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Abstract

Due to the increasing global energy demand, eco-friendly and sustainable green resources

including solar, or wind energies must be developed, in order to replace fossil fuels. These

sources of energy are unfortunately discontinuous, being correlated with weather condi-

tions and their availability is therefore strongly fluctuating in time. As a consequence,

large-scale energy storage devices have become fundamental, to store energy on long

time scales with a good environmental compatibility. Electrochemical energy conversion

is the key mechanism for alternative power sources technological developments. Among

these systems, Lithium-ion (Li+) batteries (LIBs) have demonstrated to be the most

robust and efficient, and have become the prevalent technology for high-performance

energy storage systems. These are widely used as the main energy source for popular

applications, including laptops, cell phones and other electronic devices.

The typical LIB consists of two (negative and positive) electrodes, separated by an

electrolyte. This plays a very important role, transferring ions between the electrodes,

therefore providing the electrical current. This thesis work focuses on the complex

materials used as electrolytes in LIBs, which impact Li-ion transport properties, power

densities and electrochemical performances. Usually, the electrolyte consists of Li-salts

and mixtures of organic solvents, such as cyclic or linear carbonates. It is therefore

indispensable to shed light on the most important structural (coordination) properties,

and their implications on transport behaviour of Li+ ion in pure and mixed solvent

compositions.

We have performed a theoretical investigation based on combined density Functional

Theory (DFT) calculations and Molecular Dynamics (MD) simulations, and have focused

on three carbonates, cyclic ethylene carbonate (EC) and propylene carbonate (PC), and

linear dimethyl carbonate (DMC). DFT calculations have provided a detailed picture

for the optimized structures of isolated carbonate molecules and Li+ ion, including pure

clusters Li+(S)n (S=EC, PC, DMC and n=1-5), mixed binary clusters, Li+(S1)m(S2)n

(S1, S2 =EC, PC, DMC, with m+n=4), and ternary clusters Li+(EC)l(DMC)m(PC)n

with l+m+n=4. Pure solvent clusters were also studied including the effect of PF6
–

anion. We have investigated in details the structure of the coordination shell around

Li+ for all cases.

Our results show that clusters such as Li+(EC)4, Li
+(DMC)4 and Li+(PC)3 and Li+(PC)4

are the most stable, according to Gibbs free energy values, in agreement with previous ex-

perimental and theoretical studies. The calculated Gibbs free energies in binary mixtures

suggest that the clusters such as Li+(EC)2(PC)2, Li
+(EC)3(DMC) and Li+(PC)3(DMC)

are more preferable one in their corresponding binary mixtures. In the case of ternary

mixtures, Li+(EC)2(DMC)(PC) is most preferable and the DMC molecule cannot re-

place EC and PC, while PC can easily substitute both EC and DMC molecules. Our

ii



study shows that PC tends to substitute EC in the solvation shell.

We have complemented our ab-initio studies by MD simulations of a Li-ion when im-

mersed in the pure solvents and in particular solvents mixtures of interest for batteries

applications, e.g., EC:DMC (1:1) and EC:DMC:PC(1:1:3). MD is a very powerful tool

and has allowed us to clarify the relevance of the cluster structures discovered by DFT

when the ion is surrounded by bulk solvents. Indeed, DFT provides information about

the most stable structures of isolated clusters but no information about their stability

or multiplicity (entropy) when immersed in an infinite solvent environment. The MD

data, together the DFT calculations have allowed us to give a very comprehensive pic-

ture of the local structure of solvent mixtures around Lithium ion, which substantially

improve over previous work. Some preliminary information about the dynamics of these

long-lived local structures is also given.





Résumé

En raison de l’augmentation de la demande d’énergie, ressources écologiques respectueux

de l’environnement et durables (solaires éoliennes) doivent être d éveloppées afin de rem-

placer les combustibles fossiles. Ces sources d’énergie sont discontinues, étant corrélés

avec les conditions météorologiques et leur disponibilité est fluctuant dans le temps. En

conséquence, les dispositifs de stockage d’énergie à grande éechelle sont devenus incon-

tournables, pour stocker l’énergie sur des échelles de temps longues avec une bonne com-

patibilité environnementale. La conversion d’énergie électrochimique est le mécanisme

clé pour les développements technologiques des sources d’énergie alternatives. Parmi

ces systèmes, les batteries Lithium-ion (LIB) ont démontré être les plus robustes et effi-

caces et sont devenus la technologie courante pour les systèmes de stockage d’énergie de

haute performance. Ils sont largement utilisés comme sources d’énergie primaire pour

des applications populaires (ordinateurs portables, téléphones cellulaires, et autres).

La LIB typique est constitué de deux électrodes, séparés par un électrolyte. Celui-ci

joue un rôle très important dans le transfert des ions entre les électrodes fournissant la

courante électrique. Ce travail de thèse porte sur les matériaux complexes utilisés comme

électrolytes dans les LIB, qui ont un impact sur les propriétés de transport du ion Li et

les performances électrochimiques. Habituellement l’électrolyte est constitué de sels de

Li et de mélanges de solvants organiques, tels que les carbonates cycliques ou linéaires.

Il est donc indispensable de clarifier les propriétés structurelles les plus importantes, et

leurs implications sur le transport des ions Li+ dans des solvants purs et mixtes. Nous

avons effectué une étude théorique basée sur la théorie du fonctionnelle densité (DFT) et

la dynamique moléculaire (MD), et nous avons consideré des carbonates cyclique (car-

bonate d’éthylène, EC, et carbonate de propylène, PC) et le carbonate de diméthyle,

DMC, linéaire. Les calculs DFT ont fourni une image détaillée des structures opti-

misées de molécules de carbonate et le ion Li+, y compris les groupes pures Li+(S)n (S

=EC,PC,DMC et n=1-5), groupes mixtes binaires, Li+(S1)m(S2)n (S1,S2=EC,PC,DMC,

m+n=4), et ternaires Li+(EC)l(DMC)m(PC)n (l+m+n=4). L’effet de lanion PF6
– a

également été étudié. Nous avons aussi étudié la structure de la couche de coordination

autour du Li+, dans tous les cas. Nos résultats montrent que les complexes Li+(EC)4,

Li+(DMC)4 et Li
+(PC)3 sont les plus stables, selon les valeurs de l’énergie libre de Gibbs,

en accord avec les études précédentes. Les énergies libres de réactions calculés pour les

mélanges binaires suggèrent que l’ajout de molécules EC et PC aux clusters Li+-DMC

sont plus favorables que l’addition de DMC aux amas Li+-EC et Li+-PC. Dans la plu-

part des cas, la substitution de solvant aux mélanges binaires sont défavorables. Dans

le cas de mélanges ternaires, la molécule DMC ne peut pas remplacer EC et PC, tandis

que PC peut facilement remplacer EC et DMC. Notre étude montre que PC tend à sub-

stituer EC dans la couche de solvation. Nous avons complété nos études ab-initio par des

simulations MD d’une ion Li+ immergé dans les solvants purs et dans des mélanges de
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solvants d’intérêt pour les batteries, EC:DMC(1: 1) et EC:DMC:PC(1:1:3). MD est un

outil très puissant et nous a permis de clarifier la pertinence des structures découvertes

par DFT lorsque le ion est entouré par des solvants mélangés. En effet,la DFT fournit

des informations sur les structures les plus stables de groupes isolés, mais aucune in-

formation sur leur stabilité ou de la multiplicité (entropie) lorsqu’il est immergé dans

un environnement solvant infinie. Les données MD, ainsi que les calculs DFT nous ont

permis de donner une image très complète de la structure locale de mélanges de solvants

autour le ion lithium, sensiblement amélioré par rapport aux travaux précédents.
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Introduction and Motivations

In the first section of this chapter, we briefly discuss the most important devices that

are used for energy storage. In the following, we mainly focus on rechargeable batteries,

particularly lithium-ion batteries, and their main components such as the electrolyte.

Next, we give a general overview and the state of the art of the properties and applica-

tions of different carbonate solvents such as ethylene carbonate, dimethyl carbonate and

propylene carbonate in pure and in the presence of salts, like LiPF6. In the following

sections, we will discuss the motivations for introducing solvent mixtures and provide

an overview of the most recent literature. Finally, we will state our main motivations

for this work and provide a general overview of the manuscript.

1.1 Introduction

An increasing global energy demand and the associated environmental implications are

most important issues in modern society. In the past two decades, the need of efficient

energy storage has increased dramatically. Indeed, devices such as cars, electric vehicles,

cell phones, televisions, are used in everyday life, but a considerable fraction of the energy

needed for their functioning still comes from the fossil fuels like oil, natural gas or coal.

Unfortunately, these classes of fuels are the most important responsible for producing

greenhouse gases, which severely arm the environment. In order to reduce the large

amount of carbon-dioxide emission in atmosphere, alternative energy sources are needed.

Various technologies have been introduced in the past, such as solar cells, batteries, fuel

cells and super capacitors. Green electricity or renewable energies have been successfully

generated from wind or solar natural sources, which are unfortunately correlated to

weather conditions and therefore strongly fluctuating in time. As a consequence, large-

scale energy storage devices are now fundamental, to store energy on long time scales

with a good environmental compatibility. Electrochemical energy conversion is the key

mechanism for alternative power sources in technological investigation.
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Conversion and electrochemical energy storage devices include fuel cells, batteries, and

super-capacitors. These technologies are widely used in several applications such as

portable devices, transportations, industries [3–7]. Although the conversion mechanisms

and energy storage strategy used in these devices are different, they show common

features like an energy-providing process which takes place at the inter-phase between

three segments: anode, electrolyte and cathode. More precisely, all devices are composed

by two electrodes which are separated by the electrolyte solution [3, 4, 6, 8, 9]. The

chemical energy is converted into electric energy through redox reactions in batteries

and fuel cells. In the case of electrochemical super-capacitors, the energy is stored from

the accumulation of charges at the interface between electrodes and electrolyte, in which

there is no chemical reaction occur inside the system. In the following, we briefly discuss

composing materials, energy conversion mechanisms and functioning of all devices.

Fuel Cells [9] are devices that convert the chemical energy supplied as a fuel into electric

energy, by a chemical reaction with oxidizing oxygen. We show an example of fuel cell 1

in Figure 7.1(b). This device sensibly differs from batteries, requiring constant sources

of fuels and oxygen for the chemical reaction to occur. Fuel cells supply energy with an

efficiency of more than 80%, are environment friendly and are mainly used in stationary

applications [10] and transportations. Polymer electrolyte (or proton exchange) mem-

brane fuel cells (PEMFC)[11] are mostly used in stationary, automotive and portable

devices. In PEMFCs, high protonic conductivity is obtained in presence of water. Other

properties include: oxidative stability, electro-osmosis, low water transport and low elec-

tronic conductivity [8]. The PEMFC role is that it allows proton transport from anode

to the cathode. This membrane is mostly made of organic polymers which contains

acid functional groups such as sulfonic, carboxylic and phosphonic acids. In which, it

dissociates with presence of water to allow H3O
+ hydrated proton transport[11]. The

main drawback of a fuel cell is that it can continuously produce electricity as long as the

fuel is provided. Batteries are therefore required to storage the electricity produced, as

we will see below.

Primary batteries [8, 12] are devices that can be used only once and are subsequently

discarded, as they cannot be re-charged with electricity as secondary batteries do. The

electrochemical reactions which occur in the cell are not reversible and the battery stops

working when the reactions complete. In 1860, Leclanché invented the first primary

battery, consisting of a carbon-zinc cell2, as shown in Figure 7.1(a). Natural manganese

dioxide-carbon black was employed as the cathode and the electrolyte was a combination

of ammonium chloride-zinc chloride contain in a zinc can. Synthetic manganese oxide has

subsequently given better performance than natural manganese oxide. The carbon-zinc

with zinc chloride electrolyte primary battery has same performance as zinc-manganese

and outsold worldwide in 2003. Alkaline electrolyte potassium hydroxide (KOH) in zinc-

manganese is mostly used in primary batteries, because it provides a better performance

1http://en.wikipedia.org/wiki/Fuel-cell
2http://www.daviddarling.info/encyclopedia/L/Leclanche-cell.html

2



Chapter 1 Section 1.2

than carbon-zinc cell. Moreover, the same electrolyte was used in several electronic

devices and also more reliable in high energy applications. There are several sort of

primary cells: lithium thionyl chloride, zinc-silver oxide, lithium-sulfur dioxide cells.

Lithium primary cells are more widely used than alkaline cells, due to high energy

density. The lithium metal is used as the anode in lithium cells and the voltage exceeds

3.7 V, due to the strong negative potential of lithium. The drawback of lithium cells is a

lower rate capability, due to a non-aqueous electrolyte with low conductivity. The solid

electrode interphase (SEI) (electronically insulating film which selectively allows lithium

ion transport) can easily be formed in lithium cells. Other primary cell Li−SOCl2 and

Li−SO2 system are used in long range temperature applications and also in applications

like transponders, military and car electronics.

Recently, Electrochemical capacitors [6] or Ultra capacitors [13, 14] have significantly at-

tracted because of their high power density, long cycle-life (>100000 cycles), fast charge

and discharge and high output power. Its power delivery performance which perfectly

fills the gap [15] between batteries/fuel cells (high energy storage) and traditional di-

electric capacitors(high power output) [14]. They also act as temporary energy storage

devices, when coupled with fuel cells and batteries. A electrochemical super-capacitor
3 is shown in Figure 7.1(c). There are however some disadvantages, such as high pro-

duction costs and low energy density. Two main classes of electrochemical capacitors

are used, such as redox super-capacitors of pseudo-capacitor and electric double-layer

capacitors (EDLC). The difference of these capacitor is that the reversible redox reac-

tions involve between electrolyte and electro-active species on the electrode surface in

pseudo-capacitor but no reaction in EDLC [13].

Recently, lithium-ion capacitors (LICs) have more attention to researchers in order to

achieve battery level energy density with power density super-capacitors. However, the

kinetic imbalance of electrodes in LICs remains a problem and in order to overcome

this issue functionalized graphene is used to balance the kinetics and leads to storage of

lithium [16]. Moreover, the oxide functional groups in graphene cathode greatly act as

radical centers which stores lithium at high potential.[17]

This thesis work particularly focused on secondary lithium-ion batteries that we discuss

in the following section.

1.2 Rechargeable Batteries

Among the different storage technologies, batteries are the most efficient and robust de-

vices. Batteries convert chemical energy into electrical energy or vice-versa, via electro-

chemical reversible oxidation-reduction reactions.The first reported rechargeable battery

was based on Nickel-Cadmium (Ni-Cd) electrodes and alkaline (KOH) solution was an

3https://gigaom.com/2011/07/12/how-ultracapacitors-work-and-why-they-fall-short
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(a) Primary (Leclanché) Cell (b) Fuel Cell (c) Capacitor

Figure 1.1: Electrochemical Devices such as a) Primary or Leclanché cell, consists
of an anode(zinc rod) and cathode a carbon plate surrounded by packed manganese
dioxide and the electrodes were dipped into a solution of ammonium and zinc chlorides
b) proton conducting fuel cell c) Schematic diagram of Ultracapacitors also have two

metal plates called electrodes immersed in an electrolyte

electrolyte [8]. The Ni metal constitutes the positive electrode (cathode), whose func-

tion is to insert/de-insert protons while charging/discharging. The Ni cathode actually

exists as a Ni(OH)2 electrode. Cd constitutes the negative electrode (anode), which

works reversibly, and the discharge product is Cd(OH)2. Due to toxic character of Cd

and a poor energy density, this device has been replaced by the Nickel-Metal hydride

(Ni-MH) cell. Although, Ni-MH has a higher energy storage capability and weightless

as well. This,however, failed to properly work at low temperatures although it played an

important role in the developments in electric vehicles, motors and portable electronic

device market.

Due to the above drawbacks of Nickel-metal batteries a new type of battery was devel-

oped, the lithium battery. In particular, Lithium-ion batteries(LIBs) have been used

since a few decades and with particular success in a wide range of technologies, including

portable electronic devices and novel automotive applications, due to their high energy

efficiency(>90 %), power density storage, and long cycling life (>5000 cycle). Other

explored technologies, such as lead acid, nickel-cadmium and nickel-hybrid [2, 18–22]

batteries have been demonstrated not to be well suited for such applications, due to

low energy density as compared to lithium-ion batteries. Comparison of energy den-

sities of different classes of batteries are shown in Figure 7.2 The development of the

electrochemistry of the Li-ion has been mostly due to its small ionic radius and low

molecular weight, both beneficial for diffusion. Moreover, it has a low redox potential

E◦(Li+/Li) = −3.04V [23] compared to SHE (Standard Hydrogen Electrode) so it

can easily reduced. This process make a potential difference between the electrodes and

lithium transport also obtained. Also Lithium is more stable against non-aqueous sol-

vents. Initially, lithium has been used in primary batteries, and after some decades it is

by now the main component of rechargeable batteries[12]. The capacity and operating
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Figure 1.2: Comparison of rechargeable battery technologies as a function of volu-
metric and specific energy densities. Figure from the Reference [1]

voltage of LIB are 700 to 2400 mA.h and ∼ 3.6 V, respectively. The operating temper-

ature of LIBs ranges in 15-60 ◦C [24]. Unfortunately, at low temperature, (< 15 ◦C),

the capacity becomes quite low, while at high temperature, (> 60 ◦C), degradation of

the electrode materials becomes important. The pioneering scientists Whittingham and

Goodenough [25] had been developed lithium-ion battery cathode materials in 1970.The

first commercial lithium-ion battery was produced by Sony Co. in 1991 [26] and was

based on LiCoO2 and petroleum coke. We show a schematic diagram of a Lithium-ion

battery in Figure 7.3(a).

After 1991, development of LIBs has substantially grown, especially during the last two

decades. LIBs are exploited in high energy density applications and their potential

is being explored for use in electric (EV), hybrid electric (HEV) and plug-in hybrid

(PHEV)[24] vehicles, as replacements of internal combustion(IC) engines that used fossil

fuels, diesels or gasoline to produce electricity.

A normal Lithium-ion battery is composed of a negative carbon (generally graphite)

anode and a solid layered metal oxide (e.g. LiTMO2, where T is Transition metal) as

the cathode. These two electrodes are the sources of chemical reactions and are separated

by an electrolyte (lithium-ion conductive medium), which consists of Lithium-salts (e.g.,

LiPF6) and organic solvents(e.g., ethylene carbonate). The reactions are started when

the electrodes are connected to an external load and the electron flow occurs from anode

to the cathode. By reversing the process, the battery can be recharged by applying

an external current. While charging, the lithium ions are deintercalated (intercalation

host) from the cathode(for example, layered LiCoO2[27]) which intercalated between the

graphite layers which passes through electrolyte. The discharging is reverse process.
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During intercalation/deintercalation, reactions occur in the electrolyte, which decom-

poses and forms the solid electrolyte inter-phase (SEI)[28–34]. The SEI is formed at the

graphite anode surface, where the graphite is turned into an other form LiCx, where

LiC6 is the highest degree of intercalation. The SEI have been studied using X-ray

and it comprises the compounds such as lithium oxalate (Li2C2O4), lithium methox-

ide (LiOCH3) and lithium succinate (LiO2CCH2CH2CO2Li)[35] respectively. Moreover,

The performance of the graphite anode is largely determined by the specific features

of the SEI film. Numerous factors control the chemical composition of SEI, e.g., the

choice of solvents and of the electrolyte salt, operating temperature, nature of the sur-

face, type of anode etc. The SEI layer prevents the electrode surface corrosion from

decomposition reaction of the electrolyte. During the study of SEI layer formation, the

ethylene carbonate solvent involved in the SEI later formation. An in-depth control of

composition, morphology and structure of the SEI are needed in order to design better

electrodes and electrolyte compositions [27], which is the most important goal in the LIB

technology. The SEI have been studied using X-ray and it comprises the compounds

such as lithium oxalate (Li2C2O4), lithium methoxide (LiOCH3) and lithium succinate

(LiO2CCH2CH2CO2Li)[35] respectively. Moreover, The performance of the graphite

anode is largely determined by the specific features of the SEI film.

Metal air batteries: The intercalation/deintercalation reactions affect the energy den-

sity of lithium-ion batteries. This issue has driven the development of an alternative

approach, metal-air batteries [36–40]. In this batteries, the cathode intercalation mate-

rial is replaced with catalytically oxygen reduction reaction (ORR) and oxygen evolution

reaction (OER). The metal-air batteries such as Li-air and Zn-air batteries are widely

used because of their high energy density, environment friendliness and low cost. A

Li-air battery 4 is shown in Figure 7.1(b).

It generates electricity via redox reaction between metal and oxygen in air. Metal-

air batteries also face some issues like a low efficiency of the anode, a limited energy

density of the cathode, and high corrosion of the anode in contact with the electrolyte.

The formation of hydroxides, metal oxides and other species which accumulate at the

anode surface prevents the discharging process. In the following sections, we will se the

electrolytes involved in batteries.

1.3 Electrolytes in Batteries: Fundamentals

Electrolytes are a crucial component for all electrochemical devices as discussed above.

Electrolytes are composed by salts (solutes) dissolved in solvents and they act as the con-

ductive medium which transfer the charges or ions between the electrodes. Performances

of the devices depend on both the electrolyte and electrode materials. The electrolyte

material must be chemically compatible when the electrodes to avoid stability issues

4http://www.transportation.anl.gov/features/2009-Li-air-batteries.html
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(a) Lithium-ion Battery (b) Lithium-Air Battery

Figure 1.3: Lithium Batteries types : a) Schematic diagram of lithium ion battery
(LIB) consisting of the positive electrode (Li-intercalation compound and negative elec-
trode (graphitic carbon) separated by electrolyte, Figure from Reference [2], b) Li-air
battery consists of catalytic air cathode that supplies oxygen, an electrolyte, and a

lithium anode )

and the chemical reactions taking place in the electrolyte control both quantity and

speed of the energy released towards the electrodes. Also, electrolytes must be highly

stable or completely inert when on contact with the electrode surface, otherwise they

fail to produce high energy densities. The reaction rate of the reductive and oxidative

decomposition is controlled by the electrolyte concentration.

In order to develop better electrolytes a few issues should be considered [12]: 1) tem-

perature range for stability. For instance, the EC solvent is solid at room temperature,

therefore affecting conductivity and reactivity of the salt, e.g., LiPF6; 2) flammability, it

is therefore crucial to consider safety problems; 3) solvent efficiency in dissolving lithium

salts; and 4) considerable loss of concentration of lithium-ion in electrolytes, because

those lithium ions are involved in the formation of SEI. The electrolyte must therefore

fulfil many requirements, such as being environment friendly, inert toward electrode

substrates and cell separator, highly efficient for oxidative and reductive decomposition,

and show a good ionic conductivity.

Electrolytes in Batteries: Electrolytes are in close interaction with both electrodes and

play a crucial role in LIBs. They provide the ion-conductive medium of the lithium-

ion battery, where the Li+ shuttles between the electrodes. The electrolytes must be

characterized a high chemical stability, that prevents decomposition when oxidizing at

the cathode or reducing at the anode. Some important properties, like non-toxicity, low

melting point, high boiling point, the absence of explosive reaction, are required for a
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good electrolyte in batteries applications. Three types of electrolytes have been used in

batteries: aqueous, non-aqueous and solid.

An aqueous electrolyte consists of a strong acid or base, due to the more polarity those

exist as ions like positive and negative in solution. These electrolytes are stable in

particular voltage ranges, while beyond these limits, they start to decompose. The

stability of the provided voltage is controlled by the electrolyte composition degree of

purity. High ionic conductivities can be achieved in aqueous electrolytes when dielectric

constant and solvating power of the materials are reasonably high.

Non-aqueous electrolytes are formed by carbonate solvents with common lithium salts

such as LiBF4, LiClO4, LiPF6, LiAsF6, LiTFSI (lithium bis-(trifluoromethane sulfonyl)

iodide) and LiBOB (lithium bis-oxalato borate). The conductivity of non-aqueous elec-

trolytes are in the range of 10−2-10−3 Scm−1. More specifically, these electrolytes are

non-aqueous aprotic (unable of acting as proton donors) organic solvents, combined

with lithium salts. They are characterized by low toxicity and melting point, good ion

conductivity and electrochemical stability towards the electrodes. The two classes of

electrolytes that have been used in batteries are: i) linear alkyl carbonates (dimethyl

carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC)) and ii)

cyclic alkyl carbonates (ethylene carbonate (EC), vinylene carbonate (VC), and propy-

lene carbonate (PC)). A large number of studies have been devoted to their decompo-

sition, electrochemical properties, and the formation and structure of the first solvation

shell around lithium ions[33, 41–44]. Due to lower dielectric constant and lower solvating

power of some solvents, the formation of ion pairs is enhanced, resulting in a lower ionic

conductivity. Indeed, in this case ions are bound to each other and no longer freely

diffuse in solution. At present, mixtures of solvents with different compositions are used

to enhance the conductivity, and to achieve good low temperature performances. Pure

solvents and solvent mixtures are discussed in the following sections.

Carbonates such as EC and PC have failed to be used as solvents in lithium-air batteries

because of their decomposition reaction with O2. In particular, super-oxides or radicals

are formed during initial reduction of O2[45]. Less volatile ether-based compounds such

as dimethylether(DME) or larger ether compound electrolytes have been preferred as

good candidates for lithium-air batteries [46, 47].

Beyond carbonates, silicon liquids have also received substantial attention. Several stud-

ies have focused on carbonate-modified electrolytes [48–50], siloxane and silyl ether[35,

51, 52] and ethylene-glycol[53–55] compounds. Instead of carbonate solvents mixed with

lithium salts, polymer and copolymer electrolytes have also been considered, formed by

poly(ethylene)oxide (PEO) and lithium salts (LiPF6 or LiCF3SO3)[56–58].

In the past 15 years, Ionic Liquids (IL) [59–61] have attracted much attention as lithium-

ion battery electrolytes. Indeed, ILs are interesting alternatives to organic solvents in
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batteries due to their unique properties such as electrochemical stability, low or no tox-

icity, low flammability, low vapour-pressure properties, high charge density and tunable

polarity. ILs with a melting temperature higher or close to room temperature are called

room-temperature ionic liquids (RTILs). ILs are charged molecules and other than some

advantages, it has relatively high viscosity which will affect the ionic conductivity. ILs

are entirely comprised of cation with basis amines such as pyridinium, imidazolinium ,

piperidinium, pyrrolidinium and morpholinium [62–64]. The anion can be inorganic like

BF−
4 , PF

−
6 , CN

− or AsF−
6 . The IL properties also based on the nature of the substituents

whose affect the ionicity and salt solubility. The alkyl chain lengths[62] or branching

chain length increases the conductivity of the IL upto 1 mScm−1.

The peculiar effect of ion-ion interactions, molecular charge distribution and molecu-

lar shapes are the main properties of IL in both bulk solutions and at the interfaces.

Contrary to what happens in normal solvents, the ion-pair effects are not predominant

in ILs, and therefore the molar conductivity rises up to 0.1 Scm2mol−1. ILs also have

low dielectric constant and vapour pressure. ILs show, however, moisture sensitivity,

properties associated with halogen atoms and moderately high viscosity.

Different classes of ILs are used in a large electrochemical window and can achieve high

charge densities. A virtually infinite number of IL electrolytes can be produced, by

mixing different ILs or mixing ILs with other inorganic or organic polar solvents.

In the following section, we start our discussion of the organic solvents most used in

applications as the main component of electrolytes.

1.4 Organic Solvents and Salts

In this section we briefly discuss the pure solvents we have considered in this work, EC,

DMC and PC, and their physical properties. We also discuss previous work on the Li+-

carbonate interaction. In particular we will first focus on the bibliography reporting

mostly theoretical calculation without a specific salt in pure clusters. Next we will

present additional results highlighting the role played by chosen from the chosen Li salts

( LiPF6, LiClO4, LiBF4, and others).

1.4.1 Physical Properties of Ethylenecarbonate (EC), Dimethylcar-

bonate (DMC), Propylenecarbonate(PC)

Among all organic solvents, the most widely used in LIBs cyclic and linear carbonates. In

particular, the EC solvent is very commonly used as the main component in electrolytes,

due to its high dipole moment (4.9 D), dielectric constant (ε ∼ 89), and miscibility with

most of the non-aqueous solvents [65, 66]. Some physical properties of the EC are

shown in Table 7.1. At room temperature EC is solid (melting point temperature
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36.4◦), therefore it is mixed with other carbonate solvents in order to lower the overall

melting point temperature. In most cases, a small percentage of linear carbonates,

like DMC, is added to EC to turn the resulting mixture into the liquid state at room

temperature. DMC is chosen because of its low viscosity, low boiling point and low

dielectric constant (values are shown in Table 7.1). The combination of EC and DMC

in different concenrations forms a homogeneous mixture characterized by low viscosity

and high ion conductivity. This mixture is stable up to 5.0 V at the cathode surface.

The PC solvent is another attractive cyclic carbonate, characterized by a higher dielectric

constant (ε ∼ 64.9) than linear carbonates. The ionic conductivity and static stability

over a wide temperature range, make PC as a preferred solvent for lithium. PC is a five

member ring molecule, like EC with an extra methyl group in the side chain. However,

PC behaves differently than EC. For instance, several studies have shown that EC plays

an important role in the formation of the Solid Electrolyte Interfaces (SEI), which in

particular protects, protects graphite anodes from further decomposition. The SEI is

formed during the first slow charge of a battery, and the quality of its strcuture strongly

impacts the lifetime of the system. In contrast, in systems only containing pure PC,

no SEI is effectively formed on the graphite electrode surface [67]. Also, PC undergoes

a susceptible reduction reaction after a single electron transfer [68] from lithium which

impacts the cycling efficiency of the system. Despite these issues, PC molecule has also

been considered as a promising solvent due to high anodic stability. In fact, the first

commercial battery (produced by Sony and co.) was developed based on a PC solvent

electrolyte. Structure and some physical properties of PC are shown in Table 7.1. Based

on the data shown in the Table, PC appears to have a slightly higher viscosity than EC,

therefore PC cannot lower the viscosity of EC as DMC does.

In the last decades, several theoretical an experimental work has been published on the

coordination properties of EC, PC and DMC with Li+ ions. In fact, the understanding

of the solvation properties of carbonate electrolytes with Li+ is crucial to understand

a number of physical phenomena occurring in LIBs, like transport properties, stability

in redox environment, and degradations phenomena. For instance, Masia et al., [69]

studied the solvation structure of Li+ with EC molecules, using DFT and MD methods.

The DFT results have shown that a 4-coordinated complex Li+(EC)4, is the dominant

species. Similarly, they also found the same coordination number ( Li+(EC)4) in MD

simulations. A similar result have been obtained by Wang et al.,[70] by a DFT study,

confirming the Li+(EC)4 species as the most stable complex for the Li+(EC)1-4 series.

They also studied the Li+(DMC)1-3 complexes and found that Li+(DMC)3 is the most

stable conformation. Moreover they have also studied addition and substitution reaction

on mixed complexes with EC and DMC solvents, concluding that the addition of DMC

to the Li+(EC)n with n=1-3 complexes is favourable, while substitution of DMC to the

Li+(EC)2 complex is forbidden.

According to Hiroto et al.,[71] studies on EC with Li+ ion by AIMD (ab-initio molecular
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Table 1.1: Structure, Chemical formula, Dielectric constant, Viscosity and Melting
Point (Mp) and Boiling point (Bp) of Solvents such as EC, DMC and PC

Solvent Structure Dielectric Viscosity Mp/Bp
Constant, ε η (cP) (◦C)

EC
O

O

O

89 1.85 36.4/248

(C3H4O3) (40◦ C)

DMC

O

O

O

3.1 0.78 4.6/91

(C3H6O3) (30◦ C)

PC
O

O

O

64 2.53 -48.8/242

(C4H6O3) (30◦ C)

dynamics), the Li+ ion is solvated by four EC molecules in the first solvation shell. In

the case of Li+(EC)5, only four molecules are coordinated with Li+ ion while the 5th

molecule displaced with an average distance of 5.09 Å from the Li+ ion. Similar results

have been obtained by Cho et al.,[72]by DFT calculations. In both papers the authors

conclude that the maximum coordination number in the first solvation sphere is 4 and

additional EC molecules can be only arranged in the second solvation shell.

Mahesh et al., [73] studied the Li+ ion with EC solvent by DFT and MD simulation.

Gibbs free energy were computed using B3LYP/6-311++G(d,p) on the addition reac-

tion of EC to Li+(EC)n (where n = 0 to 5) cluster gives negative values or spontaneous

reactions for Li+(EC)1-4 clusters and positive Δ G value for the Li+(EC)5 complex.

Therefore, they concluded that the formation of a coordination shell with 5 molecules is

energetically unfavourable. Also, the AIMD simulation revealed that the coordination

number is 4 around Li+ ion within a range of ∼4 Å. They also reported that there is no

exchange of EC molecules once the solvation structure is formed. The same authors also

published in following work [74] for PC complexes that Li+(PC)3 is the leading compo-

nent, by calculating Gibbs free energy formation. From heat of formation and Gibbs free

energy calculations, they concluded that EC acts as a better solvent than PC. Using the
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same discussion on ΔG energies, with different DFT approaches, Balbuena et al.,[34]

and Wang et al., agreed on the same conclusions, thus confirming a maximum coordi-

nation number of 4 for Li+(EC)n solvation and explaining that Li+(PC)4 is unlikely to

exist and Li+(PC)2, Li
+(PC)3 are the main components in solution.

Mostly, the conventional electrolytes consists of lithium salt like LiPF6, LiClO4, LiBF4

etc, and a binary or ternary mixture of carbonates.

1.5 Mixtures of Organic Solvents

Among a variety of solvent electrolytes for LIBs, nowadays mixtures of carbonates con-

taining EC are mostly used with success, due to the following reasons: i) even at high

concentration of salt (up to 1.0 M), EC molecule can easily dissolve lithium salts, due

to its high dielectric constant; ii) low melting point of the electrolyte; iii) low viscosity

of linear carbonate electrolytes with improved chemical stability, ionic trans- port and

dielectric permittivity; iv) high ionic conductivity at room temperature, which is higher

than up to 10−3Ω−1cm−1 [75, 76] . This greatly impacts battery performances and is

compatible with battery voltage. The mixture compositions are used in a wide tem-

perature range for operations as well as storage applications and cell performance. The

choice of the electrolyte is of crucial importance to develop better conventional devices.

Therefore, the high dielectric constant of EC molecule is mixed with both liquid car-

bonate solvent (such as linear carbonates) and PC (cyclic carbonate) to overcome these

issues. The ternary mixt ures have been used to enhance at lower-temperature perfor-

mance of batteries. Mixture of EC and DMC with LiPF6 allows the largest number of

charge-discharge processes without loss of capacity.

In the past two decades, very extended research works have been published focusing on

EC containing electrolytes. Before the 1970s, EC was used as a co-solvent in electrolytes,

in order to obtain good ionic conductivity. In the 1970s, a little amount of PC was added,

in order to lower the melting point of EC molecule resulting in a mixture high ionic

conductivity in the bulk solution. In early 1990s, conventional LIBs employed with EC

solvents and despite of EC high boiling point, little amounts of different co-solvents were

added, including PC, THF (tetrahydrofuran), DEE (diethoxyethane). These solvents do

not perform satisfactorily, due to the fact that PC causes side reactions affecting the

irreversible capacity of the LIBs. Moreover, ether solvent are unstable during oxidation

at the charged cathode. After 1994, Tarascon and Guyomard [77, 78] found that the

linear carbonate DMC molecule acts as a better co-solvent with EC to form an effective

electrolyte.

Indeed, the addition of linear carbonate DMC to EC forms homogeneous mixtures re-

sulting in the decreasing of EC melting temperature [78, 79]. As a result, EC viscosity

becomes very low, enhancing ion transport mechanisms and, therefore, increasing ion
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conductivity. The addition of EC and PC solvents in adapted ratios has also been used

to decrease the melting point of the electrolyte, due to the high permittivity and low

melting temperature (-49◦) [80] of PC solvent. Further development and improvement of

lithium ion batteries still implies to overcome limitations of the above binary mixtures,

mainly due to low thermal stability of solvents and high vapour pressure. To date, there

of lot of research works have been published in various mixtures with different salts that

we discuss below. Some results could be dependent not only from the choice of the

electrolyte mixture but also from the salts . For that reason we will discuss bibliography

for each salt in separate paragraphs.

1.5.1 EC,PC,DMC + LiClO4

Earlier experimental Raman spectroscopic studies by Hyodo et al., [81] in 1989 focused

on the local structure of Li+ ion solvation in EC and PC with LiClO4 salt. They

proposed a coordination number around 4 for Li+ in EC with a high concentration of 1

M LiClO4 and this value becomes 4.9 at lower concentration, 0.1 M LiClO4. Moreover,

they also examined EC:PC mixtures. They reported 3.3 EC molecules and 0.7 molecules

of PC at higher concentration (5:1). On the other hand Li+-EC molecule coordination

decreases with increasing the molar ratio of PC. At 1:1 ratio, the number of EC molecule

coordinated to Li+ is 1.9 ( on a total coordination number 3.8) meaning that in this

case both EC and PC are bound to Li+ in a 50:50 ratio and there is no preferential

solvation in the first solvation shell. Nevertheless, theoretical studies by Klassen et al.,

[76] investigating the heat of formation of the reactions of Li+ ion with EC and PC,

showed that EC/ Li+ has a higher solvation energies than PC/ Li+. They concluded

that EC selectively solvates Li+ in the EC/PC/ LiClO4 solutions. Also DFT and MD

studies on LiClO4 with EC, PC and mixtures by Balbuena et al. [82], demonstrated

that EC tends to substitute PC in the first solvation shell. They also demonstrated that

the EC molecules have a coordination number of 4.1 with LiClO4 in diluted solutions,

but it decreases to 3.8 in concentrated solutions. Also, the coordination numbers are 4

and 4.4 in the mixture of EC:PC in 1:1 and 3:1 ratio, respectively. In the first solvation

shell, they found 38% of PC bound to Li+ ion in the 1:1 mixture, and 16% in the 3:1

mixture.

Lithium ion solvation in EC with LiClO4 has been studied by Cazzanelli et al. [83],

using NMR techniques, with a concentration defined by the ratio R=[ Li+ ]/[EC]. They

found a solvation number ∼7 at R=0.1 concentration, while at higher concentration (R=

0.33), the Li+-EC complex formed with ∼3 solvent molecules. Most of the work cited

above therefore suggest that the coordination is around 4 for Li+(EC)n. In contrast,

Huang et al., [84] studied the solvation of LiClO4 in EC by Raman and IR spectroscopy

and suggested that the average solvation number for Li+ ions in EC is 6. Also, Matsuda

et al., [85] measured the solvation of Li+ ion in EC and PC with LiClO4 by Electrospray

Ionization - Mass spectroscopy (ESI-MS) and showed that Li+(EC)2 and Li+(EC)3 are
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the main solvation species in 1 mM LiClO4 solution. Similar result were obtained for

PC molecules.

