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Abstract

How can we accumulate knowledge on brain functions? How can we lever-
age years of research in functional MRI to analyse �ner-grained psycholog-
ical constructs, and build a comprehensive model of the brain? Researchers
usually rely on single studies to delineate brain regions recruited by men-
tal processes. They relate their �ndings to previous works in an informal
way by de�ning regions of interest from the literature. Meta-analysis ap-
proaches provide a more principled way to build upon the literature.

This thesis investigates three ways to assemble knowledge using activa-
tion maps from a large amount of studies. First, we present an approach
that uses jointly two similar fMRI experiments, to better condition an anal-
ysis from a statistical standpoint. We show that it is a valuable data-driven
alternative to traditional regions of interest analyses, but fails to provide
a systematic way to relate studies, and thus does not permit to integrate
knowledge on a large scale. Because of the di�culty to associate multiple
studies, we resort to using a single dataset sampling a large number of stim-
uli for our second contribution. This method estimates functional networks
associated with functional pro�les, where the functional networks are in-
teracting brain regions and the functional pro�les are a weighted set of cog-
nitive descriptors. This work successfully yields known brain networks and
automatically associates meaningful descriptions. Its limitations lie in the
unsupervised nature of this method, which is more di�cult to validate, and
the use of a single dataset. It however brings the notion of cognitive labels,
which is central to our last contribution. Our last contribution presents a
method that learns functional atlases by combining several datasets. [Hen-
son 2006] shows that forward inference, i.e. the probability of an activation
given a cognitive process, is often not su�cient to conclude on the engage-
ment of brain regions for a cognitive process. Conversely, [Poldrack 2006]
describes reverse inference as the probability of a cognitive process given
an activation, but warns of a logical fallacy in concluding on such inference
from evoked activity. Avoiding this issue requires to perform reverse infer-
ence with a large coverage of the cognitive space. We present a framework
that uses a "meta-design" to describe many di�erent tasks with a common
vocabulary, and use forward and reverse inference in conjunction to out-
line functional networks that are consistently represented across the stud-
ies. We use a predictive model for reverse inference, and perform prediction
on unseen studies to guarantee that we do not learn studies’ idiosyncrasies.
This �nal contribution permits to learn functional atlases, i.e. functional
networks associated with a cognitive concept.
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We explored di�erent possibilities to jointly analyse multiple fMRI ex-
periments. We have found that one of the main challenges is to be able to
relate the experiments with one another. As a solution, we propose a com-
mon vocabulary to describe the tasks. [Henson 2006] advocates the use of
forward and reverse inference in conjunction to associate cognitive func-
tions to brain regions, which is only possible in the context of a large scale
analysis to overcome the limitations of reverse inference. This framing of
the problem therefore makes it possible to establish a large statistical model
of the brain, and accumulate knowledge across functional neuroimaging
studies.
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Introduction

Context

Understanding how the human brain is the physical basis of the mind is one
of the greatest challenges of this century. From synapses –connection be-
tween neurons– to the mind, the study of the brain has given rise to many
scienti�c �elds that examine this organ from the biological to the psycho-
logical angle. Cognitive neuroscience aims to understand how the neural
substrates lead to the emergence of thoughts, and relies on several tools at
its disposal including: lesion studies, which relate brain injuries to cogni-
tive impairments, and neuroimaging, which uses brain imaging to test the
validity of cognitive models.

Functional magnetic resonance imaging (fMRI) is an imaging technique
that measures the level of oxygenation in the blood over time, which is
linked to the neural activity. It is one of the most widely used imaging tech-
nique in cognitive neuroscience, as it provides an indirect but non-invasive
access to the neural code, and enjoy a good spatial resolution. The most
widespread experimental procedure to localize brain functions with fMRI,
is to manipulate tasks –composed of several mental processes– in order to
isolate a single mental process and assess how it a�ects brain activity. Stan-
dard analyses rely on statistical inference to produce statistical parametric
maps or activation maps to evaluate brain activation in respect to a cogni-
tive process. But each individual fMRI study only sheds light on a small
fraction of the cognitive space, as only a limited number of stimuli may be
presented in a single imaging session. One approach to overcome these
limitations are meta-analysis methods.

Quantitative meta-analyses are an ensemble of methods that may be used
with di�erent goals in mind. The orginal use is to increase the statisti-
cal power on a given cognitive question by aggregating data from multiple
studies. It is also used to summarize the vast and ever growing fMRI liter-
ature. This integration enables for example to give additional insights on
the function of particular brain structures, by combining studies that used
di�erent experimental settings. Most fMRI meta-analyses rely on summa-
rized data: the coordinates of the activation peaks from experiments. Some
methods use the full statistical maps to perform meta-analyses but are not
as common due to the di�culty of gathering enough fMRI experiments.
Overall, there has been so far little incentive to share neuroimaging data
partly because few methods are available to take advantage of an accumu-
lation of data. This is a known chicken and egg problem, but vast amounts
of available data opens new opportunities.
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One such opportunity is to relate cognitive processes from di�erent �elds
between them, and provide a more comprehensive view of the brain. Impor-
tantly, combining datasets enables to go beyond individual studies, which
only re�ect the cognitive theories being tested. In this thesis we investigate
the use of reverse inference, which reasons backwards from brain activity
to draw conclusions on a cognitive process instead of a particular task. This
is a known logical fallacy: researchers are tempted to make informal reverse
inferences by interpreting brain activity in respect to the literature, and con-
cluding that a region is speci�c to the cognitive process under study. A large
amount of data that spans a large cognitive coverage however opens the
possibility to perform reverse inference in a principled way. This approach,
when conducted on a large-scale, is particularly promising as it enables to
associate sets of regions with sets of cognitive processes.

The overall objective of this thesis is to develop tools to jointly analyse
multiple functional MRI studies. Outcomes of this thesis include the learn-
ing of functional networks, and atlases of brain functions.

Organization and contributions of this thesis

Part I - State of the art: a brief introduction to neuroimaging

Chapter 1 - From brain images to the sudy of the mind

This �rst chapter introduces functional imaging techniques and how they
can be used to localize brain functions. More speci�cally, we summarize a
few of the assumptions underlying the experimental setup in cognitive neu-
roscience, and how these experiments are used to complement the knowl-
edge gained by brain lesion analyses. We show that functional MRI remains
today one of the best non-invasive tools to map functions to structures in
the brain.

Chapter 2 - Tools for neuroimaging data modeling

In the second chapter, we describe the statistical methods commonly used
to analyse fMRI data, and the di�erent meta-analysis approaches used by
the community to analyse jointly multiple studies. We present in particu-
lar the statistical inference framework used by the majority of individual
fMRI experiments to model the fMRI BOLD signal, and how it produces
statistical maps that represent brain activity. We also introduce statistical
learning methods for the particular context of neuroimaging. We �nish by
summarizing the meta-analyses methods for fMRI, speci�cally we describe
coordinate-based meta-analysis and image-based meta-analysis methods,
and how they are used to overcome some of the limitations of individual
studies.

Part II - Contributions: from an image database to learning
brain functions

Chapter 3 - Scaling up from individual studies

In this chapter, we assemble a large fMRI database by accumulating images
from multiple individual studies. We review di�erent datasharing initiatives
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from which we pool our data, and how we organize the data. At a large-
scale, data organization is key to automate data integration and processing
streams. We describe our strategy to automate the fMRI pre-processing,
statisical modeling, and data curation, and discuss the main bottlenecks
and possible solutions to set up a large database. We �nish by giving an
overview of the accumulated data.

Chapter 4 - Functional localization by meta-analysis

Chapter 4 is our �rst attempt to combine multiple studies. We draw inspi-
ration from region of interest (ROI) based analyses, that de�ne ROIs from
the literature or external datasets to better condition an analysis, but do so
in a more principled way. We describe two contributions in which we use
pairs of tasks in fMRI experiments to de�ne common regions of interest.
The �rst contribution examines the ability of one task to better condition
testing for a second similar task. The major drawback of this method is that
it relies on a manual threshold to de�ne the regions of interest. The second
contribution provides a methodology that aims to solve this shortcoming:
it uses the ability of a classi�er to generalize from one task to another as a
test to select the threshold at which we de�ne our regions of interest. This
contribution can be seen as a multivariate alternative to contrasts conjunc-
tion. The main limitation of these methods is their poor scalability: they
rely on the manual selection of fMRI experiments to compare, and do not
give a broad overview of brain functions.

Chapter 5 - Learning functional networks

This chapter takes a step back from multi-study analyses. We previously
focused on regions of interest but more modern approaches view the brain
functioning within a set of distributed networks. The study of functional
networks mainly relies on the use of unsupervised decomposition meth-
ods on resting state fMRI. These approaches however do not enable to au-
tomatically associate brain maps with functional labels. The contribution
described in this chapter proposes an alternative way to expose functional
networks on task fMRI, and associates them with what we call functional
pro�les. We rely on an unsupervised approach, that learns jointly a dictio-
nary of functional pro�les and a set of spatial maps. fMRI studies outline
mental processes by combining experimental conditions. The functional
pro�les in this chapter re�ect the response magnitude of the experimental
conditions for each network, and enable to de�ne a functional signature.

Chapter 6 - Learning functional atlases

This last chapter presents a supervised framework that bene�ts from a grow-
ing accumulation of datasets to associate brain networks with cognitive
functions. We investigate the use of cognitive ontologies to de�ne a meta-
design that enables to co-analyse multiple task fMRI datasets despite the
lack of common paradigm. Our framework uses forward and reverse infer-
ence in conjunction to map functional labels to the brain. Forward infer-
ence is commonly used to associate a brain region with a cognitive theory
implemented by a dissociation of two experimental conditions. The two
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conditions test for an e�ect of interest under an experimental paradigm,
but do not guarantee that the resulting region is speci�c to that e�ect. A
large-scale setting opens the possibility to invert the statistical inference
and to reason from the brain activations to the mental processes. The com-
bination of the two inferences gives more evidence that a cognitive process
can be associated with a particular brain network, and enables to establish
functional atlases.
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Part I

State of the art: a brief introduction to
neuroimaging





1 From brain images to the study

of the mind

In this thesis, we investigate methods to combine multiple functional
imaging studies, to provide a more comprehensive view of the brain func-
tions. In this �rst chapter, we introduce functional imaging techniques and
how they can be used to localize brain functions. More speci�cally, we sum-
marize a few of the assumptions underlying the experimental setup in cog-
nitive neuroscience, and how these experiments are used to complement
the knowledge gained by brain lesion analyses. We �nish by presenting the
main functional areas in the brain.

Contents

1.1 From brain lesions to functional imaging 20

1.2 BOLD Functional MRI 20

1.3 Mapping mental processes to the brain 22

1.3.1 The cognitive neuroscience setting 23

1.3.2 Main functional areas 24

1.4 Conclusion 25
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1.1 From brain lesions to functional imaging

In 1861, the French physician Paul Broca heard of a patient from the Bicêtre
Hospital su�ering from a loss of speech but not a loss of comprehension nor
other cognitive functions. This patient nicknamed “Tan” after the only word
he could articulate intelligibly, died a few days later which enabled Broca
to perform an autopsy. He discovered a lesion in the frontal lobe of the left
cerebral hemisphere, next to the lateral sulcus. He con�rmed his �ndings
over the next years with autopsy evidence from additional patients. Pa-
tients su�ering from this type of lesions are categorized as having expressive
aphasia, which involves impairments speci�c to language production. This
research enabled Broca to associate a brain region now known as Broca’s
area with a cognitive function: speech production. The kind of reasoning
that identi�es the neural substrate of a particular brain function by demon-
strating that a lesion in a brain structure alters function X but not function Y
is called a single dissociation. Single dissociation inferences indicate any of
the following: i) the two functions have a di�erent neural substrate, ii) the
two functions are part of the same system but the damaged one is down-
stream from the preservered one, or iii) the maintained function requires
fewer cognitive resources than the other one.

Figure 1.1: Broca’s and Wernicke’s
areas were linked to two dis-
tinct language disorders in the late
19th century, respectively expres-
sive and receptive aphasia. Source:
adapated from www.wikipedia.

org

Shortly after Paul Broca’s discovery, German physician Karl Wernicke
made a converse observation, where patients where su�ering from lan-
guage comprehension disorders but not speech production. Using a similar
procedure, he uncovered a region in the posterior section of the left superior
temporal gyrus that is now referred to as Wernicke’s area. The same single
dissociation reasoning indicates that this region is involved in the under-
standing of written and spoken language. Damage in this region causes a
disorder known a receptive aphasia. These two �ndings taken jointly are
a case of double dissociation. Double dissociations on brain functions are
possible when a lesion on a brain region A a�ects function X but not Y, and
a lesion on a separate region B a�ects function Y but not X. Double dis-
sociations yield much stronger conclusions than single dissociations, and
demonstrate that two functions are separate, and have a di�erent neural
substrate. Even though recent research gives a more complex view of lan-
guage processing, this seminal double dissociation paved the way for mod-
ern neuropsychology.

These kind of approaches are however limited to patients having lesions
in an area of interest to the researcher. The localization of lesions could in
addition only be done post mortem, which considerably slowed down the
research process. The advent of brain imaging in the 1920s triggered a more
systematic investigation of the brain structures and functions.

1.2 BOLD Functional MRI

Several brain imaging techniques exist today, and enable to study the brain
structures, as well as its functions. Anatomical imaging focuses on the brain
structures and tissues, whereas functional imaging detects physiological
changes that indicate brain activity. This section presents BOLD functional
imaging (fMRI), that we use in this thesis. fMRI has a good spatial reso-

www.wikipedia.org
www.wikipedia.org
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lution (1 − 3mm3) and a temporal resolution on the order of 1-3 seconds.
MRI images are actually stacks of slice images, each of which is acquired in
about 40-60 miliseconds, and have a full brain coverage. These properties
make this imaging modality a good candidate for the localization of brain
functions. Other functional imaging techniques such as Electroencephalog-
raphy (EEG) or Magnetoencephalography (MEG) have a poor spatial reso-
lution, but enjoy a temporal resolution in the order of the milisecond, which
makes it possible to study the temporal dynamics of the information pro-
cessing in the brain. Imaging modalities are generally a tradeo� between
spatial and temporal resolutions, and are therefore tailored to investigate
certain aspects of the brain functions.

Blood oxygenation level-dependent contrast Oxygen transportation
in the organism is done through the circulatory system, and in particular
with hemoglobin, a protein present in blood cells that has the ability to
bind oxygen. Hemoglobin is found in two forms: oxyhemoglobin when
it is oxygenated, and deoxyhemoglobin when it is deoxygenated. When
oxyhemoglobin releases its oxygen atoms to turn to deoxyhemoglobin, it
causes a di�erence in magnetic susceptibility. This contrast is known as
blood oxygenation level-dependent (BOLD), because of its dependence on
the level of oxygenation of the blood. This discovery by Ogawa et al. in
1990, has enabled to observe the BOLD contrast through a gradient-echo
EPI (EchoPlanar Imaging) sequence, and introduced MRI as a functional
imaging tool [14, 12] (see Figure 1.2)

Figure 1.2: Ogawa et al. [12] orig-
inal experiment on rats to bring
to light the BOLD contrast: Left -
Coronal slice showing the BOLD
contrast of an anesthetized rat
which has breathed pure O2. Right
- Coronal slice of the same rat,
showing the BOLD contrast after
respiration of a mixture of 90% of
O2 and 10% ofCO2 (this mixture in-
creases the oxygenation of the ve-
nous blood). The arrow shows the
sagittal sinus, which is one of the
major veins of the brain. This pic-
ture shows a strong increase of in-
tensity in this vein, and illustrates
that the variation of blood oxy-
genation is visible in BOLD con-
trast.

The hemodynamic response At rest, the brain consumes the oxygen
transported by the hemoglobin, and turns oxyhemoglobin into deoxyhe-
moglobin. Performing a cognitive task causes an oversupply of the oxy-
genated blood in the active region, and results in a decrease of deoxyhe-
moglobin. The oversupply process is called the hemodynamic response, and
enables to relate the oxygenation level to neural activity [3, 6]. The decrease
of deoxyhemoglobin implies a local increase in the average blood oxygena-
tion, which can be observed with a BOLD contrast. As a consequence, BOLD
captures changes in hemodynamics, that in turn are associated with neural
activity, and makes it possible to use BOLD for functional imaging. Further
work from Ogawa et al. [13] shows that a visual stimulation increases the
intensity of the BOLD signal in the visual cortex. The use of MRI to detect
BOLD is referred to as functional MRI (fMRI), or BOLD fMRI.

The BOLD response occurs with a delay after a stimulation, and does
not return to baseline immediately. Typically the BOLD signal reaches its
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maximum 5 seconds after the stimulation, and takes as long as 30 seconds
to return to the baseline with an undershoot. The Hemodynamic Response
Function (HRF) models this response pattern. The slow dynamic of the HRF
explains the poor temporal resolution of fMRI. The HRF di�ers across brain
locations and individuals [1, 8], but we generally consider a canonical HRF.
Glover [7] proposed to de�ne the HRF as a sum of two gamma functions,
where the �rst gamma function models the initial stimulus response and
the second gamma function models the undershoot:

h(t ) =
tα1−1βα1

1 e−β1t

Γ(α1)
− c

tα2−1βα2
2 e−β2t

Γ(α2)
(1.1)

where α1,α2, β1, β2 control the shape and and scale, respectively, and c de-
termines the ratio of the response to undershoot. Glover [7] estimated two
HRFs, one in an auditory task and one in a motor task. Figure 1.3 shows the
HRF based on the parameters estimated from the auditory task.

Figure 1.3: The Hemodynamic
Response Function (HRF) �rst
follows an increase of the sig-
nal (1 − 5.2s), then decreases
(5.2 − 12.2s), and �nally re-
turns to baseline with under-
shoot (12.2 − 20s). Source:
http://www.math.mcgill.

ca/keith/BICstat

The BOLD signal is noisy, as it is impacted by various processes that
are not related to cognition such as respiration and heart beat, as well as
acquisition artifacts such as scanner drifts and noise distortions.

1.3 Mapping mental processes to the brain

The ability of fMRI to localize active regions during a task, makes it a power-
ful measurement technique for cognitive neuroscientists. Cognitive neuro-
science studies the neural substrates of mental processes, and in particular
how the cognitive processes are produced by the underlying brain circuitry.
The mental processes refer to all kind of cognitive functions, which include
perception, memory, speech production, decision making, emotion, motor,
etc. fMRI gives an indirect access to the neural substrate, and as a conse-
quence cognitive neuroscience has to rely on di�erent assumptions to relate
it to the mind. This section describes some of the assumptions and exper-

http://www.math.mcgill.ca/keith/BICstat
http://www.math.mcgill.ca/keith/BICstat
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imental settings in cognitive neuroscience, and gives an overview of the
main functional areas.

1.3.1 The cognitive neuroscience se�ing

Figure 1.4: A motor homunculus
which locates body parts along the
postcentral gyrus. Source: http:
//en.wikipedia.org/wiki/

Somatotopic_arrangement

The core assumption many fMRI studies is the functional specialization,
or functional speci�city. It means that we can expect to localize into speci�c
and distinct brain regions, a large amount of the cognitive functions. Stud-
ies of the motor cortex is a good example that gives credit to this view, as
reports indicate that fMRI activation is able to provide a clear somatotopic
representation (see Figure 1.4) of foot, elbow, �st, thumb, index �nger, and
lip movements [9].

Neuroimaging researchers that manipulate a task assume that is it pos-
sible to decompose this task into speci�c processes that can be manipulated
independently. The decomposability ofmental processes is the assump-
tion underlying the experimental designs that explores how manipulations
a�ect brain activity, in order to map neural and mental processes. The brain
to mind mapping holds with the assumption that the decomposition is valid.
This assumption has its critiques [17, 18] and supports [2], but provides the
basis for several experimental designs.

Subtraction method One of the most commonly used experimental de-
sign is neuroimaging is the subtraction method. This method considers two
experimental conditions which are supposed to only di�er by a single cog-
nitive process (Figure 1.5). Contrasting both conditions enables to isolate
the cognitive process. This relies on the pure insertion assumption, which
means that a single cognitive process can be inserted into another set of cog-
nitive processes without a�ecting the rest. There are di�erent issues with
the pure insertion assumption, one of which is the problem of behavioral
confounds: a perfect control for a given condition may never be found as it
is often less demanding than the task of interest. This causes interpretation
problems [5] since di�erences in brain activity may as well be imputed to the
cognitive process under study, as to a di�erence in attention for instance.
The subtraction method is still very common because of its simplicity, and
researchers can use multiple controls with varying di�culties to mitigate
the undesired confounds.

=

P1 P2 P3 P4

0 1 1 0

0 0 1 0

0 1 0 0

Task A

Task B

Subtraction

=

P1 P2 P3 P4

1 1 1 0

1 0 1 0

0 1 0 0

Task C

Task D

Subtraction

0 1 0 0Conjunction

Figure 1.5: Subtraction design and
conjunction, where P1 . . . P4 rep-
resent the cognitive processes of
the tasks. Source: Poldrack [15]

http://en.wikipedia.org/wiki/Somatotopic_arrangement
http://en.wikipedia.org/wiki/Somatotopic_arrangement
http://en.wikipedia.org/wiki/Somatotopic_arrangement
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Cognitive conjunction Price and Friston [16] introduced an experimen-
tal design called cognitive conjunction (Figure 1.5) to avoid relying on pure
insertion. This design uses two subtraction tasks, where only a single cog-
nitive process is shared across the subtractions. A signi�cant conjunction
requires that each subtraction shows an activation, and that they do not
di�er in a signi�cant manner. The revision of conjunction by Friston et al.
[4] only identi�es regions commonly active at a given threshold across the
subtractions. Finally Nichols et al. [11] gives a valid approach for conjunc-
tion from the statistical standpoint. The main problem of these approaches
is that they require all the subtractions to have a single cognitive process
in common, which is objectively hard to assess. They also are di�cult to
perform on noisy data such as fMRI, as they have a lower sensitivity (i.e.
lower detection power) than individual subtractions.

Factorial design Factorial designs require the pure insertion assumption,
but manipulate multiple experimental factors at the same time. This kind
of design use an analysis of variance to assess the main e�ect, as well as
the interactions that occur when the e�ect of one factor varies depending
on the manipulation of another variable. For example, a factorial design
on face recognition may use faces and houses stimuli in di�erent sizes or
orientations as experimental conditions, to measure the main e�ect of face
and the interactions incurred by size or orientation. Figure 1.6 illustrates
a factorial design, where P1 . . . P4 represents the main e�ects (e.g. faces)
and C1 . . .C4 a modulating variable (e.g. orientation). This method may
therefore give additional evidence to map cognitive and neural processes.

P1 P2 P3 P4

1 1 1 0

0 0 1 0

0 1 1 0

C1

0 0 1 0

C2

C3

C4

Factorial manipulation
of processes P1 and P2

Main effect of P1: (C1 + C2) - (C3 + C4)
Main effect of P2: (C1 + C3) - (C2 + C4)
Interaction: (C1 + C4) - (C2 + C3)

Figure 1.6: Factorial design,
where P1 . . . P4 represent the
cognitive processes of the tasks,
and C1 . . .C4 the modulating
variables. Source: Poldrack [15]

1.3.2 Main functional areas

Functional imaging techniques in pair with experimental designs enable
to assign cognitive functions to brain structures. We present in Figure 1.7
the main functional and anatomical areas. The functional regions can be
broadly categorized into three categories: sensory areas (e.g. visual cortex,
auditory cortex) that process sensory inputs, motors areas (e.g. primary mo-
tor cortex, premotor cortex) that controls body parts, and associative areas
(e.g. Broca’s area, prefrontal cortex) that integrate higher-level information
related to cognition [10]. This thesis will investigate a fair amount of these
cognitive functions, as we aim to develop methods that yield functional at-
lases of the brain from the combination of multiple studies.



I. From brain images to the study of the mind 25

1.4 Conclusion

This chapter has introduced functional imaging techniques, in particu-
lar functional MRI, and how it can be used to access the neural code. We
have also presented experimental paradigms that are commonly used by
cognitive scientists to manipulate tasks and isolate mental processes. The
combination of these two approaches have given neuroimaging researchers
an increadible opportunity to map mental to neural processes without re-
sorting to invasive methods, or post mortem analyses. Despite limitations of
fMRI –especially regarding its temporal resolution– and the controversies
that surround the underlying assumptions of experimental settings, fMRI
remains as of today the best non-invasive tool to localize functions in the
brain.

Figure 1.7: Main functional and
anatomical areas of the brain.
Credit: Nucleus Medical Art,
Inc./Getty Images
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2 Tools for neuroimaging datamod-

eling

We have seen in Chapter 1 how researchers use functional MRI as an
experimental tool to inspect brain functions. This chapter describes the
statistical methods commonly used to analyse fMRI data, and introduces
the di�erent meta-analysis approaches used by the community to analyse
jointly multiple studies.

The �rst section of this chapter presents the statistical inference frame-
work used by the majority of individual fMRI experiments. It introduces
the modeling of the fMRI BOLD signal, and the fundamental elements of
hypothesis testing. We show how these methods yield activation maps rep-
resentative of the tested cognitive process.

The second section describes the basics of statistical learning for fMRI.
We introduce supervised linear predictive models in the context of fMRI,
and common techniques to validate the models. We also describe dimension
reduction methods, that serves to mitigate the issues raised by the high-
dimensionality of fMRI data. We present the decoding approach, which is an
application of predictive models that uses functional brain images to predict
the engaged cognitive process.

The third and last section summarizes the meta-analyses methods for
fMRI. We describe in particular coordinate-based meta-analyses, and image-
based meta-analyses.
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2.1 Statistical inference

This section describes the standard framework to perform statistical infer-
ence on BOLD neuroimaging data. BOLD images typically go through a
number of pre-processing steps, which include di�erent corrections, smooth-
ing, and normalization to a common brain space. We will not describe these
procedures here, but rather describe the statistics underlying BOLD model-
ing. More details on pre-processing procedures may be found in Poldrack
et al. [29].

2.1.1 Modeling fMRI data

Friston et al. [9] introduced the general linear model (GLM) to the neu-
roimaging community, which is the cornerstone of fMRI analysis. This ap-
proach yields statistical parametric maps that are used to test for region
speci�c e�ects relative to a given hypothesis. This method can take into
account all the di�erent factors that explain the fMRI timeseries: the exper-
imental paradigm, the physiological e�ects, some confounding variables,
and noise. The result is activation maps, that assign e�ect estimates at each
voxels for the di�erent factors.

