to entorhinal cortex in layer V. From Neves et al. 2008 
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While dorsal hippocampus is mainly responsible for contextual encoding, ventral hippocampus 

is important for anxiety and expression of previously formed fear, pointing a strong dichotomy 

between dorsal and ventral hippocampus function {Fanselow:2010dk}. It has to be noted that 

the neocortex is also involved in the storage of the contextual memory as it is believed there is a 

gradual transfer of information from hippocampus to cortical regions with time 

{Goshen:2011gh}{Frankland:2005kf}. During contextual fear conditioning, the encoded context 

is associated with the aversive foot shock. The main question that one could ask is where this 

association takes place. One candidate for the storage of the context/shock association is the 

amygdala as it has been shown that BLA is essential for contextual fear learning and expression 

(Fanselow and Poulos, 2005)  Interestingly, BLA and hippocampus show strong reciprocal 

connections  (PITKÄNEN et al., 2006) and synaptic plasticity between hippocampus and BLA can 

be induced in vivo (Maren et al., 1995). 

More recent work has shown that the regulation in the expression of contextual fear depends 

on strong interactions between the PL, the BLA and the ventral hippocampus (Orsini et al., 

2011; Sotres-Bayon et al., 2012) (Figure 14). This is especially true for contextual renewal of fear 

after extinction. Indeed, after an initial cued fear conditioning task the fear disappears in 

animals that were extinguished in the fearful context but renews as soon as the tone is 

presented in a non-extinguished context (Herry et al., 2010). BLA receives long range 

projections from both PL and VH and it is believed that, during contextual fear renewal, 

contextual representations are integrated in BLA trough both projections (Orsini et al., 2013). 

Recently two cell populations that correlate with high or low levels of fear have been discovered 

in BLA (Herry et al., 2008). Those two distinct cell populations are differentially connected with 

the prefrontal cortex and the hippocampus and were respectively called “fear” or “extinction” 

neurons. BLA fear neurons were indeed connected preferentially with ventral hippocampus and 

extinction neurons with IL. This key paper puts BLA as a central hub that can orchestrate 

behavior by allowing switching between states of high or low fear. Recently, using in vivo 

electrophysiological recordings, a report has shown that a subtype of BLA interneurons is 

recruited by hippocampal theta rhythm to promote hippocampo-BLA synchrony during 

emotional memory formation and presentation of noxious stimuli (Bienvenu et al., 2012). 
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However, hippocampal projections onto BLA are poorly characterized and their physiological 

role was still unexplored when I started my PhD. These projections have been difficult to study 

because of the difficulty in separating axonal projections of other brain structures with classical 

recordings (see material and methods).  Using optogenetic approaches, however, I was able to 

shed some light on the importance of these projections in vivo (see results, paper 2). 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Synaptic plasticity in associative learning 

One of the most important properties of the brain is its plasticity, which is the capacity of 

neuronal activity generated by an experience to modify neuronal circuit function. Synaptic 

plasticity refers to the activity-dependent modification of the synaptic strength and goes hand 

in hand with morphological remodeling of pre-and postsynaptic compartments (Bosch and 

Hayashi, 2012). Interestingly, a lot of ID mouse models present some  – although divergent -

deficits in synaptic plasticity, possibly explaining some cognitive abnormalities (Humeau et al., 

2009). Fear conditioning is an ideal model because the synaptic plasticity mechanisms 

Figure 14: Neural circuit underlying context-dependent regulation of fear memory. 
Hippocampus sends projections to both mPFC (PL and IL) and BLA.  Direct projections from 
hippocampus to BLA or indirect projections through PL might be crucial for the renewal of 

fear after extinction. Projections from hippocampus to IL might be important for the 
suppression of fear expression by a disinhibitory circuit passing through ITC cells. From 

Maren 2013 
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associated with it have been well characterized. In the next paragraphs I introduce some 

general features of synaptic plasticity and provide some experimental evidence linking synaptic 

plasticity at particular synapses to fear conditioning behavior.  

3.3.1 Synaptic plasticity, general principles 

Learning and memory result from changes in activity-dependent changes in synaptic strength. 

This view, originally postulated by Hebb (1949) says that a synaptic input can be strengthened 

when activity in the presynaptic neuron co-occurs with activity (depolarization) in the 

postsynaptic neuron, pointing to the associative nature of the phenomenon. This postulate was 

first demonstrated in the rabbit hippocampus, more precisely in the dentate gyrus (Bliss and 

Lomo 1973) and was called long term potentiation (LTP). From now we know that LTP is 

mediated by various mechanisms depending on the brain structure, the experimental protocol 

or the considered cellular or synaptic types (Citri and Malenka, 2008). Originally, LTP between 

Schaffer collaterals (CA3 projections) and the CA1 region of the hippocampus is considered as 

the “canonical” LTP, as being the most studied form of synaptic plasticity in the brain. Thus, 

most studies have focused on synaptic plasticity on excitatory synapses of principal cells (see 

below). Noteworthy, synaptic plasticity of glutamatergic synapses onto interneurons has also 

been reported (Bauer and LeDoux, 2004), and may exhibit some distinctions with those of 

principal cells (Spampanato et al., 2011).  

A temporal distinction can be made between the induction and the expression of LTP. Induction 

refers to the synaptic mechanisms initiating plasticity while expression designates the processes 

leading to stabilization of plasticity and often involves the traduction of new proteins 

(maintenance phase). Induction of LTP on excitatory cells involves the two main types of 

glutamatergic receptors: AMPA and NMDA. AMPA receptors have fast kinetics and open at 

resting membrane potential, leading to depolarization of the postsynaptic membrane by influx 

of cations. NMDA receptors, closed at resting membrane potential by a Mg2+-mediated block, 

open when the postsynaptic membrane depolarizes, allowing the relieve of the Mg2+ ion and 

the Ca2+ entry within the cell (Citri and Malenka, 2008). The increase in calcium concentration 

then activates a large number of signaling pathways that ultimately lead to the strengthening of 
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the synapse. The role of CaMKII in this process has been clearly established (Opazo et al., 2010) 

but also of other proteins like PKA or PKC (Maren and Quirk, 2004). Interestingly, during fear 

conditioning, amygdalar cells that express higher levels of CREB are preferentially recruited into 

a memory trace (Han et al., 2007) and the reactivation of these cells is necessary for the 

expression of the fear memory (Kim et al., 2014). Also, ex vivo experiments showed that cells 

with higher CREB levels were more excitable than CREB-negative cells, possibly favoring their 

recruitment in a memory trace (Han et al., 2007). Thus, these results suggest that a specific 

subpopulation of cells become tagged during learning and are re-activated upon retrieval of 

memories. 

Experimentally, induction of LTP can be achieved by applying high-frequency tetanic stimulation 

to presynaptic projections. Alternatively, pairing protocols consist of depolarization of the 

postsynaptic neuron with a sustained low-frequency presynaptic stimulation. Other protocols 

that are often used are called “spike-time dependent plasticity” (STDP) protocols, consisting of 

stimulating the presynaptic projection in a narrow time-window before firing of the 

postsynaptic cell (Caporale and Dan, 2008). Expression of LTP depends on the modification of 

existing proteins or production of new proteins that will contribute to the strengthening of the 

synapse. The major mechanism of expression of LTP involves an increase in the incorporation of 

AMPARs within the postsynaptic density. This is achieved by activity-dependent changes in 

AMPARs trafficking within the plasma membrane (Rumpel et al., 2005) and is tightly regulated 

(Opazo and Choquet, 2011). Alternatively, the electrophysiological properties of AMPARs can be 

modified to increase permeability.  

Dendritic spines undergo strong morphological changes during synaptic plasticity. A recent 

study has shown that LTP induction is characterized by a strong reorganization and stabilization 

of the actin cytoskeleton (Bosch et al., 2014). The protein synthesis-dependent PSD 

enlargement was seen only 60min after LTP induction, as suggested by the increase of 

HOMER1B and SHANK1B proteins. 

In CA1 LTP, both induction and expression are mediated by postsynaptic mechanisms. However, 

this is not necessarily the case at all synapses and some types of LTP are generated by 
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presynaptic mechanisms. In contrast to NMDAR-dependent LTP, the induction and expression of 

presynaptic LTP are characterized by an increase of neurotransmitter release leading to an 

increase of the postsynaptic response. Following high frequency tetanic stimulation, VGCCs 

mediate the increase of presynaptic calcium levels leading to the activation of a 

calcium/calmodulin-dependent adenylyl cyclase (AC). This in turn increases presynaptic cAMP 

levels and activates PKA, which phosphorylates critical presynaptic substrates, such as  RIM1α, 

to cause a long-lasting enhancement in transmitter release (Fourcaudot et al., 2008). 

3.3.2 Synaptic plasticity related to fear conditioning 

One question that has been difficult to resolve is which forms of LTP can be directly 

linked/causing the newly acquired behavior. Indeed, it is not easy to characterize the 

physiological conditions under which LTP is initiated in the behaving animal. The synaptic 

mechanisms leading to the formation of fear memory have been extensively studied in the past 

years, especially in the amygdala. Indeed, both in vitro and in vivo studies have revealed the 

existence of LTP-like mechanisms in the lateral amygdala (Sah et al., 2008). In lateral amygdala, 

two forms of LTP have been shown to coexist (Shin et al., 2010). Indeed, projections from cortex 

to lateral amygdala (cortico-LA) underlie a form of LTP that is expressed presynaptically with an 

increase in the probability in neurotransmitter release (Humeau et al., 2003). Alternatively, LTP 

induced by stimulation of thalamic projections impinging on lateral amygdala (thalamo-LA) is 

expressed postsynaptically with incorporation of new AMPA receptors at the postsynaptic site 

(Rumpel et al., 2005).  

An interesting approach to answer this is ex vivo electrophysiology where recordings are 

realized on brain slices of previously conditioned animals. When occlusion of LTP occurs in brain 

slices, one can assume that similar LTP-like mechanisms occur in vivo during learning. 

Projections from auditory cortex to lateral amygdala are modified during acquisition of fear 

conditioning and LTP couldn’t be induced in previously conditioned animals (Tsvetkov et al., 

2002). This suggested that presynaptic cortico-LA LTP underlies, at least partly, the acquisition 

of cued fear conditioning. Similarly, projections from the thalamus to the lateral amygdala show 

postsynaptic plasticity mechanisms that are occluded in previously conditioned animals (Hong 
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et al., 2012; Rumpel et al., 2005). Taken together, those two studies show that different forms 

of LTP are directly implicated in fear acquisition although their specific relevance is still a matter 

of debate. Interestingly, research from our lab has shown, using KO mouse models for GluR1 

and GLuR3 subunits, that thalamo-LA LTP relies on GluR1-dependent synaptic plasticity 

mechanisms while cortico-LA LTP depended on both GluR1 and GLuR3 subunits (Humeau et al., 

2007). Recently, an optogenetic study has shown that fear memory could be activated or 

inactivated by potentiation (LTP) or depressing (LTD) projections from thalamus and cortex 

(Nabavi et al., 2014). 

3.3.3 Modulation of synaptic plasticity by inhibitory cells  

To understand the mechanisms governing memory formation and expression the main focus 

has been on excitatory cells in the brain. However, interneurons are critical components in brain 

function as they regulate overall balance of network excitability but also synaptic integration, 

spike timing, and synchrony of a neuronal ensemble (Isaacson and Scanziani, 2011). Pyramidal 

cells of lateral amygdala are under strong inhibitory control and have very low spontaneous 

activity. Cortical and thalamic projections that reach LA also contact local interneurons that 

provide feed-forward inhibition to pyramidal cells (Szinyei et al., 2007) thereby tightly 

controlling their activity and thus the induction of synaptic plasticity (Figure 15). Interestingly, 

although synaptic plasticity at those two afferents differs in their induction and expression 

mechanisms, LTP gating is largely dependent on the activation of inhibitory cells in lateral 

amygdala (Ehrlich et al., 2009). 

Thalamic LTP is induced postsynaptically through NMDA-receptor activation and is particularly 

sensitive to feed-forward inhibition. Indeed, induction of LTP at this pathway needs the relieve 

of GABAA-mediated inhibition, for example following dopaminergic modulation of interneuronal 

subtypes (Bissière et al., 2003). At the cortical pathway, homosynaptic induction of presynaptic 

LTP is prevented by the GABA released from local feed-forward interneurons that activates 

presynaptic GABAB receptors negatively regulating glutamate release (Szinyei et al., 2007). 

Relieving GABAB mediated presynaptic inhibition at cortico-LA afferents unmasks a NMDA-

receptor-independent presynaptic LTP at this afferent (Shaban et al., 2006). Thus, the level of 
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feed-forward inhibition in LA sets the balance between two types of LTP induction mechanisms 

at cortico-LA afferents. Taken together these results unambiguously show a role of inhibition in 

shaping activity and plasticity of thalamic and cortical afferents reaching pyramidal neurons in 

LA (Figure 15). 

However, it is still a matter of debate which interneurons provide the feed-forward inhibition, 

but regular, high spiking, parvalbumin (PV)-expressing interneurons appear as good candidates 

as they are contacted by both thalamic and cortical afferents in LA (Szinyei et al., 2007). 

 

 

 

 

 

 

  

Figure 15: Cortical and thalamic inputs converge on LA projection (principal/pyramidal) neurons. The 
same afferents also contact local interneurons which provide feed-forward inhibition on projection 

neurons. LTP is tightly regulated by GABA released from feed-forward local interneurons. At thalamic 
afferents this control is mainly postsynaptic via GABAA receptors. At cortical afferents this control is 

presynaptic via GABAB receptors. Moreover, interneurons are under neuromodulatory control, 
providing an additional level of regulation. From Ehrlich et al. 2009 
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VII) Materials and methods 

Cognitive disabilities in ID are thought to result from the functional absence of proteins that 

fulfill various functions in the brain. Therefore, understanding of ID pathology requires a 

combination of experimental techniques that allow studying the functional consequences of the 

absence of the protein at different analytical levels (behavior, cellular and synaptic). My main 

scientific goal was to link behavior with synaptic function using KO Il1rapl1 mice. To achieve 

this, I have submitted Il1rapl1 KO mice to associative fear learning tasks and performed in vitro 

electrophysiological recordings in physiologically relevant brain structures. In vivo 

pharmacological and optogenetic approaches were used to specifically act on synaptic function 

while the animals were performing behavioral tasks, allowing us to make causal links between 

possible behavioral and synaptic deficits in Il1rapl1-deficient mice. In this section I focus mostly 

on the experimental techniques that I have personally used and developed during my PhD. 

These include behavioral learning (fear conditioning), in vitro electrophysiology on acute brain 

slices and in vivo and in vitro optogenetic approaches. Several other experimental techniques 

were used to further dissect pathology of ID in Ilrapl1-deficient mice like immunohistology and 

imaging, but they appear me quite secondary. However, the reader can access further 

information in the material and methods section of the published papers present in the 

manuscript. 

1 Animals 

Il1rapl1 KO mice were generated by Pierre Billuart, in the group of Jamel Chelly (Cochin 

Institute, Paris) using a Cre/Lox technology and leading to the insertion of a stop codon within 

the 6th exon of the Il1rapl1 gene (Figure 16). The first description and use was done in 2009, in a 

previous publication from the lab (Gambino et al., 2009). Briefly, an 18-kb BamHI DNA fragment 

containing exons 4–5 from the mouse Il1rapl1 gene was isolated from an SV129 genomic library 

(RPCI21483014, RZPD, Berlin, Germany) and sub-cloned to construct a targeting vector. A pgk-

hygromycin resistant gene cassette flanked with LoxP sites was inserted into in the intron 5 at 
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the KpnI position to allow positive selection of the homologous recombination event. Another 

LoxP site was inserted into the intron 4 at the PstI position. The genomic region surrounding 

exon 5 was targeted by homologous recombination in embryonic stem cells leading to the 

insertion of a tri-loxed sequence containing the exon 5 and a phosphoglycerolkinase-

hygromycin-resistant gene cassette. A first transgenic line containing this allele was established 

and crossed with a transgenic line expressing the Cre recombinase in the germline cells. The Cre 

recombinase catalysed the deletion of sequences between LoxP sites and a secondary line was 

selected in the F1 generation with a complete deletion of both exon 5 and the selective 

cassette. The final Il1rapl1-mutated allele used in this study has exon 5 deleted and the spliced 

resulting mRNA contains a STOP codon in exon 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Strategy used to create the KO Il1rapl1 mouse model. The strategy is based on the 
genomic deletion of the fifth exon, leading to the disruption of the open reading frame after 

transcription and splicing of exon 4–6 in the Il1rapl1 mRNA. This frame shift mutation leads to a 
premature STOP codon in the beginning of the second Ig-like loop of the extracellular domain. 

Adapted from Gambino et al. 2007 
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We maintained an Il1rapl1 colony in Bordeaux animal facility by crossing female KO Il1rapl1 

mice with heterozygous males. In dedicated experiments aiming at recording GABA-ergic 

interneurons, we crossed Il1rapl1 mice with GAD67-eGFP mice (Tamamaki et al., 2003) (kindly 

provided by A. Lüthi’s lab, FMI, Basel). The breeding scheme consisted of crossing a 

heterozygous female Il1rapl1 +/- mouse with a GAD67eGFP KI male. Animals expressing eGFP 

were then selected for electrophysiological recordings.  

Animals were housed under a 12h light/dark cycle and provided with food and water ad libitum. 

All procedures were performed in accordance with the European guide for the care and use of 

laboratory animals and the animal care guidelines issued by the animal experimental committee 

of Bordeaux Universities (CE50) (A5012009). All behavioral experiments were realized on adult 

animals (2-6 months age). Electrophysiological recordings on LA principal cells were realized on 

young adult mice (3 weeks old) or on older animals (~ 2 months old) when performing BLA 

recordings. 

2 Fear conditioning 

2.1 Cued fear conditioning 

Mice were housed individually in a ventilation area before the start of behavioral training. 

Animals were handled every day before the start of the experiment during a week. On training 

day 1, animals were transferred to the conditioning context (context A, Figure 17) for 

habituation. During this phase I presented two different sounds to the animals: the CS+ which 

will be later on coupled with the foot shock and the CS- which serves as a control. Both CS+ 

(total CS duration of 30s, consisting of 50-ms pips repeated at 0.9 Hz, pip frequency 7.5 kHz, 80 

dB sound level) and CS- (30s, consisting of white noise pips repeated at 0.9Hz, 80dB sound level) 

were presented 4 times at variable inter stimulus intervals (ISI). On day 2, I proceeded with the 

conditioning phase. The protocol consisted of 5 pairings of CS+ with the US onset coinciding 

with the CS+ offset (1s foot shock, 0.6mA, ISI 10-60s). In all cases, CS- presentations were 

intermingled with CS+ presentations and ISI was variable over the whole training course. Cued 

memory was tested (recall) 24 hours after conditioning by analyzing the freezing levels at the 
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first CS+ presentations in context B (Figure 17). Freezing behavior was quantified automatically 

in each behavioral session using a fire-wire CCD-camera (Ugo Basile, Italy, Figure 17) connected 

to an automated freezing detection software (ANY-maze, Stoelting Co, US). To test for animal 

exploration and activity, the animal displacement in the context was traced and analyzed with 

software programmed and provided by Dr. Jiyun Peng (Fudan, Shanghai, China).  

2.2 Contextual fear conditioning 

Mice were housed individually in a ventilation area before the start of behavioral training. 

Animals were handled every day before the start of the experiment during a week. On day 1, 

animals were transferred to the conditioning context (context A, Figure 17) for habituation, 

which consisted of a 2min exploration period. On day 2, I proceeded with the conditioning 

phase. The protocol typically consisted of three 2s foot shock presentations of 0.6mA separated 

by a 60 sec time interval between shocks. Discriminative contextual fear memory was tested 24 

hours after conditioning by analyzing the freezing levels in context B VS context A (Tests B/A, 

Figure 16). Freezing behavior was quantified as above. 
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Figure 17: Fear conditioning apparatus. A: Picture showing the arrangement of our fear conditioning 
behavior device. Each context is placed in an isolated box to reduce background noise that could 

interfere with behavior. Sound and shock generators are connected and controlled by a computer 
interface. B: Picture of context A (left) and context B (right). The contexts differed in olfactory, visual, 

and sensory modalities in order to be very different from one another. C: Mouse freezing episodes 
were automatically detected by a camera placed above the conditioning cage. 



67 
 

3 Optogenetics 

Previously, the role of certain brain areas in memory processes was based on a combination of 

physical, pharmacological and genetic lesions together with electrical or pharmacological 

stimulation of these same areas. Nevertheless, those techniques lack temporal and spatial 

specificity and didn’t allow assessing the role of certain neuronal populations in real-time when 

the animal is performing a behavioral task. Probably one of the major breakthroughs in modern 

neuroscience is the implementation of optogenetic, a recently developed technique that 

combines optical stimulations and genetically driven cellular expression of light-sensitive 

proteins to control well-defined events within neural circuits with fine temporal and spatial 

specificity.  

Opsins are bacterial channels that respond to illumination by certain wavelengths of light with 

depolarizing currents, hyperpolarizing currents or specified signal-transduction event 

(Papagiakoumou, 2013), allowing neuronal activation or silencing depending on experimental 

demands. Channelrhodopsin-2 (Chr2) is an opsin that depolarizes membranes (by cation influx) 

following stimulation with blue light and that can be used to trigger spikes in neurons (Boyden 

et al., 2005) (Figure 18). Undoubtedly, this is the most used tool to activate neurons in vitro or in 

vivo and multiple genetic variants have been engineered to modify current amplitude, time of 

desensitization… (Lin, 2011). On the other side, neuronal silencing has been achieved mainly by 

two types of opsins: halorhodopsin (NpHR; chloride influx) and archaerhodospin (Arch; proton 

outflow), which are both sensitive to yellow light (Chow et al., 2010; Gradinaru et al., 2010) 

(Figure 18). When expressed in neurons, opsins locate to the soma but also to axonal 

projections. This allows one to study firing properties of neurons while stimulating the soma or 

to limit the light stimulation to presynaptic projections (Tye and Deisseroth, 2012).  

I used optogenetics both for in vivo and in vitro purposes. Most my experiments were realized 

by using the original Chr2 construct. To achieve Chr2 expression in the brain I used stereotaxic 

injections of AAV viruses containing Chr2 (see surgeries). A few experiments were realized using 

the Arch construct. 
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For in vitro experiments, light was delivered through a 500µm fiber which was placed just 

on top of the brain slice with a micromanipulator, allowing a large field of illumination. To 

record for hippocampo-BLA light-evoked currents on principal cells, 5ms flashes were 

elicited, delivered by an ultra-high power 460nm LED (Prizmatix Ltd, Israel) at maximal 

intensity.  

For in vivo experiments, light was delivered through implanted guide cannulas (Plastics One, US) 

positioned above the brain area of interest. To achieve this, an optical polymer fiber (Prizmatix 

Ltd, Israel) was placed in the guide cannula and light was produced by a 460nm ultra high power 

LED device (UHP-460, Prizmatix Ltd., Israel). The fiber was allowed to project out of the guide 

cannula tip, thus placing the fiber just above the structure of interest. Two main in vivo 

Figure 18: Effect of Chr2 and Arch on spiking activity of principal cells on acute brain slices. a: 
Expression of the opsin (Chr2 or Arch) was visualized by fluorescence. 470nm blue light excitation 
of Chr2 elicited strong spiking activity. b: depolarizing current injections led to spiking of the cell 
and this spiking could be repressed by 595nm yellow light excitation of Arch. Spiking frequency 

was completely abolished by yellow light illumination. 
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experiments were realized using this strategy, although the stimulation locus differed (LA or 

BLA): 

 Rescue of cued fear conditioning in Il1rapl1 mice (publication 1, figure 8) 

 Rescue of contextual fear conditioning in Il1rapl1 mice (publication 2, figure 4) 

For the behavioural rescue of cued fear conditioning, we applied a protocol based on previous 

results showing that an artificial fear memory can be created in LA by using optogenetic-helped 

amygdala stimulation (Johansen et al., 2010). This protocol consists of pairing the presentation 

of the CS together with light-mediated depolarization of LA principal cells, replacing or 

reinforcing US-induced depolarization. In our hands, CS were delivered together with trains of 

blue light pulses (20 Hz, 30 sec, 2msec light pulses) and terminated with US application. Thus, 

we boosted LA principal cell depolarization during CS/US pairing. 24 hours later, the mice were 

presented with CS+ in another context B (Recall) and the freezing response was analysed. 

For the behavioral rescue of contextual fear conditioning, we restricted the light stimulation to 

the ventral hippocampus projections to the BLA. First, mice were submitted to a classical 

habituation/conditioning/test sequence (see above). One hour before being re-exposed to the 

fearful context they received bursting light stimulation above the BLA. This illumination was 

performed in their homecage. The bursting protocol was composed of 5 burst episodes 

separated by 30 sec. Each burst is composed of 20 trains (applied at 5Hz) of 4 light flashes (intra-

train frequency: 100Hz) (Figure 19).  

 

 

 

 

 

 
Figure 19: Scheme representing the bursting protocol we have used for stimulation and/or priming of 

hippocampal projections in BLA in acute slices and in vivo respectively 
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4 Surgeries 

 AAV injections. Adeno-associated viruses (AAV2/9.CAG.ChR2-Venus.W.SV40-p1468, ref 

Addgene-20071, 5.82E12 vector genomes (vg)/ml)) were packaged at the University of 

Pennsylvania Vector Core. The AAV Arch-GFP was kindly provided by Cyril Herry. Around 2 

months old mice (over 20g) were prepared for the stereotaxic injection. Beforehand, mice 

were treated with buprenorphine (0.1 mg/kg, i.p), and positioned in a stereotaxic apparatus 

(David Kopf Instruments, Tujunga, CA) under continuous anaesthesia with isoflurane. 

During the surgery, the mice were warmed on a 33-35°C heating pad. The virus was 

bilaterally pressure-injected through glass pipettes (Hirschmann Laborgerate, ringcaps, tips 

pulled O.D 30-50 µm) using a Picosprizer (Parker Co). The positions of Bregma and Lambda 

points were defined and adjusted to the same horizontal level. Coordinates for the LA [AP] -

Figure 20: Scheme showing the strategy to infect hippocampus with Chr2. A: Left: Brain slices depicting 
amygdala (left, bregma -1,70) or caudal hippocampus (right, bregma -2,92). Caudal hippocampus (CA1, 

subiculum) sends projections to BLA. B: An AAV virus coding for Chr2-Venus (GFP) was injected in caudal 
hippocampus in vivo. Few weeks after infections, brains were dissected and acute brain slices containing 
BLA were prepared. C: Infection site in ventral hippocampus. D: Top: Picture of an amygdala-containing 

coronal slice allowing visualizing hippocampal fibers reaching the BLA (arrows). Bottom: Bright field picture 
of BLA-containing slice (left) and fluorescent picture of the same coronal slice showing Chr2-GFP expression 

in hippocampal projections. 
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1.7 mm, [ML] ± 3.1 mm, [DV] -3.2 mm BLA: [AP] -1.5-1.7 mm, [ML] ±3.2-3.4 mm, [DV] -4.8 

mm, or caudal HPC: [AP] -3.1-3.3 mm, [ML] ±3.2-3.4 mm, [DV] -4.0 mm.  

