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Abstract
The thesis explores three major methodological questions in clinical brain DTI, in
the context of a clinical study on HIV. The first question is how to improve the
DTI resolution. The second problem addressed in the thesis is how to create a
multimodal population specific atlas. The third question is on the computation of
statistics to compare white matter (WM) regions among controls and HIV patients.

Clinical DTIs have low spatial resolution and signal-to-noise ratio making it
difficult to compute meaningful statistics. We propose a super-resolution (SRR)
algorithm for improving DTI resolution. The SRR is achieved using anisotropic
regularization prior. This method demonstrates improved fractional anisotropy
and tractography.

In order to spatially normalize all images in a consistent coordinate system, we
create a multimodal population specific brain atlas using the T1 and DTI images
from a HIV dataset. We also transfer WM labels from an existing white matter
parcellation map to create probabilistic WM atlas. This atlas can be used for
region of interest based statistics and refining manual segmentation.

On the statistical analysis side, we improve the existing tract based spatial statistics
(TBSS) by using DTI based registration for spatial normalization. Contrary to
traditional TBSS routines, we use multivariate statistics for detecting changes
in WM tracts. With the improved method it is possible to detect differences
in WM regions and correlate it with the neuropschylogical test scores of the subjects.

Keywords: Clinical DTI, Super-resolution, Multimodal brain atlas, Population
based statistical analysis, HIV.
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Résumé
La thèse explore trois questions méthodologiques en imagerie de diffusion (DTI)
clinique du cerveau, dans le contexte d’une étude sur le VIH. La première question
est comment améliorer la résolution du DTI. Le deuxième problème est comment
créer un atlas multimodal spécifique à la population. La troisième question porte
sur le calcul des statistiques pour comparer les zones de matière blanche entre les
contrôles et patients.

Les DTI cliniques ont une résolution spatiale et un rapport signal sur bruit faibles,
ce qui rend difficile le calcul de statistiques significatives. Nous proposons un
algorithme de super-résolution pour améliorer la résolution qui utilise un a priori
spatial anisotrope. Cette méthode démontre une amélioration de l’anisotropie
fractionnelle et de la tractographie.

Pour normaliser spatialement les images du cerveau dans un systéme de coor-
données commun, nous proposons ensuite de construire un atlas multimodal
spécifique á la population. Ceci permet de créer un atlas probabiliste de la matière
blanche qui est consistant avec l’atlas anatomique. Cet atlas peut être utilisé
pour des statistiques basées sur des régions d’intérêt ou pour le raffinement d’une
segmentation.

Enfin, nous améliorons les résultats de la méthode TBSS (Tract-Based Spatial
Statistics) en utilisant le recalage des images DTI. Contrairement á la méthode
TBSS traditionnelle, nous utilisons ici des statistiques multivariées. Nous montrons
que ceci permet de détecter des différences dans les régions de matière blanche qui
étaient non significatives auparavant, et de les corréler avec les scores des tests
neuro-psychologiques.
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The human body is considered to be the penultimate result of evolution. It is one
of the most complex life forms nature has ever conceived. The brain is at the center
stage of all activities of mankind. It is the center for all our thoughts, executive
and sensory functions, voluntary and involuntary actions, control and planning.
The structure and function of brain is still a less understood. It is amazing, how
can we predict the motion of stars and galaxies thousands of light-years away, yet
we do not completely understand the mechanisms of brain which exists inside our
body. It is estimated that human brain is composed of 100 billion neurons, which
make around 100 trillion synaptic connections in the brain [Zimmer 2010]. So, it
is necessary that we make efforts in order to understand the brain.

A deeper understanding of brain has direct implications on the society and its
future. We have come a long way in computing. The computations which used to
take hours to complete can now be completed in a matter of minutes. The systems
around us are becoming more and more intelligent with every passing decade.
But, the complexities, intelligence and efficiency of the systems created by us does
not even come close to the sophisticated design of our own brain. Why it is that
we cannot create a system which is as smart as our own brain? With the advent
of faster computing mechanisms it is now possible to study the brain in detail.
There are several projects like the BigBrain Project, Human Connectome Project
and Human Brain Project which are solely dedicated for understanding different
aspects of structural and functional properties of brain.

The brain is composed of cerebrum, cerebellum and the brain stem. These three
structures include both gray and white matter. It is protected inside the skull
which is composed of 24 different bones. In popular images of brain we see lot
of gyrations on the surface of cerebral cortex. It is believed that the cerebral
cortex plays an important role in thought, attention, perpetual awareness and
consciousness. Typically it is 2 to 4 millimeters in thickness. One of the main
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reasons that the humans are considered "intelligent" species is because of the
thickness of cerebral cortex. For lower animals (like rat) the surface of cortex
is smooth and do not present as many gyrations. It is believed that as humans
evolved it grew in order to accomodate more information for their day-to-day
activities. Because there was no more volumetric space in skull, it started to fold
and form complex gyrations on the surface. Figure 1.1 shows a comparison of
brain shapes and sizes across different species.

Figure 1.1: A comparison of the shape and sizes of brain across different species.
The cortical gyrations increases in complexity as we move from rats, rabbits to
higher and more complex species like chimpanzee, humans and dolphins. Adapted
from www.thebrain.mcgill.ca

At a tissue level the brain is composed of white and grey matter. Before the
development of neuroimaging techniques, dissection was the only way to study
the structure of brain and its tissues. However, now it is possible to study the
brain in-vivo. There are many different imaging techniques in place which are
useful for studying the brain. For example, computed tomography (CT) is used
to quickly view brain injuries, magnetic resonance imaging (MRI) is used for
creating high resolution 3D image of the brain, functional magnetic resonance
imaging (fMRI) is used to map activation in different parts of brain, positron
emission tomography (PET) and single-photon emission computed tomography
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(SPECT) are used for measuring blood flow and glucose metabolism in the brain
tissues, perfusion imaging is used for imaging the blood flow, diffusion magnetic
resonance imaging (dMRI) is used for study the white matter structures and their
connections. For a complete understanding of the functions of brain these dif-
ferent imaging modalities should be fused in one single consistent coordinate system.

Figure 1.2: Different imaging modalities used for brain imaging. fMRI shows regions
of brain activity due to visual stimulus. PET shows regional glucose use. MRI-T1w
is an anatomical image of the brain. CT is used for detecting brain lesions. dMRI
shows an undiffused B0 image. MRI-T2w is used for detecting white matter lesions.

The thesis will focus on diffusion tensor imaging (DTI) of the brain in a clinical
setting. The diffusion tensors are second order symmetric positive definite matrices
and are used to model local water diffusion in brain tissues. Water molecules diffuse
preferentially along the axon of a nerve cell. DTI uses this local water diffusion
to construct an image of white matter tracts using tractography algorithms.
They reveal in great detail the connections between different regions of brain.
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Furthermore, diffusion tensor imaging and fiber tractography allows us to compute
statistical analysis on the tract geometry and diffusion properties along the tracts
and across population. This kind of statistical studies are important in order to
understand brain diseases associated with white matter fibers. For clinical usage,
different scalar metrics like fractional anisotropy (FA), mean diffusivity (MD) and
apparent diffusion coefficient (ADC) have been derived.

Figure 1.3: Diffusion tensor image (DTI) of the brain (top left). An associated
fractional anisotropy (FA) directional map (top right). The lower row shows the
axial and sagittal view of fiber tractography on DTI.

With these imaging techniques in place, it is possible to track the changes in
brain over long periods of time and over a large population. Neurodegeneration
is a process of progressive loss in brain tissue leading to loss in structure and
function. Some examples of neurodegenerative diseases are Alzheimer’s diseases,
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Huntington’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS),
HIV related dementia. There are many reasons for progressive neurodegeneration
including normal aging, genetic mutations, proteing misfolding, accumulation of
intracellular toxic proteins and disease related infections like in HIV. It is important
to understand the disease progression and regions of the brain affected by them
for better therapy planning and identifying the subjects in the early stages of the
disease.

The thesis aims at understanding the changes in white matter regions of the
brain caused by HIV/AIDS using multivariate statistical analysis on diffusion
tensor images (DTIs). DTI is an imaging modality predominantly used for in-vivo
imaging of white matter tracts. The clinical DTI acquisitions are often noisy and
have low spatial resolution and signal-to-noise ratio. They also suffer from artifacts
due to magnetic field inhomogeneity and magnetic susceptibility susceptibility.
The imaging artifacts often hamper the statistical analysis negatively. An example
of the low resolution scans acquired during a routine clinical acquisition is shown
in figure 1.4. The image has a resolution of 0.9375×0.9375×5.5 mm3. Because of
the low resolution in the Z direction, we see that it is difficult to recognize brain
structures in the coronal and sagittal view.

Figure 1.4: An example of B0 (undiffused) image acquired during a routine clinical
DTI acquisition. We will study these clinical images in this thesis. Left: Sagittal
view, Middle: Coronal view, Right: Axial view. The low resolution of the image is
visible in the coronal and sagittal views. Courtesy: NEURADAPT study

Brain imaging in itself has two different aspects. On one hand, we have imaging
done in research environment where there is lot of time to acquire the data multiple
times with very well equipped MR scanners (typical magnetic field strength 7.0
T to 11.0 T). On the other hand, we have clinical brain images where the scans
should be performed quickly in order to minimize the discomfort of the patients.
For the same reasons, multiple scans are often not an option in the clinics. Also
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the clinical scanners are not well equipped in terms of magnetic field strength
(typically 1.5 T to 3.0 T) and scanning protocol capabilities. Thus, the challenges
encountered in a clinical environment are different to that in the in these two
different scenarios are totally different.

In this thesis, we will focus on clinical DTIs. The thesis presents a super-resolution
method for increasing the spatial resolution of DTI. The method is suitable for clin-
ical setting as it requires a single DTI acquisition. Further, we present a method
for computing a probabilistic population specific multimodal brain atlas using the
T1 and DTI images. The DTI template is used for carrying out tract based spa-
tial statistics (TBSS) for identifying regions of differences in white matter among
HIV/AIDS patients. Contrary to the traditional routines, the proposed is improved
with DTI based spatial normalization and multivariate statistical tools.

1.1 HIV and the Brain

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syn-
drome (AIDS). AIDS leads to progressive decline in the immune system leading
to life-threatening infections. In the absence of treatment the life-expectancy is
estimated to be around ten years depending on the HIV subtype. According to a
July-2014 survey conducted by UNAIDS1, more than 35 million people are living
with HIV/AIDS. In 2013, 1.5 million people died and 240,000 people were newly
infected from AIDS. Nearly every hour 240 people contract to this disease. Since
its beginnings around 78 million people have contracted to HIV and around half of
them have died. According to World Health Organization (WHO), the usage of
combination antiretroviral therapy (cART) the disease progression can be reduced
leading to huge reductions in death and suffering if the appropriate cART is
administered in the early stages of the disease.

CD4 cells are a type of white blood cell which fights infection. HIV can affect the
CD4 cells by binding to their surface or entering the cells and multiplying as the
cells multiply. The decrease in the CD4 cell counts weakens the immune system of
the body leading to eventual death. The CD4 cell count in blood and viral load is
used as biomarkers to assess the level of disease progression.

HIV can cross the hematoencephalic barrier (blood-brain barrier) leading to
HIV associated neurocognitive disorders (HAND). HAND causes compromised
attention, long and episodic memory loss, language disorders and visual agnosia.
The figure 1.5 shows regions of tissue losses in cerebral cortex of the brain. Most
of the tissue losses are associated with regions controlling movement, memory and
planning. Along with the cerebral cortex, HIV is believed to cause detrimental
changes in white matter tracts affecting brain connectivity and cognitive loss.

1Joint United Nations Programme on HIV/AIDS
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HIV also affects cerebral blood flow [Ances 2009], metabolism and diffusion in the
central nervous system.

Figure 1.5: Brain tissue loss due to HIV/AIDS. Most damages are observed in
regions controlling movement, memory and planning. [Thompson 2005]

HIV associated biomarkers (CD4 cells count and viral load) are not strongly
correlated with the neurologic impairment and new neuroimaging biomarkers are
needed to detect and follow the progression of HIV associated neurocognitive
disorders [Clifford 2013]. In [Tucker 2004], the authors present a review of differ-
ent neuroimaging techniques like single-photon emission computed tomography
(SPECT), positron emission tomography (PET), magnetic resonance imaging
(MRI), functional magnetic resonance imaging (fMRI), diffusion tensor imag-
ing (DTI) and perfusion imaging to elucidate changes in the brain caused by
HIV/AIDS. The different imaging modalities capture different aspects of changes
associated with the central nervous system.

In this thesis, we assess differences in the white matter integrity between controls
and HIV patients. The neurological disorders caused by HIV/AIDS are clinically
assessed using neuropsychological (NP) tests. Despite the usage of cART, white
matter abnormalities have been reported specifically in frontal white matter and
corpus callosum [Schouten 2011]. There is a need for understanding and correlating
the white matter changes in the brain with the NP test scores. Only with a clear
understanding of the brain regions targeted by the HIV the search for a suitable
neuroimaging biomarker can begin. Thus, an extensive statistical analysis on brain
images of HIV patients is quintessential.
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1.2 Clinical Context

The human brain is composed of white and gray matter. The white matter con-
nects different regions of the brain and acts as signal highways for nerve impulses.
With the advent of diffusion weighted magnetic resonance imaging (DW-MRI or
dMRI), it is possible to image the white matter in-vivo. It is now possible to
reconstruct the white matter tracts and study the connections they make among
different regions of the brain. The tractography data makes it possible to study
the neural architecture and navigate through the intricate brain pathways. The
local diffusion of water molecules can be modeled as a second-order symmetric
positive definite tensor also called the diffusion tensor. Due to the advancement
in scanning technology and introduction of stronger magnets, more sophisticated
techniques have also emerged such as diffusion spectral imaging (DSI), q-ball
imaging and high angular resolution diffusion imaging (HARDI). The latter tech-
niques produce high resolution diffusion images and high quality tractography data.

The advanced imaging techniques are suited in research scenarios and are not
used in routine clinical setup for two primary reasons. The first reason is the
longer acquisition time required by these imaging protocols, which is not feasible
in a clinical setting. The second reason is that the clinical scanners are not well
equipped for using the advance imaging protocols and upgrading the scanners in
hospital is a very expensive undertaking. Majority of the scanners used in France
has a magnetic field strength of 1.5 Tesla and relatively few have a strength of 3.0
Tesla. 3.0 Tesla scanners are now widely accepted as a clinical standard. However,
we are still obtaining a lot of imaging data from 1.5 Tesla scanners. Hence, it only
makes sense to continue developing tools for the retrospective studies rather than
discarding the data.

Diffusion tensor imaging is the current clinical norm and looks promising for near
future. The very next question one can ask is how to make population based
studies on these clinical data. Furthermore, how to design an "optimal" workflow
for statistical analysis on these datasets? The clinical DTIs are often plagued
with a low spatial resolution, low signal-to-noise ratio (SNR), motion artifacts
and geometric distortions related to magnetic susceptibility and magnetic field
inhomogenity. Among the array of limitations presented by the clinical datasets,
the readily available clinical data gives an opportunity to understand the disease.
There is a need for developing sophisticated statistical tools that can help us
understand the data and draw inferences on disease progression, changes in the
white matter structure integrity due to disease and how the changes are reflected
in the day-to-day functioning of an individual.

The diffusion tensors and the DTI metrics (FA, MD and ADC) are incorrectly
estimated because of the partial volume effects in the low resolution clinical
DTI. In order to overcome the underestimation of tensors few super-resolution
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algorithms have been suggested. However, they require multiple acquisitions of
the same subject. Multiple acquisitions of the same patient is not suitable in
routine clinical environment because of the increased cost and discomfort to a
patient. Therefore, we propose a super-resolution algorithm which uses a single clin-
ical acquisition to improve the DTI resolution using anisotropic regularization prior.

The thesis presents an exploratory statistical analysis of DTI of HIV/AIDS
subjects. The statistical analysis is done in the context of NEURADAPT study,
an initiative by the Nice University Hospital. The goal of this study is to detect
statistically significant differences between a cohort of HIV/AIDS patients and
controls. For conducting such population based studies, we need a brain template
for normalizing the data. The brain template should also be a statistical represen-
tation of the dataset. A method for building a probabilistic multimodal population
specific brain template using the anatomical T1-weighted image and the diffusion
tensor image has been proposed. We successfully transferred white matter labels
from the ICBM white matter parcellation map on this template making room
for ROI based statistics on the population. The brain template is also used for
normalizing the DTI data to a common space for conducting tract based spatial
statistics.

In the clinical scenario, the diffusion tensor is often reduced to scalar metrics like
fractional anisotropy (FA), mean diffusivity (MD) and apparent diffusion coefficient
(ADC). By doing so, we loose lot of directional information. The thesis extends the
univariate statistical analysis to a multivariate full tensor based statistical analysis.
We conclude that with the multivariate statistics it is possible to detect regions of
white matter which were not detectable with the univariate FA based statistics. We
develop robust methods to extract clinically relevant information from low quality
clinical diffusion tensor images. With the proposed multivariate statistical analysis
the changes observed in the white matter tracts can be correlated with the changes
observed in clinical neuropsychological test scores.

1.3 Organization and contribution of the thesis

Chapter 2 presents an anatomical description of brain with a focus on white
matter tracts and their functions. The chapter outlines some of the pathologies
associated with specific tracts. Furthermore, it also presents a brief description
about nerve cells and their structures. An understanding of different anatomical
regions of brain is quintessential in understanding and localizing the changes in
white matter structures caused due to HIV/AIDS.

Chapter 3 outlines the physics associated with magnetic resonance imaging and
the common imaging protocols used in clinical settings. We discuss the nuclear
magnetic resonance, signal localization in the brain, k-space and different k-space
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filling techniques used in practice. The chapter also presents a qualitative discus-
sion on different pulse sequences used in routine clinical practice. Furthermore, it
outlines the advantages and drawbacks of each of the imaging techniques and how
they can be combined as per the need of the situation.

Chapter 4 discusses a super-resolution algorithm for estimating diffusion tensors
using a single low-resolution clinical quality dMRI acquisition. Since the clinical
diffusion images are low in spatial resolution and suffer from partial volume effects,
the diffusion tensors are underestimated. Recently few tools have emerged in
the medical imaging community, which tackle the super-resolution problem using
multiple image acquisition. It is often not possible to multiple acquisition of the
same subject in a clinical scenario as it is both expensive and uncomfortable for
a patient to go through scanner multiple times. The algorithm presented in this
chapter uses single image acquisition to produce the high resolution tensor images.
We show the effectiveness of the tool with improved fractional anisotropy maps
and fiber tractography.

Chapter 5 discusses the construction of a population specific multimodal atlas. In
this chapter, we first discuss a brief history of brain atlases in chronological order.
The discussion is followed by a workflow designed to build the multimodal atlas.
Such multimodal atlases can be used for finding voxel wise correspondences across
different modalities. Traditionally the statistical analysis is carried out either on the
anatomical T1-weighted image or on the diffusion tensor images. However, it feels
intuitive that a joint study may give a higher statistical power to the analysis. For
region of interest (ROI) based statistical studies, it is necessary that the regions are
clearly delineated on the template. A trusted approach for defining ROIs is manual
delineation by experts. However, quite often these methods are time consuming and
error prone. The chapter also discusses a method to define probabilistic white mat-
ter regions. We believe that such probabilistic ROI definition could be used for ROI
based statistics and serve as a guiding tool for experts during manual segmentation.

Chapter 6 presents an exploratory statistical analysis of white matter tracts to
detect statistically significant differences between controls and HIV/AIDS patients.
We discuss some of the statistical tools like voxel based morphometry (VBM),
tensor based morphometry (TBM) and tract based spatial statistics (TBSS). The
traditional TBSS methods makes voxel wise comparison of fractional anisotropy
values in the white matter tract skeleton. We suggest methods to improve TBSS
using DTI based normalization and multivariate analysis for comparing the controls
and HIV patients. We found that using the multivariate statistical tests are more
sensitive to differences between the two groups of population. The changes are
correlated with the neuropsychological (NP) test scores observed in patients.

Chapter 7 presents a discussion on various insights in the context of clinical
brain diffusion tensor imaging. We discuss some of the initiatives taken for
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longitudinal DTI analysis on the Alzheimer’s disease patients. Our initiatives
failed to reach any conclusive results The reasons for non-conclusive results
are discussed in this chapter. A discussion on the quality of clinical data and
suggestions for future population based studies is presented. We discuss some
of the prospective future work in the light of present findings incorporated in
the thesis. We discuss the future of population based studies and what can be
done more to have a better understanding of progressive neurodegenerative diseases.

1.4 Publications from the thesis

Conference articles

1. Vikash Gupta, Nicholas Ayache, and Xavier Pennec. Improving DTI Resolu-
tion from a Single Clinical Acquisition: A Statistical Approach using Spatial
Prior. In Kensaku Mori, Ichiro Sakuma, Yoshinobu Sato, Christian Bar-
illot, and Nassir Navab, editors, Proceedings of Medical Image Computing
and Computer Assisted Intervention 2013 (MICCAI), volume 8151, Nagoya,
Japan, pages 477-484, September 2013. Springer.

Invited Talks

1. Vikash Gupta, Xavier Pennec, Nicholas Ayache. Towards Higher Resolution
Analysis of Clinical Brain Diffusion Images, 1st International Symposium on
Deep Brain Connectomics, Clermont-Ferrand, France. 2012

Submitted

1. Vikash Gupta, Gregoire Malandain, Nicholas Ayache, and Xavier Pennec.
A framework for creating population specific multimodal brain atlas using
clinical T1 and diffusion tensor images, in Medical Image Computing and
Computer Assisted Intervention, (MICCAI) 2015

In preparation

1. Vikash Gupta, Nicholas Ayache, and Xavier Pennec. A multivariate statistical
analysis using full DTI information to detect changes in white matter among
HIV/AIDS patients.
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2.1 Neuroanatomy

The human brain is undoubtedly one of the most complex parts of the human body.
It is responsible for almost all of the voluntary actions in the human body. The
brain can be broadly classified into the gray matter (GM) and white matter (WM).
The gray matter consists of the neuronal cell bodies, glial cells, mylinated and un-
mylinated axons and blood carrying capillaries. On the contrary, the white matter
is composed of long mylinated axons and are mostly responsible for connecting dif-
ferent regions of brain and facilitating the flow of brain signals among the different
parts. The CSF is a bodily fluid, that is present in the brain and spine. The brain
is literally floating in the CSF, which is also responsible for its basic mechanical and
immunological protection. Even after almost 100 years of dedicated research, the
functional aspects of the brain is less understood. However, the good news is that
we know quite a lot today about the anatomy of the brain and its organization.

2.1.1 Lobes of the brain

The human brain is divided into left and right hemispheres by the longitudinal
fissure. Each of these hemispheres are further classified into six major lobes. These
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lobes refer to the different sections of the cerebrum. Before we delve into classifi-
cation of white matter tracts in detail, it is important to study the different lobes
of the brain because white matter fibers are responsible for connecting these dif-
ferent lobes. The different lobes are shown in the figure 2.1. The six lobes are
frontal lobe, parietal lobe, occipital lobe, temporal lobe, limbic lobe and insular
cortex. The frontal lobe is associated with motor functions, planning, reasoning,
judgement, memory and impulse control. It is located in the anterior part of brain.
The parietal lobe is responsible for integrating sensory information, spatial sensing
and navigation. The paretial lobe is separated from the frontal, occipital and the
temporal lobes by the central sulcus, parieto-occipital sulcus and the lateral sulcus
respectively. The occipital lobe, is located in the rearmost part of the brain and
is associated with visual processing. The last of all, i.e., temporal lobe is associ-
ated with visual memories, processing sensory input, language comprehension and
storing new memories and emotions. The temporal lobes are located ventral to
the lateral fissure which clearly limits them from the frontal and anterior part of
the parietal lobe. Posteriorly, the temporal lobe is continued with the parietal and
occipital lobes without any distinctly defined limit. The limbic lobe is a part of
cerebral cortex on the medial surface of each cerebral hemisphere and is associated
with emotional evaluation of several emotions like fear, anxiety and panic.

Figure 2.1: Different lobes of the brain.

2.1.2 The cells in the central nervous system

The white matter fibers connect the different regions of the brain. They are
the signal carrying highways for the central nervous system (CNS). The building
blocks of white matter tracts are neurons or nerve cells. It is estimated that on an
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average the human brain has a hundred billion neurons and each of them has 7000
synaptic connections to the other neurons. The other type of cells in the central
nervous system are called glial cells.

Glial cells are non-neuronal cells that act as a support mechanism for neurons.
They supply nutrients and oxygen required for the neurons. In addition, they
also provide mechanical support and destroy the pathogens and remove the dead
neurons.

Neurons are the central actors in the CNS. They specialize in receiving and sending
electrical signals required for normal functioning of human body. A neuron consists
of three major parts: dendrites, the cell body or soma and axons. The figure 2.2
depicts different parts of a typical neuronal cell. The length of the axon of a typical
neuron could be as long as few micrometers to that of two meters. The dendrites
of a neuron acts as signal receivers from the axon terminal of another neurons.
The axon carries the signal forward to its terminal where it is transmitted to the
connecting neurons. A neuron can have multiple dendrites but it always has one
single axon. The myelin sheath forms an electrical insulation around the axon and
is typically composed of the glial cells. The name myelin sheath derives from the
myelin, an electrically insulating material.

Figure 2.2: Structure of a typical neuron. The different parts of neuron: dendrite,
cell body and axon. Adapted from Wikipedia

Based on the structure and polarity of nerve cells, they can be characterized into
unipolar, bipolar, multipolar and pyramidal cells. The unipolar cells have a single
extension form the cell body. This extension serves both as an axon and dendrite.
The bipolar neuron as the name suggests has one axon and one dendrite emerging
from the soma at opposite ends. The multipolar neuron are the most common
types of nerve cells. The nerve cells have multiple dendrons and one single axon
emerging out of soma. The figure 2.2 is a schematic representation of a multipolar
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neuron. Depending on axonal length, the multipolar nerve cells are called either
type I (cells with long projecting axon,e.g., Purkinje cells and pyramidal cells) or
type II cells ( the ones with very short axons). The pyramidal cells are characterized
by a triangular shaped soma, an axon and multiple basal dendrites.

