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Cette thèse comprend deux parties principales: La première partie est une étude du problème d'élasticité linéaire en temps par une méthode de Galerkin discontinue. Dans cette partie, nous avons tout d'abord obtenu un estimateur a posteriori pour la formulation semi-discrète. En utilisant une technique de reconstruction et des estimateurs d'erreur a posteriori du problème stationnaire associé, on a établi un estimateur a posteriori d'erreur pour le problème d'onde élastique dépendant du temps. An de calculer l'estimateur d'erreur lié au cas stationnaire, nous avons présenté deux méthodes, l'une utilisant la technique de la dualité ce qui nous a donné un calcul d'erreur en norme L 2 et l'autre en calculant via l'erreur en norme énergie. Ensuite, pour la discrétisation en temps de l'équation, nous utilisons un schéma numérique d'Euler. En utilisant une technique de reconstruction spatio-temporelle, on propose un nouvel estimateur a posteriori. La deuxième partie a pour but l'établissement d'un développement asymptotique pour la solution du problème de Stokes avec une petite perturbation du domaine. Dans ce travail, nous avons appliqué la théorie du potentiel. On a écrit les solutions du problème non-perturbé et du problème perturbé sous forme des opérateurs intégraux. En calculant la diérence, et en utilisant des propriétés liées aux noyaux des opérateurs on a établi un développement asymptotique de la solution.

Introduction

The purpose of this thesis is twofold:

The rst goal is to derive an a posteriori error control for discontinuous Galerkin method for the time-dependent linear elasticity problem.

The second goal is to derive an asymptotic expansion for the solution of Stokes resolvent problem with a small perturbation of the domain.

A posteriori error estimates and adaptivity

A posteriori error estimation and adaptivity recently have become successful tools for ecient numerical computations. Traditionally, the quality of numerical solution is expressed with the aid of a priori error estimates which provide information on the asymptotic behavior of the discretization errors.

Theses estimates have typically a bound for the error between the exact solution and the approximate solution as C = C(u) which depends on the exact solution that is unknown. Thus, the quantity cannot be evaluated in practice and one cannot obtain a computable upper bound of the error.

Unlike a priori error estimates, a posteriori error estimators do not involve knowledge of the exact unknown solution and are thus in general computable.

A posteriori error estimators can be used to signify where modications in discretization parameters need to be made, thus achieving adaptivity.

A posteriori error bounds and adaptive nite elements have already been widely considered for solving elliptic, parabolic and rst order hyperbolic problems. For example, in [H-P-D] they consider the a posteriori error for Maxwell equation, [G-L-V] investigates the a posteriori error for parabolic problem, [K-M] considers a posteriori for time dependent Stokes equation. Howerver, there are few results about a posteriori error analysis for the second order evolution problems; we mention, in particular, [B-S] and [G-L-M] derive rigorous a posteriori bounds for conforming FEMs in case of fully discretization for wave equation.

(SE) reconstruction. The SE reconstruction technique allows to estimate the error of the time-dependent problem via an auxiliary SE equation. In case of fully discretization, we will apply the implicit backward Euler method and make use of an appropriate space-time reconstruction satisfying a zero-mean value in time which was introduced recently in [G-L-M].

Perturbation problem

Perturbation theory is the study of the eects of small disturbances. If the eects are small, the disturbances or perturbations are said to be regular; otherwise, they are said to be singular. The basic idea in perturbation theory is to obtain an approximate solution of a mathematical problem by exploiting the presence of a small parameter. An introduction to perturbation method can be found in [VanDyke] or [Hinch].

A theoretical approach of this problem remains of interest for two main reasons: to study the behavior of the solution of perturbation problem, and to derive the perturbation approximation. The derived approximation formula can be applied in the theory of inverse problem as well. It allows to recover mechanical properties by inverting the displacement data, for example to recover the geometric features of the domain of perturbation, or the reconstruction of the location of the anomalies.

The problems of asymptotic expansion with a perturbation on the interface have been derived for some equations, we mention here for example [A-K-L-Z] and [F-K-S] concerning conductivity interface problem, and [Zr] involving the Helmholtz equations.

Stokes resolvent problem

The Stokes resolvent system can be obtained by applying the Laplace transform to the system of the continuity and Navier-Stokes equations which, in the case d = 2 or d = 3, describes the low Reynolds number ow of a viscous incompressible uid (for details see [Kohra], Sec. 1.5; [Kohrb], [Varnb]). So the study of this problem has a key role in the understanding of the biomechanics of blood blow, the Brownian motion, the motion of swimming microorganisms, and other biological or chemical phenomena.

On the other hand, the potential theory for the Stokes resolvent system was developed by Varnhorn (cf. [Varna], [Varnb]), in addition, the fundamental solution for the system of equations in R 3 was obtained by McCraken in [McC]. Also the Dirichlet and Neumann problems for the Stokes resolvent equations on bounded and exterior domains in R n , have been studied recently in [B-V], [Varnc], and a mixed boundary value problem for the same equations has been treated in [Kohra]. They construct a solution of this problem in form of appropriate potentials (can be represented as single layer potentials, double layer potentials, or their linear combination), with the unknown source densities are dened via integral equation on the boundary of the domain. In order to show the existence of solution u, p of the boundary value problem, the method of boundary inregral equations based on layer potentials is used, these problems have been carried out completely for the case d = 2, 3 in [Kohra] for Neumann boundary problems, in [Varne] for interior and exterior Dirichlet boundary problems, see also in [B-V] and [Varnc] for regarding Stokes resolvent problems, respectively, in case d = 2 and d = 3.

Asymptotic expansion for Stokes resolvent problem

In this work, we aim to derive an asymptotic expansion for the solution of Stokes resolvent problem. We consider a bounded domain Ω ⊂ R d (d = 2, 3) with connected boundary ∂Ω of class C 2,α , α > 0; and let ∂Ω δ be a δ-perturbation of ∂Ω dened as follows: In two dimensions, let ρ ∈ C 1,α (∂Ω), ν is the unit outward normal vector on ∂Ω, and ∂Ω δ is given by ∂Ω δ = { x : x = x + δρ(x)ν(x), x ∈ ∂Ω}, (1) in three dimensions, we consider the perturbed boundary ∂Ω δ dened as ∂Ω δ = { x : x = x + δν(x), x ∈ ∂Ω}.

(2) Our approach is carried out for the interior Dirichlet problem, and our contributions consist of two main results: Firstly, we verify the continuity of the solution with respect to the small perturbation δ via the stability of the density function. Secondly, we derive the asymptotic expansion of the solution, after deriving the expansion of the density function. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method, and geometric properties of the perturbed boundary.

The method, which is explicitly carried out here for the interior Dirichlet problem of the Stokes operator in two-and three-dimensions, can also be used for many other boundary value problems, whenever a suitable potential theory is available, for example in the case of harmonic, elastic, or hydrodynamic boundary value problem.

Organization of this thesis

This thesis is divided into two parts, and composed of eight chapters, corresponding to the two goals introduced above.

The rst part includes four chapters (Chapter 1, 2, 3, 4) with the following contents:

Chapter 1 provides a general setting for this work, with the notations in some functional spaces, some preliminary results concerning with functional inequalities and necessary approximation results that will be used in the ensuing chapters.

In Chapter 2, we present the mathematical model for linear elasticity problem, and the DG scheme for semi-and fully discretizations. For the fully discrete scheme, we employ the implicit backward Euler method for timediscretization.

Chapter 3 is devoted to the construction of an a posteriori error estimate in semi-discrete case via the error in the stationary reconstruction problem.

It consists of the SE reconstruction technique and its corresponding error decomposition, which will imply the error relation and an a posteriori bound in the L ∞ (L 2 )-norm of the error.

Chapter 4 presents an a posteriori error control for fully discrete problem, using similar techniques in the case of semi-discrete case, associated with an appropriate space-time reconstruction.

The second part states with more details the results that have been published in the journal Complex Var. Elliptic Equ., see [L-D]. It includes three chapters (Chapter 5,6,and 7), with the contents as follows:

Chapter 5 is devoted to introduce the notations and some preliminary results of layer-potential theory for Stokes problem and perturbed geometry.

In Chapter 6, we demonstrate the continuity of the solution with respect the small perturbation on the interface.

Chapter 7 is devoted to the derivation of the high-order terms in the asymptotic expansion of the solution via deriving an asymptotic expansion for the density function.

Chapter 8 gives conclusion and perspectives of this thesis.

To be seft-content, we have put the proofs for some inequalities and auxiliary results concerning the rst part in Appendix A, and some preliminary 

Preliminaries

This chapter contains the setting for basic notations and recall preliminary results concerning Sobolev spaces, approximation properties and some important formulas which will be used throughout this work.

Some functional spaces

Throughout this manuscript, the standard space, norm, and inner product notation are adopted, their denitions can be found for example in [A-F].

Denote by Ω a bounded polygonal domain in R d , d = 2, 3, we have the following denitions.

Denition 1. (L p -spaces, 1 ≤ p ≤ ∞).

i) The vector space L p (Ω), 1 ≤ p < ∞ is the space of integrable functions:

L p (Ω) = v measurable : Ω |v| p < ∞ , is endowed with the norm v L p (Ω) = Ω |v| p 1/p .
Particularly, in case p = 2, the space L 2 (Ω) is a Hilbert space with respect to the following inner product and norm: with associated norm

(u, v) Ω = Ω uv, v L 2 (Ω) = Ω v 2 1/2 . ii) In case p = ∞, the space L ∞ (Ω) is dened by: L ∞ (Ω) = {v : ess sup x∈Ω |v(x)| < ∞} endowed with the norm v L ∞ (Ω) = ess sup x∈Ω |v(x)|.
• W s p (Ω) and semi-norm | • | W s p (Ω) : u W s p (Ω) := |α|≤s D α u p L p (Ω) 1 p , |u| W s p (Ω) := |α|=s D α u p L p (Ω) 1 p , for 1 ≤ p < ∞; and u W s ∞ (Ω) := max |α|≤s D α u L ∞ (Ω) , |u| W s ∞ (Ω) := max |α|=s D α u L ∞ (Ω) ,
for p = ∞. Moreover, we shall denote the space W s p with p = 2 by W s 2 = H s , and we shall use the abbreviated notation

• s,Ω for the H s -norm. In particular, for s = 0, we identify the space H 0 (Ω) = L 2 (Ω), and so the norm v 0,Ω = v L 2 (Ω) . Denition 3. (Space H(div, Ω)). The space H(div, Ω) is the space of all vector-valued functions which admit the weak divergence:

H(div, Ω) = {u ∈ L 2 (Ω) d : ∇ • u ∈ L 2 (Ω)}, endowed with the norm u H(div,Ω) = ( u 2 0,Ω + divu 2 0,Ω ) 1/2 .
Remark 1.1.1. For a function space X(Ω), let X(Ω) d and X(Ω) d×d be the spaces of vector, tensor elds whose components belong to X(Ω), respectively.

Without further specication, these spaces are equipped with the usual prod- 

uct norms. Furthermore, for v = (v i ) 1≤i≤d , w = (w i ) 1≤i≤d ∈ X(Ω) d and σ = (σ ij ) 1≤i,j≤d , τ = (τ ij ) 1≤i,j≤d ∈ X(Ω)
v • w = d i=1 v i w i , σ : τ = d i,j=1 σ ij τ ij ;
and the norms

|v| = √ v • v, |σ| = √ σ : σ.
In case v is a vector-valued or matrix-valued function, the corresponding term v s,Ω is dened in a similar manner. Here we use the same notations for the norms of vector-valued and matrix-valued.

The following space-time functions are important:

1.2. Finite element meshes and spaces 11 Denition 4. (Bochner space). Let X is a Banach space, we will make use of the Bochner space L p (0, T ; X), 1 ≤ p ≤ ∞ endowed with the norm

u L p (0,T,X) = ( T 0 u p X ) 1/p , 1 ≤ p < ∞; ess sup t∈[0,T ] u X , p = ∞.
1.2 Finite element meshes and spaces

Triangulations

Let T h be a subdivision of Ω into disjoint open sets {K} such that Ω = ∪ K∈T h K, which we call elements. We often use the word mesh for subdivision, and we assume that the mesh is regular, e.g. it has no hanging nodes.

Denote by h K := diam(K) the diameter of element K and by h := max K∈T h h K the mesh size.

We assume that the triangulation to be shape-regular, i.e. there exists a constant ϑ > 0 such that ϑ := sup

K∈T h h K ρ K < ∞,
here h K and ρ K denote the diameter of K and the diameter of the largest ball inscribed in K, respectively. If d = 2, shape regularity means that the smallest angle of all elements K is bounded away from zero.

The above assumptions also imply that the mesh is locally quasi-uniform, that is, there is a constant κ > 0 such that

κ ≤ h K h K ≤ κ -1 ,
whenever K and K share a common edge.

Finite element spaces

Given a partition or mesh T h of Ω, we dene the following so-called broken Sobolev space for s ≥ 0:

H s (T h ) d = {v ∈ L 2 (Ω) d : v| K ∈ H s (K) d , K ∈ T h }, (1.1)
and endow it with the norm

v s,T h = K∈T h v 2 s,K 1/2 .
For example, the space H 1 (T h ) d is then a collection of independent Sobolev space H 1 (K) d over the individual element K of the mesh T h . For a function u ∈ H 1 (T h ) d , we will use the notation ∇u so as to denote the broken weak gradient, (∇u)| K := ∇(u| K ).

We will consider the DG nite element space

V h := {v ∈ L 2 (Ω) d : v| K ∈ P r (K) d , K ∈ T h },
(1.2) here P r (K) denotes the set of polynomials of total degree at most r on K:

P r (K) = span{x i 1 1 x i 2 2 . . . x i d d : i 1 + i 2 + . . . i d ≤ r, x ∈ K}.

Averages and jumps

Let E h be a union of all faces (edges) of the triangulation T h , and denote by

E h = E I h ∪E B h with E I
h the union of all interior faces (edges) of the triangulation T h , and E B h being the set of all boundary faces. Here we will generically refer to any element of E h as a face, in both two and three dimensions.

Let K + and K -be two adjacent elements of T h . Let x be an arbitrary point on the common side e = ∂K + ∩ ∂K -. For a vector-valued function q ∈ H s (T h ) d , s > 1 2 , let us denote by q ± the trace of q on e from the interior of K ± . Then we dene average and jump at x ∈ e as follows:

{ {q} } = 1 2 (q + + q -); q = (q + -q -).

If e is a boundary side (e ∈ E B h ), these denitions are modied to { {q} } = q; q = q.

Introducing the function h dened on e ∈ E h by The following results can be seen for example in [Riv] and [Q-V].

h| e = min{h K , h K }, e ∈ E I h , e = ∂K ∩ ∂K , h K , e ∈ E B h , e = ∂K ∩ ∂Ω.
Lemma 1.4.1. Let Ω be a bounded domain with polygonal boundary ∂Ω and outward normal vector ν ∂Ω . There exist trace operators γ 0 : 

H s (Ω) → H s-1/2 (∂Ω) for s ≥ 1/2 and γ 1 : H s (Ω) → H s-
γ 0 v = v| ∂Ω , γ 1 v = ∇v • ν ∂Ω | ∂Ω .
The subspace H s 0 (Ω), s ≥ 1/2, consisting of functions whose traces vanish on the boundary is denoted by

H s 0 (Ω) = {v ∈ H s (Ω) : γ 0 v = 0 on ∂Ω}.
The following result makes a link between the Sobolev space H 1 (Ω) and the broken one H 1 (T h ) (see for e.g. in [Voh]

): Lemma 1.4.2. (Continuity of traces in H 1 (Ω)). Let v ∈ H 1 (Ω), then v = 0 a.e. on e, ∀e ∈ E I h ,
where E I h is the set of interior faces (edges) of the triangulation.

Lemma 1.4.3. (A sucient condition for

H 1 (Ω)). Let v ∈ H 1 (T h ) such that v = 0 a.e. on e, ∀e ∈ E I h , then v ∈ H 1 (Ω) and ∂v ∂x i | K = ∂v| K ∂x i for all K ∈ T h .
We have the following trace inequality (see e.g. in [K-Pb]).

