Thanks to the success of 3D reconstruction algorithms and the development of online tools for computer-aided design (CAD) the number of publicly available 3D models has grown significantly in recent years, and will continue to do so. This thesis investigates representations of 3D models for 3D shape matching, instance-level 2D-3D alignment, and category-level 2D-3D recognition.

The geometry of a 3D shape can be represented almost completely by the eigen-functions and eigen-values of the Laplace-Beltrami operator on the shape. We use this mathematically elegant representation to characterize points on the shape, with a new notion of scale. This 3D point signature can be interpreted in the framework of quantum mechanics and we call it the Wave Kernel Signature (WKS). We show that it has advantages with respect to the previous state-of-the-art shape descriptors, and can be used for 3D shape matching, segmentation and recognition.

A key element for understanding images is the ability to align an object depicted in an image to its given 3D model. We tackle this instance level 2D-3D alignment problem for arbitrary 2D depictions including drawings, paintings, and historical photographs. This is a tremendously difficult task as the appearance and scene structure in the 2D depictions can be very different from the appearance and geometry of the 3D model, e.g., due to the specific rendering style, drawing error, age, lighting or change of seasons. We represent the 3D model of an entire architectural site by a set of visual parts learned from rendered views of the site. We then develop a procedure to match those scene parts that we call 3D discriminative visual elements to the 2D depiction of the architectural site. We validate our method on a newly collected dataset of non-photographic and historical depictions of three architectural sites.
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Chapter 1 Introduction 1.1 Goals

The goal of this thesis is to develop representations of 3D models for (i) alignment with other 3D models, (ii) alignment with an image containing the same object instance and (iii) alignment with an image containing an object from the same category. Those three tasks are illustrated in figure 1.1. What is a "good" representation will depend on the task :

• Matching, segmentation and recognition of 3D shapes: Shape matching aims at computing correspondences between two similar 3D shapes. Shape segmentation attempts to partition the shape into a set of meaningful regions by analyzing the single shape or a collection of 3D shapes. Finally, shape recognition typically classifies a given shape into categories defined by examples of other shapes. The work presented in chapter 3 aims at improving the 3D point descriptors that are used for those tasks by modeling and optimizing the descriptor -M. Aubry : Representing 3D models for alignment and recognition -Section 1.2: Motivation
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• Instance-level 2D-3D alignment across depiction style: while computer vision has mainly focused on analyzing photographs, we aim at understanding historical and non-photographic imagery. Given the 3D model of an architectural site and its 2D depiction, we wish to recover the viewpoint of the image with respect to the 3D model. To apply this idea on a large scale, our goal is to develop an automatic method that is robust to the style variations, to the errors in the depictions and to the variable quality of the 3D model. • Object category-level recognition by 2D-3D alignment: we want to go beyond instance-level alignment, which requires knowing in advance the 3D models of the object instances present in the image, and develop category-level 2D-3D alignment. We assume that the object categories are represented by large collections of 3D CAD models. Our goal is to take as input an unseen image and to output not only the categories of the objects that are present but also approximate 3D models, correctly aligned with the input depiction, as shown in figure 1.1c.

Motivation

Automatic, high quality, large scale 3D reconstructions are one of the major successes of computer vision. It is now possible to easily scan an object with a smart phone [START_REF] Kolev | Turning mobile phones into 3D scanners[END_REF][START_REF] Tanskanen | Live metric 3D reconstruction on mobile phones[END_REF], capture a living room with a Kinect [START_REF] Izadi | Kinectfusion: Realtime 3d reconstruction and interaction using a moving depth camera[END_REF][START_REF] Newcombe | DTAM: Dense tracking and mapping in real-time[END_REF][START_REF] Shotton | Efficient human pose estimation from single depth images[END_REF], or visit a virtual city on Google Earth [START_REF]Google earth[END_REF]. Computer-aided design has also evolved to the point that public or commercial libraries of millions of 3D models of objects are available [157,175]. This -M. Aubry : Representing 3D models for alignment and recognition -Section 1.3: Challenges 14 growing amount of data, of which some examples are shown in figure 1.2, requires new tools but also is an opportunity to develop new applications. Example applications include:

• Browsing and parametrization of large shape collections. Creating a new 3D model requires time and expert knowledge. Instead of always creating new models, the designer could browse, search, and manipulate in an intuitive way existing 3D models in the collection.

• Browsing historical data. Imagine a computer could automatically recover the viewpoint of all existing historical imagery. This could change the way archivists, architects or historians access and browse archives of historical images. The users could browse the images intuitively and to compare depictions from similar places at different times.

• Smart image editing. Imagine a computer could identify objects in an input 2D image and automatically recover their 3D models. It would be possible to use the recovered 3D model to edit the image by manipulating objects in 3D.

Currently, this editing requires manual annotation [START_REF] Kholgade | 3d object manipulation in a single photograph using stock 3d models[END_REF].

• Robotic manipulation. For a robot to manipulate an object, it needs to know not only in which direction the object is, but also to have access to its 3D model including, for example, unseen parts.

Challenges

While there are several exciting applications for 3D alignment, finding good representations and matching algorithms is very difficult.

-M. Aubry : Representing 3D models for alignment and recognition -(a) Interactive reconstruction with a cell phone [START_REF] Tanskanen | Live metric 3D reconstruction on mobile phones[END_REF] (b) Reconstruction of a room with Kinect fusion [START_REF] Izadi | Kinectfusion: Realtime 3d reconstruction and interaction using a moving depth camera[END_REF] (c) High-resolution reconstruction by Acute3D [START_REF]Acute 3D[END_REF] (d) Berkeley campus on Google Earth [START_REF]Google earth[END_REF] (e) Search for 3D models of chairs on Trimble 3D Warehouse [175] Figure 1.2: 3D models are becoming common and easy to acquire.

3D local descriptors

Defining purely geometric descriptors for 3D shapes is a difficult and open problem.

An good descriptor for a point on a 3D shape would:

• be discriminative to distinguish different points on the shape as well as different shapes from each other.

• be robust to perturbations such as near-isometric deformations, noise or topo--M. Aubry : Representing 3D models for alignment and recognition - • include informations from all scales of the shape to allow recognition and matching of parts of the shape, for example to recognize a handle within a 3D model of a complete door.

Those characteristics are hard to achieve and are often conflicting. We focus particularly on the trade-off between robustness and discriminative power, while developing a new intuition about scale.

Instance-level 2D-3D alignment

Viewpoint, illumination and occlusion. First, the space of possible viewpoints of the same 3D model is huge, especially for a full architectural site, and the appearance of the 3D model can change significantly with the viewpoint as shown in figure 1.4a.

Second, the illumination conditions, for example related to the season and the time of the day also change significantly the appearance of the scene as shown in figure 1.4b and 1.4c. Third, the appearance of the 3D model itself is highly specific, ranging from simplified CAD models to highly detailed models obtained from recent multi-view -M. Aubry : Representing 3D models for alignment and recognition - [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] often works well for two similar photographs (left), but fails between two very different images such as a photograph and a watercolor (right). This figure shows the most confident SIFT matches between the top image and the two bottom images in terms of the first to second nearest neighbor ratio [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF].

stereo algorithms, as can be seen in figure 1.4d. Finally, in many cases, occlusions and clutter change the appearance of an image as shown figure 1.4e.

Depiction style and drawing errors. Non-realistic depictions such as paintings, drawings and engravings are even harder to work with. They have very particular depiction style and often (sometime intentional) drawing errors. In some cases, the appearance of the place may have changed over time, because of construction or aging.

Examples of such effects are shown in figure 1.4f. For these reasons, local descriptors, such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], traditionally used for instance-level alignment, often fail for nonrealistic depictions as shown in figure 1.5.

Category-level 2D-3D object recognition

The difficulties discussed above for instance-level alignment also apply to categorylevel alignment. An example can be seen in figure 1. [START_REF] Agarwal | Building rome in a day[END_REF] where recognizing objects, such as chairs, is difficult because of the occlusions, shadows, clutter and the different viewpoints.

Intra-class variation. To recognize not only a given instance but any instance from a given object category, we must also deal with the intra-class variation. 

Contributions

This section presents the two main contributions of this thesis. More details about the technical contributions are given in section 6.1.

Wave Kernel Signature

One of the basic tasks in shape processing is to establish correspondences between two shapes (cf. figure 1.1a). This can be achieved by associating to each point of the two shapes a descriptor with two (conflicting) characteristics: being (i) discriminative and

(ii) invariant to deformations. In chapter 3, we analyze the influence of variations in the metric on the eigen-values of the Laplace-Beltrami operator. This leads to the definition of a descriptor that provides an optimal trade-off between discriminativeness and invariance. We show that this descriptor, that we call the Wave Kernel Signature (WKS), can be naturally interpreted in the framework of Quantum Mechanics as the average probability of finding a particle of a given energy distribution freely diffusing on the shape at the specific point it describes. We compare this descriptor to the Heat Kernel Signature (HKS), which has a similar formulation and show the difference in the notion of scale they imply. We evaluate our descriptor on the standard SHREC 2010 benchmark [START_REF] Bronstein | robust correspondence benchmark[END_REF] and show that for some tasks the WKS improves over the HKS, which is the state-of-the-art shape descriptor. We also show that the WKS can be used for shape segmentation and retrieval.
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3D discriminative visual elements

We bring to 3D the notion of discriminative visual elements and introduce 3D discriminative visual elements to represent 3D models for 2D-3D alignment and recognition.

These are visual parts extracted from rendered views of a 3D model and are associated to a calibrated 2D sliding window detector and a 3D location, orientation and scale on the model. The extracted parts summarize the 3D model in a way that is suitable for part-based matching to 2D depictions. The two most important technical points in the definition of the discriminative visual elements are: (i) their selection, based on a discriminative cost function and (ii) the definition and calibration of the associated detector. We use the visual elements to address two challenges. In chapter 4 we use 3D

discriminative visual elements to solve a difficult instance alignment problem: aligning non-photographic depictions to 3D models of architectural sites. In chapter 5 we show that the extracted elements can also be used to describe object categories defined by collections of 3D models. In detail, we show that 3D discriminative visual elements can be used to to detect and recognize a new instance of an object category in real world photographs, and to provide an approximate viewpoint and 3D model of the detected instance.

Thesis outline

In chapter 2 we review methods in 3D shape analysis, instance-level alignment and category-level recognition that are most related to this thesis. In detail, we give an overview of 3D shape representation and alignment methods, 2D-3D contour-based and local feature-based alignment, and category-level recognition in images using 2D and 3D methods.

-M. Aubry : Representing 3D models for alignment and recognition -Section 1.5: Thesis outline [START_REF] Baatz | Large scale visual geolocalization of images in mountainous terrain[END_REF] In chapter 3 we introduce a novel geometric descriptor for 3D shapes, the Wave Kernel

Signature and explain how it relates to existing descriptors. In particular, we develop a model of shape perturbations that shows that it achieves an optimal trade-off between robustness and discriminability and we present the notion of scale separation to which it is associated. We experimentally compare its performance to other descriptors, explain why it improves on current state-of-the-art results and show that it can be used for shape matching, segmentation and recognition.

In chapter 4 we present and analyze a new method for registering non-photographic depictions of an architectural site with its 3D model. We introduce a new representation of the 3D model formed by visually informative parts that are learned from rendered views of the model, together with a robust matching method to detect the parts in 2D depictions despite changes in the depiction style. We analyze both contributions separately and compare our full method with different alternatives that we designed based on state-of-the-art algorithms. For this evaluation we introduce a new dataset of non-photographic and historical depictions and run an extensive user study.

Finally, in chapter 5 we present a method to perform category-level object recognition by 2D-3D alignment. 

Publications

The idea of the Wave Kernel signature presented in chapter 3 was published in 2011 in an ECCV workshop, 4DMOD [START_REF] Aubry | The wave kernel signature: a quantum mechanical approach to shape analysis[END_REF], and the applications of this descriptor to segmentation and recognition the same year in DAGM/GCPR [START_REF] Aubry | Pose-consistent 3d shape segmentation based on a quantum mechanical feature descriptor[END_REF]. The first work [START_REF] Aubry | The wave kernel signature: a quantum mechanical approach to shape analysis[END_REF] has already been cited more than 90 times and an extended version is in submission to PAMI. The painting-to-3d alignment work presented in chapter 4 was released as a technical report in 2013, published in TOG and presented at Siggraph in 2014 [START_REF] Aubry | Painting-to-3d model alignment via discriminative visual elements[END_REF]. A shorter version was published as an invited paper in RFIA 2014 [START_REF] Aubry | Where was this picture painted?-localizing paintings by alignment to 3d models[END_REF] and it lead to an invited presentation in the "Registration of Very Large Images" workshop at CVPR

2014. An extension to geo-localization is going to appear as a book chapter [START_REF] Aubry | Visual geo-localization of non-photographic depictions via 2d-3d alignment[END_REF]. Finally, the work on object category recognition from 3D shape collections presented in chapter 5 was published at CVPR 2014 [START_REF] Aubry | Seeing 3d chairs: exemplar part-based 2D-3D alignment using a large dataset of cad models[END_REF].

The code corresponding to those projects and the publications are publicly available [2,3,4].

I have also published several papers that go beyond the scope of this thesis. The work of my Master degree on the relationship between dense camera calibration and bundle adjustment was published in ICCV 2011 [START_REF] Aubry | Decoupling photometry and geometry in dense variational camera calibration[END_REF] and was included by Bastian Goldlücke in a paper published in IJCV 2014 [START_REF] Goldlücke | A super-resolution framework for high-accuracy multiview reconstruction[END_REF]. The work I did during an internship at Adobe on detail manipulation and style transfer was released as a technical report in 2011 [START_REF] Aubry | Fast and robust pyramidbased image processing[END_REF] and published in TOG and presented at Siggraph in 2014 [START_REF] Aubry | Fast local laplacian filters: Theory and applications[END_REF]. Finally, an idea about the use of anisotropy for shape analysis, briefly presented in 6.

was developed by

Chapter 2

Background

This thesis builds on ideas from what have traditionally been separate sub-fields of computer vision, namely 3D shape analysis, instance-level alignment and category-level recognition in images. In this chapter, we give an overview of the classical methods that are most relevant to this dissertation. Each following chapter of this thesis contains more information about the novelty of the described method.

3D shape analysis

In this section, we will explain how the work presented in chapter 3 relates to the more general problematic of 3D shape analysis and especially shape alignment methods. We will first explain how 3D shapes can be represented in computers, then present the main local descriptors that have been designed to describe these shapes, and finally summarize the different competing approaches for shape alignment.
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From the ideal shapes to discrete 3D models

The first question that arises when working with shapes is: how to model them? We have an intuitive notion of what the shape of an object is, but it is not straightforward to formalize. When working with a computer it is also necessary to define a discrete version of this intuition to represent the shape by a (digital) 3D model. In this section, we present some of the main competing shape representations. ace from a discrete point set), but their discussion is out of the scoop of this thesis.

Volumetric representation

One possible way to think about a shape is as a volume in the 3D space. The natural way to define a discrete representation based on this intuition is to discretize the space in a regular grid of voxels, and for each voxel to store if the central point is inside or outside the volume [START_REF] Faugeras | Complete dense stereovision using level set methods[END_REF]. The problem with this representation is that it is very expensive in terms of memory consumption. The required memory is cubic with respect to the resolution of the 3D model: to represent a shape in a cube of 1000x1000x1000 voxels, it is necessary to store one billion numbers. However, at the cost of a less intuitive representation, the same volume can be represented more efficiently using octrees [START_REF] Jackins | Oct-trees and their use in representing threedimensional objects[END_REF].

This representation is often used in practice because several optimization algorithms are naturally formulated in the voxel space. This is in particular the case for some dense 3D reconstruction methods, of which an overview is available in [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF]. The main reason is that by relaxing the values associated to each voxel to [0; 1] instead of {0, 1}

it is often possible to formulate the problem as convex optimization that can be solved efficiently. This relaxation also makes topology changes straightforward to handle.
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Point Clouds

Opposite to the intuition that a shape is a volume, used in dense representations, is the idea that a shape is a collection of the points on its surface. Based on this idea, a discrete representation of the shape can be computed by sampling a finite set of 3D points on this surface. This set of points is sometimes augmented by the collection of normals to the surface at each point. This is the natural representation when 3D measurements are provided by a laser scans, which provide the position of a sparse set of points, and also for many feature based 3D reconstruction algorithms (e.g. [START_REF] Furukawa | Accurate, dense, and robust multiview stereopsis[END_REF][START_REF] Agarwal | Building rome in a day[END_REF]) which outputs are a set of points on the object surface. The main limitations of this representation are that: (i) it depends on the sampling of the points and (ii) it does not provide the surface of the object. For this reasons point clouds are often meshed.

Meshes

Meshes and, in particular, triangular meshes are probably today the most common representation of shapes. Rather than specifying for each 3D point if it is inside or outside the shape, or to simply list a set of points on the surface, a mesh represents the shape by an approximation of its surface, which is often modeled as a 2-dimensional manifold in R 3 . Concretely, a mesh is a set of vertices (3D points) and faces (sets of coplanar vertices). Texture can be associated to a mesh by providing a color for each vertex, or by mapping each face to an image. Models reconstructed automatically from multiple images typically have one color per vertex, while models designed manually typically associate an image to each face.

Most of the work presented in this thesis has been done with 3D shapes represented as meshes, but could easily be adapted to use point clouds or volumetric representations.

3D point descriptors

None of the shape representations described in section 2.1 is invariant to translation, rotation or scaling. Given a point on a shape it is very difficult to match it, for example in a rotated version of the same shape. For this reason local shape descriptors invariant to rigid transformations have been developed. They can be understood as embeddings of the shape in another space, potentially high dimensional. To cope with non-rigid transformations, more elaborate descriptors have been designed to be robust to limited non-isometric deformations.

In this thesis, we focus on the use of point signatures for matching and alignment, but they can have different applications. In fact, the very idea of using a point signature for 3D shapes has been introduced in [START_REF] Chua | Point signatures: A new representation for 3D object recognition[END_REF] to use putative matches for recognition. An alternative way to perform recognition with local features is to accumulate them into global shape descriptor [START_REF] Assfalg | Content-based retrieval of 3-d objects using spin image signatures[END_REF][START_REF] Bronstein | Shape google: Geometric words and expressions for invariant shape retrieval[END_REF][START_REF] Gal | Pose-oblivious shape signature[END_REF][START_REF] Osada | Shape distributions[END_REF]. Local descriptors have also been used for shape segmentation [START_REF] Aubry | Pose-consistent 3d shape segmentation based on a quantum mechanical feature descriptor[END_REF][START_REF] Rodolà | Robust region detection via consensus segmentation of deformable shapes[END_REF][START_REF] Rustamov | Laplace-beltrami eigenfunctions for deformation invariant shape representation[END_REF]. Indeed a simple clustering such as K-means can be meaningful in the descriptors space.

The main local shape descriptors can be separated in two categories. We first introduce descriptors that accumulate local information about the shape in an histogram, and then present spectral descriptors which utilize the eigen-decomposition of a differential operator on the shape.

Descriptors based on local histograms

Those descriptors were developed first, following the success of similar methods in 2D image analysis (see sections 2.2.2 and 2.3.1.2).

-M. Aubry : Representing 3D models for alignment and recognition -Section 2.1: 3D shape analysis 29 Figure 2.1: Spin Image [START_REF] Johnson | Spin-Images: A Representation for 3-D Surface Matching[END_REF] defines a local image for each point of a shape based on cylindric coordinates. Figure from [START_REF] Johnson | Spin-Images: A Representation for 3-D Surface Matching[END_REF] Spin image The idea of spin images [START_REF] Andreetto | Automatic 3d modeling of textured cultural heritage objects[END_REF][START_REF] Johnson | Spin-Images: A Representation for 3-D Surface Matching[END_REF][START_REF] Johnson | Using spin images for efficient object recognition in cluttered 3D scenes[END_REF] is to associate to each point of a shape an image that describes the local context of this point in the shape. Techniques of image matching can then be used to match descriptors and thus perform surface matching. The input necessary to compute spin images is a point cloud together with the normals associated to each point. For each point of the cloud a cylindrical coordinate system is defined with the described point at the center and its normal as the cylinder axis. This definition is ambiguous only for the angular coordinate, and the two distance coordinates are well defined. A 2D histogram of those coordinates for all the points of the shape is computed and used as a descriptor, as illustrated figure 2.1.

Shape context

Shape context was introduced in [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] to describe lines in an image.

