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Résumé

Dans ce travail de thèse, réalisé dans le cadre d'une bourse CIFRE entre le laboratoire ECS-Lab et l'entreprise GS Maintenance, nous nous sommes intéressés au contrôle et à l'observation des systèmes électriques, particulièrement les convertisseurs multicellulaires séries et les moteurs à courant continu séries.

Dans la topologie des convertisseurs multicellulaires il est nécessaire d'équilibrer les tensions des condensateurs flottants à des valeurs spécifiques. Les techniques de commande par Modulation de Largeur d'Impulsions (MLI) permettent cet équilibrage, mais favorisent les dynamiques lentes. De plus, si le nombre de cellules est non premier, il existe des rapports cycliques qui déstabilisent le convertisseur. Afin de pallier à ces inconvénients, dans la première partie de la thèse des commandes directes basées sur les modes glissants sont proposées pour le convertisseur multicellulaire série à deux et à trois cellules. Ces commandes sont simples et permettent une dynamique rapide, pouvant être étendues à des convertisseurs à nombre de cellules quelconques. Ces commandes sont testées en simulation et expérimentalement via un système temps réel dSpace sur un convertisseur multicellulaire à deux et à trois cellules réalisé au cours de cette thèse au sein du laboratoire ECS-Lab. Il est important de souligner qu'une version industrielle du convertisseur a été réalisée au sein de l'entreprise GS Maintenance et vendue à l'Université du Qatar. Par ailleurs, dans le cadre de l'application du convertisseur multicellulaire une commande par modes glissants de type Zig-Zag est proposée pour pallier aux problèmes de quantification et de saturation des actionneurs.

La deuxième partie du travail a été consacrée à la synthèse d'un observateur/estimateur de type super-twisting pour estimer la vitesse d'un moteur à courant continu série sans capteur mécanique. La stratégie d'observation proposée est dédiée à une application industrielle qui concerne le forage pétrolier. Elle permet d'apporter une solution au problème d'observation généré par le fonctionnement à zéro ou faible courant. Cette stratégie a été testée sur un banc expérimental développé au cours de cette thèse au sein de l'entreprise GS Maintenance. vi

Abstract

In this thesis, conducted in the context of a grant CIFRE between ECS-Lab laboratory and GS Maintenance company, we focused on the control and observation of electrical systems, particularly series multicell converters and DC series motors.

The floating voltages of the multicell topology need to be balanced to specific values. PWM control techniques provide such a balance but favor the slow dynamics. Moreover, if the number of cells is not prime, there exist dutycycles which could destabilize the converter. To overcome these drawbacks, we propose direct control strategies based on sliding mode techniques for 2 and 3-cell converters. These are simple, allow fast dynamics, and can be easily extended to any number of cells with little overhead. They have been tested in simulation and experimentally via a real-time dSpace board on a 2 and 3-cell converter developed during this thesis at ECS-Lab. It is important to emphasize that an industrial version of the converter has been manufactured at GS Maintenance and sold to Qatar University. Moreover, in the context of the application of multicell converters, a Zig-Zag sliding mode control law has been proposed to overcome quantization and saturation problems found in real actuators.

The second part of this work addresses the synthetization of a supertwisting observer/estimator scheme to estimate the speed of a sensorless DC series motor. The proposed observation strategy is dedicated to an industrial application in the context of oil drilling. It provides a solution to the problem of observation generated by operating at zero or low current. This strategy has been tested on an experimental bench developed in this thesis within GS Maintenance.

vii Chapter 1

Introduction

At present, and for decades, electrical systems are everywhere. The progress made during the 20th century has allowed them to play a central role in everyday life, from household appliances to complex industrial processes. Advances achieved in several disciplines have made this possible, mainly in power electronics and control systems.

The main electromechanical system found in industry is the electric motor. Variable speed drives have allowed to precisely control its speed and position. Many industrial processes such as assembly lines must operate at different speeds for different products. Where process conditions demand adjustment of flow from a pump or fan, varying the speed of the drive may save energy compared with other techniques for flow control.

Power converters are these days the main devices for driving motors at variable speeds. However they are not limited to motor applications. They are found in many other applications, from a few milliwatts to several megawatts such as voltage regulators [START_REF] Varga | Polyphase synchronous switching voltage regulators[END_REF], switched mode power supplies [START_REF] Pressman | Switching power supply design[END_REF], uninterruptible power supplies [START_REF] Jungreis | Uninterruptible power supply[END_REF], rectifiers [START_REF] Rozman | Low loss synchronous rectifier for application to clamped-mode power converters[END_REF], induction heating [START_REF] Forest | Principle of a multi-load/single converter system for low power induction heating[END_REF], battery chargers [START_REF] Chuang | High-efficiency and low-stress zvtpwm dc-to-dc converter for battery charger. Industrial Electronics[END_REF], active power filters [START_REF] Dzonde | A unique fpga for the implementation of neural strategies for identifying harmonic distortions[END_REF], fuel cell systems [START_REF] Hilairet | A passivity-based controller with charge estimation for coordination of converters in a fuel cell system[END_REF][START_REF] Hilairet | A passivity-based controller for coordination of converters in a fuel cell system[END_REF], among many others.

In this work, we focus our attention on the control and observation of electrical systems, particularly multicell series converters and DC series motors.

Whatever the application, power converters aim to accomplish two basic requirements, which are achieving maximum efficiency and meeting the electromagnetic compatibility standards. Achieving good efficiency allows power handling without too many losses and, above all, reduces the volume and weight, which depend on the former. On the other hand, handling high power at high frequencies may generate significant electromagnetic pollution, both in conducted and radiated modes. This can affect the behavior of other systems as well as the converter itself. Industrial applications impose the need for high power. The imperfection of conductors and semiconductors (non zero resistance and skin effect) leads to increasing voltages instead of currents. This leads to the use of high voltage switches, whose switching times are longer and lead to higher switching losses.

Multicell series converters [START_REF] Meynard | Multilevel choppers for high voltage applications[END_REF] have been designed to reduce the voltage across power switches (Meynard and Foch, 1992a) and provide solutions to all these constraints. Indeed, they reduce the voltage across switches by the series connection of switching cells (complementary switches) and floating voltage sources, dividing the DC bus voltage between them. These floating voltage sources are implemented by means of capacitors. This topology allows for the use of components whose voltage limits are smaller than the DC bus voltage, which are easier to find in the market and have lower switching losses. Furthermore, this topology is modular, allowing to increase the number of cells by adding switching cells and floating voltage sources. Moreover, this topology fits into the category of multilevel converters, thus the output voltage presents a lower dv/dt and a smaller harmonic content than classical two level converters, reducing electromagnetic interference (EMI) and filter volume (when filters are needed).

However, all these advantages come at the price of a more complex control since it is necessary to balance the floating voltages in order to evenly share the DC bus voltage across the switching cells. Such a balance can be obtained by means of an open loop PWM control, as described in [START_REF] Meynard | Multilevel choppers for high voltage applications[END_REF] and [START_REF] Meynard | Modeling of multilevel converters[END_REF]. Nevertheless, the convergence provided by this method is slow and may generate unwanted oscillations. This problem can be avoided with the addition of an auxiliary RLC load as proposed in [START_REF] Gateau | Contribution à la commande des convertisseurs statiques multicellulaires série: commande non linéaire et commande floue[END_REF]), yet it presents several drawbacks such as the cost and volume of the added components and, mainly, the efficiency degradation due to its inherent losses. To avoid the use of an auxiliary load, a closed loop PWM control arises as natural evolution of the open loop PWM control. Several approaches have made use of this technique, such as linearization around an operating point [START_REF] Tachon | Commande découplante linéaire des convertisseurs multicellulaires série[END_REF], linear state feedback decoupling [START_REF] Tachon | Control of series multicell converters by linear state feedback decoupling[END_REF] and exact linearization [START_REF] Gateau | Contribution à la commande des convertisseurs statiques multicellulaires série: commande non linéaire et commande floue[END_REF]. However, PWM techniques are based on average-value models, favoring slow dynamics. Furthermore, it has been proved that for converters with non-prime number of cells there exist duty-cycles which destabilize the converter (Davancens and Meynard, 1997a,b). In [START_REF] Béthoux | Commande permettant le contrôle du convertisseur multicellulaire série à nombre non premier de cellules[END_REF] a direct control is proposed, which allows the control of converters with non-prime number of cells while obtaining very good dynamics. Yet, this method presents two limita-tions. The first one is that it requires the resolution of a system of equations at each sample time, leading to heavy real-time computations, which become even heavier as the number of cells increases. The second one is that, for a given switching frequency and, for example, three cells, one of the cells commutes at twice the switching frequency. The aim of this work is to propose simple control laws [START_REF] Amet | Direct control based on sliding mode techniques for multicell serial chopper[END_REF](Amet et al., , 2012a) ) that are easily scalable and that impose the same switching frequency to every cell, while preserving the good properties of the control proposed in [START_REF] Béthoux | Commande permettant le contrôle du convertisseur multicellulaire série à nombre non premier de cellules[END_REF].

Since these control techniques have been inspired from sliding modes, we devote a chapter to introduce its basic concepts, as well as more advances ones such higher order sliding modes (HOSM). We focus our attention on two particular second order algorithms:

• the twisting algorithm, which is then applied to the control of a permanent magnet DC motor and in which the actuator is either a half bridge multicell converter or a full bridge multicell converter (this consists of the back-to-back connexion of two multicell converters), and

• the super twisting algorithm, which is then implemented to synthesize an observer for a DC series motor.

Moreover, in the context of the application of multicell converters, a Zig-Zag sliding mode control [START_REF] Amet | Hosm control under quantization and saturation constraints: Zig-zag design solutions[END_REF] law has been proposed to overcome quantization and saturation problems found in real actuators.

The proposed controls laws were tested in an experimental academic prototype consisting of three cells developed at ECS-Lab. We briefly present the design and implementation of its different subcircuits conforming it. We address electromagnetic interference (EMI) issues as well and present a way to deal with it.

The second part of this thesis deals with DC series motors in the context of an industrial application. Indeed, among the motors used in industry, the DC motor is one of the simplest because it is governed by continuous voltages and currents. In addition, it presents great flexibility since it can be set up according to different configurations, which depend on the connection between stator and armature windings. These configurations feature different characteristics, allowing the machine to be adapted to the constraints of a wide range of applications. In this work, we consider the DC series motor, in which the field winding is connected in series with the armature winding. Two advantages arise from this electrical connection: on the one hand, only one static converter (e.g. controlled rectifier) is needed; on the other hand, the electromagnetic torque produced is proportional to the square of the current (under linear electromagnetic flux conditions). For this reason, DC series motors are used in applications where high starting torques are needed, such as trains, elevators, hoists; or to produce high torque at slow speeds in applications such as dragline excavation or oil drilling, which is the application that motivated this work.

The mathematical model of the DC series motor is nonlinear (Fossard and Normand-Cyrot, 1996), which inspired the application of different control techniques, ranging from open loop to nonlinear techniques. In [START_REF] Santana | Simulation and construction of a speed control for a DC series motor[END_REF] and [START_REF] Siller-Alcalá | Speed nonlinear predictive control of a series dc motor for bidirectional operation[END_REF] two open-loop strategies are presented, based on PWM and nonlinear predictive techniques, respectively; in the context of closed-loop control strategies we found techniques such as fuzzy tuned PI controllers [START_REF] Iracleous | Nonlinear control of a series connected dc motor using singular perturbation and feedback linearization techniques[END_REF], singular perturbation approach (Iracleous and Alexandridis, 1995a), feedback linearization design [START_REF] Chiasson | Nonlinear differential-geometric techniques for control of a series DC motor[END_REF][START_REF] Mehta | Nonlinear control of a series DC motor: theory and experiment[END_REF], backstepping method [START_REF] Burridge | An improved nonlinear control design for series DC motors[END_REF][START_REF] Dongbo | An Improved Nonlinear Speed Controller for Series DC Motors[END_REF] and the application of port-controlled Hamiltonian systems equivalence [START_REF] Iracleous | Series connected DC motor tracking using port controlled Hamiltonian systems equivalence[END_REF].

In order to implement closed-loop control techniques, the speed is usually measured by means of mechanical sensors, which implies higher economical costs and increases the complexity of the system. In addition, in some applications, mechanical components are subject to very harsh conditions, in which the position or speed sensor is susceptible to failure. These reasons lead us to consider replacing them with some speed estimation technique.

DC series motors present an observability singularity at zero current, so special attention must be paid when estimating the speed near this condition. In (Boizot et al., 2007a,b;[START_REF] Boizot | Adaptive high-gain extended Kalman filter and applications[END_REF], the authors propose the application of Adaptive Extended and High-Gain Extended Kalman filters in the observable zone, and compare their performances with those of the Extended Kalman Filter; nevertheless, no solution is given to deal with the observability singularity and no sensorless control is implemented. In [START_REF] Chiasson | Nonlinear differential-geometric techniques for control of a series DC motor[END_REF] and [START_REF] Mehta | Nonlinear control of a series DC motor: theory and experiment[END_REF], a nonlinear observer (with linear error dynamics) is presented, showing that sensorless control of the DC machine is feasible. However, to our best knowledge, no approach has been provided to deal with the observer singularity.

The aim of the second part of this work is to provide an discrete-time observation strategy [START_REF] Califano | On the observer design in discrete-time[END_REF] to deal with the loss of observability when working at zero or low current (Amet et al., 2013a,b). It is important to note that this observer has been inspired from the book chapter [START_REF] Solvar | Industrial Application of a Second Order Sliding Mode Observer for Speed and Flux Estimation in Sensorless Induction Motor[END_REF] where I participated in the development of a super-twisting based step-by-step observer for an induction motor.

This work is organized as follows:

Chapter 2, Sliding modes and the Zig-Zag algorithm. We intro-duce here classical and higher order sliding modes (HOSM), which are then applied in next chapters. We propose a new HOSM algorithm which allows the application of HOSM to multilevel converters and systems with quantized outputs in general.

Chapter 3, Multicell converter modelization. In this chapter we analyze the operating principle of multicell converters and present its mathematical model.

Chapter 4, Control of Multicell Converters. We propose here algorithms to control the floating voltages of multicell converters as well as its output current. A controllability analysis is previously presented. The proposed algorithms, meant to control the floating voltages and the output current, are validated with experimental tests. Finally, we show that the multicell converter is well suited to implement the twisting algorithm in the context of a permanent magnet DC motor.

Chapter 5, Prototype design and construction. The design and construction of a multicell converter is presented. This prototype is used to test the proposed control algorithms.

Chapter 6, Super-twisting based step by step observer for a DC series motor . A HOSM algorithm is applied to a DC series motor to control its speed without the need for a position or speed sensor. The proposed observer is tested in a real system.

Chapter 7, Conclusion. General conclusion and perspectives of the present work.

