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Introduction

Context

Understanding how the human brain is the physical basis of the mind is one of the greatest challenges of this century. From synapses -connection between neurons-to the mind, the study of the brain has given rise to many scienti c elds that examine this organ from the biological to the psychological angle. Cognitive neuroscience aims to understand how the neural substrates lead to the emergence of thoughts, and relies on several tools at its disposal including: lesion studies, which relate brain injuries to cognitive impairments, and neuroimaging, which uses brain imaging to test the validity of cognitive models. Functional magnetic resonance imaging (fMRI) is an imaging technique that measures the level of oxygenation in the blood over time, which is linked to the neural activity. It is one of the most widely used imaging technique in cognitive neuroscience, as it provides an indirect but non-invasive access to the neural code, and enjoy a good spatial resolution. The most widespread experimental procedure to localize brain functions with fMRI, is to manipulate tasks -composed of several mental processes-in order to isolate a single mental process and assess how it a ects brain activity. Standard analyses rely on statistical inference to produce statistical parametric maps or activation maps to evaluate brain activation in respect to a cognitive process. But each individual fMRI study only sheds light on a small fraction of the cognitive space, as only a limited number of stimuli may be presented in a single imaging session. One approach to overcome these limitations are meta-analysis methods.

Quantitative meta-analyses are an ensemble of methods that may be used with di erent goals in mind. The orginal use is to increase the statistical power on a given cognitive question by aggregating data from multiple studies. It is also used to summarize the vast and ever growing fMRI literature. This integration enables for example to give additional insights on the function of particular brain structures, by combining studies that used di erent experimental settings. Most fMRI meta-analyses rely on summarized data: the coordinates of the activation peaks from experiments. Some methods use the full statistical maps to perform meta-analyses but are not as common due to the di culty of gathering enough fMRI experiments. Overall, there has been so far little incentive to share neuroimaging data partly because few methods are available to take advantage of an accumulation of data. This is a known chicken and egg problem, but vast amounts of available data opens new opportunities.

One such opportunity is to relate cognitive processes from di erent elds between them, and provide a more comprehensive view of the brain. Importantly, combining datasets enables to go beyond individual studies, which only re ect the cognitive theories being tested. In this thesis we investigate the use of reverse inference, which reasons backwards from brain activity to draw conclusions on a cognitive process instead of a particular task. This is a known logical fallacy: researchers are tempted to make informal reverse inferences by interpreting brain activity in respect to the literature, and concluding that a region is speci c to the cognitive process under study. A large amount of data that spans a large cognitive coverage however opens the possibility to perform reverse inference in a principled way. This approach, when conducted on a large-scale, is particularly promising as it enables to associate sets of regions with sets of cognitive processes.

The overall objective of this thesis is to develop tools to jointly analyse multiple functional MRI studies. Outcomes of this thesis include the learning of functional networks, and atlases of brain functions.

Organization and contributions of this thesis

Part I -State of the art: a brief introduction to neuroimaging Chapter 1 -From brain images to the sudy of the mind This rst chapter introduces functional imaging techniques and how they can be used to localize brain functions. More speci cally, we summarize a few of the assumptions underlying the experimental setup in cognitive neuroscience, and how these experiments are used to complement the knowledge gained by brain lesion analyses. We show that functional MRI remains today one of the best non-invasive tools to map functions to structures in the brain.

Chapter 2 -Tools for neuroimaging data modeling

In the second chapter, we describe the statistical methods commonly used to analyse fMRI data, and the di erent meta-analysis approaches used by the community to analyse jointly multiple studies. We present in particular the statistical inference framework used by the majority of individual fMRI experiments to model the fMRI BOLD signal, and how it produces statistical maps that represent brain activity. We also introduce statistical learning methods for the particular context of neuroimaging. We nish by summarizing the meta-analyses methods for fMRI, speci cally we describe coordinate-based meta-analysis and image-based meta-analysis methods, and how they are used to overcome some of the limitations of individual studies.

Part II -Contributions: from an image database to learning brain functions Chapter 

-Scaling up from individual studies

In this chapter, we assemble a large fMRI database by accumulating images from multiple individual studies. We review di erent datasharing initiatives from which we pool our data, and how we organize the data. At a largescale, data organization is key to automate data integration and processing streams. We describe our strategy to automate the fMRI pre-processing, statisical modeling, and data curation, and discuss the main bottlenecks and possible solutions to set up a large database. We nish by giving an overview of the accumulated data.

Chapter 4 -Functional localization by meta-analysis Chapter 4 is our rst attempt to combine multiple studies. We draw inspiration from region of interest (ROI) based analyses, that de ne ROIs from the literature or external datasets to better condition an analysis, but do so in a more principled way. We describe two contributions in which we use pairs of tasks in fMRI experiments to de ne common regions of interest. The rst contribution examines the ability of one task to better condition testing for a second similar task. The major drawback of this method is that it relies on a manual threshold to de ne the regions of interest. The second contribution provides a methodology that aims to solve this shortcoming: it uses the ability of a classi er to generalize from one task to another as a test to select the threshold at which we de ne our regions of interest. This contribution can be seen as a multivariate alternative to contrasts conjunction. The main limitation of these methods is their poor scalability: they rely on the manual selection of fMRI experiments to compare, and do not give a broad overview of brain functions.

Chapter 5 -Learning functional networks

This chapter takes a step back from multi-study analyses. We previously focused on regions of interest but more modern approaches view the brain functioning within a set of distributed networks. The study of functional networks mainly relies on the use of unsupervised decomposition methods on resting state fMRI. These approaches however do not enable to automatically associate brain maps with functional labels. The contribution described in this chapter proposes an alternative way to expose functional networks on task fMRI, and associates them with what we call functional pro les. We rely on an unsupervised approach, that learns jointly a dictionary of functional pro les and a set of spatial maps. fMRI studies outline mental processes by combining experimental conditions. The functional pro les in this chapter re ect the response magnitude of the experimental conditions for each network, and enable to de ne a functional signature.

Chapter 6 -Learning functional atlases

This last chapter presents a supervised framework that bene ts from a growing accumulation of datasets to associate brain networks with cognitive functions. We investigate the use of cognitive ontologies to de ne a metadesign that enables to co-analyse multiple task fMRI datasets despite the lack of common paradigm. Our framework uses forward and reverse inference in conjunction to map functional labels to the brain. Forward inference is commonly used to associate a brain region with a cognitive theory implemented by a dissociation of two experimental conditions. The two conditions test for an e ect of interest under an experimental paradigm, but do not guarantee that the resulting region is speci c to that e ect. A large-scale setting opens the possibility to invert the statistical inference and to reason from the brain activations to the mental processes. The combination of the two inferences gives more evidence that a cognitive process can be associated with a particular brain network, and enables to establish functional atlases.

Part I

State of the art: a brief introduction to neuroimaging 1 From brain images to the study of the mind I , we investigate methods to combine multiple functional imaging studies, to provide a more comprehensive view of the brain functions. In this rst chapter, we introduce functional imaging techniques and how they can be used to localize brain functions. More speci cally, we summarize a few of the assumptions underlying the experimental setup in cognitive neuroscience, and how these experiments are used to complement the knowledge gained by brain lesion analyses. We nish by presenting the main functional areas in the brain. 

From brain lesions to functional imaging

In 1861, the French physician Paul Broca heard of a patient from the Bicêtre Hospital su ering from a loss of speech but not a loss of comprehension nor other cognitive functions. This patient nicknamed "Tan" after the only word he could articulate intelligibly, died a few days later which enabled Broca to perform an autopsy. He discovered a lesion in the frontal lobe of the left cerebral hemisphere, next to the lateral sulcus. He con rmed his ndings over the next years with autopsy evidence from additional patients. Patients su ering from this type of lesions are categorized as having expressive aphasia, which involves impairments speci c to language production. This research enabled Broca to associate a brain region now known as Broca's area with a cognitive function: speech production. The kind of reasoning that identi es the neural substrate of a particular brain function by demonstrating that a lesion in a brain structure alters function X but not function Y is called a single dissociation. Single dissociation inferences indicate any of the following: i) the two functions have a di erent neural substrate, ii) the two functions are part of the same system but the damaged one is downstream from the preservered one, or iii) the maintained function requires fewer cognitive resources than the other one.

Figure 1.1: Broca's and Wernicke's areas were linked to two distinct language disorders in the late 19 th century, respectively expressive and receptive aphasia. Source: adapated from www.wikipedia. org Shortly after Paul Broca's discovery, German physician Karl Wernicke made a converse observation, where patients where su ering from language comprehension disorders but not speech production. Using a similar procedure, he uncovered a region in the posterior section of the left superior temporal gyrus that is now referred to as Wernicke's area. The same single dissociation reasoning indicates that this region is involved in the understanding of written and spoken language. Damage in this region causes a disorder known a receptive aphasia. These two ndings taken jointly are a case of double dissociation. Double dissociations on brain functions are possible when a lesion on a brain region A a ects function X but not Y, and a lesion on a separate region B a ects function Y but not X. Double dissociations yield much stronger conclusions than single dissociations, and demonstrate that two functions are separate, and have a di erent neural substrate. Even though recent research gives a more complex view of language processing, this seminal double dissociation paved the way for modern neuropsychology.

These kind of approaches are however limited to patients having lesions in an area of interest to the researcher. The localization of lesions could in addition only be done post mortem, which considerably slowed down the research process. The advent of brain imaging in the 1920s triggered a more systematic investigation of the brain structures and functions.

BOLD Functional MRI

Several brain imaging techniques exist today, and enable to study the brain structures, as well as its functions. Anatomical imaging focuses on the brain structures and tissues, whereas functional imaging detects physiological changes that indicate brain activity. This section presents BOLD functional imaging (fMRI), that we use in this thesis. fMRI has a good spatial reso-lution (1 -3mm 3 ) and a temporal resolution on the order of 1-3 seconds. MRI images are actually stacks of slice images, each of which is acquired in about 40-60 miliseconds, and have a full brain coverage. These properties make this imaging modality a good candidate for the localization of brain functions. Other functional imaging techniques such as Electroencephalography (EEG) or Magnetoencephalography (MEG) have a poor spatial resolution, but enjoy a temporal resolution in the order of the milisecond, which makes it possible to study the temporal dynamics of the information processing in the brain. Imaging modalities are generally a tradeo between spatial and temporal resolutions, and are therefore tailored to investigate certain aspects of the brain functions.

Blood oxygenation level-dependent contrast Oxygen transportation in the organism is done through the circulatory system, and in particular with hemoglobin, a protein present in blood cells that has the ability to bind oxygen. Hemoglobin is found in two forms: oxyhemoglobin when it is oxygenated, and deoxyhemoglobin when it is deoxygenated. When oxyhemoglobin releases its oxygen atoms to turn to deoxyhemoglobin, it causes a di erence in magnetic susceptibility. This contrast is known as blood oxygenation level-dependent (BOLD), because of its dependence on the level of oxygenation of the blood. This discovery by Ogawa et al. in 1990, has enabled to observe the BOLD contrast through a gradient-echo EPI (EchoPlanar Imaging) sequence, and introduced MRI as a functional imaging tool [14,12] (see Figure 1.2) Figure 1.2: Ogawa et al. [12] original experiment on rats to bring to light the BOLD contrast: Left -Coronal slice showing the BOLD contrast of an anesthetized rat which has breathed pure O 2 . Right -Coronal slice of the same rat, showing the BOLD contrast after respiration of a mixture of 90% of O 2 and 10% of CO 2 (this mixture increases the oxygenation of the venous blood). The arrow shows the sagittal sinus, which is one of the major veins of the brain. This picture shows a strong increase of intensity in this vein, and illustrates that the variation of blood oxygenation is visible in BOLD contrast.

The hemodynamic response At rest, the brain consumes the oxygen transported by the hemoglobin, and turns oxyhemoglobin into deoxyhemoglobin. Performing a cognitive task causes an oversupply of the oxygenated blood in the active region, and results in a decrease of deoxyhemoglobin. The oversupply process is called the hemodynamic response, and enables to relate the oxygenation level to neural activity [3,6]. The decrease of deoxyhemoglobin implies a local increase in the average blood oxygenation, which can be observed with a BOLD contrast. As a consequence, BOLD captures changes in hemodynamics, that in turn are associated with neural activity, and makes it possible to use BOLD for functional imaging. Further work from Ogawa et al. [13] shows that a visual stimulation increases the intensity of the BOLD signal in the visual cortex. The use of MRI to detect BOLD is referred to as functional MRI (fMRI), or BOLD fMRI.

The BOLD response occurs with a delay after a stimulation, and does not return to baseline immediately. Typically the BOLD signal reaches its maximum 5 seconds after the stimulation, and takes as long as 30 seconds to return to the baseline with an undershoot. The Hemodynamic Response Function (HRF) models this response pattern. The slow dynamic of the HRF explains the poor temporal resolution of fMRI. The HRF di ers across brain locations and individuals [1,8], but we generally consider a canonical HRF. Glover [7] proposed to de ne the HRF as a sum of two gamma functions, where the rst gamma function models the initial stimulus response and the second gamma function models the undershoot:

h(t ) = t α 1 -1 β α 1 1 e -β 1 t Γ(α 1 ) -c t α 2 -1 β α 2 2 e -β 2 t Γ(α 2 ) (1.1)
where α 1 , α 2 , β 1 , β 2 control the shape and and scale, respectively, and c determines the ratio of the response to undershoot. Glover [7] estimated two HRFs, one in an auditory task and one in a motor task. Figure 1.3 shows the HRF based on the parameters estimated from the auditory task.

Figure 1.3: The Hemodynamic Response Function (HRF) rst follows an increase of the signal (1 -5.2s), then decreases (5.2 -12.2s), and nally returns to baseline with undershoot (12.2 -20s).

Source:

http://www.math.mcgill.

ca/keith/BICstat

The BOLD signal is noisy, as it is impacted by various processes that are not related to cognition such as respiration and heart beat, as well as acquisition artifacts such as scanner drifts and noise distortions.

Mapping mental processes to the brain

The ability of fMRI to localize active regions during a task, makes it a powerful measurement technique for cognitive neuroscientists. Cognitive neuroscience studies the neural substrates of mental processes, and in particular how the cognitive processes are produced by the underlying brain circuitry. The mental processes refer to all kind of cognitive functions, which include perception, memory, speech production, decision making, emotion, motor, etc. fMRI gives an indirect access to the neural substrate, and as a consequence cognitive neuroscience has to rely on di erent assumptions to relate it to the mind. This section describes some of the assumptions and exper-imental settings in cognitive neuroscience, and gives an overview of the main functional areas. The core assumption many fMRI studies is the functional specialization, or functional speci city. It means that we can expect to localize into speci c and distinct brain regions, a large amount of the cognitive functions. Studies of the motor cortex is a good example that gives credit to this view, as reports indicate that fMRI activation is able to provide a clear somatotopic representation (see Figure 1.4) of foot, elbow, st, thumb, index nger, and lip movements [9].

The cognitive neuroscience se ing

Neuroimaging researchers that manipulate a task assume that is it possible to decompose this task into speci c processes that can be manipulated independently. The decomposability of mental processes is the assumption underlying the experimental designs that explores how manipulations a ect brain activity, in order to map neural and mental processes. The brain to mind mapping holds with the assumption that the decomposition is valid. This assumption has its critiques [17,18] and supports [2], but provides the basis for several experimental designs.

Subtraction method One of the most commonly used experimental design is neuroimaging is the subtraction method. This method considers two experimental conditions which are supposed to only di er by a single cognitive process (Figure 1.5). Contrasting both conditions enables to isolate the cognitive process. This relies on the pure insertion assumption, which means that a single cognitive process can be inserted into another set of cognitive processes without a ecting the rest. There are di erent issues with the pure insertion assumption, one of which is the problem of behavioral confounds: a perfect control for a given condition may never be found as it is often less demanding than the task of interest. This causes interpretation problems [5] since di erences in brain activity may as well be imputed to the cognitive process under study, as to a di erence in attention for instance. The subtraction method is still very common because of its simplicity, and researchers can use multiple controls with varying di culties to mitigate the undesired confounds. Cognitive conjunction Price and Friston [16] introduced an experimental design called cognitive conjunction (Figure 1.5) to avoid relying on pure insertion. This design uses two subtraction tasks, where only a single cognitive process is shared across the subtractions. A signi cant conjunction requires that each subtraction shows an activation, and that they do not di er in a signi cant manner. The revision of conjunction by Friston et al. [4] only identi es regions commonly active at a given threshold across the subtractions. Finally Nichols et al. [11] gives a valid approach for conjunction from the statistical standpoint. The main problem of these approaches is that they require all the subtractions to have a single cognitive process in common, which is objectively hard to assess. They also are di cult to perform on noisy data such as fMRI, as they have a lower sensitivity (i.e. lower detection power) than individual subtractions.

Factorial design Factorial designs require the pure insertion assumption, but manipulate multiple experimental factors at the same time. This kind of design use an analysis of variance to assess the main e ect, as well as the interactions that occur when the e ect of one factor varies depending on the manipulation of another variable. For example, a factorial design on face recognition may use faces and houses stimuli in di erent sizes or orientations as experimental conditions, to measure the main e ect of face and the interactions incurred by size or orientation. Figure 1.6 illustrates a factorial design, where P1 . . . P4 represents the main e ects (e.g. faces) and C1 . . . C4 a modulating variable (e.g. orientation). This method may therefore give additional evidence to map cognitive and neural processes. 

Main functional areas

Functional imaging techniques in pair with experimental designs enable to assign cognitive functions to brain structures. We present in Figure 1.7 the main functional and anatomical areas. The functional regions can be broadly categorized into three categories: sensory areas (e.g. visual cortex, auditory cortex) that process sensory inputs, motors areas (e.g. primary motor cortex, premotor cortex) that controls body parts, and associative areas (e.g. Broca's area, prefrontal cortex) that integrate higher-level information related to cognition [10]. This thesis will investigate a fair amount of these cognitive functions, as we aim to develop methods that yield functional atlases of the brain from the combination of multiple studies.

Conclusion

This chapter has introduced functional imaging techniques, in particular functional MRI, and how it can be used to access the neural code. We have also presented experimental paradigms that are commonly used by cognitive scientists to manipulate tasks and isolate mental processes. The combination of these two approaches have given neuroimaging researchers an increadible opportunity to map mental to neural processes without resorting to invasive methods, or post mortem analyses. Despite limitations of fMRI -especially regarding its temporal resolution-and the controversies that surround the underlying assumptions of experimental settings, fMRI remains as of today the best non-invasive tool to localize functions in the brain. W in Chapter 1 how researchers use functional MRI as an experimental tool to inspect brain functions. This chapter describes the statistical methods commonly used to analyse fMRI data, and introduces the di erent meta-analysis approaches used by the community to analyse jointly multiple studies.

The rst section of this chapter presents the statistical inference framework used by the majority of individual fMRI experiments. It introduces the modeling of the fMRI BOLD signal, and the fundamental elements of hypothesis testing. We show how these methods yield activation maps representative of the tested cognitive process.

The second section describes the basics of statistical learning for fMRI. We introduce supervised linear predictive models in the context of fMRI, and common techniques to validate the models. We also describe dimension reduction methods, that serves to mitigate the issues raised by the highdimensionality of fMRI data. We present the decoding approach, which is an application of predictive models that uses functional brain images to predict the engaged cognitive process.

The third and last section summarizes the meta-analyses methods for fMRI. We describe in particular coordinate-based meta-analyses, and imagebased meta-analyses. 
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Statistical inference

Statistical inference

This section describes the standard framework to perform statistical inference on BOLD neuroimaging data. BOLD images typically go through a number of pre-processing steps, which include di erent corrections, smoothing, and normalization to a common brain space. We will not describe these procedures here, but rather describe the statistics underlying BOLD modeling. More details on pre-processing procedures may be found in Poldrack et al. [29].

Modeling fMRI data

Friston et al. [9] introduced the general linear model (GLM) to the neuroimaging community, which is the cornerstone of fMRI analysis. This approach yields statistical parametric maps that are used to test for region speci c e ects relative to a given hypothesis. This method can take into account all the di erent factors that explain the fMRI timeseries: the experimental paradigm, the physiological e ects, some confounding variables, and noise. The result is activation maps, that assign e ect estimates at each voxels for the di erent factors.

General Linear Model Let X ∈ R n×k be the design matrix in which we represent the di erent factors as columnwise stacked regressors, where n is the number of scans, and k the number of regressors. The regressors consist of the experimental conditions (occurence of stimuli in the experimental design convoluted with the HRF), nuisance confounds such as subject motion, additional coufounds such as session or study-dependent e ects, as well as low-frequency signals that model drifts in the signal. The time derivative of the experimental conditions is also often included, to o er some exibility to the HRF modeling, which di ers in delay and shape across the brain.

We denote as Y ∈ R n×p the observed fMRI data, where n is the still the number of scans, and p the number of voxels. The GLM formulation gives us:

Y = X β + ε , (2.1)
where β ∈ R k×p are the e ects, and ε the residual error. The error term ε is assumed to be drawn from a normal distribution ε ∼ N (0, σ 2 I ). Source: Pedregosa-Izquierdo [24] We introduced here the modeling of individual e ects, i.e. the estimation of the activation maps at a subject-level from its BOLD images. The standard framework for fMRI data analysis usually follows a hierarchical structure, in which researchers model the e ects at a group-level after computing the maps at the subject-level. Group-level maps are estimated with the same GLM framework, but take as inputs the subject-level maps instead of the BOLD timeseries.