Lemma 1.4.4. (Trace inequality). Let K be an element of the triangulation, and denote by h K = diam (K). Let e ∈ ∂K, the following inequality holds

v 2 0,∂K ≤ C tr h -1 K v 2 0,K + h K ∇v 2 0,K , ∀v ∈ H 1 (K), (1.3)
here C tr is independent of h K and v.

Remark 1.4.1. Note that analogous bounds as in Lemma 1.4.3, Lemma 1.4.2 and Lemma 1.4.4 can be easily obtained for vector valued function.
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We also recall the following results concerning the continuity of the normal trace of a function in H(div, Ω) (see for e.g. in [Voh]):

Lemma 1.4.5. (A sucient condition for Lemma 1.4.7. Let K be an element of T h . Then, there exists constant C inv independent of h K , v but depend on the polynomial degree r such that

H(div, Ω)). Let v ∈ L 2 (Ω) d , v| K ∈ H(div, K) for all K ∈ T h and v • ν e ∈ L 2 (e)
i) ∀v ∈ P r (K), ∀e ∈ ∂K, v 0,e ≤ C inv h -1/2 K v 0,K , ii) ∀v ∈ P r (K), ∀e ∈ ∂K, ∇v • ν e 0,e ≤ C inv h -1/2 K ∇v 0,K .
Recall that | • | j,K denote the semi-norm of H j (K). Then we also have:

Lemma 1.4.8. There exists a constant C depending only on the shaperegularity of the mesh, the approximation order r, and the dimension d

|v| j,K ≤ Ch i-j k |v| i,K , ∀v ∈ P r (K), 0 ≤ i ≤ j ≤ 2.
Remark 1.4.2. Note that analogous bounds as in Lemma 1.4.7 and Lemma 1.4.8 can be also obtained for vector-valued function.

Some other functional inequalities

The following inequalities are used at several places in this text. They can be found e.g. in [Riv] and the references therein.

Lemma 1.4.9. (Cauchy-Schwarz's inequality). For all f, g ∈ L 2 (Ω), the following inequality holds

|(f, g) Ω | ≤ f 0,Ω g 0,Ω .
(1.4) 

∀u ∈ H 1 (Ω) d , u 0,Ω ≤ C F Ω ∇u 0,Ω + ∂Ω udA .
Consequently, we have

∀u ∈ H 1 0 (Ω) d , u 0,Ω ≤ C F Ω ∇u 0,Ω .
(1.6)

Remark 1.4.3. Inequality (1.6) implies that the mapping u → ∇u 0,Ω is a

norm on H 1 0 (Ω) d .
With the notations of strain and stress tensors from Section 2.1, we state the following important inequalities for studying the elasticity problem which is called Korn's inequalities (see e.g. [Riv], [Ciar] and the references therein).

Lemma 1.4.12. (Korn's inequality). In Sobolev space H 1 (Ω) d , there is the

constant C > 0 such that ∀v ∈ H 1 (Ω) d , ∇v 0,Ω ≤ C( ε(v) 0,Ω + v 0,Ω ), (1.7) ∀v ∈ H 1 (Ω) d , ε(v) 0,Ω ≤ ∇v 0,Ω .
(1.8)

Moreover, for functions vanishing on the boundary v ∈ H 1 0 (Ω) d , the following inequality holds:

∀v ∈ H 1 0 (Ω) d , ∇v 0,Ω ≤ √ 2 ε(v) 0,Ω .
(1.9) Remark 1.4.4. The proof of (1.9) is given in Appendix A.1.

Korn's rst inequality can be generalized to the broken Sobolev space H 1 (T h ) d as follows (see [Bren]):

Lemma 1.4.13. (Broken Korn's inequality). There exists a positive constant

C such that ∀u ∈ H 1 (T h ) d , K∈T h ∇u 2 0,K 1/2 ≤ C K∈T h ε(u) 2 0,K + e∈E I h ∪E B h α h u 2 0,e 1/2
, where ∇u and ε(u) are the gradient and symmetric gradient, respectively, taken element-wise (introduced in Section 2.3), and α is a large enough constant which is introduced in later sections.
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Approximation properties

In this section we provide some useful approximation results.

Lemma 1.4.14. ( [Riv], Theorem 2.6). Let K be an element of the triangulation. Let v ∈ H s (K) for s ≥ 1 and let r ≥ 0 be an integer. There exists a constant C independent of v and h K and a function ṽ ∈ P r (K) such that ∀0 ≤ q ≤ s, v -ṽ q,K ≤ Ch µ-q K |v| s,K ;

(1.10)

where µ = min(r + 1, s) and e ∈ ∂K.

We also have the following more general result (cf. [R-W-G]):

Lemma 1.4.15. Let K be an element of the triangulation with h K its diameter. Let v ∈ H s (K), let r ≥ 0 be an integer. There exists a constant C independent of v and h K and a function ṽ

∈ P r (K) such that ∀0 ≤ q ≤ s, v -ṽ q,K ≤ Ch µ-q K v s,K , s ≥ 0, (1.11a) ∀0 ≤ q ≤ s, v -ṽ 0,e ≤ Ch µ-1/2 K v s,K , s > 1, (1.11b) ∀0 ≤ q ≤ s, v -ṽ 1,e ≤ Ch µ-3/2 K v s,K , s > 3/2, (1.11c) 
where µ = min(r + 1, s) and e ∈ ∂K.

Remark 1.4.5. Note that these inequalities in Lemma 1.4.14 and Lemma 1.4.15 are also true for vector-valued functions.

1.4.5 Green's theorem Lemma 1.4.16. (Green's theorem on

H 1 (Ω) × H 1 (Ω)). Let u, v ∈ H 1 (Ω) and 1 ≤ i ≤ d. Then ( ∂u ∂x i , v) Ω + (u, ∂v ∂x i ) Ω = (uν i ∂Ω , v) ∂Ω ,
where ν ∂Ω = (ν i ∂Ω ) d i=1 denotes the outward unit normal vector on ∂Ω.

Lemma 1.4.17. (Green's theorem on

H 1 (Ω) × H(div, Ω)). Let v ∈ H 1 (Ω) and w ∈ H(div, Ω). Then (w, ∇v) Ω + (∇ • w, v) Ω = (w • ν ∂Ω , v) ∂Ω ,
where ν ∂Ω = (ν i ∂Ω ) d i=1 denotes the outward unit normal vector on ∂Ω.

For elasticity problem, with notations of the strain, stress tensors given in Section 2.1, we have a similar approach as follows: 

σ(u) ∈ H(div, Ω) d . Then (σ(u), ε(v)) Ω + (∇ • σ(u), v) Ω = (σ(u))ν ∂Ω , v ∂Ω .
(1.12)

Proof. The proof requires the additional result, which is an easy consequence of the symmetry of the stress tensor:

1≤i,j≤d

σ ij (u) ∂v i ∂x j = 1≤i,j≤d σ ij (u)ε ij (v).
(1.13) Indeed, we have 1≤i,j≤d

σ ij (u) ∂v i ∂x j = 1≤i,j≤d 1 2 σ ij (u) ∂v i ∂x j + 1≤i,j≤d 1 2 σ ij (u) ∂v i ∂x j = 1≤i,j≤d 1 2 σ ij (u) ∂v i ∂x j + 1≤i,j≤d 1 2 σ ji (u) ∂v i ∂x j = 1≤i,j≤d 1 2 σ ij (u) ∂v i ∂x j + 1≤i,j≤d 1 2 σ ij (u) ∂v j ∂x i = 1≤i,j≤d σ ij (u)ε ij (v).
(1.14)

More details about this proof can be seen later in the proof for the consistency of the DG formulation in (2.3.2).

Chapter 2

Discontinuous Garlerkin formulation for elasticity problem

There are many DG methods available in the literature that can be applied for elasticity problem. For example, we can apply the class of primal DG methods, namely variations of interior penalty (IPDG) methods. These methods are often referred to as the symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), and incomplete interior Galerkin (IIPG) methods (see e.g. in [Riv]).

This chapter is devoted for the derivation of SIPG formulation for timedependent elasticity problem. The outline of this chapter is as follows: we rst will review some facts about stress, strain tensor in Section 2.1 and the mathematical model for elasticity problem in Section 2.2. Then we establish the DG formulation for semi-discrete case in Section 2.3. The last section is devoted for the DG formulation in fully discrete scheme.

Strain and stress tensors

Consider a homogeneous elastic body Ω ⊂ R d , d = 2, 3. Let u(x, t) = (u i (x, t)) d i=1 be the displacement vector at a point x = (x i ) d i=1 in Ω and a time t. The linearized strain tensor ε(u) = (ε kl (u)) 1≤k,l≤d is dened by

ε(u) = 1 2 (∇u + ∇u T ), or equivalently ∀1 ≤ k, l ≤ d, ε kl (u) = 1 2 ( ∂u k ∂x l + ∂u l ∂x k ).
The stress tensor is denoted by σ(u) = (σ ij (u)) 1≤i,j≤d , which satises the constitutive relationship: σ(u) = Cε(u), or equivalently

∀1 ≤ i, j ≤ d, σ ij (u) = d k,l=1 C ijkl ε kl (u),
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Chapter 2. DG formulation for the elasticity problem where C = (C ijkl ) ijkl is a fourth order tensor, independent of t and satisfying some symmetry properties:

C ijkl = C jikl = C ijlk = C klij . (2.1)
We assume that the stiness tensor C is positive denite and piecewise constant in Ω, then there exists a constant c * > 0 such that

∀(γ ij ) ij = 0, 1≤i,j,k,l≤d C ijkl γ kl γ ij ≥ c * 1≤i,j≤d γ 2 ij > 0.
(2.2)

Remark 2.1.1. As C is piecewise constant, we also assume that the nite element mesh (dened above in Section 1.2) respects the discontinuities by placing element faces along them.

Remark 2.1.2. With piecewise constant tensor C, there exists a positive constant C * such that Cτ 0,K ≤ C * τ 0,K for any element K ∈ T h , and matrix τ ∈ L 2 (Ω) d×d .

Model problem

Let Ω ⊂ R d , d = 2, 3 be a bounded polygonal (for d=2) or polyhedral (for d=3) domain with boundary ∂Ω. We consider the equations of linear elasticity problem of nding the displacement vector u = (u i (x, t)) d i=1 at a point x in Ω and at a time t ∈ [0, T ] such that

   ρ∂ 2 tt u i -d j=1 ∂σ ij (u) ∂x j = f i in (0, T ) × Ω, i = 1, d, u = 0 on ∂Ω × (0, T ],
(2.3)

with initial conditions u 0 ∈ H 1 0 (Ω) d , and u 1 ∈ L 2 (Ω) d : u(•, 0) = u 0 on Ω × {0}, ∂ t u(•, 0) = u 1 on Ω × {0}. (2.4) Here f (x, t) = (f i (x, t)) d i=1 ∈ L 2 (0, T ; L 2 (Ω) d
) is a general source function; and ρ(x) is the mass density of the material. For simplicity, we will take the coecient ρ = 1. Assume that the analytical solution u in (2.3) satises u ∈ L ∞ (0, T ;

H 1 0 (Ω) d ), ∂ t u ∈ L 2 (0, T ; L 2 (Ω) d ) and ∂ 2 tt u ∈ L 1 (0, T ; L 2 (Ω) d ).
Then u saties the following variational formulation: 

(∂ 2 tt u, v) Ω + a(u, v) = l(v), ∀v ∈ H 1 0 (Ω)
a(u, v) = (σ(u), ε(v)) Ω = Ω d i,j=1 σ ij (u)ε ij (v)dx, (2.6)
and the linear form l(•) is given by

l(v) = Ω f • vdx.
( 

Semi-discrete DG method

We now derive the spatial SIPG discretization for the elaticity problem in Section 2.3.1, and illustrate the well-posedness and consistency of that formulation in Section 2.3.2 as well.

2.3.1

Semi-discrete DG formulation Denition 5. Dene the bilinear form a h on H s (T h

) d × H s (T h ) d , s > 3/2 by a h (u, v) = K∈T h K σ(u) : ε(v)dx - e∈E h e { {(σ(u))ν e } } • v dA - e∈E h e { {(σ(v))ν e } } • u dA + e∈E h e a u • v dA; (2.8)
where ν e is an unit normal vector associated to the face e, oriented from K + to K -.

In formulation (2.8) above, the function a in the last terms penalies the jumps of u and v over the faces of T h ; a = αh -1 with α is a positive parameter independent of the local mesh sizes will be specied later; σ and ε are the stress tensor and symmetric gradient respectively, taken element-wise.

Chapter 2. DG formulation for the elasticity problem Remark 2.3.1. The bilinear form a h (•, •) is symmetric due to the symmetry property of the tensor C. Indeed, we have

σ(u) : ε(v) = 1≤i,j,k,l≤d C ijkl ε kl (u)ε ij (v)dx = 1≤i,j,k,l≤d ε kl (u)C klij ε ij (v) = ε(u) : σ(v).
(2.9) For a given partition T h of Ω, an approximation order r ≥ 1, and t ∈ [0, T ],

we wish to approximate the exact weak solution in (2.5) by a discrete function u h (t, •) ∈ V h . Thereby, the semi-discrete DG approximation to (2.5) then reads as follows:

Find u h : [0, T ] → V h such that (∂ 2 tt u h , v) Ω + a h (u h , v) = (f , v) Ω for all v ∈ V h , t ∈ (0, T ],
(2.10) with initial values

u h | t=0 = Π h u 0 , ∂ t u h | t=0 = Π h u 1 , (2.11) 
here Π h is the orthogonal L 2 -projection onto V h , and the discrete bilinear form a h on V h × V h is given in (2.8).

In Lemma 2.3.1 below, we shall show that there is a positive constant α min independent of the local sizes such that for α ≥ α min , the bilinear form a h is coercive on V h × V h , so the DG approximation (2.10) is well-dened.

2.3.2

Well-posedness of the bilinear form a h Lemma 2.3.1. Let the interior penalty parameter be dened as in (2.8).

Then there are positive constants M , κ and α min independent of h such that

|a h (u, v)| ≤ M |||u||| • |||v|||, ∀u, v ∈ V h ,
and for α ≥ α min , we have that

a h (u, u) ≥ κ|||u||| 2 , ∀u ∈ V h , with DG norm |||u||| = K∈T h ε(u) 2 0,K + e∈E h αh -1 u 2 0,e 1/2 .
Proof. Taking into account the uniform bounds of the tensor C, and application of the Cauchy-Schwarz's inequality readily gives

|a h (u, v)| ≤ max{2, 2α -1/2 C inv C * + 2C * }|||u||||||v|||, with constant C inv in inequality (1.4.7), constant C * is from the boundedness of the tensor from (2.1.2). Then choosing M = max{2, 2α -1/2 C inv C * + 2C * },
we obtain the continuity of the bilinear form a h .

To show the coercivity of the form a h , we note that

a h (u, u) = K∈T h K σ(u) : ε(u)dx-2 e∈E h e { {(σ(u))ν e } } • u dA + e∈E h αh -1 u 2 0,e dA.
(2.12)

By using the weighted Cauchy-Schwarz's inequality, the Young's inequality (1.5), we obtain

2 e∈E h e { {(σ(u))ν e } } • u dA ≤ 2 e∈E h { {(σ(u))ν e } } 0,e u 0,e ≤ γ(C * ) -2 C -2 inv e∈E h h (σ(u))ν e 2 0,e + γ -1 (C * ) 2 C 2 inv e∈E h h -1 u 2 0,e ≤ γ K∈T h (u) 2 0,K + γ -1 (C * ) 2 C 2 inv e∈E h h -1 u 2 0,e (2.13) 
for a parameter γ > 0 still at our disposal. Then with the constant c * is from the uniform ellipticity of the tensor (2.2), we conclude that

a h (u, u) ≥ (c * -γ) K∈T h ε(u) 2 0,K + 1-γ -1 C 2 inv (C * ) 2 α -1 e∈E h αh -1 u 2 0,e . Setting γ = c * /2 and α min = 4C 2 inv (C * ) 2 c -1 * , then for α ≥ α min , we obtain the desired coercivity bound with κ = min{ c * 2 , 1 2 }.
Remark 2.3.2. When no confusion is likely to occur, we shall suppress the dependence on e of the unit normal vector ν e .