Publications

The work done along this thesis has resulted in five international conference papers and one book chapter: Amet, L., Ghanes, M., and [START_REF] Amet | Direct control based on sliding mode techniques for multicell serial chopper[END_REF]. Direct control based on sliding mode techniques for multicell serial chopper. In IEEE American Control Conference (ACC). Amet, L., Ghanes, M., and Barbot, J. P. (2012a). Commande directe d'un convertisseur multicellulaire: résultats exp erimentaux. In IFAC CIFA-7ème Conférence Internationale Francophone d'Automatique-2012. [START_REF] Amet | Hosm control under quantization and saturation constraints: Zig-zag design solutions[END_REF].Hosm control under quantization and saturation constraints: Zig-zag design solutions. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE.

Chapter 2

Sliding Modes and the Zig-Zag algorithm

Introduction

Sliding modes [START_REF]Survey paper variable structure systems with sliding modes[END_REF][START_REF] Barbot | Sliding Mode Control in Engineering[END_REF][START_REF] Edwards | Sliding mode control: theory and applications[END_REF] have been successfully applied in a large number of applications [START_REF] Utkin | Sliding modes in electromechanical systems[END_REF], in very diverse and different areas. They can be applied to controller implementations [START_REF] Floquet | Second order sliding mode control for induction motor[END_REF][START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] as well as in observers [START_REF] Floquet | Super twisting algorithm-based stepby-step sliding mode observers for nonlinear systems with unknown inputs[END_REF].

The success of this technique resides in three main reasons: a relative ease of implementation, even in the case of nonlinear systems, its robustness to parametric uncertainties and its insensitivity to a certain class of perturbations. Finally, when the system enters in the so called sliding mode, a new dynamics arises as a function of the chosen surface.

Even with all these advantages, some drawbacks may limit, or make impossible, the application of sliding modes. The discontinuous nature of sliding modes could excite unmodeled frequencies, leading to undesirable, or even destructive performances [START_REF] Utkin | Chattering problem in sliding mode control systems[END_REF]. On the other hand, the application of this discontinuous control is generally directly applied on the actuators. If these are not adapted to this kind of stresses, they risk premature ageing or, even worst, destruction.

Background on sliding modes

Given a nonlinear SISO system, described by the following state equation:

ẋ = f (t, x, u), with • x ∈ X ⊂ R q , the state vector, • u ∈ U ⊂ R, a bounded input,
• f : R + × X × U → R q , a sufficiently differentiable vector field.

The aim of sliding mode control is to force the trajectories x(t) of the system to remain on a sliding manifold s = 0 of dimension q -1, defined as follows:

s = {x ∈ X such that s(t, x) = 0},
where s : R + × X → R, is the so called switching surface. The choice of this function is the most important step of the design since the new dynamics of the system is entirely defined by this function.

The discontinuous output of a sliding mode controller is a function of s:

u = u max sgn (s)

Condition of attraction

In order to converge to the sliding surface s = 0, the algorithm must render the surface attractive. A sufficient condition for this, is the design of a control u(t) such that

• if s > 0 → ds/dt < 0, and

• if s < 0 → ds/dt > 0.
This is the condition of attraction and is summarized as follows:

s ṡ < 0.

To satisfy this condition, u(t) must appear explicitly in ṡ.

The condition of attraction only guaranties that the switching manifold is attractive, but it does not guaranty the finite time convergence to it. For this, it is necessary to satisfy the condition of η-attraction.

Condition of η-attraction

This condition guaranties that the sliding mode (s = 0) is attained in finite time and is described as follows:

s ṡ < -η|s|, with η > 0.
Under this condition:

• if s < 0 → ṡ > +η • if s > 0 → ṡ < -η.
Therefore, if the initial condition is s(0) > 0, the evolution is described by the inequality s(t) < s(0)η t as long as s(t) > 0. On the other hand, if the initial condition is s(0) < 0, the evolution is described by the inequality s(t) > s(0)η t as long as s(t) < 0. This confirms the attractivity of the sliding manifold s = 0 and guaranties that the convergence is attained in a finite time interval ∆t which depends on the initial conditions; ∆t < |s(0)| η

Real sliding mode and chattering

To achieve ideal sliding modes would require the switching frequency of u(t) to be infinite. In a real system, this could never happen due to obvious physical limitations.

For this reason, in real sliding modes, the system trajectories evolve in a certain vicinity of s = 0, but not exactly on s = 0. This evolution is characterized by a high frequency phenomena known as chattering [START_REF] Utkin | Chattering problem in sliding mode control systems[END_REF]. This chattering is superposed to the sliding manifold s = 0 and is responsible of the drawbacks mentioned in 2.1.

Equivalent control

Equivalent control u eq [START_REF] Utkin | Sliding modes in control and optimization[END_REF] is defined as a "continuous control which yields to the same dynamics that ideal sliding modes would produce." In such circumstances, the invariance condition is achieved:

s = 0 ṡ = ds dx f (t, x, u eq ) = 0
(2.1)

As it was stated previously, the equivalent control u eq appears explicitly in the second equation. In the case of a nonlinear system affine in the control:

ẋ = f (t, x, u) = Φ(x) + Γ(x)u, (2.2)
the equivalent control u eq can be explicitly expressed as follows:

u eq = ∂s ∂x • Φ(x) ∂s ∂x • Γ(x) , (2.3)
if the transversality condition ( ∂s ∂x • Γ(x) = 0) is satisfied. In real sliding modes, the discontinuous control u(t) consists of the sum of a low frequency component u LF , which is the equivalent control u eq and a high frequency component u HF which does not affect the sliding mode but produces chattering.

Higher order sliding modes

Higher Order Sliding Modes (HOSM) were designed to minimize the chattering effect [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF][START_REF] Fridman | Higher order sliding modes[END_REF], inherent to first order sliding modes, while preserving their main advantages, such as robustness and finite time convergence. The chattering effect is reduced by applying the discontinuous control on higher order derivatives.

The order r of a particular HOSM algorithm is determined by the following equalities:

s = ṡ = s = . . . = s (r-1) = 0.
The discontinuous control is applied on s (r) . The main drawback in the implementation of HOMS is the need of larger amount of information. In order to implement an r-order sliding mode algorithm and reach the sliding manifold s = 0, the variables s, ṡ, . . . , s (r-1) must be available. The only exception is the Super Twisting algorithm, a second order sliding mode algorithm which only need to know s. For the all the other HOSM algorithms, this limitation can be overcome by the use of robust differentiators (Levant, 1998a).

In this work, we focus our interest on second order sliding mode techniques.

Second order Sliding Modes

The aim of this algorithms is to reach the second order sliding mode [START_REF] Bartolini | On second order sliding mode controllers[END_REF] over a given sliding manifold s = 0, that is, to attain in finite time s = ṡ = 0. Given a dynamical system described by:

ẋ = f (t, x, u), (2.4)
where f and s are functions C 1 and C 2 , respectively, and the relative degree of s with respect to u is 2. The latter means that by differentiating s twice, the control u appears explicitly :

s = ϕ(t, x) + γ(t, x)u (2.5)
The problem presented above resides on the stabilization, in finite time, of the auxiliary second order system [START_REF] Barbot | Sliding Mode Control in Engineering[END_REF][START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF] given by:

σ = ṡ σ = ϕ(t, x) + γ(t, x)u
Proofs of the existence of the solution were based on the following hypothesis:

Hyp 1 The control u is a bounded function: |u| < U M .
The differential equation ẋ = f (t, x, u) admits solutions (in the sense of Filippov) over the second order sliding manifold (s = ṡ = 0) for every t.

Hyp 2 The control u = -U M sgn( ṡ(t 0 )), (with t 0 as the initial time), guaranties the finite time convergence to ṡ = 0.

Hyp 3 There exists a linear region, i.e. there exist three positive constants s 0 , K m and K M such that, in a vicinity |s(t, x)| < s 0 , the following inequalities are satisfied:

0 < K m < γ(t, x) K M
Hyp 4 Inside the linear region (the set { t, x : |s(t, x)| < s 0 }) and for all t, x, u, there exists a constant C 0 such that:

ϕ(t, x) C 0
Hypothesis 2 guaranties that, starting from any point in the state space, it is possible to define a control which leads the function s(t, x) to the linear region.

Hypothesis 3 and 4 imply that s is uniformly bounded in a certain domain.

From the theorem of implicit functions, there exists then an equivalent control (u éq ) which guaranties the invariance of the surface s defined by s = ṡ = 0. Second order algorithms are designed as a function of s(t, x) and of the four parameters C 0 , K m , K M and s 0 . Finite time convergence to s = ṡ = 0 is attained thanks to the commutation of the control between finite time values.

The twisting algorithm

If the relative degree of the system to control (2.4) is 2, the twisting algorithm is defined as follows [START_REF] Santiesteban | Finite-time convergence analysis for Ştwisting Ť controller via a strict lyapunov function[END_REF][START_REF] Fridman | Higher order sliding modes[END_REF]:

u(t) = -U m sgn(s) if s ṡ 0 -U M sgn(s) if s ṡ > 0 (2.6)
The sufficient conditions for finite time convergence (s = 0) are

U M > U m U m > 4 K M s 0 U m > C 0 Km K m U M -C 0 > K M U m + C 0 (2.7)
The convergence to s = {x : s = ṡ = 0}, represented by the origin of the phase plane (s, ṡ), is performed in an infinite number of rotations, cutting successively the abscissa and ordinate axis, but in finite time. This is shown in figure 2.1. This phenomenon is known as Zeno paradox. By taking into account the different trajectories (which result from the unknown dynamics) and evaluating the time intervals between successive intersections with the horizontal axis, it is possible to define an upper boundary for the convergence time:

t tw = √ 2 K m U M + K M U m (K m U M -C 0 ) √ K M U m -C 0 1 1 -K M Um-C 0 KmU M -C 0 |y(t 0 )| (2.8)
where y(t 0 ) is an initial condition on the vertical axis (any s and ṡ = 0).

Super Twisting algorithm

This algorithm has been developed to control systems with relative degree one [START_REF] Fridman | Higher order sliding modes[END_REF]. In this case the convergence is also reached by twisting around the origin of the phase plane. One of the differences with respect to the twisting algorithm is that the control obtained with this algorithm is continuous, as we can see in the following equations: with α and λ positive constants. Note that this algorithm does not need any information about the time derivative of the switching function s. This algorithm, being extremely robust, can be used as a robust differentiator [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF].

u(t) = u 1 + u 2 (2.9)
2.7 Zig-Zag Twisting algorithm [START_REF] Amet | Hosm control under quantization and saturation constraints: Zig-zag design solutions[END_REF] In many experimental systems, discrete and bounded actuators implement control laws with sampling, quantization and saturation problems. Multilevel converters, and in particular multicell converters, fit into this category since their outputs can take only a finite number of levels. Our goal is to quantize the Super-Twisting algorithm to apply it to multilevel converters. As a result, a new control technique arises, the so called Zig-Zag sliding mode control. Issues of quantization and saturation problems are respectively investigated directly and implicitly by the proposed control. The main contribution of the proposed method consists in having a faster convergence and good performances even when the saturation of the actuators is decreased up to a certain limit in which other methods fail to converge. The proposed method is compared to traditional implementations in simulation.

Introduction

As we have seen previously, sliding modes provide very good properties such as robustness against a certain class of perturbations and parametric incertitudes, as well as finite time convergence of the switching function s to zero (Levant, 1993a;[START_REF] Utkin | Sliding modes in control and optimization[END_REF][START_REF] Edwards | Sliding Mode Control: Theory and Applications[END_REF]. The main disadvantage of this technique is a phenomenon called "chattering", which consists of highfrequency oscillations around the sliding surface [START_REF] Boiko | Analysis of chattering in systems with second-order sliding-modes[END_REF]. This behavior may lead to a difficult, even impossible, implementation of this technique in certain systems, such as mechanical ones. It can also excite non modeled high frequency modes that could destabilize the system under control. Higher order sliding mode techniques retain the excellent properties of classical sliding modes, but minimize the "chattering" effect (Levant, 1993a;Fridman and Levant, 2002a).

Moreover, real systems such as ADC and DAC converters, power electronic converters and actuators in general introduce problems such as discretization, quantization and/or saturation. Because of these limitations, the implementation of continuous control techniques may degrade its performances [START_REF] Levant | Discretization issues of high-order sliding modes[END_REF][START_REF] Liberzon | Switching in Systems and Control[END_REF][START_REF] Sira-Ramirez | Nonlinear discrete variable structuresystems in quasi-sliding mode[END_REF][START_REF] Bartolini | Adaptive sliding mode control in discrete-time systems[END_REF].

We deal here with the problems of quantization and saturation. Hereafter, the sampling frequency is considered fast enough. Some results dealing with this topic for linear systems and nonlinear systems can be found in [START_REF] Liberzon | Switching in Systems and Control[END_REF][START_REF] Brockett | Quantized feedback stabilization of linear systems[END_REF][START_REF] Fridman | Control under quantization, saturation and delay: An lmi approach[END_REF] and [START_REF] Ferrara | A sub-optimal second order sliding mode controller for systems with saturating actuators[END_REF][START_REF] Bullo | Quantized control via locational optimization[END_REF]. However, for our best knowledge, both quantization and saturation problems are not treated in the case of higher order sliding mode control.

From this point of view, a new way to implement the Super-Twisting algorithm under saturation and quantization constraints is proposed. Our method is presented in the basis of a very simple example which is representative of a wide range of industrial applications.

Problem statement

In order to illustrate the advantage of this method we will consider a system found in a large number of electromechanical applications: an RLE load. This load will be driven by two actuators: a saturation free one with continuous output at first, and then, an actuator presenting a finite number of constant output values and saturation too.

The state equation of the load is given by the following equation:

di dt = - R i L - E L + u L (2.12)
This model could represent, for example, the armature circuit of a DC electric motor (see (V., 1992)). The current of such a motor could be controlled by a Super Twisting algorithm. In order to control the current, the natural choice of the switching function is the following:

s = i ref -i (2.13)
The relative degree of this function is one since the control u appears explicitly in the fist derivative of s:

ṡ = ds dt = di ref dt + R i L + E L - u L (2.14)
Under this condition, the control may be performed by a Super-Twisting algorithm (Levant, 1993a), which is described by the following equations:

u = u 1 + u 2 (2.15)
where: u1 = α sign(s) (2.16) and u 2 = λ|s| ρ sign(s) (2.17) with ρ < 1.

In figure 2.3, we can see the current of an RLE load controlled by a Super-Twisting algorithm. The parameters used for this simulation are shown in table 2.1 and will remain the same for the next simulations. The refer- Table 2.1: Reference parameters parameters and the initial condition were set to achieve convergence at 25 ms.

Unfortunately sources are not ideal. In the case of linear ones we must deal with saturations, but in power applications we usually find sources whose output can take only two or a few fixed voltage levels, so we have saturation and quantization constraints. This is for example the case of multilevel converters [START_REF] Meynard | Multi-cell converters: basic concepts and industry applications[END_REF][START_REF] Amet | Direct control based on sliding mode techniques for multicell serial chopper[END_REF]. Here we consider systems with linearly quantized symmetric outputs. Such systems may be classified as with odd and even number of levels.

