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Résumé Substantiel

Les lymphocytes T sont une composante essentielle du système immunitaire de

l’organisme. Ils peuvent reconnâıtre et répondre à un antigène étranger en vertu de

leur récepteur d’antigène. En effet, les cellules T qui n’ont pas encore rencontrées

des antigènes, sont appelées ”näıves”. Lors d’un premier contact antigénique,

l’expansion clonale des lymphocytes T spécifiques à un antigène augmente forte-

ment leur fréquence, et déséquilibre transitoirement de façon plus ou moins intense

le compartiment lymphocytaire T périphérique. Cet équilibre doit être rétabli pour

ne pas menacer à terme le bon fonctionnement du système immunitaire. Outre le

risque de réponse explosive lors d’une réexposition à l’antigène, l’accumulation de

clones T de taille disproportionnée gênerait considérablement le recrutement de lym-

phocytes T spécifiques de nouveaux antigènes. Ainsi, après élimination de l’antigène

ou son confinement dans l’organisme, différents mécanismes interviennent. Il faut en

effet d’une part assurer le maintien d’un compartiment de cellules T näıves de taille

suffisante pour faire face à de nouvelles stimulations antigéniques. D’autre part, la

constitution d’un panel de cellules T mémoires est nécessaire pour permettre une

réponse immunitaire plus rapide et plus efficace lors de réexpositions antigéniques.

Donc les mécanismes d’homéostasie des cellules T sont essentielles pour maintenir

le nombre de cellules T à un niveau à peu près constant en contrôlant la division

cellulaire et la mortalité des cellules.

Dans le cas normal, le renouvellement des cellules T näıves est très faible et ces

derniers restent approximativement dans un état de repos. Cependant, une per-

turbation de l’équilibre homéostatique peut résulter d’une grande variété de causes

(infection virale, ou les traitements de chimiothérapie), et peut entrâıner une lym-

phopénie (i.e. Une carence en lymphocytes T). Dans ces conditions lymphopéniques,

les cellules T näıves subissent la division cellulaire avec un changement de l’expression

de CD44 sur leur surface cellulaire. Ce processus est appelé ”prolifération homéostatique”

ou en anglais ”lymphopenia induced proliferation” (LIP). Ainsi, le CD44 est un mar-

queur naturel qui caractérise la transition des cellules du phénotype näıf (CD44-)

au phénotype mémoire (CD44+) durant LIP.

Les travaux de recherche dans les dernières décennies montrent que l’utilisation de

modèles mathématiques en immunologie a abouti à de grands progrès, non seule-

ment sur le plan théorique, mais aussi sur le plan de la gestion des politiques actuelles

de santé publique. Dans la littérature, plusieurs études ont utilisé avec succès la

modélisation mathématique pour décrire la réponse proliférative des cellules T à
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une lymphopénie [1–7, 7–10]. En outre, ces études n’ont pas pris en compte la tran-

sition des cellules du phénotype näıf au phénotype mémoire en utilisant le concept

de CD44 au cours du processus homéostatique. L’objectif de cette thèse est donc

de comprendre la relation complexe entre LIP 1 et le passage du phénotype näıf

(CD44-) au phénotype mémoire (CD44+) en utilisant des modèles mathématiques

et des données expérimentales. On s’intéresse en plus au comportement asympto-

tique des cellules T durant le processus d’homéostasie in vivo.

Mots-clés: Modélisation Mathématique, Analyse Numérique, Données Expérimentales,

Identification des Paramètres, Comportement Asymptotique et Contrôle Optimal.

Ce travail est organisé sous la forme suivante:

- La partie I est divisée en deux chapitres:

• Le chapitre 1 est consacré à la définition des éléments biologiques utilisés dans

cette thèse (Système immunitaire, Cycle cellulaire, Lymphocyte T, L’homéostasie,

CD44, les Lymphopénies).

• Le chapitre 2 reprend les modèles mathématique souvent utilisés dans la littérature

(Les modèles qui décrivent la réponse immunitaire et les données de CFSE, ”Cyton

model”, Modèle de Smith-Martin).

- La partie II est divisée en deux chapitres:

• Dans le chapitre 4, on construit un modèle in vitro (noté SMCD44) décrivant

la dynamique des cellules T dans des conditions lymphopéniques, notamment la

transition des cellules du phénotype näıf (CD44-) au phénotype mémoire (CD44+)

durant le processus d’homéostasie. En effet, on introduit des nouveaux paramètres

dans le modèle de Smith-Martin [3, 4, 7, 10] qui représentent l’évolution de la quan-

tité de CD44 à la surface des cellules durant le processus d’homéostasie. Cette

croissance de quantité de CD44 identifie la transition du phénotype näıf (CD44-)

au phénotype mémoire (CD44+).

Comme dans le modèle de Smith-Martin, le modèle (SMCD44) considère une phase

A (phase de repos) et une phase B (phase de prolifération) où les cellules T subissent

la division cellulaire sous forme d’un système en cascade (cf. Fig. 1). Le nombre

de fois où les cellules sont divisées, est indexé par i. Le temps où les cellules restent

dans la phase B, est mesurée par τ . Ce qui reflète la maturité (i.e l’âge) des cellules

1lymphopenia induced proliferation
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Figure 1: Modèle de prolifération des cellules T en conditions lymphopéniques. Ai et Bi sont le nombre
des cellules T, qui ont subi i divisions dans la phase A et B respectivement. ∆ est la durée de la phase B (unité
en heure). Le taux des cellules qui se divisent (λ), est une fonction qui dépend du nombre total des cellules

(N) [10].

à ce stade. En plus, cette maturité τ a une valeur maximale ∆. Les cellules dans la

phase A et la phase B sont indexées encore par s ∈ [0,m] qui représente l’intensité

de CD44 sur la surface des cellules. La dynamique des cellules entre la phase A et la

phase B est représentée par des EDOs et EDPs respectivement (cf. System (1-2)).





dA0(t, s)

dt
= −δAA0(t, s)− λ(N)A0(t, s),





for i = 1, ..., I

dAi(t, s)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ, s) dτ − δAAi(t, s)− λ(N)Ai(t, s),





for i = 0, ..., I

∂
∂t
Bi(t, τ, s) + ∂

∂τ
Bi(t, τ, s) + ∂

∂s
[vi(s).Bi(t, τ, s)] = − (δB + µ(τ))Bi(t, τ, s),

(1)

où les variables (t, τ, s) appartiennent à [0, T ]× [0,∆]× [0,m].

Les conditions au bord et les distributions initiales sont données par







Bi(t, 0, s) = λ(N)Ai(t, s) et vi(0)Bi(t, τ, 0) = 0 pour i = 0, ..., I

Bi(0, τ, s) = 0, for i = 0, ..., I et Ai(0, s) = 0, pour i = 1, ..., I

A0(0, s) = A0,0(s) > 0.

(2)

Les variables d’état Ai et Bi sont le nombre de cellules T ayant subi i divisions dans

la phase A et B respectivement. Pour i = 0, la croissance des cellules dans la phase

A0 vient du nombre initial A0,0(s). En outre, le recrutement stochastique de cellules

de la phase A à la phase B se fait avec un taux λ qui dépend du nombre total de

cellules N(t) =
∑I

i=0

(∫ m
0
Ai(t, s)ds+

∫ ∆

0

∫ m
0
Bi(t, τ, s)dτ ds

)
. Dans la phase B, les

cellules régularisent leur niveau de CD44 par la vélocité vi(s). En complétant le

processus (mitose) dans la phase B, les cellules se divisent avec un taux µ(τ) qui

dépend de l’âge des cellules en phase B. De plus les cellules filles héritent du même

niveau d’expression de CD44 que leur cellule mère (cf. System (1-2) et Fig. 1).

Enfin dans ce chapitre 4, on dérive la solution implicite des équations Ai et la for-

mulation intégrale des équations Bi.

• Dans le chapitre 5, on développe un schéma numérique pour approcher la so-

lution du modèle SMCD44. Une analyse sur les propriétés du schéma est proposée.

- La partie III est divisée en quatre chapitres:

• Dans le chapitre 6, on décrit les données expérimentales générées par Hogan et

al. [10]. De plus, on montre dans ce chapitre l’identifiabilité théorique de certains

paramètres (vi, λ, ∆) dans le modèle SMCD44.

• Dans le chapitre 7, on présente la dernière version de Smith-Martin utilisée

dans la littérature et notre modèle SMCD44 (sans la structuration de CD44). On

s’intéresse dans ce chapitre à la comparaison de ces deux modèles. En effet, on décrit

la méthode utilisée pour identifier numériquement plusieurs paramètres communs

dans les deux modèles en utilisant les données de CFSE [10]. Enfin, on montre les

paramètres et les simulations obtenues à partir de ces modèles. Puis on compare

ces simulations aux données expérimentales.

• Dans le chapitre 8, on identifie la vélocité de CD44 vi (vitesse de croissance de

CD44) en utilisant les données de CFSE et de CD44 [10]. Cette vélocité est le

paramètre clé qui nous permet de savoir à partir de quelles divisions les cellules T



sont qualifiées comme näıves ou mémoires à partir du modèle SMCD44.

La méthode utilisée pour identifier ce paramètre consiste à résoudre un problème

d’identification de paramètres qui est bien détaillé dans ce chapitre. Dans la partie

numérique, on montre les paramètres et les simulations obtenus à partir du modèle

et on les compare aux données expérimentales. Les paramètres identifiés et les simu-

lations numériques de SMCD44 fournissent plusieurs interprétations biologiques sur

la relation entre LIP et le passage du phénotype näıf au phénotype mémoire en

utilisant le modèle SMCD44.

• Dans le chapitre 9, on prend en compte la dépendance entre l’intensité de CD44 (s)

et le taux d’entrée en division (λ = λ(s,N(t))) ou le taux de division (µ = µ(τ, s)).

Ici, on s’intéresse à identifier ces nouveaux paramètres qui dépendent du niveau

de CD44 (s). Comme dans le chapitre précédent, les ingrédients pour résoudre

les problèmes d’identification des paramètres sont donnés. Enfin, on présente les

simulations et les paramètres identifiés, et on déduit biologiquement le lien entre le

niveau de CD44 sur les cellules et leur taux d’entrée dans la phase de prolifération

ou leur taux de division.

- La partie IV est divisée en trois chapitres:

• Dans le chapitre 10, on étend le modèle in vitro SMCD44 à un modèle in vivo en

introduisant un taux Λ d’exportation de cellules du thymus. Dans ce modèle, on

considère un grand nombre de divisions (I >> 0), et un taux d’entrée en division

en fonction du nombre de division (i) et de nombre total de cellules (N = N(t)).

En utilisant la méthode du point fixe, on démontre l’existence locale et l’unicité

de la solution du système étendu. Enfin, on déduit l’existence globale en utilisant

l’intervalle maximal d’existence.

• Dans le chapitre 11, on réécrit le modèle étendu comme un système structuré en

âge et sans la structuration en CD44. Ici, on s’intéresse à investiguer l’étude asymp-

totique du modèle réduit. On trouve qu’il existe une ou trois solutions stationnaires

quand les cellules subissent au moins cinq divisions, et seulement une seule quand

les cellules subissent au plus trois divisions. Le cas limite de quatre divisions est

numériquement traité. En appliquant la méthode de Lyapunov, on montre dans cer-

tains cas d’unicité que la solution stationnaire est globalement asymptotiquement

stable.

• Dans le chapitre 12, on reformule le modèle in vivo proposé dans le chapitre 10

en une version plus réaliste avec une stratégie de vaccination. Le but de ce chapitre

est de résoudre un problème de contrôle optimal qui renforce l’immunité durant



le processus d’homéostasie. Premièrement, on discute la fonction coût et on ob-

tient les conditions d’optimalités. Deuxièmement, on exécute quelques simulations

numériques pour calculer la vaccination optimale.

- Enfin dans le chapitre 13, on résume les principaux résultats de cette étude

et on donne les perspectives et les nouveaux problèmes induits par ce projet de

recherche.

Thèse préparée à

l’Institut de Mathématiques de Bordeaux

UMR CNRS 5251, Université de Bordeaux

33076 Bordeaux cedex, France



Abstract

T lymphocytes are a fundamental component of the immune system that can

recognise and respond to foreign antigens by virtue of their clonally expressed T cell

antigen receptor (TCR). T cells that have yet to encounter the antigen they recog-

nise are termed ’naive’ as they have not been activated to respond. Homeostatic

mechanisms maintain the number of T cells at an approximately constant level by

controling cell division and death. In normal replete hosts, cell turnover within the

naive compartment is very low and naive cells are maintained in a resting state.

However, disruption of the homeostatic balance can arise from a wide variety of

causes (viral infection (e.g. HIV), or drugs used in peritransplant induction therapy

or cancer chemotherapy) and can result in T cell deficiency or T lymphopenia. Un-

der conditions of T lymphopenia, naive T cells undergo cell division with a subtle

change in the cell surface phenotype (CD44 expression), termed homeostatic prolif-

eration or lymphopenia induced proliferation (LIP). In this thesis, our purpose is

to understand the process of T cell homeostatic through mathematical approach. At

first, we build a new model that describes the proliferation of T cells in vitro under

lymphopenic conditions. Our nonlinear model is composed of ordinary differential

equations and partial differential equations structured by age (maturity of cell) and

CD44 expression. To better understand the homeostasis of T cells, we identify the

parameters that define T cell division by using experimental data. Next, we consider

an age-structured model system describing the T cell homeostatic in vivo, and we

investigate its asymptotic behaviour. Finally, an optimal strategy is applied in the

in vivo model to rebuild immunity under conditions of T lympopenia.
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Chapter 1

Biological Background

1.1 Immune system

The immune system is a collection of organs, cells and tissues that work together

to protect the body from disease caused mostly by pathogens (bacteria, viruses,

parasites,...). The human body is protected by two main types of immunity.

• Innate immunity is the protection system present at birth which defends us

against disease.

– The skin and other tissues which cover the body (such as the lining of

the nose and mouth), are a barrier which repels invaders.

– The white blood cells respond to invaders such as bacteria and viruses,

and expel or destroy them.

• Acquired immunity is the protection system which the body acquired, when

it is exposed to certain diseases.

– When the body makes contact with a bacterium, a virus or another

antigen, it learns to recognize this antigen. When it is invaded again by

this strange, the immune system remembers these organisms, and makes

a stronger reaction against them, and can combat them faster.

– The vaccines are based on acquired immunity. They contain small amounts

of proteins (antigens) from an organism which can cause disease. If the

organism invades the body again, the immune system will recognize and

fight them even faster and better.

3
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1.2 Structure of the immune system

The organs of the immune system (Fig. 1.1) are positioned throughout the body.

They are called lymphoid organs because they are home to lymphocytes, small

white blood cells that are the key players in the immune system. Bone marrow,

the soft tissue in the hollow center of bones, is the ultimate source of all blood

cells, including lymphocytes. The thymus is a lymphoid organ that lies behind

the breastbone. Lymphocytes known as T lymphocytes or T cells (T stands for

Figure 1.1: Organs of the immune system (www.niaid.nih.gov).

thymus) mature in the thymus and then migrate to other tissues. B lymphocytes,

also known as B cells, become activated and mature into plasma cells, which make

and release antibodies.

Lymph nodes (Fig. 1.2), which are located in many parts of the body, are lymphoid

tissues that contain numerous specialized structures.

• T cells from the thymus concentrate in the paracortex.

• B cells develop in and around the germinal centers.

http://www.niaid.nih.gov/
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• Plasma cells occur in the medulla.

Figure 1.2: The lymph node contains numerous specialized structures. T cells concentrate in the
paracortex, B cells in and around the germinal centers, and plasma cells in the medulla (www.niaid.nih.gov).

Lymphocytes can travel throughout the body using the blood vessels. The cells can

also travel through a system of lymphatic vessels that closely parallels the bodys

veins and arteries.

Cells and fluids are exchanged between blood and lymphatic vessels, enabling the

lymphatic system to monitor the body for invading microbes. The lymphatic vessels

carry lymph, a clear fluid that bathes the bodys tissues.

Small, bean-shaped lymph nodes are laced along the lymphatic vessels, with clusters

in the neck, armpits, abdomen, and groin. Each lymph node contains specialized

compartments where immune cells congregate, and where they can encounter anti-

gens.

Immune cells, microbes, and foreign antigens enter the lymph nodes via incoming

lymphatic vessels or the lymph nodes tiny blood vessels. All lymphocytes exit lymph

nodes through outgoing lymphatic vessels. Once in the bloodstream, lymphocytes

are transported to tissues throughout the body. They patrol everywhere for foreign

antigens, then gradually drift back into the lymphatic system to begin the cycle all

over again.

http://www.niaid.nih.gov/
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1.3 Cell cycle

The cell cycle, or cell-division cycle, is the series of events that take place in a

cell leading to its division and duplication (replication) that produces two daughter

cells. The biological cell cycle describes five distinct phases G0, G1, S, G2 and M

grouping interphase and mitosis (see Fig. 1.3).

Figure 1.3: Schematic of the cell cycle [11].

Quiescence: Cells which are not proliferating are said to be quiescent or

in ”G0” phase. The metabolic demands of G0 phase varies according to the

specialized functions being carried out by the quiescent cell, but there are

often lower levels of gene expression, macromolecular biosynthesis and energy

consumption compared with actively dividing cells.

Interphase: Before a cell can enter cell division, it needs to take in nutri-

ents. All of the preparations are done during interphase. Interphase is a series

of changes that takes place in a newly formed cell and its nucleus, before it

becomes capable of division again. It is also called preparatory phase or in-

termitosis. Previously it was called resting stage because there is no apparent

activity related to cell division. Typically interphase lasts for at least 90% of

the total time required for the cell cycle. Interphase proceeds in three stages,

G1, S, and G2, preceded by the previous cycle of mitosis and cytokinesis. The

most significant event is the replication of genetic material (DNA) in S phase.
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– G1 phase: The first phase within interphase, from the end of the pre-

vious M phase until the beginning of DNA synthesis, is called G1 (G

indicating gap). It is also called the growth phase. During this phase,

the cells passes through the restriction point. Here, the cell is irreversibly

committed to the division, which no longer depends on the mitogenic fac-

tors.

– S phase: In this phase, the cell replicates their DNA and each chromo-

some is copied.

– G2 phase: This phase is a period of rapid cell growth and protein

synthesis during which the cell makes itself ready for mitosis. Curiously,

G2 phase is not a necessary part of the cell cycle, as some cell types

(particularly young Xenopus embryos and some cancers [12]) proceed

directly from DNA replication to mitosis.

Mitosis or M phase: Mitosis is the phase of the cell cycle in which cells

physically divide into two separate daughter cells. In order to do so they first

dissolve the nuclear membrane which will later reform once cell division is

complete. The DNA-containing chromosomes then condense into structures

so compact that they can seen with a light microscope. The chromosomes

then precisely segregate to two sides of the cell, such that each half of the

cell gets exactly one copy of each chromosome. At the completion of mitosis,

cells undergo cytokinesis or separation into two halves. This occurs as a

band forms around the circumference outer plasma membrane which gradual

constricts like a belt until the cell pinches in two. The B-type cyclins remain

active throughout M-phase, but their activity immediately ceases once cell

division is complete and the two daughter cells once again enter G0 or G1.

1.4 T lymphocytes

T lymphocytes form an integral part of the adaptive immune system. The adaptive

immune system allows the body to mount a response that is specific to invading

pathogen and confers long-term protection to re-infection with the same antigen.

Each T cell expresses a receptor on its surface that enables it to recognise specific

antigen-peptides in association with major histocompatibility (MHC) molecules.

Together, the receptors on all lymphocytes cover a broad repertoire of antigens.
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1.4.1 The naive T cell pool

Naive T cells are the direct export product from the thymus. These cells have, by

definition, not encountered antigen. Thus, these cells represent the naive repertoire

present in the peripheral pool, that should allow a response to newly encountered

antigens. In order to perform, these cells should be able to encounter the antigen,

and it is then important that naive cells re-circulate, migrating continuously from

one secondary lymphoid organ to another (reviewed in [13]). Importantly, these

cells have been shown to express receptors for entry into the lymph nodes (CD62L)

or for chemokines (CCR7), suggesting the type of signals responsible for the circu-

lation pattern of naive T cells [13].

Accordingly, the phenotype of the naive T cells (CD4+ and CD8+ T cells) includes

some of these molecules. In C57Bl6 mice (some markers vary depending on the

mouse strain), naive T cells are typically defined as CD44− (this glycoprotein is de-

tailed in Sec. 1.6), CD62Lhigh, CD45RBhigh, CD25−, CD69−, small, resting cells.

However, some of these markers can be shared with subsets of activated or mem-

ory cells, as is true for CD62Lhigh, described in a subset of human memory CD4+

and CD8+ T cells [14] and some cells can be activated as a result of homeostatic

proliferation (homeostatic proliferation will be discussed later in this introduction)

defying the definition of both naive and of effector T cells [15]. The result is a

difficulty to define a naive T cell using a single cell surface marker. Thus, in most

situations, combinations of the markers referred to above are used. When only a

single marker is used the CD45RB marker for CD4+ T cells and the CD44 marker

for CD8+ T cells are the ones most currently used.

The function of naive T cells depends on their activation which, in turn, depends on

the encounter of these cells with antigen, processed and presented as MHC-peptide

complexes at the surface of APCs (Antigen presenting cells). Together with sig-

nalling provided by co stimulatory molecules and cytokines, activation will result in

proliferation and differentiation of T cells along the pathway to cytotoxic or helper

cells (for CD8+ T cytotoxic killer and CD4+ helper T cells, respectively) [14].

1.4.2 The effector pool

Upon TCR (T cell receptor) mediated activation, T cells loose their naive status

and integrate the effector compartment, differentiating into CD8+ T cytotoxic killer

or CD4+ helper T cells.
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The definition of the phenotype of effector cells is difficult, as it often coincides

with that of the phenotype of memory cells. Effector T cells are large blastic cells,

expressing activation markers, like CD25 or CD69 (often transitory for the first and

short term for the second), express CD44 and have down-regulated CD45RB (some

variations in this marker are dependent on the mouse strain used) and CD62-L

expression [16]. This phenotype is shared with some memory cells and in part,

with cells that are activated as a result of homeostatic proliferation [15, 17, 18].

For this reason, it is useful to consider in the peripheral T cell pool, naive versus

activated/memory cells, thereby avoiding the difficulty in defining the line that

phenotypically separates effector from memory cells.

The homing of effector cells also reflects their function and, here again, part of

the phenotypic alterations observed, namely CD62L down-regulation are related

to homing (reviewed in [13]). Thus, contrary to naive T cells, effector cells have

the ability to circulate through extra-lymphoid immune effector sites [19], and as

opposed to naive T cells, effector (and memory) T cells display great heterogeneity,

with subsets often displaying a tissue-specific pattern of circulation [19].

1.4.3 The memory T cell pool

Immunological memory can be defined as an antigen-induced alteration in the re-

active state of the immune system, occurring in such a way that the memory re-

sponses are more rapid on inset and more effective in antigen clearance [20]. Thus,

it is important to consider the factors that are behind this faster and more efficient

response. Two levels must be probed, namely the alterations in the frequency of

antigen specific T cells and the qualitative differences that distinguish a memory T

cell. By definition, a memory response is a secondary response. This means that a

primary response occurred and thus, that responding T cell clones underwent con-

siderable expansion (Fig. 1.4). This expansion is followed by a contraction phase,

responsible for the death of > 90% of the effector cells (reviewed in [21]). After the

contraction phase of an immune response, the memory phase follows (Fig. 1.4). By

the end of the contraction phase, there are still enough cells from the responding T

cell clone to increase the frequency of the T cell specificity in the order of 5 to 100

fold [21], it is thus a quantitative transformation. From this it can also be deduced

that the repertoire of the memory compartment is less diverse than the repertoire

of the naive compartment [23].
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Figure 1.4: Immune responses. The Imuune response consists of three distinct phases. See text for the
quantitative correspondence. (Modified from [22]).

1.4.4 T cell function and activation

The role of a T cell is to recognise foreign antigen expressed on antigen present-

ing cells (APCs) in association with the MHC complex and initiate an appropriate

response. The initial interaction between a T cell and antigen-MHC complex will

typically occur in the lymphoid organs. Each T cell has a different antigen-binding

specificity and the number of T cells that can respond to a specific antigen is limited.

As a result, the first stage of T lymphocyte activation involves clonal expansion of

the relevant T cell receptor clone (Fig. 1.5).

Figure 1.5: As a major part of the adaptive immune system, T-cells scan the intracellular environment
in order to target and destroy infected cells. Small peptide fragments, representing the entire cellular content,
are transported to the cell surface as pMHCs, allowing T-cell surface expressed antigen specific TCRs to scan
for foreign signals. T-cells interact with a large number of different cell types and recognise a diverse array
of pathogens. This diversity has lead to distinct antigen recognition pathways which generate the appropriate
T-cell response. T-cell activation can lead to a number of immune responses such as antibody production,
activation of phagocytic cells and direct cell killing. In this way, the appropriate immune response for different

types of diseases is implemented. (www.tcells.org)

http://www.tcells.org/
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Activated naive T cells undergo extensive proliferation and differentiation produc-

ing effector and memory T cells (see Fig. 1.6).

The lineage relationship between naive, effector and memory T cells is not com-

pletely understood [24], however, it is widely accepted that antigen specific T cell

populations can expand up to 1000 fold producing vast numbers of effector T cells

that are able to destroy infected cells and release cytokines that stimulate B cells.

Following the clearance of infection, the majority of effector T cells are thought to

be lost to apoptosis, while a small fraction of antigen specific T cells will persist in

the memory T cell pool [25]. The intensity of this response and the size and function

of memory cells induced will depend upon the strength of TCR activation, duration

of exposure to the MHC-peptide complex, the extent of binding, co-stimulation,

inflammatory factors, intrinsic expression of signalling proteins, possibly the prox-

imity of other cells and environmental stimuli.

Figure 1.6: 1. After the naive T cell (N) encounters an antigen it becomes activated and begins to
proliferate (divide) into many clones or daughter cells. 2. Some of the T cell clones will differentiate into
effector T cells (E) that will perform the function of that cell (e.g. produce cytokines in the case of helper T
cells or invoke cell killing in the case of cytotoxic T cells). 3. Some of the cells will form memory T cells (M)
that will survive in an inactive state in the host for a long period of time until they re-encounter the same

antigen and reactivate.

1.5 Homeostasis in the immune system

Homeostasis refers to the tendency of the body to preserve its internal steady state,

allowing it to return to a normal set point following perturbation. The term was first

used by the American physiologist Walter Canon in his seminal work, Wisdom of the

Body, in 1932 [26]. He emphasized the dynamic nature of homeostasis, stating that

while it ensures stability of the organism, homeostasis does not imply something

set and immobile, a stagnation. This dynamism is evident in the homeostasis of
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the adaptive immune system where rapid fluctuations in the number, diversity,

and function of lymphocytes occur during immune responses. Yet, for the efficient

function of the immune system, the population and activation states of T cells need

to remain relatively stable in the long term [27]. The term lymphocyte homeostasis

has been used to refer to the maintenance of lymphocyte numbers as well as the

maintenance of lymphocyte diversity [28, 29]. Increasing evidence suggests that the

homeostasis of both T cell number and diversity is regulated through competition for

limiting resources, including self-peptide-MHC complexes (spMHC) and cytokines

such as IL-7 and IL-15 [30].

1.6 Cluster of differentiation (CD44)

The CD44 antigen is a cell-surface glycoprotein involved in cell-cell interactions,

cell adhesion and migration. In humans, the CD44 antigen is encoded by the CD44

gene on chromosome 11 [31].

Multifunctionality of CD44

The CD44 expression is upregulated on naive T cells after activation via the T

cell receptor (TCR) and high expression is maintained indefinitely on memory cells

[32]. As a consequence, elevated expression of CD44 is generally used to identify

antigen-experienced T cells. CD44 is associated with cell migration and together

with HA (hyaluronic acid) has been implicated in numerous biological processes

that are regulated by migrating cells [33]. The function of CD44 differs for differ-

ent cell types and additional roles in the regulation of proliferation and apoptosis

have been described [34]. Whereas CD44 has the potential to participate in several

processes associated with immune responses, the physiological functions of CD44

in T cells in vivo remain ill defined. It has been established that T cells bind HA,

and that either HA binding or TCR signaling can augment the adhesive function

and expression of CD44 [35, 36]. CD44 can regulates T cell migration into sites of

inflammation [37]. Therefore, CD44 is a multistructural and multifunctional cell

surface molecule involved in cell proliferation, cell differentiation, cell migration,

angiogenesis, presentation of cytokines, chemokines, and growth factors to the cor-

responding receptors, and docking of proteases at the cell membrane, as well as in
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signaling for cell survival. All these biological properties are essential to the physi-

ological activities of normal cells, but they are also associated with the pathologic

activities of cancer cells [32].

1.7 Lymphopenia

Lymphopenia, or lymphocytopenia , is the condition of having an abnormally low

level of lymphocytes in the blood. The quantity of circulating lymphocytes must

be interpreted as a function of age: they are between 1500 and 4000/mm3 in adults

and they can reach 6000/mm3 in children and 11000/mm3 in the new born. Lym-

phopenia is defined by a number of blood lymphocytes < 1500/mm3 in adults and

4500/mm3 in children having an age less than 8 months [38].

1.7.1 Classification

In some cases, lymphopenia can be further classified according to which kind of

lymphocytes are reduced. If all three kinds of lymphocytes are suppressed, then the

term is used without further qualification.

• In T lymphopenia, there are too few T lymphocytes, but normal numbers of

other lymphocytes. It causes, and manifests as, a T cell deficiency. This is

usually caused by HIV infection (resulting in AIDS), but may be Idiopathic

CD4+ lymphocytopenia (ICL), which is a very rare heterogeneous disorder

defined by CD4+ T-cell counts below 300 cells/muL in the absence of any

known immune deficiency condition, such as human immunodeficiency virus

(HIV) infection or chemotherapy [39].

• In B lymphocytopenia, there are too few B lymphocytes, but possibly normal

numbers of other lymphocytes. It causes, and manifests as, a humoral immune

deficiency. This is usually caused by medications that suppress the immune

system.

• In NK lymphocytopenia, there are too few natural killer cells, but normal

numbers of other lymphocytes. This is very rare.
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1.7.2 Causes

The most common cause of temporary lymphopenia is a recent infection. Lym-

phopenia is a frequent, temporary result of many types of chemotherapy, such as

using cytotoxic agents or immunosuppressive drugs. Some malignancies that have

spread to involve the bone marrow, such as leukemia or advanced Hodgkin’s disease,

also cause lymphopenia. In addition, large doses of radiation, such as those involved

with nuclear accidents or medical whole body radiation, may cause lymphopenia.

1.7.3 T cell homeostasis

Homeostatic mechanisms maintain the number of T cells at an approximately con-

stant level by controling cell division and death. In normal replete hosts, cell

turnover within the naive compartment is very low and naive cells are maintained

in a resting state [40]. However, disruption of the homeostatic balance can arise

from a wide variety of causes and can result in T cell deficiency or T lymphopenia.

Under conditions of T lymphopenia, naive T cells undergo cell division, termed

homeostatic proliferation or lymphopenia induced proliferation (LIP).

1.7.4 Lymphopenia induced T cell proliferation

Slow turnover of naive CD8 T cells is essential for the maintenance of the naive T

cell pool. Two types of proliferation have been described: the basal proliferation

in lymphorepleted hosts and the homeostatic proliferation in lymphodepleted hosts

[27, 41]. In fact, the basal proliferation of the naive T cell pool reflects the slow

turnover of these cells and is minimal when we consider the CD44low population

of CD8 T cells. On the other hand, the capacity of the naive CD8 T cells to

replenish the peripheral pool in situations of severe lymphopenia allows for the

return to homeostasis. Even though basal proliferation and lymphopenia induced

proliferation (LIP) were often considered to be equivalent, they are not. In fact,

the adoptive transfer of naive CD8 T cells in a lymphopenic environment leads

to the acquisition of phenotypic and functional characteristics of memory T cells

(CD44high), which is distinctly different than the maintenance of a naive T cell

pool.



Chapter 2

Mathematical models for the

immune response of T cells

2.1 Introduction

Peripheral T cell populations are maintained by production of naive T cells in the

thymus, clonal expansion of activated cells, homeostatic proliferation, and density

dependent cell life spans. Despite great advances in immunological research during

the last decades, relatively little is known about the quantitative characteristics

of lymphocyte population kinetics [42]. There are widely divergent estimates of

the growth rates, division rates, and life spans of mouse and human lymphocyte

populations [43]. As a consequence, fundamental issues like the maintenance of a

diverse naive lymphocyte repertoire, the maintenance of memory, and the nature

of homeostatic mechanisms remain largely unresolved, and may be different in dif-

ferent species according to [42]. In fact, the mice are the most frequently studied

experimental animal in immunology, but they may not provide information directly

applying to humans [44].

Recently, several experimental techniques have been developed that have enabled

the generation of quantitative data on lymphocyte dynamics. Some have made use

of different lymphocyte labelling techniques, using agents such as the fluorescent dye

carboxy-fluorescein diacetate succinimidyl ester(CFSE), the base analog 5-bromo-

20-deoxyuridine (BrdU), deuterated glucose (2H2-glucose), or heavy water (2H2O).

Although the techniques are used widely, the interpretation of kinetic data obtained

using these labeling methods has turned out to be difficult [42]. In this chapter, we

15
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review the various models in the literature that have given insights into the possi-

bilities and limitations of the different experimental techniques, and have thereby

helped the quantitative interpretation of immunological data. The reviewing of the

literature in this chapter is inspired from the article of De Boer and Perelson [42].

2.2 General models for the immune response

The mathematical models used for describing the population of T lymphocytes

are typically written as ordinary differential equations defining the rate at which

the populations change over time. Most models that describe the immune response,

resemble ecological predator-prey models where the immune effectors are the preda-

tors clearing a prey-like pathogen that is stimulating the effectors to grow [45–47].

The general predator-prey type model for the immune response to an exponentially

growing pathogen B (for bacteria), can be written as

dB

dt
= rB − kBA, (2.1)

dN

dt
= σ + rNN − aNF (B)N − dNN, (2.2)

dA

dt
= F (B) [aNN + aMM + pA]− dAA− (1− F (B))mA, (2.3)

dM

dt
= (1− F (B))mA+ rMM − aMF (B)M − dMM, (2.4)

F (B) =
B

B + h
, (2.5)

where 0 ≤ F (B) ≤ 1 is a saturation function of the concentration of the pathogen,

and h defines the pathogen concentration where the function is half-maximal; i.e,

when B = h, F (B) = 1
2
. The variables N , A and M are the naive, activated, and

memory T cells. It is assumed that naive T cells become activated by the pathogen

at rate aNF (B), the activated cells then proliferate at rate pF (B), and enter the

memory pool at rate (1−F (B))m [48]. Memory T cells are assumed to self-renew at

rate rM and become activated at rate aMF (B). Naive , activated and memory cells

die at rate, dN , dA, and dM , respectively. The activation, a, and proliferation, p,

rates were made proportional to F (B) whereas the deactivation rate m, of activated

cells into memory cells was made proportional to (1 − F (B)) [48]. The source of

naive cells from the thymus, σ, is small, and it is treated as a stochastic variable.

The pathogen is killed by the activated cells, which are supposed as immune effector
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cells, according to a mass action term kBA, where k is a killing rate [49]. The r and

d parameters in this model are renewal rates, and death rates, respectively. This

model forms a basis where De Boer et al. [42] have simplified this model in order

to study a specific acute immune response, and to study the average turnover rates

of naive and memory T cells with labeling techniques.

De Boer et al. [42] have assumed that the activation function is dependent on real

time (t).

F (t) =





1 if τ0 6 t 6 τ,

0 else,

(2.6)

where the time point τ0, at which all naive T cells start to proliferate at the maximal

rate [48] and τ is the time point at which the infections of all immune responses seem

to shut down, which is called the peak of the response [42]. To fit the experimental

data from acute immune responses to viruses and bacteria, De Boer et al. [42] have

used Eq. (2.6) to reformulate Eqs. (2.2)-(2.4) of the general model into a piecewise

linear model for the response to one specific epitope1

dA

dt
= F (t)pA− (1− F (t))(dA +m)A,

dM

dt
= (1− F (t))(mA− dMM), (2.7)

where A is the number of activated cells, and M is the number of memory cells of

a population of T cells that are specific for the epitope of interest, and the total

size of the immune response is defined by T = A + M . For a primary immune

response, the initial number of cells can be defined as M(0) = 0 and A(0) = A(τ0).

Then, A(τ) = M(τ) is the total number of cells at the peak of the response, since in

this strict on/off model, memory cells only start to form after the peak [48]. Their

results (De Boer et al. [42]) show that the experimental data provide typically the

total number of T cells that are specific for one particular epitope, which in Eq.

(2.7) corresponds to A(t) when t ≤ τ and A(t) +M(t) after the peak.