We will now prove that the above semi-discrete DG formulation (2.10) with α specied later is consistent with the original continuous problem (2.3). Proof. First, we prove that if the solution u = (u i ) d i=1 of (2.3) belongs to H s (T h ) d , then it also solves (2.10). For this, let v = (v i ) d i=1 be an element in H s (T h ) d . We multiply the rst equation of (2.3) by v i | K , and integrate by parts on one element K ∈ T h :

K ∂ 2 tt u i v i dx + 1≤j≤d K σ ij (u) ∂v i ∂x j dx - 1≤j≤d ∂K σ ij (u)ν j ∂K v i dA = K f i v i dx,
where ν ∂K = (ν j ∂K ) d j=1 is the unit outward normal vector to ∂K. By adding and substracting the term

1 2 ∂v j ∂x i
and employing the symmetry of the tensor, we obtain

K ∂ 2 tt u • vdx + K σ(u) : ε(v)dx - ∂K ((σ(u))ν ∂K ) • vdA = K f • vdx.
Then summing over all elements K, we obtain

Ω ∂ 2 tt u•vdx+ K∈T h K σ(u) : ε(v)dx- K∈T h ∂K ((σ(u))ν ∂K )•vdA = Ω f •vdx.
Now switching from the outward normal vectors ν ∂K to the oriented normal vectors ν e , we have that

K∈T h ∂K ((σ(u))ν ∂K )•vdA = e∈E I h e ((σ(u))ν e ) • v dA+ e∈E B h e ((σ(u))ν e )•vdA, and ab = a { {b} } + b { {a} } , then employing (σ(u))ν e = 0 on E I h (see Lemma 1.4.6 and the fact that ∇ • (σ(u)) ∈ L 2 (Ω) d ), we obtain Ω ∂ 2 tt u•vdx+ K∈T h K σ(u) : ε(v)dx- e∈E h e { {(σ(u))ν} }• v dA = Ω f •vdx.
(2.14)

We now recover the DG formulation, and the only dierence would then be the addition of the last terms. Since u is solution to (2.3), then the jumps u are zero a.e. on the interior edges (or faces) e ∈ E I h and u = 0 on the boundary edges (or faces) e ∈ E B h . We can add these boundary and continuity conditions to the left handside of (2.14)

θ e∈E h e { {((σ(v))ν} } • u dA + e∈E h e a u • v dA = 0,
here θ is a constant. Depending on our choice for the discontinuity penalisation parameter θ, we will get the SIPG formulation (θ = -1), the NIPG formulation (θ = +1), and the IIPG formulation (θ = 0), respectively. Here we will work with the SIPG formulation, choosing θ = -1, we obtain the formulation (2.10).

Conversely, if u ∈ H 1 (Ω) d ∩ H s (T h ) d saties (2.10), then take v ∈ D(K) d (the space of C ∞ function with compact support in K), the DG formula- tion (2.10) reduces to K ∂ 2 tt u • vdx + K σ(u) : ε(v)dx = K f • vdx, (2.15) 
which immediately yields in the distributional sense for all K ∈ T h

∂ 2 tt u -∇ • σ(u) = f , in K.
(2.16)

Next, let e be an interior edge (or face) and let K 1 e and K 2 e be the two elements adjacent to e. Take v ∈ H 2 0 (K 1 e ∪ K 2 e ) d and extend it by vector zero over the rest of the domain, if we multiply (2.16) by v and use Green's theorem, we have

K 1 e ∪K 2 e ∂ 2 tt u•vdx+ K 1 e ∪K 2 e σ(u) : ε(v)dx- e (σ(u))ν e •vdA = K 1 e ∪K 2 e f •vdx.
On the other hand, since v | e = 0 , Eq. (2.10) reduces to

K 1 e ∪K 2 e ∂ 2 tt u • vdx + K 1 e ∪K 2 e σ(u) : ε(v)dx = K 1 e ∪K 2 e f • vdx. Hence, we have ∀v ∈ H 2 0 (K 1 e ∪ K 2 e ) d , e (σ(u))ν e • vdA = 0.
This implies that (σ(u))ν e = 0 in L 2 (e) d . Since this holds for all e, from Lemma 1.4.5, it implies that ∇ • σ(u) ∈ L 2 (Ω) d , and hence we have globally

∂ 2 tt u -∇ • σ(u) = f , in Ω.
(2.17)
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To recover the Dirichlet boundary condition, we multiply (2.17) by a function 

v ∈ H 2 (Ω) d ∩ H 1 0 (Ω)
- e∈E B h (σ(v))ν e • udA = 0.
This being true for all v ∈ H 2 (Ω) d ∩ H 1 0 (Ω) d , we have u = 0 on ∂Ω. The proof is completed.

Fullly discrete formulation 2.4.1 Space-time meshes and spaces

To derive the fully discrete DG formulation, we consider a subdivision of the time interval (0, T ] into subintervals (t n-1 , t n ], n = 1, . . . , N , with t 0 = 0 and t N = T , and we dene k n := t n -t n-1 , the local time step. Associated with the time subdivision, let T n h , n = 0, . . . , N be a sequence of meshes which may be dierent from T n-1 h when n ≥ 1. We also assume that the sequences of meshes T n h , n = 0, . . . , N are regular and shape regular, uniformly in n (see Section 1.2.1 for denitions of regular and shape-regular mesh).

For each n = 0, . . . , N , we denote by V n h a DG nite element space of xed degree r built on the partition T n h

V n h := {v ∈ L 2 (Ω) d : v| K ∈ P r (K) d , K ∈ T n h }

, and denote by E n

h the union of all edges (or faces) of the triangulation T n h .

Fully discretization formulation

By using backward Euler method to approximate the time derivative, we obtain the fully discrete implicit scheme for the elasticity problem (2.3). The fully discretization reads as follows:

For each n = 1, . . . , N , nd u n h ∈ V n h such that (∂ 2 u n h , v) Ω + a n h (u n h , v) = (f n , v) Ω for all v ∈ V n h , (2.18)
where the bilinear form a n h is given by

a n h (u, v) = K∈T n h K σ(u) : ε(v)dx - e∈E n h e { {(σ(u))ν e } } • v dA - e∈E n h e { {(σ(v))ν e } } • u dA + e∈E n h e a u • v dA; (2.19)
2.4. Fullly discrete formulation 27 and f n := f (t n , •), the backward nite dierence scheme for the discrete temporal derivatives

∂ 2 u n h := ∂u n h -∂u n-1 h k n , (2.20) with ∂u n h := u n h -u n-1 h k n for n = 1, 2, . . . , N, (2.21)
and the initial values (n = 0) are given by:

u 0 h := Π 0 h u 0 , ∂u 0 h = Π 0 h u 1 , here Π 0 h is the orthogonal L 2 -projection onto the nite element space V 0 h (al-
though other projections onto V 0 h can also be used for setting the values of u 0 h and ∂u 0 h ). It's known that the backward Euler scheme is unconditional stable, from the coercivity of the bilinear form a n h (•, •), we have that the problem (2.18) admits a unique solution (u n h ) 1≤n≤N at each time step.

Chapter 3

Semi-discrete a posteriori error control for the discontinuous Galerkin method for linear elasticity problem

The aim of this chapter is to derive an a posteriori error bound in L ∞ (L 2 )norm. We will now apply the SE reconstruction which allows to separate the temporal analysis from the spatial one. If we denote by u the solution in (2.5), and u h its DG approximation, then we build an auxiliary function w called SE reconstruction of u h , and we can estimate the error uu h via the error wu h . And note that w is an analysis-only device that, computing w is not needed in practice, as it does not appear in the resulting a posteriori error bounds. Then to derive an a posteriori L 2 -norm error bounds for the associated stationary elasticity equation, we propose two methods. The rst method is obtained by duality techniques, while in the second way we will derive error in L 2 -norm via energy norm by rewriting the DG formulation with lifting operator.

The following is an outline of this chapter. We rst will introduce the denition of SE reconstruction and error splitting in Section 3.1. Then we derive the error relation in Section 3.2, followed by an abstract error estimate in Section 3.3 and explicit a posteriori error bound in Section 3.5.

Stationary elasticity reconstruction

Denition 6. (SE reconstruction and error splitting). Let u h be the (semidiscrete) DG approximation given by (2.10). Let also Π h : L 2 (Ω) d → V h be the orthogonal L 2 -projection operator onto the nite element space V h . We dene the SE reconstruction w = w(t)

∈ H 1 0 (Ω) d of u h = u h (t) at time t ∈ [0, T ] as the solution of the SE problem a(w, v) = (g, v) Ω for all v ∈ H 1 0 (Ω) d , (3.1)
where

g := Bu h -Π h f + f , (3.2) and B : V h → V h is the discrete operator dened by (Bz, v) Ω = a h (z, v) for all v ∈ V h , for each z ∈ V h .
We decompose the error as

e := u h -u = ρ -θ , (3.3)
where θ := wu h and ρ := wu ∈ H 1 0 (Ω) 

-Π h f + f ∈ L 2 (Ω) d ,
follows from the Lax-Milgram theorem.

Remark 3.1.2. (The role of w). Consider the SE problem of nding w ∈

H 1 0 (Ω) d satisfying -∇ • (σ(w)) = g, (3.4) 
with g dened by (3.2). Let w h ∈ V h be the DG approximation to w, dened by the nite-dimensional linear system

a h (w h , v) = (Bu h -Π h f + f , v) Ω , for all v ∈ V h , this implies a h (w h , v) = (Bu h , v) Ω = a h (u h , v) for all v ∈ V h , i.e., w h = u h .
Therefore, the SE reconstruction w is the exact solution to the SE problem (3.4) whose DG approximate solution is u h . Then by construction, θ = wu h is the error of the DG method in V h for the stationary problem (3.4).

The above property of w is the main key of the reconstruction technique, which was applied for example in

[K-M], [G-L-V], [G-L-M]
for studying the a posteriori error for some other time-dependent problems.

Semi-discrete error relation

Lemma 3.2.1. With reference to the notation of decomposition as in Eq. (3.3), we have

(∂ 2 tt e, v) Ω + a(ρ, v) = 0 for all v ∈ H 1 0 (Ω) d .
Proof. We have the following expressions

(∂ 2 tt e, v) Ω + a(ρ, v) = (∂ 2 tt u h , v) Ω + a(w, v) -(∂ 2 tt u, v) Ω -a(u, v) = (∂ 2 tt u h , v) Ω + a(w, v) -(f , v) Ω = (∂ 2 tt u h , Π h v) Ω + a(w, v) -(f , v) Ω = -a h (u h , Π h v) + (f , Π h v) Ω + a(w, v) -(f , v) Ω = -a h (u h , Π h v) + a(w, v) + (Π h f -f , v) Ω = 0, (3.5)
where in the rst equality, we used the decomposition (3.3), in the second equality we made use of (2.5), in the third and fth equalities, the properties of the orthogonal L 2 -projection and the formulation (2.10) are used, nally the last equality follows the identity a

h (u h , Π h v) -(Π h f -f , v) Ω = a(w, v),
which is deduced from the construction of w as in Denition 6.

Abstract semi-discrete error bound

We have the following result for controlling the error e L ∞ (0,T ;L 2 (Ω) d ) in terms of the nonconforming error θ: Theorem 3.3.1. (Abstract semi-discrete error bound) Let u and u h be the weak solution in (2.5) and its DG approximation dened in (2.10) respectively, let w be the SE reconstruction of u h as in Denition 6. Applying the error decomposition (3.3) that ρ = wu, θ := wu h , the following error bound holds:

ρ L ∞ (0,T ;L 2 (Ω) d ) ≤ √ 2 u 0 -u h (0) 0,Ω + θ(0) 0,Ω + 2 T 0 ∂ t θ 0,Ω dt + 2C F Ω c -1/2 * u 1 -∂ t u h (0) 0,Ω , (3.6) 
Moreover, we also have

e L ∞ (0,T ;L 2 (Ω) d ) ≤ θ L ∞ (0,T ;L 2 (Ω) d ) + √ 2 u 0 -u h (0) 0,Ω + θ(0) 0,Ω + 2 T 0 ∂ t θ 0,Ω dt + 2C F Ω c -1/2 * u 1 -∂ t u h (0) 0,Ω , (3.7)
where C F Ω is the constant of the Poincaré's inequality (1.6).

Proof. Firstly, we will prove the bound (3.6).

We use here a testing procedure which is introduced by [Baker], and has been widely used for example in

[G-S-S], [G-L-M]. Let v : [0, T ] × Ω → R d with v(t, •) = t * t ρ(s, •)ds, t ∈ [0, T ], (3.8) Chapter 3. Semi-discrete a posteriori error bound for some xed t * ∈ [0, T ]. Clearly v ∈ H 1 0 (Ω) d and ρ ∈ H 1 0 (Ω) d . Also, we observe that v(t * , •) = 0, and ∂ t v(t, •) = -ρ(t, •) a.e. in [0, T ].
Set v = v in the error relation (3.2.1), integrate between 0 and t * with respect to the variable t, and integrate by parts the rst term on the left-hand side to obtain

- t * 0 (∂ t e, ∂ t v) Ω dt + (∂ t e(t * ), v(t * )) Ω -(∂ t e(0), v(0)) Ω + t * 0 a(ρ, v)dt = 0.
Due to the symmetry of the tensor C, and using the fact that ∂ t v = -ρ and v(t * , •) = 0, integrate on [0, T ], we rewrite the identity as

t * 0 1 2 d dt ρ(t) 2 0,Ω dt- 1 2 t * 0 d dt a(v(t), v(t))dt = t * 0 (∂ t θ, ρ) Ω dt+(∂ t e(0), v(0)) Ω which implies 1 2 ρ(t * ) 2 0,Ω - 1 2 ρ(0) 2 0,Ω + 1 2 a(v(0), v(0)) = t * 0 (∂ t θ, ρ) Ω dt + (∂ t e(0), v(0)) Ω Hence, we deduce 1 2 ρ(t * ) 2 0,Ω - 1 2 ρ(0) 2 0,Ω + 1 2 a(v(0), v(0)) ≤ max 0≤t≤T ρ(t) 0,Ω t * 0 ∂ t θ 0,Ω dt + ∂ t e(0) 0,Ω v(0) 0,Ω .
(3.9)

From the Poincaré's inequality, the bound of tensor C, and the Korn's inequality in H 1 0 (Ω) d (see Lemma 1.9), we get

1 2 a(v(0), v(0)) ≥ 1 2 c * ε(v(0)) 2 0,Ω ≥ 1 4 c * ∇v(0) 2 0,Ω ≥ 1 4 c * C -2 F Ω v(0) 2 0,Ω , (3.10) 
Combining this bound with (3.9), we arrive at

1 2 ρ(t * ) 2 0,Ω - 1 2 ρ(0) 2 0,Ω ≤ max 0≤t≤T ρ(t) 0,Ω t * 0 ∂ t θ 0,Ω dt + ∂ t e(0) 0,Ω v(0) 0,Ω - 1 4 c * C -2 F Ω v(0) 2 0,Ω .
(3.11)
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Moreover, noting that making use of the inequality AB -

1 4 m -1 B 2 ≤ mA 2 , for m = c * -1 C 2 F Ω , A = ∂ t e(0) 2 0,Ω and B = v(0) 2 0,Ω , we arrive at 1 2 ρ(t * ) 2 0,Ω - 1 2 ρ(0) 2 0,Ω ≤ max 0≤t≤T ρ(t) 0,Ω t * 0 ∂ t θ 0,Ω dt + c * -1 C 2 F Ω ∂ t e(0) 2 0,Ω , (3.12) 
Now, we select t * such that ρ(t * ) 0,Ω = max 0≤t≤T ρ(t) 0,Ω . In (3.12), using the inequality AB -

1 4 A 2 ≤ B 2 with A = ρ(t * ) 0,Ω , B = t * 0 ∂ t θ 0,Ω dt and
then taking square root of the resulting inequality yields

ρ L ∞ (0,T ;L 2 (Ω) d ) ≤ √ 2 ρ(0) 0,Ω + 2 T 0 ∂ t θ 0,Ω dt + 2C F Ω c * -1/2 ∂ t e(0) 0,Ω ; (3.13)
Finally we will get (3.7) as a consequence of the above estimate. Indeed, using the bound ρ(0) 0,Ω ≤ e(0) 0,Ω + θ(0) 0,Ω ; e(0) = u h (0) -u 0 , and

∂ t e(0) = ∂ t u h (0) -u 1 , we conclude that e L ∞ (0,T ;L 2 (Ω) d ) ≤ θ L ∞ (0,T ;L 2 (Ω) d ) + ρ L ∞ (0,T ;L 2 (Ω) d ) ≤ θ L ∞ (0,T ;L 2 (Ω) d ) + √ 2( u 0 -u h (0) 0,Ω + θ(0) 0,Ω ) + 2 T 0 ∂ t θ 0,Ω dt + 2C F Ω c -1/2 * u 1 -∂ t u h (0) 0,Ω .
(3.14)

Remark 3.3.1. (Completing the a posteriori error estimation). The bounds (3.3) are not (yet) explicitly a posteriori bounds, so to obtain a practical a posteriori bound, we need to estimate the norms involving the conforming error θ = wu h by a computable quantity.