Hypothesis testing

In this paragraph, we present the general setting of hypothesis testing and it is instantiated in the particular context of fMRI. Statistical hypothesis testing is the process of testing a hypothesis on the distribution of a given parameter. In cognitive neuroscience, researchers designing experiments test whether the observed brain activity is due to chance. If not, the test concludes the activity is related to the experimental conditions. In the general setting of statistical inference, we call null hypothesis an observation occurring by chance. The null hypothesis is considered true until su cient evidence imply otherwise, in which case it is rejected in favor of the alternative hypothesis. The null hypothesis and the alternative hypothesis are respectively denoted H 0 and H 1 . The p-value resulting from a hypothesis testing corresponds to the probability of an observation considering H 0 is true (see Figure 2.3). It enables to de ne the signi cance level, which is an arbitrary threshold at which we disprove H 0. This threshold is traditionally set at 5% or 1%, and guarantees that the type I error is no greater than the chosen threshold. Type I and type II errors are also respectively referred to as false positives and false negatives. A t-test is a statistical test in which the test statistic follows a Student's t distribution under the null hypothesis [32]. In the following, we consider the one-sample t-test, whose statistic with a sample x ∈ R n is given by:

t = x -µ 0 s/ √ n , (2.2)
where x is the sample mean, s the sample standard deviation, and n the sample size. A one-sample t-test has the null hypothesis that the population mean is equal to the speci ed value µ 0 . With µ the population mean, a onesample t-test hypothesis may therefore be formulated as:

H 0 : µ = µ 0 H 1 : µ µ 0
Once the t value is determined, the corresponding p-value may be found using the Student's probability distribution with d = n -1 degrees of freedom. P-values may be computed under a one-tailed or a two-tailed test, depending on whether the deviation of the estimated parameter may be on either direction of the sample mean, or only one direction. In fMRI we generally use a two-tailed test, as we are interested in signi cant activations, as well as deactivations. Figure 2.3 shows a probability distribution with the one-tailed test highlighted in green. A two-tailed test would also consider a symmetrical area on the other side of the distribution.

Statistical parametric maps

Cognitive neuroscientists aim to isolate mental processes of interest. They do so by contrasting a stimulus engaging the mental process, with a stimulus theoritically identical in all aspects but the Figure 2.3: A p-value (green area) is the probability of an observed result assuming H 0 is true under a one-tailed test.

Source: modi ed from http://en. wikipedia.org/wiki/File: P-value_in_statistical_ aforementioned process. For example, studying calculation implies presenting an arithmetic operation to a subject, e.g., "two plus six". If this stimulus is visual, it will recruit regions from the visual system, as well as from the reading process. To identify, brain activations speci c to calculation, we use a sentence of the same length as a control condition to cancel out the undesired e ects, e.g., "less is more". The di erence between a condition and its control serves as the null hypothesis to nd signi cant activations relative to calculation. We introduce the notion of a contrast c ∈ R k as a linear combination of experimental conditions exhibiting a mental process. Given the GLM equation 2.1, we de ne H 0 as c T β = 0 and H 1 as c T β 0. This tests whether the β of the condition and its control are signi cantly di erent, and the t-statistic is given by:

t = c T β σ c T X T X -1 c , ( 2.3) 
where σ 2 is the estimate of the variance, and the Student's distibution has d = n -(k + 1) degrees of freedom. Because there is one t-test per voxel, we obtain a t-map representing the brain activity with one t-statistic per voxel. As an example, we consider an experiment with two conditions: calculation and sentences. The GLM gives the β maps from Figure 2.2, with a design matrix containing two columns for the experimental conditions, and the additional columns for confounding variables. In this case the contrast vector c takes the form c = [+1, -1, 0, . . . , 0], where +1 is for the calculation regressor, and -1 for the sentences one. The resulting t-map in Figure 2.4 is thresholded at t = 3.2 ∼ p alue = 1% , and shows activations in the parietal cortex relative to calculation. It also cancels out activations in the visual and language systems that can be seen in the β maps from Figure 2.2. These kind of maps are more generally called statistical parametric maps (SPMs). At the group-level it is possible to compute these contrast maps with a two-sample t-test. 

Multiple comparisons problem

The multiple comparisons problem arises when one considers a set of statistical tests simultaneously. Let α be the signi cance level, with α = 5% a single test ensures that the probability to reject incorrectly the null-hypothesis is 5%. This controls the type I error. Let m be the number of tests, and s the number of signi cant results, assuming independence of the tests the probability of observing at least one signi cant result due to chance is given by:

P s ≥1 = 1 -P s=0 P s ≥1 = 1 -(1 -α ) m
which means the probability to observe at least one false positive with 20 tests is 64%, and 100 tests is 99.4%. An fMRI image with voxels at a 3mm 3 resolution contains around 50K voxels and corresponds to the number of tests we perform. Since we want to answer a where question, i.e. localize activations for a given function, it is critical to control correctly the type I error rate. The proposed solution is to control for an experiment-wide signi cance level instead of a single test signi cance level, and is called family-wise error rate (FWER). The general idea to obtain a speci ed FWER, is to de ne error rates for each comparison that are more stringent than α. There are several procedures to account for the multiple comparison problem. One of them is the Bonferroni correction, which sets the new signi cance level to α b = α /m, and implies that the global error rate will not be greated than α. The Bonferroni method may be too conservative in fMRI analysis, as is do not take into account the high correlation of neighboring voxels. Other correction methods that may be more adapted to fMRI include random eld theory [40,8], and the use of the false discovery rate [1].

Statistical learning for fMRI

Machine learning is a scienti c eld that encompasses a set of algorithms that learn from data. The algorithms operate on inputs and outputs to build models, which are used to make decisions. There are several classes of algorithms, such as supervised and unsupervised learning, which depend on the type of task to be performed. Machine learning has originally been used in neuroimaging to uncover the neural coding relative to a task, i.e., the voxels predictive of a mental process. This pratice is referred to as decoding or multivoxel pattern analysis (MVPA) in the neuroimaging community [5,4,15,34,31]. The main incentive for this kind of approach is that is uses a single statistical test for the whole brain, and thus alleviates limitations due to multiple comparisons in classical inference. More recently, Poldrack et al. [28] has shown that decoding enables to implement a large scale reverse inference, in order map cognitive functions to brain areas.

Predictive models

Supervised predictive modeling is a set of statistical learning methods which aim to predict a target variable. In fMRI, we consider the activation maps produced by the GLM as a pattern recognition problem, i.e. predict a cognitive state, also called target, using a pattern of voxels. Note that is it also possible to perform such predictions using voxels from the fMRI timeseries, but we do not perform this kind of analysis in this thesis. Predictive models learn a predictive function which which can be linear or non-linear. Nonlinear functions can in principle uncover non-linear relationships between the voxels and the target, but their predictive power has not been found to be clearly exceeding that of linear models [13] for brain analysis. More importantly, our goal is to map the predictive function onto the brain, which is trivial with a linear function. This is also feasible with non-linear functions [21,22,20,17] but is less frequently used, which is why we focus only on linear models in this thesis like the majority of the neuroimaging community [4,15,34,31]. The advantages of a predictive model over the classi cal statistical inference framework presented in the previous section are that: i) it performs a single statistical test for all the voxels, and ii) its multivariate nature enables it to capture distributed patterns that are predictive of a given target. The latter point is crucial, as brain regions may explain a mental process if considered in conjunction, but may overlap if taken separately.

Linear models Linear predictive models can be used for classi cation and regression problems. Classi cation predicts a discrete target composed of classes, whereas regression predicts a continuous variable, e.g., age. We only consider classi cation in this thesis. Let X ∈ R n×p be the data, with n the number of samples and p the number of voxels in each activation map, and ∈ [1, . . . , k] n the target composed of k classes. With these notations, a linear predictive model for classi cation is given by:

= f (X , w, b) = F (Xw + b) , (2.4) 
where w and b respectively are the slope (weights) and the intercept of the a ne hyperplane. The intercept serves to choose an o set that is di erent from 0 for the a ne hyperplane. Following this formulation, we de ne a binary classi cation as:

f (X , w, b) = sign (Xw + b) , (2.5)
where sign is the sign function and ∈ [-1, 1] n . The estimation of the parameters is done through the minimization of the di erence between and the estimated target ˆ . This di erence is a function of (w, b) called loss function -or loss-that we denote (w, b). The loss represents the cost associated with the error in the estimation of the target. In classi cation settings the most common losses are the hinge and logistic losses. We mostly use the logistic loss in this thesis, that we express as follows:

(w, b) = 1 n n i=1 log 1 + exp -i (X i T w +b ) (2.6)
This type of loss is used by the logistic regression model, which models the posterior probability as a sigmoid: P ( |X ) = 1 + exp -f (x ) -1 . It enables to associate class probabilities with the data and ultimately assign classes. Other models such as Support Vector Machines (SVM) use di erent loss functions but follow the same principles.

Regularization Regularization uses prior knowledge to bias a model's estimation towards a desired solution. It enables to solve ill-posed problems and avoid over tting. With λ Ω(w ) the regularization term, the minimization problem becomes:

ŵ = arg min w ,b (w, b) + λ Ω(w ) , λ ≥ 0 (2.7)
where λ represents the amount of penalization, and is the tradeo between the loss (w, b) and the penalty Ω(w ). Among the many possible penalties, we present the most widespread ones in neuroimaging:

• 2 regularization (Ω(w ) = w 2 ). w 2 is the Euclidian norm, and this type of regularization is equivalent to setting a Gaussian prior with zero mean on w.

• 1 regularization (Ω(w ) = w 1 ). w 1 = n i=1 |x i | is the Manhattan norm, and this type of regularization forces a large fraction of uninformative weights to zero, promoting sparse models.

Model validation and selection A model's validation is done throught the evaluation of its predictive performance. To avoid over tting the standard procedure is to partition iteratively the data into a training and a testing set, where we learn the prediction function on the training set and evaluate it on the testing set. As the prediction scores may vary across training and testing sets, we usually report the averaged prediction scores (and their standard deviation). This procedure is called cross-validation. The main pitfall of cross-validation is that it holds out part of the data for validation, which reduces the number of samples for the learning of the model. For most use cases of machine learning this is not an issue, but may be so in the case of a single neuroimaging study which features few samples. We here describe a few popular cross-validation schemes, where the schemes names are taken from scikit-learn 1 and may not be representative of all the 1 http://scikit-learn. org/stable/modules/ cross_validation.html literature:

• Leave-one-out: the training set is composed of all samples but one held out for testing. Given n samples, this cross-validation scheme therefore generates n di erent training and testing splits. The logistic regression is penalized with an 2 regularization term on the top row, and an 1 regularization on the bottom row. We choose the amount of penalization by cross validation for both models and kept the best performing model. The 1 penalty yields a very sparse model, i.e. relies on very few predictive features.

• K-fold: this scheme partitions the data into K disjoints group of the closest size called folds. The training set is composed of K -1 folds and the testing set uses the remaining one.

• Shu e-split: this scheme returns random but disjoint training and testing sets. The training and testing sizes, as well as the number of desired splits, are user de ned parameters of the cross-validation, e.g. 5 random testing sets representing 10% of the data.

• Strati ed-shu e-split: this scheme is identical to shu e-split but ensures that the distribution of classes is the same in the training and testing sets. This is useful in the case of class imbalance, to avoid biasing the estimator in favor of the majority class. We implemented a version of strati ed-shu e-split for scikit-learn for the purpose of this thesis.

• Leave-one-label-out: this scheme is similar to the leave-one-out but holds out the samples based on third-party labels, which de ne a domain speci c cross validation. For example, in neuroimaging it is common to perform a leave-one-subject-out cross validation to test whether a given prediction function generalizes across subjects, and does not rely on subjects' idiosyncrasies for prediction. A leave-one-label-out may be used to test for all possible confounding e ects that we want to test for, e.g., session-e ect, study-e ect, scanner-e ect, or site-e ect.

We may use di erent metrics to estimate the performance of a model within a cross-validation loop. For a classi cation task, those metrics use the predictions of the classi er which may be true positives (TP), true negatives (TN), false positives (FP), or false negatives (FN). Follows a description of the main metrics we consider in neuroimaging, with P and N being simply positives and negatives, regardless of the correctness of prediction. Accuracy is typically used in the case of a balanced classi cation and represents the rate of correct predictions. In the case of an imbalanced problem, accuracy may be misleading as it can yield a very high score by ignoring the minority class. To avoid this, it is preferable to consider for each class separately both precision and recall scores, which respectively represent the ability of a classi er to make correct predictions, and its ability to detect all the instances of one class. The F1-score is the harmonic mean of precision and recall and serves to have a quick overview of a classi er's performance.

Models usually depend on internal parameters to t to a problem, e.g., the amount of penalization. The process to select the best model, i.e., the best set of parameters, for a given problem is called model selection. We select the model in respect to its prediction performance, and do so in a nested cross-validation loop to avoid over tting. This procedure may give rise to new challenges, as it further partitions the data to generate (inner) training and testing sets, and is computationally expensive.

Multi-class and multi-label classification A multi-class classi cation is the problem of classifying data within more than two classes. By contrast, a multi-label classi cation assigns a set of target labels to each instance of the data. Multi-class problems resort to voting strategies to combine multiple binary classi ers. Given K classes, common approaches are:

• One-versus-all: also called one-versus-rest, this approach builds K binary classi ers by pooling the data from K -1 classes. Given f (X , w, b) from equation 2.4, the voting stategy consists in taking the highest real-valued con dence score among the binary classi ers. If (x ) is the decision function and sign ( (x )) the binary prediction function, the multi-class prediction function is:

ˆ = arg max k ∈1...K k (x )
The advantage of this method is that in addition of being computationally e cient, it yields one decision boundary per class, which makes it easy to interpret.

• One-versus-one: this method considers all the possible pairs of binary classi ers, i.e. K (K -1) /2 classi ers. The voting strategy consists in predicting the class that has the majority of predictions among all the binary classi ers. In comparison to one-versus-all, it quickly becomes computationally expensive as K gets larger. Moreover, there is no straightforward way to retrieve one decision boundary per class.

For multi-label problems only the one-versus-all strategy applies. In this case we do not apply a voting strategy, but rather assign multiple classes to each instance of the data.

Dimension reduction

Learning a decision function requires more data samples as the dimensionality of the feature space gets higher. With a xed number of samples, increasing the number of dimensions of the data may increase in turn the prediction accuracy up to an optimal point, after which it will reduce the accuracy [13]. This e ect is known as the Hughes e ect, or the curse of dimensionality. The underlying problem of a high-dimensional space, is that the volume of this space makes the data sparse. In other words, we may nd an in nity of separating hyperplanes as solutions of a predictive model. Most of these solutions will however not be able to generalize to new samples (e.g., in the testing set of a cross-validation), since it relied on specicities or noise from the training set. This problem is particularly severe in neuromaging, as typical studies feature around n = 100 activation maps of approximately p = 50K voxels. Dimension reduction methods overcome these issues by de ning a low-dimensional space keeping the predictive information. Dimension reduction is routinely used in neuroimaging, and is performed within the cross-validation loop to avoid any over t. The most frequent approach is feature selection, which removes non-relevant features from the feature space. Another approach is feature agglomeration, which combines features to create a lower-dimensional space. We present here one univariate feature selection method, and one feature agglomeration method. In this thesis we usually combine both approaches to create a new feature space on which we perform the classi cation. Figure 2.6 illustrates this procedure.

Feature selection A common way to select features is to apply a socalled univariate screening on the data. We compute a score value for each feature independently, e.g. F-score, correlation score. We perform the selection itself by either thresholding the scores, keeping the k best scores, keeping a percentile of the highest scores, or by testing for signi cance with a p-value. The computational e ciency is the major advantage of this approach. It however does not take into account the local correlation of features, in our case the voxels which share information with their neighbors. Because of the thresholding, clusters of voxels with a high signal to noise ratio (SNR) are likely to be selected, while voxels that may still be informative at the classi cation level but have a lower SNR are likely to be ignored. This is why we use this selection method in a very non-conservative way, and usually keep at least 30% of the features.

Feature agglomeration

The main limitation of a univariate feature selection for neuroimaging data, is that it does not take into account any spatial information. Feature agglomeration replaces the voxel-space by a parcel-space which summarizes the grouped voxels. This approach reduces the dimensionality and increases the SNR at the expense of spatial resolution, but does not exclude potentially informative features. Di erent criteria may be used to de ne the parcels. Using anatomical atlases may be the simplest way to do so, but are ill-suited to represent functional data because it yields a very coarse representation of the brain activity (∼ 100 regions). We instead consider the Ward clustering algorithm [19], which is a clustering algorithm that uses the activation maps to learn a partition of the brain. Because it adapts the size of the parcels to the signal in the brain regions (large regions with similar values yield a single large parcel), the Ward clustering should be seen as a lossy compression algorithm, rather than a method yielding plausible functional regions. Our experience show that keeping between 2K and 5K parcels does not hinder classi cation, and makes computation faster.

Figure 2.6: The Ward feature agglomeration algorithm learns a partition of the brain composed of 2K parcels, on which we sample the activation maps. We obtain compressed activation maps and proceed with a univariate screening which keeps 30% of the features to further reduce the dimensionality of the data.

Decoding

Predicting mental processes Decoding in neuroimaging is the process of predicting mental states using a supervised learning model. Early proofs of concept show the ability of a classi er to accurately predict left from right hand movements [20,5], and di erent categories of visual stimuli (faces, houses, objects) [11,4], as well as uncovering the underlying neural coding of these processes. Later work demonstrates that decoding may also be used to expose shared neural support as in neuronal recycling, by training a classi er on one task and predicting another one which shares the same neural basis with the same classi er [14]. The validity of decoding have also been shown on higher-level mental concepts such as working memory [10] or intentions [12].

Stability selection Cross validation techniques validates the prediction accuracy but neither the validity, nor the interpretability of the classi er's coe cients. Decoding approaches are usually regarded as more powerful than their univariate counterparts because they consider all voxels at the same time. They however do not perform the same statistical test, and do not control for any error rate at the voxel level. As a consequence, a classier may assign high weights to irrelevant features. This issue is related to model selection and the curse of dimensionality previously described. The process of nding stable features that are representative of a task is known as stability selection [18]. In this thesis, we rely on an approach akin to the one developed in Varoquaux et al. [38]. Speci cally, we generate randomized parcellations using a Ward clustering, and select the best model varying the regularization parameter for each those parcellations. Each model therefore has a coe cient vector in the parcel-space. We project back the best models to the voxels-space and average them to obtain a nal linear In particular the high coe cients in the parietal cortex are relevant for a calculation task.

model in the voxel space. As in Varoquaux et al. [38], we choose an 1 penalty for the linear classi ers. This method proved to be easy to implement, relatively e cient in terms of computation, and yields more stable and interpretable coe cients. Using this method for the same calculation versus sentences classi cation, we obtain the coe cients pictured in Figure 2.7, that are more speci c than a simple 2 -penalized logistic regression, and less sparse than an 1 -penalized model.

antitative meta-analyses

Meta-analyses comprise statistical methods for combining and contrasting di erent studies. The original motivation behind meta-analyses is to aggregate information from multiple studies to increase the statistical power for a measure of interest. It is also a way to integrate and summarize results on a speci c topic. The functional MRI eld faces a vast and rapidly growing literature on various cognitive domains, and can bene t from approaches that join seemingly unrelated topics. Meta-analyses of fMRI have additionally the potential to overcome some limitations of individual studies, in particular false positive and negative ndings. More generally, meta-analyses are an interesting tool to develop new hypotheses, assess the consistency across experimental protocols, or reach consensus on the location of functional regions. This section presents two kinds of meta-analyses for fMRI: the coordinate-based meta-analyses which use functional activation summaries, and image-based meta-analyses that use functional brain images. Coordinate-based meta-analysis (CBMA) methods assess the convergence of activation peak coordinates across multiple experiments to synthetize, reconcile, or develop ndings from the literature. They would not be feasible without the high standardization of neuroimaging reports. Most neuroimaging data is standardized to either the Talairach-Tournoux [33] or Montreal Neurological Institute (MNI) [7] brain spaces. These common coordinate systems make it possible to compare of brains across subjects and studies. Results of neuroimaging studies report tables of peak coordinates for all activations of interest. Peaks are de ned as the local maximum of an activation given by the comparison of two experimental conditions. This makes potentially all the literatue eligible to be part of such meta-analyses, as papers may be entered manually in a coordinate database, or tools may be developed to integrate automatically vast fractions of the literature. A standard format for table reports [27] would facilitate the latter.

Coordinate-based meta-analyses

A taste of ALE Activation Likelihood Estimation is a popular method for CBMA introduced by Turkeltaub et al. [36], and later re ned by Eickho et al. [6]. The gist of this method is to treat each activation peak as the center of a Gaussian probability distribution, to account for the spatial uncertainty entailed by the between subject and laboratory variances. A 3D modeled activation map (MA map) summarizes each experiment in a common brain space, and enables to create a nal ALE map which represents the union of all MA maps. The nal step of this method is to assess the statistical signi cance of each location indicated by the ALE map. The original method [36] proposes to test for above-chance clustering of peaks, whereas the current method [6] tests instead for the above-chance clustering of experiments, i.e. MA maps. ALE therefore de nes the null hypothesis as the random association of peaks between MAP maps, and the alternative hypothesis as the convergence of peaks for a given task. This testing enables to draw conclusions on a mental process of interest, as shows Figure 2.10 for nger tapping. This method is also used to nd functional modules in brain structures, to achieve a ner representation of functions in the brain [2]. C2: signi cant cluster across experiments against a null distribution obtained by permutation testing. Source: Eickho et al. [6] The ALE method is applicable in any CBMA, but is primarily associated with the BrainMap database [16]. BrainMap features brain locations from more than 2, 500 papers encompassing over 12, 000 experiments. All papers and annotations are manually entered in the database, which makes it the largest of this kind. BrainMap also exposes a collection of online tools, in particular GingerALE [6] which enables to perform ALE analyses with data from the database, or from a manually uploaded table of coordinates. Other "manual" coordinate databases include SumsDB2 [37] and Brede Wiki3 [23].

