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THÈSE

Wave and modal coupled approach for multi-scale
analysis of periodic structures

-
Approche couplée propagative et modale pour
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spécialité
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d’expérience sur plaque raidie. Merci à Huang Tianli qui m’a introduit dans le
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Abstract

Structural dynamics can be described in terms of structural modes as well as elastic wave mo-
tions. The mode-based methods are widely applied in mechanical engineering and numerous
model order reduction (MOR) techniques have been developed. When it comes to the study
of periodic structures, wave description is mostly adopted where periodicity is fully exploited
based on the Bloch theory. For complex periodic structures, several MOR techniques conducted
on wave basis have been proposed in the literature.

In this work, a wave and modal coupled approach is developed to study the wave propagation in
periodic structures. The approach begins with the modal description of a unit cell (mesoscopic
scale) using Component Mode Synthesis (CMS). Subsequently, the wave-based method - Wave
Finite Element Method (WFEM) is applied to the structure (macroscopic scale). The method
is referred as “CWFEM” for Condensed Wave Finite Element Method. It combines the advan-
tages of CMS and WFEM. CMS enables to analyse the local behaviour of the unit cell using
a reduced modal basis. On the other hand, WFEM exploits fully the periodic propriety of the
structure and extracts directly the propagation parameters. Thus the analysis of the wave prop-
agation in the macroscopic scale waveguides can be carried out considering the mesoscopic
scale behaviour. The effectiveness of CWFEM is illustrated via several one-dimensional (1D)
periodic structures and two-dimensional (2D) periodic structures. The criterion of the opti-
mal reduction to ensure the convergence is discussed. Typical wave propagation characteristics
in periodic structures are identified, such as pass bands, stop bands, wave beaming effects,
dispersion relation, band structure and slowness surfaces...Their proprieties can be applied as
vibroacoustics barriers, wave filters.

CWFEM is subsequently applied to study wave propagation characteristics in perforated plates
and stiffened plate. A homogenization method to find the equivalent model of perforated plate
is proposed. The high frequency behaviours such as wave beaming effect are also predicted by
CWFEM. Three plate models with different perforations are studied. Experimental validation is
conducted on two plates. For the stiffened plate, the influence of internal modes on propagation
is discussed. The modal density in the mid- and high- frequency range is estimated for a finite
stiffened plate, where good correlation is obtained compared to the mode count from modal
analysis.

Keywords: Periodic structures, Wave propagation, Wave finite element method, Component
mode synthesis, Multi-scale analysis, Wave-mode duality
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Résumé

La dynamique d’une structure peut être vue aussi bien en termes de modes (ondes stationnaires)
qu’en termes d’ondes élastiques libres. Les approches modales sont largement utilisées en
mécanique et de nombreuses techniques de réduction de modèles (Model Order Reduction -
MOR) ont été développées dans ce cadre. Quant à la dynamique des structures périodiques,
les approches propagatives sont majoritairement utilisées, où la périodicité est exploitée en
utilisant la théorie de Bloch. Pour les structures périodiques complexes, plusieurs techniques
MOR sur la base d’onde ont été proposées dans la littérature.

Dans ce travail, une approche couplée propagative et modale a été développée pour étudier la
propagation des ondes dans les structures périodiques. Cette approche commence par la de-
scription modale d’une cellule unitaire (échelle mésoscopique) en utilisant la synthèse modale
(Component Mode Synthesis - CMS). Par la suite, la méthode propagative - Wave Finite Ele-
ment Method (WFEM) est appliquée sur la structure (échelle macroscopique). Cette méthode
est nommée “CWFEM” pour Condensed Wave Finite Element Method. Elle combine les avan-
tages de la CMS et WFEM. La CMS permet d’analyser le comportement local d’en extraire une
base réduite. La WFEM exploite la périodicité de la structure d’en extraire les paramètres de
propagation. Ainsi, l’analyse de la propagation des ondes dans la structure à l’échelle macro-
scopique peut être réalisée en prenant en compte l’échelle mésoscopique. L’efficacité de la
CWFEM est illustrée par de nombreuse applications aux structures périodiques monodimen-
sionnelle (1D) et bidimensionnelle (2D). Le critère de réduction optimale assurant la conver-
gence est discuté. Les caractéristiques de propagation dans les structures périodiques sont iden-
tifiées: bande passante, bande interdite, la directivité marquée (wave beaming effects), courbe
de dispersion, band structure, surface des lenteurs... Ces propriétés peuvent répondre au besoin
de conception des barrières vibroacoustiques, pièges à ondes.

La CWFEM est ensuite appliquée pour étudier la propagation des ondes dans des plaques per-
forées et plaques raidies. Une méthode d’homogénéisation pour déterminer le modèle equiv-
alent de la plaque perforée est proposée. Les comportements à haute fréquence tels que la
directivité marquée sont également prédits par CWFEM. Trois modèles de plaques avec perfo-
rations différentes sont étudiées dans ce travail. Une validation expérimentale est effectuée sur
deux plaques. Pour la plaque raidie, l’influence des modes internes sur la propagation glob-
ale est discutée. La densité modale est estimée, en moyenne et haute frequences, pour une
plaque raidie finie, où une bonne corrélation est obtenue en comparant les résultats à l’issue des
analyses modales.

Mots-clés : Structure périodiques, Propagation des ondes, Wave finite element method, Com-
ponent mode synthesis, Analyse multi-échelle, Dualité approche modale/propagative
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Introduction

A material or structural system which can be obtained by repeating a single unit cell is
called periodic medium. Their periodicity can be in the constituent material phases, the in-
ternal geometry or the boundary conditions. Mechanical periodic medium can be divided into
two categories: engineering periodic structures and phononic materials, the latter includes also
Phononic Crystals (PCs) and acoustic meta-materials.

Periodic engineering structures, referred as periodic structures in this work, has been widely
investigated for decades. Typical examples include multi-storey buildings, multi-span bridges,
multi-blade turbines, chemical pipelines, stiffened plates and layered composite structures in
aerospace and ship structures. In the design of these structures, the vibration levels caused
by the time dependent forces, pressures or motions should be taken into consideration. The
nature of the forcing function may be different depending on the applications. In the building,
the excitation may come from an earthquake or periodic forces given by a rotting machinery.
The multi-span bridges are exposed to the moving weight of vehicles. The aeroplane structures
are subjected to random convected pressure fields from jet noise at low speed and turbulent
boundary layers at high speed. Whatever the nature of the forcing function, elastic wave motion
is generated within the structure. The vibration and shock response of these structures should be
of great concern to minimize the probability of catastrophic damage or malfunction in service.

Over the past two decades, the study of elastic waves in phononic materials has proved to
be of great interest. Phononic materials consist of a periodic array of acoustic scatterers embed-
ded in a host medium. Initially, the photonic crystal was proposed to describe the propagation
of optical waves in refraction index-modulated periodic structures analogous to the propagation
of electrons in real crystals. Inspired by the photonic crystals, the concept of PCs was proposed
with elastic waves propagating in periodic structures modulated with periodic elastic moduli
and mass densities [Kushwaha et al., 1993]. Band structures in PCs have been investigated a
lot in physics, and then compared with other kinds of waves: while the electrons in a semi-
conductor can only occupy certain energy bands, a PC allows acoustic waves in pass bands
to travel through; other frequencies are forbidden by stop bands. The wave filter proprieties
promise applications such as vibroacoustic and mechanical wave filters, acoustic barriers, vi-
bration isolators and so on. Compared with PCs, the key feature of the acoustic meta-materials
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is the presence of local resonance, which may form stop bands at low frequency. The particular
characteristics may well reduce the size of these meta-materials and enhance their integration
into devices, overcoming the deficiencies of PCs.

The duality between wave approach and modal approach

The response of vibrating periodic structures can be studied by the wave approach as well
as the modal approach. In the wave approach, the vibration of the structures is viewed in terms
of elastic wave motion, while in the modal approach, it is considered in terms of structural
modes. The equivalence between the two types of approach is known as wave-mode duality.

Numerous wave-based methods have been developed during the studies or designs of ho-
mogeneous or periodic structures. In the Semi-Analytical Finite Element (SAFE) approach,
the displacement field is formulated following a decomposition into plane waves (sinusoidal
interpolation functions) in the direction of propagation, and using finite elements in the direc-
tions perpendicular to propagation one. The numerical method - Wave Finite Element Method
(WFEM) has been proposed to overcome the limitations of analytical model in SAFE by com-
bining the periodic structures theory introduced by Mead [1973] to the FEM. The method is
based on periodic structures theory [Bloch, 1929], converting the study of the whole periodic
structure into a single unit cell. Free harmonic wave motion can be deduced from the dynamic
stiffness matrix of the unit cell. The obtained wave motion corresponds to the wave basis. All
waves propagating (free or forced) in this structure can be decomposed into this wave basis.
The wave basis is associated to the propagation constants µ = exp(kL), with k the wavenum-
ber and L the length of the unit cell in the propagation direction. The propagation constants can
provide useful information about how the waves propagate through the macroscopic structures.
However, the analysis on mesoscopic unit cell still needs to be carried out. This is particularly
important in the mid-frequency range where both the local behaviour of the unit cell and the
global behaviour of the structure play important roles. The influence of local dynamics on the
global propagation needs to be revealed as well. In addition, the waveguides with complex
cross-section, computation based on wave basis may be time-consuming. Several reduction
formulations of WFEM have been proposed, most of them are very advantageous when study-
ing waveguides with complex cross-section with a large number of coupling coordinates. But
few reduction method is developed to deal with the periodic structures with numerous internal
DOFs in the unit cell, which may also lead to excessive computational time.

On the other hand, Component Mode Synthesis (CMS) is an efficient mode-based method
to study complex structures [Thorby, 2008]. CMS enables structures to be analysed as a set
of components, which form the whole structure when joined together. It has many advantages,
such as allowing analysis to proceed independently on each component, and making each anal-
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ysis smaller. However, few mode-based method has been applied on periodic structures. Their
main disadvantage is that they don’t exploit the periodicity of the structures. The matrices of
all the unit cells, although identical, still need to be assembled together to form the overall ma-
trices. Moreover, the periodic structures may contain numerous unit cells, which may lead to a
large computation time.

The proposed wave/modal coupled method

In this work, the mode-based method - Craig-Bampton method (fixed boundary CMS
method) [Thorby, 2008] is coupled with the wave-based method - WFEM to study the periodic
structures. The proposed method combines advantage of CMS and WFEM. CMS is applied on
the mesoscopic unit cell level. The numerous physical internal coordinates of the unit cell are
represented by a reduced set of modal coordinates, while the physical coupling coordinates are
conserved. The reduction is robust and easy to implement to WFEM formulation. The reduced
model is valid in all the frequency range of interest, while the other wave-based reduction tech-
niques depend on the band of frequency studied. In addition, the selection of the modal basis
allows us to study the influence of local dynamics on the global behaviours. Once the dynamics
of the unit cell are captured, the wave-based method - WFEM is employed to study the wave
propagation in the whole structure. WFEM models only a unit cell and the global behaviours
of the structure are deduced from the transfer matrix between the unit cells. Different scales
related to multi-scale modelling of periodic structure in this thesis is defined as follows:

Macroscopic scale: The whole periodic structure which possesses periodicity in one direction
(1D periodic structure) or in two directions (2D periodic structure). It can be infinite or finite
with sufficient number of unit cells.

Mesoscopic scale: The unit cell of the periodic structure. By repeating this unit cell in one
direction (1D periodic structure) or two directions (2D periodic structure), one can obtain the
whole periodic structure.

The proposed method employs the modal description of vibration on the mesoscopic scale
of unit cell, and the wave description is used on the macroscopic scale of periodic structure.
The combination of the two approaches is ensured by the wave-mode duality. It allows, when
passing from a unit cell to the whole structure, to alternate from the modal description to wave
description. The wave-mode duality can also be interpreted by the fact that the displacements of
the vibration are just projected on two different basis. The proposed wave and modal coupled
approach is referred as CWFEM for “Condensed wave finite element method”. More details
about the advantages of CWFEM can be found in 1.5, where the involved wave-mode duality is
discussed as well.
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Thesis contributions

The main contributions of the work in this thesis are:

1. Develop an wave and modal coupled approach (CWFEM) which

• is able to predict wave propagation characteristics in 1D/2D periodic structures

• can analyse the local behaviour of the mesoscopic scale of the unit cell and reveal
its influence on the propagation of the whole structure.

• is more efficient in computation compared to existing methods.

2. Illustrate the validity of the CWFEM on binary periodic beams and beam grid. Study the
forced response as well as the dispersion relation in binary beam. Investigate the stop
band phenomena in binary periodic beams and wave beaming effects in beam grid and
perforated plates.

3. In the 2D beam grid example, the boundary conditions under which the cell modes are
equivalent with the waves at bounding frequencies of stop band are found; the wave is
proved to be stationary at these frequencies.

4. Apply CWFEM to predict wave propagation characteristics in perforated plates. Based
on the obtained dispersion relation, propose homogenization methods for the perforated
plates at low frequency.

5. Validate CWFEM by experimental investigation on perforated plates.

6. Predict wave propagation feature in the orthogonally rib-stiffened plate, investigate influ-
ence of the internal modes on wave propagation. Deduce the modal density in mid- and
high- frequency range based on the slowness surfaces of the wave propagation.

Part of the work in this thesis are presented in relevant communications, some journal papers
are under review.

- The peer-reviewed international journal publications: [Zhou et al., 2015c], [Zhou et al.,
2015a], [Zhou et al., 2015b], [Droz et al., 2015].

- The international conference/workshop communications: [Zhou et al., 2013b], [Zhou
et al., 2014a], [Zhou et al., 2014b], [Droz et al., 2014b]

- The national conference/workshop communications: [Zhou et al., 2013a], [Zhou et al.,
2014c]
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Thesis outline

Chapter 1 presents the results of the conducted literature survey. The survey concerns the
review of previous researches on periodic medium, of existing methods on the studying of peri-
odic structures and the MOR techniques. The terminology of wave description and wave/mode
duality involved in the proposed method are discussed at the end of this chapter.

Chapter 2 employs CWFEM on 1D periodic structures, to study the free and forced wave
propagation. The criterion for the selection of reduced modal basis is given, the effectiveness
of the proposed method is illustrated by several numerical examples.

Chapter 3 extends CWFEM to 2D periodic structures, a numerical example of a beam grid
is given to validate the proposed method. The wave beaming effects phenomenon in this case
is studied, the equivalence of cells modes and stationary waves at bounding frequencies of stop
bands is discussed.

In chapter 4, the CWFEM is applied to study the wave propagation in perforated plates.
Experiments are carried out to illustrate the accuracy of the CWFEM. Homogenized methods at
low frequency are proposed based on dispersion relation computed by CWFEM. The validation
of the homogenized model is carried out by comparing the natural modes of the two models
using FEM.

Application of the proposed method on periodically stiffened plate is given in chapter 5.
Attention is paid to study the mid- and high- frequency behaviour such as the modal density. The
wave shapes are given at several points on the band structures to illustrate the wave propagation
characteristics in the structure.

Finally, the conclusions and perspectives are drawn in chapter 6.
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Chapter 1

Literature survey

1.1 Introduction

The study of periodic medium can traced back to 17th century with Newton’s attempt to
describe the propagation of sound in air, where a system of lumped masses joined by massless
springs was considered. Afterwards, researchers in the mechanics community, have conducted
a fair amount of work on key theoretical foundations, concepts and analysis techniques that are
relevant to periodic systems in other nonmechanics disciplines.

The chapter begins with a review about the studies on periodic medium, which is then fol-
lowed by a literature survey of existing methods to study periodic structures and model order
reduction techniques. Throughout the survey, attention is paid on separating wave-based meth-
ods apart from mode-based methods. Last but not least, the proposed wave and modal coupled
approach is briefly explained, while its combined advantages are examined in detail. The termi-
nology in the wave description is given, the wave/mode duality involved in the proposed method
is discussed as well.

1.2 Periodic medium

Mechanical periodic medium consists of engineering periodic structures and phononic ma-
terials, the latter includes also Phononic Crystals (PCs) and acoustic meta-materials.
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(a) Train rail (b) Fuselage of an aircraft

(c) Perforated plate (d) Honeycomb sandwich

Figure 1.1: Examples of engineering periodic structures

1.2.1 Engineering periodic structures

Lots of structures employed in various engineering domains can be considered as periodic.
For example: composite sandwich panels, stiffened plates, truss beams used in aircraft and ma-
rine structure; perforated plate used in the tube sheet heat exchangers in nuclear power plants;
periodic foundation for buildings, multi-story building and multi-span bridges in civil engineer-
ing. Some examples are given in Fig. 1.1. Due to its wide applications in engineering domain,
the study of wave propagation characteristic and their dynamic behaviours is of big concern in
mechanics community.

Rayleigh [1887] made the first study of a continuous periodic structure, considering a
stretched string with a periodic and continuous variation of density along its length and under-
going transverse harmonic vibration. Cremer & Leilich [1953] were among the first to investi-
gate harmonic flexural wave motion along a one-dimensional periodic beam either with simple
supports. It constitutes a “mono-coupled” periodic system, as its unit cell is coupled to each
other through just one displacement co-ordinate. Its wave characteristics at any frequency are
therefore described by a wave basis with only one wave shape and by a single pair of equal and
opposite propagation constants. Heckl [1964] investigated a two-dimensional periodic structure
consisting of a rectangular grillage of interconnected uniform beams which had both flexural
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and torsional stiffness.

From the 1960s, Mead and his coworkers at the University of Southampton have widely
contributed in this area. A review of their work has been given by Mead [1996] himself. In early
age of their research, they developed the receptance method [Mead & Wilby, 1966], which was
mainly used to calculate propagation constant in periodically simply supported beam and plate
stiffened periodically in one direction. Lin & McDaniel [1969] were pioneering the proposition
of Transfer Matrix Method (TMM) to the analysis of stiffened plate vibration and periodic struc-
tures. In the method, the generalized displacement and forces at the left-hand end and right-hand
end of one periodic element are combined into state vectors. The state vectors at two ends are re-
lated through the “periodic transfer matrix”. Transfer matrices are all symplectic, and therefore
have a number of very useful properties which have been exploited in modern control theory
and periodic structure analyses. The propagation constants can be found from the eigenvalues of
the transfer matrix. However, much effort was required to overcome numerical ill-conditioning
of the problem. Zhong & Williams [1995] proposed a formulation of eigen problem to conquer
the ill-conditioning using the symplectic property of period transfer matrices. Orris & Petyt
[1974] introduced finite element method in transfer matrix method to calculate the propagation
constants in the one-dimensional periodic skin-rib structure. The method is named “Wave Finite
Element method” (WFEM). Recently, WFEM has been extended to homogeneous structures in
a lot of studies. Mace and his co-workers proposed the forced WFEM [Duhamel et al., 2006]
and discussed the numerical issues in free and forced WFEM [Waki et al., 2009]. Ichchou and
his co-workers at Ecole Centrale de Lyon extended WFEM to study the coupled structure with
damage or with shunted piezoelectric patches. Through the Diffusion Matrix Model (DMM),
WFEM was employed to quantify the reflections and transmissions of waves inside structures.
Hence it constitutes an attractive tool for structural health monitoring [Ichchou et al., 2009]
or investigating the performance of shunted piezoelectric patches on the control of wave prop-
agation [Huang et al., 2013]. They also proposed several reduction techniques of WFEM to
study complex systems such as multi-layered systems [Mencik & Ichchou, 2008] or composite
structure [Droz et al., 2014a].

Acoustic characteristic is another important aspect of the study in periodic structures. In-
terests mainly lie in the calculation of sound transmission and sound radiation of structures.
Two methods are mainly developed, space-harmonics method and Fourier transform method.
Space-harmonics method is firstly proposed by Mead & Pujara [1971], to study the response
and sound radiation of the periodically supported beams. The method is then applied to study
the sound transmission [Lee & Kim, 2002] and sound radiation [Mead, 1990] in periodically
stiffened plates. Based on the same concept as space-harmonics method, the Fourier transform
method is proposed and improved by Mace [1980a,b,c] Recently, the methods are applied to
study the double panel with periodic stiffeners [Legault & Atalla, 2009, 2010].
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1.2.2 Phononic materials

While research in engineering periodic structures has evolved among mechanicians, the
notion of artifical periodicity has also been appealing to the electromagnetic and photonics
communities [Hussein et al., 2014]. A few years after the concept of photonic crystal was in-
vented, the same concept emerged for acoustic or elastic waves, which was subsequently called
Phononic Crystals (PC). A PC is a composite or nonuniform material consisting of one, two
or more material phases arranged periodically in space. Sigalas & Economou [1992] consid-
ered in-plane elastic wave propagation in a 2D PC, albeit composed of fictitious materials. An
analysis of in-plane wave propagation in a 2D PC consisting of carbon cylinders as inclusions
and an epoxy resin as a matrix material was conducted around the same time by Vasseur et al.

[1994]. A lot of works have been carried out in the design of PCs. Attentions have been paid
to maximize stop bands or to localize stop bands in certain frequency regions [Halkjaer et al.,
2006; Li et al., 2013; Yu et al., 2006]. Two distinct features were identified as critical for the
design of PCs: the unit-cell topology and the lattice symmetry [Hussein et al., 2014]. It was
shown that for elastic waves a “cermet topology,” in which a stiff/dense material form the ma-
trix and a compliant/light materials is used as inclusions, generally produces the largest stop
bands [Economou & Sigalas, 1993]. As for lattice symmetry, it was revealed that PCs patterned
over a hexagonal lattice typically display larger stop bands compared to those based on square
lattices [Kushwaha & Halevi, 1994].

Same as PCs, acoustic meta-materials were also broadly considered as phononic materials.
The added feature of acoustic meta-materials is the presence of local resonance. Introduced by
Liu [2000], the conceptual realization of an acoustic meta-materials has opened up a new major
thrust in phononic materials research. In his paper, a 3D array of lead spheres coated with a 2.5-
mm layer of silicone rubber was stacked in a simple cubic arrangement with an epoxy matrix.
The period length was 1.55 cm. Under excitation of acoustic waves, the medium exhibited
a stop band at a wave-length well below period length. The localized resonant structure was
shown to cause the material to behave as if its effective elastic constants were negative at certain
frequency ranges. Subsequently, numerous other configurations for locally resonant phononic
materials have been proposed. These include the use of three-phase composite material, binary
materials, hollow cylinders or spheres, split rings or spheres and so on [Hussein et al., 2014].

1.2.3 Wave propagation characteristics in periodic medium

The Bloch wave theory is largely employed in quantum mechanics and photonics crys-
tal, and has been progressively applied in phononic physics and engineering periodic struc-
tures [Bloch, 1929]. In the description of wave propagation characteristics, wave vectors can
be expressed in terms of the reciprocal lattice basis. Since the reciprocal lattice is also peri-
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(a) 2D periodic structure with unit cell
of size Lx × Ly

(b) First Brillouin zone and IBZ (OABC)

Figure 1.2: 2D Periodic structures with rectangular unit cell and its Brillouin zone

odic, one can restrict the wave vectors to certain regions in the reciprocal lattice called first
Brillouin zone [Brillouin, 1953]. Fig. 1.2(a) illustrates a 2D periodic structure with a unit cell
of size Lx×Ly. the first Brillouin zone corresponds to the wavenumber space within [− π

Lx
, π
Lx

]

× [− π
Ly
, π
Ly

]. Due to the symmetric properties in the reciprocal lattice, the wave vectors may
be restricted to the Irreducible Brillouin Zone (IBZ) where the wavenumbers are positive (see
zone OABC in Fig. 1.2(b)). In some descriptions of the wave propagation characteristics, only
the contour of the IBZ (O-A-B-C-O) is considered, where the band extrema almost always
occur [Kittel, 2004].

