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Communication systems need to access, store, manipulate, or communicate sensitive information. Therefore, cryptographic primitives such as hash functions and block ciphers are deployed to provide encryption and authentication. Recently, techniques have been invented to combine encryption and authentication into a single algorithm which is called Authenticated Encryption (AE). Combining these two security services in hardware produces better performance compared to two separated algorithms since authentication and encryption can share a part of the computation. Because of combining the programmability with the performance of custom hardware, FPGAs become more common as an implementation target for such algorithms.

The first part of this thesis is devoted to efficient and high-speed FPGA-based architectures of AE algorithms, AES-GCM and AEGIS-128, in order to be After seemingly endless days of typing and correcting, the time has come to write the last part of this thesis.

used in the reconfigurable part of FPGAs to support security services of communication systems. Our focus on the state of the art leads to the introduction of high-speed architectures for slow changing keys applications like Virtual Private Networks (VPNs). Furthermore, we present an efficient method for implementing the GF (2 128 ) multiplier, which is responsible for the authentication task in AES-GCM, to support high-speed applications. Additionally, an efficient AEGIS-128 is also implemented using only five AES rounds. Our hardware implementations were evaluated using Virtex-5 and Virtex-4 FP-GAs. The performance of the presented architectures (Thr./Slices) outperforms the previously reported ones.

ii The second part of the thesis presents techniques for low cost solutions in order to secure the reconfiguration of FPGAs. We present different ranges of low cost implementations of AES-GCM, AES-CCM, and AEGIS-128, which are used in the static part of the FPGA in order to decrypt and authenticate the FPGA bitstream. Presented ASIC architectures were evaluated using 90 and 65 nm technologies and they present better performance compared to the previous work.

Keywords-Authenticated Encryption, FPGAs, ASIC, Secure Reconfiguration.

iii To the memory of my father ..

Chapter 1 Introduction

In this chapter, we introduce the overall motivation for this work and describe the contributions. Furthermore, we outline the principal organization of the core chapters.

Motivation

Authenticated Encryption

In our growing world of technology, the amount of information that we share with the rest of the digital universe is constantly increasing. Our demands to conceal confidential data are therefore being strongly needed and become very important. The protection of a message includes the protection of confidentiality and authenticity. There are two main approaches to authenticate and encrypt a message:

1. The first approach is to treat the encryption and the authentication sep- Encryption Standard (AES) [START_REF]Advanced encryption standard (AES)[END_REF] for encryption, and then apply Pelican Message Authentication Code (Pelican-MAC) [5] or Hash Message Authentication Code (HMAC) [START_REF]The Keyed-Hash Message Authentication Code (HMAC)[END_REF] to the message to generate the MAC. The encryption algorithm encrypts the message using a certain key (key1) to provide the encrypted message. The authentication algorithm generates the MAC using another key (key2) to provide the receiver with the entity of the sender (authentication). The receiver decrypts the encrypted message with the same key (key1) and authenticates the message (MAC computation) using key2 to compare it with the sent MAC in order to detect if they are equal or not. 2. Another approach is to apply an integrated Authenticated Encryption (AE) algorithm to the message to provide both encryption and authentication. One can expect that this is more efficient since encryption and authentication can share a part of the computation. AE algorithms use only one key for encryption and authentication as shown in Fig. 1.2.

Therefore, the key exchange and storage issues are better compared to using two separated algorithms. AE has been used in many widely standards such as Secure Shell (SSH) [START_REF] Bellare | Authenticated Encryption in SSH: Provably Fixing the SSH Binary Packet Protocol[END_REF],

Secure Sockets Layer / Transport Layer Security (SSL/TLS) [START_REF] Dierks | The Transport Layer Security (TLS) Protocol Version 1[END_REF], IPsec [START_REF] Housley | Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload[END_REF], and IEEE 802.11 (Wi-Fi) [START_REF] Frankel | Establishing Wireless Robust Security Networks: A Guide to IEEE[END_REF]. This has made AE very important in protocols to secure the fundamentals of the information and communication infrastructure. There are now two NIST recommended modes of operation for authenticated encryption, namely, Counter with Cipher Block Chaining Mode (CCM) [START_REF] Morris J Dworkin | C. Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality[END_REF] and Galois Counter Mode (GCM) [START_REF] Mcgrew | The Galois/Counter Mode of Operation (GCM)[END_REF]. Quite some AE schemes have been proposed, and more are expected to join the ranks with the ongoing CAE-SAR 1 . The CAESAR competition is a move towards selecting a portfolio of AE schemes that should improve upon the state of the art. AEGIS [START_REF] Wu | AEGIS: A Fast Authenticated Encryption Algorithm[END_REF] is considered one of the submitted proposals to CAESAR.

Software realizations of such algorithms have the advantage that they are portable to multiple platforms. In general, they have a fast time to market. However, they can be applied in systems with limited traffic at low encryption rates. Moreover, software-based applications are not power efficient compared to specialized hardware architectures. Speed and power are two major drawbacks that motivate the hardware design exploitation of cryptographic primitives.

FPGAs

The increasing costs of silicon technology have put considerable pressure on developing dedicated SoC solutions. This means that the technology will be used increasingly for high-volume or specialist markets. Recently, Field Programmable Gate Arrays (FPGAs) have been proposed as a hardware technology for communication systems as they offer the capability to develop the 1 Competition for Authenticated Encryption: Security, Applicability, and Robustness. most suitable circuit architecture of the application in a similar way to SoC systems. Compared to a full custom ASIC design, they are cost efficient, easier to manage and can immediately be put into operation. Furthermore, they can continuously be reprogrammed during and after the design.

In order to redefine the functionality of the FPGA, a bitstream configuration file is uploaded on the FPGA. The reconfiguration includes downloading this bitstream file which contains the new design on the FPGA. As shown in Fig. 1.3, the bitstream is processed by the static part (configuration logic) which is not programmable. After that, the Static Random Access Memory (SRAM) is programmed by the processed bitstream. By programming SRAM cells, the functionality on the FPGA reconfigurable part (user part) can be tailored to implement the new design. 

Contributions

This thesis deals principally with the design of efficient hardware implementations of cryptographic algorithms for encryption and authentication. We propose FPGA and application-specific ASIC implementations that target a wide range of different applications.

In particular, we focus on the hardware design of current AE algorithms. Fig. 1. [START_REF]The Keyed-Hash Message Authentication Code (HMAC)[END_REF] shows the main contributions of this thesis. We investigate new efficient and high speed FPGA-based architectures of AE algorithms which will be in the user part (reconfigurable part) of the FPGA. Also, with the gathered knowledge, we define a framework to present different ranges of low cost ASIC architecture of AE algorithms which are inserted in the static part in order to protect the Intellectual Property (IP) of FPGA Bitstreams. The contributions of this thesis can be summarized in the following points:

• High speed AE for slow changing key applications on FPGAs -Algorithms for authenticated encryption are the most suitable solution to reliably secure a network link. AES-GCM has been utilized in various security-constrained applications. VPNs are widely employed to connect private local area networks to remote locations.

VPNs use AES-GCM for encryption and authentication. Current commercial security appliances of VPNs allow a throughput from 40 to 60 Gbps [START_REF]Cisco ASA 5500 Series Adaptive Security Appliances[END_REF][START_REF]Security Engine Firewall/VPN[END_REF]. We describe the benefits of VPNs as being a slow changing key environment in order to design efficient high speed architectures. In addition, we present a solution for the parallelization of AES-GCM cores in order to support applications up to 100 Gbps. Moreover, we present a protocol to secure the reconfiguration of the proposed architectures on FPGAs.

• FPGA-based high performance AES-GCM using Efficient GF (2 128 ) multiplier -The performance of AES-GCM is always determined by the GF (2 128 ) multiplier (authentication part) because of the inherent computation feedback. We introduce an efficient pipelined Karatsuba Ofman Algorithm (KOA) for the GF (2 128 ) multiplier to support high speed applications. In particular, the computation feedback is removed by analyzing the complexity of the computation process.

The proposed GF (2 128 ) multiplier is evaluated with the pipelined AES in order to support high speed applications.

• Presented ASIC architectures were evaluated by using 90 and 65 nm technologies. Our comparison to previous work reveals that our architectures are more area-efficient.

Thesis organization

The outline of this thesis is as follows:

• Chapter 2 gives detailed overview about current AE algorithms. AES-CCM, AES-GCM, and AEGIS are discussed in detail. Later in the chapter, we highlight the previous work that covers the hardware implementations of AE algorithms.

• Chapter 3 is entirely dedicated to high speed AES-GCM architectures for slow changing key applications like VPNs. It presents an efficient method for the parallelization of AES-GCM cores on FPGAs. Furthermore, we propose a protocol to protect the bitstream of the proposed architectures on FPGAs.

• Chapter 4 presents an efficient method for the GF (2 • Area requirement for a single algorithm could be smaller compared to two separated algorithms because encryption and authentication can share a part of the computation.

• A slight advantage regarding key management and key storage issues because AE needs only a single key for both encryption and authentication.

The following is a brief overview of the most popular AE algorithms that have been developed as a result of the current research. The aim is to provide the details of AE algorithms to allow the reader to understand and analyze each algorithm. Also, for each algorithm, we present the previous work in terms of the hardware implementation in order to highlight the current challenges of the state of the art.

The most common way of constructing an AE scheme is a mode of operation for a block cipher, like AES [START_REF]Advanced encryption standard (AES)[END_REF]. Therefore, in order to discuss AE algorithms clearly, it is useful to highlight AES because it is common in all AE schemes that we will present.

Advanced Encryption Standard (AES)

For the drawbacks of the previous symmetric-key cryptographic standards such as the DES and the 3DES, they have been replaced by the Advanced Encryption Standard (AES) [START_REF]Advanced encryption standard (AES)[END_REF]. In particular, the AES has overcome the drawbacks of the previous standards in terms of vulnerability to brute force attacks and slow software implementations. The AES was accepted by the National Institute of Standards and Technology (NIST) in 2001 and since its acceptance, it has been utilized in a variety of security-constrained applications like IEEE 802.11i standard [START_REF] Frankel | Establishing Wireless Robust Security Networks: A Guide to IEEE[END_REF]. It is considered by industry and government environments as the essential scheme to protect sensitive information.

Algorithm specifications

The AES algorithm is a symmetric-key cipher, in which both the sender and the receiver use a single key for encryption and decryption. 

S (i,j) (0 ≤ i ≤ 3, 0 ≤ j ≤ 3)
and is considered as an element of GF (2 8 ) with

P (x) = x 8 + x 4 + x 3 +
x + 1 as an irreducible polynomial. Fig. 2.1 shows the block diagram of the AES algorithm.