Similar to spin images, it stores for each point the distribution of the relative positions of other points. In shape context the histogram is done in a log-polar way which presents several advantages, including giving more importance to close-by points and transforming rotations and scaling of the shape into a translation of the descriptor. This is visualized figure 2.2a. The original article [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] also shows 3D object recognition results using shape context on a set of views of the 3D model. The idea of shape context was extended in a more principled way to shapes in 3D by [START_REF] Kokkinos | Intrinsic shape context descriptors for deformable shapes[END_REF][START_REF] Körtgen | 3d shape matching with 3d shape contexts[END_REF], as illustrated in figure 2.2b.

Shape HOG:

The idea of shape HOGs [START_REF] Zaharescu | Surface feature detection and description with applications to mesh matching[END_REF] is similar to shape context in the sense that it computes histograms in log-polar coordinates, but it aims at describing a texture on a shape rather than the shape itself. As a consequence, it stores histograms of the dominant gradient orientations of the projected texture for each bin instead of the density of points.

Figure 2.3:

The eigen-functions of the Laplace-Beltrami operator on a shape correspond to its vibration modes. The vibration modes are closely related to the shape, as visualized here for 553, 731 and 1174Hz [START_REF] Fletcher | The physics of musical instruments[END_REF].

Spectral signatures

In most cases, one can recover all the intrinsic information about a shape using the eigen-values and eigen-functions of the Laplace-Beltrami operator on the shape [START_REF] Kac | Can one hear the shape of a drum?[END_REF].

These eigen-functions are the generalization of the Fourier basis on general manifolds.

They are closely related to several physical phenomena, including vibration modes, which are shown figure 3.2. The two most important spectral signatures, the Global Point Signature (GPS) and Heat Kernel Signature (HKS) are presented in this section.

The Wave kernel Signature (WKS), presented in chapter 3 falls into the same category of spectral descriptors. Section 3.1.3 presents in more detail the mathematical aspects of spectral shape analysis.

Global Point signature (GPS):

The first spectral point signature was developed by Rustamov [START_REF] Rustamov | Laplace-beltrami eigenfunctions for deformation invariant shape representation[END_REF]. To each point of a shape, the Global Point Signature associates a vector. Its kth component is the value of the kth eigen-function at the described point divided by the square root of the norm of kth eigen-value. This division gives more importance to the eigen-vectors associated to the low frequencies. The main drawback of the GPS is that if a shape is slightly modified, the order of the eigen-functions may

Figure 2.4:

The Heat Kernel Signatures [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF] stores for each point on the shape how much of the heat deposed initially exactly at the point remains after a time t. This figure shows the HKS on several shape for small time. One can see that area with high positive curvature remain warm when area with very negative curvature are colder.

be changed, resulting in two completely different signatures.

Heat Kernel Signature (HKS):

The Heat Kernel Signature [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF] is widely considered the state of the art shape signature. Similar to the GPS it is defined using the eigen-decomposition of the Laplace-Beltrami operator on the shape. However the HKS does not separate the eigen-functions but combines them in a way that naturally arises from the analysis of heat diffusion on the shape surface. A particular value of the HKS for several shapes is visualized on figure 2.4. More technical details about the HKS are given in 3.1.3.2. There have been several extensions of the HKS. In particular, Bronstein et al. [START_REF] Bronstein | Scale-invariant heat kernel signatures for nonrigid shape recognition[END_REF] modified HKS to be scale invariant and Raviv et al. [START_REF] Raviv | Volumetric heat kernel signatures[END_REF] considered the heat diffusion in the shape volume rather than on its surface, defining a volumetric HKS.

Wave Kernel Signature (WKS):

The Heat Kernel Signature presented in chapter 3 extends the idea of combining the eigen-function introduced in HKS. Using a perturbation analysis of the eigen-values of the Laplace-Beltrami operator, it combines them in a way that is optimal under some hypothesis. The WKS improves the precision of the HKS for matching and additionally has a natural interpretation in the framework of Quantum Mechanics.

3D shape alignment methods

3D shape matching is the problem of finding a point to point correspondence between two different shapes. There are two main approaches to tackle this problem. The one most related to this thesis is to define for each point a descriptor that will be discriminative but also robust to some transformations of the shape and then find a matching that preserves L 2 distance between the descriptors. Another popular strategy is to minimize the distortion induced by the mapping. This section gives an overview of those approaches. For a more detailed survey the reader can refer to [START_REF] Tam | Registration of 3d point clouds and meshes: A survey from rigid to nonrigid[END_REF] and [START_REF] Van Kaick | A survey on shape correspondence[END_REF].

Metric approaches

Iterative closest point methods were the first introduced to solve rigid 3D shape matching [START_REF] Besl | Method for registration of 3-D shapes[END_REF][START_REF] Chen | Object modelling by registration of multiple range images[END_REF]. They were later extended to cope with some non-rigid deformations [START_REF] Amberg | Optimal step nonrigid icp algorithms for surface registration[END_REF] by iteratively rigidly aligning the shapes and deforming them using a non-rigid parametric transformation. This idea however can only work with limited deformations in terms of Euclidean distance in the 3D space.

For shape matching, the intrinsic properties of the shape, such as geodesic distances, are more meaningful. Indeed they are mostly preserved under usual deformations. For example, the geodesic distance between the two hands of a human body will remain approximately the same even if their distance in the 3D space changes a lot. This leads to the idea of viewing the shapes as metric spaces and the problem of aligning them as finding an isometry that minimize the distance between those spaces. If the distance used is the Euclidean distance in the ambient 3D space the natural distance between the shapes is the Hausdorff distance in the Euclidean 3D space and the standard ICP algorithm can be used to find a locally optimal alignment. However other distances such as the geodesic distance are more meaningful.

Using the geodesic or diffusion distance on the shapes makes the problem of finding an optimal isometry much harder. The first challenge is to find a metric space in which the two shapes can be meaningfully compared. Elad et al. [START_REF] Elad | On bending invariant signatures for surfaces[END_REF] embed the shapes in a nearly isometric way in a finite dimension Euclidean space using multidimensional scaling (MDS) [START_REF] Cox | Multidimensional scaling[END_REF]. They then perform ICP in this new space and thus recover correspondences between the initial shapes. However, in [START_REF] Elad | On bending invariant signatures for surfaces[END_REF] the metric space toward which the embedding is done and in which the Hausdorff distance is minimized is selected in an arbitrary way. Memoli and Sapiro [START_REF] Mémoli | A theoretical and computational framework for isometry invariant recognition of point cloud data[END_REF] solve this problem by applying to 3D shape analysis the ideas of the Gromov-Hausdorff distance [START_REF] Gromov | Structures métriques pour les variétés riemanniennes[END_REF]. They compare the shapes using their isometric embedding in a metric space that minimizes the Hausdorff distance between them. This idea was further developed for shape matching using geodesic [START_REF] Bronstein | Efficient computation of isometry-invariant distances between surfaces[END_REF] and diffusion distances [START_REF] Bronstein | A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching[END_REF].

Windheuser et al.

[177] use a related approach and find a deformation minimizing the elastic energy cost of the deformation rather than the Gromov-Hausdorff distance.

Their formulation has the advantage that it leads to a binary linear program that can be efficiently solved. Example of their results can be found in figure 2.5a An elegant way to enforce descriptor consistency in shape matching is to use the framework of functional maps developed in [START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF]. The general idea is to formulate the problem of shape alignment as the problem of finding correspondences between the functions on the shapes. This transforms the descriptor preservation into a linear constraint that naturally fits into optimization. Other examples of feature-based 3D alignment include [START_REF] Huang | Non-rigid registration under isometric deformations[END_REF][START_REF] Kim | Blended intrinsic maps[END_REF][START_REF] Au | Electors voting for fast automatic shape correspondence[END_REF][START_REF] Lipman | Möbius voting for surface correspondence[END_REF][START_REF] Ovsjanikov | One point isometric matching with the heat kernel[END_REF].
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All those feature-based approaches rely on the quality of the descriptor used, that must be both robust to perturbations and discriminative between points. For this reason, a high quality descriptor such as the Wave Kernel Signature introduced in chapter 3 is important to all those methods.

Instance-level 2D-3D alignment

Object instance-level alignment is the problem of recovering a given object instance in a test image together with its pose with respect to the reference representation..

The reference representation can be either a 3D model or an image. It is a difficult problem due to the variations in the object appearance, induced by the viewpoint, the illumination and partial occlusions (see section 1.3.2).

In this section, we present the most important methods to solve this problem. We begin with methods based on contours, that were very popular in the early days of computer vision. We then present local feature based methods, which are often the most effective. Finally we present some global features that were designed to address the sensitivity of local features to non-linear effects such as illumination effects, season changes and depiction style.

Contour-based methods

Classical methods

Since its very beginning Computer Vision aligns 3D models to images. Indeed Roberts in the abstract of his PhD in 1963 [START_REF] Roberts | Machine perception of three-dimensional solids[END_REF] explains that his ultimate goal is "to make it possible for a computer to reconstruct and display a three-dimensional array of solid objects from a single photograph". Because this objective is too complex, he restricts himself to cases of objects which have a "known three-dimensional solid", thus being the first to consider the 2D-3D instance alignment problem.

His work as most of the works until the nineties [START_REF] Mundy | Object recognition in the geometric era: A retrospective[END_REF] relies on object contours. This idea implies two main difficulties:

• to detect edges reliably.

• to aggregate the information from several edges to align the 3D model.

The problem of reliably detecting edges in cluttered scene has lead to a wide variety of methods (eg. [START_REF] Canny | A computational approach to edge detection[END_REF]) but is very difficult and is still open. This is one of the main reasons why most modern alignment methods avoid explicit detection of contours by using keypoints (see section 2.2.2) or dense representations.

To aggregate information from different edges, several methods have been developed.

In [START_REF] Roberts | Machine perception of three-dimensional solids[END_REF] Roberts uses the hypothesis of a block world to recover polygons from sets of lines. In Another strategy inspired by the human ability to intuitively detect groups of edges in an image, has been developed by David Lowe in [START_REF] Lowe | Three-dimensional object recognition from single two-dimensional images[END_REF]. The method uses the idea of line grouping to hypothesize a smaller number of possible correspondences between the image and the model. According to Lowe, the conditions that must be satisfied for perceptual grouping are:

1. having some invariance with respect to the viewpoint 2. being unlikely in random arrangement to allow detection. Those two points are very related to the ones we will use to define discriminative visual elements in chapter 4. Results of this method are shown in figure 2.8.

Modern developments

While contour-based methods have been replaced for many applications and, in particular for alignment by feature-based methods, the recent literature provides a few interesting examples where contours can be efficiently used.

First, contour-based methods perform well when the object contours can be reliably extracted both from the 2D image and the 3D model. A recent example illustrated in fig-

ure 2.9a shows that it is possible to geo-localize photographs using semi-automatically extracted skylines matched to clean contours obtained from rendered views of digital elevation models [START_REF] Baatz | Large scale visual geolocalization of images in mountainous terrain[END_REF][START_REF] Baboud | Automatic photo-toterrain alignment for the annotation of mountain pictures[END_REF].

Second, contour based alignment can produce state of the art results when the absence of discriminative structures leads to the failure of feature based methods. This is the case for smooth objects which is addressed in [START_REF] Arandjelovic | Smooth object retrieval using a bag of boundaries[END_REF] and illustrated figure 2.9b. To solve -M. Aubry : Representing 3D models for alignment and recognition -Section 2.2: Instance-level 2D-3D alignment 40 the problem of extracting edges from real photographs, the authors present a solution which trains a classifier that classifies super-pixels either as sculpture or not-sculpture.

Finally, contours have been successfully used to refine initial alignments provided by features. For example Lim et al. [START_REF] Lim | Parsing ikea objects: Fine pose estimation[END_REF] use contours to refine the pose estimation of nontextured objects. More related to our work, Russell et al. [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] use contours to refine the alignment between a painting and a 3D mesh reconstructed from photographs.

However, those methods require a good initialization with a close-by viewpoint.

Local features for alignment

Local feature descriptors summarize local image informations in regions that were previously detected by a specific feature detector. A large variety of detectors and descriptors exist. Selecting and describing in a robust way a set of local features in an image has many applications. Examples include large scale 3D reconstruction and exploration [START_REF] Agarwal | Building rome in a day[END_REF][START_REF] Snavely | Photo tourism: Exploring photo collections in 3D[END_REF][START_REF] Snavely | Modeling the world from Internet photo collections[END_REF], image mosaicing [START_REF] Szeliski | Image alignment and stitching: A tutorial[END_REF], visual search [START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF], visual localization [START_REF] Schindler | City-scale location recognition[END_REF], and camera tracking [START_REF] Ballan | Unstructured video-based rendering: Interactive exploration of casually captured videos[END_REF] to list but a few. Local features can also be used for alignment as we will see in this section and for category-level recognition (see 2.3.1.1).

Local features were designed to tackle the problem of finding image to image correspondences. However, their use can be extended to finding 2D-3D correspondences and perform 2D-3D instance-level alignment [START_REF] Rothganger | 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints[END_REF] and retrieval [START_REF] Chum | Total Recall: Automatic query expansion with a generative feature model for object retrieval[END_REF][START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF]. Large 3D scenes, such as a portion of a city [START_REF] Li | Worldwide pose estimation using 3D point clouds[END_REF], can be represented as a 3D point cloud where each 3D point can be associated with local features that were used to reconstruct it [START_REF] Sattler | Fast image-based localization using direct 2D-to-3D matching[END_REF].

2D-3D correspondences are obtained by matching the features extracted from a test image with the features associated to the 3D model. Standard camera resectioning can then be used to recover the camera of the test photograph [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. In this section, we first introduce the main feature detectors, then feature descriptors and finally the key steps for robust alignment.

Local region detection

The main interest for using feature detectors for alignment is to transform the problem of finding dense correspondences between two images (or an image and a 3D model) into the problem of finding correspondences between two sparse sets of features. The features must be repeatable, i.e. if a region is selected in an image, the projection of its pre-image in another image must also be detected. For this reason, those regions are often called co-variant with respect to a family of image transformations [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF].

In general, the choice of the co-variance of the detectors corresponds to a trade-off between invariance and discriminability. A good overview and evaluation of affine covariant feature detectors is available in [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]. In this section, we discuss two of the most important detectors, Harris corners The idea of detecting stable region across different viewpoint and imaging conditions is very general, however, most applications consider elliptic regions [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF].

and detectors based on the Hessian. Both of them rely on finding extrema of a function in the image. Lindeberg [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF] provided a framework to consider extrema across scales as well as across space. This framework is usually used for those two detectors.

Harris corners:

The eigen-vectors of the auto-correlation matrix (or the second moment matrix) of the intensity of the image correspond to the directions in which the image varies the most and the least. The norm of gradient in those two directions is the square root of the two corresponding eigen-values. The Harris corner detector [START_REF] Harris | A combined corner and edge detector[END_REF] detects points in an image based on the local maxima of sums and products of those eigen-values. They correspond to locations for which the image varies strongly in all directions.

Hessian-based detectors: Similarly, the eigen-vectors of the Hessian matrix correspond to the directions with the highest and smallest curvature. The eigen-values of the Hessian give the second derivative in both those directions. A region detector based on those eigen-values, either by taking their sum [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], which is also the Laplacian of the image, or their product [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF], responds strongly to blobs and ridges. The Laplacian can be approximated by convolving the image with a difference of Gaussians (DoG). The DoG was the detector initially used to compute SIFT features [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. It can be computed efficiently using image pyramids, and approximated even faster using integral images [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Bay | Speeded-up robust features[END_REF].

Local region description

To be able to match the features from two images, it is necessary to describe them in a way that is robust to perturbations induced for example by illumination changes, noise, and small errors in the localization. Note that most of the invariance to viewpoint is not achieved by the descriptor itself, but by the detector. As for detectors, there exists a wide variety of descriptors. An overview and a comparison is available in [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF].

Among local descriptors, some are the 2D counterpart of the descriptors presented in 2.1.2 for 3D shape matching. In particular, the idea of spin images [START_REF] Johnson | Spin-Images: A Representation for 3-D Surface Matching[END_REF] was adapted to 2D images in [START_REF] Lazebnik | A sparse texture representation using local affine regions[END_REF] and shape context [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] was initially developed for images, storing the distribution of the edges given by the Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF].

These two descriptors belong in fact to the wide class of image descriptors using histograms to describe the content of the image in the interest region. The SIFT descriptor [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], which is arguably the most successful local descriptor, belongs to this category.
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The SIFT descriptor has been engineered to aggregate in an optimal way the gradient orientations, using 8 orientation bins in a 4x4 grid subdivision of the region. Two of its key ingredients are the normalization, which makes it invariant to affine illumination changes and the limitation of the influence of strong gradients, that gives some robustness to non-linear illumination effects. If the region is not a circle as in the original paper, but an ellipsoid as in most modern algorithms, it must be normalized before the description. Because of its success, several methods have tried to optimize further the SIFT descriptor, for example by making its computation faster using integral images [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Bay | Speeded-up robust features[END_REF] or by reducing its dimension [START_REF] Ke | Pca-sift: A more distinctive representation for local image descriptors[END_REF].

Another category of descriptors is based on computing local derivative, wavelet coefficients or in general linear filters at the interest point. It includes in particular steerable filters [START_REF] Freeman | The design and use of steerable filters[END_REF] and complex filters [START_REF] Schaffalitzky | Multi-view matching for unordered image sets, or "how do i organize my holiday snaps?[END_REF]. These methods have had success for texture classification and similar ideas are still used in this context [START_REF] Sifre | Rotation, scaling and deformation invariant scattering for texture discrimination[END_REF], but they proved less robust than histogram-based methods for local region description.

Another interesting descriptor developed for texture classification called Local Binary Pattern (LBP) [START_REF] Ojala | A comparative study of texture measures with classification based on feature distributions[END_REF] builds histograms of the results of binary comparisons between pixels. Inspired by this idea, BRIEF [START_REF] Calonder | Brief: Binary robust independent elementary features[END_REF] captures the local appearance in a way different from the two previous categories of descriptors. It simply stores the binary results of intensity comparisons between random (but fixed) pairs of points in the interest region.

One of the problems of the descriptors described above is that they remain sensitive to appearance variations. A greater invariance can be achieved by matching the geometry or symmetry pattern of local image features [START_REF] Chum | Geometric hashing with local affine frames[END_REF][START_REF] Hauagge | Image matching using local symmetry features[END_REF][START_REF] Shechtman | Matching local self-similarities across images and videos[END_REF], rather than the local features themselves. However, such patterns are hard to detect consistently between different views.

Robust alignment

Given two sets of image features, potential matches are given by considering for each region in the first image the one that has the closest descriptor in the second image.

However, many of those candidate matches will be wrong. In this section, we address the problem of recovering the good matches and the corresponding deformation between the two images from these candidate correspondences. This is typically done [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] in two steps: first selecting the most confident matches; second computing the most confident transformation for those matches.

Confident matches selection:

The most natural way to select the most confident matches would be to select those for which the descriptors are the closest. However, such a method would not work because some structures are much more likely than others and thus a descriptor can have many close descriptors which correspond to false matches. Lowe [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] suggests to use instead the ratio between the distances of the nearest and second nearest descriptor as an confidence score. This first-to-second nearest neighbor distance ratio test greatly helps discarding false matches, and proves useful in chapter 4.

Consistent transformation selection:

Once the most confident matches are selected, the selection can be refined further by checking the consistency between the matches. In [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] each match defines a transformation and the Hough transform is used to select the most consistent one. The most popular method to check the geometric consistency between matches in recent works is to perform RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] on the putative matches. Both methods are designed to deal efficiently with the presence of outliers. The output of this last step is a transformation between the original 3D model (or the original image) and the instance visible in the image.

Global features for alignment

The main limitation of local feature matching is its sensitivity to changes in appearance, e.g. due to illumination, seasons, and depiction style (see figures 1.4 and 1.5). Global descriptors of images have been developed to cope with those difficulties in the case of scene recognition. They can also be applied to the problem of instance-level alignment by rendering a set of views of the model and comparing them to a test image.

GIST. Those most used global feature is the GIST descriptor [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF]. It divides the image in typically 4x4 blocs and for each block stores the energy associated with different orientations (typically 8) at different scales (typically 3). It is designed to represent the shape of the scene and avoids looking at very local information. Thus it is robust to important changes in the local scene appearance such as those induced by the change of depiction style.

Exemplar-based methods. Exemplar-based methods apply to image matching the idea developed for category-level recognition presented in section 2.3.1.2. From a single positive example they learn a classifier [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF]. If used with a descriptor of an image as input, they have been shown to recover images of the same instance despite changes in the depiction style [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF]. This is mainly because the classifier focuses on the most discriminative parts, which are likely to be present in all depictions of the scene. More -M. Aubry : Representing 3D models for alignment and recognition -Section 2.3: Category-level 2D-3D alignment 47 details on these methods are given in section 4.1.2 and 4.2.2.