Another approach for modeling the clonal expansion phase of an immune response

is to explicitly write a cascade of equations that follow every division that the cells

have completed [50]. Activation of naive or memory T cells recruits the cells into

the first stage of the proliferation cascade, P0, where the index denotes the number

1A localized region on the surface of an antigen that is capable of eliciting an immune response
and of combining with a specific antibody to counter that response.
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of completed divisions. For the closure of clonal expansion, it is assumed that after

a certain number of divisions the cells differentiate into effector cells, E, that will

leave the lymphoid tissue to clear antigen, and become memory cells.

dP0

dt
= F (.) [aNN + aMM ]− (p+ dP )P0, (2.8)

dPn
dt

= 2pPn−1 − (p+ dp)Pn for n = 1, ..., nmax, (2.9)

dE

dt
= 2pPnmax − dEE − (1− F (.))mE, (2.10)

where F (.) can be either a function of time, or the concentration of antigen, and

nmax is the number of divisions cells complete during clonal expansion. Eq. (2.2) for

the naive T cells in the general model ODEs can stay the same, but the first term

in the memory cell equation, Eq. (2.4), has to become (1− F (.))mE. Because the

birth-death ODE model of Eq. (2.9) is linear, it implicitly assumes an exponential

distribution of cell cycle times. This allows cells to rapidly proceed through the

whole division cascade [51].

This model therefore does not allow for a strict time window of clonal expansion,

it needs a strict time delay representing the minimal time to complete cell division

[51]. Diekmann et al. [52] and later on Ganusov et al. [6] have formulated the

previous model as a system of delay differential equations (DDEs). Indeed, the

activated cells of Eq. (2.3) are divided here in proliferating activated cells, P , and

effector cells, E. Then, their behaviour is described as follows

dP

dt
= F (t) [aNN + aMM ] + pP − dPP − aNH(t− τN)N(t− τN)e(p−dp)τN

−aMH(t− τM)M(t− τM)e(p−dp)τM , (2.11)

dE

dt
= aNH(t− τN)N(t− τN)e(p−dp)τN + aMH(t− τM)M(t− τM)e(p−dp)τM

−dEE − (1− F (t))mE. (2.12)

According to this model primed naive T cells, N , are involved in clonal expansion

for a period of τN days during which time they divide at rate p and die at rate

dp. At the end of this proliferative phase, they move into the effector population.

The e(p−dp)τ terms are the net dimension less clonal expansion factors describing

the expected clone size per primed cell given, the division rate p and the death

rate dp [42]. The H(t − τ) terms are Heaviside functions preventing the usage of

negative time points, i.e, H(t) = 0 if t < 0 and H(t) = 1 otherwise. Memory cells,

M , maintain themselves by division (i.e, self-renewal), at rate rM , die at rate dM
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and may become primed by antigen at rate, aM , to perform another round of clonal

expansion for τM days.

Finally, division cascade models like Eq. (2.9) have been used many times for

modeling immune responses and renewing cells in a homogeneous population [4,

51, 53–57]. Because self-renewal is in theory not bounded by a maximum number

of divisions, unless cells run into the Hayflick limit [42]. De Boer et al. [42] have

proposed an infinite cascade of random birth-death equations that keep track of the

number of divisions cells have completed.

dP0

dt
= −(p+ d)P0, (2.13)

dPn
dt

= 2pPn−1 − (p+ d)Pn, n = 1, ...,∞, (2.14)

where n is the number of divisions cells have completed. Let P (t) be the total

number of cells at time t, then

dP

dt
=
∑

n

dPn
dt

= (p− d)P.

For the initial condition P0(0) = T (0) and Pn(0) = 0 for n = 1, ..,∞, where T (0) is

the initial number of undivided cells, the general solution is

Pn(t) = P (t)× (2pt)n

n!
e−2pdt,

where P (t) =
∑

n Pn(t) = T (0)e(p−d)t is the total number of divided cells, and the

second term of the right hand side of the above equation gives the distribution of

the cells over the division numbers.

This simple models (2.13-2.14) is very general and has been used widely in the

literature to describe several data like CFSE (it is detailed in the next section) or

BRdU [4, 51, 53–57].

2.3 CFSE

Carboxyuorescein succinimidyl ester (CFSE) is an intracellular fluorescent dye that

dilutes 2-fold when a cell divides [58]. Cells are typically labeled with CFSE in vitro,

and labeled cells can be followed thereafter in vitro or in vivo. Harvesting the cells

and sorting them by the CFSE intensity generates profiles with maximally 7 or 8
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peaks, each reflecting the number of divisions the cells have undergone [42]. CFSE

is currently the most informative technique for characterizing the division kinetics

of cells in the immune system. A number of reviews address the experimental

procedures [59, 60]. The interpretation of CFSE data has resulted in many different

mathematical approaches. Here, we give some approaches from the literature.

Asquith et al. [56] wrote a random birth-death model like Eqs. (2.13-2.14), and

estimated the number of divisions that were required for a CFSE+ cell to become

CFSE− from the ratio of the median fluorescence intensity (MFI) of all CFSE+

cells over all CFSE− cells. Finding 25-fold ratio, they truncated Eqs. (2.13-2.14)

at the fifth division,

dP0

dt
= −(p+ d)P0,

dPn
dt

= 2pPn−1 − (p+ d)Pn,

dP5

dt
= 2pP4 + (p− d)P5 + σ,

for n = 1, ..., 4, and included a possible source, σ of CFSE− cells for P5 equation.

This model predicts two observables, the fraction of CFSE+ cells and the ration of

the MFIs of CFSE+ to CFSE− cells. These two observables were successfully fit

to B cell data [56].

Luzyanina et al. [61] defined a model directly describing the kinetics of the CFSE

intensity profile using a label-structured population model. Their models is com-

prised of a CFSE structured PDE allowing for cell death, for the 2-fold dilution

per division, and for CFSE loss by normal catabolism. This has the immediate

advantage of not having to classify CFSE profiles into individual peaks, which is

particularly helpful when the data is not nicely fingered. Assuming that each CFSE

peak represents a cohort of cells that entered their first division at approximately

the same time. Luzyanina et al. [61] wrote a label structured population model for

the density of cells with CFSE intensity x

∂n(t, x)

∂t
+ v(x)

∂n(t, x)

∂x
= − [p(x) + d(x)]n(t, x) + 2γp(γx)n(t, γx), xmin ≤ x ≤ xmax/γ,

∂n(t, x)

∂t
+ v(x)

∂n(t, x)

∂x
= − [p(x) + d(x)]n(t, x), xmax/γ ≤ x ≤ xmax, (2.15)

where the v(x) term describes the natural decay of the CFSE intensity, the prolif-

eration p(x) and death d(x) rates depend on the CFSE expression of the cell, and

γ is the CFSE dilution factor. If cells divide into two daugther cells, then γ = 2.

Fitting this PDE model directly to CFSE intensity profiles required smoothing of

the data, and required non-trivial numerical integration methods for solving the
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PDEs [61]. Two data sets obtained from in vitro proliferation of T cells following

polyclonal activation were fit using this model. The loss rate of CFSE, v(x), was

not exponential. The death rate hardly depended on the CFSE intensity, whereas

the division rate was found to be a bell-shaped function of the CFSE intensity x,

with relatively slow maximum division rates of 0.55 day−1 and 0.8 day−1 at the

third or fourth division. Finally, the dilution factor, γ, was less than two in both

data sets [61].

The general label structured population approach of [61] has been extend by several

authors [62–66]. For example, Schittler et al. [64] and Hasenauer et al. [65] extend

Luzyanina et al. [61] model with discrete populations for each division, and this

extension leads to the much more intuitive model.

∂P0(t, x)

∂t
+
∂ (v(x)P0(t, x))

∂x
= − [p0(t) + d0(t)]P0(t, x),

∂Pn(t, x)

∂t
+
∂ (v(x)Pn(t, x))

∂x
= − [pn(t) + dn(t)]Pn(t, x)

+2γpn−1(t)Pn−1(t, γx), (2.16)

for n = 1, ..., nmax, and where x is the amount (or concentration) of CFSE in each

cell, which decreases at a rate v(x). The number of cells contained in the nth

subpopulation is defined as Pn(t) =
∫∞

0
Pn(t, x)dx, and the number of cells having

an amount x of CFSE is given by P (t, x) =
∑nmax

n=0 Pn(t, x). After adding the

autofluorescence, the latter can be fitted directly by measured CFSE profiles, such

that the total cell number in the data is predicted by P (t) =
∑
Pn(t) [65].

Furthermore, other models are proposed in the literature to analyse CFSE data,

like the Cyton model and the Smith-Martin model. These two models are described

briefly in the next sections.

2.4 Cyton model

Gett and Hodgkin [1] proposed a simple mathematical model for CFSE data anal-

ysis. This model was then compared with a relatively simple branching process

model in Hyrien and Zand [67]. The key model assumption in Gett and Hodgkin

[1] of a normal distribution of the time to first division turned out to be likely in-

appropriate [68]. The recent work of Hawakins et al. [59] extends the work of Gett

and Hodgkin [1] by directly modeling the time to division and time to death of cell

generations using independent single mode continuous distributions. This is called
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Cyton model. Thus, the Cyton model does not require the assumption of a normal

distribution and it is flexible enough to model different generations with different

kinetic parameter values (e.g, different proliferation or death rates for different cell

generations)[68]. In this section, the Cyton model is briefly reviewed and discussed.

Let n = 0, 1, ... denote the nth generation of cells. For the nth generation, a contin-

uous distribution φn(t) is assigned to model the distribution of the time to divide,

and ψn(t) is assigned to model the distribution of time to die. To calculate the cell

number in each generation at time t, this model consists in starting with the first

generation. Given N(0) cells of age zero at time zero, then, at time t, the rates of

cell division or death in the first generation are given by

rdiv0 (t) = f0N(0)

(
1−

∫ t

0

ψ0(τ)dτ

)
φ0(t),

rdie0 (t) = N(0)

(
1− f0

∫ t

0

φ0(τ)dτ

)
ψ0(t),

where f0 represents the probability that a cell will divide in response to the given

stimulus. Then for later generations, the rates of cell division and death are given

by

rdivn (t) = 2fn

∫ t

0

[
rdivn1

(τ)

(
1−

∫ t−τ

0

ψn(ζ)dζ

)
φn(t− τ)

]
dτ,

rdien (t) = 2

∫ t

0

[
rdien−1(τ)

(
1− fn

∫ t−τ

0

φn(ζ)dζ

)
ψn(t− τ)

]
dτ.

Thus the number of cells in each generation can be calculated as follows

N0(t) = N(0)−
∫ t

0

(
rdiv0 (τ) + rdie0 (τ)

)
dτ,

Nn(t) =

∫ t

0

(
2rdivn−1(τ)− rdivn (τ)− rdien (τ)

)
, n = 1, 2...

The construction of the model above is straightforward. See Hawakins et al. [59]

for more details. Note that, φn(t) and ψn(t) in the Cyton model are the probability

density functions of some continuous distributions.
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2.5 Smith-Martin model

The model for the cell cycle developed by Smith and Martin [69] has been suc-

cessfully used for analyzing the population dynamics of dividing cells as it prevents

too rapid progression through the cell cycle by introducing the equivalent of a time

delay, i.e, a fixed length for the S, G2 and M phases of the cell cycle [42].

The Smith-Martin model allows for two phases of the cell cycle: cells in the ”A”

state, which approximately corresponds to the G0 or G1 phase of the cell cycle, are

randomly activated to divide, and dividing cells in the ”B” phase remain in this

phase for a fixed time ∆. Later on, they yield two daughter cells in the A-state.

Based on the Smith-Martin model, several investigations have developed mathemat-

ical models for the purpose of CFSE data analysis [3, 8, 51, 70], including determin-

istic models as well as stochastic models. However, the Smith-Martin model has

been criticized for its simplicity and inaccuracy [67, 71–73] and more complicated

cell cycle models have been proposed [74–76]. The recent work of Lee and Perelson

[8] greatly extended the Smith-Martin model by introducing the gamma distribution

for the A phase generation, generation dependent death rates, and variables length

of the B phase. Three models were developed in Lee and Perelson [8], including the

time to first division (TFD) model, generalized Smith-Martin (GSM) model and

the heterogeneous generalized Smith-Martin (HGSM) model. Although the GSM

and HGSM models are more flexible to accommodate variations from generation to

generation, some assumptions in Lee and Perelson [8] have been made to simplify

the analysis of models, which may not hold in practice. For example, it was as-

sumed that after the first division, cells of different ages have the same average A

and B phase lengths. Also, more complex Smith-Martin models were shown to be

comparable to the Cyton model [9]. The Smith-Martin model in [8], is written as

follows

dA0(t)

dt
= −(λ+ δA)A0(t),

dAi(t)

dt
= 2λe−δB∆Ai−1(t−∆)− (λ+ δA)Ai(t), i > 1,

dBi(t)

dt
= λAi(t)− λe−δB∆Ai(t−∆)− δBBi(t), i > 0,

where Ai(t) and Bi(t) (i = 0, 1, 2, ...) denote the number of cells in the A-state

and the B-phase in the ith generation, respectively. The cells in the A-state and

B-phase have death rates δA and δB respectively. Cells in the A-state are triggered
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to enter the B-phase at a rate λ and divide when they complete the process in B

phase. This Smith-Martin model has four parameters, with the length of the cell

cycle defined as p−1 +∆, and two different death rates. According to [42], the death

rates δA and δB, cause a problem of identifiability by using CFSE data. This version

of Smith-Martin model will give unique fits to CFSE data if the model is simplified

to three parameters, e.g, by assuming that δA = δB, δA = 0 or δB = 0 [4, 70]. Note

that the similar problems with the uniqueness of fits exist in the Cyton model [59],

and that one needs more information, like the number of dead cells per division, to

resolve these parameter identification problems.

Luzyanina et al. [77] compare fits obtained with a classical Smith-Martin model,

with fits obtained with a heterogeneous random birth-death model, i.e, Eqs. (2.13-

2.14) extended division and death rates, pn and dn, that depend on the division

number n. They find that the random birth-death models fits their data better.

This is not a fair comparison, however, because the heterogeneous model has many

parameters, that could compensate for the absence of the time delay, ∆, of the

Smith-Martin model [42].

De Boer et al. [5], Ganusov et al. [6] and Lee et al. [8] have shown that the

quiescent cells are in the G0 state of the cell cycle, and need more time to enter the

G1 state of the cell cycle, and their first B-phase could take longer than subsequent

B phases. Then, the Smith-Martin can be extended with a longer first division

by implementing a recruitment function R(t), defining the distribution of times to

complete the first division.

dA1(t)

dt
= R(t)− (λ1 + δ1)A1(t),

dAi(t)

dt
= 2λi−1e

−δi−1∆Ai−1(t−∆)− (λi + δi)Ai(t), i > 1,

dBi(t)

dt
= λiAi(t)− λne−δi∆Ai(t−∆)− δiBi(t), i > 1,

where λi and δi are the division and death rates at the ith division, respectively.

Fitting either a time-shifted log-normal [6] or a gamma distribution [6, 8] for R(t)

to experiments explicitly measuring the time to first division, this heterogeneous

Smith-Martin model was successfully fitted to CFSE data from T cells stimulated

in vitro with various concentrations of the cytokine IL-2 [78].

Furthermore, Bernard et al. [3] and Ganusov et al. [4] have formulated the Smith-

Martin model in terms of PDEs to take into account the continuous age of cells in
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B-phase. The latter is written as follows

(SM)





dA0

dt
= −(λ+ δA)A0(t), {A0(0) > 0}

dAi
dt

= 2Bi−1(t,∆)− (λ+ δA)Ai(t), {Ai(0) = 0}, i = 1, ..., I





∂
∂t
Bi(t, τ) + ∂

∂τ
Bi(t, τ) = −δBBi(t, τ), i = 0, ..., I

Bi(t, 0) = λAi(t), Bi(0, τ) = 0

where ∆ is the duration of cells in B-phase, λ is the rate of entry into division,

and, δA, δB are the death rate in A-state and B-phase respectively. Ganusov et al.

[4] have shown that no general robust method exists to estimate all parameters of

the SM model by using CFSE data alone. It is, however possible to estimate the

duration of division ∆, probability of cell death during the cell cycle δ (by assuming

δ = δA = δB), and in some cases the average division time T . In addition, measuring

an additional parameter, like the fraction of cells in division (i.e, fraction of cells

that are in the S + G2 + M phase of the cell cycle), may allow estimation of all

parameters of the SM model [4].

Models of T cell homeostatic proliferation

The homeostatic proliferation (or lymphopenia induced proliferation) that naive T

cells undergo following adoptive transfer into an environment with low T cell num-

ber was studied by Yates et al. [7] and Hogan et al. [10].

In [7], they labeled F5 TCR transgenic naive CD8+ T cells, which are specific for

an influenza peptide, with CFSE and transferred these cells into Rag1 knockout

mice that have no endogenous T cells. At different time points, lymph nodes were

recovered from the recipient mice to record the CFSE profiles and expression of

CD44 were assessed by flow cytometry. In the presence of cognate antigen, i.e, the

influenza virus, CFSE dilution was rapid due to the vigorous clonal expansion of

the F5 T cells. In its absence, the F5 cells started to grow exponentially after a few

days. The mean division number increased linearly with time, with some evidence

for a slowing-down after about two weeks. Furthermore, using the CFSE profile

to calculate the precursor frequency (see Materials and Methods in [7]) revealed

that the CD44high population arise from only 17% of the precursor population.



Chapter 2. Mathematical models for the immune response of T cells 26

The remaining 83% pool remained CD44low and divided more slowly or not at all.

Therefore, their data in [7] suggest that F5 TCR transgenic CD8+ T cells divided

slowly, or not at all, without up-regulating activation markers like CD44.

To analyse the regulation of LIP, Yates et al. [7] fitted a series of mathematical

models of cell division to their data. At first, they compared the time course of

cell division predicted by Cyton model to the response observed experimentally, the

model appeared to provide a very poor description of the data [7]. The second class

of model used in their study, is the SM model, in which cells spend exponentially

distributed times in a quiescent A-state (corresponding approximately to the G0/G1

states of the cell cycle) and then progress through a B-phase (S, G2 and M) before

dividing and returning to the A-state. The B-phase was taken to be of fixed dura-

tion ∆. The rate of transition from A-state to B-phase is represented by a constant

term λ. This assumption of a constant mean rate of entry into division (λ) gave

a reasonable fit to the data [7]. The third class of model is a modified SM model

where they extend the SM model. Indeed, they considered that the rate of entry

into division depends on the time t (λ = λ0e
−ηt). This improved the fit significantly.

Furthermore, Hogan et al. [10] analysed two TCR transgenic of T cells (OT-1

cells and F5 cells). Their data allow to conclude that the undivided OT-1 cells

expressed a similar level of CD44 to naive CD8+ T cells, and began to upregulate

expression of this marker after the 4th-6th division in response to lymphopenia.

However, F5 T cells retained a low level of CD44 expression throughout division.

The expression of CD44 by OT-1 T cells at approximately 4-6 divisions in response

to lymphopenia, indicates the acquisition of a memory like phenotype, which is not

observed for F5 T cells under the same conditions. This result is consistent with

the result of F5 T cells deduced by Yates et al. [7]. In addition, Hogan et al. [10]

extended the modified SM model proposed by Yates et al. [7] (it is denoted by

SM1 model). This new version of Smith-Martin consists to take into account the

competition between cells to enter B-phase, then the rate of entry into division is

considered as a function of the cell number (λ = λ0e
−η N(t) where N(t) is the total

cell number in A-state and B-phase). In their work, they compared this new version

of Smith-Martin model (SM1 model) to Cyton model for OT-1. They concluded

that LIP by OT-1 was much better modeled with the SM1 model than the Cyton

model, as reflected in the lower CrV for the SM1 model fit, which is a measure of

goodness of fit.
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2.6 Discussion and Motivation

Throughout adult life, the size and composition of the peripheral lymphocyte pool is

tightly regulated and, in the absence of disease, is maintained at relatively constant

levels [40, 79]. The correct representation of the T-cell pool is essential to maintain

adequate immune competence against pathogens, since it has to maintain a suffi-

ciently diverse repertoire of naive T cells to recognize a broad range of antigens,

while efficient immune responses against previously encountered pathogens depend

on the memory T-cell pool. For these demanding tasks, homeostatic mechanisms

have evolved to maintain distinct populations of naive and memory cells and to

retain an appropriate mixture of CD4+ helper T cells and CD8+ cytotoxic T cells.

A few general principles govern the physiologic response to perturbations of the

balance between T cells. For example, viral infections (HIV, Tuberculosis,...), or

drugs used in peritransplant induction therapy or cancer chemotherapy, are the

main factors that disrupt the balance of T cells. This perturbation results in Lym-

phocytopenia or lymphopenia (i.e. the condition of having an abnormally low level

of lymphocytes in the blood) which induces a rapid in vivo proliferation of T cells

with a recruitment of naive T cells from the thymus.

As proved in the last decades, the use of mathematical models in immunology has

allowed great advances, not only on the theoretical side, but also on the side of the

management of actual public health policies. As summarized in this chapter, several

studies have successfully used mathematical modeling to describe the proliferative

response of T cells to lymphopenia [7, 10] and greatly facilitated our understanding

of the cell cycle control involved. However, these studies have not taken into ac-

count the transition from naive to memory status by using the concept of a relevant

phenotype as structuring during the homeostatic process. This transition can be

assessed phenotypically by measuring expression levels of several surface markers

such as CD44.

In this thesis, our research objectives are to elaborate some answers to the following

immunological subjects:

- Understanding the complex relationship between LIP2 and the switch

from a naive to memory phenotype through mathematical models.

- Studying the asymptotic behaviour of T cells during the homeostatic

process in vivo.

2Lymphopenia Induced Proliferation
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The key tools used in this work are: Mathematical Modeling, Numerical Anal-

ysis, Experimental Data, Parameter Identification Problem, Asymptotic

Behaviour and Optimal Control.
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Plan of Thesis

T Cell Homeostasis in Vivo 

 Mathematical model and its well-posedness 

 Asymptotic behaviour for an age structured model 

 An optimal strategy of rebuilding immunity 

 

P
A
R
T 

II 

T Cell Proliferation in Lymphopenia Conditions 

 Mathematical modeling 

 Numerical analysis 

P
A
R
T 

III 
 

P
A
R
T 

IV 

 

Parameters Identification 

 Experimental data and theoretical identifiability 

 A comparison of two versions of Smith-Martin model 

 Identification of the upregulation of CD44 (i.e. switch from naïve 

to memory phenotype) 

 Identification of the recruitment rate and the division rate 

Objectives:  

 Understanding the complex relationship between LIP and the switch from a naive 

(CD44 low) to memory (CD44 high) phenotype through mathematical models.        

 Studying the asymptotic behaviour of T cells during the homeostatic process in 

vivo. 

Flowchart of thesis. Items in blue, red and yellow resume the articles [80] (Pub-
lished), [81] (Accepted), [82] (Submitted) issues from this thesis respectively.
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This work is organised as follows.

- Part II is divided in two chapters:

• In Chapter 4, we build a new in vitro model (noted SMCD44) to include the

transition from naive (CD44 low) to memory (CD44 high) cells. By including

in the Smith-Martin model [3, 4, 7, 10] new parameters which link the pheno-

typic (i.e. gradual upregulation of CD44 expression) and functional conversion

of cells with their number and/or rate of division, we explore the nature of

the LIP response that generate CD44 phenotype expression in T cells.

As in the Smith-Martin model, the SMCD44 model includes an A-state (rest-

ing phase) and a B-phase (proliferative phase) where cells undergo division

such as a cascade system. The number of times cells transfer between the

A-state to the B-phase is indexed by i, which is the number of times a cell

has undergone division. The time since entering the B-phase (either the first

time or any subsequent time) is measured by τ which reflects the maturity of

the cells at this stage and has a maximum value ∆. Both the cells in A-state

and B-phase are also indexed by s ∈ [0,m], the intensity of CD44 expression.

The A-state and B-phase are described by ODEs and PDEs respectively. The

different A-state and B-phase components are given by Ai(t, s) and Bi(t, τ, s)

respectively for i = 0, 1, ..., I (depending on how many times the cells have

undergone division). For i = 0 the growth of the A0 component in this in

vitro model comes from the initial number of cells in A0 phase. Furthermore,

the stochastic recruitment of cells from A-state into B-phase is done with a

rate λ that depends on the total cell number N(t). In B-phase, the cells are

up-regulating their level of CD44 with a velocity vi(s). After completing the

process (mitosis) in B-phase, the cells divide with rate µ(τ) which depends

on the age of cells in B-phase, and the daughter cells inherit the same level of

CD44 of their mother cells (See (4.2-4.3) and Fig. 4.1 in Chapter 4). For this

structured system, we derive an implicit solution of the Ai equation and the

integral formulation of the Bi equation.

• In Chapter 5, we build a numerical scheme to approximate the solution of

SMCD44 model. Furthermore, an analysis of properties of the scheme is pro-

posed. Indeed, the proofs of stability, consistency and convergence of the

scheme to an analytical solution of the model, are established in this chapter.
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- Part III is divided in four chapters:

• In Chapter 6, we describe the data generated by Hogan et al. [10]. Next, we

prove the identifiability of some parameters (vi, λ, ∆) in SMCD44 model.

• In Chapter 7, we present the latest version of Smith-Martin in the literature

and our reduced SMCD44 model (i.e without the CD44 structure). In addi-

tion, we describe the method used to identify numerically several common

parameters in both models by using the CFSE data [10]. Finally, we show the

parameters and the simulations that we obtain from the models, and compare

them to experimental data.

• In Chapter 8, we interest to identify the velocity of CD44 up-regulation dur-

ing lymphopenia induced proliferation. This velocity is the key parameter

that distinguishes from which divisions, T cells can be considered as naive or

memory through the mathematical model SMCD44.

The methodology used to identify this parameter consists to solve a param-

eter identification problem where it is well detailed in this chapter. In the

numerical results, we show the parameters and the simulations that we obtain

from the model and compare them to experimental data. Finally, the iden-

tified parameters and the simulations of SMCD44 provide several biological

interpretations of the complex relationship between LIP and the switch from

a naive to memory phenotype through SMCD44 model.

• In Chapter 9, we connect the intensity of CD44 with the rate of entry into

division (λ) and the rate of division (µ). Here, we interest to identify these

new parameters which depend on the level of CD44 (s). As in the previous

chapter, the ingredients to solve the parameters identification problems are

given. Finally, we present the simulations and the identified parameters, and

we conclude by biological interpretations about the link between the level of

CD44 on the cells and their rate of entry into the proliferative phase or their

division rate.

- Part IV is divided in three chapters:

• In Chapter 10, we extend the SMCD44 model to an in vivo model by imple-

menting a rate Λ of export of cells from the thymus. In addition, we consider
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a large number of division (I >> 0) with a rate of entry into division depend-

ing on the number of division (i) and the total cell number (N). By using

the fixed point method, we prove the local existence and uniqueness of the

solution of the extended model system. Finally, we conclude on the global

existence of solutions by using the maximal interval of existence.

• In Chapter 11, we rewrite the extended model system as an age-structured

model system without the CD44 structure, and we investigate its asymptotic

behaviour. We find that there exists one or three stationary solutions when

cells undergo at least five divisions and only one stationary solution when

cells undergo at most three divisions, the limiting case with four divisions is

numerically handled. By applying the Lyapunov method, we prove in some

cases of uniqueness that the stationary solution is globally asymptotically

stable.

• In Chapter 12, we reformulate the in vivo model proposed in Chapter 10 into a

more realistic version with vaccination strategy. The purpose of this chapter

is to address the problem of determining an optimal strategy that lead to

enhanced immunity during the homeostatic process. Firstly, we discuss the

cost function and we derive the optimality conditions. Secondly, we perform

some simulations to compute the optimal vaccination.

- Finally in Chapter 13, we summarize the main results of this study and we

give perspectives and new problems induced from this research project.
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Chapter 4

Mathematical modeling of

Lymphopenia induced

proliferation

4.1 Introduction.

T lymphocytes are a fundamental component of the immune system that can recog-

nise and respond to a foreign antigen by virtue of their clonally expressed T cell

antigen receptor (TCR). T cells that have yet to encounter the antigen they recog-

nise are termed ’naive’ as they have not been activated to respond.

Homeostatic mechanisms maintain the number of T cells at an approximately con-

stant level by controling cell division and death. In normal replete hosts, cell

turnover within the naive compartment is very low and naive cells are maintained

in a resting state [40]. However, disruption of the homeostatic balance can arise

from a wide variety of causes and can result in T cell deficiency i.e T lymphopenia.

Under conditions of T lymphopenia, naive T cells undergo cell division, termed

homeostatic proliferation or lymphopenia induced proliferation (LIP).

The homeostatic proliferative response of naive T cells is complex and depends on

the affinity of the TCR for self antigens. Studies on TCR transgenic mouse models

reveal a spectrum of responses. T cells expressing some TCR transgenes fail to

proliferate in lymphopenia [28]. T cells expressing other transgenic TCR undergo

cell divisions at a slow rate [83] whereas some others undergo more rapid divisions

accompanied by changes in the cell surface phenotype including increased CD44

37
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expression, which is commonly associated with a ”memory like” phenotype [84–86].

This transition can be assessed phenotypically by measuring expression levels of

several surface markers such as CD44 on which this thesis is focused. Understand-

ing the complex relationship between LIP and the switch from a naive to memory

phenotype is an important question to address. There have been several studies

modelling the cell cycle in lymphopenia conditions [7, 10]. However these studies

did not take into account the changes in phenotype.

An important step in using the mathematical approach is the estimation of model

parameters using experimental data. Several types of data have been used in this

context. Using cell dyes, such as Carboxy Fluorescein diacetate Succinimidyl Ester

(CFSE), is currently one of the most informative methods to characterize the dy-

namics of cell division in the immune system. Following each division, CFSE divides

equally between daughter cells, resulting in a two-fold decrease in the intensity of

cellular fluorescence in each successive generation. This property of CFSE allows

accurate tracking of the number of divisions that a given cell has undergone either

in vitro or following transfer in vivo [87].

Several authors have tried to understand T cells homeostasis by using mathematical

models with CFSE data and employing many methods for the estimation of model

parameters [1, 4, 5, 8–10, 51, 59, 78].

Gett and Hodgkin [1] used a different class of model (GH model) in which het-

erogeneity in proliferation stems from variable times to first division, with quasi-

deterministic division from then onwards. This has been used successfully to de-

scribe antigen-driven ’programmed’ cell division [1, 78, 88].

The Smith-Martin model (Smith and Martin [69]) is another standard mathemati-

cal model for analysing the kinetics of the cell cycle, which allows two phases of the

cell cycle. Cells in ”A-state” are in rest and are recruited stochastically to divide

in the proliferative ”B-phase”. This phase has a fixed total duration.

The Smith-Martin model has been applied widely to CFSE data [2–9], and the dura-

tion of deterministic phase (B-phase) and the probability of cell death has been esti-

mated from experimental data mainly based on CFSE cell division profiles. Hogan

et al [10] improved the technique and accuracy of the parameters estimations from

the Smith-Martin model. The DNA binding dye, 7-Aminoactinomycin D (7AAD),

was used with CFSE to distinguish the proliferating and non-proliferating cells,

therefore enabling estimations of the rate of recruitment of cells from A-state into

B-phase.

In this chapter, we build a new model for including the transition from naive (CD44
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low) to memory (CD44 high) cells. By including new parameters to the Smith-

Martin model which link the phenotypic (i.e. gradual upregulation of CD44 expres-

sion) and functional conversion of cells to their number and/or rate of division, we

explore the nature of the LIP response that generate CD44 expression phenotype

cells.
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Figure 4.1: Model of T cell proliferation in lymphopenia conditions. Ai and Bi are the number of T
cells, having undergone i divisions in A-state and B-phase respectively. ∆ is the duration of B-phase (unit in
hour). The rate of entry into division (λ) is described by a function of the total cell number (N), which is

linked to all phases and all divisions [10].

4.2 The model (noted SMCD44)

The biological cell cycle describes five distinct phases G0, G1, S, G2 and M grouping

interphase and mitosis. Phase G0 is a quiescent phase as cells are in a non dividing

state and require a specific extrinsic signal to enter the cell cycle. In G1, cells grow

in size and make the cytoplasmic proteins necessary for cell division. The phases

S, G2 and M are the proliferative phases where a cell duplicates its genome and

divides in two daughter cells.

In the case of T cell division, a mother cell gives rise to two new cells called daughter

cells. This process can be modeled by two phases, proliferative phase and resting
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phase. The proliferative phase is the active phase of DNA synthesis and cell di-

vision. A cell cannot stay indefinitely in the proliferative phase, it divides when

it completes the process of mitosis. After cell division, daughter cells re-enter the

resting phase. In contrast to the proliferation phase, cells in the resting phase may

remain stable and viable indefinitely.

In lymphopenic conditions (Fig. 4.1), the progression of cells through the cell cycle

involves a stochastic recruitment of cells from A-state (corresponding approximately

to the G0/G1 phase of the cell cycle) into the dividing B-phase (approximately

equivalent to the S, G2, and M phases of the cell cycle) [5, 7]. The B-phase has

a fixed duration ∆. It is assumed that a cell in B-phase has an age τ ∈ [0,∆].

After completing the deterministic B-phase, a cell delivers two daughter cells into

the stochastic A-state from which the cells may be recruited for another round of

division. Cells in the A-state and B-phase have death rates δA and δB respectively.

To better understand the dynamics of memory T cell generation in lymphopenic

conditions, we model the transition of cells from a naive (CD44 low) to a memory-

like (CD44 high) phenotype as a consequence of LIP. The dynamics of this transition

has been measured by the phenotypic (CD44) change on the surface of T cells. For

this reason, we take into account the CD44 expression in the Smith-Martin model.

We suppose that cells have an expression of CD44, s ∈ [0,m], where m is the max-

imum CD44 expression.

We denote by

• Ai(t, s) is the number of cells at time t having undergone i divisions in A-state

and having an intensity s of CD44 expression.

• Bi(t, τ, s) is the number of cells at time t having undergone i divisions, having

spent time τ in B-phase and having an intensity s of CD44 expression.

Subscripts i = 0, ..., I refer to division or generation number, I is the maximum

number of divisions that can be performed (8 - 9 with CFSE labelling) [7, 10].

The total number of cells is given at time t by

N = N(t) =
I∑

i=0

(∫ m

0

∫ ∆

0

Bi(t, τ, s)ds dτ +

∫ m

0

Ai(t, s)ds

)
. (4.1)
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Rate of entry into division

Recruitment of cells from A-state into the B-phase occurs at a rate λ. As the cellular

population increases, the amount of resources per cell decreases and the recruitment

rate is reduced. A smaller division rate corresponds to the smaller transfer rate λ

of the model [10]. Therefore, λ depends on the total number of cells N = N(t).

Division rate

In the Smith-Martin model, cells are triggered from A-state to enter the prolifera-

tive B-phase. They spend some time, indexed by τ ∈ [0,∆] to divide in B-phase.

A proliferative cell divides into two daughter cells only when it has completed the

process of mitosis (∆ is approximately the time to finish the process). More specif-

ically, when a cell divides, it disappears from the B-phase.

In this study, we introduce a function µ in order to remove the cells that have di-

vided. Therefore, µ(τ) represents the rate of cells which divided at age τ and have

given rise to two daughter cells in the resting phase.

The cumulative probability that a cell is still in B-phase at time τ , having not

divided (µ) nor been killed (δB) until this time point, is

Π(τ) = e−
∫ τ
0 (δB+µ(a))da,

and the cumulative probability that a cell has divided until time point τ , is

d(τ) = 1− e−
∫ τ
0 µ(a)da.

Velocity of CD44 up-regulation

To describe the CD44 expression and its accumulation on the surface of T cells, a

velocity (vi) was introduced in the model which depends on the CD44 expression

(s) and the number of divisions (i). This velocity is used to represent the extent of

up-regulation of CD44 expression in the proliferation process. Indeed, we assume

that cells are up-regulating CD44 during the proliferating phase [89]. This velocity

can take into account the level of receptors that have been already presented on the

surface of cells at the beginning of the phase.

Then, the dynamics of T cells in lymphopenia conditions is given in
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the following model





dA0(t, s)

dt
= −δAA0(t, s)− λ(N)A0(t, s),





for i = 1, ..., I

dAi(t, s)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ, s) dτ − δAAi(t, s)− λ(N)Ai(t, s),





for i = 0, ..., I

∂
∂t
Bi(t, τ, s) + ∂

∂τ
Bi(t, τ, s) + ∂

∂s
[vi(s).Bi(t, τ, s)] = − (δB + µ(τ))Bi(t, τ, s),

(4.2)

where the variables (t, τ, s) lie in [0, T ]× [0,∆]× [0,m].

The boundary and initial distributions are





Bi(t, 0, s) = λ(N)Ai(t, s) and vi(0)Bi(t, τ, 0) = 0 for i = 0, ..., I

Bi(0, τ, s) = 0, for i = 0, ..., I and Ai(0, s) = 0, for i = 1, ..., I

A0(0, s) = A0,0(s) > 0.

(4.3)

We denote (4.2-4.3) by SMCD44 model.

4.3 Integral formulation

In this section, one derives an integral formulation of the solution of System (4.2-

4.3).

By using the Lagrange method, one obtains implicit solutions of the ordinary dif-

ferential equations that are in System (4.2-4.3)

A0(t, s) = A0,0(s) e−
∫ t
0 (δA+λ(N(u)))du, (4.4)

Ai(t, s) = 2

∫ t

0

∫ ∆

0

e−
∫ t
r (δA+λ(N(q)))dqµ(τ)Bi−1(r, τ, s)dτ dr, i = 1, ..., I.
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In addition, consider the following ordinary differential equations





ds1i (t)

dt
= vi(s

1
i (t))

s1
i (t0) = s1

i,0 > 0,





ds2i (τ)

dτ
= vi(s

2
i (τ))

s2
i (τ0) = s2

i,0 > 0.