The wave number with respect to frequency along the contour of IBZ forms the band struc-
ture (called also band diagram). In physics, this diagram represents the backbone of electronic
structure theory, credited for forming a basis for the classification of all crystals into metals,
semiconductors and insulators [Hussein et al., 2014]. In mechanics, a band structure is pre-
cisely a representation of dispersion relation describing the nature of free wave propagation in
an elastic (or acoustic) medium. For 1D periodic structures, the term “dispersion relation” is
employed, and for 2D periodic structures, “band structure” is used.

The stop bands of the propagation can be identified from the band structure/dispersion re-
lation, as shown in Fig. 1.3. It is well known that wave filtering property exists in periodic
structures and phononic materials. Elastic/acoustic waves cannot propagate freely within some
frequency ranges, which are called stop bands (or band gaps). For 2D periodic structures, the
stop band can be complete or partial, a partial stop band is a frequency range where waves
can not propagate in certain directions, the phenomenon is known also as wave beaming ef-
fect [Ruzzene et al., 2003]. There are two types of stop bands mechanisms in the periodic
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medium: Bragg Scattering and Local Resonance. Bragg scattering stop band is due to the spa-
tial periodicity of the impedance mismatch. It appears when wavelengths are on the same order
as the period length. In contrary, local resonance stop band depend on the properties of the
local resonator and not on the period length, the geometric arrangement within the unit cell or
even the presence of periodicity. It can lie in the sub-wavelength regime whereby waves with
wavelengths larger than that of the unit cell will be prohibited from propagation. Furthermore, it
has been observed that unlike Bragg scattering which produces symmetric frequency-dependent
transmission functions, local resonances exhibit Fano-like transmission characteristics [Goffaux
et al., 2002]. The distinction between the two mechanisms has also been addressed from the
point of view of differences in wave shapes at stop band edges [Liu et al., 2002] and the nature
of the spatial attenuation profile downstream to the periodic media [Achaoui et al., 2011].

1.3 Existing methods to study periodic structures

Lots of methods have been developed during the studies of the engineering periodic struc-
tures, or in the design of phononic materials. These methods include plane-wave expansion
method, finite difference time domain method, time-domain spectral element method, multiple
scattering method, TMM, WFEM. An excellent review and comparison between these methods
are given in article of Hussein et al. [2014].

Some of these methods are mainly used in phononic materials to handle multiple media
states, such as multiple scattering method [Kafesaki & Economou, 1999] which assures good
convergence when other methods fail. Here the methods mostly applied on engineering periodic
structures are presented, since the attentions of this works lie on the studies of engineering
periodic structures, called periodic structures thereafter.

1.3.1 Plane-wave expansion

The general approach used in the plane-wave expansion method for continuous systems
is to expand the solution field and the material properties in a Fourier series, and then invoke
orthogonality of the basis functions to solve individually each of the introduced solution coef-
ficients [Hussein et al., 2014]. The basic idea is illustrated on a one-dimensional, continuous
system, which is governed by the periodic wave equation:

ρ
∂2u

∂t2
=

∂

∂x
(ρc2∂u

∂x
) (1.1)

where u(x, t) denotes the displacement field, ρ(x) the density, and c(x) the speed of sound
through the media. The material properties ρ(x) and c(x) are assumed to vary periodically with
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Figure 1.3: An example of band structure/dispersion relation and stop bands (Bragg scattering)
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period length L. A reciprocal lattice vector can be written as Gm = m
L

x̂, where x̂ denotes a unit
vector and m denotes an integer. The method introduces following expansions:

u(x, t) = ei(k·r−ωt)
∑
Gl

uk(Gl)e
iGl·r (1.2a)

ρ(x) =
∑
Gm

ρ(Gm)eiGm·r (1.2b)

ρ(x)c2(x) =
∑
Gm

τ(Gm)eiGm·r (1.2c)

where r = xx̂ denotes position, k = kx̂ denotes the wavevector and
∑

Gm
,
∑

Gl
denote sums

over all reciprocal lattice vectors (over all m, l). The transformed density and stiffness are
denoted by ρ(Gm) and τ(Gm), respectively. The transformed displacement for wavenumber k
is uk(Gl). Substituting the expansions into Eq. (1.1) and forming the complex inner product
with eiGn·r leads to∑

Gl

[−ω2ρ(Gn −Gl) + (k + Gl) · (k + Gn)τ(Gn −Gl)]uk(Gl) = 0 (1.3)

For each Gn, the nonzero terms in the inner product satisfies Gl + Gm −Gn = 0. By trun-
cating the expansion for Gl, and evaluating Eq. (1.3) for a truncated set of Gn, the eigenvalue
problems leads to eigenfrequencies ω(k) and eigen vector [uk(G−N)uk(G−N+1)...uk(GN)]T ,
while (2N + 1) represents the number of retained terms. By solving the problems for all the
wavenumbers k in IRZ, the eigenfrequencies are obtained and they can be used to represent the
band structures. As in any approximation technique, a convergence criterion should be used to
determine an appropriate value for N .

1.3.2 Transfer matrix method

TMM is employed to provide reference results for flexural waves in periodic binary beam
in 2.3.2. The binary beam consists of an infinite repetition of alternating sections A with length
l1 and section B with length l2. The unit cell of the beam consists of 3 parts with first part
formed by section B of length a1 = l2/2, second part formed by section A of length a2 = l1,
third part formed by section B of length a3 = l2/2. As shown in Fig. 1.4.

Euler-Bernoulli model is adopted here, then for each part of the beam, the equation of
equilibrium is given as follows :

EnIn
d4W(n)(x)

dX4
=w2ρnSnWn(x), x ∈ [0, an], n = 1, 2, 3 (1.4)

whereE is the Young’s modulus of the beam, S the cross-section area, ρ the beam density, I the
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Figure 1.4: Periodic binary beam and its symmetric unit cell

second area moment of inertia about the neutral axis, and ω the circular frequency. W represents
the transverse deflection, and x denotes the local coordinates. The subscript (n) stands for the
part n. The solution of the equation can be written in the following form [Thorby, 2008]:

Wn(x) = Ancos(bnx) +Bnsin(bnx) + Cncosh(bnx) +Dnsinh(bnx) (1.5)

with b4
n = w2ρSn/EnIn. Then for each element, the state vector consisting of the deflection,

slope, moment and shear force can be obtained using the following formulation:
Wn(x)

W ′
n(x)

−EIW ′′
n (x)

EIW
′′′
n (x)

 = Tn(x)


An

Bn

Cn

Dn

 (1.6)

with

Tn(x) =


cos (bnx) sin (bnx) cosh (bnx) sinh (bnx)

−bn sin (bnx) bn cos (bnx) bn sinh (bnx) bn cosh (bnx)

EnInb
2 cos (bnx) EnInb

2
n sin (bnx) −EnInb2

n cosh (bnx) −EnInb2
n sinh (bnx)

EnInb
3
n sin (bnx) −EnInb3

n cos (bnx) EnInb
3
n sinh (bnx) EnInb

3
n cosh (bnx)


(1.7)

considering element n of the cell,
Wn(an)

W ′
n(an)

−EnInW
′′
n (an)

EnInW
′′′
n (ln)

 = Tn(an)(Tn(0))−1


Wn(0)

W ′
n(0)

−EnInW
′′
n (0)

EnInW
′′′
n (0)

 (1.8)

[Rn] = Tn(an)(Tn(0))−1 is the transfer matrix between the state vectors of the two extremities
of element n. At the junction, the continuity of deflection, slope, moment and shear force has to
be preserved, for element m and element (m + 1), where m ∈ {1, 2}, leading to the following
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relations:
Wm(am) = Wm+1(0), (1.9)

W
′

m(am) = W
′

m+1(0) (1.10)

−EmImW
′′

m(am) = −Em+1Im+1W
′′

m+1(0)

EmImW
′′′

m (am) = Em+1Im+1W
′′′

m+1(0) (1.11)

The relationship between the left and right section state vectors can be expressed in the follow-
ing manner: 

W3(a3)

W ′
3(a3)

−E3I3W
′′
3 (a3)

E3I3W
′′′
3 (l3)

 = R


W1(0)

W ′
1(0)

−E1I1W
′′
1 (0)

E1I1W
′′′
1 (0)

 (1.12)

with R = [R3][R2][R1] the transfer matrix between the state vectors at the left boundary and
the right boundary of the unit cell. When a free wave travels along the periodic system with the
propagation constant µ, the state vectors of the two boundaries are related by λ = exp(µ) [Flo-
quet, 1883]. Hence λ is the eigenvalue of transfer matrix R. The dispersion characteristic of the
structure can be deduced from solving the eigen problem of the transfer matrix at the interested
frequency range.

1.3.3 Wave finite element method

Initially developed for periodic structures, WFEM was then widely used to study free
and forced vibration in homogeneous structures. The applications go from thin-walled struc-
tures [Houillon et al., 2005], fluid-filled pipes [Mencik & Ichchou, 2007] to curved members
[Zhou & Ichchou, 2010]. The method is based on periodic structures theory [Bloch, 1929; Flo-
quet, 1883], converting the study of the whole periodic structure into a single unit cell or a small
segment of the structure. Conventional FE software packages can be used for modelling. The
dynamic stiffness and mass matrix of the unit cell is built explicitly. This means that structures
with complex geometries or material distributions can be analysed with relative ease.

For free wave propagation, no external forces act on the structures apart from those on
its boundaries from ajacent unit cells. So the equation of motion of the unit cell, assuming
time-harmonic behaviour and neglecting damping, becomes:

[K̃− ω2M̃]

(
qbd

qI

)
=

(
fbd

0

)
(1.13)

The displacement and the force of the boundary nodes are denoted qbd and fbd, while qI rep-
resents the internal nodes. Eq. (1.13) can take different forms which depend on the type of
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solution being sought. There are mainly two forms: first one is direct form, which computes
the wavenumber for an assigned value of frequency; second one is inverse form, which derives
the dispersion properties for an assigned value of the wavenumber.

In the direct form, the equation of motion can be rewritten with the dynamic stiffness matrix
since the frequency is known:[

D̃bdbd D̃bdI

D̃Ibd D̃II

](
qbd

qI

)
=

(
fbd

0

)
(1.14)

After dynamic condensation, it becomes

Dbdqbd = fbd (1.15)

with
Dbd = D̃bdbd − D̃bdID̃

−1
II D̃Ibd (1.16)

For complex periodic structure, there maybe numerous internal nodes in the unit cell, which
leads the inversion of D̃II time-consuming. So in the presented work, a reduction technique is
coupled with WFEM to increase computation efficiency and to avoid the eventual ill-conditioning
problem due to the inversion of D̃II.

1.3.3.1 One-dimensional wave finite element method

The unit cell of a periodic structure can be various, such as the two choices of cell in
Fig. 1.5. It is advantageous to use the element with the minimum number of coupling co-
ordinates to decrease the computational size [Mead, 1975b]. So it is more convenient to choose
Fig. 1.5(b1) as the unit cell which contains less boundary DOFs. The length of the unit cell is
denoted by L.

Direct form of WFEM1D Eq. (1.15) can be reformed into the following form:

uR = SuL, (1.17)

Where uL = ((qL)
T(−FL)

T)T and uR = ((qR)
T(FR)

T)T represent the left and right state vec-
tors for the unit cell k. S is a symplectic matrix [Zhong & Williams, 1995] with following
expression:

S =

[
−D−1LR DLL −D−1LR

−DRL + DRRD
−1
LR DLL −DRRD

−1
LR

]
(1.18)
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Figure 1.5: (a1) 1st choice of unit cell (a2) Periodic structure considering a1 as unit cell. (b1)
2nd choice of unit cell (b2) Same periodic structure as a2 considering b1 as unit cell

Free wave propagation characteristic are represented by wavenumbers and wave basis, which
are associated to the eigen values and eigen vectors of the following eigen-problem

SΦi = λiΦi , |S− λiI2n | = 0. (1.19)

The eigen values are related to wavenumbers by λ = exp(−jkL). It is valid in all the formu-
lations of WFEM. For complex cross-sections, S may be poor conditioned [Mace et al., 2005].
An alternative formulation of eigen problem can be found in 2.2.2. Other propositions to avoid
numerical issue can be found in reference [Waki et al., 2009]. The direct form of WFEM1D is
the most applied among the forms of WFEM. It can determine not only the propagating wave
shapes, but also the decaying wave shapes. Thus it can be used to study the damped structure
and the forced response of the structure [Duhamel et al., 2006]. A model reduction technique
is combined with direct form of WFEM1D in chapter 2, where formulation related to forced
response is given as well.

Inverse form of WFEM1D Suppose a real value of wavenumber is assigned as first. The
value of λ can then be derived since λ = exp(−jkL). According to periodic structures theory,
for free wave propagation, we have:

qR = λqL, fR = −λfL (1.20)
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the relations can be written using matrix ΛL,ΛR as follows: qL

qR

qI

 =

 I 0

λI 0

0 I

( qL

qI

)
= ΛR

(
qL

qI

)
(1.21)

and for nodal forces:

[
I −λI 0

0 0 I

] fL

fR

0

 = ΛL

 fL

fR

0

 = 0 (1.22)

So Eq. (1.13) can be rewritten

[ΛLK̃ΛR − ω2ΛLM̃ΛR]

(
qL

qI

)
= 0 (1.23)

Since k is supposed to be real, the matrix ΛL is the conjugate transpose of matrix ΛR. The
equation becomes a standard and linear eigen problem of ω2. The size of problem is the sum of
the size of qL and qI. No numerical issue will appear in this case, however the attenuation of
the waves can not be predicted.

1.3.3.2 Two-dimensional wave finite element method

A scheme for 2D periodic structure and its unit cell is given in Fig. 1.6. The nodes in
the unit cell are divided into: four corners, left, bottom, right, top and internal DOFs. They
are classified as [qbd qI] = [q1 q2 q3 q4 qL qB qR qT qI]. qbd includes all the
DOFs at the boundary of the unit cell, q1, q2, q3 and q4 are of s DOFs, qL and qR are of ms
DOFs, qB and qT are of ns DOFs, qI are of i DOFs. The nodal forces are classified in the same
way. According to the periodic structures theory, the nodal DOFs are related through:

q2 = λxq1,q3 = λyq1,q4 = λxλyq1,qR = λxqL,qT = λyqB (1.24)

In addition to the periodic structures theory, for free wave propagation, the sum of nodal
forces of all the elements connected to nodes 1, L, B is zero, which leads to:

f1+λ
−1
x f2 + λ−1y f3 + λ−1x λ−1y f4 = 0 (1.25a)

fL+λ
−1
x fR = 0 (1.25b)

fB+λ
−1
y fT = 0 (1.25c)
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y
x

cell (1,1)

cell (N,1)
cell (1,M)

cell (i,j)

cell (i,j+1)

cell (i+1,j+1)

cell (i+1,j)

cell (N,M)

(a) 2D periodic structure

(b) View 2D (c) View 3D

Figure 1.6: Nodes definition of unit cell in WFEM2D
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Direct form of WFEM2D The internal nodes of the unit cell are condensed. For the boundary
nodes:

qbd = Λ̃R

 q1

qL

qB

 (1.26)

with

Λ̃R =



Is 0 0

λxIs 0 0

λyIs 0 0

λxλyIs 0 0

0 Ism 0

0 0 Isn

0 λxIsm 0

0 0 λyIsn


(1.27)

Is, Isn, Ism represent the identity matrix of size s, sn, sm respectively. The vector ((q1)
T(qL)

T(qB)
T)T

is of (s + ns + ms) lines, and ΛR is of (4s + 2ns + 2ms) lines and (s + ns + ms) columns.
Similar for the nodal forces

Λ̃Lfbd = 0 (1.28)

while

Λ̃L =

 Is λ−1
x Is λ−1

y Is λ−1
x λ−1

y Is 0 0 0 0

0 0 0 0 Ism 0 λ−1
x Ism 0

0 0 0 0 0 Isn 0 λ−1
y Isn

 (1.29)

so the equation of motion Eq. (1.15) becomes:

Λ̃L(λx, λy) ∗D ∗ Λ̃R(λx, λy)

 q1

qL

qB

 = 0 (1.30)

Suppose one of (λx, λy) is given, for example λy. Eq. (1.30) then becomes a quadratic
eigenvalue problem in λx as follows:

1

λx
(λ2

x

 A11 A1L A1B

AL1 ALL ALB

AB1 ABL ABB

+ λx

 B11 B1L B1B

BL1 BLL BLB

BB1 BBL BBB

+

 C11 C1L C1B

CL1 CLL CLB

CB1 CBL CBB

)

 q1

qL

qB

 = 0

(1.31)

Once the coefficients in the matrices A, B and C are known, the quadratic eigenvalue
problem can be solved using the polyeig function in Matlab, of which there are 2(s+ns+ms)

solutions. The formulations for matrices A,B,C can be found in Appendix A.
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Inverse form of WFEM2D In inverse form, the internal nodes are conserved since the dy-
namic condensation can not be performed, so we have:

(
qbd

qI

)
= Λ′R


q1

qL

qB

qI

 (1.32)

Λ′R contains an identity matrix Ii of size i

Λ′R =

(
Λ̃R 0

0 Ii

)
(1.33)

Similarly for the nodal forces

Λ′L

(
fbd

0

)
= 0 (1.34)

with

Λ′L =

(
Λ̃L 0

0 Ii

)
(1.35)

The formulation of Λ̃R and Λ̃L are the same as in 1.27 and 1.29. The Eq. (1.13) becomes

Λ′L ∗ (̃K− ω2M̃) ∗Λ′R


q1

qL

qB

qI

 = 0 (1.36)

which becomes the following standard, linear eigenvalue problem in ω2,

[K′(λx, λy)− ω2M′(λx, λy)]


q1

qL

qB

qI

 = 0 (1.37)

For the undamped structure, K and M are positive definite Hermitian matrices, so as the ma-
trices K′ and M′ with |λx| = 1 and |λy| = 1. The eigvalues ω2 for which free wave prop-
agation is possible are real and positive. Since the size of the eigen problem is the same as
((q1)

T(qL)
T(qB)

T(qI)
T)T. In chapter 3, a reduction technique is included in WFEM2D, which

decreases the size of the eigen problem.
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1.3.4 Homogenization methods

Numerous homogenization methods have been developed to study the heterogeneous mate-
rials or periodic structures. The equivalent strain energy method is initially proposed by Nemat-
Nasser et al. [1982] for periodically distributed inclusions of spherical and cylindrical geome-
tries. Then it is applied to study periodic masonry structure [Wang et al., 2007] or in the topol-
ogy optimal design of material [Zhang et al., 2007]. The two-scale asymptotic homogenization
method is also widely used to find equivalent model of composite structures [Challagulla et al.,
2010; Kalamkarov et al., 2009] or masonry panel [Cecchi & Rizzi, 2001]. Based on two-scale
approach, high frequency homogenization is then proposed by Craster et al. [2012] which can
accurately capture the behaviour of a periodic structure at high frequencies.

During the study of perforated plate in chapter 4, wave-based homogenization methods are
proposed to find their homogenized models with different patterns of penetration.

1.3.4.1 Asymptotic homogenization method

Here the classical asymptotic homogenization method is revised. Consider a periodic struc-
ture occupying domain Ω with boundary ∂Ω. The first step is to define the fast or microscopic
variables yi in the domain of the unit cell Y.

yi = xi/ε (1.38)

the derivatives must be transformed according to

∂

∂xi
→ ∂

∂xi
+

1

ε

∂

∂yi
(1.39)

so the boundary-value problem which describes the elastic deformation of the periodic structure
can be written as:

∂σεij
∂xj

+
1

ε

∂σεij
∂yj

= fi in Ω, uεi = 0 on ∂Ω (1.40)

σεij(x,y) = Cijkl(y)
∂uk
∂xl

(x,y) (1.41)

The next step is to consider the asymptotic expansions in terms of the small parameter ε.
Asymptotic expansion for the displacement field:

uε(x,y) = u(0)(x,y) + εu(1)(x,y) + ε2u(2)(x,y) + ... (1.42)

Asymptotic expansion for the stress field:

σεij(x,y) = σ
(0)
ij (x,y) + εσ

(1)
ij (x,y) + ε2σ

(2)
ij (x,y) + ... (1.43)
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It is understood that all functions in y are all periodic with the unit cell Y. Considering terms
with like powers of ε, one obtains a series of differential equations. The next step is the model
development is the homogeniztion procedure. The resulting expression is eventually integrated
over the domain Y of the unit cell. This yields

1

|Y |

∫
Y

∂σ
(1)
ij (x,y)

∂yj
dv + C̃ijkl

∂2u
(0)
k (x)

∂xj∂xi
= fi (1.44)

where the homogenized elastic coefficients C̃ijkl can be expressed as follows:

C̃ijkl =
1

|Y |

∫
Y

(
Cijkl(y) + Cijmn(y)

∂Nkl
m

∂yn

)
dv (1.45)

then the effective coefficients can be used to study a wide variety of boundary value problems
associated with a given composite structure. One can refer [Kalamkarov et al., 2009] for the
formulation of Nkl

m and more details.

1.3.4.2 Equivalent strain energy method

Based on equivalent strain energy method, one can replace the periodic structure by an
equivalent homogenized model with the same volume. It satisfies the following conditions: the
stress and the strain tensors of the homogeneous medium are equivalent to the average stress
and strain of the unit cell with 1

V

∫
σdV = σ̄ and 1

V

∫
εdV = ε̄. V denotes the volume of the

unit cell. The average stress and strain of the homogenized model follow the Hooke’s law

σ̄ = DHε̄ (1.46)

where DH is the effective elastic tensor of the material. The effective elastic tensor of 2D
orthotropic material under plane-stress can be written in matrix form as

DH =

D
H
1111 DH

1122 0

DH
1122 DH

2222 0

0 0 DH
1212

 (1.47)

Besides, the strain energies stored in the periodic structure and the homogenized model have to
be equal

E(ε) =
1

2V

∫
Ω

(σ11ε11 + σ22ε22 + σ12ε12)dΩ =
1

2
(σ̄11ε̄11 + σ̄22ε̄22 + σ̄12ε̄12) = E(ε̄) (1.48)

Based on Eqs. (1.47) - (1.48), the effective elastic tensor can be identified from the strain en-
ergies of unit cell under the specific boundary conditions. For example, for the 1st boundary
condition, suppose the average strain of the unit cell is ε̄(1) = (1 0 0)T , the average stress
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tensor is σ̄(1) = (DH
1111 DH

1122 0)T correspondingly, Then, the component D1111 can be ob-
tained as DH

1111 = 2E(1). In order to calculate all the effective elastic tensor components, four
different boundary conditions should be considered.

1.3.4.3 Mode-based method to determine equivalent model of perforated plate

Jhung & JO [2006] proposed to find equivalent Young’s Modulus of solid plate in order to
match the natural frequencies of the perforated plate. His method consists of the following 4
steps.

1. Develop a finite element model for solid plates and perforated plates.

2. Perform the modal analysis for the perforated and solid plates with original properties.

3. Compare the frequencies and determine the ratio of frequencies for the perforated plate
to those of solid plate.

4. Find the multipliers of the Young’s modulus of solid plate in order to match the frequen-
cies of the perforated plate with the original properties using the relationship between the
frequency and Young’s modulus.

Similar to Jhung & JO [2006], Wang & Lai [2003] proposed also a method based on the natural
modes of the structure to find homogenized model of perforated plate. He combined experi-
mental and numerical methods and used Modal Assurance Criterion (MAC) [Ewins, 1984] to
judge the degree of similarity between experimental and numerical models. However, there are
several drawbacks of the mode-based approach to determine the equivalent parameters. First,
one may find different equivalent parameters if the modal analysis is carried out under different
boundary conditions. Second, the perforated structure may contain numerous holes, making the
modal analysis of the full model time-consuming. Third, it can not predict the frequency range
where the homogenized model is valid.

