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Résumé

Les phénomènes de diffraction et de diffusion des ondes jouent un rôle important dans l’interprétation
de la coda des sismogrammes. Par conséquent, une compréhension approfondie des mécanismes
de diffraction et de leurs influences sur la propagation des ondes est une étape fondamentale vers
l’identification des propriétés statistiques d’un milieu aléatoire. Cette thèse porte sur la diffrac-
tion des ondes élastiques dans des milieux aléatoirement hétérogènes avec un comportement local
isotrope. On s’intéresse au régime où: La longueur d’onde est du même ordre de grandeur que
la longueur de corrélation, la longueur d’onde est petite comparé à la distance de propagation
(haute-fréquence) et l’amplitude des fluctuations est petite. Une approche cinétique basée sur
les équations de tranfert radiatif des ondes élastiques est adoptée. La première partie de cette
thèse décrit une analyse détaillée de l’influence de la structure de corrélation sur les paramètres
de diffraction et sur l’établissement d’un régime de diffusion. La seconde partie présente les sim-
ulations éléments spectraux à grande échelle des ondes élastiques afin d’observer numériquement
l’apparition d’un régime d’équipartition. Des analyses théoriques ainsi que des simulations mon-
trent également une nouvelle approche pour l’identification des propriétés statistiques du milieu.

Mots-clés : Propagation des ondes élastiques, Équations de transfert radiatif, Milieux aléatoires,
Structure de corrélation isotrope, Paramètres de diffraction, Régime d’équipartition
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Abstract

Scattering and diffusion phenomena play a crucial role in the interpretation of the coda part of
seismograms. Consequently, a profound understanding of scattering mechanisms and their effects
on wave propagation is a fundamental step towards the identification of the statistical properties
of random media. The focus of this work is on the scattering of elastic waves in a randomly het-
erogeneous media with locally isotropic material behavior. The weakly heterogeneous regime is
considered, in which the wave length is similar to the correlation length, the wave length is small
compared to the propagation length (high frequency) and the amplitude of the heterogeneities is
small. A kinetic framework based on the transport equations of elastic waves is adopted. The
first part of the thesis describes a detailed analysis of the influence of the correlation structure on
the scattering parameters and on the arising of the diffusion regime. The second part presents
large scale spectral element simulations of elastic waves to observe numerically the onset of the
equipartitioning regime. The theoretical analyses and simulations also reveal a novel approach to
identify local properties of the heterogeneous medium.

Keywords : Elastic wave propagation, Radiative transfer equations, Random media, Isotropic
correlation structure, Scattering parameters, Equipartitioning regime
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Introduction

Identifying the mechanical parameters of different layers of the Earth is a central questions for
many researchers. The applications range from academic understanding of the interior of the
Earth to more industrially-oriented questions related to oil exploration or CO2 and nuclear waste
sequestration. Figure 1 shows a typical seismic exploration which consists of the identification
of some desired zones or layers of interest in geological media using the back-propagated surface
wave fields. Figure 2 illustrates the typical kind of signals that are used for such identification
problems. They typically start with a so-called ballistic or coherent part, with the arrival of the
direct compressional (P) wave, direct shear (S) wave and the surface waves (Love and Rayleigh).
These coherent waves are followed by a continuous wave train with decaying amplitudes which is
called the coda. However, this coda is usually disregarded in classical identification techniques,
and the exploration engineers concentrate on the coherent signal rather.

•

•

Figure 1: Seismic exploration (left) and Seismic tomography using the recorder wavefield on surface of the Earth
(der Hilst et al., 2007) (right).

Aki (1969) and Aki and Chouet (1975) investigated the incoherent coda waves and found that
they originate from the multiple scattering of waves in the non-homogeneous structure of the
Earth. As a result, the coda waves are a signature of the heterogeneities in the Earth. Another
indication of the existence of these heterogeneities can be read in the well-log data obtained in the
Earth’s crust and in results of seismic reflection experiments. The latter reveal that the crust is
heterogeneous on scales of a few kilometers to tens of kilometers (Sato et al., 2012). The existence
of these heterogeneities makes the classical identification problem ill-posed as the number of pa-
rameters to be inverted for grows rapidly. However, the objective of the identification problem in
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such a heterogeneous medium is not necessarily to identify precisely the value of the parameters at
a specific location. One may be content with statistical descriptors of these parameters rather than
point-wise values. For instance, an oil engineer might be able to detect an area where rocks are
prone to contain oil by measuring the amplitude of the fluctuations (variance) of the mechanical
parameter field in that area.

To account for the intrinsic spatial variability of the geological medium, as well as uncertainties
on their values, we concentrate in this thesis on random models of the soil. The properties of the
propagation medium, such as density and elastic moduli, are modeled using random functions of
space with given statistical properties, and realizations of the medium can be produced based on
that probabilistic model. Note, however, that we only consider single large realizations, and no sta-
tistical averaging is performed between samples. We are particularly interested in this work in the
onset of the diffusion regime at long lapse times. This regime is characterized by a scalar diffusion
equation that can be precisely derived through an asymptotic analysis of the wave equation. Our
interest in this regime arises from the observation that the behavior of the envelope of the coda
waves is compatible with such a diffusion equation. Aki and Chouet (1975) found that the decay
rate of the amplitude of this envelope (the so-called coda quality factor Qc) is largely independent
from the nature of the initial source, which makes it a convenient parameter for identification
problems. The radiative transfer theory and asymptotic analysis indeed predicts a Q factor which
should only depend on statistical properties of the medium, and not on the details of the source.

Four key parameters influence the scattering of elastic waves in the regime we are interested
in:

(i) The ratio between the correlation length and the wavelength,

(ii) The ratio between the mean values of P and S wave velocities,

(iii) The amplitude of fluctuation of the mechanical parameters (covariance matrix),

(iv) The spatial correlation model.

The first objective of this thesis is to describe quantitatively the influence of each of these on
the scattering phenomena and on the onset of the diffusion regime. It should be noted that the
radiative transfer theory for elastic waves is more complex than for other wave types. Indeed, it

Figure 2: A typical seismogram generated by an earthquake
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has to take into account the 2 polarizations of S waves and the mode conversion between P and S
waves during scattering events. Most works, in particular in geophysics, concentrate therefore on
acoustic approximations, where the P and S waves do not interact (see Zeng (1993), Nakahara and
Yoshimoto (2011) and Sato et al. (2012) for example). We consider in this work fully the vectorial
nature of the equation. We will however consider only isotropic materials, for simplicity. Also, we
will focus particularly on the spatial correlation model, since its influence has been regarded in less
detail in the literature. The assessment of its influence, respective to that of the other parameters,
should help state in the future whether it can be chosen at will or whether it should be identified
explicitly. As it is a function, while the other parameters are scalars, such a possibility would
simplify strongly the identification process.

The second objective of this work is to construct a numerical model to reproduce the onset of
the diffusion regime. The interest lies in the possibility (i) to test situations in which the theory
is not fully developed or (ii) to quantify precisely the limits of different asymptotic regimes. In-
deed, asymptotic analysis is only stated in terms of orders of magnitude of certain ratios. There
is obviously a range of values of these ratios when the asymptotic analysis is valid, but it is not
indicated by the analysis itself. This is however an important parameter in practice. The theory
of radiative transfer is fully developed for full spaces and can be extended to include surface waves
in the case of a half space. However, no results exist for complex topographies, basins or actual
surface configurations. Such a numerical tool allows to investigate these cases. The construction
of this numerical model will be presented in this document, and validated with respect to known
theoretical results. Its limits will be clearly specified. In particular, the issue of numerical cost will
be discussed at length. This cost is related to the size of the domains that have to be simulated
before diffusion sets in for most materials.

The third objective of this document will be to propose a preliminary identification process of
the spatial correlation of a random medium. This identification is based on measures of the curl
and divergence of the displacement field at the surface of a random medium. Time has not allowed
to investigate further this identification process but first numerical results will be presented and
discussed.

The first chapter introduces a bibliographical study of wave scattering, random media and
radiative transfer theory. The second chapter discusses our first objective of evaluating the influence
of the correlation structure of the random parameters. All scattering parameters (differential,
forward and total scattering coefficients, for PP, PS and SS transformations) as well as the diffusion
coefficients are discussed. In the third and last chapter, the numerical model is introduced (second
objective). The validation and limitations are described in successive sections. The chapter closes
with the preliminary identification results (third objective).

9



Chapter 1

Wave propagation in random media -
State of the art

The study of wave propagation in inhomogeneous media has been applied since longtime in mate-
rial characterization (Kulkarni et al. (1994), Liu and Turner (2008)), nondestructive testing (Smith
(1987), Foley and Rehbein (2000)) and seismic wave analysis (Papanicolaou et al., 1996). Since the
studies of Aki at the beginning of 70’s, the problem of statistical identification of complex media
has seen enormous developments. It has been mentioned that the typical seismograms resulting
from earthquakes are not producible using the simplified homogeneous (piece-wise homogeneous)
models (Sato et al., 2012). Aki and Chouet (1975) stated that the coda part of seismograms is
the direct result of interactions between waves and the existing heterogeneities in the underlying
medium.

The main objective of this chapter is to provide the relevant state of the art about the analysis
of the interactions between elastic waves and the inhomogeneities or the so-called wave scattering.
A profound knowledge about the influences of these interactions can provide relevant tools to
investigate the microstructure of a variety of materials such as polycrystals, ceramics, concrete
and geological media. For this purpose, transport equations of elastic waves will be discussed.
These equations provide fundamental information about the relation between the wave energy in
phase space (directional energy) and the statistics of the underlying random medium.

1.1 Different wave types

A wave is a disturbance or oscillation that travels through space and matter, accompanied by
a transfer of energy. Mathematically, the waves are the solutions of the wave equation which is
a second order partial differential equation. Figure 1.1 depicts schematically the propagation of
different wave types which have practical applications on probing of geological media. In this work,
we will be concerned only with the case of elastic waves as well as the surface Rayleigh waves which
will be elaborated separately in Sections 1.1.1 and 1.1.2.

1.1.1 Elastic waves

The general concepts of the elastic wave propagation in three dimension will be discussed in this
section and will be subsequently used in the following parts of the dissertation. In elastic media, the
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Figure 1.1: Different wave types created during a typical marine survey

wave energy losses due to friction, viscosity and radiation are negligible. The elastodynamic wave
equation (equation of motion) describing the elastic wave propagation in elastic (non-dissipative)
media states the equilibrium of an open domain Ω ⊆ R

3:

ρ(x)
∂2

∂t2
u(x, t)−∇x. {C(x) : ǫ(u(x))} = 0, (x, t) ∈ Ω× R

+ (1.1)

in which the properties of the medium ρ(x) and C(x), are respectively the local values of density
and the fourth-rank elastic tensor and ǫ(u(x)) = sym(∇xu(x)) = (∇xu(x) + (∇xu(x))

T )/2 is the
local strain tensor. In elastic media, the total energy of the medium will be always conserved as
far as the inelastic absorptions are neglected. Equation (1.1) along with its initial and boundary
conditions (radiation condition for unbounded domains) provides a unique solution u(x, t). The
vector wave field u(x, t) is the response of the medium, which is the displacement vector in each
point x at any time t. Detection and monitoring the temporal changes in media like volcanoes (Grêt
et al. (2005)), oil reservoirs (Meunier et al. (2001)) and even fault zones (Brenguier et al. (2008)),
is one of the challenges of geophysicists and seismologists. Nevertheless, in this presentation we
are only concerned with time-independent media in which the temporal variation of the medium
properties is neglected. The constitutive law of the medium which relates the stress and strain
tensors is:

σ(x) = C(x) : ǫ(x) (1.2)

In general, the fourth-order elastic tensor C = Cijkl(1 ≤ i, j, k, l ≤ 3) consists of 34 = 81
parameters. However, due to its symmetries i.e. Cijkl = Cjikl = Cijlk = Cklij, it can be described
with 21 independent parameters in the form of a 6 × 6 symmetrical matrix (triclinic material).
Subsequently, the Kelvin-Voigt notation can be used to rewrite the reduced form of the equation
(1.2) (see Auld (1973) for instance). The number of independent parameters in C decreases
when some types of symmetries exist in material. The simplest case in which only 2 independent
parameters are needed to describe the stress-strain behavior of a material, is called the isotropy.
In terms of Lamé coefficients, the isotropic elasticity matrix reads:

C(x) =











λ(x) + 2µ(x) λ(x) λ(x) 0 0 0
λ(x) λ(x) + 2µ(x) λ(x) 0 0 0
λ(x) λ(x) λ(x) + 2µ(x) 0 0 0
0 0 0 µ(x) 0 0
0 0 0 0 µ(x) 0
0 0 0 0 0 µ(x)











(1.3)

11



Inserting (1.3) into (1.1) results in the following equation of motion in non-dissipative isotropic
media:

ρ(x)
∂2u

∂t2
= ∇λ(x)(∇ · u) +∇µ(x) · [∇u+ (∇u)T] + (λ(x) + 2µ(x))∇∇ · u− µ(x)∇×∇u (1.4)

The gradient of the Lamé coefficients in the first two terms of the right hand side make this
equation complicated. Most of the classical synthetic seismogram computation methods like the
layered homogeneous method, neglect the contribution of these terms and use a simpler version
of equation (1.4). When the amplitude of fluctuations is small, the spatial gradient of Lamé
coefficients and the density can be neglected which results in the following form of the elastic wave
equation in an isotropic medium:

ρ(x)
∂2u(x, t)

∂t2
= (λ(x) + 2µ(x))∇(∇ · u(x))− µ(x)∇×∇u(x, t) (1.5)

Applying the divergence and curl operators to both sides of the equation (1.5) will give two body
wave modes in a homogeneous isotropic medium. First, taking the divergence gives:

∆(∇ · u)− 1

v2p(x)

∂2(∇ · u)
∂t2

= 0, vp(x) =

√

λ(x) + 2µ(x)

ρ(x)
(1.6)

Likewise, applying the curl operator to both sides of equation (1.5) results in:

∆(∇× u)− 1

v2s(x)

∂2(∇× u)

∂t2
= 0, vs(x) =

√

µ(x)

ρ(x)
(1.7)

where p and s subscripts respectively refer to the compressional (P) and shear (S) waves with
relative local propagation velocities of vp(x) and vs(x). These wave modes are called the quasi
P and quasi S wave modes since the equation (1.5) is an approximate form of the elastodynamic
wave equation in weakly-varying media. Pure P and S wave modes propagate in a homogeneous
isotropic medium in which the spatial variation of elastic coefficients vanishes. Equation (1.6) has
the same form as the acoustic wave equation:

[

∆− 1

v2(x)
∂2t

]

u(x, t) = 0; v(x) =

√

κ(x)

ρ(x)
(1.8)

in which density ρ(x) and bulk modulus κ(x) are the medium properties. ∆ is the Laplacian
operator, v(x) is the local propagation speed which is the same as the velocity of sound waves.
It should be pointed out that since the scattering theory of acoustic waves is much simpler than
that of the elastic waves, the acoustic waves are vastly used for identification problems (see Ra-
mamoorthy et al. (2004) for instance).

A particular solution of the wave equation (1.5) in terms of harmonic plane waves reads:

u = U exp (i(κ · x− ωt)) (1.9)

where i =
√
−1 is the imaginary unit, ω is the circular frequency and κ is the wave vector which

specifies the wave propagation direction. U/||U|| is the polarization direction of the wave modes,
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i.e. the direction of the particle movements. ||U(t,x)|| and φ(t,x) = κ ·x−ωt are respectively the
amplitude and the phase of the wave. In a general case of a weakly-varying media characterized by
local elastic tensor Cijkl(x) and local mass density ρ(x) (with negligible spatial gradients), equation
(1.1) can be rewritten as the following equation in which the Einstein convention of summation
over repeated indices is assumed:

ρ(x)
∂2ui(x, t)

∂t2
= Cijkl(x)

∂2uk(x, t)

∂xj∂xl
; 1 ≤ i, j, k, l ≤ 3 (1.10)

Replacing equation (1.9) in (1.10) results in the following so-called Christoffel equation:




Γ11 − ω2 Γ12 Γ13

Γ21 Γ22 − ω2 Γ23

Γ31 Γ32 Γ33 − ω2









U1

U2

U3



 =





0
0
0



 (1.11)

in which Γ(κ) is a second rank tensor which is often called the acoustic or the Christoffel tensor
and is defined as:

Γik = Cijklκjκl (1.12)

Equation (1.11) or its equivalent compact form (Γ(κ)− ω2I3)U = 0 shows that the polarization
vector U and Υ = ω2 are respectively the eigenvector and eigenvalue of the acoustic tensor Γ(κ).
As a result, the wave modes which can propagate in such a medium can be extracted using the
eigenvalues of the medium’s acoustic tensor. In the simple case of an isotropic medium with an
elastic modulus defined in equation (1.3), the acoustic tensor takes the following form:

Γ(κ) =
λ+ µ

ρ
κ⊗ κ+

µ

ρ
||κ||2I3 =

1

ρ





(λ+ 2µ)κ21 + µ(κ22 + κ23) (λ+ µ)κ1κ2 (λ+ µ)κ1κ3
(λ+ µ)κ1κ2 (λ+ 2µ)κ22 + µ(κ21 + κ23) (λ+ µ)κ2κ3
(λ+ µ)κ1κ3 (λ+ µ)κ2κ3 (λ+ 2µ)κ23 + µ(κ21 + κ22)



 (1.13)

it can be shown that this acoustic tensor has three different wave number dependent eigenvalues:

Υ1 = ω2
1 =

λ+ 2µ

ρ
||κ||2 (1.14a)

Υ2 = ω2
2 =

µ

ρ
||κ||2 (1.14b)

Υ3 = ω2
3 =

µ

ρ
||κ||2 (1.14c)

These equations are also called the dispersion relations stating the relation between the local
frequency and the wave number of each wave mode. Negative frequencies do not correspond
to any physical wave mode so that three wave modes, two of which (S modes) have the same
frequency are distinguished in a weakly-varying inhomogeneous medium with isotropic material
behavior. These P and S wave modes propagate with following local frequencies:

ωp(x) =

√

λ(x) + 2µ(x)

ρ(x)
||κ|| = vp(x)||κ|| (1.15a)

ωs(x) =

√

µ(x)

ρ
||κ|| = vs(x)||κ|| (1.15b)
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in which the phase velocities depend only on the norm of the wave vector and not on the propa-
gation direction. It should be noted that in anisotropic media, the phase velocities become wave
vector dependent.

Three different eigenvectors or polarization directions corresponding to different wave modes
are:

U1 =
(κ1, κ2, κ3)

||κ|| =
κ

||κ|| (1.16a)

U2 =
(0,−κ3, κ2)
√

κ22 + κ23
(1.16b)

U3 =
(κ22 + κ23,−κ1κ2,−κ1κ3)

||κ||
√

κ22 + κ23
(1.16c)

A direct result of the equations (1.16) is that these polarization directions are mutually orthogonal
and the polarization direction of the first wave mode corresponding to a P wave type, coincides
exactly to the direction of the wave propagation κ.

1.1.2 Rayleigh waves

Up to now, the emphasis has been on the propagation of the pure body waves in an unbounded
heterogeneous medium. However, in the case of crustal seismic wave propagation, the propagation
medium is limited to the Earth’s surface (physical boundaries). Moreover, as far as numerical
simulations of the seismic waves are concerned, the propagation medium has to be limited to
some boundaries (numerical boundaries) because of limited numerical sources. The existence of
these bounding surfaces like the ground free surface or the interface between two materials having
different elastic properties, will result in:

(1) Appearance of some novel wave modes such as evanescent and surface waves.

(2) Modification on the incident body waves via the reflection/transmission phenomena as well
as the wave mode conversion during scatterings on the interface. The scattering mode con-
version between body and Rayleigh waves in an inhomogeneous elastic medium has been
studied by Maeda et al. (2008).

Generally speaking, the surface Rayleigh waves are a type of guided waves propagating within
a layer near the Earth’s free surface which satisfy the traction-free boundary condition over the
entire surface ∂Ω:

n̂ · (C : sym(∇xu)) = 0 (1.17)

In a half-space, the motion equations should be therefore coupled with equation (1.17) in which
n̂ is the unit outward normal on the surface and the stress tensor σ follows the Hooke’s equation:
σ = C : sym(∇xu).

The Rayleigh waves can be decomposed as a sum of P and S waves. The amplitude of these
waves decays in depth and is determined by the background velocity structure. A complete the-
oretical analysis of the Rayleigh waves is done in Aki and Richards (2002). Figure 1.2 shows
the particle motions for the fundamental Rayleigh mode in a half-space shown over one horizontal
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Figure 1.2: Particle motion of Rayleigh waves (Shearer, 2009)

wavelength λr. The amplitude decay in depth can be noticed from this figure. The main properties
of these waves are:

(1) The wavefield is composed of a longitudinal and a transverse displacement component (per-
pendicular to the free surface) which will result in an elliptical particle motion.

(2) The propagation velocity of Rayleigh waves is related to the velocity of P and S waves and is
frequency-independent in homogeneous media. However, in heterogeneous media it will be
dependent on the frequency.

The characteristic equation of the Rayleigh waves propagating in a homogeneous medium is
(see Auld (1973) for example):

K6
r − 8K4

r + (24− 16K−2)K2
r + (16K−2 − 16) = 0 (1.18)

in which Kr = vr/vs is the ratio between Rayleigh and S wave speeds. Equation (1.18) is also
known as Rayleigh equation which gives a unique Rayleigh wave speed for a linear homogeneous
elastic medium. It is important to remark that in spatially varying media, the characteristic
equation (1.18) can only be expressed in an implicit form as follows (see Foti (2000) for instance):

Fr [ρ(x), λ(x), µ(x),k, ω] = 0 (1.19)

which shows that the phase velocity depends on the local frequency ω.

Considering a plane Rayleigh wave propagating in x direction (as shown in Figure 1.2) through
a homogeneous medium, the horizontal and vertical components of the displacement wave field
can be obtained by:

ux = Ak

(

e−qz − 2qs

s2 + k2
e−sz

)

sin(ωt− kx) (1.20a)

uz = Aq

(

e−qz − 2k2

s2 + k2
e−sz

)

cos(ωt− kx) (1.20b)
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in which A is some constant, k is the horizontal wavenumber (or the wavenumber of the Rayleigh
waves (k = ω/vr)) and q and s are related to K and Kr via:

( q

k

)2

= 1− K2
r

K2
;
( s

k

)2

= 1−K2
r (1.21)

It should be noted that the Rayleigh equation (1.18) for any given K has three solutions for
K2
r in which only one of them results in non-imaginary values for q/k and s/k according to the

equations (1.21). Inserting equations (1.21) into the equations (1.20) and setting z = 0 will give
the equations of the Rayleigh plane waves on the free surface:

ux(z = 0) = Ak
2−K2

r − 2
√

1−K2
r

√

1− K2
r

K2

2−K2
r

sin(ωt− kx) (1.22a)

uz(z = 0) = −Ak
√

1− K2
r

K2

K2
r

2−K2
r

cos(ωt− kx) (1.22b)

in which Kr is the solution of the Rayleigh equation knowing the value of K. These equations
show that over the free surface, the ratio between the major and minor axes of the ellipses created
by the Rayleigh waves is a frequency-dependent constant which depends solely on the medium
average properties. This ratio will be denoted by ̺ and will be calculated later in chapter 3.

After this brief introduction about the basic concepts of the elastic and Rayleigh waves and
before starting to discuss about the scattering of elastic waves in heterogeneous media, we discuss
about the spatial variabilities in geological media in the next section.

1.2 Probabilistic modeling of a geophysical medium

1.2.1 Characteristics of a geophysical medium

Geological processes is one of the factors which can cause variations on the material properties
of the media of our interest. Besides, experimental observations also show these spatial fluctua-
tions in almost all of the medium parameters. Log well data are among the direct evidences of
the existence of spatial variations. Figure 1.3(a) shows the profiles of the variations in depth of
the P and S wave speeds (α = vp, β = vs) as well as the medium’s mass density ρ in Kyushu,
Japan (Shiomi et al., 1997). The velocity profiles are assessed from measurements of travel times
of ultrasonic waves and the mass density is determined from the measurements of the gamma rays
intensities received at a borehole detector which is a function of the formation density (see Telford
et al. (1976) and Sato et al. (2012) for more discussion). An average value of K =

√
3 (Poissonian

materials) is often used for geological media. Figure 1.3(b) depicts the scatter plots representing
the spatial correlations between these three parameters in some depth intervals. A strong linear
correlation is observed between P and S wave velocities whereas these two parameters are seen
to have a positive correlation with the mass density. Figure 1.3(a) also shows that in geological
media the normalized variance of the density ρ is significantly less than that of the phase velocities
(or equivalently the variance of the elastic moduli). Consequently, the mass density of geological
media is often considered either a constant or in a perfect positive correlation with the elastic
moduli (Figure 1.3(b) shows this correlation).
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Figure 1.3: (a) Variation of P and S-wave velocity (α, β) and mass density (ρ) in depth. (b) Scattergrams showing
the correlations between α, β and ρ at the same depth (Shiomi et al., 1997)

Several researches have been done to investigate the spatial variations of soil parameters as
well as to propose some strategies to take them into consideration (see Soulie et al. (1990), Cam-
bardella et al. (1994) and Gallardo (2003) for instance). Considering the medium as different layers
in which each layer is homogeneous (piecewise homogeneous medium) could be a way to model
these variations. However, it is not possible to reproduce the typical seismograms resulting from the
local earthquakes using this type of approach. Another approach is the probabilistic modeling of
the medium properties in which the random fields with given probability distributions will be used.

In the next two sections, we briefly discuss the fundamental parameters contributing in prob-
abilistic modeling of random medium parameters. The corresponding theoretical aspects are in-
troduced in Appendix C where a non-parametric probabilistic approach to model the random
elasticity matrix is elaborated.

1.2.2 Mathematical description of a random medium

The experimental estimation of the medium parameters is highly limited and can be done locally
on some limited points close to the Earth’s surface. These estimations are subjected to the mea-
surement errors. The models which are used are also another source of stochasticity. For a more
profound discussion about different types of uncertainties, especially in civil and environmental
engineering see Ang and Tang (2007). To account for these uncertainties, we can make use of the
stochastic functions with given statistical parameters to model the parameters of the propagation
medium. Thus, instead of considering a single heterogeneous medium, we imagine an ensemble of
random media with same a priori known statistical parameters such as the same statistical mean
and variance, which will be defined later in this section (see Frisch (1968) and Sato et al. (2012)
for discussion). Each of the elements of this a priori infinite set, is called a realization of the cor-
responding random medium. To compare the observed quantities with the theoretical results, one

17



should take the averages over a subset of realizations with sufficiently large cardinality. It should
be noted that in this presentation, we always employ only a single realization of a sufficiently
large randomly heterogeneous medium. As we will see further in chapter 2, at long lapse times
when a diffusion regime sets in, the elastic energies depend only on the statistics of the medium
via a simple scalar diffusion equation. Furthermore, we assume that the medium statistics can be
deduced from only a single realization which results from the assumption of ergodicity of random
fields and will be discussed further in this section.

Now we will briefly elaborate on some of the basic concepts about the random fields. For a
deeper study about the theoretical aspects of random fields, see Vanmarcke (2010).

Basic concepts: Let X(x) be a scalar random field defined over physical space Ω1 ⊂ R
3 and

a probability space characterized by the triplet (A,F ,P) in which A is the sample space, F is a
set of events and P is a probability measure. The random field X(x) is defined in L2(A, H1(Ω1)).
A realization of the random medium is a set of the values x(x) of the random field X over the
domain Ω1.

Average and correlation function: The average of a scalar random field X(x(i)) and the
covariance or two-point correlation function of two random variables X(x(i)) and X(x(j)) are
respectively defined as:

X̄(x(i)) = E
{
X(x(i))

}
=

∫

R

X(x(i)) p1
(
X(x(i))

)
dX(x(i)) (1.23)

CX(x
(i),x(j)) = E

{(
X(x(i))− X̄(x(i))

) (
X(x(j))− X̄(x(j))

)}
=

∫

R

∫

R

(
X(x(i))− X̄(x(i))

) (
X(x(j))− X̄(x(j))

)
p2
(
X(x(i)), X(x(j))

)
dX(x(i)) dX(x(j)) (1.24)

in which p1 and p2 are respectively the first and second order marginal distributions.

Homogeneous, weak-sense homogeneous and isotropic random fields: A random field
is called homogeneous if all of its statistical moments are invariant by any translation of all of the
space variables. Mathematically, all of the marginal probability distributions of such random fields
should be translationally invariant (Frisch, 1968). This implies:

pm
(
X(x(1) + τ ), X(x(2) + τ ), · · · , X(x(m) + τ )

)
=

pm
(
X(x(1)), X(x(2)), · · · , X(x(m))

)
∀τ ∈ R

3; ∀m ∈ N (1.25)

A weaker form of homogeneity happens when only the mean value and covariance function of a
random field are invariant by translation of the space variables. This type of random fields is
called weak-sense homogeneous. From this condition it can be deduced that X is a weak-sense
homogeneous random field if its mean is a constant over the whole medium, and its two-point
correlation function depends only on the distance between points, i.e.:

E
{
X(x(i))

}
= X̄ ∀x(i) ∈ Ω1 (1.26a)

CX
(
x(i),x(j)

)
= CX

(
x(i) − x(j)

)
∀x(i),x(j) ∈ Ω1 (1.26b)
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A random field is called isotropic if all of its statistical moments are invariant with any simultaneous
translation and rotation of all of the space variables. This implies in particular that:

CX
(
x(i),x(j)

)
= CX

(
|x(i) − x(j)|

)
∀x(i),x(j) ∈ Ω1 (1.27)

Ergodic random fields: One can define the realization-dependent space average random vari-
able:

X̂
(j)
Ω1

=
1

V (Ω1)

∫

Ω1

X(x, j) dx ∀j ∈ N (1.28)

in which X(x, j) is the jth realization of the random field X, V (Ω1) is the volume occupied by the
subspace Ω1 ⊆ R

3 and X̂
(j)
Ω1

is the sample average estimator corresponding to this realization of
the medium. When the medium size is sufficiently large and the random field X is homogeneous,
the estimator X̂

(j)
Ω1

which is a priori a random variable, becomes independent from realizations i.e.
X̂

(j)
Ω1

= X̂Ω1 and converges to the statistical mean X̄. In this case, the random field X is called
ergodic. X is called mean-ergodic or mean-square ergodic in the first moment, if it converges in
mean square to X̄:

lim
V (Ω1)→∞

E

[(

X̂Ω1 − X̄
)2
]

= 0 (1.29)

The random field X is called covariance-ergodic or mean-square ergodic in the second moment,
if the estimator of the covariance, i.e.:

Ĉ
(j)
XΩ1

(τ ) =
1

V (Ω1)

∫

Ω1

[
X(x+ τ , j)− X̄(x+ τ )

] [
X(x, j)− X̄(x)

]
dx ∀j ∈ N (1.30)

becomes independent from realizations and converges in mean-square sense for large medium sizes
to the two-point correlation function of the medium CX(τ ) (Papoulis, 1991), i.e.:

lim
V (Ω1)→∞

E

[(

CX(τ )− ĈXΩ1
(τ )
)2
]

= 0 (1.31)

A random field is called ergodic, if the space-averaged moments of any order converge to the
corresponding statistical moment.

In this presentation, we assume that all the random fields X(x) which describe the propagation
medium (like density and elastic moduli) are ergodic, so that their statistical moments can be de-
duced from a single realization of a sufficiently large random medium. For instance, the statistical
mean X̄ will be estimated using the equation (1.28) for any given realization number j.

In general, two different types of random media can be taken into consideration: continuous
random media in which the properties vary randomly and continuously in space, and discrete
random media which contain randomly distributed obstacles such as cracks, cavities and inclusions,
embedded in a homogeneous matrix. The majority of the studies, especially in Geophysics, are
done based on discrete random media (see Sato et al. (1997), Trégourès and van Tiggelen (2002)
and Bihan and Margerin (2009) for instance). The extension of the continuous random medium
case to that of discrete random medium is straightforward and could be done by considering
the density of scatterers in discrete medium (see Turner and Weaver (1996) or Savin (2012) for
discussion).
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Figure 1.4: Left: A continuous random medium, Right: A discrete random medium consisting in point-like scatterers
(heterogeneities) embedded in a homogeneous matrix

1.2.3 Correlation structure

In this section we will look at the covariance function corresponding to the simple case of an
isotropic random field (equation (1.27)) which is solely a function of the distance between the
points. It is worth noticing that this type of correlation functions will appear in the theory of
elastic wave scattering in random media with local isotropy and will be shown in Section 1.4. The
amplitude of the fluctuations or the variance of the random field is defined as the value of the
covariance function when two points are coincident:

σ2
X = CX(0) (1.32)

The dimensionless correlation function or the autocorrelation function (ACF) of an isotropic
random field X is then defined as:

R̂X(τ) =
CX(τ)

CX(0)
(1.33)

in which τ is the distance between the points. R̂X is also called the correlation kernel which
always satisfies |R̂X | ≤ 1 in the case of media with finite variances. In the case of two different
scalar random fields X, Y , the adimensional cross-correlation function with isotropic structure is
similarly defined as:

R̂XY (τ) =
CXY (τ)

σXσY ρXY
(1.34)

in which σX and σY denote the standard deviations of the corresponding random fields and ρXY
is their correlation coefficient. Apart from the variance or standard deviation which are measures
of the fluctuations magnitude, the correlation functions are characterized by a length scale that is
called the correlation length ℓc. The latter can be imagined as the distance beyond which the values
of the random field are almost uncorrelated. It can be considered as the typical size of the random
heterogeneities. Several studies suggest that the Earth’s crust should be modeled as containing
fluctuations on a continuum of length scales from micro to macro (see Crossley and Jensen (1989)
and Pilkington and Todoeschuck (1990) for instance). As a result, more realistic stochastic models,
like fractal medium models, should include all these spatial fluctuation scales (Frankel and Clayton
(1986), Solna (2003)). As far as the identification of the statistical parameters is concerned, two
items will complexify the problem:
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• the existence of multiple scales for spatial fluctuations of parameters,

• the fact that C is a function so that its identification is much more complex than a scalar
parameter.