In the encryption of the AES algorithm, each round except the final round consists of four transformations in a fixed order:

1. SubBytes is a non-linear transformation that substitutes the bytes of the state independently, using a s-box built over two steps: computation of the multiplicative inverse in the Galois field GF (2 8 ) followed by an affine transformation in GF [START_REF] Kean | Secure Configuration of Field Programmable Gate Arrays[END_REF]. The SubBytes can be described as follows:

S ( i, j) = M S -1 i,j + C (2.1)
where M is an 8 × 8 binary matrix, S -1 is the multiplicative inverse of the input, and C is an 8-bit binary vector with only 4 nonzero bits. The AES round is completed with the key expansion (see Fig. The transformations in the decryption process perform the inverse of the corresponding transformations in the encryption process.
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1. InvSubBytes performs the inverse of the SubBytes stage as follows:

S ( i, j) = (M S -1 i,j + C) -1 . (2.3) 2.
InvShiftRows does not change the first row, while the rest of the rows are cyclically shifted to the right by the same offset as that in the ShiftRows.

3.

InvMixColumns multiplies the polynomial formed by each column of the State with a(x) -1 modulo x 4 + 1, where

a(x) = 0bx 3 + 0dx 2 + 09x + 0e. (2.4) 4.
AddRoundKey adds a round key to the state in GF(2), while the round keys are computed in the reverse order within the key expansion process.

Hardware implementation

After the standardization of AES, several research contributions focusing on hardware implementations of the algorithm have been presented. Nowadays, almost each possible AES architecture, covering the entire design space (both in ASIC and FPGA), has been investigated. Companies and federal organizations have plenty of choice in selecting the suitable design.

We list the major components and strategies that characterize the AES hardware design:

• Datapath: AES is defined by 128-bit state with 8-bit operations. As a result, the designer has the choice to adapt or shrink the datapath of his architecture according to the system specification. Typical datapath widths are 128, 64, 32, 16, or 8 bits. The datapath size affects directly the area occupation and the final throughput of the AES core.

It represents a sort of area/speed trade-off. In [START_REF] Good | AES on FPGA from the Fastest to the Smallest[END_REF], the authors analyze different-datapath implementations on FPGAs.

• Round components: The SubBytes transformation is the most costly (both in size and propagation delay) component of the AES round. In terms of the ShiftRows operation, it does not consume any logic because it is implemented as a straightforward routing of the signals without any specific hardware component, while the most efficient strategy to realize MixColumns is with the combinational logic as shown in [START_REF] Ghaznavi | Efficient Technique for the FPGA implementation of the AES MixColumns Transformation[END_REF].

Several approaches to design the SubBytes have been developed and implemented. We describe briefly three main solutions:

1. Block Random Access Memory (BRAMs)

The s-box is implemented as a Look Up Table (LUT) and stored in a dedicated memory. This approach is particularly suitable for modern FPGAs, which contain BRAMs. This approach saves the logic area because the most consuming part (s-boxes) are implemented as BRAMs (see [START_REF] Chang | 8-bit AES FPGA Implementation Using Block RAM[END_REF])

Composite field

In [START_REF] Zhang | High-Speed VLSI Architectures for the AES Algorithm. Very Large Scale Integration (VLSI) Systems[END_REF], composite field arithmetic is employed to reduce the area requirements, and different implementations for the inversion in subfield GF (2 4 ) are compared. This reduction to composite fields brings significant improvement in flexibility and in the area costs of SubBytes.

FPGA LUT

The third approach is dedicated only to FPGA devices. The s-box can be directly instantiated in LUTs located in the FPGA logic elements. As example, the basic logic elements of Xilinx FPGAs are called slices and each slice comprises a different number of LUTs depending on the selected device. In a Xilinx Virtex-5 chip a single s-box is implemented on 32 6-input LUTs because of 6-input LUT technology (see [START_REF] Standaert | Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs[END_REF]).

• Rolled or unrolled: The operation mode of AES influences remarkably the performance of the implementation. Feedback modes like Cipher Block Chaining (CBC) mode [START_REF] Dworkin | Recommendation for Block Cipher Modes of Operation[END_REF] lead to iterative designs, where single round is considered to be the most efficient solution. Fig. 2.3(a) shows the iterative design using only one round. An example of the iterative design is shown in [START_REF] Standaert | Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs[END_REF]. Because of using only one round, the throughput of the iterative design of AES-128 presented by [START_REF] Standaert | Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs[END_REF] is as follows:

T hroughput(M bps) = F max (M hz) × 128 10 . (2.5) 
Full unrolled architectures combined with pipelining (Fig. 2.3(b)) can be exploited only by the feedback-free modes [START_REF] Dworkin | Recommendation for Block Cipher Modes of Operation[END_REF] like Electronic Codebook (ECB) and Counter (CTR) mode. Unrolled designs with pipelining are able to achieve 20-30 Gbps, simply by putting a pipeline stage between the rounds. To further increase the speed, pipelining can also be implemented inside the round and the SubBytes operation (see [START_REF] Good | AES on FPGA from the Fastest to the Smallest[END_REF]). The throughput of the pipelined design is calculated as follows: (2.6) Table 2.1 shows the hardware hardware comparison between the iterative design and the pipleined design. It is clear that the pipelined design consumes more area compared to the iterative design, while the speed is higher. After giving an overview of AES, the following sections present the current AE algorithms and how they are implemented on FPGAs and ASIC.

Plaintext (P) Ciphertext (C) Ciphertext (C) Plaintext (P) (a) (b)

AES-CCM

Counter with Cipher Block Chaining Mode (CCM) [START_REF] Morris J Dworkin | C. Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality[END_REF] can be used in con- 

Hardware implementation

There are some research contributions focusing on the hardware implementations of AES-CCM on FPGAs and ASIC. Because of being feedback-based algorithm (it depends on CBC mode), iterative design of AES is always used in the hardware implementation.

In [START_REF] Milind | Authenticated Encryption in Hardware[END_REF], iterative AES (one round) was used to implement the architecture of AES-CCM on FPGAs and ASIC. The proposed architecture in [START_REF] Milind | Authenticated Encryption in Hardware[END_REF] used one AES block for doing both authentication and encryption. This manner decreases the consumed area because there is only one AES architecture that is used for the two modes, CBC and CTR modes. As a result the speed of the architecture is reduced by 2 compared to the use of two AES architectures. Two iterative components of AES were implemented for both encryption and authentication on FPGAs in [START_REF] Lopez-Trejo | An Efficient FPGA Implementation of CCM mode using AES[END_REF]. In [START_REF] Aziz | An FPGA-based AES-CCM Crypto Core For IEEE[END_REF], FPGA-based AES-CCM was presented by using two blocks of AES and they are 32-based datapath architectures.

From the previous discussion, it is clear that AES-CCM is a feedback-based algorithm because it depends on the CBC mode in terms of performing the authentication task. Therefore, only iterative-based designs of AES are applicable to CCM, while using pipelined designs is not. As a result, the overall speed is limited as shown in Table 2.2. 

AES-GCM

Galois Counter Mode (GCM) [START_REF] Mcgrew | The Galois/Counter Mode of Operation[END_REF] is an AE algorithm. It is well-suited for wireless, optical, and magnetic recording systems due to its multi-Gbps authenticated encryption speed, outstanding performance, minimal computational latency as well as high intrinsic degree of pipelining and parallelism.

New communication standards like IEEE 802.1ae [START_REF]IEEE Standard for Local and Metropolitan Area Networks-Media Access Control (MAC) Security Amendment 1: Galois Counter Mode-Advanced Encryption Standard-256[END_REF] and NIST 800-38D have considered employing GCM to enhance their performance.

It simultaneously provides confidentiality, integrity and authenticity assurances on the data. It can be implemented in hardware to achieve high speeds with low cost and low latency. It was designed to meet the need for an authenticated encryption mode that can efficiently achieve speeds of 10 Gbps and higher in hardware.

Algorithm specifications

Operations:

The following operations are used in AES-GCM: AES-GCM accepts four inputs: an AES key, IV, P, and A. AES-GCM generates two outputs: C and MAC. A is used to verify the correctness of the MAC. Fig. 2.5 shows the block diagram of AES-GCM. It contains an AES engine in CTR mode for encryption, while the authentication is performed by the Galois Hash (GHASH) which is composed of chained GF(2 128 ) multipliers.

Encryption and MAC generation:

1. Generation of H by encrypting 0 128 block H = E(Key, 0 128 ).

( 

Hardware implementation

As we presented before, two main components in AES-GCM are an AES engine and a GF (2 128 ) multiplier. Also, the main goal of AES-GCM is to support high speed applications (10 Gbps and higher in hardware). Therefore, most of the previous hardware architectures were proposed to support high speed applications. As a result, the pipelined AES (pipelined AES implementation has been discussed in Section 2.1) is used to perform the encryption task of AES-GCM [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF][START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF][START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF]. The second important part of AES-GCM is the GHASH which depends on the inherent feedback operations chain of the GF (2 128 ) multipliers. Therefore, the system performance is always determined by the

GF (2 128 ) multiplier.
The GF (2 128 ) multiplier uses irreducible polynomial P (x) = x 128 + x 7 + x 2 +

x + 1 to compute the multiplication between A and H as shown in Algorithm 1.

Algorithm 1 GF(2 128 ) multiplier

1: Input A, H ∈ GF(2 128 ), P(x) Field Polynomial 2: Output X 3: X=0 4: for i = 0 to 127 do 5: if A i = 1 then 6: X ←-X ⊕ H 7:
end if

8:

if

H 127 = 0 then 9: H ←-rightshif t(H) 10: else 11: H ←-rightshif t(H) ⊕ P (x) 12:
end if 13: end for 14: Return X In [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF], [START_REF] Satoh | High-Speed Hardware Architectures for Authenticated Encryption Mode GCM[END_REF], and [START_REF] Satoh | High-Speed Hardware Architectures for Authenticated Encryption Mode GCM[END_REF], the multiplication was performed using bit-parallel, digit-serial, and hybrid multipliers. Supporting high speed applications motivates using the parallel version which performs the multiplication in only one clock cycle. In Algorithm 1, if H is fixed, the multiplier is called a fixed operand GF (2 128 ) multiplier as shown by [START_REF] Crenne | Efficient Key-Dependent Message Authentication in Reconfigurable Hardware[END_REF]. This design proposed by [START_REF] Crenne | Efficient Key-Dependent Message Authentication in Reconfigurable Hardware[END_REF] can be used efficiently (smaller area) on FPGAs as the circuit is specialized for H. The drawback in [START_REF] Crenne | Efficient Key-Dependent Message Authentication in Reconfigurable Hardware[END_REF] is the need for a new reconfiguration in case of changing the key.

Karatsuba Ofman Algorithm (KOA) [START_REF] Karatsuba | Multiplication of Multidigit Numbers on Automata[END_REF] is used to reduce the complexity (consumed area) of the GF(2 128 ) multiplier. More precisely, the single step KOA algorithm splits two m bit inputs A and B into four terms A h , A l , B h , B l which are m/2 bit terms. The 1-step iteration of KOA shown in Fig. 2.6 can be described as:

           D l = A l × B l D hl = (A h ⊕ A l ) × (B h ⊕ B l ) D h = A h × B h D = D h X m ⊕ X m/2 (D h ⊕ D hl ⊕ D l ) ⊕ D l .
(2.8)

After the multiplication stage is processed using KOA, the binary field reduction step is used to convert the length of the vector from 2m-1 to m as shown in Equation 2.9.