Figure 2.3: Different types of Neurons

2.2 White matter fascicles

The nerve axons form bundles and are organized as suited by the needs. Based on
their functions and areas of connectivity, they are divided into three broad categories
as follows,

1. Association fibers

2. Projection fibers

3. Commisural fibers

2.2.1 Association fibers

The association fibers consists of white matter tract bundles that connect different
regions of cortex within the same hemisphere. The short association fibers (SAF)
connect different gyri within the same lobe, whereas the long association fibers
(LAF) connect the different lobes of brain. The SAF are mostly located in the
peripheral white matter, whereas the LAF are situated in the deep brain. The
common long association fibers are uncinate fascicles, cingulum, occipitofrontal
fascicles, fornix, arcuate fascicles, and inferior longitudinal fascicles.
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Figure 2.4: Different white matter fascicles. The schematic on the left shows associ-
ation fibers (both short and long) in red, the projection fibers in purple gyrating out
of the lower part of brain. The commisural fibers are shown in green penetrating
into the plane of paper connecting the two cerebral hemispheres. A: sagittal view.
B: coronal view

Uncinate Fascicles

The uncinate fascicles are the fibers connecting frontal and temporal lobes. The
other two being cingulate and the superior longitudinal fascicles. It is interesting
to note that an asymmetry exists between the left and the right uncinate fascicles.
This asymmetry is attributed to specialized brain functions which are lateralized
such as, language. It was found that there is a loss of asymmetry between among
schizophrenia patients [Kubicki 2002]. The exact function of uncinate fascicles is
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still a matter of debate. However, it is believed that they play an important role in
memory and emotion [Hasan 2009].

Cingulum

The cingulum is a C-shaped white matter fiber bundle connection frontal and the
temporal lobes. It is located just above corpus callosum and beneath cingulate
gyrus. The cingulate gyrus is located on the medial surface of brain and is divided
into anterior and posterior cingulate. Changes in anterior section is related to
depression and apathy, whereas changes in posterior section is related to more
cognitive functions (like attention, visual-spatial skills and memory). A damage
to cingulum is often related to traumatic brain injuries (TBI) [Tanner 2010]. In a
recent study, damage to cingulum was associated with mild cognitive impairment
[Metzler-Baddeley 2012]. It is a part of Papez circuit identified by James Papez in
1937. The circuit is involved in memory and emotions. So, any damage to cingulum
is often associated with compromised cognitive and emotional abilities.

Figure 2.5: Schematic showing unicinate fasiculus (in red), inferior longitudinal
fasiculus and cingulum. Adapted from wikipedia.

Arcuate Fascicles

The arcuate fascicles also known as superior longitudinal fascicle is an association
fiber connecting lateral temporal and parietal with the ipsilateral frontal cortex.
There is still debate about the exact regions of connections in these three lobes.
However, it is believed that the temporal projection of the arcuate fasicles connects
to the Wernicke’s area 1 and the frontal projection connects to the Broca’s area2.
This particular tract is largely associated with the language comprehension and

1named after a German neurologist Carl Wernicke in 1874. It refers to a section in brain

responsible for written and verbal language comprehension.
2named after a French neurologist Pierre Paul Broca in 1861. It is associated with complex

syntax comprehension in language, language production, action recognition and speech associated

gestures.
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Figure 2.6: Tractography showing Arcuate fascicles(AF), inferior longitudinal fas-
cicles (ILF), inferior occipitofrontal fascicles(IFOF), superior longitudinal fascicles
(SLF), uncinate fascicles(UF). Adapted from [Jang 2013]

speech production. The posterior segment (temporo-parietal) of arcuate fascicles
is symmetrical, the long segment (temporo-frontal) is lateralized to the left and
the anterior segment (fronto-parietal) is lateralized to the right [Catani 2007]. This
is consistent with the fact that the left hemisphere is associated with language
processing in most of right handed subjects. Conduction aphasia is highly associated
with the damage of this particular fiber tract. [Bernal 2009]

Inferior longitudinal fascicles

Classically inferior longitudinal fascicles (ILF) are referred to the white matter
tracts connecting the ipsilateral occipital and temporal lobes. However, existence
and delineation of these tracts are often challenged against another tract con-
necting the above mentioned lobes,i.e., inferior fronto-occipital fascicles (IFOF)
[Ashtari 2012]. One of the reasons for such a disagreement is the spatial and
functional overlap between the ILF and IFOF. Damage in ILF is associate with
thought disorders, visual amnesia, visual hypo-emotionality and hallucinations
[Shinoura 2007, Ashtari 2012]

Occipitofrontal Fascicles

The occipitofrontal fascicle is a set of association fibers connecting the ipsilateral
frontal and occipital lobes. The white matter bundle is subdivided into inferior and
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superior segments. However some authors claim the existence of superior occip-
itofrontal fascicles (SOF) [Türe 1997]. The SOF is claimed to connect the frontal
to the ipsilateral parietal lobe and is associated with spatial awareness and sym-
metrical processing. It is often linked with late life depressions. The inferior occip-
itofrontal fascicles (IFOF) connects the ipsilateral frontal and posterior parietal and
temporal lobes. It is known to intermingle with uncinate fascicles. It is associated
with the integration of auditory and visual cortical areas with prefrontal cortex.
Any damage can also cause visual hallucinations [Kier 2004].

Figure 2.7: Superior and inferior Occipitofrontal fasciculus. A. Superior occip-
itofrontal fascicles arching over the caudate nucleus and connecting the frontal and
occipital lobes. B. A dissection showing the location of the superior and inferior
occipitofrontal fascicles along with other white matter tracts. C and D. Tractog-
raphy showing the superior and inferior occipitofrontal fasciculus. Adapted from
[Jellison 2004]

Middle longitudinal fascicles

Middle longitudinal fascicles (Mdlf) is a long association fiber bundle medial to
the arcuate fascicles and extend to the superior temporal gyrus. This fiber bun-
dle runs superficially over the inferior occipitofrontal fascicles. The existence of
the fiber bundle was debated because of the presence of adjacent arcuate fascicles
and inferior occipitofrontal fascicles until recently. Their existence was reported by
[Makris 2009] using DTI studies. However, DTI is susceptible to low spatial reso-
lution and noise making it difficult to confirm their existence until recently. A fiber
dissection study [Maldonado 2013] confirmed the existence of Mdlf. Similar to their
existence, the function of Mdlf is not clearly understood. [Makris 2009] suggested
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that Mdlf are associated with attention-processing and conduction of linguistic in-
formation in the dominant hemisphere. However, another study using intraopera-
tive subcortical electrostimulation shows no interference in picture naming and post
operative permanent language deficits after Mdlf resection [De Witt Hamer 2011].

Figure 2.8: Middle longitudinal fascicles. Fiber bundle running medial to arcuate
fascicles and penetrate superior temporal gyrus. Adapted from [Maldonado 2013]

2.2.2 Projection fibers

The projection fibers are fibers joining the cortex to the subcortical and spinal
areas. The main projection fibers are fornix, thalamic radiations and long corti-
cofugal fibers. In regards to the projection fibers, it is important to understand
the difference between the efferent and afferent neurons. The efferent neurons are
also known as the motor neurons. They carry the responses from the brain to the
muscles. On the contrary, the afferent neurons are also known as sensory neurons.
They bring the stimuli from the sensory organs (e.g., skin, tongue etc.) to the
central nervous system.

Fornix

The fornix is a C-shaped fiber bundle connecting hippocampus to the hypothalamus.
Unlike other association fibers, the structure of fornix is more complicated. A
schematic diagram of fornix is shown in figure 2.9. The fornix is located on the
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medial region of cerebral hemisphere. As seen in figure 2.9, different parts of fornix
lie on either side of the mid sagittal plane. It arcs around the thalamus and connects
medial temporal lobes to the hypothalamus. The fornix begins at the fimbria which
lies at the superomedial aspect of the hippocampus. The fimbria is continued by the
crus of the fornix which turns around the posterior aspect of the thalamus toward
the midline. Both the crus then join to form the body of the fornix, which anteriorly
splits again into two columns ending on the mammillary body. The fornix plays
an important role in formation and consolidation of declarative memories and is an
important component of the Papez circuit (or the limbic system) [Thomas 2011].
A damage to the fornical tracts may result in anterograde amnesia [Gaffan 1991].

Figure 2.9: Schematic representation of the fornix showing its different parts.
A. 3D representation of the fornix showing the different sections, adapted from
http://www.medecine.unige.ch. B. A schematic representation of fornix (in red)
showing its location with respect to the neighboring structures, adapted from
[Thomas 2011]

Thalamic radiations

The thalamic radiations connects the thalamus and the cerebral cortex. The fibers
run obliquely through the internal capsule towards the cerebral cortex. The tha-
lamic radiations are divided into anterior (to the frontal lobe), superior (to the
parietal lobe), posterior (to the occipital lobe) and inferior (to the temporal lobe)
thalamic radiations. The posterior thalamic radiations are also known as optic
radiations or Gratiolet radiation. In [Peltier 2006], the authors present a detailed
anatomical study of the optic radiations. As the name suggests, they are responsible
for carrying visual information to the visual cortex.
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Figure 2.10: White matter fibers emanating out of the thalamus towards the cere-
bral cortex. Adapted from [Gluhbegovic 1980]

Corticofugal fibers

The corticofugal fibers connect the motor cortex and the cerebral peduncle through
the internal capsule. These WM tracts are descending motor fibers originating from
the primary motor cortex, supplementary motor area, ventral, dorsal premotor area
and from the retrocentral area. A damage to the corticofugal fibers decreased motor
function in post-infarct patients.

2.2.3 Commisural fibers

The commisural fibers are the white matter tracts that connect the left and right
hemispheres of the brain. Corpus callosum comprise the largest network of brain
fibers connecting the two cerebral hemispheres. The fornix discussed above can also
be considered to form a part of the commisural fibers for its unique geometry. Both
the crus of the fornix are connected by forniceal commissure. The other major fiber
bundles are anterior and posterior commisure. They are the tracts responsible for
communication between the two cerebral hemispheres.

2.2.3.1 Corpus callosum

Corpus callosum is the largest and most easily recognizable fiber bundle in the
brain. It starts from cortical areas of one hemisphere and terminate into the cor-
responding areas of other hemisphere. Though, there is debate about the fact that
corpus callosum fibers only connect the exactly corresponding regions of the two
hemispheres. A rough estimate suggest that there are around 200 million axonal
projections involved in the corpus callosum. It has four anatomical subdivisions:
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genu, rostrum, body and splenium. The genu is the anterior end of the corpus callo-
sum which is bent downward and backward. It connects the medial and the lateral
surfaces of the frontal lobes. The anterior most part of corpus callosum is the genu
which projects inferiorly and posteriorly and is tapered to form the rostrum. It is
continuous with the genu above and the lamina terminalis below. The mid section
of the corpus callosum is called the body or the trunk. The region is composed of
comparatively thicker axons as compared to the ones in genu or the splenium. The
axons in the trunk of the corpus callosum are directed toward the cerebral cortex
to form corona radiata, which include fibers of cortico-spinal tract and thalamic
radiations. The splenium is the posterior most part of the corpus callosum. The
body of corpus callosum tapers down as we move in the posterior direction before
it enlarges to form splenium. It connects the occipital lobes forming the forceps
occipitalis or forceps major. Agenesis of corpus callosum is a rare congenital dis-
order marked by partial or total absence of corpus callosum. Some of the common
symptoms include vision impairment, poor motor coordination, low perceptions of
pain and swallowing difficulties. Deterioration in the the white matter integrity
in corpus callosum is also noticed in other brain related diseases like HIV/AIDS,
Alzhiemers among many others.

Figure 2.11: Different sections of the corpus callosum. Adapted from [Highley 1999]
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Anterior commisure

The anterior commisure is a bundle of white matter fibers consisting of two to three
million mylineated axons. It connects the left and right temporal cortices. It also
contains crossing fibers from the olfactory tracts

Posterior commisure

The posterior commisure are a bundle of nerve fibers that crosses the mid-sagittal
plane immediately above the cerebral aqueduct at the junction of third ventricle.

The line joining the anterior and posterior commisure also known as the AC-PC
line is used as a reference for brain atlases, particularly the Talairach atlas. The
anterior and posterior commisures are shown in the figure 2.12.

Figure 2.12: Anterior and posterior commisure and the corpus callosum(in green)

2.2.4 Cerebellum

The cerebellum (also known as little brain) is located at the posterior end of the
brain just below the occipital and temporal lobes and posterior to the brain stem. It
is composed of white matter tracts along with a densely folded gray matter (called
the cerebellar cortex). The cerebellum, even with its small volume (10% of the total
brain) is known to contain around 50% of the total nerve fibers. Two major fissures
divide the cerebellum into 3 parts. The primary fissure separates the cerebellum into
anterior and posterior lobe. The posterolateral fissure separates the posterior lobe
from the flocculonodular lobe. In the left-right direction the cerebellum is divided
into two hemispheres by a mid-section called the vermis. These different section
are shown in the figure 2.13. The cerebellum is attributed to normal movement
and motor control. A cerebellar dysfunction is linked with ipsilateral movement
disorder.
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Figure 2.13: Location of cerebellum (left). Flattened cerebellum showing different
sections and subdivisions (right)

2.3 Conclusions

This chapter presents an overview of the general anatomy of the brain with special
emphasis on white matter tracts. The list of major white matter tracts presented
in this chapter is not exhaustive by any means. The anatomy and connections
of the short association fibers connecting adjacent gyri of the cerebral cortex is
less understood as compared to the long prominent white matter tracts discussed
in this chapter. Majority of the DTI studies also do not discuss the structure of
the SAF, which leaves an area for further exploration. However, the idea was to
give a general overview of the shape, location and primary function of the major
white matte tracts. The chapter also gives some information about the different
cell types composing the brain and the structure of neuron. An overview of these
white matter tracts is essential to understand the correlation between the clinical
neuropsychological testing and the statistical analysis conducted on diffusion tensor
images.
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3.1 Introduction

As discussed in the previous chapter, the anatomy of the human brain is one of the
most complex among the different parts of the body. This complexity exist at both
micro-scopic and macroscopic levels. The intricate white matter fiber structures,
the convoluted cortical surface and the foldings of the brain hold between them
deep secrets which are unfolding slowly with the scientific progress in the field of
neuroimaging.
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Before the advent of modern non-invasive medical imaging techniques, the study
was limited to post-mortem studies. In fact, the curiosity of humans regarding
brain anatomy could be dated to as far back as ancient Egypt in 1700 B.C. to
the Edwin Smith Papyrus [Breasted 2006]. However, here we are talking about
noninvasive neuroimaging. In this chapter I will discuss some of the tools that
were developed in the field and a little background about different techniques that
exist today. Later, we will focus specifically on magnetic resonance imaging (MRI),
in particular diffusion weighted imaging, the physics behind it and the associated
protocols.

3.1.1 History

Almost all the sources point to the Italian neuroscientist Angelo Mosso, who
conducted the first ever "human circulation balance" for measuring the redistribu-
tion of blood (1882) in the brain during emotional and intellectual activity. This
is regarded as the forerunner of modern functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET) scans. He investigated several
critical variable which are relevant even today in the days of computational
neuroimaging, such as signal-to-noise ratio (SNR), the appropriate choice of
the experimental paradigm and the need for simultaneous recording of different
physiological parameters. The details of the experiments were published recently
in [Sandrone 2014].

Another technique worth mentioning is pneumoencephalography which was intro-
duced in 1918 by an American neurologist named Walter Dandy. The process
involved injection of filtered air into one or both the lateral ventricles of the brain
via small trephine holes1. The injected air displaces the CSF providing better
contrast for X-ray imaging. The drained CSF was slowly replaced by natural
production. This process was not good at resolving the soft tissue like brain and
was also accompanied with greater risk for patients.

Around 9 years later, a Portuguese neurologist named Egas Moniz introduced
cerebral angiography. In this process a contrast agent is injected through a catheter
inserted in a large artery (like femoral artery). As the contrast agent spreads
through the brain arteries, a series of X-ray images were taken followed by another
series of images as it spreads through the venous system. This kind of imaging is
still used to detect brain aneurysms2 and blood vessel lesions.

It was not until 1970s that computed tomography or computed axial tomography
(CT or CAT scans respectively) became the forerunner of truly non-invasive med-
ical imaging by the efforts of William H. Olendrof, Godfrey Newbold Hounsfield
and Allan McLeod Cormack. For their effors Cormack and Hounsfield were

1a burr hole made in the skull using an instrument known as trephine.
2a localized bulge in the wall of a blood vessel.
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awarded Nobel prize in 1979. Olendrof not getting the Nobel is still a matter of
controversy. Earlier scanners used to build two dimensional images. However, 3D
image reconstruction is possible with the modern CT scanners. It build an image
based on the principal of differential absorption of X-rays by different tissue types.
The hard tissues like bone absorb X-rays much better than air and water. The
X-ray absorption by the soft-tissue lies somewhere in between. The CT scanning
technique makes use of this differential absorption rate between tissues to produce
the CT image. The effective radiation dose from CT ranges from 2 to 10 mSv,
which is about the same as the average person receives from background radiation
in 3 to 5 years. A CT scan is best suited for viewing bone injuries, lung and chest
injuries and detecting cancers. On the other hand, MRI is used for soft tissue
evaluation. A typical CAT scan may take upto five minutes. However, the actual
scan time is less than 30 seconds. CT scans are widely used in emergency rooms.

The concept of positron emmision tomography (PET) scan was suggested in
late 1950s by David E. Kuhl, Luke Chapman and Roy Edwards. It used trace
amounts of short-lived radioactive material to map functional brain processes.
During a radioactive decay, a positron3 is emitted which immediately meets an
electron. The both anihilate and emit two gamma photons running in opposite
direction. The emitted photons are detected by a gamma camera which permits
image reconstruction. Areas of high brain activity are also associated with high
radioactivity. The radioactive materials commonly used are short-lived isotopes
of carbon (C-11), nitrogen (N-13), oxygen (O-15), fluorine (F-18) or rubidium
(Ru-82). These radio tracers are used because they combine with glucose, water or
ammonia used by the body. PET scanning is more closer to functional imaging of
the brain. A closely related scanning technique is single-photon emission computed
tomography or SPECT. This technique uses gamma-ray emitting radio isotope and
a gamma-ray camera to reconstruct the image.

However, truly noninvasive neuroimaging became popular with the introduction
of magnetic resonance imaging (MRI) by Herman Carr in 1952. MRI had its
humble beginnings when Herman Carr produced a one-dimensional MR image in
his thesis. But, it was not until 1970s that MRI reached its full potential. The
first cross-sectional magnetic resonance image of a living mouse was produced in
1973 by Paul Lauterbur. The techniques were further improved by Peter Mansfield
which reduced the scan timing from hours to a matter of few minutes. Both, Paul
Lauterbur and Sir Peter Mansfield were awarded the Nobel Prize in Physiology in
2003 for their contributions in MR imaging techniques. In the subsequent sections,
the physics behind MRI will be explained leading to diffusion tensor imaging.

The physics of MRI could get very complicated and convoluted as we progress into
the finer details of MR acquisition. In the following sections, I will cover the basics

3an anti-particle to electron with a positive charge and same mass as an electron
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of MR imaging, the quantum physics aspect of it followed by the popular acquisition
protocols.

3.2 Physics of Magnetic Resonance Imaging

For understanding the physics involved in magnetic resonance imaging, it is impor-
tant to understand some basic quantum mechanics and the physics behind nuclear
magnetic resonance (NMR).

Nuclear spin

The human body composed mostly of water and fat. Water has a large number
of hydrogen atoms, which are used for MR imaging. There is another reason for
using the hydrogen atoms for imaging, but it will be discussed later as we progress.
These hydrogen atoms are aligned randomly in our bodies in absence of any external
magnetic field. Each of these hydrogen atoms (and all the other atoms in general)
are spinning about their axis producing a small magnetic field4. These tiny atoms
act as small magnets with their polarity defined by the direction of spin (clockwise
or anticlockwise). When an external magnetic field is applied, these tiny magnets
align themselves either along the direction of the applied magnetic field or in a
direction against it. This is shown in figure 3.1. Because of the spinning nature of
the atoms (nuclei), they have a spin angular momentum which make them precess
(wobble). The frequency of precession is linearly related to the strength of the
magnetic field and is called Larmor frequency. Thus, if B0 is the strength of the
applied magnetic field, γ be the gyro magnetic ratio, then the Larmor frequency, ω
is given by the following linear relation,

ω = γB0. (3.1)

One of the other reasons for using hydrogen atoms in the MR imaging other than its
abundance is that the gyromagnetic ratio for hydrogen is the highest (42.6 MHz/T)
when compared to the other elements found in the human body. What it implies
is that for a given magnetic field strength, the precession frequency is highest for
hydrogen atoms. So, imaging can be performed with lower magnetic field strength.
This idea will become more clearer as we progress in the chapter. The atoms aligned
in parallel to the applied magnetic field are in low energy state compared to the
ones aligned in the antiparallel direction. The natural tendency of the particles
is to remain in a low energy state. Consequently, there are more protons in the
low energy state (aligned parallel to the magnetic field) compared to that in the
high energy state (aligned anti-parallel to the magnetic field). The difference in the
parallel and anti-parallel protons increases with the increase in the strength of the
magnetic field. For a clinical MR scanner (typically of strength 1.5 T) there are
only nine protons per million which are in excess. On a first thought this does not

4refer Maxwell’s equations
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Figure 3.1: The atoms are randomly oriented in the absence of any magnetic field
(left). On application of a magnetic field (B0), the protons get aligned in directions
parallel or anti-parallel to the applied magnetic field.

sound like a big number. But calculations show that in total for every single voxel
of water with size 2×2×5mm3 there are around 6 million billion protons in excess.
The total sum of the magnetic field of each single proton gives the net magnetization

of the system’s magnetic field.

3.2.1 Excitation pulse

Traditionally the applied magnetic field, B0 is considered to be directed along the
z-axis in a Cartesian system. The net magnetization, M is precessing around the
z-axis at the Larmor frequency ω. One should understand, that even though the
individual protons are precessing around the z-axis, the net magnetization vector
M does not precess because all the protons are precessing out of phase, M will have
a large component along the z-axis but no components along the xy-plane. Only
the z components of all the protons add up to give the net magnetization vector
and the other components cancel out because of the random phase distribution.
If a radio frequency (RF) pulse is applied along the x axis, the net magnetization
vector M flips and starts precessing about the magnetic field axis. The angle of flip
depends on the strength and duration of RF pulse. In most of the pulse sequences
the angle of flip is 90◦ making the magnetization vector flip on the xy plane. The
RF-pulse is an electro-magnetic wave which has a weak magnetic field component
B1. The protons initially aligned to the z-axis will now also start precessing along
the x-axis at the Larmor frequency corresponding to B1,i.e., ω1 = γB1. After
the RF excitation, we have two different magnetic field in the system, one is the
applied strong magnetic field B0 (≈1.5 T ) and the weak magnetic field due to the
RF-excitation B1 (≈50 mT ).

As the protons are precessing along two axes (z and x), the net result is a spiral
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Figure 3.2: Schematic coordinate system showing the direction of magnetic field B0,
the net magnetization vector M and the direction of the applied radio-frequency
pulse.

motion into the x−y plane. This spiral motion is called nutation. The RF-pulse has
a sinusoidal waveform, mathematically it is represented as cos(ωt), where ω is the
frequency of the waveform. In order to achieve resonance, the waveform frequency
ω should be equal to the Larmor frequency as per the external magnetic field B0.
During resonance, the RF pulse adds extra energy to the protons. If the RF pulse
is sent at a frequency other than the Larmor frequency, there will be no resonance
and the energies of the protons will not be added and the magnetization vector
will not flip into the xy-plane. This is also known as transverse magnetization.

The flip angle of the magnetization vector depends on the duration for which the
RF pulse is applied. In the figure 3.3, a flip-angle θ, on the application of a RF-pulse
(frequency ω1 and magnetic componentB1) for a period of time τ is given by,

θ = ω1τ. (3.2)

Now, since the frequency ω1 is related to the magnetic field strength and gyromag-
netic of the proton γ by the relation in equation 3.1, we have

θ = γ B1 τ (3.3)

That is

τ =
θ

B1 γ
(3.4)

Another interesting phenomena that happens due to the application of RF-pulse
excitation is the phase coherence. Before the RF pulse excitation, all the protons
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Figure 3.3: Flip angle calculation. The magnetization vector M and the applied
magnetic field B0 are directed along the z axis. The RF pulse is applied along the
x axis which has a magnetic component B1. θ denotes the flip-angle. Adapted from
[Hashemi 2012]

were precessing but not in phase. The transverse magnetization is only possible if
all the tiny magnets, i.e., the protons precess in phase. These two phenomena of
transverse magnetization and phase coherence are interlinked.

3.2.2 Bloch Equation

The macroscopic behaviour of magnetization vector as a result of magnetic interac-
tions can be described with Bloch equations. The Bloch equation named after the
Nobel laureate Felix Bloch5 states

dM

dt
= M × γB, (3.5)

where the symbols have the usual meanings. The equation 3.5 states that the vector
describing the rate of change of M is perpendicular to both B and M. When the
RF-excitation is applied, the total effective magnetic field is given by,

Beff = B0 + B1, (3.6)

where B1 is the oscillating magnetic field due to the RF pulse. Due to the appli-
cation of the RF pulse a transverse magnetization is induced in the system. After
the RF pulse is stopped, the magnetization vector relaxes through two different
process called T1 and T2 relaxation. These relaxation process will be discussed in
the following sections. When these two relaxation processes are taken into account,
the Bloch equations are modified as,

dM

dt
= M × γBeff − Mx

~i+My
~j

T2
− (Mz −M0)~k

T1
, (3.7)

5awarded Noble Prize in physics in 1952
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where M = [Mx, My Mz] and M0 is the steady state nuclear magnetization . T1

and T2 are the relaxation time periods. Further simplification of the equation and
a closed form solution for the rate of change of M can be obtained. However, the
derivations are not important to understand the excitation and relaxation process.

3.2.3 Relaxation

As mentioned in the previous section, the phase coherence and transverse magneti-
zation are interlinked and that the protons start dephasing and loosing the trans-
verse magnetization as soon as the RF excitation pulse is turned off. One point to
remember here is that though the excitation process is interlinked, the relaxation
process for both the mechanisms are independent of each other. The reversal of
the magnetization vector, M from the xy-plane to the z-axis is called T1 relaxation
(also called longitudinal or spin-lattice relaxation) and the process of dephasing is
called T2 relaxation (also called transverse or spin-spin relaxation). The T1 and
T2 relaxations are independent of each other, because the T1 relaxation occurs on
the z-axis while the latter occurs on the xy-plane.

T1-relaxation

The rate of recovery of the magnetization vector Mz to the z-axis has a time
constant denoted by 1/T1. Hence the name T1 relaxation. The T1 relaxation times
differ for different tissue types, ranging from 300 ms in fat to several seconds in the
CSF. This difference in the relaxation times is used to generate the contrast between
different tissue types. Not all the protons are bound to the molecules in the same
manner, the protons in the fat tissue are tightly bound compared to that in water.
The tightly bound protons will release their energy to the surrounding protons
much quickly than the ones which are contained in looser bonds such as water.
This explains the shorter recovery time for the fat tissue. The pulse sequences
used for generating a T1 contrast image is called the T1-weighted sequences. The
equation for the recovery of the magnetization vector Mz is given by

Mz(t) = M0(1 − e−t/T 1), (3.8)

where M0 is magnetization vector due to the external magnetic field. The figure
below shows a typical T1 relaxation curve
At this point, we introduce two more terminologies, TR and TE. TR or the repe-
tition time is the time between two RF excitation pulses, whereas, TE or the echo
time is the time between 90-degree RF pulse and MR signal sampling time, which
corresponds to the maximum echo. These terms will be explained in more detail
in the later sections along with pulse sequences. The T1 sequences generate good
contrast between the gray and the white matter tissue and is subsequently used for
anatomical brain images.