In this work we will be concerned with the scales of fluctuations comparable to the wavelength in
which the interactions between the waves and the heterogeneities become more efficient. Therefore,
in this study from one hand we will consider only media with a single correlation length (to
simplify the first mentioned item) and a finite variance. Another normalization which will be
applied hereinafter is that the isotropic correlation kernel R̂X is considered to be a function of the
ratio between the lag distance x = |x| and the correlation distance ℓc. Therefore, the correlation
function CX reads:

CX(x; ℓc) = σ2
XR̂X(x; ℓc) = σ2

XR̂X

(
x

ℓc

)

(1.35)

Different definitions for ℓc can be found in literature (see Shinozuka and Deodatis (1988) for
example). We define ℓc as twice the zeroth-order moment of the function R̂X(x/ℓc):

ℓc = 2

∫ ∞

0

R̂X

(
x

ℓc

)

dx (1.36)

and we normalize the correlation models using this definition. This implies that all correlation
models will satisfy the following equations:

2

∫ ∞

0

R̂X(u) du = 1 (1.37)

As we will see in chapter 2, the analytical formulas of the wave scattering will be given explicitly
in terms of the power spectra of the random heterogeneities which are defined as the Fourier
transform of the spatial correlation function C. We adopt the following Fourier transform integral
pairs for a random function X defined from R

3 into R:

CX(x) =

∫

R3

e+ix.kSX(k)dk (1.38a)

SX(k) =
1

(2π)3

∫

R3

e−ix.kCX(x)dx (1.38b)

in which CX is the autocorrelation function (ACF) and SX is called the power spectral density
function (PSDF) of the scalar random field X. k is the wave vector corresponding to a x → k
Fourier transform. If the correlation function CX is a real function, it can be shown using equations
(1.38) that S∗(k) = S(k) where ∗ denotes the complex conjugate. As a result, the PSDF and the
correlation function are always real. In the case where the correlation function has an isotropic
structure, i.e. it depends on the radial distance x = |x| rather than on the distance vector x, it
can be shown that the PSDF will also be only a function of the radial wave number k = |k| =
√
k2x + k2y + k2z . Using the spherical coordinates, the Fourier integrals in equations (1.38a) and

(1.38b) will be simplified as:

CX(x) = 4π

∫ ∞

0

sinc(xk)k2SX(k)dk (1.39a)

SX(k) =
1

2π2

∫ ∞

0

sinc(xk)x2CX(x)dx (1.39b)
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in which CX : R+ 7→ σ2
X [−1,+1] and SX : R+ 7→ R

+ and sinc denotes the unnormalized sinc func-
tion. Several correlation models that are used particularly in geophysics will be discussed in chapter
2. Studying different approaches to model the medium parameters via stochastic functions is out of
the scope of this thesis. However, a non-parametric probabilistic approach based on the maximum
entropy principle to model the random fields of scalar or matrix nature is presented in Appendix C.

In the following section we will discuss about the physical phenomenon which happens when
elastic waves interact with the random heterogeneities which have been studied in this section.

1.3 Length scales and scattering regimes

The amplitude and phase of elastic waves propagating through a randomly heterogeneous medium
(||U(t,x)|| and φ(t,x) = κ · x − ωt in equation (1.9)) are changed due to scattering. Scattering
results from the interaction of the elastic waves with the heterogeneities in the medium as it can
be seen in Figure 1.5. In this figure an inhomogeneity is illuminated by an incident plane wave
and scattered waves with different phases and amplitudes in all directions are produced.

Incident Wave

Scattered Waves

Inhomogeneity

Figure 1.5: Schematic scattering pattern when a typical heterogeneity is illuminated by a plane wave

Scattering phenomenon plays a crucial role in seismogram interpretation. Consequently, a
profound understanding of scattering mechanism and its effects on the wave propagation regime
could be a fundamental step in the statistical identification of the medium properties. The degree of
scattering of the medium or the scattering regime of the waves depends on the ratio between some
length scales related to the medium and the waves. Theses length scales are schematically shown
in Figure 1.6 in which the propagation/observation distance L, typical size of the heterogeneities
or the correlation length ℓc and the dominant wave length λ are three fundamental length scales
of interest in typical wave propagation problems. Another length scale which is shown in this
figure is the mean free path ℓsc which is the distance over which the scattering of the waves is
effective (this parameter will be defined later in this chapter). The dominant wave number could
then be defined as k = ω/v0 = 2π/λ in which ω and v0 are respectively the dominant angular
frequency and a reference speed of propagation. For high-frequency seismic waves propagating in
rocks, the carrying frequency is at least 1Hz. Typical values of ρ, vs and vp in geological media can
be found in Figure 1.3. The propagation distances over the Earth’s crust is about 15 to 80km. The
key adimensional parameters which allow to distinguish different scattering regimes are ζ = kℓc,
ε = kL (see Fouque et al. (2007) and Margerin et al. (2000) for instance). Assuming that the
boundary effects are negligible, different scattering regimes can be classified as:
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Figure 1.6: Length scales in wave propagation problems

1. The effective medium or homogenization regime happens when ζ = kℓc ≪ 1. In this low-
frequency regime the elastodynamic wave equation is the most appropriate model to describe
the wavefield evolution and a deterministic effective wave equation can describe the wave
propagation. As a result, the stochastic homogenization methods can be used (see Capdeville
et al. (2010) and Fish and Chen (2004) for applications in elastodynamics). These methods
are appropriate as long as the propagation distance is comparable to the wavelength, i.e.
ε = kL ≃ 1 (Savin, 2010).

2. The geometrical optics regime establishes when ζ = kℓc ≫ 1. The waves will not interact
efficiently with the details of the medium so that the medium can be considered as piecewise
homogeneous. If the medium’s dispersion parameter is weak, the Born approximation can be
employed to calculate the wavefield (Born and Wolf, 1965). For example consider the scalar
Helmholtz equation (1.8) with a weakly-varying velocity random function described as:

v(x) = v0 [1 +Xv(x)] (1.40)

in which the zero-mean fractional velocity fluctuation Xv(x) is assumed to have a relatively
low variance or equivalently a low spatial gradient. The total wave field u is written as the
sum of an incident wave field uin and a scattered wave field usc:

u = uin + usc (1.41)

The incident wave uin satisfies the homogeneous Helmholtz wave equation:
[

∆− 1

v20
∂2t

]

uin(x, t) = 0 (1.42)

Inserting (1.40) into equation (1.8) and neglecting the terms in X2
v results in:

[

∆− 1

v20
∂2t

]

usc(x, t) = − 2

v20
Xv(x)

∂2uin(x, t)

∂t2
(1.43)
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in which the right hand side acts as a source term resulting from the interaction between the
incident wavefield and the heterogeneities. The weakly coupled equations (1.42) and (1.43)
can be solved analytically for simple geometries.

3. The weakly heterogeneous or stochastic scattering regime sets in when (see Ryzhik et al.
(1996), Papanicolaou et al. (1996), Bal and Ryzhik (2002) and Baydoun et al. (2014) for
instance):

(i) the amplitude of fluctuations of the medium’s mechanical properties is weak,

(ii) the wavelength is small compared to the propagation distance, i.e. ε = kL ≫ 1 (high-
frequency waves),

(iii) the scale of heterogeneities is comparable to the wavelength ζ = kℓc ∼ 1.

In this high-frequency regime, both the random medium and the waves oscillate at similar
frequencies and consequently there will be a significant interaction between the waves and
the random heterogeneities (Aki and Richards, 2002). In this case, the transport or the
radiative transfer equations (RTE) are the appropriate models to describe the propagation
of the wave energy. In highly varying media, a localization regime could occur which means
that the energy of the waves will be locally trapped on some regions of the medium so that the
transport of the energy does not happen (see Sheng (1995), Larose et al. (2004) and Lobkis
and Weaver (2008) for example). Likewise, in highly anisotropic media as in the case of the
layered random media a localization regime could be established. The theoretical analysis of
the localization regime is out of the scope of this study. The mathematical developments of
the scattering theory of elastic waves is the subject of the Section 1.4.

These three regimes are schematically distinguished in Figure 1.7 1 which shows the variation
of the elastic diffusivity of the medium, which is one of the fundamental characteristics of the wave
propagation at long lapse times and which appears in the diffusion equation (this parameter will
be defined in chapter 2). It should be noted that the elastic diffusivity in weakly-varying media
is inversely proportional to the scattering degree of the underlying medium. This means than
lower values of this parameters corresponds to highly scattering media and vice versa. It can be
observed from this figure that for low and large values of ζ = kℓc, the effective medium regime
and geometrical optics regime will respectively set in. Between these two regimes there is a tran-
sition phase in which the waves have the most efficient interaction with the heterogeneities so that
the wavefield becomes randomized more quickly compared to the other scattering regimes. The
degree of scattering is often considered to be proportional to the inverse of the elastic diffusivity
(see Turner and Weaver (1995) for instance). Consequently, the middle part of the Figure 1.7
corresponds to a highly scattering medium in which the elastic diffusivity has significantly lower
values compared to the other two extremes of the curve.

In the next section we introduce the scattering theory of elastic waves in a stochastic scattering
regime.

1In chapter 2, the elastic diffusivity will be plotted for different correlation models.
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Figure 1.7: Different scattering regimes in terms of the values of kℓc

1.4 Stochastic scattering regime

The theory of radiative transfer of elastic waves is an approach to study the multiple scattering of
seismic waves (Chandrasekhar (1960), Weaver (1990), Zeng (1993), Sato (1994), Turner andWeaver
(1994), Ryzhik et al. (1996), Margerin et al. (2000)). The radiative transfer equations (RTE)
describe the spatio-temporal evolution of the wave vector dependent energy density of the waves as
well as their state of polarization. Chandrasekhar (1960) developed the vector transport equations
of the polarized light waves in the case of statistically isotropic media. Assuming a weakly-varying
random media with local isotropy, Weaver (1990) and Ryzhik et al. (1996) independently developed
the RTEs of elastic waves with two different approaches:

• The derivation of Weaver (1990) is based upon a diagrammatic approach, as introduced by
Frisch (1968), in which the mean wave field is governed by Dyson equation (resulting directly
from the elastodynamic wave equation). This equation is solved in spatial-Fourier domain
with the assumption of the first order smoothing (FOSA) as well as ζ = kℓc which should
be below the high-frequency geometric optics limit (Turner and Anugonda, 2001). Then,
solving the so-called Bethe-Salpeter equation results in the transport equations.

• Ryzhik et al. (1996) started with the wave equation and used asymptotic expansions to derive
the RTEs of elastic waves. Their approach will be detailed further in this chapter.

As far as the materials with locally anisotropic behavior is concerned, Turner (1999) derived the
RTEs of elastic waves in a transversely isotropic heterogeneous medium in which there is a plane
of symmetry and the elastic matrix could be specified using 5 independent parameters. Margerin
(2006) developed the elastic RTEs for the case of anisomeric random media in which the correlation
lengths depend on space direction. Recently Baydoun et al. (2014) developed the RTEs of elastic
waves for locally anisotropic material behavior and anisotropic background.

In the general case, solving analytically the RTEs of elastic waves is impossible. Margerin
et al. (2000) developed a numerical code to solve the RTEs of elastic waves using a random walk
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approach. Despite the fact that the scattering of elastic waves is intrinsically anisotropic (i.e. the
scattered directional energy density varies in different directions) even in low-frequencies (Turner,
1998), the hypothesis of isotropic scattering makes these equations more tractable and allows them
to be analytically solved. Consequently, Shang and Gao (1988) and Zeng et al. (1991) assumed
that the scattering occurs isotropically and solved the RTEs in the case of scalar waves. In fact,
the lowest term in the expansion of the scattering operator (the so-called scattering cross-section)
in RTEs of elastic waves using spherical harmonics represents the isotropic scattering. Zeng (1993)
and Sato (1994) developed these studies to the case of elastic waves but they neglected the vector
nature of elastic waves such as the effect of the polarization of shear waves. In these studies the
elastic waves are treated as scalar waves and the scattering is yet assumed to be isotropic.

In the next section, we will briefly discuss the derivation of the RTE of acoustic waves propagat-
ing in a low variance random medium with continuous heterogeneities. The same approach leads
to the RTEs of elastic waves but for the sake of simplicity, we use the case of acoustic waves to de-
rive the transport equations. The major differences is that the acoustic waves have only one wave
mode similar to the compressional mode of elastic waves, so that the effects of the polarization of S
waves and possible mode conversions between P and S waves during scattering process will not be
taken into consideration in acoustic transport equations. Subsequently, the RTEs corresponding
to the case of elastic waves will be introduced without giving the mathematical proofs.

1.4.1 Radiative transfer equation of acoustic waves

In this section, starting with the acoustic wave equations and using a multiscale expansion of the
Wigner measure of the wave field as a parameter which is closely related to the wave energy density,
the transport equation of acoustic waves will be derived. At first, the acoustic wave equation for
the pressure and velocity fields (p and v respectively) is considered as:

ρ(x)
∂v(x, t)

∂t
+∇p(x, t) = 0; v(x, 0) = v0(x) (1.44a)

κ(x)
∂p(x, t)

∂t
+∇ · v(x, t) = 0; p(x, 0) = p0(x) (1.44b)

in which ρ(x) and κ(x) are respectively the local values of density and bulk modulus of the medium.
The acoustic tensor corresponding to the set of wave equations (1.44) has one double eigenvalue cor-
responding to the non-propagating waves, i.e. ω1 = ω2 = 0, and two simple eigenvalues ω+ = v|k|
and ω− = −v|k| corresponding respectively to the outgoing and incoming (which is obviously
non-physical) longitudinal acoustic waves propagating with the sound speed v(x) =

√

κ(x)/ρ(x).
It should be noted that this wave mode is analogue to the longitudinal elastic wave mode. The
corresponding 4×1 eigenvectors are functions of the material properties (κ, µ) and the orthonormal
propagation triplet (k̂, z(1), z(2)) where k̂, z(1) and z(2) correspond respectively to the unit vectors
following the propagation direction and its two perpendiculars.

Let u be the 4 × 1 vector wave field containing velocity and pressure fields: u = (v, p). The
coupled system of equations (1.44) may be written as a first-order symmetric hyperbolic system:

A(x)
∂u(x, t)

∂t
+

3∑

j=1

Dj ∂u(x, t)

∂xj
= 0 ; u(x, 0) = u0(x) (1.45)
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in which A(x) = diag(ρ(x), ρ(x), ρ(x), κ(x)) is a symmetric positive-definite matrix containing the
material properties and the matrices Dj(1 ≤ j ≤ 3) are symmetric and independent from time
and space.

The spatial energy density E(x, t) and the energy flux F(x, t) corresponding to the solutions
of (1.45) are given by Ryzhik et al. (1996):

E(x, t) = 1

2
(A(x)u(x, t) · u(x, t)) ; Fj(x, t) =

1

2

(
Dju(x, t) · u(x, t)

)
(1.46)

which satisfy the energy conservation law:

∂E(x, t)
∂t

+∇ · F(x, t) = 0 (1.47)

Assuming that the overall propagation distance L is much larger than the typical wavelength
of the initial excitation, i.e. ε = λ

L
≪ 1, high frequency solutions of (1.45) are of our interest. The

rescaled time and space variables are thus defined as t→ ε−1t and x → ε−1x. Hence, the rescaled
wave field uε(x, t) = u(ε−1x, ε−1t) will satisfy:

A(x)
∂uε(x, t)

∂t
+

3∑

j=1

Dj ∂uε(x, t)

∂xj
= 0 ; uε(x, 0) = u0(x/ε) (1.48)

The following paragraph presents the concept of the Wigner transform of the wave field u and
shows that in high frequencies it becomes closely related to the energy density.

Spatial Wigner transform and its properties: The spatial Wigner transform of the wave
field u(x, t) is defined on phase space (x,k) as (?):

W (x,k, t) =

(
1

2π

)3 ∫

R3

eikyu

(

x− 1

2
y, t

)

u∗
(

x+
1

2
y, t

)

dy (1.49)

in this case W (x,k, t) is a 4× 4 Hermitian matrix but not necessarily positive definite. It can be
seen as the inverse Fourier transform of the (symmetrized) autocorrelation function of the wave
field u(x) (Bal, 2005). Its integral over k is always positive:

∫

R3

W (x,k, t)dk = u(x, t)u∗(x, t) = |u(x, t)|2 (1.50)

Equations (1.46) along with the equation (1.50) lead to the following expressions for the energy
density ǫ and the energy flux F in terms of the Wigner transform of the wave field:

E(x, t) = 1

2

∫

R3

Tr (A(x)W (x,k, t)) dk ; Fj(x, t) =
1

2

∫

R3

Tr
(
DjW (x,k, t)

)
dk (1.51)

The rescaled spatial Wigner transform matrix Wε is then defined similar to definition (1.49):

Wε(x,k, t) =

(
1

2π

)3 ∫

R3

eikyuε

(

x− 1

2
εy, t

)

u∗
ε

(

x+
1

2
εy, t

)

dy (1.52)
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It can be shown that the high frequency limit ofWε is not only Hemitian but also positive definite,
which is interesting as far as the interpretation of the Wigner transform as a measure of energy is
concerned.

The Taylor expansion of the deterministic rescaled Wigner matrix Wε in terms of adimensional
parameter ε reads:

Wε(x,k, t) = W (0)(x,k, t) + εW (1)(x,k, t) + ε2W (2)(x,k, t) + · · · (1.53)

Let b+ and b− denote respectively the polarization directions of the outgoing and incoming acoustic
waves. it can then be shown that the high frequency limit of the Wigner measure, i.e. W (0), may
be decomposed as:

W (0)(x,k, t) = a+(x,k, t)b+(k)b
∗
+(k) + a−(x,k, t)b−(k)b

∗
−(k) (1.54)

where the scalar functions a+ and a− are related as a+(x,k, t) = a−(x,−k, t) and a+ satisfies a
Liouville equation which is similar to the energy conservation law in equation (1.47):

∂a+
∂t

+ {ω, a+} = 0 (1.55)

in which the so-called Poisson bracket {} is defined as {f, g} = ∇kf ·∇xg−∇xf ·∇kg. Since W
(0)

is a positive definite matrix, the positive scalar a+ can be interpreted as the wave energy density
in phase space. Equation (1.55) is the RTE of acoustic waves in a homogeneous medium because
so far the medium parameters κ, µ and ρ are considered to be deterministic.

Insertion of randomness on medium properties and extraction of RTE: We now intro-
duce the spatial randomness on parameters κ and µ as:

κ(x) = κ
[

1 +
√
εXκ

(x

ε

)]

; µ(x) = µ
[

1 +
√
εXµ

(x

ε

)]

; ρ(x) = ρ
[

1 +
√
εXρ

(x

ε

)]

(1.56)

in which Xκ, Xµ and Xρ are adimensional, independent, statically isotropic and second-order
random functions with zero mean values and with correlation lengths comparable to the typical
wavelengths (since the stochastic scattering regime is of our interest). In this equation ε is the
same scaling factor defined early in this chapter. The magnitude of perturbations

√
ε, is chosen

such that the scattering effects due to the heterogeneities and the effect of the homogeneous back-
ground medium be comparable (Ryzhik et al., 1996). However, this reduction in the amplitude of
fluctuations will also prevent the waves to be in a localization regime in which the wave energy
will be trapped in finite regions so that its transport might no more be possible. In all 1D and
2D random media, the (Anderson) localization is expected. In 3D random media with strong
fluctuations, even when the heterogeneities are isotropic, a localization regime will be obtained
(see Sheng (1995), Larose et al. (2004) and Lobkis and Weaver (2008) for example).

Using the fast space variable ξ = x
ε
, a multiscale expansion of random matrix-valuedWε is now

introduced as:

Wε(x, ξ,k, t) = W (0)(x,k, t) +
√
εW (1)(x, ξ,k, t) + εW (2)(x, ξ,k, t) + · · · (1.57)

with a high frequency asymptotic W (0) which is assumed to be independent of the variable ξ. It
can be shown that the average value of the random matrix Wε is close (in a mean-square sense)
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to the positive definite ξ-independent matrix W (0) which itself could be again decomposed as in
equation (1.54), in which a+ which is hereafter denoted simply by a satisfies the following transport
equation:

∂a

∂t
+ {ω, a} =

πv2|k|2
2

∫

R3

δ (ω(k)− ω(k′)) (a(k′)− a(k))

×
{

(k̂ · k̂′
)2Sρρ(|k− k′|) + 2(k̂ · k̂′

)Sρκ(|k− k′|) + Sκκ(|k− k′|)
}

(1.58)

Since the local frequency is ω(x,k) = v(x)|k|, the Poisson bracket will be {ω, a} = vk̂ · ∇xa −
|k|∇xv · ∇ka. The right hand side of this equation can be rewritten in the following general form:

∂a

∂t
+ {ω, a} =

∫

R3

σ(x,k,k′)a(k′)dk′ − Σ(x,k)a(k) (1.59)

which is the general form of the transport equation of scalar waves having just a single wave mode.
In equation (1.58) Sρρ, Sρκ and Sκκ are the power spectra of the inhomogeneities (note that for

example Sρρ is the PSDF of the random variable Xρ defined in equation (1.56) ) and k̂ and k̂
′
are

the unit wave vectors corresponding to the incident and scattered waves or vice versa. The left
hand side of equation (1.59) represents the total time derivative of the angular energy density a at
a point moving along a ray in phase space (x,k) and the right hand side represents the effects of
scattering by random heterogeneities. The first term of the latter results from the gain of energy
due to the scattering of all possible incident waves which are scattered in direction k and the second
term is related to the loss of energy resulting from the scattering of the incident wave following k
to all other directions. It can be pointed out that the left and right hand sides of equation (1.59)
take into account respectively the parameter fluctuations at slow and fast scales. The scattering
process by a localized heterogeneity is schematically shown in Figure 1.8.

Inhomogeneity

K’

K

Incident Wave

Scattered Wave

Figure 1.8: Scalar wave scattering pattern
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Differential and total scattering cross-sections: In equation (1.59), the so-called differential
scattering cross-section σ is given by:

σ(x,k,k′) =
πv2|k|2

2

{

(k̂ · k̂′
)2Sρρ(|k− k′|) + 2(k̂ · k̂′

)Sρκ(|k− k′|) + Sκκ(|k− k′|)
}

δ (v|k| − v|k′|)
(1.60)

From equation (1.59), σ can be interpreted as the rate at which an incident wave with wave vector
k′ is scattered into another direction k. As it can be observed from equation (1.60), when the
material behavior is isotropic, σ is solely a function of the incident wave number |k| and the cosine

of the scattering angle (cos θ = (k̂ · k̂′
)) which is henceforth denoted by χ:

Isotropic Material → σ(x,k,k′) ≡ σ(x, |k|, χ) (1.61)

The Dirac delta function means that the wave frequency remains unchanged during scattering
process which is always true for time-independent non-dissipative media. The wave number is
conserved and therefore the differential scattering cross-section is symmetric with respect to k and
k′, i.e.:

σ(x,k,k′) = σ(x,k′,k) (1.62)

which is not necessarily the case for vector waves such as electromagnetic or elastic waves.

The total scattering cross section Σ in a point x and following a direction k is defined as the
sum of differential scattering cross sections for the incident (scattered) direction k and all possible
scattered (incident) directions k′:

Σ(x,k) =

∫

R3

σ(x,k,k′)dk′ (1.63)

σ and Σ are respectively in units of m3s−1 and s−1. Physically Σ can be interpreted as follows: If
a plane wave packet with a wave vector k is considered, its directional energy density following k
in any point x after a propagation time t will be decayed with a factor of exp(−Σ(x,k)t) (Turner,
1998). Σ specifies the wave attenuation due to the wave scattering.

1.4.2 Extension to the case of elastic waves

In this section, considering the particularities of elastic waves compared to the acoustic waves, we
will extend the RTE and the scattering parameters introduces in Section 1.4.1 to the case of elastic
waves. The main complexities related to the elastic waves compared to the case of acoustic waves
are:

(i) The existence of multiple wave modes resulting in potential mode conversions between P and
S waves during scattering events.

(ii) The state of polarization of S waves which can affect the transport equations.

The first complexity results in two strongly coupled transport equations for the directional
energy densities of P and S waves and the second one leads to a modification in the total time
derivative corresponding to the shear waves (LHS of the transport equation of S waves (see equa-
tion (1.68))).
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Consideration of different mode conversions: Equation (1.63) is no more true for elastic
waves in which multiple modes interact with each other during scatterings. In these cases, σ and
Σ are matrices. If we differentiate between two S wave modes as S1 and S2, the 3 × 3 matrices
corresponding to σ and Σ are as follows:





σ(P → P ) σ(P → S1) σ(P → S2)
σ(S1 → P ) σ(S1 → S1) σ(S1 → S2)
σ(S2 → P ) σ(S2 → S1) σ(S2 → S2)



⇐⇒





Σ(P → P ) Σ(P → S1) Σ(P → S2)
Σ(S1 → P ) Σ(S1 → S1) Σ(S1 → S2)
Σ(S2 → P ) Σ(S2 → S1) Σ(S2 → S2)



 (1.64)

Different entries of the scattering matrices can be grouped as follows:

Σ(P → P ) Σ(P → S1) Σ(P → S2)

Σ(S1 → P ) Σ(S1 → S1) Σ(S1 → S2)

Σ(S2 → P ) Σ(S2 → S1) Σ(S2 → S2)

















(1.65)

in which the total scattering cross-sections corresponding to different mode conversions are defined
as:

ΣPP = Σ(P → P ) (1.66a)

ΣSP = Σ(P → S1) + Σ(P → S2) (1.66b)

ΣPS =

[
Σ(S1 → P ) 0

0 Σ(S2 → P )

]

(1.66c)

ΣSS =

[
Σ(S1 → S1) Σ(S2 → S1)
Σ(S1 → S2) Σ(S2 → S2)

]

(1.66d)

Modifications in transport equations: For random media with locally isotropic material
behavior, Weaver (1990) and Ryzhik et al. (1996) derived the RTEs of elastic waves as the following
coupled system of equations:

∂ap(k)

∂t
+ {ωp, ap(k)}

=

∫

R3

σPP(k,k
′)ap(k′)dk′ − ΣPP(k)a

p(k)

︸ ︷︷ ︸

Effect of P-to-P scattering

+

∫

R3

σPS(k,k
′)[as(k′)]dk′ − ΣPS(k)a

p(k)

︸ ︷︷ ︸

Effect of S-to-P (left) and P-to-S (right) scattering

(1.67)

∂[as(k)]

∂t
+ {ωs, [as(k)]}+ [as(k)]N−N[as(k)]

︸ ︷︷ ︸

Effect of the polarization of S waves

=

∫

R3

σSS(k,k
′)[as(k′)]dk′ − ΣSS(k)[a

s(k)]

︸ ︷︷ ︸

Effect of S-to-S scattering

+

∫

R3

σSP(k,k
′)ap(k′)dk′ − ΣSP(k)[a

s(k)]

︸ ︷︷ ︸

Effect of P-to-S (left) and S-to-P (right) scattering

(1.68)

where ap(k) and [as(k)] are respectively the scalar directional energy density of compressional P
waves and the 2 × 2 coherence matrix containing the directional energy densities of the coupled
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shear S waves. This coherence matrix is similar to the energy density of electromagnetic waves
which can be described by four Stokes parameters, i.e. the intensity I, the degree of polarization
Q, the plane of polarization U and the ellipticity V . We denote the S wave modes (S1 and S2) by
plane waves as:

S1(t,x) = A1(t,x) exp(iωt) (1.69a)

S2(t,x) =A2(t,x) exp(iωt+ iφ(t)) (1.69b)

in which A1 and A2 are the respective amplitudes, ω is the wave’s circular frequency and φ(t) is
the phase shift between these two wave modes. The Stokes parameters are defined as (see Weaver
(1990), Turner and Weaver (1994), Margerin et al. (2000), Trégourès and van Tiggelen (2002) ):

I = 〈S1S
∗
1 + S2S

∗
2〉 = 〈A2

1〉+ 〈A2
2〉 (1.70a)

Q = 〈S1S
∗
1 − S2S

∗
2〉 = 〈A2

1〉 − 〈A2
2〉 (1.70b)

U = 〈S1S
∗
2 + S2S

∗
1〉 = 〈2A1A2 cosφ〉 (1.70c)

V = 〈−i(S1S
∗
2 − S2S

∗
1)〉 = 〈2A1A2 sinφ〉 (1.70d)

in which 〈〉 stands for the average over several periods. Note that the waves are unpolarized when
Q = U = V = 0. The coherence matrix [as(k)] is then defined as:

[as(k)] =
1

2

(
I +Q U + iV
U − iV I −Q

)

= [as∗(k)] (1.71)

which is Hermitian and positive definite and satisfies the Chandrasekhar’s RTE (Chandrasekhar,
1960). The extra-diagonal entries of [as(k)] result from the polarization of S waves and they vanish
when the shear waves are depolarized which takes place in diffusion regime.

In equation (1.68) the 2×2 matrixN(x,k) describes the polarization effect of shear waves which
will be defined later. In equations (1.67) and (1.68), differential scattering cross-section σij(k,k

′)
for i, j ∈ {P, S} (with unit m3/s), is the rate at which energy of mode type j with wave vector k′

is converted to wave energy of mode type i with wave vector k at the point x. It represents the
connection between material properties (Lamé parameters and density) and transport parameters
(attenuation, scattering cross-section, scattering mean free paths and diffusion constant) which
will be defined further in this chapter.

Thanks to the isotropy of the constitutive behavior (elasticity) and conservation of frequency
through mode conversion, one can parameterize the differential scattering operators as (Ryzhik
et al., 1996):

σPP(k,k
′) = σpp(k,k

′)δ(vp|k| − vp|k′|) (1.72a)

σPS(k,k
′)[I2] = Tr [σps(k,k

′)G(k,k′)] δ(vp|k| − vs|k′|) (1.72b)

σSP(k,k
′) = σps(k

′,k)G(k′,k)δ(vs|k| − vp|k′|) (1.72c)

σSS(k,k
′)[I2] =

{

σTTss (k,k
′

)T(k,k
′

)T(k
′

,k) + σΓΓ
ss (k,k

′

)Γ(k,k
′

)Γ(k
′

,k)

+σΓT
ss (k,k

′

)
[

T(k,k
′

)Γ(k
′

,k) + Γ(k,k
′

)T(k
′

,k)
]}

δ(vs|k| − vs|k′|) (1.72d)

where the matrices G, T and Γ will be defined in Section 1.4.3. The following self-consistency
relationship between P-to-S and S-to-P scattering cross-sections is a straightforward result from
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comparing the equations (1.72b) and (1.72c) which can also be shown using the fact that the Green
function is symmetrical:

σPS(k,k
′) = Tr σSP (k

′,k) (1.73a)

The differential, total and forward scattering cross-sections of elastic waves or the scattering
parameters will be studied in the next section.