C(x) = D mod P (x) (2.9) 
where P(x) is the field polynomial used for the multiplication operation.

KOA was used by [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF] to reduce the complexity (consumed area) of the GF(2 128 ) multiplier as shown in Fig. 2.7(a). Because the GHASH is a chain of the GF (2 128 ) multipliers, the GHASH output (Fig. 2.7(a)) is calculated as follows:

Output = (C i ⊕ Z i-1 ) × H. (2.10)
The drawback of the architecture presented in [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF] is the critical delay resulting from the multiplication stage. In order to reduce the data path (critical delay)

+ + h B B l A h A l D l D l D hl D h D h + + = (m/2) Multiplier = XOR operation Binary field reduction (mod P) m m m/2 m/2 m/2 m/2 m-1 m-1 m-1 2m-1 m B A D C Figure 2.6: Polynomial Multiplication using KOA
of the KOA multiplier, pipelining concept was accomplished by [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] as shown in Fig. 2.7(b). Equation 2.10 was written by [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] as follows:

Output = Q 1 ⊕ Q 2 ⊕ Q 3 ⊕ Q 4 , where (2.11) 
Q1 = (((C 1 × H 4 ⊕ C 5 ) × H 4 ⊕ C 9 ) × H 4 ⊕ ....) × H 4 (2.12) Q2 = (((C 2 × H 4 ⊕ C 6 ) × H 4 ⊕ C 10 ) × H 4 ⊕ ....) × H 3 (2.13) Q 1 Q 2 Q 3 Q 4 + (a) C i C i Z i + mod(p) H H 4 (b) X Y Z Pipelined KOA Output Output + H mod(p) KOA multiplier Figure 2.7: (a) KOA based GHAH. (b) Pipelined KOA based GHASH Q3 = (((C 3 × H 4 ⊕ C 7 ) × H 4 ⊕ C 11 ) × H 4 ⊕ ....) × H 2 (2.14) Q4 = (((C 4 × H 4 ⊕ C 8 ) × H 4 ⊕ C 12 ) × H 4 ⊕ ....) × H. (2.15) 
The hardware architecture proposed by [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] (Fig. 

Clock C i X Y Z Comment 1 C 1 C 1 H 4 0 2 C 2 C 2 H 4 0 3 C 3 C 3 H 4 0 4 C 4 C 4 H 4 0 5 C 5 (C 1 × H 4 ) ⊕ C 5 H 4 C 1 × H 4 6 C 6 (C 2 × H 4 ) ⊕ C 6 H C 2 × H 4 7 C 7 (C 3 × H 4 ) ⊕ C 7 H C 3 × H 4 8 C 8 (C 4 × H 4 ) ⊕ C 8 H C 4 × H 4 9 - - - ((C 1 × H 4 ) ⊕ C 5 )H 4 z = Q 1 10 0 ((C 2 × H 4 ) ⊕ C 6 ) × H H ((C 2 × H 4 ) ⊕ C 6 ) × H 11 0 ((C 3 × H 4 ) ⊕ C 7 ) × H H ((C 3 × H 4 ) ⊕ C 7 ) × H 12 0 - - ((C 4 × H 4 ) ⊕ C 8 ) × H z = Q 4 13 0 - - - 14 0 ((C 2 × H 4 ) ⊕ C 6 ) × H 2 H ((C 2 × H 4 ) ⊕ C 6 ) × H 15 - - - ((C 3 × H 4 ) ⊕ C 7 ) × H z = Q 2 16 - - - - 17 - - - - 18 - - - ((C 2 × H 4 ) ⊕ C 6 ) × H z = Q 3 19 - - - - GHASH T hroughput(M bps) = F max(M Hz) × 128 × ( 8 19 
).

(2.16)

The last component of Equation 2.16 is ( 819 ), it is called the reduction factor and the authors of [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] neglected this component in their throughput calculation. Therefore, their presented design of GHASH has not increased the throughput as they claimed.

Henzen et al. [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF] proposed 4-parallel AES-GCM using pipelined KOA. Their design achieved the authentication of 18 frames of 128-bits in 11 clock cycles because of the latency resulting from the pipelined KOA. As a result, their throughput is calculated as follows:

T hroughput(M bps) = F max(M Hz) × 128 × 18 11 .
(2.17)

The authors of [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF] neglected this component ( 18 11 ) in their throughput calculation and replaced it by 4. Hence, their presented parallel design of GHASH has not increased the throughput by 4 as shown in Equation 2.17.

Table 2.4 shows the hardware comparison of the current AES-GCM cores on

FPGAs. It is clear that the maximum throughput resulting from implementing single AES-GCM core on FPGAs (Virtex-5) is 17.9 Gbps with 4628 slices ( [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF]).

In terms of the parallel cores, the maximum throughput is 48.8 Gbps ( [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF]).

AEGIS

The field of AE has received more interest in the light of the recently announced CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness). CAESAR will define a portfolio of AE algorithms that offer advantages over AES-GCM. Secure and efficient algorithms for specific or possibly multiple environments will be presented.

There are some AE schemes have been proposed, and more are expected to join the ranks with the ongoing CAESAR. In this section, we present an overview on AEGIS [START_REF] Wu | Aegis: A fast authenticated encryption algorithm[END_REF] which is considered one of the candidates to CAESAR. It is constructed from the AES encryption round function (not the last round).

AEGIS is a stream cipher with a large state which is updated continuously.

Therefore, the attacks against a block cipher cannot be applied directly to it. The goal of AEGIS is to achieve high performance and strong security as outlined in [START_REF] Wu | Aegis: A fast authenticated encryption algorithm[END_REF]. AEGIS-128 processes a 16-byte message block with five AESround functions, and AEGIS-256 uses 6 AES round functions. More precisely, we will highlight AEGIS-128 because the thesis concentrates on 128-based AE algorithms. The state update function of AEGIS-128:

Algorithm specifications

The state update function shown in Fig. 2.8 updates the 80-byte state S i with a 16-byte message block m i .

S i+1 = StateU pdate128(S i , m i ) is given as follows:

S i+1,0 = AESRound(S i,4 , S i,0 ⊕ m i ) S i+1,1 = AESRound(S i,0 , S i,1 ) S i+1,2 = AESRound(S i,1 , S i,2 ) S i+1,3 = AESRound(S i,2 , S i,3 ) S i+1,4 = AESRound(S i,3 , S i,4
). The initialization of AEGIS-128:

The initialization of AEGIS-128 consists of loading the key and IV into the state, and running the cipher for 10 steps with the key and IV being used as message.

1. Load the key and IV into the state as follows:

S -10,0 = IV 128 S -10,1 = Const1 S -10,2 = Const0 S -10,3 = K 128 ⊕ Const0 S -10,4 = K 128 ⊕ Const1. 2. For i = -5 to -1, m 2i = K 128 , m 2i+1 = K 128 ⊕ IV 128 . 3. For i = -10 to -1, S i+1 = StateU pdate128(S i , m i ).
The encryption of AEGIS-128:

After the initialization, at each step of the encryption, a 16-byte plaintext block P i is used to update the state, and P i is encrypted to C i . If the size of the last message block is less than 128 bits, it is padded with 0 bits to a full block, and the padded full block is used to update the state.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128 bits.

2. For i = 0 to ( msglen 128 -1), the state is updated to perform encryption.

C i = P i ⊕ S i,1 ⊕ S i,4 ⊕ (S i,2 &S i,3 ) S i+1 = StateU pdate128(S i , P i ). (2.

19)

The finalization of AEGIS-128 (MAC generation):

After encrypting all the plaintext blocks, the authentication MAC is generated using seven more steps. The message being used at this stage is part of the state at the end of the encryption, together with the length of the associated data and the length of the message. 

M AC = ⊕ 4 i=0 (S ( msglen 128 +7),i ).
(2.20)

The decryption and verification of AEGIS-128:

The exact values of the key and the IV should be known to the decryption and verification process. The decryption is similar to encryption, and it is described below:

1. For i = 0 to ( msglen 128 -1), the state is updated to perform the decryption.

P i = C i ⊕ S i,1 ⊕ S i,4 ⊕ (S i,2 &S i,3 ) S i+1 = StateU pdate128(S i , P i ). (2.21)
2. The finalization in the decryption process is the same as that in the encryption process (authentication).
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In terms of the hardware implementation, to our knowledge, there is no any current hardware implementation for AEGIS.

Conclusion

In this chapter, we highlighted current AE algorithms, AES-CCM, AES-GCM, and AEGIS. Each algorithm was presented in detail and also followed by the current hardware implementations. Regarding AES-CCM, we showed the disadvantages of AES-CCM. It is not suitable for online applications as the message must be stored first before performing the authentication and the encryption. Also, it is not suited to high-speed implementations, because CBC-MAC is neither pipelinable nor parallelizable (see Table 2.

2). In terms of AES-GCM, four different FPGAs-based architectures have been presented

in the open literature ( [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF], [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF], [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF], [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF]). It is clear that these contributions do generally have common challenge related to the throughput of their architectures (see Equation 2.16, Equation 2.17, and Table 2 1. As a first step towards an efficient high speed AES-GCM for VPNs, which are considered as an infrequent-key application, the key used for encryption and authentication is synthesized into the module structure of AES-GCM. This is achieved by combining the proposed keysynthesized AES (encryption) with the GF(2 128 ) multiplier (authentication) proposed by [START_REF] Crenne | Efficient Key-Dependent Message Authentication in Reconfigurable Hardware[END_REF] in order to improve the hardware performance (Thr./Slice) of AES-GCM compared to [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF][START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF][START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF].

2. We propose an efficient method for implementing parallel AES-GCM cores. The proposed method improves the performance (Thr./Slice) of the parallel hardware architectures compared to [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF].

3. Because of being key-synthesized architectures, we present a protocol to secure the reconfiguration of the proposed architectures on FPGAs.

High Speed AES-GCM Architectures Using FPGAs

AES has a key expansion or key schedule operation, which takes the main key and derives from it subkeys K r (10, 12, and 14 for AES-128, AES-192, and AES-256, respectively), where r denotes the corresponding round number.

For our case, we concentrate on AES-128.

VPNs are considered as a slow key changing application. Therefore, implementing the key expansion is particularly expensive in terms of hardware cost in case of using FPGAs. By getting the benefit of being programmable devices, the key used for encryption in synthesized into the architecture in order to obtain better performance regarding the consumed area and the throughput.

In the proposed hardware architecture, constant key specialization in the FPGA is used. The precomputed keys are generated using a C code as shown in Table 3.1. After, these keys are synthesized into the architecture of AES.
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As a result, the key expansion scheme is reduced from the architecture of AES.

Because of the high throughput target, pipelined AES is used to obtain high throughput. Fig. 3.1 shows the proposed key-synthesized AES, where all keys are precomputed and synthesized into the architecture. The SubBytes transformation can be implemented either by BRAMs, composite field or direct Look Up Tables (LUT). Modern FPGAs contain Block-RAMs. Therefore, implementing SubBytes using BRAMs decreases the consumed slices of the FPGA. The LUT approach is especially interesting on Virtex-5 devices because 6-input Look-Up-Tables (LUT) combined with multiplexors allow an efficient implementation of the AES SubBytes stage. Composite field approach uses the multiplicative inverse of GF (2 8 ) and it is efficient for memoryless platforms (see Fig. 3.

