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Abstract

Complementing Second-Harmonic Generation (SHG) microscopy, a new home-made

nonlinear microscope named Pockels Linear Electro-Optical Microscopy (PLEOM)

based on the linear electrooptic (Pockels) effect, has been developed and used to

map the second-order susceptibility χ(2) of non-centrosymmetric materials with high

sensitivity due to a stabilized interferometric homodyne detection scheme [1, 2]. This

enables PLEOM to detect the electrooptic phase retardation of light resulting from

the variation of the refractive index of nonlinear materials down to 10−6 radian

and to investigate nonlinear materials at the nano-scale [3] towards applications in

imaging of biological samples and tracking of labels therein. With PLEOM, a new

imaging method allows to access besides the amplitude, the no less crucial phase

response, which is not readily amenable to classical SHG microscopy. In the frame

of this dissertation, we have further extended the range of applications of PLEOM

to investigate nonlinear materials and structures from nano- to millimeter-scale.

Firstly, we have proposed and demonstrated a new approach towards the full vec-

tor determination of the spontaneous polarization of single ferroelectric nano-crystals

used as SHG nano-probes. This method allows to remove the ambiguity inherent to

earlier polarization-resolved SHG microscopy experiments, and has permitted full

determination of the orientation of single domain ferroelectric nano-crystals. The

electrooptic phase response obtained in the form of phase images and polarization

diagrams yields the full orientation in the laboratory frame of randomly dispersed

single nano-crystals, together with their electric polarization dipole. The complete
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vector determination of the dipole orientation is a prerequisite to important applica-

tions including ferroelectric nano-domain orientation, membrane potential imaging

and rotation dynamics of single biomolecules, especially by using a new low-cost

non-invasive imaging method with a low intensity illumination beam.

The ferroelectric domain pattern of periodically poled KTiOPO4 and of a two-

dimensional decagonal quasi-periodic LiNbO3 nonlinear crystal was determined by

local measurement of their electro-optically induced phase retardation. Owing to the

sign reversal of the electrooptic coefficients upon domain inversion, a 180◦ (π) phase

shift is observed across domain barriers between domains with opposed orientations.

PLEOM allows to reveal the nonlinear and electrooptic spatially modulated patterns

in ferroelectric crystals in a non-destructive manner and to determine their poling

period, duty cycle and short-range order as well as to detect local defects in the

domain structure, such due to incomplete poling.

In addition, we have also proposed and demonstrated a new method, based

on the voltage dependence of the electrooptic dephasing, to mimic the membrane

potential in cells, working at this stage on nonlinear dye containing phospholipidic

membranes, grown in a microfluidic set-up.



Résumé

Nous avons développé une nouvelle méthode de microscopie par effet électro-optique

linéaire (effet Pockels), dite PLEOM, permettant de cartographier la susceptibilité

du deuxième ordre χ(2) d’un matériau noncentrosymétrique [1, 2]. Cette méthode

est complémentaire de la microscopie de génération de seconde harmonique, et s’en

distingue par différents aspects physiques et pratiques. Grâce à une détection in-

terférométrique stabilisée, le retard de phase provoqué par une variation d’indice

locale du matériau non-linéaire sous l’effet d’un champ électrique est détecté à 10−6

radians près, ouvrant la voie à l’imagerie d’échantillons biologiques ou au suivi du

mouvement de nano-sondes [3]. PLEOM apporte un type de données nouveau, la

“réponse en phase” du matériau, porteuse d’information physiques plus difficilement

accessibles en microscopie biphotonique. Ce manuscrit décrit de nouveaux domaines

de développement et d’application de PLEOM, qui a évolué vers une plateforme aux

applications variées et multiéchelles, allant du nanométrique au millimétrique.

Nous avons tout d’abord montré comment déterminer le vecteur de polariza-

tion attaché à des nano-cristaux ferroélectriques uniques, en vue de leur utilisation

comme nano-sondes. Cette nouvelle méthode permet, à notre connaissance de façon

unique, de distinguer deux nano-cristaux mono-domaines d’orientations exactement

opposées, dont les réponses en SHG ne peuvent pas être distinguées. Une image

de phase électro-optique, combinée à un diagramme de polarisation, donne accès

à l’orientation vectorielle d’un nano-cristal orienté aléatoirement dans le référentiel

du laboratoire. Un verrou est ainsi levé pour des applications comme l’imagerie de
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nano-domaines ferroélectriques, celle de potentiels électrochimiques membranaires,

où l’étude de la dynamique de rotation de molécules. Deux spécificités remarquables

de PLEOM en font une méthode d’avenir : la faible intensité de pompage qui as-

sure une bien meilleure bio-compatiblilité ainsi que la simplicité de la source laser

continue utilisée.

Nous avons ainsi pu utiliser PLEOM pour caractériser les domaines ferroélectriqu-

es d’un cristal de KTiOPO4 périodiquement réorienté en vue d’un quasi-accord de

phase, ainsi que ceux d’un cristal bidimensionnel quasi-périodique de LiNbO3. Un

retournement clair de la phase de 180◦ est observé au travers des parois de domaines,

dont les coefficients électro-optiques apparaissent opposés dans le référentiel du lab-

oratoire. PLEOM se présente ainsi comme un outil de caractérisation non destructif

des propriétés de ces cristaux artificiels dont les motifs et les défauts (tels qu’une ori-

entation localement incomplète) ont été caractérisés spatialement, et permet mesurer

localement leurs propriétés non-linéaires, dont le caractère tensoriel permet d’aller

au-delà des informations acquises en microscopie classique.

En outre, nous avons fait la preuve de principe d’une nouvelle expérience biomimé-

tique, visant à étudier les potentiels membranaires cellulaires, en utilisant PLEOM

sur des membranes phospholipidiques créées sur puce micro-fluidique et dopées en

colorants.
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1
Introduction

1.1 Nonlinear Optics

Nonlinear optics embeds the study of the diverse phenomena that result from a

change in the optical properties of a material in the presence of light or applied

voltage. Nonlinear optical (NLO) effects are accounted for at an upstream level

by considering the response of dielectric materials to an applied electric field or in-

tense light beam at the atomic level. The propagation of an optical wave through a

material produces a variation in the spatial and temporal distribution of electronic

charges attached to atoms and molecules, as a result of their interaction with an

optical field. The main effect of such strong interaction is a displacement of the va-

lence electrons from their rest orbits. This perturbation creates a polarization of the

material, which, in addition to the linear component accounting for linear properties

1
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(i.e regular index and absorption), depend in a nonlinear fashion on the electric field

of the optical beam. Most nonlinear effects, require a sufficiently intense laser beam

so as to modify the higher order nonlinear optical properties of a material up to a

measurable level. Thus, the first observation of a nonlinear effect was the discovery

of second-harmonic generation (SHG) by Franken et al. in 1961 [4], shortly after the

demonstration of the first laser by Maiman in 1960 [5]. The success of this exper-

iment directly relied on the enormous increase in the illumination power supplied

by the then new laser sources that allowed to reach power densities surpassing 109

W/cm2, which corresponds to an optical electric field amplitude above of 106 V/cm

that became available. NLO materials have been considered as future “optical semi-

conductors”, and the search for new materials and their application from bulk to

nano-scale has remained still very active.

1.1.1 Research on Nonlinear Optics

Since the first observation of SHG in a single mineral dielectric crystal of Quartz

by Franken et al. [4], the early work in nonlinear optics concentrated on second-

harmonic generation, including both theoretical principles and experiments [6]. At

a quite early stage in this research, hundreds well known NLO crystals, inorganic

materials belonging to the ferroelectric class and featuring a the spontaneous di-

electric polarization because of the lack of inversion symmetry center, emerged as

relevant candidates, with such by now well documented crystals as KDP, KD∗P,

LiNbO3, KTP, etc. . . Indeed, the quadratic non-linearity is non-zero only for the

smaller group of materials that lack inversion symmetry center, which are called non-

centrosymmetric materials. A majority of materials being centro-symmetric, their

second-order susceptibility χ(2) cancels, and therefore their first non-zero nonlinear-

ity is governed by the third-order susceptibility χ(3). In contrast, due to their built-in

non-zero static polarization, ferroelectric phases are inherently non-centrosymmetric

and therefore endowed of a non-zero quadratic susceptibility which, as we shall fur-

ther justify, can be fairly high.
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SHG in the optical range is somewhat similar to harmonic generation at radio fre-

quencies, with the significant difference that the optical wavelength is much smaller

than the dimension of the interaction volume inside the nonlinear media. In non-

linear optics, this implies additional phase-matching conditions, ensuring that the

phase velocity of the fundamental and second-harmonic waves are equal through-

out the nonlinear material, or in other words, that the frequency dispersion has

to be somehow compensated. Kleinman [7], Giordmaine [8], and Maker et al. [9]

demonstrated that the phase-matching condition could be met in birefringent crys-

tals by ensuring via adequate polarization of the interacting beams, that the crystal

birefringence compensates the dispersion. Besides the use of birefringent crystals,

another way to deal with phase-matching conditions had been theoretically predicted

as early in 1962 by Armstrong et al. [10], where by the second-order susceptibility

χ(2) of nonlinear materials is spatially modulated. This eventually lead to the actual

implementation of quasi-phase matched crystals which took thirty years. The first

1D quasi-phase matched crystal was fabricated by Jundt et al. based on a period-

ically poled LiNbO3 crystal [11]. The fabrication method of quasi-phase matched

crystal by an electric field poling method has opened since a new research domain at

the border of optical and material sciences, bearing the promise and realization of

numerous applications based on the tailoring of artificial domain structures in one-

or two-dimensions [12].

An important extension of the range of nonlinear optical phenomena occurred

in 1965 when Wang et al. observed significant gain in a three-wave mixing experi-

ment [13]. Following this demonstration, parametric amplification was observed in

that same year by two-wave degenerate mixing in temperature-tuned single Lithium

Niobate (LiNbO3) crystals [14]. Following this advance, Harris reviewed the theory

and devices aspects of parametric oscillators [15, 16] which are now well known in a

broad field from applications for tunable sources known as optical parametric oscil-

lators (OPO) all the way to the generation of photon-pairs for fundamental studies

in quantum entanglement [17, 18].

At an early stage, Kurtz et al. developed a powder SHG test technique that
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permits a rapid semi-quantitative scanning of the NLO efficiency of materials at an

early stage of development, in powder form, prior to the decision of starting a costly

and possibly lengthy single crystal growth process [19]. Moreover, when applicative

end-goals are at stake, it is not sufficient for candidate NLO materials to exhibit

large larger χ(2), but they must also satisfy secondary criteria, among which a high

optical damage threshold, thermal stability and high optical homogeneity are the

most important ones.

Also at an early stage, organic materials triggered a lot of interest, the first

observation of SHG in such materials having been reported by Rentzepis and Pao

in 1964 [20], with the demonstration of 3,4 benzpyrene and 1,2 benzanthracene

based molecular crystals. In that wake of this demonstration, a detailed study of

effect of molecular structure on optical SHG from organic crystals was reported by

Gott in 1971 [21]. Over the two following decades, the study of nonlinear optical

process in various organic molecules and crystals, and later in polymer systems due

to their promising applications, has attracted a lot research groups and generated

a wealth of scientific results [22, 23] which showed a number of advantages over

inorganic materials towards NLO applications. In recent years, a large number

of new organic compound materials with very large SHG response were proposed

and demonstrated [24–27]. In this context, and further focusing on the secondary

parameters related to the structural and operational robustness of the candidate non-

linear crystal, a number of simple inorganic-organic hybrid complexes were found to

exhibit interesting ferrolectric properties at room temperature [28, 29], leading to

the proposition of new NLO materials based on inorganic-organic hybrid compounds

[30–32].

Although the relationship between optical second-harmonic generation and the

electrooptic effect was pointed out by Kleinman as early as in 1962 [6, 7], It was only

two year later that benzil was the first nonlinear crystal to display such relationship

as shown by Heilmeier et al. [33]. A lot of NLO and electrooptic (EO) devices have

been subsequently fabricated and applied.
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Since 1974, when Hellwarth et al. first reported the integration of SHG and mi-

croscopy by imaging the SHG response from polycrystalline ZnSe [34, 35], nonlinear

microscopy has blossomed into a whole new domain of microscopy. Developments

in SHG microscopy allow to investigate NLO materials at the nano-scale and bear

the potential of applications to high resolution imaging of biological objects. The

field of SHG application to biological imaging has been pioneered by Freund in 1986

[36], with SHG microscopy now extended to whole-animal in vivo imaging [37, 38]

by use of NLO molecules or crystals as SHG nano-probes.

1.1.2 Quasi-phase matching*

Let us recall the phase-matching condition of SHG in which an optical wave with

frequency ω interacts with a nonlinear material through its second-order susceptibil-

ity so as to produce a polarization wave at the doubled frequency 2ω. The nonlinear

effect being of the order of a weak perturbation to the linear response, the propaga-

tion length through the nonlinear media must be much longer than the wavelength

of the fundamental beam, so that the conversion process can reach a sufficient yield.

Since the nonlinear polarization wave which is at the origin of the nonlinear emis-

sion is forced by the square of the fundamental wave, it propagates with twice its

wave-vector k(ω) as determined by nω, the refractive index of the medium at the

fundamental wavelength as shown in Fig. 1.1a. The polarization wave then radiates

a free second-harmonic (SH) wave which propagates at a wave-vector k(2ω) deter-

mined by n2ω, the refractive index of the media at the harmonic wavelength. The

phase matching condition k(2ω) = 2k(ω) imposes that n2ω = nω. However, this

condition conflicts with the monotonous growth of the index with the photon en-

ergy, that is n2ω > nω as a consequence of normal dispersion in most material. The

fundamental and SH waves then propagate at different phase velocities as shown in

Fig. 1.1a. As a result, SH waves generated from different parts of the NLO media

*This section is based on: [39, 40]
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Figure 1.1: Electric field at ω, induced polarization at 2ω, electric field at 2ω and com-
bined polarization and second harmonic field: (a) Homogeneous crystal. In general, as a
result of dispersion, the induced polarization gets out of phase with respect to the electric
field generated at the beginning of the crystal. (b) Periodic reversal of the material non-
linear coefficient allows to brings back the polarization in phase with the second harmonic
wave from Ref [40].

will be out of phase with each other, thus eventually leading to destructive interfer-

ence. The distance over which the relative phase of two waves changes by π is the

“coherence length” lc = λ/4(n(2ω)−n(ω)) or lc = π/∆k (where ∆k = k(2ω)−2k(ω)

is the phase mismatch) which corresponds to the half period of one cycle comprising

constructive and then destructive interference as displayed in Fig. 1.2c for the case

of non phase-matching. This mismatch needs to be compensated via an appropriate

phase-matching procedure.

For a nonlinear crystal of length L, the SH field E2ω(L) at the end of this sample

is given by [39, 41]:

E2ω(L) = i
ω

n2ωc
E2

ω

∫ L

0

d(z)exp(−i∆kz)dz (1.1)

where Eω is the fundamental field and d(z) is the nonlinear coupling coefficient.

For perfect conventional phase matching with d(z) = deff, where deff is the effective

value of the nonlinear coupling coefficient (comprising the relevant combination of

cartesian tensor coefficients weighed by adequate trigonometric factor accounting

for the specific combination of polarization states for the interacting harmonic and

fundamental beam) and ∆k = 0, the intensity of the SH wave I2ω is then given by:

I2ω =
2ω2d2eff

n2ωn2
ωc

3ǫ0
I2ωL

2 (1.2)
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Figure 1.2: Phased matched, non-phase matched and quasi-phase matched cases. (a)
Nonlinearity along the crystal and k-vector scheme, (b) absolute value of the second har-
monic field with respect to the spatial frequency and (c) evolution of the SH intensity
along the crystal from Ref [40].

where Iω is the intensity of the fundamental wave.

In this case, the intensity of the SH wave is quadratically dependent on the length of

the nonlinear crystal as shown in the upper part of Fig. 1.2c. As already mentioned,

the most widely used method to satisfy this condition is to to use the birefringence of

the crystal to compensate its dispersion [7–9]. However, there are some drawbacks to

this method, such as the eventual impossibility for a given material and wavelength

to ensure compensation of the frequency dispersion, and the need to use a non-

diagonal coefficient of the nonlinear tensor to involve birefringence, thus precluding

the otherwise preferable use of the larger diagonal coefficient.

More recently, a second method known as quasi-phase matching (QPM), has

been widely used in order to overcome the phase-matching problem, in which the

second order susceptibility χ(2) of nonlinear materials is spatially modulated by

periodically poling the material by an electric field [10, 11], as in the lower part of

Fig. 1.2a. In this case, the phase mismatch is balanced by the modulation of the
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nonlinear coefficient (appearing in the z dependence of the d(z) local nonlinearity)

as in Fig. 1.1b. Such a patterned structure is called a QPM crystal with period

length of Λ = 2πm/∆k (where m is an integer that can take an odd value). The

second harmonic intensity in this case is given by:

I2ω ≈ 2ω2d2eff|Gm|2
n2ωn2

ωc
3ǫ0

I2ωL
2 (1.3)

In this case, the intensity of the quasi-phase matched wave is smaller than that

for perfect phase-matching by a factor |Gm|2 (where |Gm| is the Fourier coefficient

of the periodical modulation of the nonlinear coefficient). Fejer et al. [39] have

estimated the maximum fluctuation allowed for the period of a QPM structure to

be δΛ = 1.77Λ/Nm where N is the number of alternating domains.

Following the maturation of the electric field poling method [11, 40, 42], one- or

two-dimensional QPM crystals have been fabricated with a wealth of application in

frequency mixing, including commercial ones.

1.2 Nonlinear Optical Microscopy and Nano-probes

1.2.1 Nonlinear Optical Microscopy

In 1977, Sheppard et al. first suggested and then demonstrated how a nonlinear

optical phenomenon could be incorporated into a high-resolution, three-dimensional

scanning laser microscope [43–45]. Nonlinear optical microscopy has been developed

since then in connection to different nonlinear optical phenomena, such as two-

photon excited fluorescence (TPEF), second-harmonic generation (SHG) and third-

harmonic generation (THG) as shown in Fig. 1.3.

The development of femtosecond lasers, the improved spatial resolution allowed

by the confocal microscopy and the availability and ever improving performances of
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Figure 1.3: Two-photon excited fluorescence, second-harmonic generation and third-
harmonic generation process in the energy-level diagram.

high sensitivity detectors such as avalanche photodiodes, have jointly provided opti-

mal conditions for the current development of nonlinear optical microscopy. Nowa-

days, many variants of the well known nonlinear optical microscope are available to-

wards different purposes, but they all derive from the template configuration shown

in Fig. 1.4.

By using a light beam with very high peak intensity so as to nonlinearly excite

different types of objects, TPEF, SHG or THG microscopes all need a pulsed laser

source to supply the necessary optical power. In order to tune the wavelength of

the fundamental beam to a given resonance or to fulfill the required phase-matching

condition, different laser sources or a tunable Optical Parametric Oscillator (OPO)

can be used as in Fig. 1.4. A dichroic mirror reflects the infrared fundamental

light and transmits the TPEF, SHG (or THG) emitted from the sample at the

focal point of the microscope objective. The emission can be directly detected by

a photodiode or decomposed into x and y polarization components which can be

separately detected by two avalanche photodiodes and then imaged by way of a

{xy} (2D) or {xyz} (3D) position scanner using a piezo stage. Alternatively, the

intensity of the nonlinear response at a given position in the sample can be recorded

and plotted with respect to the angle of the fundamental linear polarization state

which can be varied by a half-wave plate.

In the wake of the pioneering demonstration by Denk et al. [47] which helped
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Figure 1.4: General scheme for the configuration of the TPEF or SHG microscopy.

convince the biological community of the relevance of nonlinear microscopy towards

the imaging of living cells, tissues, embryos, and organisms, the field of nonlinear

microscopy has considerably grown to encompass biological imaging, much of which

still to be developed. Being both based on nonlinear optical process, SHG and

TPEF microscopies share many common features, such as common dependence of

outgoing light on the square of the excitation intensity, thereby offering optical

sectioning without the need for a confocal aperture because of the restriction of

efficient excitation in a small diffraction limited volume around the focal point.

However, unlike TPEF microscopy where the fluorescent dye used as the molec-

ular probes can saturate, bleach, and/or generate photo-toxic by products, SHG is a

coherent process involving only virtual energy transitions with none of the negative

consequences of a finite excited state lifetime. Indeed, SHG probes neither bleach

nor saturate even after several hours of illumination [46]. Consequently, SHG mi-

croscopy is being increasingly applied in biology.
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1.2.2 Second-harmonic generation Nanoprobes*

In order to image a biological object by SHG microscopy, nonlinear materials

used as the imaging probe must be used. NLO signals are strongly sensitive to

size, shape, and orientation of nonlinear nano-emitter whereas the high sensitivity

of SHG microscopy makes single-particle or even single-molecule detection possible.

Following the advent and development of nanotechnologies, nano-scale nonlinear

materials that lack an inversion center (also referred to as non-centrosymmetric ma-

terials) where developed for use as SHG nanoprobes and successfully demonstrated

in various contexts.

Several SHG nanoprobes, down-scaled from otherwise well-known benchmarking

inorganic materials with large second-order susceptibility χ(2) have been reported,

among which Barium Titanate (BaTiO3) [46, 49, 50], Lead Titanate PbTiO3 [50],

Zinc Oxide (ZnO) [51, 52], Fe(IO3)3 [53, 54], KTiOPO4 [55–58], Sr0.6Ba0.4Nb2O6

[59], or KNbO3 [60]. Besides these traditional oxide based nonlinear optical mate-

rials, the SHG properties of some inorganic quantum dots or quantum dots with

core/shell or dot-on-rod structure have been investigated such as single core/shell

CdTe/CdS nano-crystals with a diameter of 10 to 15 nm [61], single CdTe/CdS

core/shell rod-on-dot nanocrystals with different geometrical parameters [62], Gal-

lium Arsenide GaAs [63] and Zinc Selenide ZnSe [64]. By using semiconductor

quantum dots as probes, the imaging process can be performed by a combination

of SHG microscopy with fluorescence confocal microscopy. In order to enhance the

second-order susceptibility of nano-particles vie dipole-dipole interactions and reso-

nance on local plasmons, hybrid systems combining a quantum dot with a metallic

nanoparticle have also been reported [65].

Contrasting the propagation of SHG wave in bulk crystals, SHG nanoprobes

scatter the signal in many directions. Due to the negligible dimension of SHG

nanoprobes with respect to the wavelength of the fundamental optical wave allowing

*This section is based on: [48]
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to consider it as point-wise, the phase-matching condition does not apply.

SHG nanoprobes also bear the possibility to perform multi-labelling experi-

ments by using SHG nanoprobes with different materials and using the resonance-

enhancement of SHG process when the energy of the generated harmonic photon

matches that of the ground to first excited state transition.

1.3 Motivation and Outline of Thesis

Although improvements and higher efficiencies are reported almost day after day

in SHG microscopy, some of its inherent drawbacks have also become more obvious

in the course of this development. In particular, the requirement of a bulky and

sometimes cumbersome laser source with a very high intensity or the possibility

to photo-damage sensitive samples are limiting the field. Another basis limitation

of SHG microscopy originates from the broadly used intensity detection method

whereby photo-detectors are used to collect the intensity of the generated harmonic

beam, thus hiding no less important information contained in the electric field and

its phase.

Besides second-harmonic generation, another important effect associated to the

second-order susceptibility χ(2) is the Pockels effect, which expresses the variation of

the refractive index of nonlinear materials under the application of an externally ap-

plied voltage. The conception of a new handmade nonlinear microscope fully based

now on the Pockels linear electro-optical effect, so-far unexploited for imaging pur-

pose, was put forward and further implemented during two previous doctoral thesis

[66, 67]. This newly developed and unique nonlinear microscope, which came to be

named PLEOM (for Pockesls Linear Electro-Optical Microscopy) allows to map the

second-order susceptibility of non-centrosymmetric materials and structures, very

much like a SHG microscope however in the present case with a very high sensi-

tivity [1] and the use of a simple low power stable CW laser source. It provides a

new tool to investigate the whole range of objects which can be studied by SHG

microscopy, however providing crucial complementary information, such as relate to
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the phase of the harmonic beam, which are not readily available form SHG.

Among the most interesting candidates for our new microscopy are the SHG

nano-probes for applications in imaging and tracking. Due to their spontaneous

dielectric polarization which precludes a center of symmetry, single domain ferro-

electric crystals account for almost known SHG nano-probes. The orientation of

these SHG nano-probes can be either random or pre-orientated by the application

of an electric field or any other means of orientation. Consequently, a prerequi-

site towards further quantitative imaging use of such nano-probes in our Pockels

microscope is the ful determination of their orientation.

Besides, quasi-phase matched nonlinear crystals are very attractive for use as

frequency doubling devices in laser systems due to the spatial modulation of their

second-order susceptibility which solves the phase matching condition. Since the

first fabrication via an electric field poling method and subsequent demonstration

of a QPM-LiNbO3 crystal in [11], a large number of reports on the application of

QPM crystals have been published in which the conversion efficiency of second-order

nonlinear processes of interest where shown to strongly depend on the parameters

of the periodic or aperiodic structure. This situation has motivated the demand

for quantitative imaging and characterization of QPM patterns, in order to test

the applicability of the crystals towards frequency doubling as well as improve the

electric field poling process for different classes of materials as well as QPM patterns.