3.2. Physics of Magnetic Resonance Imaging 34

Figure 3.4: T1 relaxation curve.

Figure 3.5: T2 relaxation curve

T2-relaxation

The T2 relaxation or spin-spin relaxation is used for describing the decay of the
transverse magnetization vector (Mxy) after the removal of RF excitation pulse.
The time constant for the decay of this signal is generally denoted as T2, hence the
name T2 relaxation. Similar to the recovery equation for T1 relaxation, the signal
in this case also decays exponentially following the equation,

Mxy(t) = Mxy(0) e−t/T 2 (3.9)

The figure 3.5 shows the T2 relaxation curve. The T2 relaxation time is shorter
than that of the T1 relaxation. The decay in the transverse magnetization vector is
caused by the local magnetic field inhomogenity, which is caused by the variations
in the local magnetic susceptibility. Because of the differences in the magnetic sus-
ceptibility, there are variations in the Larmor frequency which leads to subsequent
decoherence in the magnetization vectors. The spins will also dephase if there are
inhomogenities in the applied magnetic field, which is unavoidable due to limita-
tions on magnet construction. These two factors contribute in the rapid decay of the
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transverse magnetization compared to the recovery time needed for magnetization
vector Mz. The actual decay rate (T2∗) when the magnetic field inhomogeneties
are taken into account is given by,

1
T2∗

=
1
T2

+ γ ∆B0, (3.10)

where ∆B0 is the magnetic inhomogenity within a single voxel. T2-weighted
images are often used for detecting tissue pathologies, because changes in the water
content is often associated with changes in the tissue composition.

During the relaxation process, the protons release the extra energy, which they
acquired due to RF-excitation. This energy is also released in the form of radio
frequency waves which are then picked up by a receiver coil to produce an image.
The receiver coil is placed at right angles to the main magnetic field. As mentioned
before, the RF has both electrical and magnetic components. Our aim here is
to pick up the magnetic field in the released RF wave. This magnetic field in turn
generates a current in the receiver coil, which is the acquired signal and is translated
into an image.

3.2.4 Signal Localization

In the previous sections, we have discussed the physics behind RF excitation and
relaxation. However, it is important to know where the signal is localized in the
body. In most of the imaging techniques, the entire body (in this particular case
head) is not subjected to the RF excitation pulse at once, but a single slice in any
direction is selected and only the protons contained in that slice are excited by the
RF pulse. This is achieved using a gradient magnetic field. The gradient field is
expressed as a function of position as,

B(t) = B0 + G(t)r, (3.11)

where G(t) is the gradient applied and r is the position vector. The gradient
magnetic field is achieved using gradient coils.
The figure 3.6 shows the construction of the gradient coils. Essentially in the most
simplest form, they are loops of wire carrying current. We know from Biot-Savart
Law that a current carrying loop produces magnetic field. This magnetic field is
superimposed on the existing B0 and produces a gradient magnetic field in each of
the three directions which is important to localize the signal to a single voxel. The
encoding gradients required for a localization in 3D are

1. slice-select gradient

2. phase-encoding gradient

3. frequency-encoding gradient
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Figure 3.6: A schematic construction of gradient coils along the three axes in a
scanner. The figures A, B and C represent the construction for the gradient coils
in the x, y and z axes respectively. Adapted from www.mri-physics.net

Slice-select gradient

The slice-select direction can be directed along one of the axes depending on the
slice-direction desired. For sake of demonstration, here the slice-select direction is
oriented along the body (that is along the direction of B0 or z-axis). The gradient
along this direction Gz varies in a linear fashion creating a nonuniform magnetic
field along this direction. The linearly varying gradient magnetic field is shown in

Figure 3.7: Slice-select direction and linearly varying magnetic field (Gz)

figure 3.7. The external magnetic field is B0 and so the total magnetic field at a
distance z is B0+z Gz. With the linearly varying magnetic field, each section (slice)
of the body will have its own resonating frequency. Depending on the slice being
activated, the Larmor frequency is calculated using equation 3.1 and a RF-pulse
of the same frequency is transmitted. However, from a practical point of view, in
order to activate a slice of thickness ∆z, a RF-pulse of a range of frequencies is sent.
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The range of frequencies can be calculated based on equation 3.1 and the figure 3.7,

∆ω = γGz ∆z (3.12)

The slices can be made thicker or thinner by decreasing or increasing the gradient.
At this point of time, we have information regarding the position of the slice in the
body but we have no information about the exact location of the signal within the
slice or the plane of acquisition.

Phase-encoding gradient

The second encoding is the phase-encoding gradient which is applied in the anterior-
posterior direction (along the y-axis). It induces a similar magnetic field gradient
in this direction. When the magnetic gradient Gy is applied along this axis, it
throws the protons out of phase. After the phase encoding gradient stops, they
are still spinning at the same frequency but remain out of phase. This process is
called phase-encoding. The protons in the same row perpendicular to the gradient
direction will have be in phase as shown in figure 3.8.

Frequency-encoding gradient

After the phase-encoding gradient is applied, another magnetic gradient called the
frequency-encoding gradient, Gx is switched on in the left-right direction (x-axis).
The protons on the right will acquire a higher frequency than the ones on the left
of the slice due to the higher magnetic field, thus creating a frequency difference.
Since the frequency turns back to ω0 at the end of the Gx gradient, the signal has
to be recorded during the application of Gx.

With all the three gradient directions combined, it is now possible to determine
precisely the location of the signal in a Cartesian frame. The whole process of
creating phase differential in each voxel is shown in figure 3.8.
The figure 3.9 shows the time sequence in which the RF pulse excitation are applied.
The typical pulse sequences commonly will be discussed in the chapter later.

3.3 k−space

k−space is the raw data or signal that is acquired from the MR scanner. It is the
space in which the MRI data is acquired. The MR image we see is the Fourier
transform of the k−space. In this section, we will discuss qualitatively about
k−space briefly.

As discussed in the previous section, there are three different and independently
controlled magnetic gradient field in the scanner, G = [Gx Gy Gz],

G = ∇Bz,
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Figure 3.8: A schematic showing the effects of the gradient directions Gy and Gx on
the selected slice. The nine voxels represent the different voxels in the same slice.
When the Gy gradient is applied, the different rows of the slice dephase spin with
different frequencies and become dephased. After Gy stops, they remain dephased
although precessing again with the same frequency. The magnetization vector Gx

creates additional phase difference across the row. Adapted from [Hashemi 2012]
.

Figure 3.9: An example of pulse sequences.
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where Bz is the total magnetic field along the z-axis and ∇ represents the gradient
operator. For a linear gradient as discussed in the chapter,

Bz(r) = G · r

We know from equation 3.1, that for a given magnetic field it is possible to compute
precessional frequency ω = γBz. In a rotating frame of reference add the section

before, we have
ω = γG · r (3.13)

The phase is the time-integral of the precessional frequency w and is given by,

Φ(r, t) =
∫ t

0
ω(r,dτ) dτ =

∫ t

0
γG(τ) · r dτ (3.14)

So, for any particular position r, we can write

Φ(r, t) = γ

(∫ t

0
G(τ) dτ

)

· r (3.15)

If we define k(t) as,

k(t) = γ

(∫ t

0
G(τ) dτ

)

(3.16)

Then equation 3.15 can be simply written as

Φ(r, t) = k(t) · r (3.17)

Now, we know that the signal acquired in MRI, S(t) is a vector sum of all the
transverse magnetization pulse. Thus,

S(t)∝
∫

Mxy(r, t)dr (3.18)

Substituting from equation 3.9

Mxy(r, t) = Mxy(r,0)e−ik(t).r (3.19)

The image is the transverse magnetization at the time, t = 0. We call the image
Im(r). Thus,

S(t) ∝
∫

Im(r)e−ik(t).rdr (3.20)

If S(t) is expressed as a function of k instead of time, t we can write,

S(k) =
∫

Im(r)e−ik.rdr (3.21)

The above expression is the definition for Fourier transform of the image and thus
is the k-space. An inverse Fourier transform will result in the MR image.
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k− space representation and MR image

The acquired data in k−space can be schematically represented by the box shown
in figure 3.10. The signals with low frequency are around the center, whereas the
signals in high frequencies are spaced on the periphery of the image. The low
frequency signals contain information about the signal-to-noise ratio (SNR) and
contrast of the image. The high frequencies contain information about the spatial
resolution. The k−space is symmetrical about the origin in both x and y axes.

Figure 3.10: The middle section of the k−space corresponds to the signal-to-noise
ratio and the contrast of the image. The peripheral regions correspond to the image
resolution information.

The above discussion becomes more clear with few examples. In figure 3.11, the MR
image and the corresponding k−space is shown. It can be seen in the figure, that
if the MR image is constructed only from the signal in the center of the k−space
it has good contrast but very low resolution. In the bottom row, the MR image is
constructed only from the signals on the periphery of the k− space. As one can
see, the image has sharp contours but almost no contrast information.

3.4 Pulse sequences

A pulse sequence is a sequence of events induced in the system for a MR image ac-
quisition. The events are the RF excitation pulse, RF echo and gradient switches.
The pulse sequences are generally shown on a pulse diagram, which consist of hor-
izontal lines with the events marked at appropriate time points. An example is
shown in figure 3.9. Over the years, a number of variations of pulse sequences were
suggested in order to increase the acquisition speed, image contrast and SNR. It is
up to the user to determine the sequence parameters (TR, TE, field of view and
flip angle) for imaging and to find the right balance between speed of acquisition,
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Figure 3.11: The left column shows the magnetic resonance image and the right
column shows the corresponding k-space. The top row (A) shows the full k−space
and the corresponding MR image. The middle row (B) shows the image constructed
from only the central section of the k−space which contains the image contrast
information but the image is blurry as it does not contain any information about
the image resolution. The bottom row (C) shows image constructed from only the
information in periphery of k− space. The image has no contrast information.
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image contrast and resolution. The pulse sequences can be broadly categorized into
two families,

1. Spin-echo sequences

2. Gradient-echo sequences

The spin-echo sequences are characterized by the presence of 180◦ rephasing pulses.
On the contrary, the gradient echo sequences are characterized by the absence of
any such rephasing pulse, but a gradient reversal pulse. A number of different
variations of these two pulse sequences exist in the literature and we will discuss
few of them in the following sections.

3.4.1 Spin Echo (SE) sequence

The spin-echo sequence was one of the first sequence to be used in MRI acquisitions.
The SE sequence is composed of a 90 degree RF pulse, a 180 degree pulse and a
signal echo. As soon as the 90-degree excitation pulse is applied, the transverse
magnetization starts to dephase due to T2 relaxation. A 180-degree pulse is applied,
which causes the dephasing magnetization to rephase. The echo produced is received
by a RF coil. The SE sequence produces strong signal, however it requires longer
acquisition time because of the rephasing step. The figure 3.12 describes the whole
process of signal activation.

Figure 3.12: Events involved in spin-echo sequence. 1. Switching on the slice-select
gradient. 2. A 90-degree RF pulse for transverse magnetization. 3. Phase-encoding
gradient is switched on. 4. The slice-select gradient is switched on again. 5. A
rephasing 180-degree RF pulse is sent. 6. Frequency-encoding gradient is switched
on. 7. Signal echo is received by the receiver coil.
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A spin-echo sequence has three important parameters, TR, TE and number of
repetitions of RF excitation. TR is the time between two 90-degree excitation
pulses. It is important that we allow long enough TR in order to have full recovery
of the transverse magnetization before applying the next RF pulse. Failing to do
so will lead to loss of signal in the following iterations of the sequence pulses. The
TE is the time interval between the 90-degree RF excitation signal and the echo.
In T1 and T2 weighted images, the TR and TE parameters are optimized for their
respective relaxation periods. Using a spin-echo sequence, a T1, T2 and proton
density images can be produced. Typical values of TR and TE are shown in the
table 3.1.

TR (ms) TE (ms)
T1 weighted 600 10
T2 weighted 3000 100
Proton density 3000 19

Table 3.1: Approximate values of TR and TE for T1-weighted, T2-weighted and
proton density images.

For the sake of demonstration, lets consider a brain scan, containing 25 slices in
the superior-inferior direction (along z−axis). From the table 3.1, we see that
for a T1-weighted acquisition the TR and TE values are 600 and 10 millisecond
respectively. If each slice has a resolution of 256x256 voxels, time required to scan
the whole brain will be,

Total time = TR × number of lines to be scanned × number of slices

= (600 × 256 × 25)/60000 minute

= 64 minute.

64 minute is a long time to scan a brain in a clinical setting. Also, if a subject
is kept under scanner for such a long period of time, the scan is bound to have
artifacts due to head motion inside the scanner. In the following section, we will
discuss more practical variants of the spin-echo sequence.

3.4.2 Fast spin-echo sequence

As mentioned in the previous section, the SE sequence takes a very long time to be of
any practical use. Again looking at the same example of a T1-weighted acquisition
(refer to table 3.1), the signal is acquired only during TE, that is 10 millisecond.
This implies that a large amount of time (590 millisecond) during which the T1-
relaxation is taking place is not used at all. This is called dead period. The idea
behind the present method is to utilize this dead period.
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Multi-slice SE sequence

As soon as the first line in a particular slice is scanned, the slice-select gradient is
moved to the adjacent slice and the process continues until the first line of every
single slice is scanned. The same process is followed with the second line until the
whole brain is scanned. This process reduces the dead period considerably resulting
a total scan time of 2-3 minutes. The pulse diagram for this pulse sequence is shown
in figure 3.13.

Figure 3.13: Pulse diagram for multi-slice spin-echo sequence. The three lines
represent the same row of voxels in 3 different slices.

Multi-echo SE sequence

The multi-echo SE sequence goes with many names such as: turbo spin echo
(TSE) and rapid acquisition and refocussing echoes (RARE). The sequence was
first introduced by [Hennig 1986]. Contrary to the conventional spin-echo sequence
where only a single refocusing 180 degree RF pulse is applied, in RARE a series of
refocusing pulses are applied in same TR. Because of the multiple RF excitation
pulses there will be multiple echoes which can be used to fill multiple lines in the
k−space.
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Figure 3.14: A train of refocusing 180◦ RF pulses follow after the initial 90◦ during
the same TR. Each of the refocusing pulsed produce a spin echo (represented as
SE), which is used to fill the k−space.

The echo train length (ETL) is the number of 180◦ RF pulses used in the sequence.
The number typically ranges from 3 to 32. The time difference between the
successive RF pulses is called the echo spacing (ESP). The echo corresponding to
the central section of the k−space is called the effective echo time. Since different
sections of the k−space are filled with different spin-echos, each section will have
a different T2 weighting. So, the question that arises is what are the factors
that define the image contrast? In figure 3.11 we have discussed that the central
section of the k−space is the one that define the image contrast. So, the echo
corresponding to the central section also determines the contrast for the image. In
figure 3.13 it is shown that the k− space is being filled serially. The bottom row
is filled with the first echo, the following row from the bottom is filled with the
second echo and so on. However, it is possible to assign any of the echos to the
central section of the k−space, thus changing the effective echo time and the image
contrast. Sequences with high ETL have poorer contrast and spatial resolution
compared to the ones with low ETL. It is obvious that the echo train length is
also the factor determining the increase in the acquisition speed compared to the
conventional spin echo sequence.
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The major advantage of using a multi-echo spin sequences lies in its faster acqui-
sition schemes as compared to the conventional spin-echo scheme. It is possible to
acquire high resolution images, while maintaining a good SNR. Because of the faster
acquisition there are less artifacts due to head motion. However, the multi-echo spin
sequence does not come without its own drawbacks. A high ETL corresponds to
closely spaced 180◦ RF pulses which does not give enough time to the protons to de-
phase and loose the magnetization to the surrounding tissue. Thus, the T2 weighted
image acquired using the sequence is less sensitive to the magnetic susceptibility
effects. This might not sound like a bad thing, but a reduced susceptibility also
means that it is difficult to detect tissue changes due to brain hemorrhage like de-
oxyhemoglobin and hemosiderin compared to the conventional spin-echo sequence.
[Hashemi 2012]. There is natural limitation on the number of slices that can be
acquired using this scheme. The number of slices depend on the ETL. If the ETL is
16, we can only acquire 16 slices, thus enforcing an upper bound on the resolution.
As discussed above, the effect of echo train length is demonstrated in figure 3.15.

Figure 3.15: Effect of echo train length (ETL) on the image resolution. a. ETL =3,
TR = 600 ms, TE=12 ms, scan time=52 sec. b. ETL=23, TR=600 ms, TE=128
ms, scan time=6 sec. c. ETL=128, TR=∞ (single shot), TE=87 ms, scan time=1
sec. Vertical phase encoding direction. Loss in spatial resolution increases with
increase in ETL. There is significant loss in resolution in the figure c and subtle
resolution loss in figure b. Adapted from [Hashemi 2012]

Ultrafast spin echo

The ultrafast spin echo sequence is similar to the multi-echo SE sequence, but faster
as the name suggests. The sequence exploits the symmetrical nature of the k−space.
It only records the early echos in the system to fill just a little more than half the
k−space and the missing sections are filled using its symmetry properties. Since
the sequence aims to fill the whole k−space with a single 90◦ RF pulse, the TR is
very long. For the same reason, it is also called single shot sequence The long echo
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trains leads to decrease in the strength of late echo signals and thus a decrease in
the SNR. These sequences are often used for T2-weighted imaging. The acquisition
time is reduced to half, but there is also a loss in the SNR of the image and spatial
resolution in the phase encoding direction. The effect can be seen in figure 3.15 c.
With this method it is possible to scan the whole brain under 30 seconds.

3.4.3 Gradient recalled echo (GRE)

The gradient recalled echo (GRE) is characterized by a flip angle lower than 90
degree and an absence of 180 degree rephasing RF pulse. Because of the lower
flip-angle, the magnetization component in the xy−plane is reduced by a factor
of sine of the flip angle. A lower flip-angle also allows a quick recovery of the the
longitudinal magnetization vector, which means a shorter TR and TE compared
to the spin-echo sequences. The shorter TR and TE allows a quick scan time. As
mentioned before in section 3.2.3 the decay in transverse magnetization occurs
because of spin-spin tissue specific relaxation and the inhomogeneities in the
magnetic field and magnetic susceptibility. The signal obtained using the GRE
sequence is T2∗ weighted, because in GRE there is no refocussing 180◦ pulse.

Figure 3.16: Events involved in gradient recalled echo (GRE) pulse sequence. 1.
Slice select gradient is switched on. 2. RF excitation pulse is sent. 3. Phase
encoding gradient is switched on. 4. Negative frequency gradient is switched on
and then polarity is changed to positive. 4. Echo at TE.

Instead of the 180◦ RF pulse, a dephasing and rephasing gradient is applied as shown
in figure 3.17. The dephasing gradient is applied such that all the magnetization
vectors go out of phase and then they rephase again with the rephasing gradient.
The rephasing magnetization vectors add up in phase at TE and thus produce
an echo. A frequency or read-out gradient is applied at this time for the signal
acquisition.
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Figure 3.17: Echo formation in GRE. The magnetization vectors are out of phase
for the first half of the pulse gradient

It may so happen that the magnetization vector reaches a steady state, that is,
it never fully recovers after repeated RF excitation pulses. This happens because
the recovery in each TR matches exactly the effect of excitation pulse. Depending
on how the residual transverse magnetization is accounted for in image acquisition,
there are two different types of GRE; spoiled gradient recalled echo and steady state
gradient recalled echo.

Spoiling transverse magnetization

The term "spoiling" refers to the the destruction of the residual (steady state)
transverse magnetization before the next RF excitation pulse. There are three
methods for spoiling the gradient, which are

1. using a longer TR, that is, TR >> T2/T2∗ relaxation times.

2. applying a spoiling gradient.

3. changing the RF excitation pulse also called RF spoiling.

The spoiling method is used for faster acquisition techniques in conjunction with
spin-echo and multispin echo sequences or gradient echo sequences described above.
The first method for spoiling is very simple. It just asks for a longer TR. A longer TR
(> 200 ms) is good enough for a complete dephasing of the transverse magnetization
as TR >> T2. The method is simple but it unnecessarily increases the acquisition
time because one has to wait for the complete relaxation period. The spoiling
gradient scheme involves applying additional variable gradients at the end of each
RF cycle. The strength of the spoiling gradient can be varied linearly or semi-
randomly over the whole acquisition period. The gradients are spatially varying and
so the spoiling is not spatially uniform. The best spoiling method is RF spoiling.
This method involves applying a phase offset to each successive RF pulse, which
causes a phase shift in the successive steady state transverse magnetization vectors.
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One can think of it as applying the same flip angle but in a different direction,
preventing the steady state build up. This method is better than the previous
two because it does not generate any eddy currents and is spatially invariant. The
spoiling techniques are in common use and are included in most of the scanners
from GE, Siemens and Phillips, though with different names. This method has its
advantages in terms of speed of acquisition but the images produced have a low
SNR because of the short TR and increase in chemical shift artifacts have also been
reported [Hashemi 2012].

3.5 Echo planar imaging

Echo planar imaging is the fastest MRI acquisition protocols available compared
to all others discussed above. EPI sequences need a hardware modification and is
provided with all the major scanner companies. Due to the fast acquisition routines,
it has found its applications in many fields like diffusion weighted imaging (DWI),
perfusion imaging and functional magnetic resonance imaging (fMRI). The basic
principle of EPIs is to fill the k−space using a series of gradient echos as discussed
in the case of GRE. The switching of the dephasing and rephasing gradients is done
very fast and can be done in a sinusoidal fashion. The two variants of EPI are single
shot EPI and multiple shot EPI.

Single shot EPI

In single shot EPI, the reversing gradients are applied after a single RF-pulse (shot)
is applied. Usually 128 reversing gradients are applied during a single T2∗ decay
and each reversing gradient is used to fill one line in the k−space. The single shot
EPI acquisitions are very demanding in terms of the scanner hardware because of
the fast switching gradients. Depending on whether the phase encoding gradient is
kept on continuously during the whole readout time period or is switched on and
off between the readout gradient, the single shot EPI is called either non-blipped

or blipped acquisition. The non-blipped and blipped pulse sequences are shown
in figure 3.18. The manner in which the corresponding k−spaces are filled is also
shown in the figure. The zigzag filling as in the case of non-blipped EPI presents
artifacts during Fourier transform. The blipped EPI was suggested in order to
overcome these artifacts. Figure 3.19 shows a typical pulse sequnce schematic for
blipped single shot EPI acquisition.

Multishot EPI

The multishot EPI is similar to the single shot EPI, except the fact that instead
of having the readout in a single RF pulse, the readout is divided into multiple
RF pulses or shots. The multishot EPI takes longer than the single shot EPI, thus
increasing the chances of motion artifacts.
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Figure 3.18: Schematic showing the non-blipped and the blipped single shot EPI
pulse sequences. Gpe and Gfe are the phase encoding and the frequency encoding
(readout) gradient respectively. On the right the figure shows the corresponding
k−space filling. For the non-blipped EPI the k− space is filled in a zig-zag fashion
and the blipped case it is filled in a serial odd-even (left to right and right to left)
manner. Adapted from courses on www.imaios.com/

Figure 3.19: A schematic of pulse sequences for single shot blipped EPI sequence.
The MR signal peaks due to the initial phase offset in the phase encoding gradient
direction Gy. Adapted from [Hashemi 2012]

.

EPI related artifacts

One of the major problems of single shot EPI is that any error in phase propagates
through the whole k−space. This error is not present in the other spin-echo
sequences because after every dephasing-rephasing cycle a new RF pulse is applied.
The single shot EPI method produces significant magnetic susceptibility artifacts
near the sinus and air-tissue interfaces. The susceptibility artifacts are reduced in
multishot echo sequences and shortening the TE. Apart from the susceptibility
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artifacts, ghosting of the image can also happen not due to the motion of the
subject but due to eddy currents induced in the system by the rapidly switching
gradients. For example, in case of EPI sequences, after filling the k−space (in
odd-even fashion), the k−space lines obtained with the negative lobe of the phase
gradient has to be reversed. During this reversal process, there might be a phase
mismatch due to system inaccuracies and time delays. This artifact is also called
Nyquist or N/2 ghosting. An example of Nyquist ghosting is shown in figure 3.20.

Figure 3.20: Nyquist ghosting in MR imaging using EPI pulse sequences.

These artifacts are common in the diffusion magnetic resonance imaging
(dMRI). In the next sections, we will discuss the principles behind diffusion
imaging, the pulse sequences used in dMRI and the related artifacts.

3.6 Principle of Diffusion: Einstein’s equation

Molecules in a fluid are in constant random motion due to the thermal agitation.
This random motion is called Brownian motion [Brown 1828]. In an isotropic media
(such as water), the rate of diffusion is same in all directions and can be completely
described using the scalar self-diffusion coefficient D. In 1855, Adolf Fick postu-
lated that the particle flux is directed from areas of high concentration to that of
low concentration and is proportional to the local concentration of the particles
[Fick 1855]. Thus, giving the first Fick’s law,

J = −D∇n(r, t), (3.22)

where the J is the diffusion flux, n(r, t) is the number (concentration) of particles
at position r at time t. Again, according to the law of conservation of mass the rate
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of change of n(r, t) is related to the local diffusion flux divergence as,

− ∇.J =
∂n

∂t
. (3.23)

Figure 3.21: Fick’s first law. The net flux J is directed from regions of high concen-
tration on the left to the regions of low concentration on the right. Adapted from
[Baseer 2009]

Substituting in equation 3.22, we have the second Fick’s law

∂n

∂t
= D∇2n (3.24)

In 1905, Einstein rewrote the Fick’s law as a stochastic process [Einstein 1905].
With a conditional probability P (r|r′, t) that a particle at r will move to a position
r′ in time t, the number of particles at position r′ at time t is given by,

n(r′, t) =
∫

n(r, 0)P (r|r′, t) drr, (3.25)

The conditional probability also obeys the Fick’s law of diffusion. From the second
Fick’s law, we have

∂P (r|r′, t)
∂t

= D∇2P (r|r′, t) (3.26)

Considering the conditional probability at t = 0, as a Dirac delta function, that is,
P (r|r′, 0) = δ(r′ − r), the solution for the above equation is a Gaussian distribution
[Jones 2010],

P (r|r′, t) = (4πDt)−3/2exp
(

−r′ − r

4Dt

)

(3.27)

On computing the ensemble average6 of the above distribution, we have

< (r′ − r)2
>= 6Dt. (3.28)

The above equation is the famous Einstein’s equation for diffusion. From a statis-
tical perspective, the diffusion is reflected as the mean square distance traversed by
the molecules in a given period of time.