1.3.4.4 Wave-based method to find equivalent flexural and shear stiffness

Chronopoulos et al. [2013] has proposed a wave-based method to find equivalent flexural
and shear stiffness of composite panels. Following classic or modern plate theories, the prop-
agating flexural (kfx, kfy) and shear ks,xy wavenumbers can be expressed as a function of the
mechanical characteristics of the structure. He used WFEM to numerically calculate the values
of propagating wavenumbers for a wide frequency range and then derived the expressions for
the equivalent dynamic mechanical characteristics. The classical laminated plate theory was
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used to give following expressions:

Deq,i =
ω2ρs
k4
f,i

(1.49a)

Beq,i =
ω2ρs
k2
s,i

(1.49b)

with ρs the mass per unit of area, Deq,i the equivalent flexural stiffness of the structure towards
direction i, and Beq,i its equivalent shear stiffness in the plane of the plate. The obtained equiv-
alent single layer model of the composite panel is proved to be time efficient and accurate to
predict the dynamic responses for a wide frequency range.

1.4 Model order reduction technique

To predict propagation characteristics in periodic structures, the computational effort is usu-
ally high because it involves solving a complex eigenvalue problem and doing as many times as
the value of wavenumber k or frequency f is varied. Therefore, several techniques have been
developed to speed up band structure calculation [Chern et al., 2003; Dobson, 1999]. Here
the techniques related to Model Order Reduction (MOR) are presented. MOR techniques have
been widely treated in the literature within the frameworks of component mode method, SVD-
based and Krylov-based methods [Antoulas & Sorensen, 2001] to study large-scale dynamical
systems. However, few application of these techniques has been applied to the WFEM matrix
formulations. In this thesis, a mode-base MOR technique - fixed interface component mode
synthesis method [Craig & Bampton, 1968] is combined to the WFEM. Here the free bound-
ary component mode synthesis method and branch mode method [Gladwell, 1964] are briefly
reviewed as alternative mode-based MOR technique.

The WFEM formulation, as derived before, consists of projecting the kinematic variables
of unit cell on a wave basis. Reducing these wave basis efficiently appears crucial in many
applications. However, attention should be paid when proposing a reduced wave basis. Since
most of the matrices involved by the WFEM formulations depend on the frequency, as opposed
to classic FE approaches where conventional mass/stiffness matrices are rather of concern.

1.4.1 Model order reduction technique based on modal basis

MOR based on component mode methods are now described. The first of these, known as
Component Mode Synthesis (CMS), contains two variants (1) the fixed interface method and (2)
the free interface method. Another method, less well documented, but very useful in practical
work, is the branch mode method.
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In our proposed method, the fixed interface method (Craig-Bampton method) is combined
with WFEM. In Craig-Bampton method, the physical DOFs of the boundary nodes are con-
served. It is easy to implement to WFEM formulation, since wavenumbers are deduced from
relation between physical DOFs at different boundaries of unit cell. The free interface compo-
nent mode synthesis and brand mode method are revised here, and the Craig-Bampton method
is explained in chapter 2 and chapter 3.

1.4.1.1 Free interface component mode synthesis

Suppose a structure with 2 substructures, “a” and “b”. In free interface method, the initial
modal analysis of each substructure is carried out with the interface coordinates free to move.
Assume harmonic vibration, the equation of motion for an undamped, unforced equation of
motion for subsystem “a” in global coordinates, is

Kaqa − ω2Maqa = 0 (1.50)

The physical coordinates are then transformed into modal coordinates,

qa = Ψapa (1.51)

similarly as substructure “a”, the substructure “b” is also transformed into modal coordinates,
then equations of motion of the two substructures without connection, can be written as

ω2

[
M̄a 0

0 M̄b

](
pa

pb

)
−

[
K̄a 0

0 K̄b

](
pa

pb

)
=

(
0

0

)
(1.52)

with
M̄a = [Ψa]TMaΨa, K̄a = [Ψa]TKaΨa (1.53)

If the global coordinates at junctions are separated out, and designated qa
B and qb

B for substruc-
tures “a” and “b”, respectively, then they must be equal when the substructures are joined.

qa
B = Ψa

Bp
a = qb

B = Ψb
Bp

b (1.54)

ΨB contains nB rows which correspond to global coordinate displacements at junction nodes.
The generalized coordinates, to be used in Lagrange’s equations, must be independent. Then
the dependent or superfluous coordinates can be eliminated as follows:

[
Ψa

B −Ψb
B

]( pa

pb

)
= 0 (1.55)
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or [
A1 −A2

]( pd

pf

)
= 0 (1.56)

The matrix A1, which must not be singular, is a square matrix, formed from the columns
associated with the dependent coordinates pd of size nB. The matrix A2 is associated with the
independent coordinates pf. In theory, it does not matter which nB coordinates are chosen to be
dependent, but some choices may be more convenient than others in practical cases [Thorby,
2008]. (

pd

pf

)
=

[
−A−11 A2

I

]
pf (1.57)

the elements in the vector (pd pf)
T must be changed back to the original order (pa pb)T with

corresponding changes to the matrix, which becomes β.(
pa

pb

)
= βpf (1.58)

So the equation of motion of the complete, joined system is as follows:

ω2βT

[
M̄a 0

0 M̄b

]
βpf − βT

[
K̄a 0

0 K̄b

]
βpf = 0 (1.59)

The equation will then be solved for natural frequencies and normal modes in the usual way.

1.4.1.2 The branch mode method

Another variant of the component mode method is known as branch mode method. The
method exhibits some of the same feature as CMS, although differences exist. The system
considered can be chain-like configuration, in which every component is connected to two other
components, or can be extended to cases in which several component are connected at one
point. The components are grouped into subsets called branches. The motion of each branch is
represented by branch modes, which are generally modes of vibration of the separate branch.
The method uses a special way of defining the shapes of the assumed modes, avoiding the use
of constraint modes or constraint equations, as required in CMS methods. The branch modes
may be defined by letting only one of the components in the branch be flexible while the other
are either fixed or free, where in the latter case the component can vibrate as a rigid body.

The method is most easily explained by a simple example. Consider the L-shaped lumped-
mass structure shown in Fig. 1.7. It consists of two branches “AB”, and “BC”. Assume that
the whole structure contains n DOF. Four examples of the many possible branch modes are
sketched in Fig. 1.7(b). Branch mode 1 consists of the first bending normal mode of beam
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(a) A branched structure (b) Branch modes

Figure 1.7: The branch mode method [Thorby, 2008]

AB, with beam BC attached to it, but the part BC is constrained to be rigid, although free
to move with AB. The branch modes, say the four shown in Fig. 1.7(b), are now used in a
straightforward “Rayleigh–Ritz”, assumed modes analysis, which is carried out by applying
Lagrange’s equations. Then number of DOFs will be reduced from n to only 4. The way
to derive the mass and stiffness matrices is given in the reference [Thorby, 2008], where the
normal modes of each branch are used.

1.4.2 Model order reduction technique based on wave basis

Several works can be found which proposed wave-based MOR technique in WFEM. Droz
et al. [2014a] have proposed a reduction formulation to determine the propagating wave in
1D refined model of a laminated composite beam. The main idea is to use the wave basis at
cut-on frequencies to describe the wave basis in the whole frequency range. Then the spectral
problem on the dynamic stiffness matrix of unit cell is expressed by reduced wave coordinates.
Similarly, a reduced wave basis expansion method has been proposed by Hussein [2009] for
fast calculation of band structure in 2D periodic structures. However, instead of forming the
reduced wave basis using the waves basis at cut-on frequencies, the eigenvectors corresponding
to a selected wavenumbers are employed. Mencik [2012] has proposed a reduction technique
by selecting the wave modes that are relevant for computing the forced response of elastic
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waveguides. However, the numerical costs for computation of the wave basis are not reduced.
Mead [2009] has presented a reduced method by identifying, in a preliminary investigation, the
characteristic waves which contribute to the motion of the structure. Then the computation time
to calculate the wave basis as well as the forced response of the structure is reduced.

1.4.2.1 Interpolation of reduced wave basis

Droz et al. [2014a] proposed a reduction technique to study the free wave propagation in
1D laminated composite beam. The main feature is to reduce the matrix S(λ, ω) using a subset
of eigensolutions. The main assumption is that a waveguide cross-sectional deformed shape at
frequency ωi can be used to describe the motion of the periodic cell for the same wave in a large
frequency range around ωi.

Figure 1.8: Frequency interpolation of reduced wave basis [Droz et al., 2014a]

An illustration is given for the wave frequency interpolation in Fig. 1.8. The dispersion
curves of propagating waves are represented by the grey curves, dashed vertical lines are called
cut-on frequencies at ω0, ω1 and ω2, where the waves shapes are supposed known. They are
denoted

{
~φ

(0)
i

}
1≤i≤r0

,
{
~φ

(1)
i

}
1≤i≤r1

and
{
~φ

(2)
i

}
1≤i≤r2

. The solution ~φ(ω) marked by a red
square is of our interest. This solution is approximated using the aforementioned eigenvectors
as :

~φ(ω) '
r0∑
i=1

~φ
(0)
i ν

(0)
i (ω) +

r1∑
i=1

~φ
(1)
i ν

(1)
i (ω) +

r2∑
i=1

~φ
(2)
i ν

(2)
i (ω) (1.60)

where ν(0)
i , ν(1)

i , ν(2)
i are reduced wave amplitudes.

Denoting ωA(k) with 1 ≤ k ≤ nA the cut-on frequency of the k-th wave, the exact eigen-
solutions can be computed for each new propagating wave from the system of nA independent
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quadratic eigenproblems: 

S(λ, ω̃1)Φ = 0
...

S(λ, ω̃k)Φ = 0 ; ω̃k ∈ Ω̃
...

S(λ, ω̃nA
)Φ = 0

(1.61)

Eigenvectors Φi(ω̃k) stands for the deformed shape on the left side of a cell, associated with i-th
wave at k-th wave cut-on frequency. The wave shape basis Φ is improved to ensure that they
are purely real, normalized and well-conditioned. The obtained basis denotes Γ = [Γ1, · · · ,Γr].
Then the state vector can be written in terms of wave participations :

(
qL

qR

)
=

 Γ 0

0 Γ

( pL

pR

)
(1.62)

where Γ is associated to the displacements of the left boundary of the periodic cell, while pL

is a vector of size r, containing the reduced wave participations. The spectral problem then
becomes

ΓTS(λ, ω)ΓpL = S̃(λ, ω)pL = 0 (1.63)

Therefore, the dispersion characteristics can be computed on the frequency range Ω with minor
CPU cost by solving for example the following 2r × 2r reduced eigenproblem.

1.4.2.2 Expansion of reduced wave basis in 2D periodic structures

Similarly, a reduced wave basis expansion method is proposed by Hussein [2009] for fast
calculation of band structure in 2D periodic structures. However, instead of selecting propagat-
ing waves at cut-on frequencies to form the reduced wave basis, the eigenvectors corresponding
to a selected wavenumbers are used to form the wave basis.

The formulation of the inverse form of WFEM2D will be applied to demonstrate the model
reduction technique. The eigenvalue problem of Eq. (1.37) is first solved at a reduced set of
selected wavevector points. This provides the eigenvectors from which a reduced wave basis,
denoted Φ, is formed. Several schemes are available for the selection, the simplest of which
is the set of eigenvectors corresponding to the first few branches at the high-symmetry points,
for example the O, A, B, C points in fig. 1.2(b). At each of these high symmetry points, a
number of eigenvectors are selected up to the frequency range of interest for the band structure
calculations. The matrix Φ is then used to expand the eigenvectors q = [q1 qL qB qI]

T ,
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i.e.,
q(n×1) = Φ(n×m)V(m×1) (1.64)

where V is a vector of wave amplitude of the wave shape. In Eq. (1.64), n and m refer to the
number of rows and number of columns for the matrix equation. Usually,m� nwhich enables
a significant model reduction. Substituting Eq. (1.64) into Eq. (1.37), and premultiplying by the
complex transpose of Φ, yields a reduced eigenvalue problem of size m×m

Φ∗K′(λx, λy)ΦV − ω2Φ∗M′(λx, λy)ΦV = 0 (1.65)

The eigenvalue problem can be solved for the entire region of interest at a significantly lower
cost compared to the full model given in Eq. (1.37).

1.5 The proposed wave and modal coupled method and wave-
mode duality discussion

It is well known that the response of a vibrating system can be viewed either in terms of
modes or in terms of elastic wave motion, known as “wave-mode duality”. Plenty of discussions
regarding the relationship between the wave and the modal descriptions can be found [Langley,
1997; Lyon & DeJong, 1995]. For 1D waveguide, the wave-mode duality is demonstrated in
a mathematical sense. The vibration can be written both as a sum of right- and left-going
components and a sum of participation of all the modes under the same boundary conditions.
However for 2D structure, the duality has not been proved precisely due to ill-conditioning
problem in numerical computation [Langley, 1997].

Both the wave-based and mode-based approaches can be applied to study periodic struc-
tures. In this thesis, a combined wave/mode-based approach is proposed. Modal description
is employed on the mesoscopic unit cell level, then the macroscopic structure is considered
as a waveguide and the vibration is described with elastic waves. The terminology on wave
description is clarified to avoid ambiguity, since the term “mode” employed here implies only
the structural mode, not the “wave mode” as used in a lot of work related to WFEM. The
equivalence of structural modes and stationary waves are also discussed in this section. The
formulations to derive the structural modal density from the wave propagation characteristics
are given at the end of this section.
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1.5.1 Analysis of periodic structures using modal approach - Component
Mode Synthesis

One of the most common CMS methods is the Craig-Bampton method. To build the com-
ponent (unit cell) model, we use a reduced basis of fixed boundary modes ΨC. Constraint modes
of the component interfaces Ψbd are also introduced. The modal basis Ψs of the structure can
be deduced by assembling all the components, after expanding the reduced modal coordinates
to the physical coordinates. Subsequently, the physical displacement q is related to the modal
displacement η using the following equation:

q(~r, ω) =
n∑
i=1

ηi(ω, ω0i)ψ
s
i(~r, ω0i) (1.66)

where ~r represents the physical coordinates. “Modes shapes” ψs
i are associated with natural

frequency ω0i, which form a “structural modal basis” Ψs = [ψs
1, ψ

s
2..., ψ

s
n]. In this thesis, the

modes (cell modes and structural modes) shapes are represented by ψi, whereas wave shapes
are represented by φi in wave description.

1.5.2 Analysis of periodic structures using wave approach - Wave Finite
Element Method

In wave description, the displacement field (free or forced) of structure is regarded as a sum
of harmonic waves:

q(~r, ω) =
n∑
i=1

ai(ω, ~x1, ki)φi(ω, ~x2, ki) (1.67)

where ω is the frequency of the propagating wave. Physical coordinates ~r are divided into
( ~x1, ~x2), with ~x1 representing coordinates in the propagation direction and ~x2 representing the
local coordinates in the unit cell. Instead of the standard FEM where the whole waveguide is
meshed (coordinate ( ~x1 ~x2)), WFEM meshes only a unit cell (coordinate ~x2). Then the wave
propagation characteristic in coordinate ~x1 of the whole structure can be derived using the
transfer matrix between the unit cells.

Terminology concerning the wave description of vibration In wave description, k repre-
sents the “wavenumber” of the harmonic wave at frequency ω. It is related to the “propagation
constant” µ using µ = −ikL, giving L the length of the unit cell in the propagating direction.
Wavenumber k can be complex with its real part <(k) determining the phase constant and its
imaginary part =(k) determining the attenuation constant. The “wave shape” φi which is asso-
ciated with wavenumber ki, gives the distribution of displacements in the unit cell. All the wave
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shapes at a fixed frequency form a frequency-dependent “wave basis” Φ(ω) = [φ1, φ2..., φn]

on which the displacement is projected. The coefficients ai in Eq. (1.67) are called “wave am-
plitudes”. In 1D waveguide, the characteristics of a wave propagation can be represented by
(ω, k, φ). The curves k = f(ω) are called “dispersion curves”. The frequency range in which
no propagating wave exists is called “stop band”.

In 2D waveguide, the wave description is formed by (ω, kx, ky, φ). The plane wave which
propagates in angle θ with wavenumber kθ, is related by kx = kθ cos θ and ky = kθ sin θ as
shown in Fig. 1.2(a). Wavenumber (kx, ky) varying within first Brillouin zone [− π

Lx
, π
Lx

] ×
[− π

Ly
, π
Ly

] is studied. The surfaces formed by ωi = f(kx, ky) are called “slowness surfaces”. A
section of the surface with fixed frequency ω0 = f(kx, ky) is called “Iso-frequency contour of
the slowness surface” or “k-space”. The directivity of the propagation in the structure is called
“wave beaming effect”. In fact, it is a “partial stop band” for certain directions. The “absolute
stop band” of the waveguide (if exists) consists of frequency range where no slowness surface
exists. A simplified 2D plot of the slowness surfaces is the “band structure”. It is obtained
by plotting the wavenumber of the slowness surfaces along the contour of IBZ (O-A-B-C-O),
as displayed in Fig. 1.2(b). The point O,A,B,C are called “bounding points of stop band”, as
explained in detail in subsection 1.5.4.

1.5.3 Combination of modal description on mesoscopic scale and wave
description on macroscopic scale, Wave-mode duality

When CMS is employed to study periodic structures, the method has two advantages when
analysing the mesoscopic unit cell. First, it speeds up the calculation since only a small modal
basis is retained, which is very interesting when the unit cell becomes complex. Second, the
selection of the local modes can show the influences of the local dynamics of the unit cell on the
global behaviours of the whole structures. However, when analysing the whole structure, the
identical matrices of unit cells are assembled together. It may become time-consuming when
the unit cells are numerous. On the other side, WFEM makes full use of the periodicity of the
structures since only one unit cell needs to be modelled, and the displacement of the other cells
are obtained by transfer relations. The wave amplitudes between the unit cells are related using
simply the wavenumber k. However, the size of the transfer matrices can be large when all the
internal DOFs of the unit cell are conserved. Moreover, matrices ill-conditioning problems may
occur in case of internal DOFs dynamic condensation.

The proposed method in this thesis combines the advantages of CMS and WFEM. Compo-
nent mode technique is used to model the mesoscopic scale of the unit cell. Once the dynamics
of the unit cell is captured, the WFEM is used to study the global behaviours of the macro-
scopic structures. The proposed method is referred henceforth as “CWFEM” for “Condensed
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Wave Finite Element Method”. The combination of two methods is assured by wave-mode du-
ality. It allows, when passing from a unit cell to the whole structure, to alternate from the modal
description to wave description. The wave-mode duality can also be interpreted by the fact that
the two expressions in Eq. (1.66) and Eq. (1.67) describe both the vibrations of the system. It is
just two different basis on which displacements are projected.

1.5.4 At bounding frequency of stop band: stationary wave / cell mode

It is well known that modes correspond to stationary waves under certain boundary condi-
tions. In Mead [1975a,b], he has studied the relationship between the bounding frequencies of
stop band of one-dimensional periodic structures and the nature frequencies of its symmetric
unit cell. He concluded that in mono-coupled structures [Mead, 1975b], the bounding frequen-
cies of stop bands are identical with the natural frequencies of a symmetric unit cell with its
ends either free or fixed. For multi-coupled structures [Mead, 1975a], the bounding frequencies
of stop bands are identical with the natural frequencies of a symmetric unit cell with the two
different types of coupling DOFs appropriately locked or free. When the element vibrates in a
symmetric mode, type I coupling DOFs have the same sign and magnitude, whereas the type II
coupling DOFs have opposite signs and equal magnitudes. In antisymmetric modes, the type I
DOFs have opposite signs, whereas the type II DOFs have the same signs. In this thesis, we use
the following ways to distinguish type I coupling DOFs from type II DOFs: Type I DOFs con-
sist of orthogonal projection of displacement vectors onto the symmetric plane, and orthogonal
projection of rotation vectors onto the normal of the symmetric plane. Type II DOFs consist of
orthogonal projection of rotation vectors onto the symmetric plane, and orthogonal projection
of displacement vectors onto the normal of the symmetric plan.

In chapter 3, the equivalence found by Mead is extended to 2D periodic beam grid. The
boundary conditions of a double symmetrical unit cell are found, under which the natural fre-
quencies of the unit cell is equivalent with the bounding frequencies of stop band. For periodic
structures where a symmetrical unit cell cannot be found, the Von Karman boundary condi-
tion [Brillouin, 1953] of two unit cells (1D) or four unit cells (2D) should be applied.

1.5.5 Calculation of modal density based on propagation characteristics

The modal parameters of 1D periodic structures can be related to certain properties of the
dispersion curves. While in 2D periodic structures, the parameters are related to slowness sur-
faces. For a finite 2D periodic structure with sufficient large number of unit cells, its modal den-
sity can be derived easily once the slowness surfaces are known. Langley [1994] demonstrated
that one needs only to compute the area of the slowness surfaces lying below the frequency ω
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so that

n(ω) =
∂N

∂ω
,where N(ω) =

NxNyLxLy
4π2

∑
n

∫ π

−π
H(ω − Ωn(kx, ky))dkxdky (1.68)

where Nx and Ny is the number of unit cells in the x- and y- directions. H is the Heaviside step
function with H(x < 0) = 0, H(x > 0) = 1. The summation n in Eq. (1.68) runs over the
slowness surfaces.

Cremer & Heckl [2005] have shown that a number of results concerning the response of a
general system to harmonic point loading may be expressed very simply in terms of the modal
density. Many of the qualitative aspects of the response, such as amplitude of the response or
the input power may be deduced from a knowledge of the modal density.

1.6 Conclusion

The literature survey presented in this chapter was guided on two aspects: the investigations
on periodic structures and MOR techniques. A historical review of the studies on periodic
structures and phononic materials was given at the beginning of this chapter. Numerous methods
have been developed during these studies. Among them, the plane-wave expansion method,
transfer matrix method, wave finite element method and several homogenization methods were
explained. As for MOR techniques, two mode-based MOR methods and two wave-based MOR
methods were developed in detail.

The second part of this chapter described the proposed wave and modal coupled method, re-
ferred as CWFEM in this thesis. The unique feature of the proposed CWFEM is the combination
of the advantages of the modal approach and wave approach. The modal description is applied
on mesoscopic scale of the unit cell while the wave description is employed on macroscopic
scale of the structures. The equivalence between the two descriptions, known as wave-mode
duality as well as the terminology concerning the wave description is clarified. The formulation
to compute modal density from the slowness surfaces is given at the end of this chapter.



Chapter 2

Wave finite element method based on
reduced model for complex
one-dimensional periodic structures

2.1 Introduction

In this chapter, the proposed method CWFEM (Condensed Wave Finite Element Method)
is developed to study complex one-dimensional (1D) periodic structures. The formulation of
the method is given to calculate the dispersion relation for free wave propagation as well as
the forced responses. The effectiveness of the proposed method is illustrated via both a binary
circular beam and a binary thin-walled beam including warping effect using finely meshed solid
elements.

