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General Introduction 

Increasing environmental concerns have pushed chemists to turn their attention from 

traditional concepts of process efficiency to “green” and sustainable chemistry that 

assign minimization of waste generation and avoid the use of toxic and/or hazardous 

substances.
1,2,3

 Specifically, the guiding principle of green chemistry can be 

paraphrased as: waste prevention instead of remediation, atom efficiency, less 

hazardous/toxic chemicals, safer products by design, innocuous solvents and 

auxiliaries, energy efficient by design, preferably renewable raw materials, shorter 

syntheses (avoid derivatization), catalytic rather than stoichiometric reagents, design 

products for degradation, analytical methodologies for pollution prevention and 

inherently safer processes.
4
 

  Green catalysis, a key component of these principles, is extremely important in the 

modern development of green chemistry.
5,6,7

 A green catalyst must possess specific 

features including low preparation cost, high activity, great selectivity, high stability, 

efficient recovery, and good recyclability.
8
 To date, several effective strategies 

resulting in green catalysis have been discovered such as the recovery of catalyst, 

cascade reaction protocol, the use of “green” solvents (neat condition, water, ethanol, 

ionic liquids, supercritical liquids), flow conditions, photocatalysis and so on. Design 

and use of recoverable catalysts are the most promising and straight way to green 

catalysis, because the recovery of catalyst is not only a task of great economic and 

environmental importance in catalysis science, but also overcome the problem of 

metal contamination in products. 

Catalyst recovery can be done by the experimental manipulations of precipitation, 

traditional filtration, nanofiltration with membranes, centrifugation, extraction and 

magnetic separation.
5
 In general, to achieve these processes, organic and inorganic 

supports (including polymers, dendrimers, metal oxides, alumina, fluorous tag, 

zeolites, carbon nanotube, graphene, active carbon, silica, metal nanoparticles, ionic 

liquids, and so on) are needed for immobilizing free catalytic species forming 

heterogeneous or homogeneous catalysts.
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We have long been interested in catalyst recovery, especially for dendrimer 

catalysts and magnetic nanoparticles-immobilized catalysts. Dendrimers are a family 

of nanosized, branched three-dimensional supramolecular, and possess monodisperse 

nature which retains the advantage of homogeneous catalysts in terms of showing fast 

kinetic behavior, easy tenability and rationalization.
9-13

 Moreover, dendrimer catalysts 

can easily be removed from the reaction mixture by precipitation, traditional filtration, 

or nanofiltration techniques because of their large size compared with the products.
11 

Magnetic nanoparticles (MNPs) have attracted considerable interest as ideal 

supports, and the study in this field has been undergoing an explosive development.
14

 

Indeed, magnetic nanoparticles (MNPs) perfectly bridge the gap between catalytic 

activity and catalyst separation. Magnetically recyclable catalysts have the potential to 

approach catalysts benefiting from high activity, high selectivity, high stability, and 

easy separation, because MNPs-immobilized catalysts combine the advantages of 

nanocatalysts
15,16

 with their inherent properties including non-toxicity, 

biocompatibility, facile assembling, and high accessibility of reusability through 

magnetic attraction.  

As mentioned above, dendrimer catalytic and magnetic catalysts are two important 

modes of catalyst recovery. Their comparison should be deeply significant and useful 

in catalyst recovery science. Therefore, we reviewed both subjects and present these 

overviews in the first chapter. 

The second chapter concerns magnetically recyclable Ru catalysts. First of all, the 

history, trends and prospects of MNPs-immobilized Ru catalysts involving the related 

design, synthesis and catalytic application are briefly described. This overview was 

published in the journal “Molecules”. The second subsection is an experimental study 

that mainly focuses on the immobilization of pre-synthesized 

pentamethylcyclopentadienyl ruthenium complexes on iron oxide nanoparticles and 

its catalytic test in alkyne-azide cycloaddition regioselectively producing 

1,5-disubstituted 1,2,3-triazoles.
 

The third chapter demonstrates that the versatile tris(triazolyl) ligand is readily 

deposited on MNPs, and subsequent complexation with CuBr salt generates a novel 
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MNPs-supported tris(triazolyl)–CuBr catalyst. This catalyst shows a high activity for 

Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC “click” reaction) in aqueous 

solution at room temperature, and more importantly copper recovery is achieved.  

The fourth chapter provides a description of MNPs-anchored Pd nanoparticles 

(PdNPs). The efficiency of triethylene glycol (TEG)-terminated “click” 

dendrimers-stabilized metal NPs has been testified by our previous research.
17,18

 

Based on this, we turn our attention to the synthesis of MNP-immobilized PdNPs 

decorated with dendritic TEG-terminated “click” ligands. The syntheses were carried 

out through two strategies: reduction of pre-coordinated Pd salts immobilized on the 

MNP support, impregnation of pre-synthesized PdNPs into MNPs. Both kinds of 

MNPs-PdNPs performed well in carbon-carbon coupling reactions, and 

unprecedented dendritic effects were observed in various aspects. 

The fifth chapter introduces the syntheses of palladium complexes containing 

single or nonabranched 2-pyriyl-1,2,3-triazole ligands. When a nonabranched ligand 

was used, partly- and fully- metalized Pd complexes showed various state in the given 

media. Their catalytic properties were also tested in classic coupling reactions. 

At the end of the thesis, the “Conclusion and Perspectives” section summarizes the 

progress resulting from the research conducted during this thesis concerning 

heterogeneous and abundant catalysts for various classic reactions. In addition, 

perspectives are provided, indicating that development of new magnetic plasmonic 

photocatalysts based on AuNPs, AgNPs and CuNPs, exploration of magnetic 

bimetallic catalysts, and replacement of “noble” metal catalysts by abundant metal 

(so-called “biometals”) catalysts should be valuable goals of further work along this 

line. 
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1.1 Introduction 

Dendrimer chemistry has attracted considerable interest and driven various promising 

applications in drug delivery, materials science and catalysis. This field is also an 

important part of the research of our group, and a variety of dendrimers were 

specifically prepared and applied therein in biology, catalysis, sensing and 

nanotechnology. 

  Since 2001, our group has published several review articles or overviews on the 

development of dendrimer chemistry. For example, in 2010, our group published a 

comprehensive review entitled “Dendrimers Designed for Functions: From Physical, 

Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, 

Molecular Electronics, Photonics, and Nanomedicine”.
1
 In 2012, a review on 

electron-transfer processes in dendrimers and applications was published.
2
 Here, our 

attention is mainly focused on the developments and trend of dendrimers in 

catalysis.
3-5 

Dendrimer chemistry is still promising in catalysis, and many publications on 

dendritic catalysis emerged in the last few years. Thus it appeared necessary to write a 

new updated review on the recent breakthroughs and trends in this area. 

In recent years, the development of magnetic catalysts is enormously accelerating.
7
 

A large number of new reactions, nanocatalysts, systems, and trends are appearing at a 

fast rate, and more than 400 publications have appeared in the last 2 years. Thus, in 

this chapter, we also summarize the basic concepts, seminal studies, new 

breakthroughs of magnetically recoverable catalysts. 
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a  b  s  t  r  a  c  t

In this  review,  attention  is  focused  on briefly  summarizing  the  main  concepts  of dendrimers  in  catalysis
and  essentially  reviewing  new  breakthroughs  and  trends  in this  area  that  have  appeared  during  the  last
few  years.  Dendrimers  have  been  proposed  to bridge  the gap  between  homogeneous  and  heterogeneous
catalysis,  and  dendritic  catalysts  have  the  potential  to  approach  catalysts  benefiting  from  high  activity,
high  selectivity,  high  stability,  and easy  separation.
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1. Introduction

Dendrimers, dendrons, dendronized and dendritic and hyper-
branched polymers are a family of nanosized, branched three-
dimensional molecular frameworks that have attracted the
scientific community since the 1980s [1–7]. Essential and promis-
ing applications are in nanomedicine including targeted drug
delivery and imaging, materials science with sensors, light har-
vesting devices and surface engineering and catalysis [8–23]. In
the latter field, advances towards green and sustainable chemistry
have been a driving force to optimize the use of metal catalysts in
terms of efficiency, catalyst recovery and minimization of contam-
ination by metal ions and particles [24–40]. Since the pioneering
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work on catalysis of CO/alkene polymerization upon comparing
mononuclear and star-shaped hexaphosphine-palladium catalysts
was reported in 1992 [41], a great variety of dendritic catalysts have
been developed, and corresponding theoretical knowledge and
derived technologies in dendritic catalysis have become mature
[24–40].

Why is dendritic catalysis so popular? What can dendrimers
add to the field of catalysis? Dendritic catalysts exhibit well-
defined structures and possess a monodisperse nature which
retains the advantage of homogeneous catalysts in terms of
showing fast kinetic behavior, easy tenability and rationaliza-
tion. Dendritic catalysts can easily be removed from the reaction
mixture by precipitation, membrane or nanofiltration techniques
because of their large size compared with the products, which

instills  the advantages of heterogeneous catalysts. Moreover, it
is possible to finely tune the catalytic properties of the den-
dritic catalysts through the adjustment of their structure, size,
shape, chemical functionality, and solubility. In a few words,
dendrimers have been proposed to bridge the gap between
homogeneous and heterogeneous catalysis, and dendritic cata-
lysts have the potential to approach catalysts benefiting from
high activity, high selectively, high stability, and easy separa-
tion.

Many reviews have appeared on dendrimer catalysis since the
beginning of the 2000s [24–40]. Here we wish to briefly summarize
the main concepts of dendrimers in catalysis and essentially review
new breakthroughs and trends in the area that have appeared dur-
ing the last 5 years.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 1. Structures of dendrimers commonly used in catalysis: (a) PAMAM; (b) PPI; (c) polybenzyl ether; (d) polyaliphatic ester; (e) polycarbosilane; (f) polyester amide; and
(g)  allyl-ended arene-cored dendrimer.

Reprinted with permission from [48] (Fréchet’s group).
©  2006 Wiley-VCH.
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Fig. 2. Most frequently encountered locations of catalytic entities in dendritic molecules: (a) core; (b) peripherally; and (c) building block.
Reprinted  with permission from [50] (Yamamoto’s group).
©  2006 The Chemical Society of Japan.

2. Basic concepts and seminal studies

During the past two decades, various dendrimer families
have found widespread use as platforms in dendritic catalysis
(Fig. 1). Commonly used dendrimers include polyamidoamines
(PAMAM) [42], polypropylene imines (PPI) [43], polybenzyl ethers
(Fréchet-type) [44], polyaliphatic esters [45], polycarbosilanes [46],
polyester amides (Newkome-type) [47], and allyl-ended arene-
cored dendrimer [48]. The iterative synthesis of dendrimers allows
for the placement of catalytic entities at any point resulting in a
functional macromolecule with rather well characterized structure
[26,49]. Most frequently encountered locations of catalytic entities
in the dendrimer molecule are given in Fig. 2. As indicated in the
figure, locations of catalytic entities include core, periphery, and
building block (Fig. 2).

The  synthesis of core-functionalized dendritic catalysts is the
same as for classical dendrimers but applied to a suitably core
(Fig. 2a). The steric crowding of reactive core upon dendritic encap-
sulation remains one of the more challenging obstacles to overcome
in catalysis. In general, slower rates of reaction are observed,
because core-confined catalysts are so isolated from the reaction
medium, and the catalyst loading is low (a single catalytic site per

dendrimer). On the other hand, core-functionalized dendritic cata-
lysts could benefit from modifiable surface groups and local catalyst
environment. For example, connecting water-soluble groups to
periphery of dendrimers could make dendritic catalysts “green”
and water-soluble, and the specific micro-environment created by
dendritic structures shows great similarity to biological systems
such as enzymes [50]. Core-functionalized dendritic catalysts were
first established in 1994 (“dendrizymes”) [51], and the influence
of a chiral dendritic periphery on the performance of asymmetric
cyclopropanation catalysts was investigated.

Grafting catalytic sites on the periphery of dendrimers is the
most straightforward and pioneering approach to construct den-
dritic catalysts, which offers unprecedented opportunities for
establishing active site multivalency and thus high loading capac-
ity and ligand concentrations. The proximal interactions between
catalytic groups and steric crowding at the periphery of dendritic
catalysts may lead to cooperative effects and a certain selectiv-
ity profile respectively, which could further increase the catalytic
effect. The first example of such a catalyst (Fig. 2b) was reported
with seminal work on the Karasch reaction [52]. Many catalytic
examples with positive “dendritic effect” based on periphery-
functionalized dendritic catalysts were disclosed. For example,

Fig. 3. Jacobsen’s dendritic [Co(salen)] complex for hydrolytic kinetic resolution (HKR) of terminal epoxides.
Reprinted  with permission from [53] (Jacobsen’s group).
©  2000 Wiley-VCH.
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Fig. 4. Astruc’s water-soluble star-shaped catalyst for cathodic reduction of nitrates
and nitrites to ammonia showing no kinetic drop from the monometallic to the
star-shaped catalyst [55].

hydrolytic kinetic resolution (HKR) of terminal epoxides seem-
ingly proceeds using cobalt (salen) complexes as catalysts (Fig. 3)
[53]. The catalytic activities of G1 to G3 PAMAM dendrimers with
respectively 4, 8 and 16 catalytic residues at the periphery were
superior to those of the monomeric and dimeric catalysts, indi-
cating a positive dendrimer effect. This effect was assigned to the
dendritic confinement of the Co-salen complexes at the surface of
the macromolecule that was claimed to reinforce cooperative cat-
alytic activity. A rather general trend in periphery-functionalized
dendritic  catalysts which are the majority of metallodendritic cata-
lysts reported, is the bulk provided at the periphery upon increasing
the dendrimer generation, restricting access of the substrate to
the catalytic metal center. Therefore, a better spatial separation
of catalytic sites in the dendrimer should be arranged. This prob-
lem has been recognized, and it was suggested that star-shaped
structures containing catalysts at the branch termini should not
suffer from such steric constraints [54]. Star-shaped hexanuclear
catalysts containing six CpFeI(arene) complexes (Fig. 4) are effi-
cient redox catalysts for nitrate and nitrite reduction to ammonia
in water without kinetic loss compared with monometallic cata-
lysts [55]. This shows here the lack of steric inhibition that is often
encountered in dendritic frameworks loaded with catalysts at the
branch termini (negative dendritic effect).

The building block (backbone) regions of a dendrimer could
provide a localized environment suitable for binding and catalysis
(Fig. 2c). The catalytic site concentration of this attachment style
is very high, which might result in high reaction rates. An effective
approach for the synthesis of this shape of dendritic catalysts is that
using ionic bonds in connection with hydrogen bonds to attach
the catalyst to the building block of dendrimers [56,57]. Another
approach in attaching catalytic sites at dendritic building blocks
was provided [58]. Thus phosphine ligands of the catalyst were
located at the branching points all along the dendritic construction.

Metal nanoparticles (MNPs) are among the most efficient and
selective catalysts [59–67]. They are usually synthesized by reduc-
tion of a transition-metal salt, and the generated metal (0) atoms
agglomerate; this agglomeration is stopped at a certain point in the
presence of various stabilizers such as ligands, polymers, surfac-
tants, ionic liquids or solid supports such as oxides, etc. A problem
resides in the stabilization of the nanoparticle (NP) surface without
blocking access of substrates to this surface, however, thus a fine
balance between stabilization and surface access must be targeted.
Localization of a NP inside a dendrimer brings about an elegant
solution to this problem. Another important aspect is the control of
the size and shape of the NPs that is best accessible upon encapsula-
tion inside dendrimers. Dendrimer-stabilized nanoparticles (DSNs)
[68,69] and dendrimer-encapsulated nanoparticles (DENs) [70] can

be used for various types of catalysis as well as molecular den-
dritic catalysts. Catalysis with DENs was  pioneered in 1999 with
Gn-OH PAMAM Pd and Pt DENs (n = 4–8) for the hydrogenation of
allylic alcohol and N-isopropylacrylamide in water [71,72]. Another
promising area was that of dendrimer-encapsulated nanoparti-
cles in heterogeneous catalysis [73,74]. The powerful CuI-catalyzed
“click” reaction between azido and terminal alkyne derivatives
(CuAAC) selectively forming disubstituted 1,2,3-triazoles has been
used to stabilize transition-metal ions including PdII by the 1,2,3-
triazole ligand [75–78] and to form “click”-dendrimer-protected
Pd  nanoparticles by reduction of the PdII species to PdNP either as
DENs or dendrimer-stabilized PdNPs (DSNs). Such PdNPs showed
excellent catalytic activities in hydrogenation [79,80] and C–C cross
coupling [37,81].

Dendritic catalysts are separated from the reaction medium
through precipitation, membrane nanofiltration by taking advan-
tage of the macromolecular and tunable natures of dendrimers.
The technological improvements for separation were pioneered
by Kragl and Reetz in their seminal study [82–84]. Subsequently,
cationic dendrimer or dendron-protected polyoxometallate cata-
lysts were recycled by precipitation upon addition of ether from
biphasic CDCl3/aqueous mixtures after olefin epoxidation or sulfide
oxidation to sulfones and secondary alcohols to ketones. Both fam-
ilies of metallodendrimers and dendron-protected catalysts could
be used many times without loss of activity, although the activity
of the dendron-protected catalysts decreased upon increasing the
dendron generation and bulk [85–87]. Recently, dendritic copper(I)
(hexabenzyl) tren complex that were active for “click” reactions
between azides and alkynes in toluene or water were recharged at
least 10 times through complete precipitation of the product from
the reaction medium at −18 ◦C [88]. Silica gel-supported metallo-
dendronic catalysis of olefin hydroformylation with RhI provided
another approach for recycling dendritic catalysts upon engineer-
ing heterogeneous solid support-bound dendritic catalysts [89].
Subsequent to this seminal work, many studies have been con-
ducted by different groups in which the influence of the generation
on catalytic effects, solid support, and backbone structure were
investigated.

Asymmetric catalysis is an essential branch of catalysis research.
In 1990s, the first example of dendritic asymmetric catalysis
was reported [51,90], in which a chiral dendron bearing phos-
phines at its core was synthesized, thereby establishing the crucial
“dendrizyme” concept. A number of reports then followed on asym-
metric catalysis by dendritic chiral metal complexes. The first
asymmetric rhodium-catalyzed hydrogenation of prochiral olefins
in dendrimer catalysis and showed a slightly negative dendritic
effect on selectivity upon increasing generation was reported in
1998 [91,92]. A strongly positive dendritic effect in asymmetric
catalysis was demonstrated [93] whereby the ee for pyrphos-
Pd-functionalized PPI and PAMAM dendrimers-catalyzed allylic
amination of 1,3-diphenyl-1-acetoxypropene increased from 9%
for the mononuclear reference [(Boc-Pyrphos) PdCl2] to 69% for
the Pd64-PAMAM-dendrimer [94]. Dendritic asymmetric catalysts
have been applied to several important organic reactions such
as Mannich-type, Diels–Alder, Wittig reaction, Michael addition,
asymmetric epoxide ring-opening, asymmetric hydrogenation and
asymmetric epoxidation. Recent reviews have emphasized the
importance of dendritic asymmetric catalysts [95,96].

Organocatalysis dates back more than 150 years. Since the
beginning of the 21st century, dendritic organocatalysis has
attracted considerable attention. Until now, most dendrimers
(especially for PAMAM and PPI dendrimers) have been modi-
fied with organocatalytic moieties for use as support in various
organocatalyzed reactions including formation of C–C bonds, cleav-
age of esters bonds, oxidation and reduction reactions [37]. The
hydrolysis of esters using peptidic dendrimers has been examined
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Fig. 5. Example of a peptide dendrimer used for catalyzing the hydrolysis of esters.

Reprinted with permission from [97] (Reymond’s group).
©  2004 American Chemical Society.

with the view to mimic  the efficiency of enzymes. A series of pep-
tide dendrimers having diamino acid or 3,5-diaminobenzoic acid
as branching units, bearing histidine, aspartate and serine were
used to catalyze the hydrolysis of 7-hydroxy-N-methylquinolinium
esters  and 8-hydroxypyrene-1,3,6-trisulfonate esters. 1-G2 (Fig. 5)
is one of these peptide dendrimers that was used for the hydrol-
ysis of quinolinium esters [97]. The number of histidine residues
per dendrimers was the crucial factor influencing the catalytic
rate constants. Indeed, the G4 dendrimer was 140 000-fold more
efficient than 4-methylimidazole as a reference catalyst for the
hydrolysis of the nonanoyl ester of pyrene [98].

3. Recent advances and trends

3.1. Metallodendritic catalysts

3.1.1.  Suzuki–Miyaura reaction
The  first three generations of dendritic bis(dicyclohexyl-

phosphanylmethyl)amine-functionalized palladium catalysts
(Fig. 6) have been used in the Suzuki coupling reaction [99,100] of
halogenoarenes, including chloroarenes with phenylboronic acid
[101]. The G1 dendrimer gave yields comparable to those obtained
with the mononuclear complex, but a clear negative effect was
observed with an increase of the generation. The dendritic com-
pounds were recovered by precipitation with pentane and reused
for three cycles.

Recently, the activity of Pd complexes of the core-functionalized
dendriphos ligands has been examined in the Suzuki–Miyaura
cross-coupling reaction [102,103]. A series of triarylphosphanes
containing dendritically-arranged tetraethylene glycol moieties
at the periphery were synthesized (Fig. 7), and the combina-
tion of [PdCl2(PhCN)2] and second generation dendritic derivative
2a2 with the TEG chains led to a highly active catalytic sys-
tem: down to 0.1 mol% catalyst loading yielded 93% conversion,

when  nonactivated aryl chloride was employed. Haag designed
a hyperbranched water-soluble polyglycerol derivative function-
alized with N-heterocyclic carbene palladium complexes, and
applied it as catalyst for Suzuki cross-coupling reactions in water.
Turnover frequencies of up to 2586 h−1 at 80 ◦C were observed
with the dendritic catalyst along with turnover numbers of up to
59 000, which are among the highest turnover numbers reported
for polymer-supported catalysts in neat water. The dendritic cat-
alyst could be reused in five consecutive reactions without loss
in activity [104]. A pseudo-homogeneous heterogenized catalyst
was synthesized through noncovalently immobilized palladium
acetate as a supported ionic liquid catalyst (SILC) in a nanosilica
dendrimer PAMDMAM [105]. The supported dendritic catalyst was
effective for Suzuki–Miyaura reactions of ortho-substituted aryl
bromides or aryl triflates without a ligand in 50% aqueous ethanol
in air at room temperature. The catalyst could be reused up to five
times in 93% average yield after simple centrifugation, and the TON
reached 176 000. The efficient use of a “click” dendritic monoden-
tate phosphine ligand in the Pd-catalyzed Suzuki–Miyaura coupling
was reported. The dendritic complex was easily removed from
the reaction mixture by nanofiltration using ceramic nanofiltration
membranes [106].

Mono-  and polymetallic palladium complexes containing a
2-pyridyl-1,2,3-triazole (pyta) ligand or a nonabranch-derived
(nonapyta) ligand have been synthesized by reaction of pal-
ladium acetate with these ligands and used as catalysts for
Suzuki–Miyaura, Sonogashira and Heck reactions (Fig. 8) [107]. The
unsubstituted monopalladium 1 and nonapalladium complexes
29 were insoluble in all the reaction media; whereas, tri- and
tetranuclar palladium complexes (23 and 24) were soluble, which
allowed conducting catalysis under either homogeneous or het-
erogeneous conditions. Both types of catalysts showed excellent
activity for Suzuki–Miyaura, Sonogashira and Heck reactions. In
addition, the recyclable feature of heterogeneous catalysts was ver-
ified in the example of Heck reaction.

In many cases, the problem of metal leaching restricted the
application of dendritic catalysis in the pharmaceutical industry.
The use of phosphorus dendrimers partially addressed the problem.
Phosphorus dendrimers (G0 and G3) functionalized with thiazolyl
phosphines showed high activity in Pd-catalyzed Suzuki reactions
even under mild conditions, and the catalytic systems could be
successfully recovered and reused at least five times [108]. In
addition, palladium leaching in dendritic catalysis decreased com-
pared with monomeric catalysis. Only trace amounts of metal
(<0.55 ppm) were found in the product before purification by
columm chromatography, and the product met  the specification
limits for residues of metal catalysts in the pharmaceutical indus-
try [109]. Pyrene-tagged dendritic Pd-phosphine catalysts grafted
with magnetic Co/C nanoparticles were prepared and used as cata-
lysts in the Suzuki–Miyaura reactions with high efficiency [110].
Attaching a dendritic ligand onto the NP surface allowed up to
five times higher loading (0.5 mmol  g−1 active sites) than the pre-
viously reported direct functionalization of catalysts onto the NP
[111]. Moreover, the use of a magnetic support made the catalysts
more easy to remove from the reaction mixture by simply apply-
ing an external magnetic field. It could be reused at least 12 times
without loss in activity. Remarkably, Felbinac, which is a commer-
cially available drug of great industrial interest, can be prepared
in multiple runs using this catalyst with specification limits for
residues of metal catalysts in pharmaceutical industry (<5 ppm Pd)
and without tedious purification.

A  series of “click”-ferrocenyl dendrimer-encapsulated and
stabilized Pd nanoparticle pre-catalysts were synthesized with
various generations of 1,2,3-triazolyl dendrimers (G1-27, G2-81
for DENs, G0-9 for DSNs) (Fig. 9). With these PdNPs, catalysis of
Suzuki–Miyaura C–C coupling [112] between PhI and PhB(OH)2
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Fig. 6. Dendritic diphosphino Pd(II) complexes.
Reprinted with permission from [101] (Astruc’s group).
©  2005 American Chemical Society.

was carried out at room temperature and did not depend on
the PdNP size and whether its stabilization is intra- or interden-
dritic. This indicated that the dendrimer was not involved in the
rate-limiting step of the reaction. The dendrimer-stabilized PdNPs
worked identically whatever their size, and the TONs increased
upon decreasing the amount of catalyst from 1% down to 1 ppm or
upon dilution of the reaction solution. Thus, the efficiency of the cat-
alyst was remarkable in homeopathic amounts (54% yield at 25 ◦C
with 1 ppm equivalent of Pd atom, i.e. TON = 540 000). A quantita-
tive yield was not even reached (75% yield) with 1% equivalent Pd
atom [81], which, however, confirmed the hypothesis of a “home-
opathic” catalytic mechanism. The “homeopathic” mechanism was
already observed for the Heck reaction at 150 ◦C and was rational-
ized according to a leaching mechanism involving detachment of
Pd atoms from the PdNP subsequent to oxidative addition of the
organic halide PhI on the PdNP surface [113–117]. This mechanism
was established for high-temperature reactions due to decomposi-
tion of the Pd catalyst to naked PdNPs, but it was less expected for
a room-temperature reaction. The ease of the room-temperature
reaction must have been due, however, to the lack of ligation onto
the dendrimer-stabilized PdNPs that therefore could easily undergo

oxidative  addition of PhI at their surface, which provoked leaching
of Pd atoms. These isolated Pd atoms are apparently extraordinarily
reactive in solution, because they do not bear ligands other than the
very weakly coordinating solvent molecules. The limit in their effi-
ciency is reached when these atoms or small clusters are trapped
by their mother NP, if the solution is moderately concentrated. This
trapping mechanism that inhibits catalysis is always less efficient
as the concentration of catalyst in the solution is lowered. There-
fore it is not efficient under extremely diluted solutions, whereas
it strongly inhibits catalysis at relatively high concentrations. It is
likely that this concept can be extended to other PdNP-catalyzed
C–C bond formation reactions (Fig. 10).

3.1.2. Mizoroki–Heck reaction
The  first example of catalyst recovery and a positive dendritic

effect in catalysis with metal dendrimers was  reported in 1997 [82],
in which poly(propylene imine) dendrimer modified palladium
complexes with diphenylphosphanylmethyl end-groups showed
significantly higher activity than the mononuclear complex in Heck
reaction [118], probably due to its reduced tendency to decompose
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Fig. 7. Novel phosphane ligands bearing tetraethylene glycol or n-C12 moieties.

Reprinted with permission from [103] (Tsuji’s group).
©  2008 Wiley-VCH.

thermally to metallic Pd. The dendritic catalyst was  recovered by
precipitation with diethyl ether.

Recently, studies on the efficacies of multivalent vs. monova-
lent dendritic catalysts through comparative research within or
across the dendrimer generations based on C–C bond-forming reac-
tions (especially of Heck reaction) were published [119,120]. A
series of partially and fully phosphine–Pd complexes functional-
ized poly(ether imine) dendrimers catalysts were synthesized, and
the comparative analyses showed that an individual catalytic site
was far more effective in its catalytic activity when presented in
multiple numbers, i.e., in a multivalent dendritic system, than as a
single unit within the same generation; and that higher clustering
of catalytic moieties is more effective than a lesser number. The
study verifies the positive effects of the multivalent presentation
of the catalytic moieties.

Amidoamine-based dendrimers with end-grafted 1–5 Pd–Fe
units were designed (Fig. 11), and these bimetal complexes
exhibited catalytic activity for the Heck cross coupling of
iodobenzene with tert-butyl acrylate [121]. The comparison
of catalytic performance among these dendritic catalysts con-
firmed a positive cooperative effect. In another example of
positive cooperative effect [122], the syntheses of first generation
dendritic compounds bearing 1,1-alkane-1,1-diylbis(4-butyl-4,5-
dihydro-1H-1,2,4-triazol-5-ylidene) palladium(II) dibromide on
the periphery were described. The dendritic complex was  more
active than the corresponding non-dendritic mononuclear species
in the Heck reaction, which was indicative of a positive cooperative
effect. However in general the catalytic activities of all these com-
plexes were moderate. In contrast, a negative dendritic effect was
found when Pd complexes of bidentate phosphines on a polyether
dendrons support were used. This observation was  explained by
the fact that, in the case of bidentate phosphine ligands, the high
local density of phosphines dictated by the dendritic architecture
was a disadvantage for the Heck reaction [123].

The use of soluble polysiloxanes with linear, star-shaped and
hyperbranched architectures having vinyl, 2-butylthioethyl and

Scheme 1. Cu(I) loaded PAMAM dendrimer for “click” reaction.
Reprinted with permission from [130] (Voelcker’s group). © 2011 Elsevier.

2-diphenylphosphinoethyl side groups as supports for palla-
dium(II) catalysts in Heck reactions has been reported [124].
Polysiloxane-supported catalysts did not provide a negative effect
on conversion compared with PdCl2(PhCN)2, but showed good
stability and could be reused several times. Linear polymers-
supported catalysts exhibited both better catalytic activity and
better stability than that of dendritic catalysts.

The catalysis by Pd DENs of Heck reactions was carried out with
PAMAM and PPI dendrimers by several groups. PPI Pd DENs con-
taining perfluoroether groups catalyzed the Heck reaction between
iodobenzene and n-butyl acrylate with 100% selectivity at 90 ◦C,
which was superior to yields and selectivities obtained with
other Pd NPs. The fluorinated pony-tail functionalized DENs also
allowed carrying out PdNP-catalyzed Heck coupling between aryl
halides and methacrylate in supercritical CO2. Moreover the highly
unfavored methyl 2-phenylacrylate was exclusively obtained at
5000 psi and 75 ◦C, whereas trans-cinnimaldehyde was  obtained
with 97% selectivity otherwise [125]. Although G4-OH DENs were
more stable than G2-OH and G3-OH DENs, the lower-generations
DENs were also more active catalysts [126]. This observation dis-
closed a crucial problem in catalysis by DENs, i.e. the correct balance
between catalytic efficiency and stability requires careful search
for a given dendrimer series, and it is tedious to maintain both
advantages of optimized efficiency and stability.

3.1.3. Cu-catalyzed alkyne-azide (CuAAC) reaction
The copper-catalyzed alkyne-azide Huisgen-type cycloaddition

(CuAAC “click” reaction) [127,128] has appeared as one of the most
currently used methods for connecting two  fragments together,
and has been widely applied in various fields including construction
of dendrimers [75,129]. On the other hand, some groups recently,
also tried to design efficient dendritic copper complexes for “click”
reaction.

The synthesis and catalytic properties of Cu-loaded
poly(amidoamine) (PAMAM) dendrimers towards the Cu(I)-
catalyzed azide–alkyne cycloaddition (CuAAC) have been described
(Scheme 1) [130]. The reactivity was tested on a model reaction
between azido propanol and propargyl alcohol in aqueous solu-
tion. A significantly faster conversion was  found using PAMAM
dendrimers as macromolecular Cu(I) ligands compared with tra-
ditional small molecular ligand systems, and the macromolecular
catalyst could be removed by ultrafiltration.

Copper(I) (hexabenzyl)tren complex 1 and dendritic analogues
with 18 or 54 branch termini (Fig. 12) have been synthesized
[88,77]. Both parent and dendritic complexes showed outstand-
ing activities for “click” reactions with various substrates in terms
of yields and TONs. The metallodendrimers also provided a posi-
tive dendritic effect, as shown by comparing kinetics studies of the
“click” reaction between phenylacetylene and benzyl azide at 22 ◦C
in toluene using 0.1% catalysts, which was assigned to the dendritic
frame bringing about steric protection against the well-known
inner-sphere aerobic oxidation of Cu(I) to bis(�-oxo)-bis-Cu(II).
Water-soluble  PEG-modified dendritic catalyst exhibited inspir-
ing performance for “click” reactions of water-insoluble substrates
in water without co-solvent under ambient conditions. Moreover,
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Fig. 8. Mono- and polymetallic palladium complexes containing 2-pyridyl-1,2,3-triazole (pyta) ligand.
Reprinted  with permission from [107] (Astruc’s group).
©  2013 Wiley-VCH.

these copper catalysts were removed from the reaction medium
through easy precipitation at −18 ◦C and reused at least three times
[88].

3.1.4. Hydrogenation
Both  categories of molecular dendritic catalysts and DENs pro-

vided excellent performances in hydrogenation [131]. Diphosphine
and monophosphine units are ideal bridge between dendritic sup-
port and metal for grafting dendritic metal complexes, due to
their outstanding capability of coordination, stability, and catalytic
performance. Most dendritic catalysts for hydrogenation contain
diphosphine or monophosphine [132–134].

Fig. 9. DSN formed from G0; b) DEN formed from G1. [112].

Tripodal-terminated Rh-phosphine dendrimers were effi-
cient catalysts for the hydrogenation of styrene and 1-hexene
[135]. In subsequent work, this group immobilized pyrophos-
Rh(norbornadiene) at the periphery of PPI, PAMAM and

Fig. 10. Leaching mechanism in the “homeopathic” catalysis of Suzuki–Miyaura C–C
coupling at ambient temperature between PhI and PhB(OH)2 by “click” ferrocenyl
dendrimer-stabilized PdNPs [81].

14



D. Wang, D. Astruc / Coordination Chemistry Reviews 257 (2013) 2317– 2334 2325

Scheme 2. General synthesis of the pyrphos-Rh(NBD) complexes, and {G2}-PAMAM-{Glutaroyl-pyrphos-Rh (NBD) BF4}16.
Reprinted with permission from [136] (Gade’s group).
©  2009 Wiley-VCH.

hyperbranched PEI dendrimers (Scheme 2) [136]. These met-
allodendrimers have been used as catalysts for the hydrogenation
of Z-methyl �-acetamidocinnamate. A negative dendritic effect in
terms of activity and selectivity was observed with increasing size
of the dendrimer supports when the hydrogenation was carried
out in methanol, and a stronger negative effect was detected
in terms of catalytic activity, stereoinduction, and recyclability.
Moreover, there is no difference in catalytic behavior between
hyperbranched polymer-supported and dendrimers-supported Rh
complexes in this hydrogenation reaction.

Chiral dendritic monodentate phosphoramidite [137,138] and
dendritic BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl)
[139] bearing different dendritic supports were applied as
ligands for Rh or Ir-catalyzed asymmetric hydrogenation of �-
dehydroamino acid esters, dimethyl itaconate, quinaldine, and
methyl 2-acetamidocinnamate. High enantioselectivities (up to
99% ee) and catalytic activities (up to 4850 h−1 TOF) were achieved
when these catalytic systems of dendritic ligands and metal
complexes were employed, and all the catalytic systems provided
positive dendritic effects.

The efficiencies of catalytic moieties within and across den-
drimer generations for partially and full functionalized poly(alkyl

aryl  ether) dendrimers rhodium(I) complexes that were tested in
the hydrogenation of styrene [140]. Significant increases of cat-
alytic activities (TONs) with increasing the amount of catalytic
residues demonstrated positive effects of the multivalent formu-
lation of the catalytic moieties.

A  carbosilane dendrimer functionalized with P-stereogenic
diphosphine or monophosphines ligands has been designed and
their activities in the Rh-catalyzed hydrogenation of dimethyli-
taconate have been checked [141,142]. A “green” example was
reported that the fluorinated dendritic chiral mono-N-tosylated
1,2-diphenylethylenediamine (FTsDPEN) was  synthesized and
applied in the ruthenium(II) complex-catalyzed asymmetric trans-
fer hydrogenation of prochiral ketones in aqueous media with
excellent enantioselectivity, and unprecedented recovery and recy-
clability [143].

Following seminal research on DEN-catalyzed hydrogenation,
it was show that the PAMAM G4-OH Pd40NP (Fig. 13) is much
more efficient than the G6 and G8 DENs because the latter serve
as nanofilters [71,72,144] inhibiting, to some extent, the penetra-
tion of the N-isopropylacrylamide substrates inside the dendrimer
in which the catalytically active NP was  located. On the other hand,
linear alkenes penetrated more easily, resulting in a much smaller
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Fig. 11. PAMAM-based dendrimers with end-grafted five Pd–Fe units.
Reprinted  with permission from [121] (Lang’s group). © 2010 Elsevier.

decrease in activity. When G4-NH2 PAMAM dendrimers were func-
tionalized with various epoxide termini having increasing sizes, the
hydrogenation catalysis results showed that the DENs functional-
ized with bulkier epoxides were less efficient catalysts than those
having less bulky epoxides [145,146]. Molecular rulers containing

a  cyclodextrin stopper and allyl groups spanned by alkyl chains
having different sizes were used to estimate the length between
the DEN surface and the dendrimer surface, and for G4-OH Pd40
DENs such a length was  estimated to be 0.7 ± 0.2 nm [147,148].
The Yamamoto and Nishihara groups prepared PAMAM G4-OH Rh
DENs that catalyzed olefin and nitroarene hydrogenation with a
metal-ion/dendrimer ratio of 60 [148]. The G1–3 dihydroxybenzyl-
alcohol-based dendrimers stabilized 14–35-nm sized Ag DSNs that
catalyzed choloronitrobenzene hydrogenation at 20 bar H2 and
140 ◦C [149].

“Click”-ferrocenyl dendrimer-encapsulated and stabilized Pd
nanoparticle pre-catalysts (Fig. 9) were used to catalyze hydro-
genation reactions. Indeed, selective hydrogenation of dienes to
monoenes was achieved readily under ambient conditions for small
dienes [80], but large steroidal dienes remained unreacted, in
accord with their lack of ability to reach the PdNP surface. The rates
(TOFs) and TONs of hydrogenation were all the larger as the PdNPs
were smaller, as expected from previous results with polymer-
stabilized PdNPs [150–152] according to a mechanism that involves
mechanistic steps of the hydrogenation on the PdNP surface.

Heterobimetallic DENs are either alloys DENs (noted M1M2

DENs) or core@shell DENs. TOFs for the hydrogenation of allylic
alcohol with Pd-rich heterobimetallic PdPt DENs were significantly
higher than those of physical mixtures of the single-metal ana-
logues having the same percentage of the two metals [153–159].
This was attributed to positive synergistic effects [160]. Au@Pt NPs
stabilized by Fréchet-type polyarylester dendrons showed higher
catalytic activity in hydrogenation of nitrotoluenes to anilines com-
pared with monometallic Pt NPs or a mixture of Pt and Au NPs,
which was attributed to the decreased electronic density on the
Pt shell arising from the influence of the Au core [161]. Similar
effects were invoked for the better activity of heterobimetallic DEN

Fig. 12. Copper(I) (hexabenzyl) tren complex 1 and metallodendritic Cu(I) derivative G1, G2, and water-soluble G2.
Reprinted  with permission from [88] (Astruc’s group).
©  2011 Wiley-VCH.
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Fig. 13. PAMAM G4, G6 and G8 Pd DENs for selective catalysis.
Reprinted with permission from [72] (Crook’s group).
©  2001 American Chemical Society.

catalysts compared with monometallic DENs hydrogenation of p-
nitrophenol [153], selective hydrogenation of 1,3-cyclooctadiene
[154], hydrodechlorination of 1,2-dichloroethane [155] and CO oxi-
dation [156–159].

3.1.5.  Carbonylation and hydroformylation reactions
Some remarkable examples involving dendritic catalysts on a

solid support such as silica gel have been published (Fig. 14). The
dendritic Rh or Pd complexes on solid support showed high activ-
ity for carbonylation and hydroformylation reactions [89,162–167].
These systems were easily recovered by simple filtration in
air and reused without loss of activity. Recyclable palladium-
complexed dendrimers on silica gel were first used as catalysts in
intramolecular cyclocarbonylation reactions. From this powerful
approach, a series of oxygen-, nitrogen-, or sulfur-containing 12-
to 18-membered ring fused heterocycles were synthesized with
good yields [168].

3.1.6.  Oxidation reaction
Polyoxometalates (POMs) [169–171] are a large class of inor-

ganic cage complexes with very interesting properties that render

them  attractive for potential applications in a variety of fields
including catalysis. The catalytic properties of dendritic POM
hybrids were based on electrostatic bonding between POMs
(the most frequent one is Venturello ion [PO4{WO(O2)2}4]3−)
paired with dendritic cations. Dendritic POMs bearing Venturello
ion exhibited good catalytic activity and recoverability in the
oxidation of organic substrates such as alkenes, alcohols, and sul-
fides [85–87,172–174]. Zirconium-peroxo-based dendritic POMs
(Fig. 15) obtained by pairing zirconium-peroxotungstosilicate
[Zr2(O2)2(SiW11O39)2]12− with ammonium dendrons provided
homogeneous dendritic counterparts that also were recover-
able and reusable catalysts for the oxidation of sulfides in
aqueous/CDCl3 biphasic media [175].

Dendritic pyridine derivatives bearing 2,3,4,5-tetra-
phenylphenyl  substituent-supported palladium complexes
suppress the formation of Pd black during aerobic oxidation of
alcohols under common conditions [176]. Heterogeneous man-
ganese complexes of polystyrene-supported PAMAM dendrimer
showed high stability and catalytic efficiency in oxidation of
secondary alcohols, and can be recovered and reused at least six
times [177].

3.1.7.  Polymerization and oligomerization
The well-defined hyperbranched structure of metalloden-

drimers leads to possibility of site isolation of catalytic residues,
which suppress the formation of inactive bis-metal complexes.
The dendrimer-substituted o-diphenyl-phosphinophenol (Fig. 16,
left) is far more active than the parent ligand (Fig. 16, right) for
the Ni-catalyzed oligomerization of ethylene in toluene, which
was taken into account by the fact that the dendritic architecture
suppressed the formation of bis-(P,O)Ni complexes [178]. When
the compared analysis was carried out in methanol, a similar cat-
alytic result was  obtained, but the process was different from that
observed in toluene: both the dendritic ligand and the parent ligand
formed bis(P,O)nickel complexes in methanol according to NMR
spectroscopy. However, the dendritic bis(P,O)Ni complex dissocia-
tes to a mono-ligated species under catalytic conditions.

Both a monometallic copper(II) complex and a bimetallic com-
plex assembled with four copper(II) ions and one iron(III) ion
bearing a dendritic phenylazomethine (DPAG4, Fig. 17) were
used to catalyze the aerobic oxidative polymerization of 2,6-
difluorophenol without any base additive [179]. The catalytic
efficiency of the bimetallic complex outperforms that of the
monometallic copper complex, that is, the participation of the sec-
ond metal-ion enables facile control of the polymer products with
exceptionally high molecular masses and branching. The location
of the metal salts in DPAG4 dendrimer was radial, resulting from
stepwise complexation as reported in a previous study [180]. The
locations of bimetallic entities containing copper and iron in DPAG4
were also investigated. Binary titration experiments showed that
iron(III) with stronger affinity than copper(II) for the dendritic
ligand preferentially bind to the inner coordination sites of the
DPAG4, which was  confirmed by UV–vis absorption spectrometry.

3.1.8. Arylation and alkylation reactions
Phosphorus dendrimers functionalized with iminopyridine

chelating unit (Fig. 18) provided higher yields than with
a monomeric ligand for O- and N-arylation and vinylation
of phenol and pyrazole [181]. When azabis(oxazoline)-ended
phosphorus  dendrimers were evaluated as ligands for copper(II)-
catalyzed asymmetric benzoylations, a positive dendritic effect
in terms of enantioselectivity was observed [182]. The sec-
ond generation of 2,9-dimethyl-1,10-phenanthroline grafted
dendrimer showed similar catalytic activity to that of the
monomer in Cu-catalyzed substitution of 4-iodoanisol to give
1,4-dimethoxybenzene [183]. Dendritic poly(propylenimine) and
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Fig. 14. Rh–PPh2–PAMAM–SiO2 complexes.
Reprinted with permission from [89] (Alper’s group).
©  1999 American Chemical Society.

hyperbranched poly(ethylenimine) with P-containing functional
groups were applied as multivalent ligands in the Pd-catalyzed
allylic substitution reactions [184]. The G0–G4 phosphorus-based
dendrimers decorated with �-diketones were used as ligands for
copper in O-arylations of 3,5-dimethylphenol by aryl bromides.
Although no dendrimer effect was observed, which resulted from
the decomposition of the dendrimer under the reaction conditions,
it is a very efficient catalytic system for the O-arylation reaction
[185].

3.1.9. Asymmetric synthesis
Examples  of asymmetric hydrogenation have already been

introduced in the “Hydrogenation” section. Other recent advances
in metallodendritic asymmetric synthesis include the Henry reac-
tion, addition of dialkylzinc to aldehyde, asymmetric epoxide
ring-opening reaction, Diels–Alder reaction, and three-component
condensation.

A series of well-defined chain-end functionalized carbosi-
lane dendrimers having bis- and trisoxazolines distributed at the
periphery of their hyperbranched chain ends have been synthe-
sized [186]. Subsequently, dendritic copper complexes that were
immobilized in a membrane bag were produced, then “catalysis
in tea bag” systems was assessed by studying two benchmark
reactions, the �-hydrazination of a �-keto ester and the Henry
reaction of 2-nitrobenzaldehyde with nitromethane (Fig. 19). The
bisoxazoline-based catalysts displayed sufficient activity and could
be recycled without significant decrease in activity and selectivity.
Moreover, the simple operation of dipping the catalyst-filled dial-
ysis bags into reaction vessels containing the substrate was carried
out successfully.

A  series of dendritic polyglycerol salen ligands have been syn-
thesized [187]. The corresponding dendritic Cr(III) catalysts were

used  for asymmetric epoxide ring-opening (ARO) reaction. A neg-
ative dendritic effect was  shown on the enantioselective of the
ARO reaction, which resulted from the orientation of the immo-
bilized catalytic units with respect to one another. To achieve
higher enantioselective, pyrrolidine-modified dendritic salen lig-
ands were used and provided improved catalytic activities.

A  method for Diels–Alder and three-component condensation
reactions using poly(arylether) with a 2,2′-bipyridine core-based
dendritic copper catalyst was described [188]. The Diels–Alder
reaction of cyclopentadiene with various dienophiles was  per-
formed with 10 mol% of the catalyst affording the corresponding
adducts in excellent yields; when the dendritic ligand was  not
used in the reaction, neat copper catalysts could not provide
Diels–Alder adducts but promoted the cationic polymerization of
cyclopentadiene. This catalyst was also employed for Mannich-
type reactions (three-component condensation) of an aldehyde,
o-anisidine. Using various nucleophiles, better yield was  obtained
with water as solvent than with dichloromethane, which was
attributed to the cohesion effect of organic substrates in water.
Moreover, the catalyst was  recovered and reused at least five times
without losing its activity in all cases.

3.1.10. Other reactions
Other  recent advances in metallodendritic catalysis focused

on thermal decomposition of ammonium perchlorate [189],
Ru-catalyzed hydration of phenylacetylene and isomerization
of 1-octan-3-ol [190,191], Pd-catalyzed auto-tandem reaction
[192,193], Fe-catalyzed alkene epoxidation reactions [194],
Cu-catalyzed generation of oxygen radical anions [195], Ru-
catalyzed olefin metathesis [196,197], Zn-catalyzed cleavage of
the RNA model substrate HPNPP [198,199], Co-catalyzed acti-
vation of carbon dioxide [200], co-catalyzed debromination of
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Fig. 15. Zirconium-peroxo-based dendritic POMs.
Reprinted with permission from [175] (Nlate’s group).
©  2010 Wiley-VCH.

Fig. 16. o-Diphenylphosphinophenol ligands.
Reprinted with permission from [178] (Reek and van Leeuwen’s group).
© 2004 American Chemical Society.

2-phenethylbromide [201], and Rh-catalyzed [2 + 2 + 2] cycloaddi-
tion reacton [202].

The  combination of PTA (1,3,5-triaza-7-phosphaadamantane)
[203] and dendrimers might bring about water-soluble
organometallic dendritic catalysts. Ruthenium complexes with
PTA at the periphery were synthesized and used as catalysts for
the hydration of alkynes and the isomerization of allylic alcohols
to ketones in aqueous media. Positive dendritic effects on the

Scheme 3. Concept of “bottling” dendritic catalysts in PPX nanotubes.
Reprinted with permission from [221] (Wendorff’s group).
©  2009 Wiley-VCH.
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Fig. 17. Structures of phenylazomethine dendrimer (DPAG4), and the addition of CuCl2 and FeCl3 by different methods.
Reprinted with permission from [179] (Yamamoto’s group).
©  2011 John Wiley & Sons, Ltd.

regioselectivity or conversion were observed for both reactions
[190]. In addition, the study of the “number of terminal groups vs.
dendrimer generation” was investigated for the dendritic ligand
1-G2 of the first generation containing 24 PTA groups, 1-G1 of the
first generation containing 12 PTA groups, and 6-G2 of the second
generation containing 24 PTA groups (Fig. 20). Through compared
analysis of the catalytic efficiencies, the positive influence of the
density of catalytic sites on the surface of these dendrimers for the
alcohol isomerization reaction in water has been demonstrated
[191].

Catalysis of ring-closing metathesis (RCM), cross metathesis
(CM) and enyne metathesis (EYM) of hydrophobic substrates
was reported in water and air under ambient or mild conditions
using low catalytic amounts (0.08 mol%) of a suitably designed
“click” dendrimer (Fig. 21) that can be reused many times and

Fig. 18. Structure of azabis(oxazoline)-ended dendrimer ligand generation 1.

Reprinted with permission from [181] (Majoral’s group).
©  2006 American Chemical Society.

very low amounts of Grubbs’ second generation olefin-metathesis
catalyst [197,204–206]. The dendrimer plays the protecting role of
a nanoreactor towards the catalytically active species, in particular
the sensitive ruthenium-methylene intermediate, involved in the
metathesis catalytic cycle, preventing catalyst decomposition in
the presence of an olefin substrate.

3.2. Dendritic organocatalysts

The  number of publications on dendritic organocatalysis has
dramatically increased during the past few years [207–212].
Michael addition [213–215], hydrolysis reaction [216,217], model
aldol reaction [218], epoxidation of enones [219], hydrogenation
[220], Knoevenagel reactions [221], transamination [222], aldol
reactions [223,224], hydrosilylation [225], superoxide dismutation
[226], asymmetric borane reduction of prochiral ketones [227], and
ring-opening of epoxides [228] have been reported using dendritic
organocatalysts.

For example, a novel method in which C16 alkyl chains have
been attached to the fifth generation of poly(propyleneimine) (PPI)
dendrimers was reported [207], and these new dendrimers have
been used as efficient tertiary amine catalysts for an intramolecular
Michael reaction based on substrate orientation within the inter-
nal dendritic nanocavities. The sterically confined nanocavities
consisting of regularly arranged amino groups of the dendritic
organocatalyst could accommodate the substrate in a reactive
conformation for intramolecular cyclization. The recyclable chiral
2-trimethylsilanyloxy-methyl-pyrolidine-functionalized den-
dritic organocatalyst was synthesized and used in the Michael

Fig. 19. An enlarged schematic view of general setup for the recycling using the
“catalyst in a tea bag” principle.