(4.5)

s1
i (t; t0; s1

i (t0)) and s2
i (τ ; τ0; s2

i (τ0)) are the curves which go through (t0, s
1
i (t0)) and

(τ0, s
2
i (τ0)) respectively. The curves, Z1

i (t) := s1
i (t; 0; 0) and Z2

i (τ) := s2
i (τ ; 0; 0)

are the characteristic through the origin. The solutions of (4.5) are given by the

following equations

s1
i (t) = s1

i (t0) +

∫ t

t0

vi(s
1
i (z))dz, s2

i (τ) = s2
i (τ0) +

∫ τ

τ0

vi(s
2
i (r))dr.

Assumption 4.3.1.

- Natural mortalities rates δA and δB are non-negative constants.

- Function µ(.) is bounded, non-negative and satisfies the following inequality

0 ≤ µ ≤ µ(τ) ≤ µ̄, ∀ τ ∈ [0,∆].

- Function λ(N) is non-negative, bounded and Lipschitz continuous with constant

k

|λ(N)− λ(N∗)| 6 k|N −N∗|, N > 0, N∗ > 0.

- Function vi is bounded, non-negative for all i ∈ NI := {0, ..., I}, satisfies the

condition

vi(0) = 0, and 0 < vi ≤ vi(s) ≤ v̄i, ∀s ∈]0,m],

and continuously differentiable with respect to the variable s. In addition, there

exists a positive constant dvi , ∀ i ∈ NI , such that

|∂vi
∂s
| 6 dvi , ∀ s ∈ [0,m].

- Initial condition A0,0(.) is non-negative and belongs to L1
+((0,m)).

Let Assumption 4.3.1 be satisfied. By using the method of characteristics, one has:
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1-) Let ui(t) := Bi(t, t + c, s1
i (t)), where c > 0. Using the PDEs in System (4.2-

4.3), one obtains

dui(t)

dt
= −

[
δB + µ(t+ c) +

∂vi(s
1
i (t))

∂s1
i (t)

]
ui(t).

Using ui(0) = Bi(0, c, s
1
i (0)) = 0, then Bi(t, τ, s) = 0 for all t ≤ τ and

Z1
i (t) < s.

2-) Let wi(τ) := Bi(τ + c, τ, s2
i (τ)), where c > 0. Using the PDEs in System

(4.2-4.3), one obtains

dwi
dτ

= −
[
δB + µ(τ) +

∂vi(s
2
i (τ))

∂s2
i (τ)

]
wi(τ),

which implies Bi(τ + c, τ, s2
i (τ)) = Bi(c, 0, s

2
i (0)) e−

∫ τ
0 (δB+µ(r))dr e

−
∫ τ
0

∂vi(s
2
i (r))

∂s2
i
(r)

dr
.

Performing the change of variable σ = s2
i (r), one gets

Bi(τ + c, τ, s2
i (τ)) = Bi(c, 0, s

2
i (0)) e−

∫ τ
0 (δB+µ(r))dr e

−
∫ s2i (τ)

s2
i
(0)

∂vi(σ)

∂σ
1

vi(σ)
dσ

=
Bi(c, 0, s

2
i (0)) vi(s

2
i (0))

vi(s2
i (τ))

e−
∫ τ
0 (δB+µ(r))dr.

For t := τ + c and s := s2
i (τ), one obtains

Bi(t, τ, s) =
λ(N(t− τ))Ai(t− τ, ζi) vi(ζi)

vi(s)
e−

∫ τ
0 (δB+µ(r))dr, ∀ 0 ≤ τ < t, Z2

i (τ) < s

where ζi := s2
i (0) = s− Z2

i (τ).

3-) Let $i(s) := Bi(t(s), τ(s), s), where t(s) and τ(s) are the inverse functions of

s1
i (t) and s2

i (τ) respectively. Using the PDEs in System (4.2-4.3), one obtains

Bi(t, τ, s) = 0, ∀ s ≤ Z1
i (t), s ≤ Z2

i (τ).
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Then, the integral formulation of Bi, ∀ i = 0, ..., I, is

Bi(t, τ, s) =





0 t ≤ τ, Z1
i (t) < s

λ(N(t−τ))Ai(t−τ,ζi) vi(ζi)
vi(s)

f(τ) 0 ≤ τ < t, Z2
i (τ) < s

0 s ≤ Z1
i (t), s ≤ Z2

i (τ)

(4.6)

where ζi = s− Z2
i (τ) and f(τ) := e−

∫ τ
0 (δB+µ(r))dr.

Assuming that the solution (Ai(t, .), Bi(t, ., .)) of System (4.4-4.6) belongs to L1(0,m)×
L1((0,∆), (0,m)) for all t > 0.

Definition 4.1. Let T > 0 and i ∈ NI := {0, ..., I}, the norms of Ai and Bi in the

Banach spaces,

H1
T := L∞((0, T );L1(0,m))

L1
T := L∞((0, T );L1((0,∆), (0,m)))

are defined respectively by

‖Ai‖H1
T

= sup
06t6T

‖Ai(t, .)‖L1(0,m),

‖Bi‖L1
T

= sup
06t6T

‖Bi(t, ., .)‖L1((0,∆),(0,m)).

Definition 4.2. For all T > 0. (Ai, Bi), ∀ i ∈ NI := {0, ..., I} is called a global

solution of (4.2-4.3) (in the sense of the expressions (4.4)-(4.6)), if it belongs to

L∞(0, T, L1(0,m)) and L∞(0, T, L1((0,∆)×(0,m))) respectively and it satisfies Sys-

tem (4.4)-(4.6).

Theorem 4.3. Let Assumption 4.3.1 be satisfied. Then, there exists a unique so-

lution of System (4.4)-(4.6) for all t ∈ (0,∞).

Proof. The existence of global solution of System (4.4)-(4.6) is deduced from the

general result in Part IV - Chapter 10.

Remark 4.4. Using (4.4), (4.6) and Assumption 4.3.1, one may check by induction

over i the positivity of (Ai, Bi) for all i ∈ NI .





Chapter 5

Numerical analysis of the SMCD44

model

5.1 Introduction

In this chapter, we build a numerical scheme to approximate the solution of SMCD44

model. Furthermore, an analysis of properties of the scheme is proposed.

In the literature, the numerical schemes of the structured models are constructed

from the equations or the solution calculated by the characteristic method. Douglas

and Milner [90] have developed a finite difference scheme (FD) of the equation of

McKendrick-Von Forster, with a mortality function that depends on the total pop-

ulation. Know et al. [91] have improved this scheme to a second order accuracy.

Later on, Sulky [92] has applied this approximation method to the model of Sinko

and Streifer [93]. The non-linear structured models of the populations dynamics

have been studied by Angulo et al. [94, 95] and Kostova [96] for example. The

accuracy of these schemes has order 2 for Angulo et al. [94, 95] and 3 for Kostova

[96].

In this chapter, we provide a finite difference method to approximate the equations

of our SMCD44 model. This method is used widely in case of hyperbolic equations,

such as the PDEs that constitute our model. The proofs of stability, consistency

and convergence of scheme to an analytical solution of the model, are established

in this chapter.

47
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5.2 Numerical approximation scheme

In this section, we build an approximate solution of System (4.2-4.3). To establish

our scheme, we define a mesh in [0, T ]× [0,∆]× [0,m]. Let ∆t, ∆τ and ∆s be the

time, age and CD44 expression mesh sizes respectively. We subdivide the intervals

[0, T ], [0,∆] and [0,m] in NT + 1 points tn, Nτ + 1 points τ j and Ns + 1 points sk

respectively. Such that for n = 0, j = 0, k = 0 one has t0 = 0, τ 0 = 0, s0 = 0 and

for n = NT , j = Nτ , k = Ns one has tNT = T , τNτ = ∆, sNs = m. The grid points

are defined by

tn = n∆t, n = 0, ..., NT ,

τ j = j∆τ, j = 0, ..., Nτ ,

sk = k∆s, k = 0, ..., Ns.

We introduce the following approximations for all i ∈ NI := {0, ..., I}, 0 6 n 6 NT ,

0 6 j 6 Nτ and 0 6 k 6 Ns

Ai,nk = Ai(t
n, sk), Bi,n

j,k = Bi(t
n, τ j, sk), µj = µ(τ j), λn = λ(N(tn)).

Let vNs = (v0,Ns , ..., vI,Ns) be the approximate function v = (v0, ..., vI). It belongs

to the space KNs = (C ū,Ns
+ )I where

C ū,Ns
+ = {u(sk) = uk, u0 = 0, 0 < uk 6 ū, k = 1, .., Ns}.

The equations of System (4.2-4.3) are approximated by





Bi,n+1
j+1,k =

(1− ∆t
∆s
vki )Bi,n

j,k + ∆t
∆s
vk−1
i Bi,n

j,k−1

1 + ∆tδB + ∆tµj
, k = 1, ..., Ns, i = 0, ..., I,

v0
iB

i,n
j,0 = 0,

Bi,n+1
0,k = λnAi,nk .

(5.1)





A0,n+1
k =

A0,n
k

1 + ∆tδA + ∆tλn
,

Ai,n+1
k =

Ai,nk + 2∆t∆τ
∑

j µ
jBi−1,n

j,k

1 + ∆tδA + ∆tλn
, i = 1, ..., I.

(5.2)
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for n from 0 to NT − 1 and j from 0 to Nτ − 1.

The CFL condition is

0 <
∆t

∆s
‖vi,Ns‖∞ 6 1 for i = 0, ..., I. (5.3)

The initial condition A0,0 is approximated by its mean value on each mesh k, for all

k = 1, ..., Ns.

Ak0,0 =

∫ sk

sk−1

A0,0(s)ds. (5.4)

For all n = 0, ..., NT − 1, j = 0, ..., Nτ − 1 and i = 0, ..., I fixed, the first equation of

System (5.1) can be written in the following matrix form




Bi,n+1
j+1,1

:

:

:

:

Bi,n+1
j+1,Ns




=




(1−∆t
∆s
v1
i )

1+∆tδB+µj
0 . . . 0

∆t
∆s
v1
i

1+∆tδB+µj
(1−∆t

∆s
v2
i )

1+∆tδB+µj
. . . 0

...
. . . 0

0 .......
∆t
∆s
v
Ns−1
i

1+∆tδB+µj
(1−∆t

∆s
vNsi )

1+∆tδB+µj







Bi,n
j,1

:

:

:

:

Bi,n
j,Ns




where the above matrix is defined positive under condition (5.3).

5.3 Numerical analysis of scheme

In this section, we study the positivity and the stability of our scheme. These pro-

prieties will be used to proof the convergence of the discrete solution of our scheme

to the continuous solution of SMCD44 model.

Let us define the following discrete norms

‖Bi,n‖1 =
Nτ∑

j=0

Ns∑

k=1

|Bi,n
j,k |, ‖Ai,n‖1 =

Ns∑

k=1

|Ai,nk |,

‖Bi,n‖∞ = sup
06j6Nτ

sup
16k6Ns

|Bi,n
j,k |, ‖Ai,n‖∞ = sup

16k6Ns
|Ai,nk |,

and for all i ∈ NI , n > 0, j > 0

Bi,n
j ∈ BV ([0,m])⇔

Ns−1∑

k=0

|Bi,n
j,k+1 −B

i,n
j,k | 6 c, c > 0.
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In what follows, we will make use the following assumption.

Assumption 5.3.1.

- 0 < ‖A0,0‖∞, ‖A0,0‖1 <∞, A0,0 ∈ BV ([0,m]).

- Parameter µj, for all j = 0, ..., Nτ , is bounded, non-negative and satisfies the

following inequality

0 ≤ µ ≤ µj 6 µ̄.

- Parameter λn := λ(Nn), for all n = 0, ..., NT , is non-negative, bounded and

satisfies the following inequality

0 < λn 6 λ0.

- Parameter vki , for all i ∈ NI and k = 1, ..., Ns belongs to C ū,Ns
+ such that 0 ≤

‖vi,Ns‖∞ ≤ ṽi and
|vk+1
i −vki |

∆s
≤ v∞i for all k = 0, .., Ns − 1.

The following lemma is devoted to proof the positivity.

Lemma 5.1. Let Assumption 5.3.1 be satisfied. The numerical scheme (5.1 - 5.2)

preserves the positivity of the solution under condition (5.3). For all i ∈ NI , n =

0, ..., NT , j = 0, ..., Nτ and k = 1, ..., Ns, one has

(Ai,nk , B
i,n
j,k) > 0 =⇒ (Ai,n+1

k , Bi,n+1
j+1,k) > 0.

Proof. Let (Ai,n+1
k , Bi,n+1

j+1,k) be the numerical solution of (5.1 - 5.2). The absolute

value of this solution, is equal to

|Bi,n+1
j+1,k| = |

(1− ∆t
∆s
vki )Bi,n

j,k + ∆t
∆s
vk−1
i Bi,n

j,k−1

1 + ∆tδB + ∆tµj
|, (5.5)

|A0,n+1
k | = | A0,n

k

1 + ∆tδA + ∆tλn
| and |Ai,n+1

k | = |
Ai,nk + 2∆t∆τ

∑
j µ

jBi−1,n
j,k

1 + ∆tδA + ∆tλn
|. (5.6)

Under Assumption 5.3.1 , the denominator of (5.5) is strictly positive. Using con-

dition (5.3), one obtains

0 <
∆t

∆s
vki 6 1 for i ∈ NI and k = 1, ..., Ns.

Then, one deduces the positivity of the numerator of equation (5.5). Therefore, by

induction over i, one concludes the positivity of (Ai, Bi) for all i ∈ NI .



Chapter 4. Numerical analysis of the SMCD44 model. 51

In what follows, we shall use the following convention

i∑

j

= 0 ,
i∏

j

= 1 and Bi−j = 0 if j > i.

Lemma 5.2. Let Assumption 5.3.1 be satisfied. Under condition (5.3), the numer-

ical scheme (5.1 - 5.2) is stable with respect to the discrete norm L1. Furthermore,

for all i ∈ NI and n = 0, ..., NT , one has

‖Bi,n‖1 6M i
1‖A0,0‖1, ‖Ai,n‖1 6 N i

1‖A0,0‖1,

where M i
1 and N i

1 are positive constants.

Proof. The numerical solution of (5.1 - 5.2) can be written as following ∀ i ∈ NI

Bi,n+1
j+1,k = Bi,n

j,k −
∆t

∆s
(vkiB

i,n
j,k − v

k−1
i Bi,n

j,k−1)− (∆tδA + ∆tµj)Bi,n+1
j+1,k, (5.7)

and,

A0,n+1
k = A0,n

k − (∆tδB + ∆tλn)A0,n+1
k , (5.8)

Ai,n+1
k = Ai,nk + 2∆t∆τ

Nτ∑

j=1

µjBi−1,n
j,k − (∆tδB + ∆tλn)Ai,n+1

k ∀ i ∈ N∗I .

Using Lemma 5.1, taking the absolute value of equation (5.7) and then summing

over all mesh (j, k), one deduces

Nτ−1∑

j=0

Ns∑

k=1

|Bi,n+1
j+1,k| =

Nτ∑

j=1

Ns∑

k=1

Bi,n
j,k −

∆t

∆s

Nτ∑

j=0

Ns∑

k=1

(vkiB
i,n
j,k − v

k−1
i Bi,n

j,k−1)

−
Nτ−1∑

j=0

Ns∑

k=1

(∆tδA + ∆tµj)Bi,n+1
j+1,k.

The boundary condition in (5.1) can used to reduce the second term of the above

equation. It becomes
(
−∆t

∆s

∑Nτ
j=0 v

Ns
i Bi,n

j,Ns

)
, then it can be bounded by 0. By

induction over j and from Assumption 5.3.1, one has

Nτ−1∑

j=0

Ns∑

k=1

|Bi,n+1
j+1,k| 6

Ns∑

k=1

Bi,n−Nτ
0,k 6 λ0

Ns∑

k=1

Ai,n−Nτk .
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By taking the absolute value of equations (5.8) and then summing over all mesh k,

one obtains

Ns∑

k=1

|A0,n+1
k | 6

Ns∑

k=1

|A0,n
k |

Ns∑

k=1

|Ai,n+1
k | 6

Ns∑

k=1

|Ai,nk |+ 2∆t∆τ µ̄
Nτ∑

j=0

Ns∑

k=1

Bi−1,n
j,k for i ∈ N∗I

Finally, by induction over i and n, one deduces

‖Ai,n‖1 6 2iλi0µ̄
i∆τ iT i‖A0,0‖1 and ‖Bi,n‖1 6 2iλi+1

0 µ̄i∆τ iT i‖A0,0‖1.

Therefore, the numerical scheme is stable with respect to the discrete norm L1

where ∀ i ∈ NI
M i

1 = 2iλi+1
0 µ̄iT i and N i

1 = 2iλi0µ̄
iT i.

This ends the proof of Lemma 5.2.

Lemma 5.3. Let Assumption 5.3.1 be satisfied. Under condition (5.3), the numer-

ical scheme (5.1 - 5.2) is stable with respect to the discrete norm L∞. Furthermore,

for all i ∈ NI and n = 0, ..., NT , one has

‖Bi,n‖∞ 6M i
2‖A0,0‖∞, ‖Ai,n‖∞ 6 N i

2‖A0,0‖∞,

where M i
2 and N i

2 are positive constants.

Proof. By using Lemme 5.1 and Assumption 5.3.1, the upper bound of equation

(5.7) over all meshes j and k, can be estimated by

sup
k,j
|Bi,n+1

j+1,k| 6 (1 +
∆t

∆s
‖vi,Ns‖∞) sup

k,j
|Bi,n

j,k |.

By induction over j, one obtains

sup
k,j
|Bi,n+1

j+1,k| 6 λ0(1 +
∆t

∆s
‖vi,Ns‖∞)Nτ+1 sup

k
|Ai,n−Nτk |. (5.9)
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From Lemma 5.1, the induction over n allows to estimate the equations (5.8) by

|A0,n
k | 6 |Ak0,0| (5.10)

|Ai,n+1
k | 6 2∆t∆τ µ̄

n−1∑

m=0

Nτ∑

j=0

Bi−1,n−m
j,k , ∀ i ∈ N∗I

Finally by induction over i, the inequalities (5.9) and (5.10) are estimated by

‖Bi,n‖∞ 6 (2T∆)iλi+1
0

i∏

l=0

(1 +
∆t

∆s
‖vl‖∞)Nτ+1‖A0,0‖∞,

‖Ai,n‖∞ 6 (2T∆λ0)i
i−1∏

l=0

(1 +
∆t

∆s
‖vl‖∞)Nτ+1‖A0,0‖∞,

for all i ∈ NI and n = 0, ..., NT .

Then, one has ∀ i ∈ NI

M i
2 = (2T∆)iλi+1

0

i∏

l=0

(1 +
‖vl‖∞
‖vi,Ns‖∞

)Nτ+1,

N i
2 = (2T∆λ0)i

i−1∏

l=0

(1 +
‖vl‖∞
‖vi,Ns‖∞

)Nτ+1.

This ends the proof of Lemma 5.3.

These two lemmas 5.2 and 5.3 ensure that the scheme does not explode even in

large time. Now, we give a lemma that will be used to prove the convergence of the

solution of System (5.1 - 5.2) to the solution of System (4.2 - 4.3).

Lemma 5.4. Let Assumption 5.3.1 be satisfied. Under condition (5.3), one has for

all n > 0 and j > 0,

max
i∈NI

(
Ns−1∑

k=0

|Bi,n
j,k+1 −B

i,n
j,k |

)
6 α

(
Ns−1∑

k=0

|Ak+1
0,0 − Ak0,0|

)
+ β‖A0,0‖1,

where α and β are positive constants which are independent on n.

Proof. For all i ∈ NI , one considers the solution of the numerical scheme (5.2) in

the following form

Ai,n+1
k = Ai,nk + 2∆t∆τ

Nτ∑

j=0

µjBi−1,n
j,k − EnAi,n+1

k , (5.11)
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where En = δB + λn.

Let calculate the difference of the previous solutions (5.11) between two consecutive

meshes k and k + 1 by fixing i, n+ 1 and j + 1,

γi,n+1
k+1 = γi,nk+1 + 2∆t∆τ

Nτ∑

j=0

µj
(
Bi−1,n
j,k+1 −B

i−1,n
j,k

)
− Enγi,n+1

k+1 ,

where |γi,n+1
k+1 | := |A

i,n+1
k+1 − A

i,n+1
k |.

By multiplying each term of the above equation by ς̄ i,n+1
k which is the sign of γi,n+1

k ,

one obtains

|γi,n+1
k+1 | 6 |γ

i,n
k+1|+ 2∆t∆τ

Nτ∑

j=0

µj|Bi−1,n
j,k+1 −B

i−1,n
j,k |. (5.12)

Now, one considers the solution of the numerical scheme (5.1) in the following form

Bi,n+1
j+1,k = Bi,n

j,k −
∆t

∆s
(vkiB

i,n
j,k − v

k−1
i Bi,n

j,k−1)−∆thjB
i,n+1
j+1,k, (5.13)

where hj := δB + µj.

Next, one calculates the difference of the previous solutions between two consecutive

meshes k and k + 1 by fixing i, n+ 1 and j + 1

Bi,n+1
j+1,k+1 −B

i,n+1
j+1,k = (Bi,n

j,k+1 −B
i,n
j,k+1)− ∆t

∆s
(vk+1
i Bi,n

j,k+1 − v
k
iB

i,n
j,k)

+
∆t

∆s
(vkiB

i,n
j,k − v

k−1
i Bi,n

j,k−1)−∆thj(B
i,n+1
j+1,k+1 −B

i,n+1
j+1,k).

One notes δi,n+1
j+1,k+1 := Bi,n+1

j+1,k+1 −B
i,n+1
j+1,k. The above equation becomes

δi,n+1
j+1,k+1 = δi,nj,k+1 −

∆t

∆s
vk+1
i δi,nj,k+1 +

∆t

∆s
vki δ

i,n
j,k −

∆t

∆s
(vk+1
i − vki )δi,nj,k+1

− ∆t

∆s
(vk+1
i − 2vki + vk−1

i )Bi,n
j,k−1 −∆thjδ

i,n+1
j+1,k+1.
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One multiplies each term of the above equation by ς i,n+1
j+1,k which is the sign of δi,n+1

j+1,k,

and then one sums with respect to k = 1, ..., Ns − 1

Ns−1∑

k=1

ς i,n+1
j+1,kδ

i,n+1
j+1,k+1 =

Ns−1∑

k=1

ς i,nj,k+1δ
i,n
j,k+1 −

∆t

∆s

Ns−1∑

k=1

vk+1
i ς i,nj,k+1δ

i,n
j,k+1 +

∆t

∆s

Ns−1∑

k=1

vki ς
i,n
j,k δ

i,n
j,k

+
∆t

∆s

Ns−1∑

k=1

|vk+1
i − vki |ς

i,n
j,k δ

i,n
j,k +

∆t

∆s

Ns−1∑

k=1

|vk+1
i − 2vki + vk−1

i |Bi,n
j,k−1

− ∆t
Ns−1∑

k=1

hjς
i,n+1
j+1,k+1δ

i,n+1
j+1,k+1.

By adding the second and the third term and using Assumption 5.3.1, one gets

Ns−1∑

k=1

ς i,n+1
j+1,kδ

i,n+1
j+1,k+1 6

Ns−1∑

k=1

ς i,nj,k+1δ
i,n
j,k+1 −

∆t

∆s
vNsi ς i,nj,Nsδ

i,n
j,Ns

+
∆t

∆s
v1
i ς
i,n
j,1 δ

i,n
j,1

+ ∆tv∞i

Ns−1∑

k=1

ς i,nj,k δ
i,n
j,k + ∆tεi‖Bi,n‖1,

where εi is given by

|vk+1
i − 2vki + vk−1

i | 6 εi∆s.

The second term of the previous inequality can be estimated by 0. Since v0
i = 0,

the third term is estimated by

∆t

∆s
v1
i ς
i,n
j,1 δ

i,n
j,1 ≤ ∆t

(v1
i − v0

i )

∆s
ς i,nj,1 δ

i,n
j,1 ≤ ∆tv∞i

Ns−1∑

k=1

ς i,nj,k δ
i,n
j,k .

By definition, one has

Ns−1∑

k=1

ς i,n+1
j+1,k+1δ

i,n+1
j+1,k+1 =

Ns−1∑

k=1

|δi,n+1
j+1,k+1|.

Then using the boundary conditions of (5.1), one obtains an estimation of the

bounded variation

Ns−1∑

k=0

|δi,n+1
j+1,k+1| 6

Ns−1∑

k=1

|δi,nj,k+1|+ (1 + 2∆tv∞i )
Ns−1∑

k=1

|δi,nj,k |

+ ∆tεi‖Bi,n‖1,
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We assume the following notations

F i,n
j =

Ns−1∑

k=0

δi,nj,k , G
i,n =

Ns−1∑

k=0

γi,nk , F n
j = max

i
BV F i,n

j , Gn = max
i
BV Gi,n,

v̄ = max
i
v∞i , ε = max

i
εi, u = 2(1 + ∆tv̄), q = ∆tεmax

i
‖Bi,n‖1.

Then, the above inequality becomes

max
06i6I

F i,n+1
j+1 6 u max

06i6I
F i,n
j + q.

By induction over n and j, one obtains

max
06i6I

F i,n+1
j+1 6 uNτ+1λ0 max

06i6I
Gi,n−Nτ + q

Nτ∑

p=0

up. (5.14)

Using (5.12), the above inequality becomes

max
06i6I

F i,n+1
j+1 6 ruNτ+1 max

16i6I

NT∑

m1=Nτ

Nτ∑

j=1

F i−1,n−m1

j + q
Nτ∑

p=0

up

6 ruNτ+1 max
16i6I

NT∑

l1=1

NT∑

m1=Nτ

(ulF i−1,n−m1−l1
0 + q

l1−1∑

p=0

up) + q
Nτ∑

p=0

up

6 ruNτ+1 max
16i6I

NT∑

l1=1

NT∑

m1=Nτ

(ulF i−1,n−m1−l1
0 ) + rNT qu

Nτ+1

NT∑

l1=1

l1−1∑

p=0

up + q
Nτ∑

p=0

up

where r = 2∆t∆τ µ̄λ0.

Using the boundary condition of System (5.1) and inequality (5.12), the backward

induction over i, allows to estimate the above inequality in terms of i = 0. Elemen-

tary but lengthy calculus yields

F n+1
j+1 6 αG0 + βmax

i
‖Bi,n‖1,

where

α = (2µ̄)IλI+1
0 uNτ+1

∑

l1,...,lI

u
∑I
i=1 li ,

β = EuNτ+1

I∑

i=1

[
(2µ̄λ0T )i

∑

l1,...,lI

li−1∑

p=0

up+
∑i−1
j=1 lj

]
+ E

Nτ∑

p=0

up, (5.15)
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and li from 1 to NT .

Then from Lemma 5.2, one deduces

F n+1
j+1 6 αG0 + β(max

i
M i

1)‖A0,0‖1.

This ends the proof of Lemma 5.4.

The following lemma allows to obtain the bounded variation in time and age of the

approximate solution (Ai, Bi). This is necessary to prove the convergence.

Lemma 5.5. Let Assumption 5.3.1 be satisfied. Under condition (5.3), one has for

all n > 0 and j > 0

max
i

(
Ns∑

k=0

|Bi,n+1
j+1,k −B

i,n
j,k |

)
6 α1

(
Ns∑

k=1

|Ak0,0 − Ak−1
0,0 |

)
+ β1‖A0,0‖1,

max
i

(
Ns∑

k=0

|Ai,n+1
k − Ai,nk |

)
6 β2‖A0,0‖1,

where α1, β1 and β2 are positive constants independent on n.

Proof. let fix i and k. From equations (5.11) and (5.13), the difference of the

solutions between two points (n+ 1, j + 1) and (n, j), is

Bi,n+1
j+1,k −B

i,n
j,k = −∆t

∆s
vki (Bi,n

j,k −B
i,n
j,k−1)−∆t(

vki − vk−1
i

∆s
)Bi,n

j,k−1 −∆thjB
i,n+1
j+1,k,

Ai,n+1
k − Ai,nk = 2∆t∆τ

Nτ∑

j=0

µjBi−1,n
j,k −∆tEnA

i,n+1
k .

By taking the absolute value of these equations and then summing over k, one gets

Ns∑

k=0

|Bi,n+1
j+1,k −B

i,n
j,k | 6

∆t

∆s
v∞i

Ns∑

k=1

|Bi,n
j,k −B

i,n
j,k−1|+ ∆tv∞i ‖Bi,n‖1

+∆tλ0‖Bi,n+1‖1,
Ns∑

k=0

|Ai,n+1
k − Ai,nk | 6 2∆t∆τ µ̄‖Bi−1,n‖1 + ∆t(δB + µ̄)‖Ai,n+1‖1.
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Using Lemmas 5.2, 5.4 and condition 5.3, one obtains

max
i

Ns∑

k=0

|Bi,n+1
j+1,k −B

i,n
j,k | 6 α

(
Ns∑

k=1

|Ak0,0 − Ak−1
0,0 |

)
+ β1‖A0,0‖1,

max
i

Ns∑

k=0

|Ai,n+1
k − Ai,nk | 6 β2‖A0,0‖1,

where

α1 = α, β1 = (β + ∆tv̄ + ∆tλ0) max
i
M i

1,

and

β2 =
(

2∆τ µ̄max
i
M i

1 + (δB + µ̄) max
i
N i

1

)
∆t.

5.4 Convergence of the scheme in L1

In this section, we use Helly’s Theorem (see Book Brézis [97]) in order to obtain

the convergence of the solution of (5.1-5.2).

Theorem 5.6. Let Assumption 5.3.1 be satisfied. Under condition (5.3), the solu-

tion (Ai∆, B
i
∆) is calculated from (5.1-5.2) for all i ∈ NI . Therefore, when the mesh

sizes tend to zeros, we can extract a subsequence which converges to (Ai, Bi). This

limit is a weak solution of System (4.2-4.3) for all i ∈ NI .

Proof. In the first step, we show the convergence of scheme to a limit which is

bounded and its derivative is also bounded. Next, we prove that this limit verifies

∫ T

0

∫ m

0

(
dA0

∆

dt
+ E(t)A0

∆(t, s)

)
Φ0(t, s)dsdt = 0 (5.16)

∫ T

0

∫ m

0

(
dAi∆
dt
− 2

∫ ∆

0

µ(τ)Bi−1
∆ (t, τ, s)dτ

+E(t)Ai∆(t, s))Φi(t, s)dsdt = 0 (5.17)

∫ T

0

∫ ∆

0

∫ m

0

(
∂tB

i
∆ + ∂τB

i
∆ + ∂s(viB

i
∆)

+ h(τ)Bi
∆

)
Ψi(t, τ, s)dsdτdt = 0 (5.18)
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For all test functions Φi ∈ D((0, T )× (0,m)) and Ψi ∈ D((0, T )× (0,∆)× (0,m)),

∀, i ∈ NI . In addition, we denote h(τ) := δB + µ(τ) and E(t) := δA + λ(N(t)).

From Lemma 5.3, the functionsAi∆, B
i
∆ are uniformly bounded in L∞(0,m), L∞((0,∆)×

(0,m)) respectively for all i ∈ NI . Then, the set of functions (Ai∆, B
i
∆) con-

tain an subsequence (Ai∆j
, Bi

∆j
) which weak* converges to (Ai, Bi) in L∞(0,m) ×

L∞((0,∆)× (0,m)).

Let ΠAi∆ and ΠBi
∆ be the interpolation polynomials of degree 1 for the functions

Ai∆ and Bi
∆ respectively. They are defined in the domains (0, T ) × (0,m) and

(0, T )× (0,∆)× (0,m) respectively by

ΠAi∆(t, s) = Ai,nk + (Ai,n+1
k − Ai,nk )

(t− tn)

∆t
,

ΠBi
∆(t, τ, s) = Bi,n

j,k + (Bi,n
j,k+1 −B

i,n
j,k)

s− sk
∆s

+ (Bi,n+1
j+1,k −B

i,n
j,k)

t− tn
∆t

+(Bi,n+1
j+1,k+1 −B

i,n+1
j+1,k −B

i,n
j,k+1 +Bi,n

j,k)
(s− sk)(t− tn)

∆t∆s
,

where the mesh size ∆t is equal to ∆τ from the scheme (5.1-5.2).

These functions are bounded and continuous differentiable. From their expressions

and Lemmas 5.4 and 5.5, the total variations are also bounded

TV (ΠAi∆) = ‖dA
i
∆

dt
‖L1 =

1

∆t∆s

∑

n,k

∫ tn+1

tn

∫ sk

sk−1

|dA
i
∆

dt
|dsdt,

TV (ΠBi
∆) = ‖(∂t + ∂τ )B

i
∆‖L1 + ‖∂sΠBi

∆‖L1

=
1

∆t∆τ∆s

∑

n,j,k

∫ tn+1

tn

∫ τj+1

τj

∫ sk

sk−1

|∂tBi
∆ + ∂τB

i
∆|dsdt

+
1

∆t∆τ∆s

∑

n,j,k

∫ tn+1

tn

∫ τj+1

τj

∫ sk

sk−1

|∂sBi
∆|dsdt.

According to Helly’s Theorem [97], there exits a subsequence of (ΠAi∆,ΠB
i
∆) noted

(Ai∆j
, Bi

∆j
) which converges in L1

loc((0, T )× (0,m))× L1
loc((0, T )× (0,∆)× (0,m)).

Since the subsequence associated weak* converges also in L∞, then one obtains the

convergence of (Ai∆, B
i
∆) to (Ai, Bi) in L1

loc((0, T )× (0,m))× L1
loc((0, T )× (0,∆)×

(0,m)).

In the second step, we prove that the limit obtained is a weak solution. Let
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Φi and Ψi be the test function in the spaces C1((0, T ) × (0,∆) × (0,m)) and

C1((0, T )× (0,m)) respectively with compact support. We define for all (t, τ, s) ∈
[tn, tn+1[×[τj, τj+1[×[sk−1, sk[

Φi,n+1
k ∼

∫ tn+1

tn

∫ sk

sk−1

Φi(t, s)

∆s∆t
dsdt,

Ψi,n+1
j+1,k ∼

∫ tn+1

tn

∫ τj+1

τj

∫ sk

sk−1

Ψi(t, τ, s)

∆s∆τ∆t
dsdτdt.

We multiply (5.13) by ∆t∆sΨi,n+1
j+1,k and we sum over n, j, k. For all i ∈ NI , we have

NT−1∑

n=0

Nτ−1∑

j=0

Ns∑

k=1

[
∆t∆s(Bi,n+1

j+1,k −B
i,n
j,k)Ψi,n+1

j+1,k + (∆t)2(vkiB
i,n
j,k − v

k−1
i Bi,n

j,k−1)Ψi,n+1
j+1,k

]

= −(∆t)2∆shjB
i,n+1
j+1,kΨ

i,n+1
j+1,k. (5.19)

The first term of this sum is equal to

∑

n,j,k

∆t∆s(Bi,n+1
j+1,k −B

i,n
j,k)Ψi,n+1

j+1,k =
∑

n,j,k

−Bi,n
j+1,k∆t∆s(Ψ

i,n+1
j+1,k −Ψi,n

j+1,k)

+∆t∆s
∑

j,k

(Bi,NT
j+1,kΨ

i,NT
j+1,k −B

i,0
j+1,kΨ

i,0
j+1,k)

+
∑

n,j,k

−Bi,n
j,k∆t∆s(Ψi,n+1

j+1,k −Ψi,n+1
j,k )

+∆t∆s
∑

n,k

(Bi,n
Nτ ,k

Ψi,n+1
Nτ ,k

−Bi,n
0,kΨ

i,n+1
0,k )

Using the definitions of the approximations, one obtains

∑

n,j,k

∆t∆s(Bi,n+1
j+1,k −B

i,n
j,k)Ψi,n+1

j+1,k =

−
∫ T−∆t

0

∫ ∆−∆τ

0

∫ m

0

Bi
∆

[
Ψi(t, τ, s)−Ψi(t−∆t, τ, s)

∆t

+
Ψi(t, τ, s)−Ψi(t, τ −∆τ, s)

∆τ

]
dsdτdt

+

∫ ∆−∆τ

0

∫ m

0

[
Bi

∆(T, τ, s)Ψi(T, τ, s)−Bi
∆(0, τ, s)Ψi(0, τ, s)

]
dτds

+

∫ T−∆t

0

∫ m

0

[
Bi

∆(t,∆, s)Ψi(t,∆, s)−Bi
∆(t, 0, s)Ψi(t, 0, s)

]
dtds.
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Similarly, the second term of equation (5.19) can be written in the following form

(∆t)2
∑

n,j,k

(vkiB
i,n
j,k − v

k−1
i Bi,n

j,k−1)Ψi,n+1
j+1,k

= −
∫ T−∆t

0

∫ ∆−∆τ

0

∫ m

0

vi(s−∆s)Bi
∆(t, τ, s−∆s)

(
Ψi(t, τ, s)−Ψi(t, τ, s−∆s)

∆s

)
dtdτds

+

∫ T−∆t

0

∫ ∆−∆τ

0

[
vi(Ns)B

i
∆(t, τ, Ns)Ψi(t, τ, Ns)− vi(0)Bi

∆(t, τ, 0)Ψi(t, τ, 0)
]
dtdτ.