2D-3D alignment with global descriptors

Global descriptors are more robust to the depiction style, but they do not handle well viewpoint changes. Thus, to align a 3D model with an image, one must compute a huge number of viewpoints of the 3D model, and compare each rendered view with the image as was done in [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] using the GIST descriptor.

Relationship to our method

The method described in chapter 4 propose an alternative approach to instance-level 2D-3D alignment. We build on the success of exemplar-based method to design a part-based representation of the 3D model. This part based method is much more robust to viewpoint changes than global methods. Moreover, it does not suffer from the sensitivity of contour-based method because it is based on a soft representation of the edges, namely HOG descriptors (see section 2.3.1.2). It also avoids the difficulty of reliably detecting interest regions by performing dense matching instead of featurebased matching, while keeping the robustness given by the RANSAC selection of inliers.

Category-level 2D-3D alignment

The goal of category-level 2D-3D alignment is both to recognize an object from a given category in a test image and to output a 3D model aligned with the image. Until recently this problem has received little attention. Category recognition was rather performed using purely 2D methods. However these 2D methods implicitly handle the fact that the object appearance varies with the viewpoint and they can be used to recover the viewpoint if enough training data is available. For this reason, we will begin by reviewing 2D category-level recognition methods and then present the more recent work on 2D-3D category-level alignment.

2D methods

Bag of features

It is possible to describe the content of an image using the local features present in this image (introduced in section 2.2.2). This approach was introduced by Csurka et al. [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF] and Opelt et al. [START_REF] Opelt | Weak hypotheses and boosting for generic object detection and recognition[END_REF]. A detailed evaluation of "Bag of features" methods is presented in [START_REF] Zhang | Local features and kernels for classification of texture and object categories: A comprehensive study[END_REF] and shows that they are surprisingly robust to intra-class variation, which is one of the main difficulty of category-level recognition compared to instancelevel recognition. The typical pipeline for a "Bag of features" recognition pipeline is as followed. First, local features such as affine SIFTs are extracted from all training images. They are then aggregated in an histogram defined using a codebook called visual vocabulary learned from all images. Finally a classifier, typically a linear SVM, is learned to differentiate between the histograms of the different classes. This approach has been extended to encode spatial information using a spatial pyramid in [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] and can be used a global descriptor (see section 2.2.3).

Single template method

Bag of features methods are based on the aggregation of local features. On the contrary one can represent an object by a single template or a small set of templates corresponding to the different possible viewpoints of the object. This idea was applied successfully in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] to pedestrian detection, using histograms of oriented gradients or HOGs and a linear SVM classifier. The HOG descriptor is very similar to the SIFT descriptor [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] but is designed to be computed densely over an image. Each HOG cell essentially represents in a robust way the dominant gradient orientations as visualized in figure 2.11. The SVM weights the contribution of the different cells and orientations, emphasizing the important gradients for the category as shown in figure 2.12.

Deformable parts model (DPM)

Fischler and Elschlager [START_REF] Martin | The representation and matching of pictorial structures[END_REF] introduced the idea of defining a pictorial structure to describe the arrangements of parts of an object, as shown for example on figure 2.13.

This idea was revisited in [START_REF] Pedro | Pictorial structures for object recognition[END_REF] and made popular by Felzenszwalb et al. [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF]. They train a latent-SVM model using HOG features to create a state-of-the-art method for object [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. Figure from [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF].

Convolutional neural networks

Recently, DPMs have been outperformed by deep learning methods. Convolutional neural networks [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] are formed by a succession of convolutions, rectifying non-linear units (ReLU), max poolings and local normalizations (see figure 2.15). They had already shown impressive and practical results on optical character recognition [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Simard | Best practices for convolutional neural networks applied to visual document analysis[END_REF],

but until recently their performance for other vision task was limited by the available training data and computational power. The developpement of GPU computing and the appearance of the large scale ImageNet dataset [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF] allowed Krizhevsky et al. [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] to develop a network architecture, shown in figure 2.15, that outperforms by a significant margin other methods for image classification. This method was extended into a state of the art method for object detection in [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] using a fine-tuned version of the initial network to classify warped candidate regions as shown figure 2.16. Interestingly, and related to the work on non-realistic depictions presented in chapter 4, CNNs have also been shown to perform well for object-category classification in paintings [START_REF] Crowley | In search of art[END_REF].
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Figure 2.18:

Xiang et al. [START_REF] Xiang | Estimating the aspect layout of object categories[END_REF] approximate objects by set of planes. Figure from [START_REF] Xiang | Estimating the aspect layout of object categories[END_REF].

3D methods

Recently several papers aimed at using 3D information to perform category level recognition and alignment. Two main research directions have been explored

The first way to tackle the problem is to make simplifying and non-realistic hypothesis about the 3D content of the world, revisiting the "block world" methods of the early days of computer vision. This has been explored for buildings in outdoor scenes in [START_REF] Gupta | Blocks world revisited: Image understanding using qualitative geometry and mechanics[END_REF] and for box-like objects in indoor scenes in [START_REF] Fidler | 3d object detection and viewpoint estimation with a deformable 3d cuboid model[END_REF][START_REF] Xiao | Localizing 3d cuboids in single-view images[END_REF]. An example of the results of those methods is shown figure 2.17. This approach was extended to more complex shapes than blocks either by designing manually object models using a combination of blocks [START_REF] Choi | Understanding indoor scenes using 3D geometric phrases[END_REF][START_REF] Del Pero | Understanding bayesian rooms using composite 3D object models[END_REF] or by learning an approximation of the layout of an object category using a set of planes [START_REF] Xiang | Estimating the aspect layout of object categories[END_REF] as shown figure 2.18. Using a non-parametric approach [START_REF] Satkin | Data-driven scene understanding from 3D models[END_REF] showed promising results, but is designed to work in highly structured scenes.

Another way to approach the problem is to extend to 3D the ideas of the DPM [START_REF] Pedro | Pictorial structures for object recognition[END_REF], The idea of extending DPMs to 3D, here in the framework of Hejrati and Ramanan [START_REF] Hejrati | Analyzing 3d objects in cluttered images[END_REF]. Figure from [START_REF] Hejrati | Analyzing 3d objects in cluttered images[END_REF].

which have been very successful for 2D object recognition. This idea is visualized figure 2.19. For example [START_REF] Zia | Detailed 3d representations for object recognition and modeling[END_REF] uses manually labelled points on 36 car models to learn a deformation model of the shape and the local appearance. Glasner et al. [START_REF] Glasner | Viewpointaware object detection and pose estimation[END_REF] have a slightly different approach and used patches from images of 22 registered models of cars to vote for the location and orientation. Other examples include [START_REF] Hejrati | Analyzing 3d objects in cluttered images[END_REF][START_REF] Pepik | Teaching 3d geometry to deformable part models[END_REF][START_REF] Zia | Detailed 3d representations for object recognition and modeling[END_REF].

More recently Yang et al. [START_REF] Yang | Object detection and viewpoint estimation with auto-masking neural network[END_REF] attempted to extend CNN for viewpoint estimation.

Those methods use a relatively small number of models and typically focus on objects with a simple geometry or a limited intra-class variation such as cars. They also often require manual annotation of 3D key-points that are used to represent the shape of the objects and train detectors.

Relationship to our method

In chapter 5 we present a data-driven part-based method to tackle the problem of 3D category-level recognition. Opposite to previous methods which typically use simple 3D models, we use the complex "chair" category that we represent using more than thousand 3D models collected from the Internet and more than 80 000 rendered views.

While we use a star star-model similar to the DPM approach, we also use an exemplarbased method to avoid the need of large collections of annotated images to learn our model. Finally, our approach has the new advantage that given an input image it -M. Aubry : Representing 3D models for alignment and recognition -Section 2.3: Category-level 2D-3D alignment 54 returns a 3D model from our shape collection similar to the depicted object and aligned with the image.

Chapter 3

Wave Kernel Signature

Introduction

In this chapter, we are interested in developing a local descriptor that enables robust and accurate matching between two meshes representing the same 3D object. This 

Motivation

The analysis of shape plays a central role in computer vision and beyond. To analyze and compare 3D shapes is by no means straight-forward. Even the computation of a distance between two given 3D shapes leads to NP-hard combinatorial problems [START_REF] Bronstein | Efficient computation of isometry-invariant distances between surfaces[END_REF][START_REF] Mémoli | A theoretical and computational framework for isometry invariant recognition of point cloud data[END_REF]177] (see section 2.1.3.1).

As mentioned in section 2.2.2 local descriptors have drastically improved and simplified many computational challenges for images, in particular alignment problems. Algorithms for image matching, correspondence finding, camera pose estimation, tracking and recognition have substantially gained in speed and real-world performance by relying on local invariant descriptors such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] (see section 2.2.2). The enormous number of citations to these works indicates the practical relevance of such feature descriptors. In analogy, appropriate feature descriptors for 3D shapes will facilitate their analysis, improving and accelerating shape matching, shape recognition, shape -M. Aubry : Representing 3D models for alignment and recognition -Section 3.1: Introduction 57 retrieval and shape decomposition.

As explained in 2.1.2 a shape descriptor assigns a signature to each point of a 3D shape characterizing this point with respect to the full shape. This signature should be invariant or robust to certain transformations and perturbations, yet it should be discriminative in the sense that corresponding points on the two shapes should be assigned similar signatures and points not in correspondence should have different signatures. As discussed in section 2.1.3.2, having a good feature descriptor for 3D shapes would simplify many challenges and in particular alignment.

In this chapter, we introduce a novel highly discriminant feature descriptor for 3D shape analysis which is based on a quantum mechanical treatment of shape.

From Quantum Mechanics to shape analysis

The mathematical models employed for the analysis of images and shapes are frequently inspired from physics. The curve evolutions employed for segmentation and tracking in [START_REF] Blake | Active Contours[END_REF], for example, were inspired by Newtonian equations of motion. The theory of Fourier analysis and frequency decompositions originated with Fourier's studies of heat propagation. The heat equation itself stands at the origin of nonlinear diffusion filtering [START_REF] Perona | Scale-space and edge-detection[END_REF][START_REF] Weickert | Nonlinear diffusion filtering[END_REF]. The process of heat diffusion also inspired the derivation of the Heat Kernel Signature (HKS) as a feature descriptor for 3D shapes [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF]. The central physical analogy underlying this signature is to place a source of heat at a given point of the 3D shape and to study how the heat diffuses over time.

A mathematical framework which has attracted fairly little attention in the analysis of images or shapes is that of Quantum Mechanics. Although Quantum Mechanics revolutionized the mathematical modeling of microscopic physical phenomena at the beginning of the 20th century, the respective mathematical models have not been ap--M. Aubry : Representing 3D models for alignment and recognition -Section 3.1: Introduction 58 plied much in image or shape analysis. A notable exception is the use of Schrödinger's equation and complex diffusion for image denoising and image enhancement [START_REF] Gilboa | Image enhancement and denoising by complex diffusion processes[END_REF].

The theory of Quantum Mechanics has many facets and a complete review is beyond the scope of this thesis. For an excellent introduction the reader is referred to [START_REF] Sakurai | Modern Quantum Mechanics[END_REF].

In this paper, we will show how a family of shape descriptors can be interpreted in the framework of Quantum Mechanics and introduce a new feature descriptor called the Wave Kernel Signature which exhibits several advantages over the frequently used Heat

Kernel Signature. The central physical analogy we propose is that we place a quantum mechanical particle on a 3D shape and determine the time-averaged probability of observing this particle in a given location. The Wave Kernel Signature assigns to each point on the surface a vector containing the time-averaged probability for locating particles of different energy. While the process of heat diffusion underlying the HKS converges over time to a steady state, the evolution of quantum mechanical particles underlying the WKS is governed by Schrödinger's equation and does not converge to a steady state. Therefore time averaging provides a meaningful quantity. In fact, through the time-averaging the notion of time actually disappears such that the WKS is a signature associated with a stationary analysis of shape.

As we will show in section 3.1.3.3 and 3.3.2, the HKS and the underlying heat diffusion process tend to merge shape information on different spatial scales (or frequencies). In contrast, the WKS nicely separates shape information on different scales. Moreover, we demonstrate that the Wave Kernel Signature is superior to the Heat Kernel Signature and its variants as it allows a better discrimination of points on the shape and a more accurate localization of correspondences.

In the following we well give a review of the mathematical framework of spectral meth--M. Aubry : Representing 3D models for alignment and recognition -Section 3.1: Introduction 59 ods in the context of 3D shape analysis. We will then introduce a family of shape descriptors, the Wave Kernel Signature which generalizes the Heat Kernel Signature.

Next, we derive a particularly well-suited choice of the WKS and we derive some of its mathematical properties. Finally we will show in an extensive experimental evaluation that the Wave Kernel Signature has a favorable performance compared to existing feature descriptions such as the Heat Kernel Signature and its derivatives.

Spectral Methods for shape analysis

Because of its interesting properties mentioned in 2.1.2.2, techniques relying on the spectral decomposition of the Laplace-Beltrami operator have become in recent years fundamental in data analysis [START_REF] Lafon | Diffusion maps and geometric harmonics[END_REF] and more specifically in shape analysis [START_REF] Lévy | Laplace-Beltrami Eigenfunctions Towards an Algorithm that "understands" geometry[END_REF]. In this section we will briefly review the mathematical background of the Laplace-Beltrami operator on surfaces and the relation of its spectral decomposition to classical Fourier analysis. Next, we will recall the definition and the main properties of the Heat Kernel Signature (HKS) [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF]. Finally, we will perform a spectral analysis of HKS which indicates that despite its theoretical elegance, HKS does not organize the information on points in an optimal way.

The Laplace-Beltrami operator and PDEs on surfaces

Let X ⊂ R 3 be a closed differentiable surface, and let g denote the Riemannian metric on X which is induced by the embedding in the Euclidean R 3 . The Laplace-Beltrami operator is a linear second-order differential operator

Δ : L 2 (X) → L 2 (X). (3.1) For a function f ∈ C 2 (X; R), it is defined as Δf = div(grad f ). (3.2)
In local coordinates x 1 , x 2 with metric tensor g = g ij , inverse metric tensor g ij , and metric determinant det(g) = |g|, the Laplace-Beltrami operator is given by

Δf = 1 |g| ∂ ∂x i |g|g ij ∂ ∂x j f . (3.3)
The Laplacian is a negative, self-adjoint operator on Fig. 3.2. This connection between frequencies of the Laplace-Beltrami operator and spatial scales will be important for understanding the scale separation properties of respective 3D shape signatures.

L 2 (X). If X is compact, Δ admits a discrete spectral decomposition. Let 0 = -E 0 > -E 1 ≥ . . .
The classical Fourier decomposition allows to develop any periodic signal f , that is any signal defined on S 1 in its frequency components

f (x) = k a k √ 2 cos(πkx) + b k √ 2 sin(πkx), (3.5) 
where

a k = S 1 f (x) √ 2 cos(πkx)dx, b k = S 1 f (x) √ 2 sin(πkx). (3.6)
Similarly, given a signal f : X → R defined on X, we can decompose f into its frequency components

f = k≥0 c k φ k , ( 3.7) 
where

c k = X f • φ k .
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Given a point x ∈ X, the Dirac delta function corresponding to x is the distribution defined by

δ x : C ∞ (X) → R, f → f (x). (3.8)
The point x is uniquely determined by its delta function. As a generalized signal on X, δ x can be decomposed into its frequency components. The Fourier coefficients of δ x are given by

c k = X δ x (y)φ k (y)dy = φ k (x). (3.9)
With this in mind, it is tempting to define a feature descriptor for points on surfaces simply by concatenating the Fourier coefficients c k into a vector indexed over k. Up to a multiplicative factor in each component, this is exactly the idea underlying the Global Point Signature (GPS) defined by Rustamov [START_REF] Rustamov | Laplace-beltrami eigenfunctions for deformation invariant shape representation[END_REF]. Indeed, this signature characterizes points uniquely up to isometry. Unfortunately, the coefficients c k depend on the choice of the sign of the Laplace eigenfunctions φ k . In the case of repeated eigenvalues, the situation becomes even worse because the coefficients are only determined up to an orthogonal transformation of the eigenspace. As a consequence, a different choice of basis functions may lead to an entirely different signature.

The Heat Kernel Signature

The HKS overcomes these difficulties in a very elegant way. As indicated by the name, it relies on the diffusion of heat on the surface. Given an initial heat distribution Note that while remaining robust to deformations the WKS captures more information including shape differences at finer scales.

u 0 : X → R, the heat distribution u(•, t) : X → R for times t > 0 solves the heat equation ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∂u(x, t) ∂t = Δu(x, t), u(x, 0) = u 0 (x).
The fundamental solution to the heat equation is given by the heat kernel K : X ×

X × R >0 → R defined by K(x, y, t) = k≥0 e -E k t φ k (x)φ k (y). (3.11)
Thus, equation (3.10) is solved by

u(x, t) = X K(x, y, t)u 0 (y)dy. (3.12)
The Heat Kernel Signature at a point x ∈ X is based on the following physical experiment: Assume that initially at time t 0 = 0 an infinite amount of heat is placed at x and that there is no heat on X \ {x}, corresponding to a Dirac delta function δ x as initial heat distribution. Let this initial distribution diffuse and define the HKS at

x and time t > 0 as the amount of heat remaining in x at time t. According to the -M. Aubry : Representing 3D models for alignment and recognition -Section 3.1: Introduction 64 above, the HKS can be computed as

HKS(x, t) = X k≥0 e -E k t φ k (x)φ k (y)δ x (y) dy = k≥0 e -E k t φ k (x) 2 . (3.13)
Sun et al. [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF] introduced this signature as a point descriptor and showed that points on a 3D shape are almost completely characterized by their HKS (see Section 3.3.3

for the precise statement in the analogous case of WKS). Moreover, being the result of a physical experiment, HKS does not depend on the signs or on the ordering of the Laplace eigenfunctions. This can also be read off directly from formula (3.13).

Sun et al. [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF] noticed that the HKS tends to decrease exponentially, as can be seen in figure 3.3. Thus, they introduced a heuristic modification of the HKS to avoid this effect, that we will refer as sHKS:

s HKS(x, t) = HKS(x, t)
X HKS(y, t)dy

(3.14)
One of the main drawbacks of this descriptor is that it is not invariant to scale. For this reason Bronstein and Kokkinos [START_REF] Bronstein | Scale-invariant heat kernel signatures for nonrigid shape recognition[END_REF] introduced the scale-invariant heat kernel signature (SI-HKS) which makes the HKS invariant to scale using logarithmic sampling and Fourier transform.

Limitations of the HKS

Despite its elegant physical derivation and its appealing theoretical properties, the HKS has a number of practical drawbacks. In order to discuss these, we come back to coefficients of δ x . More precisely, (HKS(x, t)) t>0 can be seen as a collection of low-pass filters applied to δ x : for large t, the high frequencies are suppressed -see Figure 3.4.

This brings about the following disadvantages of the HKS:

• With increasing time t, the HKS mixes information from all scales. Separating shape differences on different spatial scales is not possible.

• Regardless of the choice of t > 0, HKS(x, t) is dominated by low frequency information, which corresponds to global properties of the shape.

The Wave Kernel Signature

From heat diffusion to Quantum Mechanics

The above limitation of the HKS is inherently tied to the process of heat diffusion, where for larger values of time t, the heat distribution invariably converges to an entirely uninformative constant temperature. Can we overcome this limitation of the -M. Aubry : Representing 3D models for alignment and recognition -Section 3.2: The Wave Kernel Signature
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HKS by reverting to a different physical process? Can we rely on another mathematical equation whose solution would not be dominated by the global properties of the shape which are embedded in the eigenfunctions associated with the large frequencies?

We would like to adhere to the Laplace-Beltrami operator because of its favorable properties, its eigenfunctions being associated with frequencies of vibration [START_REF] Kac | Can one hear the shape of a drum?[END_REF] as visualized in figure 3.2. Yet, we would like a physical process which does not attenuate the high frequencies as the heat diffusion does.

A mathematical solution is to multiply the Laplace-Beltrami operator by the imaginary number 'i'. That way the eigenvalues of the operator are complex and the contribution of the different frequencies will not be attenuated over time. The resulting equation is a specific case of the Schrödinger equation, which describes the behavior of a quantum particle. The state of the quantum particle at time t is fully described by the complex function ψ(•, t), often referred to as the wave function. In particular, the squared norm |ψ(x, t)| 2 of the wave function corresponds to the probability density for detecting the particle at a location x at time t. The evolution of a particle described at t = 0 by the function ψ 0 is governed by the equation:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ i ∂ ∂t ψ(x, t) = Hψ(x, t) = (-Δ x + V (x)) ψ(x, t), ψ(x, 0) = ψ 0 (x).
(3.15)

Here H = -Δ + V is called the Hamiltonian operator, and V (x) is a real potential representing an external field -for example an electric field -acting on the particle.