Before the description of the proposed Zig-Zag control, some definitions have to be introduced.

• We define the quantization error bound a as follows:

a = U max N -1 (2.18)
where U max is the saturation value and N is an integer representing the number of levels of the actuator.

• We recall the floor and ceiling functions, noted as x and x , respectively:

x = max{i Z | i ≤ x} (2.19) x = min {j Z | j ≥ x}
(2.20)

• At last, we recall the round function, based on definitions (2.19) and (2.20):

x = x -0.5 if x < 0 x + 0.5 if x ≥ 0 (2.21)

Proposed quantization laws (odd and even cases)

Systems with odd number of levels

The output of such systems can be expressed as:

u odd = ma (2.22)
with m an even integer given by

m = 2 k odd (2.23)
where k odd ∈ Z is the actual output level, which is between

N min = -N -1 2 and N max = N -1 2 .
Systems with even number of levels

In this case, the output is given by the following expression:

u even = pa (2.24)
with p an odd integer given by p = 2 k evensign(k even ) (2.25)

where k even ∈ Z -{0} is the actual output level. It can take values between N min = -N 2 and N max = N 2 . The presence of the sign function in equation (2.25) allows the resulting p to be symmetric with respect to zero.

We describe now the four steps needed to perform the Zig-Zag algorithm.

• Normalization: in this step, the output of the Super Twisting controller u ST is normalized with respect to 2 a:

ūST = u ST 2 a (2.26)
This operation is useful in the following step.

• Map to integer numbers (Zig-Zag design): in this step the normalized output ūST is mapped to integer values which represent the output levels of the actuator.

It is clear that a classic quantization of the Super-Twisting algorithm, given by u q = 2 a ūST , degrades its performances as it will be shown in simulation. To overcome this problem, a different quantization is proposed.

Our strategy cancels the quantization error by introducing the term sign(s), where s is the switching manifold of the Super-Twisting algorithm. By doing this we introduce some chattering over the variable being controlled.

For systems with odd number of levels the proposed map is the following:

m = 1 2 ( ūST + ūST + sign(s)) if ūST ∈ Z ūST if ūST ∈ Z (2.27)
In the case of systems with even number of levels the map is as follows:

p = ūST + 1 2 sign(s) if ūST ∈ Z ūST if ūST ∈ Z (2.28)
For the sake of simplicity of notation we introduce the variable k ZZ , defined as:

k ZZ = 2 m
for odd number of levels 2 p for even number of levels (2.29)

• Introduction of saturation constraints: the quantified control k ZZ must respect the limits of the actuator, then a saturation is imposed at this step:

k ZZ =    k ZZ if -N + 1 < k ZZ < N -1 -N + 1 if k ZZ < -N + 1 N -1 if k ZZ > N -1 (2.30)
• Denormalization: the real output value of the Multilevel System is determined as follows:

u ZZ = a k ZZ (2.31)

Example of Zig-Zag quantization

Assume two identical systems, one of them controlled by a Super-Twisting algorithm and the other one by a Zig-Zag twisting algorithm. Suppose also that the sliding mode is established in both of them, i.e., s = 0. Under these assumptions it is possible to use the concept of equivalent control [START_REF] Utkin | Sliding modes in control and optimization[END_REF][START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF], i.e., a fictitious continuous control u eq which forces s = 0. By replacing equation (2.17) in (2.15), we can rewrite the last one as:

u ST = u 1 + λ|s| ρ sign(s) (2.32)
Given that u ST is continuous and that s = 0:

u ST = u 1 = u eq (2.33)
Note that u eq is the same for both systems as this does not depend on the technique used but on condition s = 0. Suppose that u eq is as shown in figure 2.4 and that the "quantized actuator" in which the Zig-Zag implementation is performed does not saturate so as the sliding mode is not lost. Now we de- 2.27) maps u ST to the mean value of the levels in which u ST is "contained". This is represented by the blue line shown in figure 2.5: when u ST is between 0 and 1 the mean value is 0.5, when u ST is between 1 and 2 it is 1.5 and when u ST is between 2 and 3 it is 2.5. Now the last term is taken into account: 1 2 sign(s). It depends on s and "decides" which level m is assigned to. The saturation step does not affect the quantified control because this is in between the limits of the actuator. Finally, the output of the actuator is determined by the denormalization step. The Zig-Zag control is shown in figure 2.6. The green zones represent the high frequency switching given by the sign function.

Note that the Zig-Zag control could be locally seen as a classical sliding mode control. In fact, by making the change of variables (2.34) in both cases.

u = u ZZ -a ( ūST + ūST )
It is shown in figure 2.7 a typical phase portrait of the Zig-Zag twisting algorithm. This algorithm is called "Zig-Zag twisting" because it converges to the origin "twisting" around it as the Super-Twisting algorithm does, but in a zig-zag manner. Now, in order to highlight the benefits of the Zig-Zag design in the next sections, it will be compared in simulations to usual implementation techniques, such as multilevel PWM, classic quantization and the Super-Twisting algorithm.

Comparative study based on simulation results

In this section we will run two simulations in order to compare the Zig-Zag technique with continuous Super-Twisting, classic quantization and multi- 

Case 1

In this case the number of levels is N = 5 and the saturation voltage U max is 130 V . Results are shown in figures 2.8a to 2.8d. It can be seen that, in this case, convergence is achieved only with the Zig-Zag implementation. Even the Super-Twisting algorithm fails to converge.

Case 2

Now, the number of levels is still N = 5 but the saturation level is modified to U max = 150 V . Results are shown in figures 2.9a to 2.9d. In this case the four implementations provide convergence of the load current to its reference. As it can be seen, the Zig-Zag solution provides a convergence which is about five times faster.

Conclusion

In this chapter we introduced central concepts about sliding modes, starting from classical sliding modes. Then higher order sliding modes were introduced and focused our attention on two particular second order algorithms: the twisting and the super-twisting.

All these concepts will be applied later to the control of multicell converters and permanent magnet DC motors, and the observation of the speed of a DC series connected motor.

Finally, we proposed a HOSM algorithm suited to be applied to multilevel converters and to systems with quantized outputs in general.

Chapter 3

Multicell converter modelization 3.1 Multicell Series Converters

The multicell structure, proposed in the 90's [START_REF] Meynard | Multilevel choppers for high voltage applications[END_REF], is based in the cascaded connection of commutation cells (a cell is defined as two complementary switches) and floating voltage sources. These sources are implemented by floating capacitors. The multicell converter may function as chopper (DC/DC converter) or inverter (AC/DC converter). In the inverter case the load can, in turn, be connected between the output of the converter and the DC bus mid-point or between the output of two converters, better known as back-to-back connection. In figure 3.1 we see an N -level series multicell converter, consisting of n = N -1 cells. (Meynard and Foch, 1992a), thanks to the floating capacitors. These require the voltage across each cell to be E/n, with E the bus voltage and n the number of cells, allowing the use of switches with smaller breakdown voltages, which are faster or, equivalently, present smaller switching losses. This topology fits in the category of multilevel converter, which means that the output voltage takes more than two discrete values (levels). On the one hand, this improves the harmonic content of both voltage and current. On the other hand, it reduces the dv/dt and so, reducing EMI. Finally, the frequency seen at the output, also known as apparent frequency, is n times the switching frequency of the individual switches, allowing smaller output filters when needed.

Equations describing the multicell converter

Voltage across switching cells

Each commutation cell is between two floating voltage sources:

V C k and V C k-1 , with V C 0 = 0 and V Cn = E. Therefore, the voltage blocked by each cell is V Cell k = V C k -V C k-1 . (3.1)
As stated before, the floating voltages are realized by means of capacitors, except for V Cn = E, the DC bus voltage. These capacitors should require the DC bus voltage to be evenly distributed between the different cells:

V Cell k = E/n. (3.2)
From equations (3.1) and (3.2), we find that the voltage across the k-th capacitor should be

V C k = k E/n. (3.3)

Current flowing trough a cell

Let us put a current source at the output of the multicell converter in place of a passive load. The current provided by this source should not be interrupted whatever the state of the switches are. This means that there should always be one switch closed per cell. The current flowing through the k-th capacitor is, then:

i u k = u k i s i ūk = (1 -u k ) i s
with u k the state of the upper switch k, which is 1 if it is closed and 0 if it is closed.

Capacitors and output voltages

The output voltage v s is a function of the n switching states (u k ). Noting ūk the state of the lower switch k, v s can be expressed as follows:

v s = n k=1 v ūk (3.4) = n k=1 u k v cell k (3.5)
In the particular case when the n cell voltages are equal:

v s = E n n k=1 u k (3.6)
The evolution of the floating voltages v C k depends on the current flowing through each capacitor C k . As seen before, this is given by the configuration or the state of their adjacent cells:

i C k = i s (u k+1 -u k ) (3.7) v C k (t) = v C k (0) + t 0 i C k C k dt (3.8)
From equations (3.6) and (3.8) we conclude that, in the case where cell voltages are identical, the output and floating voltages can be controlled independently.

PWM control

Pulse width modulation (PWM) technique allows the control of the mean value of a fixed frequency rectangular signal by adjusting its duty cycle. Such control is obtained from the comparison of a reference signal r(t) against a carrier triangular signal c(t). The resulting output waveform is given by:

u P W M (t) = u max if r(t) ≥ c(t) 0 if r(t) < c(t)
This is a rectangular signal u P W M (t with frequency f P W M and duty cycle α.

Assuming that r(t) varies slowly with respect to the carrier c(t), r(t) can be considered to have a constant value r m over a switching period. Then, the duty cycle α can be expressed as

α = p max r m , (3.9)
where p max is the maximum value of p(t). Then, the mean value of

u P W M (t) is < u P W M (t) >= U = u max α (3.10)
In the particular case where u max = 1, the mean value of u P W M (t) is α. When a PWM signal commands a switch, it is usually called switching function.

The advantages of this method are its simplicity and the fact that the frequency is kept constant. Nevertheless, it is based on mean values, "favoring" slow dynamics.

Open loop PWM control

In steady state, each switching function can be expressed as a Fourier series:

u k (t) = α k + ∞ p=1 U kp (α k ) cos p 2πt T s (3.11)
where T s is the switching period or , equivalently, the PWM period. In order to maintain the capacitor voltages around their equilibrium values, the average value of the currents though them should be zero, that is

< i C k (t) >= I C k = 0 for k = 0, 1, . . . , n -1. Assuming a constant output current < i C k (t) >= I C k over a switching period T s , I C k = < i s (u k+1 -u k ) > (3.12) = i s (α k+1 -αk) = 0 (3.13) =⇒ α k = α.
(3.14)

We must require, therefore, identical duty cycles α k . In steady state (identical voltages across cells):

< v s > =< E n n k=1 u k > (3.15) = E n n k=1 α k (3.16) = α E, (3.17)
from where we deduce the duty cycle to be adopted:

α = V s réf E (3.18)
Under these conditions, it only remains to choose the phases ϕ k of the different switching functions u k (t). This choice is made in relation to the output voltage harmonics. Taking t = 0 to be at the half of the high state of u 1 (t):

u 1 (t) = α + ∞ p=1 2α sin(pπα) pπα cos p 2π T s t (3.19) u k (t) = α + ∞ p=1 2α sin(pπα) pπα cos p 2π T s t - T s 2π ϕ k (3.20)
Decomposing (3.6) in its Fourier series:

v s (t) = αE + E n ∞ p=1 2α sin(pπα) pπα n k=1 cos p 2π T s t - T s 2π ϕ k (3.21)
The choice of a regular phase displacement such that

ϕ k = (k -1) 2π n (3.22)
allows the cancellation of the (n-1) first harmonics, which present the highest values and are the most difficult to filter. It only remains the harmonics multiple of n. In this case, the n components cos p 2π Ts t -2π p n (k -1) , with k = 1 to n, make up a balanced sinusoidal system for (p = n) and a homopolar one for (p = n). Therefore,

v s (t) = αE + E ∞ p=1 2α sin(pπα) pπα cos p 2π T s t . (3.23)
As a consequence, from a load point of view, the apparent switching frequency is (nF D ), making the filtering much easier.

Open loop PWM natural balance

The control presented above provides a stable floating voltages balance (see [START_REF] Meynard | Multilevel choppers for high voltage applications[END_REF] and [START_REF] Meynard | Modeling of multilevel converters[END_REF]). Nevertheless, it is not possible to prove it using a average value based model, which provides no information about the harmonics behavior, responsible for the mentioned balance. This model is given by the following equations:

VC k = I C k C k (3.24) = 0 (3.25) V s = α n E (3.26)
In fact, when the voltage across the capacitors V C k (t) differ from their steady state values (kE/n), the output voltage v s (t) given by u

= [u 1 , u 2 , . . . , u n ], v s (t) = αE + E ∞ p=1 2α sin(pπα) pπα . . . • n k=1 (v C k+1 (t) -v C k (t)) cos p 2π T s t -2π p n (k -1) , (3.27) 
still has the desired average value (αE) but present harmonics at all the frequencies multiple of F s since the capacitor voltages v C k (t) are not identical anymore. These voltage harmonics δv s (t) interact with the load to provide the current harmonics δi s (t), which contribute with the creation of current harmonics δi C k (t) with average value different from zero over a switching period T s . Consequently, the average voltages V C k evolve towards equilibrium.

Harmonic model

The harmonic model assumes a quasi-static state evolution in order to a valid harmonic analysis. This leads to a state-space modelization for each of the different harmonics. This model allows for the study of the steady state as well as the stability conditions and the ways to improve it.

C k = C ϕ k = (k -1) 2π n α k = α
From the analysis of the eigenvalues it is possible to prove that this equilibrium is stable regardless of the duty cycle α for converters whose number of cells n is prime. For other values of n, there are certain duty cycles that result in the cancellation of eigenvalues. Finally, we must add that the less reactive is the load, the less oscillatory is the convergence. Furthermore, the smaller the impedance, the faster the convergence. Hence, it is possible to improve the convergence by introducing an RLC auxiliary load in the system [START_REF] Gateau | Contribution à la commande des convertisseurs statiques multicellulaires série: commande non linéaire et commande floue[END_REF], tuned to the commutation frequency f D . This particular tuning allows this auxiliary load to be "transparent" in steady state while providing good damping during transients.

Closed loop PWM

As we have seen above, the series multicell structure enjoys excellent intrinsic properties. However, it is preferable to improve the convergence dynamics without adding dissipative elements. Indeed, we must ensure a faster convergence and, mainly, less oscillatory. This leads us to consider the closed loop control of the floating voltages [START_REF] Tachon | Control of series multicell converters by linear state feedback decoupling[END_REF][START_REF] Tachon | Commande découplante linéaire des convertisseurs multicellulaires série[END_REF][START_REF] Gateau | Contribution à la commande des convertisseurs statiques multicellulaires série: commande non linéaire et commande floue[END_REF]. This consists of modifying the different duty cycles α k as a function of the floating voltages and the output current. For this purpose, we must apply a model based average values. Neglecting the ripple of the output current i s (t), this model is described by the following equations:

VC k = I C k C k (3.28) = i s (α k+1 -α k ) (3.29) V s = α n E + n-1 k=1 V C k (α k -α k+1 ) (3.30)
We will not discuss the closed loop PWM control here. It has been presented in detail in [START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF]. Nonetheless, we enumerate some important conclusions.