1.4.3 Scattering parameters

Differential scattering cross-sections: Let the triplet [k̂, z(1)(k), z(2)(k)] (defined in Section
1.4.1) denote respectively the orthonormal polarization directions of P and S waves in spherical
coordinates:

k̂ =





sin θ cosφ
sin θ sinφ

cos θ



 ; z(1)(k) =





cos θ cosφ
cos θ sinφ
− sin θ



 ; z(2)(k) =





− sinφ
cosφ
0



 (1.74)

In equations (1.72b), (1.72c) and (1.72d), the 2 × 2 matrices G, T and Γ are respectively
defined as:

Gij(k,k
′

) = (k̂ · z(i)(k′))(k̂ · z(j)(k′)) (1.75)

Tij(k,k
′

) = z(i)(k) · z(j)(k′

) (1.76)

Γij(k,k
′

) = (k̂ · k̂′)(z(i)(k) · z(j)(k′

)) + (k̂ · z(j)(k′

)).(k̂′ · z(i)(k)) (1.77)

Without any loss of generality, we assume that the incident wave is in z direction (θ = φ = 0 in
equation (1.74)), so that the orthonormal propagation triplets corresponding to the incident and
scattered waves can be written as:

k̂ =





0
0
1



 ; z(1)(k) =





1
0
0



 ; z(2)(k) =





0
1
0



 (1.78)

k̂
′

=





sin θ′ cosφ′

sin θ′ sinφ′

cos θ′



 ; z(1)(k
′

) =





cos θ′ cosφ′

cos θ′ sinφ′

− sin θ′



 ; z(2)(k
′

) =





− sinφ′

cosφ′

0



 (1.79)

Hence, the scattering angle is θ′ and we define χ = cos θ′. In equations (1.72), the differential
scattering cross-sections σPP , σPS and σSP are respectively (see Weaver (1990), Ryzhik et al.
(1996), Turner (1998), Turner and Anugonda (2001) and Savin (2005) for instance):

σPP (k,k
′

) =
π|k|2(2µ+ λ)

2ρ

{
λ2

(2µ+ λ)2
Sλλ(|k− k

′ |) +
4λµ

(2µ+ λ)2
(k̂ · k̂′)2Sλµ(|k− k

′ |)

+
4µ2

(2µ+ λ)2
(k̂ · k̂′)4Sµµ(|k− k

′ |) + (k̂ · k̂′)2Sρρ(|k− k
′ |)

+
2λ

(2µ+ λ)
(k̂ · k̂′)Sλρ(|k− k

′ |) +
4µ

(2µ+ λ)
(k̂ · k̂′)3Sρµ(|k− k

′ |)
}

.δ(vp|k| − vp|k
′ |) (1.80)
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σPS(k,k
′

) =
πµ

2ρ

{

|k′ |2Sρρ(|k− k
′ |) + 4|k|2(k̂ · k̂′)2Sµµ(|k− k

′ |)

+4|k||k′ |(k̂ · k̂′)Sµρ(|k− k
′ |)
}(

1− (k̂ · k̂′)2
)

.δ(vs|k
′ | − vp|k|) (1.81)

σSP (k,k
′

) =
πµ

2ρ

{

|k|2Sρρ(|k− k
′ |) + 4|k′ |2(k̂ · k̂′)2Sµµ(|k− k

′ |) + 4|k||k′ |(k̂ · k̂′)Sµρ(|k− k
′ |)
}

(

1− (k̂ · k̂′)2
)[cos2 φ′ 0

0 sin2 φ′

]

.δ(vs|k| − vp|k
′ |) (1.82)

where Sij, i, j ∈ {λ, µ, ρ} are the power spectra of the underlying random medium and ρ, µ
and λ denote the respective average values calculated over the random medium. The differential
scattering cross-section corresponding to the S-to-S mode conversion σSS is a 2 × 2 matrix with
the following components (see equation (1.72d)):

σTTss (k,k
′

) =
1

2
πv2s |k|2Sρρ(|k− k

′ |) (1.83a)

σΓΓ
ss (k,k

′

) =
1

2
πv2s |k|2Sµµ(|k− k

′ |) (1.83b)

σΓT
ss (k,k

′

) =
1

2
πv2s |k|2Sρµ(|k− k

′ |) (1.83c)

Therefore, σSS = σTTSS + σΓΓ
SS + σΓT

SS has the following components:

σTTSS (k,k
′

) =
1

2
πv2s |k|2Sρρ(|k− k

′ |).δ(vs|k
′ | − vs|k|)

[
cos2 θ′ cos2 φ′ + sin2 φ′ cosφ′ sinφ′ (cos2 θ′ − 1)
cosφ′ sinφ′ (cos2 θ′ − 1) cos2 θ′ sin2 φ′ + cos2 φ′

]

(1.84)

σΓΓ
SS(k,k

′

) =
1

2
πv2s |k|2Sµµ(|k− k

′ |).δ(vs|k
′ | − vs|k|)

[
cos2 φ′ (2 cos2 θ′ − 1)

2
+ sin2 φ′ cos2 θ′ sinφ′ cosφ′ (4 cos4 θ′ − 5 cos2 θ′ + 1)

sinφ′ cosφ′ (4 cos4 θ′ − 5 cos2 θ′ + 1) sin2 φ′ (2 cos2 θ′ − 1)
2
+ cos2 φ′ cos2 θ′

]

(1.85)

σΓT
SS (k,k

′

) = πv2s |k|2Sρµ(|k− k
′ |).δ(vs|k

′ | − vs|k|)
[
cos θ′ (2 cos2 θ′ − 1) cos2 φ′ + cos θ′ sin2 φ′ 2 cos θ′ (cos2 θ′ − 1) sinφ′ cosφ′

2 cos θ′ (cos2 θ′ − 1) sinφ′ cosφ′ cos θ′ (2 cos2 θ′ − 1) sin2 φ′ + cos θ′ cos2 φ′

]

(1.86)

Total scattering cross-sections: Following equation (1.63), the corresponding wave number
dependent total scattering cross-sections are defined as:

ΣPP (|k|) =
∫

R3

σPP (|k|, |k′|, χ)dk′ =
2π

vp

∫ +1

−1

|k|2σPP (|k|, |k′| = |k|, χ)dχ (1.87)
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ΣPS(|k|) =
∫

R3

σPS(|k|, |k′|, χ)dk′ =
2π

vs

(
vp
vs

)2 ∫ +1

−1

|k|2σPS(|k|, |k′| = vp
vs
|k|, χ)dχ (1.88)

ΣSP (|k|) =
∫

R3

σSP (|k|, |k′|, χ, φ′)dk′ =
1

vp

(
vs
vp

)2 ∫ +1

−1

∫ 2π

0

|k|2σSP (|k|, |k′| = vs
vp
|k|, χ, φ′)dφ′dχ

(1.89)

ΣSS(|k|) =
∫

R3

σSS(|k|, |k′|, χ, φ′)dk′ =
1

vs

∫ +1

−1

∫ 2π

0

|k|2σSS(|k|, |k′| = |k|, χ, φ′)dφ′dχ (1.90)

Integrating equations (1.80), (1.81), (1.82) and (1.84) to (1.86) respectively using equations
(1.87), (1.88), (1.89) and (1.90) gives:

ΣPP (|k|) =
∫ +1

−1

π2|k|4
√

2µ+ λ
√
ρ

{
λ2

(2µ+ λ)2
Sλλ(a) +

4λµ

(2µ+ λ)2
χ2Sλµ(a) +

4µ2

(2µ+ λ)2
χ4Sµµ(a)

+χ2Sρρ(a) +
2λ

(2µ+ λ)
χSλρ(a) +

4µ

(2µ+ λ)
χ3Sρµ(a)

}

dχ (1.91)

ΣPS(|k|) =
∫ +1

−1

π2(2µ+ λ)
√
ρ
√
µ

|k|4
{

2µ+ λ

µ
Sρρ(b) + 4χ2Sµµ(b) + 4

√

2µ+ λ

µ
χSµρ(b)

}

(
1− χ2

)
dχ

(1.92)

ΣSP (|k|) =
∫ +1

−1

π2µ2

2
√
ρ
√

(2µ+ λ)3
|k|4

{

Sρρ(c) +
4µ

2µ+ λ
χ2Sµµ(c)

+4

√

µ

2µ+ λ
χSµρ(c)

}[
1 0
0 1

]
(
1− χ2

)
dχ (1.93)

ΣSS(|k|) =
∫ +1

−1

π2vs
2

|k|4Sρρ(a)
[
χ2 + 1 0

0 χ2 + 1

]

dχ

+

∫ +1

−1

π2vs
2

|k|4Sµµ(a)
[
4χ4 − 3χ2 + 1 0

0 4χ4 − 3χ2 + 1

]

dχ

+

∫ +1

−1

π2vs|k|4Sρµ(a)
[
2χ3 0
0 2χ3

]

dχ (1.94)

in which:

a = |k|
√

2(1− χ) ; b = |k|

√
√
√
√1 +

2µ+ λ

µ
− 2

√

2µ+ λ

µ
χ ; c = |k|

√
√
√
√1 +

µ

2µ+ λ
− 2

√

µ

2µ+ λ
χ

(1.95)
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The comparison of equations (1.92) and (1.93) shows that:

ΣSP (
vp
vs
|k|)

ΣPS(|k|)
=

1

2

(
vs
vp

)3

(1.96)

in which ΣSP (
vp
vs
|k|) is considered to be any of the diagonal entries of the corresponding matrix.

Forward scattering cross-sections: A direct result from equations (1.80), (1.81), (1.82) and
(1.83) is that the scattering of elastic waves is intrinsically anisotropic and the angle dependence of
the differential scattering cross-sections even in low-frequencies is inevitable (Turner, 1998). An-
other parameter relevant to the description of scattering preference is called the forward scattering
cross-section, which is defined as the integral of the differential scattering cross-section weighted
by the cosine of the scattering angle. Thus, it characterizes the degree of scattering in forward
direction. Its value can be negative, zero or positive respectively for backward, non-preferential
(but not necessarily isotropic) and forward scattering (Trégourès and van Tiggelen, 2002):

Σ′
ij(k) =

∫

R3

(k̂ · k̂′)σij(k,k
′)dk′, i, j ∈ {P, S} (1.97)

We will see further in Section 1.5 that this quantity appears to describe the parameters in a
diffusion regime.

Scattering mean free time (path): The attenuation of the wave energy is due to: 1) the
scattering effects due to the random heterogeneities and 2) the inelastic absorption resulting from
the dissipative nature of the underlying medium. Neglecting the effects of dissipation and dividing
both sides of the equations 1.67 and 1.68 respectively by ΣP = ΣPP + ΣPS and ΣS = ΣSS + ΣSP ,
two terms appear that have units of time. These quantities are called respectively the scattering
mean free time of the P and S waves. In the context of the elastic waves propagating in continuous
random media, the scattering mean free time (path) is defined as the time (path) during which
the scattering of the waves is effective. In the case of scalar waves propagating in discrete random
media, this quantity describes the average distance traveled by the waves without being scattered.
For elastic waves, the scattering mean free paths and times relative to each of the wave modes
are related via the corresponding phase velocity when the background is homogeneous (see Savin
(2005) for instance). We can define:

τP (k) =
1

ΣPP (k) + ΣPS(k)
⇒ ℓP (k) = τP (k)vp (1.98)

and

τS(k) =
1

ΣSS(k) + ΣSP (k)
⇒ ℓS(k) = τS(k)vs (1.99)

In the following section, the diffusion regime will be discussed as the limit of a transport regime
at long lapse times.

1.5 Diffusion regime

In a strongly scattering medium, after long propagation paths, the energy propagation of the mul-
tiply scattered waves can be described by a simplified version of the RTEs, the so-called diffusion
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equation. A diffusive regime establishes when (1) the energy radiation is almost isotropic and (2)
energy between P and S waves is equipartitioned. The latter one is in general less stringent than
the first condition (Margerin, 2013). When only the second condition is satisfied, an equiparti-
tion regime has set in. The transport mean free time (path) of the waves τ ∗(l∗), is the typical
time (distance) beyond which the waves will forget all their information about the source(s) or
the initial conditions. As a result, for the propagation times (distances) greater than τ ∗(l∗), the
direction of propagation of the waves becomes independent of the direction of the initial pulse and
the S waves become depolarized. These are some of the fundamental characteristics of the diffusion
regime, which is an asymptotic limit of the transport equations. In this regime, the energy density
of each mode will become independent of the propagation direction k, and will satisfy a scalar
diffusion equation which is identical to the heat conduction equation in thermal processes. For
elastic waves, the energy density of P and S waves in each point x and at any time t are defined
as the 3D integral of the corresponding directional energy densities:

Ep(t,x) =
∫

R3

ap(t,x,k)dk; Es(t,x) =
∫

R3

Tr[as(t,x,k)]dk (1.100)

In diffusion regime, the energy densities in phase space will be independent of the wave vectors,
therefore:

ap(t,x,k) ∼ α(t,x, |k|); [as(t,x,k′)] ∼ β(t,x, |k′|)I2 (1.101)

where I2 is a 2 × 2 identity matrix and It can be shown that the scalar function φ(t,x, |k|) =
α(t,x, |k|) = β(t,x, |k|vp/vs) satisfies the following so called diffusion equation:

∂φ

∂t
= ∇x.[D∇xφ] (1.102)

which is characterized by a so called diffusion constant or diffusivity D that determines the degree
of the scattering process. That is to say that lower values of D correspond to a highly scattering
medium and vice versa.

Now if we consider an incident P wave with wave vector k and a scattered S wave with
wave vector k′, since the local frequency remains always constant during the scattering events,
i.e. vp|k| = vs|k′|, in equilibrium (i.e. when an equipartitioning regime sets in) we will have
α(t,x, |k|) = β(t,x, |k|vp/vs). Integrating both sides of this equation over k will give us the fol-
lowing equipartitioning law (Weaver (1982, 1990), Papanicolaou et al. (1996), Ryzhik et al. (1996),
Turner (1998), Margerin (2013)):

lim
t>τ∗

Es(t,x)
Ep(t,x)

= 2K3 =
2v3p
v3s

≃ 2

(

2 +
λ

µ

)3

(1.103)

which is true for times larger than the typical transport mean free time. As a result, on the one
hand, each of the energies Ep and Es are individually related to the statistical properties of the
medium through the scalar diffusion equation and on the other hand, the ratio Es/Ep is directly
related to the first order statistics of Lamé parameters. The equipartition law was first derived
by Weaver (1982) by counting the number of normal wave modes. Weaver (1990), Ryzhik et al.
(1996) and Papanicolaou et al. (1996) then derived mathematically, based on the transport theory
of elastic waves, the law of energy partitioning between P and S wave energy densities. Margerin
et al. (2001) studied the effect of anelastic absorption on the equipartitioning of elastic waves.
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They found that even in dissipative media, in the coda part of the seismograms, the energies are
equipartitioned between P and S waves with a slight modification which rarely differs by more than
15% from the ratio predicted in full elastic media (equation 1.103). Shapiro et al. (2000) observed
the energy partitioning in the seismic coda of high-frequency local earthquakes in Mexico with the
measurements of the curl and divergence parts of the ground displacement. Thus, according to the
equation 1.103, at large lapse times the energy density ratio depends only upon the ratio between
the mean phase velocities K and not on the details of the multiple scattering neither the source
or initial conditions. For Poissonian materials, Es/Ep ≃ 10.4 which highlights the fact that the S
waves are dominant in diffusion. This dominance was observed by Aki (1992), using the analysis
of the seismological data.

The transport mean free paths of P and S waves are defined as distances that are required for
each wave type to travel in order to be in a diffusion regime. Derivations of the elastic diffusion
equation results in the following equations for these quantities (Margerin, 2006):

ℓ∗P (k) =
vp(ΣSS + ΣSP − Σ′

SS) + vsΣ
′
PS

(ΣPP + ΣPS − Σ′
PP )(ΣSS + ΣSP − Σ′

SS)− Σ′
PSΣ

′
SP

(1.104)

and

ℓ∗S(k) =
vs(ΣPP + ΣPS − Σ′

PP ) + vpΣ
′
SP

(ΣPP + ΣPS − Σ′
PP )(ΣSS + ΣSP − Σ′

SS)− Σ′
PSΣ

′
SP

(1.105)

The elastic diffusivity in equation (1.102) is a weighted average of the diffusion coefficients of

individual P and S wave modes, i.e. DP (k) =
vpℓ∗P (k)

3
and DS(k) =

vsℓ∗S(k)

3
):

D(k) =
1

1 + 2K3
(DP (k) + 2K3DS(k)) =

1

1 + 2K3

[
vpℓ

∗
P (k)

3
+ 2K3vsℓ

∗
S(k)

3

]

(1.106)

in which the weights are determined using the equipartition equation Es = 2K3Ep.

The separation of the elastic energy density φ into the P and S wave energy densities (Ep and
Es) cannot be done directly in equation (1.102) (Papanicolaou et al., 1996). However, in discrete
random media with spherically symmetric scatterers, Trégourès and van Tiggelen (2002) derived
a sophisticated form of the diffusion equation as a coupled system of equation for P and S wave
energy densities:

∂

∂t

(
Ep(t,x)
Es(t,x)

)

−DT .∆x

(
Ep(t,x)
Es(t,x)

)

= −J.
(
Ep(t,x)
Es(t,x)

)

(1.107)

where DT and J are respectively the matrix of elastic diffusivity and the collision matrix defined
as:

DT =
1

3 ((ΣPP + ΣPS − Σ′
PP )(ΣSS + ΣSP − Σ′

SS) + Σ′
PSΣ

′
SP )

[
v2p(ΣSS + ΣSP − Σ′

SS) vpvsΣ
′
PS

vpvsΣ
′
SP v2s(ΣPP + ΣPS − Σ′

PP )

]

(1.108)

and

J = ΣPS

(
1 − 1

K3

−1 1
K3

)

(1.109)
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The solution of the equation (1.107) in an unbounded medium shows an exponential decay of
the P and S wave energy densities toward the steady-state solution with the same rate. This decay
rate is called the global stabilization (equipartition) time τeq and is defined as the time needed to
reach the global equipartiton:

τeq(k) =
1

ΣPS(k) + ΣSP (k)
=

1

ΣPS(k)
(
1 + 1

2K3

) (1.110)

1.6 Summary and Conclusion

This chapter addressed the problem of the elastic wave propagation in randomly heterogeneous
media with locally isotropic material behavior. The concept of wave scattering in random media
is then introduced and the equations governing the mean wave energy densities in phase space
are derived following Ryzhik et al. (1996). The demonstrations are done only for acoustic waves
just for the sake of simplicity and the extension to the elastic waves is discussed. These transport
equations are characterized by the so-called scattering cross-sections which are functions of the
statistics of the underlying random medium. In the next chapter we will discuss in detail about
the scattering parameters and specifically we will focus on the assessment of the influence of the
correlation kernel of the random medium on the scattering parameters.
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Chapter 2

Influence of the spatial correlation
structure of an elastic random medium
on its scattering properties

A correlation model is parameterized in general by a variance and a correlation length. The
variance indicates an order of magnitude of the strength of the fluctuations and the correlation
length an order of magnitude of the distance over which the field fluctuates significantly. However,
these two numbers are not sufficient to describe completely a correlation model. Depending on
the application, it is not clear when higher order moments have a significant impact on the wave
behavior. The main objective of this chapter is to try and clarify this aspect. We therefore
introduce several classical correlation structures (exponential, power-law, Gaussian, triangular and
low-pass white noise) and study the impact of the structure on several parameters in the weakly
heterogeneous scattering regime (scattering cross-sections, diffusion parameters). This impact is
studied independently of the variance and correlation length, in order to compare the relative
influences. The asymptotic behavior of the mentioned parameters will be also investigated.

2.1 Normalizations of parameters

The objective of this section is to normalize all scattering parameters which have been introduced
in chapter 1 and represent them in terms of some adimensional parameters.

2.1.1 Phase velocity contrast parameter K

We will see further down that one of the most relevant mechanical parameter for our study is the
ratio between the space-averaged values of the phase velocities defined as:

K =
vp
vs

≃
√

2 +
λ

µ
(2.1)

Guilleminot and Soize (2013) have investigated the statistical dependence of different com-
ponents of the random elastic matrix using the maximum entropy principle. They have shown
that for isotropic materials, the bulk and shear moduli (κ(x), µ(x)) can be modeled as indepen-
dent, Gamma-distributed random variables. As a result, instead of considering Lamé coefficients
(λ(x), µ(x)), the bulk and shear moduli are considered as two independent random fields with
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Gamma distribution (see Appendix C). In this case, K can be rewritten as
√

4/3 + κ/µ. We

define the local phase velocity ratio random field as:

Kδ(x) =

√

4

3
+
κ(x)

µ(x)
(2.2)

For the sake of simplicity, the coefficients of variation of κ(x) and µ(x) are considered to be
the same, i.e. δκ = δµ = δ. Let κ(x) and µ(x) be two independent Gamma random variables
with parameters (θκ, ακ = 1/δ2) and (θµ, αµ = 1/δ2), it can be shown that the random variable
R(x) = κ(x)/µ(x) follows a beta distribution of the second kind with the following probability
density:

fR(r) =
1

(
θκ
θµ

) 1
2δ2

B( 1
2δ2
, 1
2δ2

)

r
1

2δ2
−1

(

1 + r
θκ
θµ

) 2
δ2

H(r) (2.3)

in which H and B are respectively the Heaviside and the beta function. The latter is defined
as:

B(α, β) =

∫ 1

0

pα−1(1− p)β−1dp (2.4)

Since θκ/θµ = κ/µ, a first-order approximation for the mean value and standard deviation of R

can be evaluated respectively using R = 1
1−δ2

κ
µ
and σR = (2−δ2)δ2

(1−2δ2)(1−δ2)
κ
µ
. Using some frequently-used

values in geological media, i.e. µ = 2× 109 Pa, κ = 3.3191× 109 Pa and δ = 0.25, we get R = 1.77
and σR = 0.26. Hence, the first-order approximation for the mean value and standard deviation
of K will be respectively Kδ =

√

4/3 +R = 1.76 and σKδ
= σR

2
√

4/3+R
= 0.07. As a result, the

spatial variation ofKδ(x) can be approximately neglected. In geological media, the isotropic elastic
material is frequently considered as a Poisson solid whose Lamé parameters are equal (λ = µ), so

that K =
√
3 will be used as a reference value in this study. Based on seismological data, the

values of K for the upper mantle range between 1.65 and 1.8. In laboratory tests under pertinent
pressure and temperature conditions for the geological layers, its values range between 1.7 and
2.3 (Sato, 1984). Note that the theoretical minimum of K is

√

4/3 ≃ 1.16. This value ensures
that the bulk modulus is positive but corresponds to a negative value of λ. In the next section, we
briefly remind the definitions of the normalized ACF and PSDF along with some basic hypotheses
made about them.

2.1.2 Random model of the mechanical parameters

Since the statistics of the Lamé parameters appear in transport equations of elastic waves rather
than that of (κ(x), µ(x)), a random description of the pair of random fields (λ(x), µ(x)) will be
considered. As before, we model them as second-order homogeneous random fields and specify
their mean values λ and µ, autocorrelation functions (ACF) Rλ(x − x′) = E[(λ(x) − λ)(λ(x′) −
λ)] and Rµ(x − x′) = E[(µ(x) − µ)(µ(x′) − µ)], and cross-correlation function Rλµ(x − x′) =
E[(λ(x)− λ)(µ(x′)− µ)]. When the auto/cross-correlation functions Rκ, Rµ and Rκµ are defined,
the calculation of the corresponding functions Rλ, Rµ and Rλµ is straightforward. For instance,
the cross-correlation function Rλµ can be calculated via:

Rλµ(τ) =
σ2
κRκ(τ) +

4
9
σ2
µRµ(τ)

σ2
κ +

4
9
σ2
µ

(2.5)
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These models of correlation functions R(r) are usually introduced after normalization by the
variance σ2 = R(0) and the correlation length ℓc is defined as in (1.36) of chapter 1. Assuming that
the correlation function is a function of the ratio between the lag distance r and the correlation
length ℓc, i.e. R(r; ℓc) = R(r/ℓc), we define the non-dimensional correlation function as:

R̂(η) =
R( r

ℓc
)

σ2
(2.6)

Note that the values of R̂(η) theoretically belong to the interval [−1,+1]. For the simplicity of
the presentation, we will consider from now on that all the correlation lengths are the same:

2

σ2
λ

∫

R+

Rλ(r) dr =
2

σ2
µ

∫

R+

Rµ(r) dr =
2

σλσµρλµ

∫

R+

Rλµ(r) dr ≡ ℓc, (2.7)

as well as the normalized correlation functions:

R̂λ(η) = R̂µ(η) = R̂λµ(η) ≡ R̂(η) (2.8)

The different correlation models therefore only differ through the variances σ2
λ = Rλ(0) and σ

2
µ =

Rµ(0) and the correlation coefficient ρλµ = Rλµ(0)/(σλσµ). Finally, we introduce the normalized

power spectral density function (PSDF) Φ(ζ) as the Fourier transform of R̂(η). We consider the
classical definition of the Fourier transform in spherical coordinates for isotropic functions in 3D:

Φ(ζ) =
1

2π2

∫

R+

sinc(ζη) η2R̂(η)dη. (2.9)

Note that the value of the PSDF at origin is related to the second order central moment of the
non-dimensional correlation function:

Φ(0) =
1

2π2

∫

R+

η2R̂(η)dη (2.10)

and that the first central moment of the PSDF is related to the zeroth order central moment of the
non-dimensional correlation function which is constant considering the definition of the correlation
length: ∫

R+

ζΦ(ζ) dζ =
1

2π2

∫

R+

R̂(η) dη =
1

4π2
(2.11)

These last two properties will be used to investigate the asymptotic behavior of the scattering
properties of the random medium throughout this chapter.

Although the effect of density variations has been shown to be influential on the attenuation of
wave energy and therefore on its propagation regime (Turner and Anugonda, 2001), we neglect it
here because these fluctuations are small in the geophysical media that we are interested in (Sato
et al., 2012). Therefore we have:

Φρ = Φρλ = Φρµ = 0 (2.12)

Since no information is available about the power spectral densities, different assumptions can be
made in order to simplify the analytical formulas in the theory of elastic wave scattering. For
example Turner (1998) used the following assumption:

λ2Φλ = µ2Φµ = λµΦλµ (2.13)
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In this work, we assume factorizable power spectral density functions which results from the
assumption that we have made in equation (2.8):

Φλ = Φµ = Φλµ ≡ Φ (2.14)

Obviously for the Poissonian materials (λ = µ) these two assumptions are equivalent.

2.1.3 Classical correlation models

We now introduce several models of correlation that have been used in geophysics Klimeš (2002).
First of all, the family of exponential correlation models with a general form as e−t(x/ℓc)

2α
is

considered in which t is a constant which is determined from the normalization condition and α
describes the smoothness of the random field. Larger values of α correspond to smoother random
fields. The models corresponding to α = 0.5 or α = 1 are of special interest, which are respectively
called the exponential and squared exponential or Gaussian correlation models. The exponential
correlation function has been used in Frankel and Clayton (1986) to explain observations of both
seismic wave scattering and travel-time variations. This correlation function as well as its PSDF
are:

R̂(η) = exp(−2η) (2.15a)

Φ(ζ) =
1

8π2
(

1 + ζ2

4

)2 (2.15b)

For large wave numbers, the Gaussian correlation function tends to zero faster than exponen-
tial model so that it has a lower high-frequency content. Both the correlation function and the
corresponding PSDF have a Gaussian functional form:

R̂(η) = exp(−πη2) (2.16a)

Φ(ζ) =
1

8π3
exp

(

− ζ2

4π

)

(2.16b)

The next correlation function is called the low-pass white noise and has a constant PSDF with an
upper frequency limit beyond which it vanishes. Thanks to the boundedness of the support of the
PSDF of this model, it will be interesting in our numerical simulations because the discretization
error in the wave number domain will be decreased (Ta et al., 2010). The corresponding random
field will also be smooth because of the complete suppression of the high frequency content. This
model can be written as:

R̂(η) =
3
(
sin
(
3π
2
η
)
− 3π

2
η cos

(
3π
2
η
))

(3π
2
η)3

(2.17a)

Φ(ζ) =
2

9π4
H

(
3π

2
− ζ

)

(2.17b)

Another correlation function whose PSDF has a linearly decreasing form with an upper fre-
quency limit is called the triangular model (see Ta et al. (2010), Soize (2000)). It has therefore the
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same numerical advantages as the media with low-pass white noise PSDF. This model is formulated
as:

R̂(η) =
12 (2− 2 cos(2πη)− (2πη) sin(2πη))

(2πη)4
(2.18a)

Φ(ζ) =
3

8π4

(

1− ζ

2π

)

H(2π − ζ) (2.18b)

A fundamental difference between this model and the flat correlation model is that in this
model the derivative of the PSDF at the origin is not equal to zero. We will see further in this
chapter that some of the factors that describe the influence of the correlation kernel on the scat-
tering parameters are the values of Φ(0) and Φ′(0).

Finally, a so-called power-law model is introduced:

R̂(η) =
1

(

1 + π2η2

4

)2 (2.19a)

Φ(ζ) =
1

π4
exp

(

−2
ζ

π

)

(2.19b)

Table 2.1 summarizes these models in their non-dimensional form, that is to say such that
R̂(0) = 1 and 2

∫

R+ R̂(η)dη = 1. The ACF and PSDF for these models are drawn in Figure 2.1.
One realization of a centered unit Gaussian random field with each of the correlation models is
also plotted in Figure 2.2 to give an idea of the difference of texture that these correlation models
imply.

Correlation Normalized ACF Normalized PSDF

model R̂(η) Φ(ζ)

Exponential exp(−2η) 1

8π2
(

1+ ζ2

4

)2

Power-law 1
(

1+π2η2

4

)2
1
π4 exp

(
−2 ζ

π

)

Gaussian exp(−πη2) 1
8π3 exp

(

− ζ2

4π

)

Triangular 12(2−2 cos(2πη)−(2πη) sin(2πη))
(2πη)4

3
8π4

(
1− ζ

2π

)
H(2π − ζ)

Low-pass white noise
3(sin( 3π

2
η)− 3π

2
η cos( 3π

2
η))

( 3π
2
η)3

2
9π4H

(
3π
2
− ζ
)

Table 2.1: Definitions of the normalized correlation models.

Note that all the correlations models, except the exponential one, have a vanishing initial slope
∂R̂/∂η(η = 0) = 0. This means that they all correspond to random fields that have almost surely
continuous trajectories. The exponential correlation corresponds to random fields that are only
mean-square continuous.

2.1.4 Normalization of differential scattering cross-section

In transport equations (1.67) and (1.68), one can parameterize the differential scattering operators
as functions of |k| and the two angles θ = cos−1(k̂ · k̂′) (or scattering angle) and φ = cos−1(z(2)(k̂) ·
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Figure 2.1: Classical correlation functions (left figure) and corresponding power spectral densities (right figure),
as described in Table 2.1: exponential (blue), power-law (purple), Gaussian (red), triangular (green) and low-pass
white noise (cyan).

(a) (b) (c) (d) (e)

Figure 2.2: One realization of a centered unit Gaussian random field with different correlation models: (a) expo-
nential, (b) power-law, (c) Gaussian, (d) triangular, and (e) low-pass white noise. The images are L × L, where
L = 20ℓc and ℓc is the correlation length.

z(2)(k̂′)) of the spherical representation of k′ − k:

σPP(k,k
′)[ap(k′)] =

π

2
vpℓcσpp(|k|ℓc, θ) ap(k′) δ(|k| − |k′|) (2.20)

σSP(k,k
′)[ap(k′)] = 2πvpℓcσps

( |k|ℓc
K

, θ

)

G(φ) ap(k′) δ(
|k|
K

− |k′|) (2.21)

σPS(k,k
′)[as(k′)] = 2πvsℓcσps(|k|ℓc, θ) Tr (G(0)as(k′)) δ(K|k| − |k′|) (2.22)

σSS(k,k
′)[as(k′)] =

π

2
vsℓcσss(|k|ℓc, θ) R(φ)Γ(θ)[as(k′)](R(φ)Γ(θ))T δ(|k| − |k′|) (2.23)

in which the non-dimensional functions σij (i, j ∈ {p, s}) include the influence of the correlation
kernel and the Dirac delta functions imply that the frequency remains unchanged during the scat-
tering phenomenon. This also shows that the differential scattering cross-sections σij (i, j ∈ {P, S})
have the unity of m3/s.

The incident waves are assumed to be in z direction. Hence, the orthonormal basis containing
the polarization directions of the P and two perpendicular S waves, respectively for incident and
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scattered waves, [ζ̂, z(1)(ζ̂), z(2)(ζ̂)] and [ζ̂
′
, z(1)(ζ̂

′
), z(2)(ζ̂

′
)], can be written in spherical coordinates

as in the equations (1.78) and (1.79). We also have |ζ − ζ ′| = 2ζ sin(θ/2). With the choice of
angles made above, In equations (2.21) to (2.23), the functions Γ(θ), G(φ) and R(φ) will be:

G(φ) =

[
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

]

(2.24)

Γ(θ) =

[
cos 2θ 0
0 cos θ

]

(2.25)

R(φ) =

[
cosφ − sinφ
sinφ cosφ

]

(2.26)

The analytical definitions of the non-dimensional functions σpp(ζ, θ), σps(ζ, θ), and σss(ζ, θ)
will be introduced in Section 2.2.

2.2 Influence of the correlation function on the scattering

parameters

We consider in this section the influence of the correlation function on the scattering, total scatter-
ing, and forward scattering cross sections that appear in the radiative transfer equations introduced
in chapter 1.

2.2.1 Influence on the differential scattering cross-sections

For elastic waves propagating in a weakly-varying random isotropic medium, the analytical for-
mulas for the differential scattering cross-sections are given in equations (2.20) to (2.23) in which
the influence of the correlation function is summarized in the following adimensional functions
(see Ryzhik et al. (1996) for instance):

σpp(ζ, θ) = ζ2

{(

1− 2

K2

)2

σ2
λ +

4

K2

(

1− 2

K2

)

cos2 θσλσµρλµ +
4

K4
cos4 θσ2

µ

}

Φ

(

2ζ sin
θ

2

)

,

(2.27)

σps(ζ, θ) = ζ2 cos2 θ sin2 θσ2
µΦ
(

ζ
√
1 +K2 − 2K cos θ

)

, (2.28)

and

σss(ζ, θ) = ζ2σ2
µΦ

(

2ζ sin
θ

2

)

, (2.29)

From equations (2.27), (2.28) and (2.29) it implies that the adimensional differential scattering
cross-sections are functions of the wavenumber of the incident wave and the cosine of the scattering
angle, i.e. σij = σij(ζ, χ), (i, j ∈ {p, s} and χ = cos θ). Consequently, elastic wave scattering is
intrinsically anisotropic (dependent on the scattering angle) even in low frequencies (ζ ≪ 1) in
which the function Φ tends to be a constant Φ(0). Another direct result from these equations
is that the scattering happens symmetrical about the incident axis since changing the scattering
angle θ → −θ does not change the values of the differential scattering cross-section. Adding the
randomness of the medium’s density results in an asymmetrical scattering pattern. It should be
noted that analytical solutions of the transport equations can be obtained assuming that the scat-
tering process is isotropic, i.e. σ = σ(ζ) (Aki (1992), Zeng (1993), Sato (1994)). In Appendix
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D, we extend the analytical solutions of the transport equations of elastic waves in the case of
isotropic scattering pattern given in Sato et al. (1997) for different source types.