General Linear Model Let X ∈ Rn×k be the design matrix in which we
represent the di�erent factors as columnwise stacked regressors, where n is
the number of scans, and k the number of regressors. The regressors consist
of the experimental conditions (occurence of stimuli in the experimental de-
sign convoluted with the HRF ), nuisance confounds such as subject motion,
additional coufounds such as session or study-dependent e�ects, as well as
low-frequency signals that model drifts in the signal. The time derivative of
the experimental conditions is also often included, to o�er some �exibility
to the HRF modeling, which di�ers in delay and shape across the brain.
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We denote as Y ∈ Rn×p the observed fMRI data, where n is the still the
number of scans, and p the number of voxels. The GLM formulation gives
us:

Y = Xβ + ε , (2.1)

where β ∈ Rk×p are the e�ects, and ε the residual error. The error term ε

is assumed to be drawn from a normal distribution ε ∼ N (0,σ 2I ). Figure 2.1
represents the di�erent terms in the GLM formulation. Importantly, the
e�ects term may be represented as brain images, and are called activation
maps or β̂ maps . Figure 2.2 shows the estimated β̂ maps of an experiment
considering visually presented calculation and sentences tasks.

=

Observed
BOLD

Design Matrix

+

Activation
coe�cients

Noise

Figure 2.1: The GLM postulates
that the observed data are a com-
bination of e�ects to be estimated
plus a noise. The regressors in the
design matrix consist of the model-
ing of experimental conditions by
the convolution of the stimuli pre-
sentation by the HRF, as well as
confounding variables and �lters.
Source: Pedregosa-Izquierdo [24]

We introduced here the modeling of individual e�ects, i.e. the estimation
of the activation maps at a subject-level from its BOLD images. The standard
framework for fMRI data analysis usually follows a hierarchical structure,
in which researchers model the e�ects at a group-level after computing the
maps at the subject-level. Group-level maps are estimated with the same
GLM framework, but take as inputs the subject-level maps instead of the
BOLD timeseries.

Hypothesis testing In this paragraph, we present the general setting of
hypothesis testing and it is instantiated in the particular context of fMRI.
Statistical hypothesis testing is the process of testing a hypothesis on the
distribution of a given parameter. In cognitive neuroscience, researchers
designing experiments test whether the observed brain activity is due to
chance. If not, the test concludes the activity is related to the experimental
conditions. In the general setting of statistical inference, we call null hypoth-
esis an observation occurring by chance. The null hypothesis is considered
true until su�cient evidence imply otherwise, in which case it is rejected
in favor of the alternative hypothesis. The null hypothesis and the alterna-
tive hypothesis are respectively denoted H0 and H1. The p-value resulting
from a hypothesis testing corresponds to the probability of an observation
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Figure 2.2: Beta maps for visu-
ally presented calculation and sen-
tences tasks. The thresholding is
arbitrary and for visualization pur-
pose only. Source: Pinel et al. [25]

considering H0 is true (see Figure 2.3). It enables to de�ne the signi�cance
level, which is an arbitrary threshold at which we disprove H0. This thresh-
old is traditionally set at 5% or 1%, and guarantees that the type I error is
no greater than the chosen threshold. Type I and type II errors are also
respectively referred to as false positives and false negatives.

A t-test is a statistical test in which the test statistic follows a Student’s
t distribution under the null hypothesis [32]. In the following, we consider
the one-sample t-test, whose statistic with a sample x ∈ Rn is given by:

t =
x̄ − µ0

s/
√
n

, (2.2)

where x̄ is the sample mean, s the sample standard deviation, and n the
sample size. A one-sample t-test has the null hypothesis that the population
mean is equal to the speci�ed value µ0. With µ the population mean, a one-
sample t-test hypothesis may therefore be formulated as:

H0 : µ = µ0 H1 : µ , µ0

Once the t value is determined, the corresponding p-value may be found
using the Student’s probability distribution with d = n − 1 degrees of free-
dom. P-values may be computed under a one-tailed or a two-tailed test,
depending on whether the deviation of the estimated parameter may be on
either direction of the sample mean, or only one direction. In fMRI we gen-
erally use a two-tailed test, as we are interested in signi�cant activations, as
well as deactivations. Figure 2.3 shows a probability distribution with the
one-tailed test highlighted in green. A two-tailed test would also consider
a symmetrical area on the other side of the distribution.

Statistical parametric maps Cognitive neuroscientists aim to isolate men-
tal processes of interest. They do so by contrasting a stimulus engaging the
mental process, with a stimulus theoritically identical in all aspects but the
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Figure 2.3: A p-value (green area)
is the probability of an observed
result assuming H0 is true un-
der a one-tailed test. Source:
modi�ed from http://en.

wikipedia.org/wiki/File:

P-value_in_statistical_

significance_testing.svg

aforementioned process. For example, studying calculation implies present-
ing an arithmetic operation to a subject, e.g., “two plus six”. If this stimulus
is visual, it will recruit regions from the visual system, as well as from the
reading process. To identify, brain activations speci�c to calculation, we
use a sentence of the same length as a control condition to cancel out the
undesired e�ects, e.g., “less is more”. The di�erence between a condition
and its control serves as the null hypothesis to �nd signi�cant activations
relative to calculation. We introduce the notion of a contrast c ∈ Rk as a
linear combination of experimental conditions exhibiting a mental process.
Given the GLM equation 2.1, we de�ne H0 as cT β = 0 and H1 as cT β , 0.
This tests whether the β of the condition and its control are signi�cantly
di�erent, and the t-statistic is given by:

t =
cT β̂

σ̂
√
cT

(
XTX

)−1
c

, (2.3)

where σ̂ 2 is the estimate of the variance, and the Student’s distibution has
d = n − (k + 1) degrees of freedom. Because there is one t-test per voxel,
we obtain a t-map representing the brain activity with one t-statistic per
voxel. As an example, we consider an experiment with two conditions: cal-
culation and sentences. The GLM gives the β̂ maps from Figure 2.2, with a
design matrix containing two columns for the experimental conditions, and
the additional columns for confounding variables. In this case the contrast
vector c takes the form c = [+1,−1, 0, . . . , 0], where +1 is for the calculation
regressor, and −1 for the sentences one. The resulting t-map in Figure 2.4 is
thresholded at t = 3.2 ∼ pvalue = 1%�, and shows activations in the parietal
cortex relative to calculation. It also cancels out activations in the visual and
language systems that can be seen in the β̂maps from Figure 2.2. These kind
of maps are more generally called statistical parametric maps (SPMs). At the
group-level it is possible to compute these contrast maps with a two-sample
t-test.

http://en.wikipedia.org/wiki/File:P-value_in_statistical_significance_testing.svg
http://en.wikipedia.org/wiki/File:P-value_in_statistical_significance_testing.svg
http://en.wikipedia.org/wiki/File:P-value_in_statistical_significance_testing.svg
http://en.wikipedia.org/wiki/File:P-value_in_statistical_significance_testing.svg
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Figure 2.4: t-map for calculation
versus sentences thresholded at
t = 3.2. This contrast map can-
cels out e�ects related to the stim-
ulation rather than the calculation
task itself. Source: Pinel et al. [25]

2.1.2 Multiple comparisons problem

The multiple comparisons problem arises when one considers a set of statis-
tical tests simultaneously. Let α be the signi�cance level, with α = 5% a sin-
gle test ensures that the probability to reject incorrectly the null-hypothesis
is 5%. This controls the type I error. Letm be the number of tests, and s the
number of signi�cant results, assuming independence of the tests the prob-
ability of observing at least one signi�cant result due to chance is given
by:

Ps≥1 = 1 − Ps=0

Ps≥1 = 1 − (1 − α )m

which means the probability to observe at least one false positive with
20 tests is 64%, and 100 tests is 99.4%. An fMRI image with voxels at a 3mm3

resolution contains around 50K voxels and corresponds to the number of
tests we perform. Since we want to answer a where question, i.e. localize
activations for a given function, it is critical to control correctly the type
I error rate. The proposed solution is to control for an experiment-wide
signi�cance level instead of a single test signi�cance level, and is called
family-wise error rate (FWER). The general idea to obtain a speci�ed FWER,
is to de�ne error rates for each comparison that are more stringent than
α . There are several procedures to account for the multiple comparison
problem. One of them is the Bonferroni correction, which sets the new
signi�cance level toαb = α/m, and implies that the global error rate will not
be greated than α . The Bonferroni method may be too conservative in fMRI
analysis, as is do not take into account the high correlation of neighboring
voxels. Other correction methods that may be more adapted to fMRI include
random �eld theory [40, 8], and the use of the false discovery rate [1].

2.2 Statistical learning for fMRI

Machine learning is a scienti�c �eld that encompasses a set of algorithms
that learn from data. The algorithms operate on inputs and outputs to build
models, which are used to make decisions. There are several classes of al-
gorithms, such as supervised and unsupervised learning, which depend on
the type of task to be performed. Machine learning has originally been used
in neuroimaging to uncover the neural coding relative to a task, i.e., the
voxels predictive of a mental process. This pratice is referred to as decod-
ing or multivoxel pattern analysis (MVPA) in the neuroimaging community
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[5, 4, 15, 34, 31]. The main incentive for this kind of approach is that is uses
a single statistical test for the whole brain, and thus alleviates limitations
due to multiple comparisons in classical inference. More recently, Poldrack
et al. [28] has shown that decoding enables to implement a large scale re-
verse inference, in order map cognitive functions to brain areas.

2.2.1 Predictive models

Supervised predictive modeling is a set of statistical learning methods which
aim to predict a target variable. In fMRI, we consider the activation maps
produced by the GLM as a pattern recognition problem, i.e. predict a cog-
nitive state, also called target, using a pattern of voxels. Note that is it also
possible to perform such predictions using voxels from the fMRI timeseries,
but we do not perform this kind of analysis in this thesis. Predictive models
learn a predictive function which which can be linear or non-linear. Non-
linear functions can in principle uncover non-linear relationships between
the voxels and the target, but their predictive power has not been found to
be clearly exceeding that of linear models [13] for brain analysis. More im-
portantly, our goal is to map the predictive function onto the brain, which
is trivial with a linear function. This is also feasible with non-linear func-
tions [21, 22, 20, 17] but is less frequently used, which is why we focus
only on linear models in this thesis like the majority of the neuroimaging
community [4, 15, 34, 31]. The advantages of a predictive model over the
classi�cal statistical inference framework presented in the previous section
are that: i) it performs a single statistical test for all the voxels, and ii) its
multivariate nature enables it to capture distributed patterns that are pre-
dictive of a given target. The latter point is crucial, as brain regions may
explain a mental process if considered in conjunction, but may overlap if
taken separately.

Linear models Linear predictive models can be used for classi�cation
and regression problems. Classi�cation predicts a discrete target composed
of classes, whereas regression predicts a continuous variable, e.g., age. We
only consider classi�cation in this thesis. Let X ∈ Rn×p be the data, with n

the number of samples and p the number of voxels in each activation map,
and y ∈ [1, . . . ,k ]n the target composed of k classes. With these notations,
a linear predictive model for classi�cation is given by:

y = f (X ,w ,b) = F (Xw +b) , (2.4)

wherew andb respectively are the slope (weights) and the intercept of the
a�ne hyperplane. The intercept serves to choose an o�set that is di�erent
from 0 for the a�ne hyperplane. Following this formulation, we de�ne a
binary classi�cation as:

f (X ,w ,b) = sign (Xw +b) , (2.5)

where sign is the sign function and y ∈ [−1, 1]n . The estimation of the
parameters is done through the minimization of the di�erence between y
and the estimated target ŷ. This di�erence is a function of (w ,b) called
loss function –or loss– that we denote ` (w ,b). The loss represents the cost
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associated with the error in the estimation of the target. In classi�cation
settings the most common losses are the hinge and logistic losses. We mostly
use the logistic loss in this thesis, that we express as follows:

` (w ,b) = 1
n

n∑
i=1

log
(
1 + exp−yi (X i

Tw+b )
)

(2.6)

This type of loss is used by the logistic regressionmodel, which models the
posterior probability as a sigmoid: P (y |X ) =

(
1 + exp−yf (x )

)−1
. It enables

to associate class probabilities with the data and ultimately assign classes.
Other models such as Support Vector Machines (SVM) use di�erent loss
functions but follow the same principles.

Regularization Regularization uses prior knowledge to bias a model’s es-
timation towards a desired solution. It enables to solve ill-posed problems
and avoid over�tting. With λ Ω(w ) the regularization term, the minimiza-
tion problem becomes:

ŵ = arg min
w ,b

`(w ,b) + λ Ω(w ) , λ ≥ 0 (2.7)

where λ represents the amount of penalization, and is the tradeo� be-
tween the loss `(w ,b) and the penalty Ω(w ). Among the many possible
penalties, we present the most widespread ones in neuroimaging:

• `2 regularization (Ω(w ) = ‖w ‖2). ‖w ‖2 is the Euclidian norm, and this
type of regularization is equivalent to setting a Gaussian prior with zero
mean on w .

• `1 regularization (Ω(w ) = ‖w ‖1). ‖w ‖1 =
∑n

i=1 |xi | is the Manhattan
norm, and this type of regularization forces a large fraction of uninfor-
mative weights to zero, promoting sparse models.

Model validation and selection A model’s validation is done throught
the evaluation of its predictive performance. To avoid over�tting the stan-
dard procedure is to partition iteratively the data into a training and a testing
set, where we learn the prediction function on the training set and evalu-
ate it on the testing set. As the prediction scores may vary across training
and testing sets, we usually report the averaged prediction scores (and their
standard deviation). This procedure is called cross-validation. The main pit-
fall of cross-validation is that it holds out part of the data for validation,
which reduces the number of samples for the learning of the model. For
most use cases of machine learning this is not an issue, but may be so in
the case of a single neuroimaging study which features few samples. We
here describe a few popular cross-validation schemes, where the schemes
names are taken from scikit-learn1 and may not be representative of all the 1 http://scikit-learn.

org/stable/modules/

cross_validation.html

literature:

• Leave-one-out: the training set is composed of all samples but one held
out for testing. Given n samples, this cross-validation scheme therefore
generates n di�erent training and testing splits.

http://scikit-learn.org/stable/modules/cross_validation.html
http://scikit-learn.org/stable/modules/cross_validation.html
http://scikit-learn.org/stable/modules/cross_validation.html
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Figure 2.5: This �gure shows the
coe�cients of a logistic regression
discriminating between a calcula-
tion and a sentence reading task.
The logistic regression is penalized
with an `2 regularization term on
the top row, and an `1 regular-
ization on the bottom row. We
choose the amount of penalization
by cross validation for both mod-
els and kept the best performing
model. The `1 penalty yields a very
sparse model, i.e. relies on very few
predictive features.

• K-fold: this scheme partitions the data into K disjoints group of the clos-
est size called folds. The training set is composed of K − 1 folds and the
testing set uses the remaining one.

• Shu�e-split: this scheme returns random but disjoint training and test-
ing sets. The training and testing sizes, as well as the number of desired
splits, are user de�ned parameters of the cross-validation, e.g. 5 random
testing sets representing 10% of the data.

• Strati�ed-shu�e-split: this scheme is identical to shu�e-split but ensures
that the distribution of classes is the same in the training and testing
sets. This is useful in the case of class imbalance, to avoid biasing the
estimator in favor of the majority class. We implemented a version of
strati�ed-shu�e-split for scikit-learn for the purpose of this thesis.

• Leave-one-label-out: this scheme is similar to the leave-one-out but holds
out the samples based on third-party labels, which de�ne a domain spe-
ci�c cross validation. For example, in neuroimaging it is common to
perform a leave-one-subject-out cross validation to test whether a given
prediction function generalizes across subjects, and does not rely on sub-
jects’ idiosyncrasies for prediction. A leave-one-label-out may be used
to test for all possible confounding e�ects that we want to test for, e.g.,
session-e�ect, study-e�ect, scanner-e�ect, or site-e�ect.

We may use di�erent metrics to estimate the performance of a model
within a cross-validation loop. For a classi�cation task, those metrics use
the predictions of the classi�er which may be true positives (TP), true nega-
tives (TN), false positives (FP), or false negatives (FN). Follows a description
of the main metrics we consider in neuroimaging, with P and N being sim-
ply positives and negatives, regardless of the correctness of prediction.
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• Accuracy: ACC = T P+T N
P+N

• Precision: PRC = T P
T P+F P

• Recall or sensitivity: REC = T P
T P+FN

• F1-score: F1 = 2T P
2T P+F P+FN

Accuracy is typically used in the case of a balanced classi�cation and rep-
resents the rate of correct predictions. In the case of an imbalanced problem,
accuracy may be misleading as it can yield a very high score by ignoring the
minority class. To avoid this, it is preferable to consider for each class sep-
arately both precision and recall scores, which respectively represent the
ability of a classi�er to make correct predictions, and its ability to detect all
the instances of one class. The F1-score is the harmonic mean of precision
and recall and serves to have a quick overview of a classi�er’s performance.

Models usually depend on internal parameters to �t to a problem, e.g.,
the amount of penalization. The process to select the best model, i.e., the
best set of parameters, for a given problem is called model selection. We
select the model in respect to its prediction performance, and do so in a
nested cross-validation loop to avoid over�tting. This procedure may give
rise to new challenges, as it further partitions the data to generate (inner)
training and testing sets, and is computationally expensive.

Multi-class and multi-label classification A multi-class classi�cation
is the problem of classifying data within more than two classes. By contrast,
a multi-label classi�cation assigns a set of target labels to each instance
of the data. Multi-class problems resort to voting strategies to combine
multiple binary classi�ers. Given K classes, common approaches are:

• One-versus-all: also called one-versus-rest, this approach buildsK binary
classi�ers by pooling the data from K − 1 classes. Given f (X ,w ,b) from
equation 2.4, the voting stategy consists in taking the highest real-valued
con�dence score among the binary classi�ers. If д (x ) is the decision
function and sign (д (x )) the binary prediction function, the multi-class
prediction function is:

ŷ = arg max
k ∈1...K

дk (x )

The advantage of this method is that in addition of being computation-
ally e�cient, it yields one decision boundary per class, which makes it
easy to interpret.

• One-versus-one: this method considers all the possible pairs of binary
classi�ers, i.e. K (K − 1) /2 classi�ers. The voting strategy consists in
predicting the class that has the majority of predictions among all the
binary classi�ers. In comparison to one-versus-all, it quickly becomes
computationally expensive asK gets larger. Moreover, there is no straight-
forward way to retrieve one decision boundary per class.

For multi-label problems only the one-versus-all strategy applies. In this
case we do not apply a voting strategy, but rather assign multiple classes to
each instance of the data.
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2.2.2 Dimension reduction

Learning a decision function requires more data samples as the dimension-
ality of the feature space gets higher. With a �xed number of samples, in-
creasing the number of dimensions of the data may increase in turn the
prediction accuracy up to an optimal point, after which it will reduce the
accuracy [13]. This e�ect is known as the Hughes e�ect, or the curse of di-
mensionality. The underlying problem of a high-dimensional space, is that
the volume of this space makes the data sparse. In other words, we may
�nd an in�nity of separating hyperplanes as solutions of a predictive model.
Most of these solutions will however not be able to generalize to new sam-
ples (e.g., in the testing set of a cross-validation), since it relied on speci-
�cities or noise from the training set. This problem is particularly severe
in neuromaging, as typical studies feature around n = 100 activation maps
of approximately p = 50K voxels. Dimension reduction methods overcome
these issues by de�ning a low-dimensional space keeping the predictive in-
formation. Dimension reduction is routinely used in neuroimaging, and is
performed within the cross-validation loop to avoid any over�t. The most
frequent approach is feature selection, which removes non-relevant features
from the feature space. Another approach is feature agglomeration, which
combines features to create a lower-dimensional space. We present here one
univariate feature selection method, and one feature agglomeration method.
In this thesis we usually combine both approaches to create a new feature
space on which we perform the classi�cation. Figure 2.6 illustrates this pro-
cedure.

Feature selection A common way to select features is to apply a so-
called univariate screening on the data. We compute a score value for each
feature independently, e.g. F-score, correlation score. We perform the se-
lection itself by either thresholding the scores, keeping the k best scores,
keeping a percentile of the highest scores, or by testing for signi�cance
with a p-value. The computational e�ciency is the major advantage of this
approach. It however does not take into account the local correlation of fea-
tures, in our case the voxels which share information with their neighbors.
Because of the thresholding, clusters of voxels with a high signal to noise
ratio (SNR) are likely to be selected, while voxels that may still be informa-
tive at the classi�cation level but have a lower SNR are likely to be ignored.
This is why we use this selection method in a very non-conservative way,
and usually keep at least 30% of the features.

Feature agglomeration The main limitation of a univariate feature se-
lection for neuroimaging data, is that it does not take into account any
spatial information. Feature agglomeration replaces the voxel-space by a
parcel-space which summarizes the grouped voxels. This approach reduces
the dimensionality and increases the SNR at the expense of spatial resolu-
tion, but does not exclude potentially informative features. Di�erent cri-
teria may be used to de�ne the parcels. Using anatomical atlases may be
the simplest way to do so, but are ill-suited to represent functional data
because it yields a very coarse representation of the brain activity (∼ 100
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regions). We instead consider the Ward clustering algorithm [19], which
is a clustering algorithm that uses the activation maps to learn a partition
of the brain. Because it adapts the size of the parcels to the signal in the
brain regions (large regions with similar values yield a single large parcel),
the Ward clustering should be seen as a lossy compression algorithm, rather
than a method yielding plausible functional regions. Our experience show
that keeping between 2K and 5K parcels does not hinder classi�cation, and
makes computation faster.

Figure 2.6: The Ward feature ag-
glomeration algorithm learns a
partition of the brain composed of
2K parcels, on which we sample
the activation maps. We obtain
compressed activation maps and
proceed with a univariate screen-
ing which keeps 30% of the fea-
tures to further reduce the dimen-
sionality of the data.

2.2.3 Decoding

Predicting mental processes Decoding in neuroimaging is the process
of predicting mental states using a supervised learning model. Early proofs
of concept show the ability of a classi�er to accurately predict left from right
hand movements [20, 5], and di�erent categories of visual stimuli (faces,
houses, objects) [11, 4], as well as uncovering the underlying neural coding
of these processes. Later work demonstrates that decoding may also be
used to expose shared neural support as in neuronal recycling, by training
a classi�er on one task and predicting another one which shares the same
neural basis with the same classi�er [14]. The validity of decoding have also
been shown on higher-level mental concepts such as working memory [10]
or intentions [12].

Stability selection Cross validation techniques validates the prediction
accuracy but neither the validity, nor the interpretability of the classi�er’s
coe�cients. Decoding approaches are usually regarded as more powerful
than their univariate counterparts because they consider all voxels at the
same time. They however do not perform the same statistical test, and do
not control for any error rate at the voxel level. As a consequence, a classi-
�er may assign high weights to irrelevant features. This issue is related to
model selection and the curse of dimensionality previously described. The
process of �nding stable features that are representative of a task is known
as stability selection [18]. In this thesis, we rely on an approach akin to the
one developed in Varoquaux et al. [38]. Speci�cally, we generate random-
ized parcellations using a Ward clustering, and select the best model vary-
ing the regularization parameter for each those parcellations. Each model
therefore has a coe�cient vector in the parcel-space. We project back the
best models to the voxels-space and average them to obtain a �nal linear



II. Tools for neuroimaging data modeling 39

L R

y=14 x=-51

L R

z=50

Figure 2.7: This hyperplane map
shows the coe�cients of an aver-
aging model, which are more in-
terpretable than simple `2 or `1-
penalized models (see Figure 2.5).
In particular the high coe�cients
in the parietal cortex are relevant
for a calculation task.

model in the voxel space. As in Varoquaux et al. [38], we choose an `1
penalty for the linear classi�ers. This method proved to be easy to imple-
ment, relatively e�cient in terms of computation, and yields more stable
and interpretable coe�cients. Using this method for the same calculation
versus sentences classi�cation, we obtain the coe�cients pictured in Fig-
ure 2.7, that are more speci�c than a simple `2-penalized logistic regression,
and less sparse than an `1-penalized model.

2.3 �antitative meta-analyses

Meta-analyses comprise statistical methods for combining and contrasting
di�erent studies. The original motivation behind meta-analyses is to aggre-
gate information from multiple studies to increase the statistical power for
a measure of interest. It is also a way to integrate and summarize results on
a speci�c topic. The functional MRI �eld faces a vast and rapidly growing
literature on various cognitive domains, and can bene�t from approaches
that join seemingly unrelated topics. Meta-analyses of fMRI have addition-
ally the potential to overcome some limitations of individual studies, in par-
ticular false positive and negative �ndings. More generally, meta-analyses
are an interesting tool to develop new hypotheses, assess the consistency
across experimental protocols, or reach consensus on the location of func-
tional regions. This section presents two kinds of meta-analyses for fMRI:
the coordinate-based meta-analyses which use functional activation sum-
maries, and image-based meta-analyses that use functional brain images.

2.3.1 Coordinate-based meta-analyses

Figure 2.8: The Talairach atlas is
the �rst instance of a coordinate
system for the brain. It was
created by neurosurgeons Jean Ta-
lairach and Gabor Szikla from the
post-mortem dissection of a single
human brain. Source: http://

imaging.mrc-cbu.cam.ac.

uk/imaging/MniTalairach

Figure 2.9: The current MNI
template is the ICBM152. It comes
from the average of 152 MRI
scans matched to the MNI305,
which is the �rst MNI template.
This �rst template was obtained
by averaging and matching 305
MRI scans to structures from the
Talairaich atlas. Source: http://
imaging.mrc-cbu.cam.ac.

uk/imaging/MniTalairach

Coordinate-based meta-analysis (CBMA) methods assess the convergence
of activation peak coordinates across multiple experiments to synthetize,
reconcile, or develop �ndings from the literature. They would not be fea-
sible without the high standardization of neuroimaging reports. Most neu-
roimaging data is standardized to either the Talairach-Tournoux [33] or
Montreal Neurological Institute (MNI) [7] brain spaces. These common co-
ordinate systems make it possible to compare of brains across subjects and
studies. Results of neuroimaging studies report tables of peak coordinates
for all activations of interest. Peaks are de�ned as the local maximum of an
activation given by the comparison of two experimental conditions. This
makes potentially all the literatue eligible to be part of such meta-analyses,
as papers may be entered manually in a coordinate database, or tools may

http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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be developed to integrate automatically vast fractions of the literature. A
standard format for table reports [27] would facilitate the latter.