 

 Cannula implantation. Stainless steel guide cannula (26 or 24 gauge; Plastics-One, Roanoke, 

VA, USA) were bilaterally implanted above the LA [AP] -1.7 mm, [ML] ± 3.1 mm, [DV] -2.83 

mm, BLA: [AP] -1.5-1.7 mm, [ML] ±3.2-3.4 mm, [DV] -3.4-3.5 mm, or caudal HPC: [AP] -3.1-

3.3 mm, [ML] ±3.2-3.4 mm, [DV] -3.0-3.1 mm. Cannula was secured to the skull using dental 

cement (Super-Bond, Sun Medical Co. Ltd, Moriyama, Shiga, Japan). In the end, dummy 

cannula was inserted into the guide cannula to reduce the risk of infection. In the next 2 

weeks of cannula surgery recovery, or 4-6 weeks of virus transfection, body weight and 

symptoms of sickness were monitored carefully. 

5 In vitro electrophysiology on acute brain slices 

5.1 Slice preparation 

Protocols to prepare acute brain slices were adapted depending on the brain structure studied 

and the age of the animal. Indeed, the quality of acute brain slices heavily depend on animal 

age, and special dissecting procedures have to be applied to record for adult neurons in these 

preparations (Figure 21). All recordings of LA neurons (publication 1) were performed on slices 

from 3-4 weeks old animals while recordings of BLA neurons were performed on slices of older 

mice (~1,5 month). For lateral amygdala (LA) recordings, I used a standard procedure as 

previously described {Humeau:2005kz}. Briefly, mice were anesthetized under isoflurane and 

the brain rapidly removed. Then, the brain was dissected in ice-cold artificial cerebrospinal fluid 

(ACSF) containing (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 10 MgSO4.7H2O, 26 NaHCO3, 1.25 

NaH2PO4, 18.6 glucose and 2.25 ascorbic acid; the brain was mounted against an agar block and 

sliced (300µm thick) with a vibratome (Leica VT1200s; Germany) at 4°C. Slices were maintained 

for 45 min at 37°C in an interface chamber containing ACSF equilibrated with 95% O2/5% CO2 

and then for at least 45 min at room temperature before being transferred to a perfused 

recording chamber. In the perfused ACSF the MgSO4 was decreased to 1.3mM.  
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For the preparation of 1,5 to 3 months old BLA-containing acute slices, a different protocol was 

used to improve slice preservation (Peca et al., 2011)(Figure 21). Briefly, mice were anesthetized 

with a mixture of ketamine/xylazine (100mg/kg and 10mg/kg respectively) and cardiac-perfused 

with ice-cold, oxygenated (95% O2, 5% CO2) cutting solution (NMDG) containing (in mM): 93 

NMDG, 93 HCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 25 Glucose, 10 MgSO4, 0.5 CaCl2, 5 Sodium 

Ascorbate, 3 Sodium Pyruvate, 2 Thiourea and 12mM N-Acetyl-L-cystéïne (pH 7.3-7.4, with 

osmolarity of 300-310 mOsm). The brains were rapidly removed and placed in the ice-cold and 

oxygenated NMDG cutting solution described above.  

Coronal slices (300 μm) were prepared using a Vibratome (VT1200S, Leica Microsystems, USA) 

and transferred to an incubation chamber held at 32°C and containing the same NMDG cutting 

solution. After this incubation the slices were maintained at room temperature in oxygenated 

modified ACSF containing (mM): 92 NaCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 

Glucose, 2 MgSO4, 2 CaCl2, 5 Sodium Ascorbate, 3 Sodium Pyruvate, 2 Thiourea and 12mM N-

Acetyl-L-cystéïne (pH 7.3-7.4, with osmolarity of 300-310 mOsm) until recording. 

 

 

 

 

 

 

 

 

 

Figure 21: Differential interference contrast (DIC) picture of a BLA-
containing acute slice showing some principal cells in BLA. NMDG-based 

cutting solution drastically improved slice quality in BLA. 
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5.2  Electrophysiological recordings 

Whole-cell recordings of LA or BLA principal cells were performed at 30-32°C in a perfused 

chamber. Neurons were visually identified with infrared videomicroscopy using an upright 

microscope equipped with a 60x objective. Patch electrodes (3-5 MΩ) were pulled from 

borosilicate glass tubing. For voltage clamp recordings pipettes were filled with a low-chloride 

solution containing (in mM): 140 Cs-methylsulfonate, 5 QX314-Cl, 10 HEPES, 10 

phosphocreatine, 4 Mg-ATP, and 0.3 Na-GTP (pH adjusted to 7.25 with CsOH, 300 mOsm). For 

dedicated current-clamp experiments, Cs-methylsulfonate was replaced with equimolar K-

gluconate to allow spike discharge. In case of interneuron recordings, GFP labeled cells were 

targeted in acute slices by fluorescence imaging. 

Long range cortical and thalamic projections towards LA principal neurons were performed 

following electrical stimulation of thalamic or cortical fibers with a bipolar twisted 

platinum/10% iridium wire (Figure 22). Stimulation intensity was adjusted to obtain baseline 

EPSC amplitudes between 100 to 200pA (voltage clamp experiments) or EPSP amplitudes of 4 to 

6mV (current clamp experiments). In the voltage clamp mode, recordings of synaptic current at 

both -70 mV and 0mV allowed me to separate excitatory and inhibitory conductances. 

 

 

 

 

 

 

 

Figure 22: Scheme depicting an acute slice containing LA. Stimulation electrodes 
were placed in external capsule (cortical afferents) or internal capsule (thalamic 

afferents) and evoked responses were recorded on LA principal cells or LA 
interneurons 
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 Input/output curves were obtained by plotting the recorded amplitude of the evoked 

currents according to the stimulation intensity.  

 Inhibition/excitation ratio was calculated by dividing the evoked amplitude of inhibition 

by the evoked amplitude of excitation for the strongest stimulation intensity.  

 Thalamic LTP experiments on LA principal cells. All LTP experiments were performed in 

the presence of picrotoxin (PTX, 100 μM), except when stated otherwise. LTP was 

induced using a spike-timing dependent plasticity protocol (STDP), consisting of pairing 

three presynaptic stimulation followed by three postsynaptic spike discharges (10ms 

delay). This induction protocol was repeated 15 times at a rate of 0,2Hz (Figure 23). 

 

 

 

 

 

 Spiking activities. LA interneurons recordings were performed on Il1rapl1/GAD67-eGFP 

mice, which allowed me to visualize cells by fluorescence. Interneuronal populations 

were further separated based on the spiking patterns of the recorded cells. To elicit 

spikes, cells were maintained at -70 mV in current clamp mode and submitted to 

repeated, 400 msec long, current steps of increasing intensity: -50, 50, 150, 250 and 350 

pA. IN classification was essentially based on the number of observed spikes and the 

degree of spike adaptation. Occasionally, I also used spike half-width and the initial spike 

frequency to allow classifying some borderline cases. 

 Light-evoked synaptic currents. All in vitro BLA recordings were performed following 

light-induced stimulation of hippocampo-BLA projections (see optogenetics section). 

Figure 23: STDP plasticity protocol. Three monosynaptic EPSPs were paired with postsynaptic 
current injections leading to spike discharge. This was repeated 15 times at a frequency of 0,2 Hz 
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Similarly as for LA recordings (see above), voltage clamp mode was used to estimate 

excitatory and inhibitory conductances and to calculate I/E ratio. For LTP experiments, 

cells were clamped in current clamp, allowing cells to depolarize.  

5.3 Data acquisition and analysis 

Data were recorded with a Multiclamp700B (Molecular Devices, USA), filtered at 2 kHz and 

digitized at 10 kHz. Data were acquired and analysed with pClamp10.2 (Molecular Devices). In 

all experiments, series resistance was monitored throughout the experiment, and if it changed 

by more than 15%, the data were not included in the analysis. Changes were quantified by 

normalizing and averaging EPSP slope during the last 5 min. of the experiments relative to the 5 

min. of baseline prior to LTP induction or drug application.  
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VIII) Results  

The main aim of my thesis was to use a KO mouse model of Il1rapl1 and find links between 

cognitive features and synaptic function. The starting point of my experimental strategy was to 

characterize behavioral deficits in Il1rapl1 KO mice. Once I had defined the behavioral deficit, I 

would use an array of experimental techniques (see material and methods) to understand how 

IL1RAPL1 absence led to the observed deficit at the synaptic level. Initially, my objective was to 

submit a first cohort of Il1rapl1-deficient animals to a full fear conditioning/extinction protocol. 

Indeed, fear conditioning and extinction depend on different neural circuits (see introduction) 

thus increasing the possibility of finding behavioral deficits at multiple steps of the fear learning 

procedure. In practice, animals were first submitted to cued fear conditioning which was 

followed by an extinction phase and the subsequent testing of extinction memory (retrieval) 

and contextual aspects of fear memory (renewal) (Figure 24). During retrieval animals are 

resubmitted to the extinction context to test for extinction memory. Renewal consists of re-

exposing animals to the cued conditioning context and is often used to test for contextual 

aspects of fear memory after extinction learning. Thus, this protocol would allow me to test 

both the capacity of animals to form and retrieve cued-and extinction fear memories but at the 

same time give me some information on the contextual aspects of the fear memory. 

This pioneer experiment revealed a delay in the capacity of animals to acquire cued fear 

memory but also some deficits during renewal, suggesting that acquisition of cued fear and 

some contextual aspects of fear were impaired following absence of IL1RAPL1 (Figure 24). 

Interestingly, extinction was preserved in Il1rapl1-deficient animals proposing that the neural 

circuits underlying extinction were preserved. Thus, these findings suggested that neural circuits 

of fear conditioning and extinction could be differentially vulnerable to Il1rapl1 mutation (Figure 

24). In order to further characterize cued and contextual fear deficits in KO animals, I submitted 

two other cohorts of animals to a cued fear conditioning (see material and methods) and a pure 

contextual fear learning task (see material and methods) respectively. Indeed, during contextual 

fear only the context becomes associated with the shock, contrasting with renewal where 

contextual and cued aspects of fear are intermingled. 
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In accordance with my previous results, I found that Il1rapl1-deficient mice were strongly 

impaired in both cued fear conditioning and in contextual fear conditioning. Because the two 

deficits appear to be of different nature, the dataset was finally published in two parts that are 

presented sequentially. For each study, I will provide a summary of the main outcomes with a 

small discussion of some methodological aspects. A more complete overview of the findings and 

perspectives are discussed in the general discussion section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Scheme representing the initial full behavioral screening of fear behavior in a cohort of Il1rapl1-
deficient animals (in red) and their WT littermates (in grey). First animals were habituated to the 

presentation of the CS+ (sound that will be coupled to the shock) and the CS- (control sound, not coupled 
to the shock) without presentation of foot shocks. Freezing levels were very low during this initial phase. 
The next day, animals were submitted to acquisition, which is the conditioning itself. During acquisition 

animals learn to associate the CS+ to the shock and freezing levels gradually increase. Il1rapl1 KO animals 
presented a delay in the initiation of the fear response. The next two days animals were submitted to an 
extinction procedure consisting of presenting several times the CS+ without shock resulting in a gradual 

decrease of the fear response. Note that extinction is performed in another context to specifically look at 
the cued aspects of the fear memory. Retrieval is performed a week later and allows measuring the 
strength of the extinction memory. Both extinction and retrieval were similar between genotypes. 

Renewal consists of re-exposing animals to the conditioning context to measure contextual aspects of fear 
memory. I observed a strong deficit in Il1rapl1 KO animals compared to their WT littermates. 
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1 Publication 1: “Target-specific vulnerability of 

excitatory synapses leads to deficits in associative 

memory in a model of intellectual disorder” 

1.1 Results summary 

Learning and memory capacity of Il1rapl1 KO mice were determined by submitting animals to 

an associative cued fear learning paradigm. This behavioral task consists of pairing a neutral 

sound (conditioned stimulus, CS) with a noxious foot shock (unconditioned stimulus, US). The 

process during which animals learn to associate CS with US is called acquisition, resulting in a 

gradual increase of the fear reaction together with the number of CS/US pairings. During 

acquisition, an unspecific stress is also generated by the US repetition. Thus, sound-specific 

associative learning has to be measured by comparing freezing levels observed between CS- vs. 

Cs+ presentations. In contrast, 24 hours later, CS+/CS- presentations led to very different 

behavioral responses: only the CS+ led to freezing behavior whose strength is typically related 

to the intensity of the associative fear memory. Il1rapl1-deficient mice presented a slower 

acquisition of the task compared to their WT littermates, as reflected by lower freezing levels 

during CS/US pairings (publ. Figure 1). Recall of the fear memory was also lower in Il1rapl1 KO 

animals, possibly reflecting lower fear acquisition in those animals (publ. Figure 1). 

Because of the strong deficit in fear response exhibited by in Il1rapl1-deficient mice within the 

acquisition session, I decided to record for synaptic features in the main brain area responsible 

for acquisition of associative fear learning: the lateral amygdala (LA). I performed whole cell 

recordings of LA principal cells and tested synaptic properties and plasticity at major afferents 

carrying sensory information about CS and US, namely thalamic projections to the LA. Thalamo-

LA synapses are thought to be the locus of associative plasticity mechanisms that mediate 

CS/US association, a lack of which would explain the lack of memory imprinting in Il1rapl1 KO 

mice. As said above, the induction of this postsynaptic plasticity is strongly regulated by local 

inhibition, mainly originating through feed-forward inhibition carried by local interneurons in 

the LA. To determine whether absence of IL1RAPL1 affected information processing in the LA, I 

recorded both excitatory responses and feed-forward inhibitory transmission occurring on LA 
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principal cells following stimulation of thalamic projections in acute brain slices. Strikingly, 

following stimulation of thalamic projections, Il1rapl1-deficient mice presented lower evoked 

excitatory transmission onto LA principal cells (publ. Figure 3). However, a surprising 

accompanying result was that feed-forward inhibitory transmission reaching LA principal cells 

and evoked under the very same conditions remained unaffected, leading to an increase of the 

inhibitory/excitatory (I/E) balance in Il1rapl1-deficient mice (publ. Figure 3). In other words, the 

specific decrease of excitation leads to higher inhibitory drive in the LA of Il1rapl1 mutant mice. 

Keeping in mind that feed-forward inhibition tightly controls plasticity on LA principal cells, I 

hypothesized that the shift in I/E balance following Il1rapl1 removal could interfere with 

plasticity mechanisms essential for fear acquisition.  

To test this, I performed ex vivo LTP experiments on brain slices of previously conditioned 

animals and compared them to non-conditioned animals (publ. Figure 2). Ex vivo 

electrophysiological studies principle is based on the fact that learning-induced and electrically-

induced LTP elicited in slices share common mechanisms and may not occur twice at the same 

synapse. Then, if LTP already occurred in vivo, it will not be possible to induce it on slices of 

previously conditioned animals: a phenomenon called occlusion (Hong et al., 2012). 

Interestingly, unlike WT animals, conditioned Il1rapl1-deficient animals didn’t show total 

occlusion of LTP, suggesting some deficits in learning-induced LTP during fear acquisition (publ. 

Figure 2). In naïve (non-conditioned) animals the amount of LTP that could be generated in 

absence of inhibition was similar between genotypes. Thus, this occlusion experiment strongly 

suggested that local I/E imbalance could perturb LTP induction during CS/US associations. Most 

importantly, this working model could be challenged in vivo using pharmacological and 

optogenetic approaches aiming at correcting or by-passing the inhibitory gate at the time of 

acquisition (publ. Figures 7 and 8). 

The fact that the inhibitory component of LA principal cells carried by local feed-forward circuits 

was unaltered suggested us that the excitatory synapses onto the local LA interneurons must 

remain unaffected by IL1RAPL1 deficiency (publ. Figure 3). Thus to study excitatory synapses 

onto LA interneurons, we crossed the Il1rapl1 KO mice with GAD-67-eGFP reporter line, thereby 

allowing to target GABA-ergic interneurons. Because highly heterogeneous in their intrinsic 
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properties, LA interneurons were classified based on several electrophysiological parameters to 

test for a possible effect of the mutation on a subclass of interneurons. No effect on excitatory 

transmission from long-range cortical and thalamic projections was observed for any of the 

subclasses of interneurons following Il1rapl1 removal (publ. Figure 4). This led us to conclude 

that Il1rapl1 removal had a differential impact on excitatory synapses, depending on the 

postsynaptic target (principal cell or inhibitory neuron). This could ultimately generate a local I/E 

imbalance impacting the capacity of the LA principal neurons to depolarize upon presynaptic 

discharge and thus to induce LTP induction at active synapses, leading to learning impairments 

in Il1rapl1 KO mice. 

With this working model in hands, we wanted to test if any functional I/E correction could be 

effective in restoring learning ability in Il1rapl1-deficient mice by acting on I/E imbalance just 

before fear acquisition (publ. Figure 7 and 8).  The pharmacological strategy aimed at correcting 

I/E imbalance in LA by lowering inhibition with a GABAA blocker (bicuculline) just before the 

acquisition of the learning task. This treatment was able to restore normal learning in Il1rapl1-

deficient mice, bringing their freezing to similar levels as their WT littermates (publ. Figure 7). 

In addition to local intra amygdala bicuculline treatments, we used a less invasive method to 

test for the impact of I/E imbalance on fear acquisition. GABAA α5 subunit-containing receptors 

are expressed in LA and an inverse agonist has been used to lower GABAA α5 inhibition in vivo. 

Such strategy was shown to be effective in correcting spatial learning deficits in a mouse model 

of Down syndrome (Braudeau et al., 2011). Crucially, this drug is able to cross the blood brain 

barrier, opening the possibility to inject it intraperitoneally (IP). In vitro experiments on acute 

slices confirmed the reduction of IPSC amplitude following α5IA injection (Figure 25). Injecting 

the drug just before the acquisition of cued fear conditioning was also effective in restoring 

some aspects of fear learning. Indeed, we observed a normalization of freezing levels during 

recall in Il1rapl1 KO animals (Figure 25), but not during acquisition (data not shown). Taken 

together, these pharmacological experiments strengthen a causal link between I/E imbalance 

and the learning deficit. 
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The optogenetic approach aimed at bypassing I/E imbalance in LA by directly depolarizing LA 

principal cells in vivo when the animal was submitted to the CS/US pairs (publ. Figure 8). Indeed, 

in vitro experiments suggested that LA principal neurons were hardly stimulated by incoming 

thalamic input and that could possibly be restored by Chr2 expression. Upon optogenetic “help” 

as well as during pure light/CS association, the amount of conditioned response was 

undistinguishable between genotypes, providing strong evidence that correcting I/E imbalance 

during the formation of new memories (CS/US association) is able to rescue behavioral deficits 

in Il1rapl1 KO mice (publ. Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Blocking of GABA α5-containing receptors with an inverse agonist before cued fear 
acquisition. A: Application of the inverse agonist on acute brain slices lowered IPSC amplitude 

in both genotypes. B: Fear protocol and application of the inverse agonist just before 
conditioning. C: Locomotor activity was preserved between genotypes after drug application. 

D: Fear recall was normalized between genotypes after application of the drug. 
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1.2 Discussion 

Using a combined approach at behavioral, cellular and synaptic levels I characterized the 

consequences of Il1rapl1 deletion on cued fear related amygdala neuronal networks and could 

propose a scenario explaining the learning deficit in these mice: Il1rapl1 mutation specifically 

impacted excitatory synapses onto principal cells, leaving connections to inhibitory cells intact. 

This led to a local I/E imbalance in LA by affecting associative LTP induction necessary for CS/US 

association. Importantly, behavioral deficits could be rescued by correcting I/E imbalance, 

suggesting that some cognitive features defining intellectual disabilities could be restored in the 

mature brain. 

ID is often characterized by deficits in sensorimotor processing. To eliminate any possible 

confusion in my behavioral results due to possible consequences of Il1rapl1 removal on 

sensorimotor function, I checked motor activity and general reaction to the shock (vocalization 

and jumping responses). These experiments revealed no differences in sensorimotor function 

between WT and KO animals (Figure 1 in paper). However, I cannot exclude that other 

components of sensorimotor function are impacted in Il1rapl1 mutated mice. A more extensive 

behavioral screening of Il1rapl1 KO mice would have been benefic to definitely eliminate any 

sensory (e.g. hearing) or motor deficits that could explain delay in the acquisition of fear 

memory. However, taken together, my experiments suggest that sensorimotor function is 

globally normal in Il1rapl1 KO mice and that the behavioral deficit could be directly linked to a 

local synaptic dysfunction. Furthermore, the pharmacological and optogenetic procedures are 

likely to act downstream of sensory processing and normalized fear acquisition in Il1rapl1 KO 

animals. Indeed, optogenetic pairing of CS+ with light stimulation was able to induce artificial 

learning in both WT and KO animals, a protocol which is independent of US presentation and 

thus circumvents possible problems in sensory integration of the US. 

The lower evoked excitation received by thalamic projections could indicate a lower number of 

functional synapses in LA. Interestingly, a study reported a decrease – even if really mild - in 

dendritic spine density in the hippocampus of Il1rapl1 KO mice (Pavlowsky et al., 2010b). Using 

loading of LA principal cells in both genotypes, I quantified the morphology and density of 



83 
 

dendritic spines, but did not observe any evidence for such a defect in amygdala neurons. This 

was further corroborated by some electrophysiological measures where I recorded for 

miniature excitatory postsynaptic currents (mEPSC) in LA principal cells in both genotypes. 

Changes in frequency of miniature events inform about the number of functional synapses 

while amplitude informs about the number of postsynaptic receptors. I observed no differences 

for both amplitude and frequency between WT and KO animals (publ. Figure 5). Moreover, I 

didn’t see any differences in AMPA/NMDA ratio. In contrast with my findings, over expression 

and knockdown of IL1RAPL1 in cultured hippocampal neurons led to an increase or decrease in 

frequency of miniature events respectively (Pavlowsky et al., 2010b). However, the same report 

didn’t observe an effect on basal synaptic transmission parameters when recording from 

hippocampal brain slices. Given the space clamp limitations in LA principal cells and the mild 

effect seen on dendritic spine density in the hippocampus, I cannot exclude that some mild 

defect in dendritic spines may exist in the amygdala of Il1rapl1-deficient mice.  

This is somehow paradoxical with the strong deficit in evoked excitatory transmission I have 

observed on LA principal cells (publ. Figure 3). This discrepancy may find its explanation at the 

molecular level. First, morphologically, the synaptogenic effect of IL1RAPL1 may be 

compensated by multiple redundancies supporting the formation of dendritic spines in the KO 

mice. Second, if still present, the synapses may not be fully functional and as robust as in normal 

mice. Indeed, by refining our observation to thalamic afferents contacting LA principal cells 

(which express VGLUT2 at the presynaptic level) we could show that VGLUT2 clusters opposed 

to PSD-95 puncta were of lower intensity in Il1rapl1-deficient mice, suggesting that those 

synapses may be particularly impacted by Il1rapl1 mutation (publ. Figure 5).  

Another possibility would reside in the replacement of synapses from long range projections by 

local synaptic contacts. Indeed, a theory was recently developed in order to explain functional 

deficits observed in adults suffering from neurodevelopmental disorders (NDDs): it states that 

long range connections are impaired in ID and/or ASD and that this is accompanied by local 

hyper-connectivity in other brain areas (Kroon et al., 2013). Thus, intra LA connectivity might be 

overdeveloped to compensate for dysfunctional long-range projections. Yet, I have no evidence 

that intra-LA connectivity is boosted in Il1rapl1 KO mice. To demonstrate that, one would need 
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to record for pairs of principal neurons and compare connectivity parameters between 

genotypes.  

Concerning the link between I/E imbalance and learning-induced LTP in LA, I could show that 

Il1rapl1-deficient mice have a deficit in LTP induction during fear acquisition. Indeed, brain slices 

of previously conditioned animals revealed a deficit in LTP occlusion in Il1rapl1 KO animals. 

However, partial occlusion occurs in KOs, as LTP levels of conditioned animals didn’t return to 

levels of naïve levels. This suggests that LTP was not completely induced in vivo in KO animals 

and that some LTP induction remains despite I/E imbalance in LA. In other words, I/E imbalance 

probably isn’t severe enough to completely prevent LTP induction. The impairment of LTP 

induction in Il1rapl1 KO mice is in line with previous observations in a Down syndrome mouse 

model presenting deficits in the induction of hippocampal LTP following increased inhibition in 

dentate gyrus (Kleschevnikov et al., 2004). Formation of associative memory might be impaired 

in other brain regions following absence of Il1rapl1, particularly when induction of LTP depends 

on feed-forward inhibition and more globally on local I/E balance.  

However, with this ex vivo approach we couldn’t differentiate cells that had been previously 

activated to create the memory trace with cells that didn’t. Indeed, only a subpopulation of cells 

is believed to be recruited in a memory trace (see introduction) and ex vivo electrophysiology 

experiments don’t allow discriminating between cells that were activated during fear acquisition 

or not. One way to circumvent this would be to use a model that allows the labeling of activated 

cells during learning, in order to patch recruited and non-recruited cells and possibly refine my 

results (but see general discussion). Nonetheless, it remains very surprising that occlusion of LTP 

in slices of previously conditioned WT animals is complete. Indeed, this means that all recorded 

cells show this occlusion contrasting with the theory that states that only a subpopulation of 

cells are recruited in a memory trace, and that a subset of synapses undergo plasticity. The 

mechanisms mediating this are still unknown but one can imagine that because of the strength 

of the US and the relative poverty of sensory experiences of laboratory animals, some neural 

circuits might become saturated, limiting any further plasticity mechanisms. Alternatively, 

neuromodulatory systems activated by fear learning could interfere with some plasticity 

mechanisms by currently unknown mechanisms.  
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Recordings of LA interneurons didn’t reveal an effect of the mutation on excitatory synapses of 

interneurons although I did observe a tendency for lower excitation on regular spiking 

interneurons. In this regard, it would be particularly interesting to know which interneuronal 

populations provide feed-forward inhibition on LA principal cells. Knowing the importance of 

inhibitory neurons in the regulation of fear behavior and associated plasticity, disruption of a 

particular subtype of interneuron could have profound consequences on behavior. This was 

recently demonstrated in the LA by an elegant study showing the existence of disinhibitory 

circuits between parvalbumin and somatostatin interneurons in the control of cued fear 

learning (Wolff et al., 2014). To record for specific interneurons on brain slices, one can imagine 

crossing Il1rapl1 KO mice with transgenic mouse lines in which specific subtypes of interneurons 

are labeled. This would allow studying the consequences of IL1RAPL1 absence on different 

categories of interneurons. Another possibility is to record for interneurons and realize post hoc 

labeling with specific antibodies directed against molecular markers of interneurons. 