2).

As a result of using key-synthesized AES, the operand H of the GHASH function (GF (2 128 ) multiplier) is also fixed because it is generated by applying the block cipher to the zero block. Therefore, the proposed multiplier by [START_REF] Crenne | Efficient Key-Dependent Message Authentication in Reconfigurable Hardware[END_REF] is very suitable because it is a fixed operand multiplier. In [START_REF] Crenne | Efficient Key-Dependent Message Authentication in Reconfigurable Hardware[END_REF], the multiplication was performed as follows (Fig. 3.3) : 

+ + X -1 2 X 2 X X -1
Block RAM The overall architecture of AES-GCM is presented in Fig. 3.4. The value of CTR[0] is encrypted and stored because it will be used for MAC generation.

After that, the encryption process is performed using CTR mode, where the CTR values are encrypted and XORed with the Plaintext (P). Encrypted frames are then processed by the H-synthesized GHASH till the end of the data. After processing all the data frames, the last output of the GHASH is

XORed with E(CTR[0]) in order to generate the MAC.

From Fig. 3.4, it is clear that the encryption and the authentication in GCM are performed using the AES in CTR mode and the H-synthesized GHASH, respectively. Therefore, the proposed architecture could also be tuned to handle the decryption and the authentication. Precisely, Ciphertext (C) is

XORed with the output of the pipelined AES for performing the decryption and also is passed to the H-synthesized GHASH for MAC generation. The proposed architecture limits the logic utilization by specializing the core of AES-GCM on a per key. VPNs infrastructure can benefit from our keysynthesized AES-GCM implementation due to the nature of slow changing key operation.

Efficient Parallel AES-GCM cores

In order to implement parallel architectures of AES-GCM using key-synthesized method, parallel GHASHs must be constructed to meet the requirement of the key-synthesized nature (i.e, one of the two operands of each GHASH must be fixed).

Previous parallel schemes of GHASH [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF][START_REF] Satoh | High-Speed Hardware Architectures for Authenticated Encryption Mode GCM[END_REF] are not suitable because the two operands of each GHASH are varied during the running time operation.

As a result, their architectures are not suitable for key-synthesized approach.

Also, they have the same common problem in the throughput reduction factor (described in Chapter 2). Therefore, constructing parallel GHASHs which have a fixed operand for each GHASH multiplier is very important for high speed applications. 

X i = (C i ⊕ X i-1 ) × H (3.1)
In order to construct parallel GHASHs which have a fixed operand for each GHASH multiplier, we have to first analyze the processing equation of the GHASH. As shown in Equation 3.1, the the GHASH output is calculated by the multiplication between H and the result of XORing the input C i with the previous output X i-1 . We propose writing Equation 3.1 as follows:

X i = (C i ⊕ X i-1 ) × H = (C i × H) ⊕ (X i-1 × H) = (C i × H) ⊕ [(C i-1 ⊕ X i-2 ) × H 2 ] = (C i × H) ⊕ (C i-1 × H 2 ) ⊕ [(C i-2 ⊕ X i-3 ) × H 3 ] = (C i × H) ⊕ (C i-1 × H 2 ) ⊕ (C i-2 × H 3 ) ⊕[(C i-3 ⊕ X i-4 ) × H 4 ] = ((C i × H) ⊕ (C i-1 × H 2 ) ⊕ (C i-2 × H 3 ) ⊕ (C i-3 × H 4 ) .... ⊕ (C 2 × H i-1 ) ⊕ (C 1 × H i ). (3.2) 
It is clear from Equation 3.2 that each input from C 1 to C i is multiplied with a fixed value from H i to H. For example (see Fig. 3.6), GHASH i has H as an operand, GHASH i-1 has H 2 , ...., and GHASH 1 has H i .

Unlike previous work, this method makes the parallel architecture of GHASHs suitable for the key-synthesized approach as we can get these values (H i , H i-1 , ...., H ) synthesized into the parallel architecture.

In terms of the throughput, from Fig. 3.6, it is obvious that only one clock cycle is needed for performing the parallel GHASHs output (there is no pipeline).

Therefore, the throughput is calculated as follows:

T hroughput(M bps) = F max(M Hz) × 128 × i (3.3)
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From Equation 3.3, it is clear that there is no reduction factor in the throughput calculation compared to [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF][START_REF] Satoh | High-Speed Hardware Architectures for Authenticated Encryption Mode GCM[END_REF].

In order to support high speed requirements up to 100 Gbps, we are forced to construct 4-parallel AES-GCM cores. Fig. 3.7 shows the presented 4-parallel AES-GCM using key-synthesized method.

In terms of the parallel pipelined AES, we instantiated four parallel AES cores which have the same key. Therefore, the round keys are precomputed and synthesized into the four cores. The resulting multi-core design is thus able to process a 512-bit block (4128 bits) of plaintext every clock cycle. The ciphertext is generated directly by XORing the four 128-bit blocks (P 4i+1 , P 4i+2 , P 4i+3 , and P 4i+4 ) with the output strings resulting from encrypting the counter values.

In order to combine the authentication core with the multi-core AES, a design solution based on four parallel GHASHs has been investigated. From Equation 3.2, in order to construct 4-parallel GHASHs, the operands (H, H 2 , H 3 , H 4 ) are precomputed and synthesized into the architecture. The multi-core GHASH is able to process a 512-bit block (4128 bits) every clock cycle. Therefore the final overall throughput of the 4-parallel AES-GCM is as follows:

T hroughput(M bps) = F max(M Hz) × 128 × 4. (3.4) 
The presented architecture does not contain any reduction factor compared to [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF][START_REF] Satoh | High-Speed Hardware Architectures for Authenticated Encryption Mode GCM[END_REF]. Also, it could be tuned to handle the decryption and authentication as we described before in the single architecture.

All the previous proposed architectures in this chapter are considered as FPGA-based architectures because of using the programmability of FPGAs in order to change the key. More precisely, in case of changing the key, a new bitstream is uploaded on the FPGA with the new key-synthesized specialization. Therefore, it is important to present how these architectures are uploaded on the FPGA in a secure manner in case of changing the key because the bitstream is considered a key-based bitstream. 

Bitstream security of the proposed architectures

As a result of synthesizing the key into the architecture, the generated bitstream is a key-dependent. Hence, the bitstream must be sent in a secure way to the FPGA in case of changing the key. Our analysis focuses on securing the key exchange and the implementation of the key-dependent bitstream on the FPGA. Fig. 3.8 shows the proposed protocol which is used to perform the key exchange and the reconfiguration process between two FPGAs in a secure way.

Our scheme assumes that two FPGAs in two different networks are involved in a communication and the proposed AES-GCM is implemented. In case of changing the key to be k1, the protocol will be as follows:

1. The two servers are communicating in order to initialize the key (k1) of AES-GCM. This initialization is performed using public key cryptography.

2. The two servers generate the bitstream file which is k1-synthesized.

3. Server1 shares k3 with FPGA1 for secure reconfiguration. This key (k3) is used to encrypt the k1-synthesized bitstream. The same will be with server2 which shares k2 with FPGA2. Thanks to Xilinx because Virtex-5

and Virtex-4 contain an AES engine for supporting secure reconfiguration, in case of Virtex-6, the bitstram can be also authenticated because

Virtex-6 has an on chip MAC for supporting authentication.

4. The two FPGAs decrypt the encrypted bitstream.

5. The k1-synthesized bitstream which defines the new key-based AES-GCM is implemented on the user logic. 

Hardware comparison

We coded our proposed schemes (AES-GCM and 4-parallel AES-GCM) in VHDL and targeted to Virtex-4 (V4LX60ff668-11) and Virtex-5 (XC5VLX220). ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST) is used to perform the synthesize and ISE9.2 was adopted to run the Place And Route (PAR).

Table 3.2 shows the hardware comparison between our results and previous work. Note the filled dots in the "Key" column. Key is synthesized into the architecture when denoted by •, otherwise, the key schedule is implemented when denoted by •.

On Virtex-4 platform, our key-synthesized AES-GCM core reaches the throughput of 27.7 Gbps with the area consumption of 4652 slices and 80 BRAMs. In case of using composite field SubBytes, it consumes twice more slices, however no BRAMs are required. On Virtex5, the most efficient implementation reaches the throughput 30.9 Gbps with 2478 slices and 40 BRAMs. Our implementations are technology independent and can be implemented to other FPGA devices.

By comparing our results of AES-GCM to the previous work, the comparison shows that our performance (Thr./Slice) is better than [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF], [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF], [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF]. The operating frequency presented by [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] is better than ours because they used pipelined KOA but the overall throughput is lower than ours because their GHASH performed the multiplication of 8 frames of 128-bits in 19 clock cycles. Therefore, their throughput is calculated as follows (highlighted before in Chapter 2):

T hroughput(M bps) = F max(M Hz) × 128 × 8 19 . (3.5) 
We motivate using LUT method for parallel AES-GCM in case of using Virtex-5 to avoid the limit of BRAMs, especially the AES-GCM is always considered as a part of the system. The proposed 4-parallel AES-GCM module operates at 200 MHz on Virtex-5. In total, it consumes 12152 Slices. This implementation achieves throughput that reaches to 102.4 Gbps. Henzen et al. [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF] Chapter 3. High Speed Authenticated Encryption for Slow Changing Key Applications Using FPGAs 52 [3] (BRAM) [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] (Comp) [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF] (Comp) [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF] (BRAM) [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF] (Comp) [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF] (LUT) Chapter 3. High Speed Authenticated Encryption for Slow Changing Key Applications Using FPGAs 54

Conclusion

In this chapter, we presented the performance improvement of AES-GCM by key-synthesized method. We integrated this concept using three methods of SubBytes implementation in order to increase the flexibility of the presented work. With our proposed parallel AES-GCM, each multiplier has a fixed operand. Therefore, the presented parallel AES-GCM is suitable for keysynthesized method with higher throughput compared to the previous work.

The bitstream of the proposed architectures contains information related to the used key. Hence, we presented a protocol to protect the bitstream of the proposed architectures. Our presented AES-GCM architectures can be used for slow changing key applications like VPNs and they outperform the previous architectures regarding the hardware performance. In this chapter we are involved in designing high speed architectures of AES-GCM in order to overcome the current challenges regarding the GHASH architecture. Also, we focus on the hardware implementation of AEGIS-128.

The contributions of this chapter are as follows:

1. This chapter introduces an efficient method for implementing the pipelined Karatsuba Ofman Algorithm (KOA)-based GHASH on FPGAs to support high speed applications. In particular, the computation feedback is removed by analyzing the complexity of the computation process.

2. The proposed GHASH core is evaluated with three different implementations of AES ( BRAMs-based SubBytes, composite field-based Sub-Bytes, and LUT-based SubBytes) in order to perform the encryption and the authentication.