A taste of ALE Activation Likelihood Estimation is a popular method for
CBMA introduced by Turkeltaub et al. [36], and later re�ned by Eickho�
et al. [6]. The gist of this method is to treat each activation peak as the
center of a Gaussian probability distribution, to account for the spatial un-
certainty entailed by the between subject and laboratory variances. A 3D
modeled activation map (MA map) summarizes each experiment in a com-
mon brain space, and enables to create a �nal ALE map which represents
the union of all MA maps. The �nal step of this method is to assess the sta-
tistical signi�cance of each location indicated by the ALE map. The original
method [36] proposes to test for above-chance clustering of peaks, whereas
the current method [6] tests instead for the above-chance clustering of ex-
periments, i.e. MA maps. ALE therefore de�nes the null hypothesis as the
random association of peaks between MAP maps, and the alternative hy-
pothesis as the convergence of peaks for a given task. This testing enables
to draw conclusions on a mental process of interest, as shows Figure 2.10
for �nger tapping. This method is also used to �nd functional modules in
brain structures, to achieve a �ner representation of functions in the brain
[2].

Figure 2.10: A2: individual acti-
vation peaks for the �nger tap-
ping experiments included in the
meta-analysis. B2: Union of the
MA maps across all experiments.
C2: signi�cant cluster across ex-
periments against a null distribu-
tion obtained by permutation test-
ing. Source: Eickho� et al. [6]

The ALE method is applicable in any CBMA, but is primarily associated
with the BrainMap database [16]. BrainMap features brain locations from
more than 2, 500 papers encompassing over 12, 000 experiments. All papers
and annotations are manually entered in the database, which makes it the
largest of this kind. BrainMap also exposes a collection of online tools, in
particular GingerALE [6] which enables to perform ALE analyses with data
from the database, or from a manually uploaded table of coordinates. Other
“manual” coordinate databases include SumsDB2 [37] and Brede Wiki3 [23]. 2 http://sumsdb.wustl.

edu:8081/sums/index.jsp
3 http://neuro.compute.

dtu.dk/wiki/Main_Page

http://sumsdb.wustl.edu:8081/sums/index.jsp
http://sumsdb.wustl.edu:8081/sums/index.jsp
http://neuro.compute.dtu.dk/wiki/Main_Page
http://neuro.compute.dtu.dk/wiki/Main_Page
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Neurosynth BrainMap focuses on the quality and accuracy of the pa-
pers annotations entered in the database. Despite the large representation
of the literature in its database, it still represents a fraction of all potential
studies, and depend on inclusion criteria that are not explicit. Neurosynth4

4 http://neurosynth.org/
[41] takes the other approach, and pools automatically as many studies as
possible from the literature in order to have the best representation, and
relies on the volume of data to make up for poorer annotation quality. In its
original 2011 version, Neurosynth was drawing activation foci from almost
3, 500 papers, its current version is now over 10, 000. Neurosynth automated
coordinate extraction consists of a parsing engine that detects tables report-
ing activation coordinates, and performs basic validation. The di�erences
in standard spaces for coordinates are ignored by Neurosynth. Moreover,
Neurosynth parses the article text and performs a word frequency analysis
to generate lists of terms to associate with the coordinates. This fully auto-
mated approach enables to construct a large database of term to coordinates
mapping, and is able to cope with the ever growing load of publications.
Neurosynth also provides forward and reverse statistical inference tools for
the analysis of its database. The forward inference method tests for the de-
pendence between terms and activation using a χ 2 test. Yarkoni et al. [41]
justi�es the use of a parametric statistical test rather than permutation test-
ing mainly for computational purposes. Reverse inference is implemented
as a naive Bayes classi�er. By computing the probability of a term given
an activation, this classi�er is able to predict terms on statistical maps from
unseen neuroimaging studies. Reverse inference on such a database is of
particular interest, as it covers extensively the cognitive space.

Limitations CBMA aim to synthesize large amounts of neuroimaging ex-
periments, and overcome limitations inherent to individual studies, in par-
ticular false positive (FP) and false negative (FN) results. Most studies rely
on voxel-wise hypothesis testing by rejecting the null hypothesis. The FP
rate is in general arbitrarily set to 5% and corrected for multiple compar-
isons with the Bonferroni correction for example. FP may still be reported
in the literature in the form of uncorrected results, and it is an established
practice to perform region of interest analysis to reduce the severity of cor-
rections [26]. CBMA mitigate FP results as they are hopefully not repli-
cated across studies, even though being present in 10 to 20% of publications
[39]. They however combine results obtained with potentially very di�er-
ent methods, and do not provide a way to account for these di�erences
[17]. Reports show that individual studies are typically underpowered [35],
and thus fail to detect engaged regions, otherwise known as FN results.
This issue proves more problematic for CBMA methods, which represent
non-signi�cant study-level voxels as zeros, and therefore cannot aggregate
power across studies to potentially reach signi�cance [3]. The last major
limitation from CBMA approaches is that of spatial resolution: activation
peaks are modeled roughly as balls, and do not take into account the shape
and size of activations, which are likely to greatly vary depending on the
mental process under study.

http://neurosynth.org/
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2.3.2 Image-based meta-analyses

Pooling fMRI images have the potential to overcome several CBMA short-
comings. [3, 30] distinguish two kind of analyses performed by aggregating
images, image-based meta-analyses (IBMA) and “mega-analyses”. IBMA are
performed on the full statistical images, resulting either from a subject-level
analysis or a group-level analysis. The use of these data can give greater de-
tails on the shape and size of the activations, and also enables to aggregate
power across studies, as they contain the statistical values for all voxels, not
only those that are signi�cant. They also do not su�er from the FP reported
in the literature [39]. They however do not alleviate issues that may come
from the di�ering processing methods used to obtain those maps. To solve
this, the raw images –the BOLD timeseries– must be processed homoge-
neously in the context of a “mega-analysis”. There is no standard method
for mega-analyses, but they enable to model inter-study variability as a ran-
dom e�ect, and introduce a third level in a GLM framework (after subject
and group levels) [30]. The main limitation with these approaches remains
the di�culty to gather data from many experiments.

2.4 Conclusion

We have seen in this chapter the statistical tools that we will use along
this thesis. We have also presented the current state of meta-analysis meth-
ods for fMRI. Meta-analyses hold the promise to provide an automated
way to accumulate knowledge and relate cognitive �elds. Coordinate-based
meta-analyses have so far been the most successful approach, mostly be-
cause of the di�culty to accumulate imaging data, and despite the greater
potential of image-based meta-analyses. In the next chapters, we will show
how we aggregate imaging data, and how we leverage the statistical tools
we presented to get an integrated view of the human brain functions.
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Part II

Contributions: from an image database to
learning brain functions





3 Scaling up from individual stud-

ies

The previous chapter focused on the analysis of individual fMRI stud-
ies, and the advent of large scale analyses using highly summarized data,
i.e. the activation peaks coordinates. Dealing with individual studies makes
it possible to test many models, and run quality assessment procedures at
a subject-level if necessary. This approach is no longer tractable when the
volume of data gets very large.

With large amounts of data comes new challenges, and this chaper in-
vestigates how to scale up from individual studies to a large fMRI database.
We shortly review the available open-access fMRI resources, and how we
contribute to that e�ort. We expose the strategy that we adopted to organize
the data, and how it impacts the subsequent processing stages, in particular
the fMRI pre-processing, statisical modeling, and data curation. We �nish
by giving an overview of the database that we accumulated.
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Figure 3.1: The HCP shares data
from over 500 subjects in 7 di�er-
ent fMRI tasks.

Figure 3.2: The OpenfMRI contains
29 datasets summing to 693 indi-
vidual subjects.

Figure 3.3: Neurovault is an open
web repository that eases the pro-
cess to share statistical maps.

3.1 Finding the data

The �eld of neuroimaging is seeing a shift in its datasharing policies, both
thanks to a growing awareness of the opportunities it presents [36, 33], and
the commoditization of the storage facilities. The interest in sharing fMRI
data is not new, and was pioneered by the fMRI Data Center [46]. The plat-
form closed in 2012 due to a lack of funding. Importantly, its major draw-
back when it operated was that it demanded an explicit request for each
dataset before they are sent on a physical medium. The game changing ini-
tiatives are that of OpenfMRI [35], which features as of today as many as 29
task fMRI datasets, and the 1000 Functional Connectomes Project [4] which
distributes over 1200 resting state datasets. Both projects make the data
accessible by direct download under a permissive license. A major push
to add new datasets is taking place for the OpenfMRI project, and many
datasets were not available until recently which explains why we were not
able to use all of them during the thesis. If large scale studies are not yet
the norm in neuroimaging, they are becoming increasingly common and
prove to be invaluable resources that set new datasharing standards for the
community.The Human Connectome Project (HCP) [45] currently leads this
trend by sharing the full data from over 500 subjects which can be either
downloaded or ordered on a hard disk. Future projects include the Euro-
pean Human Brain Project (HBP), which holds a part dedicated to cogni-
tive neuroscience and fMRI acquisition, and plans to acquire a vast range
of experimental tasks on a very limited number of subjects. Past projects
include the fBIRN [20], which was a US-wide multi-site project in the con-
text of schizophrenia, and implemented datasharing on a large scale. Not all
muti-site projects implement yet an open approach to datasharing, with the
example of the IMAGEN project [38], that has the technical tools to share
data from over 2000 subjects, but retricts access to a consortium.

In a e�ort to reduce both sociological and technical frictions, we joined
Krzysztof Gorgolewski’s iniatiative to develop NeuroVault [16], a platform
that aims to �nd the middle ground between sharing raw data, and only re-
porting the coordinates of the activation peaks in the papers. Neurovault.org
is a web based repository that provides means to easily store, share, and
visualize unthresholded statistical maps. The platform makes it trivial to
upload a collection of maps, and link these with a permanent URL in the
associated publication. The data are presently scarce, but growing quickly,
and the ultimate ambition is to have enough data to be able to perform meta
analyses, and foster new services that make use of its REST API [9].

Individual initiatives are also important and give access to high quality
data. As part of the BioMag 2010 data competition, Henson released the raw
fMRI, MEG, and EEG data of a faces recognition task [18].

In collaboration with the BrainOmics team from Neurospin and Logi-
lab 1, we initiated a project to share neuroimaging data and associated meta- 1 http://www.logilab.fr/
data [25]. The result is a web repository containing data from [32, 31].
Speci�cally it contains the raw fMRI timeseries and anatomical images, as
well as the statistical maps and questionnaire metadata. All the data is

http://www.logilab.fr/
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stored in a CubicWeb database2, which makes it possible to perform ad- 2 http://www.cubicweb.

org/vanced queries from a web interface or a programmatic language. In this
thesis, we used other datasets from Neurospin, but they are not currently
shared.

Resource name Data type # Tasks URL

HCP raw 7 https://db.humanconnectome.org

OpenfMRI raw & maps 29 https://openfmri.org

fBIRN raw 4 http://fbirnbdr.nbirn.net:8080/BDR/

NeuroVault maps 92 http://neurovault.org/

BrainOmics raw & maps 1 http://brainomics.cea.fr/localizer

BioMag 2010 raw 1 ftp://ftp.mrc-cbu.cam.ac.uk/personal/

rik.henson/wakemandg_hensonrn/

Table 3.1: Table listing open fMRI
resources. The number of tasks is
relevant to indicate the variety of
experimental designs even within
a single study such as the HCP.

3.2 From diverse data sources to curated brain maps

From a technical standpoint, the main hindrance to sharing task fMRI is
the lack of a common representation of the complex associated metadata.
Task fMRI manipulates experimental conditions to study di�erent mental
processes. The analysis therefore requires the order and timing of the stim-
uli presentation during the acquisition, in addition to other MRI acquisition
parameters. The analysis of large volumes of fMRI data presents additional
challenges such as: i) homogenizing the processing streams, which other-
wise may render studies incomparable [5], and ii) curating the data in an
automatic or semi-automatic way.

In this section we present the steps we took to ready our database for
analysis once the data was downloaded. We do not attempt to solve these
issues in a general way, but rather take the approach of identifying the road-
blocks, and �nding pratical solutions for our project. Finally, we brie�y
describe all the studies we use in this thesis.

3.2.1 Organization

The neuroimaging community recognizes that the lack of metadata stan-
dards hurts the sharing and reuse of data, as well as the reproducibility
of science [36]. Such standards are currently being developed 3 [13], and 3 http://nidm.nidash.org/
extend previous work [11]. To be useful, they will however �rst have to
be supported by popular neuromaging software packages such as SPM and
FSL, and such functionality is under way [24]. A wide adoption would ease
the integration of datasets in the future. In the meantime, resources provide
documentation or follow arbitrary standards derived from software pack-
ages that makes it possible to merge several datasets in a common organi-
zation.

OpenfMRI We chose to follow the OpenfMRI �le layout, as the majority
of our data came from there, and its organization is for our work straight-
forward to customize if needed. OpenfMRI’s organization is mainly derived
from FSL, and is described in Figure 3.4. The directory structure represents

http://www.cubicweb.org/
http://www.cubicweb.org/
https://db.humanconnectome.org
https://openfmri.org
http://fbirnbdr.nbirn.net:8080/BDR/
http://neurovault.org/
http://brainomics.cea.fr/localizer
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
http://nidm.nidash.org/


52

the usual information regarding subjects, fMRI tasks and runs, and addi-
tional MRI modalities such as T1-weigthed images. More importantly, it
stores the metadata related to the experimental design in a set of �les that
eases the process of scripting the analysis of the data. The experimental
conditions and the associated contrasts are respectively stored in the “con-
dition_key.txt” and “task_contrast.txt” under the model directory. The on-
sets specifying the stimuli presentation are stored in column formated �les
containing the timing, duration and weights for each stimulus presenta-
tion. All across the structure, �les, subjects and conditions are named with
generic labels such as “sub00x”, “model00x”, “cond00x”. The mapping to
human readable labels is located in relevant “key.txt” �les. This approach
may seem counter intuitive at �rst glance, but renders the scripting triv-
ial and robust as �le and directory names are always the same across
datasets. Finally, even though the directory hierarchy allows to store raw
and processed data within the same study directory, we chose to replicate
the hierarchy in separate directories for each processing step. This is a data
management issue, and enables to quickly erase and re-process some data
if something went afoul along the processing stream.

.
Figure 3.4: OpenfMRI organiza-
tion of a dataset. The structure
allows the representation of
subjects, tasks, runs, models,
as well as the experimental
design. SOURCE: https:

//openfmri.org/content/

data-organization

SPM SPM is a software for statistical processing of brain maps that Neu-
rospin researchers use routinely to analyze their fMRI data. SPM stores all

https://openfmri.org/content/data-organization
https://openfmri.org/content/data-organization
https://openfmri.org/content/data-organization
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the metadata related to the experimental design in the “SPM.mat” �le, which
is just a dump of an internal SPM data structure. Documentation may be
found in SPM’s code, or on webpages of thorough users who reported their
�ndings 4. The variables necessary to extract the design from an experi- 4 http://www.its.

caltech.edu/~nsulliva/

spmdatastructure.htm

ment are listed in Table 3.2. Additional variables contain the paths from
the computed contrast maps, and from the pre-processed timeseries used
as input data for the GLM. Similarly, other .mat �les contain information
on pre-processing and paths of raw timeseries and anatomy images. Scipy
includes utilities to read such �les from Matlab. We developed Python code
available on Github5 to help parsing and dumping SPM data in a new or- 5 https://github.com/

schwarty/load_dataganization. It is not anywhere near production ready, but may serve as a
prototype before integration in a library such as NiPy or Nilearn.

Variable name Description

SPM.xY.RT Repetition time.
SPM.[Sess].[U].name Name of experimental condition.
SPM.[Sess].[U].ons Condition trials onsets.
SPM.[Sess].[U].dur Condition trials durations.
SPM.[xCon].name Contrast name.
SPM.[xCon].c Contrast weights (vector).
SPM.xX.X Design matrix.
SPM.xX.name Names of design matrix regressors.

Table 3.2: Main variables from
SPM.mat to extract the design of
an experiment. Square brackets
represent list elements. Additional
�elds include contrasts and time-
series paths.

HCP The HCP provides a detailed documentation of its �les structure on-
line 6. Roughly, the data are split in di�erent directories between raw and 6 http://www.

humanconnectome.org/

documentation/S500/

HCP_S500+MEG2_Release_

Appendix_III.pdf

pre-processed, and then in sub-directories for tasks. The design information
is also stored following the FSL format and it is extremely straightforward
to convert this organization in the one of OpenfMRI.

fBIRN fBIRN contains data from schizophrenic patients as well as healthy
subjects. The metadata regarding subjetcs are stored in a myriad of CSV
and Excel spreadsheets. The experimental design is stored in �les from the
E-Prime software 7. The use of proprietary formats makes it necessary to 7 http://www.pstnet.com/
develop ad-hoc scripts to organize and analyze the data.

3.2.2 Processing

The analysis of fMRI data requires a complex pre-processing stream that
accounts for speci�cities of the acquisition sequences. Moreover, it enables
normalizing the subjects data into a common brain space to make them
comparable. Several softwares and steps are possible, and in the context
of multi-study analysis, it is a considerable advantage to control all the pa-
rameters in order to maintain comparability. Reports indicate that varying
pre-processing parameters may change signi�cantly the results [40, 5].

http://www.its.caltech.edu/~nsulliva/spmdatastructure.htm
http://www.its.caltech.edu/~nsulliva/spmdatastructure.htm
http://www.its.caltech.edu/~nsulliva/spmdatastructure.htm
https://github.com/schwarty/load_data
https://github.com/schwarty/load_data
http://www.humanconnectome.org/documentation/S500/HCP_S500+MEG2_Release_Appendix_III.pdf
http://www.humanconnectome.org/documentation/S500/HCP_S500+MEG2_Release_Appendix_III.pdf
http://www.humanconnectome.org/documentation/S500/HCP_S500+MEG2_Release_Appendix_III.pdf
http://www.humanconnectome.org/documentation/S500/HCP_S500+MEG2_Release_Appendix_III.pdf
http://www.humanconnectome.org/documentation/S500/HCP_S500+MEG2_Release_Appendix_III.pdf
http://www.pstnet.com/
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fMRI Pre-processing

The usual fMRI pre-processing steps include slice timing correction, motion
correction and spatial realignment, coregistration of fMRI and anatomical
images, spatial normalization, and �nally spatial smoothing. We use a cus-
tom pipeline available in pypreprocess 8 that relies on SPM for the actual 8 https://github.com/

neurospin/pypreprocessprocessing, and Nipype [14] for the Python interfaces. Pypreprocess in-
cludes an example script “openfmri_preproc.py”, that serves as a command
line interface to process any dataset following the OpenfMRI data speci�ca-
tion. It is also able to fetch the data if the dataset is hosted on the OpenfMRI
repository and a valid identi�er is given.

Statistical Modeling

The standardized organization similarly enables to automate the genera-
tion of the experimental design. We use NiPy 9 [27] to perform the fMRI 9 https://github.com/

nipy/nipy�rst-level GLM, as this library nicely integrates with the rest of our Python
software stack. We initially attempted to use SPM to compute the statisti-
cal maps, but it estimates a separate mask for each subject and replaces all
missing values by NaNs (Not a Number), which is extremely inconvenient
for subsequent analyses. A possible but unpratical solution is to extrapo-
late missing values as an additional step. NiPy however makes it trivial to
use an arbitrary mask. We created a mask from the tissue probability maps
from SPM, and only kept voxels that have a 30 percent probability or more
to lie in the grey matter across subjects.

The additional di�culty in the statistical modeling of a large volume of
data, is the generation of the statistical models themselves. Most studies
model experimental conditions as separate regressors in the design matrix.
In some cases, an event never happens and results in a null regressor that
should not be passed to the model. For example, a study that models the
correct and incorrect responses from subjects might have no incorrect, or no
correct responses from some subjects. Contrasts are encoded as vectors, and
are assumed to be identical for all the subjects. The modeling scripts have
therefore to take into account that the contrast length might vary across the
subjects.

�ality control

Quality control is essential to the analysis of fMRI data, even more so in
the context analysing multiple datasets coming from variate sources. This
process should ideally be fully automated, or to a lesser extent provide ways
to quickly assess the quality and state of the processed data. We adopted
2 strategies in this thesis: i) the generation of graphical reports of the pre-
processing, and ii) a heuristic to detect major outliers. These strategies elim-
inates most of the obvious problems that arise during the analysis stages,
but may fall short in some cases as it relies on human input.

The �rst strategy relies on reports generated by Pypreprocess, that show
the results of the SPM pre-processing. The reports display graphically sub-
jects’ movement during acquisition, as well as the results of normalization
and co-registation. The most common issue comes from the NIfTI format
headers that encode brain orientation. This information tries to alleviate

https://github.com/neurospin/pypreprocess
https://github.com/neurospin/pypreprocess
https://github.com/nipy/nipy
https://github.com/nipy/nipy
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.

Figure 3.5: The outline of func-
tional data with the correspond-
ing subject’s anatomy in back-
ground. The top image shows a
valid preprocessing whereas the
bottom one shows a preprocessing
that failed because of faulty infor-
mation in the NIfTI headers.

problems regarding left-right brain orientation, but is not consistently in-
formed and interpreted by the neuroimaging softwares. Figure 3.5 shows
the typical registation report for 2 subjects, one of which failed due to faulty
NIfTI headers. The pratical solution to this problem is to �rst use the head-
ers, and if it does not work remove them with the “fslorient” tool from FSL.
We initially intented to use the data from fBIRN, but its processing failed
inconsistently with or without the headers making their use all but impos-
sible.

The second strategy to automatically detect major outliers was applied
on statistical maps. It is often easy, given a set of maps and knowing what
they are about to “see” if some are drastically di�erent from the others. From
that observation we developed a heuristic that computes a robust mean from
the maps of a task on the voxel-level and exclude those that deviate too
much from that mean. Figure 3.6 illustrates this by showing (from left to
right) the mean maps of an auditory task, a correct map from one subject,
and an incorrect one from another subject’s same task. This is an example
of outlier that this heuristic captures.

.

Figure 3.6: From left to right:
group mean of an autitory task,
correct statistical map of one sub-
ject, incorrect map of another sub-
ject. Automated methods are able
to capture this kind of outliers.
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3.2.3 Datasets
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Figure 3.7: Database in �gures.

This section presents an overview of the database used in this thesis. A
more detailed description of the datasets is available in Appendix A. Ta-
bles 3.3, 3.4, 3.5, and 3.6 provide a more compact listing of tasks and
studies. Note that the dataset from BioMag’s data contest has recently been
uploaded to OpenfMRI and is accessible under the ds117 identi�er. As as
whole, the database accounts for 30 studies, 50 tasks, over 800 subjects, and
7K statistical maps. Considering all the raw and processed data amounts to
close to 1TB of disk space, without the backups. This is also without consid-
ering the actual exploitation of the database which creates even more data.
Figure 3.8 shows the distribution of tasks, and MRI scanners in the database
depending on the orginal data source. This shows that i) Neurospin is our
primary source of data and mainly from one MRI scanner, ii) OpenfMRI is
our second largest source of data and is probably more challenging to ana-
lyze due to its scanner variability. We did not use the relational and social
tasks from the HCP.
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3.3 Conlusion

Scaling up from individual studies leverages the recent e�orts of the com-
munity on data sharing and standardization. We demonstrate that a com-
mon data organization is key to automate data integration and processing
streams, and commonly adopted standards would further ease the process.
To our knowledge, no standard or ad-hoc format is currently attempting
to represent quality information. This is a tricky problem, as data usabil-
ity is dependent on the intended use. In our opinion, quality assessment
formats and automated methods, would however help to solve the main
bottleneck to setting up a large fMRI database, as it still requires a lot of
manual work. Contrary to popular belief, processing time and the associ-
ated processing power is not a problem: modern workstations are able to
process the described database in a matter of days. The curation however
takes a lot longer, and necessitates to adapt parameters, and re-run datasets
multiple times. In the end, more than a universal standard, what we need
to scale up are documented formats, and automated methods.
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Dataset # Accession # Task # Task description References #
1 ds001 1 Balloon analog risk task Schonberg et al. [37]
2 ds002 1 Probabilistic classi�cation Aron et al. [1]
3 ds002 2 Deterministic classi�cation Aron et al. [1]
4 ds002 3 Mixed event-related probe Aron et al. [1]
5 ds003 1 Rhyme judgment Xue and Poldrack [48]
6 ds005 1 Mixed-gambles task Tom et al. [42]
7 ds006A 1 Living-nonliving decision with plain or

mirror-reversed text
Jimura et al. [19]

8 ds007 1 Stop signal with manual response Xue et al. [49]
9 ds007 2 Stop signal with letter naming Xue et al. [49]
10 ds007 3 Stop signal with pseudoword naming Xue et al. [49]
11 ds008 1 Stop signal Aron et al. [2]
12 ds008 2 Conditional stop signal Aron et al. [2]
13 ds009 1 Balloon analog risk task Cohen and Poldrack, unpublished
14 ds009 2 Stop signal Cohen and Poldrack, unpublished
15 ds009 3 Emotional regulation Cohen and Poldrack, unpublished
16 ds009 4 Discounting Cohen and Poldrack, unpublished
17 ds011 1 Tone-counting Foerde et al. [10]
18 ds011 2 Single-task weather prediction Foerde et al. [10]
19 ds011 3 Dual-task weather prediction Foerde et al. [10]
20 ds011 4 Classi�cation probe without feedback Foerde et al. [10]
21 ds017A 1 Probabilistic classi�cation Rizk-Jackson et al., unpublished
22 ds017A 2 Selective stop-signal task Rizk-Jackson et al., unpublished
23 ds051 1 Abstract-concrete judgment Alvarez and Poldrack, unpublished
24 ds052 1 Weather prediction Poldrack et al. [34]
25 ds052 2 Reversal weather prediction Poldrack et al. [34]
26 ds101 1 Simon task Kelley and Milham, unpublished
27 ds102 1 Flanker task Kelly et al. [21]
28 ds105 1 Object viewing Haxby et al. [17]
29 ds107 1 One-back task Duncan et al. [8]
30 ds108 1 Emotion regulation Wager et al. [47]
31 ds109 1 Theory of mind with manual response Moran et al. [28]
32 ds110 1 Incidental encoding task using Posner

cueing paradigm with object v greeble
judgment

Uncapher et al. [43]

33 ds114 1 Overt word repetition Gorgolewski et al. [15]
34 ds114 2 Covert verb generation Gorgolewski et al. [15]
35 ds114 3 Finger foot lips Gorgolewski et al. [15]
36 ds114 4 Overt verb generation Gorgolewski et al. [15]
37 ds114 5 Line bisection Gorgolewski et al. [15]

Table 3.3: List of the datasets and
associated tasks from OpenfMRI.
The dataset # is its identi�er in this
thesis.
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Dataset # Accession # Task # Task description References #
38 amalric2012mathematicians 1 Visual recognition task (one-back) Amalric et al., unpublished
39 amalric2012mathematicians 2 Localizer task Amalric et al., unpublished
40 cauvet2009muslang 1 Music task Cauvet et al., unpublished
41 cauvet2009muslang 2 Language task Cauvet et al., unpublished
42 devauchelle2009sentence 1 Language task Pallier et al. [30]
43 gauthier2009resonance 1 Continuous face house block Gauthier et al. [12]
44 gauthier2009resonance 2 Discontinuous face house block 400ms

frequency
Gauthier et al. [12]

45 gauthier2009resonance 3 Discontinuous face house block 800ms
frequency

Gauthier et al. [12]

46 gauthier2009resonance 4 Object localizer Gauthier et al. [12]
47 gauthier2010resonance 1 Continuous face house block Gauthier et al. [12]
48 gauthier2010resonance 2 Continuous face house block with dis-

tractor
Gauthier et al. [12]

49 gauthier2010resonance 3 Object localizer Gauthier et al. [12]
50 knops2009recruitment 1 Calculation task Knops et al. [22]
51 knops2009recruitment 2 Saccades task Knops et al. [22]
52 knops2009recruitment 3 Saccades localizer Knops et al. [22]
53 pinel2007fast 1 Localizer task Pinel et al. [32]
54 pinel2009twins 1 Object recognition task Pinel and Dehaene [31]
55 pinel2009twins 2 Arithmetics and saccades task Pinel and Dehaene [31]
56 pinel2009twins 3 Language task Pinel and Dehaene [31]
57 pinel2012archi 1 Localizer task Thirion et al. [41]
58 pinel2012archi 2 Social task Thirion et al. [41]
59 pinel2012archi 3 Emotional task Thirion et al. [41]
60 pinel2012archi 4 Parietal task Thirion et al. [41]
61 vagharchakian2012temporal 1 Visual language compression task Vagharchakian et al. [44]
62 vagharchakian2012temporal 2 Auditory language compression task Vagharchakian et al. [44]

Table 3.4: List of the datasets and
associated tasks from Neurospin.
The dataset # is its identi�er in this
thesis.