Recalling that u h is exact the DG approximation of w according to Remark 3.1.2, we also obtain the following result:

Lemma 3.3.1. Given r ∈ L 2 (Ω) d , consider the stationary elasticity problem:

nd z ∈ H 1 0 (Ω) d such that -∇ • (σ(z)) = r, z = 0 on ∂Ω , (3.15)
whose solution can be approximated by z h ∈ V h of the following DG method: 

a h (z h , v) = (r, v) Ω , for all v ∈ V h . ( 3 
θ L ∞ (0,T ;L 2 (Ω) d ) ≤ E IP (u h , g, T h ) L ∞ (0,T ) ; (3.17a) √ 2 θ(0) 0,Ω ≤ √ 2E IP (u h (0), g(0), T h ); (3.17b) 2 T 0 ∂ t θ 0,Ω dt ≤ 2 T 0 E IP (∂ t u h , ∂ t g, T h )dt; (3.17c)
where g = Bu h -Π h f + f , and under the assumption that f is dierentiable in time.

Proof. The rst two bounds of (3.17) are directly derived from the property of w as presented in Remark 3.1.2. For the third estimate, noting that since a(•, •) and a h (•, •) are independent of t, there holds

a(∂ t w, v) = (∂ t g, v) Ω , for all v ∈ H 1 0 (Ω) d ,
and

a h (∂ t u h , v) = (∂ t (Bu h ), v) Ω = (∂ t g, v) Ω , for all v ∈ V h ,
noting that here we make use of the fact that the projection Π h commutes with the time dierentiation. The estimate is then the dierence between ∂ t u h and its reconstruction ∂ t w.

In the next section, we present in Theorem 3.4.1 and Theorem 3.4.2, respectively, two dierent a posteriori error bounds for zz h 0,Ω .

A posteriori residual bounds for the stationary elasticity problem

In this section, we present two methods to derive a posteriori bounds in L 2norm of the error for the stationary elasticity problem. The rst one is based on a method of duality, which has used to derive L 2 error bound for deriving a priori as well as a posteriori errors for nite element methods, for example we refer to [A-O], [Riv]. Regarding the second one, we will rewrite the DG A posteriori error bound in L 2 -norm by duality method Theorem 3.4.1. Let z ∈ H 1 0 (Ω) d be the solution to the stationary elasticity problem (3.15) and z h ∈ V h be the DG approximation of z as in (3.16). Then

z -z h 0,Ω ≤ E IP (z h , r, T h ),
with E IP is given by

E IP (z h , r, T h ) := C K∈T h h 4 K r + ∇ • (σ(z h )) 2 0,K + e∈E I h h 3 σ(z h )ν e 2 0,e + e∈E h h z h 2 0,e 1/2 , (3.18)
where C is a positive constant independent of z h , r, h and T h .

Proof. In this proof we denote by e = z -z h . We consider the adjoint problem Let φ * be a continuous interpolant of φ as in Lemma 1.4.15 satisfying three properties (1.11), note that with this interpolation we have φ * = φ = 0 on ∂Ω (see [R-W-G]). Thanks to the consistency of the bilinear form a h , we get the orthogonality equation a h (e, φ * ) = 0. Moreover due to the symmetry of a h , we deduce a h (φ * , e) = 0, i.e. the following expression holds 

-∇ • (σ(φ)) = e, in Ω φ = 0, on ∂Ω,
0 = K∈T h K σ(φ * ) : ε(e)dx -
e 2 0,Ω = K∈T h K f + ∇ • (σ(z h )) • (φ -φ * )dx - e∈E I h e (σ(z h ))ν e • { {φ -φ * } } dA + e∈E h e { {(σ(φ -φ * ))ν e } } • z h dA.
(3.25)

By employing the Cauchy-Schwarz's inequality, we have that

e 2 0,Ω ≤ K∈T h h 4 K f + ∇ • (σ(z h )) 2 0,K 1/2 K∈T h h -4 K φ -φ * 2 0,K 1/2 + e∈E I h h 3 (σ(z h ))ν e 2 0,e 1/2 e∈E I h h -3 φ -φ * 2 0,e 1/2 + e∈E h h -1 { {(σ(φ -φ * ))ν e } } 2 0,e 1/2 e∈E h h z h 2 0,e 1/2 . (3.26)
Now applying the properties of the interpolation φ * as in (1.4.15), we have the following estimates for an element K of the triangulation and an edge or face e on ∂K:

φ -φ * 2 0,K ≤ Ch 4 K φ 2 2,K φ -φ * 2 0,e ≤ Ch 3 K φ 2 2,K (σ(φ -φ * ))ν e 2 0,e ≤ Ch K φ 2 2,K .
(3.27)
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Finally, applying the above approximation results to (3.26), we deduce

e 2 0,Ω ≤ C φ 2,Ω K∈ h 4 K f + ∇ • σ(z h ) 2 0,K + h 3 e∈E I h (σ(z h ))ν e 2 0,e + e∈E h h z h 2 0,e 1/2 , (3.28)
noting that in the last two inequalities, we make use of the relation h K h

ensured by the locally quasi-uniform of the triangulation.

Then making use of the regularity assumption (3.20) of the dual problem which allows to bound the norm of φ by the norm of e, the proof of the theorem is completed.

3.4.2

A posteriori error bound in L 2 -norm via energy norm

Extension of the bilinear form a h on larger space

To state our a posteriori error bounds, we dene the space V(h) = H 1 0 (Ω) d + V h . On V(h), we dene the mesh-dependent energy norm for v ∈ V(h):

|||v||| 2 = K∈T h ε(v) 2 0,K + e∈E h a v 2 0,e .
(3.29)

The DG form a h in (2.8) does not extend in a standard way to a continuous form on the (large) space V(h) × V(h). Indeed the average { {(σ(v))ν e } } on a face e ∈ E h is not well-dened in general for v ∈ H 1 (Ω) d . To circumvent this diculty, we shall extend the form a h in a non standard and nonconsistent way to the space V(h) × V(h) by using the lifting operator from [G-S-S], and the appoach in [H-P-D].

Lifting operator

We denote by Σ h the following space:

Σ h = {τ ∈ L 2 (Ω) d×d : τ | K ∈ P r (K) d×d , K ∈ T h }.
Observing that ε(V h ) ⊂ Σ h , and for the piecewise constant tensor C, we also have Cε(

V h ) ⊂ Σ h . Denition 7. For v ∈ V(h), the lifting operator L : V(h) → Σ h is dened by Ω L (v) : τ dx = e∈E h e v • { {(Cτ )ν e } } dA, ∀τ ∈ Σ h .
Chapter 3. Semi-discrete a posteriori error bound Note that L is well-dened. Indeed, a simple implementation of the lifting operators follows after noticing that the term on the right-hand side of equation ( 7) is linear operator over Σ h , for each element v ∈ V h . Hence L (v) represents this linear operator according to the Riesz representation theorem for the L 2 scalar product in Σ h (see e.g. [G-S-S], [Wih]).

The inverse inequality (1.4.7) implies that there exists a constant C inv such that

w 0,e ≤ C inv h -1/2 K w 0,K , for all w ∈ P r (K) d ;
where e ∈ ∂K. We now have the following result:

Lemma 3.4.1. (Stability of lifting operator). There exists a constant C > 0 independent of the mesh size such that

L (v) 0,Ω ≤ C inv C * e∈E h h -1 v 2 0,e 1/2 , for any v ∈ V(h).
Proof. By the denition of the operator L and from Cauchy-Schwarz's inequality we have for any v ∈ V(h):

L (v) 0,Ω = sup z∈V h Ω L (v) • zdx z 0,Ω = sup z∈V h e∈E h e v • { {(Cz)ν e } } dA z 0,Ω ≤ sup z∈V h e∈E h h -1 v 2 0,e 1/2 e∈E h h { {(Cz)ν e } } 2 0,e 1/2 z 0,Ω , ≤ C inv C * e∈E h h -1 v 2 0,e
1/2 ;

(3.30)

noting that in the above proof, we have used the inequalities

h 1/2 { {(Cz)ν e } } 0,e ≤ 1 2 C inv Cz 2 0,K + + Cz 2 0,K - 1/2 ,
coming directly from the inverse inequality (1.4.7) and the locally quasiuniform of the mesh.

With these denitions, we can now introduce the following (non-consistent) DG form on V(h) × V(h):

A(u, v) = K∈T h K σ(u) : ε(v)dx - K∈T h K ε(u) : L (v)dx - K∈T h K ε(v) : L (u)dx + e∈E h e a u • v dA;
(3.31)
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where α is a positive constant which we will consider later on to establish the coercivity of the bilinear form A(•, •).

The following result states that A is continuous and coercive on the entire space V(h) × V(h). Its proof is given in Appendix A.2. Lemma 3.4.2. Setting α min = 4C 2 inv (C * ) 2 c -1 * . There are constants M and κ independent of h such that

|A(u, v)| ≤ M |||u||| • |||v|||, ∀u, v ∈ V(h),
and for α ≥ α min :

A(u, u) ≥ κ|||u||| 2 , ∀u ∈ V(h), with DG norm |||•||| dened in (3.29).
Furthermore, since A = a h on V h × V h , and A = a on H 1 0 (Ω) d × H 1 0 (Ω) d , the form A can be viewed as an extension of the two forms a h and a to the space

V(h) × V(h). Lemma 3.4.3. The DG formulation (3.16) is equivalent to nding z h ∈ V h such that A(z h , v) = (r, v) Ω for all v ∈ V h .
(3.32)

A posteriori error bound

The proof of the a posteriori error bound is based on the approximation results in [K-Pa] which allow us to nd a conforming nite element function which is close to any discontinuous one. With this approximation result, the proof of the a posteriori error bound now rests on estimating the error between the analytical solution and a conforming approximation one. Lemma 3.4.4. (Bounding the nonconforming part via jumps). Let V h be the space of piecewise polynomial functions as dened in (1.2), then for any

function z h ∈ V h there exists a function z c h ∈ V c = V h ∩ H 1 0 (Ω) d such that z h -z c h 2 0,Ω ≤ C 1 e∈E h h z h 2 0,e , and 
K∈T h ∇(z h -z c h ) 2 0,K ≤ C 2 e∈E h h -1 z h 2 0,e ,
where C 1 , C 2 > 0 constants depending on the shape-regularity of the triangulation.
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Then we now derive the error bound for our DG method for a stationary elasticity problem.

Theorem 3.4.2. Let z ∈ H 1 0 (Ω) d be the solution to the stationary elasticity problem (3.15) and z h ∈ V h be the DG approximation of z as in (3.32). Then

z -z h 0,Ω ≤ E IP (z h , r, T h ),
where

E IP (z h , r, T h ) := C K∈T h h 2 K r + ∇ • σ(z h ) 2 0,K + e∈E I h h (σ(z h ))ν e 2 0,e + e∈E h (h + αh -1 ) z h 2 0,e 1/2 , (3.33)
where C is a positive constant independent of z h , r, h and T h .

Proof. We decompose the error as follows

z -z h = z -z c h ec∈H 1 0 (Ω) d + z c h -z h e d ∈V h
, where z c h ∈ V c is the conforming approximation of z h from Lemma 3.4.4. Let ẽc denote an approximation of e c in the space of element-wise constant vector functions, then ẽc ∈ V h . Note that here we choose ẽc as an approxi- mation satisfying the properties in Lemma 1.4.14, and we dene η = e c -ẽc . Then Lemma 1.4.14 implies there exists a constant C > 0 such that: η 0,K = e c -ẽc 0,K ≤ Ch K ∇e c 0,K .

(3.34) Coming back to the decomposition above, we have that

A(e, e c ) = A(z, e c ) -A(z h , e c ) = (r, e c ) Ω -A(z h , η) -A(z h , ẽc ). = (r, η) Ω -A(z h , η), noting that A(z h , ẽc ) = (r, ẽc ) Ω , then we have c * ε(e c ) 2 0,Ω ≤ A(e c , e c ) = (r, η) Ω -A(z h , η) -A(e d , e c ).
(3.35)

Now our purpose is to bound the terms on the right hand side of (3.35) .
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i) For the second term, integrate by parts element-wise yields:

-

A(z h , η) = K∈T h K (∇ • σ(z h )) • ηdx - K∈T h ∂K ((σ(z h ))ν ∂K ) • ηdx + K∈T h K L (η) : ε(z h )dx + K∈T h K L (z h ) : ε(η)dx - e∈E h e α h η • z h dA, (3.36)
noting that ν ∂K denotes the outward unit normal vector to ∂K of the element K. Now switching from ν ∂K to the oriented normal vector ν e , a straightforward computation shows that

- K∈T h ∂K ((σ(z h ))ν ∂K ) • ηdx = - e∈E I h e { {η} } • (σ(z h ))ν e dA - e∈E h e η • { {(σ(z h ))ν e } } dA;
(3.37)

we can then rewrite (3.36) as follows

-A(z h , η) = K∈T h K ∇ • σ(z h ) • ηdx - e∈E I h e { {η} } • (σ(z h ))ν e dA + K∈T h K L (z h ) : ε(η)dx - e∈E h e α h η • z h dA ; (3.38)
Then the sum of the rst two terms on the right hand side of (3.35) can be written as follows:

(r, η)

Ω -A(z h , η) = K∈T h K (r + ∇ • σ(z h )) • ηdx - e∈E I h e { {η} } • (σ(z h ))ν e dA + K∈T h K L (z h ) : ε(η)dx - e∈E h e α h η • z h dA . (3.39)
Now we work on the parts on the right hand-side of (3.39).

For the rst part of (3.39), by employing the discrete Cauchy-Schwarz's Chapter 3. Semi-discrete a posteriori error bound inequality we have

K∈T h K (r + ∇ • σ(z h )) • ηdx ≤ K∈T h h 2 K r + ∇ • σ(z h ) 2 0,K 1/2 K∈T h h -2 K η 2 0,K 1/2 ≤ C K∈T h h 2 K r + ∇ • σ(z h ) 2 0,K 1/2 ∇e c 0,Ω , (3.40) 
noting the last inequality comes from the approximation (3.34).