6an average of all the possible microstate of the system



3.6. Principle of Diffusion: Einstein’s equation 53

Effect of diffusion on MR signal: A qualitative explanation

So far we have seen that in typical pulse sequences, the tissue is excited with a RF
pulse and the transverse magnetization is refocused either with a 180◦ pulse (spin-
echo) or a gradient reversal pulse (GRE). In these two sequences, the refocusing
pulse leads to the cancellation of the phase due to magnetic field inhomogenities
and produce an echo at TE. In the absence of any diffusion, the magnetic spins
dephase and rephase after the application of the 180◦ (or the gradient reversal
pulse) because there is no difference in the magnetic field throughout the system.
On the other hand, if there is a drift in the protons due to diffusion, there will
be a difference in the magnetic field across the system. This difference will lead
to a difference in dephasing and rephasing of the proton spins. There is a partial
rephasing of the spins leading to a incoherent phase distribution. This phenomena
leads to a signal attenuation at TE. The attenuation of the signal depends on the
micro-structural integrity of the tissue sample (as the diffusion is also dependent
on the tissue properties) and the pulse sequence used.

3.6.1 The Diffusion Tensor

If we conduct a thought experiment, which involved tracking a water molecule
through an isotropic medium, the rate of diffusion will be same in all directions
and thus the probability of finding the particle will be also isotropic. For a given
time t, the translational displacement of the particle around the initial starting
point will be a sphere. This is exactly the phenomena explained by the Einstein’s
diffusion equations described above. Taking our thought experiment a step further,
if we consider tracking the water molecules in anisotropic media, we will find that
the rate of diffusion is no longer isotropic. The diffusion is more directed along
the anisotropy of the medium than across it. The phenomena can be visualized in
the figure 3.22. Following from the equation 3.27, the voxel averaged displacement
distribution is given by,

P (R, t|0) =
1

√

|D|(4πt)3
exp(−RTD−1R

4t
), (3.29)

where R is the distance traversed by the water molecule, |D| is the determinant
of the diffusion coefficient D. The diffusion coefficient is a second order positive
definite tensor. The above equation describes a three dimensional ellipsoid in the
displacement space. The diagonal elements of the diffusion ellipsoid is proportional
to the second moment of diffusion along the three orthogonal coordinate axes and
the off-diagonal terms yield the correlation between the displacements along the
orthogonal axes. The diffusion coefficient in an anisotropic media is a generalized
representation of the diffusion in isotropic media. When all the eigen values of
D are equal, the rate of diffusion is isotropic, whereas when the eigen values are
different the rate of diffusion is higher along the direction of higher eigen value.
Traditionally, the three eigen values are represented as [λ1, λ2, λ3].
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Figure 3.22: Isotropic diffusion (left) showing equal probabilities in all directions
and anisotropic diffusion (right) highly probably to diffuse along the anisotropy of
the media.

Scalar metrics: Shape and size of diffusion tensor

For the purpose of analysis and also visualization, various scalar metrics are derived
from the diffusion tensor. One of the most important criteria for the scalar metrices
is that they should be rotationally invariant. One of the first rotationally invariant
parameters are the eigenvalues of the diffusion tensor. In this section, we will look
at some of the commonly used scalar values derived from the diffusion tensor and
their physical meaning.

Trace

The trace of a diffusion tensor is the sum of eigen values of the diffusion tensor,
that is

Trace(D) = λ1 + λ2 + λ3. (3.30)

The trace gives an estimate of the size of the diffusion tensor. The trace values are
often used in monitoring stroke.

Mean Diffusivity (MD)

The mean diffusivity is the average of the eigen values of the diffusion tensor and
is given by,

MD =
λ1 + λ2 + λ3

3
(3.31)

Fractional Anisotropy (FA)

Fractional anisotropy is one of the most common scalar measures in use. It gives a
measure of how elongated or round the diffusion tensor is. The value of FA ranges
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between 0 and 1. The lower FA values (close to 0) correspond to the cerebrospinal
fluid, whereas the regions with higher FA values (close to 1) correspond to that of
white matter tracts. The FA can be computed as,

FA =

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

. (3.32)

3.6.2 Bloch-Torrey Equation

The Bloch equation (equation 3.7) gives the rate of change of magnetization vector
in presence of a magnetic field. However, it does not take into account the diffu-
sion phenomena. These equations were modified later by H.C. Torrey in 1956 to
incorporate the diffusion phenomena [Torrey 1956]. For the time evolution of the
transverse magnetic field (Mxy), the Bloch-Torrey equations can be written as,

dM

dt
= M × γBeff − Mx

~i+My
~j

T2
− (Mz −M0)~k

T1
+ ∇·(D∇M), (3.33)

where symbols have their usual meanings. The evolution of the transverse magne-
tization component Mxy is presented in [Johansen-Berg 2009]. The equation is,

∂Mxy

∂t
= −iω0Mxy − Mxy

T2
− iγ(G·r)Mxy +D∇2Mxy, (3.34)

where i =
√

−1, ω0 is the Larmor frequency, γ is the gyro-magnetic ratio, G is the
magnetic gradient and r is the voxel location where the RF pulse is induced.

3.6.3 Stejskal-Tanner equations

In the year 1965, Stejskal and Tanner proposed a pulse gradient spin echo sequence
(PGSE) for measuring the diffusion coefficient D [Stejskal 1965]. Unlike the previ-
ous pulse sequences discussed before, in PGSE there was a distinction between the
pulse duration δ and the time difference between the two pulses ∆. The total phase
change induced by the first gradient will be,

φ1 = −γ(δG)x1, (3.35)

where x1 is the position of the particle on the application of the first gradient pulse
G. The differential magnetic field is the product of the gradient and the duration
δ for which it is applied. The magnetization due to the static magnetic field B0 is
ignored as that will be the same for all the protons. Similarly for the particle at
position x2, the phase change will be,

φ2 = −γ(δG)x2. (3.36)

The net phase change is the difference φ1−φ2 = −γGδ(x1−x2). In the original paper
[Stejskal 1965], the authors showed that the attenuated transverse magnetization
Mxy(r), hereon referred to as S(r) can be written as

S(r) = S0(r)exp
[

−γ2||G||2δ2
(

∆ − δ

3

)

D
]

, (3.37)
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Figure 3.23: Schematic showing the pulse gradient spin echo scheme introduced by
[Stejskal 1965]. The duration of the pulse is denoted by δ and the time difference
between the gradient pulse is ∆.

where S0(r) is the initial transverse magnetization. The term b-factor also known
as the diffusion weighting factor introduced by [Le Bihan 1986] is defined as

b = γ2||G||2δ2
(

∆ − δ

3

)

, (3.38)

reducing the equation 3.37 to

S(r) = S0(r)exp(−bD) (3.39)

The term b-factor only depends on the acquisition parameters and refers to the
measurement sensitive to diffusion. A b-value of zero will lead to a T2 weighted
EPI image. In clinical settings typically a b-value of 1000 is used. A higher b-
value will increase the contrast in pathogenic regions at the cost of low SNR. The
dependence of b-value on the image is shown in figure 3.24. High b-value diffusion
weighted imaging is an active area of research and lot of work has been done in this
regard [Meyer 2000, Ichikawa 2006, Kim 2010].

For anisotropic diffusion the equation 3.39 needs to be written in a more general
form as suggested by [Westin 2002] as

S(r) = S0(r)e−bGTDG. (3.40)

The diffusion matrix D being a 3×3 symmetric matrix, we need at least six mea-
surements along six non-collinear gradient directions and an unattenuated image S0

to estimate the six parameters of the diffusion tensor. The equation 3.40 is linear
in the log domain, thus,

ln(S(r)) = ln(S0(r)) − bGTDG. (3.41)
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Figure 3.24: Effect of b-values on diffusion weighted imaging. The image on the
left is undiffused image (b = 0), while the one on the extreme right is strongly dif-
fused with a b-value equal to 1000. The middle image shows intermediate diffusion
between the two. Adapted from [Graessner 2011]

There will be linear system of six such equations which should be solved for the
six terms in the diffusion tensor D. In practice, more than six diffusion images are
acquired to solve the system of equations. Over the years, various sophisticated
tools are designed for the estimation of diffusion tensors which will be discussed in
chapter 4.

3.6.4 Pulse sequence for DWI acquisition

The two major concerns regarding the diffusion weighted imaging are the bulk head
motion of the subject and the eddy current distortions induced in the image due
to fast switching gradients. Various pulse sequences were designed in the past for
diffusion weighted imaging, while taking into account these two problems. In this
section, we are going to discuss the single shot EPI and multi-shot EPI sequences
for diffusion imaging. The EPI technique could be used for diffusion imaging by
combining it with a diffusion weighted preparatory pulse followed by a single shot
EPI sequence as shown in the figure 3.25.

EPI based methods for diffusion weighted imaging

We discussed a single shot EPI sequence and its pros and cons in the previous sec-
tion. The single shot EPI sequence is faster than traditional SE and GRE sequences
and thus is more suited for diffusion imaging. However, the images produced with
this sequence has ghosting and susceptibility related artifacts. In addition the diffu-
sion weighted images (DWIs) are typically low in spatial resolution as the resolution
is limited by the T2∗ relaxation periods. The single shot diffusion weighted imag-
ing can be combined with parallel imaging protocols like SENSitivity Encoding
(SENSE) [Bammer 2001]. With the EPI-SENSE protocol, the susceptibility and
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Figure 3.25: A typical diffusion weighted EPI pulse protocol. The diffusion gradient
preparatory pulse (shown in purple) is followed by a single shot EPI sequence.
However the EPI sequence could be multishot too. Gss,Gpe and Gfe are the slice
select, phase encoding and frequency encoding directions respectively. Adapted
from courses on www.imaios.com

blurring artifacts are diminished. The parallel imaging leads to a decrease in the
signal readout time leading to improvement in spatial resolution of the DWI be-
cause the EPI readout time is decreased. The figure 3.26 shows a comparison of the
images acquired using the conventional single shot EPI sequence and EPI-SENSE
protocol.

Non-EPI based methods for diffusion weighted imaging

Single Shot methods

The single shot methods are very popular in the case of diffusion weighted
imaging. The DWI are highly susceptible to any kind of head motion (e.g.
bulk head motion due to turning the head and pressure pulsations from the
heart) because the phase introduced due to head motion is much larger than the
phase used to encode the spatial location in the brain. However, if the imaging
is completed with a single shot, the phase change due to head motion is con-
stant through out the image and so it does not produce any motion related artifacts.

Line scanning method (LDSI): The line scan methods can be viewed as 1D
MRI. In a conventional MR imaging setup, the images are acquired on a single
2D plane (slice) using the RF excitation and refocusing pulses. The two pulses
are applied in a tilted fashion as shown in the figure 3.27. The method was first
introduced by [Chenevert 1991] and further developed for practical imaging by
[Gudbjartsson 1996] The pulses are shown in red and yellow and the scanned
column is shown in white. The image is reconstructed by arranging all the columns
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Figure 3.26: Comparison of magnetic susceptibility artifacts between single shot
EPI (top) and EPI-SENSE (bottom). With the SENSE-EPI protocol there is a
significant reduction in the susceptibility artifacts in the frontal lobe (open ar-
rows). There is a significant reduction in the artifacts due to chemical shift (arrow).
Adapted from [Bammer 2003]
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next to each other as shown in figure 3.27 d. Because of such unique encoding
planes, the method is robust towards susceptibility artifacts and eddy current
distortions present is conventional single shot EPI methods. [Jones 2010]. The

Figure 3.27: Line scanning method for diffusion imaging. The red and yellow planes
show the planes for RF excitation and the refocusing pulses. (A). The diamond
shape region at the intersection of the pulses is encoded with the frequency encoding
along its length. (B,C) A series of such rods are encoded and (D) arranged to form
a 2D plane. Adapted from [Jones 2010].

other single shot methods worth mentioning are SS-FSE (single shot fast spin-echo)
or HASTE (half-Fourier acquisition single shot turbo spin-echo). Similar to single
shot methods, multshot spin echo methods can also be employed for diffusion
imaging.

Radial and Spiral k−space filling techniques: So far in this chapter we have
only discussed pulse sequences that fill the k−space in a linear fashion according
to the Cartesian coordinate system. However, there are techniques which employ
other methods of filling up the k−space. The radial k−space sampling produced
very high oversampling (in the Nyquist sense) of the central k−space as can
be seen in the figure 3.28. Thus, the radial acquisition methods are inherently
inefficient. However, this oversampling can be taken care of by deliberately
undersampling the data during the image reconstruction process. What it means
is that the image can be reconstructed using a subset of the projections in the
center of the k−space [Jiang 2005, Sarlls 2005]. Because of the oversampled
central k−space region, the images produced have higher spatial resolution
compared to linear sampling (see figure 3.10). The images are also isotropic
in-plane and are less sensitive to motion artifacts. Each radial line in the k−space
when transformed individually into image space is a projection of 2D image on
a 1D line. For this reason, the method is sometimes called projection reconstruction.

PROPELLER: Periodically rotated overlapping parallel lines with enhanced
reconstruction or PROPELLER is another radial imaging technique where the
k−space is filled using radial strips instead of radial lines [Pipe 2002]. The strips
are distributed over a circle, where the width of the strip is same as the diameter
of the circle. The data in each blade is acquired within a TR time-period. This
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Figure 3.28: Non-Cartesian k−space filling trajectories: (a) radial (b) PRO-
PELLER (c) spiral trajectories. The blue section shows the k−space filled in a single
TR. The complete k−space is filled with multiple TRs. Adapted from [Jones 2010]

method is robust to motion related artifacts. As each strip can be used to produce
an image, there is an inherent redundancy in the k−space. The redundancy exists
in the circle common to all the strips in the center of k−space and can be used to
estimate subject motion (both bulk head motion and subtle head motions related
to breathing and pulsations). The PROPELLER method is quite robust to the
geometric warping seen commonly in the diffusion images when compared to the
SS-EPI methods (figure 3.29). In the figure 3.29, pronounced artifacts can be
seen in the infarcted7 regions. The patient (a,b) has infracts in the temporal lobe,
while the other has infracts in the pons. The acquisition is based on the fast
spin echo sequences and arbitrarily high resolution images are possible with FSE
based PROPELLER. However, the method has low SNR properties. Also, the
T2 relaxation times may lead to narrow stripes. The narrow stripes lead to poor
phase estimation and thus greater phase inconsistencies between the stripes. The
k-space trajectory for this method is shown in figure 3.28 b.

Another variant of PROPELLER is Turboprop suggested by the same authors
[Pipe 2006]. Compared to PROPELLER which uses single RF refocusing pule to
fill each strip, Turboprop uses single RF pulse to fill multiple stripes in the k-space.
So, the method is faster than PROPELLER. There can be loss in signal in the
later stripes due to absence of refocusing pulses.

Spiral k-space filling: Another non-Cartesian k-space filling method is spiral
filling. The method can be useful for diffusion imaging, for example SNAILS (self
navigated interleaved spirals) introduced by [Liu 2004]. For spiral imaging the
readout gradients varies continuously (switching between positive and negative) as
compared to fast switching gradients. Thus, the method puts less stress on the
gradient switching system of the scanner. In the figure 3.28 c, one can see that
similar to the other two radial methods, the center of the k-space is oversampled,

7an area in the tissue that undergoes necrosis due to obstructed blood supply.
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Figure 3.29: Comparison of artifacts between SS-EPI (a,c) and PROPELLER (b,d)
for two patients, one with temporal lobe infracts (a,b) and other with infracts in
the pons (c,d). Adapted from [Bammer 2003]

.

which makes the method robust to motion artifacts. The edges of the k-space is
sparsely sampled as is quite evident from the figure 3.28 c. The data is acquired
with a single RF pulse.

The navigation echo is a method for motion compensation during MRI and is used
both in PROPELLER and SNAILS. The method involves selecting a line from the
center of the k-space in a periodical manner. Then the similarity is computed
between each navigator and the data based on the maximum similarity is chosen.
Since, in both spiral and radial scanning techniques, the center of the k-space is
oversampled, it provides enough navigator echos for good motion correction. In the
SNAILS method, the periodicity of the scan is inherent in the system and so the
term self-navigating.

3.7 Conclusions

In this chapter, we discussed a brief history of noninvasive neuroimaging techniques
in particular the magnetic resonance imaging. The physics behind nuclear mag-
netic resonance was discussed followed by the common terminologies involved in
the process like excitation pulses, transverse magnetization and relaxation times.
A qualitative description of signal localization in MR imaging process was discussed.
We also discussed relationship between k-space and MR image and the different k-
space filling techniques. A qualitative review of different pulse sequences commonly
used for MR image acquisition was presented along with the pros and cons of each
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method. The idea was to present the building blocks of the acquisition techniques
and show how some of them can be combined to achieve more sophisticated pulse se-
quences. Designing an appropriate pulse sequence for a given imaging requirement
is a complicated task. Keeping that in mind, we discussed few of the commonly
used echo planar imaging techniques. We also discussed the principle behind diffu-
sion weighted imaging and diffusion tensors, the physics of diffusion and the pulse
sequences designed for diffusion weighted imaging.
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4.1 Low Spatial Resolution in clinical DTI

Using diffusion weighted imaging (DWI), we can peer into deep white matter (WM)
fibers, their structures and the associated pathologies. DTI is currently playing an
important role in the study of diseases related to white matter, ranging from white
matter dementia to assisting neurosurgeons for better surgical planning. Generally,
clinical DTI acquisitions has low spatial resolution (typical acquisitions are 2 - 5.5
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mm in each direction). However, it is often desirable to visualize high resolution
(HR) images. HR diffusion weighted images requires either prolonged acquisition
time or using scanners with stronger magnetic fields (7 T and 11 T), compared to
the ones used on regular basis (1.5 T and 3.0 T). Both of these options are not
suitable for clinical scenarios. So, resampling the low resolution DTI to a high
resolution space is currently the only option available to clinicians. Furthermore, in
the realm of population based statistical studies, even if the HR image acquisitions
are performed, it is required that the DTI is resampled to a common image template.
One solution is to employ algorithmic improvements to the present tensor estimation
methods while taking into account the model degradation due to the partial volume
(PV) effects. A recent algorithm performs super-resolution on DWI using multiple
anisotropic orthogonal acquisitions [Scherrer 2012]. Unlike the method presented
in [Scherrer 2012], we suggest a tensor estimation algorithm which requires a single
DWI acquisition, thus making it even more suited to the clinical environment.

4.1.1 Partial Volume Effects

Quite an impressive amount of work pertaining to various tensor estimation
methods has been done in the past. But unfortunately few of them take into
account the effects of partial volume. These tensor estimation methods typically
favor fitting a single tensor model [Fillard 2007] to the the acquired data. But in
the voxels with PVE, a single tensor model will not be sufficient to describe the
true diffusion chatacteristics. In [Alexander 2001], the authors showed that a single
diffusion tensor model maybe misleading if two or more tissue compartments are
present within the voxel. In fact using a single tensor model in such voxels leads to
underestimation of tensors. The fractional anisotropy (FA) maps computed from
such underestimated tensors misrepresent the white matter integrity in the brain
and also compromise tractography related studies.

Partial volume effect (PVEs) is observed when two or more different tissue
types co-exist in the same voxel. The presence of PVE in the diffusion weighted
images leads to underestimation of the tensors and also affect the subsequent
tractography [Vos 2011]. Everyone agrees on the adverse affects of partial vol-
ume on fiber tractography, segmentation and disease specific statistical studies
[Kubicki 2007, Pfefferbaum 2003, Hwang 2007].

Some authors have suggested multi-compartment tensor models, which overcome
the limitations posed due to single diffusion tensor model and partial volume effects.
One such model was proposed by [Behrens 2003]. The authors propose a partial
volume model of local diffusion using a ball-and-stick model. The model assumes
that diffusion within the axons is unidirectional and along the axon, whereas the
diffusion outside the axons is isotropic in nature. The isotropic diffusion is modeled
using a ball. Another two-compartment model was suggested by [Alexander 2008].
Unlike, the ball and stick model, the cylinder used to represent the axon has a
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non-zero diameter. The extra-axonal component is represented as a cylindrically
symmetric tensor. The major eigenvector is directed along the direction of fiber
orientation. The diffusivities of the intra and extra axonal space are assumed to
be same. The CHARMED method [Assaf 2005] assumes the total signal decay in
case of diffusion imaging has two contributors: one is the Gaussian (hindered) and
another is the non-Gaussian (restricted) effects. The Gaussian contribution is due
to the extra-axonal compartment and the non-Gaussian contribution is due to the
intra-axonal compartment of the voxel.

In the spirit of multi-compartment models DTI models with three or more
compartments were also explored. For example, in AxCaliber proposed by
[Barazany 2009] the authors use a three compartment model. The authors
use the two compartment model presented in CHARMED and add another
free diffusing component with fixed diffusion coefficient for modeling the dif-
fusion due to CSF contamination. Another multi-compartment model which
accounts for multiple fiber orientation is called diffusion directions imaging (DDI)
[Stamm 2011, Stamm 2012a, Stamm 2012b]. DDI is essentially a new parametric
model of the diffusion probability density function (pdf) and can be acquired under
time limits comparable to that of clinical DTIs.

For most of the multi-compartment models one needs to know the volume fraction
of contribution within the voxels. For techniques like CHARMED and AxCaliber,
the diffusion signal has to be measured at multiple b or q values which is expensive
in terms of scanning time. The multiple compartment models can be used for
a more accurate description of the white matter structure, if the number of
compartments are known in advance. The different models do not agree on the
same description of the white matter tracts because of the presence of non-collinear
white matter bundles in the same voxel. In [Stamm 2014b, Stamm 2014a], the
authors propose to determine the optimal white matter fascicle configuration as a
model selection problem in-order to avoid the problem of over-fitting.

Contrary to the existing multi-compartment models, our method aims to increase
the DTI resolution with a single tensor model. We believe that in the higher
resolution a single voxel would contain a single tissue type and a single tensor model
is sufficient to explain the signal attenuation in such cases. This super-resolution
algorithm is motivated by clinical applications, where single tensor models and the
associated DTI metrics like FA, MD and ADC are used more often compared to
the multi-tensor models.

4.1.2 Super-resolution reconstruction

One of the first super-resolution algorithms proposed by Peled et al. uses a com-
bination of spatially shifted single shot DWIs to create HR images [Peled 2001].
This method uses eight repeated low resolution scans with a shifted field of view
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and different b-values each time. In another study, inter slice reconstruction
[Greenspan 2002] using super-resolution was suggested in which each volume ac-
quisition is spatially shifted in the slice-select direction and super-resolution is
achieved using the Irani-Peleg’s [Irani 1993] back-projection method. But this
method was not extended for DTI studies. Super-resolution on diffusion weighted
images using multiple anisotropic orthogonal DWI scan has been reported recently
[Scherrer 2012]. All these methods of super-resolution require multiple acquisitions
of the same subject. Though this might be an acceptable practice in a research envi-
ronment, but it will be difficult and even undesirable in a clinical setting. Contrary
to previous methods, we propose a HR tensor reconstruction algorithm which does
not require multiple acquisitions. It also accounts for the PV in the low resolution
DWIs, producing DTI at higher resolutions.

4.2 Statistical Tensor Reconstruction with spatial prior
at any resolution

The diffusion tensor D is related to each DWI Si corresponding to the encoding
gradient gi and the image with null gradient S0 using the Stejskal-Tanner equation
[Stejskal 1965], Si = S0e

−bgi
T Dgi . The diffusion tensor D is a second order sym-

metric positive definite matrix. In this work, we base our tensor estimation model
on variational methods for joint estimation and smoothing of DTI [Fillard 2007] in
the Log-Euclidean framework.

4.2.1 A discrete signal degradation model: From high resolution
to low resolution images

The observed signal in a voxel in the low resolution (LR) image, can be modeled
as the weighted sum of intensities of the voxels in the high resolution (HR) image
composing the one in the LR image.

SLR(xk) =
∑

j

αkjS
HR(yj), (4.1)

where SLR(xk) is the signal intensity in the voxel xk of the low resolution image
and yj is a voxel in the high resolution image which composes the voxel xk

and αkj is the corresponding spatial weight of yj in xk. This tensor estimation
problem is inherently ill-posed, as an infinite number of combinations of high
resolution tensors will satisfy the equation 4.1. The proposed algorithm favors the
solution which promotes more structures in the white matter regions. A pictorial
representation of the image degradation model is shown in figure 4.1. The figure
on the left is a low resolution diffusion image, whereas on the right represents two
possible high-resolution tensor configuration for the same low resolution diffusion
image. The red and the black voxel on the left show identical diffusion tensor,
even though the underlying micro-structure in the voxels is different. This loss of
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information is due to the spatial averaging of the signals as modeled in equation
4.1. The two images on the right (in figure 4.1) shows two of the infinitely many
possible configurations. Of the two, the bottom right image shows a configuration
which could detect more structures (shown in green) and thus will be favored by
the proposed super-resolution algorithm.

Figure 4.1: Image degradation model. The red and black voxels in the low resolu-
tion diffusion weighted image (DWI) show identical diffusion tensors, whereas the
underlying micro-structure in both the voxels are different. Spatial averaging leads
to loss of information which is modeled in equation 4.1. The images on the right
show two of the infinitely many possible solutions for resolving the low resolution
DWI on the left. The solution in figure B will be favored against the solution in
figure A because it tries to favor more structures.

Based on the above model, each LR gradient image, SLR
i can be written in terms of

the underlying HR tensors (DHR) and the SHR
0 (image with null gradient in high
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resolution).
SLR

i (xk) =
∑

j

αkjS0
HR(yj)e−bgi

T DHR(yj)gi , (4.2)

where gi is the pulse gradient. For the sake of convenience, we will write SLR
i as

Si and expand the term using equation 4.2, when necessary. xk and yj will always
correspond to the LR and HR image indices respectively. In effect, the goal is to
predict the underlying higher resolution tensor image from low resolution diffusion
weighted images.

4.2.2 Tensor Estimation

The signal attenuation in diffusion weighted imaging is characterized by the
Stejskal-Tanner equation:

Si = S0e
−bgi

T Dgi , (4.3)

where D is the diffusion tensor, b is the sensitivity factor and gi is the pulse gradi-
ent. Over the years, a number of tensor estimation schemes have been suggested.
Some of them are available as software packages and are used extensively in the
medical imaging community. Some of the software packages available for tensor
estimation are Slicer, MedInria, camino, FSL.

In this section, we will broadly discuss some of the tensor estimation algorithm
families. The first of them is the direct tensor estimation method followed by the
least square formulation for tensor estimation. In the least square formulation,
different constraints for positive definiteness of the tensors are discussed followed
by some approaches for joint tensor estimation and regularization.

A direct tensor estimation method was suggested by [Westin 2002]. The method
requires one baseline image (S0) and six diffusion weighted images (Si, i = 1, ..., 6).
The Stejskal-Tanner equations are linear in the log domain. It relies on the decom-
position of the diffusion tensor D in an orthonormal tensor basis gigi

T . The tensor
can be solved by solving the linear sum:

D =
6∑

i=1

loge

S0

Si
gigi

T . (4.4)

The method produces a very noisy tensor field because only seven diffusion images
(S0, ..., S6) are used. This particular tensor estimation method is not robust to noise.