Although the evolution toward equilibrium is faster than the natural one and, furthermore, non-oscillating, this control method is based on average models which leads to slow variations. On top of that, when the number of cells is prime, there could be duty cycles leading to instability. This is why we are interested in a faster control strategy presenting, at the same time, good steady state properties. For this, we will rely on the instantaneous model, which will be presented in the next section.

State space model

This model takes into account the instantaneous discrete and continuous states, that is, the switching states and the floating voltages, respectively.

Let us consider an n-cell converter as shown in figure 3.2. This converter consists of n switching cells and n-1 floating capacitors. Each cell is made up of two complementary switches. The states of the upper and lower switches are given by u k and ūk , respectively. In order to find out the equations describing the converter, let us consider the capacitor C k and its adjacent cells. The evolution of the capacitor voltage depends on the current i C k flowing through it, which, in turn, is determined be state of the mentioned cells:

i C k (t) = [u k+1 (t) -u k (t)] i s (t) (3.31)
The capacitor voltage C k is related to the current i C k (t) by the following equation:

i C k (t) = C k dv C k dt (t) (3.32)
Hence, from equations (3.31) and (3.32):

dv C k dt (t) = [u k+1 (t) -u k (t)] C k i s (t) (3.33)
This equation describes the behavior of every capacitor in the converter. It only remains to find out the equation describing the output voltage. From Kirchhoff's second law (also known as Kirchhoff's voltage law or KVL) the output voltage v s (t) is given by the addition of the voltages across the lower switches (v ūk (t)). These voltages are given by:

v ūk (t) = [v C k (t) -v C k-1 (t)]u k (t) (3.34)
Therefore, the output voltage is

v s (t) = n k=1 v ūk (t) (3.35) = n k=1 [v C k (t) -v C k-1 (t)]u k (t), (3.36) with v C 0 (t) = 0 and v Cn (t) = E.
Finally, after proper rearrangement of the obtained equations, we find the state-space equations of the multicell converter:

                                 vC 1 = [u 2 (t) -u 1 (t)] C 1 i s (t) vC 2 = [u 3 (t) -u 2 (t)] C 2 i s (t) . . . vC n-1 = [u n (t) -u n-1 (t)] C n-1 i s (t) v s (t) = n k=1 [v C k (t) -v C k-1 (t)]u k (t)
(3.37)

Conclusion

In this chapter, we introduced the multicell converters as well as their main properties. One of their many advantages is the reduction of the voltage across switches. This allows the use of faster switches which, in turn, are manufactured in larger quantities.

The operating principle of the multicell structure was described. It was also shown that, in the context of open loop PWM control, this topology enjoys the very good property of natural balancing of floating capacitors. The average and harmonic models were briefly presented as well.

Then, in order to improve the natural response, the choice of a closed loop PWM control arose as a natural evolution of its open loop counterpart, allowing better dynamics.

After that, the state-space model was presented. We will rely on this model in order to propose a control law to achieve faster dynamics.

Chapter 4

Control of Multicell Converters [START_REF] Amet | Direct control based on sliding mode techniques for multicell serial chopper[END_REF] (Amet et al., 2012a) 

Introduction

Power converter are designed to transfer electrical power with the best performance possible. Such a performance, synonymous with small power losses, is very important since it determines the volume and weight of the converter, as well as its reliability. In high power applications, this losses are generated, on the one hand, by the "imperfections" of the conductors and the components carrying high currents (copper losses, skin effect, p-n junction losses), and on the other hand, the losses due to non ideal (different from zero) switching times. This losses are broadly grouped into two categories: conduction and switching losses, respectively. For a given power, the reduction of the conduction losses is achieved by increasing voltage, allowing smaller currents. However, semiconductor with lower blocking voltages are more efficient, and present smaller switching losses than their high voltage counterparts.

Multicell Converters emerge as a solution to this limitations. The cascaded connexion of switching cells yields an equitable distribution of the DC bus voltage (Meynard and Foch, 1992a), which allows, in turn, the use of semiconductors with smaller blocking voltages. Therefore, it is possible to simultaneously increase voltage and frequency.

These benefits make the Multicell Converter a very attractive solution for the industry. Actual Multicell Converters found in industry are based on PWM control (K., 2009). This allows for a simple and efficient control of the converters and their loads. However, as it has been mentioned before, certain duty cycles could lead to instability in converters with non prime number of cells [START_REF] Davancens | Étude des convertisseurs multicellulaires parallèles: Ii. analyse du modèle[END_REF]. Besides, this control technique is not suitable for fast transients.

It is highly desirable to implement Multicell Converters of any number of cells. On the one hand, the choice of this number is determined by technological and economic limitations. On the other hand, these converters have the particularity to be reconfigured after the failure of one of its cells [START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF]. For this, the control algorithm must be modified in real time in order to handle a different number of cells, thus ensuring the continuous operation of the converter.

In this chapter we develop various control algorithms based on sliding mode techniques, in order to balance the floating voltages and, independently, its output voltage. For this, we expose at first, the controllability of this topology. Next, we propose simple control laws for Multicell Converters with 2 or 3 cells. These are easily extensible to any number of cells. A multilevel current control has been proposed, which is very simple as well and benefits from the multilevel nature of multicell converters. After that, we exhibit simulation results to show the performance of these algorithms. The performance of these is validated by experimental results.

At the end of the chapter, we show that certain multicell converter configurations are well suited to implement the twisting algorithm, which is used in this case to control the speed of a DC series motor.

Controllability

A system is controllable if there exists a control input capable of taking the system from an initial state x 0 to a new state x 1 in finite time. In the particular case of Multicell Converters this could be translated to the next question [START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF]: "is it possible to find a set of n finite time associated to the n inputs u k in order to take the system from the state x to a neighbour state x + ∆x for a given output level λ?". This question can be expressed mathematically as follows:

           n k=1 δt k dx(u k ) dt = ∆x n k=1 δt k = T (4.1)
In addition to this equation we must add the condition of "unidirectional time evolution", that is, there are no negative time intervals:

δt k 0.
Starting from equation (4.1) it is possible to rewrite necessary condition for controllability:

rank dx(u 1 ) dt . . . dx(u k ) dt . . . dx(u n ) dt 1 . . . 1 . . . 1 = n (4.2)
We consider here two particular cases: 2 and 3-cell converters.

2 Cell converter controllability

By replacing the single state equation of a two-cell converter in equation (3.37) we find the following controllability condition:

rank (u 2 -u 1 ) 1 C i s (u 2 -u 1 ) 2 C i s 1 1 = 2 (4.3)
The indices of the parenthesis in (u 2u 1 ) 1 and (u 2u 1 ) 2 represent the different possible combinations of u 1 and u 2 . We analyze the controllability of the system for the 3 possible output levels. Let us study the first the cases when the upper switches are all open (λ = 0) or all closed (λ = 2).

Case when λ = 0 or λ = 2. When λ = 0, u 1 = u 2 = 0, therefore (u 2u 1 ) = 0. By replacing this last equation on (4.3) results in a matrix which is not full rank. On the other hand, when λ = 2, u 1 = u 2 = 1, which gives again (u 2u 1 ) = 0 and, then, the matrix is not full rank again. Therefore, for these cases the system is uncontrollable.

Case when λ = 1. In this case we have:

• u 1 = 0, u 2 = 1, then u 2 -u 1 = 1; • u 1 = 1, u 2 = 0, then u 2 -u 1 = -1;
The controllability condition is then:

rank i s C - i s C 1 1 = 2 (4.4)
The determinant of this matrix is:

det i s C - i s C 1 1 = i s C det 1 -1 1 1 = 2 i s C (4.5)
which is different from zero as long as i s is different from zero. Then, the matrix is full rank and the converter is controllable for λ = 1 and i s = 0.

3 Cell converter controllability

Following the same steps above, we find first the rank condition for the 3-cell case:

rank      (u 2 -u 1 ) 1 C 1 i s (u 2 -u 1 ) 2 C 1 i s (u 2 -u 1 ) 3 C 1 i s (u 3 -u 2 ) 1 C 2 i s (u 3 -u 2 ) 2 C 2 i s (u 3 -u 2 ) 3 C 2 i s 1 1 1      = 3 (4.6)
Case when λ = 0 or λ = 3. For both cases all u k switching states are equal, hence all terms (u k+1u k ) are zero. Therefore, the matrix is not full rank and the system is uncontrollable.

Case when λ = 1 The possible switching states u k and the resulting (u k+1u k ) terms are given in table 4.1. For this case the rank condition Table 4.1: Switching states of a 3-cell converter for λ = 1

(u 3 , u 2 , u 1 ) (u 3 -u 2 ) (u 2 -u 1 ) 1 (0, 0, 1) 0 -1 2 (0, 1, 0) -1 1 3
(1, 0, 0) 1 0 becomes:

rank      - i s C 1 i s C 1 0 0 - i s C 2 i s C 2 1 1 1      = 3 (4.7)
The determinant of this matrix is given by: det

     - i s C 1 i s C 1 0 0 - i s C 2 i s C 2 1 1 1      = i 2 s C 1 C 2 det   -1 1 0 0 -1 1 1 1 1   = i 2 s C 1 C 2 (4.8)
which is different from zero as long as i s is different from zero. Then, the matrix is full rank and the 3-cell converter is controllable for λ = 1 and i s = 0.

Table 4.2: Switching states of a 3-cell converter for λ = 1

(u 3 , u 2 , u 1 ) (u 3 -u 2 ) (u 2 -u 1 ) 1 (1, 1, 0) 0 1 2 (1, 0, 1) 1 -1 3 (0, 1, 1) -1 0 
Case when λ = 2 The possible switching states u k and the resulting (u k+1u k ) terms are given in table 4.2.

The rank condition becomes then:

rank      i s C 1 - i s C 1 0 0 i s C 2 - i s C 2 1 1 1      = 3 (4.9)
The determinant of this matrix is given by: det

     i s C 1 - i s C 1 0 0 i s C 2 - i s C 2 1 1 1      = i 2 s C 1 C 2 det   1 -1 0 0 1 -1 1 1 1   = 3 i 2 s C 1 C 2 (4.10)
which is different from zero as long as i s is different from zero. Then, the matrix is full rank and the 3-cell converter is controllable for λ = 2 and i s = 0. For Multicell Converters with more than 3 cells there exist switching states which make the system controllable. [START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF].

We conclude, then, that Multicell Converters are controllable for every λ different from zero or n if, and only if, the current is different from zero. In the case of λ = 0, all the upper switches are closed while the all the lower switches are open, therefore no capacitor is charged or discharged, so the floating voltages are uncontrollable. Similarly, for the case λ = n, all the upper switches are open while the lower switches are closed, as a consequence the floating voltages uncontrollable. However, when the system is uncontrollable, the floating voltages remain constant since no current flows through the capacitors.

Sliding modes applied to Multicell Converters

As we have seen previously, the voltage of the floating capacitors must be balanced regardless of current direction and output voltage level. To achieve this we propose different control strategies: one for the particular case of a two-cell converter, and another for the 3-cell case. The latter has been designed so that it can be easily scaled to any number of cells, i.e. for any n even or odd. A generalized multicell converter model has been developed in Simulink in order to simulate the generalized control algorithm.

The control strategies we present allow to decouple the control of the floating voltages and that of the output voltage (or current). In order to test the proposed algorithms in a context where the output voltage level does not remain constant but evolves according to some control strategy, we developed a current control which is, in some extent, a multilevel sliding mode algorithm.

Multilevel current control

A patent is being drafted on this algorithm. For that reason, the details about it have been removed.

It "decides" which output voltage level (λ in the context of this work) to apply as a fuction of the error between the reference current and the actual current.

What is important to remember is that this control law is simple, requires little computational effort and performs very similarly to a sliding mode control, while retaining the benefits of a multilevel topology such as smaller dv/dt.

2-cell converter control

This is the most simple multicell structure, which leads to a very simple and intuitive algorithm. The output to be controlled is the current of an RL load and the algorithm we apply is the one introduced above. The 2-cell converter is shown in figure 4.1.

The floating voltage control algorithm here proposed guarantees that the switching frequency does not exceed a predefined maximum value f max . The multilevel current control algorithm of subsection 4.3.1 is used to control the current. This algorithm provides the output voltage level λ. Next, the capacitor voltage must be balanced for the given λ, regardless of the current direction. We present, in table 4.3, the evolution of the capacitor voltage as a function of current direction and the switching states. 

(u 2 , u 1 ) i s v C (0, 0) > 0 - (0, 1) > 0 ↓ (1, 0) > 0 ↑ (1, 1) > 0 - (0, 0) < 0 - (0, 1) < 0 ↑ (1, 0) < 0 ↓ (1, 1) < 0 -

Capacitor voltage balancing: sliding mode control

The two cell converters provide three output voltage levels and have only one capacitor. As it was discussed previously, the floating voltage is controllable only for λ = 1. For λ = 0 and λ = 2, this voltage is not controllable but it remains constant. For these levels it is sufficient to apply (u 2 , u 1 ) equal to (0, 0) and (1, 1), respectively, for a time greater or equal to T s /2, with T s the switching frequency.

For λ = 1, the switching state is chosen according to the current direction of the load i s :

• If i L > 0 (u 1 , u 2 ) = (0, 1) if v C < v C ref (u 1 , u 2 ) = (1, 0) if v C > v C ref • If i L < 0 (u 1 , u 2 ) = (1, 0) if v C < v C ref (u 1 , u 2 ) = (0, 1) if v C > v C ref
This control law, which was presented in a intuitive way, is in reality a classical first-order sliding mode control. The surface we have chosen is:

s = v C -v C ref (4.11)
The first derivative of s is:

ṡ = vC -vC ref = -is C sign(i s ) sign(s) -vC ref = -|is| C sign(s) -vC ref (4.12)
To prove that this control is stable, we propose the following Lyapunov candidate function:

V = 1 2 s 2 (4.13)
Its first derivative is:

V = s ṡ = -s |is| C sign(s) -s vC ref = -|is| C |s| -s vC ref (4.14)
The proposed control is stable as long as:

-s vCref < |i s | C |s| (4.15)
Under the assumption that vC ref is zero or sufficiently small as to be neglected, which is true the most of the time in real systems, we have:

V = s ṡ ≈ -|is| C |s| (4.16)
which guaranties finite-time convergence as seen in paragraph 2.2. Note: in order to implement the proposed control in a real system, we have to limit the switching frequency to a safe value f max , then all the enumerated states will be applied for a time greater or equal to T s /2 = 2/f max .