Pharmacological and optogenetic experiments aiming at correcting I/E imbalance were effective 

in restoring fear acquisition in Il1rapl1 KO mice. Interestingly, the normalization of freezing 

behavior during the acquisition was only present at the end of CS/US pairings (publ. Figure 8). 

This could be explained by an incomplete blockade of inhibitory system that remains too 

efficient or a lack of excitation by incoming inputs at the first CS/US associations. Also, I cannot 

exclude that bicuculline spilled over, albeit slightly, in other amygdala nuclei and impacted fear 

learning in some way. Similarly, optogenetic approaches also led to unwanted effects: although 

freezing levels were normalized for CS+ presentations across genotypes (publ. Figure 8), we 

observed some fear generalization to the CS-. Thus, artificially boosting LA principal neuron 

activity probably interfered with CS+/CS- specificity. However, together, pharmacological and 

optogenetic experiments convincingly show a normalization of cued fear acquisition and recall 

after in vivo pharmacological manipulations of the LA ionotropic GABA-ergic system at the time 

of CS/US association. 
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1.3 Conclusion 

This paper highlights the consequences of IL1RAPL1 absence in the capacity to acquire cued fear 

memory and how this relates to synaptic function (Figure 26). Acquisition of fear conditioning 

depends on synaptic integration on LA excitatory principal cells which is tightly regulated by 

local feed-forward inhibitory circuits. Here, I could built a working model after being in position 

to record for three different synaptic populations in the same circuit: excitatory thalamo-LA 

synapses on principal cells, feed-forward inhibition on LA principal cells and excitatory thalamo-

LA synapses on interneurons. Interestingly, Il1rapl1 mutation didn’t impact all synaptic types. 

Indeed, evoked excitation was only lowered on LA principal cells and not on LA interneurons. 

 

 

 

 

 

 

 

 

 

 

 

Thus, the identity of the postsynaptic cell defines the functional impact of Il1rapl1 mutation, 

suggesting that excitatory synapses on principal cells and interneurons don’t show the same 

vulnerability to IL1RAPL1 absence. In conclusion, the target-specific effect of IL1RAPL1 led to an 

imbalance between excitatory and inhibitory transmission in a crucial brain structure mediating 

Figure 26: Scheme representing the consequences of Il1rapl1 deficiency on behavior 
and synaptic function. Thalamic projections contact LA principal cells (in circle) and 

interneurons that provide FFI on principal cells. Excitatory synapses of LA principal cells 
were specifically affected, leading to a local I/E imbalance in LA. This I/E imbalance 

impacted associative long-term synaptic plasticity mechanisms necessary for the 
formation of the cued fear memory. 



87 
 

formation of associative fear memories. Most importantly, my paper suggests that learning and 

memory impairments in ID pathophysiology are more likely to be understood only if one can 

have access to multiple cellular and synaptic types in an isolated neuronal circuit. 
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Target-Specific Vulnerability of Excitatory Synapses Leads to
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Intellectual disorders (IDs) have been regularly associated with morphological and functional deficits at glutamatergic synapses in both
humans and rodents. How these synaptic deficits may lead to the variety of learning and memory deficits defining ID is still unknown.
Here we studied the functional and behavioral consequences of the ID gene il1rapl1 deficiency in mice and reported that il1rapl1
constitutive deletion alters cued fear memory formation. Combined in vivo and in vitro approaches allowed us to unveil a causal
relationship between a marked inhibitory/excitatory (I/E) imbalance in dedicated amygdala neuronal subcircuits and behavioral deficits.
Cell-targeted recordings further demonstrated a morpho-functional impact of the mutation at thalamic projections contacting principal
cells, whereas the same afferents on interneurons are unaffected by the lack of Il1rapl1. We thus propose that excitatory synapses have a
heterogeneous vulnerability to il1rapl1 gene constitutive mutation and that alteration of a subset of excitatory synapses in neuronal
circuits is sufficient to generate permanent cognitive deficits.

Introduction
Learning-related forms of persisting synaptic plasticity (LTP) at
excitatory synapses were initially discovered in the hippocampus
(Bliss and Lomo, 1973). Although diverse in their molecular and
cellular mechanisms, LTP has now been found in most brain
areas, including amygdala (Rumpel et al., 2005). Meanwhile,
�450 gene mutations have been identified as causing intellectual
disorders (IDs) (van Bokhoven, 2011). Studies on human and
animal models consistently reported that ID gene mutations pri-

marily impact the morphology and/or function of excitatory syn-
apses (Purpura, 1974). Remarkably, deficits in LTP in ID models
remain poorly documented (Vaillend et al., 2008; Humeau et al.,
2009), although an increasing number of ID gene products are
involved in LTP-relevant signaling pathways (Pavlowsky et al.,
2011).

In mammals, pairing an initially neutral stimulus (condi-
tioned stimulus [CS]) with an aversive stimulus (unconditioned
stimulus [US]) leads to the formation of a robust and long-lasting
associative fear memory (Ledoux, 2000). During CS/US associa-
tions, long-lasting synaptic potentiation is induced at excitatory
synapses impinging onto principal cells of the lateral nucleus of
the amygdaloid complex (LA) (Rumpel et al., 2005; Humeau et
al., 2007). Interestingly, the gating of this form of LTP is only
possible in conditions lowering the influence of feedforward
GABAergic inhibition (Bissière et al., 2003; Ehrlich et al., 2009),
implying that a functional adaptation of the inhibition/excitation
(I/E) balance is required to allow suprathreshold, postsynaptic
depolarization during fear conditioning. Moreover, I/E balance
alterations have been recurrently associated with neurological
and ID animal models (Kleschevnikov et al., 2004; Dani et al.,
2005; Baroncelli et al., 2011; Pizzarelli and Cherubini, 2011; Yi-
zhar et al., 2011), including il1rapl1 mutant mice (Gambino et al.,
2009).

In humans, il1rapl1 mutation leads to a spectrum of cognitive
defects, ranging from nonsyndromic intellectual disorders to au-
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Andréas Lüthi, Julien Dupuis, and François Georges for their critical reading of the manuscript; Dr. Jiyun Peng for
helping in the tracking of mouse activities; and the Pole In Vivo and animal facilities of the Bordeaux University for
the animal care. The microscopy was done at the Bordeaux Imaging Center of the University of Bordeaux Segalen,
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tistic spectrum disorders (ASDs) (Piton et al., 2008). Il1rapl1 is a
member of a novel family of IL1/Toll receptors enriched at excit-
atory synapses (Pavlowsky et al., 2010). Il1rapl1 induces excit-
atory presynapse formation by interacting trans-synaptically
with the protein tyrosine phosphatase � (PTP�) (Valnegri et al.,
2011; Yoshida et al., 2011) but also interacts with some compo-
nents of the postsynaptic density, such as PSD95, RhoGAP2, and
Mcf2l (Pavlowsky et al., 2010; Valnegri et al., 2011; Hayashi et al.,
2013), enabling morphological and functional maintenance of
excitatory dendritic spines and glutamate receptor insertion
(Hayashi et al., 2013). Il1rapl1 also regulates N-type voltage-
gated calcium channel and neurite elongation in neuroendocrine
cells through its interaction with the neuronal calcium sensor-1
(Gambino et al., 2007). Thus, current data support the notion
that Il1rapl1 is important for the formation, maintenance, and
function of excitatory synapses by converging presynaptic, post-
synaptic, and trans-synaptic effects.

Yet, the consequences of il1rapl1 deletion onto physiological
properties of mature neuronal networks and related behavioral
paradigms remain unexplored. Here we identified an I/E imbal-
ance in the amygdala circuits of adult il1rapl1 constitutive mutant
mice, resulting from a heterogeneous vulnerability of excitatory
synapses to Il1rapl1 removal. We then determined how these
functional perturbations of amygdala circuit impact fear memory
formation.

Materials and Methods
Animals
Most experiments were performed using male il1rapl1�/y and their con-
trol �/y littermates (2–3 months old, C57BL/6 background), housed in
12/12 LD with ad libitum feeding. Some crossings with GAD67-eGFP
mice (Tamamaki et al., 2003) (kindly provided by A. Lüthi’s laboratory,
FMI, Basel, Switzerland) were made in house to allow visualizing
amygdala interneurons. Every effort was made to minimize the number
of animals used and their suffering. The experimental design and all
procedures were in accordance with the European guide for the care and
use of laboratory animals and the animal care guidelines issued by the
animal experimental committee of Bordeaux Universities (CE50;
A5012009).

Fear conditioning
Mice were housed individually in a ventilation area before the start of
behavioral training. Animals were handled every day before the start of
the experiment during a week. On day 1, animals were transferred to the
conditioning context (Context A) for habituation. Both CS � (total CS
duration of 30 s, consisting of 50 ms pips repeated at 0.9 Hz, pip fre-
quency 7.5 kHz, 80 dB sound pressure level) and CS � (30 s, consisting of
white noise pips repeated at 0.9 Hz, 80 dB sound pressure level) were
presented 4 times with a variable interstimulus interval (ISI). On day 2,
we proceeded with the conditioning phase. The protocol consisted of 5
pairings of CS � with the US onset coinciding with the CS � offset (1 s
foot shock, 0.6 mA, ISI 10 – 60 s). In all cases, CS � presentations were
intermingled with CS � presentations and ISI was variable over the whole
training course. Cued memory was tested 24 h after conditioning by
analyzing the freezing levels at the first CS � presentations in Context B
(recall). Freezing behavior was quantified automatically in each behav-
ioral session using a fire-wire CCD camera (Ugo Basile) connected to
automated freezing detection software (ANY-maze, Stoelting). To test
for animal exploration and activity, the animal displacement in the con-
text was traced and analyzed with software programmed and provided by
Dr. Jiyun Peng (Fudan, Shanghai, China).

Electrophysiology
Slice preparation. Standard procedures were used to prepare 300- to 330-
�m-thick coronal slices from 4-week-old up to 2.5-month-old male
wild-type or mutant mice following a protocol approved by the Euro-
pean and French guidelines on animal experimentation. Briefly, the

brain was dissected in ice-cold artificial CSF (ACSF) containing the fol-
lowing (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 10 MgSO4, 7 H2O, 26
NaHCO3, 1.25 NaH2PO4, 18.6 glucose, and 2.25 ascorbic acid; the brain
was mounted against an agar block and sliced with a vibratome (Leica
VT1200 s) at 4°C. Slices were maintained for 45 min at 37°C in an inter-
face chamber containing ACSF equilibrated with 95% O2/5% CO2 and
then for at least 45 min at room temperature before being transferred to
a superfusing recording chamber. In the perfused ACSF, the MgSO4 was
decreased to 1.3 mM.

Recordings. Whole-cell recordings from LA principal neurons were
performed at 30 –32°C in a superfusing chamber as previously described
(Humeau et al., 2005). Neurons were visually identified with infrared
videomicroscopy using an upright microscope equipped with a 60� ob-
jective. Patch electrodes (3–5 M�) were pulled from borosilicate glass
tubing and filled with a low-chloride solution containing the follow-
ing (in mM): 140 Cs-methylsulfonate, 5 QX314 Cl, 10 HEPES, 10
phosphocreatine, 4 Mg-ATP, and 0.3 Na-GTP (pH adjusted to 7.25
with CsOH, 300 mOsm). For dedicated current-clamp experiments,
Cs-methylsulfonate was replaced with equimolar K-gluconate. All LTP
experiments were performed in the presence of picrotoxin (100 �M),
except the no-PTX experiments shown in Figure 2. Monosynaptic EPSCs
or EPSPs exhibiting constant 10 –90% rise times and latencies were elic-
ited by stimulation of afferent fibers with a bipolar twisted platinum/10%
iridium wire (25 �m diameter). In all experiments, stimulation intensity
was adjusted to obtain baseline EPSC amplitudes between 100 and 200
pA (CC mode) or 4 – 6 mV (IC mode). In some experiments, the capac-
itance of recorded cells was measured to evaluate the cell size. We used an
exponential fit adjusted to the capacitive current generated by 100 ms/10
mV hyperpolarizing steps under the voltage-clampmode (see Fig. 4, seal
tests).

LA interneuron classification. GAD-67-eGFP-expressing interneuron
separation was based on the spiking patterns of recorded cells. To elicit
spikes, cells were maintained at �70 mV in current-clamp mode and
submitted to repeated, 400-ms-long, current steps of increasing inten-
sity: �50, 50, 150, 250, and 350 pA, to explore a variety of potential
response. In most cases, spiking inactivation was seen at the end of high
intensity trains, indicating that the cell has reached its maximal spiking
capacity. Otherwise, additional current injections of greater intensities
were applied to reach spike inactivation. The last current step not induc-
ing spike inactivation was retained for analysis. We analyzed neuronal
discharge by measuring each spike amplitude and interspike intervals
(ISI) observed during the train. IN classification was essentially based on
the number of observed spikes (REG � BIM � ADA � SADA) and the
degree of spike adaptation (last ISI/first ISI: BIM � ADA, SADA � REG).
Occasionally, we also used spike half-width (REG � BIM � ADA,
SADA) and the initial spike frequency (BIM � SADA, ADA, REG) to
allow classifying some borderline cases.

Data acquisition and analysis. Data were recorded with a
Multiclamp700B (Molecular Devices), filtered at 2 kHz and digitized at
10 kHz. Data were acquired and analyzed with pClamp10.2 (Molecular
Devices). In all experiments, series resistance was monitored throughout
the experiment; and if it changed by �15%, the data were not included in
the analysis. Changes were quantified by normalizing and averaging
EPSP slope during the last 5 min of the experiments relative to the 5 min
of baseline before LTP induction or drug application.

Morphological analysis
In situ hybridization of il1rapl1 mRNA. This protocol was performed by a
service company (Oramacell). Detection of each mRNA (VGLUT1, sol-
ute carrier family 17, member 7, slc17a7; NM_182993), glutamate decar-
boxylase 1 (gad1; NM_008077), and interleukin 1 receptor accessory
protein-like 1 (il1rapl1; NM_001160403.1) was achieved by design of
antisense oligonucleotides using Helios ETC oligo design software (Ora-
macell). For il1rapl1 mRNA detection, two sets of oligonucleotides were
designed: one specific for exon 5 (2 oligonucleotides) and one nonspe-
cific of exon 5 (5 oligonucleotides). For slc17a7 and gad1 mRNA detec-
tion, a set of 3 oligonucleotides was designed for mRNA. Each
oligonucleotide and a mix of two or three labeled oligonucleotides were
tested for the hybridization step. Same results were obtained for each
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mRNA for the four probes. In situ hybridization was performed as de-
scribed previously (Moutsimilli et al., 2005). Briefly, oligonucleotides
were labeled with [ 35S]-dATP using terminal transferase to a specific
activity of 5 � 10 8 dpm/�g. Experimental slides were fixed in 4% form-
aldehyde in PBS, washed with PBS, rinsed with water, dehydrated in 70%
ethanol, and air-dried. Sections were then covered with 140 �l of a hy-
bridization medium (Oramacell) containing 3–5 � 10 5 dpm of the la-
beled oligonucleotide mix. Slides were incubated overnight at 42°C,
washed, and exposed to a BAS-SR Fujifilm Imaging Plate for 15 d. The
plates were scanned with a Fujifilm BioImaging Analyzer BAS-5000 and
analyzed with MultiGauge software. Slides were then dipped in Kodak
NTB emulsion, exposed for 6 weeks, developed and counterstained with
toluidine blue.

Neurobiotin-based dendritic spine analysis. Amygdala-containing cor-
onal sections (300 �m thick) in which LA principal cells were loaded with
neurobiotin (0.02% in intracellular medium) for at least 20 min in open
whole-cell configuration were first fixed in PFA 10% and then treated
with PBS solution containing Triton 0.4% and 33 mM NaH4Cl to block
PFA aldehydic functions. Neurobiotin was then revealed using
streptavidin-conjugated with AlexaFluor-568. Sections were then cover-
slipped with Vectashield, and z-stack images performed using confocal
microscopy (Leica SP2, 63� oil-immersion objective) with a lateral res-
olution of �200 nm. Spine number, spine length, spine head diameter,
and spine type (mushroom, thin, stubby) were analyzed using Neuron
Studio software (Rodriguez et al., 2008) (http://research.mssm.
edu/cnic/tools.html). The first step consists of adjusting settings and
software calibration to automatically detect dendritic spines. In all cases,
automatic results were manually checked on the 3D reconstruction to
delete false-positive and add nondetected spines. Values for each branch
segment were expressed as spine number/�m.

Presynaptic and postsynaptic apposed clusters analysis. To prepare
amygdala coronal sections, 3 and 3 Il1rapl1 �/y and �/y mice were
anesthetized with pentobarbital and fixed by intracardiac perfusion with
4% paraformaldehyde in PBS. The brains were dissected, postfixed dur-
ing 24 h, and coronal, 50-�m-thick sections were obtained using a vi-
bratome (Leica 1200 s). The brain sections were maintained in a blocking
buffer (PBS solution containing 0.3% Triton X-100 and 2% gelatin) for
1 h at room temperature. Thereafter, sections were incubated at 4°C
overnight with monoclonal antibody against PSD95 (1:600; Abcam,
ab2723) and polyclonal antibodies against VGlut2 (1:10,000) from Mil-
lipore (AB2251) diluted in the blocking buffer. Slices were rinsed three
times in PBS and incubated for 2 h at room temperature with Alexa488-
and Alexa647-labeled goat anti-mouse or anti-guinea pig Ig G secondary
antibodies (1:1000, Invitrogen), rinsed in PBS before being mounted
with Vectashield.

Amygdala z-stacks were captured with confocal microscope (Leica
SPE, 63� oil-immersion objective), at a constant depth from the surface.
To compute apposition between the presynaptic and the postsynaptic
staining, a plugin developed within ImageJ and based on wavelets trans-
form was used to perform image processing and analysis. At first, each
staining is segmented (by the use of “à trous” wavelets, see below) in a set
of objects. Afterward, these two segmentations were used in a pixel-based
technique to determine their appositions.

Segmentation. The input signal (i.e., the image) is analyzed by using the
coefficients of a low-pass filter. Because wavelets are a multiresolution
representation, the low-pass filter was stretched depending on the reso-
lution level. As a result, each resolution level generated a different set of
coefficients. To filter unwanted background noise while keeping details
of interest, it was sufficient to directly set the threshold for the wavelet
coefficient sub-bands in which the size of the filter is close to the size of
the desired objects (in our case, there were the two first ones). Results of
this filtering were two binary images (one for each staining) with clusters
being identified as individual objects.

Apposition. To determine whether the presynaptic staining was ap-
posed to the postsynaptic one at a given location, each cluster was tagged
with a value: 0 for background, 1 for presynaptic, and 2 for postsynaptic
clusters. A new image was created, which is the result of the addition of all
the presynaptic and postsynaptic clusters. Once all the objects of this
image were identified, we could easily determine whether there were

apposed clusters. If an object was not composed of a single value (either
1 or 2), then it was an apposed cluster. Two cases were possible: if the two
objects were touching themselves with no overlapping pixels, they were
perfectly apposed. On the contrary, if some overlapping pixels were pres-
ent, the objects were just apposed. In this study, all apposed events were
counted. Because the technique is pixel-based, apposition was deter-
mined at the resolution level of the images.

Cannula implantation and drug administration
Cannula implantation. Stainless steel guide cannula (26 gauge; Plastics-
One) were bilaterally implanted above amygdala under continuous
anesthesia with isoflurane. Beforehand, mice were treated with bu-
prenorphine (0.1 mg/kg, i.p) and positioned in a stereotaxic apparatus
(David Kopf Instruments). The positions of bregma and � points were
defined and adjusted to the same horizontal level. Coordinates were as
follows: LA, anteroposterior, �1.7 mm, mediolateral, �3.1 mm, and
dorsoventral, �2.8 –3 mm. Cannula was secured to the skull using dental
cement (Super-Bond, Sun Medical). In the end, the mice woke up on a
35°C heating pad, and a dummy cannula was inserted into the guide
cannula to reduce the risk of infection.

Drug administration. To reduce stress during drug injection, the mice
were trained with dummy cannula removal and insertion 1 week before
use. To perform freely moving drug injection, the dummy cannula was
replaced by an infusion cannula (33 gauge; connected to a 1 �l Hamilton
syringe via polyethylene tubing) projecting out of the guide cannula with
1 mm to target LA. As previously described (Herry et al., 2008), the
GABA-A receptor antagonist bicuculline (20 ng/200 nl in saline) was
infused bilaterally at a rate of 0.1 �l/min in a volume of 200 –250 nl per
side by an automatic pump (Legato 100, Kd Scientific) 30 – 60 min before
learning. To allow penetration of drug, the injector was maintained for
an additional 3 min. After injection, mice were put back in the cages
before behavioral testing. Importantly, no seizures were observed upon
bicuculline treatment in all cohorts analyzed and presented here.

Controls. To analyze the location and extent of the injections, brains
were injected with a fluorophore BODIPY TMR-X (Invitrogen; 5 mM in
PBS 0.1 M, DMSO 40%). Then slices (60 �m) were imaged using a 5�
epifluorescence microscope (Leica DM5000). The mice we considered
for further analysis had at least one side precisely targeted above the LA
and where each side was covered by �25% bodipy fluorescence.

Freely moving optical stimulation
AAV injections: adeno-associated viruses. AAV constructs and viruses
were obtained from the U-penn Vector Core. We used AAV2/9 vec-
torsencodingforChR2-Venusexpression(AAV2/9.CAG.ChR2-Venus.
W.SV40) (Addgene ref. 20071; 5.82E 12 vector genomes, vg/ml). The
injection of AAV-ChR2-virus was made through a guide cannula tar-
geting the LA at least 2 weeks before behavioral testing (see above).
Body weight and symptoms of sickness were monitored. One week
before use, the mice were trained with dummy cannula removal and
fiber insertion.

Optical stimulation and behavioral testing. To be tightly fixed to the
guide cannula pedestal, an optical polymer fiber (200 �m of diameter,
Prizmatix) was glued through an infusion cannula holder and assembled
with a locking cap collar (Plastics One). The projection distance out of
the guide cannula tip (1–1.5 mm) was set to allow positioning the fiber
above the LA. One day before acquiring the associative fear, all the mice
explored freely the Context A for 3 min and then habituated to tones. The
following day, CS were delivered together with trains of blue light pulses
(20 Hz, 30 s, 2 ms light pulses generated by pClamp10 software) pro-
duced by a 460 nm ultra high-power LED (UHP-460, Prizmatix) and
terminated or not with US application (see Fig. 8). Then, mice were
presented with CS � in another Context B (Recall), and the freezing
response was analyzed.

Statistical analysis
Most data were analyzed using Student’s t tests. However, when data
were not following a normal distribution, we applied the Mann–Whitney
rank-based statistical test. When studying the impact of two factors (ge-
notype and treatment) in pharmacological rescue experiments (bicucul-
line), we used two-way ANOVA Student-Newman-Keuls post hoc
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analysis to test for differences between groups of interest. Amplitude and
frequency of spontaneous or miniature events were analyzed, and medi-
ans were directly compared as described above. Occasionally, cumulative
distributions were compared using the nonparametric Kolgomorov–
Smirnov test. Box plots in Figure 5 were done using SigmaPlot software
(Systat Software).

Reagents
Picrotoxin was from Sigma-Aldrich, and QX-314 was from Alomone
Labs. TTX was purchased from Latoxan and stock solution prepared in
acetate buffer at pH 4.5. Bicuculline was purchased from Ascent
Scientific.

Results
Deficits in cued fear learning in the absence of the
ID-gene il1rapl1
Associative fear learning can easily be induced in rodents (Le-
doux, 2000) and is classically monitored by measuring the degree
of freezing reaction elicited upon subsequent presentations of the
sole conditioning stimulus. We thus tested il1rapl1�/y and �/y
littermates using a discriminative, associative fear learning/recall
test paradigm (Fig. 1). After habituation in Context A, animals
were submitted 5 times to 2 distinct tones: the CS� tone coupled
to a foot shock (US) and an uncoupled CS� tone (see Materials
and Methods). The following day, in another context (Context
B), animals were submitted to a single CS� presentation (Recall,
Fig. 1A,B2). We first noticed that il1rapl1�/y animals exhibited a

significant delay in expressing the conditioned fear response to
the last three CS presentations (Fig. 1B1; p � 0.05). Accordingly,
when tested, the recall of cued associative memory was also al-
tered in KO mice: il1rapl1�/y mice exhibited a lower fear re-
sponse than their WT littermates while hearing the first CS
(il1rapl1�/y, 47 � 5%; Il1rapl1�/y, 29 � 5%, p � 0.01; Fig. 1B2).
To test for an eventual deficit in memory retention, animals were
submitted to a reinforced conditioning session (10 CS/US pair-
ings, Fig. 1C). Interestingly, under these strong learning condi-
tions, il1rapl1 KO mice did not exhibit any deficit in both the level
of freezing at the last CS/US presentations (CS/US7–9, p � 0.05)
(Fig. 1C2) and during the recall test (il1rapl1�/y, 75 � 5%;
il1rapl1�/y, 73 � 5%, p � 0.05, Fig. 1C3). This indicates that,
once formed, cued fear memory is well retained, and also that the
potency of learning is preserved in the absence of Il1rapl1.

To avoid confusion from potential locomotor hyperactivity,
we analyzed the mean distance run by the mice during the habit-
uation/exploration period, which did not differ between KO mice
and their WT littermates (Fig. 1D). In addition, we challenged the
mice for pain thresholds: il1rapl1�/y and �/y animals started
vocalization (Fig. 1E1) and escaping–jumping responses (Fig.
1E2) for the same shock intensity, indicating that pain sensitivity
was not altered in il1rapl1 mutant animals. Together, these results
suggest that information processing within the amygdala may be
impacted by il1rapl1 mutation.

Figure 1. Deficits in cued fear learning in the absence of the ID-gene il1rapl1. A, C1, Behavioral paradigms. B, C, Freezing levels observed before and during CS/US pairings (B1,C2) or during the
recall test (B2,C3) in il1rapl1 WT (�/y, gray circles/bars) or KO (�/y, red circles/bars) mice submitted to normal (5 � CS/US) or reinforced (10 � CS/US) cued fear conditioning, respectively. The
number of animals in each genotype is indicated. *p � 0.05. **p � 0.01. ns, Not significant. D, Locomotor activity was tested in il1rapl1 WT and KO mice during the exploration phase (first 2 min
in the Context A) before CS presentations. No difference was detected between genotypes (D2). E, Pain sensitivity was tested in WT and KO animals by scoring the vocalization (E1) and escaping
responses (E2) for shocks of increasing intensities. WT and KO animals exhibited similar behavioral responses.