Tensor estimation using least squares are used more often than the direct esti-
mation methods because these methods use information from all the diffusion im-
ages and so the tensor estimation is robust with respect to noise (for example
[Basser 1994, Poupon 1999]). The least squares tensor estimation is summarized
using the following equation:

min
D

n∑

i=1

[
1
b

ln
S0

Si
− gi

T Dgi

]2

. (4.5)
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The methods mentioned above does not take into account the positive defi-
nite constraint on the diffusion tensor matrix. Several methods have been sug-
gested in order to account for the positivity constraint on the diffusion tensor
[Tschumperlé 2003, Wang 2004]. The authors in [Tschumperlé 2003] suggest a
positive constrained minimization of the least-square criterion coupled with an
anisotropic regularization term. The tensor estimation is posed as a variational
formulation problem:

min
D∈P (3)

∫

Ω

n∑

i=1

[
1
b

ln
S0

Si
− gi

T Dgi

]2

+ αφ(||D||) dΩ, (4.6)

where P (3) is the space of second order symmetric positive definite tensors,
α is the weighting factor for the regularization term and φ(.) is a regularizing
φ-functional. The positive-definite constrain used in the tensor estimation is
discussed in [Chefd’hotel 2002]

The noise in the diffusion tensor images are known to be Rician-distributed
[Gudbjartsson 1995]. An appropriate denoising scheme is needed for estimating
the true signal from the DTI data. A non-local means (NLM) filter was proposed
for denoising the diffusion tensor images [Wiest-Daesslé 2007, Wiest-Daesslé 2008].
The authors presented a modified NLM adopted for denoising Rician-corrupted
DTI data with high b-values (3000 s/mm2). The biases due to noise are more
pronounced in the routine clinical DTIs as the images have to be acquired rapidly,
often at the expense of image quality. The clinical DTIs are usually acquired at
a comparatively lower b-value (700-1000 s/mm2). Another method was proposed
by [Fillard 2007] on joint estimation and denoising of clinical diffusion tensor
images. The method uses a variational approach for diffusion tensor estimation.
The authors propose a maximum likelihood strategy to exploit the assumption of
Rician-distributed noise. The method presented in the chapter is based on this
maximum likelihood strategy and variational approach.

The Log-Euclidean metric was described in [Arsigny 2006a]. The method exploits
the bijective relationship that exists between the symmetric positive definite
matrix and its logarithm. The method boils down to taking the matrix logarithm
of the diffusion tensors, running all the computations and then transforming
the logarithm of the tensors through an exponential map. The method applies
a natural constraint on the positive definiteness of the diffusion tensors as the
logarithm of a negative entity is not defined.

Maximum-likelihood estimation versus Least-squares estimation

Most of the early tensor estimation methods discussed above use a least-square
approach for tensor estimation. The method presented in this chapter builds on
the maximum-likelihood estimation (MLE) based tensor estimation algorithm
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presented in [Fillard 2007]. The least-squares estimation (LSE) has no or minimal
assumptions on the distribution of the data. MLE has many optimal properties,
such as, sufficiency (complete information about the parameter of interest),
consistency (estimation measures true underlying value with increasing number
of observations), efficiency (lowest possible variance of parameter estimates) and
parameterization invariance (estimate is independent of the choice of parameteri-
zation used) [Myung 2003]. On the contrary, no such property can be attributed
to the LSE approach. The LSE is a mostly used for linear regression and probably
a not an adequate method for parameter estimation. It is because of such nice
properties, MLE is an attractive approach for tensor estimation.

We would like to estimate the higher resolution tensors D(yj) from the observed
signals SLR

i (xk). As can be seen in equation 4.2, any infinite number of combina-
tions of diffusion tensors will result in the same observed signal. Thus, the tensor
estimation problem is ill-posed. In such a scenario, it is desirable to restrict the
solution space to the most meaningful ones by adding a priori information about
the system. For the tensor estimation problem we have used a non-stationary
spatial prior to restrict our solution space.

With the above image degradation model, we solve the inverse problem of estimat-
ing tensors in the HR space. This is an inverse problem because in equation 4.2, for
a given signal Si(xk) infinitely many combinations of D(yj) is possible. In the Log-
Euclidean framework, the diffusion tensor D is parameterized using D = exp(L).
Following [Fillard 2007], the tensor estimation can be looked as a variational for-
mulation, i.e., one should minimize the following energy functional,

E(S0,L) =
1
2

Sim(S0,L) +
λs

2
Reg(S0) +

λL

2
Reg(L), (4.7)

where Sim(.) is the data fidelity term and Reg(S0), Reg(L) are the regularization
priors on the image with λs and λL as their respective weights. In [Fillard 2007],
the tensor estimation is done in the same resolution as that of acquisition. However,
in this paper, we aim to estimate tensors at a resolution higher than the acquisition
resolution. The LR acquired signal and the HR estimated tensors are linked through
the degradation model described in equation 4.2. Thus, this is also a problem of
finding the most optimally distributed tensor field, which is anatomically coherent
and also accounts for the observed signal.

4.2.3 Likelihood Criteria for Tensor Estimation

The observed signal in the DWI can be modeled as S̃i = Si + η, where S̃i is the
observed DWI, Si is the true image (as in eq. 4.2) and η is the associated noise
model. As described in [Fillard 2007], the data attachment term E(.) corresponds
to a maximum likelihood estimator (MLE) adapted to the noise model. The MLE
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for the probability density function of a given noise model is

SimML(.) = −
N∑

i=0

∑

xk

log
[

p
(
S̃i(xk)|Si(xk)

)]

, (4.8)

where Si(xk) is same as in equation 4.2 and p(.) is the probability density function
of the the noise model. Unlike [Fillard 2007], here E(.) is a function of two variables;
the HR image with null gradient, S0(yj) and the HR tensor field, L(yj). Both are
related to the SimML through equation 4.2. The maximization is achieved using
the steepest descent algorithm. The gradient of SimML(S0(yj), L(yj)) is obtained
by differentiating equation 4.8:

∇SimML =
[

∂SimML

∂S0(yj)
∂SimML

∂L(yj)

]T
. (4.9)

Taking partial derivatives of equation 4.8 with respect to S0(yj) and L(yj), we
obtain:

∂SimML

∂S0(yj)
= −

N∑

i=0

∑

xk

[
p′

(
S̃i(xk)|Si(xk)

)

p
(
S̃i(xk)|Si(xk)

)

]
∂S̃i(xk)
∂S0(yj)

, (4.10)

∂SimML

∂L(yj)
= −

N∑

i=0

∑

xk

[
p′

(
S̃i(xk)|Si(xk)

)

p
(
S̃i(xk)|Si(xk)

)

]
∂S̃i(xk)
∂L(yj)

, (4.11)

where p′(.) is the derivative of p(.) with respect to S̃i(xk). From here on, we will
denote r(.) = p′(.)/p(.) for the ease of computation. Differentiating equation 4.2,
we get

∂S̃i(xk)
∂S0(yj)

= αkj exp[−bgT
i exp(L(yj))gi], (4.12)

∂S̃i(xk)
∂L(yj)

= −b αkj S0(yj) exp[−bgT
i exp(L(yj))gi] ∂Gi

exp(L(yj)), (4.13)

where ∂Gi
exp(L(yj)) = ∂[gT

i exp(L(yj))gi]/∂L(yj) is the directional derivative of
the matrix exponential and Gi = gig

T
i . A detailed implementation for computing

∂Gi
exp(L(yj)) is available in [Fillard 2007]. In the following sections, we will discuss

the MLE on the Gaussian noise model followed by brief implementation details.

4.2.3.1 MLE on the Gaussian Noise

The likelihood on the Gaussian noise with zero mean and variance σ2 on the LR
image p(S̃i|Si) is given by,

p(S̃i|Si) =
1

σ
√

2π
exp

(

− (S̃i − Si)2

2σ2

)

. (4.14)

Differentiating equation 4.14 with respect to Si, we have

p′(S̃i|Si) =
1

σ
√

2π
exp

(

− (S̃i − Si)2

2σ2

)[ S̃i − Si

σ2

]

. (4.15)
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Thus, we have

r(S̃i|Si) =
S̃i − Si

σ2
. (4.16)

4.2.3.2 MLE on the Rician Noise

In the clinical environment, typically the images have a low SNR and the real nature
of noise is Rician [Wang 2004], which is equivalent to adding Gaussian noise in the
k-space. The likelihood in case of Rician noise p(S̃i|Si) described in [Sijbers 1998]
is given by

p(S̃i|Si) =
S̃i

σ2
exp

(

− S̃i
2

+ S2
i

2σ2

)

I0

(SiS̃i

σ2

)

, (4.17)

where I0 is the modified zero-th order Bessel function of the first kind. Differenti-
ating equation 4.17 with respect to Si, we get

p′(S̃i|Si) =
S̃i

σ2
exp

(

− S̃i
2

+ S2
i

2σ2

)

I0

(SiS̃i

σ2

)
[

β
S̃i

σ2
− Si

σ2

]

, (4.18)

where β = I ′
0/I0. Implementation details for β can be found in [Fillard 2007].

Similarly, we have

r(S̃i|Si) =
βS̃i − Si

σ2
. (4.19)

4.2.4 Non-Stationary Spatial Prior

Anisotropic regularization promotes smooth images in homogeneous areas while
respecting the edges. In this paper, the anisotropic behavior is achieved using a
φ-functional, i.e., Reg(s) =

∫

Ω
φ(||∇s||), where s is the intensity (scalar or tensor) of

the voxel of image Ω. In our implementation, we use φ(s) = 2(1 + s2/κ2) − 2, with
κ as the image normalization factor [Fillard 2007]. The gradient of Reg(s) is

∇Reg(s) = −2ψ(||∇s||)△s− 2∇T (ψ(||∇s||))∇s, (4.20)

where ψ(s) = φ′(s)/s. The anisotropic regularization is a spatial Markov random
field (MRF), when ∇s is discritized for instance using finite difference. The
anisotropic smoothening of posterior probabilities is equivalent to the Maximum A
Posteriori (MAP) solution of a discrete MRF, making the full criterion in equation
4.7 a MAP estimator.

Overall, the proposed HR tensor estimation method is similar to the one proposed
in [Fillard 2007], in terms of the variational formulation. However, the total energy
E(.) is constrained through the signal degradation model in equation 4.2. The
novelty of the method lies with the fact that it estimates the tensors in HR while
taking into account the unavoidable partial volume effects during acquisition, to
produce an anatomically coherent tensor field.
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4.3 Maximum Likelihood Estimation (MLE)

In this chapter, the tensor estimation problem is presented as a variational for-
mulation. The optimal tensors are obtained by minimizing the variational energy,
E(S0,L) in equation 4.7. The equation consists of three terms: the data-fidelity
term, the regularization term on the undiffused B0 image and the regularization
term on the matrix logarithm of diffusion tensors. Each of the terms are weighted
by their respective weights and the weights represent our trust in the observed
data versus the amount of regularization we want to put into our estimation.
We already discussed the maximum likelihood estimator on the Gaussian and
Rician noise models as well as the regularization terms in the previous sections.
In this section, we are going to discuss the maximum likelihood estimator, the
optimization method and the numerical issues therein.

The principle of maximum likelihood estimation states that the desired probability
distribution is the one that makes the observed data "most likely". This means
that one must find the values of the parameters (diffusion tensor) that maximizes
the likelihood of the probability function. The resulting parameter values are the
MLE estimate. In our problem, depending on the choice of noise model (Gaussian
or Rician), we will have different MLE estimates. However, one must understand
that the MLE estimates need not exist or unique. For computational reasons, the
the MLE estimate is obtained by maximizing the log-likelihood of the function
which is equivalent to minimizing the negative of the log-likelihood of the function.
The data-fidelity term (SimML) in equation 4.8 is also defined as negative of the
log-likelihood of the probability function. In case of highly non-linear problem as
that of tensor estimation, it is not always possible to have an analytic solution
to the minimization problem. Thus, we resort to iterative non-linear optimization
schemes for finding the optimal parameters that maximizes the log-likelihood of the
probability distribution.

4.3.1 Steepest descent

The total energy E(S0,L) is minimized using the steepest descent algorithm with
line search.

S0
t+1 = S0

t − dts
2

[∂Sim
∂S0

+ λs∇Reg(S0)
]

(4.21)

Lt+1 = Lt − dtL
2

[∂Sim
∂L

+ λL∇Reg(L)
]

, (4.22)

where dts and dtL are the step sizes for steepest descent. The two images S0 and L
are optimized alternately, until convergence. The step-sizes are reduced by half if the
the total variational energy is not decreased, until the step-size are too small (dts >
1e−6, dtL > 1e−10), that is the total energy E cannot be minimized any further. It
is important to note that the optimization function does not necessarily guarantee
unique global maxima. The estimation is also dependent on the choice of initial
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parameters for the iterative optimization scheme to follow. Depending on the choice
of initial tensor estimate, the steepest-descent algorithm could either prematurely
stop and return a sub-optimal set of tensors. We found that a linearly resampled
tensor field with log-Euclidean interpolation is a reasonable initial estimate for the
optimization scheme.

4.3.2 Numerical Issues

The steepest descent algorithm mentioned above has two drawbacks. The first
problem is the huge disparity in scales between the gradient of the similarity
criteria (∂Sim

∂L ) and the gradient of the regularization term (∇Reg(L)) which makes
it difficult to choose the weighting factor (λL) for regularization.

Figure 4.2: Extracted section of the brain near the ventricles. The image on the
left shows the gradient of the similarity criteria and the one on the right shows
the gradient of the regularization term. The disparity in scales of the two terms is
highlighted using the color bar.

The figure 4.2 shows the scaling issue between the two terms under consideration.
From the gray scale bar one can easily deduce that the term on the left is higher
by a factor of 100000. It should also be observed that the values are particularly
higher in the cerebro-spinal fluid (CSF) regions.

The other problem is that the gradient of the similarity criteria is scaled with respect
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to the B0 image. Using the equations 4.13 and 4.11, the differential of the similarity
criteria can be written as,

∂Sim(.)

∂L(yj)
= −

N∑

i=0

∑

xk

r(.) b αkj S0(yj)exp[−bg
T
i exp(L(yj))gi]∂Gi

[exp(L(yj))] (4.23)

The above term is scaled with respect to the undiffused B0 image (S0). In a
B0 image, the intensity of the CSF is much higher compared to the surrounding
tissue which accordingly scales the derivative and creates artifacts in the tensor
estimation. In the figure 4.3 the artifacts created during the tensor estimation in
the CSF regions are shown.

Figure 4.3: The scaling in the derivative term due to the B0 image creates artifacts
in the tensor estimation. The artifacts are the voids in the CSF region in the tensor
field shown in the image on the right. The voids actually contains tensors which
are really small compared to the ones in the surrounding tissue and thus appear
as empty spaces. The intensity in the CSF regions in the B0 image is much higher
compared to the surrounding tissue which scales the differential of the data-fidelity
term causing the artifact. The red boxes enclose the ventricles where the artifacts
are most pronounced.

4.3.3 Preconditioning with an approximate Hessian

The scaling issues discussed in the previous section can be solved using a pre-
conditioner. The derivative of the similarity criteria needs to be preconditioned for
an accelerated convergence. However it is better if the preconditioning term has a
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mathematical significance in the equation. Taking inspiration from the Newton’s
method in optimization, the inverse of the approximate Hessian matrix is chosen
as a preconditioning term. The derivation for the approximate Hessian matrix and
related explanations are available in appendix A. The Hessian term is

H(y(j)) ≈ b2S0(y(j))2
∑

xk

α2
kj (4.24)

Using the Hessian matrix, the modified differential of the similarity criteria becomes,

∂SimML

∂L
= −






1
b S0(yj)

∑

k
α2

kj






∑

k

αkj r(.) exp[−bgT
i exp(L(yj))gi] ∂Gi

exp(L(yj))

(4.25)
With the addition of the term, the scaling issue is resolved and the convergence is
quicker.

4.4 Comparison between Tensor Resampling and HR
Tensor Reconstruction

4.4.1 Simulated LR acquisition

Data were acquired using a GE 1.5T scanner, with 24 encoding gradient directions
(with a b-value of 700 s/mm2). The image has 256×256×26 voxels of size 0.9375×
0.9375 × 5.5 mm3. The images are downsampled by a factor of 2 in the axial
plane and the tensor field is estimated. This LR tensor field is then resampled to
the original image size using Log-Euclidean interpolation [Arsigny 2006a]. The HR
tensor estimation is also used to estimate tensors at the original resolution from the
downsampled images. In figure 4.4, the fractional anisotropy maps from both tensor
resampling and HR estimation methods are shown. The FA map computed from
the HR tensor estimation, is better contrasted and less blurry when compared with
the one computed from resampling the LR tensor image to the original resolution.

4.4.2 Increase in FA on real data

In this section, we use a real dataset from Siemens 1.5T scanner, with 21 encoding
gradient directions and a b-value of 1000 s/mm2. The image has 80×80×40 voxels
of size 3 × 3 × 3.3 mm3. Several WM tracts, which were not visible before can
now easily be seen in the FA map, when it is computed with HR tensor estimation
method.

In figure 4.5, the FA maps are overlaid on the corresponding B0 image for
better anatomical reference. In both the axial and coronal views, the external
capsule and the corpus callosum can be clearly demarcated with the HR tensor
estimation method. We observed an increase in FA values by 42.73% in the WM
regions (circled regions in figure 4.5) with the proposed method.
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Figure 4.4: Simulated LR acquisition: Top row shows axial views of the ground
truth, FA computed from resampled tensor field and HR tensor estimation. The
FA map computed from HR tensor estimation method is better contrasted than
the one computed from resampled tensor field. The bottom row shows the zoomed
region (red square).

4.4.3 Error map for the simulated images

With the proposed high resolution tensor estimation method, the error on the FA
images is lower than the FA images computed after tensor resampling. The figure
4.6 shows axial view of the squared error between the FA maps computed from
tensor resampling and the proposed method. The graph shows the variation of the
squared error along a horizontal row of voxels for a quantitative assessment.

4.4.4 Influence on Tractography: Quantitative Evaluation

The same data set as in section 4.4.1 is used for fiber tracking experiment. However,
in this case the HR tensor estimation is done at 1 mm isotropic resolution and
the tensor field is resampled to the same resolution. The proposed method shows
statistically significant increase in the fiber lengths, when compared with tensor
resampling. A one tailed t-test on fiber lengths gives a p-value less than 2e − 16.
The fiber-tracking is done using MedINRIA 1.90 DTI-Track tool. All the voxels
with FA > 0.25, are considered as seed voxels for fiber tracking. The increase in FA
values in WM regions (section 4.4.2), leads to an 82.36% increase in the number of
seed voxels for HR tensor estimation and thus denser fibers. The fornix of the brain
is tracked and the results are compared in figure 4.7 for tensor resampling (top-left)
and HR tensor estimation (top-right). There is a 25% increase in the mean length
of fibers with proposed tensor estimation method compared to tensor resampling.
The bottom row in figure 4.7 shows the histogram for fiber length distribution for



4.5. Conclusions 79

Figure 4.5: Influence on FA in real clinical data: The axial and coronal views show
that the external capsule and part of corpus callosum can be demarcated using the
HR tensor estimation. The corresponding circles show regions with considerable
increase in FA.

the respective methods.

4.5 Conclusions

In this chapter, we tackled the problem of resampling low resolution DTI data on
higher resolution for tractography or statistical analysis purposes at the population
level. We propose to replace the resampling step by a DTI reconstruction at the
high resolution using a MAP estimator including a spatial prior. The method is
compared with tensor resampling method on simulated low resolution data as well
as real clinical data. Results showed better contrasted and less blurry FA maps on
the simulated data. It was also shown that the error in the FA computed using the
proposed method is less than the one computed using tensor resampling. On the
real data, considerable increase in FA is registered, making certain WM tracts like
parts of corpus callosum and external capsule recognizable. These white matter
regions were not visible in the FA maps computed using tensor resampling. Fiber
tracking with the HR tensor estimation shows statistically significant increase in the
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Figure 4.6: Top Left: Squared error between the FA maps computed from tensor
resampling and the ground truth. Top right: Squared error between the FA maps
computed from the proposed method and the ground truth. The graph in the
bottom row shows the variation of the squared error along the voxels on the red
line.

length and number of fibers. Tractography results were shown for the fornix region
of the brain. The partial volume effect is very pronounced in this region of the
brain and so the increase in the number of tracts through the fornix is a promising
result that the proposed method works well in the presence of partial volume effects.

In terms of future work, there is still room for substantial improvements and testing
in the tensor estimation algorithm. One of the ideas is to incorporate the anatomical
information from the T1-weighted image and possibly the white and gray matter
segmentation maps for estimation. The T1-weighted image has a higher spatial
resolution than that of the diffusion images. With a little generality, it is possible
to estimate tensors in any geometrical space we want, e.g., the subject T1 space or
any template space. For example, the B0 and T1 images for the same subject is
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Figure 4.7: The top row shows comparatively denser fiber bundle in fornix of the
brain for HR tensor estimation method (superior-inferior view) and a quantitative
comparison of fiber lengths is shown in bottom row.

separated by a rigid transform. Using this transform and the geometry of the space,
it is possible to generate a correspondence map of the two images and compute the
spatial weights of the high resolution voxels that constitute the low resolution voxel.
The present state of algorithm uses anisotropic regularization as a spatial prior in
the variational formulation. The formulation uses a φ− functional which promotes
smooth images in the homogeneous areas, while respecting the edges (section 4.2.4).
However, such a formulation does not make any use of the T1 weighted images.
The φ− functional could be modified in order to make use of the high resolution
anisotropic information in the T1-weighted images as,

Reg(∇L+ γ∇IT 1) =
∫

Ω
φ(||∇L+ γ∇IT 1||) (4.26)

where γ is the weighting factor for the anatomical T1 image, L is the matrix
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logarithm of the tensor image and IT 1 is the T1 image. The gradient of the
modified regularization can be computed similarly as in section 4.2.4.

A comparison between the proposed approach and multi-compartment model in
terms of fiber tractography needs to be investigated. It remains to be investigated
if multi-compartment models can be used for super-resolution algorithms like the
one mentioned in this chapter. A formal validation of the proposed model using
multi-resolution data needs to be done.

We were not able to use the algorithm for statistical studies presented in the fol-
lowing chapters because the DTI data in the NEURADAPT study has a spatial
resolution of 0.9375×0.9375×5.5 mm3. The voxels were too big in the z-direction
and there is not enough information to increase the resolution in a meaningful
manner. It will be interesting to see how multi-compartment models combine with
super-resolution will affect the statistical results in the future.
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5.1 Introduction

The human brain is one of the most complex organs in the body. To add to
the complexity, the diversity of the brain in terms of shape, size and structural
organization is uncanny. In order to understand and quantify the differences in
the the brain across a population as well as to differentiate the changes between
healthy and diseased population, the need of a brain atlas is inevitable. With
more and more medical image data being available, it is logical for statisticians
and neuroimaging experts to design a framework for comparing structural and
functional changes across a population, for voxel based analyses of time-dependent
changes as in the case of progressive neurodegenerative diseases such as Alzheimer’s
disease.
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In order to detect such changes, spatial normalization is of utmost importance.
Spatial normalization is the process of transforming all the images in a given
population to a common image space, called the template. In medical image
analysis, problems like registration, label propagation, segmentation can be looked
as sub problems of the broader subject of spatial normalization. Even for voxel
based morphometry, deformation based morphometry, or tract based spatial
statistics spatial normalization is an indispensable tool. One of the challenges
with different imaging modalities is to design the optimal workflow for spatial
normalization.

Spatial normalization requires the user to define a common template space to
which all the images will be normalized (registered) using affine or nonlinear
registrations or both. Some of the celebrated atlases are the sterotaxic atlas by
Talairach [Talairach 1988], the ICBM atlas [Mazziotta 2001], and the MNI152
[Grabner 2006] atlas families.

5.1.1 History of brain atlases

One of the earliest attempt to understand the human brain was by Franz Joseph
Gall using a technique called phrenology in 1796. Gall believed that the personality
traits, mental and intellectual prowess of a human were reflected on the external
shape of the skull. He hypothesized that the changes in different areas of the
skull, the bumps and differences in geometry are caused by the pressure exerted by
the brain underneath. He believed that the brain was divided into twenty-seven
different areas. The process involved feeling the brain with hands and often
measuring the size of the brain with callipers. These measurements were used
to assess the character and personality traits of the subject. Gall conducted his
experiments on 120 subjects in his life time. Though not really accepted and often
considered controversial during his time, the method laid the ground work for
future brain studies. The idea of phrenology influenced the subsequent work done
by the French anatomist Pierre Paul Broca who is well known today for Broca’s area.

Following Gall’s work, the German anatomist Korbinian Broadmann introduced
Broadmann areas [Brodmann 1909] which are defined based on maps of cortical
areas of humans and other primates. Almost 100 years later, Broadmann areas
still remain the primary reference for the cytoarchitectural organization of the
human cortex. He used cell staining to identify the organization of the human
cortex. According to Broadmann, the brain is divided into 52 areas. In 1908,
with the efforts of Victor Horsley and Robert H. Clarke, the Horsley-Clarke
apparatus was designed for stereotactic neurosurgery. This invention was one of
the most important steps towards the construction of brain atlases in the sense
that it formally defined a stereotactic frame. The stereotactic frame uses Cartesian
coordinate system to locate the different brain structures. They used the method
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for surgery only on animals in the beginning. It was not until 1947 that Ernest A.
Spiegel, Henry T. Wycis and Lars Leksell designed the stereotactic apparatus for
human brain.

Perhaps the most recognized coordinate space in neurosurgery was developed by
Jean Talairach and Gabor Szikla in 1967. It is known as the Talairach coordinate
system. The atlas is defined using the line joining the anterior commisure (AC)
and the posterior commisure (PC) also known as the AC-PC line. The AC-PC
line lies on the mid-sagittal plane. In this coordinate system the AC acts as the
origin, the x-axis is defined along the left-right direction, y-axis is defined along
the anterior-posterior and the z-axis is along the superior-inferior direction. The
coordinate system is used to develop the Talairach brain atlas. The atlas was
updated in 1988 and is one of the highly referenced atlas in the literature. As we
will see further that this atlas and coordinate system is the basis for developing
some of the modern atlases in use today. During the same time (1959) as Jean
Talairach developed the Talairach coordinate system, Georg Schaltenbrand and
Percival Bailey introduced Schaltenbrand atlas. The atlas was subsequently
updated in 1977 and is now one of the most used atlas for brain surgery. There is
a subtle difference between the two atlases as in how the AC-PC line is defined.