Because of being involved in designing high speed AE architectures,

an efficient AEGIS-128 architecture is presented using only five AES rounds.

Efficient KOA-Based GHASH

Four different architectures of FPGAs-based AES-GCM were presented in the open literature ( [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF], [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF], [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF], [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF]). It is clear that these contributions do generally have a common challenge related to the hardware performance (Thr./Slice) as follows:

• In [START_REF] Lemsitzer | Multi-Gigabit GCM-AES Architecture Optimized for FPGAs[END_REF], the authors used the parallel method for implementing the GHASH (GF (2 128 )) and the hardware performance is not sufficient to support high speed applications because of using the parallel method.
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• Because of the poor results of the hardware performance, the authors of [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF] proposed using KOA-based GHASH in order to reduce the hardware complexity and improve the overall performance and their throughput was as follows:

T hroughput(M bps) = F max(M Hz) × 128. (4.1)

• For better throughput, [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] claimed the throughput improvement to their previous KOA-based GHASH by using the pipelining concept (described before in detail (see Equation 4.2)).

T hroughput(M bps) = F max(M Hz) × 128 × 8 19 (4.2)

• The same happened with the parallel architecture proposed by [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF] (see Equation 4.3).

T hroughput(M bps)

= F max(M Hz) × 128 × 18 11 (4.3) 
Also, in our previous architectures in Chapter 3, all the presented architectures were key-dependent architectures because they are only for slow changing key applications.

In this section, in order to improve the performance of AES-GCM, an efficient pipelined KOA-based GHASH is presented to obtain key-independent AES-GCM. The target is to present an efficient method that solves the problems of the previous work.

In order to reduce the complexity (consumed area), KOA is selected to perform the multiplication process in the GHASH. In terms of the throughput challenge, we present a new method to obtain a feedback-free multiplier. As the targeted platform is FPGA, FPGA-specific properties are considered for performance improvement.

In order to solve the problem of the inherent computation feedback in the multiplier, we have to first analyze the processing equation of the GHASH (Equation 4.4).
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Output(Z i ) = (C i ⊕ Z i-1 ) × H (4.4)
As shown in Equation 4.4, the generation of the GHASH output is calculated by the multiplication between H and the result of XORing the input C i and the previous output Z i-1 . We propose writing Equation 4.4 as follows:

Output = (C i ⊕ Z i-1 ) × H = (C i × H) ⊕ (Z i-1 × H) = (C i × H) ⊕ [(C i-1 ⊕ Z i-2 ) × H 2 ] = (C i × H) ⊕ (C i-1 × H 2 ) ⊕ [(C i-2 ⊕ Z i-3 ) × H 3 ] = (C i × H) ⊕ (C i-1 × H 2 ) ⊕ (C i-2 × H 3 ) ⊕[(C i-3 ⊕ Z i-4 ) × H 4 ] = ((C i × H) ⊕ (C i-1 × H 2 ) ⊕ (C i-2 × H 3 ) ⊕ (C i-3 × H 4 ) .... ⊕ (C 2 × H i-1 ) ⊕ (C 1 × H i ) . (4.5)
According to Equation 4.5, the feedback resulting from XORing the input C i and the previous output Z i-1 could be removed because the final output is calculated from the last two lines of the equation. More precisely, if the values from H to H i exist, the feedback which affects the performance of the multiplier will be removed.

Assume that there is a packet of data which contains 64 frames of 128-bit (i=64, 1024 bytes) and the generation of the output (MAC) is required. Therefore, Equation 4.5 will be as follows: Additionally, Pipelining approach is used for reducing the datapath of the multiplier. In total, the proposed architecture combines the following parts: Chapter 4. Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs 60

Output = ((C 64 × H) ⊕ (C 63 × H 2 ) ⊕ (C 62 × H 3 ) ⊕ (C 61 × H 4 ) .... ⊕ (C 2 × H 63 ) ⊕ (C 1 × H 64 ). ( 4 
• 2-step pipelined KOA for performing the GF multiplication.

• A memory for storing the values from H 2 to H 64 .

• 6-bit Up/Down counter for addressing the memory.

• Mux1 and Mux2 are used for switching between H, c i , Z, and the memory output.

We divide the process of the output (MAC) generation into two steps:

1. Initialization stage:

The Because of targeting our architecture on Xilinx Virtex-5 FPGAs, we recommend using CLBs for memory implementation because of 6-input Look-Up-Tables (LUT). Otherwise, using BRAMs is another solution.

The proposed architecture offers the following advantages over the previous designs:

• It reduces the reduction factor compared to [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] from 8 19 to 64 69 (see Equation 4.7). Therefore, the developed architecture presents the throughput improvement compared to [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF].

• In case of changing the key, 252 clock cycles are needed to initialize the memory. Hence, no new reconfiguration is needed in case of changing the key unlike our previous architectures in Chapter 3.

High speed AES-GCM

This section describes adding the proposed GHASH to the pipelined AES in order to perform the encryption and the authentication of the input message. The proposed core performs both encryption and authentication as follows:

1. The pipelined AES engine generates H by encrypting "00..00" frame. The presented architecture of AES-GCM perfectly suits the needs of GCM mode which performs the encryption and the authentication of the input message. As we described before, the encryption and the authentication in GCM are performed using the pipelined AES in CTR mode and the proposed GHASH, respectively. Therefore, the proposed architecture could also be tuned to handle the decryption and the authentication. Indeed, C i is XORed with the output of the pipelined AES for performing the decryption and also is passed to the proposed GHASH for MAC generation.

Efficient hardware implementation for AEGIS-128

The goal of this section is to present our efficient and high speed architecture of AEGIS-128. As shown in Equations 4.8, 4.9, and 4.10, encryption, authentication and decryption tasks are performed by the five values of S (from S i,0 to S i,4 ). In case of using one AES-round, the values from S i,0 to S i,4 are updated every five clock cycles.

C i = P i ⊕ S i,1 ⊕ S i,4 ⊕ (S i,2 &S i,3 ) (4.8) M AC = ⊕ 4 i=0 (S ( msglen 128 
+7),i ) (4.9) SubBytes stage is implemented by using LUT and composite field methods because using BRAMs adds a register (see Fig. 3.2) which is not be suitable with the iterative nature of AEGIS. Multiplexers from M1 to M5 are used to switch between the initialization mode to the encryption and the finalization modes. M6 is to support m i to the state update function where:

P i = C i ⊕ S i,1 ⊕ S i,4 ⊕ (S i,2 &S i,3 ) (4.
m i =                K 128 Initialization(i = even) K 128 ⊕ IV 128 Initialization(i = odd) P Encryption S msglen 128 ,3 ⊕ tmp F inalization.

The initialization of AEGIS-128:

As we described before, the initialization of AEGIS-128 consists of loading the key and IV into the state in 10 steps (i=-10 to -1). The initialization stage is performed as follows:

• The used multiplexers (M1 to M5) pass the values S init,0 , S init,1 , S init,2 , S init,3 , and S init,4 to the five AES-rounds during the first step.

• During the next 9 steps, the values S i+1,0 , S i+1,1 , S i+1,2 , S i+1,3 , S i+1,4

are fed to the multiplexers (M1 to M5). Also, M6 passes the values m 2i = K 128 or m 2i+1 = K 128 ⊕ IV 128 according to the step number (even or odd). This takes 10 clock cycles as an initialization stage.

The encryption of AEGIS-128:

After completing the initialization stage, the encryption is performed as shown in Equation 4.8 when M6 passes the plaintext (P) to be mixed with S i,0 . Encrypting 128-bit input takes only one clock cycle because of using five AES-rounds.

The finalization of AEGIS-128:

After processing all the input message encryption, the finalization starts Chapter 4. Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs 66 in order to achieve the authentication task. M6 passes the value S msglen 128 ,3 ⊕ tmp. This starts from i= ( msglen 128 ) to ( msglen 128 + 6). As a result, the finalization stage takes 6 clock cycles.

It is clear that any process of AEGIS-128 (encryption, decryption, or authentication) depends on the generation of the values from S i+1,0 to S i+1,4 which takes only one clock cycle. Hence, the overall throughput is calculated as follows:

T hroughput(M bps) = F max(M Hz) × 128 (4.11)
The proposed architecture of AEGIS-128 could also be tuned to handle the decryption and the authentication by processing C i into Equation 4.10 for performing the decryption and there is no change in terms of the authentication stage.

Hardware comparison

We coded our proposed schemes in VHDL and targeted to Virtex-5 (XC5VLX220). ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST) is used to perform the synthesize and ISE9.2 was adopted to run the Place And Route (PAR).

Table 4.1 shows the hardware comparison between our results and previous work. Note the filled dots in the "Key" column. The key is synthesized into the architecture when denoted by • which requires a new reconfiguration in case of changing the key. Otherwise, the key schedule is implemented when denoted by • and no new reconfiguration is needed in case of changing the key.

On Virtex-5 platform, our proposed AES-GCM core reaches the throughput of 32.46 Gbps with the area consumption of 3836 slices and 50 BRAMs. In case of using composite field SubBytes, it consumes 7475 slices, however no BRAMs are required. In terms of using LUT SubBytes, the proposed architecture Chapter 4. Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs 67 By comparing our results of AES-GCM to [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF], the comparison shows that our performance (Thr./Slice) is better. This improvement results from reducing the reduction factor in the equation of throughput as shown in Equation 4.2 and Equation 4.7. Also, our presented AEGIS-128 architectures performance is better than [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF].

In terms of the 4-parallel AES-GCM by [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF], our area consumption of AES-GCM and AEGIS-128 is smaller compared to them. Also, our performance is better because the throughput presented by [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF] is calculated as shown in We believe that the design presented by [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] is the closest one to our specifications, performance goals, technology and methodology. It is not a parallel design like [START_REF] Henzen | FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications[END_REF]. Also, it supports the key variation without any new reconfiguration unlike our previous architectures in Chapter 3. Therefore, Fig 4.4 shows the overall comparison between our architectures and [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF]. In terms of the consumed area, our designs are slightly more than [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF]. However, It clear that the presented throughput is better than [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF]. In general, the overall performance of our architectures is always better than [START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF].

Chapter 4. Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs 69 The main goals and achievements of this chapter are as follows:

Ours (BRAM) Ours (Comp) Ours (LUT) [3] (BRAM) [3] (Comp) [3] (LUT)
1. Giving an overview of security issues used in the reconfiguration of FP-GAs.

2. Analyzing how well encryption and authentication are very important for trusted designs on FPGAs.

3. Proposing low cost hardware implementations to support and authenticate the encrypted bitstreams.

FPGA reconfiguration

Programmability manages the user to modify the functionality of a device outside of the founder. By applying this concept on gate arrays gives us Field programmable Gate Arrays (FPGAs). As we described before, the functionality of the FPGA is modified when the new bitstream is uploaded into the FPGA. The static part processes the bitstream and delivers it to the SRAM cells which reload the reconfigurable part with the new design. The bitstream generated for one FPGA can be implemented on other of the same family and size. Therefore, attackers can clone the bitstream by copying it during sending it to the FPGA in order to sell the IP illegally (see Fig. 5.2).