For the second part of (3.39)

e∈E I h e { {η} } • (σ(z h ))ν e dA ≤ 1 2 K∈T h h -1 η 2 0,∂K 1/2 e∈E I h h (σ(z h ))ν e 2 0,e 1/2 .
(3.41)

Now to estimate the rst factor of (3.41), we will use the trace theorem (1.3) in conjunction with the approximation property (3.34):

h -1 η 2 0,∂K ≤ C tr h -1 h -1 K η 2 0,K + h K ∇η 2 0,K ≤ C h -2 K η 2 0,K + ∇e c 2 0,K ≤ C ∇e c 2 0,K ; (3.42)
noting that in the last two inequalities, we make use of the fact that ∇η| K = ∇e c | K for all K ∈ T h , the locally quasi-uniform property of the mesh and the inverse inequality (1.4.8), then (3.41) infers that

e∈E I h e { {η} } • (σ(z h ))ν e dA ≤ C ∇e c 0,K × e∈E I h h (σ(z h ))ν e 2 0,e 1/2 ≤ C ∇e c 0,Ω e∈E I h h (σ(z h ))ν e 2 0,e 1/2 .
(3.43)
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For the third part of (3.39)

K∈T h K L (z h ) : ε(η)dx ≤ K∈T h L (z h ) 2 0,K 1/2 K∈T h ε(η) 2 0,K 1/2 ≤ C e∈E h h -1 z h 2 0,e 1/2 K∈T h ε(η) 2 0,K 1/2 ≤ C e∈E h h -1 z h 2 0,e
1/2 ε(e c ) 0,Ω ;

(3.44)

noting that ε(η)| K = ε(e c )| K for all K ∈ T h .
And the nal part of (3.39):

| e∈E h e α h η • z h dA| ≤ C( e∈E h h -1 η 2 0,e ) 1/2 × ( e∈E h h -1 z h 2 0,e ) 1/2 ≤ C ∇e c 0,Ω × ( e∈E h h -1 z h 2 0,e ) 1/2 , (3.45) 
noting that here we use the same approach as in (3.41).

ii 

≤ C ε(e c ) 0,Ω K∈T h ε(e d ) 2 0,K + e∈E h h -1 e d 2 0,e 1/2 . (3.46)
Observing that

e d e = z h e , ∀e ∈ E h . We also have ε(e d ) 0,K ≤ C ∇e d 0,K for K ∈ T h , and remark that from Lemma 3.4.4, the nonconforming term can be bounded in terms of the jumps of discrete solution.

We then obtain the following result Notice that the sum of the above quantities can be decomposed into element-wise contributions. For example in case of the global estimator in Theorem 3.4.2 we can use the local error indicator:

-A(e d , e c ) ≤ C ε(e c ) 0,Ω ( e∈E h h -1 z h 2 0,e ) 1/2 ,
∇e c 0,Ω ≤ C K∈T h h 2 K r + ∇ • σ(z h ) 2 0,K + e∈E I h h (σ(z h ))ν e 2 0,e + e∈E h αh -1 z h 2 0,
η K = h 2 K r + ∇ • (σ(z h )) 2 0,K + h K (σ(z h ))ν e 2 0,∂K\∂Ω + (h K + αh -1 K ) z h 2 0,∂K ,
and note that these contributions provide local measures of the magnitude of the residual and are able to provide renement indicators for adaptive strategies.
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Semi-discrete a posteriori error estimates

Now in view of Remark 3.3.1 and the error bound in SE case, we obtain the following a posteriori error bound for semi-discrete problem. Theorem 3.5.1. With the notations dened as in Denition 6, assume that f is dierentiable with respect to time. Then the following error bound holds

e L ∞ (0,T ;L 2 (Ω) d ≤ E IP (u h , g, T h ) L ∞ (0,T ) + 2 T 0 E IP (∂ t u h , ∂ t g, T h )dt + √ 2E IP (u h (0), g(0), T h ) + √ 2 u 0 -u h (0) 0,Ω + 2C F Ω c -1/2 * u 1 -∂ t u h (0) 0,Ω .
(3.50)

with g = Bu h -Π h f + f
, and E IP is given by (3.18) or (3.33).

Conclusion

In this chapter, we have derived an a posteriori error estimate for semi-discrete formulation of elasticity problem by applying SE reconstruction technique, we have controlled the error for the time-dependent elasticity problem via the error represented an auxiliary SE equation.

We present here two alternative ways to derive a posteriori error bounds for stationary elasticity problem. In the rst approach, we make use of the duality technique, which is well-known for deriving the L 2 -norm of the error in FEMs. But notice that by this method, we need the regularity assumption of the adjoint equation. In the second approach, we obtain automatically a bound in L 2 -norm from the bound of energy norm, but we also recognize that this bound loses an order of the mesh size in comparison with the bound obtained by duality method.

Chapter 4 Fully discrete a posteriori error control for the discontinuous Galerkin method for linear elasticity problem

Here in this chapter, we derive an a posteriori error bound for the error uu N L ∞ (0,T ;L 2 (Ω) d ) between the weak solution to (2.5) and its approximation u N reconstructed from its fully discrete solution {u n h } N n=0 in (2.18).

The outline of this chapter is as follows. We rst present the space-time reconstruction for fully discrete scheme in Section 4.1, which has a crucial zero-mean value property in the time variable. This is inspired by the work of [G-L-M] dealing with the a posterior error for conforming FE approximation of the wave equation, and is expanded to our DG method for elasticity problem.

We then obtain the fully discrete error relation in Section 4.2, and analogously to the semi-discrete case, we derive the abstract fully a posteriori error bound in Section 4.3. Section 4.4 explicitly presents the fully discrete a posteriori estimates, followed by the proof of the main theorem in Section 4.5.

Space-time reconstruction

With the notations of nite element meshes, spaces introduced in Section 2.4.2 for fully discrete formulation, we have the following denitions:

Denition 8. (Space-time reconstruction).

i) Let u n h , n = 0, . . . , N , be the fully discrete solution computed by the method (2.18), Π n h : L 2 (Ω) d → V n h be the orthogonal L 2 -projection, and

B n : V n h → V n
h to be the discrete operator dened by

for z ∈ V n h , (B n z, v) Ω = a n h (z, v), ∀v ∈ V n h . (4.1)
We dene the SE reconstruction w n ∈ H 1 0 (Ω) d of u n h to be the solution of the SE problem

a(w n , v) = (g n , v) Ω , ∀v ∈ H 1 0 (Ω) d , (4.2) with g n = B n u n h -Π n h f n + f n ; where Π n h be the orthogonal L 2 -projection onto the space V n h , f 0 = f (0, •), f n = k -1 n t n t n-1 f (t, •)dt, for n = 1, . . . , N . ii) Dene the SE reconstruction ∂w 0 ∈ H 1 0 (Ω) d , of ∂u 0 h to be the solution to the SE problem a(∂w 0 , v) = (∂g 0 , v) Ω , ∀v ∈ H 1 0 (Ω) d , (4.3) with ∂g 0 := B 0 (∂u 0 h ) -Π 0 h f 0 + f 0 ,
recall that Π 0 h denotes the orthogonal L 2 projection onto the space V 0 h and ∂u 0 h = Π 0 h u 1 as introduced in Section 2.4.2.

iii) The continuous time-extension u

N : [0, t N ]×Ω → R d of {u n h } N n=0 is dened by u N (t) := t -t n-1 k n u n h + t n -t k n u n-1 h - (t -t n-1 )(t n -t) 2 k n ∂ 2 u n h , (4.4)
for t ∈ (t n-1 , t n ], n = 1, . . . , N , with ∂ 2 u n h given by backward Euler scheme (2.20). We note that u N is a C 1 function in the time variable, with u N (t n ) = u n h and ∂ t u N (t n ) = ∂u n h for n = 0, 1, . . . , N .

iv) The time-continuous extension w

N : [0, t N ] × Ω → R d of {w n } N n=0 is given by w N (t) := t -t n-1 k n w n + t n -t k n w n-1 - (t -t n-1 )(t n -t) 2 k n ∂ 2 w n , (4.5)
for t ∈ (t n-1 , t n ], n = 1, . . . , N ; with ∂ 2 w n given by the backward Euler scheme as in (2.20), noting that ∂w 0 is dened as in (4.3). By construction, this is also a C 1 function in the time variable.

Denition 9. (Splitting the error). Decomposing the error as follows:

e N := u N -u

:= ρ N -θ N , (4.6)
where θ N := w N -u N and ρ N := w N -u ∈ H 1 0 (Ω) d .

Fully discrete error relation

Theorem 4.2.1. (Fully discrete error relation). Under the notation as in Denition 9, for t ∈ (t n-1 , t n ], n = 1, . . . , N we have

(∂ 2 tt e N , v) Ω + a(ρ N , v) =((I -Π n h )∂ 2 tt u N , v) Ω + µ n (t)(∂ 2 u n h , Π n h v) Ω + a(w N -w n , v) + ( f n -f , v) Ω , for all v ∈ H 1 0 (Ω) d ; (4.7)
where I is the identity mapping in L 2 (Ω) d , and

µ n (t) := -6k n-1 (t -t n +t n-1 2 ). Proof. Noting that ∂ 2 tt u N (t) = (1 + µ n (t))∂ 2 u n h for t ∈ (t n-1 , t n ], n = 1, . . . , N ; then for all v ∈ H 1 0 (Ω) d we have: (∂ 2 tt e N , v) Ω + a(ρ N , v) = (∂ 2 tt u N , v) Ω + a(w N , v) -(f , v) Ω = ((I -Π n h )∂ 2 tt u N , v) Ω + (∂ 2 tt u N , Π n h v) Ω + a(w N , v) -(f , v) Ω = ((I -Π n h )∂ 2 tt u N , v) Ω + µ n (t)(∂ 2 u n h , Π n h v) Ω -a n h (u n h , Π n h v) + a(w N , v) + (Π n h f n -f , v) Ω = ((I -Π n h )∂ 2 tt u N , v) Ω + µ n (t)(∂ 2 u n h , Π n h v) Ω + a(w N -w n , v) + ( f n -f , v) Ω ; (4.8)
noting that the rst equation follows from the formulation (2.5) of the weak solution u. In the second and third equalities, the properties of orthogonal L 2projection Π n h on space V n h are employed, and we also use the formulation of fully discrete scheme in the third equality, and the last equality comes from the

identity a n h (u n h , Π n h v) -(Π n h f n -f n , v) Ω = (B n u n h , Π n h v) Ω -(Π n h f n -f n , v) Ω = a(w n , v), ∀v ∈ H 1 0 (Ω) d .
Remark 4.2.1. (Zero-mean value property). The particular form of the remainder µ n (t) satises the zero-mean value property

t n t n-1 µ n (t)dt = 0, n = 1, . . . , N,
which is an important point for estimating the a posteriori bound derived from the term µ n (t)(∂ 2 u n h , Π n h v) Ω in the error relation (4.2.1) above (see later in Lemma A.4.4 for the proof of time-reconstruction error bound).

Abstract fully a posteriori error bound

To analyze the error, we introduce the following quantities that will provide error estimator of the fully discrete scheme in Theorem 4. 

) := ζ MC,1 (t * ) + ζ MC,2 (t * ), with ζ MC,1 (t * ) := m-1 n=1 t n t n-1 (I -Π n h )∂ t u N 0,Ω dt + t * t m-1 (I -Π m h )∂ t u N 0,Ω dt and ζ MC,2 (t * ) := m-1 n=1 (t * -t n ) (Π n+1 h -Π n h )∂u n h 0,Ω .
ii) The evolution error indicator reads

ζ evo (t * ) := t * 0 G 0,Ω dt,
where G : (0,

t N ] → R d with G| (t n-1 ,t n ] := G n , n = 1, . . . , N and G n (t) := (t n -t) 2 2 ∂g n - (t n -t) 4 4k n - (t n -t) 3 3 ∂ 2 g n -γ n , (4.9)
with g n as in Denition 8 and γ n :

= γ n-1 + (k 2 n /2)∂g n + (k 3 n /12)∂ 2 g n , n = 1, . . . , N with γ 0 = 0;
iii) The data error indicators are given by

ζ osc (t * ) := 1 2π m-1 n=1 t n t n-1 k 3 n f n -f 2 0,Ω dt 1/2 + t * t m-1 k 3 m f m -f 2 0,Ω dt 1/2
, which can be viewed as an error estimator related to the time-oscillation of the source term.

iv) The time reconstruction error indicators , respectively, as in (4.4) and (4.5), and recalling the notation of indicators in Denition 10 then the following a posteriori error estimate holds

ζ T.Rec (t * ) := 1 2π m-1 n=1 t n t n-1 k 3 n µ n ∂ 2 u n h 2 0,Ω dt 1/2 + t * t m-1 k 3 m µ m ∂ 2 u m h 2 0,
e N L ∞ (0,t N ;L 2 (Ω) d ) ≤ θ N L ∞ (0,t N ;L 2 (Ω) d ) + √ 2 θ N (0) 0,Ω + 2 t N 0 ∂ t θ N 0,Ω dt + 2 ζ MC (t N ) + ζ evo (t N ) + ζ osc (t N ) + ζ T.Rec (t N ) + √ 2 u 0 -u 0 h 0,Ω + 2C F Ω c -1/2 * u 1 -∂u 0 h 0,Ω , (4.10)
where C F Ω is the constant of the Poincaré inequality, u 0 h and ∂u 0 h are the orthogonal L 2 -projections onto the space V 0 h dened in Section 2.4.2. Proof. The derivation of this error bound is similar to, what we follow in semidiscrete case. Firstly, we will take a test function v = vN with vN is dened similarly as in (3.8)

vN (t, •) = t * t ρ N (s, •)ds, t ∈ [0, t N ],
(4.11) assuming that t m-1 ≤ t * ≤ t m for some integer m with 1 ≤ m ≤ N , and ρ N is dened as in (9). Then vN ∈ H 1 0 (Ω) d and ρ N ∈ H 1 0 (Ω) d , and we observe that vN (t * , •) = 0, and ∂ t vN (t, •) = -ρ N (t, •) a.e. in [0, t N ].

We integrate the resulting equation with respect to t between 0 and t * , to arrive at

t * 0 (∂ 2 tt e N , vN ) Ω dt + t * 0 a(ρ N , vN )dt = 4 i=1 I i (t * ), (4.12)
where

I 1 (t * ) := m-1 n=1 t n t n-1 ((I -Π n h )∂ 2 tt u N , vN ) Ω dt + t * t m-1 ((I -Π m h )∂ 2 tt u N , vN ) Ω dt I 2 (t * ) :== m-1 n=1 t n t n-1 a(w N -w n , vN )dt + t * t m-1 a(w N -w m , vN )dt I 3 (t * ) := m-1 n=1 t n t n-1 ( f n -f , vN ) Ω dt + t * t m-1 ( f m -f , vN ) Ω dt, I 4 (t * ) := m-1 n=1 t n t n-1 µ n (∂ 2 u n h , Π n h vN ) Ω dt + t * t m-1 µ m (∂ 2 u m h , Π m h vN ) Ω dt (4.13)
From Equation (4.12), integrating by parts the rst term of the left-hand side, and using the properties of vN , we obtain 

t * 0 1 2 d dt ρ N 2 0,Ω dt - t * 0 1 2 d dt a(v N , vN )dt = t * 0 (∂ t θ N , ρ N ) Ω dt + (∂ t e N (0), vN (0)) Ω + 4 i=1 I i (t * ), (4.14) which implies that 1 2 ρ N (t * ) 2 0,Ω - 1 2 ρ N (0) 2 0,Ω + 1 2 a(v N (0), vN (0)) = t * 0 (∂ t θ N , ρ N ) Ω dt + (∂ t e N (0), vN (0)) Ω + 4 i=1 I i (t * ).
I 1 (t * ) ≤ ζ MC (t * ) max 0≤t≤T ρ N (t) 0,Ω ; I 2 (t * ) ≤ ζ evo (t * ) max 0≤t≤T ρ N (t) 0,Ω ; I 3 (t * ) ≤ ζ osc (t * ) max 0≤t≤T ρ N (t) 0,Ω ; I 4 (t * ) ≤ ζ T.Rec (t * ) max 0≤t≤T ρ N (t) 0,Ω ; (4.16)
The proof for the above lemma follows from the applications of integration by parts, the commutation of orthogonal L 2 -projection with time dierentiation and time integration, and the zero averages of µ n and f nf n on the interval [t n-1 , t n ]. These results for wave equation were presented in [G-L-M],

but for the sake of completeness, we also present, even they are similar, the proofs for our elasticity problem in Appendix A.4.