The atlases discussed so far were based on a single subject. However, with the
advent of MRI and a plethora of medical images, it is possible to create population
specific atlases. A population specific atlas will better capture the high variability
of the human brain across the population under study. The MRI technique was
introduced for brain imaging in 1977 by Peter Mansfield and Paul Lauterbur. In
1994, Montreal Neuroimaging Institute (MNI), created the MNI305 atlas from a
population of 305 subjects. The AC-PC line were manually delineated in all the
subjects and the images were aligned according to the AC-PC line. The aligned
images were then averaged to form the initial MNI space. The International
Consortium for Brain Mapping (ICBM) was formed in 1993 with a goal to develop
probabilistic reference system for human brain. 152 subjects were scanned and
linearly registered to the MNI305 atlas. For the first time in 2001, we had brain
atlases in three different modalities T1, T2 and proton density weighted images.
Thus, the first ICBM152 atlas was created. With respect to the MNI305 atlas, the
ICBM152 had improved contrast and resolution, but it lacked spatial details in
the cortical regions. Affine registration was used for creating the ICBM152 atlas
takes into account the translation, rotation and the scaling. This atlas was known
as the linear ICBM average brain atlas. The atlas fails to capture the subtle local
changes in the brain. So, the atlas was recreated using nonlinear registration in
2009. This atlas is known as the nonlinear version of the ICBM atlas. It captures
the fine cortical detail and subtle changes that were missing in the 2001 version.

So far we have discussed the historical context in the development of brain atlases.
The two important atlases for the thesis namely, the Talairach brain and MNI
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template will be discussed in the following sections.

5.1.2 The Talairach Brain

The Talairach and Tournoux atlas of 1988 was one of the first brain atlases to be
introduced in the community. The Talairach brain was a postmortem specimen
from a 60 year old female. A single hemisphere of the brain was sliced sagitally
and photographs of the slices were taken and arranged to create drawings of the
axial and coronal sections. We have come a long way since the creation of the
first brain atlas. However, the Talairach atlas brought us the novelty in the realm
of atlas constructions. To summarise, the major contributions of the atlas were
[Brett 2001],

• a coordinate system for the brain, commonly referred to as the Talairach
coordinate system. According to the system, the anterior commissure (AC)
is the origin of the three axes X, Y and Z. The line joining the anterior
commissure and the posterior commissure (PC) is horizontal.

• the Talairach transform to match the brains of different shapes and sizes.

• the Talairach brain oriented according to the proposed coordinate system.

Figure 5.1: The Talairach coordinate system. Source: The AFNI handouts

In the Talairach coordinate system the X-axes is directed from left-to-right, the
Y-axes is directed from the posterior-to-anterior and the Z axes is directed along
the inferior-to-superior directions.

5.1.3 The ICBM templates

The initiative of the International Consortium of Brain Mapping (ICBM) has pro-
vided the community with a number of brain atlases particularly, ICBM 452 T1
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atlas, along with number of probabilistic atlases like ICBM tissue atlas, ICBM
lobular, sulcal and deep nuclei atlases. The one which is of particular interest in
relation to the present work is the ICBM white matter parcellation map (WMPM)
[Mori 2008] and the ICBM DTI-81 atlas. The ICBM DTI-81 is a DTI atlas is an
atlas of 81 normal subjects acquired under the ICBM initiative. The DTI data was
acquired using a Siemens 1.5 T scanner using a single shot, echo-planar imaging
sequence with a b-value of 1000 s/mm2. The images were acquired with 30 gradient
encoding directions and had a transverse slice thickness of 2.5 mm.

White matter parcellation map

The white matter parcellation map was provided by Mori et. al. in 2008
[Mori 2008]. The ICBM DTI-81 data is used for the creation of the white matter
parcellation map (WMPM). The diffusion weighted images (DWIs) were corrected
for head motion and eddy current distortions. All the DWIs were then averaged to
a common space and an average DWI (aDWI) was created. The diffusion tensor
was then estimated using a linear fit. An affine registration was carried out between
the aDWI and the ICBM-152 "linear" template and the transformation matrix
was then applied to the calculated diffusion tensor and the FA image was computed.

Figure 5.2 shows the different steps involved in the creation of WMPM. The
authors used the automatic image registration (AIR) [Woods 1998] for affine (12
parameter) alignment of the average diffusion images (aDWIs) with that of ICBM
T1 template. The diffusion tensors in each voxel is computed using DtiStudio
[Jiang 2006]. The DTI thus computed is then resampled in the T1 template space
using the transform computed using the AIR. The tensor elements are averaged to
create a DTI template and subsequently the average FA is computed. The FA map
is color coded according to the common FA color coding standards introduced by
Pierpaoli et al. [Pierpaoli 1996].

The white matter tracts were manually segmented on the FA map into fifty
anatomic regions. For the manual segmentation, the experts used previously
produced histology based atlases. For more details on the segmented regions and
the tools used for the WMPM atlas, it is suggested to refer to the original article
[Mori 2008].

In the figure 5.3, the white matter regions are overlayed on the average diffusion
images. In the figure 5.4, the authors Mori et al. show the segmented regions as
parcellated over the FA map.
Though the ICBM-WMPM provides a well defined parcellation map for the white
matter, there is still room for an improved DTI atlas. Some of the short comings
of the DTI atlas and the WMPM are listed below

1. The DTI-81 data is normalized to ICBM 152 affine atlas (2001 version). The
affine T1-atlas is not very detailed as one can see in the figure 5.5.
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Figure 5.2: Workflow for the creation of white matter parcellation map as described
in [Mori 2008]

Figure 5.3: An overlay of the white matter parcellation map on the ICBM DWI
image. The gray image is the diffusion weighted image and the colored regions
shows white matter tracts. The figure shows the axial, coronal and the sagittal
slices from left to right.

2. Scalar averaging is performed on the tensor elements. However, it has been
argued that a log-Euclidean tensor mean might be more appropriate for av-
eraging tensor fields across subjects [Arsigny 2006b].

3. As the DTI-81 data is normalized using an affine registration, the misalign-
ment chances are higher. Most likely an affine transform of the averaged
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Figure 5.4: White matter parcellation overlay on the color coded FA map. The
outline shows the segmented regions. [Mori 2008]

diffusion images to the template T1 image is not a correct approximation for
the alignment.

Figure 5.5: ICBM 152 affine template

ICBM-152 T1 template

There are different versions of the ICBM-152 T1 template. One of the earliest
versions of this template produced in 2001 was based on linear averaging 5.5. In
the subsequent years nonlinear versions of the T1 template were produced (2009
version) [Fonov 2009]. The major difference between the two generations of the
template are due to registration.
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The ICBM-152 T1 template is a structural template obtained by averaging
152 structural T1 images. The images are nonlinearly registered in the MNI152
coordinate space. Compared to the ICBM T1 affine template this provides a better
contrast and is anatomically detailed. This template comes with a brain mask, a
T2 template, a tissue mask (white matter, gray matter and cerebro spinal fluid).

Figure 5.6: The ICBM nonlinear T1 template (2009)

5.2 A need for an unbiased population-specific multi-
modal atlas

We discussed in the previous sections some of the popular brain atlases and the
template spaces in a chronological order. Most of the atlases discussed so far were
anatomical atlases with the exception of ICBM-DWI atlas. However, the atlases
in different modalities were also in different geometric spaces, hence it was not
possible to have a joint statistical analysis of multiple imaging modalities. In this
section, we are going to address two issues. The first issue is the motivation to
construct a population specific atlas and the second one is the need and relevance
of a joint T1 and DTI brain atlas.

Spatial normalization is one of the most important steps in the statistical analysis
of a given population. All the subjects can be normalized to a pre-defined template
using image registration techniques. The choice of registration algorithm and the
target template biases the results in different ways. In statistical studies concerning
neuroimaging data, the ICBM-152 T1 template or the MNI template is often used
as a target space for spatial normalization of the population. However, the choice
is often arbitrary and could lead to erroneous statistical results. For example, in
order to study pediatric brain images the use of an atlas constructed from adult
brain images (as in the case of ICBM-152) would be inappropriate [Fonov 2009].
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The authors argue the need for an age-specific template for statistical studies on
pediatric brain images for preventing the introduction of bias due to an arbitrary
choice of the template. The argument can also be extended in favor of creating
a disease specific atlas. In this chapter, we will focus on creating a joint T1 and
DTI template specific to neurocognitive disorders related to HIV/AIDS. The effect
of induced bias due to the choice of atlas is discussed in [Thompson 1997]. Such
a bias towards the choice of the template can be avoided if a population specific
template is created. The population specific alas is also a statistical representative
of the given population.

The choice of registration method and the workflow involved in the at-
las creation process also effects the statistical results from a population
based study. Most of the atlas creation methods follow the workflow sug-
gested by [Guimond 1998, Guimond 2000]. Other methods for unbiased
atlas creation using large deformation diffeomorphic setting were reported in
[Joshi 2004, Lorenzen 2005]. The latter two methods formulate the mean template
creation problem as a Fréchet mean estimation in the space of diffeomorphisms via
large deformations metric mapping (LDMM). However, the method presented in
[Guimond 2000] is faster and simpler than the ones based on the LDMM approach
and also is sufficient for our purposes.

An application of a joint T1 and DTI atlas is presented in [Zhang 2013]. It deals
with the consistent prediction of the functional areas in the neocortex via joint
modeling of anatomical and connectional profiles . The authors argue that there
is a need to have a consistent and meaningful definition of cortical ROIs across
different neuroimaging modalities (T1-weighted, DTI and resting state fMRI). So
far, the cortical ROIs are either defined on the anatomical T1-weighted images,
or on the DTIs or on the resting state fMRI data. These three categories of
cortical ROIs are used in their respective areas of application, but their structural
correspondences across the different modalities still remains as a question of
debate. The cortical ROI definition obtained from task based fMRI data is
used as a benchmark approach to identify functionally meaningful cortical ROIs
[Haynes 2007, Logothetis 2008, Friston 2009]. However, in a clinical setting it is
often time-consuming and cost-prohibitive to acquire a high quality task based
fMRI data. It is also unclear if it is possible to infer task based fMRI data from
resting state fMRI data. In some cases (for example in ADNI-2), the resting state
fMRI and DTI data are not available for the same group of subject. In such clinical
contexts, there is a need for predicting funtional cortical ROIs based on structural
and DTI data. Such kind of predictive studies make the joint T1 and DTI atlas
quite relevant in a clinical context.

Most of the statistical analysis conducted in the past treats the anatomical T1
weighted image and the diffusion tensor images separately. We believe that a joint
statistical analysis of the T1 and diffusion tensor images could increase statistical
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power and also give a complete picture of the statistical changes across different
modalities. In [Lao 2014], the authors have presented a methodology for combining
T1 surface based morphometry and a DTI analysis on the surface of the corpus-
callosum. It was reported that such a modality fusion leads to increased detection
power for detecting differences among pre and post-season contact sports players.
Another reason motivating a joint T1 and DTI atlas is that with such an atlas
one can draw voxel wise comparison across different modalities and look for corre-
lation between the changes in the white matter regions and the changes observed
in structural anatomical images. The DTI atlas can be used for statistical studies
on the white matter tracts and will prove complementary to the studies on the T1
weighted images.

5.3 Data

The DTI data used in this chapter was acquired in the NEURADAPT study
project conducted at University of Nice hospital using a GE 1.5T scanner with 23
encoding gradient direction and one undiffused B0 image . The diffusion weighted
images has 256×256×26 voxels with sizes 0.9375×0.9375×5.5 mm3. The b-value
for the acquisition was 700 s/mm2. For every subject the T1-weighted anatomical
images were also acquired.

An atlas of the acquired T1 images was computed following the methodology out-
lined in [Commowick 2007]. The first step of the template building process uses
the methodology developed by [Guimond 2000]. The method involves an affine
registration followed by a nonlinear (elastic) registration between the subject and
the chosen template for all the images in a given dataset. The registered images
and the nonlinear registrations are then averaged to produce an average intensity
image and an average deformation field. The average deformation is then applied
to the averaged intensity image to produce the new template image. The process
is repeated until desired convergence criteria is met. The workflow is outlined in
figure 5.7.

This template creation process is unbiased, so any image from the patient database
can be chosen as an initial reference image. However, depending on the orientation
of the initial reference image, the final average template might not be symmet-
ric across the mid-sagittal plane. The asymmetry might lead to some biases while
performing the patient to template registrations. Thus a symmetrization of the tem-
plate is necessary. Several algorithms exist for computing the mid-sagittal plane of
a brain, for example [Prima 2002] and [Bazin 2007]. We have used the mid-sagittal
line alignement tool from the MIPAV library [Bazin 2007] for symmetrizing the
template because of the ease of availability and also the results were good enough
for our purposes. For symmetrizing, first the minimum resolution of the image is
determined and the image is flipped horizontally. The flipped image and the original
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Figure 5.7: Workflow for creating average template. Adapted from [Guimond 2000]

image are resampled using trilinear interpolation to create high reolution isotropic
voxels. The center of mass (COM) of both images is computed and the COMs are
aligned. The aligned images are then registered using an iterative registration algo-
rithm. In this case, MIPAV uses optimized automatic registration 3D [Bazin 2007].
Few slices from the symmetrized population specific T1 template are produced in
figure 5.8.

5.4 Construction of probabilistic multimodal brain
template

5.4.1 Joint T1 and DTI template

The dicom images were extracted using the MRIcron software [Rorden 2008] into
the nifti image format. The diffusion weighted images were corrected for head
motion and eddy current distortion using the FSL tools taking the B0 image as
reference. The B0 and the T1 images are first rigidly registered using FSL’s flirt

utility with a 7 degree of freedom (dof) and a mutual information cost function
to take into account the multi-modal registration. Seven degrees of freedom for
the registration takes into account the rigid motion of the head (rotation and
translation) along with the scaling of the voxels that is present due to differences
in the field of view of the B0 and the T1 images. The T1 images were corrected for
the intensity bias using the N4ITK bias correction tool [Tustison 2010] followed
by skull stripping using the ROBEX [Iglesias 2011]. The bias correction and
the skull stripping are important for an accurate registration. The subject T1
image is registered to the population specific T1 template shown in figure 5.8.
The registration is a two step process, first an affine registration between the
subject and the average T1 template followed by a nonlinear registration using
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Figure 5.8: The average anatomical template computed using the NEURADAPT
study data.

the LCC demons algorithm [Lorenzi 2013]. The combined affine and nonlinear
transformations are combined and applied to the 23 diffusion images. The diffusion
images are resampled using a b-spline interpolation scheme of order two.

Once the diffusion images are resampled in the average template space, the
diffusion tensor is estimated using the variational framework for tensor estimation
suggested by [Fillard 2007]. The estimated tensors are resampled using the
Log-Euclidean interpolation scheme [Arsigny 2006b]. The FA is computed for the
averaged tensor image. A schematic of the whole pipeline is shown in the figure
5.9. The FA image computed using the averaged tensor field is shown in figure 5.11.

The correspondence between the T1 and DTI template is shown in the figure 5.10.
The figure shows a close-up of the two images near the ventricles to highlight the
accuracy of alignment of features. In figure 5.13, the FA map created is overlayed on
top of the T1 template to show correspondences between the white matter regions
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Figure 5.9: Workflow for normalization of diffusion images to the T1 template
space. (The registration and the corresponding transforms are denoted with the
same color.)

of the brain.

5.4.2 Probabilistic white matter atlas

In the previous section, we discussed the workflow involved in the creation of a
joint T1 and DTI template. For doing statistical analysis on specific fiber tracts as
well as region of interest (ROI) based statistical analysis of white matter regions
[Keihaninejad 2013], it is important to have an accurate segmentation of the major
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Figure 5.10: A zoomed view of the T1-DTI template to show the accuracy in the
alignment of the two modalities.

white matter tracts on the DTI template. However, an accurate segmentation is a
difficult problem in itself. Often times, the segmentation performed by an expert
is considered as a ground truth for computing ROI based statistics. The manual
segmentation results also vary depending on the expertise of the personnel and
is certainly not error-free. Moreover, manual segmentation are often expensive
and time consuming. In such a scenario, it is desirable to have a probabilistic
segmentation of the ROIs. A probabilistic segmentation allows us to attach an
additional confidence in the statistical results. One can tune how much conservative
one should be in choosing the regions of interest.

Because of the lack of an expert for segmenting the white matter regions, we
decided to transfer the ICBM white matter parcellation map (Fig. 5.4) on
the template image. In the section, we will discuss a method for generating a
probabilistic parcellation map for white matter tracts in the study specific DTI
template using the ICBM WMPM as a reference. Of course it is possible to
generalize this method to any other studies.

The white matter parcellation map is transferred on the T1 template to generate
a probabilistic parcellation map. Originally, the WMPM was generated by experts
using the FA maps. However, it is often expensive and not feasible to have a team
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of experts for segmenting the intricate regions of the brain. In such scenarios, the
probabilistic segmentation maps offer an affordable solution.

As shown in the figure 5.12, the ICBM affine template is registered to the sub-
ject space through a series of registrations. First the ICBM-152 affine template is
affinely registered to the ICBM-152 nonlinear template. The nonlinear template is
then skull stripped and nonlinearly registered to the skull stripped T1 image of the
subject. The subject T1 image and the template images are also nonlinearly regis-
tered. All the registrations are combined in the righ order and the ICBM-WMPM is
resampled using nearest neighbor interpolation with the combined transformations.
Similar operations are carried out for every subject. At the end all the WMPM
transferred to the template space are normalized with respect to the number of
subjects.

5.4.3 Choice of registration tools

An "accurate" registration scheme is the key factor in such spatial normalization
processes. In this section, I will discuss the choices that are made during the regis-
tration and why the individual choices are important. It is a two step registration
process, the first one being the intra-subject registration, in which the B0 image
or the undiffused image is aligned with the T1 image of the same subject. In the
second step the T1 images of the subject is aligned with the average T1 template.
In the second step, first an affine alignment is carried out FSL’s flirt followed by the
nonlinear registration carried out using the LCC demons algorithm as mentioned
above.

FSL’s flirt

FSL’s flirt (or FMRIB’s linear image registration tool) is an automated robust regis-
tration tool available for carrying out rigid and affine registrations [Jenkinson 2002].
It supports optimization of different similarity criteria like sum of squared differ-
ences, cross-correlation, normalized cross-correlation and mutual information. For
the intra-subject rigid registration of the B0 and the T1 images, I used the mutual
information as a cost function and seven as the degrees of freedom for the trans-
formation. The mutual information based cost function was chosen to take into
account the different modalities of the images under consideration. The images
were not skull-stripped in the case of intra-subject registration.

LCC demons

LCC-demons is a fast and robust registration framework based on the log-demons
diffeomorphic registration algorithm suggested by [Lorenzi 2013]. The nonlin-
ear transformations is parameterized using stationary velocity fields (SVFs)
[Arsigny 2006a] and the similarity metric for the registrations uses a symmetric
local correlation coefficient (LCC). The choice of similarity criteria is crucial for
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Figure 5.11: The average FA template computed using the NEURADAPT study
data.

the image registration quality. Some of the common similarity criteria in common
use are the sum of squared differences (SSD), normalized correlation criteria,
normalized mutual information. The problem with these criterion is that they
are global in nature, that is, they assume a uniform global bias between subject
and the target image spaces. Such global biases often overshadow the subtle local
changes in the image, which might lead to erroneous estimation of the deformation
field. The diffeomorphic nature of the registration algorithm makes it suitable for
atlas building applications [Lorenzen 2005]. As mentioned before the diffeomorphic
transformations are parameterized using SVFs. The SVF parameterization is a
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good compromise between accuracy and computational efficiency. In term of speed
it is much faster than the LDMM framework, reducing the computation time for a
single registration to a matter of few minutes. The speed of computation makes it
suitable candidate for registration on fairly large datasets.

Figure 5.12: Workflow for transferring the white matter parcellation map on to the
T1 template.

5.5 Results

The figure 5.13 shows the FA image overlayed on T1 anatomical template. The FA
image is shown in red-yellow and the T1 template is in gray scale. In the figure,
one can see that the white matter regions in both the T1 template and FA image
are aligned very well. This well aligned template allows voxelwise comparison
between these two imaging modalities.

The second step of the process was to make a probabilistic white matter parcella-
tion map by transferring the ICBM-WMPM to the joint T1 and DTI template. In
the figure 5.14 and 5.15, we have shown corpus callosum (CC), middle cerebellar
peduncle (MCP) and internal capsule as probabilistic iso-surfaces. The inner most
core of the region is blue with a 100% probability of being classified as the region
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under consideration. The outermost shell is in red and is the one with the least
probability of classification. All the 52 white matter ROIs in the ICBM-WMPM
are transferred to the propulation specific template discussed in this chapter. The
figures 5.16, 5.17, 5.18, 5.19 show the probabilistic parcellations on 2D slices.

The figure 5.20 show the cortical ROIs segmented by an expert and the probabilistic
white matter parcellation overlapping on each other. The interesting thing to notice
in this figure is the consistent definition of white matter structures and the cortical
ROIs on the same template. However, some inaccuracies can be sometimes observed
on the boundary of the ROIs. An example is shown in figure 5.21. The right
external capsule is sandwiched between the insula and putamen. On a closer look
on the three slices presented in the figure, one can see that the boundaries of insula
and putamen are such that they overlap with the external capsule. This clearly
shows that the cortical ROIs in T1 are not correctly segmented. The inconsistency
in cortical ROI segmentation across different modalities was discussed recently in
[Zhang 2013]. The regions (putamen and insula) are clearly over-segmented by the
expert. The probabilistic mask could also serve as a guiding force for the expert
segmentation in the future in order to avoid such errors.
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Figure 5.13: The fractional anisotropy image overlayed on top of the anatomical T1
image. The FA image is shown in red-yellow and the T1 template is in gray scale.
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Figure 5.14: 3D rendering of corpus callosum and middle cerebellar pedeuncle in
the joint template space. The regions are shown as cut sections of iso-surfaces. The
probability of a voxel belonging to the ROI decreases as we move out from the core
to the external surfaces. The blue regions have a 100% chance to be in the specific
region of interest, while the red regions are least probable to be classified as the
ROI. A: Isometric view of corpus callosum (CC) and middle cerebellar peduncle
(MCP). B: Axial view of MCP. C: Sagittal view of CC and MCP
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Figure 5.15: Full iso-surface rendering of corpus callosum and axial view of internal
capsule.

Figure 5.16: Regions of interest overlapped on the anatomical T1-weighted images
(part 1)
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Figure 5.17: Regions of interest overlapped on the anatomical T1-weighted images
(part 2)
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Figure 5.18: Regions of interest overlapped on the anatomical T1-weighted images
(part 3)
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Figure 5.19: Regions of interest overlapped on the anatomical T1-weighted images
(part 4)



5.5. Results 107

Figure 5.20: The probabilistic white matter parcellation map is overlayed on an
atlas showing segmentation of difference regions of the cortex. They are overlayed
on each other using FSLVIEW to show the anatomical correspondence between the
cortical segmentation and the white matter tracts.
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Figure 5.21: Section of the brain showing disagreement in the expert segmentation
of the cortical surface. The two regions putamen and insula should be separated
by external capsule. The segmented regions overlap the external capsule.
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5.6 Conclusions

In this chapter, we have discussed briefly the history of human brain atlases. The
earlier brain atlases were made from a single subject. But, a single subject brain
atlas does not represent the variability of human brain across population and
different age groups. With the increase in digital neuroimaging data, atlases were
developed using multiple subjects. These atlases were mostly developed using the
anatomical T1 weighted images. Some of the landmark templates were discussed
in the chapter. We discussed that a population specific atlas is essential for an
unbiased statistical study.

We then proposed a robust framework for developing a joint T1 and DTI template.
We showed that the white matter structures in the T1 and DTI templates are well
aligned. Such joint template could be useful in carrying out multimodal statistical
studies and also study the correlation between longitudinal changes observed
across different modalities. For example, in case of neuro-degenerative disease
like Alzheimer’s disease it will be interesting to see how the changes in one of the
structures in the brain affects the changes in the adjoining regions. For example,
is there a correlation between the expansion rate of ventricles and the atrophy of
corpus callosum in case of Alzheimer’s disease.

Along with the template, we also presented a workflow for transferring the ICBM-
WMPM labels to the population specific template developed in this chapter. We
created an probabilistic atlas of white matter regions using the ROI definitions from
the WMPM labels. We believe that such a probabilistic atlas will allow to define
levels of confidence more robustly in the ROI definition while computing ROI based
statistics. The probabilistic ROI based method presents an alternative to expert
segmentation, which is often expensive and also not completely immune to human
errors. The probabilistic white matter labels align very well with the cortical ROI
definitions. Such cortical segmentation can be obtained using tools like Freesurfer.

We believe that such probabilistic ROI definitions could aid experts in seg-
menting more accurately and refining their segmentation.

In figure 5.20, we showed the anatomical agreement between the probabilistic white
matter parcellation map developed in this chapter and the manually segmented
cortical labels. We also showed the error in manual cortical segmentation in figure
5.21. Manual segmentation is expensive and not always a feasible solution. Thus, a
completely automatic parcellation algorithm is highly desirable. The probabilisitic
white matter atlas can be used as a prior information in automatic cortical parcel-
lation algorithm such as the one presented in [Fischl 2004, Destrieux 2010]. The
authors used manually parcellated cortical regions as training dataset to compute
automatic parcellation on a new subject. We think the accuracy of the parcellation
can be increased if more information on the white matter segmentation. Fusing
the cortical and white matter parcellation maps on the same atlas will help as-
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sess the connectivity between different cortical regions and refine fiber tractography.

With the multimodal atlas, a combined T1 and DTI statistics needs to be performed
in-order to see the correlation between the different modalities and how it enhances
the statistical power. It remains to be seen if deformation based morphometry on
the T1 images and tract based spatial statistics on the DTI have a strong correlation.
With the multimodal atlas, a voxelwise comparison between the results from these
two statistical approaches needs to be done. It remains to be seen if the atrophy in
white matter regions from ROI based deformation based morphometry and white
matter changes observed with TBSS have a strong correlation.
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6.1 Clinical studies on HIV/AIDS patients

Clinical and pathological disorders has been observed in the white matter of
the central nervous system (CNS) among HIV patients. Significant thinning of
the neo-cortex as well as loss of large number of cortical neurons due to HIV
infection has been reported [Wiley 1991]. In another study it was found that the
the human immunodeficiency virus of type 1 (HIV-1) causes dementia leading to
abnormalities in cognition, bad motor performance and behavior, the mechanism
of the disease is less understood [Price 1988]. It is believed that the HIV can cross
the hematoencephallic barrier [Williams 2002] causing the nervous impairment by
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affecting the neuronal connectivity linking the frontal, parietal and sub-cortical
regions. HIV commonly invades the brain 15 days after accidental intravenous
inoculation. It is also known that the neuron dysfunction or death underlining
the clinical symptoms of HIV/CNS disease does not result from direct infection of
neurons. Thus, the mechanism of HIV-related brain injury is not well understood
so far. The T1 and T2 weighted MR imaging cannot reveal many significant
changes in the white matter [Everall 1997], so a systematic study based on DTI
parameters is much needed and relevant.

The brain gathers information from the surroundings and normal perception
requires integration of these collected information. Studies have confirmed that
HIV leads to dysfunctioning cognitive behavior and motor skills due to white
matter degeneration. In a study conducted on HIV related disruption of visu-
ospatial and attention process, the DTI metrics revealed poorer fiber integrity
of the corpus callosum in the HIV patients compared to the control subjects
[Müller-Oehring 2010]. In this study, the participants were supposed to identify
large global letters composed of smaller local letters in the presence of distractors
at local, global and both levels and their response time was recorded. It was
found that the HIV infected patients performed similar to the control group but
their response time was different. It was also found that subjects who displayed
more global processing advantages and less pronounced local precedence were also
suffering from temporal micro-structural compromise of corpus callosum. Also, it
can be conclusively demonstrated through the available tests and statistical data
[Müller-Oehring 2010] that the laterlized local-global processes require transcallosal
integration to enable hierarchal perception via occipito-temporal connectivity and
response control via prefrontal connectivity.