Reprinted with permission from [186] (Gade’s group).
©  2009 Wiley-VCH.
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Fig. 20. Chemical structure of dendrimers 1-G1 , 1-G2 , and 6-G2 , allowing the comparison between their size and their number of terminal groups.
Reprinted  with permission from [191] (Caminade’s group). © 2012 Elsevier.

addition reaction of various unmodified aldehydes with
nitrostyrenes [208]. In this study, the catalyst showed good
catalytic activities in terms of yields, enantioselectivities, and
diastereoselectivities when aldehydes with different substituents
were employed. A series of Wang polystyrene-supported recy-
clable bifunctional dendritic organocatalysts having various
numbers of acidic protons based on chiral diamines have been syn-
thesized [209]. These macromolecules were evaluated as catalysts
for asymmetric nitro-Michael addition of acetone to nitroolefins.

Catalytic  results showed that the number of H-bond donors of the
catalyst was  a determinant for the reactivity and enantioselec-
tivity. When the number of acidic protons increases from zero to
two, the yield of the product increases 3-fold. However, a better
enantioselectivity was  achieved with catalysts having one acidic
proton.

Poly(p-xylylene) (PPX) nanotubes which can be considered
as nanoreactors were prepared in 2009 (Scheme 3) [221]. The
PPX nanotubes loading PAMAM dendrimers showed activity as
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Fig. 21. PEG-ended water-soluble dendrimer for Grubbs-catalyzed olefin metathe-
sis of hydrophobic substrates in water [197].

recyclable catalysts in a Knoevenagel reaction. Moreover, the
PAMAM dendrimers successfully reacted with acid inside the
tube to provide a new catalyst system, in which about 26% of
the amines were conjugated with 2,2,6,6-tetramethylpiperidine-
N-oxyl  (TEMPO) moieties. The nanotubes containing TEMPO-
conjugated PAMAM derivatives were active as reusable catalysts
in the TEMPO/bleach oxidation of benzyl alcohol. The authors
believed that it was possible to “bottle” any catalyst into PPX nano-
tubes through conjugation with PAMAM.

4. Conclusion and outlook

As  shown here, dendritic catalysis is a rapidly growing field.
Essential new concepts have emerged with various positive and
negative dendritic effects. In classical examples, the catalysts were
loaded with catalytic species at the periphery. On one hand this
brings about a large number of catalytically active species in a small
nano-object and on the other hand restriction of substrate access
can sometime lead to a negative dendritic effect resulting from
bulk limiting reaction rates. In more sophisticated designs, cataly-
sis proceeds in the dendritic interior, thus the dendrimer then plays
the role of a nanoreactor, eventually in a biomimetic enzyme-type
fashion. Typical examples include nanoparticle catalysis pioneered
by Crooks [70,145,146] whereby the dendrimer plays the function
of a unimolecular micelle [24,229,230]. The intradendritic ligand
design plays a crucial role in this case, and for instance click reac-
tions installing 1,2,3-triazolyl ligands inside the dendrimers turn
out to be remarkably successful in this respect [75–78]. Recent
enthusiasm toward organocatalysis [207–212] has largely involved
dendrimer chemistry that is particularly suited for these “green
chemistry” applications.
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1. INTRODUCTION

Catalysis is a key component of “green chemistry”, and one of
the urgently needed challenges facing chemists now is the
design and use of environmentally benign catalysts.1−10 A
sustainable and “green” catalyst must therefore possess specific
features11 including low preparation cost, high activity, great

selectivity, high stability, efficient recovery, and good
recyclability.
Conventional catalysts can be divided into homogeneous and

heterogeneous, the former holding advantages such as good
activity and selectivity and accessible mechanistic studies
leading to catalyst optimization. However, the difficulty of
separating homogeneous catalysts from reaction medium
consumedly restricts their applications in industry, especially
in the drug and pharmaceutical industry owing to the issue of
metal contamination in the case of metal-catalyzed synthesis.
Heterogenization of active molecules with a solid support
fabricating insoluble heterogeneous catalytic systems is an
efficient strategy in order to achieve the isolation and separation
of catalysts. However, the activities of heterogeneous catalysts
are generally lower than those of their homogeneous
counterparts, due to the lower dimensionality of the interaction
between the components and the catalyst surface.
As semiheterogeneous catalysts, nanocatalysts with a large

surface-to-volume ratio, are attractive alternatives to conven-
tional catalysts, substantial enhancements in catalytic activity,
selectivity, and stability are realized by tailoring their size, shape,
composition, and electronic structure.12−22 Nanocatalysts are
isolated and recovered through filtration or centrifugation
methods, whereas the inconvenience and inefficiency of these
tedious methods caused by the nano size of the catalyst
particles hamper the sustainability and economics of the
nanocatalytic strategy.
To overcome these issues, use of magnetic nanoparticles

(MNPs) appears to be the most logical solution. Magnetic
nanocatalysts are simply and efficiently removed from reaction
mixtures with an external magnetic field, and MNPs have
emerged as ideal catalysts or supports. This field has indeed
been the subject of excellent reviews.23−28

Due to this explosive development, new reactions, nano-
catalysts, systems, and trends are appearing at a fast rate, and
about 400 publications have appeared in the last 2 years.
Therefore, in this review, we briefly summarize the basic
concepts and seminal studies of magnetically recoverable
catalysts; then we highlight the new breakthroughs and trends
in the area that have most recently appeared until 2014.

1.1. Synthesis and Modification of Magnetic Nanoparticles

The methods of preparation of MNPs play a key role in
determining the particle morphology (size, shape, agglomer-
ation, and size distribution), composition, magnetic property,
surface chemistry, and catalytic applications. There are several
protocols reported in the literature for synthesizing MNPs,
such as the coprecipitation method, the micromulsion
technique, the sol−gel method, spray and laser pyrolysis, the
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hydrothermal reaction method, sonolysis, microwave irradi-
ation, biological synthesis, etc.23,24,29−35 According to particular
requirements for MNPs, these methods were operated under
optimized conditions (mainly regarding reaction temperature,
pH value, concentration, and proportion of starting materials)
to synthesize MNPs in the forms of metals (Fe, Co, Ni), alloys
(FePt, CoPt), iron oxides (FeO, Fe2O3, Fe3O4), or ferrites
MFe2O4 (M = Co, Mn, Cu, Zn). These MNPs are directly used
as catalysts or as supports for further modification or
functionalization with the catalytic species.
Among these MNPs, magnetite (Fe3O4) has been identified

as the ideal and most widely used support in catalysis36,37

because of its low cost and easy preparation. Magnetite is inert
and possesses a very active surface for immobilization or
adsorption of catalytic fragments including metal catalysts (Au,
Pd, Pt, Cu, Ni, Co, Ir), organocatalysts, and enzymes resulting
in formation of remarkably sustainable catalysts. Magnetite has
been used in recent years as a versatile catalyst support in a
wide range of reactions, such as Suzuki, Heck, Sonogashira,
Hiyama, hydrogenation, reduction, oxidation, cycloaddition
reactions, asymmetric synthesis, etc. Magnetite has also been
directly applied as catalyst in organic transformations. For
example, Fe3O4 nanoparticles (NPs) exhibited high catalytic
performance for the practical and atom-economic one-pot
synthesis of propargylamines via three-component coupling of
aliphatic aldehyde, alkyne, and amine. In addition, after
completion of the first reaction cycle, Fe3O4 is magnetically
separated from the reaction medium with an external magnetic
field and reused at least five times without a significant decrease
of activity.38 Other forms of iron oxide, maghemite (γ-Fe2O3),
and spinel ferrites (MFe2O4) have also received a lot of
attention in the field of MNPs catalysis owing to their
ferrimagnetism, environmental stability, and other properties.
Aggregation of the naked MNPs is virtually unavoidable

because of their small interparticle distances, high surface
energy, and the existence of van der Waals forces. To solve this
problem, modification of MNPs using suitable stabilizing
ligands or coating materials (including small molecules, silica,
polymers, carbon, ionic liquids, metal or metal oxide NPs, and
their layer-by-layer combinations) has been proved to be the
best solution to date. Meanwhile, the modification procedures
provide reaction sites or active groups for covalently or
noncovalently grafting the active catalytic units onto the coated
MNPs to construct magnetically recoverable catalysts.
Dopamine derivatives,39−41 triethoxysilyl-42−44 phosphonic

acids-functionalized molecules,45,46 and glutathione47,48 were
frequently applied to stabilize and functionalize MNPs. This
process produces grafting sites or reaction sites to bind catalytic
species. Dopamine, a natural neurotransmitter that is present in
various animals, contains catechol and amine groups. It exhibits
an outstanding capacity of coordination to Fe ions of MNPs,
the coordination usually being promoted by sonicating the
mixture in suspension. The amine groups of dopamine
derivatives are versatile chelating reagents (or reactive frag-
ment) to directly coordinate metal catalyst or react with other
organic molecules. Triethoxysilyl-functionalized molecules such
as commercially available NH2-, SH-, and Cl-terminated
compounds and their further functionalized derivatives are
another type of popular reagents for surface modification of
MNPs. The connection of MNPs with these silane reagents is
achieved by coupling between the hydroxyl group of MNPs and
silane reagents. For instance, the Sato group44 reported the first
example of phase-transfer catalyst (quaternary ammonium and

phosphonium salts)-modified MNPs. In the synthetic process,
(3-iodopropyl) trimethoxysilane successively reacted with
quaternary ammonium and phosphonium salts, and the
homogeneous triethoxysilyl-functionalized phase-transfer cata-
lyst that was obtained was then anchored using MNPs. This
semiheterogeneous catalyst showed high performance in terms
of activity and stability in the O-alkylation reaction of PhONa
with n-BuBr in the solvent mixture of toluene and water.
Phosphonic acids and glutathione are also bifunctionalized
linkers between MNPs and catalytic species.
Silica is the most popular inorganic coating material for

MNPs, because it is very easily connected to MNPs. Most
MNPs are synthesized in organic solvent using hydrophobic
capping reagents, resulting in dispersibility in organic solvents
but poor dispersion properties in environmentally benign
aqueous media. Silica as coating shell improves the water
solubility and biocompatibility of MNPs. The dense silica shell
has plenty of Si−OH groups for potential derivatization with
various functional units allowing introduction of catalytic
molecules to MNPs. Silica shells prevent metal leaching from
the core of MNPs under harsh shaking conditions. Coating
silica is generally performed through the sol−gel method,
microemulsion technique, and deposition of silica deposition
from a silicic acid solution. Since the pioneering work on the
application of silica-coated MNPs as a recyclable catalyst
support was reported by Ying and co-workers,49 a great variety
of catalysts based on silica-coated MNPs have been developed.
For example, Jin’s group demonstrated that a triethoxysilyl-
functionalized Pd complex was easily immobilized on the
surface of SiO2@Fe3O4 that was prepared by coating Fe3O4
NPs (20 nm in core) with a layer of silica through a sol−gel
process. This Pd catalyst was highly active and magnetically
recyclable in the Suzuki, Sonogashira, and Stille reactions of
unreactive aryl chlorides in aqueous conditions.50

Recently, introducing a shell of polymers (or dendrimers)
with functional groups to the surface of MNPs has been the
subject of increasing attention.28,35 In catalysis, the catalytic
performance of MNPs can be flexibly tuned and considerably
affected by the inherent properties of the polymers (or
dendrimers), such as solubility, functional groups, molecular
weight, degree of cross-linking, hydrophilicity, and hydro-
phobicity. In general, there are two protocols for the
immobilization of MNPs with polymers: in situ polymerization
on the surface of MNPs51,52 and grafting of polymers onto
MNPs via coordination, or hydrophobic, or electrostatic
interations.53,54 For instance, Fe3O4@PANI NPs with well-
defined core−shell nanostructure were fabricated through
polymerization of aniline on the surface of the Fe3O4 NPs.
After treating Fe3O4@PANI under acidic or neutral pH
conditions, its surface was covered by positive charge, which
allowed negatively charged citrate-stabilized AuNPs to be
attached to Fe3O4@PANI through electrostatic attractions.55

Various commercially available polymers including Pluronic
polymer,56 poly(acrylic acid) (PAA), and polyethylenimine
(PEI)57 have been used as coating materials on the surface of
MNPs. Dendrimers, exhibiting well-defined structure and a
monodisperse nature, have been identified as ideal capping
materials to MNPs for embedding molecular and nanocatalysts.
The step-by-step divergent synthesis of dendrimers on the
surface,58 and the grafting of presynthesized dendrimers on the
surface are two common protocols to form dendrimer shell of
MNPs.53,59 Alper’s group58 reported for the first time the
growth of polyaminoamido (PAMAM) dendrons on silica-
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coated MNPs. The stability and solubility (in organic solvents)
of SiO2@Fe3O4 NPs were significantly improved after
decorating with up to three generations PAMAM dendrons.
The successive phosphination and complexation with rhodium
toward PAMAM-coated MNPs produced a rhodium complex
that was supported on dendronized MNPs. This nanocatalyst
displayed excellent activity and selectivity in hydroformylation
reactions.
Ionic liquids (ILs) have attracted growing interest owing to

their safety, negligible vapor pressure with various polarities,
good solubility, capacity as reaction media, and catalytic
applications. In the recent reports, ILs-coated MNPs were
widely used as catalysts for oxidation, hydrogenation, and
condensation reactions.60−62 They were also used as stabilizers
for further immobilization of metal NPs.63

Encapsulation of MNPs in various solid supports such as
mesoporous materials,64,65 graphene,66 carbon nanotubes,67

and polymers was also efficient for stabilizing MNPs and
therefore fabricating magnetic supports. Magnetic mesoporous
materials, combining the advantages of mesoporous materials
(uniform pore distribution and large surface area) and MNPs,
have been used for a variety of applications, especially as
supports in catalysis over the past few years. MCM-41 and
SBA-15 are the most used mesoporous materials for the
support of MNPs. Graphene is a remarkable support for
encapsulation of metal NPs, because of its two-dimensional
plate-like structure and large specific surface area. Use of
graphene not only avoids the aggregation of metal NPs but also
enhances their catalytic activity owing to the strong synergistic
interaction between the two components. However, in the case
of MNPs, the problem of site competition on the surface of
graphene between MNPs and the further deposited catalytic
species hampers the catalytic application of magnetic graphene
as support. In a recent report, Cai’s group66 demonstrated that
introducion of a polydopamine shell between MNPs and
graphene perfectly solves this problem. Carbon nanotubes
(CNTs) exhibit intriguing properties, such as nanoscale
dimensions, high specific surface area, mechanical strength,
and chemical stability. Implantation of MNPs in CNTs
prevents agglomeration and brings the property of magnetic
recovery to the support. Among various MNPs, Fe3O4 is the
one most commonly used nanomaterial used in the preparation
of magnetic CNTs.68 Magnetic CNTs are assembled via high-
temperature decomposition,69 polymer wrapping and layer-by-
layer assembly,70 hydrothermal or solvothermal process,71 and
wet chemistry.72 The in situ hydrothermal or solvothermal
process is a fascinating method due to its capacity to easily
control the properties of MNPs.

1.2. Synthesis and Seminal Studies of Magnetic Catalysts

Grafting transition metal catalysts (including metal complexes
and metal NPs), organocatalysts, and enzymes to these MNPs
that contain stabilizers, modifying reagents, or supports was
achieved through covalent or noncovalent binding processes,
providing various magnetic catalysts that have been used in a
wide range of reactions.
MNPs-immobilized transition metal catalysts are divided into

metal complex catalysts and metal NP catalysts. Metal complex
catalysts supported on MNPs have generally been prepared
through two procedures: (1) direct reaction of metal complexes
with site-surrounded MNPs; (2) coordination of precursors of
metal complexes with chelating ligand-modified MNPs. Taking
Pd complexes as examples (Figure 1), the presynthesized

triethoxysilyl-functionalized (β-oxoiminato)(phosphanyl) palla-
dium complex was directly immobilized on the surface of
SiO2@Fe3O4 NPs via heterogenization with the Si−OH
binding sites of the SiO2 shell to give magnetic catalyst A.50

MNP-supported di(2-pyridyl) methanol was obtained via click
reaction between acetylene-terminated di(2-pyridyl) and azide-
functionalized MNPs followed by complexation with palladium
dichloride with the ligand providing magnetic catalyst B. This
catalyst showed excellent catalytic performance in terms of
activity and recyclability for Suzuki reactions.73

Metal NPs anchored to MNPs have been extensively studied.
Immobilization of metal NPs was essentially carried out using a
process in which soluble metal precursors first coordinated to
surface stabilizers or capping compounds of MNPs. Reduction
was then performed, resulting in assembly of metal NPs on
MNPs. The size, shape, morphology, and distribution of metal
NPs are well tuned by various surface stabilizers or capping
compounds under various conditions. Moreover, stabilizer-
functionalized MNPs prevent aggregation and leaching of metal
NPs. In the vast majority of examples the stabilizers appear to
be amine ligands in the form of dopamine, triethoxysilyl amine,
amine-containing polymers, or dendrimers (PAMAM). This is
due to their excellent nanoparticle (NP) stabilizing properties
against aggregation without disturbing their desirable proper-
ties. These stabilizers were also recognized to increase the
catalytic activity. Pd and Au were the most widely used metals
in NPs for MNP catalysis. MNP-immobilized PdNPs and
AuNPs played a key role in a variety of catalytic processes
including C−C coupling, hydrogenation, oxidation, reduction,
and organic synthesis.26,74,75 Use of MNPs as supports for these
noble metals provided great progress regarding the cost,
agglomeration, leaching issue, and catalytic efficiency and
lifetime.
The catalytic efficiency, selectivity, and recyclability of MNP-

immobilized metal NP catalysts are dramatically influenced by
the catalytic NP size and shape as well as the MNP support. In
general, smaller NPs possess higher catalytic efficiency and
selectivity, due to their larger percentage of surface atoms,
higher activation energy, and higher sensing response as
compared to these of larger particles.76,77 It has been verified
that the shape of NPs, determined by the exposed crystal
planes, considerably affects the catalytic performance.78 The
shapes of nanocatalysts are used to favor catalytic sites in
specific surface planes. However, it is still a challenge to

Figure 1. Synthesis of MNPs-immobilized Pd complexes.
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construct NPs shapes at will. The catalytic behavior also
strongly depends on the choice of MNP support that does not
only influence the size and shape of catalytic NPs through
varied decorations and components in the synthetic processes
of catalytic NPs but also determines the catalytic performance
via the interaction with NPs during the catalytic processes.79

These phenomena enhance the appeal of well-defined MNP-
supported metal NP catalysts in a wide variety of organic
transformations.
Organocatalysis dates back to more than 150 years ago.

Organocatalysts offer several advantages such as high robust-
ness, low toxicity, and straightforward accessibility compared
with metallic catalysts.80 Recently, immobilization of organo-
catalysts on MNPs was shown to be a highly efficient and
environmentally benign approach in organic synthesis. MNPs-
anchored organocatalysts were generally prepared by formation
of robust chemical bonds between modified MNPs and
organocatalyst units. In 2009, the Polshettiwar group47,48

described the first magnetically recoverable organocatalyst. In
this report, glutathione was covalently linked to Fe3O4 NPs via
coupling the thiol group with the free hydroxyl groups of the
surface of Fe3O4 NPs (Figure 2). The magnetic nano-

organocatalyst C based on glutathione was highly active in
the Paal−Knorr synthesis of a series of pyrrole heterocycles,
aza-Michael reactions, and pyrazole synthesis in aqueous media
under microwave conditions. The catalyst can be simply and
efficiently collected using a magnetic field and reused at least
three reaction cycles without any loss of activity. Afterward, the
magnetic glutathione-based organocatalyst was successfully
extended to the catalytic homocoupling of arylboronic
acids.81 A number of reports then followed in organic synthesis,
particularly in asymmetric synthesis with magnetic organo-
catalysts.41,82

Enzymes have provided a widespread application in the food,
textile, chemical, and pharmaceutical industries, due to their
crucial properties such as remarkably high activity, regio- and
enantioselectivity, specificity, use of mild reaction conditions,
and reduced energy consumption. However, complicated and
inefficient recovery and purification stages of enzymes restricted
their application. Immobilization of enzymes on MNPs
(especially on Fe3O4 and γ-Fe2O3 NPs) was a logical solution
to overcome these issues.83,84 The existing immobilization
protocols are classified into four categories: (1) adsorption−
cross-linking methods; (2) entrapping methods; (3) ionic or
covalent coupling methods; (4) other specific biorecognition
methods.85,86 Among them, covalent coupling is the best
candidate to achieve this protocol. Several covalent linking
chemistries including carbodiimide and maleimide coupling,

disulfide bridges, click chemistry, and thiol−ene chemistry have
been widely employed. Silica has been mostly explored as a
coating material of MNPs for anchoring biocatalysts, because it
is biocompatible, highly stable, and dispersible in aqueous
solutions. Since Lilly et al. prepared iron oxide-supported
cellulose in 1973,87 more than 30 kinds of enzymes and
biomolecules have been successfully immobilized on MNPs.88

Water purification has been studied for decades because of
the serious concern of contaminated water (especially those
contained organic pollutants) resulting from industrialization
and fast development of economy. With the rapid development
of photocatalysts,89,90 magnetically recoverable photocatalysts
have been recently extensively used in the field of degradation
of pollutants including dyes, herbicides, and related pollu-
tants,91,92 due to their low toxicity, perfect biocompatibility, and
excellent separation properties of MNPs.93,94 MNP-supported
nano-TiO2 is one of the main and most widely investigated
catalysts in the photodegradation of pollutants in water,
because nano-TiO2 is a highly efficient, low-cost, long-term
stable, and perfectly biocompatible photocatalyst.95−100 More-
over, MNPs-supported nano-TiO2 is easily separated using an
external magnetic field and repeatedly used. However, the
energy requirement for effective photoexcitation (higher than
3.2 eV) lead to TiO2-promoted photodegradation occurring
only under UV irradiation. Renewable sunlight irradiation-
involved photodegradation of pollutants over TiO2 is a
challenge.101 Among several strategies to improve the catalytic
properties of TiO2 such as other elements doping, decorating
with Lewis acids, dye sensitizing, and coupling with other
semiconductors, doping TiO2 with other elements is a
promising strategy to increase its photocatalytic activity. Ao’s
group102 synthesized a novel magnetic photocatalyst nitrogen-
doped TiO2-coated γ-Fe2O3 magnetic activated carbon that
showed high photocatalytic activity in degradation of Reactive
Brilliant Red X-3B in an aqueous solution under sunlight
irradiation. The catalyst also exhibited excellent recyclability; it
is magnetically separated using a magnet, and the catalytic
activity was preserved for six runs. Magnetic multifunctional
metal oxide/graphene composites were recently proved to be
promising photocatalysts for degradation of water pollutants
including organic dyes, water-borne pathogens, and heavy metal
ions.103,104

Research on magnetically recyclable nanocatalysts is a fast-
growing field. Many seminal studies recently appeared, such as
catalytic applications of bimetallic NPs (excluding spinel
ferrites), efforts to achieve completely sustainable, “green”
and practical organic transformations based on MNPs catalysts,
uses of new magnetic multifunctional materials with varied
architectures including core-double shell, yolk−shell, hollow
and bowl-like structures, and so on.
Bimetallic NPs have a bright future in catalysis due to their

enhanced stability, activity, selectivity, and other properties
compared to their monometallic counterparts.105,106 The
recently reported magnetically recyclable bimetallic NPs
catalysts are divided into two categories: MNPs-immobilized
bimetallic NPs (for instance, Fe3O4@AuPd NPs),107 and
bimetallic NPs containing a magnetic metal (for instance,
Ni@Ru, Fe@Au and Ni@Ag).108−110 These bimetallic NPs
display higher activity and selectivity in various organic
transformations than those of each monometallic counterpart
and physical mixture of monometallic counterparts. Further-
more, these magnetic bimetallic NPs catalysts generally show
good recyclability with magnetic separation.

Figure 2. Synthesis of a magnetic organocatalyst based on glutathione.
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Development of sustainable and practical chemistry is a long-
term subject. Using MNPs catalysts as platforms, chemists
recently made tremendous efforts to achieve rapid and easy
immobilization at room temperature in solvent-free conditions
at low cost for preparation of highly efficient MNPs with high
densities of functional groups, including use of flow reactors.
Relevant advancements and progresses have been illustrated in
the Recent Advances and Trends section.
Materials with multiple functionalities are presently of great

scientific and technological interest. In the field of MNPs
catalysis, a series of new multifunctional materials with various
structures has been recently designed and used. These materials
combine different properties into one particle such as
magnetism, high surface area, mechanical strength, thermal
stability, and various functional groups. For example, magnetic
materials with signal or double-shelled yolk-like structure were
constructed as ideal supports of noble metals.111,112 These
yolk−shell composites with a movable core have higher surface
area, larger void space, and lower density, which promises
higher catalytic efficiency and application as nanoreactors
compared to common core−shell composites. Hollow magnetic
mesoporous spheres (HMMS) also attracted extensive
attention as catalyst carriers, due to their superparamagnetic
property, uniform size, large surface area, high catalyst loading,
and homogeneous spherical morphologies.113 Exploration of
novel magnetic multifunctional materials in catalysis will never
stop.

1.3. Characterization of Magnetic Catalysts

After their preparation, the magnetic catalysts have been
characterized using a great variety of methods to gain a
comprehensive amount of data in order to properly analyze
their properties.
The size, shape, and morphologies of magnetic catalysts are

determined by transmission electron microscopy (TEM) and/
or scanning electron microscopy (SEM). The structure of
magnetic catalysts is usually determined by X-ray diffraction
(XRD) and/or X-ray photoelectron spectra (XPS). The
catalytic amount of magnetic catalysts is measured by elemental
analysis (EA) or inductively coupled plasma analysis (ICP).
Gas adsorption is a technique that is used for investigation of

the surface area of magnetic catalysts. Fourier transform
infrared spectroscopy (FT-IR) is used to monitor and confirm
the functionalization of magnetic catalysts. The magnetic
property is investigated utilizing the magnetic properties
measurement system superconducting quantum interference
device (SQUID) or vibrating sample magnetometer (VSM).
Thermogravimetric analysis or thermal gravimetric analysis
(TGA) is a suitable method to investigate the thermal stability
of magnetic catalysts. Photoluminescence (PL) spectroscopy is
used for detecting fluorescence property of magnetic catalysts.

2. RECENT ADVANCES AND TRENDS

2.1. Magnetically Recyclable Nanocatalysts Based on
Transition Metals

2.1.1. C−C Coupling: Miyaura−Suzuki, Heck, Sonoga-
shira, and Hiyama Reactions. Cross-coupling reactions to
construct C−C bonds are of significant importance in modern
chemical transformations. Various catalytic systems based on
transition metals as catalysts have emerged. Utilization of
MNP-supported transition metal catalysts for construction of
C−C bonds via Suzuki, Heck, Sonogashira, and Hiyama
reactions has received considerable attention during the past
few years.
The Pd-catalyzed Suzuki coupling reaction has been

recognized as the most powerful strategy for constructing
carbon−carbon bonds. It has been extensively utilized in the
synthesis of functional materials, pharmaceuticals, and natural
compounds due to its wide substrate scope, mild conditions,
high yields, and readily available starting materials.114−116 The
Suzuki reaction probably is the most classic reaction to evaluate
the catalytic activities of nanocatalysts consisting in Pd species.
Magnetic mesoporous silica spheres (MMS) currently are

very popular supports, among which MCM-41 and SBA-15 are
frequently used mesoporous silica materials. Fe3O4@SiO2@
mSiO2 with core-double-shell structure has been prepared by
two-step silica-coated processes, two layers of silica shell playing
the role of protection (inner shell) and offering large specific
surface area (outer shell), respectively.117 Fe3O4@SiO2@
mSiO2-immobilized PdNPs have exhibited unprecedented
catalytic activity in Suzuki reaction of phenylboronic acid

Figure 3. Preparation and catalytic applications of HMMS−Pd(0).
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with aryl halides, even aryl chloride with up to 93.77%
conversion. This success is attributed to productive implanta-
tion of PdNPs on/in both of the surface and mesopore
channels of attractive silica double shell. Moreover, the catalyst
was conveniently recovered upon applying an external magnetic
field, and it was recycled six times without any significant loss of
catalytic activity.117 Hollow mesoporous silica spheres (HMS)
were not only useful drug carriers but also efficient catalyst
carriers, owing to their low density, well-defined structures, and
homogeneous spherical morphologies.113 Compositions of
hollow magnetic mesoporous silica spheres (HMMS)-embed-
ded PdNPs were assembled using carboxylic polystyrene (PS)
latex118 or the colloidal carbon spheres of glucose119 as the
precursor of hollow space. PdNPs were implanted in the
magnetic heteroaggregates of Fe3O4 and mesoporous shell, and
the implantation step could be carried out either before or after
formation of the hollow space (Figure 3). Suzuki reactions were
conducted in ethanol in the presence of K2CO3 with 0.6−0.75
mol % HMMS−Pd as catalyst at 70−80 °C. This catalytic
system was broad in substrate scope, efficient even for aryl
chlorides,118 and highly recyclable. The HMMS−Pd catalyst
was also a competitive candidate in the hydrogenation of alkene
and nitro compounds.
Recently, other magnetic nanocomposites including polymer-

coated MNPs,120−124 ionic liquid-modified MNPs,125 sulfo-
nated graphene(s-G)-decorated MNPs,126 and magnetic
Fe3O4@C (MFC)127 were also used for stabilization of
PdNPs aiming to catalyze Suzuki reactions. Song and co-
workers125 enriched ionic liquid-modified MNPs with amine
functional groups and used this nanomatyerial as support for
the synthesis of Fe3O4@SiO2/IL/NH2/PdNP catalyst (Figure
4). The catalyst exhibited excellent activity in the Suzuki
reaction of phenylbornic acid with iodobenzene or bromo-
benzene containing a wide range of substituents using NaOH as
base in mixed solvent of ethanol and water at rt. The well-
dispersed magnetic nanocatalyst was magnetically separated
from the reaction mixture, and its catalytic activity did not
deteriorate even after several repeated applications. Sun and his

group126 assembled Fe3O4 NPs and PdNPs on s-G and
successfully used this semiheterogeneous catalyst in Suzuki
reaction. TEM analysis revealed that the PdNPs with a size of
4−5 nm were homogeneously distributed on the Fe3O4/s-G
pattern. The homogeneously water or water/ethanol-dispersed
catalyst was very efficient and maintained similar catalytic
performance during several cycles. Diao et al.127 reported the
construction of a magnetically retrievable Pd nanocatalyst that
was anchored on magnetic MFC nanocomposites via a
precipitation−deposition method. The diameters of MCF and
PdNPs were about 360 and 15 nm, respectively (Figure 4). The
Suzuki reaction was initially chosen as the model reaction for
evaluating the catalytic ability. The MCF@PdNP provided yields
in the range 52−100% within 1−3 h when aromatic iodides and
bromides were employed in refluxed ethanol. As for challenging
chlorobenzene, 95% yield was obtaied within 3 h of reaction
time in refluxed DMF using 0.308 mol % Pd with the assistance
of a small amount of KI. The catalyst was easily handled and
removed from the reaction mixture by magnetic separation
owing to its good stability and the presence of Fe3O4. In
addition, MCF@PdNP was also efficient in Heck reactions.
Comparing with other magnetic Pd nanocatalysts without
phosphine ligands, MCF@PdNP was outstanding.

127

Synthesis of MFe2O4 (M = Zn, Co) NPs-supported Pd(0)
NPs through ultrasound-assisted coprecipitation in the absence
of surface stabilizer or capping agent was reported.128,129 The
solid catalyst ZnFe2O4−Pd(0) displayed good performance for
the Suzuki reaction; both electron-deficient and electron-rich
aromatic iodides and bromides substrates provided high yields
of coupling products. The magnetic property allowed one to
recover the catalysts magnetically with an external magnet, and
no significant loss of activity of ZnFe2O4−Pd(0) was detected
during five successive cycles.
Phosphine-based ligands proved useful to stabilize PdNPs

onto magnetic supports. With the assistance of dopamine−
PPh2 stabilizer that was synthesized by coupling between
dopamine and (diphenylphosphino)benzoic acid, PdNPs were
successfully loaded on the surface of Fe3O4 NPs. In the process,

Figure 4. Examples for MNPs-supported Pd catalysts. Reprinted with permission from ref 125. Copyright 2012 Elsevier Ltd. Reprinted with
permission from ref 127. Copyright 2011 American Chemical Society. Reprinted with permission from ref 130. Copyright 2013 Wiley-VCH Verlag
GmbH & Co. Reprinted with permission from ref 137. Copyright 2012 Elsevier B.V.
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besides phosphine ligands, hydroxyl groups of Fe3O4 also
coordinated to Pd ion, which was depicted by the ratio Pd/
dopamine−PPh2 obtained from analytical data.130 As suggested
by the literature,131 the formed PdNPs would stay neither on
phosphine ligands nor hydroxyl groups but be positioned on
the surface of Fe3O4 (Figure 4), which was further confirmed
by analytical data. TEM images of Fe3O4−dopamine@Pd
showed that the average size of the heteroparticle is around 12
nm. PdNPs with a mean diameter of 2 nm were embedded in
the heteroparticles. PdNPs with larger sizes were provided
when naked Fe3O4 was employed. The catalytic behavior of the
Fe3O4−dopamine@PdNPs was demonstrated in the Suzuki
reaction between phenylboronic acid and 4-substituted
bromoarenes. When bromoarenes bearing electron-withdraw-
ing groups were employed, high reactivity in terms of selectivity
and conversion was found, but for the substrates bearing
electron-rich groups the yields significantly decreased. Un-
fortunately, only 5% yield was obtained in the presence of the
challenging chloride derivatives. Investigation of the recycla-
bility of Fe3O4−dopamine@PdNPs was conducted by treating
4-bromoanisole with phenylboronic acid. The results showed
that the catalyst kept similar catalytic performance after 10
cycles. In addition, Fe3O4−dopamine NPs decorated with
AuNPs or RhNPs were also assembled, and their catalytic
properties were evidenced in the reduction of 4-nitrophenol
and hydrogenation of styrene, respectively.
Linkers containing nitrogen were the most frequently used

and powerful chelating agents and stabilizers in the synthesis of
MNP-supported Pd nanocatalysts.132 Luo et al.133 reported the
preparation of new imino−pyridine-functionalized MNPs via
click chemistry and the corresponding MNP-supported PdNPs
Fe3O4@SiO2@imino−pyridine−PdNP (Figure 4). This catalyst
was then initially evaluated in the Suzuki reaction of 4-
bromoacetophenone with phenylboronic acid. Optimized
results were obtained with 0.2 mol % catalyst and use of
K2CO3 as a base in aqueous ethanol at 60 °C under air. Under
these conditions, electron-withdrawing and electron-donating
groups on aryl bromides were tolerated in the reaction,
resulting in fairly good to excellent yields and selectivity.
However, the catalytic system showed much less activity for the
challenging aryl chlorides, even upon extending reaction times
and increasing the catalytic amount to 1 mol %. Following the
efficiency of Fe3O4@SiO2@imino−pyridine−PdNP, the recycla-
bility of the catalyst was investigated in several volume ratios of
ethanol/water (1:1, 2:1, 19:1). The amount of water in the
reaction medium significantly influenced the catalyst reusability;
more water caused the gradual loss of catalytic activity. The
best recyclability result was that the reaction could be
maintained at 95% yield after six cycles, when 19:1 of
ethanol/water was employed as solvent.
MNP-supported Pd complexes provide high performance in

the Suzuki reaction, as expected. The chelating fragments
mentioned in the literature include triarylphosphine,134,135 (β-
oxoiminato)-phosphine,50 N-heterocyclic carbyne,43,136 bigua-
nide,137 polymer,138 etc. As described in the literature,139 the
real catalytic species of Pd complexes for Suzuki coupling
reactions are Pd(0) NPs that are formed via fast reduction of
Pd2+ ions by the solvent. Complexation of metformin-modified
MNPs with Pd(OAc)2 was readily achieved, and Fe3O4@SiO2−
metformin−Pd(OAc)2 (Figure 4) was further tested as a
catalyst in aqueous ethanol.137 Several aryl bromides containing
substituent groups in broad scope were proved suitable partners
for the Suzuki reaction reacting with phenylboronic acid. Upon

completion of the reaction, the catalyst was easily collected
using an external magnet that was further washed and dried and
then subsequently reused in another run with fresh reactants.
No significant degradation in catalytic performance was
observed in eight successive runs. When inactive chlorobenzene
was employed, the reaction proceeded moderately with a 45%
yield. In addition, atomic absorption spectroscopy did not
detect Pd ions after each reaction. The existence of Pd(0) NPs
was confirmed by TEM, and the authors indicated that
exposure of Fe3O4/SiO2−Met−Pd(OAc)2 to EtOH as
cosolvent led to the reduction of Pd2+ ions to Pd(0) species.
Among these magnetic nanomaterials, NiNPs have attracted

great interest in organic synthesis due to their magnetically
recoverable property and catalytic activity. NiNPs with a mean
diameter of 100 nm and ferromagnetic property were prepared
from NiCl2·6H2O with the assistance of hydroxypropylmethyl-
cellulose (HPMC). The semiheterogeneous polymer-stabilized
NiNPs showed good performance in Suzuki reaction relative to
the traditional Ni catalyst, but the recyclability in terms of the
number of times and yields was not detailed.140

The Heck coupling reaction has been highlighted due to its
high efficacy in the synthesis of arylated olefins that are widely
utilized in pharmaceuticals, agrochemicals, and cosmetics
production. Phosphine-functionalized magnetic nanoparticles
(PFMN) have been suggested to be most efficient supports for
stabilization of catalytic Pd species in the field of magnetic
nanocatalysts in the Heck reactions, because phosphine ligands
promote well the immobilization of Pd onto MNPs and control
their size, modality, and distribution.141 Starting from PFMN,
the MNPs-anchored palladium(II) complex PFMN−Pd-
(OAc)2

142 (Figure 5) with a diameter of 10 nm was readily

synthesized and tested initially in the Heck reaction of
chlorobenzene with ethyl acrylate using 1 mol % Pd in the
presence of K2CO3 in DMF at 120 °C. The corresponding
trans-arylated olefin was produced in 93% yield. Investigation of
the substrate scope showed that both electron-deficient and
electron-rich aryl chlorides proceeded smoothly to furnish the
desired products in 88−95% yields.142 This catalytic system was

Figure 5. Examples for PFMN@Pd used in the Heck reaction.
Reprinted with permission from ref 142. Copyright 2013 Elsevier B.V.
Reprinted with permission from ref 144. Copyright 2012 Elsevier Ltd.
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remarkably efficient, even by comparison with classic
homogeneous catalysts. The leaching of Pd species from the
initial catalyst to the reaction medium is a very key issue for
evaluation of heterogeneous catalysts. The catalyst PFMN−
Pd(OAc)2 was reused at least four times with sustained
selectivity and activity, and ICP analysis revealed that less than
1% of Pd was released from the initial catalyst. In addition,
comparative experiments were conducted in the absence of Pd-
anchoring phosphine group for synthesis of PFMN−Pd(OAc)2,
and the phosphine-free catalysts provided much lower yields
and recyclability.142 X-ray photoelectron spectroscopy (XPS)
determination indicated that only Pd(II) was found in freshly
prepared PFMN-supported Pd catalysts;142,143 however, the
actual catalytic species was zerovalent Pd.143 Li et al.144

synthesized hyperbranched polyglycidol (HPG) phosphine-
modified MNP that was further employed as support for
immobilization of PdNPs. The catalyst Fe3O4@SiO2@HPG−
OPPh2−PdNP (Figure 5) showed excellent activities in the
Heck reaction of a range of aryl iodides and bromides with
olefins with yields up to 95%. After almost complete recovery of
the catalyst using an external magnetic field, it was used for five
additional cycles without loss in catalytic performance.
Moreover, the satisfactory catalytic behavior of Fe3O4@
SiO2@HPG−OPPh2−PdNP was also verified in the Suzuki
reaction.
Apart from phosphine-based ligands, other chelating frag-

ments were aso efficiently used in Pd-catalyzed Heck reaction.
The oleic acid (OA) functionalized Fe3O4 NPs exhibited good
immobilization capability for PdNPs; the catalytic property of
the assembled nanocatalyst Fe3O4@OA−PdNPs (Figure 6) was

evaluated in Heck reaction.145 The cross-coupled product was
produced with 98% yield using 10 mg (0.2 mol % [Pd])
Fe3O4@OA−PdNPs in DMAc at 120 °C in the presence of
N(Butyl)3 and TBAB in the case of bromobenzene and styrene
as model substrates. This catalyst showed extraordinary
functional group tolerance to aryl halide (Ar−Br, Ar−Cl); a
variety of arylated olefins compounds were isolated mostly in
good to excellent yields. Investigation of its recyclability
indicated that Fe3O4@OA−PdNPs could be easily collected
by an external magnetic attraction. Repeated use for at least
four runs retained almost the same activity, with only trace
amounts of leaching Pd. Khosropour et al.146 demonstrated that
Fe3O4@SiO2 MNPs-anchored dicationic ionic liquid with a
1,3,5-triazine core can be readily constructed and further
coordinate with palladium−EDTA, offering a novel MNPs-
supported Pd complex (named as Fe3O4@SiO2−A−Pd-
(EDTA)) (Figure 6). Its catalytic performance was tested by
Heck coupling reaction of various aryl halides (Ar−I, Ar−Br)
with styrene derivatives bearing a wide range of substituent
groups. The corresponding products were synthesized with

80−97% yields and 1.9 × 103−1.4 × 104 h−1 TOFs using 0.003
mol % Pd at 90 °C under silent conditions. When these
reactions proceeded under ultrasound irradiation (170 W, 50
°C) instead of silent conditions the yields and TOFs were
increased to 88−97% and 5.1 × 104−2.5 × 105 h−1,
respectively. Evaluation of recyclability and stability of
Fe3O4@SiO2−A−Pd(EDTA) was conducted under ultrasound
irradiation. The catalyst was magnetically removed from the
reaction medium and reused for six reaction cycles without
obvious decrease in catalytic activity.
Safari et al.147 prepared magnetic Fe3O4 NPs-supported Ni2+

containing 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium
chloride ionic liquid (IL) catalyst by immobilizing a IL−Ni
complex on the surface of MNPs and demonstrated their use as
heterogeneous catalysts for the Heck reaction (Figure 7).

Excellent yields of coupling products were provided from
iodobenzene with olefins at 100 °C in 4 h. However, the
coupling of aryl bromide or chloride gave significantly lower
yields compared with those obtained with aryl iodides. The
catalyst was simply recovered using an external magnetic yield
and reused at least five times without loss of catalytic activity in
the coupling of iodobenzene with ethyl acrylate. The most
prominent advantage of the IL−Ni(II)-functionalized magnetic
Fe3O4 NPs catalyst was to avoid the use of expensive Pd.
Sonogashira coupling, a common strategy for construction of

a C−C bond, has been frequently reported in organic
chemistry, especially for synthesis of conjugated compounds.
MNPs functionalized with Schiff base ligands have potential
application in catalysis due to their excellent complexation
ability with metal ions. Recently, MNPs-immobilized Schiff
base−Pd (II) catalysts (Figure 8) were synthesized by easy-to-
operate methods.148,149 Their application as efficient catalysts
for Sonogashira reactions under heterogeneous phosphine-free
and copper-free conditions has been described. Using Fe3O4@
SiO2/Schiff base/Pd(II) catalysts, symmetric or asymmetric
internal alkynes were produced from the reaction of aryl
iodides, bromides, or chlorides with terminal alkynes. These
catalysts were magnetically separated from the reaction mixture
and recycled for several consecutive runs without appreciable
loss of catalytic activity.148,149

The literature on catalytic applications of MNPs-supported
catalysts is relatively underrepresented in the Hiyama reaction,
which is known as a very important cross-coupling trans-
formation of aryltrialkoxysilanes with aryl halides.The latest
example of such a process was provided by Wang and co-
workers,150 who reported that the PFMN-immobilized Pd
complex Fe3O4@SiO2−Pd(OAc)2 not only worked well in the
Heck reaction143 but also displayed high activity in the Hiyama

Figure 6. Magnetic catalysts Fe3O4@OA−PdNPs and Fe3O4@SiO2−
A−Pd(EDTA) for Heck reactions.145,146 Reprinted with permissions
from ref 145. Copyright 2013 Elsevier.

Figure 7. Heck reaction with IL−Ni(II)−MNPs.
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reaction (Figure 9). The results of optimized investigations
showed that a biaryl compound was isolated in 91% yield when

the Hiyama reaction was carried out between 4-iodoanisole and
phenyltrimethoxysilane using TBAF as base in the presence of
0.5 mol % Pd in THF at 60 °C. A variety of organic halides
reacted with phenyltrimethoxysilane to give the cross-coupling
products in good to excellent yields. The authors did not
describe the substrate scope of aryltrimethoxysilanes. The
recyclability of Fe3O4@SiO2−Pd(OAc)2 was also explored in
the coupling of 4-iodoanisole and phenyltrimethoxysilane; the
nanocatalyst was recycled at least 10 times with no detectable
deactivation. MNPs-supported PdNPs consisting of Fe3O4 NPs
of 25−50 nm in diameter and PdNPs of 5 nm encaged in Fe3O4
were easily prepared and evaluated in Hiyama reactions of a
wide range of aryl bromides and aryl siloxanes.151 A variety of
biaryl subunits were constructed in good to excellent yields
with 0.2 mol % of Fe3O4@PdNP at 90 °C in aqueous solution.
In addition, the nanocatalyst exhibited quite the same
morphology and catalytic activity even after five cycles.
2.1.2. Alkyne−Azide Cycloaddition. 1,2,3-Triazoles, five-

membered nitrogen heterocyclic compounds, have tremendous
applications in various research fields including synthetic
organic, medicinal, materials, and biological chemistry. There-
fore, synthesis of 1,2,3-triazoles has been one of the hottest
subjects during the past few decades. Among numerous
synthetic methods, catalyzed Huisgen cycloaddition of organic
azides and alkynes by Cu and Ru catalysts are the most efficient
ones and have been widely used to construct the 1,2,3-triazole
heterocycles selectively, forming, respectively, 1,4- and 1,5-
disubstituted 1,2,3-trizoles.
Copper-catalyzed cycloaddition of alkynes and azides

(CuAAC)152,153 is the most efficient means to incorporate

two functional fragments, and it is undoubtedly to date the
most representative example of “click” reaction.154 Indeed,
CuAAC holds several advantages over the thermal Huisgens
version including mild reaction conditions, 100% atom
economy, exclusive regioselectivity, and broad substrate
scope. However, contamination with cytotoxic Cu ion is a
long-standing problem that restricts the applications of CuAAC
in electronics and biomedicine. To solve this problem, the use
of heterogeneous CuAAC catalysts appears to be the most
logical solution instead of the other methods including
performing CuAAC under continuous flow conditions,
chromatographic purification of crude product, or washing
crude product with amine (or ammonia). For the hetero-
genization of CuAAC catalysts, functionalized MNPs have
emerged as viable supports.
MNPs-supported Cu catalysts are divided into two sorts that

are MNPs-supported Cu complexes and Cu(0) or Cu(I) NPs.
MNPs-immobilized binuclear Cu(II)−β-cyclodextrin was easily
prepared by addition of copper sulfate to a the sodium
hydroxide solution of β-cyclodextrin.155,156 This magnetic
catalyst of 10−20 nm in diameter showed high activity in the
facile one-pot synthesis of 1,4-disubstituted 1,2,3-triazole
through azido reaction/cycloaddition of arylboronic acid,
sodium azide, and alkyne in water at rt in air without any
additives (Figure 10). The results of investigations of substrate

scope indicated that both different substituted arylboronic acids
and alkynes were successfully employed in the catalytic system
providing excellent yields. Fe3O4−β-CD−Cu2 was collected by
a magnet and successively reused for four reaction cycles
without considerable loss in activity.
Diéz-Gonzaĺez and co-workers157 prepared nonmagnetic

silica flakes and silica NPs- and magnetite/silica NPs-supported
copper(I)-N-heterocyclic carbene (NHC) catalysts. All three
silica materials were used as catalysts in the CuAAC reaction of
benzyl azide with phenylacetylene using 1 mol % [Cu] on water
at rt and gave quantitative formation of corresponding 1,4-
disubstituted 1,2,3-triazoles. The catalysts were then separated
from the reaction medium by filtration or using an external
magnet, and after washing and drying they were reused for a
new reaction cycle. In the fifth cycle, the catalyst supported on
silica NPs almost completely lost its activity; the copper-
functionalized silica flakes led to moderate yields. On the other
hand, the magnetite/silica NPs-supported catalyst retained high
activity and selectivity even after a minimum of nine
consecutive cycles. Moreover, various 1,4-disubstituted 1,2,3-

Figure 8. Sonogashira reactions with Fe3O4@SiO2/Schiff base/Pd(II)
catalysts.148,149 Reprinted with permission from ref 148. Copyright
2013 Elsevier B.V. Reprinted with permission from ref 149. Copyright
2010 Elsevier B.V.

Figure 9. Hiyama reaction with PFMN@Pd catalyst.

Figure 10. One-pot synthesis of 1,2,3-triazoles using Fe3O4−β-CD−
Cu2.