2-cell converter simulation

We run some Matlab-Simulink simulations to confirm the validity of the proposed control. The parameters used for this simulations are:

• DC bus voltage E = 150V • Maximum switching frequency f max = 10kHz • Capacitance C = 33µF • Load resistance R = 33Ω • Load inductance L = 50mH
The capacitor voltage, the load current and their respective references are shown in figures 4.2a and 4.2b, respectively. The current reference is a step of amplitude 1.5 A. Simulations show that the proposed controls perform very well. Next, we present the same algorithms applied to a different configuration to show their flexibility and the advantage of the decoupled control of internal voltages and output current.

Back-to-back connection of a 2-cell converter

We show now that the proposed algorithms can be applied to the back-toback configuration, which allows to have both positive and negative output current and voltage. Such a configuration is shown in figure 4.5. • a ripple of 10V and 50Hz over the DC bus voltage,

• load resistance of 33Ω, with 100% variation of its nominal value. This variation is sinusoidal with a frequency of 100Hz.

The simulation results are compared to show the robustness of the proposed control. The load current with and without disturbances (figures 4.8a and 4.8b, respectively) are similar and do not present any lag with respect to their references. On the other hand, in the case where there are disturbances the amplitude of the chattering varies with the resistance variation.

Simulations confirm that the proposed multilevel current control is robust against load and DC bus variations, and that floating voltage balancing algorithm (which is a sliding mode algorithm) presents good performances.

3-cell floating voltages control

The 3-cell multicell converter (figure 4.9) has two capacitors and provides four output levels. 

(u 3 , u 2 , u 1 ) v C1 v C2 (0, 0, 0) - - (0, 0, 1) ↓ - (0, 1, 0) ↑ ↓ (1, 0, 0) - ↑ (0, 1, 1) - ↓ (1, 0, 1) ↓ ↑ (1, 1, 0) ↑ - (1, 1, 1)
--Table 4.4: Capacitor voltages evolution as a function of switching states

In the 3-cell converter case, the reference floating voltages are:

v C 1 = v ref 1 = E/3 v C 2 = v ref 2 = 2 E/3 (4.17)
In order to reach this references we propose here a control approach inspired from sliding modes is proposed [START_REF] Amet | Direct control based on sliding mode techniques for multicell serial chopper[END_REF](Amet et al., , 2012a)). For this, we choose the following surfaces:

s 1 = v ref 1 -v C 1 s 2 = v ref 2 -v C 2 (4.18)
As it was mentioned before, the control must appear explicitly in the derivatives of the surfaces. From equations (4.18) and the state space model of the system (equations 3.37) we deduce these time derivatives:

ṡ1 = vref 1 -K 1 sign(s 1 ) ṡ2 = vref 2 -K 2 sign(s 2 ) (4.19)
where K 1 , K 2 , sign(s 1 ) and sign(s 2 ), are implemented as follows:

K 1 = |is| C 1 K 2 = |is| C 2 sign(s 1 ) = (u 2 -u 1 ) sign(i s ) sign(s 2 ) = (u 3 -u 2 ) sign(i s ) (4.20)
u 1 , u 2 and u 3 are the switching states. From equations (4.20) we see that there is an implementation problem: sign(s 1 ) and sign(s 2 ) are not independent due to the presence of u 2 in both surfaces. The surfaces are then coupled. In order to overcome this limitation, we propose a priority algorithm.

Priority algorithm

During the reaching phase, it is generally not possible to bring both surfaces to zero simultaneously. The priority algorithm allows to choose which of the surfaces should be brought to zero, while the other one remains constant or is briefly disturbed. This approach is based on the knowledge of the state evolution of the system as a function of the switching state. We note error vector e the vector defined by:

s = v ref -v C s 1 s 2 = v ref 1 v ref 2 - v C 1 v C 2 (4.21)
We define the matrices U and Ū (the identity matrix and its boolean negation, respectively). The lines of this matrices (or, equivalently their arrows, since they are symmetric) represent the switching state of the converter for the cases where λ = 1 and λ = 2, respectively:

U =   1 0 0 0 1 0 0 0 1   Ū =   0 1 1 1 0 1 1 1 0   (4.22)
The objective of the algorithm is to find the switching state which approaches the most the capacitor voltages to their references. This is accomplished by applying projections. For example, if λ = 1, then each line of U represent one of three possible switching states, which in turn define three different evolutions of the capacitor voltages. The following projections are then computed in order to decide which of the switching states is to be applied:

p i = s • vC(U i1 ,U i3 ,U i3 ) (4.23)
with i = 1, 2, 3. The switching state which makes the projection p i maximum is applied until another switching state becomes priority (maximum projection). When two switching states have the same priority, they are applied one after the other. The different possible continuous states (capacitor voltages) evolutions are shown in figure 4.10. We present thereafter a small example to show

vC 1 vC 2 a 3 a 1 a 2 b 2 b 3 b 1 • Vectors a: λ = 1 • Vectors b: λ = 2
Figure 4.10: Continuous state evolution as a function of switches states the behavior of the priority algorithm. For the initial state shown in figure 4.11 and a reference placed at origin of coordinates, the capacitor voltages will evolve according to the directions which result in maximal projections. At first, the state of the system evolves in the direction given by a 3 , which Reaching phase

v C1 v C2 v ref v C a 3 a 2
Sliding mode Figure 4.11: Convergence example moves v C 1 away from its reference value. s 1 is then disturbed. Once s 2 reaches zero, the state of the system starts to evolve in the direction of a 2 until s 1 becomes zero. From that moment, the system enters the sliding phase. In this example, the surface s 2 had the priority.

Note: compared to the direct control proposed in [START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF], where it is necessary to solve a system of equations at every step time, our method is simpler, less costly in terms of computing time, and then more easily extensible (scalable) to converters with more cells since it is based in simple projection calculations which are implemented very efficiently in DSPs for example.

Stability

In order to prove the stability of the proposed control we propose the following Lyapunov function:

V = 1 2 ∆v C 2 = ∆v C 1 2 + ∆v C 2 2 (4.24)
Its first derivative is:

V = ∂V ∂∆v C 1 + ∂V ∂∆v C 2 = ∆v C 1 ∆ vC 1 + ∆v C 2 ∆ vC 1 = ∆v C • ∆ vC = ∆v C • vC -∆v C • vref (4.25)
The proposed control guaranties that ∆v C • vC < 0, thus it is stable if:

∆v C • vC < ∆v C • vref (4.26)
In real systems vref is approximately zero the most of the time, therefore, under such conditions, the control is guaranteed to be stable.

Simulation results

We present some simulations in this section in order to show the validity of the proposed control.

Case 1: 3-cell DC/DC converter In this case, which is the simplest one for a 3-cell converter, the following configuration is used:

• The voltage source E is constant, which at the same time imposes constant floating voltage references.

• The output current I is constant. This is modeled by a current source.

• The output voltage level λ is constant.

The parameters used for this simulation are given in table 4.5. From equation (4.17), the resulting reference voltages are: 

v ref 1 = 100 V v ref 2 = 200 V (4.
v C 1 [V ] v C 2 [V ] (b) Phase portrait
λ 1 E 300 V I 1 A C 33 µF
The results of this first simulation are given in figure 4.12. Between zero and 5 ms, the switching state (u 1 , u 2 , u 3 ) = (0, 0, 1) has the maximum priority, which allows the evolution of v C 2 only. Between 5 and 13 ms, both (u 1 , u 2 , u 3 ) = (0, 0, 1) and (u 1 , u 2 , u 3 ) = (0, 1, 0) has equal priority, thus they are consecutively applied one after the other, which explains simultaneous evolution of v C 1 and v C 2 . At 13 ms both references are reached and the system enters the sliding phase. From that moment, the three switching states ((0, 0, 1), (0, 1, 0) and (1, 0, 0)) are applied cyclically.

For real systems, where the switching frequency is finite, there will be chattering. In the state space of a 3-cell converter, and for the particular case of the control proposed, this chattering is as shown in figure 4.13. The triangular form reveals the application of the three switching states corresponding to (0, 0, 1), (0, 1, 0) and (1, 0, 0). This reveals that all the switches commute at the same frequency. On the other hand, once the system enters the sliding mode, the output voltage for level λ = 1 is v s = E/3. During the reaching phase though, it varies according to (3.5) since the capacitor voltages evolve to their reference values. This is shown in figure 4.14 for this first simulation. Case 2 : 3-cell converter with DC bus midpoint. Robustness test.

v C1[V ] v C2[V ]
Other simulations have been run in order to show the performance of the proposed control in a more realistic context and in in the presence of strong disturbances. An RLE load has been connected between the output of the multicell converter and the DC bus midpoint as shown in figure 4.15. In this configuration the output voltage can take both positive and negative voltages, as described by the following equation:

v s = 2 k -n 2 n E (4.28)
with k = 0, 1, . . . , n. The load current is controlled by the multilevel current control algorithm. The reference current is:

+ - E/2 + - E/2 u 3 C 2 ū3 u 2 C 1 ū2 u 1 ū1 R L + - e
i ref = I sin(2πf ref t) (4.29)
To show the robustness of the proposed control, a first test is performed in which disturbances are applied to R and e, as shown in figure 4.16. The parameters used in the first test are given in table 4.6. Note that, despite the presence of disturbances and even if the output voltage has not reached its reference, the current follows its reference, which highlights the good performances of the multilevel current control algorithm.

v C[V ] t [ms] v C 2 v C 1
A second test of robustness is performed, in which the reference current goes from a negative value to a positive one instantly. This is a much more exigent reference than the used in the previous test, where the current was sinusoidal. At the same time, the DC bus voltage present sinusoidal variations of ±5%, as descried by the following equation:

E = E 0 (1 + 0,1 sin(2πf E t)) (4.30)
We deduce from equation (4.17) that the capacitor voltage reference will also present variations of ±5%. The capacitor voltages converge quickly to their references as shown in figure 4.19. However a deviation appears at 50ms due to two combined causes.

0 25 50 75 100 One the one hand, when the reference current changes its sign, the output voltage takes its maximum value to bring the current to its reference; the capacitor voltages become then uncontrollable so they remain temporarily constant. On the other hand, the zero crossing of the current makes the system uncontrollable as well. After this transition through the uncontrollable zone, the capacitor voltages converge to their references.

0 20 40 [V ] t [ms] v C 2 v C 1 v ref 1 v ref 2
The 

Experimental results

The experimental tests has been carried out with a 3-cell converter and an RL load connected between the output of the converter and the DC bus midpoint. The parameters used for the experimental tests are given in table 4.7. The current reference is sinusoidal:

i ref = 0.5 sin(2π 47,7 t) (4.31)
The results are shown in figure 4.21. Note that all variables follow their reference. All the variables present chattering which is more pronounced when current is higher. This effect can be minimized by increasing the switching frequency, the capacitor values, or a combination of both. 

Control of n-cell converters

The proposed control can be easily extended to any number of cells. Whatever the number of cells, it aims to make the product ∆v C • vC the most negative between the n possibilities by computing projections.

The stability of this generalized control is an extension of that given for the 3-cell case. We propose the following Lyapunov candidate function :

V = 1 2 ∆v C 2 = n i=1 1 2 ∆v 2 C i (4.32)
The first derivative of this function is:

V = n i=1 ∂V ∂∆v C i = n i=1 ∆v C i vC i = ∆v C • ∆ vC = ∆v C • vC -vC ref = ∆v C • vC -∆v C • vC ref (4.33)
The term ∆v C • vC is guaranteed to be smaller than zero by the proposed control. Then, in order to assure stability, we must have:

∆v C • vC < ∆v C • vC ref (4.34)
In real systems, the DC bus voltage is nearly constant and, therefore, so are the capacitor reference voltages. Thus, vC ref is negligible the most of the time, assuring the stability of the proposed control.

Generalized n-cell control simulation

We a simulation of a 20-cell converter in order to validate the proposed generalized control. Note that now we have an even and big number of cells. The parameters of this converter are given in table 4.8. 

Control of a permanent magnet DC motor

Given that the output voltage of a 3-cell converter supply 4 voltage levels, it could be suitable to be used as an actuator controlled by the twisting algorithm. We show in this section that this is possible under certain conditions. Our objective here is to control the speed of a permanent magnet DC motor.

Permanent magnet DC motor dynamical model

The fundamental equations of a permanent magnet DC motor are:

the counter-electromotive force (CEMF):

e(t) = k e ω(t), (4.35)
where k e is the counter-electromotive force constant and ω is the angular speed.

the electromagnetic torque

τ (t) = k τ i(t), (4.36)
where k τ is the torque constant and i(t) the current.

Under the assumption that there are no magnetic losses, the electric power equals the mechanical power:

p e (t) = p m (t) e(t)i(t) = τ (t)ω(t), (4.37)
Replacing equations (4.35) and (4.36) in (4.37) we obtain:

k e ω(t)i(t) = k τ ω(t)i(t) (4.38) Therefore, k e = k τ = k. (4.39)
Where k is called electromotive constant.

On the other hand, from Kirchhoff's voltage law, the voltage applied to the armature is decomposed as follows:

u(t) = Ri(t) + L di(t) dt + e(t) u(t) = Ri(t) + L di(t) dt + k ω(t) (4.40)
Finally, considering only viscous friction and load torque, the mechanical equation can be written as:

τ (t) = J dω(t) dt + Γ L (t), (4.41)
where J is the moment of inertia of the motor, and Γ L is the load torque (or a perturbation or a combination of both).

From equations (4.36), (4.40) and (4.41), the state space model of the permanent magnet DC motor results:

di(t) dt dω(t) dt = -R/L -k/L k/L 0 i(t) ω(t) + 1/L 0 u(t) + 0 1/J Γ L (t) (4.42)

Twisting algorithm applied to the permanent magnet DC motor

In order to control the speed of the permanent magnet DC motor, we propose the following sliding manifold:

s = ω -ω ref = 0 (4.43)
where ω ref is the reference speed. By differentiating s twice with respect to time t, the armature voltage u appears explicitly:

s = 1 J dΓ L (t) dt - d 2 ω ref (t) dt 2 - k J L [Ri(t) + kω(t)] + k J L u(t), (4.44)
and therefore s is of relative degree 2 with respect to u(t).