2.2 The formulation of proposed “CWFEM” on 1D periodic
structures

The method begins with establishing the equation of motion of the unit cell for free vi-
bration. The mass and stiffness matrices M and K can be extracted from conventional FE
packages. M̃LL M̃LR M̃LI

M̃RL M̃RR M̃RI

M̃IL M̃IR M̃II


 q̈L

q̈R

q̈I

+

 K̃LL K̃LR K̃LI

K̃RL K̃RR K̃RI

K̃IL K̃IR K̃II


 qL

qR

qI

 =

 F̃L

F̃R

0

 (2.1)
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(a) Full model with physical internal DOFs qI
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L

(b) Reduced model with modal internal DOFs PC

Figure 2.1: MOR on the unit cell of 1D periodic structure (propagation in the x- direction)

where “∼” represents the matrix of the full model before reduction. Coordinates qR, qL, qI

represent the physical DOFs of the left boundary, right boundary and internal nodes, as shown
in Fig 2.1(a). The size of the qL and qR are both n, while the one of qI is of nI.

2.2.1 Model order reduction on the unit cell

The fixed interface component mode synthesis, known as the Craig-Bampton method, is
applied to carry out the MOR on the unit cell. Compared to other reduction methods, such as the
free interface method or the branch mode method, Craig-Bampton method is employed because
it is more straightforward with the boundary DOFs expressed using physical coordinates.

The physical DOFs qI are then reformulated to a reduced modal basis of modal DOFs, with
generalized coordinate PC, the size of which is nc. The MOR on the unit cell is illustrated in
Fig. 2.1. Then the Craig-Bampton hybrid coordinates are related to the physical coordinates
using matrix B:

((qL)
T(qR)

T(qI)
T)T = B((qL)

T(qR)
T(PC)

T)T (2.2)

with

B =

 In 0 0

0 In 0

ΨL ΨR ΨC

 (2.3)

[ΨL ΨR] represents the constraint modes with

ΨL = −K̃−1II K̃IL , ΨR = −K̃−1II K̃IR (2.4)

Fixed interface modes ΨI are calculated with qL = qR = 0

[K̃II − ω2
0M̃II]ΨI = 0 (2.5)



2.2. The formulation of proposed “CWFEM” on 1D periodic structures 39

Matrix ΨC is a reduced basis in ΨI with nI rows and nc columns. The selection of ΨC will be
discussed via a converge study in the numerical example later. Then the equation of motion of
the reduced model can be written into the following form: M∗

LL M∗
LR M∗

LC

M∗
RL MRR M∗

RR

M∗
CL M∗

CR M∗
CC


 q̈L

q̈R

P̈C

+

 K∗LL K∗LR K∗LC

K∗RL K∗RR K∗RR

K∗CL K∗CR K∗CC


 qL

qR

PC

 =

 FL

FR

0

 (2.6)

The viscous or structural damping is not included. When applying WFEM on homogeous
waveguides, it is typical to use complex dynamic stiffness matrix to include damping [Mace &
Manconi, 2008]. In this chapter, damping is not considered in the model of periodic waveguides.
Damping may precipitate the wave attenuations. Since in the first place attention is focused on
the attenuation related to the periodicity of the waveguides. The presence of damping makes it
difficult to define the stop band of propagation and make the wave attenuation phenomena more
complicated.

The new mass matrix as well as the stiffness matrix can then be written in the following
manner:  M∗

LL M∗
LR M∗

LC

M∗
RL M∗

RR M∗
RR

M∗
CL M∗

CR M∗
CC

 = BT

 M̃LL M̃LR M̃LI

M̃RL M̃RR M̃RI

M̃IL M̃IR M̃II

B (2.7)

The generalized force remains the same value as before: FL

FR

0

 = BT

 F̃L

F̃R

0

 =

 F̃L

F̃R

0

 (2.8)

Assuming harmonic response, the equation can be written with the dynamic stiffness matrix
D∗ = K∗ − ω2M∗.  D∗LL D∗LR D∗LC

D∗RL D∗RR D∗RC

D∗CL D∗CR D∗CC


 qL

qR

PC

 =

 FL

FR

0

 (2.9)

From the third line of Eq. (2.9), internal DOFs can be removed using dynamic condensation.
The Eq. (2.9) becomes [

DLL DLR

DRL DRR

](
qL

qR

)
=

(
FL

FR

)
(2.10)

where
DLL = D∗LL −D∗LC(D

∗
CC)
−1D∗CL,

DLR = D∗LR −D∗LC(D
∗
CC)
−1D∗CR,

DRL = D∗RL −D∗RC(D
∗
CC)
−1D∗CL,

DRR = D∗RR −D∗RC(D
∗
CC)
−1D∗CR

(2.11)
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Vectors in ΨC are normalized with respect to the modal mass matrix, i.e., [ΨC]
T[M̃II][ΨC] = Inc .

The modal stiffness matrix is [ΨC]
T[K̃II][ΨC] = [Ω2]. So we have D∗CC = K∗CC − ω2M∗

CC =

Ω2 − ω2Inc , which is a diagonal matrix and of smaller size than D∗II = K∗II − ω2M∗
II. D∗CC is

much easier to be inverted. The poor conditioned due to the inversion of D∗II can be avoided.

2.2.2 Application of WFEM on reduced model of the unit cell-CWFEM

After dynamic condensation of the internal modal DOFs, the equation of motion of the unit
cell becomes the same as the classical WFEM in direct form. For the unit cell k, we have

u
(k)
R = Su

(k)
L , (2.12)

remind that u
(k)
L = ((q

(k)
L )T(−F

(k)
L )T)T and u

(k)
R = ((q

(k)
R )T(F

(k)
R )T)T represent the left and right

state vectors for the unit cell k. The expression of S can be found in Eq. 1.18. The wave basis
and wavenumbers are associated to the eigen solution of the following problem:

SΦi = λiΦi , |S− λiI2n | = 0. (2.13)

where I2n represents the identity matrix of size 2n. However, for large numbers of DOFs,
typically for 2D cross-sections, direct application of numerical solvers can lead to difficulties
because S may be poor conditioned [Mace et al., 2005]. So the eigenvalue problem can be
reformulated as follows [Inquiete, 2008]:

[N]Φ′ = λ[L]Φ′, (2.14)

where

Φ′ =

(
qL

qR

)
(2.15)

and

[N] =

[
0 In

DRL DRR

]
, [L] =

[
In 0

−DLL −DLR

]
(2.16)

For the state vector Φ, it is related using matrix L.

Φ =

(
qL

−FL

)
= L

(
qL

qR

)
= LΦ′ (2.17)

Other formulations were also suggested, such as the eigenvalue problem in terms of (λ + 1/λ)

proposed by Zhong [Zhong & Williams, 1995].

The eigenvalues λi and wavenumbers ki are linked through the relation λi = e−jkidx , while
dx denotes the length of the unit cell in propagation direction x-axis and j2 = −1. The direction
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of the phase velocity of the corresponding waves can be distinguished in the following manner:
If |λi| < 1, then the phase propagates in the positive direction. If |λi| > 1, the phase propagates
in the negative direction. For the propagative waves in the passing band with |λi| = 1, the
propagation direction can be identified using the sign of the < (ki), where < (ki) represents the
real part of the complex wavenumber ki. <(ki) > 0 indicates that the phase propagates in the
positive x direction, <(ki) < 0 the phase propagates in the negative x direction. The matrix Φ

of the eigenvectors can be written as follows:

Φ =

[
Φ+

q Φ−q

Φ+
F Φ−F

]
, (2.18)

where the subscripts q and F refer to the components which corresponds to the displacements
and the forces, respectively; ((Φ+

q )T(Φ+
F)T)T stands for the wave basis vectors which propagate

in the positive direction, while ((Φ−q )T(Φ−F)T)T stands for the wave basis vectors which propa-
gate in the negative direction. Finally, state vector u

(k)
L and u

(k)
R of any cell k can be expressed

using eigenvectors {Φi}i=1,...,2n [Zhong & Williams, 1995]:

u
(k)
L = ΦQ(k) , u

(k)
R = ΦQ(k+1) ∀k ∈ {1, . . . , N}. (2.19)

The analysis of the dynamic response consists of evaluating a set of amplitudes associated with
positive and negative going modes.

Q(k) =

(
Q+(k)

Q−(k)

)
. (2.20)

2.2.3 The forced response of the structure by CWFEM

The forced-WFEM formulation are widely employed to study the stationary response of
continuous structures [Mencik & Ichchou, 2007; Renno & Mace, 2010; Waki et al., 2009]. The
formulations of forced-CWFEM can be deduced in a similar way.

According to the coupling relations between two consecutive cells k and k − 1 (k ∈
{2, . . . , N}), q

(k)
L = q

(k−1)
R and −F

(k)
L = F

(k−1)
R , the following relation can be found:

u
(k)
L = u

(k−1)
R ∀k ∈ {2, . . . , N} (2.21)

which conducts to
u

(k)
L = Su

(k−1)
L ∀k ∈ {2, . . . , N} (2.22)

Eq. (2.22) leads to:
u

(k)
L = Sk−1u

(1)
L ∀k ∈ {1, . . . , N} (2.23)
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In addition to the relation in cell N:
u

(N)
R = Su

(N)
L (2.24)

we have
u

(N)
R = SNu

(1)
L (2.25)

where S0 = I2n. Eqs. (2.23) and (2.25) are projected on the wave basis {Φi}i considering
Eq. (2.19). Since it has been assumed that matrix eigenvectors {Φi}i are linearly independent,
so Φ is invertible, which leads to:

Q(k) = Φ−1Sk−1ΦQ(1) ∀k ∈ {1, . . . , N + 1} (2.26)

that is (cf. Eq. (2.13))

Q(k) =

[
Λ 0

0 Λ−1

]k−1
Q(1) ∀k ∈ {1, . . . , N + 1} (2.27)

where Λ stands for the (n × n) diagonal eigenvalue matrix for wave modes propagating in x
positive direction, expressed by Eq. (2.28).

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn

 (2.28)

For the classical Neumann and Dirichlet boundary conditions can be expressed as follows:

[0 | I] u = F (Neumann) (2.29a)

[I | 0] u = q (Dirichlet) (2.29b)

The left side of cell 1 satisfies Neumann boundary condition while the right side of cell N
satisfies Dirichlet boundary condition. Then the two boundary conditions can be rewritten via
the projection of the state vector u onto the wave basis:

Φ+
FQ+(1) + Φ−FQ−(1) = F0 (2.30a)

Φ+
q Q+(N+1) + Φ−q Q−(N+1) = qN+1 (2.30b)

Using Eq. (2.27), the above equations can be simplified as:

Φ+
FQ+(1) + Φ−FQ−(1) = F0 (2.31a)

Φ+
q ΛNQ+(1) + Φ−q Λ−NQ−(1) = qN+1 (2.31b)

then the amplitude of the positive going wave modes of the first cell can be deduced in the
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following manner: (
Q+(1)

Q−(1)

)
=

[
Φ+

F Φ−F
Φ+

q ΛN Φ−q Λ−N

]−1(
F0

qN+1

)
(2.32)

Once the amplitude of the wave modes Q(1) is obtained, the wave amplitude as well as
physical response at the boundaries of all unit cells can be obtained using Eqs. (2.27) and (2.19).
As for the internal nodes of unit cell k, the displacement can be deduced based on Eq. (3.2) and
Eq. (2.3):

q
(k)
I = ΨLq

(k)
L + ΨRq

(k)
R + ΨCP

(k)
C (2.33)

The constraint modes of the unit cell [ΨL ΨR] and truncated fixed boundary mode ΨC are
shown in Eq. (2.4) and Eq. (2.5). As for modal coordinates PC, it can be deduced from Eq. (2.9)
that

PC = −(D∗CC)
−1(D∗CLqL + D∗CRqR) (2.34)

In this manner, the forced response of the all the nodes (internal and boundary) in finite
waveguide can be determined. However, attention should be paid when inverting the matrix in
Eq. (2.32) since it may be ill-conditioned. Alternative formulations to avoid numerical issue
can be found in the reference [Waki et al., 2009].

2.2.4 Stop band of periodic structures

The waves which occur in periodic media, known as Bloch waves [Kittel, 2004], have
very unusual dispersion and attenuation characteristics compared to those in continuum media.
The periodic waveguide, even a non-dissipative one, strongly attenuates waves on bands of
the frequency spectrum known as stop bands [Bradley, 1991]. Noise control and vibration
absorption techniques can be developed based on the stop bands of the periodic structures. As
a result, the optimum design and parameter study of the stop band width have attracted a lot of
interest among researchers [Olhoff et al., 2012; Xiang & Shi, 2009; Xiao et al., 2013; Yu et al.,
2009].

According to Mead, wave propagation can occur when ki is a real number [Mead, 1975a],
since λi + 1/λi = e−jkidx + ejkidx = 2 cos(kidx), so in the pass bands we have:

− 2 ≤ λi + 1/λi ≤ 2 (2.35)

Therefore the pass bands are bounded by the frequencies at which λi + 1/λi = ±2, λi = ±1.
So the stop bands can be calculated easily using the dynamic stiffness matrix. Since the left
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state vector and the right state vector are related by λ, we have(
q

(k)
R

F
(k)
R

)
= λ

(
q

(k)
L

−F
(k)
L

)
(2.36)

the Eq. (2.6) becomes:  D∗LL D∗LR D∗LC

D∗RL D∗RR D∗RC

D∗CL D∗CR D∗CC


 qL

λqL

PC

 =

 FL

−λFL

0

 (2.37)

With λ = 1, the equation is reformulated to:[
D∗

LL +D∗
LR +D∗

RL +D∗
RR D∗

LC +D∗
RC

D∗
CR +D∗

CL D∗
CC

](
qL

PC

)
=

(
0

0

)
(2.38)

To obtain the non-trivial solution, the determinant of the matrix should be zero. Note that
D∗ij = K∗ij − ω2M∗

ij, so the linear eigen problem can be solved and the eigenvalues ω2 can
be calculated, which correspond to the bounding frequencies of the stop bands. Along with the
bounding frequencies calculated by λ = −1, all the stop bands of the structure can be found
using only the dynamic stiffness matrix of the reduced model.

2.3 Numerical examples and discussions

The proposed CWFEM is applied on three kinds of binary periodic beam in this section.
The binary beam consists of a repetition of section A of length l1 and section B of length l2,
as shown in Fig. 2.2. A symmetric unit cell is used in CWFEM. Section A and section B are

Figure 2.2: Binary periodic beam and its symmetric unit cell

of different materials, the materials used in this section can be found in Tab. 2.1. Firstly, the
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Materials Young’s Modulus Shear modulus Density
E (Gpa) G (Gpa) ρ (kg/m3)

Epoxy 4.35 1.59 1180
Aluminium 77.56 28.87 2730
Steel 210.6 81.0 7780

Table 2.1: Material proprieties

longitudinal waves and flexural waves in a circular beam are studied in 2.3.1 and 2.3.2. Subse-
quently, flexural-torsional coupled waves in a nonsymmetrical thin-walled beam is analysed in
2.3.3, where the beam is modelled using solid elements which take warping effect in consider-
ation.

2.3.1 Longitudinal waves in binary periodic beam

First, CWFEM is used to study longitudinal waves in binary periodic beam with epoxy in
section A and aluminium in section B. Both sections are circular with a radius of 6.44 cm, and
the lengths l1 and l2 are both 1 m, then the period length a = l1 + l2 equals to 2 m. The unit
cell is divided into 100 elements, so that each wavelength contains at least 10 elements in the
frequency range up to 3 kHz. The results obtained by CWFEM is compared with the analytical
solution of the wavenumber k given by Tian et al. [2011]:

cos(ak) = cos(ωt1) cos(ωt2)− (
Z1

2Z2

+
Z2

2Z1

) sin(ωt1) sin(ωt2) (2.39)

where Z = ρc is the characteristic acoustic impedance of a section, c =
√
E/ρ is the wave

velocity in the section, and ti = li/c is the time for the wave to pass through the section.

2.3.1.1 The selection of the modes and the convergence

The convergence study of the reduced modal basis is carried out here. The frequency ranges
of the stop bands are obtained with different reduced basis, using the formulation in 2.2.4.

fc, the frequencies of the stop bands calculated by CWFEM, are compared with f0, the
frequencies obtained by classical WFEM. The relative errors listed in Tab. 2.2 equal to |fc−f0|

f0
.

The analytical result fa is given as well, with the sum of the relative errors between the f0 and
fa equals to 0.5%. It can be seen from Tab. 2.2 that the frequencies fc converge rapidly with
n = fmode/fmax. Using a reduced basis with n=3 , a total relative error around 1% is obtained.
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Table 2.2: The first four stop bands: relative error is compared with f0

Frequency fc (Hz) by CWFEM f0 (Hz) by fa (Hz)
of bounds With n = fmode/fmax Classical Analytical
stop bands n=1 n=1.5 n=2 n=2.5 n=3 WFEM result
First(L) 372.4 372.4 372.4 372.4 372.4 372.4 372.4
First(R) 906.9 904.9 904.4 904.3 904.3 904.2 903.8
Second(L) 1087.6 1087.1 1086.7 1086.4 1086.3 1086.2 1085.7
Second(R) 1762.9 1762.9 1762.9 1762.9 1762.9 1762.9 1761.6
Third(L) 1963.1 1963.1 1963.1 1963.1 1963.1 1963.1 1961.2
Third(R) 2439.4 2410.9 2405.9 2404.7 2404.2 2403.1 2401.4
Forth(L) 2732.2 2732.2 2732.2 2732.2 2732.2 2732.2 2730.3
Forth(R) 2909.3 2895.5 2882.3 2877.0 2875.1 2872.6 2868.4
Sum relative error 2.9% 1.2% 0.5% 0.24% 0.1%

2.3.1.2 Dispersion relation of the longitudinal waves

The real part of wavenumber k, <(k) represents the phase shift per unit length. While the
imaginary part of k, =(k) represents the attenuation per unit length. The dispersion relation
is illustrated in Fig. 2.3, only the positive-going waves with <(k) > 0 are presented because
the wavenumbers of the positive and negative-going waves are symmetric with respect to the
x-axis. Several noteworthy characteristics of dispersion relation can be observed:

• At pass band frequencies, the wavenumber is real with =(k) = 0.

• At stop band frequencies, =(k) 6= 0, which is associated with the exponential attenuation
of the wave.

• At stop band frequencies, <(k) remains constant in the whole band, either <(k) = 0

or <(k) = ±π/dx. For <(k) = ±π/dx, the stop band are bounded with λ = −1, and
associated with a single wavelength. As to <(k) = 0, the stop band frequencies are
bounded with λ = 1 and are associated with non-oscillating and exponential attenuated
waves.

• <(k) is limited in the first Brillouin zone [Brillouin, 1953], which is between [−π/dx, π/dx].

As shown in Fig. 2.3, there exists four stop bands between 0 Hz and 3 kHz, the same as
those given in Tab. 2.2. The dispersion relation issued from CWFEM is compared to those
calculated with the classical WFEM and analytical method. With a reduced modal basis with
fmode ≥ 3fmax, CWFEM is able to predict the dispersion relation with high precision.
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0

0.5

1

1.5

Frequency (Hz)

Figure 2.3: Dispersion relation for the longitudinal waves by different methods: Analytical (-),
WFEM (o), CWFEM with fmode = 3fmax(∗)

2.3.1.3 Forced response of the beam

In the given formulation of forced-CWFEM in 2.2.3, the length of the waveguide is no
longer infinite and should be specified as well as the boundary conditions. The beam consisting
of 10 identical unit cells is clamped at one end and is subjected to harmonic axial loading on
the other end.

The frequency response at the point of excitation is shown in Fig. 2.4 and a zoom between
2200 Hz and 3000 Hz is given in Fig. 2.5. It can be seen that the response via the forced-
CWFEM corresponds quite well with the results by FEM. The size of the FE model is 1010,
while the size of the model in CWFEM is 12, which leads to a significant decrease of computa-
tion time.

The peaks in the forced response correspond to the resonances at natural frequencies. The
frequency ranges where no resonance occurs are identical with the stop bands determined in
the dispersion relation. Here if boundary condition is changed from clamped to free, same
frequency ranges without resonance are identified. The stop bands identified from the forced
response function of a finite waveguides should be independent of the unit cells number and
boundary condition.
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Figure 2.4: The response at excitation point by FEM (-), forced-WFEM (o), forced-CWFEM
with fmode = 3fmax (∗)
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Figure 2.5: A magnified view of the response at excitation point by FEM (-), forced-WFEM
(o), forced-CWFEM with fmode = 3fmax (∗)

2.3.2 Flexural waves in binary periodic beam

The study of bending waves in binary periodic beam is carried out in this subsection. The
materials and the geometry parameters remain the same as in the longitudinal case except that
the radius of the two beams is set to 2.5 cm. The model of Euler-Bernoulli beam is used since
the length of each beam section is much smaller than the height of each section and that the
effects of shear and rotational inertia can be ignored.
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2.3.2.1 Dispersion relation of the bending waves

The dispersion relation of the positive-going bending waves calculated with different meth-
ods are given in Fig. 2.6. The characteristics of dispersion relation mentioned in the longi-
tudinal waves are also observed in the bending ones. In addition, an evanescent wave at all
frequency range with =(k) 6= 0 and <(k) = 0 is noted in Fig. 2.6, named “rapidly attenuated
wave”. The CWFEM with fmode = 3fmax and fmode = 80fmax are applied to calculate the
dispersion relation. The results are compared to the ones obtained by Transfer Matrix Method
(TMM) [Lin & McDaniel, 1969] and WFEM. The CWFEM with fmode = 3fmax is able to
predict all the wavenumbers except the one of rapidly attenuated wave. More internal modes
until fmode = 80fmax are needed to determine the rapidly attenuated waves.

In the frequency domain studied, the unit cell is divided into 80 elements of 160 DOFs. In
the reduced model by CWFEM with fmode = 3fmax, the number of DOFs is decreased from
160 to 16. For reduced model with fmode = 80fmax, the number of DOFs is less than 50. The
size of the reduced model is not more than one third of the full model.
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Figure 2.6: Dispersion relation for the bending waves by different methods: TMM (-), Classical
WFEM (o), CWFEM with fmode = 3fmax(∗), CWFEM with fmode = 80fmax(.)

2.3.2.2 Forced response of the beam

The bending motion of a 10-period binary periodic beam is studied by the forced-CWFEM.
A harmonic force perpendicular to the beam with an amplitude of 100 N is applied at the left
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extremity of the 1st cell, and the beam is clamped at the right extremity of the last cell. The
response at the excitation point is illustrated in Fig. 2.7. The result by forced-CWFEM is com-
pared with the results from FEM and forced-WFEM. A relative big error is obtained when
approaching the resonance or antiresonance frequencies. Since the damping is not included in
the model, it is absurd to discuss the magnitude of the response when approaching these fre-
quencies. The response level is supposed to be infinite. A global good estimation of the forced
response is given by forced-CWFEM except at frequencies close to resonance or antiresonance.

In addition, compared to the forced response of longitudinal motion, two characteristics
should be noted:

• The result by CWFEM in Fig. 2.7 is applied with fmode = 3fmax. The reduced model
in CWFEM which fails to determine the wavenumbers of the rapidly attenuated waves
is able to obtain the forced response of the beam. An explanation is proposed: Since
the attenuated waves decay rapidly with distance, they have negligible contribution to the
forced response of the structure.

• Contrary to the longitudinal case, a peak of resonance is observed in the second stop band
around 61 Hz. It indicates that the evanescent waves in stop band can generate resonance
phenomenon. The phenomenon is studied in the next subsection.
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Figure 2.7: The response at excitation point by FEM (-), forced-WFEM (.), forced-CWFEM
with fmode = 3fmax (∗)
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2.3.2.3 Resonance in stop band

The forced response corresponding to the resonance in the stop band is given in Fig. 2.8,
which coincides with the natural mode shape at 61 Hz under the same boundary condition.

