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General introduction

In 1924, in three pioneering articles, Bose and Einstein showed that identical ideal bosons
form a macroscopic quantum phase when the temperature is low enough that their wave-
functions start to overlap (Bose, 1924; Einstein, 1924, 1925). In this phase, since then
known as a Bose–Einstein condensate, bosons are collectively described by a single wave-
function, that minimises their energy. Between this prediction and the first observation
of a Bose–Einstein condensate in a cold-atom experiment seventy years later (Anderson
et al., 1995), theoretical tools that characterize the zero-temperature behaviour of non-
ideal, weakly-interacting Bose–Einstein condensates became available (Gross, 1961, 1963;
Pitaevskii, 1961). However, no theory currently describes the Bose gas in the regime where
the interactions between bosons are resonant, a situation called unitarity, in which atomic
gases suffer severe three-body losses (Rem et al., 2013) that hinder their observation.

Nonetheless, at unitarity, systems of three bosons are known to exhibit a surprising
Borromean behaviour: although two of them cannot bind, they form an infinite sequence
of asymptotically universal trimer Efimov states (Efimov, 1970, 1971, 1979). These states
remain elusive in experiments, but they were indirectly observed through the severe three-
body losses that make the unitary Bose gas unstable (Kraemer et al., 2006; Zaccanti et al.,
2009; Pollack et al., 2009). It was later shown (von Stecher et al., 2009) and observed
(Ferlaino et al., 2009) that, at unitarity, groups of four particles form states bound by
the same effects as Efimov trimers, and clusters of up to 13 particles were found in nu-
merical simulations at zero temperature (von Stecher, 2010). However, the many-body,
thermodynamic behaviour of such cluster states has remained unknown.

This thesis is devoted to the study of the Bose gas with strong interactions using the
quantum path-integral Monte Carlo simulation method, that, in the past, successfully
addressed systems such as superfluid helium (Ceperley, 1995) and atomic Bose–Einstein
condensates in the weakly-interacting regime (Krauth, 1996). The first chapter introduces
concepts essential to this method, and consists in a description of the path-integral formal-
ism using the free Bose gas as an example, and of powerful tools addressing the interactions
between bosons.

7



8

The first results presented in this thesis were obtained in close collaboration with the
Lithium group of Laboratoire Kastler Brossel at École normale supérieure, directed by
Christophe Salomon, and in particular with his then PhD student Nir Navon. They concern
the first correction to the mean-field zero-temperature equation of state of the weakly-
interacting Bose gas, derived by Lee, Huang, and Yang in 1957. Both the simulations and
the experiment allowed to confirm the grand-canonical equivalent of the Lee–Huang–Yang
equation of state. The simulation also allowed to verify that the experiment was in the zero-
temperature regime. These results were the object of Publication 1, and are described in
Chapter 2, that starts with a recollection of scattering concepts and of mean-field theories
in the weakly-interacting regime.

The rest of this thesis deals with the regime of unitary interactions. Before tackling the
unitary Bose gas, it was necessary to make sure that Efimov trimers could be reproduced
in a simulation. This point is addressed in Chapter 3, that starts with a description of
unitary interactions and of how they can be modelled in a simulation, and in which the
Efimov effect is described both from a theoretical point of view and on the basis of the
results of the simulation. Chapter 4 describes a simulation of the unitary Bose gas, whose
results agree with theoretical predictions such as the virial equation of state, and provide
evidence for the existence of a new phase, the unitary Efimov liquid, which corresponds to
the above-mentioned clusters of unitary bosons. Both Chapter 3 and Chapter 4 were the
object of Publication 2.
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CHAPTER 1

Bosons in the path-integral formalism

As a computer performs only classical operations, it may seem challenging to account
for the indistinguishability of quantum particles in a simulation. It is possible to work
around this problem by mapping indistinguishable particles onto distinguishable particles,
an approach followed in quantum path-integral Monte Carlo simulations, which are based
on non-symmetrized many-body wave-vectors in place of the usual ones, symmetrized over
permutations of particles. For systems of identical bosons, the symmetrized wave-vectors
may be expressed in terms of the non-symmetrized ones as:

|x1,x2, . . . ,xN) =
1

N !

∑

P∈SN
|xP (1),xP (2), . . . ,xP (N)〉, (1.1)

where xi represents the position of particle i, and SN is the symmetric group of order N ,
that contains all permutations of N particles. For bosons, the symmetrized wave-vector
(on the left) is invariant when any two particles are swapped, but the non-symmetrized
wave-vectors (on the right) are not. These describe distinguishable particles.

Thus, a configuration of N identical quantum particles may be mapped onto a superpo-
sition ofN ! configurations of distinguishable particles. Quantum path-integral Monte Carlo
simulations work with such configurations, specified both by a permutation P and a set of
positions (x1, . . . ,xN). These simulations do not enumerate all possible permutations one
by one, which is practically impossible for a large number of particles. Instead, both po-
sitions and permutations are sampled using a Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970), that stochastically produces new configurations from existing
configurations. The sum on permutations in Eq. 1.1 is not performed explicitly, but as
part of the sum on realized configurations that allows to estimate the thermal averages of
physical observables.

In this first chapter, I first review basic concepts used in path-integral simulations
through the physics of the free Bose gas, and present Bose–Einstein condensation in terms
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12 CHAPTER 1. BOSONS IN THE PATH-INTEGRAL FORMALISM

of permutations. I then describe how interactions between particles may be introduced in
such a simulation.

1.1 Ideal Bose gas
In this first section, I provide a description of the gas of N identical ideal bosons of mass
m to illustrate the path-integral formalism. The Hamiltonian of this system is

Ĥfree =
N∑

i=1

P̂2
i

2m
, (1.2)

where P̂i is the momentum operator of boson i.

1.1.1 Free density matrix and permutations

The central role in path-integral Monte Carlo simulations is played by the the N -body
density matrix elements at inverse temperature β = 1/kBT , where kB is the Boltzmann
constant. They correspond to the probability of the configuration consisting in a given
permutation P and particles localized at positions (x1, . . . ,xN). These density matrix
elements are defined as

ρ(x1, . . . ,xN ;xP (1), . . . ,xP (N); β) = 〈x1, . . . ,xN |e−βĤ |xP (1), . . . ,xP (N)〉. (1.3)

For ideal bosons in free space, the Hamiltonian Ĥ equals Ĥfree, and the free density matrix
is a product of single-particle density matrices:

ρfree(x1, . . . ,xN ;xP (1), . . . ,xP (N); β) =
N∏

i=1

ρfree(xi,xP (i); β), (1.4)

where single-particle density matrices are given by (Krauth, 2006)

ρfree(x,x
′; β) =

(
m

2π~2β

)3/2

exp

[
−m(x′ − x)2

2~2β

]
. (1.5)

To describe a permutation P , it is useful to define permutation cycles. The length of the
permutation cycle in which particle i stands corresponds, starting from i, to the number
of iterations of P needed to find back particle i. As an example, if P (1) = 1, particle 1 is
in a permutation cycle of length 1, and if P (1) = 2, P (2) = 4, and P (4) = 1, particles 1,
2, and 4 are in a permutation cycle of length 3.

At high temperature, free bosons are in a classical gas phase, in which particles are
distinguishable: for all bosons, any situation other than xP (i) = xi is unlikely. At a lower
temperature, a macroscopic fraction of atoms starts to form permutation cycles longer
than 1, a phenomenon corresponding to Bose–Einstein condensation. At zero temperature



1.1. IDEAL BOSE GAS 13

β →∞, because ρfree(xi,xP (i); β) does not depend on xi and xP (i), we see from Eq. 1.4 that
the probability of a configuration neither depends on positions nor on the permutation,
and particles have the same probability to be in a permutation cycle of any length. Bose–
Einstein condensation is illustrated in terms of cycle lengths in Fig. 1.1 for ideal bosons in
a periodic box.

0 200 400 600 800 1000

l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
l

Figure 1.1: Number of bosons Nl in cycles of length l for 1000 ideal bosons in a periodic
box at constant density, obtained from a recursion formula (Landsberg, 1961). At high
temperature T/TBEC = 1.2 (brown line), long permutation cycles are unlikely. At the tem-
perature of Bose–Einstein condensation TBEC (red line), a macroscopic fraction of bosons
are in long cycles, and at T = TBEC/2 (yellow line), the probability distribution has shifted
towards its zero-temperature limit where it is equally likely for a boson to be in a cycle of
any length.

1.1.2 Path integrals

The concept of path integrals comes from the convolution property that the density matrix
satisfies for any value of τ ,

ρ(x1, . . . ,xN ;xP (1), . . . ,xP (N); β) (1.6)

=

∫
dx

(1)
1 . . . dx

(1)
N 〈x1, . . . ,xN |e−τĤ |x(1)

1 , . . . ,x
(1)
N 〉〈x

(1)
1 , . . . ,x

(1)
N |e−(β−τ)Ĥ |xP (1), . . . ,xP (N)〉

(1.7)

=

∫
dx

(1)
1 . . . dx

(1)
N ρ(x1, . . . ,xN ;x

(1)
1 , . . . ,x

(1)
N ; τ)ρ(x

(1)
1 , . . . ,x

(1)
N ;xP (1), . . . ,xP (N); β − τ).

(1.8)
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Using this relation, it is possible to introduce N(S − 1) additional degrees of freedom,
so that

ρ(x1, . . . ,xN ;xP (1), . . . ,xP (N); β) (1.9)

=

∫ S−1∏

s=1

dx
(s)
1 . . . dx

(s)
N

S−1∏

s=0

ρ(x
(s)
1 , . . . ,x

(s)
N ;x

(s+1)
1 , . . . ,x

(s+1)
N ; τS), (1.10)

with τS = β/S, x(0)
i = xi, and x

(S)
i = xP (i).

The successive positions x(0)
1 ,x

(1)
1 , . . . ,x

(S)
1 form an object called a path (continuous in

the limit S → ∞), indexed by a variable variable τ = sτS called the imaginary time.
The path integral consists in the sum on all paths performed in Eq. 1.10. In quantum
path-integral simulations, S is finite, and is called the number of imaginary time slices.

Using the Lévy construction (Lévy, 1940), free paths may be sampled directly, which
was done in Fig. 1.2, both for a configuration of one boson, and for a configuration of three
ideal bosons.

x

Position

0

β

Im
ag

in
ar

y
ti

m
e
τ

x

x1 x2 x3

Positions

0

β
xP (2) xP (1) xP (3)

Figure 1.2: Free one-dimensional path configurations for one particle (left) and three par-
ticles (right). In the three-particle configuration, particles 1 and 2 (resp. blue and red) are
in the same permutation cycle, while particle 3 (green) is alone in its permutation cycle.

From the free density matrix (1.5), we notice that, at inverse temperature β, the paths
of a single boson with xP (i) = xi span a scale given by the thermal de Broglie wave-length,

λth =

√
2π~2β
m

. (1.11)

As stated in Section 1.1.1 and illustrated in Fig. 1.1, Bose–Einstein condensation occurs
when long permutations become likely. Two bosons i and j are likely to be in the same
permutation when they are closer than the order of λth, so that paths originating in xi and
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ending in xj (and reciprocally) are likely to happen. Therefore, Bose–Einstein condensation
takes place at a constant value of nλ3th, where n is the particle density. An accurate
calculation (Feynman, 1972) yields a critical value λBECth such that

n
(
λBECth

)3
= ζ(3/2) = 2.612, (1.12)

where ζ is the Riemann zeta function. The critical value of the thermal de Broglie wave-
length λBECth can be translated into the critical temperature

kBTBEC =
3.315~2

m
n2/3. (1.13)

1.2 Interacting Bose gas
So far, I explained how path integrals may provide an interesting description of the Bose–
Einstein condensation of ideal bosons. Here, I describe their practical interest in a sim-
ulation of interacting bosons. We saw in Eq. 1.4 that the free N -body density matrix
breaks down into a product of (possibly non-diagonal) single-particle density matrix ele-
ments. This is not true for interacting particles, whose positions are highly correlated by
interactions at low temperature. In fact, it is practically impossible to compute directly
the density matrix elements (1.3) for N ≥ 3. In this section, I explain how introducing a
finite number of imaginary time slices makes it possible to take into account only the inter-
actions between pairs of particles in a many-body simulation, by using either the Trotter
approximation or the pair-product approximation.

In this section, I consider bosons interacting with an interaction operator V (x1, . . . ,xN),
so that the Hamiltonian is

Ĥ = Ĥfree + V̂ , (1.14)

where Ĥfree was defined in Eq. 1.2. In particular, when only interactions between pairs of
bosons are present, V (x1, . . . ,xN) is defined in terms of the pair interaction V (xi,xj) as

V (x1, . . . ,xN) =
∑

i<j

V (xi,xj). (1.15)

1.2.1 Trotter approximation

The Trotter formula may be obtained from the general formula for the product of the
exponentials of two Hermitian operators X̂ and Ŷ ,

eX̂eŶ = exp

(
X̂ + Ŷ +

1

2
[X̂, Ŷ ] +

1

12
[X̂, [X̂, Ŷ ]] +

1

12
[[X̂, Ŷ ], Ŷ ] + . . .

)
, (1.16)

where the commutator between any two operators Â and B̂ is defined by [Â, B̂] = ÂB̂−B̂Â.
Applied to −τSĤfree and −τSV̂ , the identity of Eq. 1.16 gives,

e−τSĤfreee−τS V̂ = exp

(
−τSĤ +

τ 2S
2

[Ĥfree, V̂ ] +O(τ 3S)

)
. (1.17)
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This in turn yields the Trotter formula (Trotter, 1959), valid for τS → 0,

e−τSĤ = e−τSĤfreee−τS V̂ . (1.18)

If S is large enough that the Trotter formula is valid, by noting that

ρ(x
(s)
1 , . . . ,x

(s)
N ;x

(s+1)
1 , . . . ,x

(s+1)
N ; τS) (1.19)

= 〈x(s)
1 , . . . ,x

(s)
N |e−τSĤfreee−τS V̂ |x(s+1)

1 , . . . ,x
(s+1)
N 〉 (1.20)

= e
−τSV

(
x
(s+1)
1 ,...,x

(s+1)
N

)
ρfree(x

(s)
1 , . . . ,x

(s)
N ;x

(s+1)
1 , . . . ,x

(s+1)
N ; τS), (1.21)

the path integral (Eq. 1.10) becomes

ρ(x1, . . . ,xN ;xP (1), . . . ,xP (N); β) (1.22)

=

∫ S−1∏

s=1

dx
(s)
1 . . . dx

(s)
N exp

[
−τS

S−1∑

s=0

V (x
(s)
1 , . . . ,x

(s)
N )

]
(1.23)

×
S−1∏

s=0

ρfree(x
(s)
1 , . . . ,x

(s)
N ;x

(s+1)
1 , . . . ,x

(s+1)
N ; τS), (1.24)

a result known as the Trotter approximation. This approximation means that, when τS is
small enough, the density matrix of a path with interactions is that of a free path multiplied
by the weights of interactions at each imaginary time slice,

exp

[
−τS

S−1∑

s=0

V (x
(s)
1 , . . . ,x

(s)
N )

]
. (1.25)

So far, I only stated that τS has to be very small for the Trotter approximation to
hold, which is an imprecise condition. Only two length scales may set the validity of the
Trotter approximation: the de Broglie thermal wave-length on one imaginary time slice
λS = λth(τS), and the characteristic length scale of the interaction lV . Therefore, a more
quantitative condition for the validity of the Trotter approximation is

lV � λS. (1.26)

If the interaction V (x1, . . . ,xN) features pair interactions only, the Trotter approxima-
tion means that it is enough to compute interactions slice by slice for pairs of particles
only to solve the general problem of N interacting particles at low temperature. In that
case, lV is the characteristic length scale of pair interactions.

In a simulation using the Trotter approximation, paths of interacting bosons may be
sampled using a direct free path sampling algorithm such as the Lévy construction (see
Section 1.1.2), and accepted or rejected using the Metropolis–Hastings procedure (see Sec-
tion 1.A) based on the weight of interactions in Eq. 1.25.



1.2. INTERACTING BOSE GAS 17

1.2.2 Pair-product approximation

In this section, I consider the case where the interaction between all particles consists in
pair interactions only (see Eq. 1.15). In Section 1.1.2, we saw that the paths of free particles
span a range λth. This is actually a consequence of the Heisenberg uncertainty principle:
all particles “occupy” a region of volume ∼ λ3th. Therefore, the motion of two particles
interacting with a short-range potential (that is, whose range is much smaller than λth)
will be modified from the free case only if they are at a distance smaller than λth.

If we introduce additional time slices, and we consider the interaction on one slice, the
scale on which the interaction between two particles cannot be neglected is the de Broglie
thermal wave-length on one slice λS = λth(τS). If λS is small enough that nλ3S � 1, where
n is the particle density, the event where two particles come closer than λS is unlikely, and
the event where three particles do even more. Therefore, provided that λS is small enough,
it is enough to account for the interaction between pairs of particles only. This is the idea
of the pair-product approximation, that may formally be written

ρ(x1, . . . ,xN ;x′1, . . . ,x
′
N ; τS) =

N∏

i=1

ρfree(xi,x
′
i; τS)

N∏

i<j

ρ(xi,xj;x
′
i,x
′
j; τS)

ρfree(xi,x′i; τS)ρfree(xj,x′j; τS)
.

(1.27)
I now discuss Eq. 1.27 to explain why it corresponds to the idea exposed in the above para-
graph. On the one hand, when particles i and j are farther apart than λS, their motion is
identical to that of free particles. Therefore, the pair density matrix ρ(xi,xj;x

′
i,x
′
j; τS), that

generally describes their correlated probability distribution, breaks down into a product of
free density matrices ρfree(xi,x′i; τS)ρfree(xj,x

′
j; τS). This annihilates the term correspond-

ing to particles i and j in the right-hand product. The only term remaining for particles i
and j consists in their free density matrices ρfree(xi,x′i; τS)ρfree(xj,x

′
j; τS) coming from the

left-hand product.
On the other hand, when particles i and j are closer than λth, because of the hypothesis

nλ3S � 1, it is extremely unlikely (probability ∝ nλ3S) that any of them is closer than λS to
a third particle. All pair terms involving exclusively either particle i or j in the right-hand
product therefore annihilate. The only terms involving particles i and j that remain in
Eq. 1.27 are:

ρfree(xi,x
′
i; τS)ρfree(xj,x

′
j; τS)

ρ(xi,xj;x
′
i,x
′
j; τS)

ρfree(xi,x′i; τS)ρfree(xj,x′j; τS)
= ρ(xi,xj;x

′
i,x
′
j; τS), (1.28)

which is the pair density matrix describing the interaction between particles i and j in
absence of other particles. This indeed corresponds to the above described scenario.

Eq. 1.27 can be enhanced by separating the motion of the centre of mass of particles i
and j from their relative motion. As the centre of mass is not subject to the interaction,
we have:

ρ(xi,xj;x
′
i,x
′
j; τS) = ρCMfree

(
xi + xj

2
,
x′i + x′j

2
; τS

)
ρrelative(xj − xi,x

′
j − x′i; τS), (1.29)
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where ρCMfree is the free density matrix of the centre of mass (of mass 2m) and ρrelative the
density matrix of the relative motion (of mass m/2). Injecting this identity into the term
involving particles i and j in the right-hand product of Eq. 1.27, that may be called the
correction factor to the free density matrices of particles i and j, g(xi,xj;x

′
i,x
′
j; τS), gives

g(xi,xj;x
′
i,x
′
j; τS) =

ρ(xi,xj;x
′
i,x
′
j; τS)

ρfree(xi,x′i; τS)ρfree(xj,x′j; τS)
=
ρrelative(xj − xi,x

′
j − x′i; τS)

ρrelativefree (xj − xi,x′j − x′i; τS)
, (1.30)

where ρrelativefree is the free relative-motion density matrix.
Thus, the pair-product approximation allows to compute the probability of N -body

configurations by solving the relative-motion problem of two interacting particles and ob-
taining their relative-motion density matrix ρrelative(xj − xi;x

′
j − x′i; τS). As we will see in

Section 2.1.1, the pair correction factor g(xi,xj;x
′
i,x
′
j; τS) may be further simplified using

the low-temperature s-wave approximation.
In practice, the implementation of the pair-product approximation in a simulation often

consists in generating free paths with the Lévy construction (see Section 1.1.2) and accept-
ing or rejecting them according to the pair correction factors, following the Metropolis–
Hastings rule (see Section 1.A). This approximation was originally suggested by Barker
(1979), and subsequently used to simulate a variety of bosonic systems including liquid he-
lium (Pollock and Ceperley, 1984) and atomic Bose–Einstein condensates (Krauth, 1996).

So far, the Trotter approximation and the pair-product approximation look quite sim-
ilar: with a pair interaction, both require to introduce additional time slices to work, and,
in both cases, new configurations are generated with a free Lévy construction and accepted
or rejected according to an interaction weight (either in Eq. 1.25 or Eq. 1.30). As Bose–
Einstein condensates are quite dilute, quite fewer slices are needed for the pair-product
approximation (nλ3S � 1) to be valid than for the Trotter approximation (λS � lV ).

1.2.3 Interaction boxes

In a many-body simulation with a pair interaction only, the use of either the Trotter
approximation or of the pair-product approximation would naively require to compute
the contribution of each pair of particles. Moving one particle requires to compare its
probability at its former position to its probability at its proposed position. Within this
naive framework, the complexity of this operation is O(N), where N is the number of
particles in the simulation. It is then straightforward that this cannot be used to simulate
systems with large N values, such as N ∼ 106 (Holzmann and Krauth, 2008).

In practice, if the pair interaction is short-range, it is not necessary to compute the
interaction weight of pairs of particles more distant than the effective correction range
rbox, that is, than the distance from which their interaction can be neglected. As we saw,
rbox ∼ λS for the pair-product approximation, and rbox is the range of the pair interaction
potential defined in Eq. 1.15 for the Trotter approximation.

A simple way of taking advantage of this is to use interaction boxes (see Fig. 1.3): the
three-dimensional space is divided in boxes of constant size rbox. To know the interaction
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weight of a particle, it is enough to compute its interaction weight with particles in the
neighbouring boxes only, as it is separated from all other particles by a distance greater
than rbox.

rbox

Figure 1.3: Two-dimensional interaction boxes. Space is divided in square boxes whose
size is the effective correction range rbox. In order to compute the interaction weight of
interactions involving the red particle, it is enough to compute its interaction only with
the blue particles, that are in neighbouring boxes. The size of boxes guarantees that black
particles are farther than rbox from the red particle. Therefore, their interaction with the
red particle may be neglected.

With interaction boxes, moving a particle requires to compute the statistical weight due
to interactions of particles in neighbouring boxes only, an operation of complexity O(1).

Appendix 1.A Metropolis algorithm

In a generic Markov-chain-driven system, the evolution of the probability πt(a) of any
configuration a with the time t is given by the master equation

dπt(a)

dt
=
∑

b

[P (b→ a)A(b→ a)πt(b)− P (a→ b)A(a→ b)πt(a)] , (1.31)

where the sum runs over all configurations b 6= a, and the probability of a move from
configuration a to configuration b, following the common Monte Carlo practice, is split
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into two contributions, A(a→ b), the probability to propose such a move, and P (a→ b),
the probability to accept it.

At equilibrium, the probabilities πt(b) of all configurations b do not depend on time,
and, for the simulation to obtain relevant results, they must be equal to their physical
value π(b). This reads:

∑

b

[P (b→ a)A(b→ a)π(b)− P (a→ b)A(a→ b)π(a)] = 0. (1.32)

This equation is called the global balance condition, and means that the total probability
flux going into configuration a must be zero at equilibrium. To obtain global balance, it is
sufficient to have detailed balance for all pairs of configurations (a, b), a condition written

P (b→ a)A(b→ a)π(b)− P (a→ b)A(a→ b)π(a) = 0. (1.33)

Detailed balance means that the probability flux from a configuration a to a configura-
tion b and from configuration b to configuration a are equal. While most Markov-chain
Monte Carlo simulations use algorithms based on detailed balance, it is worth noting that
algorithms that satisfy only global balance are more efficient (Bernard et al., 2009; Michel
et al., 2014): detailed balance algorithms explore phase space following a diffusive dynamics
while algorithms satisfying global balance only can be considerably faster.

The Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a choice
for the acceptance probabilities P that satisfies detailed balance,

P (a→ b) = min

[
1,
A(b→ a)π(b)

A(a→ b)π(a)

]
. (1.34)

The Metropolis–Hastings algorithm is the backbone of the path-integral Monte Carlo al-
gorithm. In practice, the a priori configuration update probabilities A(a → b) consist in
proposing the configuration b using free density matrices only (see Eq. 1.5). The correc-
tion to them due to interactions is included in the acceptance probabilities P following the
Metropolis–Hastings rule (Eq. 1.34).