13808 • J. Neurosci., August 21, 2013 • 33(34):13805–13819 Houbaert, Zhang et al. • Target-Specific Synapse Vulnerability to ID Mutation



Constitutive il1rapl1 deletion impairs fear associated LTP
induction in vivo
Associative long-term synaptic plasticity at thalamo–LA synapses
underlies the acquisition of fear conditioning (Rumpel et al.,
2005; Humeau et al., 2007). Thus, the behavioral deficits ob-
served in il1rapl1-deficient mice within the acquisition session
must be linked to a decrease in the gating of amygdala associative
synaptic plasticity. We therefore examined the induction of asso-
ciative, postsynaptic LTP at thalamo–LA synapses il1rapl1 KO
and WT in acute brain slices (Fig. 2). At adult synapses, as in
juveniles (Bissière et al., 2003), a robust LTP can be triggered by
coincident bursts of preactivites and postactivities, but only in the
presence of the GABAA-R antagonist PTX (100 �M) (Fig. 2B).
Interestingly, when tested in these standard conditions, both
il1rapl1 WT and KO animals exhibited similar levels of LTP
(il1rapl1�/y, 183 � 23%; il1rapl1�/y, 161 � 18%, p � 0.05; Fig.
2C,D), indicating that il1rapl1 deletion did not alter the capability
of thalamo–LA synapses to produce postsynaptic LTP.

Noteworthy, these experiments were conducted in the ab-
sence of ionotropic GABAergic transmission, therefore bypassing
an eventual GABAergic modulation. Thus, to examine the occur-
rence of genuine thalamo–LA LTP in vivo during associative fear
learning, we tested LTP levels in slices from fear-conditioned KO
and WT animals. Indeed, it was previously reported that fear
conditioning led to occlusion of thalamo–LA LTP in brain slices
(Hong et al., 2011). il1rapl1�/y and �/y animals were first sub-
mitted to the associative fear conditioning described above (5
CS/US), and brain slices were prepared 24 h after the last CS/US
presentation. Compatible with an effect of fear conditioning in
both genotypes, LTP levels in conditioned animals were nonsig-
nificant (p � 0.05 compared with baseline; Fig. 2C,D). However,

while in conditioned WT mice, a pronounced occlusion of LTP
was observed (il1rapl1�/y LTPnaive, 183 � 23%; LTP5CS/US,
104 � 12%, p � 0.01) (Fig. 2C), LTPs obtained in naive and
conditioned il1rapl1 KO slices were not significantly different
(il1rapl1�/y LTPnaive, 161 � 18%; LTP5CS/US, 126 � 16%, p �
0.05). This indicates that fear-induced LTP occlusion is only par-
tial in il1rapl1 KO mice, probably because of a lower LTP induc-
tion in vivo during fear acquisition. We propose that this
impairment of LTP induction could, at least partially, contribute
for both the delay in fear acquisition and the deficit in the recall of
cued fear memory observed in il1rapl1-deficient animals.

Increased I/E balance in LA principal cells is associated with
il1rapl1 mutation
Gating of AMPAR-mediated, NMDAR-dependent postsynaptic
LTP requires the relief of the magnesium block of NMDA recep-
tors through the firing of postsynaptic cells. Previous studies
demonstrated the crucial role of local GABAergic interneurons in
controlling the postsynaptic discharge (Pouille and Scanziani,
2001; Gabernet et al., 2005), thereby limiting the gating of synap-
tic plasticity through postsynaptic hyperpolarization (Bissière et
al., 2003). Thus, we examined feedforward inhibition (FFI) in the
LA of il1rapl1 KO and WT mice after activation of major excit-
atory inputs (Fig. 3). To achieve that, LA principal cells were
recorded at two different membrane potentials, �70 and 0 mV in
physiological chloride, while stimulating thalamic excitatory fi-
bers (Humeau et al., 2005; Gambino et al., 2010) (Fig. 3A).
Through this electrophysiological manipulation of the mem-
brane potential, we could isolate AMPAR-mediated excitation
(EPSCs, at �70 mV) and GABAA-R-mediated inhibition (IPSCs,
at 0 mV) based on their different reversal potential (Fig. 3A2).

Figure 2. Constitutive il11apl1 deletion impairs fear-learning associated LTP induction in vivo. A, Scheme of the acute slice preparation with the positioning of recording and stimulating
electrodes. The pairing protocol used to induce LTP is indicated. B1, Typical time course of EPSP slope in WT animals after associative STDP-pairing application in control and no PTX conditions. Insets,
Typical EPSPs. Calibration: 4 mV, 5 ms. B2, Average time courses in both conditions in WT mice. C, Fear learning mediates thalamo–LA LTP occlusion in il1rapl1�/y mice. C1, Time course of
thalamo–LA EPSP slope before and after pairing in il1rapl1�/y naive (Ctrl) and conditioned (5 � US) adult mice. C2, Mean LTP in naive il1rapl1�/y in both control and no PTX conditions, and
fear-conditioned il1rapl1�/y adult mice. **p � 0.01. D, Fear learning did not induce complete thalamo–LA LTP occlusion in il1rapl1�/y mice. D1, Time course of thalamo–LA EPSP slope before
and after pairing in il1rapl1�/y naive (Ctrl) and conditioned (5 � US) adult mice. D2, Mean LTP in naive il1rapl1�/y in both control and no PTX conditions, and fear-conditioned Il1rapl1�/y adult
mice. *p � 0.05.
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Accordingly, inward currents recorded at �70 mV were com-
pletely blocked by the AMPAR antagonist CNQX (100 �M; Fig.
3A1, left), whereas the outward current recorded at 0 mV was
sensitive to the GABAA-R antagonist picrotoxin (100 �M; Fig.
3A1, right). Moreover, this last component was also sensitive to
AMPAR blockade (Fig. 3A1, left, at 0 mV), indicating the recruit-
ment of local interneurons as a feedforward circuit (FFI). Impor-
tantly, I/V curves recorded in WT and KO preparations were
similar and could be greatly approximated by a linear fit, indicat-
ing their correct measurements (data not shown).

To directly compare FFI in WT and KO preparations, we first
elicited thalamo–LA EPSCs of comparable size in LA principal
cells (at �70 mV, 130 – 60 pA, p � 0.05 between both groups) and
compared the amplitude of the outward inhibitory current re-
corded at 0 mV (Fig. 3B). Strikingly, IPSCs were found to be
significantly higher in KO preparations (Fig. 3B1), and the I/E
ratio was exacerbated in il1rapl1 mutant mice (Fig. 3B2). Theo-
retically, the increase of I/E balance (calculated here as a ratio) in
il1rapl1 KOs could result from an increase in inhibitory, or a
decrease in the excitatory, transmission onto LA principal cells.
To refine our observation, we compared eEPSC and eIPSC am-
plitudes for increasing stimulation intensities (Fig. 3C,D). As
shown in Figure 3C, input/output (I/O) relationships of
thalamo–LA eEPSCs were clearly impacted by il1rapl1 mutation
(eEPSCmax, p � 0.01). Thus, recurrent to some observations in
pyramidal cells in hippocampus (Pavlowsky et al., 2010), the ab-
sence of Il1rapl1 led to a reduction of glutamatergic transmission

in pyramidal cells. In stark contrast, inhibitory I/O curve was not
modified by the mutation (Fig. 3D), indicating that the observed
change in the I/E ratios (Fig. 3B) can be mostly attributed to a
decrease in the excitatory component.

To assess for the functional consequences of these synaptic
defects on amygdala output, we tested the ability of thalamic
inputs to elicit spike discharges in LA principal neurons (Fig. 3E).
Bursts of 4 presynaptic stimulations (at 20 Hz) were applied at
various intensities and eventual postsynaptic spikes counted.
Noteworthy, in KO preparations, the first generated spikes occur
for greater stimulation intensities than in WT preparations (Fig.
3E), suggesting that il1rapl1 mutation lowers LA-PN activation
by incoming thalamic synaptic inputs.

Impact of il1rapl1 deletion onto excitatory synaptic inputs to
LA interneurons
Local interneurons of the LA account for �20% of cell bodies
(McDonald, 1982), tightly regulating principal cell excitability by
providing strong feedforward inhibition (Szinyei et al., 2000; Chu
et al., 2012). Moreover, accumulating evidence points for a role of
GABAergic transmission in regulating fear conditioning (Ehrlich
et al., 2009). To answer whether il1rapl1 mutation had a specific
impact on excitatory level reaching interneurons, we crossed
il1rapl1 mutant mice with GAD67-eGFP transgenic mice (Tama-
maki et al., 2003), making it easy to visualize interneurons with
fluorescence (Fig. 4A1). Interneurons, although highly variable in
their electrophysiological parameters and expression of specific

Figure 3. Increased I/E balance and lack of activation in LA principal cells are associated with il1rapl1 mutation. A, FFI measurements in LA principal cells. A1, Pharmacological controls
demonstrating that FFI is induced after thalamic fiber stimulations. A2, AMPAR and GABAA-R-mediated PSCs can be isolated by their differential reversal potential. B, FFI is increased in il1rapl1 KO
mice (red traces). B1, Typical FFI recordings using similar EPSC values. Calibration: top, 150 pA, 5 ms; bottom, 50 pA, 20 ms. B2, Mean I/E ratio obtained at thalamo–LA synapses in �/y and �/y
preparations. *p � 0.05. The number of recorded cells is indicated. C, Evoked excitatory transmission at thalamo–LA synapses is affected by il1rapl1 mutation. C1, Left, average I/O curves. Right,
Typical EPSCs recorded for 0.1, 1, and 10 mA stimulations in �/y and �/y preparations. Number of recorded cells is indicated. Calibration: 200 pA, 30 ms. C2, Mean EPSC amplitude for 10 mA
stimulations. **p � 0.01. D, Same presentation as in C but describing thalamic-evoked IPSCs. Calibration: 100 pA, 60 ms. ns, Not significant. E, Activation of LA principal cells by incoming thalamic
excitation is decreased in il1rapl1-deficient mice. E1, Typical recordings of LA-PNs Vm upon thalamic fiber stimulations of increasing intensity in �/y and �/y preparations. Calibration: 20 mV, 40
ms. E2, Probability map of spike occurrence at each stimulation time point (1, 2, 3, or 4) and for each stimulation intensity (0 –100%). Seven and seven cells were recorded in each genotype. E3, Spike
probability curve showing that LA cells are less efficiently activated by thalamic input in il1rapl1-deficient mice.
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biological markers (Spampanato et al., 2011), could be distin-
guished from principal cells by cellular capacitance. Indeed, mea-
surement of the exponential � of the cellular response to a �10
mV voltage jump revealed a clear segregation with principal cells,
a parameter that was not itself modified by Il1rapl1 mutation for
both cell populations (Fig. 4A2). Interneurons were classified in
different subclasses based on a previous study looking at diverse
electrophysiological parameters of LA interneurons (Sosulina et
al., 2010). Indeed, mRNA expression of different calcium binding
proteins and neuropeptides was not very conclusive to further
classify these populations (Sosulina et al., 2006). Thus, interneu-
rons were assigned to a specific population looking solely at elec-
trophysiological parameters (see Materials and Methods). To

that end, we performed whole-cell patch-clamp recordings in
current-clamp mode from GFP-expressing LA cells in il1rapl1
KO and WT mice (Fig. 4B,C). Combined analysis of spiking
pattern and other electrophysiological parameters allowed us to
separate interneurons into four classes (Fig. 4B1). Superadapting
neurons showed a few spikes in the beginning of the depolarizing
pulse before exhibiting spike failure/adaptation. Adapting neu-
rons were characterized by a strong adaptation of spiking pattern
during the depolarizing current step. Bimodal neurons, on the
other hand, started spiking in a burst-fashion manner before
adapting their firing pattern. Finally, regular spiking neurons
were characterized by very low spike adaptation (Fig. 4B1). Apart
from superadapting neurons, all our subclasses share common

Figure 4. Excitatory transmission onto amygdala interneurons is preserved in il1rapl1-deficient mice. A, Amygdalar GABAergic neurons were directly visualized and recorded by GFP fluorescence
after crossing il1rapl1 mutant mice with GAD67-eGFP mice (see Materials and Methods). A1, Principal cells can be separated from interneurons by looking at cellular capacitance during the seal test.
A2, Density and capacitance of GABA-ergic (GFP �) and principal (GFP �) cells in Il1rapl1 WT and KO preparations. Number of recorded cells is indicated. B, Spiking patterns of LA interneurons. B1,
LA interneurons were classified in four subclasses based on spiking behavior (for a detailed description of interneuron classification, see Materials and Methods). B2, Mean spiking frequency against
spike number for each subclass of interneuron. C, Excitatory evoked transmission of LA interneurons after thalamic stimulation. C1, Mean EPSC amplitude for 0.5, 1, and 5 mA stimulations in WT and
KO interneurons. Calibration: 100 pA, 20 ms. C2, Left, I/O curves of LA interneurons for a 5 mA stimulation in WT and KO interneurons. Right, Mean EPSC amplitude at 5 mA stimulation intensity for
all LA interneurons. Number of recorded cells is indicated.
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electrophysiological parameters with previously defined subtypes
of LA interneurons (Sosulina et al., 2010). In both genotypes,
plotting spiking frequency against spike number showed clear
differences in the spiking behavior of these different populations
(Fig. 4B2); no differences were observed between genotypes, ex-
cept for regular spiking neurons, which display a higher fre-
quency in KO animals (p � 0.05). Next, we assessed excitatory
signals reaching those categories by constructing I/O curves after
thalamic stimulation (Fig. 4C). In stark contrast with the situa-
tion found in LA principal cells, none of the interneuron groups
displayed significantly different I/O curves between WT and KO
preparations (Fig. 4C). Noteworthy, superadapting and regular-
spiking neurons exhibited a tendency to a decrease of thalamic
EPSCs, which remained nonsignificant (p 	 0.093 and p 	 0.217,
respectively). We raise two major conclusions from these genet-
ically driven recordings: (1) the lack of impact of il1rapl1 muta-
tion onto excitatory transmission in LA interneurons may largely
contribute to the increase of FFI described above (Fig. 3); and (2)

Il1rapl1 may play a functional role in the postsynaptic compart-
ment, as LA recordings involving the same presynaptic but dif-
ferent postsynaptic compartments exhibited or not a functional
impact of the mutation (see also Discussion).

Morphological and functional characterization of excitatory
synaptic inputs to LA principal neurons in il1rapl1 WT and
KO mice
We next performed morphological analysis of dendritic spines
from LA principal cells to determine whether Il1rapl1 plays a role
in synapse formation and/or maturation in the amygdala (Fig. 5).
We filled LA principal cells with neurobiotin during whole-cell
patch-clamp recordings and thoroughly analyzed dendritic spine
density and morphology after fixation (see Materials and Meth-
ods) (Fig. 5A). Using this method, we could not find any differ-
ences between genotypes (Fig. 5A), which was in good line with
two other observations. First, global analysis of PSD95 cluster
density using immunocytochemistry did not allow separating

Figure 5. Morphology of LA excitatory synapses in constitutive il1rapl1 mutant mice. A, Morphology of LA principal cell dendrites is preserved in il1rapl1-deficient mice. A1, Portions of
neurobiotin-filled LA principal cell dendrites were analyzed and compared between genotypes. A2– 4, Analysis of spine density, morphology, and distribution of different spine types. B, Morpho-
logical examination of LA synaptic contacts. B1, Typical immunolabeling against PSD95. B2, Density of PSD95 clusters for both genotypes. C, Miniature EPSC recordings on LA principal cells for both
genotypes. C1, Representative trace of mEPSC recordings in both genotypes. C2–3, Cumulative distribution of mEPSC frequency and amplitude for both genotypes. Insets, Medians of frequency and
amplitude, respectively. D, Putative synapses were identified as closely apposed VGLUT2/PSD95 clusters (see Materials and Methods). Scale bars, 2 �m. D1, Typical immunolabeling showing
apposed PSD95/VGLUT2 clusters. D2, Integrated intensity of PSD95 and VGLUT2 in apposed clusters for both genotypes. *p � 0.05. E, Paired pulse recordings for both genotypes. PPR was calculated
as the ratio of the second response to the first one.
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WT and KO preparations (Fig. 5B). Furthermore, no impact of
the mutation on mEPSC frequency or amplitude recorded in LA
principal cells could be detected (Fig. 5C), thus suggesting that
the amygdala neuropile was not strongly affected by the removal
of Il1rapl1.

Then, taking benefit of differential VGLUT1/VGLUT2 ex-
pression in amygdala-projecting brain structures (Fremeau et al.,
2001), we specifically examined the morphology of thalamo–LA
(expressing VGLUT2) synapses by analyzing the intensity of ap-
posed VGLUT2/PSD95 clusters (Fig. 5D) (see Materials and
Methods). Strikingly, in PSD95/VGLUT2 appositions, the
VGLUT2 levels were significantly lower in il1rapl1 KO mice
(�35% of integrated intensity; Fig. 5D2, bottom, p � 0.05),
whereas PSD95 clusters were unaffected (Fig. 5D2). As these re-
sults point to an impact of the mutation at the presynaptic level,
we compared paired pulse recordings at thalamo–LA synapses
but failed to detect changes in presynaptic release probability
(Fig. 5E). Thus, our data suggest that Il1rapl1 controls both func-
tional and morphological parameters at thalamo–LA excitatory
synapses.

Ubiquitous distribution of il1rapl1 mRNA in neuronal
populations of amygdala
To get some insights on the rationale to il1rapl1 �/y induced I/E
imbalance, we then set out to examine the distribution of il1rapl1
mRNA in the brain. Previous work raised some evidence for
il1rapl1 expression in olfactory bulb, hippocampus, and cortex
(Carrié et al., 1999). However, no robust and detailed demonstra-
tion of il1rapl1 expression pattern has yet been published. We
thus performed in situ hybridization of il1rapl1, together with
vglut1 and gad67, to allow for the comparison of its relative ex-
pression in inhibitory and excitatory brain regions. Indeed, vglut1
labels the major glutamatergic population of cells in the cortical
forebrain regions (Fig. 6A,C), whereas gad67 labels all GABAer-
gic neurons in the brain (Fig. 6A,B). Slides were first exposed to
phosphor imager screen (Fig. 6A), and then the cellular resolu-
tion was obtained through dipping into photographic emulsion
combined with toluidine blue counter staining (see Materials and
Methods). il1rapl1 was probed using 7 oligonucleotides spread
over the different exons of the gene. All probes provided the same
profile of expression. As expected, probe number 6 (data not
shown) and 7 raised within the deleted exon 5 provided no signal
when incubated over il1rapl1 �/y slices (Fig. 6A). Overall,
il1rapl1 expression was very low compared with that of vglut1 or
gad67. Higher expression levels were recurrently seen in olfactory
bulbs (data not shown) and in dentate gyrus of the hippocampus
(Fig. 6A). In the amygdaloid complex, expression spans all excit-
atory (basolateral amygdala) and inhibitory (intercalated cells
and central amygdala) regions homogeneously. Regional obser-
vations were confirmed by the investigations on slides at the cel-
lular levels (for better visualization, silver dots were converted to
red in Fig. 6B–D). Although GABAergic and glutamatergic terri-
tories are well delineated in Figure 6B, C, il1rapl1 specific pattern
appeared homogeneously distributed ruling out the possibility
for a selective lack of expression in one or the other subclass of
neurons (see quantifications in Fig. 6B–D). However, a specific
lack of expression in a subclass of interneurons cannot be ruled
out.

Cued fear learning is rescued by preconditioning infusion of
GABAA-R blockers in the LA of il1rapl1-deficient mice
Yet, a scenario emerges in which il1rapl1 KO mice’s impairment
in associative learning is the result of exacerbated I/E balance in

the LA during CS/US association. Ex vivo experiments suggest
that this could in turn lead to lower LTP induction in il1rapl1 KO
animals. The next series of experiments aimed at normalizing
behavior in KO mice by restoring I/E balance before learning. In
this line, previous studies used local or systemic treatment in-
creasing GABAergic transmission to interfere with the acquisi-
tion or expression of the conditioned fear response (Sanger and
Joly, 1985).

We thus depressed intra-LA GABAA-R-mediated inhibition
during the CS/US association (Fig. 7) by infusing the specific
antagonist bicuculline into the LA of il1rapl1�/y and �/y litter-
mates before conditioning (Fig. 7). To that end, mice were chron-
ically implanted above the LA (guide cannula positions in Fig.
7B), and local infusion of bicuculline was performed bilaterally
30 – 60 min before the fear conditioning session (see Materials
and Methods). Importantly, first attempts using doses previously
used in rats (50 ng/200 nl per side) were readily leading to epilep-
tic seizures immediately after infusion (Berlau and McGaugh,
2006). We thus lowered the dose to 20 ng/200 nl and retained
only the animals in which the guide cannula tips were immedi-
ately above the LA to avoid unspecific effects (Fig. 7B). With these
safeguards, no obvious seizures were observed during the drug
treatment, although we noticed a slight effect of drug treatment
on animal locomotor activity (ANOVA, F(1,53) 	 8,115; p 	
0.006) (Fig. 7C). However, there was no difference in general
locomotion between WT and KO-treated animals (SNK post hoc,
p 	 0.706), thus allowing comparing the behavioral conse-
quences of the treatment in both genotypes. We then compared
the freezing levels obtained during and 24 h after the fear condi-
tioning session and compared with nonimplanted mice (Fig.
7D,E). Although we present the whole acquisition curve, bicuc-
ulline treatment did not reach significance until the fifth CS pre-
sentation, and comparisons between groups were done at this
time point. Two-way ANOVA revealed an interaction effect be-
tween genotype and treatment (ANOVA, F(1,57) 	 5,043; p 	
0.029). In control animals, as shown before, the fear response
exhibited by KO mice at the fifth CS/US presentation during the
conditioning session was lower than their WT littermates (SNK
post hoc, p 	 0.011) (Figs. 1A, 7D). Strikingly, in bicuculline-
treated animals, freezing levels at the fifth CS/US presentation
were found indistinguishable between genotypes (SNK post hoc,
p 	 0.399), and a significant effect of the treatment was found in
KO (SNK post hoc, p 	 0.002) but not WT animals (SNK post hoc,
p 	 0.850). When looking at freezing levels during recall, we
noticed a significant interaction between genotype and drug
treatment (ANOVA, F(1,57) 	 4,820; p 	 0.032), leading to a
normalization of the freezing deficit (control, SNK post hoc, p 	
0.008; treated, SNK post hoc, p 	 0.479; Fig. 7E). Normalization
of acquisition only became significant at the fifth CS presenta-
tion, probably because of incomplete blockade of inhibitory sys-
tem or a lack of excitation by incoming inputs at initial CS/US
associations. However, together, these observations convincingly
show a normalization of cued fear acquisition and recall after in
vivo pharmacological manipulations of the LA ionotropic
GABAergic system at the time of CS/US association.

Accordingly, bicuculline treatment in conditioned il1rapl1 �/y
mice also restored thalamo–LA LTP occlusion (il1rapl1�/y:
LTPnaive, 161 � 18%, LTP5CS/US�bicu, 88 � 8%, p � 0.05; Fig. 7F).
These results indicate that restoring I/E balance before learning
may suffice to allow LTP induction in vivo in il1rapl1 KO animals.
We thus propose the existence of a causal link between the deficit
in associative learning, the failure of LTP induction, and I/E im-
balance within the lateral amygdala.
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Direct optical activation of LA cells during acquisition of
associative cued fear normalizes fear learning in il1rapl1-
deficient mice
During associative fear learning, US is thought to act as a deto-
nator inducing depolarization and firing of LA principal cells,
instructing plasticity at synapses conveying the CS onto the same
cells (Rosenkranz and Grace, 2002; Maren, 2005). This phenom-
enon was spectacularly demonstrated recently by Johansen et al.
(2010): by pairing auditory CS with optical activation of LA prin-
cipal cells, they showed that direct activation of LA principal cells
was sufficient to drive cued associative fear conditioning. We
implemented a similar strategy to bypass an eventual fading of
the US “detonation” in il1rapl1-deficient mice (Fig. 8). To this
aim, LA cells were transfected with AAV2/9.CAG.ChR2-
Venus.W.SV40-p1468 (U-Penn vector core) introduced through

chronically implanted cannula, which also permitted the delivery
of timely controlled light pulses within the LA via an optical fiber
(see Materials and Methods) (Fig. 8B–G).

First, to control for the efficacy of the opsin strategy, we
tested the light activation of LA principal neurons in vitro (Fig.
8A). In all transfected neurons, we observed that continuous
1 s, 460 nm light-applications were leading to continuous AP
discharge (Fig. 8A). We also tested the capability of transfected
neurons to respond to repeated short (2 ms long) flashes of
460 nm light, a condition previously used in vivo in the
amygdala (Johansen et al., 2010). By varying flash frequencies,
we observed that most ChR2-expressing neurons were able to
strictly follow flashes up to 20 Hz before exhibiting discharge
failures (Fig. 8A). Thus, 20 Hz trains were retained for in vivo
experiments.

Figure 6. Ubiquitous distribution of il1rapl1 mRNA in amygdala neurons. A, Regional distribution of gad67, vglut1, and il1rapl1. il1rapl1 was probed with 7 oligonucleotides; here probe 5 and 7
are shown. Probe 7 is specific of the exon 5, deleted in the knockout model. There is absence of signal when probe 7 is incubated on �/y slices. B–D, Emulsion dipping of slices from A. Silver dots
were systematically masked and converted to red for display purpose. B, Cellular distribution of gad67 mRNA in the amygdala. There is dense labeling in the central nucleus, whereas sparse
interneurons are depicted in the basolateral divisions. C, Cellular distribution of vglut1 mRNA in the amygdala. There is dense labeling of neurons in the basolateral division, whereas the central
nucleus is devoid of labeling. D, Cellular distribution of il1rapl1 mRNA in the amygdala. Lower expression levels are detected compared with gad67 and vglut1, but �/y slices display much lower
background signals (right panels). il1rapl1 expression covers all divisions of amygdala. Arrows point to ITCs. Scale bars: 250 �m; insets, 30 �m. Cx, Cortex; hipp, hippocampus; Str, striatum; Rt,
reticular nucleus of the thalamus; LA, lateral amygdala; CeA, central amygdala; BLA, basolateral amygdala; ITC, intercalated cells.
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Then, a first cohort of 7 ChR2-transduced mice of each
genotype was exposed to an associative fear learning (CS/US) �
light delivery procedure (Fig. 8B–D). During conditioning
sessions, light applications (unilateral, 460 nm, 2 ms flashes at
20 Hz during 30 s, 6 – 8 mW output light power) were repeat-
edly applied together with CS �/US presentations (Fig. 8 B, C).
Importantly, our in vivo light stimulations were proven to be
efficient in activating LA neurons as the expression of the
activity-reporter C-fos was specifically increased at the illumi-
nated side (data not shown). We then score the freezing levels
exhibited by WT and KO mice during CS � presentations
within the conditioning phase (Fig. 8C). Strikingly, both KO
and WT cohorts then exhibited very similar freezing levels,
comparable with the one observed in WT animals submitted
to CS/US pairings (Fig. 1). Interestingly, at the recall test, WT

and KO mice did exhibit a high level of freezing reaction at the
CS � presentation (WT light, 44 � 13%; KO light, 54 � 11%),
indicating that the improvement of fear memory was main-
tained (Fig. 8D). However, KO mice also displayed a high
degree of generalization (KO light CS�, 55 � 11%), suggesting
that CS/US/Light protocol might have abnormally activated
the amygdala, leading to a CS �/US association. Importantly,
we controlled that the light-application effect was depending
on the presence of the US (Fig. 8E–G). Indeed, it has been
previously shown that repeated Light/CS presentation could
lead to the generation of an associative conditioned response
to the CS (Johansen et al., 2010). Thus, in another implanted
cohort of 8 �/y and 8 �/y animals, we could show that the
application of 5 CS �/Light was not able to induce robust con-
ditioned fear response (Fig. 8E–G).