In 2002 Inaba et al., [86] studied the linear carbonate (DEC and DMC) co-solvents

effect on EC-based solutions, with 1 M LiClO4 by Atomic Force Microscopy (AFM).

They reported that 4.6 is the apparent solvation number of Li+ in EC and this sol-

vation number decreases to 4.2 (3.1 EC+1.1 DEC) and 3.1 (2.9 EC + 0.2 DMC) in

EC:DEC(1:1) and EC:DMC(1:1) solutions, respectively. Their results revealed that EC

molecule dominantly participate in the first solvation shell over linear carbonates.

1.5.2 EC, PC, DMC + LiBF4

The molecular dynamics simulation studies of Soetans et al., [87] focused on LiBF4 salt

in EC, DMC and PC. They performed simulation on Li+- (EC), Li+- (DMC) and Li+-

(PC) at different temperatures, in simulations boxes containing 214 solvent molecules

for one Li+ and one BF4
–, corresponding to 0.1 M concentration. They showed that the

typical solvation shell is formed by both EC and PC around Li+, with a coordination

number of 4.

On the other hand, the MD studies of Prezhdo et al., [88] reported that 6 individual

carbonate molecules (EC, PC and DMC) can coordinate around Li+ ion at low con-

centration (0.1 M) of LiBF4. The coordination decreases to 5 at 1 M concentration.

They also described the solvation shell for binary mixtures. Particularly in PC-DME

mixtures, lithium ion was found to coordinate with 6 PC molecules, due to absence of

the C=O group in DME. In the case of EC-DMC mixtures, 5 EC and 1 DMC molecule

were found to solvate Li+ ion. At higher concentrations, they also found some interac-

tion with the counter anion. In particular, they discussed that the counter anion BF4
–

acts as a monodentate in PC-DME mixtures, and as a bidentate ligand in EC-DMC

mixtures.

Sono et al., [89] studied the solvation of Li+ ion in PC solutions with LiBF4 salt, by

Raman and NMR techniques. They reported that Li+ ion is bound to 1.08 PC molecules,

at a concentration over 1 M. This small coordination number is evidence of a more

important formation of contact-ion pairs of Li+- BF4
–. Recent studies on LiBF4 in PC

by Sono et al., [90] demonstrated that at 1 M concentration the total coordination can be

attributed as 2.66 for Li+-O(PC) and 1.38 for Li+-F (BF4
–). The Li+- PC coordination

number increases to 3.14 in 0.5 M concentration, while Li+-F decreases to 0.91, which

means that the counter anion BF4
– interaction is smaller in the first solvation shell.

1.5.3 EC, PC, DCM + LiTFSI

Borodin and Smith et al., [91] studied solvation and transport of Li+ ion in EC by using

MD simulations. They considered LiTFSI (lithium bistrifluoromethane sulfonamide) salt
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for the Li+ ion and studied the system at 313 K. They reported that 2.7-3.2 EC molecules

and 0.67-1.05 TFSI anions are bound to Li+ ion in the first solvation shell. However,

approximately 3.8 EC molecules solvated to Li+ in completely dissociated electrolytes

with a typical RDF distance of the Li-O(=C in EC) ∼1.95 Å for all concentrations.

1.5.4 EC, PC, DMC + LiPF6

Morita et al., [92] analysed, by using Raman spectroscopy, Li+ ion solvation for 3 differ-

ent concentration of LiPF6 salt in EC. They found coordination numbers of 4.4, 4.1 and

3.9, corresponding to the 3 concentration of LiPF6 0.5 M, 1.0 M and 1.5 M, respectively.

For the EC:DMC mixture in 1 M LiPF6 they obtained a total coordination number of

4.1, which includes 3.0 EC molecules and 1.1 DMC. From this result they concluded

that EC coordination with Li+ ion is preferred over the DMC one.

Tasaki et al., [93] computational studies on LiPF6 salt association with a variety of

solvents concluded that solvation numbers of EC, PC and DMC are 3.53, 3.46 and 2.84

and the corresponding Li+ distances are 2.06, 2.05 and 2.05, respectively. Also, they

reported that the PF6
– ion also participates in the solvation shell around Li+ ion. Sono

et al., [89] studied the solvation of Li+ ion in PC solution with LiPF6 salt by Raman

and NMR techniques and reported that Li+ ion is bound to 4.3 PC molecule in the

diluted solution. They also showed that at higher concentration (2.5M), the ratio of

PC/ Li+ is 4, and almost 25% of PC molecules are free in the solution. However, they

also obtained the distorted orientation of PC to Li+ ion. At the highest concentration

3.29 M, the PC/ Li+ ratio decreased to 2.85. They also reported in following paper on

the same LiPF6 salt [94] that the coordination number is 3 for PC/ Li+ cluster at 1 M

concentration.

Sono et al.,[90] focused on the ion-ion interaction of LiPF6 and LiBF4 in PC solutions.

The results show that the LiPF6/ PC solution has a higher ionic conductivity compared

to the LiBF4 ones, and they attributed this phenomena to a weaker ion-pair formation.

The average solvation number of 1M LiPF6 salt in PC was found to be 3.72. At 0.5

M concentration the solvation number was determined to be 3.97 which indicates that

there are fewer formed contact ion pairs than in the 1 M case. In both cases, PF6
– ion

acts as a monodentate ligand.

A Neutron diffraction study of LiPF6 solution in PC by Yasuhiro et al., [95] revealed that

4.5 PC molecules are strongly bound to Li+ ion in the first solvation shell ( 10 mol %

LiPF6 solution in PC). Detailed quantum chemistry and MD simulation studies have also

been published by Borodin et al., [96] on the solvation properties of binary mixtures of

EC and DMC solvents with LiPF6. The typical MD simulation box contained 480 solvent

molecules with 1M LiPF6, and simulations were performed at various temperatures. The

results revealed that 3.8 EC molecules are present in the first solvation shell (defined by

a cut off radius of 2.8 Å) at 298 K. At higher temperature (333 K), the solvation number
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of EC reduces to 3.3. A coordination number of 2.7 is obtained for DMC with LiPF6 at

1 M which is slightly lower than in the EC case. In the case of binary EC:DMC (1:1)

mixtures, the same authors found a solvation shell with higher content of DMC than EC.

In the first shell, however, there is still some considerable contribution coming from the

counter anion PF6
–. In the same work they also made an interesting discussion about

the role played by the DMC conformation, and showed that, for instance, the Li+-DMC

complex prefers a cis-trans conformation for the DMC fragment than the cis-cis one.

Nevertheless they found that the EC3DMC(cis−cis)/ Li+ complex is more stable than

the EC4/ Li+ species and that the EC3DMC(cis−trans)/ Li+ is less stable than EC4/

Li+ because of unfavourable dipole-dipole interactions.

Ganesh et al., [97] performed simulation of EC and PC solvents with LiPF6. The

typical distance between Li-O(=C) was found to be about ∼1.94 Å in PC and ∼ 1.92

Å in EC at 310 K (400 K). At higher temperature (400 K), the EC solvation shell

was found to be non-spherical to allow some free space inside the shell. The neighbour

counter-ion distance of Li+- PF6
– is ∼6.0 in EC and ∼9.0 in PC. In the same work

it was demonstrated that the apparent solvation number is 4 for PC molecules at 310

and 400 K. In contrast, in the case of EC molecule, the solvation number was shown

to be temperature dependent, with 4 EC molecules at 310 K within 3 Å. The authors

concluded that EC more effectively solvates Li+ ion than PC, due to the higher dielectric

constant of EC.

Kang Xu [98] performed 17O NMR experiments on EC and DMC with 1 M LiPF6, and

found that a maximum of 6 EC molecules can coordinate to Li+ ion in the primary

solvation shell. They also performed the same experiment on EC:DMC(50:50 with 1 M

LiPF6) mixtures and showed that around 70 % of the DMC molecule bond to Li+ ion

in the first solvation shell.

On the basis of MD simulations, Tenney et al., [99] studied the Li+ solvation number

in EC, DMC and in the mixture EC:DMC, with LiPF6 salt . These results show that

the coordination number varies with concentration and temperature. At the very low

concentration of 0.1 M LiPF6, the coordination number of EC around Li+ are 5.2, 5.0

and 4.2 at 300 K, 350 K, 400 K, respectively. Therefore, the coordination numbers de-

creases with increasing temperature at fixed concentration. At 1 M LiPF6, the apparent

solvation number of EC is 4 at room temperature (300 K) but it decreased to 2.9 at the

higher temperature of 400 K. This effect has been explained by observing that at higher

temperature, the coordination decreases to 2.9 because the counter anion joins the first

solvation shell, thus obtaining a solvation shell formed by 2.9 EC and 1.6 PF6
– molecules

around the Li+ ion. For DMC, the typical coordination number is 2.3 at 1.0 M (300K)

and slightly increases to 2.6 at lower concentration (0.1 M). They also observed that the

counter anion PF6
– involved in both 0.1 M and 1 M concentration. For instance, in the

case of pure EC (LiPF6- EC) clusters, the Li
+-PF6

– coordination numbers were 0.4 and
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1.1 in 0.1 M and 1 M at 300 K , respectively. However, in the case of pure DMC(LiPF6-

DMC) clusters, they found that the Li+-PF6
– coordination numbers were 1.7 and 2.1 in

0.1 and 1 M. In the case of 1:1 EC:DMC mixtures (300 K), the coordination numbers of

EC and DMC are 3.0 and 2.6 at 0.1 M LiPF6, which decreases to 1.6 for both EC and

DMC with 1 M LiPF6. Further contact ion pair study ( Li+ with counter ion) has been

performed by Takeuchi [100], who reported a monodentate linkage obtained for PF6
– in

PC solution.

1.6 Motivation and Overview

In the following work of my thesis, I concentrate my study on typical carbonate elec-

trolytes used in LIB technology. In particular, I focused my attention on EC, PC and

DMC that are largely used in commercial devised and in recent experimental develop-

ments. Although, we presented in previous paragraphs, several studies have already

been published on such carbonyl electrolytes, some discrepancy between experimental

and theoretical results still remains, and the role of different carbonates mixtures in the

solvation shell of Li+ still matter of debate. From experimental point of view, there is no

perfect measurement for how many number of solvents participate in the first solvation

shell. However, there have been different solvation numbers available but the results are

contrasting to one another. To date, several experimental and theoretical studies de-

voted to the interactions of Li+ with pure and mixed carbonate-based electrolytes have

already been published, the solvation structure and dynamics of lithium cations in these

solvents is still a subject of debate. Interestingly, even the determination of the coordi-

nation number around the lithium ions in pure carbonate-based solvents has not been

definitely resolved. While the generally accepted picture comprises a tetrahedral coor-

dination of the carbonyl oxygen atoms around Li+, some experimental and theoretical

studies propose the existence of local structures exhibiting slightly higher coordination

numbers(several theoretical studies [76, 83, 86, 87, 89, 90, 92, 95, 97] agreed on coor-

dination 4 around Li+, some experimental and theoretical results [84, 88, 98, 99, 101]

shows a coordination that can go to up to 6 ).

The dependence of this local coordination number on the ion concentration is also some-

how controversial. However, it should be emphasized that designing experimental meth-

ods or theoretical models to analyze the experimental data in order to provide a direct

measurement of the coordination number is an extremely complicated task. On the

other hand, since the validation of molecular simulation results strongly depends on the

direct comparison with experimental data, the development of experimental methods

proving a direct determination of the coordination number becomes indispensable in

order to obtain a clear picture about the local structural effects in liquid solvents.
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Moreover, the study of binary mixtures EC/DMC needs to better describe the role of

DMC in the solvation shell and ternary mixtures EC/DMC/PC that are very used in

recent developments have never been explored from a theoretical point of view.

This work is devoted to the investigation of different mixture of carbonate solvents

for this work to clarify the contributions of solvent molecules to the lithium solvation

shell. After a presentation of the theoretical approaches used in this work, Chapter

2, we will present in Chapter 3, the DFT calculations for pure clusters formed by a

single solvent clusters with lithium-ion Li+(S)n (S= EC, DMC and PC, n=1-5) . In

the same chapter, we will also describe and analyse DFT results obtained for binary

mixtures Li+(S1)n(S2)m , (S1 , S2 =EC, PC, DMC, with m+n=4), and ternary clus-

ters Li+(EC)l(DMC)m(PC)n with l+m+n=4. In particular, we will try to describe

structures, coordination around Li+, bonding interaction and we will also analyse ther-

modynamic properties in order to discuss the stability and preferential arrangement.

The role of the salt, LiPF6, will be discussed in Chapter 4. In particular, we will dis-

cuss the change in the first solvation shell by the presence of the PF6
– counter ion.

In Chapter 5, DFT results will be coupled with realistic results and the typical MD

systems formed by pure EC/Li+, DMC/Li+, PC/Li+ and mixed binary EC:DMC/Li+

(1:1) and ternary solvent EC:DMC:PC/Li+ (1:1:3) electrolytes at dilute concentration.

From MD results, we will rationalize the results including radial distribution functions,

coordination numbers, local mole fractions and dipole distributions etc.
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2

Numerical Techniques

This chapter focuses on the theoretical methodologies developed for solving the Schrödinger

equation for many-body systems, such as the Hartree-Fock method and density func-

tional theory. Also we briefly discuss the basis sets which will be used to perform the

calculations with theoretical functionals. Finally, we will discuss the Amsterdam Den-

sity Functional (ADF) package formalism and the solvent effects using COSMO method.

The ADF software package is used for all our electronic structure calculations. Finally,

we also give a few details about the molecular dynamics simulation method.

2.1 Density Functional Theory

2.1.1 Outline of Electronic Structure Calculations

The quantum mechanics have been developed since the discovery of the electron in

1896 by Lorentz and Zeeman, and in 1897 by Thomson. The quantum field has been

established in 1930s, when the band theory was developed for the case of indepen-

dent electrons. Also in the 1930s, methods such as Hartree-Fock, orthogonalized plane

wave, augmented plane wave and effective potential method were proposed. Although,

Band structure calculations were used until 1950s for solid systems, this theory fails

to study semiconductors. The quantum fields were rapidly developed in the 1960s af-

ter the formulation of density functional theory(DFT) based on the Hohenburg-Kohn

(HK) theorem. This states that the many-body system properties are completely deter-

mined by the ground state charge density. However, the DFT have become useful after

the development of the Kohn-Sham approach that concerns the wave function rather

than density. Due to lack of adequate powerful computer facilities, DFT calculations

were very limited until th 1980s. With the advances of computer technology, the DFT

method electronic structure calculations became more popular and are now widely used
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in quantum chemistry and material science. Nowadays, the Kohn-Sham approach com-

bined with Born-Oppenheimer approximation for accurate DFT calculation which have

been made another approximation called exchange-correlation (XC) potential. This

describes the effect of Coulomb interactions and of the and Pauli principle to pure elec-

trostatic interaction of electrons. Unfortunately, It is very hard to calculate the exact

exchange-correlation potential by solving many-body problem. Therefore, additional

approximations called the local density approximation (LDA) and the generalized gra-

dient approximation(GGA) have been developed using the local electron density. In the

following sections, we briefly discuss the most imporatant quantum chemistry theorems

and methods.

2.1.2 Schrödinger Equation

Schrödinger equation[102] is the starting point of any discussion of quantum mechanics

. The time-independent form of this equation is

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator, E is the total energy of the system and Ψ is the

many body wave function.

Consider a system formed by M nuclei and N electrons. Particles such as electrons

and nuclei interact among each other, i.e., the coulomb potential and consequently the

Schrödinger equation Ĥ (atomic units) can be written as:

Ĥ = −
N
X

i=1

1

2
▽2

i −
M
X

A=1

1

2MA
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X
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X
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X

i=1
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X
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1

rij
+
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X

A=1
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X

B>A

ZAZB
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(2.2)

where RA and ri are the position of M(nuclei) and N(electrons), respectively. The

distance between nucleus A and electron i, is riA = | ri - RA | the distance between

electrons i and j is rij = | ri - rj |, and the distance between nuclei A and B is RAB =

| RA - RB |. ZA is the atomic number of nucleus, while MA is its mass in units of the

mass of an electron. ▽2
A and ▽2

i are the Laplacian operators, therefore, in the above

equation, the first two terms represent the kinetic energy of the electrons and nuclei,

respectively. The third term is the Coulomb attraction between nuclei and electrons,

while the repulsion between electrons and between nuclei is accounted for by the fourth

and fifth terms respectively.
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2.1.3 The Born-Oppenheimer (BO) Approximation

The Schrödinger equation can be solved easily for the simplest molecular species(H+
2 )

only, but it is very complicated to solve in the case of molecular systems. In these cases,

the Born-Oppenheimer Approximation[103] is used, which plays an important role in

electronic structure calculations. It consists in separating the Schrödinger equation into

nuclear and electronic parts. This approximation is based on the fact that the masses of

the nuclei are much greater than the masses of the electron, e.g., the lightest nuclei(the

proton) is 1836 times heavier than the mass of the electron. Hence, in most cases the

nuclei can be considered as fixed points and the electrons move subject to the fixed

external potential produced by the nuclei. The electronic wavefunction, therefore is

only depends on the positions of the nuclei and not on their momenta. Under this

approximation the second term in eq 2.2 is neglected and the repulsion between the

nuclei, the last term can be considered as a constant for fixed nuclei. The remaining

terms are the electronic Hamiltonian(Ĥelec) that can be written as:

Ĥelec = −
N
X

i=1

1

2
▽2

i −
N
X

i=1
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X

A=1
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riA
+
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X
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X
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rij
(2.3)

The total electronic wavefunction for the molecule therefore is,

ĤelecΨelec = EelecΨelec (2.4)

and the general solution of Eq 2.2 can be finally written as:

Ψtot(nuclei, electrons) = Ψ(electrons)Ψ(nuclei). (2.5)

The total energy is obviously the sum of electronic and nuclear energy(the electrostatic

repulsion between the positively charged nuclei).

The electronic energymis the sum of potential and kinetic energy of the electrons. The

electrons are moving in the electrostatic field generated by the nuclei and are subject to

the electro-electron repulsion:

Etot = Eelec +
M
X

A=1

M
X

B>A

ZAZB

RAB
(2.6)

This approximation breaks down on the multiple potential energy surfaces those are

close to each other in energy and also if the reactions involving with hydrogen bonds

and proton transfer reactions. In which, the solving above equation 2.3 is still complex
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for many-electron wave function contains 3N variables. In order to solve this many-

electrons problem special approaches have been developed, including the Thomas-Fermi

theory and Hartree Fock theories.

2.1.4 Hartree-Fock Theory

The Hartree-Fock method was introduced at the end of the 1920s and developed 1927

by D. R. Hartree. This is an approximation for the determination of the wave function

and the energy of a many-body system in a stationary state[104]. This theory simplifies

the electron-electron interaction, by expanding the many electron wave function into a

product of single electron wave function. The ground state wave function of a system

of N electrons is written as a single Slater determinant in N dimensions, ΨSD, with the

one electron wave functions (ψi) as the components. The Slater determinant is:

ΨHF ({xi}) =
1√
N !

�

�

�

�

�

�

�

�

�

�

ψ1(x1) ψ1(x2) · · · ψ1(xn)

ψ2(x1) ψ2(x2) · · · ψ2(xn)
...

...
. . .

...

ψn(x1) ψn(x2) · · · ψn(xn)

�

�

�

�

�

�

�

�

�

�

(2.7)

With this wave function, the full Hartree-Fock equation can be written as:

E[ΨHF ] =

�

−1

2
▽2 +υext

�

ψi(x)+
X

j

Z

dx′ | ψj(x
′) |2

| r − r′ | −
X

j

δσiσj

Z

dx′
ψ∗
j (x

′)ψi(x
′)

| r − r′ | ψjx
′.

(2.8)

and consists of four terms. The first two terms represent the kinetic energy contribution

and the electron-ion potential. The third term is also known as the Hartree term and

is the electrostatic potential generated from the charge distribution of N electrons. The

fourth term, or exchange term, results from the inclusion of the Pauli principle. The

Hartree-Fock approximation assumes a single-electron picture of the electronic struc-

ture, i.e., the distribution of the N electrons is given by the sum of the one-electron

distributions |ψ|2. However, the Hartree-Fock theory was established by assuming a

single-determinant form for the wavefunction, and it also neglects the correlation be-

tween electrons. Therefore, The average non-local potential of electrons arising from the

other electrons is not considered, leading to a poor description of the electronic structure

of the molecule. Although the HF theory is qualitatively correct for various materials

and compounds, it is not adequate to make accurate quantitative predictions.

The many electron wavefunction in HF is built by using antisymmetric electron wave-

functions. Since in HF methods, the electron correlations are neglected and they produce
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large band gaps, higher energies and too small band widths, the HF approach is par-

ticularly suited for small organic molecules and oxides, which have a small number of

localized electrons. However, this HF approximation is less appropriate for high elec-

tron density transition materials. Due to the interaction of average charge density of

electrons, the ground-state energy calculated in HF theory is normally higher than the

true ground-state energy. The theory fails in delocalized electron systems because this

method ignores the collective Coulomb screening. Following these weakness of HF the-

ory, the DFT method was developed, which deals with electron density.

2.1.5 Thomas-Fermi Theory

Llewellyn Thomas and Enrico Fermi proposed (1927) a quantum mechanical theory for

solving the electronic structure of many body system[105, 106]. This theory is formulated

in terms of the electron density, ρ(r), instead of the wave function. The total energy of

a system comprises three terms:

ETF [ρ(r)] = A1

Z

ρ(r)
5

3dr +

Z

ρ(r)Vext(r)dr +
1

2

Z Z

ρ(r)(ρ(r)′

| r − r′ | drdr
′, (2.9)

where the first term represents the kinetic energy of the non-interacting electrons in a

homogeneous electron gas, with A1 = 1
10(3π

2)
2

3 , and the second term is the electrostatic

energy between nucleus-electron interaction. The Vext(r) is the static coulomb potential

generated by the nuclei, while the third term is the classical electrostatic Hartree energy

originating from the classical Coulomb repulsion between electrons.

This method has been used to account for a rough description of electrostatic poten-

tial and the charge density. The inclusion of correlation energy was developed as an

approximation. For realistic systems, this scheme allows for poor quantitative predic-

tions, and it does not reproduce any usual shell structure of atoms in various complex

systems. The approximation of the kinetic energy is the main source in this model. The

TF model over-simplifies the description of the electron-electron intreaction, which is

treated classically, exchange interaction is not taken into account. This theory was used

as a precursor to develop the modern density functional theory.

2.1.6 Density Functional Theory (DFT)

DFT is the most important method and it has been widely used due to its good accuracy

and high computational efficiency. It takes into account the structure of molecules, sur-

faces, crystals and their interactions. This method works based on the electronic-charge

density distribution rather than many-electron wave function. The advantage of using

electron density is a much reduced dimensionality compared to that of the wave function.

Indeed, this method is easy to apply to larger systems because it works with electron
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density. Detailed discussions of DFT can be found in many books[107, 108] and review

articles[109–111]. Although, the DFT method is accurate for ground states it insuffi-

ciently accounts for the form of exchange-correlation functional. Some approximation

are therefore used to refine the model for the exchange-correlations interactions.

2.1.6.1 Hohenberg and Kohn Theorems

Modern DFT theory of many-body systems was introduced by Hohenberg and Kohn

[112] in 1964. This theory is based on two two theorems: The first states that the ground

state energy of any interacting many particle system in an external potential Vext(r)

which determines uniquely by its ground state density. This theorem is also valid for

systems with degenerate ground states. Assume that there are two different potentials

Vext(r) and V′
ext(r), they differ by a constant, and give the same ground state electron

density n0(r). These two external potentials will give two different Hamiltonians, Ĥ and

Ĥ ′, and these Hamiltonians will have the same ground state electron density n0(r), but

the normalized ground state wave functions, Ψ and Ψ′ are different. Then it follows that

E0 = E′
0 +

Z

n0(r)[Vext(r)− V ′
ext(r)]dr (2.10)

where E0 and E′
0 are the ground state energies for Ĥ and Ĥ ′ respectively. Similarly,

E′
0 = E0 +

Z

n0(r)[V
′
ext(r)− Vext(r)]dr (2.11)

The second theorem states that the universal functional of the density is independent of

the external potential Vext(r). The exact ground state density of the system is the global

minimum value of this functional, and the exact ground state density n0(r) minimizes

the functional. In other words the calculation of the ground state density will minimize

the energy.

The universal functional F[n(r)] is independent on the external potential and it can be

written as

F [n(r)] ≡ T [n(r)] + Eint[n(r)], (2.12)

where T[n(r)] is the kinetic energy and Eint[n(r)] represents the interaction energy of the

particles. For another wave function Ψ′, the energy functional E[Ψ′] can be calculated

using variational principle:

E[Ψ′] ≡ hΨ′ | T̂ + V̂int + V̂ext | Ψ′i (2.13)
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If Ψ′ is the ground state wavefunction, Ψ0, the above has its global minimum and

the total number of particles is conserved. According to the HK theorem I and the

variational principle:

E[Ψ′] =

Z

n0(r)Vext(r)dr+ F [n0(r)]

= E[n = 0(r)]

(2.14)

Therefore, the above energy attains the minimum only when the electron density is equal

to ground state energy.

2.1.6.2 The Kohn-Sham Formulation

In order to apply DFT formalism one needs a good approximation for the F[n(r)] func-

tional. The accurate Kohm-Sham(KS) [113] approximation consists in the replacing

the problem of the original many body system with an auxiliary independent particles

system that will have the same ground state density but is easier to solve. The main

advantage of this approximation is that it allows to calculate the kinetic energy in a

simplest way. It clearly provides a picture of one-particle interacting electronic sys-

tems. This method was introduced in 1965 and Kohn was awarded with Nobel prize in

chemistry in the 1998, together with John Pople.

The auxiliary independent-particle Hamiltonian is:

ĤKS = −1

2
▽2 +VKS(r) (2.15)

In order to evaluate the kinetic energy of a system with N independent particles, they

obtained the corresponding potential VKS(r), by solving the system of N one-electron

Schrödinger equations:

(−1

2
▽2 +VKS(r))ψi(r) = εiψi(r) (2.16)

Each of the N orbital ψi(r) has one electron with the lowest eigen values εi, with the

density is

ρ(r) =
N
X

i=1

| ψi(r) |2 (2.17)

The normalisation condition is
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N =

Z

ρ(r)dr (2.18)

The independent-particle kinetic energy TS [ρ(r)] of the non-interacting particles is

TS [ρ(r)] = −1

2

N
X

i=1

Z

ψ∗
i (r)▽2 ψi(r)dr (2.19)

The universal functional F [ρ(r)] is

F [ρ(r)] = TS [ρ(r)] + EH [ρ(r)] + EXC [ρ(r)], (2.20)

where EH [ρ(r)] represents the classic electrostatic energy of the electrons,

EH [ρ(r)] =
1

2

Z Z

ρ(r)ρ(r′)

| r− r′ | drdr
′ (2.21)

and EXC [ρ(r)] is the exchange-correlation energy.

The Hartree potential VH(r)

VKS(r) = Vext(r) + VH(r) + VXC(r)

= Vext(r) +
δEH [ρ(r)]

δρ(r)
+

δEXC [ρ(r)]

δρ(r)

(2.22)

where VH(r) is

VH(r) =

Z

ρ(r′)

| r− r′ |dr
′ (2.23)

and the exchange-correlation potential is

VXC(r) =
δEXC [ρ(r)]

δρ(r)
(2.24)

Equations ( 2.16), ( 2.17) and ( 2.22) are KS equations. These equations are solved

self-consistently because VXC(r) depends on the density.

The definition of the XC energy functional is

EXC(r) = T [ρ(r)]− TS [ρ(r)] + Eint[ρ(r)]− EH [ρ(r)] (2.25)
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where T [ρ(r)] and Eint[ρ(r)] represent kinetic and electron-electron interaction energies

of the interacting system, respectively.

2.1.6.3 Exchange-Correlation Functional

The above equations provide a good method for finding the ground state energy of an

interacting system when the form of EXC is known. However, the form of EXC has

been exactly calculated for only a few simple systems, therefore this term is generally

unknown. The EXC term is commonly approximated in electronic structure calculations

within the local density approximation or the generalised-gradient approximation. In

the last decades hundreds of authors have been publishing different forms for the EXC

functional. The first method was proposed by Perdew and is also called the Jacob’s

ladder[114]. He introduced the simple types of exchange-correlation functional which

are the following:

Local-Density Approximation (LDA) The most widely used, and simplest method

to obtain the exchange-correlation energy is called the Local-density approximation

(LSDA is also be used, for Local Spin Density Approximation). In this method, the

contribution to the exchange-correlation energy from each volume in space and the

same density of homogeneous electron gas. The total exchange-correlation energy Exc

can be obtained by integrating over the entire space:

ELDA
xc [ρ(r)] =

Z

ρ(r)εxc(ρ(r))dr (2.26)

where εxc(ρ(r)) represents the exchange-correlation energy per electron. The Exchange-

correlation functional can be obtained by differentiating this equation:

Vxc(r) = ρ(r)
dεxc(ρ(r))

dρ(r)
+ εxc(ρ(r)) (2.27)

In this approximation, the point r is to be assumed in the inhomogeneous electron

distribution. At this point the electron density ρ(r) in both Vxcρ(r) and εxcρ(r), has the

same value as in the homogeneous electron gas. Initially, Ceperley and Alder [115] have

been calculated the exchange-correlation energy for the homogeneous electron gas using

Monte Carlo methods and after the parametrisation was done by Perdew and Zunger

[116]. LDA only predicts the limit of slowly-varying densities. However, the density is

rapidly varying in most systems, and the LDA is clearly a crude approximation in these

cases. However, the LDA method can still be used in predicting physical properties in

real systems. In the following equation, we establish the connection of the interacting

and non-interacting systems using the coupling constant variable λ ( which varies in
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the range of [0, 1]) in the presence of the external potential Vλ(r). The corresponding

Hamiltonian[117] is

Ĥλ = −1

2

X

i

▽2
i +

1

2

X

i

X

j 6=i

λ

| ri − rj |
+ V̂ext + V̂λ (2.28)

The exchange-correlation hole nxc(r, r
′) is defined with density n(r) in terms of pair

correlation function and scaled Coulomb interaction[118, 119] as

nxc(r, r
′) = n(r′)

Z 1

0
dλ

�

g(r, r′;λ)− 1
�

(2.29)

The exchange-correlation energy can be written in the form of a classical electrostatic

interaction

Exc[n] =
1

2

Z

drdr′
�

�r− r′
�

� (2.30)

The following sum rule holds which arises from pair correlation function

Z

dr′nxc(r, r
′) = −1 (2.31)

It shows that the exchange-correlation energy depends on the shape of the exchange-

correlation hole. These two facts account for the success of the LDA. In spite of success

of the LDA, it has some limitations. Indeed, which means if systems density varies

slowly, the LDA performs well, and chemical properties are well reproduced. However,

in strongly correlated systems, where an independent particle approach breaks down,

the LDA is very inaccurate. Moreover, the LDA gives a very poor description of hy-

drogen bonding and it does not account for van der Waals bonding. Recently, the LDA

functional has been developed and it differs only in their contribution to the many-

body electron gas. The most common LDA functionals are Perdew-Wang (PW)[120],

Perdew-Zunger (PZ)[121] and Vosko-Wilk-Nusair (VWN)[122] for varying densities.

Generalised-Gradient Approximation (GGA) The LDAmethod neglects the real

charge density in inhomogeneous system which differs from that of homogeneous electron

gas. A simple term Exc have been raised for local derivatives of the electron density is

called Gradient Expansion Approximation (GEA), however this is ineffective on the

accuracy of DFT. The electron density as well as the each coordinate of the system take

into account from the gradient of the density and it is called as Generalised-Gradient

Approximation (GGA). It includes higher derivatives of the electron density and density

gradient gives better results than the LDA method in many cases, such as binding energy
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of molecules, bond lengths, crystal lattice constants and so on. The more general form

is

EGGA
xc [ρ(r)] =

Z

ρ(r)εxc(ρ(r))▽ ρ(r)dr (2.32)

The above equation should satisfy some fundamental conditions such as reduce to LDA,

respect the sum rule for the exchange-correlation hole and respect limits for small and

large gradients. However, the exchange GGA functionals are written in the forms of

LDA exchange and Fx enhancement factor, which depend on the local magnitude of the

density gradient. This gradient is scaled according to the electron density,

EGGA
x = Fx(s

2)ELDA
x (2.33)

where s is the measure of inhomogeneity of the system,

s =
| ▽n |
2kfn

. (2.34)

The above s term is a logarithmic derivative of density and density is measured by

changing as compared to the Fermi factor.

Over the years several exchange functionals have been developed in GGA. The most

important functionals such as B88 (Becke, 1988 [123]), PBE (Perdew et al., 1996) have

earned great attention by physicists and chemists communities and they have been used

in the construction of hybrid functionals. The Beck’s B88 exchange functionals is

FB88
x (s) = 1 +

βc2(c1s)
2

1 + 6β(c1s)sinh−1(c1s)′
(2.35)

where

c1 = 2(6π2)
1

3 (2.36)

c2 =
4

3

�

4π

3

� 1

3

(2.37)

and the parameter β = 0.0042 is an empirical parameter which is fitted from the Hartree-

Fock exchange energies of noble gas atoms.

Perdew [124] and Perdew, Burke, Ernzerhof (PBE)[125] of GGA-PBE exchange compo-

nent is
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FPBE
x (s) = 1 + κ−

 

κ

1 + µs2

κ

!

(2.38)

which, for small s2

FPBE
x (s) ∼ 1 + µs2 (2.39)

where µ ≈ 0.21951

and in the large s2 limit

FPBE
x (s) ∼ 1 + κ (2.40)

the proposed value of κ = 0.804. After the introduction of PBE functionals, several

functionals have been proposed to give accurate predictions using modified correlation

and exchange functionals. However, the GGA functionals has always large and small

s limit but it differs only in changing of the functional of µ value. Another functional

such as revPBE has the same form as PBE and it varies the value of κ to 1.245. This

revPBE functional is used to calculate the accurate atomization energy. The functional

of revPBE[126, 127] is

Fx = 1 + κ−
�

1− exp
mus2

κ

�

(2.41)

Also, the PBEsol functional can be used to improve calculations on solids and it is able

to account for the structure of solids with high accuracy. This PBEsol functional use the

same correlation enhancement factor and a different β = 0.046 value. The corresponding

PBEsol[128] functional is

Fx = 1 + κ−
 

κ

1 + µs2

κ

!

(2.42)

RGE2 [129]functional uses the same µ as PBEsol functional and κ is taken from the

PBE functional. The RGE2 functional form is

Fx = 1 + κ− κ
�

1 + µs2

κ +
�

µs2

κ

�2
� (2.43)

The RPBE [130] exchange functional use the PBE correlation functional with PBEsol

β to get
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Fx = 1 + κ



1− 1

2

1

1 + µs2

κ − 1
2e

−µs2

κ



 (2.44)

2.1.7 Basis Sets

The basis sets are composed of atomic functions and are commonly used in quantum

mechanical calculations. A basis set is a mathematical description[131] of the orbitals

within system and each linear combinations of single electron describes in the Equation

2.45.

ψi =

K
X

ν=1

cνiφν (2.45)

where φν or one-electron orbitals which are called basis functions and correspond to the

atomic orbitals and K is the basis functions orbitals.

The Slater Type Orbitals (STOs) are the most used to represent the basis functions.

The STOs were introduced by Slater in 1930 and are more convenient than atomic or-

bitals. Gaussian type orbitals (GTO) are also used in quantum chemistry calculations.

However, the GTOs fail to represent the near-nucleus region and fall very rapidly with

comparison to STO. Since GTOs take into account energetically important electrons

rather than core electrons those are not involved in the reactions. STOs provided rea-

sonable representations of atomic orbitals including near core region electrons.

STO and GTO functions are

φSTO
abc (x, y, z) = Nxaybzce−ζr

φGTO
abc (x, y, z) = Nxaybzce−ζr2

(2.46)

where N is a normalization constant and a, b, c are control angular momentum (L =

a+b+c), and ζ represents the width of the orbital.

The normalised form of STOs are:

φ1s =

�

ζ31
π

�
1

2

exp(ζ1r) (2.47)

φ2s =

�

ζ52
96π

�
1

2

rexp

�

−ζ2r

2

�

(2.48)
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φ2px =

�

ζ52
32π

�
1

2

xexp

�

−ζ2r

2

�

(2.49)

To date, hundreds of basis sets have been reported. The smallest basis sets are called

minimal basis sets. Normally, the minimal basis set includes all atomic orbitals in the

shell. A single s-type function is required for the hydrogen and helium atoms but in the

case of lithium to neon the 1s, 2s, 2p functions are used. The minimal basis set problem

can be addressed if each orbital used more than one function. The Double zeta basis

set was introduced in which it doubles the number of functions in the minimal basis set.

For example, it assigned twice in function for each orbital 1s, 1s, 2s, 2s, 2p, 2p due to

accuracy and efficiency. Alternatively, the Pople basis set, or split valence basis sets,

approach is used to describe the valence electrons by increasing to double the number

of functions but the inner shells are kept in a single function. This basis set does not

affect the chemical properties because this approach is mainly for core orbitals rather

than valence orbitals. Using these functions Triple Zeta (TZ), Quadruple Zeta (QZ) and

Quintuple Zeta (5Z) and also higher functions have been developed. However, in order to

account polarisation of orbitals during chemical bond formation, polarization functions

also known as higher angular momentum functions are required. Diffuse functions are

also used for all elements, s and p type functions with small components. These basis

functions are used to account for the energies of the system with high accuracy and also

give more information the region that is far away from the nuclei. In the next section,

we introduced the quantum chemistry DFT package (ADF) formalism which we used

for all electronic calculations included in this thesis work.

2.1.8 Amsterdam Density Functional (ADF)

In early 1970s, Hartree-Fock Slater (HFS) [132] was introduced to exploit the DFT and

later was called the Amsterdam Density Functional (ADF) [133]. This package has been

developed by theoretical research groups in Amsterdam [132, 134–145] and Calgary [144–

150]. The ADF program supports a variety of exchange-correlation functional and also

includes relativistic effects with ZORA. In this package, the basis set works with Slater

type functions. It includes basis sets from minimal to doubly polarized triple-zeta basis.