Dataset # Accession # Task # Task description References #
63 HCP 1 Emotion task Manuck et al. [23]
64 HCP 2 Gambling task Delgado et al. [7]
65 HCP 3 Language task Binder et al. [3]
66 HCP 4 Motor task Morioka et al. [29]
67 HCP 5 Relational task Smith et al. [39]
68 HCP 6 Social task Castelli et al. [6]
69 HCP 7 Working memory task Miller et al. [26]

Table 3.5: List of the tasks from the
HCP. The dataset # is its identi�er
in this thesis.

Dataset # Accession # Task # Task description References #
70 henson2010faces 1 Face recognition task Henson et al. [18]

Table 3.6: Task from the BioMag
2010 dataset.





4 Functional localization bymeta-

analysis

Chapter 4 investigates the value of using a meta-analytic database to cre-
ate functional localizers. As it was still in the early stages of its making,
we only use here a small fraction of the database described in the previous
chapter.

In this chapter we describe two concomitant contributions. Both contri-
butions employ what we call transfer learning [16], but is transfer learn-
ing in its simplest form and usually referred to as classi�er generaliza-
tion. We compare the generalization of classi�cation on functional tasks,
i.e. training a classi�er on task A and without further training predicting
task B, to the performance of a classi�er in the usual classi�cation setting,
i.e. training a classi�er on task A and predicting on the same task within a
cross validation loop. To distinguish this usual procedure to classi�er gen-
eralization we refer to it as inline learning. Finally the contributions des-
ignates the tasks as source task and target task to indicate the direction of
the generalization. In this introduction we simply call them task A and B.

The �rst contribution explores the ability of a classi�er trained on task
A to generalize on task B, and use its predictive features to better condi-
tion hypothesis testing on task B. We do not attempt to use generalization
blindly, i.e. try all possible task combinations in the database. We perform
generalization only when we assume that both tasks have something in
common, so that the generalization makes sense. The tasks ideally –but
not necessarily– come from separate studies. The gist of this method is to
use classi�er generalization to validate the use of a candidate task A, to de-
�ne ROIs to analyse task B. Figure 4.1 depicts the classi�cation procedures,
where task A is a French and Korean auditory task, and task B a French and
jabberwocky (pseudowords) visual tasks. The similarity in both tasks is the
comprehension versus incomprehension of a stimulus. Inline learning is
here merely performed to have a comparison reference for the generalized
classi�er. We use the classi�er’s predictive voxels to de�ne regions of in-
terest. The subsequent analyses, show that we increase statistical power
by using these regions. We also show that a similar approach based on
databases of activation coordinates would be less successful. We therefore
demonstrate the validity of this approach to learn a functional localizer with
a meta-analytic database.

The second contribution aims to solve the threshold selection limi-
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Task A:
French/Korean

Task B:
French/jabber

train on task A predict on task A
inline learning

predict on task B
transfer learning

If transfer learning above chance,
retrieve classifier coefficients

and use them as a ROI to perform
standard inference on task B

Figure 4.1: Classi�er generaliza-
tion (transfer learning) validates
the use of task A to de�ne regions
of interest on task B. Regions of in-
terest are selected by thresholding
the classi�er’s coe�cient to keep a
fraction of 5% of the brain. Subse-
quent standard inference analy-
sis on task B with the regions of
interest shows inscreased statisti-
cal power.

tation from contribution one. Here, we slightly change the way to select
features. We use a linear model with `2 penalization, but perform an uni-
variate screening �rst. We increase the amout of features retained by the
univariate selection, until we reach the full brain. At each scale, we com-
pare the classi�cation scores of the generalized classi�er (trained on task A,
predicted on task B), and the inline classi�er (trained on task B, predicted on
task B) which uses the same feature selection procedure. The intention is
to select the scale at which both classi�cations yield the same performance.
We will show that it is di�cult to select a scale with this approach, and that
the resulting regions do not delineate speci�c brain regions. This procedure
is illustrated in Figure 4.2.

To overcome this di�culy we introduce a novel approach that we call
selection transfer. This procedure does not attempt to generalize a clas-
si�er. Instead, it selects regions from task A with the univariate screening,
and builds a predictive model on task B. As shown in Figure 4.3. It compares
the ability of this classi�er to the inline learning procedure. This enables
the prediction curve to converge and select a scale at which both classi�ers
performs equally well. This scale permit us to expose regions speci�c to
both tasks. The procedure can be seen as a multivariate alternative to
conjunction.

The contributions developed in this chapter have been published in:

• Y. Schwartz, G. Varoquaux, C. Pallier, P. Pinel, J.B. Poline, and B.
Thirion, Improving accuracy and power with transfer learning using a
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Extract features at
different scales

from task A

Task A:
faces/scramble

Train on task A
Predict on task B

Extract features at
different scales

from task B

Train on task B
Predict on task B

Transfer learning Inline learning

Select scale at which 
classification scores are 
the same between  transfer
and inline learning

The resulting features
yield regions of interest
for the associated tasks

Task B:
house/scramble

Figure 4.2: Use of transfer learn-
ing to select the scale at which
its performance is similar to inline
learning. Resulting regions are un-
speci�c to the investigated tasks.

Extract features at
different scales

from task A

Classify task B
with task A features

Extract features at
different scales

from task B

Classify task B
with task B features

Selection transfer Inline learning

Select scale at which 
classification scores are 
the same with regions
from task A and B

The resulting features
yield regions of interest
for the associated tasks

Task A:
faces/scramble

Task B:
house/scramble

Figure 4.3: Use of selection trans-
fer to select the scale at which
its performance is similar to in-
line learning. Resulting regions are
more speci�c to the investigated
tasks.
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meta-analytic database, MICCAI, 2012, pages 1–8.

• Y. Schwartz, G. Varoquaux, and B. Thirion, On spatial selectivity and pre-
diction across conditions with fMRI, PRNI 2012 : 2nd International Work-
shop on Pattern Recognition in NeuroImaging, pages 53–56.
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4.1 Improving accuracy and power with transfer learn-
ing using a meta-analytic database

4.1.1 Introduction

Multi-subject or multi-condition experiments are the workhorse of bio-medical
imaging research, whether it be drug development or basic research. Imag-
ing provides a wealth of information on the biomedical problem at hand.
However the typical sample size is too small to fully exploit this informa-
tion. For this reason, investigators often turn to previous studies in order
to formulate hypotheses and restrict the search space, i.e. select a subset
of anatomical or functional structures of interest to the current study. A
typical case is that of early-stage clinical trials, for which the group size is
very small, but that are most often based on previous results concerning
the pathology under study. However, understanding the literature is in-
creasingly di�cult and requires a systematic approach, that takes the form
of a meta-analysis, pooling results from multiple experiments that address
a set of related research hypotheses [19].

In particular, brain imaging studies heavily rely on such meta-analyses
[22], as the brain is still an ill-understood and complex organ. In functional
Magnetic Resonance Imaging (fMRI) studies, typical group sizes range from
10 to 20 subjects, which is not always enough to warrant the reliability of
brain-wide analysis [20]. More importantly, the subjects spend a �nite time
in the scanner, which limits the conditions under which a particual cog-
nitive process is studied. For this reason, it is common practice to reduce
the study to a set of regions of interest (ROIs) extracted from the literature.
Investigators de�ne these ROIs by extracting locations of peak activations
from the literature [23], or from coordinate databases such as BrainMap
[10]. While most of these meta-analyses are conducted on activation coor-
dinates, the increase of data sharing opens the door to meta-analysis on full
brain images which results in higher statistical power [18]. Previous statis-
tical and modeling work on meta-analysis for fMRI has focused on better
modeling of the reference database [22].

In this work, we are interested in the generalization power of meta-
analyses on new data. We introduce a new meta-analysis method using
a reference database of images to guide statistical analysis of a new dataset.
In particular we rely on predictive models, useful to learn biomarkers, and
use them to select relevant voxels in order to increase the statistical power
of a new study.

4.1.2 Methods

Problem se�ing We start from a reference database made of l experi-
ments, each comprising nl contrasts acquired over multiple subjects. We
denote the brain images by X l ∈ Rnl,p with associated experimental con-
dition yl ∈ {0, 1}nl . Given a new experiment, denoted target, (X?,y?) ∈
(Rn?,p , {0, 1}n?

), we are interested in two problems: i) (biomarkers) can we
predict y? from X?? ii) (inference) can we test hypotheses on the links be-
tween y? and X?, for instance in a linear model? These are ill-posed prob-
lems from the statistics standpoint, as n? � p. The root of the problem is
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the dimensionality of the data: medical images are composed of many vox-
els, typically p ≈ 50 000 with fMRI. This large number of descriptors limits
statistical inference power due to multiple testing; a problem that appears
in predictive approaches as the curse of dimensionality. Here, we use our
reference database to better condition this statistical problem.

Transfer learning The gist of our approach is to learn on some exper-
iments of our database (X l ,yl ) discriminative models that contain predic-
tive information for the target experiment (X?,y?). In machine learning,
this problem is known as transfer learning [16]. The underlying assump-
tion of transfer learning is the same as that for meta-analysis: the reference
database should contain some common information with the target exper-
iment. Here we use a simple form of transfer learning: we train a linear
classi�er on an experiment in the database that is similar from the neuro-
scienti�c point of view to the new data, and use it to predict the labels of
the new data.

Selecting predictive features We use a sparse linear classi�er, speci�-
cally an `1-penalized logistic regression. The motivation behind this choice
of classi�er is that it produces a sparse set of weights that can be used to
select relevant voxels. In particular, under certain conditions, the classi�er
can recover with high probability the complete set of k features in X that
are predictive of y for a sample size of nmin = O

(
k logp

)
[1]. The logarith-

mic dependence in p is an appealing property in view of the dimensionality
of medical imaging datasets.

In practical situations, it can be hard to control the errors on this fea-
ture selection, in particular as it depends on the choice of the amount of `1
penalty. For this reason, Meinshausen and Bühlmann [11] introduce ran-
domized variants of sparse estimators, that can be seen as sampling the
posterior probability of selection and keeping only features that are selected
frequently. In particular, they establish non-asymptotic recovery results for
the randomized lasso, which consists in applying the Lasso on random sub-
samples of the data and rescaling of the regressors. Here, we adapt this
strategy to classi�cation as the logistic regression is locally equivalent to a
weighted least square and recovery results can carry from square-loss re-
gression to logistic regression [1].

We want to use transfer learning to perform screening of the voxels,
i.e. eliminate many voxels that are not related to our target experiment.
For this purpose, we need a low probability of rejecting relevant variables.
Each iteration of the sparse logistic regression in the randomized logistic
can select reliably only kmax ≈ n/ logp variables. In the worst case situa-
tion, we have k heavily-correlated variables and one of them is selected at
random by the sparse logistic regression at each iteration. For each of these
variables, the probability of selecting it less than s times duringm iterations
of the randomized logistic is given by the cumulative distribution function
of a binomial with per trial success ratio 1/k . If s ≤ m/k , by Hoe�ding’s
inequality, this probability goes to zero in o

(
expm

)
. In other words, if we

impose a threshold τ = s/m on the selection frequency, we can recover a
group of k correlated variables for τ ≤ 1/k .
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Brain parcellations Although randomization relaxes the conditions on
recovery, a remaining necessary condition is that the regressors of inter-
est, i.e. the values x i across the subjects of the k predictive voxels, must
be weakly correlated1. Because of the large amount of smoothness present 1 Speci�cally, the condition for re-

covery with randomized lasso it is
a lower bound on the condition-
ing of the sparse eigenvalues of the
design matrix [11, theorem 2] and
for sparse logistic regression the
corresponding condition is a lower
bound on the eigenvalues of the
regressors of interest’s covariance
matrix [1, theorem 4].

in medical images, in particular in group-level fMRI contrasts, these condi-
tions cannot be satis�ed. Indeed, values taken by a voxel are very similar to
values taken by its neighbors. In addition, the numbers of subjects used in
fMRI are often below the sample size required for good recovery. For these
reasons we resort to feature agglomeration: using hierarchical clustering
to merge neighboring voxels carrying similar information into parcels [12].
This strategy brings the double bene�t of reducing the problem size, and
thus the required sample size, and mitigating local correlation, at the ex-
pense of spatial resolution.

4.1.3 Experiments and Results

FRMI datasets

We use 3 studies for this meta-analysis. The �rst study (E1) [17] is com-
posed of 322 subjects and was designed to assess the inter-subject variabil-
ity in some language, calculation, and sensorimotor tasks. The second study
(E2) is similar to the �rst one in terms of stimuli, but its data was acquired
on 35 pairs of twin-subjects. The last study (E3) [15] characterizes brain
regions in charge of the syntactic and the semantic processing for the lan-
guage. It was performed with 40 subjects, 20 of which were stimulated by
pseudowords (jabberwocky stimuli) instead of actual meaningful sentences.
We used in particular E2 and E3, to learn regions for native versus non-
native language comprehension (French versus Korean in E2), and better
condition the French versus Jabberwocky experiments (E3). All the studies
were pre-processed and analyzed with the standard fMRI analysis software
SPM5. The data used for this work are the statistical images resulting from
the intra-subject analyses across the 3 studies. E1 has 34 contrasts images
available, E2 56, and E3 28. The raw images were not always acquired on
the same scanner. E1 has data from a 3T SIEMENS Trio and a 3T Brucker
scanner; E2 data were acquired on a 1.5T GE Signa; and E3 images come
from the same 3T SIEMENS Trio.

Experimental results for prediction

Here we are interested in the prediction problem: using transfer learning
to discriminate a pair of constrasts with an estimator trained on two other
contrasts.

We used 4 di�erent approaches to learn the discriminative models. The
�rst approach relies on the activation likelihood estimate (ALE) method
[9], as this is a commonly published method for coordinate-based meta-
analyses. We extract the activation positions from the contrasts maps, and
then apply a Gaussian kernel. We use the preferred FWHM of 10mm [21].
The other approaches directly use the contrast images. We name raw con-
trasts the method based on the contrasts voxels values; contrast-speci�c
parcels the method that uses parcels from the training set: andmeta-analystic
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parcels the method that learns parcels from the full database. We evaluate
on our base of contrasts the ability to do transfer learning, i.e to learn de-
cision rules that carry over from one situation to another. Since we must
make the assumption that the reference contrasts hold common information
with the contrasts of interest, we do not try out all the possible combina-
tions, but rather manually select pairs of contrasts from a single experiment
that form a meaningful classi�cation task (e.g., computation versus reading,
or Korean language versus French language). Out of all the possible combi-
nations, we select 35 pairs of classi�cation task, and subsequently combine
them into 18 transfer pairs, on which it is reasonable to think that the trans-
fer could occur (e.g., computation and reading in visual instructions, trans-
fer on computation and reading in auditory instructions). We �rst train a
linear classi�er within 6-fold cross validation test on a �rst set of pairs, set-
ting the penalization amount by nested cross-validation, we call this step
inline learning. We then re-use the discriminative model on a di�erent pair
of contrasts to perform the transfer learning. The 3 studies containing lan-
guage related tasks, we can transfer between pairs within an experiment,
and across experiments. Among the 18 selected transfer pairs, we �nd that
9 can give rise to such a transfer. Since a transfer is directed, we perform it
both ways, which yields once again 18 transfer pairs to test upon. The as-
sociated prediction scores from the di�erent methods are reported in Table
4.1. The general observation is that ALE yields a poorer prediction perfor-
mance than any other method. This is true both for the transfer and inline
predictions. We also �nd that brain parcellations scores similar to the raw
contrasts images, and closer to the inline predictions. We �nd that while the
contrast-speci�c parcels and meta-analytic parcels methods do not return
the same parcels, they produce very close results. We can thus use the full
database to learn a single reference parcellation to perform meta-analysis.

Names Peaks Contrasts Parcels Meta parcels
trans. in. trans. in. trans. in. trans. in.

E1, comp./sent. → E2, comp./sent. 0.75 0.85 0.88 0.97 0.83 0.96 0.83 0.96
E2, comp./sent. → E1, comp./sent. 0.66 0.83 0.88 0.96 0.85 0.95 0.85 0.96
E3, jabb./French (L)→ E3, jabb./French (S) 0.46 0.48 0.65 0.67 0.62 0.60 0.67 0.62
E3, jabb./French (S)→ E3, jabb./French (L) 0.52 0.71 0.67 0.85 0.71 0.85 0.65 0.79
E3, jabb./French (L)→ E2, Korean/French 0.65 0.46 0.73 0.79 0.65 0.81 0.76 0.85
E2, Korean/French→ E3, jabb./French (L) 0.73 0.81 0.79 0.85 0.75 0.81 0.75 0.75

Table 4.1: Prediction scores for in-
line and transfer learning. trans.=
transfer; in.= inline; comp.= com-
putation, sent.= sentences (read-
ing), jabb.= jabberwocky; S= sen-
tence with one word constituents,
L= one constituent long sentence.

Experimental results for inference

Here we are interested in the inference problem: using transfer learning to
help hypothesis testing on a target dataset. In the following, we only con-
sider a speci�c transfer, namely the last line in Table 4.1: we learn a model
discriminating French native speakers reading French or Korean, and apply
it on another experiment in which French subjects had to read French or
jabberwocky. This transfer is interesting as it involves two di�erent experi-
ments acquired on di�erent scanners, and cognitive paradigms that share a
similar expression, incomprehension of language stimuli. As can be seen in
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Figure 4.4: Prediction performance
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ter points represent the methods’
scores values within the cross-
validation.

Table 4.1, the prediction scores of transfer learning as well as inline learn-
ing on this pair are acceptable although not excellent: French language and
jabberwocky are di�cult to separate.
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Figure 4.5: Stability scores of the
randomized logistic on the Korean
versus French prediction of E2 for
the di�erent sets of features: the
colormap represents the frequency
at which a feature, parcel or voxel,
was selected. The maps are thresh-
olded at 1%.

Figure 4.5 gives the stability scores of the randomized logistic discrimi-
nating reading Korean from reading French for the di�erent set of features
–activation peaks, raw contrasts, parcels learned on the training contrasts
or on the full database. We can see that while learning at the voxel level
or at the parcel level gives similar prediction performance (Table 4.1), the
stability score maps are very di�erent. At the voxel-level, with 70 subjects
(p = 40 000, n = 70) the recovery is limited to approximately 7 voxels with-
out randomization: the recovery conditions are violated. As a result, the
randomized logistic selects only the most predictive voxels. On the parcels,
contrast-speci�c or meta-analytic (i.e., learned on the full database), the
selection frequency highlights regions of the brain that are known to be
relevant for language comprehension, including the left anterior superior
temporal sulcus and the part of the temporal parietal junction (Wernicke’s
area).

We threshold the stability selection scores of the �rst experiment (Ko-
rean vs French) to select candidate voxels for the target experiment (jab-
berwocky vs French). As we want to perform a rough screening and would
rather err on the side of false detections than false rejections, we take a very
low threshold τ = .01. Following our analysis above, the size of the largest
group of correlated features that we can detect with such a threshold is on
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the order of 1/τ ≈ 100. With 2000 parcels, this number corresponds to 5%
of the brain, i.e. 8 000 voxels, and we can safely consider that no fMRI con-
trasts is composed of groups of heavily correlated features larger than this
fraction.

FWER corrected FDR corrected
n? All voxels Selection ANOVA All voxels Selection ANOVA
10 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
20 0 (0%) 3 (0.02%) 0 (0%) 0 (0%) 4 (0.027%) 0 (0%)
40 5 (0.0084%) 33 (0.22%) 2 (0.0014%) 143 (0.97%) 1339 (9%) 201 (1.4%)

Table 4.2: Number of detections at
p < 0.05 for di�erence cohort size,
for transfer learning and ANOVA.
The percentage of detection is in-
dicated in parenthesis.

On the target experiment, we perform a standard group-level analysis
with the voxels selected, testing for the di�erence between the two condi-
tions, jabberwocky or French reading. We report results with p-values cor-
rected for multiple comparisons at a given family-wise error rate (FWER)
using Bonferroni correction, and for a given false discovery rate (FDR) using
the Benjamini-Hochberg procedure. On table 4.2, we compare the number
of detections and the detection rate, i.e. the fraction of voxels detected as
signi�cantly di�erent, for a full brain analysis and for an analysis limited to
the voxel selection. We compare our voxel selection method to a one-way
ANOVA, and �nd that transfer learning outperforms the ANOVA for all
the cohort sizes. Figure 4.6 shows the Q-Q plots on which the Benjamini-
Hochberg procedure is applied. We �nd that voxel selection by transfer
learning improves both the absolute number of detections and the detec-
tion rate for FWER and FDR correction.
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4.1.4 Conclusion

In this approach, we propose to improve the conditioning and power of
statistical analyses in imaging studies, using a large meta-analytic database.

In a transfer learning scheme, we train on the database sparse discrim-
inative models that are suited to the target experiment. Not only can the
predictive power of these models be useful to establish biomarkers, but also
they perform feature selection that can increase the statistical power of a
standard group analysis on new experiments, provided enough predictive
features (voxels) can be recovered. Using brain parcellations, the discrimi-
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native model �lters out parcels unlikely to be relevant in the target experi-
ment, thus de�ning automatically ROIs.

Using a set of 3 fMRI studies related to language, we con�rm experimen-
tally that our transfer learning scheme is able to: i) perform accurate pre-
dictions on experiments acquired on a di�erent scanner and with varying
paradigm, ii) outperform the standard meta-analysis procedures based on
activation peaks, iii) increase the statistical power in the target experiment
by using the ROIs de�ned by the discriminative model.

In this work we manually select the contrast pairs since it is delicate to
interpret a transfer learning score without good knowledge of the cognitive
or clinical conditions under study. The weakness of this approach lies in the
arbitrary threshold we use on the classi�ers’ predictive features to de�ne
the regions of interest. The next section describes an approach that aims to
solve this problem.

4.2 On spatial selectivity and prediction across condi-
tions with fMRI

4.2.1 Introduction

Functional neuroimaging data are currently routinely used to better under-
stand cognitive processes. They rely heavily on previous �ndings to formu-
late hypotheses and narrow the search space to regions of interest (ROIs),
most often reported as coordinates of activation peaks [23], or from coor-
dinate databases such as BrainMap [10]. However, understanding the lit-
erature is increasingly di�cult, so that there is a need for more systematic
methods, which use the images themselves to characterize the functional
speci�city of brain regions [19]. Transfer learning is a method that trains
a classi�er to learn a discriminant model on a source task, and then gen-
eralizes on a target task without further training. It can yield insights on
some brain mechanisms if the tasks share speci�c common e�ects in some
brain regions [7]. The goal of this work is to investigate the power of trans-
fer learning procedures applied to pairs of cognitive contrasts, where the
discrimination ability of the classi�er quanti�es the information shared be-
tween brain maps, and thus characterizes at which spatial scale functional
contrasts can be jointly classi�ed. We show that in many cases, transfer
learning gives poor results in terms of spatial selectivity. To address this
limitation, we introduce selection transfer, i.e. classi�cation of brain states
on the target task following the canonical procedure [13], but using regions
de�ned on the source task.

4.2.2 Methods

Problem se�ing We start from a database holding several studies, each
of them containing di�erent functional contrast images, acquired over mul-
tiple subjects. We consider two sets of tasks, the source tasks and the tar-
get tasks, each composed of pairs of contrast images. Given n contrasts
pairs of k voxel each, we call X ∈ Rn,k the images of the source tasks, and
y ∈ {0, 1}n the label denoting the functional contrast under study. The tar-
get images and labels are de�ned likewise: X? ∈ Rn,k and y? ∈ {0, 1}n .
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The source and the target share a similar functional spatial pattern, and we
are interested in �nding the common ROIs, as well as the di�erences, using
a machine learning approach. Note that a common pitfall in neuroimaging
classi�cation-based data processing is a successful prediction cannot guar-
antee that the information used by the classi�er is speci�c to the cognitive
process of interest.

Regions selection Feature selection is an important step of brain activ-
ity decoding procedures. Full brain decoding approaches are e�cient but
require a careful methodology to recover the contribution of di�erent brain
regions in the classi�cation. To test the involvement of a particular brain
region, researchers typically use ROIs from an atlas, or derived from the
literature. Another option is to use methods such as the searchlight al-
gorithm, in order to evaluate and extract spatially relevant voxels across
the whole brain [8]. We choose to use a one-way ANOVA procedure [3],
that yields a selection based on the functional activations elicited by a task,
rather than using purely spatial information. We consider di�erent fractions
of the brain voxels that are most correlated to the functional contrast and
perform the learning procedure on these voxels. We vary the percentiles
of selected voxels with a cubic scale, from roughly 150 voxels to the full
brain. This way we can control the spatial speci�city against the prediction
performance, and attempt to �nd an optimal set of regions.