For simplicity, we assume this external field to be constant in time. In Section 3.2.4, we will discuss how to exploit such an external field in order to constrain particles to a certain spatial vicinity, thereby localizing the shape analysis and allowing a multiscale -M. Aubry : Representing 3D models for alignment and recognition -Section 3.2: The Wave Kernel Signature 67 analysis of shapes.

Schrödinger equation on a surface

To solve the Schrödinger equation we can exploit the fact that the Hamiltonian operator H = -Δ + V is compact and self-adjoint on the Hilbert space of complex L 2 functions on X. According to the spectral theorem we can therefore diagonalize it in an orthonormal basis. Let (φ 0 , φ 1 , ...) denote a basis of eigenfunctions of the operator H, and let (E 0 , E 1 , ...) denote the corresponding eigenvalues. We can further assume that E 0 ≤ E 1 ≤ .... For simplicity we assume that there are no degeneracies, i.e. that the eigenvalues are distinct, which is the general case.

To solve the Schrödinger equation (3.15), we simply expand the solution ψ(x, t) in the basis (φ 0 , φ 1 , ...):

ψ(x, t) = ∞ k=0 f k (t) φ k (x), (3.16) 
where 

f k (t) = X φk (x) ψ(x,
∞ k=0 d dt f k (t) φ k (x) = ∞ k=0 iE k f k (t) φ k (x) (3.17)
Since (φ 0 , φ 1 , ...) is an orthogonal basis, we can solve in each coordinate separately, and thus the solution is given by

ψ(x, t) = ∞ k=0 f k (0) e iE k t φ k (x) (3.18)
The expected value of the Hamiltonian H provides the energy of a particle in a state -M. Aubry : Representing 3D models for alignment and recognition -Section 3.2: The Wave Kernel Signature 68 ψ(x) by S ψHψ. The only possible output in the measurement of the energy are the eigen-states of H, and the probability to find an energy E k (assuming that all the eigen-energies are distinct) is given by S φ k Hψ. Thus the φ k are also known as energy eigen-states, since a particle in the state φ k will always be measured to have an energy

E k .

A spectral signature for shapes

The remaining task is to derive a signature which characterizes points on the 3D shape based on the physical process of quantum particle evolution described by equation (3.15). This task can be decomposed into two aspects:

• Choose an initial distribution of energy.

• Choose a quantity to consider/measure.

For the HKS, the signature of a point was determined by using the evolution of the temperature on a point with a Dirac distribution in this point at t = 0. The intuition was that for small time, the solution was influenced mainly by the local shape, and that the signature grew more global with time. Nevertheless, the study of the equation showed that a transparent interpretation in terms of scale is not obvious given that different frequencies are increasingly mixed and the small eigenvalues dominate. In practice researchers compensated this dominance of small eigen-values at larger times by introducing a logarithmic sampling of time.

In the following, we therefore suggest to parameterize the shape descriptor not as a function of time, as done in the HKS, but as a function of the energy of the particle.

This will give rise to a new feature descriptor which we call the Wave Kernel Signature (WKS). While it is also derived from a physical process, the WKS is a time-independent -M. Aubry : Representing 3D models for alignment and recognition -Section 3.2: The Wave Kernel Signature 69 signature. More specifically denote the energy distribution of the quantum mechanical particle by f k (0) = f E (E k ) (E will be the parameter of the distribution, see Section

for the exact choice of this distribution).

Definition 1. The Wave Kernel Signature (WKS) associated with a given point x ∈ X is the time-averaged probability of detecting a particle of a certain energy distribution f E at that point. Mathematically, it can be computed as:

WKS(x, E) = lim T →∞ 1 T T 0 |ψ(x, t)| 2 dt = lim T →∞ 1 T T 0 ∞ k=0 f E (E k )φ k (x)e iE k t 2 dt = lim T →∞ 1 T T 0 ∞ k,l=0 f E (E k )φ k (x)f E (E l )φ l (x)e iE k t e -iE l t dt = ∞ k,l=0 f E (E k )φ k (x)f E (E l )φ l (x) lim T →∞ 1 T T 0 e iE k t e -iE l t dt (3.19)
As a result, we obtain:

WKS(x, E) = ∞ k=0 |f E (E k )| 2 |φ k (x)| 2 . (3.20)
The last equality holds because limits can be exchanged. While respective limits do not generally commute, they do in our case for a large range of functions f E (including Gaussians and exponentials) since as shown in [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF]:

||φ k || ∞ ≤ CE 1 4 k (3.21)
The above definition of the Wave Kernel Signature is very general: the function f E can be chosen in many ways leading to different kinds of signatures. In this chapter we use a general stability analysis of the shape as detailed in section 3.3 to derive a particular -M. Aubry : Representing 3D models for alignment and recognition -Section 3.2: The Wave Kernel Signature 70 f E . Our result is also physically meaningful since it corresponds to a particle which energy has been measures with a log-normal error. Bronstein [START_REF] Litman | Learning spectral descriptors for deformable shape correspondence[END_REF] later suggested this function could be learned to optimize some task on a specific dataset. 3.3.1.

Proposition 1. The family of descriptors introduced in Definition 1 is a generalization of the Heat Kernel Signature.

Proof. For the choice of an exponential energy distribution

f E (E k ) = e - √ E k t ,
the WKS in (3.20) is equivalent to the HKS in (3.13).

Global vs. local WKS

In our original article [START_REF] Aubry | The wave kernel signature: a quantum mechanical approach to shape analysis[END_REF], the Schrödinger equation was used without potential, and thus the signature of each point depended on the entire shape. Adding a spatial potential V forces particles with low energy to stay in some part of the shape. As a consequence, one can design a shape signature which will only be affected by a predefined local neighborhood. For example, to describe a point x the following potential can be used:

V x (y) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if d(x, y) ≤ d 0 ∞ if d(x, y) > d 0 (3.22)
where d is the geodesic distance between two points of the shape and d 0 is a reference distance. The corresponding local descriptor will no longer be scale invariant (since a reference distance will be introduced in the potential), but it will be more suitable for partial shape matching where local parts should be identified as similar even if their relation to the remainder of the shape is very different. The appropriate scale can -M. Aubry : Representing 3D models for alignment and recognition -Section 3.3: Mathematical Analysis of the WKS 71 be chosen using some property of the shape. Alternatively one can sample numerous scales in a logarithmic manner leading to a full multi-scale description of the shape.

An example of such a local descriptor is given in 3.4.1.2. In the rest of this chapter, we focus on the case of a constant potential.

Mathematical Analysis of the WKS

In this section we will present a mathematical analysis of the Wave Kernel Signature introduced above. In particular, we will perform a theoretical stability analysis which justifies the choice of the log-normal distribution for the energy levels in the definition of WKS. Next, we will argue that in contrast to the HKS, the WKS ensures a clear separation of scales. Finally, we will summarize the favorable properties of WKS concerning its invariance to non-rigid deformations as well as its discriminative power.

Stability analysis

In this subsection, we derive an adapted energy distribution f E for a particle on the surface with expected energy level E. By better understanding how the spectral decomposition of the shape varies with small deformations, we will be able to design a descriptor that will be both informative and robust to small non-isometric perturbations of the considered surface.

Assume that a surface X is slightly deformed in a non-isometric way. Mathematically we can interpret such a deformation as a perturbation g(ε) of the metric g = g(0) on X for a real parameter ε with |ε| small. Assume that the deformation is regular in the sense that g(ε) = g(0) + εg 1 + ε 2 g 2 + . . . and the corresponding Laplace-Beltrami operators where the space of symmetric tensors T X * ⊗ T X * is endowed with the norm induced by g(0). Then for |ε| > 0 sufficiently small we have

Δ(ε) = Δ(0) + εΔ 1 + ε 2 Δ 2 + . . .
|E k (ε) -E k | ≤ CE k • |ε| + O(ε 2 ).
Proof. Denote by φ k (ε) the normalized eigenfunctions to the eigenvalue E k (ε). By [START_REF] Rellich | Störungstheorie der Spektralzerlegung[END_REF], we have

φ k (ε) = φ k (0) + O(ε). (3.23) Let a k,i (ε) = φ k (ε), φ i (0) L 2 (X) . Then φ k (ε) = i a k,i (ε)φ i (0) (3.24)
and by (3.23) we can infer that

a k,k = O(1), a k,i = O(ε) for i = k. (3.25)
Now, we plug this into the eigenvalue equation 

Δ(ε)φ k (ε) = E k (ε)φ k (ε). ( 3 
Δ(0) + εΔ 1 + O(ε 2 ) i a k,i (ε)φ i (0) = E k (0) • a k,k (ε)φ k (0) + εa k,k (ε)Δ 1 (φ k (0)) + i =k a k,i (ε)E i (0)φ i (0) + O(ε 2 ).
(3.27)

The right hand side of (3.26) is equal to

E k (ε) • a k,k (ε)φ k (0) + i =k a k,i (ε)φ i (0) . (3.28)
Now we take on both sides the L 2 (X)-scalar product with φ k (0) to obtain

a k,k (ε)E k (0) + εa k,k (ε) X φ k (0)Δ 1 (φ k (0)) + O(ε 2 ) = E k (ε)a k,k (ε).
(3.29)

Since a k,k (ε) = 0 for |ε| sufficiently small, we get

E k (ε) = E k (0) + ε X φ k (0)Δ 1 (φ k (0)) + O(ε 2 ). (3.30)
Thus, we have to show that Since

ε X φ k (0)Δ 1 (φ k (0)) ≤ CE k ε + O(ε 2 ). ( 3 
εΔ 1 = Δ(0) -Δ(ε) + O(ε 2 ), we get ε X φ k (0)Δ 1 φ k (0) = X φ k (0) Δ(0) -Δ(ε) φ k (0) + O(ε 2 ) ≤ X g(0) dφ k (0), dφ k (0) -g(ε) dφ k (0), dφ k (0) + O(ε 2 ) (3.32)
where we used Gauss' theorem on surfaces. Now, g(0

) -g(ε) = εg 1 + O(ε 2 ). On the other hand, for all v ∈ R n , A ∈ R n,n we have v, Av ≤ A F • v, v , where
• F denotes the Frobenius norm. This implies that g 1 (α, α) ≤ C • g(0) α, α for all 1-forms α on X. Thus,

ε X φ k (0)Δ 1 φ k (0) ≤ X εg 1 dφ k (0), dφ k (0) + O(ε 2 ) ≤ |ε| • C • X g dφ k (0), dφ k (0) + O(ε 2 ) = |ε| • CE k + O(ε 2 ). (3.33)
This concludes the proof.

The theorem implies that there exist

c k with |c k | ≤ C such that E k (ε) = (1 + εc k ) E k + O(ε 2 ).
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This can be reformulated as

log E k (ε) E k = log(1 + εc k + O(ε 2 )) = εc k + O(ε 2 ). (3.34)
For convenience, we model the c k coefficients by independent normally distributed random variables:

log(E k (ε)) ∼ N (log(E k ), σ). (3.35)
Thus, in our model, the eigen-energies of an articulated shape X are log-normally distributed random variables. We design our descriptor to take into account this information without any assumption about the variations of the eigenfunctions.To achieve this, we choose f 2 E as a log-normal distribution.

WKS(x, e)

= ∞ k=0 e -(e-log(E k )) 2 2σ 2 |φ k (x)| 2 (3.36)
In this equation the parameter σ allows an intuitive trade-off between discrimination (σ → 0) and robustness to deformations (σ → ∞).

Note that this formulation also provides a very meaningful interpretation in the Quantum Mechanics framework: suppose that the log-energy e of a particle is measured with a Gaussian error of variance σ, the average probability to measure it in x is WKS(x, e).

Spectral analysis

Our descriptor as defined in equation 3. 

Invariance and discrimination

The Wave Kernel Signature has a number of favorable properties which make it very well suited for a variety of tasks in non-rigid shape analysis.

• WKS is intrinsic: if T : X → Y is a (rigid or non-rigid) isometry, then WKS(x, e) = WKS(T (x), e) for all x ∈ X, e ∈ R.

• WKS is robust to shape perturbations: shapes which are perceived as similar (even if they appear in different poses), differ by small non-isometric deformations. By the choice of the energy distributions in Section 3.3.1, WKS is stable under such deformations.

• WKS is informative: assume that two shapes are homeomorphic via a map T :

X → Y .
Then T is an isometry if and only if WKS(x, e) = WKS(T (x), e) for all

x ∈ X, e ∈ R. The proof is analogous to the proof of Theorem 1 in [START_REF] Sun | A concise and provably informative multiscale signature based on heat diffusion[END_REF].

• WKS encodes information from various spatial scales: indeed, WKS is parametrized over the (logarithmic) energies of particles which are directly related to scales.

Large energies correspond to highly oscillatory particles which are mostly influ- 

Experimental Results

In this section we analyse the discriminability and robustness of the WKS for matching.

It was indeed designed to achieve an optimal trade-off between those two desirable properties of shape descriptors. We compare the WKS with other state of the art spectral descriptors: the HKS, sHKS and SI-HKS introduced in 3.1.3.2. An analysis of how spectral descriptors relate to other kind of descriptors is out of the scope of this work. For a recent survey on shape descriptors, the reader can refer to [START_REF] Tam | Registration of 3d point clouds and meshes: A survey from rigid to nonrigid[END_REF].

In all our our experiments we computed descriptors of size 100 and used 300 eigenvalues.

We used the shapes of the TOSCA dataset [START_REF]TOSCA dataset[END_REF], which were computer generated and present a variety of perturbations.

Qualitative analysis

Comparison with HKS

To compare qualitatively the behavior of the WKS, HKS, and s HKS, we take a reference point at random in a shape, compute its descriptor, and plot (using a color code) the distances between the reference descriptor and the descriptors of all points of a deformed shape. and each scale, leading to prohibitive computational costs. However, we believe that a better understanding of possible approximations can lead to efficient algorithms for its computation on a set of feature points.

Robustness to shape perturbation

It was shown in Section 3.3.1 that our descriptor is in theory robust to small changes in the metric. This is also verified in practice for a large class of extreme perturbations.

Figure 3.8 shows some examples in the case of noise, mesh sampling and holes in the shape. In the three cases, a point is chosen in the standing shape and its descriptor computed. The colors in both the standing and kneeling shape code the distance from the descriptor of any point to this initial descriptor and the red lines show the top 50 matches. The quality of all the first 50 matches shows the high quality of the descriptors: even if the matches are not the good ones, they are very plausible.

Quantitative evaluation

In this section, we evaluate quantitatively the quality of the WKS for point matching and focus particularly on the analysis of the influence of its variance parameter, associated to its robustness-precision trade-off.

Robustness of the descriptor

We begin by evaluating the robustness of the WKS by using the measure introduced in [START_REF] Bronstein | robust correspondence benchmark[END_REF] for SHREC 2010. Given two shapes X and Y represented by a triangular mesh, we compute:

Q(X, Y ) = 1 |F(X)| x∈F (X) WKS Y (y(x)) -W KS X (x) 2 WKS Y (y(x)) 2 + W KS X (x) 2
(3.37) The reference mesh has 52565 vertices, while the perturbed mesh has 2634 vertices.

Right image:

The deformed shape has many holes. Note that an isometry invariant feature descriptor cannot distinguish the left and the right of a symetric shape.

Variance parameter SHREC robustness score Figure 3.9: Evaluation of the robustness of the matching using the measure from the SHREC evaluation [START_REF] Bronstein | robust correspondence benchmark[END_REF] (equation 3. [START_REF] Bronstein | Scale-invariant heat kernel signatures for nonrigid shape recognition[END_REF]

, smaller values indicate a more robust descriptor). Blue: result for the WKS in function of the variance parameter (log-scale).

Purple: results for the HKS. Red: results for the sHKS. Green: results for the SI-HKS. As expected, the results for the WKS become better when the variance parameter grows, increasing the robustness. It becomes more robust than the SI-HKS for a variance parameter around 5.

Table 3.1: Average area under the cumulative match characteristic curve for the different deformations and descriptors. WKS-5 indicates the performance of the WKS

with a variance parameter fixed to 5, and WKS-optimal the performance of the WKS with the optimal variance parameter for each deformed shape. The fact that WKS-5 outperforms the other descriptors in most categories shows that it can be used as an "out of the box" descriptor. The clear improvement provided by WKS-optimal for some deformation categories such as localscale shows when it is worth to optimize the variance parameter. where F(X) is the set of points in X and y(x) is the point in the shape Y corresponding to the point x in the shape X. Note that this measure evaluates the robustness of the descriptor (i.e. the fact that it does not change too much when the shape is deformed), but not the fact that it is discriminative (i.e. that is different for different points of the shape).

The results of this evaluation are shown in Fig. 3.9 for different variance parameters.

As expected, the WKS becomes more robust when the variance parameter grows. It is more robust than the SI-HKS for a variance parameter greater than 6, and as robust as the sHKS for a variance parameter around 20. This evolution corresponds to the intuition developed in section 3.3.1.

Quality of the descriptor for point matching

To evaluate the quality of a descriptor for matching, we repeat the following experiment for randomly selected points:

• given a point in a deformed shape, we compute its descriptor

• we compute its distance to all point descriptors in the reference shape given by the SI-HKS. It can be seen that for bigger deformations, the optimal variance parameter is higher than for small deformations.

•
• we store the rank of the ground truth correspondence By computing the proportion of good correspondences that are in the first percentage of the matches, we can compute a Cumulative Match Characteristic curve (CMC) that characterize the quality of the descriptor for point matching. To enable easier comparisons, we summarize the quality of the matching by its area under curve, which is reported in table 3.1 and Fig. 3.10 and 3.11. Values close to 1 mean that the descriptor is very good for the considered matching task, while 0.5 is the chance performance.

General results.

From the results reported in table 3.1, it can be seen that the WKS used with a variance parameter 5 outperforms the HKS, sHKS and SI-HKS for all of the perturbation categories except localscale and noise. A reasonable hypothesis is that the WKS does not perform as well for those categories because they would require another variance parameter.
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To test this hypothesis, we repeated the same experiment as before but for each shape and transformation we selected the best WKS variance parameter. As expected, it improves all the results. The improvement is especially important for the holes, noise and localscale category. After this parameter selection, the WKS outperforms the other descriptors on all perturbation categories except the noise category.

The biggest improvement in using the WKS instead of one of the other descriptors is clearly for the topology category, where the results are improved by 3.4% (the second best is 2%). That is easily understood since this perturbation confuses the large scale characteristics of the shape, but not its local ones, which it is the strength of the WKS to encode.

Detailed analysis. Fig. 3.10 provides more details on the influence of the different variations of the dataset and the influence of the variance parameter. For each parameter of the dataset (perturbation category, shape and strength of the perturbation) we compare the performances of the WKS for several variance parameters to the performance of the SI-HKS that usually preforms best among the other spectral descriptors.

Fig. 3.10a shows that the WKS consistently outperforms the SI-HKS for a wide set of variance parameters for all categories of shape perturbations except localscale and noise.

Looking at the variations of the results in function of the strength of the perturbations in Fig. 3.10b reveals that the strength is indeed correlated to the difficulty of the matching. Interestingly, we can notice that the improvement provided by the WKS is especially important for limited perturbations, showing that it allows to be much more precise than the HKS and its variants for small perturbations. It is not surprising since -M. Aubry : Representing 3D models for alignment and recognition -Section 3.5: Applications
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the assumption of small perturbations was made in its derivation in 3.3.1.

While the optimal variance parameter for the WKS does not on average depend on the strength of the perturbation, Fig. 3.10c shows that it clearly depends on the shape.

To avoid the dependency with respect to the shape and perturbation category, we performed a more detailed analysis for the localscale perturbation for the dog shape in Fig. 3.11. A clear gap in the difficulty can be seen between strength 1, 2 and 3 on one side and strength 4 and 5 on the other side. For the small perturbations, the optimal range of variance parameter is between 3 and 7, and for the bigger perturbations between 7 and 13, showing that increasing the variance increases the robustness at the cost of loosing precision, corresponding to the intuition of 3.3.1.

Applications

We have shown in the previous section that the WKS could better distinguish points than the competing spectral descriptors in many cases. In this section we show examples of potential other use of the WKS. We intentionally used simple techniques, since our goal is only to prove that those applications are possible and not to design algorithms that makes optimal use of the WKS on each task.

Global shape matching. We used a very simple greedy strategy. We selected a set of feature points in a reference shape, and greedily matched the points in a deformed with the closest feature distance, using a constraint on the geodesic distance for each new match. As shown in figure 3.12 this simple strategy worked well. For a state of the art matching method using the WKS, the reader can refer to [START_REF] Ovsjanikov | Functional maps: a flexible representation of maps between shapes[END_REF].