Finally, the last term of this sum is equal to

−
∑

n,j,k

(∆t)2hjB
i,n+1
j+1,kΨ

i,n+1
j+1,k

= −
∫ T−∆t

0

∫ ∆−∆τ

0

∫ m

0

h(τ + ∆τ)Bi
∆(t+ ∆t, τ + ∆τ, s)Ψi(t, τ, s)dsdτdt.

Using an integration by parts, equation (5.19) is equal to

∫ T

0

∫ ∆

0

∫ m

0

(
∂tB

i
∆ + ∂τB

i
∆ + ∂sviB

i
∆ + h(τ)Bi

∆(t, τ, s)
)

Ψi(t, τ, s)dsdτdt = 0,

when the mesh sizes tend to zeros.

Obviously by the same method, we prove that the solution of (5.2) converges to

the weak solution of (4.2-4.3) for all i ∈ NI .

5.5 Continuity of scheme with respect to param-

eters

In this section, we prove some properties of System (5.1 - 5.2) that will be useful in

estimating the parameters.

Lemma 5.7. Let Assumption 5.3.1 be satisfied. Under condition (5.3), there exists

positive constants CAi, CBi independent on Ns, Nτ and NT such that

‖Bi,n+1 − B̃i,n+1‖∞ 6 CBi‖vi,Ns − ṽi,Ns‖∞ ∀ i ∈ NI ,

‖Ai,n+1 − Ãi,n+1‖∞ 6 CAi‖vi−1 − ṽi−1‖∞ ∀ i ∈ N∗I ,
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where Ai,n = Ai,n(vi,Ns), Bi,n = Bi,n(vi,Ns) and Ãi,n = Ãi,n(ṽi,Ns), B̃i,n = B̃i,n(ṽi,Ns)

are the solutions of System (5.1 - 5.2).

Proof. We proceed the proof by induction. The first step consists to estimate in

L∞ the difference between Bi,n
j,k , B̃i,n

j,k and the difference between Ai,nk , Ãi,nk for all i

and n. Let

ζ i,n = sup
j,k
|ζ i,nj,k | = sup

j,k
|Bi,n

j,k − B̃
i,n
j,k |,

γi,n = sup
k
|γi,nj,k | = sup

k
|Ai,nk − Ã

i,n
k |.

From the equations in (5.1-5.2), one calculates the variable ζ i,n and γi,n

ζ i,n+1
j+1,k = (1− ∆t

∆s
vki )ζ i,nj,k −

∆t

∆s
B̃i,n
j,k(vki − ṽki ) +

∆t

∆s
vk−1
i ζ i,nj,k−1

+
∆t

∆s
B̃i,n
j,k−1(vk−1

i − ṽk−1
i )−∆t(δB + µj)ζ i,n+1

j+1,k (5.20)

γi,n+1
k = γi,nk + 2∆t∆τ

Nτ∑

j=0

µjζ i−1,n
j,k −∆t(δA + λn)γi,n+1

k pour i ∈ N∗I

γ0,n+1
k = γ0,n

k −∆t(δA + λn)γ0,n+1
k . (5.21)

Using Lemma 5.3 and condition (5.3), the upper bound of equation (5.20) is

ζ i,n+1 6 ζ i,n + ∆t(δB + µ̄)ζ i,n+1 +
∆t

∆s
M2

i ‖A0,0‖∞‖vi,Ns − ṽi,Ns‖∞.

By induction over n for all i ∈ NI , one obtains

ζ i,n+1 = ‖Bi,n − B̃i,n‖∞ 6 TM i
2‖A0,0‖∞eT (δB+µ̄)‖vi,Ns − ṽi,Ns‖∞.

Then, CBi is equal to TM i
2‖A0,0‖∞eT (δB+µ̄).

Similarly, by taking the upper bound of equation (5.21) and by induction, one

obtains for all n and i ∈ N∗I

γi,n+1 = ‖Ai,n+1 − Ãi,n+1‖∞ 6 2∆T µ̄N i
2‖A0,0‖∞eT (δA+λ0)‖vi−1,Ns − ṽi−1,Ns‖∞.

Therefore, CAi is equal to 2∆µ̄TN i
2‖A0,0‖∞eT (δA+λ0).
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Lemma 5.8. Let Assumption 5.3.1 be satisfied. Under condition (5.3), there exists

positive constants C1
Ai, C

1
Bi independent on Ns, Nτ and NT such that

‖Bi,n+1 − B̃i,n+1‖∞ 6 C1
Bi‖µ− µ̃‖∞ ∀ i ∈ NI ,

‖Ai,n+1 − Ãi,n+1‖∞ 6 C1
Ai‖µ− µ̃‖∞ ∀ i ∈ N∗I ,

where Ai,n = Ai,n(µ), Bi,n = Bi,n(µ) and Ãi,n = Ãi,n(µ̃), B̃i,n = B̃i,n(µ̃) are the

solutions of System (5.1 - 5.2).

Lemma 5.9. Let Assumption 5.3.1 be satisfied. Under condition (5.3), there exists

positive constants C2
Ai, C̄

2
Ai, C

2
Bi and C̄2

Bi independent on Ns, Nτ and NT such that

‖Bi,n+1 − B̃i,n+1‖∞ 6 C2
Bi‖vi,Ns − ṽi,Ns‖∞ + C̄2

Bi‖λ− λ̃‖∞ ∀ i ∈ NI ,

‖Ai,n+1 − Ãi,n+1‖∞ 6 C2
Ai‖vi,Ns − ṽi,Ns‖∞ + C̄2

Ai‖λ− λ̃‖∞ ∀ i ∈ NI ,

where Ai,n = Ai,n(vi,Ns , λ), Bi,n = Bi,n(vi,Ns , λ) and Ãi,n = Ãi,n(ṽi,Ns , λ̃), B̃i,n =

B̃i,n(ṽi,Ns , λ̃) are the solutions of System (5.1 - 5.2).

The proofs of these two lemmas are similar to the proof of Lemma 5.7.
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Chapter 6

Experimental data and theoretical

identifiability

6.1 Introduction

The dynamic nature of immune responses requires the development of appropriate

experimental tools to quantitatively understand the division and death processes

which determine the turnover of immune cells. In the literature, several types of data

have been explored and used in the context of T cell proliferation induced by LIP

(Lymphopenia Induced Proliferation). Using cell dyes, such as Carboxy Fluores-

cein diacetate Succinimidyl Ester (CFSE), is currently one of the most informative

methods for characterizing the dynamics of cell division in the immune system. Fol-

lowing each division, CFSE divides equally between daughter cells, resulting in a

two-fold decrease in the intensity of cellular fluorescence in each successive gener-

ation. This property of CFSE allows accurate tracking of the number of divisions

that a given cell has undergone either in vitro or following transfer in vivo [87].

The Smith-Martin model has been applied widely to CFSE data [2–9], and the

duration of deterministic phase (B-phase), the division rate and the probability of

cell death have been estimated from experimental data mainly based on CFSE cell

division profiles [4–6]. Hogan et al. [10] improved the technique and accuracy of the

parameter estimations from the Smith-Martin model. The DNA binding dye, 7-

Aminoactinomycin D (7AAD), was used with CFSE to distinguish the proliferating

and non-proliferating cells, therefore enabling estimations of the rate of recruitment

of cells from A-state into B-phase.

67
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In this chapter, we describe the data generated by Hogan et al. [10]. Next, we prove

the identifiability of some parameters in SMCD44 model by using the data of Hogan

et al. [10].

6.2 Experimental data

Data were collected during a previously published study [10]. The behavior of two

different T cell clonotypes was studied in lymphopenic Rag1-/- mice by using CFSE,

7AAD dyes and CD44 expression measured by flow cytometry. Following adoptive

transfer of T cells, cohorts of between three and five host mice were analysed at

different days. At each date, the number of T cells, the proportion of cells actively

replicating their DNA as determined by 7AAD staining, and the intensity of expres-

sion of CD44 on the cell surface were measured in each host and separated according

to the number of divisions performed as assessed by CFSE labeling. Note that the

intensity of CD44 is the MFI (median fluorescence intensity) normalised to CD44

expression on NK cells. In other word, it represents the weight of CD44 expression

(without unit) on the surface of cells in each division.

6.3 Identifiability

In this section, we are interested in the identifiability of the parameters vi, ∀
i = 0, ..., I, λ and ∆ by using the data stated in Section 6.2.

Let us denote the experimental data by

N exp
i (t, s) :=

∫ ∆

0

Bi(t, τ, s)dτ + Ai(t, s),

where i ∈ NI := {0, ..., I}, t ∈ [0, T ], s ∈ [0,m] and (Ai, Bi) is the solution of

SMCD44 model.

Assumption 6.3.1.

- Functions (v0, ..., vI) are defined in the space K = (C ū
+)I where

C ū
+ = {u ∈ C0([0,m]), u(0) = 0, 0 < u(s) 6 ū , ∀ s ∈ (0,m]}.
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- Initial condition A0,0(s) > 0 for all s ∈ (0,m].

Lemma 6.1. Let Assumptions 4.3.1 and 6.3.1 be satisfied. The velocity vi is iden-

tifiable for all i ∈ NI := {0, ..., I}.

Proof. Let us fix (v0, ..., vI) ∈ K and consider a second parameter (v̄0, ..., v̄I) ∈ K
wherein

N exp
i (t, s; vi) = N exp

i (t, s; v̄i), ∀ i ∈ NI , (6.1)

and (Āi(t, s), B̄i(t, τ, s)) is the solution relative to v̄i.

By integrating and summing (6.1) over s and i respectively, one gets

N(t) = N̄(t). (6.2)

By using the implicit solution (4.4), one obtains

A0(t, s) = Ā0(t, s) ∀ s ∈ [0,m]. (6.3)

From (6.1), one gets
∫ ∆

0
B0(t, τ, s)dτ =

∫ ∆

0
B̄0(t, τ, s)dτ .

Furthermore by induction, if we prove vi−1(s) = v̄i−1(s), ∀ i ∈ N∗I and s ∈ [0,m],

one obtains Ai(t, s) = Āi(t, s) and then from (6.1), one gets
∫ ∆

0
Bi(t, τ, s)dτ =∫ ∆

0
B̄i(t, τ, s)dτ . Therefore, the problem reverts to proving the identifiability of vi

through the following system





∂
∂t
Bi(t, τ, s) + ∂

∂τ
Bi(t, τ, s) + ∂

∂s
[vi(s)Bi(t, τ, s)] = − (δB + µ(τ))Bi(t, τ, s),

Bi(0, τ, s) = 0; Bi(t, 0, s) = λ(N(t))Ai(t, s); vi(0)Bi(t, τ, 0) = 0.

(6.4)

Let B̃i := Bi − B̄i and ṽi := vi − v̄i. Bi and B̄i are the solutions given by (6.4)

relative to vi and v̄i respectively. Then, one has





∂
∂t
B̃i(t, τ, s) + ∂

∂τ
B̃i(t, τ, s) + ∂

∂s

[
ṽi(s)Bi(t, τ, s) + v̄i(s)B̃i(t, τ, s)

]
= −f(τ)B̃i(t, τ, s),

B̃i(0, τ, s) = 0; B̃i(t, 0, s) = 0; ṽi(0)Bi(t, τ, 0) = 0,

Observation :
∫ ∆

0
B̃i(t, τ, s)dτ = 0,

(6.5)
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where f(τ) := δB + µ(τ).

Now, we define the following Lagrangian formulation related to System (6.5).

L (B̃i, ṽi, q̃i) =

∫

Ω

[
∂

∂t
B̃i(t, τ, s) +

∂

∂τ
B̃i(t, τ, s) +

∂

∂s

[
ṽi(s)Bi(t, τ, s) + v̄i(s)B̃i(t, τ, s)

]

+f(τ)B̃i(t, τ, s)]q̃i(t, τ, s)dΩ +

∫

Ω

B̃i(t, τ, s)dΩ,

where Ω = [0, T ] × [0,∆] × [0,m], dΩ = dt dτ ds and q̃i corresponds to the dual

variable. The first derivative of the Lagrangian L with respect to B̃i, gives us the

adjoint equation.





∂
∂t
q̃i(tτ, s) + ∂

∂τ
q̃i(t, τ, s) + ∂

∂s
[v̄iq̃i(tτ, s)] = F (τ)q̃i(tτ, s) + 1,

q̃i(T, τ, s) = q̃i(t,∆, s) = q̃i(t, τ,m) = 0.

(6.6)

Multiplying (6.6) by B̃i(t, τ, s) and integrating over Ω, one obtains

∫

Ω

(
B̃i(t, τ, s)−

[
∂ṽi(s)Bi(t, τ, s)

∂s

]
q̃i(t, τ, s)

)
dΩ = 0.

Using the observation in (6.5), one gets

∂

∂s
[ṽi(s)Bi(t, τ, s)] = 0.

Replacing the above equality in (6.5), one has





∂
∂t
B̃i(t, τ, s) + ∂

∂τ
B̃i(t, τ, s) + ∂

∂s

[
v̄i(s)B̃i(t, τ, s)

]
= −f(τ)B̃i(t, τ, s),

B̃i(0, τ, s) = 0; B̃i(t, 0, s) = 0; v̄i(0)Bi(t, τ, 0) = 0.

(6.7)

Integrating along the characteristic curve the PDE of the above system, one obtains

∀ (t, τ, s) ∈ Ω and i ∈ NI

B̃i(t, τ, s) = 0, and then Bi(t, τ, s) = B̄i(t, τ, s). (6.8)

Let Z̄2
i (τ) = Z2

i (τ) + ci(τ), where ci(τ) > 0 for all τ ∈ (0,∆] and i ∈ NI . Then for

a fixed i0 ∈ NI and s = Z̄2
i0

(τ), one obtains from (6.8) and (4.6)

Bi0(t, τ, s) = Ai0(t− τ, ci0(τ))vi0(ci0(τ)) = 0 ∀ 0 < τ < t and ci0(τ) > 0.
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Using (4.4), one remarks that the previous equality leads to a contradiction with

Assumptions 4.3.1 and 6.3.1 (specifically A0,0(s) > 0 and vi0(s) > 0 for all s ∈
(0,m]). Therefore, one deduces

Z2
i (τ) = Z̄2

i (τ) ∀ 0 ≤ τ < t and i ∈ NI .

Using (6.8) and (4.6), one gets for all s > Z2
i (τ) and 0 < τ < t

vi(s− Z2
i (τ))

vi(s)
=
v̄i(s− Z2

i (τ))

v̄i(s)
. (6.9)

Using (6.9) and the definition of Z2
i (τ) and Z̄2

i (τ) , one obtains

∫ τ

0

vi(s(r))

[
v̄i(s(r)− Z2

i (r))

vi(s(r)− Z2
i (r))

− 1

]
dr = 0.

By deriving the above equation with respect to τ , one gets

vi(s)

[
v̄i(s− Z2

i (τ))

vi(s− Z2
i (τ))

− 1

]
= 0,

where s := s(τ). Therefore, one concludes vi(s) = v̄i(s), ∀ s ∈ [0,m] and i ∈ NI .

Theorem 6.2. Let Assumptions 4.3.1 and 6.3.1 be satisfied. The parameters vi(s),

λ(N(t)) and ∆ are identifiable for all i ∈ NI , s ∈ [0,m] and t ∈ (0, T ].

Proof. Let fix θ = [(v0, ..., vI) ∈ K,λ,∆] and consider a second parameters θ̄ =[
(v̄0, ..., v̄I) ∈ K, λ̄, ∆̄

]
wherein ∀ t ∈ [0, T ] and s ∈ [0,m],

Ai(t, s; θ)+

∫ ∆

0

Bi(t, τ, s; θ)dτ = Āi(t, s; θ̄)+

∫ ∆̄

0

B̄i(t, τ, s; θ̄)dτ, ∀ i ∈ NI , (6.10)

where (Ai(., .; θ), Bi(., ., .; θ)) and
(
Āi(., .; θ̄), B̄i(., ., .; θ̄)

)
are the solutions of SMCD44

model, and are related to the parameters θ and θ̄ respectively.

If ∆̄ ≤ ∆, we consider

B̄∗i (t, τ, s) :=





B̄i(t, τ, s) if τ ∈ [0, ∆̄],

0 if τ ∈ (∆̄,∆].
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Using the integral formulation of (4.6), one gets for all τ ∈ (0,∆]

B0(t, τ, s) = B̄∗0(t, τ, s) = 0 ∀ s ≤ min(Z2
0(τ), Z̄2

0(τ)).

Replacing the previous equality in (6.10), one obtains for all τ ∈ (0,∆]

A0(t, s) = Ā0(t, s) ∀ s ≤ min(Z2
0(τ), Z̄2

0(τ)).

Using the implicit solution (4.4), one obtains

∫ t

0

(
λ(N(u))− λ̄(N̄(u))

)
du = 0. (6.11)

Deriving the previous equality with respect to t,

λ(N(t)) = λ̄(N̄(t)).

By integrating and summing (6.10) over s and i respectively, one gets

N(t) = N̄(t). (6.12)

Then, one deduces λ(N(t)) = λ̄(N(t)) for all t ∈ (0, T ].

Using Lemma 6.1, one deduces vi(s) = v̄i(s) for all s ∈ [0,m] and i ∈ NI . Therefore,

one has ∫ ∆

0

B0(t, τ, s)dτ =

∫ ∆̄

0

B0(t, τ, s)dτ.

Since ∆̄ ≤ ∆, then the previous equality can be written as

∫ ∆

∆̄

B0(t, τ, s)dτ = 0.

Under Assumptions 4.3.1 and 6.3.1, one has B0(t, τ, s) > 0 for all s > Z2
0(τ),

τ ∈ [∆̄,∆] and t large enough (t > ∆). Therefore, one deduces ∆̄ = ∆ from the

previous equality.

6.3.1 Generalisation

In this subsection, we consider the following cases:
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1-) The recruitment rate (λ) depends on the division number i undergone by cells

and the total cell number N := N(t) (noted λi(N)).

2-) The duration of B-phase (∆) depends on the division number i undergone by

cells (noted ∆i).

Then SMCD44 model becomes

(SM i
CD44)





dA0(t, s)

dt
= −δAA0(t, s)− λ0(N)A0(t, s),





for i ∈ N∗I ,

dAi(t, s)

dt
= 2

∫ ∆i−1

0

µ(τ)Bi−1(t, τ, s) dτ − δAAi(t, s)− λi(N)Ai(t, s),





for i ∈ NI ,

∂
∂t
Bi(t, τ, s) + ∂

∂τ
Bi(t, τ, s) + ∂

∂s
[vi(s).Bi(t, τ, s)] = − (δB + µ(τ))Bi(t, τ, s),





Bi(t, 0, s) = λi(N)Ai(t, s) and vi(0)Bi(t, τ, 0) = 0 for i ∈ NI ,

Bi(0, τ, s) = 0, for i = 0, ..., I and Ai(0, s) = 0, for i ∈ N∗I ,

A0(0, s) = A0,0(s) > 0.

Theorem 6.3. Let Assumptions 4.3.1 and 6.3.1 be satisfied. The parameters vi(s),

λi(N(t)) and ∆i are identifiable for all i ∈ NI , s ∈ [0,m] and t ∈ (0, T ].

Proof. Here, we use the same techniques as in the previous proof. Let us fix θi =

[vi, λ
i,∆i] and consider a second parameter θ̄i =

[
v̄i, λ̄

i, ∆̄i

]
wherein ∀ t ∈ [0, T ] and

s ∈ [0,m],

Ai(t, s; θi) +

∫ ∆i

0

Bi(t, τ, s; θi)dτ = Āi(t, s; θ̄i) +

∫ ∆̄i

0

B̄i(t, τ, s; θ̄i)dτ, ∀ i ∈ NI ,

(6.13)

where (Ai(., .; θi), Bi(., ., .; θi)) and
(
Āi(., .; θ̄i), B̄i(., ., .; θ̄i)

)
are the solutions of SM i

CD44

model, and are related to the parameters θi and θ̄i respectively.
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By integrating and summing (6.13) over s and i respectively, one gets

N(t) = N̄(t). (6.14)

If ∆̄i ≤ ∆i, we consider

B̄∗i (t, τ, s) :=





B̄i(t, τ, s) if τ ∈ [0, ∆̄i],

0 if τ ∈ (∆̄i,∆i].

Using the integral formulation of (4.6), one gets for all τ ∈ (0,∆i]

Bi(t, τ, s) = B̄∗i (t, τ, s) = 0 ∀ s ≤ min(Z2
i (τ), Z̄2

i (τ)). (6.15)

Now, we proceed by induction.

For i = 0: one has for all τ ∈ (0,∆0]

A0(t, s) = Ā0(t, s) ∀ s ≤ min(Z2
0(τ), Z̄2

0(τ)).

Using the implicit solution (4.4), one obtains for all t ∈ (0, T ]

∫ t

0

(
λ0(N(u))− λ̄0(N̄(u))

)
du = 0. (6.16)

Deriving the previous equality with respect to t and using (6.14), one deduces

λ0(N(t)) = λ̄0(N̄(t)) ∀ t ∈ (0, T ].

Using Theorem 6.1, one deduces v0(s) = v̄0(s) for all s ∈ [0,m]. Therefore, equation

(6.13) becomes ∫ ∆0

∆̄0

B0(t, τ, s)dτ = 0.

Under Assumptions 4.3.1 and 6.3.1, one has B0(t, τ, s) > 0 for all s > Z2
0(τ),

τ ∈ [∆̄0,∆0] and t large enough (t > ∆0). Therefore, one deduces ∆̄0 = ∆0.

For i ∈ N∗I :
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Assuming that the following equalities are satisfied

λi−1(N(t)) = λ̄i−1(N(t)), vi−1(s) = v̄i−1(s) and ∆i−1 = ∆̄i−1,

for all i ∈ N∗I , t ∈ (0, T ] and s ∈ [0,m]. Then Bi−1(t, τ, s) = B̄i−1(t, τ, s), ∀
τ ∈ [0,∆i−1] and s ∈ [0,m]. Let us show that the previous equalities still hold for i.

Using (6.15), equation (6.13) becomes

Ai(t, s) = Āi(t, s) ∀ s ≤ min(Z2
i (τ), Z̄2

i (τ)).

By deriving the previous equality with respect to t and by using the ODEs in

SM i
CD44 model, one gets

2

∫ ∆i−1

0

µ(τ)Bi−1(t, τ, s) dτ − δAAi(t, s)− λi(N)Ai(t, s)

= 2

∫ ∆̄i−1

0

µ(τ)B̄i−1(t, τ, s) dτ − δAĀi(t, s)− λ̄i(N̄)Āi(t, s).

Using the induction hypothesis and (6.14), one deduces for all t ∈ (0, T ]

λi(N(t)) = λ̄i(N(t)).

Using Theorem 6.1, one deduces vi(s) = v̄i(s) for all s ∈ [0,m]. Therefore, equation

(6.13) becomes ∫ ∆i

∆̄i

Bi(t, τ, s)dτ = 0.

As in the case i = 0, for t large enough (t > ∆i), one has Bi(t, τ, s) > 0 for all

s > Z2
i (τ) and τ ∈ [∆̄i,∆i]. Therefore, one deduces ∆̄i = ∆i.





Chapter 7

A comparison of two versions of

the Smith-Martin model

7.1 Introduction

A biologically reasonable specific model of cell division is given by the Smith-Martin

model [69]. Based on their quantitative study of the FLM (fraction of labelled

mitoses) curves of dividing cell populations in vitro, Smith and Martin (1973) for-

mulated a simple quantitative description for the process of cell division. In fact,

this description is similar to the model proposed by Burns and Tannock (1970) [98].

The Smith-Martin model divides the complete division cycle into an A-state and a

B-phase. The A-state corresponds to the G0 or G1 phase where the cells are ran-

domly activated to enter and divide in B-phase (S, G2, M phase). This model has

successfully been used for analysing the population dynamics of dividing cells as it

prevents too rapid progression through the cell cycle by introducing the equivalent

of a time delay (i.e a fixed length for the S, G2 and M phases of the cell cycle) [42].

Several authors have developed mathematical models based on the Smith-Martin

model in order to analyse CFSE data [2–9]. Specially, Bernard et al [3] and Ganusov

et al [4] have formulated the Smith-Martin model in terms of PDEs (termed by SM

model). Later on, several studies have been made to improve the prediction of this

model to CFSE data. For example, Yates et al. [7] and Hogan et al. [10] have mod-

ified the SM model by considering that the rate of entry in B-phase depends on

the time evolution [7] or on the total cell number [10]. Their results show that the

modified SM models provides the best description of the observed response by F5

77
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and OT-1 T cells to lymphopenia.

This chapter is organised as follows. At first, we present the modified SM model

[10] (previously latest version of Smith-Martin model in the literature) and our

reduced SMCD44 model (i.e without the CD44 structure). Next, we describe the

method used to identify numerically several common parameters in both models by

using the CFSE data of OT-1 T cells [10]. Finally, we show the parameters and the

simulations that we obtain from the models, and compare them with experimental

data.

7.2 Materials and methods

7.2.1 Mathematical modeling

In the model of proliferation presented in [7, 10], the authors assume that cells

undergo simple stochastic divisions. As with the Smith Martin model, in their

model, cells are in one of two compartments that imprecise to resting (A-state) or

dividing (B-phase) cells. Cells in A-state are considered to be non dividing cells in

G0 state. These cells can then receive a stochastic trigger to enter the cell cycle

(B-phase) at a rate captured by the parameter, λ. A reduction in λ dependent

on the number of cells (competition for resources) was achieved by making λ =

λ0 exp(−ηN), with the parameter η determining the size of the reduction caused

by increasing the number of competing cells (N). In addition, λ0 is considered

to represent the ability of each clonotype to respond to an unlimited resource, η

can be considered to be proportional to the reciprocal of the resource availability,

and N the total number of cells. The B-phase, the duration of which is described

by the parameter ∆, represents cells in G1, S, G2, and M stages of the cycle,

before returning to G0 (A-state). The time spent in the A-state is exponentially

distributed, such that each cell can make the A → B transition at a rate λ (the
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mean time for cells residing in A-state is 1
λ
). Then, the model is

(SM1)





dA0

dt
= −(λ(N) + δA)A0(t), {A0(0) > 0}

dAi
dt

= 2Bi−1(t,∆)− (λ(N) + δA)Ai(t), {Ai(0) = 0}, i = 1, ..., I





∂
∂t
Bi(t, τ) + ∂

∂τ
Bi(t, τ) = −δBBi(t, τ), i = 0, ..., I

Bi(t, 0) = λ(N)Ai(t), Bi(0, τ) = 0

where (t, τ) ∈ [0, T ]× [0,∆] and

N = N(t) :=
I∑

i=0

Ni(t) :=
I∑

i=0

(
Ai(t) +

∫ ∆

0

Bi(t, τ)dτ

)
.

In the general case, cells are triggered from the A-state, to enter the proliferative

phase, they spend in B-phase a time τ ∈ [0,∆] to divide. Proliferative cell divides

into two daughter cells only when it completes the process of mitosis (∆ is approx-

imately the time to finish the process). More specifically, when a cell divides, it

disappears from the B-phase.

In SM1 model, the Smith-Martin model describes the dynamics of cells that we have

discussed in the previous paragraph, but the mother cells are not removed from the

B-phase after dividing (see the right side of the PDE in SM1 model) that is because

their age become larger than ∆. Indeed, since the age (τ) is defined between 0 and

∆, the mother cells with an age more than ∆, are not counted in the dynamics, but

in fact, they stay in B-phase. This means that ∆ is not really the maximum age of

cells in B-phase, as it is defined in SM1 model.

On the other side, by integrating our SMCD44 model with respect to variable s

(CD44 expression), we derive an age-structured system as SM1 model but with
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additional parameter µ(.). It reads

(SM2)





dA0

dt
= −(λ(N) + δA)A0(t), {A0(0) > 0}

dAi
dt

= 2
∫ ∆

0
µ(τ)Bi−1(t, τ)dτ − (λ+ δA)Ai(t), {Ai(0) = 0}, i = 1, ..., I





∂
∂t
Bi(t, τ) + ∂

∂τ
Bi(t, τ) = −(δB + µ(τ))Bi(t, τ), i = 0, ..., I

Bi(t, 0) = λ(N)Ai(t), Bi(0, τ) = 0

where Ai(t) :=
∫ m

0
Ãi(t, s)ds, Bi(t, τ) :=

∫ m
0
B̃i(t, τ, s)ds and (Ãi, B̃i), ∀ i ∈ NI are

the state variable of System (4.2-4.3).

In this SM2 model, a function µ(.) is introduced in order to remove the mother

cells from B-phase after dividing. Therefore, µ(τ) represents the rate of cells which

divided at age τ and have given rise to two daughter cells in the resting phase (A-

state).

Note that if a cell divides only when its age is close to ∆, the function µ can be

approximated by a non-negative rectangular function with a mean value 1

µ(τ) =





1
h

if ∆− h 6 τ 6 ∆,

0 else,

where 0 < h << ∆.

Furthermore, the cumulative probability that a cell is still in B-phase at time τ ,

having not divided (µ) nor been killed (δB) until this time point, is

Π(τ) = e−
∫ τ
0 (δB+µ(a))da,

and the cumulative probability that a cell has divided until time point τ , is

d(τ) = 1− e−
∫ τ
0 µ(a)da.

As in [10], the recruitment rate of cells from A-state into the B-phase is expressed

in the following form for SM2 and SM1 models,

λ = λ(N(t)) = λ0 e
−η N(t), (7.1)
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where λ0 > 0 represents the ability of each clonotype to respond to an unlimited

resource, and η > 0 determines the size of the reduction caused by increasing number

of competing cells (N) [10].

In contrast to the SM1 model, the model with the removal rate µ (SM2 model)

provides an overview of the incoming and outcoming fluxes of cells in A-state and

B-phase. Then, the purpose here is to estimate numerically the parameters (∆,

λ0, η) of each models (SM1 and SM2) in order to evaluate the difference between

SM1 and SM2 models caused by the function µ(.), and to identify which model fits

better the data of Hogan et al. [10].

7.2.2 Parameter estimation

An important step in using the mathematical approach is the estimation of model

parameters using experimental data. Let N exp
i,m (tk) be the data set given in (Sec. 6.2)

that represents the total cell number having undergone i divisions at time tk in each

mouse m. The parameters to estimate in SM1 and SM2 models are: ~θ = (λ0,∆, η).

We used weighted sums of squared residuals (SSRs) for optimization with variance

over observed cells with given i at given day as the measurement error function.

7.2.3 Comparison of the models

Comparison of the different models (SM1 and SM2) was done using a cross vali-

dation approach. The whole data set (Sec. 6.2) was separated into two parts each

day of the experiment: a validation set with data for one given mouse, m, and a

training set with the remaining data (M − 1) (M is the total number of mice).

Parameter value were obtained by minimizing the SSR with the training set.

SSR−m =
I∑

i=0

K∑

k=1

M∑

j=1

j 6=m

(
Ni(~θ, tk)−N exp

i,j (tk)
)2

σ2
i (tk)

(7.2)

where

Ni(~θ, tk) = ∆t

(
Ai(tk) + ∆τ

Nτ∑

s=1

Bi(tk, τ
s)

)

are calculated from SM1 and SM2 models. σ2
i (t), ∆t and ∆τ are the variance and

the mesh size of time and age respectively. Here, i stands for the number of divisions



Chapter 6. A comparison of two versions of the Smith-Martin model. 82

(total number I = 8), k is the number of sampling day (with total number K = 5),

j is the number of mouse, M is the total number of mice in the experiment (M = 20

for OT1 cells).

Indeed, we use an optimization algorithm (BCONF [99]) based on the quasi-Newton

method to solve (7.2). Let us explain briefly this algorithm.

Optimization algorithm

From a given starting point (vector) ~θc, an active set IA, which contains the indices

of the variables at their bounds, is built. A variable is called a ” free variable ” if it

is not in the active set. The routine then computes the search direction for the free

variables according to the formula

d = −B−1gc

where B is a positive definite approximation of the Hessian and gc is the gradient

evaluated at ~θc; both are computed with respect to the free variables. The search

direction for the variables in IA is set to zero. A line search is used to find a new

point ~θn,

~θn = ~θc + λd

where λ ∈]0, 1], such that

SSR−mSMj
(~θn) ≤ SSR−mSMj

(~θc) + αgTd, α ∈ (0, 0.5) and j = 1, 2

Finally, the optimality condition

‖g(~θn)‖ ≤ ε, ~Lower < ~θn < ~Upper

is checked, where ε is a gradient tolerance. When optimality is not achieved, B is

updated according to the BFGS formula

B ←− B − BssTB

sTBs
+
yyT

yT s

where s = ~θn − ~θc and y = gn − gc. Another search direction is then computed to

begin next iteration.

The active set is changed only when a free variable hits its bounds during an itera-

tion or the optimality condition is met for the free variables but not for all variables
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in IA, the active set. In the latter case, a variable that violates the optimality

condition will be dropped out of IA. For more details on the quasi-Newton method

and line search, see Dennis and Schnabel [100].

At the next step, for each mouse m, the comparison reference value (CrV ) cri-

terion is calculated by using the estimated parameter values ~θ∗ using the validation

set

CrVm =
I∑

i=0

K∑

k=1

(
Ni(~θ, tk)−N exp

i,m (tk)
)2

σ2
i (tk)

The CrVm was calculated for each experimental mouse m in the validation set. The

final estimate of the cross validation was

CrV =
1

M

M∑

m=1

CrVm.

The lower value of CrV indicates the better model.

7.3 Results

In the experiment, CFSE-labeled OT-1 T cells was transferred to Rag1−/− recipi-

ents by injection 1.5× 106 cells mouse at the initial date (i.e A0(0) ' 1.5× 106) and

the rate of cell death (δA or δB) observed was very close to zeros for OT-1 T cells

[10]. We therefore omitted δA and δB from SM1 and SM2 models. In addition, the

time division (h) is supposed here small (h = 0.5 hour) with respect to the age of

cells in B-phase (∆ is estimated in hours [10]).

Best-fit parameters for SM1 and SM2 models were determined by minimizing

weighted SSR for LIP by OT-1 cells (Table 7.1).

Model η ∆(hour) λ0 (/cell/hour) CrV
SM1 1.00000E-06 8.51000 3.764693E-02 109.902
SM2 1.97568E-06 7.17858 3.768979E-02 48.0315

Table 7.1: Best-fit parameter estimations for SM1 and SM2 models.

Despite the constraining data sets, the parametrization in Table 7.1 (∆, η and λ0)

of SM1 model is close to those of the previous studies ([7, 10]). From Fig 7.1, the
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SM1 and SM2 models were successful in describing LIP by OT-1 T cells as ap-

parent in the predicted division profiles. Also despite the differences between the

parameterization of SM1 and SM2 model, specific estimates of η and λ0 (1.0E− 06

and 3.764693E − 02, respectively) of SM1 were in close agreement with those of

SM2 ( 1.97568E − 06 and 3.768979E − 02, respectively).
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Figure 7.1: SM2 model fits more the proliferation of OT-1 T cells than SM1 model. Best-fit parameter
estimates from SM1 and SM2 models (see Table 7.1) were used to predict the cell number in each division. At
the indicated time points after transfer, data predicted by SM1 (green) and SM2 (blue) models were compared

with experimental data for OT-1 cells (red).

In contrast, the small difference in the parametrizations of SM1 and SM2 was cap-

tured with distinct values for the parameter ∆ (the duration of B-phase). The

estimated value of ∆ was higher for SM1 (8.51 h) than SM2 (7.17858 h). Then,

the key parameter ∆ is affected by taking into account the dynamic of the dividing

cells. Therefore, it was important to compare SM2 with SM1 model. However, it

was clear that LIP by OT-1 was better modeled with the SM2 than SM1 model,

as reflected in the lower CrV for SM2 model fit (Table 7.1), which is a measure of

goodness of fit (low is better).
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7.4 Conclusion

In the literature, the most mathematical models based on Smith-Martin model

assume that the cells divide in B-phase exactly at age ∆. In contrast, the SM2

model takes into account the small variability in the time of division of cells in

B-phase, and eliminates the assumption of an immediate switch at time ∆. In

this chapter, we interest to compare these two types of modeling by fitting SM1

and SM2 models to the data of OT-1 T cells. By taking into account the small

variability in the time of division, we remark that the duration of B-phase related

to SM2 model becomes shorter than this related to SM1. In contrast, the rate of

entry into division is approximately the same in these two models. Finally, we find

that SM2 model fits better the experimental data (CrV for SM2 is much less than

SM1).





Chapter 8

Identification of the velocity of

CD44 expression

This chapter is based on the article [80].

Abstract. The number of T Lymphocytes (T cells) in the body is under home-

ostatic control. At equilibrium, the majority of naive T cells are non-dividing and

express low levels of the surface protein CD44. In conditions of T cell deficiency

(lymphopenia), naive T cells enter into a proliferative phase, undergoing cell divi-

sion accompanied by a subtle change in their surface expression of CD44. In this

study, we use a mathematical modeling approach to analyse the proliferative response

of transgenic T cells in lymphopenic conditions. Our nonlinear model is composed

of ordinary differential equations and partial differential equations structured by

age (maturity of cell) and CD44 expression. To better understand the evolution of

CD44 expression on the surface of T cells during cell division, we present a nu-

merical analysis to solve a parameter identification problem. Finally, we show the

parameters and the simulations that we obtain from the model and compare them

with experimental data.