As we have seen in 2.5, for a manifold with relative degree 2, the control commutes between four values (±U m and ±U M ) according to the following rule:

u(t) = -U m sgn(s) if s ṡ 0 -U M sgn(s) if s ṡ > 0 (4.45)
Comparing equations (2.5) and (4.44) we have:

ϕ(t, x) = 1 J dΓ L (t) dt - d 2 ω réf (t) dt 2 - k JL [Ri(t) + kω(t)] (4.46) and γ(t, x) = k JL . (4.47)
Let us recall hypothesis 3 and 4 from section 2.4:

Hyp 3 There exists a linear region, i.e. there exist three positive constants s 0 , K m and K M such that, in a vicinity |s(t, x)| < s 0 , the following inequalities are satisfied:

0 < K m < γ(t, x) K M
Hyp 4 Inside the linear region (the set { t, x : |s(t, x)| < s 0 }) and for all t, x, u, there exists a constant C 0 such that:

ϕ(t, x) C 0
In the ideal case where motor parameters are constant, γ(t, x) = k JL is constant. Thus, hypothesis 3 is satisfied:

0 < K m = k JL = K M (4.48)
and s 0 = ∞. Assume also that the ϕ is bounded:

ϕ(t, x) = 1 J dC ch (t) dt - d 2 ω ref (t) dt 2 - k JL [Ri(t) + kω(t)] < C 0 (4.49)
In such conditions, hypothesis 4 is satisfied as well, and the conditions for finite time convergence (2.7) can be expressed as follows:

U M > U m U m > C 0 Km = JL k C 0 U M -U m > 2 C 0 km = 2 JL k C 0 (4.50)

Implementation of the twisting controller by means of a multicell converter

Since 4 output levels are needed to implement the twisting algorithm, two topologies could be suitable for this purpose: two back-to-back connected 2-cell converters and a 3-cell converter in half bridge connection. These are the minimum configurations providing 4 output levels. To confirm that they are suitable to implement the twisting algorithm we analyze next the finite time convergence conditions (4.50). For a half bridge configurations these conditions are:

• for n even:

E > n JL k C 0 E > 4n n-2 JL k C 0 (4.51) • for n odd: E > 2n JL k C 0 E > 4n n-1 JL k C 0 (4.52)
For back-to-back configurations they are:

E > n JL k C 0 E > 2n n-1 JL k C 0 (4.53)
The possible configurations with two and three cells, and their respective conditions for finite time convergence are:

• half bridge 3-cell converter:

E > 6 JL k C 0 , (4.54)
• two back-to-back connected 2-cell converters:

E > 4 JL k C 0 , (4.55)
• two back-to-back connected 3-cell converters:

E > 3 JL k C 0 . (4.56)
Therefore, the three configurations presented are appropriate for the implementation of the "twisting"algorithm, but the conditions for finite-time convergence are more restrictive for the simpler configurations (half-bridge 3-cell converter and two back-to-back connected 2-cell converter) as we will see in simulation.

As we have seen in 2.5, this algorithm needs to know the sign of ṡ. Given that the implementation of the algorithm will be digital with sample time T s , this can be determined as follows:

sign( ṡ[m]) = sign(s[m] -s[m -1])
where m is the discrete time. In the case of a digital implementation, the trajectories of the system converge, after a finite time, to a neighborhood of the sliding manifold given by [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]:

{x : |s| = O(T 2 s ), | ṡ| = O(T s
)) An overcurrent protection was added to the system [START_REF] Béthoux | Commande et détection de défaillance d'un Convertisseur Multicellulaire Série[END_REF]. In the case where |i(t)| > I max :

L di(t) dt = -α sign(i(t)) -Ri(t) -kω(t). (4.57)
Where α is a positive constant design parameter. If α is large enough, the following inequalities are satisfied:

If i(t) > +I max =⇒ L di(t) dt -η < 0 If i(t) < -I max =⇒ L di(t) dt +η > 0 (4.58)
Therefore |i(t)| decreases, avoiding the overcurrent condition. Finally, taking α = U M , the twisting algorithm with overcurrent protection results:

If |i(t)| > I max =⇒ v s (t) = -U M sign(i) If |i(t)| < I max and if s∆s 0 =⇒ v s (t) = -U m sign(s)
and if s∆s > 0 =⇒ v s (t) = -U m sign(s) (4.59)

Simulations

The DC bus voltage is chosen to be 900 V , and the motor parameters are:

• R = 1Ω

• L = 10mH

• k = 1.27 V /(rad s)

• J = 0.1 N m/s 2
We simulate first a half bridge 3-cell converter (see figure 4.23). The reference speed is quickly attained. If the reference is now ±500RP M (figure 4.24), the speed responds quickly to the first step, but not to the second, since this variation is too "exigent" for this configuration. We see that this configuration presents a better performance since the output voltage achievable with this configuration is higher than that of the 3-cell half bridge one.

With a less demanding reference the speed is more easily attained as in figure 4.26, where the reference a sinusoidal with an amplitude of 500RP M and a frequency of 1Hz is applied to the 3-cell half bridge configuration. 

3-cell half bridge configuration

In this case the reference is tracked after a finite time. Next, we present the performance of a 3-cell back-to-back configuration. The reference will be, for every simulation, a filtered step of 1500RP M applied at 0.3s.

Firstly, we run a simulation for a permanent magnet DC motor without load (figure 4.27). Note that the speed tracks its reference with no problem. The current, however, is noisy, which is undesirable. In figure 4.27d, we can see the trajectory of the system twisting around the origin while converging to it.

We add now a varying load presenting a sinusoidal form of amplitude 1000N m and frequency 1Hz. The results are shown in figure 4.28. Note that the speed response is not affected by the load. We see that the current presents now sinusoidal variations to compensate the load torque, and that it still presents high frequency content. To improve this we add a smoothing inductor of 100 mH in series with the armature, whose purpose is to filter the high frequency content of the current. Results are shown in figure 4.29. We see that this inductor greatly improves the form of the current reducing its high frequency components. This can be seen in the surface too.

On the other hand, the sign of ṡ is determined from the difference between s[m] and s[m -1]. The presence of noise can degrade this computation. Assume that the speed sensor has a gain of k v V RP M and that the measure v w (t) is affected by Gaussian white noise r(t). Let us take k v = 0.05 V RP M and an RMS voltage noise of 0.5 V ef f . We see that the speed tracks its reference, but the performance of the control is affected by the presence of the noise, which induces high frequency components in the different involved variables. In such a situation, a filter may be used to overcome the presence of noise.

Conclusion

In this chapter we have shown that 2 and 3-cell converters are controllable for λ different from zero and n, for currents different from zero. Different control techniques have been proposed for 2 and 3-cell topologies. These control techniques are very simple and easily scalable to any number of cells with small overhead. A simple multilevel current control has been proposed as well, which benefits from the multilevel output nature of the converter. These algorithms has been tested in an experimental test bench showing good performances.

Then, we showed that certain configurations of multicell converters such as half bridge 3-cell converters and back-to-back 2 and 3-cell converters are suited to implement the twisting algorithm. This was presented in the context of the speed control of a permanent magnet DC motor. The performance of such control has been shown in simulation.

Chapter 5

Prototype design and construction

Introduction

In this chapter we present the design and the construction of a 3-cell converter prototype, which can be used in the chopper or DC bus midpoint connected configurations. It is intended to be used with research purposes. The experimental results presented in 4.3.6 have been performed with this prototype.

General description

The converter is controlled by means of a dSpace 1104 board, which interfaces the converter with the host computer. The software deployed in the dSpace board was generated from Simulink models.

The switching states of the converter are taken from the digital output I/O CP17. Since the technology of this digital output is TTL, it can supply voltage levels of 0 and 5 V , and currents up to ±5mA. This magnitudes cannot directly drive the power switches, so a gate driver is needed to isolate and level shift these voltages.

The analogue inputs of the dSpace 1104 are used to measure voltage and current. The input range of these inputs is ±10 V . Therefore, a measurement board is needed to isolate and adapt the variables to measure.

The power board consists of electrolytic capacitors and complementary MOSFETs. The complementary signals that control these switches, and their corresponding dead times are generated by a dedicated board.

Next, we describe the different stages that make up the prototype.

Power section

As we mentioned above, this circuit consists of complementary switches (cells) and floating capacitors. Since the converter is designed for low power applications, the switches are implemented with MOSFETs, specifically the N channel SPP20N60S5. Their main features are:

• Maximum Drain-Source voltage V DS : 600V • Maximum continuous current @ T C = 25C : 20A
• Small Drain-Source resistance: R DS(on) = 0.19Ω

• Very low effective capacitances

The chosen capacitors are:

• Capacity C = 33µF • Maximum voltage: 450V
Given that the capacitors are floating, so are the switches. It is necessary then to have floating gate drivers.

Gate drivers

We propose very simple gate drivers whose purpose is to provide, on the one hand, the isolation needed between the power stage and the control circuitry; and on the other hand, the level shift needed to turn on and off the MOSFETs. The isolation is achieved by means of optocouplers. The power supplies must also isolated. We use isolated DC/DC converter modules for this purpose. Other driver topologies do not need isolated supplies, such as those based on pulse transformers [START_REF] Qiang | An improved isolated mosfet gate driver scheme for wide duty cycle applications[END_REF] and piezoelectric transformers [START_REF] Vasic | Piezoelectric transformer for integrated mosfet and igbt gate driver[END_REF].

The isolation is obtained by means of optocouplers HCPL-3140 (figure 5.1). These optocouplers feature a push-pull output which are particularly adapted for gate drivers design. In order to power the secondary side of the optocouplers, we need isolated DC/DC converters capable of supplying the right voltages and to the gate drivers. For this, we chose the NMA1215SC, which delivers output voltages of ±15 V from a single input voltage of 12 V .

The gate resistors R g must be small enough so as to have fast commutations between blocked and conducting states, but large enough to avoid For a maximum current of 0.6 A, the output voltage V OL is 5V , therefore

R g V CC -V OL Imax = 15V -5V 0.6A = 16.66Ω
We take R g = 27Ω.

Note that the resistance computed above is the minimum resistance allowed in the case of a DC output current of 0.6 A. MOSFETs' gate current are not DC but short current pulses instead, then a lower resistance could be used. However, the presented conservative calculation allows for a good safety margin while providing reasonable resistor values.

On the other hand, the input LED of the HCPL-3104 is driven as proposed in its datasheet. Such a scheme (figure 5.3) allows for a maximum common mode rejection ratio (CMRR) when the input LED is blocked. We replaced the proposed BJT by a MOSFET IRFD110. To achieve good CMRR when the LED is ON, its current must be higher than threshold which turn it on, which is 7 mA in this case. For a 12 V supply and a forward voltage drop of about 1.5 V across the LED, a resistance of 1kΩ limits the current to 10.5 mA, which is 50% higher than the threshold.

The gate of the IRFD110 is driven, trough an adequate resistance, by the circuit which generates the complementary signals and dead times.

Complementary logic and dead times

The propagation delays of the signals that drive the complementary switches of a given cell could be not exactly the same. On the other hand, the turn on and turn off delays of MOSFETs in general are not equal. These imperfections could cause both switches to be on for a short period of time, leading to short-circuit the floating capacitors. To avoid this, both switches are forced to be off during a short dead time.

Initially, we tried to approach the dead time generation by software, i.e. generated from Simulink. Unfortunately, the digital outputs of the dSpace board are not fast enough to properly generate the needed dead times, which are of the order of the µs or smaller.

It has been necessary then to consider a different approach. The complementary signals and the dead times has been generated by means of a dedicated circuit (see figure 5.4). The complementary signals are generated by inverting the signal u(t) with a NOT gate. The dead times, on the other hand, are generated by means of an XNOR gate and a RC circuit. This subcircuit detects the edges, both positive and negative, of u(t) and generates a 5.5b. We see that the dead time is of about 750ns, which is enough to ensure that there will not be short-circuits across the floating capacitors. Note that for the chosen resistance and capacitor values, the maximum current drained from a single digital output is of 5 mA. The digital outputs are protected even in the case of short circuited gate inputs, since in this case the current would be 5 mA, which is the maximum allowed current.

Implementation

The PCBs of the proposed circuits has been traced with a CAD software.

We show, as an example, the schematic of one of the optocoupler stages in figure 5.6. We present a picture of the built converter in figure 5.11. In this picture, the drivers are highlighted in red, the MODFETs in blue, and the floating capacitors in green. Finally, the complementary signal and dead time generator is highlighted in yellow.

Electromagnetic interference and snubbers

Oscillations and spikes were found in the voltage V DS across the MOSFETs as shown in figure 5.12. The measured over-voltages were greater than twice the expected cell voltage, which prevent the converter to be used at rated values. Otherwise, the maximum voltage admitted by the MOSFETs would be exceeded. Moreover, the frequency of the oscillations is very high: about 15.15M Hz. These high frequency oscillations (also known as "ringing") strongly degrade the performance of the converter and produce electromagnetic interference (EMI). We show in figure 5.13 one of the control signals coming from a digital output port of the dSpace board. Note that the ringing over this signal is of about 15 M Hz, with peak voltages of 13 V . These oscillations may affect the control of the converter and damage the digital outputs of the dSpace board.

We see that the ringing over the MOSFET voltages may affect the control signals, even if they are galvanically isolated. This reveals a strong electromagnetic interference. There exist "good design practices" to reduce this undesirable effects, such as a PCBs with a good layout or shielding. Another way is to reduce these disturbances at their very source. In our case, this can be done by means of snubbers. We see that the ringing over the MOSFET voltages may affect the control signals, even if they are galvanically isolated. This reveals a strong electromagnetic interference. There exist "good design practices" to reduce this undesirable effects, such as a PCBs with a good layout or shielding. Another way is to reduce these disturbances at their very source. In our case, this can be done by means of snubbers.

Snubbers are auxiliary subcircuits whose purpose is to protect power switches and to improve their performance. With them it is possible to:

• reduce or eliminate overvoltage or overcurrent,

• limit di(t)/dt or dv(t)/dt,

• transfer the power losses of a switch to a resistance or a useful load,

• reduce the total switching losses,

• reduce the electromagnetic interference by ringing attenuation.

There exist various snubber topologies, but the most common are RC (resistance-capacitor) and RDC (resistance-diode-capacitor) ones. In our case, we chose to use the RC snubber since it is the most adapted to ringing damping. Snubbers are connected between drain and source of each MOS-FET.

The component values were approximated, at first, applying the method described in Quick snubber design, explained in detail in [START_REF] Severns | Design of snubbers for power circuits[END_REF]. Then, we run a few simulations to ameliorate this approximation and, finally, we adjusted the definitive values on the real circuit. The resulting values of resistance and capacitance are R = 1.8Ω and C = 10nF , respectively. A couple of the definitive snubbers are highlighted in yellow in figure 5.14. 

Conclusion

In this chapter we have presented the design of the different stages needed to adapt the digital output of the dSpace 1104 board to the power MOSFETs.

The operating principle of these stages and the component calculations ware detailed.

The PCBs were designed using a CAD software. At last, we have found an important amount of electromagnetic interference (EMI) on the final board, originated by drain-source voltage ringing. This problem was overcome by means of auxiliary subcircuits called snubbers, which reduced significantly the frequency and amplitude of the ringing, and thus the electromagnetic interference.

ear predictive techniques, respectively; in the context of closed-loop control strategies we found techniques such as fuzzy tuned PI controllers [START_REF] Iracleous | Nonlinear control of a series connected dc motor using singular perturbation and feedback linearization techniques[END_REF], singular perturbation approach [START_REF] Iracleous | Fuzzy tuned pi controllers for series connected dc motor drives[END_REF], feedback linearization design [START_REF] Chiasson | Nonlinear differential-geometric techniques for control of a series DC motor[END_REF][START_REF] Mehta | Nonlinear control of a series DC motor: theory and experiment[END_REF], backstepping method [START_REF] Burridge | An improved nonlinear control design for series DC motors[END_REF][START_REF] Dongbo | An Improved Nonlinear Speed Controller for Series DC Motors[END_REF] and the application of port-controlled Hamiltonian systems equivalence [START_REF] Iracleous | Series connected DC motor tracking using port controlled Hamiltonian systems equivalence[END_REF].