This program calculate the energy minima of the molecule, reaction paths and harmonic

frequencies and also takes into account the effect of solvation and of the dielectric field

environment. It can also compute properties such as NMR, ESR and excitation energies

(TD-DFT), dispersion coefficients and Raman intensities.

2.1.8.1 Formalism

Numerical Integration: To calculate the exchange-correlation (XC) potential the ADF

uses the Gaussian quadrature method [135–137]. This method works by partitioning
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the space in atomic cells and it contains a core-region sphere. In terms of spherical

coordinates of nucleus:

Z

cell
f(r)dr =

Z R

0
r2dr

Z 4π

0
f(r,Ω)dΩ+

Z

cell−without−sphere
f(r)dr (2.50)

where r2 is the Jacobian factor and removes at the nuclear position by coulomb singular-

ity of the integrand. More precise numerical integration evaluated with different point

in the different region such as cells, atomic sphere and outer region. In order to obtain

higher precision (close to machine), of-course the scaling of computation time also the

double the number. Numerical approach has some advantages like more efficient and

reduced errors.

Basis Sets: ADF mainly works with Slater-type functions (STOs)

f(r)dr = Ylm(Ω)rne−αr (2.51)

where Ylm are the spherical harmonics and the long-range decay of the function is de-

termined by the exponential factor α. STOs possesses cusp behaviour and appropriate

long range decay compared to the over than Gaussian-type orbitals (GTOs). STOs are

used to build high quality basis set with small numbers of functions, but in the case of

GTOs the same basis set needs a factor of 3 more functions. The ADF package contains

a larger number of basis set for all elements, ranging from single-ζ to triple-ζ doubly

polarized (TZ2P) basis set. It also extends to diffuse functions for polarizability calcu-

lations [151–155] and relativistic ZORA formalism [140–143, 156], also used to account

for deep-core functions.

The Frozen Core Approximation has been used to reduce the computational time. The

molecular symmetry is used to enhance the computational efficiency, because the numer-

ical integral applies only symmetry-unique region. The calculation of Coulomb potential

matrix needs two-electron integrals with n4 scaling, and it is reduced to n3 by using nu-

merical integration and density fitting. The Coulomb potential is derived at each point

r by the following expression ( 2.52).

Fµν

X

k

wkχµ(rk)

�

−1

2
▽2 +VCoulomb(rk) + VXC(rk) + · · ·

�

χν(rk) (2.52)

Where the exchange-correlation potential VXC(r) and the single numerical integration

evaluate the Fock-metrix and the Fock operator. The summation of all integration runs

over points (rk).

The Self Consistent Field is used to obtain the solution of the Kohn-Sham equations.
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The Fock matrix Fj is computed from the trial density matrix Pk and, after diago-

nalization, the eigenvectors(MOs) are obtained. The occupied MOs gives a new trial

density matrix Pk+1 etc, and forms until Pk and Pk+1 are identical, when self-consistency

reached.

In ADF, the Fragment Approach offers some advantages. This approach clearly describes

the picture of bonding and reduces the degree of mixing of complicated basis functions.

For the case of fragments, the energies are calculated directly by a single numerical

integral of the energy density (ε[ρ, r]−
P

A εA[ρ, r]). It also improves numerical precision.

ADF follows Mokokuma-type method [157–160] to calculate the bond energy (ΔE).

ΔE[ρ] =

Z

 

ε[ρ, r]−
X

A

εA[ρ, r]

!

dr (2.53)

The bond energy is divided into two major parts, the preparation energy and the in-

teraction energy. The preparation energy (ΔEprep) is the amount of energy needed

to deform into separated fragments. The corresponding energy term partitioned into

form a equilibrium structure to geometry (ΔEprep,geo) and excite to their valence elec-

tronic configuration(ΔEprep,el). The interaction energy (ΔEint) is calculated between

the fragments,

ΔE = ΔEprep +ΔEint

= ΔEprep,geo +ΔEprep,el +ΔEint

(2.54)

The interaction energy ΔEint is further splitted into three terms

ΔEint = ΔVelst +ΔEPauli +ΔEoi

= ΔE0 +ΔEoi

(2.55)

Here the ΔVelst term represents the classical electrostatic interaction of the prepared

fragments. The ΔEPauli defines the Pauli repulsion and combine ΔVelst and ΔEPauli

with a term ΔE0. The ΔEoi is the associated orbitals interaction energy which accounts

for the charge transfer (HOMO-LUMO interactions), electron pair bonding and polar-

ization, ΔEoi =
P

ΓΔEoi,Γ, where Γ is the irreducible representation of the interacting

system.

In ADF, the Atomic Charges gives additional insight to understand bonding and reactiv-

ity by investigating the wave function. There are three different approaches to compute

atomic charges in ADF: Mulliken population analysis [161, 162], Voronoi deformation

density (VDD) [163] method and the Hirshfield scheme [164, 165].
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In order to calculate the self-consistent equations of the exchange correlation potential

(Kohn-Sham equation) derived from the expression of EXC . Various levels of approx-

imations are implemented in ADF such as local density approximation(LDA) and the

generalised gradient approximation(GGA). For LDA level approximation, the Vosko-

Wilk-Nusair (VWN) [115, 166] can be chosen for the parameterization of the electron

gas data. In the case of GGA, the Becke (exchange), Perdew (correlation), Lee-Yang-

Parr (correlation), Perdew-Wang (both) [167–170] are used. The default method BFGS

(Broy-den Fletcher Goldfarb Shanno) [171] used for geometry optimization in ADF. For

instance, for the particular geometry, the first derivatives of the energy are calculated

by using nuclear displacement at the end of the SCF procedure [144, 172] and initial

estimate of the Hessian are carried out by Newton-type procedure. In each step of the

geometry optimization , the Hessian is updated from the difference of the current and

previous gradients results in the different geometries.

In ADF, IR frequencies are calculated using equation 2.57 below [145, 173]. It com-

putes the second derivatives of the energy with respect to nuclear displacements. The

analytically computed first derivatives (gradients) are used for numerical differentiation.

The matrix of force constants express in mass-weighted Cartesian coordinates(qi).

Fij =
∂2E

∂qi∂qj
(2.56)

q1 = x(1)
p

m(1), q2 = y(1)
p

m(1),

q3 = z(1)
p

m(1), q4 = x(2)
p

m(2), . . .
(2.57)

Diagonalization of F, the normal mode eigenvector vectors obtained after projecting

translations and rotations. The eigenvalues and harmonic frequencies relationship is

νk =

√
λk

2π
(2.58)

The IR intensities are calculated by

Ak = (974.86)gi

�

∂µ

∂Qi

�2

(2.59)

where Qi represents the normal mode (masses in atomic units and mass-weighted Carte-

sian coordinates in atomic units) with degeneracy gi. µ is the dipole moment and Ai is

the absorption intensity. These IR intensities are obtained both with an nalytic approach

and a numerical approach using second derivatives.
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2.1.8.2 Solvent Effects: Conductor-like Screening Model (COSMO)

The COSMO method [174, 175] was originally developed by Klamt and Schüürmann

[176]. and was implemented in ADF by Pye and Ziegler [177]. This method includes

the solvent effects for reaction and compounds which have to be studied in solvent

environment, and for material properties in solution. The specific solvent is handled

as dielectric field medium which induces the charge polarization onto a defined surface

around a molecule. The sphere size of the solvent molecules has to be assumed and

it can penetrate into the occupied molecule region. This effective molecular region is

called Solvent Accessible Surface (SAS). The series of sphere [174, 178, 179] in the SAS

are atomic centred with Van der Waals-type radii, which slightly larger than usual Van

der Waals radii.

Tomasi et al., [180] reported, the finite value of the dielectric constant (ǫ) and the ideal

charge density are scaled by a proper function,

σ(s) = f(ǫ)σ∗(s) (2.60)

where f(x) is the scaling function and is determined by comparing electrostatic-solute

solvent energies and COSMO. The suggested formula is

f(ǫ) =
ǫ− 1

ǫ+ k
(2.61)

Klamt suggested k = 0.5 and k depends on the cavity shape. Pye and Ziegler introduced

COSMO into ADF with the default of k = 0 and they also leave the users to select the

value.

2.2 Molecular Dynamics Simulations

In this section, we give a few details about Molecular Dynamics simulation method, re-

stricting the discussions to the techniques actually used in this work only. The Molecular

dynamics (MD) simulation technique is widely used to study equilibrium and transport

properties of atomic and molecular systems. MD gives a very detailed description of

the individual particle motions as a function of time. MD is an important tool for un-

derstanding structure at the mesoscale and also addresses systems that are difficult to

study experimentally. Typically, MD simulations starts from initial coordinates that are

obtained from experimental methods such as X-ray crystallography or NMR and uses

a force field in order to approximate the potential energy. The time evolution of the

system is determined by solving the Newton equations of motion which specify the time

dependence of position and velocity of the particles in the system varies with time. The
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trajectory is obtained by solving a set of the N differential equations of motion of the

form

dx2i
dt2

=
Fi

mi
(2.62)

In this equation mi describes the mass of a particle with coordinate xi and Fi represents

force applied on particle and a is the acceleration.

The output of an MD simulation is the trajectory, i.e., coordinates and velocities of

all atoms in the system which provide a high quality information only limited by the

accuracy of the used force-fields. The trajectory is next analysed to obtain various

geometrical, thermodynamical, dynamical quantities of the interest.

2.2.1 Algorithm for integration of equation of motion

One important stage of an MD simulation is the integration of the equations of motion.

The intermolecular interactions in realistic models are very simple but they make a

many-body problem that is impossible to solve analytically. Under this circumstances

the equations of motion have to be solved by numerical integration methods. Several

algorithms have been used in for integrating equations of motion using finite difference

methods. MD requires many time steps and the integration is performed in many small

time steps. One of the most widely used algorithm is called the Verlet algorithm [181].

The algorithm is derived using Taylor series expansions,

r(t+Δt) = 2r(t)− r(t−Δt) + a(t)(Δt)2 (2.63)

v(t+Δt) = 2v(t)− a(t−Δt) + b(t)(Δt)2 (2.64)

This Verlet algorithm is stable and also time-reversible, however, these integrators suffer

from instability.

Runge-Kutta integrator methods are also used in some occasions. However, this method

presents that forces must be calculated several times per time step, which is highly

insufficient. In molecular cases, with molecules considered rigid, the equations of motion

for the molecular centers of mass are solved by the verlet algorithm, while rotations are

solved by using the quaternion formalisms. This is the technique used in this work.

Quaternions method The orientation of the molecule can be expressed [182], in

terms of the Euler angles θ,ψ and φ. Here ψ is the rotation of the body about the axis

and θ, φ defines the orientation of a body axis which is relative to the space fixed frame.
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The rotation matrix is

A =







cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ

− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ







(2.65)

The rotational dynamical equation written in terms of A shows singularities for θ close

to 0◦ or 180◦. In order to overcome this issue, a larger reductant set of four variables

called quaternions used. Quaternions can be defined in terms of the Euler angles as:

Qx = sin
θ

2
cos

φ− ψ

2
(2.66)

Qy = sin
θ

2
sin

φ− ψ

2
(2.67)

Qz = cos
θ

2
sin

φ+ ψ

2
(2.68)

Q4 = cos
θ

2
cos

φ+ ψ

2
(2.69)

with the normalisation condition

4
X

α=1

Q2
α = 1 (2.70)

As a consequence, A can be written as:

Aii = Q2
4 +Q2

i −
X

j 6=i

Q2
j (2.71)

Aij = 2QiQj + εijkQ4Qkifi 6= j (2.72)

When i = 1,2,3. The rotation matrix in the quaternions forms can therefore be written

as [183]:

A =







Q2
x −Q2

y −Q2
z +Q2

4 2QxQy + 2Q4Qz 2QxQz − 2Q4Qy

2QxQy − 2Q4Qz −Q2
x +Q2

y −Q2
z +Q2

4 2QyQz + 2Q4Qx

2QxQz + 2Q4Qy 2QyQz − 2Q4Qx −Q2
x −Q2

y +Q2
z +Q2

4






(2.73)
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The time evaluation of quaternions is therefore

Q̇i =
1

2
(Q4ωi + εijkQjωk), i = 1, 2, 3 (2.74)

Q̇4 = −1

2
Qiωi (2.75)

with wi is the angular velocity

2.2.2 Ensembles

MD simulation can be performed in the micro-canonical ensemble, where number of

particles (N), volume (V) and total energy (E) are constant. Also, other techniques

exist to produce the time evaluation at constant pressure and temperature (NPT) or

constant volume and temperature (NVT). These two ensembles can be generated by

using extended Lagrangian formalism, in the form of the Parrinello-Rahman barostat

and Nosé-Hoover thermostat.

Nosé -Hoover Thermostat Nosé[184] introduced a well designed form of a thermo-

stat in 1984, which was further developed by Hoover[185]. The Nosé Hamiltonian for

the N particle extended system is written as:

HN =
X

i

p2i
2mis2

+ U(ri) +NdfkBT lns+
p2s
2Q

(2.76)

Here s represents an additional degree of the freedom of the system, pi is the momentum,

Ndf is the number of degrees of the freedom in N-body system and Q is the Nosé mass

parameter. This thermostat mechanism is also called an extended system method. From

the above Hamiltonian, we can derive the equation of motion as follows

ṙi =
∂HN

∂pi
=

pi
mis2

(2.77)

ṗi = −∂HN

∂ri
= Fi(r) (2.78)

ṡ =
∂HN

∂ps
=

ps
Q

(2.79)

ṗs =
∂HN

∂s
=

 

X

i

p2i
mis2

−NdfkBT

!

/s (2.80)
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Nosé’s thermostat is not able to account for the correct calculation of velocity correla-

tion functions, due to rescaling of momenta. In order to overcome this problem, Nosé

developed a coordinates transformation, further developed by Hoover, and re-wrote the

equation of motion in a more convenient form. The resulting form of the Nosé-Hoover

thermostat therefore is

ṙi =
pi

mis2
(2.81)

ṗi = Fi(r)− ζpi (2.82)

ζ̇i =
1

Q

"

N
X

i=1

p2i
mi

−NdfkBT

#

=
T (t)− T0

Q
(2.83)

The above term is the time derivative which can be calculated from both the refer-

ence(target) temperature (T0) and the instantaneous temperature T(t), which Q deter-

mines the strength of the coupling.

Parrinello-Rahman Barostat This approach resembles the Nosé-Hoover tempera-

ture coupling and generates configurations confirming to the NPT ensemble [186] by

rescaling in a controlled way the simulation box side lengths. The box vectors are

represented by the matrix H which evolves the equation of motion:

d2H

dt2
= VW−1

�

dH

dt

�−1

(P − Pref ) (2.84)

Here W−1 describes the strength of the coupling and the matrices Pref and P are the

reference and current pressures respectively. The corresponding equation of motion for

the particles change to,

d2ri
dt2

=
Fi

mi
−M

fri
dt

(2.85)

where,

M = H−1 d

dt

�

H
dH

dt

��

dH

dt

�−1

(2.86)

and

(W−1)ij =
4π2βij
3τ2pL

(2.87)
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Here τp is the coupling constant, controlling the relaxation of the current pressure to-

wards the reference one, and β is the isothermal compressibility.
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3

Study of Lithium ion Coordination

with Carbonate Solvents

This chapter is dedicated to the DFT study of Li+ ion solvation in EC, PC and DMC

solvents. In particular, Li+(S)1-4(S=EC,PC,DMC) structures have been investigated.

Next, we have examined binary solvent structures such as Li+(EC)m(PC)n, Li
+(EC)m(DMC)n

and Li+(PC)m(DMC)n where m+n = 4, followed by the study of mixed solvent clusters

[Li+(EC)l(PC)m(DMC)n] (l +m+ n = 4).

3.1 Ethylene carbonate(EC)

We have started our DFT calculations by examing the structure properties of the isolated

EC molecule. DFT calculations are performed by ADF, using GGA/PBE functional

with the TZP basis set. An isolated EC molecule has two symmetry structures, such

as planar, with C2V symmetry, and non-planar with C2 symmetry. In 1953, the first

crystal structure of isolated EC was determined by Brown et al.,[187] who reported the

EC is not planar. They also shown that the alkyl carbon atoms C-C joining to the

CO3 group(planar) makes an angle of 20◦. However, the planar structure of EC with

C2V symmetry has been reported by Angell et al.,[188], based on infra-red spectroscopy

in gaseous and liquid state and from the disappearance of some bands in the infra-red

spectra. Neutron diffraction studies by Matiaz et al.,[189] found that the EC structure

has a non planar conformation with C2 symmetry. Theoretical studies on EC by Blint et

al.,[190] reported that the isolated EC is planar, by using HF/D95V** basis, and similar

results were published by Klassen et al.,[76] with HF/6-311++G(d,p) basis. Recent

theoretical studies by Soetens et al.,[191] and Wang et al., [34] have found that EC is

non planar, using higher level abinitio calculation with MP2/6-311G** and B3PW91/6-

31g(d). We have computed the isolated structure of EC molecule in both planar with

C2V symmetry and non planar with C2 symmetry conformations. Our results show that
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the planar C2V symmetry gives one imaginary frequency and non planar C2 symmetry

gives all positive eigen frequencies. Nevertheless, the energy barrier between these two

configurations is only 0.4 kcal/mol. This is in agreement with experimental results.

Indeed, the low energy difference between the planar C2 and the transition C2V state

makes the molecule extremely floppy at room temperature. This explains why several

experiments in liquid or gas phase found an average planar structure. In solid state

experiments could easily access the non-planar ground state. In C2 symmetry, the

methylene group is slightly deviated from the plane of the −CO3 group by 23.9◦ which

almost agrees with an experiment. Some bond parameters are listed in Table 3.1 and

atom numbers are shown in Figure 3.1a. From the Table 3.1, the isolated EC optimized

geometry parameters are in good agreement with experiment results taken from Mahesh

et al [73]. Our dipole moment of EC is 5.29 D,a value which is in good agreement with

the experimental value 5.35±0.15D reported by Alonso et al.,[192].

(a) Ethylene Carbonate (EC) (b) Propylene Carbonate (PC)

Figure 3.1: Isolated optimized geometry structures of Ethylene carbonate and Propy-
lene carbonate, colours Gray = Carbon, Red= Oxygen, White = Hydrogen

3.2 Propylene carbonate (PC)

The isolated geometry of PC was optimized using GGA/PBE level of theory and the

calculated structural parameters are presented in Table 3.2. Due to the fact that no

experimental data are available for PC, we compared our structural parameters with

previously computed results[191] using high level MP2/6-311G** theory. The bond

parameters are in good agreement with this reference work. The optimized geometry of

PC molecule is shown in Figure 3.1 showing that PC has a non-planarity of ring with

C2 symmetry, similar to the case of EC.
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Table 3.1: Comparison between calculated and experimental parameters of EC
molecule (bond lengths in angstrom, bond and dihedral angles in degree)

Parameters Calculated Experimental

Isolated EC EC Crystal

Bond length
O8−C3 1.20 1.22 1.20

C3−O4/C3−O7 1.38 1.36 1.34

O4−C5/O7−C6 1.44 1.46 1.46

C5−C6 1.53 1.53 1.52
C5−H9 1.10 1.09 1.09

Bond angle
O8−C3−O4 124.80 124.30 124.17
C3−O4−C5 108.70 108.93 108.71
O4−C3−O7 110.50 111.39 111.67
H9−C5−H10 109.90 110.36 111.67
C6−C5−H9 113.70 113.36 113.94

Dihedral angle
C3−O4−C5−C6 20.20 -18.44 21.25
C3−O4−C5−H10 141.10 -138.95 141.81
O4−C5−C6−O7 -24.10 21.65 -24.80
O4−C3−O7−C6 -8.30 7.57 -8.73

3.3 Dimethyl Carbonate (DMC)

The DMC molecule show three conformers with respect to the hindered rotation on

the planar (CH3)−O−C−−O bond, which generates cis and trans conformers such as

cis− cis, cis− trans and trans− trans. The conformational features of of DMC have

been investigated by spectroscopic techniques[193] [194] and dielectric measurements

and ab-initio[195], molecular dynamics simulation[196]. These results show that two

isomers, cis-cis and cis-trans, are local minimum structures and the cis-cis is the most

stable conformer. However, our numerical results show the existance of one negative

eigen frequency for the trans-trans conformer, which confirms that this is not a local

minimum but a transition state. We optimized the three conformers of DMC (shown in

Figure 3.2) using GGA/PBE functional with TZP basis set, and the results are presented

in Table 3.3. As we can see from the Table, there is a contraction on the C=O bond

length moving from the cis-cis to trans-trans structure. The electron delocalization

and the lack of repulsive interaction with methyl groups can be the reasons for this

small contraction. According to our results, conformers such as cis-cis and cis-trans

exist in local minimum states which is confirmed by frequencies calculation. In contrast

the case of trans-trans, shows a negative frequency, meaning that this conformer exists

in a transition state. Moreover, the cis-cis is more stble than the cis-trans one, with
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Table 3.2: Structural parameters of PC molecule (bond lengths in angstrom, bond
and dihedral angles in degree)

Parameters Calculated Reference[191]

Bond length
O=C 1.201 1.190

(CH2)O−C/(CH)O−C 1.376/1.371 1.362/1.361

CH2−O/CH−O 1.442/1.457 1.427/1.435

CH2−CH 1.531 1.521
CH−CH3 1.512 1.509

Bond angle
O−C−−O 124.5/125.0 124.8
O-C-O 110.5 110.2

CH2−O−C/CH−O−C 108.5/109.1 108.2/108.8

CH2−CH−O 102.0 102.9
CH2−CH−CH3 115.6 115.3

Dihedral angle
O−CH2−CH−O 23.9 28.3

(O−−)C−O−CH2−C -20.2 -23.7
(O−−)C−O−CH−CH2 -20.1 -24.1
O−(O−−)C−O−CH 8.4 9.8

(a) cis-cis (b) cis-trans (c) trans-trans

Figure 3.2: Three different conformers of DMC such as cis-cis, cis-trans and trans-
trans

the energies of 3.0 and 15 kcal/mol, respectively. In addition to the optimization, we

confirmed the local structures of all DMC conformers by frequency analysis.

3.4 Li+(EC)1−6 complexes

3.4.1 Structural Properties

In this paragraph we discuss our results for the Li+(EC)n (n=1 to 6) complexes. The

optimized structural parameters are presented in Table 3.4 and geometries in Figure 3.3
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Table 3.3: Comparison between the structural parameters of stable DMC conformers
(bond lengths in angstrom, bond and dihedral angles in degree)

Parameters cis-cis cis-trans trans-trans

Bond length
C=O 1.217 1.212 1.207

C-O/C-O 1.353 1.364/1.352 1.368/1.369
O-C 1.446 1.448 1.447
C-H 1.097 1.097 1.096

Bond angle
O=C-O 126.4 125.6/122.3 121.3
C-O-C 113.5 113.2/118.9 119.5

Dihedral angle
O=C-O-C 0.0 0.0/180.0 143.1/142.5

Dipole moment/D 0.355 3.501 5.025
Δ H(kcal/mol) 0.0 2.98 15.50
ΔG(kcal/mol) 0.0 3.0 15.61

and we can clealry see from the Figure that the geometries are arranged in a symmetrical

manner. In the first coordination of a single EC with Li+ ion, the dihedral angle (O-

C-C-O) in EC molecule decrease from 23.9◦ to 17.4◦, while the carbonyl bond length

increases from 1.201 Å to 1.235 Å. A linear arrangements is obtained for atoms Li+-O=C

in Li+(EC) and Li+(EC)2 complexes with carbonyl group (178.8◦ and 176.2◦).

In the Li+(EC)2 geometry, the two planes of the EC molecules are arranged perpen-

dicular to each other, with an angle of ((C=)O- Li+-O(=C)) 177.1◦, which gives the

most stable structure . In the Li+(EC)3 complex, the trigonal plane is obtained between

intermolecular (C=)O- Li+-O(=C) atoms, with an angle of ∼120◦. A tetrahedral ar-

rangement is formed by four coordinated complex with an angle of ∼106◦. The bond

between Li+-O(=C) increases from 1.733 Å (Li+(EC)3) to 1.951 Å ( Li+(EC)4) but the

opposite result is obtained for the O=C bond. In the case of Li+(EC)5 complex, four

EC molecules interact with the Li+ ion in a tetrahedral way, with an average distance

of 1.951 Å. The 5th EC molecule is located in the second sphere of solvation with an

average distance of 5.225 Å (Li+– O=(C)). Similarly, for Li+(EC)6 complex two EC

molecules are pointing to the Li+(EC)4 complex with distance of ∼ 5.1Å from Li+ ion.

However, these two complexes are stabilized by hydrogen bonds at a distance of ∼ 2.4 Å

between EC molecules. In addition, we have also tried several optimization calculations

from different starting structures, in order to look for 5 and 6 coordinated EC in the first

solvation shell but without success. The steric repulsion only allows these additional EC

molecules into the second solvation shell. These results seems that the EC molecules

are participated in the second solvation shell. Despite of strong interation of Li+ with

EC molecules, coordination number increases, the EC molecule nearly attains isolated

geometry. The dipole moment also increases from 1 to 6. The interaction between Li+
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Table 3.4: Structural parameters of Li+(EC)1-6 complexes (bond lengths in angstrom,
bond and dihedral angles in degree)

Atoms EC Li+(EC) Li+(EC)2 Li+(EC)3 Li+(EC)4 Li+(EC)5 Li+(EC)6

Bonds
Li+-O(=C) 1.733 1.784 1.876 1.951 1.929 1.920

O=C 1.201 1.235 1.226 1.220 1.215 1.218 1.215
C-O 1.372 1.330 1.337 1.344 1.352 1.349 1.353
O-C 1.441 1.469 1.464 1.459 1.455 1.461 1.460
C-C 1.543 1.533 1.532 1.531 1.529 1.530 1.529

Angles
Li+-O=C 178.8 176.2 144.8 136.9 140.5 151.6/131.6
O-C-O 124.6 122.8 123.2 123.2 123.5 123.4 124.1

O-C(=O)-O 110.8 114.3 113.6 112.8 112.2 112.4 112.3

Dihedral
O-C(=O)-O 180.0 173.9 173.6 172.9 172.1 173.0 172.0
O-C-C-O -23.9 -17.4 -18.5 -20.2 -21.2 -20.7 -21.6
DPM/D 5.29 9.37 19.29 20.57 21.94 23.68 24.11
BE/ΔE -47.94 -41.56 -34.86 -29.56 -24.45 -22.50

DPM = Dipole moment, BE = Binding Energy in kcal/mol

ion and the solvents molecules can be characterized by the average calculating binding

energy (BE) of all complexes using following equation:

ΔEBE = {Etotal[Li
+(S)n]− E[Li+]− nE[S]}/n (3.1)

where ΔE is the binding energy of the complexes and S is the solvent molecule, n is the

number of solvent molecules and Etotal[Li
+(S)n], E[Li

+], nE[S] are the total energy of

the Li+-S cluster, Li+ ion and isolated solvent molecule respectively.

The gas phase Binding energy of Li+(EC)1-6 complexes are shown in Table 3.4. The

average binding energy decreases going from n=1 to 6. The strongest interaction(EC/

Li+) is obtained for the Li+-EC and by adding extra EC molecules the charge/dipole

interaction is shared on different cluster thus reducing the average interaction in following

clusters.

3.4.2 Frequency and Mulliken Charge Analysis

We have also studied the vibrational frequencies of the isolated EC molecule and of

the Li+(EC)n complexes are given in Table 3.5. Two frequencies of the isolated EC

molecule are particularly affected by the coordination with Li+, the C=O stretching

and the asymmetric C-O stretching. As we discussed before for the BE, also the C=O
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(a) Li+(EC) (b) Li+(EC)2 (c) Li+(EC)3

(d) Li+(EC)4 (e) Li+(EC)5

(f) Li+(EC)6

Figure 3.3: Gas phase optimized Solvation Structures of Li+(EC)1−6

and C-O frequency results are in agreement with the strongest interaction fro the single

coordination (Li+-EC bonds) respect to the following Li+(EC)n coordination. In fact

for the Li+-EC system the C=O frequency EC decrease by -100cm−1 after addition of

Li+ ion. This confirms a strong Li+-O(=C) interaction, where C=O act as donor of
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Table 3.5: Vibrational modes(in cm−1) and Mulliken charges of Li+(EC)1−6 com-
plexes

Atoms EC Li+(EC) Li+(EC)2 Li+(EC)3 Li+(EC)4 Li+(EC)5 Li+(EC)6

Modes
C=O 1833 1733 1748 1763 1776 1760/1790 1760/1793
C-O 1074 1209 1182 1164 1146 1150/1116 1148/1117

Charges
Li+ 0.814 0.706 0.666 0.641 0.630 0.635

O(=C) -0.540 -0.601 -0.578 -0.574 -0.564 -0.561 -0.552/-0.605
C(=O) 0.946 0.955 0.936 0.946 0.951 0.951 0.945/0.999
O(CH2) -0.508 -0.454 -0.461 -0.470 -0.482 -0.493 -0.486

electrons lowering the π interaction thus increasing the bond length and decreasing the

stretching mode. The corresponding C-O frequency increases of about 135cm−1. For

the higher coordination (n ≥ 2) this phenomenon (reduction of the C=O frequency,

increasing of C-O one) is lower and lowered with increasing of EC. The normal modes of

EC are tend to approach as an isolated molecule with increasing coordination number.

In case of n=5 and 6 for which 1 and 2 EC molecules are in the second solvation sphere,

two different frequencies are obtained for C=O and C-O atoms.

Moreover, we have analysed the charge distribution by Mulliken charge analysis and our

results are also shown in Table 3.5. As we could imagine the distribution of all charges on

EC molecule are affected by the Li+ ion coordination and the positive charge on Li+ also

decreases. The negative charge on O of the C=O group increases respect to the isolated

EC molecule. But in case of Li+ ion, the positive charge decrease from +1 to 0.814, it

shows the main interaction through carbonyl oxygen atom. The general charge trend is

a full of electrons going from EC to Li+, thus reducing the electron density on O(CH2)

groups, lowering the π bond character. The charges on Li+ decreases EC molecules. But

the reverse results are obtained in C(=O) and ethereal oxygen and also on alkyl carbon.

Indeed, we could suggest that in all EC molecule O(=C) atoms are contributed some

electron charge towards Li+ ion results decrease of charge on Li+ ion. There are two

sort of charges are obtained in n=5 and 6 complexes due to lack of coordination of 5th

and 6th EC molecule. In the particular EC molecules, the negative charge on O(=C) is

higher than the coordinated EC molecules that also confirms the participation towards

second solvation shell.

3.4.3 Frontier Molecular Orbital(FMO) analysis

We have calculated the frontier molecular orbital energy(FMO) gaps in the gas phase

which are shown in Figure 3.4. In the approximation of Koopman’s theorem the HOMO

energy should represent the ionization potential (IP) (the first ionization energy of a
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Figure 3.4: Frontier molecular orbitals energy (HOMO-LUMO) gap and correspond-
ing molecular orbitals of EC and its complexes Li+(EC)1−6

molecular system is equal to the negative of the orbital energy of the highest occupied

molecular orbital (HOMO)) and the LUMO the electron affinity. Using this description,

the HOMO level on EC are stongly stabilized by the interaction with Li+. So the IP

values, for the lose of electrons, becomes higther in the complexes with Li+. On the other

hand, the LUMO energy is stabilized in order to capture one electron. From Figure 3.4,

the gap for isolated EC is 6.5 eV and for Li+(EC)4 complex is almost stable with values

between 6.24 and 6.57 eV. From a general point of view the EC molecule both isolated

or coordinated to Li+ should be stable to redox reaction occuring in LIBs where typical

voltage (difference of potential between electrods) are around 3.6 V.

3.5 Li+(DMC)1−5 complexes

3.5.1 Structural Properties

In this section we will discuss our results on Li+(DMC)1-5 clusters. In the case of linear

DMC like carbonates, there are two possibility for Li+ ion coordination. One is through

the carbonyl oxygen (O=C) the second is via two ether oxygen atoms, as shown in

Figure 3.5. We have therefore consider these two conformations, and calculated the

binding energy based on the above equation ( 3.1). Our results show that the Li+ ion

prefers to coordinate through the carbonyl oxygen rather than the ether oxygen, with

an energy difference of about 3.0 kcal/mol.
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Table 3.6: Selected structural parameters of Li+(DMC)1−5 complexes (bond lengths
in angstrom, bond and dihedral angles in degree)

Parameters DMC Li+(DMC) Li+(DMC)2 Li+(DMC)3 Li+(DMC)4 Li+(DMC)5

Bond length
Li+-O 1.729 1.793 1.852 1.945 1.950/1.964
O=C 1.212 1.252 1.245 1.237 1.234 1.232
C-O 1.353 1.318 1.324 1.330 1.335 1.338

O−CH3 1.446 1.456 1.453 1.450 1.450 1.448

Bond angle
Li+-O=C 178.5 176.5 173.5 143.1 139.6-161.2
O=C-O 126.4 125.0 125.3 125.7 124.3 125.8

C−O−CH3 113.5 117.3 116.8 116.0 102.0 108.1

Dihedral angle
O−−C−O−CH3 0.0 0.0 0.0 0.0 1.2 0.7

O=C-O-O 180.0 180.0 179.8 179.9 179.7 179.5
DPM/D 0.35 10.18 7.65 1.56 2.32 1.49
BE/ΔE -42.09 -36.98 -30.97 -25.80 -21.70

DPM = Dipole moment, BE = Binding Energy in kcal/mol

Some selected bond parameters for Li+(DMC)1-4 are presented in Table 3.6, and our

optimized geometries are shown in Figure 3.6 . The general trend that we can extract

from the data in the Table, is that compared to the isolated DMC molecule, the co-

ordination with Li+ generates an elongation of the bond, O=C and O−C(H3) . For

low coordination numbers smaller then 3DMC, Li+-O=C is almost linear, but angles of

143◦ are observed for coordination 4. Dipole moments have also been calculated for all

structures. For the isolated DMC, the dipole is low (0.355 D), while coordination with

Li+ generate much higher dipole for coordinations 1 and 2 (around 7-10 D). Dipole next

decreases for higher coordination numbers.

In the case of Li+(DMC)2 complexes, the Li+ ion is linearly coordinated with two DMC

molecules ((C=)O- Li+-O(=C)) with an angle of 179.3◦. In the Li+(DMC)3 complex,

(a) Carbonyl coordination of Li+(DMC) (b) Ether coordination of Li+(DMC)

Figure 3.5: Possible coordination structures of DMC with Li+ ion
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the 3 DMC molecules arrange on a trigonal geometry around the Li+ ion. For instance,

the angle (C=)O - Li+-O(=C) are found to be around 120.0◦. Due to the fact that 3

DMC molecules point towards Li+ ion, the entire cluster dipole moment decreases(it falls

to 1.56D to be compared to the value 7.6 observed for the Li+(DMC)2 complex) . In the

Li+(DMC)4 complex, the Li+-O=C angle takes a value of 143◦. Also, DMC molecules

are arranged around Li+ with the four oxygens of the carbonyls groups organized in

a tetrahedral-like geometry with an approximate angle of 112◦. As we have already

seen in the case of the Li+(EC)5 complex, we tried to obtain a Li+(DMC)5 complex

with 5 DMC directly linked to Li+ atoms. However, our calculations always converged

to structures with the fifth DMC molecule weakly interacting with the Li+ ion, at a

distance of 4.59 Å. Indeed, the fifth DMC molecule has been found to interact through

on hydrogen bond with other DMC molecules in the Li+(DMC)5 cluster but should be

considered as pertaining to the second solvation shell. The four DMC molecules in the

first shell still keep a pseudo tetrahedral geometry around Li.

The average binding energy of all complexes have been calculated in the gas phase, using

equation 3.1, and are also shown in Table 3.6. The average binding energy decreases

in Li+(DMC)n complexes with n=1 to 5, meaning that the interaction between the Li+

ion and a DMC molecule becomes weaker. By comparing these data to the average

binding energies of Li+(EC)1-5 (from Table 3.4) complexes, we conclude that the Li+-

EC binding energies are a few kcal/mol higher than those of the Li+-DMC complexes.

Concluding, at this level of theory our result is that the Li+ ion prefer to link with EC

molecules rather than DMC ones.

3.5.2 Frequency and Mulliken Charge Analysis

We now discuss the vibrational modes of both isolated DMC and Li+(DMC)1-5 clusters

in the gas phase. We focus on the two important frequencies, corresponding to stretch-

ing C=O and asymmetric stretching C-O modes. Our data are reported in Table 3.7.

Comparison of data for the isolated DMC molecule and Li+(DMC) shows that a strong

interaction corresponds to the O=C group. In particular, the stretching frequency of

C=O decreases significantly from 1736 cm−1 to 1640 cm−1, which indicates that the

C=O bond strength tends to become weaker following the interaction with Li+. In con-

trast, the C-O mode frequency increases from 1241 cm−1 to 1345 cm−1. The frequency

variations are also directly related to the corresponding bond length changes, i.e., C=O

is stretched (1.212 Å to 1.252 Å) while the C-O bond is contracted (1.353 Å to 1.318 Å) .

This also explains the increase of electrons localisation in the DMC molecule. The C=O

stretching frequency increases upon increasing the cluster size from n=2 to 4, due to

the interaction between Li+ and DMC molecules which become weaker making C-O fre-

quency decrease, thus DMC modes approach to isolated molecules. In the Li+(DMC)5
complex, due to the weaker interaction of Li+ ion with fifth DMC molecule (second

solvation shell) and thus we obtain two different frequencies.
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(a) Li+(DMC) (b) Li+(DMC)2 (c) Li+(DMC)3

(d) Li+(DMC)4 (e) Li+(DMC)5

Figure 3.6: Gas phase optimized solvation geometries of Li+(DMC)1−5

Table 3.7: Vibrational modes(in cm−1) and Mulliken charges of Li+(DMC)1−5 clus-
ters

Atoms DMC Li+(DMC) Li+(DMC)2 Li+(DMC)3 Li+(DMC)4 Li+(DMC)5

Frequencies
C=O 1736 1640 1673 1710 1715 1720
C-O 1241 1345 1330 1315 1296 1291

Charges
Li+ 0.799 0.695 0.654 0.642 0.656

O(=C) -0.622 -0.658 -0.646 -0.625 -0.638 -0.622/-0.658
C(=O) 1.071 0.988 0.967 0.952 0.971 0.952-0.994

O -0.501 -0.438 -0.449 -0.462 -0.482 -0.474/-0.495
C 0.582 0.708 0.717 0.732 0.751 0.742-0.762

We have also performed Mulliken charge analysis to account for the charge distribution

in the Li+(DMC)1-5, clusters and the results are also reported in Table 3.7. Due to the

strong interaction between Li+ ion and the DMC molecule, we can expect significant

charge variation on both DMC and Li+ ion. The addition of Li+ ion to a DMC molecule
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shows that the positive charge on Li+ ion decreases from +1 to 0.799 while the corre-

sponding negative charge on O in O=C group increases. Therefore, the DMC molecule

electron density moves towards Li+ ion, resulting in a charge decrease. As we can see

from the data in the Table, the positive charge on C in the methyl group increases

following addition of Li+ ion, therefore suggesting that the electrons are pulled by car-

bonyl fragment. The negative electron density on O (C=O) and the positive charge on

C (=O) decrease upon addition of 2 to 4 DMC molecules. These results also explain

the strong interaction occurring between Li+-O=C. In the case of Li+(DMC)5 cluster,

in agreement with the previous discussion on the fifth DMC molecule, charge analysis

also shows values similar to the isolated DMC molecule, thus demonstrating that this is

too far to be part of the first solvation shell.