Now that we have introduced the analytical formulas of the differential and total scattering
cross-sections, we define the following normalization for the differential scattering cross-sections of
elastic waves:

σ̂ij(ζ, θ) =
σij(ζ, θ)

∫ 2π

0
σij(ζ, θ) dθ

, i, j ∈ {p, s} (2.30)

In general σ̂ij states the angular dependence of the scattering process for j-to-i mode conversion.
Figure 2.3 shows the polar plots of the function σ̂ij for all different possible mode conversions. The
propagation media are the random media defined with five different correlation kernels introduced
in Table 2.1. The value of K is

√
3 and the covariance matrix is composed of σλ = σµ = ρλµ = 0.1.

The incident wave propagates in positive x direction and encounters the heterogeneity situated
at the center of the polar plots which represent the relative scattered energy densities with re-
spect to this incident angle. Each column corresponds to a different value of ζ. The first column
(ζ = 0.1) shows that for weak values of ζ, all different scattering patterns are symmetrical about
the y axis. In other words, in low frequencies the scattering process happens non-preferentially in
forward and backward directions. Nonetheless, the scattering is not isotropic (independent from
the scattering angle). P-to-P and S-to-S mode conversions occur almost in the same polarization
direction as the incident wave (positive and negative x direction). The P-to-S plot shows that the
scattered S wave energies are almost in θ = π/4, 3π/4, 5π/4, 7π/4 directions. Since in low frequen-
cies, the influence of the correlation kernel on differential scattering cross-sections are described by
Φ(0), σ̂ij becomes independent from the correlation kernel as it can be seen also in the first column.

From second and third columns it implies that, irrespective from the correlation type, increasing
the values of ζ results in scattering patterns with increasing trend toward the forward scattering
for all different mode conversions. The second column (ζ = 1) shows that all models except the
low-pass white noise have a forward scattering tendency. In this case, as far as the angular dis-
tribution of the relative scattered energies corresponding to P-to-S mode conversion is concerned,
the polar plot of σ̂ps depicts that the amount of scattered S wave energy following θ = 40◦ and
θ = 320◦ is almost 1 (for low-pass white noise model) to 4.5 (for exponential model) times the
scattered S wave energy following θ = 130◦ and θ = 220◦.

The third column (ζ = 10) shows that the scattering angles are tending to the exact same
direction as the incident wave packet direction. This comes from the fact that higher values of ζ
correspond to a more homogeneous medium which results in weak degrees of scattering. It should
be pointed out that in high frequencies, the values of σ̂ps for low-pass white noise and triangular
correlation models vanish due to the boundedness of the spectrum. That means there is no more
conversion between P and S wave energies (see Figure 2.3(f)).

2.2.2 Influence on the total scattering cross-sections

We remind from chapter 1 that the total scattering cross-section Σij(k) (i, j ∈ {P, S}) is defined
as the integral of the differential scattering cross-section σij(k,k

′) (i, j ∈ {P, S}) over all wave
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(c) σ̂pp, ζ = 10
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(d) σ̂ps, ζ = 0.1
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(g) σ̂ss, ζ = 0.1
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(h) σ̂ss, ζ = 1
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Figure 2.3: Influence of the correlation model on the scattering probability density functions σ̂ij(ζ, θ) for K =
√
3

and σλ = σµ = ρλµ = 0.1: exponential (blue), power-law (purple), Gaussian (red), triangular (green) and low-pass
white noise (cyan).

vectors k′. We define:

ΣPP (k) =
π2

4

vp
ℓc
Σpp(2|k|ℓc) (2.31)

ΣPS(k)I2 = π2vp
ℓc
Σps

(

2|k|ℓc
√

K0K
)

I2 = 2K3ΣSP

(
k

K

)

(2.32)

ΣSS(k) =
π2

8

vs
ℓc
Σss(2|k|ℓc)I2 (2.33)
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where I2 is a 2×2 identity matrix and the influence of the correlation kernel on the total scattering
cross-sections is completely included in the adimensional functions Σpp, Σps and Σss:

Σpp(ζ) = ζ4

{(

1− 2

K2

)2

σ2
λI0(ζ) +

4

K2

(

1− 2

K2

)

σλσµρλµI2(ζ) +
4

K4
σ2
µI4(ζ)

}

(2.34)

Σps(ζ) = ζ4
1

KK2
0

σ2
µ {J2 (ζ)− J4 (ζ)} (2.35)

Σss(ζ) = ζ4σ2
µ {I0(ζ)− 3I2(ζ) + 4I4(ζ)} (2.36)

in which

In(ζ) =

∫ 1

0

(
1− 2χ2

)n
χΦ(ζχ)dχ (2.37)

and

Jn(ζ) = Kn+1
0

∫ K2

K1

(
1− 2χ2

)n
χΦ(ζχ)dχ, (2.38)

and where K0 = (K + 1/K)/2, K1 =
√

(1− 1/K0)/2 and K2 =
√

(1 + 1/K0)/2. The behavior of
the functions In(ζ) and Jn(ζ) is studied in Appendix A.

Using the asymptotic results for In and Jn in Appendix A, we get the low-frequency behavior
of the Σij (i, j ∈ {p, s}):

Σpp(ζ ≪ 1) =

{(

1− 2

K2

)2

σ2
λ +

4

3K2

(

1− 2

K2

)

σλσµρλµ +
4

5K4
σ2
µ

}

Φ(0)

2
ζ4 +O(ζ6) (2.39)

Σps(ζ ≪ 1) =
1

KK2
0

σ2
µ

Φ(0)

15
ζ4 +O(ζ5) (2.40)

Σss(ζ ≪ 1) =
2

5
σ2
µΦ(0)ζ

4 +O(ζ6) (2.41)

Two main results can be extracted from these equations:

• In low frequencies, the total scattering cross-sections increase with fourth power of the fre-
quency.

• The influence of the correlation kernel in this limit can be described by the second central
moment of the ACF or the value of the PSDF at origin Φ(0) (equation (2.10)). Figure 2.4
also shows that correlation models with higher values of Φ(0) have higher values of total
scattering cross-sections.

The high-frequency behavior of the P-to-P and S-to-S total scattering cross-sections is:

Σpp(ζ ≫ 1) =
1

4π2

{(

1− 2

K2

)2

σ2
λ +

4

K2

(

1− 2

K2

)

σλσµρλµ +
4

K4
σ2
µ

}

ζ2 +O(ζ), (2.42)

Σss(ζ ≫ 1) =
1

2π2
σ2
µζ

2 +O(ζ). (2.43)
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In high frequencies the influence of the correlation kernel on P-to-P and S-to-S total scattering
cross-sections is the zeroth-order central moment of the ACF or equivalently the first-order central
moment of the PSDF (equation (2.11)) that is 1/(4π2) based on our normalization condition for
the correlation length (equation (1.36)). In this limit, Σpp and Σss increase with second power of
frequency and as it can be seen in figure 2.4, different correlation models result in the same values
for Σpp and Σss. Contrarily, the P-S total scattering coefficient is extremely dependent on the
correlation model. For the case of power spectra with bounded support, the values of Σps cancel
at a frequency ζ∗ so that the high-frequency limit will be zero (see Figure 2.4(b)):

ζ∗ =
ζc
K1

=

√

2(K2 + 1)

K − 1
ζc (2.44)

Therefore, we have Σps(ζ ≥ ζ∗) = ΣPS(2|k|ℓc ≥ ζ∗) = 0. Consequently, for the low-pass
white-noise and triangular correlation models for which ζc is respectively 3π/2 and 2π as in table
2.1, and for K =

√
3 (K0 = 2√

3
), the values of Σps and ΣPS cancel at ζ∗ ≃ 18.21 and ζ∗ ≃ 24.28

respectively (see figure 2.4).

Using equation (A.18) in Appendix A.4, we can also show that in high frequencies, Σps for a
random medium with an exponential correlation kernel tends to a constant (see the stabilization
of the blue curve at high frequencies in Figure 2.4(b)):

Σ
exp

ps (ζ ≫ 1) =
2

π2KK2
0

σ2
µ

[
V −4
2 (K)− V −4

4 (K)
]
+O(ζ−1) (2.45)

in which the function V p
n (K) is defined in Appendix A. As a result, the only model among those

studied in this presentation for which even in high frequencies the exchange between body wave
energies takes place is the exponential correlation model. Contrary to the case of exponential
correlation, for Gaussian and power-law models in which the PSDFs are exponential functions,
the high-frequency values of Σps tend to zero exponentially so that a polynomial representation is
impossible.

Finally, for the regime ζ ∼ 1, Figure 2.4 shows that the influence of the correlation model seems
to be limited for all three total scattering coefficients P-P, S-S and P-S.
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Figure 2.4: Σpp, Σps and Σss in terms of ζ for K =
√
3 and σλ = σµ = ρλµ = 0.1: exponential (blue), power-law

(purple), Gaussian (red), triangular (green) and low-pass white noise (cyan).
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2.2.3 Influence on the forward scattering cross-sections

We remind from chapter 1 that forward scattering cross-sections characterize the degree of scat-
tering in forward direction. Assuming the same normalizations for the forward scattering cross
sections as for the total scattering cross-sections, that is to say:

Σ′
PP (k) =

π2

4

vp
ℓc
Σ

′
pp(2|k|ℓc) (2.46)

Σ′
PS(k)I2 = π2vp

ℓc
Σ

′
ps

(

2|k|ℓc
√

K0K
)

I2 = 2K3Σ′
SP

(
k

K

)

(2.47)

Σ′
SS(k) =

π2

8

vs
ℓc
Σ

′
ss(2|k|ℓc)I2 (2.48)

Hence, we get:

Σ
′
pp(ζ) = ζ4

{(

1− 2

K2

)2

σ2
λI1(ζ) +

4

K2

(

1− 2

K2

)

σλσµρλµI3(ζ) +
4

K4
σ2
µI5(ζ)

}

(2.49)

Σ
′
ps(ζ) = ζ4

1

KK2
0

σ2
µ {J3 (ζ)− J5 (ζ)} (2.50)

Σ
′
ss(ζ) = ζ4σ2

µ {I1(ζ)− 3I3(ζ) + 4I5(ζ)} (2.51)

in which the functions In and Jn are defined in equations (2.37) and (2.38). Function I for odd n
values cancels when the correlation model is low-pass white noise and ζ ≤ ζc = 3π/2. As a result,

for this particular correlation model, the values of Σ
′
pp and Σ

′
ss vanish for ζ < 3π/2 ≃ 4.7 which

implies that P-to-P and S-to-S scatterings occur non-preferentially in this case (see the first two
columns of figure 2.3). It can also be shown that for the correlation models whose PSDF have

bounded support and for the values of ζ ≥
√

2(K2+1)

K−1
ζc, Σ

′
ps vanishes.

Since the randomness in density is neglected, all of differential scattering cross-section are func-
tions of pair powers of χ = cos θ. This implies that Σ′

ij ≥ 0 (i, j ∈ {P, S} is always true so that
the plots of these parameters can be done in a logarithmic scale. Polar plots in figure 2.3 also
showed that the scattering patterns in this case are always symmetrical (about the y axis) or have
a forward trend.

The limit behavior of the functions In(ζ) and Jn(ζ) for ζ ≪ 1 and ζ ≫ 1 implies that the limit
behavior of the forward scattering cross-sections in the low frequency range is:

Σ
′
pp(ζ ≪ 1) =

{(

1− 2

K2

)2

σ2
λW

1
1 +

4

K2

(

1− 2

K2

)

σλσµρλµW
1
3 +

4

K4
σ2
µW

1
5

}

Φ′(0)ζ5

−
{

1

24

(

1− 2

K2

)2

σ2
λ +

1

10K2

(

1− 2

K2

)

σλσµρλµ +
1

14K4
σ2
µ

}

Φ′′(0)ζ6 +O(ζ7) (2.52)

Σ
′
ps(ζ ≪ 1) =

1

KK2
0

σ2
µ(V

1
3 − V 1

5 )Φ
′(0)ζ5 − 1

140KK3
0

σ2
µΦ

′′(0)ζ6 +O(ζ7) (2.53)
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Σ
′
ss(ζ ≪ 1) = σ2

µ(W
1
1 − 3W 1

3 + 4W 1
5 )Φ

′(0)ζ5 − 4

105
σ2
µΦ

′′(0)ζ6 +O(ζ7) (2.54)

in which W p
n and V p

n are defined in Appendix A. Hence, the influence of the correlation kernel
in this limit can be described by the first and second derivatives of the PSDF in origin. Conse-
quently, in a low-frequency regime, forward scattering cross-sections are a priori proportional to
the fifth power of frequency. However, for correlation models whose first derivative in origin is
zero (Φ′(0) = 0) (for instance the exponential and Gaussian spatial correlation models) the low-
frequency limits of forward scattering cross-sections vary in sixth power of frequency. Nonetheless,
since for the case of the low-pass white noise correlation for all n ≥ 1 we have Φ(n)(0) = 0, the
low-frequency limit tends to zero. For instance, figure 2.5(b) shows that in low frequencies we can
distinguish three groups: The exponential and Gaussian models with a slope of 6, the triangular
and power-law models with a slope of 5. It should be pointed out that Σ

′
ps for the low-pass white

noise model is defined within the interval [3π/(2K2), 3π/(2K1)] since the functions J3(ζ) and J5(ζ)
are defined in this interval (see Appendix A.4).

The high-frequency behavior of the Σ
′
pp and Σ

′
ss:

Σ
′
pp(ζ ≫ 1) =

1

4π2

{(

1− 2

K2

)2

σ2
λ +

4

K2

(

1− 2

K2

)

σλσµρλµ +
4

K4
σ2
µ

}

ζ2 +O(ζ1) (2.55)

Σ
′
ss(ζ ≫ 1) =

1

2π2
σ2
µζ

2 +O(ζ1) (2.56)

In high frequencies, similar to the case of total scattering cross-sections, Σ
′
pp and Σ

′
ss are pro-

portional to the second power of frequency. It should be pointed out that high frequency limits
of Σpp and Σ

′
pp and likewise Σss and Σ

′
ss are equal. The influence of the correlation model can be

described by the second central moment of the ACF or the first central moment of the PSDF which
is a constant for different models based on the normalization condition defined in equation (1.36).
Figures 2.5(a) and 2.5(c) show the convergence of different correlation models together in this limit.

Contrary to the P-to-P and S-to-S forward scattering cross-sections which are increasing in
high frequencies, Σ

′
ps decreases and tends to zero regardless of the medium’s correlation structure.

As it can be seen in figure 2.5(b) and similar to the case of Σps, the high-frequency behavior of Σ
′
ps

is correlation-dependent. For bounded power spectra, the cut-off frequency follows the equation
(2.44) and we have Σ

′
ps(ζ ≥ ζ∗) = 0. For an exponential correlation model, we can show that the

high-frequency behavior of Σ
′
ps can be approximated by a constant (see Figure 2.5(b)):

Σ
′exp
ps (ζ ≫ 1) =

2

π2KK2
0

σ2
µ

[
V −4
3 (K)− V −4

5 (K)
]
+O(ζ−1) (2.57)

For Gaussian and power-law models, the high-frequency values of Σ
′
ps tends to zero exponen-

tially so that a polynomial approximation is impossible.
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Figure 2.5: Σ
′

pp, Σ
′

ps and Σ
′

ss in terms of ζ for K =
√
3 and σλ = σµ = ρλµ = 0.1: exponential (blue), power-law

(purple), Gaussian (red), triangular (green) and low-pass white noise (cyan).

2.3 Influence of the correlation function on the diffusion

regime

2.3.1 Normalized scattering mean free time (path), τ (ℓ)

The scattering mean free time (path) is defined in Section 1.4.3 of chapter 1. Following equations
(1.98) and (1.99) we can define:

τP (k) =
1

ΣPP (k) + ΣPS(k)
=

4

π2

ℓc
vp
τ p(2|k|ℓc) ⇒ ℓP (k) = τP (k)vp (2.58)

and

τS(k) =
1

ΣSS(k) + ΣSP (k)
=

8

π2

ℓc
vs
τ s(2|k|ℓc) ⇒ ℓS(k) = τS(k)vs (2.59)

with the non-dimensional functions τ p and τ s including the influences of the correlation model:

τ p(ζ) =
1

Σpp(ζ) + 4Σps(ζ
√
KK0)

=
ζ−4

(
1− 2

K2

)2
σ2
λI0(ζ) +

4
K2

(
1− 2

K2

)
σλσµρλµI2(ζ) +

4
K4σ2

µ

(
I4(ζ) +K5(J2(ζ

√
KK0)− J4(ζ

√
KK0))

)(2.60)

and

τ s(ζ) =
1

Σss(ζ) +
4
K2Σps(ζK

√
KK0)

=
1

σ2
µ

ζ−4

I0(ζ)− 3I2(ζ) + 4I4(ζ) +
4

K3K2
0
(J2(ζK

√
KK0)− J4(ζK

√
KK0))

(2.61)

The influence of the correlation kernel on τ p and τ s can now be investigated using the asymptotics
for Σpp(ζ), Σps(ζ) and Σss(ζ). The low-frequency limits of the scattering mean free time of P and
S waves read:

τ p(ζ ≪ 1) =
ζ−4

{(
1− 2

K2

)2
σ2
λ +

4
3K2

(
1− 2

K2

)
σλσµρλµ +

4
5K4

(
1 + 2K5

3

)
σ2
µ

}
Φ(0)
2

+O(ζ−3) (2.62)
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and

τ s(ζ ≪ 1) =
15ζ−4

2(3 + 2K3)σ2
µΦ(0)

+ O(ζ−3) (2.63)

Consequently, in low frequencies, the decay of the scattering mean free times occurs inversely
proportional to the fourth power of the frequency. In addition, the influence of the correlation
kernel appears in 1/Φ(0), i.e. in this asymptotic regime, models with lower values of Φ(0) have
higher values of scattering mean free paths and vice versa.

The high-frequency behavior of these quantities are independent form the correlation model
since the function Σps becomes negligible compared to Σpp and Σss respectively in equations (2.60)
and (2.61) (see Figure 2.6). The corresponding high-frequency limits of the P and S scattering
mean free paths read:

τ p(ζ ≫ 1) =
1

Σpp(ζ ≫ 1)
=

ζ−2

1
4π2

{(
1− 2

K2

)2
σ2
λ +

4
K2

(
1− 2

K2

)
σλσµρλµ +

4
K4σ2

µ

} +O(ζ−1) (2.64)

and

τ s(ζ ≫ 1) =
1

Σss(ζ ≫ 1)
=

ζ−2

1
2π2σ2

µ

+O(ζ−1) (2.65)

As a result, for instance the high-frequency limit of the scattering mean free time of shear waves
τS propagating in random media with any type of correlation model, can be simplified as:

τS(|k|ℓc ≫ 1) ≃ 4

vsσ2
µ|k|2ℓc

(2.66)

Figure 2.6 shows the variations of τ̄p and τ̄s in terms of ζ in which the transition between the
slopes −4 to −2 from low to high frequencies can be observed.
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2.3.2 Normalized transport mean free path (time), ℓ
∗
(τ ∗)

In chapter 1 we defined the transport mean free path/time as the distance/time beyond which
each wave mode reaches a diffusion regime. We define:

ℓ∗P (k) =
vp(ΣSS + ΣSP − Σ′

SS) + vsΣ
′
PS

(ΣPP + ΣPS − Σ′
PP )(ΣSS + ΣSP − Σ′

SS)− Σ′
PSΣ

′
SP

=
4

π2
ℓcℓ

∗
p(2|k|ℓc) (2.67)

and

ℓ∗S(k) =
vs(ΣPP + ΣPS − Σ′

PP ) + vpΣ
′
SP

(ΣPP + ΣPS − Σ′
PP )(ΣSS + ΣSP − Σ′

SS)− Σ′
PSΣ

′
SP

=
8

π2
ℓcℓ

∗
s(2|k|ℓc) (2.68)

in which the normalized functions ℓ
∗
p and ℓ

∗
s, which include the influence of the correlation model

on the transport mean free paths, are defined as:

ℓ
∗

p(ζ) =
Σss(ζ) +

4
K2Σps(ζK

√
KK0)− Σ

′

ss(ζ) + 8Σ
′

ps(ζ
√
KK0)

(

Σpp(ζ) + 4Σps(ζ
√
KK0)− Σ

′

pp(ζ)
)(

Σss(ζ) +
4

K2Σps(ζK
√
KK0)− Σ

′

ss(ζ)
)

− 16
K2Σ

′

ps(ζ
√
KK0)Σ

′

ps(ζK
√
KK0)

(2.69)
and

ℓ
∗

s(ζ) =
Σpp(ζ) + 4Σps(ζ

√
KK0)− Σ

′

pp(ζ) +
2

K2Σ
′

ps(ζK
√
KK0)

(

Σpp(ζ) + 4Σps(ζ
√
KK0)− Σ

′

pp(ζ)
)(

Σss(ζ) +
4

K2Σps(ζK
√
KK0)− Σ

′

ss(ζ)
)

− 16
K2Σ

′

ps(ζ
√
KK0)Σ

′

ps(ζK
√
KK0)

(2.70)

A direct result of the equations 2.67 and 2.68 is that in the special case of non-preferential scat-
tering between all wave modes, i.e. Σ′

ij = 0 (i, j ∈ {P, S}), the forward scattering cross-sections
cancel and the transport mean free paths will become equivalent to the corresponding scattering
mean free paths defined earlier in section 2.3.1.

The low-frequency limit of the normalized functions ℓ
∗
p and ℓ

∗
s are:

ℓ
∗
p(ζ ≪ 1) =

ζ−4

{(
1− 2

K2

)2
σ2
λ +

4
3K2

(
1− 2

K2

)
σλσµρλµ +

4
15K4 (3 + 2K5) σ2

µ

}
Φ(0)
2

+O(ζ−3) (2.71)

and

ℓ
∗
s(ζ ≪ 1) =

15ζ−4

2 (3 + 2K3) σ2
µΦ(0)

+ O(ζ−3) (2.72)

Therefore, the transport mean free paths of elastic waves in low frequencies is inversely propor-
tional to the fourth power of frequency and the influence of the correlation model appears in 1/Φ(0).

The high-frequency limits can be simplified as following equations (since Σps and Σ
′
ps are

negligible compared to other terms in equations (2.69) and (2.70)):

ℓ
∗
p(ζ ≫ 1) =

1

Σpp(ζ)− Σ
′
pp(ζ)

(2.73)

and

ℓ
∗
s(ζ ≫ 1) =

1

Σss(ζ)− Σ
′
ss(ζ)

(2.74)
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which means that in this case, the transport mean free paths are a simple modification of the
corresponding scattering mean free paths. We can show that these limits are as follows:

ℓ
∗
p(ζ ≫ 1) =

1

2
[(
1− 2

K2

)2
σ2
λ +

4
K2

(
1− 2

K2

)
σλσµρλµ +

4
K4σ2

µ

] [

limζ→∞
∫ ζ

0
p3Φ(p)dp

] (2.75)

and

ℓ
∗
s(ζ ≫ 1) =

1

4σ2
µ

[

limζ→∞
∫ ζ

0
p3Φ(p)dp

] (2.76)

Hence, the influence of the correlation kernel on the diffusion lengths in high frequencies can
be described by the third central moment of the PSDF, i.e.:

lim
ζ→∞

∫ ζ

0

p3Φ(p)dp (2.77)

We can verify simply that this integral converges for all correlation models except the expo-
nential model. For the latter, the behavior of this integral cannot be described via polynomial
functions. In other words, a polynomial representation of the high-frequency limits of the trans-
port mean free paths of a random medium with exponential correlation is impossible. Figure (2.7)
shows the variations of the adimensional functions ℓ

∗
p(ζ) and ℓ

∗
s(ζ). In high frequencies, the latter

tend to constant values for all models except the exponential model according to equations (2.75)
and (2.76). This stabilization of the transport mean free paths in high frequencies can be observed
from this figure. The integral of the equation (2.77) converges to 3

8
, 1
π
, 3

10
and 9

32
respectively for

power-law, Gaussian, triangular and low-pass white noise correlations. For instance, the transport
mean free path of shear waves for a random medium with low-pass white noise correlation model
reads:

ℓ∗S (|k|ℓc ≫ 1) =
64

9π2

ℓc
σ2
µ

(2.78)

so that the ratio between the correlation length and the variance of the shear modulus of the
underlying random medium will determine the transport mean free path of shear waves.
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Figure 2.7: ℓ̄∗p (left plot) and ℓ̄∗s (right plot) in terms of ζ for K =
√
3 and σλ = σµ = ρλµ = 0.1: exponential (blue),

power-law (purple), Gaussian (red), triangular (green) and low-pass white noise (cyan).
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2.3.3 Normalized diffusion constant, D

We normalize the elastic diffusivity as:

D(k) =
1

1 + 2K3
(DP (k)+2K3DS(k)) =

1

1 + 2K3

[
vpℓ

∗
P (k)

3
+ 2K3vsℓ

∗
S(k)

3

]

=
4

3π2

ℓcvp
1 + 2K3

D(2|k|ℓc)
(2.79)

in which the non-dimensional function D is defined as:

D(ζ) = ℓ
∗
p(ζ) + 4K2ℓ

∗
s(ζ) (2.80)

introducing the equations 2.69 and 2.70 into 2.80 and then into the equation 2.79 gives:

D(ζ) =
4

3π2

ℓcvp
1 + 2K3

4K2Σpp(ζ) +
4

K2Σps(ζK
√
KK0) + 16K2Σps(ζ

√
KK0) + Σss(ζ)− 4K2Σ

′

pp(ζ) + 8
(

Σ
′

ps(ζ
√
KK0) + Σ

′

ps(ζK
√
KK0)

)

− Σ
′

ss(ζ)
(

Σpp(ζ) + 4Σps(ζ
√
KK0)− Σ

′

pp(ζ)
)(

Σss(ζ) +
4

K2Σps(ζK
√
KK0)− Σ

′

ss(ζ)
)

− 16
K2Σ

′

ps(ζ
√
KK0)Σ

′

ps(ζK
√
KK0)

(2.81)

Using the asymptotic functions describing the low-frequency limits of the non-dimensional
functions ℓ

∗
p and ℓ

∗
s gives:

D(ζ ≪ 1) =




2

{(
1− 2

K2

)2
σ2
λ + 4

3K2

(
1− 2

K2

)
σλσµρλµ + 4

15K4 (3 + 2K5)σ2
µ

} +
4K2

2
15 (3 + 2K3)σ2

µ




ζ−4

Φ(0)
+ O(ζ−3)

(2.82)

which shows that the low-frequency limit of the diffusion constant is inversely proportional to the
fourth power of frequency and the influence of the correlation kernel is the term 1/Φ(0).

The high-frequency behavior is model-dependent. For all correlation models except the expo-
nential model, the elastic constant converges as follows:

D(ζ ≫ 1) =




1

2
[(
1− 2

K2

)2
σ2
λ +

4
K2

(
1− 2

K2

)
σλσµρλµ +

4
K4σ2

µ

] +
K2

σ2
µ




1

limζ→∞
∫ ζ

0
p3Φ(p)dp

(2.83)
Similar to the case of transport mean free paths, for a random medium with exponential

correlation model, the elastic constant cannot be represented polynomially. The left plot in Figure
2.8 depicts the variation of the normalized elastic constant for different models from which the
exponential correlation can be simply differentiated from other models.

2.3.4 Normalized equipartitioning time

We define the global equipartitioning time as:

teq(k) =
1

ΣPS(k) + ΣSP (k)
=

1

ΣPS(k)
(
1 + 1

2K3

)

=
1

π2 vp
ℓc

(
1 + 1

2K3

)
Σps(2|k|ℓc

√
K0K)

=
1

π2 vp
ℓc

(
1 + 1

2K3

)teq(2|k|ℓc
√

K0K) (2.84)
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in which teq(ζ) = 1/Σps(ζ) is the adimensional function including the effects of the correlation
model. Equation (2.84) shows the importance of the P-to-S total scattering cross-section on the
global equilibrium time. The low-frequency limit of teq is a decreasing function by the fourth power
of frequency. In this regime, 1/Φ(0) determines the effects of the correlation kernel:

teq(ζ ≪ 1) =
ζ−4

π2σ2
µvp

15KK2
0 ℓc

(
1 + 1

2K3

)
Φ(0)

+ O(ζ−3) (2.85)

The high-frequency limit of teq for correlations whose PSDF has a bounded support, will be
undefined since Σps(ζ) for ζ > ζ∗ vanishes. For Gaussian and power-law models a polynomial
representation of teq in high frequencies is impossible. However, following equation (2.45), the
high-frequency limit of the global equipartitioning time of a random medium with exponential
ACF converges to the following constant:

t
exp
eq (ζ ≫ 1) =

1

Σ
exp

ps (ζ ≫ 1)
=

1
2

π2KK2
0
σ2
µ

[
V −4
2 (K)− V −4

4 (K)
] +O(ζ−1) (2.86)

The right plot in Figure 2.8 shows the variation of teq(ζ) in terms of adimensional parameter ζ in
which three correlation groups can be distinguished: (1) low-pass white noise and triangular models
having PSDFs with bounded support for which the high frequency values of teq are undefined; (2)
power-law and Gaussian models for which a polynomial representation of teq in high frequencies is
impossible and (3) exponential model which converges at high frequencies.
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Figure 2.8: D̄ (left plot) and t̄eq (right plot) in terms of ζ for K =
√
3 and σλ = σµ = ρλµ = 0.1: exponential

(thick solid line), power-law (thin dashed-dotted line), Gaussian (thick dashed line), triangular (thin solid line) and
low-pass white noise (thin dashed line).

2.4 Summary and Conclusion

Scattering parameters of the elastic waves propagating in weakly heterogeneous media depend
on four key parameters i.e. the medium fluctuation level δ, the ratio between the averages of
phase velocities K, the adimensional frequency ζ = |kp|lc and the correlation kernel of the random

medium R̂. The assessment of their influence on the values of scattering parameters is studied in
this chapter. We proved that the value of PSDF at origin (Φ(0)) appears in low frequencies for
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all different mode conversions. In high frequencies, for P-to-P and S-to-S mode conversions, no
influence of the correlation kernel is observed. On the contrary, in this limit, the P-to-S (or S-to-P)
scattering parameters are extremely dependent on the correlation kernel. The limits corresponding
to all models are zero except the exponential model which converges to a constant. As a result,
in low frequencies, the required time to reach a global equipartitioning regime is described by
1/Φ(0). Moreover, the high frequency limit of the equipartitioning time is model-dependent. For
models with bounded support of PSDF, the corresponding limit is undefined. For power-law and
Gaussian models, the limits tend to infinity and a polynomial representation is impossible. Finally,
for exponential model, the values of equipartitioning time in high frequencies tend to a constant.
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Chapter 3

Elastic wave propagation in an isotropic
randomly heterogeneous medium

3.1 The Spectral Element Code SPEC3D

3.1.1 Numerical methods in elastodynamics

Since the principal objective of this work is the analysis of elastic wave propagation through a
randomly heterogeneous medium subjected to a given source, several numerical approaches could
be employed such as: finite difference, finite elements, boundary elements, spectral elements, etc.
The dimension of the medium, the complexity of its boundaries, the fluctuation level of the het-
erogeneities, the Sommerfeld radiation condition at infinity (for unbounded media) and the linear
(small deformations) or nonlinear (large deformations) behavior of the underlying medium are
some of the influential factors on the efficiency and accuracy of these numerical methods. The
advantages and drawbacks of the specified numerical methods highly depend on these factors. For
a detailed review and comparison between these methods in elastodynamics see Semblat (2010).
In the next paragraphs, we will succinctly discuss the above-mentioned numerical methods.

The finite difference method (FDM) is based on the solution of the wave equation (equation
(1.1)) by replacing the spatial and temporal partial derivatives by their finite difference approxi-
mations (Frankel, 1989). This method has been widely used to model the wave propagation in 2D
and 3D media (Frankel and Clayton (1984), Virieux (1986) and Moczo et al. (2002)). It is mostly
adapted to simple geometries. In classical FDM, in order to reduce the numerical dispersion 1

related to the finite difference grid, at least 15 grid points per shortest wavelength should be used.
This implies considerable numerical costs compared to other numerical methods (at typical prop-
agation lengths considered in this study). However, using the fourth-order finite difference scheme
proposed by Levander (1988), allows to use 5 grid points per shortest wavelength which decreases
significantly the calculation costs. Despite this improvement, there is still a fundamental incon-
venience in this type of methods which is the difficulty to implement the free surface boundary
condition with the same precision as the interior of the domain for complicated geometries (see for
instance Virieux (1986), Levander (1988) Moczo et al. (2002) and Bohlen and Saenger (2006)).

1The numerical dispersion means that the wave’s velocity depends on frequency which causes the distortion of
the waveforms.
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The boundary element method (BEM) is based on the solution of the partial differential equa-
tion (1.1) written in the form of a so-called boundary integral equation. The BEM is derived from
the Maxwell-Betti reciprocity work theorem which enables us to calculate the displacement field
within a domain Ω in terms of the displacement and stress fields calculated over its boundary
∂Ω. This method has been used since long time in acoustics and seismology. For more details
about this group of methods the readers are invited to see Dangla (1989), Clouteau (1990) and
Sanchez-Sesma and Luzon (1995) for applications in elastodynamics and seismology. The main
drawback of this approach is its limitation to the problems for which the Green’s function is known
analytically as in linear homogeneous media. Therefore, the BEM is mostly adapted to weakly
heterogeneous media with linear material behavior (Semblat, 2010). The strong points of the BEM
are its natural capacity to model the unbounded media and the reduced dimension of the space
discretization (the search space has always one dimension less than the domain).