For free wave propagation to x positive direction at 61 Hz, two evanescent waves were
identified in the dispersion curve in Fig. 2.6: a rapidly attenuated wave (referred as wave I)
with purely imaginary wavenumber equalling to -3.6i, a slowly attenuated wave (wave II) with
purely imaginary wavenumber equalling to -0.4i. For wave I, the wave amplitude drops to
exp(−(−3.6i) ∗ i ∗ 2) = 0.0007 when the wave goes through a unit cell. 2m is the unit cell
length. For wave II, the wave amplitude decrease exp(−(−0.4i) ∗ i ∗ 2) = 0.45 when the wave
goes through a unit cell. The forced response amplitudes under excitation of 61 Hz at the unit
cell boundaries are indicated in Fig. 2.8. It can be seen that the amplitude drops (1-0.26)=74%
from the 1st unit cell to the 2nd unit cell. Starting from the 2nd unit cell, the ratio between the
displacements at left boundary of two adjacent unit cells is always 0.45. It indicates that the
contribution of the wave I (rapidly attenuated wave) is only limited in the first unit cell.
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Figure 2.8: The mode shape with natural frequency at 61 Hz by FEM (-). The response of the
beam under harmonic excitation at 61 Hz by forced-CWFEM (∗). The response of the unit cell
boundaries by forced-WFEM (•)

It can be seen that the displacement of the beam is located near the excitation point at the
left extremity of the beam. The resonance at 61 Hz can be interpreted as follows: The incident
waves due to the excitation at left extremity are reflected at the interface of material A and
material B. The resonance then occur since the reflected waves are in phase with the incident
ones. The incident waves are totally reflected at discontinuities of the materials, so they cannot
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Figure 2.9: The response at right end of the 3rd unit cell by FEM (-), forced-WFEM (.), forced-
CWFEM with fmode = 3fmax (∗)

reach the right extremity of the 10-period beam. If the boundary conditions at right extremity
are changed from clamped to simply supported, the same mode shape is obtained. Or for a
longer beam with more unit cells, the response remains the same for the first 10 unit cells.

Many ongoing researches focus only on the stop band of free propagation in the design of
periodic structure as vibration isolator. However, the existence of the resonance in stop band
indicates that stop band might not always equivalent to low response level. So attention needs
to be paid to these resonances. Especially when the excitation is limited to a small band of
frequency. If the excitation is distributed in a large band of frequency, the resonance peaks at
few frequencies in stop band should not increase significantly the response level.

2.3.3 Binary periodic and nonsymmetrical thin-walled beam including
warping effect

Thin-walled beams, such as angles and channel beams are basic structural elements in me-
chanical, aeronautical and civil engineering. It is demonstrated that the warping effect should
be included when it comes to modelling the open section beams. Yu et al. have studied a
binary periodic and asymmetrical thin-walled beam, the model of Bernoulli-Euler beam includ-
ing warping effect is used with TMM [Yu et al., 2009]. Their results are used as reference in
this paper. The same structure is modelled using finely meshed solid elements. The element
Solid185 in ANSYS is used in this study to obtain the dynamic matrix of the unit cell.
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(a) Schema of the cross-section (b) The unit cell used in CWFEM

Figure 2.10: The thin-walled beam modelled with Solid element

The beam is binary periodic as shown in Fig. 2.2 with l1 = l2 = 150 mm, material A is
epoxy and material B is steel. The cross-section of the beam is as shown in Fig. 2.10(a), with
geometrical parameters: b1 = 15.5 mm, b2 = 9.5 mm, t1 = 1 mm, h = 16 mm.

The unit cell used in CWFEM is shown in Fig. 2.10(b). The cross-section is in x− y plan,
and waves propagate in the z-direction. The cross-section is divided into 15 elements which
contains 96 DOFs. The unit cell is divided into 90 elements in the z-direction. The size of the
whole unit cell is of 8736 DOFs. This mesh assures the convergence of the natural frequencies
below 1 kHz.

2.3.3.1 Dispersion relation and gain of computation time

To study the wave propagation characteristics, the fixed boundary modes under 3 kHz are
retained in CWFEM. The result of which is compared with the one obtained by WFEM, it can
be seen that CWFEM predicted the same wavenumbers as WFEM.

The internal modes with fixed boundary under 3 kHz consist the first 15 modes. So the
size of the model is reduced from 8736 DOFs to 207 DOFs, with 15 internal DOFs and 192
boundary DOFs. And computation time decreases from more than 15 hours to less than 7
minutes, as shown in Tab. 3.2. For each frequency, to apply the dynamic condensation, instead
of inverting matrix D∗II, which is not diagonal with size 8544× 8544, a diagonal matrix D∗CC of
size 15× 15 is inverted. CWFEM allows gaining computation time and avoiding the numerical
issue due to inverting D∗II. Four kinds of wave are identified at low frequencies. The one
with the smallest wavenumber corresponds to the longitudinal waves since it is the fastest wave
propagating in the structure. Another three waves are all the flexural-torsional coupled waves.
The two kinds of wave shapes are given in Fig. 2.12.
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Figure 2.11: Dispersion relation by different methods: CWFEM with fmode = 3fmax (-),
WFEM on the full model (�)

2.3.3.2 The stop bands of the binary thin-walled beam

The dispersion relation predicted by CWFEM is compared with the work of Yu et al.

[2009], where only flexural-torsion coupled waves are studied. It can be seen that a good cor-
relation is observed between the two results. However, a considerable discrepancy is observed
around 500 Hz, which changes the frequency range of a stop band.

The forced response function of a 8-period beam is calculated by FEM in reference [Yu
et al., 2009]. It predicts also the frequency range of stop bands where a sharp drop in frequency
response occurs.

It can be seen from Tab. 2.4 that almost the same stop bands are identified by FEM and
CWFEM, while TMM has a discrepancy around 500 Hz with the two other methods. The
error in the analytical model may arise because higher order inertia terms are ignored in Euler-
Bernoulli beam model [Yu et al., 2009].
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Computation time Model size
Classical WFEM Dynamic condensation: 15 hrs

8736 DOFsLinear eigen problem: 55 secs
Total: > 15 hours

Proposed CWFEM Modal analysis: 356 secs

207 DOFs
Dynamic condensation: 1 sec

Linear eigen problem: 55 secs
Total: < 7 minutes

Gain 99 % 97.6 %

Table 2.3: Comparsion of computation time and model size by CWFEM and WFEM
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Figure 2.13: Dispersion relation by different methods: Reference (-), CWFEM with fmode =
3fmax (�)

Stop bands Analytical [Yu et al., 2009] FEM [Yu et al., 2009] CWFEM
1 (156, 163) - -
2 (501, 598) (460, 590) (460, 592)
3 (694, 853) (660, 860) (680, 846)

Table 2.4: The frequency (Hz) range of stop bands for binary periodic thin-walled beam

2.4 Conclusions

In this chapter, an efficient numerical approach - CWFEM was proposed to study the free
and forced vibration of complex 1D periodic structures. The method proved that with a reduced
modal basis, precise wave propagation characteristics can be obtained. The effectiveness of the
method was illustrated using 3 numerical examples. Main conclusions of this chapter can be
drawn as follows:

• The formulation of the proposed CWFEM was developed and applied in numerical ex-
amples. CWFEM is able to predict precisely the dispersion relation and forced response
compared to WFEM and analytical methods.

• To ensure the convergence of CWFEM, the internal modes with natural frequency lower
than three times of the maximum investigated frequency should be retained in the modal
basis. In this case, CWFEM is able to predict correctly the propagating waves and some
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of the evanescent waves. Even significant differences may exist for the rapidly attenuated
waves, they have a negligible contribution to the forced response of the structure except
at the excitation point.

• CWFEM can speed up the computation of unit cell dynamics (from 15 hours to 7 minutes
in the 3rd example). It can also avoid the poor conditioned issues which may occur due
to the dynamic condensation.

• The frequency ranges without resonance in forced response function of finite waveguides
are independent of boundary conditions and the number of unit cells. And they corre-
spond to the stop bands of a infinite waveguides with the same unit cell. However, reso-
nance can exist in the stop bands, while the displacements of the waveguides are located
near near the boundaries of the systems.

The decrease of the computation time due to the MOR would be very desirable for the optimi-
sation of complex waveguides.
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Chapter 3

Multi-scale modelling for two-dimensional
periodic structures using condensed wave
finite element method

3.1 Introduction

The proposed CWFEM is extended to two-dimensional (2D) periodic structures in this
chapter. Firstly, the method is developed in detail, then it is applied on a numerical example of
a beam grid to illustrate its validity. A convergence study is carried out to study the selection of
the internal modes. The results are compared with those given by WFEM on the full model and
harmonic displacement field of FE model. The wave beaming effects phenomenon is studied,
and equivalence of the cell modes and stationary waves at bounding frequencies of stop bands
is discussed.

3.2 The formulation and result representation of proposed
“CWFEM” on 2D periodic structures

For free wave propagation, the equation of motion of the unit cell can be written as follows:([
K̃bdbd K̃bdI

K̃Ibd K̃II

]
− ω2

[
M̃bdbd M̃bdI

M̃Ibd M̃II

])(
qbd

qI

)
= [K̃− ω2M̃]

(
qbd

qI

)
=

(
fbd

0

)
(3.1)

qbd represents the boundary DOFs, which are classified as [q1 q2 q3 q4 qL qB qR qT].
The notation of the nodes can be found in Fig 3.1(a). To model the dynamic behaviours in high
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frequency, the unit cell is finely meshed, which may lead to a large size of qI.

3.2.1 Model reduction on the unit cell

Based on Craig-Bampton method, the physical coordinates [qbd qI] are reduced to [qbd PC](
qbd

qI

)
=

[
In 0

Ψbd ΨC

](
qbd

PC

)
= B

(
qbd

PC

)
(3.2)

where [Ψbd] represents the constraint modes which associate physical displacements at the
boundary qbd to physical displacements of elastic DOFs qI.

Ψbd = −K̃−1II K̃Ibd (3.3)

The fixed interface modes are denoted [ΨI], which is obtained with boundary DOFs fixed and
with no force acting on the internal nodes

[K̃II − ω2
0M̃II]ΨI = 0 (3.4)

while [ΨC] represents a set of truncated modes in [ΨI], the selection of the modes in [ΨI] will
be discussed via a convergence study in the numerical example later. Then the equilibrium
equation of the reduced model is written as:

[K− ω2M]

(
qbd

PC

)
=

(
fbd

0

)
(3.5)

with
K = BTK̃B , M = BTM̃B (3.6)

The MOR of the unit cell is illustrated in Fig. 3.1. The physical DOFs qI are replaced by PC,
the reduced modal DOFs of smaller size.

3.2.2 Wave Finite Element method with model reduction on 2D periodic
structures

According to periodic structures theory [Bloch, 1929], the boundary displacements and
forces can be related using λx and λy, as given in Eq. (1.24) and (1.25). So the DOFs of the
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(a) Full model with physical internal DOFs qI
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Figure 3.1: MOR on the unit cell of 2D periodic structure

reduced model [qbd PC] can be related to [q1 qL qB PC] using ΛR

(
qbd

PC

)
= ΛR(λx, λy)


q1

qL

qB

PC

 (3.7)

The sizes of q1, qL, qB, PC are s, sm, sn and c respectively. The matrices Is, Ism, Isn and IC in
ΛR represents the identity matrix of size s, sm, sn and c.

ΛR =



Is 0 0 0

λxIs 0 0 0

λyIs 0 0 0

λxλyIs 0 0 0

0 Ism 0 0

0 0 Isn 0

0 λxIsm 0 0

0 0 λyIsn 0

0 0 0 IC


(3.8)

Similar to the nodal DOFs, we have

ΛL(λx, λy)

(
fbd

0

)
= 0 (3.9)
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while

ΛL =


Is λ−1

x Is λ−1
y Is λ−1

x λ−1
y Is 0 0 0 0 0

0 0 0 0 Ism 0 λ−1
x Ism 0 0

0 0 0 0 0 Isn 0 λ−1
y Isn 0

0 0 0 0 0 0 0 0 IC

 (3.10)

Then eq. (3.5) can be rewritten as

ΛL(λx, λy) ∗ (K− ω2M) ∗ΛR(λx, λy)


q1

qL

qB

PC

 = 0 (3.11)

Eq. (3.11) includes three parameters (ω, λx, λy). The equation can take various forms, de-
pending on the type of solution being sought. The first formulation fixes frequency ω and one
between (λx, λy), for example λy. It corresponds to the direct form of CWFEM2D. This may
represent the situation where a known wave is incident on a straight boundary, so that λy is
given and all possibly solutions for λx are sought which correspond to evanescent or propaga-
tion waves. Or another situation is to study the wave propagation in a closed cylindrical shell,
where the wavenumber around the circumference can only take certain discrete values [Mace
& Manconi, 2008]. The second formulation fixes (λx, λy), and the value of ω are sought. It
corresponds to the inverse form of CWFEM2D. This can be used to study the wave propaga-
tion in undamped structure or lightly damped with the assumption that the dispersion curves
of the propagating waves are not significantly modified by the addition of damping [Cotoni
et al., 2008]. Both formulations lead to the same solutions when all the values of (ω, λx, λy) are
covered.

Here we study the propagative wave in an undamped structure, so the second formulation
is adapted and developed. Eq. (3.11) becomes a standard and linear eigenvalue problem of ω2

as follows

[K′(λx, λy)− ω2M′(λx, λy)]


q1

qL

qB

PC

 = 0 (3.12)

with
K′ = ΛLKΛR, M′ = ΛLMΛR (3.13)

It should be noted that when no damping is included, for the pure propagative wave, we have
|λx| = 1 and |λy| = 1, and the matrix ΛL is the conjugate transpose of the matrix ΛR. In
addition, the stiffness and mass matrices K and M are symmetric positive definite matrices,
thus the matrix K′ and M′ in Eq. (3.12) are positive definite Hermitian matrices. Therefore,
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the eigenvalue problem leads to the solutions (ω2, φ′), with ω2 real and positive and vectors φ′

orthogonal. The eigen vector φ′ calculated in Eq. (3.12) include only [q1 qL qB PC]

φ′ =


φ1

φL

φB

φC

 (3.14)

The eigen vector for [qT
bd PT

C]
T is obtained by multiplying ΛR(

φbd

φC

)
= ΛRφ

′ (3.15)

The eigen vector associated to the physical DOFs [qT
bd qT

I]
T can be expressed using matrix B

in 3.2.1. (
φbd

φI

)
= B

(
φbd

φC

)
(3.16)

So the associated wave shape for the unit cell is as follows

φ =

(
φbd

φI

)
= BΛLφ

′ =

[
In 0

Ψbd ΨC

]
ΛLφ

′ (3.17)

The wave shape φ is represented using the constraint modes Ψbd and reduced basis of fixed
boundary modes ΨC of the unit cell.

3.2.3 The result representations – Slowness surfaces and band structure

For 2D periodic structures, the behaviour is usually described using propagation constants
µx and µy [Mead et al., 1988; Ruzzene et al., 2003]. They are related to the wavenumbers kx
and ky in following manner:

λx = eµx , λy = eµy , µx = −ikxLx, µy = −ikyLy (3.18)

where Lx and Ly representing the size of the unit cells in the x- and y- directions respectively.

The eigen solutions of ω in Eq.(3.12) can be expressed in different coordinate systems.
The surfaces formed by ω = f(µx, µy) are usually named “phase constant surfaces” [Mead
et al., 1988; Ruzzene et al., 2003] or “propagation surfaces” [Mead & Parthan, 1979], for
ω = f ′(kx, ky) are named “slowness surfaces” or “frequency surfaces” [Darinskii et al., 2008].
The results in this work are presented in coordinate system (kx, ky) and the name “slowness
surfaces” is adopted since k = ω/c, with c the phase velocity of the wave.
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(a) Plane wave in θ direction with
wavenumber kθ

0

(b) First Brillouin zone

Figure 3.2: k-space, IBZ (OABC), the contour of IBZ (O-A-B-C-O)

3.2.3.1 Slowness surfaces

When no damping is included and only the purely propagative waves are studied, wavenum-
bers (kx, ky) are real value and vary in the first Brillouin zone [(−π/Lx, π/Lx), (−π/Ly, π/Ly)]
[Brillouin, 1953]. The wavenumbers in the first Brillouin zone are discretised into (kix, k

j
y), with

kix being the i-th term, kjy being the j-th term. The corresponding frequencies are sorted in the
ascending order ω(i,j)

(1,2,...k,...n). The k-th slowness surface is formed by ω(i,j)
k . When x and y are

symmetric axes of the structure, the slowness surfaces are also symmetric with respect to the
kx = 0 and ky = 0 axes. The symmetric property can be exploited to limit the variation of the
wavenumbers to the IBZ (kx and ky positive).

The stop bands, modal density, energy flow direction and velocity may all be derived from
the slowness surfaces. The absolute stop bands (if any) is a frequency band at which there is
no slowness surface presents. The Poynting vector (i.e., the energy flow vector) at any point
(kx, ky) is the same as the gradient of slowness surface [Langley, 1994]. In the iso-frequency
contour of the slowness surface (k-space), Poynting vector is normal to the contour curves.
This property can be used to determine the direction of wave propagation and particularly in the
investigation of directions where waves do not propagate. The phenomenon is known as wave
beaming effect [Kohrs & Petersson, 2009; Langley & Bardell, 1997; Ruzzene et al., 2003].

3.2.3.2 Band structure

The 3D plot of the slowness surfaces is difficult to follow and to compare. A convenient and
compact 2D representation of the slowness surface is the “band structure”, which is obtained by
varying the wavenumbers along the contour of the IBZ (O-A-B-C-O), as shown in Fig. 3.2(b).
The wave number kθ in the direction of propagation θ is related with (kx, ky) using kx = kθ cos θ
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kx ky kθ Angle θ
O–A 0− π/Lx 0 0− π/Lx 0◦

A–B π/Lx 0− π/Ly π/Lx − km 0◦ − θm
B–C π/Lx − 0 π/Ly km − π/Ly θm − 90◦

C–O 0 π/Ly − 0 π/Ly − 0 90◦

Table 3.1: The wave vectors on the band structure (contour of IBZ)

and ky = kθ sin θ, as illustrated in Fig. 3.2(a). The range of the wave vectors on the contour
is listed in Tab. 3.1, with tan θm = Ly/Lx, k2

m = (π/Lx)
2 + (π/Ly)

2. It can be seen that all
the propagation directions θ are covered by the contour, while θ in 90◦ - 360◦ can be deduced
from the symmetry of the slowness surfaces. The band structures can be used to calculate the
frequency ranges of stop bands and to analyse whether different slowness surfaces come into
contact with each other, also to study the veering and locking phenomena and so on [Mace &
Manconi, 2012; Perkins & Mote, 1986].

3.3 Application example - Beam grid

In this section, the proposed CWFEM2D is applied to a periodic beam grid. The obtained
result is compared with the one issued from other methods, such as classical WFEM on full
model, the reference and also the result obtained by the 2D spatial Discrete Fourier Transfor-
mation (DFT2D) of a stationary displacement field. The selection of the modes is discussed and
the criterion to assure the convergence of the band structure is provided. The wave beaming ef-
fects phenomenon is studied in this section from slowness surface as well as from the harmonic
forced displacement field. The wave-mode duality is observed and discussed at the bounding
frequencies of stop bands.

3.3.1 Description of the model

A beam grid is a simple form of 2D periodic structure that can be tested experimentally.
Langley and Bardell [Langley & Bardell, 1997] have carried out the experimental test on a beam
grid constructed from strips of aluminium with bolted joints. The same structure is used here in
order to compare the results of proposed method with their results. The periodic grid structure
is constructed from an orthogonal array of aluminium strips as shown in Fig. 3.3. The strips are
of rectangular cross-section with 19.06 mm × 1.59mm. The distance between the strips in the
x-direction is of 115.38 mm, and in the y-direction is of 71.43 mm. At the crossing points, the
joints are considered as a mass point of 6× 10−3 kg.



66 Chapter 3. Multi-scale modelling for two-dimensional periodic structures using
condensed wave finite element method

Figure 3.3: A schematic of the experimental structure in reference [Langley & Bardell, 1997].
The excitation is at position A. All dimensions are in mm.

The unit cell of the beam grid used in CWFEM2D is shown in Fig. 3.4. It should be noted
that the choice of unit cell is not unique, but it is always wise to choose a unit cell with minimal
number of boundary coordinates to decrease the computational size [Mead, 1975b]. The unit
cell in Fig. 3.4 consists of [q1,q2,q3,qI], therefore some of the terms in the formulations
are not included. In the unit cell, the beam is modelled using element Beam188 in ANSYS.
Beam188 is a three dimensional two-node Timoshenko element, with 6 DOFs per node. Since
the cross-section of the beam is rectangular, the in-plane displacement and the out-of-plane
displacement are decoupled. The present analysis is restricted to the out-of-plane bending of
the beam components so the DOFs related to in-plane movement are fixed to zero, subsequently
only ROTX , ROTY and UZ are considered as DOFs. The joints are taken account as mass
point. 1/2 mass is added at q1 and 1/4 mass is added to q2 and q3. So the whole beam grid with
(2 × 1/4 + 1/2) = 1 mass at the joint can be obtained by repeating this unit cell. The studied
frequency range is between 0 - 1.5 kHz. To assure that each wavelength contains 10 elements,
the two beams are both meshed with 30 elements.
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Figure 3.4: Unit cell of the beam grid

3.3.2 The selection of the modes and the convergence study

The selection of the internal modes ΨC among ΨI will be discussed here. The study is
limited on the first four slowness surfaces, with fmax = 2078 Hz. The 2D plot of slowness
surfaces - band structure is employed to compare the results from different selections. The four
curves in band structure, from lower frequency to higher frequency are illustrated in blue, green,
red and cyan color. They correspond respectively to 1st, 2nd, 3rd, 4th slowness surface.

The first internal mode with fixed boundary is around 630 Hz. The band structure with no
internal mode taken is compared with the band structure for full model in Fig. 3.5. It can be
seen that the reduced model is able to predict precisely only the 1st slowness surface (up to
370 Hz). For the 1st slowness surfaces, the model is fully represented by the constraint modes
of the boundary Ψbd. Boundary DOFs are considered as master DOFs and internal DOFs are
considered as slave DOFs. It verifies the mesh of the unit cell in homogeneous waveguide
when applying WFEM. For most of the homogeneous waveguide, a short representative section
without internal nodes is taken as the unit cell. The frequency of the first internal mode of the
section may be much higher compared to the frequency range of interest, which is limited into
the 1st slowness surface. Accordingly, no internal mode needs to be taken, the model is fully
represented by the boundary nodes. In this case, the internal node is not needed in the mesh of
unit cell in homogeneous waveguides.

The band structure of the reduced model with the first 9 internal modes is compared with the
one of the full model, as shown in Fig. 3.6. The reduced model includes all the fixed boundary
mode ΨI with natural frequencies lower than 3∗fmax. The error of the reduced model compared
to the full model is estimated to be less than 0.15%, as shown in Fig. 3.7. It can be seen that
the error increases with slowness surfaces, for the blue curve, it corresponds to the error on 1st
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Figure 3.5: Band structure with WFEM2D on full model (−), CWFEM2D on reduced model
with no internal mode (◦)
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Figure 3.6: Band structure with WFE2DM on full model (−), CWFEM2D on reduced model
with the first 9 internal modes (◦)

slowness. The green, red and cyan curves correspond respectively the error on 2nd, 3rd and
4th slowness. It can be concluded that the reduced model converges to the full model when the
internal modes with fixed boundary under 3 ∗ fmax are retained.
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Figure 3.7: Error between the full model and reduced model with3 ∗ fmax
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Computation time Number of DOFs
WFEM2D on full model Linear eigen problem: 6.3 s 183

CWFEM2D on reduced model
Modal analysis: 0.02 s

16
Linear eigen problem: 0.04 s

Gain 99% 91%

Table 3.2: Computation time to calculate the band structure

Lots of propagation characteristics can be observed from the band structure in Fig. 3.6.
It can be seen that the 2nd curves comes into contact with the 3rd one in zone BC and the
3rd curves comes into contact with the 4th one in zone CO. This means that their corresponding
slowness surfaces come into contact at this zone. The partial stop bands for x− or y− directions
can be seen, while no absolute stop band is found.