3.5.3 Frontier Molecular Orbital(FMO) analysis

We have also analysed the HOMO-LUMO gap for isolated DMC and Li+(DMC)1-5 com-

plexes in order to account for redox reactions, This could be of interest for applications

in Li-ion batteries. Our results for the HOMO-LUMO calculations are shown in Figure

3.7. Going from the isolated DMC molecule to the Li+ complexes, the HOMO-LUMO

gap is slightly lowered in energy, and the Li+(DMC)1-4 complexes show energy gaps

between 6.10 eV to 6.52 eV. What is interesting to underline here is that the nature of

the orbitals changes. Indeed, from the data shown in the Figure is clear that, the DMC

molecule electronic distribution of HOMO can be mainly atributed to carbonyl oxygen

and ether oxygen atoms while the LUMO is distributed over all atoms. In contrast, after

addition of Li+ ion, the HOMO can be attributed to the ethereal oxygens and methyl

groups.

3.6 Li+(PC)1−5 complexes

3.6.1 Structural Properties

In this section we will study the structural properties of Li+(PC)1-5 complexes. As we

discussed in the state of the art included in Chapter 1 ( 7), previous results on Li+-PC

complexes, both from experiments and DFT calculations, showed that the Li+(PC)3 is

the most stable structure, although, a few MD studies have found that a fourth PC

molecule can also be involved in the first solvation shell. Therefore, similar to what we

have done for other structures, we have considered the Li+(PC)n complexes with n is 1 to

5. The optimized geometries, in the gas phase at the level of GGA/PBE using TZP basis,

are shown in Figure 3.8 and the structural parameters are reported in Table 3.8. In

Li+(PC)n complexes, due to the strong interaction of Li+ with the carbonyl oxygen the

C=O bond length increases. The π character of C=O bond therefore becomes weaker

56



Chapter 3 Section 3.6

Figure 3.7: Frontier molecular orbitals energy (HOMO-LUMO) gap and correspond-
ing orbitals of DMC and its complexes Li+(DMC)1−4

while the corresponding C-O bond distance decreases. The Li+ ion interaction also

inuences the bond angle O=C-O, which slightly decreases to 123.1◦ from 125◦ (isolated)

molecule. However, the dihedral plane of the carbonyl group O-C(=O)-O is fept planar

in all clusters (n = 1 to 5). The dihedral angle of O-C-C-O (ring) is slightly twisted by

the Li+ ion coordination, and remains almost the same for all clusters.

According to the data Table 3.8, as we expected the distance Li+-O(=C) increases by

increasing n, whereas, the reverse result is obtained for C=O bond. For instance, for the

Li+(PC)2 cluster the two PC molecules are almost linearly linked with Li+ ion with an

angle (C=)O- Li+-O(=C) of 177.0◦. Similarly, the Li+(PC)3 and Li+(PC)4 complexe

show a (C=)O- Li+-O(=C) angle of 145.5◦ and 136.6◦, respectively. Also, the carbonyls

oxygens show respectively a trigonal and pseudo tetrahedral arrangement around Li+.

In Li+(PC)4 complex, all PC molecules are twisted in order to overcome the repulsion

of methyl groups. Similar to our results for Li+(EC)5 and Li+(DMC)5 clusters, also for

Li+(PC)5 the fifth PC molecule pertains to the second solvation shell, with a distance

of 4.933 from Li+.

The average binding energy of Li+(PC)1-5 complexes are calculated in the gas phase,

using the equation ( 3.1) and the values are shown in Table 3.8. The average bind-

ing energy decreases by increasing n. By comparing of the average binding energy of

Li+(PC)1-5 and Li+(EC)1-5 complexes, we conclude that the difference is very small,
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Table 3.8: Selected Structural parameters of Li+(PC)1−5 geometries (bond lengths
in angstrom, bond and dihedral angles in degree)

Parameters PC Li+(PC) Li+(PC)2 Li+(PC)3 Li+(PC)4 Li+(PC)5

Bond length
Li+-O 1.731 1.780 1.870 1.954 1.950/1.997/4.933
O=C 1.201 1.237 1.228 1.222 1.217 1.218/1.210

C-O(CHCH3) 1.372 1.325 1.333 1.340 1.348 1.346/1.361
C-O(CH2) 1.376 1.333 1.339 1.348 1.355 1.455/1.450
O-C(CH3) 1.457 1.491 1.480 1.473 1.470 1.465
O-C(H2) 1.442 1.466 1.460 1.456 1.453 1.450

C(H2)-C(H) 1.531 1.535 1.541 1.540 1.532 1.532
C-C(H3) 1.512 1.507 1.512 1.514 1.510 1.510

Bond angle
Li+-O=C 173.8 177.0 145.5 136.6 121.1-148.3

O=C-O(CHCH3) 125.0 123.1 123.4 123.4 123.7 123.6-123.7
O=C-O(CH2) 124.5 122.4 122.9 123.7 124.0 123.0-124.0
C-O-C(H) 109.3 108.5 109.1 109.2 108.8 108.3
C-O-C(H2) 108.5 107.9 108.6 108.6 108.3 108.8

Dihedral angle
O-C(=O)-O 180.0 180.0 179.9 180.0 180.0 179.2-179.9
O-C-C-O 20.4 24.1 13.3 15.0 18.0 21.3
DPM/D 5.59 10.11 19.34 21.58 2.56 3.59
BE/ΔE -49.50 -42.65 -35.50 -30.32 -25.76

DPM = Dipole moment, BE = Binding Energy in kcal/mol

which means the PC solvent molecule could possibly substitute EC molecule (and vice-

versa) in the first solvation shell.

3.6.2 Frequency and Mulliken Charge Analysis

We have also studied the vibrational frequencies of the isolated PC molecule and the

Li+(PC)1-5 clusters. The calculated frequencies are shown in Table 3.9. The two impor-

tant frequencies associated to the C=O stretching and the asymmetric C-O stretching

are strongest affected by the coordination with Li+ ion. According to BE, the strongest

interaction obtained for Li+-(PC) cluster, the corresponding C=O and C-O modes are

more affected than in the case of other coordinated clusters (Li+(PC)2-5). The difference

for the C=O stretching between the isolated PC and the Li+-(PC) is around 100 cm−1.

Also, the π bond character of C=O tends to decrease and this results in an increase of the

bond length. However, the corresponding C-O stretching increases of about 350cm−1,

due to ethe lectron distribution throughout the molecule, which leads to a shorter bond

length. While the addition of 2 to 5 PC molecules, affects the interaction between Li+
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(a) Li+(PC) (b) Li+(PC)2 (c) Li+(PC)3 (d) Li+(PC)4

(e) Li+(PC)5

Figure 3.8: Gas phase optimized solvation clusters of Li+(PC)1−5

ion and PC which becomes increasingly weaker, the C=O frequency increases. The re-

verse result is obtained for the asymmetric C-O stretching. In particular, from the data

shown in the Table, the Li+(PC)5 complex shows two sort of stretching modes for the

PC molecule. This confirms, also for this case, then fifth PC molecule participates to

the second solvation shell.

We have also investigated the Mulliken charge distribution for the PC molecule and the

Li+(PC)1-5 clusters, and the values are reported in Table 3.9. As we could have expected

that the strong interaction with Li+ ion impacts the charge distribution on the entire PC

molecule. In the case of the Li+(PC) cluster, the charge on the Li+ ion decrease from

+1 e to 0.814 e, while the corresponding negative charge on O of C=O increases. This

clearly explains the main interaction associated to the O=C bond. Similarly, the positive

charge on C in C=O increases. It therefore seems that the electrons move towards the

Li+ ion. Nevertheless, the negative charge on ether oxygen reduced upon Li+ addition,

thus confirming the electron distributions occur in the entire molecule. The addition of

PC molecules decreases the positive charge of Li+ and a similar trend have also been
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Table 3.9: Vibrational modes(in cm−1) and Mulliken charges of Li+(PC)1−4 geome-
tries

Atoms PC Li+(PC) Li+(PC)2 Li+(PC)3 Li+(PC)4 Li+(PC)5

Frequencies
C=O 1829 1724 1763 1783 1801 1796
C-O 1070 1404 1393 1380 1370 1347

Charges
Li+ 0.811 0.703 0.667 0.652 0.647

O(=C) -0.492 -0.607 -0.585 -0.580 -0.570 -0.576/-0.592
C(=O) 0.840 0.955 0.942 0.950 0.948 0.944/0.987
O(CH2) -0.487 -0.449 -0.467 -0.485 -0.482 -0.492/-0.521

O(CHCH3) -0.497 -0.466 -0.462 -0.473 -0.496 -0.488/-0.497

observed in the other cases. As we can see for the Li+(PC)5 complex, two different

charges are obtained for PC molecules, due to the fifth PC molecule participating to the

second solvation shell. The higher negative charge on O of the C=O bond in the fifth

PC molecule describes the consequence of the lack of direct coordination to the Li+ ion.

3.6.3 Frontier Molecular Orbital(FMO) analysis

We have also analysed the HOMO-LUMO gaps for PC and the Li+(PC)1-4 complexes.

Our data are shown in Figure 3.9. From the Figure, it is evident that there is not

a considerable change of the HOMO-LUMO energy gaps if considering isolated PC

molecule on the Li+(PC)1-4 complexes. Our conclusion therefore is that redox stability

of PC should not be affected by coordination with Li+.

3.7 Thermodynamic parameters of Li+(S)1−5 complexes:

(S=EC,DMC and PC)

In this section we report our study of the thermodynamic parameters including entropy,

enthalpy and Gibbs free energy for all investigated clusters Li+(S)n (n = 1 to 5) and S =

EC, DMC, PC. In order to provide an estimation of the preferable coordination number

around the lithium cation, the most favorable path between these clusters Li+(S)n has

to be determined in terms of free energy changes. To do so, the free energies of the

aggregates Li+(S)n + m S ( n+m=constant=5 in this case) were estimated, in order to

define the aggregate exhibiting the lowest free energy value. In this way, if the fragment

Li+(S)n + m S has the lowest free energy value, all paths of the type:

Li+(S)k + l.S → Li+(S)n +m.S, k + l = m+ n (3.2)
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Figure 3.9: Frontier molecular orbitals energy gap and corresponding orbitals of PC
and its complexes Li+(PC)1−4

will exhibit a negative free energy change ΔG, thus indicating that all possible paths

leading to the cluster Li+(S)n are favorable and, therefore, this cluster could be consid-

ered the most preferable one in terms of the free energy changes. Note that the paths

depicted in Eq. 2 can correspond to both additions or subtractions of solvent molecules

from one particular cluster leading to another, depending on the relative difference m l

. If m l < 0 , then the transition is being achieved through solvent addition, otherwise

through solvent subtraction.

The calculated enthalpy and entropy values of all complexes are given in Table 3.10,

and the corresponding free energy value changes are reported in Table 3.11. From the

free energy values, it can be clearly seen that in the cases of EC and DMC, the tetra

coordinated Li+ ion is predicted to be more favourable structure. Similar conclusions

have been drawn in the DFT study of Bhatt et al, studying the solvation of Li+ in

EC. In the case of PC the free energy difference for the path going from Li+(PC)3 to

Li+(PC)4 is very small. This is an indication that although the Li+(PC)3 cluster has

been predicted to be the most favorable one, both structures could possibly exist in the

bulk phase. From the data presented in Tables it might be also seen that in the cases

of the tetracoordinated clusters the binding energies decrease in the order E(Li+(PC)4)

>E(Li+(EC)4) >E(Li+(DMC)4), which is reasonable taking into account that the dipole

moments of PC, EC and DMC molecules decrease in the same order (5.6, 5.3 and 0.35

D, respectively). It should be also noted that the entropic contributions to the free
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Table 3.10: Thermodynamical parameters Enthalpy(H) (kcal/mol) and Entropy(S)
(cal/mol-K) of isolated solvents and all pure complexes

Fragments H S

EC -1369.3 72.8
Li+(EC) -1293.6 83.2
Li+(EC)2 -2698.9 116.9
Li+(EC)3 -4090.4 142.2
Li+(EC)4 -5473.4 174.0
Li+(EC)5 -6849.9 214.6

DMC -1530.2 82.5
Li+(DMC) -1449.0 90.6
Li+(DMC)2 -3012.2 124.5
Li+(DMC)3 -4562.4 158.1
Li+(DMC)4 -6100.8 216.8
Li+(DMC)5 -7636.7 251.3

PC -1736.0 79.6
Li+(PC) -1662.2 89.8
Li+(PC)2 -3435.1 123.7
Li+(PC)3 -5193.2 154.5
Li+(PC)4 -6945.0 180.3
Li+(PC)5 -8687.2 231.3

Table 3.11: Gibbs free energy of clusters (energies in kcal/mol)

Fragments G
S=EC S=DMC S=PC

Li+(S)+ 4S -6882.4 -7695.0 -8728.1
Li+(S)2 + 3S -6906.7 -7713.5 -8751.3
Li+(S)3 + 2S -6914.8 -7719.0 -8758.8
Li+(S)4 + S -6916.2 -7720.2 -8758.5
Li+(S)5 -6913.9 -7711.6 -8756.2

energy of each cluster exhibit the opposite trend, being more important in the case of

the Li+(DMC)4.

All previous results have been obtained in the gas phase. We have also decided to check

that the structures do not change substantially by adding a dielectric background to

account for bulk solvent and focused on the Li+(S)4 (S= EC, DMC and PC) structures.

For each structure we have simulated the effect of solvation by adding a model describing

the corresponding dielectric constant (ǫ=89,6, 3.1 and 64.9 for pure EC, DMC and PC

respectively). The conductor-like screening model(COSMO) has been used for DFT

optimisation calculation using GGA/PBE with TZP basis, and our results together

with the corresponding solvent parameters are given in Table 3.12. As we expected,

the obtained solvation energies are higher for systems which have higher dipole moment,

like EC and PC systems, compared to DMC that is in general less polar. Also, the
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Table 3.12: Parameters used for COSMO calculations and solvation energy of com-
plexes (Li+(S)4) in kcal/mol

Parameters EC DMC PC

ǫ 89.6 3.1 64.9
Radius(Å) 2.99 3.22 32.23

Solvation energy -60.1 -33.0 -59.7

Table 3.13: Comparison of bond parameters between solvent clusters in gas and
dielectric phase (bond lengths in angstrom, bond and dihedral angles in degree)

Parameters Li+(EC)4 Li+(DMC)4 Li+(PC)4

Gas Solvent Gas Solvent Gas Solvent

Bond length
Li+-O(=C) 1.951 1.967 1.945 1.937 1.954 1.939

O=C 1.215 1.226 1.234 1.231 1.217 1.228
C-O 1.352 1.345 1.335 1.336 1.348 1.341

Li+-O=C(angle) 136.9 128.5 143.1 147.7 136.6 124.4
O-C(=O)-O(dihedral) 180.0 179.9 179.7 180.0 180.0 179.9

Charges
Li+ 0.641 0.630 0.642 0.645 0.652 0.639

O(=C) -0.564 -0.628 -0.638 -0.626 -0.570 -0.643
C(=O) 0.951 0.989 0.971 0.978 0.948 0.998

geometries , see Table 3.13, are not strongly affected. The overall arrangement stays

the same around Li+, just a few distances being affected, with variations of the order of

10−2 Å. In contrast, the Li+-O=C bond angle is reduced for the EC and PC structures.

3.8 Solvent Mixtures

In Li-ion batteries research, several experimental and theoretical studies devoted to the

interactions of Li+ with pure and mixed carbonate-based electrolytes have already been

published, the solvation structure and dynamics of lithium cations in these solvents is

still a subject of debate. Therefore, we have considered the Li+ ion in mixed binary

and ternary carbonate-based solvents, and the results were discussed in the following

section.

3.8.1 Binary Mixtures

In order to clarify the behaviour of binary mixtures we focus on the preferred tetra coor-

dinated structures. We have considered three types of binary mixtures, Li+(EC)m(PC)n,

Li+(EC)m(DMC)n and Li+(PC)m(DMC)n (with : m+n=4). These complexes have been
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Table 3.14: Structural parameters of Binary mixtures

Binary mixtures rLi+−O(Å) rO=C (Å) angleLi+−O=C(
◦) Dipole (D)

Ratio S1 S2 S1 S2 S1 S2

Li+: EC(S1) : PC(S2)
1:3:1 1.953 1.948 1.216 1.218 135.9 134.2 2.04
1:2:2 1.955 1.949 1.216 1.217 136.0 134.0 2.64
1:1:3 1.957 1.951 1.215 1.217 136.5 136.2 2.32

Li+: EC(S1) : DMC(S2)
1:3:1 1.943 1.921 1.216 1.231 138.9 160.8 6.18
1:2:2 1.972 1.910 1.214 1.231 136.6 156.4 7.19
1:1:3 1.943 1.921 1.216 1.231 138.9 160.8 8.70

Li+: PC(S1) : DMC(S2)
1:3:1 1.951 1.919 1.215 1.231 147.3 152.6 4.27
1:2:2 1.970 1.912 1.217 1.231 140.4 164.6 6.47
1:1:3 1.954 1.950 1.219 1.233 148.4 157.1 4.33

optimized using DFT with GGA/PBE functional at TZP basis. The optimized geom-

etry bond parameters are illustrated in Table 3.14. As we can see in the Table, for

Li+(EC)m(PC)n the variation in relative proportion of EC or PC in the first solvation

shell of Li+ does not change significantly distances, angles or dipoles values. The rea-

son is that both EC and PC have similar dipoles and structures. In contrast, mixtures

including DMC exhibit different bond lengths and bond angles, due to the totally dif-

ferent skeleton of DMC. Interestingly, we can clearly see from the Table that the bond

between Li+-O(=C) in DMC molecules is shorter compared to the corresponding EC

and PC ones. Moreover, the same Li+-O(=C) bond distance for EC and PC is elongated

when DMC joins the solvation shell.

In Table 3.15 we report the vibrational analysis and the Mulliken charges for the studied

binary complexes. Similar to the geometry discussion, also in this case EC and PC

mixtures keep into constant values of both C=O and C-O frequencies modes and of

mullikens charges, that do not really vary with the composition of the first solvation

sphere. DMC containing structures show stronger variations. In general in presence of

DMC in the first coordination sphere, the DMC molecule is the solvent molecule closest

to the Li+, and the corresponding oxygen of the carbonyl group has a higher negative

charge compared to the EC and PC ones. The C=O frequency is in general around

100cm−1 lower for DMC thus confirming a weaker C=0 bond.

In order to understand the most favourable path transitions of one binary cluster to

another binary clusters, we calculated the free energy of reactions which can be estimated

by the following equation:
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Table 3.15: Mulliken charges, Vibrational modes and Dipole moments of Binary
mixtures

Binary mixtures Charges(Li+,O(=C)) νC=O(cm
−1) νC−O(cm

−1)

Ratio Li+ S1 S2 S1 S2 S1 S2

Li+: EC(S1) : PC(S2)
1:3:1 0.646 -0.567 -0.575 1775 1804 1174 1147
1:2:2 0.648 -0.565 -0.574 1776 1803 1174 1145
1:1:3 0.650 -0.564 -0.571 1775 1802 1174 1144

Li+: EC(S1) : DMC(S2)
1:3:1 0.651 -0.568 -0.611 1802 1701 1146 1194
1:2:2 0.647 -0.575 -0.612 1798 1705 1142 1193
1:1:3 0.659 -0.570 -0.615 1779 1709 1779 1709

Li+: PC(S1) : DMC(S2)
1:3:1 0.659 -0.563 -0.616 1796 1702 1160 1193
1:2:2 0.658 -0.569 -0.614 1789 1703 1174 1193
1:1:3 0.638 -0.568 -0.619 1772 1706 1163 1192

Li+(S1)k(S2)l+(4− l).S1+(4−k).S2 → Li+(S1)n(S2)m+(4−n).S1+(4−m).S2 (3.3)

where k + l = n + m = 4 and n, m, k, l = 1-3, were also estimated, in order to find the

most favourable structure among the clusters with two types of solvents around lithium.

The calculated values of enthalpy and entropy of all Li+(S1)k(S2)l clusters are given in

Table 3.16, Gibbs free energy(G) values of Li+(S1)n(S2)m +(4−n).S1+(4−m).S2 clusters

are reported in Table 3.17. The Li+(EC)(PC) types complex results reveales that the

possible combination of tetra coordinated cluster containing both EC and PC with the

ratio of 50:50 Li+(EC)2(PC)2 is the most preferable one, followed by Li+(EC)(PC)3.

The least favourable complex is Li+(EC)3(PC). These results suggest that EC and

PC are equally coordinated to Li+ ion and no selective solvation occur in these clus-

ters. In contrast, in the cases of Li+(EC)(DMC) and Li+(PC)(DMC) type clusters

the Li+(EC)3(DMC) and Li+(PC)3(DMC) are the most favourable ones, followed by

Li+(EC)2(DMC)2 and Li+(PC)2(DMC)2. The less favourable cluster is the one with

the highest concentration of DMC molecules. These results reveal that solvation is

preferred with EC or PC molecules over DMC molecules in DMC- containing binary

clusters. The Li+(EC)(DMC) results are in good agreement with the ab initio study by

Borodin and Smith [96], where the relative stabilities were based upon the energies of

the complexes, and with the very recently study by Bhatt [197].

The average binding energy(BE) of all binary clusters have also been calculated by the

following equation:
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Table 3.16: Thermodynamical parameters Enthalpy(H) (kcal/mol) and Entropy(S)
(cal/mol-K) binary complexes

Fragments H S

Li+(EC)3(PC) -5842.1 167.2
Li+(EC)2(PC)2 -6209.6 173.9
Li+(EC)(PC)3 -6576.9 180.3

Li+(EC)3(DMC) -5632.2 182.1
Li+(EC)2(DMC)2 -5790.4 186.2
Li+(EC)(DMC)3 -5946.2 204.9

Li+(PC)3(DMC) -6734.5 193.1
Li+(PC)2(DMC)2 -6524.7 209.5
Li+(PC)(DMC)3 -6314.5 204.7

ΔEBE = −{Etotal[Li
+(S1)m(S2)n]− E[Li+]−mE[S1]− nE[S2]}/(m+ n) (3.4)

where Etotal[Li
+(S1)m(S2)n] is the total energy of the binary clusters, E[Li+] is the

energy of the Lithium ion, the S1 and S2 are the solvent molecules (EC, DMC, PC) and

E[S1], E[S2] are isolated solvent molecules energies m, n (n+m=4) are the number of

solvent molecules of type S1 and S2 respectively.

The average binding energies of all binary mixtures are shown in Figure 3.10. The

obtained results show that the binary complexes of Li+(EC)(PC) types are more ener-

getically stable than Li+(EC)(DMC) and Li+(PC)(DMC) complexes. The BE difference

between the complexes such as Li+(EC)(DMC) and Li+(PC)(DMC) is only of a few

kcal/mol. Interestingly, the BE of all binary complexes are energetically more stable

Table 3.17: Gibbs free energies (in kcal/mol) of clusters containing two types of
solvents with Li+ ion

Fragments G

Li+(EC)3(PC) + 1 EC + 3 PC -12562.3
Li+(EC)2(PC)2 + 2 EC + 2 PC -12564.7
Li+(EC)(PC)3 + 3 EC + PC -12563.5

Li+(EC)3(DMC) + 1 EC + 3 DMC -11741.7
Li+(EC)2(DMC)2 + 2 EC + 2 DMC -11737.3
Li+(EC)(DMC)3 + 3 EC + 1 DMC -11735.0

Li+(PC)3(DMC) + 1 PC + 3 DMC -13358.6
Li+(PC)2(DMC)2 + 2 PC + 2 DMC -13354.7
Li+(PC)(DMC)3 + 3 PC + 1 DMC -13350.4
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Figure 3.10: Calculated Binding Energies of all tetra coordinated Binary mixtures

than pure Li+(DMC)4. Therefore, the pure Li+(DMC)4 is hardly formed when two

types of solvents are involved in the bulk solution.

3.8.2 Ternary Mixtures

Although, many studies have been devoted to binary mixtures, to best of our knowledge,

this is the first study also focusing on ternary mixtures.

Structures of the optimized clusters for the Li+(EC)n(PC)m(DMC)l with n+m+l=4 are

shown in Figure 3.11. Pur results of structural parameters, Mulliken charges, vibrational

modes and binding energies are presented in Table 3.18. Focusing on the asymmetry of

solvents, bond angles and distances differ frpm those in the pure clusters. We can clearly

seen from the Table, that DMC produces some changes on the solvation structures of

Li+ ion. Despite the higher negative charge on carbonyl oxygen in DMC molecule,

it coordinates with Li+ ion at a shorter distance if compared to Li+-EC and Li+-PC

distances. The Li+-O (=C) distance is almost the same as that in pure PC contain-

ing clusters, in all ternary clusters. However, the corresponding Li+-O(=C) distance

increases in Li+(EC)(PC)(DMC)2 clusters. But in the case of Li+-O(=C) distance in

DMC decreases around 0.2 Å as compared to Li+(DMC)4.

The angle Li+-O=C increases in all clusters, as compared to their corresponding pure

clusters due to different structure of solvents. The Li+(EC)(PC)2(DMC) cluster has a

lower positive charge on Li+ ion and it is slightly higher in the other clusters. The same

trend is also observed for carbonyl group charges. Also, no large changes are observed

on the vibrational modes associated to C=O stretching and asymmetric C-O stretching.
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(a) Li+(EC)2(PC)(DMC) (b) Li+(EC)(PC)2(DMC)

(c) Li+(EC)(PC)(DMC)2

Figure 3.11: Gas phase Optimized geometries of ternary clusters such as
Li+(EC)2(PC)(DMC), Li+(EC)(PC)2(DMC) and Li+(EC)(PC)(DMC)2

The binding energy(BE) for all ternary clusters has been calculated by the following

equation:

ΔEBE = −{Etotal[Li
+(EC)l(DMC)m(PC)n]− E[Li+]

− lE[EC]−mE[DMC]− nE[PC]}/(l +m+ n) (3.5)

where Etotal[Li
+(EC)l(DMC)m(PC)n] is the total energy of the ternary clusters and

E[Li+], E[EC], E[DMC], E[PC] are the energy of the Lithium ion, isolated solvent

molecules (EC, DMC, PC) and l, m, n (l+n+m=4) are the number of solvent molecules

respectively. The average binding energy (BE) of all ternary mixtures are calculated

using equation ( 3.5) and the values are presented in Table 3.18. According to the BE,

the Li+(EC)(PC)2(DMC) is more stable than Li+(EC)(PC)(DMC)2 cluster, but the dif-

ference is only about ∼ 1 kcal/mol. A similar result holds for the Li+(EC)2(PC)(DMC)

complex.

We have also calculated the HOMO-LUMO gap for all complexes which are shown in

Figure 3.12. The HOMO-LUMO gap is comparatively low in Li+(EC)(PC)(DMC)2 and

the Li+(EC)2(PC)(DMC) cluster has a higher energy gap. From the Figure, the HOMO

is mainly attributed to the DMC molecule rather than to EC and PC.
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Table 3.18: Structural parameters, Mulliken charges, Vibrational modes and cacu-
lated average Binding energies of Ternary mixture

Parameters Li+(EC)2(PC)(DMC) Li+(EC)(PC)2(DMC) Li+(EC)(PC)(DMC)2
Bond distances (Å)

Li+-O(=C)
EC 1.976, 1.942 1.957 1.990
PC 1.953 1.800, 1.957 1.955
DMC 1.923 1.908 1.916, 1.923

Bond angle in (◦)
Li+-O=C

EC 137.9, 140.5 142.2 146.9
PC 143.9 142.2, 142.3 145.5
DMC 160.1 154.0 163.0, 161.7

Mulliken charges
Li+ 0.651 0.643 0.659

O(=C)-EC -0.563, -0.574 -0.571 -0.558
O(=C)-PC -0.562 -0.565, -0.573 -0.571
O(=C)-DMC -0.610 -0.6107 -0.609, -0.6092

νO=C , νC−O(cm
−1)

EC 1800, 1156 1796, 1159 1793, 1163
PC 1800, 1156 1796, 1159 1793, 1163
DMC 1702, 1194 1700, 1193 1708, 1194

BE(kcal/mol) -29.15 -29.31 -28.50

Figure 3.12: Frontier molecular orbitals energy gap and corresponding orbitals of
ternary complexes

Finally, a free energy analysis similar to the one perfomed for the binary mixtures have

also been performed for termary clusters. The results obtained, using the same method-

ology discussed above in the binary clusters, are presented in Tables 3.19 and 3.20. It

can be seen that the clusters containing more EC molecules, Li+(EC)2(PC)(DMC) seem
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Table 3.19: Thermodynamical parameters such as Enthalpy(H) (kcal/mol) and En-
tropy(S) (cal/mol-K) values of ternary complexes

Fragments H S

Li+(EC)2(DMC)(PC) -5999.3 189.0
Li+(EC)(DMC)2(PC) -6157.0 202.5
Li+(EC)(DMC)(PC)2 -6367.2 188.9

to be the most favourable, followed by Li+(EC)(PC)2(DMC) and eventually Li+(EC)(PC)(DMC)2
cluster. However the free energy changes for the transition paths between these clusters

is very small, indicating that all these structures could possibly exist in the bulk phase.

Table 3.20: The calculated Gibbs free energies (in kcal/mol) of clusters containing
three types of solvents with Li+ ion

Fragments G

Li+(EC)2(DMC)(PC) + 2 EC + 3 PC + 3 DMC -18781.2
Li+(EC)(DMC)2(PC) + 3 EC + 3 PC + 2 DMC -18779.2
Li+(EC)(DMC)(PC)2 + 3 EC + 2 PC + 3 DMC -18780.3

3.9 Conclusions

Our DFT results have shown that the preferential interaction obtained between Li+ ion

with carbonyl oxygen atom of the all carbonate solvents, which is in agreement with all

the previously reported experimental and theoretical studies. The estimated Gibbs free

energies of the pure clusters, predicted a tetracoordinated lithium ion with four solvents

are arranged in a tetrahedral environment. In the case of EC and DMC clusters, we

found that Li+(EC)4 and Li+(DMC)4 to be the most stable. However, in the case of pure

PC clusters, the energy difference of Li+(PC)3 and Li+(PC)4 is very small, indicated

that both structure are exists in the bulk solution. Also, we showed that coordination

5 could not be achieved and that a fifth solvent molecule can be arranged only in the

outer sphere or second solvation shell. The binding energy results demonstrate that the

Li+- EC and Li+-PC clusters have the stronger bonds interactions respect to DMC ones.

In the case of binary mixtures Li+(S1)n(S2)m, (S1, S2 =EC, PC, DMC, with m+n=4),

we have also in this case a conservation of the tetrahedral arrangement around Li+ ion.

The analysis of Gibbs free energy shows:

1. In the case of Li+- (EC)(PC) clusters, the obtained results revealed that the tetra-

coordinated Li+(EC)2(PC)2 is the most favourable one, followed by Li+(EC)(PC)3
and eventually Li+(EC)3(PC) cluster, although the energy difference of these clus-

ter are very small, therefore these three clusters are exists in the bulk solution.

These results also suggested both EC and PC molecules approach the Li+ ion with

equal participation and there is no preferential solvation obtained.
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2. In contrast in the case of Li+- (EC)(DMC) clusters, we have predicted Li+(EC)3(DMC)

is the most favourable, followed by Li+(EC)2(DMC)2 and Li+(EC)(DMC)3 being

the least favourable.

3. Similarly, the same results were obtained for mixed Li+- (PC)(DMC) clusters,

like Li+(PC)3(DMC) is the most favourable, followed by Li+(PC)2(DMC)2 and

Li+(PC)(DMC)3 is a least one.

4. For all binary mixtures results are coherent with a stronger interaction with PC

and EC rather than DMC.

In the case of ternary mixtures Li+(EC)l(DMC)m(PC)n with l+m+n=4, the cluster

Li+(EC)2(DMC)(PC) has been predicted to be the most favourable one, and followed

by Li+(EC)(DMC)(PC)2 and eventually Li+(EC)(DMC)2(PC) is the least stable among

these clusters. The particular free energy changes for the transition paths between these

clusters are very small, indicating that all these structures could possibly exist in the

bulk phase.
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4

Study of Counter Anion PF−
6

Ef-

fect on Li+-EC, -DMC and -PC com-

plexes

In the previous chapter we have discussed the coordination of EC, DMC and PC around

Li+ ion. In this chapter, we discuss about the role of the salt, and in particular the

PF6
– counter anion on the coordination sphere around Li+. We focused our study on

Li+(EC)nPF6
–, Li+(DMC)nPF6

– and Li+(PC)nPF6
– clusters. A structural analysis and

energetic have been performed and will be presented.

4.1 Optimization of PF−
6 Anion

In this section, we study the optimization of super halogen PF6
– anion which, for the

ground state, exists in octahedral geometry (Oh) . In agreement with previous stud-

ies [198–200], the optimized structure with GGA/PBE functional and TZP basis set is

octahedral as shown in Figure 4.1. However, several bond lengths for P-F has been

reported in the literature [201, 202]. For example, the X-ray crystallographic measure-

ments found the bond distance of P-F is 1.568-1.592 Å in (CH3)4NPF6 [201] and it was

1.555-1.556 in P(C6H5)4PF6 crystal [202]. In our structure the optimized bond length

for the isolated molecule is 1.652 Å slightly greater than the above mentioned values.

The isolated PF6
– anion exhibits 15 vibrational modes which can be accounted by the

following formula:

Γ = a1g + eg + 2t1u + t2g + t2u
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Figure 4.1: The isolated optimized geometry of PF−

6 anion

In these modes, a1g(ν1), eg(ν2) and t2g(ν5) are Raman active and t1u(ν3) and t1u(ν4) are

IR active, but in the case t2u mode is inactive. The experimental vibrational frequencies

of PEO-LiPF6 are ν1 = 741, ν2 = 567, ν3 = 838, ν4 =558 and ν5 = 470 cm−1. Our

calculated frequencies are relatively underestimating the corresponding frequency values:

ν1 = 666.5, ν2 = 519.2, ν3 = 801.6, ν4 =512.2 and ν5 = 425.6 cm−1 . The optimized

geometry Mulliken charges of P and F are 2.3160 and -0.5527 respectively.

4.2 Possible interactions between Li+ and PF−
6 anion

For the Li+ and PF6
– interaction we foucused on three different approaches giving rise

to monodentate interaction between Li+ and one F atom, bidentate and tridentate. In

Figure 4.2, we plotted the translational interaction energies, computed by imposing

the symmetry C4V (monodentate), C2V (bidentate) and C3V (tridentate) and freezing the

PF6
– geometry to the isolated one. At this levels we can see, the the tridentate in-

teraction is comparatively more stable than other two configurations. The minimum

energy obtained in tridentate complex with a distance of 1.4 Å where three F atoms are

interacted by Li+ ion, followed by the bidentate and eventually a monodentate complex.

4.3 Optimization of LiPF6

In the following we searched for full optimized structures in the 3 symmetries. We

obtained structures depicted in Figure 4.3. Nevertheless, just the C3V symmetry con-

figuration is a global minimum, with positive frequencies and lower energy. The C2V
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Figure 4.2: Calculated translational interaction energies between Li+ and PF−

6 with
respect to distances

(bidentate) symmetry structure has a slightly higher energy than C3V (tridentate) struc-

ture, has and one imaginary frequency which indicates a saddle point. We do not achieve

the ground state or transition state for the C4V (monodentate) complex, and all calcula-

tion ended with at least 2 negative frequencies , and the obtained energetic values were

higher respect to the tridentate or bidentate structures. Our results are in agreement

with several theoretical studies [200, 203, 204] with different basis sets and functional

or with correlated methods. Geometrical parameters for the C3V minima and the C2V

transition state are presented Table 4.1. The complex energy has been calculated by

optimized energy of LiPF6 and isolated energy of Li+ ion and PF6
– at infinite sepa-

ration. Considering the complex energies, the following order is obtained: tridentate

>bidentate. Nevertheless, the difference in energy between such structure is relatively

poor and of around 3 kcal/mol.

In this section, we take into account the above three interactions and the optimized

structures are shown in Figure 4.3. The 3 interaction structures are having the following

point groups: C4V (monodentate), C2V (bidentate) and C3V (tridentate). Among three

complexes, C3V symmetry configuration has the global minimum or energetically more

stable on the potential energy surface. The C4V (monodentate) complex is a least

stable, however it has two imaginary frequencies, indicating not a true minima structure.

Moreover, another C2V (bidentate) symmetry structure slightly has a higher energy than

C3V (tridentate) structure, though it has one imaginary frequency which indicates a

saddle point. The stability of the LiPF6 is found to be in the following order C3V (tri)
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>C2V (bi) >C4V (mono). Nevertheless, there are lot of studies had been done on the same

analysis for these structures with various basis sets and electron correlation functions

[200, 203, 204] results affect the energy values of the system, not affect the order of

stability. Our optimized structural parameters are presented in Table 4.1. The complex

energy has been calculated by optimized energy of LiPF6 and isolated energy of Li+

ion and PF6
– at infinite separation. Considering the complex energies, the following

order is obtained: tridentate >bidentate >monodentate. The energies of bidentate and

tridentate geometries are relatively close, but in the case of monodentate the energy

difference significantly larger than other two complexes which is around 15 kcal/mol.

This relative energies are also suggested that the strong interaction is obtained in C3V

structure.