The finite element method (FEM) which is based on the weak form of wave equation, allows
for more natural consideration of the boundary conditions compared to the FDM (in particular
the free surface condition). Despite the fact that the FEM is well adapted to the complex geome-
tries as well as the heterogeneous materials, it is not frequently used in seismology because of the
numerical dispersion and damping along with high numerical costs in 3D problems (Toshinawa
and Ohmachi (1992), Semblat et al. (2008)). The lower-order FEM (p < 4, p being the order of
the shape function which will be discussed later in this chapter) is less accurate and have more
numerical dispersion in elastodynamics. Even the classical higher-order FEM will give rise to other
problems such as the occurrence of spurious waves which are nonphysical and make elements of
high order useless for accurate computation (Mulder, 1999). Different aspects of this method in
the context of wave propagation in elastic media are discussed in Andersen (2006).

The spectral element method (SEM) is a high-order variational discretization of the partial
differential equations based on the original ideas of Patera (1984) for the Chebyshev polynomi-
als. It is then developed by Maday and Patera (1988) for Legendre polynomial basis, in which
we are interested in this study. This method results in a diagonal representation of the mass
matrix which reduces significantly the computational costs. As in higher-order FEM, numerical
wave dispersion which depends highly on the order of the finite elements shape functions will be
reduced. Applications of the SEM in 2D and 3D elastodynamics have shown high accuracies and
weak numerical dispersions (see Faccioli et al. (1997), Komatitsch and Vilotte (1998) and Paolucci
et al. (1999) for instance). Hence, this method is increasingly used in multidimensional problems
in elastodynamics notably due to its exponential convergence rate (Chaljub et al. (2007)). The
SEM could be related to the hp-FEM (Hörlin, 2005) in which the mesh is refined using a suitable
combination of h and p-refinements (subdivision of the elements into smaller ones and increasing
their polynomial degree) that will result in an exponentially convergent method. The numerical
code which will be used in this study is developed base on the SEM.

In the next section, we briefly introduce the SEM in elastodynamics.

3.1.2 An introduction to the spectral elements

In this section, a brief introduction to the mathematical formulation of the spectral elements
will be given (see Komatitsch (1997) and Festa and Vilotte (2005) for detailed discussion). An
inhomogeneous medium occupying an open region Ω ∈ R

3 over a time domain T ∈ (0, t) is under
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study. The displacement and velocity vector fields are denoted respectively by u(x, t) and v(x, t).
The weak or variational form of the elastodynamic equilibrium equations can be written as the
following equation for any test function w (Komatitsch et al., 1999):

{

(w, ρv̇)Ω = (w, f)Ω −AΩ(w,u)

(w, u̇)Ω = (w,v)Ω
(3.1)

along with initial conditions:

(w,u(x, t = 0))Ω = (w,u0)Ω ; (w,v(x, t = 0))Ω = (w,v0)Ω (3.2)

in which ρ and f are respectively the density and the external forces. The classical inner product
(·, ·)Ω and AΩ(w,u) are defined as:

(w,u)Ω =

∫

Ω

w · udV (3.3)

AΩ(w,u) =

∫

Ω

∇xw : C : sym(∇xu)dV (3.4)

Two types of discretizations should be done: discretization in space and time. They will be
separately discussed in the following sections.

Spatial discretization

Spatial discretization consists of partitioning the physical domain Ω into a finite ensemble of non-
overlapping elements Ωe ⊂ Ω such that

⋃nel

e=1 Ωe = Ω with nel being the total number of elements.
In this study the hexahedral elements with 8 nodes are adopted. The integrals over the whole
domain will be subdivided in terms of smaller integrals over the elements Ωe. For example:

(w,u)Ω =

nel∑

e=1

(we,ue)Ωe =

nel∑

e=1

∫

Ωe

we · uedV e (3.5)

in which we and ue and dV e are the restrictions of the corresponding parameters to the element
number e, i.e. we(x, t) = w(x, t) |x∈Ωe for instance. Let �Ω = [−1,+1]3 be a hexahedral reference
element for the whole domain Ω. As it can be observed in Figure 3.1, each element in physical
domain Ωe is the image of the reference element by means of a geometrical transformation Fe

corresponding to Ωe defined as Fe : �Ω → Ωe such that x(ξ) = Fe(ξ). ξ is the Cartesian coordinates
defined over the 8-node hexahedron reference element which is used in this study (see Figure 3.1).
A classical way to define the function Fe is to interpolate x using np control points ai in each
element Ωe (e = 1, 2, ..., nel). These geometrical interpolation functions which are also called the
shape functions are chosen as the product of the Lagrange polynomials following each of the three
axes. The point x in element Ωe is uniquely related to the point ξ in the reference element �Ω via
the invertible mapping:

x(ξ) = Fe(ξ) =

np∑

i=1

aiNai(ξ) =

np∑

i=1

ai
3∏

j=1

lnai(ξj) (3.6)
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Figure 3.1: 8-node hexahedron reference element and the mapping function

in which ln
ai(ξj) (i ∈ {1, 2, ..., np} , j ∈ {1, 2, 3} , ξj ∈ [−1,+1]) is the nth order Lagrange polynomial

associated to the ith control point following jth direction. The Jacobian of the mapping J = ∇ξx
will be therefore related to the derivatives of the shape functions:

J = ∇ξx =

np∑

i=1

ai
∂Nai(ξ)

∂ξ
(3.7)

The choice of the Lagrange polynomials guarantees that the Jacobian of the coordinate trans-
formation will not be singular which means that its determinant does not cancel over the entire
domain. It should be also pointed out that n is often considered to be 1 or 2 (linear and quadratic)
and that the shape functions N is defined as:

Nai(ξ(aj)) = δij (3.8)

where δij is the Kronecker’s delta function. In general, for np control points, the Lagrange poly-
nomials of degree np − 1 following each direction are defined as:

lnp
α (ξ) =

(ξ − ξ1)(ξ − ξ2) · · · (ξ − ξα−1)(ξ − ξα+1) · · · (ξ − ξnp)

(ξα − ξ1)(ξα − ξ2) · · · (ξα − ξα−1)(ξα − ξα+1) · · · (ξα − ξnp)
(3.9)

in which α = 1, 2, ..., np and −1 ≤ ξα ≤ 1.

In isoparametric finite elements, the basis functions which are used to interpolate the wavefield
(the displacement u(x, t)) are the same as the shape functions N . In SEM, typically Lagrange
interpolation functions (defined in equation (3.9)) of degree 4-10 are used. The best trade-off
between accuracy and computation time (due to stability condition) could be obtained using Leg-
endre polynomials of order 4 or 5 (Seriani and Priolo (1994) and Tromp et al. (2008)). In numerical
simulations of wave propagation which will be carried out in this study, Lagrange polynomials are
of order 7. The control points on each direction ξi where i is the number of the control point
(i ∈ {1, 2, ..., n}) are chosen to be the n Gauss-Lobatto-Legendre (GLL) points which are the
solutions of the following equation (Canuto et al., 1988):

(1− ξ2)
dPn(ξ)

dξ
= 0 (3.10)
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in which dPn(ξ)
dξ

is the derivative of the Legendre polynomial of order n (Abramowitz and Stegun,

2012):

Pn(ξ) =
1

2nn!

dn

dξn
(
(ξ2 − 1)n

)
(3.11)

Using n control points in each direction results in n3 degrees of freedom over each element
which are not uniformly spaced. Figure 3.2a depicts the Lagrange polynomials of degree 4 all of
which passing through the GLL points which are the five roots of the equation (1− ξ2)P ′

4(ξ) = 0,
i.e. ξGLL = {−1,−0.65, 0,+0.65,+1}. These points create the mesh which is shown in Figure
3.2b.

(a)

−1 +10 +0.65−0.65

−1

0

+1

−0.65

+0.65

ξ
2

1
ξ

(b)

Figure 3.2: (a) Five Lagrange polynomials of order 4. (b) GLL points of degree 4

The displacement field u(x) or the response of the medium can now be expanded in terms of
Lagrange polynomials:

u(x(ξ1, ξ2, ξ3)) =
n∑

α=0

n∑

β=0

n∑

γ=0

u(x(ξnα, ξ
n
β , ξ

n
γ ))l

n
α(ξ1)l

n
β(ξ2)l

n
γ (ξ3) (3.12)

where (ξ1, ξ2, ξ3) = F−1
e (x) is the coordinates in the reference element corresponding to the point

x, ξnα is the coordinates of a node in the reference element �Ω associated with the polynomial lnα(ξ),
n+1 is the number of GLL points used in each direction (hereafter we suppose that the number of
GLL points is the same in each direction) and u(x(ξnα, ξ

n
β , ξ

n
γ )) is the value of the desired field u at

GLL points. The next step will be the evaluation of the integrals over the elements (the integral
in equation (3.5) for instance). For this purpose, in the framework of the SEM, a Gauss-Lobatto
integration rule (see for example Abramowitz and Stegun (2012)) is used which leads to a diagonal
mass matrix (this will be shown further down in this section). The integral of any function f(x)
over the element Ωe is related to that over the reference element which itself could be approximated
as:

∫

Ωe

f(x)dV e =

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(x(ξ1, ξ2, ξ3))|J(ξ1, ξ2, ξ3)|dξ1dξ2dξ3

≃
n∑

α=0

n∑

β=0

n∑

γ=0

f(x(ξnα, ξ
n
β , ξ

n
γ ))|J(x(ξnα, ξnβ , ξnγ ))|ωnαωnβωnγ (3.13)
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in which for instance ωnα (α = 0, 1, · · · , n) represent the quadrature weights associated with the
Gauss-Lobatto integration scheme (Tromp et al., 2008):

ωnα =
2

n(n+ 1)

1

(Pn(ξnα))
2 (3.14)

The corresponding integral over the whole medium can therefore be written as:

∫

Ω

f(x)dV =

nel∑

e=1

∫

Ωe

f(x)dV e =

nel∑

e=1

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(x(ξ1, ξ2, ξ3))|J(ξ1, ξ2, ξ3)|dξ1dξ2dξ3

≃
nel∑

e=1

n∑

α=0

n∑

β=0

n∑

γ=0

f(x(ξnα, ξ
n
β , ξ

n
γ ))|J(x(ξnα, ξnβ , ξnγ ))|ωnαωnβωnγ (3.15)

Matrix form of the semi-discrete initial value problem

As in classical finite elements, the procedure of the spatial discretization mentioned in previous
section leads to a coupled system of first-order ordinary differential equations in time:

{

Mv̇(t) = F ext(t)−F int(u, t)

u̇(t) = v(t)
(3.16)

where u is now the vector of nodal values resulting from the spatial discretization with polyno-
mials of order n. The mass matrix M along with the vectors corresponding to the external and
internal forces, F ext and F int in equation (3.16), are assembled from the corresponding elementary
parameters:

M =

nel⊎

e=1

Me ; F ext =

nel⊎

e=1

F ext,e ; F int =

nel⊎

e=1

F int,e (3.17)

where
⊎

denotes the assembling operator. It can be shown that in a SEM framework, the ele-
mentary mass matrix Me is the tensor product of the identity matrix Id3 (in 3D problems) and
a matrix M̂e which is characteristic of the SEM, i.e. Me = Id3 ⊗ M̂e in which using n + 1
GLL points in each direction, M̂e becomes a (n + 1)3 × (n + 1)3 matrix. Using a Gauss-Lobatto
integration rule we have (see Festa and Vilotte (2005) or Delavaud (2007) for instance):

M̂e
ij =

∫

Ωe

ρ(ξ)Nai(ξ)Naj(ξ)dξ = ρ(ξnα, ξ
n
β , ξ

n
γ )|J(x(ξnα, ξnβ , ξnγ ))|ωnαωnβωnγ δij (3.18)

which is obviously a diagonal matrix. This diagonal representation of the mass matrix allows
a straightforward calculation of its inverse, an efficient parallel implementation and reduces the
computational costs drastically (Komatitsch et al. (1999) or Tromp et al. (2008)).

Time discretization

In order to solve the system of equations (3.16), one should discretize the time interval (0, t) using
a time step ∆t. For this purpose, a modified Newmark scheme with three control parameters
{α, β, γ} ∈ [0, 1] will be used. For a complete review about the family of Newmark numerical
schemes see Hughes (2012). Let um, vm and am be respectively the time-discrete approximations
of the displacement, velocity and acceleration fields in mth time step, i.e. um = u(tm), vm = v(tm)
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and am = a(tm) with tm = m∆t. The semi-discrete momentum equation at the time tn+α (a time
which varies between tn and tn+1 depending on the value of α) reads (see Simo et al. (1992) or
Komatitsch (1997) for example):







1

∆t
M(vn+1 − vn) = F ext

n+α −F int(un+α,vn+α)

un+1 = un +∆t

[(

1− β

γ

)

vn +
β

γ
vn+1

]

+ (∆t)2
(
1

2
− β

γ

)

an

an+1 =
1

γ∆t
(vn+1 − vn) +

(

1− 1

γ

)

an

(3.19)

in which: 





un+α = (1− α)un + αun+1

vn+α = (1− α)vn + αvn+1

F ext
n+α = (1− α)F ext

n + αF ext
n+1

(3.20)

Finally a predictor-multicorrector scheme will be used in which the state of the system at each
time step will be completely determined by that of the previous time step. Following Komatitsch
and Vilotte (1998), different steps of this scheme can be summarized as follows:

1. Predictor phase: Between each two time steps n and n + 1, the iterations (denoted with
iteration counter i) will be done until the convergence occurs. At first, the iteration counter i
is set to zero. The field values at the time step n+1 for the iteration number i are supposed
to be known. The schemes based on velocity and acceleration correspond respectively to the
cases in which the predictor of the corresponding parameters is set to zero. In this study
we adopt a velocity-based scheme which is the time integration scheme implemented in our
numerical code. The predictors are therefore:

u
(i)
n+1 = ũn+1 ; v

(i)
n+1 = 0 ; a

(i)
n+1 = ãn+1 (3.21)

in which ũn+1 and ãn+1 are defined as:






ũn+1 = un +∆t

(

1− β

γ

)

vn + (∆t)2
(
1

2
− β

γ

)

an

ãn+1 =

(

1− 1

γ

)

an −
1

γ∆t
vn

(3.22)

2. Solution phase: At each iteration i, the state of the system in time tn+1 is related to that
in time tn via:

1

∆t
M∆v(i) = F ext

n+α −F int(u
(i)
n+α,v

(i)
n+α)−

1

∆t
M
[

v
(i)
n+1 − vn

]

(3.23)

3. Corrector phase: At the next iteration i + 1, the corrections which should be applied to
the fields are: 





v
(i+1)
n+1 = v

(i)
n+1 +∆v(i)

u
(i+1)
n+1 = ũn+1 +

β∆t

γ
v
(i+1)
n+1

a
(i+1)
n+1 = ãn+1 −

1

γ∆t
v
(i+1)
n+1

(3.24)
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If the convergence does not occur yet, the iteration counter i is replaced by i + 1 and the
procedure will be repeated from the equation (3.23). In all numerical simulations performed in
this study, the values α = 1

2
(corresponding to a central differencing scheme), β = 1

2
and γ = 1

will be used which result in a conditionally stable scheme (Simo et al., 1992). The accuracy and
stability of the numerical method is ensured when both following conditions are satisfied (Cupillard
et al., 2012):

(1) In order to properly estimate the wavefields (u, v, a), based on experience, at least five
GLL points per wavelength are needed (see Faccioli et al. (1997) and Fichtner and Trampert
(2011) for instance). This means that the shortest wavelength λmin constrains both the size
of the elements d, and the polynomial order n. These parameters form the following heuristic
criteria:

d ≤ n

5
λmin (3.25)

(2) The stability of the solving method is ensured with Courant-Friedrichs-Lewy (CFL) condition
which depends on the minimum grid spacing between GLL points. The time integration
scheme is stable if the time step ∆t, satisfies the following CFL condition:

∆t ≤ C

[
∆x

vp

]

min

(3.26)

in which C is the Courant number which takes empirically (depending on the geometry of
the problem and the frequencies involved) the values of 0.4 and 0.6 and 0.8 for 3D, 2D and

1D media.
[
∆x
vp

]

min
is the minimum value of the ratio between the grid spacing and the

P-wave speed.

In the simulations performed in this work, the size of each element is taken to be d = 50(m)
being compatible with the correlation length of the order ℓc = 100(m). Typical dominant wave-
length for the P and S waves lengths are respectively λp = 173(m) and λs = 100(m). For a Ricker
pulse with a central frequency of f0 = 10Hz, the minimum wavelength of S waves can be calcu-
lated considering the maximum frequency of fmax ≃ 2.5f0 = 25Hz which gives a minimum value
of 40(m). As a result, following equation (3.25), for d = 50(m) and λmin = 40(m), the minimum
polynomial order should be nmin = 7 which is used in this study.

In the next section, we introduce the numerical tool that will be used further in this chapter
to carry out the simulations of elastic waves propagation in random heterogeneous media.

3.1.3 An introduction to the software SPEC3D

SPEC3D is a parallel computing code which is used in this presentation to simulate the propagation
of elastic waves in randomly heterogeneous media. This code is written in Fortran 90 and paral-
lelized using MPI and was initially developed at Institut de Physique du Globe de Paris (Cupillard
et al., 2012). It can be run on a single processor as well as multi-core machines or large clusters.
The software package SPEC3D performs the 3D numerical simulations of seismic wave propagation
at the scale of a few kilometers (in each direction). Most simulations were performed using 100 to
200 processors and the elapsed walltime was roughly half of a day (note that the dominant shear
wavelength is considered to be 100(m)). SPEC3D is developed with initial works of Festa and
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Vilotte (2005), Delavaud (2007), Cupillard (2008), Cottereau et al. (2007) and Ta et al. (2010)
(see also Cupillard et al. (2012)). It is based on the SEM that has been already elaborated in Sec-
tion 3.1.2. We also cite SPECFEM3D 2 (Komatitsch et al., 2010) and SPEED 3 (Stupazzini et al.,
2009) and (Mazzieri et al., 2013) as other examples of spectral element based computational codes.

The only discretization that is done by SPEC3D is that of the reference elements. The mesh-
ing process is done in two steps. At first, a mesh containing the 8-nodes hexahedral elements is
generated. Subsequently the mesh is partitioned into various subdomains via METIS which is a
software package based on multilevel graph partitioning (Karypis and Kumar, 1998). It should be
pointed out that this mesh partitioning is done via a non-parallelized Fortran code.

Roughly speaking, SPEC3D is a code with linear growth of resource requirements, that is to
say that the simulation time varies almost linearly in function of the number of degrees of freedom
per processor. The scalability of SPEC3D is studied and the main results are depicted in Figure
3.3. Figure 3.3a shows the variation of the ratio between the number of degrees of freedom in the
propagation medium and the number of processors in terms of the simulation time per each time
step which is almost a line passing through the origin. This implies that the code is highly scalable.
Figure 3.3b depicts, in a logarithmic scale, the variation of the simulation time per each time step
in terms of the number of processors for constant degrees of freedom (each color represents a cer-
tain number of degrees of freedom). Increasing the number of the degrees of freedom necessitates
using more processors. Because of too few degrees of freedom per processor, the simulations in
this thesis are typically performed using 96 processors. They are executed over the processors
in Mesocentre de calcul de Centrale Paris4. The ultimate simulation performed in this work is a
medium whose random elastic matrix has a flat PSDF and its dimensions are 3km × 3km × 3km
or in terms of shear wavelength 30λs × 30λs × 30λs and has about 7.5× 107 degrees of freedom.

(a) (b)

Figure 3.3: (a) Variation of the number of degrees of freedom in the propagation medium over the number of
processors in terms of the simulation time per each time step. (b) The variation of the simulation time per each
time step in terms of the number of processors for constant degrees of freedom

2http://geodynamics.org/cig/software/specfem3d
3https://mox.polimi.it/it/progetti/speed/
4More relevant information about this center of parallel calculations can be found at http://www.mesocentre.

ecp.fr/.
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3.1.4 Adaptations of SPEC3D for different correlation models with
isotropic structure

The implementation of the elastic matrix random field modeled with the probabilistic law defined
in Soize (2000) (see Appendix C) in locally isotropic materials using the spectral representation
method (Shinozuka and Deodatis, 1988) was initially done in SPEC3D by Régis Cottereau. Then,
Ta (2011) decoupled the statistical fluctuation level of the elastic random field in Soize’s model
by introducing a new so-called anisotropy index which is defined as the random variable of the
distance between local elastic matrices and the isotropic matrix and is therefore restricted to the a
priori description of the isotropic elastic matrix (Ta et al., 2010). He then implemented the random
elastic matrix in the general case of anisotropic material behavior. In both of these developments,
the correlation kernel of the underlying random medium was considered to have an anisotropic
structure: Φ was assumed to be spatially separable following 3 directions:

Φ(kx, ky, kz) = Φx(kx) · Φy(ky) · Φz(kz) (3.27)

By contrast, since the analytical formulas of elastic wave scattering are valid only for isotropic
correlation structures (chapter 2), the code SPEC3D was adapted in this work to the case of
random media whose PSDF depends solely on the radial wavenumber |k| =

√
k2x + k2y + k2z :

Φ(kx, ky, kz) = Φ(|k|) (3.28)

Moreover, different correlation kernels were implemented in the code to observe numerically
the theoretical results obtained in chapter 2.

In this section, at first the numerical generation of the random elastic matrix field is discussed.
Subsequently, the structure of the underlying power spectrum/correlation of the random media
will be of our interest. The implementations in SPEC3D will be also expressed.

Generation of the elasticity random field: In this section, numerical simulation of the ran-
dom matrix C(θ,x) which is defined in chapter 1 will be investigated. θ characterizes the ran-
domness in C. Therefore, the main objective is to separate the spatial (x) and the random (θ)
dimensions of the random field C(θ,x) and to approximate its random dimension, which is a priori
infinite, using a projection over a basis with finite dimension. For this purpose, several approaches
are proposed in the literature which are summarized in Puig (2003). In this dissertation, the
spectral representation method (Shinozuka and Deodatis (1988, 1991)) will be used to simulate the
Gaussian stochastic germs and then a so-called inverse transform sampling technique (Devroye,
1986) is employed to generate the stochastic germs following any prescribed first-order marginal
probability density function. One of the main reasons to use this method is based on the simplicity
of implementation. The main steps to follow in order to create a single realization of the random
elasticity matrix with local material isotropy are summarized below (see Arnst (2007) or Ta (2011)
for more details):

• Initialization:

(1) Choose the mean model which is described with the average values of the com-
pressibility and shear moduli (κ, µ). The mean value of the random matrix C will be
C = 3κS + 2µD in which S and D are the so-called spherical and deviatoric matrices
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(see Appendix C). In the framework of this study, the mean model is assumed to be space-
independent.

(2) Choose the correlation kernel Φ(ζ) of the random medium. The support of this
function is a key parameter to calculate the necessary wave number discretization steps.

(3) Choose the correlation distance of the medium ℓc. In this study, both of the random
fields (κ, µ) are assumed to have the same correlation lengths, i.e. ℓc

κ = ℓc
µ = ℓc

κµ ≡ ℓc.
Following Shinozuka and Deodatis (1988), the number of degrees of freedoms that should be
considered in wave number space in each direction will be nx = cxLx/ℓc, ny = cyLy/ℓc and
nz = czLz/ℓc where Lx, Ly and Lz are the medium’s lengths in corresponding directions.
cx/ℓc, cy/ℓc and cz/ℓc are the cut-off frequencies following each direction which are related to
the support of the function Φ. For instance, the value of c for triangular and low-pass white
noise correlation models are respectively 3π/2 and 2π as indicated already in Table 2.1. For
correlation models with unbounded frequency content, c is chosen such that in the interval
ζ ∈ [0, c] at least 99% of the total area under the function Φ is covered (see Shinozuka and
Deodatis (1991) for more details):

∫ c

0

Φ(ζ)dζ = 0.99

∫ ∞

0

Φ(ζ)dζ (3.29)

It should be noted that using values less than nx, ny and nz will result in the generation of
periodic realizations of the random field.

(4) Choose the dispersion parameter of the medium δ which is simultaneously the fluc-
tuation parameter of the underlying random matrix C and the coefficient of variation of the
random fields κ and µ, i.e. δ = δ|C| = δκ = δµ (see Appendix C).

• Simulation of the samples of random amplitudes and phases:

The idea is inspired from the Box-Muller transform in which the cosine function with in-
dependent and uniformly distributed random phase and amplitude will be used to generate
two independent random variables with standard normal distributions (see Poirion and Soize
(1989) for example). The steps are summarized bellow:

(1) The random amplitudes: Generate a set of 2×nx×ny×nz mutually independent
and identically distributed (iid) real random numbers X derived from a uniform random
variable Z ∼ U[0, 1] as:

X =
√

−logZ (3.30)

(2) The random phases: Generate a set of 2× nx × ny × nz iid real random numbers
following a uniform distribution Y ∼ U[0, 1]. The random variables X and Y are independent.

• Construction of the samples of the 2-subsets of Gaussian stochastic germs:

In each point of the finite element mesh, two stochastic germs for κ and µ is required.
Following a spectral representation scheme, a realization of the Gaussian stochastic germ in
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3D will be:

Gk(x, ℓc,Φ) =

√

2

(
π

ℓc

)3
cx
ℓc∑

l=1

cy
ℓc∑

m=1

cz
ℓc∑

n=1

√

Φ(|klmn|ℓc)Xk cos(kxlx+kymy+kznz+2πYk) (3.31)

in which x = (x, y, z), klmn = (kxl, kym, kzn) and k ∈ {1, 2}. In general, the term kxlx +
kymy+kznz should be replaced by the scalar product (k,x). Equation (3.31) can be rewritten
in an equivalent form using the Fast Fourier Transform (FFT) which results in a significant
decrease on the computational costs (Cottereau, 2007). For large number of terms in the
sum, thanks to the central limit theorem, the generated random field will follow a Gaussian
distribution. A discussion about the error occurring by using the approximation resulting
from the finite series in equation (3.31) to generate Gaussian random germs can be found in
Hu and Schiehlen (1997).

• Construction of the samples of the elasticity matrix:

(1) Generating Gamma stochastic germs:

We recall from chapter 1 that the stochastic fields κ and µ are independent Gamma random
fields. The following Gamma-distributed independent random germs gk could be generated
by using the inverse transform sampling method:

gk = F−1
k (FG(Gk)) (3.32)

in which Fk and FG are respectively the cumulative distribution functions of either κ or µ
and G. It should be pointed out that using equation (3.32) will slightly change the target
spatial correlation function of the random field Gk (see Grigoriu (1998) or Puig (2003) for
instance).

(2) Generating the samples of random matrix C:

We have:
C(x, ℓc,Φ) = 3κ(g1)S+ 2µ(g2)D (3.33)

Different correlation models with isotropic structure: Since the assessment of the influ-
ence of the correlation model on the scattering parameters of the medium is of our interest (chapter
2), different types of isotropic correlation models are implemented in the code SPEC3D. The ACF
and PSDF of the corresponding random media are therefore only functions of the lag distance
and the wave number respectively. These models are already introduced in Table 2.1 of chapter 2.
For each model, the maximum adimensional frequency ζ or the cut-off frequency which is used in
SPEC3D are obtained from equation (3.29). As an example, for exponential correlation model:

∫ c

0

Φexp(x)dx = 0.99

∫ ∞

0

Φexp(x)dx⇒ tan−1
( c

2

)

+
2c

c2 + 4
= 0.99× π

2
⇒ c ≃ 3.7 (3.34)

Table 3.1 shows the values of the cut-off frequencies for different correlation types. It should
be noted that the computational cost of the spectral representation method is largely influenced
by the value of c.

In the following section, at first some theoretical aspects of the equipartitioning of elastic waves
will be introduced. Subsequently, we will observe this phenomenon via numerical simulations
performed using the code SPEC3D.
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Table 3.1: Cut-off frequencies used for different correlation models.

Correlation Normalized PSDF Cut-off Frequency
model Φ(ζ) ζmax = c/ℓc

Exponential 1

8π2
(

1+ ζ2

4

)2
6.7
ℓc

Gaussian 1
8π3 exp

(

− ζ2

4π

)
6.45
ℓc

Power-law 1
π4 exp

(
−2 ζ

π

)
7.23
ℓc

Triangular 3
8π4

(
1− ζ

2π

)
H(2π − ζ) 2π

ℓc

Low-pass white noise 2
9π4H

(
3π
2
− ζ
)

3π
2ℓc

3.2 Numerical observation of equipartitioning regime in

random elastic media

As it has been discussed in chapter 1, at large lapse times the mode conversions between compres-
sional and shear waves during the scatterings result in a stable partition of the energy between
these body wave modes irrespective of the initial conditions (location and magnitude of the source)
and the details of the scatterings. For full elastic media, the equipartitioned energy ratio is shown
to be a function of the ratio between the average speed of P and S waves propagating through the
random medium. According to the equation (1.96), the stabilization ratio is also equal to the ratio
between P-to-S and S-to-P total scattering cross-sections:

Es(t)
Ep(t)

=
ΣPS(|k|)
ΣSP (

vs
vp
|k|) = 2

(
vp
vs

)3

= 2K3 (3.35)

A ratio of about 10.4 is expected for crustal materials (K =
√
3) when an equipartitioning

regime sets in. Moreover, the global equipartitioning time τeq which is the time necessary to reach
an equipartitioning regime was defined as (see chapters 1 and 2):

τeq =
1

ΣPS + ΣSP

=
1

ΣPS

(
1 + 1

2K3

) (3.36)

Shapiro et al. (2000) observed the stabilization of energies between P and S waves calculated in
coda parts of the seismograms recorded from local earthquakes in Mexico. The stabilization value
was about 7 which is different from the expected value of 10.4. This discrepancy can be explained
as:

(1) The effects of the anelastic dissipation is in favor of the mode P, meaning that the medium
dissipates the S waves more than P wave energy (Margerin et al., 2000).

(2) The free surface over which the energy calculations is done is dominated by the surface
Rayleigh waves so that the analytical value corresponding to the full elastic media is not
observed.

The second reason will be the subject of Section 3.2.2 where the energies will be calculated
using the recorded wavefields at the surface and subsequently the effect of the existence of surface
wave modes will be investigated.
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3.2.1 Equipartitioning without free surface

The calculation of the energy densities of wave modes requires the information about the local
values of the medium parameters. The objective of this section is therefore to express the equipar-
titioning law in terms of the recorded wavefield in the case of an open medium in which the surface
waves do not appear.