Several methods based on the properties of ferroelectric domains have been reported

in order to fulfill this demand and visualize the domain structures, such as the

Čerenkov SHG imaging technique [68–71]. However, while this method provides a

highly accurate visualization of domain frontiers, it fails to provide information onto

the inside of the domains, or provide high resolution mapping.

Thus the objective of this dissertation is therefore to develop a full theoretical

analysis for SHG nano-probes (or single ferroelectric domains at the nano-scale) in-

vestigated by PLEOM in which the accuracy of our theory has been confirmed by

our experimental results. Alongside this purpose, we have extended the applicabil-

ity of PLEOM to encompass the investigation and characterization of ferroelectric
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materials with multi-domain structures, such as tailored one- and two-dimensional

periodic and aperiodic ferroelectric domain structures of QPM crystals, allowing us

to determine the periodicity parameters, evidence otherwise non-visible local defects,

etc. . .

The thesis is organized as follows:

• InChapter 1, we provide a brief introduction to quasi-phase matched crystals,

nonlinear microscopy and nonlinear nano-probes will be the main objects of

our investigations.

• In Chapter 2, I present a thorough introduction to PLEOM electrooptic mi-

croscopy, including its configuration, working principle, optical and electronic

elements as well as the data processing chain. An alternative configuration for

PLEOM is also presented in this chapter.

• In Chapter 3, I develop a complete theory of the Pockels scattering response

from single ferroelectric KTiOPO4 nano-crystals detected by PLEOM. The

excellent agreement between the experimental results and the theory provides

confirmation of there relevance of our model. Among the outcome, we show,

for the first time to our knowledge that the orientation, and especially the

vectorial features of the electric polar moment of a single random SHG nano-

probe, can be inferred from PLEOM with great accuracy.

• In Chapter 4, we present a new, non-invasive method towards the characteri-

zation of the ferroelectric domain structure in 1D periodically poled KTiOPO4

crystals (quasi-phase matched crystals) by PLEOM, including both the the-

oretical model and experiment in mutual agreement. The inversion of ferro-

electric domains is visualized by a π phase shift, whereas the domain walls are

clearly outlined by the cancellation of the signal amplitude.

• In Chapter 5, we extend the validity of PLEOM to map 1D quasi-phase

matched crystals into 2D quasi-crystalline patterns. The domain structure of

a 2D decagonal quasi-periodic LiNbO3 nonlinear crystal was characterized by
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PLEOM. This study confirms the ability of PLEOM to image and characterize

the domain properties of any ferroelectric material with 1 or 2D periodic or

aperiodic patterning of its nonlinear optical structures, opening the way to the

imaging and detailed characterization of more complex electrooptic systems

with tailored domain structures.

• In the last chapter, we summarize the results obtained during this study and

discuss in conclusion the perspectives opened-up by this work.

• The Appendix part is gathering more detailed accounts of both experimental

and theoretical issues addressed in this study. Besides, some incomplete parts

of this study with different and possibly interesting results are outlined, such

as pertaining to the investigation of biological membranes by PLEOM.
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Pockels Linear Electro-Optical Microscopy

Recently, the development of nonlinear second harmonic generation microscopy

(SHGM) has generated a variety of nano-scale probe instruments to study single

nano objects such as quantum dots, non-centrosymmetric nano-crystals, and biolog-

ical entities, etc. . . Although the high efficiency and improvements of SHGM have

been shown day after day from thousands scientific articles, this domain still suffers

from some limitations when used to study some special objects such as biological

samples. The main disadvantage of SHGM stems from the laser source. By using

frequency doubling in nonlinear materials, SHGM requires the use of a pulsed laser

source with high power in the infrared region. And sometimes, one needs to use

different laser sources or an optical parametric oscillator (OPO) to tune the wave-

length of the fundamental beam. For that reason, the laser sources are expensive

and bulky, not easy to operate, and dangerous for the alignment and manipulation

16
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with invisible light. Moreover, sensitive samples such as living biological samples

can be destroyed under illumination by a high intensity laser beam.

Besides second harmonic generation, another effect associated to the the second-

order susceptibility χ(2) is named the Pockels effect. The Pockels effect or the linear

electrooptic effect is the linear variation of the refractive index of a nonlinear optical

medium upon application of an external applied electric field first described by F.

Pockels in 1893 [41, 72] which originates from the generic second-order susceptibility

tensor χ(2) attached to quadratically nonlinear materials. When a nonlinear mate-

rial is exposed to an external electric field, the change of refractive index of this

object can be read-out by the experienced phase shift by a light which propagates

through it. By using a Mach-Zehnder interferometer to measure this phase shift,

informations on the second-order susceptibility χ(2) of nonlinear materials can be

estimated. Following these ideas, the Pockels Linear Electro-Optical Microscope

(PLEOM) based on the Pockels effect was conceived and built [66, 67]. It combines

a confocal microscopy allowing to study nano-scale objects, a Mach-Zenhder inter-

ferometer, and a homodyne detection system. In this chapter, we will introduce the

main features of PLEOM including its configuration and operating mode.

2.1 Confocal Microscopy*

The basic concept of confocal microscopy was developed by Marvin Minsky in

the middle of 1950s (patented in 1961) [73] as shown in Fig. 2.1 when he was a

postdoctoral student at Harvard University. He wanted to image the neural networks

of brain tissue without staining and biological events occuring in living samples.

It derives from light microscopy in which the illuminating and collecting light are

focused on the same diffraction-limited spot in studied samples. Unlike conventional

light microscopy which images the entire field of view of the objective lens onto the

detector, confocal microscopy images only one spot. To obtain a complete image,

*This section is based on: [73–76]
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Figure 2.1: Confocal microscope design of Minsky in U.S.Parent 3013467 [73].

the spot is moved over the specimen and the image is built point by point. The

most important aspect of confocal microscopy is that parts of the specimen not at

the focal point contribute very little to the spot image. Thus confocal microscopy

allows to perform very high-resolution and three dimentional (3D) measurements

even within thick specimens.

Following the prioneering work by Minsky, confocal microscopy has been effec-

tively improved with the advances in computer and laser technology leading to the

laser scanning confocal microscope. After Minsky’s patent had expired, practical

laser scanning confocal microscopy was developed and the first commercial instru-

ment appeared in 1987. During the 1990s, advances in optics and electronics allowed

to improve the confocal microscopy system based on more stable and powerful lasers,

high efficiency scanning mirror units, high throughput fiber optics, better thin film

dielectric coatings, and detectors with reduced noise characteristics. Modern confo-

cal microscopes are completely integrated optic-electronics systems where the optical
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microscope plays as a central role in a complex configuration that includes one or

more electronic detector, a computer (which controls all electronic devices of the sys-

tem, collects and analyzes the signal data), and several laser systems with selected

wavelengths.

The principle of laser scanning confocal fluorescence microscope is schematically

presented in Fig. 2.2. The coherent light emitted from a laser source passes through

Figure 2.2: Schematic diagram of the optical pathway and principal components in a
laser scanning confocal microscopy [76].

a pinhole aperture which is located in a conjugate plane respect to a scanning

point on the specimen and a second pinhole aperture positioned in front of the

detector. The laser is reflected by a dichromatic mirror and focused onto a point of

the specimen by a microscopy objective. The fluorescence emitted from the focused

spot on the specimen passes back through the dichromatic mirror and is focused

at the confocal point where the second pinhole is set. The fluorescence is then

projected into the detector. One of the most important components of the scanning
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resolution is the pinhole aperture, which acts as a spatial filter. It serves to exclude

fluorescence signals from out-of-focus points which are above or below the focal

plane. The pinhole aperture also serves to eliminate stray light passing through the

optical system. A 2D or 3D scanning can be accomplished by translating the sample

stage along the x, y, and z directions, while the laser illumination spot being held

at a fixed position.

The resolution of this microscope depends on the size of the diffraction-limited

spot. Thus by using an appropriate objective, the diameter of the diffraction-limited

spot is:

d =
1.22λ

2× (n sin θ)
=

1.22λ

2× NA
(2.1)

where λ is the wavelength of the laser source and n sin θ or NA is called the numerical

aperture of the microscopy objective. The size of the illumination point ranges from

approximately 0.25 to 0.8 micrometers in diameter and 0.5 to 1.5 micrometers deep

at the brightest intensity (focusing spot).

Confocal microscopy provides a non-invasive method to examine both living and

fixed specimens under a variety of conditions with enhanced clarity.

2.2 Mach-Zehnder interferometer

The Mach-Zender interferometer is a simple device which is used to determine the

relative phase shift variation between two collimated beams derived by splitting

the light from a single source. This interferometer is named after the proposal of

Zehnder in an 1891 article and the refinement of the physicists Ludwig Mach in a

1892 article [77].

In contrast to the well-known Michelson interferometer, in the Mach-Zehnder

interferometer, two separated light paths are traversed only once. Fig. 2.3 is the

schematic of the normal Mach-Zehnder interferometer. Its working principle is very

simple [78, 79]. A collimated beam emitted from a light source is split into two parts

by a beam splitter or half-silvered mirror. The two resulting beams are named “the
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Figure 2.3: Schematic of a Mach-Zehnder interferometer.

reference beam (RB)” and “the sample beam (SB)”. After reflected by the mirrors,

they are recombined together by the second beam splitter (50:50) and enter two

optical detectors. Depending on the relative phase acquired by two beams when

travelling along their optical paths, the second beam splitter will reflect the beam

with an efficiency between 0 and 100%.

Calling the intensities of the sample and reference beams I1 and I2 respectively,

the phase shift between these upon propagation from the light source to detector 1

is ∆ϕ, and π+∆ϕ to detector 2. So the intensities of the light entering the detectors

1 and 2 respectively are:

Idectector1 =
1

2
[I1 + I2 + 2

√

I1I2 cos(∆ϕ)] (2.2)

Idectector2 =
1

2
[I1 + I2 − 2

√

I1I2 cos(∆ϕ)] (2.3)

If the first beam splitter is exactly balanced (50:50), I1 = I2 =
1

2
I (I is the intensity

of the light source) and now, the intensities of the light which enter the detector 1

and 2 respectively are:

Idectector1 =
1

2
I[1 + cos(∆ϕ)] (2.4)

Idectector2 =
1

2
I[1− cos(∆ϕ)] (2.5)
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Depending on the relative phase acquired by the two beams when travelling along

their optical paths ∆ϕ, the second beam splitter will reflect the beam with an

efficiency at each of the two detectors ranging from 0 to 100% so that the total

intensities of light at the two detectors are constant and equal to the intensity

emitted initially by the light source.

If the phase shift between two beams on their ways to the detector 1 (∆ϕ) is 2π,

the intensities of light enter the detector 1 and 2 are Idetector1 = I and Idetector2 = 0.

It means that there is a totally constructive interference on the path to the detector

1 and a totally destructive interference on the path to detector 2.

If the first beam splitter is not well balanced, only partial constructive and

destructive interference are occurring. This property is used in some special cases

in interferometry [79].

The Mach-Zehnder interferometer offers a relatively large and accessible working

space, so that it is frequently used to measure pressure, density, and variation of the

temperature in gases [79]. In smaller size various, they are applied to electrooptic

modulation towards signal processing or in various applications in optics and optical

communication [72]. Fig. 2.4a shows a simple optical modulator using a Mach-

Figure 2.4: An optical modulator using Mach-Zehnder interferometer [72].

Zehnder interferometer [72]. An electric field (voltage V) is used to modulate the

phase of the light in an arm by the linear electrooptic effect (the Pockels effect which

will be described in detail in section 2.4). If the tension V is switched between points
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A and C (Fig. 2.4b), the device serves as an optical switch. Towards linear intensity

modulation, one needs to apply a sinusoidal voltage V varying at the modulated

frequency around the inflexion point B as in Fig. 2.4b.

The Mach-Zehder interferometer is also used to study “quantum entanglement”

in quantum mechanics [80, 81].

2.3 Balanced homodyne detection

Balanced homodyne detection is normally used in optical interferometry to detect

the phase of electromagnetic waves. It derives from homodyne detection one by

using two photodiodes instead of a single one after a beam splitter with a precisely

balanced 50:50 ratio. Homodyne detection being a variant of heterodyne detection,

I will first recall the working principle of heterodyne detection.

Heterodyne detection is a radio signal processing technique that was invented

in 1901 by a Canadian inventor named Reginald Fressenden. There, a weak input

signal is mixed with one strong wave generated from a local oscillator in a nonlinear

signal-processing device such as rectifier. After the mixing process, the output

signal includes two new signals at different frequencies, respectively at the sum and

difference frequency of the signal and local oscillator. Typically only one of the new

frequencies of the signal is desired while the other is filtered out.

Optical heterodyne detection is an extension of the heterodyning technique ap-

plied to higher frequency electro-magnetic waves, in our case visible light. The

nonlinear signal-processing devices are photodetectors which are square-law detec-

tors (the photodetector current is proportional to the square of the total electric

field amplitude of the electro-magnetic waves), such as the photodiodes in Fig. 2.5.

If the weak signal is: Es cos(ωst + ϕ) and the reference beam (local-oscillator

beam) is: Er cos(ωrt), the photodetector current is given by:

I ∼ [Es cos (ωst+ ϕ) + Er cos (ωrt)]
2 (2.6)
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Figure 2.5: Setup for an optical heterodyne detection.

I ∼ 1

2
E2

s [1 + cos 2 (ωst+ ϕ)] +
1

2
E2

r [1 + cos 2 (ωrt)]

+ EsEr {cos [(ωs − ωr) t+ ϕ] + cos [(ωs + ωr) t+ ϕ]} (2.7)

From the expression 2.7 we see that the spectrum of photocurrent exhibits three

different frequency domains:

• a constant (zero-frequency) part which is proportional to the sum of signal

and local oscillator power.

• a low frequency component at (ωs − ωr).

• a high frequency component at (ωs + ωr), 2ωs and 2ωr.

The low frequency part can be isolated by electronic filtering and further pro-

cessed by adequate electronic, thus the electronic signal is then:

I ∼ EsEr cos [(ωs − ωr) t+ ϕ] (2.8)

Its electric power is proportional to the product of the electric field amplitudes of the

signal and local oscillator. Due to mixing with a strong oscillator, the heterodyne

signal resulting from a weak input can be made much more powerful than the directly

detected signal. In this case, heterodyne detection provides a signal gain although

there is no optical amplification involved.



2.3 Balanced homodyne detection 25

Homodyne detection is a variant of heterodyne detection, where the frequency of

the local oscillator is the same as the frequency of the signal. In optical homodyne

measurements, both waves are derived from the same laser source after division

through a beam splitter or a half-silvered mirror. In this case ωs = ωr and replacing

into the expression 2.7 we leads to the following expression for the photodetector

current:

I ∼ 1

2
E2

s [1 + cos 2 (ωst+ ϕ)] + EsEr [cosϕ+ cos (2ωst+ ϕ)] +
1

2
E2

r [1 + cos 2 (ωst)]

(2.9)

The photodetector current has two components, namely a constant part (at zero

frequency) and a high frequency parts oscillating at 2ωs. The high frequency part

is cut by a low pass electronic filter and only the constant part is detected:

I ∼ 1

2

(

E2
s + E2

r

)

+ EsEr cosϕ (2.10)

In the expression 2.10 we see that the intensity of the homodyne signal depends

on the relative phase of the signal and reference waves. So that homodyne detection

can be used to detect a phase shift between two coherent light beams derived from

the same source but having passed through different ways before recombination.

The remaining problem of heterodyne as well as homodyne detection is that

excess noise from the reference wave (the local oscillator wave) directly affects the

output electronic signal due to the weakness of the input signal wave. In order to

estimate the effect of such noise, a useful modification of the homodyne detection is

the balanced homodyne detection which makes use of two detectors as in Fig. 2.6.

In this case, the input signal wave and the reference wave recombine together at

a beam splitter with a precisely balanced 50:50 ratio. The mix wave is divided into

two parts and each part is detected by a detector (photodiode). The sum or the

difference of two photodectector currents is obtained by a simple electronic circuit.

If the input signal is blocked, the difference of photocurrents exhibits the shot noise

level of the reference wave. The optical balanced homodyne detection is perfectly

compatible with the detection system of a Mach-Zehnder interferometer because of
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Figure 2.6: Setup for an optical balanced homodyne or heterodyne detection.

the same experimental configuration. In this case, the difference of photodectetor

currents as in expressions. 2.4 and 2.5 contains the value of the phase shift ∆ϕ. By

using a optical balanced homodyne detection onto a Mach-Zehnder interferometer,

a small phase shift ∆ϕ can be accurately detected. From that principle, the optical

balanced homodyne detection is used for various optical applications in which the

detected signal is very weak and can be considered as a perturbation.

2.4 Linear electro-optical effect (Pockels effect)

In general, optical media exhibit changes in their optical properties when subjected

to an external electric field. This is due to electric forces that distort the positions,

orientations, or shapes of the molecules constituting the material.

The Pockels effect or Pockels linear electrooptic effect was firstly studied by

Friedrich Carl Alwin Pockels in 1893 [72] long before the advent of lakes and NLO,

although it belongs to the clan of quadratic nonlinear effect. It expresses the vari-

ation of the refractive index of a nonlinear optical medium deprived of inversion

symmetry such as LiNbO3, KTP, KDP, KD∗P. . . under the application of an ex-

ternal DC or low frequency AC electric field.
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2.4.1 Refractive index of an optically isotropic medium

The refractive index is a dimensionless value that accounts for the lower light velocity

in materials as compared to vacuum due to light-matter interactions. It is defined

as:

n =
c

v
(2.11)

where c is the speed of light in vacuum and v is the speed of light (electromagnetic

wave) in that medium. The speed of light in the vacuum is given by: c = 1/
√
ǫ0µ0

with ǫ0 and µ0 are the permittivity and permeability of free space respectively. The

speed of light in a medium is smaller than the speed of light in the vacuum because

of the interactions between the electric and magnetic fields with the molecules con-

stituting that media and defined as: v = 1/
√
ǫµ with ǫ and µ are the permittivity

and permeability of that medium respectively.

Normally, with an optical medium, the interaction between the magnetic fields

with this medium can be neglected so that we can safely assume that µ ≈ µ0. The

refractive index of this medium then only depends on the interaction between the

electric field component of light and the electrons of the material which leads to:

n =

√

ǫ

ǫ0
=

√
ǫr (2.12)

where ǫr is the relative permittivity.

When light travels in the vacuum, the electric displacement
−→
D simply relates to

the electric field component
−→
E of the light by the expression:

−→
D = ǫ0

−→
E (2.13)

But when the light travels in an optical medium, the electric displacement
−→
D induced

inside this media becomes:
−→
D = ǫ0

−→
E +

−→
P (2.14)

where
−→
P is the dielectric polarization density which is induced by the interaction

between the electric field component of light and the molecules constituting the

medium.
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In an optically isotropic medium, the dielectric polarization density vector is

proportional to the electric field vector as below:

−→
P = ǫ0χ

−→
E (2.15)

where χ, the susceptibility of this medium, is a scalar in the case of an isotropic

medium.

Replacing the
−→
P from expression 2.15 into 2.14 leads to:

−→
D = ǫ0 (1 + χ)

−→
E = ǫ

−→
E (2.16)

Comparing expressions 2.12 and 2.16 leads to the following relation between the

refractive index and the susceptibility of the material:

n2 = 1 + χ (2.17)

The value of the susceptibility χ of an optical media varies with the frequency of

the electromagnetic wave, so that the refractive index of this medium depends also

on the angular frequency (ω) of the light:

n2(ω) = 1 + χ(ω) (2.18)

2.4.2 Refractive index of an optically anisotropic medium

In an optically anisotropic medium, the dielectric polarization density
−→
P is not

simply proportional to the electric field
−→
E , as the susceptibility of such a medium

can not be a scalar. The relation between the dielectric polarization density and the

electric field becomes tensorial [41]:

Pi =
∑

j

χijEj (2.19)

or explicitly in Cartesian coordinates and matrix form:










Px

Py

Pz











= ǫ0











χxx χxy χxz

χyx χyy χyz
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
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














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Ez











(2.20)
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In a non-optically active medium, the susceptibility tensor χij is represented by

a real symmetric matrix. So that there are only six independent elements: χxx, χyy,

χzz, χxy = χyx, χxz = χzx, and χyz = χzy. By using an orthogonal transformation,

it is possible to transform a symmetric matrix into diagonal form, resulting in a

simpler susceptibility tensor in the new coordinate system (OXY Z) [41, 72, 82].

Expression 2.20 now becomes:










PX

PY

PZ











= ǫ0











χXX 0 0

0 χY Y 0

0 0 χZZ


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















EX

EY

EZ











(2.21)

The new coordinate system is known as the principal dielectric axis frame, and

in this coordinate system, the dielectric tensor reduces to diagonal form.

Replacing the dielectric polarization density from expression 2.21 into 2.14 we

have:










DX

DY

DZ











= ǫ0











1 + χXX 0 0

0 1 + χY Y 0

0 0 1 + χZZ





















EX

EY

EZ











=











ǫXX 0 0

0 ǫY Y 0

0 0 ǫZZ





















EX

EY

EZ


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(2.22)

or:










DX

DY

DZ











= ǫ0
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(2.23)

Let us consider the energy density of the electric field per unit volume in the

principal dielectric axis system:

U =
1

8π

−→
D
−→
E =

1

8π

∑

ij

ǫij
−→
Ei

−→
Ej (2.24)

From expressions 2.23 and 2.24, the energy density of electric field can be pre-

sented as:

U =
1

8π

(

D2
X

ǫXX

+
D2

Y

ǫY Y

+
D2

Z

ǫZZ

)

(2.25)
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If we let:

X =
DX√
8πU

; Y =
DY√
8πU

; and Z =
DZ√
8πU

And now expression 2.25 becomes:

X2

ǫXX

+
Y 2

ǫY Y

+
Z2

ǫZZ

= 1 (2.26)

or:
X2

n2
XX

+
Y 2

n2
Y Y

+
Z2

n2
ZZ

= 1 (2.27)

The surface described by expression 2.27 is known as the optical indicatrix or the

Figure 2.7: The index ellipsoid. The coordinate axes X, Y , and Z are the optically
principal axes. n1, n2, and n3 are the principal refractive indices of the anisotropic medium.

index ellipsoid which is shown in Fig 2.7. For isotropic media, the surface is a sphere

with n1 = n2 = n3 = n. For uniaxial crystals, it is an ellipsoid of revolution with

n1 = n2 = no and n3 = ne [72]. For biaxial crystals, it is a general ellipsoid with

n1 6= n2 6= n3 [72].

In other coordinate systems Oxyz, the index ellipsoid can be written in the form:

(

1

n2

)

xx

x2+

(

1

n2

)

yy

y2+

(

1

n2

)

zz

z2+2

(

1

n2

)

yz

yz+2

(

1

n2

)

zx

zx+2

(

1

n2

)

xy

xy = 1

(2.28)
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Figure 2.8: Normal mode determined from the index ellipsoid [72, 83].

In an anisotropic medium, the refractive index depends on the propagation and

polarization of light. For example, when the light propagates along a principal axis

such as Z axis, if it is linearly polarized along X axis, the refractive index is n1.

Likewise, if the polarization is along Y , its refractive index is then n2. In the general

case of light travelling along the direction of the vector −→u as in Fig. 2.8, one must

then draw a plane passing through the origin of the index ellipsoid and perpendicular

to the vector −→u . The intersection of this plane with the ellipsoid is an ellipse, called

the index ellipse. The half lengths of the major and minor axes of the index ellipse

are then the refractive indices na and nb of the two normal modes corresponding to

the polarization of the light along those axes [72].

2.4.3 The Pockels effect

A linear dielectric medium (or linear optical medium) is characterized by a linear

dependency of the polarization density with the electric field:

P = ǫ0χE (2.29)
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where the constant of proportionality χ is known as the linear susceptibility of this

medium (in this case of an isotropic medium).

A nonlinear optical medium, on the other hand, is characterized by a nonlinear

relation between the polarization density and the electric field. As we know, the

polarization density P = Np is a product of the individual dipole moment p induced

by the applied electric field E and the density of the N dipole moments. A nonlinear

property may be from microscopic or macroscopic origin and the nonlinear behavior

may reside either in p or in N . In any case, the polarization density can still be

expressed by expression 2.29 but the susceptibility is now field-dependent as shown

in the expression below [83]:

P = ǫ0χ(E)E (2.30)

Expanding the field-dependent linear susceptibility χ(E) in Taylor series, leads to:

χ(E) = χ(0) +

[

∂χ(E)

∂E

]

E=0

E +
1

2!

[

∂2χ(E)

∂E2

]

E=0

E2 + . . . (2.31)

allowing to express the polarization density P is expressed as a power series in the

electric field E, as:

P = ǫ0χ
(1)E + ǫ0χ

(2)E2 + ǫ0χ
(3)E3 + . . .

= P (1) + P (2) + P (3) + . . .
(2.32)

where

χ(1) = χ(0) =
1

ǫ0

[

∂P (E)

∂E

]

E=0

(2.33)

χ(2) =

[

∂χ(E)

∂E

]

E=0

=
1

2ǫ0

[

∂2P (E)

∂E2

]

E=0

(2.34)

χ(3) =
1

2!

[

∂2χ(E)

∂E2

]

E=0

=
1

3ǫ0

[

∂3P (E)

∂E3

]

E=0

(2.35)

are known respectively as the linear (ordinary), second (or quadratic), and third-

order (or cubic) nonlinear optical susceptibilities.