Neurosynth BrainMap focuses on the quality and accuracy of the papers annotations entered in the database. Despite the large representation of the literature in its database, it still represents a fraction of all potential studies, and depend on inclusion criteria that are not explicit. Neurosynth 4 4 http://neurosynth.org/ [41] takes the other approach, and pools automatically as many studies as possible from the literature in order to have the best representation, and relies on the volume of data to make up for poorer annotation quality. In its original 2011 version, Neurosynth was drawing activation foci from almost 3, 500 papers, its current version is now over 10, 000. Neurosynth automated coordinate extraction consists of a parsing engine that detects tables reporting activation coordinates, and performs basic validation. The di erences in standard spaces for coordinates are ignored by Neurosynth. Moreover, Neurosynth parses the article text and performs a word frequency analysis to generate lists of terms to associate with the coordinates. This fully automated approach enables to construct a large database of term to coordinates mapping, and is able to cope with the ever growing load of publications.

Neurosynth also provides forward and reverse statistical inference tools for the analysis of its database. The forward inference method tests for the dependence between terms and activation using a χ 2 test. Yarkoni et al. [41] justi es the use of a parametric statistical test rather than permutation testing mainly for computational purposes. Reverse inference is implemented as a naive Bayes classi er. By computing the probability of a term given an activation, this classi er is able to predict terms on statistical maps from unseen neuroimaging studies. Reverse inference on such a database is of particular interest, as it covers extensively the cognitive space.

Limitations CBMA aim to synthesize large amounts of neuroimaging experiments, and overcome limitations inherent to individual studies, in particular false positive (FP) and false negative (FN) results. Most studies rely on voxel-wise hypothesis testing by rejecting the null hypothesis. The FP rate is in general arbitrarily set to 5% and corrected for multiple comparisons with the Bonferroni correction for example. FP may still be reported in the literature in the form of uncorrected results, and it is an established practice to perform region of interest analysis to reduce the severity of corrections [26]. CBMA mitigate FP results as they are hopefully not replicated across studies, even though being present in 10 to 20% of publications [39]. They however combine results obtained with potentially very di erent methods, and do not provide a way to account for these di erences [17]. Reports show that individual studies are typically underpowered [35], and thus fail to detect engaged regions, otherwise known as FN results. This issue proves more problematic for CBMA methods, which represent non-signi cant study-level voxels as zeros, and therefore cannot aggregate power across studies to potentially reach signi cance [3]. The last major limitation from CBMA approaches is that of spatial resolution: activation peaks are modeled roughly as balls, and do not take into account the shape and size of activations, which are likely to greatly vary depending on the mental process under study.

Image-based meta-analyses

Pooling fMRI images have the potential to overcome several CBMA shortcomings. [3,30] distinguish two kind of analyses performed by aggregating images, image-based meta-analyses (IBMA) and "mega-analyses". IBMA are performed on the full statistical images, resulting either from a subject-level analysis or a group-level analysis. The use of these data can give greater details on the shape and size of the activations, and also enables to aggregate power across studies, as they contain the statistical values for all voxels, not only those that are signi cant. They also do not su er from the FP reported in the literature [39]. They however do not alleviate issues that may come from the di ering processing methods used to obtain those maps. To solve this, the raw images -the BOLD timeseries-must be processed homogeneously in the context of a "mega-analysis". There is no standard method for mega-analyses, but they enable to model inter-study variability as a random e ect, and introduce a third level in a GLM framework (after subject and group levels) [30]. The main limitation with these approaches remains the di culty to gather data from many experiments.

Conclusion

We have seen in this chapter the statistical tools that we will use along this thesis. We have also presented the current state of meta-analysis methods for fMRI. Meta-analyses hold the promise to provide an automated way to accumulate knowledge and relate cognitive elds. Coordinate-based meta-analyses have so far been the most successful approach, mostly because of the di culty to accumulate imaging data, and despite the greater potential of image-based meta-analyses. In the next chapters, we will show how we aggregate imaging data, and how we leverage the statistical tools we presented to get an integrated view of the human brain functions.

Part II

Contributions: from an image database to learning brain functions 3 Scaling up from individual studies T focused on the analysis of individual fMRI studies, and the advent of large scale analyses using highly summarized data, i.e. the activation peaks coordinates. Dealing with individual studies makes it possible to test many models, and run quality assessment procedures at a subject-level if necessary. This approach is no longer tractable when the volume of data gets very large.

W

of data comes new challenges, and this chaper investigates how to scale up from individual studies to a large fMRI database. We shortly review the available open-access fMRI resources, and how we contribute to that e ort. We expose the strategy that we adopted to organize the data, and how it impacts the subsequent processing stages, in particular the fMRI pre-processing, statisical modeling, and data curation. We nish by giving an overview of the database that we accumulated. 

Contents

Finding the data

Finding the data

The eld of neuroimaging is seeing a shift in its datasharing policies, both thanks to a growing awareness of the opportunities it presents [36,33], and the commoditization of the storage facilities. The interest in sharing fMRI data is not new, and was pioneered by the fMRI Data Center [START_REF] John D Van Horn | The functional magnetic resonance imaging data center (fmridc): the challenges and rewards of large-scale databasing of neuroimaging studies[END_REF]. The platform closed in 2012 due to a lack of funding. Importantly, its major drawback when it operated was that it demanded an explicit request for each dataset before they are sent on a physical medium. The game changing initiatives are that of OpenfMRI [35], which features as of today as many as 29 task fMRI datasets, and the 1000 Functional Connectomes Project [4] which distributes over 1200 resting state datasets. Both projects make the data accessible by direct download under a permissive license. A major push to add new datasets is taking place for the OpenfMRI project, and many datasets were not available until recently which explains why we were not able to use all of them during the thesis. If large scale studies are not yet the norm in neuroimaging, they are becoming increasingly common and prove to be invaluable resources that set new datasharing standards for the community.The Human Connectome Project (HCP) [START_REF] David C Van Essen | The human connectome project: a data acquisition perspective[END_REF] currently leads this trend by sharing the full data from over 500 subjects which can be either downloaded or ordered on a hard disk. Future projects include the European Human Brain Project (HBP), which holds a part dedicated to cognitive neuroscience and fMRI acquisition, and plans to acquire a vast range of experimental tasks on a very limited number of subjects. Past projects include the fBIRN [20], which was a US-wide multi-site project in the context of schizophrenia, and implemented datasharing on a large scale. Not all muti-site projects implement yet an open approach to datasharing, with the example of the IMAGEN project [38], that has the technical tools to share data from over 2000 subjects, but retricts access to a consortium.

In a e ort to reduce both sociological and technical frictions, we joined Krzysztof Gorgolewski's iniatiative to develop NeuroVault [16], a platform that aims to nd the middle ground between sharing raw data, and only reporting the coordinates of the activation peaks in the papers. Neurovault.org is a web based repository that provides means to easily store, share, and visualize unthresholded statistical maps. The platform makes it trivial to upload a collection of maps, and link these with a permanent URL in the associated publication. The data are presently scarce, but growing quickly, and the ultimate ambition is to have enough data to be able to perform meta analyses, and foster new services that make use of its REST API [9].

Individual initiatives are also important and give access to high quality data. As part of the BioMag 2010 data competition, Henson released the raw fMRI, MEG, and EEG data of a faces recognition task [18].

In collaboration with the BrainOmics team from Neurospin and Logilab 1 , we initiated a project to share neuroimaging data and associated meta- 

From diverse data sources to curated brain maps

From a technical standpoint, the main hindrance to sharing task fMRI is the lack of a common representation of the complex associated metadata. Task fMRI manipulates experimental conditions to study di erent mental processes. The analysis therefore requires the order and timing of the stimuli presentation during the acquisition, in addition to other MRI acquisition parameters. The analysis of large volumes of fMRI data presents additional challenges such as: i) homogenizing the processing streams, which otherwise may render studies incomparable [5], and ii) curating the data in an automatic or semi-automatic way.

In this section we present the steps we took to ready our database for analysis once the data was downloaded. We do not attempt to solve these issues in a general way, but rather take the approach of identifying the roadblocks, and nding pratical solutions for our project. Finally, we brie y describe all the studies we use in this thesis.

Organization

The neuroimaging community recognizes that the lack of metadata standards hurts the sharing and reuse of data, as well as the reproducibility of science [36]. Such standards are currently being developed 3 [13], and 3 http://nidm.nidash.org/ extend previous work [11]. To be useful, they will however rst have to be supported by popular neuromaging software packages such as SPM and FSL, and such functionality is under way [24]. A wide adoption would ease the integration of datasets in the future. In the meantime, resources provide documentation or follow arbitrary standards derived from software packages that makes it possible to merge several datasets in a common organization.

OpenfMRI We chose to follow the OpenfMRI le layout, as the majority of our data came from there, and its organization is for our work straightforward to customize if needed. OpenfMRI's organization is mainly derived from FSL, and is described in Figure 3.4. The directory structure represents the usual information regarding subjects, fMRI tasks and runs, and additional MRI modalities such as T1-weigthed images. More importantly, it stores the metadata related to the experimental design in a set of les that eases the process of scripting the analysis of the data. The experimental conditions and the associated contrasts are respectively stored in the "con-dition_key.txt" and "task_contrast.txt" under the model directory. The onsets specifying the stimuli presentation are stored in column formated les containing the timing, duration and weights for each stimulus presentation. All across the structure, les, subjects and conditions are named with generic labels such as "sub00x", "model00x", "cond00x". The mapping to human readable labels is located in relevant "key.txt" les. This approach may seem counter intuitive at rst glance, but renders the scripting trivial and robust as le and directory names are always the same across datasets. Finally, even though the directory hierarchy allows to store raw and processed data within the same study directory, we chose to replicate the hierarchy in separate directories for each processing step. This is a data management issue, and enables to quickly erase and re-process some data if something went afoul along the processing stream. the metadata related to the experimental design in the "SPM.mat" le, which is just a dump of an internal SPM data structure. Documentation may be found in SPM's code, or on webpages of thorough users who reported their ndings 4 . The variables necessary to extract the design from an experiment are listed in Table 3.2. Additional variables contain the paths from the computed contrast maps, and from the pre-processed timeseries used as input data for the GLM. Similarly, other .mat les contain information on pre-processing and paths of raw timeseries and anatomy images. Scipy includes utilities to read such les from Matlab. We developed Python code available on Github 5 to help parsing and dumping SPM data in a new or- HCP The HCP provides a detailed documentation of its les structure online 6 . Roughly, the data are split in di erent directories between raw and 6 http://www. humanconnectome.org/ documentation/S500/ HCP_S500+MEG2_Release_ Appendix_III.pdf pre-processed, and then in sub-directories for tasks. The design information is also stored following the FSL format and it is extremely straightforward to convert this organization in the one of OpenfMRI.

fBIRN fBIRN contains data from schizophrenic patients as well as healthy subjects. The metadata regarding subjetcs are stored in a myriad of CSV and Excel spreadsheets. The experimental design is stored in les from the E-Prime software 7 . The use of proprietary formats makes it necessary to 7 http://www.pstnet.com/ develop ad-hoc scripts to organize and analyze the data.

Processing

The analysis of fMRI data requires a complex pre-processing stream that accounts for speci cities of the acquisition sequences. Moreover, it enables normalizing the subjects data into a common brain space to make them comparable. Several softwares and steps are possible, and in the context of multi-study analysis, it is a considerable advantage to control all the parameters in order to maintain comparability. Reports indicate that varying pre-processing parameters may change signi cantly the results [40,5].

fMRI Pre-processing

The usual fMRI pre-processing steps include slice timing correction, motion correction and spatial realignment, coregistration of fMRI and anatomical images, spatial normalization, and nally spatial smoothing. We use a custom pipeline available in pypreprocess 8 that relies on SPM for the actual 8 https://github.com/ neurospin/pypreprocess processing, and Nipype [14] for the Python interfaces. Pypreprocess includes an example script "openfmri_preproc.py", that serves as a command line interface to process any dataset following the OpenfMRI data speci cation. It is also able to fetch the data if the dataset is hosted on the OpenfMRI repository and a valid identi er is given.

Statistical Modeling

The standardized organization similarly enables to automate the generation of the experimental design. We use NiPy 9 [27] to perform the fMRI 9 https://github.com/ nipy/nipy rst-level GLM, as this library nicely integrates with the rest of our Python software stack. We initially attempted to use SPM to compute the statistical maps, but it estimates a separate mask for each subject and replaces all missing values by NaNs (Not a Number), which is extremely inconvenient for subsequent analyses. A possible but unpratical solution is to extrapolate missing values as an additional step. NiPy however makes it trivial to use an arbitrary mask. We created a mask from the tissue probability maps from SPM, and only kept voxels that have a 30 percent probability or more to lie in the grey matter across subjects.

The additional di culty in the statistical modeling of a large volume of data, is the generation of the statistical models themselves. Most studies model experimental conditions as separate regressors in the design matrix. In some cases, an event never happens and results in a null regressor that should not be passed to the model. For example, a study that models the correct and incorrect responses from subjects might have no incorrect, or no correct responses from some subjects. Contrasts are encoded as vectors, and are assumed to be identical for all the subjects. The modeling scripts have therefore to take into account that the contrast length might vary across the subjects.

ality control

Quality control is essential to the analysis of fMRI data, even more so in the context analysing multiple datasets coming from variate sources. This process should ideally be fully automated, or to a lesser extent provide ways to quickly assess the quality and state of the processed data. We adopted 2 strategies in this thesis: i) the generation of graphical reports of the preprocessing, and ii) a heuristic to detect major outliers. These strategies eliminates most of the obvious problems that arise during the analysis stages, but may fall short in some cases as it relies on human input.

The rst strategy relies on reports generated by Pypreprocess, that show the results of the SPM pre-processing. The reports display graphically subjects' movement during acquisition, as well as the results of normalization and co-registation. The most common issue comes from the NIfTI format headers that encode brain orientation. This information tries to alleviate . problems regarding left-right brain orientation, but is not consistently informed and interpreted by the neuroimaging softwares. Figure 3.5 shows the typical registation report for 2 subjects, one of which failed due to faulty NIfTI headers. The pratical solution to this problem is to rst use the headers, and if it does not work remove them with the "fslorient" tool from FSL. We initially intented to use the data from fBIRN, but its processing failed inconsistently with or without the headers making their use all but impossible.

The second strategy to automatically detect major outliers was applied on statistical maps. It is often easy, given a set of maps and knowing what they are about to "see" if some are drastically di erent from the others. From that observation we developed a heuristic that computes a robust mean from the maps of a task on the voxel-level and exclude those that deviate too much from that mean. Figure 3.6 illustrates this by showing (from left to right) the mean maps of an auditory task, a correct map from one subject, and an incorrect one from another subject's same task. This is an example of outlier that this heuristic captures. This section presents an overview of the database used in this thesis. A more detailed description of the datasets is available in Appendix A. Tables 3.3, 3.4, 3.5, and 3.6 provide a more compact listing of tasks and studies. Note that the dataset from BioMag's data contest has recently been uploaded to OpenfMRI and is accessible under the ds117 identi er. As as whole, the database accounts for 30 studies, 50 tasks, over 800 subjects, and 7K statistical maps. Considering all the raw and processed data amounts to close to 1TB of disk space, without the backups. This is also without considering the actual exploitation of the database which creates even more data. Figure 3.8 shows the distribution of tasks, and MRI scanners in the database depending on the orginal data source. This shows that i) Neurospin is our primary source of data and mainly from one MRI scanner, ii) OpenfMRI is our second largest source of data and is probably more challenging to analyze due to its scanner variability. We did not use the relational and social tasks from the HCP. 

Conlusion

Scaling up from individual studies leverages the recent e orts of the community on data sharing and standardization. We demonstrate that a common data organization is key to automate data integration and processing streams, and commonly adopted standards would further ease the process. To our knowledge, no standard or ad-hoc format is currently attempting to represent quality information. This is a tricky problem, as data usability is dependent on the intended use. In our opinion, quality assessment formats and automated methods, would however help to solve the main bottleneck to setting up a large fMRI database, as it still requires a lot of manual work. Contrary to popular belief, processing time and the associated processing power is not a problem: modern workstations are able to process the described database in a matter of days. The curation however takes a lot longer, and necessitates to adapt parameters, and re-run datasets multiple times. In the end, more than a universal standard, what we need to scale up are documented formats, and automated methods. 4 Functional localization by metaanalysis C 4 investigates the value of using a meta-analytic database to create functional localizers. As it was still in the early stages of its making, we only use here a small fraction of the database described in the previous chapter.

In this chapter we describe two concomitant contributions. Both contributions employ what we call transfer learning [16], but is transfer learning in its simplest form and usually referred to as classi er generalization. We compare the generalization of classi cation on functional tasks, i.e. training a classi er on task A and without further training predicting task B, to the performance of a classi er in the usual classi cation setting, i.e. training a classi er on task A and predicting on the same task within a cross validation loop. To distinguish this usual procedure to classi er generalization we refer to it as inline learning. Finally the contributions designates the tasks as source task and target task to indicate the direction of the generalization. In this introduction we simply call them task A and B.

The rst contribution explores the ability of a classi er trained on task A to generalize on task B, and use its predictive features to better condition hypothesis testing on task B. We do not attempt to use generalization blindly, i.e. try all possible task combinations in the database. We perform generalization only when we assume that both tasks have something in common, so that the generalization makes sense. The tasks ideally -but not necessarily-come from separate studies. The gist of this method is to use classi er generalization to validate the use of a candidate task A, to dene ROIs to analyse task B. Figure 4.1 depicts the classi cation procedures, where task A is a French and Korean auditory task, and task B a French and jabberwocky (pseudowords) visual tasks. The similarity in both tasks is the comprehension versus incomprehension of a stimulus. Inline learning is here merely performed to have a comparison reference for the generalized classi er. We use the classi er's predictive voxels to de ne regions of interest. The subsequent analyses, show that we increase statistical power by using these regions. We also show that a similar approach based on databases of activation coordinates would be less successful. We therefore demonstrate the validity of this approach to learn a functional localizer with a meta-analytic database.

The second contribution aims to solve the threshold selection limi- tation from contribution one. Here, we slightly change the way to select features. We use a linear model with 2 penalization, but perform an univariate screening rst. We increase the amout of features retained by the univariate selection, until we reach the full brain. At each scale, we compare the classi cation scores of the generalized classi er (trained on task A, predicted on task B), and the inline classi er (trained on task B, predicted on task B) which uses the same feature selection procedure. The intention is to select the scale at which both classi cations yield the same performance.

We will show that it is di cult to select a scale with this approach, and that the resulting regions do not delineate speci c brain regions. This procedure is illustrated in Figure 4.2.

To overcome this di culy we introduce a novel approach that we call selection transfer. This procedure does not attempt to generalize a classi er. Instead, it selects regions from task A with the univariate screening, and builds a predictive model on task B. As shown in Figure 4.3. It compares the ability of this classi er to the inline learning procedure. This enables the prediction curve to converge and select a scale at which both classi ers performs equally well. This scale permit us to expose regions speci c to both tasks. The procedure can be seen as a multivariate alternative to conjunction.

The contributions developed in this chapter have been published in: Multi-subject or multi-condition experiments are the workhorse of bio-medical imaging research, whether it be drug development or basic research. Imaging provides a wealth of information on the biomedical problem at hand. However the typical sample size is too small to fully exploit this information. For this reason, investigators often turn to previous studies in order to formulate hypotheses and restrict the search space, i.e. select a subset of anatomical or functional structures of interest to the current study. A typical case is that of early-stage clinical trials, for which the group size is very small, but that are most often based on previous results concerning the pathology under study. However, understanding the literature is increasingly di cult and requires a systematic approach, that takes the form of a meta-analysis, pooling results from multiple experiments that address a set of related research hypotheses [19]. In particular, brain imaging studies heavily rely on such meta-analyses [22], as the brain is still an ill-understood and complex organ. In functional Magnetic Resonance Imaging (fMRI) studies, typical group sizes range from 10 to 20 subjects, which is not always enough to warrant the reliability of brain-wide analysis [20]. More importantly, the subjects spend a nite time in the scanner, which limits the conditions under which a particual cognitive process is studied. For this reason, it is common practice to reduce the study to a set of regions of interest (ROIs) extracted from the literature. Investigators de ne these ROIs by extracting locations of peak activations from the literature [23], or from coordinate databases such as BrainMap [10]. While most of these meta-analyses are conducted on activation coordinates, the increase of data sharing opens the door to meta-analysis on full brain images which results in higher statistical power [18]. Previous statistical and modeling work on meta-analysis for fMRI has focused on better modeling of the reference database [22].

In this work, we are interested in the generalization power of metaanalyses on new data. We introduce a new meta-analysis method using a reference database of images to guide statistical analysis of a new dataset. In particular we rely on predictive models, useful to learn biomarkers, and use them to select relevant voxels in order to increase the statistical power of a new study.

Methods

Problem se ing We start from a reference database made of l experiments, each comprising n l contrasts acquired over multiple subjects. We denote the brain images by X l ∈ R n l ,p with associated experimental condition l ∈ {0, 1} n l . Given a new experiment, denoted target, (X , ) ∈ (R n ,p , {0, 1} n ), we are interested in two problems: i) (biomarkers) can we predict from X ? ii) (inference) can we test hypotheses on the links between and X , for instance in a linear model? These are ill-posed problems from the statistics standpoint, as n p. The root of the problem is the dimensionality of the data: medical images are composed of many voxels, typically p ≈ 50 000 with fMRI. This large number of descriptors limits statistical inference power due to multiple testing; a problem that appears in predictive approaches as the curse of dimensionality. Here, we use our reference database to better condition this statistical problem.

Transfer learning The gist of our approach is to learn on some experiments of our database (X l , l ) discriminative models that contain predictive information for the target experiment (X , ). In machine learning, this problem is known as transfer learning [16]. The underlying assumption of transfer learning is the same as that for meta-analysis: the reference database should contain some common information with the target experiment. Here we use a simple form of transfer learning: we train a linear classi er on an experiment in the database that is similar from the neuroscienti c point of view to the new data, and use it to predict the labels of the new data.