Figure 7. Cued fear learning deficit is restored by preconditioning infusion of the GABAA-R blocker bicuculline in the lateral amygdala. A, Experimental paradigm. B, Mice were bilaterally
implanted above the LA to allow drug application in awake animals just before the fear conditioning. Top, Bodipy (500 nl each side) diffusion allowing assessment of drug diffusion in the amygdala
region. Bottom, Cannula positions for all �/y (black dots) and �/y (red dots) animals considered for statistics. C, Locomotor activity in control and bicuculline-injected animals was measured by
tracking of animal movement before the acquisition phase (2 first minutes in Context A). D, E, Freezing levels exhibited by bicuculline injected il1rapl1 �/y and �/y animals were measured during
conditioning (D) and recall (E) and compared with nontreated, control KO, and WT mice. ns, Not significant. *p � 0.05. Number of animals is indicated. F, Fear learning induced complete
thalamo–LA LTP occlusion in bicuculline-treated il1rapl1�/y mice. Left, Typical EPSPs recorded before and after pairing in naive and conditioned control (Ctrl) and bicuculline-treated (5 � US bicu)
KO mice. Calibration: 4 mV, 5 ms. Right, Mean LTP in il1rapl1�/y naive (Ctrl) and conditioned (5 � US Bicu) bicuculline-treated adult mice. Number of recorded cells is indicated.
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Collectively, pharmacological (Fig. 7) and opsin-based
strategies (Fig. 8) led us to conclude that, once bypassing the
requirement of postsynaptic depolarization in LA principal
cells, il1rapl1-deficient and their WT littermates exhib-
ited comparable amygdala-related learning capabilities. LA-targeted
in vivo strategies correcting or bypassing the I/E imbalance at
the time of CS/US associations seem successful in normalizing
cued fear learning in il1rapl1 mutant mice, pointing to the
crucial role of this structure in generating the observed deficit.

Discussion
Using a combined approach at behavioral, cellular, and syn-
aptic levels, we provide a thorough characterization of the
consequences of il1rapl1 deletion on cued fear related
amygdala neuronal networks. Several lines of evidence indi-
cate that the mutation impacts specifically excitatory synapses
onto glutamatergic cells, leaving connections to GABAergic
cells intact. The working model, strengthened here by in vivo
approaches, proposes that local I/E imbalances in amygdala
neuronal circuits led to deficits in the acquisition of cued fear
memory by lowering LA PN activation, thereby decreasing
associative LTP induction. Thus, discrete behavioral deficits
may arise from the heterogeneous vulnerability of excitatory
synapses to ID gene deficiency.

I/E imbalance and behavioral consequences after
il1rapl1 deletion
We propose here that il1rapl1 deficiency leads to an I/E imbal-
ance in the LA, perturbing cued fear memory formation, but not
cued fear memory expression. Indeed, LA-dedicated experiments
aiming at depressing or bypassing the LA-GABAergic system
immediately before the CS/US association (i.e., at the exact
timing of associative synaptic plasticity induction) were effi-
ciently normalizing for the cued fear deficit during the recall

tests (Figs. 7 and 8), long after that correcting treatments were
passed. This indicates that, once properly acquired, cued fear
memory expression is not impaired in il1rapl1-deficient mice.
Thus, we propose that, after il1rapl1 mutation, I/E imbalance
in LA impairs cued fear memory formation by preventing
associative LTP gating at major excitatory entries conveying
CS and US modalities (Ehrlich et al., 2009). In addition, our
data suggest that LA I/E balance may not be of crucial impor-
tance in the reactivation of LA neurons participating to the
cued fear memory trace stored in the LA (Han et al., 2009). In
this line, former in vivo observations pointed to a depression
of the amygdala GABAergic system after cued fear condition-
ing (Chhatwal et al., 2005). However, because some modalities
of the conditioned fear (i.e., CS �/CS� discrimination during
recall; Fig. 8) and the kinetic of freezing behavior during ac-
quisition (Fig. 7) are not entirely corrected by our in vivo
treatments, we cannot exclude that additional mechanisms
upstream or downstream to LA integration contribute to the
observed cued fear learning phenotype.

The possible impairment of LTP induction in il1rapl1 KO
mice is reminiscent of previous observations made on hip-
pocampal memory formation in a Down syndrome mouse
model (Kleschevnikov et al., 2004) and more generally in line
with an increasing number of reports linking ID/ASD muta-
tions with discrete I/E imbalance in specific networks (Chao et
al., 2010; Baroncelli et al., 2011; Pizzarelli and Cherubini,
2011; Yizhar et al., 2011). For Il1rapl1-dependent mecha-
nisms, our view is that associative memory formation may be
mainly impaired in the brain areas in which (1) the presence of
Il1rapl1 in association with specific molecular partners is cru-
cial for the maintenance/consolidation/function of excitatory
synapses onto principal cells (see below), and (2) in which
induction of associative LTP is strongly depending on feedfor-
ward inhibition and more globally on local I/E balance.

Figure 8. Direct optical activation of LA cells induces comparable associative cued fear learning in normal and il1rapl1-deficient mice. A, Light activation of LA neuronal cells using
opsin-based strategy. Top, Light flashes (1-s-long, 460 nm) induced continuous spiking discharge in AAV-ChR2-transfected LA cells. Bottom, Short flashes (5 ms) were applied at different
frequencies, and discharge fidelity was measured. No failure in LA principal cell spiking was observed up to 20 Hz. B, Experimental paradigm used for opsin-based conditioning protocol.
It includes chronic cannula implantation, LA infection with AAV-ChR2 constructs, and 460 nm blue light/CS/US paired applications (see Materials and Methods). C, D, Freezing levels
observed during the conditioning (C) and the recall (D) sessions in CS/US/light conditioned WT and KO mice. E–G, Same presentation as in B–D, but for CS/light pairings.
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I/E imbalance is induced by the heterogeneous synaptic
vulnerability to il1rapl1 removal
Interestingly, our results pointed the differential vulnerability of
excitatory synapses to il1rapl1 mutation, especially regarding the
identity (e.g., GABAergic or glutamatergic) of the postsynaptic
cell (Figs. 3 and 4). Our efforts to better characterize the expres-
sion pattern of il1rapl1 led to the identification of a specific but
ubiquitous expression of weak levels of the mRNA in most likely
all neuron types of the basolateral amygdala complex (Fig. 6).
Thereby, the simplistic explanation of il1rapl1 �/y phenotype
through the differential expression in interneuron and principal
cells is ruled out. Interestingly, Il1rapl1 protein recently emerged
through the efforts of several groups as a new trans-synaptic ad-
hesion and signaling molecule entering an heterophilic interac-
tion with presynaptic PTP-� (Valnegri et al., 2011; Yoshida et al.,
2011). This interaction promotes the aggregation of presynaptic
(bassoon and VGLUT1) and postsynaptic (PSD95 and Shank2)
proteins at excitatory, but not at inhibitory, contacts in dissoci-
ated neuron cultures and in cortical slices (Valnegri et al., 2011;
Yoshida et al., 2011). In addition, a recent study proposed that the
modulation of RhoA/ROCK signaling by the IL1RAPL1 TIR do-
main, through an interaction with Mcf2l (Hayashi et al., 2013),
mediates both IL1RAPL1-mediated spinogenesis and control of
AMPAR trafficking (Hayashi et al., 2013), possibly linking func-
tional and morphological phenotypes. In the amygdala, feedfor-
ward inhibition is elicited through the activation of AMPAR- and
NMDAR-containing postsynapses on low-spiny GABAergic in-
terneurons (Szinyei et al., 2000, 2003; Spampanato et al., 2011).
Taking this into account, one can imagine that il1rapl1 mutation
does not affect interneurons the same way it does principal cells.
In this line, recent work strikingly brought evidence for a mirror
role of the postsynaptic protein Erbin only at excitatory synapse
formed with GABAergic neurons (Tao et al., 2013). Further work
will be necessary to understand whether there is a causal relation-
ship between the absence of dendritic spine and the absence of
functional consequence of il1rapl1 mutation. Indeed, one may
anticipate that the impact of many ID gene mutations may not be
ubiquitous at central synapses and that similar functional I/E
imbalance generated by this heterogeneity may also be found in
other ID models.

Recently, the emergence of several families of trans-synaptic
adhesion molecules important for synapse specification raised a
lot of interest by pointing to an unexpected possible wealth of
heterogeneity in synaptic functions and plasticity (McMahon
and Díaz, 2011; Siddiqui and Craig, 2011). Beyond the diversity
in genes, many splice variants were also shown to occur at these
loci (Missler and Südhof, 1998a). Additionally, secreted binding
partners (e.g., neurexophilins) exist that can alter trans-synaptic
adhesions (Missler and Südhof, 1998b). More striking is the
activity-dependent regulation of neurexin1 binding through al-
ternative splicing (Iijima et al., 2011). Thus, the synaptic code
determining the balance of expression of this mixture of mole-
cules at a given synapse is of key importance to understand how
complex brain circuits are wired. Clearly, our work points to the
functional heterogeneity of excitatory synaptic inputs involved
in the fulfillment of complex behavioral functions. Although
il1rapl1 mRNA seems to be expressed at all cell types of amygdala,
additional experiments will be required to understand the molec-
ular rational behind the differential vulnerability of excitatory
synapses to il1rapl1 deletion.

We further show that deletion of il1rapl1 results in fading of
excitatory transmission and morphological impairments at
thalamo–LA Vglut2-PSD95 (Fig. 5). Indeed, medial geniculate

medial part and postintralaminar thalamic nuclei that project to
LA both express robust levels of vglut2 mRNA (Fremeau et al.,
2001). Although we bring here convincing in situ hybridization of
il1rapl1 mRNA, the lack of comprehensive morphological de-
scription of the Il1rapl1 and PTP-� distributions hampers our
ability to fully overview the system we dissected. Nevertheless,
our data suggest that either the functional Il1rapl1/PTP-� com-
plex is formed mainly at thalamo–LA synapses, or that it is formed at
all excitatory synapses but is only critical at the thalamo–LA con-
nection. In the latter scenario, functional redundancy may blur
the phenotype of the deletion at most other synapses. Alterna-
tively, we cannot rule out that our observations result from
Il1rapl1-induced extrasynaptic alterations that in turn unravel
existing presynaptic heterogeneity to neuromodulation. Indeed,
Chu et al. (2012) recently illustrated the target-specific suppres-
sion of GABAergic transmission by dopamine.

Interestingly, we did not observe a loss of dendritic spines in
LA pyramidal neurons from il1rapl1 �/y animals (Fig. 5A),
somehow contrasting with the I/O curves showing a functional
disappearance of these long range connections (Fig. 3). Further,
we also observed very little effects of the mutation on miniature
EPSCs recorded in LA principal cells (Fig. 5). This paradox opens
the interesting possibility that the mutation introduces a switch
from long range to local synaptic connectivity, a model also pro-
posed for neurodevelopmental disorders (Geschwind and Levitt,
2007). The neurodevelopmental disorder theory states that neu-
rons are hyperconnected at the local network level, but in con-
trast, show decreased long-range connectivity between cortical
brain circuits. For example, prominent hyperconnectivity was
recently shown in local medial prefrontal cortical networks of a
genetic mouse model for intellectual disability and autism (Testa-
Silva et al., 2012). Addressing this question would require assess-
ment of LA-LA principal cell connectivity in il1rapl1 KO mice.
Hyperconnectivity observations would then redefine il1rapl1
mutations as causing a neurodevelopmental disorder syndrome.

In conclusion, our work unravels heterogeneity in synaptic
dependency to Il1rapl1 function and its role in the fine-tuning of
I/E balance in discrete circuits of the brain. We suggest that con-
stitutive absence of Il1rapl1 disrupts this balance, possibly ex-
plaining the deficit in LTP induction in vivo and the behavioral
deficits observed in KO mice. Beyond providing a first mechanis-
tic explanation to I/E imbalance, a phenotype frequently associ-
ated with cognitive disorders, our results force one to not only
examine the impact of a particular ID mutation onto a single
synaptic type but rather to consider all physiological determi-
nants driving a functional neuronal circuit. Conversely, the use of
ID/ASD models may also allow identifying new sources of behav-
iorally relevant synaptic heterogeneity.
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2 Publication 2: “The hippocampo-amygdala control of 

contextual fear expression is affected in a model of 

intellectual disability 

2.1 Results summary 

The starting point of this second paper was the initial finding that Il1rapl1 KO mice also 

presented a deficit of fear when re-exposed to the conditioning context. Indeed, in the initial 

“screening” experience we found a deficit in freezing levels during renewal of fear in Il1rapl1 KO 

animals (see page 77), suggesting some dysfunctions in the neural circuits underlying formation 

and/or expression of contextual fear memory. Contextual fear can be defined as a conditioned 

fear response that is elicited in a given context in which the animal had a previous noxious 

experience. We decided to further explore this behavioral deficit because all treatments that 

were efficiently correcting for cued fear learning in Il1rapl1 KO mice were unable to correct for 

the deficit in contextual fear in the same animals (Figure 27), pointing that it must originate in a 

different mechanism. Indeed, all treatments correcting for cued fear were performed just 

before the learning phase (and not the testing phase), thus acting specifically on the formation 

of fear memory. Taken together, these results suggested that the underlying cause of the 

contextual fear deficit could originate in the expression of the fear memory instead than the 

initial formation of the fear memory. Because renewal of fear combines cued and contextual 

aspects of fear memory, I then developed a pure contextual fear learning task where the animal 

associates the context only with the occurrence of foot shocks. Interestingly, when re-exposed 

to the conditioning context Il1rapl1 KO mice showed lower fear levels than their WT littermates 

(publ. Figure 1). 

In order to identify what brain region(s) could be responsible to the lack of freezing response 

upon fearful context re-exposure, we then measured neuronal activation on both basolateral 

amygdala (BLA) and hippocampal regions. Coherent with the lack of freezing behavior, Il1rapl1 

KO mice presented a strong reduction in the activation of BLA but surprisingly only a mild 

reduction in the caudal region of hippocampus known to project to the BLA, and even an over-

activation of the dorsal dentate gyrus region of the hippocampus (publ. Figure 2). 
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Projections from caudal hippocampus to BLA (hippocampo-BLA) are thought to be important for 

contextual fear memory expression (Maren et al., 2013). However, relatively little is known 

Figure 27: Pre-training treatments aiming at correcting cued fear learning were not efficient in correcting 
contextual fear. Indeed, pre-training bicuculline, pre-training α5IA, opsin-based conditioning and reinforced 

conditioning didn’t rescue contextual renewal of fear. Reinforced conditioning consists of increasing the number 
of CS/US presentations (for cued fear) or the number of shock applications (for contextual fear) to test if the 
deficit originates in an inability to form the memory. A1: Classical pure contextual fear protocol using three 

shocks; 24hrs later animals are resubmitted to the fearful context. A2: Il1rapl1 KO animals have a strong deficit 
when re-exposed to the fearful context specifically. B1: Same protocol as in A1 except we increased the number 

of shocks. B2: Increasing the number of shocks didn’t rescue the deficit in Il1rapl1 KO mice. C1: Recall of cued 
fear after using 5 CS/US pairings during conditioning was impaired in Il1rapl1 KO mice. C2: Recall of cued fear 

after increasing CS/US pairings was rescued in Il1rapl1 KO mice. 
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about their synaptic properties and biological function in vivo. Because of the strong 

impairment in BLA neuronal activation, I hypothesized that hippocampo-BLA projections could 

be dysfunctional in Il1rapl1-deficient mice, possibly leading to lower BLA principal cell 

activation. With the aim of characterizing hippocampo-BLA projections and their possible 

dysfunction in Il1rapl1-deficient mice, I used an opsin-based strategy to isolate functionally the 

fibers from the hippocampus reaching the BLA in vitro. Indeed, even if positioned at the right 

place (medially to the CeA), electrical stimulations wouldn’t differentiate between hippocampal 

projections to BLA from unrelated ones (for example, from prefrontal cortex). In contrast, 

localized injections of opsins allow stimulation of their axonal projections in brain regions of 

interest (Figure 28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Optogenetic isolation of hippocampo-and prefrontal projections to amygdala. A1: AAV-
mCherry and AAV-Venus were injected in prefrontal cortex and ventral hippocampus respectively. 

A2: Amygdala brain slice and corresponding images of prefrontal (red) and hippocampal (green) 
projections impinging onto BLA. Projections bordered the CE laterally and reached the BLA through 
a dense fiber bundle. A3: Merged zoomed picture of prefrontal and hippocampal projections taken 

in the square box (fiber bundle). B: Electrical stimulations confirmed that placing an electrode in 
the fiber bundle (Stim1) led to the highest current amplitudes on BLA principal cells. 
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Thus, infection of ventral hippocampus with channelrhodopsin (ChR2) allowed me to stimulate 

hippocampal projections in BLA and measure evoked responses of BLA principal cells. First, 

using acute brain slices, I recorded for excitatory and inhibitory transmission on BLA principal 

cells following light stimulation of hippocampal afferents. Similarly as in lateral amygdala, BLA 

principal cells from Il1rapl1 KO mice received less excitation whereas measured inhibition was 

kept unaltered, leading to a local I/E imbalance in BLA (publ. Figure 3). This finding raised the 

question whether this local I/E imbalance in BLA may actually contribute to the contextual fear 

memory expression deficit of Il1rapl1-deficient mice. To test for a possible involvement of 

hippocampo-BLA projections in contextual fear expression, we designed an experiment allowing 

me to potentiate these projections using in vivo light stimulation, based on the demonstration 

that in slices, bursting light stimulations were efficient in boosting synaptic transmission at 

hippocampo-BLA synapses (publ. Figure 4). 

At that time, our in vivo “rescue” protocol was pretty original because we aimed at potentiating 

a given synaptic population (hippocampo-BLA synapses) in order to observe the consequences 

of this synaptic intervention at behavioral levels. Interestingly, using the advantages of local 

injections of channelrhodopsin we were able to test for the functional importance of both of 

pre- and/or postsynaptic compartments (that is vHPC and BLA) in the mediation of the 

contextual fear response. Indeed, by injecting ChR2 in vHPC only, we could separate the specific 

contribution of hippocampo-BLA projections (presynaptic only; Figure 29). Hippocampo-BLA 

projections were potentiated outside the testing context (more precisely in mice homecage) in 

order to avoid possible confusion that could have occurred if this had been realized in the 

“fearful” context. Using this strategy we reinforced all hippocampal projections reaching BLA 

before the animal was re-exposed to the “fearful” context. When animals are resubmitted to 

the “fearful” context, memory is recalled and potentiated hippocampal projections become 

activated again, leading to the normalization of the fear response in Il1rapl1 KO animals (publ. 

Figure 4; Figure 29). In contrast, restricting the potentiation to the postsynaptic compartment 

alone (that is achieved by infecting BLA with ChR2) wasn’t sufficient to restore contextual fear 

expression in Il1rapl1 KO mice (publ. Figure 4; postsynaptic only Figure 29). This experiment 
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provided strong evidence that the specific potentiation of hippocampo-BLA projections was 

sufficient to restore contextual fear in KO animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, we realized a last experiment where the postsynaptic compartment (BLA) was 

potentiated but during the re-exposure of animals to the “fearful” context contrasting with the 

previous two experiments were this occurred in the homecage (bonus experiment; Figure 29). 

Thus, this experiment combines both pre-and postsynaptic compartments because re-exposing 

animals to the “fearful” context activates hippocampo-BLA projections and postsynaptic 

Figure 29: Three different experiments to test for the contribution of pre and/or postsynaptic compartments (vHPC 
and BLA) in the mediation of contextual fear memory expression. In experiment 1 we tested contextual fear before 
and after in vivo illumination of hippocampo-BLA projections, thus restricting the potentiation to the presynaptic 

compartment. In experiment 2 the protocol is the same except BLA was injected with Chr2, thus restricting the 
potentiation to the postsynaptic compartment only. Finally, in experiment 3 both pre-and postsynaptic 

compartment’s involvement was assessed. Indeed, presynaptic activation was achieved by performing the 
potentiation in the “fearful” context while postsynaptic activation was again achieved by illuminating BLA. 
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activation is achieved by BLA illuminations. In this case, we were able to restore contextual fear 

expression in Il1rapl1 KO mice (data not shown), but we didn’t include these data in the 

manuscript as the normalization of behavior was more likely to result from unspecific effects of 

BLA illumination on fear expression. Taken together these three experiments show that we 

were able to specifically isolate the functional importance of hippocampal projections to BLA in 

the mediation of contextual fear memory expression. We conclude that the behavioral 

impairment of Il1rapl1 KO animals results from a lack of BLA principal cells activation following 

local I/E imbalance and incoming hippocampal input during re-exposure to “fearful” contexts. 

2.2 Discussion 

In this work we show that removal of the Il1rapl1 gene led to deficits in expression of previously 

formed contextual fear memory. In line with my previous observations, we propose that local 

I/E imbalances in BLA participate in the contextual fear memory expression deficit in Il1rapl1 KO 

animals. Indeed we obtained evidence that I/E balance in BLA controls fear memory expression 

because injecting a GABAA agonist in BLA before re-exposure to the “fearful” context decreased 

freezing levels in WT animals (data not shown). However, these pharmacological interventions 

are quite invasive possibly leading to unspecific effects. In the future, efforts should be made in 

providing stronger links with our in vivo priming experiment and I/E imbalance in BLA. 

Importantly, this paper suggests that I/E imbalance following Il1rapl1 removal can impact 

memory at multiple levels. 

The local I/E imbalance in BLA is very similar to what I observed on LA principal cells following 

stimulation of thalamic afferents. Following stimulation of hippocampal projections, BLA 

principal cells received less excitation and inhibition seemed preserved (publ. Figure 3). 

However, in this work, we didn’t study whether excitatory drive on BLA inhibitory neurons was 

affected. Thus, we cannot exclude that Il1rapl1 mutation impacts a subclass of BLA interneurons 

that would be contributing to the feed-forward inhibition at these particular long-range 

afferents. To my knowledge, the role of BLA interneurons in contextual fear memory expression 

has not yet been addressed. Interestingly, a recent anatomical report found that projections 

from ventral hippocampus also make strong connections with BLA interneurons (Muller et al., 
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2012). Similarly to what has been recently published, demonstrating a different role of 

interneuron subtypes in cued fear learning (Wolff et al., 2014), in vivo recordings and 

manipulation of specific interneurons during contextual fear expression could help in resolving 

this issue. However, taken together with my previous report we can expect excitation on 

interneurons to be preserved. Thus, it is likely that the BLA also shows target-specific effects 

that are limited to excitatory synapses made on BLA principal cells (see general discussion). 

The functional relevance as to recruit FFI circuits in BLA by hippocampal projections remains 

unclear and made even more complex by the high heterogeneity of BLA interneurons (Capogna, 

2014). A particularly interesting matter would be to know if FFI is induced in the BLA in vivo 

during expression of fear and if this is mediated by vHPC projections. Recently, a team has used 

ex vivo recordings of previously conditioned animals to study the role of mPFC-BLA pathway 

during extinction and they were able to show that mPFC-BLA FFI-circuits were not affected by 

fear extinction (Cho et al., 2013). Thus, it would be interesting to use a similar strategy to 

further characterize the role of hippocampo-BLA FFI circuits in the regulation of fear behavior. 

Another possibility would be to manipulate the activity of different interneuron populations by 

optogenetics during behavior.  

Also, although we have potentiated hippocampal projections in BLA by optogenetic priming, the 

synaptic mechanisms underlying this remain poorly characterized. Although I observed a 

potentiation of hippocampo-BLA synapses onto BLA principal cells after optogenetic bursting, 

the synaptic mechanisms underlying them remain unstudied. In this line, it would be interesting 

to know whether our stimulation protocol involves pre-and/or postsynaptic mechanisms. Chr2 

was expressed only in hippocampal projections, suggesting that our priming protocol leads to an 

increase of neurotransmitter release at hippocampal axonal terminals, in line with previous 

results showing that light stimulation of axons leads to a high probability of release (Zhang and 

Oertner, 2007). To test for this, I have recorded PPR values just before and just after induction 

of optogenetic LTP and I observed a reduction in PPR after LTP induction (data not shown), 

suggesting that our priming protocol leads to an increase of neurotransmitter release. A recent 

report showed that it is possible to activate or inactivate cued fear memory by potentiating or 

depressing auditory inputs to the LA with optogenetics (Nabavi et al., 2014). Interestingly, their 
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LTP stimulation protocol led to higher AMPA/NMDA ratio on LA principal cells, suggesting that 

new AMPA receptors were inserted in the postsynaptic membrane. Whether our stimulation 

protocol led to similar postsynaptic changes is unknown. Recently, it was shown that coupling 

Chr2-induced postsynaptic depolarization with glutamate uncaging was able to potentiate 

synaptic transmission and to recruit CAMKII to the observed spine, thus suggesting that 

optogenetic stimulation does recruit similar signaling cascades than physiological-induced LTP 

(Zhang et al., 2008). Recently, I have started using optogenetics and calcium-imaging in acute 

brain slices to study how BLA principal cells integrate synaptic information from vHPC. This 

could be an interesting technical approach to compare synaptic integration in BLA between 

genotypes following stimulation of hippocampal projections. 

In contrast to the pathophysiological mechanisms leading to cued fear learning deficits in the 

same mice, this paper supports that contextual memory formation is unaffected in Il1rapl1 

mutant mice. Nevertheless, our data suggest the possible existence of intra-hippocampal 

deficits in absence of IL1RAPL1. Indeed, we did observe a significant over-activation of the 

dentate gyrus formation in the dorsal hippocampus following fearful context re-exposure in 

Il1rapl1-deficient mice (publ. Figure 2), suggesting that the contextual memory engram may not 

be properly established and/or retrieved. This however do not seems to significantly perturb 

the discriminative capacity of the animals. Some future dedicated experiments with closely 

similar contexts may evidence some contextual encoding deficits in Il1rapl1-deficient mice. 