In an anisotropic medium, χ(1) is a second-rank tensor and χ(2) is a third-rank

tensor, etc. Expression 2.32 can now be written:

Pi = ǫ0
∑

j

χ
(1)
ij Ej + ǫ0

∑

jk

χ
(2)
ijkEjEk + ǫ0

∑

jkl

χ
(3)
ijklEjEkEl + . . . (2.36)
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When light represented by the electric field component Ej(t) = Re {Ej(ω) exp (iωt)}
travels through this medium, the polarization density contains a component at the

same angular frequency ω given by:

Pi(ω) = ǫ0
∑

j

χ
(1)
ij Ej(ω) (2.37)

As from expression 2.37, the component of the polarization density at the angular

frequency ω of the incoming light depends only on the linear susceptibility. The

refractive index of the medium sensed by this beam is then given by expressions

2.27 or 2.28.

In the presence of an additional DC (Ω = 0) or low-frequency electric field

(external electric field) given by Ej(t) = Re {Ej(Ω) exp (iΩt)}, where the angular

frequency Ω is much smaller than that of illumination light ω so that this electric

field can be considered as quasi-static and Ej(Ω) ≈ Ej(0), the electric field in the

medium is:

Ei(t) = Ei(0) +Re {Ei exp (iωt)} (2.38)

To replace Ei(t) from expression 2.38 into 2.36 and focusing on the component of

polarization density at the angular frequency ω, we get:

Pi(ω) = ǫ0
∑

j

χ
(1)
ij Ej(ω) + 2ǫ0

∑

jk

χ
(2)
ijk(ω + 0;ω, 0)Ej(ω)Ek(0)

+ 3ǫ0
∑

jkl

χ
(3)
ijkl(ω + 0 + 0;ω, 0, 0)Ej(ω)Ek(0)El(0) + . . . (2.39)

Apart from the contribution from the linear-order polarization density, additional

contributions from the second and third-order of the polarization density are showing-

up. These contributions can be considered as a perturbation because the value of

χ(2) and χ(3) are much smaller (10−8 and 10−15 times respectively) than that of χ(1).

As a result, there is a small but essential variation of the refractive index of the

medium with this light which will be detected as a dephasing term.

If the medium is centrosymmetric such as gases, liquids and certain crystals,

the contribution of the third-order polarization density comes-up as the first non-

vanishing nonlinear effect whereas the contribution of the second-order or higher-

order ones is cancelled by symmetry. In this case, the variation of the refractive
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index of the medium is proportional to the square of the external electric field. This

effect was discovered by John Kerr in 1875 [72] and bears his name.

For the non-centrosymmetric media such as NH4H2PO4 (ADP), KH2PO4 (KDP),

LiNbO3, KTiOPO4 (KTP), etc which sustain an eventually significant second-order

susceptibility χ(2), components of the polarization density at the angular frequency

ω are:

Pi(ω) = ǫ0
∑

j

χ
(1)
ij Ej(ω) + 2ǫ0

∑

jk

χ
(2)
ijk(ω + 0;ω, 0)Ej(ω)Ek(0)

= P
(1)
i (ω) + PPockels

i (ω)

(2.40)

where:

PPockels
i (ω) = 2ǫ0

∑

jk

χ
(2)
ijk(ω + 0;ω, 0)Ej(ω)Ek(0) (2.41)

is the Pockels polarization density which is proportional to the amplitude of the

externally applied DC field.

One can factor-out in expression 2.40 in the other form:

Pi(ω) = ǫ0
∑

j

[

χ
(1)
ij + 2

∑

k

χ
(2)
ijk(ω + 0;ω, 0)Ek(0)

]

Ej(ω)

= ǫ0
∑

j

χ
′(1)
ij Ej(ω)

(2.42)

where the effective linear susceptibility is seen to depend on the externally applied

DC field:

χ
′(1)
ij = χ

(1)
ij + 2

∑

k

χ
(2)
ijk(ω + 0;ω, 0)Ek(0) (2.43)

Under the action of the external static or quasi-static electric field, the linear sus-

ceptibility tensor is distorted leading to a variation of the refractive index of the

medium sensed by light. This effect is named the Pokels effect and is accounted

for by the Pockels polarization density PPockels
i (ω) as in expression 2.41. The ex-

pression of the index ellipsoid becomes (where the prime symbol refers to the new

coefficients):
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1

n2
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1

n2
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1
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(2.44)
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The modification of the optical constants (1/n2)ij by the presence of an external

electric field is:

∆

(

1

n2

)

ij

=

(

1

n2

)′

ij

−
(

1

n2

)

ij

=
1

1 + χ
(1)
ij + 2

∑

k χ
(2)
ijk(ω + 0;ω, 0)Ek(0)

− 1

1 + χ
(1)
ij

≈ −
2ǫ20
∑

k χ
(2)
ijk(ω + 0;ω, 0)

ǫiiǫjj
Ek(0)

=
∑

k

rijkEk(0)

(2.45)

where:

rijk = − 2ǫ20
ǫiiǫjj

χ
(2)
ijk(ω + 0;ω, 0) (2.46)

is the general form for coefficients of the electrooptic tensor. Since the dielectric

permeability tensor ǫij and second-order susceptibility tensor χ
(2)
ijk are real and sym-

metric, consequently the electrooptic tensor rijk must be symmetric with respect to

permutation of its first two indices. For this reason, it is convenient to represent the

third-rank tensor rijk as a two-dimensional table rhk with 6 × 3 elements by use of

a contracted notation according to the prescription in Table 2.1.

Index ij 11 22 33 23 or 32 13 or 31 12 or 21

Replacing index h 1 2 3 4 5 6

Table 2.1: Table of the replacing index.

Expression 2.45 can now be rewritten as:

∆

(

1

n2

)

i

=
∑

j

rijEj(0) (2.47)
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or explicitly as:
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(2.48)

Because of the presence of an external electric field, the refractive index of the

medium varies an amount of:

∆ni = −n3
i

∑

j

rijEj(0) (2.49)

With the Pockels effect, the variation of the refractive index of the medium is pro-

portional to the external electric field as from expression 2.49. Which lead to the

equivalent terminology of the linear electrooptic effect.

2.4.4 Applications of the Pockels effect

Media with a refractive index that can be modified by the application of an external

electric field are useful to produce electrically controllable optical devices such as:

• A lens made of an electrooptic material allowing to control its focal length.

• A prism with controllable beam bending ability by an external voltage to be

used as a deflector as in Fig. 2.9.

• Light travelling through a transparent electrooptic plate, the phase shift be-

tween the output and the incoming light being:

ϕ = ϕ0 +∆ϕEO =
2π

λ
nie+

2π

λ
∆nie

=
2π

λ
nie

(

1 + n2
i

∑

j

rijEj(0)

)

(2.50)
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Figure 2.9: An electrooptic prism which the deflection angle θ is controlled by an applied
voltage.

where e is the thickness of this plate. The phase of output light can be con-

trolled by an external electric field, so that the plate can be used as an optical

phase modulator.

• The Pockels effect is widely applied in optical communications and optical

signal-processing applications such as optical modulation as in the Fig. 2.4.

The device can be used as an optical switch or a linear intensity modulator by

controlling the applied voltage.

• One of the most useful devices based on the Pockels effect is the Pockels cell.

S polarized light travelling through Pockels cell experiences an effect similar

to that obtained by optical retarders such as quarter or half-wave plates, with

the additional benefit here of a control voltage.

Crystallize materials used to make a Pockels cell are normally uniaxial crystals

with an index ellipsoid of revolution about the optic axis (Z) displaying along

their principal asix n1 = n2 = no and n3 = ne. The crystal is not birefringent

for light travelling along the optic axis (Z) because the index ellipse on the XY

optical plane for this case is a circle. When an electric field is applied to the

crystal with the direction of the electric field along the optic axis, the isotropic

circle is deformed into an ellipse and the refractive indices are not equal any
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Figure 2.10: Example of application of a Pockels cell for the Q-switching. 90◦ rotation
of plane of a linearly polarized light due to an applied voltage Vπ which induces a 180◦

phase shift between the ordinary and extraodinary rays.

more. The crystal appears to be biaxially birefringent in the direction of the

optical axis as in the case of a quarter or half-wave plates. The ellipticity of the

index ellipse depends on the electric field strength and the linear electrooptic

coefficients of the material. Thus the phase shift between the ordinary and

extraordinary rays can be controlled by increasing or decreasing the voltage

applied to the crystal. Phase shift values between 0◦, 90◦ (corresponding to a

quarter-wave plate), and 180◦ (half-wave plate) are the most useful in practice.

Based on the working principle of the Pockels cell, various applications in optic

systems such as Q-switching, ultra fast optical shutters, optical modulator, etc

have been developed and are widely used.

2.5 Pockels Linear Electro-Optical Microscopy

The Pockels Linear Electro-Optical Microscopy (PLEOM) was conceived and devel-

oped in two previous doctoral thesis [66, 67] in order to study the linear electrooptic
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properties of samples (nonlinear optical materials) under the application of an ex-

ternal electric field. While the basic working principles of PLEOM have remained

the same, it has been improved to reduce the noise, increase the sensitivity, and be

compatible with more and more studied objects of physical or biological nature.

2.5.1 Configuration and working principle of PLEOM

We recall briefly the configuration of the Pockels Linear Electro-Optical Microscopy

as shown in Fig. 2.11. Its working principle is based on the Pockels effect in

samples submitted to an external electric field. The phase shift experienced by light

travelling through the sample reflects the variation of the refractive index which is

measured via a Mach-Zehnder interferometer. The Mach-Zehnder interferometer is

injected by a stabilized He-Ne laser source with a linearly polarized output. The

laser beam is split into two parts by the first polarization beam splitter (PBS1). The

transmission part of the laser beam with horizontal polarization is directed onto the

sample and is referred to as the sample beam, whereas the reflected beam with

vertical polarization serves as a reference beam. The ratio between the transmission

and reflection beams is controlled by a half-wave plate which is placed before the first

polarization beam splitter. By turning the optical polarization axis of the half-wave

plate, the polarization axis of the laser beam is appropriately rotated in such a way

that the intensity of the sample beam is below 10% of the total laser power. After

traveling through the Pockels cell (PS) which is described in part A.1, the sample

beam is focused onto the sample by the first microscope objective and collimated

by the second one as in Figs. 2.11 and 2.12.

Two half-wave plates which are mounted on electric motors and computer con-

trolled are placed before and after the two microscope objectives as in Fig. 2.12.

When measuring the polarization response, the two half-wave plates are rotated so

that their optical axis are maintained parallel to each other at the same α/2 angle

with respect to the horizontal axis (x) as in Fig 2.12 at each measurement point.
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Figure 2.12: Schematic diagram of the part of PLEOM allowing to measure the polar-
ization response from the sample by using two half-wave plates placed before and after
two microscope objectives. Oxyz, laboratory coordinate system; SB, sample beam; and
λ/2, half-wave plate. The dark green lines with double arrows are the polarization axes
of the sample beam along its path.

The polarization axis of the sample beam along its optical path are presented by

the dark green lines with double arrows in Fig. 2.12. When traveling through the

first half-wave plate, the polarization axis of the sample beam (SB) with respect

to the horizontal polarization is rotated by an angle α. After passing through the

microscope objectives and sample, the sample beam still maintains the polarization

axis at α angle. The second half-wave plate with the polarization axis oriented at

α/2 angle is used to turn the polarization axis of the sample beam back to the x

horizontal polarization. When performing measurements at variable angles α from

0◦ to 360◦, we obtain the intensity polarization response. After passing through

some specific samples, the beam can include some additionally generated electro-

magnetic wave components at different polarization axis. A polarizer is thus placed

behind the second half-wave plate in order to cut such electro-magnetic components

that are not polarized along the horizontal direction.



42 Pockels Linear Electro-Optical Microscopy

Figure 2.13: Schematic diagram of the balanced homodyne detection system used to
detect the phase shift between the sample and reference beams of a Mach-Zehnder inter-
ferometer. SB, sample beam; RB, reference beam; PBS, polarization beam splitter; λ/2,
half-wave plate; λ/4, quarter-wave plate; P1, P2, photodiodes; I1 and I2, intensities of the
beams before the two photodiodes. The blue and dark green lines with double arrows are
the polarization axis of the reference and sample beams respectively.

After traveling through the sample, the sample beam including the linear elec-

trooptic signal from the sample is recombined with the reference beam before enter-

ing the balanced homodyne detection system as in Fig. 2.13.

In the reference path, a half-wave plate oriented at 45o is used to turn the polar-

ization of the reference beam from vertical to horizontal. The reference beam then

passes through the second polarization beam splitter without any reflection, then

through a quarter-wave plate oriented at 22.5◦ so as to become circularly polarized.

A mirror which is placed on a piezoelectric stage is used to back-reflect the refer-

ence beam and to control its optical path length. After traveling back through the

quarter-wave plate, the polarization of the reference beam is transformed from circu-

lar to vertically polarized. It is therefore totally reflected at the second polarization

beam splitter and recombined with the sample beam. It is then totally transmitted

through this splitter as a result of its horizontal polarization as in Fig. 2.13.
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After the recombination, they pass through a half-wave plate oriented at 22.5◦

so that their polarization axis are rotated by 45◦ as in Fig. 2.13. Each beam is split

into two equal parts by the third polarization beam splitter before entering the two

photodiodes.

Let us recall the theoretical derivation of the signal detected by the balance hor-

modyne detection system used in PLEOM when there is a variation of the refractive

index of the sample under the application of a quasi-static external electric field

(Pockels effect). Let us assume that in the absence of external electric field, the

Figure 2.14: Schematic diagram of the balanced homodyne detection system used in
PLEOM. ~αr and ~αs are the electric field components of the reference and signal beams
respectively.

electric field components of the electromagnetic waves of the reference and sample

beam (ξr(t) and ξs(t)) at the photodiodes take the following expressions:

ξr(t) =
1√
2
αre

i(ωt+φ) (2.51)

ξs(t) =
1√
2
αse

iωt (2.52)

where αr and αs are the amplitudes of the electric field components of the reference

and sample beams respectively as in Fig. 2.14 and φ is the different phase between
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the reference and sample beams after travelling through their respective optical

paths, and is controlled by the mirror as in Fig. 2.13.

When applying an external electric field Eext(t) on the sample expressed as:

Eext(t) = Eext cos(Ωt+ φE) (2.53)

where Ω is the angular frequency of the external electric field which is much smaller

than that of the laser beam ω, and φE its initial phase. Thus the external electric

field can be considered as a quasi-static electric field. It induces a refractive index

variation of the sample that can be calculated from expression 2.49. By varying

the refractive index of the sample, the phase of the sample beam also varies by an

amount ∆ϕ(t):

∆ϕ(t) = ∆ϕ cos(Ωt+ φE) (2.54)

with ∆ϕ is the amplitude.

The electric field components of the reference and sample beam at the photodiodes

are:

ξr(t) =
1√
2
αre

i(ωt+φ) (2.55)

ξs(t) =
1√
2
αse

i(ωt+∆ϕ(t)) (2.56)

By recombining the reference and sample beams, the electric field of the beams

entering the two photodiodes as in Fig. 2.14 are:

ξ1(t) = ξr(t) + ξs(t) (2.57)

ξ2(t) = ξr(t)− ξs(t) (2.58)

which corresponds to light intensities entering the two photodiodes:

I1 = |ξr(t) + ξs(t)|2 (2.59)

I2 = |ξr(t)− ξs(t)|2 (2.60)

The photocurrents at the two detectors are respectively:

i1 = ρ1I1 (2.61)

i2 = ρ2I2 (2.62)
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where ρ1 and ρ2 are the quantum efficiency of two photodiodes. In the PLEOM

setup, the photodiodes are well balaced and have the same quantum efficiency ρ1 =

ρ2 = ρ.

The electronic signal is the difference between the two photocurrents achieved

by an electronic circuit as in Fig. 2.11 taking the form:

∆i = ρ(I1 − I2) = i1 − i2

= 4ρRe[ξr(t)ξs(t)
∗] = 2ρRe[αre

i(ωt+φ)αse
−i(ωt+∆ϕ(t))]

= 2ρRe[αrαse
i(φ−∆ϕ(t))] = 2ραrαs cos[φ−∆ϕ(t)]

(2.63)

The initial phase difference between the reference and sample beams is main-

tained at the fixed value φ = π/2 by moving a feedback mirror on a piezoelectric

stage as described in Figs. 2.11 and 2.13. Consequently, the electronic signal in

expression 2.63 becomes:

∆i = 2ραrαs sin(∆ϕ(t)) ≈ 2ραrαs∆ϕ(t) (2.64)

considering a very small phase shift induced by the Pockels effect in this case (from

10−6 to 10−2 radian). Replacing ∆ϕ(t) from the expression 2.54 into 2.64, the

expression for the electronic signal becomes:

∆i = 2ραrαs∆ϕ cos(Ωt+ φE) = ∆i cos(Ωt+ φE) (2.65)

From expression 2.65 we see that the electronic signal is a sinusoidal function with

angular frequency Ω(the modulated frequency). The amplitude ∆i of the electronic

signal is proportional to the amplitude ∆ϕ of the electrooptic phase shift and the

phase of the signal is the same as (or opposite to) that of the external electric field

φE. The electronic signal is converted into a voltage and detected by a synchronous

detector using a lock-in amplifier which will be described in next part.

A Pockel cell (PC in Fig. 2.11) with a known phase shift for light passing

through it under the application of an external electric field is used as a reference

for the phase shift value. Thus the electronic signal can be converted back to the

electrooptic signal ∆ϕ.
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2.5.2 Detailed structural components of PLEOM

Laser source

The Pockels effect is driven by the same second-order susceptibility χ(2) as that

for Second-Harmonic Generation Microscopy (SHGM) but the advantage of the

PLEOM compared with SHGM lies in the simplicity of the laser source. In SHG

Microscope, by using a light beam with a very high intensity demanded by a multi-

photon process, one needs to use a pulsed laser source with high power output. One

may need to use different laser sources or an Optical Parametric Oscillator (OPO)

to tune the wavelength of the excited beam, leading to a bulky and expensive sys-

tems. The fundamental beam is generally in the IR making difficult in experimental

manipulation.

In contrast, PLEOM requires only a simple and low power laser source to detect

the variation of the refractive index of the sample by measuring the phase shift

sensed by the laser beam when travelling through the sample. We only use a stable

CW HeNe laser source with an output power of the order of 1.5 mW at 632.8 nm.

The output beam is linearly polarized in the fundamental TEM00 mode (Gaussian

beam). An optical isolator is used to prevent back reflections which may lead to

the instabilities of the output beam. The stability of the intensity is of the order

±0.2%. A spatial filter made of an objective lens (magnification 20× and 0.35 NA)

and a pinhole of 30 µm diameter permit to clean up the output laser beam.

Optical and mechanical devices

• Mirrors: All mirrors were bought from J.Fichou with flatness λ/10 at 550

nm wavelength. The reflection coefficient of mirrors with s- and p-polarized

lights are equal so that of linearly polarized light after the reflection.

• Polarization beam splitters: which allow the horizontally polarized part

of light to be transmitted while reflecting the vertically polarized part, were

bought from Thorlabs.
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• Half-wave plates, quarter-wave plates and polarizer: are high quality

bought from company Thorlabs.

• Objective lens: PLEOM has been built to investigate nonlinear materials

from nano to larger scale by using two objective lenses in which the first one is

used to focus the sample beam onto the sample and the second to collimate the

outgoing beam as in Figs. 2.11 and 2.12. In particular, two Nikon microscope

objective lenses with magnification 40× and NA 0.6 in air with an extra large

working distance of 2.7-3.7 mm are used. The spatial resolution of PLEOM is

then given by the size of the focusing spot, with its radius is given by:

R = 1.22
λ

2× NA
= 643 nm (2.66)

where the λ = 632.8 nm is the wavelength of the sample beam.

• Mechanical devices: were bought from Newport or made in the mechanical

shop at ENS Cachan at high precision engineering level.

Photodiodes and Current-Voltage converters

The photodiodes are silicon photodiodes manufactured by Hammamatsu (S5972)

with 500 MHz bandwidth. The effective photosensitive area of 0.5 mm2 allows to

ease the alignment constraints.

Each photodiode is connected to a Current-Voltage converter which is used to

convert the photocurrent signal to a voltage signal. The converter with a special

electronic circuit also helps to split the signal into two parts, one at low frequency

and the other at high frequency (with a cut-off frequency at about 9 kHz).

The low frequency part of the signal corresponds to the phase shift between

the sample and reference beams due to vibrations or thermal expansion of optical

components or holders. The signal part at low frequency is used as a feedback

signal to control the motion of the mirror as in Figs. 2.11 and 2.13 which is used to

compensate spurious phase shift and maintain the phase difference φ between the

sample and reference beams at a π/2 value as described in section 2.5.1. The high
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frequency part of the signal originates from the electrooptic signal at the modulated

frequency by setting its value above the cut-off frequency. This signal part is then

detected by a synchronous detection system at the modulated frequency.

Synchronous detection

In PLEOM, a lock-in Amplifier (EG&G Princeton Applied research model 5302) is

employed to detect the electrooptic signal.

After converting, the current signal is expressed in expression 2.65 into a voltage

signal, the signal now exhibits the form:

Vsig(t) = Vsig cos(Ωt+ φsig) (2.67)

The lock-in amplifier generates its own internal reference signals at the same angular

frequency as that of the electrooptic signal:

VL1(t) = VL cos(Ωt+ φL) (2.68)

VL2(t) = VL sin(Ωt+ φL) (2.69)

where the VL and φL are the amplitude and phase of the reference signal respectively.

After that, the measured signal is multiplied by each reference signal which gives

two output electronic signals V1 and V2 respectively:

V1 = VsigVL cos(Ωt+ φsig) cos(Ωt+ φL)

=
1

2
VsigVL cos(φL − φsig) +

1

2
VsigVL cos(2Ωt+ φL + φsig)

(2.70)

V2 = VsigVL cos(Ωt+ φsig) sin(Ωt+ φL)

=
1

2
VsigVL sin(φL − φsig) +

1

2
VsigVL sin(2Ωt+ φL + φsig)

(2.71)

From expressions 2.70 and 2.71 we see that each output electronic signal includes

two signals in which one is a DC signal and the other one is a AC signal at the

doubled frequency 2Ω. The output electronic signals are passed through a low pass

filter in which the AC signals are removed. The filtered output electronic signals
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now become:

V1 =
1

2
VsigVL cos(φL − φsig) ∼ Vsig cosφ (2.72)

V2 =
1

2
VsigVL sin(φL − φsig) ∼ Vsig sinφ (2.73)

where φ = φL − φsig is the difference between the phases of the electrooptic signal

and that of the reference signal from the lock-in amplifier.

The amplitude of the output electronic signal and the phase difference can be

inferred therefrom:

V =
√

V 2
1 + V 2

2 = VsigVL (2.74)

tanφ =
V2
V1

(2.75)

The weak intensity Vsig of the input signal, is amplified by the lock-in amplifier

by a VL gain coefficient so as to reach a strong intensity V . By using a synchronous

detection system, we can reach both the intensity and phase of the signal.

Piezoelectric stage

As in standard confocal microscopy, PLEOM has been using a piezoelectric stage

to scan the position of the focusing spot of the sample beam over the chosen area

on the sample which is mounted on a plate. The 2D or 3D mapping can then be

performed. We use piezoelectric stages from PiezoJena (Tritor 102) with a maximum

displacement along x, y and z axes of about 80 micrometer.

Generator

A Tektronix AFG (3922B) commercial generator with two output channels is used

to generate a voltage applied to electrodes, then leading to the external electric field

on the studied sample. During the experiment, the parameters of the output voltage

from the generator such as the amplitude, the offset, and the frequency (modulated

frequency) are controlled by the software through the connection between the com-

puter with the generator by a GPIB interface.
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By using a synchronous detection to detect the signal, the lock-in amplifier needs

to be fed by a reference frequency with the same value as that of the signal. As

described in section 2.5.1, the frequency of the signal is that of the external electric

field from the generator. The input reference channel of the lock-in amplifier is

connected to the generator as in Fig. 2.11.

Pockels cell

The Pockels cell bought from LEYSOP LTD is used as a reference to convert the

electronic signal of the measurements to a phase shift signal. Normally, this Pockels

cell is used as a laser Q-switch or as an intensity or a phase modulator under the

application of a high DC Voltage. In this case, it is working under application of

an AC voltage. The phase shift of light which travels through the Pockels cell can

be derived from either the electrooptic effect and the elasto-optic effect which is

induced by the piezoelectric effect under the application of that electric field. All

parameters pertaining to those effects for KD∗P are reported for a DC voltage. In

our case when it is to be used as a reference for phase shift under application of an

AC voltage, more investigations are needed. It will be described in Appendix A.1.

2.5.3 Alternative configuration for PLEOM

In the previous PLEOM configuration as in Fig. 2.11, we use two objective lenses,

one to focus the beam onto the sample and the second one to collimate the outgoing

beam (including the transmission and scattering beam), so that PLEOM can only

be used in this configuration to study transparent samples.

Towards further aims such as the determination of the linear electrooptic surface

scattering of samples from nano to bulk scale or non-transparent samples, another

configuration that is based on the previous the PLEOM setup has been built as in

Fig. 2.15. The working principle of the new PLEOM setup is basically the same

as that of the previous one but in this case, only one microscope objective is used

to focus the beam onto the sample so as to collect the scattering and back-reflected
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emission. After that the scattered and reflected beams are recombined with the

reference beam in the balanced homodyne detection system. Another advantage of

PLEOM is the facility to switch between these two configurations without the need

for any complicated alignment procedure.