CHAPTER 2

The repulsive weakly-interacting Bose gas

In this chapter, I explain how we measured the first corrections to the mean-field equation
of state of the weakly-interacting Bose gas, in close collaboration with the Lithium group of
Laboratoire Kastler Brossel at École normale supérieure, directed by Christophe Salomon.
To this end, I first introduce the concept on which the description of quantum interactions
at low temperature takes its roots, the scattering length, and provide a quick review of
mean-field results for the weakly-interacting Bose gas. I then describe the first beyond-
mean-field corrections to the equation of state, initially predicted in 1957 by Lee et al.
(1957), and how they compare to simulations and experiments. These results correspond
to Publication 1.

2.1 The mean-field weakly-interacting Bose gas

Before providing a mean-field description of the weakly-interacting Bose gas, it is necessary
to introduce the key concept of scattering length, that describes the low-energy collision
of particles. As we will see in the first section, the scattering length actually measures the
strength of pair interactions.

2.1.1 Scattering length

We saw that, at low densities and in absence of interactions involving three or more par-
ticles, the pair-product approximation ensures that the physics of a gas may be described
in terms of two-body effects only (see Section 1.2.2). Therefore, the study of the two-
body problem is essential to the understanding of Bose–Einstein condensates of mutually-
interacting particles. In this section, I review general features of the quantum two-body
problem.

21
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The scattering problem

In quantum physics, the general problem of two particles colliding without affecting their
internal structure is described by the theory of elastic scattering. The general Schrödinger
equation for two such particles, whose interaction is a potential V (r) that depends only on
their separation r = ‖r‖, and that vanishes at r →∞, is:

(
− ~2

2m
+ V (r)

)
ψ(x1,x2) = Eψ(x1,x2), (2.1)

where x1 and x2 are the positions of the two particles, and r = x2 − x1.
As with the classical two-body problem, it is possible to separate the motion of the

centre of mass from the relative motion of the two particles. The former is that of a free
particle of mass 2m, and the relative motion reduces to that of a particle of mass m/2 in
the central potential V (r):

(
−~2

m
+ V (r)

)
ψ(r) = Eψ(r). (2.2)

As V (r) → 0 when r → ∞, scattering states (that is, states that are not bound) have
a positive energy E. Let us call k the corresponding wave-number (E = ~2k2/m). If we
consider an incoming particle moving in the direction z, at large distances, the general
shape of the relative wave-function is the superposition of the incoming plane wave and an
outgoing spherical wave eikr/r, with a dependence on the scattering angle θ, that is, the
angle between the z axis and the direction of the scattered particle (see Fig. 2.1) (Landau
and Lifshitz, 1981):

ψ(r, θ) ≈ eikz + fk(θ)
eikr

r
. (2.3)

z
θ

0

r
Incoming wave

Figure 2.1: The scattering situation: an ongoing harmonic wave along the z direction is
scattered into a spherical wave whose amplitude depends on the angle θ.

The scattering amplitudes fk(θ) yield the entire physics of the quantum two-body pro-
blem. As V (r) acts only on the radial part of the wave-function, it is possible to expand
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ψ on axially symmetric angular momenta of various magnitudes l:

ψ =
∞∑

l=0

Pl(cos θ)Rkl(r), (2.4)

where Pl is the Legendre polynomial of order l. The Schrödinger equation for the radial
wave-function Rkl is then:

[
− ~2

mr2
d

dr
r2
d

dr
+

~2l(l + 1)

mr2
+ V (r)− ~2k2

m

]
Rkl(r) = 0. (2.5)

Far from the centre, V (r) ≈ 0 and the motion reduces to that of a free particle, yielding
a solution of the form

Rkl(r) ∼ jl(kr) cos δl(k)− yl(kr) sin δl(k), (2.6)

where jl and yl are respectively the spherical Bessel functions of order l of the first and
second kind. The phase shifts δl(k) relate to the interaction between the two particles in
the region where V (r) cannot be neglected. They vanish for free particles. The small-k
behaviour of phase shifts tan δl ∝ k2l+1 may be deduced from the behaviour of spherical
Bessel functions near kr = 0.

Phase shifts yield the value of the scattering amplitude (Landau and Lifshitz, 1981):

fk(θ) =
1

2ik

∞∑

l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ). (2.7)

Additionally, partial scattering amplitudes may be defined at each order l by fkl = (e2iδl −
1)/(2ik). As expected, the partial scattering amplitude of order l vanishes when interac-
tions are irrelevant at order l (δl = 0).

The s-wave approximation

If r0 is the range of the pair interaction V , we notice that, in Eq. 2.5, if kr0 �
√

2,
the incoming waves for l ≥ 1 cannot reach the region r < r0 for which V (r) is non-zero
(Cohen-Tannoudji, 1973). In this case, only the s-waves differ from those of non-interacting
particles: δl ≈ 0 for all l ≥ 1. The condition kr0 �

√
2 is realized in two different limits,

the low-temperature limit k → 0, and the zero-range limit r0 → 0.
The s-wave approximation, that, consistently with the above, lies in the assumption

that δl = 0 for l ≥ 1 (valid in either the zero-range or the low-temperature limits), can be
used to further simplify the interaction correction factor of the pair-product approximation
(see Section 1.2.2). Separating the s-wave contribution ρrelatives from the rest of the relative-
motion density matrix ρrelative, the s-wave approximation yields

ρrelative = ρrelativefree + ρrelatives − ρrelatives,free , (2.8)
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where ρrelatives,free is the s-wave contribution to the free relative-motion density matrix ρrelativefree .
In that case, the pair-product approximation correction factor of Eq. 1.30 becomes

g(xi,xj;x
′
i,x
′
j; τS) = 1 +

ρrelatives (xj − xi,x
′
j − x′i; τS)− ρrelatives,free (xj − xi,x

′
j − x′i; τS)

ρrelativefree (xj − xi,x′j − x′i; τS)
. (2.9)

In our context, the above s-wave approximation is very useful as, provided that τS is
large enough (a condition sufficient to have kr0 �

√
2), it is enough to compute the s-wave

contribution to the pair density matrix to obtain the pair-product correction factor g.

Scattering length

The scattering length corresponds to the leading order of the phase shift in k:

a = − lim
k→0

tan δ0(k)

k
. (2.10)

The scattering length is the only length scale describing the low-temperature (or zero-
range) behaviour of the quantum two-body system, for which k → 0 and higher partial
waves with l ≥ 1 have zero phase shifts. As a consequence, it is also the only length scale
needed to describe the weakly-interacting Bose gas.

Because the scattering amplitude fk(θ) equals −a at low temperature, a may be seen
as the size on which the incoming wave is modified in Eq. 2.3, and therefore as the effective
distance on which particles interact. Hence, the Bose gas is weakly-interacting when its
particle density n is small enough that n|a|3 � 1.

As at low temperature, the scattering length is the only remaining length scale in the
scattering problem, two a priori different interaction potentials with the same scattering
length yield the same low-temperature physics: simple theoretical models such as quantum
hard spheres may be used to describe real low-temperature atomic vapours.

The quantum hard-sphere interaction

Repulsive (a > 0) interactions may be described by the hard-sphere model, in which atoms
are simply modelled by spheres that cannot overlap. The corresponding pair interaction is
thus given by V (r > a) = 0 and V (r < a) = ∞ (it is possible to show that the radius of
hard spheres is half the scattering length a). The corresponding s-wave correction factor
to free density matrices is (Holzmann, 2000) (see Section 1.2.2):

ghs(r, r
′; τS) =

{
1 + ~2τS

m
1
rr′

[
1− exp

(
−ma2−a(r+r′)

~2τS

)]
exp

(
−mrr′(1+cos γ)

2~2τS

)
r, r′ > a

0 r < a or r′ < a,

(2.11)
where r and r′ are the pair separations at two consecutive imaginary time slices, and γ is
the relative angle between vectors r and r′.

The hard-sphere interaction was successfully used to probe the behaviour of cold-atomic
gases at small a (Krauth, 1996; Holzmann and Krauth, 2008). In the rest of this chapter,
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I use a path-integral Monte Carlo algorithm with the hard-sphere interaction to probe the
first corrections to the mean-field behaviour of the weakly-interacting Bose gas.

2.1.2 Trapped bosons

In this section, I quickly review mean-field results holding for systems of trapped bosons
with a small scattering length.

Confined gases

In experiments, atomic vapours of alkali gases are typically cooled down to near-zero tem-
perature using a combination of laser and evaporative cooling, and kept confined in a
harmonic magneto-optical trap (although geometries closer to the homogeneous gas are
currently available (Gaunt et al., 2013)). For the simulation results to be directly compa-
rable to experiments, we need to introduce a confinement potential Vext. This corresponds
to a Hamiltonian

H =
N∑

i=1

(
− ~2

2m
∇2
i + Vext(xi)

)
+
∑

i<j

V (xj − xi), (2.12)

where xi is the position of particle i.

Mean-field zero-temperature wave-function

The Gross–Pitaevskii equation (Gross, 1961, 1963; Pitaevskii, 1961) governs the wave-
function of the condensate φ0(x) in the mean-field approximation:

(
−~2∇2

2m
+ Vext(x) + gφ2

0(x)

)
φ0(x) = µφ0(x), (2.13)

where g = 4π~2a/m, and µ is the chemical potential. The Gross–Pitaevskii equation is
accurate in the weakly-interacting regime n|a|3 � 1.

Within the mean-field Gross–Pitaevskii approximation, the energy may be expressed
as a functional of the particle density n(x) (Dalfovo et al., 1999):

E[n] =

∫
dx

[
− ~2

2m

∣∣∣∇
√
n(x)

∣∣∣
2

+ nVext(x) +
gn2

2

]
. (2.14)

In practice, n(x) is frequently smooth enough for the first term in the integral (called
quantum pressure) to be neglected. In this case, the gas at position x can be considered a
homogeneous gas of chemical potential

µ = µ0 − Vext(x), (2.15)

where µ0 is the overall chemical potential. This is a particular case of the local density
approximation.
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Density of a thermal Bose gas within the mean-field approximation

At higher temperature, neglecting the correlations between the positions of thermal, non-
condensed particles allows to obtain the following effective Schrödinger equation for the
single-particle wave-function φT (x) of energy E (Pitaevskii and Stringari, 2003):

[
−~2∇2

2m
+ Vext(x) + 2gnT (x)

]
φT (x) = EφT (x), (2.16)

where nT (x) is the density of thermal particles at position x.
Solving this equation in momentum space allows to obtain the self-consistent mean-field

Hartree–Fock expression of the density (Pitaevskii and Stringari, 2003),

nT (x) =
1

λ3th
g3/2

(
e−β[Vext(x)+2gnT (x)]+βµ

)
, (2.17)

where g3/2 is the polylogarithm function of order 3/2 defined by

g3/2(u) =
∞∑

k=1

uk

k3/2
. (2.18)

2.2 Beyond-mean-field corrections
When n|a|3 is increased from the value at which the Bose gas is well described by the
Gross-Pitaevskii equation, higher-order corrections to the equation of state Eq. 2.14 need
to be introduced. In this section, I present these corrections, computed by Lee et al. in
1957, and I expose how I tested them jointly with experimentalists using a path-integral
simulation.

2.2.1 The Lee–Huang–Yang equation of state

Canonical equation of state

The mean-field approximations described in the previous section corresponds to neglecting
quantum correlations between bosons, which is valid only for small values of the scattering
length. Lee, Huang, and Yang (1957) computed the first-order correction to the ground-
state mean-field energy of a homogeneous weakly-interacting Bose gas E/V = gn2/2 (V is
the volume occupied by the gas). They found

E

V
=
gn2

2

(
1 +

128

15
√
π

√
na3
)
. (2.19)

At this order, this equation of state still depends only on a. However, non-universal terms,
that are connected to the large-a physics exposed in the following chapters, appear at
higher orders of na3 (Braaten et al., 2002).
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The only parameters on which this equation of state depends are ~, m, and a. There-
fore, the equation of state Ẽ(ñ) expressed in terms of the dimensionless energy Ẽ =
E/(~2/(ma2)) and density ñ = na3 is universal as it no longer depends on the interactions
(even through a).

Grand-canonical Lee–Huang–Yang equation of state

Although the energy E may be accessed in Monte Carlo simulations (Ceperley, 1995), it is
very hard to access it in experiments. It is however possible to deduce a grand-canonical
zero-temperature equation of state P (µ) from Eq. 2.19 by using the thermodynamic iden-
tities 



µ(n) =

∂E

∂N
=
∂(E/V )

∂n
,

P = nµ(n)− E

V
.

(2.20)

Like for the canonical Lee–Huang–Yang equation (Eq. 2.19), this equation of state may
be cast into a dimensionless form that does not depend on a by defining the dimensionless
variables µ̃ = µ/(~2/(ma2)) and P̃ = P/(~2/(ma5)). This dimensionless grand-canonical
equation of state is plotted on Fig. 2.2 along with its mean-field equivalent P̃ = µ̃2/(8π).

0 1 2
µ̃ ×10−2

0

1

2

3

4

P̃

×10−5

Figure 2.2: Grand-canonical version of the Lee–Huang–Yang equation (solid red line, see
Eq. 2.20), together with its mean-field equivalent P̃ = µ̃2/(8π) (dashed blue line). We see
that for small values of µ̃, and therefore of ñ, the mean-field equation holds well and is
practically identical to the Lee–Huang–Yang equation. For higher values of µ̃, however,
the Lee–Huang–Yang equation clearly departs from the mean-field equation.

2.2.2 Path-integral simulation and comparison to experiments

To test the grand-canonical Lee–Huang–Yang equation (Eq. 2.20), we built up a simulation
based on the hard-sphere interaction (Eq. 2.11), that both provided a numerical grand-
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canonical equation of state of the interacting Bose gas and allowed to check that the
equation of state obtained in experiments probes the zero-temperature regime, in which
the Lee-Huang–Yang equation is valid. In this section, I describe the experimental set-up
used by Christophe Salomon’s group at Laboratoire Kastler Brossel, our quantum path-
integral Monte Carlo simulation, and compare their results.

Experimental set-up and need for a simulation

The experiment of Christophe Salomon’s group at Laboratoire Kastler Brossel consists in
atoms of 7Li cooled down and trapped in a magneto-optical trap. They can measure the
density of atoms in the trap by direct in-situ imaging. Because imaging projects the cloud
onto one direction of space, the image that they obtain corresponds to a two-dimensional
atomic density distribution n2d(x, y).

In the experiment, this density distribution is the only accessible observable. At high
temperature, the density distribution of non-condensed atoms explicitly depends on the
temperature, and may be used to probe it. However, at temperatures much lower than the
that of Bose–Einstein condensation, most atoms are in the Bose–Einstein condensate, and
the temperature cannot be accessed directly in the experiment. Measuring the temperature
is however a prerequisite for properly testing the Lee–Huang–Yang equation (Eq. 2.20):
before any quantitative check, it is necessary to make sure that the zero-temperature
assumption is correct.

In path-integral Monte Carlo simulations, however, the temperature comes as a param-
eter (see Chapter 1). Therefore, it is possible to deduce the validity of the zero-temperature
assumption from the comparison of experiments to numerical simulations, whose temper-
ature is well-known.

Monte Carlo simulation

In order to provide such a Monte Carlo simulation, I built up a new simulation based
on that of Krauth (1996). The use of the Python programming language considerably
simplified the former Fortran 77 code, and, because the essential routines were compiled
using Cython, this did not lead to a significant slow-down of the simulation.

The algorithm itself, using the hard-core bosons interaction potential in the pair-
product approximation (see Section 2.1.1), was slightly altered from that of Krauth (1996)
to make it work at the large values of a probing the Lee–Huang–Yang regime, but its
general principles were kept unchanged.

With this simulation, we were able to probe the physics of a system of 39 000 bosons
at a/a0 = 2150, where a0 is the Bohr radius, in an axially-symmetric trap of frequencies
ωz = 2π × 18.5 Hz, ω⊥ = ωx = ωy = 2π × 345 Hz, which corresponds to the experimental
trap. This simulation was run down to temperatures as small as T = 0.125T trap

BEC, where
T trap
BEC is the temperature at which a Bose–Einstein condensate appears at the centre of the

trap for non-interacting bosons (Dalfovo et al., 1999),

T trap
BEC = 0.94~ωhoN

1/3, (2.21)
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where ωho = (ωzω
2
⊥)

1/3 is the geometric average of the trap frequencies. At such low
temperatures, the simulations had to be run for up to two weeks on eight independent
processors to reduce the statistical error.

Assessment of the zero-temperature approximation

In order to compare our simulations to the experimental data, we used the doubly-integrated
density profile,

n̄(z) =

∫
dx dy n(x, y, z), (2.22)

where n(x = (x, y, z)) is the particle density in the trap.
The doubly-integrated density profile may be obtained numerically by ensemble av-

eraging independent configurations of the Monte Carlo simulation, or experimentally by
integrating the in situ absorption image. On Fig. 2.3, the numerical density profiles at
several temperatures are shown together with the average of several experimental images.
The experimental data seems to correspond to the numerical data for temperatures smaller
than T = 0.25T trap

BEC.
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Figure 2.3: Doubly-integrated numerical density profiles at T/T trap
BEC = 0.75 (red), 0.5 (or-

ange), 0.25 (green), and 0.125 (blue), together with the experimental average of several
density profiles (black points). Lengths are expressed in units of the z-axis trap length
lz =

√
~/mωz. The experimental data agrees well with the numerical data at T trap

BEC = 0.25
and 0.125.

This agreement between the numerical and experimental data may be measured more
quantitatively using a χ2 test. As shown on Fig. 2.4, the numerical and experimental
data agree for temperatures lower than T = 0.25T trap

BEC. Since it is also hard to distinguish
between the numerical data at T/T trap

BEC = 0.25 and 0.125 (see Fig. 2.3), this shows that the
experiment is indeed probing a Bose gas in the zero-temperature assumption.
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Figure 2.4: Chi-squared test values comparing experimental doubly-integrated density pro-
files to the numerical data at various temperature (red points). The two blue horizontal
lines denote the interval of likely values of the χ2 test if the experimental and numerical
data match.

2.2.3 Numerical and experimental grand-canonical equation of state

We just saw that the experiment and simulations indeed probe the zero-temperature physics
of the Bose gas. Here, I explain how we retrieved the grand-canonical equation of state
from the numerical and experimental density profiles, and how these numerical and exper-
imental equations of state compare to the Lee–Huang–Yang grand-canonical equation of
state (Eq. 2.20).

Pressure and doubly-integrated density profile

As explained for the Gross–Pitaevskii equation of state (see Section 2.1.2), within the local
density approximation, the subsystem at position x of an inhomogeneous system of overall
chemical potential µ0 in a trapping potential Vext may be considered a homogeneous system
at chemical potential µ0 − Vext(x) at the price of neglecting all terms involving density
gradients.

Within the local-density approximation, by integrating out the x and y axes, we may
define the chemical potential along the z-axis by

µ(z) = µ0 −
1

2
mω2

zz
2. (2.23)

The pressure is then related to the doubly-integrated density profile as

P (µ(z)) =
mω2

⊥
2π

n̄(z). (2.24)

This relation can be obtained by integrating the Gibbs–Duhem equation dP = ndµ+ sdT
at fixed temperature (Ho and Zhou, 2010). Thus, the grand-canonical equation of state
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can be extracted from the doubly-integrated density profile at the price of estimating the
overall chemical potential µ0.

Comparison with the Lee–Huang–Yang expansion

Using Eq. 2.23 and 2.24, it is possible to compare both the experimental and numerical
data to the grand-canonical Lee–Huang–Yang equation of state. For the experimental data,
the value of µ0 was obtained from an iterative scheme based on trial density distributions
(see Publication 1). For the numerical data, it was obtained from a fit of the wings of the
doubly-integrated density profile to the corresponding doubly-integrated mean-field density
distribution, obtained from Eq. 2.17 within the local density approximation Eq. 2.15.

As shown on Fig. 2.5, the agreement between the Lee–Huang–Yang equation of state
and both the numerical and the experimental data is very good.
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Figure 2.5: Grand-canonical equation of state obtained experimentally (black points) and
numerically at T/Tc = 0.25 (plain cyan line), compared to the zero-temperature mean-
field dimensionless pressure P̃ = µ̃2/(8π) (dashed blue line), and to the grand-canonical
Lee–Huang–Yang equation of state (dashed red line). The experimental data is an average
of several experimental samples.

2.3 Conclusion
In this chapter, I showed that a quantum path-integral Monte Carlo simulation with
hard-sphere pair interactions quantitatively reproduces the behaviour of a gas of weakly-
interacting bosons, with the access to more observables than in experiments, and in par-
ticular to the temperature. Along with the experimental data, this simulation allowed to
validate the Lee–Huang–Yang equation (Eq. 2.19), that describes the first corrections to
the mean-field equation of state of the weakly-interacting Bose gas.
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CHAPTER 3

Efimov trimers in the path-integral formalism

At unitarity, when the scattering length becomes much larger than any other length scale,
although no pair of particles can bind, three particles can form a infinity of three-body
bound states called Efimov trimers. The properties of these trimer states are universal,
in that they depend on the short-range details of the interactions only through an overall
scaling factor.

The Efimov effect was initially discovered in the 1970s in nuclear physics (Efimov, 1970,
1971, 1979). Subsequently, it was discussed in various domains such as quantum magnets
(Nishida et al., 2013) or the biophysics of DNA (Maji et al., 2010), and, more importantly,
in cold-atoms experiments, where Feshbach resonances (Chin et al., 2010) allow to tune
the scattering length to unitarity. There, they have been observed through the decay of
the near-unitary Bose gas into deeply-bound states (Kraemer et al., 2006; Zaccanti et al.,
2009; Pollack et al., 2009). Stable Efimov trimers, however, remain elusive in experiments.

Although Efimov trimers have been very well characterized theoretically (Braaten and
Hammer, 2006), descriptions of the Efimov effect in terms of path integrals are scarce (Maji
et al., 2010). In this chapter, after having explained in details the unitary limit for two
bosons and presented a model interaction potential, I provide a path-integral description
of the Efimov effect based on semi-quantitative considerations and I describe a numerical
simulation of three bosons that matches theoretical predictions. This chapter corresponds
to the three-body physics described in Publication 2.

3.1 Unitary limit

In this section, I first illustrate the unitary limit of pair interactions through the square-
well interaction potential. I then describe another interaction potential more suited for
numerical simulations, the zero-range unitary potential, and, most importantly, derive the

33
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corresponding pair-product correction factor (see Section 1.2.2).

3.1.1 Square-well interaction potential

Let us consider the square-well interaction potential VSW, given as a function of the inter-
particle distance r by:

VSW(r) =

{
−V0 0 < r < r0,

0 r > r0,
(3.1)

where r0 is the range of the potential and V0 its depth. The square-well interaction potential
is depicted in Fig. 3.1.

0 r0

Interparticle distance r

−V0

0

V
S
W

(r
)

Figure 3.1: Square-well interaction potential of depth V0 and range r0.

The Schrödinger equation for the radial wave-function is given by Eq. 2.5. If we restrict
to s-waves (l = 0), χ(r) = Rks(r)r obeys the Schrödinger equation of a free particle in the
potential VSW(r):

− ~2

m
χ′′ + VSW(r)χ = Eχ. (3.2)

Scattering length

Let us determine the scattering length associated to the square-well potential. For this,
we need to compute the phase shift δs(k) defined in Eq. 2.6. The Schrödinger equation for
a diffusive state of energy ~2k2/m is





~2

m
χ′′(r) +

(
V0 +

~2

m
k2
)
χ = 0 0 < r < r0

χ′′(r) + k2χ = 0 r > r0,
(3.3)

so that 


χ(r) = A sin

(
r

√
V0m

~2
+ k2

)
0 ≤ r ≤ r0

χ(r) = B sin(kr + δs(k)) r ≥ r0.

(3.4)



3.1. UNITARY LIMIT 35

The continuity of the logarithmic derivative of the wave-function yields

δs = −kr0 + arctan


k

tan
(
r0
√
V0m/~2 + k2

)

√
V0m/~2 + k2


 . (3.5)

Applying Eq. 2.10 to the above value of δs gives

a = − lim
k→0

δs
k

= r0

(
1− tan(r0

√
V0m/~2)

r0
√
V0m/~2

)
. (3.6)

Contrary to the hard-sphere interaction described in Section 2.1.1, for which the scat-
tering length, that may be identified to the diameter of the hard spheres, has to be positive
and finite, the scattering length of the square-well interaction may be either positive or
negative, and is even infinite for r0

√
V0m/~2 = π/2.

This situation, where the scattering length is infinite, or much larger than all other
length scales, is called unitarity. In the next section, I describe how the bound state of the
square-well interaction potential behaves through the unitary region.

Bound states of the square-well interaction potential

Let us now consider bound states of small negative energy −ED � V0. The Schrödinger
equation for such states is





~2

m
χ′′ + V0χ = 0 0 < r < r0

~2

m
χ′′ − EDχ = 0 r > r0,

(3.7)

which yields solutions of the form



χ = A sin

(
r
√
V0m/~2

)
0 < r < r0

χ = B exp
(
−r
√
EDm/~2

)
r > r0,

(3.8)

where A and B are two constants.
When r0

√
V0m/~2 ≥ π/2, the continuity of the logarithmic derivative of the wave-

function yields

ED =

√
V0

tan2
(
r0
√
V0m/~2

) =
~2

m(a− r0)2
. (3.9)

On the contrary, when r0
√
V0m/~2 < π/2, there is no solution: at unitarity, the dimer state

is at the threshold of its existence. This result may be qualitatively obtained by a reasoning
based on path integrals (see Section 3.A). The extension of the dimer,

√
~2/(mED), is equal

to a when a � r0. This, and that the dimer vanishes with zero energy at unitarity, are
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known results for any interaction potential in the limit a � r0 (Braaten and Hammer,
2006).