Segmentation. We used a Gaussian Mixture Model (GMM) clustering on the features to segment the shapes. Since we wanted to be able to transfer the segmentation to Presented with a new shape, we compute the W KS of all its points, evaluate its log likelihood with respect to all the learned GMM models, and finally associate it with the label having the biggest log-likelihood, as illustrated figure 3.15.

The SHREC 2010 retrieval dataset [START_REF] Lian | SHREC'10 Track: Non-rigid 3D Shape Retrieval[END_REF] contains 10 shape classes with 20 instances of each class. For each class, we used 5 shapes as training, and test on the remaining 150 shapes. We achieved 72% correct assignment, proving that both the W KS and the segmentation are informative.

Conclusion

We introduced the Wave Kernel Signature in order to characterize points on a 3D shape.

It is based on a careful analysis of harmonic functions on shapes and designed to be both discriminative and robust to variations of the metric, with a natural parameter to adjust the trade-off. This Wave Kernel Signature is defined as the time-averaged probability to localize a quantum-mechanical particle of a certain energy distribution at a given point of the shape. We demonstrate that it improves on the state of the art in terms of discrimination and spatial precision and that it is suitable for a large range of applications and in particular for shape alignment.

Chapter 4

Painting-to-3D Alignment

Introduction

In the previous chapter, we tackled the problem of describing 3D models for 3D to 3D instance alignment. Here we want to develop a representation of 3D models that enables alignments of 2D depictions to a 3D model. We go beyond what methods reviewed in 2.2.2 and 2.2.3 can do and focus on recovering the viewpoint of historical and non-realistic depictions of an architectural site, such as drawings, paintings and historical photographs, with respect to a 3D model of the site. This is a tremendously difficult task since the appearance and the scene structure in the 2D depictions can be very different from the appearance and the geometry of the 3D model, e.g., due to the specific rendering style, drawing error, age, lighting or change of seasons (see figure 1.4). In addition, we face a hard search problem: the number of possible alignments of a painting to a large 3D model, such as a partial reconstruction of a city, is huge. To address these issues, we develop a new compact representation of complex 3D scenes.

The 3D model of the scene is represented by a set of 3D discriminative visual elements that are automatically learnt from rendered views. Similar to object detection, the set 

Motivation

Why is this task important? First, non-photographic depictions are plentiful and comprise a large portion of our visual record. We wish to reason about them, and aligning such depictions to reference imagery (via a 3D model in this case) is an important step towards this goal. Second, such technology would open up a number of exciting computer graphics applications that currently require expensive manual alignment of 3D models to various forms of 2D imagery. Examples include interactive visualization of a 3D site across time and different rendering styles [START_REF] Debevec | Modeling and rendering architecture from photographs[END_REF][START_REF] Levin | Rouen revisited -interactive installation[END_REF], model-based image enhancement [START_REF] Kopf | Deep photo: Model-based photograph enhancement and viewing[END_REF], annotation transfer for augmented reality [START_REF] Snavely | Photo tourism: Exploring photo collections in 3D[END_REF], inverse procedural 3D modeling [START_REF] Aliaga | Style grammars for interactive visualization of architecture[END_REF][START_REF] Musialski | A survey of urban reconstruction[END_REF] or computational re-photography [START_REF] Bae | Computational rephotography[END_REF][START_REF] Rapp | A geometrical analysis of multiple viewpoint perspective in the work of Giovanni Battista Piranesi: an application of geometric restitution of perspective[END_REF]. Finally, reliable automatic image to 3D model matching is important in domains where reference 3D models are often available, but may contain errors or unexpected changes (e.g. something built/destroyed) [START_REF] Bosché | Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction[END_REF], such as urban planning, civil engineering or archaeology.

From locally invariant to discriminatively trained features

Local feature based methods presented in 2.2.2 represent a powerful tool for matching photographs of the same at least lightly textured scene despite changes in viewpoint, scale, illumination, and partial occlusion. However, appearance changes beyond the modeled invariance, such as significant perspective distortions, non-rigid deforma- avoiding hard decisions about the presence and connectivity of imaged object edges.

Learnt weights have also been shown to emphasize visually salient image structures matchable across different image domains, such as sketches and photographs [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF].

Similar representation has been used to learn architectural elements that summarize a certain geo-spatial area by analyzing (approximately rectified) 2D street-view photographs from multiple cities [START_REF] Doersch | What makes paris look like paris?[END_REF]. Also related is a contemporary work that utilizes similar representation for scene [START_REF] Juneja | Blocks that shout: Distinctive parts for scene classification[END_REF] and action [START_REF] Jain | Representing videos using mid-level discriminative patches[END_REF] classification.

Building on these works we develop a compact representation of 3D scenes suitable for alignment to 2D depictions. In contrast to [START_REF] Doersch | What makes paris look like paris?[END_REF][START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF] who analyze 2D images, our method takes advantage of the knowledge and control over the 3D model to learn a representative set of mid-level 3D scene elements robust to a certain amount of viewpoint variation and capable of recovery of the (approximate) camera viewpoint. We

show that the learnt mid-level scene elements are reliably detectable in 2D depictions of the scene despite large changes in appearance and rendering style.

Overview

In this chapter, we focus on depictions that are, at least approximately, perspective renderings of the 3D scene and we consider complex textured 3D models obtained by To evaluate our alignment procedure, we introduce a database of paintings and sketches spanning several sites and perform a user study where human subjects are asked to judge the goodness of the output alignments. Our results are presented in section 4.4. We compare with several baseline methods, such as SIFT on rendered views, the coarse viewpoint retrieval step of [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF], and Exemplar SVM [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF], and show that our algorithm produces more valid alignments than the baselines. Moreover, we evaluate our matching step on the benchmark dataset of [START_REF] Hauagge | Image matching using local symmetry features[END_REF] and show improvement over local symmetry features [START_REF] Hauagge | Image matching using local symmetry features[END_REF] and several alternative matching criteria for our system.

3D discriminative visual elements

In this section, we present the main ideas behind our 3D model representation and its matching to 2D depictions. We first define more precisely 3D discriminative visual elements (section 4.2.1). We then present how we match them to test depictions by seeing the matching problem as a classification task (section 4.2.2).
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Learning 3D discriminative visual elements

We define a discriminative visual elements of a 3D scene to be a mid-level patch that is rendered with respect to a given viewpoint from a 3D model with the following properties: (i) it is visually discriminative with respect to the rest of the "visual world" represented here by a generic set of randomly sampled patches, (ii) it is distinctive with respect to other patches in nearby views, and (iii) it can be reliably matched across nearby viewpoints. We employ modern representations and recent methods for discriminative learning of visual appearance, which have been successfully used in recent object recognition systems. Our method can be viewed as "multi-view geometry [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] meets part-based object recognition [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF]" -here we wish to automatically discover the distinctive object parts for a large 3D site.

We discover discriminative visual elements by first sampling candidate mid-level patches across different rendered views of the 3D model. We cast the image matching problem as a classification task over appearance features with the candidate mid-level patch as a single positive example and a negative set consisting of a large set of "background" patches. Note that a similar idea has been used in learning per-exemplar distances [START_REF] Frome | Learning globally-consistent local distance functions for shape-based image retrieval and classification[END_REF] or per-exemplar support vector machine (SVM) classifiers [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF] for object recognition and cross-domain image retrieval [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF]. Here we apply per-exemplar learning for matching mid-level structures between images. For a candidate mid-level patch to be considered a discriminative visual element, we require that (i) it has a low training error when learning the matching classifier, and (ii) it is reliably detectable in nearby views via cross-validation.

The output for each discriminative visual element is a trained classifier. At run-time, for an input painting, we run the set of trained classifiers in a sliding-window fashion across different scales. Detections with high responses are considered as putative correspondences with the 3D model, from which camera resectioning is performed.

Matching as classification

We formulate the matching problem as a classification task. Concretely, we want to match a given rectangular image patch q in a rendered view (represented by a descriptor such as HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]) to its corresponding image patch in the painting, as illustrated in where the first term measures the loss L on the positive example q (also called "exemplar") and the second term measures the loss on the negative data. Note that for simplicity we ignore in (4.2) the regularization term ||w|| 2 , but the regularizer can be easily added in a similar manner to [START_REF] Bach | Diffrac : a discriminative and flexible framework for clustering[END_REF][START_REF] Gharbi | A Gaussian approximation of feature space for fast image similarity[END_REF]. A particular case of the exemplar based classifier is the exemplar-SVM [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF][START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF], where the loss L(y, s(x)) between the label y and predicted score s(x) is the hinge-loss L(y, s(x)) = max{0, 1ys(x)} [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF].

E (w, b) = L 1, w T q + b + 1 N N i=1 L -1, w T x i + b , (4.2)
For exemplar-SVM cost (4.2) is convex and can be minimized using iterative algorithms [START_REF] Fan | Liblinear: A library for large linear classification[END_REF][START_REF] Shalev-Shwartz | Pegasos: Primal Estimated sub-GrAdient SOlver for SVM[END_REF].
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3D alignment

We seek to identify elements of the 3D model that are reliably detectable in arbitrary 2D depictions. As explained in section 4.2, we build on discriminative learning techniques to identify visually distinctive mid-level scene structures in rendered views of the 3D model . In this section, following the steps described in figure 4.2, we specify the design choices we made to solve our specific problem of matching a painting to the 3D model of an architectural site.

View selection and representation

The aim is to extract from the 3D model a set of view-dependent 2D descriptors suitable for alignment to 2D depictions. This is achieved by sampling representative views of the 3D model and learning visual element detectors from the rendered appearance in the sampled views. We sample possible views of the 3D model in a similar manner to [START_REF] Baatz | Large scale visual geolocalization of images in mountainous terrain[END_REF][START_REF] Irschara | From structure-from-motion point clouds to fast location recognition[END_REF][START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF]. First, we identify the ground plane and corresponding vertical direc--M. Aubry : Representing 3D models for alignment and recognition -Section 4.3: Discriminative visual elements for painting-to-3D alignment 101

tion. The camera positions are then sampled on the ground plane on a regular grid.

For each camera position we sample 12 possible horizontal camera rotations assuming no in-plane rotation of the camera. For each horizontal rotation we sample 2 vertical rotations (pitch angles). Views where less than 5% of the pixels are occupied by the 3D model are discarded. This procedure results in 7,000-45,000 views depending on the size of the 3D site. Example sampled camera positions are shown in figure 4.4. Note that the rendered views form only an intermediate representation and can be discarded after visual element detectors are extracted. We render views from the 3D model by adapting the publicly available OpenGL code from [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF] to work with our models. The renderer simply ray casts and samples colors from the textured models against a white background, and does not explicitly reason about illumination effects, such as shadows or specularities (although the textured models may implicitly include this information).

Each rendered view is represented by densely sampled patches at multiple scales, with each patch represented by a Histogram of Oriented Gradient (HOG) descriptor [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] (see section 2.3.1.2 for a review of HOG). We use the publicly available implementation of HOG from [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF]. We only use the contrast insensitive portion of the HOG descriptor on a 10 x 10 grid of cells with 9 orientations within each cell, which results in an 900 dimensional descriptor. The HOG descriptor is forgiving to small drawing errors thanks to its spatial and orientation binning. In addition, we use a contrast insensitive HOG to enhance the capability of matching across different depiction styles.
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Least squares model for visual element selection and matching

Every rendered view has thousands of potential visual elements and the task is to identify those that are distinct and hence likely to be detectable in different depictions.

For example, a specific tower on the building may be distinctive for the site, whereas a patch in the middle of a gray wall may not. In the following, we show that using 

Selection of discriminative visual elements via least squares regression

In section 4.2.2 we have assumed that the position and scale of the visual element q in the rendered view was given. As storing and matching all possible visual elements from all rendered views would be computationally prohibitive, the aim here is to automatically select a subset of the visual elements that are the most discriminative. First, we note that the optimal value of the cost (4.2) characterizes the separability of a particular candidate visual element q from the (fixed) negative examples {x i } and hence -M. Aubry : Representing 3D models for alignment and recognition -Section 4.3: Discriminative visual elements for painting-to-3D alignment 103 can be used for measuring the degree of discriminability of q. However, when using a hinge-loss as in exemplar SVM, optimizing (4.2) would be expensive to perform for thousands of candidate elements in each rendered view. Instead, similarly to [START_REF] Bach | Diffrac : a discriminative and flexible framework for clustering[END_REF][START_REF] Gharbi | A Gaussian approximation of feature space for fast image similarity[END_REF],

we take advantage of the fact that in the case of square loss L(y, s(x)) = (ys(x)) 2 the w LS and b LS minimizing (4.2) and the optimal cost E * LS can be obtained in closed form as 

w LS = 2 2 + Φ(q) 2 Σ -1 (q -μ), (4.3) b LS = - 1 2 (q + μ) T w LS , (4.4) E * LS = 4 2 + Φ(q) 2 , ( 4 
Φ(q) 2 = (q -μ) Σ -1 (q -μ), (4.6)
the squared norm of q after the "whitening" transformation

Φ(q) = Σ -1 2 (q -μ). (4.7)
We can use the value of the optimal cost (4.5) as a measure of the discriminability of a specific q. If the training cost (error) for a specific candidate visual element q is small the element is discriminative. If the training cost is large the candidate visual element q is not discriminative. This observation can be translated into a simple and efficient algorithm for ranking candidate element detectors based on their discriminability. In practice, we evaluate the squared "whitened" norm Φ(q) 2 of each candidate element q, which is inversely proportional to the training cost. If the whitened norm is high the candidate element is discriminative, if the whitened norm is low the candidate element is not discriminative. Given a rendered view, we consider as candidates visual element detectors of all patches that are local maxima (in scale and space) of the norm of their whitened HOG descriptor, Φ(q) 2 . Non-maximum suppression is performed using a threshold of 0.1 on the standard ratio of area intersection over union between two neighboring patches. Illustration of multi-scale discriminative visual element selection for an example rendered view is shown in figure 4.5.
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Relation to linear discriminant analysis (LDA)

Recent works [START_REF] Gharbi | A Gaussian approximation of feature space for fast image similarity[END_REF][START_REF] Hariharan | Discriminative decorrelation for clustering and classification[END_REF] have shown that linear HOG-based object detectors computed analytically using linear discriminant analysis (LDA) can reach similar object detection accuracy as detectors learnt by expensive iterative SVM training. The distribution of positive and negative data points is assumed to be Gaussian, with mean vectors μ p and μ n , respectively. The covariance matrix Σ p = Σ n = Σ is assumed to be the same for both positive and negative data. Under these Gaussian assumptions, the decision hyperplane can be obtained via a ratio test in closed form. Applying this approach to our image matching set-up, we estimate μ n and Σ from a large set of HOG descriptors extracted from patches that are sampled from a set of ("negative") photographs independent from all sites considered in this work. μ p is set to be a specific single HOG descriptor q of the particular positive example patch in the given rendered view. Parameters w LDA and b LDA of the linear classifier defining the matching score (4.1)

s LDA (x) = w T LDA x + b LDA , (4.8) 
can be obtained in closed form as

w LDA = Σ -1 (q -μ n ), (4.9) 
and The negative data distribution (centered at μ) and two example positive data distributions (q 1 and q 2 ) are modeled as Gaussians with different means but the same covariance. Right: After "whitening", the negative data is centered at the origin with unit covariance. For fixed negative data, the classifier defined by q 2 is clearly more discriminative than the classifier defined by q 1 , as measured by the overlap of the positive and negative data distributions. In the whitened space, this overlap can be measured by the Euclidean distance of the (whitened) mean of the positive data points from the origin. Note that in the original non-whitened space (left) the means of q 1 and q 2 are at the same distance from the mean of the negative data μ.

b LDA = 1 2 μ T Σ -1 μ -q T Σ -1 q . ( 4 
Note that the matching score (4.8) can also be expressed using the whitening transformation defined in (4.7) as

s LDA (x) = Φ(q) T Φ(x) - 1 2 Φ(q) 2 , ( 4.11) 
where the first term is a dot-product between whitened q and x, and the second term is an additive normalization factor reducing the matching score for q vectors with large whitened norm. It is interesting to note that under the Gaussian assumptions of LDA, the squared whitened norm Φ(q) 2 can be interpreted as the Bhattacharyya distance [START_REF] Kailath | The divergence and bhattacharyya distance measures in signal selection[END_REF] measuring the "overlap" between the Gaussian representing the negative data and the Gaussian representing the positive example q. Discriminative visual elements q with large Φ(q) (as described in section 4.3.2.1) correspond to "unusual" examples far from the distribution of the negative data. This intuition is illustrated in figure 4.6.
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Discussion

Classifiers obtained by minimizing the least squares cost function (4.2) or satisfying the LDA ratio test can be used for matching a candidate visual element q to a painting as described in equation (4.1). Note that the decision hyperplanes obtained from the least squares regression, w LS , and linear discriminant analysis, w LDA , are parallel. As a consequence, for a particular visual element q the ranking of matches according to the matching score (4.1) would be identical for the two methods. In other words, in an object detection set-up [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF][START_REF] Gharbi | A Gaussian approximation of feature space for fast image similarity[END_REF][START_REF] Hariharan | Discriminative decorrelation for clustering and classification[END_REF] the two methods would produce identical precisionrecall curves. In our matching set-up, for a given q the best match in a particular painting would be identical for both methods. The actual value of the score, however, becomes important when comparing matching scores across different visual element detectors q. In object detection, the score of the learnt classifiers is typically calibrated on a held-out set of labeled validation examples [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF].

Calibrated discriminative matching

We have found that calibration of matching scores across different visual elements is important for the quality of the final matching results. Below we describe a procedure to calibrate matching scores without the need of any labelled data. First, we found (section 4.4.4.3) that the matching score obtained from LDA produces significantly better matching results than matching via least squares regression. Nevertheless, we found that the raw uncalibrated LDA score favors low-contrast image regions, which have an almost zero HOG descriptor. To avoid this problem, we further calibrate the LDA score (4.8) by subtracting a term that measures the score of the visual element q -M. Aubry : Representing 3D models for alignment and recognition -Section 4.3: Discriminative visual elements for painting-to-3D alignment 108 matched to a low-contrast region, represented by zero (empty) HOG vector

s calib (x) = s LDA (x) -s LDA (0) (4.12) = (q -μ) T Σ -1 x. (4.13)
This calibrated score gives much better results on the dataset of [START_REF] Hauagge | Image matching using local symmetry features[END_REF] as shown in section 4.4.4.3 and significantly improves matching results on our dataset of historical photographs and non-photographic depictions.

Filtering elements unstable across viewpoint

Here we wish to discard elements that cannot be reliably detected in close-by rendered views. This filtering criterion removes many unstable elements that are, for example, ambiguous because of repeated structures in the rendered view or cover large depth discontinuities and hence significantly change with viewpoint.

We define close-by views based on the visual overlap of imaged 3D structures rather than, for example, the distance between camera centers. In detail, to measure visual overlap between views V 1 , V 2 we define the following score

S(V 1 , V 2 ) = 1 |V| {x 1 i ,x 2 i }∈V e - (x 1 i -x 2 i ) 2 2σ 2 x -1 2σ 2 d (d(x 1 i )-d(x 2 i )) 2 1 2 (d(x 1 i )+d(x 2 i )) 2 , ( 4.14) 
where {x 1 i , x 2 i } ∈ V is the set of corresponding points (pixels) in view V 1 and V 2 , respectively, x j i is the location of pixel i in view j, d(x j i ) is the depth (distance to the 3D model) at pixel i in view j, and σ x and σ d are parameters. The first term in the exponent measures the squared image distance between the corresponding pixels. the corresponding linear detector given by eq. (4.12) in a sliding window fashion. To suppress potential repeated structures, we require that the ratio between the score of the first and second highest scoring detection in the image is larger than a threshold of 1.04, similar to [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. We keep visual elements that are successfully detected in more 

Robust matching

Since we wish to obtain matches that are both (i) non-ambiguous and (ii) have a high matching score we perform the following two step procedure to select candidates visual element matches for a given depiction. First, we apply all visual element detectors densely and at all scales on the depiction using the calibrated similarity score (4.12), perform non-max suppression and take the top 200 detections sorted according to the first to second nearest neighbor ratio [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. This selects the most non-ambiguous matches. Second, we sort the 200 matches directly by score (4.12) and consider the top 25 matches to compute the camera viewpoint as described in section 4.3.6.

Recovering viewpoint

In this section we describe how, given the set of discriminative visual elements gleaned from the 3D model, to recover the viewpoint and intrinsic parameters of an input painting or historical photograph with respect to the 3D model. We assume that the paintings are perspective scene renderings and seek to recover the camera center and rotation via camera resectioning [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF].