155 Reprinted with permission from ref 155. Copyright 2013 Royal
Society of Chemistry.
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triazoles were isolated in good to excellent yields, regardless of
the substituent groups on either the alkyne or the azide.
Pincer-type ligands containing two chelating positions are

another valuable template for complexation of Cu cation in the
synthesis of magnetically separated catalysts for CuAAC.158,159

Xiong et al. synthesized 3-aminopropyltrimethoxysilane
(APTS) and [3-(2-aminoethylamino)propyl]trimethoxysilane
(AAPTS)-modified MNPs that were further treated with CuBr
to generate MNPs−CuBr 1 or MNPs−CuBr 2 (Figure 11).160

Catalytic applications of these two catalysts were evaluated in
the one-pot CuAAC reaction of benzyl chloride and sodium
azide with phenylacetylene in mixed reaction medium of water
and PEG400 under microwave irradiation conditions. Initial
results of the experiment showed that the reactions were
performed smoothly using either MNPs−CuBr 1 or MNPs−
CuBr 2, and the former exhibited higher activity than the later.
MNPs−CuBr 1 was then applied in the investigation of
substrate scope using sodium azide and different alkyl halide
and alkynes as starting materials, with 1.46 mol % of [Cu].
Most of the 1,4-disubstituted 1,2,3-triazoles were isolated in
good to excellent yields with 100% selectivity. The reactivity of
4-bromobutane was lower than that of either benzyl chloride or
bromide. The longer chain of the aliphatic halides significantly
decelerates the reaction, and disubstituted aliphatic halides such
as 1,6-dibromohexane and 1,10-dibromodecane gave very low
yields upon reaction with phenylacetylene. The authors
indicated that the poor results of aliphatic halides with long
chains and disubstituted aliphatic halides were reasonably
attributed to their low dielectric constants, poor microwave
absorbing properties, and generation of undesired 1,3-diynes.
Benzyl bromide showed higher reactivity than benzyl chloride;
various functional groups on alkynes were highly tolerated for
this catalytic system. In addition, the magnetically collected
catalyst MNPs−CuBr 1 was easily recovered and reused for at
least seven cycles with a slight decrease of catalytic activity.160

Iron oxide NP-supported tris(triazolyl) CuBr with a diameter
of about 25 nm was readily prepared, and its catalytic activity
was evaluated in the CuAAC reaction (Figure 12).161 In initial

experiments this catalyst with 0.5 mol % loading perfectly
promoted the CuAAC reaction of benzyl azide and phenyl-
acetylene in water at rt. After completion of the first run, the
catalyst was simply collected and separated using an external
magnet from the reaction medium and used for another five
catalytic cycles without significant loss of catalytic activity. The
amount of leaching copper from the initial catalyst to the
reaction media after the first cycle measured by ICP analysis
was almost negligible. The scope of the substrates was further
examined, and the CuAAC reaction procedure was successfully
extended to various organic azides and alkynes and also applied
to the one-pot synthesis of triazoles through the cascade
reaction of benzyl bromides, alkyne, and sodium azide.
Remarkably, for each substrate, γ-Fe2O3@SiO2−tris(triazolyl)
CuBr was smoothly used for three catalytic cycles with similar
catalytic efficiency or slightly decreased yields. In addition, the
catalyst was used in the synthesis of allyl- and TEG-ended 27-
branch dendrimers.161

MNPs-supported CuNPs have been proved to be useful to
catalyze the cycloaddition of azides with alkynes.162−164

Radivoy and co-workers165 prepared silica-coated MNPs-
supported CuNPs (CuNPs/MagSilica) by fast reduction of
CuCl2 using lithium sand in the presence of 4,4′-di-tert-
butylbiphenyl. These CuNPs with a narrow size distribution
and about 3.0 nm of mean diameter were found to be well
dispersed on the magnetic support. CuNPs/MagSilica was used
as nanocatalyst in the three-component synthesis of 1,4-
disubstitued 1,2,3-triazloes using sodium azide, alkyne, and alkyl
halide as reagents (Figure 13). A TOF of 0.012 s−1 was

provided when sodium azide, phenylacetylene, and benzyl
bromide were employed in water at 70 °C with 4.3% [Cu]. The
same methodology was successfully extended to the reactions
of benzyl bromide with various aryl alkynes bearing both
electron-rich or electron-poor groups and aliphatic alkynes and
yielded the corresponding 1,2,3-triazoles in 85−98% yields.
Other alkyl azides including 4-methylbenzyl bromide, 2-
nitrobenzyl bromide, 4-vinylbenzyl chloride, and n-nonyl iodide
showed lower reactivities compared with benzyl bromide. The
authors did not report the recyclability of CuNPs/MagSilica in
these CuAAC reactions.
Magnetic CuFe2O4 NPs consisting of catalytically active

copper centers were active for the CuAAC reaction.162,166

CuFe2O4 was applied as catalyst in the formation of aryl azides
from boronic acids under mild conditions. Then on this basis a
one-pot approach was developed for the synthesis of 1,4-
disubstituted 1,2,3-triazoles using alkyne, sodium azide, and
boronic acids as reagents.167 CuFe2O4 with particle sizes in the
range 10−30 nm performed well toward the cascade reaction in
terms of yield, selectivity, substrate scope, and recyclability. The

Figure 11. MNP−CuBr-catalyzed one-pot synthesis of 1,4-disub-
stituted 1,2,3-triazoles.

Figure 12. Click reactions catalyzed by γ-Fe2O3@SiO2−tris(triazolyl)
CuBr.161 Reprinted with permission from ref 161. Copyright 2014
Wiley-VCH Verlag GmbH & Co.

Figure 13. CuAAC reaction with CuNPs/MagSilica.165 Reprinted with
permission from ref 165. Copyright 2013 Elsevier B.V.
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strategy of multicomponent cascade reactions was repeatedly
carried out the in synthesis of 1,4-disubstituted 1,2,3-triazoles in
the field of MNPs-supported CuAAC reaction. This protocol
made the CuAAC reaction consistent with the principles of
click chemistry and green chemistry.
MNPs cores have been used as catalysts in some important

reactions. A presynthesized graphene-capped γ-Fe2O3 compo-
sites was evaluated in one-pot synthesis of 1,4-disubstituted-
1,2,3-triazoles through CuAAC reactions of benzyl halide,
sodium azide, aryl alkyne in distilled water.168 A series of 1,4-
disubstituted-1,2,3-triazoles was smoothly isolated with 70−
93% yields. The comparison test showed that graphene-capped
γ-Fe2O3 composite exhibited better catalytic activity than pure
γ-Fe2O3. The enhanced activity caused by the use of graphene
was taken into account by its conducting properties and high
migration efficiency of electrons169,170 as well as the avoidance
of aggregation of MNPs. In addition, the catalyst was simply
collected from the final product by an external magnetic field
and reused at least five times without significant loss of catalytic
activity.
The [Cp*Ru(II)] complex-catalyzed cycloaddition of alkynes

and azides (RuAAC)171 is the most remarkable method for
synthesis of 1,5-disubstituted 1,2,3-triazoles. γ-Fe2O3@SiO2−
Cp*(PPh3)2Ru was the first magnetically recyclable catalyst for
RuAAC reactions (Figure 14).172 The relatively uniform core−

shell NPs with an average size of approximately 30 nm were
prepared by immobilization of Si(OMe)3-functionalized Cp*-
(PPh3)2Ru complex on the surface of γ-Fe2O3@SiO2 NPs. This
catalyst was initially evaluated in the cycloaddition of
phenylacetylene and benzyl azide with 2 mol % [Ru] in THF
at 65 °C. After 3 h, the desired 1,5-disubstituted 1,2,3-triazole
was isolated in 91% yield with over 99.9% selectivity, which was
revealed by both NMR and GC. After completion of the
reaction, the catalyst was magnetically separated from the
reaction medium and reused for the next four runs with only a
slight decrease in activity and selectivity. Investigation of
substrate scope showed that all involved aryl, aliphatic, and
ferrocenylacetylene exhibited good reactivities under the above-
mentioned conditions. Reactions of aliphatic azides containing
a linear chain and benzyl azides bearing different groups
proceeded smoothly; aryl azides were also suitable cyclo-
addition partners. However, the yield of produced 1,5-
disubstituted 1,2,3-triazole was somewhat lower.

2.1.3. Hydrogenation of Unsaturated Compounds.
Hydrogenation of organic substrates is considered to be one of
the most versatile reactions in chemistry, from pharmaceutical
science to petrochemistry. Recently, in an effort to develop a
more sustainable approach, magnetically retrievable nano-
catalysts based on a transition metal were frequently used in
the hydrogenation of various unsaturated compounds (includ-
ing carbonyl compounds) and nitroaromatics. In this section,
we focus on demonstrating the recent advance toward
unsaturated compounds, and hydrogenation of nitroaromatics
will be involved in the next section.
Pd is the most powerful catalyst for hydrogenation of olefins

to saturated compounds. Li et al.173,174 successfully assembled a
chitosan magnetite NP-supported Pd catalyst through a facile
metal adsorption−reduction procedure in one pot. This catalyst
with a Pd content of 0.7 mol % was tested in the hydrogenation
of olefins under 1 atm H2 in ethanol at rt. Hydrogenation
reached completion within 30−60 min. Moreover, the catalyst
showed a good recyclability due to strong stabilization of Pd
species by the amine groups of chitosan.
Reiser et al. deposited a series of PdNPs with diameters

ranging from 2.7 to 30.4 nm onto the surface of Co@C NPs
using Pd2(dba)3·CHCl3 as precursor under microwave
irradiation.175 A trend to smaller PdNPs as well as an increased
dispersion by decreasing the Pd content in the nanocomposite
was observed. The catalytic test for hydrogenation of trans-
stilbene showed an obvious trend of increasing activity with
decreasing Pd NPs sizes, and the smallest PdNPs (2.7 nm)
provided the highest TOF value (11 095 h−1), which was at

Figure 14. RuAAC reaction with γ-Fe2O3@SiO2−Cp*(PPh3)2Ru.172
Reprinted with permission from ref 172. Copyright 2013 Royal Society
of Chemistry.

Figure 15. Hydrogenation of cyclohexene with MNPtpy−PdNPs.
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least 5 times more than other PdNPs prepared in this report.175

However, obvious loss of activity was detected upon the
recycling process. In addition, in order to achieve high catalytic
activity, a larger amount of Co@C NPs support is needed
because of the necessity of low palladium loading onto the
support. Introduction of stabilizing imidazolium ILs on the
surface of Co@C NPs brought a high loading of PdNPs and
remarkable recyclability.176 Magnetic Co@C-IL-immobilized
PdNPs with a diameter of 5−15 nm and 34 wt % of Pd content
provided a TOF of 50 h−1 in the hydrogenation of trans-
stilbene. In this case, 100% conversion was measured in each
reaction cycle of the first 12 runs, and simple magnetic
separation of catalyst was successfully carried out in the
recycling test. It is apparent that the size of catalytic NPs and
stabilizers significantly influences the catalytic activity and
recyclability of MNP-supported NPs, respectively.
Terpyridine-functionalized Fe3O4@SiO2 MNPs (named as

MNPtpy−PdNPs) were readily prepared and applied as efficient
stabilizers to anchor PdNPs that were formed by direct
decomposition of [Pd2(dba)3] on the surface of MNPs (Figure
15).177 In the preliminary experiments, well-dispersed and
uniform PdNPs of about 2.5 nm average size with 180 or 90
ppm Pd content were employed in the hydrogenation of
cyclohexene at 75 °C under 6 atm of H2. An initial TOF of 50
400 h−1, expressed as moles of the substrate transformed per
mole of surface Pd atoms per hour, was observed in the first
cycle. The TOF obtained in the second cycle was twice that of
the first reaction, and an increase was also found from the
second run to the third one.177 This suggests that with the
remaining Pd(II) species of the initial catalyst more and more
Pd(0) species, the actual catalytic species were gradually formed
during the reaction. In order to obtain a significantly high TOF,
preactivation of the catalyst was needed in the first cycle;
otherwise, the value of TOF decreased to 26 890 h−1. Amine-
functionalized MNPs-supported PdNPs (named MNPamine−
PdNPs) were similarly synthesized and compared with
MNPtpy−PdNPs. MNPamine−PdNPs afforded a TOF value of
153 770 h−1 in the first cycle, and this higher TOF could be
attributed to the small mean size (1.8 ± 0.4 nm) of PdNPs.177

However, a slight decrease in catalytic activity was detected in
the second and third reaction cycles; therefore, it appears that
the terpyridine ligand is a better stabilizer than the amine
ligand; agglomeration of nanoparticles caused decreased activity
in the case of MNPamine−PdNPs. The morphology and size of
the MNPtpy−PdNPs did not change in the successive reaction
cycles, and ICP analysis revealed that the amount of leaching
Pd was negligible (<0.01 ppm). Furthermore, the behavior of
the PdNPs as a heterogeneous catalyst was confirmed by a
poisoning test with an excess of Hg.177

Selective hydrogenation of alkynes to alkenes is delicate
because of the further hydrogenation of alkenes to saturated
compounds occurring at the same time as a side reaction. Hur
et al. reported that CuFe2O4 and PdNPs were sequentially
encapsulated in mesoporous silica microsphere to produce
magnetic SiO2@CuFe2O4−Pd.

178 For the sake of comparison,
other PdNPs such as SiO2@Pd, SiO2@CoFe2O4−Pd, and
SiO2@Fe3O4−Pd were assembled in the same method as
SiO2@CuFe2O4−Pd. Their efficacies for selective hydro-
genation of phenylacetylene were tested under balloon pressure
of H2. The results showed that the nature of solvent deeply
affected the reaction rate instead of selectivity. A 0.43 mol% of
SiO2@CuFe2O4−Pd achieved high conversion of over 98% in
2.5 h without any additives, with over 98% selectivity toward

styrene (Figure 16). Under the same conditions, SiO2@
CoFe2O4−Pd and SiO2@Fe3O4−Pd provided 18% and 60%

conversion with 99% and 87% selectivity, respectively. SiO2@
Pd was almost inactive for hydrogenation. Use of the
commercial Lindlar catalyst led to ordinary conversion (82%)
and selectivity (92%), indicating that SiO2@CuFe2O4−Pd was
more selective than the commercial alternative. SiO2@
CuFe2O4−Pd also afforded excellent performance for phenyl-
acetylene in terms of conversion and selectivity. The enhanced
activity and selectivity of SiO2@CuFe2O4−Pd were attributed
to the existence of Pd and CuFe2O4 NPs and the facile
coordination between Cu ions and the triple bond.178

Reduction of alkynol to enol was a popular model reaction of
selective hydrogenation.179 The divergent synthesis of poly-
phenylenepyridyl dendrons (PPPDs) with anhydride, o-
dicarboxyl, and o-dicarboxylate focal groups was developed by
the groups of Brondtein and Shifrina.180 PdNPs embedded in
the second-generation PPPDs-coated magnetic nanocompo-
sites showed high performance in selective hydrogenation of
dimethylethynylcarbinol (DMEC) to dimethylvinylcarbinol
(DMVC) (Figure 17). DMVC was produced in 98% yield,

with over 98% selectivity, even in the third cycle. The
comparison with commercial Lindlar catalysts demonstrated
that the reported catalyst MNP@PPPDs−Pd displayed a more
attractive activity, selectivity, and recyclability in the selective
hydrogenation of DMEC. Bronstein et al.181 modified original
Fe3O4 with a series of acids bearing double bonds or pyridine

Figure 16. Selective hydrogenation of alkynes to alkenes.178 Reprinted
with permission from ref 178. Copyright 2012 Royal Society of
Chemistry.

Figure 17. Selective hydrogenation of DMEC to DMVC catalyzed by
MNP@PPPDs−Pd.180 Reprinted with permission from ref 180.
Copyright 2013 American Chemical Society.
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fragments. These NPs were further used as a platform to
immobilize Pd complexes and to produce magnetically
separable Pd catalysts. These catalysts were evaluated in
selective hydrogenation of DMEC to DMVC. The best
performance in terms of TOFs (7.9 s−1) and selectivity toward
DMVC (92.5%) was achieved upon using PdCl2 supported on
linolenic (LLA)-coated Fe3O4 nanoaparticles (named Fe3O4−
LLA−Pd). In the recyclability test, Fe3O4−LLA−Pd showed an
excellent capability to be magnetically collected, a slightly
increased selectivity, and only a marginally decreased TOF
value in the second reaction cycle. The authors believed that
the real catalytic species for the hydrogenation were Pd(II)
complexes rather than Pd(0) NPs (Figure 18).

Besides Pd, other noble transition metal catalysts including
Pt,182 Ru,183 bimetallic Ag/Ni,110 Ir,184 and Rh185,186 were
shown to have a wide range of catalytic applications in the
hydrogenation of unsaturated compounds. MNPs-supported
RuNPs were readily prepared through tandem generation of
Fe3O4@SiO2 and immobilization of RuNPs in one pot.
Hydrogenation of acetophenone was successfully achieved
with over 99% yield using KOH as base in the presence of a
catalytic amount of Fe3O4@SiO2−RuNPs at 100 °C in
isopropanol under MW irradiation within 30 min. The scope
of carbonyl compounds was then investigated under optimal
conditions (Figure 19).183 Acetophenones containing a wide
range of substituents were transformed to the corresponding
alcohols with high conversion and selectivity within 30−45
min. Fe3O4@SiO2−RuNPs was magnetically collected and
reused at least three times without a decrease of activity.
Moreover, only 0.08% of Ru leached from initial catalyst after
three reaction cycles. Peng’s group110 found that magnetic
core−shell Ag@Ni NPs with a diameter of 14.9 nm were
outstanding catalysts for hydrogenation of carbonyl compounds
and nitroaromatics under relatively mild conditions. This
nanocatalyst allowed easy magnetic separation and excellent
recyclability.

In practical applications, the cost, toxicity, and potential
depletion of noble metals have restricted their utilization as
catalysts. Thus, in this context FeNPs have emerged as viable
alternatives.187 Breit et al.188 demonstrated that chemically
derived graphene (CDG)-supported FeNPs were a highly
efficient catalyst for hydrogenation of various olefins and
alkynes. This catalyst was easily recovered using an external
magnetic field and reused without any loss in activity. Moores
et al.189 synthesized stabilizer-free iron@iron oxide core−shell
NPs (Fe CSNPs) and pioneered their catalytic application in
the hydrogenation of alkynes and olefins. The robust
nanocatalyst with an average core diameter of 44 ± 8.3 nm
and a shell thickness of 6 ± 2 nm catalyzed the hydrogenation
of various substrates in ethanol under 40 bar H2 at 80 °C in the
presence of 5 mol % Pd. Within 24 h, styrene was quantitatively
converted to ethylbenzene, and 1-decene and 2-norbornene
afforded 91% and 96% of hydrogenation yields, respectively.
When 1-decyne was employed, decane was produced in 82%
yield, meanwhile the incomplete hydrogenation compound 1-
decene was isolated in 6% yield.189 However, Fe CSNPs did
not exhibit catalytic activity for carbonyl derivatives. The
proposed alkene hydrogenation mechanism involved zerovalent
FeNPs core as the real catalytic species. The iron oxide shell
provided a substrate access to the surface of the core; the
magnetic property was provided by both the shell and the core.
Investigation of the recyclability proved that the Fe CSNPs
maintained the capability of promoting quantitative trans-
formation of styrene to ethylbenzene in eight successive
cycles.189

Asymmetric transfer hydrogenation is an important branch of
hydrogenation. Recent advances of asymmetric hydrogenation
in the field of magnetic catalysis mainly focused on asymmetric
hydrogenation of aromatic ketones,190,191 2-methylquinoline,192

and o-methylanisole.193

CuFe2O4 NPs embedded in mesoporous silica KIT-6 were
designed and used as catalyst in the asymmetric hydrogenation
of aryl ketone.191 In the synthetic process, the aggregation
problem was solved by an ingenious predrying treatment
between the impregnation and the calcination procedures. The
desired alcohol product (S)-1-phenylethanol was synthesized
with 93% ee and 93% yield when the reaction was carried out
with 2 mol % KIT-6-supported CuFe2O4 using 0.5 mol % (S)-
Xyl-Phos as the chiral modifier and PMHS as the reductant in
the presence of t-BuONa and t-BuOH. This catalyst also
showed easy recoverability and was utilized in the next reaction
cycle after renewing activation under a nitrogen flow overnight
at 120 °C.
Transfer hydrogenation reaction, a subsection of hydro-

genation, is presently receiving increasing attention. Organo-
rhodium-functionalized MNPs consisting of chiral 4-

Figure 18. Selective hydrogenation of DMEC to DMVC catalyzed by
Fe3O4−LLA−Pd.181 Reprinted with permission from ref 181.
Copyright 2012 American Chemical Society.

Figure 19. Hydrogenation of acetophenone and its derivatives with
Fe3O4@SiO2−RuNPs.
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((trimethoxysilyl)ethyl)phenylsulfonyl-1,2-diphenylethylene-di-
amine, 1,4-bis(triethyoxysilyl)benzene, Cp*Rh fragment, and
Fe3O4 NPs were designed and synthesized.194 The catalytic
behavior of the presented catalyst Fe3O4@Cp*RhArDPEN−
PMO was measured by asymmetric transfer hydrogenation of
aromatic ketones (Figure 20). Reactions were conducted over 1

mol % [Rh] in the presence of 50 equiv of HCOONa in
aqueous medium, providing the corresponding (S) ethanol with
quantitative conversion and high enantioselectivity (up to 96%
ee). Taking acetophenone as an example, a compared
investigation showed that Fe3O4@Cp*RhArDPEN-PMO pro-
vided a higher conversion than its homogeneous counterpart
and comparable enantioselectivity.194 The authors indicated
that the high efficiency was attributed to the high hydro-
phobicity and the confined nature of the catalyst. In addition,
after completion of the reaction, Fe3O4@Cp*RhArDPEN-
PMO was easily separable using an external magnetic field and
recycled for at least 10 runs without significant loss in activity
toward conversion and enantioselectivity.194

2.1.4. Reduction of Nitroaromatics. Functionalized
anilines are key intermediates that are frequently used in the
synthesis of pharmaceuticals, dyes, pigments, and pesticides,
and reduction of nitroaromatics is the most general strategy
yielding anilines. In order to achieve this transformation,

various nanomaterials consisting of transition metals were
recently designed and applied as catalysts. Reduction of
nitroaromatics (especially for 4-nitrophenol that is the most
refractory pollutants) probably is the most popular model
reaction for evaluation of the catalytic application of magneti-
cally recoverable catalysts.195,196 During 2013 only, a variety of
MNPs-supported Au, Pd, Ag, Pt, Ni, Fe, and Co catalysts for
reduction of aromatic nitro were reported.
UV−vis spectroscopy is usually utilized to monitor the

kinetics of nitroaromatic reduction. The reaction time of
completed conversion is easily observed, and the linear
relationships between ln(Ct/C0) and reaction time (the rate
constant k) are further calculated.
Cai’s group synthesized AuNPs supported on graphene-

encapsulated magnetic microspheres (named Fe3O4@PDA@
RGO@Au),66 magnetic yolk−shell microspheres-immobilized
AuNPs (SiO2@Fe3O4/C@Au),111 and AuNPs embedded in
polydopamine-coated magnetic mecrospheres (Fe3O4@PDA−
Au).197 All three kinds of AuNPs were applied to catalyze
nitroaromatic reduction. Synthesis of Fe3O4@PDA@RGO@Au
is shown in Figure 21a.66 As-prepared polydopamine (PDA)-
coated Fe3O4 was treated with graphene oxide (GO),
generating graphene oxide (RGO)-encapsulated Fe3O4@PDA
that was further used as a platform to embed AuNPs. The
catalytic performance of Fe3O4@PDA@RGO@Au was tested
in o-nitroaniline reduction using a fresh NaBH4 aqueous
solution as reductant (Figure 21). Monitoring data of the
reaction progress by UV−vis spectroscopy showed that
quantitative transformation was achieved within 4 min. The
catalyst was simply collected using an external magnet and
reused for 10 runs, maintaining excellent conversion with
increasing reaction time, which was related to the leaching of
Au in each cycle. Unfortunately, about 30% of Au leached from
the initial catalyst after 10 reaction runs. The Au content on
Fe3O4@PDA−Au without RGO was about 4.3 wt %, which was
much lower than that on Fe3O4@PDA@RGO@Au (13.58 wt
%).197 Fe3O4@PDA−Au led to complete transformation of o-
nitroaniline to diaminobenzene in 7 min, and catalysis was
extended to the reduction of other nitroaromatic analogues
with excellent conversion within 5−120 min. A vibrating
sample magnetometer experiment revealed that Fe3O4@PDA−
Au showed a magnetization of 39.6 emu g−1, which allowed
easy removal by an external magnetic field. Fe3O4@PDA−Au

Figure 20. Asymmetric transfer hydrogenation reactions catalyzed by
Fe3O4@Cp*RhArDPEN-PMO.194 Reprinted with permission from ref
194. Copyright 2014 Wiley-VCH Verlag GmbH & Co.

Figure 21. Reduction of o-nitroaniline catalyzed by Fe3O4@PDA@RGO@Au66 or Fe3O4@PDA−Au.197 Reprinted with permission from ref 66.
Copyright 2012 Royal Society of Chemistry. Reprinted with permission from ref 197. Copyright 2013 Elsevier B.V.
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was repeatedly used for at least 8 cycles, affording similar
conversion. The leaching amount of Au was 17% after 8 runs.
Polymer-coated MNPs were also popular supports in the

fabrication of magnetically separated nanocatalysts consisting of
AuNPs for nitroaromatic reduction. These polymers included
polypeptide,198 polyethylenimine,199 polydopamine,197,200 cel-
lulose,201 and copolymers.202−204 Bromide-functionalized poly-
(N,N′-methylenebis(acrylamide)-co-2-hydroxyethyl methacry-
late)-coated Fe3O4@SiO2 microspheres (named Fe3O4@
SiO2@PHEMA−Br) reacted with poly(2-dimethylaminoethyl
methacrylate) (PDMAEMA) brush to generate a copolymer-
modified nanomaterial. AuNPs were then readily encapsulated
in the PDMAEMA brush of the nanomaterial through in situ
reduction (Figure 22). This hybrid consisting of AuNPs of 3.7
nm size with a narrow polydispersity promoted reduction of 4-
nitrophenol to 4-aminophenol quantitatively within 15 min at
rt with a rate contrast k of 4.5 × 10−3 s−1. The magnetic
character of this system allowed recovery and six times use
without significant loss of catalytic activity.202

Reduction of nitroaromatics such as 4-nitroaniline and 1,3-
dinitrobenzene has been highly efficiently catalyzed by PdNPs
supported on various materials including NiFe2O4,

205

Fe3O4,
206,207 BaFe12O19, and SrFe12O19.

208 Pd−CoFe2O4−
graphene composite nanosheets209 and CoFe2O4−polypyr-
role−Pd nanofibers210 with diameters of PdNPs in range of
2−10 and 2−6 nm, respectively, prepared by Wang’s group,
catalyzed the quantitative reduction of 4-nitrophenol to 4-
aminophenol within 7 min. The rate constants k were 11.0 ×
10−3 and 13.2 × 10−3 s−1 for the first reaction cycles,
respectively. The high catalytic activities were attributed to a
synergistic effect between PdNPs and CoFe2O4−graphene (or
CoFe2O4−polypyrrole). Unfortunately, a decrease of catalytic
activity was observed in the successive reaction cycles due to Pd
leaching and catalyst poisoning.
A strategy was proposed to assemble yolk−shell micro-

spheres consisting of a movable silica core, a mesoporous SiO2
shell, and PdNPs embedded on the surface of the core.112 In
this material (named FexOy/Pd@mSiO2) the FexOy core
endowed the nature of superparamagnetism; the outer
mesoporous SiO2 shell not only protected the core from
aggregation and outside harsh conditions but also afforded
access for the starting materials toward catalytic applications
(Figure 23). For comparison, Fe3O4@C/Pd composites were
also prepared. Both FexOy/Pd@mSiO2 and Fe3O4@C/Pd were
evaluated in the reduction of 4-nitrophenol using NaBH4 as
reducing agent. With the same Pd loading, Fe3O4@C/Pd led to
a higher k value than that of FexOy/Pd@mSiO2. The result was
reasonably attributed to direct exposure of the Fe3O4@C
surface to the reaction medium and smaller size of PdNPs of
Fe3O4@C/Pd (10.2 versus 15.6 nm). In addition both catalysts
were magnetically separated and reused for at least 10 cycles

and maintained 100% conversion. However, FexOy/Pd@mSiO2
showed a much higher stability than Fe3O4@C/Pd upon
ultrasonic treatment in aqueous solution. Thus, loading NPs on
the inner surface of capsules significantly prevented their
leaching from the support. In this case, the high stability of
FexOy/Pd@mSiO2 also benefited from the larger size of PdNPs
compared to the mesopores of mSiO2 (15.6 versus 2.6 nm).112

The layer-by-layer synthesis of double-shell Fe3O4@TiO2/
Au@Pd@TiO2 microsphere toward the reduction nitro-
aromatic involved 5 nm size AuNPs and PdNPs.211,212 This
nanomaterial catalyzed quantitative reduction of 4-nitrophenol
to 4-aminophenol by NaBH4 at rt in 4 min with a TOF value of
891 h−1. The calculated rate constant k value was 17.7 × 10−3

s−1, which indicated that Fe3O4@TiO2/Au@Pd@TiO2 was a
better catalyst than most other TiO2-supported catalysts. This
catalyst exhibited remarkable recyclability that could keep with
a similar catalytic performance for more than 20 runs.211,212

Almost all common stabilizers have been employed in the
synthesis of magnetic AgNPs that were competitive candidates
in the reduction of nitroaromatics. These magnetically
recoverable Ag nanocatalysts included Fe3O4@SiO2−Ag,213
AgNPs-decorated copolymer-coated MNPs,214 AgNPs sup-
ported on Fe2O3−carbons,215,216 and iron oxide MNPs-
supported AgNPs without stabilizer.217 For instance, Wang et
al.214 reported the preparation of AgNPs loaded on a low-cost
magnetic attapulgite nanocomposite grafted cross-linked
copolymer (CPSA@MATP) through the adsorption of Ag+

with CPSA@MATP and reduction. This CPSA@MATP/
AgNPs catalyst system bearing AgNPs with a mean diameter
of 20−30 nm was successfully employed in the reduction of 4-
nitrophenol, and the reaction was completed within 6 min with
a constant k value of 17.7 × 10−3 s−1. The catalyst was simply
collected with an external magnet and reused for at least three
reaction cycles without a decrease in catalytic performance.
In situ-produced Fe3O4 NPs from a Fe precursor using

hydrazine hydrate as the reducing agent catalyzed the reduction
of nitroarenes.218 The optimized investigation revealed that
quantitative transformation was achieved using 20% excess
hydrazine hydrate as reducing agent in the presence of 0.25 mol
% of Fe(acac)3 in 2 min under microwave conditions. Other Fe

Figure 22. Synthetic route to Fe3O4@SiO2@PHEMA-g-PDMAEMA−AuNPs.202 Reprinted with permission from ref 202. Copyright 2013 American
Chemical Society.

Figure 23. Reduction of 4-nitrophenol catalyzed by FexOy/Pd@
mSiO2.
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precursor such as FeCl2·4H2O, FeCl3·6H2O, and Fe(OAc)2
also provided full conversion in 2 min, but neither
commercially available Fe3O4 nor zerovalent Fe power
promoted the reduction under the above-mentioned con-
ditions. After the reaction cycle, the collected Fe3O4 was
repeatedly used for several runs without loss of activity.
Reactions of 20 nitroarenes containing a broad scope of
substituent groups proceeded smoothly, and the corresponding
anilines were obtained with >95% yields within a few minutes
under optimized conditions (Figure 24). This attractive

catalytic system was successfully extended to the reduction of
aliphatic nitro compounds and azides.219 As-prepared Fe3O4
deposited on graphene oxide (GO) sheets was shown to be a
highly efficient catalyst for the reduction of nitroarenes with 3.6
equiv of hydrazine hydrate as reducing agent in refluxed
ethanol.220

In the synthesis of magnetically recoverable catalysts for the
reduction of nitroaromatics, a two-dimensional carbon
nanostructure RGO was found to be a versatile support.109

FexCo100−x NPs loaded on the surface of RGO sheets was
prepared through a coreduction process.221 Three kinds of
RGO/FexCo100−x hybrid with different Fe/Co molar ratio were
tested as catalysts in the reduction of 4-nitrophenol using
NaBH4 as reductant, and RGO/Fe25Co75 afforded the highest
catalytic rate (full conversion was achieved within 8 min), the
largest constant k value (9.6 × 10−3 s−1), and the largest TOF
value (2.9 × 1016 molecules g−1 s−1) compared to RGO/
Fe75Co25 and RGO/Fe50Co50. In addition, RGO/Fe25Co75 was
reused at least six times with only a slight decrease of activity.
The authors indicated that the high efficiency of RGO in the
reduction of 4-nitrophenol was attributable to the high
adsorption capability of RGO toward 4-nitrophenol via π−π
stacking interactions, and electron transfer from RGO to
catalytic species that resulted in a high concentration of 4-
nitrophenol around catalytic species facilitating uptake of
electrons by 4-nitrophenol molecules.221,222

The spinel-structured ferrites CuFe2O4 have been used in
many applications including efficient catalysis of 4-nitrophenol
reduction by excess NaBH4 at rt with a constant k up to 1.2 ×
10−1 s−1.223

MNPs-immobilized NiNPs have been intensively used as
catalysts in organic reduction reactions.224,225 The presence of
single poly(ethylene glycol)-10000 (PEG-10000), cetyltrime-
thylammonium bromide (CTAB), gelatin, and their composites
controls the size and morphology of NiNPs, and the catalytic
properties in the reduction of 4-nitrophenol were excellent.226

The obtained NiNPs using composites of CTAB and PEG-
10000 as modifier displayed the best catalytic performance with
a constant k value of 2.7 × 10−3 s−1. These magnetic NiNPs
were magnetically separated with a hand-held magnet and
repeatedly used for at least three reaction cycles without loss of
activity. In another report, a magnetically separable nanocatalyst
consisting of NiNPs 30 nm in size anchored on RGO has been

artificially constructed. The catalyst exhibited good catalytic
activity in the reduction of 4-nitrophenol to 4-aminophenol
using sodium borohydride as reducing agent. An obvious
enhancement of activity was achieved with near-infrared (NIR)
irradiation because of the generation of hot spots on the
catalyst surface caused by excellent NIR photothermal
conversion property of RGO.227

γ-Fe2O3-supported PtNPs were fabricated through the metal
vapor synthesis (MVS) procedure and applied to the reduction
of halonitroaromatics using H2 as reductant in the presence of
20 mg of Pt catalyst (containing 1 wt % Pt) at rt.228 The
nanocatalyst showed the best catalytic behavior compared with
other Pt−iron oxide systems in the literature in terms of
conversion and selectivity to haloaniline derivatives in the
reduction reactions of m-chloro-, o- and p-bromo-, and o- and
p-iodonitrobenzenes. In the case of the reduction of p-chloro-
nitrobenzene, the catalyst was magnetically recycled and reused
five times without significant loss of activity. In another report,
Ma and co-workers229 designed the synthesis of PtNPs
decorated on carbon-coated MNPs. This Fe3O4@C@Pt
catalyst consisting of PtNPs with a size around 5 nm was
used in the reduction of nitroaromatic under H2 atmosphere at
rt (Figure 25) and showed high efficiency and reusability.

2.1.5. Oxidation Reactions. Oxidation reactions are
fundamental organic transformation in both academic and
industrial synthetic chemistry, but use of traditional stoichio-
metric or an excess amount of oxidants has caused serious
environmental problems. Therefore, transition metal catalysts
that are immobilized on modified MNPs have received
considerable attention in catalyzing oxidation reactions of
organic catalysts by themselves or with cocatalysts due to their
high efficiency and recyclability.
Selective oxidation of alcohol is a primary example of

oxidation reactions, because the carbonyl products are valuable
chemicals both as active intermediates in organic synthesis and
as high-value components for fine chemistry.230 Thus, selective
oxidation of alcohols over magnetically retrievable noble-metal-
based catalysts is one of the hottest subjects in this research
field.
Amino acids (L-cysteine, β-alanine, serine, or glycine)

modified Fe3O4 NPs-trapped PdNPs were produced via a
simple in situ method.231 The average diameter sizes of the
obtained magnetic hybrid and PdNPs were about 20 and 3 nm,
respectively. In the catalytic application of these nanomaterials,
oxidation of benzyl alcohol was chosen as model reaction. The
reaction was initially carried out at 50 °C in the presence of 30
mg of catalysts under an O2 atmosphere and under solvent-free
conditions in 1.5 h with 2 mmol of benzyl alcohol. Among the

Figure 24. Catalytic reduction of nitroarenes to anilines with
hydrazine hydrate using Fe3O4 NPs generated in situ.

Figure 25. Reduction of aromatics catalyzed by Fe3O4@C@Pt.
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four different nanocatalysts, Fe3O4/L-cysteine (Cys)−Pd
provided the best catalytic results, and benzaldehyde was
synthesized with 48% yield and >99% selectivity. The yield was
raised to 85% upon increasing the catalytic amount from 30 to
60 mg (containing 6.27 wt % Pd) with the same selectivity. In
addition, the catalytic performance was maintained in eight
successive reaction cycles. When 80 mg of Fe3O4/Cys-Pd was
employed, the yield did not change but the selectivity decreased
to 94%. The strategy was extended to oxidation of other
aromatic and aliphatic alcohols, yielding aldehydes with 58−
85% yields with excellent selectivities.231

Starting from the functionalized MNPs, the proline moieties
were covalently anchored providing proline-modified MNPs,
and the magnetic catalyst based on Pd was synthesized via
complexation with Pd(OAc)2. This catalyst system catalyzed
the aerobic oxidation of alcohols to aldehydes and ketones
(Figure 26).232 Benzyl alcohols bearing both electron-donating

and electron-withdrawing groups were smoothly oxidized over
0.5 mol % of [Pd], producing the corresponding aldehydes in
good to excellent yields. When aliphatic alcohols were
employed, the yields of isolated products were somewhat
lower. In addition, secondary benzylic alcohols were also
suitable participants for the oxidation reaction, the desired
ketone compounds being obtained in 71−81%. Importantly,
catalyst separation was easily achieved using an external magnet
with negligible Pd leaching, and the recovered catalyst was
recycled for at least eight runs without loss in catalytic
performance.
Chen et al. reported the preparation of Pd@Ni bimetallic

NPs on multiwalled carbon nanotubes (Pd@Ni/MWCNT)
that was shown to be an efficient heterogeneous catalyst for
oxidation of benzyl alcohol in H2O at 80 °C in 6 h using H2O2
as oxidant in the presence of K2CO3 (Figure 27).233

Benzaldehyde was produced with 99% conversion and 98%
selectivity, and under the same conditions both Pd/MWCNT

and Ni/MWCNT afforded lower conversion and selectivity
than Pd@Ni/MWCNT. Pd@Ni/MWCNT was magnetically
collected and reused four times with steady decline in both
conversion and selectivity.233

Colloidal AuPd bimetallic NPs were loaded on amino- or
thiol-functionalized or bare Fe3O4@SiO2.

107 These nano-
catalysts exhibited some deficiencies in the oxidation of benzyl
alcohol with O2 as oxidant, such as low catalytic activity, bad
stability, and uneasy reusability. To overcome these drawbacks
these AuPd NPs were calcined, and the hybrids Fe3O4@SiO2−
NH2−AuPd(C) and Fe3O4@SiO2−SH−AuPd(C) showed
much better activities, selectivity, and reusability than their
precursors.107

Fe3O4−Co MNPs were explored for oxidation of 1-
phenylethanol using excess tert-butyl hydroperoxide (TBHP)
as the oxidant at 80 °C, and a 92% yield of acetophenone was
obtained in 6 h.234 After completion of the reaction, the highly
stable Fe3O4−Co MNPs were collected using an external
magnet and reused for 7 runs without obvious loss of catalytic
activity. ICP analysis revealed that only 0.09% Co was leached
off the initial catalyst after seven reaction cycles. Other alcohol
substrates were also successfully oxidized using this catalytic
system, providing 18 ketones with 79−94% yields (Figure 28).

Flow chemistry is an emerging area,235 and combination of
continuous flow technology with MNPs is especially attractive,
because the use of MNP catalysts overcomes some limitations
of continuous flow systems, such as uncontrollable fluid
dynamics, limited accessibility of catalytic sites, and uncontrol-
lable swelling.236 Kappe et al.237 used mesoporous aluminosi-
licate-supported iron oxide NPs as catalysts in a flow reactor for
catalyzing selective aerobic oxidation of a primary alcohol with
TEMPO as a cocatalyst. The model substrate benzyl alcohol
was converted into the desired benzaldehyde with up to 42%
conversion in a single pass, and continuous recirculation offered
full conversion. In addition, the MNPs catalyst showed high
stability in the flow process, and no leaching was observed.
Oxidation of sulfides to sulfoxides is a common reaction in

the synthesis of pharmaceuticals, fine chemicals, and bioactive
molecules. Recently, several magnetically recoverable nano-
catalysts were designed and used in the oxidation of sulfides.238

The complex [Mn(Br2TPP)OAc] anchored on Fe3O4@SiO2
NPs has been synthesized via amine functionality.239 This
thermostable nanocatalyst has a diameter of less than 10 nm
and was investigated for oxidation of sulfides. Sulfoxides were
efficiently formed in 60−96% yields in 1 h at rt with excellent
selectivity when the oxidation reactions proceeded in air in a
mixed solvent of water and ethanol with a molar ratio of
sulfide/tetra-n-butylammonium peroxomonosulfate (TBAOX)/
catalyst of 200:200:1 (Figure 29).239 If the reactions were
carried out in pure water with a molar ratio of sulfide/TBAOX/

Figure 26. Oxidation of alcohols catalyzed by Fe3O4@SiO2−Pro−
Pd(OAc)2.

Figure 27. Oxidation of benzyl alcohol catalyzed by Pd@Ni/
MWCNT.

Figure 28. Oxidation of alcohols catalyzed by Fe3O4−Co MNPs and
TBHP.234 Reprinted with permission from ref 234. Copyright 2012
Wiley-VCH Verlag GmbH & Co.
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catalyst of 200:600:1, the products were sulfone compounds
instead of sulfoxides. In addition, the Mn(Br2TPP)OAc@
SiO2@Fe3O4 catalyst also showed good activity in the oxidation
of saturated hydrocarbons to ketones.
γ-Fe2O3 was immobilized on graphene through a simple

chemical route.168 The resulting graphene-γ-Fe2O3 MNPs were
used as recyclable catalysts for selective oxidation of sulfides to
sulfoxides using hydrogen peroxide as the oxidant. Good to
excellent yields and selectivity were recorded at 60 °C within a
few hours, but meanwhile sulfone compounds were also
observed as side products.168 In the case of the oxidation of
methyl phenyl sulfide almost complete conversion (98%) was
obtained in the first cycle, and the recyclability of the
nanocatalyst was further checked. It was found that the
graphene-γ-Fe2O3 MNPs was recovered, recycled, and reused
for more than five runs without loss of catalytic activity. The
reused catalyst was found unchanged from TEM images and
Raman spectra compared with those of the fresh catalyst.
A complex [Mn(phox)2(CH3OH)2]ClO4 (phox = 2-(2′-

hydroxyphenyl)oxazoline)-based composite material with
Fe3O4@SiO2 was synthesized through aminopropyl linkage,
and its catalytic activity was investigated for oxidation of thiols
to disulfides using urea−hydrogen peroxide as the oxidant. This
heterogeneous magnetic catalyst afforded moderate to good
yields, higher selectivity toward disulfides compared with the
homogeneous manganese complex, and excellent recyclabil-
ity.240

Oxidative transformations of amines yielding useful nitrone
building blocks were intermediate steps in the synthesis of
heterocyclic compounds. γ-Fe2O3@SiO2 NPs-encapsulated
tungstophosphoric acid (γ-Fe2O3@SiO2−H3PW12O40) was
synthesized and tested as catalyst for oxidation of secondary
amines to nitrones with hydrogen peroxide as the oxidant.241

Following optimization, oxidation of dibenzylamine at 23 °C in
MeOH with 1.1 mol % of catalyst within 2 h afforded the
corresponding nitrone in 85% yield, and extension to a variety
of secondary amines led to nitrones in moderate to good yields.
Moreover, γ-Fe2O3@SiO2−H3PW12O40 was magnetically re-
moved and reused at least four times without loss of activity.
Sharma et al. reported the use of 2-acetylpyridine Zn(II)

complex-grafted silica@magnetite NPs as catalyst for oxidation
of aromatic amines yielding azoxyarenes.242 In the optimized

investigation using aniline as the test substrate the effects of
reaction time and catalytic amount were involved at 80 °C in
acetonitrile with H2O2 as oxidant. Encouraged by full
conversion and 99% selectivity toward the corresponding
azoxyarene, the reaction scope was further studied. The
substrates with electron-withdrawing groups provided less
conversion and selectivity than electron-rich anilines. The
relative steric effect was shown to be negative in terms of
conversion and selectivity. The TON values for azoxyarenes in
all cases were high; when some substrates were employed, the
obtained TOF values were much higher than with the
previously reported catalysts. The catalyst was reused up to
six consecutive cycles with a steady decline in yield and
negligible Zn leaching.242

Oxidative amidation of aldehydes with amine salts is a
practical and direct method for synthesis of carboxamides.
Heydari et al. developed a heterogeneous CuI catalyst
supported on silica-coated magnetic carbon nanotubes
(MagCNTs@SiO2) for oxidative amidation processes (Figure
30).243 Various carboxamides compounds were effectively

produced in the presence of 0.2 mol % of MagCNTs@SiO2-
linker-CuI in one pot with moderate to good yields. The stable
catalyst was magnetically recovered from the reaction medium,
and repeated use in five reaction cycles maintained similar
activity. Another report demonstrated that magnetic CuFe2O4
NPs were also an efficient and “green” catalyst for oxidative
amidation of aldehydes with amine salts.244

Oxidations of cyclohexane245 and ethylbenzene246 catalyzed
by magnetic nanocatalysts are still challenging subjects, because
in general the conversions and selectivities used to be very low.
Oxidative degradation of organic pollutants in wastewater
through Fenton-like reactions will be discussed in the section
Fenton-Like Reactions.

2.1.6. Arylation and Alkylation Reactions. S-Arylation
reactions for construction of carbon−sulfur bonds are a key
step in the synthesis of biological molecules and functional
materials. Recently, Cu-containing magnetic nanomaterials
have emerged as catalysts in S-arylation reactions.247 Uniformly
spherical nanocrystalline (from XRD) superparamagnetic
CuFe2O4 NPs with a size of 55 ± 5 nm were initially tested
as catalysts in the S-arylation reaction betweern thiophenol and
4-iodoacetophenone. The desired 1-(4-(phenylthio)phenyl)-
ethanone was isolated in 95% yield with 10 mol % of catalyst, 2

Figure 29. Oxidation of sulfides to sulfoxides catalyzed by Mn-
(Br2TPP)OAc@SiO2@Fe3O4.

239 Reprinted with permission from ref
239. Copyright 2012 Wiley-VCH Verlag GmbH & Co.

Figure 30. Oxidative amidation of aromatic aldehydes with amine
hydrochloride salts catalyzed by MagCNTs@SiO2−linker−CuI.243
Reprinted with permission from ref 243. Copyright 2013 John Wiley
& Sons, Ltd.
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equiv of t-BuOK as base, 5 mL of 1,4-dioxane as solvent, 24 h
reflux, and under a N2 atmosphere. Extension to various aryl
iodides afforded the corresponding organosulfur compounds in
excellent yields, and no undesired disulfides were detected. Aryl
bromides and chlorides were shown to be less reactive for the
S-arylation with thiophenol than aryl iodides, and disulfides
were produced in some cases. A range of aryl and alkyl thiols
were subsequently employed in reactions with iodobenzene
giving a series of organosulfur compounds in moderate to good
yields, and the recyclability of CuFe2O4 was verified.

247

CuCl2 immobilized on Fe3O4 NPs modified with dopamine
hydrochloride (DOPA) was a very efficient and reusable
catalyst for the S-arylation of thiophenol with aryl halides.
Immobilization of CuCl2 with DOPA-functionalized MNPs was
achieved by a one-pot multicomponent reaction under MW
irradiation.248 In the case of the S-arylation reaction between
thiophenol and 1-bromo-4-nitrobenzene the product was
obtained in quantitative yield under MW irradiation at 120
°C for 25 min. The scope of the reaction was subsequently
extended to a range of thiophenols and aryl iodides and
bromides, providing 12 organosulfur compounds in 85−98%
yields within 25−30 min. The recovery test of Fe3O4−DOPA−
CuCl2 revealed that the catalytic behavior was unaltered in
three consecutive cycles with only 0.01% leaching.
Sharma’s group249 developed a copper acetate-based

magnetic nanocatalyst that was evaluated in the aerobic N-
alkylation of amines (Figure 31). Starting from 3-aminopropyl

triethoxysilane (APTES)-functionalized SiO2@Fe3O4 NPs
(Am−Si−Fe3O4), acetylthiophene (AcTp) was introduced
yielding AcTp@Am−Si−Fe3O4, and the final magnetically
separated catalyst Cu−AcTp@Am−Si−Fe3O4 was obtained
through metallization of AcTp@Am−Si−Fe3O4 with copper
acetate. This organic−inorganic hybrid nanomaterial was
utilized as catalyst in the alkylation of aniline with benzyl
alcohol under aerobic conditions. Almost quantitative con-
version was obtained when the reaction was conducted at 100
°C for 10 h. Investigation of the reaction scope showed that the
N-alkylation of anilines and benzyl amine with aliphatic
alcohols proceeded smoothly under optimized conditions,
and series of amines were synthesized in excellent yields with
95−100% selectivity. AcTp@Am−Si−Fe3O4 was magnetically
collected after completion of the reactions and repeatedly used
at least 10 times, maintaining >96.5% conversion in each cycle.
CuFe2O4 NPs proved to be another cheap, efficient, recyclable
catalyst in the N-arylation of imidazole upon building the C−N
bond under ligand-free conditions.250

Ring opening of epoxides was an efficient strategy for
alkylation, and the CuFe2O4 MNPs exhibited high performance
in the alkylation of substituted indoles or pyrroles with achiral
or chiral epoxides under solvent-free conditions, resulting in
regio- and stereoselective synthesis of C-alkylated indoles or
pyrroles.251

Magnetically recyclable Pd−Fe3O4 NPs promoted direct
arylation of imidazo[1,2-a]pyridine with 4-bromonitrobenzene
and NaOAc in DMA at 166 °C with 1 mol % Pd in 88%
yield.252 Reactions of aryl bromides bearing electron-donating
and electron-withdrawing substituents proceeded smoothly in
moderate to good yields, and the Pd−Fe3O4 catalyst also
showed excellent recoverability and recyclability.

2.1.7. Epoxidation of Alkenes. Epoxidation of alkenes is
attractive because of the wide applications of epoxides in the
synthesis of many fine chemicals and pharmaceuticals.253

Magnetically removable catalysts containing Ag, W, Mn,254

Co, and Ru have been employed to achieve efficient
epoxidation of alkenes.
Ag-catalyzed epoxidation of alkenes is a very important and

powerful methodology for formation of epoxides in academic
studies and toward industrial applications.255−258 Pioneering
work on the application of magnetically recyclable Ag-based
catalysts for epoxidation of alkenes was reported by Chen’s
group.259 A AgNPs−Fe3O4 nanocomposite with a size of 230
nm was readily produced in one pot with the assistance of PVP

Figure 31. N-Alkylation of amines catalyzed by Cu−AcTp@Am−Si−
Fe3O4.

Figure 32. Epoxidation of cyclooctene catalyzed by MNP−[HDMIM]2[W2O11], MNP−[SDMIM]2[W2O11], or MNP−(DSPIM-PW11).
260

Reprinted with permission from ref 260. Copyright 2012 Wiley-VCH Verlag GmbH & Co.
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and ethylene glycol using AgNO3 and FeCl3 precursors and
provided excellent catalytic activity and selectivity in
epoxidation of styrene with TBHP as oxidant. Both the
catalytic activity and the selectivity were much higher than
those of unsupported Ag catalyst. Furthermore, the AgNP−
Fe3O4 nanocatalyst was magnetically removed and reused at
least five times keeping the same catalytic performance.259 In
order to demonstrate the effects of MNPs supports on the
catalytic performance for epoxidation of alkenes, a series of
AgNPs positioned on different ferrites (M1−xFe2+xO4; M = Co,
Ni, Mn, Zn) was prepared via a similar procedure to that for
AgNP−Fe3O4 nanocomposite.79 The catalytic investigation
showed that all AgNP−M1−xFe2+xO4 nanocatalysts were highly
efficient and remarkably recyclable in the epoxidation of
styrene; their catalytic activities were influenced by the variation
of restriction behavior of ferrite supports for growth of AgNPs,
resulting in different relative amounts of crystal planes of
AgNPs as well as by the efficiency of ferrite supports in
capturing reactive oxygen species.
Inspired by the high activity of tungstic peroxometalates for

epoxidation, magnetic material-anchored tungstic peroxometa-
lates catalysts have been designed and developed. Hou’s
group260 immobilized an ionic liquid-type peroxotungstate on
core−shell Fe3o4-SiO2 NPs by hydrogen bonding or covalent
Si−O linkage, assembling MNP−[HDMIM]2[W2O11] or
MNP−[SDMIM]2[W2O11], respectively. Both nanocatalysts
were shown to be efficient heterogeneous catalysts for
epoxidation of a variety of alkenes using H2O2 as oxidant at
60 °C in H2O/CH3OH. In cyclooctene epoxidation, the
catalysts were readily recovered by simple magnetic decantation
and recycled 10 times without significant loss of catalytic
activities and selectivities toward epoxide. Another MNPs-
supported peroxometalate catalyst MNP−(DSPIM-PW11)
prepared through the hydrogen-bonding method exhibited
excellent activity and recyclability in cyclooctene epoxidation
with H2O2 under solvent-free conditions (Figure 32). The
principles of immobilization by hydrogen bonding should open
facile catalyst formation with excellent activities and superior
recycling performance.
Using this principle, phosphotungstic acid was immobilized

on imidazole-functionalized CoFe2O4 NPs, and the catalytic
potential was evaluated in the epoxidation of various alkenes.261

When the epoxidations were conducted with 0.1 g of this
catalyst (0.98 mmol/g of tungsten content) and 2 equiv of t-
BuOOH as oxidant in 1,2-dichloroethane at 70 °C within 6 h in
1 mmol-scale reactions the corresponding epoxides were
obtained in good to excellent yields and excellent selectivity,
and the catalyst displayed constant activity after several
consecutive cycles.
Metalloporphyrin complexes are very active catalysts for

epoxidation of alkenes; therefore, the MNPs-supported version
has logically emerged.262 Immobilization of tetra(4-N-pyridyl)-
porphyrinatomanganese(III) acetate [Mn(TPyP)OAc] on
SiO2@Fe3O4 MNPs was reported by Tangestaninejad et al.263

The narrowly distributed Mn(TPyP)/SiO2−Fe3O4 with an
average diameter of around 48 nm provided good catalytic
performance, relatively good tolerance, and satisfactory
recyclability using NaIO4 as oxidant at rt (Figure 33). With
regard to catalyst leaching, 0.33%, 0.18%, 0.12% of Mn leached
off the initial catalyst in the first three cycles, respectively, and
no leaching was detected in the fourth to sixth cycles. In
addition, this catalytic system showed activity in alkane
hydroxylation.