By considering s-waves of small energy only, we omitted both other possible bound
states associated to higher partial waves (l ≥ 1) and s-wave bound states with a large
binding energy. These anyway do not exist when the interaction potential, such as that
considered, has only one s-wave bound state with a small binding energy. These omitted
states, called deeply-bound states, exist in general and make Efimov trimers hard to observe
in experiments (Braaten and Hammer, 2006). This is why we restrict to a regime in which
the square-well potential does not feature any deeply-bound state.

3.1.2 Zero-range interaction potential

Scaling limit

To eliminate finite-range effects, that depend on the chosen interaction potential, we study
the limit r0 → 0 at fixed a, called the scaling or zero-range limit (Braaten and Hammer,
2006), illustrated in Fig. 3.2.

0 r0

Interparticle distance r

−V0

−ED

V
S
W

(r
)
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Interparticle distance r

−V0

−ED

Figure 3.2: The left and right panel show square-well interaction potentials with the same
scattering length (and therefore with approximately the same dimer state binding energy).
The right-hand potential has a smaller range r0 and is therefore closer to the zero-range
limit r0 → 0 and V0 →∞.

In the zero-range limit, for positive values of a,

ED = ~2/ma2, (3.10)

and the condition of validity of the s-wave approximation, kr0 �
√

2, where k is the
wave-number of partial waves, is fulfilled at all temperatures (see Section 2.1.1).



3.1. UNITARY LIMIT 37

Bethe–Peierls boundary condition

In the scaling limit, δs(k) = − arctan(ka), so that the normalized radial wave-function χ
is given by (see Eq. 3.4)

χ(r) =

√
2

π
sin (kr − arctan(ka)) , (3.11)

or alternatively

Rks(r) =
χ(r)

r
=

√
2

π

sin (kr − arctan(ka))

r
. (3.12)

The only remainder of the square-well interaction in the r < r0 region is a boundary
condition on Rks, that holds also for the total wave-function ψ,

ψ →
r→0

C

(
1

r
− 1

a

)
. (3.13)

For Rks, we find C = (
√

2/π)ka/
√

1 + k2a2. This limit condition is called the Bethe–
Peierls boundary condition (Bethe and Peierls, 1935a,b), and can be taken, together with
the equations of free motion for r > 0, as a definition of the zero-range interaction potential
(Braaten and Hammer, 2006).

Pair-product correction factor for the zero-range interaction

The Trotter approximation (see Section 1.2.1) is not suited to simulate particles that
interact with the zero-range interaction, since the corresponding interaction potential is
zero unless both particles are at the same position.

As the pair-product approximation is based on the full quantum solution of the two-
body problem (see Section 1.2.2), it is suited in a simulation of particles interacting with
the zero-range potential. The corresponding pair-product correction factor is therefore
essential to any simulation featuring the zero-range interaction potential. I found its value
to be (see Section 3.B for the detailed calculation):

g(r, r′; τS; a) = 1 +
2τS~2

mrr′

[
1 +

~√πτS
ma

e

(
r+r′
2~
√

m
τS
− ~
a

√
τS
m

)2

erfc

(
r + r′

2~

√
m

τS
− ~
a

√
τS
m

)]

(3.14)

× exp

[
−mrr

′(1 + cos γ)

2τS~2

]
, (3.15)

where γ is the relative angle between r and r′. At unitarity, only the infinite-a version of
the above formula is used,

g∞(r, r′; τS) = 1 +
2τS~2

mrr′
exp

[
−mrr

′(1 + cos γ)

2τS~2

]
. (3.16)
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3.2 Efimov effect
As we saw in the previous section, in absence of deeply-bound dimer states, at unitarity,
two particles cannot bind. In this section, I describe how adding a third particle results in
an infinity of bound trimer states, a surprising result known as the Efimov effect. To this
end, I first explain why the zero-range interaction potential needs to be regularized at short
three-body distances, and I then describe Efimov physics in the path-integral formalism
both through theoretical arguments and a numerical simulation.

3.2.1 Regularization of the zero-range interaction potential

When three particles interact only via the zero-range unitary potential, the total density
matrix features a singularity at short three-body distances. This phenomenon, called the
Thomas collapse (Thomas, 1935), may be overcome by a three-body short-range regular-
ization.

Thomas collapse

Let us consider three distinguishable identical particles, mutually interacting with the
zero-range potential, at very high temperature. For distances higher than the de Broglie
thermal wave-length λth (that may be set to an arbitrarily small value by increasing the
temperature), the total interaction correction factor of a configuration will be, within the
pair-product approximation (see Section 1.2.2):

g(r12, r12; β)g(r23, r23; β)g(r31, r31; β), (3.17)

where rij denotes the separation between particles i and j. Therefore, if we concentrate on
terms that cause the strongest divergence when the distances are very small, from Eq. 3.16,
the total statistical weight w of such a configuration will behave as

w ∼ 1

r212r
2
23r

2
31

. (3.18)

All other terms are either non-divergent or more regular.
Using Jacobi coordinates (see Section 3.C), the positions of all particles may be ex-

pressed in terms of that of the centre of mass rCM, whose motion is independent of the
inter-particle interactions, and two relative-motion vectors, r12 and r3,12 = x3 − (x1 + x2).
The pair separations r23 and r31 may be expressed in terms of r12 and r3,12 as




r23 = r3,12 −

1

2
r12,

r31 = −r3,12 −
1

2
r12.

(3.19)

Thus, Eq. 3.18 may be rewritten as

w ∼ 1

r212
(
r3,12 − 1

2
r12
)2 (

r3,12 + 1
2
r12
)2 . (3.20)
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In particular, we have: ∫
wd3r12 ∼

1

r33,12
. (3.21)

In three-dimensional space, 1/r33,12 is clearly non-integrable: the zero-range potential fea-
tures a non-integrable singularity when all three particles are very close one to another.

As the pair-product approximation is valid only when particles are typically farther
than the de Broglie thermal wave-length λth (see Section 1.2.2), this calculation actually
has no meaning when all three particles are at a distance smaller than λth from one another.
Instead, the singularity causes all three particles to fall into a bound state with interparticle
distances at most of order λth, which goes to zero at infinite temperature. Since three
particles interacting with a zero-range pair potential collapse into the identified singularity
at high temperature, they also do at all lower temperatures, as decreasing thermal energy
makes it harder for particles to leave a bound state.

Although we used distinguishable particles in this reasoning, this singularity also exists
for indistinguishable bosons as permutations leave the leading divergence term of Eq. 3.20
unchanged. As a consequence, the zero-range interaction potential needs a short-distance
regularization to be physically meaningful when more than three particles are involved.

Three-body hard core

As the zero-range interaction potential is pathological for more than two bosons, we need
to introduce a small three-body distances regularization. This may be done by adding a
three-body hard-core to our model, for example by imposing a bound on the hyperradius
(or root-mean-square distance) R:

R2 =
1

3
(r212 + r223 + r231). (3.22)

We define the three-body hard core potential V3 by a hyperradial cutoff R0:

V3(R) =

{
0 R > R0,

∞ R ≤ R0.
(3.23)

The short-distances regularized Hamiltonian that we use to study the system of three
indistinguishable bosons of mass m is therefore

H =
−~2
2m

(
∇2

1 + ∇2
2 + ∇2

3

)
+ V2(r12) + V2(r23) + V2(r31) + V3(R), (3.24)

where V2 is the zero-range unitary pair interaction.

3.2.2 Path-integral argument

In the former section, we saw that in absence of a regularization, three bosons will collapse
into a state of infinitely negative energy and zero extension for all values of a, although
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there is no pair bound state at unitarity (and for a < 0). It is thus reasonable to expect
that with the three-body hard-core regularization, the same kind of effective interaction as
that leading to the Thomas collapse will induce the existence of a three-body bound state,
a surprising situation known as the Efimov effect. In this section, I use the path-integral
formalism to give qualitative arguments for the emergence of three-body bound states at
unitarity.

Simple path-integral model

As we saw in Section 3.1.1, at unitarity, in absence of deeply-bound states, two particles
never bind. Let us consider two bosons at a distance r, interacting via a unitary interaction
potential. We add a third boson whose scattering length a with the two former ones is large,
finite and positive, and we look for the condition under which this third boson stabilizes
the system into a bound state. This situation, depicted in Fig. 3.3, is identical to that
studied in Maji et al. (2010), although my arguments are based on the statistical weights
of configurations, not on scaling considerations.

For practical reasons, we use the square-well finite-range potential of Section 3.1.1 with
a range r0 much smaller than all other length scales. As the energy is bounded by −3V0,
this potential has the advantage of featuring no three-body collapse. However, we shall
keep in mind that the limit r0 → 0 (at fixed scattering length) should be taken only
together with a short-distance regularization such as the three-body hard core discussed
in Section 3.2.1.
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Figure 3.3: Simple qualitative path-integral model. Bosons 1 and 2 are kept at a distance r.
We study the statistical weights of class 1 configurations, where boson 3 keeps scattering
between boson 1 and 2 (as depicted), and class 2 configurations, where boson 3 forms a
dimer with either boson 1 or boson 2.
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Weights of configurations

We consider two different classes of configurations:

• In class 1, boson 3 keeps scattering between bosons 1 and 2 (this situation is depicted
in Fig. 3.3).

• In class 2, boson 3 forms a stable dimer with either boson 1 or boson 2.

In absence of any three-body effect, with a positive scattering length a, the most
likely configurations are in class 2, where two particles form a dimer of extension a (see
Section 3.1.1). If class 1 paths are more likely, the three particles spontaneously form
trimer states.

Class 2 paths consist in paths that are close to boson 1 (or 2) and that are allowed to
scatter to a distance a before coming back. This process takes place for an imaginary time
τa of order such that λth(τa) = a. For τa, we may approximate the statistical weight of such
paths by that of free paths originating and ending at the same position (one close to either
boson 1 or boson 2), ρfree(0, 0; β), multiplied by the volume V0 in which this position may
be chosen and an interaction weight wint. The volume V0 corresponds to positions where
the interaction energy is non-zero, that is, to the volume inside the interaction square well:

V0 =
4π

3
r30. (3.25)

The interaction weight is
wint = eτr0V0 , (3.26)

where τr0 is the imaginary time typically spent in the interaction square well (a simple
estimate is τr0 such that λth(τr0) = r0). Thus, keeping in mind that the possibility to bind
with either boson 1 or 2 produces a multiplicative factor 2, and using the expression of the
free density matrix of Eq. 1.5, the total weight of class 2 configurations is

w2 = 2wintρfree(0, 0; τa)V0 =
8π

3
r30

eτr0V0

λ3th(τa)
. (3.27)

In the same fashion, for the imaginary time τr such that λth(τr) = r, the paths in class
1 scatter between bosons 1 and 2. Bearing in mind that boson 3 may scatter either from
boson 1 to boson 2, or from boson 2 to boson 1, which here also produces a factor 2, we
obtain the total weight of class 1 configurations,

w̃1 = 2wintρfree(0, r; τr)V0 =
8π

3
r30
eτr0V0

λ3th(τr)
e−mr

2/(2~2τr). (3.28)

In order to compare the total weights of class 1 and class 2 configurations properly, we
need to consider these weights for the same imaginary time. For the imaginary time τa,
the statistical weight of class 1 configurations where boson 3 is initially close to boson 1
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is (w̃1/2)a
2/r2 , and is identical to that of class 1 configurations where boson 3 is initially

close to boson 2. Thus, the weight of class 1 configuration for the imaginary time τa is

w1 = 2

(
w̃1

2

)τa/τr
= 2

(
w̃1

2

)a2/r2
. (3.29)

The condition for class 1 configurations to dominate over class 2 configurations is

w1 � w2. (3.30)

Eliminating pure numerical factors including τr0V0, that remains constant at fixed a (see
Section 3.1.1), this condition may be rewritten

1

r2
ln
r0
r
� 1

a2
ln
r0
a
. (3.31)

As x 7→ (1/x2) ln(1/x) is a decreasing function, this condition is ensured provided that

a� r. (3.32)

Thus, when a is so much greater than r0 that it is possible to introduce an additional
length scale r so that r0 � r � a, a three-body bound state with one boson scattering
between the two other bosons (which corresponds to a class 1 state) is more stable than a
free boson and a dimer (which corresponds to a class 2 state). This is a first description of
the Efimov effect: when a is much greater than all other length scales, three bosons form
a trimer. At unitarity, and for a < 0, Efimov trimers are Borromean states, in that they
form a three-body bound state although two particles cannot bind. The condition for their
existence,

|a| � r0, (3.33)

is achieved in both the unitary (a → ±∞) and scaling (r0 → 0) limits. In the case of
the zero-range interaction potential with a hyperradial cutoff R0, the condition |a| � r0
may be replaced by |a| � R0. This mechanism, in which a third boson stabilizes two
otherwise non-bound bosons by scattering between them, is the hallmark of the Efimov
effect (Efimov, 1979).

3.2.3 Numerical simulation of a single Efimov trimer

In this section, I describe how the path-integral Monte Carlo algorithm can be adapted to
the case of three particles interacting with the zero-range potential regularized with the
three-body hard core. I then present some of the results that were discussed in Publica-
tion 2.
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Compression-dilation move

We saw that the zero-range unitary potential causes the pair wave-function to obey the
Bethe–Peierls boundary condition (see Eq. 3.13) and diverge as 1/r when r → 0. In
consequence, the pair density matrix of the relative motion (that we deduce from Eq. 3.16
and Eq. 1.5) diverges as 1/rr′:

ρrelative(r, r′; β) =

(
m

4π~2β

)3/2

exp

[
−m(r− r′)2

4~2β

]{
1 +

2β~2

mrr′
exp

[
−mrr

′(1 + cos γ)

2β~2

]}
.

(3.34)
In particular, the interaction weight of a single slice s diverges as 1/(r(s))2 at r(s) → 0,
where r(s) is the pair separation at slice s:

w
(
r(s)
)
∝ ρrelative

(
r(s−1), r(s); τS

)
ρrelative

(
r(s), r(s+1); τS

)
∼

r(s)→0

1

(r(s))
2 . (3.35)

In usual path-integral Monte Carlo simulations (Krauth, 1996, 2006), new configura-
tions are sampled using the free density matrix, and accepted or rejected following the
Metropolis–Hastings rule applied to the additional weight due to the interactions (see Sec-
tion 1.A). Because the free density matrix has no divergence at small values of r(s) (see
Eq. 1.5), usual Monte Carlo updates will typically propose new configurations r(s) + ∆,
where ∆ is a constant that does not depend on r(s). If r(s) is very small, r(s) + ∆ will be
such that w

(
r(s) + ∆

)
� w

(
r(s)
)
, which leads to near-zero acceptance rates. In order to

overcome this, I devised a new Monte Carlo update, the compression-dilation move, illus-
trated in Fig. 3.4. It consists in proposing a new configuration where the separation of two
nearby particles at a slice s has been multiplied (dilation) or divided (compression) by a
factor 1+h, while keeping their centre of mass in place and not altering other particles nor
other slices. If h is small, the weight of the proposed new configuration may be expressed
through a Taylor series expansion:

w
(
r(s)(1± h)

)
= w

(
r(s)
)
± hr(s)w′

(
r(s)
)
, (3.36)

and, because w′
(
r(s)
)
∼ 1/

(
r(s)
)3 when r(s) → 0, the interaction weight of the new pro-

posed configuration is of the same order as w
(
r(s)
)
. Therefore, this new move has high

acceptance rates, and successfully samples the r(s) → 0 region.
Two additional facts must be taken into account for compression-dilation moves to

satisfy detailed balance (see Section 1.A):

• Compression-dilation moves need to be micro-reversible, that is, for each compression
move, the inverse dilation move must be allowed, and vice versa.

• Dilation moves affect phase space by sending a volume dr(s) to a volume (1+h)3dr(s),
and compression moves dr(s) to dr(s)/(1 + h)3.
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Figure 3.4: Compression-dilation move. Positions (blue dots) are kept in place at all slices
but slice s, where, from an initial pair separation r(s), the proposed new configuration has
a pair separation r(s)(1 +h) in the case of a dilation move. The compression move consists
in the inverse move. The centres of mass (white dots) are kept in place at all slices.

If we always proposed a compression or a dilation regardless of the initial pair sepa-
ration r(s), there would be no concern for the micro-reversibility of compression-dilation
moves. However, there is no need to propose compression-dilation moves at large inter-
particle distances, where w

(
r(s)
)
is regular: this would be a waste of resources. Therefore,

we wish to set an upper bound on the pair distances from which we propose compressions
or dilations. We also would like a compression and the corresponding inverse dilation to
be proposed with equal probability.

Let us define rmax
c as largest pair distance from which we propose a compression move.

The algorithm used in the simulation is shown in Fig. 3.5. It sets the a priori probabil-
ities A

(
r → r(s)(1 + h)

)
and A

(
r(s)(1 + h)→ r(s)

)
to be equal (see Section 1.A for the

definition of A).
We noted that the compression-dilation move also affects phase space by compressing

(or dilating) the volume element dr(s). In fact, the volume elements have to be taken into
account in the detailed balance equation (see Eq. 1.33), that therefore reads:

P
(
r(s) → r(s)(1 + h)

)
π
(
r(s)
)
dr(s) = P

(
r(s)(1 + h)→ r(s)

)
π
(
r(s)(1 + h)

)
d
[
(1 + h)r(s)

]

(3.37)

= P
(
r(s)(1 + h)→ r(s)

)
π
(
r(s)(1 + h)

)
(1 + h)3dr(s).

(3.38)

Thus, when using the Metropolis–Hastings rule for accepting or rejecting the proposed
updates, π

(
r(s)(1 + h)

)
must be formally replaced by (1 + h)3π

(
r(s)(1 + h)

)
in Eq. 1.34.

Compression-dilation of nearest neighbours only

The compression-dilation move described in the above paragraph could directly be used in
a simulation. We already saw that it is not worth trying to perform compression-dilation
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Pick a slice s and 
two particles whose 

separation is r(s)
Is r(s) > rc

max? Do nothing

Pick a random 
number ξ
0 < ξ < 1
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max? Do nothing
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Yes
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Figure 3.5: Compression-dilation algorithm used in the simulations. This algorithm ensures
the micro-reversibility of the Monte Carlo moves.

moves for two particles far away from one another, hence the upper bound rmax
c from which

compression moves are proposed. In fact, it is even more efficient to try to perform the
compression-dilation move at a slice s for nearest neighbours only. In the program, this is
done by picking a first boson randomly, and then by picking its nearest neighbour as the
boson with which to perform the compression-dilation move. However, for the move to be
reversible, we need to make sure that, after the compression-dilation move, the two picked
bosons will still be nearest neighbours.

The three-body hard-core condition makes that, if particles are closer than R0/
√

2, they
are nearest neighbours. Let us consider two particles, with a pair distance r12, and a third
particle whose distance with the second one is r23. The three-body hard core condition is

r212 + r223 + (r12 + r23)
2 ≥ 3R2

0, (3.39)

or

r223 + r12r23 cos γ + r212 −
3

2
R2

0 ≥ 0, (3.40)

where γ is the relative angle between vectors r12 and r23. We would like to see how the
value of r12 sets a bound on r23, therefore we take r23 as a variable. The left-hand side of
Eq. 3.40 is a polynomial that is positive for values of r23 lower than its smaller root, and
higher than its larger root. If r12 ≤

√
3/2R0, which we take as an assumption because

we are interested in small separations r12, there are a positive and a negative root, and,
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because r23 is positive, it is greater than the positive root:

r23 ≥
1

2

(
−r12 cos γ +

√
r212 cos2 γ + 6R2

0 − 4r212

)
. (3.41)

The right-hand side of this inequality is a decreasing function of cos γ. Therefore, it is
sufficient to have

r23 ≥
1

2

(
−r12 +

√
6R2

0 − 3r212

)
. (3.42)

This is the lower bound on r23, given a value of r12 ≤
√

3/2R0. Therefore, in order to have
r23 ≥ r12, it is enough to have

1

2

(
−r12 +

√
6R2

0 − 3r212

)
≥ r12, (3.43)

that is,

r12 ≤
R0√

2
. (3.44)

In order to be sure that bosons 1 and 2 are nearest neighbours before and after the
compression-dilation move, we must therefore make sure that we do not propose a di-
lation to a distance larger than R0/

√
2. This corresponds to the largest acceptable value

of the pair distance from which we propose a compression move, rmax
c , that was defined in

the above paragraph.

Efficiency of the compression-dilation move

In order to numerically show that the compression-dilation samples the 1/r2-diverging pair
distribution function efficiently, I simulated two interacting bosons on the same permuta-
tion cycle. At inverse temperature β, their pair separation distribution is ρrelative(r,−r; β),
where ρrelative is given by Eq. 3.34. As is shown in Fig. 3.6, the path-integral Monte Carlo
algorithm with the compression-dilation move succeeds in sampling that distribution.

The compression-dilation move is one of the many ways of successfully sampling ρrelative.
This algorithm could be improved by including stochastic compression-dilation moves af-
fecting several slices at a time or by using moves that reconstruct paths on several slices
in the r → 0 region by direct sampling of ρrelative.

Simulation on a single permutation cycle

At finite temperature, in infinite space, entropic effects make that, even in presence of a
bound state, three particles are always far apart from one another. Therefore, to simulate
a single Efimov trimer, it is necessary to regulate the volume. Simple choices of volume
regulation include the use of a (possibly periodic) box, or of a harmonic trap whose char-
acteristic length is much larger than the size of the studied Efimov trimer. Going with
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Figure 3.6: Pair distribution function for two unitary bosons on the same permutation cy-
cle, with β/τS = 100. The numerical results (red crosses) are compared with the analytical
formula of Eq. 3.34 (black line), the good agreement showing that the compression-dilation
move succeeds in sampling that distribution.

any of these two choices requires a cautious assessment of their finite-size effects on Efimov
trimers.

The path-integral structure of Efimov trimers, that we already described to some ex-
tent in Section 3.2.2, may also be used to regulate the volume. In Efimov trimers, all
three bosons come very close one to another at some imaginary time, which is due to the
divergence of the pair correlation function following the Bethe–Peierls boundary condition
(see Eq. 3.13). Let us look at the contribution of two close bosons to the statistical weight
of two consecutive slices s−1 and s. In the pair-product approximation (see Section 1.2.2),
the joint weight of slices s− 1 and s may be written

w(s−1,s) = g∞
(
r(s−1), r(s); τS

)
wreg, (3.45)

where wreg is the regular part of the joint weight of slices s − 1 and s, which consists in
the free contributions of all three particles, and depends on their positions at slices s − 1
and s, that are not written explicitly, g∞ is the pair-product correction factor at unitarity
(see Eq. 3.16), and r(s) is the separation of the two bosons, that we label 1 and 2 in the
following, at slice s.

We would like to see what the change in w(s−1,s) is when the positions of the two
bosons x

(s)
1 and x

(s)
2 at slice s and above are swapped. This corresponds to a single-slice

permutation move, that may be used in path-integral Monte Carlo simulations to sample
permutations (Krauth, 2006) (see Fig. 3.7). The single-slice permutation move changes the
statistical weight on one slice only.

From Eq. 1.5, we know that the free contribution to w(s−1,s) is unchanged with such
a move if r(s−1), r(s) � λS, where λS = λth(τS) is the thermal de Broglie wave-length
on one slice. Within the same condition, the unitary pair-product correction factor g∞
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Figure 3.7: Single-slice permutation move. The positions of the red and blue bosons are
swapped at slice s, and the path at above slices is kept in place, resulting in a change of the
particle it describes. Only the statistical weight of the paths between slices s− 1 and s is
changed, since the signs of all separations at slices above s are changed, and the positions
at slices below s− 1 are all unchanged.

is also invariant under the permutation r(s) 7→ −r(s) (see Eq. 3.16). As stated above, in
Efimov trimers, pairs of particles come very close one to another, so that the condition
r(s−1), r(s) � λS is true at some slice for each pair of bosons. At these slices, permutations
may therefore be sampled at no statistical cost. This means that the physical properties
of Efimov trimers do not depend on the permutation.

In the following, I describe a path-integral Monte Carlo simulation of three unitary
bosons on the same permutation cycle, which regulates the available volume at a size
∼ λ3th with no finite-size effect: the simulation will probe the fundamental Efimov trimer
for temperatures kBT smaller than its binding energy. As shown in the following of this
chapter, this simulation reproduces exactly known results about Efimov trimers. It was
presented in Publication 2.