2.5.4 Experimental data acquisition by PLEOM

By using a balanced homodyne detection system and synchronous detection for

signal processing, we monitor the amplitude and phase of signal as in expressions

2.74 and 2.75. The piezoelectric stage with mounted sample allows us perform 2D

or 3D scanning over the chosen zone, leading to amplitude and phase image as in

Figs. 2.16a and 2.16b respectively.

Figure 2.16: Example of images acquired by PLEOM. (a) 2D amplitude image; (b) 2D
phase image and (c) intensity polarization plot.

By using two half-wave plates as described in section 2.5.1, the angle between the

polarization axis of the sample beam with respect to the x axis (laboratory frame) is

rotated from 0◦ to 360◦ which yields the intensity polarization plot as in Fig. 2.16c.

The computer (PC) controlled generator allows to manage the amplitude, the

modulated frequency, and the DC offset value of the external electric field. Thus

the linear dependence between the signal and the external electric field from the

Pockels effect can be checked and other operations like comparing the signal at the

modulated frequency with the DC offset value can be performed.
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A full vector determination for the

spontaneous polarization of randomly

orientated ferroelectric nano-crystals

In this chapter, we present a new method for accurately extracting the orientation

of the dielectric dipole moment of ferroelectric crystals at the nano-scale. The linear

electrooptic scattering response from ferroelectric KTiOPO4 (KTP) nano-crystals is

reported in this chapter. Using different polarization states for the incident light to

measure the intensity polarization response and combining with the phase signal of

the response to extract the random orientation of a ferroelectric nano-crystal leads to

full polar information on ferroelectric domains. The linear electro-optical response

from ferroelectric nano-crystal under illumination by a low intensity laser beam bears

53
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a low-cost non-invasive sub-wavelength probe of major interest for nano-sciences

and biological applications. It also promises a new sub-wavelength microscopy for

checking the quality of the 1D, 2D and 3D quasi phase matched crystalline NLO

devices from nano to macroscopic scale.

3.1 Introduction

Over the last decades, one could witness the fast development of a broad range

of probe techniques using different approaches and materials towards physical and

biological applications. Towards biological applications, optical methods are par-

ticularly useful in view of their non-invasiveness. Fluorescence microscopy, dye

molecules or genetically engineered fluorescent proteins, are becoming broadly used

tools to investigate cells, tissues and living organs [84]. The limitation of dyes lies in

their tendency to photobleaching and phototoxicity, which set limits in the record-

ing time. In order to overcome these limitations, quantum dots [85, 86] and other

systems such as nanodiamonds with emission properties arising from color centers

[87] are potential candidates to substitute dye molecules. Nevertheless, their lumi-

nescence is limited by the saturation in connection with their excited-state lifetime

and blinking [86, 88]. Because of the large ratio between surface and volume at

the nano-scale, surface effects become significant and may affect the photolumines-

cence properties. Adequate surface treatment may prevent blinking but remains an

additional complication [89].

Second harmonic generation (SHG) is a nonlinear optical process in which two

photons at the same frequency of the incoming photons are combined to generate a

new photon at twice the energy (doubled frequency). It results from the interaction

between light and a nonlinear material deprived of inversion symmetry [4]. In the

case of inorganic single crystals widely used for laser frequency doubling, the fre-

quency of the excited light and of the generated harmonic are far from resonance,

ensuring photostability and the absence of blinking. Furthermore the intensity of
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Figure 3.1: SHG from single KTP nanocrystals. (a) AFM image of dispersed KTP
nanocrystals. (b) Typical nanocrystal height around 25 nm, measured by AFM in con-
tact mode. (c) Associated SHG 2D image measured for 30 mW mean incident power.
(d) Emission spectrumrecorded for 1064nm excitation wavelength. The inset shows the
quadratic evolution of the intensity with the excitation power, as characteristic of SHG. (e)
Experimental polar response measured along the x and y transverse axis for the nanocrys-
tal selected in (a) and (b). (f) Definition of Euler angles associated with the nanocrystal
orientation. The lines in (e) correspond to a nonlinear dipole emission with (Θ = 118◦,
Φ = 148◦, Ψ = 76◦) [58].

the harmonic beam is quadratically dependent with the intensity of the fundamental

beam so that the saturation effect of the emission beam can be avoided contrary to

the case of fluorescent dye molecules. With those advantages, SHG have a great po-

tential as labels for nanoprobe materials at the nano-scale techniques. The recent de-

velopment of nonlinear second harmonic generation microscopy has produced many

nanoscale objects such as quantum dots [62, 90, 91], nonlinear molecular crystals



56
A full vector determination for the spontaneous polarization of

randomly orientated ferroelectric nano-crystals

[92, 93], metallic nanospheres [94, 95] or noncentrosymmetric nanocrystals [53, 55–

57, 60, 96, 97] which contribute to imaging applications in biology [49, 58, 98–102].

In the case of well behaved ferroelectric nanocrystals as probes for the second-

harmonic generation microscopy, each nano-crystal can be considered as a single

ferroelectric domain with specific non-zero spontaneous polarization
−→
P (dielectric

dipole moment per unit volume). Beside quadratically depending on the intensity of

the fundamental beam, the intensity of the harmonic beam depends on the relation

between the polarization state of the incoming fundamental beam and on the vecto-

rial orientation of the dipole moment of individual nano-crystals [4]. Therefore when

using nanocrystals as the probes for second-harmonic generation microscopy, a pre-

requisite requirement is to fully determine their orientation. Different methods have

been demonstrated to determine the random orientation of each nonlinear nano-

crystal such as from the intensity polarization responses [53, 55, 58, 62, 92, 93, 97]

as in Fig. 3.1, defocused imaging [56] or balanced homodyne detection of the second-

harmonic [57]. However using a photodetector to collect the intensity of the gener-

Figure 3.2: Two opposite ferroelectric nano-crystals have the same second-harmonic
response. OXY Z is the crystal frame and the yellow arrows stand for the dielectric dipole
moment vector ~P . Oxyz is the laboratory frame.

ated beam does not allow to discriminate between opposed values +χ(2) and −χ(2)

as shown in Fig. 3.2. Intensity dependent methods can only determine the abso-

lute direction of the dielectric dipole moment vector
−→
P of each ferroelectric domain

but does not allow to access its sign. When using balanced homodyne detection of
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the second-harmonic signal to study ferroelectric crystals, Le Xuan et al [57] could

distinguish two opposite bulky crystals by using both the intensity and phase of

the generated beam. However their approach had not been applied to ferroelectric

nano-crystals with random orientation. Second-harmonic generation as such can

only provide the axial, but not the vectorial orientation of a random ferroelectric

nano-crystal.

The working principle of PLEOM is based on the Pockels effect which is associ-

ated to the second-order susceptibility χ(2) of nonlinear materials. PLEOM can be

used in second-harmonic generation microscopy to map the second-order susceptibil-

ity χ(2) of nonlinear materials [1, 2] and study ferroelectric nanocystals as reported

by Hajj et all [3]. From the polarization electrooptic response of single nanocrystals,

Hajj et all could extract the absolute direction of each nano-particle. PLEOM has

the potential to further provide additional polar information as will be presented in

this chapter.

Among the clan of ferroelectric materials, Potassium Titanyl Phossphate (KTP

or KTiOPO4) stands-out as a broadly used nonlinear material that has been shown

to have superior properties for several nonlinear optical applications such as for

frequency doubling of high power lasers because of its high nonlinear optical coef-

ficients dij, high optical damage threshold and thermal stability [103]. Due to its

large linear electrooptic rij coefficients and low dielectric constants [104, 105], KTP

is a good candidate for various electrooptic applications such as Q-switches [106] and

modulators [107]. We have therefore selected KTP nano-crystals as nano-probes to

be used in PLEOM.
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3.2 Potassium Titanyl Phossphate: structure and

optical properties

3.2.1 Structure of Potassium Titanyl Phossphate

Figure 3.3: KTP crystal structure: (a) a − c projection, (b) a − b projection. Shaded
elements are the Ti octahedra, open elements are the P tetrahedra and open circles are
the K. The bold lines express the short Ti-O bonds. (c) Natural KTP crystal morphology
[104].

KTP belongs to a family of inorganic crystal with chemical formula ATiOBO4,

where A can be K, Rb, Tl, NH4 or Cs and B can be P or As. This family is

orthorhombic and belongs to the acentric point group mm2. Each unit cell of KTP

crystal contains eight units and exhibits lattice constants a = 12.814 Å, b = 6.404

Å and c = 10.616 Å. The structure is characterized by chains of TiO6 octahedra

which are linked at two corners and are separated by PO4 tetrahedra as in Fig.

3.3. There are two chains per unit cell and the chain direction alternates between



3.2 Potassium Titanyl Phossphate: structure and optical properties59

[011] and
[

011
]

. The result of the non-zero spontaneous polarization is from the

alternating long and short Ti-O bonds which occur along the chains. Consequently

the dielectric dipole moment vector of KTP crystal is along the Z direction. The K

ion occupies a high coordination number site and is weakly bonded to both the Ti

and P tetrahedra [104].

3.2.2 Nonlinear optical properties of Potassium Titanyl Phos-

phate

KTP is a negative biaxial crystal (nX < nY < nZ) with optically principal axis X,

Y and Z parallel to the crystallographic axis a, b and c respectively as in Fig. 3.3.

The relation between the refractive index of KTP crystal and the wavelength of the

light is empirically described by the well known Sellmeier equation [103]:

n2 = A+
B

λ2 − C
+

D

λ2 − E
(3.1)

where λ is the vacuum wavelength in micrometers and A, B, C, D, and E are given

in Table 3.1.

Index A B C D E

nX 3.29100 0.04140 0.03978 9.35522 31.45571

nY 3.45018 0.04341 0.04597 16.98825 39.43799

nZ 4.59423 0.06206 0.04763 110.80672 86.12171

Table 3.1: Table of Sellmeier equation coefficients [103].

KTP belongs to the mm2 point group so that the second-order nonlinear optical

matrix has the form [41]:

[d] =











0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0











(3.2)
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with the following values for the nonlinear optical coefficients: d15 = 6.1 pm/V;

d24 = 7.6 pm/V; d31 = 6.5 pm/V; d32 = 5.0 pm/V and d33 = 13.7 pm/V.

The electrooptic tensor can be simplified into:

[r ] =





























0 0 r13

0 0 r23

0 0 r33

0 r42 0

r51 0 0

0 0 0





























(3.3)

where the values of the non-zero coefficients at 632.8 nm are given in Table 3.2.

Coefficient r13 (pm/V) r23 (pm/V) r33 (pm/V) r42 (pm/V) r51 (pm/V)

Low Frequency 9.5 15.7 36.3 9.3 7.3

High Frequency 8.8 13.8 35.0 8.8 6.9

Table 3.2: Table of linear electrooptic coefficients of KTP [41, 104, 105].

3.3 Theoretical calculation of Pockels linear elec-

trooptic scattering of KTP nano-crystal

In this study, we used the z−x− z convention for the description of rotations using

Euler angles in order to relate between two coordinate frames by performing three

rotations as shown in Fig. 3.4.

The transformation matrix for each rotation step are respectively

V =











cosψ − sinψ 0

sinψ cosψ 0

0 0 1











U =











1 0 0

0 cos θ − sin θ

0 sin θ cos θ











Q =











cos σ − sin σ 0

sin σ cos σ 0

0 0 1











(3.4)
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Figure 3.4: The relation between the Oxyz and OXY Z coordinates through the Euler
angles (ψ, θ, σ) by performing three rotations around z− x− z axis respectively. (a) The
first rotation step is around the z-axis by the angle ψ, (b) the second step is to rotate
around the new x

′

axis by the angle θ and (c) the last step is to rotate around the new
z
′′

axis by the angle σ.

where U , Q, and U are the rotation matrix of three rotations.

The transformation matrix T is the product of three matrices:

T = V UQ

=











cosψ cos σ − sinψ cos θ sin σ − cosψ sin σ − sinψ cos θ cosσ sinψ sin θ

sinψ cos σ + cosψ cos θ cos σ − sinψ sin σ + cosψ cos θ cosσ − cosψ sin θ

sin θ sin σ sin θ cosσ cos θ











(3.5)

T is used to convert a vector in the OXY Z coordinate to the one in the Oxyx

coordinate and conversely the inverse transformation will be done by using the

inverse matrix T
′

with:

T ′ = T−1 (3.6)

These transformation operators will be applied in the case of random orientation of

a single KTP nano-crystal in which the Oxyz is the laboratory frame and OXY Z

is the crystal frame as in Fig. 3.5.

In the case of a single nonlinear nano-crystal under optical illumination (the

sample beam of PLEOM) in the presence of an externally applied quasi-static field

(with angular frequency Ω much smaller than that of the optical beam ω), the com-

ponents of the linear electrooptic polarization of the nano-crystal can be expressed
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Figure 3.5: The random orientation of a single KTP nano-crystal can be defined by three
Euler angles (ψ, θ, σ). OXY Z is the crystal frame and Oxyz is the laboratory frame.
The yellow arrow is the dielectric dipole moment vector ~P .

as:

PPockels
i ∝ ǫ0

∑

j

∑

k

rijkE
ω
j E

Ω
k (3.7)

where i, j, and k are Cartesian indices in the principal dielectric frame; Eω
j is the

optical field component along the j axis; EΩ
k is the k component of the external quasi-

static electric field, and rijk are the components of the electrooptic Pockels tensor

[rijk]. [rijk] is a third-rank tensor which is reduced to a two-dimensional matrix [rhk]

by using conventional contracted notation as already recalled in the Table 2.1. The

condensed electrooptic tensor for KTP was already depicted in expression 3.3 while

its coefficients take the values as listed in Table 3.2.

The electric field of the scattered electromagnetic wave generated by the nano-

crystal is proportional to the second derivative in time of the Pockels dielectric

polarization:

−→
E ω+Ω

scat ∝ ∂2
−→
P Pockels

∂t2
= −(ω + Ω)2

−→
P Pockels (3.8)

Replacing the PPokels
i from expression 3.7 into 3.8 we have:

(Eω+Ω
scat )i ∝ −ǫ0(ω + Ω)2

∑

j

∑

k

rijkE
ω
j E

Ω
k (3.9)

Assuming that the external electric field polar is directed along the x axis (in the
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laboratory frame) and can be expressed as:

−→
E Ω =











1

0

0











EΩ
0 e

i(Ωt+ϕE) (3.10)

where EΩ
0 is the amplitude and ϕE the initial phase.

In this experimental configuration, the sample beam propagates along z direction.

The angle α between the polarization axis of the sample beam and the x axis is

controlled by the first half-wave plate as in Fig. 2.12. Thus the electric field of the

sample beam takes the following expression:

−→
E ω =











cosα

sinα

0











Eω
0 e

i(ωt+ϕ0) (3.11)

where Eω
0 is the amplitude.

By using the inverse transformation matrix T
′

(inverse of T ) connecting the

laboratory and crystal frames, the external and optical electric field can be rewritten

in the OXY Z crystal frame as:

E
′Ω
i =

∑

j

T ′

ijE
Ω
j = T ′

i1E
Ω
0 e

i(Ωt+ϕE) (3.12)

E
′ω
i =

∑

j

T ′

ijE
ω
j = (T ′

i1 cosα + T ′

i2 sinα)E
ω
0 e

i(ωt+ϕ0) (3.13)

Introducing expressions 3.12 and 3.13 into expression 3.9, electric field components

of the scattered electromagnetic wave are now expressed in the crystal frame OXY Z

as:

(E
′ω+Ω
scat )i ∝ −ǫ0(ω + Ω)2

∑

j

∑

k

rijkT
′

j1(T
′

k1 cosα + T ′

k2 sinα)

× EΩ
0 E

ω
0 e

i[(ω+Ω)t+ϕ0+ϕE ] (3.14)

The electric field components of the scattered electromagnetic wave can now be back

transformed in the laboratory frame Oxyz by using the transformation matrix T
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(inverse of T
′

):

(Eω+Ω
scat )i =

∑

j

Tij(E
′ω+Ω
scat )j (3.15)

After passing through the second half-wave plate as in Fig. 2.12, the scattered

light will be rotated around the z axis by an angle −α. So the electric field compo-

nents of the scattered light
−→
E ω+Ω

scat will become
−→
E

′′ω+Ω
scat by using the transformation

matrix V as in expression 3.4 with the rotation angle −α:










(E
′′ω+Ω
scat )1

(E
′′ω+Ω
scat )2

(E
′′ω+Ω
scat )3











=











cosα sinα 0

− sinα cosα 0

0 0 1





















(Eω+Ω
scat )1

(Eω+Ω
scat )2

(Eω+Ω
scat )3











(3.16)

After the half-wave plate, we insert a polarizer with horizontal polarization

axis(along x axis) which projects the scattered (E
′′ω+Ω
scat )1 electric field along x, lead-

ing to:

(E
′′ω+Ω
scat )1 = (Eω+Ω

scat )1 cosα + (Eω+Ω
scat )2 sinα

=
∑

i

T1i(E
′ω+Ω
scat )i cosα +

∑

i

T2i(E
′ω+Ω
scat )i sinα (3.17)

Replacing (E
′ω+Ω
scat )i in 3.17 by its expression in 3.14:

(E
′′ω+Ω
scat )1 ∝ −(A cos2 α +B sinα cosα + C sin2 α)

× ǫ0(ω + Ω)2EΩ
0 E

ω
0 e

i[(ω+Ω)t+ϕ0+ϕE ] (3.18)

where

A = T11T
′

11T
′

31(r13+r51)+T12T
′

21T
′

31(r23+r42)+T13(T
′2
11r51+T

′2
21r42+T

′2
31r33) (3.19)

B = T11(T
′

12T
′

31r13 + T
′

11T
′

32r51) + T12(T
′

31T
′

22r23 + T
′

32T
′

21r42)

+ T13(T
′

11T
′

12r51 + T
′

21T
′

22r42 + T
′

31T
′

32r33) + T21T
′

11T
′

31(r13 + r51)

+ T22T
′

21T
′

31(r23 + r42) + T23(T
′2
11r51 + T

′2
21r42 + T

′2
31r33) (3.20)

C = T21(T
′

12T
′

31r13 + T
′

11T
′

32r51) + T22(T
′

31T
′

22r23 + T
′

32T
′

21r42)

+ T23(T
′

11T
′

12r51 + T
′

21T
′

22r42 + T
′

31T
′

32r33) (3.21)
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these terms depend on the Euler angles via T and T
′

, and the linear electrooptic

coefficients.

The sample beam which includes the scattered light (E
′′ω+Ω
scat )1 and non-scattered

one Eω
S , are recombined with the reference beam Eω

ref at the photodiodes. The inten-

sity of the interfering light (the detected signal) which is detected by the photodiodes

is then:

I = |Eω
ref + Eω

S + (E
′′ω+Ω
scat )1|2

= Iref + IS + Iscat + 2Re
[

(Eω
ref + Eω

S )
∗.(E

′′ω+Ω
scat )1

] (3.22)

where Iref , IS, and Iscat are the intensity of the reference, sample, and linear elec-

trooptic scattered beams respectively.

By the way of synchronous detection, we single-out the time modulated part at

the Ω modulated frequency. Leading to:

Isignal = 2Re
[

(Eω
ref + Eω

S )
∗.(E

′′ω+Ω
scat )1

]

(3.23)

As the phase difference between the sample and reference beam is locked at π/2 and

using (E
′′ω+Ω
scat )1 from expression 3.18 into 3.23 we get:

Isignal ∝ −(A cos2 α +B sinα cosα + C sin2 α)EΩ
0 cos(Ωt+ ϕE) (3.24)

A lock-in amplifier allows to detect the electrooptic signal including its amplitude

and phase as in expression 3.24.

Since the size of the nano-crystal is smaller than that of the focusing spot of the

sample beam, the intensity of the electrooptic scattered light will be proportional to

the volume of the nano-crystal. From expression 3.24 we can see that the intensity

of the electrooptic signal depends on the orientation of the nano-crystal and is also

proportional to the amplitude of the external electric field which should correspond

to a linear dependence of the signal with respect to the applied voltage. The polar-

ization response can be obtained by following the amplitude of the response I0(α)

with respect to the angle α when it turns from 0◦ to 360◦, according to.

I0(α) ∝ |(A cos2 α +B sinα cosα + C sin2 α)E0| (3.25)
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In expression 3.25, the factor A cos2 α + B sinα cosα + C sin2 α meets two maxima

and two minima when α varies from 0◦ to 360◦. Since the amplitude of the signal

I0(α) is the absolute value of that expression, consequently the intensity polarization

response exhibits two lobes as in Fig. 3.6a if that expression does not change sign

when α varies, or four lobes as in Fig. 3.6b if there is a sign change in this interval.

Expression 3.24 can be rewritten as:

Figure 3.6: The calculated polarization plots (red lines) of the linear electrooptic re-
sponse for two KTP nano-crystals with their orientations defined by Euler angles (90◦,
30◦, 60◦) (a) and (5◦, 45◦, 60◦) (b).

Isignal = I0(α) cos(Ωt+ ϕsignal) (3.26)

where ϕsignal can be taken as ϕE when the sign of the expressionA cos2 α+B sinα cosα+

C sin2 α is negative or (ϕE − π) when the sign of this expression is positive. The

origin of the sign of this expression must be traced to the specific orientation of

nano-crystal via the sign of A, B and C constants, and the polarization of the

sample beam via the α value.

Considering that the external quasi-static electric field is generated by electrodes

connected to a voltage generator, the external electric field as in expression 3.8

derives from the voltage

U = U0 cos(Ωt+ ϕE) (3.27)
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The modulated frequency Ω can be controlled and the initial phase ϕE can be

defined. Therefore, the phase of signal also provides information of the orientation

of a single nano-crystal.

Figure 3.7: Two opposite KTP nano-crystals with Euler angles are (90◦, 90◦, 0) (a) and
(90◦, −90◦, 0). (c) The intensity polarization of the linear electrooptic response for two
cases in Figs. a and b.

Application this theoretical calculation for two single KTP nano-crystals with

their orientations shown in Figs. 3.7a and 3.7b which could not be distinguished by

using second-harmonic generation microscopy, we have:

I
(a)
signal ∝ (r33 cos

2 α + r13 sin
2 α) cos(Ωt+ ϕE − π) (3.28)

I
(b)
signal ∝ (r33 cos

2 α + r13 sin
2 α) cos(Ωt+ ϕE) (3.29)

From Expressions 3.28 and 3.29, we observe that two KTP nano-crystals with op-

posite orientations exhibit the same polarization amplitude as shown in Fig. 3.7c.

This means that the linear electrooptic polarization response does not provide suffi-

cient information fully the orientation of a single nano-crystal. A similar drawback

can be noted with other methods [3, 55–57, 62]. However, the phase responses are

opposite which can be determined by a lock-in amplifier. In general case, two KTP

nano-crystals with opposite orientations exhibit the same electrooptic polarization

responses but opposite phases. Therefore, we need to use both the intensity polar-

ization and the phase of the electrooptic response of each nano-crystal to determine

its full orientation.
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3.4 Sample preparation

3.4.1 Electrode preparation

Figure 3.8: Different photo-lithography steps towards the fabrication of flat gold ribbon
electrodes.

In our experiments, we used flat gold ribbon electrodes deposited on a 170 µm

thick glass substrate as shown in Fig. 3.8i so as to generate the external electric field

by connecting to a generator. The electrodes were fabricated by vacuum evaporation

and soft photo-lithography techniques. The fabrication process comprises eight steps

as detailed in Fig. 3.8. In the first step, a vacuum chamber is used to deposit a 10

nm thick chromium layer as the adhesion layer on a glass substrate for a 50 nm thick

gold layer deposited in the second step. In the next step, a thin photoresist layer

is spin coated on top of the gold layer at a the speed of 2000 rpm and acceleration

of 500 rpm/s during 40 seconds. The system was put on the oven plate at 115 ◦C
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for 1 minute in order to dry the photoresist layer. A chromium mask featuring

the shape of the electrode system is exposed to UV light during 5 seconds. The

part of the photoresist layer which is exposed to the UV light is developed during

1 minute by using a proper solvent, which finally unveils the part of the gold layer

deprived of the protection of the photoresist. After that, the system was put inside a

potassium iodine (KI) solution during 30 seconds to remove the non-protected part

of the gold layer. The opened chromium layer was developed by using a Chrom-Etch

3144 solution for 1 minute. The remaining photoresist was totally removed by a 5

minute rinsing by acetone and isopropanol as the last step. The process leads to an

electrode system with 70 µm wide and 50 nm thick flat gold ribbon electrodes. The

length of each gold electrode is much larger than its width and the distance between

two electrodes various from 10 µm to 100 µm according to application requirements.

3.4.2 Sample preparation

Figure 3.9: (a) Flat gold ribbon electrodes on a glass substrate and (b) TEM image of
a typical KTP nano-crystal.

The flat gold ribbon electrodes were connected to an external electric power

generator by conductive wires by using a conductive glue as in Fig. 3.9a. A quasi-

static electric field is generated in-between two gold electrodes by application of a

sinusoidal voltage from the generator.