Transfer learning This consists in learning discriminative models on a
source functional task (X ,y) in order to capture information that should be
predictive for a target task (X?,y?). The general assumption is that if a
transfer occurs, the two experiments share at least some common cognitive
circuity. Here, we train a linear classi�er on the source task, and we predict
the labels of the target without any additional training. The features are
selected with a one-way ANOVA on the source task, which makes it possible
to compare region-based transfer learning with full brain transfer learning.

Selection transfer This consists in building a predictive model for the
target task based on information extracted from the source task. However,
here the transfer occurs on feature selection: we perform the ANOVA pro-
cedure on (X ,y) to select the most relevant voxels, then we train a linear
classi�er on (X?,y?), and predict on the same task with the voxels selected
from the source. Consequently, the transfer is not a generalization of a clas-
si�er as in transfer learning, but rather an evaluation of the signi�cance of
features from a task to another. We use the same linear classi�er as the one
used for transfer learning.

4.2.3 Experiments and Results

FRMI dataset

We use data from two fMRI studies for this work. The �rst one [17] is com-
posed of 322 subjects and was designed to assess the inter-subject variability
in some language, visual, calculation, and sensorimotor tasks. The second
study is similar to the �rst one in terms of stimuli, but the data were acquired
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on 35 pairs of twin subjects. The two studies were pre-processed and an-
alyzed with the standard fMRI analysis software SPM5. The data used for
this work are a subset of the 90 di�erent statistical images resulting from
the intra-subject analyses. The raw images were acquired on a 3T SIEMENS
Trio and a 3T Brucker scanner for the �rst study, and on a 1.5T GE Signa
for the second one. Table 4.3 presents the list of contrasts pairs used for this
analysis.

Contrasts Names Selected Scale Area under p-curve Description
trans. sel. trans. sel.

house/scramble→ face/scramble 68.11 3.25 22.73 4.51 house/scramble = house vs scrambled image
face/scramble→ house/scramble 0.40 2.67 16.22 2.71 face/scramble = face vs scrambled image
word/scramble→ face/scramble 23.77 4.63 10.36 2.88 word/scramble = word vs scrambled image
face/scramble→ word/scramble 1.36 0.79 11.15 2.29 face/scramble = face vs scrambled image
French/sound→ Korean/sound 0.40 0.02 3.57 4.61 French/sound = French listening vs sound
Korean/sound→ French/sound 0.27 0.00 14.59 1.21 Korean/sound = Korean listening vs sound
V comp./sent. → A comp./sent. 11.01 0.00 2.62 1.76 V comp./sent. = computation vs reading
A comp./sent. → V comp./sent. 0.01 6.36 4.75 3.10 A comp./sent. = computation vs listening
V motor/sent. → A motor/sent. 0.10 0.00 11.84 1.85 V motor/sent. = button press vs reading
A motor/sent. → V motor/sent. 7.37 0.00 4.45 2.11 A motor/sent. = button press vs listening

Table 4.3: Source and target tasks:
Selected scales and area un-
der the p-values curve for both
transfer learning and selection
transfer. trans.= transfer learning;
sel.= selection transfer; V= visual
stimuli; A= auditory stimuli.

Experimental results for transfer learning

We are interested in transfer learning: we learn a discriminative model on
the source task with a univariate feature selection, and predict the labels on
the target task.

The analysis presents two phases: we �rst train a linear classi�er on a
source task, and then re-use the discriminative model on the target task to
perform the transfer learning; this is repeated on 6 di�erent sub-samples
of the source task to estimate the uncertainty on transfer accuracy. We
use two kinds of linear classi�ers: a SVC (Support Vector Classi�er) and a
Logistic Regression with `2 penalization. The penalization is set by nested
6-fold cross-validation for each classi�er. We �nd that the two methods
yield very close results, and thus report only results using the SVC classi�er.
We also train and then test the classi�er on the target task and call this
procedure inline learning. In Figure 4.7, we show the performance τ tp of
transfer learning, relative to inline learning τ ip , varying the percentile p of
features selected in a cubic scale. In general, for any given p, τ ip can remain
signi�cantly higher than τ tp . For this reason, we use a heuristic to select
the scale parameter (see also Figure 4.7): the scale that yields the minimal
τ ip − τ

t
p di�erence. We consider that at this scale, the maps associated with

the two tasks share a maximal amount of common information.
However, the voxels selected with this method are either too few to give

an accurate prediction, or too many to yield identi�able regions. The trans-
fers do not behave the same way on both directions: in general, one di-
rection is more sensitive but less speci�c, and the other direction shows
the opposite behaviour. This comes from tasks-related foci being more spa-
tially focused for some contrasts. Because of this lack of speci�city, we do
not �nd contained regions that overlap with the Fusiform Face Area (FFA)
[6], the Parahippocampal Place Area (PPA) [5] or the Visual Word Form
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Area (VWFA) [2], regions respectively involved in face recognition, object
visual processing, and reading.
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Figure 4.7: Example of results us-
ing the Transfer learning ap-
proach, in four di�erent transfer
settings: we can see that the area
between the inner transfer predic-
tion accuracy curves are large, and
that the prediction rates do not
converge. The optimal scale, de-
�ned as the minimum of the dif-
ference between the curves, of-
ten corresponds to a rather broad,
non-speci�c brain map.

Experimental results for selection transfer

We are interested in selection transfer : we do not perform transfer learning,
instead, we use the univariate feature selection performed on the source
task, to learn a discriminative model and predict the labels in the target
task.

We use the same machine learning tools as the transfer learning: we
train and test a linear classi�er with a 6-fold cross validation test on the
target task. For this method the SVC and the Logistic Regression with `2
penalization also give very close results. As with transfer learning, we also
perform an inline learning on the target task, with features selected on the
same images.

On Figure 4.8, we show the performance τ sp of selection transfer against
inline learning τ ip , and how the performance varies with the percentile p

of the brain recruited for the learning process. In comparison to transfer
learning, two things happen: i) the selection transfer is more symmetric, ii)
τ ip is not signi�cantly higher than τ sp for every p. We can therefore use a
t-test to de�ne the selected scale (Figure 4.8) as the �rst one with non signif-
icant di�erence between the curves. This enables us to control the amount
of information to include in the prediction problem, and have both a good
performance and an improved speci�city of the regions selected for the two
tasks. In practical terms, the selected scale makes it possible to identify the
smallest fraction of the brain that yields overlapping regions in the two
tasks, and consequently an accurate prediction. Although the selected re-
gions have no guarantee of optimality, they are speci�c enough to overlap
with the FFA, the PPA and the VWFA. We can also use the area under the
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p-values curve from the t-test as a measure of similarity between the tasks.
While it is not possible to interpret this measure absolutely, we can use it
to compare one task versus others. For the example on Figure 4.8, we can
see that the area between face and word is smaller than between face and
house. This indicates that the face task is closer to the word task than the
house task, which is consistent with previous �ndings [4].

Limitations Selection transfer captures voxels that generalize well in terms
of prediction from one task to another. However, a classi�er may require
very few voxels to perform well, in which case this method misses some re-
gions involved in the cognitive process of interest. This e�ect is represented
by the values in Table 4.3, where selection transfer requires only a small p
fraction of the brain to obtain a τ sp , which is not signi�cantly lower than τ ip
(e.g., V comp./sent → A motor/sent.). In order to retrieve optimal regions
when this is the case, a standard analysis, based either on contrast addition
or conjunction [14], would be sensitive enough to detect the common active
regions for both tasks.

1 10 60 100
0.5

0.6

0.7

0.8

0.9

1.0

P
re

d
ic

ti
o
n
 s

co
re

Area under p-values: 2.71
Selected scale: 2.67%

face->house

1 10 60 100
0.5

0.6

0.7

0.8

0.9

1.0

Area under p-values: 4.51
Selected scale: 3.25%

house->face

L R

y=-53 x=-34

L R

z=-17

Selection contrast

Source: face

Target: house

face->house

L R

y=-53 x=-34

L R

z=-17

Selection contrast

Source: house

Target: face

house->face

1 10 60 100
0.5

0.6

0.7

0.8

0.9

1.0

P
re

d
ic

ti
o
n
 s

co
re

Area under p-values: 2.29
Selected scale: 0.79%

face->word

1 10 60 100
0.5

0.6

0.7

0.8

0.9

1.0

Area under p-values: 2.88
Selected scale: 4.63%

word->face

L R

y=-53 x=-34

Areas

FFA

VWFA

PPA

L R

z=-17

Selection contrast

Source: face

Target: word

face->word

L R

y=-53 x=-34

L R

z=-17

Selection contrast

Source: word

Target: face

word->face

Figure 4.8: Example of result using
the Selection transfer approach:
The two prediction curves do con-
verge, so that the di�erence be-
comes non-signi�cant as soon as
a relatively small fraction of the
voxels are included: the spatial
scale is de�ned here as the point
where the curves can no longer
be distinguished. It corresponds
to more symmetric and meaning-
ful brain maps than those obtained
with transfer learning.

4.2.4 Conclusion

In this contribution, we investigate the ability of transfer learning and selec-
tion transfer to characterize the spatial scale at which functional contrasts
can be jointly classi�ed. The objective is to �nd a systematic procedure to
extract ROIs that de�ne common information between two functional tasks,
instead of relying on activation coordinates from the literature. We show
that transfer learning does not provide control of the regions’ size it uses to
classify the tasks. Instead we use a selection transfer procedure that seems
to better characterize which fraction of the brain yields discriminant infor-
mation. Our results suggest that transfer learning requires to be used in a
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carefully designed study, as it is di�cult to control the spatial selectivity
of this method. Another interesting result is that selection transfer is not
symmetric (i.e., source and target tasks are not inversible), as opposed to
contrast conjunction.

4.3 Conlusion

The methods presented in this chapter aim to use pairs of tasks to de�ne
common regions of interest. The �rst contribution examines the ability of
one task to better condition testing for a second similar task. The second
contribution both automates the threshold setting from the �rst method,
and proposes a multivariate alternative to conjunction, which remains a
valid way to leverage multiple tasks for inference. In hindsight, it would
have been more straightforward to estimate a null-hypothesis by permu-
tation testing, and de�ne regions by assessing statistical signi�cance. It
would however be computationally expensive, and would not address the
main limitation of these contributions, which is their ability to scale: we do
not have any means to automate the selection of task pairs to compare, as
a classi�cation score alone is not a good metric to assess task similarity.
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5 Learning functional networks

This chapter takes a step back from multi-study analyses. Experiments
from the previous chapter indicate that classi�er generalization is a use-
ful method to compare functional tasks in a controlled setting, but it does
not provide a way to scale and therefore bene�t from data accumulation.
We previously focused on regions of interest but more modern approaches
view the brain functioning within a set of distributed networks [23]. Such
functional networks have been successfully exposed in resting state fMRI
[17, 2], as well as task fMRI data [3, 11]. These works primarily rely on unsu-
pervised decomposition methods such as Independent component analysis
(ICA) or Principal Component Analysis (PCA), that brought the resting state
networks to light [5]. The main pitfall remains the labeling of the func-
tional networks, that is done manually by associating brain maps with
known brain functions.

The contribution described in this chapter proposes an alternative way
to expose functional networks on task fMRI, and associates them with what
we call functional pro�les. We rely on another unsupervised approach,
that learns jointly a dictionary of functional pro�les and a set of spatial
maps [10]. fMRI studies outline mental processes by combining experi-
mental conditions. The functional pro�les re�ect the response magnitude
of the experimental conditions for each network, and permit to de�ne a
functional signature. In particular, this contribution investigates three dic-
tionary learning approaches, that encode respectively spatial matching be-
tween subjects, functional matching, and random e�ect modeling of the
intra and inter-subject variance.

The contribution developed in this chapter have been published in:

• G. Varoquaux, Y. Schwartz, P. Pinel, and B. Thirion, Cohort-level brain
mapping: learning cognitive atoms to single out specialized regions, IPMI,
2012, pages 438–449.
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5.1 Introduction

Using fMRI, the systematic study of which areas of the brain are recruited
during various experiments has led to accumulation of activation maps re-
lated to speci�c tasks or cognitive concepts in an ever growing literature.
Mapping a given population requires careful crafting of a set of tasks that
are contrasted to reveal networks. These networks form a natural represen-
tation of brain function and are of particular interest to study its variability
in a population, for instance to correlate it to pathologies or genetic infor-
mation. However, each subject can only perform a small number of tasks in
a scanner; particularly so for disabled subjects. As a result, in a given study
the number of networks that are identi�ed by standard task-activation map-
ping is small and limited by the number of contrasts of the study. On the
other hand, it is not uncommon to scan a large number of subjects. Indeed,
clinical studies must often resort to larger sample sizes due to the intrinsic
variability of pathologies. Massive cohorts can be acquired, e.g. to learn di-
agnosis markers for Alzheimer’s disease [13], or in neuroimaging-genetics.

In large cohorts, a small set of contrasts reveals e�ects throughout the
whole brain [20]. This observation suggests that more information can be
extracted at the cohort level. In this paper, we address precisely this chal-
lenge by decomposing brain activity at the group level to assign a speci�c
cognitive function to each voxel. For this purpose, inter-subject variability
is a blessing as functional variability reveals functional degeneracy, i.e. that
di�erent networks sustain the same cognitive function across individuals
[12]. However, this variability is also a curse when it arises from spatial
realignment error.

Compressed spatial representations were put forward for group studies
by Thirion et al. [19] using clustering of the activation maps. This early
work did not address the functional speci�city of the clusters. Conversely,
Lashkari et al. [9] discard spatial information and focus on extracting com-
mon functional pro�les across subjects, removing the need for spatial nor-
malization. Following this idea of functional correspondence across sub-
jects, although not leading to the de�nition of regions, Sabuncu et al. [15]
use this correspondence for inter-subject alignment. Linear models such as
independent component analysis (ICA) have been used to extract modes of
brain function across subjects [3] before clustering approaches. Laird et al.
[8] have recently shown that the modes that it extracts from task-activation
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data capture meaningful structure in the space of cognitive processes. Be-
yond ICA, Varoquaux et al. [22] use dictionary learning to segment a func-
tional parcellation from resting-state. Very interesting preliminary work by
Chen et al. [4] integrates spatial normalization with dictionary learning to
estimate jointly an inter-subject warping and functional regions.

This chapter combines ideas from this prior art in a new inter-subject
model with an associated computationally-scalable estimation algorithm.
Our contributions are i) a joint model of the position and functional tuning
of brain networks, ii) explicit separation of the variance into intra-subject
and inter-subject components, iii) a fast and scalable algorithm that can im-
pose this particular variance structure. We show with simple simulations
that controlling inter-subject variance is crucial, as unsupervised learning
approaches such as dictionary learning or clustering will �t this variance
and extract modes re�ecting inter-subject variability. The paper is orga-
nized as followed. We start by giving a multi-subject model combining ran-
dom e�ects (RFX) with functional segregation hypothesis. In section 5.3,
we introduce an on-line and computationally-e�cient algorithm to estimate
this model. In section 5.4, we present a simulation study, and in section 5.5
results on an fMRI dataset comprising 150 subjects.

5.2 A multi-subject sparse-coding model of brain response

Sparse coding brain response Our model is based on two basic neu-
roscience principles: i) functional segregation which states that brain ter-
ritories are formed of elementary, functionally-speci�c units [21] and ii)
functional degeneracy which states that a particular function may recruit
di�erent networks across subjects [12]. We combine these principles at the
subject and group level to learn the correct basis to describe the macroscopic
level of brain organization.

Experimental stimuli and contrasts do not correspond simply to elemen-
tary cognitive processes. For instance to isolate brain regions involved in
a calculation tasks, instructions to perform arithmetics will be given to a
subject, however these instructions are given via a modality: auditory or
visual, and will induce a word-comprehension task in addition to the calcu-
lation. Investigators use contrast maps to cancel out secondary e�ects and
focus on word – calculations, but these contrasts can carry also some audi-
tory, visual, or language e�ects as the stimuli content in the di�erent tasks
are not perfectly matched.

A typical fMRI experiment thus yields a set of task-speci�c contrast maps:
for each subject s , X s ∈ Rt×n , where t is the number of tasks and n the
number of voxels. Based on the principles of functional specialization, we
stipulate that the tasks used are formed of elementary cognitive processes
associated with a set of corresponding sparse neural substrates: there exist
combinations of tasks D = {d j } such that each d j is expressed on a small
number of brain regions:

X s = DAs T, where As is sparse. (5.1)

We are interested in learning a dictionary of k functional pro�les D ∈ Rt×k

and the associated sparse spatial code As ∈ Rn×k , that we call functional



86

networks. The number of atomic cognitive functions recruited by the tasks
explored in an fMRI experiment is most likely much larger than the num-
ber of experimental conditions t . Drawing from a large number of subjects
can help to estimate more functional pro�les, as subjects will resort to dif-
ferent cognitive strategies, engaging di�erently atomic cognitive functions.
To give a clichéd image, right-handed and left-handed subjects could rely
on di�erent visuo-spatial representations to perform a hand motion task.
In practice, variability in cognitive strategy is often very subtle and can be
related to variability in attention, engagement to the task, background pro-
cesses, rather than high-level strategies [12]. Modeling this inter-subject
variability should improve the quanti�cation of population-level estimates
and enable the separation of atoms of brain function.

Multi-subject modeling We introduce subject-speci�c expressions of
the functional pro�les:

F s = (I +∆s )D, where ∆s ∼ N (0,σ 2I t ), ∆s ∈ Rt×t , F s ∈ Rt×k

(5.2)
An approach commonly used when dealing with such unsupervised learn-
ing problem on multi-subject fMRI data is to concatenate the data spatially
[3, 19], learning an augmented dictionary,

F = [F 1T. . . F s T]T = [(I +∆1)T, . . . (I +∆s )T]TD ∈ Rst×k . (5.3)

The multi-subject model resulting from (5.1) and (5.2) can then be written as
a standard dictionary-learning problem: X = FAT, withX ∈ Rst×n the spa-
tial concatenation of the data andA functional networks independent of the
subject. By learning a dictionary spanning multiple datasets, it can estimate
inter-subject loadings that reveal the di�erent cognitive strategies, drawing
from the spatial correspondence of the coding of the information. However,
estimating high-dimensional dictionaries has two major drawbacks: i) it is
more challenging from the statistical standpoint because the residuals im-
plicit in eq. 5.3 are non white and ii) this approach is fragile to errors in
inter-subject correspondence.

To remove the need for spatial matching, Lashkari et al. [9] cluster the
activity pro�les, grouping voxels that respond similarly to the tasks across
subjects. This functional correspondence hypothesis leads to a functional
concatenation of the data: X = [X 1, . . .X s T]T ∈ Rt×sn . The multi-subject
model is then written X = DAT with A = [(Ik +∆

1)A1, . . . (Ik +∆s )As T]T ∈

Rk×sn , which amounts to learning a dictionary common to all subjects and
di�erent spatial maps.

Modeling Random e�ects Both spatial and functional concatenation
approaches lead to a simple formulation in terms of learning a dictionary
of functional pro�les and spatial code. However a naive resolution of these
dictionary learning problems neglects that both spatial code and functional
pro�les share information across subjects. In functional neuroimaging data
analysis, the standard way to model both common e�ects and variability
across datasets relies on hierarchical linear models, often mixed- or random-
e�ects (RFX) models that assume that the e�ect has two components of
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variance: inter-subject and intra-subject [24]. We can adapt this model to
enhance the spatial correspondence approach by constraining the ratio of
the intra- and inter-subject variance of the functional pro�les in the aug-
mented dictionary F . For this purpose, we introduce a common e�ect matrix
made of s k × k identity matrices concatenated: C = 1

s [Ik ,. . . Ik ]T ∈ Rk×sk

and the di�erential e�ects matrix C⊥ ∈ R(s−1)k×sk , which is an orthogonal
completion ofC . To impose an RFX structure on the dictionary, we present
in section 5.3 an algorithm controlling ‖ fiC ‖22 /‖ fiC⊥‖

2
2 , where i ∈ [1, t ] is

the index of a dictionary element.

Proposition 1. C andC⊥ isolate i) group-level pro�les: E[fiC] = di ,
ii) intra-subject variance: E[‖ fiC ‖

2
2 ] =

(
1 + σ 2

s

)
‖di ‖22 ≈ ‖di ‖

2
2 ,

iii) inter-subject variance: E[‖ fiC⊥‖
2
2 ] =

(
σ 2 − σ 2

s

)
‖di ‖22 ≈ σ 2‖di ‖22 .

The �rst and the second equalities stem from Eq. (5.3), while the last one
follows from the fact that ‖ f j ‖22 = ‖ f jC ‖22 + ‖ f jC⊥‖22 , as [CT,CT

⊥] forms an
ortho normal basis of Rsk .

5.3 E�icient learning of RFX-structured dictionaries

State-of-the-art dictionary learning algorithm A general approach to
learn dictionaries for sparse coding is to optimize the dictionary so that is
leads to a sparse regression on train data, using an `1 penalty on the code
[10]:

D̂ = argmin
A,D , D ∈C

‖X −DAT‖22 − λ‖A‖1, (5.4)

where X ,D,A should be replaced by X , F ,A or X ,D,A depending on the
choice of correspondence. Note that the dictionary D is constrained to a
convex set C, typically by bounding the `2 norm of its atoms: ‖di ‖2 ≤ 1.
This constraint is technical, as without it the penalty on A could be made
arbitrarily small by scaling up D and down A and thus keeping the data-�t
term constant. Let us rewrite the optimization problem:

D̂ = argmin
D , D ∈C

∑
v

min
av

(
xv −Da

T
v


2
2
+ λ‖av ‖1

)
. (5.5)

This new expression highlights that, when learning the dictionary, the ob-
jective function is the sum over a large number of di�erent realizations of
the same problem, here sparse coding a simple voxel activation pro�le xv .
The optimization problem can thus be tackled using stochastic gradient de-
scent with on-line or mini-batch strategies [10]: small numbers of voxels
randomly drawn from the data are successively considered and a corre-
sponding sparse code av is learned by solving a Lasso-type problem. The
dictionary can then be updated to minimize the data-�t error given the code.
The algorithm iterates over small batches of voxels (hundreds) to incremen-
tally improve the dictionary. When the number of voxels is large, such an
approach can be orders of magnitude faster than the alternate optimization
strategies used by [22, 4], because these require solving brain-wide sparse
regression for each update of the dictionary.

Szabo et al. [18] extend this approach to structured dictionaries by re-
placing the `1 norm on αv with a structure-inducing norm, such as the `21
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norm used in the group lasso. However, the corresponding algorithms to
learn the sparse code av are much more costly as they rely in general on
optimizing augmented problems over auxiliary variables [18]. On the op-
posite, e�cient algorithms to solve the `1 problem bene�t from the sparsity
of the solution and can be much less costly than a least-square estimate for
very sparse problems [6].

Imposing RFX-structured dictionaries We introduce a simple modi-
�cation to the on-line algorithm [10] to impose an RFX structure on the
dictionary. Our approach is based on spatial correspondence to learn an
augmented dictionary F and sets di�erent intra and inter-subject variance
using proposition 1: controlling the ratio of the norm of FC and FC⊥. For
this purpose, we use a careful choice of constraint set C on the dictionary;
namely, we impose on each atom

Ω( fi ) ≤ 1, with Ω( fi ) = max(‖ fiC ‖22 , µ‖ fiC⊥‖22 ), (5.6)

where µ controls the ratio of intra to inter subject variance. Because of the
penalty on A, it is highly likely that the constraint will be saturated. This
constraint is an `∞ norm, which tends to enforce equality when saturated1: 1 Indeed, combined with an `2 loss,

an `∞ constraint tends to saturate
at its kinks, enforcing equality be-
tween variables as an `1 constraint
enforces sparsity.

‖ fiC‖
2
2 = µ‖ fiC⊥‖

2
2 .

In the on-line dictionary learning algorithm, this constraint is enforced
by an Euclidean projection (see algorithm 2 of [10]): at each iteration

dn+1 ← argmin
d

‖dn −d ‖
2
2 subject to Ω(d ) ≤ 1. (5.7)

The max operator in Ω imposes that ‖ fiC ‖22 ≤ 1 and ‖ fiC⊥‖22 ≤
1
µ . As C

and C⊥ span orthogonal subspaces, the Euclidean distance decomposes in
two independent optimization problems on those subspaces: the projection
on a ball of radius 1 (resp. 1

µ ), cn+1 ← cn/‖cn ‖2, where c is the restriction
of d to the subspace spanned byC (resp.C⊥). In practice, to implement this
projection, we apply the dictionary-update algorithm after rotating the dic-
tionary and the code to express them in the basis of Rsk formed by [CT,CT

⊥],
and for the sparse-coding step, we rotate back the dictionary to the ba-
sis that leads to sparse codes. With this strategy, the Euclidean projection
Eq. (5.7) has the same computational cost with norm Ω than with the stan-
dard `2 norm proposed in [10]. As the computational cost of the dictionary
update step is already quadratic in the length of the atoms, this strategy to
impose an RFX structure on the dictionary does not change the overall al-
gorithmic complexity of dictionary learning, neither asymptotically nor for
small dictionaries.

Parameter choice and initialization Our algorithm has two parame-
ters: λ, that controls the sparsity of the spatial maps, and µ that controls
the ratio of intra-subject to inter-subject variance. We set that ratio to 10.
Typically in fMRI study, inter-subject variance is 4 to 9 times larger than
intra-subject variance [24], thus we are over-penalizing. However, in statis-
tics, over-penalization is considered as preferable to under-penalization, as
the former leads to bias, here to a common e�ect, while the later can eas-
ily lead to an explosion of variance. With regards to λ, the natural scaling
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factor is λ ∝ 1√
p ε where p is the size of the atoms, and ε2 the variance of

the residuals [1]. We assume that ε2 ∝ stdX and use the simple choice
λ ∝ 1√

p stdX . Similar scalings are suggested in [10]. They lead to having
a number of non-zero constant on average in the code A. In other words,
each voxel is coded on the same number of maps, independently of the size
of the problem (number of maps extracted, number of contrasts).

The dictionary learning problem is not convex. The starting point is im-
portant because a good choice can signi�cantly speed up the convergence,
and also determine the �nal results. We use spatially-constrained cluster-
ing on spatially-concatenated data [19] to learn an initial parcellation and
associated dictionary.

5.4 Results on simulated data

Synthetic data generation We generate a simple and well-understood
synthetic dataset to illustrate how the di�erent approaches work, as well
as the impact of spatial variability. We study the scenario in which two
observed contrasts are generated from three functional networks, each one
of them made of a single blob (Fig. 5.1, top left). Group-level loadings are
generated from a uniform [0, 1] distribution, and for each subject one cogni-
tive strategy out of two, corresponding to a variation in 20% of the weights,
is a�ected randomly. Finally, Gaussian-distributed noise is added with a
variance of 0.1. We generate images of size 50 × 50 for 32 subjects. Option-
ally, we add spatial variability across subjects with Gaussian noise of 3 pixel
standard deviation on the positions of the blobs.