8.1 Introduction

Regulation by homeostatic mechanisms ensures that the number and functional

diversity of peripheral T cells is maintained at an approximately constant level.

However, under conditions of lymphopenia, disruption of the homeostatic balance

87
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can induce naive T cells to undergo cell division. This lymphopenia induced prolifer-

ation (LIP) of naive T cells requires signal from cytokines such as IL-7 (Interleukine

7), and stimulation of the T cell receptor via interaction with self peptide [41]. Un-

der the experimental conditions used in [7], it has been shown that the dividing F5

T cells retained a naive phenotype. However, for some T cells, LIP is accompanied

by a transition to a memory-like phenotype [41] which is indicated by having a

strong CD44 expression on their surface [32, 89].
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Figure 8.1: . Representative dot plots gated on CD8 lymphocytes show CD44 expression versus CFSE
labeling in the lymph nodes of mice that received either OT-1 and F5 T cells (left panel). In the right panel,
the evolution of CD44 expression versus division number for both OT-1 and F5 is presented here. Note that

these figures make reference to the experimental data obtained and reported in [10].

Moreover, Hogan et al [10] have shown that the undivided OT-1 T cells expressed

a similar level of CD44 to naive CD8+ T cells, and began to upregulate expression

of this marker after the4th − 5th division in response to lymphopenia. F5 T cells,

however, retained a low level of CD44 expression throughout division (see Fig 8.1).

In addition, the experiment reported in [10] shows that the expression of CD44 by

OT-1 T cells at approximately 5− 6 divisions in response to lymphopenia indicates

the acquisition of a memory-like phenotype, which is not observed for F5 T cells

under the same conditions.

In the present study, the velocity of CD44 up-regulation is the key parameter that

distinguishes from which divisions OT-1 T cells can be considered as naive or mem-

ory through the mathematical model SMCD44. The purpose of this chapter is then to



Chapter 7. Identification of the velocity of CD44 expression. 89

identify numerically this velocity in order to evaluate the prediction of our SMCD44

model with respect to the observation of CD44 expression of OT-1 T cells stated in

the previous paragraphs.

8.2 Parameter identification problem

In this section, we present our methodology for estimating the velocity vi(.) in

SMCD44 model that represents the extent of CD44 expression on the surface of cells

during their divisions.

Note that this velocity depends on each level of CD44 that can be presented on

the cells (s). So, it is much more relevant to interpret the average growth of CD44

per division (or implicitly per ∆, since ∆ is the duration of each division), which

allows to compare the up-regulation of CD44 between the division number. Fur-

thermore, according to [32, 89], memory cells are characterized by having a strong

CD44 expression on their surface. Then, by estimating the parameters vi(s), we

derive the mean growth of CD44 (average velocity) per division which allows us to

distinguish from which division, the cells can be considered as memory cells.

Remark 8.1. In the experiment of Hogan et al. [10], several mice were sacrificed

at each time point. Working with different mice at different time points generated

additional variability making the identifiability of parameters more difficult. There-

fore, we decided to work on a given time point. We chose 7 days because it was a

good compromise between early days where there were too few divisions and later

time points where CFSE is too much diluted to be very easily measured.

Let N exp
i,s be the total number of cells given by the experimental data set at day

T = 7. In addition we denote by

D = {s, where N exp
i,s is given by the experimental data }.

Furthermore, by integrating our model with respect to the variable s (CD44 expres-

sion), one gets the SM2 model. Therefore, we can use the estimated parameters

(∆, λ0, η) from the previous chapter and then estimate the velocity vi(s), i = 0..., I.
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Thus we want to minimize the cost function

[P ]

{
min
v∈K

I∑

i=0

∑

s∈D

[
∆s

(∫ ∆

0

Bi(T, τ, s)dτ + Ai(T, s)

)
−N exp

i,s

]2

,

where the constant ∆s is the mesh size of the CD44 expression, Bi(T, τ, s), Ai(T, s)

are given by (10.1-4.3) and {N exp
i,s } are the observed data. The parameters (v0, ..., vI)

belong to the space K = (C̃ ū
+)I where

C̃ ū
+ = {u ∈ C0([0,m]), u(0) = 0, 0 ≤ u(s) 6 ū , ∀ s ∈]0,m]}.

8.2.1 The discrete parameter identification problem

Now, we define the parameter identification scheme and the algorithm to identify

the velocity of CD44 up-regulation. The approximate problem of [P ] is defined by

[Pd]

{
min

vNs∈KNs
J(vNs) := min

vNs∈KNs

I∑

i=0

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k + Ai,NTk

)
−N exp

i,k

]2

.

The discrete vector vNs ∈ KNs is the set of unknown parameters defined by vNs =

(v0,Ns , ..., vI,Ns). It belongs to the space KNs = (C̃ ū,Ns
+ )I where

C̃ ū,Ns
+ = {u(sk) = uk, u0 = 0, 0 ≤ uk 6 ū, k = 1, .., Ns}.

That is an approximate finite dimensional compact set of K. Hence, one obtains

the following result.

Theorem 8.2. Under Assumption 5.3.1 and condition (5.3), the problem [Pd] ad-

mits at least one optimum.

Proof. Let d < ∞ be the lower bound of the cost function J(vNs). Let {vhNs}h>0,

be a minimizing sequence on the space KNs , such that

d < J(vhNs) 6 d+
1

h
.
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The value of the cost function at the point vhNs = (vh0,Ns , ..., v
h
I,Ns

) is given by

J(vhNs) =
I∑

i=0

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k (vhi,Ns) + Ai,NTk (vhi,Ns)

)
−N exp

i,k

]2

,

where Bi,NT
j,k (vhi,Ns) and Ai,NTk (vhi,Ns) are the solution of (5.2)-(5.1).

The sequence {vhNs}h is bounded. According to the Bolzano-Weierstrass theorem,

one can extract a subsequence, termed {vhrNs = (vhr0,Ns
, ..., vhrI,Ns)}r>0, which converges

to v∗Ns = (v∗0,Ns , ..., v
∗
I,Ns

) on the space KNs . Then by using Lemma 5.7, one obtains

|Bi,n
j,k(vhi,Ns)−B

i,n
j,k(v∗i,Ns)| 6 CBi |vhi,Ns − v

∗
i,Ns| −→h→+∞

0, ∀ i ∈ NI := {0, ..., I},

|Ai,nk (vhi−1,Ns)− A
i,n
k (v∗i−1,Ns)| 6 CAi |vhi−1,Ns − v

∗
i−1,Ns| −→h→+∞

0, ∀ i ∈ N∗I := {1, ..., I}.

Therefore, one deduces

J(vhNs) =
I∑

i=0

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k (vhi,Ns) + Ai,NTk (vhi,Ns)

)
−N exp

i,k

]2

=
I∑

i=0

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

[(
Bi,NT
j,k (vhi,Ns)−B

i,NT
j,k (v∗i,Ns)

)
+Bi,NT

j,k (v∗i,Ns)
]

+
(
Ai,NTk (vhi,Ns)− A

i,NT
k (v∗i,Ns)

)
+ Ai,NTk (v∗i,Ns)

)
−N exp

i,k

]2

−→
h→+∞

I∑

i=0

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k (v∗i,Ns) + Ai,NTk (v∗i,Ns)

)
−N exp

i,k

]2

= J(v∗Ns) = d.

To numerically solve problem [Pd], we use an optimization algorithm based on the

Quasi-Newton method (see [101]). This algorithm needs to compute the adjoint

variables and the gradient of the cost function.
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In the following, we consider the Lagrangian formulation of [Pd] that is

L(W ) =
I∑

i=0

Ns∑

k=0

γkD

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k + Ai,NTk

)
−N exp

i,k

]2

+

NT∑

n=1

Ns∑

k=0

[
A0,n
k −

A0,n−1
k

1 + ∆tδA + ∆tλn

]
P 0,n
k

+
I∑

i=1

NT∑

n=1

Ns∑

k=0

[
Ai,nk −

Ai,n−1
k + 2∆t∆τ

∑Nτ
j=1 µ

j−1Bi−1,n−1
j−1,k

1 + ∆tδA + ∆tλn

]
P i,n
k

+
I∑

i=0

NT∑

n=1

Nτ∑

j=1

Ns∑

k=1

[
Bi,n
j,k −

(1− ∆t
∆s
vki )Bi,n−1

j−1,k + ∆t
∆s
vk−1
i Bi,n−1

j−1,k−1

1 + ∆tδB + ∆tµj

]
Qi,n
j,k

+
I∑

i=0

NT∑

n=1

Ns∑

k=0

[
Bi,n

0,k − λ
n−1Ai,n−1

k

]
Qi,n

0,k,

where the vector W = (W0, ...,WI), with Wi = (vi, A
i, Bi, P i, Qi) for all i = 0, ..., I.

The variable (P i, Qi) corresponds to the dual variables. γkD is a function in the

following form

γkD =





1 if k ∈ D

0 else

The first derivative of the Lagrangian with respect to Ai,nk and Bi,n
j,k gives us the

adjoint equations.

For i = I, ..., 0; n = NT − 1, ..., 0; j = Nτ − 1, ..., 0 and k = 0, ..., Ns − 1, one

has





Qi,n
j,k =

(1−∆t
∆s
vki )Qi,n+1

j+1,k+ ∆t
∆s
vki Q

i,n+1
j+1,k+1

1+∆tδB+∆tµj+1 + γi[0,I−1]

2∆t∆τµjP i+1,n+1
k

1+∆tδA+∆tλn+1

P i,n
k =

P i,n+1
k

1+∆tδA+∆tλn+1 + λnQi,n+1
0,k

Qi,NT
j,k = 2γkD∆s∆τ

[
N exp
i,k −∆sAi,NTk −∆s∆τ

∑Nτ
j=0B

i,NT
j,k

]

P i,NT
k = 2γkD∆s

[
N exp
i,k −∆sAi,NTk −∆s∆τ

∑Nτ
j=0B

i,NT
j,k

]

Qi,n
Nτ ,k

= Qi,n
j,Ns

= 0

(8.1)
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where [0, I − 1] := {0, ..., I − 1}.

The first derivative of the Lagrangian with respect to vk0
i0

are : ∀ k0 = 0, ..., Ns − 1

and i0 = 0, ..., I.

∂L

∂vk0
i0

=

NT∑

n=1

Nτ∑

j=1

∆t
∆s
Bi0,n−1
j−1,k0

[
Qi0,n
j,k0
−Qi0,n

j,k0+1

]

1 + ∆tδB + ∆tµj−1
(8.2)

and

∂L

∂vNsi0
=

NT∑

n=1

Nτ∑

j=1

∆t
∆s
Bi0,n−1
j−1,Ns

Qi0,n
j,Ns

1 + ∆tδB + ∆tµj−1
(8.3)

The (BCONG/BCONF) routine of IMSL minimizes a function of n variables subject

to bounds on the variables using the BFGS quasi-Newton method [99]. To numer-

ically solve problem [Pd], we use this routine. The strategy can be summarized in

the following algorithm

8.2.1.1 Algorithm

1- Input I, NT , Nτ , Ns, λ0, η, ∆t = ∆τ,∆s.

2- Set initial guess vg0 = (vg0

0 , ..., v
g0

I ) for the velocity v0 = (v0,0, ..., v0,I).

3- Build a subroutine to calculate (Ai, Bi), ∀ i = 0, ..., I from (5.1) and (5.2).

4- Build a subroutine to calculate (Pi, Qi), ∀ i = 0, ..., I from (8.1).

5- Build a subroutine to calculate the cost function (J) by calling the subroutine

in 3.

6- Build a subroutine to calculate the gradient (8.2-8.3) by calling the subrou-

tines in 3 and 4.
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7- Call BCONG in subject to find v0 = (v0,0, ..., v0,I) by using the subroutines

in 5 and 6.

8- Return v0 = (v0,0, ..., v0,I).
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Figure 8.2: The vertical axis represent the total number of cells(
Ni(T, s) := ∆s

∫∆
0
Bi(T, τ, s)dτ + ∆sAi(T, s)

)
as a function of the intensity of CD44 (i.e normalised

median fluorescence intensity (MFI) of CD44) in each division (i). The solid line depicts the predictions of
the model and the bar depicts the observed data. Note that the horizontal axis is zoomed in each sub-figure

in order to improve the illustration clarity.

8.3 Numerical results

In this section, we present the numerical results for the velocity by using our nu-

merical method defined in the previous section. As in Chapter 7, the rate of entry

into cell division (λ) was a function of the size of the T cells compartment. The

dependence was chosen as λ = λ0e
−ηN(t). Also, the rate of cells which divided at
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age τ , is expressed in the following form

µ(τ) =





1
h

if ∆− h 6 τ 6 ∆,

0 else,

(8.4)

where h = 30 mn is the time division before age ∆.

In addition, the choice of some numerical and optimization parameters (λ0, η,∆)

follows the parameters value estimated in the previous chapter 7. The mortality

(δA and δB) was considered null because no death was observed [10]. According

to Materials and Methods in [10], the initial number of cells is approximately 1.5

million cells per mouse having low intensities of CD44, but their distribution ac-

cording to the CD44 expression is unknown. In this study, we assume that the cells

are distributed homogeneously over an interval of small intensity of CD44. It is

expressed in the following form

A0(0, sk) =





8× 104 if 0.075 6 k 6 0.12,

0 else.

(8.5)

where
∑Ns

k=0A0(0, sk) ' 1.5× 106 cells.

By using the algorithm in the previous section, we observe in Fig. 8.2 that the

model fits well the experimental data. Indeed, the cells are up-regulating CD44

during B-phase. In Ai phase (i.e ith division in A-state), cells inherit the same

intensity of CD44 of those that have divided in the previous B-phase (Bi−1 phase).

In Fig. 2, the total cell number Ni(T, s) depends on the number of cells in Bi phase

for all ages (
∫ ∆

0
Bi(T, τ, s)dτ), and implicitly on the divided cells that come from

Bi−1 phase (i.e the mothers cells in Bi−1 phase, give the same intensity of CD44 to

the daughter cells that enter immediately in Ai phase). Then, the peaks predicted

by the model in Fig. 8.2, are due to this complex relationship between A-state and

B-phase over the division number.

To clarify this relationship, we show in Fig. 8.3 the dynamic of cells in Bi phase at

day 7 with respect to their intensity of CD44 and their age, for all i = 0, ..., 8. ”(j)”

depicts in Fig. 8.3, the peak j in each sub-figure (j = 0, .., 12). The dashed arrow

shows that there remains cells from peak ”(j)” (by increasing their age).
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Figure 8.3: Dynamic of cells in Bi phase (i.e ith division in B-phase) at day 7. Z-axes depict the number
of cells in B-phase (Bi(T, τ, s)) as a function of their intensity of CD44 (x-axes) and their age (Y-axes) in each
division (i). The intensity of CD44 is the weight of CD44 expression (normalised median fluorescence intensity)
on the surface of cells in each division (s ∈ [0,m] and m = 2). Note that the scale on the x-axis, is zoomed
in each sub-figure in order to improve the illustration clarity. The maximum age of cells (∆) in B-phase is
estimated in the previous chapter 7 by 7.17 hour. ”(j)” represents the peak j in each sub-figure (j = 0, .., 12).

The dashed arrow indicates that there remains cells from peak ”(j)” (by increasing their age).

In Fig. 8.3 (B0 phase), the number of newborn cells ”(0)” and ”(1)”, decreases

over age because they change their level of CD44, which allow to appear new peak

”(2)”. Note that this new peak has been validated by the experimental data (see

last bar in Fig. 8.2 (i = 0)). Typically, in Fig. 8.3 (B1,..., B8 phases), the peaks in

Bi−1 phase are reproduced in Bi phase in the form of peaks which depict the new-

born cells (the mother cells in Bi−1 phase will divide and give rise to two daughter

cells that enter immediately in Ai phase where some of these daughter cells will be

recruited in Bi phase, as newborn cells). Moreover, the number of newborn cells,

decreases or stabilizes (e.g ”(1)” in B1 phase and ”(2), (3)” in B3 phase) over age,

since it depends on their capacity to change their CD44 expression in each division.

In case of decrease, some peaks increases or new peak appears. Taken together

Fig. 8.2 and Fig. 8.3, we remark that the appearance of new peaks in some panel

(e.g ”(3)”, ”(4)”, ”(5)”, ”(7)”, ”(8)”, ”(11)”, ”(12)” in B1, B2, B3, B5,...,B8 phases

respectively) is observed by the experimental data (see the last bars in Fig. 8.2

(i = 1, 2, 3, 5, ..., 8)). Therefore, the highest peaks predicted by the model where
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there was no experimental data to support them (i = 3, ..., 8 in Fig. 8.2), return

implicitly to those of the previous divisions where they have been observed in some

panel by the experimental data.

Before discussing biologically the velocity obtained, we must prove the robustness

of our algorithm. For this reason, we modify the initial velocity vg in order to

calculate the cost function and the relative error on the estimated parameters (see

Table 11.2). We remark from this table that the error is negligible by changing the

Table 8.1: The algorithm is independent of the initialisation (vg0).

Cost function Value
Jθ(v0; vg0) 0.5254

Jθ(v1; vg1) 0.5695

Jθ(v2; vg2) 0.5961

i ξi(v0,i, v1,i) ξi(v0,i, v2,i)
0 2.0570E − 05 3.9715E − 05
1 2.5403E − 05 2.5101E − 05
2 7.2569E − 05 3.3016E − 05
3 2.7315E − 04 4.7416E − 07
4 4.5836E − 05 4.0277E − 05
5 1.1171E − 04 1.7949E − 05
6 1.4370E − 04 1.4737E − 04
7 5.8189E − 04 6.6271E − 05
8 3.3944E − 04 3.2401E − 04

The notation (vm, v
gm ) represents the velocity estimated vm = (vm,0, ..., vm,I) with an initialization vgm =

(vgm0 , ..., vgmI ), ∀ m = 0, 1, 2. In this test, we suppose an initialization v
g0
i . We took v

g1
i (s) = random × v

g0
i (s)

and v
g2
i (s) = random × v

g0
i (s), for s ∈ [0,m] and i = 0, ..., I (i is the division number). On the left, the tabular

represents the cost functions given by [Pθ] with a different initialisation (vg0 , vg1 , vg2 ). On the right, ξi(v0,i, vm,i) is

the calculated error between the velocity v0,i and vm,i, ∀ m = 1, 2. This error is equal to
‖v0,i−vm,i‖2
‖v0,i‖2

, ∀ m = 1, 2 and

for i = 0, ..., I.

initial velocity. Therefore we can conclude that our algorithm is independent of the

initial velocity.

In addition, we identified the velocity in each division by using the data available in

[10]. The purpose here was to evaluate the reliability of the estimates. Indeed bio-

logical datasets usually contain noise and measurement errors, and they are seldom

complete. For this reason, we tested our estimated parameters by adding random

noise to the experimental data. After repeating the inverse problem to find the

new parameters, we calculate the relative error between the estimated parameters

obtained by the noisy data and the data without noise. This allows us to evaluate

the loss due to random noise and we can see if our algorithm can accommodate the
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Table 8.2: The algorithm supports the noisy data.

Error � Noise 1% 2% 3% 4% 5% 6%
ς0 0.0110 0.0148 0.0191 0.0038 0.0051 0.0075
ς1 0.0180 0.0177 0.0187 0.0165 0.0157 0.0154
ς2 0.0099 0.0011 0.0359 0.0083 0.0020 0.0355
ς3 0.0107 0.0076 0.0148 0.0161 0.0189 0.0085
ς4 0.0025 0.0050 0.0151 0.0103 0.0124 0.0151
ς5 0.0062 0.0128 0.0154 0.0235 0.0334 −
ς6 0.0063 0.0129 0.0006 0.0118 0.0011 0.0133
ς7 0.0392 0.0693 0.0372 0.0375 0.0385 0.0390
ς8 0.0379 0.0392 0.0406 0.0425 0.0446 0.0475

ςi is the relative error on the estimated parameters caused by a random noise in the data. ςi =
‖vi−v

∗
i ‖2

‖vi‖2
, where v∗i

is the velocity estimated by using the noisy data. Noisy data = Nexpi,k + φi × randi(k), where % of noise =
φi∑

k∈D N
exp
i,k

and −1 6 randi(k) 6 1 for k ∈ D, i = 0, ..., I.

noise. We show in Table 8.2 the relative error ςi for i = 0, ..., I. We remark that

the error is very small. This allows us to conclude that the noise slightly affects the

identified velocity.
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Figure 8.4: The velocity (vertical axis) as a function of the observed intensity of CD44 (i.e intensity of
fluorescence CD44) in each division (i) by using the parameters (∆, λ0, η) estimated in the previous chapter.
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Fig. 8.4 shows the numerical result of the identified velocity according to the ob-

served intensity of CD44 in each division.

Naive cells in A-state are recruited to enter the B-phase, and the evolution of CD44

on the surface of these cells is undergone during the proliferative B-phase. From

Fig. 8.3 and 8.4, we observe that some cells may divide without increasing CD44

expression, and other cells increase CD44 by dividing. In cells with few divisions,

the cells with the lowest CD44 expression were those with the highest velocity of

CD44 expression whereas, amongst cells that have experienced numerous divisions,

cells with the highest level of CD44 also had the highest velocity.

To compare the extent of up-regulation of CD44 expression between the divisions,
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Figure 8.5: (8.5a) represents the intrinsic average of CD44 upregulation as a function of division number
i. (8.5b) depicts the percentage of CD44 measured on the surface of cells having undergone i divisions. Accord-
ing to Materials and Methods in [10], the intensity of CD44 (MFI of CD44) was measured on the surface of T
cells for each mouse analysed (between three and five host mice were analysed at each day of the experiment),
and separated according to the number of divisions performed as assessed by CFSE labelling. Fig. (8.5b) is
drawn by calculating the average percentage of CD44 at division i, relative to the different mice analysed in

the experiment.

we show in Fig. 8.5a the intrinsic average velocity as a function to the division

number. We note that the average velocity stabilizes between the division 0 and

5. After division 5, it appears that this average velocity of CD44 plummets. Fur-

thermore, we show in Fig. 8.5b, the percentage of the average median fluorescence

intensity (MFI) of CD44 measured in each division. We remark that this percentage

of CD44 is 32% at division 5, which next is hugely increased at division 6-8 (62%,

78%, 92%). This validates the large increase in the average velocity after division

5 (Fig. 8.5a). Then, we conclude that the cells from the division 6, increase hugely

the CD44 expression on their surface (CD44+) (this is consistent with Figs. 8.2 and

8.3). Therefore, these cells are probably switching to memory phenotype [32, 89].

In Fig. 8.6, the number of cells that have changed their CD44 in Bi phase (solid
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Figure 8.6: Number of cells that have changed their CD44 expression (solid line) as a function of the
total cell number in Bi phase (dashed line) at day 7.

line) and the total number of cells in Bi phase (dashed line) are presented. We re-

mark that the number of cells being able to change their level of CD44 (solid line),

increases over division 0-4. Thereafter (i > 4), the total cell number in B-phase

(dashed line) decreases due to the limited cell number that can reach the maximum

division number (’8’) observed by the experimental data. This implies the decrease

of the number of cells that have changed their CD44.

Furthermore, the majority of cells changing their CD44 expression level is at the

number of divisions where the dashed and the solid line overlay each other. In

the series of first divisions (0-5), the number of cells that have changed their level

of CD44 (solid line), decreases according to the total cell number (dashed line) in

each division (i.e the difference between the solid line and the dashed line, becomes

thicker with respect to division number 0-5). Later on, it appears that the majority

of cells that enter B6,...,B8 phases, have a large capacity to modify their level of

CD44 with a maximum at division 7-8 (this is consistent with Fig. 8.3). Precisely,

54% of cells modifies their level of CD44 expression at division 5. In contrast, at

division 6-8, a large number of cells change their CD44 expression (80% for division

6 and 100% for divisions 7 and 8). Taken together Fig. 8.5a and Fig. 8.6, we

conclude that the majority of cells with a memory phenotype undergo a change in

their CD44 expression.

8.4 Discussion and Conclusion

T cell division depends on TCR signalling but results in distinct patterns of prolif-

eration and differences in development of effector function for many cells. Several
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studies have successfully used mathematical modelling to describe the proliferative

response of F5 and OT-1 T cells to lymphopenia ([7, 10]) and greatly facilitated

our understanding of the cell cycle control involved. Moreover, these studies have

not taken into account the concept of phenotype that characterizes the memory-

like phenotype during the homeostatic process. Indeed, the CD44 is an established

marker that identifies the transition of T cells from naive to memory phenotype

through LIP [18]. In this chapter, we use the mathematical model SMCD44 to bet-

ter understand the program of cell division through LIP of OT-1 T cells. A velocity

is introduced in SMCD44 model to describe the up-regulation of CD44 expression

during the T cell division. In general, the CD44 expression is approximately in-

creased on the surface of cells during B-phase before the mitosis is complete. Then,

this velocity can depend on the level of CD44 presented on the surface of cells and

the division number undergone by these cells.

An important modification in the manner of identifying T cells at a specific stage

of cell cycle (CFSE label with 7AAD) allows us to obtain information about the

intensity of CD44 on the surface of T cells in each division [10]. By applying this

new type of data on our model, we find that we can identify the velocity of CD44

expression. The fit of our model to the observed data of CD44 is simplified by using

the other parameters (∆, λ0, η) from the previous chapter 7. The identified velocity

(Fig. 8.4) allows to derive the average growth of CD44 (Fig. 8.5a), which indicates

the large increase in the intensity of CD44 after division 5.

Furthermore, this average velocity (Fig. 8.5a) and the frequency of cells that have

changed their CD44 expression profile with respect to the total number of cells

(Fig. 8.6), are the keys to explain the transition of cells from naive to memory

phenotype. However, these important keys enable us to deduce that the cells which

are the most likely switching to memory phenotype, are those that have divided 6

times or more. These numerical results are very close to the observations stated in

the introduction of this chapter. This means that the SMCD44 model gives a good

prediction of the number of divisions needed by the cells to acquire memory-like

phenotype. In conclusion, SMCD44 model not only provides some remarkably de-

scription of lymphopenia induced proliferation by T cells but also may be a new

path to better explain the complex relationship between LIP and naive to memory

transition.





Chapter 9

Identification of the recruitment

rate and the rate of division

9.1 Introduction

Despite great advances in immunological research during the last decades, relatively

little is known about the quantitative characteristics of lymphocyte population ki-

netics. For example in the literature, the rate of entry into the proliferative phase

and the division rate are considered to be independent of the level of CD44 on the

surface of cells. Otherwise, it is well known that the CD44 is not only a marker that

identifies the transition of cells from naive to memory phenotype, it also participates

in a wide variety of cellular functions including lymphocyte activation, recirculation

and homing. Hence, the proliferation and the division of T cells can depend on the

CD44 expression located on their surface (i.e. the resting cells enter the prolifer-

ative phase and divide according to their level of CD44). For these reasons, we

are interested in this chapter to connect the CD44 expression with the quantitative

characteristics (i.e. proliferation and division of T cell) of T cell population.

This chapter is divided in two sections. In the first one, we assume that the rate of

entry into division is dependent on the intensity of CD44 located on the surface of

cells. Then, we identify together this rate of entry into division and the velocity of

CD44. In the second one, we assume that the rate of division is dependent on the

intensity of CD44 and then we identify only this rate of division by using the other

estimated parameters from the previous Chapters 7 and 8 .

103
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9.2 Estimating the recruitment rate and the ve-

locity of CD44

As a consequence of the numerical results of the previous chapter, the cells which are

the most likely to switch to memory phenotype, are those that have divided 6 times

or more. This means that there exists a link between the naive�memory cells (CD44

low�high), and their number of divisions. Thus, by combining this interpretation

with the introduction of this chapter, one may assume that the recruitment rate

(λ) is dependent on the total population (N), on the CD44 expression (s) and on

the number of divisions (i) undergone by cells. Precisely, it can be expressed in the

following form

λi(s,N) = λi0(s)e−ηN , ∀ s ∈ [0,m] and i ∈ NI . (9.1)

where λi0(s) can be described as the ability of cells to respond to an unlimited re-

source according to their level of CD44 (s) and their division number (i).

In what follows, we denote by SM
λi0
CD44, the model SMCD44 when we consider the

recruitment rate as the previous form (9.1).

In this section, we identify together the velocity of CD44 up-regulation (vi) and

the parameters (λi0(s)) by using the other parameters estimated and assumed (∆,

η, µ, A0,0(.)) in the previous chapter.

9.2.1 Parameter identification problem

The identification of the parameters λi0 and vi, ∀ i ∈ NI := {0, ..., I} together

consists in minimizing the following cost function

[P 1]

{
min

(v,λ0)∈K×K

∑

i∈NI

∑

s∈D

[
∆s

(∫ ∆

0

Bi(T, τ, s)dτ + Ai(T, s)

)
−N exp

i,s

]2

,

where the constant ∆s is the mesh size of the CD44 expression, Bi(T, τ, s) and

Ai(T, s) are given by SM
λi0
CD44 model, and {N exp

i,s } are the observed data at day

T = 7 described in Chapter 8. The parameters v = (v0, ..., vI) and λ0 = (λ0
0, ..., λ

I
0)
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are defined in the space K = (C̃ ū
+)I where

C̃ ū
+ = {u ∈ C0([0,m]), u(0) = 0, 0 ≤ u(s) 6 ū , ∀ s ∈]0,m]}.

In what follows in this section, we use the same strategy of the previous chapter 8.

9.2.2 The discrete parameter identification problem

The approximation of λ is

λi(s
k, N(tn)) := λi0,k f

n ∀ k = 0, ..., Ns, n = 0, ..., NT and i ∈ NI ,

where fn := e−ηN
n
.

The approximate problem of [P 1] is defined by

[P 1
d ]

{
min

Θ∈KNs×KNs
J(Θ) := min

Θ∈KNs×KNs

∑

i∈NI

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k + Ai,NTk

)
−N exp

i,k

]2

,

where Θ := (vNs , λ0,Ns). The discrete vectors vNs and λ0,Ns are the set of unknown

parameters defined by vNs = (v0,Ns , ..., vI,Ns) and λ0,Ns = (λ0
0,Ns

, ..., λI0,Ns), they

belong to the space KNs = (C̃ ū,Ns
+ )I where

C̃ ū,Ns
+ = {u(sk) = uk, u0 = 0, 0 < uk 6 ū, k = 1, .., Ns}.

Now, we consider the following Lagrangian formulation of [P 1
d ]

L1(W ) =
I∑

i=0

Ns∑

k=0

γkD

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k + Ai,NTk

)
−N exp

i,k

]2

(9.2)

+

NT∑

n=1

Ns∑

k=0

[
A0,n
k −

A0,n−1
k

1 + ∆tδA + ∆tλ0
0,kf

n

]
P 0,n
k

+
I∑

i=1

NT∑

n=1

Ns∑

k=0

[
Ai,nk −

Ai,n−1
k + 2∆t∆τ

∑Nτ
j=1 µ

j−1Bi−1,n−1
j−1,k

1 + ∆tδA + ∆tλi0,kf
n

]
P i,n
k

+
I∑

i=0

NT∑

n=1

Nτ∑

j=1

Ns∑

k=1

[
Bi,n
j,k −

(1− ∆t
∆s
vki )Bi,n−1

j−1,k + ∆t
∆s
vk−1
i Bi,n−1

j−1,k−1

1 + ∆tδB + ∆tµj

]
Qi,n
j,k

+
I∑

i=0

NT∑

n=1

Ns∑

k=0

[
Bi,n

0,k − λ
i
0,kf

n−1Ai,n−1
k

]
Qi,n

0,k,
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where the vector W = (W0, ...,WI), with Wi = (vi, λ
i
0, A

i, Bi, P i, Qi) for all i ∈ NI .
The variable (P i, Qi) corresponds to the dual variables. γkD is a function in the

following form

γkD :=





1 if k ∈ D,

0 else.

The first derivative of the Lagrangian with respect to Ai,nk and Bi,n
j,k gives us the

adjoint equations. For i = I, ..., 0; n = NT − 1, ..., 0; j = Nτ − 1, ..., 0 and k =

0, ..., Ns − 1, one has





Qi,n
j,k =

(1−∆t
∆s
vki )Qi,n+1

j+1,k+ ∆t
∆s
vki Q

i,n+1
j+1,k+1

1+∆tδB+∆tµj+1 + γi[0,I−1]

2∆t∆τµjP i+1,n+1
k

1+∆tδA+∆tλi0,kf
n+1λn+1

P i,n
k =

P i,n+1
k

1+∆tδA+∆tλi0,kf
n+1 + λi0,kf

nQi,n+1
0,k

Qi,NT
j,k = 2γkD∆s∆τ

[
N exp
i,k −∆sAi,NTk −∆s∆τ

∑Nτ
j=0B

i,NT
j,k

]

P i,NT
k = 2γkD∆s

[
N exp
i,k −∆sAi,NTk −∆s∆τ

∑Nτ
j=0B

i,NT
j,k

]

Qi,n
Nτ ,k

= Qi,n
j,Ns

= 0

(9.3)

where [0, I − 1] := {0, ..., I − 1}.

The first derivative of the Lagrangian (9.2) with respect to vk0
i0

and λi00,k0
are

∀ i0 ∈ NI

∂L

∂vk0
i0

=

NT∑

n=1

Nτ∑

j=1

∆t
∆s
Bi0,n−1
j−1,k0

[
Qi0,n
j,k0
−Qi0,n

j,k0+1

]

1 + ∆tδB + ∆tµj−1
, ∀ k0 = 0, ..., Ns − 1,

∂L

∂vNsi0
=

NT∑

n=1

Nτ∑

j=1

∆t
∆s
Bi0,n−1
j−1,Ns

Qi0,n
j,Ns

1 + ∆tδB + ∆tµj−1
,

and ∀ k0 = 0, ..., Ns − 1

∂L

λi00,k0

=

NT∑

n=1

[
∆tfn

(
Ai0,n−1
k0

+ 2∆t∆τ
∑Nτ

j=1 µ
j−1Bi0−1,n−1

j−1,k0(
1 + ∆tδA + ∆tλi00,k0

fn
)2

)
P i0,n
k0
− fn−1Ai0,n−1

k0
Qi0,n

0,k0

]
.
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where Bi−l := 0 if l > i.

9.2.3 Numerical results

In this subsection, we present the numerical results of the identified parameters (vi

and λi0) by using the same algorithm 8.2.1.1 of the previous chapter. The division

rate (µ) and the initial conditions (A0,0) are given in 8.4 and 8.5 respectively. Also,

the mortalities, δA and δB are considered zeros because no death was observed in

the experimental data [10]. In addition, we use the parameters (∆, η) estimated in

Chapter 7.
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Figure 9.1: The velocity estimated (vertical axis) as a function of the observed intensity of CD44 (the

weight of CD44 expression on the surface of cells) in each division (i) by using SM
λi0
CD44 model.

Figs. 9.1 and 9.2 show the numerical results of the identified parameters (vi and

λi0) through the SM
λi0
CD44 model. It seems that the velocity of CD44 (Fig. 9.1) is

slightly changed, with respect to what has been identified in the previous chapter

(Fig. 8.4). In addition, we remark in each subfigure of Fig. 9.2 that the peaks

are shifted to higher intensity of CD44 when the division number increases. This is

consistent with Fig. 9.1.

In Fig. 9.3a, we present the average velocity of CD44 estimated by using SMCD44

model (dashed line) and SM
λi0
CD44 model (solid line). The average velocity (solid line)
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Figure 9.2: The parameters λi0 estimated by using SM
λi0
CD44 model. The vertical axis depicts λi0 as a

function of the observed intensity of CD44( horizontal axis) in each division (i).
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Figure 9.3: Fig. 9.3a (solid line) represents the average velocity estimated as a function of division

number (i) through SM
λi0
CD44 model. The dashed line in this figure is reproduced from Fig. 8.5a in order to

evaluate the difference between the average velocities estimated by using SM
λi0
CD44 and SMCD44 models. Fig.

9.3b depicts the average rate of entry into division at day 7 versus the division number (i). The variations of
the average velocity in Fig. 9.3a allow to conclude the naive and memory zones (Fig. 9.3b) according to the

number of divisions undergone by cells.

related to SM
λi0
CD44, slightly increases in the first divisions (division 0 to 5), and the

other one (dashed line) related to SMCD44 model stabilizes in the first divisions.

Therefore, the up-regulation of CD44 in the first divisions, is more significant by

taking into account the CD44 expression and the division number in the rate of

entry into division. Next (from division 6), it appears that these average velocities

of CD44 (dashed and solid lines) plummet. This means that the cells change slightly

their level of CD44 in the first divisions, that is why it can be qualified as naive. In

addition, these cells transits to a memory phenotype when they undergo more than
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6 divisions.

In Fig. 9.3b, the average rate of entry into division at day 7 is presented. We remark

that the cells having undergone few divisions, enter the proliferative phase with a

slow rate, but this rate is higher when the cells undergo more than six divisions.