A solution containing KTP nano-crystals (with an average size of 150 nm) as
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synthesized by Mayer et all [58] and shown in Fig. 3.9b was spread and evaporated

on top of the glass substrate on the side of the gold ribbon electrodes. Due to the

small size of nano-particles, all KTP nano-crystals sense a spatially uniform electric

field. Using a three axis piezo electric stage, a two dimensional scan of the amplitude

and phase of the electrooptic signal has been performed.

3.5 Results and discussion

We applied PLEOM to the detection of KTP nano-crystals as nano-scale probes.

The amplitude and the phase of the electrooptic response from single random KTP

nano-crystals were measured as discussed above. The quasi-static electric field was

generated in-between the two flat gold ribbon electrodes as described in section 3.4.1

at a modulated frequency of 20 kHz. By converting the optical signal into a voltage

signal and using a lock-in amplifier to detect the latter, the amplitude of the signal

is measured in Volt units whereas the phase of signal is the difference between the

phase of signal and that of the lock-in internal reference as described in expression

2.75.

3.5.1 Simulated external electric field

In this study, we have scanned the zone in-between two gold electrode separated

by a distance of 20 µm as in Fig. 3.10a. Since the length of the electrodes is

much longer than their width, the y component of the external electric field is zero

by symmetry. These two non-zero components of external electric field are then

along x and z. The distribution of the external electric field is simulated by using

COMSOL software (version 4.2). In this case, the software was used to simulate the

static electric field distribution generated by the electrodes under the application of

a 150 V DC voltage. Fig. 3.10b shows the 2D map of the electric field distribution

around two gold electrodes in the xz plane. The direction of electric field vector

is shown by dark red arrows and its amplitude by a colour code. As expected, the
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Figure 3.10: (a) Configuration of the pair of flat gold ribbon electrodes on a glass
substrate (in the laboratory frame Oxyz). (b) 2D map of the electric field distribution in
the presence of two gold electrodes in xz plane. The direction of the electric field vector
is shown by dark red arrows and its amplitude follows a colour code. The electrodes
themselves are not visible due to their small thickness but their edges can be recognized
due to the stronger electric field at these positions (dark red colour).

electric field peaks strongly near the electrode edges (shown by the dark red color)

where the free electron density is accumulated.

Fig. 3.11 shows the distribution of the x and z components of the external electric

field in-between two electrodes at the same level as the KTP nano-crystals (100 nm

above the top glass surface). The results confirm the strong value of the electric field

components in the vicinity of the gold electrodes and the rapid decay of the electric

field when going further away from the electrode edges. In the portion far from the

edges of electrode edges, the z electric field component can be neglected. So that

the electric field is mainly along the x axis with a value around 5.104 V/cm. Due to

their small size, all KTP nano-crystals sense a spatially uniform electric field, which

is consistent with our assumptions when performing the theoretical calculation on

section 3.3.
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Figure 3.11: Profile of the Ex and Ez components as functions of x position at 100
nm above the top glass surface which is at the same height as the middle of the KTP
nano-crystals.

3.5.2 Experimental results

Fig. 3.12 shows the result of a typical scan in a tiny area of 3.2×3.2 µm2 in-between

two flat gold electrodes. The linear electro-optical response appears as a bright spot

in this area. The size of this spot is diffraction limit for a microscope objective at

632.8 nm wavelength as given by expression 2.1.

The cross sectional lines along x at y = 29.81 µm and along y at x = 36.76 µm

yield the profiles of the observed signal spot for a single KTP nano-crystal along two

orthogonal projections. These profiles shown as red lines in Fig. 3.12 were fitted

by using Gaussian functions, giving values 720 nm and 650 nm for the full width at

half maximum (FWHM) in the x and y directions respectively. These results are

consistent with that from other microscopes when working on single nanoparticles

with dimensions smaller than the wavelength of light [55, 58, 62]. The main reason

of the different size of the signal spot along the two directions originates from the

irregular geometry of the KTP nano-crystals as shown in Fig. 3.9b. The colloidal

synthesis of our KTP nano-crystals give a size distribution of 150±50 nm. Therefore

the size of the nano-crystals, is comparable with the wavelength of the excitation
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Figure 3.12: Spatial electrooptic amplitude response from a single KTP nano-crystal
and profile lines along x and y going through the center of the signal spot; the red lines
are the fitted Gaussians.

light. Thus, the FWHM of the signal spots for the KTP nano-crystals is expected to

fall in the range from 600 nm to 800 nm. Taking into account the high sensitivity and

high dynamic range of our microscope, PLEOM is able to perform measurements of

KTP nano-crystals of smaller sizes. In that case, each nano-crystal can be considered

as a point and the response profile can then be fitted with an isotropic Gaussian

function.

The background noise calculated from the entire area without the signal spot as

in Fig. 3.12 was 0.022 mV. The main sources of the background noise are from the

detectors (dark noise) and the electronics noise. This value for the background noise

can thus be taken as the standard deviation of our PLEOM measurement performed.

If we define the amplitude of the linear electrooptic signal for each detected nano-

crystal as the maximum value of the corresponding fitted Gaussian function, the

amplitude of the signal of the KTP nano-crystal in Fig. 3.12 is 0.498 mV. Therefore,

the signal to noise ratio for this measurement is of the order of 24 which allows for
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high contrast measurement. The high signal-to-noise ratio and dynamic range in

detection of PLEOM allows to detect ferroelectric nano-crystals at smaller sizes, in

particular other ferroelectric nano-crystals with high linear electrooptic coefficients

such as Barium titanate (BaTiO3) or Strontium barium niobate (Sr0.6Ba0.4NbO6)

[41].

Figure 3.13: Linear dependence of the signal with respect to the applied voltage ampli-
tude.

A characteristic signature of the Pockels effect is the linear dependence of the

linear electrooptic response versus the amplitude of the external electric field, which

provides strong evidence that the measured signal from a KTP nano-crystal origi-

nates from the Pockels effect as in Fig. 3.13.

Performing the other scan throughout a larger area, six KTP nano-crystals were

identified and labelled as in Fig. 3.14a. The orientation and volume of each nano-

crystal are different as discussed which leads to different amplitudes and phase re-

sponses according to expression 3.25. Indeed, the intensities of the linear electrooptic

response of the six nanoparticle are different as in Fig. 3.14a. From the phase image

(Fig 3.14b), it is clear that in the area without the expected signal spots, the phase

has a random value which is that of the background noise. At the positions of signal

spots, the phases have the same value as shown by dark and bright spots because
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Figure 3.14: Spatial electrooptic response over a large area. (a) Amplitude and (b)
phase image of the detected signal.

of the phase of electrooptic signal for each nano-crystal.

For more detail, the cross-sectional lines along y that pass through the signal

spots on the signal phase image were plotted in Fig. 3.15. It is clear that the phases

of the signal for nano-crystals 1, 3 and 6 are quasi identical with a value around -30◦

and opposite to that of nano-crystals 2 and 4 (and the same for nano-crystal 5 as in

Fig. 3.14b) with the values around 150◦. As in expression 3.26 from the theoretical

part, the phase of the signal is the same or opposite to that of the applied voltage.

It also depends on both the orientation of the nano-crystal and the polarization of

the incident light. Comparing with the phase value of the applied voltage from the

generator, we can infer the sign of the expression inside the absolute value symbol

in expression 3.25 for each KTP nano-crystal. For this measurement, the phase

of applied voltage is -30◦ which was measured by the lock-in amplifier in the same

experimental conditions (this phase value is exactly the difference between the phase

of applied voltage and that of the lock-in interference signal. But the phase of the

lock-in interference signal did not change during the experiment process allowing us

to give a zero value). The sign of the expression inside the absolute value symbol in

expression 3.25 applied to the particles 1, 3 and 6 is therefore negative and positive
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Figure 3.15: Phase of the electrooptic signal of five KTP nanocrystals measured by the
lock-in amplifier, drawn along the vertical lines and passing through signal spots in Fig.
3.14b. With different particles, the phases have two values respectively around: -30◦ and
150◦.

for particles 2, 4 and 5.

Very much like in other nonlinear microscopies where the nonlinear optical re-

sponse depends strongly on the polarization of the excited beam and the orientation

of the nonlinear material, the intensity of the electrooptic scattering response from

a ferroelectric nano-crystal strongly depends on the polarization of the sample beam

(the α value) and the orientation of crystal (A, B, and C constants which relate to

the orientation of the nano-crystals through Euler angles) as in expression 3.25. By

rotating the polarization angle α from 0◦ to 360◦, we obtain the intensity polariza-

tion responses for nano-particles 1, 4, and 6 as shown in Fig. 3.16. While providing

the best configuration for the incident beam polarization that leads to the highest

nonlinear optical response, it also leads to the orientation of nonlinear nano-crystals.

However, PLEOM differs from other methods [53, 55–58, 62, 92, 93, 97] which make

use of the detectors to count the emitted nonlinear photons by the samples, and

therefore measure the absolute value of the nonlinear response with respect to α

value as in expression 3.25. In such condition, the intensity polarization response

can only lead to the axial orientation of a nano-crystal, and not to its full vectorial

orientation. From intensity polarization responses of the three nano-crystals as in
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Figure 3.16: Linear electrooptic polarization responses of three KTP nano-crystals with
different orientations. (a) particle 1; (b) particle 4; and (c) particle 6 as labelled in Fig.
3.14. The blue dots are the experiment data and the red lines are the fitted curves. The
corresponding crystal 3D orientation is presented below each polar graph.

Fig. 3.16 and by performing a fit of expression 3.25, the respective orientations

described by the Euler angles for particles 1, 4, and 6 are (43◦, 138◦, 49◦) or (43◦,

-42◦, -49◦), (95◦, 75◦, 28◦) or (95◦, -105◦, -28◦), and (107◦, 72◦, 19◦) or (107◦, -108◦,

-19◦) respectively in which two options for the orientation of each nano-crystal are

found opposite to each other. Unlike other methods, PLEOM measures the phase

of the electrooptic response which provides the missing needed information to fully

determine the orientation of each nano-crystal. The intensity polarization responses

of nano-particle 1, 4, and 6, exhibit only two lobes. Implying that the expression

inside the absolute value symbol in the expression 3.25 applied for those particle

does not change sign with variation of α. Therefore the Euler angles describing the

orientations of these nano-crystals are (43◦, -42◦, -49◦), (95◦, 75◦, 28◦), and (107◦, -

108◦, -19◦) corresponding respectively to crystal 3D orientations which are presented

below each polar graph in Fig. 3.16.

In cases where the sign of the linear electrooptic intensity of scattered by a KTP

nano-crystal changes with the orientation of the polarization axis of the sample
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beam, the response will exhibit four lobes as in Figs. 3.6b and 3.17a. Such change

Figure 3.17: (a) Intensity polarization response with four lobes for a KTP nano-crystal
and (b) phase value of the linear electrooptic signal of this particle with respect to the
polarization angle α of the sample beam.

of sign can be observed through a π shift of the phase signal as in Fig. 3.17b. In this

case, KTP nano-crystals are oriented so that the intensity of their electrooptic re-

sponse expression 3.25 is smaller than for other cases. For example, as in Fig. 3.17a,

the highest intensity of the electrooptic signal is around 0.22 mV. The intensity of

the signal associated to the two small lobes is very weak of the order of the back-

ground noise. This leads to a phase signal with a the random value as in Fig. 3.17b.

The result in Fig. 3.17 is consistent with our model and the full orientation of this

KTP nano-crystal can be extracted as for the other cases by using the polarization

response and phase image.

3.5.3 Study of randomly oriented KTP nano-crystals by us-

ing the reflection configuration of PLEOM

As described in the section 2.5.3, another configuration for PLEOM was set-up in

order to investigate the linear electrooptic surface scattering of samples or non-

transparent samples.

In order to validate the new configuration of PLEOM work, it was tested with 150

nm KTP nano-crystals. In this case, our theoretical model of the linear electrooptic
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Figure 3.18: Spatial linear electrooptic response from KTP nano-crystals over a large
area; (a) amplitude image and (b) phase image. (c) Linear dependence of the signal with
respect to an applied electric field amplitude and (d) polarization response corresponding
to orientation defined by Euler angles (ψ = 143◦, θ = -15◦, σ = -40◦). The continuous
lines in red are fitted from experimental points

scattering from them was fully satisfied by experimental results obtained when using

the previous configuration of PLEOM.

Fig 3.18a shows the spatial electrooptic response from KTP nano-crystals when

using the new PLEOM and performing a scan over large areas. The linear electroop-

tic signal spots exhibit Gaussian profiles with similar size to that of the focused spot

of the sample beam. The phases of the signal have only two values which are the

same or opposite to that of the applied voltage as in Fig. 3.18b. The linear de-

pendence of the signal with respect to the applied electric field amplitude and the

polarization response were measured and displayed in Figs. 3.18c and 3.18d. All
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properties inferred therefore are in agreement with their counterpart as from the pre-

vious PLEOM configuration. The new PLEOM configuration can therefore expand

the range of investigation of the linear electrooptic properties of nonlinear materials.

3.6 Conclusion

From the previous raw theoretical calculation about the linear electro-optical scat-

tering from a single random KTP nano-crystal initiated by Hajj et all [3, 67], we

developed a full theoretical analysis which was fully confirmed by the experimental

results and can be applied to any ferroelectric nano-crystal.

The electrooptic Pockels scattering from a single ferroelectric KTP nano-crystal

was measured by PLEOM. We demonstrated for the first time that the orientation

and especially the vectorial features of the electric polar moment of a single random

ferroelectric nano-crystal could be precisely extracted from the polarization state and

the phase of its Pockels response. These results validate the capacity of PLEOM to

be applied for 3D imaging by way of using ferroelectric nanoparticles as nano-scale

probes. Such nanoparticles are nanoprobes to find an application in electric field

probing within different domains such as electronics or biology.

The high signal to noise ratio and high dynamic range in detection allowed by

PLEOM suggest the possibility to detect nonlinear nanoparticles with even smaller

size, and consequently to propose more convenient (less invasive) probes for bio-

logical applications especially when using nonlinear materials with high linear elec-

trooptic coefficients such as Barium titanate (BaTiO3) or Strontium barium niobate

(Sr0.6Ba0.4NbO6) [41]. PLEOM also leads itself to studies of one or two dimensional

periodically or randomly poled structures for quasi phase matched devices.
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Alongside the full determination of the spontaneous polarization of a single ran-

dom ferroelectric nano-crystal as presented in the previous chapter, PLEOM can be

developed into a new sub-wavelength microscopy for imaging patterns and check-

ing the quality of one-, two- and three-dimensional quasi-phase matched crystalline

structures from micro to macroscopic scale. Following this direction, we present in

this chapter a non-invasive method towards the characterization of the ferroelectric

domain structure of a 1D periodically poled KTiOPO4 crystal by interferometric

measurements of the electrooptically induced phase retardation. A characteristic π

phase shift of the linear electrooptic response is observed in relation with the sign

reversal of the electrooptic coefficients the domain inversion. PLEOM provides a

81
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diffraction limited spatial resolution allowing to reveal the nonlinear and electrooptic

modulation patterns in ferroelectric crystals in a non-destructive manner, to deter-

mine the poling period and duty cycle, and to detect local defects in the domain

structure. The related domain characterization can only be achieved by an inter-

ferometric technique and is not within the reach of intensity defendant microscopic

techniques such as second-harmonic generation which is not sensitive to domain

reversal.

4.1 Introduction

In recent years, ferroelectric materials have become popular objects in physical re-

search in view of their applications in nonlinear optics and data storage. For a long

time, since 1921 when the first ferroelectric material (Rochelle salt, NaKC4H4O6.4H2O)

was reported by J. Valasek [108], the group of ferroelectric material has been ex-

tended to ∼ 250 pure materials and many more mixed crystal compounds [109].

Although they carry a long history of fundamental investigations all the way to

applications, ferroelectric materials are intensively investigated to this day. Indeed,

this ongoing interest is driven by a lack of basic understanding of ferroelectricity

while their applications still require optimization of such features as shape, quality,

tailoring and control of their domain structure, etc.

Besides the application of ferroelectric materials in high density data storage

devices [110, 111] or electrically controlled Fresnel zone plate [112], among the most

interesting application of these materials is optical frequency conversion in which

the second order susceptibility χ(2) is spatially modulated while the linear suscep-

tibility remains constant, as exemplified in periodically poled crystals. Nonlinear

processes in the periodically poled crystals are governed by phase matching con-

ditions, which has lead to call them quasi-phase matched crystals. Although the

theoretical prediction for such structures had been proposed as early as in 1962 by

Armstrong et al [10], it took nearly thirty years to implement this concept when

the periodic poling of LiNbO3 became possible [11, 113, 114] and hence enabled



4.1 Introduction 83

the broad development of periodically poled crystals [115–127] even in the shape of

nonlinear photonic crystals with 2D spatial modulation of χ(2) [40, 128, 129]. One

also refers frequently in this context, by analogy with X-ray diffraction, to one- and

two-dimensional optical Bragg structures. Modulation of the nonlinear coefficient

in ferroelectric crystals can be achieved by using the electric field poling method

[40, 114, 130] and can be grown to be a larger size from a periodically poled seed

by the flux method [131, 132]. The principle of the electric field poling method is

derived by the properties of the spontaneous polarization
−→
P of a ferroelectric crys-

tal which can be reversed under the application of an external electric field with

opposite direction along the axis of polarization , with the additional condition that

its value exceeds that of the coercive field Ec of this material. Domain inversion

reverses the sign of all non-zero elements of odd rank tensors attached to this mate-

rial, including the second-order nonlinear tensor and the Pockels electrooptic tensor

[122], but has no effect on even order tensors such as the refractive index of the

crystal. The conversion efficiency of the nonlinear process strongly depends on the

features and quality of the quasi-phase matched crystals such as precisely defined

poling period and duty cycle or the presence of local defects in its domain structure.

For a better understanding of ferroelectric materials and control of the encoded

or poled domain structures, a visualization of the ferroelectric domains allowing for

sensitive detection of defects in each domain is in high demand. Various methods

have thus been proposed in order to characterize domains structures and detect

defective domains in ferroelectric crystals. Firstly, methods which rely on the dif-

ferent surface properties between normal and inverted domains were developed. As

a consequence of ferroelectricity, the surfaces of crystals which are perpendicular

to the spontaneous polarization vector are charged. Normally, those surface are

expected to be compensated. However, the remaining electrostatic field at those

surfaces is still strong enough due to incomplete charge compensation. It allows for

detection methods based on the interaction between the charged crystal surface and

charged particles or spontaneous polar particles and molecules. In this perspective,
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Figure 4.1: (a) Schematic of toner decoration at the surface of ferroelectric crystals [109];
(b) Molecular orientation of nematic liguid crystal layered in-between a glass plate and a
ferroelectric crystal allowing to image its domain structure [133]; (c) Lenticular domains
in a TGS crystal made visible by the dew method using isobutyl alcohol vapor condensa-
tion [109, 134]; and (d) selective etching for the visualization of antiparallel ferroelectric
domains in z-cut, where the -z face etches much faster in hydrofluoric acid than the +z
face [109].

several surface decoration methods have been developed such as the powder/toner

pattern techniques [135, 136] shown in Fig. 4.1a, the liquid crystal imaging method

[133, 137] in Fig. 4.1b, and the dew method [134] as in Fig. 4.1c. The most common

method for the visualization of ferroelectric domains is selective etching based on

the different etching speed at the upper and lower surfaces of a single domain as

shown in Fig. 4.1d [138–140]. However, surface etching is a destructive method.

Moreover , all those surface-modifying techniques can only yield two-dimensional

images of the domain structure at the surface whereas internal information inside

the bulk of each domain can not be reached.

In order to improve the resolution of the ferroelectric domains images, other

electron diffraction or transmission based methods are available such as scanning

electron microscopy (SEM) which is base on the different electrostatic interactions

of an electron beam with positively versus negatively charged surfaces at the bound-

aries of a domain sustaining a net polarization dipole [141–143], scanning electron
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acoustic microscopy (SEAM) [144, 145], transmission electron microscopy (TEM)

[146–148] which can only be applied to ultra thin ferroelectric films, scanning force

microscopy (SFM) (or piezoelectric force microscopy mode (PFM)) [149–153], and

scanning-tip microwave near-field microscope [154]. However, all these methods

provide only a surface topography of ferroelectric materials without direct internal

informations.

In order to provide information on the internal ferroelectric domain in a non-

destructive manner, optical methods are appealing candidates due to the penetration

ability of light. Optical methods also promise the advantage of being non-contact

and non-invasive, and may also enable the real time monitoring of the domain-

formation process by in-situ measurements. Bhide and Bapat used a multiple beam

interferometric technique to study the surface microtopography arising from the 90◦

domain walls in BaTiO3 single crystals in the ferroelectric tetragonal phase [155]. Al-

ternative techniques that have also been demonstrated are X-ray imaging [156–158],

photorefractive beam coupling method [159], and the second harmonic generation

method [160–163] as in Fig. 4.2, or phase-sensitive second-harmonic microscopy

method performed by Hulliger’s group [164]. The most useful property of ferroelec-

tric materials in order to optically visualize ferroelectric domains is their brief-in

linear response of the refractive index to an externally applied voltage (Pockels ef-

fect) with the first demonstration in 1944 by Zwicker and Scherrer [165]. Following

the same principle, numerous methods based on the Pockels effect were proposed

and demonstrated such as polarization microscopy [109, 166], light deflection [167–

169], photorefractive grating/beam-coupling [170, 171], electro-optic interferometry

[172, 173]. However, all those demonstrations are plagued by their poor resolution.

More recently, use of attempts above 10 µmwere achieved to overcome the limita-

tion of those optical methods by use of a scanning confocal microscopy and scanning

near-field microscopy. Among these, Čerenkov second-harmonic generation method

[68–71] were stands-out: it is based on Čerenkov-type second-harmonic generation

along the domain wall of ferroelectric materials [174]. This method provides high 3D
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Figure 4.2: (a) Otical setup for a second harmonic generation microscopy. SHG: uniform
second harmonic plate, P: polarizer, F: infrared absorption filter, and CCD: camera [109].
(b) SH image by d22 on the Z face of the Z-cut quasi-phase matching device [161]. (c)
high-resolution second-harmonic images of periodically poled LiNbO3 crystal showing the
domain walls [160].

optical resolution of domain walls but require an intense laser beam to generate a

measurable second-harmonic signal and fails to determine the full vector properties

of ferroelectric domains as well as their internal structure.

Due to the working principle of the PLEOM which is based on one of the most

usefull properties of ferroelectric materials namely the linear electrooptic effect

(Pockels effect), and from our earlier use of PLEOM to study single ferroelectric

nano-crystals (see previous chapter), we propose hereafter an alternative technique

based on the linear electro-optic interference method to study the domain struc-

ture of a periodically poled ferroelectric crystal. We experimentally demonstrate

the ability of this approach to characterize ferroelectric crystals containing inverted

domains down to diffraction limited spatial resolution. This method allowed us to

determine the poling period, duty cycle, and evidence domain defects in 1D period-

ically poled crystals by using a simple low power CW laser (He-Ne laser source 1.5
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mW CW power).

4.2 Sample preparation

In this study, we have investigated a typical 10×2×0.5 mm3 KTP crystal sample

periodically poled by the electric field poling [40, 114] with a period of 36 µm from

Tel Aviv University (under a cooperation with the research group of Prof. Ady

Arie).

4.2.1 The electric field poling method to prepare a quasi-

phase matched crystal

Figure 4.3: Fabrication of a periodically poled crystal by the electric field poling tech-
nique: (a) Photolithography of a photoresist-coated single domain ferroelectric crystal. (b)
Etching of exposed areas in the photoresist. The top and bottom surfaces of the crystal
are then coated with electrodes. (c) A high voltage pulse reverses the sign of the dielectric
dipoles in areas under the top metallic ribbon electrode [40].

The periodically poled KTP crystal was prepared through a three step process

as depicted in Fig. 4.3. In the first step, photolithography is used to pattern the

photoresist-coated crystal. Firstly, a single KTP crystal is cleaned by using a series
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of successive solvents in an ultra-sonic bath. Its top surface is then completely

covered by a homogeneous thin layer of photoresist by a spin-coater. The final

preparation stage is the patterning of the sample by exposing the photoresist to UV

light through a well-defined mask and developing the sample in which the uncovered

photoresist parts are removed as in Fig. 4.3b. The top and bottom surfaces of the

crystal are then coated with metallic electrodes.

In a second step, a high voltage pulse was applied on the metallic electrodes. The

poling process is thought to start at the edges of the top electrode in contact with

the crystal surface where the electric field is the strongest. The inverted domain

regions then grow within areas in contact with the top electrode, whereas the region

under the remaining photoresist would demand a much higher voltage to be poled.

The high voltage pulse thus only reversed the sign of the dielectric dipoles in areas

where the top metallic electrode is in contact with the crystal. After completion of

the poling process, the last step is to remove the metallic electrodes on both surfaces

of the sample which are then polished before use.

4.2.2 The configuration of sample in the external electric

field

Figure 4.4: (a) Configuration of the periodically poled KTP crystal (1) on two flat gold
ribbon electrodes (2) deposited on the glass substrate (3). (b) cross-section of the electrode
system in the yz plane. The thickness of the flat gold ribbon electrodes is 50 nm and can
be neglected in the electric field distribution calculation. The width of the electrodes and
the gap in-between are 70 µm and 100 µm, respectively, which is very small compared to
the electrode length.