Only functional variability Functional and spatial variability

Ground
truth

Networks

S1 S2 S3 S4 S5 S6 S7

Profiles

Ground
truth

Networks

S1 S2 S3 S4 S5 S6 S7

Profiles

Functional
corresp.

Functional
corresp.

Spatial
corresp.

Spatial
corresp.

RFX
structure

RFX
structure

Figure 5.1: Simulations: functional
networks and subject-level pro�les
as estimated by di�erent dictio-
nary learning strategies – right
column: with only functional vari-
ability – left column: with spatial
variability. On the ground-truth
pro�le plot the second cognitive
strategy can be seen from the red
loadings in the second and sixth
subjects.

Results Without spatial variability, spatial correspondence and RFX struc-
ture are very successful at singling out the blobs, however the functional
correspondence strategy is less so (see Fig. 5.1). This is not surprising, as in
the functional correspondence case, the dictionary learning task amounts
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to separating out 3 vectors (functional pro�les) in a 2-dimensional space,
which corresponds to an under-determined source separation problem. The
under-determined problem is much harder than the over-determined prob-
lem, as in the spatial correspondence approach. Indeed, learning an aug-
mented dictionary across subjects can bene�t from inter-subject functional
variability to tease out networks. However, in the presence of spatial vari-
ability, the simple spatial correspondence �ts this variability and the esti-
mated maps exhibit adjustment modes, combining di�erent networks with
negative regions that correspond to network spatial derivatives. Indeed, the
loadings show little consistency across subjects, as the learned spatial maps
are combined to compensate for spatial �uctuations. The RFX structure pre-
vents such a combination to happen via a shrinkage to common factors. As
a result the spatial maps are more faithful to the true networks. Note that
the inter-subject pro�les are overly shrunk. This an expected consequence
of strong regularization: suppressing the variance comes to the cost of a
bias. However this bias is not detrimental to the mean pro�le or the spatial
maps.

5.5 Learning a cognitive brain atlas from fMRI

Functional localizer dataset We use a functional localizer that targets
a wide spectrum of cognitive processes, namely visual, auditory and senso-
rimotor processes, as well as reading, language comprehension and mental
calculation. This protocol [14] lasts only 5 minutes, in order to be performed
routinely on top of other protocols. We use 151 subjects that were acquired
on the same 3T SIEMENS Trio scanner. 6 contrast maps best represent the
brain activity for the cognitive processes recruited in this protocol. The
contrast maps are both a combination of several conditions (e.g., sentence
reading, calculation), and a di�erence of those conditions (e.g., right click
versus left click) to draw out the e�ect of interest. For instance, the map
“words - calculation” aims to isolate the e�ect of calculation by canceling
out the modality of the stimulus (auditory or visual), and the residual e�ect
of the comprehension of the stimulus (reading or listening). The e�ect of
words is then encoded by negative loadings.

Networks and profiles extracted Fig. 5.2 shows some functional net-
works and pro�les extracted using k = 50. The pro�les are represented
by their loadings on the contrasts of the original experiment, that oppose
one type of brain function to another. Some networks extracted correspond
across methods: for instance the network corresponding to a left click (a1,
b1 and c1), for which the spatial map highlights the hand area of the motor
cortex and the functional pro�les are concentrated on the motor and left
contrasts. As �nger movement gives very strong activations, this network
is reliable across subjects: standard errors on contrast loadings are small
and the inter-subject functional pro�les (Fig. 5.3) are similar across subjects
even without enforcing structure. Note that a similar right-click network is
also extracted (not shown). Extracting such a network is no surprise, as it
maps well to a task performed in the study. More interestingly, networks
corresponding to higher-level cognition are also extracted, e.g. the language
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Figure 5.2: Networks learned on
the localizer dataset with di�er-
ent strategies. Each box repre-
sents the functional network and
the group-level pro�le as loadings
on the contrasts of the study: au-
ditory - visual, calculation - word,
motor - cognition, right click - left
click, vertical checkerboard - hor-
izontal checkerboard, and words -
checkerboard. The standard error
across the group is displayed as a
yellow bar for each loading. a1,
b1 and c1 correspond to the left
hand region of the motor cortex,
a2, b2 and c2 to the language net-
work, a3, a4, b3, c3 to the dorsal-
attentional network, and c4 to a
salience network. b4 is likely a
noise pattern.

network (a2, b2 and c2) and the dorsal-attentional network (a3, a4 and, b3
and c3), or a salience network (a4) [16]. We report a qualitative compari-
son of all the networks extracted for the di�erent multi-subject approaches.
As in the simulations, some maps learned by spatial correspondence have
loadings that are not reproducible across subjects (b4 on Fig. 5.2 –note the
large error bars– and on Fig. 5.3). Functional correspondence tends to mix
well-known networks and produce degenerate maps. For instance, it ex-
tracts for the dorsal-attentional attentional network two components (a3
and a4) that are not well di�erentiated and include other regions. Indeed,
the dorsal-attentional network is made of the intra-parietal sulci and the
frontal eye �elds and is well known for high-level visuo-spatial tasks, for
instance during eye saccades. Maps a4 and a3 also outline the visual area
MT (V5) and the dorsal ACC, part of respectively the visual system and the
salience network. The corresponding functional pro�les indeed stray away
from the accepted functions of this network: a3 does not present any visual
loading, while a4 shows right motor clicks and a preference for horizontal
checkerboards. On the opposite, the RFX-structure approach selects only
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b1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

b2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

b4

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

c1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

c2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

c3

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Figure 5.3: Inter-subject functional
pro�les D for the �rst 10 sub-
jects, for spatial correspondence
–top row– and RFX structure –
bottom row. A white line separates
subjects.

the frontal eye �eld and the intra-parietal sulci on the spatial map. The
cognitive loadings are limited to visual and calculation tasks. While it may
seem surprising to �nd calculation in a visuo-spatial network, this speci�c
network has recently been reported as recruited in mental arithmetics [7].
Finally, we �nd that all the networks extracted by the RFX-structure ap-
proach outline known structure and have sensible cognitive loadings.
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Figure 5.4: Parcellations for the
di�erent strategies. From top to
bottom, functional, spatial, and
RFX parcellations. The colors are
random.

Towards a cognitive brain atlas To evaluate the overall spatial layout
of the networks extracted we turn the decomposition in a hard assignment:
we assign each voxel to the component for which it has the highest value
in the spatial map. This procedure retrieves a cognitive label for each voxel
and thus establishes a cognitively-informed brain parcellation. The maps
extracted by functional correspondence often lack spatial structure and seg-
ment redundant regions across the di�erent components (as with a3 and a4),
as a result the corresponding parcellation appears noisy (see Fig. 5.4). The
parcellations for spatial correspondence show more regularity, and even
more so for the RFX-structured approach. The later gives sensible divisions
of well-known parts of the cortex, such as the motor cortex, or the ventral
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Figure 5.5: Extracted functional
pro�les. (Left) These pro�les sum-
marize the functional activation
per network (columns) and con-
trast (lines) of interest through a
t-value per network and contrast,
across subjects. The contrasts are
identical to those in Fig. 5.2. The
color scale, clipped to [-10, 10],
shows that the RFX model achieves
an intermediate level of sensitivity.
(right) The speci�city of the encod-
ing of cognitive contrasts into net-
works is summarized by the en-
tropy of an assignment to nega-
tive, none or positive activation:
for most thresholds the RFX model
yields the most e�cient encoding.

visual stream.

Functional richness of the profiles The corresponding functional pro-
�les are summarized by computing the t-value (mean e�ect divided by stan-
dard error) per network and contrast, across subjects. These values, clipped
to [-10, 10], are presented in Fig. 5.5(left), which shows that the RFX model
achieves an intermediate level of sensitivity between spatial correspondence,
that yields smaller t values, and functional correspondence that exhibits
high t-values.

A way of assessing the functional signi�cance of these decompositions
is to quantify how speci�c the encoding of functional pro�les into networks
is. To do so, we label each network as showing negative, none or positive
activation, by thresholding the t values, and compute the entropy of the re-
sulting assignment. Fig 5.5 (right) presents the results for a standard range
of thresholds, obtained through 100 bootstrap replications of the t values
and entropy computation. In a range of values that is usable in practice
(t values between 2. and 4.) the RFX model yields a more e�cient encod-
ing than the other decompositions; the spatial decomposition dominates
for very low t-values while the functional decomposition outperforms the
others for extremely high t values. Altogether, this suggests that the RFX
model encodes e�ciently the possible functional pro�les, while the spatial
model is more sensitive to between-subject variability and the functional
model underestimates the group-level variance and thus overestimates the
functional speci�city of brain networks.

5.6 Conlusion

We have introduced a multi-subject model for task-induced fMRI acti-
vations that combines the principles of functional segregation and inter-
subject degeneracy in a structured sparse coding problem. Technically,
a major contribution of our formulation is to bound the ratio of inter-
subject to intra-subject variance as it prevents extracting maps from non-
reproducible variability. On a mid-sized cohort (150 subject, 6 contrasts) our
model extracts a large number of brain networks that are meaningful both
in terms of cognitive content and of spatial maps. Applying this approach
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to larger studies should reveal richer and more speci�c e�ects. For larger
cohorts, it can easily be extended to multi-level model speci�cation, for in-
stance in multi-centric studies, adding a center e�ect. An exciting direction
of future research is to use this possibility to combine multiple studies in a
meta analysis. Importantly, our approach is very computationally e�cient:
it is O

(
n2

)
in the number of subjects, and the analysis presented in this

paper runs in 10 mn on a single CPU, compared to several hours for non
on-line learning. It is thus applicable to mining of massive datasets. Alto-
gether, our results provide the basis of a framework to derive a synthetic
and optimized representation of large amount of multi-subject fMRI data in
terms of specialized brain regions.
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6 Learning functional atlases

Data accumulation is key to learn cognitive functions representation in
the brain. The 1000 Functional Connectomes Project [2] pioneered discov-
ery science in the neuroimaging community, by focusing on resting-state
functional MRI (R-fMRI). Such an approach alleviates many of the issues
related to datasharing and analysis across experiments [31], and provides
an insightful view of the brain’s distributed networks. R-fMRI and task-
based functional MRI (T-fMRI) however outline not only the same networks
[36], but also exhibit di�erent patterns of activation [22]. Aggregating R-
fMRI is therefore only addressing part of the problem, and while cognitive
neuroscience traditionally uses T-fMRI to link psychological processes to
brain function, a number of challenges prevent a large-scale decoding of
the mental states. There indeed is a lack of frameworks that bene�t from
a growing accumulation of datasets. The standard analysis framework is
forward inference as de�ned in [15, 16]: it associates a brain region with a
cognitive theory implemented by a dissociation of two experimental condi-
tions. The two conditions test for an e�ect of interest under an experimental
paradigm, but do not guarantee that the resulting region is speci�c to that
e�ect as it only re�ects the cognitive theory being tested. Forward infer-
ence in a large-scale setting tends to outline broad, larger than expected
regions in the brain [38], and consequently may not alone give additional
insights in the context of data accumulation. A large-scale setting however
opens the possibility to invert the statistical inference, and to reason from
the brain activations to the mental processes, shedding light on how they
interact with each other.

We have seen in Chapter V the importance of modeling brain functions as
networks rather than regions, and using task fMRI rather than resting state
to be able to assign labels to those networks. In this chapter, we present a
supervised framework that uses the datasets presented in Chapter III, and
makes it possible to learn functional atlases. The �rst section investigates
the use of cognitive ontologies to co-analyse multiple T-fMRI datasets de-
spite the lack of common paradigm. The second section of this chapter
details the method we use to map functional labels to the brain, and the last
section presents the functional atlases given by that method.
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The contributions developed in this chapter have been published in:

• Y. Schwartz, G. Varoquaux, and B. Thirion, Mapping cognitive ontologies
to and from the brain, NIPS, 2013.

• Journal paper in preparation.
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6.1 Annotating brain maps

Price and Friston [32] argues the utility to organize cognitive processes in
ontologies to enable the description of brain areas in terms of which func-
tions they are involved in. Similarly, Poldrack [27] stresses the critical im-
portance of the metadata describing the tasks and mental processes for scal-
ing up the classi�cation of mental states. This section describes some ex-
isting ontologies of cognitive processes, and how we use them to label our
data.

Figure 6.1: The Cognitive Atlas
lists a large number of cognitive
concepts and tasks. http://

www.cognitiveatlas.org/

6.1.1 Representing the cognitive space

Developing ontologies to represent mental processes is a challenging task,
and there is currently no established standard in the neuroimaging com-
munity. Several initiatives however aim to solve that problem. BrainMap
[20] mainly concentrates on the description of the experimental conditions
that characterize an experimental paradigm. Conditions are grouped in cat-
egories that represent the stimuli, the expected responses, and the instruc-
tions given to the subjects, e.g., “stimulus modality”, “explicit stimulus”, “ex-
plicit response”. It also de�nes cognitive level functions called behavioral

http://www.cognitiveatlas.org/
http://www.cognitiveatlas.org/


VI. Learning functional atlases 99

domains, e.g., “cognition.memory” or “cognition.language”. The Cognitive
Paradigm Ontology (CogPO) [39] is an extended and updated version of the
BrainMap taxonomy. Figure 6.2 illustrates the decomposition of the exper-
imental paradigms in di�erent conditions, and their associated description.
More tailored towards cognitive processes, the Cognitive Atlas [30] lists a
large number of cognitive tasks and concepts, and increasingly links them
together. All these approaches rely on human input to build the representa-
tions. Conversely, Neurosynth1 [41] automatically extracts terms and asso- 1 http://neurosynth.org/
ciated brain locations from neuroimaging papers, to build a synthetic view
of the �eld.

These approaches all have pros and cons, and ultimately are complemen-
tary. CogPO –and BrainMap– de�nes a formal way to specify experimental
paradigms but falls short in the amount of terms it inventories, and thus in
the number of studies it is able to describe. The Cognitive Atlas focuses on
high level cognitive concepts that are suitable to describe contrast maps, but
also sometimes appears to list redundant terms, e.g., “sentence production”
and “speech production”. Finally Neurosynth features the larger number of
terms, but their curation is an ongoing process and a lot of the terms are
either redundant or not relevant. Eventually the choice of a good cognitive
ontology comes down to what we want to do with it. A major challenge for
this thesis is to �nd commonalities between studies. Despite our number of
studies being large for an image database, it remains small considering that
we want: i) to target a large number of mental processes to have a well-
conditioned reverse inference problem, ii) several instances of each mental
process to ensure the generalizability of our inference. As the description
of experimental conditions is more general to all studies, regardless of the
original intent of the study, we decide to mainly use terms from CogPO,
and extend it where our database can bene�t from more precise or high-
level descriptions.

6.1.2 Representing the tasks design

Functional MRI experiments are carefully designed to balance conditions of
interest with control conditions to cancel out e�ects related to the stimula-
tion. As we do not want to ignore the designs, but rather leverage them in
the context of a large scale inference, we introduce an additional category
level for our terms, that groups together terms –or conditions– that are typ-
ically contrasted in individual studies. These new categories strongly relate
to the paradigm classes from BrainMap and the tasks from the Cognitive
Atlas. The categories we choose are relevant to our database, and re�ect
the contrasts found in the studies. They nonetheless could be modi�ed or
extended further to test other hypotheses. This hierarchy of terms can be
seen as a meta-design that enables to co-analyse heterogeneous studies. Ta-
ble 6.1 references the categories and associated terms used in this chapter.

6.2 Inferring concept-specific networks

This section introduces our method to map cognitive processes to the brain.
Traditionally, researchers depend on forward inference to identify brain

http://neurosynth.org/
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.

Figure 6.2: The Cognitive
Paradigm Ontology describes
the experimental conditions
from a paradigm with a set
of terms grouped in di�er-
ent categories. SOURCE:
http://www.cogpo.org/

CogPO Categories Task Categories Terms

Stimulus modality - visual
auditory

Explicit stimulus

Sounds human voice
sound

Retinotopy vertical checkerboard
horizontal checkerboard

Object recognition

faces
places
objects
scramble

Symbol recognition visual words
visual digits

Response modality

Motor - hands left hand
right hand

Motor - feet left foot
right foot

Arithmetics saccades

Instructions Arithmetics calculation
No category suppress

Cognitive Atlas terms

No category classi�cation
language tasks

Stop signal inhibit
failed inhibit

Gamble gain
loss

Flanker & Simon congruent
incongruent

Table 6.1: Terms describing the im-
ages from the database. CogPO
categories are extended with new
terms when needed. Cognitive At-
las terms de�ne higher-level cog-
nitive tasks. The task categories
group terms typically used as con-
ditions and their controls to test a
hypothesis. The stimulus modal-
ity category stands for CogPO and
task categories. Some terms do not
belong to any task category and
are referred as such. The arith-
metics task category spans across
the response modality and instruc-
tions CogPO categories.

http://www.cogpo.org/
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patterns supporting cognitive theories. Henson [16] shows that forward in-
ference alone is often not su�cient to conclude on the engagement of brain
regions because: i) it only re�ects the cognitives theories being tested, ii)
it does not guarantee speci�city, and iii) it cannot warrant the complete-
ness of the inferred regions. These issues are particularly noteworthy for
studies using a subtraction design, that rely on a pure insertion assumption
[11]. Poldrack [25] points out that, to circumvent these shortcomings, re-
searchers make use of reverse inference in an informal way: they explain
the recruitment of a region by a cognitive process by relating their study
with others from the literature. Henson [16] similary advocates the use of
forward and reverse inference in conjunction to assess the reproducibility
of an experiment. It also opens the possibility to relate cognitive processes
across cognitive theories. The need of a large database is clear here, as a
principled reverse inference may only be achieved with a large coverage of
the cognitive space [29, 27]. Analyzing large amounts of task fMRI data usu-
ally leads to numerous challenges [2, 28]. We present a method that makes
use of the terms introduced in the previous section, and enables us to use
forward and reverse inference in conjunction to associate brain regions to
those terms. Figure 6.3 illustrates the general idea of the method, which
uses forward inference to encode the brain, i.e. detecting voxels respond-
ing to a term, and reverse inference to decode the brain, i.e. predicting the
terms from the voxels.
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Figure 6.3: Forward inference de-
tects voxels responding to a term,
and reverse inference predicts the
terms from the voxel.

6.2.1 Encoding the cognitive space

Terms e�ect Poldrack [25] formalizes forward inference as the proba-
bility of an activation given a cognitive process P (Act |Coд). We assign
a set of terms to each image, forming a one-hot-encoding of the database,
i.e. representing the occurrence of terms by a binary design matrix. We
follow the standard fMRI analysis framework and perform a General Lin-
ear Model (GLM). This gives the correlation of each separate voxel with the
terms within a set of images, and enables to test for their signi�cance. Using
the GLM formulation:

Figure 6.4: Forward inference:
E�ect map for the places term.

x = yβ + ε ,

x corresponds to the activation maps, y to the design matrix modeling
the presence of terms, and β to the term e�ects. The input activation maps
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are subject-level condition versus baseline maps. The side Figure 6.4 shows
the e�ect map for the places term. We will use this term along this chapter
to illustrate the di�erences between the types of inference.

Terms contrasts The GLM estimates the responses of each voxel in re-
spect to a combination of terms, which means the individual term e�ects
are entailed to a degree of speci�city. Individual studies contrast the β
maps to isolate cognitive processes, e.g., a “face versus place” and a “face
versus scrambled picture” contrast for a face recognition study. To disen-
tangle the experimental factors without a too strong a priori on the control
conditions, the alternative is to contrast a β map against all others, e.g.,
“face versus place and scrambled picture”. We group our terms within the
task categories described in Table 6.1 that contain the conditions and their
controls, and proceed to compute the contrast combinations. It is important
to note that this procedure is di�erent from a 2nd level (group), or even a
3rd level analysis [33] in the sense that the term e�ects are estimated jointly
across all studies, and the control conditions span a wider range of stimuli
than typical studies.

Figure 6.5: Forward inference:
Contrast map for the places term,
which uses faces, objects, and
scrambled pictures as controls.

6.2.2 Decoding the cognitive space

Reverse inference Poldrack [25] formalizes reverse inference as the prob-
ability of a cognitive process given an activation P (Coд |Act ). This is how-
ever only possible in the context of a large scale decoding framework [29],
that both accounts for the distributed nature of brain networks and the va-
riety of mental processes. In previous work, Poldrack [29, 26] tackles this
question using a multi-class predictive model, the targets of the classi�ca-
tion being separate cognitive labels. The problem we face here is slightly
di�erent, as we aim to invert the statistical inference, we predict the design
matrixy denoting the entries of the design matrix in the forward model. In
other terms each image may be associated with more than a single label,
which in a decoding setting is called multi-label classi�cation. This section
goes through the details of our method for reverse inference, which aims to
build a multi-label linear predictive model.

Feature recovery We want to build a linear model to be able to map
the predictive features onto the brain. Feature recovery is the ability to
recover stable and meaningful predictive features from our model. Three
issues usually get in the way in fMRI multivariate analyses: the high di-
mensionality of the data, the local correlation of the features –voxels–, and
the model selection. Varoquaux et al. [40] show that it is possible to come
around the dimensionality and correlation problems by using sparse regres-
sion models with randomization techniques and feature clustering. This
actually amounts to building an ensemble of sparse linear classi�ers [7],
on a set of randomized parcellations generated by a Ward agglomerative
clustering algorithm combined with a resampling method. We add a cross
validation procedure in the training of our ensemble in order to select the
model. For each random parcellation, we keep the best model. Ensemble
classi�ers typically either use a voting or an averaging strategy for the �-
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nal prediction. We choose the latter to keep a linear model, in line with
our brain mapping goals. We also perform a non-conservative univariate
screening of the features, and keep 30% of the features. This step is pri-
marily due to computational concerns. On the speci�cs of our model, we
choose to use an `1-logistic regression, 5K parcels for the clustering, and a
5-fold cross validation for the model selection.

Imbalance problem The class imbalance problem is inherent to our data
since mental processes are not uniformly investigated in the literature, and
even more so in our database. This is a common problem for meta-analyses,
known as the literature bias. There are several ways to account for class im-
balance such as using resampling methods or decomposition strategies to
project the classes samples into a balanced space. We choose to use a resam-
pling method akind to bagging (Bootstrap AGGregatING), in which each
classi�er is given a balanced sub-sample of the whole dataset. This results
in an ensemble of classi�ers that retains a good coverage of the majority
class but su�ers less from the imbalanced class distributions.

Hierarchical decoding The previous paragraphs decribe the necessary
steps to build a classi�er for a single label, i.e. a single term, but we are in
a multi-label classi�cation setting. The usual approach to solve this kind
of problem in machine learning is to train one binary classi�er per label in
a One versus All (OvA) scheme. The approach has successfully been used
in our initial contribution [34], but in our opinion su�ers from two main
limitations in this context. First an OvA classi�cation models each label
separately, and by doing so misses potentially useful connections between
the labels that could improve their individual prediction. Second, it ignores
the experimental design of the studies from which the images are drawn:
an OvA approach uses blindly all the data to learn a label, regardless of
whether the images are from a study designed to expose this kind of mental
process.

We introduce a new model to alleviate these shortcomings, that relies
on stacked regressions [3]. A stacked regression model is an ensemble
method that uses the linear combinations of di�erent classi�ers to improve
the �nal prediction. The general idea of this model is to generate di�erent
predictors on the same data. The predictors can be generated through re-
sampling methods, or merely use di�erent underlying models (e.g. to com-
bine a collection of linear and non-linear models). We stack the decision
functions from the collection of classi�ers, and use them to train a �nal
predictor that forms a linear combination of the base models. This model
has the advantage of building a linear classi�er if we avoid introducing non-
linearities in the ensemble classi�ers. Another interesting property is that
it enables to combine the predictions of OvO (One versus One) classi�ers to
perform multi-label classi�cation, instead of only multi-class. Finally, this
approach may be seen as a supervised dimensionality reduction method,
as we condense the original space to a number of dimensions equal to the
number of base classi�ers in the ensemble.

Breiman [3] refers to as “black art” the choice of classi�ers to form ac-
curate combinations. As this choice is largely context dependent, we opt
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for classi�cation problems that learn a reduced representation of the brain
imaging data tailored to the cognitive concepts under study. First, we stack
the decisions of the OvA classi�ers, that capture speci�c activation patterns
across all tasks. This allows to relate cognitive processes across indepen-
dent cognitive disciplines. Second, we build OvO classi�ers by opposing
terms that belong to the same task category in Table 6.1. This enables to
generalize the notion of contrasts and subtraction-logic that is implicit to
the majority of fMRI experiments. Finally, we build classi�ers predicting
the actual task categories from Table 6.1. It enables to build a hierarchical
decoding framework, which combines the decisions of simpler problems
(classifying the task categories), and �ner grained problems (the OvO clas-
si�ers). There may be better choices of classi�ers, but the �nal predictor
weights them, and therefore mitigates the introduction of unnecessary or
sub-optimal classi�ers.

Finally, we learn the terms on the reduced representation with an OvA
scheme, which also uses `1-penalized logistic regressions. The �nal output
of this method is one linear classi�er per term, that can be recovered by the
linear combination of the coe�cients of the base classi�ers, with the coe�-
cients of the �nal classi�ers. Figure 6.6 displays the classi�er’s coe�cients
map for the “places” term: the resulting map is more speci�c than with for-
ward inference, but is also noisier. Figure 6.7 summarizes this hierarchical
decoding procedure.

Figure 6.6: Reverse inference:
coe�cients map for the places
term.