Li et al. reported the assembly of magnetic CoNPs within
carbon nanotubes (CNTs) by a wet chemical method, and the
existence of CoNPs in the interior of CNTs was confirmed by
TEM.264 The catalytic activity of the Co/CNTs in the liquid-
phase epoxidation of styrene was studied under an atmospheric
pressure of molecular oxygen, epoxidation being complete with
93% of epoxide selectivity within 1 h at 100 °C in DMF. The
catalyst was recycled three times without loss of activity,264 and
it was indicated that Co/CNTs were a superior catalyst
compared to previously reported catalysts.
Pericas̀’ group reported the preparation of a magnetically

separable molecular ruthenium complex catalyst containing a
phosphonated trpy ligand (Figure 34).265 This nanosystem

Fe3O4−Ru aqua proved to be an excellent catalyst for
epoxidation of alkenes. In particular, this nanocatalyst
promoted stereoselective synthesis of cis-epoxides from
reactions of cis-olefins, and the Fe3O4 support in Fe3O4−Ru
aqua did not cause any decrease in activity compared to the
homogeneous counterpart. In the case of epoxidation of cis-β-
methylstyrene, investigation of the recyclability showed that
Fe3O4−Ru aqua was collected using magnetic decantation and
exhibited constant activity and slightly decreased selectivity
after at least five consecutive cycles.

2.1.8. Multicomponent “One-Pot” Synthesis. The
multicomponent reaction (MCR) strategy266,267 displays
significant advantages over classical stepwise methods and has
been proved to be a powerful method to build diverse and
complex molecules, in particular, for the synthesis of bio-
logically active and heterocyclic compounds. MCR offers rapid
and convergent construction of molecules from commercially
available starting materials without the need of isolation and
purification of intermediates, and therefore, it requires less
manipulation time, cost, and energy than classic methods. The

Figure 33. Epoxidation of alkenes catalyzed by Mn(TPyP)/SiO2−
Fe3O4.

263 Reprinted with permission from ref 263. Copyright 2012
Elsevier Ltd.

Figure 34. Fe3O4-supported [Ru(trpy-P)(B)(H2O)]
2+ (Fe3O4−Ru

aqua).
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combination of MCR with magnetic separation should thus
significantly expand green procedures.
In the past two years, magnetically recoverable catalysts have

been widely used in multicomponent “one-pot” synthesis of
4H-chromene derivatives,268,269 spirooxindoles,270 hydantoin
derivatives,271 xanthene derivatives,272 hexahydroquinoline
carboxylates,273 pyrido[2,3-d]pyrimidines,274 diazepine deriva-
t i v e s , 2 7 5 sp i rohexahydropy r im id ine s , 2 7 6 1 , 2 , 3 , 5 -
tetrahydropyrazolo[1,2-a][1,2,4]triazole,277 polysubstituted
pyrroles,278 4H-pyrano[2,3-c]pyrazoles,279 1,4-dihydropyridine
derivatives,280,281 4H-benzo[b]pyrans,282 1-amidoalkyl-2-naph-
thols,283 spiro-furo-pyridopyrimidine- indulines,284 and so on.
Ghahremanzadeh’s group270 reported that CuFe2O4 MNPs

displayed high catalytic performance in the synthesis of
spirooxindole fused heterocycles using isatins, cyanomethanes,
and cyclic 1,3-dicarbonyl derivatives as starting materials in one
pot in H2O (Figure 35). In the initial investigation, reaction of

3-hydroxy-1H-phenalen-1-one, malononitrile with isatin was
carried out in refluxing water in the presence of 10 mol %
CuFe2O4 for 30 min, and the desired spirooxindole was isolated
in 90% yield. Investigation of the reaction scope using various
cyclic 1,3-dicarbonyl compounds, cyanomethanes, and isatins
revealed that the CuFe2O4-catalyzed tandem three-component
reactions method tolerated a range of substrates, affording
various spirooxindole fused heterocycles in 81−97% yields. The
catalytic activity remained unaltered throughout four runs,
showing the efficiency and “green” character of this catalyst.
Silica-supported Fe3O4 NPs were applied to promote the

reaction of 1,2-diamines, two components of terminal alkynes,
and isocyanide in EtOH at rt, yielding diazepines (Figure
36).275 This two-step procedure was achieved in one pot; first,

reaction of 1,2-diamines with terminal alkynes proceeded in the
presence of silica-supported Fe3O4 for a few hours; then
isocyanide was added into the same pot. Three diazepine
derivatives containing different substituents were synthesized
with 83−92% yields. The magnetically recycled catalyst could
be used for at least five times, and isolated yields were similar
and remained with no detectable loss.

Dandia’s group demonstrated that CuFe2O4 was as a highly
efficient and magnetically recoverable catalyst for the one-pot
synthesis of spirohexahydropyrimidines from ketones, aromatic
amines, and formaldehyde (Figure 37).276 Reaction of cyclo-

hexanone, formaldehyde, and 4-fluoroaniline was chosen as the
model reaction to optimize the reaction conditions of solvent,
reaction times, and catalyst amount, and optimized results
(82% yield) were obtained using ethanol and 10 mol %
CuFe2O4 within 3 h. The reaction was extended to various
aromatic amines, and CuFe2O4 was recovered and reused 5
times with 82%, 81%, 80%, 79%, and 79% yield.
A three-component coupling reaction of aldehyde, alkyne,

and amine (A3-coupling) catalyzed by graphene−Fe3O4
composite provided a wide range of propargylamines in 65−
92% yields. This catalyst exhibited excellent magnetically
recoverability, but decreases of 11% in yield were found from
the first to the second cycle and from the second to the third
cycle.285

α-Aminophosphonates are essential biologically active
compounds. They were synthesized through a three-compo-
nent coupling reaction involving carbonyl compounds, amines,
and dialkyl phosphate using MgFe2O4 as Lewis acid catalyst in
good to good to excellent yields in a short time (Figure 38).
After completion of the first cycle, MgFe2O4 was removed with
an external magnet from the reaction medium and reused for
successive 5 runs with the same catalytic activity.286

2.1.9. Fenton-Like Reactions. Among various techniques
of water treatment, the Fenton technique (H2O2 + Fe2+/
Fe3+)287 has proved to be one of the most effective methods for
degrading organic pollutants in wastewater. It is an advanced
oxidation process (AOP), where the “HO•” radicals (that might
be coordinated to iron) usually are the main highly reactive
oxidizing species generated from decomposition of hydrogen
peroxide in the presence of iron cation. The homogeneous
Fenton process has many drawbacks: it requires further

Figure 35. Synthesis of spirooxindole-fused heterocycles from isatins,
active cyanomethanes, and cyclic 1,3-dicarbonyl derivatives catalyzed
by CuFe2O4..

Figure 36. One-pot multicomponent synthesis of diazepines using 1,2-
diamines, terminal alkynes, and isocyanide catalyzed by silica-
supported Fe3O4..

Figure 37. Synthesis of spirohexahydropyrimidines from ketones,
aromatic amines, and formaldehyde catalyzed by CuFe2O4.

Figure 38. One-pot multicomponent synthesis α-aminophosphonates
catalyzed by MgFe2O4.
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treatment for toxic sludges and other waste products,
neutralization of treated solutions before discharge, incomplete
pollutant removal, and high-energy requirement. In order to
overcome these drawbacks, heterogeneous Fenton-like systems
using pure form or dispersed iron oxide particles on a support
have been recently developed. Voelker and Kwan288 provided a
reasonable mechanism for production of HO• via iron oxide
particles as follows

+ → ++ • +Fe H O HO Fe2
2 2

3
(1)

+ →+ +Fe H O Fe (H O )3
2 2

3
2 2 (2)

→ + ++ + • +Fe (H O ) Fe HO H3
2 2

2
2 (3)

Iron oxide NPs without support displayed good catalytic
performance in the Fenton-like reactions for oxidative
degradation of contaminants;289,290 however, a severe Fe
leaching problem restricted their applications. Therefore,
various supports or stabilizers including MWCNTs,68 rGO,291

citrate,292 CeO2,
293 mesoporous SiO2,

294 and hydrogel295 were
widely used for anchoring iron oxide NPs; moreover, the
supports enhanced the activity of iron oxide through strong
adsorption of pollutants to catalytic sites. In addition, several
other strategies have recently been developed to improve the
catalytic efficiency of iron oxide NPs, such as microwave
assistance,296 light assistance (photo-Fenton process),297 and
other metal doping processes.298,299

The catalytic property of a magnetic nanoscaled Fe3O4/CeO2
composite in the Fenton oxidation of 4-CP was investigated by
Wang’s group.293 The Fe3O4/CeO2 composite with a size of 5−
10 nm was prepared through the impregnation method with
CeO2 NPs and iron precursors and utilized for catalyzing
degradation of 4-CP at different pH values, catalytic amounts,
4-CP concentrations, and reaction temperatures in the presence
of various H2O2 dosages. When the reaction was conducted at
30 °C and pH 3.0 with 30 mM H2O2, 2.0 g L−1 Fe3O4/CeO2,
and 0.78 mM 4-CP, a high pseudo-first-order kinetic constant
of 0.11 min−1 was provided. The catalyst was reused in six
successive catalytic cycles, and partial dissolution of the NPs on
the surface was observed from HRTEM analysis.
SiO2 microspheres-supported and free γ-Fe2O3 NPs were

applied as catalyst in a series of Fenton-like reactions for
degradation of methylene blue (MB), methyl orange (MO), or
paranitrophenol (PNP).294 Investigation of the MO decom-
position revealed that the free γ-Fe2O3 NPs showed higher
activity than the supported version, which could be attributed
to the facility for the reactants to access to the catalytic sites of
free γ-Fe2O3. However, SiO2 microspheres-supported γ-Fe2O3
NPs provided a better catalytic performance than the free
version for degradation of MB in terms of the initial rates of
decolorization (v0) and the decolorization yield (DY), which
was explained by the very strong adsorption of MB on the silica
surface. Both catalysts afforded moderate mineralization yields
(MY) for MO and PNP.294

2.1.10. Other Reactions. Other recent advances in
magnetically recoverable transition metal catalysis focused on
Cu-catalyzed oxidative polymerization,300 Ru-catalyzed succinic
acid synthesis from levulinic acid,301 degradation of contami-
nants in water,302−310 esterification,311 synthesis of β-hydroxy
hydroperoxides,312 synthesis of bis(indolyl)methanes,313 syn-
thesis of spirooxindoles,314 Cu-catalyzed oxidative homocou-
pling of terminal alkynes,315 dehydrogenation,316−319 Friedel−
Crafts reaction,320 synthesis of N-substituted pyrroles,321

alkoxycarbonylation,322 Pd-catalyzed reductive amination of
aldehydes,323,324 synthesis of diverse N-heterocycles,325,326

oxidative cross-dehydrogenative coupling,327 Cr-catalyzed
hydroxylation of benzene,328 glycolysis of poly(ethylene
terephthalate),329 synthesis of coumarins via Pechmann
reaction,330 and so on.
Cu(II)−PAMAM dendrimer complexes showed excellent

catalytic activity in the aerobic oxidative polymerization of 2,6-
dimethylphenol (DMP) to poly(2,6-dimethyl-1,4-phenylene
oxide) (PPO).331 To achieve the recovery of the Cu catalyst,
Cu(II) complexes supported on G0−G3 PAMAM-coated
Fe3O4 NPs (named Mag-PAMAM-Cu) were prepared and
employed as catalysts in the polymerization that was carried out
with an aqueous solution of DMP, sodium n-dodecyl sulfate,
and sodium hydroxide under an oxygen atmosphere at 50 °C.
The catalytic activity of the Cu complexes was influenced by
the generation number of the PAMAM dendrimer, and Mag-
PAMAMG3-Cu gave a superior performance (80.85% PPO
yield and 99.8% selectivity toward PPO) than Mag-
PAMAMG1-Cu and Mag-PAMAMG2-Cu in the first reaction
cycle. Unfortunately, EA and TGA depicted that 25−30% Cu
was lost during the reaction or recovery process, which caused
an obvious decrease in yields and molecular weight of PPO in
the second and third runs. The authors indicated that the main
reason for low recovery ratios was the dissociation of Cu(II)
with amine groups of PAMAM dendrimers occurring during
the recovery after polymerization (Figure 39).332

MNPs catalysis is one of the most popular techniques in
water treatment. Various contaminations including diclofenac,
p-chlorophenol, organic dyes, tetrabromobisphenol A
(TBBPA), rhodamine B, and acetylsalicylic acid were efficiently
degraded in water by MNPs-supported catalysts.
Reduction of pollutants to nontoxic compounds is an

effective strategy in water treatment. Zhou et al. demonstrated
the preparation of AgNPs embedded in the Fe3O4@C template
NPs with porous carbon shell and their catalytic application in
the reduction of organic dye rhodamine B in water. The
Fe3O4@C−Ag hybrid catalyst exhibited highly efficient
property and was easily collected and reused without loss of
activity.333 Fe3O4-immobilized PdNPs provided a remarkable
catalytic behavior in bromate reduction to bromide.334 One
hundred percent conversion was achieved within less than 2 h
over a range of pH values. The quasi-monodisperse Pd/Fe3O4
catalyst showed good recoverability using an external magnetic
field and stability.
A core−satellite structured Au/Pdop/SiO2/Fe3O4 composite

was synthesized via a simple method and provided high
catalytic performance in the catalysis of MB reduction with
NaBH4 as a reducing agent at rt.

335 Full conversion of MB was
observed within 30 s over 10 mg of Au/Pdop/SiO2/Fe3O4 with
a MB concentration of 0.02 mM. MB was completely degraded
in 20 min when the concentration was increased to 0.2 mM.

Figure 39. Oxidative polymerization of DMP with/Mag−PAMAM−
Cu catalyst.332 Reprinted with permission from ref 332. Copyright
2012 Elsevier Ltd.
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The authors indicated that the high catalytic performance of
Au/Pdop/SiO2/Fe3O4 is partly attributed to the effective
contact between Pdop (polydopamine) and the Au nano-
catalysts. The catalyst was magnetically removed from the
reaction medium, and a gradual decrease in catalytic efficiency
was found in the first 5 runs. Zhang and co-workers336 applied
rGO-supported Fe3O4 (4.8 nm in size) PtNPs (5 nm in size) as
a catalyst with high performance in the reduction of MB. The
versatile rGO-supported Fe3O4−Pt composite also efficiently
promotes aqueous-phase aerobic oxidation of benzyl alcohol.
This kind of rGO-supported Fe3O4−metal composite is simply
synthesized through the solvothermal method and possesses
great potential applications in catalysis and other fields.
The Salen Cu(II) complex was connected to the surface of

SiO2-coated Fe3O4 nanoparticles, and this nanocatalyst was
used in the synthesis of 1- and 5-substituted 1H-tetrazoles
under various conditions (Figure 40).337 A series of 1-

substituted 1H-tetrazoles was isolated in good to excellent
yields through the reaction of triethyl orthoformate, sodium
azide, and several amines at 100 °C under solvent-free
conditions over 20 mg of catalyst containing 0.4 mol % Cu(II).
Thirteen different 5-substituted 1H-tetrazoles in 80−92% yields
were synthesized from cycloaddition of sodium azide and nitrile
compounds containing a broad scope of substituents at 120 °C
in DMF in the presence of 20 mg of Fe3O4@SiO2−Salen
Cu(II). Its catalytic recyclability was investigated based on the
case of the cyclization of p-methoxy aniline, triethyl
orthoformate, and sodium azide, and the nanocatalyst was
magnetically collected and reused for seven subsequent reaction
cycles without deterioration of the catalytic activity. ICP
analysis revealed that the leaching amounts of Cu from the
initial catalyst were 0.2% and 5.4% after the first and seventh
repeated runs, respectively.
Implantation of AgNPs into the mesoporous spheres of

HMMS material was achieved via a six-step procedure using
colloidal carbon spheres as templates.338 Condensation of
dicarbonyl compounds with amines forming β-enaminones was
chosen as a model reaction to evaluate the catalytic property of
Ag/HMMS (Figure 41). The reactions proceeded smoothly in
methanol at 60 °C within a short time over 31 mg of catalyst,

providing 84−100% yields.338 In addition, the good magnetic
recoverability and recyclability of the nanocatalys were verified
via a catalytic recycling test.
The Ullmann-type coupling procedure has been shown to be

a useful strategy to form carbon−oxygen bonds. Xu et al.339

found that the stable, easily made, and low-cost magnetic
catalyst CuFe2O4 showed high catalytic activity for the Ullmann
C−O coupling reaction between phenols and aryl halides.
Phenol and iodobenzene were chosen as model substrates, and
diphenyl ether was synthesized in 99% yield when the reaction
was promoted with 5 mol % CuFe2O4 and 10 mol % diketone
ligand 2,2,6,6-tetramethylheptane-3,5-dione in NMP at 135 °C
using Cs2CO3 as base. In the investigation of the substrate
scope, a series of aryl ethers was obtained in good to excellent
yields through reaction of various kinds of phenols with aryl
iodides. Aryl bromides, instead of aryl iodides, were also
suitable coupling partners of phenols. When 2-chloropyridine
was used, the corresponding aryl ether was detected with 65%
yield; unfortunately, chlorobenzene only gave traces of product.
The reusability of the catalyst showed that CuFe2O4 was
magnetically removed from the reaction medium and reused for
6 runs with obvious and steady decrease in yield under 5 mol %
catalyst owing to a slight particle aggregation, decomposition of
part CuFe2O4 NPs, and progressive loss during the recovery
process. A 98% yield was obtained after the fifth reaction cycle
over 10 mol % CuFe2O4. A carbon nanotube-supported α-
Fe2O3@CuO nanocomposite was another outstanding mag-
netic catalyst for cross-coupling of aryl halides with phenols to
fabricate C−O bonds, and the catalyst was reused up to six
reaction cycles without any loss of catalytic activity.340

CuFe2O4 MNPs with a particle size in the 10−30 nm range
were an efficient catalyst for amination of iodides with ammonia
in PEG.341 Reactions involving various aryl or aliphatic iodides
gave the corresponding arylamines in moderate to good yields,
but the strategy was not amenable to aryl bromides. The
catalyst was magnetically separable and used for at least five
cycles with a slight decline in catalytic activity.341

2.2. Magnetically Recyclable Organocatalysts

Organocatalysis plays a decisive role in the field of catalysis, and
the number of publications on MNPs-supported organo-
catalysis has dramatically increased during the past 2 years.
Direct asymmetric aldol reactions constructing C−C bonds

are a popular strategy in the synthesis of chiral organic
compounds. Since List et al. developed the asymmetric aldol
reactions catalyzed by L-proline,342 research on supported L-
proline and its derivatives for aldol reactions has rapidly

Figure 40. Fe3O4@SiO2−Salen Cu(II)-catalyzed synthesis of 1- and 5-
substituted 1H-tetrazoles.337 Reprinted with permission from ref 337.
Copyright 2013 Elsevier B.V.

Figure 41. Synthesis of β-enaminones over Ag/hollow magnetic
mesoporous spheres (Ag/HMMS).338 Reprinted with permission from
ref 338. Copyright 2013 Elsevier B.V.
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progressed. Recently, some proline-functionalized magnetic
core−shell NPs were designed and used as efficient and
recyclable organocatalysts for asymmetric aldol reactions. A
novel hybrid consisting of a Fe3O4 core and polymer brush-like
coating with acrylates or methacylates derived from trans-4-
hydroxyproline was prepared. The organic nanocatalyst
displayed excellent catalytic performance in asymmetric aldol
reactions of ketones with aromatic aldehydes and performed
very well in the recyclability test.343 L-4-Hydroxyproline-grafted
Fe3O4@SiO2 MNPs promoted the asymmetric aldol reaction of
ketone with aldehyde smoothly with good catalytic activity and
selectivity (diastereoselectivity and enantioselectivity). In
addition, the catalysts were magnetically separated and reused
for at least five cycles without significant loss in activity.344

Fe3O4@SiO2 MNPs decorated by L-proline-functionalized
imidazolium-based ionic liquid catalyzed the asymmetric aldol
reaction that was processed in water without additive.345 For
the reaction between cyclohexanone and 2-nitrobenzaldehyde,
10 mol % of this catalyst provided excellent performance in
terms of yield, diastereoselectivity, enantioselectivity, and
recyclability, which was attributed to facilitation of the
accessibility of the hydrophobic reactants to the active sites in
water due to the existence of the ionic liquid moiety and its
magnetic nature.
α-Aminophosphonate compounds with a structural analogy

to α-amino acids have been exploited for remarkable
applications in modern pharmaceutical chemistry. Acidic
organocatalysts including phosphotungstic acid (PTA),346

dehydroascorbic acid (DHAA),347 and dendritic chlorosulfuric
acid348 supported on the MNPs were synthesized and applied
to the synthesis of α-aminophosphonates. The Pourjavadi
group synthesized a new magnetically separable organocatalyst
consisting of chlorosulfuric acid-functionalized PAMAM
dendrimers (Figure 42). The immobilized dendritic chlor-

osulfuric acid was shown to be an efficient heterogeneous
catalyst for synthesis of α-aminophosphonates under neat
conditions at rt. The catalyst was readily recovered by an
external magnetic decantation and recycled for seven reaction
cycles without decrease of activity.348

Acidic organocatalysts immobilized on MNPs probably are
the most common magnetic organocatalysts. Sulfonic

acid,349−359 polyphosphoric acid,360 sulfonated-phenylacetic
acid,361 N-propylsulfamic acid,362−364 chlorosulfuric acid,365

phosphotungstic acid,366 heteropolyacids,367 amino acids,368

sulphamic acid,369 and dodecyl benzenesulfonic acid370 were
grafted onto MNPs and used as catalysts in esterification,
Hantzsch reaction, one-pot synthesis of amidoalkyl naphthols,
N-formylation reaction, Biginelli reaction, oxidation of sulfides
to sulfoxides, synthesis of 2H-indazolo[2,1-b]phthalazine-
triones, synthesis of 2,3-dihydroquinazolin-4(1H)-ones, syn-
thesis of 2,4,5-trisubstituted imidazoles, hydrolysis of cellulose,
synthesis of 5-ethoxymethylfurfural, synthesis of imidazoles,
and synthesis of a library of spirooxindole-pyrimidines in the
past 2 years.
For example, Li et al.349 synthesized nanosize or micosize

magnetic catalysts containing an iron oxide core, poly(glycidyl
methacrylate) (PGMA) shell, and sulfonic acid groups on the
surface. The nanocatalyst with a diameter of 90 nm and high
acid capacity was further used for esterification of free fatty acid
(16 wt % in waste grease) to fatty acid methyl ester that was
synthesized with 96% conversion within 2 h. This catalyst kept
high catalytic performance in 10 successive runs. The size of the
catalyst was shown to have profound effects on the catalytic
property. The microsize catalyst (with a 60−350 μm diameter)
provided far less catalytic performance regarding both activity
and recyclability than the nanosize version. In comparison,
benzenesulfonic acid-functionalized polystyrene−iron oxide
(shell−core structure) MNPs and sulfonic acid-grafted silica−
iron oxide (shell−core structure) were employed as catalysts
for the same esterification reaction. The result showed that the
catalyst with polystyrene as shell could not be recycled; the one
with sulfonic acid as shell did not perform well concerning
catalytic activity and recyclability.
Koukabi et al.350 reported that a magnetic particle-

immobilized solid acid with a high density of sulfonic acid
groups was successfully used as catalyst in the Hantzsch
reactions of various aromatic, aliphatic, and heteroaromatic
aldehydes, acetoacetate derivatives, and ammonium acetate.
1,4-Dihydropyridines were isolated with 90−99% yields after
reactions at 90 °C in a short time under solvent-free conditions
using 25 mg of catalyst. After completion of the Hantzsch
reaction of benzaldehyde, ethyl acetoacetate, and ammonium
acetate, the MNPs-supported solid acid catalyst was simply
collected by a hand-held magnet and reused five times; the
observed yields were 98%, 98%, 98%, 96%, and 96%.
γ-Fe2O3@SiO2 NPs-anchored dodecyl benzenesulfonic acid

(DDBSA) (γ-Fe2O3@SiO2-DDBSA) catalyzed the synthesis of
spirooxindole−pyrimidine derivatives by three-component
condensation reactions of cyclohexane-1,3-diones, barbituric
acids, and isatins or acenaphthylene-1,2-dione in water (Figure
43).370 Dozens of spirooxindole−pyrimidine compounds were
synthesized with excellent yields using this catalytic system. γ-
Fe2O3@SiO2-DDBSA was reused for 6 runs without a decline
of catalytic activity.
Ionic liquids (ILs) have attracted a great amount of attention

in various areas, especially recently in the utilization as catalyst,
due to their unique properties of safety, excellent solubility,
high ionic conductivity, negligible vapor pressure, and wide
liquid range, and MNPs-supported IL types have consequently
been utilized in various organic syntheses.371,372 Pourjavadi’s
group designed poly(basic ionic liquid)-coated MNPs to
catalyze the synthesis of 4H-benzo[b]pyrans373 and oxidation
reactions.374 As shown in Figure 44, MNPs were coated by
multilayered tungstate-based poly(ionic liquid) cross-linked

Figure 42. Synthesis of α-aminophosphonates catalyzed by MNPs-
supported dendritic chlorosulfuric acid.348 Reprinted with permission
from ref 348. Copyright 2012 Elsevier B.V.
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poly(ionic liquid) forming magnetic ionic liquid catalyst
MNP@PILW that showed high performance in the selective
oxidation of a wide range of alcohols, sulfides, and olefins using
H2O2 as an oxidant under neat condition or in acetonitrile.374

The excellent catalytic property was attributed to the
hydrophobic surface and the multilayered nature of MNP@
PILW. Product separation and catalyst recycling were easily
accomplished with the assistance of an external magnet, and the
catalyst was recycled several times without loss of catalytic
activity.
An ionic liquid immobilized on MNPs was recently used as a

magnetically recycled heterogeneous catalyst for multicompo-
nent synthesis of aromatic heterocyclic compounds in one
pot.375 Fe3O4@SiO2 MNPs-supported 3-sulfobutyl-1-(3-pro-
pyltriethoxysilane) imidazolium hydrogen sulfate was shown to
be an efficient catalyst for the synthesis of benzoxanthenes by a
three-component condensation of dimedone with aldehyde and
2-naphthol. A series of benzoxanthenes products was isolated
with good to excellent yields from the one-pot reaction at 90
°C under solvent-free conditions within a short time. This
“quasi-homogeneous” catalyst also exhibited excellent recycla-
bility during six reaction cycles.62

Magnetic organocatalysts have been widely used to catalyze
one-pot syntheses. Besides the above-mentioned examples,
other reactions focused on the synthesis of pyrazolophthala-
zinyl spirooxindoles,376 pyran-annulated heterocyclic com-
pounds,377 α-acyloxy carboxamides,378 chromene deriva-
tives,379,380 triazolo[1,2-a]indazole-triones,381 1H-pyrazolo-

[1,2-b]phthalazine-5,10-dione derivatives382 over Fe3O4-
supported methylene dipyridine, Fe3O4@SiO2-diazoniabicyclo-
[2.2.2]octane dichloride (DABCO), Fe3O4@SiO2-TEMPO,
quinuclidine stabilized on FeNi3 NPs, (3-aminopropyl)-
triethoxysilane-modified Fe3O4 NPs, aminopropyl coated on
magnetic Fe3O4 and SBA-15 NPs, etc.
TEMPO (2,2,6,6-tetramethyl-piperidin-1-oxyl) is a remark-

able catalyst for oxidation reactions. SBA-15- and MNPs-
supported TEMPO have been used to efficiently catalyze the
aerobic oxidation of alcohols.383−385 Karimi and co-workers378

prepared TEMPO supported on the core−shell Fe3O4@SiO2
MNPs (named MNST) and used this nanomaterial as catalyst
in a new domino oxidative Passerini three-component reaction
with either primary or secondary alcohols instead of their
corresponding aldehydes or ketones (Figure 45). A wide range

of α-acyloxy carboxamide compounds were obtained in toluene
under a balloon pressure of oxygen at rt in the presence of 10
mol % tert-butyl nitrite (TBN) over 1 mol % MNST with
moderate to good yields. The test of recyclability was
conducted based on the reaction of benzyl alcohol and 4-
methoxyphenylacetic acid, and MNST was magnetically
removed from the reaction medium; after washing with H2O
and EtOH it was repeatedly used for 14 consecutive cycles with
a slight decline of catalytic activity.
Proline-stabilized Fe3O4 NPs were readily constructed in one

pot without any supplemental linkers using commercially
available Fe precursors and proline.380 This catalyst with a
mean diameter of around 43 nm was examined in the synthesis
of chromene derivatives. The synthetic procedure was divided
into two steps: condensation of benzaldehyde and malononi-
trile and ring annulations with 2-hydroxynaphthalene-1,4- dione
or 4-hydroxycoumarin (Figure 46).380 A series of functionalized
chromene derivatives was synthesized under ambient con-
ditions in excellent yields. The recyclability investigation
revealed that use of a magnet allowed easy recovery of the
catalyst that was successively reused for at least four times
without loss in activity nor any iron leaching.

Figure 43. One-pot, three-component synthesis of a library of spirooxindole−pyrimidines catalyzed by MNPs-supported dodecyl benzenesulfonic
acid in aqueous media.

Figure 44. Oxidation of alcohols, sulfides, and olefins by H2O2
catalyzed by MNP@PILW.374 Reprinted with permission from ref
374. Copyright 2013 Royal Society of Chemistry.

Figure 45. Oxidative Passerini reaction of alcohols using MNST.
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As an essential catalyst for production of chemicals, β-
cyclodextrin was grafted with MNPs, and this catalyst was then
applied to promote the nucleophilic substitution reaction of
benzyl halide386 and selective oxidation of alcohols.387 Fe3O4@
SiO2-anchored β-cyclodextrin (named Fe3O4@SiO2−
PGMACD) was readily prepared by polymerization on the
surfaces of Fe3O4@SiO2 and catalyzed the ring-opening
reaction of epoxy groups. Fe3O4@SiO2−PGMACD showed a
high performance in the selective oxidation of alcohols using
NaOCl as an oxidant, and its catalytic activity was similar to
that of pure β-cyclodextrin.388 Magnetic separation property
and excellent recyclability of Fe3O4@SiO2−PGMACD were
obtained in the oxidation of benzyl alcohol (Figure 47).

Magnetic nanomaterials make a bridge between homoge-
neous and heterogeneous catalysts, and their use keeps the
remarkable catalytic activity of homogeneous catalysts while
providing recycling possibilities through simple magnetic
separation. Dendrimers possess the same capability in
catalysis.389−392 Ouali et al.393 prepared both magnetic
nanomaterial- and dendrimer-supported organocatalysts. First,
the Jørgensen−Hayashi catalyst [(S)-α,α-diphenylprolinol
trimethylsilyl ether] was immobilized onto the surface of
polymer-coated Co/C nanobeads and at the periphery of
phosphorus dendrimers (generations 1−3). Both supported
catalysts provided high performance in terms of activities and

selectivities in the Michael additions of various aldehydes with
nitroolefins (Figure 48). After completion of the reaction, these
catalysts were recovered by magnetic decantation and
precipitation with pentane, respectively. A phosphorus
dendrimer (generation 3) supported catalyst was reused for
at least 4 runs without loss of activity; however, an obvious
decrease in activity of Co/C-immobilized catalyst was detected.
Other recent reactions catalyzed by magnetic organocatalysts

include asymmetric Friedel−Crafts alkylation of N-substituted
pyrroles with α,β-unsaturated aldehydes catalyzed by Fe3O4-
supported MacMillan,394 regioselective epoxide ring opening
with phenol catalyzed by MNPs-immobilized dimethylamino-
pyridine,395 phospha−Michael addition of diethyl phosphate
catalyzed by γ-Fe2O3-pyridine,

396 C−S bond formation
catalyzed by mPANI/Fe3O4 nanocomposite,397 selective
oxidation of sulfide catalyzed by Fe3O4-supported DABCO,398

reduction of methylene blue dye catalyzed by yolk/shell
Fe3O4@polypyrrole composites,399 synthesis of phenylpyrido-
[4,3-d]pyrimidins catalyzed by (Fe2O3)−MCM-41−
nPrNH2,

400 acylation catalyzed vitamin B1 supported on γ-
Fe2O3@SiO2,

401 and Knoevenagel condensation catalyzed by
polyvinyl amine-coated Fe3O4@SiO2 NPs.

402

2.3. Magnetically Recyclable Biocatalysts

Magnetically recyclable biocatalysts were developed during the
past 2 years, and some new immobilization methods of
enzymes and new magnetic supports were explored.
Silica-coated MNPs are still the most involved supports for

biocatalysts.403 Zhang et al.404 demonstrated that α-amylase
supported on amine-functionalized SiO2@Fe3O4 NPs with high
loading (235 mg/g) were readily prepared through adsorptive
immobilization. The magnetic biocatalyst was evaluated in the
hydrolysis of starch that is a polymer of many glucose units.
The catalytic activities of immobilized and free α-amylase were
measured by amylase activity units that were defined as the
required amount of enzyme to hydrolyze 1 mg of starch in 1 h
under appointed conditions. The activity of immobilized α-
amylase was about 80% of that of the nonimmobilized
counterpart. However, the presented magnetic α-amylase was
recycled for at least three runs while maintaining similar
enzymatic activity. Amine-functionalized SiO2@Fe3O4 NPs
were also used to anchor porcine pancrease lipase via covalent
immobilization, from which the enhancement of stability (in
terms of thermal, pH, and storage) and catalytic activity were
observed.405

A recent study revealed that carbonic anhydrase (CA)
provided excellent enzymatic activity in the catalytic conversion
of CO2 to bicarbonate.406 Subsequently, bovine CA was
successful ly immobil ized on (octa(aminophenyl)-
silsesquioxane)-modified Fe3O4/SiO2 NPs via covalent bonding
(Figure 49).407 This magnetic biocatalyst with good storage
stability displayed satisfactory activity for sequestration of CO2
even after 30 reaction cycles using an external magnetic field as
a separating tool.
In addition to SiO2-capped iron oxide NPs, other magnetic

supports such as alpha chymotrypsin-coated Fe3O4,
408 iron

oxide filled magnetic carbon nanotube,409 a surfactant gum
arabic-coated Fe3O4 NPs,

410 and silica-based β-cyclodextrin411

were synthesized and used to bind enzymes via covalent412,413

and noncovalent immobilization414 to construct magnetically
recyclable biocatalysts.
Since the discovery of carbon nanotubes (CNTs) in

1991,415,416 they have received considerable attention to date

Figure 46. Synthesis of chromene derivatives using Fe3O4−proline
MNPs.

Figure 47. Schematic representation of the substrate-selective catalysis
and recycling of the immobilized catalyst Fe3O4@SiO2−PGMACD.388

Reprinted with permission from ref 388. Copyright 2011 Royal Society
of Chemistry.
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toward various applications, in particular in catalysis because of
their high surface area, strong adsorption ability, and great
accessibility. CNTs-supported enzymes with high stability have
been reported;417 however, the inconvenient recovery restricted
their industrial applications.418 Use of MNPs-filled CNTs is a
promising protocol to solve the issue. Pastorin’s group419

designed and synthesized Amloglucosidase (AMG) supported
on CNTs and MNPs-filled CNTs, and immobilization was
achieved through physical adsorption and covalent immobiliza-
tion (Figure 50). The immobilized enzymes disclosed high
storage stability in acetate buffer at 4 °C. Their activities were
determined upon using starch as the substrate, and lower
activity was found compared to free AMG; pristine CNTs
provided better activity than magnetic CNTs. Excellent
recyclability was observed in all cases of supported AMG.
Owing to their magnetic property, magnetic CNTs-supported
AMG were easily and efficiently recovered from the reaction
medium using a magnet.
Use of β-cyclodextrin-grafted MNPs as support for

immobilization of lipase was reported for the first time by
Yilmaz et al.411 In the synthetic process the presynthesized β-
cyclodextrin-grafted Fe3O4 NPs were readily encapsulated with
Candida rugosa lipase forming magnetic lipase that was applied
as catalyst to the hydrolysis of p-nitro-phenylpalmitate and
enantioselective hydrolysis of racemic Naproxen methyl ester
(Figure 51). These reactions proceeded in an aqueous buffer
solution/isooctane reaction system, providing high conversion
and enantioselectivity (E value = 399). For comparison, the
enantioselective hydrolysis reaction was also carried out over

free lipase, and an E value of 137 was measured, which
indicated that immobilization of lipase brought about a
remarkable enhancement of enantioselectivity. In addition,
the immobilized biocatalyst was magnetically collected and
reused.
The size of nanocatalysts is a crucial factor for their catalytic

performance. In general, nanocatalysts with smaller diameter
exhibit better activity compared to larger versions. In the
catalytic application of MNPs-anchored catalysts, a shorter
separation time is required especially for biocatalysts, which is

Figure 48. Addition of propanal β-nitrostyrene in the presence of dendrimer- and MNPs-supported Jørgensen−Hayashi catalysts.393 Reprinted with
permission from ref 393. Copyright 2013 Wiley-VCH Verlag GmbH & Co.

Figure 49. Immobilization of bovine carbonic anhydrase on encapsulated MNPs.407 Reprinted with permission from ref 407. Copyright 2012 Wiley-
VCHVerlagGmbH & Co.

Figure 50. Immobilization of AMG on CNTs.419 Reprinted with
permission from ref 419. Copyright 2012 American Chemical Society.
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provided by the use of MNPs of small size. Li et al.420,421

developed a practical method to reach this challenge. A novel
cluster of magnetic nanobiocatalysts based on alcohol
dehydrogenase (RDR) was successfully prepared via non-
covalent immobilization. The cluster was reversibly formed and
dissociated to individual enzyme-modified MNPs under general
shaking conditions, and NPs of smaller size were potential
biocatalysts with high activity. When shaking was stopped, the
individual MNPs reclustered to form easily separated original
clusters of magnetic biocatalysts (Figure 52). The reversible

clustering of RDR-MNPs (RC RDR-MNPs) with high enzyme
loading afforded the same activity and enantioselectivity as the
free enzyme in the bioreduction of 7-methoxy 2-tetralone to
produce (R)-7-methoxy-2-tetralol.420,421 The presented bio-
catalyst was quickly and completely separated with a hand-held
magnet and recycled for 15 runs with an acceptable decrease in
activity and an enantioselectivity similar to that of the original
catalyst (Figure 53).421

2.4. Magnetically Recyclable Photocatalysts in the
Degradation of Pollutants

TiO2 NPs are the most used catalysts in the photodegradation
of pollutants, and a series of novel MNPs-supported TiO2 NPs
was designed and prepared. A core−shell structure of Fe3O4/
SiO2/TiO2 composite was synthesized via the layer-by-layer
technique.422 In the process of immobilizing TiO2 on
presynthesized SiO2@Fe3O4 it was found that treatment of
silica surface with poly(acrylic acid) led to an enhanced stability
of the photocatalyst through formation of a covalent bond
between TiO2 nanocrystals and silica. Moreover, the existence
of the SiO2 shell prevented photodissolution and transfer of
electrons−holes from TiO2 to core particle, and thus, the

photocatalytic activity in the degradation of rhodamine B
became promoted under UV illumination.422 Another
supported TiO2 nanomaterial on SiO2@CoFe2O4 showed
excellent catalytic activity in the degradation of MB under
UV irradiation, and 98.3% of MB was removed within 40
min.423 Vasudevan et al.424 demonstrated that cyclodextrin-
modified Fe3O4@TiO2 NPs (CMCD−Fe3O4@TiO2) were
easily prepared and used as photocatalyst in the decomposition
of endocrine-disrupting chemicals. The reaction was success-
fully carried out in water thanks to the aqueous dispersibility of
the nanocatalyst containing a cyclodextrin component. During
the reaction process, the organic pollutant was captured and
destroyed by CMCD−Fe3O4@TiO2 under UV irradiation
(Figure 54).424 On the basis of the case of the photo-

degradation of bisphenol A, after completion of reaction, the
catalysts were magnetically separated and reused 10 times with
a slight decline of photocatalytic activity. As mentioned in the
Introduction, both coupling with other semiconductors and
doping with other elements are good ways to improve the
photocatalytic property of TiO2 NPs. In the past 2 years,
samarium-doped mesoporous TiO2 (Sm/MTiO2) coated
Fe3O4 photocatalysts,425 magnetic and porous TiO2/ZnO/
Fe3O4/PANI,

426 core−shell nano-TiO2/Al2O3/NiFe2O4 hy-
brid,427 nano-TiO2/C/FexOy,

428 and Fe3O4@SiO2@TiO2−Ag
composites were prepared and used in degradation of MB, MO,
MO, RB 5, and RhB, respectively, either under UV light or in

Figure 51. Catalysis of enantioselective hydrolysis of rasemic
Naproxen methyl ester by β-cyclodextrin-grafted MNPs-supported
lipase.411 Reprinted with permission from ref 411. Copyright 2013
Elsevier B.V.

Figure 52. Reversible cluster formation of magnetic nanobiocata-
lysts.420,421 Reprinted with permission from ref 421. Copyright 2012
Royal Society of Chemistry.

Figure 53. Enantioselective reduction of 7-methoxy-2-tetralone
catalyzed by RC RDR-MNPs and recycling test.421 Reprinted with
permission from ref 421. Copyright 2012 Royal Society of Chemistry.

Figure 54. Synthesis of cyclodextrin-modified Fe3O4@TiO2 NPs and
their application to the photocatalytic degradation of endocrine-
disrupting chemicals in water supplies.424 Reprinted with permission
from ref 424. Copyright 2013 American Chemical Society.
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sunlight, and enhanced catalytic performance was observed in
all cases.
A wide range of non-TiO2-based metal oxides (including

CuO, ZnO, MnO2, Fe2O3, Fe3O4, and Al2O3) and metal
sulfides (including CdS, CuS, ZnS, MnS, Sb2S3, In2S3, and
Bi2S3) also exhibited good visible-light-driven catalytic activity.
Several magnetic photocatalysts without TiO2 were exploited
and studied in degradation of organic pollutants, especially for
effluents of textile wastewater. Sahu’s group429 assembled
magnetic SrFe12O19 and SrFe11.4Al0.6O19 by the microwave
combustion method and followed by calcinations at high
temperature. Both of them exhibited photocatalytic activity for
decomposition of Congo red (CR) under visible and sun lights
due to their low band gap. They were efficiently removed from
the reaction medium using a magnetic field thanks to the
reasonably high values of magnetization. Wang et al.430

reported that the (Cu−Fe2O3/Fe)@C hybrid remarkably
promoted oxidative photodegradation of MB (>90% of
conversion in a short time) under UV−vis light irradiation.
The high catalytic property was attributed to the surface-rich
electrons of the carbon shell and the capacity of generation of
photoelectrons and holes. γ-Fe2O3 NPs with a mean diameter
of 35 nm displayed effective activity for the photodegradation
of rose bengal (RB) and MB dyes under visible-light irradiation.
The catalyst was recovered upon applying an external magnetic
field to capture the γ-Fe2O3 NPs.

431 A Ni/ZnO nanomaterial
was prepared by reduction of Ni ions via the solvothermal
method followed by surface modification. The hexagonal Ni/
ZnO nanostructure showed effective photocatalytic activity
toward degradation MB molecules under visible-light irradi-
ation and was easily recoverable in the presence of a magnetic
field for successive reuses.432

Ag nanocrystals with a nearly spherical structure having a
mean diameter of 10 nm were immobilized on carbonaceous
polysaccharides shell-coated MNPs via direct adsorption of
silver ions to core−shell MNPs followed by reduction of the
silver ions (Figure 55).433 Degradation of the pollutant neutral
red was chosen as the model reaction for investigation of the
photocatalytic activity. Photodegradation proceeded smoothly
over this Fe3O4@C@Ag hybrid NPs under visible light,
providing 93.7% of degradation within 30 min. In addition,
the magnetic separation of the hybrid NPs was easily achieved
using a hand-held magnet.
Graphene as catalyst support efficiently enhances the

catalytic effect of these common photocatalysts. Graphene-
supported metal oxides (TiO2 and ZnO) have been identified
as excellent heterogeneous photocatalysts in degradation of
pollutants under UV irradiation.434,435 Wang et al. found that
the composites consisting of graphene and MFe2O4 (M = Zn,

Co, Ni, Mn, and Cu)436−439 exhibited good photoactivity in the
degradation of dyes and were simply recovered upon applying
an external magnetic field. The same group440 fabricated a
magnetically recoverable hybrid P25−CoFe2O4−graphene
(P25, a sort of TiO2 NPs) via hydrothermal approach in
order to combine the advantages of each component in
photocatalysis. This nanocomposite was utilized as catalyst in
the visible-light-driven photodegradation of various organic
dyes. P25−CoFe2O4−graphene was superior to CoFe2O4−
graphene, P25−CoFe2O4, and P25−graphene photocatalysts,
the enhancement of activity being caused by the synergistic
effect among the individual components. The photocatalyst was
collected with a hand-held magnet and reused. On the basis of
the report on the fabrication of Fe2.25W0.75O4 through doping in
a Fe3O4 host matrix,

441 a novel bifunctional RGO-immobilized
Fe2.25W0.75O4 nanomaterial was synthesized through a one-pot
hydrothermal method. The composite with excellent thermal
stability displayed higher performance than pure Fe2.5W0.75O4
NPs in the degradation of MO under UV-light irradiation,
which was attributed to the enhancing effect of graphene. The
hybrid displayed remarkable recyclability with an external
magnet thanks to its magnetic property.442

3. CONCLUSIONS AND OUTLOOK

As shown here, catalysis with magnetically recyclable nano-
catalysts is a rapidly growing field in the context of the high
demands for development of sustainable and green chemistry.
In order to prevent aggregation and achieve grafting catalyst
species on presynthesized MNPs, modification and functional-
ization of MNPs with stabilizing ligands or coating/
encapsulating materials (including small molecules, silica,
polymers, carbon, ionic liquids, mesoporous materials,
graphene, carbon nanotubes) are essential. Further covalent
or noncovalent binding processes to transition metal catalysts,
organocatalysts, and enzymes efficiently provided various
magnetically recoverable catalysts that were used in a wide
range of reactions during the past 2 years, such as Suzuki, Heck,
Sonogashira, Hiyama, alkyne−azide cycloaddition, hydrogena-
tion, reduction, oxidation, arylation, alkylation, epoxidation of
alkenes, multicomponent “one-pot” synthesis, Fenton-like
reaction, etc.
Although remarkable progress has been made using magneti-

cally recoverable catalysts in terms of diversity of the reactions,
activity, selectivity, and recyclability, both the intrinsic
instability of MNPs over a long period of time and the
leaching of catalysts under harsh conditions remain the major
problems yet to be solved in many reported results.
Development of new multifunctionalized materials and useful

Figure 55. Schematic illustration of the synthetic process to Ag-loaded Fe3O4@C NPs.433 Reprinted with permission from ref 433. Copyright 2013
Elsevier Ltd.
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methods of immobilizing catalysts units are still required in
order to overcome these problems.
Extension of the scope of the field by exploring more

magnetically recyclable catalysts for more organic trans-
formations is also called for. For instance, seeking magnetic
plasmonic photocatalysts based on AuNPs, AgNPs, and CuNPs
for promoting other organic transformations in environ-
mentally friendly and energy sustainable protocol using the
application of magnetically recyclable photocatalysts in the
degradation of pollutants is a challenging goal.89,90 Increased
use of bimetals (Fe, Co, Mo) to replace expansive “noble”
metals should be encouraged for increased sustainable
processes. Further work is also required to push these
magnetically recyclable catalysts to their use in multikilogram-
scale synthesis toward industrial production. Given the fast pace
of this area, progress, and perspectives it is most certainly only a
matter of time before key industrial applications are realized.
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ABBREVIATIONS

β-CD β-cyclodextrin
AAPTS [ 3 - ( 2 -

aminoethylamino)-
p r o p y l ] -
trimethoxysilane

AMG amloglucosidase
APTS 3-aminopropyltri-

methoxysilane
CA carbonic anhydrase
CDG chemically derived

graphene
DHAA dehydroascorbic

acid
CNTs carbon nanotubes
CTAB cetyltrimethylam-

monium bromide
CuAAC copper-catalyzed

cycloaddition of al-
kynes and azides

DABCO diazoniab icyc lo-
[2.2.2]octane di-
chloride

DDBSA dodecyl benzene-
sulfonic acid

DMEC dimethylethynylcar-
binol

DMP 2,6-dimethylphe-
nol; dimethylvinyl-
carbinol

DOPA dopamine hydro-
chloride

DY decolorization yield
EA elemental analysis
E value enantiomeric ratio

for irreversible re-
actions, E = ln[(1 −
x)(1 − ees)]/ln[(1
− x)(1 + ees)] (x,
conversion; ees, the
enantiomeric excess
of the substrate)

Fe CSNPS iron@iron oxide
core−shell nano-
particles

FT-IR Fourier transform
infrared spectrosco-
py

HMMS hollow magnetic
mesoporous silica
spheres
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HMS hollow mesoporous
silica spheres

HPG hyperbranched pol-
yglycidol

HPMC hydroxypropylme-
thylcellulose

ICP inductively coupled
plasma analysis

ILs ionic liquids
GO graphene oxide
MagSilica silica-coated mag-

netic nanoparticles
MB methylene blue
MCF magnetic Fe3O4@C
MCR mult icomponent

reaction strategy
MMS magnetic mesopo-

rous silica spheres
MNPs magnetic nanopar-

tilces
MO methyl orange
MVS metal vapor synthe-

sis
MW microwave
MWCNT multiwalled carbon

nanotubes
MY mineralization yield
NPs nanoparticles
OA oleic acid
OAPS octa(aminophenyl)-

silsesquioxane
PAA poly(acrylic acid)
PAMAM polyaminoamido
PANI polymer of aniline
PDA PDMAEMA, poly-

dopamine
poly(2-dimethylaminoethyl methacrylate)
PEA polyethylenimine
PEG poly(ethylene gly-

col)
PFMN phosphine- func-

tionalized magnetic
nanoparticles

PHEMA p o l y ( N , N ′ -
m e t h y l e n e b i s -
(acrylamide)-co-2-
hydroxyethyl meth-
acry la te) , poly-
(glycidyl methacry-
late)

PL photoluminescence
PNP paranitrophenol
PPO poly(2,6-dimethyl-

1 , 4 - p h e n y l e n e
oxide)

PS polystyrene
PTA phosphotungst ic

acid
RB 5 reactive black 5
RDR alcohol dehydro-

genase
RGO reduced graphene

oxide

rt room temperature

SEM
scanning electron
microscopy

SQUID superconduct ing
quantum interfer-
ence device

TEM transmission elec-
tron microscopy

TEMPO (2,2,6,6-tetrameth-
yl-piperidin-1-oxyl)

TGA thermal gravimetric
analysis

VSM vibrating sample
magnetometer

XRD X-ray diffraction
(XRD)

XPS X-ray photoelec-
tron spectra (XPS)
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(123) Zeltner, M.; Schaẗz, A.; Hefti, M. L.; Stark, W. J. J. Mater.
Chem. 2011, 21, 2991.
(124) Rosario-Amorin, D.; Gaboyard, M.; Cleŕac, R.; Vellutini, L.;
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Environ. 2014, 147, 387.
(317) Sahiner, N.; Sagbas, S. J. Power Sources 2014, 246, 55.
(318) Preethi, V.; Kanmani, S. Int. J. Hydrogen Energy 2014, 39, 1613.
(319) Meng, X.; Yang, L.; Cao, N.; Du, C.; Hu, K.; Su, J.; Luo, W.;
Cheng, G. ChemPlusChem 2014, 79, 325.
(320) Sharma, R. K.; Monga, Y.; Puri, A. Catal. Commun. 2013, 35,
110.
(321) Ma, F.-P.; Li, P.-H.; Li, B.-L.; Mo, L.-P.; Liu, N.; Kang, H.-J.;
Liu, Y.-N.; Zhang, Z.-H. Appl. Catal. A: Gen. 2013, 457, 34.
(322) Prasad, A. S.; Satyanarayana, B. J. Mol. Catal. A: Chem. 2013,
370, 205.
(323) Wei, S.; Dong, Z.; Ma, Z.; Sun, J.; Ma, J. Catal. Commun. 2013,
30, 40.
(324) Zhou, J.; Dong, Z.; Wang, P.; Shi, Z.; Zhou, X.; Li, R. J. Mol.
Catal. A: Chem. 2014, 382, 15.
(325) Kidwai, M.; Jain, A.; Bhardwaj, S. Mol. Diversity 2012, 16, 121.
(326) Yang, D.; Zhu, X.; Wei, W.; Jiang, M.; Zhang, N.; Ren, D.; You,
J.; Wang, H. Synlett 2014, DOI: DOI: 10.1055/s-0033-1340599.
(327) Hudson, R.; Ishikawa, S.; Li, C.-J.; Moores, A. Synlett 2013, 24,
1637.