Similar study on cognitive performance among HIV patients using quantitative
DTI was done in [Tate 2010], which revealed notable correlation between the
tractography metrics and the cognitive performance. The tests include motor
tapping tests, speed of processing and executive function. These studies corrobo-
rates the importance of white matter functions in cognition. Significant differences
were measured in global tractography FA among HIV positive and HIV negative
patients. It was also reported that among HIV patients there is was a significant
reduction in the number of fiber tracts when compared to the control patients.
On the contrary another study [Thurnher 2005] suggests that DTI is unable to
detect statistically significant differences in FA, when compared to control subjects.
Though they corroborate the fact that there was a decrease in FA, in HIV+
patients, when compared to normal control subjects, they deny any statistical
differences.

A DTI study on diffusion in corpus callosum of HIV patients reveal reduced FA
values in splenium (posterior part of corpus callosum), which relates to dementia
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(HIV-D) and reduced motor functions [Wu 2006]. Increase in the values of MD
was also found in splenium. The authors suggest that these DTI findings may
yield meaningful variation, associated with progression of neurological dysfunction
among HIV patients, as symptoms like cognitive decline is only noticeable in
advanced stages of the disease.

A multivariate statistical approach on tensor based morphometry to identify group
differences between 26 HIV/AIDS patients and 14 matched healthy controls was
presented in [Lepore 2008]. Compared to the tensor based morphometry, the
method retains the full deformation tensor information and use a manifold version
of Hotelling-T 2 test in the Log-Euclidean domain. The authors detected consistent,
but more extensive patterns of structural abnormalities using the multivariate
approach. The authors found significant atrophy in the genu and splenium of the
corpus callosum along with significant reduction in FA. The total surface area of
the corpus callosum was also reduced by a significant amount. On a global scale
the white matter exhibits whidespread atrophy.

In this chapter, we will discuss the NEURADAPT study designed to study
differences in the brain of controls versus patients. The HIV patients were given to
neuropschyological tests and were tested on variety of tasks like learning, recalling
episodic memories, cognition and motor skills. One of the goals of the study is
to correlate the test scores with that of the changes observed in diffusion tensor
images. Due to the low resolution and signal-to-noise ratio of the DTI, it is
challenging to design a statistical study based on diffusion tensor images. The goal
of the chapter is to design a workflow which is best suited for the given population.

In the following sections, I will discuss briefly the different methodological tools
used in the analysis of brain images. I will also discuss their shortcomings and the
merit of using tract based spatial statistics (TBSS) on DTI. Further in the chapter,
we will discuss the results obtained using the classical TBSS workflow. This will
be followed by certain improvements made on the TBSS workflow and the results
along with the clinical implications of the study.

6.2 Tools used in statistical analysis of brain images

The most commonly employed methods for morphometric studies are deforma-
tion based morphometry (DBM) [Ashburner 1998], voxel based morphometry
(VBM) [Ashburner 2000] and more recently tract based spatial statistics (TBSS)
[Smith 2006]. DBM and VBM are more suited approach for anatomical images,
whereas the latter is the one more used in context of diffusion tensor images. For
the sake of completeness both deformation and voxel based morphometry are dis-
cussed in brief before delving into TBSS.
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6.2.1 Deformation based morphometry

In deformation based morphometry (DBM), one analyzes the 3D displacement vec-
tor field obtained from a nonlinear registration between a subject and a template
brain. The determinant of the Jacobian matrix of deformation field is used to an-
alyze the distortion necessary for matching the subject and the target images. If
the value of the determinant is less than unity, it implies local shrinkage, whereas if
the value is higher than unity implies a local expansion. In DBM, all the subjects
are nonlinearly registered to the template and Jacobian maps can be computed in
the template space. Group statistics are computed in order to study local volu-
metric changes across population with the determinant of the Jacobian maps. The
deformation based morphometry has notable advantages over the previously used
MRI-based volumetry as it does not require a priori knowledge of the region of in-
terest to perform the morphological analysis and it improves the statistical power of
detecting significant change of the volume of the regions of interest within the limits
of accuracy of the registration algorithm [Chung 2001]. However, such an analysis
does not reveal the direction of volumetric change. DBM is also not well suited for
statistical analysis on DTI because spatial normalization involves resampling which
leads to erroneous results while characterizing volume changes.

6.2.2 Voxel based morphometry

At the heart of voxel-based morphometry lies the simple idea of voxel-wise com-
parison across a population of subjects in order to reveal local changes in the grey
matter intensities between groups of patients. In VBM, MRI data is spatially nor-
malized to the same template space using nonlinear registration. The quality of the
template is also important for VBM: it should be based on a large population and
should have a reasonably high resolution (typically anisotropic resolution of 0.5 to
1 mm). It should be noted that the the spatial normalization is not exact and it
merely corrects the global brain shape differences only. In contrast to DBM where
the group statistics is carried out on the determinant of the Jacobians, in VBM
voxel-wise analysis is carried out on the image intensities.

6.2.3 Tract based spatial statistics

Tract based spatial statistics or TBSS is a more recent techniques compared
than the above two. TBSS is specifically used in the case of diffusion MRI in
contrast to the above two methods. As discussed in section 3.6.1, fractional
anisotropy (FA) quantifies the directional strength of white matter tracts. The
FA images can be used for voxelwise statistical analysis in order to quantify
changes in white matter tract integrity. In TBSS, the diffusion weighted images
are first corrected for eddy current distortion and bulk head motion followed
by tensor estimation. The FA images are computed from the DTIs. For the
spatial normalization, the TBSS suggest either to use a predefined target image
(for example, FMRIB158_FA) or use the most central (or most representative)
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subject as the target image. For the second method, every image in the dataset
is nonlinearly registered with every other image. Thus, if there are n subjects,
it will require n2 registrations. For a large dateset as the one presented in this
study with 192 subjects, the second method is computationally challenging.
For such scenarios, it is recommended to use the earlier method, that is to
normalized all the FA images to a standard template. The mean FA is computed
and is skeletonised to only contain the most central white matter tracts. Ideally,
these skeleton tracts represent the most central tract in a white matter fiber bundle.

Figure 6.1: An example of mean FA map (red-yellow), overlayed on top of a MNI152
atlas along with the white matter skeleton (blue) [Smith 2006]

The skeleton is projected on all the normalized FA images. The FA skeleton is
thresholded at a FA value of 0.2. The authors [Smith 2006] argue that this kind
of analysis on the FA skeleton overcomes the misalignment issues that might have
happened during the registration. Moreover it considerably reduces the multiple
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comparison problem as one focuses only on the voxels belonging to the white matter
skeleton and not on all the voxels of the white matter. The skeleton projection step
is is followed by a voxel-wise statistics using permutation methods (also known as
randomisation methods) on the white matter skeleton. FSL’s randomise tool is
used for the voxel-wise statistics with 5000 random permutations.

This is the most general workflow that is followed for TBSS analysis. Some of the
short comings of the method have been a topic of discussion in few recent articles
[Groot 2013, Schwarz 2014, Bach 2014].

A recent study compared two ROI based methods for exploratory statistical anal-
ysis on white matter tracts of typical specific language impairment in children
[Vallée 2014]. The authors created a unbiased population specific DTI template
using the method described in [Guimond 2000]. The template is aligned with the
Catani’s atlas [Catani 2008] for getting the ROI definition. Tractography was per-
formed on each aligned DTI. Two different statistical analysis were carried out on
the data. The first one is by comparing the mean FA and ADC values inside the
ROIs defined in the Catani’s atlas and the second one is by comparing the mean FA
and ADC inside the ROIs created by taking the envelope of fiber tracts. We tried
an approach similar to the first ROI approach presented by [Vallée 2014]. However,
we were not able to detect any statistically significant differences between the con-
trols and the patients. Given that the DTIs have low SNR and spatial resolution,
we think that the averaging of FA values over a ROI might lead to loss in statistical
power. Thus, the inability to detect any significant difference.

6.2.4 Comparing white matter fiber tracts

The white matter fiber tracts can be compared using the different features such
as shape, scale, orientation and position. In [Mani 2010], the authors proposed a
Riemannian framework for a joint analysis of these features. For each combination
of features, the authors suggest a formula for the geodesics distance between two
set of fibers. Though, the method was used for clustering fiber tracts, we think this
method can also be used for a statistical comparison of features between two groups
of subjects. However, the meaning of such feature differences in the clinical context
is less understood and appropriate measure should be taken to correlate the shape
features with the DTI metrics used commonly in clinical practice like FA, ADC and
MD.

6.3 Data and study design

6.3.1 Background of study design: NEURADAPT

The NEURADAPT study was designed to investigate the prevalance of patients
with HIV associated neurocognitive disorders (HAND) among HIV-1 infected
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patients, HIV-1 being one of the two sub-types of the HIV disease. The HIV-1
patients were followed in the Nice University Hospital [Vassallo 2013]. The
authors studied the effects of microbial translocation lipopolysaccharide (LPS)
among HAND patients. The LPS is suspected to trigger monocyte1 activa-
tion and facilitate the penetration of the infected cells into the brain leading
to neurocognitive disorders. The goal was to investigate the LPS plasma levels
as a possible biomarker for screening patients with mild neurocognitive impairment.

In the study, 322 subjects out of 1,963 were randomly selected and among
them 256 patients provided informed consent. Every patient was required to go
through a variety of neuropsychological (NP) tests. The subjects were tested
on a variety of cognitive domains: learning and recall episodic memories, atten-
tion/concentration, working memory, executive functions, language, visual agnosia
and motor/psychomotor speed. The NP scores were transformed into Z-scores
and were adjusted for age, gender and years of education using standarised norms.
Following the NP test results the subjects were divided into two groups, one with
HAND and the other without HAND. The study concluded that LPS levels are
associated with HAND only among the hepatities C virus (HCV) positive groups.

In a followup study on the same cohort [Vassallo 2014], the authors studied longitu-
dinal changes in the NP test results. The latter study presents the results of similar
NP test as carried out in [Vassallo 2013] after two years. Combination antiretroviral
therapy (cART) refers to the combination of medications that are used to keep the
HIV infections under control. The article investigates if the high central nervous
system penetrating antiretroviral therapy prevent the onset of HAND. Out of the
256 patients, 96 agreed for the NP follow-up testing. For this particular study,
the cohort was subdivided into five categories: normal controls, neuropsychological
deficit (one impaired cognitive domain), asymptomatic neurocognitive disorders
or ANI (abnormality in two or more cognitive abilities), mild neurocognitive
disorder or MND (cognitive impairment with mild functional impairment) and
HIV-associated dementia or HAD (marked cognitive and functional impairment).
The article discusses in detail the effect of cART on the neurocognitive impairment
among these subgroups. The subgroups are important in order to track the number
of patients moving from one to the other in terms of the NP scores. In the study, the
CSF drug concentration penetration effectiveness (CPE) scored were recorded along
with the demographic and background information. It was concluded that HAND
patients with lower CPE scores are at higher risk of increasing cognitive impairment.

1a large, circulating white blood cell, formed in bone marrow and in the spleen, that ingests

large foreign particles and cell debris.
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6.3.2 Rational behind DTI based statistical study

Both the above mentioned studies were based on neuropscychological test scores.
The latter tracks the changes in the NP scores over a period of 2 years (from
2009 to 2011). As mentioned in section 6.1, several studies in the past have
shown changes in white matter tract integrity and associated the changes with
neurocognitive disorders. The motivation behind the statistical DTI study is to
design a robust statistical workflow for localizing the changes in the white matter
tracts among HAND patients with respect to controls. The localization of changes
in the white matter tracts can be correlated with cognitive impairment and loss of
motor control observed among the test subjects. It would have been interesting to
track these changes and study the deterioration of the WM tract integrity across
time. But unfortunately, the DTI data was only available at one time point.

The data are collected under the NEURADAPT initiative at the University of Nice
Hospital, France. The diffusion weighted images are acquired with a b-value of 700
s/mm2, using a GE 1.5 Tesla scanner. One B0 (undiffused image) and diffusion
weighted images (DWIs) with 23 gradient directions were acquired. The DWIs
has 256 × 256 × 28 voxels of size 0.9375 × 0.9375 × 5.5 mm3. One anatomical
high resolution T1-weighted image is also acquired. The subjects are divided into
two groups, controls and HAND patients. There are 18 controls and 174 HAND
subjects. The patients are further subdivided into five subgroups based on the level
of neuro-cognitive disorder as mentioned earlier.

6.4 Proposed Workflow

The dicom images are extracted using the mricron software [Rorden 2008]. The
images are extracted in the Nifti image format. The diffusion images are corrected
for head motion for the eddy-current distortion using the FSL’s eddy_correct tool.
The anatomical T1 image is corrected for intensity bias using the tool provided
with ANTs [Tustison 2010]. The T1 images are then skull-stripped using ROBEX
[Iglesias 2011].

For each subject, the B0 image is rigidly registered with the T1 image after inten-
sity bias correction. The skull stripped T1 images are then affinely registered with
that of the template T1 image. The two registrations are then combined and all
the diffusion images are resampled with the combined transformation using b-spline
interpolation. The diffusion tensor images are estimated using the log-Euclidean
tensor estimation algorithm [Fillard 2007]. The DTI for each subject is then regis-
tered nonlinearly to the template DTI using the log-domain diffeomorphic diffusion
tensor image registration [Sweet 2010].

Once the tensor images are registered nonlinearly to the template space. The mean
tensor image is computed using the log-Euclidean framework and subsequently the
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Figure 6.2: Workflow for processing the diffusion images for the TBSS

mean FA image is computed. The white matter skeleton is computed using the
FSL’s tbss_skeleton tool. The skeleton represents the voxels belonging to the central
line of the white matter tracts. The figure 6.3 shows the white matter skeleton
overlayed on the FA image. A binary skeleton mask is created by thresholding the
FA value at 0.2. Voxelwise statistics is carried out on this mask.

6.5 Results

6.5.1 Results on traditional TBSS

In the figure 6.4 the results of a standard TBSS operation described in 6.2.3 is
shown. The actual voxel wise results are included in the appendix B. Here and in
all the subsequent figures the results are thickened in order to make the visualisation
easy. The stat image is thresholded at 0.95 which corresponds to a p-value of 0.05
and thickened using FSL’s tbss_fill script. For an anatomical reference the white
matter skeleton (in green) is overlayed on the mean FA image. The regions in
red-yellow show the areas with significant differences (at 5% significance level). It
was found that using the standard procedure, there are notable differences in the
left and right superior corona-radiata. The corona-radiata is a set of projection
fibers2 and is composed of ascending sensory fibers and descending motor fibers. A
small section of corpus callosum also shows significant difference. It is known from
earlier studies and in the NEURADAPT study as mentioned in section 6.1 that
the HIV patients also show signs of compromised motor skills. However, changes

2Projection fibers are the fibers uniting the cortex with the lower parts of the brain and the

spinal cord.
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Figure 6.3: White matter skeleton (green) overlayed on the mean fractional
anisotropy (FA) image.

in the different regions of brain due to HIV are not only limited to corona radiata
as found in other studies discussed in section 6.1.

6.5.2 Results on TBSS using DTI based registration

After the affine alignment of the subject DTI with that of the template, further
nonlinear registration can be either computed using the scalar FA images or using
a tensor based registration. The usual workflow in the FSL suggests a nonlinear
FA based registration using FNIRT. However, in a recent study conducted by
[Bach 2014], the authors suggest that a tensor based registration can greatly
improve the statistical significance of the results. For the DTI registration,
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Figure 6.4: The red-yellow sections show the regions with statistically significant
difference between the controls and the HAND patients. Green shows the white
matter tract skeleton. The test statistic values are thresholded at 0.95 for the ease
of display which corresponds to 5% significance test. The significant regions are
thickend for better visualization (see appendix B for exact results.)

the in-house developed log-domain diffeomorphic tensor registration algorithm
[Sweet 2010] was used. It was found that with the tensor based registration, it was
possible to detect more regions of statistically significant difference between the
controls and the patients. The tensor registration being used also is a much more
appropriate method for nonlinear alignment, as the directionality information is not
lost as in the case of scalar FA images. As we will see later in the following chapter
that a tensor based nonlinear alignment also leaves the room for a multivariate
statistical analysis contrary to the univariate analysis conducted on the FA images
in TBSS.

With the FA based registration, a lot of potential information pertaining to the
orientation of the tensors contained in the DTI data is lost. Contrarily to the
FA registration discussed above, a DTI based nonlinear registration is carried
out using the log-demons diffeomorphic tensor registration. The FA values are
computed after the DTI normalization and once again the groups are compared
using the FSL’s randomise tool with 5000 random permutations. As expected with
this technique, it is possible to detect the differences in many more regions. The
regions with statistically significant differences are shown in figure 6.5 in red-yellow.
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Figure 6.5: TBSS using DTI based registration. White matter tract skeleton is
shown in green. The red-yellow sections of the skeleton are the ones with statistically
significant differences, i.e., with a p-value < 0.05

In the figure 6.5, notable differences are observed in the splenium and body of
corpus callosum, left and right cerebral peduncle and both external capsules along
with left and right corona radiata. Thus, a likely conclusion can be drawn that a
tensor based registration is more appropriate for TBSS.
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6.5.3 Univariate and multivariate hypothesis testing

In the previous sections, it was shown that tensor registration, when used for DTI
normalization provides better results. Better in the sense that it is possible to de-
tect differences in many different regions of the brain which were undetectable with
the standard TBSS procedures. In the last step of TBSS, the voxelwise statistics is
carried out using a non-parametric permutation test. The details of the permuta-
tions test are often hidden from the user as it is pretty much an automated process.
However, the user has a choice to choose a number of parameters including the
number of permutations required to estimate the distribution. A detailed under-
standing of parameters requires an involved study and users are often advised to
go with the recommended setting. The tool is only suited for univariate statistical
analysis. But, the idea is to to present a multivariate statistics which uses the whole
tensor information. In the following sections a detailed description of the statistical
test setup is produced. The tests are first carried out on the FA images and then
extended to full tensor.

Univariate hypothesis testing

The FA1 and FA2 denote the FA values of the two groups respectively. The FA
values are a vector of values on each subject along the white matter skeleton. The
groupwise test is carried out on each voxel along the skeleton. The two sample t-test
is used to detect the group differences, on the assumption that the FA values in
the two groups follow a normal distribution. However, such an assumption on the
normal distribution may not be correct because of a variety of reasons. First, the
diffusion weighted images have an underlying Rician distribution. Secondly, the FA
values, the DWI acquisition and the diffusion tensor has a nonlinear relationship
between them. If the Gaussianity assumption does not hold, the results of statistical
test (two sample t-test in our case) could be unreliable. Thus, it is wise to choose
a non-parametric statistical test, which make no assumption about the probability
distribution of the data under consideration. Permutation test is one such non-
parametric test and the following tests are done using the same spirit. In the
permutation test framework, the null and alternate hypotheses are set up as

H0 = FA1
d=FA2 ; H1 = FA1

d
6=FA2 (6.1)

where d= and
d
6= denotes "equal in distribution" and "not in equal distribution". A

multivariate test was introduced in [Baringhaus 2004]. The authors suggest a test
statistic based on the sum of all Euclidean interpoint distances between the variables
(FA values) from the two different groups and one-half of the two corresponding
sums of distances of the variables within the same group. The corresponding proofs
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are discussed in the above article. Thus, the test-statistic is as follows,

Tn1,n2
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n1n2

n1 + n2
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, (6.2)

where ||.|| is the Euclidean distance. The Tn1,n2
is not distribution free. The

authors suggest bootstrapping to obtain the critical values. In the article
[Baringhaus 2004], the authors show that the Cramer’s test proposed shows
power performance comparable to that of Hotelling-T 2 test. An implementation
of the Cramer’s test is available with the R-package. For the permutation
tests, the sample space is the of the order of (n1 + n2)!. For a large dataset as
ours it is not possible to explore the whole permutation space because of compu-
tational reasons. For the particular analysis, 5000 random permutations are chosen.

In the figure 6.6 it can be seen that the results of the univariate statistical anal-
ysis using the Cramer’s test designed in this section is comparable to that of the
permutation test offered within the TBSS framework. In the following section the
Cramer’s test will be used for the multivariate statistical analysis.

Multivariate hypothesis testing

In the previous section, we did a univariate hypothesis testing on the FA values.
However, FA being a scalar quantity, we loose the directionality information of the
diffusion tensor. In this section we will discuss three different multivariate tests
on the NEURADAPT dataset. For the multivariate analysis, I will use the same
Cramer’s test as described in the previous section. I will show that using the
multivariate test, it was possible to detect changes in white matter tracts which
were previously undetected using the univariate hypothesis testing using the scalar
FA images. For the multivariate hypothesis testing, the tensor is arranged in a
vector form as follows

D = [Dxx Dyy Dzz Dxy Dyz Dzx] (6.3)

where the subscript represent the position of the elements in the diffusion tensor D.
One of the easiest way to do a multivariate analysis on the individual elements of
the diffusion tensor and then combine the p-values using a combining function. For
such an analysis the null and the alternative hypothesis for each univariate analysis
of the individual elements is set up as in the previous section and the p-values are
computed. Then the p-values are combined using the Fisher-Omnibus combination
function [Fisher 1925]. The function is defined as,

X2
2k ∼ −2

k∑

i=1

log(pi), (6.4)
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Figure 6.6: Univariate statistical analysis on the FA values after nonlinear tensor
based registration.

where X2 is the test statistic and pi is the p-value corresponding to the ith

univariate test and k is the number of tests being combined (in our case, k = 6
corresponding to the number of diffusion elements).

However, for the multivariate test using the full tensor information, the multivariate
vector has been constructed from the unique six entries of the diffusion tensor.
Two different form of the vector could be used for the multivariate analysis. As
suggested in [Arsigny 2006b] a rotationally invariant Euclidean metric vector form
of the diffusion tensor could be constructed by applying weights to the off-diagonal
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terms as
D = [Dxx Dyy Dzz

√
2Dxy

√
2Dyz

√
2Dzx] (6.5)

Similarly, a log-Euclidean metric form can also be defined as,

L = [Lxx Lyy Lzz

√
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√
2Lyz

√
2Lzx] (6.6)

where L = Log(D), is the matrix logarithm of the diffusion tensor D. Contrary to
univariate analysis, a vectorial form of the test-statistic is defined
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(6.7)

where V is either D or L depending on whether Euclidean or log-Euclidean metric
is being used as a test-statistic. The subscripts 1 and 2 represent the two groups
under consideration.

6.6 Comparison of the univariate and multivariate
analysis

The multivariate analysis makes use of the full tensor information for statistical
analysis. The multivariate approach is shown to have a higher specificity and
sensitivity to the statistical tests [Schwarz 2014]. The statistic images shown in
this chapter are thickened around the areas of statistical difference for ease of
visualization. In case of multivariate analysis, it is possible to use either the
Euclidean or the log-Euclidean metric for the analysis. The figure 6.7 shows the
results of the statistics carried out using the log-Euclidean metric.

For the sake of comparison, the univariate results (blue-deepblue) are overlayed on
top of the multivariate statistical results (red-yellow). As expected the latter has a
higher detection power. The above argument is supported using the p-value image
presented in figure 6.9. In this figure, it can be seen that it is possible to detect more
differences in the multivariate analysis. The statistical differences in the association
fibers were not detectable in the univariate analysis, but are distinctly visible in the
latter. A similar image (figure 6.10 ) also shows an enhanced detection when the
log-Euclidean versus Euclidean metric is used. With all these results, it is possible
to deduce that the multivariate analysis using the log-Euclidean metric is more
suited for the problem at hand.

6.7 Conclusions and clinical perspectives

In this chapter, we have shown that if the diffusion tensor images are normalized
using a tensor based registration technique as opposed to the FA based regis-
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Figure 6.7: Results from multivariate statistical test using the log-Euclidean metric.

tration methods usually followed in the standard tract based spatial statistics.
Tensor based normalization also allows for multivariate statistics on full tensor
information. We showed that the multivariate statistics shows more regions of
statically significant differences compared to the univariate statistics. With the
standard TBSS routines, it was only possible to detect significant differences in the
left and right superior corona-radiata. However, previous studies have suggested
significant differences in the corpus callosum and other white matter regions of
the brain. A difference in the corona-radiata regions explains the compromised
motor skills of the HIV patients, but the HIV cohort also showed signs of impaired
recall and working memory, motor skills, attention/concentration and speed of
information processing. All of these impairments cannot be solely related to corona
radiata. So, it is possible that a traditional TBSS is not sufficient to detect all the
statistical differences in white matter tracts. However, with the suggested DTI
normalization and multivariate statistics, it was possible to detect the differences
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Figure 6.8: Comparison of univariate and multivariate analysis. The univariate
statistics is overlayed on top of the statistical results obtained from multivariate
statistics. The sections in blue-deepblue show univariate and the sections in red-
yellow show the results on the multivariate analysis. It is clear that multivariate
analysis can detect more regions of difference between controls and HAND subjects.

in different regions of the brain which account for the brain impairments reported
by [Vassallo 2013]. The findings are also in accordance with the state of the art
literature.
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Figure 6.9: A comparison of the univariate FA (left column) and multivariate tensor
(right column) statistical analysis. On the right column, one can see that it is
possible to detect more regions of significant difference between the contols and the
patients at a 5% significance level.
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Figure 6.10: Comparison of multivariate statistical analysis using the Euclidean
and the log-Euclidean metric. The log-Euclidean metric can detect more regions of
statistical significant differences between the controls and the patients.
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7.1 Conclusions

The thesis presents several workflows created for addressing specific problems
pertaining to the clinical DTI study conducted within the NEURADAPT study.
Chapter 2 of the thesis give the necessary background information about the
anatomy of brain, the structure, organization and function of white matter tracts
in the brain. An understanding of the brain anatomy is crucial for correlating the
statistical results. This is followed by a chapter discussing the physics behind MR
imaging protocols. We discussed in detail the pros and cons of some of the common
imaging protocols being used in clinics on a regular basis. We also discussed how
the different protocols can be combined based on the specific needs. These two
chapters cover most of the background information for the thesis.

In this thesis, we have proposed a new method for improving the resolution of
clinical quality brain diffusion tensor images from single diffusion MRI acquisition.
The low resolution diffusion images suffer from partial volume effects, which lead to
underestimated diffusion tensors. The method build on the variational formulation
for joint estimation and denoising of DTIs proposed by [Fillard 2007]. We assumed
that the signal observed in a low-resolution diffusion image is a weighted average
of the signals that would have been observed for a higher resolution image. With
no other information, an infinite number of solutions are possible. Of course not
all of them have any physical meaning with regards to diffusion tensor. The tensor
estimation being an ill-posed problem, we used an anisotropic regularization prior
to better constraint our solution space. We showed that the proposed method
produces fractional anisotropy images which are better contrasted than the ones
which are obtained using tensor resampling. We proved through tractography
results that the super-resolution algorithm produced more consistent fiber tracts
compared to the ones produced by tensor resampling. We showed the tractography
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improvement in the fornix region of the brain which is known to suffer from partial
volume effects because of close proximity to the ventricles.