Selecting predictive features We use a sparse linear classi er, specically an 1 -penalized logistic regression. The motivation behind this choice of classi er is that it produces a sparse set of weights that can be used to select relevant voxels. In particular, under certain conditions, the classi er can recover with high probability the complete set of k features in X that are predictive of for a sample size of n min = O k log p [1]. The logarithmic dependence in p is an appealing property in view of the dimensionality of medical imaging datasets.

In practical situations, it can be hard to control the errors on this feature selection, in particular as it depends on the choice of the amount of 1 penalty. For this reason, Meinshausen and Bühlmann [11] introduce randomized variants of sparse estimators, that can be seen as sampling the posterior probability of selection and keeping only features that are selected frequently. In particular, they establish non-asymptotic recovery results for the randomized lasso, which consists in applying the Lasso on random subsamples of the data and rescaling of the regressors. Here, we adapt this strategy to classi cation as the logistic regression is locally equivalent to a weighted least square and recovery results can carry from square-loss regression to logistic regression [1].

We want to use transfer learning to perform screening of the voxels, i.e. eliminate many voxels that are not related to our target experiment. For this purpose, we need a low probability of rejecting relevant variables. Each iteration of the sparse logistic regression in the randomized logistic can select reliably only k max ≈ n/ log p variables. In the worst case situation, we have k heavily-correlated variables and one of them is selected at random by the sparse logistic regression at each iteration. For each of these variables, the probability of selecting it less than s times during m iterations of the randomized logistic is given by the cumulative distribution function of a binomial with per trial success ratio 1/k. If s ≤ m/k, by Hoe ding's inequality, this probability goes to zero in o exp m . In other words, if we impose a threshold τ = s/m on the selection frequency, we can recover a group of k correlated variables for τ ≤ 1/k.

Brain parcellations

Although randomization relaxes the conditions on recovery, a remaining necessary condition is that the regressors of interest, i.e. the values x i across the subjects of the k predictive voxels, must be weakly correlated 1 . Because of the large amount of smoothness present 1 Speci cally, the condition for recovery with randomized lasso it is a lower bound on the conditioning of the sparse eigenvalues of the design matrix [11, theorem 2] and for sparse logistic regression the corresponding condition is a lower bound on the eigenvalues of the regressors of interest's covariance matrix [1, theorem 4].

in medical images, in particular in group-level fMRI contrasts, these conditions cannot be satis ed. Indeed, values taken by a voxel are very similar to values taken by its neighbors. In addition, the numbers of subjects used in fMRI are often below the sample size required for good recovery. For these reasons we resort to feature agglomeration: using hierarchical clustering to merge neighboring voxels carrying similar information into parcels [12]. This strategy brings the double bene t of reducing the problem size, and thus the required sample size, and mitigating local correlation, at the expense of spatial resolution.

Experiments and Results

FRMI datasets

We use 3 studies for this meta-analysis. The rst study (E1) [17] is composed of 322 subjects and was designed to assess the inter-subject variability in some language, calculation, and sensorimotor tasks. The second study (E2) is similar to the rst one in terms of stimuli, but its data was acquired on 35 pairs of twin-subjects. The last study (E3) [15] characterizes brain regions in charge of the syntactic and the semantic processing for the language. It was performed with 40 subjects, 20 of which were stimulated by pseudowords (jabberwocky stimuli) instead of actual meaningful sentences. We used in particular E2 and E3, to learn regions for native versus nonnative language comprehension (French versus Korean in E2), and better condition the French versus Jabberwocky experiments (E3). All the studies were pre-processed and analyzed with the standard fMRI analysis software SPM5. The data used for this work are the statistical images resulting from the intra-subject analyses across the 3 studies. E1 has 34 contrasts images available, E2 56, and E3 28. The raw images were not always acquired on the same scanner. E1 has data from a 3T SIEMENS Trio and a 3T Brucker scanner; E2 data were acquired on a 1.5T GE Signa; and E3 images come from the same 3T SIEMENS Trio.

Experimental results for prediction

Here we are interested in the prediction problem: using transfer learning to discriminate a pair of constrasts with an estimator trained on two other contrasts.

We used 4 di erent approaches to learn the discriminative models. The rst approach relies on the activation likelihood estimate (ALE) method [9], as this is a commonly published method for coordinate-based metaanalyses. We extract the activation positions from the contrasts maps, and then apply a Gaussian kernel. We use the preferred FWHM of 10mm [21]. The other approaches directly use the contrast images. We name raw contrasts the method based on the contrasts voxels values; contrast-speci c parcels the method that uses parcels from the training set: and meta-analystic parcels the method that learns parcels from the full database. We evaluate on our base of contrasts the ability to do transfer learning, i.e to learn decision rules that carry over from one situation to another. Since we must make the assumption that the reference contrasts hold common information with the contrasts of interest, we do not try out all the possible combinations, but rather manually select pairs of contrasts from a single experiment that form a meaningful classi cation task (e.g., computation versus reading, or Korean language versus French language). Out of all the possible combinations, we select 35 pairs of classi cation task, and subsequently combine them into 18 transfer pairs, on which it is reasonable to think that the transfer could occur (e.g., computation and reading in visual instructions, transfer on computation and reading in auditory instructions). We rst train a linear classi er within 6-fold cross validation test on a rst set of pairs, setting the penalization amount by nested cross-validation, we call this step inline learning. We then re-use the discriminative model on a di erent pair of contrasts to perform the transfer learning. The 3 studies containing language related tasks, we can transfer between pairs within an experiment, and across experiments. Among the 18 selected transfer pairs, we nd that 9 can give rise to such a transfer. Since a transfer is directed, we perform it both ways, which yields once again 18 transfer pairs to test upon. The associated prediction scores from the di erent methods are reported in Table 4.1. The general observation is that ALE yields a poorer prediction performance than any other method. This is true both for the transfer and inline predictions. We also nd that brain parcellations scores similar to the raw contrasts images, and closer to the inline predictions. We nd that while the contrast-speci c parcels and meta-analytic parcels methods do not return the same parcels, they produce very close results. We can thus use the full database to learn a single reference parcellation to perform meta-analysis. 

Names

Experimental results for inference

Here we are interested in the inference problem: using transfer learning to help hypothesis testing on a target dataset. In the following, we only consider a speci c transfer, namely the last line in 4.1), the stability score maps are very di erent. At the voxel-level, with 70 subjects (p = 40 000, n = 70) the recovery is limited to approximately 7 voxels without randomization: the recovery conditions are violated. As a result, the randomized logistic selects only the most predictive voxels. On the parcels, contrast-speci c or meta-analytic (i.e., learned on the full database), the selection frequency highlights regions of the brain that are known to be relevant for language comprehension, including the left anterior superior temporal sulcus and the part of the temporal parietal junction (Wernicke's area).

We threshold the stability selection scores of the rst experiment (Korean vs French) to select candidate voxels for the target experiment (jabberwocky vs French). As we want to perform a rough screening and would rather err on the side of false detections than false rejections, we take a very low threshold τ = .01. Following our analysis above, the size of the largest group of correlated features that we can detect with such a threshold is on the order of 1/τ ≈ 100. With 2000 parcels, this number corresponds to 5% of the brain, i.e. 8 000 voxels, and we can safely consider that no fMRI contrasts is composed of groups of heavily correlated features larger than this fraction. The percentage of detection is indicated in parenthesis.

FWER

On the target experiment, we perform a standard group-level analysis with the voxels selected, testing for the di erence between the two conditions, jabberwocky or French reading. We report results with p-values corrected for multiple comparisons at a given family-wise error rate (FWER) using Bonferroni correction, and for a given false discovery rate (FDR) using the Benjamini-Hochberg procedure. On table 4.2, we compare the number of detections and the detection rate, i.e. the fraction of voxels detected as signi cantly di erent, for a full brain analysis and for an analysis limited to the voxel selection. We compare our voxel selection method to a one-way ANOVA, and nd that transfer learning outperforms the ANOVA for all the cohort sizes. Figure 4.6 shows the Q-Q plots on which the Benjamini-Hochberg procedure is applied. We nd that voxel selection by transfer learning improves both the absolute number of detections and the detection rate for FWER and FDR correction. 

Conclusion

In this approach, we propose to improve the conditioning and power of statistical analyses in imaging studies, using a large meta-analytic database.

In a transfer learning scheme, we train on the database sparse discriminative models that are suited to the target experiment. Not only can the predictive power of these models be useful to establish biomarkers, but also they perform feature selection that can increase the statistical power of a standard group analysis on new experiments, provided enough predictive features (voxels) can be recovered. Using brain parcellations, the discrimi-native model lters out parcels unlikely to be relevant in the target experiment, thus de ning automatically ROIs.

Using a set of 3 fMRI studies related to language, we con rm experimentally that our transfer learning scheme is able to: i) perform accurate predictions on experiments acquired on a di erent scanner and with varying paradigm, ii) outperform the standard meta-analysis procedures based on activation peaks, iii) increase the statistical power in the target experiment by using the ROIs de ned by the discriminative model.

In this work we manually select the contrast pairs since it is delicate to interpret a transfer learning score without good knowledge of the cognitive or clinical conditions under study. The weakness of this approach lies in the arbitrary threshold we use on the classi ers' predictive features to de ne the regions of interest. The next section describes an approach that aims to solve this problem.

On spatial selectivity and prediction across conditions with fMRI 4.2.1 Introduction

Functional neuroimaging data are currently routinely used to better understand cognitive processes. They rely heavily on previous ndings to formulate hypotheses and narrow the search space to regions of interest (ROIs), most often reported as coordinates of activation peaks [23], or from coordinate databases such as BrainMap [10]. However, understanding the literature is increasingly di cult, so that there is a need for more systematic methods, which use the images themselves to characterize the functional speci city of brain regions [19]. Transfer learning is a method that trains a classi er to learn a discriminant model on a source task, and then generalizes on a target task without further training. It can yield insights on some brain mechanisms if the tasks share speci c common e ects in some brain regions [7]. The goal of this work is to investigate the power of transfer learning procedures applied to pairs of cognitive contrasts, where the discrimination ability of the classi er quanti es the information shared between brain maps, and thus characterizes at which spatial scale functional contrasts can be jointly classi ed. We show that in many cases, transfer learning gives poor results in terms of spatial selectivity. To address this limitation, we introduce selection transfer, i.e. classi cation of brain states on the target task following the canonical procedure [13], but using regions de ned on the source task.

Methods

Problem se ing We start from a database holding several studies, each of them containing di erent functional contrast images, acquired over multiple subjects. We consider two sets of tasks, the source tasks and the target tasks, each composed of pairs of contrast images. Given n contrasts pairs of k voxel each, we call X ∈ R n,k the images of the source tasks, and ∈ {0, 1} n the label denoting the functional contrast under study. The target images and labels are de ned likewise: X ∈ R n,k and ∈ {0, 1} n .

The source and the target share a similar functional spatial pattern, and we are interested in nding the common ROIs, as well as the di erences, using a machine learning approach. Note that a common pitfall in neuroimaging classi cation-based data processing is a successful prediction cannot guarantee that the information used by the classi er is speci c to the cognitive process of interest.

Regions selection Feature selection is an important step of brain activity decoding procedures. Full brain decoding approaches are e cient but require a careful methodology to recover the contribution of di erent brain regions in the classi cation. To test the involvement of a particular brain region, researchers typically use ROIs from an atlas, or derived from the literature. Another option is to use methods such as the searchlight algorithm, in order to evaluate and extract spatially relevant voxels across the whole brain [8]. We choose to use a one-way ANOVA procedure [3], that yields a selection based on the functional activations elicited by a task, rather than using purely spatial information. We consider di erent fractions of the brain voxels that are most correlated to the functional contrast and perform the learning procedure on these voxels. We vary the percentiles of selected voxels with a cubic scale, from roughly 150 voxels to the full brain. This way we can control the spatial speci city against the prediction performance, and attempt to nd an optimal set of regions.

Transfer learning This consists in learning discriminative models on a source functional task (X , ) in order to capture information that should be predictive for a target task (X , ). The general assumption is that if a transfer occurs, the two experiments share at least some common cognitive circuity. Here, we train a linear classi er on the source task, and we predict the labels of the target without any additional training. The features are selected with a one-way ANOVA on the source task, which makes it possible to compare region-based transfer learning with full brain transfer learning.

Selection transfer This consists in building a predictive model for the target task based on information extracted from the source task. However, here the transfer occurs on feature selection: we perform the ANOVA procedure on (X , ) to select the most relevant voxels, then we train a linear classi er on (X , ), and predict on the same task with the voxels selected from the source. Consequently, the transfer is not a generalization of a classi er as in transfer learning, but rather an evaluation of the signi cance of features from a task to another. We use the same linear classi er as the one used for transfer learning.

Experiments and Results

FRMI dataset

We use data from two fMRI studies for this work. The rst one [17] is composed of 322 subjects and was designed to assess the inter-subject variability in some language, visual, calculation, and sensorimotor tasks. The second study is similar to the rst one in terms of stimuli, but the data were acquired on 35 pairs of twin subjects. The two studies were pre-processed and analyzed with the standard fMRI analysis software SPM5. The data used for this work are a subset of the 90 di erent statistical images resulting from the intra-subject analyses. The raw images were acquired on a 3T SIEMENS Trio and a 3T Brucker scanner for the rst study, and on a 1.5T GE Signa for the second one. 

Experimental results for transfer learning

We are interested in transfer learning: we learn a discriminative model on the source task with a univariate feature selection, and predict the labels on the target task. The analysis presents two phases: we rst train a linear classi er on a source task, and then re-use the discriminative model on the target task to perform the transfer learning; this is repeated on 6 di erent sub-samples of the source task to estimate the uncertainty on transfer accuracy. We use two kinds of linear classi ers: a SVC (Support Vector Classi er) and a Logistic Regression with 2 penalization. The penalization is set by nested 6-fold cross-validation for each classi er. We nd that the two methods yield very close results, and thus report only results using the SVC classi er. We also train and then test the classi er on the target task and call this procedure inline learning. In Figure 4.7, we show the performance τ t p of transfer learning, relative to inline learning τ i p , varying the percentile p of features selected in a cubic scale. In general, for any given p, τ i p can remain signi cantly higher than τ t p . For this reason, we use a heuristic to select the scale parameter (see also Figure 4.7): the scale that yields the minimal τ i p -τ t p di erence. We consider that at this scale, the maps associated with the two tasks share a maximal amount of common information.

However, the voxels selected with this method are either too few to give an accurate prediction, or too many to yield identi able regions. The transfers do not behave the same way on both directions: in general, one direction is more sensitive but less speci c, and the other direction shows the opposite behaviour. This comes from tasks-related foci being more spatially focused for some contrasts. Because of this lack of speci city, we do not nd contained regions that overlap with the Fusiform Face Area (FFA) [6], the Parahippocampal Place Area (PPA) [5] or the Visual Word Form Area (VWFA) [2], regions respectively involved in face recognition, object visual processing, and reading. we can see that the area between the inner transfer prediction accuracy curves are large, and that the prediction rates do not converge. The optimal scale, dened as the minimum of the difference between the curves, often corresponds to a rather broad, non-speci c brain map.

Experimental results for selection transfer

We are interested in selection transfer: we do not perform transfer learning, instead, we use the univariate feature selection performed on the source task, to learn a discriminative model and predict the labels in the target task.

We use the same machine learning tools as the transfer learning: we train and test a linear classi er with a 6-fold cross validation test on the target task. For this method the SVC and the Logistic Regression with 2 penalization also give very close results. As with transfer learning, we also perform an inline learning on the target task, with features selected on the same images.

On Figure 4.8, we show the performance τ s p of selection transfer against inline learning τ i p , and how the performance varies with the percentile p of the brain recruited for the learning process. In comparison to transfer learning, two things happen: i) the selection transfer is more symmetric, ii) τ i p is not signi cantly higher than τ s p for every p. We can therefore use a t-test to de ne the selected scale (Figure 4.8) as the rst one with non significant di erence between the curves. This enables us to control the amount of information to include in the prediction problem, and have both a good performance and an improved speci city of the regions selected for the two tasks. In practical terms, the selected scale makes it possible to identify the smallest fraction of the brain that yields overlapping regions in the two tasks, and consequently an accurate prediction. Although the selected regions have no guarantee of optimality, they are speci c enough to overlap with the FFA, the PPA and the VWFA. We can also use the area under the p-values curve from the t-test as a measure of similarity between the tasks. While it is not possible to interpret this measure absolutely, we can use it to compare one task versus others. For the example on Figure 4.8, we can see that the area between face and word is smaller than between face and house. This indicates that the face task is closer to the word task than the house task, which is consistent with previous ndings [4].

Limitations Selection transfer captures voxels that generalize well in terms of prediction from one task to another. However, a classi er may require very few voxels to perform well, in which case this method misses some regions involved in the cognitive process of interest. This e ect is represented by the values in Table 4.3, where selection transfer requires only a small p fraction of the brain to obtain a τ s p , which is not signi cantly lower than τ i p (e.g., V comp./sent → A motor/sent.). In order to retrieve optimal regions when this is the case, a standard analysis, based either on contrast addition or conjunction [14], would be sensitive enough to detect the common active regions for both tasks. The two prediction curves do converge, so that the di erence becomes non-signi cant as soon as a relatively small fraction of the voxels are included: the spatial scale is de ned here as the point where the curves can no longer be distinguished. It corresponds to more symmetric and meaningful brain maps than those obtained with transfer learning.

Conclusion

In this contribution, we investigate the ability of transfer learning and selection transfer to characterize the spatial scale at which functional contrasts can be jointly classi ed. The objective is to nd a systematic procedure to extract ROIs that de ne common information between two functional tasks, instead of relying on activation coordinates from the literature. We show that transfer learning does not provide control of the regions' size it uses to classify the tasks. Instead we use a selection transfer procedure that seems to better characterize which fraction of the brain yields discriminant information. Our results suggest that transfer learning requires to be used in a carefully designed study, as it is di cult to control the spatial selectivity of this method. Another interesting result is that selection transfer is not symmetric (i.e., source and target tasks are not inversible), as opposed to contrast conjunction.

Conlusion

The methods presented in this chapter aim to use pairs of tasks to de ne common regions of interest. The rst contribution examines the ability of one task to better condition testing for a second similar task. The second contribution both automates the threshold setting from the rst method, and proposes a multivariate alternative to conjunction, which remains a valid way to leverage multiple tasks for inference. In hindsight, it would have been more straightforward to estimate a null-hypothesis by permutation testing, and de ne regions by assessing statistical signi cance. It would however be computationally expensive, and would not address the main limitation of these contributions, which is their ability to scale: we do not have any means to automate the selection of task pairs to compare, as a classi cation score alone is not a good metric to assess task similarity.

T takes a step back from multi-study analyses. Experiments from the previous chapter indicate that classi er generalization is a useful method to compare functional tasks in a controlled setting, but it does not provide a way to scale and therefore bene t from data accumulation. We previously focused on regions of interest but more modern approaches view the brain functioning within a set of distributed networks [23]. Such functional networks have been successfully exposed in resting state fMRI [17,2], as well as task fMRI data [3,11]. These works primarily rely on unsupervised decomposition methods such as Independent component analysis (ICA) or Principal Component Analysis (PCA), that brought the resting state networks to light [5]. The main pitfall remains the labeling of the functional networks, that is done manually by associating brain maps with known brain functions.

The contribution described in this chapter proposes an alternative way to expose functional networks on task fMRI, and associates them with what we call functional pro les. We rely on another unsupervised approach, that learns jointly a dictionary of functional pro les and a set of spatial maps [10]. fMRI studies outline mental processes by combining experimental conditions. The functional pro les re ect the response magnitude of the experimental conditions for each network, and permit to de ne a functional signature. In particular, this contribution investigates three dictionary learning approaches, that encode respectively spatial matching between subjects, functional matching, and random e ect modeling of the intra and inter-subject variance.

The contribution developed in this chapter have been published in: 

Introduction

Using fMRI, the systematic study of which areas of the brain are recruited during various experiments has led to accumulation of activation maps related to speci c tasks or cognitive concepts in an ever growing literature. Mapping a given population requires careful crafting of a set of tasks that are contrasted to reveal networks. These networks form a natural representation of brain function and are of particular interest to study its variability in a population, for instance to correlate it to pathologies or genetic information. However, each subject can only perform a small number of tasks in a scanner; particularly so for disabled subjects. As a result, in a given study the number of networks that are identi ed by standard task-activation mapping is small and limited by the number of contrasts of the study. On the other hand, it is not uncommon to scan a large number of subjects. Indeed, clinical studies must often resort to larger sample sizes due to the intrinsic variability of pathologies. Massive cohorts can be acquired, e.g. to learn diagnosis markers for Alzheimer's disease [13], or in neuroimaging-genetics.

In large cohorts, a small set of contrasts reveals e ects throughout the whole brain [20]. This observation suggests that more information can be extracted at the cohort level. In this paper, we address precisely this challenge by decomposing brain activity at the group level to assign a speci c cognitive function to each voxel. For this purpose, inter-subject variability is a blessing as functional variability reveals functional degeneracy, i.e. that di erent networks sustain the same cognitive function across individuals [12]. However, this variability is also a curse when it arises from spatial realignment error.

Compressed spatial representations were put forward for group studies by Thirion et al. [19] using clustering of the activation maps. This early work did not address the functional speci city of the clusters. Conversely, Lashkari et al. [9] discard spatial information and focus on extracting common functional pro les across subjects, removing the need for spatial normalization. Following this idea of functional correspondence across subjects, although not leading to the de nition of regions, Sabuncu et al. [15] use this correspondence for inter-subject alignment. Linear models such as independent component analysis (ICA) have been used to extract modes of brain function across subjects [3] before clustering approaches. Laird et al. [8] have recently shown that the modes that it extracts from task-activation data capture meaningful structure in the space of cognitive processes. Beyond ICA, Varoquaux et al. [22] use dictionary learning to segment a functional parcellation from resting-state. Very interesting preliminary work by Chen et al. [4] integrates spatial normalization with dictionary learning to estimate jointly an inter-subject warping and functional regions.