In this study, the flat gold ribbon electrode system already described in Section
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3.4.1 was still used to generate a quasi-static external electric field by connecting

a generator as in the experiment with KTP nano-crystals. The scanned zone for

PLEOM in the current experiment extends in-between the two flat gold ribbon

electrodes. With this electrode system, the distance between the two ribbons varies

from 10 to 100 µm. We chose here the latter interelectrode gap (100 µm) whereas

the periodically poled KTP crystal was oriented so that the polarization dipole

of the poled zones are along z, with domains along y as in Fig. 4.4a. In this

configuration, the crystal coordinate frame coincides with that of the laboratory.

The laser beam propagates perpendicular to the crystal slab along the z direction

with linear polarization along the y axis.

4.3 Theoretical calculation

Figure 4.5: Configuration of the laser beam traveling through a periodically poled crystal
along the z direction with the focused spot always on the bottom crystal surface. (a) When
the focused spot is at the ferroelectric domain wall and (b) at the center of a ferroelectric
domain.

In this study, the sample beam of PLEOM travels through the z direction with

its linear polarization along the y axis. Due to focusing by the objective, the sample

beam fills a conical volume when passing through the sample with its beam waist

located on the bottom crystal surface as shown in Fig. 4.5. Each ray of the sample

beam travels through an individual optical path which belongs either to a normal

or inverted domain or to both of them, whereas its polarization is not maintained

along the y axis. Consequently, the phase shift experienced by each ray will vary
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due to the linear electrooptic dephasing under the application of an external electric

field is different with each other.

Let us assume that the sample beam comprises N individual rays. The theoret-

ical calculation steps in this case are the same as for the calculation in part 2.5.1,

subject however to the introduction of variable Pockels phase shifts for different

light rays. Expressions 2.51 and 2.52 defining the electric field components of the

electromagnetic waves of the reference and sample beam (ξr(t) and ξs(t)) at the

photodiodes in the absence of an external electric field (which induces the Pockels

effect on the sample), now take the following forms:

ξr(t) =
1√
2
αre

i(ωt+φ) (4.1)

ξs(t) ∝
1√
2

∫

all rays

dαse
iωt (4.2)

where dαs is the amplitudes of the electric field component of a light ray. Under

application on the sample of an external electric field Eext(t) given by:

Eext(t) = Eext cos(Ωt+ φE) (4.3)

the phase of the jth ray going through the sample varies by an amount ∆ϕj(t) due

to the Pockels effect:

∆ϕj(t) = ∆ϕj cos(Ωt+ φE) (4.4)

where ∆ϕj is the amplitude which can take a positive or negative value depending

on the optical path taken by the corresponding ray through the different ferroelectric

domains.

The electric field component of the sample beam at the photodiode is:

ξs(t) ∝
1√
2

∫

all rays

dαse
iωtei∆ϕj(t) (4.5)

Whereas the expression of the electric field components for the reference beam re-

main the same as in expression 4.1.

The electronic signal generated by the difference of the two photocurrents achieved
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by an electronic circuit as in expression 2.63 now has the form:

∆i = 4ρRe[ξr(t)ξs(t)
∗] ∝ 2ρRe

[

αr

∫

all rays

dαse
i(φ−∆ϕj(t))

]

∝ 2ραr

∫

all rays

dαs cos [φ−∆ϕj(t)]

(4.6)

As the initial phase difference between the reference and sample beams is set at the

fixed value φ = π/2 by moving the mirror placed on the piezoelectric stage. As a

result, the electronic signal in expression 4.6 now becomes:

∆i ∝ 2ραr

∫

all rays

dαs sin [∆ϕj(t)] ≈ 2ραr

∫

all rays

dαs∆ϕj(t) (4.7)

As the phase shift induced by the Pockels effect in this case is very small (around 10−6

to 10−2 radian). Replacing the ∆ϕj(t) from expression 4.4 into 4.7, the expression

for the electronic signal becomes:

∆i ∝ 2ραr

∫

all rays

dαs∆ϕj cos(Ωt+ φE) = ∆i cos(Ωt+ φE) (4.8)

Expression 4.8 has the same form as 2.65 but in this case, the amplitude of the

signal originates from all rays in the illuminating cone with different phase shifts:

∆i = 2ραr

∫

all rays

dαs∆ϕj (4.9)

Because of the linear dependency of the Pockels phase shift ∆ϕj of the j
th light

ray with respect to the external electric field, the Pockels phase shift of the sample

beam used to sense the linear electrooptic effect for this crystal depends on the

distribution of the external electric field. Furthermore, due to the conical shape

of the sample beam as in Fig. 4.5, when traveling through the periodically poled

crystal, some rays propagate through a normal ferroelectric domain while other are

going through the adjacent inverted domains and others go through two different

domains. As a result, the amplitude ∆ϕj of the phase shift of the jth ray can

be positive or negative. When the focused spot of the sample beam is shining

domain wall in a symmetrical configuration as in Fig. 4.5a, one half of the sample

beam travels through a domain while the other half travels through a neighbouring

domain with opposite dielectric dipole. The total phase shift for each part have
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equal absolute values but opposite sign, so that the phase shift for the two parts

compensate each other leading to cancellation of the total phase shift. Consequently,

the linear electrooptic signal goes through a minimum when the beam waist of the

sample beam is located at the domain wall. For other configurations, when the

beam waist of the sample beam is located at the center of a domain as in Fig.

4.5b. The main part of the sample beam travels through this domain whereas a

much weaker part travels through the neighbouring domains with opposite dielectric

dipole. As a result, the total phase shift of the sample beam in this case is maximum

leading to a maximal linear electrooptic response. When the sample beam eventually

hits a defective domain where, for example, poling is incomplete, leading to partial

inversion, the linear electrooptic response at this domain will be weaker than for

regular domains.

4.4 Results and discussion

In this study, we applied the PLEOM to study a 1D periodically poled KTP crystal

with a 36 µm period. Quantitatively meaningful amplitude and phase images of the

linear electrooptic response from this crystal were acquired within the experimen-

tal configuration described in the previous section. The sample beam propagated

through the crystal along the z direction with the linear polarization along the y

axis. The voltage modulation frequency was 20 kHz. Complementing to experi-

mental measurements, simulations were performed to predict and account for the

experimental results.

4.4.1 Simulated results

Due to the bulky shape of the crystal and strong focusing condition of the sample

beam illuminates the sample through a conical volume as in Fig. 4.5. Under these

conditions, the initially linearly polarized state of light rays is not maintained. The

polarization state of rays which are angularly far from the center of the beam are

much more disrupted than that of other rays. Due to the Gaussian distribution of
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the sample beam, the main part of the optical energy is along the central beam. We

can then safely assume that the sample beam still maintains its linearly polarized

state along y.

Figure 4.6: (a) 2D map in the yz plane of the distribution of the electric field around
the two gold electrodes. The direction of the electric field vector follows dark red arrows
with its amplitude is colour coded. The electrodes themselves are not visible due to their
negligible thicknesses but their edges can be recognized due to the stronger electric field
at their vicinity (in dark red). (b) Profiles of the Ez component as a function of z axis at
different y positions. The origin of the z axis corresponds to the gold electrode surface or
the crystal bottom surface, while zero of y corresponds to the middle point between the
two gold electrodes.

As already discussed in section 3.5.1, in the case of flat gold ribbon electrodes,

the generated electric field features only two non-zero components along y and z as

shown in Fig. 4.6a whereas the x component is zero because of symmetry property.

From the linear electrooptic tensor of KTP in expression 3.3 with coefficients

given in the Table 3.2, variation of the inverse dielectric constant (1/n2)y of the

KTP crystal for y polarized light traveling along z under the application of an

external electric field is given by:

∆

(

1

n2

)

y

=
∑

j

r2jEj(Ω) = r23Ez(Ω) (4.10)

So that variation of the refractive index of this crystal for y-linearly polarized beam
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is:

∆ny = −1

2
n3
yr23Ez(Ω) (4.11)

where ny is the refractive index of crystal. The value of ny is given from the well

known Sellmeier expression 3.1 with coefficients from Table 3.1.

The Pockels phase shift of the jth ray which travels through the sample along z

direction is:

(∆ϕj)y = −
πn3

y

λ

∫

r23Ez(Ω)dz (4.12)

From expression 4.3 we see that the phase shift of light rays depend only on the

Ez(Ω) component of the external electric field in this case. This phase shift scales

with the integral of the Ez(Ω) component along the optical path of this ray. By

using the COMSOL software (4.2 version) to simulate the Ez(Ω) component of the

external electric field, the profile of this component as a function of z at different y

positions is shown in Fig. 4.6b under application of an 150 V DC voltage on the two

ribbon electrodes. With this gold electrode system, the magnitude of Ez becomes

negligible at distances above 150 µm along z as from Fig. 4.6b.

Simulated result for a scan along y

Figure 4.7: (a) Scheme of experimental scanning along y when the focused spot of the
sample beam intersects the symmetry axis of a ferroelectric domain. (b) Simulated Pockels
phase shift of the sample beam corresponding to the scan in Fig a.
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When scanning along y with the focused spot maintained at the center of a ferro-

electric domain as in Fig. 4.7a, the relative position of the sample beam with respect

to the crystal does not change during the scan. Consequently, the linear electrooptic

response for this case is given by the pathway integral of the Ez component:

∆ϕy ∝
∫

EΩ
z (z)dz (4.13)

Using the COMSOL software to perform this integration at different y position,

the simulated phase shift of the sample beam for this scan is shown in Fig. 4.7b.

From the distribution of the external electric field in the yz plane in Fig. 4.6a, the

Ez component always cancels at y = 0 and reverses its orientation through this

position. As a result, the Pockels phase shift of the sample beam used to sense the

linear electrooptic effect in this crystal always cancels when the light beam focused

at y = 0 and changes its sign when passing through this point as in Fig. 4.7b. The

phase shift is linearly dependent on y at the vicinity of y = 0 while the dependence

at the proximity of the electrode edges where the EΩ
z component are strongest is a

nonlinear and odd function of y. In agreement with this simulated Pockels phase

shift, measurements are acquired by PLEOM, including the amplitude and phase

signal as shown in Fig. 4.8. The sign change of the electrooptic phase shift of the

Figure 4.8: (a) Amplitude and (b) phase signal can be obtained from the experimental
scan along y corresponding to Fig.4.7a can be acquired by PLEOM.

sample beam corresponds to a π shift of the phase signal as from Fig. 4.8b. In this
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scan, the experimental phase measured by PLEOM corresponds to the vectorial

orientation of the external electric field. Consequently, the direction of the external

electric field can be fully inferred from the phase signal.

Figure 4.9: Simulated Pockels phase shift of the He-Ne laser beam passing through KTP
crystal for different crystal depth defined from the bottom surface of the crystal at z = 0,
as functions of y, corresponding to the scan in Fig. 4.7a.

The Pockels phase shift of the sample beam depends on its optical path when

traveling through the crystal. In order to estimate the contribution of the intensity

signal for different crystal thicknesses, the phase shift of the sample beam comprising

the integrated length along z was simulated and is shown in Fig. 4.9. It shows that

the contribution of the Pockels phase shift from the initial 50 µm layer of the KTP

crystal is around a half of the overall contributions. Above 150 µm, there is no

significant change in the value of the phase shift (less than 1%) up to the overall

thickness of the KTP crystal (500 µm). As a result of the limited penetration of

the external electric field into the crystal as shown in Fig. 4.6b. With the flat gold

ribbon electrodes used in this study, PLEOM can reach the bulk of periodically poled

KTP crystals up to a 150 µm depth from the electrode surface. When more in-depth

information is sought,another electrode design allowing for deeper penetration of the
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electric field inside the crystal is needed.

From our simulation result, PLEOM can be applied to map the external electric

field including its amplitude and direction based on the linear electrooptic effect.

Simulated result for a scan along x

Figure 4.10: (a) Scheme of a scan along x. (b) Simulated Pockels phase shift of the
sample beam corresponding to this scan in a periodically poled KTP crystal is used with
36 µm periodical length.

Another scan along x at a fixed y position as in Fig. 4.10a was simulated. Due to

the mirror symmetry of the two gold electrodes, the EΩ
z (z) component of the external

electric field inside the beam volume is remained during this scan. Consequently,

in this case, the Pockels phase shift of the sample beam (the amplitude of the total

phase shift as in Exp. 4.9) is a function of x due to the variation of the morphology of

the crystal volume intersecting with the sample beam during the scan as previously

discussed in Section 4.3. One can then simply predict the outcome when the beam

waist of the sample beam is at specific positions of higher local symmetry such as the

domain wall or the center of a domain. At those special locations, the Pockels phase

shift of the sample beam will be respectively minimal or maximal in the former case

because of the compensation of different portions of the sample beam which travel

through domains of opposite polarization.

In this simulation, we used a very simple model with the aim of retrieving the

morphology from the dependence of the sample beam phase shift with respect to
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x. Our first assumption is that the EΩ
z component of the external electric field is

homogeneous in the xy plane so that it is only a function of z (EΩ
z (z)) as shown in

Fig. 4.6b at y = 20 µm. The function EΩ
z (z) is inferred from fitting the simulated

data. The second assumption to slice the conical volume of the sample beam up to

150 µm in height (e.g. in an interval from z = 0 to z = 150 µm where the EΩ
z (z)

component is significant) into thin layers of dz thicknesses. The distribution of light

rays is a Gaussian function because the output laser mode is TEM00 Gaussian. So

thus the total phase shift of all rays in expression 4.9 will becomes a volume integra-

tion. Our last assumption is that the parts of the sample beam which travel through

domains with “up” dielectric polarization will experience a “positive” Pockels phase

shift and a “negative” one for that traveling through the opposite domain.

We used MATLAB software to calculate the total phase shift of the sample

beam corresponding to a scan along x, which is displayed as a function of x in Fig.

4.10b. When the beam waist is positioned across the domain wall, the phase shift

cancels due to totally destructive compensation of the two precisely balanced parts

of the sample beam which propagates through two opposite domains. It rapidly

increases with the displacement of the beam along x away from the domain wall

because of the beam’s Gaussian distribution. The absolute value of the Pockels

phase shift reaches a maximum when the beam waist is located at the center of a

domain. The sign of this quantity changes when the scanning point moves from a

regular to an inverted domain. Sign along x is of a different origin from that along

y in the y case, the domain structure is maintained while the orientation of the

EΩ
z component is changed whereas in the x scan the domain structure is inverted

while the EΩ
z component is maintained. Those two scans can thus be considered as

opposite cases.

From our simulated results, amplitude and phase signals can be obtained from

the experimental scan along x by PLEOM as shown in Fig. 4.11. We see that

the amplitude signal is a periodic function with the period precisely matching the

domain size as in Fig. 4.11a, while inverted domains can be distinguished from



4.4 Results and discussion 99

Figure 4.11: (a) Amplitude and (b) phase signals can be obtained from a scan along x
corresponding to Fig.4.10a by using PLEOM on the periodically poled KTP crystal with
36 µm period.

regular domains by the π discontinuities in the phase image as in Fig. 4.11b.

Let now discus imperfect one in the ppKTP (periodically poled KTP) crystal.

Such defects can relate to the size or the incomplete poling of an inverted domain.

Such defects can be clearly detected from anomalies in the amplitude and phase of

the Pockels signal as compared to defect-free neighboring domains.

From our simulated results of scans along y and x, a two-dimensional scan in the

xy plane can be reconstructed from both of them with cross-sectional profiles along

y and x axis exhibiting shapes as in Figs. 4.8a and 4.11a for amplitude and Figs.

4.8b and 4.11b for phase image respectively.

4.4.2 Experimental results

As a systematic test of the experimental signal obtained by PLEOM, its linear

dependence versus the amplitude of the external electric field is tested to ensure

that this response truly originates from the linear electrooptic effect. The linear

dependence of the response from ppKTP crystal obtained by PLEOM is displayed

in Fig. 4.12. From this result, it is clear that this response from the sample achieved

by PLEOM is the linear electroptic signal.

Due to the small standard deviation of the experimental data points compared

to fitted values, it could not be displayed in the graph. The value of the standard



100
Electro-optical interferometric microscopy of periodic

ferroelectric structures

Figure 4.12: Linear dependence of the linear electrooptic response on the amplitude of
applied voltage. The blue spheres are the experimental data from PLEOM, and standard
deviation of each data point is too small to the extent that it can not be displayed. The
red line is a leat mean square fit of experimental data.

deviation can be considered to be buried in the background noise. Considering its

very high signal-to-noise ratio, PLEOM can be used to investigate ppKTP crys-

talline samples even under application of a low voltage so as to avoid any additional

undesired poling or depoling process within the few ferroelectric crystal. By com-

paring with the linear electrooptic phase shift of the Pockels cell (reference source),

the Pockels phase shift from the ppKTP crystal is in order of 10−4 – 10−3 radian

corresponding to an applied voltage on the gold electrodes system from 12.5 to 165

V. This is from one to two orders of magnitude above the 10−5 radian sensitivity

threshold of our current set-up.

Fig. 4.13 show two-dimensional amplitude and phase images of the Pockels signal

from the ppKTP crystal obtained by PLEOM when performing a two-dimensional

scan in the xy plane over a 60×60 µm2 area with a 1.2 µm step, 100 ms acquisi-

tion time and synchronous detection. The resulting images cover 3.5 ferroelectric

domains along the x axis and 60 µm wide interval in-between the inter-electrode

space along y. The colour code in these images follow the magnitude of the signal

for both amplitude and phase. These images are separated into two parts along the
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Figure 4.13: (a) Amplitude and (b) phase (measured phase) images of the Pockels signal
from periodically poled KTP crystal structures obtained by PLEOM. The measured phase
of the signal is the difference between the phase of EO signal and that of the reference
voltage from the lock-in amplifier, as described in part 2.5.2.

y = 0 axis due to the symmetry of the pair of electrodes through this axis. The

amplitude of the signal is zero because of the cancellation of the Ez component at

y = 0 with a symmetric (rest. antisymmetric) distribution for the amplitude (rest.

phase) images.

Fig. 4.14 shows cross-sectional profiles of amplitude and phase images along x

and y at y = −35.1 µm and x = 43.3 µm positions respectively. From the amplitude

profile (Fig. 4.14c), we got the cancellation of the signal amplitude at y = 0 and the

linear dependency of the signal amplitude with respect to y. Moreover, the expected

π shift of the phase signal confirms for the inversion of the orientation of the Ez

component. These results are fully consistent with our simulation results, confirming

that the Pockels phase shift of the laser beam in this experimental configuration is

induced by the sole Ez component of the external electric field.

From the amplitude and phase images in Fig. 4.13, the periodic structure of

the quasi-phase matched crystal along x comes out clearly. The amplitude signal is

minimal at the domain walls and maximal at the center of a ferroelectric domain as

seen in Fig. 4.14a. The measured period of 35.9 µm is in a good agreement with

the the nominal definition of 36 µm. The π shift of the phase signal in Fig. 4.14b
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Figure 4.14: Cross-sectional profiles of the amplitude (a) and phase (b) images along x
for y = −35.1 µm and along y for x = 43.3 µm (c) and (d) respectively. The period of
35.9 µm is in excellent agreement with the structural definition of the sample (36 µm).

is a clear signature of the difference between a normal and an inverted ferroelectric

domain. The non-zero value of the signal amplitude at the domain wall can be

explained by the step of the scan (1.2 µm per step), which does not permit to

guarantee a perfectly symmetric incidence at the domain wall. It can also be that

the non-zero minimum originates from other contributions such as the piezo elasto-

optic effect [175, 176] or from the background noise. Taking a closer look at the

phase of this measurement in Figs. 4.13b, 4.14b and 4.14d, at positions around the

domain walls and the y = 0 symmetry axis, the phase appears to take random values

(described by different colours in Fig. 4.13b) as a result of the low Pockels signal at

these positions, which appears to be buried in the noise and taking random values.
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Figure 4.15: (a) Amplitude and (b) phase (measured phase) images of the Pockels signal
from a periodically poled KTP crystal obtained by PLEOM. The two-dimensional scan in
the xy plane covers a 30×30 µm2 area by 300 nm steps with 100 ms acquisition time and
synchronous detection.

Due to the limitations of confocal microscopy, the resolution of PLEOM is of

the order of the focused spot (∼ 630 nm). Fig. 4.15 shows amplitude and phase

images of the Pockels response from a ppKTP crystal obtained by PLEOM when

performing a two-dimensional scan in the xy plane with 300 nm steps to improve

the resolution of the scan as compared to images in Fig. 4.13. With this higher

resolution scan, the amplitude of the Pockels signal comes much closer to the zero

at the domain walls, which brings credit to our explanation for the non-zero case in

Fig. 4.14a.

In this study, we used a standard gold electrode system to generate the external

electric field responsible for the Pockels effect inside the ppKTP crystal. The spatial

inhomogeneity and inversion of the Ez component along y confirms the model and

simulation. The homogeneity of Ez along x axis allows to map and distinguish

inverted ferroelectric domains from regular ones. In order to check the quality of

the poling process in ferroelectric crystals, the electrode design which generates a

Ez component with a spatially uniform (x, y) distribution is preferred. In special

cases, for a fast quality test of a 1D quasi-phase matched crystal with some unknown

parameters such as the period length, defect domains, and others, a scan along x
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which provides results as in Figs. 4.14a and 4.14b may be sufficient.

4.5 Summary and conclusion

In this chapter, we have presented a new, non-invasive method towards the char-

acterization of the ferroelectric domain structure in 1D periodically poled crystals.

The excellent agreement between simulated and experimental results provides a bet-

ter understanding of the Pockels effect induced inside a ferroelectric crystal, which

demonstrates a new application of PLEOM.

More specifically, our method enables to visualize the inversion of ferroelectric

domains by using the Pockels effect, as manifested by a π phase leap in the mea-

sured phase and by our cancellation of the signal amplitude at the domain walls.

From these results, our method can be further applied to determine poling periods

and duty cycles, study the domain morphology, detect and characterize defects in

the domain structure. PLEOM can be further extended for other types of ferroelec-

tric crystal as well as to study two-dimensional poled structures [68] or nonlinear

photonic crystals [40, 128, 152].

From theoretical calculations and experimental results, PLEOM can be used

to map the spatial distribution of an externally applied electric field including its

amplitude and direction. Experimental and theoretical models for the 2D or 3D

external electric field mapping are given in Appendix A.2 part.
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Following the previously acquired theoretical and experimental results on the char-

acterization of 1D periodically poled ferroelectric KTP crystalline structures, the

PLEOM can be further applied to investigate periodically and aperiodically poled

ferroelectric crystal structures of 2D or 3D spatially modulated the second order

susceptibility χ(2). I present in this chapter the demonstration of such an appli-

cation of using the PlEOM to visualize and characterize the domain structure of

two-dimensional decagonal quasi-periodic LiNbO3 nonlinear crystal. These results

demonstrate the potential of the PLEOM towards a more complete investigation

of the ferroelectric domain structures of two- and three-dimensional photonic or

quasi-periodically poled crystals.
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5.1 Introduction

As was introduced in the previous chapter, optical frequency conversion schemes

are among the most interesting applications of ferroelectric materials. Nonlinear

processes in these crystals are governed by phase-matching requirements, with pe-

riodically poled crystals standing out as the most convenient and traditional imple-

mentation of this condition as theoretically predicted by Armstrong et al. in 1962

[10] and firstly demonstrated by Jundt et al. in 1991 [11]. During the following

decade, a large research effort had been dedicated to the understanding and the

development of fabrications technologies and to the applications of devices based on

1D periodically poled ferroelectric crystals [113–127], which are the simplest form

of the nonlinear photonic crystals. It soon emerged quite natural that the concept

and realization of one-dimensional quasi phase-matched crystals can be extended to

higher dimensions starting with 2D structures. Nonlinear frequency conversion in

two-dimensional photonic crystal was firstly investigated from a theoretical point

of view by Berger in 1998 [12]. Much faster than in the case of the 1D periodi-

cally poled crystals, it took only two years from the proposition of two-dimensional

nonlinear photonic crystal concept into its actual implementation as demonstrated

by N. G. R. Broderick et al. with a Hexagonally poled Lithium Niobate structure

[128]. To this day, two-dimensional nonlinear photonic or quasi-periodic crystals

have remained attractive systems in the view of their unique properties in nonlinear

optics and potential applications [40, 129, 152, 177–182].

As in the case of one-dimensional periodically poled crystals, the visualization

and the characterization of two- or three-dimensional domain structure is a necessary

step for the control of the poling process, in order to bring further improvements

to nonlinear frequency conversion’s efficiency. The domain structure of ferroelectric

crystals is usually investigated by the selected etching methods [128, 177, 179], which

are well-known and simple methods albeit destructive and with the limitations of

applicability only to surface topography. The investigation of the domain structures

can also be performed by all the methods with their respective drawbacks discussed
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in the previous chapter. Among these, a new method based on the Čerenkov-type

second-harmonic generation is very promising for visualization of domain boundaries

in ferroelectric crystals [68–71, 174], as shown in Fig. 5.1.

Figure 5.1: (a) Schematic of the Čerenkov-type second harmonic generation setup; (b-c)
Images of the inverted domain pattern of a 2D quasi-periodic nonlinear photonic structure
(NPS) obtained via (b) Čerenkov SHG inside the NPS and (c) optical microscopy after
selective etching of the NPS surface [68].