The human brain’s shape and size varies across population and also with time. In
order to understand this variability, various atlases were computed. A small history
of these atlases was presented in the thesis to give an overview of the developments
in the field of brain imaging, in order to understand how we have come far in
the field from developing an atlas from a single subject to an atlas comprised of
hundreds of subject. There are standard atlases that exists and are off-the-shelf

tools for doing statistical study on a given population. However, choosing such
atlases may often lead to a bias in the statistical results. For example, if the study
is being conducted on infant brains, using an ICBM atlas is definitely not a good
idea. Doing so, will involve unnecessary stretching of each of the subject brains to
match the atlas during subject normalization. These extreme deformations may
bias the statistical study. So, there is a need for a population specific atlas. Such
an atlas will also be a statistical representative of the population. We used an
existing tool to compute the brain template for the NEURADAPT study.

The need for a population specific atlas is well understood and discussed in detail in
Chapter 5. However, so far most of the atlases were developed using the anatomical
T1-weighted image. The main reason for this is that the T1-weighted images are
highly detailed making it easier to register compared to the diffusion tensor images.
So, far there were not so many DTI atlases except the ICBM-DWI atlas (which is
also a very low resolution). The other problem is that the T1-template and the
DTI template occupy different geometric spaces. Because of this mismatch it was
not possible to study both the modalities together. It was found that a joint T1
and DTI study may increase the statistical power of the analysis. We presented a
workflow for producing a joint T1 and DTI template. The template can be used
for voxelwise comparison between the two modalities. Although, the template was
generated for the NEURADAPT study, the workflow can be utilised for any given
dataset.

For ROI based statistics, it is important to have a segmentation of white matter
regions in the brain. These ROI segmentation is performed manually by experts.
The process can be expensive, time consuming and often error-prone. Often,
experts differ on the accuracy of the segmented regions too. We have developed
a workflow for generating a probabilistic white matter atlas with each region of
white matter having a probabilistic delineation. Thus a user could choose based
on the problem how conservative he or she wants to be in terms of ROI selection
for statistical analysis. We also believe that in the future such probabilistic maps
can be used to aid manual segmentation.

The DTI template developed in the previous chapter is used for tract based
spatial statistics (TBSS) for detecting statistical changes in white matter tracts
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between controls and patients. We suggested changes that can be made in the
traditional TBSS framework to improve the statistical power of the tests. Using
the method suggested in chapter 6 it was possible to detect changes in white
matter tracts which were otherwise not detectable using the native TBSS routines.
The traditional framework for TBSS uses scalar fractional anisotropy (FA) images
for spatial normalization of images. The FA being a scalar metric obtained from
the diffusion tensor discards all the directional information. Instead of FA based
normalization on a pre-defined template, we used the population specific DTI
template as the target space for spatial normalization. Another difference is that
the FA based normalization is replaced with the log-domain diffeomorphic tensor
registration. This DTI normalization technique allows us to retain the full tensor
information in the template space and make voxelwise comparison on the whole
tensor using multivariate statistical tests. On the other hand in traditional TBSS
such multivariate analysis is not possible because of the FA-based normalization.
We compared the results of univariate and multivariate analysis and we can say
that the multivariate analysis wins against the univariate analysis in terms of
statistical power. The differences were shown in figures 6.8 and 6.9.

The results from TBSS were correlated with the neuropsychological (NP) test
scores. It was found that with the traditions TBSS we could detect changes in the
corona-radiata, which are related to compromised motor skills. But the HIV/AIDS
patient suffer not only from compromised motor skill but dementia, working and
episodic memory, attention/concentration, executive functions, language related
functions and visual agnosia. Clearly, the cause for compromised behavior in
the latter functions and changes in the white matter tract integrity cannot be
correlated by using the off-the-shelf TBSS routines. However, the modified TBSS
coupled with the multivariate analysis could do so.

One might ask the question, why we did not use the super-resolution algorithm
developed in chapter 4 during the statistical analysis of the NEURADAPT dataset.
As we will see that the proposed algorithm performs well and provides significantly
better tensor estimation and tractography results when the data is upsampled by a
factor of two. However, the DTI data in the NEURADAPT study has a resolution
of 0.9375×0.9375×5.5 mm3. The voxels are too big in the z direction and there
is just not enough information for the super-resolution algorithm to enhance the
quality of the data.

Another reason for not choosing the super-resolution algorithm was the tool used
for statistical analysis. We chose to use tract-based spatial statistics (TBSS)
methods for comparing the controls and HIV patients. In TBSS, the white matter
tracts are skeletonised to a single voxel. The skeleton represents the mid-line of
a given tract. A TBSS study conducted on high resolution (smaller voxel size)
images looses statistical power as we increase the resolution. An increasingly
higher percentage of information is discarded during the skeletonization step. For
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example, if there are images with an isotropic voxel size of 2 mm, the volume of
a single voxel will be 8 mm3. Just by increasing the resolution by a factor of 2,
the volume of the single voxel will be reduced to 1 mm3. So, we loose 87.5 % of
information per voxel. Thus, it is better to avoid super-resolution algorithms for
TBSS type methods.

The NEURADAPT study aims to study the prevalence of patients with HIV as-
sociated neurocognitive disorders (HAND) among HIV-1 infected patients. The
goal was also to study the effect of microbial translocation of lipopolysaccharide
(LPS) among the HAND patients and use the LPS levels as a possible biomarker
for screening patients with HAND. It was also found that the combination antiretro-
viral therapy (cART) can be used to keep the HIV infections under control. So, far
in the study the effects of cART were evaluated based on the NP test scores. How-
ever, the possibility to see the changes in affected white matter tracts and track the
changes over time opens new possibilities for a quantitative measure for evaluating
the effects of cART on HAND subjects.

7.2 Failed quests

In this section, I am going to discuss some of the problems we tried to work on
but could not get any conclusive result. However, we feel that it is important to
point out the reasons for no conclusive results in order to lay a strong foundation
for future research in similar directions.

Longitudinal DTI study

Disease progression over time can be evaluated using nonlinear deformation of
images. Most of the longitudinal studies involve deformation based morphometry
(DBM) on the anatomical T1-weighted images. However, the T1 weighted images
do not contain any information about the white matter tracts. In the recent years,
a large number of longitudinal DTI data has been collected by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We thought that this longitudinal DTI
data can be used for studying temporal deformations in white matter tracts for
both subject specific and group wise statistical analysis. Few studies exist which
measure the changes in the DTI parameters with respect to disease progression in
the case of Alzheimer’s disease [Mielke 2009, Keihaninejad 2013]. In [Mielke 2009]
the authors employ region-of-interest (ROI) based analysis of target regions of
the brain to detect temporal changes in the white matter (WM) regions of brain.
However, the ROI based studies are often dependent on accurate delineation
of the ROIs. The challenges are even more when it comes to maintaining an
inter-subject and within subject consistency, because of the presence of partial
volume effects which may lead to inaccurate segmentation of the ROIs. In another
study [Keihaninejad 2013], an automated DTI analysis framework for tracking
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longitudinal WM changes was presented. In this framework a within-subject
template between two time points was generated and then a group wise atlas is
created from all the subject templates. The ICBM-DTI-81 is then used to wrap the
WM labels on the template image. Longitudinal statistics is then performed on the
DTI scalar measures (FA, MD and RA) in selected WM regions. These methods
do not use the full tensor information leading to significant loss in statistical power.

On the other end, many longitudinal studies on disease progression on Alzheimer’s
disease exist based on the T1 images using deformation based morphometry
(DBM). The volume changes in the structure can be measured by computing the
Jacobian determinant of the deformation field. One of the crucial challenges in
such group-wise statistical studies is the choice of an effective registration tool.
In [Lorenzi 2013], the authors have presented LCC-Demons, a computationally
efficient diffeomorphic registration tool that takes into account the comparison of
anatomical regions across the subject through smooth and anatomically pertinent
deformations. The local correlation coefficient (LCC) used as a similarity measure
in the the log-Demons registration framework [Vercauteren 2008] is robust to
intensity biases. The framework also provides a numerical scheme to compute the
Jacobian determinant of a deformation parameterized by stationary velocity fields
(SVFs). Subject specific brain deformations can be theorized as the variation of an
underlying population trend. Thus, it is interesting to study the mean deformation
over a population which is essential for understanding disease progression. How-
ever, in group-wise longitudinal analysis is that the subject-specific longitudinal
trajectories need to be transported to the template space through anatomically
meaningful deformations. Lorenzi et. al [Lorenzi 2011] proposed a Schild’s Ladder
framework for effective tool to transport subject specific longitudinal deformations
to a common template space.

Our idea was to merge these two modalities into a single multimodal (T1 and
DTI) statistical analysis of the ADNI dataset. We hypothesized that though the
T1 image contains detailed anatomical tissue information, it does not contain any
information about the white matter micro-structure and its organization. Thus the
deformation field in the white matter regions is not regularized and smooth making
it difficult to draw any meaningful information from within the white matter ROIs.
We also wanted to look at the correlation between the expansion of ventricles and
shrinkage of the neighboring white matter tissues for example corpus callosum,
internal capsule and fornix. We believe that such kind of multimodal studies are
necessary to understand the changes in the brain associated with Alzhiemer’s.
Another interesting aspect of the study will be to understand the correlation
between the non-linear deformation fields generated using the scalar and the DTI
registrations. We also wanted to study the principal modes of deformation across
the patient groups in case of Alzheimer’s disease. There has been cross-sectional
group studies to detect differences between controls and the Alzheimer’s disease
(AD) patients [Jahanshad 2014, Oishi 2011], but not a true longitudinal study
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which focuses on tracking the spatio-temporal changes in the DTI data using
deformation fields. As mentioned before it will be meaningful to compare the
longitudinal deformations seen with the T1-weighted images and diffusion tensor
image both at a subject level and group level.

Groupwise longitudinal studies involve two levels of variation within the data, one
is the small intra-subject (longitudinal variations) changes and the other is the
large deformations (cross-sectional changes) in the involved in the subject to tem-
plate registrations. These two-levels of deformation must be meaningfully combined
to make a spatio-temporal template. For the purpose of this study, we used the
log-domain variant of the diffeomorphic tensor based registration [Sweet 2010] for
registering the DTI and the LCC-Demons framework to register the T1 weighted
images. We use the Schild’s ladder framework to effectively transport the anatom-
ical deformations from a subject specific atlas and to a group template image.

Reasons for failure

The reason why the longitudinal DTI study using the ADNI dataset did not quite
work as we expected was the intra-subject DTI registration. We actually found
that the deformation field obtained from this registration was too noisy to draw
any meaningful inference. The ADNI DTI data was accquired using a spin-echo
sequence with 3.0 T GE scanner and 41 gradient directions. The voxel-sizes are
1.36×1.36×2.7 mm3. The problem was that with the acquired data it was impossi-
ble to detect any longitudinal changes in the diffusion tensor images. Probably the
artifact generated by the imaging sequence, are larger than the longitudinal signal
that we are looking for. In our knowledge, we did not see any longitudinal DTI
studies with the ADNI DTI dataset. Efforts should be made to incorporate faster
parallel imaging MR sequences like PROPELLER (discussed in chapter 3), which
are robust to motion artifacts for acquiring the data, instead of the basic spin-echo
sequences. Additional efforts can be made to include motion tracking mechanisms
during the MRI scan [Qin 2009]. ADNI should also provide EPI field maps along
with the data. These field maps are essential for correcting for distortions due to
magnetic field inhomogeneity, geometrical distortions and loss in signal in the infe-
rior frontal and temporal regions. Presently, all the DTI scans in ADNI2 project are
acquired using General Electric 3.0 T scanner and they do not have the Field Map-

ping Sequence product. So, they cannot acquire the EPI field maps. But, I think
it is crucial that the EPI field maps are acquired inorder to correct the geometric
distortions. In lack of the EPI field map, we tried to use the registration based
susceptibility correction schemes [Huang 2008]. But, they are only approximations
at the best.
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7.3 Perspectives

I am going to discuss some of the short-term and long-term perspectives of the
thesis in this section. It will also be an opportunity to look back in retrospect and
learn from our mistakes in the past and understand what are the steps to be taken
in the future for population based studies.

Short-term goals

The super-resolution algorithm presented in chapter 4 can be further modified
to incorporate information from other modalities. In the chapter we suggest a
method to incorporate the anatomical T1-weighted information in the tensor
estimation scheme. It makes sense to exploit the boundary and tissue interface
information from the T1 weighted images. Often times these tissue interfaces
cannot be delineated in the diffusion images because of the low spatial resolution
and partial volume effects.

We would also like to do an error analysis on the proposed tensor computation
using multi-resolution acquisition. So far, the validity of the method is proven
using indirect means such as tractography and error calculation on simulated low
resolution images. However, to make the super-resolution algorithm really useful
it should be tested using multi-resolution acquisitions of the same subject.

We discussed the multimodal atlas in 5 and the motivations behind developing
such a population specific atlas in 5.2. The multimodal atlas can be used for joint
statistical analysis on the T1 and DTI images. Recently, the authors in [Lao 2014]
have proposed a method for combining T1 surface based morphometry and DTI
based analysis on the surface of corpus callosum for a joint statistical analysis.
The authors project the FA values on the surface of the corpus-callosum for a
combined study. We believe that such studies can be performed on all major white
matter tracts and instead of projecting the scalar FA values the full tensor can
be projected for a combined multivariate statistical analysis. How to project the
whole tensor on the surface of the white matter regions in a meaningful consistent
manner still remains a question to be investigated.

We showed in figure 5.21 that there is a slight disagreement in the delineation of
cortical boundaries done by experts. We think that a probabilistic definition will
help the experts in manual segmentation. Can the probabilistic ROIs be used as a
a-priori information for automatic segmentation algorithms in the future remains
to be seen. Another problem that is of interest is consistent ROI segmentation
across different modalities. As mentioned in [Zhang 2013], there is a need to
have a consistent and meaningful delineation of cortical ROIs across different
modalities. Could it be that a joint T1 and DTI atlas be a probable answer to
such consistency issues across different modalities? The cortical ROIs are usually
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defined on the task based fMRI or the anatomical T1-weighted images and the
information regarding the white matter tracts showing connections between the
different cortical areas is available with DTI. These two pieces of information need
to be fused in a consistent manner for future analysis.

We suggested modifications in the traditional TBSS routines in chapter 6 through
which we could detect changes in white matter regions which were not detectable
before. These changes are then correlated with the NP test scores of the patients.
However, there is more that can be done to improve the statistical analysis.
Whether these changes add more value to the results remains to be seen. In TBSS
the white matter skeleton is computed from the mean FA image by thinning down
the white matter regions to the centers of the tracts. With this method, sometimes
there could be discontinuities (or fault lines) in the tracts because of a sudden drop
in FA along the tract. The sudden FA drops might happen for a variety of reasons
for example partial volume effects, noisy DTI or registration inaccuracies. Another
way to find the central tract could be to compute the actual central tract from the
tractography data. The mean tract of a fiber bundle can be computed using one of
the fiber similarity measures like Hausdroff distance, closest point distance or mean
of the closest point distance [O’Donnell 2005, Courouge 2004]. After locating the
central tracts voxel wise statistics can be computed on the voxels belonging to the
tracts. With this method in place for locating the central tracts, we expect to have
a contiguous representation of the tracts which also carry a deeper physical meaning.

In the TBSS analysis, the statistical analysis is done on the voxels comprising the
white matter skeletons. The skeletons are computed in the template space and can
be projected back on to the subject space. However, if the voxelwise statistical
analysis can be performed on the subject space itself, it will be possible to avoid
the resampling errors during spatial normalization. The bigger problem that exists
in designing such a work flow is to maintain the voxel correspondences between
the skeleton in the template space and the subject space. Because of resampling it
might so happen that a single voxel in the subject space might correspond to two
or three different voxels in the template space. The challenge here is to maintain
consistency across the subject space in-order to ensure that anatomically consistent
voxels are being compared during the statistical analysis.

Long-term goals

We have come a long way in the field of neuroimaging in the last 50 years and we
have a better understanding of the human brain anatomy. There are advanced
tools and required computing power for doing image registration, segmentation
and statistics. We also realize that in the coming years there will be an exponential
increase in digital brain images and we will need more sophisticated tools to
understand and capture the variability of human brain.
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Many aspects of the work presented in the thesis have the possibilities of further
exploration. In particular, longitudinal DTI analysis and multimodal statistical
atlases are strong contender for further research. We tried the longitudinal DTI
analysis as mentioned earlier and discussed that the noisy levels in the DTI
data is too high to detect any subtle spatio-temporal changes. It is important
to understand the variability associated with DTI acquisition. The Parkinson’s
Progression Markers Initiative (PPMI) data contains several back-to-back DTI
scans. With such back-to-back scans, it will be possible to evaluate the variability
of DTI acquisitions and create a normative atlas from the population. I believe
that such atlases are one of the major missing pieces of information required for
population based DTI studies. In fact, in any future population based studies
few subjects if not all should go through repeated scans, in order to construct a
variability atlas specific to the population under consideration. The variability
measure can be incorporated in the study for a more robust statistics. With such
normative atlas it will be possible to know the normal range of the tensor values
and will help the clinicians to detect any abnormal areas in the new patient specific
study. It will be necessary to investigate the stability of the atlas with respect to
the parameters involved in atlas construction, such as, registration methods used
and type of deformations applied. Further the atlas will also help us asses the
tractography quality.

With new imaging modalities and increasing number of image data being acquired
every day, there is a need to develop sophisticated tools for multimodal statistical
analysis. A systematic framework to fuse all these different modalities (like fMRI,
MRI, T1, CT and connectivity information) is required and fusing the DTI and
T1 images into one could be the first step towards this kind multimodal analysis.
The biggest challenge will be to have a consistent definition of ROIs across all the
modalities. The information from additional modalities will also help clinicians
and neuro-anatomy experts to refine the manual segmentation.

So far we have seen a great deal of enthusiasm for acquiring longitudinal data
for diseased or at-risk patients. However, I think it is important to gather more
longitudinal and multimodal data on more control groups in order to study normal
course of brain development through aging. Generally, in case of progressive
neurodegenerative diseases like Alzheimer’s, HIV or Huntington’s disease to name
a few, the deformations observed are a result of combined effects of aging and
disease related neurodegeneration. Along with MRI, the longitudinal study should
also involve extensive collection of biomaterials (blood, cells, urine etc.), NP test
scores and information regarding the daily activities which might effect brain
development (alcohol consumption, drug usage, food habits). This kind of data
will allow hopefully in future to search for correlation between longitudinal brain
degeneration observed through imaging and test samples in-order to search for
possible biomarkers for the disease progression.
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In the end, I would like to say that with the ever growing computing resources and
novel techniques emerging in the field of "Big Data", the future of neuroimaging
looks bright and we will be able to unfold more mysteries hidden deep inside the
intricate brain structures through robust statistics. Quoting the words of Yutaka
Taniyama1, as he famously said, "It is very difficult to make good mistakes", I hope
I made some good mistakes whenever I failed and they will act as landmarks for
future research.

1A Japanese mathematican famous for his work on Taniyama-Shimura conjecture, which was

later used to prove Fermat’s Last Theorem by Andrew Wiles.



Appendix A

Gauss-Newton formulation

A.1 Newton’s method

For a given function f(t) : R
n→R, if t∗ be a critical point of the function f ,

Newton’s method provides an iterative scheme for the search of the critical point
t∗ using second order derivatives. The Taylor expansion for the function f can be
written as,

f(t+ ∆t) = f(t) + ∇f(t)T ∆t+
1
2

∆tT ∇2f(t)∆t+ H.O.T, (A.1)

where H.O.T denotes the higher order terms which are neglected. The ∇2f is also
called the Hessian matrix Hf(t). The iterative scheme can be written as

tn+1 = tn − [Hf(tn)]−1∇f(t) (A.2)

The iteration continues until a desired convergence criteria is met. The following
section shows the derivations involved in the computation of an approximate Hessian
matrix for the similarity criteria defined in section 4.8.

A.2 Approximating the Hessian of the likelihood crite-
ria

The steepest descent scheme described in chaper 4 suffers from a scaling issue.
The derivative of the similarity criteria is highly scaled, making the steepest
descent algorithm ineffective. In such scenarios, it is desirable to normalize the
derivative under consideration using a pre-conditioner. It goes without saying that
the preconditioning term should make a logical sense in the optimization setting.
The inverse of the Hessian of the similarity criteria is often considered a suitable
candidate in this setting.

For the ease of derivations we denote fi(L) = gT
i exp(L)gi. The Taylor expansion

for the term exp[−b gT
i exp(L(yj))gi] is:

exp[−b fi(L+ δL)] = exp[−b fi(L)]
(

1 − bTr

[
∂(fi(L))
∂L

· δLT
])

= exp[−b fi(L)](1 − bTr
[

∂Gi
exp(L) · δLT

]

) (A.3)
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where Tr[.] denotes the trace of a matrix. The Taylor expansion of the term
SLR

i (xk)(LHR(yj)) is,

SLR
i (xk)(L(yj) + δL(yj)) =

∑

j

αkjS
HR
0 (yj)exp[−b fi(L(yj) + δL(yj))].

Using equation A.3,

SLR
i (xk)(L(yj) + δL(yj)) =

∑

j

αkjS
HR
0 (yj)exp[−b fi(L(yj))]

(

1

− bTr[∂Gi
exp(L(yj) · δL(yj)T ]

)

=
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j

αkjS
HR
0 (yj)exp[−b fi(L(yj))]

− Tr
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b αkjS
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0 (yj)[∂Gi
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]

= SLR
i (xk)(L(yj)) − Tr
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·δL(yj)T

]

. (A.4)

To simplify the notation, we define the intermediate variable,

∇Sj
i (xk) = −b αkjS

HR
0 (yj)[∂Gi

exp(L(yj)]. (A.5)

Finally equation A.4 can be written as

SLR
i (xk)(L(yj) + δL(yj)) = SLR

i (xk)(L(yj)) + Tr
[∑

j

∇Sj
i (xk) · δL(yj)T

]

. (A.6)

As established before in section 4.14, the similarity criterion in case of a Gaussian
noise is the sum of squared difference (SSD) of the observed and the predicted im-
ages. The Taylor expansion of the similarity criterion with respect to the logarithm
of the diffusion tensor is given by:

Sim(L(yj) + δL(yj)) =
1
σ2

∑

i

∑

xk

[Si(xk)(L(yj) + δL(yj)) − S̃i(xk)]2

Dropping the standard deviation on the noise (σ2) term, and using the equation
A.6,

Sim(L(yj) + δL(yj)) ≈
∑

i

∑

xk

[

Si(xk)(L(yj) + δL(yj)) − S̃i(xk)
]2

≈
∑

i

∑

xk

[

SLR
i (xk)(L(yj)) +

∑

j

Tr[∇Sj
i (xk) · δL(yj)T ] − S̃i(xk)

]2

≈
∑

i

∑

xk

[

SLR
i (xk)(L(yj)) − S̃i(xk)

︸ ︷︷ ︸
+

∑

j

Tr[∇Sj
i (xk) · δL(yj)T ]

]2
.



A.2. Approximating the Hessian of the likelihood criteria 143

Expanding the terms in the above equation using (a+b)2 = a2 +b2 +2ab, by taking
the terms under the braces as one single term a and remaining as b:

Sim(L(yj) + δL(yj)) ≈
∑

i

∑

xk

[

(SLR
i (xk)(L(yj)) − S̃i(xk))

]2
+

∑

i

∑

xk

[∑

j

Tr[∇Sj
i (xk) · δL(yj)T ]

]2

+ 2
∑

i

∑

xk

[(

SLR
i (xk)(L(yj)) − S̃i(xk)

) ∑

j

Tr[∇Sj
i (xk) · δL(yj)T ]

]

≈ Sim(xk) +
∑

i

∑

xk

[∑

j

Tr[∇Sj
i (xk) · δL(yj)T ]

]2

+ 2
∑

i

∑

xk

[(

SLR
i (xk)(L(yj)) − S̃i(xk)

) ∑

j

Tr[∇Sj
i (xk) · δL(yj)T ]

]

The second order term in the above equation can be further simplified as follows,

h(δL) =
∑

i

∑

xk

[∑

j

Tr[∇Sj
i (xk) · δL(yj)T ]

]2

=
∑

i

∑

xk

[∑

j

Tr[δL(yj) · ∇Sj
i (xk)T ]

][∑

m

Tr[∇Sm
i (xk) · δL(ym)T ]

]

=
∑

i

∑

xk

∑

m

∑

j

[

Vect(δL(yj))T Vect(∇Sj
i (xk))

] [

Vect(∇Sm
i (xk))T Vect(δL(yj))

]

=
∑

j

∑

m

Vect(δL(yj))T
[ ∑

i

∑

xk

Vect(∇Sj
i (xk)) · Vect(∇Sm

i (xk))T

︸ ︷︷ ︸

Hj

]

Vect(δL(ym))

The Hj is simplified,

Hj =
∑

i

∑

xk

Vect(∇Sj
i (xk)) · Vect(∇Sm

i (xk))T

=
∑

xk

(

− b αkjS0(yj)[∂Gi
exp(L(yj))]

)(

− b αkmS0(ym)[∂Gi
exp(L(ym))]

)

=
∑

xk

(

b2α2
kjS

2
0(yj)

)∑

i

[∂Gi
exp(L(yj)(∂Gi

exp(L(ym))T ]

In practice, the term
∑

i[∂Gi
exp(L(yj))(∂Gi

exp(L(ym))T ] is close to identity (Id).
So, the Hessian can be approximated by:

H(y(j)) ≈ b2S0(y(j))2
∑

xk

α2
kj (A.7)

The equation A.7 gives an approximation of the Hessian for the likelihood criteria.
This approximated Hessian when used as a preconditioner in the steepest descent
scheme will solve the scaling issues discussed in section 4.3.2.



Appendix B

Additional results from TBSS
analysis

In chapter 6 results were produced on TBSS. The regions of significant differences
were thickened around the skeleton for a better visual interpretation. However, the
following figures show the actual raw statistic image obtained from each statistical
analysis. In all the figures, the mean FA image is used on the background for
anatomical reference. The white matter skeleton is shown in green. The statistic
is shown in red-yellow and is thresholded between 0.95 and 1 which corresponds to
the p < 0.05. The color bar used for quantitative assessment is same as the one
used in figure B.1. Since these are statistic images, the higher (yellow regions) the
values the better it is in terms of differences.

Figure B.1: Standard TBSS workflow
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Figure B.2: TBSS using FA based registration

Figure B.3: TBSS DTI based registration
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Figure B.4: TBSS univariate analysis
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Figure B.5: TBSS multivariate analysis using Euclidean metric
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Figure B.6: TBSS multivariate Log-Euclidean metric
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