Simulation of an Efimov trimer

In order to simulate an Efimov trimer using three co-cyclic bosons, as explained above,
I used a path-integral Monte Carlo algorithm with the compression-dilation algorithm.
Because of the 1/r2 divergence of the pair correlation function, paths in Efimov trimers
differ significantly from free paths, and for the Trotter approximation (used for the three-
body hard core, see Section 1.2.1) to be valid, quite a large number of slices are necessary
to get to temperatures smaller than the binding energy of Efimov trimers. In practice,
simulations went as far as S = 10 240 slices. Starting from a free co-cyclic configuration, it
takes a very long time to make a simulation with such a large number of slices converge to
an Efimov trimer. To experience smaller convergence times, the initial configuration of the
simulation at inverse temperature 2β was built from the final configuration of a converged
simulation at inverse temperature β. Using this method, 32 independent simulations were
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run at each temperature for up to two days.
As we may see on Fig. 3.8, the distribution of hyperradii R (defined in Eq. 3.22) of the

three bosons evolves when β is increased, and finally stabilizes at very low temperatures
β~2/(mR2

0) ∼ 103. This is a sign that, at such a temperature, the system is probing its
fundamental Efimov trimer state.
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Figure 3.8: Evolution of the hyperradial distribution π(R) as a function of β: β~2/(mR2
0) =

200 (red), 400 (orange), 800 (green), 1600 (blue). The imaginary time slice τS is kept at
the value 0.1mR2

0/~2. These distributions are ensemble averages over thermalized config-
urations. (The value of R0 was adjusted from its input value using the known universal
physics of Efimov states, as discussed in Section 3.2.4.)

Looking at a single snapshot of paths for three unitary interacting bosons (see central
panel in Fig. 3.9) shows that the simple argument of Section 3.2.2 takes its roots in a good
intuition of Efimov trimers: in an Efimov trimer, at a given imaginary time, only two of the
three bosons may be close one to another, but bosons keep changing interaction partners.
As we derived the analytical formula for the pair-product correction factor g also for finite
values of a, I also obtained snapshots of three co-cyclic non-bound particles for a/R0 ∼ −1
(Fig. 3.9, left panel), and a single atom together with a dimer state for a/R0 ∼ 1 (Fig. 3.9,
right panel), consistently with the two-body theory described in Section 3.1. The last
configuration (a/R0 ∼ 1) could not be obtained with the compression-dilation algorithm
only, as, with this algorithm, it is impossible to untie two bosons that are close on a
very long imaginary time. Starting from a free configuration, at very low temperatures,
different pairs of bosons come very close at different imaginary times, resulting in a situation
where all pairs of bosons form tightly-bound states at different imaginary times. The
depicted configuration, that maximises entropy, and where the same pair of bosons is
bound throughout the imaginary time, was therefore obtained by repetitively annealing
configurations where only two bosons were close.
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Figure 3.9: Single snapshots of configurations of three co-cyclic bosons. Left (R0/a ∼ −1):
the three bosons do not bind and typical pair distances are given by λth. Centre (R0/a = 0,
unitarity): the three bosons form an Efimov trimer, where, in turn, all pairs of bosons
are close and the third boson is far from them (yellow highlights and arrows). Right
(R0/a ∼ 1): two of the three bosons bind into a dimer state. These snapshots were
obtained at β~2/(mR2

0) = 1045 with S = 2560.

3.2.4 Universality of Efimov trimers

In the previous section, I described the Efimov effect and, using both theoretical arguments
and a simulation, I showed how it surprisingly can bind three bosons in a situation where
two bosons cannot bind. However, this description leaves out an essential feature of the
Efimov effect: its universal nature, in the sense that Efimov trimers do not depend on the
shape of the interactions. In this section, I review a few of the known results on universal
Efimov trimers, and show that the Efimov trimers obtained in our three-body simulation
are universal.

Excited Efimov trimers

In this section, I follow mostly the calculations of Braaten and Hammer (2006), with the
addition of the three-body hard core potential V3(R). In hyperspherical coordinates (see
Section 3.C), after having eliminated the motion of the centre of mass, the Hamiltonian of
Eq. 3.24 may be recast into the form

Hrelative = TR + Tαk +
Λk,ij

2mR2
+ V (R,Ω), (3.46)

where i, j, k refer to bosons 1, 2, 3 in any order, V (R,Ω) is the sum of the zero-range
unitary pair interactions and the hyperradial cutoff V3, TR the kinetic energy associated to
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the hyperradius R, Tαk to the Delves hyperangle

αk = arctan

√
3rij

2rk,ij
, (3.47)

where rij and rk,ij were defined in Section 3.2.1, Λk,ij denotes the generalized angular
momentum operator of rij and rk,ij, and Ω collectively denotes αk and the other hyperangles
that describe the orientation of rij and rk,ij (see Section 3.C for details on the hyperspherical
coordinates (R,Ω)).

In the following, as we wish to describe the low-energy behaviour of Efimov trimers,
we consider only the zero generalized angular momentum sector, which means that the
wave-function depends only on rij and rk,ij, or equivalently on R and αk.

We saw that Efimov trimers are a superposition of states where two bosons are very
close one to another and the third is very far from them (see Section 3.2.2 and 3.2.3).
Mathematically, this can be expressed through the Faddeev approximation for the total
wave-function Ψ (Faddeev, 1960):

Ψ(x1,x2,x3) = ψ(r23, r1,23) + ψ(r31, r2,31) + ψ(r12, r3,12). (3.48)

The wave-function ψ(rij, rk,ij) = ψ(R,αk) describes the correlation between the (close) par-
ticles i and j and the (distant) particle k, and is assumed to satisfy the Faddeev equations,
that add up to the Schrödinger equation associated to Hrelative,

(TR + Tα1 + V3(R))ψ(R,α1) + V2 (r23) (ψ(R,α1) + ψ(R,α2) + ψ(R,α3)) = Eψ(R,α1),
(3.49)

the two other Faddeev equations consisting in the circular permutations of the indices
(1, 2, 3) in the above equation.

At unitarity, the Faddeev equations may be solved using the hyperspherical expansion

ψ(R,α) =
1

R5/2 sin(2α)

∑

n

fn(R)φn(R,α), (3.50)

where n is a channel index. For the lowest-energy channel, it is possible to show that the
hyperradial wave-function f0(R) satisfies the hyperradial Schrödinger equation

[
~2

2m

(
− d2

dR2
− s20 + 1/4

R2

)
+ V3(R)

]
f0(R) = Ef, (3.51)

where s0 ≈ 1.00624 (Braaten and Hammer, 2006). In this equation, the pair interaction
has been replaced by the lowest-energy channel effective potential

V0 = − ~2

2m

s0 + 1/4

R2
, (3.52)

by integrating the angular wave-function φ0(R,α) out.
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The general solution of this equation that vanishes at R→∞ is, for R ≥ R0,

f0(R) = R1/2Kis0(
√

2κR), (3.53)

where Kis0 is the modified Bessel function of the second kind of imaginary index is0 and
κ is the binding wave-number of the bound state, given by

ET =
~2κ2

m
. (3.54)

The value of κ is determined by the hyperradial cutoff R0, that imposes Kis0(
√

2κR0) =
0. When κR0 � 1, this condition may be rewritten, using the behaviour of f0 at small
values of R0,

f0(R0) = −
√

πR0

s0 sinh(πs0)
sin [s0 ln(κR0) + α0] = 0, (3.55)

where α0 is a constant. This leads to the quantified wave-numbers

κn ∝
e−nπ/s0

R0

. (3.56)

The above equation is valid only provided that κR0 � 0. From our simulation, this condi-
tion holds for the fundamental trimer of our Hamiltonian, for which ET ∼ 10−3~2/(mR2

0)
and therefore κR0 ∼ 10−1 (see the simulation results in Section 3.2.3). We set n = 0 to
correspond to the fundamental trimer.

Thus, in our system, there are infinitely many Efimov trimers, whose wave-numbers
are given by

κn = κ0e
−nπ/s0 =

κ0
22.7n

n ≥ 0, (3.57)

or, alternatively, whose energies are given by

En = E0e
−2nπ/s0 =

E0

515n
n ≥ 0, (3.58)

where E0 is the energy of the fundamental Efimov trimer. From Braaten and Hammer
(2006), we can relate the mean-square hyperradius to κ0 by numerical integration,

〈
R2
〉

=
2(1 + s20)

3
κ−20 , (3.59)

which gives

E0 = 4.27× 10−3
~2

mR2
0

. (3.60)

From Eq. 3.57 and 3.58, we see that the (n+ 1)-th excited trimer is a rescaled version
of the n-th excited trimer, with En/En+1 = 515, and with all distances multiplied by a
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factor 22.7. In particular, the first excited trimer is 22.7 times larger than the fundamental
trimer. For quantum coherence to be built on such a larger size, the thermal de Broglie
wave-length λth, which is the scale that the wave-functions of bosons span, needs to be
multiplied by the same factor: the first excited trimer could only be seen at temperatures
515 times smaller than that at which we start probing the fundamental Efimov trimer.
However, such a temperature is also very small compared to the binding energy of the
fundamental Efimov trimer, so that at such a temperature, only the fundamental Efimov
trimer is thermodynamically populated. This is the reason why any simulation that probes
thermodynamics, and ours in particular, is incapable of observing excited Efimov trimers.

Other interaction potentials

For a general pair-interaction potential without a pure three-body interaction, such as
the more realistic Lennard–Jones interaction potential, at distances higher than than a
given interaction distance, and therefore, at large hyperradii, the pair-interaction potential
effectively vanishes, which means that the effective channel potential V0 (see Eq. 3.52) is
valid above these distances.

At small hyperradial values, the channel potential deviates from its universal value V0 as
the pair interaction becomes non-negligible. This short-hyperradii deviation is absent from
our zero-range interaction potential (this leads to the Thomas collapse, see Section 3.2.1),
but the three-body hard core V3 plays the same role although, as discussed above, it does
not lead to significant deviations from universal theory.

Therefore, for large hyperradii, the hyperradial wave-function of Eq. 3.53 remains valid,
and the value of the hyperradial wave-number κ is determined by the short-hyperradius
non-universal Schrödinger equation. If κ is small enough that it is possible to neglect the
deviations from the effective channel potential V0 while keeping κR � 1, we may write,
for this range of values of R, similarly to Eq. 3.55,

f0(R) →
κR�1

−
√

πR

s0 sinh(πs0)
sin [s0 ln(κR) + α0] , (3.61)

and the continuity of the logarithmic derivative of f0 can be used to match its non-universal
value at small R to the universal solution in Eq. 3.61 at a point Rmatch where both expres-
sions are valid:

Rmatch
f ′0(Rmatch)

f0(Rmatch)
=

1

2
+ s0 cot [s0 ln(κRmatch) + α] (3.62)

which yields the same scaling properties as above (Eq. 3.57 and 3.58). Of course, these
properties are accurate provided that a matching point where both expressions of f0 are
valid exists, that is, that Rmatch is a point where non-universal effects can be neglected and
κn is small enough that κnR0 � 1. At larger values of κ, and therefore at larger binding
energies, the scaling properties are no longer valid, and non-universal trimer states may
exist.
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This shows that, in general, excited trimer states are asymptotically universal in the
limit n→∞, in the sense that their properties do not depend on the short-range behaviour
of the interaction potential. As we just saw, for a generic interaction, the fundamental and
first few excited trimers may experience possibly large deviations from universal theory. In
general, the phrase Efimov trimers qualifies trimers whose deviations from unitarity can
be neglected.

If we go back to our model, we notice that the universal wave-function of Eq. 3.53 is
valid only for R ≥ R0. When n is increased, the size of the trimers is increased, so that
the R ≤ R0 region consists in a smaller and smaller portion of space: the relative domain
on which the universal wave-function is valid is larger and larger when n is increased. This
is the only deviations from universality that our model experiences, and, in practice, for
R ≤ R0, the universal wave-function of Eq. 3.53 oscillates so quickly that, within very
good approximation, we may state that the fundamental trimer of our model interaction
potential is an Efimov trimer.
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0.06

π
(R
/R

0
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Figure 3.10: Comparison of the numerical hyperradial density distribution obtained by
ensemble averaging of the configurations of our single trimer simulation (dashed red line)
to the exact hyperradial distribution of Eq. 3.63 (solid cyan line), for ~2β/(mR2

0) = 1600.
The fit obtains a value of R0 = 0.80Rinput

0 .

Hyperradial probability distribution and rescaling of R0

I now describe how the three-bosons simulation of Section 3.2.3 quantitatively compares
with the universal theory described in the last few paragraphs. In particular, it is possible to
compare the hyperradial distribution obtained in Fig. 3.8 to its universal value of Eq. 3.53,

π(R) ∝ f0(R)2 = RK2
is0

(√
2κ0R

)
(R ≥ R0). (3.63)

(The proportionality sign is due to the absence of normalization in Eq. 3.53.) We observed
that this comparison works only when R0 is included as a fit parameter, which means that
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we need to correct the input value of R0 of our program (that in the following is called
Rinput

0 ). With this correction, in agreement with the above theoretical considerations, the
comparison is quantitatively very satisfying (see Fig. 3.10).
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Figure 3.11: Situation on one single imaginary time slice of a simulation where the three-
body hard core is included through the Trotter approximation (see Section 1.2.1). At the
two points where the three-body hard core condition is enforced, the condition R ≥ R0 is
satisfied. However, this configuration accounts for all free paths going between these two
points, some of which wander into the R < R0 region, yielding an effective value of R0

smaller than its input value Rinput
0 .

This correction is caused by τS being finite. As illustrated in Fig. 3.11, the finite
imaginary time slice τS causes some paths that would not be taken into account in the
limit τS → 0 to be included in the statistical weight between two slices, that takes into
account all free paths that propagate between two consecutive discretization points (see
Section 1.2.1), some of which step into the R < R0 region.

As the shift in R0 is related to free paths propagating on an imaginary time τS, if we
define it quantitatively by

∆R0 = Rinput
0 −R0, (3.64)

we must have a relation of the type

∆R0 ∝ λS (3.65)

in the limit λS � R0, where λS = λth(τS) is the de Broglie thermal wave-length on one
imaginary time slice (see Eq. 1.11). As shown in Fig. 3.12, this proportionality relation
holds well.

This numerically proves that, provided that the value of R0 is properly rescaled, the
fundamental trimer of the model Hamiltonian of Eq. 3.24 is an Efimov trimer for all
practical purposes.



56 CHAPTER 3. EFIMOV TRIMERS IN THE PATH-INTEGRAL FORMALISM

3.3 Conclusion

In this chapter, I described and used a simple model Hamiltonian consisting in a zero-range
unitary pair interaction regularized by a three-body hard core. After having explained
what holds Efimov trimers together with a simple path-integral argument, I described the
underlying theory of the Efimov effect and, using our path-integral Monte Carlo simulation,
I showed that the model Hamiltonian reproduces Efimov trimers. In the following chapter,
I use this model Hamiltonian as the building block of a many-particle simulation of the
unitary Bose gas.

Appendix 3.A Path-integral argument for the dimer state

The path-integral formalism may be used to show semi-quantitatively that a dimer state
forms depending on the value of a. Let us consider two particles interacting via the square-
well interaction potential discussed in Section 3.1.1, of which we study the relative motion,
described as a single particle of mass m/2.

We compare the paths going twice in the r < r0 region (hereafter referred to as type 2
paths) to those going through that region only once (hereafter referred to as type 1 paths).
Such paths are depicted on Fig. 3.13.

Weight of type 1 paths

As free paths most probably do not return the r < r0 region once they have left it, the
statistical weight of type 1 paths is the same as that of free paths originating and ending
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Figure 3.12: Plot of ∆R0 as a function of λS, using simulations at a fixed value of
~2β/

[
m(Rinput

0 )2
]

= 512. The red crosses show the shifts obtained by fitting the nu-
merical hyperradial distribution against the exact analytical distribution of Eq. 3.63. The
dashed black line shows that the proportionality relation in Eq. 3.65 holds well.
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(a) Path travelling through r < r0 only once
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(b) Path travelling through r < r0 twice

Figure 3.13: Paths going through r < r0 once (left, type 1 path) or twice (right, type 2 path).

in (0, 0, 0). As the imaginary time spent in the r < r0 region has to be proportional to
τ0 = mr20/2~2, the weight of type 1 paths may be approximated to

w1(β) =

(
m

4π~2β

)3/2

︸ ︷︷ ︸
Weight of the free path

·

Choice of the origin︷ ︸︸ ︷
4

3
πr30 · e2τ0V0︸ ︷︷ ︸

Effect of the interaction

. (3.66)

Weight of type 2 paths

A type 2 path comes back once in the r < r0 region, and may be described as two con-
secutive type 1 paths, one of them at inverse temperature τ and the other at inverse
temperature β − τ . The intermediate time step τ should be integrated out as we would
like to compare the weight of all type 1 paths to that of all type 2 paths,

w2 =

∫ β−τ0

τ0

dτ

2τ0
w1(τ)w1(β − τ). (3.67)

The ultraviolet cutoff and the normalization were introduced for the following reasons:

• a path cannot return in the r < r0 region before it has left it, therefore we should
not integrate on regions closer than τ0 to τ = 0 and τ = β.

• a path takes an imaginary time 2τ0 to travel through the r < r0 region, hence the
normalization N = 2τ0.

Carrying out the integral yields

w2 =

[( m

4π~2
)3/2 4

3
πr30e

2τ0V0

]2
2(β − 2τ0)

τ0β2
√
τ0(β − τ0)

→
β�τ0

2

3

√
2

π
eτ0V0w1. (3.68)
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Thus, the condition for type 2 paths to be favoured over type 1 paths is:

w2 > w1 ⇔
mr20V0
~2

> log

(
3

2

√
π

2

)
≈ 0.63. (3.69)

When type 2 paths are favoured over type 1 paths, each of the two type 1 paths that
constitute type 2 paths is also less favoured than a path that come back again in the r < r0
region. Thus, once the above condition is met, the paths should come back into the square
well as much as possible, hence creating a dimer: free paths are unstable.

The value we found is of the same order of magnitude as the exact value π2/4 ≈ 2.47 (see
Section 3.1.1). In fact, we made a quite a few approximations, as τ0 should be multiplied by
a dimensionless factor at each place where it appears. These are the origin of the difference
with the analytical result.

Appendix 3.B Calculation of the pair-product zero-range
correction factor

As explained in Section 3.1.2, the zero-range interaction potential cannot be treated in the
Trotter approximation. To use it in a simulation, it is necessary to obtain the corresponding
correction factor in the pair-product approximation. The derivation of this correction
factor, that follows, is therefore essential to the results of both Chapter 3 and 4.

We recall the pair-product correction factor to the free density matrix in the s-wave
approximation (which is here exact, see Section 2.1.1 and 3.1.2),

g(x1,x2;x
′
1,x

′
2; τS; a) = 1 +

ρrelatives (r, r′; τS; a)− ρrelatives,free (r, r′; τS; a)

ρfree(r, r′; τS; a)
. (3.70)

Here, x1 and x2 respectively denote the positions of particles 1 and 2 at slice s, x′1 and x′2
at slice s + 1, and r = x2 − x1 and r′ = x′2 − x′1 the pair separations between particles 1
and 2 respectively at slices s and s+ 1.

We saw that, within the zero-range approximation, the s-wave radial wave-function is
(see Eq. 3.12)

Rks(r) =

√
2

π

sin(kr − arctan (ka))

r
. (3.71)

Therefore, the relative-motion s-wave contribution to the two-body density matrix is

ρrelatives (r, r′; τS) =
1

4π

∫ +∞

0

dke−τS~
2k2/mRks(r)R

?
ks(r

′) (3.72)

=
1

4π2rr′

∫ +∞

0

dke−τS~
2k2/m (cos[k(r′ − r)]− cos[k(r + r′)− 2 arctan(ka)]) .

(3.73)
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From that, we can compute the difference between the full and the free density matrices,
which is directly used in Eq. 3.70,

∆ρs = ρrelatives −ρfrees =
a

2π2rr′

∫ +∞

0

ke−τS~
2k2/mdk√

1 + k2a2
sin[arctan(ka)−k(r+r′)] =

1

2π2rr′
∆ρ̃s.

(3.74)
To evaluate Eq. 3.74, we expand the sine term:

∆ρ̃s =

∫ +∞

0

k2a2dk

1 + k2a2
e−τS~

2k2/m cos(ku)

︸ ︷︷ ︸
I1

−
∫ +∞

0

kadk

1 + k2a2
e−τS~

2k2/m sin(ku)

︸ ︷︷ ︸
I2

, (3.75)

where we set u = r + r′.
Let us define I0 as

I0 =

∫ ∞

0

dk

1 + k2a2
e−τS~

2k2/m cos(ku). (3.76)

I0 gives access to I1 and I2 as I1 = −(ma2/~2)∂τSI0 and I2 =
∫ u
0
du′I1(τS, a, u′)/a. Let us

compute I0.

I0 =
1

2

∫ ∞

−∞

dk

1 + k2a2
e−τS~

2k2/m+iku (3.77)

=
1

4

∫ ∞

−∞

dk

1 + ik|a|e
−τS~2k2/m+iku

︸ ︷︷ ︸
I+

+
1

4

∫ ∞

−∞

dk

1− ik|a|e
−τS~2k2/m+iku

︸ ︷︷ ︸
I−

(3.78)

The integrals I± may be cast into the form

I± =

∫ ∞

−∞

dk

1± ik|a| exp

[
−τS~

2

m

(
k − i um

2τS~2

)2

− u2m

4τS~2

]
(3.79)

= ±e−u2m/4τS~2
∫ ∞−iu/2τS
−∞−iu/2τS

dk

ik|a| − um|a|/2τS~2 ± 1
e−τS~

2k2/m (3.80)

To compute I±, we use the integration contour described on Fig. 3.14. The poles of I± are:

k± = −i um
2τS~2

± i

|a| . (3.81)

We notice that k− is never in the integration contour, and k+ is only if u|a| > 2τS~2/m.
Since the integrals on the vertical part of the contour go to 0 when the width of the

contour goes to ∞, we can equate the integration on R to that on R− ium/2τS~2, taking
into account the possible residues:

I± = ±e−u2m/4τS~2
∫ ∞

−∞

dk

ik|a| − um|a|/2τS~2 ± 1
e−τS~

2k2/m + 2iπResidues. (3.82)
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−i um
2τh̄2

Integration contour

k±, u|a| > 2τh̄2/m

k±, u|a| < 2τh̄2/m

Figure 3.14: Poles and integration contour for integrals I±.

This allows us to write:




I+ = − π

|a|e
τS~2/(ma2)−u/a erfc

(
u

2~

√
m

τS
− ~
|a|

√
τS
m

)
+

2π

|a|e
τS~2/(ma2)−u/|a| u|a|m > 2τS~2,

I+ =
π

|a|e
τS~2/(ma2)−u/|a| erfc

(
~
|a|

√
τS
m
− u

2~

√
m

τS

)
u|a|m < 2τS/~2,

I− =
π

|a|e
τS~2/(ma2)+u/|a| erfc

(
~
|a|

√
τS
m

+
u

2~

√
m

τS

)
,

(3.83)
where erfc is the complementary error function related to the error function erf by erfc =
1 − erf. Using the identity erfc(−x) = 2 − erfc(x), we notice that both expressions of I+
are identical regardless of the values of u|a|m and 2τS/~2. Therefore,

I0 =
π

4|a|e
τS~2/(ma2)

[
eu/|a| erfc

(
~
|a|

√
τS
m

+
u

2~

√
m

τS

)
+ e−u/|a| erfc

(
~
|a|

√
τS
m
− u

2~

√
m

τS

)]
.

(3.84)
We stated above that I1 = −(ma2/~2)∂τSI0. This yields

I1 =

√
πm

4τS~2
e−mu

2/(4τS~2) − π

4|a|e
τS~2/(ma2)

[
eu/|a|

(
~
|a|

√
τS
m

+
u

2~

√
m

τS

)
(3.85)

+ e−u/|a| erfc

(
~
|a|

√
τS
m
− u

2~

√
m

τS

)]
. (3.86)

In the same fashion, we obtain I2 as
∫ u
0
I1/a:

I2 =
π

4a
eτS~

2/(ma2)

[
e−u/|a| erfc

(
~
|a|

√
τS
m
− u

2~

√
m

τS

)
− eu/|a| erfc

(
~
|a|

√
τS
m

+
u

2~

√
m

τS

)]
.

(3.87)
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The values of I1 and I2 yield ∆ρ̃s (see Eq. 3.75):

∆ρ̃s = I1 − I2 =
1

2

[√
πm

τS~2
e−(r+r

′)2m/(4τS~2) (3.88)

− π

|a|e
τS~2/(ma2)−(r+r′)/a erfc

(
~
|a|

√
τS
m
− sgn a

u

2~

√
m

τS

)]
. (3.89)

In its domain of existence a > 0, it is necessary to take the bound state into account.
Its normalized radial wave-function may be deduced from Section 3.1.2:

Rbound(r) =

√
2

a

e−r/a

r
. (3.90)

The value of the density-matrix contribution of the bound state is then straightforward:

ρ̃bound(r, r′; τS) = 2π2rr′ρbound(r, r′; τS) =
π

a
e−(r+r

′)/a+τS~2/(ma2). (3.91)

Using again erfc(−x) = 2− erfc(x), we can write the total density- matrix correction when
a > 0 as

∆ρ̃totals = ∆ρ̃s + ρ̃bound (3.92)

=
1

2

√
πm

τS~2
e−(r+r

′)2m/(4τS~2) +
π

2a
eτS~

2/(ma2)−(r+r′)/a erfc

(
r + r′

2~

√
m

τS
− ~
a

√
τS
m

)
.