(a) C4V (monodentate) (b) C2V (bidentate) (c) C3V (tridentate)

Figure 4.3: Three different optimized (interaction) structures of LiPF6 complexes

As seen from the Figure 4.3, PF6
– anion is highly distorted from its original octahedral

geometry in most stable tridentate structure. The resulting bond length for Li-P is 2.432

Å in C3V geometry which is slightly lower than C2V geometry because of the strong

interaction between Li+ ion with F atom. This strong interaction makes Li-F’(closest to

the Li+ ion) bond length increases from bidentate to tridentate but P-F’ bond decreases

from 1.765 Å to 1.723 Å However, the bond length of P-F”(farthest F atom) slightly

decrease. The charge transfer might be involved for this contraction which accounted

from the Mulliken charge analysis. For example, the Mulliken charge of Li+ in C3V and

C2V are 0.815 and 0.806, respectively. The corresponding charges of closest F’ atoms

are -0.552 and -0.566, and the difference between Li and F atoms in C3V (0.263) and

C2V (0.240). The Mulliken values also revealed that C3V structure comparatively has

strong interaction than other two structures.

4.4 Effect of PF−
6 anion in Li+(EC)1−3 Complexes

In this section, we discuss the effect of counter anion PF6
– on the solvation structure of

Li+-EC clusters. Some structural parameters are collected in Table 4.2. In presence of

the counter ion PF6
– we have studied all structure from coordination 1 around Li+ up

to 4. The optimized geometries are shown in Figure 4.4 and the Li+-EC complexes are
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Table 4.1: Energies and Structural parameters and Charges of lipf complexes with
C4V , C2V and C3V geometries

Parameters C2V C3V

(bidentate) (tridentate)

Complex Energy (kcal/mol) -135.28 -138.11
Distances(Å)

Li-P 2.650 2.432
Li-F’ 1.775 1.881
P-F’ 1.765 1.723
P-F 1.622
P-F” 1.600 1.598

Angles in degree
Li+-F’-P 96.9 84.8
F’-P-F” 173.6 172.3
F-P-F 171.6 172.2

Charges(e)
Li+ 0.806 0.815
P 2.220 2.226
F’ -0.566 -0.552
F -0.483
F” -0.464 -0.461

Dipole moment/D 7.48 6.41

F’ and F” are closest and farthest to Li+

totally perturbed by the PF6
– anion. The presence of the salt PF6

–, breaks the linearity

in the Li+-O=C interaction angle giving an angle of 117.7◦ for the Li+(EC)PF6
– system.

From the Figure 4.4(a), we can see that the entire geometry of Li+(EC)PF6
– has V shape

which might result from an interaction of EC ring with the PF6
– anion and the resulting

angle between O -Li+- P is around 125◦. This interaction is mostly due to the fluorides

Hydrogens bonds with the methyl groups of EC (with an average distance of 2.6 Å).

(a) Li+(EC)PF−

6
(b) Li+(EC)2PF

−

6
(c) Li+(EC)3PF

−

6

Figure 4.4: Optimized solvation structures of Li+(EC)1−3PF
−

6 complexes
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From the Table 4.2, the distance between Li+-O(=C) is 1.877 Å which is higher than

pure or without PF6
– anion (1.733 Å). Because, the strong interaction is obtained with

Li+ and carbonyl oxygen in Li+(EC) cluster. However, the interaction is weaker after

the coordination with strong negative PF6
– anion. The C=O bond length is 1.224 Å

which is lower as compared to Li+(EC) (1.235 Å), this is due to the weaker interaction

with Li+ ion. The π character of C=O bond is not much affected in Li+(EC)PF6
–

cluster. The LiPF6 have been interacted through bidentate way and the corresponding

bond length is almost the same as isolated bidentate cluster (from Table 4.1). The P-F

bond length also exhibits the same trend as LiPF6 bidentate complex. While addition

of EC molecule, the interaction is getting weaker therefore the Li+−O(−−C) bond length

become increases. For instance, the bond lengths of Li+(EC)2PF6
– and Li+(EC)3PF6

–

are 1.916 Å and 1.953/1.966 Å, respectively.

As we have already seen in Li+(EC)2 complex in previous chapter where the Li+ ion

shares two EC molecule with an angle of 177.1◦. But in the case of Li+(EC)2PF6
–

complex, the Li+ ion interact both EC molecule O=C groups and F atoms from PF6
–

and forms a trigonal linkage from Li+ ion. However, the entire cluster geometry seems

to be like boat shape configuration. This particular configuration could be formed from

the strong interaction of hydrogen bonds as well as the positive character of EC ring

which attract by F atoms. The strong hydrogen bond interaction obtained with EC

molecule hydrogens and F atoms with the distance of around 2.5 Å. The corresponding

angle between (C=)O- Li+-O(=C) is 131.7 ◦ and Li+-O=C angle is 120.6◦. The angle

of F-P-F also relaxed to 175.7◦. The bidentate linkage have been obtained for LiPF6

in Li+(EC)2PF6
–. The Li+(EC)3PF6

– complex exhibits tetrahedral shape around Li+

ion and all 3 EC molecules are arranged around the PF6
– anion. The entire geometry

coordination is almost similar to what we found in the first two complexes. Here, the

3 EC molecules hydrogens are interacted with F atoms in order to make the strong

hydrogen bonds with a distances of 2.46 Å. The LiPF6 interaction is also differ from

other clusters and it deviates from bidentate interaction and forms an angle around

151.5◦ for Li+-F’-P. The dipole moment decreases in complexes from Li+(EC)PF6
– to

Li+(EC)3PF6
–.

In presence of PF6
–, the Li+-O(=C) bond distance is longer(1.877 Å) respect to the

Li+(EC) one (1.733 Å). Infact, in presence of the negative ion PF6
– the stronger inter-

action is the Li+/ PF6
– one and the positive charge on Li+ is lowered from such ionic

interaction so that the interaction with EC dipole is lowered too. For such a reason

The C=O bond length is less affected by the EC/ Li+ interaction and the distance is

1.224 Å (which is 1.235 Å for Li+(EC)) The LiPF6 have been interacted through biden-

tate way and the corresponding bond length is almost the same as isolated bidentate

cluster (from Table 4.1. The P-F bond length also exhibits the same trend as LiPF6

bidentate complex. While addition of EC molecule, the interaction is getting weaker

therefore the Li+-O(=C) bond length become increases. For instance, the bond lengths
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Table 4.2: Selected structural parameters of Li+(EC)1−3 with PF−

6 geometries (bond
lengths in angstrom, bond and dihedral angles in degree)

Atoms Li+(EC)PF6
– Li+(EC)2PF6

– Li+(EC)3PF6
–

Bonds
Li+-O(=C) 1.877 1.919 1.953/1.966

O=C 1.224 1.220 1.218
C-O 1.345 1.349 1.352
Li-P 2.680 2.822 3.576
Li-F’ 1.855 1.950 1.985
P-F’ 1.725 1.699 1.704
P-F” 1.605 1.613 1.622

Angles
Li+-O=C 117.7 120.6 121.2/122.6/117.0
F-P-F 174.3 175.7 179.4/177.1/176.9

Dihedral
O-C(=O)-O 179.4 179.0 178.8
O-C-C-O 21.8 20.6 17.7
DPM/D 8.47 2.15 1.10

DPM = Dipole moment

of Li+(EC)2PF6
– and Li+(PC)3PF6

– are 1.916 Å and 1.953/1.966 Å respectively.

As we have already seen in Li+(EC)2 complex in previous chapter where theLi+ ion

shares two EC molecule with an angle of 177.1◦. But in the case of Li+(EC)2PF6
–

complex, the Li+ ion interact , because of the interaction between methyls groups of

EC and Fluorides atoms on PF6
– the whole configuration seems to be like boat shape

configuration. The strong hydrogen bond interaction obtained with EC molecule hydro-

gens and F atoms with the distance of around 2.5 Å. The corresponding angle between

(C=)O-Li+-O(=C) is 131.7◦ and Li+-O=C angle is 120.6◦. The angle of F-P-F also re-

laxed to 175.7◦. The bidentate linkage have been obtained for LiPF6 in Li+(EC)2PF6
–.

The Li+(EC)3PF6
– complex exhibits tetrahedral shape around Li+ ion and all three EC

molecules are arranged around the PF6
– anion. The entire geometry coordination is al-

most similar to what we found in the first two complexes. Here, the three EC molecules

hydrogens are interacted with F atoms in order to make the strong hydrogen bonds with

a distance of 2.46 Å. The LiPF6 interaction is also differ from other clusters and deviates

from bidentate interaction and forms an angle around 151.5◦ for Li+-F’-P. The dipole

moment decreases in complexes from Li+(EC)PF6
– to Li+(EC)3PF6

–.

We also study the vibrational frequencies and Mulliken charges of Li+(EC)1-3PF6
– clus-

ters and the values are collected in Table 4.3. Despite the structural changes of EC, the

stretching frequency of C=O bond is also affected in the presence of PF6
– anion. The

C=O stretching frequency increases from Li+(EC)PF6
– to Li+(EC)3PF6

–, thus showing

the lower interaction with the Li+ charge by increasing the coordination number. In-

stead, we could expect C=O stretching frequency is higher in Li+(EC)PF6
– as compared

to pure Li+(EC) cluster, due to the weaker interaction in Li+(EC)PF6
– retains the π
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character of C=O bond, eventually has a higher frequency. Nevertheless, in the case

of Li+(EC) cluster, the C=O stretching frequency obtained around 1733cm−1 but it is

1750cm−1 in Li+(EC)PF6
– cluster. This particular interaction is getting weaker upon

addition of EC molecule results the C=O frequency increases. The reverse result is

obtained for C-O asymmetric stretching which decreases in the presence of PF6
– anion

and substantially increases on going to higher EC content.

The analysis of Mulliken charges explains the charge distribution on the clusters and

values are presented in Table 4.3. As seen from the Table, the positive charge on Li+

increases with increasing EC molecules from 1 to 3. Initially, the Li+ ion has +1 e and

which is to be 0.766 e in Li+(EC)PF6
– complex which is smaller than corresponding

Li+(EC) complex. The declining of charge on Li+ is due to the charge transfer from F

atoms. If we see the charges of closest F atoms in Li+(EC)PF6
– complex, the values

are -0.591 and -0.594 e, in which the charges exhibit bidentate LiPF6 and the rest of

the F atoms are nearly -0.501 e. The corresponding P charge is 2.404 e which is slightly

higher than isolated value (2.3160 e) and which might arise due to the weakening of

bond between F-P. This is also confirms the F atoms are involved in the charge transfer

process preferably towards Li+ ion. Although, the coordination of PF6
– also affect the

charges on EC molecule and negative charge on carbonyl oxygen is considerably higher

than Li+(EC) cluster. The positive charge on carbonyl carbon increases in the presence

of counter anion. From the Table, the positive charge on Li+ ion decreases from 1 EC

to 3 EC containing clusters and increase the charge on P atom.

Table 4.3: Vibrational modes (in cm−1) and Mulliken charges of Li+(EC)1−3PF
−

6

geometries

Atoms Li+(EC)PF6
– Li+(EC)2PF6

– Li+(EC)3PF6
–

Modes
O=C 1750 1774 1788
C-O 1163 1154 1145

Charges
Li+ 0.766 0.722 0.680
P 2.404 2.443 2.497

O(=C) -0.619 -0.609 -0.600
C(=O) 0.984 0.982 0.986

4.5 Effect of PF−
6 anion in Li+(DMC)1−3 Complexes

In this section, we will see the results of solvation structures of Li+(DMC)1-3 with

counter PF6
– anion and structural parameters are collected in Table 4.4. The corre-

sponding optimized structures are shown in Figure 4.5. The Li+(DMC)PF6
– cluster

also perturbed due to the high negative charge of anion. Also in this case, the bond

length of Li+-O(=C) increases in the presence of PF6
– anion, because of the lowering

of the positive charge on Li+, due to the stronger ionic interaction with the counterion.
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The lower Li+-O(=C) interaction makes the C=O bond distances shorter respect to the

corresponding clusters without PF6
–. For instance the C=O bond length is 1.212 Å for

the isolated DMC, and goes to 1.235 in Li+(DMC)PF6
– cluster and 1.252 in Li+(DMC).

The same trend is observed in the higther coordinations. In the case of Li+(DMC)PF6
–

cluster, the Li+- PF6
– interaction have been arranged in a tridentate linkage and the

corresponding bond length of Li-P is found to be 2.505 Å and the bond angle of F-P-F is

of about 173.5◦. We found a linear coordination in Li+(DMC) cluster, but in the case of

Li+(DMC)PF6
– cluster the resulting angle of Li+-O=C is 147.7◦. The bidentate linkage

has been obtained in both Li+(DMC)2PF6
– and Li+(DMC)3PF6

– complexes and bond

lengths are closely consistent with original bidentate value (2.650 Å) Hydrogen bonds

also exist in these complexes between fluorides and methyls groups of DMC with av-

erage distance around 2.70 Å and they clearly influence the arrangement of the entire

geometry. The Li+(DMC)2PF6
– and Li+(DMC)3PF6

– clusters exhibit almost trigonal

and tetrahedral coordination with Li+ ion and all complexes are having almost same

dipole moment.

(a) Li+(DMC)PF−

6
(b) Li+(DMC)2PF

−

6
(c) Li+(DMC)3PF

−

6

Figure 4.5: Optimized solvation structures of Li+(DMC)1−3PF
−

6 complexes

We have also investigated vibrational modes and Mulliken charges of Li+(DMC)1-3PF6
–

clusters and the values are collected in Table 4.5. The C=O stretching frequency has

increased upon coordination of PF6
– anion to Li+(DMC) which comes from the weaker

interaction of Li+ with O=C from DMC molecules. The π bond of C=O is remain

almost unchanged in Li+(DMC)PF6
–, thus increasing the stretching frequency and the

corresponding C=O bond has a shorter distance than in Li+(DMC). While the extra

addition of DMC molecules the C=O frequency substantially increases and interaction

between Li+ and DMCmolecules are getting lower is the reason for this change. However,

the C-O asymmetric stretching frequency decreases in Li+(DMC)PF6
– as compared to

Li+(DMC) cluster and the same trend have also been observed at increasing DMC

molecules.

As we have seen from the Table 4.5, the positive charge of Li+ ion (+1 e) has dropped

into 0.767 e in Li+(DMC)PF6
– and obvious that the Li+(DMC) has a higher positive
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Table 4.4: Structural parameters of Li+(DMC)1−3 with PF−

6 geometries (bond
lengths in angstrom, bond and dihedral angles in degree)

Atoms Li+(DMC)PF6
– Li+(DMC)2PF6

– Li+(DMC)3PF6
–

Bonds
Li+-O(=C) 1.861 1.900 1.970/2.065

O=C 1.235 1.231 1.229
C-O 1.331 1.341 1.339
Li-P 2.505 2.790 2.921
Li-F’ 1.966 1.920 2.209/2.870
P-F’ 1.725 1.718 1.687/1.987
P-F” 1.603 1.610 1.617
Angles

Li+-O=C 147.7 138.9 143.8/139.9/136.7
F-P-F 173.5 175.0 175.9

Dihedral
O-C(=O)-O 179.9 178.1 178.3/179.1
DPM/D 9.05 8.75 9.07

DPM = Dipole moment

charge about 0.799 e . These results revealed that the substantial charge transfer ob-

tained from the counter PF6
– anion to Li+ ion. However, this charge transfers also

impact on the positive charge of P atom which means the P atom attributes higher

positive charge than optimized LiPF6 cluster. On the other hand, the weaker interac-

tion of Li+ with DMC molecules results the O in O=C groups possesses higher negative

charge than Li+(DMC) cluster. We have also received the same results in C(=O) atom.

Nevertheless, we could expect unequal charges are obtained in Li+(DMC)2PF6
– and

Li+(DMC)3PF6
– clusters, in which the DMC molecules has been arranged in a differ-

ent orientation to Li+ ion. Being the close arrangement of DMC molecules in both

Li+(DMC)2PF6
– and Li+(DMC)3PF6

– clusters, where DMC molecules forms a strong

hydrogen bonds with F atoms results the charge on P atom increases. The positive

charge on Li+ decreases upon addition of more DMC molecules.

Table 4.5: Vibrational modes (in cm−1 and Mulliken charges of Li+(DMC)1−3PF
−

6

geometries

Atoms Li+(DMC)PF6
– Li+(DMC)2PF6

– Li+(DMC)3PF6
–

Modes
O=C 1692 1708 1717
C-O 1309 1299 1290

Charges
Li+ 0.767 0.754 0.721
P 2.398 2.436 2.4731

O(=C) -0.638 -0.622/-0.653 -0.621/-0.633/-0.642
C(=O) 0.971 0.954/1.002 0.961/0.973/0.990
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4.6 Effect of PF−
6 anion in Li+(PC)1−3 Complexes

In this section, we discuss about the results of Li+(PC)1-3PF6
– clusters and some struc-

tural parameters are presented in Table 4.6 and the corresponding optimized geometries

are shown in Figure 4.6. Similar to the Li+(EC)1-3PF6
– clusters, the PC containing

clusters also exhibit the same geometry structures. The Li+-PC- PF6
– clusters are also

perturbed by the presence of the counterions. The typical distance of Li+-O(=C) is

1.876 Å which is relatively higher than without PF6
– anion. Moreover, the bond angle

of Li+-O=C is 117.3◦ in Li+(PC)PF6
– which is more stretched than Li+(PC) (173.8◦).

We can clearly see from the Figure 4.6(a), the deviated bidentate linkage has been

observed for LiPF6 structure and the corresponding distance is about 2.680 Å for Li-P.

Upon addition of a second PC, the distance of Li+-O(=C) increases and C=O bond

length decreases and the angle of Li+-O=C is become 121.1◦ in Li+(PC)2PF6
–. For

this structure, the LiPF6 also forms a bidentate linkage with a distance of 2.832 Å. On

the other hand, the usual hydrogen bonds has also obtained between Fluorine atoms

with alkyl hydrogen of PC with a relative distance of 2.604 Å The dipole moment is

dramatically decreased to 1.33 D in Li+(PC)2PF6
– from 9.08 D in Li+(PC)PF6

–. In

the case of Li+(PC)3PF6
– complex, the Li+-O(=C) distance eventually increases and

although three sort of distance obtained in the range between 1.937 to 1.957 Å. The

Li+- PF6
– interaction formed through monodentate linkage shows a distance of 3.694 Å.

The corresponding Li-F’ (by F we indicate the closest F to Li) distance also increases

as expected. The dipole moment is slightly increases in Li+(PC)3PF6
– cluster.

(a) Li+(PC)PF−

6
(b) Li+(PC)2PF

−

6
(c) Li+(PC)3PF

−

6

Figure 4.6: Optimized solvation structures of Li+(PC)1−3PF
−

6 complexes

We have also analysed vibrational modes and Mulliken charge changes on Li+(PC)1-3PF6
–

and the results are presented in Table 4.7. The obtained results shows, as for previous

structure with EC and DMC that the addition of PF6
– anion to Li+(PC) cluster results

to an increase of the stretching frequency of C=O. Also, the C-O frequency is affected
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Table 4.6: Structural parameters of Li+(PC)1−3 with PF−

6 geometries (bond lengths
in angstrom, bond and dihedral angles in degree)

Atoms Li+(PC)PF6
– Li+(PC)2PF6

– Li+(PC)3PF6
–

Bonds
Li+-O(=C) 1.876 1.927 1.937/1.947/1.957

O=C 1.226 1.221 1.220
Li-P 2.680 2.832 3.694
Li-F’ 1.857 1.956 2.034
P-F’ 1.725 1.697 1.698
P-F” 1.608 1.614 1.622
Angles

Li+-O=C 117.3 121.1 124.2/121.0/118.4
F-P-F 174.3 176.1 177.2/179.5

Dihedral
O-C(=O)-O 179.4 179.0 179.2
DPM/D 9.08 1.33 2.47

DPM = Dipole moment

by the presence of PF6
– and decreases about 23cm−1 respect to the Li+(PC) value. The

same trend is observed by adding a second or third PC.

It is quite obvious that the Mulliken charge also affected by the strong Li+/ PF6
– inter-

action. The overall positive charge on Li+ decrease, respect to corresponding complexes

without PF6
–, and naturally it decrease also by increasing the number of PC.

Table 4.7: Vibrational modes (in cm−1 and Mulliken charges of Li+(PC)1−3PF
−

6

geometries

Atoms Li+(PC)PF6
– Li+(PC)2PF6

– Li+(PC)3PF6
–

Modes
O=C 1743 1767 1783
C-O 1381 1379 1343

Charges
Li+ 0.764 0.722 0.688
P 2.405 2.491 2.543

O(=C) -0.626 -0.615 -0.599/-0.607/-0.615
C(=O) 0.987 0.976 0.977/0.983/974

4.7 Stability of Clusters with anions

In order to provide the stability of clusters formation we analyse the thermodynamic

parameters such as enthalpy, entropy and Gibbs free energy values which are shown in

Table 4.8. From the Table values, we can clearly seen that for all complexes, with EC,

PC or DMC the G values decreases by adding the solvents to the coordination sphere;

Nevertheless the addition of a third EC, PC or DMC increase the G value. This means

that in presence of PF6
– linked to Li+, the maximum coordination number of solvents
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Table 4.8: Thermodyanmics parameters such as Enthalpy(H in kcal/mol), Entropy(S
in cal/mol-K) and Gibbs free energy values ( G in kcal/mol) of Li+(S)1−3 ( S = Ec,

DMC, PC) complexes with PF−

6 anion

Clusters H S G

LiPF6 + 3 EC -4962.4 302.7 -5052.6
Li+(EC)PF6

– + 2 EC -4983.1 264.7 -5062.0
Li+(EC)2PF6

– + 1 EC -4998.7 228.9 -5067.0
Li+(EC)3PF6

– -5006.4 193.8 -5064.2

LiPF6 + 3 DMC -5445.0 331.6 -5543.9
Li+(DMC)PF6

– + 2 DMC -5467.9 287.2 -5553.6
Li+(DMC)2PF6

– + 1 DMC -5480.1 257.4 -5556.8
Li+(DMC)3PF6

– -5485.2 214.3 -5549.1

LiPF6 + 3 PC -6062.7 323.0 -6159.0
Li+(PC)PF6

– + 2 PC -6083.5 285.3 -6168.5
Li+(PC)2PF6

– + 1 PC -6100.3 247.5 -6174.1
Li+(PC)3PF6

– -6108.3 200.7 -6168.1

groups in two, and the addition of a third one gets positive ΔG values for the reaction.

Comparing the Thermodynamic values to the ones obtained in absence of PF6
– we can

conclude that :

1. in absence of salt counterions, we could achieve a coordination of four solvent

molecules(either EC, PC and DMC) around Li+.

2. the presence of PF6
– in the coordination sphere has a strong impact on the effective

charge on Li+, and the maximum coordination number of carbonyls solvent is

lowered to 2.

Also, in all complexes the enthalpy values are shown that the formation of larger number

solvents containing clusters are more favourable, although the entropic term make the

difference in these cases.

It is also interesting to analyse the energy for the following reactions in the Table 4.9 :

Table 4.9: Computed ΔG reaction values (kcal/mol) for the substitution of PF6
–

anion by one solvent molecule to the most stable Li+(S)2PF6
– (S=EC, DMC and PC)

Reactions ΔG(kcal/mol)

S = EC S = DMC S = PC

Li+(S)2PF6
– + S −−→ Li+(S)3 + PF6

– 54.5 78.2 61.2

The above reactions are used to explain the solvent ability to replace the PF6
– anion in

the solvation sphere. The positiveΔG free energy values (in Table 4.9) are demonstrated

that the PF6
– anion is strongly bound in the first solvation shell, it cannot be replaced

by the another solvent molecule. The Li+ ion prefers the interaction with salt anion
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and to stay with lower coordination structure. Therefore, it should be stressed that in

experimental LIBs devises the concentration of the salt in the electrolytes is around 1M,

so that the concentration of the carbonates electrolytes are in strong predominance in

solution. For that reason, both structures without PF6
– (coordination number 4) and

with PF6
– (coordination number 2) are exists in the solution, and structure without

salts represent the majority of the coordination of Li+.

4.8 Conclusions

From the general point of view, our DFT results have predicted that the isolated PF6
–

anion has a perfect octahedral geometry, and we also studied the possible interactions

with Li+ ion. The Li+ and PF6
– ions forms three different interactions such as monoden-

tate (C4V ), bidentate(C2V ) and tridentate (C3V ). The results revealed that the strong

interaction (most stable) obtained in tridentate form, in which three fluorine atoms were

coordinated to the Li+ ion and the local structure also confirmed by frequency analysis.

These results were in good agreement with previous theoretical works.

We have investigated the pure solvent clusters Li+(S)1-3 (S = EC, DMC and PC) in gas

phase with PF6
– anion, and the results suggested that the pure solvent clusters were

totally perturbed in the presence of PF6
– anion. In all the cases, the Li+- Oc (carbonyl

oxygen) distance increases due to the strong negative charge of PF6
– anion, and the

alkyl hydrogens from solvents forms hydrogen bonds with PF6
– anion.

For all structures, in presence of PF6
– in the coordination sphere the most favourable

structure is Li+(S)2PF6
–. The addition of a third S molecules is unfavourable (With

positive ΔG vaules for the addition reaction). For all structures, in presence of PF6
– in

the coordination sphere the most favourable structure is Li+(S)2PF6
–. The substitution

of PF6
– anion by a solvent molecule to form a coordination number three (Li+(S)3) is

unfavourable (With positive ΔG values). The results suggested that Li+ ion prefers the

counter anion in the presence of salt and form a lower coordination. However, both

structures without PF6
– (coordination number 4) and with PF6

– (coordination number

2) are exists in the solution.
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Coupling DFT and MD

The aim of this chapter is to study the local solvation structure of Li+ ion with carbonate

solvents (EC, DMC and PC) at infinite dilution. We have discussed about the effective

force fields that we used for this study. In the following, we have included the entire

paper that we submitted to the journal.

5.1 What we need MD for?

Density functional theory (DFT) method is a good choice for the study of structural

and electronic properties in chemistry as well as in physics. DFT is able to solve models

with a system has relatively small size (for example below 60 to 70 atoms). The degree

of accuracy also be achieved in small systems. In order to study system which contains

hundreds or thousands of atoms, the DFT will not make it. Moreover, it mainly con-

cerns on the isolated molecules, therefore, there is a possibility of finite size problems.

Also, if we want to study the interaction between other molecules or atoms the DFT

methods fail in this cases. Therefore, instead of solving Schrödinger equation to obtain

the energy, the classical expression or force fields are used to account all intermolecular

interactions. The interaction is treated in an atomic level which called as Molecular

Dynamics(MD) simulation method. This MD take into account all intermolecular in-

teraction even in large systems and also used to study the tedious system which can

not be accessible experimentally. The MD result can give a detailed idea for structural

properties, transport properties, and diffusion coefficients, etc.

The previous DFT chapter, the energetic results have shown that the preference of Li+

to bind with the highly polar PC and EC molecules. Nevertheless, from an entropic

point of view the addition of DMC molecules contributes to the decrease of the free

energy of the clusters. In the investigated finite size clusters the energetic contribution

seems to be the most important one. However, the small free energy differences observed

for the transition paths leading from one cluster to the other indicate that the formation
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of these clusters should be investigated at more extended length scales, in order to have

a more realistic description of the effects taking place in the bulk liquid phase. This

was the most important motivation to combine DFT calculations of isolated clusters

with classical MD simulations at more extended length scales, in order to have a clearer

picture about the solvation of Li+ in pure and mixed organic carbonate-based solvents.

We have discussed the MD results in the following sections.

5.2 Molecular Dynamics Simulation

In this section, we discuss about the simulation methods and systems that are used for

this study. We have investigated the solvation structure of Li+ ion at infinite dilution

in EC, DMC and PC solvents by using classical molecular dynamics simulations. We

have focused on the following systems that are formed by pure EC, DMC and PC with

Li+ ion and binary mixture EC:DMC in the 1:1 ratio and ternary mixture EC:DMC:PC

with a molar ratio of 1:1:3, respectively.

In order to consider the dilute solution of Li+ ion, the typical simulation box contains

one Li+ ion with 214 solvent molecules in the case of pure solvents and ternary mixtures,

whereas in the case of binary mixture the one Li+ ion is fixed with 213 solvent molecules.

We have performed several trial runs in order to be sure for enough molecules to describe

the solvation structure and also to avoid the possible finite size effects. The initial

configurations of all simulated systems are prepared by using the Packmol software[205].

The equations of motion were integrated using a leapfrog-type Verlet algorithm with an

integration time step of 1 fs[183]. The temperature has been fixed to 303.15 K and the

pressure to 1 atm by coupling the systems to a Nose-Hoover thermostat and barostat

with relaxation times of 0.2 and 0.5 ps, respectively[101, 206]. The rigid body equations

of motion for EC and PC molecules were expressed in the quaternion formalism[183].

A cut-off radius of 9.0 Å has been applied for all Lennard-Jones interactions and long-

range corrections have also been taken into account. To account for the long-range

electrostatic interactions the standard Ewald summation technique has been used[183].

The simulation runs were performed using the DL POLY simulation code [207]. The

systems were equilibrated for 25 ns and a subsequent run of 15 ns was performed in each

case, in order to calculate equilibrium properties

5.2.1 Effective Force Fields for EC, PC and DMC

The accurate force field can give the detailed interactions of intermolecular interactions

between atoms. The intermolecular potential consists of short-range van der Waals in-

teractions and long-range electrostatic interactions. The van der Waals interaction is

called Lennard-Jones(LJ) potential which takes into account the interaction between two
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non-bonding molecules or atoms with respect to the distance of separation. LJ equation

consists of repulsive and attractive terms. And, the long-range electrostatic interac-

tion or coulombic term also play a significant role in force fields. The intermolecular

interaction energy are represented as follows:

Einter =
X

i>j

(

4εij

"

�

σij
rij

�12

−
�

σij
rij

�6
#

+
qiqj

4πε0rij

)

(5.1)

Where σij is the distance at which the intermolecular particles at zero or equlibrium

distance, and εij is the depth of the potential well or strength of the interaction, i and j

indicates the molecule1 and molecule2 respectively. rij is the distance between i th and

j th atom. The coulombic term consists of qi and qj partial charges of atoms i and j

respectively, ε0 is vacuum permittivity. The geometric combining rule are used for σij

and εij such that σij = (σiiσjj)
1/2 and εij = (εiiεjj)

1/2.

We have considered the previously reported force fields[69, 87] for our simulated systems

and the corresponding parameters are collected in Table 5.1. The EC and PC solvent

molecules were kept rigid during the simulation. In the case of DMC molecule, we

consider as a flexible molecule due to existence of different conformers in the gas and

liquid phase and intramolecular force filed has also been employed. Throughout this

chapter, the EC, DMC and PC molecules are defined in the following: Oc for the

carbonyl oxygen, O for the ether oxygen, Cc for carbonyl carbon, and C and H for the

carbon and hydrogen of CH group respectively.
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Table 5.1: Lennard-Jones parameters and Partial charges for the EC, DMC, PC and
Li+ molecules

Molecule interaction center σ(Å) ε(kcal mol−1) q/e

EC Oc 2.96 0.210 -0.6452
Cc 3.75 0.105 1.0996
O 3.00 0.170 -0.4684
C 3.50 0.066 0.0330
H 2.50 0.030 0.1041

PC Oc 2.96 0.210 -0.6378
Cc 3.75 0.105 1.0489

O(CH2) 3.00 0.170 -0.4509
O(CH) 3.00 0.170 -0.4120
C(H2) 3.50 0.066 -0.0040
C(H) 3.50 0.066 0.0832
C(H3) 3.50 0.066 -0.3264
H 2.50 0.030 0.1165

DMC Oc 2.96 0.210 -0.6774
Cc 3.75 0.105 1.0864
O 3.00 0.170 -0.4478
C 3.50 0.170 -0.4478
H 2.50 0.030 0.1331

Li+ 1.46 0.191 1.0000

In the following page, we have attached the paper that we submitted to the journal and

the paper contains both DFT and MD results.
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ABSTRACT: Classical molecular dynamics (MD) simula-
tions and quantum chemical density functional theory (DFT)
calculations have been employed in the present study to
investigate the solvation of lithium cations in pure organic
carbonate solvents (ethylene carbonate (EC), propylene
carbonate (PC), and dimethyl carbonate (DMC)) and their
binary (EC−DMC, 1:1 molar composition) and ternary (EC-
DMC-PC, 1:1:3 molar composition) mixtures. The results
obtained by both methods indicate that the formation of
complexes with four solvent molecules around Li+, exhibiting a
strong local tetrahedral order, is the most favorable. However,
the molecular dynamics simulations have revealed the
existence of significant structural heterogeneities, extending up to a length scale which is more than five times the size of the
first coordination shell radius. Due to these significant structural fluctuations in the bulk liquid phases, the use of larger size
clusters in DFT calculations has been suggested. Contrary to the findings of the DFT calculations on small isolated clusters, the
MD simulations have predicted a preference of Li+ to interact with DMC molecules within its first solvation shell and not with
the highly polar EC and PC ones, in the binary and ternary mixtures. This behavior has been attributed to the local tetrahedral
packing of the solvent molecules in the first solvation shell of Li+, which causes a cancellation of the individual molecular dipole
vectors, and this effect seems to be more important in the cases where molecules of the same type are present. Due to these
cancellation effects, the total dipole in the first solvation shell of Li+ increases when the local mole fraction of DMC is high.

1. INTRODUCTION

In recent years the demand for portable power applications has
been highly increased, thus giving a considerable impetus to the
development of novel electrochemical devices, such as electric
double-layer capacitors and lithium-ion batteries. Lithium-ion
secondary batteries are very common in consumer electronics,
such as laptop computers and cell phones, while they are also
growing in popularity for automotive applications in order to
decrease the greenhouse gas emissions in the atmosphere and,
hence, to prevent global warming.1−3 In general Li-ion batteries
have been deployed so far in a wide range of energy storage
applications, ranging from energy-type batteries of a few
kilowatts per hour in residential systems with rooftop
photovoltaic arrays to multimegawatt containerized ones, for
the provision of grid ancillary services.
Li-ion cells mainly employ intercalation materials as positive

and negative electrodes and aprotic electrolytes to conduct Li+.
The chemical nature of the electrodes determines the energy
output, while the electrolyte affects the rate of the energy

release by controlling mass transport properties within the
battery.1 The interactions between the electrolyte and the
electrode materials are also very important, and the formation
of electrified interfaces between them often dictates the
performance of the device. An electrolyte should meet a list
of minimal requirements in order to be used in such devices. In
general it should be a good ionic conductor and electronic
insulator, have a wide electrochemical window, exhibit
electrochemical, mechanical, and thermal stability, and be
environmentally friendly and inert to other cell components
such as cell separators, electrode substrates, and cell packaging
materials.
As mentioned above, the transport of Li+ ions inside the

electrolyte determines the rate of the energy transfer, which has
been stored on the electrodes.4 According to the literature the

Received: November 6, 2014
Revised: February 9, 2015

Article

pubs.acs.org/JPCC

© XXXX American Chemical Society A DOI: 10.1021/jp511132c
J. Phys. Chem. C XXXX, XXX, XXX−XXX

Chapter 5 Section 5.3

92



transport of Li+ ions is controlled by a two-step mechanism
involving the solvation of the ions by the solvent molecules,
followed by the migration of the solvated ions.5 A deeper
understanding of the solvation of Li+ ions may therefore act as a
springboard toward the rational design of novel electrolytes
with improved Li+ conductivity.
By now, the most commonly employed strategy toward the

rational design of electrolytes with optimal properties for
battery applications is to use mixtures of cyclic and noncyclic
organic carbonates.6 In such a way the high dielectric constant
of cyclic carbonates is combined with the low viscosity of
acyclic carbonates ensuring good performances under low-
temperature environments. On the other hand, the higher
thermal stability of cyclic carbonates ensures a reasonable
operating temperature range for the mixed solvent.
Although several experimental and theoretical studies

devoted to the interactions of Li+ with pure and mixed
carbonate-based electrolytes have already been published, the
solvation structure and dynamics of lithium cations in these
solvents is still a subject of debate. Interestingly, even the
determination of the coordination number around the lithium
ions in pure carbonate-based solvents has not been definitely
resolved.7−18 While the generally accepted picture comprises a
tetrahedral coordination of the carbonyl oxygen atoms around
Li+, some experimental and theoretical studies propose the
existence of local structures exhibiting slightly higher
coordination numbers. The dependence of this local coordina-
tion number on the ion concentration is also somehow
controversial. However, it should be emphasized that designing
experimental methods or theoretical models to analyze the
experimental data in order to provide a direct measurement of
the coordination number is an extremely complicated
task.7,19,20 On the other hand, since the validation of molecular
simulation results strongly depends on the direct comparison
with experimental data, the development of experimental
methods proving a direct determination of the coordination
number becomes indispensable in order to obtain a clear
picture about the local structural effects in liquid solvents.
On the basis of the above considerations the aim of the

present study is not to give a final answer to this particular
problem. The main purpose is to provide some general insight
concerning the differences in the solvation mechanisms of Li+

in pure and mixed binary and ternary carbonate-based solvents,
by employing molecular dynamics simulations and quantum
chemical calculations. Also, recent advances in the investigation
of the local solvation structure by means of both experimental
and theoretical techniques will be discussed and compared with
the findings of the present study. Such a discussion might be
used as a springboard toward a better understanding of the
solvation phenomena in these electrolytes, significantly
improving the rational design of electrolytes for battery
applications.

2. COMPUTATIONAL METHODS AND DETAILS

2.1. Density Functional Quantum Chemical Calcula-
tions. Quantum chemical calculations for several clusters of
pure, binary, and ternary electrolytes including a lithium cation
have been performed using the ADF software.21 The density
functional theory (DFT) has been employed for the
optimization of structures, using the PBE GGA22 functional
and a TZP (core double-ζ, valence triple-ζ, polarized) slater-
type orbital (STO) basis set. Our calculations for some
representative clusters have revealed that the basis set

superposition error (BSSE) corrections23 are negligibly small.
A similar observation has also been pointed out in recent DFT
studies.24,25 Frequency analysis has been carried out for each
structure ensuring the absence of imaginary modes and
confirming each structure as a minimum on the potential
energy surface. Zero-point energy (ZPE) corrections have been
also taken into account. Thermodynamic quantities such as the
entropy, enthalpy, and free energy of the investigated clusters
have been estimated at the temperature of 298.15 K.