In order to implement closed-loop control techniques, the speed is usually measured by means of position sensors, which implies higher economical costs and increases the complexity of the system. In addition, in some applications, mechanical components are subject to very harsh conditions, in which the position sensor is susceptible to failure. These reasons lead us to consider replacing them with some speed estimation technique.

DC series motors present an observability singularity at zero current, so special attention must be paid when estimating the speed near this condition. In (Boizot et al., 2007a,b) and [START_REF] Boizot | Adaptive high-gain extended Kalman filter and applications[END_REF], the authors propose the application of Adaptive Extended and High-Gain Extended Kalman filters in the observable zone, and compare their performances with those of the Extended Kalman Filter; nevertheless, neither solution is given to deal with the observability singularity nor sensorless control is implemented. In [START_REF] Chiasson | Nonlinear differential-geometric techniques for control of a series DC motor[END_REF] and [START_REF] Mehta | Nonlinear control of a series DC motor: theory and experiment[END_REF], a nonlinear observer (with linear error dynamics) is presented, showing that sensorless control of the DC motor is feasible. However, no approach including the observability singularity is provided.

In this work, experimental results of a speed sensorless control for the DC series motor are presented, where the observability singularity is involved. Firstly, a mathematical model is developed in section 6.2. In section 6.3 an observability analysis is performed, revealing a singularity at zero current operation of DC motor. In section 6.4, when the DC motor is outside the observability singularity, a step-by-step observer [START_REF] Floquet | Super twisting algorithm-based stepby-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] based on second order sliding modes differentiators [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] is designed. The design offers the advantage of good differentiator properties such as finite time convergence, robustness, and design simplicity with respect to noise see [START_REF] Angulo | The differentiation error of noisy signals using the generalized super-twisting differentiator[END_REF]. When the DC motor approaches the observability singularity, a simple estimator with Observer/Estimator swapping system is proposed in section 6.5. This system allows the DC motor to work properly near zero current. In section 6.8 the observer/estimator structure is tested experimentally in the context of a sensorless speed control by using classical proportional-integral (PI) techniques. In section 6.9 conclusion and future work are drawn.

Mathematical model

In the DC series motor, the field and armature windings are connected in series. The dynamics of the current of this circuit is given by:

d (L a i + φ f (i)) dt = -(R f + R a ) i -e + v (6.1)
with e = K m φ f (i) ω, where:

• L a is the inductance of the armature winding,

• φ f (i) is the flux created by the field circuit,

• R f and R a are the field and armature circuit resistances, respectively,

• e is the back electromotive force (back EMF)

• K m is the back EMF constant,
• ω is the angular speed,

• v is the voltage applied to the machine.

In this work, the flux φ f (i) is considered to be linear, hence, it can be modeled as follows:

φ f (i) = L f i (6.2)
where L f is the inductance of the field circuit. Under this assumption, equation (6.1) can be rewritten as follows:

L di dt = -R i -K m L f i ω + v (6.3) with R = R a + R f and L = L a + L f .
On the other hand, we have the mechanical subsystem, whose dynamics is given by:

J dω dt = Γ em -B ω -Γ L (6.4)
where

• J is the moment of inertia,

• B is the viscous friction,

• Γ em is the electromagnetic torque developed by the machine and CHAPTER 6. SUPER-TWISTING OBSERVER FOR DC SERIES MOTOR86

• Γ L is the load torque.

The electromagnetic torque is given by the following equation:

Γ em = Kφ f (i) i (6.5)
where K is the torque constant. Under the assumption of ideal electromechanical energy conversion, and considering linear flux (equation ( 6.2)) we can write:

ei = Γ em ω K m L f i 2 ω = K L f i 2 ω (6.6) hence K = K m (6.7)
Replacing (6.5) to (6.7) in (6.4) gives:

J dω dt = Γ em -Bω -Γ L (6.8)
The model of the DC series motor is obtained rewriting (6.3) and (6.8) as follows:

       di dt = 1 L (-Ri -K m L f iω + v) dω dt = 1 J (K m L f i 2 -Bω -Γ L ) (6.9)
Remark 1 Γ L is considered as a perturbation.

Per unit model

Model (6.9) is expressed in SI units. In order to facilitate the comparison of variables, we propose the per unit model, whose quantities have no units. Furthermore, all the nominal values become 1, so the absolute value of the new variables are less than 1 most of the time. This per unit system is given by the following scale:

• input:

v pu = v V nom (6.10) • states:        i pu = i Inom ω pu = ω ωnom (6.11)
• perturbation:

Γ Lpu = Γ L Γ Lnom
(6.12)

Then, system (6.9) becomes:

       dipu dt = 1 L -Ri pu -K m L f ω nom i pu ω pu + Vnom Inom v pu dωpu dt = 1 J KmL f I 2 nom ωnom i 2 pu -Bω pu -Γnom ωnom Γ Lpu (6.13)

Observability analysis of the DC series motor

For a reminder of nonlinear observability in the electrical motor context see, for example, [START_REF] Zaltni | Synchronous motor observability study and an improved zero-speed position estimation design[END_REF], section II. In this section we recall the rank criterion given by [START_REF] Hermann | Nonlinear controllability and observability[END_REF]. To do this, we first introduce the Lie-Bäcklund derivatives [START_REF] Fliess | A lie-backlund approach to equivalence and flatness of nonlinear systems[END_REF] of a system of order q, which are noted as:

                                               L f h = ∂h ∂x f L 2 f h = ∂L f h ∂x f + ∂L f h ∂u u L 3 f h = ∂L 2 f h ∂x f + ∂L 2 f h ∂u u + ∂L 2 f h ∂ u ü . . . L q-1 f h = ∂L q-2 f h ∂x f + q-2 i=1 ∂L q-2 f h ∂u (i-1) u (i) . . . L p f h = ∂L p-1 f h ∂x f + p-1 i=1 ∂L p-1 f h ∂u (i-1) u (i) (6.14)
where u (i) is the i th derivation of u, and p is a natural number which may be greater than q.

Criterion 1 (Rank criterion) Given a system

Σ : ẋ = f (x) + g(x)u y = h(x) (6.15)
it is locally regularly weakly observable at x 0 if:

rank(J c ) = rank             dh dL f h dL 2 f h . . . dL i f h . . . dL q-1 f h             x 0 = q (6.16)
Remark 2 Regularity implies that q derivations of the output (rows of matrix J c ) suffice for the systems Σ to be observable.

Considering the following equivalences, the model of the DC series motor (system (6.9)) can be written in the form (6.15):

x = x 1 x 2 = i ω , (6.17) u = u 1 u 2 = v Γ L , (6.18) f (x) = f 1 (x) f 2 (x) = -R L x 1 - KmL f L x 1 x 2 KmL f J x 2 1 -B J x 2 , (6.19) g(x) = g 1 (x) g 2 (x) = 1/L 1/J , (6.20) h(x) = x 1 (6.21)
Remark 3 The output y = h(x) = x 1 is the measured output (i.e. the current).

We now determine the matrix J c , given in equation (6.16). The first row is given by:

dh(x) = ∂h ∂x 1 , ∂h ∂x 2 = [1, 0] (6.22)
To determine the second row we need first to calculate L f h:

L f h = ∂h ∂x 1 , ∂h ∂x 2 •   f 1 (x) f 2 (x)   = f 1 (x) (6.23) therefore dL f h = ∂f 1 (x) ∂x 1 , ∂f 1 (x)
∂x 2 (6.24) From (6.22) and (6.24) we obtain:

J c =     1 0 ∂f 1 (x) ∂x 1 ∂f 1 (x) ∂x 2     (6.25)
The determinant of J c is:

det(J c ) = ∂f 1 (x) ∂x 2 = - K m L f L x 1 (6.26)
which is different from zero if and only if x 1 = 0. According to the rank criterion, the DC series motor is locally regularly weakly observable everywhere, except at zero current.

Observer design

From the previous section we conclude that an observer can be designed for the series DC machine in the case where the current is different from zero. In this section, we propose a step-by-step super twisting algorithm (see [START_REF] Floquet | Super twisting algorithm-based stepby-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] for an overview of this algorithm) to estimate, in finite time, the speed (ω pu ) and the load torque (Γ Lpu ). We distinguish two stages in this design: stage 1 and stage 2, where speed and load torque observations are accomplished, respectively.

Stage 1: speed observation

This stage is associated to the current dynamics (first equation of system (6.13)). We propose the following change of coordinates to linearize this equation:

     z 1 = i pu z 2 = - KmL f ωnom L i pu ω pu z 3 = -Γ Lnom Jωnom Γ Lpu (6.27)
So the dynamics of the current (z 1 ) is as follows:

ż1 = - R L z 1 + z 2 + V nom LI nom v pu (6.28)
which is now linear. We propose the first observation stage, in which z 1 (the current) is measured:

ż1 = -R L z 1 + z2 + Vnom LInom v pu + λ 1 |e 1 | 1/2
sign(e 1 ) ż2 = α 1 sign(e 1 ) (6.29)

where e 1 = z 1 -ẑ1 , and λ 1 , α 1 ∈ R are tuning parameters. From (6.28) and (6.29) we obtain the error dynamics:

ė1 = z 2 -z2 -λ 1 |e 1 | 1/2 sign(e 1 ) ż2 = α 1 sign(e 1 ) (6.30)
which is the error dynamics of a super-twisting algorithm [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF]. If z 2 is a differentiable function with Lipschitz constant C 1 , the following conditions assure that e 1 and ė1 converge, in a finite time T 1 , to zero (see [START_REF] Saadaoui | Exact differentiation and sliding mode observers for switched lagrangian systems[END_REF] for a proof of the convergence and an estimation of T 1 ):

α 1 > C 1 λ 1 > 2 α 1 -C 1 (α 1 + C 1 ) (6.31)
Therefore, after a finite time T 1 , z2 converges to z 2 .

Stage 2: load torque observation

This stage is associated to the speed dynamics (second equation of system (6.13)). A new change of coordinates is proposed:

     χ 1 = z 1 χ 2 = - L KmL f ωnom z 2 z 1 if z 1 = 0 χ 3 = z 3 (6.32)
In this coordinate system the speed dynamics is:

χ2 = K m L f I 2 nom Jω nom χ 2 1 - B J χ 2 + χ 3 (6.33)
We propose the following observer:

     χ2 = E 1 KmL f I 2 nom Jωnom χ 2 1 -B J χ2 + χ3 +λ 2 |e 2 | 1/2 sign(e 2 ) χ3 = E 1 α 2 sign(e 2 ) (6.34) CHAPTER 6. SUPER-TWISTING OBSERVER FOR DC SERIES MOTOR91
with e 2 = χ 2 -χ2 , and E 1 defined as follows:

E 1 = 1 if |e 1 | ≤ ε E 1 = 0 otherwise (6.35)
where ε is a sufficiently small positive constant. Once the first stage has converged, E 1 = 0 and χ2 ≈ χ 2 . Under these conditions the error dynamics become:

ė2 ≈ χ 3 -χ3 -λ 2 |e 2 | 1/2 sign(e 2 ) χ3 = α 2 sign(e 2 ) (6.36)
As in the previous subsection, equation (6.36) corresponds to the super twisting error dynamics, and χ3 is proven to converge to χ 3 in a finite time T 2 , for χ 3 differentiable with Lipschitz constant C 2 , under the following conditions:

α 2 > C 2 λ 2 > 2 α 2 -C 2 (α 2 + C 2 ) (6.37)
The speed and load torque estimations are given, respectively, by ωpu = χ2 (6.38) and ΓLpu = -JΓ nom ω nom χ3 (6.39)

Estimator

In order to prevent the observer to work near the observability singularity, we suggest the use of the following speed estimator:

ωpu = - 1 τ vf ωpu - 1 τ cf sign(ω pu ) (6.40)
where τ vf and τ cf are time constants associated to the viscous friction and the Coulomb friction, respectively. This estimator will provide a good speed estimation only in the case where these parameters are well approximated. However, even in the case of bad parameter approximation, this allows us to "simulate" a deceleration in the case of low currents.

Switching between estimator and observer modes

The switching between estimator and observer modes is given by a condition over the current value. We establish a threshold I thr such that:

• if |i pu | > I thr the speed estimation is done in observer mode,

• if |i pu | ≤ I thr the speed estimation is done in estimator mode. 

Observer and estimator discretization

In order to implement the proposed observer/estimator scheme in an actual real-time processor, their continuous models must be discretized. The derivatives are approximated by backward differences, and the resulting difference equations are then solved applying the explicit Euler method. To represent a signal m(t), sampled at a regular sampling period T , we use the following notation:

m(kT ) = m[k], k ∈ Z (6.41)

Discrete observer

The difference equations describing the first and second stages of the observer are, respectively:

                 ẑ1 [k] = ẑ1 [k -1] + T - R L z 1 [k -1] + z2 [k -1] + U nom L I nom u[k -1] + λ 1 |e 1 [k -1]| 1/2 sign(e 1 [k -1]) z2 [k] = z2 [k -1] + T α 1 sign e 1 [k -1] (6.42) and                  χ2 [k] = χ2 [k -1] + T E 1 K m L f I 2 nom Jω nom χ 2 1 [k -1] - f J χ2 [k -1] + χ3 [k -1] +λ 2 |e 2 [k -1]| 1/2 sign(e 2 [k -1]) χ3 [k] = χ3 [k -1] + T E 1 α 2 sign(e 2 [k -1]) (6.43)

Discrete estimator

The difference equation that define the discrete observer is:

ω[k] = ω[k -1] - T τ vf ω[k -1] - T τ cf sign(ω[k -1]) (6.44)

Simulations

In this section we simulate, firstly, a closed loop sensorless control of the DC series connected motor to test the observer alone. The parameters of the motor are given in table 6.1. The implemented control, in turn, consists of two classical nested PI loops. Secondly, we simulate the system in such a way that both observer and estimator work jointly to verify the proposed observer/estimator scheme.

Closed loop sensorless control simulation: observer validation

The parameters of the PI controllers and those of the observer are given in tables 6.2 and 6.3, respectively. We see that the observed speed ω converges to the measured speed ω at around 2 seconds and the closed loop is stable.

Closed loop sensorless control simulation: estimator validation

Throughout the previous simulation the current was different from zero, and thus the estimator has not been sought. In this second simulation no mechanical load will be applied to the motor in order to the current to go to zero when the motor is decelerated. We simulate first the closed loop control in the absence of estimator to show the consequences of not having one. The results are shown in figure 6.3. Between zero and 5 seconds the current is different from zero and thus the system responds as before. In the deceleration phase, the controller sets the current to zero since the DC series connected motor cannot be electrically braked. This makes the system unobservable. ω and ω diverge beyond the maximum value of the reference ω ref and the control is never recovered.