This chapter combines ideas from this prior art in a new inter-subject model with an associated computationally-scalable estimation algorithm. Our contributions are i) a joint model of the position and functional tuning of brain networks, ii) explicit separation of the variance into intra-subject and inter-subject components, iii) a fast and scalable algorithm that can impose this particular variance structure. We show with simple simulations that controlling inter-subject variance is crucial, as unsupervised learning approaches such as dictionary learning or clustering will t this variance and extract modes re ecting inter-subject variability. The paper is organized as followed. We start by giving a multi-subject model combining random e ects (RFX) with functional segregation hypothesis. In section 5.3, we introduce an on-line and computationally-e cient algorithm to estimate this model. In section 5.4, we present a simulation study, and in section 5.5 results on an fMRI dataset comprising 150 subjects.

A multi-subject sparse-coding model of brain response

Sparse coding brain response Our model is based on two basic neuroscience principles: i) functional segregation which states that brain territories are formed of elementary, functionally-speci c units [21] and ii) functional degeneracy which states that a particular function may recruit di erent networks across subjects [12]. We combine these principles at the subject and group level to learn the correct basis to describe the macroscopic level of brain organization.

Experimental stimuli and contrasts do not correspond simply to elementary cognitive processes. For instance to isolate brain regions involved in a calculation tasks, instructions to perform arithmetics will be given to a subject, however these instructions are given via a modality: auditory or visual, and will induce a word-comprehension task in addition to the calculation. Investigators use contrast maps to cancel out secondary e ects and focus on word -calculations, but these contrasts can carry also some auditory, visual, or language e ects as the stimuli content in the di erent tasks are not perfectly matched.

A typical fMRI experiment thus yields a set of task-speci c contrast maps: for each subject s, X s ∈ R t ×n , where t is the number of tasks and n the number of voxels. Based on the principles of functional specialization, we stipulate that the tasks used are formed of elementary cognitive processes associated with a set of corresponding sparse neural substrates: there exist combinations of tasks D = {d j } such that each d j is expressed on a small number of brain regions:

X s = DA s T ,
where A s is sparse.

(5.1)

We are interested in learning a dictionary of k functional pro les D ∈ R t ×k and the associated sparse spatial code A s ∈ R n×k , that we call functional networks. The number of atomic cognitive functions recruited by the tasks explored in an fMRI experiment is most likely much larger than the number of experimental conditions t. Drawing from a large number of subjects can help to estimate more functional pro les, as subjects will resort to different cognitive strategies, engaging di erently atomic cognitive functions.

To give a clichéd image, right-handed and left-handed subjects could rely on di erent visuo-spatial representations to perform a hand motion task.

In practice, variability in cognitive strategy is often very subtle and can be related to variability in attention, engagement to the task, background processes, rather than high-level strategies [12]. Modeling this inter-subject variability should improve the quanti cation of population-level estimates and enable the separation of atoms of brain function.

Multi-subject modeling We introduce subject-speci c expressions of the functional pro les:

F s = (I + ∆ s )D, where ∆ s ∼ N (0, σ 2 I t ), ∆ s ∈ R t ×t , F s ∈ R t ×k (5.
2) An approach commonly used when dealing with such unsupervised learning problem on multi-subject fMRI data is to concatenate the data spatially [3,19], learning an augmented dictionary,

F = [F 1 T . . . F s T ] T = [(I + ∆ 1 ) T , . . . (I + ∆ s ) T ] T D ∈ R st ×k .
(5.

3)

The multi-subject model resulting from (5.1) and (5.2) can then be written as a standard dictionary-learning problem: X = FA T , with X ∈ R st ×n the spatial concatenation of the data and A functional networks independent of the subject. By learning a dictionary spanning multiple datasets, it can estimate inter-subject loadings that reveal the di erent cognitive strategies, drawing from the spatial correspondence of the coding of the information. However, estimating high-dimensional dictionaries has two major drawbacks: i) it is more challenging from the statistical standpoint because the residuals implicit in eq. 5.3 are non white and ii) this approach is fragile to errors in inter-subject correspondence.

To remove the need for spatial matching, Lashkari et al. [9] cluster the activity pro les, grouping voxels that respond similarly to the tasks across subjects. This functional correspondence hypothesis leads to a functional concatenation of the data:

X = [X 1 , . . . X s T ] T ∈ R t ×sn . The multi-subject model is then written X = DA T with A = [(I k + ∆ 1 )A 1 , . . . (I k + ∆ s )A s T ] T ∈ R k ×sn ,
which amounts to learning a dictionary common to all subjects and di erent spatial maps.

Modeling Random e ects Both spatial and functional concatenation approaches lead to a simple formulation in terms of learning a dictionary of functional pro les and spatial code. However a naive resolution of these dictionary learning problems neglects that both spatial code and functional pro les share information across subjects. In functional neuroimaging data analysis, the standard way to model both common e ects and variability across datasets relies on hierarchical linear models, often mixed-or randome ects (RFX) models that assume that the e ect has two components of variance: inter-subject and intra-subject [24]. We can adapt this model to enhance the spatial correspondence approach by constraining the ratio of the intra-and inter-subject variance of the functional pro les in the augmented dictionary F . For this purpose, we introduce a common e ect matrix made of s k × k identity matrices concatenated: C = 1 s [I k ,. . . I k ] T ∈ R k ×sk and the di erential e ects matrix C ⊥ ∈ R (s-1)k ×sk , which is an orthogonal completion of C. To impose an RFX structure on the dictionary, we present in section 5.3 an algorithm controlling

f i C 2 2 / f i C ⊥ 2 2
, where i ∈ [1, t ] is the index of a dictionary element.

Proposition 1. C and C ⊥ isolate i) group-level pro les: E[ f i C] = d i , ii) intra-subject variance: E[ f i C 2 2 ] = 1 + σ 2 s d i 2 2 ≈ d i 2 2 , iii) inter-subject variance: E[ f i C ⊥ 2 2 ] = σ 2 -σ 2 s d i 2 2 ≈ σ 2 d i 2 2 .
The rst and the second equalities stem from Eq. ( 5.3), while the last one follows from the fact that f j

2 2 = f j C 2 2 + f j C ⊥ 2 2 , as [C T , C T ⊥ ]
forms an ortho normal basis of R sk .

E icient learning of RFX-structured dictionaries

State-of-the-art dictionary learning algorithm A general approach to learn dictionaries for sparse coding is to optimize the dictionary so that is leads to a sparse regression on train data, using an 1 penalty on the code [10]:

D = argmin A,D , D ∈ C X -DA T 2 2 -λ A 1 , (5.4) 
where X , D, A should be replaced by X , F , A or X , D, A depending on the choice of correspondence. Note that the dictionary D is constrained to a convex set C, typically by bounding the 2 norm of its atoms:

d i 2 ≤ 1.
This constraint is technical, as without it the penalty on A could be made arbitrarily small by scaling up D and down A and thus keeping the data-t term constant. Let us rewrite the optimization problem:

D = argmin D , D ∈ C min a x -Da T 2 2 + λ a 1 .
(5.5)

This new expression highlights that, when learning the dictionary, the objective function is the sum over a large number of di erent realizations of the same problem, here sparse coding a simple voxel activation pro le x .

The optimization problem can thus be tackled using stochastic gradient descent with on-line or mini-batch strategies [10]: small numbers of voxels randomly drawn from the data are successively considered and a corresponding sparse code a is learned by solving a Lasso-type problem. The dictionary can then be updated to minimize the data-t error given the code.

The algorithm iterates over small batches of voxels (hundreds) to incrementally improve the dictionary. When the number of voxels is large, such an approach can be orders of magnitude faster than the alternate optimization strategies used by [22,4], because these require solving brain-wide sparse regression for each update of the dictionary. Szabo et al. [18] extend this approach to structured dictionaries by replacing the 1 norm on α with a structure-inducing norm, such as the 21 norm used in the group lasso. However, the corresponding algorithms to learn the sparse code a are much more costly as they rely in general on optimizing augmented problems over auxiliary variables [18]. On the opposite, e cient algorithms to solve the 1 problem bene t from the sparsity of the solution and can be much less costly than a least-square estimate for very sparse problems [6].

Imposing RFX-structured dictionaries We introduce a simple modication to the on-line algorithm [10] to impose an RFX structure on the dictionary. Our approach is based on spatial correspondence to learn an augmented dictionary F and sets di erent intra and inter-subject variance using proposition 1: controlling the ratio of the norm of FC and FC ⊥ . For this purpose, we use a careful choice of constraint set C on the dictionary; namely, we impose on each atom

Ω( f i ) ≤ 1,
with Ω(

f i ) = max( f i C 2 2 , µ f i C ⊥ 2 2 ), (5.6) 
where µ controls the ratio of intra to inter subject variance. Because of the penalty on A, it is highly likely that the constraint will be saturated. This constraint is an ∞ norm, which tends to enforce equality when saturated 1 :

1 Indeed, combined with an 2 loss, an ∞ constraint tends to saturate at its kinks, enforcing equality between variables as an 1 constraint enforces sparsity.

f i C 2 2 = µ f i C ⊥ 2 
2 . In the on-line dictionary learning algorithm, this constraint is enforced by an Euclidean projection (see algorithm 2 of [10]): at each iteration

d n+1 ← argmin d d n -d 2 2 subject to Ω(d ) ≤ 1.
(5.7)

The max operator in Ω imposes that f i C 2 2 ≤ 1 and

f i C ⊥ 2 2 ≤ 1 µ .
As C and C ⊥ span orthogonal subspaces, the Euclidean distance decomposes in two independent optimization problems on those subspaces: the projection on a ball of radius 1 (resp. 1 µ ), c n+1 ← c n / c n 2 , where c is the restriction of d to the subspace spanned by C (resp. C ⊥ ). In practice, to implement this projection, we apply the dictionary-update algorithm after rotating the dictionary and the code to express them in the basis of R sk formed by [C T , C T ⊥ ], and for the sparse-coding step, we rotate back the dictionary to the basis that leads to sparse codes. With this strategy, the Euclidean projection Eq. (5.7) has the same computational cost with norm Ω than with the standard 2 norm proposed in [10]. As the computational cost of the dictionary update step is already quadratic in the length of the atoms, this strategy to impose an RFX structure on the dictionary does not change the overall algorithmic complexity of dictionary learning, neither asymptotically nor for small dictionaries.

Parameter choice and initialization Our algorithm has two parameters: λ, that controls the sparsity of the spatial maps, and µ that controls the ratio of intra-subject to inter-subject variance. We set that ratio to 10. Typically in fMRI study, inter-subject variance is 4 to 9 times larger than intra-subject variance [24], thus we are over-penalizing. However, in statistics, over-penalization is considered as preferable to under-penalization, as the former leads to bias, here to a common e ect, while the later can easily lead to an explosion of variance. With regards to λ, the natural scaling factor is λ ∝ 1 √ p ε where p is the size of the atoms, and ε 2 the variance of the residuals [1]. We assume that ε 2 ∝ std X and use the simple choice λ ∝ 1 √ p std X . Similar scalings are suggested in [10]. They lead to having a number of non-zero constant on average in the code A. In other words, each voxel is coded on the same number of maps, independently of the size of the problem (number of maps extracted, number of contrasts).

The dictionary learning problem is not convex. The starting point is important because a good choice can signi cantly speed up the convergence, and also determine the nal results. We use spatially-constrained clustering on spatially-concatenated data [19] to learn an initial parcellation and associated dictionary.

Results on simulated data

Synthetic data generation We generate a simple and well-understood synthetic dataset to illustrate how the di erent approaches work, as well as the impact of spatial variability. We study the scenario in which two observed contrasts are generated from three functional networks, each one of them made of a single blob (Fig. 5.1, top left). Group-level loadings are generated from a uniform [0, 1] distribution, and for each subject one cognitive strategy out of two, corresponding to a variation in 20% of the weights, is a ected randomly. Finally, Gaussian-distributed noise is added with a variance of 0.1. We generate images of size 50 × 50 for 32 subjects. Optionally, we add spatial variability across subjects with Gaussian noise of 3 pixel standard deviation on the positions of the blobs.

Only functional variability

Functional and spatial variability Results Without spatial variability, spatial correspondence and RFX structure are very successful at singling out the blobs, however the functional correspondence strategy is less so (see Fig. 5.1). This is not surprising, as in the functional correspondence case, the dictionary learning task amounts to separating out 3 vectors (functional pro les) in a 2-dimensional space, which corresponds to an under-determined source separation problem. The under-determined problem is much harder than the over-determined problem, as in the spatial correspondence approach. Indeed, learning an augmented dictionary across subjects can bene t from inter-subject functional variability to tease out networks. However, in the presence of spatial variability, the simple spatial correspondence ts this variability and the estimated maps exhibit adjustment modes, combining di erent networks with negative regions that correspond to network spatial derivatives. Indeed, the loadings show little consistency across subjects, as the learned spatial maps are combined to compensate for spatial uctuations. The RFX structure prevents such a combination to happen via a shrinkage to common factors. As a result the spatial maps are more faithful to the true networks. Note that the inter-subject pro les are overly shrunk. This an expected consequence of strong regularization: suppressing the variance comes to the cost of a bias. However this bias is not detrimental to the mean pro le or the spatial maps.

Learning a cognitive brain atlas from fMRI

Functional localizer dataset We use a functional localizer that targets a wide spectrum of cognitive processes, namely visual, auditory and sensorimotor processes, as well as reading, language comprehension and mental calculation. This protocol [14] lasts only 5 minutes, in order to be performed routinely on top of other protocols. We use 151 subjects that were acquired on the same 3T SIEMENS Trio scanner. 6 contrast maps best represent the brain activity for the cognitive processes recruited in this protocol. The contrast maps are both a combination of several conditions (e.g., sentence reading, calculation), and a di erence of those conditions (e.g., right click versus left click) to draw out the e ect of interest. For instance, the map "words -calculation" aims to isolate the e ect of calculation by canceling out the modality of the stimulus (auditory or visual), and the residual e ect of the comprehension of the stimulus (reading or listening). The e ect of words is then encoded by negative loadings.

Networks and profiles extracted Fig. 5.2 shows some functional networks and pro les extracted using k = 50. The pro les are represented by their loadings on the contrasts of the original experiment, that oppose one type of brain function to another. Some networks extracted correspond across methods: for instance the network corresponding to a left click (a1, b1 and c1), for which the spatial map highlights the hand area of the motor cortex and the functional pro les are concentrated on the motor and left contrasts. As nger movement gives very strong activations, this network is reliable across subjects: standard errors on contrast loadings are small and the inter-subject functional pro les (Fig. 5.3) are similar across subjects even without enforcing structure. Note that a similar right-click network is also extracted (not shown). Extracting such a network is no surprise, as it maps well to a task performed in the study. More interestingly, networks corresponding to higher-level cognition are also extracted, e.g. the language network (a2, b2 and c2) and the dorsal-attentional network (a3, a4 and, b3 and c3), or a salience network (a4) [16]. We report a qualitative comparison of all the networks extracted for the di erent multi-subject approaches.

As in the simulations, some maps learned by spatial correspondence have loadings that are not reproducible across subjects (b4 on Fig. 5.2 -note the large error bars-and on Fig. 5.3). Functional correspondence tends to mix well-known networks and produce degenerate maps. For instance, it extracts for the dorsal-attentional attentional network two components (a3 and a4) that are not well di erentiated and include other regions. Indeed, the dorsal-attentional network is made of the intra-parietal sulci and the frontal eye elds and is well known for high-level visuo-spatial tasks, for instance during eye saccades. Maps a4 and a3 also outline the visual area MT (V5) and the dorsal ACC, part of respectively the visual system and the salience network. The corresponding functional pro les indeed stray away from the accepted functions of this network: a3 does not present any visual loading, while a4 shows right motor clicks and a preference for horizontal checkerboards. On the opposite, the RFX-structure approach selects only b1 the frontal eye eld and the intra-parietal sulci on the spatial map. The cognitive loadings are limited to visual and calculation tasks. While it may seem surprising to nd calculation in a visuo-spatial network, this speci c network has recently been reported as recruited in mental arithmetics [7]. Finally, we nd that all the networks extracted by the RFX-structure approach outline known structure and have sensible cognitive loadings. Towards a cognitive brain atlas To evaluate the overall spatial layout of the networks extracted we turn the decomposition in a hard assignment: we assign each voxel to the component for which it has the highest value in the spatial map. This procedure retrieves a cognitive label for each voxel and thus establishes a cognitively-informed brain parcellation. The maps extracted by functional correspondence often lack spatial structure and segment redundant regions across the di erent components (as with a3 and a4), as a result the corresponding parcellation appears noisy (see Fig. 5.4). The parcellations for spatial correspondence show more regularity, and even more so for the RFX-structured approach. The later gives sensible divisions of well-known parts of the cortex, such as the motor cortex, or the ventral Functional richness of the profiles The corresponding functional proles are summarized by computing the t-value (mean e ect divided by standard error) per network and contrast, across subjects. These values, clipped to [-10, 10], are presented in Fig. 5.5(left), which shows that the RFX model achieves an intermediate level of sensitivity between spatial correspondence, that yields smaller t values, and functional correspondence that exhibits high t-values.
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A way of assessing the functional signi cance of these decompositions is to quantify how speci c the encoding of functional pro les into networks is. To do so, we label each network as showing negative, none or positive activation, by thresholding the t values, and compute the entropy of the resulting assignment. Fig 5 .5 (right) presents the results for a standard range of thresholds, obtained through 100 bootstrap replications of the t values and entropy computation. In a range of values that is usable in practice (t values between 2. and 4.) the RFX model yields a more e cient encoding than the other decompositions; the spatial decomposition dominates for very low t-values while the functional decomposition outperforms the others for extremely high t values. Altogether, this suggests that the RFX model encodes e ciently the possible functional pro les, while the spatial model is more sensitive to between-subject variability and the functional model underestimates the group-level variance and thus overestimates the functional speci city of brain networks.

Conlusion

We have introduced a multi-subject model for task-induced fMRI activations that combines the principles of functional segregation and intersubject degeneracy in a structured sparse coding problem. Technically, a major contribution of our formulation is to bound the ratio of intersubject to intra-subject variance as it prevents extracting maps from nonreproducible variability. On a mid-sized cohort (150 subject, 6 contrasts) our model extracts a large number of brain networks that are meaningful both in terms of cognitive content and of spatial maps. Applying this approach to larger studies should reveal richer and more speci c e ects. For larger cohorts, it can easily be extended to multi-level model speci cation, for instance in multi-centric studies, adding a center e ect. An exciting direction of future research is to use this possibility to combine multiple studies in a meta analysis. Importantly, our approach is very computationally e cient: it is O n 2 in the number of subjects, and the analysis presented in this paper runs in 10 mn on a single CPU, compared to several hours for non on-line learning. It is thus applicable to mining of massive datasets. Altogether, our results provide the basis of a framework to derive a synthetic and optimized representation of large amount of multi-subject fMRI data in terms of specialized brain regions.

D

is key to learn cognitive functions representation in the brain. The 1000 Functional Connectomes Project [2] pioneered discovery science in the neuroimaging community, by focusing on resting-state functional MRI (R-fMRI). Such an approach alleviates many of the issues related to datasharing and analysis across experiments [31], and provides an insightful view of the brain's distributed networks. R-fMRI and taskbased functional MRI (T-fMRI) however outline not only the same networks [36], but also exhibit di erent patterns of activation [22]. Aggregating R-fMRI is therefore only addressing part of the problem, and while cognitive neuroscience traditionally uses T-fMRI to link psychological processes to brain function, a number of challenges prevent a large-scale decoding of the mental states. There indeed is a lack of frameworks that bene t from a growing accumulation of datasets. The standard analysis framework is forward inference as de ned in [15,16]: it associates a brain region with a cognitive theory implemented by a dissociation of two experimental conditions. The two conditions test for an e ect of interest under an experimental paradigm, but do not guarantee that the resulting region is speci c to that e ect as it only re ects the cognitive theory being tested. Forward inference in a large-scale setting tends to outline broad, larger than expected regions in the brain [38], and consequently may not alone give additional insights in the context of data accumulation. A large-scale setting however opens the possibility to invert the statistical inference, and to reason from the brain activations to the mental processes, shedding light on how they interact with each other.

W

in Chapter V the importance of modeling brain functions as networks rather than regions, and using task fMRI rather than resting state to be able to assign labels to those networks. In this chapter, we present a supervised framework that uses the datasets presented in Chapter III, and makes it possible to learn functional atlases. The rst section investigates the use of cognitive ontologies to co-analyse multiple T-fMRI datasets despite the lack of common paradigm. The second section of this chapter details the method we use to map functional labels to the brain, and the last section presents the functional atlases given by that method.

The contributions developed in this chapter have been published in:

• Y. Schwartz, G. Varoquaux, and B. Thirion, Mapping cognitive ontologies to and from the brain, NIPS, 2013. 