The comparisons of the computation time of the full model with the reduced model are
shown in Table 3.2. The gain of the proposed CWFEM2D on reduced model is more than 90%
in both the number of DOFs and computation time. For more complicated 2D periodic waveg-
uides such as stiffened plates which is studied in chapter 5, the reduction allow completing the
study from days to less than half an hour.

3.3.3 The slowness surfaces and wave beaming effects

As shown by band structure in Fig. 3.6, with an appropriate selection of modal basis,
CWFEM2D can predict precisely the propagation characteristics in the beam grid such as the
slowness surfaces.

3.3.3.1 The slowness surfaces

There are four slowness surfaces in the frequency range studied. It can be seen from Fig. 3.8
that the 3rd surface comes into contact with the 2nd surface and the 4th one, which is also shown
in the band structure in Fig. 3.6. The gradient of the surfaces corresponds to the energy flow
vector field, which is given in Fig.3.10(b)-3.12(b) in the following subsection.

3.3.3.2 The k-space and wave beaming effect

The k-space will be calculated here to study the wave beaming effects of the structure at
fixed frequency.
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Figure 3.8: First four slowness surfaces

The validation of CWFEM2D by the reference k-space at 100 Hz, 600 Hz, 800 Hz, 1 kHz,
1.2 kHz, 1.4 kHz are given in the reference [Langley & Bardell, 1997], which are compared
with the results calculated by the proposed CWFEM2D in Fig. 3.9. It can be seen that the
results obtained on the reduced model conform to the results in the reference.

DFT2D of a harmonic stationary displacement field The stationary response of a finite
periodic structure under an harmonic loading is obtained by the sum of excited waves from
the loading point and reflected waves at the boundaries. The stationary response is related to
the propagative travelling waves. So the DFT2D of the harmonic stationary field of a finite
structure can give information about travelling waves in an infinite structure. The following
steps should be carried out (1) A beam grid with 100 unit cells in the x-direction and 100 unit
cells in the y-direction is modelled using FEM. (2) A harmonic excitation is placed at the center
of the clamped grid. The out-of-plane stationary displacement field is normalized by the force
and then extracted for post-processing. (3) The spatial DFT2D is applied to the real part of
extracted displacement field, which leads to wavenumbers kx and ky. So the k-space at the
excitation frequency can be deduced.

In Fig. 3.10-3.12, the k-space obtained by the DFT2D are compared with the ones obtained
by the CWFEM2D (illustrated by the green points), and differences between the two methods
are very small. So it can be concluded that results obtained from a harmonic response of a finite
structure with enough cells can be used to predict the propagation characteristics in an infinite
structure. The harmonic displacement field will also be measured experimentally to deduce
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Figure 3.9: k-space: Langley (–), WFEM2D on completed model (∗), CWFEM2D on reduced
model (◦)

k-space in chapter 4.

At low frequency, e.g., 100 Hz, the beam grid behaves like an orthotropic homogeneous
plate with equivalent parameters. The direction of the energy flow is shown in Fig. 3.10(c),
which is normal to the k-space contour. It can also be seen from the displacement field in
Fig. 3.10(b), the vibrational energy spreads in all directions.

However, at higher frequency such as 600 Hz and 1000 Hz, as shown in Fig. 3.11 and
Fig. 3.12, the normal directions of the section are limited to specific angles. At 600 Hz, the
wave is privileged in x direction and forbidden in y direction, which indicates a partial stop band
for y direction. However, at 1000 Hz, the wave is privileged in y direction and forbidden in x
direction. The wave beaming effect phenomenon is observed. This phenomenon is confirmed
by the experimental study of Langley & Bardell [1997]. Their test beam grid consisted of 13
strips in x direction and 14 strips in y direction, as shown in Fig. 3.3. One side of beam grid
was treated with a damping sheet to produce a non-reverberant structure. The loss factor was
averaged to be around 0.1. They observed also that the response of the system under harmonic
excitation of 600 Hz showed strong beaming in x direction, while strong beaming in y direction
was observed for harmonic excitation of 1000 Hz.

The wave beaming phenomena corresponds to partial stop bands for the forbidden direction.
It can also be seen from the band structure in Fig. 3.6 that no wave at 600 Hz can be found
between zone CO (wave to y direction), and no wave at 1000Hz can be found between zone OA
(wave to x direction).

The directivity of the propagation can also be observed on the displacement field under the
harmonic excitation at corresponding frequency, with energy concentrating to a limited angle,
as show in 3.11(c) and 3.12(c).
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Figure 3.10: Propagation without directivity at 100 Hz
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Figure 3.11: Propagation with directivity to the x-direction at 600 Hz
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(a) k-space
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Figure 3.12: Propagation with directivity to the y-direction at 1000 Hz
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Figure 3.13: The points at where φ is studied on the band structure

3.3.4 The wave shape φ

The wave description of the propagation contains (kx, ky, ω, φ). Until now only ω =

f(kx, ky) are studied. The wave shape φ calculated by CWFEM can be used to understand
how the wave propagate in the structure and identify the types (longitudinal, shearing, flexural)
of the waves propagating in the structures. The notation of the points where wave shapes are
studied is given in Fig. 3.13. The wave shapes are given on a rectangular domain, which is
easily extended from the unit cell.

The wave shape at intersecting points “R1”, “R2”, “G1”, “G2” are given in Fig. 3.14. It
can be seen that the wave shape at “R1” is similar to the one at “G2”, and the wave shape at
“G1” is similar to the one at “R2”. If the waves are tracked by the correlation between complex
mode shape using the Modal Assurance Criterion (MAC) [Ewins, 1984], the waves between
OC should be tracked as shown in Fig. 3.15. It indicates that in one slowness surface, we may
have two different kinds of wave shapes. So attention need to be drawn when it comes to the
interpretation of the wave types along the slowness surfaces. Or it may be more suitable to
classify the slowness surfaces by the wave shapes rather than frequency values.
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Figure 3.14: Propagative wave shape (CO), deformated (o), undeformed (∗)
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Figure 3.16: Wave shape at “O” (o), Cell mode shape (·), Undeformed unit cell (∗)

3.3.5 Wave-mode duality observation at bounding frequencies

In this subsection, the waves shapes and waves frequencies at bounding points “O”, “A”,
“B”, “C” are studied. Four types of boundary conditions of a symmetric unit cell are found,
under which the cell modes correspond to the stationary waves at bounding points.

3.3.5.1 The wave shapes at bounding points of stop band

Firstly, the wave shapes at bounding points of stop band are given. The frequencies as well
as the wave shapes are given at the bounding points “O”, “A”, “B”, “C” in Fig. 3.16, Fig. 3.17,
Fig. 3.18 and Fig. 3.19, respectively.
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3.3.5.2 The mode of the symmetric unit cell

The symmetric unit cell on which the cell modes are computed is given in Fig. 3.20. Since
only the out-of-plane movement is taken account into, the displacement DOFs q contain only
ROTX , ROTY and UZ. As mentioned in 1.5.4, there are two types of coupling DOFs between

1/4 mass 1/4 mass

1/4 mass1/4 mass

1/2 beam 1/2 beam

1/2 beam

1/2 beam

Figure 3.20: The symmetric unit cell of the beam grid on which the natural frequencies are
computed

symmetric adjacent unit cells. Suppose a plane wave propagating in the x-direction, the struc-
ture can be considered as a 1D waveguide, the coupling coordinates contain only qL and qR.
According to the definition of type I and type II in 1.5.4, UZ and ROTX belong to the type I
DOFs, ROTY belongs to the type II DOFs. For a plane wave propagating in the y-direction, the
coupling DOFs contain qB and qT, UZ and ROTY belong to the type I DOFs, while ROTX
belongs to the type II DOFs.

With λx = 1, it means that the coupling DOFs qL and qR should have the same displace-
ment. For symmetric mode in the x-direction, the type II DOFs at left and right side should
be the oppose sign, so they should both equal to zero. For anti-symmetric mode in the x-
direction, the type I DOFs should be zero. Similarly, the boundary conditions for all the cases
with λx = ±1 and λy = ±1, symmetric and anti-symmetric modes can be deduced, which are
given in Table 3.3. It can be seen that there are only four types of boundary conditions (BCI,
BCII, BCIII, BCIV).

The cell modes under 2500 Hz at these types of boundary conditions are calculated and
corresponding frequencies are given in Tab. 3.4. All the natural frequencies and mode shapes
can be found among the bounding points “O”, “A”, “B”, “C” of the first six slowness surfaces.
The natural frequencies in Tab. 3.4 are plotted in the band structure of the first six slowness
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λx = 1 λx = −1
Sym mode Anti-sym mode Sym mode Anti-sym mode

λy = 1
(BC I) (BC II) (BC II) (BC I)

UZL=UZR=0 UZL=UZR=0

Sym mode ROTYL=ROTYR=0 ROTXL=ROTXR=0 ROTXL=ROTXR=0 ROTYL=ROTYR=0

ROTXB=ROTXT =0 ROTXB=ROTXT =0 ROTXB=ROTXT =0 ROTXB=ROTXT =0

(BC III) (BC IV) (BC IV) (BC III)

λy = 1
UZL=UZR=0 UZL=UZR=0

ROTYL=ROTYR=0 ROTXL=ROTXR=0 ROTXL=ROTXR=0 ROTYL=ROTYR=0

Anti-sym mode UZB=UZT =0 UZB=UZT =0 UZB=UZT =0 UZB=UZT =0

ROTYB=ROTYT =0 ROTYB=ROTYT =0 ROTYB=ROTYT =0 ROTYB=ROTYT =0

(BC III) (BC IV) (BC IV) (BC III)

λy = −1
UZL=UZR=0 UZL=UZR=0

ROTYL=ROTYR=0 ROTXL=ROTXR=0 ROTXL=ROTXR=0 ROTYL=ROTYR=0

Sym mode UZB=UZT =0 UZB=UZT =0 UZB=UZT =0 UZB=UZT =0

ROTYB=ROTYT =0 ROTYB=ROTYT =0 ROTYB=ROTYT =0 ROTYB=ROTYT =0

λy = −1
(BC I) (BC II) (BC II) (BC I)

UZL=UZR=0 UZL=UZR=0

Anti-sym mode ROTYL=ROTYR=0 ROTXL=ROTXR=0 ROTXL=ROTXR=0 ROTYL=ROTYR=0

ROTXB=ROTXT =0 ROTXB=ROTXT =0 ROTXB=ROTXT =0 ROTXB=ROTXT =0

Table 3.3: Boundary conditions (BC) of symmetric unit cell

surfaces in Fig. 3.21.

ROTYL=ROTYR=0
UZL=UZR=0

ROTXL=ROTXR=0

ROTXB=ROTXT=0

( BC I ) ( BC II)
0Hz (O1) 148Hz (A1)

274Hz (C1) 372Hz (B1)
749Hz (O2) 817Hz (C3)

1699Hz (A3) 1930Hz (O5)
1932Hz (B4) 2165Hz (A5)

274Hz (A2)
420Hz (B2)

1049Hz (O3)
1283Hz (C4)
2072Hz (A4)

UZB=UZT=0
ROTYB=ROTYT=0

(BC III)
658Hz (C2) 898Hz (B3)

1625Hz (O4) 2049Hz (C5)

(BC IV)

2199Hz (A6)

Table 3.4: Natural frequencies under 4 boundary conditions and corresponding points in band
structures

The cell modes shapes under these boundary conditions are also plotted in Fig. 3.16 - 3.19.
It can be seen that all the bounding points in the first four slowness surfaces (“O1-O4”,“A1-A4”,
“B1-B4”, “C1-C4”) correspond to cell modes shown in Tab. 3.4, not only they have the same
the frequencies, the wave shapes correspond also to the mode shapes.

As a conclusion, the cells modes at these boundary conditions are equivalent to the waves at
bounding frequencies. The equivalence found by Mead [1975a,b] for 1D periodic structures is
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Figure 3.21: Band structure with natural frequencies of symmetric unit cell. BCI (· − ∗), BCII
(· − ◦), BCIII (· −�), BCIV (·− M)

extended to 2D beam grid, as mentioned in section 1.5.4. According to wave-mode duality, cell
modes correspond to stationary wave, so it is concluded that the waves at bounding frequencies
of stop bands are stationary.

3.4 Conclusions

This chapter has extended the CWFEM to 2D periodic structures. The effectiveness of the
proposed method was illustrated on a beam grid. Main conclusions of this work can be drawn
as follows:

• The formulation of CWFEM2D was provided, which can be used to study the wave prop-
agation in 2D periodic structures. The validation of the proposed method was realized
through others methods: the results in the reference [Langley & Bardell, 1997], WFEM
on full model, and DFT2D of the forced harmonic displacement field.

• The proposed CWFEM combines the advantages of CMS and WFEM. The method fully
exploits the periodic propriety of the structure. It allows studying the influences of local
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dynamic on global behaviour of structure with less computational cost. In the given
numerical example, a gain of 99% in computation time was obtained.

• To assure the convergence of CWFEM, the truncated modes ΨC should include all the
fixed boundary modes ΨI with natural frequency lower than three times of maximum
frequency investigated. At low frequency, the static condensation of the internal DOFs
can be applied, with boundary DOFs as master DOFs and internal DOFs as slave DOFs.

• CWFEM is able to predict the high frequency behaviour of the beam grid, where the
directivity of the propagation appears.

• The iso-frequency contour of slowness surfaces obtained from a harmonic response of a
finite structure can be used to predict the propagation characteristics in an infinite struc-
ture.

• The waves at bounding frequency of stop bands are stationary, they correspond to the cell
modes under certain boundary conditions.
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Chapter 4

Numerical and experimental investigation
on wave propagation features in
perforated plates

4.1 Introduction

Perforated plates are widely used in various engineering domain, from the micro-perforated
panel used for noise control to the perforated structures used in heat exchangers of nuclear
power plants. This chapter is dedicated to apply the proposed CWFEM to study perforated
plates. The first objective of this chapter is to propose wave-based homogenization methods
based on the dispersion relation identified by the CWFEM. The second objective is to validate
CWFEM by the experimental result, by comparing the k-space obtained issued from the two
approaches. The chapter can be considered as the application of CWFEM at low frequency to
determine the equivalent model. However, the high frequency behaviour such as wave beaming
effect phenomenon is also predicted by CWFEM and verified by experimental approach.

4.2 Determination of equivalent parameters at low frequency

For some special engineering applications, more than a million holes are contained in per-
forated plate (e.g., a shadow mask in a monitor). So it might be difficult to use the FEM to
study these structures since it is time-consuming. The simplest way is to replace the perforated
plate with an equivalent solid plate (homogenized plate) considering the weakening effect of
the holes.
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Several mode-based homogenization method are developed for the perforated plates, among
which the method proposed by Jhung & JO [2006] is reviewed in 1.3.4.3 where its disadvan-
tages are also discussed. To conquer these disadvantages, the wave-based approach to determine
the equivalent parameters in perforated plate is proposed here.

4.2.1 Equivalent isotropic model

In a thin isotropic plate with Young’s Modulus E∗ , density ρ∗, Poisson ratio ν∗ and
thickness t∗, there are three kinds of plane waves propagating inside: longitudinal wave with
wavenumber kl, shear wave with wavenumber ks and flexural wave with wavenumber kf . The
analytical forms for their dispersion relations are given in Eq. (4.1a) - Eq. (4.1c).

kl =ω/

√
E∗

(1− ν∗2)ρ∗
(4.1a)

ks =ω/

√
E∗

2(1 + ν∗)ρ∗
(4.1b)

k2
f =ω/

√
E∗t∗2

12(1− ν∗2)ρ∗
(4.1c)

ρ∗t∗ =(1− τ)ρt (4.1d)

If a homogenized isotropic model of a perforated plate exists at low frequency, it means that the
waves propagate in the same way to all directions, the wavenumber k should be the same for
all the directions. In that case, the k-space should form a circle. The waves propagating in all
directions can be represented by the wave propagating in the x-direction. Once the dispersion
relation to the x-direction is predicted by the CWFEM, it can be used to determine the equivalent
parameters of its homogenized plate. An additional equation can be given in Eq. (4.1d) which
supposes the mass per unit surface of the homogenized model is the same as the full model.
τ is the ratio of the hole surface compared to total surface. So the four equivalent parameters
E∗, ρ∗, ν∗, t∗ can be determined using the four equations in Eq. (4.1). Although solutions found
are frequency-dependant, they vary little in the low frequency range, as shown in the numerical
examples afterwards. However, one may find big variations of the equivalent parameters around
0 Hz. The variation are mainly caused by numerical errors since the wavenumbers kl and ks
could be very small around 0 Hz. So the equivalent values found around 0 Hz should be omitted.

The proposed wave-based method consists of the 4 following steps (1) Use CWFEM to
derive the k-space for the flexural, longitudinal and shear waves, find the limit frequency for
which the k-space is still a circle (2) Below the frequency limit, compute the dispersion relation
of the wave propagating in the x-direction, identify different wave types according to their
deformation shapes and find the values of kl, ks, kf (3) Solve Eq. (4.1) to find the equivalent
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parameters. Eliminate the values with big variation around 0 Hz and compute the average value
in the frequency range as the final equivalent parameters.

4.2.2 Equivalent orthotropic model for in-plane waves and isotropic model
for out-of-plane waves

The weakening effects of the holes on the plate may be different for the in-plane waves
and out-of-plane waves. Different models may be considered for the descriptions of two types
of waves. An isotropic in-plane behaviour and an orthotropic out-of-plane behaviour may be
identified (for model 3 in Tab. 4.1). Here the related formulations are given. The generalized-
stress/generalized-strain relationship of a thin plate is governed by the following equation:(

N

M

)
=

[
A B

BT D

](
ε

χ

)
(4.2)

where χ represents the curvature for the bending of the plate and ε represents the membrane
strain for the in-plane motion. The matrices A,B,D are to be determined for the equivalent
model. In thin perforated plates, the in-plane waves and out-of-plane waves are uncoupled,
hence we have B = 0. The matrices D and A are to be determined for the out-of-plane
movement and in-plane movement respectively.

4.2.2.1 Isotropic model for out-of-plane waves

The curvature for the bending of the plate χ can be written as:

χ =


−∂2w

∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y

 (4.3)

M represents bending stress resultant per unit length

M =

 Mx

My

Mxy

 =

∫ t
2

− t
2

z

 σxx

σyy

σxy

 dz = Dχ (4.4)
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For isotropic material, we have [Géradin & Rixen, 1992]

D =
Et3

12(1− ν2)

1 ν 0

ν 1 0

0 0 1−ν
2

 (4.5)

The value in D can be determined once the wavenumber of the flexural wave is known, using
the relation in Eq. (4.1c) and Eq. (4.1d).

D =
ω2ρ∗t∗

k4
f

1 ν 0

ν 1 0

0 0 1−ν
2

 (4.6)

The mass per unit surfaces remains the same as before with ρ∗t∗ = (1− τ)ρt.

4.2.2.2 Orthotropic model for in-plane waves

For the in-plane wave, the following relation can be established, with N the membrane
stress resultant per unit length and ε the membrane strain

Aε = A

 εxx

εyy

2εxy

 = N =

 Nxx

Nyy

Nxy

 = t

 σxx

σyy

σxy

 (4.7)

the strain-stress relations for an orthotropic material under plane-stress is as follows:

 σxx

σyy

σxy

 =


E∗
x

1−ν∗xyν∗yx
νyxE

∗
x

1−ν∗xyν∗yx
0

ν∗yxE
∗
x

1−ν∗xyν∗yx
E∗
y

1−ν∗xyν∗yx
0

0 0 G∗xy


 εxx

εyy

2εxy

 =

C11 C12 0

C12 C22 0

0 0 C66


 εxx

εyy

2εxy


(4.8)

Suppose the same thickness is conserved, to find the value of the matrix A, we need to determine
the terms C11, C12, C22 and C66.

A = t

C11 C12 0

C12 C22 0

0 0 C66

 (4.9)

SupposeE∗x,E∗y , ν∗xy, ν
∗
yx,G∗xy, ρ

∗ are the parameters of the orthotropic material, whereE∗x/ν
∗
xy =

E∗y/ν
∗
yx. For the plane wave propagating in angle θ with the x-direction, the wave vector can be

expressed as a function of θ :
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Figure 4.1: Wave vector in an orthotropic basis: notation

kθeθ = kxex + kyey = kθ(cos θex + sin θey) = kθ(aex + bey) (4.10)

with a = cos θ, b = sin θ. The phase velocities for in-plane waves propagating in the orthotropic
structure are given as follows [Royer & Dieulesaint, 2000]

c2
l,s =

a2C11 + b2C22 + C66 ±
√

∆m

2ρ∗
(4.11)

with
∆m = [(C11 − C66)a2 + (C66 − C22)b2]2 + 4a2b2(C12 + C66)2 (4.12)

The upper sign for longitudinal wave (cl), and lower sign for shear wave (cs). Especially, we
have

cl(θ = 0) =

√
C11

ρ∗
, cs(θ = 0) =

√
C66

ρ∗
, cl(θ =

π

2
) =

√
C22

ρ∗
(4.13)

For a perforated plate, once the k-space at a fixed frequency is determined by CWFEM, the
phase velocity of the waves can be easily deduced since cl,s = 2πf/kl,s. Then its homogenized
plate with an orthotropic material can be found. If the mass per unit surface and the thickness
are the same as the perforated plate, the equivalent density can be obtained as ρ∗ = (1 − τ)ρ.
The velocities for wave propagating in x and y direction, as given in Eq. (4.13), can be used to
compute C11, C22 and C66. Then the value of C12 can be determined by the wave propagating
in another direction, knowing kx and ky, the angle θ can be found since tan θ = ky/kx. Once
the values C11, C12, C22, C66 are known, the components in matrix A can be determined using
the relations in Eq. (4.9).

4.3 Experimental set-up and data post-processing

Experimental identification of wave propagation characteristics has proved to be a com-
plicated task for two dimensional structures. The methods most often used to measure the
propagating flexural wavenumbers within a structure [Chronopoulos et al., 2013]. Here we use
the experimental approach to identify the k-space of the flexural waves. It involves mainly two
steps: First step is the measurement of the out-of-plane displacement field by laser scanner.
Second step is the post-processing of the measurement data by DFT to deduce the k-space.
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4.3.1 Experimental measurement of harmonic displacement field

The experimental setup is as shown in Fig. 4.2. The main measurement equipment is Poly-
tec PSV-400 Scanning Vibrometer. Excitation signal is input into the electromagnetic vibration
shaker, which transmits vibrations into the center of the perforated plate. A laser scanning head
based on the Doppler effect is used to measure velocity of the plate, and it is transferred to the
data manage system to study the vibration characteristic of the plate, the experimental signal
flow is given in Fig. 4.3. The plate is hung with an elastic string to simulate free boundary
conditions. No particular damping treatment of the plate is carried on.

Figure 4.2: The experimental setup

Input signal
Electromagnetic 

shaker

Scanning head

Figure 4.3: Schematic of the experimental signal flow

An impedance head with piezoelectric accelerometer and force gauge is mounted at the
excitation point of the shaker. The coherence between the average amplitude of the scanning
points and the force is examined to estimate the causality between the input and output.