For detection, each discriminative visual element takes as input a 2D patch from the painting and returns as output a 3D location X on the 3D model, a plane representing the patch extent on the 3D model centered at X, and a detector response score indicating the quality of the appearance match. Following the matching procedure described in section 4. on the 3D model, and have been shown to work well for structure-from-motion with planar constraints [START_REF] Szeliski | Geometrically constrained structure from motion: Points on planes[END_REF]. We use RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] to find the set of inlier correspondences to a restricted camera model where the camera intrinsics are fixed to initial values, with the focal length set to the image diagonal length and the principal point set to the center of the image. We use a RANSAC inlier threshold set to 1.5% of the image diagonal length to recover the camera center and rotation. The recovered viewpoint forms a coarse alignment of the input depiction to the 3D model, which is shown in figure 4.9.

Summary

Candidate visual elements {q i } are obtained by finding local maxima of (4.6), which is inversely proportional to the least squares regression training error given by (4.5) as described in section 4.3.2.1. Visual elements that cannot be reliably detected in nearby viewpoint are then filtered out using the procedure described in section 4.3.4. The remaining visual elements are then matched to a painting using the two step matching -M. Aubry : Representing 3D models for alignment and recognition -Section 4.4: Results and validation 113 procedure described in section 4.3.5 that uses the calibrated LDA score (4.12). The most confident matches are then used to recover the approximate viewpoint of the artist with the algorithm described in section 4.3.6.

Results and validation

In this section, we first describe our dataset of non-photographic depictions and historical photographs in 4.4.1. We then provide qualitative (4.4.2) and quantitative (4.4.3) results of our full pipeline. Finally, we provide a detailed analysis of our algorithm in 4.4.4.

Dataset for painting-to-3D alignment

We have collected a set of human-generated 3D models from Trimble 3D Warehouse for the following architectural landmarks: Notre Dame of Paris, Trevi Fountain, and San

Marco's Basilica. The Trimble 3D Warehouse models for these sites consist of basic primitive shapes and have a composite texture from a set of images. In addition to the Trimble 3D Warehouse models, we also consider a 3D model of San Marco's Square that was reconstructed from a set of photographs using dense multi-view stereo [START_REF] Furukawa | Towards internet-scale multi-view stereo[END_REF].

Note that while the latter 3D model has more accurate geometry than the Trimble 3D

Warehouse models, it is also much noisier along the model boundaries.

We have also collected from the Internet 85 historical photographs and 252 nonphotographic depictions of the sites. We separated the non-photographic depictions into the following categories: 'drawings' (60 images), 'engravings' (45 images) and ings, and pastels. Table 4.1 shows the number of images belonging to each category across the different sites. 3D model as well as different depiction styles. Our approach succeeds in recovering the approximate viewpoint in spite of these challenging appearance changes and the varying quality of the 3D models. In figure 4.12 we show alignments to a set of challenging examples where the assumption of a perspective rendering is significantly violated, but the proposed approach was still able to recover a reasonable alignment. Notice the severe non-perspective scene distortions, drawing errors, and major architectural differences (e.g. a part of the landmark may take a completely different shape). Notice that our system is able to recover viewpoints that are to the rear of the main facade of the Notre Dame cathedral, which has not been possible in prior work [START_REF] Snavely | Photo tourism: Exploring photo collections in 3D[END_REF] due to the lack of reconstructed structure in these areas. Recovering approximate camera viewpoints for paintings and historical photographs opens up the possibility of large-scale automatic computational re-photography for such depictions [START_REF] Bae | Computational rephotography[END_REF]. The video http://www.di.ens.fr/willow/research/painting_to_3d/data/ND.mp4 shows an example of a virtual tour of an architectural site transitioning between viewpoints of different images in 3D in a similar manner to [START_REF] Snavely | Photo tourism: Exploring photo collections in 3D[END_REF], but here done for the challenging case of historical photographs, non-photographic depictions, and only an approximate 3D model from Trimble 3D Warehouse. Many architectural sites now have 3D models geo-located on a map, which, combined with the proposed approach, would enable geo-locating historical photographs and non-photographic depictions [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF] for, e.g., navigation and exploration of non-photorealistic depictions (as shown in our video or, coarsely aligned manually, at http://www.whatwasthere.com) or in situ guided tours of historical imagery using mobile or wearable display devices.

Qualitative results

A first step into this direction is to use the geo-localization of the reference 3D models to display the depictions on a 3D map, as shown in figure 4.14 where the paintings are visualized in Google Earth.

Quantitative evaluation

In the following we give details of the performed user-study to evaluate the quality of the alignments (section 4.4. 

Evaluating alignment

To quantitatively evaluate the goodness of our alignments, we have conducted a user study via Amazon Mechanical Turk. The workers were asked to judge the viewpoint 4.2 shows the performance of our algorithm for the different 3D sites considered in this work. As expected, the performance varies to some extent across the different models depending on their size, quality and the difficulty of the matching task.

However, the failure (no match) rate remains consistently below 30%. ods for the 141 depictions of San Marco Square -the largest 3D model in our dataset with 45K sampled viewpoints. We compare our algorithm against the following four baselines: (i) SIFT on rendered views, (ii) viewpoint retrieval (corresponding to the coarse alignment step of [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF]), (iii) exemplar SVM [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF], and (iv) mid-level painting visual elements that, similar to [START_REF] Singh | Unsupervised discovery of mid-level discriminative patches[END_REF], learns mid-level visual elements directly from paintings, rather than the 3D model. The implementation details of each baseline are given next.

For the SIFT on rendered views baseline we extract and match SIFT descriptors computed at interest points across scale [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] over each input depiction and all rendered views. We use orientation sensitive descriptors as we found them to be more reliable than orientation invariant descriptors in practice. We perform geometric verification by finding inliers to an affine homography between the input depiction and each rendered viewpoint. Then, we take the rendered viewpoint with the most inliers and perform camera resectioning with RANSAC using the SIFT putative matches for that view. We -M. Aubry : Representing 3D models for alignment and recognition -Section 4.4: Results and validation 121 return as output a rendering of the final resectioned viewpoint. Note that the matching procedure is not standard since it is extracting descriptors from rendered views, which accounts for viewpoint changes. In other words, the SIFT matching step does not need to be viewpoint invariant as we are matching to a similar viewpoint from the rendered set. This baseline is similar in spirit to matching with Viewpoint Invariant Patches (VIP) [START_REF] Wu | 3D model matching with viewpoint invariant patches (VIPs)[END_REF], except no depth or rectification is needed for the paintings. This baseline performs reasonably well, having 40% good alignments compared with 51% for our algorithm. The good performance is largely due to alignments of historical photographs (70% vs. 50% for our method). However, if historical photographs are removed from the dataset, the SIFT on rendered views baseline drops to 27% good alignments, while our algorithm still achieves 52% good alignments.

The viewpoint retrieval baseline consists of matching a global Gist descriptor [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF] extracted for each input depiction and all rendered views. The Gist descriptors are compared using L2 distance and the view corresponding to the minimum distance is returned. The Gist descriptor is sensitive to viewpoint, with the matching procedure corresponding to the coarse alignment step of [START_REF] Russell | Automatic alignment of paintings and photographs depicting a 3D scene[END_REF]. Our method clearly outperforms the viewpoint retrieval baseline mainly because the sampled rendered views fail to cover the enormous space of all possible viewpoints. Matching the global image-level Gist descriptor would require much denser and wider sampling of views.

To reduce the viewpoint coverage issue, we explore as a baseline the exemplar-SVM approach of [START_REF] Shrivastava | Data-driven visual similarity for cross-domain image matching[END_REF]. For this a single exemplar SVM detector is trained for each input depiction and is subsequently matched across all scales and 2D locations in sliding window fashion in the rendered views. While the performance improves over Gist matching, nonetheless the results remain limited since the approach cannot handle partial occlusions and significant deformations that are common in non-photorealistic depictions.
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Moreover, the procedure is computationally expensive since an SVM detector is trained with hard negative mining for each input painting, with the resulting detector run in a sliding window fashion over all rendered views. In contrast, our approach learns offline a few thousand visual element detectors that compactly summarize an entire architectural site. At run time, only the learnt visual elements are applied to the input depiction.

To overcome the issues with partial occlusion and significant deformations, but keeping the idea of matching the input painting to the rendered views, we extract mid-level visual elements directly from the input paintings without any explicit knowledge of the 3D model. In detail, we extract 25 mid-level discriminative visual elements from each input painting using the approach presented in section 4.3.2.1. The painting visual elements are then matched in a sliding window fashion to all rendered views. For each rendered view inlier point correspondences are recovered via camera resectioning with RANSAC over the maximal detector responses. The resectioned view that yields the largest number of inliers is rendered and returned. Note that this baseline is similar in spirit to learning mid-level patches [START_REF] Doersch | What makes paris look like paris?[END_REF][START_REF] Singh | Unsupervised discovery of mid-level discriminative patches[END_REF] 

Geo-localization

We explored the potential of our method for geo-localization of historical and nonphotographic depictions. We summarized the three Trimble Warehouse models with 15,000 discriminative visual elements each. For each input depiction, we applied all of the 45,000 detectors corresponding to those elements, selected the 25 most confident ones, and performed camera resectioning using RANSAC as described in section 4.3.6, with the constraint that only elements from the same site could be counted as inliers.

Thus, our output is both a specific 3D model and a viewpoint.

We report our results on the task of identifying the 3D model of the architectural site.

Table 4.5 shows the results separately for the three different sites and across different depiction styles. Despite the difficulty of the task due to the large variety of viewpoints and styles, our method identified correctly the architectural site for 86% of the depictions, which is much larger than the 33% chance performance, showing the potential of our method for geo-localization. 

Algorithm analysis

In this section we evaluate variants of the three steps of our algorithm: viewpoint rendering style, visual element selection, and visual element matching. Finally, we

show and analyze the main failure modes.

Viewpoint rendering style

Since our goal is to align a 3D model to non-photorealistic depictions, we explored the possibility of applying different rendering styles during the viewpoint rendering step of our algorithm. We applied the 'watercolor' and 'accentuated edges' style filters from Photoshop CS4 to our rendered views to generate, respectively, a 'painting like' and a 'drawing like' style. Example filter outputs are shown in figure 4. [START_REF] Aubry | Fast and robust pyramidbased image processing[END_REF]. We quantitatively evaluate the output of our full system (using the style filters during rendering) on 147 depictions of the Notre Dame site via a user study on Amazon Mechanical Turk. Results are summarized in table 4.6. Both styles result in a decrease of the overall matching performance compared to the original rendering. However, when results are split by depiction (not reported in table 4.6) the drawing style results in a small increase of matching performance on drawings (68% good matches vs. 62% good matches with the original rendering). While this difference amounts to only 3 additional matched depictions, it opens-up the possibility of learning a vocabulary of visual elements specific for each rendering style.

Visual element selection

Here we evaluate benefits of the proposed discriminative visual element selection. To measure the improvement in the quality of the selected visual elements we compute the percentage of correct matches (inliers). We consider only the San Marco square 4.7: Evaluation of visual element matching. We report the mean average precision on the "desceval" task from the benchmark dataset of [START_REF] Hauagge | Image matching using local symmetry features[END_REF].

Matching method mAP ("desceval") Local symmetry [START_REF] Hauagge | Image matching using local symmetry features[END_REF] 0 with cross-validation (section 4.3.3). For example, inspecting figure 4.17(a) reveals that within the top 10 matches there are 27.9% of correct matches for the 3D overlap method, 31.9% for the discriminative selection, and 35.4% for the discriminative selection with cross-validation. This demonstrates that visual elements selected by the proposed method are more likely to be correctly recovered in the painting.

Visual element matching

We evaluate the proposed matching procedure on the 'desceval' task from the benchmark dataset collected in [START_REF] Hauagge | Image matching using local symmetry features[END_REF]. The benchmark consists of challenging imagery, such as historical photographs and non-photographic depictions of architectural landmarks.

-M. Aubry : Representing 3D models for alignment and recognition -Section 4.4: Results and validation 127 Pairs of images in the dataset depicting a similar viewpoint of the same landmark have been registered by fitting a homography to manual point correspondences. The task is to find corresponding patches in each image pair. Since the ground truth correspondence between points is assumed known via the homography, a precision-recall curve can be computed for each image pair. We report the mean average precision (mAP) measured over all image pairs in the dataset.

Following [START_REF] Hauagge | Image matching using local symmetry features[END_REF] we perform matching over a grid of points in the two views, with the grid having 25 pixel spacing. In table 4.7 we report the mAP for different visual element matching methods for our system, along with the local symmetry feature baseline of [START_REF] Hauagge | Image matching using local symmetry features[END_REF]. Our full system using the calibrated matching score (section 4. Both timings are on a single 4-cores machine with our Matlab implementation.

Conclusion

We have demonstrated that automatic image to 3D model alignment is possible for a range of non-photographic depictions and historical photographs, which represent extremely challenging cases for current local feature matching methods. To achieve this we have developed an approach to compactly represent a 3D model of an architectural site by a set of visually distinct mid-level scene elements extracted from rendered views, and have shown that they can be reliably matched to a variety of photographic and nonphotographic depictions. We have also shown an application of the proposed approach -M. Aubry : Representing 3D models for alignment and recognition -Section 4.5: Conclusion 130 to computational re-photography to automatically find an approximate viewpoint of historical photographs and paintings. This work is just a step towards computational reasoning about the content of non-photographic depictions. The developed approach for extracting visual elements opens-up the possibility of efficient indexing for visual search of paintings and historical photographs (e.g. via hashing of the HOG features as in [START_REF] Dean | Fast, accurate detection of 100,000 object classes on a single machine[END_REF]), or automatic fitting of complex non-perspective models used in historical imagery [START_REF] Rapp | A geometrical analysis of multiple viewpoint perspective in the work of Giovanni Battista Piranesi: an application of geometric restitution of perspective[END_REF].

Chapter 5

Seeing 3D Chairs

Introduction

In chapter 3 we have designed a 3D shape descriptor adapted to 3D instance alignment.

In chapter 4, we have introduced a representation of 3D models that enabled matching with approximate 2D perspective rendering of the model. In this chapter we want to go beyond instance-level alignment and perform 2D-to-3D category-level alignment. To achieve this goal, we build on the notion of discriminative visual elements introduced in chapter 4.

We describe an object category by utilizing large quantities of 3D CAD models that have been made publicly available online. Using the "chair" class as a running example, we propose an exemplar-based 3D category representation, which can explicitly model chairs of different styles as well as the large variation in viewpoint. We develop an approach to establish part-based correspondences between 3D CAD models and real photographs. This is achieved by (i) representing each 3D model using a set of viewdependent mid-level visual elements learned from synthesized views in a discriminative fashion, (ii) carefully calibrating the individual element detectors on a common dataset 

Motivation

From its very beginnings [START_REF] Roberts | Machine perception of three-dimensional solids[END_REF] and up until the early nineties [START_REF] Mundy | Object recognition in the geometric era: A retrospective[END_REF], object recognition research has been heavily geometry-centric. The central tenet of the time was alignment1 , and the act of recognition was posed as correctly aligning a 3D model of an object with its 2D depiction in the test image [START_REF] Huttenlocher | Recognizing solid objects by alignment with an image[END_REF][START_REF] Lowe | Three-dimensional object recognition from single two-dimensional images[END_REF]. The parameters recovered during alignment (object pose, object scale, etc.) served as the output of the recognition process, to be used, for instance, in the perception-manipulation loop in robotics applications. Unfortunately, the success of these 3D model-based methods was largely limited to instance recognition tasks for objects with well-pronounced rectilinear structures (e.g. staplers were a favorite example). As the field moved toward category recognition and objects with more complex appearance, 3D model-based object recognition has been replaced by the new 2D appearance-based methods (e.g. [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF][START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF][START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF]).

These methods forgo 3D and operate directly on the 2D image plane (see section 2.3).

Thus, instead of a 3D model of an object, they use a large dataset of 2D views of the object class from different viewpoints, as the model. These methods have shown steadily improving performance on a number of challenging tasks, such as the PAS-CAL VOC dataset [START_REF] Everingham | The Pascal visual object classes (VOC) challenge[END_REF]. However, their main drawback is that the result of a successful recognition is typically just the name of the object that was found (e.g. "chair") and a bounding box to indicate its rough location within the image. While this type of result is reasonable for tasks such as retrieval (e.g. "find all chairs in this dataset"), it is rather unsatisfying for doing any deeper reasoning about the scene (e.g. "what's the pose of the chair?", "can I sit on it?", "what is this chair occluding?", "how can I fold this chair?", etc). All these questions could be trivially answered, if only we had a 3D model of the chair aligned with the image!

The work presented in this chapter aims to combine some of the benefits of the 3D model-based instance alignment methods with the modern, appearance-based object category tools towards getting a best-of-both-worlds object recognition engine. The idea is to use a large library of textured 3D object models that have become publicly available on the Internet to implicitly represent both the 3D shape of the object class, as well as its view-dependent 2D appearance. Our approach can be considered as a marriage between part-based discriminative models [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF] and exemplar-based matching [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF]. Like part-based models, we represent objects using a set of connected appearance parts. But, like exemplar-based methods, we avoid explicitly training an object model by relying on a large dataset of object instances that serve as their own model, both in 2D as well as 3D.

We picked the "chair" category as the running example in this paper because: 1) it is very hard even for the recent methods [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF], achieving only 0.13-0.20 average precision (AP) on PASCAL VOC [1]; 2) it is a category well-represented in the publicallyavailable 3D model collections (e.g. Google/Trimble 3D Warehouse), 3) chairs have huge intra-class variation -whereas there are perhaps only hundreds of types of cars ever made, there are thousands of different types of chairs! Here we take another approach and extend the 3D alignment method introduced in the previous chapter to category alignment. We do so using a data driven approach on a much larger scale than previous works that were typically limited to a few dozens of 3D instances. This way we avoid modeling the correspondences between the different instances or specifying a general 3D model for the category.

From instance-level to category-level alignment

Approach Overview

Our representation consists of a large set of 3D CAD models, which captures both the large variety of chair styles and their different possible viewpoints. Chair detection in new images is accomplished by finding an alignment between the 2D chair and the most similar 3D chair model rendered at the most appropriate camera viewpoint, as shown in Figure 5.1. Aligning photographed 2D objects with the most similar (but not identical) computer-generated 3D model is a very hard problem. Here we address it by representing the collection of all 3D models by more than 800,000 calibrated viewdependent mid-level visual elements learned in a discriminative fashion from rendered views.

At test time, all the learned visual elements are applied to the test image in parallel.

The most spatially and appearance-wise consistent alignment is found, while preserving the style and viewpoint-consistency constraints. The details of the algorithm are described in Section 5.2.

Contributions.

Posing object category detection in images as a 3D instance alignment problem, we: 1) develop an exemplar-based 3D category representation capturing variations across object style and viewpoint; and 2) establish the correspondence between computer-generated 3D models and 2D photographs using a large collection of mid-level visual elements.
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Discriminative visual elements for category-level 3D-2D alignment

Explicitly representing and synthesizing the fine-grained style and viewpoint of the 3D object category significantly simplifies the difficult task of 2D-to-3D alignment.

Nevertheless, reliably matching a synthesized view of an object to a real photograph is still challenging due to differences in, e.g., texture, materials, color, illumination or geometry. Furthermore, it is well known that computer generated images have different statistical properties than real photographs. To address these issues, in a similar manner as in chapter 4, we cast the matching problem as a classification task, and represent the collection of 3D models using a large set of mid-level visual elements -linear classifiers over HOG features learnt from the rendered views in a discriminative fashion (section 5.2.1). As each of the hundreds of thousands of visual elements is learnt individually, calibrating their matching scores becomes a critical issue. We address this by learning a linear calibrating function for each element on a common dataset of negative images (section 5.2.2). Finally, we wish to be tolerant to small geometric deformations (such as a chair with longer legs or shorter armrests). We develop a matching procedure (section 5.2.3) that allows for small deformations in the spatial configurations of the matched visual elements while preserving consistent viewpoint and style.

Representing a 3D shape collection

Similar to section 4.3.1, we need to specify valid views to represent the 3D models.

Here, our input is not a single 3D model but a large collection of 3D models. 