This method permits imaging the domain boundary structure in three-dimensions

with confocal microscopy resolution. In the general case of the majority of well-

known ferroelectric materials such as KTP, LiNbO3, KDP, etc, their domains can

have only two orientations, up and down, with respect to the Z principal optical

axis, allowing for the Čerenkov method to display it full potential towards the char-

acterization and imaging of the domain contour in two-dimensional photonic (quasi)

crystals.

Let me now discuss the kinetics of domain build-ups during electric field poling

process, as shown in Fig. 5.2 [42]. A ferroelectric volume that is inverted by electric

field poling must successfully pass six steps. Any error during the process will

reduce the inversion to a small volume under electrode edges, limiting the poling

process only to steps a and b in Fig. 5.2, and thus resulting in incompletely poled

domain. As the Čerenkov method allows only to visualize the domain boundary of
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Figure 5.2: The six steps of domain growth kinetics during the poling process. (a)
Domain nucleation at the electrode edges; (b) domain tip propagation towards the opposite
face of the crystal; (c) termination of the tip at the opposite side of the crystal; (d) rapid
coalescence under the electrodes; (e) propagation of the domain walls out from under the
electrodes and (f) stabilization of the new domains [42].

ferroelectric crystals, it does not permit the discrimination of incompletely inverted

domain from fully inverted one.

The abilities of PLEOM to visualize and characterize ferroelectric domains as

detailed in the previous chapter makes it a complementary technique to the Čerenkov

method for domain border visualization, and for investigating the interior of the

domains in 2D patterned structures. Therefore, we used PLEOM in this study

to characterize and visualize the domain structure of two-dimensional decagonal

quasiperiodic LiNbO3 nonlinear crystals (Fig. 5.1c) which has been developed to

nonlinearly generate red-green-blue coherent light [129]. Its domain structure has

been imaged by Čerenkov SHG microscopy (Fig. 5.1a) with the domain contours

clearly evidenced in Fig. 5.1b [68]. Using PLOEM technique, we can complement

the results of the Čerenkov microscopy study of decagonal quasiperiodic LiNbO3

nonlinear crystal structure by acquiring the detailed topographic of the domain

structure of the ferroelectric crystal, including the identification of completely and

incompletely poled domains.
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5.2 Lithium Niobate: structure and optical prop-

erties

Lithium Niobate (LiNbO3) is a synthetic dielectric material, not existing in nature

contrary to such traditional NLO materials as Quartz, albeit also not of compara-

ble use in the applications. Lithium Niobate is indeed one of the most important

nonlinear materials for integrated optics, and is widely used in many applications

in nonlinear optics including second-harmonic generation, acoustic wave transduc-

ers, beam deflectors, optical modulators, etc [183]. In particular, this material is

one of the most widely used materials for mid-IR range optical parametric oscilla-

tions. Lithium Niobate is a non-centrosymmetric, negative uniaxial and ferroelec-

tric material, featuring large pyroelectric, piezoelectric, nonlinear, photo-elastic and

electrooptic coefficients [184, 185].

5.2.1 Structure of Lithium Niobate

Lithium Niobate is an oxide compound with low-symmetry ABO3 perovskite-like

structure. At room temperature (much below TC), LiNbO3 is a trigonal crystal

with point group 3m and space group R3c, thus lacking inversion symmetry. In the

trigonal system, two different unit cells can be chosen: either hexagonal or rhom-

bohedral. The conventional hexagonal unit cell in LiNbO3 contains six molecular

units with lattice parameters at room temperature: a = 5.1483 Å and c = 13.863 Å

[184, 186, 187].

Above the Curie temperature TC , LiNbO3 goes to a paraelectric phase which is

deprived of spontaneous polarization, as the Li atoms are lying in an oxygen layer

displaced by c/4 distance away from Nb atoms, along the higher symmetry axis.

At the same time, Nb atoms are equally distant from the oxygen layers as shown

in Fig. 5.3b. Below the Curie temperature, lattice elastic forces dominate the

thermal fluctuations of the atom positions, thereby forcing Li and Nb ions into new

sites as shown in Fig. 5.3a. This rearrangement generates a spontaneous dielectric
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Figure 5.3: Positions of the Lithium atoms (double cross-hatched circles) and Niobium
atoms (single cross-hatched circles) with respect to oxygen octahedra in the ferroelectric
phase (T < TC) (a) and the paraelectric phase (T > TC) (b) of Lithium Niobate with the
transition temperature of TC = 1210◦C [184].

polarization along the c direction (z axis in the attached Cartesian coordinates for

the principal dielectric frame) which accounts for the ferroelectric phase of LiNbO3.

5.2.2 Optical properties of Lithium Niobate

LiNbO3 is a negative uniaxial crystal. Thus, it has ordinary and extraordinary re-

fractive indices, respectively no and ne with no > ne corresponding to two orthogonal

polarization [184, 185]. The values of those refractive indices are 2.2910 and 2.2005

respectively [184], at the room temperature (T = 25◦C) and 632.8 nm wavelength

of He-Ne laser [184].
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LiNbO3 belongs to the 3m class crystal so that the SHG optical tensor in con-

tracted index form has the following form [41]:

[d] =




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



0 0 0 0 d31 −d22
−d22 d22 0 d31 0 0
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with the following values for the nonlinear optical coefficients: d22 = 7.4 pm/V;

d31 = 14 pm/V; and d33 = −98 pm/V [41].

The electrooptic tensor, also in contracted form for the first index, can be sim-

plified into [41, 188]:
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(5.2)

where the values of the non-zero coefficients at 632.8 nm are: r13 = 8.6 pm/V,

r22 = 3.4 pm/V, r33 = 30.8 pm/V and r42 = 28.0 pm/V [41, 189].

5.3 Sample preparation

5.3.1 Two-dimensional decagonal quasi-periodic LiNbO3 non-

linear crystal

In this study, we have investigated a two-dimensional decagonal quasi-periodic su-

perlattice patterned by a selective electric field poling technique onto a z-cut LiNbO3

wafer from Australian National University (within a cooperation with the research

group of Prof. W. Krolikowski), which had been engineered towards efficient red-

green-blue laser emission [129]. The microscopic +z surface of the etched sample

is shown in Fig. 5.4 [129] which exhibits the quasi-periodic geometric tiling with
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a tenfold local symmetric axis. It is composed of thin (with vertex angles of 36◦

and 144◦) and thick rhombs (72◦ and 108◦). The side length of the rhombs is about

a = 13.19 µm. The poled circular cylinders are placed at the vertices of rhombi and

their diameters are of the order of 5.2 µm.

Figure 5.4: +z face image of the poled decagonal LiNbO3 quasi crystal after a selective
etching process [129].

5.3.2 Configuration of the sample with respect to the opti-

cal beam and externally applied voltage

In this experiment, the flat gold ribbon electrodes had been prepared by vacuum

evaporation and soft lithography as described in Section 3.4.1, and used here too, in

order to generate quasi-static external electric field by connection with a generator,

like in the previous experiments on single KTP nano-crystals and s 1D periodically

poled KTP crystals. However, in the present case, the thickness of the gold ribbon

electrodes was lowered to 20 nm, comprising a 10 nm thick chromium layer and 10

nm thick gold layer. With such thinner electrodes, the attenuation of the transmitted

sample beam when it passes through the electrode area is reduced. As a result, this

ribbon electrode system allows PLEOM to expand the scanning zone not only over

the free spaces in-between electrodes, but also over areas covered by the electrodes.
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LiNbO3 crystals were oriented in the same way as periodically poled KTP crys-

tals, as shown in Fig. 4.4a. The principal dielectric axis of the LiNbO3 crystal was

taken as the laboratory reference frame. The linearly polarized sample beam prop-

agated along the crystallographic Z axis (coinciding with the z axis in laboratory

frame). The incident beam was focused onto the bottom surface of the crystal, close

to the ribbon electrodes, where the electric field was the strongest.

5.4 Results and discussion

5.4.1 Theoretical calculation

As already presented in the previous chapters, the external electric field generated

from this ribbon gold electrode system exhibits only two non-zero components along

the y and z axis because of the mirror symmetry conditions with respect to x, and

due to the length of the ribbon electrodes which are much longer than their width.

Fig. 5.5b shows the 2D map of the electric field generated by the ribbon electrodes

in yz plane. In the region above the free area in-between electrodes, Ey and Ez

components are significant, whereas above the gold electrodes, Ey component is

negligible compared to the Ez component as shown in Fig. 5.5b.

After adequate focusing the sample beam by the first microscope objective at the

bottom surface of the crystal, the intersection of the sample beam and the effective

space of the crystal (where the external electric field can penetrate effectively) defines

a conical interaction volume. Consequently, the initially linearly polarized state of

light rays is not maintained. Due to Gaussian distribution of the sample beam, the

main part of the optical energy propagates along the center beam. Based on the

validity of the assumption presented in the previous chapter to simulate periodically

poled KTP, we assume that the sample beam maintains its linear polarization within

the xy plane while propagating along z. The electrooptic phase retardation ∆ϕi of

a light ray with its linear polarization along the i axis (i being either x or y) when
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Figure 5.5: (a) Electrodes’ cross-section in the yz plane. The thickness and width of
the gold electrodes are respectively 20 nm and 70 µm which are much smaller than the
electrode’s length, and the distance between the electrodes alternates between 100 µm or
50 µm. (b) Two-dimensional map of the electric field generated from these electrodes in
yz plane. Its orientation is shown by black arrows and its magnitude is colour coded.

it propagates along the z is given by the following formula:

∆ϕi =
πn3

o

λ

∫

∑

j

rijE
Ω
j dz (5.3)

where no is the ordinary refractive index of the crystal, EΩ
j is the j component of the

external electric field at Ω frequency, rij is the linear electrooptic coefficient which

is given from expression 5.2, and λ is the wavelength of the laser beam.

If the polarization of the incident ray is along the x, its electrooptic phase shift is

given by:

∆ϕx =
πn3

o

λ

∫

(

−r22EΩ
y + r13E

Ω
z

)

dz (5.4)
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In the case of linearly y-polarized sample beam, the corresponding linear electrooptic

phase retardation is given by the following expression:

∆ϕy =
πn3

o

λ

∫

(

r22E
Ω
y + r13E

Ω
z

)

dz (5.5)

Expressions 5.4 and 5.5 account for the phase retardations introduced in the light

beam by the Pockels effect in LiNbO3 crystal in the configuration where both EΩ
y

and EΩ
z components of the external electric field contribute. This situation is more

complex than that in the case of the KTP crystal, where the Pockels phase shift

was seen to depend only on single EΩ
z component. In order to simplify the case at

hand, the scanning zone was chosen above the gold electrode area where the EΩ
y

component can be neglected as evidenced in Fig. 5.5b. As a result, the Pockels

phase retardation for the scanning beam with a linear polarization along y (or x)

axis becomes:

∆ϕy =
πn3

o

λ

∫

r13E
Ω
z dz (5.6)

Building-up on the model that had been proposed and confirmed for the case

of periodically poled KTP, the Pockels phase shift experienced by this optical wave

can take a positive or a negative values, depending on beam’s path. If the optical

path stays within a regular (resp. inverted) ferroelectric domain, the Pockels phase

shift takes a positive (resp. negative) value. In the paraxial approximation, the

linear electrooptic phase shift experienced by the sample beam can be averaged

over all contributing rays. Consequently, the signal is minimal when destructive

compensation occurs due to equal and opposed contribution from opposite domains,

e.g. when the beam waist of the sample beam is centered at the domain boundary.

5.4.2 Experimental results

In this study, a 150 V AC voltage at Ω = 20 kHz modulated frequency was applied

to the ribbon electrode system to generate external quasi-static electric field. The

scanning zones were chosen above the electrode area where the EΩ
y component was
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Figure 5.6: (a) Amplitude and (b) phase (measured phase) images of the Pockels signal
from the two-dimensional decagonal quasi-periodic LiNbO3 nonlinear crystal obtained by
PLEOM with the magnitude is colour coded. Measured phase of the signal is the difference
between the phase of EO signal and that of the reference voltage from lock-in amplifier.

neglected and the EΩ
z component considered as an approximately spatially homoge-

neous electric field within xy plane.

The image decagonal quasi-periodic LiNbO3 nonlinear crystal in the amplitude

and phase images of the Pockels signal are shown in Fig. 5.6. The images were

obtained with the PLEOM working in synchronous detection mode, performing

a 2D scan in the xy plane over a 40×40 µm2 area with a 400 nm step, 100 ms

acquisition time. In the scanned area, both images are clearly seen to correspond to

a grouping of domains abiding to tenfold local symmetric according to the designed

pattern. The colour code in these images describes the magnitude of the Pockels

signal including both amplitude and phase. The red coded zone at the right side

of the amplitude image corresponds to high Pockels signal at the vicinity of the

electrode edge where the EΩ
z component is peaking.

In contrast with the case of 1D periodically poled nonlinear crystals, the am-

plitude image of the current two-dimensional quasi-periodic structures only shows

the domain boundaries corresponding to the minima of the amplitude of the Pock-

els signal. This minimal amplitude originates from the destructive compensation

when the beam waist of the sample beam is equally shared by regular and inverted
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structures. The frontiers of the inverted domains are marked with the blue coloured

contours of different sizes an shapes, as shown in the amplitude image. An expected

π shift allows to distinguish inverted domains from the regular ones as shown in

Fig. 5.6b. The average diameter of inverted domains is found to be approximately

5.5 µm, which is in good agreement with the structural design. The characteristic

PLEOM signature of completely poled domain are a closed border line (coded in

blue) in the amplitude image and a phase value inside such boundary shifted by

180◦ with respect to the exterior (that is, the regular un-poled structure) as shown

in Figs. 5.6, 5.7 and 5.8.

The PLEOM amplitude image of the domain pattern (Fig. 5.6a) is in excellent

agreement with that from Čerenkov SHG microscopy as shown in Fig. 5.1b. In

Čerenkov SHG microscopy, the image is built from Čerenkov SHG signal generated

at the beamwaist of strongly focused fundamental beam, which act as quasi-point

harmonic source. In contrast, the image obtained by the PLEOM is build from

progressive accumulation of the Pockels phase shift along the optical beam path

through the crystal. Thus, in contrast to Čerenkov SHG microscopy, which brings

a signal only from the walls of the inverted domains, the PLEOM provides the

information from entire crystal. Taking a closer look at Fig. 5.6, we can see only

8 inverted domains surrounding a central one, whereas the original design included

10 inverted domains. Two inverted domains are missing at the upper positions in

order to fulfill the local ten-fold symmetry. At the location of one of the two missing

inverted domains defined by the coordinates(48 µm, 67 µm), one can identify a small

area coded in blue colour corresponding to low magnitude Pockels signal. The very

small size of this blue spot can be the signature of an incompletely poled domain

at this location, as well as that of a completely poled domain of very small radius.

The case of an incompletely poled domain is better evidenced at (38 µm, 33 µm)

coordinates, as in Fig. 5.6a, where the blue line delineated domain frontiers, and

the characteristic π shift from inside to outside are both absent. However, for such

incompletely poled domain which only small volume around the electrode edge with

the shape as the boundary contour of a completely poled one is poled as shown in
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Figs. 5.2a, b and c, the Čerenkov SHG microscopy would provide a domain wall

image similar to that of the completely poled one.

Figure 5.7: PLEOM generated (a) Amplitude and (b) Phase images of the Pockels
signal from a two-dimensional decagonal quasi-periodic LiNbO3 nonlinear crystal of thin
rhomboid shape.

Performing another scan over a 30×30 µm2 area with a smaller 300 nm step, 100

ms acquisition time and synchronous detection, the amplitude and phase image in

Fig. 5.7 captures a thin rhomboid structure with six inverted ferroelectric domains

arranged on a quasi-hexagon around a centered domains. The average lateral length

of the rhomb is around 13.0 µm and the diameter of the inverted domain ranges

from 4 to 8 µm, very much in consistent with the structure design [129]. In this

area, PLEOM exhibits completely poled domains without any incomplete one as in

the previous scan.

The electrooptic dephasing carried by the optical beam and then measured by

PLEOM is sensitive to variations of the refractive of the sample that have been cap-

tured within the conical volume carved by the incident beam in the sample. Domain

boundaries are then visualized by the destructive interference compensation of the

Pockels response of the two parts of the laser beam that propagate in oppositely

poled domains. If the diameter of an inverted domain is small with respect to the
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Figure 5.8: (a) Amplitude and (b) phase (measured phase) images of the Pockels signal
from a two-dimensional decagonal quasi-periodic LiNbO3 nonlinear crystal as obtained by
PLEOM over an area including an inverted domain. Cross-sectional profile lines along y
at x = 32.4 µm of the amplitude (c) and phase image (d).

beam waist, a fully destructive compensation can not occur. Consequently, this sets

a lower limit to the size of a completely inverted domain that PLEOM is capable

to visualize. Such limit size depends on the thickness via a linear relation. In this

work, the thickness of sample is thicker than the effective penetrating depth of the

external electric field EΩ
z which could be estimated to be of the order of 150 µm as

the simulation in the previous chapter.

Performing a scan over a small area comprising only one inverted domain with

a diameter of the order of 4 µm, amplitude and phase images from the Pockels

signal for this area are shown in Figs. 5.8a and b. The cross-sectional profiles of the

amplitude and phase image along y at x = 32.4 µm are represented in Figs. 5.8c

and d respectively. Fig. 5.8d clearly evidences a π phase shift from the inverted
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to the regular domain whereas Figs. 5.8a and c point-out the boundary in-between

these, where the Pockels response is minimal. The smaller signal at the interior of the

inverted domain compared to that for the regular domain is due to the conical volume

of the sample beam even when its focused spot is posited inside the inverted domain,

always overlaps a part of the regular one, thus responsible to a partially destructive

interference. Further reduction of the domain size would increase this destructive

contribution. Accordingly, PLEOM can not visualize and characterize an inverted

domain below a certain domain which depends on the focusing conditions and sample

thickness. In the present configuration, the lower limit size for an inverted domain

to be visualized by PLEOM is of the order of 2 µm. In other cases, the thinner

the thickness of the sample, the lower the limit of an inverted domain which can

be detected by PLEOM. In conclusion, PLEOM has the potential to visualize and

characterize two-dimensional nonlinear photonic crystals with periodic length as

small as the size of the beam waist of the laser in the sample, for an appropriate

thickness.

5.5 Conclusion

The results detailed in this chapter clearly establish the potential of PLEOM for

investigating both one-and two-dimensional nonlinear crystals. An inverted domain

is distinguished from a normal one by a measurable π shift in the phase image,

whereas the amplitude image points at boundaries between ferroelectric domains.

Incompletely poled domains can be detected by PLEOM, thus providing an efficient

characterization tool for the domain structure. Combined with Čerenkov SHG mi-

croscopy, it is able to provide detailed quantitative information on each ferroelectric

domain in a periodic as well as aperiodic nonlinear structure.

The success of this study in the case of the more complex LiNbO3 electrooptic

crystal that sustains eight non-zero linear electrooptic tensor coefficients compared

with the simpler case of KTP confirms the ability of PLEOM to image and character-

ize the domain properties of all ferroelectric materials with one- or two-dimensional
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periodic or aperiodic photonic structures, moreover bringing in important phase

related information that is not readily available from Čerenkov SHG microscopy.

Using PLEOM, I could visualize with a very good resolution inverted domains

in a two-dimensional decagonal quasi-periodic LiNbO3 nonlinear crystal with a di-

ameter down to 4 µm. Results in the chapter substantiate the potential of PLEOM

for further characterization ferroelectric domains down to the diffraction limit.
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Conclusion and perspectives

Advances in the fabrication of tailored nonlinear materials with artificial domain

structures towards nonlinear optical frequency conversion triggered the activity of

a numerous research groups worldwide. Nonlinear crystals which feature a spon-

taneous dielectric polarization belong to the important ferroelectric class are par-

ticularly relevant in the this research. Accordingly, high resolution quantitative

imaging of ferroelectric domain structures are in high demand towards a better un-

derstanding of these materials for upstream physical reasons as well towards the

improvement of fabrication processes of nonlinear optical and related ferroelectric

based devices. Following the work of two previous doctoral thesis [66, 67], and the

conception and earlier demonstration of a homemade microscopy that combines con-

focal microscopy with Mach-Zehnder interferometry and balanced homodyning,with
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its operating principle based on the Pockels effect, our purpose has been here to im-

prove this setup and allow it to embrace new applications. In this perspective, we

proposed to investigate ferroelectric materials, which currently account for an impor-

tant part of nonlinear materials from bulk format such as in laser pointers or optical

parametric sources, down to the nano-scale as for nonlinear labels in bioimaging of

cells, membranes or tissues [38, 46, 48, 58, 102].

We recall in this thesis the experimental setup, working principle and applications

to nonlinear materials of our home made Pockels Linear Electro-Optical Microscope

(PLEOM). In this study, we have demonstrated the relevance of PLEOM towards

the investigation of ferroelectric domain structures from bulk down to nano scale.

The main results of this work are summarized in the following:

Firstly, we have developed a full theoretical analysis of electrooptic light scat-

tering from randomly oriented KTP single domain nano-crystals. Based on experi-

mental results obtained from 150 µm KTP nano-crystals by PLEOM as presented

in Chapter 3, we have demonstrated for the first time that the orientation and

more specifically the vectorial features attached to the dielectric dipole moment of

a single random ferroelectric nano-crystal could be accurately extracted from the

polarization plot and the phase of its Pockels response. These results validate the

capacity of PLEOM to be applied to 3D imaging by use of ferroelectrics as nano-

scale probes. The full determination of the vectorial features of single ferroelectric

domains at the nano-scale allows to use ferroelectric nano-crystals quantitative Volt-

age or field nano-scale sensors with applications in optoelectronics and biology. The

good agreement between our theoretical model and the experimental results qual-

ify PLEOM towards the investigation of a broad range of ferroelectrics down to

the nano-scale. Moreover, the high signal-to-noise ratio and broad detection dy-

namics of PLEOM open the way to the mapping of even smaller nano-crystals of

even smaller sizes (from 100 to 10 nm) especially for nonlinear materials with high

Pockels coefficients such as BaTiO3 or Sr0.6Ba0.4NbO6, etc. . . Then nano-scale ap-

plicability of PLEOM could then compare to that of second-harmonic generation

microscopy where a record of 11 nm was reached in our laboratory for II-VI CdSe
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based semiconductor nanoparticles [61].

We have also introduced in this work a new and non-invasive method towards

the characterization of the ferroeelctric domain structure of 1D periodically poled

crystals, choosing for this demonstration a KTP structure with 36 µm period and

the cubic micrometer volume range (10×2×0.5 mm3). We have reported in Chapter

4 the ability of PLEOM to visualize the inversion of ferroelectric domains by a π shift

from the phase signal whereas the domain boundaries could be clearly singled-out

and mapped, based on the cancellation of the signal amplitude. A theoretical model

for the evaluation of Pockels response via PLEOM periodically poled KTP crystals

was proposed, and used in simulations. The excellent agreement between simulated

and experimental results provide a better understanding of the Pockels effect induced

within the ferroelectric KTP crystal as well as the experimental potential of PLEOM

to address such issues. Using the configuration of this experiment, a fast test of

the quality of 1D quasi-phase matched crystals in order to evaluate some unknown

parameters such as their period length, defect domains, and others can be efficiently

performed in a fast mode, by restricting the scan form 2D to 1D, along the x direction

only.

Furthermore and along the same direction, PLEOM bears the ability to char-

acterize and visualize periodic or aperiodic domain structures of the ferroelectric

poled crystals of higher order than just two- or three-dimensions. Building-up on

this possibility, we proved that PLEOM could be fruitfully applied to a decagonal

quasi-periodic superlattice of Lithium Niobate, another benchmarking ferroelectric

crystal, namely LiNbO3 as reported in Chapter 5. In this case, microscale cylin-

dric inverted domains could be distinguished from the regular background domains

by a π shift of the phase signal, whereas the amplitude image displays the domain

boundaries. A quasi-periodic geometric tiling with ten-fold symmetric axis and a

thin rhomb could thus be imaged by PLEOM. The average diameter of the inverted

domains and side length of the rhomb in this structure are approximately 5.5 µm and

13.0 µm respectively, which are in excellent agreement with the pre-defined design

of the structure. Completely poled domains are characterized by PLEOM through
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their closed contours in the amplitude image and opposite phase values in the phase

image, whereas incompletely poled domains fail to satisfy those criteria. The lowest

boundary size for a completely poled domain to be investigated by PLEOM can be

estimated to be of the order of 2 µm for a thick crystal with the thickness higher

than 150 µm and can come down to the size of the focusing spot when considering

a thinner crystal.

The successful outcome of PLEOM based investigations of crystals including

one- to two-dimensional periodic as well as aperiodic electrooptic structures, con-

firms the potential of PLEOM to visualize and characterize domain structures of

all ferroelectric patterned structures, from crystalline to liquid crystalline phases

[190, 191].

Based on results reported in this work, PLEOM offers most promising perspec-

tive in the field of nonlinear optical materials and structures, entailing important

applications in life sciences or optoelectronics devices. Moreover, full characteriza-

tion by PLEOM at nano-scale enables the use of nano-crystals as nano-probes for

2 or 3D imaging of biological objects, which is currently the most promising and

demanded applications for nonlinear optical crystalline structure. Beside the ap-

plication in order to investigate nonlinear materials, the evaluation of an external

electric field comprising its magnitude and direction can be performed as detailed

in part A.3.