Taken together the subfigures in Fig. 9.3, we deduce that the naive T cells undergo

cell divisions with a slow rate, while the others memory cells undergo more rapid

divisions.
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Figure 9.4: The vertical axis represent the total number of cells Ni(T, s) :=(
∆s
∫∆
0
Bi(T, τ, s)ds+ ∆sAi(T, s)

)
versus the intensity of CD44 (i.e. normalised median fluorescence

intensity (MFI) of CD44) in each division (i). Here, Ai and Bi is the solution related to SM
λi0
CD44 model. The

solid line depicts the predictions of the model and the bar depicts the observed data. Note that the horizontal
axis is zoomed in each subfigure in order to improve the illustration clarity.

Finally, we present in Fig. 9.4 the fit of SM
λi0
CD44 model to the observed OT-1

T cell. As the explanation of Fig. 8.2, the highest peaks predicted by SM
λi0
CD44

model where there was no experimental data to support them, return implicitly to

those of the previous divisions where they have been observed in some panel by

the experimental data. Taken together Figs. 8.2 and 9.4, we remark that SMCD44

model fits the experimental data better than SM
λi0
CD44 model.
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9.3 Estimating the rate of division

In lymphopenia conditions, naive T cells undergo cell divisions, accompanied with a

change in the cell surface phenotype, including increased CD44 expression. Further-

more, an important functional of the up-regulation of CD44 is the differentiation

and proliferation of cells. Therefore, there exists a link between the cell division

and their CD44 expression. To explore this link, we suppose in this section that the

cells divide according to their level of CD44 and their age in the proliferative phase

(B-phase). Then, we assume the division rate (µ) in the following form

µ(τ, s) =





a(τ)

b(τ)+e−c(τ)s if ∆
2
6 τ 6 ∆, s ∈ [0,m],

0 else.

(9.4)

where a(.), b(.) and c(.) are functions that depend on the age τ . We denote by

SMµ
CD44 , the model SMCD44 when we consider the division rate (µ) as the previous

form (9.4).

In this section, we identify the division rate µ by using the other parameters (∆,

λ0, η, A0,0(.)) estimated and assumed in Chapter 7. Note that in this section, we

fix the parameters (vi) (by using the estimated parameters (Fig. 8.4) in Chapter

8) in order to prevent the compensations of CD44 between the velocity (vi(s)) and

the division rate µ(τ, s) when they are estimated together.

9.3.1 Parameter identification problem.

To identify the division rate µ, we estimate the coefficients a(.), b(.) and c(.). The

same strategy of the previous section and previous chapter can be used to estimate

the above coefficients. Thus, we want to minimize the following cost function

[P 2]

{
min

(a,b,c)∈(C+)3

∑

i∈NI

∑

s∈D

[
∆s

(∫ ∆

0

Bi(T, τ, s)dτ + Ai(T, s)

)
−N exp

i,s

]2

.

where the constant ∆s is the mesh size of the CD44 expression, Bi(T, τ, s), Ai(T, s)

are given by SMµ
CD44 model and {N exp

i,s } are the observed data at day 7. The
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parameters a, b and c are defined in the space C+ where

C+ := {u ∈ C0([0,∆]), 0 ≤ u(τ) ≤ ū, ∀ u ∈ [0,∆]}. (9.5)

We define the approximation of µ by

µ(τ j, sk) =





aj

bj+e−cj k
for j = Nτ

2
, ..., Nτ and k = 0, ..., Ns,

0 else.

The discrete parameter identification problem of [P 2] is

[P 2
d ]

{
min

ω∈(CNτ+ )3

J̃(ω) := min
ω∈(CNτ+ )3

∑

i∈NI

∑

k∈D

[
∆s

(
∆τ

Nτ∑

j=0

Bi,NT
j,k + Ai,NTk

)
−N exp

i,k

]2

.

where ω = (aNτ , bNτ , cNτ ). The discrete vectors aNτ , bNτ and cNτ are the set of

unknown parameters, they belong to the space CNτ
+ where

CNτ
+ = {u(τ j) = uj, 0 6 uj 6 ū, j = 0, .., Nτ}.

As the previous section, a similar calculus gives us the ingredients (Lagrangian

formulation, adjoint equations and the gradient of the cost function) that we needed

to apply our algorithm 8.2.1.1.

Table 9.1: Best-fit parameter estimations for SMSMµ
CD44

model.

age (h)� parameters a(τ) b(τ) c(τ)
τ = ∆

2
1.1921E-007 1.5162 1.0000E-004

τ = 3∆
5

5.0664E-007 1.5046 1.0000E-004

τ = 7∆
10

1.0000E-006 1.5192 1.0000E-004

τ = 4∆
5

0.0037 1.1815 1.0000E-004

τ = 9∆
10

1.5544 0.5583 8.3440E-005

τ = ∆ 1.8285 1.8248 1.4445

∆ is the duration of the proliferative phase (B-phase). From Chapter 7, the parameter value ∆ has been estimated by

7.17 hours. In this table, we present the estimated parameters (a, b, c) for different age points between ∆
2 and ∆.
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9.3.2 Numerical results

In this subsection, we present the numerical results of the identified parameters

(a, b, c) by using the others parameters (λ0, η,∆, A0,0, vi) from Chapters 7 and 8.

The mortalities, δA and δB are considered zeros because no death was observed in

the experiment of Hogan et al. [10].

In Table 9.1, we show the identified parameters for different age points. Fig. 9.5

is devoted to present the division rate (µ) according to the intensity of CD44 in

different age points. We remark in Fig. 9.5 that the division rate is negligible when

Intensity of CD44 (s)

D
iv
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io

n 
ra

te
 (µ

)
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Figure 9.5: Division rate as a function of the intensity of CD44 in different age points.

the age of cells in B-phase is below to 4∆
5

(hour), and becomes more important when

their age is near to ∆. In addition, the division rate at age less than ∆, is slightly

large when the cells have more CD44 expression on their surface, but at age ∆, the
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cells are compelled to divide independently of their level of CD44 because ∆ is the

maximum age in the proliferative phase (B-phase).

Furthermore, the figure that depicts the comparison of observed and SMµ
CD44 model-

predicted OT-1 T cells, is omitted in this section because it is approximatively the

same as in Fig. 8.2. Therefore, the prediction of SMCD44 model is similar to this

of SMµ
CD44 model, but this latter (i.e SMµ

CD44 model) provides more details about

the link between the division rate and the CD44 expression.

9.4 Discussion and Conclusion

The number of T lymphocytes in the body is under homeostatic control. At equi-

librium, the majority of naive T cells are non-dividing and express low levels of the

surface protein CD44. In contrast, lymphopenia induces naive T cells to undergo cell

divisions that depend on TCR signaling [18]. Interestingly, lymphopenia-induced

homeostatic proliferation can also be associated with acquisition of a memory phe-

notype, and such cells share both functional and molecular characteristics of con-

ventional memory cells [102, 103]. The CD44 antigen plays an important role in

lymphopenia induced proliferation. It is a multistructural and multifunctional cell

surface molecule involved in cell proliferation, cell differentiation and cell migration

from naive to memory phenotype. These biological properties are an important

motivation to explore the link between the different multifunctions of CD44 using

a mathematical model like the SMCD44 model. In this chapter, we have addressed

the question, how the dynamic of CD44 expression can be linked to the prolifer-

ation, division and migration of cells. In the first section 9.2, a recruitment rate

(λi(s,N(t))) which depends on the CD44 expression, division number and the total

cell number, is considered in SMCD44 model. By using CFSE data with CD44 (see

[10] or Chapter 6), we estimate together the rate of entry into division and the

velocity of CD44 up-regulation. The numerical results show that the rate of entry

into division by the naive cells is much less than that of memory cells. Therefore,

this interpretation represents the relationship between the cell proliferation and mi-

gration from naive (CD44 low) to memory (CD44 high) phenotype. In the second

section 9.3, we estimate the division rate (µ) which depends on the CD44 expression

and the maturity of cells in the proliferative phase. This estimate allows to deduce

that the cells having an important CD44 expression on their surface, have also a

large possibility to divide when their ages are near to ∆. In contrast at age ∆, these
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cells divide independently of their level of CD44.

In conclusion, this chapter gives some interpretations about the link between the

multifunctional of CD44 through different mathematical models (SM
λi0
CD44 and SMµ

CD44

models). In fact, a question remains in this study which is determination of the best

model among the SMCD44, SM
λi0
CD44 and SMµ

CD44 models. Indeed, the comparison

between the different models needs supplementary data in order to apply a cross

validation approach as in Chapter 7.
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Models of T Cell Homeostasis in
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Chapter 10

Well-posedness of a model of T

cell homeostasis in vivo

10.1 Introduction

The size and composition of the T lymphocyte compartment is subject to strict

homeostatic regulation and is remarkably stable throughout life, despite variable

dynamics in cell production and death during T cell development and immune re-

sponses [40, 104]. Homeostasis is achieved by careful orchestration of lymphocyte

survival and cell division. T cells that have yet to encounter the antigen they recog-

nise are termed naive as they have not been activated to respond. In normal case,

the majority of naive T cells are non dividing and express low level of the surface

phenotype (CD44 low). Under such conditions of T cell deficiency (eg. AIDS),

naive T cells undergo cell division, termed homeostasic proliferation or lymphope-

nia induced proliferation (LIP). This regularization process can also be associated

with acquisition of a memory phenotype (CD44 hight), and such cells share both

functional and molecular characteristics of conventional memory cells [102, 103]. In

vivo, the homeostatic cell division plays a more important role in maintaining naive

T cell homeostasis in humans, even in replete conditions, as cell division is evident

in the naive pool [44, 105], whereas recent thymic emigrants and naive T cells from

cord blood have an enhanced ability to divide in response to IL-7 (Interleukin 7)

signaling [106, 107].

In this context, a standard realistic mathematical model for analysing the kinetics

of the cell cycle in vitro is proposed by Smith and Martin [69]. As it is described

117
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in the previous chapters, this model consists to separate the phase of the cell cycle

into two phases. Cells in the resting phase (G0, G1) are in the so-called A-state and

B-phase is the state where the cells are in a proliferative phase (S, G2, M). B-phase

has a fixed duration (∆). Cells involve a stochastic recruitment from A-state into

B-phase. After completing the ’deterministic’ B-phase a cell delivers two daughter

cells in the ’stochastic’ A-state from which the cells can be recruited for another

round of division.

Most of the earlier work on modelling the dynamics of T cell has been done with

models resembling the Smith and Martin model with an explicit time delay for the

proliferative phases of the cell cycle [3, 4, 6, 51, 70, 78]. Specially, Bernard et al.

[3], Yates et al. [7] and Hogan et al. [10] have formulated this model in terms of

partial differential equations in order to take into account the continuous age of

cells in the proliferative phase. Next, Ayoub et al [80] (or see Part II and III)

have improved this new version of Smith-Martin model by including a new criteria

(CD44 expression) that represents the transition of T cells from naive to memory

phenotype during the homoeostatic mechanism in vitro (noted SMCD44 model). In

this chapter, we extend the SMCD44 model to an in vivo model by implementing a

rate Λ of export of cells from the thymus (Fig. 10.1). In addition, we consider a

large number of division (I >> 0) in the extended model with a rate of entry into

division depending on the number of division (i) and the total cell number (N).

10.2 The model

The model with an export (Λ) of cells from the thymus is





dA0(t, s)

dt
= Λ− δAA0(t, s)− λ0(N)A0(t, s),





for i ∈ N∗

dAi(t, s)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ, s) dτ − δAAi(t, s)− λi(N)Ai(t, s),





for i ∈ N

∂
∂t
Bi(t, τ, s) + ∂

∂τ
Bi(t, τ, s) + ∂

∂s
[vi(s)Bi(t, τ, s)] = − (δB + µ(τ))Bi(t, τ, s),

(10.1)
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Figure 10.1: Dynamic of T cells in vivo during the homoeostatic process. Ai and Bi are the number
of T cells, having undergone i divisions in A phase and B phase respectively. Λ is the rate of export of cells
from the thymus. ∆ is the duration of B phase. The rate of entry into division (λi) is described by a function
of the total cell number (N) and division number i, which is linked to all phases and all divisions [10]. µ(τ)
represents the rate of cells which are divided at age τ and have given rise to two daughter cells in the resting

phase [80].

for all s ∈ [0,m] and τ ∈ [0,∆], where m is the maximum intensity of CD44. The

total number of cells is defined by

N := N(t) =
∑

i∈N

(∫ ∆

0

∫ m

0

Bi(t, τ, s)ds dτ +

∫ m

0

Ai(t, s)ds

)
. (10.2)

System (10.1) includes natural mortality rates δA and δB of cells in A-state and

B-phase respectively. Function, µ(τ), denotes the rate of cells which divided at age

τ and have given rise to two daughter cells in the resting phase.

The up-regulation of the CD44 expression on the surface of T cells is represented

in (10.1) by a velocity vi in each division that depends on variable s.

The recruitment rate from A-state into B-phase is denoted by λi. It depends on the

total number of cells N := N(t) and the number of division (i) undergone by cells.

Remark 10.1. According to Yates et al. [7] and Hogan et al [10], T cells can undergo

a finite number of division (I) (8 or 9 division with CFSE labelling). We assume a
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recruitment rate from A-state into B-phase, for all i ∈ N

λi(N) =





λ(N) if i ∈ NI−1 := {0, ..., I − 1}

0 else.

where N := N(t). Therefore, there are no cells after AI phase (i.e Ith division in

A-state).

Boundary conditions and initial conditions of Eqs. (10.1) are defined by, ∀ i ∈ N,





Bi(t, 0, s) = λi(N)Ai(t, s),

vi(0)Bi(t, τ, 0) = 0,





A0(0, s) = A0,0(s) > 0,

Bi∈N(0, τ, s) = 0 and Ai∈N∗(0, s) = 0.

(10.3)

The structure of this chapter is organized as follows. At first, Sec. 10.3 is devoted

to derive the integral formulation of System (10.1-10.3). Next, we prove in Sec. 10.4

the local existence and uniqueness of the solution of System (10.1-10.3) by using

the fixed point method. Finally in Sec. 10.5, we conclude the global existence by

using the maximal interval of existence.

10.3 Integral formulation

In this section, we are looking for the well-posedness of the mathematical model

(10.1-10.3). We first state some notion of solution.

Let L1((0,∆), (0,m);Rn) be the Banach space of equivalence classes of Lebesgue

integrable functions, from (0,∆)× (0,m) in Rn with norm:

‖u‖L1((0,∆)×(0,m)) =

∫ ∆

0

∫ m

0

|u(τ, s)|dτds.

Let T > 0. We define two spaces LT and HT respectively by setting

LT := L∞(0, T, L1((0,∆)× (0,m)))

= {u(t, ., .) ∈ L1((0,∆)× (0,m)) , sup
06t6T

‖u(t, ., .)‖L1((0,∆)×(0,m)) < +∞},

HT := L∞(0, T, L1((0,m))) = {q(t, .) ∈ L1((0,m)) , sup
06t6T

‖q(t, .)‖L1((0,m)) < +∞}.
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By using Lagrange method and Remark. 10.1, one obtains an implicit solution of

Ai

A0(t, s) = A0,0(s) e−
∫ t
0 (δA+λ(N(u)))du + Λ

∫ t

0

e−
∫ t
r (δA+λ(N(q)))dqdr,

for i ∈ N∗I , Ai(t, s) = 2

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δA + λi(N(q)))dq
µ(τ)Bi−1(r, τ, s)dτ dr,

for i > I Ai(t, s) ≡ 0. (10.4)

Now, we consider the following differential equations:





ds1i (t)

dt
= vi(s

1
i (t))

s1
i (t0) = s1

i,0 > 0

,





ds2i (τ)

dτ
= vi(s

2
i (τ))

s2
i (τ0) = s2

i,0 > 0.

(10.5)

where s1
i (t; t0; s1

i,0) and s2
i (τ ; τ0; s2

i,0) are the curves witch goes through (t0, s
1
i,0) and

(τ0, s
2
i,0) respectively. The curves, Z1

i (t) := s1
i (t; 0; 0) and Z2

i (τ) := s2
i (τ ; 0; 0) are the

characteristic through the origin. The solution of (10.5) is given by the following

equations

s1
i (t) = s1

i,0 +

∫ t

t0

vi(s
1
i (z))dz, s2

i (τ) = s2
i,0 +

∫ τ

τ0

vi(s
2
i (r))dr.

Using Remark 10.1 and integrating along the characteristic curve the PDE of System

(10.1), one obtains





Bi∈NI−1
(t, τ, s) =





0 t ≤ τ, Z1
i (t) < s

λ(N(t−τ))Ai(t−τ,ζi) vi(ζi)
vi(s)

f(τ) 0 ≤ τ < t, Z2
i (τ) < s

0 Z1
i (t) > s, Z2

i (τ) > s

Bi>I(t, τ, s) ≡ 0

(10.6)

where ζi := s− Z2
i (τ) and f(τ) := e−

∫ τ
0 (δB+µ(r))dr.

Definition 10.2. For all T > 0. (Ai, Bi) is called a global solution of (10.1-10.3)

(in the sense of the expressions (10.4) and (10.6)), if it belongs to L∞(0, T, L1(0,m))
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and L∞(0, T, L1((0,∆) × (0,m))) respectively and it satisfies System (10.4)-(10.6)

respectively.

10.4 Local existence and uniqueness of solution

In this section we shall discuss the local existence of the solution of System (10.4)-

(10.6) and we will make use the following assumption.

Assumption 10.4.1.

- Natural mortalities δA and δB are non-negative constants.

- Rate of export of cells from the thymus Λ is non-negative constant.

- Function µ(.) is bounded, non-negative and satisfies the following inequality

0 ≤ µ ≤ µ(τ) ≤ µ̄, ∀ τ ∈ (0,∆).

- Function λ(N) is non-negative, bounded and Lipschitz continuous with constant

k

|λ(N)− λ(N∗)| 6 k|N −N∗|, N > 0, N∗ > 0.

- The velocity vi is bounded, non-negative for all i ∈ NI−1, satisfies the condition

vi(0) = 0, and 0 < vi ≤ vi(s) ≤ v̄i, ∀s ∈]0,m],

and continuously differentiable with respect to the variable s. In addition, there

exists a positive constant dvi such that

|∂vi
∂s
| 6 dvi , ∀ s ∈ [0,m].

- Initial condition A0,0(.) are non-negative and belongs to the space L1
+((0,m)).

Remark 10.3.

The integral formulation (10.6) rewrites as

Bi(t, τ, s) = λ(N(t−τ))Ai(t−τ, ζi) f(τ) e
−

∫ s
ζi

∂vi(σ)

∂σ
1

vi(σ)
dσ
, ∀ 0 ≤ τ < t and Z2

i (τ) < s.
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for all i ∈ NI−1 := {0, ..., I − 1}. Using (10.6) and Assumption 10.4.1, one obtains

‖Bi(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

Z2
i (τ)

λ(N(t− τ))|Ai(t− τ, s− Z2
i (τ))|e

dviZ
2
i (τ)

vi ds dτ.

Using Z2
i (τ) :=

∫ τ
0
vi(s

2
i (r))dr, one deduces the following estimate

‖Bi(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

Z2
i (τ)

λ(N(t− τ))|Ai(t− τ, s− Z2
i (τ))|eCvi τds dτ,

(10.7)

where Cvi :=
dvi v̄i
vi

.

In what follows in this section, we shall use the following convention

i∑

j

= 0,
i∏

j

= 1 and ‖.‖i−j∞ = 1 if j > i.

Before studying local existence of a solution, we give the following preliminary

results.

Lemma 10.4. Let Assumption 10.4.1 be satisfied. For T > 0 and t ∈ [0, T ], any

solution ((A0, B0), ..., (AI−1, BI−1), AI) of (10.4)-(10.6) in the sense of Definition

10.2, satisfies ∀ i ∈ NI

‖Ai‖HT 6
2iµ̄i‖λ‖i∞RA0

δiA

(∏i−1
j=0 Cvj

) (1− e−δAT
)i
[
i−1∏

j=0

(
eCvjT − 1

)
]

:= RAi , (10.8)

and ∀ i ∈ NI−1,

‖Bi‖LT 6
2iµ̄i‖λ‖i+1

∞ RA0

δiA

(∏i
j=0Cvj

) (1− e−δAT
)i
[

i∏

j=0

(
eCvjT − 1

)
]

:= RBi . (10.9)

where RA0 = e−δAT‖A0,0‖L1((0,m)) + Λ
δA

(
1− e−δAT

)
.

Proof. We proceed by induction.

For i = 0
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Let T > 0 and t ∈ [0, T ]. By using (10.4), let us integrate A0 from 0 to m

‖A0(t, .)‖L1((0,m)) =

∫ m

0

[
|A0,0(s)| e−

∫ t
0 (δA+λ(N(u)))du + Λ

∫ t

0

e−
∫ t
r (δA+λ(N(u)))dudr

]
ds

6 e−δAt‖A0,0‖L1((0,m)) +
Λ

δA
(1− e−δAt),

that implies ‖A0‖HT 6 RA0 . Using (10.7), one has

‖B0(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

Z2
0 (τ)

λ(N(t− τ))|A0(t− τ, ζ0)| eCv0τds dτ

≤
∫ t

0

∫ m

Z2
0 (τ)

λ(N(t− τ))|A0(t− τ, s− Z2
0(τ))| eCv0τds dτ.

Performing the change of variables σ = s− Z2
0(τ) and a = t− τ , one obtains

‖B0(t, ., .)‖L1((0,∆)×(0,m)) ≤
∫ t

0

∫ m

0

λ(N(a))|A0(a, σ)| eCv0 (t−a)dσ da,

and one gets

‖B0‖LT ≤
‖λ‖∞
Cv0

(
eCv0T − 1

)
‖A0‖HT ,

that implies ‖B0‖LT ≤
‖λ‖∞RA0

Cv0

(
eCv0T − 1

)
. Then, inequalities (10.8) and (10.9)

hold for i = 0.

For i ∈ N∗I−1

Assuming that inequalities (10.8) and (10.9) hold for i, let us show they still hold

for i+ 1. Integrating Ai+1 over (0, m), one has

‖Ai+1(t, .)‖L1((0,m)) 6 2µ̄

∫ m

0

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δA + λi(N(q)))dq
|Bi(r, τ, s)|dτ dr ds.

Inequality (10.9) holds for i. Therefore, by using Fubini’s theorem, one can write

‖Ai+1‖HT 6
2µ̄

δA

(
1− e−δAT

)
‖Bi‖LT (10.10)

6
2i+1µ̄i+1‖λ‖i+1

∞ RA0

δi+1
A

(∏i
j=0 Cvj

) (
1− e−δAT

)i+1

[
i∏

j=0

(
eCvjT − 1

)
]
.
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Now, let us integrate the solution Bi+1 along the characteristic. Then one finds

‖Bi+1‖LT 6
‖λ‖∞
Cvi+1

(
eCvi+1T − 1

)
‖Ai+1‖HT .

By using the inequality in (10.10), one eventually gets

‖Bi+1‖LT 6
2i+1µ̄i+1‖λ‖i+2

∞ RA0

δi+1
A

(∏i+1
j=0Cvj

) (
1− e−δAT

)i+1

[
i+1∏

j=0

(
eCvjT − 1

)
]
.

Then, inequalities (10.8) and (10.9) holds for i + 1. Finally, the proof of (10.8) for

I is rather straightforward by using (10.9) for I − 1.

Notation (Ai, Bi;A0,0) stands for a solution (Ai, Bi) with initial condition A0,0.

Lemma 10.5. Let Assumption (10.4.1) be satisfied. Let T > 0 and t ∈ [0, T ]. For

any two solutions (Ai, Bi;A0,0) and (A∗i , B
∗
i ;A

∗
0,0) of (10.4)-(10.6) in the sense of

Definition 10.2, the following set of inequalities hold ∀ i ∈ NI−1,

‖Ai − A∗i ‖HT ≤ αie−δAT‖A0,0 − A∗0,0‖L1((0,m)) + kβiA sup
06t6T

|N(t)−N∗(t)|,

‖Bi −B∗i ‖LT ≤
αi‖λ‖∞

(
eCviT − 1

)

Cvi
e−δAT‖A0,0 − A∗0,0‖L1((0,m)) + kβiB sup

06t6T
|N(t)−N∗(t)|,

and

‖AI − A∗I‖HT ≤ αIe−δAT‖A0,0 − A∗0,0‖L1((0,m)) + 2µ̄kβI−1
B

(
1− e−δAT

)

δA
sup

06t6T
|N(t)−N∗(t)|,

where

αi =

[
2µ̄
(
1− e−δAT

)

δA

]i
‖λ‖i−1

∞

i−1∏

j=0

eCvjT − 1

Cvj
,

βiA =
i−1∑

j=0

[
2µ̄
(
1− e−δAT

)

δA

]i−j
‖λ‖i−j−1

∞

[
i−1∏

k=j+1

(
eCvkT − 1

)

Cvk

](
RA∗j

(
eCv0T − 1

)

Cv0

+ TRBj

)

+

[
2µ̄‖λ‖∞

(
1− e−δAT

)

δA

]i [i−1∏

j=0

(
eCvjT − 1

)

Cvj

]
L, (10.11)
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with L = T
(
e−δAT‖A0,0‖L1((0,m)) + Λ

δA

(
1− e−δAT

))
, and

βiB =
i−1∑

j=0

[
2µ̄‖λ‖∞

(
1− e−δAT

)

δA

]i−j [ i∏

k=j+1

(
eCvkT − 1

)

Cvk

]
TRBj

+
i∑

j=0

[
2µ̄‖λ‖∞

(
1− e−δAT

)

δA

]i−j [ i∏

k=j

(
eCvkT − 1

)

Cvk

]
RA∗j

+‖λ‖∞

[
2µ̄‖λ‖∞

(
1− e−δAT

)

δA

]i [ i∏

j=0

(
eCvjT − 1

)

Cvj

]
L. (10.12)

RAi and RBi are given in the previous Lemma 10.4.

Proof. As in the previous proof, we proceed by induction.

For i = 0

Let us integrate the difference between A0 and A∗0 over (0,m)

‖A0(t, .)− A∗0(t, .)‖L1((0,m)) 6 e−δAt
∫ m

0

|A∗0,0(s)||e−
∫ t
0 λ(N(u))du − e−

∫ t
0 λ(N∗(u))du| ds

+e−δAt
∫ m

0

|A0,0(s)− A∗0,0(s)|e−
∫ t
0 λ(N(u))du ds

+

∫ t

0

Λe−(t−r)δA|e−
∫ t
r λ(N(u))du − e−

∫ t
r λ(N∗(u))du|dr.

Note that function x −→ e−x is Lipschitz continuous on [0,+∞) with constant 1.

Then by using Assumption (10.4.1), one obtains

‖A0 − A∗0‖HT 6 e−δAT‖A0,0 − A∗0,0‖L1((0,m))

+kT

[
e−δAT‖A∗0,0‖L1((0,m)) +

Λ

δA

(
1− e−δAT

)]
sup

06t6T
|N(t)−N∗(t)|.

On the other hand, integrating the difference between B0 and B∗0 on (0,∆)× (0,m)

one finds

‖B0(t, ., .) − B∗0(t, ., .)‖L1((0,∆)×(0,m))

6
∫ t

0

∫ m

Z2
0 (τ)

eCv0τ
[
λ(N(t− τ)) |A0(t− τ, ζ0)− A∗0(t− τ, ζ0)|

+|λ(N(t− τ))− λ(N∗(t− τ))| |A∗0(t− τ, ζ0)|
]
ds dτ.
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By using Lemma 10.4 and Assumption (10.4.1), one gets

‖B0 −B∗0‖LT 6 ‖λ‖∞
(
eCv0T − 1

)

Cv0

e−δAT‖A0,0 − A∗0,0‖L1((0,m))

+k

(
eCv0T − 1

)

Cv0

(
‖λ‖∞L+RA∗0

)
sup

06t6T
|N(t)−N∗(t)|.

Then, the inequalities in the statement of Lemma 10.5 are satisfied for i = 0.

For i ∈ N∗I−1

Assuming that the inequalities in the statement of Lemma 10.5 hold for i. Let

us show they still hold for i+1.

‖Ai+1(t, .) − A∗i+1(t, .)‖L1((0,m))

6 2µ̄

∫ m

0

∫ t

0

∫ ∆

0

e−δA(t−r)
[
|e−

∫ t
r λ(N(q))dq − e−

∫ t
r λ(N∗(q))dq| |Bi(r, τ, s)|

+e−
∫ t
r λ(N∗(q))dq |Bi(r, τ, s)−B∗i (r, τ, s)|

]
dτ dr ds.

Therefore

‖Ai+1 − Āi+1‖HT 6 2µ̄

(
1− e−δAT

)

δA
‖Bi −B∗i ‖LT

+2µ̄kTRBi

(
1− e−δAT

)

δA
sup

06t6T
|N(t)−N∗(t)|.

By recalling Lemma 10.4, one obtains

‖Ai+1 − Āi+1‖HT 6 αi+1e−δAT‖A0,0 − A∗0,0‖L1((0,m)) + kβi+1
A sup

06t6T
|N(t)−N∗(t)|,

where αi+1 and βi+1
A are given in the statement of lemma 10.5.

Also, one has

‖Bi+1(t, ., .) − B∗i+1(t, ., .)‖L1((0,∆)×(0,m))

6
∫ t

0

∫ m

Z2
i+1(τ)

eCvi+1τ
[
|λ(N(t− τ))| |Ai+1(t− τ, ζi+1)− A∗i+1(t− τ, ζi+1)|

+|λ(N(t− τ))− λ(N∗(t− τ))| |A∗i+1(t− τ, ζi+1)|
]
ds dτ.
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Furthermore

‖Bi+1 −B∗i+1‖LT 6 ‖λ‖∞
(
eCvi+1T − 1

)

Cvi+1

e−δAT‖A0,0 − A∗0,0‖L1((0,m))

+k

(
eCvi+1T − 1

)

Cvi+1

(
‖λ‖∞L+RA∗i+1

)
sup

06t6T
|N(t)−N∗(t)|.

Finally, using Lemma 10.4

‖Bi+1 −B∗i+1‖LT 6
αi+1‖λ‖∞

(
eCvi+1T − 1

)

Cvi+1

e−δAT‖A0,0 − A∗0,0‖L1((0,m))

+kβi+1
B sup

06t6T
|N(t)−N∗(t)|,

This ends the proof of the Lemma 10.5.

Now, we will state the main result of this section.

Theorem 10.6. Under Assumption 10.4.1, System (10.4)-(10.6) admits a unique

local solution in [0, T ∗].

Proof. We set up a fixed point method.

At first, define an operator

∧
: ((A0, B0), ..., (AI−1, BI−1), AI) 7−→

(
(Â0, B̂0), ..., (ÂI−1, B̂I−1), ÂI

)

wherein

Â0(t, s) = A0,0(s) e−
∫ t
0 (δA+λ(N(u)))du + Λ

∫ t

0

e−
∫ t
r (δA+λ(N(q)))dqdr,

Âi∈N∗I (t, s) = 2

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δA + λ(N(q)))dq
µ(τ)B̂i−1(r, τ, s)dτ dr,

B̂i∈NI−1
(t, τ, s) =





0 t ≤ τ, Z1
i (t) < s

λ(N(t−τ)) Âi(t−τ,ζi) vi(ζi)
vi(s)

f(τ) 0 ≤ τ < t, Z2
i (τ) < s

0 Z1
i (t) > s, Z2

i (τ) > s
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where ζi := s− Z2
i (τ) and f(τ) := e−

∫ τ
0 (δB+µ(r))dr, and

N(t) =

(
I∑

i=0

∫ m

0

Ai(t, s)ds

)
+

(
I−1∑

i=0

∫ ∆

0

∫ m

0

Bi(t, τ, s)dτds

)
,

where (Ai, Bi) is given by System (10.4)-(10.6).

Let M := (HT × LT )I−1 ×HT and define a norm on M as follows

‖u‖M =
I−1∑

i=0

sup
06t6T

∫ ∆

0

∫ m

0

|Bi(t, τ, s)| ds dτ +
I∑

i=0

sup
06t6T

∫ m

0

|Ai(t, s)| ds, (10.13)

for all u := ((A0, B0), ..., (AI−1, BI−1), AI) ∈M .

We shall show that the operator
∧

is a map from M into M and it is strict contrac-

tion for T small enough.

(1)
∧

: M 7−→M

Let u and û :=
(

(Â0, B̂0), ..., (ÂI−1, B̂I−1), ÂI

)
lie in M and satisfy (10.4)-

(10.6). By using (10.13), one can write

‖û‖M =
I−1∑

i=0

‖B̂i‖LT +
I∑

i=0

‖Âi‖HT .

Substituting (10.8) and (10.9) in the previous equality, one obtains

‖û‖M ≤

(
I−1∑

i=0

RB̂i

)
+

(
I∑

i=0

RÂi

)
.

Then for T < +∞, one gets
∧

maps M into M.

(2) It remains to show that
∧

is a contraction for T small enough

Let u, û, ū :=
(
(Ā0, B̄0), ..., (ĀI−1, B̄I−1), ĀI

)
and ¯̂u :=

(
(

¯̂
A0,

¯̂
B0), ..., (

¯̂
AI−1,

¯̂
BI−1),

¯̂
AI

)

in M and satisfies (10.1-10.3).

Then, the norm in M of the difference between û and ¯̂u is

‖û− ¯̂u‖M =
I−1∑

i=0

‖B̂i − ¯̂
Bi‖LT +

I∑

i=0

‖Âi − ¯̂
Ai‖HT .
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Solutions, û and ¯̂u having the same initial condition (Â0,0 ≡ ¯̂
A0,0). Lemma

10.5 allows us to estimate the previous equality by

‖û− ¯̂u‖M 6 Θ sup
06t6T

|N(t)− N̄(t)|

6 Θ‖u− ū‖M ,

where

Θ = Θ(T ) = k

[
2µ̄βI−1

B

(
1− e−δAT

)

δA
+

I−1∑

i=0

(
βiA + βiB

)
]
.

Note that limT→0 Θ(T ) = 0 (see (10.11-10.12) for βiA and βiB). Then, there

exists at least T ∗ > 0 where Θ(T ∗) < 1, which implies that
∧

is a strict

contraction.

This complete the local existence and uniqueness proof.

10.5 Global existence

Remark 10.7. If u is a solution of (10.1-10.3) in [0, T ] and û is a continuous extension

of u in [T, T + T̂ ] such that

Ai(t, s) = Âi(t− T, s), ∀i ∈ NI , and Bi(t, τ, s) = B̂i(t− T, τ, s), ∀i ∈ NI−1,

then u is a solution in [0, T + T̂ ].

In the next, we introduce the maximum interval of existence of a solution.

Definition 10.8. The maximal interval of existence of a solution, denoted by

[0, Tmax] is the interval with the property that there exists u ∈ (HT ×LT )I−1×HT ,

solution of (10.1-10.3) for each T ∈ (0, Tmax).

Lemma 10.9. Let Assumption 10.4.1 be satisfied and let u be a solution of System

(10.1-10.3) in [0, Tmax). If Tmax <∞, then

lim
t→Tmax

‖Ai(t, .)‖L1((0,m)) =∞, ∀i ∈ NI . (10.14)

lim
t→Tmax

‖Bi(t, ., .)‖L1((0,∆)×(0,m)) =∞, ∀i ∈ NI−1. (10.15)
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Proof. Assume there exists r1 > 0 and r2 > 0 such that ‖Bi(t, ., .)‖L1((0,∆)×(0,m)) 6 r1

and ‖Ai(t, .)‖L1((0,m)) 6 r2 for all t ∈ [0, Tmax), it suggests that there exists a

sequence (tn)n∈N satisfying limn→∞ tn = Tmax. Then, one has

sup
n∈N
‖Bi(tn, ., .)‖L1((0,∆)×(0,m)) 6 r1,

sup
n∈N
‖Ai(tn, .)‖L1((0,m)) 6 r2.

Such that u is a solution of (10.1-10.3) in [0, tn]. From Remark (10.7), let utn be a

solution in [tn, tn + ε], ∀ ε > 0. According to local uniqueness, one gets a solution

u on the larger interval [0, Tmax + ε). It leads to a contradiction with the maximal

interval [0, Tmax). Therefore, (10.14) and (10.15) are hold.

Obviously, we can state the global existence of the solution as follows

Theorem 10.10. Let Assumption 10.4.1 be satisfied, there exists a unique solution

of System (10.4-10.6) for all T ∈ (0,∞).

Proof. Suppose that there exists a maximal interval [0, Tmax) of the solution u. By

the above lemma, limt−→Tmax ‖Ai(t, .)‖L1((0,m)) =∞ and

limt→Tmax ‖Bi(t, ., .)‖L1((0,∆)×(0,m)) = ∞. In contrast, one has from Lemma 10.4 for

i = 0

‖A0(t, .)‖L1((0,m)) 6 e−δAt‖A0,0‖L1((0,m)) +
Λ

δA

(
1− e−δAt

)
,

‖B0(t, ., .)‖L1((0,∆)×(0,m)) 6
‖λ‖∞

(
eCv0 − 1

)

Cv0t

[
e−δAt‖A0,0‖L1((0,m)) +

Λ

δA

(
1− e−δAt

)]
.

That’s mean for t −→ Tmax:

lim
t
‖A0(t, .)‖L1((0,m)) <∞ and lim

t
‖B0(t, ., .)‖L1((0,∆)×(0,m)) <∞.

It is a contradiction. Then the conclusion Tmax =∞ holds.