Calibrating visual element detectors

As noted in prior work [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF] and in section 4.3.3, calibration of matching scores across different visual element detectors is important for the quality of the final detection outputs. As we learn more than 800K element detectors independently, we found careful calibration of their scores to be critical. We address this issue by running all detectors on a common large dataset of 200K negative patches that do not contain the object of interest. Similar to chapter 4, we represent each visual element using a linear classifier, which scores each candidate match x as:

S t,o,k (x) = w T t,o,k x (5.1)
where o is the viewpoint, t the model, k the discriminative element ID, and where q t,o,k is the HOG of the discriminative element, Σ is the covariance of the HOG distribution and μ its mean. This detector is calibrated in an affine way: We recover the calibration parameters with respect to two operating points. To select the first operating point, we run the visual element detector on 200K patches that are randomly sampled from the negative image set, which is known to not contain any chairs. We select as operating point the negative patch x n that yields a false positive rate of κ. In our experiments, we used κ = 0.01%, i.e., x n is the patch having the 99.99 percentile detection score. We choose as the second operating point μ n the mean HOG feature vector. Given these two points, we set S calib t,o,k (x n ) = 0 and S calib t,o,k (μ n ) = -1. This calibration leads to the expected false positive rate of 0.01% when S calib t,o,k (x) = 0. We found this to be a good compromise between representing the tail of the score distribution and the amount of time to scan the negative data.

w t,o,k = Σ -1 (q t,o,k -μ) ( 5 
S
The calibration procedure is illustrated figure 5.6 and the influence of the calibration parameter is analyzed in section 5.3.4.2.

Matching spatial configurations of visual elements

For the final object detection, we wish to enforce a consistent spatial layout of the visual element detections corresponding to a rendered 3D view. We assume a star model for the spatial layout, similar in spirit to [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF]. The star model provides spatial constraints, while allowing for small spatial deformations. Moreover, the star model Given a match we deduce a candidate bounding box by adding 10% to the bounding box of the aligned rendered chair. We perform non-max suppression on the resulting bounding boxes in the following manner. Starting from the most confident detection in the image we (i) remove all other detections that overlap this detection with more than 0.5 area ratio overlap but only (ii) downweight (not remove) the remaining detections with non-zero overlap. This procedure is then iterated starting from the next remaining most confident detection. We found this strategy removes well overlapping false positives while preserving highly confident (and correct) close-by detections (e.g. chairs around a table). This motivates a system that would reason about the entire scene jointly.

Experiments and results

In this section we introduce our new dataset of 3D chairs (section 5.3.1), show qualitative output alignment results of our system (section 5.3.2) and quantitatively evaluate our approach on images from the challenging PASCAL VOC dataset (section 5.3.3). using more models consistently improves the result. The curve also seems to indicate that the improvement is still far from convergence and that more 3D models will further improve the performance.

Calibration

The calibration procedure we have developed in section 5.2.2 using negative data is different from the one of section 4.3.3, which was defined in the closed form. The one used in this chapter has two main advantages. First, it allows us to discard immediately most of the potential matches, i.e. the 99.99% with scores lower than 0. This makes the alignment procedure more efficient. Second, the calibration of section 4.3.3 makes the 0 score meaningful and thus the fact of considering only positive scores as in equation (5.5) possible.

Because of the inefficiency of the detection method of chapter 4 which requires keeping all candidate matches, we used only 100 chairs models to compare the two methods.

The MAP detection score obtained with the discriminative calibration of section 5.2.2 is 0.320, while the score with closed form calibration of chapter 4 is only 0.093, showing a clear advantage for the method developed in this chapter.

-M. Aubry : Representing 3D models for alignment and recognition - Another interesting question is the choice of the calibration parameter κ. Working with much larger or much smaller value of the calibration parameter κ is problematic for computational reasons. If the parameter is large, we will have to consider many potential matches for the alignment. If it is small, we will have to evaluate the distribution of the scores on a much larger set of negative examples to calibrate the detectors. We experimented with several parameters κ and report the results in table 5.3. The detection score obtained with a calibration parameter κ = 0.001% is 0.352, which is slightly but not significantly better than the 0.349 obtained in exactly the same conditions with κ = 0.01%. Qualitatively, the results are also very similar using the two parameters.

This shows that the method is robust to the choice of the calibration parameter κ.

Deterministic part selection

To demonstrate the benefits of our discriminative part selection, we have defined visual elements manually on a regular grid and tried to match them using the same framework as before. We have overlapped a 3 by 3 grid of elements on top of the rendered views and tested different relative size of the visual elements with respect to the larges dimension of the chair. We have added a global element which overlaps the full chair. This leads to a total of ten elements per rendered view which can be directly compared to the previous results. The results for several relative size of the visual elements are reported obtained with our discriminative elements selection method).

Failure cases

In Figure 5.14 we show common failure modes of our algorithm. We observed two main causes for false positives. First, some of the database chairs have a particular texture that can produce confident detections on textured regions, such as the rear view of the chair matching the checkered window pattern in We also observed this effect in estimating the pose of the chair, which resulted in confusing the front/back of the chair, as seen in Figure 5.14(c).

The chairs our algorithm miss are mainly special chair types, such as sofa-like chairs, for which we do not have training examples, and chairs strongly occluded by other objects and people.

Computational cost

Computing the discriminative elements takes 6 seconds per rendered view (1 second for extraction and 5 seconds for calibration) on a single machine, which can be performed offline and parallelized. The main bottleneck is having to match and align an image to the large number of rendered views from the 3D models, which involves detecting over 800K discriminative visual elements. Our Matlab implementation matches and aligns an image in 2 minutes on a 80-core cluster. While this computational complexity is high, there is room for optimism that our approach can be made significantly more efficient. For instance, the recent part-based hashing technique of [START_REF] Dean | Fast, accurate detection of 100,000 object classes on a single machine[END_REF] could be directly applied to our algorithm by applying winner-take-all hashing [START_REF] Yagnik | The power of comparative reasoning[END_REF] on the discriminative visual elements. As we have a similar number of part detectors as considered in their work, we believe we can process an image in less than 20 seconds on a single multicore processor.

Conclusion

We have demonstrated successful detection and alignment of 3D CAD chair models to chairs depicted in 2D imagery. Our approach relied on matching spatial configurations of mid-level discriminative visual elements extracted from a large database of CAD -M. Aubry : Representing 3D models for alignment and recognition -Section 5.4: Conclusion 155 models having a large number of rendered views. Our algorithm is able to recover the chair pose, in addition to its style. We evaluated our approach on the challenging PASCAL VOC dataset and showed that, when combined with the output of the deformable parts model detector [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF], we are able to achieve higher detection accuracy than using either method alone. We also demonstrated that our algorithm is able to reliably recover the chair pose and style, as shown in our user study and orientation error analysis. The output alignments produced by our system open up the possibility of joint 3D reasoning about the depicted objects in a scene toward the larger goal of full 3D scene understanding.

Chapter 6 Discussion

In this chapter, we summarize the contributions of this thesis and present some future extensions.

Contributions

In this thesis, we presented new representations of 3D models to tackle different alignment problems.

• in chapter 3 we have introduced the Wave Kernel Signature. It improves state of the art results for 3D point descriptors. We have presented a mathematical analysis of the variations of the Laplace-Beltrami eigen-values that indicates the WKS combines the information from different spectral frequencies in an optimal way. Beside being a natural tool for feature-based shape alignment, we have shown that it is also well suited for many shape analysis tasks.

• reliably non-realistic depictions to 3D models. Central to the success of our representation is the key idea to view the feature matching problem as a least square classification task.

• in chapter 5 we have extended the notion of discriminative visual elements to represent not only a single 3D model but a full collection of 3D models. We have shown that it allows to perform category-level alignment and recognition. Using a large database of Internet CAD models and a single test image, we can predict the position, pose and an approximate 3D model of an object.

Future work

Anisotropic Laplace-Beltrami operators

In chapter 3 we have worked to aggregate in an optimal way the informations from the eigen-values and eigen-functions of the Laplace-Beltrami operator. A question that has received little attention is to ask if the Laplace-Beltrami operator itself is an optimal choice. Taking inspirations from works in image processing where anisotropic diffusion is often preferable to isotropic diffusion, we introduced in We have shown that it can improve the results of several standard shape analysis algorithms. A more systematic study would be needed to determine how much anisotropy can help different approaches.

Object compositing

In chapter 5 we have presented a method that can recover an approximate 3D model of an object by matching it to many 3D models and selecting the most confident one.

However, this method makes little use of the fact that many 3D matches are available.

We want to explore the possibility to incorporate informations from several 3D models to explain a given observed instance and thus predict better 3D informations from a single image. This idea is illustrated figure 6.2 for 2D compositing. In the same -M. Aubry : Representing 3D models for alignment and recognition -Section 6.2: Future work 159 direction, [START_REF] Su | Estimating image depth using shape collections[END_REF] recently utilized the analysis of a large shape collection to predict accurately the depth of a segmented 2D test instance.

Use of 3D shape collection analysis

In chapter 5 we have introduced a method to align shape collections with an image.

Using 3D tools similar to the one presented in chapter 3, such as the one used in [START_REF] Huang | Functional map networks for analyzing and exploring large shape collections[END_REF], to analyze automatically the 3D collection, we could transfer informations such as parts position to an image, improving the fine grained analysis and understanding of the image content. This exciting perspective could push new research in 3D shape collection analysis.

Synthetic data for deep convolutional network training

As mentioned in section 2.3.1.4, the use of convolutional neural networks has recently improved the performance of many vision algorithms. One of the limitation of these networks is that they need lots of data to be trained efficiently. For example, to train a network predicting the orientation of objects, it would be necessary to annotate a huge database of oriented objects. To avoid this expensive manual annotation, synthetic data could be used. However the possibility to train CNN with synthetic data remains an open research question. In this direction, [START_REF] Gupta | Learning rich features from RGB-D images for object detection and segmentation[END_REF] recently used synthetic depth images to train a CNN for detection from depth data.

Exemplar based approach with CNN features

The statistics and information encoded in CNN features is very different from the one of more standard features. How they can be used to perform exemplar learning, similar to what has been presented in chapter 4 for HOG descriptors is thus an open question.

It is however fascinating because using specifically learned features, very high quality exemplar learning may be possible, bringing computer vision algorithms closer to what a human is capable of doing.

  variability. An example of shape matching is shown on figure 1.1a. Matching between two 3D shapes using our Wave Kernel Signature.(b) Examples of non-photographic depictions of Notre Dame in Paris correctly aligned to its 3D model (shown in the top left inset) and visualized in Google Earth[START_REF]Google earth[END_REF] (c) Approximate models correctly recovered by our algorithm and overlapped with the input image (left) in their recovered viewpoint (right).

Figure 1 . 1 :

 11 Figure 1.1: The three different 3D model alignment tasks addressed in this thesis.

  Examples of paintings aligned by our algorithm with a 3D model of Notre-Dame in Paris are shown on figure 1.1b.

Figure 1 . 3 :

 13 Figure 1.3: Challenges of 3D shape alignment. Examples of shape perturbations from the TOSCA dataset [50].

Figure 1 . 4 :

 14 Figure 1.4: Challenges of 2D-3D instance alignment.

Figure 1 . 5 :

 15 Figure 1.5: Matching local features, such as SIFT [121] often works well for two similar photographs (left), but fails between two very different images such as a photograph and a watercolor (right). This figure shows the most confident SIFT matches between the top image and the two bottom images in terms of the first to second nearest neighbor ratio[START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF].

Figure 1 . 6 :

 16 Figure 1.6: Aligning 3D models to objects, such as chairs in this image is difficult because of occlusion, clutter, the different viewpoints and illumination effects. Note that this image was computer generated.

Figure 1 . 7 :

 17 Figure 1.7: Intra-class variation is one of the main challenges of category-level recognition. This figure shows a small set of chairs with different appearance, topology and parts.

  The different instances belonging to the same category can have different textures, more or less parts parts or even a completely different topology, as shown in figure 1.7 for the "chair"

( a )Figure 2 . 2 :

 a22 Figure 2.2: Shape context accumulates information in a log-polar way.

( a )

 a Shape matching minimizing the elastic energy of the deformation. Figure from [177] (b) Shape matching with functional maps enforcing HKS and WKS consistency.

Figure from [ 136 ]Figure 2 . 5 :

 13625 Figure 2.5: Shape matching by minimizing the deformation (left) and enforcing descriptor consistency (right)

Figure 2 .

 2 5b shows an example of matching with functional maps. Note that functional maps used the Wave Kernel Signature introduced in chapter 3 as point descriptor.

Figure 2 . 6 :

 26 Figure 2.6: Object instance-level alignment by Lawrence Roberts 1963[START_REF] Roberts | Machine perception of three-dimensional solids[END_REF] 

[ 89 ]Figure 2 . 7 :

 8927 Figure 2.7: Instance alignment using minimal keypoint correspondence in[START_REF] Huttenlocher | Recognizing solid objects by alignment with an image[END_REF] 

Figure 2 . 8 :

 28 Figure 2.8: Instance alignment using perceptual grouping by David Lowe[START_REF] Lowe | Three-dimensional object recognition from single two-dimensional images[END_REF]. Figure from[START_REF] Lowe | Three-dimensional object recognition from single two-dimensional images[END_REF].

( a )Figure 2 . 9 :

 a29 Figure 2.9: Recent use of contour based alignment methods for geo-localization (left) and sculpture recognition (right).

Figure 2 .

 2 Figure 2.10:The idea of detecting stable region across different viewpoint and imaging conditions is very general, however, most applications consider elliptic regions[START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF].

Figure 2 . 11 :

 211 Figure 2.11:The HOG descriptor[START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] summarizes the local gradient orientations.

Figure 2 . 12 :

 212 Figure 2.12: The SVM in the HOG-SVM pipeline [49] emphasizes the important gradient orientations. (a) Average gradient for the pedestrian category. (b) and (c) Positive and negative SVM weights for each HOG cell. (d) Test image. (e) HOG descriptor of the test image. (f ) and (g) HOG descriptor of the image weighted by the positive and negative SVM weights. Figure from [49].

50 Figure 2 . 13 :Figure 2 . 14 : 51 Figure 2 . 15 :Figure 2 . 16 :

 5021321451215216 Figure 2.13:The idea of pictorial structures[START_REF] Martin | The representation and matching of pictorial structures[END_REF] is to represent an object category by a set of parts with constraint relative locations. Figure from[START_REF] Martin | The representation and matching of pictorial structures[END_REF] 

Figure 2 .

 2 Figure 2.19:The idea of extending DPMs to 3D, here in the framework of Hejrati and Ramanan[START_REF] Hejrati | Analyzing 3d objects in cluttered images[END_REF]. Figure from[START_REF] Hejrati | Analyzing 3d objects in cluttered images[END_REF].

56 Figure 3 . 1 :

 5631 Figure 3.1: Schrödinger's cat[START_REF] Schrödinger | Die gegenwärtige Situation in der Quantenmechanik[END_REF] and its Wave Kernel Signatures. Based on the Schrödinger equation each point on an object's surface is associated with a Wave Kernel Signature. Note that the signature captures shape variations in the environment of the considered point at various spatial scales: While the two points of the bottom are quite similar for large scales (small values of the energy), the two others are quite different.

61 Figure 3 . 2 :

 6132 Figure 3.2: First and 300th eigenfunction of the Laplace-Beltrami operator. The colors represent the values of the eigenfunctions, blue being the most negative and red the most positive value. The eigenfunctions can be thought of as vibration modes, with low frequencies having slow spatial variation, and high frequencies having fast spatial variation.

Figure 3 . 3 :

 33 Figure 3.3: Comparison of the Heat Kernel Signature (first column), the scaled Heat Kernel Signature (second column) and the Wave Kernel Signature (third column) for two different points (first and second line) and two different shapes (red and blue).Note that while remaining robust to deformations the WKS captures more information including shape differences at finer scales.

Figure 3 . 4 :

 34 Figure 3.4: This figure shows the weight given by the HKS and WKS (blue and red lines) to the coefficients (black spikes) corresponding to the different energies (x axis). The weighting of WKS is more intuitive and discriminative since it aggregates information only from similar eigenvalues.

  depend analytically on ε (compare also[START_REF] Rellich | Störungstheorie der Spektralzerlegung[END_REF] Def. 3]). -M. Aubry : Representing 3D models for alignment and recognition -Section 3.3: Mathematical Analysis of the WKS 72 For simplicity, we assume that the Laplace-Beltrami operator Δ(0) corresponding to g(0) has no repeated eigenvalues. By [143, prop. 2], for each eigenvalue -E k of Δ(0), there exists an analytic family E k (ε) with E k (0) = E k and -E k (ε) in the spectrum of Δ(ε).Theorem 1. Denote by C = ||g 1 || g(0) the first order norm of the metric deformation,

  hand side of (3.26) we get

  36 performs an efficient spectral separation. In contrast to HKS a specific eigenvector influence only a few values in the descriptor and a value of the descriptor is influenced only by the eigenvectors corresponding to few eigenvalues as shown in Fig. 3.4. For this reason, the differences in the eigenvector -M. Aubry : Representing 3D models for alignment and recognition -Section 3.3: Mathematical Analysis of the WKS 76 and eigenvalues that exist between two shapes do not cumulate in the descriptor as in the HKS as one can see in Fig. 3.3.

-

  enced by local geometry whereas small energies correspond to properties induced by the global geometry. For a discussion on the separation of different scales, we refer to Section 3.3.2

Figure 3 . 5 Figure 3 . 5 :

 3535 Figure 3.5 shows a typical example in which the spectral separation avoids the con-

Figure 3 . 6 :Figure 3 . 7 :

 3637 Fig.3.7 shows that the WKS remains discriminative even using only part of the mesh

Figure 3 . 8 :

 38 Figure 3.8: Robustness of the WKS: The red lines connect a reference point on the shape in the background (standing David) with its 50 best matches on the perturbed shape in the foreground (sitting David). The color encodes the feature distance to the reference point, blue indicating proximity and red large distance in the feature space. The experiments visualized here are done with shapes in the strongest perturbation category of the SHREC 2010 [33] feature descriptor dataset. Left image: the WKS can locate the correspondence of the shoulders despite the strong noise.Middle image:The reference mesh has 52565 vertices, while the perturbed mesh has 2634 vertices. Right image: The deformed shape has many holes. Note that an isometry invariant feature descriptor cannot distinguish the left and the right of a symetric shape.

  we sort the points of the reference shape by using the computed distance -M. Aubry : Representing 3D models for alignment and recognition -AUC of the CMC for the different deformation categories (b) AUC of the CMC for the different strength of deformation (c) AUC of the CMC for the different shapes

Figure 3 . 10 : 85 Figure 3 . 11 :

 31085311 Figure 3.10: Area under the cumulative match characteristic curves in function of the variance parameter for different subsets of the SHREC2010 [33] evaluation data. The straight lines represent the baseline given by the SI-HKS.

88 Figure 3 . 12 :

 88312 Figure 3.12: Example of matching using a set of feature points on the left shape.

Figure 3 . 13 : 89 Figure 3 . 14 :Figure 3 . 15 :

 31389314315 Figure 3.13: Segmentation of a human shape using clustering on the WKS. Left: two segmentation (out of four) from the learning set. Right: two test segmentations

( a )

 a Internet paintings and drawings. (b) 3D model.(c) Aligned painting to 3D model. (d) Alignment results visualized in Google Earth.

Figure 4 . 1 :

 41 Figure 4.1: Our system automatically recovers the viewpoint of paintings, drawings, and historical photographs with respect to a 3D model of an architectural site. Painting in (c) courtesy of Podi Lawrence.

Figure 4 . 2 :

 42 Figure 4.2: Approach overview. In the offline stage (left) we summarize a given 3D model as a collection of discriminative visual elements learnt from rendered views of the site (middle). In the online stage (right) we match the learnt visual elements to the input painting and use the obtained correspondences to recover the camera viewpoint with respect to the 3D model.

  figure 4.3. Instead of finding the best match measured by the Euclidean distance

Figure 4 . 3 :

 43 Figure 4.3: Matching as classification.Given a region and its HOG descriptor q in a rendered view (top left) the aim is to find the corresponding region in a painting (top right). This is achieved by training a linear HOG-based sliding window classifier using q as a single positive example and a large number of negative data. The classifier weight vector w is visualized by separately showing the positive (+) and negative (-) weights at different orientations and spatial locations. The best match x in the painting is found as the maximum of the classification score.

Section 4. 3 : 100 Figure 4 . 4 :

 310044 Figure 4.4: Example sampled viewpoints. Camera positions are sampled on the ground plane on a regular 100×100 grid. 24 camera orientations are used for each viewpoint. Cameras not viewing any portion of the 3D model are discarded. This procedure results in about 45,000 valid views for the depicted 3D model.

a

  least squares loss function, the classifier can be computed in closed-form without computationally expensive iterative training. In turn, this enables efficient training of candidate visual element detectors corresponding to image patches that are densely sampled in each rendered view. The quality of the trained detector (measured by the training error) is then used to select only the few candidate visual elements that are the most discriminative in each view (have the lowest training error). Finally, we show how the learnt visual elements are matched to the input painting, and relate the proposed approach to other recent work on closed-form training of HOG-based linear classifiers [73, 81].

  denotes the mean of the negative examples, Σ = 1 N N i=1 (x iμ)(x iμ) their covariance and

-M. Aubry : 104 Figure 4 . 5 :

 Aubry10445 Figure 4.5: Selection of discriminative visual elements. First row: discriminability scores shown as a heat-map for three different scales. Red indicates high discriminability. Blue indicates low discriminability. The discriminability is inversely proportional to the training cost of a classifier learnt from a patch at the particular image location. Second row: example visual elements at the local maxima of the discriminability scores. The corresponding local maxima are also indicated using "x" in the heat-maps above.