Therefore we have

1 2 ρ N (t * ) 2 0,Ω - 1 2 ρ N (0) 2 0,Ω + 1 2 a(v N (0), vN (0)) ≤ max 0≤t≤T ρ N (t) 0,Ω t * 0 ∂ t θ N 0,Ω dt + ζ MC (t * ) + ζ evo (t * ) + ζ osc (t * ) + ζ T.Rec (t * ) + ∂ t e N (0) 0,Ω vN (0) 0,Ω .
(4.17)
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We select t * such that ρ N (t * ) 0,Ω = max 0≤t≤t N ρ N (t) 0,Ω . Then following analogous arguments as in the proof of the semidiscrete case, we end up to

e N L ∞ (0,t N ;L 2 (Ω) d ) ≤ θ N L ∞ (0,T ;L 2 (Ω) d ) + √ 2( u 0 -u 0 h 0,Ω + θ N (0) 0,Ω ) + 2 t N 0 ∂ t θ N 0,Ω dt + ζ MC (t N ) + ζ evo (t N ) + ζ osc (t N ) + ζ T.Rec (t N ) + 2C F Ω c -1/2 * u 1 -∂u 0 h 0,Ω . (4.18)
The proof is then completed.

Fully discrete a posteriori error estimates

To arrive at a practical a posteriori bound for the fully discrete scheme from the abstract error estimate in Theorem 4.3.1 above, it remains to bound the

terms θ N (0) 0,Ω , θ N L ∞ (0,t N ;L 2 (Ω) d ) and t N 0 ∂ t θ N 0,Ω dt.
We will establish the bounds of these terms in Proposition 4.5.1, 4.5.2 and 4.5.3 below. This enables us to prove the following error estimate:

Theorem 4.4.1. (Fully discrete a posteriori bound). With the same hypotheses and notations as in Theorem 3.4.2 and 4.3.1, we have

e N L ∞ (0,t N ;L 2 (Ω) d ) ≤ ζ sp + ζ tp (t N ) + ζ IC , (4.19) 
where ζ sp mainly accounts for the spatial error, ζ tp mainly accounts for the temporal error and ζ IC represents the initial conditions of the problem. They are given as follows:

ζ sp = ζ sp,1 + ζ sp,2 + ζ sp,3 , ζ tp (t N ) = 2 ζ MC (t N ) + ζ evo (t N ) + ζ osc (t N ) + ζ T.Rec (t N ) , ζ IC = √ 2 u 0 -u 0 h 0,Ω + 2C F Ω c -1/2 * u 1 -∂u 0 h 0,Ω , (4.20) 
where the temporal indicators 

ζ sp,1 = √ 2E 0 IP , ζ sp,2 = max 4k 1 27 E IP (∂u 0 h , ∂g 0 , T 0 h ), 31 27 + 31 27 max 1≤n≤N k n k n-1 max 0≤n≤N E n IP + 2C 2 F Ω c -1 * f n -f n 0,Ω , ζ sp,3 = N n=1 2(E n IP + E n-1 IP ) + N n=1 4k n C 2 F Ω c -1 * ∂f n -∂ f n 0,Ω , (4.21) 
where 

E n IP := E IP (u n h , B n u n h -Π n h f n + f n , T n h ), for all 0 ≤ n ≤ N , E
√ 2 θ N (0) 0,Ω ≤ ζ sp,1 , (4.22) 
where ζ sp,1 is introduced in Theorem 4.4.1.

Secondly, we establish an estimate for the term θ L ∞ (0,t N ;L 2 (Ω) d ) as follows:

Proposition 4.5.2. The following estimate holds

θ N L ∞ (0,t N ;L 2 (Ω) d ) ≤ ζ sp,2 ,
where ζ sp,2 is introduced in Theorem 4.4.1.

Proof. According to the construction of u N and w N in Denition 8, for t ∈ (t n-1 , t n ], n = 1, . . . , N , we have the following expression

θ N (t) = w N -u N = t -t n-1 k n (w n -u n h ) + t n -t k n (w n-1 -u n-1 h ) - (t -t n-1 )(t n -t) 2 k n (∂ 2 w n -∂ 2 u n h ), (4.23) 
which yields

θ N (t) 0,Ω ≤ max 31 27 + 31 27 max 1≤n≤N k n k n-1 max 0≤n≤N w n -u n h 0,Ω ; 4k 1 27 ∂w 0 -∂u 0 h 0,Ω , noting that max t∈(t n-1 ,t n ] (t -t n-1 )(t n -t) 2 k n = 4k 2 n 27 .
We refer to Appendix A.3.1 for explicit calculations.

Now we need to estimate the terms w nu n h 0,Ω , 0 ≤ n ≤ N and ∂w 0 -∂u 0 h 0,Ω . To estimate the term w n -u n h 0,Ω , we will prove the following result 4.5. Proof of Theorem 4.4.1 55 Lemma 4.5.1. The following estimate holds for all 0 ≤ n ≤ N

w n -u n h 0,Ω ≤ E n IP + 2C 2 F Ω c -1 * f n -f n 0,Ω , (4.24) with E n IP := E IP (u n h , B n u n h -Π n h f n + f n , T n h ), for all 0 ≤ n ≤ N where E IP is dened from (3.18) or (3.33).
Proof. To prove the result in Lemma 4.5.1, we proceed as follows: rst, we dene w n ∈ H 1 0 (Ω) d to be the solution to the SE problem

a(w n , v) = (B n u n h -Π n h f n + f n , v) Ω (4.25)
for n = 0, 1, . . . , N . Note that since f 0 = f 0 , we have w 0 = w 0 . On the other hand, we know that u n h is the DG approximation in V n h of the SE problem (4.25), noting that to prove this we follow the same proof as in Remark 3.1.2. Then in view of Theorem 3.4.2, this implies that

w n -u n h 0,Ω ≤ CE IP (u n h , B n u n h -Π n h f n + f n , T n h ), (4.26) 
for n = 0, . . . , N .

Second, we need to estimate w nw n 0,Ω . Observing that w nw n is the solution of the stationary elasticity problem with the load f nf n :

a(w n -w n , v) = ( f n -f n , v) Ω , we end up to w n -w n 0,Ω ≤ 2C 2 F Ω c -1 * f n -f n 0,Ω , for n = 1, . . . , N ; (4.27)
due to the stability of SE problem. Finally, thanks to the triangular inequality

w n -u n h 0,Ω ≤ w n -w n 0,Ω + w n -u n h 0,Ω , (4.28) 
along with the bounds (4.26), (4.27) imply Lemma 4.5.1. Now it remains to estimate ∂w 0 -∂u 0 h 0,Ω . Similarly, we have

a 0 h (∂u 0 h , v) = (B 0 (∂u 0 h ), v) Ω = (B 0 (∂u 0 h ) -Π 0 h f 0 + f 0 , v) Ω , for all v ∈ V 0 h .
Hence comparing with the construction (4.3), ∂u 0 h is the DG solution of ∂w 0 , which yields ∂w 0 -∂u 0 h 0,Ω ≤ E IP (∂u 0 h , ∂g 0 , T 0 h ).

(4.29)

The proof of Proposition 4.5.2 is thus completed.

Chapter 4. Fully discrete a posteriori error bound Proposition 4.5.3. The following estimate holds:

2 t N 0 ∂ t θ N 0,Ω dt ≤ ζ sp,3 ,
where ζ sp,3 is dened by( 4.4.1).

Proof. Similarly to the proof of the previous proposition, the construction of u N and w N in Denition 8 and (4.23), for t ∈ (t n-1 , t n ], n = 1, . . . , N , implies that

∂ t θ N = ∂w n -∂u n h + k -1 n (t n -t)(3t -2t n-1 -t n )(∂ 2 w n -∂ 2 u n h ),
from which we deduce that

t n t n-1 ∂ t θ N 0,Ω dt ≤ k n ∂w n -∂u n h 0,Ω , (4.30) 
noting that

t n t n-1 (t n -t)(3t -2t n-1 -t n )dt = 0. (4.31) 
We refer to Appendix A.3.2 for explicit calculus. Summing up (4.30) for n = 1, . . . , N, we get

t N 0 ∂ t θ N 0,Ω dt ≤ N n=1
k n ∂w n -∂u n h 0,Ω .

(4.32)

It remains to estimate the terms ∂w n -∂u n h 0,Ω . We will make use of the triangular inequality by combining the bounds for ∂w n -∂u n h 0,Ω and ∂w n -∂w n 0,Ω . From the denition of {w n } N n=0 in (4.25), we obtain that

∂w n ∈ H 1 0 (Ω) d , n = 1, . . . , N is the solution of the SE problem a(∂w n , v) = (∂(B n u n h ) -∂(Π n h f n ) + ∂f n , v) Ω , ∀v ∈ H 1 0 (Ω) d . (4.33)
On the other hand, from the denition of {w n } N n=0 in (4.2), we also get that

a(∂w n , v) = (∂(B n u n h ) -∂(Π n h f n ) + ∂ f n , v) Ω , ∀v ∈ H 1 0 (Ω) d .
(4.34)

Combining (4.33) and (4.34), we have that ∂w n -∂w n is the solution to the SE problem

a(∂w n -∂w n , v) = (∂ f n -∂f n , v) Ω , ∀v ∈ H 1 0 (Ω) d , for n = 1, . . . , N.
Then from the stability of steady-state elasticity problem, we have

∂w n -∂w n 0,Ω ≤ 2C 2 F Ω c -1 * ∂ f n -∂f n 0,Ω , for n = 1, . . . , N. (4.35)
Now we derive a bound for ∂w n -∂u n h 0,Ω in the following lemma.

4.5. Proof of Theorem 4.4.1 57 Lemma 4.5.2. For n = 1, . . . , N , let ∂w n ∈ H 1 0 (Ω) d be the solution of problem (4.33) and ∂u n h is dened by the backward Euler scheme (2.21) where u n h is the fully discrete solution from (2.18). The following error bound holds

∂w n -∂u n h 0,Ω ≤ k -1 n (E n IP + E n-1 IP ), (4.36) with E n IP := E IP (u n h , B n u n h -Π n h f n + f n , T n h ), for all 0 ≤ n ≤ N and E IP is dened by (3.18) or (3.33).
Proof. We again denote by w n the solution in (4.25), for i = 0, 1, . . . , N . From the backward nite dierence scheme, we obtain the bounds as follows:

∂w n -∂u n h 0,Ω ≤ 1 k n ( w n -u n h 0,Ω + w n-1 -u n-1 h 0,Ω ), (4.37) 
for n = 1, . . . , N. Employing (4.26) allows us to end the proof for Lemma 4.5.2.

The proof of Proposition 4.5.3 is completed.

Remark 4.5.1. In case of stationary mesh (i.e. the same mesh is used between the initial time t 0 and the nal t N , or T n h = T n-1 h , for all n = 1, . . . , N ),

we have an alternative result for Lemma 4.5.2 as follows:

∂w n -∂u n h 0,Ω ≤ E IP (∂u n h , ∂(B n u n h ) -∂(Π n h f n ) + ∂f n , T n h ), (4.38) 
for all 1 ≤ n ≤ N and E IP is dened from (3.18) or (3.33).

Proof. Indeed, from the denitions of {w n } N n=0 in (4.25), we deduce for all n = 1, . . . , N that:

a(∂w n , v) = (∂(B n u n h ) -∂(Π n h f n ) + ∂f n , v) Ω , ∀v ∈ H 1 0 (Ω).
(4.39)

On the other hand, from the denitions of the discrete operators {B n } N n=0 in (4.1) and property of orthogonal L 2 -projection, we have that for all n = 1, . . . , N : (4.40) which implies that ∂u n h is the DG approximation in V n h of the boundary value problem (4.39), so we obtain the error estimate (4.38).

a n h (∂u n h , v) = (∂(B n u n h ), v) Ω , ∀v ∈ V n h = (∂(B n u n h ) -∂(Π n h f n ) + ∂f n , v) Ω , ∀v ∈ V n h ,

Conclusion

In this chapter, we have carried out an a posteriori error analysis for the SIPG method for the fully discretization of the time-dependent elasticity equation.

The work is inspired by the method in [G-L-M] which is used for the wave equation in case of conforming FEMs and is expanded to our elasticity problem in case of DG method. This method combines the SE reconstruction technique, the special testing procedure introduced by [Baker], and a suitable space-time reconstruction allows to derive a posteriori error estimate for the time-dependent problem from the error of the auxiliary SE equation. We stress that this strategy can be adapted by many DG methods, as long as there exists a posteriori error estimate in L 2 -norm of the corresponding DG method for stationary problem. The numerical implementation of the proposed bounds in the context of adaptive algorithm strategy will be considered This rst chapter is devoted to introduce some notations concerning function spaces and geometric denitions, as well as introduce the problem. The outline of this chapter is as follows. In Section 5.1, we introduce some functional and geometric notations. We then introduce the Stokes resolvent system and the perturbation in Section 5.2. Section 5.3 is devoted to present some geometric properties of the perturbed boundary, Section 5.4 describe the layer potential theory that will be applied in the sequel, followed by the boundary integral representation for the solution of the Stokes resolvent problem in bounded domain.

Notations

We rst give some notations concerning Euclidean space. For x, y ∈ R d , d = 2, 3, x = (x 1 , . . . , x d ), y = (y 1 , . . . , y d ) let x • y := d i=1 x i y i be the scalar product of x, y and |x| := 2. For all multi-indices α = (α 1 , α 2 , . . . , α d ), we denote the α-derivative of f by

D α f = ∂ α 1 +...+α d f ∂x α 1 1 . . . x α d d = ∂ |α| f ∂x α 1 1 . . . x α d d ,
the order of this derivative is |α| = α 1 + . . . + α d . Then the outward unit normal to ∂Ω, ν(x), is given by ν(x) = R-π 2 X (t), where R-π 2 is the rotation by -π/2; the tangent vector at x, T (x) = X (t), and X (t)⊥X (t). Set the curvature τ (x) to be

For vector-valued function

v = (v 1 , . . . , v d ), ∇ • v = ∂ 1 v 1 + ∂ 2 v 2 + ∂ d v d denes the divergence of v.
φ (L 2 (∂D)) d = ∂D [|φ 1 (x)| 2 + . . . + |φ d (x)| 2 ]dσ(x).
X (t) = τ (x)ν(x).
Denition 15. (Gaussian and mean curvature). Let κ 1 and κ 2 be the principal curvatures of a regular surface S at a point P . Dene i) The Gaussian curvature of S at P as the product κ = κ 1 κ 2 ;

ii) The mean curvature of S at P is the average H = κ 1 +κ 2 2 of the principal curvatures.

We also remark that for a domain Ω with boundary of class C 2,α , ν is a C 1,α function and the following properties hold: (5.1)

5.3.2

Case d = 3

The result presented below is given in [Kress], page 85 or [Ned], Theorem 2.5.18. Denote by dσ δ ( x) the surface element of ∂Ω δ at x. We have the following expansion for dσ δ ( x):

Lemma 5.3.3. The surface elements dσ on ∂Ω and dσ δ on ∂Ω δ are related by

dσ δ ( x) = 2 n=0 δ n σ n (x)dσ(x), with x ∈ ∂Ω δ , x ∈ ∂Ω, x = x + δν(x), (5.7) with σ 0 (x) = 1, σ 1 (x) = -2H(x), σ 2 (x) = K(x), x ∈ ∂Ω,
where H and K denote the mean and Gaussian curvature of ∂Ω, respectively, as introduced in Denition 15.

In the other hand, since ∂Ω and ∂Ω δ are parellel, we have ν( x) = ν(x), with x ∈ ∂Ω δ , x ∈ ∂Ω, x = x + δν(x).

(5.8)

Potential theory for Stokes resolvent system

This section presents the boundary integral representation of the solution. To be able to do that, we need to recall the denitions of the single-and doublelayer potentials, their jump relations and their mapping properties. These properties concerning potential theory for Stokes resolvent problem can be seen for example in [Kohra] or [Varne].