Bitsream

Extract copy 010110010 110100100 010101010 010110010 111010100 110100100 010101010 111010100 In this type of attack, the attacker changes the design and sends it to the FPGA (see Fig. 5.4). In [START_REF] Hadžić | Fpga viruses[END_REF], the authors presented how an FPGA is damaged by malicious tampering of bitstreams. 

Previous work

This section describes the previous methods used to secure the bitstream file during the reconfiguration process.

• Bitstream confidentiality:

Encrypting the bistream by the developer and decrypting it within the FPGA protects against cloning and reverse engineering attacks. Encrypting the reconfiguration of the programmable devices was first introduced by [START_REF] Austin | Data Security Arrangements for Semiconductor Programmable Devices[END_REF]. Kean [START_REF] Kean | Secure Configuration of Field Programmable Gate Arrays[END_REF] proposed encrypting and decrypting the bitstream using embedded keys (programmed by the FPGA developer).

Both encryption and decryption are performed within the FPGA itself.

As shown in Fig. 5.5, the first step is performed in a trusted facility where the bitstream is encrypted by the FPGA using its embedded key K, and then stored in NVM. While the system is deployed in the field, the bitstream is decrypted with the same embedded key using a hard-core decryptor which is part of the static logic. The advantage of this method is that the key is embedded in the static part and it never leaves the FPGA. The disadvantage is that the need for a trusted environment in case of encrypting a new bitstream. Also, both encryptors and decryptors must be used because the authors used AES-128 in CBC mode, prohibitive cost. In [START_REF] Bossuet | Dynamically Configurable Security for SRAM FPGA Bitstreams[END_REF], the authors proposed using the partial reconfiguration to encrypt and decrypt the bitsream. This means that the encryption and decryption circuits leave the static logic to be in the user logic. As a result, the static area is free. However, the key used for encryption and decryption is accessible to the user logic, where any one can read it out and decrypt the bitstream.

Current FPGAs include hardwired mechanisms that ensure bitstream confidentiality [START_REF] Lesea | IP security in FPGAs[END_REF]. Bitstream encryption, introduced by Xilinx on a production level with Virtex II FPGAs to prevent device cloning and to protect the confidentiality of the design data. Each Virtex-4, Virtex-5, and Virtex-6 device have an on-chip advanced encryption standard (AES) [START_REF] Pub | Advanced encryption standard (AES)[END_REF] decryption engine to support encrypted bitstreams. Step 1 The Xilinx bitstream encryption system consists of two parts:

-Software-based bitstream encryption.

-On-chip bitstream decryption. By using the Xilinx ISE software, the user generates both the encryption key and the encrypted bitstream. The encryption key can only be programmed into the device via the JTAG port by the developer.

These devices store the encryption key internally in either dedicated RAM, backed up by a small externally connected battery, or in onetime-programmable (OTP) fuses.

After programming the FPGA with the key which is used for encryption and decryption, as outlined in Fig. 5.6, the bitstream is delivered securely to the FPGA as follow:

1. The bitstream is encrypted by developer using the assigned key K.

2. The encrypted bitstream is sent to the NVM.

3. The NVM supports the FPGA with the encrypted bitstream in order to be decrypted using the static logic which contains the AES core. Although this mechanism allows for protection of the system designer's IP against cloning as well as reverse engineering, it does not ensure the authenticity of the bitstream. Therefore, this solution is not enough to prevent attackers from destroying the FPGA using certain malicious bitstreams. As a result, the FPGA should accept only bitstreams from an authenticated source.

• Bitstream integrity:

Tampering attack is based on the modification of the bitstream. The authors of [START_REF] Hadžić | Fpga viruses[END_REF] showed the effect of malicious tampering of bitstreams.

They presented how an FPGA is damaged due to shorts caused by manipulating configuration bits that control pass gates. Therefore, the FPGA must be smart enough to detect the concept of Who is the sender?, to accept the correct bitstream sent by the trusted sender. Some FPGA vendors implement Cyclic Redundancy Checks (CRC) [START_REF] Tseng | Lock your designs with the virtex-4 security solution[END_REF]. However, the purpose of CRC is to detect transmission errors, not to check the integrity of data in the cryptographic sense. This is why Xilinx An on-chip bitstream keyed-MAC algorithm implemented in hardware provides additional security beyond that of using AES bitstream encryption alone [START_REF]Xilinx. Virtex-6 FPGA Configuration User Guide[END_REF]. Without knowledge of the AES and HMAC keys, the bitstream cannot be loaded, modified, or cloned.

As shown in Fig. 5.7, the developer sends the bitstream securely to the FPGA as follows:

1. The developer processes the bitstream via the AES and HMAC using k1 and k2 respectively in order to encrypt and authenticate the bitstream. 5. The computed MAC is compared to the bitstream's MAC. If they are equal, the FPGA will continue to the start-up sequence. Otherwise, configuration will abort and the cells be cleared.

Drimer [START_REF] Drimer | Authentication of FPGA Bitstreams: Why and how[END_REF] proposed an FPGA bitstream encryption-authentication mechanism based on two parallel AES engines, in CTR and CBC modes, for performing both encryption and authentication. His solution used the architectures presented by Parelkar [START_REF] Milind | Authenticated Encryption in Hardware[END_REF] who noted that generic composition of authentication and encryption (AES+HMAC) required more circuit area than AE algorithms. Therefore, Parelkar [START_REF] Milind | Authenticated Encryption in Hardware[END_REF] presented CCM mode for achieving both authentication and encryption. Table 5.1 shows the difference between the hardware implementation of CCM mode and AES+HMAC. It is clear that CCM needs smaller area than AES combined with HMAC. In [START_REF] Bogdanov | Efficient and sidechannel resistant authenticated encryption of fpga bitstreams[END_REF], the authors proposed using ALE algorithm for performing both decryption and authentication but this algorithm was attacked by [START_REF] Wu | Leaked-State-Forgery Attack Against the Authenticated Encryption Algorithm ALE[END_REF][START_REF] Khovratovich | The LOCAL attack: Cryptanalysis of the authenticated encryption scheme ALE[END_REF]. As mentioned above, most of the previous work used the static part in order to perform only decryption or both decryption and authentication of the encrypted bitstream [START_REF] Kean | Secure Configuration of Field Programmable Gate Arrays[END_REF][START_REF] Drimer | Authentication of FPGA Bitstreams: Why and how[END_REF]52]. However, in order to leave the static part free for the developed application, Bossuet et al. [START_REF] Bossuet | Dynamically Configurable Security for SRAM FPGA Bitstreams[END_REF] used the user part to decrypt the encrypted bitstream. Table 5.2 summarizes and compares between the previous work.

Our presented approach in the following section utilizes the static part in order to perform both decryption and authentication by an embedded key in the static part. As a result, the used key will never leave the static part (more secure). In order to reduce the area of the proposed solution in the static part, low cost AE algorithms will be implemented.

5.4

Low cost AE architecture for secure re- As shown in Fig. 5.8, the developer encrypt and authenticate the bitstream using AE (AES-CCM, AES-GCM, or AEGIS-128). After, the encrypted bitsream and the MAC are sent to the NVM. The NVM sends the encrypted bitstream with its MAC at the power-up. The low cost AE inserted in the static part decrypts and verifies the MAC for performing the secure reconfiguration.

Proposed AES-CCM

In the implementation of our AES-CCM core, we have focused on minimizing the area. Since AES-CCM uses two blocks of AES in CTR and CBC modes for performing both encryption and authentication, the proposed architecture uses only one AES block for both encryption/decryption and authentication in order to obtain an area-efficient architecture. In [START_REF] Drimer | Authentication of FPGA Bitstreams: Why and how[END_REF], the authors motivated using the presented AES-CCM proposed by [START_REF] Milind | Authenticated Encryption in Hardware[END_REF] in order to secure the reconfiguration process. In [START_REF] Milind | Authenticated Encryption in Hardware[END_REF], one round-based AES (iterative design) was used to implement AES-CCM. As a result, the complexity of their design was sixteen SubBytes with four Mixcolumns. In the proposed AES-CCM, we use 1/4 round-based AES that has an advantage of reducing the consumed area with a suitable throughput which is able to support applications lower than 1Gbps. Fig. 5.9 shows the architecture of 1/4 round-based AES. The data path is reduced from 128-bit to 32-bit.

Hence, only four SubBytes (s-boxes) and one MixClolumn are used. The key schedule shares the four s-boxes stage with the main data path to avoid using another four s-boxes. Additionally, the SubBytes stage is implemented using composite field for reducing the consumed area. The same architecture could be tuned to handle both decryption and authentication as follows (see Fig. Compared to the solution of [START_REF] Drimer | Authentication of FPGA Bitstreams: Why and how[END_REF], the proposed architecture consumes only four s-boxes and one MixColumn instead of sixteen s-boxes and four MixColumns.

A 128-bit frame takes 50 clock cycles to be encrypted/decrypted or added to MAC queue. Therefore, the achieved throughput of our presented AES-CCM is calculated as follows:

T hroughput(M bps) = 128 × F max(M Hz) 50 × 2 .

(5.2)

Proposed AES-GCM

AES-GCM uses two components: an AES engine and a GF(2 128 ) multiplier.

The target is directed to optimize the overall architecture which includes the encryption/decryption part (AES) and the authentication part (GF(2 128 )).

Our proposed architecture uses the 1/4 round-based AES for area optimization. Previous architectures of GF (2 128 ) such as [START_REF] Zhou | Efficient and High-Throughput Implementations of AES-GCM on FPGAs[END_REF][START_REF] Satoh | High-Speed Hardware Architectures for Authenticated Encryption Mode GCM[END_REF] were used for high speed applications. In terms of the hardware implementation, they are expensive. Hence, it is important to design a multiplier which can be used efficiently with the 1/4 round-based AES.

Serial GF(2 128 ) multiplier is described in Algorithm 1 [START_REF] Mcgrew | The Galois/Counter Mode of Operation (GCM)[END_REF], where A,H are inputs to the multiplier and F(x) is the field polynomial, F (x) = x 128 + x 7 +

x 2 + x + 1. The output C needs 128 clock cycles to be ready in case of using serial multiplier. 1. "00..00" frame is encrypted to obtain H.

As shown in

CTR[0]

is encrypted (it is used later for authentication).

3. Encryption is performed by 1/4 round-based AES in CTR mode.

4. Encrypted frames are passed to the hybrid multiplier for performing the authentication.

The presented architecture could be also tuned for performing both decryption and authentication as follows (see Fig. 5.14):

1. "00..00" frame is encrypted to obtain H.

CTR[0]

is encrypted (it is used later for authentication). T hroughput(M bps) = 128 × F max 50 .

(5.

3)

The advantage of AES-GCM over AES-CCM is that AES-GCM supports online applications because of the external hashing using the GF(2 128 ). Hence, there is no need for the memory to store the plaintext (P). Also, the throughput is higher (see Equations 5.2 and 5.3). 