After setting-up and testing the advanced configuration of PLEOM presented in

Section 2.5.3, and increasing number of entities such as plasmon sustaining metallic

or non-transparent nano-particle can be investigated via electrooptic scattering from

their surface.
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Appendix

A.1 Pockels cell as a reference for the Pockels re-

tarded phase measured by PLEOM

In this Section, we will briefly introduce the working principle and application of

a Pockels cell, which is used as a bench-marking reference for the conversion of an

electric signal measured by PLEOM onto a Pockels retarded phase. In our PLEOM

set-up, we have used a Pockels cell with a double Q-switch interface produced by

the LEYSOP company.

126
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Figure A.1: (a) Schematic diagram of a Pockels cell using a KD∗P crystal in longitudinal
mode (applied electric field along the Z). (b) The index ellipse of the KD∗P crystal
corresponds to light propagating along the z direction. {XY Z} is the crystalline principal
dielectric frame which rotates into {xyz} under an externally applied electric field [41].

A.1.1 Pockel cell function in PLEOM

Expanding over the brief outline in Section 2.4.4, I describe in more detail in this

Appendix the purpose, working principle and function of a Pockels cell within our

PLEOM setup.

The KD2PO4 (KD∗P) nonlinear optical crystal was used in our Pockels cell,

KD∗P being an uniaxial crystal which the index ellipsoid reduced to an ellipse of

revolution about the optic axis (Z) with nX = nY = no and nZ = ne. The optical

indicatrix expression for the (KD∗P) crystal is given by:

X2

n2
o

+
Y 2

n2
o

+
Z2

n2
e

= 1 (A.1)

For a crystal abiding to 42m symmetry point group, the electrooptic coefficients
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of the (KD∗P) crystal reduce the following form:
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with r41 = 8.8 pm/V and r63 = 26.4 pm/V at the 0.5461 µm wavelength [41].

Under the application of an external electric field
−→
E = ( 0 0 EZ ) as in Fig. A.1a,

the optical indicatrix expression A.1 is modified as:

X2

n2
o

+
Y 2

n2
o

+
Z2

n2
e

+ 2r63EZXY = 1 (A.3)

Applying a 45◦ rotation about the Z axis, the new ellipse axis become x and y with

X =
x− y√

2
; Y =

x+ y√
2

and Z = z

and the ellipse equation now becomes:

(

1

n2
o

+ r63Ez

)

x2 +

(

1

n2
o

− r63Ez

)

y2 +
z2

n2
e

= 1 (A.4)

which describes an ellipsoid in the new coordinate system xyz. Assuming a phys-

ically realistic value of r63Ez much smaller than 1, the new principal values of the

refractive index are given by:

nx = no −
1

2
n3
or63Ez (A.5)

ny = no +
1

2
n3
or63Ez (A.6)

Under the application of an external electric field, the index ellipse of the crystal for

light propagating along the z axis is reshaped from circular to elliptic as shown in

Fig. A.1b. The variation of this refractive index in the new optical principal axis is

proportional to the amplitude of the external electric field and depends only on the

r63 electro-optical coefficient.
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Figure A.2: Experimental intensity (a) and phase (b) of the polarization response from
the Pockels cell under the application of a 10 mV AC Voltage at 20 kHz frequency measured
by PLEOM. α is the angle of the polarization of the incident beam in the {XY } plane.
The magnitude of the electrooptic intensity is at the mV scale.

A.1.2 Application of Pockels cell in the PLEOM

We have used the Pockels cell as a reference back-up in our PLEOM set-up in view

of its well known electro-optical parameters. More specifically, the Pockels electric

signal from samples measured with a lock-in amplifier in PLEOM are converted

into a retarded phase with an instrument dependent conversion ratio. Replacing

the unknown sample by the Pockels cell and leaving other experimental conditions

unchanged, allows to determine this coefficient. A Pockels cell normally works under

the application of a DC high voltage such as towards Q-switching functions, whereas

in our case, we have applied an AC voltage with a high frequency above the low

frequency cut-off at 10 kHz. A prerequisite is therefore the characterization of the

electrooptic effect from the Pockels cell under the application of an AC voltage.

Fig. A.2 displays the experimental intensity and phase of the polarized response

from our Pockels cell. The polarization intensity exhibits four identical lobes with

the maximal value at the angles corresponding to the new principal optical axis

(after rotation by 45◦ from the initial one). The phase response (Fig. A.2b) exhibits

an expected π shift discontinuity for different α intervals following sign changes of

the effective electrooptic coefficient. These results are in good agreement with the
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model presented in Section A.1.1.

Figure A.3: Intensity of the electrooptic response from the Pockels cell under the appli-
cation of a 10 mV AC voltage at frequencies ranging from 20 to 500 kHz. The incident
beam propagates along the Z axis, whereas its polarization is along the rotated principal
dielectric axis x at 45◦ from X within the {xy} plane.

Fig. A.3 presents the dependence of the electrooptic response from our Pockels

cell for a modulated frequency ranging from 20 to 500 kHz as determined by PLEOM.

Our results are consistent with the experiment performed by Gerlach et al. who

measured the electrooptic coefficient of KDP at high frequency [192]. Fig. A.3

exhibits the electrooptic retarded phase from the Pockels cell with respect to the

modulated frequency. It exhibits different peaks, the highest one at a resonance

frequency of 123.7 kHz. These variations originate from the frequency dispersion of

crystalline deformations of various physical origins under the application of an AC

electric field. The contribution of this deformation to the Pockels effect is captured

in the following expression [184, 192]:

rTij = rSij +
∑

k

pikdjk, with 1 6 k 6 6 (A.7)

where rTij is the total Pockels coefficient measured at constant stress (for a free

crystal), rSij the value measured at constant strain, pik the photoelastic coefficient

and djk the piezoelectric coefficient.
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Let us concentrate on the r63 coefficient, as given by:

rT63 = rS63 + p66d36 (A.8)

The frequency dependence of the photo-elastic and piezoelectric coefficients with

respect to the external electric field leads to a variation of the total Pockels coefficient

as measured by PLEOM and displayed in Fig. A.3. Until today, there is no report

of a full investigation of the relation between the total Pockels coefficient of the

KD∗P crystal with the frequency of the externally applied electric field. This would

require to measure a phase shift for light propagating along the Z axis of the crystal

under the application of an AC voltage at a well defined frequency, allowing to infer

the value of the rT63 coefficient at this frequency via PLEOM. In the absence of such

a facility, we can only at this stage use our Pockels cell to estimate the order of

magnitude of the Pockels phase retardation from the measured electric signal by

comparison with that from the KD∗P crystal via the rT63 coefficient in order with the

well known rS63 value (26.4 pm/V [41]).
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A.2 Simulation of the scan along the x axis of a

periodically poled KTP crystal

As briefly described in Section 4.4.1, we used a simple model in our simulation.

We assume that the intersecting volume between the incident beam and the sample

defines a conical volume as shown in Fig. A.4a. The height of this conical volume

h = 150 µm is of the order of the depth of the crystal which is effectively penetrated

by the external electric field.

(a) (b)

Figure A.4: (a) Simplification of the sample beam shape to a cone of height h. The radii
of the section of the conical beam are R1 and R2 where R1 is the size of the beam-waist
which is of order of the wavelength of light, the {Ox′

y
′

z} frame defining coordinates for a
conical shape. (b) z dependence of the Ez component from our COMSOL simulation(in
blue) and fitted function represented by a red line.

The radius of the beam waist is given by:

R1 =
1.22λ

2× NA
(A.9)

where λ = 632.8 nm and the numerical aperture NA = 0.6.

Whereas the upper radius R2 is given by:

R2 =
NA

√

1− NA2
× h+R1 (A.10)
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At the z altitude, with conical section given by:

R =
NA

√

1− NA2
× (z − h) +R2 =

NA
√

1− NA2
× z +R1 (A.11)

the sample beam follows within this plane a Gaussian radial function leading to a

power density:

I(x
′

, y
′

, z) = I0f(z).e
−

2(x
′2 + y

′2)

(R/2)2 (A.12)

where I0 is a constant and f(z) is a function of z following f(z) ∼ 1/R2 so as to

conversation of the total energy flux of the beam at different z positions.

Expression A.4 can then be re-expressed:

I(x
′

, y
′

, z) = I0
1

(R/2)2
.e

−

2(x
′2 + y

′2)

(R/2)2 (A.13)

And now the dαs in expression 4.9 can be replaced by:

dαs =
√

I0
2

R
.e

−

x
′2 + y

′2

(R/2)2 dx
′

dy
′

(A.14)

Whereas the ∆ϕj in expression 4.12 is an integral along z with EΩ
z (z) is evaluated

by the fitted function from the simulation of the electric field as displayed in Fig.

A.4b (one of the simulation results as given in Fig. 4.6b). The EΩ
z (z) z dependence

is expressed as:

EΩ
z (z) = −21170.74 + 101601.6z − 4630.93z2 + 100.86z3

− 1.254z4 + 0.009z5 − 3.46.10−5z6 + 5.51.10−8z7 (A.15)

Expression 4.9 can be expressed as:

∆i = −2ραr

√

I0
πn3

y

λ
r23

∫∫∫

2

R
.e

−

x
′2 + y

′2

(R/2)2 EΩ
z (z)dx

′

dy
′

dz (A.16)

Which can be further simplified into:

∆i = α

∫∫∫

2

R
.e

−

x
′2 + y

′2

(R/2)2 EΩ
z (z)dx

′

dy
′

dz (A.17)
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where α is a proportionality factor.

As from Exp. A.17, the electrooptic signal is proportional to a volume integral

within our quasi-conical beam approximation when the sample beam propagates

through a single domain. In the more general case where the sample beam propa-

gates through alternating domains, the conical volume has to be sliced into different

portions corresponding to truncations by domains. The electrooptic signal for each

truncated sections is calculated from Exp. A.17, the volume integration taking a

positive value over a regular domain, and a negative one over an inverted domain.

The overall electrooptic signal is obtained from the summation of integrals over the

single-domain truncated cones.
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A.3 Electric field mapping in three-dimensions

A quantitative electric field mapping method can be elaborated from our results

in PLEOM based investigations of periodically poled KTP. In particular, we have

evidenced in Figs. 4.13a and 4.14c the y dependence of the electric field which shows-

up via the Ez contribution to the r23Ez product as from Exp. 4.12. Following the

Pockels effect, which expresses the variation of the refractive index ∆n of a nonlinear

crystal upon application of an external electric field Eext, PLEOM can be used to

investigate nonlinear crystals starting now from a clear understanding of the external

electric field. In such an inverse scheme, PLEOM can be used to map an unknown

electric field including its three components and full orientation, when a well-known

ferroelectric crystal is used as a probing medium.

Figure A.5: (a) Scheme for the electric field mapping of PLEOM in which a well know
probing crystal (1) is fixed at the beam waist of the sample beam whereas an electrode
system (2) is mounted on a piezoelectric stage which allows to perform a 3D scan. (b),
(c) and (d) are three different orientations of the probing crystal, corresponding to the
detection of the Ez, Ex and Ey components respectively. Oxyz is the laboratory frame
and OXY Z is the principal dielectric frame of the crystal.

The integral in expression 4.12 can be approximated by a local (x,y,z) dependent

value when the thickness ∆z along the z of the electro-optic media ensures that the
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field variations across ∆z can be neglected (i.e. (dE/dz)∆z ≪ E), in other terms

that the field can be assumed constant over the crystal thickness, thus allowing to

reduce the integral to rE∆z. One can view this approach as a spatial variant of

electro-optic sampling where the sampling medium is here a thin electro-optic film.

It can be either an electro-optic polymer film or a single crystalline thin film such as

from KTP, with the advantage in the former case of a smaller thickness in the micron

range which can be readily obtained by spin-coating techniques over large surfaces,

or even reduced to sub-micron thickness by controlled etching methods. In contrast,

the thickness of crystalline ferroelectric samples can hardly be reduced below a few

tens of microns under current fabrication techniques [193]. Indeed, the smaller the

thickness of the electro-optic structure, the more valid the approximation of the

phase accumulation integral by an averaged phase and hence, the higher the spatial

resolution from slicing the electric field distribution along planes perpendicular to

the film depth.

Following this direction, we propose a method for the electric field mapping by

using PLEOM in the configuration shown in Fig. A.5a. In this configuration, a

simple KTP crystal with a thickness of the order of a few micrometers is used as

a probing crystal, which is set at the beamwaist of the sample beam. The sample

beam propagates through the crystal along z. An electrode system is mounted

on the surface of a piezoelectric stage, which allows to perform a scan in two- or

three-dimensions.

• Ez mapping

A Z-cut KTP crystal of thickness e in the range of a few micrometers is

orientated as in Fig. A.5b. In this case Ez = EZ . If the linear polarization of

the sample beam is along the x (X), its electrooptic phase retardation is an

integral along the optical path inside the crystal, given by:

∆ϕX =
πn3

X

λ

∫ e

0

r13EZdl =
πn3

X

λ
er13EZ (A.18)

where the electrooptic coefficients rij is obtained from Table 3.2.

In the other case, when the linear polarization of the sample beam is along



A.3 Electric field mapping in three-dimensions 137

the y (Y ) axis, its electrooptic phase retardation is given by:

∆ϕY =
πn3

Y

λ

∫ e

0

r23EZdl =
πn3

Y

λ
er23EZ =

πn3
Y

λ
er23Ez (A.19)

Using PLEOM to measure the electrooptic phase retardation, the Ez compo-

nent can then be inferred.

• Ex mapping

In this case, a X-cut KTP crystal of similar thickness e is orientated as in Fig.

A.5b leading to Ex = −EZ . The sample beam propagates through the crystal

along the z (X) axis, with its linear polarization along the x (Z) axis. The

electrooptic phase retardation is then given by:

∆ϕZ =
πn3

Z

λ

∫ e

0

r33EZdl =
πn3

Z

λ
er33EZ = −πn

3
Z

λ
er33Ex (A.20)

Using PLEOM to measure the electrooptic phase retardation, the Ex compo-

nent can be inferred.

• Ey mapping

In this case, a X-cut KTP crystal with a similar multi-micron thickness e

is orientated as in Fig. A.5c, with Ey = EZ . The sample beam propagates

through the crystal along the z (X) axis with its linear polarization along the

y (Z) axis, the electrooptic phase retardation being given by:

∆ϕZ =
πn3

Z

λ

∫ e

0

r33EZdl =
πn3

Z

λ
er33EZ =

πn3
Z

λ
er33Ey (A.21)

Using PLEOM to measure the electrooptic phase retardation, the Ey compo-

nent can be inferred, thus completing the full determination of the electric

field components.

Fig. A.6 shows an example of the Ez mapping, as can be obtained from PLEOM.

In this case, the amplitude and phase images achieved by PLEOM provide an image

of the Ez component, including its magnitude and direction over the scanned zone.

A 2D image of the Ex or Ey component also an be obtained likewise.
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Figure A.6: Example of the Ez component mapping in the {xy} plane, where Ez is
a component of the electric field generated from two ribbon electrodes as shown in Fig.
A.5a. (a) Simulated amplitude and (b) phase images by PLEOM and (c) 2D image of the
Ez component as a result from (a) and (b).

Along similar lines, one can also envision to set an electrooptic nano-probe with

well known orientation (that can be determined by PLEOM as in the case of the

single KTP nano-crystal) at the focal point of the objectives, while the position of

the planar electrode structure is being displaced by a piezoelectric mount to various

positions, allowing the nano-particle to sense different values of the electric field.
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A.4 Application of PLEOM to biological samples

Nowadays, a growing number of research results primarily generated in physics or

chemistry, tend to be spun-off to biological studies. In order to investigate biological

samples, non-invasive methods (non-destructive methods) have been in high demand

towards the study of living tissues.

Membranes, such as lipid bilayers play an essential role as barriers which protect

the cell and their intracellular organelles. The ion concentration gradients between

the internal and external solutions of the membrane maintain an equilibrium po-

tential which controls the exchange process between cells and their external envi-

ronment. Various experimental methods have been used to stimulate and measure

this potential, among which patch-clamp technique is the best known [194–196].

Other methods are based on voltage sensitive fluorescence probes [197] and more

recently, an adaptation of the electric field induced second-harmonic generation

method [98, 99, 101]. Building-up on its non-invasive character and the very low

intensity level of the illumination beam that is required (typically less than 10%

of a 1.5 mW laser beam from a CW He-Ne laser), PLEOM stands out as a most

promising candidate to investigate biological samples. This direction has been fol-

lowed since the previous doctoral thesis [67], starting with the imaging of dye-doped

artificial lipidic membranes [2].

In the wake of this previous study, our new goal was to use PLEOM in order

to measure the membrane potential. Let us start by discussing the case of lipid

bilayers stained by nonlinear molecules. The effective susceptibility for second-order

nonlinear molecules in the present of a static electric field (membrane potential) is

given by [198]:

χ
′(2) = χ(2) + χ(3)Em (A.22)

where χ
′(2) is the effective second-order susceptibility and Em is the membrane

electric field.

The third-rank second-order nonlinear susceptibility tensor χ
′(2)
ijk is linked to the
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Pockels electro-optical tensor rijk by the following relation:

r
′

ijk(−ω;ω, 0) = − 2

ǫiiǫjj
χ

′(2)
ijk (−ω;ω, 0) (A.23)

Exps. A.22 and A.23 exhibit a linear dependency of the effective Pockels coefficient

r
′

ijk with respect to the membrane electric field Em.

Figure A.7: Steps of bilayer formation such as (a) insertion of the buffer and the dye
(red arrows) in the upper channel; (b) injection of the lipid into the lower channel; (c)
injection of the buffer solution in the lower channel and formation of the bilayer [67]. (d)
Principle of probing the electrooptic effect of a one-side dye-doped membrane [2].

In this study, artificial lipidic bilayers were used as a model for the lipid matrix

in biological cell membranes. A lipid bilayer is prepared in a biochip through three

main steps as shown in Fig. A.7. Firstly, 15 ml of a buffer solution with 0.1 M

KCl and 10 mM of 3-(n-morpholino)propane sulfonic acid (MOPS) at pH7 stained

with Di-8-ANEPPS dye molecules, is inserted in the upper chamber (Fig. A.7a).

An 8 ml liped solution prepared from the dissolution of L-α-phosphatidylcholine

(Egg chicken, Avanti Polar Lipids) with 20 mg/ml in decane, is injected in the lower

channel, leading to the build-up of the first lipid layer as depicted in Fig. A.7b.

In the next step, 30 ml of a buffer solution is injected in the lower channel. The

second lipid layer is then formed as in Fig. A.7c. Following this three step recipe,

we tried to prepare lipid bilayers for our study, but the rate of success of the process
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was below 10%. In order to investigate the best condition for this preparation, all

parameters such as the quality of the buffer solution, lipid and biochip, and the

protocol were studied carefully. In particular, we found that the buffer and lipid

solutions need to be kept in an oven at 35◦ C during at least 15 minute before usage,

allowing to reach under these improved conditions, a success rate surpassing than

90%.

Figure A.8: (a) Amplitude of the spatial electrooptic response of a lipid bilayer stained
by Di-8-ANEPPS dye molecules. (b) Dependence of the magnitude of the electrooptic
response from a dropped lipid bilayer with respect to the DC voltage mimicking the
membrane potential. Blue dots are the experimental data from PLEOM and the red line
is a linear fit.

Fig. A.8a shows the spatial electrooptic response in amplitude over a large area

under a 500 mV peak-to-peak sinusoidal voltage at a 20 kHz modulation frequency.

The lipid bilayer can be clearly identified from the high amplitude of the electrooptic

response from the Di-8-ANEPPS dye molecules, with a 50 µm membrane size in

excellent agreement with the diameter of the supporting hole in the biochip.

In order to study the dependence of the electrooptic response from the dye

molecules which are staining the first lipid layer of the membrane with respect to

the membrane potential, a DC voltage is applied to the lipid bilayer, thus mimicking

a membrane potential. The relation between the electrooptic response from the dye

molecules and the artificial membrane potential was investigated by varying the DC
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voltage from 0 to 100 mV in the same magnitude range as for natural membrane

potential (e.g. 60 mV). Fig. A.8 shows the first observation of this dependence,

whereby the electrooptic response from the dye can be considered as a linear function

of the applied DC voltage, in agreement with Exp. A.23.

Due to the time constraints of this thesis work, I can only report here what may

be considered as the demonstration of a new PLEOM based methodology to image

and investigate the membrane potential in a non-invasive method at a very low level

of illumination.
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czyński, and D. Isakov. Organic-inorganic compounds with strong nonlinear

optical properties based on 2, 4, 6-trimethylpyridinium and tetrahedral bf 4-

networks. Physical Review B 83(14), 144103 (2011).

[32] E. Cariati, R. Macchi, D. Roberto, R. Ugo, S. Galli, N. Casati, P. Macchi,

A. Sironi, L. Bogani, A. Caneschi, et al. Polyfunctional inorganic-organic

hybrid materials: An unusual kind of nlo active layered mixed metal oxalates

with tunable magnetic properties and very large second harmonic generation.

Journal of the American Chemical Society 129(30), 9410 (2007). 4

[33] G. Heilmeier, N. Ockman, R. Braunstein, and D. Kramer. Relationship between

optical second harmonic generation and the electro-optic effect in the molecular

crystal hexamine. Applied Physics Letters 5(11), 229 (1964). 4

[34] R. Hellwarth and P. Christensen. Nonlinear optical microscopic examination



References 147

of structure in polycrystalline znse. Optics Communications 12(3), 318 (1974).

5

[35] R. Hellwarth and P. Christensen. Nonlinear optical microscope using second

harmonic generation. Applied optics 14(2), 247 (1975). 5

[36] I. Freund, M. Deutsch, and A. Sprecher. Connective tissue polarity. optical

second-harmonic microscopy, crossed-beam summation, and small-angle scat-

tering in rat-tail tendon. Biophysical journal 50(4), 693 (1986). 5

[37] B. E. Cohen. Biological imaging: Beyond fluorescence. Nature 467(7314), 407

(2010). 5

[38] P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser. Second harmonic generating

(shg) nanoprobes for in vivo imaging. Proceedings of the National Academy

of Sciences 107(33), 14535 (2010). 5, 123

[39] M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer. Quasi-phase-matched

second harmonic generation: tuning and tolerances. Quantum Electronics,

IEEE Journal of 28(11), 2631 (1992). 5, 6, 8

[40] A. Arie and N. Voloch. Periodic, quasi-periodic, and random quadratic non-

linear photonic crystals. Laser & Photonics Reviews 4(3), 355 (2010). 5, 6, 7,

8, 83, 87, 104, 106

[41] R. W. Boyd. Nonlinear optics (Academic press, 2003). 6, 17, 28, 29, 59, 60,

74, 80, 111, 127, 128, 131

[42] G. D. Miller. Periodically poled lithium niobate: modeling, fabrication, and

nonlinear-optical performance. Ph.D. thesis, Stanford University (1998). 8,

107, 108

[43] C. Sheppard, J. Gannaway, R. Kompfner, and D. Walsh. The scanning har-

monic optical microscope. Quantum Electronics, IEEE Journal of 13(9), 912

(1977). 8



148 References

[44] C. Sheppard and R. Kompfner. Resonant scanning optical microscope. Applied

optics 17(18), 2879 (1978).

[45] J. Gannaway and C. Sheppard. Second-harmonic imaging in the scanning

optical microscope. Optical and Quantum Electronics 10(5), 435 (1978). 8

[46] P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser. Second harmonic generating

(shg) nanoprobes for in vivo imaging. Proceedings of the National Academy

of Sciences 107(33), 14535 (2010). 10, 11, 123

[47] W. Denk, J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluo-

rescence microscopy. Science 248(4951), 73 (1990). 9

[48] W. P. Dempsey, S. E. Fraser, and P. Pantazis. Shg nanoprobes: Advancing

harmonic imaging in biology. BioEssays 34(5), 351 (2012). 11, 123

[49] C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis. Three-dimensional harmonic

holographic microcopy using nanoparticles as probes for cell imaging. Optics

express 17(4), 2880 (2009). 11, 56
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and J. G. Solé. Multicolour second harmonic generation by strontium barium

niobate nanoparticles. Journal of Physics D: Applied Physics 42(10), 102003

(2009). 11

[60] Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally,



150 References

J. Liphardt, and P. Yang. Tunable nanowire nonlinear optical probe. Nature

447(7148), 1098 (2007). 11, 56

[61] M. Zielinski, D. Oron, D. Chauvat, and J. Zyss. Second-harmonic generation

from a single core/shell quantum dot. Small 5(24), 2835 (2009). 11, 124

[62] M. Zielinski, S. Winter, R. Kolkowski, C. Nogues, D. Oron, J. Zyss, and

D. Chauvat. Nanoengineering the second order susceptibility in semiconductor

quantum dot heterostructures. Optics express 19(7), 6657 (2011). 11, 55, 56,

67, 72, 76

[63] G. W. Bryant and A. Liu. Second-harmonic generation of semiconductor

quantum dots studied by near-field optical microscopy. Superlattices and mi-

crostructures 25(1), 361 (1999). 11

[64] N. Thantu. Second harmonic generation and two-photon luminescence upcon-

version in glasses doped with znse nanocrystalline quantum dots. Journal of

luminescence 111(1), 17 (2005). 11

[65] M. R. Singh. Enhancement of the second-harmonic generation in a quan-

tum dot–metallic nanoparticle hybrid system. Nanotechnology 24(12), 125701

(2013). 11
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Ph.D. thesis, École normale supérieure de Cachan-ENS Cachan (2005). 12,

17, 38, 122
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