Corollary 10.11. Let Assumption 10.4.1 be satisfied and let Λ = 0, there exists a

unique solution of System (4.4)-(4.6) for all T ∈ (0,∞).

Proof. By using Theorem 10.10, one deduces directly the global existence of a so-

lution for System (4.4)-(4.6).





Chapter 11

Asymptotic behaviour for an

age-structured model describing

the T cell homeostasis in vivo

This chapter is based on the article [81].

Abstract. In this study, we consider a model of T cell proliferation in vivo which is

structured by age and CD44 expression. This model is rewritten as an age-structured

model system without the CD44 structure, and we investigate its asymptotic be-

haviour. We find that there exists one or three stationary solutions when cells

undergo at least five divisions and only one stationary solution when cells undergo

at most three divisions, the limiting case with four divisions is numerically handled.

By applying the Lyapunov method, we prove in some cases of uniqueness that the

stationary solution is globally asymptotically stable.

11.1 Introduction

Despite great advances in immunological research during the last decades, many

questions remain in the modeling of T cell proliferation in condition of cell defi-

ciency. Indeed, understanding the process of T cell homoeostasis in vivo stays a

very important subject to address. For example, the asymptotic behaviour of T cells

is one of the important keys to analyse the homoeostatic process in vivo. In this

133
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chapter, we rewrite System (10.1-10.3) as an age-structured model system (without

CD44 expression), and we investigate its asymptotic behaviour.

11.2 Reduced in vivo model

Integrating System (10.1-10.3) with respect to the variable s (CD44 expression), we

derive an age-structured system characterized by cascade. It reads





dA0(t)

dt
= Λ− δAA0(t)− λ0(N)A0(t),

dAi(t)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ) dτ − δAAi(t)− λi(N)Ai(t) for i ∈ N∗,

∂
∂t
Bi(t, τ) + ∂

∂τ
Bi(t, τ) = −(δB + µ(τ))Bi(t, τ) for i ∈ N,

Bi(t, 0) = λi(N)Ai(t),

Bi∈N(0, τ) = 0 and Ai∈N∗(0) = 0,

A0(0) =
∫ m

0
Ã0,0(s) ds := A0,0 > 0.

(11.1)

where A0,0 is a positive constant, Ai(t) :=
∫ m

0
Ãi(t, s)ds, Bi(t, τ) :=

∫ m
0
B̃i(t, τ, s)ds

and (Ãi, B̃i), ∀ i ∈ N are the state variables of (10.1-10.3).

Remark 11.1. According to Yates et al [7] and Hogan et al [10], T cells can undergo

a finite number of division (I) (8 or 9 division with CFSE labelling). We assume a

recruitment rate from A-state into B-phase, for all i ∈ N

λi(N) =





λ0N if i ∈ NI−1 := {0, ..., I − 1}

0 else.

where λ0 > 0. Therefore, there are no cells after AI phase (i.e Ith division in

A-state).

In Table 11.1, we describe the parameters used in System (11.1).
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Table 11.1: Parameters for (11.1).

Parameters Description
∆ Duration of the proliferative phase (B-phase)
µ(τ) Division rate at age τ
λ0 Weight rate of entry into division
Λ Rate of export of cells from the thymus
I Maximum division number undergone by cells

δA, δB Natural mortality rates of cells in A-state and B-phase respectively

The total cell number is

N := N(t) =
∑

i∈N

(
Ai(t) +

∫ ∆

0

Bi(t, τ)dτ

)
. (11.2)

Remark 11.2. If Λ is equal to 0, one gets an in vitro model defined in Part II and

III (or see [80]). Then, the total number of cells decreases to zero and the unique

stationary solution is the trivial one. Therefore, to study the asymptotic behaviour

in case of non trivial equilibrium, the rate of export of cells Λ from the thymus must

be a strictly positive constant.

In what follows, we shall make use of the following assumption.

Assumption 11.2.1. - δA = δB = δ > 0, Λ > 0.

- Function µ(.) is bounded, non-negative and satisfies the following inequality

0 ≤ µ ≤ µ(τ) ≤ µ̄, ∀ τ ∈ (0,∆).

- Function λi(N) is non-negative and satisfies Remark 11.1.

- Initial condition Ã0,0(.) is non-negative and belongs to L1
+(0,m).

By integrating the PDEs in (11.1) with respect to τ and using (11.2), the ODEs

in (11.1) and Assumption (11.2.1), one obtains an ordinary differential equation

related to the total number of cells (N). Hence, it reads as following

dN(t)

dt
= Λ +

∑

i∈N∗

∫ ∆

0

µ(τ)Bi−1(t, τ)dτ − δN(t). (11.3)

In this chapter, we are interested in the asymptotic behaviour of the dynamic of

T cells in vivo without CD44 expression (i.e the reduced System (11.1)). This
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work is organised as follows. Section 11.3 is devoted to prove the existence of a

global attractor and to give some properties which are used in the asymptotic study

of System (11.1). Next, we look in Section 11.4 for the existence and uniqueness

of stationary solution for System (11.1). Finally, Section 11.5 is divided in two

subsections. In the first one, we prove the global stability of the stationary solution

in some cases of uniqueness by using the Lyapunov method. Next, we illustrate in

the second subsection some numerical simulations of the dynamic of System (11.1)

in order to complete the analytical results of the first subsection.

11.3 Global attractor for System (11.1)

The aim of this section is to prove the existence of a unique bounded dissipative

semiflow associated to System (11.1). Let

WI =





(A,B) ∈ RN × L1
+((0,∆),RN);




N0

N1

:

:

NI




≤




Λ
δ

2Λµ̄
δ2

:

:
2IΛµ̄I

δI+1








,

where A = {Ai, i ∈ N}, B = {Bi, i ∈ N} and Ni := Ai +
∫ ∆

0
Bi(τ)dτ, ∀ i ∈ NI .

Lemma 11.3. Let Assumption 11.2.1 be satisfied. The set WI is positively invariant

with respect to System (11.1).

Proof. Let bi(t) :=
∫ ∆

0
Bi(t, τ)dτ , ∀ i ∈ NI . By integrating the PDE of System

(11.1) with respect to the age τ , one obtains for i ∈ NI

dbi
dt

= λi(N)Ai(t)− δbi(t)−
∫ ∆

0

µ(τ)Bi(t, τ)dτ.

Then, one deduces that Ni(t) satisfies

dN0(t)

dt
= Λ− δN0(t)−

∫ ∆

0

µ(τ)B0(t, τ)dτ ≤ Λ− δN0(t),
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and for all i ∈ N∗I ,

dNi(t)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ)dτ − δNi(t)−
∫ ∆

0

µ(τ)Bi(t, τ)dτ

≤ 2

∫ ∆

0

µ(τ)Bi−1(t, τ)dτ − δNi(t). (11.4)

Therefore lim supt→+∞N0(t) ≤ Λ
δ
. If N0(t) ≤ Λ

δ
is satisfied for some t = t0 ∈ R,

than it is satisfied for all t > t0. Hence, one obtains the following estimate

∫ ∆

0

B0(t, τ)dτ ≤ Λ

δ
.

Replacing the above estimate in (11.4), one has for i = 1

dN1(t)

dt
≤ 2Λµ̄

δ
− δN1(t),

and therefore lim supt→+∞N1(t) ≤ 2Λµ̄
δ2 . As in the case i = 0, if N1(t) ≤ 2Λµ̄

δ2 is

satisfied for some t = t1 > t0, then it holds for all t > t1. By induction, one gets

Ni(t) ≤ 2iΛµ̄i

δi+1 , for all t > t∗, with t∗ = maxi∈NI ti.

To prove the existence of a global attractor which is used in the asymptotic study,

we shall deal with (11.1) using an integrated semi group approach.

Integrated semigroup formulation. This approach has been introduced by

Thieme [108] in the context of age structured equations. We also refer to [109–115].

Let us introduce the Banach space

χ = RN × RN × L1
(
(0,∆),RN

)
,

endowed with the usual product norm, and set

χ0 := RN × {0RN} × L1
(
(0,∆),RN

)
,

χ+ := RN+ × RN+ × L1
+

(
(0,∆),RN

)
,

χ0+ := χ0 ∩ χ+.
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Let the following operators be defined by

φ : RN 7−→ RN

A 7−→ δφA
,

ψ : RN 7−→ RN

A 7−→ λ(N)ψA
,

$ : L1
(
(0,∆),RN

)
7−→ L1

(
(0,∆),RN

)

B 7−→ (δ + µ(.))$B

with (δφA)i = δAi, (λ(N)ψA)i = λi0NAi and ((δ + µ(.))$B)i = (δ + µ(.))Bi, ∀
i ∈ N.

Now, one considers the linear operator E : D(E) ⊂ χ 7−→ χ defined by

E




A




0RN

B







=




−δφA




−B(0, .)

−B′ − (δ + µ(.))$B






,

where

D(E) = RN × {0RN} ×W 1,1
(
(0,∆),RN

)
,

and W 1,1 is a Sobolev space. Note that the domain of operator E is not dense in χ

because of the identify

D̄(E) = RN × {0RN} × L1
(
(0,∆),RN

)
6= χ.

Finally let us introduce the non-linear map F : D̄(E) 7−→ χ defined by

F




A




0RN

B







=




Λ̃− λ(N(t))ψA(t)



λ(N(t))ψA(t)

0L1







with Λ̃ =




Λ

2
∫ ∆

0
µ(τ)B0(t, τ)dτ

2
∫ ∆

0
µ(τ)B1(t, τ)dτ

...




.
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Let u(t) =




A(t)(
0RN

B(t, .)

)

 and u0 =




A(0)(
0RN

B(0, .)

)

. Then we can reformulated

System (11.1) as the following abstract Cauchy problem

du(t)

dt
= Eu(t) + F (u(t)), t > 0 and u(0) = u0 ∈ χ0+. (11.5)

From results in Thieme [108], Magal [110] (see Magal and Ruan [111] for more

results), we derive that the above abstract Cauchy problem generates a unique

globally defined and positive semiflow.

Theorem 11.4. Let Assumption 11.2.1 be satisfied. Then there exists a unique

strongly continuous semiflow {U(t) : χ0+ 7−→ χ0+}t>0 such that for each u0 ∈ χ0+,

the map u ∈ C ([0,∞) : χ0+) defined by u = U(.)u0 is a mild solution of (11.5).

Furthermore {U(t)}t>0 satisfies the following properties:

(i) Let U(t)u0 = (A(t), (0RN , B(t, .)))T , then the following Volterra integral for-

mulation holds true for all i ∈ NI−1

Bi(t, τ) =





0 t < τ

λ0N(t− τ)Ai(t− τ) e−
∫ τ
0 (δ+µ(r))dr τ 6 t

coupled with the Ai equations of (11.1).

(ii) Ai ≡ 0, ∀ i > I and Bi ≡ 0, ∀ i > I.

(iii) There exist t∗ > 0 such that for all t > t∗, Ni(t) ≤ 2iΛµ̄i

δi+1 , ∀ i ∈ NI .

Proof. The proof of this result is standard. Indeed, one may check that operator E

satisfies the Hille-Yosida property. Then standard methodologies apply to provide

the existence and uniqueness of mild solution for System (11.1). (see [110–113] for

more details). Next, the Volterra integral formulation (i) is also standard in the

context of age structured equation. By using Remark 11.1, one deduces (ii). Also

from Lemma 11.3, one deduces the estimates in (iii).
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From Lemma 11.3, one deduces that the set

M =








A(
0RN

B

)

 ∈ X0+;




N0

N1

:

:

NI




≤




Λ
δ

2Λµ̄
δ2

:

:
2IΛµ̄I

δI+1








is positively invariant absorbing set under U ; in other words

U(t)M ⊆M.

By using the result of Hale [116], one concludes that {U(t)}t>0 is bounded dissipative

on χ0+. Furthermore, the semiflow is asymptotically smooth (see Webb [117], Magal

and Thieme [118], Thieme and Vrabie [119]). Also from Hale [116], we obtain the

following theorem of the existence of global attractors.

Theorem 11.5. There exists a non-empty set A ⊂ χ0+ such that

(i) A is invariant under the semiflow {U(t)}t>0.

(ii) The subset A attracts the bounded set of χ0+ under the semiflow U .

The attractor A consists of complete orbits of U , meaning that for any point

(A(0), 0RN , B(0, .)) ∈ A, there is a solution {(A(t), 0RN , B(t, .)), t ∈ R} of equation

(11.5) which passes through (A(0), 0RN , B(0, .)) at time t = 0.

Further estimate: Without loss of generality, one may restrict ourselves to the

subdomain M . Hence one may assume that

N(t) =
I∑

i=0

Ni(t) ≤
I∑

i=0

2iΛµ̄i

δi+1
:= N+. (11.6)
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Lemma 11.6. Let Assumption 11.2.1 be satisfied. The domain

M0 =








A




0RN

B






∈ χ0+; A0 >

Λ

δ + λ0N+
and




N0

N1

:

:

NI




≤




Λ
δ

2Λµ̄
δ2

:

:
2IΛµ̄I

δI+1








is positively invariant and is an absorbing set for U restricted to M . Furthermore,

A ⊆M0.

Proof. Let u0 =




A(0)(
0RN

B(0, .)

)

 ∈ M0 be given and let us denote for each t > 0,

U(t)u0 := (A(t), 0RN , B(t, .))T the orbit passing through u0.

By using (11.6) and the A0 equation in (11.1), one obtains

dA0(t)

dt
> Λ− (δA + λ0N

+)A0(t). (11.7)

Since u0 ∈M0, then A0(0) > Λ
δ+λ0N+ , and therefore, one has

A0(t) >
Λ

δ + λ0N+
.

This completes the proof of Lemma 11.6.

Finally in this section, we give a result that will be used to prove our stability result.

Lemma 11.7. For each (A, 0RN , B) ∈ A, there exists A−i > 0 for all i ∈ NI and

B−i > 0 for all i ∈ NI−1 such that

Ai > A−i and

∫ ∆

0

Bi(τ)dτ > B−i .

Proof. Let (A, 0RN , B) be the solution of equation (11.5) with initial condition

(A(0, .), 0RN , B(0, ., .)) ∈ A. Since the solution is in the attractor, the previous

lemma implies

A0(t) >
Λ

δ + λ0N+
> 0,
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for all t > 0. Thus, for sufficiently small A−0 > 0, one has A0(t) > A−0 , for all t > 0.

Equation (11.3) can be written as

dN

dt
> Λ− δN(t).

Then, for a given large t∗, one has

N(t) > N− := min{Λ

δ
,N(t∗)}. (11.8)

Thus, by (11.8) and (i) of Theorem 11.4, one obtains for all t > t∗

∫ ∆

0

B0(t, τ)dτ > λ0N
−A−0 β, where β :=

∫ ∆

0

e−
∫ τ
0 (δ+µ(r))drdτ.

Therefore for sufficiently small B−0 > 0, one has
∫ ∆

0
B0(t, τ)dτ > B−0 .

From (11.6), one has

dA1(t)

dt
> 2µ

∫ ∆

0

B0(t, τ)dτ − (δ + λ0N
+)A1(t) =⇒ A1(t) >

2µB−0
(δ + λ0N+)

:= A−1 .

By induction, one may check

Ai(t) >
2µB−i−1

(δ + λ0N+)
> A−i ,

∫ ∆

0

Bi(t, τ)dτ > λ0ΛN−A−i β > B−i ,

∀ i = 2, ..., I − 1, and for i = I

AI(t) >
2µB−I−1

δ
> A−I .

where A−i and B−i are sufficiently small. This completes the proof of Lemma 11.7.

11.4 Stationary solution for System (11.1)

In what follows,

I, d :=

∫ ∆

0

µ(τ)e−
∫ τ
0 (δ+µ(r))dr and ρ :=

2δ2

λ0Λ
, (11.9)
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are the key parameters to study the asymptotic behaviour of System (11.1). Param-

eter d can be described by the cumulative rate of cells that will divide in B-phase.
1
ρ

= 1
2δ2 λ0Λ is an aggregated parameter related to λ0Λ, the recruitment rate of

exported cells coming from the thymus and passing from A-state to B-phase, see

Remark 11.1, whose dimension is cell × hour.

Let Āi for all i ∈ NI and B̄i(.) for all i ∈ NI−1 be a stationary solution of Sys-

tem (11.1)





Λ− δĀ0 − λ0N̄Ā0 = 0,

2
∫ ∆

0
µ(τ)B̄i−1(τ)dτ − δĀi − λ0,iN̄Āi = 0, ∀ i ∈ N∗I := {1, ...I}

dB̄i(τ)
dτ

+ (δ + µ(τ))B̄i(τ) = 0, ∀ i ∈ NI−1 := {0, ..., I − 1}
B̄i(0)− λ0N̄Āi = 0.

(11.10)

Then, one has

Ā0 =
Λ

δ + λ0N̄
, Āi =

2
∫ ∆

0
µ(τ)B̄i−1(τ)

δ + λ0N̄
, ∀ i ∈ N∗I ,

B̄i(τ) = λ0N̄Āi e
−

∫ τ
0 (δ+µ(r))dr, ∀ i ∈ NI−1

wherein

N̄ =
I−1∑

i=0

(∫ ∆

0

B̄i(τ)dτ

)
+

I∑

i=0

Āi. (11.11)

A recursive argument yields

Āi =
2iΛλi0N̄

idi
(
δ + λ0N̄

)i+1 , B̄i(τ) =
2iΛλi+1

0 N̄ i+1dic(τ)
(
δ + λ0N̄

)i+1 , ∀ i ∈ NI−1 and ĀI =
2IΛλI0N̄

IdI

δ
(
δ + λ0N̄

)I ,

(11.12)

where c(τ) := e−
∫ τ
0 (δ+µ(r))dr and d is given in (11.9). Note that

0 < d ≤ 1− e−
∫ ∆
0 µ(r)dr < 1. (11.13)

Constant d is much smaller than 1
2

when using realistic parameters from [4, 6, 7,

10, 80].

Theorem 11.8. Let Assumption 11.2.1 be satisfied. System (11.1) admits one or

three stationary solutions for all I ∈ N∗. Uniqueness holds when one of the following

conditions is fulfilled
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1-) I = 1, 2 or 3 for all d ∈ (0, 1) and ρ > 0.

2-) 0 < d ≤ 1
2

for all I ∈ N∗ and ρ > 0.

3-) I ≥ 4, ρ ≥ ρ(I) for a suitably large ρ(I) > 0 given in (11.18) below and all

d ∈ (1
2
, 1).

4-) I ≥ 4, ρ > 0 and d ∈ (1
2
, 1) satisfying

2d

(1− 2d)2

[
1 + (2d)I (2Id− I − 1)

]
<

(ρ+ 2)2

ρ
cf. (11.9) for (d, ρ).

(11.14)

Proof. According to (11.12), it is sufficient to prove the existence of one or three

stationary solutions for N̄ . At equilibrium, dN̄
dt

= 0, then (11.3) leads to the following

equality

N̄ =
Λ

δ
+

I∑

i=1

2i−1λi0N̄
idiΛ

δ
(
δ + λ0N̄

)i . (11.15)

The mean value theorem applied to [0,+∞) ensures that (11.15) admits at least

one positive root. Next, performing a change of variable (ω := λ0

δ
N̄ and ρ := 2δ2

λ0Λ
),

one obtains

ρω = 2 +
I∑

i=1

2iωidi

(1 + ω)i
(11.16)

Proof of 1-)

For I = 1: (11.16) reduces to a quadratic polynomial equation, ρω2 +a1ω+a2 = 0,

with a2 = −2 yielding a unique positive root.

For I = 2: (11.16) reduces to a cubic polynomial equation P3(ω) = ρω3 + a1ω
2 +

a2ω+a3 = 0, with a3 = −2 < 0 so that P3 has 1 or 3 positive roots. Descartes’s rule

of signs requires three sign changes to get three positive solutions, that is a1 < 0

and a2 > 0. Elementary algebra shows that a1 = 2 [ρ− (1 + d+ 2d2)] < 0 and

a2 = [ρ− 2(2 + d)] > 0 imply 2d2− d− 3 > 0 that is impossible because 0 < d < 1.

This shows uniqueness for I = 2.

For I = 3: (11.16) reduces to a 4th order polynomial equation P4(ω) = ρω4+a1ω
3+

a2ω
2 + a3ω + a4 = 0, with a4 = −2 < 0 so that P4 has 1 or 3 positive roots.

• When a1 > 0, Descartes’s rule of signs requires three sign changes to get three

positive solutions, that is a2 < 0 and a3 > 0. Elementary algebra shows that

a2 = 3ρ− 6− 4d− 4d2 < 0 and a3 = ρ− 6− 2d > 0 imply 12 + 2d− 4d2 < 0 that

is impossible because 0 < d < 1.

• When a1 = 3ρ − 2 − 2d − 4d2 − d3 < 0 then one also has a3 = ρ − 6 − 2d <
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0. Assuming P4 possesses three positive roots then Rolle’s Theorem asserts its

derivative polynomial P
′
4 has at least two positive roots.

Now P
′
4(ω) = 4ρω3 + 3a1ω

2 + 2a2ω + a3 and a3 < 0 implies P
′
4 has 1 or 3 positive

roots. As a consequence when a1 < 0 if P4 has 3 positive roots then P
′
4 also has 3

positive roots.

Setting Q4(ω) = −1
4
P
′
4(−ω) = ω3 + α1ω

2 + α2ω + α3, one may use Routh-Hurwitz

criterion to check whether Q4 has 3 negative roots.

First α1 = − 3
4ρ
a1 > 0, α3 = − 1

4ρ
a3 > 0. Elementary but lengthy algebra yields

α1 × α2 − α3 < 0 because 0 < d < 1. Indeed

α1 × α2 − α3 := R(ρ) = 25ρ2 + β1ρ+ β2,

where

β1 := 60 + 50 d+ 72 d2 + 72 d3,

β2 := −36− 60 d− 120 d2 − 216 d3 − 144 d4 − 96 d5.

Polynomial R(ρ) reaches its maximum value at ρ = β1

50
.

R(ρ) ≤ R(
β1

50
) ≤ H(d) :=

d2

25

(
−215− 1440 d− 504 d2 + 192 d3 + 1296 d4

)

Finally, one remarks that 0 < d < 1 ⇒ R(β1

50
) < 0. Then, Q4 cannot have three

negative roots. As a consequence uniqueness holds for I = 3.

Proof of 2-) Assume I ≥ 4. Performing a change of variable in (11.16), u := 2ωd
1+ω

,

one gets

PI+1(u) := uI+1 + (1− 2d)uI + ...+ (1− 2d)u2 + (2− 2d+ ρ)u− 4d = 0. (11.17)

Using Descartes’s rule of signs and (11.13), polynomial PI+1 for all I ∈ N∗ admits

one or three positive roots (see Fig. 11.1) that satisfies 0 < u < 2d (u = 2ωd
1+ω
⇔ ω =

u
2d−u).

If 1− 2d > 0, PI+1 has only one sign change in its coefficients and admits only one

positive root.

Proof of 3-) (Estimating the sign of the derivative of (11.17)) The first

derivative of (11.17) is P
′
I+1(u) = (I + 1)uI + (1 − 2d)

∑I
j=2 ju

j−1 + (2 − 2d + ρ).
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Figure 11.1: The first five subfigures represent the implicit plot of the level set PI+1(u) = 0 as a function
of (d, u) when I = 5, 6, 7, 8, 9 and ρ constant. The last one (PI+1) is drawn for a large I = 10, 15, 20, 25, 30
and ρ = 6.5. The vertical lines (red lines) show the existence of three stationary solutions for some values of d.
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Since u > 0 and 0 < d < 1
2
, one has

P
′

I+1(u) ≥ HI(u) + ρ, HI(u) := (I + 1)uI −
I∑

j=2

juj−1.

Polynomial HI(u) reaches its minimum value in the range u > 0 at some uminI , so

does HI(u) + ρ. Therefore if the following condition is fulfilled

ρ ≥ ρ(I) := −HI(u
min
I ), (11.18)

polynomial PI+1 is strictly increasing and has a unique positive root.

Proof of 4-) (Fixed point method) From (11.16), let

f(ω) :=
1

ρ

(
2 +

I∑

i=1

2iωidi

(1 + ω)i

)
, ω > 0

Stationary solutions correspond to solutions of ω = f(ω). We shall prove that

(i) f is a map from [0, H] to [2
ρ
, H] where

H :=
2

ρ

[
1 +

d(1− 2IdI)

1− 2d

]
. (11.19)

(ii) If (11.14) is fulfilled then f is a strict contraction i.e 0 < |Df(ω)| < 1 for
2
ρ
≤ ω ≤ H.

The proof of (i) is rather straightforward, using 0 ≤ ω
1+ω
≤ 1. This implies that any

positive fixed point of f belongs to [2
ρ
, H].

Proof of (ii): The derivative of f is

f
′
(ω) =

1

ρ

I∑

i=1

i2idi
[

ωi−1

(1 + ω)i+1

]
> 0. (11.20)
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Since ω ∈ [2
ρ
, H] and d ∈ (1

2
, 1), one has

f
′
(ω) ≤ 1

ρ(1 + 2
ρ
)2

I∑

i=1

2idii =
2dρ

(2 + ρ)2

(
I∑

i=1

(2d)i

)′

2d

=
2dρ

(2 + ρ)2(1− 2d)2

[
1 + (2d)I (2Id− I − 1)

]
:= ϕ(d, I, ρ),

where (ϑ(x))
′

x = dϑ(x)
dx

. From condition (11.14), one gets (ii). Therefore, one deduces

the existence and uniqueness of ω by referring to Picard’s fixed point theorem.

Remark 11.9. Case I = 4. According to (11.18) in the proof of item 3-) of Theorem

11.8, H4(u) reaches its minimum value at u = 1. Then if ρ ≥ ρ(4) := −H4(1) = 4,

polynomial P5 has a unique positive root. For 1
2
< d < 1 the left hand side of (3.6)

is larger than 10 so that (11.14) is fulfilled uniformly in d when 0 < ρ < 0.763932022

in which case uniqueness holds according item 4-). Furthermore graphical analysis

suggests that P5 has a unique positive root when 0 < ρ < 4 and 1
2
< d < 1 (Fig.

11.2), and System (11.1) has a unique stationary solution for I = 4.

Zoom 2D

−−−−−−−→

Figure 11.2: Implicit plot of the level set P5(u) = 0 as a function of 0 < d < 1
2 , 0 < ρ < 4 and

0 < u < 2. These figures ensure that graphically System (11.1) admits a unique stationary solution when
I = 4.

Remark 11.10. According to item 2-) in Theorem 11.8 and Remark 11.9, the param-

eter condition (11.14) for uniqueness, is relevant only when I > 5 and d ∈ (1
2
, 1).

Furthermore, if d tends to 1
2

or 1, then the contraction in item (ii) of the previous
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proof, depends on the values of ρ and I > 5. Indeed, one has

lim
d→ 1

2

f
′
(ω) ≤ lim

d→ 1
2

ϕ(d, I, ρ) =
ρI(I + 1)

2(ρ+ 2)2
,

lim
d→1

f
′
(ω) ≤ lim

d→1
ϕ(d, I, ρ) =

2ρ

(ρ+ 2)2

[
1 + 2I(I − 1)

]
.

In Fig. 11.1, graphical analysis shows that uniqueness of a stationary solution is

dependent on the values of d ∈ (1
2
, 1), I > 5 and ρ > 0. On the other hand, the

sufficient conditions (11.14) and (11.18) which depend on (d, I, ρ), allow to conclude

algebraically to two different uniqueness results.

Now, we provide graphical examples of the analytical uniqueness results given by

items 3-) and 4-) in Theorem 11.8 with respect to numerical results of uniqueness,

for I > 5 and d ∈ (1
2
, 1).

Figure 11.3: Implicit plot of the level set PI+1(u) = 0 (dashed line) as a function of (d, u) for I = 8 (left)
and I = 25 (right) and various values of ρ. In both subfigures bold solid lines depict the subset of d ∈ ( 1

2 , 1)
where uniqueness follows from item 4-). In left subfigure I = 8; item 3-) yields ρ(8) ' 80 and uniqueness holds
for ρ = 140 and for all d ∈ ( 1

2 , 1) (dotted line), while it does not apply for ρ = 70. In right subfigure I = 25
then ρ(25) ' 9.0E + 06 so that item 3-) does not apply for the data set used; note that multiple stationary

solutions are possible for a larger d. Log-scale is used in y-axis on the right subfigure.

In Fig. 11.3, we present the implicit plot of the level set PI+1(u) = 0 (dashed line)

as a function of 1
2
< d < 1, 0 < u < 2 when I = 8 and 25 and various values of ρ.

For I = 8, bold solid lines depicts the subset of d ∈ (1
2
, 1) where uniqueness follows

from item 4-). Item 3-) yields ρ(8) ' 80 and uniqueness holds for ρ = 140 and for

all d ∈ (1
2
, 1) (dotted line), while item 3-) does not apply for ρ = 70.

For I = 25 then ρ(25) ' 9.0E + 06 and item 3-) does not apply for the data set

used. In contrast, bold solid lines depicts the subset of d ∈ (1
2
, 1) where uniqueness

follows from item 4-). Note that multiple stationary solutions are possible for a

larger d.
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11.5 Global stability of the stationary solution

when d ∈ (0, 1
2)

Through this section, we use normalised variables xi ∀ i ∈ NI and y defined by

xi := xi(t) =
Ai(t)

Āi
; y := y(t) =

N(t)

N̄
.

11.5.1 Main analytical result

Theorem 11.11. Let Assumption 11.2.1 be satisfied and fix d ∈ (0, 1
2
). Then, the

unique stationary solution noted Eq is globally asymptotically stable if the parameters

satisfy the following condition

ρ >
2d

1− 2d

(
1 + d

I−1∑

i=0

(2d)i

)
. (11.21)

Proof. Let (Ai∈NI (t), Bi∈NI−1
(t, .)) be a complete solution to (11.1) that lies in the

attractor A ⊆M0. From Lemma 11.7, one knows there exits δ1
i , δ

′
1,i, δ

2
i , δ

′
2,i, δ3 and

δ′3 such that

δ1
i <

Ai(t)

Āi
< δ′1,i, δ2

i <
Bi(t, τ)

B̄i(τ)
< δ′2,i, δ3 <

N(t)

N̄
< δ′3 (11.22)

for t ∈ R and τ ∈ (0,∆).

Let g(x) := x − 1 − ln(x). Then g : (0,∞) → R+ has global minimum at x = 1,

g(1) = 0. It follows from (11.22) that g(xi), g(y) and g(Bi(t,τ)

B̄i(τ)
) are bounded. Let

VAi(t) := g (xi) , ∀ i ∈ NI , VN(t) := g (y)

and

VBi−1
(t) :=

∫ ∆

0

αi−1(τ)g

(
Bi−1(t, τ)

B̄i−1(τ)

)
dτ, ∀ i ∈ N∗I

where c(r) := e−
∫ r
0 (δ+µ(x))dx, ω = λ0

δ
N̄ ,

αi−1(τ) =

∫ ∆

τ

(2 + ω)ψi−1µ(r)c(r)dr, ψi−1 =
Λλ0

δ

(
2i−1di−1ωi−1

(1 + ω)i

)
. (11.23)
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Since g(Bi(t,τ)

B̄i(τ)
) and αi(τ) are bounded. Then, VBi is finite for each t, i ∈ N∗I .

For u = (A0, ..., AI , B0, ..., BI−1), let

V [u](t) =
I∑

i=0

Āi
N̄
VAi(t) +

I∑

i=1

VBi−1
(t) +

λ0N̄

δ
VN(t) (11.24)

One notes that, when restricted to A, function V is bounded. Furthermore, V

reaches its minimum value at the stationary solution Eq.

In the following calculations, one uses the substitutions from (11.10). For clarity of

presentation, one computes separately the derivatives of VA0 , VAi for all i ∈ N∗I−1,

VAI , VN and VBi for all i ∈ N∗I . Using the first equality in (11.10) to replace Λ, one

obtains

dVA0

dt
=

(
1− Ā0

A0(t)

)
1

Ā0

dA0

dt

=

(
1− Ā0

A0(t)

)
1

Ā0

[
δĀ0

(
1− A0(t)

Ā0

)
+ λ0N̄Ā0

(
1− A0(t)N(t)

Ā0N̄

)]

= δ

[
2− A0(t)

Ā0

− Ā0

A0(t)

]
+ λ0N̄

[
1− Ā0

A0(t)
− A0(t)N(t)

Ā0N̄
+
N(t)

N̄

]

= −δg(x0)− (δ + λ0N̄)g(
1

x0

)− λ0N̄g(x0y) + λ0N̄g(y).

Using (11.10), one obtains, ∀ i ∈ N∗I−1

dVAi
dt

= −δg(xi)− (δ + λ0N̄)g(
1

xi
)− λ0N̄g(xiy) + λ0N̄g(y)

−2

∫ ∆

0

µ(τ)B̄i−1(τ)

Āi

(
1− Āi

Ai(t)

)(
1− Bi−1(t, τ)

B̄i−1(τ)

)
dτ

One notes the last term of the above equation by Pi(t). It can be written as

Pi(t) = −2

∫ ∆

0

µ(τ)B̄i−1(τ)

Āi

(
1− Āi

Ai(t)

)(
1− Bi−1(t− τ, 0)

B̄i−1(0)

)
dτ
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Using σ = t− τ to replace τ , one gets

Pi(t) = −2

∫ t

t−∆

µ(t− σ)B̄i−1(t− σ)

Āi

(
1− Āi

Ai(t)

)(
1− N(σ)Ai−1(σ)

N̄Āi−1

)
dσ

= −2

∫ t

t−∆

µ(t− σ)B̄i−1(t− σ)

Āi

(
1− 1

xi(t)
− xi−1(σ)y(σ) +

xi−1(σ)y(σ)

xi(t)

)
dσ

= −2

∫ ∆

0

µ(τ)B̄i−1(τ)

Āi
g

(
xi−1(t− τ)y(t− τ)

xi(t)

)
dτ

+(δ + λ0N̄)g(
1

xi
) + 2

∫ ∆

0

µ(τ)B̄i−1(τ)

Āi
g (xi−1(t− τ)y(t− τ)) dτ

Then the derivative of VAi , ∀ i ∈ N∗I−1 becomes

dVAi
dt

= −δg(xi)− λ0N̄g(xiy) + λ0N̄g(y) + 2

∫ ∆

0

µ(τ)B̄i−1(τ)

Āi
g (xi−1(t− τ)y(t− τ)) dτ

−2

∫ ∆

0

µ(τ)B̄i−1(τ)

Āi
g

(
xi−1(t− τ)y(t− τ)

xi(t)

)
dτ

Also the derivative of VAI is

dVAI
dt

= −δg(xI) + 2

∫ ∆

0

µ(τ)B̄I−1(τ)

ĀI
g (xI−1(t− τ)y(t− τ)) dτ

−2

∫ ∆

0

µ(τ)B̄I−1(τ)

ĀI
g

(
xI−1(t− τ)y(t− τ)

xI(t)

)
dτ

Next, one calculates the derivative of VBi−1
, ∀ i ∈ N∗I

dVBi−1

dt
=

d

dt

∫ ∆

0

αi−1(τ)g

(
Bi−1(t, τ)

B̄i−1(τ)

)
dτ =

d

dt

∫ ∆

0

αi−1(τ)g

(
Bi−1(t− τ, 0)

B̄i−1(0)

)
dτ.

Using σ = t− τ to replace τ , one obtains

dVBi−1

dt
=

d

dt

∫ t

t−∆

αi−1(t− σ)g

(
Bi−1(σ, 0)

B̄i−1(0)

)
dτ

= −αi−1(∆)g (xi−1(t−∆)y(t−∆)) + αi−1(0)g (xi−1y)

+

∫ ∆

0

α
′

i−1(τ)g

(
Bi−1(t, τ)

B̄i−1(τ)

)
dτ

Now, using equations (11.23) to replace αi(0) and α
′
i(τ), one finds

dVBi−1

dt
= −αi−1(∆)g (xi−1(t−∆)y(t−∆)) + ψi−1(2 + ω)d g(xi−1y)

−
∫ ∆

0

(2 + ω)µ(τ)c(τ) ψi−1 g (xi−1(t− τ)y(t− τ)) dτ.
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Finally, one calculates the derivative of VN . Using Λ = δN̄−
∑I

i=1

∫ ∆

0
µ(τ)B̄i−1(τ)dτ ,

one obtains

dVN
dt

=

(
1− N̄

N(t)

)
1

N̄

dN

dt

=

(
1− N̄

N(t)

)
1

N̄

[
δN̄

(
1− N(t)

N̄

)
−

I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

(
1− Bi−1(t, τ)

B̄i−1(τ)

)
dτ

]

= −
I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

N̄

(
1− 1

y(t)
− xi−1(t− τ)y(t− τ)− xi−1(t− τ)y(t− τ)

y(t)

)
dτ

+δ

[
2− N(t)

N̄
− N̄

N(t)

]
.