Annotating brain maps

Price and Friston [32] argues the utility to organize cognitive processes in ontologies to enable the description of brain areas in terms of which functions they are involved in. Similarly, Poldrack [27] stresses the critical importance of the metadata describing the tasks and mental processes for scaling up the classi cation of mental states. This section describes some existing ontologies of cognitive processes, and how we use them to label our data. Developing ontologies to represent mental processes is a challenging task, and there is currently no established standard in the neuroimaging community. Several initiatives however aim to solve that problem. BrainMap [20] mainly concentrates on the description of the experimental conditions that characterize an experimental paradigm. Conditions are grouped in categories that represent the stimuli, the expected responses, and the instructions given to the subjects, e.g., "stimulus modality", "explicit stimulus", "explicit response". It also de nes cognitive level functions called behavioral domains, e.g., "cognition.memory" or "cognition.language". The Cognitive Paradigm Ontology (CogPO) [39] is an extended and updated version of the BrainMap taxonomy. Figure 6.2 illustrates the decomposition of the experimental paradigms in di erent conditions, and their associated description. More tailored towards cognitive processes, the Cognitive Atlas [30] lists a large number of cognitive tasks and concepts, and increasingly links them together. All these approaches rely on human input to build the representations. Conversely, Neurosynth 1 [41] automatically extracts terms and asso-1 http://neurosynth.org/ ciated brain locations from neuroimaging papers, to build a synthetic view of the eld. These approaches all have pros and cons, and ultimately are complementary. CogPO -and BrainMap-de nes a formal way to specify experimental paradigms but falls short in the amount of terms it inventories, and thus in the number of studies it is able to describe. The Cognitive Atlas focuses on high level cognitive concepts that are suitable to describe contrast maps, but also sometimes appears to list redundant terms, e.g., "sentence production" and "speech production". Finally Neurosynth features the larger number of terms, but their curation is an ongoing process and a lot of the terms are either redundant or not relevant. Eventually the choice of a good cognitive ontology comes down to what we want to do with it. A major challenge for this thesis is to nd commonalities between studies. Despite our number of studies being large for an image database, it remains small considering that we want: i) to target a large number of mental processes to have a wellconditioned reverse inference problem, ii) several instances of each mental process to ensure the generalizability of our inference. As the description of experimental conditions is more general to all studies, regardless of the original intent of the study, we decide to mainly use terms from CogPO, and extend it where our database can bene t from more precise or highlevel descriptions.

Representing the tasks design

Functional MRI experiments are carefully designed to balance conditions of interest with control conditions to cancel out e ects related to the stimulation. As we do not want to ignore the designs, but rather leverage them in the context of a large scale inference, we introduce an additional category level for our terms, that groups together terms -or conditions-that are typically contrasted in individual studies. These new categories strongly relate to the paradigm classes from BrainMap and the tasks from the Cognitive Atlas. The categories we choose are relevant to our database, and re ect the contrasts found in the studies. They nonetheless could be modi ed or extended further to test other hypotheses. This hierarchy of terms can be seen as a meta-design that enables to co-analyse heterogeneous studies. Table 6.1 references the categories and associated terms used in this chapter.

Inferring concept-specific networks

This section introduces our method to map cognitive processes to the brain. Traditionally, researchers depend on forward inference to identify brain patterns supporting cognitive theories. Henson [16] shows that forward inference alone is often not su cient to conclude on the engagement of brain regions because: i) it only re ects the cognitives theories being tested, ii) it does not guarantee speci city, and iii) it cannot warrant the completeness of the inferred regions. These issues are particularly noteworthy for studies using a subtraction design, that rely on a pure insertion assumption [11]. Poldrack [25] points out that, to circumvent these shortcomings, researchers make use of reverse inference in an informal way: they explain the recruitment of a region by a cognitive process by relating their study with others from the literature. Henson [16] similary advocates the use of forward and reverse inference in conjunction to assess the reproducibility of an experiment. It also opens the possibility to relate cognitive processes across cognitive theories. The need of a large database is clear here, as a principled reverse inference may only be achieved with a large coverage of the cognitive space [29,27]. Analyzing large amounts of task fMRI data usually leads to numerous challenges [2,28]. We present a method that makes use of the terms introduced in the previous section, and enables us to use forward and reverse inference in conjunction to associate brain regions to those terms. Figure 6.3 illustrates the general idea of the method, which uses forward inference to encode the brain, i.e. detecting voxels responding to a term, and reverse inference to decode the brain, i.e. predicting the terms from the voxels. 

Encoding the cognitive space

Terms e ect Poldrack [25] formalizes forward inference as the probability of an activation given a cognitive process P (Act |Co ). We assign a set of terms to each image, forming a one-hot-encoding of the database, i.e. representing the occurrence of terms by a binary design matrix. We follow the standard fMRI analysis framework and perform a General Linear Model (GLM). This gives the correlation of each separate voxel with the terms within a set of images, and enables to test for their signi cance. Using the GLM formulation: x = β + ε,

x corresponds to the activation maps, to the design matrix modeling the presence of terms, and β to the term e ects. The input activation maps are subject-level condition versus baseline maps. The side Figure 6.4 shows the e ect map for the places term. We will use this term along this chapter to illustrate the di erences between the types of inference.

Terms contrasts

The GLM estimates the responses of each voxel in respect to a combination of terms, which means the individual term e ects are entailed to a degree of speci city. Individual studies contrast the β maps to isolate cognitive processes, e.g., a "face versus place" and a "face versus scrambled picture" contrast for a face recognition study. To disentangle the experimental factors without a too strong a priori on the control conditions, the alternative is to contrast a β map against all others, e.g., "face versus place and scrambled picture". We group our terms within the task categories described in Table 6.1 that contain the conditions and their controls, and proceed to compute the contrast combinations. It is important to note that this procedure is di erent from a 2nd level (group), or even a 3rd level analysis [33] in the sense that the term e ects are estimated jointly across all studies, and the control conditions span a wider range of stimuli than typical studies. 

Decoding the cognitive space

Reverse inference Poldrack [25] formalizes reverse inference as the probability of a cognitive process given an activation P (Co |Act ). This is however only possible in the context of a large scale decoding framework [29], that both accounts for the distributed nature of brain networks and the variety of mental processes. In previous work, Poldrack [29,26] tackles this question using a multi-class predictive model, the targets of the classi cation being separate cognitive labels. The problem we face here is slightly di erent, as we aim to invert the statistical inference, we predict the design matrix denoting the entries of the design matrix in the forward model. In other terms each image may be associated with more than a single label, which in a decoding setting is called multi-label classi cation. This section goes through the details of our method for reverse inference, which aims to build a multi-label linear predictive model.

Feature recovery

We want to build a linear model to be able to map the predictive features onto the brain. Feature recovery is the ability to recover stable and meaningful predictive features from our model. Three issues usually get in the way in fMRI multivariate analyses: the high dimensionality of the data, the local correlation of the features -voxels-, and the model selection. Varoquaux et al. [40] show that it is possible to come around the dimensionality and correlation problems by using sparse regression models with randomization techniques and feature clustering. This actually amounts to building an ensemble of sparse linear classi ers [7], on a set of randomized parcellations generated by a Ward agglomerative clustering algorithm combined with a resampling method. We add a cross validation procedure in the training of our ensemble in order to select the model. For each random parcellation, we keep the best model. Ensemble classi ers typically either use a voting or an averaging strategy for the -nal prediction. We choose the latter to keep a linear model, in line with our brain mapping goals. We also perform a non-conservative univariate screening of the features, and keep 30% of the features. This step is primarily due to computational concerns. On the speci cs of our model, we choose to use an 1 -logistic regression, 5K parcels for the clustering, and a 5-fold cross validation for the model selection.

Imbalance problem

The class imbalance problem is inherent to our data since mental processes are not uniformly investigated in the literature, and even more so in our database. This is a common problem for meta-analyses, known as the literature bias. There are several ways to account for class imbalance such as using resampling methods or decomposition strategies to project the classes samples into a balanced space. We choose to use a resampling method akind to bagging (Bootstrap AGGregatING), in which each classi er is given a balanced sub-sample of the whole dataset. This results in an ensemble of classi ers that retains a good coverage of the majority class but su ers less from the imbalanced class distributions.

Hierarchical decoding

The previous paragraphs decribe the necessary steps to build a classi er for a single label, i.e. a single term, but we are in a multi-label classi cation setting. The usual approach to solve this kind of problem in machine learning is to train one binary classi er per label in a One versus All (OvA) scheme. The approach has successfully been used in our initial contribution [34], but in our opinion su ers from two main limitations in this context. First an OvA classi cation models each label separately, and by doing so misses potentially useful connections between the labels that could improve their individual prediction. Second, it ignores the experimental design of the studies from which the images are drawn: an OvA approach uses blindly all the data to learn a label, regardless of whether the images are from a study designed to expose this kind of mental process.

We introduce a new model to alleviate these shortcomings, that relies on stacked regressions [3]. A stacked regression model is an ensemble method that uses the linear combinations of di erent classi ers to improve the nal prediction. The general idea of this model is to generate di erent predictors on the same data. The predictors can be generated through resampling methods, or merely use di erent underlying models (e.g. to combine a collection of linear and non-linear models). We stack the decision functions from the collection of classi ers, and use them to train a nal predictor that forms a linear combination of the base models. This model has the advantage of building a linear classi er if we avoid introducing nonlinearities in the ensemble classi ers. Another interesting property is that it enables to combine the predictions of OvO (One versus One) classi ers to perform multi-label classi cation, instead of only multi-class. Finally, this approach may be seen as a supervised dimensionality reduction method, as we condense the original space to a number of dimensions equal to the number of base classi ers in the ensemble.

Breiman [3] refers to as "black art" the choice of classi ers to form accurate combinations. As this choice is largely context dependent, we opt for classi cation problems that learn a reduced representation of the brain imaging data tailored to the cognitive concepts under study. First, we stack the decisions of the OvA classi ers, that capture speci c activation patterns across all tasks. This allows to relate cognitive processes across independent cognitive disciplines. Second, we build OvO classi ers by opposing terms that belong to the same task category in Table 6.1. This enables to generalize the notion of contrasts and subtraction-logic that is implicit to the majority of fMRI experiments. Finally, we build classi ers predicting the actual task categories from Table 6.1. It enables to build a hierarchical decoding framework, which combines the decisions of simpler problems (classifying the task categories), and ner grained problems (the OvO classi ers). There may be better choices of classi ers, but the nal predictor weights them, and therefore mitigates the introduction of unnecessary or sub-optimal classi ers.

Finally, we learn the terms on the reduced representation with an OvA scheme, which also uses 1 -penalized logistic regressions. The nal output of this method is one linear classi er per term, that can be recovered by the linear combination of the coe cients of the base classi ers, with the coecients of the nal classi ers. Figure 6.6 displays the classi er's coe cients map for the "places" term: the resulting map is more speci c than with forward inference, but is also noisier. Figure 6.7 summarizes this hierarchical decoding procedure. Cross validation We perform the classi cation in randomized leave-3study out cross validation scheme. We choose to do cross-study prediction to ensure that the representation of the cognitive labels generalizes across paradigm. Failure to do so might result in over tting the data, and learning studies idiosyncrasies. This is the rst time this type of cross validation is used, as Poldrack's implementations [29,26] relied on a leave-subject out cross validation. Considering the distribution of labels in the database, each fold enables to test only a subset of the terms. We complete 100 iterations of the cross validation to get a good estimate of the classi ers performance and variance even for the minority classes. Figure 6.8 shows the classi cation scores for the di erent labels. The precision and recall scores respectively represent the speci city and sensitivity of the classi ers. The red bars characterize the chance levels, and shows that most terms are classi ed above chance. We evaluate the chance levels with a classi er that generates predictions by following the class distribution in the training set. This explains why di erent terms have di erent chance levels. The green bars indicate scores with a leave-subject out cross validation, that are must higher than with a leave-study out cross validation. This con rms that the former cross validation leads to over tting, and yet it was the approach followed in Poldrack's implementations. Figure 6.8 also provides the classi cation scores for a naive Bayes classi er, with the chance levels represented in red and estimated with the same method. The univariate nature of the classi er prevents it from capturing distributed patterns of activity to predict cognitive labels. As a consequence the recall is high -labels are often detectedbut the precision is low because multiple cognitive labels share the same predictive features. 

Voxels as features Decision functions as features

Binary classifiers

One versus All classification scheme. The classifiers learn the interactions between the terms. By taking into account several cognitive concepts at the same time, reverse inference maps are more speci c than the ones from forward inference, but may also capture irrelevant noise. Using both inferences in conjunction is not straightforward, as they do not perform the same statistical tests and do not have the same statistical power. As we are only interested in the common patterns between both approaches, we use a noise independent procedure to delineate those patterns. Speci cally, we compute z-scores for the classi er coe cients by dividing the raw coe cients by their standard error (obtained by cross-validation). The scores' distributions are displayed in Figure 6.10, and shows the di culty to nd a scale at which to threshold forward and reverse maps to nd the common patterns. For this reason, we normalize independently the forward and reverse maps. Figure 6.11 shows the z-scores' distributions after normalization. From this gure, a fair choice of threshold that yields common patterns lies between z = 1.5 and z = 2. We mask out the reverse inference maps with those from forward inference using this threshold. Figure 6.9 shows the resulting agreement map. Figure 6.12 summarizes all the inferences investigated in this chapter, as well as the result of using them jointly. . Figure 6.12: Inferences maps. The 4 brains on the left are the forward, forward contrast, reverse, and agreement maps for the "places" term. The last brain on the right represent the overlaid inferences for the same term.

Predict on validation data

Functional atlases

This section outlines the networks exposed by the joint use of forward and reverse inference. We organize the mapping of terms in 5 atlases that correspond to anatomical locations: a visual atlas, a temporal atlas, a parietal atlas, a motor atlas, and a cerebellum atlas.

Visual atlas

Faces and places Figure 6.14 depicts the functional networks associated with visual stimuli. The "faces" and "places" labels live respectively in the FFA (Fusiform Face Area) and the PPA (Parahippocampal Place Area). While the FFA [35,18] specializes in facial recognition and the PPA [9] in scenes encoding, reports indicate those regions are also involved in other categorical information processing [14]. The database under study however does not have such categorical stimuli to compete with the "faces" and "places" labels. Similarly, the amygdalae show involvement for "faces", which could be related to an emotional processing not otherwise modeled in the database.

z = 4
Figure 6.13: Supplementary slice of the visual atlas to show lateral occipal cortex activations for the "scramble" term (in dark blue). Full legend in Figure 6.14 .

Objects and scramble Objects opposed to scrambled pictures expose the lateral occipital complex (LOC) [21,12], which is composed of a set of regions in the occipito-temporal cortex. Figures 6.13 and 6.14 show that the "scramble" and "object" labels delineate regions in the lateral occipital cortex and the ventral stream. Most of those regions are however labeled under the "scramble" term.

Checkerboards

The "vertical and horizontal checkerboard" labels provide a basic but accurate retinal mapping. They concentrate on low-level visual processing regions such as V 1 and V 2.

Symbols

The "digits" label is not predicted above chance and therefore does not outline any meaningful region. The "words" label exposes a region that is close to the visual word form area (VWFA), in concordance with prior art [6].

Temporal atlas

Auditory The "auditory" label captures the primary auditory cortex. Interestingly, the "sounds" label lies in the right planum polare (BA 38), which . Figure 6.14: We project the labels on the surface to have a view of the ventral stream. Other views show the labels in the volume.

The gure presents all the labels corresponding to visual stimui: "visual" (red eye), "faces" (orange face), "places" (yellow house), "horizontal checkerboard", "vertical checkerboard", "objects" (light blue tool), "scrambled objects" (dark blue blurred tool), "digits" (purle digit 3), and "words" (pink W letter). is found to be involved in high-level music processing [5]. Dataset #40 presents a music task which could explain the recruitment of this region.

Voice area Belin et al. [1] identify voice-selective regions in the auditory cortex, speci cally in the central part of the upper STS in both hemispheres. The human voices conditions in this study are contrasted with closely matched control conditions scrambed voices and noise. Dataset #56 features the most similar conditions in our database, by presenting Korean, French and mechanistic noise to French speakers. Other studies do not present human voices and non human sounds (such as tones, music or noise) simultaneously. The "human voice" label nonetheless depicts in Figure 6.15 a set of regions matching [1], and speci c to that type of sounds.

Language The "language" label views a large distributed network in the left hemisphere composed of the anterior STS (Superior Temporal Sulcus), the posterior STS, the temporal lobe, the temporo-parietal junction, and the broca area region, which are typically reported in related work [23,4,10].

. Figure 6.15: This gure presents temporal networks: "auditory" (red ear), "language" (green earth), "sound" (pink speaker), and "human voice" (light blue man).

Parietal atlas

Saccades and mental arithmetics recruit overlapping regions in the posterior parietal cortex [19]. Our method uncovers networks speci c to "saccades" and "calculation" as illustrated in Figure 6.16. In particular, the "cal-culation" network shows a strong lateralization to the left, which is consistent with previous reports [24]. . Figure 6.16: This gure presents parietal networks: "calculation" (red operators) and "saccades" (pink eyes).

Motor atlas

The motor labels in Figure 6.17 maps the hands and feets representations in the motor cortex. The cerebral hemispheres of the primary motor cortex contain the representation of the opposite side of the body part involved. Figure 6.17 also shows the motor regions in the cerebellum, which are described in more details in the cerebellum atlas section. . Figure 6.17: Labels related to the motor system: left hand (red), right hand (green), left foot (light blue), and right foot (pink)

Cerebellum atlas

While the cerebellar cortex engages in a range of mental processes, the extent of its functions has yet to be discovered. Previous work highlights the somatotopic organization of the cerebellum [13]. Figure 6.17 shows an analogous organization of the "hands" and "feet" functions. The crossed cerebro-cerebellar bers pathways explains the inversion of laterality of functional areas in respect to their cortical counterparts. Other higher-level cognitive functions activate the cerebellum with the same inversion. "Language" is particularly noteworthy, and ndings in [37] exhibit activations lateralized to the right lobule VI, and the Crus I and II. The language network from Figure 6.18 outlines in addition of the cortical activations a single region in the cerebellum located in the Crus II. Finally the calculation network also involves the right cerebellar cortex in the superior medial section of the lobule VI, which is consistent with ndings of working memory in the cerebellum [8]. The role of working memory in mental arithmetic is widely reported in the literature [17,42]. These ndings suggest that shortterm memory is used a temporary storage of information to hold multidigits numbers, as well as to break down complex operations. . Figure 6.18: This gure shows labels, other than motor, that recruit the cerebellum: "calculation" (red operators) and "language" (pink earth).

Conclusion

In this chapter, we have presented a framework that is able to accumulate task fMRI data though the use of cognitives ontologies. The use of a large fMRI database opens the possibility to perform reverse inference, and use it in conjunction with forward inference. This approach, suggested by Henson, enables to go beyond functional specialization, in the sense that we do not aim to localize functions to speci c brain regions, but rather identify distributed networks that may partially be shared across functions. The multivariate nature of our decoding approach is particularly bene cial to the nding of distributed networks. As a supervised approach, it can be used to assess the validity of the cognitive labels. We introduce a 2-level classi cation strategy, that enables to capture the speci cities of the tasks paradigms. We demonstrate its ability to predict successfully low to midlevel cognitive processes, even if some higher cognitive functions still elude our model. This prediction translates to functional brain atlases that reproduce many established results. This work is the rst to build a statistical model of the brain functions at such a large scale.

Conclusion

In this thesis, we have investigated the possibility to build upon an accumulation of fMRI data. We have reviewed the challenges to assemble a large database of images, and have proposed several novel methods to map cognitive processes to the brain. Following are the contributions of this thesis.

Database contributions Constituting a large fMRI database presents many challenges due to the complexity of the data, and the limited amount of resources available. We demonstrated the importance of a standard organization to automate the processing streams and quality assessments of the data. We also contributed to two datasharing initiatives to facilitate future projects that aim to re-use and combine existing data. Speci cally, we contributed to the Neurovault project, which aims to share activation maps as a middle ground between raw data and peak coordinates. We also participated in to the BrainOmics/Localizer database, that shares both the raw data and activation maps of a single dataset featuring a large amount of stimuli.

Methodological contributions Our research focused on methods that combine multiple datasets:

• Our rst contribution drew inspiration from ROI-based analysis of functional imaging data. We investigated the use of an external dataset to better condition testing on a similar task of interest. We also proposed a multivariate alternative to contrast conjunction, that learns ROIs from pairs of related fMRI experiments.

• The second contribution aimed at learning functional networks rather than ROIs. Our approach was di erent from other decomposition methods, in the sense that it jointly learned functional pro les that represent the networks. It therefore forgoes to manual labeling the networks with known cognitive processes.

• Our last contribution was motivated by the idea of developing a method that would map functional networks to the cognitive space. Machine learning methods generally perform better when more data is available.

In our case more data also meant more diverse data, and therefore more classes (i.e. the cognitive processes). Handling more classes leads to a more di cult problem in terms of prediction, and mitigates the bene t of a large database. Our challenge was to frame the problem in such a way we would not su er from the diversity of the data, and at the same time would keep a rich description of our database. Our solution was to use a cognitive paradigm ontolgy, a describe each image with a set of cognitive labels rather than a single speci c one. We used this approach both in forward and reverse inference to produce functional atlases that represent reproducible results across our datasets.

Research perspectives

Using functional profiles In our last contribution, we predicted the occurence or absence of cognitive processes. We however did not attempt to assess the di culty of the tasks, nor represent the degree of engagement of the subjects. What we propose instead is to predict continuous variables (with a regression model) representing the involvement of a cognitive label for a task. While this would not be feasible by hand, it could be learned from the data and help the predictive models to yield more accurate decision boundaries, and therefore more accurate brain maps of cognitive labels. We propose two possible approaches to learn the functional pro les:

• By using the functional pro les from our second contribution, we can associate a certain degree of involvement to each image in the database.

• Turner et al. [1] shows the possibility to annotate fMRI experiments automatically using text mining on the papers. We could use the probability of having a given cognitive process in an experiment to de ne experiment-wise functional pro les.

Combining coordinate and image databases One of the most promising prospects is to combine coordinate and image databases. Image databases provide greater details on the activations, and we have shown that with a lot less studies we reach a scale comparable to coordinate databases in terms of samples. Image databases may however take some time to catch up in terms of cognitive coverage, which is a major pitfall. Given the functional pro les that represent tasks with combinations of cognitives processes and the work from Turner et al. [1] on automated annotations, we could predict unseen cognitive tasks from images. This would be a form of zero shot learning of tasks. Using similar ideas, we could also combine the cognitive maps learned on images with the functional pro les given by the literature to generate synthetic maps of unknown tasks.