Cross validation We perform the classi�cation in randomized leave-3-
study out cross validation scheme. We choose to do cross-study prediction
to ensure that the representation of the cognitive labels generalizes across
paradigm. Failure to do so might result in over �tting the data, and learning
studies idiosyncrasies. This is the �rst time this type of cross validation is
used, as Poldrack’s implementations [29, 26] relied on a leave-subject out
cross validation. Considering the distribution of labels in the database, each
fold enables to test only a subset of the terms. We complete 100 iterations of
the cross validation to get a good estimate of the classi�ers performance and
variance even for the minority classes. Figure 6.8 shows the classi�cation
scores for the di�erent labels. The precision and recall scores respectively
represent the speci�city and sensitivity of the classi�ers. The red bars char-
acterize the chance levels, and shows that most terms are classi�ed above
chance. We evaluate the chance levels with a classi�er that generates pre-
dictions by following the class distribution in the training set. This explains
why di�erent terms have di�erent chance levels. The green bars indicate
scores with a leave-subject out cross validation, that are must higher than
with a leave-study out cross validation. This con�rms that the former cross
validation leads to over �tting, and yet it was the approach followed in Pol-
drack’s implementations. Figure 6.8 also provides the classi�cation scores
for a naive Bayes classi�er, with the chance levels represented in red and
estimated with the same method. The univariate nature of the classi�er
prevents it from capturing distributed patterns of activity to predict cogni-
tive labels. As a consequence the recall is high –labels are often detected–
but the precision is low because multiple cognitive labels share the same
predictive features.
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Figure 6.7: Hierarchical decod-
ing. The decision functions from
OvA, OvO, and task category clas-
si�ers are stacked to form a re-
duced feature space tailored to our
problem. A second level of OvA
classi�ers predict the terms. Fi-
nal linear classi�ers may be recov-
ered by combining the coe�cients
of the �rst and second level classi-
�ers.
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Figure 6.8: Decoding scores. The
left �gure indicate scores for the
hierarchical decoding framework,
the right one for a naive Bayes
classi�er. Precision re�ects a clas-
si�er speci�city and recall its sen-
sitivity. Red bars indicate the
chance levels for each term and
metric, the green bars the scores
obtained with a leave-subject out
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6.2.3 Mapping the cognitive space

Figure 6.9: Forward& reverse in-
ferences: aggreement map for the
places term.

By taking into account several cognitive concepts at the same time, reverse
inference maps are more speci�c than the ones from forward inference, but
may also capture irrelevant noise. Using both inferences in conjunction is
not straightforward, as they do not perform the same statistical tests and
do not have the same statistical power. As we are only interested in the
common patterns between both approaches, we use a noise independent
procedure to delineate those patterns. Speci�cally, we compute z-scores for
the classi�er coe�cients by dividing the raw coe�cients by their standard
error (obtained by cross-validation). The scores’ distributions are displayed
in Figure 6.10, and shows the di�culty to �nd a scale at which to threshold
forward and reverse maps to �nd the common patterns. For this reason, we
normalize independently the forward and reverse maps. Figure 6.11 shows
the z-scores’ distributions after normalization. From this �gure, a fair choice
of threshold that yields common patterns lies between z = 1.5 and z = 2.
We mask out the reverse inference maps with those from forward inference
using this threshold. Figure 6.9 shows the resulting agreement map. Fig-
ure 6.12 summarizes all the inferences investigated in this chapter, as well
as the result of using them jointly.
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Figure 6.10: Distributions of the z-
scores for forward and reverse in-
ference for the places term.

−2 −1 0 1 2 3 4 5

norm alized z-s core

0

500

1000

1500

2000

2500

N
u

m
b

e
r 

o
f 

v
o

x
e

ls

forward
reve rse

.

Figure 6.11: Distributions of the z-
scores for forward and reverse in-
ference for the places term after
normalization.
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Labels

forward forward (contrast) reverse agreement

z = −16 R

. Figure 6.12: Inferences maps.
The 4 brains on the left are
the forward, forward contrast, re-
verse, and agreement maps for the
“places” term. The last brain on the
right represent the overlaid infer-
ences for the same term.

6.3 Functional atlases

This section outlines the networks exposed by the joint use of forward and
reverse inference. We organize the mapping of terms in 5 atlases that cor-
respond to anatomical locations: a visual atlas, a temporal atlas, a parietal
atlas, a motor atlas, and a cerebellum atlas.

6.3.1 Visual atlas

Faces and places Figure 6.14 depicts the functional networks associated
with visual stimuli. The “faces” and “places” labels live respectively in the
FFA (Fusiform Face Area) and the PPA (Parahippocampal Place Area). While
the FFA [35, 18] specializes in facial recognition and the PPA [9] in scenes
encoding, reports indicate those regions are also involved in other categor-
ical information processing [14]. The database under study however does
not have such categorical stimuli to compete with the “faces” and “places”
labels. Similarly, the amygdalae show involvement for “faces”, which could
be related to an emotional processing not otherwise modeled in the database. z = 4

Figure 6.13: Supplementary slice
of the visual atlas to show lateral
occipal cortex activations for the
“scramble” term (in dark blue). Full
legend in Figure 6.14

.

Objects and scramble Objects opposed to scrambled pictures expose
the lateral occipital complex (LOC) [21, 12], which is composed of a set
of regions in the occipito-temporal cortex. Figures 6.13 and 6.14 show that
the “scramble” and “object” labels delineate regions in the lateral occipital
cortex and the ventral stream. Most of those regions are however labeled
under the “scramble” term.

Checkerboards The “vertical and horizontal checkerboard” labels pro-
vide a basic but accurate retinal mapping. They concentrate on low-level
visual processing regions such as V 1 and V 2.

Symbols The “digits” label is not predicted above chance and therefore
does not outline any meaningful region. The “words” label exposes a region
that is close to the visual word form area (VWFA), in concordance with prior
art [6].

6.3.2 Temporal atlas

Auditory The “auditory” label captures the primary auditory cortex. In-
terestingly, the “sounds” label lies in the right planum polare (BA 38), which
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.

Figure 6.14: We project the la-
bels on the surface to have a
view of the ventral stream. Other
views show the labels in the vol-
ume. The �gure presents all
the labels corresponding to vi-
sual stimui: “visual” (red eye),
“faces” (orange face), “places” (yel-
low house), “horizontal checker-
board”, “vertical checkerboard”,
“objects” (light blue tool), “scram-
bled objects” (dark blue blurred
tool), “digits” (purle digit 3), and
“words” (pink W letter).

is found to be involved in high-level music processing [5]. Dataset #40
presents a music task which could explain the recruitment of this region.

Voice area Belin et al. [1] identify voice-selective regions in the audi-
tory cortex, speci�cally in the central part of the upper STS in both hemi-
spheres. The human voices conditions in this study are contrasted with
closely matched control conditions scrambed voices and noise. Dataset #56
features the most similar conditions in our database, by presenting Korean,
French and mechanistic noise to French speakers. Other studies do not
present human voices and non human sounds (such as tones, music or noise)
simultaneously. The “human voice” label nonetheless depicts in Figure 6.15
a set of regions matching [1], and speci�c to that type of sounds.

Language The “language” label views a large distributed network in the
left hemisphere composed of the anterior STS (Superior Temporal Sulcus),
the posterior STS, the temporal lobe, the temporo-parietal junction, and the
broca area region, which are typically reported in related work [23, 4, 10].

.

Figure 6.15: This �gure presents
temporal networks: “auditory”
(red ear), “language” (green earth),
“sound” (pink speaker), and “hu-
man voice” (light blue man).

6.3.3 Parietal atlas

Saccades and mental arithmetics recruit overlapping regions in the poste-
rior parietal cortex [19]. Our method uncovers networks speci�c to “sac-
cades” and “calculation” as illustrated in Figure 6.16. In particular, the “cal-
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culation” network shows a strong lateralization to the left, which is consis-
tent with previous reports [24].

z = 40 z = 60

R

L

Parietal atlas

.

Figure 6.16: This �gure presents
parietal networks: “calculation”
(red operators) and “saccades”
(pink eyes).

6.3.4 Motor atlas

The motor labels in Figure 6.17 maps the hands and feets representations
in the motor cortex. The cerebral hemispheres of the primary motor cortex
contain the representation of the opposite side of the body part involved.
Figure 6.17 also shows the motor regions in the cerebellum, which are de-
scribed in more details in the cerebellum atlas section.

y = −30 z = −27

R

L
RR

Motor atlas

.

Figure 6.17: Labels related to the
motor system: left hand (red), right
hand (green), left foot (light blue),
and right foot (pink)

6.3.5 Cerebellum atlas

While the cerebellar cortex engages in a range of mental processes, the ex-
tent of its functions has yet to be discovered. Previous work highlights
the somatotopic organization of the cerebellum [13]. Figure 6.17 shows an
analogous organization of the “hands” and “feet” functions. The crossed
cerebro-cerebellar �bers pathways explains the inversion of laterality of
functional areas in respect to their cortical counterparts. Other higher-level
cognitive functions activate the cerebellum with the same inversion. “Lan-
guage” is particularly noteworthy, and �ndings in [37] exhibit activations
lateralized to the right lobule VI, and the Crus I and II. The language net-
work from Figure 6.18 outlines in addition of the cortical activations a single
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region in the cerebellum located in the Crus II. Finally the calculation net-
work also involves the right cerebellar cortex in the superior medial section
of the lobule VI, which is consistent with �ndings of working memory in
the cerebellum [8]. The role of working memory in mental arithmetic is
widely reported in the literature [17, 42]. These �ndings suggest that short-
term memory is used a temporary storage of information to hold multidigits
numbers, as well as to break down complex operations.

z = −40 z = −32
R

Cerebellum atlas

.

Figure 6.18: This �gure shows la-
bels, other than motor, that recruit
the cerebellum: “calculation” (red
operators) and “language” (pink
earth).

6.4 Conclusion

In this chapter, we have presented a framework that is able to accumu-
late task fMRI data though the use of cognitives ontologies. The use of a
large fMRI database opens the possibility to perform reverse inference, and
use it in conjunction with forward inference. This approach, suggested by
Henson, enables to go beyond functional specialization, in the sense that we
do not aim to localize functions to speci�c brain regions, but rather identify
distributed networks that may partially be shared across functions. The
multivariate nature of our decoding approach is particularly bene�cial to
the �nding of distributed networks. As a supervised approach, it can be
used to assess the validity of the cognitive labels. We introduce a 2-level
classi�cation strategy, that enables to capture the speci�cities of the tasks
paradigms. We demonstrate its ability to predict successfully low to mid-
level cognitive processes, even if some higher cognitive functions still elude
our model. This prediction translates to functional brain atlases that repro-
duce many established results. This work is the �rst to build a statistical
model of the brain functions at such a large scale.
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Conclusion

In this thesis, we have investigated the possibility to build upon an accumu-
lation of fMRI data. We have reviewed the challenges to assemble a large
database of images, and have proposed several novel methods to map cog-
nitive processes to the brain. Following are the contributions of this thesis.

Database contributions Constituting a large fMRI database presents many
challenges due to the complexity of the data, and the limited amount of re-
sources available. We demonstrated the importance of a standard organi-
zation to automate the processing streams and quality assessments of the
data. We also contributed to two datasharing initiatives to facilitate future
projects that aim to re-use and combine existing data. Speci�cally, we con-
tributed to the Neurovault project, which aims to share activation maps as
a middle ground between raw data and peak coordinates. We also partici-
pated in to the BrainOmics/Localizer database, that shares both the raw data
and activation maps of a single dataset featuring a large amount of stimuli.

Methodological contributions Our research focused on methods that
combine multiple datasets:

• Our �rst contribution drew inspiration from ROI-based analysis of func-
tional imaging data. We investigated the use of an external dataset to
better condition testing on a similar task of interest. We also proposed
a multivariate alternative to contrast conjunction, that learns ROIs from
pairs of related fMRI experiments.

• The second contribution aimed at learning functional networks rather
than ROIs. Our approach was di�erent from other decomposition meth-
ods, in the sense that it jointly learned functional pro�les that represent
the networks. It therefore forgoes to manual labeling the networks with
known cognitive processes.

• Our last contribution was motivated by the idea of developing a method
that would map functional networks to the cognitive space. Machine
learning methods generally perform better when more data is available.
In our case more data also meant more diverse data, and therefore more
classes (i.e. the cognitive processes). Handling more classes leads to a
more di�cult problem in terms of prediction, and mitigates the bene�t
of a large database. Our challenge was to frame the problem in such a
way we would not su�er from the diversity of the data, and at the same
time would keep a rich description of our database. Our solution was
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to use a cognitive paradigm ontolgy, a describe each image with a set of
cognitive labels rather than a single speci�c one. We used this approach
both in forward and reverse inference to produce functional atlases that
represent reproducible results across our datasets.

Research perspectives

Using functional profiles In our last contribution, we predicted the oc-
curence or absence of cognitive processes. We however did not attempt to
assess the di�culty of the tasks, nor represent the degree of engagement
of the subjects. What we propose instead is to predict continuous variables
(with a regression model) representing the involvement of a cognitive la-
bel for a task. While this would not be feasible by hand, it could be learned
from the data and help the predictive models to yield more accurate decision
boundaries, and therefore more accurate brain maps of cognitive labels. We
propose two possible approaches to learn the functional pro�les:

• By using the functional pro�les from our second contribution, we can
associate a certain degree of involvement to each image in the database.

• Turner et al. [1] shows the possibility to annotate fMRI experiments au-
tomatically using text mining on the papers. We could use the prob-
ability of having a given cognitive process in an experiment to de�ne
experiment-wise functional pro�les.

Combining coordinate and image databases One of the most promis-
ing prospects is to combine coordinate and image databases. Image databases
provide greater details on the activations, and we have shown that with a lot
less studies we reach a scale comparable to coordinate databases in terms
of samples. Image databases may however take some time to catch up in
terms of cognitive coverage, which is a major pitfall. Given the functional
pro�les that represent tasks with combinations of cognitives processes and
the work from Turner et al. [1] on automated annotations, we could pre-
dict unseen cognitive tasks from images. This would be a form of zero shot
learning of tasks. Using similar ideas, we could also combine the cognitive
maps learned on images with the functional pro�les given by the literature
to generate synthetic maps of unknown tasks.
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A Appendix: datasets

This appendix contains the description of the datasets used in this thesis.
OpenfMRI descriptions are a verbatim copy from www.openfmri.org,
and the other datasets include a copy of the abstract of their associated
paper.

A.1 Balloon Analog Risk-taking Task (ds000001)

Subjects perform the Balloon Analog Risk-taking Task in an event-related
design. Note: The original highres image for sub004 was not available, so
the skull-stripped version is included as highres001.nii.gz

Metadata

• Investigators: Tom Schonberg, Christopher Trepel, Craig Fox, Russell A.
Poldrack

• Sample Size:16

• Scanner Type:Siemens Allegra 3T

Tasks Experimental conditions

task001 Balloon Analogue Risk Task (BART)

cond001 Pumps �xed
cond002 Pumps demean
cond003 Pumps �xed real RT
cond004 Cash �xed
cond005 Cash demean
cond006 Cash �xed real RT
cond007 Explode �xed
cond008 Explode demean
cond009 Control pumps �xed
cond010 Control pumps demean
cond011 Control pumps �xed real RT

Table A.1: Tasks and experimental
conditions of ds000001.

www.openfmri.org
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A.2 Classification learning (ds000002)

Subjects performed a classi�cation learning task with two di�erent prob-
lems (across di�erent runs), using a "weather prediction" task. In one (prob-
abilistic) problem, the labels were probabilistically related to each set of
cards. In another (deterministic) problem, the labels were deterministically
related to each set of cards. After learning, subjects participated in an event-
related block of judgment only (no feedback) in which they were presented
with stimuli from both of the training problems.

Metadata

• Investigators: Aron, A.R., Poldrack, R.A., Gluck, M.A.

• Sample Size:17

• Scanner Type:3 T Siemens Allegra MRI scanner

Tasks Experimental conditions

task001 Probabilistic classi�cation task
cond001 Probabilistic classi�cation trials
cond002 Feedback

task002 Deterministic classi�cation
cond001 Deterministic classi�cation trials
cond002 Feedback

task003 Classi�cation probe without feedback
cond001 Classi�cation trials: Probabilistic
cond002 Classi�cation trials: Deterministic

Table A.2: Tasks and experimental
conditions of ds000002.
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A.3 Rhyme judgment (ds000003)

Subjects were presented with pairs of either words or pseudowords, and
made rhyming judgments for each pair.

Metadata

• Investigators: Xue, G., Poldrack, R.A.

• Sample Size:13

• Scanner Type:TBA

Tasks Experimental conditions

task001 Rhyme veri�cation task
cond001 Word
cond002 Pseudoword

Table A.3: Tasks and experimental
conditions of ds000003.
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A.4 Mixed-gambles task (ds000005)

Subjects were presented with mixed (gain/loss) gambles, and decided whether
they would accept each gamble. No outcomes of these gambles were pre-
sented during scanning, but after the scan three gambles were selected at
random and played for real money.

Metadata

• Investigators: Tom S.M., Fox C.R., Trepel C., Poldrack R.A.

• Sample Size:16

• Scanner Type:3T Siemens AG (Erlangen, Germany) Allegra MRI scanner

Tasks Experimental conditions

task001 Mixed gambles task
cond002 Parametric gain
cond003 Parametric loss
cond004 Distance from indi�erence

Table A.4: Tasks and experimental
conditions of ds000005.
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A.5 Living-nonliving decision with plain or mirror-reversed
text (ds000006)

Subjects performed a living-nonliving decision on items presented in either
plain or mirror-reversed text. ds000006A represents the �rst session and
ds000006B represents the second session.

Metadata

• Investigators: K Jimura, E Stover, F Cazalis, R Poldrack

• Sample Size:14

• Scanner Type:Siemens Allegra 3T

Tasks Experimental conditions

task001 Living/nonliving judgment on mirror-reversed and plain-text words

cond001 Mirror-Switch
cond002 Mirror-Repeat
cond003 Plain-Switch
cond004 Plain-Repeat
Table A.5: Tasks and experimental
conditions of ds000006.
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A.6 Stop-signal task with spoken & manual responses
(ds000007)

Subjects performed a stop-signal task with one of three response types:
manual response, spoken letter naming, and spoken pseudoword naming.

Metadata

• Investigators: Xue G, Aron AR, Poldrack RA

• Sample Size:20

• Scanner Type:3T Siemens Allegra MRI scanner

Tasks Experimental conditions

task001 Stop signal task

cond001 Go trial
cond002 Successful Stop Trial
cond003 Unsuccessful stop trial
cond004 Junk trial

task002 Stop signal task with letter naming

cond001 Go trial
cond002 Successful Stop Trial
cond003 Unsuccessful stop trial
cond004 Junk trial

task003 Stop signal task with pseudo word naming

cond001 Go trial
cond002 Successful Stop Trial
cond003 Unsuccessful stop trial
cond004 Junk trial

Table A.6: Tasks and experimental
conditions of ds000007.
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A.7 Stop-signal task with unconditional and conditional
stopping (ds000008)

Subjects performed two versions of a stop signal task. In the unconditional
stop-signal task, subjects are told to withhold their response whenever they
hear a tone. In the conditional stop signal task, they are told to withhold
their response if they hear the tone and the response is the one labeled
as critical, whereas they should go ahead and respond if the response is
the noncritical one. Revision history: 12/20/2012: The originally posted
version of this dataset was missing some onsets for task002. The newly
posted version contains the full set of onsets for all conditions. If only the
onsets and model info are needed, they can be obtained by downloading the
updated onsets �le and untarring it in the main ds008 directory.

Metadata

• Investigators: Aron, A.R., Behrens, T.E., Frank, M., Smith, S., Poldrack,
R.A.

• Sample Size:15

• Scanner Type:3T Siemens Allegra MRI scanner

Tasks Experimental conditions

task001 Stop signal task

cond001 Go
cond002 Successful stop
cond003 Failed stop
cond004 Junk

task002 Conditional stop signal task

cond001 Go critical
cond002 Go non-critical
cond003 Successful stop critical
cond004 Failed stop critical
cond005 Failed stop non-critical
cond005 Junk

Table A.7: Tasks and experimental
conditions of ds000008.
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A.8 The generality of self-control (ds000009)

This study examined four di�erent forms of self-control in a single con-
text to determine whether multiple forms were related in a single sample of
healthy adults. Participants performed four di�erent tasks within a single
scanning session.

Metadata

• Investigators: Jessica Cohen, Russell Poldrack

• Sample Size:24

• Scanner Type:Siemens Trio

Tasks Experimental conditions

task001 Balloon Analogue Risk Task (BART)
cond001 Accept
cond002 Explosion
cond003 Reject

task002 Stop signal task

cond001 Go trial
cond002 Successful Stop Trial
cond003 Unsuccessful stop trial
cond004 Junk trial

task003 Emotional regulation task

cond001 Look Negative Cue
cond002 Look Neutral Cue
cond003 Rating
cond004 Rating - Parametric
cond005 Reappraise Negative Stimulus

task004 Temporal discounting task

cond001 Easy trials
cond002 Easy - parametric
cond003 Hard trials
cond004 Hard - parametric

Table A.8: Tasks and experimental
conditions of ds000009.
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A.9 Classification learning and tone-counting (ds000011)

Fourteen participants were trained on two di�erent classi�cation problems
while they were scanned by using fMRI. Participants were trained on one
problem under single-task (ST) conditions and on the other problem while
performing a concurrent tone-counting task. During training, subjects learned
the categories based on trial-by-trial feedback. After training, subjects re-
ceived an additional block of probe trials using a mixed event-related (ER)
fMRI paradigm, during which they classi�ed items that had been trained
under either ST or dual-task (DT) conditions. Tomeasure how well partici-
pants had learned under each condition, no feedback was presented during
the probe block, and all items were presented under ST conditions. An ad-
ditional tone-counting localizer scan presented blocks of the tone counting
task (followed by a probe at the end of each block) compared to rest.

Metadata

• Investigators: Foerde, K., Knowlton, B.J., Poldrack, R.A.

• Sample Size:14

• Scanner Type:3T Siemens Allegra head-only MR scanner

Tasks Experimental conditions

task001 Tone counting
cond001 Tone counting trials
cond002 Probe

task002 Single-task weather prediction
cond001 Classi�cation learning trials
cond002 Probe

task003 Dual-task weather prediction cond001 Classi�cation learning trials

task004 Classi�cation probe without feedback

cond001 Classi�cation trials: Single task learning
cond002 Classi�cation trials: Dual task learning
cond003 Junk single-task items
cond004 Junk dual-task items

Table A.9: Tasks and experimental
conditions of ds000011.
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A.10 Classification learning and stop-signal (1 year test-
retest) (ds000017)

A group of eight subjects performed two tasks (selective stop-signal and
probabilistic classi�cation) on two di�erent occasions separated by about
one year. ds000017A re�ects data from timepoint 1 andds000017B re�ects
data from timepoint 2.

Metadata

• Investigators: Rizk-Jackson, Aron, Poldrack

• Sample Size:8

• Scanner Type:3T Siemens Allegra MRI scanner

Tasks Experimental conditions
task001 Probabilistic classi�cation task cond001 Probabilistic classi�cation trials

task002 Selective stop signal task

cond001 Go trials - critical
cond002 Go trials - noncritical
cond003 Successful stop
cond004 Failed stop trial - critical
cond005 Failed stop trial - noncritical
cond006 Junk trial

Table A.10: Tasks and experimen-
tal conditions of ds000017.
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A.11 Cross-language repetition priming (ds000051)

Native Spanish speakers who were pro�cient in English performed an abstract-
concrete judgment with single Spanish or English words. Each item was
repeated once, either in the same language or in the other language.

Metadata

• Investigators: Alvarez, R., Poldrack, R.A.

• Sample Size:13

• Scanner Type:Siemens Allegra

Tasks Experimental conditions

task001 Abstract/concrete judgment: bilingual

cond001 EE-Abstract-Novel
cond002 EE-Concrete-Novel
cond004 ES-Concrete-Novel
cond005 SE-Abstract-Novel
cond006 SE-Concrete-Novel
cond007 SS-Abstract-Novel
cond008 SS-Concrete-Novel
cond009 EE-Abstract-Repeat
cond010 EE-Concrete-Repeat
cond011 ES-Abstract-Repeat
cond012 ES-Concrete-Repeat
cond013 SE-Abstract-Repeat
cond014 SE-Concrete-Repeat
cond015 SS-Abstract-Repeat
cond016 SS-Concrete-Repeat

Table A.11: Tasks and experimen-
tal conditions of ds000051.
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A.12 Classification learning and reversal (ds000052)

Subjects performed two blocks of an event-related probabilistic classi�ca-
tion learning task. They then performed two more blocks of the same task
with the reward contingencies reversed.

Metadata

• Investigators: Poldrack, R.A., Clark, J., Pare-Blagoev, E. J., Shohamy, D.,
Creso Moyano, J., Myers, C., Gluck, M.

• Sample Size:14

• Scanner Type:Siemens Allegra

Tasks Experimental conditions

task001 Probabilistic classi�cation task
cond001 Probabilistic classi�cation trials: Positive feedback
cond002 Probabilistic classi�cation trials: Negative feedback

task002 Probabilistic classi�cation task
cond001 Probabilistic reversal learning trials: Positive feedback
cond002 Probabilistic reversal learning trials: Negative feedback

Table A.12: Tasks and experimen-
tal conditions of ds000052.
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A.13 Simon task (ds000101)

The "NYU Simon Task" dataset comprises data collected from 21 healthy
adults while they performed a rapid event-related Simon task. **Please note
that all data have been uploaded regardless of quality- it is up to the user
to check for data quality (movement etc). On each trial (inter-trial interval
(ITI) was 2.5 seconds, with null events for jitter), a red or green box ap-
peared on the right or left side of the screen. Participants used their left
index �nger to respond to the presentation of a green box, and their right
index �nger to respond to the presentation of a red box.In congruent trials
the green box appeared on the left or the red box on the right, while in more
demanding incongruent trials the green box appeared on the right and the
red on the left. Subjects performed two blocks, each containing 48 congru-
ent and 48 incongruent trials, presented in a pre-determined order (as per
OptSeq), interspersed with 24 null trials (�xation only). Functional imaging
data were acquired using a research dedicated Siemens Allegra 3.0 T scan-
ner, with a standard Siemens head coil, located at the NYU Center for Brain
Imaging. We obtained 151 contiguous echo planar imaging (EPI) whole-
brain functional volumes (TR=2000 ms; TE=30 ms; �ip angle=80, 40 slices,
matrix=64x64; FOV=192 mm; acquisition voxel size=3x3x4mm) during each
of the two simon task blocks. A high-resolution T1-weighted anatomical
image was also acquired using a magnetization prepared gradient echo se-
quence (MPRAGE, TR=2500 ms; TE= 3.93 ms; TI=900 ms; �ip angle=8; 176
slices, FOV=256 mm). These data have not been published previously.