Nevertheless, after optogenetic priming of hippocampal projections to BLA, mice were still 

capable of discriminating between the fearful and the not conditioned context, as the 

normalization of freezing levels in Il1rapl1 KO mice was specific to the fearful context. It 

suggests that hippocampal contextual processing is roughly preserved and that the synaptic 

mechanisms leading to the formation of contextual fear memory are unaffected or resistant to 

the pathologic consequences of Il1rapl1 deficiency.  

2.3 Conclusion 

The main message of this study is that Il1rapl1 KO mice have deficits in the expression of 

contextual fear memory and that this is consecutive to a local I/E imbalance in the BLA. Thus, 
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local I/E imbalances following Il1rapl1 mutation not only impact the formation of memories (see 

publication 1), but also the expression of previously formed memories.  

Importantly, we unraveled the functional importance of caudal hippocampal projections to BLA 

in the regulation of contextual fear memory expression. Before this report, no studies had 

addressed the biological significance of these projections in vivo. Taking advantage of the lower 

BLA activation in Il1rapl1 KO mice, we tested whether potentiating hippocampal projections to 

BLA could improve expression of contextual fear memory in Il1rapl1 KO animals. In vivo 

optogenetic priming of hippocampo-BLA fibers presumably restores/bypass local I/E imbalance 

in BLA, leading to increased fear levels during expression of fear memories.  

We have performed some additional experiments to test for the functional contribution of vHPC 

in contextual fear expression. To achieve this, we inhibited vHPC using optogenetics before re-

exposure to the “fearful” context in WT animals (Figure 30). By plotting the freezing levels 

across time we observed a marked deficit in freezing levels during the first 90 seconds of 

contextual re-exposure before returning to baseline levels (Figure 30). This opens the intriguing 

possibility that vHPC could be involved in the establishment of the contextual fear response.  
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Figure 30: In vivo optogenetic inhibition of vHPC before re-exposure to the “fearful” 
context. A: Mice were infected with Arch in vHPC (see infection areas) and 

optogenetic inhibition was achieved by inserting a fiber through implanted cannulas. 
B: Bilateral yellow light was applied just before contextual re-exposure. C: 

Illumination decreased freezing levels during the initial 90 seconds of fear onset. 
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Abstract The process of learning mainly depends on the

ability to store new information, while the ability to

retrieve this information and express appropriate behaviors

are also crucial for the adaptation of individuals to envi-

ronmental cues. Thereby, all three components contribute

to the cognitive fitness of an individual. While a lack of

behavioral adaptation is a recurrent trait of intellectually

disabled patients, discriminating between memory forma-

tion, memory retrieval or behavioral expression deficits is

not easy to establish. Here, we report some deficits in

contextual fear behavior in knockout mice for the intel-

lectual disability gene Il1rapl1. Functional in vivo exper-

iments revealed that the lack of conditioned response

resulted from a local inhibitory to excitatory (I/E) imbal-

ance in basolateral amygdala (BLA) consecutive to a loss

of excitatory drive onto BLA principal cells by caudal

hippocampus axonal projections. A normalization of the

fear behavior was obtained in adult mutant mice following

opsin-based in vivo synaptic priming of hippocampo-BLA

synapses in adult il1rapl1 knockout mice, indicating that

synaptic efficacy at hippocampo-BLA projections is crucial

for contextual fear memory expression. Importantly,

because this restoration was obtained after the learning

phase, our results suggest that some of the genetically

encoded cognitive deficits in humans may originate from a

lack of restitution of genuinely formed memories rather

than an exclusive inability to store new memories.

Keywords Contextual fear expression � Hippocampal

projections � Optogenetic � Intellectual disability

Introduction

Learning and memory processes are crucial to adapt our

behaviors to environmental cues and highly depend on the

ability of discrete neuronal circuits to integrate sensory

information to elicit correct behavioral responses. Geneti-

cally encoded intellectual disability (ID) mostly results

from mutations in genes functioning in neuronal and syn-

aptic signaling cascades (Pavlowsky et al. 2011). Among

these, IL1RAPL1 is a member of a novel family of IL1/Toll

receptors thought to be expressed at excitatory synapses

(Pavlowsky et al. 2010) and mutations in IL1RAPL1 gene

have been shown to induce autism and ID in humans

(Carrié et al. 1999; Piton et al. 2008). At the cellular level,

IL1RAPL1 is thought to be a trans-synaptic adhesion

protein promoting pre- and post-synaptic effectors impor-

tant for the formation, maintenance and function of excit-

atory synapses (Gambino et al. 2007; Yoshida et al. 2011;

Valnegri et al. 2011; Hayashi et al. 2013). At the
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physiological level, we have recently shown that Il1rapl1-

mutant mice have a deficit in cued fear memory formation

due to a lack of synaptic plasticity induction at long-range

projections to the lateral amygdala (LA) (Houbaert et al.

2013). We established that the impact of IL1RAPL1

removal is focused at excitatory synapses formed on LA

principal neurons, while those contacting interneurons

remain unaffected. As a result, the local I/E balance is

disrupted and prevents the adequate induction of long-term

potentiation and associated memory formation (Ledoux

2000; Rumpel et al. 2005). Indeed, an increasing variety of

neuronal processes depend on local inhibition (Kullmann

et al. 2012) and, remarkably, I/E imbalances are now fre-

quently reported in the etiology of brain disorders such as

schizophrenia (Lisman et al. 2008) or ID (Gatto and

Broadie 2010; Baroncelli et al. 2011). Thus, more func-

tional circuits and related cognitive processes may suffer

from local I/E imbalances in Il1rapl1-deficient mice.

Re-exposure to the context in which an aversive stim-

ulus was previously delivered induces fear behavior in

mice that can be quantified by the level of freezing (16).

While the dorsal hippocampus (dHPC) is thought to asso-

ciate and store together the different olfactory, auditory,

tactile, and visual elements of the context in which fear

conditioning occurs (Rudy et al. 2004; Goosens 2011; Liu

et al. 2012), activation of the caudal hippocampus (cHPC)

and basolateral amygdala (BLA) appears to be necessary

for contextual fear expression (Muller et al. 1997; Anag-

nostaras et al. 2001; Pentkowski et al. 2006). Interestingly,

evidence for direct connections between cHPC and BLA

have been obtained both morphologically (Pitkänen et al.

2000) and functionally (Bienvenu et al. 2012; Hübner et al.

2014). We here performed an integrated dissection of

contextual fear deficits in il1rapl1-/y mice. We unravel a

dysregulation of hippocampo-BLA projections with con-

sequences on contextual memory expression in mice that

had previously experienced and learned from the fearful

context.

Results

Contextual fear deficit in il1rapl1-deficient mice

In the course of Il1rapl1-/y characterization, we recurrently

observed a lack of contextual fear reaction (Maren et al.

2013). To better characterize this deficit, a cohort of

Il1rapl1?/y and -/y mice was submitted to a discriminative

contextual fear conditioning, receiving electric shocks in

context A, and being re-exposed to the same context (Test

A) or to an unrelated one (Test B) 24 h later (Fig. 1a; see

‘‘Materials and methods’’). The conditioned fear response

was strongly impaired in Il1rapl1-/y mice (Fig. 1a),

although context discrimination (Tests B in Fig. 1a), pain

perception and locomotor activity (Houbaert et al. 2013)

were not affected in these mice. To evaluate the onset of

the contextual fear deficit, conditioned mice of both

genotypes were re-exposed to the fearful context at dif-

ferent time points (Fig. 1b). The deficit in Il1rapl1 KO

mice was detected as early as 12 h after the shock appli-

cations (Fig. 1b). Finally, the difference was still observed

when using a strong conditioning procedure (10 shocks,

instead of 3; Fig. 1c), suggesting that the deficit was

independent of the intensity of sensory processing.

Neuronal activation during contextual fear is affected

by Il1rapl1 null mutation

Next, to detect neuronal activation in brain regions

important for contextual fear (Rudy et al. 2004; Goosens

2011; Liu et al. 2012; Maren et al. 2013), we analyzed the

expression of c-Fos early gene in Il1rapl1 ?/y and -/y mice

(Herry and Mons 2004) after contextual fear conditioning

and aversive context re-exposure (Fig. 2a; see ‘‘Materials

and methods’’). Interestingly, in dHPC, dentate gyrus

activation was high in both tested (Test A, re-exposure) and

non-tested groups (no re-exposure, Fig. 2c–e). In contrast,

we observed that in both mouse genotypes, re-exposure to

the fearful context was driving significant dorsal CA1,

caudal CA1 and BLA activations (Fig. 2d, e). However,

some differences exist between genotypes: in Il1rapl1 -/y

mice, BLA activation was markedly reduced, cHPC acti-

vation was mildly reduced and dHPC activation (DG) was

increased compared to ?/y littermates (Fig. 2c–e). Thus,

Il1rapl1 KO mice most likely exhibit a reduction in the

activation of neuronal circuits thought to be responsible for

contextual fear expression.

A potential contribution of the lack of cHPC and BLA

activation onto fear expression at the testing time was first

assessed by in vivo pharmacological experiments: acute

and local application of the GABAAR agonist muscimol

before contextual re-exposure confirmed that the activation

of both structures is essential for the conditioned fear

response to express (supplementary Fig. 1). Then, reci-

procal pharmacological experiments forcing the activation

of BLA at the testing time—but not before learning (data

not shown)—was able to restore normal conditioned fear

response in the KO mice (supplementary Fig. 2).

Constitutive Il1rapl1 mutation leads to I/E imbalance

at hippocampo-BLA synapses

Next, we tested the possibility that BLA activation deficit

in -/y mice was caused by alterations of hippocampo-BLA

projections which were recently shown to contribute to

contextual aversive memory expression (Orsini et al. 2011;
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Knapska et al. 2012; Maren et al. 2013). To functionally

isolate hippocampo-BLA synapses, we used an opsin-based

strategy using in vivo stereotaxic injections of AAV-ChR2

viral constructs in the cHPC (Hübner et al. 2014; Morozov

et al. 2011) (Fig. 3a) (see ‘‘Materials and methods’’ and

supplementary Fig. 3). We then recorded BLA principal

neurons in coronal acute slices while stimulating hippo-

campal axons using 1 ms-long flashes of 460 nm light

(Fig. 3b). When BLA principal cells were recorded at

-70 mV, we successfully isolated light-evoked inward

currents sensitive to the AMPA receptor blocker CNQX

(Fig. 3b) and the voltage-gated sodium channel blocker

tetrodotoxin (TTX, Fig. 3b), indicating that they were

evoked by physiological action potentials. Interestingly, in

the presence of TTX, light-evoked EPSCs were completely

restored—albeit slightly more slowly—by incubating

TTX-treated slices with 100 lM of the potassium channel

blocker 4AP (Fig. 3b) demonstrating that hippocampal

projections to BLA neurons were monosynaptic (Petreanu

et al. 2007; Felix-Ortiz et al. 2013).

Then, we tested the efficacy of hippocampal synapses to

recruit local interneurons (feedforward inhibition circuit)

(FFI; Fig. 3c) (Hübner et al. 2014). To achieve these

measurements in single cells, AMPAR- and GABAAR-

mediated currents were separated based on their reversal

potentials (Fig. 3c) (Houbaert et al. 2013). Strikingly, the

I/E balance recorded in Il1rapl1 -/y BLA neurons is sig-

nificantly shifted toward inhibition due to a decrease of the

AMPAR component (Fig. 3d). This is in accordance with

our previous findings at cortical and subcortical projections

to the LA of Il1rapl1 -/y mice (Houbaert et al. 2013),

suggesting that I/E imbalance may be a general synaptic

deficit associated with this ID mutation. To test if this

could lead to a lack of BLA activation upon hippocampal

activation, we light stimulated AAV-ChR2-infected cHPC

from anesthetized GAD-67-eGFP Il1rapl1 WT and KO

animals before performing BLA c-fos detection (supple-

mentary Fig. 4) (see ‘‘Materials and methods’’). Interest-

ingly, in Il1rapl1 KO mice, the proportion of GFP-

expressing c-fos positive cells was increased, suggesting a

lack of BLA PNs activation by incoming hippocampal

inputs in the absence of Il1rapl1.

Post-training hippocampo-BLA functional stimulation

restores a normal fear expression in Il1rapl1-deficient

mice

To establish a causal link between the lack of efficacy at

hippocampus–BLA synapses and the decrease in contex-

tual fear response, we designed an in vivo ‘‘priming’’

experiment. Indeed, in vitro opsin experiments show that

application of high-frequency bursts of 460 nm light

potentiate hippocampo-BLA connections over minutes to

hours (Fig. 4a; see ‘‘Materials and methods’’). We there-

fore tested the efficacy of similar bursting illuminations

in vivo in restoring normal freezing levels in conditioned

Il1rapl1-/y mice (Fig. 4b–d). Importantly, as others (Felix-

Ortiz et al. 2013), we chose to separate the locus of AAV-

ChR2 infection (cHPC, Fig. 4b) from the locus of illumi-

nation (BLA, Fig. 4b). We thereby restricted the presence

of light-sensitive compartments to efferent axonal projec-

tions from hippocampal neurons contacting the amygdala

(hippocampo-BLA synapses). Il1rapl1 ?/y and -/y animals

were infected within the cHPC with the AAV-ChR2

Fig. 1 Deletion of the ID gene Il1rapl1 is associated with a lack of

contextual fear. a Experimental protocol generating discriminative

contextual fear. Conditioned WT mice exhibit typical freezing

response solely in context A (p \ 0.001, Student’s t test), and

discriminative contextual fear is impaired in Il1rapl1 KO mice

(p \ 0.001, Student’s t test). b A group of 56 WT and 56 KO animals

were similarly conditioned using three shock applications in context

A, and then tested once for contextual fear response at different

timings after the shock application. The numbers of animals are

indicated. The ‘‘Cond’’ condition corresponds to the freezing behavior

observed for 2 min after the last shock delivery. c The deficit in

conditioned response was independent of the strength of the

conditioning. Cohorts of WT and KO animals were conditioned

using 1, 3 or 10 US (shocks) applications, and the conditioned

response was tested 24 h later. Overtraining did not restore the

conditioned response in overtrained Il1rapL1 KO mice (Student’s

t test, 3US WT vs. KO p \ 0.001; 10 US WT vs. KO, p \ 0.01)
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viruses and chronically implanted above the BLA to allow

optical fiber insertion (Fig. 4b). After being submitted to

contextual fear conditioning and a first test A/B (before in

Fig. 4b, c), optic fibers were inserted in both groups. Bursts

of 460 nm light were delivered to their home cage, 1 h

before conducting another test A/B sequence (‘‘1 h after’’

in Fig. 4b, c). Strikingly, the amount of freezing exhibited

by ‘‘primed’’ -/y mice increased dramatically, and became

undistinguishable from that of similarly treated ?/y mice,

on which the ‘‘priming’’ effect was negligible (Fig. 4c).

Fig. 2 Neuronal activation during contextual fear is affected by

Il1rapl1 null mutation. a Experimental protocol. 10 WT and 12 KO

mice were conditioned, and tissue prepared for C-Fos immunodetec-

tion 25.5 h later. A sub-group of mice (re-exposure, n = 7 WT and 9

KO) was submitted to the fearful context A 1.5 h before killing.

Another group of mice (n = 3 WT and 3 KO) was not re-exposed to

the fearful context (no re-exposure). b Scheme of the analyzed

regions. The following were included in the analysis: dorsal

hippocampus (dHPC, dentate gyrus and CA1 regions), the basolateral

amygdala (BLA) and the caudal hippocampus (CA1 region). See

‘‘Materials and methods’’ for more details. c Typical pictures of C-

Fos immune-reactive neurons in indicated areas and conditions.

Fearful context re-exposure leads to activation of both the BLA and

cHPC. Scale bars dHPC DG, 200 lm; dHPC CA1, 100 lm; BLA,

180 lm, cHPC CA1, 100 lm. d C-Fos levels show specific dHPC-

CA1, cHPC-CA1 and BLA activation upon fearful context re-

exposure in WT mice (Student’s t test, p \ 0.01). The number of

analyzed brain slices is indicated. e Early gene c-Fos activation

during context A re-exposure shows a strong reduction of BLA

activation (Mann–Whitney, p \ 0.001) and a mild reduction in cHPC

(Mann–Whitney, p \ 0.05) in KO mice. The number of analyzed

slices is indicated
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Importantly, no effect was observed in both genotypes

during context B re-exposure (Fig. 4c and data not shown,

p [ 0.05). Conclusively, the phenotypic rescue was absent

when mice of both genotypes were infected and implanted

within the BLA (Fig. 4d), allowing the sole activation of

BLA neurons but not the potentiation of hippocampo-BLA

synapses (data not shown). However, after illumination of

BLA neurons, we observed an increase of freezing levels in

context B potentially resulting from activation of anxiety-

related brain structures by BLA projections (Felix-Ortiz

et al. 2013; Felix-Ortiz and Tye 2014). We conclude that

the restoration of contextual fear expression in il1rapl1-/y

mice only occurs through the potentiation of hippocampo-

BLA synapses at the testing time and specifically in the

conditioning context.

Discussion

Learning, together with the retrieval and behavioral

expression of previously encoded memories,

contributes jointly to the cognitive fitness of individ-

uals. In the present work we show that the intellectual

disability gene Il1rapl1 is necessary for the relevant

expression of previously formed contextual fear

memory.

While we recently revealed that Il1rapl1-deficient mice

exhibit I/E imbalance at thalamic projections to the LA

with consequences on cued fear learning (Houbaert et al.

2013), we observe here a very similar cellular phenotype at

functionally isolated hippocampo-BLA projections with

consequences on contextual fear memory expression but

not learning per se (see below). In Il1rapl1 -/y, thalamo-LA

excitatory synapses impinging onto principal cells are

deficient, but synapses of the same projection contacting

interneurons seem unaltered (Houbaert et al. 2013).

Although we did not specifically re-address whether the

excitatory drive onto local BLA interneurons was pre-

served, we may nevertheless propose that a lack of exci-

tation at long-range projections causing a local I/E

imbalance is a functional signature of Il1rapl1 mutation in

the mouse brain. This is further supported by the ubiquitous

Fig. 3 Impaired I/E balance at hippocampo-BLA synapses in

Il1rapl1 KO mice. a AAV-ChR2-venus infection areas targeting

caudal hippocampus in WT and KO animals always included the CA1

regions, and occasionally dentate gyrus and subiculum regions. b Left

light-evoked excitatory currents were abolished by both AMPAR-

blocker CNQX and voltage-gated sodium channel blocker tetrodo-

toxin (TTX), indicating that excitatory synapses are light stimulated

in a physiological manner. Scale bars: left, 20 pA and 20 ms. In TTX-

treated slices, light-evoked EPSCs could be completely restored by

adding 4AP to the perfusion medium, suggesting monosynaptic inputs

to BLA neurons. Scale bars 20 pA and 10 ms. c, d Optogenetic

functional isolation of hippocampo-BLA fibers unveils I/E imbalance

in Il1rapl1 KO mice. Note that excitatory currents are decreased in

Il1rapl1 KO mice (paired t test, p = 0.044). Scale bars: top, 10 pA

and 50 ms; bottom, 15 pA and 10 ms
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Fig. 4 Hippocampo-BLA synaptic priming restores fear expression

in Il1rapl1 mutant mice. a Light-bursting stimulation of hippocampo-

BLA terminals leads to stable potentiation of synaptic efficacy onto

BLA pyramidal neurons. Scale bars: 3 mV and 5 ms. b Experimental

design of the in vivo ‘‘priming’’ experiment. c Burst illumination of

hippocampo-BLA terminals normalizes contextual fear in Il1rapl1

KO mice. Two-way ANOVA revealed a significant effect of genotype

(ANOVA F(1,36) = 17,641; p \ 0.001) and of illumination (ANOVA

F(2,45) = 7,113; p = 0.007), but no interaction between genotype and

illumination (ANOVA F(2,45) = 1,781; p = 0.183) as the illumina-

tion did not have an significant effect on WT freezing levels. SNK

post hoc multiple comparisons were used to test for differences

between groups. They showed a strong effect of illumination on KO

freezing levels (SNK before vs. 1 h after; p = 0.001). The difference

observed between WT and KO animals before illumination (SNK

before WT vs. KO; p = 0.001) disappeared after illumination, with

KO animals reaching similar levels to WT animals (SNK 1 h after

WT vs. KO; p [ 0.05). 24 h after treatment, a difference between WT

and KO animals was observed again (SNK 24 h later WT vs. KO

p \ 0.05), showing that activation of hippocampo-BLA fibers tran-

siently rescues KO phenotype. d Illumination of BLA neurons did not

normalize contextual fear to context A in Il1rapl1 KO mice. Two-way

ANOVA revealed a significant effect of genotype (ANOVA

F(1,30) = 22,868; p \ 0.001) and no significant effect of illumination

(ANOVA F(2,30) = 0,407; p = 0.669). SNK post hoc multiple

comparisons were used to test for differences between groups.

Indeed, the initial contextual fear deficit of Il1rapl1 KO mice before

light (SNK before WT vs. KO; p = 0.016) was not rescued by light

stimulation of BLA (SNK 1 h after WT vs. KO; p = 0.004) and

remained 24 h after light stimulation (SNK 24 h after WT vs. KO;

p = 0.014). Illumination of BLA neurons increased freezing levels in

KO animals to unspecific context B (one-way repeated measures

ANOVA; F(2,12) = 8,025; p \ 0.01; SNK post hoc: before vs. 1 h

after p \ 0.05; before vs. 24 h after p \ 0.01). The same treatment

had no effect on WT freezing levels in context B (one-way repeated

measures ANOVA; F(2,8) = 2,135; p [ 0.05)
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and homogeneous expression of Il1rapl1 mRNA through-

out the brain (Houbaert et al. 2013).

Yet, in contrast to the pathophysiological mechanisms

leading to cued fear learning deficits in the same mice,

our current dataset supports that contextual memory for-

mation—and the synaptic contacts accounting for—are

either unaffected or resistant to the pathologic conse-

quences of Il1rapl1 deficiency. Indeed, we observed that

upon contextual fear reactivation, dHPC activation was

high in Il1rapl1 -/y mice, suggesting that the contextual

fear engram is properly established (Goshen et al. 2011)

(Fig. 2). Accordingly, Il1rapl1-deficient mice are capable

of exhibiting normal discriminative fear behavior after

optogenetic priming stimulations (Fig. 4). Furthermore, in

our previous report focusing on LA, treatments aiming at

correcting or bypassing the LA I/E imbalance were effi-

cient only if applied immediately before the CS/US

association, that is at the exact timing of associative

synaptic plasticity induction and memory formation

(Houbaert et al. 2013). In the present work, none of the

pre-training treatments, such as overtraining in the con-

ditioning context (Fig. 1) or BLA bicuculline infusion

(data not shown), was efficient in correcting the lack of

contextual fear reaction during the tests (Houbaert et al.

2013). In contrast, it was sufficient to improve the neu-

rotransmission efficacy at hippocampo-BLA connections

during the contextual tests to normalize the freezing

behavior of Il1rapl1 mutant mice. Interestingly, restora-

tion of conditioned response in Il1rapl1-deficient mice

was only temporary as freezing levels returned to their

initial values 24 h after the ‘‘priming’’ experiment

(Fig. 4c). This may indicate that stabilization of LTP is

not completed using rather artificial light-induced stimu-

lation protocols that possibly exclude endogenous neuro-

modulations. Furthermore, contextual discrimination was

preserved in these ‘‘phenotypic restoration’’ experiments,

and behavioral restoration was not obtained through the

sole induction of firing at targeted BLA neurons (Fig. 4).

We thereby exclude that behavioral improvement results

from general changes in activity levels and/or general

anxiety induced by alterations of the BLA to vHPC pro-

jections (Felix-Ortiz et al. 2013; Felix-Ortiz and Tye

2014).

Altogether, our approach enabled fine characterization

of pathologically relevant phenotypes of the Il1rapl1 ID

mouse model. We could show that altered I/E balance at

the hippocampo-BLA projections leads to a deficit in

contextual memory expression rather than memory for-

mation. Thereby, our data suggest that cognitive dis-

ability in humans may result from the deficiency of

synapses involved at different steps of the cognitive

process, including memory restitution and behavioral

expression.

Materials and methods

Animals

All experiments were performed using male Il1rapl1 -/y

(Il1rapl1 KO) and their control ?/y (Il1rapl1 WT) litter-

mates (C57BL/6 J background, 2–4 months old), housed in

12/12 LD with ad libitum feeding. Every effort was made

to minimize the number of animals used and their suffer-

ing. The experimental design and all procedures were in

accordance with the European guide for the care and use of

laboratory animals and the animal care guidelines issued by

the animal experimental committee of Bordeaux Univer-

sities (CE50) (A5012009).

Fear conditioning

Mice were housed individually in a ventilated area before

the start of behavioral training. To avoid excessive stress

during the experiments, animals were handled every day

before the start of the experiment during a week. On day 1,

animals were transferred to the conditioning context

(context A) for habituation. On day 2, we proceeded with

the conditioning phase. The protocol typically consisted of

39 foot shock of 0.6 mA for 2 s with 60 s time interval

between shocks. Discriminative contextual fear memory

was tested 24 h after conditioning by analyzing the freez-

ing levels in context B vs. context A (Tests B/A). Freezing

behavior was quantified automatically in each behavioral

session using a CCD camera connected to automatic

freezing detection software (Ugo Basile, Italy). To test for

animal exploration and activity, the animal displacement in

the context was traced and analyzed with software pro-

grammed and provided by Dr. Jiyun Peng (Fudan Uni-

versity, Shanghai, China). In Fig. 1b, different groups of

conditioned mice were submitted to single contextual test

A only once at 1, 2, 6, 12 or 24 h after the shock appli-

cations. In the under/overtraining experiments (Fig. 1c) the

protocol was modified to either 1 or 109 foot shock of

0.6 mA for 1 s with 30–75 s interval between shocks.

Stereotaxic viral infections and cannula implantations

AAV injections

Adeno-associated viruses [AAV2/9.CAG.ChR2-

Venus.W.SV40-p1468, ref Addgene-20071, 5.82E12 vector

genomes (vg)/ml] (Figs. 3, 4) were packaged at the Uni-

versity of Pennsylvania Vector Core. Around 2 months old

mice (over 20 g) were prepared for the stereotaxic injec-

tion. Beforehand, mice were treated with buprenorphine

(0.1 mg/kg, i.p) and positioned in a stereotaxic apparatus

(David Kopf Instruments, Tujunga, CA) under continuous
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anesthesia with isoflurane. During the surgery, the mice

were warmed on a 33–35 �C heating pad. The virus was

bilaterally pressure injected through glass pipettes (Hir-

schmann Laborgerate, ringcaps, tips pulled O.D 30–50 lm)

using a Picosprizer (Parker Co). The positions of bregma

and lambda points were defined and adjusted to the same

horizontal level. Coordinates for the BLA are: (AP)

-1.5–1.7 mm, (ML) ±3.2–3.4 mm, (DV) -4.8 mm; or

caudal HPC: (AP) -3.1–3.3 mm, (ML) ±3.2–3.4 mm,

(DV) -4.0 mm.