(3.93)

We notice that Eq. 3.89 gives the same equation for a < 0.
The limit a→ 0− describes a free particle. As erfcx ≈ e−x

2
/(x
√
π) for x� 1, we have

indeed
lim
a→0−

∆ρtotals = 0. (3.94)

Dividing ∆ρtotals by ρfreerelative gives the pair-product correction factor for the zero-range po-
tential. The free relative-motion density matrix, given by Eq. 1.5 with a mass m/2, may
be rewritten

ρfreerelative(r, r
′; τS) =

(
m

4π~2τS

)3/2

exp

[
−m(r + r′)2

4τS~2
+
mrr′(1 + cos γ)

2τS~2

]
, (3.95)

where γ is the relative angle between vectors r and r′.
Using its expression in the s-wave approximation (see Eq. 3.70), we obtain the pair-

product correction factor for all values of a

g(r, r′; τS; a) = 1 +
2τS~2

mrr′

[
1 +

~√πτS
ma

e

(
r+r′
2~
√

m
τS
− ~
a

√
τS
m

)2

erfc

(
r + r′

2~

√
m

τS
− ~
a

√
τS
m

)]

(3.96)

× exp

[
−mrr

′(1 + cos γ)

2τS~2

]
. (3.97)
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Appendix 3.C Hyperspherical coordinates
This section reviews coordinate systems applying to the three-body problem, that are used
throughout Chapter 3.

As with the two-body problem, it is possible to separate the motion of the centre of
mass from the relative motion of the three particles (Braaten and Hammer, 2006). If we
keep with the case of three identical bosons of mass m, we may define the coordinates of
the centre of mass xCM = (x1 + x2 + x3)/3 (where xi is the position of boson i) and two
other coordinates, called the Jacobi coordinates,




rij = rj − ri

rk,ij = rk −
1

2
(ri + rj) .

(3.98)

This set of coordinates is already quite useful, since the kinetic energy operator may
be separated into the motion of three independent particles of masses 3m (centre of mass),
m/2, and 2m/3, as the kinetic energy operator is diagonal in the three coordinates xCM,
rij, and rk,ij

− ~2

2m

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
= − ~2

2m

(
1

3

∂2

∂x2
CM

+ 2
∂2

∂r2ij
+

3

2

∂2

∂r2k,ij

)
. (3.99)

The Jacobi coordinates may be used to compute the properties of three interacting
bosons in relative space only, not sampling the centre of mass and, in theory, making the
simulation of a trimer converge faster. (In practice, this did not lead to an important
speed-up of the simulation of a trimer.)

From the Jacobi coordinates, it is possible to define the hyperspherical coordinates.
As with spherical coordinates, the idea is to replace the 6 coordinates rk and rk,ij by
one hyperradial coordinate and five angular degrees of freedom. The hyperradius R is
defined by

R2 =
1

2
r2ij +

2

3
r2k,ij =

1

3

(
r212 + r223 + r231

)
, (3.100)

the first angular coordinate (called the Delves hyperangle) αk by

αk = arctan

√
3rij

2rk,ij
, (3.101)

and the four remaining angular coordinates are given by the directions of rij and rk,ij. The
five angular coordinates are collectively denoted by Ω.

The Delves hyperangle is zero when rij � rk,ij, and infinite when rij � rk,ij: it
measures the ratio of the relative distance between two particles i and j to the distance
between particle k and their centre of mass. Therefore, it is quite relevant to describe
Efimov trimers, that are a superposition of states where two particles are close and the
third far from them (see Section 3.2.2, 3.2.3, and the Faddeev equation Eq. 3.48).
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The kinetic energy operator may be expressed in terms of the hyperspherical coordi-
nates:

− ~2

2m

(
2
∂2

∂r2ij
+

3

2

∂2

∂r2k,ij

)
= TR + Tαk +

Λ2
k,ij

2mR2
, (3.102)

where
TR = − ~2

2m

(
∂2

∂R2
+

5

R

∂

∂R

)
(3.103)

is the hyperradial kinetic energy operator,

Tαk = − ~2

2mR2

[
∂2

∂α2
k

+ 4 cot(2α)
∂

∂α

]
(3.104)

is the Delves hyperangle kinetic energy operator, and Λk,ij is a generalized angular mo-
mentum operator expressed in terms of the angular momentum operators associated to rij
and rk,ij,

Λ2
k,ij =

L2
ij

sin2 αk
+

L2
k,ij

cos2 αk
. (3.105)
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CHAPTER 4

The unitary Bose gas

In experiments, Efimov trimers were observed through the three-body losses of the near-
unitary Bose gas (Kraemer et al., 2006; Zaccanti et al., 2009; Pollack et al., 2009). These
losses into deeply-bound pair states are also responsible for the difficulties to observe a
unitary Bose gas at low temperature, as their rate is proportional to a4 (Esry et al.,
1999). Important experimental efforts are currently made towards observing the unitary
Bose gas, and its momentum distribution was observed in an out-of-equilibrium regime
(Makotyn et al., 2014). Its low-temperature thermodynamic properties, however, are still
unknown.

Nevertheless, insights are provided by the known zero-temperature behaviour of groups
of more than three unitary bosons. Efimov tetramers, that may be fully described by three-
body Efimov observables (von Stecher et al., 2009), were observed through the four-body
losses of the near-unitary Bose gas (Ferlaino et al., 2009). Numerical studies, either in a
harmonic trap (Thøgersen et al., 2008) or in homogeneous space (von Stecher, 2010), have
shown that the ground state of up to ∼ 10 bosons is a cluster state. Therefore, unitary
bosons are expected to clusterize at low temperature, whereas they should still behave as
an ideal gas at high temperature.

As we saw in Chapter 3, the path-integral Monte Carlo simulation of three unitary
bosons succeeds in probing the thermodynamic behaviour of Efimov trimers. In this chap-
ter, I describe a generalization of that algorithm to up to 100 bosons, and use it to show
that the unitary Bose gas exists under three phases: the normal gas, the conventional
Bose–Einstein condensate, and a third phase that corresponds to the previously described
clusters, the Efimov liquid. The latter phase is a superfluid state that may be accessed
from the two other phases by a first-order phase transition, and whose transition line with
the Bose–Einstein condensate ends in a critical point. I also provide a few insights on
how this phase diagram could be probed in experiments. These results were presented in
Publication 2.

65
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4.1 High-temperature equation of state
At high temperature, the unitary Bose gas is in a normal gas phase. In this section, after
having described the many-body path-integral Monte Carlo simulation of unitary bosons,
I obtain the numerical equation of state of that normal gas phase and compare it to that
obtained with the available virial coefficients.

4.1.1 Many-body simulation

In order to study the unitary Bose gas, I devised a simulation in a isotropic harmonic trap
of frequency ω.

Hamiltonian

The model Hamiltonian of the unitary Bose gas simulation is the generalization to N
bosons of the zero-range pair interaction V2 regularized by the hyperradial cutoff V3, here
applied to all triples of bosons:

H = −
N∑

i=1

[
~2

2m
∇2

i + Vtrap (xi)

]
+
∑

i 6=j
V2 (rij) +

∑

i,j,k

V3 (Rijk) , (4.1)

where the hyperradius Rijk for the three bosons (i, j, k) is defined by

R2
ijk =

1

3

(
r2ij + r2jk + r2ki

)
, (4.2)

and the trapping potential by

Vtrap(x) =
1

2
mω2x2. (4.3)

Unlike the single-trimer simulation, the N -bosons simulation is not restricted to a single
permutation cycle: the length of permutation cycles accounts for the superfluid fraction
in the Bose gas (see Section 1.1.1). Permutation cycles are sampled through multiple-slice
permutation moves similar in their principle to the single-slice permutation move described
(but not used) in Section 3.2.3.

In the N -bosons simulation, the Bethe–Peierls divergence of the pair probability dis-
tribution (see Eq. 3.13) is also dealt with through the compression-dilation algorithm (see
Section 3.2.3). Proposing compression-dilation moves only for pairs of bosons that are
nearest neighbours is even more crucial than in the three-body simulation: picking at ran-
dom two bosons on which to perform the move would mostly consist in picking pairs of
bosons that are quite far from one another, and would be a waste of computing resources.

Size of interaction boxes

In Section 1.2.3, we saw that using interaction boxes whose size is the effective correction
range of the interactions rbox allows to significantly reduce the complexity of evaluating
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the statistical weight due to interactions involving a given boson. We also saw that, when
a pair-product approximation is used, rbox is of the order of the thermal de Broglie wave-
length on one slice λS.

Although the pair-product approximation is used for the zero-range unitary pair inter-
action, the three-body hard-core interaction is enforced following the Trotter framework.
To use interaction boxes with the three-body hard core, we must compute its two-body
range, that is, the distance from which two bosons cannot be involved, together with any
third boson, in a triple whose hyperradius R violates the hyperradial cutoff condition

3R2 = r212 + r223 + r231 ≥ 3R2
0, (4.4)

where rij is the distance between bosons i and j.
If we minimize r223 + r231 while keeping r12 fixed, we get the smallest value of R over all

possible positions of particle 3. As, for any three points in space, the foot of the altitude
going through point 3 has smaller separations r23 and r31 than point 3, we may consider
the case where points 1, 2, and 3 are aligned (see Fig. 4.1).

1 2

3

3'x

Figure 4.1: Point 3′, the foot of the altitude going through point 3, has smaller distances
to points 1 and 2 than point 3, and therefore r223′ + r23′1 ≤ r223 + r231.

If the three points are aligned, and x is the distance between points 1 and 3, minimizing
r223+r

2
31 is the same as minimizing x2+(r12 − x)2, and the minimal value is r212/2. Therefore,

the two-body range of the three-body hard core, that corresponds to the minimal size of
interaction boxes associated to it, is

r212 +
1

2
r212 = 3R2

0, (4.5)

that is,
r12 = R0

√
2. (4.6)

We saw previously that interaction boxes associated to the pair interaction are of the
order of λS (see Section 1.2.3). The interaction boxes associated to the three-body hard
core are of size R0

√
2. Several algorithms are possible to conciliate these two prescriptions.

At first, one may think of choosing the maximum of λS and R0

√
2. However, this may in

practice not be optimal if λS ≥ R0

√
2, because the three-body hard core involves three

bosons and therefore, to compute the statistical weight of the interactions involving a
boson, it must be enforced for each pair of neighbouring bosons, which yields a quadratic
complexity in terms of the number of neighbours.
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From there, a simple solution would be to use two different kinds of boxes: one that suits
the pair interaction, and one that suits the three-body hard core. The solution retained in
the many-body simulation is to have only one kind of boxes of size R0

√
2. For computing

the pair interactions, higher-order neighbouring boxes are taken into account to virtually
use boxes of size λS. However, in practice, using higher-order boxes was not needed.

4.1.2 Equation of state

The high-temperature phase of the unitary Bose gas is necessarily a normal gas, because
thermal energy dominates at high temperature. In this section, the equation of state of
the normal gas phase of the unitary Bose gas is compared to the first deviations from that
of the ideal gas, given by the virial expansion, that is first introduced.

Virial expansion

The virial expansion of the equation of state of a gas describes its deviations from the
classical ideal gas. It is defined as

P = nkBT
∞∑

l=1

al(T )(nλ3th)l−1, (4.7)

where P is the pressure of the gas, T its temperature, and n its particle density. The
coefficients {al} are collectively known as virial coefficients. For the classical ideal gas,
a1 = 1 and all other virial coefficients are zero.

Closely related to the virial expansion is the cluster expansion, which is also an expan-
sion of the equation of state of a gas describing its deviations from the ideal classical gas,
but in parametric form, in terms of the fugacity eβµ, where µ is the chemical potential of
the gas (Huang, 1987): 




P =
kBT

λ3th

∞∑

l=1

bl(T )elβµ,

n =
1

λ3th

∞∑

l=1

lbl(T )elβµ.

(4.8)

The l-th cluster integral bl describes the l-body interactions that cannot be reduced to
non-interacting sub-groups of interacting particles. Therefore, bl is non-zero for l ≥ 1 even
for the ideal quantum gas, where it takes into account entanglement.

Virial coefficients and cluster integrals are related by simple relations (Huang, 1987):





a1 = b1 = 1,

a2 = −b2,
a3 = 4b22 − 2b3,

. . .

(4.9)
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Recently, the third virial coefficient of the unitary Bose gas was made available by
Castin and Werner (2013). They obtained, for the third cluster integral of the unitary
Bose gas:

b3

3
√

3
= C +

∑

q≥0

(
e−βEq − 1

)
+
s0
π

{
1

2
ln (eγβEt)−

∑

q≥1
e−qπs0<

[
Γ(−iqs0)(βET )iqs0

]
}
,

(4.10)
where C ≈ 0.648 and s0 ≈ 1.00624 are two constants, γ ≈ 0.577 is the Euler constant, and
Eq is the energy of the q-th excited Efimov trimer, defined in Eq. 3.58. In practice, it is
enough to compute both sums up to q = 1. Castin and Werner (2013) also obtained the
second cluster integral of the unitary Bose gas,

b2 =
9

25/2
. (4.11)

Numerical equation of state

Using the two above cluster integrals b2 and b3, we may compare the cluster expansion
(Eq. 4.8) of the normal phase of the unitary Bose gas to the numerical grand-canonical
equation of state that we obtained through the method presented in Section 2.2.3. As
shown on Fig. 4.2, the obtained equation of state is in very good agreement with the
cluster expansion up to the third coefficient, where the virial coefficients were computed
using the rescaling of R0 obtained in a three-body simulation (see Section 3.2.4).

As the third cluster integral is the first order that encompasses three-body interactions,
and namely the Efimov effect, this good agreement is essential to check that the many-
body simulation of the trapped unitary Bose gas works. To our knowledge, this was also
the first time that the prediction of Castin and Werner (2013) was confirmed.

4.2 Phase diagram of the unitary Bose gas

Now that we saw that the high-temperature behaviour of the unitary Bose gas is very
well described in terms of its virial expansion up to the third order, I describe the low-
temperature physics of the unitary Bose gas. As we will see in this section, at low tem-
perature and for small values of R0, the unitary Bose gas undergoes a first-order phase
transition to a new quantum phase, held together by the same effects as Efimov trimers,
the superfluid Efimov liquid.

4.2.1 Transition to the Efimov liquid phase

In order to identify a first-order phase transition, we observe the joint distribution of the
distance of the centre of mass of two particles to the trap centre, r̄ij = ‖xi + xj‖/2 and of
their pair distance rij = ‖xj − xi‖ as a function of the temperature.
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Figure 4.2: Comparison of the cluster expansion (Eq. 4.8) up to the first (dash-dotted black
lines), second (dashed black lines), and third order (solid black lines) to the numerical data
(thick cyan lines) obtained by ensemble averaging and following the method described in
Section 2.2.3, for T/T trap

BEC = 1.7 (top left), and R0/lω = 0.07, T/T trap
BEC = 1.4 and R0/lω =

0.13 (top right), T/T trap
BEC = 1.05 and R0/lω = 0.18 (bottom left), and T/T trap

BEC = 0.80 and
R0/lω = 0.23 (bottom right), where lω =

√
~/(mω) is the harmonic trap length. For each

curve, the chemical potential at the centre of the trap µ0 was determined by a fit to the
ideal gas for βµ smaller than a threshold indicated by the vertical grey line (out of the
plotting region for the bottom right curve).

First-order phase transition

As shown in Fig. 4.3, at high temperature and for small values of R0/lω, where lω =√
~/(mω) is the harmonic trap length, the joint distribution of rij and r̄ij exhibits only

one peak, which corresponds to the normal phase of the gas. When the temperature is
decreased, a second peak appears: due to the variation of the local density approxima-
tion chemical potential in the trap (see Eq. 2.15), the gas may be found under different
thermodynamic phases in different regions of the trap. When the temperature is further
decreased, only the second peak persists.

This behaviour, with the appearance of a second peak in the joint density distribution,
is typical of a first-order phase transition to a new phase, the superfluid Efimov liquid,
and differs fundamentally from second-order phase transitions such as Bose–Einstein con-
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Figure 4.3: Joint distribution of the position of the centre of mass of two trapped particles
r̄ij and their pair separation rij for a unitary Bose gas of 100 bosons with R0/lω = 0.07.
At T/T trap

BEC = 1.7 (left), the distribution is that of the normal phase. At T/T trap
BEC = 1.6

(centre), a second peak appears in the centre of the trap, a sign that part of the gas is in
the superfluid Efimov liquid phase. At T/T trap

BEC = 1.5, most particles are in the superfluid
Efimov liquid phase, with small pair distances ∼ 10R0.

densation, for which the peak of the joint distribution moves smoothly through the phase
transition (see Fig. 4.4).
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Figure 4.4: Joint distribution of the position of the centre of mass of two trapped particles
r̄ij and their pair separation rij for the free Bose gas. The peak of the joint distribu-
tion moves continuously from the normal phase at T/T trap

BEC = 1.4 (left) to the regime at
T/T trap

BEC = 0.7 where most of the bosons are in a Bose–Einstein condensate (right) through
the coexistence region at T/T trap

BEC = 0.9.

For larger values of R0/lω, however, we see no sign of a first-order phase transition (see
Fig. 4.5): there is only one peak in the joint distribution of rij and r̄ij, that stabilizes
around the same pair distances ∼ 10R0 as the superfluid Efimov liquid in the case where
a first-order phase transition is seen (see Fig. 4.3).

By following the permutation cycle distribution, for such values of R0/lω, we notice
that the unitary Bose gas undergoes a conventional Bose–Einstein phase transition at
temperatures higher than that at which the pair distances stabilize around 10R0 (see
Section 1.1.1). We attribute this stabilization of the pair-distance distribution around the
same value as in the case of the first-order phase transition to the superfluid Efimov liquid
to a cross-over from the Bose–Einstein condensate to a superfluid Efimov liquid behaviour.
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Figure 4.5: Joint distribution of the position of the centre of mass of two trapped particles
r̄ij and their pair separation rij for a unitary Bose gas of 100 bosons with R0/lω = 0.23. The
pair distance distribution decreases smoothly between T/T trap

BEC = 0.9 and T/T trap
BEC = 0.8

and has stabilized at pair distances of about 10R0 at T/T trap
BEC = 0.7.

Identification of the first-order phase transition in the intermediate regime

For values of R0/lω between 0.07, where the system clearly undergoes a first-order phase
transition (see Fig. 4.3), and 0.23, where no first-order phase transition is seen (see Fig. 4.5),
it may be hard to determine whether the system undergoes a first-order phase transition
or not by only observing the joint distribution of the pair distance and the position of the
centre of mass, because the typical pair distances in the normal gas and in the superfluid
Efimov liquid become of the same order (see Fig. 4.6).

Nevertheless, a close follow-up of the position of the first peak of the pair distribution
function π(rij) allows to determine whether the system undergoes a first-order phase tran-
sition (see Fig. 4.7): for small values of R0/lω, such as R0/lω = 0.7 employed in Fig. 4.3, we
see a strong step of the position of the first peak of the pair distribution function when the
temperature is decreased. For large values of R0/lω such as R0/lω = 0.23, used in Fig. 4.5,
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Figure 4.6: Joint distribution of the position of the centre of mass of two trapped particles
r̄ij and their pair separation rij for a unitary Bose gas of 100 bosons with R0/lω = 0.13,
at T/T trap

BEC = 1.17 (left), T/T trap
BEC = 1.14 (centre), and T/T trap

BEC = 1.09 (right). Although
the peak of the distribution changes of position on quite a small temperature window,
the observation of this histogram does not allow to tell whether the system undergoes a
first-order phase transition.
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we see no step. For intermediate values of R0/lω, such as R0/lω = 0.13, used in Fig. 4.6, we
see that a step may still be present, therefore indicating that the system is also undergoing
a first-order phase transition to the superfluid Efimov liquid.
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Figure 4.7: Position of the first peak of the pair distribution rpeak as a function of the
temperature. At R0/lω = 0.07 (left), the presence of a strong step corresponds to the case
where the first-order phase transition is identifiable through the joint distribution of the
distance of the centre of mass and the pair distance of pairs of particles in the trap (see
Fig. 4.3). At R0/lω = 0.13 (centre), a clear step still indicates that the unitary Bose gas
undergoes a first-order phase transition although this behaviour is unclear from the joint
distribution (see Fig. 4.6). At R0/lω = 0.23, there is no step and the system does not
undergo a first-order phase transition (see Fig. 4.5).

Numerical phase diagram for trapped unitary bosons

Monitoring the first-order phase transition as explained in the above section, together
with monitoring conventional Bose–Einstein condensation through the length of permuta-
tion cycles, we obtained a numerical phase diagram for 100 trapped unitary bosons (see
Fig. 4.8). The unitary Bose gas may be found under three thermodynamic phases: the
normal gas, well characterized by the virial expansion (see Section 4.1.2), the conven-
tional Bose–Einstein condensate, and the Efimov liquid, whose long permutation cycles
also demonstrate the superfluid nature. When the temperature is decreased, the normal
gas may undergo a transition to either the superfluid Efimov liquid (first-order) or the
conventional Bose–Einstein condensate (second-order), that we characterize by a particle
having probability greater than 0.05 to be in a cycle of length greater than 10. From that
phase, a coexistence line with the superfluid Efimov liquid ends in a critical point, that is
allowed by the superfluid nature of both the conventional Bose–Einstein condensate, and
of the Efimov liquid.
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Figure 4.8: Numerical phase diagram for 100 trapped bosons. Crosses denote either
normal-gas-to-Efimov-liquid transitions, or normal-gas-to-Bose–Einstein-condensate tran-
sitions, and the error bars correspond to the lowest temperature at which a pure normal
gas was observed and to the highest temperature at which a superfluid phase was ob-
served. The coexistence lines are qualitatively continued to a triple point and a critical
point (dashed lines). The temperature of condensation of a free Bose–Einstein condensate
in the trap, T trap

BEC is indicated for comparison purposes (thin horizontal red line).

4.2.2 Simple model for the transition to the Efimov liquid phase

To obtain an approximate theoretical description of the normal-gas-to-Efimov liquid coex-
istence line, we need a simple model both of the normal gas and of the superfluid Efimov
liquid. We already showed that the virial expansion up to the third coefficient is a very
good model for the former (see Section 4.1.2). In order to build this simple model for the
coexistence line, we devised a simple theoretical model of the Efimov liquid, both from
previous work achieved in the field of unitary bosons, and from our observations.

Energy of the superfluid Efimov liquid

In 2010, in a pioneering article, using a variational Monte Carlo method, von Stecher
demonstrated that, at zero temperature, small groups of unitary bosons form clusters
bound by the Efimov effect, and obtained their energy. Using the data of this article, by
identifying these clusters to the superfluid Efimov liquid at low temperature, it is possible
to extrapolate the bulk energy of the Efimov liquid (see Fig. 4.9) to

εl = −El
N

= 10.1ET , (4.12)

where −ET is the energy of the fundamental Efimov trimer.
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Figure 4.9: Energy El of the superfluid Efimov liquid at zero temperature as a function
of the number of particles N , from von Stecher (2010) (black crosses). A linear regression
(red line) gives −El/N = 10.1ET for large values of N .

Incompressible fluid approximation

In Section 4.2.1, we saw that, in the liquid phase, the first peak of the pair correlation
function is at distances of order 10R0 (see Fig. 4.3, 4.5, and 4.7), regardless of the value
of R0. This allows to model the superfluid Efimov liquid by a incompressible fluid of density
nl ∝ R−30 . From simulations, we obtain nl ∼ (5R0)

−3.
When the entropic contribution to the free energy of the liquid can be neglected (this

holds in particular at low temperatures and for an equilibrium with a gaseous phase, such
as that happening in the first-order phase transition which we are studying), the free energy
is identical to the internal energy. As, in a pure phase, the Gibbs free energy per particle
corresponds to the chemical potential, we may write:

Gl = µlN = Fl + PNvl = −Nεl + PNvl, (4.13)

where vl = 1/nl is the specific volume of the superfluid Efimov liquid, Fl its free energy,
Gl its Gibbs free energy, and µl its chemical potential.