5.4.1 Fundamental solution 5.4.1.1 The Green function and its associate pressure vector

We start to review some basic facts on the theory of layer potentials. We consider here λ ∈ C \ {z ≤ 0}, and √ λ is the particular square root of λ, which has a positive real part, i.e., Re √ λ > 0. The fundamental tensors (F, P ) of the Stokes resolvent system in the case d = 2, 3 can be obtained by Fourier transform. They reads as:

       F ij (x) = 1 ω d δ ij |x| d-2 A 1 ( √ λ|x|) + x i x j |x| d A 2 ( √ λ|x|) , P j (x) = 1 ω d x j |x| d , j, k = 1, d;
(5.9) 5.4. Potential theory for Stokes resolvent system 67 where ω d is the surface area of the (d -1)-dimensional unit sphere in R d , and 

A 1 (z) = ( z 2 ) m-1 K m-1 (z) Γ(m) + 2 ( z 2 ) m Km(z) Γ(m)z 2 -1 z 2 ; A 2 (z) = d z 2 -4 ( z 2 ) m+1 K m+1 (z) Γ(m)
S ijk (x, y) := -P j (x)δ ik + ∂F ij (x) ∂ xk + ∂F kj (x) ∂ xi , i, j, k = 1, d.
(5.11)

Taking into account (5.10) and (5.11), we obtain the following explicit forms:

S ijk (x, y) = - 1 ω d δ ik xj r d D 1 ( √ λr) + (δ kj xi r d + δ ij xk r d )D 2 ( √ λr) (5.12) - 1 ω d xi xj xk r d+2 D 3 ( √ λr) , with D 1 (z) = 8 z 2 m+1 K m+1 (z) Γ(m)z 2 - 2d z 2 + 1; D 2 (z) = 8 z 2 m+1 K m+1 (z) Γ(m)z 2 - 2d z 2 + 2 z 2 m K m (z) Γ(m) ; D 3 (z) = -16 z 2 m+2 K m+2 (z) Γ(m)z 2 + 2d(d + 2) z 2 ,
and m, Γ and K n have been introduced in the above formula (5.10).

Remark 5.4.1. (Singular behaviour). Note that we can present the kernel S ijk (x, y) ≡ S ijk (x -y), and to study the decay behavior of S ijk (x -y) as r = |x -y| → 0, we can apply the decomposition

S ijk (x -y) = S 0 ijk (x -y) + R d ijk (x -y), i, j, k = 1, d, here S 0
ijk is the weakly singular Stokes tensor (with respect to λ = 0) and the remaining part R d ij (x -y) is continuous kernel so that the continuity behavior of the corresponding surface potential is determined only by the Stokes tensor S 0 ijk :

S 0 ijk (x -y) = - 1 π xi xj xk r 4 , in case d = 2, S 0 ijk (x -y) = - 3 4π xi xj xk r 5 , in case d = 3.
(5.14)

A detailed proof of the above relations in the case d = 2, d = 3 can be found in [Varne] ( also [B-V] for d = 2, and [Varnb] in the case d = 3).

The pressure tensor associated with the stress tensor

The pressure tensor Λ associated with the stress tensor S has the following components : 

Λ ik (x, y) = -1 2π (δ ik λ ln r + 2 δ ik r 2 -4 xi xk r 4 ) for d = 2, -1 4π (2 δ ik r 3 -δ ik λ r -6 xi xk r 5 ) for d = 3.
V D,i φ(x) := ∂D F ij (x -y)φ j (y)dσ(y), i = 1, • • • , d;
(5.16)

and the double-layer potential W D φ whose i th -component reads

W D,i φ(x) := ∂D -S ijk (x, y)ν k (y)φ j (y)dσ(y), i = 1, • • • , d;
(5.17)

where ν(y) = (ν 1 (y), . . . , ν d (y)) is the outward unit normal vector to ∂D at the point y. Note that here, we use Einstein's summation convention and this will be used throughout this part.

Remark 5.4.2. For further considerations, we sometimes denote by D ij (x, y)

the kernel -S ijk (x, y)ν k (y) of W D φ. - With methods of potential theory, this system of dierential equations can be reduced to a unique solvable system of boundary integral equations with the unknown density of the chosen boundary layer potentials. More details can be found in the next section.

∆V D φ(x) + ∇Q D φ(x) = λV D φ(x), ∇ • V D φ(x) = 0, in R d \∂D; -∆W D φ(x) + ∇Π D φ(x) = λW D φ(x), ∇ • W D φ(x) = 0, in R d \∂D.

Boundary integral representation of the soltution

We now present the boundary integral representation for the solution to Stokes where ν is the outward unit normal vector on ∂D.

Using the jump relation for the double layer potential (5.4.3), we get that the unknown density φ has to be determined as a solution to the Fredholm boundary integral equation of second kind

1 2 φ(x) + (K D φ)(x) = b(x), x ∈ ∂D, (5.24) 
where K D denotes the Cauchy principal value dened in (5.20).

It has been shown (cf. [Varne]) that for every b ∈ (C(∂D)) d which fullls condition (5.23), this Fredholm boundary integral equation system of second kind has a solution φ ∈ (C(∂D)) d which is not uniquely determined. For numerical purposes, we are interested in uniquely solvable boundary integral equation systems. To establish the uniqueness of the solution, instead of the above boundary integral equation system, we consider the following system

1 2 φ(x) + (K D φ)(x) -(N D φ)(x) = b(x), x ∈ ∂D , (5.25) 
where

N D : (C(∂D)) d → (C(∂D)) d φ → N D φ(x) = ν(x) ∂D φ(y) • ν(y)dσ(y).
(5.26)

The following result holds: ii) Secondly, we will estimate (K

Ω δ φ) • ψ δ -K Ω ( φ • ψ δ ):
By using the change of variables y = ψ δ (y), then decomposing the singular part and the continuous part of S ijk ( x -y) as in (5.13), we have for i = 1, d, and for x ∈ ∂Ω,

(K Ω δ ,i φ) • ψ δ (x) -K Ω,i ( φ • ψ δ )(x) = p.v. ∂Ω [-S ijk ( x, y) ν k ( y)j δ (y) + S ijk (x, y)ν k (y)] φ j • ψ δ (y)dσ(y), := R 1 i ( φ • ψ δ )(x) + R 2 i ( φ • ψ δ )(x), (6.10) with R 1 i ( φ • ψ δ )(x) = p.v. ∂Ω -S 0 ijk ( x, y) ν k ( y)j δ (y) + S 0 ijk (x, y)ν k (y) φ j • ψ δ (y)dσ(y), R 2 i ( φ • ψ δ )(x) = p.v. ∂Ω -R d ijk ( x, y) ν k ( y)j δ (y) + R d ijk (x, y)ν k (y) φ j • ψ δ (y)dσ(y).
(6.11)

For the singular part

S 0 ijk (x -y)ν k (y) = - 1 π (x -y) i (x -y) j (x -y) k ν k (y) |x -y| 4 S 0 ijk ( x -y) ν k ( y) = - 1 π ( x -y) i ( x -y) j ( x -y) k ν k ( y) | x -y| 4 .
(6.12)

To estimate S 0 ijk ( x -y) ν k ( y) -S 0 ijk (x -y)ν k (y), by employing (6.7) we observe that

S 0 ijk ( x -y) ν k ( y)-S 0 ijk (x -y)ν k (y) = O(δ) + O(δ) (x -y) i (x -y) j (x -y) k T k (y) |x -y| 4 , (6.13)
noting that here, we make use of |ν(y) • {x -y}| ≤ L|x -y| 2 which is due to the regularity of the boundary ∂Ω. Therefore

|R 1 i ( φ • ψ δ )| ≤ O(δ) ∂Ω | φ • ψ δ |dσ(y) + O(δ)|T i ( φ • ψ δ )(x)|. (6.14)
where T i , i = 1, 2 are dened by (6.16) and from (6.14), we obtain the following bound for R

T i ( φ•ψ δ )(x) = p.v. ∂Ω (x -y) i (x -y) j (x -y) k T k (y) |x -y| 4 ( φ j •ψ δ )(y)j δ (
T ( φ • ψ δ ) L 2 (∂Ω) 2 ≤ C φ • ψ δ L 2 (∂Ω) 2 ,
1 = {R 1 i } 2 i=1 R 1 ( φ • ψ δ ) L 2 (∂Ω) 2 ≤ Cδ φ • ψ δ L 2 (∂Ω) 2 .
(6.17)

For the regular part

Note that due to the continuities of R d ijk and vector function ν, as well as the approximation of j δ , the following equality holds for R

2 = {R 2 i } 2 i=1 : R 2 ( φ • ψ δ ) L 2 (∂Ω) 2 ≤ Cδ φ • ψ δ L 2 (∂Ω) 2 . (6.18)
Finally, by employing the two estimates (6.17) and (6.18) into equality (6.10), we obtain

(K Ω δ φ) • ψ δ -K Ω ( φ • ψ δ ) L 2 (∂Ω) 2 ≤ Cδ φ • ψ δ L 2 (∂Ω) 2 . (6.19)
2) In case d = 3. Recalling that ν( y) = ν(y), we then have:

i) The following expression holds

(N Ω δ φ) • ψ δ -N Ω ( φ • ψ δ ) (L 2 (∂Ω)) 3 = ν(x) ∂Ω ν j (y)(j δ (y) -1)( φ j • ψ δ )dσ(y) (L 2 (∂Ω)) 3 ≤ C φ • ψ δ (L 2 (∂Ω)) 3 . (6.20)
ii) On the other hand, we have -S ijk ( x, y) = -S ijk (x, y) (6.22) which completes the proof.

+ δ(ν(y) -ν(x)) • ∇S ijk (x -y + θ(ν(x) -ν(y))), 0 < θ < δ. ( 6 
(K Ω δ φ) • ψ δ -K Ω ( φ • ψ δ ) (L 2 (∂Ω)) 3 ≤ C φ • ψ δ (L 2 (∂Ω)) 3 ,

Uniform stability of the velocity eld 77

The following theorem states the L 2stability of the density function.

Theorem 6.1.1. There exists a constant C depending only on g and Ω such that φ • ψ δ -φ (L 2 (∂Ω)) d ≤ δC(g, Ω).

Proof. From the invertibility of the integral operator 1 2 I + K Ω -N Ω , then adding and subtracting ((K Ω δ -N Ω δ ) φ) • ψ δ and making use of triangular inequality, we obtain:

φ • ψ δ -φ (L 2 (∂Ω)) d ≤ C ( 1 2 I + K Ω -N Ω )( φ • ψ δ -φ) (L 2 (∂Ω)) d ≤ C (( 1 2 I + K Ω δ -N Ω δ ) φ) • ψ δ -( 1 2 I + K Ω -N Ω )φ (L 2 (∂Ω)) d + C ((K Ω δ -N Ω δ ) φ) • ψ δ -(K Ω -N Ω )( φ • ψ δ ) (L 2 (∂Ω)) d := A 1 + A 2 .
(6.23)

Finally combining with the trace relations (6.2), (6.4) and the analyticity of g in a neighborhood of ∂Ω, the following inequality holds

A 1 ≤ C g δ • ψ δ -g (L 2 (∂Ω)) d ≤ δC,
where C represents some constants depending only on g and Ω.

On the other hand, from Lemma 6.1.1 and from the invertibility of the integral operator 1 2 I + K Ω δ -N Ω δ we have (6.24) where C represents some constants depending only on g and Ω, noting that in our problem, the parameter δ tends to 0. So, we can x δ 0 = 1 2 and consider 0 < δ < δ 0 , and it follows that there is a constant C such that g δ (L 2 (∂Ω δ )) d ≤ C. The proof is completed.

A 2 ≤ Cδ φ (L 2 (∂Ω δ )) d ≤ Cδ ( 1 2 I + K Ω δ -N Ω δ ) φ (L 2 (∂Ω δ )) d = Cδ g δ (L 2 (∂Ω δ )) d ≤ Cδ,

Uniform stability of the velocity eld

This section presents the uniform stability of the velocity eld.

where G 1 , K 1 Ω and N 1 Ω are dened in Section 7.1. Therefore, in the two- dimensional case, u 1 = (u 1 i ) i=1,2 takes the form In three dimensions, u 1 = (u 1 i ) i=1,3 takes the form 

u 1 i (x) =
u 1 i (x) = ∂Ω D 1 ij (x,

Conclusion

The main objective of this work is to present a schematic way based on layer potential techniques to derive high-order terms in asymptotic expansion of the displacement eld resulting from a small perturbation of the domain. In our work, we derive the asymptotic formula for the Stokes resolvent problem with Dirichlet boundary condition. This method can also be used for many other boundary value problems, whenever a suitable potential theory is available.

In all these cases, there exists also a representation of the solution in form of a boundary layer potential, where the unknown source density has to be determined as a solution to Fredholm boundary integral equation.

Chapter 8

Conclusion and perpectives

Conclusion

In this thesis, we have studied about the a posteriori error for discontinuous Galerkin method for elasticity equations and about the asymptotic behavior of the solution of Stokes problem with respect to a small perturbation of the domain.

In this part, we have derived the a posteriori error bounds for semi-discrete and fully discrete formulation, by making use of the SE reconstruction technique which allows to estimate the error for time-dependent problem through the error estimation of the ascociated stationary elasticity problem. Then to derive the error bound for the stationary problem, we have presented two methods to obtain two dierent a posteriori bounds, by L 2 duality technique and via energy norm. For fully discrete scheme, we make use of the backward-Euler scheme and an appropiate space-time reconstruction.

In the second part, we rst verify the continuity of the solution with respect to the small perturbation δ via the stability of the density function.

Secondly, we derive the asymptotic expansion of the solution, after deriving the expansion of the density function. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method, and geometric properties of the perturbed boundary. The derivation is rigorous, and this method allows to derive high-order terms in asymptotic expansion. Also, it can be used for many other boundary value problems, whenever a suitable potential theory is available.

Perspectives

Concerning with the work of error estimates for DG methods, we know that these error bounds should allow to predict the error at each simulation time and in each part of the simulation domain (error localization), to adjust the calculation parameters during the simulation to improve the accuracy (adaptivity). So in the future, we will work out for an adaptive algorithm with numerical implementation of the proposed bounds. (A.9)

The rst two terms on the right hand side of (A.9) are bounded by Proof. First we observe the identity w N -w n = -(t n -t)∂w n + k -1 n (t n -t) 3 -(t n -t 2 ) ∂ 2 w n (A.12) for any t in (t n-1 , t n ], n = 1, . . . , m. Hence from Denition 8, we deduce that a(w N -w n , vN ) = (-(t n -t)∂g n + k -1 n (t n -t) 3 -(t n -t 2 ) ∂ 2 g n , vN ) Ω . (A.13) Then the integral of the rst component in the inner product on the right-hand side of (A.13) with respect to t between t n-1 and t n is given by G n (see (4.9). Hence, integrating by parts on each interval (t n-1 , t n ] gives rise to

I 2 (t * ) = m n=1 t n t n-1 (G n , ρ N ) Ω dt + t * t m-1
(G m , ρ N ) Ω dt, (A.14) which implies the expected result. Note that the choice of the constants γ n in (4.9) makes G continuous at t n , n = 1, . . . , N , and we also have G(0) = 0. 

( f m -f , vN ) Ω dt ≤ t * t m-1 k 3 m f m -f 2 0,Ω dt 1/2 max 0≤t≤T
ρ N (t) 0,Ω , (A.21) and gives Lemma A.4.3. 

  results about Fredholm alternative and singular kernel integral for the second part are given in Appendix B.

  Remark 1.3.1. We sometimes use the notation a b to indicate a ≤ Cb, where C is a generic positive constant independent of h and other parameters, and a b abbreviates a b and b a.

  formulation with lifting operator (in the spirit of [G-S-S], see also [H-P-D]) to derive the error estimate in energy norm which will provide a bound in the L 2 -norm of the error as well.

  this problem is regular in the sense that the solution φ satises φ ∈ H 2 (Ω) d with continuous dependence on e:φ 2,Ω ≤ C e 0,Ω . (3.20)On the other hand, along with Eq. (3.19), we get the following expression by parts on each element and using the fact that the term (σ(φ))ν e = 0 a.e. on e ∈ σ(φ))ν e } } • e dA.