Cannula implantation

Stainless steel guide cannula (26 or 24 gauge; Plastics-One,

Roanoke, VA, USA) were bilaterally implanted above the

BLA: (AP) -1.5–1.7 mm, (ML) ±3.2–3.4 mm, (DV)

-3.4–3.5 mm; or caudal HPC: (AP) -3.1–3.3 mm, (ML)

±3.2–3.4 mm, (DV) -3.0–3.1 mm. The cannula was

secured to the skull using dental cement (Super-Bond, Sun

Medical Co. Ltd, Moriyama, Shiga, Japan). Finally, a

dummy cannula was inserted into the guide cannula to

reduce the risk of infection. During the proceeding 2 weeks

of cannula surgery recovery, or 4–6 weeks of virus trans-

fection, body weight and symptoms of sickness were

monitored carefully.

Optical stimulation and behavioral testing

To be tightly fixed to the guide cannula pedestal, an optical

polymer fiber (200 or 250 lm of diameter, Prizmatix Ltd,

Israel) was glued through an infusion cannula housing

holder and assembled with a locking cap collar (Plastics-

One, US). The projection distance out of the guide cannula

tip (1–1.5 mm) was set to allow positioning of the fiber

above the BLA (Fig. 4).

After being submitted to a classical habituation/con-

ditioning/test sequence, cHPC-(priming) and BLA- (con-

trol, data not shown) infected mice were bilaterally

illuminated through BLA cannula in their home cages 1 h

before being re-exposed to the fearful context. Bursting

light stimulations were similar to the one used in vitro (see

below). Note that both in vivo and in vitro, 20 Hz, instead

of 100 Hz trains, gave similar results (data not shown).

Electrophysiology

Acute slices preparations

We prepared coronal BLA- or cHPC-containing acute sli-

ces from mice infected with the AAV-Chr2 constructs in

the cHPC. Due to animal age (3–4 months old), we used

the ‘‘protective recovery method’’ described in http://www.

brainslicemethods.com. Briefly, mice were anesthetized

with a mixture of ketamine/xylazine (100 and 10 mg/kg,

respectively) and cardiac-perfused with ice-cold, oxygen-

ated (95 % O2, 5 % CO2) NMDG-based cutting solution

containing (in mM): 93 NMDG, 93 HCl, 2.5 KCl, 1.2

NaH2PO4, 30 NaHCO3, 25 Glucose, 10 MgSO4, 0.5 CaCl2,

5 sodium ascorbate, 3 sodium pyruvate, 2 thiourea and

12 mM N-acetyl-L-cystéı̈ne (pH 7.3–7.4, with osmolarity

of 300–310 mOsm). The brains were rapidly removed and

placed in the ice-cold and oxygenated NMDG cutting

solution described above. Coronal slices (300 lm) were

prepared using a Vibratome (VT1200S, Leica Microsys-

tems, USA) and transferred to an incubation chamber held

at 32 �C and containing the same NMDG cutting solution.

After this incubation the slices were maintained at room

temperature in oxygenated modified ACSF containing

(mM): 92 NaCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20

HEPES, 25 glucose, 2 MgSO4, 2 CaCl2, 5 sodium ascor-

bate, 3 sodium pyruvate, 2 thiourea and 12 mM N-acetyl-

L-cystéı̈ne (pH 7.3–7.4, with osmolarity of

300–310 mOsm) until recording.

Recordings

Whole-cell recordings from BLA principal neurons were

performed at 30–32 �C in a superfusing chamber as pre-

viously described (Houbaert et al. 2013). Neurons were

visually identified with infrared videomicroscopy using an

upright microscope equipped with a 609 objective. Patch

electrodes (3–5 MX) were pulled from borosilicate glass

tubing and filled with a low-chloride solution containing

(in mM): 140 Cs-methylsulfonate, 5 QX314-Cl, 10

HEPES, 10 phosphocreatine, 4 Mg-ATP and 0.3 Na-GTP

(pH adjusted to 7.25 with CsOH, 295 mOsm).

Feedforward inhibition

BLA principal neurons were recorded in voltage clamp

mode at -70 mV (to record AMPAR-mediated EPSCs) or

0 mV (to record GABAAR-mediated IPSCs) as previously

described (Houbaert et al. 2013). Hippocampo-BLA

monosynaptic EPSCs and di-synaptic IPSCs were elicited

by 1 ms light stimulations delivered by an ultrahigh power

460 nm LED (Prizmatix Ltd, Israel) at maximal intensity.

LTP experiments

In these dedicated current-clamp experiments, Cs-methyl-

sulfonate was replaced with equimolar K-gluconate. All

experiments were performed in the absence of picrotoxin.

Hippocampo-BLA monosynaptic EPSPs were elicited by

1 ms light stimulations delivered by an ultrahigh power

460 nm LED (Prizmatix Ltd, Israel). Light intensity was

adjusted to obtain baseline EPSP amplitudes of *5 mV.
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The induction ‘‘bursting’’ protocols are composed of five

burst episodes separated by 30 s. Each burst is composed

of 20 trains (applied at 5 Hz) of four light flashes (intra-

train frequency: 100 Hz). Baseline transmission is obtained

at 0.2 Hz.

Data acquisition and analysis

Data were recorded with a Multiclamp700B (Molecular

Devices, USA), filtered at 2 kHz and digitized at 10 kHz.

Data were acquired and analyzed with pClamp10.2

(Molecular Devices). In all LTP experiments, series resis-

tance was monitored throughout the experiment, and if it

changed by more than 15 %, the data were not included in

the analysis. Changes were quantified by normalizing and

averaging EPSC amplitude or EPSP slope during the last

5 min of the experiments relative to the 5 min of baseline

prior to LTP induction.

c-Fos detection

90 min after the contextual test, mice were deeply anes-

thetized with pentobarbital and fixed by intracardiac per-

fusion with 4 % paraformaldehyde in PBS. Brains were

removed, post-fixed overnight and preserved in PBS.

Coronal slices, 50-lm thick, were obtained using a vibra-

tome (Leica 1,200 s). For c-Fos immunostaining, brain

sections were maintained in a blocking buffer (PBS solu-

tion containing 0.3 % Triton X-100 and 2 % gelatin) for

1 h at room temperature. Thereafter, sections were incu-

bated at 4 �C overnight with polyclonal antibody against c-

Fos (1:20,000; Merck-Millipore, PC38) diluted in the

blocking buffer. Slices were rinsed three times in PBS and

incubated for 1 h 30 min at room temperature with goat

anti-rabbit, biotinylated secondary antibody. After being

rinsed in PBS, we incubated them with avidin–biotin

complex (Vector Laboratories); slices were rinsed in PBS

and c-Fos was detected using the DAB substrate kit for

peroxidase (Vector Laboratories).

All slice images were taken by a Nanozoomer 2.0 HT

(Hamamatsu Photonics, Massy, France) using objective

UPS APO 209 NA 0.75 combined with an additional lens

1.759, leading to a final magnification of 359. Virtual

slides were acquired with a TDI-3CCD camera. Regions of

interest for the c-Fos counting were identified with refer-

ence to the Paxinos and Watson brain atlas. Regions of

interest included: the cellular layer of the dentate gyrus

(bregma: -1.34 to -1.94 mm) and CA1 (bregma: dHPC:

-1.34 to -1.94 mm; cHPC: -2.92 to -3.52 mm) regions

of the hippocampus, and the BLA (bregma: -1.34 to

-1.94 mm). To automatize the analysis, a homemade

macro was written using NIH’s ImageJ. A combination of a

threshold and a size selection with the Analyze Particles

plugin performed on each region of interest allowed us to

count the number of positive cells. We also controlled that

Il1rapl1 deletion did not affect cell density in selected

regions of interest. To this aim, 3 Il1rapl1 WT and 3 KO

mice were deeply anesthetized with pentobarbital and fixed

with 4 % paraformaldehyde/PBS using intra-cardiac per-

fusion. Brains were removed, post-fixed overnight and

preserved in PBS. Coronal slices, 60-lm-thick, were

obtained using a vibratome (Leica 1,200 s). dHPC/BLA

sections (bregma: -1.34 to -1.94 mm) and cHPC

(bregma: -2.92 to -3.52 mm) were mounted in hard-set

vectashield containing DAPI before being imaged using an

upright epifluorescence microscope, Nikon Eclipse Ni-U

(Nikon France S.A) using 409 objective CFI Plan Fluor

NA 0.75. Regions of interest for the c-Fos counting were

identified with reference to the Paxinos and Watson brain

atlas as for c-Fos counting. Automatized image processing

was made possible using a homemade ImageJ (NIH, USA)

macro based on the automatic nuclei counter plugin. No

difference in cellular density was observed in any of the

analyzed areas between Il1rapl1 WT and KO animals.

Statistical analysis

Detailed statistics are described in each figure legend.

Briefly, when comparing the effect of one factor in a group,

Student’s t test was used. However, when data were not

following a normal distribution, we applied the Mann–

Whitney rank-based statistical test. When studying the

impact of two factors (genotype and treatment) in opto-

genetic experiments, we used two-way ANOVA followed

by Student–Newman–Keuls (SNK) post hoc analysis to test

for differences between groups of interest. For all tests,

statistical difference was concluded when p \ 0.05.

Reagents

Tetrodotoxin was purchased from Latoxan and stock

solution prepared in acetate buffer at pH 4.5. Bicuculline

and muscimol were purchased from Ascent Scientific

(Cambridge, UK) and 4-AP from Sigma Aldrich (Saint

Louis, USA).
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Marais. This study was supported by grants from the Agence

Brain Struct Funct

123



Nationale pour la Recherche (ANR-10-BLAN-1434, ANR-12-JSV4-

0005-01, ANR-12-SAMA-001-03 and ANR-10-LABX-43 BRAIN to

E.H. and Y.H.), the European Neuroscience Institutes Network

(Y.H.), the Gencodys FP7 program (Y.H.).

References

Anagnostaras SG, Gale GD, Fanselow MS (2001) Hippocampus and

contextual fear conditioning: recent controversies and advances.

Hippocampus 11:8–17 doi:10.1002/1098-1063(2001) 11:1\8:AID-

HIPO1015[3.0.CO;2-7

Baroncelli L, Braschi C, Spolidoro M et al (2011) Brain plasticity and

disease: a matter of inhibition. Neural Plast 2011:1–11. doi:10.

1155/2011/286073

Bienvenu TCM, Busti D, Magill PJ et al (2012) Cell-type-specific

recruitment of amygdala interneurons to hippocampal theta

rhythm and noxious stimuli in vivo. Neuron 74:1059–1074.

doi:10.1016/j.neuron.2012.04.022
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IX) General discussion 

Identification of neuronal dysfunctions associated with intellectual disability represents an 

important challenge in modern neuroscience. Using a mouse model mutated for the Il1rapl1 

gene, my findings shed some light on the consequences of the removal of this ID gene at the 

behavioral and synaptic level, providing a strong link between synaptic abnormalities and 

learning/memory impairments (Figure 31). The mutation of Il1rapl1 led to local 

inhibitory/excitatory imbalances in amygdala by the target-specific disruption of excitatory 

synapses of principal cells. This resulted in behavioral deficits in both the ability to form new 

memories and express previously formed memories (Figure 31). Most importantly, in vivo 

interventions aiming at restoring I/E imbalance in Il1rapl1 KO mice were effective in normalizing 

behavior, suggesting that some corrections must be effective in adult individuals. Also, my work 

highlights the importance of studying all components of a particular neural circuit to understand 

the functional consequences of a given mutation as it may act at discrete cellular and/or 

synaptic levels. 

A major consequence of my work was to define Il1rapl1 deficiency as a cause of I/E imbalances 

in neuronal circuits. I believe that this is an important step in our understanding of Il1rapl1-

associated cognitive deficiencies. Indeed, I/E imbalances potentially interfere with information 

processing at multiple levels affecting numerous and various functional aspects of neuronal 

function. It is strongly believed that the synchronization between synaptic excitation and 

inhibition is of key importance for the triggering of neuronal activity, the duration and time 

course of spike discharge, and eventually its synchronization at the millisecond scale (Isaacson 

and Scanziani, 2011). Noteworthy, too low or too high inhibition leads to brain dysfunction and 

neuropsychological diseases (Baroncelli et al., 2011; Gatto and Broadie, 2010).   
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However, many questions still remain unanswered at the end of my PhD work. For example, 

one could wonder whether I/E imbalances are generalized throughout the brain or if they are 

discrete, affecting some brain areas and leaving others untouched. Understanding I/E 

imbalances following IL1RAPL1 deficiency requires answering the general question of how, 

where and when I/E imbalances are generated in the brain upon IL1RAPL1 deficiency. 

Undoubtedly, understanding how IL1RAPL1 deficiency affects I/E imbalance will require 

continuous efforts and the use of various cellular molecular, functional and genetic approaches 

to further unravel how synaptic heterogeneity in the brain is causing the I/E imbalance. A crucial 

step will be to define the onset and the time-course of I/E imbalances throughout animal’s life, 

Figure 31: Scheme representing the effects of Il1rapl1 deficiency on synaptic function and fear learning. A. 
In LA (left), Il1rapl1 deficiency leads to the target-specific disruption of excitatory synapse on principal 
cells. Excitatory synapses on interneurons and FFI are preserved. In BLA (right), excitatory synapses on 

principal cells were disrupted and FFI preserved. B. Target-specificity led to a local I/E imbalance in both LA 
and BLA. In LA, I/E imbalance led to a deficit in associative synaptic plasticity underlying the formation of 
the cued fear memory. In BLA, local I/E imbalance led to a lower activation of BLA principal cells following 

incoming information from ventral hippocampus and the consequent deficit in contextual fear memory 
expression. 
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as it may drive the development of targeted therapeutic interventions that would aim to 

intervene at periods when IL1RAPL1 is functionally more important. In the following paragraphs 

I’ll try to consider these points by opening some perspectives and proposing some experimental 

strategies combining behavioral, cellular, synaptic and molecular strategies.  

1 How and where does IL1RAPL1 absence impact the 

synapse? 

My work mostly concentrated on the in vivo consequences of IL1RAPL1 absence at both 

synaptic and behavioral levels. However, I didn’t further study the molecular mechanisms 

underlying IL1RAPL1 function in the brain. Indeed most experimental data on IL1RAPL1 function 

at the synapse have been obtained on in vitro neuronal cultures. The identities of the cellular 

and/or molecular mechanisms underlying IL1RAPL1 function at the synapse are still not 

completely understood, especially when taking into account the large synaptic heterogeneity in 

the brain. The next chapter aims at discussing how and where IL1RAPL1 absence leads to I/E 

imbalances in the brain. 

1.1 IL1RAPL1, a synaptogenic protein 

Understanding the precise role of a synaptic protein requires a fine understanding of the exact 

localization of the protein at the synapse. Thus, it is somehow surprising that no clear-cut 

consensus emerged yet about the cellular localization of IL1RAPL1. As stated in the introduction, 

IL1RAPL1 is expressed in several brain regions throughout the brain in both excitatory and 

inhibitory cells. Remarkably, it is still not clear if the protein product is present at both pre-and 

postsynaptic compartments. In neuronal cultures, over-expressed tagged IL1RAPL1 is highly 

enriched in postsynaptic compartments, particularly in dendritic spines (Pavlowsky et al., 2010b; 

Valnegri et al., 2011; Yoshida et al., 2011). One of these studies however does report a weak 

signal for IL1RAPL1 protein in axons but without further exploring this finding (Yoshida et al., 

2011). We have tried localizing endogenous IL1RAPL1 protein in brain slices but none of the 

currently available antibodies were capable of localizing it (data not shown). Further efforts 

were made by our collaborators in the Cochin institute (P. Billuart, M. Ramos) in order to 



101 
 

generate more specific IL1RAPL1 antibodies, using different epitopes. These attempts remained 

unsuccessful. Given the rather “artificial conditions” that were used in previous studies (over-

expression in cultured neurons) to determine the localization of IL1RAPL1, I would not yet 

consider IL1RAPL1 solely as a postsynaptic protein. 

1.1.1 Postsynaptic IL1RAPL1 mediates synapse 

formation/maintenance  

Recently a model has emerged where postsynaptic IL1RAPL1 is believed to mediate excitatory 

synapse formation by trans-synaptic interactions with presynaptic protein PTPδ. Indeed, 

interaction of presynaptic PTPδ with postsynaptic IL1RAPL1 in cultured cells leads to 

recruitment of pre- and postsynaptic partners (Valnegri et al., 2011; Yoshida et al., 2011) 

mediating synapse differentiation and formation. However, the exact molecular partners and 

signaling pathways that mediate postsynaptic spine formation are not clearly established. 

Following formation of the PTPδ/IL1RAPL1 complex, RhoGAP2 is recruited to the postsynaptic 

site and binds to IL1RAPL1 (Valnegri et al., 2011). Interestingly, a lot of ID-gene mutations are 

found in proteins of the family of small GTP-ases (Ba et al., 2013). RhoGAP2 inhibits Rac1 

activity, a protein involved in neuronal development and spine morphogenesis through effects 

on the actin cytoskeleton (Etienne-Manneville and Hall, 2002). However, this report didn’t 

address whether IL1RAPL1/RhoGAP2 interaction really leads to the inhibition of Rac1 pathway 

and how this could impact cytoskeletal organization. Interestingly, interaction of IL1RAPL1 with 

the newly characterized partner Mcf2l activates downstream RhoA/ROCK signaling cascade 

which has been shown to be important in cytoskeleton dynamics (Hayashi et al., 2013). 

Together, these results suggest that IL1RAPL1/PTPδ interaction recruits postsynaptic effectors 

that mediate cytoskeleton organization, a crucial step in the formation and morphology of 

dendritic spines (Govek et al., 2005). However, it is quite surprising that in vivo, in a more 

constraint environment, the density and morphology of dendritic spines was found to be 

roughly normal (but see mild effects found in (Pavlowsky et al., 2010b), suggesting strong 

functional redundancies. Interestingly, because of the aspiny or low-spiny nature of 

interneurons, one can imagine that the vulnerability of excitatory synapses onto these cells to 

IL1RAPL1 deficiency may be less important, thereby generating I/E imbalance. 
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The presynaptic compartment is also strongly enriched in actin cytoskeleton and undergoes 

strong remodeling during synaptic formation and elimination. Thus, if IL1RAPL1 localizes 

presynaptically it could potentially impact actin cytoskeleton organization at the presynaptic 

compartment. However, because of the presynaptic localization of PTPδ, this is unlikely to occur 

through formation of a transsynaptic IL1RAPL1/PTPδ complex. The increasing evidence of 

IL1RAPL1/PTPδ in synapse formation urges researchers to develop tools that would allow 

imaging this complex at more integrated levels to confirm in vitro findings (but see (Yoshida et 

al., 2011)). Indeed, the precise cellular and synaptic distribution of PTPδ and IL1RAPL1 protein in 

vivo is still lacking, which makes it difficult to know how and where PTPδ/IL1RAPL1 complex 

could be formed. This could potentially be achieved by creating transgenic mouse lines where 

both PTPδ and IL1RAPL1 would be fused to fluorophores. However, creating double transgenic 

mouse lines is energy consuming and not easy to achieve. Recently, a technique was developed 

that allows mapping synaptic connectivity in the brain called GRASP (GFP reconstitution across 

synaptic partners). This technique is based on the functional complementation between a pre-

and postsynaptic partner, each of them being fused with a solely non-functional GFP fragment. 

Upon close apposition, fluorescence is recovered and synaptic connectivity can be imaged.  

Expression of the pre-and postsynaptic fragments is achieved by genetic interventions 

combining in utero electroporation and Cre-Lox technology (Kim et al., 2012). However, because 

this technique uses over-expression manipulations, using proteins with possible synaptogenenic 

properties (as PTPδ and IL1RAPL1) could lead to artifacts that don’t reflect the endogenous role 

of the transsynaptic complex in vivo.  

At the postsynaptic site, IL1RAPL1 interacts with PSD-95 whose recruitment to the PSD is 

regulated by JNK activity (Pavlowsky et al., 2010b). PSD-95 interacts with a lot of postsynaptic 

scaffold proteins and loss of interaction with IL1RAPL1 could potentially disrupt general 

organization of the PSD by altering the distribution and function of others scaffold proteins of 

the PSD, leading to deficits in general function/anatomy of the postsynaptic site. Interestingly, 

PSD-95 interacts with NR-2 subunit of NMDA receptors thereby controlling its dynamics (Kornau 

et al., 1995), suggesting that Il1rapl1 deletion could disrupt excitatory transmission. In addition, 

interaction of IL1RAPL1 with MCF2L seems to promote AMPA receptor dynamics at the 
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postsynaptic site, leading to the insertion of GluA2/A3 subunit-containing AMPA receptors at 

the synapse. This insertion was shown to depend on Mcf2l/RhoA/ROCK pathway (Yoshida et al., 

2011). Taken together, these results suggest that Il1rapl1 mutation could lead to deficits in basal 

excitatory synaptic transmission by impacting glutamate receptor dynamics. This is an important 

issue as I observed that AMPAR-mediated excitatory transmission was affected at some long-

range projections in Il1rapl1-deficient mice (Pavlowsky et al., 2010b).  

In conclusion, IL1RAPL1 interacts with post-and transsynaptic effectors to mediate spine 

formation and/or maintenance possibly through actions on the actin cytoskeleton or general 

organization of the PSD. The absence of IL1RAPL1 would then disturb these processes leading to 

morphological abnormalities in dendritic spines. An important question is to understand if the 

heterogeneity in the impact of Il1rapl1 deficiency onto spine morphology is resulting from 

IL1RAPL1 itself (various expression levels of IL1RAPL1 or of some important partners) or from 

heterogeneous expression of redundancy mechanisms. This would be not so surprising when 

considering the large number of protein/protein interactions contributing to synaptogenesis. 

1.1.2 Heterogeneity defines vulnerability to IL1RAPL1 absence 

What are the mechanisms governing the specific vulnerability of excitatory synapses of Il1rapl1 

mutation? We excluded that this could result from a differential expression of Il1rapl1 between 

principal cells (affected synapses) and interneurons (unaffected synapses) using in situ 

hybridization. As mentioned above, a more likely possibility resides in the fact that excitatory 

synapses on principal cells and interneurons differ in their anatomical properties, the molecular 

mechanisms leading to synapse formation, and their molecular equipment once formed. While 

the molecular partners leading to excitatory synapse formation on glutamatergic cells are 

starting to be well documented, little is known about mechanisms of excitatory synapse 

formation in interneurons. Recently however, it was shown that the postsynaptic protein Erbin 

interacts with a specific isoform of a TARP protein controlling AMPA receptor trafficking and 

insertion in cortical interneurons (Tao et al., 2013). This led to the formation of excitatory 

synapses with recruitment of AMPA receptors and this effect was only observed on 

interneurons and not principal cells. Thus, the specific expression of particular subtypes of 



104 
 

AMPAR scaffolds in interneurons and not principal cells could lead to synaptic specificity. 

Another report highlights the role of NRG-1 (neuregulin), a neurotrophic factor, in binding ErbB4 

receptor to mediate synaptogenesis on interneurons specifically, possibly through stabilization 

of PSD-95 (Ting et al., 2011). Both these reports show that excitatory synapse development on 

interneurons depends on specific interactions that are not present on glutamatergic cells, 

proving the diversity in mechanisms leading to synapse formation. Beyond the diversity in genes 

mediating synaptic formation, many splice variants were shown to occur in genes involved in 

synaptogenesis (Craig and Kang, 2007), providing an additional level of complexity in synaptic 

formation and specificity. Interestingly, interaction of presynaptic PTPδ with postsynaptic Slitrk3 

protein is important in mediating inhibitory synapse development (Takahashi et al., 2012). An 

interesting question would be to know of PTPδ/IL1RAPL1 and PTPδ/Slitrk3 interactions compete 

to generate correct excitatory/inhibitory synapse development. Interestingly, PTPδ contains 

three spliced exons in the extracellular Ig-like domains and splicing of these exons in the meA 

and meB positions regulate interaction with IL1RAPL1 (Yoshida et al., 2011). Thus, it is possible 

that differential splicing of presynaptic PTPδ in GABA-ergic versus glutamatergic axons 

contributes to selectivity in partner binding and function, similar to what is observed in 

neurexins (Aoto et al., 2013).  

Whether IL1RAPL1 could be involved in excitatory synapse formation of interneurons remains 

unstudied, but it seems that consequences of Il1rapl1 removal are specific to excitatory 

synapses of spiny glutamatergic cells. An intriguing question would be whether Il1rapl1 

mutation would also impact excitatory synapses on spiny interneurons, as some interneurons 

do possess those specialized structures, for example the medium spiny neurons (MSNs) of 

striatum. This issue could be resolved by looking at electrophysiological and morphological 

characteristics of these neurons using a similar strategy as the one used in the publication 1, 

namely by using GAD67-eGFP reporter line to record from interneurons. 

In conclusion, these results suggest the mechanisms regulating synaptogenesis are highly 

heterogeneous and that some synapse specificities exist between principal excitatory and local 

inhibitory interneurons. Taken together, the examples discussed above suggest that 

heterogeneity can have both pre-and postsynaptic origins. However, most currently available 
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experimental evidence suggests that synaptic heterogeneity is mostly expressed at the 

postsynaptic level. Because of this strong postsynaptic heterogeneity, synaptogenic proteins like 

IL1RAPL1 could possibly act specifically at certain synaptic types. Consecutively, during early 

synaptogenesis, the synaptic contact with the axon would not be correctly made, leading to 

irreversible deficits in long-range wiring and loss of afferents on certain brain regions. Thus, the 

use of tools that allow characterizing full-brain connectivity in ID mouse models can be 

essential. Recently, a technology called CLARITY has been developed that allows looking at 

global brain connectivity in mouse brains (Chung and Deisseroth, 2013). In theory, comparing 

Il1rapl1 KO brains with WT brains could reveal some deficits in connectivity between brain 

regions, an information that could then be used to target the next region of the brain that one 

can explore at functional as well as behavioral levels. 