The total energy density of elastic waves E(x, t) is the sum of the kinetic and potential energies.
It can be written in terms of the wavefield and the medium parameters (Ryzhik et al., 1996):

E(x, t) = 1

2
ρ(x)

∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣

2

+
1

2
λ(x)(div u(x))2 +

1

2
µ(x)Tr(∇u(x, t) +∇Tu(x, t))2 (3.37)

in which the first term represents the kinetic energy and the sum of the last two terms corresponds
to the strain energy (1

2
σklǫkl). The decomposition of the total energy into the P and S wave energies

can also be done (see Shapiro et al. (2000) or Hennino et al. (2001) for instance). The total energy
can be expressed as:

E(x, t) = Ek(x, t) + Ep(x, t) + Es(x, t) + µ(x) I(x, t)

=
1

2
ρ(x)

∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣

2

+
λ(x) + 2µ(x)

2
(div u(x))2 +

µ(x)

2
||∇ × u(x)||2 + µ(x) I(x, t) (3.38)

where Ek(x, t) is the kinetic energy density. In this equation the cross term I reads:

I(x, t) = 2

(
∂ux
∂y

∂uy
∂x

+
∂ux
∂z

∂uz
∂x

+
∂uy
∂z

∂uz
∂y

)

− 2

(
∂ux
∂x

∂uy
∂y

+
∂ux
∂x

∂uz
∂z

+
∂uy
∂y

∂uz
∂z

)

(3.39)

Let us now consider the coda part of a wavefield u(x, t) which is assumed to be diffuse, meaning
that its energy is governed by a diffusion equation. This implies that the local energy fluxes are
isotropic and the total energy is equipartitioned. In this case, the wavefield can be assumed to
be a superposition of a priori uncorrelated plane P and S waves coming from different directions
(Shapiro et al., 2000):

u(x, t) =
∑

i

up
Plane
i (x, t) +

∑

j

us
Plane
j (x, t) (3.40)

Therefore, the total energy densities of P and S waves could be written as the sum of their
individual components:

Ep(x, t) =
∑

i

Epi(x, t) =
∑

i

λ(x) + 2µ(x)

2
(div upi(x))

2 (3.41)

Es(x, t) =
∑

j

Esj(x, t) =
∑

j

µ(x)

2
||curl usj(x)||2 (3.42)

At long lapse times, since the wavefield is diffuse, the displacement components will be uncor-
related. As a result, the space-average of the cross term I will cancel. The average of the total

73



energy density of the P waves will be:

〈Ep〉 =
〈
λ(x) + 2µ(x)

2
(div u(x))2

〉

=
∑

i

〈
λ(x) + 2µ(x)

2
(div upi(x))

2

〉

+ 2
∑

ℓ,m

〈
λ(x) + 2µ(x)

2
(div upℓ(x))(div upm(x))

〉

=
∑

i

〈
λ(x) + 2µ(x)

2
(div upi(x))

2

〉

=
∑

i

〈Epi〉 (3.43)

and similarly

〈Es〉 =
〈
µ(x)

2
||curl u(x)||2

〉

=
∑

j

〈Esj〉 (3.44)

in which 〈〉 denotes a spatial averaging (further in this chapter, we use 〈〉t to specify a time averag-
ing). Since the individual plane waves are uncorrelated, the averages of the terms (div upℓ(x))(div upm(x))
and ||curl usℓ(x)|| · ||curl usm(x)|| vanish so that the average of the total energy of the P and S
waves are respectively the sum of the average of their components as expressed in equations (3.43)
and (3.44). Since the average value of I is zero, the average of the total energy density will become
the sum of the averages of the P and S wave energy densities:

〈E〉 = 〈Ep〉+ 〈Es〉 =
〈
λ(x) + 2µ(x)

2
(div u(x))2

〉

+

〈
µ(x)

2
||curl u(x)||2

〉

(3.45)

The assessment of the stabilization ratio R can now be done using a grid of closely spaced
sensors which enable us to calculate the derivatives of the displacement vector following all three
spatial coordinates (divergence and curl of u in equation (3.45)):

R =
〈Es〉
〈Ep〉

=

〈
µ(x)
2
||curl u(x)||2

〉

〈
λ(x)+2µ(x)

2
(div u(x))2

〉 =
µ

λ+ 2µ
· 〈||curl u(x)||

2〉
〈(div u(x))2〉 =

1

K2
· 〈||curl u(x)||

2〉
〈(div u(x))2〉 (3.46)

in which the first equation is based on the assumption that the pairs of the random variables
(µ(x), ||curl u(x)||2) and (λ(x) + 2µ(x), (div u(x))2) are independent so that the average of their
product is the product of the respective averages. This assumption will be verified via numerical
simulations performed in Section 3.2.3. In the last equation, we made use of the equation (2.1).
Since in an open medium at long lapse times we have R = 2K3, the equipartitioning law in terms
of the spatial derivatives of the recorded wavefield reads:

〈||curl u(x)||2〉
〈(div u(x))2〉 = 2K5 (3.47)

At the end of this section and before starting to discuss the equipartitioning with the presence
of a free surface, we define the kinetic energy density K̄ as:

K̄ =

∫
1

2
ρ(x)

∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣

2

dx (3.48)

In an equipartitioning regime on an open Poissonian medium (full-space with K =
√
3), the

energies are equally distributed between K̄ and Ep+Es so that the value of the ratio K̄/
(
Ep + Es

)

tends to 1. The corresponding stabilization values for this ratio with different hypotheses for
Poissonian materials are summarized in Hennino et al. (2001). In sections 3.2.3 and 3.3 this
stabilization is investigated via numerical simulations.
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3.2.2 Equipartitioning with a free surface

In practice, the equipartitioning regime can be observed only using seismic sensors on the Earth’s
surface. Therefore, the calculation of the derivative of the wavefield in z direction is rather difficult
because it requires to install the seismic receivers in depth. Hence, the free surface boundary
condition (equation (1.17)) will be used as a tool to simplify the calculation of the stabilization
ratio R over the surface of the Earth. The components of the stress tensor in z direction should
vanish i.e. σxz = σyz = σzz = 0. These equations result in the following relations between vertical
derivatives of the wavefield and horizontal ones:







∂uy
∂z

= −∂uz
∂y

∂ux
∂z

= −∂uz
∂x

∂uz
∂z

= − 1

2 + λ
µ

(
∂ux
∂x

+
∂uy
∂y

)
(3.49)

Substituting equation (3.49) into equation (3.46) gives the following relation for the stabilization
ratio R only in terms of horizontal derivatives of the wavefield.:

R =
〈Es〉
〈Ep〉

=
1

4
K2

〈

4

(
∂uz
∂x

)2

+ 4

(
∂uz
∂y

)2

+

(
∂ux
∂y

− ∂uy
∂x

)2
〉

〈(
∂ux
∂x

+
∂uy
∂y

)2
〉 (3.50)

This equation can be used to calculate the equipartitioning ratio over the free surface using
an array of seismic sensors installed only over the free surface of the Earth. We remind that the
wavefield on the surface is a Rayleigh plane wave as (see equation (1.22)):







uy(z = 0) = 0

ux(z = 0) = − sin(ωt− kx)

uz(z = 0) = ̺ cos(ωt− kx)

(3.51)

in which ̺ is the vertical-to-horizontal axis ratio on the free surface which can be obtained by:

̺ =
K2
r

√

1− K2
r

K2

2−K2
r − 2

√

1−K2
r

√

1− K2
r

K2

(3.52)

Introducing equations (3.51) into the equipartitioning ratio (3.50) will result in the following
equipartitioning law on the surface:

Rsurface =
〈Es〉surface
〈Ep〉surface

=
1

4
K2

〈

4

(
∂uz
∂x

)2
〉

〈

4

(
∂ux
∂x

)2
〉 = K2̺2 =

K2K4
r

(

1− K2
r

K2

)

(

2−K2
r − 2

√

1−K2
r

√

1− K2
r

K2

)2 (3.53)
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K K2
r

vr
vs

̺ R Rsurface
√

4
3 ≃ 1.16 0.49 0.7 1.06 3.12 1.5

1.5 0.80 0.89 1.34 6.75 4.02√
3 ≃ 1.73 0.85 0.92 1.47 10.4 6.44

2 0.87 0.93 1.57 16 9.80

2.5 0.89 0.94 1.67 31.25 17.37

Table 3.2: Analytical values of the equipartitioning ratio for unbounded media and over the medium’s traction-free
surface for different values of K

The equation (3.47) in this case becomes:

〈||curl u(x)||2〉surface
〈(div u(x))2〉surface

= K2Rsurface =
K4K4

r

(

1− K2
r

K2

)

(

2−K2
r − 2

√

1−K2
r

√

1− K2
r

K2

)2 (3.54)

As an example, for Poissonian materials (K2 = 3), the characteristic Rayleigh equation (1.18)
has three roots for K2

r :

K2
r = 4 , 2 +

2√
3
, 2− 2√

3
(3.55)

in which the first two roots result in imaginary values for q/k and s/k following equations (1.21) and
hence they will be rejected. The value of K2

r = 2− 2√
3
gives the propagation velocity of Rayleigh

waves vr ≃ 0.92vs. Inserting K
2
r = 2− 2√

3
in equation (3.52) gives ̺ ≃ 1.47 and a stabilization ratio

of R ≃ 6.5 that is consistent with 7 which is reported by Shapiro et al. (2000) from the studies of
the energy ratios in the Coda waves observed from local earthquakes in Mexico. Table 3.2 shows
the analytical values for the stabilization of the S to P energy ratio in an unbounded medium as
well as over the free surface for different values of K.

3.2.3 Numerical observation of equipartitioning regime

The objective of this section is to investigate the equipartitioning phenomenon via the numerical
simulations carried out using SPEC3D. For this purpose, three types of measurements are available:

(1) The values of the divergence free and curl free parts of the displacement field (||curl u(x)||, div u(x)).
Theoretically in an equipartitioning regime, the ratio between the space-averaged of the
squared of these fields converges to the values indicated in equations (3.47) and (3.54) re-
spectively for an open unbounded medium and over a free surface.

(2) The mean values of the P and S wave energy densities over the entire medium, (EΩ

p , E
Ω

s ):

EΩ

p (t) =

∫

Ω

Ep(x, t)dx =

∫

Ω

λ(x) + 2µ(x)

2
(div u(x))2 dx (3.56a)

EΩ

s (t) =

∫

Ω

Es(x, t)dx =

∫

Ω

µ(x)

2
||curl u(x)||2dx (3.56b)
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in which Ω is the whole propagation medium including its boundaries. Since in a half-space
this value accounts simultaneously for the energies corresponding to the surface and body
waves, the stabilization value in this case should lie between Rsurface and R depending on the
depth of surface Rayleigh waves.

(3) The mean value of the kinetic energy density over the entire medium K
Ω
calculated us-

ing equation (3.48). As discussed in Section 3.2.1, in an equipartitioning regime, the ratio

K
Ω
/(EΩ

p + EΩ

s ) converges.

Problem description: The numerical example in this section consists of a propagation medium
as a cube defined by Ω = {x ∈ R

3|−1500 m ≤ x, y ≤ 1500 m;−3000 m ≤ z ≤ 0 m} with continuous
random heterogeneities in elastic moduli and a constant density of 2000 kg/m3. The average value
of µ is assumed to be µ̄ = 2× 109 Pa. Hence, for a given value of K = vp/vs, the average value of
κ and the average phase velocities will be:

κ̄ =

(

K2 − 4

3

)

µ̄ ; vs =
√

µ̄/ρ = 1000 m/s ; vp = 1000K (3.57)

The components of the covariance matrix for different values of δ and K used henceforth in
this work are summarized in Table 3.3 (see Appendix B for more discussion). Tables 3.4 and 3.5
also show the values of different scattering parameters for two different correlation kernels in terms
of different values of δ, K and ℓc used in this study. These tables list the different configurations
that will be considered along the course of this chapter.

δ K σ2
λ σ2

µ cov(λ, µ)

0.15 1.73 0.21 0.02 −0.02

0.4 1.16 0.27 0.24 0.25

0.4 1.73 20 0.24 −0.01

0.6 1.73 43.6 1.1 0.26

Table 3.3: Components of the covariance matrix in terms of the values of δ and K

Config. ℓc [m] δ K ΣPS/ΣSP ΣPP /ΣPS ΣSS/ΣSP ℓ∗S [m] ℓ∗P [m]

Reference 100 0.4 1.16 0.32 0.5 3.2 450 435

Localization 100 0.6 1.73 0.10 16 33 130 25

Inefficient mixture 100 0.4 1.73 0.10 32 33 580 60

Large ℓ∗p/s 100 0.15 1.73 0.10 3.3 33 6500 4000

Table 3.4: Scattering parameters for a random medium with a low-pass white noise correlation kernel

Config. ℓc [m] δ K ΣPS/ΣSP ΣPP /ΣPS ΣSS/ΣSP ℓ∗S [m] ℓ∗P [m]

Reference-exp 100 0.4 1.16 0.32 1.73 8 530 520

Table 3.5: Scattering parameters for a random medium with an exponential correlation kernel
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Configuration: Reference and Reference-exp The half-space Ω with a dispersion level of
δ = 0.40 is subjected to an explosion source at its central point (x, y, z) = (0, 0,−1500)(m). The
source is characterized by a Ricker pulse time function. The delay time t0 and central frequency f0
of the source are considered to be respectively 0.3 s and 10 Hz (see Figure 3.4). Figure 3.5 depicts
a typical half-space surrounded with PML layers except over the free surface.
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Figure 3.4: Ricker pulse with t0 = 0.3(s) and f0 = 10(Hz) in time (a) and frequency (b) domains

Figure 3.5: A half-space with PML layers at boundaries

The spatial correlation function of the random elastic moduli is considered to be either low-
pass white noise or exponential. The value of K is 1.16 and the correlation length is ℓc = 100 m
which is equal to the shear wavelength. The simulation is performed over t = 5 s. Figure 3.6
shows the temporal variation of the space-averaged body wave energies EΩ

p and EΩ

s calculated via
the equations (3.56) along with their ratio. The individual variation of EΩ

p (red curves) and EΩ

s

(blue curves) are depicted in the top plot. The solid and dashed curves in both plots indicate
the results corresponding respectively to the medium with low-pass white noise and exponential
correlation model. At the beginning, the source injects only the P wave energy into the medium
(explosion source). For the case of medium with low-pass white noise ACF, following Table 3.4,
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we have ΣPS = 2ΣPP , which implies that the chance of the P-to-S mode conversion is twice the
chance of the P-to-P mode conversion. Therefore, the wave scattering results in the generation
of S waves. The contrast between the average phase velocities is not significant (for instance in
comparison with the case where K =

√
3). We observe therefore that the space-averaged P and S

wave energies begin to decay more or less at the same time.

From now on, all figures depicting the temporal evolution of the whole space-averaged energies
include a shaded window indicating the time interval during which the decay of the energies EΩ

p

and EΩ

s begins. The starting and end points of this window specify respectively the lapse times
corresponding to the first arrivals of the direct P and S waves (the waves traveling in the homo-
geneous background) to the boundaries of the medium. The lower plot of the Figure 3.6 shows

that the energy ratio EΩ

s /E
Ω

p converges to 2.9 and 3.1 respectively for the low-pass white noise
and exponential models. These stabilization values lie between Rsurface = 1.5 (thin black line)
and R = 3.12 (thick black line) (see Table 3.2) and are closer to the analytical value for an open
unbounded medium.

Figure 3.6: Top: temporal variation of EΩ

p (red curves) and EΩ

s (blue curves). Bottom: temporal variation of EΩ

s /E
Ω

p .
Solid and dashed curves correspond respectively to the low-pass white noise and exponential correlation models.
The starting and end points of the shaded window indicate respectively the lapse times in which the direct P and
S waves propagating in homogeneous background arrive to the boundaries.

The top plot in Figure 3.7 shows that the space-averaged kinetic energy densities K̄Ω (blue
curves) reach their maximum value at the source’s delay time t = t0 = 0.3 s. From the bottom
plot, stabilization values of 0.8 and 1.1 are observed respectively for the low-pass white noise and
exponential correlation models. The corresponding stabilization times are observed to be highly
dependent on the correlation model. As a result, in this case, both of the ratios EΩ

s /E
Ω

p and
K̄Ω/(EΩ

p + EΩ

s ) are stabilized for both correlation types.

The equipartitioning regime can also be visualized more locally via the films showing the prop-
agation of the energies through the medium. For this purpose, the snapshots of the squared
curl-free and squared divergence-free parts of the displacement field will be plotted at two different
horizontal slices situated at the depths z = 0 m (surface) and z = −1000 m (at a distance of
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Figure 3.7: Top: temporal variation of K̄Ω (blue curves) and EΩ

p + EΩ

s (red curves). Bottom: temporal variation
of K̄Ω/(EΩ

p + EΩ

s ). Solid and dashed curves correspond respectively to the low-pass white noise and exponential
correlation models. The starting and end points of the shaded window indicate respectively the lapse times in which
the direct P and S waves propagating in homogeneous background arrive to the boundaries.

about a transport mean free path from the source), and at two different lapse times t = 2 s and
t = 4 s. Figure 3.8 shows the snapshots corresponding to (div u(x))2 (normalized by its average
value calculated over the slice) (top row) along with ||curl u(x)||2 (normalized by its average over
the slice) (bottom row), both represented in percent. The plots show the results of the random
medium with low-pass white noise correlation model. At t = 4 s, the P and S wave energies are
almost distributed uniformly within both of the slices (see the low ranges of the plot’s colorbars
at t = 4 s compared to t = 2 s for both slices).

z = 0 m, t = 2 s z = 0 m, t = 4 s z = −1000 m, t = 2 s z = −1000 m, t = 4 s

Figure 3.8: Snapshots of the ratio (div u(x))2/〈(div u(x))2〉slice (top row) and ||curl u(x)||2/〈||curl u(x)||2〉slice
(bottom row) in percent for two different lapse times (t = 2 s and t = 4 s) and two different depths (z = 0 m and
z = −1000 m). The random heterogeneities have a low-pass white noise correlation kernel.

The objective of this paragraph is to investigate the equipartitioning regime more locally. For
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Figure 3.9: Temporal variation of 〈||curl u(x)||2〉/〈(div u(x))2〉 calculated over the whole slices. Red, green, cyan
and purple colors correspond respectively to the slices at z = 0 m, z = −250 m, z = −500 m and z = −1000 m. The
thick and thin black lines correspond respectively to the analytical values on full space and over the free surface.
Left and right plots correspond respectively to the low-pass white noise and exponential correlation models.

this purpose, an energy analysis is done over some horizontal slices at five different depths of
z = 0,−250,−500,−1000 m. The results are depicted in Figure 3.9 for both low-pass white noise
(left plot) and exponential (right plot) correlations. This figure shows the temporal variation of
the space-averaged ratio 〈||curl u(x)||2〉/〈(div u(x))2〉 where 〈〉 denotes a spatial averaging over
the slice only. It can be observed that for the slice in the free surface (red curve), the energy
ratio converges to the analytical value of K2Rsurface = 2 (thin black line). For the other slices, the
stabilization occurs at a value lying between K2Rsurface = 2 and 2K5 = 4.2 (thick black line) but
closer to the full-space stabilization value.
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Figure 3.10: Temporal variation of
〈µ(x)

2 ||curl u(x)||2〉
〈λ(x)+2µ(x)

2 (div u(x))2〉 (solid curves) and
µ

λ+2µ · 〈||curl u(x)||2〉
〈(div u(x))2〉 (dashed curves)

calculated over the whole slices. Red, green, cyan and purple colors correspond respectively to the slices at z = 0 m,
z = −250 m, z = −500 m and z = −1000 m. The thick and thin black lines correspond respectively to the analytical
values on full space and over the free surface. Note that the dashed curves are almost hidden by the solid ones.
Left and right plots correspond respectively to the low-pass white noise and exponential correlation models.
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At the end of this section, the hypothesis behind the equation (3.46) will be verified. In this
equation, we have made the following assumption:

〈Es〉
〈Ep〉

=

〈
µ(x)
2
||curl u(x)||2

〉

〈
λ(x)+2µ(x)

2
(div u(x))2

〉 =
µ

λ+ 2µ
· 〈||curl u(x)||

2〉
〈(div u(x))2〉 (3.58)

in which the pairs of random variables (µ(x), ||curl u(x)||2) and (λ(x) + 2µ(x), (div u(x))2) are
assumed to be independent. Knowing the local values of the Lamé parameters, we plot the varia-

tions of
〈µ(x)

2
||curl u(x)||2〉

〈λ(x)+2µ(x)
2

(div u(x))2〉 and
µ

λ+2µ
· 〈||curl u(x)||2〉

〈(div u(x))2〉 . Figure 3.10 depicts the temporal variation of

these two quantities, respectively with solid and dashed curves, for low-pass white noise (left plot)
and exponential correlation model (right plot). We observe from this figure that there is no sig-
nificant discrepancy between the results. Hence, the mentioned hypothesis is numerically validated.

In conclusion, for low values of K an equipartitioning regime is established at global and local
scales for two different correlation models. We remind the ratio between P-to-S and S-to-P total
scattering cross-sections:

ΣPS

ΣSP

= 2K3 (3.59)

According to this equation, lower values of K lead to lower contrasts between ΣPS and ΣSP

which means that during the scattering process the normal modes exchanges occur with closer
probabilities compared to the case of higher values of K. Moreover, in this case, the values of the
ratios ΣPP/ΣPS and ΣSS/ΣSP are not significantly different from unity contrary to the other case
studies (see Table 3.4). These two reasons favor the onset of an equipartitioning regime in this
case. We will study less favorable cases in Section 3.3.

3.3 Limitations to reaching numerically the equipartition-

ing regime

For the Reference case studied in Section 3.2.3, as indicated in Table 3.4, the values of the transport
mean free paths of P and S waves are respectively ℓ∗P = 435(m) and ℓ∗S = 450(m) so that:

(1) The P and S waves reach a diffusion regime almost simultaneously since ℓ∗P ≃ ℓ∗S,

(2) They can reach an equipartitioning regime before leaving the medium (since ℓ∗P , ℓ
∗
S < 1500(m))

and at enough distances (at least a transport mean free path) from the boundaries which can
a priori pollute the wave energies by the unwanted reflections toward the physical medium.

In the simulations discussed in this section, either a transport regime is established but the
above-mentioned conditions are not satisfied or a localization regime is dominant both of which
imply the inability to observe an equipartitioning regime. Next section introduces a case in which
a strong localization regime is dominant.

3.3.1 Setting of a localization regime

In this section we increase the value of the mean phase velocity contrast to K =
√
3 (third row in

Table 3.4). The most favorable case to reach an equipartitioning regime is a priori the case with
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maximum value of δ (δ = 0.6). The differences between the values of ℓ∗P and ℓ∗S in this case and
the corresponding values for the cases with the same K and lower δ (0.4 or 0.15) is remarkable.
In the following paragraph, the case of a propagation medium with K =

√
3 and δ = 0.6 will be

treated.

Configuration: Localization The half-space Ω is excited during t = 5 s with two different
source types: an explosion and a unidirectional force both of which have the Ricker pulse time
function. A low-pass white noise model is used as the correlation kernel of the heterogeneities.

In Figure 3.11, the top left plot depicts the temporal variations of EΩ

p and EΩ

s respectively in
red and blue. For each of these cases, the solid and dashed curves correspond respectively to the
explosion and unidirectional sources. The unidirectional source which creates initially the S wave
energies more than the P waves, results at first (before arriving to the gray shaded area) in higher
values of EΩ

s and lower values of EΩ

p compared to the case of explosion source. However, at longer
lapse times, the body wave energy densities become source-independent. We observe from the top
plot of the Figure 3.11 that regardless of the source type, even before the complete evacuation
of the direct wave energies, both of the phase energies are almost stabilized at a lapse time of
t = 2 s and their decay rate tend to zero at longer lapse times. This is in contradiction with a
transport regime in which EΩ

p and EΩ

s decay in time because of the existence of PML layers around
the medium.

The lower plot of the Figure 3.11 shows the stabilization of the space-averaged energy ratio
for both source types. We guess that this stabilization is related to the fact that a major part of
the wave energy is trapped within the propagation medium so that it does not touch the bound-
aries. To verify this hypothesis, we do the same simulation (with an explosion source) but with
Neumann boundary conditions all around the medium and the corresponding results are shown
with dashed-dotted curves. From the top left plot, we observe a slight increase in EΩ

p and EΩ

s in
Neumann case, resulting in a small change in the stabilization value (dashed-dotted blue curve in
lower left plot). The latter is observed to be more than twice the analytical value in full-space. As
it has been already discussed, this ratio must be even less than the analytical value 2K3 which is
not the case here. The right plots also show the evolution of K̄Ω, EΩ

p + EΩ

s and their ratio for all
above-mentioned cases. The top right figure shows that after a certain time, the values of K̄Ω and
EΩ

p + EΩ

s become time-independent for all three cases.

This regime is called the localization regime in which the random heterogeneities of the medium
are too strong (δ = 0.6) so that the wave energy is trapped before it reaches the boundaries. In this
regime, the transport equations introduced in chapter 2 are no more valid. There is no theoretical
formula which relates the stabilization value in a localization regime to the statistical parameters
of the medium.

The visualization of the energy snapshots will help to observe the localization phenomenon.
The snapshots of 〈||curl u(x)||2〉 and 〈(div u(x))2〉 normalized by their corresponding average val-
ues calculated over the corresponding slice at the given lapse times of t = 2 s and t = 4 s are shown
in Figure 3.12. The pattern of these fields is similar to a collection of points distributed over the
slices containing the essential part of the slice’s average energy. According to the Table 3.4, the
transport mean free paths of the P and S waves are respectively ℓ∗P = 25 m and ℓ∗S = 130 m. The
main point in these figures is that the body wave energies are localized within almost the same
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Figure 3.11: Top left: temporal variation of EΩ

p (red curves) and EΩ

s (blue curves). Bottom left: temporal variation
of EΩ

s /E
Ω

p . Top right: temporal variation of K̄Ω (blue curves) and EΩ

p + EΩ

s (red curves). Bottom right: temporal
variation of K̄Ω/(EΩ

p + EΩ

s ). Solid, dashed and dashed-dotted curves correspond respectively to half-space with
explosion source, half-space with unidirectional source and Neumann boundary conditions with explosion source.
The starting and end points of the shaded window indicate respectively the lapse times in which the direct P and
S waves propagating in homogeneous background arrive to the boundaries.

zone over each slice between the lapse times t = 2 s and t = 4 s. The results of the slice-average
energy ratio calculated over the slices gives similar information as in the lower left plot of the
Figure 3.11.

The objective of the next section is to deal with a simulation in which we keep the value of
K =

√
3 but we decrease δ to 0.15 with the aim of getting rid of the localization regime which was

dominant in this section.

z = 0(m), t = 2(s) z = 0(m), t = 4(s) z = −1000(m), t = 2(s) z = −1000(m), t = 4(s)

Figure 3.12: Snapshots of the ratio (div u(x))2/〈(div u(x))2〉slice (top row) and ||curl u(x)||2/〈||curl u(x)||2〉slice
(bottom row) in percent for two different lapse times (t = 2(s) and t = 4(s)) and two different depths (z = 0(m)
and z = −1000(m)).
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3.3.2 Influence of mean free path

Configuration: Large ℓ∗p/s The propagation medium Ω is again subjected to an explosion
source and the simulation time is considered to be t = 5 s. The random propagation medium
has a low-pass white noise ACF, the values of K and δ are respectively

√
3 and 0.15, and the

medium is a half-space. Left plots in Figure 3.13 show the temporal variations of EΩ

p and EΩ

s

and their ratio. From the lower left plot, it can be observed that until about t = 2(s) (the end

of the gray shaded area), the ratio EΩ

s /E
Ω

p tends to increase. At this time, both of the direct P
and S waves have already arrived to the boundaries and the role of the boundary conditions begins.

Figure 3.13: Top left: temporal variation of EΩ

p (red curves) and EΩ

s (blue curves). Bottom left: temporal variation
of EΩ

s /E
Ω

p . Top right: temporal variation of K̄Ω (blue curves) and EΩ

p + EΩ

s (red curves). Bottom right: temporal
variation of K̄Ω/(EΩ

p + EΩ

s ). The starting and end points of the shaded window indicate respectively the lapse times
in which the direct P and S waves propagating in homogeneous background arrive to the boundaries.

The top right plot of Figure 3.13 shows the temporal variations of the kinetic energy density
K̄Ω and the sum of the averages of the P and S wave energy densities EΩ

p + EΩ

s . From the bottom
right plot a stabilization is observed at first around t = 1 s and then at the end of simulation
(t = 5 s). However, even if the ratio K̄Ω/(EΩ

p + EΩ

s ) is globally stabilized over the entire medium in
some time intervals, a global equipartitioning regime does not occur (as already seen in the lower
left plot of Figure 3.13).

The snapshots of (div u(x))2 and ||curl u(x)||2 normalized by their corresponding average val-
ues are plotted in Figure 3.14. From these figures it can be observed that over the free surface
(z = 0 m) at t = 2 s both P and S energies are more concentrated around the boundaries. However,
at longer lapse times (t = 4 s) and near the source (z = −1000 m), the pattern of both of the
energies does not look like a localization.

From Table 3.4, the values of the transport mean free paths of P and S waves are respectively
ℓ∗P = 4000 m and ℓ∗S = 6500 m. These distances cannot be achieved by the waves before reaching
the boundaries in this simulation. A medium whose sides are at least 2ℓ∗S = 13000 m which is
more than 4 times bigger (in each side) than the propagation medium in this case, is required in
order to observe the equipartitioning of the energies.
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z = 0 m, t = 2 s z = 0 m, t = 4 s z = −1000 m, t = 2 s z = −1000 m, t = 4 s

Figure 3.14: Snapshots of the ratio (div u(x))2/〈(div u(x))2〉slice (top row) and ||curl u(x)||2/〈||curl u(x)||2〉slice
(bottom row) in percent for two different lapse times (t = 2 s and t = 4 s) and two different depths (z = 0 m and
z = −1000 m).

In conclusion, for Poissonian materials (K =
√
3) with low degrees of fluctuation (δ = 0.15 in

this case), the equipartitioning regime was not observed because of the small propagation lengths
compared to the transport mean free paths. In the next section, we increase the value of δ from
0.15 to 0.4 with the aim of decreasing the transport mean free paths and make them less than the
propagation length.

3.3.3 Influence of inefficient mixture of body waves

In this section, we will be concerned with the influence of inefficient mixture between the body
wave energies during the scattering events in the numerical observation of the equipartitioning
establishment. For this purpose, the dispersion level of the elasticity matrix is hold to be the same
as in the Reference case (δ = 0.4) and the same value of K =

√
3 will be used.

Configuration: Inefficient mixture The propagation medium Ω is subjected to three differ-
ent sources: explosion, unidirectional and their combination all of which having a Ricker pulse
time function. The medium is a half-space and has a low-pass white noise correlation kernel. The
simulation is performed over t = 5 s. The top left plot in Figure 3.15 show the temporal variation
of EΩ

p (red curved) and EΩ

s (blue curves) where the solid, dashed and dashed-dotted curves repre-
sent respectively the results relative to the explosion, unidirectional and combined sources. This
plot shows that the waves are not localized since both of the body wave energies are temporally
decaying. The lower left plot shows the corresponding S-to-P energy ratios which states no global
equipartitioning for all source types. From Table 3.4, the values of the transport mean free paths
of P and S waves are respectively ℓ∗P = 60 m and ℓ∗S = 580 m. Hence, both wave modes can travel
at least a transport mean free path before the arrival of the direct waves to the boundaries.

Following Table 3.4 we have ΣPP/ΣPS = 32 and ΣSS/ΣSP = 33 from which it implies that the
P wave energies have much more tendency to scatter into P waves and likewise the initial S wave
energies are more likely to scatter into S waves. For the sake of comparison, we remind the values
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of the ratios ΣPP/ΣPS and ΣSS/ΣSP being respectively 0.5 and 3.2 for the Reference case. These
values are closer to 1 and imply a faster apparition of an equipartitioning regime (Margerin et al.,
2000). Moreover, the ratio ΣPS/ΣSP is farther from 1 compared to the Reference case where it is
0.32. As a consequence, the asymmetry between the P-to-S and S-to-P mode exchanges is higher.
The fact that the values of these three ratios are not as close to 1 as in the Reference case, can be
imagined as another reason of discrepancy between the observed and the analytical stabilization
values.

As a result, for K =
√
3 and δ = 0.4 even if the transport mean free paths are small compared

to the propagation length, large values of the ratios ΣPP/ΣPS and ΣSS/ΣSP and the ratio ΣPS/ΣSP

being not enough close to 1 prevent the establishment of an equipartitioning regime.

Figure 3.15: Top left: temporal variation of EΩ

p (red curves) and EΩ

s (blue curves). Bottom left: temporal variation
of EΩ

s /E
Ω

p . Top right: temporal variation of K̄Ω (blue curves) and EΩ

p + EΩ

s (red curves). Bottom right: temporal
variation of K̄Ω/(EΩ

p + EΩ

s ). Solid, dashed and dashed-dotted curves correspond respectively to explosion, unidi-
rectional and combined source. The starting and end points of the shaded window indicate respectively the lapse
times in which the direct P and S waves propagating in homogeneous background arrive to the boundaries.

In previous sections, no attention has been paid to the influence of the boundary conditions to
the stabilization values. In the following section, we discuss this influence via numerical simulations.

3.3.4 Influence of the PML layers

The propagation domain being subjected to an explosion has now three different boundary con-
ditions of types half-space (PML layers all around the medium except over the free surface),
full-space (PML layers surrounding the propagation medium) and Neumann (reflecting or stress-
free boundaries). Figure 3.16 summarizes all the results regarding the spatially-averaged energy
densities. In the top left plot, the red and blue curves represent EΩ

p and EΩ

s respectively. The
results corresponding to the half-space, full-space and Neumann cases are also differentiated by
solid, dashed and dashed-doted curves. The lower left plot shows the corresponding stabilization
values. A direct result that can be drawn from this plot is that the existence of the PML layers
implies an increase in the stabilization values. This is assumed to be the effect of PML boundary
conditions which behave in favor of the S wave energy. The stabilization values are about 14.5,
14 and 12 respectively for half-space, full-space and Neumann boundary condition cases. These
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values are not theoretically acceptable since they do not belong to the interval [6.44, 10.4].

Figure 3.16: Top left: temporal variation of EΩ

p (red curves) and EΩ

s (blue curves). Bottom left: temporal variation
of EΩ

s /E
Ω

p . Top right: temporal variation of K̄Ω (blue curves) and EΩ

p + EΩ

s (red curves). Bottom right: temporal
variation of K̄Ω/(EΩ

p + EΩ

s ). Solid, dashed and dashed-dotted curves correspond respectively to half-space, full-space
and Neumann boundary conditions. The starting and end points of the shaded window indicate respectively the
lapse times in which the direct P and S waves propagating in homogeneous background arrive to the boundaries.

In this section, we have observed that the existence of the PML layers can slightly change the
stabilization value in numerical observations of equipartitioning. This observation also revealed
that this influence is in favor of the shear wave energy so that the stabilization ratio will be in-
creased in the presence of PML layers.

In Sections 3.2.3 and 3.3 we investigated the numerical observation of an equipartitioning
regime and also discussed the influence of some key factors in the onset of this regime at long lapse
times. Thus, so far no particular attention has been paid to the statistical identification problem.
In the following section we propose a preliminary identification process of the spatial correlation
of a random medium. This identification is based on measures of the curl and divergence of the
displacement field of a random medium.

3.4 Identification of the correlation structure of the medium

properties

The objective of this section is to use the curl-free and divergence-free parts of the seismograms at
long lapse times in order to invert for the some statistical information of the propagation medium.
In the following section, the theory which will be used in our inversion problem is introduced.

3.4.1 Theory

In previous sections we investigated the convergence of the spatially-averaged ratio 〈||curl u(x)||2〉/〈(div u(x))2〉
at long lapse times to the analytical values of 2K5 and K2Rsurface respectively in an open medium
and over the free surface. Now, we will discuss about the local information that can be extracted
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from solely time-averaged (and not spatially-averaged) ratio 〈||curl u(x)||2〉t/〈(div u(x))2〉t. The
basic equation is:

〈Es(x)〉t
〈Ep(x)〉t

=
µ(x)

λ(x) + 2µ(x)

〈||curl u(x)||2〉t
〈(div u(x))2〉t

=
1

(Kδ(x))2
〈||curl u(x)||2〉t
〈(div u(x))2〉t

(3.60)

in which Kδ(x) is the ratio between local phase velocities in the case of a random medium with
a given fluctuation level δ|C| = δκ = δµ = δ. Since in an equipartitioning regime, the local time-
averaged ratio 〈Es(x)〉t/〈Ep(x)〉t will tend to a global average value 2K3 for an open medium, we
will have:

〈||curl u(x)||2〉t
〈(div u(x))2〉t

= 2K3(Kδ(x))
2 (3.61)

As a result, the correlation structure of the time-averaged field 〈||curl u(x)||2〉t/〈(div u(x))2〉t
(which is calculable in our numerical simulations and also over the free surface in real situations)
tends to be the same as the correlation structure of the adimensional local value (Kδ(x))

2 which
has itself a structure similar to that of the local value of the P to S wave speed ratio Kδ(x) =
vp(x)/vs(x). We will discuss about these relations in the next paragraphs. The basic hypotheses of
the calculations are: 1) κ(x) and µ(x) are two independent random fields with the same coefficient
of variation δ. Note that the independence implies that their correlation coefficient vanishes or:
〈κµ〉−〈κ〉〈µ〉 = 0. 2) The mean values of all random fields are space-independent. In other words,
the average background medium is deterministic. and 3) The correlation kernels of the random
fields κ(x) and µ(x) are assumed to be the same:

R̂κκ(τ) = R̂µµ(τ) (3.62)

it should be noted that if this relation is not valid, the final result will be a function of different
correlation distances.