Proposed AEGIS-128

As shown in the following Equations (5.4, 5.5, and 5.6), encryption, authentication, and decryption tasks are performed by S i,0 , S i,1 , S i,2 , S i,3 , and S i,4 .

The values from S i,0 to S i,4 are generated by five AES-rounds. This means that using five AES-rounds generates the values from S i,0 to S i,4 in only one clock cycle. In case of using one AES-round, the values from S i,0 to S i,4 are updated every five clock cycles.

C i = P i ⊕ S i,1 ⊕ S i,4 ⊕ (S i,2 &S i,3 ) (5.4) M AC = ⊕ 4 i=0 (S ( msglen 128 
+7),i )

(5.5) 

P i = C i ⊕ S i,1 ⊕ S i,4 ⊕ (S i,2 &S i,3 ) (5.6) 

The encryption of AEGIS-128:

After completing the initialization stage, the encryption is performed as shown in Equation 5.4 when M10 passes the plaintext (P) to be mixed with S i,0 .

The finalization of AEGIS-128:

After processing all the input message encryption, the finalization starts in order to achieve the authentication task. M10 passes the value S msglen 128 ,3 ⊕ tmp. This starts from i= ( msglen 128 ) to ( msglen 128 + 6).

With the same scenario, both decryption and authentication are performed as outlined in Fig. 5.17. The plaintext (P) is obtained according to Equation 5.6. It is passed by M10 to calculate S i,0 , which will be used later for the authentication as shown in Equation 5.5. T hroughput(M bps) = F max(M Hz) × 128 20 .

(5.7)

Because of supporting online applications, no memory is needed compared to AES-CCM. In comparison to AES-GCM and AES-CCM, the throughput is higher according to Equations 5.2, 5.3, and 5.7.

Hardware comparison

This section compares our presented architectures with the previous work.

The ASIC implementation is the target, since the proposed architectures are implemented as an independent IP on the FPGA silicon. Presented architectures (decryption and authentication) have been implemented using 90 and 65 nm CMOS standard cell library and its performances are compared with the prior art in Table 5.3. The reason of using two different libraries (90 and 65 nm) in the evaluation of our proposed architectures is to present different estimations for the consumed area using different technologies.

In case of using 90nm technology, the proposed AES-CCM occupies 0.045 mm 2 . GCM needs 0.063 mm 2 and AEGIS-128 takes 0.062 mm 2 . Regarding Although AES-CCM presents the smallest architecture, it does not support online applications. Therefore, it is always combined with a memory in order to store the bitstream after the decryption process and deliver it again to the core for performing the authentication.

However Parelkar et al. [START_REF] Milind | Authenticated Encryption in Hardware[END_REF] presented one round-based AES for both encryption and authentication, the area consumption of our AES-CCM is smaller because we used 1/4 round-based AES.

In contrast to AES-CCM, AES-GCM and AEGIS-128 support online applications. Therefore, no memory is needed to support the data flow. It is clear that AES-GCM and AEGIS-128 are very close regarding the consumed area.

However, the throughput of AEGIS-128 is 2.5 times faster than AES-GCM (see Equations 5.3 and 5.7). Although the AES-HMAC by [START_REF] Milind | Authenticated Encryption in Hardware[END_REF] presented higher throughput, it consumed more area compared to ours (2.95 times of AEGIS-128 and 2.77 times of AES-GCM).

In order to enhance the comparison, we considered SHA-3 candidates like Skein and Blake. These architectures are used to support only the authentication stage. Hence, a decryption engine must be added to perform the decryption and the authentication. Our presented architectures of AES-GCM and AEGIS-128 present both decryption and authentication and their area consumption is close to Skein candidate which supports only the authentication. In case of Blake, it is clear that the consumed area of AES-GCM and AEGIS-128 is smaller.

The target of our architectures is to present a low cost solution which is added in the static part for performing the decryption and the authentication. Fig. 5. [START_REF]Security Engine Firewall/VPN[END_REF] shows the area comparison between the proposed low cost solutions and the previous work. The hardware complexity of our presented area-efficient architectures ranges from 0.045 to 0.066 mm 2 using 90 nm technology and from 0.023 to 0.034 mm 2 using 65 nm technology.

By using the proposed architectures, the encrypted bitstream is decrypted using AE. Also, it is used to compute the MAC and compare it with the bitstream's MAC. If they are equal, the FPGA will continue to the startup sequence. Otherwise, configuration will abort and the cells be cleared. The adopted solutions meet the current configuration throughput. Table 5.4 shows the maximum throughput of the largest family members of recent FPGAs. 
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  Efficient hardware implementation for AEGIS -Pushed by our involvement into the hardware design of efficient AE algorithms, we decided to follow the CAESAR competition by designing high speed architecture of AEGIS which was accepted to the first round of the CAESAR competition. All presented architectures in these contributions aim at applications with high demands for data throughput and performance. For these designs, we primarily employ Xilinx Virtex-4 and Virtex-5 FPGAs as an implementation target. Our proposed high speed architectures provide most savings in logic and routing resources with the highest data throughput on FPGAs compared to previous work reported in open literature. Low cost solutions for IP protection of FPGA bitstreams -IPs loaded on the FPGAs represent a kind of investment that requires protection especially in case of remote reconfiguration. Therefore, the FPGA must accept encrypted bitstreams from authorized entities. We present different low cost solutions for performing decryption and authentication of bitstreams. Efficient and Chapter 1. Introduction 8 compact ASIC AE architectures, AES-CCM, AES-GCM, and AEGIS, are added in the static part of the FPGA to support encrypted and authenticated bitstreams.

  2.2), whichgenerates the round keys from the original key. This expansion is defined on 4-bytes words and mainly uses the transformations of the round. A single round key is made up by four words and is updated to the next round key using g function which combines the SubWord (s-box over a 4-byte input) and RotWord (word shift) functions. The rest of the key parts are generated using XOR function.
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  first 16 bytes of const const1 : The second 16 bytes of const K 128 : The 128-bit key msglen : The bit length of the plaintext AEGIS depends on the AESRound (A,B), where A is the 16-byte state, B is the 16-byte round key. It is performed using the AES round functions (ShiftRows, SubBytes, MixColumns, and AddRoundKey). With a 128-bit key and a 128-bit initialization vector, AEGIS-128 encrypts and authenticates a message with length less than 2 64 bits. The authentication MAC length is less than or equal to 128 bits. It is strongly recommend the use of a 128-bit MAC.
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 4 Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs 56 By mid-December 2017, CAESAR, which is funded by NIST, will define a portfolio of AE algorithms that offer advantages over AES-GCM. The due date of the first-round submission for CAESAR was January 15th, 2014. AEGIS is considered one of the candidates to the first round. First, it was presented in SAC-2013 (Selected Area of Cryptography) and then becomes one of the candidates of CAESAR.
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 6 If the values form H to H 64 are stored and multiplied to the input C i as shown in Equation 4.6, the pipelined architecture can be simply performed. The architecture proposed for the pipelined KOA-based GHASH is shown in Fig. 4.1. The architecture shown in Fig. 4.

Figure 4 . 1 :

 41 Figure 4.1: Proposed pipelined KOA-based GHASH

Fig. 4 .

 4 Fig. 4.2 shows the proposed high throughput architecture for AES-GCM. In contrast to the previously presented AES-GCM architectures in Chapter 3, we use the key-independent pipelined AES core which has the key schedule that generates the sub-keys (k0 to k10) during the running time (no new FPGA reconfiguration). Three SubBytes implementations (BRAMs-based SubBytes, composite field-based SubBytes, and LUT-based SubBytes) are used in order to increase the flexibility of the proposed architecture.
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 2 The first value of the counter CTR[0] is encrypted.3. The proposed GHASH needs 252 clock cycles in order to initialize the memory after the generation of H.
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 10 In our proposed architecture shown in Fig.4.3, five AES-rounds are used in order to generate the values from S i+1,0 to S i+1,4 in one clock cycle. In terms Chapter 4. Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs 64 of the hardware implementation, 80 s-boxes and 20 Mixcolumns are used.
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 3 Our previous chapter presented architectures for slow changing key applications like VPNs and the FPGA needs a new reconfiguration when the key changes. Therefore, the proposed architectures in this chapter present better performance compared to our previous AES-GCM (Chapter 3) because the FPGA does not need a new reconfiguration when the key changes but it needs 252 clock cycles for the memory initialization or 10 clock cycles in case of AES-GCM and AEGIS-128, respectively.
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  Networked FPGA-based systems gain particular flexibility if remote reconfiguration updates are possible. It is attractive as it is used in such systems to offer new multimedia features or to repair eventual security issues remotely. It requires transmitting the bitstream file which contains the hardware IP from the development location over public (insecure) channels and thus introduces new security issues (see Fig. 5.1) .The developer is faced with several problems resulting from sending the bitstream file through insecure network. An adversary attacker can detect the hardware IP to sell illegal copies or leak it to the public domain. There are several types of attacks could be occurred to the bitstream file:
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 3 The NVM is used to store the encrypted bitstream with its MAC and send them to the FPGA.4. The FPGA static part is responsible for decrypting and authenticating the contents of the NVM.
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 5111 CTR[0] is encrypted to obtain S[0]. 2. Decryption is computed by XORing the encrypted counter values with the ciphertext (C) to obtain the plaintext (P).
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 3 Decryption is computed by the 1/4 round-based AES in CTR mode, where the ciphertext (C) is XORed with the encrypted counter values to obtain the plaintext (P).

4 .

 4 The ciphetext (C) is passed to the hybrid multiplier for performing the authentication.It is clear from Fig.5.13 and Fig.5.14 that each frame is encrypted/decrypted in 50 clock cycles and added to MAC queue in 32 clock cycles for authentication. As a result, the throughput of the proposed AES-GCM is calculated as follows:

Chapter 5 .Figure 5 . 14 :

 5514 Figure 5.14: Proposed AES-GCM (decryption and authentication)

Figure 5 . 15 : 3 ⊕

 5153 Figure 5.15: (a) Full AES-round. (b) (1/4) AES-round

Figure 5 . 16 :Figure 5 . 17 :

 516517 Figure 5.16: Proposed AEGIS-128 architecture (encryption and authentication)

  128 takes 0.032 mm 2 .