For model 2 in Table.4.1, up to 3 kHz, a pseudo random signal of large band is used to excite



4.3. Experimental set-up and data post-processing 93

the plate, then the data manage system uses the Fast Fourier transformation (FFT) to calculate
the frequency response function in all the excitation frequency range. However, the coherence
input/output decreased in higher frequency (between 3 kHz - 3.5 kHz), as shown in Fig. D.1.
To improve the coherence at higher frequency, the vibration energy is concentrated around an
interested frequency. A pseudo random excitation centred at the frequency of interest with a
width range of 20 Hz is used, good coherence is obtained in this case, as shown in Fig. D.2.
During the whole experimental study, a FFT average of 10 measurements are performed at each
scanned point, an overlap of 75% is used so as to minimize scanning time.

The spatial sampling of the scanning points equals to the length of the unit cell, the points
at the corners of each unit cell are scanned. Once the forced response at all scanned points
are obtained, the post-processing (DFT2D) allows deducing the k-space of the corresponding
frequency, as illustrated in Fig. 4.4.

(a) Measured displacement field
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(b) k-space

Figure 4.4: Post-processing (DFT2D) of displacement field to obtain corresponding k-space

4.3.2 DFT2D - from displacement field to k-space

Once the displacement field is measured, the k-space can be deduced from DFT2D. In fact,
there are several methods to post-process the experimental data, such as least squares meth-
ods [McDaniel & Shepard, 2000], discrete Fourier Transform (DFT) [Bolton et al., 1998] and
Prony series [Grosh & Williams, 1993]. The DFT presents two major advantages. First, it is
bijective, having IDFT as its inverse transform, which allows easy filtration in the k-space. Sec-
ond, it is very rapid. Through Fast Fourier Transform (FFT) like algorithm, very fast data
processing can be achieved. However, for most of the case, the method has mainly three
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drawbacks: Aliasing, leakage and k-space discrimination. For a spatial sampling of Lx in
the x-direction, and Ly in the y-direction, aliasing refers to the error due to field discretiza-
tion. DFT is 2π/Lx and 2π/Ly - periodic, which leads to erroneous value outside the domain
[−π/Lx, π/Lx] and [−π/Ly, π/Ly]. However, if Lx and Ly correspond to the smallest periods
in the x− and y− direction of the 2D periodic structure, the wavenumbers lie always inside
the domain [−π/Lx, π/Lx] and [−π/Ly, π/Ly]. And k-space discrimination implies that the
wavenumber is given only known over k-space grid, which may lead to poor resolution. For our
experimental samples, there are more than 1000 unit cells in both plates, so k-space discrimina-
tion is no longer our concern. So DFT is employed to post-process the experimental data which
assumes that:

1. (H1) The displacement field ŵ(x, y) is given over a uniform spatial grid
(
xi = i∆x, yj =

j∆y
)

0≤i≤N1−1
0≤j≤N2−1. ∆x and ∆y are the space increments along x and y axis respectively, N1

and N2 are the number of measured data along x and y axis respectively.

2. (H2) Outside this grid the field is assumed to be 2D−periodic (\ symbol defines the
euclidian ratio residue), namely :

∀i, j ∈ N2 , ŵ(i∆x, j∆y) = ŵ
(

(i\N1)∆x, (j\N2)∆y
)

(4.14)

It can be readily shown that the family of exponential functions with discrete wavenumbers:(
kxp = p∆kx, kyq = q∆ky

)
0≤p≤N1−1
0≤q≤N2−1

with ∆kx = 2π
N1∆x

and ∆ky = 2π
N2∆y

form a basis for complex functions space, so that the field
ŵ can be written in a single format :

ŵ(xi, yj) =

N1−1∑
p=0

N2−1∑
q=0

̂̂w(kxp, kyq) eı(kxpxi+kyqyj) (4.15)

The Discrete Fourier Transform ŵ −→ ̂̂w is thus the following :

̂̂w(kxp, kyq) =
1

N1N2

N1−1∑
i=0

N2−1∑
j=0

ŵ(xi, yj)e
−ı(kxpxi+kyqyj) (4.16)
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4.4 Numerical and experimental investigations on the perfo-
rated plates

In this section, the wave propagation features in different models of perforated plates have
been studied. The dimensions of the perforated plates are given in Tab. 4.1. The pitches Lx and
Ly correspond to the period length in the x and y directions. τ is the ratio of the hole surface
compared to total surface. The thickness of the models is 1 mm except the model 1, which is of
3.6 mm. The thickness of plates is small compared to the pitch, so the theory of thin plate can
be employed, the shell element is used in CWFEM and FEM. All the models are made by steel,
with Young’s Modulus E = 210 GPa, Poisson ratio ν = 0.3, density ρ = 7800 kg/m3.

Model Hole shape Penetration Hole diameter Pitch Lx Pitch Ly Hole surface ratio τ
1 Circulaire Square 30 72 72 14%

2∗ Circulaire Triangular 8 12×
√

3 12 40%
3∗ Square Square 20 25 25 64%
4 Square Square 15 25 25 36%
5 Square Square 10 25 25 16%
6 Square Square 5 25 25 4%

Table 4.1: Different models of perforated plate. ∗ refers to the experimental models (dimensions
in mm)

In this section, CWFEM is applied to predict the wave propagation feature in all the five
models. Experimental validations of the CWFEM are carried out on the model 2 and 3. Based
on the dispersion relation, the homogenized plate of model 1, 2, 3 at low frequency are found
and compared with the full models. The high frequency behaviour such as the wave-beaming
effect is also observed and discussed in model 5.

4.4.1 Perforated plate with circular holes

The plate model 1 and 2 contain both circular holes, the definitions of their dimensions are
shown in Fig. 4.5. In square penetration Lx = Ly, and in triangular penetration, Lx =

√
3Ly.

4.4.1.1 Square penetration pattern

Model 1 is a perforated plate with circular holes in square penetration pattern, as shown in
Fig. 4.5(a).
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(a) Square penetration (b) Triangle penetration

Figure 4.5: Schema for perforated plates with circular holes and their unit cells used in CWFEM
(- -)

Homogenized model at low frequency For the given model, it is verified that until 1500
Hz, both the flexural wave in Fig. 4.6(a) and the longitudinal wave (smaller wavenumber in
Fig. 4.6(b)) propagate equally in all directions. The shear wave in Fig. 4.6(b) propagates in
almost the same way in all directions. The method proposed to determine an equivalent isotropic
model in 4.2.1 will be employed here. The frequency limit for the validation of the homogenized
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(b) k-space for longitudinal and shear waves

Figure 4.6: k-space at 1500 Hz (-/x) The curve fitting of a circle (o)

model is thus 1500 Hz. At this frequency, the wavelength for the flexural waves is around 0.15
m, which is almost twice of the period length. That differs from our previous knowledge that the
homogenized model is valid only when the wavelength is much longer than the period length.
The dispersion relation of the waves propagating in the x-direction is given in Fig. 4.7.

The three curves in Fig. 4.7 corresponds to three kinds of wave propagating in the x-
direction. Their wave shapes are given on the boundary of the unit cell in Fig. 4.8. The smallest
wavenumber corresponds to wave shape in Fig. 4.8(a), which is the longitudinal wave. The sec-



4.4. Numerical and experimental investigations on the perforated plates 97

0 500 1000 1500
0

10

20

30

40

Frequency (Hz)

k
x
 (

m
−

1
)

Figure 4.7: The dispersion relation in the x-direction

ond wavenumber corresponds to the shear wave shape in Fig. 4.8(b). The biggest wavenumber
corresponds to flexural waves in Fig. 4.8(c). Once the wavenumbers kl, ks and kf are deter-
mined, they can be used to determine the equivalent parameters.
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Figure 4.8: Three kinds of wave shape (o) Undeformed unit cell (∗)

It can be seen in Fig. 4.9 that the equivalent parameters remain stable in the frequency range.
The average of these values is taken as the equivalent parameters, which leads to E∗ = 134

GPa, t∗ = 3.8 mm, ν∗ = 0.37, ρ∗ = 6458 kg/m3. The dispersion relation of the full model is
compared to the one of the homogenized model in Fig. 4.10. The error is below 1% between
the two results.

The validation of the homogenized model is also given on a finite plate through a modal
analysis. The finite plate contains 6 cells in the x-direction and 6 cells in the y-direction. The
model is clamped at the four sides. Natural frequencies of the homogenized model are com-
pared to those of full model. Good correlation can be found between the two sets of natural
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Figure 4.9: The equivalent parameters of the Model 1

0 500 1000 1500
0

5

10

15

20

25

30

35

40

45

k
x
(m

−
1
)

 Frequency
0 500 1000 1500

0

0.4

0.8

E
rr

o
r 

%

 Frequency

Figure 4.10: The dispersion relation of the full model (-) and the homogenized model (o). The
error of the homogenized model compared to the full one
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frequencies under 1500 Hz.

(a) Full model with 36 cells by
FEM
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(b) The natural frequencies of the full model (o) and homoge-
nized model (�)

Figure 4.11: Validation of the homogenized model via modal analysis

4.4.1.2 Triangular penetration pattern

The model 2 with circular holes and triangular penetration pattern is studied here. An ex-
perimental investigation is carried out on this model. A plate with 23 periods in the x-direction
and 81 periods in the y-direction is excited by the shaker at the center. Due to the limited angle
of the laser head, a grid formed by 23 points in the x-direction and 44 points in the y-direction
around the center of the plate are scanned.

Homogenized model at low frequency The measured plate is excited firstly by a pseudo
random signal center on 3000 Hz. Then DFT2D is performed to deduce k-space from the
scanned displacement field. The results by the experimental investigation and by the CWFEM
is given in Fig.4.12. It can be seen that two results correlate faire well with each other.

It is shown by Fig. 4.13 that until 4700 Hz, the waves propagate the same way in all direc-
tions. The k-space of the three types of waves remains circle at this frequency. So a homog-
enized isotropic model can be found which is valid until this frequency. Same as the previous
model, the homogenized model is valid until the wavelength equals almost twice of the pitch in
the x-direction Lx.

Since the plate behaves isotropic until 4700 Hz, the waves propagating in all directions can
be represented by those propagating in one direction. The dispersion relation in the x-direction
is given in Fig. 4.14. It can be seen that three types of waves propagate in the perforated plate.
From the smallest wavenumber to the biggest wavenumber, longitudinal wave, shear wave and
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(b) Experimental result

Figure 4.12: Comparasion of k-space by the simulation and experiment (flexural waves at 3000
Hz)
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flexural wave are identified successively. Their wave shapes are given on the contour of the
unit cell are shown in Fig. 4.15. The unit cell used in CWFEM is illustrated in Fig. 4.5(b), it
contains half hole at each side, so as the wave shape.

0 1000 2000 3000 4000 5000
0

50

100

150

Frequency (Hz)

k
x
 (

m
−

1
)

Figure 4.14: The dispersion relation in the x-direction
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Figure 4.15: Three kinds of wave shape (o) Undeformed unit cell (∗)

The equivalent parameters for this frequency range are given in Fig. 4.16. They remain
stable in the frequency range, the average of the values is taken as the equivalent one, which
leads to to E∗ = 59 GPa, t∗ = 1.1 mm, ν∗ = 0.36, ρ∗ = 4124 kg/m3.

The dispersion relation of the homogenized model is computed by CWFEM, the result
matches quite well with the one on full model. A difference of less than 0.3% in the frequency
range is identified until 4700 Hz, as shown in Fig. 4.17.

The validation of the homogenized model is also carried on via modal analysis of finite
plate. The plate is clamped at four sides, containing 6 unit cells in the x-direction and 7 in the
y-direction. The natural frequencies under 4700 Hz of the two models are given in Fig. 4.18(b).
The x axis corresponds to the mode orders in x, the nth mode indicates that there is n extrema
in the x-direction. The mode orders in y are illustrated by different curves. The curve with
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smallest frequency presents the 1st order in the y-direction, then the 2nd curve corresponds to
2nd order and so on. Good correlation between the natural frequencies of the full model and
homogenized model has been observed. Biggest discrepancy of 5% is found at mode (2,3),
with 2 extrema in the x-direction and 3 extrema in the y-direction. The natural frequency of this
mode is at 4185 Hz for the full model, compared to 4034 Hz for the homogenized model.
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(b) The natural frequencies of the full model (o) and homogenized
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Figure 4.18: Validation of the homogenized model via modal analysis

High frequency range At higher frequency, the plate behaves no longer isotropic. It can be
told by the k-space in Fig. 4.19. Our experiment corroborates the simulation result by CWFEM
at 8000 Hz. No privileged direction is observed at this frequency. The propagation directions
cover almost all the angles.

4.4.2 Perforated plate with square holes

The study on model 3 with square holes under square penetration is conducted here. Ex-
perimental investigation is carried out on this model as well. The studied plate is of 1.2 m × 1
m , it contains 48 unit cells in the x-direction and 39 unit cells in the y-direction. The measured
field of the laser forms a uniform spatial grid of 39 × 39 points in both directions.

The k-space at low frequency such as 2200 Hz is given in Fig. 4.20. It can be seen that
flexural waves propagate in an isotropic way to all directions. However, the longitudinal and
shear waves change with the propagating directions. The k-space for the two waves seems to
form two ellipses which intersect with each other. However, as indicated in the zoom figure
4.20(c), it can be seen that they don’t intersect. It is believed that the holes of big size play an
important role here. In this model, the holes cover 64% of the whole area, compared to 14%
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(b) Experimental result

Figure 4.19: Comparasion of k-space by the simulation and experiment (flexural waves at 8000
Hz)
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in model 1 and 40% in model 2. Three additional models, model 4, model 5 and model 6 are
studied to validate this hypothesis. They have the same hole shape, with the same penetration
pattern, only the hole size is changed. And the k-space of the longitudinal and shear waves for
these models are given in Fig. 4.21(a), Fig. 4.21(b), Fig. 4.21(c) respectively. It can be seen that
with the hole size decreases, the k-space of the waves become closer to a circle.
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Figure 4.21: k-space for longitudinal and shear waves at frequency where length of flexural
wave equals to twice of the pitch. The curve fitting of a circle (o)

In addition, if we compare the model 2 with model 1 and model 4, where hole surface
ratio τ equals respectively to 40%, 14% and 36%. It can be seen that the model 2 with each
larger area of holes, behaves more isotropic than model 4 and model 1. So if one wants to
design perforated plate which has isotropic propriety at low frequency, the circular holes with
triangular penetration pattern is the best among three configurations.

4.4.2.1 Equivalent homogenized model

For model 3, the method proposed in subsection 4.2.2 are employed which determines an
isotropic model for out-of-plane waves and orthotropic model for in-plane waves. It can be
seen from Fig. 4.20 that flexural waves behave isotropic until 2200 Hz. Based on Eq. (4.6) and
(4.9), the matrices D,A which determine respectively the out-of-plane and in-plane waves are
as follows:

D = 3.8

 1 0.3 0

0.3 1 0

0 0 0.35

 ,A =

4.38e7 3.4e6 0

3.4e6 4.38e7 0

0 0 1.1e6

 (4.17)

The validity of the orthotropic model for in-plane movement is illustrated in Fig. 4.22. For
the equivalent orthotropic model, k-space calculated based on the analytical formulation in
Eq. (4.11) and by CWFEM concur well with the k-space by CWFEM on the full model of
perforated plate.
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Figure 4.22: k-space for in-plane wave. Homogeneous plate with orthotropic materials: Ana-
lytical relation in Eq. (4.11) (-), CWFEM (o). Model 3 - Perforated plate with square holes by
CWFEM (×)

4.4.2.2 Validation by the experimental method

The k-space of the flexural wave in model 3 are deduced also by the DFT2D of the measured
displacement field. The results are given at 1500 Hz, 2800 Hz and 5000 Hz in Fig. 4.23,
Fig. 4.24 and Fig. 4.26. It can be seen that the experimental results are in good agreement with
the simulation results by CWFEM.
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Figure 4.23: Comparasion of k-space by the simulation and experiment (flexural waves at
1500Hz)

It can be seen that at 1500 Hz, the flexural waves behaves isotropic in all directions.

At higher frequency such as 2800 Hz, the wave beaming effects phenomenon begins to
appear, the propagation direction is privileged to the direction y = ±x, and the propagation is
limited to a certain angular range. However, the stationary displacement field doesn’t possess
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Figure 4.24: Comparasion of k-space by the simulation and experiment (flexural waves at
2800Hz)

evident privileged directions, as shown in Fig. 4.25. Since no particular damping treatment of
the plate has been carried on, the reflected waves by the boundaries are added on the incident
waves, forming the stationary displacement without showing the initial privileged propagation
directions of the structure.

Figure 4.25: The measured displacement field at 2800 Hz

At 5000 Hz, the k-space identified experimentally shows also a big similarity with the one
calculated by WEFM. No evident direction where the wave cannot propagate is observed. The
presence of the noise in the experimental k-space may be due to the evanescent waves. Since
the evanescent waves also contribute to the measured displacement field, while the numerical
k-space includes only the propagating waves at this frequency.
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Figure 4.26: Comparasion of k-space by the simulation and experiment (flexural waves at
5000Hz)

4.5 Conclusions and perspectives

The wave propagating features in perforated plates in a broadband frequency range are
studied both by CWFEM and experimental approach. The most important points can be sum-
marized as follows:

• At low frequency, for the two perforated plates with circular holes under square and trian-
gular penetration pattern, an isotropic behaviour was identified both for the in-plane and
out-of-plane motion. Based on their dispersion relations predicted by CWFEM, a homog-
enization method was proposed to find the homogenized solid model. The method allows
not only to find equivalent parameters such as Young’s Modulus, mass density, Poisson
ratio and thickness, but also to predict the frequency range where the homogenized model
is valid. For the two models, the homogenized models were found almost until the wave
length equals to twice of the period length. The method was also validated by the modal
analysis, where natural frequencies of the homogenized model correlate with the ones of
full model.

• For the perforated plate with square holes, an isotropic behaviour was identified for the
out-of-plane wave while the in-plane waves behaved orthotropic. The homogenization
method to find its equivalent model was proposed. The matrices in the generalized stress-
strain relationship of the equivalent model were determined. Good agreement was ob-
served between the k-space of the homogenized model and the full model.

• To obtain an isotropic behaviour for both the in-plane and out-of-plane waves, the per-
forated plate with circular holes under triangular penetration is the best among the three
configurations treated in this chapter.
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• Experimental investigation was carried out on two models. The displacement field was
measured by a scanning laser. The k-space deduced by the DFT2D of the displacement
field correlates well with one obtained by CWFEM. It is concluded that CWFEM is able
to predict wave propagation characteristics at low frequency where homogenized model
still exists and at high frequency where wave beaming effects phenomenon occurs.

Future investigations will address the application of homogenized method on other 2D
periodic structures, such as thick perforated plate, laminated composite plates and honeycomb
sandwich. The other criterion will be used to validate the homogenized model, such as the
forced response of the structure.
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Chapter 5

Wave propagation features in periodically
orthogonally rib-stiffened plate

5.1 Introduction

Rib-stiffened panels are extensively used in automotive, aerospace and civil engineering.
It ensures to some extent a compromise between their rigidity and their weight. In most of
the studies, they are treated as periodic structures since the stiffeners are often distributed equi-
spatially.

One classical approach is to represent the stiffened plate by an equivalent orthotropic plate
of constant thickness having the same stiffness characteristics. The equivalent mass density
can be defined by the conservation of mass and the equivalent stiffness values can be deter-
mined by the pure static considerations. The method can predict correctly wave propagation
characteristics of unidirectionally stiffened plate at low frequency [Ichchou et al., 2008]. How-
ever, for a orthogonally stiffened plates with stiffeners of different cross-section properties or
unequally spaced, the orthotropic plate homogenization may no longer be applicable. Further-
more, equivalent model cannot be expected to yield good results for cases with large stiffener
spacings [Chen & Xie, 2005]. Several analytical models have been developed to study both uni-
directionally stiffened and orthogonally stiffened plates. Fahy & Lindqvist [1976] studied wave
propagation in damped structures consisting of flat plates stiffened by one beam or two parallel
beams. They supposed a pure flexural motion exists in the plates and pure flexural/torsional
motion exist in the ribs. Dispersion curves were therefore deduced analytically and discussion
of damping treatments for these structures was given. Lee & Kim [2002] modelled the stiff-
eners by a combination of lumped masses and translational and rotational springs to evaluate
the sound transmission loss utilizing spatial harmonic technique developed by Mead & Pujara
[1971]. Their model does not take into account the geometry of the stiffeners. Maury & Mattei
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[2002] added the stiffeners onto the plate as a force, without taking the moment into account.
Lin & Pan [2006] modelled the stiffeners of simply supported plates as forces and moments and
evaluated the forced vibration of unidirectionally stiffened plates. A semi-analytical model is
proposed by Mejdi & Atalla [2010], based on the modal expansion technique which account
the moment and force coupling between ribs and plates. Analytical modelling of wave propa-
gation in orthogonally rib-stiffened sandwhich structures is studied by Xin & Lu [2011] where
the tensional, bending and torsional vibrations of rib-stiffeners are all considered.

In this chapter, the proposed numerical CWFEM is applied on the skin of the fuselage,
which can be considered as a periodically orthogonally rib-stiffened plate. Attention is paid to
study the mid and high frequency behaviour where the local modes of the unit cells play an
important role in the dynamic behaviour. The chapter begins with the presentation of the model
and some of the experimental results. Subsequently, the CWFEM is applied to calculate the
wave propagation characteristic in stiffened plate, the results as well as the computation time
have been compared with the WFEM. The modal density in mid- and high- frequency range is
then deduced for a finite model with 100 unit cells. The concluding remarks are given at the
end of this chapter.

5.2 Experimental study on the skin of the fuselage

Ichchou et al. [2011] have carried out an experimental study about the vibroacoustic control
of fuselage. The same model of the skin is employed here. Some of the experimental results
are given in this chapter to validate the numerical model.

5.2.1 Description of the experimental specimen

The measured fuselage skin is of 2 m length, and of 1.24 m width. The skin is stiffened
with horizontal stringers in “Z” and vertical frames in “C”. In the length, it contains 3 complete
unit cells and half unit cell at each side. In the width, it contains 6 complete unit cells and half
unit cell at each sides. The unit cell is given in Fig. 5.1, with the stringer at the bottom side and
the frame at the left side. The length of the unit cell is Lx = 0.51 m, while the width is Ly =

0.17 m. The plate is of 1 mm thickness. The dimensions of the stringers and frames in Fig. 5.2
are w1 = 6 cm, w2 = 1.2 cm, w3 = 2 cm, w4 = w5 = 1.45 cm. They both made of aluminium with
thickness of 1 mm.



5.2. Experimental study on the skin of the fuselage 113

Figure 5.1: Unit cell of the stiffened plate

Figure 5.2: The dimension of the frame (Beam in “C”) and the stringer (Beam in “Z”)

5.2.2 Validation of the FE model by experimental results

The forced response until 1000 Hz of experimental specimen is scanned using laser vi-
brometer (Polytec PSV 400). The experimental setup is given in Fig. 5.3. The average response
of a unit cell are displayed in Fig. 5.4.

The forced response of the stiffened plate exhibits a response band phenomenon. As shown
in Fig. 5.4, below 100 Hz, global behaviour dominates. Local (1,1) mode dominates at 110 -
150 Hz, (2,1) at 170 - 220 Hz, (3,1) at 250 - 300 Hz, etc. Within each bandwidth, the number
of local modes (n, 1) of the same n is determined by the number of gridded cells, i.e. around 7
for this case.