A.2 Classification learning (ds000002)

Subjects performed a classi cation learning task with two di erent problems (across di erent runs), using a "weather prediction" task. In one (probabilistic) problem, the labels were probabilistically related to each set of cards. In another (deterministic) problem, the labels were deterministically related to each set of cards. After learning, subjects participated in an eventrelated block of judgment only (no feedback) in which they were presented with stimuli from both of the training problems.

Metadata

• Investigators: Aron, A.R., Poldrack, R.A., Gluck, M.A.

• Sample Size:17 A.9 Classification learning and tone-counting (ds000011)

Fourteen participants were trained on two di erent classi cation problems while they were scanned by using fMRI. Participants were trained on one problem under single-task (ST) conditions and on the other problem while performing a concurrent tone-counting task. During training, subjects learned the categories based on trial-by-trial feedback. After training, subjects received an additional block of probe trials using a mixed event-related (ER) fMRI paradigm, during which they classi ed items that had been trained under either ST or dual-task (DT) conditions. Tomeasure how well participants had learned under each condition, no feedback was presented during the probe block, and all items were presented under ST conditions. An additional tone-counting localizer scan presented blocks of the tone counting task (followed by a probe at the end of each block) compared to rest.

Metadata

• Investigators: Foerde, K., Knowlton, B.J., Poldrack, R.A.

• Sample Size:14 

A.11 Cross-language repetition priming (ds000051)

Native Spanish speakers who were pro cient in English performed an abstractconcrete judgment with single Spanish or English words. Each item was repeated once, either in the same language or in the other language.

Metadata

• Investigators: Alvarez, R., Poldrack, R.A.

• Sample Size:13 

A.13 Simon task (ds000101)

The "NYU Simon Task" dataset comprises data collected from 21 healthy adults while they performed a rapid event-related Simon task. **Please note that all data have been uploaded regardless of quality-it is up to the user to check for data quality (movement etc). On each trial (inter-trial interval (ITI) was 2.5 seconds, with null events for jitter), a red or green box appeared on the right or left side of the screen. Participants used their left index nger to respond to the presentation of a green box, and their right index nger to respond to the presentation of a red box.In congruent trials the green box appeared on the left or the red box on the right, while in more demanding incongruent trials the green box appeared on the right and the red on the left. Subjects performed two blocks, each containing 48 congruent and 48 incongruent trials, presented in a pre-determined order (as per OptSeq), interspersed with 24 null trials ( xation only). Functional imaging data were acquired using a research dedicated Siemens Allegra 3.0 T scanner, with a standard Siemens head coil, located at the NYU Center for Brain Imaging. We obtained 151 contiguous echo planar imaging (EPI) wholebrain functional volumes (TR=2000 ms; TE=30 ms; ip angle=80, 40 slices, matrix=64x64; FOV=192 mm; acquisition voxel size=3x3x4mm) during each of the two simon task blocks. A high-resolution T1-weighted anatomical image was also acquired using a magnetization prepared gradient echo sequence (MPRAGE, TR=2500 ms; TE= 3.93 ms; TI=900 ms; ip angle=8; 176 slices, FOV=256 mm). These data have not been published previously.

Metadata

• Investigators: Kelly AMC, Milham MP A.14 Flanker task (event-related) (ds000102)

The "NYU Slow Flanker" dataset comprises data collected from 26 healthy adults while they performed a slow event-related Eriksen Flanker task. **Please note that all data have been uploaded regardless of quality-it is up to the user to check for data quality (movement etc). On each trial (inter-trial interval (ITI) varied between 8 s and 14 s; mean ITI=12 s),participants used one of two buttons on a response pad to indicate the direction of a central arrow in an array of 5 arrows. In congruent trials the anking arrows pointed in the same direction as the central arrow (e.g., < < < < <), while in more demanding incongruent trials the anking arrows pointed in the opposite direction (e.g., < < > < <). Note that the original version of the raw data that was posted prior to 10/29/2012 had one extra timepoint incorrectly added to the end of runs 1-11 for each subject. The currently posted version has been corrected.

Metadata

• Investigators: Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., Pietrini, P.

• Sample Size:6 A.17 Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation (ds000108)

Although prefrontal cortex has been implicated in the cognitive regulation of emotion, the cortical-subcortical interactions that mediate this ability remain poorly understood. To address this issue, we identi ed a right ventrolateral prefrontal region (vlPFC) whose activity correlated with reduced negative emotional experience during cognitive reappraisal of aversive images. We then applied a pathway-mapping analysis on subcortical regions to locate mediators of the association between vlPFC activity and reappraisal success (i.e., reductions in reported emotion Subjects were scanned while incidentally encoding a series of visually presented real objects and greebles (meaningless objects) in a variant of the Posner cueing paradigm. Subjects covertly shifted their attention to the left or right of xation, as cued by a centrally-presented arrow prior to item onset, and made a real object versus greeble judgment about the stimulus appearing in the cued or uncued location. Items appeared in the uncued location with a probability of .18. Subjects performed an unscanned memory test following encoding, in which they indicated their memory for old and new real objects using the following four responses: high con dent old, low con dent old, low con dent new, high con dent new. For trials in which subjects responded with one of the two old responses, a source memory judgment about the location (left or right side of the screen) of the object at study followed the recognition judgment.

Metadata

• Investigators: Melina R. Uncapher, J. Benjamin Hutchinson, Anthony D. Wagner

• Sample Size:18 A.20 A test-retest fMRI dataset for motor, language and spatial a ention functions. (ds000114)

A test-retest dataset was acquired to validate fMRI tasks used in pre-surgical planning. In particular, ve task-related fMRI time series ( nger, foot and lip movement, overt verb generation, covert verb generation, overt word repetition, and landmark tasks) were used to investigate which protocols gave reliable single-subject results. Ten healthy participants in their fties were scanned twice using an identical protocol 2-3 days apart. In addition to the fMRI sessions, high-angular resolution di usion tensor MRI (DTI), and high-resolution 3D T1-weighted volume scans were acquired. A.21 Cortical processing of high-level mathematical concepts (amalric2012mathematicians)

Study featuring a visual recognition task with a focus on "digits" and "equations" stimuli, as well as a localizer task of subjects' global functions.

Metadata

• Investigators: Marie Amalric, and Stanislas Dehaene A.22 Cortical representation of the constituent structure of sentences (devauchelle2009sentence)

Linguistic analyses suggest that sentences are not mere strings of words but possess a hierarchical structure with constituents nested inside each other. We used functional magnetic resonance imaging (fMRI) to search for the cerebral mechanisms of this theoretical construct. We hypothesized that the neural assembly that encodes a constituent grows with its size, which can be approximately indexed by the number of words it encompasses. We therefore searched for brain regions where activation increased parametrically with the size of linguistic constituents, in response to a visual stream always comprising 12 written words or pseudowords. The results isolated a network of left-hemispheric regions that could be dissociated into two major subsets. Inferior frontal and posterior temporal regions showed constituent size e ects regardless of whether actual content words were present or were replaced by pseudowords (jabberwocky stimuli). This observation suggests that these areas operate autonomously of other language areas and can extract abstract syntactic frames based on function words and morphological information alone. On the other hand, regions in the temporal pole, anterior superior temporal sulcus and temporo-parietal junction showed constituent size e ect only in the presence of lexico-semantic information, suggesting that they may encode semantic constituents. In several inferior frontal and superior temporal regions, activation was delayed in response to the largest constituent structures, suggesting that nested linguistic structures take increasingly longer time to be computed and that these delays can be measured with fMRI. A.24 Temporal tuning properties along the human ventral visual stream (gauthier2009resonance)

Metadata

Both our environment and our behavior contain many spatiotemporal regularities. Preferential and di erential tuning of neural populations to these regularities can be demonstrated by assessing rate dependence of neural responses evoked during continuous periodic stimulation. Here, we used functional magnetic resonance imaging to measure regional variations of temporal sensitivity along the human ventral visual stream. By alternating one face and one house stimulus, we combined su cient low-level signal modulation with changes in semantic meaning and could therefore drive all tiers of visual cortex strongly enough to assess rate dependence. We found several dissociations between early visual cortex and middle-and highertier regions. First, there was a progressive slowing down of stimulation rates yielding peak responses along the ventral visual stream. This nding shows the width of temporal integration windows to increase at higher hierarchical levels. Next, for xed rates, early but not higher visual cortex responses additionally depended on the length of stimulus exposure, which may indicate increased persistence of responses to short stimuli at higher hierarchical levels. Finally, attention, which was recruited by an incidental task, interacted with stimulation rate and shifted tuning peaks toward lower frequencies. Together, these ndings quantify neural response properties that are likely to be operational during natural vision and that provide putative neurofunctional substrates of mechanisms that are relevant in several psychophysical phenomena as masking and the attentional blink. Moreover, they illustrate temporal constraints for translating the deployment of attention into enhanced neural responses and thereby account for lower limits of attentional dwell time.

Metadata

• Investigators: Baptiste Gauthier, Evelyn Eger, Guido Hesselmann, Anne-Lise Giraud, and Andreas Kleinschmidt A.25 Temporal tuning properties along the human ventral visual stream (gauthier2010resonance) Throughout the history of mathematics, concepts of number and space have been tightly intertwined. We tested the hypothesis that cortical circuits for spatial attention contribute to mental arithmetic in humans. We trained a multivariate classi er algorithm to infer the direction of an eye movement, left or right, from the brain activation measured in the posterior parietal cortex. Without further training, the classi er then generalized to an arithmetic task. Its left versus right classi cation could be used to sort out subtraction versus addition trials, whether performed with symbols or with sets of dots. These ndings are consistent with the suggestion that mental arithmetic co-opts parietal circuitry associated with spatial coding. Although cognitive processes such as reading and calculation are associated with reproducible cerebral networks, inter-individual variability is considerable. Understanding the origins of this variability will require the elaboration of large multimodal databases compiling behavioral, anatomical, genetic and functional neuroimaging data over hundreds of subjects. With this goal in mind, we designed a simple and fast acquisition procedure based on a 5-minute functional magnetic resonance imaging (fMRI) sequence that can be run as easily and as systematically as an anatomical scan, and is therefore used in every subject undergoing fMRI in our laboratory. This protocol captures the cerebral bases of auditory and visual perception, motor actions, reading, language comprehension and mental calculation at an individual level. A.28 Genetic and environmental contributions to brain activation during calculation (pinel2009twins)

Metadata

Twin studies have long suggested a genetic in uence on inter-individual variations in mathematical abilities, and candidate genes have been identi ed by genome-wide association studies. However, the localization of the brain regions under genetic in uence during number manipulation is still unexplored. Here we investigated fMRI data from a group of 19 MZ (monozygotic) and 13 DZ (dizygotic) adult twin pairs, scanned during a mental calculation task. We examined both the activation and the degree of functional lateralization in regions of interest (ROIs) centered on the main activated peaks. Heritability was rst investigated by comparing the respective MZ and DZ correlations. Then, genetic and environmental contributions were jointly estimated by tting a ACE model classically used in twin studies. We found that a subset of the activated network was under genetic in uence, encompassing the bilateral posterior superior parietal lobules (PSPL), the right intraparietal sulcus (IPS) and a left superior frontal region. An additional region of the left inferior parietal cortex (IPC), whose deactivation correlated with a behavioral calculation score, also presented higher similarity between MZ than between DZ twins, thus o ering a plausible physiological basis for the observable inheritance of math scores. Finally, the main impact of the shared environment was found in the lateralization of activation within the intraparietal sulcus. These maps of genetic and environmental contributions provide precise candidate phenotypes for further genetic association analyses, and illuminate how genetics and education shape the development of number processing networks.
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• Investigators: Philippe Pinel, and Stanislas Dehaene Humans can understand spoken or written sentences presented at extremely fast rates of ∼400 wpm, far exceeding the normal speech rate (∼150 wpm). How does the brain cope with speeded language? And what processing bottlenecks eventually make language incomprehensible above a certain presentation rate? We used time-resolved fMRI to probe the brain responses to spoken and written sentences presented at ve compression rates, ranging from intelligible (60-100% of the natural duration) to challenging (40%) and unintelligible (20%). The results show that cortical areas di er sharply in their activation speed and amplitude. In modality-speci c sensory areas, activation varies linearly with stimulus duration. However, a large modality-independent left-hemispheric language network, including the inferior frontal gyrus (pars orbitalis and triangularis) and the superior temporal sulcus, shows a remarkably time-invariant response, followed by a sudden collapse for unintelligible stimuli. Finally, linear and nonlinear responses, re ecting a greater e ort as compression increases, are seen at various prefrontal and parietal sites. We show that these pro les t with a simple model according to which the higher stages of language processing operate at a xed speed and thus impose a temporal bottleneck on sentence comprehension. At presentation rates faster than this internal processing speed, incoming words must be bu ered, and intelligibility vanishes when bu er storage and retrieval operations are saturated. Based on their temporal and amplitude pro les, bu er regions can be identi ed with the left inferior frontal/anterior insula, precentral cortex, and mesial frontal cortex.
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 1120 From brain lesions to functional imaging

Figure 1 . 4 :

 14 Figure 1.4: A motor homunculus which locates body parts along the postcentral gyrus. Source: http: //en.wikipedia.org/wiki/ Somatotopic_arrangement

Figure 1 . 5 :

 15 Figure 1.5: Subtraction design and conjunction, where P1 . . . P4 represent the cognitive processes of the tasks. Source: Poldrack [15]

Figure 1 . 6 :

 16 Figure 1.6:Factorial design, where P1 . . . P4 represent the cognitive processes of the tasks, and C1 . . . C4 the modulating variables. Source: Poldrack[15] 

Figure 1 . 7 :

 17 Figure 1.7: Main functional and anatomical areas of the brain. Credit: Nucleus Medical Art, Inc./Getty Images

  Figure 2.1 represents the di erent terms in the GLM formulation. Importantly, the e ects term may be represented as brain images, and are called activation maps or β maps.

Figure 2 .

 2 2 shows the estimated β maps of an experiment considering visually presented calculation and sentences tasks.

Figure 2 . 1 :

 21 Figure 2.1:The GLM postulates that the observed data are a combination of e ects to be estimated plus a noise. The regressors in the design matrix consist of the modeling of experimental conditions by the convolution of the stimuli presentation by the HRF, as well as confounding variables and lters. Source: Pedregosa-Izquierdo[24] 

Figure 2 . 2 :

 22 Figure 2.2: Beta maps for visually presented calculation and sentences tasks. The thresholding is arbitrary and for visualization purpose only. Source: Pinel et al.[25] 

  for calculation versus sentences .

Figure 2 .

 2 Figure 2.4: t-map for calculationversus sentences thresholded at t = 3.2. This contrast map cancels out e ects related to the stimulation rather than the calculation task itself. Source: Pinel et al.[25] 

Figure 2 . 5 :

 25 Figure 2.5: This gure shows the coe cients of a logistic regression discriminating between a calculation and a sentence reading task.The logistic regression is penalized with an 2 regularization term on the top row, and an 1 regularization on the bottom row. We choose the amount of penalization by cross validation for both models and kept the best performing model. The 1 penalty yields a very sparse model, i.e. relies on very few predictive features.
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  Accuracy: ACC = T P +T N P +N • Precision: PRC = T P T P +F P • Recall or sensitivity: REC = T P T P +F N • F1-score: F 1 = 2T P 2T P +F P +F N

Figure 2 . 7 :

 27 Figure 2.7: This hyperplane map shows the coe cients of an averaging model, which are more interpretable than simple 2 or 1penalized models (see Figure 2.5).In particular the high coe cients in the parietal cortex are relevant for a calculation task.

Figure 2 . 8 :

 28 Figure 2.8: The Talairach atlas is the rst instance of a coordinate system for the brain. It was created by neurosurgeons Jean Talairach and Gabor Szikla from the post-mortem dissection of a single human brain. Source: http:// imaging.mrc-cbu.cam.ac. uk/imaging/MniTalairach

Figure 2 . 9 :

 29 Figure 2.9: The current MNI template is the ICBM152. It comes from the average of 152 MRI scans matched to the MNI305, which is the rst MNI template. This rst template was obtained by averaging and matching 305 MRI scans to structures from the Talairaich atlas. Source: http:// imaging.mrc-cbu.cam.ac. uk/imaging/MniTalairach

Figure 2 .

 2 Figure 2.10: A2: individual activation peaks for the nger tapping experiments included in the meta-analysis. B2: Union of the MA maps across all experiments.C2: signi cant cluster across experiments against a null distribution obtained by permutation testing. Source: Eickho et al.[6] 

50 3 . 2 3 Figure 3 . 1 :

 32331 Figure 3.1: The HCP shares data from over 500 subjects in 7 di erent fMRI tasks.

Figure 3 . 2 :

 32 Figure 3.2: The OpenfMRI contains 29 datasets summing to 693 individual subjects.

Figure 3 . 3 :

 33 Figure 3.3: Neurovault is an open web repository that eases the process to share statistical maps.

.

  

Figure 3 . 4 :

 34 Figure 3.4: OpenfMRI organization of a dataset. The structure allows the representation of subjects, tasks, runs, models, as well as the experimental design. SOURCE: https: //openfmri.org/content/ data-organization

Figure 3 . 5 :

 35 Figure 3.5: The outline of functional data with the corresponding subject's anatomy in background. The top image shows a valid preprocessing whereas the bottom one shows a preprocessing that failed because of faulty information in the NIfTI headers.

Figure 3 . 6 :

 36 Figure 3.6: From left to right: group mean of an autitory task, correct statistical map of one subject, incorrect map of another subject. Automated methods are able to capture this kind of outliers.

Figure 3 . 7 :

 37 Figure 3.7: Database in gures.

5 16 28 .Figure 3 . 8 :

 2838 Figure 3.8: Distribution of scanners for the di erent data sources. The numbers inside each bar indicate the amount of unique fMRI tasks per data source.

  train on task A predict on task A inline learning predict on task B transfer learning If transfer learning above chance, retrieve classifier coefficients and use them as a ROI to perform standard inference on task B

Figure 4 . 1 :

 41 Figure 4.1: Classi er generalization (transfer learning) validates the use of task A to de ne regions of interest on task B. Regions of interest are selected by thresholding the classi er's coe cient to keep a fraction of 5% of the brain. Subsequent standard inference analysis on task B with the regions of interest shows inscreased statistical power.

Figure 4 . 2 :Figure 4 . 3 :

 4243 Figure 4.2: Use of transfer learning to select the scale at which its performance is similar to inline learning. Resulting regions are unspeci c to the investigated tasks.

Figure 4 . 4 :

 44 Figure 4.4: Prediction performance relative to inline prediction with raw contrasts images. The pvalues indicate whether the associated methods are signi cantly poorer than the reference prediction method. The boxplots scatter points represent the methods' scores values within the crossvalidation.

Figure 4 . 5 :

 45 Figure 4.5: Stability scores of the randomized logistic on the Korean versus French prediction of E2 for the di erent sets of features: the colormap represents the frequency at which a feature, parcel or voxel, was selected. The maps are thresholded at 1%.

Figure 4 .

 4 Figure 4.5 gives the stability scores of the randomized logistic discriminating reading Korean from reading French for the di erent set of features -activation peaks, raw contrasts, parcels learned on the training contrasts or on the full database. We can see that while learning at the voxel level or at the parcel level gives similar prediction performance (Table4.1), the stability score maps are very di erent. At the voxel-level, with 70 subjects (p = 40 000, n = 70) the recovery is limited to approximately 7 voxels without randomization: the recovery conditions are violated. As a result, the randomized logistic selects only the most predictive voxels. On the parcels, contrast-speci c or meta-analytic (i.e., learned on the full database), the selection frequency highlights regions of the brain that are known to be relevant for language comprehension, including the left anterior superior temporal sulcus and the part of the temporal parietal junction (Wernicke's area).We threshold the stability selection scores of the rst experiment (Korean vs French) to select candidate voxels for the target experiment (jabberwocky vs French). As we want to perform a rough screening and would rather err on the side of false detections than false rejections, we take a very low threshold τ = .01. Following our analysis above, the size of the largest group of correlated features that we can detect with such a threshold is on

Figure 4 . 6 :

 46 Figure 4.6: Q-Q plots for the pvalues with and without voxel selection by transfer learning, as well as FDR=0.05 threshold: left for a cohort size n = 10, middle for a cohort size n = 20, right for a cohort size n = 40.

Figure 4 . 7 :

 47 Figure 4.7: Example of results using the Transfer learning approach, in four di erent transfer settings:we can see that the area between the inner transfer prediction accuracy curves are large, and that the prediction rates do not converge. The optimal scale, dened as the minimum of the difference between the curves, often corresponds to a rather broad, non-speci c brain map.

Figure 4 . 8 :

 48 Figure 4.8: Example of result using the Selection transfer approach:The two prediction curves do converge, so that the di erence becomes non-signi cant as soon as a relatively small fraction of the voxels are included: the spatial scale is de ned here as the point where the curves can no longer be distinguished. It corresponds to more symmetric and meaningful brain maps than those obtained with transfer learning.
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  G. Varoquaux, Y. Schwartz, P. Pinel, and B. Thirion, Cohort-level brain mapping: learning cognitive atoms to single out specialized regions,

Figure 5 . 1 :

 51 Figure 5.1: Simulations: functional networks and subject-level pro les as estimated by di erent dictionary learning strategies -right column: with only functional variability -left column: with spatial variability. On the ground-truth pro le plot the second cognitive strategy can be seen from the red loadings in the second and sixth subjects.