Chapter 5 . 2 )Figure 5 . 18 :

 52518 Figure 5.18: Area Comparison using 90 nm technology

  Chapter 6 summarizes the thesis and points out some future work.
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) multiplier used in AES-GCM. By focusing on the drawbacks of the previous architectures of GF

(2 128 

) multipliers, we propose an efficient method to remove the computation feedback in the GF (2 128 ) multiplier. This is accomplished by the presented pipelined Karatsuba Ofman Algorithm (KOA)-based GF (2 128 ). Finally, an efficient high speed architecture of AEGIS is also presented in this chapter. • Chapter 5 starts with an overview of security issues used in reconfiguration of FPGAs and analyze how well they are suited to IP protection of FPGA bitstreams. Later in this chapter, low cost implementations of AE algorithms are presented for FPGA bitstreams protection. • Originally, confidentiality and authenticity services have been implemented separately, by using two different algorithms. Encryption algorithms are used to ensure confidentiality while Message Authentication Codes (MACs) can be used to provide authentication. When two separated algorithms are used to provide independent security services, it is considered cryptographically secure to use separated keys for each algorithm. Recently, techniques have been invented to combine encryption and authentication into a single algorithm which is called Authenticated Encryption (AE). Combining these two security services in hardware might support the following advantages:

  It is an iterative algorithm. Each iteration can be called a round, and the total number of rounds, N, is 10, 12, or 14, when the key length is 128, 192, or 256 bits, respectively.The 128-bit data block is divided into 16 bytes. These bytes are mapped to a 4 × 4 array called the State, and all the internal operations of the AES algorithm are performed on the State. Each byte in the State is detonated by

The data block length is fixed to be 128 bits, while the key length can be 128, 192, or 256 Chapter 2. Authenticated Encryption 13 bits.

Table 2

 2 

		.1: Hardware comparison	
	Design	FPGA	Area (slices) Frequency Throughput
				Mhz	Gbps
	Iterative [22]	Vertex-E	2257	169	2.1
	Pipelined [18] Spartan-III	17425	196.1	25.1

Table 2 . 2 :

 22 Hardware comparison of the previous AES-CCM architectures

	Design Implementation	Area	Frequency Throughput
		platform		Mhz	Mbps
	[25]	90 nm	0.057 mm 2	148	434
	[26]	Spartan-3	633 slices	100.08	1051.5
		(90 nm)			
	[27]	Spartan-3	487 slices + 4 BRAMs	247	687.3
		(90 nm)			

Table 2 . 3 :

 23 Data flow control for GHASH calculation by[START_REF] Zhou | Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs[END_REF] 

2.7(b)) is a 4-stage pipelined KOA-based GHASH. An example of data flow control for the GHASH is shown in Table 2.3, where C1 .... C 8 is the input sequence and "-" denotes "don't care". At the beginning, H 4 is passed to port Y. After the input of C 6 , H is passed to port Y. The partial GHASH values Q 1 , Q 2 , Q 3 , and Q 4 are ready at the 9 th , 15 th , 18 th , and 12 th clock, respectively. As shown from Table 2.3, the multiplier output resulting from 8 frames of 128-bit is ready after 19 clock cycles. Therefore, the real throughput is calculated as follows: Chapter 2. Authenticated Encryption 29

Table 2 . 4 :

 24 Hardware comparison of the previous AES-GCM architectures on FPGAs

  High Speed Authenticated Encryption for Slow Changing Key Applications Using FPGAs 38 improvement such as programmability, BRAMs, and LUT technology. The main contributions of this chapter are as follows:

	Chapter 3
	High Speed Authenticated
	Encryption for Slow Changing
	Key Applications Using FPGAs
	3.1 Introduction
	authenticity. Commercial security appliances of VPNs allow a throughput
	from 40 to 60 Gbps [37, 38]. Recently, the Cisco ASR 1000 Series Embedded
	Services Processors (ESPs) are used to support high throughput VPNs up to
	200 Gbps [39]. The secret key used for encryption and authentication in these
	networks is changed weekly, monthly or yearly. Therefore, they are considered
	infrequent-key based applications.
	This chapter describes the benefits of VPNs feature as an infrequent-key envi-

.4). Additionally, we presented an overview of AEGIS which is considered one of the candidates to CAESAR. Till now, there is no any hardware implementation for AEGIS.

Virtual Private Networks (VPNs) offer an economic alternative to leased lines for building a private network. It is set up by allowing users to tunnel through the public network in a manner that manages the tunnel participants to enjoy a secure connection if they are on a typical private network. VPN tunnels can be either static (between two routers) or dynamic (between end-users and routers). VPNs use AES-GCM as a solution for protecting confidentiality and ronment in order to design efficient and high speed AES-GCM. As the targeted platform is FPGA, FPGA-specific properties are considered for performance Chapter 3.

Table 3 .

 3 

		1: Precomputed round keys
	Main Key	000102030405060708090a0b0c0d0e0f
	Precomputed k0	000102030405060708090a0b0c0d0e0f
	Precomputed k1	d6aa74fdd2af72fadaa678f1d6ab76fe
	Precomputed k2	b692cf0b643dbdf1be9bc5006830b3fe
	Precomputed k3	b6ff744ed2c2c9bf6c590cbf0469bf41
	Precomputed k4	47f7f7bc95353e03f96c32bcfd058dfd
	Precomputed k5	3caaa3e8a99f9deb50f3af57adf622aa
	Precomputed k6	5e390f7df7a69296a7553dc10aa31f6b
	Precomputed k7	14f9701ae35fe28c440adf4d4ea9c026
	Precomputed k8	47438735a41c65b9e016baf4aebf7ad2
	Precomputed k9	549932d1f08557681093ed9cbe2c974e
	Precomputed k10 13111d7fe3944a17f307a78b4d2b30c5
	Precomputed H	c6a13b37878f5b826f4f8162a1c8d879

Chapter 3 .
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						E(CTR[0])		
	Add Round Key		Round 1		Round 2	Round 10	H -Synthesized	
	Precomputed K0	Precomputed K1		Precomputed K2		Precomputed K10		
	Add Round Key Precomputed K0	Precomputed K1	Round 1	Precomputed K2	Round 2	Round 10 Precomputed K10	GHASH	E(CTR[0])
	Add Round Key		Round 1		Round 2	Round 10		
	Precomputed K0	Precomputed K1		Precomputed K2		Precomputed K10		
	Add Round Key		Round 1		Round 2	Round 10	H-Synthesized	
	Precomputed K0	Precomputed K1		Precomputed K2		Precomputed K10		

Table 3 .

 3 

2: Hardware comparison

Table 4 .

 4 

	1: Hardware comparison	key SubBytes Slices BRAMs Max-Freq Thr. Thr./Slice	MHz Gbit/s Mbps/Slice	• BRAM 3836 50 273.4 8.46 32.46	• Comp. 7475 0 264.2 31.36
		FPGA Design		Virtex5 AES-GCM	Virtex5 AES-GCM
				This work	This work

Table 5 .

 5 

		1: Hardware comparison		
	Design	architecture Technology Area Frequency Throughput
				mm 2	MHz	Mbps
	Parelkar et al.[25]	AES-CCM	90 nm	0.057	148	434
	Parelkar et al.[25] AES+HMAC	90 nm	0.183	101.2	1293

Table 5 . 3 :

 53 Hardware comparison

	Architecture Technology Area Memory Frequency Throughput
	Design

Table 5 . 4 :

 54 Configuration throughput of some FPGA family members This chapter proposes low cost solutions for bitstream security. This is achieved by proposing compact architectures for AE algorithms, AES-CCM, AES-GCM, and AEGIS-128. In order to reduce the hardware complexity of CCM mode, one 1/4 round-based AES is used for both decryption and authentication. Also, GCM mode uses the 1/4 round-based AES for decryption and the International Conferences • Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez "Lightweight and Compact Solutions for Secure Reconguration of FPGAs", IEEE International Conference on Reconfigurable Computing and FPGAs (ReCon-Fig), Mexico, 2013. • Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez "High Speed Authenticated Encryption for Slow Changing Key Applications Using Recongurable Devices", IEEE Wireless Days, Spain, 2013. Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez "Towards High Performance GHASH for Pipelined AES-GCM Using FPGAs", accepted in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), USA, 2014. • Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez, " The Effect of

	FPGA	device	Technology Throughput
	Virtex-5[55]	LX330T	65-nm	800 Mbps
	Stratix-III [56]	L340	65-nm	200 Mbps
	Spartan-3 [57]	5000	90-nm	400 Mbps
	5.6 Conclusion			

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez "Protecting FPGA Bitstreams Using Authenticated Encryption", IEEE International Conference of New Circuits and Systems (NEWCAS), Paris, 2013. • Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez "Efficient Parallel-Pipelined GHASH for Message Authentication", IEEE International Conference on Reconfigurable Computing and FPGAs (ReConFig), Mexico, 2012. Posters • S-box Design on Pipelined AES Using FPGA ", GDR SOC-SIP, Paris, 2012.
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Chapter 4

Efficient and High Speed Key-Independent AES-Based

Authenticated Encryption

Architectures Using FPGAs

Introduction

AES-GCM has been utilized in various security applications as a solution for achieving both confidentiality and integrity. As we described before, it consists of two components: an AES engine and a GHASH core. The performance of the system is always determined by the GHASH architecture because of the inherent computation feedback.

The previous chapter invested the slow changing key applications like VPNs in order to design efficient and high speed architectures of AES-GCM by synthesizing the used key for encryption and authentication into the architecture (single and parallel). A new reconfiguration is loaded on the FPGA in case of changing the key. However, this solution presented in Chapter 3 is only for slow changing key applications. Authenticated Encryption Architectures Using FPGAs 70

Conclusion

In this chapter, we presented the performance improvement of AES-GCM (Thr./Slice Chapter 6

Summary and Future Work

Thesis Summary

The integration of security and privacy into embedded systems is an active research area that needs to keep track of technological developments.

In this thesis, we have proposed efficient hardware implementations of cryptographic algorithms for encryption and authentication. We presented FPGA and ASIC implementations that target a wide range of different applications.

More precisely, we focused on the hardware design of current AE algorithms, AES-CCM, AES-GCM, and AEGIS. We investigated efficient and high speed FPGA-based architectures for these AE algorithms which were implemented in the user part (reconfigurable part) of the FPGA. In addition, we defined a framework to present different ranges of low cost ASIC architecture of AE algorithms which are inserted in the static part in order to protect the Intellectual Property (IP) of FPGA Bitstreams. The following summarizes the contributions of this work.

1. In chapter 3, we presented the performance improvement of AES-GCM by the key-synthesized method in order to support slow changing key applications like VPNs. We presented this concept using three methods of SubBytes implementation. By our proposed parallel AES-GCM, each multiplier has a fixed operand. Therefore, presented parallel AES-GCM Summary and Future Work.

103 is suitable for key-synthesized method with higher throughput compared to the previous work. In addition, we proposed a protocol to protect the bitstream of the proposed architectures. Our presented AES-GCM architectures can be used for slow changing key applications like VPNs and they outperform the previous architectures regarding the hardware performance.

2. In chapter 4, an efficient and high speed independent-key AES-GCM was 3. In chapter 5, We proposed low cost solutions for bitstream security. This is achieved by compact architectures for AE algorithms (AES-CCM, AES-GCM, and AEGIS-128). In order to minimize the hardware size of CCM mode, one 1/4 round-based AES is used for both decryption and authentication. Also, AES-GCM mode uses the 1/4 round-based AES for decryption and the hybrid GF(2 128 ) multiplier for authentication. In terms of AEGIS-128, 1/4 round is used for performing both decryption and authentication. Presented architectures were evaluated through ASIC implementation. Our comparison to the previous work reveals that the proposed designs are more resource-efficient.

Future work

As a future work for this thesis, the followings can be pursued.

Summary and Future Work. 
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