Chemical Reviews Review

dx.doi.org/10.1021/cr500134h | Chem. Rev. XXXX, XXX, XXX−XXXAI

59



(328) Zamani, F.; Kianpour, S.; Nekooei, B. J. Appl. Polym. Sci. 2014,
DOI: 10.1002/APP.40383.
(329) Bartolome, L.; Imran, M.; Lee, K. G.; Sangalang, A.; Ahnd, J.
K.; Kim, D. H. Green Chem. 2014, 16, 279.
(330) Baghbanian1, S. M.; Farhang, M. Synth. Commun. 2014, 44,
697.
(331) Gu, C.; Xiong, K.; Shentu, B.; Zhang, W.; Weng, Z.
Macromolecules 2009, 43, 1695.
(332) Wang, H.; Shentu, B.; Zhang, W.; Gu, Z.; Weng, C. Eur. Polym.
J. 2012, 48, 1205.
(333) Wang, H.; Shen, J.; Li, Y.; Wei, Z.; Cao, G.; Gai, Z.; Hong, K.;
Banerjee, P.; Zhou, S. ACS Appl. Mater. Interfaces 2013, 5, 9446.
(334) Sun, W.; Li, Q.; Gao, S.; Shang, J. K. J. Mater. Chem. A 2013, 1,
9215.
(335) Zhang, M.; Zheng, J.; Zheng, Y.; Xu, J.; He, X.; Chen, L.; Fang,
Q. RSC Adv. 2013, 3, 13818.
(336) Wu, S.; He, Q.; Zhou, C.; Qi, X.; Huang, X.; Yin, Z.; Yang, Y.;
Zhang, H. Nanoscale 2012, 4, 2478.
(337) Dehghani, F.; Sardarian, A. R.; Esmaeilpour, M. J. Organomet.
Chem. 2013, 743, 87.
(338) Sun, J.; Dong, Z.; Li, P.; Zhang, F.; Wei, S.; Shi, Z.; Li, R.
Mater. Chem. Phys. 2013, 140, 1.
(339) Yang, S.; Wu, C.; Zhou, H.; Yang, Y.; Zhao, Y.; Wang, C.;
Yang, W.; Xu, J. Adv. Synth. Catal. 2013, 355, 53.
(340) Saberi, D.; Sheykhan, M.; Niknamc, K.; Heydari, A. Catal. Sci.
Technol. 2013, 3, 2025.
(341) Kumar, A.l S.; Ramani, T.; Sreedhar, B. Synlett 2013, 24, 938.
(342) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000,
122, 2395.
(343) Yacob, Z.; Nan, A.; Liebscher, J. Adv. Synth. Catal. 2012, 354,
3259.
(344) Yang, H.; Li, S.; Wang, X.; Zhang, F.; Zhong, X.; Dong, Z.; Ma,
J. J. Mol. Catal. A: Chem. 2012, 363−364, 404.
(345) Kong, Y.; Tan, R.; Zhao, L.; Yin, D. Green Chem. 2013, 15,
2422.
(346) Hamadi, H.; Kooti, M.; Afshari, M.; Ghiasifar, Z.; Adibpour, N.
J. Mol. Catal. A: Chem. 2013, 373, 25.
(347) Saberi, D.; Cheraghi, S.; Mahdudi, S.; Akbari, J.; Heydari, A.
Tetrahedron Lett. 2013, 54, 6403.
(348) Pourjavadi, A.; Hosseini, S. H.; Hosseini, S. T.;
Aghayeemeibody, S. A. Catal. Commun. 2012, 28, 86.
(349) Zillillah; Tan, G.; Li, Z. Green Chem. 2012, 14, 3077.
(350) Koukabi, N.; Kolvari, E.; Zolfigol, M. A.; Khazaei, A.;
Shaghasemi, B. S.; Fasahati, B. Adv. Synth. Catal. 2012, 354, 2001.
(351) Safari, J.; Zarnegar, Z. J. Mol. Catal. A: Chem. 2013, 379, 269.
(352) Zhang, C.; Wang, H.; Liu, F.; Wang, L.; He, H. Cellulose 2013,
20, 127.
(353) Karimi, A. R.; Dalirnasab, Z.; Karimi, M.; Bagherian, F.
Synthesis 2013, 45, 3300.
(354) Mobaraki, A.; Movassagh, B.; Karimi, B. Appl. Catal. A: Gen.
2014, 472, 123.
(355) Mobinikhaledi, A.; Khajeh-Amiri, A. React. Kinet. Mech. Catal.
2014, DOI: 10.1007/s11144-014-0686-2.
(356) Kolvari, E.; Koukabi, N.; Armandpour, O. Tetrahedron 2014,
70, 1383.
(357) Ikenberry, M.; Peña, L.; Wei, D.; Wang, H.; Bossmann, S. H.;
Wilke, T.; Wang, D.; Komreddy, V. R.; Rillemad, D. P.; Hohn, K. L.
Green Chem. 2014, 16, 836.
(358) Zheng, F. C.; Chen, Q. W.; Hu, L.; Yan, N.; Kong, X. K. Dalton
Trans. 2014, 43, 1220.
(359) Zhang, Z.; Wang, Y.; Fang, Z.; Liu, B. ChemPlusChem 2014,
DOI: 10.1002/cplu.201300301.
(360) Khojastehnezhad, A.; Rahimizadeh, M.; Moeinpour, F.; Eshghi,
H.; Bakavoli, M. C. R. Chim. 2013, DOI: doi.org/10.1016/
j.crci.2013.07.013.
(361) Zamani, F.; Izadi, E. Catal. Commun. 2013, 42, 104.
(362) Rostamia, A.; Tahmasbia, B.; Abedib, F.; Shokri, Z. J. Mol.
Catal. A: Chem. 2013, 378, 200.

(363) Rostami, A.; Tahmasbi, B.; Yari, A. Bull. Korean Chem. Soc.
2013, 34, 1521.
(364) Rostami, A.; Tahmasbi, B.; Gholami, H.; Taymorian, H. Chin.
Chem. Lett. 2013, 24, 211.
(365) Safari, J.; Zarnegar, Z. Ultrason. Sonochem. 2013, 20, 740.
(366) Wang, S.; Zhang, Z.; Liu, B.; Li, J. Catal. Sci. Technol. 2013, 3,
2104.
(367) Duan, X.; Liu, Y.; Zhao, Q.; Wang, X.; Li, S. RSC Adv. 2013, 3,
13748.
(368) Girija, D.; Naik, H. S. B.; Kumar, B. V.; Sudhamani, C. N.;
Harish, K. N. Lett. Org. Chem. 2013, 10, 468.
(369) Safari, J.; Zarnegar, Z. J. Chem. Sci. 2013, 125, 835.
(370) Deng, J.; Mo, L.-P.; Zhao, F.-Y.; Zhang, Z.-H.; Liu, S.-X. ACS
Comb. Sci. 2012, 14, 335.
(371) Li, P.-H.; Li, B.-L.; Hu, H.-C.; Zhao, X.-N.; Zhang, Z.-H. Catal.
Commun. 2014, 46, 118.
(372) Safari, J.; Zarnegar, Z. New J. Chem. 2014, 38, 358.
(373) Pourjavadi, A.; Hosseini, S. H.; Meibody, S. A. A.; Hosseini, S.
T. C. R. Chim. 2013, 16, 906.
(374) Pourjavadi, A.; Hosseini, S. H.; Moghaddam, F. M.;
Foroushanib, B. K.; Bennett, C. Green Chem. 2013, 15, 2913.
(375) Sobhani, S.; Honarmand, M. Appl. Catal., A 2013, 467, 456.
(376) Sadeghzadeh, S. M.; Nasseri, M. A. Catal. Today 2013, 217, 80.
(377) Davarpanah, J.; Kiasat, A. R.; Noorizadeh, S.; Ghahremani, M.
J. Mol. Catal. A: Chem. 2013, 376, 78.
(378) Karimia, B.; Farhangi, E. Adv. Synth. Catal. 2013, 355, 508.
(379) Shaterian, H. R.; Aghakhanizadeh, M. Catal. Sci. Technol. 2013,
3, 425.
(380) Azizi, K.; Heydari, A. RSC Adv. 2014, 4, 6508.
(381) Sadeghzadeh, S. M. ChemPlusChem 2014, 79, 278.
(382) Shaterian, H. R.; Mohammadnia, M. Res. Chem. Intermed. 2014,
40, 371.
(383) Tebben, L.; Studer, A. Angew. Chem., Int. Ed. 2011, 50, 5034.
(384) Karimi, B.; Farhangi, E. Chem.Eur. J. 2011, 17, 6056.
(385) Zheng, Z.; Wang, J.; Zhang, M.; Xu, L.; Ji, J. ChemCatChem
2013, 5, 307.
(386) Kiasat, A. R.; Nazari, S. J. Inclusion Phenom. Macrocycl. Chem.
2013, 76, 363.
(387) Zhu, J.; Wang, P.-C.; Lu, M. J. Braz. Chem. Soc. 2013, 24, 171.
(388) Kang, Y.; Zhou, L.; Li, X.; Yuan, J. J. Mater. Chem. 2011, 21,
3704.
(389) Kang, Y.; Zhou, L.; Li, X.; Yuan, J. Chem. Rev. 1999, 99, 1689.
(390) Astruc, D.; Chardac, F. Chem. Rev. 2001, 101, 2991.
(391) Wang, D.; Astruc, D. Coord. Chem. Rev. 2013, 257, 2317.
(392) Astruc, D.; Heuze,́ K.; Gatard, S.; Meŕy, D.; Nlate, S.; Plault, L.
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2.2 Introduction 

Section 2.2 is a micro-review article on magnetically recoverable ruthenium catalysts 

in organic synthesis. Versatile Ru catalysts supported on MNPs recently provided 

excellent catalytic performances in a variety of reactions,
1,2

 such as hydrogenation 

with pressures of H2 gas, transfer hydrogenation, epoxidation, oxidation, hydration, 

deallylation, olefin metathesis, and azide-alkyne cycloaddition. This review with 79 

references highlighted basic concepts and recent trends of MNP-supported Ru 

complexes and Ru nanoparticles in organic formations. Moreover, the perspectives for 

further development of MNP-supported Ru catalysts were presented in the review. 

Some of our own work on the subject is included therein (vide infra). 

Section 2.3 demonstrates the synthesis, characterization of a magnetically 

recyclable Ru complex, and its catalytic application as a regioselective catalyst for 

alkyne-azide cycloaddition. Ru-catalyzed azide-alkyne cycloaddition (RuAAC), 

pioneered by the groups of Fokin and Jia,
3,4

 is the most efficient strategy for 

regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles, however, to date there has 

been no publications on recyclable RuAAC catalysts. In the work, a SiO2/γ-Fe2O3 

shell-core nanoparticles-anchored pentamethylcyclopentadienyl ruthenium complex 

was successfully prepared. The catalyst that is pesented here gave impressive 

performances in terms of activity and selectivity towards 1,5-disubstituted 

1,2,3-trizoles via cycloaddition of alkynes and organic azides. In addition, it was 

magnetically recoverable. This work was carried out with the collaboration of Dr. 

Lionel Salmon who conducted the TEM analyses. 
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Abstract: Magnetically recyclable catalysts with magnetic nanoparticles (MNPs) are 

becoming a major trend towards sustainable catalysts. In this area, recyclable supported 

ruthenium complexes and ruthenium nanoparticles occupy a key place and present great 

advantages compared to classic catalysts. In this micro-review, attention is focused on the 

fabrication of MNP-supported ruthenium catalysts and their catalytic applications in various 

organic syntheses. 

Keywords: magnetic nanoparticles; ruthenium complexes; catalysis; heterogeneous catalysts 

 

1. Introduction 

In recent years, sustainable and practical chemistry using recyclable catalysts has been one of  

the most fascinating developments in chemistry in both the academic area and industry [1–7]. The 

heterogenization of highly active catalysts on various organic or inorganic supports is probably the  

most efficient strategy and has gained significant progress towards the achievement of efficient  

catalyst recovery. 

In a related context, the immobilization of catalytic species on MNPs has received considerable 

attention and is nowadays undergoing an explosive development [8–12]. This is due to the easy 

preparation of such catalysts and their functionalization, good stability, large surface-to-volume ratio, 

and efficient recovery procedure by magnetic attraction. The use of MNPs not only offers high catalytic 

activity and selectivity benefiting from their nanosize, but also fulfills the demands concerning 
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convenient catalyst separation. Recently, MNPs have been successfully used to immobilize a wide 

variety of transition metal catalysts, organocatalysts, and biocatalysts. These catalysts show sustainable, 

environmentally benign, and economical characters for various reactions including olefin metathesis, 

cycloaddition, C-C coupling, hydrogenation, oxidation, reduction, etc. 

Ruthenium complexes are known in a wide range of oxidation states from −2 to +8 and easily 

accommodate ligands with various coordination geometries, so that they possess unique opportunities  

as versatile catalysts [13–16]. During the past few years, a series of Ru complexes bearing amine, 

phosphine, oxygen, carbon and hybrid ligands, have been immobilized on MNPs forming magnetically 

separable catalysts for a variety of reactions, such as asymmetric hydrogenation of aromatic ketones, 

stereospecific epoxidation, selective oxidation of alcohols and amines, oxidation of levulinic acid to 

succinic acid, hydration of nitriles, deallylation, asymmetric transfer hydrogenation, redox isomerization 

of allylic alcohols, heteroannulation of (Z)-enynols, olefin metathesis, and synthesis of 1,5-disubstituted 

1,2,3-triazoles via azide-alkyne cycloaddition. 

In this review, progress in the field of MNP-supported Ru complexes and Ru nanoparticles in 

organic synthesis is highlighted. At the end of the review, the advantages of magnetically recoverable 

Ru catalysts, and some of their perspectives for further development are presented. 

2. MNP-Supported Ru Catalysts for Organic Synthesis 

2.1. Olefin Metathesis 

Olefin metathesis has been well recognized as a powerful method of generating C=C bonds in 

modern chemical transformations, especially in the synthesis of polymers, important petrochemicals, 

and specialty chemicals [17–28], since it was discovered by American industrial chemists in the  

1960s [29–33]. Olefin metathesis includes ring-opening, ring-closing, and cross metathesis reactions. 

Ru-based Grubbs-type catalysts 1–5 (Scheme 1) [17–19,21,23,30–37] are (together with Schrock-type 

catalysts) widely used in homogeneously catalyzed olefin metathesis, and show superior catalytic 

activities and extraordinary functional group tolerance. However, the homogeneous Ru catalysts exhibit 

some inherent drawbacks including the difficult recovery of the catalysts from reaction medium and 

metal contamination of the products that restrict their possible applications in the pharmaceutical 

industry and materials science. To overcome these issues, immobilization of the homogenous metathesis 

catalysts on various supports such as monoliths [38], silica [39–42], polymers [43–45], and MNPs has 

been proved to be one of the most logical solutions [46]. Among these supports, MNPs have attracted a 

great interest in olefin metathesis reactions due to their high stability, nano size, and convenient recovery 

by using an external magnetic field. 

Scheme 1. Grubbs-type ruthenium catalysts and derivatives. 
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Zhu et al. prepared free and MNP-anchored ortho-isopropoxystyrene ligand 6 and 7, successively, 

and 2 then reacted with 7 producing MNP-immobilized catalyst 8 (Scheme 2) that possesses a mean 

diameter size of approximately 100 nm, and Ru content of 0.28 mmol/g. Its catalytic activity was 

evaluated in both self- and cross-metathesis reactions in terms of yield, TON, TOF [47]. In the case of 

self-metathesis of fatty acid esters (methyl oleate), 8 provided slightly lower activity than 2 under neat 

conditions. It was recovered from the reaction mixture by attraction of a magnet with less than 3 ppm Ru 

leaching. In addition, 8 was recycled for at least five times without any significant decrease in activity. 

The investigation of cross-metathesis of methyl oleate with methyl acrylate revealed that 8 exhibited 

much higher and similar activity regarding TOF than the unsupported Grubbs-type ruthenium catalysts. 

It was magnetically collected and re-used for the next two reaction cycles and maintained the same 

catalytic performance. 

Scheme 2. Synthesis of the MNP-supported metathesis ruthenium catalyst 8. 
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The ruthenium catalyst 10 supported on MNPs was designed and synthesized through the reaction 

between iron oxide nanoparticles-anchored ligand 9 and Grubbs I catalyst 1 (Scheme 3) [48].  

The ring-closing metathesis reactions of a series of substrates were subsequently conducted  

with 10 (2.5 mol% [Ru]) in CH2Cl2 at 40 °C. It was found that 10 performed well providing the 

corresponding cyclic olefins with excellent yields and was recycled up to 22 times without considerable 

loss in catalytic efficiency. 

Scheme 3. Synthesis of MNP-supported metathesis ruthenium catalyst 10. 
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The Grubbs-III catalyst 5 is highly active for cross metathesis and ring-opening-metathesis 

polymerization [36,37]. Kirschning’s group [45] demonstrated that 5 was easily immobilized through 

ligand exchange using polyvinyl pyridine (PVP). The resulting Ru-doped PVP smoothly catalyzed 

ring-closing metathesis and cross-metathesis reactions at relatively high temperature. The supported 

catalyst was recyclable in the case of ring-closing metathesis, but an obvious loss of activity was 

revealed. Emrick et al. [49] prepared PEG-functionalized Grubbs III catalyst 5 via ligand exchange,  

and the catalyst that was obtained was water soluble and effective for ring-opening-metathesis 

polymerization of norbornene derivatives. Encouraged by the straightforward procedure for immobilization 

of Grubbs III catalyst, we explored the possibility of anchoring Grubbs III catalyst 5 on MNPs in order 

to improve the recovery. 

As shown in Scheme 4, the pre-prepared MNP-supported “click” pyridine ligand 11 (in ten-fold 

excess) was coordinated to the Ru center of 5 to construct a MNP-enriched Grubbs III catalyst, and the 

immobilization was confirmed by FT-IR analysis. The supported catalyst should be a mixture resulting 

from mono- and disubstitution of pyridine ligands by the MNP-derived pyridines in Grubbs-III 

catalysts (12) and (13) respectively. The catalytic behavior of this mixture of catalysts was checked for 

cross metathesis, ring-closing metathesis, and ring-opening metathesis polymerization of olefins.  

The results showed that only trace of the desired product of cross metathesis reaction between  

but-3-enenitrile and 1-octadecene was obtained, with 2.5 mol% [Ru] at 40 °C. The ring-closing 

metathesis reaction of 2,2-diallylmalonic acid diethyl ester did not occur at room temperature in the 

presence of 2.5 mol% [Ru]. When the temperature was raised to 110 °C, a 34% of yield was obtained, 

and the catalyst was magnetically recoverable, but deactivated by the third run. In addition, the 

investigation of ring-opening metathesis polymerization reaction of a norbornene derivative 

(cis-5-norbornene-exo-2,3-dicarboxylic anhydride) with the monomer/[Ru] ratio of 13:1, demonstrated 

that the corresponding polymer was isolated with 80% monomer conversion in 15 h. In conclusion, the 

catalytic performances of the MNP-supported Grubbs III catalyst for all three metathesis reactions were 

worse than those of the unsupported Grubbs III catalyst [36,37]. The low catalytic efficiency was 

attributed to the instability of the coordination between the MNP-immobilized pyridine ligand and Ru, 

the bulky linker between MNPs and pyridine, and eventually the less efficient substituent group on 

pyridine concerning metathesis activity [36]. 

Scheme 4. Synthesis of γ-Fe2O3@SiO2 immobilized third generation Grubbs catalysts 12 and 13. 
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2.2. Azide-Alkyne Cycloaddition 

The five-membered nitrogen heterocyclic 1,2,3-triazoles have attracted considerable attention  

in all fields of chemistry, ranging from synthetic organic/inorganic chemistry to pharmaceutical 

science. Among the numerous methods for 1,2,3-triazole synthesis, azide-alkyne cycloadditions 

involving Cu [50,51] and Ru [52] catalysis are most efficient ones and they have been widely used for 

the construction of 1,4- and 1,5-disubstituted 1,2,3-triazoles, respectively. 

Some Cp*Ru(II) complexes [52–55] and the cluster (Cp*Ru)n in DMF under microwaves [54] are 

excellent metal catalysts to regioselectively assemble 1,5-disubstituted 1,2,3-triazoles. As schematically 

outlined in Scheme 5, the coordination of the starting materials onto the Ru center (step A) produces the 

Ru intermediate 14 that most certainly undergoes oxidative coupling of the azide and alkyne to give the 

6-membered ruthenacycle 15 (step B), which controls the regioselectivity. The next formation of the 

C-N bond would then occur by reductive elimination yielding the 1,5-disubstituted 1,2,3-triazole, 

possibly via the coordinated heterocycle 16 (step C). Fokin’s group has reported DFT calculations 

supporting these mechanistic details [52]. Disubstituted alkynes work as well as terminal alkynes in 

this RuAAC “click” reaction, whereas only terminal alkynes give the 1,4-disubstituted 1,2,3 triazoles 

upon Cu-catalysis (CuAAC), because of the required terminal alkyne deprotonation giving a 

Cu-alkynyl species as an initial step of the latter reaction. The recovery of the Ru catalyst, however, 

remains a long-standing problem. Viewing economy and environmental benefit, it is essential to 

develop investigations of the suppression of heterogeneous Ru contamination by Ru(II) complexes 

upon Ru separation following the synthesis of 1,2,3-triazoles. 

Scheme 5. Proposed mechanism for Cp*Ru(II) catalyzed azide-alkyne cycloaddition. 
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Our group has reported the first example of MNP-supported Cp*(PPh3)2Ru(II) catalyst for 

azide-alkyne cycloaddition (AAC) [56]. The Si(OMe)3-functionalized Cp*(PPh3)2Ru complex 17 was 

obtained via coordination of Si(OMe)3-functionalized PPh3 with the (Cp*RuCl2)n cluster. Subsequently, 

core-shell γ-Fe2O3@SiO2 nanoparticles with an average size of 30 nm were successfully enriched  

with 17 by coupling reaction as shown in Scheme 6. This catalyst 18 was initially evaluated in AAC 

using phenylacetylene and benzyl azide as model substrates with 2 mol% [Ru] in THF. The 

corresponding 1,5-disubstituted 1,2,3-triazole was synthesized in 91% yield and over 99.9% selectivity 

within 3 h. Then, the catalyst 18 was easily removed from the reaction medium by magnetic attraction 

and recycled at least five times with a gradual slight loss of activity (down to 77%), and a slight decrease 

in selectivity for the 1,5-disubstituted 1,2,3-triazole product. The substrate scope was then investigated 

using aryl, aliphatic, and ferrocenyl acetylenes that exhibited good reactivities with benzyl azide in the 

presence of 18. The aliphatic azides and benzyl azides bearing a Br substituent are also suitable 

cycloaddition partners; when aryl azide (p-methoxyphenyl azide) was employed, the yield of 

1,5-disubstituted 1,2,3-triazole was somewhat lower (Scheme 7). The catalyst 18 was also active with 

internal alkynes such as 1,2-diphenylethyne, and the 1,4,5-trisubstituted 1,2,3-triazole product was 

obtained in 77% yield. 

Scheme 6. Synthesis of Cp*(PPh3)2Ru/SiO2/γ-Fe2O3 18. 
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Scheme 7. RuAAC reactions in the presence of the magnetic catalyst Cp*(PPh3)2Ru/SiO2/γ-Fe2O3 18. 

 

2.3. Hydrogenation 

Hydrogenation reactions, in particular asymmetric hydrogenations, have been widely studied, 

because they are among the most versatile reactions in all fields of chemistry from pharmaceutical 

science to petrochemistry, Recently, MNP-immobilized Ru complexes were shown to be efficient 

catalysts for asymmetric or symmetric hydrogenation of unsaturated compounds. 

Fe3O4 nanoparticles were readily prepared by the coprecipitation method, and these MNPs were then 

successfully used for the immobilization of the as-synthesized Ru(BINAP-PO3H2)(DPEN)Cl2 complex, 
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forming MNP-anchored chiral Ru catalyst 19. This heterogeneous catalyst afforded high catalytic 

activity and enantioselectivity in the asymmetric hydrogenation of aromatic ketones in the presence of 

KOtBu under 700 psi of hydrogen pressure (Scheme 8) [57]. A series of secondary alcohols were 

generated through hydrogenation of their corresponding aromatic ketones over 0.1 mol% of 19,  

with 100% conversion and remarkably high e.e. values compared with its homogeneous counterpart 

Ru(BINAP-PO3H2)(DPEN)Cl2. Furthermore, after completion of the reactions, the heterogeneous 

catalyst was magnetically recovered and reused for 14 times without noticeable loss in both conversion 

and e.e. value. In this report, the synthesis of other Fe3O4 nanoparticles was also reported to involve the 

use of thermal decomposition, and the supported Ru complex showed lower durability (being only 

reused for four cycle runs) in comparison with the above-mentioned catalyst 19. 

Scheme 8. Asymmetric hydrogenation of aromatic ketones in the presence of the 

MNP-supported chiral Ru catalyst 19. 
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Fan’s group [58] reported a novel magnetically separable Ru catalyst 20 containing a host-guest 

assembly, in which dibenzo[24]crown-8-modified Fe3O4 nanoparticles was used as a host, and  

a dialkylammonium salt tag connected with (η6-arene)[N-(para-toluenesulfonyl)-1,2-diphenyl- 

ethylenediamine]ruthenium trifluoromethanesulfonate [Ru(OTf)(TsDPEN)(η6-arene)] was regarded as 

a guest (Scheme 9). The catalytic performance of 20 was evaluated in the asymmetric hydrogenation 

of 2-methylquinoline, and the reaction was carried out using 2 mol% of 20 in the presence of AgOTf 

under 50 atm H2 at 150 °C in CH2Cl2. The corresponding hydrogenated compound was produced with 

full conversion and 89% of e.e. value. On the basis of the formation of a pseudorotaxane complex 
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between the host and the guest, the Ru catalyst was easily collected from the reaction medium by using 

an external magnetic decantation, and reused for at least 5 runs without significant decrease in activity 

and enantioselectivity. 

Transfer hydrogenation is considered to be one of the most important branches of  

hydrogenation, and it has received more and more attention, because of the easy availability of 

reductants, its high performance, operational simplicity, and low cost [59,60]. In this field, 

Ru-TsDPEN (TsDPEN = N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine) is perhaps the most 

popular chiral catalyst, with the use of 2-propanol, HCOOH–Et3N mixture and aqueous HCOONa as 

hydrogen donors. Recently, a magnetic siliceous mesocellular foam material-encapsulated Ru-TsDPEN 

derived catalyst was developed. Starting from siliceous mesocellular foam, the functionalization with 

γ-Fe2O3 and TsDPEN provided the magnetic siliceous mesocellular foam-caged TsDPEN ligand 21 

(Scheme 10). The catalytic property of 21-[RuCl2(p-cymene)]2 was initially tested in the asymmetric 

hydrogenation of substituted dihydroisoquinoline using HCOOH–Et3N azeotrope (molar ratio 2.5/1, 

pH 3.1) as hydrogen donor. The reaction gave 98% yield and 94% e.e. values, which were comparable 

with the result of the use of homogeneous Ru-TsDPEN. The catalyst was then successfully extended to 

the asymmetric hydrogenation of aromatic ketones with HCOONa-H2O as hydrogen donor. Various 

secondary alcohols were produced with 99% conversions and 89%–97% e.e. values. Moreover, this 

combination of 21 and [RuCl2(p-cymene)]2 allowed the Ru catalyst to be simply recovered with an 

external magnet and reused consecutively for at least nine runs, while maintaining nearly the same 

activity and enantioselectivity [61]. 

Scheme 10. Asymmetric hydrogenation of aromatic ketones using catalyst Ru-21. 

O 21, [RuCl2(p-cymene)]2

Foam

21

R HCOONa, CTAB, H2O, 40oC

OH

R

MeO

MeO
N

21, [RuCl2(p-cymene)]2

HCOOH/Et3N, CH2Cl2, 40 oC

MeO

MeO
NH

Me H

 

Varma et al. [62,63] demonstrated that MNP-supported RuNPs were competitive candidates for the 

catalysis of transfer hydrogenation of carbonyl compounds. RuNPs supported on NiFe2O4 were readily 

prepared and utilized for transfer hydrogenation of a range of carbonyl compounds with isopropyl 

alcohol as hydrogen donor under microwave irradiation conditions. The desired hydrogenated 

compounds were isolated in 90%–98% yields. The supported catalyst showed good recyclability. After 

magnetic collection, it was recycled for another four runs, and its activity remained high [62]. In 

another report, the same group achieved the assembly of RuNPs on Fe3O4@SiO2 nanoparticles from 

Fe2+, Fe3+ and Ru3+ precursors in one-pot. The transfer hydrogenation of acetophenone was conducted 

using isopropanol as a solvent and KOH as base using the obtained hybrid nanocatalyst 22 as  

catalyst under microwaves irradiation. Within 30 min, acetophenone was quantitatively converted to the 
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corresponding alcohol. A wide range of secondary alcohols were synthesized in good to excellent yields 

under the same conditions (Scheme 11) [63]. In the case of the transfer hydrogenation of acetophenone, 

after the completion of the first reaction, catalyst 22 was collected magnetically and successfully 

recycled for at least 3 times with the same yield. ICP-AES and TEM analyses revealed that no Ru metal 

was detected in the reaction medium after completion of the reaction, and the catalyst nearly remained 

with the same size and morphology during the first three reaction cycles. 

Scheme 11. Magnetic silica-supported RuNPs: An efficient catalyst for transfer 

hydrogenation of carbonyl compounds. 
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2.4. Oxidation 

Oxidation is of paramount importance in both academic and industrial synthetic chemistry. 

MNP-immobilized Ru catalysts have received considerable attention for the oxidation of alcohols, 

amines, levulinic acid, and special alkylarene (xanthenes). 

Ruthenium hydroxide supported on Fe3O4 nanoparticles (Ru(OH)x/Fe3O4) was easily prepared  

and exhibited high catalytic performances in aerobic oxidation of alcohols, amines, and xanthene 

(Scheme 12) [64,65]. The oxidation of various alcohols was efficiently conducted with 3.8 mol% of [Ru] 

under 1 atm of molecular oxygen, and the corresponding aldehydes and ketones were provided in 

excellent yields and almost 100% selectivity [64]. The catalytic system was then successfully extended 

to the oxidation of amines to form nitriles, and high yields were generally detected. However, small 

amounts of N-alkylimines were also observed as byproducts in the process. In addition, xanthene was 

also quantitatively oxidized to 9-xanthenone with >99% yield under the same conditions [64]. The 

recyclability test revealed that almost all the Ru(OH)x/Fe3O4 catalyst was removed from the reaction 

medium in each case and continuously used for other reaction cycles. 

Scheme 12. Oxidation of alcohols and amines over Ru(OH)x/Fe3O4 nanoparticles. 
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Coman and coworkers [66] reported that the oxidation of levulinic acid to succinic acid was 

efficiently promoted by Ru(III)/functionalized silica-coated magnetic nanoparticles 23 (Scheme 13). 
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This catalyst was easily prepared through three-step synthesis including silica protection of Fe3O4 

nanoparticles, functionalization with aminopropyl groups, and coordination with RuCl3. The catalytic 

performance of 23 strongly depends on the pressure of oxygen, reaction temperature and solvent.  

The reaction reached 53.8% conversion and 96% selectivity towards succinic acid under 10 bar of 

oxygen at 150 °C in water within 6 h (Scheme 13). The use of lower pressure of oxygen, lower reaction 

temperature and other solvents decreased the conversion of levulinic acid, however. Furthermore, this 

heterogeneous catalyst was consecutively reused at least four times, with conversion ranging from 

53.5% to 58%, and selectivity ranging from 93.4% to 98.5%. ICP analysis showed that only negligible 

amounts of Ru leached from the initial catalyst, which indicated the high stability of the catalyst 23. The 

authors mentioned that the actual catalytic species for the oxidation is perhaps [Ru(H2O)5OH]2+ that  

was generated by the reaction of Ru species with H2O, but no evidence was offered to confirm  

this proposition. 

Scheme 13. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. 
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A Ru(III)/amine-functionalized Fe3O4@SiO2 nanocatalyst with a mean diameter of 60 nm was 

evaluated in the oxidation of alcohols, and it was shown that a series of carbonyl compounds were 

obtained with excellent conversions and over 99% selectivity, in the presence of 3 atm oxygen at 100 °C 

with 4 mol% [Ru]. Interestingly, the magnetic Ru(0) NPs that were generated by reduction of the present 

magnetic Ru(III) catalyst were able to catalyze the hydrogenation of cyclohexene giving full conversion 

and TOF of 420 h−1, under 6 atm hydrogen at 75 °C [67]. In both cases of oxidation and hydrogenation, 

the amounts of leaching Ru were negligible, which was attributed to the powerful coordination ability 

of amino group to Ru. This report strongly demonstrates the versatility of Ru catalysts. 

2.5. Nitrile Hydration 

Functionalized amides are key intermediates that are frequently used in various chemical fields, and 

nitrile hydration is the one of the most important technologies for the large-scale synthesis of amides. In 

order to achieve this transformation, MNPs-anchored Ru complexes were recently designed and applied 

as catalysts. 

Amine-modified MNPs were synthesized through sonicating Fe3O4 nanoparticles with dopamine. 

The obtained functionalized MNPs then coordinated RuCl3 at a basic pH, constructing the hybrid 

nanoparticles decorated with Ru(OH)x. This nanomaterial was explored as a catalyst for the hydration 

of nitriles in aqueous medium under microwave irradiation [68]. In the initial experiment, hydration  

of benzonitrile was chosen as a model reaction, and the desired amide was produced in 85% yield  
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after 30 min of microwave irradiation at 130 °C in water. Furthermore, with this model reaction,  

the magnetic Ru catalyst was efficiently recovered by using a handheld magnet and reused for at  

least 3 reaction cycles without obvious loss of activity. Using the same catalytic system, 14 amides 

were synthesized in 61%–88% yields (Scheme 14). The scope of this strategy was also tested for the 

oxidation of benzyl amine, and a mixture of corresponding amide and benzylidenebenzylamine  

were generated (Scheme 14). The percentage of benzylidenebenzylamine in the mixture increased up 

to 78% upon prolonging the time of microwave irradiation. A subsequent report from the same  

group [69] demonstrated that Ru(OH)x supported on Fe3O4 nanoparticles was readily prepared from 

Fe2+, Fe3+, and Ru3+ precursors in one-pot, and showed a highly efficient activity and selectivity in the 

hydration of nitrile. 

Scheme 14. Hydration of nitrile using Fe3O4/Ru(OH)x. 
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Ruthenium(II)-arene derivatives bearing the phosphane 1,3,5-triaza-7-phosphatricyclo[3.3.1.1] 

decane (abbreviated as RAPTA) is a classical organometallic compound with versatile applications in 

catalysis [70–72]. The groups of Basset and Polshettiwar [73] firstly reported the immobilization of 

RAPTA on MNPs. The synthetic procedure involves the preparation of MNPs-anchored PTA  

ligand 24 upon reaction of SiO2-coated Fe3O4 with trimethoxysilane-functionalized PTA ligand. 

Further reaction of 24 with a slight excess of the commercially available Ru precursor 

[RuCl(μ-Cl)(η6-p-cymene)2] provided the magnetic Fe3O4–RAPTA nanoparticles 25 that was 

subsequently evaluated in the hydration of nitriles (Scheme 15). Under microwaves irradiation,  

55 amides bearing a broad scope of substituting groups were efficiently isolated using 1.58 mol% of 

[Ru] within short time, with excellent GC yields. Aiming to seek the possibility of practical 

application, the recyclability of 25 was examined based on the hydration of both benzonitrile and 

2-phenoxyacetonitrile. The catalyst 25 was simply separated using an external magnetic field, and 

continuously used for 4 and 5 times with slight decrease in yield. 

Scheme 15. Hydration of nitriles catalyzed by the Ru complex-functionalized MNP 25. 
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All the above-mentioned processes of hydration of nitriles to amides over MNPs-supported Ru 

catalysts are truly green and sustainable due to the use of environmentally friendly water as the 

reaction medium, the use of alternative microwave energy source, and their excellent recyclability. 

2.6. Other Reactions 

Other organic transformations catalyzed by MNP-immobilized Ru catalysts include redox 

isomerization of allylic alcohols, heteroannulation of (Z)-enynols, deallylation, trimethylsilylation of 

alcohols and phenols, and hydrolysis reactions. The highly active and selective homogeneous 

epoxidation catalyst [Ru(trpy-P)(B)(H2O)]2+ (trpy-P is diethyl [2,2':6',2'-terpyridin]-4'-ylphosphonate, 

B = bpm) was immobilized on Fe3O4 nanoparticles. The resultant heterogeneous catalyst 26  

displayed practically the same behavior as its homogeneous counterpart in the epoxidation of alkenes  

(Scheme 16) [74]. A series of epoxides were synthesized in moderate to good both yields and 

selectivity towards cis-epoxides. The catalyst 26 exhibited an outstanding recyclability and could keep 

with a similar catalytic performance in terms of activity and selectivity for more than 5 runs. 

Scheme 16. Epoxidation of selected alkenes catalyzed by molecular ruthenium complexes 

anchored on MNPs. 
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The preparation and catalytic application of the complex [CpRu(η3-C3H5)(2-pyridinecarboxylato)]PF6 

supported on micro-size spherical Fe3O4@SiO2 particles were reported by Kitamura’s group [75]. The 

as-synthesized magnetic catalyst 27 with good dispersibility powerfully promoted the cleavage of allyl 

esters in alcoholic solvents in the absence of any extra additives (Scheme 17). Multiple recycling 

experiments for the cleavage of allyl esters involving magnetic decantation of the catalyst were carried 

out using 27 with slight loss of activity. Below 0.2% of Ru leaching was detected in each reaction 

cycle. The results presented here should further enhance the utility of this heterogeneous catalyst in 

protecting group chemistry. 

Starting from NH2-modified MNPs, the MNPs-supported complex [RuIII(Salophen)OTf], 28, was 

assembled via the successive reactions of NH2-modified MNPs with H2Salophen, RuCl3 and NaOTf 

(Scheme 18) [76]. This catalyst 28 exhibited remarkable catalytic performances for the trimethylsilylation 

of primary and secondary alcohols as well as phenols with hexamethyldisilazane (HMDS). Benzylic 

alcohols bearing both electron-donating and electron-withdrawing groups smoothly reacted with 

HMDS over 4 mol% of [Ru], producing the corresponding TMS ethers in 96%–100% yields in a short 

time at room temperature. Linear, secondary, tertiary alcohols, and phenols were also suitable 

participants for the trimethylsilylation, the desired TMS ethers being provided in high yields. However, 

the reaction times were longer in comparison with those involving benzylic alcohols. Importantly, 
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catalyst separation was easily achieved using an external magnet without any Ru leaching, and the 

recovered catalyst was recycled for at least 5 runs without loss in catalytic performance. 

Scheme 17. Cleavage of allyl esters catalyzed by the magnetically recoverable complex 

[CpRu(η3-C3H5)(2-pyridinecarboxylato)]PF6. 
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Scheme 18. Trimethylsilylation of alcohols and phenols with HMDS catalyzed by 28. 
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Bimetallic transition metal core–shell nanoparticles (NPs) have a bright future in catalysis due to their 

enhanced stability, activity, and other properties compared to their monometallic counterparts [77,78]. 

Ma et al. [79] pioneered the synthesis of bifunctional catalytic and magnetic Ni@Ru core–shell NPs 

through the seeded-growth method; meanwhile monometallic NiNPs, RuNPs were prepared. All the 

as-synthesized NPs as well as a physical mixture of NiNPs and RuNPs were used as catalysts in the 

hydrolysis of ammonia–borane (AB). NiNPs were found to be inactive for this transformation; both 

monometallic Ru and the physical mixture were active, but with similar level of activity. Interestingly, 

Ni@Ru NPs with the same amount of [Ru] as in the monometallic Ru and in the physical mixture 

exhibited remarkably enhanced catalytic performances, which was attributed to the much smaller size 

of RuNPs in Ni@Ru NPs than in monometallic RuNPs (2.5 nm vs. 8 nm), the increased stability of the 

deposited RuNPs, and the interaction between NiNPs and RuNPs on the electronic structure of the 

active metal in Ni@Ru NPs. Importantly, the recyclability test revealed that the Ni@Ru NPs catalyst 

was able to be magnetically collected and used for 3 more cycles with slight decrease in activity. 

3. Conclusions and Perspectives 

MNPs represent a bridge between homogeneous and heterogeneous catalysis, and are a family of 

prospective materials with a bright future. To date, MNP-supported ruthenium catalysts have been 

readily prepared and efficiently used as catalysts in olefin metathesis, azide-alkyne cycloaddition, 
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hydrogenation, oxidation, nitrile hydration, and several other reactions. The use of MNPs shows many 

advantages such as convenient separation, efficient recovery, and similar or higher activity compared 

to their homogeneous counterparts. These strategies for immobilizing Ru complexes on MNPs open a 

broad field of application of Ru complexes toward “green” chemistry. 

Although remarkable progress has been made, only selected Ru complexes were involved in these 

reactions until now, and not all catalysts have provided satisfactory results. We believe that a 

fast-increasing number of multi-functionalized MNPs and useful methods will be probed, developed and 

used for the immobilization of various Ru complexes in various catalytic reactions. Further work is also 

required to extend these sustainable catalysts towards use in industrial production. 
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A recyclable ruthenium(II) complex supported on
magnetic nanoparticles: a regioselective catalyst for
alkyne–azide cycloaddition†

Dong Wang,a Lionel Salmon,b Jaime Ruiza and Didier Astruc*a

A magnetically separable ruthenium catalyst was synthesized through

immobilizing a pentamethylcyclopentadienyl ruthenium complex on

iron oxide nanoparticles. The catalyst is highly active and selective for

the synthesis of 1,5-disubstituted 1,2,3-trizoles via cycloaddition of

alkynes and organic azides and can be recycled at least 5 times.

1,2,3-Triazoles are five-membered nitrogen heterocyclic compounds
that have been widely used in various research fields including
synthetic organic,1 medicinal,2 materials,3 and biological chemistry.4

Among numerous methods, catalyzed Huisgen cycloaddition of
alkynes and organic azides by complexes of Cu(I) (CuAAC)5 and
[Cp*Ru(II)] (RuAAC)6 are the two most efficient ones that have been
used to assemble the 1,2,3-triazole ring, respectively, forming 1,4- and
1,5-disubstituted 1,2,3-trizoles selectively (Scheme 1).

Since the latter method (RuAAC) was pioneered by the groups of
Fokin and Jia,6a some [Cp*Ru] complexes6 have been successfully
applied for the catalysis of RuAAC reactions, such as Cp*RuCl(PPh3)2,
Cp*RuCl(NBD), Cp*RuCl(COD), and [Cp*RuCl]4. However, to date
only a handful of reports have been published in the field of RuAAC,
and there has been no publication on recyclable RuAAC catalysts.

The immobilization of homogeneous catalysts to facilitate
their separation and recycling is a task of great economic and
environmental importance in catalysis science. Various inorganic
and organic supports have been explored, such as inorganic
solids,7 polymers,8 fluorous tags,9 and ionic liquids.10

Magnetic nanoparticles (MNPs) have recently emerged as ideal
catalyst supports due to their large surface area, straightforward and
relatively low preparation cost, low toxicity, good stability, as well as
facile separation by magnetic forces.11 The catalysts supported on
magnetic nanoparticles combine these advantages of heterogeneous
catalysts (easy recovery and regeneration) and nanocatalysts (such as
a large surface-to-volume ratio relative to bulk materials, excellent
activity, great selectivity, and high stability), and overcome the
aggregation problem of metallic nanoparticles. Moreover, their
property of magnetic separability eliminates the requirement of
catalyst filtration after completion of the reaction.

Herein, we report simple and efficient synthesis of an iron-
oxide magnetic nanoparticle-supported pentamethylcyclo-
pentadienyl ruthenium(II) catalyst and its application in Huisgen
cycloaddition of alkynes and organic azides for the fully selective
construction of 1,5-disubstituted 1,2,3-trizoles.

The primary step of this objective was achieved by the synthesis of
magnetic nanoparticles (Scheme 2). Monodisperse silica-coated
g-Fe2O3 nanoparticles (SiO2/g-Fe2O3) 2 were derived by coating
g-Fe2O3 core 1 (which was obtained by a co-precipitation method)
with a silica layer. In this process, tetraethoxysilane (TEOS) and
aqueous NH3 were used as a silica source and a hydrolyzing agent,
respectively.12 Transmission electron microscopy (TEM) images of 2
showed the core–shell structure and the silica coating that has a

Scheme 1 Regioselective copper vs. ruthenium-catalyzed alkyne–azide cycloaddition
reactions (CuAAC and RuAAC).

Scheme 2 Synthesis of SiO2/g-Fe2O3 nanoparticles.
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uniform thickness of 9 nm (Fig. 1a). The dense silica shell has plenty
of Si–OH units for potential derivatization with different functional
groups, and also prevents leaching of iron from the core under harsh
shaking conditions. The silylated Cp*Ru(II) complex 5 was obtained
through coordination between the cluster (Cp*RuCl2)n and Si(OMe)3-
functionalized triarylphosphine 4.13,14 Then 5 was successfully immo-
bilized on the surface of robust SiO2/g-Fe2O3 via the heterogenization
with the Si–OH binding sites of 2. The TEM images of the targeted
magnetic nanoparticle catalyst (Cp*Ru/SiO2/g-Fe2O3) 6 depicted
relatively uniform core–shell nanoparticles with an average size
of approximately 30 nm (Fig. 1b). The loading of the ruthenium
complex in 6 was calculated by determination of the nitrogen
content (C, H, N elemental analysis), and the result showed that it
was approximately 0.16 mmol g�1 (Scheme 3).

The catalytic application of magnetically recyclable catalyst 6 in
cycloaddition of alkynes and organic azides was further investigated
(Table 1). Phenylacetylene and benzyl azide were chosen as the model
substrates, and the cycloaddition was conducted at 65 1C under a
nitrogen atmosphere for 3 h in the presence of 2 mol% of 6. As shown
in Table 1, the corresponding 1,5-disubstituted 1,2,3-trizole 7a was
produced in 91% yield with almost 100% selectivity (99.96% selectivity,
which was determined using both GC and NMR). The catalyst 6
showed excellent magnetic properties, stability (Fig. 1d) and dispersion
(Fig. 1e) in the reaction medium, and can be easily collected using
external magnets after completion of the reactions (Fig. 1f), which
minimizes the loss of catalytically active particles and oxidation of
sensitive ruthenium complexes during separation. The catalyst 6 could
be reused five times by simple magnetic separation with only a
minimum decrease in catalytic activity and selectivity (Table 1). More-
over, the morphology and size of the nanoparticles do not change
much even after five cycles.

Encouraged by the efficiency of the reaction protocol described
above, the scope of the reaction was examined. Firstly, various
terminal alkynes were investigated in reactions with benzyl azides.
Alkynes containing electron-withdrawing or electron-releasing
groups were suitable cycloaddition partners (Fig. 2). The reactions
of heteroatom-containing alkynes also proceeded smoothly. The
aliphatic alkyne 1-hexyne and ferrocenylacetylene were suitable
substrates producing triazoles in 84% and 93% yield (7h, 7i),
respectively. The organic azide substrates were further investigated,
and the results indicated that both benzyl and alkyl azides reacted

Fig. 1 (a) TEM image of SiO2/g-Fe2O3; (b) TEM image of Cp*Ru/SiO2/g-Fe2O3

before reaction; (c) TEM image of Cp*Ru/SiO2/g-Fe2O3 after 5 reaction cycles; (d)
Cp*Ru/SiO2/g-Fe2O3 in THF using a small magnet; (e) Cp*Ru/SiO2/g-Fe2O3

dispersion in a reaction medium; (f) catalyst separation using a small magnet.

Scheme 3 Synthesis of Cp*(PPh3)2Ru/SiO2/g-Fe2O3.

Table 1 Reusability test for the magnetic catalyst 6 in cycloaddition of phenyl-
acetylene and benzyl azidesa

Run 1 2 3 4 5
Yieldb (%) 91 87 83 86 77
Selectivityc (%) 99.9 99.5 99.4 98.3 98.3

a The reaction was carried out using phenylacetylene (0.5 mmol) and
benzyl azide (0.5 mmol) in the presence of 6 (63 mg) at 65 1C under a
nitrogen atmosphere. b Isolated yields after column chromatography.
c Determination using GC or/and NMR.
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successfully, whereas with aryl azides the yield was somewhat lower
(7m). In addition, 6 was active with internal alkynes as well, and
1,4,5-trisubstituted 1,2,3-triazole 8 was obtained in 77% yield upon
cycloaddition of 1,2-diphenylethyne with benzyl azides (Scheme 4).
This aspect is all the more valuable as internal alkynes are unreactive
toward the click reaction catalyzed by Cu(I). The reusability of 6 was
also verified with all substrates as shown in Table 1 and Fig. 2. In
addition, we found that the catalytic system was successfully and
reproducibly applied up to 10 mmol-scale synthesis (Scheme S1,
ESI†), allowing the isolation of 1.86 g (79% yield) of 7a.

In conclusion, we have shown here the successful preparation
and immobilization of a silylated Cp*Ru(II) complex on the surface
of SiO2/g-Fe2O3 nanoparticles. Using a magnetic support enables the
recovery of the catalyst by simply applying an external magnetic
field, which avoids the need for precipitation or filtration steps. The
magnetic catalyst 6 that was prepared showed high catalytic activity
and selectivity in the cycloaddition of alkynes and organic azides for
constructing 1,5-disubstituted 1,2,3-trizoles. Moreover, the catalyst
could be recovered and reused at least five times with only a slight
decrease in catalytic activity and selectivity, and it is therefore the
first recyclable catalyst for the RuAAC reaction.

In addition, given the considerable uses of the Cp*Ru(II)
catalysts in organic synthesis, the principles and results presented
here should open a field of applications in ‘‘green’’ chemistry
involving the recycling of such catalysts.

Financial support from the China Scholarship Council (CSC)
(PhD grant to DW), the Universities Bordeaux 1 and Toulouse III,
and the Centre National de la Recherche Scientifique (CNRS) is
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Fig. 2 RuAAC reactions in the presence of the magnetic catalyst 6. The bar
graph shows the yields determined by isolation after column chromatography.