In a second simulation, the estimator is triggered as soon as the current is below 2mA. The results are shown in figure 6.4. In this case, when the system becomes unobservable, ω diverges while ω tracks the reference. Even if the observed speed it does not track the real one, it allows to regain control. Reference and real speeds are shown in figure 6.5. 

Experimental results

In this section we test the proposed observer/estimator scheme on a real motor. Until now we assumed the flux is linear. However in a real DC series

The observer and estimator parameters are given in tables 6.5 and 6.6, respectively. 

Experimental results under linear flux assumption

We perform a sensored control of the motor in order to compare measured and observed speed. The results obtained under this assumption were not the as those predicted by simulation (see figure 6.7). Closing the loop with the estimated speed would result in the destabilization of the system. In order to correct the behaviour seen above, we approximate the inductance of the motor by measuring current and voltage at zero speed (blocked rotor) and applying the following equation:

u = Ri + L di dt (6.45)
Knowing R, L is very easily approximated for different values of the current. The result of this approximation is given in table 6.7. As we can see from this table the inductance is not constant and thus the flux is not linear as expected.

Sensitivity of the speed with respect to inductance error

In order to compute the impact of an error on the observed speed we take equation (6.3). Taking into account that L ≈ Lf this equation becomes: (6.46) The speed can then be expressed as follows: (6.47) By differentiating this equation with respect to Lf and taking increments of inductance (inductance error) we deduce the sensitivity equation:

L f di dt = -R i -K m L f i ω + u.
ω = u -R i -L f di/dt Km L f i
∆ω = - u -R i K m L 2 f i ∆L f (6.48)
In per-unit this equation becomes:

∆ω pu = - u -R i ω nom K m L f i ∆L fpu (6.49)
Replacing the variables of this equation by the rated values, the quotient becomes -1. This implies that, at rated speed, current and voltage, an error on the inductance induces an error of same magnitude and on the observed speed of same magnitude and opposite sign on the observed speed.

Experimental results of closed loop sensored control with nonlinear flux approximation

We inserted some of the values given in table 6.7 in the memory of the DSP in order to approximate the armature inductance. These values are given in table 6.8. The intermediate values between points in the table are determined by linear interpolation. This leads so some errors in the approximation of the inductance and then, in the observed speed.

In figures 6.8 and 6.9 we show estimated and measured speed in a sensored closed control loop context. In both accelerations, the current goes through the nonlinear flux zone. In both cases the observed speed is very close to the measured speed, which confirms that the flux is nonlinear and that the inductance approximation is good enough. A first experiment was run to show the switching between observer and estimator modes and, at the same time, the observer convergence (first and second stages). This is shown in figure 6.10. In this case, it is not the speed the variable under control but only the current. Until 1.5s, ω follows ω and i > I thr , hence the system is in observer mode. At around 1.5s the current drops to zero, which forces the system to switch to estimator mode. The parameter τ cf was set to 3.5s, which allows ω to converge to zero in finite time. The current is then augmented softly. When it crosses the value of 0.2 units (I thr ), the system switches back to observer mode and ω converges to ω. As we can see, in estimator mode ω does not follow ω unless τ vf and τ cf are known, but this prevent the observer to work near the observability singularity. 6.11 and 6.12 show the sensorless control performance throughout the whole speed and current operating ranges. Note that even if the motor is not driving a load, a current of 0.4 units is present in steady state due to Coulomb friction. Both captures show that the system performs properly despite a small gap between ω and ω which occurs when the current varies abruptly. This is probably a consequence of an error on L a , which arises in the presence of large values of di/dt. 

Conclusion

In this work a sensorless speed control for a DC series motor was proposed. An observability analysis revealed an observability singularity at zero current. This led us to design an observer/estimator approach. The proposed observer is based on second order sliding mode techniques, whose excellent properties such as finite time converge, robustness, and design simplicity with respect to noise are well known. On the other hand, the estimator operates at low currents, providing a speed estimation when the systems is near the observability singularity. The whole scheme was validated by means of experimental results.

Our ongoing work focus on the stability proof of the proposed sensorless control.

Chapter 7 Conclusion

This work dealt with the control and observation of electrical systems. Electrical motors are the main electromechanical system found in industry. A large number of applications need the precise control of their speed or position. To achieve this control, motors are generally fed by power converters, whose output voltage, current and frequency may varied by numerous different algorithms according to the converter being controlled and its particular application. We focused our attention on multicell converters and DC series motors and proposed control and observation algorithms based on sliding mode techniques.

A sliding mode background has been first presented to lay the foundations on which the different control and observations algorithms are based. We started by introducing classical sliding modes. This technique proves to be very robust and easily implemented, but it presents a main drawback called chattering, whose high frequencies may lead to and even prevent this algorithm to be applied to certain systems such as mechanical ones. To overcome this limitation, higher order sliding modes arise to reduce this undesirable phenomena while retaining its main properties, such as robustness and finite time convergence. We present two particular second order algorithms: the twisting algorithm and the super-twisting algorithm, which are applied further in this work. In the context of multilevel converters, such as multicell ones, we proposed a new algorithm called Zig-Zag Twisting algorithm which allows HOSMs to be applied in such topologies.

We introduced then the multicell converter. We enumerate its many advantages such as the need for lower voltage power switches (which present lower switching losses), the reduction of the harmonic content of its output voltage as well as the reduction of dv/dt and its modularity. However, this topology presents a main drawback, which is the need for a control to balance its floating capacitor voltages. We briefly analyze different control approaches found in literature and, finally, present its instantaneous mathematical model.

Based on this model we performed a controllability analysis for 2 and 3-cell converters, which revealed that their are controllable as long as the output level is different from zero or n, for a current different from zero as well. Based on this knowledge we proposed direct control approaches for 2 and 3-cell converters. The control strategy proposed for the 3-cell converter may easily be extended to converters with any number of cells with little overhead thanks to its simplicity. We also presented a control algorithm of the output current, which exploits the multilevel nature of the multicell converter. All the presented algorithms have been simulated and then tested in an experimental testbench to validate their performance. We have shown as well that under certain conditions the multicell converter is well suited to implement the twisting algorithm. This has been made in the context of the speed control of a permanent magnet DC motor.

We have then presented the design of the different stages conforming the prototype used to test the algorithms mentioned above. We dealt as well with electromagnetic interference (EMI) issues, which have been greatly reduced by the use of snubbers.

Finally, we presented a HOSM observer to estimate the speed of DC series motors, aimed to be used in oil drilling. This observer allows to reduce system complexity and cost, as well as preventing a potential source of malfunctioning, by avoiding the use of a speed sensor. An observability analysis was carried out to reveal that DC series motors present an observability singularity at zero current. In order to estimate the speed of the motor in its entire range we proposed the joint use of an observer and an estimator. The proposed scheme has been tested is a real system in its worst operating conditions, i.e. with no load (which forces the system to work at low current and then approaching the observer to its observability singularity) presenting a good performance even when swapping from observer to estimator modes and vice-versa.

Our current work focus on the experimental test of the Zig-Zag algorithm on the academic prototype presented in chapter 5 at first, and then, to apply it to the 3-phase 3-cell industrial converter built at GS Maintenance. We aim as well to extend the control laws proposed in 4 to the same 3-phase converter. Finally, it is also our purpose to fed a DC series motor by means of a multicell converter, prove the stability of the sensorless control, and perform experimental tests.
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Table 4

 4 

.3: Capacitor voltage evolution for a two-cell converter

Table 4 .

 4 6: Parameters used in the first test of robustness

	Parameter	Value
	E	60 V
	I	0,4 A
	R 0 L	25 ∼ 50 Ω 48 mH
	C	33 µF
	e f ref	0 ∼ 6 V 50 Hz
	f SW	20 kHz

Table 4

 4 

	.7: Parameters used in experimental tests
	Parameter Value
	E	60 V
	C	33 µF
	R	50 Ω
	L	48 mH
	f SW	6,6 kHz

Table 4

 4 

	.8: 20-cell converter parameters
	Parameter	Value
	n	20
	λ	7
	DC Bus voltage 1000 V
	C	3, 3 mF
	Output current	20 A
	The results of this simulation are shown in figure 4.22.

Table 6

 6 

		.1: Nominal values and parameters of the DC motor
		Variable		Nominal value
		U nom		220 V
		I nom		15 A
		ω nom	104.72 rad/s (1000RP M )
		Γ nom		27N m
		Parameter	Value
		R a		0.6Ω
		R f		1.8Ω
		L a		1 mH
		L f		220 mH
		K m		0.12
		B		0.02 N ms
		J		0.2 N ms 2
	Table 6.2: PI parameters		Table 6.3: Observer parameters
	Parameter Speed PI Current PI Parameter Speed observer Torque observer
	k p	0, 2	20
	T i	1	0, 01

Table 6

 6 

	.5: Observer parameters
	Parameter Speed stage Torque stage
	α	10	4
	λ	8	5
	ε	-	0.05(pu)
	Table 6.6: Estimator parameters
	Parameter Value	
	τ vf τ cf	∞ 3.5s	
	I thr	0.2 (pu)

Table 6

 6 

	.7: Approximated inductance
	Current (A) Inductance (H)
	0	0,085
	0,06	0,09
	0,117	0,091
	0,3	0,11
	0,6	0,209
	1,455	0,2247
	3	0,23
	4,5	0,229
	6	0,2239
	7,5	0,2118
	9	0,203
	10,5	0,1913
	12	0,148
	13,5	0,116
	15	0,1086

Table 6

 6 

	.8: Inductance values inserted in the DSP
	Current (A) Inductance (H)
	0	0,078
	0,015	0,078
	1,5	0,2332
	6	0,2267
	7,5	0,207
	15	0,146
	16	0,146
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Chapter 6

Super-twisting based step-by-step observer for DC series motor (Amet et al., 2013a,b;[START_REF] Solvar | Industrial Application of a Second Order Sliding Mode Observer for Speed and Flux Estimation in Sensorless Induction Motor[END_REF] 6.1 Introduction Among the electrical machines used in industry, the DC motor is one of the simplest because it is governed by continuous voltages and currents. In addition, it presents a great flexibility since it can be configured in several different ways, depending on the connection between stator and armature windings. These configurations present different characteristics, allowing the machine to be adapted to the constraints of its specific application.

In this work, we consider the DC series motor, in which the field circuit is connected in series with the armature circuit. Two advantages arise from this electrical connection: on the one hand, only one static converter (e.g. controlled rectifier) is needed; on the other hand, the electromagnetic torque produced is proportional to the square of the current (under linear electromagnetic flux conditions). For this reason, DC series motors are used in applications where high starting torques are needed, such as trains, elevators, hoists; or to produce high torque at slow speeds in applications such as dragline excavation or oil drilling.

The mathematical model of the DC series motor is nonlinear, which inspired the application of different control techniques, ranging from open loop to nonlinear techniques. In [START_REF] Santana | Simulation and construction of a speed control for a DC series motor[END_REF] and [START_REF] Siller-Alcalá | Speed nonlinear predictive control of a series dc motor for bidirectional operation[END_REF] two open-loop strategies are presented, based on PWM and nonlin-motor this is never the case. We show the consequences of such an assumption. This is then corrected by estimating the non linear inductance. To conclude, a sensorless closed loop control of the motor is performed to validate the proposed estimation strategy. Detailed information about observer based feedback controllers for nonlinear systems can be found in [START_REF] Hajji | Observer-based output feedback controller for a class of nonlinear systems[END_REF]. Note that all the tests presented in this section are performed without load since this is the worst working condition for a DC series connected motor.

Both the observer/estimator scheme and the controller were implanted in a SCR Flex control board (figure 6.6) from GS Maintenance. This board is based on a TMS320F2812, a fixed point DSP from Texas Instruments, and a Spartan3 FPGA from Xilinx. The sampling frequency is fixed to 6kHz. The nominal characteristics and the parameters of the DC motor are the same used in simulation (see table 6.1). Figure 6.6: SCR Flex motor control board from GS Maintenance.

The parameters of the nested PI loops are given in table 6.4. Appendix A

3-phase industrial Multicell Converter

In the context of my thesis, an industrial 3-phase 3-cell Multicell Converter has been designed and built for Qatar University. Since details about this project (such as schematics, components, electrical dimensioning, thermal dimensioning, software, etc) are confidential, we briefly introduce its main characteristics.

The specifications for this project were the following:

• 230 V /1 kW 3-phase 3-cell Multicell Converter,

• programming similar to that of a dSpace board, i.e. based on the model based design method,

• 1 kW /cosϕ = 0.8 inductive/capacitive load.

To conform with the specifications, the following modules has been designed:

• one 2/3 phase diode rectifier with pre-charge relay,

• three 3-cell power legs (figure A.1) consisting of:

six IGBTs, -two heat-sinks, -six IGBT driver sockets, -one 2x7 IDC male connector for control, fault and reset signals.

• eighteen IGBT drivers (see figure A.2) with the following characteristics:

isolated control, fault and reset signals, • seven isolated voltage measurement modules with:

isolated power supply,

three floating voltage LED indicators.

• three isolated hall-effect based current measurement modules,

• one SCR Flex 3.4 main control board., based on a TMS320F2812 Texas Instruments DSP, and a Spartan 3 Xilinx FPGA. This board has been slightly re-engineered to better conform to the project specifications.

The DSP can be programmed using the Model Based Design approach through Simulink. For this we provided a Template and a rady-to-use Demo Simulink model containing all the custom blocks needed to configure and control the system, such as analog inputs configuration and scaling, digital IOs, FPGA peripherals, blocks for floating voltages control, etc. The FPGA, on the other hand, is intended to serve as custom coprocessor. We have configured it as a memory mapped peripherals controller (7 segment displays, Multicell Inverter pulses distribution, system status manager register, free running counter for PWM generation), so they can be accessed easily and quickly from the DSP.

• one K AMS 1.0 board. This is a daughterboard based on a Spartan 3 FPGA whose purpose is to increase the number of digital outputs and analog inputs, among others. It has been designed to be stacked over the SCR Flex 3.4 as shown in figure A.3. It has been configured to generate the complementary signals for the IGBT drivers, deadtime (adjustable in real-time by means of a dipswitch), enable or disable the power legs independently (configurable by software), and disable the whole inverter in case of fault.

All the mentioned modules and boards, with the exception of the SCR Flex 3.4, as well as software and digital configuration (FPGA) has been designed by me for this project. The modular approach has been adopted to allow one or more of the designed modules to be used in other related projects At last, we present the results of an experimental test. A V/f profile (a very well known control method for induction motors) has been generated. Both voltage and frequency are varied according to the position of a potentiometer. The output voltage waveform has been generated by means of a multilevel PWM algorithm, while the floating voltages are balanced through the priority algorithm presented in section 4.3.5. In this particular test, the output phase-to-phase voltage is of 186, 7 V RM S and the output line current is of 2, 74 A RM S . These are shown in figure A.7.