. 10 ) 106 Figure 4 . 6 :

 1010646 Figure 4.6: Selection of discriminative visual elements -interpretation using linear discriminant analysis. Left:The negative data distribution (centered at μ) and two example positive data distributions (q 1 and q 2 ) are modeled as Gaussians with different means but the same covariance. Right: After "whitening", the negative data is centered at the origin with unit covariance. For fixed negative data, the classifier defined by q 2 is clearly more discriminative than the classifier defined by q 1 , as measured by the overlap of the positive and negative data distributions. In the whitened space, this overlap can be measured by the Euclidean distance of the (whitened) mean of the positive data points from the origin. Note that in the original non-whitened space (left) the means of q 1 and q 2 are at the same distance from the mean of the negative data μ.

Section 4. 3 : 110 Figure 4 . 8 :

 311048 Figure 4.8: Examples of selected visual elements for a 3D site. Top: Selection of top ranked 50 visual elements visible from this specific view of the site. Each element is depicted as a planar patch with an orientation of the plane parallel to the camera plane of its corresponding source view. Bottom: Subset of 9 elements shown from their original viewpoints. Note that the proposed algorithm prefers visually salient scene structures such as the two towers in the top-right or the building in the left part of the view. In contrast, some repetitive and non-salient scene structures in the right portion of the picture are ignored.

  than 80% of the nearby views. Examples of stable and unstable visual elements are shown in figure 4.7. This procedure typically results in several thousand selected elements for each architectural site. Examples of the final visual elements obtained by the proposed approach are shown in figure 4.8. -M. Aubry : Representing 3D models for alignment and recognition -Section 4.3: Discriminative visual elements for painting-to-3D alignment 111

112 Figure 4 . 9 :

 11249 Figure 4.9: Illustration of coarse alignment. We use the recovered discriminative visual elements to find correspondences between the input scene depiction and 3D model. Shown is the recovered viewpoint and inlier visual elements found via RANSAC. Notice that the visual elements yield inliers across the entire visible part of the site. Painting courtesy of Daniel Wall.

'

  paintings'(147 images). The drawings category includes color renderings and the paintings category includes different rendering styles, such as watercolors, oil paint-

( a )

 a Input historical photographs. (b) Aligned 3D models.

Figure 4 . 10 :

 410 Figure 4.10: Alignment of historical photographs of San Marco's Square to their respective 3D models. Photographs courtesy of la Médiathèque de l'architecture et du patrimoine.

Figures 4 . 115 Figure 4 . 11 :

 4115411 Figures 4.10and 4.11 show example alignments of historical photographs and non-

Figure 4 . 12 :

 412 Figure 4.12: Challenging examples successfully aligned by our method where the assumption of a perspective scene rendering is violated. Note that the drawing in (c) is a completely different cathedral. Image in (a) courtesy of Blythe Scott and in (b) courtesy of Ginette Callaway.

( a )

 a Notre Dame of Paris. (b) Trevi Fountain.

Figure 4 . 13 :

 413 Figure 4.13: Trimble 3D Warehouse models and camera frusta depicting the recovered viewpoints of the paintings.

Figure 4 .

 4 Figure 4.13 shows the camera frusta for the recovered approximate painting viewpoints.

  3.1)), report the corresponding quantitative results across the 3D sites and depiction styles, and compare performance with several baseline methods (section 4.4.3.2). We also provide a quantitative evaluation of our geo-localization -M. Aubry : Representing 3D models for alignment and recognition -San Marco's Basilica. (c) Trevi Fountain.

Figure 4 . 14 :

 414 Figure 4.14: Examples of geo-localized depictions visualized in Google Earth. Note that the proposed method allows us to visualize the specific place across time and through the eyes of different artists.

Figure 4 . 15 :

 415 Figure 4.15: Alignment evaluation criterion. We asked workers on Amazon Mechanical Turk to judge the viewpoint similarity of the resulting alignment to the input depiction. The workers were asked to categorize the viewpoint similarity into one of three categories: (a) Good match -the two images show a roughly similar view of the building; (b) Coarse match -the view may not be similar, but the building is roughly at the same location in both images, not upside down, and corresponding building parts can be clearly identified; (c) No match -the views are completely different, e.g. upside down, little or no visual overlap. Image in (a) courtesy of Maral Sassouni and in (c) courtesy of la Médiathèque de l'architecture et du patrimoine.

Figure 4 . 16 :

 416 Figure 4.16: Viewpoint rendering styles. We explored the possibility of rendering viewpoints from the 3D model in different styles by applying style filters within Photoshop CS4 to the rendered views.

Figure 4 . 17 :

 417 Figure 4.17: Evaluation of visual element selection. The average percentage (left) and number (right) of correct matches as a function of the top n matches. See text for details.

3D model and the

  ground truth is obtained by visual inspection of the resulting alignments -only correct matches from the good and ok alignments are considered as ground truth inliers. The percentage of inliers gives a finer indication of the quality of visual elements than the overall percentage of correct alignments measured in the -M. Aubry : Representing 3D models for alignment and recognition -

128 Figure 4 . 18 :

 128418 Figure 4.18: Example failure cases. Top: large scale symmetry. Here arches are incorrectly matched on a building with similar front and the side facades. Middle: locally confusing image structures. Here the vertical support structures on the cathedral (right) are locally similar by their HOG descriptor to the vertical pencil strokes on the drawing (left). Bottom: Two examples of paintings with unusual viewpoints. Image in the top row courtesy of la Médiathèque de l'architecture et du patrimoine, in the middle row courtesy of Norman Ziff and in the bottom row left courtesy of Woom Lam Ng.

Figure 5 . 1 :

 51 Figure 5.1: Given an input image (left), our algorithm searches a database of 1,393 3D chair models to detect all chairs depicted in the image. The algorithm returns a 3D model matching the style of the chair and recovers its viewpoint relative to the camera (outlined in green, right). We overlay a projection of the returned 3D model onto the input image (middle). Notice the agreement of the returned model with the depicted chair style and pose.

137 Figure 5 . 2 :

 13752 Figure 5.2: We represent the "chair" category by a set of 3D models of chairs of different styles t ∈ {1, ..., T } with T = 1394. The figure shows a small set of these 3D models, giving a sense of their variability.

Figure 5 . 3 : 138 Figure 5 . 4 : 139 Figure 5 . 5 : 140 Figure 5 . 6 :

 53138541395514056 Figure 5.3: Each 3D model is represented by a set of rendered views. We render the 3D models from 62 viewpoints sampled on a sphere with two different pitch angles φ and 31 different azimuth angles θ. This leads to a set of valid views covering most of the usual chair viewpoints. These views are indexed by o ∈ {1, ...O} with O = 62.

-M. Aubry : Representing 3D models for alignment and recognition - Section 5 . 2 :

 52 Discriminative visual elements for category-level 3D-2D alignment 142 can be run in a sliding-window fashion, enabling detection of multiple object instances in the scene. More concretely, for all of the visual elements detectors from a single rendered 3D view we compute a dense response map of the calibrated score (5.3) across different position and scales of the 2D test image. For each visual element and each position in the test image, we then replace the response by the maximum response in a 3 × 3 neighborhood corresponding to the HOG cells at the same scale. This can be seen as a max pooling of the calibrated matching scores which transforms S calib t,o,k into S max t,o,k :S max t,o,k (x, y, s) = max i∈{x-1,x,x+1} max j∈{y-1,y,y+1} S calib t,o,k (i, j, s) (5.4)where x, y and s are the coordinate and scale of the potential detection and i and j cover the 3 × 3 neighborhood of (x, y). The final score S det (x, y, s) for a detection at position (x, y) with scale s is the maximum among all views and chair models of the sum of the positive scores of the different visual element matches:S det (x,y, s) = max t∈{1,...T } max o∈{1,..,O} K k=1 max 0, S max t,o,k (x t,o,k , y t,o,k , s t,o,k ) (5.5) where (x t,o,k , y t,o,k , s t,o,k ) are the position and scale corresponding to element (t, o, k) for a chair at position (x, y) and scale s and K is the number of discriminative elements per rendered view. Note that we require all visual element detections to come from the same synthesized view, which provides a strong constraint on the viewpoint and style consistency of the detected chair. We found this matching procedure to work well, though the view and style consistency constraints can be potentially relaxed to accumulate matches across multiple close-by views or models with a similar style. This part-based matching between a rendered view and an image is visualized figure 5.7

Figure 5 . 7 :

 57 Figure 5.7: Example of chair detection performed by our method. Each discriminative part of a rendered view (right) is matched to the image and the scores are aggregated. Warmer color represent more confident part correspondences.

table 5 .-Figure 5 . 14 :

 5514 Figure 5.14: Common failures of our algorithm.

Figure 5 .

 5 14(a). Second, there exist many regions in images that, through the eyes of a HOG descriptor, appear as a chair, Figure5.14(b).

  in chapter 4 we have introduced the concept of 3D discriminative visual elements to represent a 3D model in term of visual appearance. This representation is well adapted for 2D-3D matching, and we demonstrated it can be used to align -M. Aubry : Representing 3D models for alignment and recognition -

Figure 6 . 1 :

 61 Figure 6.1: Using anisotropic instead of isotropic diffusion processes can lead to richer and more meaningful analysis of 3D shapes.

Section 6 .2: Future work 158 Figure 6 . 2 :

 615862 Figure 6.2: Using parts from different 3D instances, one can explain and analyze an instance that has never been observed.

  

  

  

  

  

  

  

  

  

  

Table 4 . 1 :

 41 Statistics of our collected dataset of historical photographs and nonphotographic depictions for the evaluated architectural landmarks. Note that the depictions of San Marco Basilica are also included in the set for San Marco Square, with the total (bottom row) counting the number of unique depictions in our dataset.

		S. Marco S. Marco Square Basilica Fountain Dame Trevi Notre Total
	Hist. photos	44	(30)	0	41	85
	Paintings	61	(41)	34	52	147
	Drawings	21	(19)	5	34	60
	Engravings	15	(9)	10	20	45
	Total	141	(99)	49	147	337

Table 4 . 2 :

 42 Viewpoint similarity user study of our algorithm across different sites.

		Good Coarse	No
		match match match
	S. Marco Square	51%	21%	28%
	S. Marco Basilica 45%	39%	15%
	Trevi Fountain	55%	20%	24%
	Notre Dame	65%	27%	9%
	Average	55%	27%	18%
	4.4			

.3.2 Alignment quality and baseline comparisons Table

  

Table 4

 4 

	.3 shows the performance of our algorithm for different depiction styles aver-
	aged across the 3D sites. Interestingly, the results are fairly consistent across different
	depiction styles.

Finally, table 4.4 compares the performance of our algorithm to several baseline meth--M.

Aubry : Representing 3D models for alignment and recognition - Section 4.4: Results and validation 120Table 4 . 3 :

 43 Viewpoint similarity user study of our algorithm across different depiction styles.

		Good Coarse	No
		match match match
	Historical photographs 59%	20%	21%
	Paintings	53%	30%	18%
	Drawings	52%	29%	19%
	Engravings	57%	26%	17%
	Average	55%	27%	18%
	Table 4.4: Viewpoint similarity user study -comparison with baselines on the "San
	Marco Square" 3D site.			
			Good Coarse	No
			match match match
	SIFT on rendered views		40%	26%	33%
	Viewpoint retrieval [147]		1%	39%	60%
	Exemplar SVM [160]		34%	18%	48%
	mid-level painting visual elements	33%	29%	38%
	3D discrim. visual elements (ours) 51%	21%	28%

Aubry : Representing 3D models for alignment and recognition - Section 4.4: Results and validation 123Table 4 . 5 :

 45 The percentage of input depictions that were assigned to the correct architecture site split across different sites (rows) and depiction styles (columns). Note that there are no historical photographs for Trevi Fountain in the database.

		Paintings Historical photograph Engravings Drawings Average
	S. Marco Basilica	83%	87%	89%	94%	87%
	Trevi Fountain	82%	-	90%	80%	84%
	Notre Dame	90%	88%	85%	79%	86%
	Average	86 %	87%	87%	84%	86%
				from the input paintings without
	the explicit knowledge of the 3D model. While this baseline further improves over
	exemplar-SVM (38% vs. 48% failures), it does not outperform our method mainly
	because it cannot combine visual element detections from multiple views available to
	our method via the 3D model. Similar to the exemplar-SVM, an additional drawback
	of this baseline is the high computational cost as visual elements from each painting
	must be run densely across all rendered views.			

-M.

Table 4 . 6 :

 46 Evaluation of different 3D model rendering styles.

		Good Coarse	No
		match match match
	Drawing style	61%	12%	27%
	Painting style	54%	18%	28%
	Original rendering 65%	27%	9 %

Representing 3D models for alignment and recognition - Section 5.1: Introduction 135

  

	This work is part of an emerging trend towards reclaiming some of the early successes
	in 3D recognition, and combining them with modern visual recognition tools.

Most approaches tackled the problem by extending existing approaches in image-based recognition to incorporate explicitly a simplified 3D model of the category (see section 2.3.2) -M. Aubry :

  calib t,o,k (x) = a t,o,k S t,o,k (x) + b t,o,k , (5.3) where for each visual element detector S t,o,k corresponding to the patch k of the viewpoint o of the model t, we seek to find the scalars a t,o,k and b t,o,k .

Table 5 .

 5 2: AP evolution with the number of 3D models ) 19.4 24.3 26.1 28.7 30.5 32.0 32.8 33.5 34.2 34.6 34.9

	models	10	20	30	40	50	100 200 500 1000 1300 1392
	AP (%						

Table 5 . 3 :

 53 Dependency on the calibration parameter κ .3 and reported the mean average precision as a function of the number of 3D models (randomly sampled). The results are shown figure 5.13. The corresponding values of the Average Precision are reported table 5.2. The first observation is that

	calibration parameter κ 0.0001% 0.0005% 0.001% 0.005% closed form (chapter 4)
	AP (%)	35.2	35.2	34.9	32.9	9.3
	section 5.3					

Section 5.3: Experiments and results 152Table 5 . 4 :

 54 Detection AP as a function of the visual elements size (with respect to the larges dimension of the chair)

	relative size 1.8	2.4	2.8
	AP (%)	27.2 25.2 17.6

Mathieu Andreux and published in NORDIA, an ECCV workshop, in 2014[START_REF] Andreux | Anisotropic laplace-beltrami operators for shape analysis[END_REF].

(a) MSER[START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] can define complex regions (b) The Harris-Affine detector[START_REF] Mikolajczyk | Scale and affine invariant interest point detectors[END_REF][START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF] defines ellipsoids

-M. Aubry : Representing 3D models for alignment and recognition -Section 2.2: Instance-level 2D-3D alignment

Indeed, one of the oft-told stories is that when a student asked Takeo Kanade what are the three most important problems in computer vision, his reply was: "Alignment, alignment, alignment!".

Acknowledgments

The second term in the exponent measures the difference between the depths at the corresponding pixel locations normalized by their average depth. The per-pixel scores are then averaged over all corresponding pixels in the two views. The score is one if the two views are identical and zero if the two views have no visual overlap. In our case, two views are deemed "close-by" if their visual overlap score is greater than 0.4. Note that the score depends on camera positions as well as the 3D structure as it measures differences between projected 3D points in the image plane. As a result, the score is, for example, less sensitive to small camera translations if the camera is looking at a far away scene. We found that good values for the parameters are σ d = 0.3 and 

145

We also evaluate the sensitivity of our system to several key parameters (section 5.3.4).

Large dataset of 3D chairs

We explicitly represent the shape variation of an object category by a large collection of 3D CAD models. The 3D models used in this work have been downloaded from the Google/Trimble 3D Warehouse, an on-line repository of publicly available, usercontributed 3D graphics content created using Google SketchUp. We initially searched the repository for "chair" and downloaded over two thousand 3D models. However, many of them were not of good visual quality; some weren't even chairs. After manually culling the data, we were left with 1, 393 high-quality 3D chair models, representing a variety of chair styles.

This dataset is our non-parametric representation of the object category explicitly representing the large variety of chair styles. It is publicly available on the project webpage [4].

Qualitative results

In Figure 5.8 we show example output alignments of our algorithm. Notice that our algorithm can detect many different styles of chairs in different poses. For many cases, the predicted chair matches closely the input depicted chair style and pose. In many other cases a similar style is returned, often retrieving an accurate partial match to the depicted chair. Moreover, our approach shows some robustness to background clutter and partial occlusion and cropping.

In Figure 5.9 we compare the output of our algorithm with the Deformable Parts Model 
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For a given chair detection, often there is a set of related, highly confident 3D chair alignments having the same pose and similar style. We visualize these similar chair alignments in Figure 5.10. Notice that the styles are similar, often sharing one or more 3D parts. This suggests that when there is not an exact style match in the database a composite representation could be used to explain the entire input chair by composing well-matching 3D parts from different 3D chairs. Results for the entire dataset are available on the project webpage [4].

Quantitative evaluation

We evaluate the detection accuracy of our algorithm on the PASCAL VOC 2012

dataset [1]. We report detection precision-recall on images marked as non-occluded, non-truncated, and not-difficult in the chairs validation set. While this is an easier set compared to the full validation set, nonetheless it is very challenging due to the large intraclass variation, chair poses, and background clutter. Note that removing these difficult examples nonetheless yields some partially-occluded and truncated chairs, as seen in Figure 5.8. The resulting set contains 179 images with 247 annotated chairs.

In Figure 5.11 we report full precision-recall curves for our algorithm and compare it against two baselines: (i) DPM [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF] and (ii) a root template detector using the LDA version of Exemplar-SVM [START_REF] Malisiewicz | Ensemble of exemplar-svms for object detection and beyond[END_REF]. We train the root template exemplar detector using the whitened HOG formulation described in section 4.3.2.1 assuming a single root template that covers the entire 3D chair for the given viewpoint. We calibrate the template as described in Section 5.2.2. During detection we run the template in a sliding-window fashion across the input image.

Our approach achieves an average precision (AP) of 0.339 on this task. The DPM and root template exemplar detector baselines achieve AP 0.410 and 0.055, respectively. Our performance is noteworthy as it does not use any of the PASCAL VOC training images. We investigated combining our algorithm with DPM for the detection task.

For this we estimated an affine transformation for the DPM scores to calibrate it in the range of our returned scores. For overlapping detected windows for the two methods, we give one twice the confidence and discard the other. Combining our approach with DPM yields an AP of 0.452, which significantly outperforms the DPM baseline.

We performed a user study to evaluate the quality of the output alignment and returned chair style. For correct detections at 25% recall, users were asked to label the alignment as "Good" (the returned alignment has very similar pose as the depicted chair) or "Bad" (the alignment is incorrect) and to label the returned chair style as "Good" (the returned chair style is an accurate match), "Ok" (part of the returned chair matches Percentage of chairs at 25% recall the depicted chair style), or "Bad" (no style match).

We report the results of the user study evaluating the quality of the returned alignments and chair styles in Table 5.1. We compare against the root template exemplar baseline and outperform it on both tasks. The fact that the number of exact matches is only 3% for the baseline exemplar detector suggests that there are just too many variations within the chair category. This also motivates using a part-based approach since we are able to obtain high quality partial matches, allowing us to find a close-by chair, whereas the root template detector (Exemplar-LDA baseline) must match the entire chair at once. We found that it was somewhat difficult to judge the returned styles from the exemplar-LDA baseline since the matches were not as good.

Finally, we quantitatively evaluated the accuracy of the estimated chair orientation.

For this, we manually annotated the azimuth angle for the same set of detections as used in the user study. Our algorithm returns an azimuth angle within 20 

Algorithm analysis

In this section, we evaluate the influence of several key parameters of our algorithm, namely the number of 3D models (section 5.3.4.1) and the calibration parameter κ (section 5.3.4.2). We also evaluate the closed-form calibration procedure presented in the previous chapter section 4.3.3 (section 5.3.4.2) and the benefit of using discriminative elements instead of elements chosen on a grid (section 5.3.4.3). Finally, we discuss the main failure cases of our method (section 5.3.4.4) and discuss its computational cost (section 5.3.4.5). Except when specified otherwise, all the 1392 3D models are used, the calibration parameter is κ = 10 -4 and the views are used in their original rendering (600 × 600 pixel images where the size of the chair may vary) and the minimum size of a discriminative element is 100 × 100 pixels.

Number of 3D models

Having a big collection of 3D models is important to have a good representation of an object class. We performed the same detection experiment as the one described in