Scheme 4 Cp*Ru/SiO2/g-Fe2O3-catalyzed synthesis of 1,4,5-trisubstituted triazole
from internal alkynes.
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3.1 Introduction 

The copper-catalyzed alkyne-azide Huisgen-type cycloaddition (“click” reaction) 

yielding 1,4-disubstituted 1,2,3-triazoles has received a lot of attentions and driven 

various applications in biological science, synthetic organic chemistry, medicinal 

chemistry and material chemistry, since it was discovered by the groups of Sharpless 

and Meldal in 2002.
1,2

 In the previous work of our group, the Cu(I) complexes with 

(hexabenzyl)tren, and dendritic analogues with 18- or 54- branch termini were first 

prepared.
3
 These Cu (hexabenzyl)tren catalysts are remarkably powerful for “click” 

reaction in organic solvent and in water, in addition, the these metallodendrimers 

showed a rare positive dendritic effect. In 2011, our group also published a 

comprehensive article entitled “The Copper(I)-catalyzed Alkyne-Azide Cycloaddition 

(CuAAC) “Click” Reaction and its Applications. An Overview” for reviewing the 

“click” concept, Cu(I) catalysts and ligands, as well as its applications.
4 

  Recovery of Cu species is a long-term exploration in “click” reaction.
5
 In this work, 

a MNPs-supported tris(triazolyl)–CuBr catalyst, with a diameter of approximately 25 

nm was synthesized. This magnetically recyclable catalyst smoothly promoted “click” 

reactions of terminal alkynes in water at room temperature. Inductively coupled 

plasma (ICP) analysis revealed that the Cu leaching is almost negligible. This work 

was carried out in collaboration with Laetitia Etienne (determination of copper traces 

in the products by ICPMS), and with María Echeverria and Dr. Sergio Moya (TEM). 
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& Click Chemistry

A Highly Active and Magnetically Recoverable Tris(triazolyl)–CuI

Catalyst for Alkyne–Azide Cycloaddition Reactions

Dong Wang,[a] Laetitia Etienne,[b] Mar�a Echeverria,[c] Sergio Moya,[c] and Didier Astruc*[a]

Abstract: Nanoparticle-supported tris(triazolyl)–CuBr, with
a diameter of approximately 25 nm measured by TEM spec-
troscopy, has been easily prepared, and its catalytic activity
was evaluated in the copper-catalyzed azide–alkyne cycload-
dition (CuAAC) reaction. In initial experiments, 0.5 mol %
loading successfully promoted the CuAAC reaction between
benzyl azide and phenylacetylene, in water at room temper-
ature (25 8C). During this process, the iron oxide nanoparti-
cle-supported tris(triazolyl)–CuBr displayed good monodis-
persity, excellent recoverability, and outstanding reusability.
Indeed, it was simply collected and separated from the reac-
tion medium by using an external magnet, then used for an-

other five catalytic cycles without significant loss of catalytic
activity. Inductively coupled plasma (ICP) analysis for the first
cycle revealed that the amount of copper leached from the
catalyst into the reaction medium is negligible (1.5 ppm).
The substrate scope has been examined, and it was found
that the procedure can be successfully extended to various
organic azides and alkynes and can also be applied to the
one-pot synthesis of triazoles, through a cascade reaction in-
volving benzyl bromides, alkynes, and sodium azide. In addi-
tion, the catalyst was shown to be an efficient CuAAC cata-
lyst for the synthesis of allyl- and TEG-ended (TEG = triethy-
lene glycol) 27-branch dendrimers.

Introduction

The copper-catalyzed 1,3-dipolar cycloaddition reaction be-
tween alkynes and azides (CuAAC), yielding 1,4-disubstituted
1,2,3-triazoles,[1] is undoubtedly the most representative exam-
ple of a “click” reaction[2] to date. The CuAAC reaction demon-
strates excellent atom economy, exclusive regioselectivity,
a high tolerance to a range of functional groups, and the use
of mild reaction conditions. In addition, 1,2,3-triazoles possess
many interesting properties, such as antibacterial,[3] antialler-
gic,[4] anti-HIV,[5] and antineoplastic[6] activity. 1,2,3-triazoles also
have the potential for coordinating to metal centers, which
can be useful for sensing and in further catalytic reactions.[7]

Therefore, the CuAAC reaction has been extensively applied in
organic synthesis, biology, and materials science[8] since its dis-
covery by the groups of Sharpless[1a] and Meldal[1b] in 2002.

However, the majority of reported CuAAC systems, in partic-
ular the systems that use homogeneous catalysts, have been
susceptible to contamination by the cytotoxic CuI ion, which

restricts the application of such systems in electronics and bio-
medicine. To overcome this drawback, a wide range of strat-
egies have been investigated. Chromatographic purification of
the crude product, washing the crude product with ethylene-
diaminetetraacetic acid (EDTA) or ammonia, and performing
CuAAC reactions under continuous flow conditions (quadra-
pureTM, thiourea resin, or activated charcoal as the metal scav-
enger) are all acceptable methods, but they are scavenger-,
energy-, and time-consuming procedures. The development of
an astute copper-free click strategy has been proposed, but
this strategy has only been used for the CuAAC reactions of cy-
clooctyne reagents.[9] The heterogenization of click-chemistry
catalysts appears to be a logical solution; the use of heteroge-
neous catalysts could results in easy removal, recovery, and re-
usability of the copper catalyst ; thereby, minimizing copper
contamination of the reaction products. Until now, several sup-
ports have been employed for immobilization of copper spe-
cies, such as polymers,[10] zeolites,[11] activated carbon,[12] alumi-
na,[11a, 13] resin,[14] carbon nanotubes,[15] and silica.[16]

In a related context, functionalized magnetic nanoparticles
have emerged as viable alternatives.[17] Magnetic nanosized
catalysts can easily be separated from reaction mixtures by
using an external magnet. They display better stability and re-
usability, more efficient catalytic activity, lower preparation
costs, and lower toxicities in comparison with other materials
that are used as supported heterogeneous catalysts. These
properties are due to their insoluble, paramagnetic, and nano-
sized nature.[18] In addition, the size, shape, morphology, and
dispersity of magnetic nanosized catalysts are controllable.
Therefore it is possible to design different magnetic nanocata-
lysts for specific catalytic applications.[19]

[a] Dr. D. Wang, Prof. Dr. D. Astruc
ISM, Universit� Bordeaux
351 Cours de la Lib�ration, 33405 Talence Cedex (France)
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Among the various copper sources for CuAAC reactions, in-
cluding CuII salt/reductant mixtures, CuI salts, copper nanopar-
ticles, CuI complexes, and Cu0/oxidant mixtures, CuI complexes
represent the most efficient copper source in terms of product
yield and catalyst turn-over numbers (TONs). The use of CuI–
ligand complexes was shown to both accelerate the catalytic
process, in comparison with the ligand-free CuI species, and
stabilize CuI intermediates. Moreover, it is relatively straightfor-
ward to graft CuI complexes onto a support in hybrid material
assemblies. Indeed, nitrogen-based ligands and N-heterocyclic
carbenes (1 a–e, Figure 1) were found to be excellent ligands

for CuAAC reactions.[20] Fokin et al. designed polytriazoles 1 d
that showed outstanding activity for click reactions with vari-
ous substrates.[21a,b] Subsequently, Peric�s et al. prepared tris(1-
benzyl-1H-1,2,3-triazol-4-yl)methanol ligand, 1 e, and CuCl-1 e,
which efficiently catalyzed CuAAC reactions in water, or under
neat conditions, in a short reac-
tion time with a low catalyst
loading. In addition, the hydroxyl
group of 1 e proved to be a very
promising anchoring point for
immobilization, allowing the
assembly of heterogeneous
CuAAC catalysts.[21c] Our group
synthesized CuI complexes with
(hexabenzyl)tren 1 b, and den-
dritic analogues with 18- or 54-
branch termini that are powerful
catalysts for click reactions. The
catalytically active metalloden-
drimers provided a rare positive
dendritic effect that was also
mechanistically very useful.[22]

Herein, we present the synthesis
of a magnetic CuI-1 e complex,
in which 1 e was not only used
as the chelating framework for
the CuI salt, but also as a linker
to SiO2-coated g-Fe2O3 nanopar-
ticles. Both the catalytic activity

and the reusability of the catalyst, for CuAAC reactions, have
been investigated.

Results and Discussion

Synthesis of magnetic iron oxide nanoparticle-supported
tris(triazolyl)–CuI complexes

The primary step for the synthesis of the iron oxide nanoparti-
cle-supported tris(triazolyl)–CuI complexes was the synthesis of
tris(1-benzyl-1H-1,2,3-triazol-4-yl)methanol, 1 e (Scheme 1). The
CuAAC reactions were conducted, in the presence of copper
sulfate and sodium ascorbate (a catalytic system developed by
Sharpless et al.),[1a] between three equivalents of benzyl azide
and a tris(alkynyl)carbinol intermediate. This intermediate was
readily prepared by the addition of trimethylsilylacetylide to
ethyl chloroformate, followed by removal of the trimethylsilyl
(TMS) groups. The 3-chloropropyltriethoxysilane-functionalized
magnetic nanoparticles, 2, were obtained through immobiliza-
tion of 3-chloropropyltriethoxysilane on the surface of robust
SiO2/g-Fe2O3

[23] by means of heterogenization with the Si�OH
binding sites of SiO2/g-Fe2O3 in toluene heated at reflux. Mag-
netic nanoparticle-supported tris(1-benzyl-1H-1,2,3-triazol-4-yl)-
methanol, 3, was prepared by alkylation of 2 with 1 e.[14b] The
loading of 3 was calculated by determination of the nitrogen
content (C, H, N elemental analysis), the result indicated that
the content was approximately 0.068 mmol g�1. Finally, com-
plexation of 3 with CuCl or CuBr (1.1 equivalents) resulted in
the assembly of magnetic nanoparticle-supported tris(triazol-
yl)–CuCl, 4 a, or tris(triazolyl)–CuBr, 4 b, respectively. Transmis-
sion electron microscopy (TEM) images showed that the diam-
eter of 4 b was approximately 25 nm (Figure 2 a).

Figure 1. A selection of ligands currently used in CuAAC reactions.
Cy = cyclohexyl ; Mes = mesityl ; Pr = n-propyl; Ad = adamantyl.

Scheme 1. Synthesis of CuX-1 e/SiO2/g-Fe2O3 (4). Bn = benzyl.
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Optimization of the conditions for alkyne–azide
cycloadditions catalyzed by 4

The catalytic applications of magnetically recyclable catalyst 4
in the cycloaddition reaction between benzyl azide and phe-
nylacetylene, yielding the corresponding 1,4-disubstituted
1,2,3-triazoles, was investigated under various conditions
(Table 1). In these preliminary experiments, CuAAC reactions

were conducted in a mixture of MeOH and H2O (1:1), with vari-
ous loadings of 4 a, under a nitrogen atmosphere at room tem-
perature. Increasing yields of 1,2,3-triazoles were obtained with
increasing catalyst loading, in the range 0.17–1.0 mol %. The re-
actions proceeded in excellent yields (91 %) in the presence of
1 mol % 4 a (entry 4), and replacing the mixed solvent MeOH/
H2O by H2O alone or by EtOH/H2O did not affect the catalytic
efficiency. Catalyst 4 b was then evaluated in CuAAC reactions
and demonstrated superior catalytic activity compared with
that of 4 a (0.5 mol % 4 b provided 1,2,3-triazoles with 97 %
yield, in water, within 20 h at room temperature) Considering
our goal of an economic and environmentally friendly reaction,
these aqueous conditions are clearly favorable. Moreover, the
excellent catalytic performances of 4 a and 4 b benefited from
the good monodispersity of the SiO2-coated iron oxide nano-
particles in water.

Investigation of the reusability of 4 b in the CuAAC reaction
between benzyl azide and phenylacetylene

The reusability of the highly active magnetic nanoparticle-sup-
ported CuI complex, 4 b, was tested by using the model reac-
tion between benzyl azide and phenylacetylene, with
0.5 mol % [Cu] in water at room temperature, under a nitrogen
atmosphere. Catalyst 4 b showed excellent magnetic properties
and monodispersity. After completion of the first reaction, the
catalyst was collected by using an external magnet, successive-
ly washed with CH2Cl2 and methanol, and dried under vacuum
for 2 h. A new reaction was then performed with fresh reac-
tants under the same conditions. The results are summarized
in Table 2; 4 b could be reused six times without significant

loss of its catalytic activity, a decrease in the yield of the reac-
tion only being observed after six cycles. The TEM image re-
vealed that the morphology and size of 4 b changed over
time, and a particle aggregation problem emerged after eight
reaction cycles (Figure 2 b). In addition, the leaching of copper
species from the initial catalyst into the reaction media, a key
issue for evaluating heterogeneous catalysts for CuAAC reac-
tions, was investigated. After the first cycle, inductively cou-
pled plasma (ICP) analysis revealed that 0.04 % of copper spe-
cies was released from the initial catalyst into the reaction
media, and the amount of residual copper species in the crude
reaction product was approximately 1.5 ppm, compared with
5–15 ppm for other catalysts in the literature.[7, 8] Thus, copper
species leaching into the crude product was not completely
eliminated, but appeared to be negligible.[17c] As anticipated,
the tris(triazolyl) fragment proved to be a stable chelating
framework for the adsorption of the CuI salt, and a good linker
for the SiO2-coated g-Fe2O3 nanoparticles through straightfor-
ward C�O bond formation. Magnetic catalyst 4 b also per-
formed well in the presence of air, but became deactivated
after the second run, probably caused by aerobic oxidation of
the CuI species into a CuII species.

Figure 2. a) TEM image of CuBr-1 e/SiO2/g-Fe2O3 (4 b) before the CuAAC reac-
tions; b) TEM image of 4 b after eight reaction cycles. Scale bars = 200 nm.

Table 1. Screening of solvents and catalysts for CuAAC.[a]

Entry Cat. ([mol %]) Solvent Ratio ([mL]:[mL]) Time [h] Yield [%][b]

1 4 a (0.17) MeOH/H2O (1:1) 4 28
2 4 a (0.2) MeOH/H2O (1:1) 24 61
3 4 a (0.5) MeOH/H2O (1:1) 68 98
4 4 a (1) MeOH/H2O (1:1) 24 91
5 4 a (1) EtOH/H2O (1:1) 24 90
6 4 a (1) H2O (1) 24 90
7 4 b (0.5) H2O (1) 12 89
8 4 b (0.5) H2O (1) 20 97

[a] The reaction was carried out with phenylacetylene (1 mmol) and
benzyl azide (1.05 mmol) in the presence catalysts 4 a or 4 b, in the stated
solvent at room temperature, under a nitrogen atmosphere. [b] Isolated
yields after column chromatography.

Table 2. Reusability test for catalyst 4 b in the cycloaddition reaction be-
tween phenylacetylene and benzyl azides.[a]

Run Yield [%][b] Yield [%][c]

1 97 96
2 95 93
3 94 72
4 92 39
5 92 –
6 92 –
7 84 –
8 67[d] –

[a] The reaction was carried out with phenylacetylene (1 mmol) and
benzyl azide (1.05 mmol) in the presence of 4 b (74 mg, 0.005 mmol
copper), at room temperature in water for 20 h. [b] Isolated yields after
column chromatography. The reaction was carried out in nitrogen-
purged H2O (for 10 min) under a nitrogen atmosphere. [c] Isolated yields
after column chromatography. The reaction was carried out in air. [d] The
reaction time was 45 h.
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We then questioned whether CuBr did not coordinate with
the tris(triazolyl) ligand to form a copper complex, but was
simply caged in the iron oxide nanoparticles. In order to
answer this point, a control experiment was performed by
mixing SiO2-coated g-Fe2O3, without the tris(triazolyl) ligand,
with CuBr (three equivalents according to the amount of CuBr
used in synthesis of 4 b).[14b] The obtained mixture was used
for promoting the cycloaddition reaction of benzyl azide with
phenylacetylene. To achieve a clear comparison, the amount of
the mixture corresponded to the weight of 4 b at the same
scale. The results showed that a 54 % yield was obtained in the
first run, and only 18 % in the second run. Therefore, it is rea-
sonable to infer that the iron oxide supported tris(triazolyl)–
CuBr complex is the actual catalytic species.

Investigation of the substrate scope for CuAAC reactions
catalyzed by 4 b

Encouraged by the efficiency of the reaction protocol de-
scribed above, the scope of the reaction was examined with
magnetic catalyst 4 b (0.5 mol % [Cu]), in water under a nitro-
gen atmosphere, at room temperature. Firstly, various terminal
alkynes were investigated in reactions with benzyl azide. For
each substrate, the reusability of 4 b was examined for the first
three runs. As shown in Figure 3, on carrying out the CuAAC
reaction between benzyl azide and phenylacetylene on
a 0.25 mmol scale, the desired 1,4-disubstituted 1,2,3-triazole,
5 a, was produced in 96 % yield with 100 % selectivity (the se-
lectivity was determined by using 1H NMR spectroscopy), and
a slight decrease in the yield was observed from runs one to
three (down to 92 %). Electron-donating (CH3O, NH2) and elec-
tron-withdrawing (CHO) groups on the alkynes were tolerated,
and no direct correlation could be drawn between the elec-
tronic nature of the terminal alkynes and the outcome of the
reaction. Heteroatom-containing alkynes, 2-ethynylpyridine
and 3-ethynylpyridine, were suitable cycloaddition partners,

and the corresponding 1,2,3-triazoles, 5 e and 5 f, were ob-
tained in 86 and 92 % yields, respectively. The somewhat lower
yield of the former reaction is probably attributable to the rela-
tively bulky structure. Aliphatic alkynes containing linear chains
were also suitable substrates, producing 1,4-disubstituted
1,2,3-triazoles 5 g and 5 h in excellent yields (99 and 93 %, re-
spectively). It was found that longer-chain aliphatic terminal al-
kynes resulted in the lowest yields. The products 5 i and 5 j
were separated with high conversions when aliphatic terminal
alkynes with hydroxyl groups were employed in CuAAC reac-
tion. This procedure has been successfully extended to include
ferrocenylacetylene as a substrate, the yield of the obtained
product, 5 k, being 96 %. The reusability of 4 b was also verified
with all substrates, as shown in Figure 3.

The substrate scope of organic azides was then further in-
vestigated (Figure 4). The results indicated that benzyl, alkyl,
and aryl azides could be successfully employed to assemble
1,2,3-triazoles through the CuAAC reaction with phenylacety-
lene. The yields decreased steadily upon increasing the alkyl-
chain length of the organic azides (6 a–6 c). When phenyl azide
was used, 4 b smoothly promoted the formation of 1,2,3-tria-
zole 6 d with a 92 % yield. However, organic azides with elec-
tron-donating (CH3) or electron-withdrawing (I) substituents re-
sulted in lower yields. For each substrate, 4 b was recovered
and reused three times with good catalytic activity.

Cascade-reaction strategies display significant advantages
over classical stepwise methods and have frequently been
used as a powerful method in organic synthesis. Cascade reac-
tions offer rapid and convergent construction of molecules
from commercially available starting materials, without the iso-
lation and purification of any intermediates, resulting in saving
time, cost, and energy. In this context, taking into account the
interest in avoiding storage and manipulation of organic
azides, which can be hazardous, a three-component one-pot
process was investigated by testing an azido reaction/1,3-dipo-
lar cycloaddition of alkynes, sodium azide, and benzyl bro-
mides (Figure 5). This process performed smoothly with

Figure 3. Substrate scope of terminal alkynes in the presence of catalyst 4 b.
The bar graph shows the yield of isolated products. 5 a : R1 = C6H5 (yield of
the first three runs: 96, 95, and 92 %); 5 b : R1 = 4-CHOC6H4 (96, 95, and
90 %); 5 c : R1 = 4-CH3OC6H4 (94, 94, and 88 %); 5 d : R1 = 4-NH2C6H4 (92, 90,
and 85 %); 5 e : R1 = pyridine-2-yl (86, 84, and 80 %); 5 f : R1 = pyridine-3-yl (92,
91, and 91 %); 5 g : R1 = C4H9 (99, 94, and 94 %); 5 h : R1 = C5H11 (93, 87, and
86 %); 5 i : R1 = HOC(CH3)2 (89, 84, and 84 %); 5 j : R1 = HOC(C6H5)2 (93, 91, and
87 %); 5 k : R1 = ferrocenyl (96, 87, and 85 %).

Figure 4. Substrate scope of organic azides in the presence of catalyst 4 b.
The bar graph shows the yield of isolated products. 6 a : R2 = C6H13 (yield of
the first three runs: 95, 92, and 90 %); 6 b : R2 = C8H17 (91, 88, and 88 %); 6 c :
R2 = C18H37 (82, 74, and 74 %); 6 d : R2 = C6H5 (92, 92, and 88 %); 6 e : R2 = 4-
CH3OC6H4 (83, 81, and 80 %); 6 f : R2 = 4-IC6H4 (81, 77, and 72 %).
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0.5 mol % 4 b, without other additives, in water for 24 h at
room temperature. Both electron-donating (3-CH3) and elec-
tron-withdrawing (4-Br, 3-I, and 4-NO2) substituents on benzyl-
bromide showed good reactivity with sodium azide and phe-
nylacetylene, producing the corresponding 1,2,3-triazoles in ex-
cellent yields. When 4-cyano benzylbromide was involved in
the reaction, a lower yield (72 %) was obtained, attributable to
the coordination behavior of 4-cyano benzylbromide with the
active copper center, resulting in deactivation of the catalyst.
The double-azido CuAAC reaction of 1,2-dibromomethyl-ben-
zene proceeded well in the presence of 1 mol % 4 b, yielding
product 7 f, which contains two triazole fragments, in 83 %
yield, and only a trace amount of the single triazole product.
The reusability of 4 b was also investigated in the cascade-reac-
tion strategy. Thus, it was shown that 4 b could be recovered
and reused three times with only a slight decrease in the yield
of the reaction. We also attempted the same tandem reactions,
but with a linear-chain alkyl bromide (1-bromooctane), sodium
azide, and phenylacetylene. Unfortunately, only a trace of de-
sired product was obtained, probably because of the poor re-
activity of 1-bromooctane with sodium azide in water at room
temperature. Also, no triazole was produced when an aryl bro-
mide (phenyl bromide) was employed, owing to the inability
of phenyl bromide to undergo SN2 reactions.

Encouraged by the efficiency of the reaction protocol de-
scribed above, 4 b was probed as a CuAAC catalyst for the syn-
thesis of 27-branch dendrimers by 1!3 connectivity between
dendritic nona-azide polymer 8 and two propargylated phenol
dendrons (9 a and 9 b). In a previous report,[8e, 24] it was indicat-
ed that these reactions reached completion only in the pres-
ence of a quantitative amount of the catalyst developed by
Sharpless et al. We found that 8 mol % of 4 b per branch suc-
cessfully catalyzed the quantitative synthesis of 27-allyl and 27-
TEG dendrimers (10 a and 10 b, respectively) over 26 h or two
days, respectively (Scheme 2). Moreover, after the first cycle of
the synthesis of 10 a, 4 b was recharged and completed anoth-
er synthesis of 10 a, within approximately three days, under
ambient conditions.

Conclusion

The syntheses of iron oxide nanoparticle-supported tris(triazol-
yl)–CuI complexes, 4, has been shown to be straightforward
and convenient. The CuBr version of the magnetic nanoparticle
catalyst, 4 b, showed, with low loading (0.5 mol %), good cata-
lytic activity, recoverability, and reusability in CuAAC reactions.
The catalyst was easily separated from the reaction medium by
using an external magnet and showed good catalytic activity
for six cycles. The amount of leaching copper species from the
initial catalyst into the reaction media, determined by induc-
tively coupled plasma (ICP) analysis, is negligible. This system
has a broad substrate scope, and 25 1,4-disubstituted 1,2,3-tri-
azoles were synthesized in good to excellent yields, including
27-allyl and 27-TEG dendrimers. For each small molecular sub-
strate, 4 b was reused three times with either the same catalyt-
ic efficiency or only a slight decrease in yield. The outstanding
performance of 4 b benefited from the excellent inherent prop-
erties of iron oxide nanoparticles and the powerful chelating
nature of the tris(triazolyl) ligand with CuI centers. The above-
mentioned results show that the reported procedure is easy-
to-operate, economical, and environmentally friendly, as well
as being in accordance with the principles of click chemistry
and green chemistry. Magnetic catalyst 4 b could potentially
be applied to CuAAC reactions for the synthesis of macromole-
cules, biomolecules, and nanoparticles.

Experimental Section

General

All reactions were performed under nitrogen by using standard
Schlenk techniques, unless otherwise noted. DMF was freshly dis-
tilled from calcium hydroxide, 1,4-dioxane was dried over Na foil,
and distilled from sodium benzophenone under nitrogen immedi-
ately prior to use. CuBr was purified by stirring in glacial acetic
acid overnight, followed by filtration, washing with ethanol and
then drying under vacuum; it was stored under nitrogen and in
the dark. All commercially available reagents were used as re-
ceived, unless indicated otherwise. Flash column chromatography
was performed using silica gel (300–400 mesh). 1H NMR spectra
were recorded by using a 300 MHz spectrometer, and 13C NMR
spectra were recorded at 75 MHz by using a 300 MHz spectrome-
ter. Elemental analyses were performed by the Center of Microanal-
yses of the CNRS at Lyon Villeurbanne, France. The infrared spectra
were recorded on an ATI Mattson Genesis series FTIR spectropho-
tometer. The inductively coupled plasma optical emission spectros-
copy (ICP-OES) analyses were carried out using a Varian ICP-OES
720ES apparatus. Room temperature throughout the paper is 23–
25 8C.

Synthesis of tris(triazolyl)methanol (1 e)[21c]

A solution of trimethylsilylacetylene (2.3 mL, 16.6 mmol) in anhy-
drous THF (20 mL) was cooled to �78 8C. Then, 2.5 m nBuLi in
hexane (6.1 mL, 15.2 mmol) was added dropwise, and the solution
was stirred for 4 h. Ethyl chloroformate (442 mL, 4.61 mmol) was
added, and the reaction was stirred overnight while warming to
�30 8C. The reaction was quenched with saturated NH4Cl solution,
diluted with water, and extracted with Et2O (3 � 30 mL). The com-

Figure 5. One-pot azide formation and subsequent CuAAC reaction mediat-
ed by 4 b. 7 a : R3 = 4-Br (yield of the first three runs: 88, 84, and 84 %); 7 b :
R3 = 3-I (87, 86, and 83 %); 7 c : R3 = 4-CN (72, 60, and 56 %); 7 d : R3 = 4-NO2

(90, 87, and 87 %); 7 e : R3 = 3-CH3 (98, 96, and 90 %); 7 f : R3 = 1-CH2-4-C6H5-
1H-[1,2,3]triazole (83, 82, and 72 %).
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bined organic phase was dried over Na2SO4, and the solvent was
removed under reduced pressure. The crude product was further
purified by silica-gel chromatography (petroleum ether/ethyl ace-
tate as eluent) to yield tris(trimethylsilylethynyl)methanol in 67 %
yield (1.0 g). 1H NMR (300 MHz, CDCl3): d= 2.82 (s, 1 H), 0.18 ppm (s,
27 H).[21c] In a round-bottomed flask, the obtained tris(trimethylsily-
lethynyl)methanol in methanol (10 mL) was stirred in the presence
of K2CO3 (4.20 g, 37.5 mmol) at room temperature overnight. The
solution was filtered to remove excess K2CO3 and added to a solu-

tion of benzyl azide (1.25 g, 9.40 mmol) in methanol (10 mL).
CuSO4

.5H2O (38.9 mg, 0.156 mmol) and sodium ascorbate (93.0 mg,
0.468 mmol) were added, and the mixture was stirred for 14 h at
room temperature. The solvent was removed under reduced pres-
sure. The residue was dissolved in dichloromethane (50 mL) and
washed with saturated Na2CO3 solution (5 � 30 mL). The organic
phase was dried over Na2SO4 and the solvent removed under re-
duced pressure. Purification was performed by flash column chro-
matography, with petroleum ether/ethyl acetate as eluent, and

Scheme 2. Synthesis of dendrimers 10 a and 10 b through CuAAC reactions catalyzed by 4 b.
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product 1 e was obtained in 37 % yield (0.58 g). 1H NMR (300 MHz,
CDCl3): d= 7.64 (s, 3 H), 7.24–7.38 (m, 15 H), 5.47 (s, 6 H), 5.04 ppm
(s, 1 H).[21c]

Synthesis of iron oxide nanoparticle-supported
tris(triazolyl)methanol ligand (3)[14b]

A solution of 1 e (252 mg, 0.5 mmol) in DMF (2 mL) was added
dropwise into a suspension of NaH (15 mg) in anhydrous DMF
(2 mL) at 0 8C. After stirring for 45 min at room temperature, the
suspension became a clear solution and was cooled to 0 8C and
the added through a syringe to a sonicated DMF solution of 2
(400 mg). The reaction mixture was allowed to warm to room tem-
perature, and dried at 80 8C for 96 h. After this time the reaction
mixture was cooled down to room temperature, and the magnetic
solid was separated by using an external magnet and then succes-
sively washed with DMF (20 mL), THF (20 mL), MeOH (20 mL), and
Et2O (20 mL). The resulting magnetic nanoparticles were dried in
a vacuum at 45 8C overnight. The amount of tris(triazolyl) ligand in
the functionalized magnetic nanoparticles, 3, was 0.068 mmmol
g�1, which was calculated from the results of elemental nitrogen
analysis (found: N 0.8582 %).

Synthesis of iron oxide nanoparticle-supported
tris(triazolyl)methanol catalyst (4)

In a round-bottomed flask, a mixture of CuX (0.15 mmol, X = Br or
Cl) and iron oxide nanoparticle-supported tris(triazolyl)methoxy
ligand 3 (2 g) in anhydrous 1,4-dioxane (40 mL) was sonicated for
approximately 15 min and stirred at 45 8C overnight. The iron
oxide nanoparticle-supported tris(triazolyl)methanol–CuX catalysts
4 were successively washed with 1,4-dioxane (20 mL), toluene
(20 mL), and Et2O (20 mL), then dried at 45 8C overnight under
vacuum and stored before use.

General procedures for the 4 b-catalyzed cycloaddition of
alkynes and organic azides

A dried Schlenk tube equipped with a magnetic stirring bar was
charged, under a nitrogen atmosphere, with alkyne (0.25 mmol),
organic azide (0.275 mmol), catalyst 4 b (18.4 mg), and nitrogen-
purged H2O (0.25 mL). The mixture was stirred at room tempera-
ture for 20 h, and CH2Cl2 (5 mL) was added. The catalyst was col-
lected by using a magnet and washed with CH2Cl2 (3 � 5 mL) and
MeOH (5 mL), then dried at room temperature under vacuum.
During the above-mentioned treatment for the reaction, the cata-
lyst was always kept under a nitrogen atmosphere. The combined
organic phase was dried over Na2SO4 and filtered, the filtrate was
removed under reduced pressure in order to obtain the crude
product, which was further purified by silica-gel chromatography
(petroleum ether/ethyl acetate as eluent) to yield the correspond-
ing 1,4-disubstituted 1,2,3-triazole. The recovered catalyst was then
used for the next reaction cycle.

General procedures for one-pot azide formation and
subsequent CuAAC reaction catalyzed by 4 b

Alkyne (0.25 mmol), benzyl bromide (0.275 mmol), sodium azide
(0.3 mmol), nitrogen purged H2O (1 mL), and 4 b (18.4 mg) were
added to a flask with a stirrer bar, and the mixture was stirred for
24 h at room temperature under nitrogen. CH2Cl2 (5 mL) was
added to the mixture, and the catalyst was collected by using
a magnet and washed with CH2Cl2 (3 � 5 mL) and MeOH (5 mL),
then dried at room temperature under vacuum. The combined or-

ganic phase was dried over Na2SO4 and filtered, the filtrate was re-
moved under reduced pressure in order to obtain the crude prod-
uct, which was further purified by silica-gel chromatography (pe-
troleum ether/ethyl acetate as eluent) to yield the corresponding
1,4-disubstituted 1,2,3-triazole. The recovered catalyst was then
used for the next reaction cycle.

Acknowledgement

Helpful discussions with Dr. J. Ruiz and financial support from
the China Scholarship Council (CSC) of the People’s Republic of
China (Ph. D. grant to D.W.), the Universit� de Bordeaux, and
the Centre National de la Recherche Scientifique (CNRS) are
gratefully acknowledged.

Keywords: click chemistry · copper · green chemistry ·
magnetic nanoparticles

[1] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem.
2002, 114, 2708 – 2711; Angew. Chem. Int. Ed. 2002, 41, 2596 – 2599;
b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057 –
3064.

[2] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113, 2056 –
2075; Angew. Chem. Int. Ed. 2001, 40, 2004 – 2021.

[3] a) M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E.
Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutch-
inson, J. Morris, R. D. Reischer, D. Stper, B. H. Yagi, J. Med. Chem. 2000,
43, 953 – 970; b) B. S. Holla, M. Mahalinga, M. S. Karthikeyan, B. Poojary,
P. M. Akberali, N. S. Kumari, Eur. J. Med. Chem. 2005, 40, 1173 – 1178.

[4] a) D. R. Buckle, D. J. Outred, C. J. M. Rockell, H. Smith, B. A. Spicer, J.
Med. Chem. 1983, 26, 251 – 254; b) D. R. Buckle, C. J. M. Rockell, H.
Smith, B. A. Spicer, J. Med. Chem. 1986, 29, 2262 – 2267.

[5] R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clercq, C.-F. Perno,
A. Karlsson, J. Balzarini, M. J. Camarasa, J. Med. Chem. 1994, 37, 4185 –
4194.

[6] N. A. Al-Masoudim, Y. A. Al-Soud, Tetrahedron Lett. 2002, 43, 4021 – 4022.
[7] For selected examples, see: a) R. M. Meudtner, M. Ostermeier, R. God-

dard, C. Limberg, S. Hecht, Chem. Eur. J. 2007, 13, 9834 – 9840; b) D.
Schweinfurth, K. I. Hardcastle, U. H. F. Bunz, Chem. Commun. 2008,
2203 – 2205; c) O. Fleischel, N. Wu, A. Petitjean, Chem. Commun. 2010,
46, 8454 – 8456; d) S. Warsink, R. M. Drost, M. Lutz, A. L. Spek, C. J. Elsevi-
er, Organometallics 2010, 29, 3109 – 3116; e) D. Urankar, B. Pinter, A.
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Chapter 4 

Magnetically Recyclable PdNPs in C-C Coupling Reactions 
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4.1 Introduction  

This chapter concerns our approaches of magnetic catalysts, i.e. palladium 

nanoparticle catalysts that are immobilized on magnetic iron oxide γ-Fe2O3 in various 

ways. Two submitted papers with the collaboration of Christophe Deraedt (PhD 

student in our group) are included in this chapter. 

The first work that we have conducted with some collaboration of Christophe Deraedt 

concerns the preparation, characterization and catalytic applications of 

MNPs-immobilized PEGylated γ-Fe2O3-Pd nanoparticle catalysts. The basis for this 

work lies in a variety of studies of dendritic catalysts and nanoparticles (NPs) 

catalysts that have been previously conducted by our research group. Indeed, recently 

Elodie Boisselier (former PhD student)
1
 and Christophe Deraedt

2
 prepared triethylene 

glycol (TEG)-terminated “click” dendrimers containing Percec-type dendrons, and 

successively used them for assembling dendrimer-encapsulated metal nanoparticles 

(DENs) and dendrimer-stabilized NPs (DSNs) involving AuNPs and PdNPs. 

Moreover, these PdNPs displayed impressive catalytic activity in carbon-carbon cross 

coupling reactions.
2,3,4,5 

  Considering the advantages of MNPs in catalyst recovery, in the present work 

dendritic “click” ligands terminated by TEG groups were immobilized on iron oxide 

MNPs and utilized in the synthesis of PdNPs. These MNPs exhibited high catalytic 

activity and recyclability in Suzuki, Sonogashira and Heck reactions. In addition, five 

pharmacologically relevant or natural compounds were also readily obtained through 

the above-mentioned coupling reactions using these magnetic PdNP catalysts. The 

comparison of the PdNPs with related PdNPs supported on magnetic linear ligands 

indicated positive dendritic effects in terms of ligand loading, catalyst loading, 

catalytic activity and recyclability. 

The second work conducted essentially by Christophe Deraedt work with whom we 

have collaborated introduces a simple method of impregnating pre-synthesized PdNPs 

stabilized by TEG-terminated “click” dendrimers into iron oxide MNPs, by stirring 

the mixture of MNPs and PdNPs. The presence of MNPs largely improved the activity, 

stability and recyclability in carbon-carbon cross coupling reactions and oxidation 
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reaction of benzyl alcohol to benzaldehyde. 
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ABSTRACT 

The engineering of novel catalytic nanomaterials that are both highly active for 

crucial carbon-carbon bond formations, easily recoverable many times and 

biocompatible is highly desirable in terms of sustainable and green chemistry. It is in 

this spirit that new catalysts comprising dendritic „„click‟‟ ligands immobilized on a 

magnetic nanoparticle (MNP) core, terminated by triethylene glycol (TEG) groups 

and incorporating Pd nanoparticles (PdNPs) are characterized by transmission 

electron microscopy (TEM), high-resolution transmission electron microscopy 

(HRTEM), inductively coupled plasma analysis (ICP), Fourier transform infrared 

spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDX) and shown to 

be highly active, dispersible and magnetically recoverable many times in Suzuki, 

Sonogashira and Heck reactions. In addition, a series of pharmacologically relevant or 

natural products were successfully synthesized using these magnetic PdNPs as 

catalyst. For comparison, related PdNP catalysts deposited on MNPs bearing linear 

„„click‟‟ PEGylated ligands are also prepared, and strong positive dendritic effects 

concerning ligand loading, catalyst loading, catalytic activity and recyclability are 

observed, i.e. the dendritic catalysts are much more efficient than the non-dendritic 

analogues. 

99



 2 

 

INTRODUCTION 

Accompanied with the rapid development of modern industry, environmental 

concerns are increasing day by day. Maximization of synthetic efficiency and 

minimization of waste generation are basic constraints to solve the environmental 

problems.
1
 In a related context, the use of heterogeneous catalysts appears to be one of 

the promising methodologies in developing environmentally friendly organic 

transformation process, due to their separability, reusability, and unique activity 

provided through the interaction between the catalytic species and supports.
2
 Among 

transition metal nanoparticle (NP) catalysts,
3
 magnetic nanoparticles (MNPs) have 

recently received a lot of attention as excellent supports.
4
 MNPs catalysis is nowadays 

undergoing an explosive development,
 
because MNPs-immobilized catalysts perfectly 

combine the advantages of catalytically active NPs and magnetic NPs. NP catalysts 

benefit from activity, selectivity and stability, resulting from the large 

surface-to-volume ratio, tunable size, shape, composition, electronic structure, and 

solubility whereas MNPs are easily assembled, accessible and reusable with an 

external magnetic field. Therefore MNP catalysts fully embody the principles of green 

chemistry and sustainability. 

Dendrimers, dendrons, dendronized and dendritic polymers, a family of nanosized 

three-dimensional well-defined highly branched molecular frameworks, have been 

demonstrated to have essential and promising applications in catalysis.
5-9

 In particular, 

dendrimer-encapsulated metal nanoparticles (DENs) and dendrimer-stabilized NPs 

(DSNs) have proved to be efficient catalysts for a variety of reactions
10

 since Crook‟s 

group pioneered catalysis by polyamidoamine (PAMAM)-encapsulated Pd 

nanoparticles (PdNPs).
11

 The DENs and DSNs possess a variety of key properties 

including tunable size due to the predictable number of metal atoms in the precatalyst, 

solubility and stability caused by the functional groups and steric embedding effects, 

loose binding to the NP surface, and the possibility of heterogenization by fixation on 

a solid support. PAMAM dendrimers,
12

 polypropyleneimine (PPI) dendrimers
13

 and 

phenylazomethine dendrimers
14

 are the most used dendrimers for the stabilization of 
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metal NPs. It was recently reported that triethylene glycol (TEG)-terminated “click” 

dendrimers containing Percec-type dendrons,
15

 constructed using Newkome-type 

1→3 connectivity,
16

 were remarkably powerful for assembling DENs and DSNs 

involving AuNPs and PdNPs.
17

 The latter exhibited unprecedented catalytic 

performance in both C-C cross-coupling reactions and reduction of 4-nitrophenol, 

owing to smooth complexation of triazole to Pd atoms, water solubility provided by 

TEG termini, and the formation of dendritic nanoreactors containing hydrophilic 

periphery and hydrophobic interior. 

The introduction of dendritic fragments into MNPs has been utilized during the past 

few years, and this engineering considerably increased the number of functional 

groups on the surface of MNPs and strongly improves the dispersion of MNPs in 

organic or aqueous solvent.
4e,18

 These MNPs-immobilized dendritic fragments are 

promising catalysts,
18

 reusable adsorbents of metal ions,
18c

 and potential drug 

carriers.
18d

 In the field of catalysis, most of these MNPs catalysts bearing dendritic 

frameworks were MNP-anchored metal complexes, organocatalysts, and biocatalysts. 

To the best of our knowledge, the only example on magnetic DENs or DSNs has been 

reported by Bronstein‟s group.
18g

 These authors used polyphenylenepyridyl dendrons 

as capping molecules to successively stabilize iron oxide NPs and PdNPs, and the 

obtained magnetically recoverable Pd catalyst afforded excellent catalytic 

performance in the selective hydrogenation of dimethylethynylcarbinol to 

dimethylvinylcarbinol. 

  Herein, we report the engineering, synthesis, characterization and catalytic 

efficiency and recyclability of PdNPs supported on new MNPs containing dendritic 

„„click‟‟ PEGylated ligands. High efficiency of these PdNP catalysts is found in 

Suzuki–Miyaura, Sonogashira, and Heck reactions, and positive dendritic effects are 

demonstrated in terms of the loading amount of catalyst, catalytic activity, and in 

particular recyclability. 
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RESULTS AND DISCUSSION 

Syntheses of MNP-immobilized PEGylated triazolyl ligands 2, 4, 6, 9. The 

syntheses of MNPs-immobilized linear and dendritic PEGylated triazolyl ligands 

were the primary steps of this project. Magnetic linear PEG550-triazoles 2 was 

prepared through two strategies (Scheme 1): grafting pre-synthesized 

Si(OEt)3-functionalized PEG-triazole on the surface of iron oxide MNPs (Route A), or 

direct “click” synthesis of PEG-triazole on the surface of iron oxide MNPs after the 

introduction of azido groups (Route B). In route A, the “click” reaction of 

(3-azidopropyl)triethoxysilane with PEG550 alkyne was readily conducted in the 

presence of [Cu(PPh3)2NO3] in anhydrous CH2Cl2 at room temperature (r.t.) giving 

Si(OEt)3-functionalized PEG-triazoles 1 that was further immobilized on the surface 

of MNPs via the heterogenization with the Si–OH binding sites of SiO2/γ-Fe2O3 NPs. 

In route B, the “click” reaction was successfully carried out between PEG550 alkyne 

and azido-modified iron oxide NPs. The loading of the ligands in 2 was calculated by 

determination of the nitrogen content (C, H, N elemental analysis), and the result 

revealed that the loadings were 0.17 mmol g
-1

 and 0.26 mmol g
-1

 for routes A and B, 

respectively. The lower ligand loading of route A seems attributable to the low 

efficiency of the heterogenization process caused by the bulky chain of compound 1. 

In order to obtain higher ligand loading, route B was used in the preparations of 

MNPs-immobilized linear PEG2000-triazole ligand 4 and Percec-type 

dendron-triazole ligand 6 (Scheme 1). The former contains a longer hydrophilic PEG 

chain than 2, and the latter possesses a TEG-terminated dendritic framework. 
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Scheme 1. Syntheses of MNPs-immobilized linear and dendritic PEGylated triazolyl 

ligands 2, 4, and 6 
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There are basically two strategies for the modification of MNPs with dendritic 

fragments:
4e

 (i) the divergent synthesis of dendritic fragments on the surface of MNPs 

after the introduction of a linker, and (ii) the grafting of pre-synthesized dendritic 

fragments. The synthesis of MNPs-immobilized dendritic tris-triazole ligand 9 was 

achieved through both strategies. The divergent synthesis approach is shown in 

Scheme 2. Iodo-functionalized MNPs were derived by coupling of SiO2/γ-Fe2O3 NPs 

with pre-synthesized (3-iodopropyl)triethoxysilane.
19

 The dendritic precursor 7 

bearing a phenol and three azido groups has been reported earlier.
20

 Newkome-type 

1→3 connectivity
16

 was then applied using nucleophilic substitution of the terminal 

iodine by the phenolate group of 7 in the presence of K2CO3 in DMF.
20

 This reaction 

provided dendritic azide-functionalized MNPs 8 in which the existence of azido 

groups was verified by the appearance of the N3 band at 2102 cm
-1

 in the FT-IR 

spectra. The loading amount of azido groups was 0.86 mmol g
-1

, as measured by 

elemental analysis (EA). Finally, the “click” reaction of 8 with the Percec-type 

dendron 5 efficiently proceeded to afford MNP-anchored dendritic the TEG-triazole 

ligand 9 (Figure 1). In the process, the reaction was monitored by FT-IR as indicated 
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by the almost complete disappearance of the IR signal of 2102 cm
-1

 that stands for the 

azido group.  

 

 

Scheme 2. Divergent synthesis of MNP-immobilized dendritic tris-triazole ligand 

with TEG tethers. 

+ HO Si

Si

Si
N3

N3

N3

O

O

O

O

O

O

O

O

O
O

O
O

O

O Si

Si

Si

N3

N3

N3

Si
O
O
O

I

Si
O
O
O

K2CO3, DMF, 80oC

7

8

CuI, DIPEA, DMF/THF
r.t., 36 h

5

9  
 

 

104



 7 

Si

Si

Si

N

N

N

NN

NN

N
N

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O O O

O O O

O O O

O

O

O

O

O
O

O
O

O
OO

O
O

O

OSi

O
O

O

SiSi

Si

N

N

N

N
N

N
N

N

N

O O

O

O

O
O

OO
O

O
O

O
OO

O
O

O

O

O

O

O

O

O

O

O

O

O

OO
O

O

O

O

O

O

O

O

O

O

O

Si

O
OO

S
i

S
i

Si

N N
N

N

N

N
NN

N

O

O

O
O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

Si

OOO

Si

Si

Si
N

N

N

N
N

N N

N
N

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O
O

O

O
OO

OOO O
O

Si
O

O
O

Si

Si

Si

N

N

N

N N

N
N

N
N

O

O

O

O

OOO

OOO

OOO

O

O

O

O

O

O O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

Si

O
O
O

S
i

S
i

Si

N

N

NN
N

N

N
N

N
O

O

O OO

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

Si

OO O

S
i

S
i

Si

N
N

N

N
N N

N

NN

O

O
O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

Si
OO

O

 

Figure 1. Schematic structure of MNP 9. 

 

Scheme 3 represents the other synthetic method for grafting the pre-synthesized 

dendritic fragments. The “click” reaction of dendritic azide 7 with Percec-type
15

 

dendron 5 was successfully performed using the “Sharpless-Fokin” catalyst”
21

 in 

mixed solvent of THF and H2O, providing phenolic hydroxy group-functionalized 

tris-triazole dendron 10. Thereafter, the desired MNP-immobilized dendritic 

tris-triazole ligand 9 was constructed via the Williamson reaction between 10 and 

iodo-modified MNPs.
20
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Scheme 3. Synthesis of MNPs-immobilized dendritic tris-triazole ligand with 

triethylene glycol (TEG) tethers through the grafting of pre-synthesized dendrons. 
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EA showed that the triazole loading amounts of 9 were 0.63 and 0.42 mmol g
-1

, for 

the divergent synthesis and the grafting of pre-synthesized unit method, respectively. It 

was thus clear that the divergent synthesis was more efficient than the grafting of 

pre-synthesized unit method, considering that the amount of loaded functional groups 

is a very key issue for the evaluation of loading protocols. In addition, the obtained 

MNPs 9 possessed much higher ligand loading than that of MNPs-immobilized linear 

ligands 2 and 4 (Table 1). This result shows that the introduction of a dendritic 

structure could remarkably increase the density of functional groups around the MNPs, 

which is the indication of a positive dendritic effect. 

Transmission electron microscopy (TEM) images revealed that all of MNPs 2, 4, 6, 

9 presented core-shell morphology with an average particle size of about 25 nm 

ranging from 10 to 40 nm (Fig, S1, 2a). 
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Note that in the synthetic processes of these magnetic PEGylated triazolyl ligands, 

the magnetic separation was repeatedly used in purifying operation as an efficient, 

time saving, “green” and easy-to-operate protocol. 

 

Preparation and characterization of iron oxide NP-immobilized PdNPs: 

MNP-2-PdNPs, MNP-4-PdNPs, MNP-6-PdNPs, MNP-9-PdNPs. MNPs 2, 4, 6, 9 

are highly dispersible and even partially soluble in water owing to the presence of 

PEG or TEG, providing the possibility that MNPs 2, 4, 6, 9 are used as supports for 

efficient immobilization of PdNPs in water. First, the coordination of Pd(II) with 

triazolyl fragment was achieved by adding 2 equiv. of K2PdCl4 per triazolyl group 

into a suspension of MNPs-immobilized PEGylated triazolyl ligands in water. The 

complexation process of triazole to Pd(II) has been confirmed in earlier reports.
10o,17b,c

 

PdNPs were then loaded onto the MNPs supports following by the reduction of Pd(II) 

to Pd(0) using 10 equiv. NaBH4 per triazole group (Scheme 4). These MNP-PdNPs 

were characterized by TEM, HRTEM, EDX, FT-IR, and ICP-OES. 

 

Scheme 4. Syntheses of MNP-PdNPs. 

2, 4, 6, 9
K2PdCl4 NaBH4

PdNPs

MNP-2-PdNPs
MNP-4-PdNPs
MNP-6-PdNPs
MNP-9-PdNPs

 

 

Taking MNP-9-PdNPs as an example, the production was performed upon 

utilizing the MNP 9 as support that was prepared by the divergent synthesis method. 

TEM image of MNP-9-PdNPs revealed the core-shell structure and the almost 

unchanged size compared to unloaded MNP 9 (Figure 2b). Moreover, HRTEM 

pictures showed that the sizes of formed PdNPs were smaller than 5 nm with an 

average size of approximately 3.0 nm (Fig S1, 2c). 
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Figure 2. (a) TEM image of MNPs 9. (b) TEM image of MNP-9-PdNPs. (c) HRTEM 

image of MNP-9-PdNPs (A: PdNP; B: γ-Fe2O3 core; C: SiO2 shell). (d) TEM image 

of MNP-9-PdNPs after 8 reaction cycles in the Suzuki-Miyaura reaction. 

 

The elemental composition was determined by EDX analysis, and the results shown 

in Figure 3 indicate Si, O, Fe and Pd signals that are provided by the MNP-9-PdNPs. 

For further characterization of the sample, high resolution scanning transmission 

electron microscopy coupled quantified energy dispersive X-ray spectroscopy 

(HRSTEM-EDX) mapping of the sample was also investigated (Figure 4, S2). 

Looking at the compositional maps of Si, Fe, Pd and mainly the combined 

composition image, the presence of the iron oxide nanoparticles is clearly 

distinguished in the core of the MNP that is encapsulated by the silicon oxide shell 

while the palladium nanoparticles are localized at the border. 

108



 11 

 

Figure 3. EDX spectrum of MNP-9-PdNPs. 

 

 

Figure 4. STEM dark-field image (a) and elemental maps of MNP-9-PdNPs for Si 

(b), Fe (c), Pd (d), and mixture of Si, Fe, Pd (e) obtained by EDX. 

 

Thanks to the HRTEM images it was also possible to observe the atomic 

arrangements in several Pd and Fe2O3 particles. Figure 5b shows the atomic planes for 

a γ-Fe2O3 nanoparticle and the corresponding selected-area electron diffraction 

(SAED) pattern showing a [111] orientation of a face centered cubic (fcc) structure. 