Metadata

• Investigators: Kelly AMC, Milham MP

• Sample Size:21

• Scanner Type:Siemens Allegra 3.0 T scanner

Tasks Experimental conditions

task001 Simon task

cond001 Congruent Correct
cond002 Congruent Incorrect
cond003 Incongruent Correct
cond004 Incongruent incorrect

Table A.13: Tasks and experimen-
tal conditions of ds000101.
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A.14 Flanker task (event-related) (ds000102)

The "NYU Slow Flanker" dataset comprises data collected from 26 healthy
adults while they performed a slow event-related Eriksen Flanker task. **Please
note that all data have been uploaded regardless of quality- it is up to the
user to check for data quality (movement etc). On each trial (inter-trial in-
terval (ITI) varied between 8 s and 14 s; mean ITI=12 s),participants used
one of two buttons on a response pad to indicate the direction of a cen-
tral arrow in an array of 5 arrows. In congruent trials the �anking arrows
pointed in the same direction as the central arrow (e.g., < < < < <), while in
more demanding incongruent trials the �anking arrows pointed in the op-
posite direction (e.g., < < > < <). Subjects performed two 5-minute blocks,
each containing 12 congruent and 12 incongruent trials, presented in a pseu-
dorandom order. Functional imaging data were acquired using a research
dedicated Siemens Allegra 3.0 T scanner, with a standard Siemens head coil,
located at theNYU Center for Brain Imaging. We obtained 146 contiguous
echo planar imaging (EPI) whole-brain functional volumes (TR=2000 ms;
TE=30 ms; �ip angle=80, 40 slices, matrix=64x64; FOV=192 mm; acquisi-
tion voxel size=3x3x4mm) during each of the two �anker task blocks. A
high-resolution T1-weighted anatomical image was also acquired using a
magnetization prepared gradient echo sequence (MPRAGE, TR=2500 ms;
TE= 3.93 ms; TI=900 ms; �ip angle=8; 176 slices, FOV=256 mm). Please cite
one of these papers listed below if you use these data.

Metadata

• Investigators: Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham
MP

• Sample Size:26

• Scanner Type:Siemens Allegra

Tasks Experimental conditions

task001 Eriksen �anker task

cond001 Congruent Correct
cond002 Congruent Incorrect
cond003 Incongruent Correct
cond004 Incongruent incorrect

Table A.14: Tasks and experimen-
tal conditions of ds000102.
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A.15 Visual object recognition (ds000105)

Neural responses, as re�ected in hemodynamic changes, were measured in
six subjects (�ve female and one male) with gradient echo echoplanar imag-
ing on a GE 3T scanner (General Electric, Milwaukee, WI) [repetition time
(TR) = 2500 ms, 40 3.5-mm-thick sagittal images, �eld of view (FOV) = 24
cm, echo time (TE) = 30 ms, �ip angle = 90] while they performed a one-
back repetition detection task. High-resolution T1-weighted spoiled gradi-
ent recall (SPGR) images were obtained for each subject to provide detailed
anatomy (124 1.2-mm-thick sagittal images, FOV = 24 cm). Stimuli were
gray-scale images of faces, houses, cats, bottles, scissors, shoes, chairs, and
nonsense patterns. The categories were chosen so that all stimuli from a
given category would have the same base level name. The speci�c cate-
gories were selected to allow comparison with our previous studies (faces,
houses, chairs, animals, and tools) or ongoing studies (shoes and bottles).
Control nonsense patterns were phase-scrambled images of the intact ob-
jects. Twelve time series were obtained in each subject. Each time series be-
gan and ended with 12 s of rest and contained eight stimulus blocks of 24-s
duration, one for each category, separated by 12-s intervals of rest. Stim-
uli were presented for 500 ms with an interstimulus interval of 1500 ms.
Repetitions of meaningful stimuli were pictures of the same face or object
photographed from di�erent angles. Stimuli for each meaningful category
were four images each of 12 di�erent exemplars.

Note that the original version of the raw data that was posted prior to
10/29/2012 had one extra timepoint incorrectly added to the end of runs
1-11 for each subject. The currently posted version has been corrected.

Metadata

• Investigators: Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J.,
Pietrini, P.

• Sample Size:6

• Scanner Type:GE 3T

Tasks Experimental conditions

task001 Object one-back task

cond001 House
cond002 Scrambled
cond003 Cat
cond004 Shoe
cond005 Bottle
cond006 Scissors
cond007 Chair
cond008 Face

Table A.15: Tasks and experimen-
tal conditions of ds000105.
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A.16 Word and object processing (ds000107)

Subjects performed avisual one-back with four categories of items: written
words, objects, scrambled objects and consonant letter strings.

Metadata

• Investigators: Duncan, K., Pattamadilok, C., Knierim, I., Devlin, J.

• Sample Size:49

• Scanner Type:Siemens 1.5T

Tasks Experimental conditions
task001 Word one-back task cond004 Consonant strings

task002 Object one-back task
cond002 Objects
cond003 Scrambled

Table A.16: Tasks and experimen-
tal conditions of ds000107.
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A.17 Prefrontal-Subcortical Pathways Mediating Success-
ful Emotion Regulation (ds000108)

Although prefrontal cortex has been implicated in the cognitive regulation
of emotion, the cortical-subcortical interactions that mediate this ability re-
main poorly understood. To address this issue, we identi�ed a right ven-
trolateral prefrontal region (vlPFC) whose activity correlated with reduced
negative emotional experience during cognitive reappraisal of aversive im-
ages. We then applied a pathway-mapping analysis on subcortical regions
to locate mediators of the association between vlPFC activity and reap-
praisal success (i.e., reductions in reported emotion). Results identi�ed two
separable pathways that together explained approximately 50

Metadata

• Investigators: Wager TD, Davidson ML, Hughes BL, Lindquist MA,
Ochsner KN

• Sample Size:34

• Scanner Type:1.5T GE Signa Twin Speed Excite HD scanner (GE Medical
Systems)

Tasks Experimental conditions

task001 Emotional regulation task

cond001 Look Neutral Cue
cond002 Look Negative Cue
cond003 Reappraise Negative Cue
cond004 Look Neutral Stimulus
cond005 Look Negative Stimulus
cond006 Reappraise Negative Stimulus
cond007 Look Neutral Rating
cond008 Look Negative Rating
cond009 Reappraise Negative Rating
cond010 Look Neutral Anticipation
cond011 Look Negative Anticipation
cond012 Reappraise Negative Anticipation

Table A.17: Tasks and experimen-
tal conditions of ds000108.
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A.18 False belief task (ds000109)

Participants read stories and answered questions that referred to either a
person’s false belief (mental trials) or to outdated physical representations,
such as an old photograph (physical trials). Participants saw twelve stories
of each type across two functional runs.

Metadata

• Investigators: Joseph M. Moran, Eshin Jolly, Jason P. Mitchell

• Sample Size:33

• Scanner Type:3T Tim Trio MRI scanner (Siemens).

Tasks Experimental conditions

task001 False belief task

cond001 False belief story
cond002 False belief question
cond003 False belief photo story
cond004 False belief photo question

Table A.18: Tasks and experimen-
tal conditions of ds000109.
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A.19 Incidental encoding task (Posner Cueing Paradigm)
(ds000110)

Subjects were scanned while incidentally encoding a series of visually pre-
sented real objects and greebles (meaningless objects) in a variant of the
Posner cueing paradigm. Subjects covertly shifted their attention to the left
or right of �xation, as cued by a centrally-presented arrow prior to item
onset, and made a real object versus greeble judgment about the stimulus
appearing in the cued or uncued location. Items appeared in the uncued lo-
cation with a probability of .18. Subjects performed an unscanned memory
test following encoding, in which they indicated their memory for old and
new real objects using the following four responses: high con�dent old, low
con�dent old, low con�dent new, high con�dent new. For trials in which
subjects responded with one of the two old responses, a source memory
judgment about the location (left or right side of the screen) of the object at
study followed the recognition judgment.

Metadata

• Investigators: Melina R. Uncapher, J. Benjamin Hutchinson, Anthony D.
Wagner

• Sample Size:18

• Scanner Type:3 T Signa MR scanner

Tasks Experimental conditions

task001 Incidental encoding task

cond002 Valid HC-Hit Obj
cond003 Valid LC-Hit Cue
cond004 Valid LC-Hit Obj
cond005 Valid Miss Cue
cond006 Valid Miss Obj
cond007 Invalid HC-Hit Cue
cond008 Invalid HC-Hit Obj
cond009 Invalid LC-Hit Cue
cond010 Invalid LC-Hit Obj
cond011 Invalid Miss Cue
cond012 Invalid Miss Obj
cond013 Valid Other Obj Cue
cond015 Valid Other Greeble Cue
cond017 Invalid Other Greeble Cue

Table A.19: Tasks and experimen-
tal conditions of ds000110.
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A.20 A test-retest fMRI dataset for motor, language and
spatial a�ention functions. (ds000114)

A test-retest dataset was acquired to validate fMRI tasks used in pre-surgical
planning. In particular, �ve task-related fMRI time series (�nger, foot and
lip movement, overt verb generation, covert verb generation, overt word
repetition, and landmark tasks) were used to investigate which protocols
gave reliable single-subject results. Ten healthy participants in their �fties
were scanned twice using an identical protocol 2-3 days apart. In addition
to the fMRI sessions, high-angular resolution di�usion tensor MRI (DTI),
and high-resolution 3D T1-weighted volume scans were acquired.

Metadata

• Investigators: Gorgolewski KJ, Storkey A, Bastin ME, Whittle IR, Ward-
law JM, Pernet CR

• Sample Size: 10

• Scanner Type: GE Signa HDxt 1.5T

Tasks Experimental conditions
task001 Overt word repetition cond001 Over word repetition
task002 Covert verb generation cond001 Covert word generation

task003 Finger foot lips
cond001 Finger
cond002 Foot
cond003 Lips

task004 Overt verb generation cond001 Overt verb generation

task005 Line bisection

cond001 Correct bisection
cond002 Incorrect bisection
cond003 No response task
cond004 Response control
cond005 No response control

Table A.20: Tasks and experimen-
tal conditions of ds000114.
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A.21 Cortical processing of high-level mathematical con-
cepts (amalric2012mathematicians)

Study featuring a visual recognition task with a focus on “digits” and “equa-
tions” stimuli, as well as a localizer task of subjects’ global functions.

Metadata

• Investigators: Marie Amalric, and Stanislas Dehaene

• Sample Size: 30

• Scanner Type: Siemens 3T Trio

Tasks Experimental conditions

task001 visual recognition task (one-back)

cond001 body
cond002 equation
cond003 house
cond004 word
cond005 number
cond006 tool
cond007 face
cond008 checkerboard

task002 localizer task

cond001 horizontal checkerboard
cond002 vertical checkerboard
cond003 auditory right click
cond004 auditory left click
cond005 visual right click
cond006 visual left click
cond007 auditory calculation
cond008 visual calculation
cond009 visual sentences
cond010 auditory sentences

Table A.21: Tasks and exper-
imental conditions of amal-
ric2012mathematicians.
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A.22 Cortical representation of the constituent struc-
ture of sentences (devauchelle2009sentence)

Linguistic analyses suggest that sentences are not mere strings of words but
possess a hierarchical structure with constituents nested inside each other.
We used functional magnetic resonance imaging (fMRI) to search for the
cerebral mechanisms of this theoretical construct. We hypothesized that
the neural assembly that encodes a constituent grows with its size, which
can be approximately indexed by the number of words it encompasses. We
therefore searched for brain regions where activation increased parametri-
cally with the size of linguistic constituents, in response to a visual stream
always comprising 12 written words or pseudowords. The results isolated
a network of left-hemispheric regions that could be dissociated into two
major subsets. Inferior frontal and posterior temporal regions showed con-
stituent size e�ects regardless of whether actual content words were present
or were replaced by pseudowords (jabberwocky stimuli). This observation
suggests that these areas operate autonomously of other language areas and
can extract abstract syntactic frames based on function words and morpho-
logical information alone. On the other hand, regions in the temporal pole,
anterior superior temporal sulcus and temporo-parietal junction showed
constituent size e�ect only in the presence of lexico-semantic information,
suggesting that they may encode semantic constituents. In several inferior
frontal and superior temporal regions, activation was delayed in response
to the largest constituent structures, suggesting that nested linguistic struc-
tures take increasingly longer time to be computed and that these delays can
be measured with fMRI.

Metadata

• Investigators: Christophe Pallier, Anne-Dominique Devauchelle, and
Stanislas Dehaene

• Sample Size: 40

• Scanner Type: Siemens 3T Trio

Tasks Experimental conditions

task001 language task

cond001 c01
cond002 c02
cond003 c03
cond004 c04
cond005 c06
cond006 c12
cond007 nc3
cond008 nc4
cond009 motor

Table A.22: Tasks and ex-
perimental conditions of de-
vauchelle2009sentence.
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A.23 Constituent structure of sentences and music (cau-
vet2009muslang)

Similar experiment to A.22 but with auditory stimuli, and featuring both a
language and a music task.

Metadata

• Investigators: Elodie Cauvet, Christophe Pallier

• Sample Size: 35

• Scanner Type: Siemens 3T Trio

Tasks Experimental conditions

task001 music task

cond001 c16 music
cond002 c08 music
cond003 c04 music
cond004 c02 music
cond005 c01 music
cond006 motor

task002 language task

cond001 c16 language
cond002 c08 language
cond003 c04 language
cond004 c02 language
cond005 c01 language
cond006 motor

Table A.23: Tasks and exper-
imental conditions of cau-
vet2009muslang.
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A.24 Temporal tuning properties along the human ven-
tral visual stream (gauthier2009resonance)

Both our environment and our behavior contain many spatiotemporal reg-
ularities. Preferential and di�erential tuning of neural populations to these
regularities can be demonstrated by assessing rate dependence of neural
responses evoked during continuous periodic stimulation. Here, we used
functional magnetic resonance imaging to measure regional variations of
temporal sensitivity along the human ventral visual stream. By alternating
one face and one house stimulus, we combined su�cient low-level signal
modulation with changes in semantic meaning and could therefore drive all
tiers of visual cortex strongly enough to assess rate dependence. We found
several dissociations between early visual cortex and middle- and higher-
tier regions. First, there was a progressive slowing down of stimulation
rates yielding peak responses along the ventral visual stream. This �nd-
ing shows the width of temporal integration windows to increase at higher
hierarchical levels. Next, for �xed rates, early but not higher visual cor-
tex responses additionally depended on the length of stimulus exposure,
which may indicate increased persistence of responses to short stimuli at
higher hierarchical levels. Finally, attention, which was recruited by an in-
cidental task, interacted with stimulation rate and shifted tuning peaks to-
ward lower frequencies. Together, these �ndings quantify neural response
properties that are likely to be operational during natural vision and that
provide putative neurofunctional substrates of mechanisms that are rele-
vant in several psychophysical phenomena as masking and the attentional
blink. Moreover, they illustrate temporal constraints for translating the de-
ployment of attention into enhanced neural responses and thereby account
for lower limits of attentional dwell time.

Metadata

• Investigators: Baptiste Gauthier, Evelyn Eger, Guido Hesselmann, Anne-
Lise Giraud, and Andreas Kleinschmidt

• Sample Size: 11

• Scanner Type: Siemens 3T Trio
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Tasks Experimental conditions

task001 continuous face house block

cond001 17ms frequency
cond002 33ms frequency
cond003 50ms frequency
cond004 100ms frequency
cond005 200ms frequency
cond006 400ms frequency
cond007 800ms frequency
cond008 1600ms frequency
cond009 3200ms frequency
cond010 4800ms frequency
cond011 baseline

task002 discontinuous face house block 400ms frequency

cond001 33ms duration
cond002 50ms duration
cond003 100ms duration
cond004 200ms duration
cond005 400ms duration
cond006 baseline

task003 discontinuous face house block 800ms frequency

cond001 33ms duration
cond002 50ms duration
cond003 100ms duration
cond004 400ms duration
cond005 800ms duration
cond006 baseline

task004 object localizer

cond001 face
cond002 house
cond003 object
cond004 scramble
cond005 baseline

Table A.24: Tasks and exper-
imental conditions of gau-
thier2009resonance.



142

A.25 Temporal tuning properties along the human ven-
tral visual stream (gauthier2010resonance)

See dataset A.24 for full description.

Metadata

• Investigators: Baptiste Gauthier, Evelyn Eger, Guido Hesselmann, Anne-
Lise Giraud, and Andreas Kleinschmidt

• Sample Size: 13

• Scanner Type: Siemens 3T Trio

Tasks Experimental conditions

task001 continuous face house block

cond001 50ms frequency
cond002 75ms frequency
cond003 100ms frequency
cond004 125ms frequency
cond005 150ms frequency
cond006 175ms frequency
cond007 200ms frequency
cond008 250ms frequency
cond009 400ms frequency
cond010 800ms frequency
cond011 baseline
cond012 hits
cond013 misses

task002 continuous face house block with distractor

cond001 50ms frequency
cond002 75ms frequency
cond003 100ms frequency
cond004 125ms frequency
cond005 150ms frequency
cond006 175ms frequency
cond007 200ms frequency
cond008 250ms frequency
cond009 400ms frequency
cond010 800ms frequency
cond011 baseline

task003 object localizer

cond001 face
cond002 house
cond003 object
cond004 scramble
cond005 baseline

Table A.25: Tasks and exper-
imental conditions of gau-
thier2010resonance.
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A.26 Recruitment of an Area Involved in Eye Movements
During Mental Arithmetic (knops2009recruitment)

Throughout the history of mathematics, concepts of number and space have
been tightly intertwined. We tested the hypothesis that cortical circuits for
spatial attention contribute to mental arithmetic in humans. We trained a
multivariate classi�er algorithm to infer the direction of an eye movement,
left or right, from the brain activation measured in the posterior parietal
cortex. Without further training, the classi�er then generalized to an arith-
metic task. Its left versus right classi�cation could be used to sort out sub-
traction versus addition trials, whether performed with symbols or with
sets of dots. These �ndings are consistent with the suggestion that mental
arithmetic co-opts parietal circuitry associated with spatial coding.
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Tasks Experimental conditions

task001 calculation task

cond001 operator addition
cond002 operator subtraction
cond003 operator color
cond004 �rst operand symbolic addition
cond005 �rst operand symbolic subtraction
cond006 �rst operand symbolic color
cond007 �rst operand non-symbolic addition
cond008 �rst operand non-symbolic subtraction
cond009 �rst operand non-symbolic color
cond010 second operand symbolic addition smaller
cond011 second operand symbolic subtraction smaller
cond012 second operand symbolic color smaller
cond013 second operand non-symbolic addition smaller
cond014 second operand non-symbolic subtraction smaller
cond015 second operand non-symbolic color smaller
cond016 second operand symbolic addition larger
cond017 second operand symbolic subtraction larger
cond018 second operand symbolic color larger
cond019 second operand non-symbolic addition larger
cond020 second operand non-symbolic subtraction larger
cond021 second operand non-symbolic color larger
cond022 response

task002 saccades task
cond001 right �eld
cond002 left �eld

task003 saccades localizer
cond001 right �eld
cond002 left �eld

Table A.26: Tasks and ex-
perimental conditions of
knops2009recruitment.
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A.27 Fast reproducible identification and large-scale databas-
ing of individual functional cognitive networks (pinel2007fast)

Although cognitive processes such as reading and calculation are associated
with reproducible cerebral networks, inter-individual variability is consid-
erable. Understanding the origins of this variability will require the elabo-
ration of large multimodal databases compiling behavioral, anatomical, ge-
netic and functional neuroimaging data over hundreds of subjects. With this
goal in mind, we designed a simple and fast acquisition procedure based on a
5-minute functional magnetic resonance imaging (fMRI) sequence that can
be run as easily and as systematically as an anatomical scan, and is there-
fore used in every subject undergoing fMRI in our laboratory. This protocol
captures the cerebral bases of auditory and visual perception, motor actions,
reading, language comprehension and mental calculation at an individual
level.
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Tasks Experimental conditions

task001 localizer task

cond001 horizontal checkerboard
cond002 vertical checkerboard
cond003 auditory right click
cond004 auditory left click
cond005 visual right click
cond006 visual left click
cond007 auditory calculation
cond008 visual calculation
cond009 visual sentences
cond010 auditory sentences

Table A.27: Tasks and experimen-
tal conditions of pinel2007fast.
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A.28 Genetic and environmental contributions to brain
activation during calculation (pinel2009twins)

Twin studies have long suggested a genetic in�uence on inter-individual
variations in mathematical abilities, and candidate genes have been iden-
ti�ed by genome-wide association studies. However, the localization of
the brain regions under genetic in�uence during number manipulation is
still unexplored. Here we investigated fMRI data from a group of 19 MZ
(monozygotic) and 13 DZ (dizygotic) adult twin pairs, scanned during a
mental calculation task. We examined both the activation and the degree of
functional lateralization in regions of interest (ROIs) centered on the main
activated peaks. Heritability was �rst investigated by comparing the re-
spective MZ and DZ correlations. Then, genetic and environmental con-
tributions were jointly estimated by �tting a ACE model classically used
in twin studies. We found that a subset of the activated network was un-
der genetic in�uence, encompassing the bilateral posterior superior parietal
lobules (PSPL), the right intraparietal sulcus (IPS) and a left superior frontal
region. An additional region of the left inferior parietal cortex (IPC), whose
deactivation correlated with a behavioral calculation score, also presented
higher similarity between MZ than between DZ twins, thus o�ering a plau-
sible physiological basis for the observable inheritance of math scores. Fi-
nally, the main impact of the shared environment was found in the lateral-
ization of activation within the intraparietal sulcus. These maps of genetic
and environmental contributions provide precise candidate phenotypes for
further genetic association analyses, and illuminate how genetics and edu-
cation shape the development of number processing networks.
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Tasks Experimental conditions

task001 object recognition task

cond001 words
cond002 digit
cond003 house
cond004 face
cond005 action
cond006 tool
cond007 scramble

task002 arithmetics and saccades task

cond001 calculation
cond002 next number
cond003 saccade
cond004 junk

task003 language task
cond001 French
cond002 Korean
cond003 sound

Table A.28: Tasks and experimen-
tal conditions of pinel2009twins.A.29 Principal Component Regression predicts functional

responses across individuals (pinel2012archi)

Inter-subject variability is a major hurdle for neuroimaging group-level in-
ference, as it creates complex image patterns that are not captured by stan-
dard analysis models and jeopardizes the sensitivity of statistical proce-
dures. A solution to this problem is to model random subjects e�ects by
using the redundant information conveyed by multiple imaging contrasts.
In this paper, we introduce a novel analysis framework, where we estimate
the amount of variance that is �t by a random e�ects subspace learned on
other images; we show that a principal component regression estimator
outperforms other regression models and that it �ts a signi�cant propor-
tion (10% to 25%) of the between-subject variability. This proves for the
�rst time that the accumulation of contrasts in each individual can provide
the basis for more sensitive neuroimaging group analyzes.
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Tasks Experimental conditions

task001 localizer task

cond001 horizontal checkerboard
cond002 vertical checkerboard
cond003 auditory right click
cond004 auditory left click
cond005 visual right click
cond006 visual left click
cond007 auditory calculation
cond008 visual calculation
cond009 visual sentences
cond010 auditory sentences

task002 social task

cond001 intention triangle
cond002 random triangle
cond003 speech
cond004 non-speech
cond005 auditory false belief
cond006 visual false belief
cond007 auditory mechanistic
cond008 visual mechanistic

task003 emotional task

cond001 trusty face
cond002 sex face
cond003 control face
cond004 intention glance
cond005 sex glance
cond006 control glance

task004 parietal task

cond001 hand rotation
cond002 side rotation
cond003 saccade
cond004 object grasp
cond005 object orientation

Table A.29: Tasks and experimen-
tal conditions of pinel2012archi.
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A.30 A Temporal Bo�leneck in the Language Compre-
hension Network (vagharchakian2012temporal)

Humans can understand spoken or written sentences presented at extremely
fast rates of ∼400 wpm, far exceeding the normal speech rate (∼150 wpm).
How does the brain cope with speeded language? And what processing bot-
tlenecks eventually make language incomprehensible above a certain pre-
sentation rate? We used time-resolved fMRI to probe the brain responses
to spoken and written sentences presented at �ve compression rates, rang-
ing from intelligible (60–100% of the natural duration) to challenging (40%)
and unintelligible (20%). The results show that cortical areas di�er sharply
in their activation speed and amplitude. In modality-speci�c sensory ar-
eas, activation varies linearly with stimulus duration. However, a large
modality-independent left-hemispheric language network, including the in-
ferior frontal gyrus (pars orbitalis and triangularis) and the superior tem-
poral sulcus, shows a remarkably time-invariant response, followed by a
sudden collapse for unintelligible stimuli. Finally, linear and nonlinear re-
sponses, re�ecting a greater e�ort as compression increases, are seen at
various prefrontal and parietal sites. We show that these pro�les �t with a
simple model according to which the higher stages of language processing
operate at a �xed speed and thus impose a temporal bottleneck on sentence
comprehension. At presentation rates faster than this internal processing
speed, incoming words must be bu�ered, and intelligibility vanishes when
bu�er storage and retrieval operations are saturated. Based on their tem-
poral and amplitude pro�les, bu�er regions can be identi�ed with the left
inferior frontal/anterior insula, precentral cortex, and mesial frontal cortex.
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Tasks Experimental conditions

task001 visual language compression task

cond001 visual sentences 20% duration
cond002 visual sentences 40% duration
cond003 visual sentences 60% duration
cond004 visual sentences 80% duration
cond005 visual sentences 100% duration

task002 auditory language compression task

cond001 auditory sentences 20% duration
cond002 auditory sentences 40% duration
cond003 auditory sentences 60% duration
cond004 auditory sentences 80% duration
cond005 auditory sentences 100% duration

Table A.30: Tasks and exper-
imental conditions of vaghar-
chakian2012temporal.
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A.31 A Parametric Empirical Bayesian Framework for
the EEG/MEG Inverse Problem: Generative Mod-
els for Multi-Subject and Multi-Modal Integration
(henson2010faces)

We review recent methodological developments within a parametric em-
pirical Bayesian (PEB) framework for reconstructing intracranial sources of
extracranial electroencephalographic (EEG) and magnetoencephalographic
(MEG) data under linear Gaussian assumptions. The PEB framework of-
fers a natural way to integrate multiple constraints (spatial priors) on this
inverse problem, such as those derived from di�erent modalities (e.g., from
functional magnetic resonance imaging, fMRI) or from multiple replications
(e.g., subjects). Using variations of the same basic generative model, we il-
lustrate the application of PEB to three cases: (1) symmetric integration
(fusion) of MEG and EEG; (2) asymmetric integration of MEG or EEG with
fMRI, and (3) group-optimization of spatial priors across subjects. We evalu-
ate these applications on multi-modal data acquired from 18 subjects, focus-
ing on energy induced by face perception within a time–frequency window
of 100–220ms, 8–18Hz. We show the bene�ts of multi-modal, multi-subject
integration in terms of the model evidence and the reproducibility (over
subjects) of cortical responses to faces.
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Tasks Experimental conditions

task001 face recognition task
cond001 famous
cond002 scrambled
cond003 unfamiliar

Table A.31: Tasks and experimen-
tal conditions of henson2010faces.
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