A finite stiffened panel with 4 complete unit cells in length and 7 complete unit cells in
width has been modelled using FEM. A modal analysis is carried out on the FE model, as given
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Figure 5.3: Experiment setup for scanning the local behaviour [Ichchou et al., 2011]

Figure 5.4: Frequency response function of the stiffened skin (averaged spectrum of one
cell) [Ichchou et al., 2011]

in Appendix C. It can be seen that the model is different from the experiment specimen at the
boundaries. However, the local behaviour shouldn’t be modified a lot. The element type shell
63 has been used for the plate, and beam 188 for the stringers and frames in ANSYS. To ensure
the convergence of the mesh until 1000 Hz, the unit cell is divided into 36 elements in the x-
direction and 12 elements in the y-direction. The modal analysis has been carried on the panel,
with clamped boundary conditions at the four sides. The local mode (1,1) begins at 108 Hz
(Fig. C.1) and dominates between 108 Hz - 165 Hz. The local mode (2,1) begins at 167 Hz
(Fig. C.2) and dominates between 167 Hz - 218 Hz, the local mode (3,1) begins at 240 Hz. The
frequency ranges of the local modes identified by FEM correlate well with the experimental
measurement. Thus the unit cell of the model is validated.
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5.3 Wave propagation characteristics in stiffened plate

Different from the precedent chapters, a beta damping of 0.5% is taken into consideration
in the model. It is included by adding a structure damping matrix K′ = βK, with β = 0.5%.
The dynamic stiffness matrix of the unit cell is now complex and becomes:

D = K + iK′ − ω2M = (1 + βi)K− ω2M (5.1)

All the propagation characteristics given in this chapter are based on this damped model.

5.3.1 Wave propagating in the x-direction

The direct form of CWFEM is employed to calculate the dispersion relation for the waves
propagating in the x-direction, as shown in Fig. 5.5. The imaginary part which corresponds to
the damping is illustrated as well. It can be seen that CWFEM is able to predict also the damped
waves with little decaying when propagating.
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Figure 5.5: The dispersion relation for the waves propagating in the positive x-direction.
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Figure 5.6: Wave shape of quasi-longitudinal wave propagating in the x-direction
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Figure 5.7: Wave shape of quasi-shear wave propagating in the x-direction

There are mainly three kinds of waves propagating in the stiffened panel. However, since
the stiffeners and the frames are both eccentric, the in-plane and out-of-plane movements are
coupled. The wave shape of quasi-longitudinal wave is shown in Fig. 5.6, with in-plane move-
ment in Fig. 5.6(a) much bigger than out-of-plane movement in Fig. 5.6(b). Similar for the
quasi-shear wave shape, as shown in Fig. 5.7. As for flexural wave shape in Fig. 5.8, the out-
of-plane movement dominates with smaller in-plane deformation. It should be mentioned that
all the wave shapes displayed in this chapter are normalized with respect to the mass matrix.
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Figure 5.8: Wave shape of flexural wave propagating in the x-direction

5.3.2 Band structure

The inverse form of CWFM is applied to calculate the band structure of the propagation.
Unlike the undamped beam grid in chapter 3, the solution of the eigen problem of Eq. (3.12)
doesn’t lead to real value of ω. However, since the system is only slightly damped with ratio
of 0.5%, the propagation characteristics are not modified significantly by the damping, the real
part of ω is around 100 times of its imaginary part. So <(ω) is plotted in the band structure
in Fig. 5.9. The result by CWFEM is validated by the WFEM result on full model. The “OA”
part in the band structure corresponds to the dispersion relation of wave propagating in the x-
direction, as given in Fig. 5.5. The different curves are related by the frequency values instead
of wave shapes. Since the wavenumber of the in-plane wave is usually smaller compared to
the flexural wave. The curves which are close to the frequency axis correspond to the in-plane
wave, while the other part corresponds to the flexural waves. For flexural waves, there is a
narrow stop band between 215 - 225 Hz, as shown in Fig. 5.10.

In CWFEM, all the 66 internal modes with fixed boundary under 3 kHz are taken into
account. The result is proved convergent to the result by WFEM. Here the influence of internal
modes on propagation is investigated. The band structure is computed with different sets of
internal modes. Here the influence of the first two internal modes is shown, with the 1st internal
mode at 201 Hz and the second mode at 224 Hz.

The first slowness surface is between 0 - 151 Hz, the second slowness surface (only the
flexural waves) is between 136 - 215 Hz. As it can be seen in Fig. 5.11, the first slowness
surface can not be entirely determined by the constraint modes of the boundary, contrary to
the beam grid in chapter 3. For the waves propagating in the x-direction (OA1), the internal
mode is not required, the global propagation is entirely determined by the constraint modes of
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Figure 5.10: Stop band of flexural waves between 215 - 225 Hz
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the boundary. However, for waves propagating in other directions (B1, OC2), the first internal
mode is needed, as shown in Fig. 5.12. If only the 2nd internal mode is taken without the
1st internal mode (Fig. 5.13), the points at 1st slowness surface (OA1, A1, B1, OC1, OC2)
remain the same as if no internal mode is taken. It confirms the precedent conclusion that the
1st slowness surface is entirely determined by the 1st internal mode. For the second slowness
surface, a good prediction at OC3 and OA3 is obtained. However, a better prediction at OA2
is obtained if only the 1st local mode is taken account into. So it can be concluded that the 1st
internal mode play a more important role at OA2, while 2nd internal mode dominates at OA3.
We need the first two internal modes to determine precisely the second slowness surface.

The contribution of the internal modes on global propagation can also be understood by
observing the wave shapes. The wave shapes at the aforementioned points are given in Ap-
pendix B. To illustrate how the wave propagates through one unit cell to another, the wave
shapes extended to 4 adjacent unit cells are plotted over a period T . For the propagation at
frequency ω = 2π/T , the wave shape can be written as φ exp(iωt) = |φ| exp(i(θ + ωt)).
Therefore, |φ| cos(θ) corresponds to the wave shape at t = 0. And |φ| cos(θ+ π/3) is found for
the wave shape at t = T/6, a phase shift of π/3 is added when time advances T/6.

It have been concluded in chapter 3 that the points “O”, “A”, “B”, “C” on the band structure
correspond to stationary waves. The conclusion is verified by the wave shapes at point “A1”
and “B1” displayed in Fig. B.2 and Fig. B.3. For point “A1”, the nodes with zero displacement
lie close to the left side and right side of the unit cell. And the anti-node with maximum
displacement lie at the center of the unit cell. For point “B1”, the stationary nodes lie close to
the boundary and the anti-node lies at the center of the unit cell.
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Figure 5.12: Band structure by CWFEM (-) with 1st internal mode (x)
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Computation time
WFEM2D Linear eigen problem: 235 s × 1600 = 104 h

CWFEM2D Modal analysis: 165 s
Linear eigen problem: 0.5 s× 1600 = 13 m

Total time = 16 m

Table 5.1: Computation time to calculate the slowness surface by WFEM and CWFEM

At point “OA1”, the 1st order of flexural wave towards the x-direction is identified, in
Fig. B.4, we can identify the 1st order of flexural wave propagating in the x-direction. At point
“OA2” in Fig. B.5, the higher order flexural waves appear. It can be remarked that in the unit
cell, the wave propagates in the negative x-direction. In addition, the energy propagates also in
the negative x-direction at this point, since the tangent of the band structure at this point should
equal to the group velocity.

The first order of flexural wave propagating in the y-direction is identified at “OC1”. The
wave shapes are given in Fig. B.7. However, for “OC2”, which belongs also to the first slowness
surface, a higher order flexural wave appears. Similar as point “OA2”, the wave seems to prop-
agate in the negative x-direction in the unit cell at this point. In addition, the energy propagates
in negative x-direction as well.

At higher frequency, the group velocity of many waves seems to approach zero. For exam-
ple at “OC3”, the tangent of the band structure at this point is close to zero. As for their wave
shapes, as given in Fig. B.9, they seem like the local mode (2,1).

5.3.3 Slowness surfaces

With the CWFEM, the slowness surfaces of the stiffened plate can be obtained with relative
ease compared to WFEM. The full model contains 2886 DOFs, with 2310 internal DOFs and
576 boundary DOFs. As for the reduced model, it contains only 66 internal modes with fixed
boundary under 3000 Hz. In addition to the 576 boundary DOFs, the reduced model contains
in total 642 DOFs. Thus the computation time to solve the eigen problem in Eq. (3.12) reduces
from 235 seconds to 0.5 second for each iteration of (kx, ky). To plot the slowness surfaces
with good precision, 40 iterations of kx are taken in [0, π/Lx] and 40 iterations of ky are taken
in [0, π/Ly]. The slowness surfaces with [−π/Lx, 0] or [−π/Ly, 0] are obtained by doing the
symmetry. The computation times by CWFEM and WFEM to calculate 40 × 40 = 1600

iterations are given in Tab. 5.1.
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Figure 5.14: First four slowness surfaces
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Figure 5.15: k-space identified by CWFEM

5.3.4 k-space computation

The k-space which corresponds to the iso-frequency contour of slowness surfaces is given
at 80 Hz, 120 Hz and 160 Hz in Fig. 5.15. At 80 Hz, the global behaviour dominates, knowing
that the 1st local mode begins at 108 Hz. It is already known that for the plate which is stiffened
in one direction, a orthotropic model can be found with k-space in elliptic shape [Ichchou et al.,
2008]. Here a rounded rectangle is found at 80 in Fig. 5.15(a). It can be used to determine
the equivalent model if it exists. At 160 Hz in Fig. 5.15(c), the wave beaming effect occurs,
with flexural wave privileged in the x-direction. It corresponds to a partial stop band in the
y-direction.

5.3.5 Modal density of finite stiffened plate

The modal density can be deduced from the slowness surfaces, using the formulation given
in Eq. (1.68). The result obtained for a finite plate with both 10 unit cells in the x and y direc-
tions is given in Fig. 5.16. To validate the obtained result, the modal analysis of the FE model is
carried on under different boundary conditions. As it can be seen in Fig. 5.16(a), a larger num-
ber of modes are identified under free boundary, while a smaller number of natural modes are
found when the boundaries are clamped compared to the result obtained by CWFEM. A good
correlation has been obtained between number of modes under simply supported boundary con-
dition and CWFEM. More details about the relation of modes count and boundary conditions
can be found in the reference [Xie et al., 2004]. However, the boundary condition doesn’t play
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an important role for modal density at high frequency. Starting from around 200 Hz, a good
correlation between the modal densities under different boundary conditions has been observed
in Fig. 5.16(a). Remind that the local mode (2,1) dominates between 167 - 218 Hz. So it can be
concluded that CWFEM can be used to determine the modal density for a finite structure with
enough unit cells in mid- and high- frequency range.

5.4 Conclusion

In this chapter, CWFEM was applied to study the wave propagating characteristics in or-
thogonally rib-stiffened plate. Main conclusions can be listed as follows:

• CWFEM was validated by comparing the band structure obtained by WFEM. The method
was proved to predict correct dispersion characteristics including structural damping.

• The wave shapes were studied at several points on the band structures. The waves at the
bounding points “O, A, B, C” in band structure are stationary.

• Computation time was reduced significantly by CWFEM, allowing the calculation of
slowness surfaces be accomplished from 4 days to only 16 minutes.

• CWFEM can predict modal density for a finite structure with enough unit cells in mid-
and high- frequency range.

Further investigation will address the prediction of the forced response [Renno & Mace, 2014]
or the transmission loss of the stiffened plates [Cotoni et al., 2008].
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Figure 5.16: Modal density and mode count for stiffened plate with 100 unit cells
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

The main findings and contributions of the conducted work are summarized below:

• The mode-based reduction technique was combined with the wave-based method to study
the wave propagation in periodic structures. The modal description was employed to
model the mesoscopic scale of the unit cell. The wave approach was then applied to
study the global behaviours of the macroscopic structures. The wave-mode duality which
assures the combination of the two approaches was discussed in chapter 1. The proposed
method is referred as “CWFEM” for Condensed Wave Finite Element Method. Initially
applied on 1D structures in chapter 2, it was subsequently extended to 2D structures in
chapter 3. The validation of method was illustrated via several numerical examples. It
was proved that the method is able to predict precisely wave propagation characteristics
with significant reduction of computation time.

• To model the unit cell in CWFEM, the internal modes with natural frequency lower than
three times of the maximum investigated frequency should be retained. In this case,
CWFEM is able to predict correctly the propagating waves and some of the evanescent
waves. There may be some discrepancies for the rapidly attenuating waves, however they
have a negligible contribution to the forced response of the structure except at excitation
point. Good correlation was found between the forced response by WFEM and CWFEM,
as shown in chapter 2.

• The wave beaming effects in the beam grid was discussed in chapter 3. The phenomenon
was observed both in the displacement field and the k-space. In this numerical example,
it was verified that the waves at bounding frequencies of stop bands were stationary, they
correspond to the cell modes under four special boundary conditions. The four boundary
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conditions were identified and given as well.

• In chapter 4, CWFEM was applied to study wave propagation characteristics in perforated
plates. Homogenization methods were proposed based on the obtained wave dispersion
relation. Equivalent isotropic model was found for the perforated plates with circular
holes with square and triangular penetration pattern. Good agreement was obtained be-
tween the natural modes of the homogenized model and full model. For perforated plate
with square holes, an equivalent isotropic behaviour was obtained for out-of-plane waves
and equivalent orthotropic model was found for in-plane waves. The k-space of the ho-
mogenized model concurs with the one of the full model.

• Experimental analyses were conducted on two models of perforated plate for the valida-
tion of CWFEM method. The out-of-plane displacement field under harmonic excitation
is measured by a scanning laser, subsequently DFT2D is performed on the displacement
field to deduce the k-space of the wave propagation. At low frequency, isotropic be-
haviour for out-of-plane waves was identified. At high frequency, wave beaming effects
occur in one model. Good correlation was observed between the k-space predicted by
CWFEM and the one measured by the experience.

• The wave propagation characteristics in a periodically stiffened panel were predicted by
CWFEM in chapter 5. The influence of the first two internal modes on the global prop-
agation in the structure was studied. Contrary to the beam grid where the 1st slowness
surface was entirely determined by the constraint modes of the boundary, the 1st internal
mode was needed to describe the wave propagation at 1st slowness surface in the stiffened
plate. The slowness surfaces of the wave propagation were then used to compute modal
density of a finite panel with 100 unit cells. The obtained results matched fairly well with
the results by FEM. CWFEM allows the calculation of the slowness surfaces be done in
16 minutes instead of 4 days.

6.2 Perspectives

Periodic medium has attracted much attentions of the researchers and the field is experienc-
ing continued growth in research activities. CWFEM is a general method which offers a range
of applications over different kinds of periodic medium. The author attempts to foresee some
probable perspective works as follows:

• Combine with the Statistical Energy Analysis (SEA) to predict vibroacoustic behaviours
of stiffened plates, honeycomb sandwiches and composite panels [Chronopoulos et al.,
2014]. Analyse the influence of the unit cell with different geometries or materials on the
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(a) Thin plate with a 2D periodic array of at-
tached spring–mass resonators

(b) Band structure for the LR plate (TX for x direction,
φ represents the angle between the x-direction and prop-
agation direction

Figure 6.1: Combination of Bragg gap and local resonance gap [Xiao et al., 2012]

acoustic radiation and transmission loss. The SEA parameters, damping loss factor and
engineering units response are all related to certain properties of the slowness surfaces,
which can be derived directly by CWFEM.

• Design lightweight structures (such as honeycomb panels and multi-layed plates), with
added internal local resonating elements to acquire excellent mechanical properties and
stop bands at specified frequency range. The included local resonators can be various,
from attached spring-mass resonators [Xiao et al., 2012] to piezoelectric patches [Chen
et al., 2013; Spadoni et al., 2009]. By tuning the local resonators, both the local resonance
gap and Bragg gap can be significantly broadened [Xiao et al., 2012]. Sometimes a super-
wide pseudo-directional gap can be formed by a combination of the local resonance gap
and the Bragg gap, as shown in Fig. 6.1(b). As for vibration control of plate with periodic
arrays of shunted piezoelectric patches, the local resonance band gap is characterized
by broadband behaviour and can be tuned through the selection of the shunting circuit
resonance characteristics [Spadoni et al., 2009]. CWFEM can be employed as a design
tool for the selection of array configuration, spatial periodicity and shunting circuit of
piezoelectric. Since the piezoelectric patches often involve more DOFs such as electric
field and charge, the MOR in CWFEM becomes more advantageous when studying these
structures.

• CWFEM can be applied to predict wave propagation characteristics in acoustic meta-
materials or phononic crystals. These knowledges may be helpful for the design and
application as vibration and acoustic shielding, acoustic absorption and acoustic/elastic



130 Chapter 6. Conclusions and Perspectives

cloaking [Torrent & Sánchez-Dehesa, 2008].

• CWFEM will be extended to structures with cylindrical periodicity, to treat cylindrical
and curved panels. Compared with flat panels, the mass and stiffness matrices in local
coordinates must be rotated by the transform matrix to deduce the equation with global
coordinates [Manconi & Mace, 2009].

• Apply the proposed homogenization method to find equivalent model for thick perforated
plates, laminated composite plates and honeycomb sandwiches. High frequency homog-
enization tools which captures the interaction between different scales are also needed.

• For 2D periodic structures, the CWFEM formulation to compute wave propagation char-
acteristics in a specified direction θ need to be investigated. Mace & Manconi [2008]
proposed to fix f and θ and solve wavenumber k, which leads to a polynomial or tran-
scendental eigenvalue problem. To avoid selecting the real solutions from infinite number
of solutions of a transcendental eigenvalue problem, Inquiete [2008] proposed an alter-
native way to study laminated composite plates. Instead of changing θ to study the wave
propagating in different directions, he changed the orientation of the unit cell and studied
always the wave propagating in the x-direction. In this way, he converted the problem
from WFEM2D to WFEM1D. However, for periodic structures where unit cell is not ar-
bitrary, the periodic pattern depends on the orientation direction of the unit cell. The 2D
problem in the periodic structures can not be converted easily to 1D problem.

• Since the presence of damping is unavoidable in materials and structures, the damping ef-
fect in periodic structures will be investigated more in the further. Waves propagating in
viscoelastic media can be characterised by complex frequency or complex wavenumbers
according to whether time or spatial attenuation is involved [Manconi & Mace, 2010].
Thus the studies of damped structures may be carried out in two ways. The first one is
to seek a wave dispersion solution for prescribed harmonic motion (real frequency, com-
plex wavenumber) and the second one is concerned with obtaining a dispersion relation
for free wave propagation (complex frequency). In the first category, Collet et al. [2011]
proposed a formulation based on Floquet-Bloch decomposition whereby wave heading
and frequency are used to scan the k-space and estimate the dispersion relations in struc-
tures with complex damping configuration. In the second category, a complex frequency
is assumed which provides the usual frequency dispersion curves (affected by the pres-
ence of damping) and also curves associated with the temporal attenuation for each Bloch
mode [Hussein et al., 2014].

• Investigation are also needed to understand the sensitivity of the vibroacoustic behaviours
the materials and manufacturing uncertainties. Since real structures are never perfectly
periodic even in high precision applications such as aerospace. To treat this uncertainty
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and relax the effects of periodicity, the vibroacoustic quantity of interest (mean square
velocity, radiated power) can be band averaged [Legault et al., 2011]. The localization
effects caused by the small perturbations need to be considered since they can affect the
response of periodic structures significantly [Hodges & Woodhouse, 1986].
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Appendix A

The formulation of the matrices in
Eq. (1.31)

The matrices A,B,C can be expressed by the partitioned matrices of D, in the following
formulations.

A11 = D12 + D34 + D32λ
−1
y + D14λy (A.1a)

A1L = D1R + D3Rλ
−1
y (A.1b)

A1B = 0 (A.1c)

AL1 = DL2 + DL4λy (A.1d)

ALL = DLR (A.1e)

ALB = 0 (A.1f)

AB1 = DB2 + DT4 + DT2λ
−1
y + DB4λy (A.1g)

ABL = DBR + DTRλ
−1
y (A.1h)

ABB = 0 (A.1i)
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And for the coefficients of the first order

B11 = D11 + D22 + D33 + D44 + (D31 + D42)λ
−1
y + (D13 + D24)λy (A.2a)

B1L = D1L + D2R + (D3L + D4R)λ
−1
y (A.2b)

B1B = D1B + D3T + D3Bλ
−1
y + D1Tλy (A.2c)

BL1 = DL1 + DR2 + DL3λy + DR4λy (A.2d)

BLL = DLL + DRR (A.2e)

BLB = DLB + DLTλy (A.2f)

BB1 = DB1 + DT3 + DT1λ
−1
y + DB3λy (A.2g)

BBL = DBL + DTLλ
−1
y (A.2h)

BBB = DBB + DTT + DTBλ
−1
y + DBTλy (A.2i)

The constant terms are

C11 = D21 + D43 + D41λ
−1
y + D23λy (A.3a)

C1L = D2L + D4Lλ
−1
y (A.3b)

C1B = D2B + D4T + D4Bλ
−1
y + D2Tλy (A.3c)

CL1 = DR1 + DR3λy (A.3d)

CLL = DRL (A.3e)

CLB = DRB + DRTλy (A.3f)

CB1 = 0 (A.3g)

CBL = 0 (A.3h)

CBB = 0 (A.3i)



Appendix B

Wave shapes of stiffened plate during a
period
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Figure B.1: The points in the band structure where wave shape is plotted



136 Appendix B. Wave shapes of stiffened plate during a period

0
0.5

1
1.5

0

0.2

0.4

−5

0

5

y (m)

f=135.5359Hz, Real part [kx,ky]=[6.16,0]

x (m)

z 
(m

)

(a) At t=0

0
0.5

1
1.5

0

0.2

0.4

−5

0

5

y (m)

f=135.5359Hz, Real part [kx,ky]=[6.16,0]

x (m)

z 
(m

)
(b) At t=T/6

0
0.5

1
1.5

0

0.2

0.4

−5

0

5

y (m)

f=135.5359Hz, Real part [kx,ky]=[6.16,0]

x (m)

z 
(m

)

(c) At t=T/3

0
0.5

1
1.5

0

0.2

0.4

−5

0

5

y (m)

f=135.5359Hz, Real part [kx,ky]=[6.16,0]

x (m)

z 
(m

)

(d) At t=T/2

0
0.5

1
1.5

0

0.2

0.4

−5

0

5

y (m)

f=135.5359Hz, Real part [kx,ky]=[6.16,0]

x (m)

z 
(m

)

(e) At t=2T/3

0
0.5

1
1.5

0

0.2

0.4

−5

0

5

y (m)

f=135.5359Hz, Real part [kx,ky]=[6.16,0]

x (m)

z 
(m

)

(f) At t=5T/6
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Figure B.9: Wave shape at “OC3” during a period
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Appendix C

Modal analysis of the finite element model
of the stiffened plate

Figure C.1: First local mode (1,1) at 109 Hz
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Figure C.2: First local mode (2,1) at 168 Hz

Figure C.3: First local mode (3,1) at 240 Hz



Appendix D

Some experimental measurements on
perforated plate (model 2)

Figure D.1: Coherence between laser and force between 300 Hz-3500 Hz (force of excitation
in the same frequency range)

Figure D.2: Coherence between laser and force between 2950-3050 Hz (force of excitation in
the same frequency range)



148 Appendix D. Some experimental measurements on perforated plate (model 2)

Figure D.3: Mode shape at 340 Hz (Top view) The average spectrum of the response to har-
monic excitation (Bottom view)

Figure D.4: Mode shape at 543 Hz (Top view) The average spectrum of the response to har-
monic excitation (Bottom view)
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ZHOU, C.W., LAINÉ, J.P., ICHCHOU, M.N. & ZINE, A.M. (2013b). Application of wave
finite element method on reduced models for the analysis of flexural waves in periodic beams.
In Proceedings of the MEDYNA 2013, Marrakech, Morocco. 4



158 References
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