Similar treatment for a selected Pd nanoparticle revealed a [011] orientation of a face 

centered cubic (fcc) structure (Figure 5d). 
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Figure 5. (a) HRTEM image of the Fe2O3 nanoparticles, (b) the corresponding SAED 

of Fe2O3 nanoparticles, (c) HRTEM image of the Pd nanoparticles, (d) the 

corresponding SAED of Pd nanoparticles. 

 

ICP-OES analysis showed that the Pd loading of MNP-9-PdNPs is 0.21 mmol g
-1

, 

which is approximately 3 times larger than that of MNP-2-PdNPs and 4 times larger 

than that of MNP-4-PdNPs (Table 1) and signifies a positive dendritic effect 

regarding catalyst loading. 
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Table 1. Loading Amounts of Triazolyl Ligand in MNPs 2, 4, 6, 9; and Loading 

Amounts of PdNP in MNP-2-PdNPs, MNP-4-PdNPs, MNP-6-PdNPs, 

MNP-9-PdNPs. 

MNPs Triazole loading (mmol/g)
 

Pd loading (mmol/g)
 

MNP 2
a 0.26  

MNP 4
a 0.14  

MNP 6
a 0.27  

MNP 9
b 0.63  

MNP-2-PdNPs  0.072 

MNP-4-PdNPs  0.048 

MNP-6-PdNPs
  0.082 

MNP-9-PdNPs
  0.210 

a
 The MNPs were prepared through route B. 

b
 The MNPs were prepared through the 

divergent method. 

 

 

We know that in dendrimers containing triazole ligands, these ligands quantitatively 

coordinate to Pd(II) according to a 1:1 stoichiometry, which was demonstrated by 

cyclic voltammetry with ferrocenyltriazole-terminated dendrimers.
20a

 In the case of 

MNP-9-PdNPs the approximate average number of ligands around one iron oxide NP 

is of the order of 10000. The average number of PdNPs loaded on one iron oxide NP is 

approximately 3.6 (see calculations in SI). 

In arene-cored dendrimers, PdNP are trapped inside dendrimers upon weak 

interaction with the triazole ligand. We also know that this interaction is weak, because 

these nitrogen ligands are not -acceptors for metal(0), and indeed triazole ligands are 

very easily displaced from the PdNP surface for instance in metal surface catalysis of 

nitrophenol reduction. In the present case, the SiOH groups of the silica core are a dense 

assembly of ligands for PdNP stabilization, which has already been suggested. The 

HRTEM of figures 2c and 5c clearly shows PdNPs sitting on the silica surface. Thus it 
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is believed that the PdNPs are stabilized on the silica surface on one (inner) side and by 

bakfolding triazole ligands on the other (outer) side (Figure 6).
22

 Indeed the silica 

core-triazole ligand distance is adequate for such stabilization. In this way, the 

stabilization of the PdNPs is double and stronger, but leaves the outer surface available 

for easy triazole displacement by substrates in catalysis experiments. 

 

 

Figure 6. The proposed schematic structure of MNP-9-PdNPs. 

 

Investigation of the activities, recyclabilities, and substrate scope of MNP-PdNPs 

in the Suzuki-Miyaura reaction. Pd-catalyzed Suzuki-Miyaura reactions for the 

construction of C-C bonds are crucial in modern chemical transformations involving 

the syntheses of pharmaceuticals, functional materials, and natural compounds. The 

catalytic activities of these MNPs-PdNPs were evaluated in Suzuki-Miyaura reactions 

using bromobenzene and phenylboronic acid as model substrates. In these preliminary 

experiments, MNPs-9-PdNPs was chosen as the catalyst for optimizing investigations 

that were first conducted in aqueous media (mixture of EtOH and H2O) with various 

catalytic amount of [Pd], using K2CO3 as a base at 80 
o
C under nitrogen atmosphere 

(Table 2). Increasing yields of desired biphenyl product were observed with 

increasing catalytic amount, in the range of 0.063 – 0.315 mol%. The reaction reached 

a yield of 91%, using 0.315 mol% of [Pd] (corresponding to 15 mg of 

MNP-9-PdNPs), within 24 h. Attempts involving the replacement of K2CO3 by others 
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bases including Na2CO3, KOH and K3PO4, decrease of the reaction temperature, or 

reduction the reaction time caused lower yields (Table 2). 

 

Table 2. Optimization of the Suzuki-Miyaura Reaction Between Bromobenzene 

and Phenylboronic Acid Using MNP-9-PdNPs as Catalyst.
a 

Entry Amount 

(mol%)
 

Solvent 

(mL) 

Base 

 

Temperature 

(
o
C) 

Time  

(h) 

Yield
c 

(%) 

1 0.063
 

EtOH/H2O (10:10) K2CO3 80 24 31 

2 0.189 EtOH/H2O (10:10) K2CO3 80 24 63 

3 0.315
b 

EtOH/H2O (10:10) K2CO3 80 24 91 

4 0.625 EtOH/H2O (10:10) K2CO3 80 24 93 

5 

6 

0.315 

0.315 

EtOH/H2O (10:10) 

EtOH/H2O (10:10) 

K2CO3 

K2CO3 

45 

80 

24 

2 

45 

34 

7 0.315 EtOH/H2O (10:10) K2CO3 80 10 66 

8 0.315 EtOH/H2O (3:3) K2CO3 80 24 80 

9 

10 

11 

0.315 

0.315 

0.315 

EtOH/H2O (10:10) 

EtOH/H2O (10:10) 

EtOH/H2O (10:10) 

Na2CO3 

KOH 

K3PO4 

80 

80 

80 

24 

24 

24 

79 

64 

72 

a The reaction was carried out with bromobenzene (1 mmol) and phenylboronic acid (1.5 

mmol) in the presence of the catalyst MNPs-9-PdNPs and base (2 equiv) in EtOH/H2O under 

a nitrogen atmosphere. b 15 mg of MNPs-9-PdNPs. c Isolated yields after column 

chromatography. 

 

The recyclability, a key issue of heterogeneous catalysts from both the practical and 

environment points of view, was tested for all MNP-PdNPs under optimized 

conditions. As shown in Table 3, the reactions catalyzed by MNP-2-PdNPs and 

MNP-4-PdNPs containing linear ligands were smoothly performed with 0.315 mol% 

of [Pd], and the biphenyl product was isolated in 80% and 82% yields, respectively. 

Then, these two catalysts were readily separated from the reaction medium using an 

external magnet and reused for the next cycles (Fig S3). An obvious decrease in 

activity was found in the second and third reaction cycles (Table 3). MNP-6-PdNPs 

bearing mono-triazole Percec-type dendron, however, showed a good catalytic 

performance in terms of activity and recyclability. The magnetically recoverable 

catalyst produced a yield of 87% in the first run and maintained a similar activity in 

the next three cycles. Interestingly, MNP-9-PdNPs containing tris-triazole dendrons 

was a superior catalyst. Remarkably, its catalytic activity did not deteriorate during 8 
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successive runs presenting yields of 87 - 91 %, a steady loss of activity only being 

detected from the ninth cycle (Table 3). The TEM analysis of the recovered catalyst 

revealed that the size and morphology of both MNP-9-PdNPs and the corresponding 

PdNPs after 8 cycles had no apparent change (Figure 2d). ICP analysis indicated that 

only 0.24 and 0.95 ppm Pd leached out from the initial MNP-9-PdNPs catalyst after 

the first and the eighth cycles respectively, which implied that MNP-9-PdNPs was 

highly stable. In addition, MNP-9-PdNPs maintained the same catalytic activity for 

months following storage at r.t. in air. 

In the case of the Suzuki-Miyaura reactions, the comparison among these 

MNP-PdNPs catalysts clearly indicated positive dendritic effects regarding both 

activity and recyclability, in particular in recyclability issue. It seems reasonable to 

infer that the improved catalytic performance benefited from the presence of the 

dendritic framework that efficiently stabilized the PdNP and played a crucial role as a 

barrier to inhibit the release of the PdNP or part of it from the MNP support. 

 

Table 3. Investigation of the Recyclabilities of MNP-PdNPs in the 

Suzuki-Miyaura Reaction Between Bromobenzene and Phenylboronic Acid
a 

Br + B(OH)2
MNPs - PdNPs

EtOH/H2O, K2CO3, 80 oC  

 Cycle
b  

 1
 

2 3 4 5 6 7 8 9 10 

MNP-2-PdNPs 80 62 25        

MNP-4-PdNPs 82 82 66 35       

MNP-6-PdNPs 87 87 83 83 40      

MNP-9-PdNPs 91 91 89 89 88 87 87 87 80 69 

a The reaction was carried out with bromobenzene (1 mmol) and phenylboronic acid (1.5 

mmol) in the presence of the catalyst MNP-PdNPs (0.315 mol%) and K2CO3 (2 equiv) under 

a nitrogen atmosphere for 24 h. b Isolated yields (%± 2%) were provided for each cycle. 

 

In order to check whether the catalytic activity originated from the immobilized 

PdNPs or from leached Pd, a control experiment was performed. Therefore the 

Suzuki-Miyaura reaction between bromobenzene and phenylboronic acid in the 

presence of MNP-9-PdNPs was allowed to proceed for 2 h under the optimized 

conditions providing the desired cross-coupling product in 34% yield. Subsequently, 
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the catalyst was magnetically separated at 80 
o
C; the remained reaction solution was 

transferred to another Schlenk flask and was stirred again for another 22 h. Then the 

biphenyl product was isolated in 36% yield, showing that almost no yield increase 

was observed after removing the immobilized PdNPs catalyst. The result of the 

hot-magnetic separation experiment
23

 confirmed the heterogeneous nature of the 

catalyst.  

Encouraged by the efficiency of the reaction protocol described above, the scope of 

the Suzuki-Miyaura reaction was examined with MNP-9-PdNPs (0.315 mol% of [Pd]) 

in the mixture of EtOH and H2O under nitrogen atmosphere at 80 
o
C, and the results 

are gathered in Table 4. A series of bromobenzenes bearing various substituents were 

tested in reactions with phenylboronic acid. Bromobenzenes containing 

electron-withdrawing (NO2, CHO, CH3CO, CH3CH2OCO) as well as 

electron-donating (NH2, CHO, CH3) groups in para-position were suitable coupling 

partners, and the corresponding coupling products (11b-h) were efficiently 

synthesized in 83-94% yields. No direct correlation could be drawn between the 

outcome and the electronic nature of bromobenzene substituents. The challenging 

reaction with 2,4,6-trimethyl bromobenzene generated the corresponding product in 

91% yield (Table 4, entry 9). Substituted arylboronic acids were also investigated, and 

they all reacted smoothly with bromobenzene to provide the desired products in good 

yields (Table 4, entries 10, 11). The steric effect was also observed, however. 

Moreover, the reaction of 4-nitrochlorobenzene smoothly proceeded with 1 mol% of 

MNP-9-PdNPs, producing the corresponding coupling product in 88% yield. 
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Table 4. Investigation of the Substrate Scope in the Presence of MNP-PdNPs in 

the Suzuki-Miyaura Reaction
a 

X + B(OH)2 R1
R2 R2

MNP-9-PdNPs

EtOH/H2O, K2CO3, 80 oC

R1

 

Entry R
1 

X R
2 

Products Yield (%)
b  

1 H Br H 11a 91 

2 4-NO2 Br H 11b 92 

3 4-CHO Br H 11c 94 

4 4-CH3CO Br H 11d 94 

5 4-CH3CH2OCO Br H 11e 83 

6 4-NH2 Br H 11f 89 

7 4-CH3O Br H 11g 92 

8 

9 

4-CH3 

2,4,6-TrisCH3 

Br 

Br 

H 

H 

11h 

11i 

90 

91
c 

10 H Br 4-CH3 11j 89 

11 H Br 2-CH3 11k 74 

12
 

4-NO2 Cl H 11b 88
d 

a The reaction was carried out with bromobenzene (1 mmol) and phenylboronic acid (1.5 

mmol) in the presence of catalysts MNP-9-PdNPs (0.315 mol%) and K2CO3 (2 equiv) in 

EtOH/H2O (10 mL/10mL) under a nitrogen atmosphere for 24 h. b Isolated yields (%) were 

provided for each cycle. c The reaction time is 86 h. d The reaction was carried out in the 

presence of 1 mol% of [Pd] in 72 h. 

 

Investigation of the activities and recyclabilities of MNP-PdNPs in Sonogashira 

and Heck reactions. The Sonogashira and Heck coupling reactions are also two 

common strategies of C-C bonds construction respectively forming conjugated 

compounds and arylated olefins. MNP-2-PdNPs, MNP-6-PdNPs and 

MNP-9-PdNPs were all used as catalysts in both Sonogashira and Heck reactions. 

The Sonogashira reaction of iodobenzene and phenylacetylene was chosen to test 

the recyclability of the MNP-PdNPs bearing linear or dendritic PEGylated triazolyl 

ligands. The reactions were performed with 1.5 mol% of [Pd] using Et3N as base in 

THF at 65 
o
C for 24 h. After each reaction cycle, the catalyst has been separated from 

the reaction mixture using a magnet and successively washed with CH2Cl2 and 

acetone and then re-used in a subsequent run. As shown in Table 5, the yields of the 

first reaction cycle catalyzed by MNP-2-PdNPs, MNP-6-PdNPs, and 

MNP-9-PdNPs were 78%, 82%, 85%, respectively. The recyclability results showed 

that an obvious loss in activity of MNP-2-PdNPs bearing linear PEG550-triazole 
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ligand was observed in the second run; MNP-6-PdNPs with the small dendron could 

be easily recycled three times with slight loss of catalytic activity. It is particularly 

gratifying, however, that MNP-9-PdNPs containing dendritic tris-triazole ligands 

maintained almost the same catalytic activity from the first to the sixth cycle. The 

results of Table 5 show that the catalytic recyclability was significantly influenced by 

the structure of PEGylated trizolyl ligands, the dendritic frame greatly improving the 

recyclability. 

 

Table 5. Investigation of the Recyclabilities of MNP-PdNPs in the Sonogashira 

Reaction Between Iodobenzene and Phenylacetylene.
a 

I +
MNPs - PdNPs

THF, Et3N, 65 oC

12  

 Cycle
b  

  

 1 2 3 4 5 6 7 

MNP-2-PdNPs 78 65      

MNP-6-PdNPs 82 80 79 63    

MNP-9-PdNPs 85 83 83 81 80 80 75 

a The reaction was carried out with iodobenzene (1 mmol), phenylacetylene (1.2 mmol) in the 

presence of catalysts MNP-PdNPs (1.5 mol%) and Et3N (2 equiv) in THF (5 mL) at 65 oC 

under a nitrogen atmosphere for 24 h. b Isolated yields (%) were provided for each cycle. 

Yields: ± 2%. 

 

The recyclability test of MNP-2-PdNPs, MNP-6-PdNPs, and MNP-9-PdNPs was 

also carried out for the Heck cross-coupling reaction of iodobenzene with styrene 

utilizing 1.5 mol% of [Pd] and 2 equiv. of K2CO3 at 120 
o
C in DMF (Table 6). The 

desired (E)-1,2-diphenylethene was isolated in good yields and 100% selectivity in 

the first run in all cases with these MNP-PdNPs. A superior activity and recyclability 

were also found with increase of the dendritic grade of ligands around the MNPs 

(Table 6). The recycling performances of these MNP-PdNPs in the Heck reaction 

were generally not as good as that of both Suzuki and Sonogashira reactions, which 

was caused by the harsher conditions of the Heck reaction. Nevertheless, the 

recyclability was good again with MNP-9-PdNPs and much superior to those of the 

other catalysts, showing another dramatically positive dendritic effect. 
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Table 6. Investigation of the Recyclabilities of MNP-PdNPs in the Heck Reaction 

Between Iodobenzene and Styrene
a 

I +
MNPs - PdNPs

DMF, K2CO3, 120 oC

13  

 Cycle
b 

  

 1 2 3 4 5 

2 – PdNPs 73 36    

6 – PdNPs 81 77 57   

9 - PdNPs 85 84 84 82 74 
a
 The reaction was carried out with iodobenzene (0.6 mmol), styrene (0.5 mmol) in 

the presence of the catalyst MNP-PdNPs (1.5 mol%) and K2CO3 (2 equiv) in DMF (5 

mL) at 120 
o
C under a nitrogen atmosphere for 24 h. 

b
 Isolated yields (% ± 1.5%.) 

were provided for each cycle.  

 

 

Syntheses of pharmacologically relevant or natural products based on 

Suzuki-Miyaura, Sonogashira, and Heck reactions. Synthesis of pharmacologically 

interesting or natural products is one of the most important applications of C-C 

coupling reactions. The impressive ability of Pd catalysts to create C-C bonds 

provides many new avenues for designing medicinal candidates. 

Inspired by its high efficiency, excellent recyclability, negligible Pd-leaching and 

the biocompatibility of iron, MNP-9-PdNPs was utilized in the syntheses of 

pharmacologically important or natural products through Suzuki-Miyaura, 

Sonogashira, and Heck reactions, as shown in Figure 7. 

Felbinac 14, a commercial nonsteroidal anti-inflammatory drug, is used to treat 

arthritis and inflammation.
24

 The Suzuki reaction of 4-bromophenylacetic acid with 

phenylboronic acid was smoothly conducted upon using MNP-9-PdNPs as catalyst 

under the optimized conditions, providing Felbinac in 87% yield. Coumarine 

(2H-chromen2-one) is naturally occurring constituent of many plants and essential 

oils. Coumarine and its derivatives have been proved to be useful for treating various 

ailments including cancer, spasm, brucellosis, burns, and rheumatic disease.
25

 Internal 

alkyne 15 containing coumarine fragment was synthesized with 78% yield through 

Sonogashira reaction between ethyne-functionalized coumarine and iodobenzene in 

the presence of 1.5 mol% of [Pd] and 1 equiv. of Et3N at 40 
o
C. Diverse derivatives of 
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cinnamic acid posses different pharmacological activities,
26

 for example, methyl 

cinnmate 16 is used as a flavoring agent and a composition of soap; 

methyl-4-chlorocinnamate 17 has antifungal activity; methyl caffeate 18 exhibits 

antitumor activity against Sarcoma 180 as well as antimicrobial activity. Heck 

reactions involving these corresponding aromatic iodides and methyl acrylate were 

carried out under the optimal conditions. Compounds 16, 17 and 18 were successfully 

isolated with 76-95% yield and almost 100% selectivity. 

 

COOH
O O O

O

O

O

O

Cl O

OHO

HO

14 15

16 17 18

Yield: 87% Yield: 78%

Yield: 89% Yield: 95% Yield: 76%  

Figure 7. Syntheses of pharmacologically relevant or natural products using 

MNP-9-PdNPs as catalyst. 

 

CONCLUSION 

The investigations of catalyst engineering around a MNP has led here to disclose 

favorable dendritic loading according to a divergent synthesis compared to a grafting of 

pre-synthesized unit method, which is new kind of positive dendritic effect. Other 

design features that have involved TEG termini and click syntheses were also favorable 

because of the advantageous NP dispersity and Pd(II) binding respectively, leading 

upon reduction to efficient 3-nm-sized PdNPs in the γ-Fe2O3-Pd catalysts. 

MNP-6-PdNPs and MNP-9-PdNPs containing dendritic frames provided impressive 

and superior performances concerning both activity and recyclability in 

Suzuki-Miyaura, Sonogashira, and Heck reactions compared to the linear counterparts 

in star-shaped MNP catalysts. In particular, MNPs-9-PdNPs that were decorated with 

larger dendrons containing tris-triazole groups showed the best catalytic results among 

these catalysts. In addition, in the case of MNP-9-PdNPs-catalyzed Suzuki-Miyaura 

reactions, ICP analysis revealed that the amount of Pd leached from the initial catalyst 

is negligible after 8 cycles. Finally, the morphology and size of MNP-9-PdNPs did 
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not significantly vary over time. 

A new lesson regarding the design and engineering of catalysts deposited on MNPs 

is that MNPs decorated with dendritic frame are clearly favorable concerning the goal 

of efficiency for practical and environmentally friendly reactions. Indeed, it is 

impressive that MNP-9-PdNPs remains stable for months in air and is recyclable 

many times without significant yield decrease or morphology/size change, which is 

attributed the barrier formed by the dendronic frame at the dendrimer periphery that 

protects the intradendritic PdNP catalyst. The principles and results presented here 

should thus open a gate for more applications of MNPs-Den-NP catalysts in „„green‟‟ 

chemistry. 

 

 

EXPERIMENTAL SECTION 

General 

All reactions were performed under nitrogen by using standard Schlenk techniques, 

unless otherwise noted. Anhydrous DMF and CH2Cl2 were freshly distilled from 

calcium hydroxide; anhydrous toluene was dried over Na foil and distilled under 

nitrogen immediately prior to use. All commercially available reagents were used as 

received, unless indicated otherwise. Flash column chromatography was performed 

using silica gel (300–400 mesh). 
1
H NMR spectra were recorded by using a 300 MHz 

spectrometer, and 
13

C NMR spectra were recorded at 75 MHz by using a 300 MHz 

spectrometer. Elemental analyses were performed by the Center of Microanalyses of 

the CNRS at Lyon Villeurbanne, France. The infrared spectra were recorded on an 

ATI Mattson Genesis series FT-IR spectrophotometer. The inductively coupled 

plasma optical emission spectroscopy (ICP-OES) analyses were carried out using a 

Varian ICP-OES720ES apparatus. Room temperature (r.t.) throughout the article is 

23–25
o
C. 

Synthesis of compound 1. The freshly prepared tetraethoxy silane-functionalized 

azide (0.5 mmol), polyethylene glycol ethyne (n = 11-12) (0.5 mmol), Cu(PPh3)2NO3 

(0.01 mmol) were placed into a dried Schlenk tube equipped with a magnetic stirring 

bar. The Schlenk tube was purged with nitrogen and 2.5 mL of dry CH2Cl2 was added. 
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The mixture was stirred overnight at room temperature. Then the solvent was 

removed in vacuo, the obtained residue was dissolved in 20 mL of anhydrous diethyl 

ether, and filtered, and CH2Cl2 of the filtrate was removed and dried in vacuo. The 

obtained compound 1 (375 mg, 89.8% of yield) was kept under an atmosphere of 

nitrogen for further application. 
1
H NMR (300 MHz, CDCl3): δH 7.54 (s, 1H), 5.27 (s, 

2H), 4.64 (s, 2H), 3.74-3.81 (m, 2H), 3.60-3.64 (m, 53H), 3.34 (s, 3H), 1.92-2.03 (m, 

2H), 1.18 (t, J = 7.1 Hz, 9H), 0.54-0.60 (m, 2H). 
13

C NMR (75 MHz, CDCl3): δC 

144.86, 122.59, 71.83, 70.45, 69.55, 64.58, 58.89, 58.37, 52.29, 24.13, 18.20, 7.38. 

MS (m/z), calcd. for C35H71N3O15Si (n = 11) or C37H75N3O16Si (n = 12): 801.5 or 

845.5, found: MNa
+
 824.5 and 868.5. 

Synthesis of iron oxide nanoparticle-immobilized PEGylated triazolyl ligand 2. 

Route A. Under an atmosphere of nitrogen, 0.3 g of 1 in 2 mL of anhydrous CH2Cl2 

was added to a suspension of 0.3 g of MNPs SiO2/γ-Fe2O3 in 30 mL of anhydrous 

toluene. The mixture was then stirred at 110
o
C under nitrogen atmosphere for 36 h. The 

dark brown solid material obtained was magnetically separated, washed repeatedly 

with toluene (2 × 10 mL), CH2Cl2 (10 mL), diluted aqueous solution of ammonia 

(until there is no blue color in the solution),
17b

 H2O (2 × 20 mL), and acetone (2 × 10 

mL) to remove any unanchored species and then dried in vacuo. 

Route B. Compound PEG550 alkyne (1.12 mmol) and 3-azidopropyltriethoxysilane- 

functionalized MNP 3 (1 g) were mixed with CuI (8 mg), in DMF-THF (1:1, 40 mL) 

under nitrogen. N,N-Diisopropylethylamine (2 mL) was injected into the mixture that 

was then stirred at r.t. for 36 h. The reaction was monitored by FT-IR as indicated by 

the almost complete disappearance of IR signal of 2104 cm
-1

 with stand for the azide 

group. Then the mixture was submitted to magnetic separation, and the MNPs were 

washed sequentially with DMF (20 mL), THF (20 mL), CH2Cl2 (20 mL), diluted 

aqueous solution of ammonia (until there is no blue color in the solution),
17b

 H2O (2 × 

20 mL), and acetone (20 mL), and finally dried in vacuo.  

Synthesis of iron oxide nanoparticle-immobilized PEGylated triazolyl ligand 4. 

The synthesis was conducted as for the ligand 2 following the route B except that 

PEG550 alkyne was replaced by PEG2000 alkyne. 
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Synthesis of iron oxide nanoparticle-immobilized dendritic mono-triazole ligand 

6. The synthesis was carried out as for the ligand 2 following the route B except that 

PEG550 alkyne was replaced by Percec-type dendron 5. 

Synthesis of iron oxide nanoparticles-immobilized dendritic azide 8. In a dried 

Schlenk tube, a mixture of 3-iodopropyltriethoxysilane-functionalized MNP (0.5 g), 

dendron 7 (350 mg), K2CO3 (0.8 g) in anhydrous DMF (40 mL) was sonicated for 

approximately 15 min and stirred at 80 
o
C under nitrogen for 48 h. Then, the mixture 

was submitted to magnetic separation, and the MNPs were washed sequentially with 

DMF (20 mL), CH2Cl2 (20 mL), Na2S2O3-saturated solution (2 × 20 mL), H2O (3 × 

20 mL), and acetone (2 × 20 mL), and finally dried in vacuo. 

Synthesis of compound 10. The azido dendron 7 (0.1 mmol) and 

alkyne-functionalized Percec-type dendron 5 (0.3 mmol) were dissolved in 

tetrahydrofuran (THF), and water was added (5 mL: 5 mL, THF/water). At r.t. 

CuSO4
.
5H2O was added (1 equiv. per branch, 1M aqueous solution), followed by the 

dropwise addition of a freshly prepared solution of sodium ascorbate (2 equiv. per 

branch, 1M aqueous solution). The solution was allowed to stir for 48 hours at r.t. 

After removing THF under vacuum, dichloromethane and an aqueous solution of 

ammonia were added. The mixture was allowed to stir for 10 min in order to remove 

all the Cu
I
 trapped inside the dendrimer as Cu(NH3)6

+
. The organic phase was washed 

twice with water (20mL), dried with sodium sulphate, filtered under paper and the 

solvent was removed in vacuo. The dendrimer 10 was obtained as a viscous brown 

liquid in 86% yield. 
1
H NMR (300 MHz, CDCl3): δH 7.27 (s, 2H), 7.26 (s, 1H), 6.91 

(d, J = 7.8 Hz, 2H), 6.65 (d, J = 7.8 Hz, 2H), 6.48 (s, 6H), 4.52 (s, 6H), 4.36 (s, 6H), 

4.04 (18H), 3.41-3.74 (m, 102H), 3.26 (27H), 1.45 (s, 6H), 0.93 (s, 6H), 0.47 (s, 6H), 

0.05 (s, 18H). 
29

Si NMR (CDCl3, 79.5 MHz): δSi 2.75, 2.70. 
13

C NMR (75 MHz, 

CDCl3): 154.24, 152.52, 144.49, 138.18, 137.87, 137.76, 133.29, 127.11, 123.27, 

114.97, 114.87, 107.28, 106.27, 72.18, 71.80, 70.65, 70.56, 70.39, 69.62, 68.70, 63.47, 

58.88, 42.89, 42.76, 41.80, 41.57, 40.79, 17.31, 14.85, 14.66, -4.04. MS (MALDI-TOF; 

m/z), calcd. for C118H203N9O40Si3: 2471.3, found: MNa
+
 2494.0. Anal. calcd for 

C118H203N9O40Si3 C 57.33, H 8.28, N 5.10, found (%) C 56.99, H 8.01, N 5.06. 
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Synthesis of iron oxide nanoparticle-immobilized dendritic tris-triazole ligand 9 

through the divergent synthesis method. MNP 8 (0.5 g), Percec-type dendron 5 

(455 mg), were mixed with CuI (8 mg), in DMF-THF (1:1, 20 mL) under nitrogen. 

N,N-Diisopropylethylamine (2 mL) was injected into the mixture that was then 

sonicated for approximately 15 min and stirred at r.t. for 36 h. The reaction was 

monitored by FT-IR as indicated by the almost complete disappearance of IR signal of 

2102 cm
-1

 with stand for the azide group. Then the mixture was submitted to magnetic 

separation, and the MNPs were washed sequentially with DMF (10 mL), THF (10 

mL), CH2Cl2 (10 mL), H2O (2 × 10 mL), and acetone (10 mL), and finally dried in 

vacuo. 

Synthesis of iron oxide nanoparticle-immobilized dendritic tris-triazole ligand 9 

through the method of grafting of pre-synthesized dendron. The synthesis was 

carried out as for the synthesis of MNPs 8 except that dendron 7 was replaced by 

dendron 10. 

Synthesis of iron oxide nanoparticle-immobilized PdNPs (taking MNP-9-PdNPs 

as an example). In a Schlenk flask, the suspension of MNP 9 (200 mg, 0.126 mmol 

triazole) in 15 mL of H2O was sonicated for approximately 10 min under nitrogen. 

Then, an orange solution of K2PdCl4 (0.252 mmol, 82 mg, 2 eq. per triazole) in 15 mL 

Milli-Q H2O was added to the Schlenk flask. The mixture was stirred at r.t. for 2 h, 

then submitted to magnetic separation, and the MNPs were washed with Milli-Q H2O 

(10 mL) under nitrogen. After the addition of 20 mL of Milli-Q H2O, a 10 mL 

aqueous solution containing 1.26 mmol of NaBH4 was injected. The mixture was 

stirred at r.t. for 2 h, the color of the mixture changed to black from brown, which 

indicated the reduction of Pd
2+

 to Pd
0
 and PdNP formation. The mixture was 

submitted to magnetic separation, and the MNPs were washed with Milli-Q H2O (2 × 

10 mL), and acetone (10 mL) under nitrogen, and the catalyst was dried at 45 
o
C for at 

least 4 h in vacuo and stored under nitrogen before use. 

General procedures for the MNP-PdNPs-catalyzed Suzuki reaction of 

bromobenzene and phenylboronic acid. A dried Schlenk tube equipped with a 

magnetic stirring bar was charged, under a nitrogen atmosphere, with bromobenzene 
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(1 mmol), phenylboronic acid (1.5 mmol), MNP-PdNPs (0.00315 mmol [Pd]), K2CO3 

(276 mg, 2 mmol) and EtOH/H2O (1:1, 20 mL). The mixture was sonicated for 

approximately 5 min and stirred at 80 
o
C for 24 h. The catalyst was collected by using 

a magnet and washed successively with EtOH (3 × 15 mL), H2O (2 × 5 mL) and 

acetone (5 mL), then dried at r.t. in vacuo. The combined organic phase was washed 

with H2O (2 × 5 mL), and dried over Na2SO4 and filtered, the filtrate was removed in 

vacuo in order to obtain the crude product that was further purified by silica-gel 

chromatography (petroleum ether as eluent) to yield biphenyl. The recovered catalyst 

was then used for the next reaction cycle. 

General procedures for the MNP-PdNPs-catalyzed Sonogashira reaction of 

iodobenzene and phenylacetylene. A dried Schlenk tube equipped with a magnetic 

stirring bar was charged, under a nitrogen atmosphere, with iodobenzene (1 mmol), 

phenylacetylene (1.2 mmol), MNP-PdNPs (0.015 mmol [Pd]), Et3N (2 mmol, 0.28 

mL), and THF (5 mL). The mixture was sonicated for approximately 5 min and stirred 

at 65 
o
C for 24 h. The catalyst was collected using a magnet and washed successively 

with CH2Cl2 (3 × 15 mL) and acetone (5 mL), then dried at r.t. in vacuo. The 

combined organic phase was washed with H2O (2 × 5 mL), and dried over Na2SO4 

and filtered, the filtrate was removed in vacuo in order to obtain the crude product that 

was further purified by silica-gel chromatography (petroleum ether/ethyl acetate as 

eluent) to yield 1,2-diphenylethyne. The recovered catalyst was then used for the next 

reaction cycle. 

General procedures for the MNP-PdNPs-catalyzed Heck reaction of iodobenzene 

and styrene. A dried Schlenk tube equipped with a magnetic stirring bar was charged, 

under a nitrogen atmosphere, with iodobenzene (0.6 mmol), styrene (0.5 mmol), 

MNP-PdNPs (0.015 mmol [Pd]), K2CO3 (2 mmol, 276 mg), and DMF (5 mL). The 

mixture was sonicated for approximately 5 min and stirred at 120 
o
C for 24 h. The 

catalyst was collected using a magnet and washed successively with CH2Cl2 (3 × 15 

Ml), H2O (2 × 10 mL) and acetone (5 mL), then dried at r.t. in vacuo. The combined 

organic phase was washed with H2O (2 × 5 mL), and dried over Na2SO4 and filtered, 

the filtrate was removed in vacuo in order to obtain the crude product that was further 
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purified by silica-gel chromatography (petroleum ether/ethyl acetate as eluent) to 

yield (E)-1,2-diphenylethene. The recovered catalyst was then used for the next 

reaction cycle. 
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Abstract: The simple impregnation of γ-Fe2O3(core)/SiO2(shell) magnetic 

nanoparticles with a dendrimer containing stabilized Pd nanoparticles, a new method 

producing a highly efficient heterogeneous catalyst, provides much better stability, 

recyclability and activity in C-C cross coupling reactions and selective oxidation in 

water of benzyl alcohol to benzaldehyde than unsupported Pd nanoparticles. 

The quest of improved catalysts and strategies for catalyst efficiency and recyclability 

is presently more challenging than ever toward better sustainability.
 
Supported metal 

nanoparticles (NPs) have recently been shown to be excellent catalysts for a variety of 

reactions owing to their large surface-to-volume ratio, remarkable efficiency and 

topological properties and their heterogenization on various oxide and carbon 

supports that allow their recovery.
[1] 

In particular, iron oxide magnetic nanoparticles 

(MNPs) have received considerable attention recently,
[2]

 because they are 

biocompatible and most easily recovered from reaction mixtures using a simple 

external magnetic field. 

  Classically the fixation of NPs on supports mostly uses reduction of metal salts in 

the presence of the support followed by an adequate thermal treatment.
[3]

 Here we 
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propose a novel very efficient method involving PdNPs that are pre-stabilized by a 

water-soluble “clicked” dendrimer 1,
[4] 

then deposited on silica-coated maghemite 

γ-Fe2O3 MNPs 2 by simple mixing and stirring with the aqueous solution of PdNPs/1. 

This simple preparation provides the new heterogeneous PdNP/1/MNP catalyst, 3 

(Figure 1). Catalytic tests for which quantitative or nearly quantitative yields of 

desired products were obtained here with relatively high turnover frequencies and 

unusually low amounts of Pd involving carbon-carbon cross coupling reactions
[3,5]

 

(Suzuki-Miyaura, copper-free Sonogashira and Heck reactions of bromoarenes) and 

selective aerobic oxidation of benzylic alcohol to benzaldehyde.
[6]

 Another crucial 

aspect of these new catalysts is their robustness and recyclability. 

  The driving force of the strong PdNP fixation onto the silica shell is provided by 

the multiple supramolecular H- bonding interactions between the TEG (triethylene 

glycol) termini of 1 and surface OH groups of the silica shell of 2 in synergy with the 

backfolding of intradendritic triazole groups of 1 that interact with the other side of 

the PdNP surface (Figure 2). 

 

 

Figure 1. Preparation of the new catalyst PdNPs/MNP, 3, starting from the 

arene-cored dendrimer 1 that contains nine 1,2,3-triazolyl groups connected to nine 

Percec-type dendrons terminated by 27 triethylene glycol groups. 

 

 

Figure 2. Schematic picture of the stabilization of the dendrimer 1 on the silica 

surface and fixation of the PdNPs by supramolecular H bonding interactions between 

the TEG termini of 1 and the OH groups at the surface of 2. 
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  The detailed preparation of 3 and its characterization are as follows. An aqueous 

solution of small PdNPs (1.4 ± 0.7 nm) was synthesized in the presence of the 

dendrimer 1 that contains nine 1,2,3 triazolyl groups with 27 TEG termini 1 (1.1 mg 

of K2PdCl4 and 2.59 mg of dendrimer 1). After the coordination of one equiv. Pd
II
 per 

triazolyl group (9 triazolyl groups per dendrimer) in water, an aqueous NaBH4 

solution was subsequently added causing the instantaneous formation of PdNPs. 

Dynamic light scattering (DLS) allowed concluding that each PdNP was stabilized 

and surrounded in average by about ten dendrimers 1.
[4b] 

γ-Fe2O3 MNPs of 

approximately 10 nm diameter were synthesized by the co-precipitation method 

described by Shylesh et al.
[7a] 

These MNPs were subsequently coated with a dense 

silica layer using tetraethoxysilane (TEOS) as the silica source and aqueous NH3 as 

hydrolyzing agent. In order to well disperse 2 in the water solution of PdNPs/1, the 

solution was plunged into an ultrasonic bath. Ultrasons also favor the ligandation of 

PdNP at the SiO2 surface.
[7b]

 After 2 hours of ultrasons (entry 1 and 2 of Table 1), 3 

was separated from the aqueous solution using a simple magnet (Figure 3). The 

resulting aqueous solution was analyzed by inductively coupled plasma optical 

electron spectrometry (ICP-OES) and compared to the ICP-OES result of the initial 

aqueous solution of PdNPs/1 in order to investigate the Pd loading. ICP-OES revealed 

that 94% of the starting Pd was loaded on the MNPs 2 (entry 2). With only 5 min of 

ultrasons and 2 hours of stirring Pd loading reached 97.5% (entry 3) and 99.9% in 16 

hours of stirring (entry 4). When the amount of 2 was reduced from 120 mg to 50 mg 

(entry 6) or 25 mg (entry 7), the Pd loading was less important, respectively 60% and 

40%. As expected, a larger amount of 2 (700 mg instead of 120 mg) led to a 

quantitative loading (entry 5). 
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Figure 3. a) (pictures same size) Brown aqueous solution of PdNPs/1. b) After 

addition of 2 to the aqueous solution of PdNPs/1 (black color). c) After 2 hours of 

stirring, the catalyst was separated with a magnet (disappearance of the brown color 

of the solution). 

 

 

Table 1. Impregnation of PdNPs/1 onto 2 for the synthesis of catalyst 3. 

 

Entry
[a]

   2  

(mg) 

 Ultrason 

 (hour) 

Stirring 

 (hour) 

Temp. 

(°C)  

 

Pd loading on 3 

(%)
[b]

 

1 120 2 0 50 75.0 

2 120 2 0 20 94.0 

3 120 0.08 2 20 97.5 

4 120 0.08 16 20 99.9 

5 700  0.08 2 20 99.9 

6 50 0.08 2 20 60.0 

7 25 0.08 2 20 40.0 

[a] Reactions were carried out using 33 mL of an aqueous solution of PdNPs/1 (2.6 

mg of 1 + 1.1 mg of K2PdCl4 + 1.1 mg of NaBH4). [b] Pd loading was determined by 

ICP-OES. 

 

  In conclusion, it was possible to obtain a quantitative loading of Pd upon mixing 

pre-formed PdNPs/1 and MNPs coated with silica under optimized conditions. After 

the separation of the new magnetic catalyst 3 from the aqueous solution, the aqueous 

solution was evaporated, and the resulting residue was analyzed by 
1
H NMR in CDCl3 

(or D2O) in order to check if only PdNP or PdNP@1 was loaded onto the MNPs 2. In 

the case of entry 4 (quantitative impregnation), no trace of dendrimer 1 was observed 

in the 
1
H NMR spectrum, which was not the case of entry 6 (only 60% of Pd was 

loaded in this case). 
1
H NMR spectroscopy indicates that PdNPs@dendrimer 1 were 

completely loaded onto the MNPs (in the case of entry 4). Elemental analysis showed 

that 3 was composed of an organic phase (presence of C, N, O atoms) leading to the 
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same conclusion as upon 
1
H NMR analysis. Moreover 2 was used in large amount 

(120 or 700 mg) in comparison with Pd (1.1 mg of K2PdCl4), and the PdNPs were 

somewhat wedged by 2. 

  Catalyst 3 was characterized by high-resolution transmission electron microscopy 

(HRTEM) and by energy-dispersive X-ray (EDX) spectroscopy. The size of the iron 

core was between 5 and 10 nm as described by the authors,
[7a] 

and small 

monodispersed PdNPs were localized on the silica shell with an average size of 2.0 ± 

0.7 nm. EDX spectroscopy was conducted in three independent zones (shown in 

Figure 4a) of an aggregate of 3. In all cases, the presence of Pd, Fe and Si was 

evidenced. Zones 1 and 2 are localized at the periphery of the assembly and contain 

2-3% weight of Pd (vs. 97-98% Fe2O3-SiO2), whereas zone 3 that is located more 

inside the assembly contains only 0.5% weight of Pd. This is in agreement with the 

fact that supramolecular interactions allow the stabilization/impregnation of PdNPs/1 

on the silica shell surface of 2. 

 

 

Figure 4. a) General view of an assembly of 3 by HRTEM microscopy. The three 

encircled zones correspond to the zones of EDX analysis; see below. b) HRTEM of 3 

at 20 nm scale. Small PdNPs are observed at the periphery of 3. c) Distinction 

between Fe2O3, SiO2 and Pd NPs in the HRTEM picture (5 nm scale). d) Zoom on a 

PdNP. 
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Figure 5. EDX analysis of 3. a) EDX spectrum showing the presence of Pd, Fe and Si 

in the assembly of NPs 3 (zone 1). b) HRTEM dark field image in which PdNPs at the 

periphery of the aggregate are better distinguished. 

 

Catalytic Suzuki-Miyaura reactions were conducted in H2O/EtOH at 80°C within 

24h with 0.02 mol % of Pd from 3 in the presence of K3PO4 as a base (Scheme 1). 

Eight substrates were tested, and yields were in the range of 91% - 99%. The results 

obtained are comparable with those obtained using the homogeneous catalyst 

PdNPs/1 alone or even better, which is remarkable. For instance, under the same 

conditions 4f was obtained with a yield < 50% with 0.02 mol % of PdNPs/1, whereas 

a yield of 98% was obtained with the same amount of Pd from 3. Moreover, felbinac 

4h (R = CH2CO2H in Scheme 1), a nonsteroidal anti-inflammatory drug used to treat 

arthritis and inflammation was synthesized in this way, the Suzuki-Miyaura reaction 

providing a 94% yield. 

In order to determine the optimal amount of 3 necessary for the Suzuki-Miyaura 

reaction between bromobenzene and phenyl boronic acid, some items including yields, 

turnover numbers (TONs) and TOFs were measured in the presence of different 

amounts of 3. With only 20 ppm of Pd after 2 days, the reaction yielded 88 % of 

coupled product, i.e. a TON of 44000 with a TOF of nearly 10
3
  h

-1
 (Table 2). 

 

 

Scheme 1. Suzuki-Miyaura reaction of various substrates with 200 ppm of Pd from 3 

in H2O/EtOH at 80°C during 24h carried out with 1 mmol of bromoarene, 1.5 mmol 

of phenyl boronic acid and 2 mmol of K3PO4.  
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Table 2. Suzuki-Miyaura reactions between bromobenzene and phenyl boronic acid 

with various amount of catalyst 3.
[a][

 

Entry Pd amount (3) 

    (mol %) 

Time 

(h) 

Yield 

(%) 

TON TOF 

(h
-1

) 

1 0.2 24 99 495 20.6 

2 0.02 24 99 4 950 206 

3 0.005 24 60 12 000 500 

4 0.005 36 99 19 000 550 

5 0.003 48 91 30 333 632 

6 0.002 48 88 44 000 917 

[a] The reactions have been carried out in with 1 mmol of bromobenzene, 1.5 mmol 

of phenyl boronic acid, 2 mmol of K3PO4 in a mixture solvent H2O/EtOH (10 mL/10 

mL) at 80°C. 

 

  Another major interest of this catalyst is that by applying a simple magnet, 3 is 

totally recovered. The catalyst 3 was used at least five times without much loss of 

activity. For instance, in the synthesis of 4a, yields decreased from 99% yield (1
st
 run) 

to 91% (5
th

 run). ICP-OES showed that only 0.3% of Pd composing 3 was lost after 

the first run. The catalytic activity was also tested for the Heck and copper-free 

Sonogashira reactions (Scheme 2). 

 

 

Scheme 2. Heck coupling (right) and Sonogashira coupling (bottom).  

 

  The efficiency of 3 with only 0.16% mol % Pd for the copper-free Sonogashira 

reaction was evaluated for the coupling between iodobenzene and phenylacetylene in 

the presence of Et3N as a base. Within 24h at 100°C in a mixture of H2O/EtOH as 

solvent, the desired product was isolated quantitatively.  
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  The Heck reaction between iodobenzene and styrene was also performed under the 

same conditions as those of the Sonogashira reaction but with KOH as base instead of 

Et3N. Only the E isomer of stilbene was formed quantitatively in the reaction.  

   In order to evaluate the robustness, selectivity and efficiency of 3, the widely 

studied
 
oxidation of benzyl alcohol by dioxygen to benzaldehyde 4k was investigated.

 

This reaction was selected, because in the presence of only PdNPs/1 the reaction did 

not work at all, and PdNPs directly precipitated when O2 was bubbled into the 

reaction medium. Now with 3 instead of 1, the aerobic oxidation of benzylic alcohol 

in water with KOH as base occured very efficiently with only 0.09-0.20 mol % of Pd 

from 3. The reaction requires the presence of KOH as base and 5 min of O2 bubbling 

(excess of O2 leads to the side product 4l). Moreover, the use of molecular O2 instead 

of stoichiometric organic oxidant is highly valuable and much researched.
[8] 

The 

reaction performed in water, at relatively low temperature (60°C) with only 0.2 % mol 

of Pd (maximum) led to quantitative conversion of the alcohol into the aldehyde 

(Table 3, entry 13). 

 

 
Scheme 3. Selective benzyl alcohol oxidation with the catalyst 3. 
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Table 3. Investigation of the aerobic benzyl alcohol oxidation in water 

Entry
[a]

 Pd (3)    

amount (mol %) 

KOH  Side  

product  

NMR
[d]

 

Conversion (%) 

7 0.09 2 equiv. No 74  

8 0.09 0 equiv. No 0 

9
[b]

 0.09 2 equiv. No 33 

10
[c]

 0.09 2 equiv. 4l 74  

11 0.045 2 equiv. No 24 

12 0.022 2 equiv. No 4 

13 0.20 2 equiv. No 98 

[a] The reactions have been carried out with 1 mmol of benzyl alcohol in H2O (3 mL) 

during 24h at 60°C, and 5 min of O2 was bubbled before starting the reaction. [b] The 

reaction was performed under air. [c] O2 was present during the entire reaction.
 
[d] 

The NMR conversion corresponds that of benzylic alcohol to benzaldehyde 4k. 

 

  These results show that 3 is much more robust than PdNPs/1 and permits to extend 

the use of the PdNPs as efficient and reusable catalyst in 3 to reactions that are 

different from cross C-C coupling. 

  In conclusion, the new concept of impregnation of dendritically preformed PdNPs 

on MNPs was shown to be highly productive for large improvements in terms of 

catalyst robustness, efficiency and recyclability. The dendrimer-stabilized and 

encapsulated PdNPs/1 were quantitatively impregnated upon heterogeneization on 

silica-coated maghemite γ-Fe2O3 MNPs 2 by simple mixing and stirring with the 

aqueous solution of PdNPs/1. This preparation produced a highly stabilized magnetic 

catalyst 3 that was active even with only 20 ppm of Pd for the Suzuki-Miyaura 

reaction of bromoarenes in the mixture of green solvent H2O/EtOH and reusable. To 

the best of our knowledge, this activity has never been reached for the 

Suzuki-Miyaura reaction with magnetic heterogeneous PdNPs. Actually, lots of 

magnetic PdNP systems has been used for the Suzuki-Miyaura coupling, but most of 

them require 0.1-2% mol of    Pd
[9a-9g]

, and only a few examples work below this 

amount.
[9h]

 Moreover, the leaching amount of only 0.3% for a run led to only 0.6 ppm 

Pd contamination of products, which is very valuable for the synthesis of biological 

molecules such as the felbinac 4h as described above. This magnetic catalyst was so 

robust that the selective oxidation of benzylic alcohol by O2 was quantitative at 60°C 
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in water with only 0.09-0.2 % mol of Pd from 3, which was not possible with 

non-impregnated PdNPs/1 because of the instantaneous aggregation of PdNPs in the 

presence of O2. Finally, another advantage is that 3 is a solid, and catalysis does not 

necessarily have to be conducted in water unlike with PdNPs/1, which was a 

limitation. In summary, this method produced a highly stable, versatile, efficient and 

recyclable magnetic catalyst for a variety of crucial reactions under sustainable 

conditions. 

Experimental Section 

Synthesis of the catalyst 3. 

MNP 2 (25, 50, 120 or 700 mg) is added to the water solution of PdNPs/1 (3.2 × 10
-3

 

mmol of Pd). Ultrasonic is applied during 5min or 2h. When only 5 min of ultrasons 

is used, the mixture is stirred during 2 hours or 16 hours (see Table 1 of the main text). 

Catalyst 3 is then separated from the water with a magnet. The water phase is kept 

and 3 is dried other night at 35-40°C. In order to know the percentage of Pd loading, 

the water phase is analyzed by ICP-OES and compared to the initial ICP-OES value 

determined for the solution of PdNPs/1 (see Table). 
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Chapter 5 

Mono- and Polymetallic Palladium Complexes Containing 

2-Pyridyl-1,2,3-triazole Ligand or Nonabranch-derived Ligands  
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5.1 Introduction 

After the publication of the concept of “click” chemistry by Sharpless, our group 

provided noteworthy contributions in the area. The first “click” metallodendrimers 

containing 1,2,3-triazoles were reported by Catia Ornelas et al from our group in 

2007
1
 together with the first uses in molecular recognition and sensing of anions and 

cations. In parallel, Abdou Diallo and Catia Ornelas, two former PhD students of our 

group, disclosed also in 2007 the first use of dendritic 1,2,3-triazoles in stabilizing 

extremely active Pd nanoparticles in catalysis of Suzuki-Miyaura reactions 

(“homeopathic” catalysis).
2-5 

In continuation of this line of research on “click” chemistry, we have designed 

“clicked” pyridyltriazol ligands for catalytic applications. The work of this chapter 

concerns the catalytic application of palladium complexes containing single or 

nona-branched 2-pyriyl-1,2,3-triazole ligands. The pyridyl-triazole ligand and its 

nona-branched analogue were prepared, then used for the complexation of Pd(OAc)2. 

In this way, a series of mono- and polymetallic pincer-type palladium complexes were 

obtained in which the triazole fragment does not act as a linker but also as one of the 

coordinating groups. Surprisingly, these polymetallic palladium complexes exhibited 

various solubilities with various loading amounts of Pd atoms, resulting in 

homogeneous or heterogeneous properties in organic solvents. The catalytic activity 

of these complexes was evaluated in carbon-carbon cross coupling reactions. This 

indicated that of Suzuki-Miyaura, Sonogashira, and Heck reactions involving aryl 

halides including activated aryl chlorides or acyl chloride proceeded smoothly in the 

presence of these catalysts. This work was done with the collaboration of Dr. 

Dominique Denux (thermogravimetric analysis) and Dr. Jaime Ruiz. (cyclic 

voltammetry measurement). 