This allows to write the grand-canonical equation of state of the superfluid liquid phase
in the incompressible fluid approximation,

P = nl(µl + εl). (4.14)

First-order phase transition

In the case where the free energy F of a homogeneous system is not a convex function
of its volume V , it becomes more favourable to split the system into two homogeneous
phases. These two phases must have equal temperatures (thermal equilibrium), pressures
(mechanical equilibrium), and chemical potentials (chemical equilibrium). This picture is
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valid when interface energy may be neglected, which we assume in the modelling of the
phase transition to the Efimov liquid phase. The case of the equilibrium between the
normal gas in the virial approximation and the superfluid liquid in the incompressible fluid
approximation is illustrated in Fig. 4.10.
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Figure 4.10: Sketch of the behaviour of the free energy (left) and pressure (right) of the
unitary Bose gas through the normal-gas-to-Efimov-liquid phase transition. At coexistence,
the free energy F is not identical to its convex envelope, and the slope of the convex
envelope is identical to the pressure of both phases, called the saturating vapour pressure
Pvap. When the specific volumes vl and vg of the liquid and of the gas become equal,
coexistence ceases to be possible and there is no longer a phase transition between the two
phases. This corresponds to the critical point.

Comparison of the model to the numerical phase diagram

As we just saw, the equilibrium of the normal gas and the superfluid Efimov liquid is given
by the equality of the pressures, of the temperature, and of the chemical potentials of both
phases. If we use the virial expansion to describe the normal gas and the incompressible
fluid model to describe the Efimov liquid, Eq. 4.8 and 4.14 read

nl (µ(T ) + εl) =
kBT

λ3th

(
eβµ(T ) + b2e

2βµ(T ) + b3e
3βµ(T )

)
. (4.15)

Because, at the threshold of the transition, bosons are in the gaseous phase throughout
the trap, it is possible to use the density of the gas phase ng, given by Eq. 4.8 in the virial
approximation, to obtain the equilibrium chemical potential µ(T ). In the local density
approximation (see Section 2.1.2), integrating the density throughout the trap gives the
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total number of particles, yielding the implicit equation for µ(T )

4π

∫ ∞

0

r2drng

(
µ(T )− 1

2
mω2r2

)
= N. (4.16)

Solving Eq. 4.15 for T , where µ(T ) is given by Eq. 4.16, yields the temperature of co-
existence of the two phases. In Fig. 4.11, where εl was empirically reduced to −8ET to
account for the deviation of the energy of small unitary clusters from its large-N value
(see Fig. 4.9), we see that the obtained temperatures match the numerical phase diagram
very well.

When the virial expansion no longer holds in the gaseous phase, and when the tran-
sition to the Efimov liquid occurs from the Bose–Einstein condensate, neither Eq. 4.15
nor Eq. 4.16 are valid any longer. However, because all physical quantities are continuous
through Bose–Einstein condensation, the solution of Eq. 4.15 is continued to these regimes,
where it still conveys qualitative information up to the critical point, where both phases
have the same specific volume.
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Figure 4.11: Comparison of the numerical data for the normal-gas-to-Efimov-liquid phase
transition (blue crosses) to the simple model of Eq. 4.15 (blue line). The Bose–Einstein
transition (red crosses) is naively modelled by that of the free Bose gas (red line).

4.2.3 Homogeneous phase diagram

In this section, I use the simple theoretical model for the normal-gas-to-Efimov-liquid
transition, that we derived in the previous section, to describe the physics of a homogeneous
system at the thermodynamic limit.

Diagram in terms of pressure and temperature

In the canonical ensemble, the thermodynamics of the homogeneous unitary Bose gas is
described in terms of two independent thermodynamic quantities, that may be chosen to
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be the pressure P and the temperature T . When the non-universality of the fundamental
Efimov trimer may be neglected (see Section 3.2.4), the system is driven by one only
parameter, that may be chosen to be the hyperradial cutoff R0, or εl. This means that
only two independent dimensionless quantities may be built, in terms of which the phase
diagram is universal in that it does not depend on R0. For example, we may choose them
to be the dimensionless pressure P̃ and temperature T̃ ,





T̃ =
kBT

εl
,

P̃ =
P~3√
mε5l

.
(4.17)

To treat the case of the homogeneous unitary gas, there is no need to define a chemical
potential, and it is possible to use the virial expansion Eq. 4.7 to obtain the relation
between the pressure and the density instead of the cluster expansion Eq. 4.8. However,
in the degenerate regime, where the cluster expansion was qualitatively continued, both
expansions yield different coexistence curves, because of the appearance of terms of order
higher than 3 when the cluster equation for the density is used together with the cluster
equation for the pressure (see Eq. 4.8).

In the aim of being consistent with the coexistence line for the trapped system of 100
bosons, the transition line into the superfluid liquid is computed parametrically using the
cluster expansion: Eq. 4.15 is solved for µ at a given value of T , which gives the value of
the saturating vapour pressure from, for example, the equation of state of the superfluid
liquid Eq. 4.14.

As in the homogeneous phase diagram (see Fig. 4.11), the transition curve into the
Bose–Einstein condensate is naively modelled by that of a free Bose gas (Huang, 1987):

PBEC(T ) =
kBT

λ3th
g5/2(1) ≈ 0.085

m3/2

~3
(kBT )5/2, (4.18)

where g5/2 is the polylogarithm function of order 5/2, defined by

g5/2(z) =
∞∑

k=1

zk

k5/2
. (4.19)

Alternatively, this equation may be rewritten in terms of the dimensionless pressure and
temperature:

P̃BEC = 0.085T̃ 5/2. (4.20)

The universal phase diagram in terms of dimensionless pressure and temperature is
displayed in Fig. 4.12. At high pressure and temperature, the gas is in its normal phase.
Depending on the pressure, when the temperature is decreased, the system may undergo a
transition to the Efimov liquid (low pressure), to the Bose–Einstein condensate and then
to the Efimov liquid (intermediate pressure), or to the critical phase (high pressure).
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This phase diagram also presents non-universal features, in the sense that they are
specific to our model. At high temperature, the three-body hard core is assumed to block
quantum coherence when the thermal wave-length λth is much smaller than R0, and at
very high pressure, the system is expected to be in a solid phase driven by steric effects.
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Figure 4.12: Universal phase diagram of the unitary Bose gas, expressed in terms of the
dimensionless temperature and pressure. The unitary Bose gas exists under three phases,
the normal gas, the Bose–Einstein condensate and the Efimov liquid. Both latter phases
are superfluid and they are separated by a critical point. At high temperature, quantum
coherence cannot be built, because the thermal wave-length becomes smaller than R0, and
unitary bosons are found only in the normal gas phase. At high pressure, unitary bosons
are in a solid state.

Densities diagram

Alternatively, and more conveniently for experiments, in which the density n may be
accessed by in situ imaging (see Section 2.2.2), the two independent dimensionless physical
quantities that govern the unitary Bose gas may be chosen to be λthn1/3 and R0n

1/3 (see
Fig. 4.13).

This diagram also provides a way to view phase separation at coexistence: at constant
values of R0 and T , from a density n in the coexistence region, the gas phase-separates
along a line going through the origin and the point (λthn

1/3, R0n
1/3). The densities of the

liquid and of the gas at coexistence are given by the crossings of this line and each of the
two borders of the phase-separation region.

4.3 Unitary liquid in experimental systems
In the previous sections, I presented the results of the simulation of 100 trapped unitary
bosons, and deduced a universal phase diagram from them. In the following, I first discuss
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Figure 4.13: Phase diagram of unitary bosons expressed in terms of densities. This cor-
responds to the same data as Fig. 4.12. When the temperature is decreased and R0 and
n kept fixed, from the normal gas, the system either phase-separates into the normal gas
and the Efimov liquid, or undergoes a second-order phase transition to the Bose–Einstein
condensate and then phase separates or undergoes a cross-over into the Bose–Einstein
condensate and the Efimov liquid.

the regions of the universal phase diagram that should be accessible in experiments, and I
then describe how the Efimov liquid could be characterized.

4.3.1 Experimentally accessible regions of the phase diagram

To discuss how the superfluid Efimov liquid could be experimentally observed, I relate the
three-body hard-core parameter R0 to experimental physical quantities. I then use realistic
values of experimental parameters to discuss the region of the phase diagram that could
be probed in current-day experiments.

Connection between R0 and the Van der Waals length

It was recently observed in experiments with various atomic species (Ferlaino et al., 2011;
Berninger et al., 2011; Wild et al., 2012; Roy et al., 2013) that the scattering length at
which Efimov trimers form scales with their van der Waals length,

lvdW =
1

2

(
mC6

~2

)1/4

, (4.21)

where C6 is the coefficient describing the long-range behaviour of the Lennard–Jones pair-
interaction potential VvdW → −C6/r

6, the reference model for interaction between neutral
atoms. This relation was also found from theoretical calculations (Schmidt et al., 2012).
Because universal Efimov theory depends on one unique scaling factor (see Section 3.2.4),
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this also means that, if the non-universal deviations of the fundamental trimer can be
neglected, the effective value of R0 describing actual atomic species is related to lvdW.

As explained in Section 3.2.4, there is no reason why the fundamental Efimov trimer
of the Lennard–Jones interaction potential should look like a universal trimer. However,
recent computations showed that the fundamental trimer of unitary particles with such
an interaction looks like a universal Efimov trimer with an effective infinite barrier at
R ∼ 2lvdW (Wang et al., 2012). This means that, for cold atoms, the value of R0 may be
well approximated by

R0 ∼ 2lvdW. (4.22)

Case of ultra-cold alkali vapours

Cold-atomic Bose–Einstein condensation is best performed with alkali atoms, the largest of
which is 133Cs with lvdW = 101a0, where a0 = 5.292×10−12m is the Bohr radius (Chin et al.,
2010). If we bring weakly-interacting 133Cs atoms to the free Bose–Einstein condensation
temperature at the typical density n = 1013cm−3, and then quench them to unitarity
through a Feshbach resonance, we see from Fig. 4.14 that they would spontaneously phase-
separate into the Efimov liquid and the normal gas. Having a smaller value of lvdW than
133Cs, gases of any other alkali atoms commonly used for Bose–Einstein condensation would
be even deeper in the phase separation region.
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Figure 4.14: At the free Bose–Einstein condensation temperature and at the typically
achieved density n = 1013cm−3, the gas of 133Cs atoms is in the phase coexistence region
(magenta dot). It spontaneously phase separates into the normal gas and the Efimov liquid
(intersections of the magenta line with the blue lines, one of which is out of the depicted
region of the phase diagram).

When the gas is forced to a density n = 1013cm−3, it spontaneously phase-separates
into the Efimov liquid of density nl and the normal gas at its density of coexistence nvap.
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The volume conservation reads
1

n
=
xl
nl

+
1− xl
nvap

, (4.23)

where xl is the fraction of atoms in the liquid phase. Because nvap � nl, the value of xl is

xl = 1− nvap
n
. (4.24)

As nvap � n (see Fig. 4.14) at the free Bose–Einstein transition temperature, the liquid
fraction after the quench has to be very large. As the quench drives the gas deep into
the region where the liquid is stable, there should be no free-energy barrier hampering the
transition and the liquid should form through spinodal decomposition rather than a slow
nucleation process (Binder, 1987).

4.3.2 Experimental observables

The phase separation of the unitary Bose gas described in the above paragraph is unlikely
to be observed at thermal equilibrium, as three-body losses make the unitary Bose gas
unstable. However, as discussed in the following, they could still be used to identify the
Efimov liquid. I then discuss another possible experimental observable, the momentum
distribution.

Three-body losses

In atomic alkali gases, the pair-interaction potential features deeply-bound dimer states
which our interaction potential lacks. These cause three-body recombination processes, in
which three atoms come close to one another, two of which form a deeply-bound dimer while
the third atom carries the kinetic energy away. This process causes all three particles to
leave the trap. The three-body losses are the same as those through which Efimov trimers
were experimentally identified (Kraemer et al., 2006; Zaccanti et al., 2009; Pollack et al.,
2009).

After a recombination event, the density of particles n(t) in the trap decreases with the
time t following the equation

dn(t)

dt
∝ −K3n

3, (4.25)

where K3 is called the three-body recombination rate. It was shown both experimentally
and numerically that K3 is on the order of ~|a|3/m and saturates as |a| reaches the order
of the de Broglie thermal wave-length λth (Greene et al., 2004; D’Incao et al., 2004; Rem
et al., 2013).

Four-body processes, in which three bosons form a (possibly meta-stable) trimer and
the fourth leaves the trap carrying the kinetic energy, are one possible way to form the
Efimov liquid. They may be described by a four-body recombination rate K4, so that the
time variation of the density of free atoms is proportional to K4n

4. Theoretical models
predict that K4 is on the order of ~a7/m and, like K3, thermally saturates when |a| ∼ λth.
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At unitarity, both the three and four-body recombination rates are thermally saturated.
The condition for four-body losses to dominate over three-body losses is

nK4 � K3, (4.26)

which may be re-written as
nλ3th � 1. (4.27)

This condition is similar to that for the Bose–Einstein condensation of free atoms (Eq. 1.12).
Therefore, quenching a Bose–Einstein condensed atomic vapour to unitarity at a Feshbach
resonance may be a way to form the Efimov liquid.

Because of the three-body losses, that still would be present, full phase separation is
however unlikely to be observed. Nevertheless, the formation of small liquid droplets may
be a quite realistic scenario. These might be identified through the sudden increase of the
losses, quite more important in the liquid phase as they are proportional to n3

l .

Momentum distribution

Even though only small droplets of liquid may form, the signature of the liquid fraction in
terms of the momentum distribution n(k) might be obtained from time-of-flight measure-
ments. This was recently done to some extent by Makotyn et al. (2014), with a good signal
in the low-k region. Nevertheless, the current lack of model or data for n(k) at unitarity
makes it difficult to state whether their system (a gaseous phase) is fully thermalized, and
the characteristic unitary 1/k4 tail of the momentum distribution (see Tan (2008) and
Section 4.A.2) has yet not been observed.

In path-integral Monte Carlo simulations, the momentum distribution may be obtained
through the off-diagonal density matrix elements (Ceperley, 1995), a process detailed in
Section 4.A. This is done by stochastically alternating between diagonal configurations such
as those in the simulations performed in this work (see Chapter 1), in which all bosons
lie on closed paths starting at their positions and ending at those of their permutations,
and non-diagonal configurations, in which one path is open. There is a wide variety of
complexity in off-diagonal simulations, ranging from simply allowing one cycle to open
(Holzmann et al., 1999), to the complex worm algorithm (Prokof’ev et al., 1996; Prokof’ev
et al., 1998), in which the two ends of the open cycle do not have to always be at the same
imaginary time.

4.4 Conclusion

In this chapter, I have explained how the simulations show that the unitary Bose gas exists
under three phases: the normal gas, the conventional Bose–Einstein condensate, and a new
phase, the Efimov liquid. I also discussed the prospects of experimental observation and
quantitative comparison to experiments, with the challenging problem of three-body losses
at unitarity.
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The simulation can further be enhanced by sampling the pair density matrix of bosons
interacting through the zero-range unitary pair potential rejection-free, which is the subject
of ongoing research. This may lead to a simulation able to sample a large liquid drop and
to address systems of more than 100 bosons.

Appendix 4.A Path integrals and momentum distribu-
tion

As explained in Section 4.3.2, the momentum distribution of a cold-atomic gas is an exper-
imentally accessible observable, that can also be computed in a path-integral Monte Carlo
simulation sampling the off-diagonal density matrix. Here, I explain the link between the
off-diagonal density matrix and the momentum distribution, which I then illustrate by
deriving the momentum distribution of two bosons and obtaining its characteristic 1/k4

tail due to unitary interactions. I then describe a simple algorithm for computing both
diagonal and off-diagonal density matrix elements (and hence momentum distributions) in
a path-integral Monte Carlo simulation.

4.A.1 Off-diagonal density matrix and momentum distribution

When the density matrix is diagonal, the path starting at particle i at imaginary time 0
ends in xP (i), the position of particle P (i) (see Chapter 1), at imaginary time β. For non-
diagonal density matrix elements, the end of this path, x′i, is in general different from xP (i).
Such a situation happens, for example, when the path is open between x1 and xP−1(1), as
illustrated in Fig. 4.15.

x1 x2 x3

Positions

0

β

Im
ag

in
ar

y
ti

m
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xP (2) xP (1) xP (3)x′2

Figure 4.15: One-dimensional path-integral configuration with P (2) = 1 (or alternatively
P−1(1) = 2) in which the diagonal condition x′P−1(1) = x1 has been released.
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By symmetry, it is enough to compute the momentum distribution of particle 1. Let
k1 be its momentum. In the diagonal density matrix ρ(x1, . . . ,xN ;xP (1), . . . ,xP (N); β), x1

appears twice: as x1, and as x′P−1(1), that is, as the position at imaginary time β of the
predecessor of particle 1 in the permutation. Using that the momentum is the Fourier
transform of the position, the momentum distribution is

n(k1) =
1

(2π)3Z

∑

P∈SN

∫
dx1dx2 . . . dxNdx

′
P−1(1)e

−ik1·(x′
P−1(1)

−x1)ρ(x1, . . . ,xN ;x′1, . . . ,x
′
N ; β),

(4.28)
where Z = tr ρ is the partition function of the system. In this integral, x′P−1(i) = xi for
i 6= 1.

In an off-diagonal simulation, the momentum distribution n(k1) is thus obtained by
taking the Fourier transform of x′P−1(1) − x1, which are both ends of the open path. This
means that, in practice, it is possible to forget about the indices and simply observe the
pair distance distribution between both open ends of the open path (Ceperley, 1995).

4.A.2 Momentum distribution of two interacting bosons

To illustrate that it is possible to obtain momentum distributions using density matrices, in
this section, I compute the momentum distribution of two unitary bosons. In this analytical
calculation, the sum on permutations (see Eq. 4.28) needs to be carried out explicitly. In
the following, I derive independently the contributions of the configuration where the two
particles are on independent permutation cycles (the “classical” contribution) and of that
where they are on the same permutation cycle (the “entangled” configuration).

Classical contribution

x'2 = x2

x1

x'1

Figure 4.16: Two-dimensional sketch of the configuration used to compute ncl(k1). Posi-
tions at imaginary times 0 and β are identified by black dots, and plain lines show paths
between 0 and β.

From Section 4.A.1, the classical contribution to the momentum distribution (illustrated
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in Fig. 4.16) is

ncl(k1) =
1

Z(2π)3

∫
dx1dx

′
1dx2ρ(x1,x2;x

′
1,x2; β)e−ik1·(x′1−x1). (4.29)

For quantities to be easier to compute, the diagonality of particle 2 may be released by
noting that

ncl(k1) =
1

(2π)6Z

∫
dk2dx1dx2dx

′
1dx

′
2ρ(x1,x1;x

′
1,x

′
2; β)e−ik1·(x′1−x1)−ik2·(x′2−x2) (4.30)

=

∫
dk2ncl(k1,k2). (4.31)

In practice, it is easier to compute ncl(k1,k2) and then integrate k2 out. To this end, let us
separate the relative motion from that of the centre of mass. If r = x2−x1 and r′ = x′2−x′1
are the separations between particles 1 and 2 respectively at imaginary times 0 and β, and
C = (x1 + x2)/2 and C′ = (x′1 + x′2)/2 are the corresponding coordinates of the centre of
mass of particles 1 and 2, ncl(k1,k2) may be rewritten

Zncl(k1,k2) =
1

(2π)3

∫
dCdC′ρCM(C,C′; β)e−iK·(C

′−C)

︸ ︷︷ ︸
ncl(K), contribution of centre of mass

1

(2π)3

∫
drdr′ρrel(r, r

′; β)e−ik(r
′−r)

︸ ︷︷ ︸
ncl(k), contribution of the relative motion

,

(4.32)
where ρCM and ρrel are the respective density matrices of the centre of mass and of the
relative motion and K = k1 + k2 and k = (k2 − k1)/2 their respective momenta.

Computation of ncl(K) We know that ncl(K) is the momentum distribution of a free
particle of mass 2m, and from the free density matrix (see Eq. 1.5):

ncl(K) =
V

(2π)3
exp

[
−β~

2K2

4m

]
, (4.33)

where V is the accessible volume.

Computation of ncl(k) We know that the relative density matrix of two particles inter-
acting with a unitary potential is given by the free relative density matrix multiplied by
the correction factor g∞ (see Eq. 3.16), that is, if r = x2 − x1 and r′ = x′2 − x′1:

ρrel(r, r
′; β) =

(
m

4π~2β

)3/2

exp

[
−m(r′ − r)2

4~2β

]
g∞(r, r′; β) (4.34)

=

(
m

4π~2β

)3/2{
exp

[
−m(r′ − r)2

4~2β

]
+

2β~2

mrr′
exp

[
−m(r + r′)2

4~2β

]}
. (4.35)
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The first term in the sum in Eq. 4.35 corresponds to the momentum distribution of a free
particle of mass m/2. The corresponding contribution to ncl(k) is therefore

nfreecl (k) =
V

(2π)3
exp

[
−β~

2k2

m

]
. (4.36)

We now compute the contribution of the second term in Eq. 4.35 to the momentum
distribution of the relative motion, ∆ncl(k):

∆ncl(k) =
1

(2π)4

√
m

4π~2β

∫
drdr′

rr′
exp

[
−m(r + r′)2

4~2β
− ik · (r′ − r)

]
. (4.37)

If k is used to define the z direction, we may use the spherical coordinates (r, θ, φ) (resp.
(r′, θ′, φ′)) associated to r (resp. r′). We obtain

∆ncl(k) =
1

(2π)2

√
m

4π~2β

∫ ∞

0

rr′drdr′e
−m(r+r′)2

4~2β

∫ π

0

dθdθ′ sin θ sin θ′e−ik·(r
′ cos θ′−r cos θ).

(4.38)
The integrals on θ and θ′ are straightforward and give:

∆ncl(k) =
1

2(πk)2

√
m

4π~2β

∫ ∞

0

drdr′ [cos(k(r′ − r))− cos(k(r + r′))] exp

[
−m(r + r′)2

4β~2

]
.

(4.39)
Using the change of variables u = (r + r′)/2 and v = r′ − r, we obtain:

∆ncl(k) =
1

2(πk)2

√
m

4π~2β

[∫ ∞

0

du

∫ 2u

−2u
dve−mu

2/β~2 cos(kv)

︸ ︷︷ ︸
I1

(4.40)

−
∫ ∞

0

du

∫ 2u

−2u
dve−mu

2/β~2 cos(2ku)

︸ ︷︷ ︸
I2

]
. (4.41)

These two integrals may be expressed in terms of the Dawson integral

F (x) = e−x
2

∫ x

0

et
2

dt =
1

2

∫ ∞

0

e−t
2/4dt sinxt (4.42)

as

I1 =
2

k

√
β~2
m

F

(√
β
~2k2
m

)
(4.43)

and

I2 = 2
β~2

m
− 4k

(
β
~2

m

)3/2

F

(√
β
~2k2
m

)
. (4.44)
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Combining these two expressions into ∆ncl(k), and then with Eq. 4.36 into ncl, we get

ncl(k) = nfreecl (k) + ∆ncl(k) (4.45)

=
V

(2π)3
exp

[
−β~

2k2

m

]
+

1

2π5/2k3

[(
1 + 2β

~2k2

m

)
F

(√
β
~2k2
m

)
−
√
β
~2k2
m

.

]

(4.46)

Large-k1 behaviour of the classical contribution The full classical contribution to
the single-particle momentum distribution is (see Eq. 4.32):

ncl(k1) =
1

Z

∫
dk2ncl (K = k1 + k2)ncl

(
k =

k2 − k1

2

)
(4.47)

=
V

Z(2π)3

[
V

λ3th
exp

(
−β~

2k21
2m

)
+

∫
dk2∆ncl

(
k2 − k1

2

)
exp

(
−β~

2(k1 + k2)2

4m

)]
.

(4.48)

This expression is exact. It may however be integrated using the saddle-point method:

ncl(k1) =
V

Z(2π)3

[
V

λ3th
exp

(
−β~

2k21
2m

)
+

(
4πm

β~2

)3/2

∆ncl(k1)

]
. (4.49)

The k1 �
√
m/(β~2) behaviour of ncl(k1) may be deduced from the Taylor series

F (x) = 1
2x

+ 1
4x3

+O(x−5). In this regime,

ncl(k1) =
V

Z(2π)3

[
V

λ3th
exp

(
−β~

2k21
2m

)
+

4

πk41

(
m

β~2

)2
]
. (4.50)

Entangled contribution

From Section 4.A.1, the entangled contribution to the momentum distribution (illustrated
in Fig. 4.17) is

nent(k1) =
1

Z(2π)3

∫
dx1dx

′
1dx2ρ(x1,x2;x2,x

′
1β)e−ik1·(x′1−x2). (4.51)

As for the classical contribution, the condition x′2 = x1 may be released, and we may
compute at first nent(k1,k2), linked to nent(k1) by the integral

nent(k1) =

∫
dk2ncl(k1,k2). (4.52)

We also separate the centre of mass (of contribution nent(K)) and the relative motion (of
contribution nent(k)):

Znent(k1,k2) =
1

(2π)3

∫
dCdC′ρCM(C,C′; β)e−iK·(C

′−C)

︸ ︷︷ ︸
nent(K), contribution of centre of mass

1

(2π)3

∫
drdr′ρrel(r, r

′; β)e−ik(r+r′)

︸ ︷︷ ︸
nent(k), contribution of the relative motion

,

(4.53)
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x1

x'1=x2

x'2

Figure 4.17: Two-dimensional sketch of the configuration used to compute nent(k1). Posi-
tions at imaginary times 0 and β are identified by black dots, and plain lines show paths
between 0 and β.