2.2. Molecular Dynamics Simulations. In the present
study the solvation structure of Li+ at infinite dilution in pure
and mixed carbonate-based solvents has been investigated via
classical molecular dynamics (MD) simulations. The selected
pure solvents were ethylene carbonate (EC), propylene
carbonate (PC), and dimethyl carbonate (DMC). The binary
EC−DMC mixture with a molar composition 1EC:1DMC and
the ternary EC−DMC−PC one with 1EC:1DMC:3PC molar
composition were also studied.
Inside each simulation cubic box, one lithium cation was

placed among 215 solvent molecules in the case of the pure
solvents and the ternary mixture, whereas in the case of the
binary mixture it was placed among 214 solvent molecules.
Trial runs with larger system sizes have verified that the
employed number of molecules is sufficient in describing the
solvation structure of Li+, avoiding in this way any possible
artifacts arising from finite size effects. The initial configurations
of the simulated systems were prepared by using the Packmol
software.26

The force fields employed in the simulations were adopted
from previous studies.27,28 The intermolecular interactions in
these models are represented as pairwise additive with site−site
12-6 Lennard-Jones plus Coulomb interactions. The EC and
PC molecules were kept rigid during the simulations (intra-
molecular geometries can be found in the Supporting
Information). It should be mentioned that when investigating
the solvation of Li+ in pure solvents test simulations were also
performed using a flexible potential model28 for EC. It was
observed that the local structure and orientation around Li+ in
pure EC was not significantly affected compared to the case of
the rigid model. This is possibly due to the fact that the rigid
framework of cyclic carbonates is not significantly distorted by
the presence of the intramolecular vibrational motions and
therefore does not affect the packing of these molecules inside
the solvation shell of Li+.
In the case of DMC, due to the existence of different

conformers in the gas and liquid phase,29−31 an intramolecular
force field has been also employed. The intramolecular
interactions have been represented in terms of harmonic
angle bending and cosine series for dihedral angle internal
rotations, whereas the bond lengths have been kept rigid by
employing a modified version of the SHAKE32,33 algorithm.
The parameters of the intramolecular force field used are also
presented in the Supporting Information. Due to the absence of
a rigid framework, which is present in cyclic carbonates,
intramolecular torsional motions could play an important role
in the packing of DMC molecules. It should be noted however
that conformational transitions were not detected on the time
scale of our simulations.
As pointed out in the Introduction, the generally accepted

picture comprises a tetrahedral coordination of the carbonyl
oxygen atoms around Li+. The potential models used in the
presented study predict such local structures,27,28 and for this
reason they were selected to be employed in the simulations.
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Results obtained with different potential models already
published in the literature will be also discussed together with
the findings of the present study.
The equations of motion were integrated using a leapfrog-

type Verlet algorithm with an integration time step of 1 fs.34

The temperature has been fixed to 303.15 K and the pressure to
1 atm by coupling the systems to a Nose−Hoover thermostat
and barostat with relaxation times of 0.2 and 0.5 ps,
respectively.35,36 The rigid body equations of motion for EC
and PC molecules were expressed in the quaternion formal-
ism.34 A cutoff radius of 9.0 Å has been applied for all Lennard-
Jones interactions, and long-range corrections have also been
taken into account. To account for the long-range electrostatic
interactions the standard Ewald summation technique has been
used.34 The simulation runs were performed using the
DL_POLY simulation code.37 The systems were equilibrated
for 25 ns, and a subsequent run of 15 ns was performed in each
case, in order to calculate equilibrium properties.

3. RESULTS AND DISCUSSION

3.1. Relative Stability of Isolated Clusters. By employ-
ing DFT calculations, using the methodologies described in
Section 2.1, a wide range of clusters of the type Li(S)n

+ (where
S = EC, PC, DMC and n = 1−5) were optimized.
Thermodynamic parameters, such as the enthalpy, entropy,
and binding energy of these clusters, have been also
estimated,38,39 based upon the calculation of the total partition
function resulting from the contribution of the translational,
rotational, and vibrational degrees of freedom.39 The binding
energies of these clusters have been expressed in terms of the
equation

= − −+ +E E nEBE (Li(S) ) (Li ) (S)n (1)

In order to provide an estimation of the preferable coordination
number around the lithium cation, the most favorable path
between these clusters Li(S)n

+ has to be determined in terms of
free energy changes. To do so, the free energies of the
aggregates Li(S)n

+ + mS (n + m = constant = 5 in this case)
were estimated, in order to define the aggregate exhibiting the
lowest free energy value. In this way, if the fragment Li(S)n

+ +
mS has the lowest free energy value, all paths of the type

+ · → + · + = ++ +l m k l n mLi(S) S Li(S) S,k n (2)

will exhibit a negative free energy change ΔG, thus indicating
that all possible paths leading to the cluster Li(S)n

+ are
favorable, and therefore, this cluster could be considered the
most preferable one in terms of the free energy changes. Note
that the paths depicted in eq 2 can correspond to both
additions or subtractions of solvent molecules from one
particular cluster leading to another, depending on the relative
difference m − l. If m − l < 0, then the transition is being
achieved through solvent addition, otherwise through solvent
subtraction.
All the calculated values of enthalpy, entropy, and binding

energy of the investigated Li(S)n
+ clusters, together with the

free energy values of the Li(S)n
+ + mS aggregates, are presented

in Tables 1 and 2. From the results obtained it can be clearly
seen that in the cases of EC and DMC the predicted most
favorable structures correspond to a tetracoordinated lithium
cation. Similar conclusions have been drawn in the DFT study
of Bhatt et al., studying the solvation of Li+ in EC.24 In the case
of PC the free energy difference for the path going from

Li(PC)3
+ to Li(PC)4

+ is very small. This is an indication that
although the Li(PC)3

+ cluster has been predicted to be the
most favorable one both structures could possibly exist in the
bulk phase. The optimized structures for Li(EC)4

+, Li(PC)3
+,

and Li(PC)4
+, as well as for Li(DMC)4

+, are shown in Figures
1−3. From the data presented in Table 1, it might be also seen
that in the cases of the tetracoordinated clusters the binding
energies decrease in the order E(Li(PC)4

+) > E(Li(EC)4
+) >

E(Li(DMC)4
+), which is reasonable taking into account that

the dipole moments of PC, EC, and DMC molecules decrease

Table 1. Thermodynamical Parameters and Binding
Energies of Li+−Solvent Clusters (H and BE Are in kcal/mol
and S in cal mol−1 K−1)a

clusters H BE S

EC −1369.3 72.8

Li+(EC) −1293.6 −47.6 83.2

Li+(EC)2 −2698.9 −83.1 116.9

Li+(EC)3 −4090.4 −104.6 142.2

Li+(EC)4 −5473.4 −118.2 174.0

Li+(EC)5 −6849.9 −126.9 214.6

DMC −1530.2 82.5

Li+(DMC) −1449.0 −42.1 90.6

Li+(DMC)2 −3012.2 −74.0 124.5

Li+(DMC)3 −4562.4 −92.9 158.1

Li+(DMC)4 −6100.8 −103.2 216.8

Li+(DMC)5 −7636.7 −108.5 251.3

PC −1736.0 79.6

Li+(PC) −1662.2 −49.5 89.8

Li+(PC)2 −3435.1 −85.3 123.7

Li+(PC)3 −5193.2 −106.5 154.5

Li+(PC)4 −6945.0 −121.3 180.3

Li+(PC)5 −8687.2 −128.8 231.3
aH = Enthalpy, BE = Binding Energy, S = Entropy.

Table 2. Gibbs Free Energy of Clusters (kcal/mol)

G

clusters S = EC S = DMC S = PC

Li+(S) + 4S −6882.4 −7695.0 −8728.1

Li+(S)2 + 3S −6906.7 −7713.5 −8751.3

Li+(S)3 + 2S −6914.8 −7719.0 −8758.8

Li+(S)4 + S −6916.2 −7720.2 −8758.5

Li+(S)5 −6913.9 −7711.6 −8756.2

Figure 1. Structure of the optimized Li(EC)4
+ cluster.
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in the same order (5.6, 5.3, and 0.35 D, respectively). It should
be also noted that the entropic contributions to the free energy
of each cluster exhibit the opposite trend, being more
important in the case of the Li(DMC)4

+.
Considering that the tetracoordinated structure is the most

preferable one, the same calculations have been performed for
clusters of the type Li(S1)n(S2)m

+, where S1 = EC, S2 = DMC,
and n + m = 4. The free energy changes for the transitions

+ − · + − · →

+ − · + − ·

+

+

k l

n m

Li(S ) (S ) (4 ) S (4 ) S

Li(S ) (S ) (4 ) S (4 ) S

k l

n m

1 2 1 2

1 2 1 2 (3)

where k + l = n + m = 4 and n, m, k, l = 1−3, were also
estimated, in order to find the most favorable structure among
the clusters with two types of solvents around lithium. The
calculated values of enthalpy, entropy, and binding energy of
the investigated Li(S1)n(S2)m

+ clusters, together with the free
energy values of the Li(S1)n(S2)m

+ + (4 − n)S1 + (4 − m)S2
aggregates, are presented in Tables 3 and 4. The results
obtained reveal that among all the possible combinations of
tetracoordinated clusters containing both EC and DMC the

most preferable is Li(EC)3(DMC)+, followed by Li-
(EC)2(DMC)2

+, and eventually the Li(EC)(DMC)3
+ is the

least favorable among these three clusters. This finding is in
agreement with both ab initio studies by Borodin and Smith,40

where the relative stabilities were based upon the energies of
the complexes and with the very recently reported study by
Bhatt and O’Dwyer.25 The structures of the optimized clusters
are presented in Figure 4.
Finally, a similar analysis was performed for the clusters

Li(S1)n(S2)l(S3)m
+ (S1 = EC, S2 = DMC, S3 = PC), containing

EC, DMC, and PC solvent molecules. The structures of the
optimized clusters are presented in Figure 5. From the results
obtained using the same methodology discussed above, which
are presented in Tables 5 and 6, it can be seen that the cluster
Li(EC)2(DMC)(PC)+ seems to be the most favorable one,
followed by Li(EC)(DMC)(PC)2

+ and finally by Li(EC)-
(DMC)2(PC)

+. However, the free energy changes for the
transition paths between these clusters are very small, indicating
that all these structures could possibly exist in the bulk phase.
Also the free energy changes for the transition paths leading to
the Li(EC)4

+ and Li(PC)4
+ clusters are very small. It has also

been found that the transitions from clusters containing only
EC and DMC to clusters with three types of solvent molecules,
by substitution of one EC or DMC molecule with a PC one, are
favorable in terms of the free energy changes. The substitution
of a DMC molecule has been found to be more favorable than
the substitution of an EC one. In general the above findings
indicate that the presence of PC contributes to the stabilization
of the clusters. This fact can be also supported by the calculated
binding energies of the tetracoordinated clusters, which are
plotted together in Figure 6.
Interestingly, from Tables 4 and 6 it can also be seen that the

presence of DMC contributes to the increase of the entropy
and therefore to the decrease of the free energy of the clusters
containing more than one solvent type. Therefore, although

Figure 2. Structure of the optimized Li(PC)3
+ and Li(PC)4

+ clusters.

Figure 3. Structure of the optimized Li(DMC)4
+ cluster.

Table 3. Thermodynamical Parameters and Binding
Energies of Li+(EC)n(DMC)m (n + m = 4) Clusters (H and
BE Are in kcal/mol and S in cal mol−1 K−1)a

clusters H BE S

Li+(EC)3(DMC) −5632.2 −116.3 182.1

Li+(EC)2(DMC)2 −5790.4 −113.0 186.2

Li+(EC)(DMC)3 −5946.2 −109.1 204.9

aH = Enthalpy, BE = Binding Energy, S = Entropy.

Table 4. Gibbs Free Energies (in kcal/mol) of Clusters
Containing Two Types of Solvents

clusters G

Li+(EC)3(DMC) + EC + 3DMC −11741.7

Li+(EC)2(DMC)2 + 2EC + 2DMC −11737.3

Li+(EC)(DMC)3 + 3EC + DMC −11735.0

Li+(EC)4 + 4DMC −11744.2

Li+(DMC)4 + 4EC −11729.4
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from an energetic point of view the preference of Li+ to bind
with the highly polar PC and EC molecules is undoubtful, from

an entropic point of view the addition of DMC molecules
contributes to the decrease of the free energy of the clusters. In

Figure 4. Structure of the optimized: (a) Li(EC)(DMC)3
+, (b) Li(EC)2(DMC)2

+, and (c) Li(EC)3(DMC)+ clusters.

Figure 5. Structure of the optimized: (a) Li(EC)(PC)(DMC)2
+, (b) Li(EC)(PC)2(DMC)+, and (c) Li(EC)2(PC)(DMC)+ clusters.

The Journal of Physical Chemistry C Article

DOI: 10.1021/jp511132c
J. Phys. Chem. C XXXX, XXX, XXX−XXX

E

Chapter 5 Section 5.3

96



the investigated finite size clusters the energetic contribution
seems to be the most important one. However, the small free
energy differences observed for the transition paths leading
from one cluster to the other indicate that the formation of
these clusters should be investigated at more extended length
scales, in order to have a more realistic description of the effects
taking place in the bulk liquid phase. This was the most
important motivation to combine DFT calculations of isolated
clusters with classical MD simulations at more extended length
scales, in order to have a clearer picture about the solvation of
Li+ in pure and mixed organic carbonate-based solvents.
3.2. Liquid Solvation Structure. 3.2.1. Local Structural

Inhomogeneities. By analyzing the trajectories obtained by the
classical MD simulations described in section 2.2, the local
structure around Li+ was investigated for all the selected pure
and mixed solvents. The local structure was analyzed in terms
of the most representative atom−atom pair radial distribution
functions (prdfs). The results obtained indicate a preferential
interaction of Li+ with the carbonyl oxygen atom (OC) of the
carbonate molecules, which is in agreement with all the

previously reported experimental and theoretical studies. The
calculated Li+−OC prdfs between Li+ and the carbonyl oxygen
atoms of EC, PC, and DMC in the pure, binary, and ternary
solvents are presented in Figure 7.

One of the main features of the calculated prdfs is the
existence of a high intensity peak located at 1.8 Å in all cases. In
the cases of the pure solvents, the amplitude of this first peak
decreases in the order g(r)max

DMC > g(r)max
PC > g(r)max

EC. In the
cases of the binary and ternary mixtures, the amplitude
increases significantly in the case of DMC and decreases in

Table 5. Thermodynamical Parameters and Binding
Energies of Li+(EC)l(DMC)m(PC)n (l + m + n = 4) Clusters
(H and BE Are in kcal/mol and S in cal mol−1 K−1)a

clusters H BE S

Li+(EC)3(DMC)(PC) −5999.3 −116.6 189.0

Li+(EC)(DMC)2(PC) −6157.0 −114.0 202.5

Li+(EC)(DMC)(PC)2 −6367.2 −117.2 188.9
aH = Enthalpy, BE = Binding Energy, S = Entropy.

Table 6. Gibbs Free Energies (in kcal/mol) of Clusters
Containing Three Types of Solvents

clusters G

Li+(EC)2(DMC)(PC) + 2EC + 3PC + 3DMC −18781.2

Li+(EC)(DMC)2(PC) + 3EC + 3PC + 2DMC −18779.2

Li+(EC)(DMC)(PC)2 + 3EC + 2PC + 3DMC −18780.3

Li+(EC)4 + 4DMC + 4PC −18783.3

Li+(DMC)4 + 4EC + 4PC −18768.5

Li+(PC)4 + 4EC + 4DMC −18781.7

Figure 6. Calculated binding energies of the optimized tetracoordi-
nated Li+ clusters.

Figure 7. Calculated Li+−Oc radial distribution functions.
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the cases of EC and PC. The high amplitude of the first peak of
the Li+−Oc prdf in the case of DMC indicates a strong
interaction between Li+ and the DMC molecules. The position
of the first minimum, which determines the size of the first
solvation shell, is located at about 2.6 Å in the case of the pure
solvents and the binary mixture and at about 2.4 Å in the case
of the ternary one. In order to estimate the number of solvent
molecules around Li+ in all the investigated systems, the local
coordination numbers of each type of solvent were calculated as
a function of the distance from the lithium cation, and they are
presented in Figure 8. The values of the peak positions and
amplitudes of the calculated prdfs together with the first
minimum position and the corresponding coordination
numbers for the first solvation shell are presented in Table 7.
From all these data it can be concluded that the solvation

shell of Li+ consists of four solvent molecules, and this situation
does not change in the cases of the binary and ternary solvent
mixtures. At this point it should be mentioned that several MD
simulation studies27,28,40−47 of the solvation of Li+ in pure
carbonate solvents have given different estimations of the
coordination number corresponding to the first solvation shell
of Li+. In particular, whereas some potential models predict a
solvation shell of Li+ which consists of four solvent
molecules,27,28,40−42 other force fields predict a higher
coordination number.43,45 The potential models predicting
higher coordination numbers also exhibit a strong dependence
of the obtained coordination number on the salt concentration.
From the shape of the obtained prdfs, it is also clear that there
are significant local structural inhomogeneities in the system.
These structural fluctuations are reflected in the behavior of the
prdfs, which reveal the presence of well-structured second and
third coordination shells. Eventually they reach the homoge-
neous limit, obtaining values close to unity, only at length scales
longer than 15 Å.
In the cases of mixtures of organic carbonate solvents only a

limited number of studies40,45,48 have focused on the solvation
of Li+ in binary mixtures. Also, to the best of our knowledge,
this is the first simulation study devoted to the solvation of Li+

in ternary mixtures of carbonate-based solvents. In binary and
ternary mixtures, beyond the estimation of the coordination
number of the primary solvation shell around lithium, the
mixed composition of the shell is also of interest. The local
compositional fluctuations in a spherical shell around Li+ can be
characterized in terms of the corresponding local mole fractions
of each type of solvent.49 For instance, in a ternary mixture of
solvents with indices i, j, k the local mole fraction of solvent k
around Li+ is expressed as

Χ =
+ +

r
n r

n r n r n r
( )

( )

( ) ( ) ( )
k

k

i j k (4)

In eq 4, nk(r) is the coordination number of solvent k
corresponding to a spherical shell of radius r around Li+. In a
similar way, all the local mole fractions for the different types of
solvents in the binary and ternary mixture around Li+ have been
calculated and are presented in Figure 9. The coordination
number considered in the present calculations corresponds to
the carbonyl oxygen atoms of each solvent around Li+. The
results obtained from the present MD simulations actually
reveal that in the cases of binary and ternary mixtures there is a
high concentration of DMC in the first solvation shell of Li+.
The existence of significant compositional fluctuations around
Li+ can also be observed. As a result of these fluctuations, the

structure around Li+ could be described in terms of a short-
range structure (up to 4−5 Å from Li+) where the composition
is rich in DMC and by a longer-range structure where in the
case of the binary solvent mixture the composition is rich in EC
and in the case of the ternary one is rich in PC. At larger length
scales, in the range of about 15 Å from the lithium cation, the
local mole fractions of each solvent reach the corresponding
bulk value. From Figure 9 it can also be observed that the
typical length scale of these fluctuations around Li+ is slightly
more extended in the case of the ternary mixture than in the
binary one.

Figure 8. Calculated Li+−Oc local coordination numbers.
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The findings of the MD simulations regarding the
composition of the first solvation shell of Li+ in binary and
ternary mixtures could be in contradiction with the results
obtained by the DFT calculations. However, it should be
pointed out that the first shell structure predicted in the MD
simulations could be the result of local structural correlations
between the first, second, and third solvation shells which
exhibit completely different compositions. Indeed, the
collective effects arising due to the interactions between
regions of different density and composition could possibly
stabilize the local structure observed inside the first solvation
shell of Li+. These are clearly not taken into account in the
cases of the DFT calculations, where isolated clusters have been
investigated. To perform a meaningful comparison between
MD and DFT results in cases where significant structural
fluctuations are present, extended far beyond the first solvation
shell, the use of larger size clusters in DFT calculations seems
to be needed.
To obtain a more detailed picture of the multiple different

local microstructures observed in the first solvation shell of Li+,
an analysis of the different clusters Li(S1)n(S2)l(S3)m

+ (S1=EC,
S2=DMC, S3PC, n,l,m= 0−4 and n+l+m=4) observed inside
this shell was performed for the binary and ternary solvent
mixtures. The relative populations of these are shown in Figure
10. In the binary mixture, the most prominent clusters inside
the first solvation of Li+ are the Li(EC)(DMC)3

+ and the
Li(EC)2(DMC)2

+, with the first exhibiting almost double
occurrence probability. There is also a small fraction of clusters
(7.2%) where Li+ is pentacoordinated. About 80% of these five-
coordinated Li+ complexes consist of two EC and three DMC
molecules and 19% of three EC and two DMC molecules, and
an almost negligible 1% fraction consists of one EC and four
DMC molecules. In the ternary mixture the most prominent
clusters are Li(EC)(DMC)2(PC)

+ and Li(DMC)2(PC)2
+,

having though non-negligible fractions of Li(EC)(DMC)-
(PC)2

+, Li(DMC)3(PC)
+, and Li(DMC)(PC)3

+, and a smaller
one corresponding to the Li(EC)2(DMC)2

+ cluster. It should

Table 7. Peak Positions and Amplitudes of the Calculated prdfs, Together with the First Minimum Position and the
Corresponding Coordination Numbers for the First Solvation Shell of Li+

system EC PC DMC EC:DMC (1:1) EC:DMC:PC (1:1:3)

first peak position- amplitude 1.78 Å 1.78 Å 1.78 Å Li+− EC: Li+− EC:

63.19 80.20 85.58 1.78 Å 1.78 Å

46.36 54.51

Li+−DMC: Li+−DMC:

1.78 Å 1.78 Å

103.29 202.09

Li+− PC:

1.78 Å

48.03

first minimum position 2.58 Å 2.53 Å 2.58 Å Li+− EC: Li+− EC:

2.53 Å 2.43 Å

Li+−DMC: Li+−DMC:

2.58 Å 2.43 Å

Li+− PC:

2.43 Å

coordination number (first shell) 4.13 4.12 4.00 Li+− EC: Li+− EC:

1.41 0.58

Li+−DMC: Li+−DMC:

2.66 1.86

Li+− PC:

1.60

Figure 9. Local mole fractions (%) of EC, PC, and DMC as a function
of the distance from the lithium cation in the binary and ternary
mixtures.
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be noted that almost half of the observed clusters with four
solvent molecules (49.7%) do not contain EC at all, whereas
DMC is involved in the formation of all of them. PC is absent
in only 6.2% of the total fraction of clusters with four solvent
molecules. There is also a fraction 5.75% of clusters with five
solvent molecules and an almost negligible one (0.25%) of
clusters where Li+ is hexacoordinated.
Interestingly, such a discrepancy between the results

obtained by MD and DFT calculations has been also reported
by Borodin and Smith.40 In their study, Borodin and Smith
performed a MD simulation of a solution of LiPF6 in an
equimolar EC−DMC binary mixture (EC + DMC:Li = 11.8)
using a polarizable potential model. The coordination number
of DMC in the first solvation shell of Li+ was higher than the
coordination number of EC. This is in contrast with the results
reported by Tenney and Cygan,43 favoring the presence of EC
in the first solvation shell of Li+ in a low concentration LiPF6
solution in a binary equimolar EC−DMC mixture. However,
there is a significant difference between the potential models
employed in these two MD simulation studies. The potential
model used by Borodin and Smith40 mainly predicts
tetracoordinated Li+ complexes inside its first solvation shell,
whereas in the case of the simulation reported by Tenney and
Cygan45 the solvation shell of Li+ mainly consists of five or six
solvent molecules. The potential model used in the presented
study also favors local structures with four solvent molecules
around Li+. This observation was an additional motivation to
search for possible correlations between the formation of a local
tetrahedral structure and the preference of Li+ to form a first
solvation shell mainly consisting of DMC molecules.
3.2.2. First Solvation Shell Orientational Ordering. The

local tetrahedral structure around lithium can be investigated in
terms of the tetrahedral order parameter, q.50 This parameter q
provides information about the extent to which a particle and

its four nearest neighbors adopt a tetrahedral arrangement and
is defined as

∑ ∑ ϕ= − +
= = +

⎜ ⎟
⎛

⎝

⎞

⎠
q 1

3

8
cos

1

3
j k j

jik
1

3

1

4 2

(5)

In this equation ϕjik corresponds to the angle formed by the
vectors ri⃗j and ri⃗k, connecting the lithium cation i with the
oxygen atoms of two of its four nearest neighbors j, k. Using
this definition, q = 1 in a perfect tetrahedral network and q = 0
in an ideal gas.48 Kumar et al.51 have also suggested that an
entropic term associated with this local tetrahedral order
around a particle can be calculated from the probability
distribution of the tetrahedral order parameter P(q)

∫= · − · ·S K q P q q
3

2
ln(1 ) ( ) dtetr B (6)

We note that, in general, the entropy of a fluid can be expressed
in terms of several contributions arising from the integrals over
multiparticle correlation functions.52−54 However, our analysis
revealed that orientational entropy plays a crucial role in the
stabilization of the local solvation shell structures, and hence we
have focused on this particular aspect of orientational order and
entropy. Also Kumar et al.51 have proposed that in systems
exhibiting significant local tetrahedral orientational order the
tetrahedral entropy captures the most important contributions
arising from configurational orientational correlations54 and
therefore offers a rather simpler way to investigate the entropy
associated with such kinds of local structures.
The normalized distributions P(q) have been calculated for

all the simulated systems and are presented in Figure 11. The

Figure 10. Fractions of the Li(EC)n(DMC)4−n
+ and Li-

(EC)n(PC)m(DMC)4−n−m
+ clusters in the binary and ternary mixture.

Figure 11. Normalized distribution of the tetrahedral order parameter
around Li+ in all the investigated solvents.

Table 8. Average Values of q and Stetr/KB per Lithium Cation
Obtained by the MD Simulations

system EC PC DMC
EC:DMC
(1:1)

EC:DMC:PC
(1:1:3)

⟨q⟩ 0.934 0.932 0.964 0.948 0.947

Stetr/KB −4.56 −4.52 −5.29 −4.87 −4.84
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average values of q and Stetr are shown in Table 8. From the
shape of these distributions it can be seen that there is a very
significant tetrahedral local ordering around Li+ in all cases, and
the addition of cosolvents does not significantly distort this
structural order. The average values of q are in the range of
about 0.93−0.96 in all cases, very close to the ideal tetrahedron
value. Whereas there is no significant difference in the average
values of q, the calculated value of Stetr is noticeably lower in the
case of the pure DMC solution, signifying that from an entropic
point of view the presence of DMC contributes to the
stabilization of the local tetrahedral structure around Li+.
As has been pointed out by one of the authors in a previous

publication,55 given the additive property of the integral in eq 6,
the contributions of different cluster structures to the calculated
Stetr value can be easily extracted. By using the fractions χnlm of
the different cluster structures Li(S1)n(S2)l(S3)m

+ (S1 = EC, S2 =
DMC, S3 = PC), already shown in Figure 10, the tetrahedral
entropic term Stetr per lithium cation is given by Stetr = Σnlmχnlm·
Stetr
nlm, where the contribution of each cluster state is

∫= · − · ·S K q P q q
3

2
ln(1 ) ( ) dnlm nlm

tetr B (7)

In this equation Pnlm(q) is the normalized probability density
distribution of the tetrahedral order parameter q corresponding
to a cluster Li(S1)n(S2)l(S3)m

+ inside the first solvation shell of
Li+. The calculated values of Stetr

nlm corresponding to all the
tetracoordinated Li+ clusters observed during the simulations of
the dilute solutions of Li+ in the pure, binary, and ternary
solvents are presented in Figure 12. In general it can be

observed that the clusters having a high fraction of DMC
molecules (three and four molecules) exhibit a higher
tetrahedrality, which is reflected in the lower values of Stetr

nlm.
Interestingly there is also a small difference in the Stetr

nlm values of
the clusters Li(EC)2(DMC)2

+ observed in the binary and
ternary solvent mixtures, the Li(EC)2(DMC)2(b)

+ and Li-
(EC)2(DMC)2(t)

+ clusters, respectively. This is a clear

indication of the effect of the second solvation shell structure,
which is different in the binary and ternary solvent mixtures, on
the stabilization of the local structure observed in the first
solvation shell. This observation further supports our previous
statements that the use of larger size clusters in DFT
calculations is required in cases where there are significant
structural fluctuations, extended far beyond the first solvation
shell.
It should be mentioned that previous experimental studies,

using electrospray ionization and mass spectrometry (ESI-MS)
techniques,56 have predicted a stronger preference of Li+ to
bind with EC than with DMC in binary EC−DMC solvents.
This preference has been attributed to the stronger ion dipole
interactions between Li+ and EC molecules. However, the
authors in that study pointed out that their results have been
extracted from measurements of isolated clusters formed by
two solvent molecules only instead of four. This difference has
been attributed to the relative depletion of free solvent
molecules at high salt concentrations or to a possible partial
desolvation, during which the loosely bound molecules in the
Li(S)4

+ clusters (S: solvent) could be lost before the solvated
species ever reach the aperture of the spectrometer.
Borodin and Smith40,57 pointed out in their study, where

they observed a slight preference for Li+ to bind with DMC,
that the composition of the Li+ solvation can be different in the
gas and liquid phases. Takeuchi et al.42 have come to similar
conclusions about the Li+ binding patterns to a PF6

− anion.
Another issue, which has not been discussed in the previous
ESI-MS investigation, is the importance of the presence of the
anions in the stabilization of the Li+ solvation shell. The
investigated solutions had a high salt concentration, and
therefore the presence of the anions could strongly affect the
preferential binding of Li+ with the solvent molecules. The
preferential solvation around Li+ in binary and ternary mixtures
is a quite complicated issue, and besides the relative permittivity
and donicity of the cyclic and acyclic components of the mixed
solvent,56 salt concentration possibly plays a very important
role. This statement is also supported by the findings of
Borodin and Smith,40 where the presence of PF6

− anions in the
solvation shell around Li+ strongly affects the preferential
binding of Li+ with the cyclic and acyclic solvent molecules.
This was the main reason why in the presented study dilute
solutions of Li+ were selected to be investigated, to focus more
on the effects arising just due to the individual cation−solvent
and solvent−solvent interactions. However, the anion concen-
tration effect on the local solvation structure of mixed
electrolyte solvents is a very important topic and will be the
subject of a forthcoming study.
In general the preferential solvation around Li+ is being

discussed in terms of the strength of individual pair cation−
dipole interactions. In this sense, the observed preferential
solvation of Li+ by the nonpolar DMC molecules instead of the
highly polar EC and PC molecules seems to be problematic. To
obtain a deeper insight, having in mind that collective effects
might play a very important role in the solvation phenomena in
condensed phases, the total dipole of the solvent molecules
inside the solvation shell of Li+ was calculated as

∑ μ⃗ = ⃗ ≤−M r r, with
i

i ish Li c
(8)

These local collective dipole moments, corresponding to the
sum of the individual molecular dipoles of the solvent
molecules which are inside the first solvation shell of Li+,

Figure 12. Calculated values of Stetr
nlm corresponding to all the

tetracoordinated Li+ clusters observed in the pure, binary, and ternary
solvents.
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have been extracted by analyzing the trajectories of the classical
MD simulations.
It should be also noted that although the effects arising from

induction interactions are not taken into account in the classical
simulations, in contrast with ab initio methods, the atomic
charges and molecular geometries used in the classical force
fields have been extracted from high level ab initio
calculations27,58 and predict dipole moments which are slightly
higher than those reported experimentally for the gas phase.
This is a very common approach to build effective classical
potential models for liquid simulations, since due to polar-
ization effects the dipole moments in the liquid phase are
slightly higher than the gas phase ones. The effective potential
models used also predict with a very good accuracy a wide
range of properties of the neat liquid solvents.27,58

In eq 8, rc = 2.6 Å is the distance determining the size of the
solvation shell taken into account in the calculations. The
calculated normalized probability density distributions P(Msh)
of the magnitude of the total dipole Msh = |M⃗sh| for all the
investigated systems are presented in Figure 13. From these

data it is clear that inside the first solvation shell of Li+ in
ternary and binary mixtures, which exhibits a high concen-
tration of nonpolar DMC molecules, the total dipole of the
solvent molecules is higher than in the cases where Li+ is
solvated by the highly polar EC and PC molecules. This finding
signifies that the observed tetrahedral arrangement of the
solvent molecules inside the solvation shell of Li+ causes a
cancellation of the individual molecular dipole vectors, and this
cancellation is more important in the cases where molecules of
the same geometry are present. When different types of solvent
molecules are tetrahedrally packed inside the first solvation the
resulting total dipole is higher, even though the fraction of the
nonpolar DMC molecules is higher. As a result, the local
environment around Li+ becomes more polar when the fraction
of DMC is higher. This observation clearly indicates that
collective effects are very important in determining the local
dielectric environment around a Li+ cation, and the relative
binding preferences should be determined on the basis of this
collective dipole moment of the solvation shell and not in terms
of pair ion−dipole interactions.

Before closing this section it would be useful to point out
again that the experimental determination of the coordination
number around the lithium ions in pure carbonate-based
solvents has not been definitely resolved.7−18 As it was
mentioned in the Introduction, it should be however
emphasized that designing experimental methods or theoretical
models to analyze the experimental data in order to provide a
direct measurement of the coordination number is an extremely
complicated task.7,19,20 Nevertheless, recent advances59 in
coupling theoretical methods with experiments to bias
molecular simulations with experimental data tend to favor a
tetrahedral-like structure, as also sophisticated polarizable
models,40 which predict a wide range of properties very close
to the experimental ones. This was the main reason why a
simple model, predicting a tetrahedral network around Li+, was
selected in the present treatment. In general, one of the most
reliable experimental methods to extract information about the
local structure in liquids is neutron diffraction. Only one
neutron diffraction study of a 10 mol % solution of LiPF6 in
liquid PC has been reported up to now.12 In this study the
authors, by integrating the total radial distribution function
G(r) obtained by the diffraction experiments up to its first
minimum, have estimated the coordination number around Li+

to be 4.5. However, they have assumed that all the
contributions to the total G(r) at the short-range part up to
2.4 Å arise from the Li+−Oc prdf. By inspecting the above-
mentioned theoretical studies40,59 and by performing a trial
simulation of the same system, it became obvious that the Li+−
F prdf contributes to the shape of the total G(r) at this short
range. Therefore, a part of this 4.5 coordination number arises
from the Li+−F coordination number. However, the cation−
anion coordination number at the same distance range is
definitely smaller since the Li+−F prdf and the corresponding
coordination number provide information about the number of
fluorine atoms inside the solvation shell of Li+, which of course
could belong to the same PF6

− anion. As a consequence, it is
very likely that the coordination number giving the total
number of solvent molecules and anions around Li+ should be
smaller and could be even closer to four, or less. However, from
that neutron diffraction study it is not possible to extract the
separate contributions of the Li+−Oc and Li+−F prdfs in order
to have a more accurate estimation of the total coordination
number in the first solvation shell of Li+. From this observation
it becomes clear that even the interpretation of experimental
data should be treated very carefully, and if it is also combined
with reverse modeling techniques60 it could provide even more
valuable information.

4. CONCLUDING REMARKS

In the present study the solvation of Li+ in pure carbonate-
based solvents and their binary and ternary mixtures has been
investigated, using a combination of quantum chemical DFT
calculations and classical MD simulations. An analysis based on
the changes in the free energy associated with the transitions
between different types of clusters formed by the lithium cation
and the solvent molecules has shown that the formation of
complexes with four solvent molecules is the most favorable. In
the cases of clusters containing EC and DMC molecules, the
DFT calculations have predicted a preferential binding with EC
rather than with DMC. For the clusters included at the same
type EC, PC, and DMC molecules, although the Li-
(EC)2(DMC)(PC)+ has been predicted to be the most
favorable one, the free energy changes for the transition paths

Figure 13. Calculated normalized probability density distributions
P(Msh) of the magnitude of the total dipole Msh = |M⃗sh| inside the
solvation shell of Li+.
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between several clusters are very small, indicating that all these
structures could possibly exist in the bulk phase.
On the other hand the MD simulations have revealed the

existence of significant structural heterogeneities, extending up
to a length scale which is more than five times the size of the
first shell radius. These heterogeneities are very important in
the cases of the binary and ternary solvent mixtures, revealing
very significant compositional inhomogeneities around a
lithium cation. As a result of these fluctuations, the structure
around Li+ in the mixed solvents can be described in terms of a
short-range structure (up to 4−5 Å from Li+), where the
composition is rich in DMC, and by a longer-range structure
where in the case of the binary solvent mixture the composition
is rich in EC and in the case of the ternary one is rich in PC.
The local mole fractions of each solvent obtain their bulk values
at more extended length scales, as it was mentioned above. This
finding indicates that the collective effects arising due to the
interactions between regions of different composition could
possibly stabilize the local structure of the first solvation shell of
Li+.
In the DFT calculations of the finite size isolated clusters,

although from an energetic point of view the preference of Li+

to bind with the highly polar PC and EC molecules is
undoubtful, from an entropic point of view the addition of
DMC molecules contributes to the decrease of the free energy
of the clusters. In these finite size clusters the energetic
contribution seems to be the most important one. However,
the small free energy differences observed for the transition
paths leading from one cluster to the other indicate that the
formation of these clusters should be investigated at more
extended length scales in order to have a more realistic
description of the effects taking place in the bulk liquid phase.
The existence of significant structural fluctuations in the bulk
liquid phases, extended far beyond the first solvation shell,
signifies that to achieve a direct comparison between the MD
and the DFT results the use of larger size clusters in DFT
calculations seems to be more appropriate.
The MD simulations have also revealed that there is a very

significant tetrahedral local ordering around Li+ in all cases, and
the addition of cosolvents does not distort this structural order.
By calculating an entropic term associated with this local
tetrahedral order around Li+, it has also been revealed that the
clusters having a high fraction of DMC molecules (three and
four molecules) exhibit a higher tetrahedrality, which is
reflected in the lower values of this entropic term. Therefore,
from an entropic point of view the presence of DMC
contributes to the stabilization of the local tetrahedral structure
around Li+.
A very interesting finding also revealed in the present study is

that inside the first solvation shell of Li+ in the ternary and
binary mixtures, which exhibit a high concentration of nonpolar
DMC molecules, the total dipole of the solvent molecules is
higher than in the cases where Li+ is solvated by the highly
polar EC and PC molecules. The observed local tetrahedral
packing of the solvent molecules in the first solvation shell of
Li+ causes a cancellation of the individual molecular dipole
vectors, which seems to be more important in the cases where
molecules of the same type are present. These collective effects
are very important in determining the local permittivity around
a Li+ cation, and the relative binding preferences should be
based upon this total dipole moment of the solvation shell and
not in terms of the pair ion−dipole interactions, which is
traditionally considered as the most important factor

determining the preferential solvation in such systems. Further
work is in progress to elucidate the impact of the above static
structural features on dynamic and transport properties of the
investigated electrolytes.
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6

Conclusions and Perspectives

We have investigated the most important component in batteries is called as electrolytes,

which can be involved in transport properties, high energy densities, long cycle life and

wide-range temperature applications etc . The carbonate solvents are playing impor-

tant role in batteries. These electrolytes were studied using the combinations of both

quantum chemical density functional theory (DFT) and classical Molecular Dynamics

simulations. By studying the pure and mixture of carbonate solvent electrolytes with

lithium salt, we have been able to demonstrate the most stable local structure around

lithium ion, component of solvents in the first shell with particular compositions and

the most preferable solvent.