Recently, a review of 1,2,3-triazole-metal complexes in catalysis was authored in 

collaboration by the research group of Pengxiang Zhao, former student of our group.
6 
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Abstract: Various mono- and polymetallic palladium
complexes containing a 2-pyridyl-1,2,3-triazole (pyta)
ligand or a nonabranch-derived (nonapyta) ligand
have been synthesized by reaction of palladium ace-
tate with these ligands according to a 1:1 metal-
ligand stoichiometry and used as catalysts for
carbon-carbon cross-coupling including the Suzuki–
Miyaura, Sonogashira and Heck reactions. The un-
substituted monopalladium and nonapalladium com-
plexes were insoluble in all the reaction media,
whereas tri- and tetranuclar palladium complexes
were soluble, which allowed conducting catalysis
under either homogeneous or heterogeneous condi-
tions. The organopalladium complexes were charac-
terized by standard analytical and spectroscopic

methods and by thermogravimetry showing decom-
position above 110 8C. Both types of catalysts
showed excellent activity for these cross carbon-
carbon bond formations involving aryl halides in-
cluding activated aryl chlorides or acyl chloride. Be-
sides the comparison between homogeneous and het-
erogeneous catalysis, the key feature of these cata-
lysts is their remarkable robustness that allowed re-
cycling at least ten times in the example of the Heck
reaction with excellent yields and without significant
reduction of the conversion.

Keywords: catalysis; click chemistry; cross C�C cou-
pling; palladium; pyridine; recycling; triazoles

Introduction

Click chemistry has proven to be a powerful concept
allowing one to assemble molecular fragments under
green conditions,[1] the Cu-catalyzed alkyne–azide
(CuAAC) reaction being the most popular example
with the regioselective formation of 1,4-disubstituted
1,2,3-triazoles.[2,3] This click CuAAC reaction is all the
more useful as the 1,2,3-triazole heterocycle also is an
excellent ligand,[4] which brings about potential appli-
cations of 1,2,3-triazole complexes. Such applications
have already appeared in optics,[5] redox sensing[6] and
catalysis.[7] In the latter area, the clicked 1,2,3-triazole
ligand has proven useful for the mild stabilization of
catalytically very efficient nanoparticles.[6] On the
other hand, in molecular catalysis, examples using
1,2,3-triazole-derived ligands are scarce (Figure 1).[8–13]

Zhu and Yi[8] synthesized two efficient triazole ligands
1 for the palladium-catalyzed Suzuki–Miyaura and

Figure 1. 1,2,3-triazolyl ligands used in molecular catalysis
(see text).[8–13]
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Heck reactions. Fokin[4c,9] and Peric�s[10] designed pol-
ytriazoles 2 that were powerful stabilizing ligands for
“click” reactions. A series of triazole-based N4 tet-
radenate ligands 3 was synthesized by Hao and
Wang,[11] and Mn(II) complexes containing these li-
gands showed efficient catalytic activities in the epoxi-
dation of various aliphatic terminal olefins with per-
acetic acid. Phosphino-1,2,3-triazoles 4[12] and phos-
phinomethylene-1,2,3-triazoles 5[13] have been used by
Zhang and Reek�s research groups, respectively, as re-
markable ligands for Suzuki–Miyaura, amination, and
allylic alkylation reactions. The 2-pyridyl-1,2,3-triazole
(pyta) complexes that compare to 2,2’-bipyridine have
already provided luminescent properties,[5] but cata-
lytic functions have so far been overlooked.

Here we report that the easily prepared pyta ligand
and a new, nona-branch analogue nonapyta coordi-
nate in 1:1 stoichiometry to Pd ACHTUNGTRENNUNG(OAc)2, and that the
monomeric and three nonapyta Pd complexes corre-
sponding to the progressive loading of the nonapyta
ligand with Pd(II) provided efficient catalysts for
cross carbon-carbon coupling reactions. Examples of
the Suzuki–Miyaura,[14] Sonogashira[15] and Heck[16] re-
actions illustrate these catalytic applications. More-
over, the great robustness and various solubilities of
the pyta- and nonapyta-Pd catalysts allowed conduct-
ing both homogeneous and heterogeneous reactions
with recyclability of the heterogeneous catalysts.
Indeed, efficient catalysts are well known for these
Pd-catalyzed cross-coupling reactions,[14–16] but the in-
terest for the pyta-Pd and nonapyta-Pd complexes re-
sides in their robustness and recyclability and on the
comparison among the catalysts of various nucleari-
ties and solubilities.[17,18]

Results and Discussion

Synthesis of the Monometallic Palladium 2-Pyridyl-
1,2,3-triazoles (Pd-pyta) Complexes

Reactions between the known 2-pyridyl-1,2,3-triazoles
(pyta) 6a and 6b and palladium acetate, conducted in
toluene under ambient conditions, lead to the 1:1
ligand-metal complexes 7a and 7b, respectively [Eq.
(1)]. The five-membered chelate ring structures were

confirmed by the NMR spectra of 7a and 7b in which
the ratio of pyta and palladium ion was 1 to 1, and by
elemental analysis. The proton signals of both pyri-
dine and 1,2,3-triazole were shifted, which indicated
that both of them were coordinated to the palladium
ion (Figure 2). The solubility of the palladium com-
plex 7b, unlike that of 7a, was very low, which was
a message indicating that 7b has the potential of
being a heterogeneous catalyst.

Synthesis of the Polymetallic Palladium-Nonapyta
Complexes

A new nona-branched ligand 10 was prepared, involv-
ing three tripods that resulted from the known
CpFe+-induced nona-allylation of mesitylene in
[FeCp(h6-mesitylene)] ACHTUNGTRENNUNG[PF6] followed by visible-light-
induced decomplexation, hydrosilylation of 8 and re-

Figure 2. Magnified 1H NMR spectra of 6a (top) and 7a (bottom).
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action with NaN3 yielding 9[6] (Scheme 1). Click
CuAAC reactions in toluene between 9 and ethynyl-
pyridine provided 10. Reactions of 10 with Pd ACHTUNGTRENNUNG(OAc)
under ambient conditions yielded various polymetallic
palladium complexes 11x depending on the reaction
time. After 2 to 5 min of reaction, only the soluble tri-
metallic complex 113 was formed, then the tetrametal-
lic complex 114, somewhat less soluble, was synthe-
sized after 20 to 30 min of reaction. Finally, the syn-
thesis of the insoluble nonametallic complex 119 re-
quired one to two days for completion under the
same reaction conditions (Figure 3). All the attempts
to form a monometallic or bimetallic complex by low-
ering the reaction time, the temperature or the
amount of Pd ACHTUNGTRENNUNG(OAc)2 resulted in the formation of mix-
tures of 113 together with unreacted ligand 10, indicat-
ing that the second and third metallations were faster

than the first one. This and the fact that the fourth
metallation step is slower than the three first ones
strongly argues in favor of a fast monometallation of
each of the three tripods and slower second metalla-
tion of each tripod. The solubilities of the complexes
also drop after the third metallation, thus the syner-
gistic steric and solubility effects provide a rationaliza-
tion for the fact that the second metallation of the tri-
pods is slower than the monometallation, and the lack
of steric effect among the three tripods and the good
solubility of 113 explain why the three tripods of 10
are rapidly monometallated at comparable rates. The
structures of the complexes 113 and 114 were shown
by 1H NMR upon comparison of the relative intensi-
ties of the methyl peaks of the core SiMe2 and
Pd�OAc groups, respectively, and the structures of
the three polymetallic complexes were confirmed by

Scheme 1. Synthesis of the nona-branched ligand 10 and metallodendritic catalysts 11.
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elemental analysis. Given the remarkable robustness
of the Pd-typa and Pd-nonatypa bonds at high tem-
peratures, the catalytic activities of 7a, 7b, 113, 114 and
119 were then evaluated for the Suzuki–Miyaura, So-
nogashira, and Heck reactions.

UV-Vis Spectroscopy of the Ligands and Palladium
Complexes

Figure 4 shows the UV-vis spectra of the ligands 6a
and 10 and palladium complexes 7a, 113, 114. Before

the metallation reactions, the ligands 6a and 10
showed a distinct p-p* transition around 280 nm.
After coordination, a slight red shift from 280 to
293 nm was observed from the spectra of the mono-ACHTUNGTRENNUNGpalladium complexes 6a and 7a, which was probably
assigned to the ligand-to-metal charge-transfer transi-
tion (LMCT).[19] Similar results were obtained for the
complexes of the nona ACHTUNGTRENNUNGli ACHTUNGTRENNUNGgand, the UV bands of the 113

and 114 are located at 286 and 287 nm through red
shifts, respectively. The corresponding l, A, and
e values are listed in Table 1.

Figure 3. Metallodendritic catalysts 113, 114, and 119.
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Thermogravimetric Analysis of the Palladium
Complexes 7b and 119

In order to determine the thermal stability of the
mono- and nona-Pd complexes, thermogravitric analy-

sis (Figure 5) coupled with mass spectrometry (see
the Supporting Information) has been carried out for
both samples under Ar. For the mono-Pd complex 7b,
a first weight loss corresponding successively to resid-
ual water and then solvent is observed. The slope
change for the fragment group of organic coum-
pounds formed from decomposition starts at 130 8C
and are clearly visible without ambiguity after 145 8C
(for coupling with mass spectrometry, see the Sup-
porting Information).

The nona-Pd complex 119 shows a slight weight loss
up to 110 8C that corresponds to traces of residual
water, and decomposition begins above this tempera-
ture.

Catalysis of the Suzuki–Miyaura Cross-Coupling
Reactions

The Suzuki–Miyaura reactions were carried out ho-
mogeneously in H2O/EtOH with the palladium com-
plexes 113, 114, and heterogeneously with the insolu-
ble palladium complexes 7b, 119 as catalysts. K2CO3

(3 equiv.) was used as base in all the reactions
(Table 2). We tested the influence of the EtOH/H2O
volume ratios for Suzuki–Miyaura reactions conduct-
ed at 50 8C. Using the catalyst 7b, the yields of cross
carbon-carbon coupling products were 82% and 88%
with EtOH/H2O ratios of 1:1 and 3:2, respectively
(Table 3, entries 2 and 3), showing the slight yield in-
crease upon increasing the EtOH content in this sol-
vent mixture. The heterogeneous catalysts 7b and 119

also provided excellent yields that compared to those
of the homogeneous catalyst catalysts 113 and 114.
The aryl chloride p-NO2-C6H4Cl also provided the
cross-coupling product in good yield upon reaction
with PhB(OH)2 using the heterogeneous catalyst 7b
(entry 13).

Figure 4. UV-vis spectra of the ligands and palladium com-
plexes.

Table 1. UV-vis characteristics of the ligands and palladium
complexes.

Compound C [mol L�1] l [nm] A e [M�1 cm�1]

6a 3.3 � 10�4 280 3.103 9.31 �103

7a 3.3 � 10�4 293 2.934 8.80 �103

10 1.3 � 10�5 281 1.688 1.27 �105

113 1.3 � 10�5 286 1.188 0.89 �105

114 1.3 � 10�5 287 0.775 0.58 �105

Figure 5. Thermogravimetric analysis of 7b (left) and 119 (right).
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Catalysis of the Sonogashira Reactions

The complexes 7b, 113, 114, 119 catalyze the cross-cou-
pling reaction between benzoyl chloride and phenyl-ACHTUNGTRENNUNGacetylene in a simple one-pot procedure without co-
catalyst and at low catalyst concentrations (Table 3).
All the reactions were carried out using two equiv.
triethylamine as both the base and solvent at room

temperature. The reaction proceeded well with all
these catalysts. The catalyst 113 was soluble in Et3N
and showed better catalytic activities than the insolu-
ble catalysts 7b and 119. The catalyst 114 was partly
soluble and also provided a good result. A significant
drop in the yield was detected upon lowering the cat-
alyst content (entries 2–4).

Iodobenzene was also used as a substrate for Sono-
gashira reactions with phenylacetylene. When the re-
action was carried out at room temperature, a low
yield was obtained, and increasing the reaction tem-
perature to 50 8C improved the yield (Table 4, en-

Table 2. Suzuki–Miyaura reactions of aryl halide with phenylboronic acid.[a]

Entry X R Catalyst (mol%) Temp. [oC] Time [h] C [%][b] TON

1 I CH3O 7b (0.5) r.t. 48 77 154
2 I CH3O 7b (0.5) 50 48 82[c] 164
3 I CH3O 7b (0.5) 50 48 88 176
4 I CH3O 113 (0.5) 50 48 96 192
5 I CH3O 114 (0.5) 50 48 91 182
6 I CH3O 119 (0.5) 50 48 85 170
7 Br CH3O 7b (0.5) 80 48 91 182
8 Br CH3O 7b (0.5) 50 96 96 192
9 Br CH3O 113 (0.5) 50 48 93 186
10 Br CH3O 113 (0.5) 80 48 97 194
11 Br CH3O 114 (0.5) 50 48 91 182
12 Br CH3O 119 (0.5) 50 48 88 176
13
14

Cl
Cl

NO2

NO2

7 b (2)
119 (2)

120
120

120
120

74
57

37
29

[a] Reaction conditions: aryl halide (0.5 mmol), phenylboronic acid (0.75 mmol), K2CO3 (1.5 mmol, 207 mg), EtOH (7.5 mL),
H2O (5 mL).

[b] C: conversion (yield of isolated product).
[c] Solvent: EtOH (5 mL) and H2O (5 mL).

Table 3. Sonogashira coupling of benzoyl chloride with phe-
nylacetylene.[a]

Entry Catalyst (mol%) Time [h] C [%][b] TON

1
2

7a (0.1)
7b (0.01)

48
48

90
44

900
4400

3 7b (0.05) 48 76 1620
4 7b (0.1) 24 86 860
5 113 (0.1) 12 95 950
6 114 (0.1) 12 93 930
7 119 (0.1) 24 87 870
8 119 (0.1) 48 89 890

[a] Reaction conditions: benzoyl chloride (1.2 mmol), phe-
nylacetylene (1 mmol), Et3N (2 mmol).

[b] C: conversion (yield of isolated product).

Table 4. Sonogashira coupling of iodobenzene with phenyl-ACHTUNGTRENNUNGacetylene.[a]

Entry Catalyst Temp. [oC] Time [h] C [%][b] TON

1 7b r.t. 48 58 580
2 7b 50 24 83 830
3 113 50 24 88 880
4 114 50 24 86 860
5 119 50 24 83 830
6 119 50 48 87 870

[a] Reaction conditions: iodobenzene (1.2 mmol), phenylace-
tylene (1 mmol), Et3N (2 mmol).

[b] C: conversion (yield of isolated product).
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tries 1 and 2). Homogeneous catalysis with 113

smoothly catalyzed the reaction with somewhat better
yield than under heterogeneous conditions with 7b
and 119. The yield gap was not as large as in the reac-
tion with benzoyl chloride, however, possibly due to
partial solubilization of these heterogeneous catalysts
at high temperature. In addition, in general, benzoyl
chloride showed higher reactivity than iodobenzene.

Catalysis of the Heck Reaction

Mizoroki–Heck coupling reactions between halogeno-
benzenes and styrene using these palladium com-
plexes were successfull (Table 5). Both types, hetero-
geneous (7b, 119) and homogeneous catalysts (113,
114), catalyzed the reaction between iodobenzene and
styrene in 92–96% yields. Meanwhile, either 2 mol%
of homogeneous catalyst (113 or 114) or 5 mol% of
heterogeneous catalyst (7b or 119) provided excellent
yields. The reaction between stilbene and the less re-
active bromobenzene gave a moderate yield, a longer
reaction time and higher temperature than with iodo-
benze being required.

Taking the Heck reaction as example, the recovery
and reuse of the heterogeneous catalysts 7b and 119

were investigated. They could be recharged with iodo-
benzene and styrene at least ten times without signifi-
cant loss of their catalytic activity (Table 6), which
showed the interest (easy catalyst recovery, high turn-
over numbers) of these heterogeneous catalysts.

Comparison of the Catalytic Activities with
Literature Examples

We compared the catalytic activity of our catalyst 7b
with literature examples that were published in 2011
or 2012. The reaction conditions and TON numbers

are listed in Table 6 (Figure 6), Table 7 ACHTUNGTRENNUNG (Figure 7) and
Table 8 ACHTUNGTRENNUNG (Figure 8), which correspond to Suzuki–
Miyaura, Sonagashira, and Heck reactions, respective-
ly. From Table 7 , it appears that 7b showed good cat-
alytic activity for the Suzuki reaction, but comparing
with the others, the advantage is not remarkable,
even some catalytic systems are much better than
ours. It is worth noting, however, that heterogeneous
7b has the potential of recharge. Among the copper-
free systems for Sonogashira reactions, the ones con-
taining phosphine or ionic liquid exhibited more sig-
nificant activities. The TON of 7b is larger than those
of most phosphine- or ionic liquid-containing cata-
lysts, which means that 7b is an outstanding catalyst
for Sonogashira reactions. Although 7b does not show
a very good activity for the Heck reaction (Table 9),
the high-temperature stable and heterogeneous prop-
erties render it rechargeable for ten times without sig-
nificant loss of catalytic activity. The possibility of
conversion between homogeneous and heterogeneous
catalysts upon change of substituent and palladium
nuclearity and the propery of recharge make this cat-
alyst family containing the pyridyl-triazole ligand
original and useful.

Table 5. Mizoroki–Heck reaction of aryl halide substrates with styrene.[a]

Entry X Catalyst (mol%) Temp. [oC] Time Conversion [%][b] TON

1 I 7b (2) 100 24 h 79 40
2 I 7b (2) 100 48 h 86 43
3 I 7b (5) 100 48 h 96 19
4 I 113 (2) 100 48 h 93 47
5 I 114 (2) 100 48 h 92 46
6 I 119 (5) 100 48 h 94 19
7
8

Br
Br

7b (5)
119 (5)

120
120

7 d
7 d

64
55

13
11

[a] Reaction conditions: aryl halide (0.5 mmol), styrene (1 mmol), K3PO4 (1.5 mmol, 318 mg), DMF (2 mL).
[b] Yield of isolated product.

Table 6. Recharging of the dendritic catalysts 7b and 119 for
the Heck reactions of iodobenzene with styrene.

Recharging run[a] 1 2 3 4 5 6 7 8 9 10

Catalyst 7b [conver-
sion (%)][b]

96 93 93 92 92 93 91 91 91 91

Catalyst 119 [conver-
sion (%)][b]

94 93 91 91 92 91 89 87 84 78

[a] Recharging the catalysts for the reactions of entry 3 and
6 in Table 5.

[b] Yield of isolated product.
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Figure 6. Catalysts and ligands from the literature for the Suzuki–Miyaura reaction.

Table 7. Comparison of catalytic activities with literature examples (Figure 6) for the Suzuki reaction between 4-methoxy-ACHTUNGTRENNUNGhalobenzene and phenylboronic acid.

Entry X Catalyst (and
ligand) (mol%)

Solvent Base Other
additive

Time and
temperature

Yield
[%]

TON

1 Br 7b (0.5) EtOH/H2O K2CO3 no 48 h, 50 8C 91 182
2 Cl 7b (0.5) EtOH/H2O K2CO3 no 120 h, 120 8C 74 37
3[20] Br 12 (1) toluene K3PO4 no 2 h, 100 8C 70 70
4[21] Br Pd ACHTUNGTRENNUNG(OAc)2 (2)/L1 (4) dioxane Cs2CO3 no 3 h, 80 8C 77 39
5[22] Br PdCl2 (1)/L2 (1) EtOH/H2O K2CO3 no 6 h, 60 8C 96 96
6[23] Br 13 (0.1) H2O K2CO3 TBAB 2 h, 100 8C 96 960
7[24] Br 14 (1) MeOH K3PO4 no 4 h, 130 8C 100 100
8[25] Cl 15 (1) THF/H2O K3PO4·3 H2O no 24 h, r.t. 95 95
9[26] Br 16 (0.2) MeOH/H2O KOH no 24 h, 60 8C 89 445
10[27] Br ACHTUNGTRENNUNG[PdL3Cl]+ PF6

� (1)[a] DMF/PhMe Cs2CO3 no 10 h,110 8C 54 54
11[28] Br 17 (0.5) DMSO Cs2CO3 no 18 h, 85 8C 88 176

a L=P ACHTUNGTRENNUNG(p-Tol)3}3.

Figure 7. Catalysts and ligands from literature for the Sonogashira reaction.
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Conclusions

A new family of palladium complexes is shown to be
excellent as homogeneous or heterogeneous catalysts
for the Suzuki–Miyaura, Sonogashira and Heck reac-
tions of haloarenes. This family includes two mono-
metallic 2-pyridyl-1,2,3-triazole (pyta) complexes, 7a,
that is soluble, and 7b that is almost insoluble in most
solvents, and three polymetallic nonapyta complexes,
the soluble trimetallic complex 113, the less soluble
tetrametallic complex 114 and the completely insolu-
ble nonametallic complex 119. Thus, the synthesis of
the new nonabranched nonapyta ligand allowed us to
delineate a strategy of progressive insolubilization of
the catalysts upon progressive loading with Pd ACHTUNGTRENNUNG(OAc)2

whereby the two OAc ligands change their coordina-
tion type from chelate to monodentate, forming ex-
tremely robust, yet catalytically efficient nonapyta
complexes.

The independence of the three tripods of the nona-ACHTUNGTRENNUNGli ACHTUNGTRENNUNGgand 10 induces large complexation rates that are
similar among the three tripods, with a complexation
rate that even increases from the first to the third
metallation. It is obviously the bulk introduced by the
second metallation of each tripod that provokes the
progressive insolubilization of the complexes contain-
ing more than three Pd ACHTUNGTRENNUNG(OAc)2 units, before further
metallation very slowly proceed heterogeneously up
to the nonametallation. Altogether, this family of cat-
alysts comprises mono- and polymetallic catalysts

Table 8. Comparison of catalytic activities with literature examples (Figure 7) for the Sonogashira reaction between iodoben-
zene and phenylacetylene.

Entry Catalyst (and ligand) (mol%) Base Solvent Other additive Time and temperature Yield [%] TON

1 7b (0.1) Et3N Et3N no 24 h, 50 8C 83 830
2[29] 18 (0.1) K2CO3 H2O TBAB 2.5 h, 100 8C 82 820
3[30] 19 (2) Et3N ACHTUNGTRENNUNG[Bmim]PF6 no 2 h, 80 8C 100 50
4[31] ACHTUNGTRENNUNG[PdCl2ACHTUNGTRENNUNG(PPh3)2] (2)/L3 (2) Et3N CH3CN no 17 h,>81 8C 84 42
5[32] 20 (0.1) Et3N H2O no 6 h, 40 8C 93 930
6[33] PdEnCatTM 30 (0.4) KOH EtOH no 24 h, 70 8C 84 210
7[34] 21 (0.5) Piperidine H2O no 0.5 h, 100 8C 87 174
8[35] 22 (0.3) Et3N Et3N no 5 h, r.t. 97 323
10[36] 23 (0.047) Et3N ACHTUNGTRENNUNG[TMBA]NTf2 no 12 h, 80 8C 92 1957
11[37] 24 (5) Et3N H2O no 12 h, 60 8C 78 16

Figure 8. Catalysts and ligands from the literature for the Heck reaction.

Table 9. Comparison of catalytic activities with literature examples (Figure 8) for the Heck reaction between iodobenzene
and styrene.

Entry Catalyst (mol%) Base Solvent Other additive Time and temperature Yield [%] TON

1 7b (2) K3PO4 DMF no 48 h, 100 8C 86 43
2[24] 14 (1) K2CO3 MeOH no 24 h, 110 8C 100 100
3[38] 21 (0.5) K2CO3 DMF no 2 h, 100 8C 88 176
4[37] 24 (5) DBU H2O no 6 h, 100 8C 90 18
5[39] 25 (0.4) K2CO3 DMAc no 8 h, 120 8C 73 182
6[40] 26 (0.1) K2CO3 H2O TBAB 6 h, 100 8C 69 690
7[41] 27 (1) K2CO3 DMF no 1 h, 125 8C 87 87
8[8] PdACHTUNGTRENNUNG(OAc)2 (1)/L4 (4) K2CO3 DMF no 12 h, 100 8C 77 77
9[42] Pd(l-proline)2 (2) NaOAc H2O TBAB MW (200–300 W), 80 8C, 10 min 94 47
10[43] PdCl2 (1) K2CO3 PEG-400 no 12 min, 120 8C (10 W of MW) 74 74
11[44] PdACHTUNGTRENNUNG(OAc)2 (5) K2CO3 H2O PEG-200 20 min, 80 8C (ultrasound irradiation) 75 15
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containing almost identical catalytic sites and share
the property of robustness.

The monomeric complex 7b and the nonametallic
complex 119 are efficient heterogeneous catalysts that
can be recharged at least ten times without significant
loss of their catalytic activity, taking the Heck reac-
tion as example. Thus although these catalysts are not
as efficient with chloroarenes as some specific alkyl-
phosphine-containing catalysts such as the closely re-
lated 2-phosphino-1,2,3-triazolyl and 2-phosphinino-
methyl-1,2,3-triazolyl palladium catalysts that have
not been recycled, they are extremely robust, which
allowed their efficient recycling. In conclusion, in ad-
dition to the synthesis of a new remarkable family of
polynuclear complexes, this study brings about the
rare duality of catalyst efficiency and robustness for
cross carbon-carbon coupling reactions with recycling
applications.

Experimental Section

General Data

Reagent-grade diethyl ether (used in hydrosilylation reac-
tions) was predried over sodium foil and distilled from
sodium-benzophenone anion under argon immediately prior
to use. Anhydrous toluene was dried from sodium. Triethyl-
amine was dried from calcium hydride. Other solvents and
chemicals were used as received.

Only hydrosilylation reactions were carried out using
Schlenk techniques or in a nitrogen-filled Vacuum Atmos-
phere drylab. Kartsted catalyst and PdACHTUNGTRENNUNG(OAc)2 (98% or
�99.9%) were purchased from Aldrich. Compounds 8, 9
were synthesized according to ref.[45]

Flash column chromatography was performed using silica
gel (300–400 mesh). 1H NMR spectra were recorded with
a 300 or 400 MHz spectrometer, 29Si NMR spectra were ob-
tained at 59.6 MHz with a 300 MHz spectrometer, and
13C NMR spectra were recorded at 50, 75 or 100 MHz with
200, 300 or 400 MHz spectrometers. Copies of 1H NMR, 29Si
and 13C NMR spectra are provided (see Supporting Informa-
tion). The soluble complex 1 was examined by cyclic voltam-
metry in CH2Cl2 at 20 8C with 0.1 M [n-Bu4N] ACHTUNGTRENNUNG[PF6] as sup-
porting electrolyte on a Pt electrode, and a chemically irre-
versible reduction wave was observed at 0.95 V vs. the inter-
nal reference decamethylferrocene[46] at a scan rate of
0.1 V. s�1 (see the Supporting Information). Elemental analy-
ses were performed by the Center of Microanalyses of the
CNRS at Lyon Villeurbanne, France.

For the thermogravimetric analysis, the samples have
been previously degased under primary vacuum during
45 min to reach 5·10�2 mbar, and the device has been filled
with pure argon with less than 2 ppm of O2. Experiments
have been performed under argon flux and with
a 2.5 8C min�1 ramp temperature (TGA Setaram TAG2400
device coupled with a Thermostar quadrupolar mass spec-
trometer from Balzer).

Caution: Sodium azide is potentially explosive. Great
care is needed when handling this compound.

Synthesis of 1-Benzyl-4-phenyl-1H-[1,2,3]triazole
(6a)[47]

2-Ethynylpyridine (0.5 mmol), benzyl azide (0.5 mmol) and
[Cu ACHTUNGTRENNUNG(phen) ACHTUNGTRENNUNG(PPh3)2]NO3 (0.005 mmol, 4.27 mg) were added to
a test tube with a stir bar, and the mixture was stirred at
room temperature (25–28 8C) without exclusion of air under
solvent-free conditions. After 10 min, the mixture was dilut-
ed with ethyl acetate and filtered. The filtrate was evaporat-
ed under reduced pressure to obtain the crude product,
which was further purified by silica-gel chromatography (pe-
troleum ether/ethyl acetate as eluent) to afford 1-benzyl-4-
phenyl-1H-[1,2,3]triazole (6a); yield: (114 mg (97%).
1H NMR (300 MHz, DMSO-d6): d= 8.70 (s, 1 H, CH of tria-
zole), 8.60 (d, J=4.8 Hz, 1 H, CH of pyridyl), 8.05 (d, J=
8.1 Hz, 1 H, CH of pyridyl), 7.86–7.91 (m, 1 H, CH of pyrid-
yl), 7.32–7.41 (m, 6 H, CH of pyridyl and CH of phenyl),
5.69 (s, 2 H, CH2-triazole).

Synthesis of Complex 7a

6a (70.5 mg, 0.3 mmol) and palladium acetate (67.4 mg,
0.3 mmol) were dissolved in anhydrous toluene (8.0 mL).
The mixture was stirred at room temperature for one day.
After the reaction, the solid was isolated by filtration and
washed successively with 20 mL toluene and 20 mL ether to
give 7a as a yellow solid; yield: 125 mg (91%). 1H NMR
(300 MHz, DMSO-d6): d= 9.24 (s, 1 H, CH of triazole),
8.21–8.27 (m, 1 H, CH of pyridyl), 8.18 (d, J=6.9 Hz, 1 H,
CH of pyridyl), 8.05 (d, J=5.7 Hz, 1 H, CH of pyridyl),
7.59–7.64 (m, 1 H, CH of pyridyl), 7.39–7.45 (m, 5 H, CH of
phenyl), 5.83 (s, 2 H, CH2-triazole), 1.93 (s, 3 H, COCH3),
1.84 (s, 3 H, COCH3); 13C NMR (100 MHz, CDCl3): d=
176.42 (C=O), 176.24 (C=O), 149.95, 148.47, 147.61, 141.88,
134.69, 129.73, 129.56, 129.12, 126.40, 126.34, 122.70 (C of
Ar), 55.83 (CH2-triazole), 24.05, 23.69 (COCH3); MS (ESI):
m/z= 461.0619 [M+], calcd. For C18H18N4O4Pd: 460.7799;
anal. calcd. for C18H18N4O4Pd: C 46.92, H 3.94, N 12.16;
found: C 46.43, H 3.87, N, 11.86.

Synthesis of 2-(1H-[1,2,3]triazol-4-yl)-pyridine (6b)[48]

Trimethylsilyl azide (0.2 mL, 1.5 mmol) was added to
a DMF and MeOH solution (2 mL, 9:1) of CuI (9.6 mg,
0.05 mmol) and 2-ethynylpyridine (103 mg, 1 mmol) under
nitrogen. The reaction mixture was stirred at 100 8C over-
night. After consumption of 2-ethynylpyridine, the mixture
was cooled to room temperature and filtered through
a short column of silica and concentrated. The residue was
purified with silica gel column chromatography (petroleum
ether/ethyl acetate, 10:1 to 1:1) to afford 2-(1H-[1,2,3]tria-
zol-4-yl)-pyridine 6b ; yield: 95 mg (65%). 1H NMR
(300 MHz, DMSO-d6): d=15.27 (s, 1 H, NH of triazole),
8.63 (d, J= 3.6 Hz, 1 H, CH of pyridyl), 8.38 (s, 1 H, CH of
triazole), 8.00 (d, J=7.8 Hz, 1 H, CH of pyridyl), 7.87–7.93
(m, 1 H, CH of pyridyl), 7.35–7.39 (m, 1 H, CH of pyridyl).

Caution: This reaction produces explosive and toxic hy-
drogen azide (HN3) in situ and must therfore be conducted
behind a safety shield in a hood.
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Synthesis of 7b

6b (73 mg, 0.5 mmol) and palladium acetate (112.3 mg,
0.5 mmol) were dissolved in anhydrous toluene (10.0 mL),
and the mixture was stirred at room temperature for one
day. After the reaction, the solid was isolated by filtration
and washed successively with 20 mL toluene and 20 mL
ether to give 7b as a yellow solid; yield: 165 mg (89%).
Anal. calcd. for C11H12N4O4Pd: C 35.64, H 3.26, N 15.12;
found: C 35.47, H 3.23, N 15.63.

Synthesis of the Dendritic Ligand 10

The azido dendrimer 9 (455.2 mg, 0.3 mmol) and 2-ethynyl-
pyridine (417 mg, 4.05 mmol) were dissolved in tetrahydro-
furan (THF), and water was added (20 mL:20 mL, THF/
water). At room temperature, CuSO4

·5 H2O was added
(1 equiv per branch, 1 M aqueous solution), followed by the
dropwise addition of a freshly prepared solution of sodium
ascorbate (2 equiv per branch, 1 M aqueous solution). The
solution was allowed to stir for 48 h at room temperature.
After removing THF under vacuum, dichloromethane and
an aqueous solution of ammonia were added. The mixture
was allowed to stir for 10 min in order to remove all the
Cu(I) trapped inside the dendrimer as CuACHTUNGTRENNUNG(NH3)6

+. The or-
ganic phase was washed twice with water (20 mL), dried
with sodium sulfate, filtered on paper and the solvent was
removed under vacuum. The product was washed with pen-
tane (10 mL) in order to remove the excess of 2-ethynyl-pyr-
idine and precipitated using dichloromethane/pentane. The
dendrimer 10 was obtained as a brown solid; yield: 595 mg
(81%). 1H NMR (300 MHz, CDCl3): d= 8.56 (d, J= 4.5 Hz,
9 H, CH of pyridyl), 8.16 (d, J=7.8 Hz, 9 H, CH of pyridyl),
8.08 (s, 9 H, CH of triazole), 7.76 (t, J= 7.2 Hz, 9 H, CH of
pyridyl), 6.98 (s, 3 H, CH of Ar), 3.96 (s, 18 H, SiCH2-tria-
zole), 1.64 (s, 18 H, CH2CH2CH2Si), 1.11 (s, 18 H,
CH2CH2CH2Si), 0.65 (t, J=7.5 Hz, 18 H, CH2CH2CH2Si),
0.09 [s, 54 H, SiACHTUNGTRENNUNG(CH3)2]; 13C NMR (50 MHz, CDCl3): d=
150.64, 149.38, 148.07, 145.91, 137.00, 122.95, 122.79, 121.65,
120.22 (C of pyridyl, triazole, and phenyl), 44.04 (CH2-tria-
zole), 41.85 and 41.38 (benzylic quaternary C and
CH2CH2CH2Si), 17.79 (CH2CH2CH2Si), 14.97
(CH2CH2CH2Si), �3.70 [Si ACHTUNGTRENNUNG(CH3)2]; 29Si NMR (CDCl3,
59.62 MHz): d= 2.87; MS (MALDI-TOF): m/z= 2467.8
[MNa+], calcd. for C126H174N36Si9: 2445.7; anal. calcd. for
C126H174N36Si9: C 61.88, H 7.17, N 20.62; found: C 61.67, H
7.02, N 20.38.

Synthesis of the Metallodendritic Catalysts
[Pd ACHTUNGTRENNUNG(OAc)2]n@dendrimer (11)

The dendritic palladium complexes were prepared by using
Pd ACHTUNGTRENNUNG(OAc)2 and dendritic ligand 10 in freshly distilled toluene
at the given concentrations for a period of time indicated in
the Supporting Information. Then, the solution was filtered,
the filter residues were washed with large amounts of tolu-
ene and ether to give the catalysts 113, 114, and 119 as yellow
or brown solids.

[Pd ACHTUNGTRENNUNG(OAc)2]3@dendrimer (113): Dendrimer 10 (48.9 mg,
0.02 mmol) and palladium acetate (40.4 mg, 0.18 mmol)
were dissolved in anhydrous toluene (15 mL). The mixture
was stirred at less than 25 8C for 2–5 min, a bright yellow
solid precipitated out from the solution. The solid was iso-

lated immediately by filtration and washed with successively
40 mL toluene and 40 mL ether to give 113 as a yellow solid.
The filtrate can continue to be stirred under the same condi-
tions, repeating above-mentioned operation, 113 was ob-
tained after drying under vacuum; yield: 20 mg (32%). The
product was kept under nitrogen. 1H NMR (300 MHz,
CDCl3): d=0.03 (s, 54 H), 0.51 (s, 18 H), 1.02 (s, 18 H), 1.55
(s, 18 H), 1.83 (s, 9 H), 1.97 (s, 9 H), 4.03–4.24 (m, 18 H), 6.93
(s, 3 H), 7.30–7.45 (m, 8 H), 7.85–8.05 (m, 18 H), 8.39 (s, 6 H),
8.55–8.61 (m, 6 H), 9.42 (s, 3 H); 13C NMR (75 MHz,
CDCl3): d=176.49, 176.24, 172.88, 150.74, 150.25, 149.97,
148.94, 148.53, 147.95, 147.18, 141.00, 137.84, 127.25, 126.28,
124.77, 123.57, 122.53, 120.03, 37.16, 24.07, 23.67, 22.04, 0.03,
�0.24; 29Si NMR (CDCl3, 59.62 MHz): d=11.14, 2.89; MS
(MALDI-TOF): m/z= 2764.8 [M� ACHTUNGTRENNUNG(OAc)6], calcd. for
C138H192N36O12Pd3Si9: 3119.3; anal. calcd. for
C138H192N36O12Pd3Si9: C 53.14, H 6.20, N 16.17; found: C
53.53, H 5.97, N 16.63.

[Pd ACHTUNGTRENNUNG(OAc)2]4@dendrimer (114): Dendrimer 10 (48.9 mg,
0.02 mmol) and palladium acetate (18.0 mg, 0.08 mmol)
were dissolved in toluene (15 mL). The mixture was stirred
at less than 25 8C for 20–30 min, a bright yellow solid pre-
cipitated out from the solution. The solid was isolated im-
mediately by filtration and washed successively with 40 mL
toluene and 40 mL ether to give 114 as a light brown solid;
yield: 34 mg (51%). The product was kept under nitrogen.
1H NMR (300 MHz, CDCl3): d=9.48 (s, 4 H), 8.55–8.62 (m,
5 H), 8.40 (s, 5 H), 7.87–8.09 (m, 20 H), 7.29–7.44 (m, 8 H),
6.96 (s, 3 H), 4.05–4.24 (m, 18 H), 1.97 (s, 12 H), 1.85 (s,
12 H), 1.59 (s, 18 H), 1.05 (s, 18 H), 0.59 (s, 18 H), 0.02 (s,
54 H); 13C NMR (75 MHz, CDCl3): d=176.46, 176.18,
172.97, 150.87, 150.75, 150.27, 150.14, 149.97, 148.49, 147.96,
147.60, 147.15, 137.84, 137.73, 124.78, 124.24, 123.57, 123.43,
120.04, 119.93, 44.19, 44.12, 37.15, 31.37, 24.07, 23.66, 22.20,
19.50, 17.80, 1.11, 0.96, �3.27, �3.30; 29Si NMR (CDCl3,
59.62 MHz): d= 11.12, 6.65, 2.86, anal. calcd. for
C142H198N36O16Pd4Si9·2 H2O: C 50.46, H 6.02, N 14.92; found:
C 50.71, H 5.87, N 14.60.

[Pd ACHTUNGTRENNUNG(OAc)2]9@dendrimer (119): Dendrimer 10 (48.9 mg,
0.02 mmol) and palladium acetate (40.4 mg, 0.18 mmol)
were dissolved in anhydrous toluene (25 mL). The mixture
was allowed to stir for 48 h at room temperature. The solid
was isolated by filtration and washed successively with
20 mL toluene and 20 mL ether to give 119 as a brown solid;
yield: 80.4 mg (90%); anal. calcd. for
C162H228N36O36Pd9·5 H2O: C 42.70, H 5.26, N 11.07; found: C
42.69, H 5.18, N 10.87.

General Procedure for the Sonogashira Reaction

A round-bottom flask (10 mL) containing monomeric or
dendritic catalyst (0.001 mmol) was subjected to the
Schlenk-line procedures of evacuation and purging of nitro-
gen for three cycles. Phenylacetylene (1 mmol), benzoyl
chloride or iodobenzene (1.2 mmol), and 2 equiv. Et3N
(2 mmol) were successively added, and the mixture was
stirred at room temperature or 50 8C. After the reaction was
finished, the mixture was diluted with dichloromethane and
filtered. The filtrate was removed under reduced pressure to
provide the crude product that was further purified by silica
gel chromatography (petroleum ether/ethyl acetate as
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eluent) to yield the corresponding Sonogashira coupling
products.

1,3-Diphenyl-propynone: 1H NMR (300 MHz, CDCl3):
d= 8.22–8.23 (m, 1 H), 8.20 (t, J=1.8 Hz, 1 H), 7.65–7.69 (m,
2 H), 7.58–7.63 (m, 1 H), 7.36–7.53 (m, 5 H).

1,2-Diphenylethyne: 1H NMR (300 MHz, CDCl3): d=
7.51–7.56 (m, 4 H), 7.30–7.38 (m, 6 H).

General Procedure for the Suzuki Reaction

A round-bottom flask containing monomeric or dendritic
catalyst (0.0025 mmol), K2CO3 (1.5 mmol), and borophenylic
acid (0.75 mmol) was subjected to the Schlenk-line proce-
dures of evacuation and purging of nitrogen for three cycles.
Halobenzene (if halobenzene was liquid) (0.5 mmol), H2O
(5 mL), and ethanol (7.5 mL) were successively added using
syringes, and the mixture was stirred under controlled condi-
tions. After cooling to room temperature, the mixture was
diluted with dichloromethane and filtered. The filtrate was
washed with water and the organic phase was dried using
sodium sulfate, filtered on paper and the solvent was re-
moved under vacuum to provide the crude product that was
further purified by silica gel chromatography (petroleum
ether as eluent) to yield the corresponding Suzuki reaction
products.

4-Methoxybiphenyl: 1H NMR (300 MHz, CDCl3): d=
7.59–7.64 (m, 4 H), 7.49 (t, J=7.7 Hz, 2 H), 7.37 (t, J=
7.4 Hz, 1 H), 7.05 (d, J=9.0 Hz, 2 H), 3.91 (s, 3 H).

General Procedure for the Heck Reaction

A round-bottom flask containing monomeric or dendritic
catalyst (0.025 mmol) and K3PO4 (1.5 mmol) was subjected
to the Schlenk-line procedures of evacuation and purging of
nitrogen for three cycles. Iodobenzene or bromobenzene
(0.5 mmol), styrene (1 mmol), and DMF (3 mL) were suc-
cessively added using syringes, and the mixture was stirred
under controlled conditions. After cooling to room tempera-
ture, the mixture was diluted with diethyl ether and filtered.
The filtrate was washed with water and the organic phase
was dried using sodium sulfate, filtered on paper and the
solvent was removed under vacuum to provide the crude
product, which was further purified by silica gel chromatog-
raphy (petroleum ether as eluent) to yield corresponding
Heck reaction products.

(E)-1,2-Diphenylethene: 1H NMR (300 MHz, CDCl3): d=
7.59 (d, J= 7.2 Hz, 4 H), 7.43 (t, J=7.5 Hz, 4 H), 7.30–7.36
(m, 2 H), 7.19 (s, 2 H).

Procedure for Recycling the Catalysts

A round-bottom flask containing catalyst 7b or 119

(0.025 mmol) and K3PO4 (1.5 mmol) was subjected to the
Schlenk-line procedures of evacuation and purging of nitro-
gen for three cycles. Iodobenzene (0.5 mmol), styrene
(1 mmol), and DMF (3 mL) were successively added using
syringes, and the mixture was stirred at 100 8C for 48 h.
After cooling to room temperature, the mixture was diluted
with diethyl ether and stood until the cloudy mixture
became clear. Then the clear solution was poured into
a glass through a paper filter and the solid was left in the
flask as much as possible, and this operation was repeated
three times. Then the collected solution was washed with

water, and the organic phase was dried using sodium sul-
phate, filtered on paper, and the solvent was removed under
vacuum. This provided the crude product that was further
purified by silica gel chromatography (petroleum ether as
eluent) to yield the corresponding Heck reaction products.
0.5 mmol K3PO4 was added to the flask containing the solid,
and the Schlenk-line procedures of evacuation and purging
of nitrogen for three cycles was conducted. Iodobenzene
(0.5 mmol), styrene (1 mmol), and DMF (3 mL) were suc-
cessively added using syringes, and the mixture was stirred
at 100 8C for 48 h. The process can be repeated at least ten
times, and the yields indicated in table 6 were obtained.
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Conclusion and Perspective 

In this thesis, our investigations have concerned the design and catalytic applications 

of recoverable catalysts, specifically focusing on two aspects: 

(i) the synthesis, functionalization and catalytic application of magnetically 

recyclable dendritic catalysts;  

(ii) the design, synthesis and catalytic properties of monomeric and dendritic 

palladium complexes containing the 2-pyridyl-1,2,3-triazole ligand;  

In a review of MNPs-immobilized RuNPs and Ru complex catalysts, we emphasized 

the significance of magnetically recoverable ruthenium catalysts and figured out the 

recent developments, breakthroughs, trends and unsolved problems in this area. This 

review inspired us to synthesize novel MNPs-Ru catalysts, and evaluate their catalytic 

performance in some key reactions. Based on these literature reviews, the 

experimental work led to immobilization of homogeneous 

pentamethylcyclopentadienyl (Cp*) ruthenium complex onto SiO2/γ-Fe2O3 shell-core 

nanoparticles, forming heterogeneous analogues. It was observed that 

Cp*(PPh3)2Ru/SiO2/γ-Fe2O3 is highly efficient for regioselective synthesis of a series 

of 1,5-disubstituted 1,2,3-triazoles through ruthenium-catalyzed alkyne-azide 

cycloaddition (RuAAC). More importantly, the catalyst was simply recovered with an 

external magnet and reused for at least five times without significant decrease in 

activity and selectivity. Considering the wide uses of Cp*Ru(II) catalysts in organic 

synthesis, the principles and results presented here should open a field of applications 

in „„green‟‟ chemistry involving the recycling of such catalysts. 

A MNPs-anchored tris(triazolyl)–CuBr catalyst was prepared. This catalyst was 

shown to be obtained with a good monodispersity and successfully catalyzes the 

copper-catalyzed cycloaddition between terminal alkynes and azides (CuAAC) 

including a broad substrate scope in aqueous solution at room temperature. Several 

1,4-disubstituted 1,2,3-triazoles including allyl- and triethylene glycol-ended 

27-branch dendrimers were obtained in good to excellent yields and 100% selectivity. 

In addition, the procedure was extended to “one-pot” synthesis of 1,4-disubstituted 
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1,2,3-triazoles through a cascade reaction involving benzyl bromides, alkynes, and 

sodium azide. The catalyst was easily separated from the reaction medium by using an 

external magnet and recycled for six cycles with only a slight decrease of activity and 

small leaching of copper, when phenylacetylene and benzyl azide were chosen as 

model substrates. This magnetic catalyst could potentially be applied to CuAAC 

reactions for the synthesis of macromolecules, biomolecules, and nanoparticles. 

  The investigation of MNPs-anchored PdNPs decorated by TEG-terminated “click” 

dendrimers indicates various positive dendritic effects in terms of ligand loading, 

catalyst loading, catalytic activity and recyclability. This work provides a new lesson 

regarding the design and engineering of catalysts deposited on MNPs, i.e. MNPs 

decorated with dendritic frame are clearly favorable concerning the efficiency for 

practical and environmentally friendly reactions. Moreover, the protocol of 

impregnation of pre-synthesized PdNPs stabilized by TEG-terminated “click” 

dendrimer into iron oxide MNPs, is an excellent complementarity for classic synthesis 

method of MNPs-metal NPs. The principles and results presented here should thus 

open a gate for more applications of MNPs-DEN-NP catalysts in „„green‟‟ chemistry. 

  A new family of polynuclear Pd complexes bearing the triazolyl pyridine ligand 

exhibited the rare duality of catalyst efficiency and robustness for cross carbon-carbon 

coupling reactions with recycling applications. The result brings a solid argument 

indicating that triazole compounds are promising ligands for transition metals in 

catalysis. 

  In sum, our thesis has led to advances in development of current knowledge on 

catalytic applications of recyclable catalysts. Dendrimer catalysts and magnetic 

catalysts are two key components in catalysis science. Both of them bring about the 

rare duality of catalyst efficiency and catalyst recovery, and each of dendrimer 

catalysts and magnetic catalysts hold several characteristics.  

The catalytic properties of dendrimer catalysts can be easily tuned through the 

adjustment of their structure, size, shape, chemical functionality, and solubility. 

Moreover, dendrimer catalysts possess a monodisperse nature that retains the 

advantage of homogeneous catalysts in terms of showing fast kinetic behavior, easy 
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tenability and rationalization. However, dendrimer catalysts also have some 

disadvantages, such as complicated synthesis procedure, inconvenient recovery 

process, negative dendritic effects that were often observed (i.e. poorer catalytic 

activity when the dendrimer generation was increased). 

Magnetic catalysts perfectly combine the advantages of heterogeneous catalysts 

(easy recovery and regeneration), nanocatalysts (such as a large surface-to-volume 

ratio relative to bulk materials, excellent activity, great selectivity, and high stability), 

and inherent properties of MNPs (such as biocompatibility, low preparation cost, 

simple synthesis procedure, and magnetic separability). 

Although both dendrimer catalysts and magnetic catalysts can fill the gap between 

homogeneous catalysis and heterogeneous catalysis, in our views, magnetic catalysts 

are more economic and practical. Novertheless, dendritic frameworks were shown to 

improve the efficiency of MNP-supported Pd catalysts. Magnetic catalysts fully 

embody the principles of “green” chemistry and sustainability and most probably 

represent the future of recyclable catalysts. 

Concerning the increasing environmental problem, the development of “green” and 

economic catalysts involving MNPs-supported catalysts is still urgently required. 

Further research in the area will be mainly concentrated in explorations of new 

magnetic multifunctionalized catalysts, magnetic bimetallic catalysts, magnetic 

plasmonic photocatalysts, Fe, Co, Mo and Ni catalyst, and their use in 

multikilogram-scale synthesis toward industrial production. 

 

. 
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Nouveaux Catalyseurs Recyclables pour les Réactions de Formation de 

Liaisons Carbone-Carbone et Carbone-Azote 

 
Résumé: 

Les catalyseurs supportés sur des dendrimères et nanoparticules magnétiques acquièrent 

actuellement une importance accrue dans le contexte de la chimie verte et du développement 

durable car ils sont séparés facilement des produits de réaction par filtration ou à l’aide d’un 

aimant et recyclables. Dans cet esprit, la thèse a été dédiée à la synthèse, à la caractérisation et 

aux applications catalytiques de catalyseurs moléculaires, nano- et dendritiques immobilisés 

impliquant le ruthénium, le cuivre et le palladium. Les catalyseurs magnétiquement 

recyclables de ruthenium (II), de cuivre (I) et des nanoparticules de palladium ont produit 

d’excellentes performances en terme d’activité, de stabilité et de recyclabilité pour  les 

réactions de cycloaddition entre les alcynes et les azotures et les réactions de couplage croisé 

carbone-carbone. Enfin, la synthèse de complexes mono- et polymétalliques du palladium 

contenant les ligands 2-pyridyl-1,2,3-triazole a également été réalisée et leurs proprietiés 

catalytiques ont été étudiées.  

 

Mots-clés: 
Catalyse, nanoparticule magnétique, dendrimère, catalyseur recyclable, réactions de couplage 

carbone-carbone, réaction “click” 

 

New Recyclable Catalysts for the formations of Carbon-Carbon and 

Carbon-Nitrogen Bonds 
 

Abstract: 
Catalysts based on dendrimers and magnetic nanoparticles are becoming increasing utilized in 

the context of green and sustainable chemistry, because they are easily separated by 

precipitation or by using a simple magnet respectively, and they are recyclable. In this spirit, 

the thesis has been devoted to the synthesis, characterization and catalytic applications of iron 

oxide magnetic nanoparticles-immobilized molecular, nano- and dendritic catalysts involving 

Ru, Cu and Pd. Magnetically recyclable ruthenium(II) and Cu(I) complexes and Pd 

nanoparticles have provided excellent catalytic performances in terms of activity, stability and 

recyclability, using alkyne-azide cycloaddition and carbon-carbon cross coupling reactions. 

The synthesis of mono- and polymetallic palladium complexes containing the 2-pyridyl-1,2,3-

triazole ligand or nonabranch-derived ligands has also been carried out, and their catalytic 

properties in coupling reactions has been studied. 

 

Keywords:  

Catalysis, magnetic nanoparticle, dendrimer, catalyst recovery, C-C coupling reactions, 

“click”reaction 
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