We start by calculating the cross-correlation function of the random fields λ(x) and µ(x). The
correlation coefficient between the random variables λ and µ is:

ρ(λ, µ) =
cov(λ, µ)

σλσµ
=

〈κµ〉 − 〈κ〉〈µ〉 − 2
3
(〈µ2〉 − 〈µ〉2)

√

σ2
κ +

4
9
σ2
µσµ

=
−2σµ

3
√

σ2
κ +

4
9
σ2
µ

(3.63)

The normalized cross-correlation kernel of λ(x) and µ(x) reads:

R̂λµ(τ) =
〈λ(x+ τ )µ(x)〉 − 〈λ〉〈µ〉

σλσµρ(λ, µ)
=

〈κ(x+ τ )µ(x)〉 − 〈κ〉〈µ〉 − 2
3
(〈µ(x+ τ )µ(x)〉 − 〈µ〉2)

√

σ2
κ +

4
9
σ2
µσµρ(λ, µ)

(3.64)
Given that 〈µ(x + τ )µ(x)〉 − 〈µ〉2 = σ2

µR̂µµ(τ) and inserting the equation 3.63 into the equation
3.64 results in:

R̂λµ(τ) = R̂µµ(τ) (3.65)

Using also the equation 3.62 gives:

R̂λµ(τ) = R̂κκ(τ) = R̂µµ(τ) (3.66)
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Now we derive the ACF of the random field λ in terms of the ACF of κ and µ:

R̂λλ(τ) =
〈λ(x+ τ )λ(x)〉 − 〈λ〉2

σ2
λ

=
σ2
κR̂κκ(τ) +

4
9
σ2
µR̂µµ(τ)

σ2
κ +

4
9
σ2
µ

(3.67)

Consequently we have:
R̂λµ(τ) = R̂λλ(τ) = R̂κκ(τ) = R̂µµ(τ) (3.68)

Let A(x) = (Kδ(x))
2 = 4

3
+ κ(x)

µ(x)
, a second-order approximation for its mean and variance will be:

〈A〉 ≃ 4

3
+

〈κ〉
〈µ〉(1 + δ2) ; σ2

A = 2δ2
〈κ〉2
〈µ〉2 (3.69)

The ACF of A will be therefore:

RAA(τ) =
〈A(x+ τ )A(x)〉 − 〈A〉2

σ2
A

=

〈
κ(x+τ )κ(x)
µ(x+τ )µ(x)

〉

+ 4
3

〈
κ(x)
µ(x)

〉

+ 4
3

〈
κ(x+τ )
µ(x+τ )

〉

+ 16
9
−
(

4
3
+ 〈κ〉

〈µ〉(1 + δ2)
)2

2δ2 〈κ〉2
〈µ〉2

(3.70)

Inserting second-order approximations for the terms
〈
κ(x+τ )κ(x)
µ(x+τ )µ(x)

〉

and
〈
κ(x)
µ(x)

〉

=
〈
κ(x+τ )
µ(x+τ )

〉

into 3.71

and simplifying the terms results in:

RAA(τ) =
1 +R(τ)

(1 + δ2R(τ))2
− (1 + δ2)

2

2δ2
(3.71)

Assuming that δ2 is small compared to 1, we can use the following approximation:

1

1 + δ2R(τ)
≃ 1− δ2R(τ) + δ4R2(τ) + O(δ6) (3.72)

replacing this equation into the equation (3.71) gives:

RAA(τ) ≃ (1− 2δ2)R(τ) + δ2(3δ2 − 2)R2(τ)− δ2

2
− 1

2δ2
(3.73)

Integrating both sides of this equation in terms of τ will result in:

∫

R

RAA(τ)dτ ≃ (1− 2δ2)

∫

R

R(τ)dτ + δ2(3δ2 − 2)

∫

R

R2(τ)dτ (3.74)

Knowing that the correlation length of the Lamé parameters are defined as:

2

∫

R

R(τ)dτ = ℓλc = ℓµc = ℓλµc = ℓc (3.75)

As a result:
ℓAc
2

≃ (1− 2δ2)
ℓc
2
+ δ2(3δ2 − 2)

∫

R

R2(τ)dτ (3.76)
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Let ℓ̃c denote the correlation length of (Kδ(x))
2 or 〈||curl u(x)||2〉t

〈(div u(x))2〉t . Since for the correlation models

used in this work we have
∫

R
R2(τ)dτ ≪ ℓc, we approximately have:

ℓ̃c ≃ (1− 2δ2)ℓc (3.77)

Therefore, the correlation length of the time-averaged ratio 〈||curl u(x)||2〉t
〈(div u(x))2〉t is directly proportional

to the correlation length of the medium via a factor which depends on its dispersion level. In
the following paragraphs the numerical simulations to verify the convergence of the correlation
structure of 〈||curl u(x)||2〉t/〈(div u(x))2〉t to that of (Kδ(x))

2 are presented.

3.4.2 Identification of the correlation structure

Two of the numerical case studies introduced in Table 3.4 will be discussed in this section with
the aim of inversion for the statistical parameters of the medium.

Configuration: Influence of inefficient mixture of body waves In this simulation ℓc =
100(m), K =

√
3, δ = 0.40 and the heterogeneities are considered to have either the low-pass white

noise or the exponential correlation model. The correlation length of the local parameter (Kδ(x))
2

can be estimated using equation (3.77):

ℓ̃c ≃ (1− 2(0.4)2)(100) = 68(m) (3.78)

A first-order approximation for the variance of the random field (Kδ(x))
2 in the right hand side

of the equation (3.61) is:

Var
(
(Kδ(x))

2
)
≃ 2δ2

(

K2 − 4

3

)2

= 0.88 (3.79)

As a result, its standard deviation 0.94 is not negligible compared to its mean value 3.26. The
results of the simulations are summarized in Figures 3.17 and 3.18 respectively for random medium
with low-pass white noise and exponential correlation model. The calculations are done at the lapse
time t = 4(s). These figures show the convergence of the estimated correlation function of the
time-averaged ratio 〈||curl u(x)||2〉t/〈(div u(x))2〉t (blue curve) toward the correlation function of
the corresponding slice (RAA in equation (3.73)) (black curve). It should be pointed out that the
time-averagings are done over the windows of 1s. Subsequently, the correlation length defined as
twice the area under the correlation function is converged toward the value 68(m) (see the value
of ℓc indicated over the plots in third columns).

Tables 3.6 summarizes the correlation coefficients between the fields 〈||curl u(x)||2〉t
〈(div u(x))2〉t and (Kδ(x))

2

at different depths and lapse times for the random medium with low-pass white noise correlation
model. Significant correlations are therefore observed between the random fields. We also empha-
size on the fact that the correlation over the slice in the free surface at all lapse times is higher
than in the other slices.

We discussed in this section the identification of the correlation structure of a random medium
by calculating the time-averaged ratio between the square curl and divergence of the displacement
wavefield. In the next section we introduce a limit in which our method does not give a proper
identification of the correlation function.

91



t = 2(s) t = 4(s)
z = 0(m) 0.73 0.84

z = −250(m) 0.68 0.74
z = −500(m) 0.70 0.75

Table 3.6: Correlation coefficients of the fields 〈||curl u(x)||2〉t
〈(div u(x))2〉t

and (Kδ(x))
2 at different depths and lapse times.

(a) 〈||curl u(x)||2〉t
〈(div u(x))2〉t at z = 0(m) (b) (Kδ(x))

2, z = 0(m)
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Figure 3.17: Identification results for a half-space with low-pass white noise correlation model. Left column: the

time-averaged ratio 〈||curl u(x)||2〉t
〈(div u(x))2〉t

at 3 different horizontal slices at the time lapse t = 4(s); Middle column: local

values of the field (Kδ(x))
2; Right column: the correlation functions corresponding to the left and the middle

columns.
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(a) 〈||curl u(x)||2〉t
〈(div u(x))2〉t at z = 0(m)

(b) (Kδ(x))
2, z = 0(m)
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(d) 〈||curl u(x)||2〉t
〈(div u(x))2〉t , z = −250(m)

(e) (Kδ(x))
2, z = −250(m)
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(g) 〈||curl u(x)||2〉t
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(h) (Kδ(x))
2, z = −500(m)
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Figure 3.18: Identification results for a half-space with exponential correlation model. Left column: the time-

averaged ratio 〈||curl u(x)||2〉t
〈(div u(x))2〉t

at 3 different horizontal slices at the time lapse t = 4(s); Middle column: local values

of the field (Kδ(x))
2; Right column: the correlation functions corresponding to the left and the middle columns.

3.4.3 Limitation to the identification of the correlation structure

Configuration: Reference and Reference-exp A random medium characterized with K =
1.16, δ = 0.40 with either low-pass white noise or exponential correlation model is considered. The
correlation length of the random elastic moduli is set to be ℓc = 100(m). Contrary to the previous
case study, the variance of the random field (Kδ(x))

2 will be:

Var
(
(Kδ(x))

2
)
≃ 0.00005 (3.80)

The corresponding standard deviation will be thus 0.007 which is negligible compared to its aver-
age value being 1.35. This means that the random field (Kδ(x))

2 is almost deterministic despite
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the fact that the elastic moduli (κ, µ) have a coefficient of variation of 40%. This implies in
particular that the ratio in the left hand side of the equation (3.61) is almost deterministic. It
also means that the information about the correlation structure of the medium cannot be ex-
tracted from the ratio 〈||curl u(x)||2〉t

〈(div u(x))2〉t . Figures 3.19 and 3.20 show the plots of the random fields

〈||curl u(x)||2〉t/〈(div u(x))2〉t and (Kδ(x))
2 along with their respective spatial correlation func-

tions in 3 different slices at the depths z = 0(m),−250(m),−500(m), respectively for low-pass
white noise and exponential correlation models. The considered lapse time is t = 4(s). The ran-
dom field 〈||curl u(x)||2〉t/〈(div u(x))2〉t at longer lapse times (see Figures 3.19 and 3.20) is similar
to a white noise random process with no spatial correlation. The reason is the fact that (Kδ(x))

2

is almost not spatially varying.

Table 3.7 summarizes the correlation coefficients between the fields 〈||curl u(x)||2〉t
〈(div u(x))2〉t and (Kδ(x))

2

at different depths and lapse times for the random medium with low-pass white noise correlation
model. This table confirms the decorrelation between the random fields independent of the lapse
time and the depth of the slice.

t = 2(s) t = 4(s)
z = 0(m) −0.002 0.004

z = −250(m) 0.056 0.102
z = −500(m) 0.072 0.107

Table 3.7: Correlation coefficients of the fields 〈||curl u(x)||2〉t
〈(div u(x))2〉t

and (Kδ(x))
2 at different depths and lapse times.

In this section we proposed a method for identification of the spatial correlation of a random
medium. This method was based on the local version of the equipartitioning law written in terms of
the curl and divergence of the displacement wavefield. The numerical simulations for two different
correlation models revealed appropriate estimations of the analytical correlation functions. Other
complementary researches should be done in order to verify this identification technique.

3.5 Summary and Conclusion

In this chapter, the numerical simulations of elastic wave propagation in random media are per-
formed using the computational code SPEC3D. The numerical observation of the equipartitioning
regime at long lapse times is investigated as a tool to identify the ratio between the space-averaged
elastic moduli. We observed that for lower values of K in which the body waves are not highly
differentiated, the energy is equipartitioned between the body waves. Using typical values of K
and large values of δ results in a strong localization regime being dominant and thus the equipar-
titioning regime is not observed. For typical values of K and lower variances, the localization does
not appear. However, an equipartitioning regime is not observed because:

(i) for average δ, the mixture between the body wave energies is inefficient,

(ii) for low δ, the transport mean free paths of the body waves become too large compared to
the size of the domain, so that the waves go into the PML before an equipartitioning regime
sets in.

The latter is related to limitations in modeling sufficiently big propagation domains. At the
end of this chapter, using the time-averaged ratio between the squared curl and divergence of the
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displacement wavefield, a relation is developed between the spatial correlation function of this
medium and the correlation and dispersion level of the random medium under study.

(a) 〈||curl u(x)||2〉t
〈(div u(x))2〉t at z = 0(m)

(b) (Kδ(x))
2, z = 0(m)
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Figure 3.19: Identification results for a half-space with low-pass white noise correlation model. Left column: the

time-averaged ratio 〈||curl u(x)||2〉t
〈(div u(x))2〉t

at 3 different horizontal slices at the time lapse t = 4(s); Middle column: local

values of the field (Kδ(x))
2; Right column: the correlation functions corresponding to the left and the middle

columns.
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(a) 〈||curl u(x)||2〉t
〈(div u(x))2〉t at z = 0(m)

(b) (Kδ(x))
2, z = 0(m)
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Figure 3.20: Identification results for a half-space with exponential correlation model. Left column: the time-

averaged ratio 〈||curl u(x)||2〉t
〈(div u(x))2〉t

at 3 different horizontal slices at the time lapse t = 4(s); Middle column: local values

of the field (Kδ(x))
2; Right column: the correlation functions corresponding to the left and the middle columns.
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Conclusions and Perspectives

The general focus of this work was the analysis of the coda waves and their relation with the
statistical parameters of the heterogeneous propagation medium. These incoherent waves are orig-
inated from the multiple scattering of elastic waves (Aki and Chouet, 1975). Hence, a profound
understanding of the scattering of elastic waves and its effects on the wave propagation regime is
a fundamental step in the statistical identification of the medium properties. For this purpose, a
particular attention has been paid to the kinetic approaches describing the elastic waves propa-
gating through heterogeneous media based on the works of Ryzhik et al. (1996). The particular
aspect of this study is taking into account the full elastic nature of elastic waves rather than the
acoustic approximation which is typically used in the literature. The parameters describing the
scattering of elastic waves (such as differential, total and forward scattering cross-sections) are
functions of the first and second order statistics of the medium parameters. They were normalized
and expressed in terms of the following four key parameters being influential in the determination
of the scattering mechanism:

(i) The ratio ζ between the correlation length and the wavelength,

(ii) The ratio K between the mean values of P and S wave velocities,

(iii) The fluctuation levels δ of elastic moduli (the covariance matrix),

(iv) The spatial correlation model R̂.

A special focus has been given to the evaluation of the influence of spatial correlation model
of the random medium on the scattering parameters. In low ζ, the influence of the correlation
model can be described via the value of the PSDF at origin. In medium ζ (ζ ∼ 1), the influence
of the correlation model is limited. However, for large values of ζ, there is no influence on the
P-P and S-S total scattering cross-sections. On the contrary, a drastic influence is observed in P-S
scattering coefficient. The latter along with K are the crucial parameters in the establishment of
an equipartitioning regime. In high ζ, the correlation kernel has a noticeable influence on the onset
of an equipartitioning regime. As a consequence, among the classical correlation models used in
Geophysics, in low and high ζ, the exponential model results in quicker global apparition of a dif-
fusion regime. However, in medium ζ, a low-pass white noise model minimizes the equipartitioning
time.

The influence of the above-mentioned parameters in setting up an equipartitioning regime were
also studied via numerical simulations. Analytical formulas of the stabilization ratio between the
P and S wave energies were derived for both cases of propagation media with and without a free
surface. The former were formulated in terms of the curl and divergence of the displacement
wavefield rather than the energies. For low values of K, a global equipartitioning regime was
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observed. Several less favorable situations were also studied, where we could not observe the onset
of equipartition between the energies. This was either due to localization, inefficient exchange of
energy between P and S waves or the fact that the propagation length was too small compared to
the mean free paths.

As far as the statistical identification problem is concerned, we used a local version of the
equipartitioning law in which the ratio between the time-averaged squared curl and divergence
of the displacement wavefields at each point is related to the local values of the P to S wave
speed ratio. We showed that the spatial correlation of the mentioned time-averaged ratio tends to
(1−2δ)ℓc at long lapse times and illustrated on a first example the effectiveness of the identification.
This can be a first step towards the statistical identification problem especially over the free surface.

With regard to the future works, the following aspects could be treated in order to improve
the results provided in this work:

(i) Consideration of the spatial variability of the density since it has been shown that it can
significantly increase the wave attenuation and therefore facilitate the apparition of a diffusion
regime (Turner and Anugonda, 2001).

(ii) The generation of the random medium properties notably in large-scales is one of the main
limitations in numerical simulations of the wave propagation. This implies the necessity
of optimization of the random field generation procedure. This work is recently carried out
theoretically and is also implemented by Victor Bouvier and Luciano de Carvalho in MSSMat.

(iii) Recently the radiative transfer equations of elastic waves were rigorously developed for the
case of a random medium with locally anisotropic behavior (Baydoun et al., 2014). Since Ta
(2011) observed that the anisotropy favors significantly quicker onset of the diffusion regime,
it would be interesting to validate the results of the simulations performed over anisotropic
media via the corresponding analytical formulas.

(iv) In order to be capable of observing a diffusion regime in low-variance random media with
Poissonian materials, one should use a more efficient computational code which allows to use
a few thousand processors and thus enables us to model sufficiently large media. Lately, a
couple of students and researchers started to develop another calculation code called SEM3D
in the framework of the SINAPS@ project. Luciano de Carvalho is adding random field
capabilities in SEM3D. Filippo Gatti is treating the case of nonlinear constitutive law with
the aim of evaluating the influence of the non-linearities in the wave propagation regime.
Angkeara Svay uses SEM3D to analyze different influencing parameters on the spatial vari-
ation of seismic ground motions. The purpose of his work is to distinguish the deterministic
effects (site geometries,...) as well as the effects of the spatial variabilities in the medium
parameters on the formulation of the coherency model.
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Appendix A

Behavior of functions In and Jn

A.1 Integral W p
n

We introduce, because it will be useful in understanding the behavior of the function In, the
integral

W p
n =

∫ 1

0

(
1− 2χ2

)n
χp+1dχ, (A.1)

for n ≥ 0 and p ≥ −1. It can be shown that W 0
n = (1 + (−1)n)/4(n + 1). Also, for p ≥ 1, the

following recurrence relation holds (2n + p + 2)W p
n = 2nW p

n−1 + (−1)n. Using the initial value
W p

0 = 1/(p+2), this means that the values W p
n can be computed for any pair (n, p). In particular,

we have W 2
n = (1 + (−1)n(2n+ 3))/8(n+ 1)(n+ 2).

Table A.1: Values of W p
n for the first values of n and p.

W 0
n W 1

n W 2
n W 3

n W 4
n

W p
0 1/2 1/3 1/4 1/5 1/6

W p
1 0 -1/15 -1/12 -3/35 -1/12

W p
2 1/6 11/105 1/12 23/315 1/15

W p
3 0 -13/315 -1/20 -59/1155 -1/20

W p
4 1/10 211/3465 1/20 683/15015 3/70

W p
5 0 -271/9009 -1/28 -1637/45045 -1/28

A.2 Integral V p
n

Similarly, we introduce for the understanding of Jn

V p
n (K) = Kn+1

0

∫ K2

K1

(
1− 2χ2

)n
χp+1dχ, (A.2)

for n ≥ 0 and p ≥ −1. We remind that K0 = (K + 1/K)/2, K1 = (K − 1)/
√

2(K2 + 1) and

K2 = (K + 1)/
√

2(K2 + 1). Note that V p
n (1) = W p

n . The values of V p
n could be calculated via:

V p
n (K) = Kn+1

0

n∑

j=0

(−2)j
(
n
j

)

p+ 2j + 2

(
Kp+2j+2

2 −Kp+2j+2
1

)
(A.3)
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In particular, we have V 0
n = (1+(−1)n)/4(n+1) and V p

0 = K0(K
p+2
2 −Kp+2

1 )/(p+2). Also, for p ≥ 1,
the following recurrence relation holds (2n+p+2)V p

n /K0 = 2nV p
n−1−(Kp+2

2 +(−1)nKp+2
1 ). We also

have V p
n+1 = K0(V

p
n − 2V p+2

n ). These two relations can be used to compute the values V p
n for any

pair (n, p). They yield in particular V 0
n = (1+(−1)n)/(4(n+1)) and V 2

2n = (1+(−1)n)/(8(n+1)).
Observe that for these two examples, V p

n is independent of K. This is however not true in general.
Note also that, although it depends on the value of K, this family of parameters V p

n does not
depend on the correlation kernel.

A.3 Behavior of function In

We consider the following integral function (see Figure A.1 for its behavior for different correlation
functions and values of n):

In(ζ) =

∫ 1

0

(
1− 2χ2

)n
χΦ(ζχ)dχ (A.4)
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Figure A.1: Functions In(ζ) for different correlation kernels and different values of n (K =
√
3): exponential

(thick solid line), power-law (thin dashed-dotted line), Gaussian (thick dashed line), triangular (thin solid line) and
low-pass white noise (thin dashed line).

Using a Taylor expansion of the function Φ(ζχ) for low frequencies, we get:

In(ζ) =
∞∑

p=0

Φ(p)(0)ζpW p
n

p!
(A.5)

so that the limit behavior of In(ζ) is:

In(ζ) =
Φ(0)

2(n+ 1)
+ O(ζ) for even n, (A.6)
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and

In(ζ) = W 1
nΦ

′(0)ζ − Φ′′(0)

8(n+ 2)
ζ2 +O(ζ3) for odd n. (A.7)

Depending on the correlation model (see Table 2.1), Φ′(0) sometimes cancels, so the expansion has
to be continued up to second order. For the low-pass white noise model, for which the spectrum
is flat and all its derivatives cancel, the expansion is not correct. However, in that case, we can
compute explicitly Inoisen (ζ):

Inoisen (ζ ≤ 3π/2) =
1

18π2(n+ 1)
(1 + (−1)n), (A.8)

and

Inoisen (ζ ≥ 3π/2) =
1

18π2(n+ 1)

(

1−
(

1− 9π2

2ζ2

)n+1
)

. (A.9)

The high-frequency behavior of the function In(ζ) can be investigated through the change of
variable ζχ = p:

In(ζ ≫ 1) = ζ−2

∫ ζ

0

(1− 2
p2

ζ2
)npΦ(p)dp =

1

4π2
ζ−2 +O(ζ−3) (A.10)

This limit is hence independent from the correlation kernel. The results obtained from the asymp-
totic analysis are summarized in Table A.2.

Table A.2: Asymptotic values of In(ζ) and Jn(ζ;K) for different correlation kernels

Integral Low frequency ζ ≪ 1 High frequency ζ ≫ 1

In(ζ), even n
Φ(0)

2(n+1)
1

4π2 ζ
−2

In(ζ), odd n W 1
nΦ

′(0)ζ − Φ′′(0)
8(n+2)

ζ2

Jn(ζ;K), even n Φ(0)
2(n+1)

0 for white noise and triangular

Jn(ζ;K), odd n V 1
nΦ

′(0)ζ − Φ′′(0)
8(n+2)K0

ζ2 2
π2V

−4
n ζ−4 for exponential

faster than polynomial for power-law and Gaussian

A.4 Behavior of function Jn

We finally consider the following integral function (see Figure A.2 for its behavior for different
correlation functions and values of n):

Jn(ζ;K) = Kn+1
0

∫ K2

K1

(
1− 2χ2

)n
χΦ(ζχ)dχ (A.11)

Note that this function is related to the previous one through Jn(ζ; 1) = In(ζ).
As before we use the Taylor expansion:

Jn(ζ;K) =
∞∑

p=0

Φ(p)(0)ζpV p
n

p!
(A.12)
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Figure A.2: Functions Jn(ζ) for different correlation kernels and different values of n (K =
√
3). : exponential

(thick solid line), power-law (thin dashed-dotted line), Gaussian (thick dashed line), triangular (thin solid line) and
low-pass white noise (thin dashed line).

and hence derive the low-frequency behavior:

Jn(ζ;K) =
Φ(0)

2(n+ 1)
+ O(ζ) for even n, (A.13)

and

Jn(ζ;K) = V 1
nΦ

′(0)ζ − Φ′′(0)

8(n+ 2)K0

ζ2 +O(ζ3) for odd n. (A.14)

These expansions do not apply to the white noise case, but this case can be computed explicitly:

Jnoise
n

(

ζ ≤ 3π

2K2

)

=
1

18π4(n+ 1)
(1 + (−1)n), (A.15)

and

Jnoise
n

(
3π

2K2

≤ ζ ≤ 3π

2K1

)

=
1

18π4(n+ 1)

(

1−Kn+1
0

(

1− 9π2

2ζ2

)n+1
)

, (A.16)

and Jnoise
n (ζ ≥ 3π/2K1) = 0 which also provides the high-frequency behavior of J for a low-pass

white noise correlation model. Note that, for odd n, Jnoise
n vanishes both in the low and high

frequency ranges (outside the interval [3π/2K2, 3π/2K1]).
Likewise, for the case of a random medium with triangular correlation, one can compute ex-

plicitly the values of the integral for the low and high frequency ranges:

J tri
n

(

ζ ≤ 2π

K2

)

=
3

8π4

(

V 0
n − ζ

2π
V 1
n

)

(A.17)

and J tri
n (ζ ≥ 2π/K1) = 0. Note that V 0

n = 0 for odd n so that the asymptotic is then given by the
linear term. The slope is positive because V 1

n > 0 for odd n.
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For the exponential model, we have in the high frequency range Φ(ζχ) = 2ζ−4χ−4/π2 + o(ζ−4)
so that

Jexp
n (ζ ≫ 1) =

2

π2
V −4
n ζ4 +O(ζ5) (A.18)

Finally, for both the power-law and Gaussian models, the Jn(ζ;K) goes to zero exponentially
fast.
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Appendix B

Derivation of the correlation matrix

B.1 Weakly varying random media

In order to reduce the number of parameters, one assumption that we will make is that the
coefficient of variation of the shear and bulk moduli are both equal, i.e. δµ = δκ. As a result, the
global fluctuation level of the medium (the coefficient of variation of the random elastic tensor)
will be δ = δµ = δκ. The objective of this part is to derive the correlation matrix of the variables
δ 1
λ
and δ 1

ρ
in terms of the medium dispersion level δ and the ratio K. We can simply obtain the

following formulas relating the variances of (δ 1
λ
, δ 1

µ
) to the coefficients of variation of the variables

( 1
λ
, 1
µ
):

σ2
δ 1
λ
= δ21

λ
; σ2

δ 1
µ
= δ21

µ
(B.1)

in which δX is the coefficients of variation of the random variable X.
If we consider the random variable X as a sum of a weak zero-mean perturbation Z and its

mean X = X̄ + Z when |Z| ≪ |X̄| (remember that in this study, we are supposed to consider
media with weak fluctuations in order to avoid the localization regime), we get:

1

X
=

1

X̄ + Z
=

1

X̄

1

1 + Z
X̄

=
1

X̄

(

1− Z

X̄
+
Z2

X̄2
− · · ·

)

(B.2)

Taking the average and variance from both sides of equation (B.2) results in:

E

(
1

X

)

≃ 1

X̄

(

1 +
V ar(X)

X̄2

)

; V ar

(
1

X

)

≃ V ar(X)

X̄4
(B.3)

As a result, the following approximation is adopted relating the coefficient of variation of a variable
to that of its inverse:

δ 1
X
≃ δX

1 + δ2X
(B.4)

The coefficient of variation of λ, δλ, can be calculated using:

λ = κ− 2

3
µ⇒ σ2

λ = σ2
κ +

4

9
σ2
µ ⇒ (λ̄)2δ2λ =

(

(κ̄)2 +
4

9
(µ̄)2

)

δ2 ⇒ δλ =

√

(κ̄)2 + 4
9
(µ̄)2

(λ̄)2
δ (B.5)
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Now we can simplify the previous equation knowing that κ̄ = λ̄+ 2
3
µ̄ and considering the fact that

the P to S wave speed ratio is K2 = 2 + λ
µ
:

δλ =

√

1 +
4

3(K2 − 2)
+

8

9(K2 − 2)2
δ (B.6)

Another important assumption is that in our software, SPEC, we have supposed that two random
fields κ and µ are independent, i.e. cov(κ, µ) = 0. As mentioned throughout the paper, the
covariance which should be calculated is the covariance of δ 1

λ
and δ 1

µ
. Using approximations

introduced in equations (B.2):

cov

(

δ
1

λ
, δ

1

µ

)

= E

(

δ
1

λ
δ
1

µ

)

=
cov
(

1
λ
, 1
µ

)

1̄
λ
1̄
µ

(B.7)

Now, using equations (B.2), we can calculate cov
(

1
λ
, 1
µ

)

in terms of the statistics of κ and µ:

cov

(
1

λ
,
1

µ

)

= cov

(
1

κ− 2
3
µ
,
1

µ

)

= E

(
1

κµ− 2
3
µ2

)

− E

(
1

κ− 2
3
µ

)

E

(
1

µ

)

≃
1 +

σ2
κµ−2/3µ2

(κ̄µ̄− 2
3
(σ2

µ+µ̄
2))

2

κ̄µ̄− 2
3
(σ2

µ + µ̄2)
− 1

κ̄− 2
3
µ̄

(

1 +
σ2
κ−2/3µ

(κ̄− 2
3
µ̄)2

)

.
1

µ̄

(

1 +
σ2
µ

µ̄2

)

=

1 +
4
9
σ4
µ

(κ̄µ̄− 2
3
(σ2

µ+µ̄
2))

2

κ̄µ̄− 2
3
(σ2

µ + µ̄2)
−

1 +
σ2
µ

µ̄2
+

σ2

κ− 2
3µ

(κ̄− 2
3
µ̄)2

+
σ2
µ.σ

2

κ− 2
3µ

µ̄2.(κ̄− 2
3
µ̄)2

µ̄(κ̄− 2
3
µ̄)

=

1 +
4
9
µ̄4

(κ̄µ̄− 2
3
µ̄2(1+δ2))

2 δ4

κ̄µ̄− 2
3
µ̄2(1 + δ2)

−
1 + (1 +

κ̄2+ 4
9
µ̄2

(κ̄− 2
3
µ̄)2

)δ2 +
κ̄2+ 4

9
µ̄2

(κ̄− 2
3
µ̄)2
δ4

µ̄(κ̄− 2
3
µ̄)

(B.8)

combining equations (B.7) and (B.8), the covariance between δ 1
λ
and δ 1

µ
can be calculated in terms

of first and second moments of κ and µ:

cov

(

δ
1

λ
, δ

1

µ

)

=

µ̄(κ̄− 2
3
µ̄)

(

1 +
4
9
µ̄4

(κ̄µ̄− 2
3
µ̄2(1+δ2))

2 δ4
)

(
κ̄µ̄− 2

3
µ̄2(1 + δ2)

)
(1 + δ2)

(

1 +
κ̄2+ 4

9
µ̄2

(κ̄− 2
3
µ̄)2
δ2
) − 1 (B.9)

The covariance matrix of two random fields (δ 1
λ
, δ 1

µ
) can be constructed as follows:

R(δ 1
λ
,δ 1

µ
) =

[
σ2
δ 1
λ

cov(δ 1
λ
, δ 1

µ
)

cov(δ 1
λ
, δ 1

µ
) σ2

δ 1
µ

]

=













(k̄− 2
3
µ̄)2(k̄2+ 4

9
µ̄2)δ2

[(1+δ2)(k̄2+ 4
9
µ̄2)− 4

3
κ̄µ̄]

2

µ̄(κ̄− 2
3
µ̄)



1+
4
9 µ̄4

(κ̄µ̄− 2
3 µ̄2(1+δ2))

2 δ
4





(κ̄µ̄− 2
3
µ̄2(1+δ2))(1+δ2)

(

1+
κ̄2+4

9 µ̄2

(κ̄− 2
3 µ̄)2

δ2
) − 1

µ̄(κ̄− 2
3
µ̄)



1+
4
9 µ̄4

(κ̄µ̄− 2
3 µ̄2(1+δ2))

2 δ
4





(κ̄µ̄− 2
3
µ̄2(1+δ2))(1+δ2)

(

1+
κ̄2+4

9 µ̄2

(κ̄− 2
3 µ̄)2

δ2
) − 1 δ2

(1+δ2)2













(B.10)
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it seems that the covariance matrix depends on the mean values of the elastic isotropic parameters,
(κ̄, µ̄) and the degree of fluctuations, δ. However, we can rewrite this matrix only in terms of δ
and the mean value of P-to-S wave speed ratio K, defined earlier:

R(δ 1
λ
,δ 1

µ
) =








(K2−2)2((K2− 4
3
)2+ 4

9)δ2

[(1+δ2)((K2− 4
3
)2+ 4

9)−
4
3
(K2− 4

3
)]

2

(K2−2)



1+
4
9 δ4

(K2− 4
3− 2

3 (1+δ2))
2





(K2− 4
3
− 2

3
(1+δ2))(1+δ2)

(

1+
K4− 8

3K2+20
9

(K2−2)2
δ2

) − 1

Sym δ2

(1+δ2)2








(B.11)

B.2 Highly varying random media

When δ does not necessarily tend to zero (which is often the case in simulations done in this
study), the correlation matrix will be extracted using the joint probability density function of the
random variables 1

λ
and 1

µ
. The variables κ and µ are assumed to be Gamma-distributed random

fields with an equal coefficient of variation δ and mean values of κ and µ respectively:

κ ∼ Gamma

(
1

δ2
;κδ =

(

K2 − 4

3

)

µδ

)

; µ ∼ Gamma

(
1

δ2
;µδ

)

(B.12)

The change of variables u = 1
λ
= 1

κ− 2
3
µ
and v = 1

µ
gives µ = 1

v
and κ = 1

u
+ 2

3v
which leads to the

following Jacobian transformation matrix:

J =

[
∂µ
∂u

∂µ
∂v

∂κ
∂u

∂κ
∂v

]

=

[
0 − 1

v2

− 1
u2

− 2
3v2

]

(B.13)

Since the variables κ and µ are independent, the joint probability density function of the random
variables U ≡ 1

λ
and V ≡ 1

µ
will then be given by:

fUV (u, v) = |det(J)|fκ(κ)fµ(µ) (B.14)

in which fκ(κ) and fµ(µ) are respectively the probability density function of the corresponding
random variables. Then:

fUV (u, v) =
1

(uv)2

(
1
u
+ 2

3v

) 1
δ2

−1 · e
−

1
u+ 2

3v

(K2− 4
3)µδ

Γ
(

1
δ2

) ((
K2 − 4

3

)
µδ
) 1

δ2

·
(
1
v

) 1
δ2

−1 · e−
1
v
µδ

Γ
(

1
δ2

) (
µδ
) 1

δ2

=
1

Γ2
(

1
δ2

) ((
K2 − 4

3

)
µ2δ2

) 1
δ2

· 1

(uv)2

(
1

uv
+

2

3v2

) 1
δ2

−1

e
− 1

µδ

[

1

K2− 4
3
( 1
u
+ 2

3v )−
1
v

]

(B.15)

It should be noted that in this equation, for a fixed value of v, u varies in ]−∞,−3v/2]
⋃

[0,∞[.