The contribution of the centre of mass is unchanged from the classical contribution.
As we did above, we use that the relative unitary pair density matrix is the sum of a
free contribution and a correction (see Eq. 4.35) to compute the respective contributions
nfreeent (k) and ∆nent(k).

nfreeent (k) =
1

(2π)3

(
m

4π~2β

)3/2 ∫
drdr′ exp

[
−m(r′ − r)2

4~2β
− ik · (r + r′)

]
(4.54)

Using the change of variables u = (r + r′)/2 and v = r′ − r, the computation is straight-
forward and gives

nfreeent (k) =
δ(k)

8
, (4.55)

where δ is Dirac’s delta function.
Since substituting −r for r in the last integral of Eq. 4.38 leaves ∆ncl(k) unchanged,

we have ∆nent(k) = ∆ncl(k). We obtained the two contributions to nent(k), that we may
multiply by the momentum distribution of the centre of mass to obtain nent(k1,k2), from
which k2 may be integrated out to obtain nent(k1). This yields

nent(k1) =
V

Z(2π)3

[
exp

(
−β~

2k21
m

)
+

(
4πm

β~2

)3/2

∆ncl(k1)

]
. (4.56)

For large values of k1, we obtain:

nent(k1) =
V

Z(2π)3

[
exp

(
−β~

2k21
m

)
+

4

πk41

(
m

β~2

)2
]
. (4.57)
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Overall momentum distribution

The momentum distribution is the sum of ncl(k1) and nent(k2). From Eq. 4.49 and 4.56:

n(k1) =
V

Z(2π)3

[
V

λ3th
exp

(
−β~

2k21
2m

)
+ exp

(
−β~

2k21
m

)
+ 2

(
4πm

β~2

)3/2

∆ncl(k1)

]
.

(4.58)
The partition function Z may be seen as simply the normalization coefficient so that∫
n(k1) = 1, and, alternatively, may be computed using the real-space density matrix.
At large values of k1, Eq. 4.50 and 4.57 yield

n(k1) =
V

Z(2π)3

[
V

λ3th
exp

(
−β~

2k21
2m

)
+ exp

(
−β~

2k21
m

)
+

8

πk41

(
m

β~2

)2
]
. (4.59)

We found the expected 1/k41 tail of the pair distribution function, that is directly due to
the unitary pair interaction (Tan, 2008).

4.A.3 Simple algorithm to obtain the momentum distribution

In the previous two sections, I explained how density matrices may be used to compute
momentum distributions, and I derived the momentum distribution of two unitary bosons.
In the following, I explain how momentum distributions may be obtained using path-
integral algorithms that sample both closed and open paths. This description follows from
the work of Holzmann et al. (1999).

Sampling two configuration spaces at a time

In the same simulation, it is possible to sample both the non-diagonal configuration space
O (that contains one open path) and the diagonal configuration space C (that contains only
closed paths). Configurations of both spaces are shown on Fig. 4.18. These two configura-
tion spaces could be sampled in two independent simulations. In the simulation sampling
closed paths in space C, a configuration c has a statistical weight π(c), and, likewise, in the
simulation sampling open paths in space O, a configuration o has a statistical weight π(o).

In the Metropolis–Hastings algorithm (see Eq. 1.34), only ratios of probabilities are
computed: in practice, the physical probabilities π may be multiplied by any positive
constant without changing the output of the simulation. Let us consider a closed path
ending in xc and an open path ending in xo, which are identical up to the point xi (see
Fig. 4.18). In independent simulations, their probabilities would be given respectively by

πc ∝ ρ(xi, . . . ,xc; τS) and πo ∝ ρ(xi, . . . ,xo; τS), (4.60)

where the part of the paths that do not differ in configurations c and o were not written.
In the simulation that samples both πc and πo, we set the ratio πc/πo, by imposing

πc
πo

= α
ρ(xi, . . . ,xc; τS)

ρ(xi, . . . ,xo; τS)
, (4.61)
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xc
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xc
xi
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Configuration c Configuration o

Figure 4.18: Configurations of space C (left) and O (right), differing only by their red
parts.

that is, that the ratio of probabilities of open to closed paths is that of their statistical
weights, multiplied by an arbitrary constant α that sets the ratio of the configurations
of space C to those of space O. In practice, this means that, in that simulation, the
probabilities π may be taken as:

πc = αρ(xi, . . . ,xc; τS) and πo = ρ(xi, . . . ,xo; τS). (4.62)

In moves that go from a closed configuration to another closed configuration, or from
an open configuration to another open configuration, this does not affect the algorithm as
probabilities may be harmlessly be multiplied by an arbitrary constant to respect detailed
balance (see Eq. 1.33). Therefore, such moves may be performed like they would be in a
simulation sampling only space C or space O.

Moves opening or closing paths

Moves that open or close paths should satisfy the ratio πc/πo defined in Eq. 4.61. One way
to set a detailed balance condition that satisfies this ratio is to choose

A(o→ c) = αρfree(xi,xc; τ)ρfree(xi, . . . ,xc; τS) (4.63)

and
A(c→ o) = ρfree(xi,xo; τ)ρfree(xi, . . . ,xo; τS), (4.64)

where τ is the imaginary time between xi and either xo or xc. This means that moves
going from configuration o to c are proposed with a probability αρfree(xi,xc; τ). If they
are proposed, the paths between xi and xc may be built following the Lévy construction
(Lévy, 1940). The move is then accepted or rejected according to the standard procedure
based on interaction weights (see Section 1.A).
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Moves going from configuration c to configuration o are performed by sampling xo di-
rectly according to the Gaussian distribution ρfree(xi,xo; τ) (see Eq. 1.5). The path between
xi and xc is then built rejection-free according to the Lévy construction, and the move is
accepted or rejected according to the standard procedure based on interaction weights.

Sampling momentum distribution

In such a simulation, that samples both open and closed paths, thermodynamic quantities
may be sampled using ensemble averaging of diagonal configurations, like in purely-diagonal
simulations. The momentum distribution may be extracted by performing the Fourier
transform of the distribution of the distance between both ends of open paths (see Eq. 4.28).



General conclusion

Quantum path-integral Monte Carlo simulations provide a very powerful tool to probe the
low-temperature behaviour of cold bosonic gases. In this thesis, they were used to obtain
the first beyond-mean-field corrections to the equation of state of the weakly-interacting
Bose gas, and to address the case where the interactions between bosons are resonant, a
situation called unitarity. There, they provided insights into the counter-intuitive Efimov
effect, that causes three bosons to form trimers in a regime where two bosons cannot bind.
Then, they were used to probe the physics of the unitary Bose gas, where they allowed to
predict a phase transition to a new phase, the superfluid Efimov liquid.
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Chevy, Werner Krauth, and Christophe Salomon, Physical Review Letters 107, 135301
(2011).

This article presents a check of the Lee–Huang–Yang equation of state of the weakly-
interacting Bose gas, both using experimental and numerical measures. In the second
part, that deals with results obtained by my collaborators from the Lithium group of
Laboratoire Kastler Brossel, the dynamic response to varying interaction sweeps is studied
experimentally.
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Dynamics and Thermodynamics of the Low-Temperature Strongly Interacting Bose Gas
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We measure the zero-temperature equation of state of a homogeneous Bose gas of 7Li atoms by

analyzing the in situ density distributions of trapped samples. For increasing repulsive interactions our

data show a clear departure from mean-field theory and provide a quantitative test of the many-body

corrections first predicted in 1957 by Lee, Huang, and Yang [Phys. Rev. 106, 1135 (1957).]. We further

probe the dynamic response of the Bose gas to a varying interaction strength and compare it to simple

theoretical models. We deduce a lower bound for the value of the universal constant � > 0:44ð8Þ that
would characterize the universal Bose gas at the unitary limit.

DOI: 10.1103/PhysRevLett.107.135301 PACS numbers: 67.85.�d, 05.30.Jp, 32.30.Bv, 67.60.Fp

From sandpiles to neuronal networks, electrons in met-
als, and quantum liquids, one of the greatest challenges in
modern physics is to understand the behavior of strongly
interacting systems. A paradigmatic example is superfluid
4He, the understanding of which has resisted theoretical
analysis for decades. Early attempts to address the problem
of the strongly interacting Bose liquid focused on the dilute
limit. A seminal result for the thermodynamics of the dilute
Bose gas was the expansion of the ground state energy (per
volume V), first obtained in the late 1950s [1]:

E

V
¼ gn2

2

�
1þ 128

15
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffi
na3

p
þ � � �

�
; (1)

where n is the density of the gas, g ¼ 4�@2a=m is the
coupling constant for particles with mass m, and a is the
s-wave scattering length, which characterizes the low-
energy interactions. The first term in Eq. (1) is the mean-
field energy, while the Lee-Huang-Yang (LHY) correction,

proportional to
ffiffiffiffiffiffiffiffi
na3

p
, is due to quantum fluctuations [1].

Up to this order, the expansion is universal, in the sense
that it depends solely on the gas parameter na3 and not on
microscopic details of the interaction potential [2–4].

Despite its fundamental importance, this expansion was
never checked experimentally before the advent of ultra-
cold quantum gases, where it became possible to tune the
value of the scattering length using magnetic Feshbach
resonances [5,6]. A first check of the LHY prediction
was provided by recent experiments on strongly correlated
Fermi gases [7–9] that behave as a gas of tightly bound
dimers in the limit of small and positive values of a
[10–12]. By contrast, early studies of Bose gases in the
strongly interacting regime were plagued by severe inelas-
tic atom loss [13], but recent experiments at JILA and Rice
have revived interest in these systems and showed the onset
of beyond mean-field effects [14,15]. Here we report on a
quantitative measurement of the thermodynamic equation

of state (EOS) of a strongly interacting atomic Bose gas in
the low-temperature limit. We show that the EOS follows
the expansion (1), and the comparison with fermionic
systems illustrates the universality of the LHY correction.
In the first part, we restrict ourselves to a moderately

interacting gas with negligible 3-body atom loss: a=a0 �
2000, a0 being the Bohr radius. In this regime our EOS
reveals the Lee-Huang-Yang correction due to quantum
fluctuations. We perform quantum Monte Carlo (QMC)
simulations to support our zero-temperature approxima-
tion. We then test our assumption of thermal equilibrium
by dynamically bringing the gas into a more strongly
interacting regime where atom loss is no longer negligible.
Finally, we explore the unitary regime where the scattering
length is infinite.
Our experimental setup was described in [16]. Starting

from a 7Li cloud in a magneto-optical trap, we optically
pump the atoms into the jF ¼ 2; mF ¼ 2i hyperfine state
and transfer them into a magnetic Ioffe trap. After evapo-
rative cooling to a temperature of �4 �K, the atoms are
loaded into a hybrid magnetic/optical trap and then trans-
ferred to the jF ¼ 1; mF ¼ 1i state. The radial optical
confinement of the trap is provided by a single laser
beam of 35 �m waist operating at a wavelength of
1073 nm, while the weak axial confinement is enhanced
by an additional magnetic-field curvature. We apply a
homogeneous magnetic field to tune the interaction
strength by means of a wide Feshbach resonance that we
locate at 737.8(2) G. The final stage of evaporation in the
optical trap is carried out at a bias field of 717 G, where
the scattering length has a value of about 200a0, and results
in a Bose-Einstein condensate of �6� 104 atoms with
no discernible thermal part. In the final configuration the
trapping frequencies are given by !r ¼ 2�� 345ð20Þ Hz
in the radial and !z ¼ 2�� 18:5ð1Þ Hz in the axial direc-
tion. The magnetic bias field is then adiabatically ramped
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to the vicinity of the Feshbach resonance in 150 ms and the
density distribution is recorded using in situ absorption
imaging (Fig. 1). As the EOS critically depends on the
scattering length, a precise knowledge of the latter close to
the Feshbach resonance is essential. In view of the discrep-
ancy between two recent works [15,17], we have indepen-
dently calibrated the scattering length aðBÞ as a function of
magnetic field B by radio-frequency molecule association
spectroscopy [18], as described in the Supplemental
Material [19].

For the measurement of the EOS, we follow the method
of [9,20–23]. Accordingly, the local pressure PðzÞ along
the symmetry axis of a harmonically trapped gas is related
to the doubly integrated in situ density profile �nðzÞ ¼R
dxdynðx; y; zÞ:

Pð�zÞ ¼ m!2
r

2�
�nðzÞ: (2)

This formula relies on the local-density approximation in
which the local chemical potential is defined as �z ¼
�0 � 1

2m!2
zz

2, where �0 is the global chemical potential

of the gas.
To measure the pressure at different interaction strengths

we have selected images with atom numbers in the range of
3–4� 104 in order to avoid high optical densities during
absorption imaging while keeping a good signal-to-noise
ratio. A total of 50 images are used, spanning values of
a=a0 from 700 to 2150. We calibrate the relation between
the integrated optical density and the pressure of the gas
at weak interaction, well described by mean-field theory
(inset of Fig. 2). The density profiles then generate the

EOS (2). The global chemical potential �0 remains to be
determined. For this work, we infer �0 self-consistently in
a model-independent way from the density profiles (see the
Supplemental Material [19]).
In the dilute limit na3 � 1, where the EOS is universal,

dimensional analysis can be used to write the grand
canonical EOS of the homogeneous Bose gas at zero
temperature in the form

Pð�; aÞ ¼ @
2

ma5
hð�Þ; (3)

where � � �a3=g is the (grand canonical) gas parameter
and hð�Þ is the normalized pressure. This EOS contains all
thermodynamic macroscopic properties of the system. For
example, the energy can be deduced from the pressure
using a Legendre transform detailed in the Supplemental
Material [19], and in particular, its LHYasymptotic expan-
sion (1). According to the above definition of h, the mean-
field EOS simply reads hð�Þ ¼ 2��2. These predictions
for hð�Þ are compared to the experimental data points in
Fig. 2, and to our QMC calculation. We observe a clear
departure of the EOS from the mean-field prediction
[dashed gray line (dashed red online)]. At the largest
measured value of � ¼ 2:8� 10�3 our data show a reduc-
tion of 20% of the pressure with respect to the mean-field
result.
We observe that LHY theory accurately describes our

experimental data and is hardly distinguishable from the
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FIG. 1 (color online). Doubly integrated density profile of a
trapped Bose gas at a scattering length a=a0 ¼ 2150, used to
measure the LHY expansion (1). The average over 5 experimen-
tal images is shown in black points. The QMC predictions for
3:9� 104 atoms are plotted in a solid line for T=Tc ¼ 0:75 in
red, 0.5 in orange, 0.25 in green, and 0.125 in purple (solid lines
from bottom to top). Inset: �2 deviation per degree of freedom of
a single experimental density profile with QMC results at differ-
ent temperatures. The excellent agreement between experimen-
tal profiles and QMC validates the zero-temperature assumption
for the EOS measurement.
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FIG. 2 (color online). Equation of state of the homogeneous
Bose gas expressed as the normalized pressure h as a function of
the gas parameter �. The gas samples for the data shown in the
main panel (inset) have been prepared at scattering lengths of
a=a0 ¼ 1450 and 2150 (a=a0 ¼ 700). The gray (red online)
solid line corresponds to the LHY prediction, and the gray
(red online) dashed line to the mean-field EOS hð�Þ ¼ 2��2.
In the weakly interacting regime the data are well described by
mean-field theory (inset), in opposition to stronger interactions
where beyond-mean-field effects are important (main panel).
The QMC EOS at T=Tc ¼ 0:25 (solid black line) is nearly
indistinguishable from the LHY EOS. The shaded (green online)
area delimits the uncertainty of 5% on the value of a.
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QMC in the studied range of interaction strength, a point
already put forward in a diffusion Monte Carlo simulation
at even higher values of the gas parameter [24]. We can
quantify the deviation of our data from mean-field theory
by fitting the measured EOS with a function that includes

a correction of order
ffiffiffiffiffiffiffiffi
na3

p
. For this purpose we convert

the energy E=N ¼ ½2�@2=ðma2Þ�na3½1þ �ðna3Þ1=2� to
the grand canonical EOS (see the Supplemental Material
[19]) and use � as a fit parameter in the resulting pressure
Pð�Þ. The fit yields the value � ¼ 4:5ð7Þ, which is in
excellent agreement with the theoretical result
128=ð15 ffiffiffiffi

�
p Þ � 4:81 in Eq. (1). Together with the mea-

surement with composite bosons of [9], this provides a
striking check of the universality predicted by the expan-

sion (1) up to order
ffiffiffiffiffiffiffiffi
na3

p
[11].

In the above interpretation we assumed that the zero-
temperature regime has effectively been reached. To
check this crucial assumption, we have performed finite-
temperature path-integral quantum Monte Carlo simula-
tions [25] in the anisotropic harmonic trap geometry of the
experiment with continuous space variables. The experi-
mental atom number can be reached without difficulty and
pair interactions are described by a pseudopotential. All
thermodynamic properties of the gas at finite temperature
are obtained to high precision and without systematic
errors. As seen in Fig. 1, we find good agreement between
the experimental density distributions and the QMC pro-
files at temperatures up to 0:25Tc, where Tc is the con-
densation temperature of the ideal Bose gas. This shows
that thermal effects are negligible and lead to an error in
the EOS much smaller than the statistical error bars in
Fig. 2.

We now assess the adiabaticity of the interaction sweep
in the measurements described above. A violation of adia-
baticity could lead to nonequilibrium density profiles that
distort the measured EOS. We study the dynamics of the
Bose gas subjected to time-dependent interaction sweeps
into increasingly strongly interacting regimes, where the
enhanced three-body loss rate limits the practical duration
of the sweep. In Fig. 3 we plot the axial cloud size deter-
mined by a Thomas-Fermi fit as a function of the sweep
duration. The magnetic field is ramped approximately
linearly in time, sweeping a=a0 from an initial value of
200 to different final values. Besides the experimental data
we present theoretical results from a mean-field scaling
solution [26,27] and from a solution of the hydrodynamic
equations incorporating the LHY EOS based on a varia-
tional scaling ansatz [28]. The latter shows a remarkable
agreement with our experimental data for a 	 3000a0. For
scattering lengths a=a0 	 840 the radius is nearly constant
for sweep durations �!z=ð2�Þ> 1:5 (� > 80 ms), indicat-
ing that the cloud follows the interaction strength adiabati-
cally. For the largest value used in the EOS study
(a=a0 ¼ 2150), the atom loss is less than 4% and the cloud
size after the � ¼ 150 ms sweep [�!z=ð2�Þ * 2:8] is 2.5%

smaller than the equilibrium value. We have corrected for
this systematic effect by rescaling the measured density n0
for the determination of the EOS, �n ¼ ��1 �n0ð�zÞ (with
� ¼ 0:975 for a=a0 ¼ 2150).
The properties of the Bose gas for very large values of

na3 constitute a challenging open problem. Because of the
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FIG. 3 (color online). Radius R of the Bose gas as a function of
the duration � of the interaction sweep. The radius R is normal-
ized to the radius R
 ¼ ahoð15	2NÞ1=5 [where aho ¼ ð@=m!zÞ1=2
and 	 ¼ !r=!z]. N is the measured atom number at the end
of each sweep. The final values of a=a0 are 380 (blue dots),
840 (purple squares), 2940 (red diamonds), and 4580 (green
triangles). The solid (dashed) lines show the solution of a varia-
tional hydrodynamic approach (mean-field scaling solutions).
The crosses show the predicted equilibrium beyond-mean-field
radii.
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FIG. 4 (color online). Normalized cloud radius RTF=R

 (filled

purple circles) and normalized atom number (open black
squares) as a function of the inverse scattering length aho=a at
the end of a 75-ms magnetic-field sweep. The static mean-field
prediction is plotted in a solid black line, the mean-field scaling
solution in a dashed red line, and the beyond mean-field scaling
ansatz in a solid gray line (green online). Inset: Zoom around the
unitary limit. Predictions for the universal constant � are shown
in an up triangle [34], down triangle [33], and square [32]. The
filled (empty) circles correspond to the radii normalized to the
final (initial) atom number (see [31]). The dashed black line is
the linear interpolation at unitarity.
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experimental limitation imposed by three-body recombi-
nation, we access this region with a shorter sweep of
duration �!z=ð2�Þ ¼ 1:35 (� � 75 ms). In Fig. 4 we
plot the normalized radius of the Bose gas as a function
of the inverse scattering length aho=a. Deep in the mean-
field regime (a & 800a0) the ramp is adiabatic as the data
match the equilibrium Thomas-Fermi prediction. As the
scattering length is increased, both nonadiabaticity and
beyond mean-field effects become important. A departure
from the equilibrium result becomes evident above a scat-
tering length of ’ 2000a0. Taking into account the mean-
field dynamics gives an improved description of our data
(red dashed line). Even better agreement (up to values of
a=a0 ’ 5000) is obtained with the variational approach
incorporating the LHY correction as presented above
[gray solid line (green online)] [28]. Probing larger values
of the scattering length enables us to gain further insight
into the unitary Bose gas, a ¼ 1. Because of the low
densities of our samples, only half of the atoms are lost
at the end of the sweep to the resonance (see squares in
Fig. 4). Universal thermodynamics at unitarity have been
conjectured for quantum gases [29] and successfully
checked experimentally for Fermi gases [30]. In the case
of bosonic atoms the existence of a many-body universal
state at unitarity is still unknown. Under the assumption of
universality, the only relevant length scale should be the

interparticle spacing n�1=3 and the EOS would take the

form � / @
2

m n2=3. Up to a numerical factor, this EOS is

identical to that of an ideal Fermi gas and we can write

� ¼ �EF [where EF ¼ @
2=2mð6�2nÞ2=3]. As we increase

the scattering length towards the unitarity regime, the
cloud is expected to grow in size. Because of the finite
response time of the gas, it is reasonable to assume that the
measured radius R is smaller than the equilibrium radius.
From this inequality, in the spirit of variational methods,
we deduce a lower bound for the value of � by interpolating
our data at unitarity [black dashed line in the inset of
Fig. 4]: � > 0:44ð8Þ [31]. This bound is satisfied for the
predictions � ¼ 0:66 [32] and for the upper bounds from
variational calculations, 0.80 [33] and 2.93 [34].

Future work could focus on the measurement of the
condensate fraction since the quantum depletion is ex-
pected to be as large as �8% for our most strongly inter-
acting samples in equilibrium, and on finite-temperature
thermodynamic properties [35]. Our measurements on
resonance as well as future theoretical studies should
give crucial insights on the unitary Bose gas.
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Publication 2: Efimov-driven phase transitions of the uni-
tary Bose gas
Swann Piatecki and Werner Krauth, Nature Communications 5, 3503 (2014).

This article presents path-integral Monte Carlo computations for unitary bosons. Efi-
mov trimers are discussed in terms of path integrals. Simulations of the unitary Bose gas
provide a check of the third virial coefficient, and show that unitary bosons may undergo
a first-order phase transition to a new quantum phase, the Efimov liquid.
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Abstract

Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum

particles that fall apart when any one of them is removed. They open a window into a rich quantum

world that has become the focus of intense experimental and theoretical research, as the region

of “unitary” interactions, where Efimov trimers form, is now accessible in cold-atom experiments.

Here, we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show

that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov

liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and

another superfluid phase, the conventional Bose–Einstein condensate, whose coexistence line with

the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed

phase transitions in cold-atom systems.

(Article in the version accepted after peer review. Full article available at

http://www.nature.com/ncomms/2014/140320/ncomms4503/full/ncomms4503.html.)
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INTRODUCTION

A striking analogue to Borremean rings, Efimov trimers are bound configurations of three

quantum particles that form near the point of “unitary” interactions [1], where the pair

potential becomes too weak to bind any two of them. Efimov trimers open a window into

a largely uncharted world of quantum physics based on many-particle bound states. They

were discovered in nuclear physics[2–4], but have also been discussed in quantum magnets[5],

biophysics of DNA[6] and, most importantly, in ultra-cold atomic gases. In these systems, it

has become possible to fine-tune both the sign and the value of the pair interactions through

the Feshbach mechanism [7], from a scattering length a close to zero up to the unitary point

|a| = ∞. In current experiments, Efimov trimers have not been seen directly, but their

presence has been traced through the variations of the rate at which the gas loses particles

as the interactions are scanned through the unitary region[8–11].

Theoretical research on Efimov physics has unveiled its universal nature, with the three-

particle bound states that form an infinite sequence at unitarity, and that disappear with

zero energy at large negative scattering lengths. Beyond the physics of three bound particles,

the ground-state properties of small unitary clusters were studied numerically [12], and their

spectrum computed with a variational ansatz [13] in a trap. However, the macroscopic many-

body properties of the unitary Bose gas have remained unknown. The understanding of its

thermodynamic behaviour is of great importance, especially as the experimental stability of

the unitary Bose gas of cold atoms has been reported for appreciable time scales[11, 14, 15].