In our study, we have considered the typical most commonly used solvents such as

cyclic Ethylene carbonate(EC), Propylene carbonate(PC) and linear Dimethyl carbon-

ate(DMC). The DFT calculations have been performed for pure systems Li+(S)n (S=EC,

DMC, PC and n = 1-5) and binary mixtures Li+(S1)n(S2)m (S1, S2 =EC, PC, DMC,

with m+n=4), and ternary clusters Li+(EC)l(DMC)m(PC)n with l+m+n=4. Moreover,

the pure solvent clusters were also studied including the effect of PF6
– anion. For MD

simulations, we were considered the following systems at infinite dilution i) Pure solvent

clusters with Li+ ion ii) binary mixture EC:DMC with a equivalent molar composition

of 1:1 with Li+ ion and iii) the ternary mixture EC:DMC:PC with 1:1:3 molar ratio with

Li+ ion, respectively.

As based on the DFT results, the changes in the free energy during the transitions

between different types of clusters formed by the lithium cation and the solvent molecules

has shown that the formation of complexes with four solvent molecules is the most

favourable. The solvents were arranged in a tetrahedral geometry which is observed in

all cases such as pure and mixtures. In the case of Li+ PC clusters, the smallest difference

in free energies of Li+(PC)3 and Li+(PC)4 clusters suggest that both configurations could

possibly exist in the bulk solution. Our results were adapted with several theoretical

as well as experimental findings. In the cases of Li+(S)5 (S=EC, DMC, PC) clusters,
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the fifth solvent molecules were arranged very far from the central Li+ ion, explains the

Li+ ion can accommodate four molecules in the first solvation shell and extra molecules

could participate in the second solvation shell and free energy also predicts the same as

Li+(S)4 is most stable. We have predicted the Li+(S)2PF6
– cluster to be the most stable

in the case of pure solvents with LiPF6 salt and a solvent molecule can not replace the

PF6
– anion from the most stable Li+(S)2PF6

– cluster.

The same DFT free energy results in binary clusters found that Li+(EC)2(PC)2 is most

stable than other possible clusters in EC:PC mixtures, saying both EC and PC molecules

approach the Li+ ion with equal participation and there is no preferential solvation oc-

curred. However, in both cases of Li+ EC:DMC and Li+ PC:DMC mixtures where

the (EC)3(DMC) and (PC)3(DMC) clusters are more stable than other corresponding

possible clusters. Therefore, our DFT calculations have predicted a preferential bind-

ing obtained with EC or PC rather than with DMC. In ternary mixtures, the cluster

Li+(EC)2(DMC)(PC) has been predicted to be the most favourable one, the free energy

changes for the transition paths between several clusters are very small, indicating that

all these structures could possibly exist in the bulk phase.

Our MD results have shown that the local solvation structure consists of four solvent

molecules around Li+ ion in a tetrahedral geometry. We have found the first peak

separation of Li+ Oc(carbonyl oxygen) at 1.78 Å which is almost comparable with DFT

results where the typical distance is 1.93 Å. Due to the inhomogeneties around lithium

ion in binary and ternary mixtures, the fluctuations could be described in terms of a

short range structure (up to 4-5 Å from Li+) where the composition is rich in DMC

and by a longer-range structure where in the case of the binary solvent mixture the

composition is rich in EC and in the case of the ternary one it is rich in PC. Such a

finding indicates that the collective effects arising due to the interactions between regions

of different composition could possibly stabilize the local structure of the first solvation

shell of Li+.

The MD simulations have also revealed that there is a very significant tetrahedral local

ordering around Li+ in all cases and the addition of cosolvents does not distort this

structural order. By calculating an entropic term associated with this local tetrahedral

order around Li+, it has also been revealed that the clusters having a high fraction of

DMC molecules (3 and 4 molecules) exhibit a higher tetrahedrality, which is reflected

in the lower values of this entropic term. Therefore, from an entropic point of view

the presence of DMC contributes to the stabilization of the local tetrahedral structure

around Li+.

A very interesting finding also revealed in the present study is that inside the first solva-

tion shell of Li+ in the ternary and binary mixtures, which exhibit a high concentration

of non-polar DMC molecules, the total dipole of the solvent molecules is higher than

in the cases where Li+ is solvated by the highly polar EC and PC molecules. The ob-

served local tetrahedral packing of the solvent molecules in the first solvation shell of Li+
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causes a cancellation of the individual molecular dipole vectors, which seems to be more

important in the cases where molecules of the same type are present. These collective

effects are very important in determining the local permittivity around a Li+ cation and

the relative binding preferences should be based upon this total dipole moment of the

solvation shell and not in terms of the pair ion dipole interactions, which is traditionally

considered as the most important factor determining the preferential solvation in such

systems.

Most of our DFT results were comparable with MD results, but still our work also has

some limitations. In the DFT calculations of the finite size isolated clusters, from an

energetic point of view the preference of Li+ to bind with the highly polar PC and EC

molecules. However, the MD results found DMC is a most preferable solvent than EC

and PC molecules. The finite size cluster effects in DFT could possibly affect the direct

comparisons with MD results. In these finite size clusters the energetic contribution

seems to be the most important one. Therefore, we have investigated the binary and

ternary mixtures at more extended length scales in order to have a more realistic de-

scription of the effects taking place in the bulk liquid phase. The existence of significant

structural fluctuations in the bulk liquid phases, extended far beyond the first solvation

shell, signifies that to achieve a direct comparison between the MD and the DFT results

the use of larger size clusters in DFT calculations seems to be more appropriate.

Finally, our perspective of work is to analyse the typical life time of the clusters in order

to understand the transport properties of lithium ion. In our results, we have reported

the second solvation is rich of EC concentration, probably it could be involved in the

lithium ion transport. Therefore, if we could perform the DFT analysis including the

second solvation shells, we could give a detailed description of the influence of second

solvation shell. Indeed, the DFT calculations should be taken too much computational

time in order to perform the optimization with around 120 atoms.
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Chapitre 1: Introduction et moti-

vations

Dans la première section de ce chapitre, nous décrivons brièvement les dispositifs les plus

importants qui sont utilisés pour le stockage de l’énergie. Ensuite, nous nous concentrons

principalement sur les batteries rechargeables, les batteries lithium-ion en particulier, et

leurs principaux composants tels que l’électrolyte. Puis, nous établierons un aperçu

général ainsi que l’état de l’art des propriétés et applications des différents solvants

carbonate tels que le carbonate d’éthylène, le carbonate de diméthyle et les carbonates

de propylène pures et en présence de sels, comme le LiPF6. Dans les sections suivantes,

nous allons présenter ce qui nous a poussé à introduire des mélanges de solvants et fournir

un aperçu de la littérature la plus récente. Enfin, nous allons préciser nos principales

motivations pour ce travail et donner un aperçu général du manuscrit.

Introduction

Une augmentation de la demande énergétique mondiale et les répercussions environ-

nementales associées sont les questions les plus importantes dans la société moderne.

Dans les deux dernières décennies, la nécessité du stockage d’énergie efficace a aug-

menté de façon spectaculaire. En effet, des dispositifs tels que les voitures, les véhicules

électriques, les téléphones cellulaires, les téléviseurs, sont utilisés dans la vie quotidi-

enne, mais une fraction importante de l’énergie nécessaire à leur fonctionnement provient

toujours de combustibles fossiles comme le pétrole, le gaz naturel ou le charbon. Mal-

heureusement, ces classes de combustibles sont les plus importants responsables de la

production des gaz à effet de serre, lequel nuit gravement à l’environnement. Afin de

réduire la grande quantité d’émission de dioxyde de carbone dans l’atmosphère, les

sources d’énergie de remplacement sont nécessaires. Différentes technologies ont été in-

troduites dans le passé, tels que les cellules solaires, les batteries, les piles à combustible

111



Chapter 6 Section 7.0

et supercondensateurs. L’électricité verte ou les énergies renouvelables ont été générées

avec succès à partir du vent ou de sources naturelles solaires, qui sont malheureuse-

ment en corrélation avec les conditions climatiques et donc fortement fluctuantes dans le

temps. En conséquence, les grands dispositifs de stockage d’énergie à grande échelle sont

maintenant fondamentale, pour stocker l’énergie sur de longues échelles de temps avec

une bonne compatibilité avec l’environnement. La conversion d’énergie électrochimique

est le domaine de recherche clé pour les sources d’énergie alternatives.

Les dispositifs de conversion et de stockage d’énergie électrochimique comprennent les

piles à combustible, les batteries et les super condensateurs. Ces technologies sont large-

ment utilisés dans plusieurs applications telles que les appareils portables, les transports,

les industries [3–7]. Bien que les mécanismes de conversion d’énergie et la stratégie de

stockage utilisés dans ces dispositifs sont différents, ils présentent des caractéristiques

communes comme un processus fournissant l’énergie qui a lieu à l’inter-phase entre

trois segments: anode, électrolyte et de cathode. Plus précisément, tous les disposi-

tifs sont constitués par deux électrodes qui sont séparées par la solution d’électrolyte

[3, 4, 6, 8, 9]. L’énergie chimique est convertie en énergie électrique par des réactions

d’oxydo-réduction dans les piles et les piles à combustible. Dans le cas des superconden-

sateurs électrochimiques, l’énergie est stockée à partir de l’accumulation des charges à

l’interface entre l’électrode et l’électrolyte, dans lequel il n’e se produit pas de réaction

chimique. Dans ce qui suit, nous discutons brièvement la composition des matériaux,

les mécanismes de conversion de l’énergie et le fonctionnement de tous les appareils.

Les piles à combustible [9] sont des dispositifs qui convertissent l’énergie chimique

fournie comme un combustible en énergie électrique par une réaction chimique d’oxydation

de l’oxygène. Nous montrons un exemple de pile à combustible à la 1 in Figure 7.1(b).

Ce dispositif diffère sensiblement de batteries, nécessitant des sources constantes de

combustibles et de l’oxygène pour que la réaction chimique se produise. Les piles à com-

bustible fournissent de l’énergie avec une efficacité de plus de 80%, sont éco-compatibles

et sont principalement utilisés dans les applications stationnaires [10] et les transports.

L’ électrolyte polymère (ou échange de protons) de piles à combustible à membrane

(PEMFC) [11] est principalement utilisé dans les appareils fixes, de l’automobile et

portables. Dans la PEMFC, la conductivité protonique élevée est obtenue en présence

d’eau. Ses propriétés comprennent: stabilité à l’oxydation, électro-osmose, faible trans-

port de l’eau et une faible conductivité électronique [8]. Le rôle de la PEMFC est

qu’elle permet le transport des protons de l’anode à la cathode. Cette membrane est

principalement constituée de polymères organiques contenant des groupes fonctionnels

acides tels que sulfonique, carboxylique et des groupes d’acides phosphoniques. Dans

laquelle, il se dissocie en présence d’eau pour permettre H3O
+ transport des protons hy-

dratés [11]. L’inconvénient principal d’une pile à combustible est qu’il ne peut produire

de l’électricité en continu qu’aussi longtemps que le carburant est fourni. Les batteries

1http://en.wikipedia.org/wiki/Fuel-cell
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sont donc nécessaires pour le stockage de l’électricité produite, comme nous le verrons

ci-dessous.

Les piles primaires [8, 12] sont des dispositifs qui ne peuvent être utilisés qu’une seule

fois et sont ensuite rejetés, car ils ne peuvent pas être rechargés en électricité, contraire-

ment aux piles secondaires . Les réactions électrochimiques qui se produisent dans la

cellule ne sont pas réversibles et la batterie cesse de fonctionner lorsque les réactions sont

complètes. En 1860, Leclanché invente la première pile primaire, consistant en une cel-

lule zinc-carbone2, comme le montre la figure 7.1(a). Nature du dioxyde de manganèse

noir de carbone a été employée en tant que cathode et l’électrolyte est une combinaison

de chlorure d’ammonium et de zinc chlorure contenus dans une gaine en zinc. L’oxyde

de manganèse synthétique a, par la suite, donné de meilleures performances que l’oxyde

de manganèse naturel. Le carbone-zinc avec batterie chlorure de zinc pour électrolyte

primaire a la même performance que le zinc-manganèse et est mieux vendu dans le

monde entier à partir de 2003. L’alcaline hydroxyde électrolyte de potassium (KOH) en

zinc-manganèse est principalement utilisé dans les batteries primaires, car il fournit une

meilleure performance que la cellule carbone zinc. En outre, le même électrolyte a été

utilisé dans de nombreux équipements électroniques et aussi plus fiable dans des applica-

tions de haute énergie. Il existe plusieurs type de cellules primaires: chlorure de thionyle

de lithium, l’oxyde de zinc-argent, les cellules lithium-dioxyde de soufre. Les cellules pri-

maires au lithium sont plus largement utilisées que les cellules alcalines, en raison de la

densité d’énergie élevée. Le lithium métallique est utilisé comme anode dans les piles

au lithium et la tension dépasse 3,7 V, en raison du fort potentiel négatif de lithium.

L’inconvénient des cellules au lithium est une capacité de débit inférieure, en raison d’un

électrolyte non aqueux à faible conductivité. L’interphase électrode solide (SEI) (isolant

électroniquement film qui permet sélectivement le transport des ions lithium) peut facile-

ment être formée dans les cellules au lithium. D’autres cellules primairesLi−SOCl2 et

Li−SO2 sont utilisées dans des applications à large gamme de température ainsi que dans

des applications telles que les transpondeurs, l’équipement militaires et l’ électronique

automobiles.

Récemment, les condensateurs électrochimiques [6] ou ultra condensateurs [13, 14] ont

considérablement attiré l’attention en raison de leur densité de puissance élevée, leur long

cycle de vie ((>100 000 cycles), leur charge et décharge rapide ainsi que leur puissance

de sortie élevée. leur performance de livraison de puissance qui remplit parfaitement

l’écart [15] entre les piles / cellules de carburant (stockage de haute énergie) et les

condensateurs diélectriques traditionnels (puissance de sortie élevée) [14]. Ils agissent

également en tant que dispositifs de stockage d’énergie temporaire, lorsqu’ils sont as-

sociés aux piles à combustible et aux batteries. Un super-condensateur électrochimique 3

est illustrée à la Figure 7.1(c) Il ya cependant quelques inconvénients, tels que les coûts

2http://www.daviddarling.info/encyclopedia/L/Leclanche-cell.html
3https://gigaom.com/2011/07/12/how-ultracapacitors-work-and-why-they-fall-short
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(a) Primaire (Leclanché) Cell (b) des Piles à Combustible (c) Condensateur

Figure 7.1: des dispositifs électrochimiques tels que a) la cellule primaire ou Leclanché,
se compose d’une anode (tige de zinc) et la cathode une plaque de carbone entourée
par du dioxyde de manganèse à remplissage et les électrodes ont été plongées dans une
solution d’ammonium et de zinc chlorures b) Pile à combustible conductrice de protons
c) Représentation schématique de supercondensateurs caractérisés par deux plaques

métalliques appelés électrodes immergées dans un électrolyte

de production élevés et une faible densité énergétique. Deux grandes classes de condensa-

teurs électrochimiques sont utilisés, super-condensateurs redox de pseudo-condensateur

et condensateurs électriques à double couche (EDLC). La différence entre ces condensa-

teurs est que les réactions redox réversibles comportent entre l’électrolyte et les espèces

électro-actives sur la surface d’électrode en pseudo-condensateur mais aucune réaction

dans EDLC [13].

Récemment, les condensateurs lithium-ion (LICs) ont attirés l’attention des chercheurs

pour leur capacité à atteindre une densité d’énergie de niveau de batterie avec la densité

de puissance des super-condensateurs. Toutefois, le déséquilibre cinétique des électrodes

dans les LIC reste un problème et en vue de surmonter ce problème, du graphène fonc-

tionnalisé est utilisé pour équilibrer la cinétique et conduit à un stockage du lithium

[16]. En outre, les groupes fonctionnels d’oxyde de graphène cathode agissent avec des

centres radicaux qui stockent le lithium à haut potentiel. [17]

Ce travail de thèse se concentre particulièrement sur les batteries lithium-ion secondaires

que nous discutons dans la section suivante.

Piles Rechargeables

Parmi les différentes technologies de stockage, les batteries sont les dispositifs les plus ef-

ficaces et robustes. Les batteries convertissent l’énergie chimique en énergie électrique ou

vice-versa, par des réactions chimiques d’oxydation-réduction réversibles. La première

batterie rechargeable a été basée sur des electrodes nickel-cadmium (Ni-Cd) et le sel
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alcalin (KOH) comme électrolyte [8]. Le métal Ni constitue l’électrode positive (cath-

ode), dont la fonction est d’insérer / désinsérer les protons pendant le chargement /

déchargement. La cathode Ni est en réalité une électrode de Ni(OH)2. Le Cd con-

stitue l’électrode négative (anode), qui fonctionne de manière réversible, et le produit de

décharge est Cd(OH)2. En raison de caractère toxique de Cd et une densité énergétique

médiocre, ce dispositif a été remplacé par le nickel-métal hydrure (Ni-MH). Bien que,

Ni-MH a une capacité de stockage d’énergie élevée pour une faible densité. Ceci n’a

pas fonctionner correctement à des températures basses, cependant il a joué un rôle

important dans l’évolution des véhicules électriques, des moteurs et pour le marché de

l’appareil électronique portable.

En raison des inconvénients cités ci-dessus des piles au nickel-métal, un nouveau type

de batterie est développé, la pile au lithium. En particulier, les batteries lithium-

ion (LIB) ont été utilisées depuis quelques décennies et avec un succès particulier dans

une large gamme de technologies, y compris les appareils électroniques portables et de

nouvelles applications de l’automobile, en raison de leur efficacité énergétique élevée

(>90 %), une bonne densité de stockage d’énergie, et une longue durée de cyclisme

(>5000 de cycle). D’autres technologies explorées, tels que l’acide de plomb, le nickel-

cadmium et nickel-hybride [2, 18–22] piles ont été démontrées être bien adaptées pour

de telles applications, en raison de la faible densité énergétique par rapport aux bat-

teries lithium-ion. La comparaison des densités d’énergie de différentes classes de bat-

teries est présentée dans la Figure 7.2. Le développement de l’électrochimie de la

Li-ion a été la plupart du temps en raison de son faible rayon ionique et de bas poids

moléculaire, propriétés bénéfiques pour la diffusion. En outre, il a un faible potentiel

redox E◦(Li+/Li) = −3.04V [23] par rapport à SHE (électrode standard hydrogène) de

sorte qu’il peut facilement réduire. Ce processus cré une différence de potentiel entre les

électrodes et le transport de lithium également obtenus. De plus le lithium est plus stable

par rapport à des solvants non aqueux. Dans un premier temps, le lithium a été utilisé

dans des batteries primaires, et après quelques décennies, il est maintenant le composant

principal de batteries rechargeables [12]. La tension des capacités et l’exploitation de

LIB sont 700-2400 mA.h et ∼ 3,6 V, respectivement. La température de fonctionnement

du LIB varie entre ◦C [24]. Malheureusement, à basse température, (< 15 ◦C), la ca-

pacité devient assez faible, tandis que à haute température, (> 60 ◦C), la dégradation

des matériaux d’électrode devient importante. Les pionniers Goodenough et Whitting-

ham [25] avaient développé des matériaux pour la cathode des batteries lithium-ion en

1970. La première batterie au lithium-ion commerciale a été produite par Sony Co. en

1991 [26] et a été fondée sur LiCoO2 et la coke de pétrole. On montre un diagramme

schématique d’une batterie lithium-ion sur la Figure 7.3(a).

Après 1991, le développement de la LIB a considérablement augmenté, en particulier

au cours des deux dernières décennies. LIB sont exploitées dans des applications de

haute densité énergétique et leur potentiel est étudié pour une utilisation sur véhicules
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Figure 7.2: Comparaison des technologies de batteries rechargeables en fonction de
densités d’énergie volumique et spécifiques. Figure de la référence [1]

électrique (EV), électrique hybride (HEV) et Plug-in Hybrid (PHEV) [24], en remplace-

ment de la combustion interne des moteurs (IC) qui utilise des combustibles fossiles,

diesel ou essence, pour produire de l’électricité.

Une batterie au lithium-ion normale est composée d’un carbone négatif (généralement

en graphite) et d’une anode d’oxyde métallique en couche solide (par exemple LiTMO2,

où T est un métal de transition) en tant que cathode. Ces deux électrodes sont les

sources de réactions chimiques et sont séparées par un électrolyte (lithium-ion milieu

conducteur), qui se compose de sels de lithium (par exemple, LiPF6) et les solvants

organiques (par exemple, le carbonate d’éthylène). Les réactions sont démarrées lorsque

les électrodes sont connectées à une charge externe et le flux d’électrons se produit

à partir de l’anode vers la cathode. En inversant le processus, la batterie peut être

rechargée par l’application d’un courant extérieur. Pendant la charge, les ions lithium

sont desintercalés (intercalation hôte) à partir de la cathode (par exemple, en couches

LiCoO2[27]) qui intercale entre les couches de graphite qui passe à travers l’électrolyte.

La décharge est un processus inverse.

Durant l’intercalation / désintercalation, les réactions se produisent dans l’électrolyte,

qui se décompose et forme l’électrolyte solide entre phases (SEI) [28–34]. Le SEI est

formée à la surface de l’anode de graphite, où le graphite est transformé en une autre

forme LiCx, où LiC6 est le plus haut degré d’intercalation. Les SEI ont été étudiées

à l’aide de rayons X et elles comprenent des composés tels que l’oxalate de lithium

(Li2C2O4), le méthylate de lithium (LiOCH3) et de succinate de lithium (LiO2CCH2CH2CO2Li)

[35] respectivement. En outre, la performance de l’anode de graphite est largement

déterminée par les caractéristiques spécifiques du film SEI. De nombreux facteurs per-

mettent de contrôler la composition chimique du SEI, par exemple, le choix des solvants
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et du sel de l’électrolyte, la température de fonctionnement, la nature de la surface, le

type d’anode etc. La couche SEI empêche la corrosion de surface à l’électrode, réaction

de décomposition de l’électrolyte. Au cours de l’étude de la formation de la couche de

SEI, le carbonate d’éthylène solvant est impliqué dans la formation ultérieure SEI. Un

contrôle en profondeur de la composition, la morphologie et la structure du SEI sont

nécessaires afin de concevoir de meilleurs électrodes et compositions d’électrolyte [27],

ce qui est l’objectif le plus important dans la technologie LIB.

Dans les piles métal-air, les réactions de désintercalation et d’intercalation affectent

la densité énergétique des batteries au lithium-ion. Cette problématique a entrâıné le

développement d’une approche, batteries métal-air alternative [36–40]. Dans ces piles,

le matériau d’intercalation de cathode est remplacé par de l’oxygène réaction catalytique

de réduction (ORR) et la réaction de dégagement d’oxygène (OER). Les batteries métal-

air telles que les batteries Li-air et air-Zn sont largement utilisées en raison de leur haute

densité d’énergie, leur respect de l’environnement et leur faible coût. Une batterie Li-air
4 est illustré à la Figure 7.1(b).

Elle génèrent de l’électricité par une réaction d’oxydoréduction entre le métal et de

l’oxygène dans l’air. Les batteries métal-air sont également confrontées à des problèmes

comme une faible efficacité de l’anode, une densité d’énergie limitée de la cathode, et une

propension élevée à la corrosion de l’anode en contact avec l’électrolyte. La formation

d’hydroxydes, d’oxydes métalliques et d’autres espèces qui se accumulent à la surface

de l’anode empêche le processus de décharge. Dans la section suivante, nous verrons les

électrolytes.

Électrolytes dans Batteries: Fondements

Les électrolytes sont une composante essentielle pour tous les dispositifs électrochimiques

décrits ci-dessus. Les électrolytes sont constitués par des sels (solutés) dissous dans des

solvants et ils agissent en tant que milieu conducteur qui transfère les charges ou les ions

entre les électrodes. Les performances des dispositifs dépendent à la fois de l’électrolyte

et des matériaux d’électrode. Le matériau de l’électrolyte doit être compatible chimique-

ment avec les électrodes pour éviter des problèmes de stabilité et les réactions chimiques

qui ont lieu, il faut contrôler à la fois la quantité d’électrolyte et la vitesse de l’énergie

libérée vers les électrodes. En outre, des electrolytes doivent être hautement stable ou

complètement inerte lors du contact avec la surface de l’électrode, sinon ils ne parvien-

nent pas à produire des densités d’énergie élevées. La vitesse de la décomposition des

réactions réductrice et oxydante est contrôlée par la concentration d’électrolyte.

Afin de développer de meilleurs électrolytes quelques questions devraient être examinées

[12]: 1) plage de température pour la stabilité. Par exemple, le solvant EC est solide à la

4http://www.transportation.anl.gov/features/2009-Li-air-batteries.html
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(a) au lithium-ion (b) Batterie Lithium-Air

Figure 7.3: piles au lithium types: a) Schéma de la batterie au lithium-ion (LIB)
constitué de l’électrode positive (composé de Li-intercalation et l’électrode négative (de
carbone graphitique) séparées par l’électrolyte, figure de référence [2], b) de la batterie
Li-air se compose de cathode à air catalytique qui fournit de l’oxygène, un électrolyte,

et une anode de lithium)

température ambiante, ce qui affecte donc la conductivité et la réactivité du sel, par ex-

emple, LiPF6; 2) inflammabilité, il est donc crucial d’examiner les problèmes de sécurité;

3) l’efficacité du solvant à dissoudre les sels de lithium; et 4) une perte considérable de

la concentration de lithium-ion à électrolyte, car les ions lithium sont impliqués dans la

formation de SEI. L’électrolyte doit répondre à de nombreuses exigences, comme étant

neutre pour l’environnement, inerte envers les substrats d’électrodes et le séparateur de

cellules, hautement efficaces pour l’oxydation et la décomposition réductrice, et montrer

une bonne conductivité ionique.

Électrolytes dans les Batteries: Les électrolytes sont en interaction étroite avec les deux

électrodes et jouent un rôle crucial dans la LIB. Ils fournissent le milieu conducteur d’ions

de la batterie au lithium-ion, où le Li+ navettes entre les électrodes. Les electrolytes

doivent être caractérisées d’une stabilité chimique élevée, qui empêche la décomposition

lorsque oxydant à la cathode ou à l’anode réduction. Certaines propriétés importantes,

comme la non-toxicité, bas point de fusion, point d’ébullition élevé, l’absence de réaction

explosive, sont nécessaires pour un bon électrolyte afin d’être appliqués aux batteries.

Trois types d’électrolytes ont été utilisés dans des piles: aqueux, non aqueux et solide.

Untextitélectrolyte aqueux est constitué d’un acide fort ou une base, en raison de la

polarité ceux ci existent plus que des ions positifs et négatifs comme en solution. Ces

électrolytes sont stables en particulier sur certaines gammes de tension, tandis que au-

delà de ces limites, ils commencent à se décomposer. La stabilité de la tension fournie
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est contrôlée par le degré de pureté de la composition de l’électrolyte. Des conductivités

ioniques élevées peuvent être obtenues dans des électrolytes aqueux quand la constante

diélectrique et le pouvoir solvatant des matériaux sont raisonnablement élevés.

Des électrolytes non aqueux sont formés par des solvants de carbonate de lithium avec

des sels communs tels que LiBF4, LiClO4, LiPF6, LiAsF6, LiTFSI (lithium bis (triflu-

orométhane sulfonyl) d’iodure) et LiBOB (lithium bis-borate oxalato). La conductivité

des électrolytes non aqueux est dans la gamme de 10−2-10−3 Scm−1. Plus précisément,

ces électrolytes sont aprotique non aqueux (incapable d’agir comme donneurs de pro-

tons) des solvants organiques, combinées avec des sels de lithium. Ils sont caractérisés

par une faible toxicité, un point de fusion bas, une bonne conductivité ionique et la

stabilité électrochimique vers les électrodes. Les deux classes d’électrolytes qui ont été

utilisées dans les piles sont: i) des carbonates d’alkyle linéaire (carbonate de diméthyle

(DMC), le carbonate de méthyle éthyle (EMC), et le carbonate de diéthyle (DEC)) et ii)

des carbonates d’alkyle cycliques (carbonate d’éthylène (EC), le carbonate de vinylène

(VC), et le carbonate de propylène (PC)). Un grand nombre d’études ont été consacrées

à leur décomposition, propriétés électrochimiques, et la formation et la structure de la

première couche de solvatation autour des ions lithium [33, 41–44]. En raison de la

constante diélectrique plus faible et du plus faible pouvoir solvant de certains solvants,

la formation de paires d’ions est augmentée, ce qui entrâıne une conductivité ionique

plus faible. En effet, dans ce cas, les ions sont liés les uns aux autres et ne diffusent

plus librement en solution. l’heure actuelle, des mélanges de solvants de compositions

différentes sont utilisées pour améliorer la conductivité, et pour obtenir de bonnes per-

formances à faible température. Les solvants purs et mélanges de solvants sont discutés

dans les sections suivantes.

Des carbonates tels que PC et EC n’ont pas réussi à être utilisés comme solvants dans les

batteries lithium-air en raison de leur réaction de décomposition avec O2. En particulier,

super-oxydes ou des radicaux sont formés pendant la réduction initiale de O2 [45]. Des

composés à base d’éther-moins volatils tels que l’éther diméthylique (DME) ou plus

électrolytes composé d’éther ont été préférés comme de bons candidats pour les batteries

lithium-air [46, 47].

Au-delà des carbonates, des liquides de silicium ont également reçu une attention con-

sidérable. Plusieurs études ont porté sur les électrolytes de carbonate modifié [48–

50], siloxanes et silyléther [35, 51, 52] et de l’éthylène glycol [53–55] composés. Au

lieu de solvants carbonate mixte avec des sels de lithium, les électrolytes polymères

et copolymères ont également été envisagées, constitué par du poly (oxyde d’ethylene)

(PEO) et des sels de lithium (LiPF6 ou LiCF3SO3)[56–58].

Au cours des 15 dernières années, les liquides ioniques (IL) [59–61] ont attiré autant

d’attention que les électrolytes de batteries lithium-ion. En effet, l’ILS sont des al-

ternatives intéressantes aux solvants organiques dans les batteries en raison de leurs

propriétés uniques telles que la stabilité électrochimique, une toxicité faible voir nulle,
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une faible inflammabilité, des propriétés de faible pression de vapeur saturante, une

densité de charge élevée et une polarité accordable. Les ILs avec une température de

fusion supérieure ou proche de la température ambiante sont appelés à température am-

biante liquides ioniques (RTILs). Ces ILs sont des molécules chargées et en plus d’autres

avantages, ils ont une viscosité relativement élevée qui affectera la conductivité ionique.

Ils sont entièrement composés de cations avec des amines de base tels que pyridinium,

imidazolium, pyridinium, pyrrolidinium et morpholinium [62–64]. L’anion peut être in-

organique comme BF4
–, PF6

–, CN– ou AsF6
–. Les propriétés de l’IL appuient également

sur la nature des substituants qui affecte la solubilité du sel et la conductivité ionique.

Les longueurs de châıne alkyle [62] ou ramifiée de longueur de châıne augmente la

conductivité de l’IL jusqu’à une mScm−1.

L’effet particulier des interactions ion-ion, la distribution de charge moléculaire et de

formes moléculaires sont les principales propriétés de l’IL en solution comme aux in-

terfaces. Contrairement à ce qui se passe dans les solvants normaux, les effets à paire

d’ions ne sont pas prédominantes dans l’ILS, et donc la conductivité molaire s’élève à 0,1

Scm2mol−1. ILs ont également une faible constante diélectrique et pression de vapeur

saturante. Les ILs montrent, cependant, une sensibilité à l’humidité, propriétés associées

avec des atomes d’halogène et une viscosité modérément forte.

Différentes classes de ILs sont utilisées dans une grande fenêtre électrochimique et peu-

vent atteindre des densités élevées de charge. Un certain nombre pratiquement infini

d’électrolytes IL peut être produit, en mélangeant différents ILs ou de mélange avec

d’autres ILs solvants polaires organiques ou inorganiques.

Dans la section suivante, nous commençons notre discussion sur les solvants organiques

les plus utilisés dans des applications comme composant principal d’électrolytes.

Solvants et Sels Organiques

Dans cette section, nous discuterons brièvement des solvants purs, que nous avons pris

en considération dans ce travail, EC, DMC et PC, et de leurs propriétés physiques.

Nous discuterons également des travaux antérieurs sur l’interaction carbonate Li+. En

particulier, nous allons d’abord se concentrer sur la bibliographie rapportant le calcul

essentiellement théorique sans sel spécifique en grappes pures. Ensuite, nous allons

présenter les résultats supplémentaires mettant en évidence le rôle joué parles sels choisis

parmi les sels de lithium (LiPF6 choisis, LiClO4, LiBF4, et autres).
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Propriétés physiques du carbonate d’éthylène (EC), du diméthyle Car-

bonate (DMC) et du carbonate de propylène (PC)

Parmi tous les solvants organiques, les plus largement utilisés en LIB sont cycliques

et sont des carbonates linéaires. En particulier, le solvant EC est très couramment

utilisé en tant que composant principal dans des électrolytes, en raison de son moment

dipolaire élevé (4,9 D), de sa constante diélectrique (ε ∼ 89), et de sa miscibilité avec

la plupart des solvants non aqueux [65, 66]. Certaines propriétés physiques du EC sont

présentées dans le Tableau 7.1. A température ambiante EC est solide (température

de point de fusion 36.4◦), il est donc mélangé avec d’autres solvants de carbonate afin

d’abaisser la température globale du point de fusion. Dans la plupart des cas, un petit

pourcentage de carbonates linéaires, comme le DMC, est ajouté à EC pour transformer

le mélange obtenu en liquide à la température ambiante. DMC est choisi en raison de

sa faible viscosité, de son point d’ébullition bas et des a faible constante diélectrique (les

valeurs sont indiquées dans le Tableau 7.1. La combinaison de EC et DMC á différentes

concentrations forme un mélange homogène caractérisé par une faible viscosité et une

conductivité ionique élevée. Ce mélange est stable jusqu’à 5,0 V à la surface de la

cathode.

Le solvant de PC est un autre carbonate cyclique attrayant, caractérisé par une constante

diélectrique (ε ∼ 64.9) plus élevée que celle des carbonates linéaires. La conductivité

ionique et la stabilité statique sur une large plage de températures, font du PC un des

solvants favoris pour le lithium. Le PC est une molécule de noyau à cinq éléments, comme

le EC avec un groupe méthyle supplémentaire dans la châıne latérale. Cependant, le

PC se comporte différemment du EC. Par exemple, plusieurs études ont montré que le

EC joue un rôle important dans la formation des interfaces solides électrolytiques (SEI),

assurent une protection particulière, notamment la protection des anodes en graphite

face á la décomposition supplémentaire. Les SEI sont formé lors de la première charge

lente d’une batterie, et la qualité de ses structures impacte fortement la durée de vie

du système. En revanche, dans les systèmes ne contenant que au PC pur, les SEI

sont effectivement formées sur la surface de l’électrode en graphite [67]. En outre, le

PC est susceptible de subir une réaction de réduction suite á le transfert d’un électron

unique [68] à partir du lithium qui impacte l’efficacité cyclique du système. Malgré ces

problèmes, la molécule de PC a également été considérée comme un solvant prometteur

en raison de sa forte stabilité anodique. En fait, la première batterie commercialisée

(produit par Sony et co.) a été développée sur la base d’une électrolyte solvant PC.

La structure et quelques propriétés physiques du PC sont présentées dans le Tableau

7.1. D’après les données indiquées dans le tableau, le PC semble avoir une viscosité

légèrement supérieure à celle du EC, le PC ne peut donc pas abaisser la viscosité du EC

comme le DMC.

Dans les dernières décennies, plusieurs travaux expérimentaux et théoriques ont été

publiés sur les propriétés de coordination du EC, du PC et du DMC avec des ions Li+.

121



Chapter 6 Section 7.0

Table 7.1: Structure, formule chimique, la constante diélectrique, la viscosité et Point
de fusion (Mp) et Point d’ébullition (Bp) des solvants tels que EC, DMC et PC

Solvent Structure Constante Viscosité Mp/Bp
diélectrique, ε η (cP) (◦C)

EC
O

O

O

89 1.85 36.4/248

(C3H4O3) (40◦ C)

DMC

O

O

O

3.1 0.78 4.6/91

(C3H6O3) (30◦ C)

PC
O

O

O

64 2.53 -48.8/242

(C4H6O3) (30◦ C)

En fait, la compréhension des propriétés de solvatation d’électrolytes carbonate avec Li+

est cruciale pour comprendre un certain nombre de phénomènes physiques se produisant

dans LIB, comme les propriétés de transport, de la stabilité dans l’environnement redox,

et phénomènes de dégradations. Par exemple, Masia et al., [69] ont étudié la structure

de solvatation de Li+ par des molécules EC, en utilisant des méthodes DFT et MD.

Les résultats de DFT ont montré que le complexe quadri coordonné Li+(EC)4 est une

espèce dominante. De même, ils ont également trouvé le même nombre de coordination

(Li+(EC)4) dans les simulations MD. Un résultat similaire a été obtenu par Wang et

al., [70] dans une étude DFT, ce qui confirme l’espèce Li+(EC)4 est le complexe le plus

stable pour Li+(EC)1-4 série. Ils ont également étudié Li+(DMC)1-3 complexes et ont

constaté que Li+(DMC)3 est la série la plus stable. En outre, ils ont également étudié

l’addition et la réaction de substitution des conformations la complexes mélangés avec

des solvants EC et DMC: on peut conclure que l’addition de DMC au Li+(EC)n avec n =

1 à 3 complexes est favorable, alors que la substitution de DMC au Li+(EC)2 complexe

est interdit.

Selon Hiroto et al. [71], des études sur EC avec ion Li+ par AIMD (dynamique

moléculaire ab-initio), nitrent que l’ion Li+ est solvaté par quatre molécules de la EC
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dans la première couche de solvatation. Dans le cas du Li+(EC)5, seules quatre molécules

sont coordonnées avec les ions Li+ pendant que la 5 ème molécule se déplacé avec une

distance moyenne de 5,09 Å à partir de l’ion Li+. Des résultats similaires ont été obtenus

par Cho et al., [72] par des calculs DFT. Dans les deux documents, les auteurs con-

cluent que l’indice de coordination maximale dans la première sphère de solvatation est

4 et que les EC molécules supplémentaires peuvent être uniquement disposées dans la

seconde couche de solvatation.