The variance of the random variables X 1
λ
and X 1

µ
in terms of the statistics of the random

variables 1
λ
and 1

µ
are:

var
(

X 1
λ

)

=
var
(
1
λ

)

E2
(
1
λ

) = δ21
λ

; var
(

X 1
µ

)

=
var
(

1
µ

)

E2
(

1
µ

) = δ21
µ

(B.16)
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Similarly, the covariance of the random variables X 1
λ
and X 1

µ
reads:

cov
(

X 1
λ
, X 1

µ

)

= E

(

X 1
λ
·X 1

µ

)

− E

(

X 1
λ

)

· E
(

X 1
µ

)

= E

(

X 1
λ
·X 1

µ

)

= E





(
1
λ

E
(
1
λ

) − 1

)

·





1
µ

E

(
1
µ

) − 1







 =
E

(
1
λ
1
µ

)

− E
(
1
λ

)
E

(
1
µ

)

E
(
1
λ

)
E

(
1
µ

) =
cov

(
1
λ
, 1
µ

)

E
(
1
λ

)
E

(
1
µ

) (B.17)

The desired covariance matrix in terms of the statistics of the variables 1
λ
and 1

µ
will therefore be:

R(X 1
λ
,X 1

µ
) =

[

var(X 1
λ
) cov(X 1

λ
, X 1

µ
)

cov(X 1
λ
, X 1

µ
) var(X 1

µ
)

]

=






var( 1
λ)

E2( 1
λ)

cov( 1
λ
, 1
µ)

E( 1
λ)E(

1
µ)

cov( 1
λ
, 1
µ)

E( 1
λ)E(

1
µ)

var( 1
µ)

E2( 1
µ)




 (B.18)
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Appendix C

Probabilistic modeling of random
heterogeneities

In this section, the so-called maximum entropy principle will be discussed. This method allows us
to construct a probability distribution model for a random variable only based on the use of the
available information about it.

C.1 Maximum Entropy Principle

The Shannon measure of entropy for a real random variable X characterized with a probability
density function (PDF) fX(x) is defined as:

S(fX) = −
∫

Rn

fX(x) ln fX(x)dx (C.1)

For instance, let X follows a Gamma distribution with α and θ as parameters, i.e.:

X ∼ Gamma(α, θ) ⇒ fX(x) =
1

θαΓ(α)
xα−1e−

x
θH(x) (C.2)

in which H and Γ are respectively the Heaviside and Gamma functions. Using equation (C.1) one
can show that the entropy of a Gamma random variable is α + ln θ + ln[Γ(α)] + (1 − α)ψ(α) in
which ψ is the digamma function which is defined as the derivative of the natural logarithm of
the Gamma function. This entropy can be rewritten in terms of the mean µ = αθ and standard
deviation σ =

√
αθ of the random variable X as:

S(X) =
µ2

σ2
+ 2 ln σ + lnµ+ ln

[

Γ

(
µ2

σ2

)]

+

(

1− µ2

σ2

)

ψ

(
µ2

σ2

)

(C.3)

Table C.1 summarizes the entropy measures corresponding to some random variables in terms of
their standard deviation σ. Dirac distribution which is a completely deterministic law has a zero
entropy measure which means that there is no uncertainty. For other distributions, like the Gamma
random variable, it can be observed that S(X) is an increasing function of σ which itself is an
indicator of the uncertainties in random variable X. As a consequence, the Shannon measure of
entropy can also be considered as a measure of uncertainty. The maximum entropy principle which
is defined by Jaynes for the first time in the context of statistical physics and quantum mechanics
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Random variable’s type Probability density function, fX(x) Entropy measure, S(X)

Dirac delta δ(x− x0)1R(x) 0

Uniform 1
b−a1(a,b)(x) ln(

√
12σ)

Exponential λ exp(−λx)1R+(x) ln(e
√
σ)

Gaussian 1
σ
√
2π

exp
(

− (x−α)2
2σ2

)

1R(x) ln(
√
2πeσ)

Log-normal 1
x
√
2πβ

exp
(

− (x−α)2
2β2

)

1R+(x) 1
2 + α+ 1

2 ln
(

2πln
(
1+

√
1+4e−2ασ2

2

))

Rayleigh x
β2 exp(− x2

2β2 )1R+(x) 1 + γ1

2 + ln
(

σ√
4−π

)

Table C.1: Entropy measure of some random variables in terms of their standard deviation σ

for discrete probability distributions, states that among all probability distributions which satisfy
a given set of constraints, one that maximizes the entropy measure, is the best choice. As a simple
example, using the maximum entropy principle, we try to derive the PDF of a random variable
given these available information:

(i) X ∈ R almost surly.

(ii) The mean value of X is known: E(X) = µX .

(iii) The mean value of the natural logarithm of X is also given: E(lnX) = c.

The desired PDF fX is the solution of the following functional maximization problem:

fX = arg max S(fX) (C.4)

in which the function fX which is defined from R to R
+ should fulfill the following constraints:

∫

R

fX(x)dx = 1 (C.5a)
∫

R

xfX(x)dx = E(X) (C.5b)
∫

R

(ln x) fX(x)dx = E(lnX) (C.5c)

Using the Lagrange multipliers method to solve this maximization problem, one can obtain a
Gamma probability density function for the PDF of the random variable X (see equation (C.2)).

C.2 Probabilistic modeling of matrix-valued random fields

A natural approach to make a matrix as random is to randomize its individual elements and to use
the methods to model scalar random fieldes. However, the physical as well as the mathematical
properties of the corresponding matrix, for example its invertibility, shall not be necessarily satisfied
using this type of approach, specially in the case of random elastic matrix which consists of a priori
21 mutually independent components. In general, the random elastic matrix should satisfy these
conditions: symmetricity, positive definiteness and invertibility (the system response should be of

1the Euler - Mascheroni constant
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the second-order). It should also satisfy all of the a priori information that might be available,
for instance its mean value, its variance, its correlation structure etc. Soize (2000, 2001) derived
a stochastic model for the random elastic matrix using the maximum entropy principle from the
essential physical and mathematical properties that the probabilistic model should possess. This
probabilistic model consists of the minimal set of essential parameters needed to describe a random
matrix which satisfies some a priori given conditions. The main steps to construct a random matrix
using a non-parametric probabilistic approach with minimal parameterization which fulfills all the
mentioned conditions are:

1. Application of the maximum entropy principle to construct a class of normalized symmetric
positive-definite real random matrices of which mean value is an identity matrix and which
are invertible:
Let G be the ensemble of homogeneous normalized non Gaussian positive-definite matrix-
valued random fields, characterized by a mean value E(G) = I6 (identity matrix of order 6)
and a parameter describing the dispersion level δ, which is a generalization of the coefficient
of variation in the case of scalar random fields:

δ =

√

E {||G(δ)− I6||2F}
6

(C.6)

where the subscript F denotes the Frobenius or Hilbert–Schmidt norm. Let fG(G) be the
PDF of the random matrix G. Apart from the positivity condition fG(G) ≥ 0 and the
normalization condition (as in equation (C.5a)), two other constraints should be imposed
before starting to solve the maximization problem of equation (C.4). These constraints take
into consideration from one hand the a priori knowledge about the mean matrix and from
the other hand ensure its invertibility so that the random response of equation (1.1) u(x) will
be of second order. The solution of the constrained optimization problem using the Lagrange
multipliers results in the following PDF (see Soize (2000, 2001) for details):

fG(G) = 1
M

+
6 (R)(G)× γG × detG× 7(1− δ2)

2δ2
exp

(

− 7

2δ2
tr(G)

)

(C.7)

in which 1
M

+
6 (R)(G) is the characteristic function which is equal to 1 if G ∈ M

+
6 (R) and

is zero when G /∈ M
+
6 (R). detG is the determinant of the matrix G and the dispersion

parameters of the matrices G and C are related as:

δ2C =
δ2

7

(

1 +
(tr(C))2

tr(C2)

)

(C.8)

2. The random matrix is then constructed as the product of the normalized random matrix pre-
and post-multiplied by the Cholesky factors of the mean value of the corresponding random
matrix which should be known in this type of modeling:

Since the mean value of the random elastic matrix C belongs to the ensemble M+
6 (R), there

is an upper triangular matrix L ∈ M6(R) corresponding to the Cholesky factorization of the
matrix C such that:

C = LTL (C.9)
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The random elastic matrix C which belongs to the set of non normalized, non homoge-
neous and non Gaussian positive-definite matrix-valued random fields, parametrized with a
fluctuation level δ will then be constructed as:

C(δ) = LTG(δ)L (C.10)

provided that the random matrix G has a unit mean, i.e. E(G) = I6. As it can be observed
from equation (C.10), only the normalized randommatrixG includes the existing randomness
in the random elastic tensor C. As a result, the probabilistic model of C is completely
obtained knowing the PDF of the random kernel G.

C.2.1 Modifications of Soize’s probabilistic model for the random elas-
tic matrix

The given probabilistic model forC in section C.2 has no assumption about its degree of symmetric-
ity. Guilleminot and Soize (2010) developed the Soize model for the case in which the material
symmetries are uncertain. For this purpose, the variances of some selected random eigenvalues
of the random matrix C should be prescribed. Adding this constraint to the Soize’s optimiza-
tion problem allows us to partially control the mean distance of the random matrix C to a given
class of material symmetry. Their model has clearly a larger number of parameters and is shown
to be suitable when it comes to the experimental identification under material symmetry uncer-
tainties. Guilleminot and Soize (2011) also presented a method based on the sequential solving
of least-square optimization problems for the inverse identification problem. Guilleminot et al.
(2011) proposed a probabilistic model for the random elasticity matrix when it is deterministically
bounded, i.e. Cℓ < C < Cu in which Cℓ and Cu are respectively deterministic lower and upper
bounds for the random matrix C (see Huet (1990) for more discussion). Taking into consideration
simultaneously the material symmetry uncertainties and the boundedness of the random elasticity
matrix is discussed in Guilleminot and Soize (2012) and a proper probabilistic model is proposed.
Independent from the works of Guilleminot and Soize (2010), Ta et al. (2010) developed the Soize’s
model (equation (C.7)) by adding a new parameter which controls the mean distance and projec-
tion of the matrix C onto the space of isotropic materials. This parameter is also called the degree
of anisotropy of the underlying random medium. Since in chapter 3 of this presentation we will
make use of the probabilistic model of random elasticity matrix proposed in Ta et al. (2010) for
the numerical simulations of elastic wave propagation, this model will be elaborated in the next
paragraphs.

Several measures can be defined as anisotropy level (see Arts (1993) and Carcione (2007) for
instance) among which the usual definition which utilizes the normalized distance in the Frobenius
norm between the elastic matrix C and the closest isotropic one denoted by Ceqv

iso is used in Ta
et al. (2010). The latter is defined as:










C11 C12 C13 C14 C15 C16

· C22 C23 C24 C25 C26

· · C33 C34 C35 C36

S · · C44 C45 C46

· Y · · C55 C56

· · M · · C66











≈











λeqv + 2µeqv λeqv λeqv 0 0 0
λeqv λeqv + 2µeqv λeqv 0 0 0
λeqv λeqv λeqv + 2µeqv 0 0 0
0 0 0 µeqv 0 0
0 0 0 0 µeqv 0
0 0 0 0 0 µeqv











(C.11)
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in which the equivalent Lamé parameters λeqv and µeqv are given by:

λeqv =
C11 + C22 + C33 + 4(C12 + C23 + C13)− 2(C44 + C55 + C66)

15
(C.12)

µeqv =
2(C11 + C22 + C33)− (C12 + C23 + C13) + 3(C44 + C55 + C66)

15
(C.13)

The anisotropy index of a matrix C is then defined as:

Ia(C) =

√

||C−Ceqv
iso ||2F

||C||2F
(C.14)

in which the anisotropy index Ia varies in [0, 1]. For isotropic materials Ia = 0 and for a completely
anisotropic elastic matrix with 21 mutually independent parameter Ia = 1. The extension of the
Soize’s problem to the case in which the mean anisotropy index is known is done and a new
PDF for the random elasticity matrix is proposed (see Ta (2011) for a complete discussion). The
random elastic matrix C will therefore be characterized by a mean value C, a dispersion level δc
and an anisotropy index Ia. It can be shown that the eigenvalues of the isotropic elastic matrix,
equation (1.3), are 3λ + 2µ = 3κ and 2µ being respectively proportional to the bulk and shear
moduli. Guilleminot and Soize (2013) investigated the statistical dependence of the elastic matrix
components based on a maximum entropy principle and found that the pair of elastic coefficients
(κ, µ) can be considered as statically independent. As a result, the isotropic elastic matrix is chosen
to be expressed in terms of these coefficients rather than the classical Lamé parameters:

Ciso = 3κS+ 2µD (C.15)

where S and D are respectively the so-called spherical and deviatoric matrices which are the
orthogonal eigenvectors of the isotropic elastic tensor defined as:

S =
1

3
(I2 ⊗ I2) ; I2 = [1 1 1 0 0 0]T (C.16a)

D = I6 − S (C.16b)

Due to the special properties of the matrices S and D, i.e. S2 = S, D2 = D and SD = 0, equation
(C.15) can be rewritten as:

Ciso =
(√

3κS+
√

2µD
)2

(C.17)

Consequently, the following model is proposed for the anisotropic random elastic matrix parametrized
with C (the mean model which is assumed to be spatially homogeneous for the sake of simplicity),
δ (the degree of statistical fluctuations) and δg (the degree of anisotropy) (Ta et al., 2010):

C(δ, δg) =
(√

3κ(δ)S+
√

2µ(δ)D
)

G(δg)
(√

3κ(δ)S+
√

2µ(δ)D
)

(C.18)

in which G(δg) is the anisotropy kernel with a PDF as in equation (C.7) and (κ(δ), µ(δ)) are
assumed to be independent strictly positive scalar random variables with equal coefficients of
variation δ for the sake of simplicity of the final model:

δ =

√

E {(κ− κ)2}
κ

=

√

E
{
(µ− µ)2

}

µ
(C.19)
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Applying the maximum entropy principle for κ and µ with given mean values κ and µ and given
mean logarithms, results in Gamma distributions with following parameters:

κ ∼ Gamma(ακ =
1

δ2
, θκ = κδ2) ⇒ pκ(κ) =

1

κδ2Γ
(

1
δ2

)

(
κ

δ2κ

) 1
δ2

−1

exp

(

− κ

δ2κ

)

H(κ) (C.20a)

µ ∼ Gamma(αµ =
1

δ2
, θµ = µδ2) ⇒ pµ(µ) =

1

µδ2Γ
(

1
δ2

)

(
µ

δ2µ

) 1
δ2

−1

exp

(

− µ

δ2µ

)

H(µ) (C.20b)

We emphasize that the numerical simulations done in chapter 3 use a probabilistic model as
in equation (C.15) which is completely characterized knowing the mean values (κ, µ) and the
coefficient of variations which is supposed to be the same for the sake of having a model with
minimal parametrization:

Ciso(δ) = 3κ(δ)S+ 2µ(δ)D (C.21)

The elastic matrix introduced in (C.18) along with its inverse are both second-order that is to
say that E {||C(δ, δg)||2F} < +∞ and E {||C−1(δ, δg)||2F} < +∞ if the dispersion parameters of the
model satisfy (see Arnst (2007) and Soize (2006) for a detailed discussion):

0 < δ <
1√
2

; 0 < δg <

√

7

11
(C.22)
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Appendix D

Toward the analytical solution to the
RTE of elastic waves propagating in
discrete isotropic scattering random
media

D.1 Introduction

Using the hypothesis of isotropic scattering and assuming that σ and Σ are x-independent which
is true in the case of the uniformly distributed discrete scattereres, one can solve analytically the
equation (1.59) for the total energy density E(t, r) at each point:

E(t, r) =

∫

R3

a(t, r,k)dk (D.1)

Shang and Gao (1988) and Zeng et al. (1991) studied the scattering process in a random
isotropic scattering medium with discrete heterogeneities for scalar waves. They derived the equa-
tion describing the energy density propagation which is the analytical solution of the equation
(1.59) integrated over the wave vector k in this simple case. If we denote the total wave energy
density in a receiver at position r and time t with E(r, t), the energy equation can be written as:

E(r, t) = Ein

(

r0, r, t−
|r− r0|

v

)

+
∑

r1 6=r

Esc

(

r1, r, t−
|r1 − r|

v

)

(D.2)

in which Ein indicates the incident wave energy directly propagated from the source at r0 to the
receiver point r and Esc is the sum of scattered wave energies from all possible scatterers r1 (the
last scattering point) to the receiver r. If the the point-like isotropic scatterers are uniformly
distributed with density n0 in a 3-D medium, Ein and Esc can be written as follows (Zeng et al.,
1991):

Ein

(

r0, r, t−
|r− r0|

v

)

= Ein

(

t− |r− r0|
v

)
e−

Σ|r−r0|
v

4π|r− r0|2
(D.3)

Esc

(

r1, r, t−
|r1 − r|

v

)

=
Σ

n0v
E

(

r1, t−
|r1 − r|

v

)
e−

Σ|r−r0|
v

4π|r1 − r|2 (D.4)
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where v is the constant propagation velocity and Σ = Σsc is the space-independent total cross-
section which could also include the absorption effects (i.e. Σ = Σsc+Σab). The exponential decay
is introduced to account for energy loss due to the scattering as well as the geometrical spreading
factor ( 1

|r|2 in 3-D media). Substituting equations (D.3) and (D.4) in (D.2) and rewriting it in a
continuous form, the following so-called scattered wave energy equation will be obtained:

E(r, t) = Ein

(

t− |r− r0|
v

)
e−

Σ|r−r0|
v

4π|r− r0|2
+

∫

R3

Σ

v
E

(

r1, t−
|r1 − r|

v

)
e−

Σ|r−r0|
v

4π|r1 − r|2dr1 (D.5)

In the case of an impulsive incident wave energy described by a delta function in time at t = |r|
v
,

Ein = E0

4π|r|2 δ
(

t− |r|
v

)

, Zeng et al. (1991) have separated different scattering orders and derived a

complete solution for the equation (D.5) as (henceforth the source is at origin r0 = 0 and at t = 0):

E(r, t) = E0(r, t) + E1(r, t) + E2(r, t) +
∑

m>2

Em(r, t)

=
δ
(

t− |r|
v

)

e−Σt

4πv|r|2 +
ΣH

(

t− |r|
v

)

e−Σt

4π|r|v2t ln

(

1 + |r|
vt

1− |r|
vt

)

+
Σ2
scH
(

t− |r|
v

)

e−Σt

16π

[

π2

vt
− 3

|r|

∫ |r|
vt

0

(

ln
1 + α

1− α

)2

dα

]

+

∫ +∞

−∞

eiΩt

2π
dΩ

∫ +∞

0

(
Σ
vk

)3
[

tan−1
(

k
η+iΩ

v

)]4

sin(k|r|)

2π2v|r|
[

1− Σ
vk

tan−1
(

k
η+iΩ

v

)] dk

(D.6)

in which En denotes the nth order scattered energy density, i.e. the incident wave energy which has
been scattered n−1 times before arriving to the last scattering point at r1 and then directly travels
to the receiver at r. Obviously, the zeroth-order term corresponds to the incident wave energy.
The method of discrete wave number sum can be used to solve the integral in equation (D.6). Zeng
et al. (1991) have also shown that the energy corresponding to the nth order scattered wave can
be calculated using:

En(t) =

∫

R3

En(r, t)dr = E0e
−Σt (Σt)

n

n!
(D.7)

Equation (D.7) expresses the nth order scattered wave energy as the multiplication of the
probability that the incident wave energy undergoes n scattering events before arriving at station
r, that is to say (Σt)n

n!
(this corresponds to a Poisson random process with the rate Σ), and in this

interval the incident energy E0 will be reduced by a factor e−Σt.
A general form of equation (D.5) for an impulsive point source at the origin can be written as

follows (Sato et al., 1997):

E(r, t) = Wψ(θ, φ)G(r, t) +

∫

R3

dr
′

∫

R+

ΣG(r− r
′

, t− t′)E(r
′

, t)dt′ (D.8)

in which the Green’s function G (corresponding to incident waves) is defined as:
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Figure D.1: Configuration of a source, a receiver and last scattering points for multiple isotropic scattering including
different mode conversions (Sato et al., 2012)

G(r, t) = G(|r|, t) = 1

4πv|r|2H(t)δ
(

t− |r|
v

)

e−Σt (D.9)

where H(t) is the Heaviside step function and ψ(θ, φ) corresponds to the source radiation pattern
which is normalized as:

∮

ψ(θ, φ)dΩ = 4π (D.10)

Therefore, for the case of a spherically symmetric radiation ψ(θ, φ) = 1, we will have exactly the
same equation as (D.5). The equations (D.8), (D.9) and (D.10) describe completely the isotropic
scattering process in a 3-D elastic medium with discrete random heterogeneities. The objective
of the following two sections is to extend the scalar wave transport equation to the case of elastic
waves and to derive an analytical formula for the global diffusion time of a random isotropic
scattering medium. Two different point source types will be considered in the next two sections.

D.2 Isotropic (spherical) source

In this section we suppose the isotropic scattering and therefore the spherical radiation pattern
ψ(θ, φ) = 1. Equation (D.8) simplifies as:

E(r, t) = WG(|r|, t) +
∫

R3

dr
′

∫

R+

ΣG(|r− r
′ |, t− t′)E(r

′

, t)dt′ (D.11)

The objective is to extend this scalar wave energy transport equation to the case of the elastic
waves, considering the P-to-S and S-to-P mode conversions during scattering events. We emphasis
again that in this section the polarization effect of S waves is neglected, so that the term asN−Nas

in equation (1.68) is neglected. Furthermore, in this case the coherence matrix becomes a scalar
because of the fact that in this case Q = U = V = 0. We assume that the P and S wave energies
W P and W S are impulsively radiated from an isotropic source (for instance an explosion) located
at the origin in a 3-D isotropic scattering medium (see Figure D.1).

The scalar energy densities of P and S waves at a given point x and time t, which are respectively
denoted by EP (x, t) and ES(x, t), will satisfy the following integral equations which accounts for
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the possible mode conversions (Sato, 1994).

EP (x, t) = W PGP (x, t) +

∫

R3

dx′
∫

R+

dt′
[
EP (x′, t′)Σpp + ES(x′, t′)Σsp

]
GP (x− x′, t− t′) (D.12)

ES(x, t) = W SGS(x, t) +

∫

R3

dx′
∫

R+

dt′
[
ES(x′, t′)Σss + EP (x′, t′)Σps

]
GS(x− x′, t− t′) (D.13)

where Σpp, Σps, Σsp and Σss are the total scattering cross-sections for P-to-P, P-to-S, S-to-P and
S-to-S mode conversions due to the scattering events. GP and GS are P and S wave energy
propagators which are characterized by the geometrical spreading factor (reciprocal of |x| and |x|2
respectively for 2-D and 3-D media) and the propagation velocities as (Nakahara and Yoshimoto,
2011):

GP (x, t) =
1

4πvp|x|2
H(t)δ

(

t− |x|
vp

)

e−(Σpp+Σps)t (D.14)

GS(x, t) =
1

4πvs|x|2
H(t)δ

(

t− |x|
vs

)

e−(Σss+Σsp)t (D.15)

Taking the Fourier-Laplace transform of the both sides of these equations respectively with respect
to space and time (which are respectively denoted by tilde and hat) gives:

ˆ̃GP (k, s) =

∫

R3

dxe−ik.x
∫

R+

dte−stGP (x, t) =
1

vp|k|
tan−1

( |k|
Σpp + Σps + s

)

(D.16)

ˆ̃GS(k, s) =

∫

R3

dxe−ik.x
∫

R+

dte−stGS(x, t) =
1

vs|k|
tan−1

(
vs|k|

Σss + Σsp + s

)

(D.17)

The Fourier-Laplace transform of equations (D.12) and (D.13) also leads to the following equa-
tions:

ˆ̃EP (k, s) =
W P ˆ̃GP (1− Σss

ˆ̃GS) +W S ˆ̃GSΣsp
ˆ̃GP

(1− Σpp
ˆ̃GP )(1− Σss

ˆ̃GS)− ΣpsΣsp
ˆ̃GP ˆ̃GS

(D.18)

ˆ̃ES(k, s) =
W S ˆ̃GS(1− Σpp

ˆ̃GP ) +W P ˆ̃GPΣps
ˆ̃GS

(1− Σpp
ˆ̃GP )(1− Σss

ˆ̃GS)− ΣpsΣsp
ˆ̃GP ˆ̃GS

(D.19)

Considering the case that the wave number |k| tends to zero, using equations (D.18) and (D.19),
we will have:

ˆ̃EP (|k| → 0, s) =

∫

R3

dx

∫

R

dte−stEP (x, t) =
(W P +W S)Σsp +W P s

s(s+ Σps + Σsp)
(D.20)

ˆ̃ES(|k| → 0, s) =

∫

R3

dx

∫

R

dte−stES(x, t) =
(W P +W S)Σps +W Ss

s(s+ Σps + Σsp)
(D.21)

The inverse Laplace transforms of the equations (D.20) and (D.21), results in following relations
for the energy densities of P and S waves, integrated in the whole domain:

ẼP (|k| → 0, t) =

∫

R3

EP (x, t)dx =
(W P +W S)Σsp

Σps + Σsp

+
W PΣps −W SΣsp

Σps + Σsp

e−(Σps+Σsp)t (D.22)
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ẼS(|k| → 0, t) =

∫

R3

ES(x, t)dx =
(W P +W S)Σps

Σps + Σsp

+
W SΣsp −W PΣps

Σps + Σsp

e−(Σps+Σsp)t (D.23)

The following important results are of special interest:

(i) Equations (D.22) and (D.23) satisfy the energy conservation, that is to say that the total
energy in the medium is conserved due to wave scattering:

ˆ̃EP (|k| → 0, s) + ˆ̃ES(|k| → 0, s) =

∫

R3

(EP (x, t) + ES(x, t))dx = W P +W S (D.24)

As a result, the sum of the P and S wave energies is conserved, meaning that the formulation
is self-consistent.

(ii) The equipartition relation which expresses the stabilization of S to P wave energy ratio

Γ(t) = ES(t)
EP (t)

, when mathematically the propagation time tends to infinity:

lim
t→∞

Γ(t) = lim
t→+∞

∫

R3 E
S(x, t)dx

∫

R3 EP (x, t)dx
=

Σps

Σsp

= 2

(
vp
vs

)3

(D.25)

in which vp and vs are the constant velocities of P and S wave in unperturbed background.
In equation (D.25) we made use of the equation (1.96), i.e.:

Σps = 2

(
vp
vs

)3

Σsp (D.26)

(iii) The global diffusion time of the elastic waves propagating in a 3-D random isotropic scattering
medium with a spherical point source could be defined as the inverse of the coefficient in front
of t in the exponential terms of the equations (D.22) and (D.23):

teq =

[

Σps

(

1 +
v3s
2v3p

)]−1

=

[

Σsp

(

1 + 2

(
vp
vs

)3
)]−1

(D.27)

This time is also called the stabilization time or the isotropization time, meaning that at this
time the P to S wave energy ratio Γ(t) is stabilized.

D.3 Non-isotropic (non-spherical) source

In this section the same problem as in previous section is considered, but in the case of an impul-
sive radiation of energy W P +W S from a non-spherical point source located at the origin. The
receiver position in spherical coordinates is x = (r, θ, φ). The matrix form of the equations (D.18)
and (D.19) reads:

[
ˆ̃EP (k, s)
ˆ̃ES(k, s)

]

=
1

(1− Σpp
ˆ̃GP )(1− Σss

ˆ̃GS)− ΣpsΣsp
ˆ̃GP ˆ̃GS

[

1− Σss
ˆ̃GS Σsp

ˆ̃GS

Σps
ˆ̃GP 1− Σpp

ˆ̃GP

]

(D.28)

119



where ˆ̃GP
ψ and ˆ̃GS

ψ are defined as:

ˆ̃GP
ψ =

∫

R3

dxe−ikxψ(θ, φ)

∫

R+

dte−stGP (|x|, t) (D.29)

ˆ̃GS
ψ =

∫

R3

dxe−ikxψ(θ, φ)

∫

R+

dte−stGS(|x|, t) (D.30)

Using the spherical harmonics, the radiation pattern ψ can be decomposed as:

ψ(θ, φ) =
∞∑

l=0

l∑

m=−l
ψlmYlm(θ, φ) (D.31)

where ψ00 =
√
4π from the normalization condition (equation (D.10) ). Following Sato et al.

(1997), by substituting equation (D.31) in equation (D.28), and using jl(−z) = (−1)ljl(z) (jl is
the l-th spherical Bessel function (Sato et al., 2012)) and the following expansion:

eikr(cos θk cos θ+sin θk sin θk cos(φk−φ)) = 4π
∞∑

l=0

iljl(kr)
l∑

m=−l
Ylm(θk, φk)Y

∗
lm(θ, φ) (D.32)

We will have:

ˆ̃GP
ψ (k, s) =

∞∑

l=0

l∑

m=−l
ψlm

∫ ∞

0

|x|2dx
∮

dΩe−ik|x|Ylm(θ, φ)
e
−(s+Σp)

|x|
vp

4πvp|x|2

=
1

vp

∞∑

l=0

l∑

m=−l
ψlm

∫ ∞

0

dxe−(s+Σp)

∞∑

l′=0

l′∑

m=−l′
il

′

jl′(−k|x|)Yl′m′(θk, φk)

∮

dΩY ∗
l′m′(θ, φ)Ylm(θ, φ)

=
1

vp

∞∑

l=0

l∑

m=−l
(−i)l

∫ ∞

0

dxe−(s+Σp)jl(k|x|)ψlmYlm(θk, φk)

=
∞∑

l=0

l∑

m=−l
(−i)lḠP

l (k, s)ψlmYlm(θk, φk)

(D.33)

in which k = (k, θk, φk) is the wave vector in spherical coordinates, Σp = Σpp + Σps and Ḡ
P
l (k, s)

can be explicitly expressed using the Gauss’s hypergeometric function:

ḠP
l (k, s) =

1

vp

∫ ∞

0

jl(k|x|)e−(s+Σp)dx

=
1

vpk

(
kvp

2(s+ Σp)

)l+1 √
πΓ(l + 1)

Γ(l + 3
2
)

2F1

(

l + 1

2
,
l + 2

2
, l +

3

2
;−
(

kvp
s+ Σp

)2
) (D.34)

where k = |k| is the wavenumber and 2F1 is the incomplete beta function (a generalization of the
beta function Bx(p, q) =

∫ x

0
tp−1(1− t)q−1dt) defined as:

2F1(p, 1− q, p+ 1; x) =
p

xp
Bx(p, q) (D.35)
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Taking the limit of the equation (D.28) when k → 0, and using the equations (D.33) and (D.34),

knowing that ḠP
0 (k, s) = 1

vpk
tan−1

(
kvp
s+Σp

)

and similarly ḠS
0 (k, s) = 1

vsk
tan−1

(
kvs
s+Σs

)

, and that

ψ00Y00 = 1, we will have exactly the same formulation as in the case of the spherical radiation
pattern and the diffusion time, which is shown to be independent from the source type, can be
calculated in an isotropic scattering random medium, using the equation (D.27):

teq =

[

Σps

(

1 +
v3s
2v3p

)]−1

=

[

Σsp

(

1 + 2

(
vp
vs

)3
)]−1

(D.36)
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