Then,

dVN
dt

= −δg (y)− δg
(

1

y

)
+

(
I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

N̄
dτ

)
g

(
1

y

)

+
I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

N̄
g (xi−1(t− τ)y(t− τ)) dτ

−
I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

N̄
g

(
xi−1(t− τ)y(t− τ)

y(t)

)
dτ

From (11.3), one gets

dVN
dt

= −δg (y)− Λ

N̄
g

(
1

y

)
+

I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

N̄
g (xi−1(t− τ)y(t− τ)) dτ

−
I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

N̄
g

(
xi−1(t− τ)y(t− τ)

y(t)

)
dτ

Next, one calculates W1 := λ0N̄
δ

dVN
dt

+
∑I

i=0
Āi
N̄

dVAi
dt

W1 = −
I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

[
λ0

δ
g

(
xi−1(t− τ)y(t− τ)

y(t)

)
+

2

N̄
g

(
xi−1(t− τ)y(t− τ)

xi(t)

)]
dτ

−Ā0(δ + λ0N̄)

N̄
g

(
1

x0

)
− δ

N̄

I∑

i=0

Āig(xi)−
I∑

i=1

λ0Āi−1g (xi−1y)− λ0

(
N̄ −

I−1∑

i=0

Āi

)
g(y)

−Λλ0

δ
g

(
1

y

)
+

I∑

i=1

∫ ∆

0

(2 + ω) ψi−1 µ(τ)c(τ) g (xi−1(t− τ)y(t− τ)) dτ.

From equation (11.12), one remarks that λ0Āi−1 = ψi−1, ∀ i ∈ N∗I . Finally, we
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combine W1 with
∑I

i=1

dVBi−1

dt
to get dV [u](t)

dt
.

dV [u](t)

dt
= −

I∑

i=1

∫ ∆

0

µ(τ)B̄i−1(τ)

[
λ0

δ
g

(
xi−1(t− τ)y(t− τ)

y(t)

)
+

2

N̄
g

(
xi−1(t− τ)y(t− τ)

xi(t)

)]
dτ

−Ā0(δ + λ0N̄)

N̄
g

(
1

x0

)
− δ

N̄

I∑

i=0

Āig(xi)−
I∑

i=1

ψi−1 [1− d(2 + ω)] g (xi−1y)

−λ0

(
N̄ −

I−1∑

i=0

Āi

)
g(y)− Λλ0

δ
g

(
1

y

)
− αi−1(∆)g (xi−1(t−∆)y(t−∆)) .

From (11.19), one has −1 + d(2 + ω) ≤ −1 + d(2 +H) and from condition (11.21),

one has

ρ >
2d
(

1 + d
∑I−1

i=0 (2d)i
)

1− 2d
⇔ d ≤ 1

2 +H
.

Then, one gets −1 + d(2 + H) ≤ 0. Therefore dV [u](t)
dt

≤ 0 and V is a Lyapunov

functional on A.

Hence, we infer that t 7→ V [u](t) is decreasing along the entire solutions of U .

To conclude our proof, let {tn}n>0 be an increasing sequence tending to −∞ as

n → ∞ and consider the sequence of map un(t) = u(t + tn). Note that one has

V [un](t) = V [u](t+ tn). Then we may assume that un(t)→ û(t) as n→∞ locally

uniformly for t ∈ R where {û(t)}t∈R ⊂ A is an entire solution of U . Since V is

decreasing, one obtains that

V [û](t) ≡ lim
t→−∞

V [u](t) = sup
t∈R

V [u](t). (11.25)

Let û = (Â, 0, B̂)T . Since V [u] is bounded, then from (11.25), we deduce that

V [û](t) ≡ 0 and û ≡ Eq. Hence 0 ≤ V [u](t) ≤ 0 for t ∈ R and u(t) ≡ Eq.

Finally, we illustrate condition (11.21) by a graphical analysis (Fig. 11.4) of the level

set F (d, ρ) := ρ− 2d
1−2d

(
1 + d

∑I−1
i=0 (2d)i

)
= 0. Dark (green) depicts F (d, ρ) > 0 and

the light (orange) represents F (d, ρ) < 0. Furthermore, these figures show the zone

where condition (11.21) is satisfied (i.e the zone where the Lyapunov functional

proposed in the previous proof, leads to obtain the global stability of Eq). We

remark that this condition covers a larger interval of d when ρ is large.
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Zoom

−−−−−−−→

Figure 11.4: Implicit plot of the level set F (d, ρ) := ρ− 2d
1−2d

(
1 + d

∑I−1
i=0 (2d)i

)
as a function (d, ρ) for

I = 9. Condition (11.21) is satisfied in the green region, i.e, it is the zone where the derivative of the Lyapunov

functional (
dV [u](t)

dt ) is guaranteed to be negative. Note that these subfigures do not qualitatively change for

all I ∈ N∗.

11.5.2 Additional numerical results

In this subsection, we present some numerical simulations in order to complete the

analytical results of the previous subsection (d ∈ (0, 1
2
)), and next we give some

simulations for System (11.1) when there are three stationary solutions.

According to [7, 10, 80], it is assumed that the cells take a time approximatively ∆

to complete the process in B-phase. Then, the mother cells divide in B-phase when

their age around ∆. Therefore, the rate of cells that divided at age τ can be defined

as follows

µ(τ) =
Ψ(τ)

1−
∫ τ

0
Ψ(r)dr

,

where Ψ(τ) := 1
σ
√

2π
e−

1
2( τ−∆

σ )
2

is a normal distribution with a mean ∆ and variance

σ2.

Remark 11.12. The parameter condition (11.21) seems to be only a technical con-

dition that we cannot overcome. Apparently from numerical computations, the

unique equilibrium Eq for all d ∈ (0, 1
2
) continue to be globally stable even if condi-

tion (11.21) is not fulfilled.

First, we provide numerical simulations to illustrate the dynamic of System (11.1)

when d ∈ (0, 1
2
). The choice of numerical and optimization parameters follows the

second column in Table 11.2 (Value 1), where d = 0.470254 and ρ = 3.24. In this
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case, uniqueness of stationary solution is guaranteed by Theorem 11.8, and accord-

ing to Fig. 11.4, the point (d, ρ) is in the light region. Then, condition (11.21) is

not fulfilled with this choice of parameters (Table 11.2 - Value 1).

Table 11.2: Default values of the parameters used for simulations.

Parameters Value 1 Value 2 Unit
I 9 17 -
∆ 10 10 hour
σ2 2 2 -
Λ 42.06 42.06 cell/hour
δ 2.0× 10−2 7.0× 10−4 1/hour
λ0 10−8 5.87× 10−6 -

Note. Values indicated in the second column (Value 1) lead to a unique stationary
solution (d = 0.470254 and ρ = 3.24). Moreover these values in the second column
do not fulfil condition (11.21). In the third column (Value 2), parameters values

lead to three stationary solutions (d = 0.56007 and ρ = 2.33).
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Figure 11.5: Solution N(t) converges to the unique stationary solution (N̄ = 3928) for different ini-
tialisation (A0,0). Damped oscillations (right subfigure) can be observed when the initialisation A0,0 is larger

than N̄ . Parameter values are given by Table 11.2 (Value 1).

In Fig. 11.5, we represent the total number of cells as a function of time. We re-

mark that N(t) converges to the unique stationary solution for several initialisations

(A0,0). This numerical result illustrates Remark 11.12: System (11.1) has a unique

stationary solution and it is numerically asymptotically stable when d ∈ (0, 1
2
).

Moreover when the initialisation A0,0 is greater than N̄ , damped oscillations (right

subfigure in Fig. 11.5) can be observed in the first 3 days. This phenomenon prob-

ably needs further analysis.

Second, we provide numerical simulations to illustrate the dynamic of System (11.1)

when d ∈ (1
2
, 1). Parameter values are given by the third column in Table 11.2
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(Value 2), where d = 0.56007, ρ = 2.33 and I = 17. By solving (11.17), one may

check the existence of three stationary solutions (N̄1 = 6403785, N̄2 = 6404499,

N̄3 = 6417034) for this choice of parameters (Table 11.2 - Value 2). In Fig. 11.6,

we numerically show that each of these three stationary solutions has a non-empty

basin of attraction. Convergence is slow compared to the case 0 < d < 1
2

(see

Fig. 11.5), and reached for carefully selected initial conditions. The stability or

instability of each stationary solution will be studied in a forthcoming work.
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Figure 11.6: Numerical simulations for System (11.1) when d = 0.56007, ρ = 2.33 and I = 17.
Parameter values are given by Table 11.2 (Value 2). Solution N(t) converges to one of the three stationary
solutions depending on the choice of the initial condition (A0,0). Numerical simulations are tested until time

106 (hour), and are presented here until 2.2 × 104 - 3.5 × 104 hour, where the convergence is numerically
reached. Note that the y-axis in the two bottom subfigures is presented in log-scale for sake of clarity.

11.6 Conclusions and future work

In this study, we extend the in vitro model proposed by [80] to an in vivo model.

Next, we derive an age-structured system (11.1) and we study its asymptotic be-

haviour. An analysis of System (11.1) shows that there exists one or three stationary

solutions when the cells undergo more than five divisions. Precisely, uniqueness of

a stationary solution is guaranteed in this case (i.e I > 5) when the parameter

conditions (11.14) or (11.18) are satisfied. Also uniqueness is obtained when the
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cells undergo at most four divisions or if the parameter d is less than 1
2
. To study

the large time behaviour when 0 < d < 1
2
, a key tool was a Volterra-type Lyapunov

functional that included an integral over all maturity of cells in B phase, similar

to the functionals used in [114, 115]. Note that the Lyapounov functional used in

this study is not defined on the entire state space. One may observe that simi-

lar difficulty also arise in [120–122]. To circumvent this difficulty, we only use the

Lyapunov functional on the global attractor. Then, we deduce that the unique sta-

tionary solution is globally asymptotically stable if the parameter condition (11.21)

is satisfied. A numerical computational suggests that the unique stationary solution

in case of 0 < d < 1
2
, continues to be stable even if condition (11.21) is not fulfilled

(a similar technical problem arises also in [114]). In addition, we remark from Fig.

11.3 and Fig. 11.4 that the algebraic results presented in this chapter, cover a large

region of the numerical results when the parameter ρ is large.

Furthermore, Fig. 11.1 shows that there exists three stationary solutions for a spe-

cific set of parameters (ρ, d) (when the cells undergo several divisions (I > 5)). This

means that if with a few cell divisions, the size of T cells returns to the normal level,

the immune system has a unique steady state, else it has three steady state. This

phenomenon can provide an interesting biological signification of the homeostasis

of T cells in some cases. This will be studied in a forthcoming work. Finally, in-

spired by the analysis of System (11.1), a further work is to study the asymptotic

behaviour of System (10.1-10.3) which includes the concept of phenotype (CD44)

in the homeostasis process.



Chapter 12

An optimal strategy for rebuilding

immunity in conditions of T

lymphopenia

12.1 Introduction

Throughout adult life, the size and composition of the peripheral lymphocyte pool is

tightly regulated and, in the absence of disease, is maintained at relatively constant

levels [40, 79]. The correct representation of the T-cell pool is essential to maintain

adequate immune competence against pathogens, since it has to maintain a suffi-

ciently diverse repertoire of naive T cells to recognize a broad range of antigens,

while efficient immune responses against previously encountered pathogens depend

on the memory T-cell pool. For these demanding tasks, homeostatic mechanisms

have evolved to maintain distinct populations of naive and memory cells and to

retain an appropriate mixture of CD4+ helper T cells and CD8+ cytotoxic T cells.

A few general principles govern the physiologic response to perturbation of the

balance of T cell. For example, viral infection (e.g. HIV), or drugs used in per-

itransplant induction therapy or cancer chemotherapy, are the main factors that

disrupt the balance of T cell. This perturbation result in Lymphocytopenia or lym-

phopenia (i.e. it is the condition of having an abnormally low level of lymphocytes

in the blood) which induces a rapid proliferation in vivo of T cells with a recruit-

ment of naive T cells from the thymus.

Rapoport et al. [123] have developed a strategy that rebuild the immunity in

159
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lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer.

In their study, they offers a platform to help restore impaired adaptive immunity

in cancer patients. After high-dose chemotherapy, innate immunity, composed of

granulocytes, natural killer cells, and monocytes, is generally restored within a

few weeks. Adaptive immunity, however, acquired over the individual’s lifetime

exposure to infections and vaccines, is lost as a result of the high-dose prepara-

tive regimen and is not overcome by the infusion of the memory B and T cells

contained in the ”autologous graft”1. Rapoport et al. [123] show that mature T

cells in cancer patients can be ex vivo (in vitro) expanded, and that their infu-

sions in the early post-transplant period accelerate the numerical recovery of T

cells with a broad repertoire. The combination of antigen-primed T cells and early

post-transplantation booster vaccinations led to enhanced immunity to the specific

pathogen. In this context, the optimal memory T cells (i.e. T cells with CD44 high)

transferred in vivo by vaccination which support the homeostatic in vivo expansion

of T cells and led to enhanced immunity to the specific pathogen, stay unclear.

As proved in the last decades, the use of mathematical models in immunology has

allowed great advances, not only on the theoretical side, but also on the side of the

management of actual public health policies. In this study, we consider a model of

T cell homeostasis in lymphopenia conditions (like the model proposed in Chapter

10 (see also [81])) but with a more realistic parameter) in order to address the prob-

lem of determining an optimal strategy that lead to enhanced immunity during the

homeostatic process. Next section is devoted to reformulate the model proposed in

Chapter 10 to a more realistic version. In Section 12.3 we discuss the cost function

and we derive the optimality conditions. Finally, in Section 12.4, we perform some

simulations to compute the optimal vaccination.

12.2 The model

In condition of T cell deficiency (e.g. viral infection, or drugs used in peritransplant

induction therapy or cancer chemotherapy), naive T cells (CD44 low) are delivered

from the thymus in order to undergo division. In this study, the modeling of T cell

homeostasis in vivo is based on the Smith-Martin model. The model equations used,

considered an A-state (resting) and a B-phase (proliferative) where cells undergo

division. The number of times cells transfer between the A-state to the B-phase

1the transfer of tissue from one site to another on the same body
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is indexed by i which reflects the number of times a cell has undergone division.

The time since entering the B-phase (either the first time or any subsequent time)

is measured by τ which reflects the maturity of the cells at this stage and has a

maximum value of ∆. Since we are interested in this study to enhanced immunity to

the specific pathogen (or in another word by ”memory T cells”), we take into account

the level of CD44 on the surface of cells which is the natural marker that indicates

the naive (CD44 low) and memory (CD44 high) cells. Then, both the cells in A-

state and B-phase are indexed by s ∈ [0,m], the intensity of CD44 expression (m

is the maximum intensity of CD44). In this work, the model of T cell proliferation

in vivo, including a rebuilding strategy of immunity is governed by the following

system





dA0(t, s)

dt
= Λ(s)− δA0(t, s)− λ(N)A0(t, s) + χ0(s)u0(t),





for i ∈ N∗I := {1, ..., I}

dAi(t, s)

dt
= 2

∫ ∆

0

µ(τ)Bi−1(t, τ, s) dτ − δAi(t, s)− λ(N)Ai(t, s) + χi(s)ui(t),





for i ∈ NI := {0, ..., I}

∂
∂t
Bi(t, τ, s) + ∂

∂τ
Bi(t, τ, s) + ∂

∂s
[vi(s).Bi(t, τ, s)] = − (δ + µ(τ))Bi(t, τ, s),

(12.1)

where Ai and Bi are the number of cells in Ai phase and Bi phase respectively. I

stands to the maximum division number undergone by cells.

Boundary conditions and initial conditions of Eqs. (12.1) are defined by, ∀ i ∈
NI := {0, 1, ..., I},




Bi(t, 0, s) = λ(N)Ai(t, s),

vi(0)Bi(t, τ, 0) = 0,





A0(0, s) = A0,0(s) > 0,

Bi∈NI (0, τ, s) = 0 and Ai∈N∗I (0, s) = 0.

(12.2)

The A-state is described by an ODE equation with source terms from the B-phase.

The different A-state components are given by Ai(t, s) for i = 0, 1, ... (depending

on how many times the cells have undergone division). For i = 0 the growth of the

A0 component comes from an export rate of cells Λ from the thymus. For i > 0
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the growth of the Ai components comes from the doubling of the cells in the Bi−1

component (with the same s value, integrated over τ ∈ [0,∆]) as they undergo cell

division. The equations for the B-phase is given by PDE structured by the intensity

of CD44 (s) and the age (τ). In contrast to the model proposed in the previous

chapter, we consider in (12.1) that the rate of export of cells from thymus (Λ) is

depend on the CD44 expression since the cells exported from the thymus have low

level of CD44 (naive cells).

In (12.1), the different parameters have the following meaning

- Constant δ is the natural mortality rate in A-state and B-phase.

- Function µ(τ) is the division rate at age τ .

- Function λ(N) is the recruitment rate from A-state into B-phase that depend

on the total population N

N := N(t) =
I∑

i=0

(∫ m

0

Ai(t, s)ds+

∫ ∆

0

∫ m

0

Bi(t, τ, s)ds dτ

)
.

- Function vi(s) is the velocity of CD44 upregulation.

- Function χi represents the distribution of CD44 on the surface of cells in Ai

phase.

- Function ui(t) represents the vaccination strategy to rebuild the immunity

during the T cell homeostasis, i.e, the number of T cells (having undergone i

divisions), transferred in vivo per unit time.

Recruitment of cells from A-state into the B-phase occurs at a rate λ. As the

cellular population increases, the amount of resources per cell is decreasing and

the recruitment rate is reduced. A smaller division rate corresponds to the smaller

transfer rate λ of the model [10]. Recruitment rate is then defined by

λ = λ(N) = λ0e
−η N ,

where the parameter η determining the size of the reduction caused by increasing

number of competing cells (N). In addition, λ0 is considered to represent the ability

of each clonotype to respond to an unlimited resource.
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According to [7, 10, 80], the cells take a time approximatively ∆ to complete the pro-

cess in B-phase. Then, the mother cells divide in B-phase when their age is close

to ∆. Then, the function µ can be approximated by a non-negative rectangular

function with a mean value 1.

µ(τ) =





1
h

if τ ∈ [∆− h,∆],

0 else,

where 0 < h << ∆.

In (12.1), the cells are up-regulating CD44 during B-phase. In Ai phase (i.e. ith

division in A-state), cells inherit the same intensity of CD44 of those that are di-

vided in the previous B-phase (Bi−1 phase). Then, the cells in Ai phase increase

their level of CD44 according to the division number i. This is due to the velocity

of CD44 upregulation. Then according to the upregulation of CD44 in the exper-

imental data [10], the distribution of CD44 on the surface of cells in Ai phase can

be approximated by

χi(s) =
1√
2π
e−

1
2( s−(i+1)c

i+1 )
2

.

Furthermore, this function can be written as

χi(s) = (i+ 1) gi(s),

where gi is a Gaussian function which can be described by the probability density

function of a normally distributed random variable with expected value µi = (i+1)c

(c is a positive constant) and variance σ2
i = (i + 1)2. In other words, the function

χi(s) can be interpreted as the levels of CD44 that can be detected on the surface

of Ai cells (i.e. Cells in Ai phase) in each division.

We note that in System (12.1), the term χi(s)ui(t) can be described by the number

of T cells, transferred in vivo per unit time which have undergone i divisions and

have a level s of CD44 on their surface.
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By using Lagrange method, one obtains an implicit solution of Ai

A0(t, s) = A0,0(s) e−
∫ t
0 (δ+λ(N(u)))du +

∫ t

0

(Λ + χ0(s)u0(r)) e−
∫ t
r (δ+λ(N(q)))dqdr,(12.3)

and for i ∈ N∗I ,

Ai(t, s) = 2

∫ t

0

∫ ∆

0

e
−

∫ t

r

(δ + λi(N(q)))dq
(µ(τ)Bi−1(r, τ, s) + χi(s)ui(r)) dτ dr.

Now, we consider the following differential equations:





ds1i (t)

dt
= vi(s

1
i (t))

s1
i (t0) = s1

i,0 > 0

,





ds2i (τ)

dτ
= vi(s

2
i (τ))

s2
i (τ0) = s2

i,0 > 0.

(12.4)

where s1
i (t; t0; s1

i,0) and s2
i (τ ; τ0; s2

i,0) are the curves witch goes through (t0, s
1
i,0) and

(τ0, s
2
i,0) respectively. The curves, Z1

i (t) := s1
i (t; 0; 0) and Z2

i (τ) := s2
i (τ ; 0; 0) are the

characteristic through the origin. The solution of (12.4) is given by the following

equations

s1
i (t) = s1

i,0 +

∫ t

t0

vi(s
1
i (z))dz, s2

i (τ) = s2
i,0 +

∫ τ

τ0

vi(s
2
i (r))dr.

Integrating along the characteristic curve the PDE of System (12.1-12.2), one ob-

tains

Bi∈NI−1
(t, τ, s) =





0 t ≤ τ, Z1
i (t) < s

λ(N(t−τ))Ai(t−τ,ζi) vi(ζi)
vi(s)

f(τ) 0 ≤ τ < t, Z2
i (τ) < s

0 Z1
i (t) > s, Z2

i (τ) > s

(12.5)

where ζi := s− Z2
i (τ) and f(τ) := e−

∫ τ
0 (δ+µ(r))dr.

12.3 Strategy to enhance immunity

As we have already discussed in the previous Section, in our model (12.1) the

strategy to rebuild the immunity during the T cell homeostasis, is quantified by
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ui(t). The purpose of this strategy of transferred cells in vivo, is to maximize the

memory T cells (CD44 high) during the homeostasis process in order to acquire an

excellent memory against pathogens. To reach this goal with an optimal strategy,

we should maximize the number of cells in B-phase having an important level of

CD44, and minimize the number of T cells transferred in vivo. Specifically, we

consider the following functional

Φ(u∗i ) = max
ui∈Ki

Φ(ui), (12.6)

with,

Φ(ui) :=
I∑

i=0

φi(ui) :=
I∑

i=0

[∫ T

0

∫ ∆

0

∫ m

shigh

Bi(t, τ, s)dsdτ −
∫ T

0

u2
i (t)dt

]
,

where shigh is the minimum intensity of CD44 required by cells to be qualified as

CD44 high (memory phenotype), and

Ki = {ui ∈ L∞(0, T ) | 0 ≤ ui(t) ≤ umaxi }.
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12.3.1 The optimality system

For the optimal vaccination strategy (12.6), we introduce the formal Lagrange func-

tion

L(Ai, Bi, Pi, Qi, ui) = Φ(ui)

+

∫ T

0

∫ m

0

(
dA0(t, s)

dt
− Λ(s) + (δ + λ(N))A0(t, s)− χ0(s)u0(t)

)
P0(t, s)ds dt

+
I∑

i=1

∫ T

0

∫ m

0

[
dAi(t, s)

dt
− 2

∫ ∆

0

µ(τ)Bi−1(t, τ, s) dτ + (δ + λ(N))Ai(t, s)

−χi(s)ui(t)]Pi(t, s)ds dt

+
I∑

i=0

∫ T

0

∫ ∆

0

∫ m

0

[
∂

∂t
Bi(t, τ, s) +

∂

∂τ
Bi(t, τ, s) +

∂

∂s
[vi(s).Bi(t, τ, s)]

+ (δ + µ(τ))Bi(t, τ, s)]Qi(t, τ, s)ds dτ dt

+
I∑

i=0

∫ T

0

∫ m

0

[Bi(t, 0, s)− λ(N)Ai(t, s)]Qi(t, 0, s)ds dt,

with multipliers Pi ∈ L2 ((0, T )× (0,m)) and Qi ∈ L2 ((0, T )× (0,∆)× (0,m)).

Let us now consider the variables ui, Ai, Bi, Pi, Qi for all i ∈ NI , as independent

and compute and set equal to zeros the derivatives of L, with respect to the five

variables. After some computations, one obtains for all i ∈ NI

∂

∂t
Qi(t, τ, s) +

∂

∂τ
Qi(t, τ, s) + vi(s)

∂

∂s
Qi(t, τ, s) = (δ + µ(τ))Qi(t, τ, s) + 1[shigh,m](s),

dPi(t, s)

dt
= −δPi(t, s) + λ(N) [Pi(t, s)−Qi(t, 0, s)] ,

complemented by the transversality conditions

Pi(T, s) = 0, Qi(T, τ, s) = 0, Qi(t,∆, s) = 0, Qi(t, τ,m) = 0,

in addition to the state equations (12.1). System (12.7) supplemented by the

transversality condition is called the adjoint system of the optimal control prob-

lem.

When computing the derivative of the Lagrangian with respect to the first state
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variable, one obtains the gradient of Φ.

∇u:=(u0,...,uI)(Φ) =
I∑

i=0

[
2ui(t) +

∫ m

0

χi(s)Pi(t, s)ds

]
. (12.7)

Based on (12.7) and (12.7), one can approximate the optimal vaccination strategy

using a discretization of the following algorithm.

1-) Choose a control ui(t) randomly.

2-) Compute the solution of the state equations (12.1).

3-) Compute the solution of the adjoint equation (12.7).

4-) Compute the gradient of Φ, by (12.7).

5-) Compute the new control using a nonlinear gradient method.

6-) Project the control on the admissible domain (constraints).

7-) If the norm of the gradient of φ is less than some tolerance then stop; else

return to 1-).

12.4 Numerical results

Actually, we have used the procedure given in the previous subsection, to run numer-

ical simulations and illustrate the effect of the optimal vaccination on the number

of proliferative cells. More specifically, in discretizing the algorithm just described,

we used a semi-implicit scheme to solve the state equations; the nonlinear renewal

equation (Bi(t, 0, s) = λ(N)Ai(t, s)) was solved explicitly. Besides, the cost function

was descretized using the trapezoidal rule and a discret Lagrange function was also

obatined by using the trapezoidal rule and the discretized state equation. From this

discretized Lagrangien we derive, in the discrete context, a discrete adjoint equation

that we use in the computations.

12.4.1 Parameters used in the numerical computation

Now, we describe the form of the parameters and their value used in the numerical

computation.
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According to [124], the thymic emigrants (i.e. Cells exported from the thymus)

have slightly lower CD44. Then, we assume that the rate of export of cells from the

thymus is

Λ(s) =





α if slow0 6 s 6 slow1 ,

0 else,

where α is a positive constant, s0 and s1 are two low levels of CD44. In the numerical

simulations, Λ(s) is approximated by

Λ(sk) ' Λk =





α if klow0 6 k 6 klow1 ,

0 else,

(12.8)

In this study, we consider the case of a young patient having a deficiency on T cells

which is caused for example by a high-dose of chemotheray. From [125], the median

combined production of naive T cells through cell division and thymic export is

estimated by ∼ 1.0 × 109 cells per day (4.167 × 107 cells/hour) at the age of 20

years. Thus, we consider that our System (12.1-12.2) starts from age 20 years (i.e

the initial time t = 0 for System (12.1-12.2) corresponds to age 20).

Moreover,
∑Ns

k=0 Λk ' Λ := 4.167× 107 (Ns is length of discrete vector that depicts

the intensity of CD44). Then from (12.8), α ' Λ
klow1 −klow0

.

In addition, the choice of some numerical and optimization parameters follows

[10, 125] and Chapters 6 and 7. Indeed, we summarize in the following Table

12.1 the value of the parameters used in the simulations.

12.4.2 Results

In Fig. 12.1, we represent the optimal vaccination strategy ui as a function of time

and division number. We remark that the strategy to maximize the memory cells

(CD44 high), consists to transfer in vivo (by a vaccination) at the initial time, a

high dose of resting cells having undergone 5-7 divisions. Later on, this dose should

be reduced over time, which can be realistic.
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Figure 12.1: Left subfigure represents the optimal strategy ui as a function of the continuous time from

0 to 7 days. The right one depicts the average optimal strategy (
∫ t+1
t

ui(r)dr) during one week. Note that the
optimal vaccination given in the right subfigure is more realistic, since for a treatment of one week, one dose

in each day is more practical for patients than a continuous dose.
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Figure 12.2: Comparison of the number of proliferative cells with (solid line) and without (circle) an

optimal vaccination (Fig. 12.1) at each division (i), as a function of time (days) (
∫∆
0

∫m
0
Bi(t, τ, s)ds dτ).
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Table 12.1: Table of parameters.

Parameters Value References
I 8 [10]
m 2 [10]
shigh 1.0 [10]

∆ 7.12 (hour) Chapter 7
h 30 (minute) Chapter 7
δ 0.012 (1/hour) [51]
λ0 3.768979E − 02 (1/cell/hour) Chapter 7
η 1.97568E − 06 Chapter 7

vi(s) Fig. 7.4 Chapter 8
Λ 4.167× 107 (cells/hour) [125]
klow0 1 Fixed
klow1 4 Fixed
c 2.1 Fixed

According to Chapter 8 (see also [80]), the velocity of CD44 upregulation (vi) in

(12.1) is the key parameter to identify the component naive and memory during T

cell homeostasis. This important key allows to deduce that the cells after 6 divi-

sions are probably switching to memory phenotype. By applying this interpretation

to Fig. 12.1, we understand why the optimal strategy consists to transfer in vivo,

resting cells having performed 5-7 divisions.

Finally, in Fig. 12.2, we present the simulations of (12.1) with and without the

optimal vaccination strategy given in Fig. 12.1. We remark that there are no effect

on the number of proliferative cells in the first divisions 0-5 by vaccination. In

contrast, it is clear from division 6 that the proliferative cells (memory cells) with

the vaccination strategy, are increased with respect to those without vaccination.

12.5 Conclusion

In this study, we are interested to analyse the homeostatic mechanism of T cell

under lymphopenia conditions, through a mathematical model. Indeed, we have

presented in Chapter 10 a model that describes this mechanism in vivo, but with

a simple vital parameters defined by constant rates (e.g the rate of exported cells

from the thymus Λ). To give the model a more realistic aspect, we consider in this

chapter that the thymic emigrants rate (Λ) is dependent on the level of CD44, since

the cells exported from the thymus have a naive phenotype (i.e. having low level
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of CD44). In addition, we applied in this in vivo model, a vaccination strategy

(expressed in the model by χi(s)ui(t)) in order to enhanced immunity during the

homeostatic process. Furthermore, a cost function is proposed here in order to

maximize the memory T cells (CD44 high) and minimize the vaccination strategy.

Then, we set up a numerical method to find the optimal control ui(t) which can be

described by the optimal number of resting T cells (having undergone i divisions)

transferred in vivo. From Fig. 12.1, we found that the optimal strategy consists to

transfer in vivo, resting cells having performed 5-7 divisions. Finally, we presented

in Fig. 12.2 the effect of vaccination on the number of proliferative cells.





Chapter 13

Discussions, conclusions and

future works

13.1 Discussions and conclusions

In this thesis, we have developed mathematical models describing the T cell prolif-

eration in vitro and in vivo, under lymphopenic conditions.

Firstly, we have started by an in vitro model (SMCD44) in order to analyse the

experimental data at hand (recent published data [10]). The SMCD44 model is

based on the Smith-Martin model which is used widely in the literature. This

model is composed on ODEs and PDEs that represent the dynamic of cells between

the resting and proliferative phases (A-state and B-phase respectively) during LIP

(lymphopenia induced proliferation). By using CFSE data with CD44 generated

by Hogan et al. [10], we found that the velocity of CD44 upregulation vi, the rate

of entry into division λ and the duration of B-phase ∆ are identifiable through

SMCD44 model.

In the literature, one remarks that most mathematical models based on the Smith-

Martin model assume that the cells divide in B-phase exactly at age ∆. In contrast,

SMCD44 model takes into account the small variability in the time of division be-

tween cells, and eliminates the assumption of an immediate switch at time ∆. In

the present work, we interested to compare these two types of modeling by fitting

SM1 (latest version of Smith-Martin model widely used) and SM2 (our SMCD44

model without the CD44 structure) models to the data of OT-1 T cells. By taking

173
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into account the small variability in the time of division, we remarked that the

duration of B-phase related to SM2 model becomes shorter than the one related

to SM1. In contrast, the rate of entry into division is approximately the same in

these two models. Finally, we concluded that LIP by OT-1 was better modeled with

SM2 than SM1 model, as reflected in the lower CrV for SM2 model fit (Table 7.1),

which is a measure of goodness of fit (low is better).

By estimating the velocity vi, we remarked that the average velocity (Fig. 8.5a)

and the frequency of cells that have changed their CD44 expression profile (Fig.

8.6), are the keys to explain the transition of cells from naive to memory phenotype

through LIP. However, these important keys enabled us to deduce that the cells

which are the most likely switching to memory phenotype, are those that have di-

vided 6 times or more. These numerical results are very close to the results observed

in the biological experiment of [10]. This may be an important validation to our

SMCD44 model.

On the other side, we have taken into account the multistructural and multifunc-

tional of CD44 (i.e. CD44 participates in cell proliferation, cell differentiation and

cell migration from naive to memory phenotype) in SMCD44 model. Indeed, we

considered that the recruitment rate (λi(s,N(t))) and the division rate µ(τ, s) are

depend on the intensity of CD44 on cells. In this context, numerical results show

that the rate of entry into division by naive cells is much less than this of memory

cells. In addition, another result allows to deduce that the cells having an impor-

tant CD44 expression on their surface, have also a large possibility to divide when

their age is near to ∆. Otherwise at age ∆, these cells divide independently of their

level of CD44. Therefore, these interpretations clarify the relationship between the

multifunctional of CD44 during LIP.

In conclusion, SMCD44 model not only provides some remarkably description of

lymphopenia induced proliferation by T cells but also may be a new path to better

explain the complex relationship between LIP and naive to memory transition.

Secondly, we extended the SMCD44 model to an in vivo model by implement-

ing a rate Λ of export of cells from the thymus. In this part of our work, the

mathematical analysis of the in vivo model was our interest. Indeed, we proved the

global existence of the in vivo model by using Fixed point method.

Next, we derived an age-structured system (11.1) from the in vivo model (10.1-10.3),

and we investigated its asymptotic behaviour. An analysis of System (11.1) shows

that there exists one or three stationary solutions when the cells undergo more than
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five divisions. Precisely, uniqueness of a stationary solution is guaranteed in this

case (i.e I > 5) when the parameter conditions (11.14) or (11.18) are satisfied. Also

uniqueness is obtained when cells undergo at most four divisions or if the parameter

d is less than 1
2
. To study the large time behaviour when 0 < d < 1

2
, a key tool

was a Volterra-type Lyapunov functional that included an integral over all matu-

rity of cells in B-phase, similar to the functionals used in [114, 115]. Note that the

Lyapounov functional used in this study is not defined on the entire state space.

One may observe that similar difficulty also arise in [120–122]. To circumvent this

difficulty, we only used the Lyapunov functional on the global attractor. Then, we

deduced that the unique stationary solution is globally asymptotically stable if the

parameter condition (11.21) is satisfied. A numerical computation suggests that

the unique stationary solution in the case 0 < d < 1
2

continues to be stable even if

condition (11.21) is not fulfilled (a similar technical problem arises also in [114]).

In addition, we remarked from Fig. 11.3 and Fig. 11.4 that the algebraic results

presented in Chapter 11, cover a large region of the numerical results when the

parameter ρ is large.

Then the existence of one or three stationary solutions means that if with a few cell

divisions, the size of T cells returns to the normal level, then the immune system has

a unique steady state, else it could have three steady state. This phenomenon can

provide an interesting biological signification of the proliferation of T cells under

conditions of lymphopenia.

Thirdly, we reformulated System (10.1-10.3) to a more realistic version which

includes a vaccination strategy in order to enhanced immunity during the home-

ostatic process. We have remarked that the strategy to enhanced immunity (i.e.

maximizing memory cells (CD44 high)), consists to transfer in vivo (by vaccination)

at the initial time, a high dose of resting cells having undergone 5-7 divisions. Later

on, this dose should be reduced over time, which can be realistic.

13.2 Future works

T cell homeostasis stays a very important subject in Biology and Medicine, since it

is induced in several diseases (e.g HIV, Cancer,...) that are almost without pertinent

solutions until now. In our work, we have used a mathematical approach in order

to respond to some questions concerning the proliferation of T cells under abnormal



Chapter 12. Discussions, conclusions and future works. 176

conditions. To improve these responses, some works remain in this study.

In the context of the in vitro model proposed in Parts II and III: we

have estimated the key parameters (vi(s), λi(s,N(t)) and µ(τ, s)) that define the

proliferation of T cells in vitro by using the data at day 7 (see Chapter 8 and 9).

Indeed, in the experiment of Hogan et al. [10], several mice were sacrificed at each

time point. Working with different mice at different time points generated additional

variability making the identifiability of parameters more difficult. In our work, we

have chosen the data at day 7 because it was a good compromise between early days

where there were too few divisions and later time points where CFSE is too much

diluted to be very easily measured. In this context, we hope to get another exper-

imental data without large variability between the different time points, in order

to improve our estimated parameters. In addition, we interest in a future work to

study the theoretical identifiability of the parameters by using only one observation.

In the context of the in vivo model proposed in Part IV: we have studied

the asymptotic behaviour for a reduced model without the concept of phenotype

(CD44). Our analysis show that there exist one or three stationary solutions which

may depend on the divisions number undergone by cells (I). In some cases of

uniqueness (0 < d < 1
2
), we have concluded that the unique stationary solution

is asymptotically globally stable. In a future work, we will interest to study the

stability of the other uniqueness cases. Moreover in the case of existence of three

stationary solutions, the stability or instability of each one of them may be an inter-

esting mathematical and biological subject which it will be treated in a forthcoming

work. Finally, inspired by the analysis of the reduced model (11.1), a further work is

to study the asymptotic behaviour of the complete in vivo model (10.1-10.3) which

includes the concept of phenotype (CD44) in the homeostasis process.
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Chronique par Imatinib. PhD thesis, Université Bordeaux 1, 2010.
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