Mahesh et al., [73] a étudié l’ion Li+ avec EC solvant par simulation DFT et MD. Les

énergies libres de Gibbs ont été calculées en utilisant B3LYP/6-311++G(d,p) sur la

réaction d’addition des EC à Li+(EC)n (où n = 0-5) grappe donne des valeurs négatives

ou des réactions spontanées pour Li+(EC)1-4 grappes et valeur positive Δ G pour le

Li+(EC)5 complexe. Par conséquent, ils ont conclu que la formation d’une couche de

coordination avec cinq molécules est énergétiquement défavorable. En outre, la simu-

lation a révélé que le AIMD coordination est 4 pour Li+ ion autour de ∼4 Å. Ils ont

également signalé qu’il n’y a pas un déchange de molécules EC une fois la structure de

solvatation formée. Les mêmes auteurs ont également publiés dans la suite des travaux

[74] pour les complexes de PC que Li+(PC)3 est le composant principal, en calculant

lénergie libre de Gibbs. Des calculs de la chaleur de formation et de lénergie libre de

Gibbs, ils ont conclu que EC agit comme un meilleur solvant que le PC. Utilisation

de la même discussion sur les énergies ΔG , avec différentes approches DFT, Balbuena

et al., [34] et Wang et al., s’accordent sur les mêmes conclusions, confirmant ainsi un

nombre maximum de coordination de 4 pour Li+(EC)n solvatation et expliquant qu’il

est peu probable que Li+(PC)4 existe et que Li+(PC)2, Li
+(PC)3 sont les principaux

composants de la solution.

Généralement, les électrolytes classiques consistent un sel de lithium comme LiPF6,

LiClO4, LiBF4 etc., et un mélange binaire ou ternaire de carbonates.

Mélange de Solvants Organiques

Parmi une variété d’électrolytes solvants pour les LIB, des mélanges de carbonates con-

tenant EC sont principalement utilisés avec succès, pour les raisons suivantes: ii) même

à forte concentration de sel (jusqu’à 1,0 M), la molécule EC peut facilement dissoudre

les sels de lithium, en raison de sa constante diélectrique élevée; ii) un point bas de

l’électrolyte de fusion; iii) une faible viscosité d’électrolytes de carbonate linéaires avec

une stabilité chimique, le transport ionique et la permittivité diélectrique améliores ; iv)

une conductivité ionique élevée à température ambiante, qui est supérieure à la limite

de10−3Ω−1cm−1 [75, 76]. Cela impacte grandement la performance de la batterie et est

compatible avec la tension de la batterie. Les compositions de mélange sont utilisées

dans une large gamme de températures de fonctionnement ainsi que pur des applica-

tions de stockage et les performances de la cellule. Le choix de l’électrolyte est une

123



Chapter 6 Section 7.0

étape cruciale pour développer de meilleurs dispositifs conventionnels. Par conséquent,

la constante diélectrique élevée de EC molécule est mélangée à la fois avec un solvant

carbonate liquide (tels que les carbonates linéaires) et un PC (carbonate cyclique) pour

surmonter ces problèmes. Les Ures Mixtes ternaires ont été utilisées pour améliorer les

performances à basse température des batteries. Un mélange de EC et DMC avec LiPF6

permet un plus grand nombre de processus de charge-décharge sans perte de capacité.

Dans les deux dernières décennies, des travaux de recherche très étendues ont été publiés

en se concentrant sur la EC contenant des électrolytes. Avant les années 1970, le EC a

été utilisé comme co-solvant dans les électrolytes, afin d’obtenir une bonne conductivité

ionique. Dans les années 1970, une petite quantité de PC a été ajouté, afin d’abaisser

le point de molécule EC résultant en une haute conductivité ionique de mélange dans la

solution pure. En début des années 1990, des LIB classiques utilisés avec des solvants EC

et en dépit des EC point d’ébullition élevé, de petites quantités de différents co-solvants

ont été ajoutées, y compris PC, THF (tétrahydrofuranne), DEE (diéthoxyéthane). Ces

solvants ne remplissent pas de manière satisfaisante, en raison du fait que PC provoque

des réactions secondaires qui affectent la capacité irréversible des LIB. En outre, un

solvant éther est instable lors de l’oxydation à la cathode chargée. Après 1994, Tarascon

et Guyomard [77, 78] ont constaté que la molécule carbonate de DMC linéaire agit

comme un meilleur co-solvant avec la EC pour former un électrolyte efficace.

En effet, l’addition de carbonate linéaire DMC a l’EC forme des mélanges homogènes

obtenus en diminuant la température de EC de fusion [78, 79]. En conséquence, la

viscosité EC devient très faible, améliorant les mécanismes de transport d’ions et, par

conséquent, augmentant la conductivité ionique. L’ajout du EC et PC solvants dans des

proportions adaptées a également été utilisé pour abaisser le point de l’électrolyte de

fusion, en raison de la haute permittivité et de la faible température de pointe de fusion

(-49◦) [80] du solvant PC. Le développement et l’amélioration des batteries lithium-

ion implique encore de surmonter les limites des mélanges binaires ci-dessus, en raison

principalement de la faible stabilité thermique de solvants et de la pression de vapeur

élevée. ce jour, de nombreux travaux de recherche ont été publiés dans divers mélanges

avec différents sels que nous discutons ci-dessous. Certains résultats peuvent dépendre

non seulement du choix du mélange de l’électrolyte mais également des sels. Pour cette

raison, nous allons discuter de la bibliographie pour chaque sel dans des paragraphes

distincts.

EC,PC,DMC + LiClO4

De précédentes études expérimentales de spectroscopie Raman réalisées par Hyodo et

al., [81] en 1989, ont porté sur la structure locale de solvatation d’ions Li+ dans EC et

PC avec le sel LiClO4. Ils ont proposé un nombre de coordination de l’ordre de 4 pour

Li+ dans EC avec une concentration élevée de 1M LiClO4, et ce nombre devient 4,9 à
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une concentration plus faible de 0,1 M LiClO4. Par ailleurs, ils ont également examiné

des mélanges EC-PC. Ils ont rapporté 3,3 molécules de EC et 0,7 molécules de PC à

concentration élevée (5:1). D’autres part, la coordination des molécules Li+-EC diminue

lorsque lorsque le ratio molaire de PC augmente. Au ratio 1:1, le nombre de molécules

EC coordinées avec Li+ est 1,9 (sur un nombre total de coordination de 3,8), signifiant

que, dans ce cas, à la fois EC et PC sont liés à Li+ dans un ratio 50:50, et il n’y a pas de

solvatation préférentielle dans la première couche de solvatation. Néanmoins, les études

théoriques de Klassen et al., [76], étudiant la chaleur lors de la formation des réactions

de l’ion Li+ avec EC et PC, montrèrent que EC/ Li+ a une énergie de solvatation plus

forte que PC/ Li+. Ils conclurent que EC solvate sélectivement Li+ dans les solutions

EC/PC/ LiClO4. De plus, les études de DFT et MD sur LiClO4 avec EC, PC et en

mélange, par Balbuena et al. [82], démontrèrent que EC tend à substituter PC dans la

première couche de solvatation. Ils démontrèrent également que les molécules de EC ont

un nombre de coordination de 4,1 avec LiClO4 dans des solutions diluées, mais augmente

à 3,8 dans des solutions concentrées. De plus, les nombres de coordination sont de 4

et 4,4 dans des mélanges EC-PC avec des ratios respectivement de 1:1 et 3:1. Dans

la première couche de solvatation, ils trouvèrent 38% de PC lié avec l’ion Li+ dans le

mélange 1:1, et 16% dans le mélange 3:1.

La solvatation d’ion lithium dans EC avec LiClO4 a été étudiée par Cazzanelli et al.

[83], utilisant des techniques NMR, avec une concentration définie par le ratio R=[ Li+

]/[EC]. Ils ont trouvé un nombre de solvatation d’environ 7 à la concentration R=0,1,

alors qu’à une concentration plus élevée (R = 0,33), le complexe de Li+-EC formée avec

∼ 3 molécules de solvant. La plupart des travaux cités ci-dessus suggèrent donc que la

coordination est d’environ 4 pour Li+(EC)n. En revanche, Huang et al., [84] ont étudié

la solvatation de LiClO4 dans EC par spectroscopie Raman et IR, et suggèrent que le

nombre moyen de solvatation des ions Li+ dans EC est de 6. En outre, Matsuda et al.,

[85] ont mesuré la solvatation de Li+ ion dans EC et PC avec LiClO4 par ionisation

électrospray spectroscopie de masse (ESI-MS) et ont montré que Li+(EC)2 et Li+(EC)3
sont les principales espèces de solvatation dans une solution 1 mM LiClO4. Des résultats

similaire ont été obtenu pour des molécules PC.

En 2002 Inaba et al., [86] ont étudié l’effet en tant que co-solvents du carbonate linéaire

(DEC et DMC) sur des solutions basée sur EC, avec 1 M LiClO4, par microscopie à

force atomique (AFM). Ils ont rapporté que 4,6 est le nombre de solvatation apparente

de Li+-EC et ce nombre de solvatation diminue à 4,2 (3,1 EC + 1,1 DEC) et à 3,1 (2,9

EC + 0,2 DMC) dans les solutions EC: DEC (1: 1) et EC: DMC (1:1) respectivement.

Leurs résultats ont révélé que la molécule EC participe principalement dans la première

couche de solvatation plus que les carbonates linéaires.
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EC, PC, DMC + LiBF4

Les simulations moléculaires dynamiques de Soetens et al., [87], ont porté sur le sel

LiBF4 dans EC, DMC et PC. Ils réalisèrent des simulations sur Li+-(EC), Li+-(DMC)

et Li+-(PC) à différentes températures, dans des bôıtes de simulation contenant 214

molécules de solvant pour un Li+ et un BF4
–, correspondant à la concentration 0,1 M .

Ils ont montré que l’enveloppe de solvatation typique est formée par EC et PC autour de

Li+, avec un nombre de coordination de quatre. D’autre part, les études MD de Prezhdo

et al., [88] ont signalé que six molécules individuelles de carbonate (EC, PC et DMC)

peuvent coordonner autour de l’ion Li+ à faible concentration (0,1 M) de LiBF4. La

coordination diminue à 5 à la concentration de 1 M. Ils ont également décrit l’enveloppe

de solvatation pour les mélanges binaires. En particulier dans des mélanges PC-DME,

l’ion lithium se coordonne avec six molécules de PC, en raison de l’absence du groupe

C=O dans du DME. Dans le cas de mélanges EC-DMC, il a été trouvé que 5 EC et une

molécule DMC solvatent l’ion Li+. A des concentrations plus élevées, ils ont également

trouvé une certaine interaction avec le contre-anion. En particulier, ils ont discuté que

le contre-anion BF4
– agit comme un monodentaté dans des mélanges de PC-DME, et

en tant que ligand bidenté dans des mélanges EC-DMC. Sono et al., [89] ont étudié la

solvatation des ions Li+ dans des solutions de PC avec le sel LiBF4, par des techniques

de RMN et Raman. Ils ont rapporté que Li+ ions est lié à 1,08 molécules de PC, à

une concentration de plus de 1 M. Ce petit nombre de coordination est la preuve d’une

formation plus importante de paires de contact-ion de Li+- BF4
–. Des études récentes

sur LiBF4 dans du PC par Sono et al., [90] ont montré que à une concentration de 1M,

la coordination totale peut être attribuée comme 2,66 pour Li+-O(PC) et 1,38 pour Li+-

F (BF4−). Le nombre de coordination de Li+-PC augmente à 3,14 à une concentration

de 0,5 M, tandis que celui de Li+-F diminue à 0,91, ce qui signifie que l’interaction du

contre ion BF4
– est plus faible dans la première enveloppe de solvatation.

EC, PC, DCM + LiTFSI

Borodin et Smith et al., [91] ont étudié la solvatation et le transport des ions Li+ dans EC

en utilisant des simulations MD. Ils ont estimé le sel LiTFSI (lithium bis trifluorométhane

sulfonimide) pour l’ion Li+ et étudié le système à 313 K. Ils ont rapporté que 2.7 à 3.2

molécules de EC et de 0,67 à 1,05 anions TFSI sont liés à l’ion Li+ dans la première

couche de solvatation. Toutefois, environ 3,8 molécules EC solvatées à Li+ dans les

électrolytes complètement dissociées avec une distance de RDF typique de la Li-O (= C

EC) ∼ 1.95 Å pour toutes les concentrations.
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EC, PC, DMC + LiPF6

Morita et al., [92] , à l’aide de la spectroscopie Raman, analysèrent la solvatation d’ions

Li+ pour 3 concentrations différentes de sel LiPF6 dans EC. Ils ont trouvé des nombres

de coordination de 4,4, 4,1 et 3,9, correspondant aux trois concentrations pour LiPF6 de

0,5M, 1,0M et 1,5M respectivement. Pour le mélange EC:DMC dans 1 M de LiPF6 ils

ont obtenu un nombre de coordination total de 4,1, qui comprend 3,0 molécules de EC

et 1.1 de DMC. A partir de ce résultat, ils ont conclu que la coordination de EC avec

l’ion Li+ est préféré à celui de DMC.

Tasaki et al., [93] et des études de calcul sur l’association d’un sel LiPF6 avec une variété

de solvants, conclurent que les nombres de solvatation de EC, PC et DMC sont 3,53, 3,46

et 2,84 et les distances de Li+ correspondantes sont 2,06, 2,05 et 2,05, respectivement.

En outre, ils ont montré que l’ion PF6
– participe également à la solvatation de la couche

autour de l’ion Li+. Sono et al., [89] ont étudié la solvatation des ions Li+ dans des

solutions de PC avec le sel LiPF6 par des techniques de NMR et Raman et ont rapporté

que l’ion Li+ est lié à 4,3 molécule de PC dans la solution diluée. Ils ont également

montré que, à concentration plus élevée (2,5 M), le rapport de PC/ Li+ est 4, et près

de 25% des molécules de PC sont libres dans la solution. Cependant, ils ont également

obtenu l’orientation déformée (distorted orientation) de PC aux ions Li+. A la plus forte

concentration 3,29 M, le ratio PC/ Li+ a diminué à 2,85. Ils ont également signalé dans

des papiers ultérieurs sur le même sel LiPF6 [94] que le nombre de coordination est de

3 pour le groupe de li PC / Li+ 1 M concentration.

Sono et al., [90] se sont préoccupés de l’interaction ion-ion de LiPF6 et LiBF4 dans des

solutions de PC. Les résultats montrent que la solution PC/ LiPF6 a une conductivité

ionique plus élevée par rapport à celles LiBF4, et ils ont attribué ce phénomène à une

faible formation de paires d’ions. Le nombre moyen de solvatation d’un sel LiPF6 à 1M

dans du PC se trouve être 3,72. A une concentration de 0,5M, le nombre de solvatation

est déterminé à 3,97, ce qui indique qu’il y a moins de paires d’ions formées que dans le

cas à 1M. Dans les deux cas, l’ion PF6
– agit en tant que ligand monodenté.

Une étude de diffraction des neutrons de solution de LiPF6 dans du PC réalisée par

Yasuhiro et al., [95] a révélé que 4,5 molécules de PC sont fortement liées à l’ion Li+

dans la première couche de solvatation (10% molaire du LiPF6 en solution dans PC). Des

études détaillées de la chimie quantique et de simulation MD ont également été publiées

par Borodine et al. [96], sur les propriétés de solvatation de mélanges binaires de solvants

EC et DMC avec LiPF6. La bôıte typique de simulation MD contient 480 molécules de

solvant avec 1M LiPF6, et les simulations ont été effectuées à différentes températures.

Les résultats ont révélé que 3,8 molécules de EC sont présentes dans la première couche

de solvatation (définie par un rayon de 2,8 Å coupé) à 298 K. A température plus élevée

(333 K), le nombre de solvatation de EC est réduit à 3,3. Un nombre de coordination

de 2,7 est obtenue pour DMC avec LiPF6 à 1 M, ce qui est légèrement plus faible
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que dans le cas avec EC. Dans le cas de mélanges binaires EC:DMC (1:1), les mêmes

auteurs ont trouvé une enveloppe de solvatation avec une teneur plus élevée de DMC

que EC. Dans la première couche, cependant, il y a encore une contribution considérable

provenant du contre-anion PF6
–. Dans le même travail ils ont également présenté une

discussion intéressante sur le rôle joué par la conformation du DMC, et ont montré que,

par exemple, le complexe Li+-DMC préfère une conformation cis-trans pour le fragment

DMC que celui cis-cis. Néanmoins, ils ont constaté que le complexe EC 3 DMC (cis-cis)/

Li+ est plus stable que les espèces EC4/ Li+, et que EC3DMC (cis-trans)/ Li+ est moins

stable que EC4/ Li+ en raison des interactions dipôle-dipôle défavorables.

Des études théoriques de Ganesh et al., [97] sur EC et PC et LiPF6 montrent une

distance typique entre Li-O (= C) denviron ∼1.94 Å dans PC et ∼ 1,92 Å EC à 310

K (400 K). A plus haute température (400 K), l’enveloppe de solvatation dEC est non

sphérique. La distance moyenne Li+- PF6
– est environ 6,0 dans les EC et ∼ 9.0 au PC.

Egalement les auteurs ont montré que a divers températures (310-400K) si pour PC

la coordination autour du Li+ est constante avec 4 molécules coordonnées, pour EC le

nombre de coordination varie (4-6)

Kang Xu [98] ont effectuée des expériences de NMR 17O sur les melanges EC et DMC

avec 1 M LiPF6, et ont constatée que un maximum de six molécules EC peut coordonner

le ion Li+. Egalement la même expérience sur le mélange EC: DMC (50:50 avec 1 M

LiPF6) montre que près de 70% de la sphère de coordination est constitué de DMC.

Sur la base de simulations de MD, Tenney et al [99] ont étudié le nombre de solvata-

tion Li+ en présence de EC, DMC et dans le mélange EC: DMC, avec le sel LiPF6.

Ces résultats montrent que le nombre de coordination varie avec la concentration et

la température. A très faible concentration de 0,1 M LiPF6, le nombre de coordina-

tion de EC autour Li+ est de 5.2, 5.0 et 4.2 à 300 K, 350 K, 400 K, respectivement.

Ainsi, à une concentration déterminée, les nombres de coordination diminuent lorsque la

température augmente. A 1 M LiPF6, le nombre de solvatation apparente de EC est de

4 à température ambiante (300 K), mais il diminué à 2,9 à une température supérieure

400 K. Cet effet a été expliqué par l’observation expérimentale que, à température plus

élevée, le contre-anion PF6
– est présent dans la première couche de solvatation ainsi

diminuant le nombre de EC a 2,9. En effets, à 400K lenveloppe de solvatation est

formée par 2,9 EC et 1,6 PF6
– autour de l’ion Li+. Pour DMC, le nombre de coordina-

tion typique est de 2,3 à 1,0 M (300K) et augmente légèrement à 2,6 à une concentration

inférieure (0,1 M).

Au même temps, les auteurs ont analysé la variation des nombres de coordination des

couples Li+- PF6
– en variant la concentration. Par exemple, dans le cas de pur EC

(LiPF6- EC), le nombre de coordination Li+- PF6
– est de 0,4 pour une solution 0,1 M et

1,1 à 1 M ( à 300 K). Toutefois, dans le cas de DMC pur (LiPF6- DMC),la coordination

est de 1,7 à 0.1M et 2.1 à 1 M. Dans le cas du mélange binaire 1EC: 1DMC (300 K), les
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nombres de coordination dEC et DMC sont 3,0 et 2,6 à 0,1 M de LiPF6, et ces valeurs

tombent à 1,6 à 1 M de LiPF6.

Motivation et Vue d’ensemble

Dans les travaux suivants de ma thèse, jai concentre mon étude sur les électrolytes typ-

iques EC, PC et DMC qui sont largement utilisé dans les développements expérimentaux

récents. Comme nous avons présenté dans les paragraphes précédents, plusieurs études

ont déjà été publiées sur ces électrolytes mais un certain écart entre les résultats expérimentaux

et théoriques reste, et le rôle des différents mélanges carbonates dans la sphère de sol-

vatation de Li+ est encore l’objet de débats. Dun point de vue expérimental, divers

nombres de coordination ont était observé et beaucoup des résultats sont contrastants.

Malgré les nombreux études expérimentales et théoriques consacrées aux interactions

de Li+ avec des électrolytes à base de carbonates purs et mixtes, la structure et la

dynamique de solvatation des cations lithium dans ces solvants nest pas encore bien

comprise et même la détermination de l’indice de coordination autour des ions lithium

dans des solvants à base de carbonate-pures n’a pas été définitivement résolu. Alors

que l’image généralement acceptée comprend une coordination tétraédrique des atomes

d’oxygène carbonyle autour de Li+ élevés [76, 83, 86, 87, 89, 90, 92, 95, 97], certaines

études expérimentales et théoriques proposent l’existence de structures locales présentant

nombres de coordination [84, 88, 98, 99, 101] qui peut aller jusqu’à six.

La dépendance de ce numéro de coordination locale à la concentration d’ions est également

quelque peu controversé. Toutefois, il convient de souligner que la conception de méthodes

expérimentales ou des modèles théoriques pour analyser les données expérimentales, en

vue de fournir une mesure directe de l’indice de coordination est une tche extrêmement

compliquée. D’autre part, la validation des résultats de simulation moléculaire dépend

fortement de la comparaison directe avec les données expérimentales. Le développement

de méthodes expérimentales prouvant une détermination directe du nombre de coor-

dination devient indispensable afin d’obtenir une image claire sur les effets structurels

locaux dans les solvants liquides.

En outre, il est intéressant de mieux comprendre le rôle du DMC dans les mélanges

binaires EC/DMC et ternaires EC/DMC/PC qui sont très utilisés dans les récents

développements et jamais été explorée d’un point de vue théorique.

Ce travail est consacré à l’étude de la solvatation du Li+ par divers carbonates et leurs

mélanges. Après une présentation des approches théoriques utilisées dans ce travail,

chapitre 2, nous présenterons au chapitre 3, les calculs DFT pour les clusters purs formés

par un seul solvant avec le lithium-ion Li+(S)n (S = EC, DMC et PC, n = 1-5). Dans le

même chapitre, nous allons également décrire et analyser les résultats DFT obtenus pour

mélanges binaires Li+(S1)n(S2)m, (S1, S2 = EC, PC, DMC, avec m+n=4) et ternaires
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Li+(EC)l(DMC)m(PC)n avec l+m+n=4. En particulier, nous allons essayer de décrire

les structures, la coordination autour de Li+, la liaison et interaction. Egalement les

propriétés thermodynamiques seront discuté avec une analyse de la stabilité et de régime

préférentiel. Le rôle du sel, LiPF6, sera discuté dans le chapitre 4. En particulier, nous

allons discuter de la modification de la première couche de solvatation par la présence du

contre-ion PF6
–. Dans le chapitre 5, les résultats DFT seront couplées avec des résultats

de MD obtenus sur EC/Li+, DMC/Li+, PC/Li+ et mélangé EC binaire: DMC/Li+

(1: 1) et ternaire solvant EC:DMC:PC/Li+ (1:1:3) . à partir des résultats MD, nous

allons rationaliser les résultats, y compris les fonctions de distribution radiale, nombres

de coordination, fractions molaires locales et les distributions dipolaires etc.
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Chapitre 2: Techniques Numériques

Le chapitre 2 décrit les méthodes de computationnelles utilisées dans ce travail. Nous

montrons la formulation de la théorie de la densité fonctionnelle (DFT) et simulations

de dynamique moleculaire des approches. En particulier, nous avons également expliqué

l’Densité Amsterdam fonctionnelle (ADF) de formalisme que nous avons utilisé dans nos

calculs DFT.

131



9

Chapitre 3: Etude de Lithium ion

Coordination avec Solvants des Car-

bonates

Le chapitre 3 est consacré à l’étude DFT de la solvatation de l’ion Li+ dans les solvants

EC, PC et DMC. Plus particulièrement, les structures Li+(S)1-4 (S = EC, PC, DMC)

ont été étudiées. Par la suite, nous avons examiné les structures de solvants binaires tels

que Li+(EC)m(PC)n, Li
+(EC)m(DMC)n et Li+(PC)m(DMC)n dans lesquelles m+n =

4, suivie de l’étude de clusters de solvants mixtes [Li+(EC)l(PC)m(DMC)n] (l + m + n

= 4). Nos résultats DFT ont montré l’interaction préférentielle obtenu entre l’ion Li+ et

un atome d’oxygène de carbonyle de tous les solvants de carbonate, ce qui est en accord

avec toutes les études expérimentales et théoriques précédentes. Les énergies libres de

Gibbs estimées des clusters purs, prédisaient un ion lithium tétracoordiné avec quatre

solvants agencés dans un environnement tétraédrique. Dans le cas des clusters EC et

DMC, nous avons constaté que Li+(EC)4 et Li+(DMC)4 est le plus stable. Toutefois,

dans le cas des clusters PC pures, la différence d’énergie de Li+(PC)3 et Li+(PC)4 est

très faible, ce qui indique que les deux structures existent dans la solution. En outre,

nous avons montré que la coordination 5 n’a pas pu être atteinte et qu’une cinquième

molécule de solvant ne peut être organisé que dans la sphère extérieure ou seconde couche

de solvatation. Les résultats de l’énergie de liaison démontrent que les clusters Li+-EC

et Li+-PC ont les plus fortes interactions de liaison par rapport aux clusters DMC. Dans

le cas de mélanges binaires Li+(S1)n(S2)m, (S1, S2 = EC, PC, DMC, avec m + n = 4),

nous avons aussi dans ce cas une conservation de l’arrangement tétraédrique autour de

l’ion Li+. L’analyse de l’énergie libre de Gibbs montre:

1. Dans le cas des clusters Li+-(EC)(PC), les résultats obtenus ont révélé que Li+(EC)2(PC)2
tétracoordonné est le plus favorable, suivie par les clusters Li+(EC)PC)3 et, éventuellement,

Li+(EC)3(PC), bien que la différence d’énergie de ces clusters soit très petite. C’est
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pourquoi ces trois clusters existent en solution. Ces résultats ont également suggéré

que les deux molécules EC et PC approchent l’ion Li+ avec une participation égale

et il n’y a pas de solvatation préférentielle obtenue.

2. En revanche, dans le cas des clusters Li+-(EC)(DMC), nous avons prédit que

Li+(EC)3(DMC) est le plus favorable, suivie par Li+(EC)2(DMC)2 et Li
+(EC)(DMC)3

étant le moins favorable.

3. Similairement, les mêmes résultats ont été obtenus pour les clusters mixtes Li+-

(PC)(DMC), Li+(PC)3(DMC) étant le plus favorable, suivie par Li+(PC)2(DMC)2
et Li+(PC)(DMC)3 étant le moins favorable.

4. Pour tous les mélanges binaires les résultats sont cohérents avec une interaction

plus forte avec PC et EC plutôt que DMC.

Dans le cas de mélanges ternaires Li+(EC)l(DMC)m(PC)n avec l+m+n=4, le cluster

Li+(EC)2(DMC)(PC) a été prédit pour être le plus favorable, et suivie par Li+(EC)(DMC)(PC)2
et éventuellement Li+(EC)(DMC)2(PC) est le moins stable parmi ces clusters. Les

changements d’énergie libre particuliers pour les chemins de transition entre ces clus-

ters sont très faibles, ce qui indique que toutes ces structures pourraient éventuellement

exister dans la phase.
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Chapitre 4: Etude de Contre-anion

PF−
6

Effet sur Li+ -EC, -DMC et

complexes -PC

Dans le chapitre 4, nous avons discuté le rôle du sel, et en particulier le contre-anion

PF6
– sur la sphère de coordination autour de Li+. Nous avons concentré notre étude sur

les clusters Li+(EC)nPF6
–, Li+(DMC)nPF6

– et Li+(PC)nPF6
–. Une analyse structurale

et énergétique a été effectuée et les résultats sont présentés ci-dessous. Du point de vue

général, nos résultats DFT ont prédit que l’anion PF6
– isolé a une géométrie octaédrique

parfaite, et nous avons également étudié les interactions possibles avec l’ion Li+. Les

ions Li+- PF6
– forment trois interactions différentes telles que le monodentate (C4V ),

bidentate (C2V ) et tridentate (C3V ). Les résultats ont révélé que l’interaction forte (le

plus stable) est obtenue sous forme tridentate, dans lequel trois atomes de fluor sont

coordonnés à l’ion Li+. La structure locale a également été confirmée par l’analyse de

fréquence. Ces résultats sont en accord avec des travaux théoriques précédents. Nous

avons étudié les clusters de solvant pur Li+(S)1-3 (S = EC, DMC et PC) en phase

gazeuse avec l’anion PF6
–, et les résultats suggèrent que les clusters de solvant pur ont

été totalement perturbé en présence de l’anion PF6
–. Dans tous les cas, la distance

Li+- Oc (oxygène carbonyle) augmente en raison de la forte charge négative de l’anion

PF6
–, et les hydrogènes alkyles des solvants forment des liaisons hydrogène avec l’anion

PF6
–. Pour toutes les structures en présence de PF6

– dans la sphère de coordination,

la structure la plus favorable est Li+(S)2PF6
–. L’addition d’une troisième molécule de

S est défavorable (avec des valeurs de Δ G positifs pour la réaction d’addition). Pour

toutes les structures en présence de PF6
–- dans la sphère de coordination, la structure

la plus favorable est Li+(S)2PF6
–. La substitution de l’anion PF6

– par une molécule de

solvant pour former un numéro de coordination trois (Li+(S)3) est défavorable (avec des

valeurs positives de Δ G). Les résultats suggèrent que l’ion Li+ préfère le contre-anion

en présence de sel et forme une coordination plus faible. Cependant, les deux structures
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sans PF6
– (numéro de coordination 4) et avec PF6

– (coordination numéro 2) existent

dans la solution.
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Chapitre 5: Accouplement DFT et

MD

Ce chapitre 5 est d’étudier la structure des ions Li+ avec des solvants de carbonate (EC,

DMC et PC) solvatation locale à une dilution limitée. Nous avons discuté sur les champs

de force efficaces que nous avons utilisé pour cette étude. En outre, nous avons inclus

l’ensemble du document que nous avons publié dans la revue.

136



12

Conclusions et Perspectives

Nous avons étudié l’élément le plus important dans les batteries est appelé comme

électrolytes, qui pouvoir être impliqués dans les propriétés de transport, des densités

d’énergie élevées, longue durée de vie et les applications de température large plage etc.

Les solvants de carbonate jouent rôle important dans les batteries. Ces électrolytes ont

été étudiés en utilisant les combinaisons de la théorie fonctionnelle de la densité chim-

ique quantique (DFT) et classiques simulations de dynamique moléculaire. En étudiant

le pur et le mélange d’électrolytes solvants carbonate avec du sel de lithium, nous ont

été en mesure de démontrer la structure locale plus stable autour de lithium-ion, un

composant des solvants dans la première coque avec des compositions particulières et

le solvant le plus préférable. Dans notre étude, nous avons considéré les solvants typ-

iques les plus couramment utilisés tels que le carbonate cyclique d’éthylène (EC), le

carbonate de propylène (PC) et linéaire carbonate de diméthyle (DMC). Les calculs

ont été effectués DFT pour les systèmes purs Li+(S)n (S = EC, DMC, PC et n = 1

à 5) et les mélanges binaires Li+(S1)n(S2)m(S1, S2 = EC, PC, DMC, avec m + n =

4), les clusters et ternaires Li+(EC)l(DMC)m(PC)n avec l + m + n = 4. En outre, les

agrégats de solvant purs ont également été étudiés, y compris l’effet de la PF6
– anion.

Pour les simulations MD, nous étions considérés comme les systèmes suivants à dilution

infinie i) des pôles de solvant pur avec ion Li+ii) de mélange binaire EC: DMC avec

une composition équivalent molaire de 1: 1 avec ion Li+ et iii) le mélange ternaire EC:

DMC: PC avec 1: 1: 3 avec un rapport molaire d’ions Li+, respectivement. Comme

sur la base des résultats DFT, les variations de l’énergie libre pendant les transitions

entre les différents types de groupes formés par le cation lithium et les molécules de

solvant ont montré que la formation de complexes avec quatre molécules de solvant est

le plus favorable. Les solvants ont été disposés dans une géométrie tétraédrique qui est

observée dans tous les cas comme pur et mélanges. Dans le cas des grappes Li+-PC, la

plus petite différence dans les énergies libres de Li+(PC)3 et Li+(PC)4 pôles suggèrent

que les deux configurations peuvent éventuellement exister dans la solution en vrac. Nos

résultats ont été adaptés avec plusieurs théorique ainsi que les résultats expérimentaux.
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Dans les cas de Li+(S)5(S = EC, DMC, PC) grappes, les cinquième molécules de solvant

ont été organisées très loin de l’ion central Li+, explique l’ion Li+ peut accueillir quatre

molécules dans la première couche de solvatation et des molécules supplémentaires pour-

raient participer à la deuxième couche de solvatation et énergie libre prédit également la

même que Li+(S)4 est plus stable. Nous avons prédit la Li+(S)2PF6
– cluster pour être

le plus stable dans le cas de solvants purs avec du sel LiPF6 et une molécule de solvant

ne peut pas remplacer l’anion PF6
– de la plus stable Li+(S)2PF6

– cluster. Les mêmes

DFT résultats libres d’énergie en grappes binaires ont constaté que Li+(EC)2(PC)2 est

plus stable que les autres grappes possibles en EC: mélanges de PC, en disant la EC

et molécules de PC se approchent de la ions Li+ avec une participation égale et il n’y

a pas solvatation préférentielle se est produite. Cependant, dans les deux cas de Li+-

EC: DMC et Li+- PC: DMC mélanges où le (EC)3(DMC) et (PC)3(DMC) grappes sont

plus stables que les autres grappes possibles correspondant. Par conséquent, nos calculs

DFT ont prédit une liaison préférentielle obtenue avec EC ou un PC plutôt qu’avec

DMC. Dans les mélanges ternaires, le cluster Li+(EC)2(DMC)(PC) a été prévu pour

être le plus favorable, les changements énergétiques gratuits pour les chemins de tran-

sition entre plusieurs grappes sont très faibles, ce qui indique que toutes ces structures

pourraient éventuellement exister dans la phase brute. Nos résultats ont montré que

la MD de la structure de solvatation locale se compose de quatre molécules de solvant

autour de l’ion Li+ dans une géométrie tétraédrique. Nous avons trouvé le premier

pic de séparation de Li+- Oc (carbonyle oxygène) à 1,78 Å qui est presque comparable

avec des résultats DFT où la distance typique est 1,93 Å. En raison des inhomogénéités

autour lithium-ion dans des mélanges binaires et ternaires, les fluctuations pourraient

être décrites en termes de structure de courte portée (jusqu’à 4-5 Å de Li+) lorsque la

composition est riche en DMC et par une structure à plus long terme où dans le cas du

mélange de solvants binaire la composition est riche en EC et dans le cas de la ternaire

il est riche en PC. Un tel résultat indique que les effets collectifs résultant en raison des

interactions entre les régions de composition différente pourrait éventuellement stabiliser

la structure locale de la première couche de solvatation de Li+. Les simulations de MD

ont également révélé qu’il ya une commande très importante tétraédrique locale autour

Li+ dans tous les cas et l’ajout de co-solvants ne fausse pas cet ordre structurel. En

calculant un terme entropique associé à cet ordre tétraédrique locale autour de Li+, il

a également été révélé que les groupes ayant une fraction élevée de molécules DMC (3

et 4 molécules) présentent une tetrahedrality supérieur, qui se reflète dans les valeurs

inférieures de cette entropique terme. Par conséquent, d’un point de vue entropique la

présence de DMC contribue à la stabilisation de la structure tétraédrique locale autour

de Li+. Un résultat très intéressant également révélé dans la présente étude est que

l’intérieur de la première enveloppe de solvatation de Li+ dans les mélanges ternaires et

binaires, qui présentent une forte concentration de molécules de DMC non polaires, le

dipôle total des molécules de solvant est supérieur à celui du cas où Li+ est solvaté par

les molécules EC et PC fortement polaires. L’emballage tétraédrique locale observée des
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molécules de solvant dans la première couche de solvatation de Li+ provoque une annu-

lation des vecteurs dipolaires moléculaires individuels, ce qui semble être plus important

dans les cas où les molécules du même type sont présents. Ces effets collectifs sont très

importantes dans la détermination de la permittivité locale autour d’un cation Li+ et

les préférences de liaison relatives devrait être fondée sur ce moment total de dipôle

de l’enveloppe de solvatation et non en termes des interactions dipolaires paire d’ions,

qui est traditionnellement considéré comme le plus facteur important qui détermine la

solvatation préférentielle dans de tels systèmes. La plupart de nos résultats DFT étaient

comparables avec des résultats MD, mais notre travail a également certaines limites.

Dans les calculs DFT de la taille finie groupes isolés, d’un point de vue énergétique la

préférence de Li+ se lier avec le PC et les molécules fortement polaires EC. Cependant, les

résultats trouvés MD, DMC est un solvant particulièrement préférable que les molécules

EC et de PC. Les effets de grappe de taille finie dans DFT pourraient éventuellement

affecter les comparaisons directes avec des résultats MD. Dans ces groupes de taille finie

la contribution énergique semble être le plus important. Par conséquent, nous avons

étudié les mélanges binaires et ternaires à des échelles de longueur plus longues afin

d’avoir une description plus réaliste des effets qui ont lieu dans la phase liquide en vrac.

L’existence de fluctuations structurelles importantes dans les phases liquides en vrac, se

est étendue bien au-delà de la première couche de solvatation, signifie que pour atteindre

une comparaison directe entre le rapport de gestion et la DFT résulte l’utilisation de

plus grandes grappes de taille dans les calculs DFT semble être plus approprié. Enfin,

notre point de vue du travail est d’analyser le temps de vie typique des grappes afin de

comprendre les propriétés de transport des ions de lithium. Dans nos résultats, nous

avons rapporté la deuxième solvatation est riche de la concentration EC, probablement

il pourrait être impliquée dans le transport d’ions de lithium. Par conséquent, si nous

pouvions effectuer l’analyse DFT y compris les secondes coques de solvatation, nous

pourrions donner une description détaillée de l’influence de la seconde couche de sol-

vatation. En effet, les calculs DFT doivent être pris beaucoup de temps de calcul afin

de réaliser l’optimisation avec environ 120 atomes.
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