Figure 5 . 2 :

 52 Figure 5.2: Networks learned on the localizer dataset with di erent strategies. Each box represents the functional network and the group-level pro le as loadings on the contrasts of the study: auditory -visual, calculation -word, motor -cognition, right click -left click, vertical checkerboard -horizontal checkerboard, and wordscheckerboard. The standard error across the group is displayed as a yellow bar for each loading. a1, b1 and c1 correspond to the left hand region of the motor cortex, a2, b2 and c2 to the language network, a3, a4, b3, c3 to the dorsalattentional network, and c4 to a salience network. b4 is likely a noise pattern.

Figure 5 . 3 :

 53 Figure 5.3: Inter-subject functional pro les D for the rst 10 subjects, for spatial correspondence -top row-and RFX structurebottom row. A white line separates subjects.

Figure 5 . 4 :

 54 Figure 5.4: Parcellations for the di erent strategies. From top to bottom, functional, spatial, and RFX parcellations. The colors are random.

Figure 5 . 5 :

 55 Figure 5.5: Extracted functional pro les. (Left) These pro les summarize the functional activation per network (columns) and contrast (lines) of interest through a t-value per network and contrast, across subjects. The contrasts are identical to those in Fig. 5.2. The color scale, clipped to [-10, 10], shows that the RFX model achieves an intermediate level of sensitivity. (right) The speci city of the encoding of cognitive contrasts into networks is summarized by the entropy of an assignment to negative, none or positive activation: for most thresholds the RFX model yields the most e cient encoding.
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 61 Figure 6.1: The Cognitive Atlas lists a large number of cognitive concepts and tasks. http:// www.cognitiveatlas.org/

.

  

Figure

  Figure 6.2: The Cognitive Paradigm Ontology describes the experimental conditions from a paradigm with a set of terms grouped in di erent categories. SOURCE:

Figure 6 . 3 :

 63 Figure 6.3: Forward inference detects voxels responding to a term, and reverse inference predicts the terms from the voxel.

Figure 6 . 4 :

 64 Figure 6.4: Forward inference: E ect map for the places term.

Figure 6 . 5 :

 65 Figure 6.5: Forward inference: Contrast map for the places term, which uses faces, objects, and scrambled pictures as controls.

Figure 6 . 6 :

 66 Figure 6.6: Reverse inference: coe cients map for the places term.

  Learn one linear decision function per label on the input brain images.

Figure 6 . 7 :Figure 6 . 8 :

 6768 Figure 6.7: Hierarchical decoding. The decision functions from OvA, OvO, and task category classi ers are stacked to form a reduced feature space tailored to our problem. A second level of OvA classi ers predict the terms. Final linear classi ers may be recovered by combining the coe cients of the rst and second level classiers.

6. 2 . 3 Figure 6 . 9 :

 2369 Figure 6.9: Forward & reverse inferences: aggreement map for the places term.

.Figure 6 . 10 :

 610 Figure 6.10: Distributions of the zscores for forward and reverse inference for the places term.

.Figure 6 . 11 :

 611 Figure 6.11: Distributions of the zscores for forward and reverse inference for the places term after normalization.
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Table 3 .

 3 1: Table listing open fMRI resources. The number of tasks is relevant to indicate the variety of experimental designs even within a single study such as the HCP.

  It is not anywhere near production ready, but may serve as a prototype before integration in a library such as NiPy or Nilearn.

	Variable name	Description	Table 3.2: Main variables from
			SPM.mat to extract the design of
	SPM.xY.RT	Repetition time.	an experiment. Square brackets
	SPM.[Sess].[U].name Name of experimental condition.	represent list elements. Additional
	SPM.[Sess].[U].ons	Condition trials onsets.	elds include contrasts and time-
	SPM.[Sess].[U].dur	Condition trials durations.	series paths.
	SPM.[xCon].name	Contrast name.	
	SPM.[xCon].c	Contrast weights (vector).	
	SPM.xX.X	Design matrix.	
	SPM.xX.name	Names of design matrix regressors.	

5 

https://github.com/ schwarty/load_data ganization.

Table 3 .

 3 4: List of the datasets and associated tasks from Neurospin. The dataset # is its identi er in this thesis.

	Dataset # Accession # Task # Task description	References #
	HCP	1	Emotion task	Manuck et al. [23]
	HCP	2	Gambling task	Delgado et al. [7]
	HCP	3	Language task	Binder et al. [3]
	HCP	4	Motor task	Morioka et al. [29]
	HCP	5	Relational task	Smith et al. [39]
	HCP	6	Social task	Castelli et al. [6]
	HCP	7	Working memory task	Miller et al. [26]
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 3 

	Dataset # Accession #	Task # Task description	References #
	henson2010faces 1	Face recognition task	Henson et al. [18]

5: List of the tasks from the HCP. The dataset # is its identi er in this thesis.
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	6: Task from the BioMag
	2010 dataset.

Table 4 .

 4 1: we learn a model discriminating French native speakers reading French or Korean, and apply it on another experiment in which French subjects had to read French or jabberwocky. This transfer is interesting as it involves two di erent experiments acquired on di erent scanners, and cognitive paradigms that share a similar expression, incomprehension of language stimuli. As can be seen in

	Relative prediction performance	0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.0	Activation Peaks p=3e-04 p=6e-03 Contrast-specific Parcels p=3e-01 p=2e-04	Meta-analytic Parcels p=6e-01 p=4e-03 Transfer contrasts Raw p=6e-03 Inline

Table 4 .

 4 3 presents the list of contrasts pairs used for this analysis.

	Contrasts Names	Selected Scale Area under p-curve Description
		trans.	sel.	trans.	sel.	
	house/scramble → face/scramble 68.11	3.25	22.73	4.51	house/scramble = house vs scrambled image
	face/scramble → house/scramble	0.40	2.67	16.22	2.71	face/scramble = face vs scrambled image
	word/scramble → face/scramble	23.77	4.63	10.36	2.88	word/scramble = word vs scrambled image
	face/scramble → word/scramble	1.36	0.79	11.15	2.29	face/scramble = face vs scrambled image
	French/sound → Korean/sound	0.40	0.02	3.57	4.61	French/sound = French listening vs sound
	Korean/sound → French/sound	0.27	0.00	14.59	1.21	Korean/sound = Korean listening vs sound
	V comp./sent. → A comp./sent.	11.01	0.00	2.62	1.76	V comp./sent. = computation vs reading
	A comp./sent. → V comp./sent.	0.01	6.36	4.75	3.10	A comp./sent. = computation vs listening
	V motor/sent. → A motor/sent.	0.10	0.00	11.84	1.85	V motor/sent. = button press vs reading
	A motor/sent. → V motor/sent.	7.37	0.00	4.45	2.11	A motor/sent. = button press vs listening

Table 4 .

 4 

3: Source and target tasks:

Selected scales and area under the p-values curve for both transfer learning and selection transfer. trans.= transfer learning; sel.= selection transfer; V= visual stimuli; A= auditory stimuli.

•

  Journal paper in preparation.
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	1: Terms describing the im-
	ages from the database. CogPO
	categories are extended with new
	terms when needed. Cognitive At-
	las terms de ne higher-level cog-
	nitive tasks. The task categories
	group terms typically used as con-
	ditions and their controls to test a
	hypothesis. The stimulus modal-
	ity category stands for CogPO and
	task categories. Some terms do not
	belong to any task category and
	are referred as such. The arith-
	metics task category spans across
	the response modality and instruc-
	tions CogPO categories.

  Subjects performed a living-nonliving decision on items presented in either plain or mirror-reversed text. ds000006A represents the rst session and ds000006B represents the second session.Subjects performed a stop-signal task with one of three response types: manual response, spoken letter naming, and spoken pseudoword naming.Subjects performed two versions of a stop signal task. In the unconditional stop-signal task, subjects are told to withhold their response whenever they hear a tone. In the conditional stop signal task, they are told to withhold their response if they hear the tone and the response is the one labeled as critical, whereas they should go ahead and respond if the response is the noncritical one. Revision history: 12/20/2012: The originally posted version of this dataset was missing some onsets for task002. The newly posted version contains the full set of onsets for all conditions. If only the onsets and model info are needed, they can be obtained by downloading the updated onsets le and untarring it in the main ds008 directory.This study examined four di erent forms of self-control in a single context to determine whether multiple forms were related in a single sample of healthy adults. Participants performed four di erent tasks within a single scanning session.

	A.5 Living-nonliving decision with plain or mirror-reversed A.6 Stop-signal task with spoken & manual responses A.7 Stop-signal task with unconditional and conditional A.8 The generality of self-control (ds000009)
	text (ds000006) (ds000007) stopping (ds000008)	
	Metadata	
	• Investigators: Xue G, Aron AR, Poldrack RA Metadata Metadata
	• Investigators: K Jimura, E Stover, F Cazalis, R Poldrack • Sample Size:20 • Investigators: Jessica Cohen, Russell Poldrack
	• Sample Size:14 • Scanner Type:3T Siemens Allegra MRI scanner • Sample Size:24
	• Scanner Type:Siemens Allegra 3T • Scanner Type:Siemens Trio	
	• Scanner Type:3 T Siemens Allegra MRI scanner Tasks Metadata	Experimental conditions
	Tasks • Investigators: Aron, A.R., Behrens, T.E., Frank, M., Smith, S., Poldrack, cond001 Go trial Tasks Experimental conditions	Experimental conditions
	Tasks task001 Living/nonliving judgment on mirror-reversed and plain-text words Experimental conditions cond002 Successful Stop Trial cond001 Mirror-Switch cond002 Mirror-Repeat cond003 Plain-Switch R.A. cond001 Accept task001 Stop signal task task001 Balloon Analogue Risk Task (BART) cond002 Explosion cond003 Unsuccessful stop trial cond004 Junk trial • Sample Size:15 cond003 Reject
	task001 Probabilistic classi cation task task002 Deterministic classi cation task002 Stop signal task with letter naming • Scanner Type:3T Siemens Allegra MRI scanner cond001 Go trial cond001 Probabilistic classi cation trials cond002 Feedback cond001 Deterministic classi cation trials cond002 Feedback cond004 Plain-Repeat Table A.5: Tasks and experimental cond001 Go trial cond002 Successful Stop Trial cond003 Unsuccessful stop trial cond002 Successful Stop Trial task002 Stop signal task cond003 Unsuccessful stop trial conditions of ds000006. cond004 Junk trial cond004 Junk trial
	cond001 Classi cation trials: Probabilistic cond001 Go trial Experimental conditions cond001 Look Negative Cue task003 Classi cation probe without feedback Tasks cond002 Classi cation trials: Deterministic Table A.2: Tasks and experimental conditions of ds000002. cond002 Successful Stop Trial cond001 Go cond002 Look Neutral Cue task003 Stop signal task with pseudo word naming cond003 Unsuccessful stop trial cond004 Junk trial cond002 Successful stop task003 Emotional regulation task cond003 Rating task001 Stop signal task cond003 Failed stop cond004 Rating -Parametric
	task004 Temporal discounting task task002 Conditional stop signal task	cond004 Junk cond005 Reappraise Negative Stimulus Table A.6: Tasks and experimental cond001 Go critical cond001 Easy trials conditions of ds000007. cond002 Go non-critical cond003 Successful stop critical cond002 Easy -parametric cond003 Hard trials cond004 Failed stop critical cond004 Hard -parametric
		cond005 Failed stop non-critical	Table A.8: Tasks and experimental
		cond005 Junk	conditions of ds000009.
			Table A.7: Tasks and experimental
			conditions of ds000008.

  images of faces, houses, cats, bottles, scissors, shoes, chairs, and nonsense patterns. The categories were chosen so that all stimuli from a given category would have the same base level name. The speci c categories were selected to allow comparison with our previous studies (faces, houses, chairs, animals, and tools) or ongoing studies (shoes and bottles). Control nonsense patterns were phase-scrambled images of the intact objects. Twelve time series were obtained in each subject. Each time series began and ended with 12 s of rest and contained eight stimulus blocks of 24-s duration, one for each category, separated by 12-s intervals of rest. Stimuli were presented for 500 ms with an interstimulus interval of 1500 ms. Repetitions of meaningful stimuli were pictures of the same face or object photographed from di erent angles. Stimuli for each meaningful category were four images each of 12 di erent exemplars.

	A.15 Visual object recognition (ds000105)
	Neural responses, as re ected in hemodynamic changes, were measured in
	six subjects ( ve female and one male) with gradient echo echoplanar imag-
	ing on a GE 3T scanner (General Electric, Milwaukee, WI) [repetition time
	(TR) = 2500 ms, 40 3.5-mm-thick sagittal images, eld of view (FOV) = 24
	cm, echo time (TE) = 30 ms, ip angle = 90] while they performed a one-
	back repetition detection task. High-resolution T1-weighted spoiled gradi-
	ent recall (SPGR) images were obtained for each subject to provide detailed
	anatomy (124 1.2-mm-thick sagittal images, FOV = 24 cm). Stimuli were
	gray-scale	
		Subjects performed two 5-minute blocks,
	each containing 12 congruent and 12 incongruent trials, presented in a pseu-
	dorandom order. Functional imaging data were acquired using a research
	dedicated Siemens Allegra 3.0 T scanner, with a standard Siemens head coil,
	located at theNYU Center for Brain Imaging. We obtained 146 contiguous
	echo planar imaging (EPI) whole-brain functional volumes (TR=2000 ms;
	TE=30 ms; ip angle=80, 40 slices, matrix=64x64; FOV=192 mm; acquisi-
	tion voxel size=3x3x4mm) during each of the two anker task blocks. A
	high-resolution T1-weighted anatomical image was also acquired using a
	magnetization prepared gradient echo sequence (MPRAGE, TR=2500 ms;
	TE= 3.93 ms; TI=900 ms; ip angle=8; 176 slices, FOV=256 mm). Please cite
	one of these papers listed below if you use these data.
	Metadata	
	• Investigators: Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham
	MP	
	• Sample Size:26	
	• Scanner Type:Siemens Allegra
	Tasks	Experimental conditions
		cond001 Congruent Correct
	task001 Eriksen anker task	cond002 Congruent Incorrect cond003 Incongruent Correct
		cond004 Incongruent incorrect
		Table A.14: Tasks and experimen-
		tal conditions of ds000102.

  ). Results identi ed two separable pathways that together explained approximately 50

	A.19 Incidental encoding task (Posner Cueing Paradigm)
	(ds000110)	
	Metadata	
	• Investigators: Wager TD, Davidson ML, Hughes BL, Lindquist MA,
	Ochsner KN	
	• Sample Size:34	
	• Scanner Type:1.5T GE Signa Twin Speed Excite HD scanner (GE Medical
	Systems)	
	Tasks	Experimental conditions
		cond001 Look Neutral Cue
		cond002 Look Negative Cue
		cond003 Reappraise Negative Cue
		cond004 Look Neutral Stimulus
		cond005 Look Negative Stimulus
	task001 Emotional regulation task	cond006 Reappraise Negative Stimulus cond007 Look Neutral Rating
		cond008 Look Negative Rating
		cond009 Reappraise Negative Rating
		cond010 Look Neutral Anticipation
		cond011 Look Negative Anticipation
		cond012 Reappraise Negative Anticipation
		Table A.17: Tasks and experimen-
		tal conditions of ds000108.

  .23 Constituent structure of sentences and music (cau-vet2009muslang)Similar experiment to A.22 but with auditory stimuli, and featuring both a language and a music task.

	Metadata	
	• Investigators: Elodie Cauvet, Christophe Pallier
	• Sample Size: 35	
	• Scanner Type: Siemens 3T Trio
	Tasks	Experimental conditions
		cond001 c16 music
		cond002 c08 music
	task001 music task	cond003 c04 music cond004 c02 music
		cond005 c01 music
		cond006 motor
		cond001 c16 language
		cond002 c08 language
	task002 language task	cond003 c04 language cond004 c02 language
		cond005 c01 language
		cond006 motor
			Table A.23: Tasks and exper-
	• Investigators: Christophe Pallier, Anne-Dominique Devauchelle, and	imental conditions of cau-
	Stanislas Dehaene		vet2009muslang.
	• Sample Size: 40	
	• Scanner Type: Siemens 3T Trio
	Tasks	Experimental conditions
		cond001 c01
		cond002 c02
		cond003 c03
		cond004 c04
	task001 language task	cond005 c06
		cond006 c12
		cond007 nc3
		cond008 nc4
		cond009 motor
			Table A.22:	Tasks and ex-
			perimental conditions of de-
			vauchelle2009sentence.

A

  See dataset A.24 for full description. .26 Recruitment of an Area Involved in Eye Movements During Mental Arithmetic (knops2009recruitment)

	Metadata	
	• Investigators: Baptiste Gauthier, Evelyn Eger, Guido Hesselmann, Anne-
	Lise Giraud, and Andreas Kleinschmidt	
	• Sample Size: 13	
	• Scanner Type: Siemens 3T Trio	
	Tasks	Experimental conditions
		cond001 50ms frequency
		cond002 75ms frequency
		cond003 100ms frequency
		cond004 125ms frequency
		cond005 150ms frequency
		cond006 175ms frequency
	task001 continuous face house block	cond007 200ms frequency
		cond008 250ms frequency
		cond009 400ms frequency
		cond010 800ms frequency
		cond011 baseline
		cond012 hits
		cond013 misses
		cond001 50ms frequency
		cond002 75ms frequency
		cond003 100ms frequency
		cond004 125ms frequency
		cond005 150ms frequency
	task002 continuous face house block with distractor	cond006 175ms frequency
		cond007 200ms frequency
		cond008 250ms frequency
		cond009 400ms frequency
		cond010 800ms frequency
		cond011 baseline
		cond001 face
		cond002 house
	task003 object localizer	cond003 object
		cond004 scramble
		cond005 baseline
		Table A.25: Tasks and exper-
		imental conditions of gau-
		thier2010resonance.

A

  • Investigators: Philippe Pinel, Bertrand Thirion, Sébastien Meriaux, Antoinette Jobert, Julien Serres, Denis Le Bihan, Jean-Baptiste Poline, and

	Stanislas Dehaene	
	• Sample Size: 133	
	• Scanner Type: Siemens 3T Trio
	Tasks	Experimental conditions
		cond001 horizontal checkerboard
		cond002 vertical checkerboard
		cond003 auditory right click
		cond004 auditory left click
	task001 localizer task	cond005 visual right click cond006 visual left click
		cond007 auditory calculation
		cond008 visual calculation
		cond009 visual sentences
		cond010 auditory sentences
		Table A.27: Tasks and experimen-
		tal conditions of pinel2007fast.

  .30 A Temporal Bo leneck in the Language Comprehension Network (vagharchakian2012temporal)

	Tasks	Experimental conditions
		cond001 horizontal checkerboard
		cond002 vertical checkerboard
		cond003 auditory right click
		cond004 auditory left click
	task001 localizer task	cond005 visual right click cond006 visual left click
		cond007 auditory calculation
		cond008 visual calculation
		cond009 visual sentences
		cond010 auditory sentences
		cond001 intention triangle
		cond002 random triangle
		cond003 speech
	task002 social task	cond004 non-speech cond005 auditory false belief
		cond006 visual false belief
		cond007 auditory mechanistic
		cond008 visual mechanistic
		cond001 trusty face
	cond002 sex face • Scanner Type: GE 1.5T Signa • Sample Size: 65 cond003 control face task003 emotional task cond004 intention glance
		cond005 sex glance
		cond006 control glance
		cond001 hand rotation
		cond002 side rotation
	task004 parietal task	cond003 saccade
		cond004 object grasp
		cond005 object orientation
		Table A.29: Tasks and experimen-
		tal conditions of pinel2012archi.

A

http://sumsdb.wustl. edu:8081/sums/index.jsp

http://neuro.compute. dtu.dk/wiki/Main_Page

http://www.logilab.fr/ data[25]. The result is a web repository containing data from[32, 31]. Speci cally it contains the raw fMRI timeseries and anatomical images, as well as the statistical maps and questionnaire metadata. All the data is

http://www.its. caltech.edu/~nsulliva/ spmdatastructure.htm

Acknowledgements

stored in a CubicWeb database 2 , which makes it possible to perform ad-2 http://www.cubicweb. org/ vanced queries from a web interface or a programmatic language. In this thesis, we used other datasets from Neurospin, but they are not currently shared. 

Resource name

A.3 Rhyme judgment (ds000003)

Subjects were presented with pairs of either words or pseudowords, and made rhyming judgments for each pair.

Metadata

• Investigators: Xue, G., Poldrack, R.A.

• Sample Size:13 A.4 Mixed-gambles task (ds000005)

Subjects were presented with mixed (gain/loss) gambles, and decided whether they would accept each gamble. No outcomes of these gambles were presented during scanning, but after the scan three gambles were selected at random and played for real money.

Metadata

• Investigators: Tom S.M., Fox C.R., Trepel C., Poldrack R.A.

• Sample Size:16 A.12 Classification learning and reversal (ds000052)

Subjects performed two blocks of an event-related probabilistic classi cation learning task. They then performed two more blocks of the same task with the reward contingencies reversed.

Metadata

• Investigators: Poldrack, R.A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., Gluck, M.

• Sample Size:14 A. 16 Word and object processing (ds000107)

Subjects performed avisual one-back with four categories of items: written words, objects, scrambled objects and consonant letter strings.

Metadata

• Investigators: Duncan, K., Pattamadilok, C., Knierim, I., Devlin, J.

• Sample Size:49 

A.29 Principal Component Regression predicts functional responses across individuals (pinel2012archi)

Inter-subject variability is a major hurdle for neuroimaging group-level inference, as it creates complex image patterns that are not captured by standard analysis models and jeopardizes the sensitivity of statistical procedures. A solution to this problem is to model random subjects e ects by using the redundant information conveyed by multiple imaging contrasts.

In this paper, we introduce a novel analysis framework, where we estimate the amount of variance that is t by a random e ects subspace learned on other images; we show that a principal component regression estimator outperforms other regression models and that it ts a signi cant proportion (10% to 25%) of the between-subject variability. This proves for the rst time that the accumulation of contrasts in each individual can provide the basis for more sensitive neuroimaging group analyzes. 

Metadata