In this work, we apply a dedicated Path-Integral Monte Carlo algorithm to the unitary

Bose gas. This allows us to address the thermodynamics of unitary bosons at finite tem-

perature, both above and below Bose-Einstein condensation. We obtain the phase diagram

of a finite number of trapped bosons, and back up our numerical calculations by a general

theoretical model, that yields a homogeneous phase diagram. At high temperature, we find

that the unitary Bose gas is very well described by the available virial coefficients[16]. At

lower temperature, the unitary Bose gas undergoes a first-order phase transition to a new

superfluid phase, the Efimov liquid, held together by the same effects as Efimov trimers,

and whose physical quantities are given by three-body observables. From these two phases,

transition lines to a third phase, the conventional Bose–Einstein condensate (BEC), start at

a triple point. The coexistence line between the Efimov liquid and the conventional Bose–

2



Einstein condensate ends in a critical point at high temperature. At a difference with the

experimental systems, our model is thermodynamically stable. This is assured through a

parameter, the three-body hard core R0, that bounds from below the energies of the Efimov

states. In cold-atom systems, this parameter is on the order of the van der Waals length lvdW

[17–19]. Experimental cold-atom systems are metastable, and particles disappear from the

trap into deeply bound states, via the notorious three-body losses. This intricate quantum

dynamics, and the description of the losses, are naturally beyond our exact Quantum Monte

Carlo approach, and we discuss them on a phenomenological level, in order to assess the

prospects for experimental tests of our predictions.

RESULTS

Model Hamiltonian

We describe the system of N interacting bosons by a Hamiltonian

H =
∑

i

p2
i

2m
+
∑

i<j

V a
2 (rij) +

∑

i<j<k

V3(Rijk) +
mω2

2

∑

i

x2
i , (1)

where pi, xi and m are the momentum, the position and the mass of particle i. The pair

interaction V a
2 has zero range, and may be viewed, as illustrated in Fig. 1a-c, as a square-

well interaction potential whose range r0 and depth V0 are simultaneously taken to 0 and

∞ while keeping the scattering length a constant. The unitary point, where the only bound

state disappears with zero energy and infinite extension, corresponds to an infinite scattering

length a. The three-body interaction V3 implements a hard-core hyperradial cutoff condition,

Rijk > R0, where the hyperradius Rijk of particles i, j, and k corresponds to their root-

mean-square pair distance (3R2
ijk = r2ij + r2ik + r2jk). This three-body hard core prevents the

so-called Thomas collapse[20] into a many-body state with vanishing extension and infinite

negative energy by setting a fundamental trimer energy −Et ∝ R−2
0 . The final term in

Eq. (1) models an isotropic harmonic trapping potential of length aω =
√
~/(mω) as it is

realized in ultracold bosons experiments. The properties of the system described by Eq. (1)

are universal when R0 is much smaller than all other length scales.
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Path-integral representation and Efimov trimers

In thermal equilibrium, within the path-integral representation of quantum systems

that we use for our computations, position variables xi(τ) carry an imaginary-time index

τ ∈ [0, β = 1/kBT ], where kB is the Boltzmann constant and T is the temperature. The

fluctuations of xi(τ) along τ account for the quantum uncertainty. The bosonic nature of

many-particle systems manifests itself through the periodic boundary conditions in τ and,

in particular, through the permutation structure of particles. The length of permutation cy-

cles correlates with the degree of quantum coherence[21–23]. Interactions set the statistical

weights of configurations[24, 25]. Ensemble averaging, performed by a dedicated Quantum

Monte Carlo algorithm, yields the complete thermodynamics of the system (see the Meth-

ods section for computational details). The N -body simulation code is massively run on

a cluster of independent processors. It succeeds in equilibrating samples with up to a few

hundred bosons.

Fig. 1 presents snapshots of three bosons in a shallow trap at ω ∼ 0 that illustrate the

quantum fluctuations in xi(τ), and characterize the Efimov trimer (see the Methods section

for a full description of the three bosons simulation). Indeed, for two-body interactions with-

out a bound state, virtually free particles fluctuate on the scale of the de Broglie thermal

wavelength λth =
√

2π~2β/m that diverges at low temperature (see Fig. 1a). In contrast,

for positive a, a bound state with energy −Edimer = −~2/(ma2) forms in the two-body

interaction potential. Two particles bind into a dimer, and the third particle is free (see

Fig. 1c). At unitarity, the bound state of the pair potential is at resonance Edimer = 0, and

the scattering length a is infinite (see Fig. 1b). At this point, the two-body interaction is

scale-free. While two isolated particles do not bind, in the three-particle system, pairs of

particles approach each other, and then dissociate, so that, between τ = 0 and τ = β, the

identity of close-by partners changes several times. This coherent particle-pair scattering

process, the hallmark of the Efimov effect[4], is highlighted in Fig. 1b. At small tempera-

tures, the fluctuations of this bound state remain on a scale proportional to R0 and do not

diverge as λth.

While the two-particle properties are universal at unitarity, the three-boson fundamental

trimer state generally depends on the details of the pair interaction. Excited trimers form

a geometric sequence of asymptotically universal Efimov trimers with an asymptotic ratio
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of energies En/En+1 ≈ 515.0 when n → ∞, where En is the energy of the n-th excited

trimer[1]. Due to this large ratio, thermal averages cannot identify individual trimer states

other than the fundamental trimer at low temperature. For the model Hamiltonian of

Eq. (1), the ground-state trimer is virtually identical to a universal Efimov trimer[12], and

we obtain excellent agreement of the probability distribution of the hyperradius R with

its analytically known distribution pR(R) (see Fig. 1d)[1]. This effectively validates our

algorithm. Furthermore, the observed quadratic divergence of the pair distance distribution

ρr(r), leading to an asymptotically constant r2ρr(r) for r → 0 (see Fig. 1e), checks with the

Bethe–Peierls condition for the zero-range unitary potential[26].

Equation of state of the unitary Bose gas

In local-density approximation, particles experience an effective chemical potential µ(r) =

µ0−mω2r2/2 that depends on the distance r from the centre of the trap. This allows us to

obtain the grand-canonical equation of state (pressure P as a function of µ) from the doubly-

integrated density profile [27] obtained from a single simulation run at temperature T . We

find that the equation of state of the normal gas is described very accurately by the virial

expansion up to third order in the fugacity eβµ (see Fig. 2 and the Methods section)[16].

The third-order term is crucial to the description of Efimov physics as it is the first term at

which three-body effects appear[28]. It depends explicitly on T and R0.

Phase transitions in the trapped unitary Bose gas

In the harmonic trap, particles can be in different thermodynamic phases depending on

the distance r from its centre. We monitor the correlation between the pair distances and

the position in the trap, and are able to track the creation of a drop of high-density liquid at

r ∼ 0 (see Fig. 3a-c). This drop grows as the temperature decreases. The observed behaviour

corresponds to a first-order normal-gas-to-superfluid-liquid transition, and is fundamentally

different from the second-order free Bose–Einstein condensation (see Supplementary Fig. 1).

All particles in the drop are linked through coherent close-by particle switches as in Fig. 1b,

showing that the drop is superfluid. Deep inside the liquid phase, the Quantum Monte Carlo

simulation drops out of equilibrium on the available simulation times. Nevertheless, at its
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onset and for all values of R0, the peak of the pair correlation function is located around

10R0, which indicates that the liquid phase is of constant density nl ∝ R−3
0 (see Fig. 3c). At

larger values of R0, the density difference between the trap centre and the outside vanishes

continuously, and the phase transition is no longer seen (see Fig. 3d-f). Beyond this critical

point, the peak of the pair correlation also stabilizes around 10R0, which indicates a cross-

over to liquid behaviour (see Fig. 3f and the Methods section for additional details on the

characterization of the first-order phase transition).

Model for the normal-gas-to-Efimov-liquid transition

Our numerical findings suggest a theoretical model for the competition between the uni-

tary gas in third-order virial expansion and an incompressible liquid of density nl ∝ R−3
0 and

constant energy per particle −ε ∝ Et, as suggested by ground-state computations for small

clusters[12] (see Supplementary Fig. 2). For simplicity, we neglect the entropic contributions

to the liquid-state free energy ε � TS, so that Fl ≈ −Nε. The phase equilibrium is due

to the difference in free energy and in specific volume at the saturated vapour pressure (see

the Methods section and Supplementary Fig. 3). We extend the third-order virial expansion

to describe the gaseous phase in the region where quantum correlations become important.

Because the conventional Bose–Einstein condensation is continuous, it still conveys qualita-

tive information about the transition into the superfluid Efimov liquid in that region. At

small R0 → 0, the coexistence line approaches infinite temperatures as the fundamental

trimer energy Et ∝ R−2
0 diverges. For larger values of R0, the density of the liquid decreases

and approaches the one of the gas. The liquid–gas transition line ends in a critical point,

where both densities coincide. As the liquid is bound by quantum coherence intrinsic to

the Efimov effect, this critical point must always be inside a superfluid, that is, between

the Efimov liquid and the Bose–Einstein condensate, which become indistinguishable. The

agreement between this approximate theory and numerical calculations for the trap centre

phase diagram is remarkable (see Fig. 4a). Beyond the critical point, we no longer observe

a steep drop in the density on decreasing the temperature. We also notice that quantum

coherence builds up in the gaseous phase, so that only a conventional Bose–Einstein conden-

sation takes place. Our numerical results suggest it occurs at a temperature slightly lower

than that for the ideal Bose gas[29], kBT
0
BEC ≈ ~ω(0.94N1/3 − 0.69).
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Homogeneous phase diagram of the unitary Bose gas

Our theoretical model also yields a phase diagram for a homogeneous system of unitary

bosons (see Fig. 4b) where, in addition, the conventional Bose–Einstein condensation is sim-

ply modelled by that of free bosons[30]. In absence of a harmonic trap, only two independent

dimensionless numbers may be built, kBT/ε, and P~3/
√
m3ε5. As a consequence, the phase

diagram in these two dimensionless numbers is independent of the choice of ε, that is, of

R0. The scaling of the dimensionless pressure with R5
0 and of the dimensionless temperature

with R2
0 explains that the triple point appears much farther from the critical point in the

homogeneous phase diagram than in the trap. We expect model-dependent non-universal

effects in two regions. At high temperature λth � R0, only a classical gas should exist as

the quantum fluctuations are too small to build up quantum coherence and, in particular,

permutations between particles. At high pressure P ∝ T , we expect a classical solid phase

driven by entropic effects, as for conventional hard-sphere melting.

DISCUSSION

To situate the theoretical results presented in this work in an experimental context, we

present the data of Fig. 4b in terms of R0n
1/3 and λthn

1/3 (see Fig. 5). In this diagram,

systems with identical values of T and R0 and different densities correspond to straight

lines passing through the origin. In the unstable region, we expect a homogeneous system

described by the Hamiltonian of Eq. (1) to phase-separate on the same such line into the

superfluid Efimov liquid and the normal gas or the Bose–Einstein condensate.

In cold-atom systems, the atomic interactions have deeply-bound states not present in

our model, and the strict hyperradial cutoff is absent. Nevertheless, an effective three-body

barrier at a universal value ∼ 2lvdW[18] induces a universal relation between the fundamental

trimer energy Et and the van der Waals length lvdW [17, 19, 31, 32]. In Fig. 5, a vertical

line marks the experimentally realistic value R0n
1/3 ∼ 0.023 obtained for 133Cs atoms at

a density n = 1013cm−3, using R0 ∼ 2lvdW and lvdW = 101a0 [7], where a0 is the Bohr

radius. Other atomic species yield smaller values of R0n
1/3, for which this discussion is also

valid. An experimental system may be quenched along this line into the unstable region by

suddenly increasing the scattering length up to unitarity via the Feshbach mechanism. If this

7



quench starts from a weakly-interacting Bose–Einstein condensate at very low temperature,

the four-body recombination process (that saturates at a rate K4 ∼ ~λ7th/m) will dominate

the three-body recombination process (that saturates at a rate K3 ∼ ~λ4th/m)[11, 33–35], a

condition that may be written as nK4 & K3 (cf. [36, 37]). Whereas the latter is responsible

for the three-body losses into deeply-bound dimer states, the former may represent one

possible strategy for creating Efimov trimers.

In the unstable region, the recombination process would create liquid droplets of ever

increasing size. Deep inside the unstable region, far away from the coexistence line, we expect

this growth to be a fast, barrier-free, runaway process involving spinodal decomposition[38,

39], rather than a slow activation process of nucleation over a free-energy barrier produced

by the competition of bulk and surface energies. In a thermodynamically stable system,

complete separation on macroscopic length scales proceeds through a coarsening process

on length scales that slowly increase with time[38, 40]. At the Bose–Einstein condensation

temperature of the non-interacting gas, this would lead to a large liquid fraction 1− ng/n,

where ng is the density of the gas at coexistence, and n the density of the system before

phase separation. However, this will certainly not be observable in current cold-atoms

experiments, as sufficiently large droplets of dense liquid are unstable towards decay into

deeply-bound atomic states. Nevertheless, the instability of the gas and the creation of

microscopic liquid droplets might be quite realistic. These could be observed as they would

lead to an important increase of the three-body losses, proportional to K3n
3
l in the liquid

phase.

The timescales for the creation of a minority liquid phase after a quench is a classic

problem of non-equilibrium statistical mechanics. In the present context, it is rendered even

richer by the fact that the initial low-temperature phase is a weakly interacting superfluid,

and that even the normal gas phase is thermodynamically unstable. These questions are

closely related to the very existence of the unitary Bose gas on time scales larger than its

thermalization time. Very recent experimental works indicate that the ultra-cold unitary

Bose gas can indeed be stabilized on appreciable time scales[11, 14, 15].
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METHODS

Path-integral Monte Carlo algorithm

In our path-integral quantum Monte Carlo simulation, the contribution of the three-body

hard-core interaction to the statistical weights of discretised path configurations are com-

puted using Trotter’s approximation, which consists in simply rejecting configurations with

R < R0. The contribution of the zero-range unitary interaction is computed using the pair-

product approximation, which estimates the weight of two nearby particles without taking

other particles into consideration. Both approximations are valid when the discretisation

step is small[23].

In the simulation, new configurations are built from existing configurations according to

several possible update moves. A new one, the compression-dilation move, was introduced

to specifically address the divergence of the pair correlation function at small distances (see

Fig. 1e and Supplementary Fig. 4). For each set of parameters, the simulation was run on

up to 16 independent processors for up to 10 days to reduce the statistical error.

Simulation of three bosons

In our simulations of unitary bosons, the system is contained in a harmonic trap. This

regulates the available configuration space. For the same purpose, in the three-body cal-

culations at ω ∼ 0 presented in Fig. 1, we impose that the three bosons are on a single

permutation cycle: In Fig. 1a-c the blue, red, and green bosons are respectively exchanged

with the red, green, and blue bosons at imaginary time β. This condition does not mod-

ify the properties of the fundamental trimers at unitarity, as other permutations could be

sampled at no cost at points of close encounter such as those highlighted in Fig. 1b.

Fig. 1a-c presents four-dimensional co-cyclic path-integral configurations in three-dimen-

sional plots. In this graphic representation, the centre of mass, whose motion is decoupled

from the effect of the interactions, is set to zero at all τ . The three spatial dimensions are

then reduced to two dimensions by rotating the triangle formed by the three particles at

each imaginary time to the same plane in a way that does not favour any of the three spatial

dimensions while conserving the permutation cycle structure and the pair distances.
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High temperature equation of state

Within the local density approximation, the grand-canonical equation of state P (µ) may

be obtained from the numerical doubly-integrated density profile n̄(x) [27] as

P (µ(x)) =
mω2

2π
n̄(x), (2)

where µ(x) = µ0 − mω2x2/2 is the local chemical potential along direction x, and µ0 the

chemical potential at the centre of the trap, measured from a fit of the equation of state to

that of an ideal gas in the outer region of the trap.

We compare this numerical equation of state to the cluster expansion, that expresses the

pressure in terms of the fugacity eβµ (see Fig. 2):

P =
kBT

λ3th

∑

l≥1

ble
lβµ. (3)

The l-th cluster integral bl follows from the virial coefficients of smaller order. It repre-

sents l-body effects that cannot be reduced to smaller non-interacting groups of interacting

particles[28]. We use the analytical expressions of b2 and b3 at unitarity that have become

available [16].

Monitoring the phase transitions

When the densities of the gas and the superfluid Efimov liquid approach each other, ob-

serving directly the two-dimensional histogram of pair distances and centre-of-mass positions

does not allow to distinguish between a weakly first-order phase transition and a cross-over

(see Supplementary Fig. 5). In this regime, we monitor the normal-gas-to-superfluid-liquid

phase transition more accurately by following the evolution of the first peak of the pair cor-

relation function (obtained by ensemble averaging) with temperature (see Supplementary

Fig. 6). In Fig. 4, Bose–Einstein condensation is assumed when particles lie on a permutation

cycle of length greater than 10 with probability 0.05[22].

Analytical model for the transition into the Efimov liquid

First-order phase transitions take place when the free energy F of a homogeneous physical

system is not a convex function of its volume V . Splitting the system into two phases is
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then favourable over keeping it homogeneous (see Supplementary Fig. 3). In this situation,

at coexistence and in absence of interface energy, the chemical potentials and the pressures

of both phases are equal.

The virial expansion is an excellent approximation to describe the normal gas phase of uni-

tary bosons far from the superfluid transition. Although this expansion becomes irrelevent

in the superfluid gas, its analytic continuation conveys important qualitative features be-

cause of the continuous nature of conventional Bose–Einstein condensation, and is therefore

a suitable approximation for the conventional Bose–Einstein condensate.

The theoretical model for the superfluid liquid is that of an incompressible liquid of spe-

cific volume vl and negligible entropic contribution to the free energy Fl = −Nε. Simulations

yield v
−1/3
l ∼ 5R0, and the negligible contribution of the entropy to the free energy is ensured

for non-pathological systems at low temperature. The results of Ref. 12 may be extrapolated

to ε = 10.1Et (see Supplementary Fig. 2), a value adjusted to ε = 8Et in Fig. 4a to account

for finite-size effects.

In practice, we draw the transition line into the superfluid liquid by finding the smallest

chemical potential at which the presssures of the incompressible liquid and of the normal

gas coincide at a temperature T :

µ+ ε

vl
=
kBT

λ3th
(eβµ + b2e

2βµ + b3e
3βµ). (4)

As n = 1/v = ∂µP , the crossing to the regime where this equation has no solution corre-

sponds to the critical point, where both densities are equal.

To draw the coexistence line for the trap centre with N = 100 particles in Fig. 4a, its

chemical potential µ0 is found from integrating the density throughout the trap:

4π

λ3th

∫
r2dr

(
eβµ(r) + 2b2e

2βµ(r) + 3b3e
3βµ(r)

)
= N, (5)

where the local chemical potential µ(r) = µ0−mω2r2/2 is computed within the local density

approximation.
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Figure 1. Path-integral representation of three bosons at different scattering lengths at

R0/λth = 1.3×10−2 (for the graphical projection of (x, y, z, τ) to three dimensions, see the Methods

section). a. At R0/a ∼ −1, bosons are unbound and fluctuate on a scale λth. b. At unitarity

(R0/a = 0), pairs of bosons form and break up throughout the imaginary time (yellow highlights,

arrows), forming a three-body state bound by pair effects. c. At R0/a ∼ 1, two bosons bind into a

stable dimer (red, blue) and one boson is unbound (green). Insets in a-c correspond to finite-range

versions of the zero-range interaction used in each case. Blue levels correspond to the dimer energy.

d. Sample-averaged hyperradial (root-mean-square pair distance) probability pR(R) at constant τ

(solid yellow) compared to its analytic zero-temperature value (dashed blue). e. Sample-averaged

pair distribution ρr(r), diverging ∝ 1/r2 as r → 0, and asymptotically constant r-shell probability

r2ρr(r), in agreement with the Bethe–Peierls condition. Data in this figure concern co-cyclic

particles in a shallow trap of ω ∼ 0.
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virial coefficients. The vertical gray line indicates the most central region of the trap used to

determine µ0 by comparison to an ideal gas.
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Figure 3. Two-dimensional histogram of pair distances rsep and centre-of-mass positions

r̄ for N = 100 bosons. Upper panels: First-order phase transition for R0/aω = 0.07. a. At

T/T 0
BEC = 1.7, the distribution is that of the normal phase. b. At a slightly lower temperature

T/T 0
BEC = 1.6, a second peak with smaller pair distances ∼ 10R0 appears in the trap centre. c.

At T/T 0
BEC = 1.5, most particles are in the trap centre, with small pair distances ∼ 10R0. Lower

panels: Smooth dependence of pair distances and densities on temperature. At R0/aω = 0.23,

the pair distances decrease smoothly between T/T 0
BEC = 0.9 (d) and T/T 0

BEC = 0.8 (e) and has

stabilized around 10R0 at T/T 0
BEC = 0.7 (f).
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superfluid-liquid first-order phase transition or a conventional second-order Bose–Einstein phase

transition (solid, black lines). The error bars indicate the last value of T at which the system was a

pure normal gas, and the first value of T at which we observed either the superfluid Efimov liquid

or the Bose–Einstein condensate. The normal-gas-to-superfluid-liquid phase transition corresponds

well to our theoretical model (solid, blue line) at high temperatures. Consistently with theoretical

predictions, the numerical coexistence lines are qualitatively continued to a triple point and a

critical point (dashed black lines). b. In a homogeneous system, the normal-gas-to-superfluid-

liquid coexistence line (solid, blue) and the conventional Bose–Einstein condensation line (solid,

red) are universal. The predicted divergence of the normal-gas-to-superfluid-liquid coexistence line

(dashed, red) and the phase transition to a solid phase (dashed, purple) are non-universal physics

specific to our interaction model.

18



0.00 0.05 0.10 0.15 0.20

R0n
1/3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ
th
n

1
/
3

Phase separation

Normal gas

BEC

λth ∼ R0

Fundamental
trimer of 133Cs

Efimov
liquid

Figure 5. Homogeneous phase diagram of unitary bosons: comparison with experi-

mental densities. (Data of Fig. 4b expressed through the dimensionless numbers λthn
1/3 and

R0n
1/3.) In the coexistence region, the system phase-separates into the superfluid Efimov liquid

(thick blue line) and, depending on temperature, the normal gas or the Bose–Einstein condensate.

At high density, the Bose–Einstein condensate undergoes a cross-over to Efimov liquid behaviour

(thick gray line). The value of R0n
1/3 ∼ 0.023 corresponding to the fundamental trimer of 133Cs

at density n = 1013 cm−3 is indicated by the vertical magenta line.

19



128 CHAPTER 4. PUBLICATIONS



Résumé
Cette thèse porte sur l’étude du gaz de Bose aux grandes longueurs de diffusion à l’aide de
simulations Monte-Carlo quantiques par intégrale de chemin. Dans un premier chapitre,
ce type de simulation est présenté en l’illustrant par l’exemple du gaz de Bose libre. À
l’aide d’une simulation Monte-Carlo quantique qui reproduit quantitativement à la fois
des résultats expérimentaux et des prédictions théoriques, le deuxième chapitre décrit la
physique du gaz de Bose dans le régime où les interactions deviennent trop fortes pour que
les théories de champ moyen s’appliquent.

La seconde partie de cette thèse concerne la situation où les interactions entre les bosons
sont résonantes, appelée régime unitaire. Dans cette situation, bien que deux bosons ne
puissent former un état lié, trois bosons peuvent former un état trimère. Cet effet contre-
intuitif, nommé effet Efimov, est étudié dans le troisième chapitre de cette thèse, à l’aide à
la fois d’arguments théoriques et d’une simulation Monte-Carlo quantique de trois bosons.
Dans un quatrième chapitre, cette simulation sert de base à une simulation du gaz de Bose
unitaire, qui reproduit des résultats théoriques à haute température et prédit l’existence
d’un liquide quantique à basse température, de la même origine physique que l’effet Efimov.

Mots-clefs : simulation Monte-Carlo quantique, gaz de Bose unitaire, tran-
sition de phase, effet Efimov, intégrales de chemin, atomes froids.

Abstract
This thesis deals with the Bose gas at large scattering lengths using quantum path-integral
Monte Carlo simulations. In the first chapter, this type of simulation is presented through
the example of the free Bose gas. The second chapter describes the Bose gas in the
regime where interactions become too strong for mean-field theories to be accurate, using a
quantum Monte Carlo simulation that quantitatively reproduces both experimental results
and theoretical predictions.

The second part of this thesis concerns the situation in which the interactions between
bosons are resonant, called the unitary regime. In this situation, although two bosons
cannot bind, three bosons may form a trimer state. This counter-intuitive effect, called
the Efimov effect, is studied in the third chapter of this thesis, both through theoretical
arguments and a dedicated three-body quantum path-integral Monte Carlo simulation.
In the fourth chapter, this simulation serves as the building block of a simulation of the
unitary Bose gas, that reproduces high-temperature theoretical results and predicts the
existence of a low-temperature quantum liquid phase, of the same physical origin as the
Efimov effect.

Keywords: quantum Monte Carlo simulation, unitary Bose gas, phase tran-
sition, Efimov effect, path integrals, cold atoms.
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