Crucial information is missing in our current knowledge of the impact of Ilrapl1 deficiency at 

synaptic level: the intimate morphology of the synaptic compartments. Electron microscopy 

(EM) has proven to be effective in finding morphological and functional differences between 

different synapses. Indeed, electron microscopy allows visualizing small structures like the PSD, 

the active zone and small organelles with very high resolution. Also, it differentiates between 

symmetrical and asymmetrical synapses allowing distinguishing excitatory and inhibitory 

synapses. To me, it seems essential to use this technique to study the consequences of 

IL1RAPL1 removal on synaptic function and morphology at different synaptic levels. Most 

importantly, EM could potentially provide some information on the exact synaptic localization 

of IL1RAPL1 and provide the first evidence for a potential heterogeneous distribution of 

IL1RAPL1 depending on the synapse type studied. To me, EM studies would then be coupled to 

immune-localization (with gold particles) of particular IL1RAPL1 partners or important synaptic 

proteins, and/or cellular determination of the pre/postsynaptic compartments by the use of 

fixable EM labeling. In this line, it is encouraging that the deficit in excitatory synapses in 

hippocampus following IL1RAPL1 removal was also found in EM sections of KO mice (Pavlowsky 

et al., 2010b). 
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1.1.3 Does IL1RAPL1 have a presynaptic function? 

While a lot of data point for a role of IL1RAPL1 in synapse formation mainly through trans-and 

postsynaptic effectors, few data currently exists for a presynaptic role of IL1RAPL1. The 

currently available data suggest that IL1RAPL1 could be involved in both the building up 

(Yoshida and Mishina, 2008) of the presynapse and in the regulation of synaptic transmission 

(Gambino et al., 2007). However, strong evidence for this is still lacking mainly because of the 

lack of studies in which sole presynaptic Il1rapl1 expression was manipulated. In vitro 

electrophysiology allows assessing some presynaptic properties. For example, paired pulse ratio 

(PPR) is a parameter that is calculated by making a ratio between the amplitudes of two 

postsynaptic responses induced by two closely (50ms) separated presynaptic stimulations and 

informs on the release properties of presynaptic terminals. PPR can be facilitating, meaning the 

amplitude of the second response is bigger than the first one or depressing when the amplitude 

of the second response is smaller. For example, thalamo-LA and cortico-LA afferents have 

different presynaptic properties illustrated by different PPR values (Humeau et al., 2005). The 

mechanisms underlying release probability are thought to be essentially presynaptic and are 

mediated by concentration of calcium ions in the presynaptic terminal. The residual calcium 

hypothesis states that during the second stimulation, vesicle-mediated neurotransmitter release 

is increased leading to facilitation (Zucker and Regehr, 2002). Interestingly, we detected strong 

alteration of the PPR at Cortico-LA synapses of Il1rapl1-deficient mice (manuscript in 

preparation), suggesting that some presynaptic properties may be affected. In this line, 

presynaptic, PKA dependent Cortico-LA LTP was also abolished (manuscript in preparation), 

whereas the control of spontaneous fusion events remained unaffected. Thus, direct or indirect 

consequences of IL1RAPL1 deficiency may exist at the presynaptic level.  

Further characterization of the possible role of IL1RAPL1 in presynaptic function would require 

the use of experimental approaches that allow removing the protein in the presynaptic 

compartment only. In cultured neurons, this can be achieved by recording pairs of cells with WT 

or KO genotypes using fluorescent reporter lines: for example, by using crossings of Il1rapl1 KO 

mice with X-GFP mice, WT cells can be identified by GFP expression. Then, the recording all four 

combinations of KO and WT cells as pre-synapse or post-synapse allow understanding in which 
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synaptic compartment a given protein plays a functional role. However, cultured cells do not 

reproduce the complexity of neural circuitry in the brain and it is possible that this strategy 

would not unveil the entire repertoire played by the protein in vivo. Alternatively, the use of 

Cre-lox technology allows the suppression of the protein in brain regions of interest resulting in 

the absence of the protein in the soma but also in axonal terminals. Then, by looking at a 

particular projection in the brain, one can easily study the presynaptic role of the protein. 

However, this requires the creation of a transgenic mouse line where the Il1rapl1 gene 

mutation would be flanked by loxP sites, a mouse model that was not available during my PhD. 

Recently, in a collaborative study, I used this approach to study the consequences of the 

absence of ID-related protein ATP6AP2 at both pre-and postsynaptic compartments. There, we 

used hippocampo-BLA projections as a synaptic model (data not shown). To achieve this, 

ATP6AP2 was removed pre (in vHPC) or postsynaptically (in BLA) by Cre-dependent viruses and 

hippocampo-BLA currents were evoked by optogenetics as previously described. Thus, this 

strategy allowed me to specifically record for the consequences of pre-or postsynaptic absence 

of this ID-related protein in a preserved adult neuronal circuit. The same strategy could be soon 

be reproduced using floxed-Il1rapl1 mice that will be shortly available in the lab, and would 

finally demonstrate if IL1RAPL1 exerts a role at some presynapses.  

1.1.4 A proteomic approach to study the consequence of IL1RAPL1 

absence at the synapse 

The absence of I1rapl1 in the brain and more particularly at the synapse could potentially 

perturb several interactions with identified or yet to be discovered protein partners. As a 

consequence, the quantity of certain proteins could change in Il1rapl1-deficient mice, 

participating to the pathophysiology of this ID gene. Alternatively, the absence of IL1RAPL1 

could also lead to the activation of compensatory mechanisms that counterbalance IL1RAPL1 

deficiency by regulating the levels of redundant proteins. In order to identify possible 

consequences of IL1RAPL1 absence on synaptic protein levels we used a proteomic approach to 

test for protein levels between Il1rapl1 KO and WT animals. To isolate synaptic compartments, 

we prepared synaptosomes of Il1rapl1 KO and WT mice brain homogenates. Synaptosomes are 

functional synaptic particles consisting of a resealed presynaptic compartment and part of the 
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postsynaptic element that can be obtained following fractionation of mouse brain tissue. They 

have allowed unraveling a number of mechanisms regulating synaptic function and stability, 

mainly through the identification of proteins through proteomic determination. However, a 

major problem resides in the fractionation methods that often lead to a contamination of the 

neuronal fraction with glial and non-neuronal particles. Recently however, an amelioration of 

the purity of the synaptosomal fraction was obtained by sorting GFP-expressing synaptic 

particles. This technique, called FASS (Fluorescence Activated Synaptosome Sorting), is based on 

the sorting of Venus-positive synaptosomes that have been obtained from a VGLUT1-Venus 

mouse using FACS technology (Biesemann et al., 2014). Thus, this technique allows the isolation 

of the main glutamatergic (VGLUT1-positive) synapses in the mouse brain.  

Synaptosomal preparations were submitted to different treatments in order to isolate synaptic 

proteins. Then, proteins of both KO and WT samples were submitted to mass spectrometer 

chromatography in order to identify proteins that could be up or down-regulated following 

removal of IL1RAPL1. Using this technique, we have identified about 113 candidates that were 

significantly up or down regulated in Il1rapl1 KO mice (Figure 32). I regrouped these proteins in 

categories reflecting their biological function at the synapse. These categories include: 

cytoskeletal organization, cell adhesion, transmembrane transporter activity, signaling, vesicle 

mediated transport, protein binding, neurotransmitter secretion and metabolic processes 

(Figure 32).  

Several findings emerged from this: we observed an up-and down-regulation of several proteins 

involved in cytoskeletal organization, a down-regulation of several proteins involved in 

neurotransmitter release as well as in protein regulating endocytosis and finally a down 

regulation of few proteins involved in organization of the PSD. Taken together, these first results 

confirmed previous reports, including ours, showing a role of IL1RAPL1 in the 

organization/morphology of the pre-and postsynaptic compartment and in synaptic function in 

general, and suggest that the chronic absence of IL1RAPL1 could potentially interfere with all 

these biological processes. Each particular case cannot be discussed here. I choose to discuss a 

few examples that make sense regarding previous reports about Il1rapl1 deficiency phenotypes.  
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Surprisingly we observed a strong upregulation (more than tenfold) of GluR3 subunit of AMPA 

receptors. Interestingly, GluR3 is located on the X chromosome and mutations have been found 

in patients with ID (Wu et al., 2007). However, the precise role of this subunit in AMPAR 

function remains unclear and electrophysiological recordings in CA1 region of hippocampus 

(Meng et al., 2003) or in LA (Humeau et al., 2007) did not reveal strong abnormalities in GluR3 

KO mice. Moreover, GluR3 KO mice did not show behavioral abnormalities to both cued and 

contextual fear (Humeau et al., 2007) with only a delay in the appearance of the freezing 

response during the acquisition session, thereby mimicking the Il1rapl1 phenotype. 

Interestingly, a deficit in LTP at Cortico-LA synapses is also seen in GluR3 KO mice, as in GluR1 

KO mice and Il1rapl1 KO mice (Humeau et al., 2007) (data not shown). Recently, the 

IL1RAPL1/MCF2L complex has been shown to be important for the insertion of GluR2/R3-

containing AMPA receptors (Hayashi et al., 2013). Unfortunately, we couldn’t identify RhoGAP2 

or MCF2L in our synaptosomal sorting, possibly because of technical limitations in retrieving 

soluble proteins in purified synaptosomes. Taken together, our results suggest a functional link 

between IL1RAPL1 and GluR3. However, results at different analytical levels are quite divergent, 

with up and down-regulation of IL1RAPL1 and GluR3 leading to similar consequences. Our 

current explanation is the fact that not all measurements examine the same cellular or 

subcellular compartments. For example, our proteomic approach purifies synaptic particles, 

thus the increase in GluR3 levels must be consecutive to an increase of GluR3 to the synaptic 

compartment. It has to be noted that all other subunits of AMPAR subunits were not up or 

down-regulated in Il1rapl1 KO preparations. Interestingly, AMPA and NMDA receptors have 

been shown to move from extrasynaptic sites to synaptic sites, a highly dynamic and regulated 

process (Groc and Choquet, 2006). Thus, the increase of GluR3 in synaptosomes could reflect an 

increase of GluR3 subunit from extrasynaptic sites to the PSD. Interestingly, whereas PSD95 

remained unchanged, two proteins of the PSD were shown to be strongly down-regulated in 

Il1rapl1 KO preparations. For example, we found a down-regulation of SAP-97, a scaffold 

protein that is important for dynamics of AMPA glutamate receptors (Howard et al., 2010) and 

has been shown to interact with IL1RAPL1 (Pavlowsky et al., 2010b). Interestingly, we also 

observed a strong down-regulation of the olfactomedin-1 protein which has been shown to 
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interact with AMPARs subunits, amongst which GluR2. Although the mechanisms by which 

olfactomedin-1 regulates AMPARs function and/or dynamics remain unknown, it would sure 

deserve to be looked into. Surrounding teams in the institute have developed tools to track the 

dynamics of the different subunits of AMPA receptors (Groc and Choquet, 2006), and will soon 

be used to resolve AMPARs dynamics in absence of IL1RAPL1. It will be of particular interest to 

analyze the AMPAR dynamic in both principal cells and interneurons, as a differential change in 

the dynamic of AMPAR in both cell types could potentially lead to the I/E imbalance in Il1rapl1 

KO mice. 

Regarding the proteins involved in cytoskeletal organization, about half of them were up- 

regulated and the other half down-regulated, yet not allowing to let emerge any conclusion. 

However, in line with reported effects of Il1rapl1 deficiency onto dendritic spine density and 

morphology it suggests that modifications in molecular cascades controlling synaptic 

morphology occurs in Il1rapl1 KO mice. Interestingly, we observed a down regulation in a lot of 

proteins involved in endocytosis, amongst which we identified amphyphysin and endophilin A1. 

Endocytosis plays a crucial role in both the recycling of vesicles at the presynaptic terminal but 

also in the dynamics of AMPA and NMDA receptors at the postsynaptic compartment. Thus, 

deregulation of endocytosis in Il1rapl1 KO mice could potentially disturb these processes and 

impact neurotransmitter release.  

Interestingly, two well-known presynaptic proteins, synapsin 1 and 2 were shown to be down-

regulated in Il1rapl1 KO synaptosomes. Synapsins are thought to be important actors in the 

regulation of synaptic vesicle pools at the presynaptic terminal by tethering them to the actin 

cytoskeleton (Cesca et al., 2010). Mutations in synapsins cause hyper-excitability of networks 

and lead to epilepsy and more recently a mutation in Syn1 was shown to be associated with ASD 

(Fassio et al., 2011). Recent work realized in our lab for a collaborative study has started 

addressing the synaptic consequences of Syn1 absence in LA. Using Syn1/GAD67eGFP mice, E. 

Lugara, a master student from F. Benfenati lab (IIT, Italy) analyzed evoked excitation of LA 

principal and interneurons following stimulation of both thalamic and cortical projections. 

Although preliminary, an I/E imbalance seems to be present at these long range projections, a 

phenotype that resemble the one observed in Il1rapl1 KO mice.  
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Although very preliminary, our proteomic data combined with the available functional data of 

IL1RAPL1 points to an important role of IL1RAPL1 in both pre- and postsynaptic compartment at 

both morphological and functional levels. More interesting are the potential roles of IL1RAPL1 

in the control of dendritic spine dynamic/morphology (actin cytoskeleton), presynaptic vesicular 

dynamic (endocytosis, reserve pool), and AMPAR trafficking (PSD, GluRs subunits). The impact 

onto these key synaptic phenomena will have to be addressed in a cell specific manner, as 

IL1RAPL1 must act differentially in principal cells and interneurons. In the near future we are 

planning on realizing western blots on purified synaptosomes to confirm the findings we 

obtained by proteomics (Figure 32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 32: A. Scheme representing the strategy to purify synaptosomes from Il1rapl1 KO/WT x vGlut1-Venus 
mice. On top left is represented the brain of a vGlut1-Venus mice. The Western Blot confirms the absence of 

IL1RAPL1 protein in Il1rapl1 KO/vGlut1-venus mice. Synaptosomes were prepared from fractionation of brain 
homogenates. FACS analysis of the synaptosomal preparation revealed two clear populations of particles 

(Venus+ in green and Venus- in blue). FASS sorting led to a very pure preparation as seen by the sorting profile. 
FASS-sorted Venus+ samples were submitted to mass spectrometry to test for protein levels in Il1rapl1 KO 

animals. We identified 1572 protein, 48 were down regulated and 65 up regulated in Il1rapl1-deficient 
preparations. 
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2 When is IL1RAPL1 important at the synapse? 

During development, neural circuits are established with extensive remodeling of synapses. 

Most in vitro evidence for IL1RAPL1 in synaptic formation was realized on neuronal cultures 

taken and prepared from young mice. In contrast, most of my results were realized on adult 

mice, a period where brain development is complete. However, morphological remodeling of 

synapses and synaptic turnover also occur at later stages throughout life. Indeed, synapses have 

been shown to appear and disappear following learning and memory processes and experience-

dependent synaptic plasticity (Holtmaat et al., 2008). Thus, knowing whether IL1RAPL1 could 

alter spine dynamics in vivo during adult life is an essential question we would like to answer in 

the future. 

Therapeutic interventions have more chances of success if they correct the deficits at 

temporally relevant times. The finding that we could rescue contextual fear memory expression 

in Il1rapl1-deficient animals is particularly fascinating because it supposes that some cognitive 

deficits in ID could be corrected after the initial formation of memories, more specifically during 

their retrieval and behavioral expression. Although I was able to rescue behavioral deficits in 

Il1rapl1 KO mice, possibly by restoring I/E imbalance, the most convincing way of proving the 

causal role of a protein in behavioral deficits is to reintroduce it in vivo and test if behavior can 

be normalized. In the near future, we’ll plan to reintroduce protein constructs of functional 

IL1RAPL1 by stereotaxy in different brain regions of interest. By reintroducing IL1RAPL1 in vivo, 

we could potentially make more causal links with the absence of the protein in particular brain 

regions and the observed behavioral deficits. For example, we could test whether injecting 

IL1RAPL1 in BLA is sufficient to restore contextual fear memory expression. Similarly, 

reintroducing IL1RAPL1 in different regions of hippocampus could potentially unveil some 

upstream dysfunctions in hippocampal function during contextual fear expression. In parallel we 

will inject different mutant versions of IL1RAPL1 lacking some functional important domains to 

further explore and dissect how IL1RAPL1 structure relates to its synaptic function. 
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2.1 Consequences of IL1RAPL1’s absence on information 
processing and behavior? 

It remains to be studied whether other forms of learning or memory are impaired in Il1rapl1-

deficient mice and if this can be linked with local I/E imbalances. ID and ASD patients often 

show impairments in social interactions (Baroncelli et al., 2011; Gatto and Broadie, 2010) and 

recently a report has shown that strong optogenetic excitation of mPFC neurons leads to 

deficits in social interactions. Thus, I/E imbalance in mPFC is crucial for appropriate social 

behavior (Yizhar et al., 2011). Interestingly, excessive excitation is a common feature in a lot of 

ASD models and explains certain cognitive deficits. Il1rapl1 mutation in humans can lead to ASD 

(Piton et al., 2008) but until now nobody has addressed whether Il1rapl1 KO mice also present 

some forms of social interaction deficits. A more thorough behavioral screening of Il1rapl1 KO 

mice seems necessary. It would be interesting to record for I/E balance in mPFC possibly linking 

it with social behavior. However, the report of Yizhar et al. supports that excessive excitation 

underlies social interactions when we report a loss of excitatory transmission at long-range 

projections. It remains to be studied if decrease in excitation can lead to social interaction 

deficits. 

Working memory is another important aspect of cognitive abilities. It is defined by the capacity 

of the brain to store information for short period of time. Short term spatial working memory is 

highly dependent on mPFC and synchronized activity between mPFC and hippocampus (O’Neill 

et al., 2013). Keeping in mind that Il1rapl1 KO mice present a small reduction in spine density in 

hippocampus and in cortical structures, deficits in spatial working memory are likely to emerge 

in this mouse model. Thus, it would be interesting to submit Il1rapl1 KO mice to spatial working 

memory tasks and try to record for I/E balance in relevant brain structures, eventually making 

links with synaptic- and cognitive dysfunctions. 

2.1.1 In vivo imaging as a tool to study synapse dynamics 

The development of two-photon laser-scanning microscopy in the living brain (Grienberger and 

Konnerth, 2012) has allowed unprecedented high-resolution imaging of the structural dynamics 

of synapses.  Indeed, it allowed the chronic monitoring of the same portion of dendrite in the 
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living animal over periods of weeks to months without the need for repeated invasive surgery. 

We have recently implemented this technique in the laboratory which would allow us to study 

spine dynamics over long periods of time and at different developmental stages throughout the 

life of Il1rapl1-deficient mice. In vivo imaging becomes really fascinating when coupled to 

behavior. Indeed, a recent study has shown that pyramidal neurons of layer V in the FrA region 

of the prefrontal cortex showed spine dynamics following learning and extinction of fear 

conditioning in mice(Lai et al., 2012). Thus, we have the ambition to study the impact of fear 

conditioning on spine dynamics in cortical structures of Il1rapl1-deficient mice. However, these 

techniques possess the main disadvantage of being limited in depth. As a consequence, only 

superficial layers 2/3 (L2/3) of cortical structures are usually imaged in vivo. Nonetheless, L2/3 

synapses are thought to be critical for learning new skills (Huber et al., 2012; Komiyama et al., 

2010). In addition, because of the ubiquitous expression of Il1rapl1 in the cortex and the high 

order cognitive deficits in ID patients, pathological consequences of IL1RAPL1 absence are likely 

to emerge in these structures too.  

Recently, a report has benefited from the recent development of genetically-encoded calcium 

indicators to look at neuronal ensemble activity in the somatosensory cortex of Fmr1 KO mice 

by combining in vivo two photon calcium imaging and electrophysiology (Gonçalves et al., 

2013). They showed that cortical networks are hyper-excitable in a brain-state dependent 

manner during a critical period of experience-dependent synaptic plasticity, possibly explaining 

some behavioral deficits. Surely, the comprehension of ID would benefit from the 

implementation of these techniques in mouse models. In this line, neighboring mPFC neurons of 

Fmr1 KO mice were hyper-connected during a critical period in early development of mPFC 

(Testa-Silva et al., 2012). Thus, in vivo imaging can be used to image synapse dynamics during 

behavior but also to study global connectivity in brain regions of interest. 

2.1.2 Catching behaviorally relevant cells 

When trying to establish a link between synaptic and neuronal function and learning and 

memory events, an important source of cellular heterogeneity in the neuronal populations is 

their actual contribution – or not - to this information coding. Episodic and contextual memories 
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can be retrieved months and years after they have been formed. During retrieval of memory, it 

is believed that there is a reactivation of neurons that were activated during memory formation 

(Tayler et al., 2013). Indeed, during learning a subset of neurons store the memory trace (also 

called the memory engram) and reactivation of these cells is necessary for expression of 

behavior (Reijmers et al., 2007). When animals are re-exposed to a fearful context, BLA 

neuronal ensembles that were activated during learning are recruited during re-exposure 

(Nonaka et al., 2014). Similarly, in the dorsal dentate gyrus of hippocampus, optogenetic 

activation of cells that were previously recruited in the memory trace was sufficient to induce 

fear expression (Liu et al., 2012). Knowing where, how and when memory traces are stored and 

recalled is an essential question in neuroscience and particularly in the context of ID. Indeed, 

this approach could allow us to restrict our observations and manipulations to physiologically 

relevant cells and refine our knowledge about the ID-genes in learning and memory. 

Recently, it was also shown that BLA neurons show output specificity to the mPFC and that this 

defined their behavioral role (Senn et al., 2014). Indeed, BLA cells projecting to PL were shown 

to be preferentially active during high fear while BLA cells projecting to IL are recruited during 

extinction. An intriguing question would be to know whether BLA-projecting cells to PL are also 

preferentially recruited by vHPC during high states of fear. This could potentially be answered 

by combining retrobeads injections in mPFC (IL and PL) and some optogenetic stimulation of 

hippocampal projections in BLA. Injected retrobeads are taken up by the axonal terminals and 

travel back to the soma, allowing patching selectively BLA-projecting cells to mPFC.  

I successfully used this strategy to answer a specific question: because Il1rapl1 KO animals 

presented deficits in contextual fear memory expression I tested whether BLA principal cells 

that received hippocampal inputs were also preferentially connected to PL. To achieve this, 

retrobeads were injected in both PL and IL part of mPFC to assess whether BLA-projecting cells 

could be differentially connected to vHPC and if they showed different characteristics in Il1rapl1 

KO and WT animals. No difference was detected between the two BLA cell populations 

(projecting to IL VS PL), in both genotypes. However, this strategy was validated in the lab and 

will be used in the future to improve the postsynaptic specification in vivo. In line with this, 

comparing retrobeads-positive and retrobeads-negative cells in BLA by stimulating hippocampal 
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projections didn’t reveal a difference between the two populations (Hübner et al., 2014). Thus, 

it doesn’t seem that BLA projecting cells to PL and IL are differentially connected by vHPC. 

Several strategies allow the labeling of activated cells during certain phases of behavior. Most of 

them are based on the fact that learning and memory induce expression of immediate early 

genes (IEG) like c-Fos, Arc… Recently, a technique was developed that allows identifying 

physiologically relevant neurons several days or weeks after their stimulus dependent activation 

(during memory formation, retrieval…). This technique is based on the use of a newly developed 

mouse line where the tetracycline transactivator (tTA) protein is under control of the immediate 

early gene c-Fos promoter. During neuronal activation (c-Fos activation), tTA is produced and 

will specifically bind on TetO sequences on the genome, allowing expression of a downstream 

functional protein – opsin - or fluorescent reporter (Liu et al., 2012; Tayler et al., 2013). TetO 

constructs can be delivered in specific brain areas through localized injections (Liu et al., 2012) 

or by crossing mice with TetO transgenic animals (Tayler et al., 2013). To restrict tTa production 

to physiologically relevant time-windows, animals are submitted to a special food diet. When 

doxycycline is added to the food, there is inhibition of tTA binding to TetO sequences and 

removing doxycycline treatment opens a time window allowing the tagging of activated neurons 

during a particular moment of learning. Putting the animals back on doxycycline closes the 

window, avoiding any unspecific labeling. 

This particular model could be very useful to label cells that were specifically activated during 

contextual re-exposure in Il1rapl1 KO mice. Indeed, although we proved the efficacy of 

hippocampo-BLA fibers in regulating contextual fear expression intensity, our optogenetic 

stimulation protocol stimulated all Chr2-expressing fibers. However, in vivo, only a small 

proportion of caudal CA1 cells is reactivated during contextual re-exposure (Tayler et al., 2013). 

It would be particularly interesting to know if the manipulation of projections originating from 

the activated cells only is sufficient for restoring contextual fear memory. This would require 

breeding Il1rapl1 KO mice with cFos-tTA mice and to infect caudal hippocampus with a TetO-

Chr2 construct. Then, by relieving doxycycline treatment during contextual fear memory 

expression, cFos would be limited to the cells that are reactivated during the test leading to 

Chr2 expression in specific cellular types. cFos-tTA mice could also be particularly useful to 
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perform ex vivo recordings of cells involved in a particular behavioral phase (fluorescent 

labeling). Indeed, behaviorally activated cells often show different molecular and 

electrophysiological properties compared to non-activated cells (Zhou et al., 2009). Thus, 

recordings from behaviorally relevant cells will be a necessary step to understand how ID gene 

mutations impact integrative neuronal properties. 

  



118 
 

X) Conclusion 

During my PhD thesis I have shown that absence of the synaptic protein IL1RAPL1 leads to 

target-specific disruption of excitatory synapses on principal cells leading to local I/E imbalances 

in amygdala. Interestingly I/E imbalances in LA and BLA impacted both memory formation and 

expression of previously formed memories, providing strong links with synaptic function and 

cognition. Most importantly, my work highlights the heterogeneous vulnerability of synapses 

induced by the absence of IL1RAPL1 depending on the identity of the postsynaptic cell (principal 

vs. interneuron). Indeed, synaptic heterogeneity contributes to cognitive fitness of individuals 

and many behavioral features of ID are likely to result from specific alterations in neural circuits. 

Both pre-and postsynaptic compartments are highly heterogeneous in their molecular 

composition suggesting that the absence of many other synaptic proteins could affect brain 

function differentially depending on the studied synaptic structure. In the future, efforts should 

be made in the study of all cellular and/or synaptic types at integrated levels in ID animal 

models, as this is probably the best strategy to link cognitive abnormalities with synaptic 

dysfunctions. This will require the development of tools that allow discriminating between 

synaptic types. Continuous efforts will also have to be made in the identification of interacting 

partners of IL1RAPL1 and the signaling pathways mediated by these interactions. Signaling 

pathways are still the main target for therapeutic interventions and their comprehension is 

crucial for the understanding of disease. IL1RAPL1 is believed to be important for 

synaptogenesis during development of the brain but whether this also holds for synaptic 

remodeling in adult life remains unknown. Altogether, my work opened some intriguing 

questions that will have to be answered in the future for a more comprehensive understanding 

of IL1RAPL1 at the synapse. 
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