  σ(φ * ))ν e } } • e dA, h e { {(σ(e))ν e } } • φ * dA and e∈E h e φ * • e dA vanish due to the continuity of φ * which is followed by our choice. Subtracting the above equation from (3.22), we have the following equation e 2 0,Ω = K∈T h K σ(φφ * ) : ε(e)dx -e∈E h e { {(σ(φ -φ * ))ν e } } • e dA. (3.24) Notice that K σ(φφ * ) : ε(e)dx = K σ(e) : ε(φφ * )dx and integrate by parts this term, then from (3.24) we obtain

  ) It remains now to estimate the term -A(e d , e c ) from (3.35). We have that -A(e d , e c ) ≤ C * K∈T h ε(e d ) 0,K ε(e c ) 0,Ω + L (e d ) 0,Ω ε(e c ) 0

  up all the bounds (3.40), (3.41), (3.44), (3.45) and (3.47), using the equivalent norms ∇e c 0,Ω and ε(e c ) 0,Ω in H 1 0 (Ω) d , factorize the 44 Chapter 3. Semi-discrete a posteriori error bound term ∇e c and nally deviding both sides of the resulting inequality by ∇e c , we arrive at the energy error bound:

  the error in L 2 (Ω)-norm, we will use triangular inequality and Poincaré's inequality. By triangular inequality we have that zz h 0,Ω ≤ e c 0,Ω + e d 0,Ω . (3.49) Here, by using Poincaré's inequality for the function e c ∈ H 1 0 (Ω) d , we have that e c 0,Ω ≤ C F Ω ∇e c 0,Ω . Then making use of the bound for the energy norm (3.48), we derive the bound for L 2 -norm of e c , and combining with Lemma 3.4.4 to bound the term e d 0,Ω , we complete the proof. Remark 3.4.1. (Residual-based a posteriori error indicators). The residual terms in (3.18) and (3.33) are classical residual indicators. The rst term is called element residual which reects how well the nite element approximation satises the partial dierential equation in the interior of the domain, while the second term is the side residual, and the third one is the jump residual which reects the regularity of the approximation. They were studied, in particular, in [Verb] for conforming methods, and in [A-B-C], [D-D-P-V] for the DG methods and the mixed FEM.

  3.1. These indicators are originally introduced by Lakkis et al. in [G-L-M] concerning a posteriori error estimates for nite element method to the wave equation.Denition 10. (A posteriori error indicators). For some xed t * , assume that t m-1 ≤ t * ≤ t m for some integer m with 1 ≤ m ≤ N . We dene i) The mesh change indicator is given by ζ MC (t *

  hand, with the indicators ζ MC , ζ evo , ζ osc and ζ T.Rec introduced in Denition 10, we have the following bounds: Lemma 4.3.1. The following inequalities hold:

  IP being dened from (3.18) or (3.33). 4.5 Proof of Theorem 4.4.1 This section is devoted to the proofs of Proposition 4.5.1, 4.5.2 and 4.5.3. Plugging these results into Theorem 4.3.1, we will get Theorem 4.4.1. At rst, we clearly have the following bound: Proposition 4.5.1. The following estimate holds

  this thesis (Chapter 5, 6 and 7) details the results we published in the journal Complex Variables and Elliptic Equations, see [L-D].

√

  x • x the Euclidean norm of x. Distance between 2 points x and y of R d is indicated by |x -y| and we have|x -y| = [ n i=1 (x i -y i ) 2 ] 1/2 .More generally, the distance between two subsets A and B of R d is denoted by dist(A, B), and we have dist(A, B) = inf x∈A,y∈B |x -y|. Similarly, |u| stands for the modulus of a vector, this is |u| = ( i u 2 i ) 1/2 . Chapter 5. Introduction and preliminary results Denition 11. (Derivatives) 1. The gradient is denoted by ∇ = (∂ 1 , . . . , ∂ d ), where ∂ j = ∂ ∂ j denotes the partial dierentiation with respect to x j (j = 1, . . . , d).

  Remark 5.1.1. For vector-valued function v = (v 1 , . . . , v d ), ∇v is a d × dmatrix dened by (∂ i v j ) 1≤i,j≤d .Remark 5.1.2. We sometimes employ a subscript attached to the symbols D α to denote the variables being dierentiated . For example, if u = u(x, y)with x ∈ R m and y ∈ R n , then D x (u) = (∂ x 1 , . . . , ∂ xm ), D y (u) = (∂ y 1 , . . . , ∂ yn ).Denition 12. (The space C k ). Given a non-negative integer k and an open domain D ∈ R d , let C k (D) denote the space of all functions u dened in D which have all their derivatives D α u of order |α| ≤ k continuous in D. To simplify the notation, we set C 0 (D) ≡ C(D). Dene C k (D) as the space of all u ∈ C k (D) such that D α u can be extended from D to a continuous function on D, the closure of the set D, for all |α| ≤ k. C k (D) can be equipped with the norm φ C k (D) = max i=0,...,k sup D |D i φ|. Denition 13. (Space of vector-valued functions). If φ = (φ 1 , . . . , φ d ) ∈ (L 2 (D)) d we set

  If D is a nonempty compact subset of R d and φ = (φ 1 , . . . , φ d ) ∈ (C(D)) d we use φ (C(D)) d = max j=1,...,d sup x∈D |φ j (x)|.We recall now the denition of curvature of a curve and denitions of mean and Gauss curvature of a surface (cf. [A-K-L-Z], [B-O]) that will be appeared in the expansion terms of the length element in the case of two-dimensions and area element in case of three-dimensions, respectively.5.2. Perturbation problem forStokes resolvent system 63 Denition 14. (Curvature). Let a, b ∈ R, with a < b, and let X(t) : [a, b] → R 2 be the arclength parametrization of ∂Ω, namely, X is a C 2 -function satisfying |X (t)| = 1 for all t ∈ [a, b] and ∂Ω := {x = X(t), t ∈ [a, b]}.

  Lemma 5.1.1. ([Kress], Lemma 6.16). There exists a positive constant L such that |ν(x) • {x -y}| ≤ L|x -y| 2 , and |ν(x) -ν(y)| ≤ L|x -y|, for all x, y ∈ ∂Ω. 5.2 Perturbation problem for Stokes resolvent system 5.2.1 Stokes resolvent problem Let Ω ⊂ R d (d = 2, 3) be a bounded domain with connected boundary ∂Ω of class C 2,α , α > 0. In the domain Ω, we consider the Stokes resolvent system governing a vector-valued function u(x) = (u i (x)) d i=1 and a scalar function p(x) as follows    -∆u + ∇p = λu in Ω, ∇ • u = 0 in Ω, u = g on ∂Ω,

  z) is the Gamma function, δ ij is the Kronecker's symbol, K n denotes the modied Bessel function of order n ≥ 0. For details on these functions, see Appendix B.1. 5.4.1.2 The stress tensor associated with the Green function Using the following notations x = x -y = (x 1 , • • • , xd ) and r = |x|, we introduce the stress tensor S associated to the fundamental tensor (F, P ) with the following components:

  single-layer and double-layer potential Next we consider the single-and double-layer potentials associated with the stress and pressure tensors. Denition 16. Let ∂D be a boundary of class C 1,α , α > 0 of a bounded domain D and φ = (φ 1 , • • • , φ d ) a continuous vector function on ∂D. For x ∈ R d \∂D, we dene the single-layer potential V D φ whose i th -component has the form

5. 4 .

 4 Potential theory for Stokes resolvent system 69 Now, let us denote by Q D φ and Π D φ the functions dened at each point x ∈ R d \∂D by the relations: Q D φ(x) := ∂D P i (x -y)φ i (y)dσ(y), Π D φ(x) := ∂D Λ ik (x -y)ν k (y)φ i (y)dσ(y).

  4.1. The pairs (V D φ, Q D φ) and (W D φ, Π D φ) are smooth functions in each of the domains R d \D 0 and D 0 , where D 0 is the inner domain with boundary ∂D. These two pairs are classical solutions to the Stokes resolvent system in R d \∂D:

  2.2 Compactness of the single and double layer potentials Now, let us introduce the principal value of the double-layer potential K D φ = (K D,i φ) i=1,d at a point x on ∂D by K D,i φ(x) := p.v. ∂D -S ijk (x, y)ν k (y)φ j (y)dσ(y), for i = 1, d.

  that K D φ is a weakly singular integral (see Appendix 22). As a consequence, the following property holds: Lemma 5.4.2. The principal value operator K D is compact from (L 2 (∂D)) d into L 2 (∂D)) d , and from (C(∂D)) d into (C(∂D)) d . Turning now to the behavior of the double layer potential of the boundary, the following trace relations holds (cf. [Am]): Lemma 5.4.3. For φ ∈ (C(∂D)) d , the following trace relations for W D hold: W D φ | ± = (∓ 1 2 I + K D )φ a.e. on ∂D, (5.21) where W D φ | -and W D φ | + denote the limits from inside D and outside D.

  resolvent problem. Denote by D a bounded domain with connected boundary ∂D of class C 1,α , α > 0, and consider the interior Dirichlet problem:

  Lemma 5.4.4. ([Varne]). Let d ≥ 2, λ ∈ C \ {z ≤ 0}, and b ∈ (C(∂D)) d .Then there exists exactly one solution φ ∈ (C(∂D)) d to (5.25). If in addition (5.23) is satised, then the uniquely determined solution φ to (5.25) is also a solution to the non modied boundary integral equation (5.24).

  y)φ j (y)dσ(y) -∂Ω D ij (x, y)τ (y)ρ(y)φ j (y)dσ(y) (7.18) + ∂Ω D ij (x, y)φ 1 j (y)dσ(y).

  Π n h )∂ t u N 0,Ω dt + t * t m-1 (I -Π m h )∂ t u N 0,Ω dt .

  of vN and that of ∂ t u N (t n ) = ∂u n h , n = 0, 1, . . . , N , we can bound the last two terms in the right hand side of (A.92. (Evolution error bound). Under the assumptions of Theorem 4.3.1 and with the notation (4.13), we haveI 2 (t * ) ≤ ζ evo (t * ) max 0≤t≤T ρ N (t) 0,Ω .

  Sobolev space). Let s be a nonnegative integer, 1 ≤ p ≤ ∞, and α = (α 1 , . . . , α n ) a multi-index. We dene the Sobolev space W s p (Ω) on Ω by W s

	10	Chapter 1. Preliminaries
	Denition 2. (	

p (Ω) := {u ∈ L p (Ω) : D α u ∈ L p (Ω) for |α| ≤ s};

  3/2 (∂Ω) for s ≥ 3/2 that are extensions of the boundary values and boundary normal derivatives, respectively. The operators γ j are surjective. Furthermore, if v ∈ C 1 (Ω), then

  Lemma 1.4.6. (Continuity of normal traces in H(div, Ω)). Let v be a vector valued function in H(div, Ω) be such that v • ν e ∈ L 2 (e) for all e ∈ E I

	1.4.2	Inverse inequalities

for all e ∈ E I h be such that v • ν e = 0 a.e. on e, ∀e ∈ E I h ,

then v ∈ H(div, Ω).

h . Then v • ν e = 0 a.e. on e, ∀e ∈ E I h .

Note that if v is a polynomial, we can take advantage of equivalence of norms in nite-dimensional spaces. The trace inequalities now become:

  Chapter 2. DG formulation for the elasticity problem Lemma 2.3.2. Let s > 3/2. Assume that the weak solution u of problem (2.3), then u satises the DG problem (2.10). Conversely, if u ∈ H 1 (Ω) d ∩ H s (T h ) d satises (2.10), then u is the solution of problem (2.3).

  If we assume that an a posteriori estimator E IP exists, i.e.

	34			Chapter 3. Semi-discrete a posteriori error bound
	then	we	can	bound	the	terms	in	Theorem	3.3.1	as	follows
											.16)

zz h 0,Ω ≤ E IP (z h , r, T h ),

  Ω dt Abstract fully discrete error bound). Let u be the weak solution to (2.5); u N and w N are reconstructed from the fully discrete solution {u n

	4.3. Abstract fully a posteriori error bound	51
	Theorem 4.3.1. (h } N n=1 and its SE reconstruction {w n } N n=1	
		1/2
		.

  ζ MC , ζ evo , ζ osc , ζ T.Rec are dened in Denition 10, and the spatial indicators ζ sp,1 , ζ sp,2 , ζ sp,3 are given by

  We have that the singular kernel integral T = {T i } 2 i=1 is bounded on L 2 (∂Ω) 2 as consequence of the well-known theorem of Coifman-McIntosh-Meyer (see Lemma B.4.1). Then there is a constant C such that

y)dσ(y).

(6.15) 

  y)φ j (y)dσ(y) -2 ∂Ω D ij (x, y)H(y)φ j (y)dσ(y)(7.19) Note that τ (y) and H(y) in the formulas (7.18) and (7.19) are the curvature of the curve and mean curvature of the surface, introduced in Chapter 5, at Denition 14 and 15, respectively.

	+

∂Ω

D ij (x, y)φ 1 j (y)dσ(y).

  Therefore, for any w ∈ C 2 0 (Ω) d (subspace of C 2 (Ω) d of all those functions having compact support in Ω) we have (Ω) d is dense in H 1 0 (Ω) d , this inequality is also valid for functions inH 1 0 (Ω) d .Proof. Observing that the projections Π n h , n = 1, . . . , N commute with the time dierentiation, we integrate by parts with respect to t, ending up toI 1 (t * ) := ((I -Π n h )∂ t u N , ρ N ) Ω dt + , vN (t n )) Ω -((I 0 -Π 0 h )∂u 0 h , vN (0)) Ω .

	|ε(w)| 2 = = = Ω |ε(w)| 2 dx = 1 4 1≤i,j≤d ( 1 4 1≤i,j≤d 1 2 (|∇w| 2 + ∂w i ∂x j ∂w i + ∂x j ∂w i ∂w j ∂x i ∂x j + ) 2 ∂w j ∂x i 1≤i,j≤d ∂w i ∂x j ∂w j ∂x i 1 2 Ω |∇w| 2 + 1≤i,j≤d ∂w j ∂x i ). ∂w i + 2 ∂x j ∂w j ∂w i ∂x j ∂x i dx = 1 2 Ω |∇w| 2 -1≤i,j≤d w i ∂ 2 w j ∂x i ∂w j )dx ∂w j ∂x i = 1 2 Ω |∇w| 2 + 1≤i,j≤d ∂w i ∂x i ∂w j ∂x j )dx = 1 2 Ω |∇w| 2 + |∇ • w| 2 )dx ≥ 1 2 ∇w 2 . ∇w ≤ √ 2 ε(w) , ∀w ∈ C 2 0 (Ω) d . n=1 t n t n-1 t * t m-1 (I -Π m h )∂ t u N , ρ N ) Ω dt m-1 Since C 2 Hence n=1 0 m-1 + ((Π n+1 h -Π n h )∂u n h	(A.2) (A.3)

(A.1) 

  A.4. Proof of Lemma 4.3.1 91Lemma A.4.3. (Data approximation error estimate). Under the assumptions of Theorem 4.3.1 and with the notation 4.13, we haveI 3 (t * ) ≤ ζ osc (t * ) max 0≤t≤T ρ N (t) 0,Ω .Proof. We begin with observing the zero-mean value of f nf on [t n-1 , t n ] as vN (t, •)dt. Using the Friedrich-Poincaré's inequality with respect to the variable t we have

											(A.15)
	follows							t n
										( f n -f )dt = 0	(A.16)
									t n-1
	for all n = 1, . . . , m -1. Hence we have
		m-1		t n					m-1	t n
											(A.17)
		n=1	t n-1					n=1	t n-1
	where	vn N (•) := k -1 n t n-1 t n t n t n-1 vN -	vn N	2 0,Ω dt ≤	k 2 n 4π 2	t n t n-1	∂ t vN	2 0,Ω dt
	m-1	t n					m-1	t n	1/2	t n	1/2
	n=1	t n-1					n=1		t n-1	f n -f 2 0,Ω dt	t n-1	vN -vN	2 0,Ω dt
							≤	2π 1	n=1 m-1	t n-1 t n	f n -f 2 0,Ω dt	1/2	t n-1 t n	k 2 n ρ N	2 0,Ω dt	1/2
							≤	1 2π	m-1 n=1	k 3 n	t n t n-1	f n -f 2 0,Ω dt	1/2	max 0≤t≤T	ρ N (t) 0,Ω .
											(A.19)
	For the remaining term in I 3 , we rst observe that
		t *				t *			t *
	t m-1	vN	2 0,Ω dt ≤	t m-1	k m	t	ρ N	2 0,Ω dsdt ≤ k 3 m max 0≤s≤T	ρ N (s) 2 0,Ω , (A.20)
	which implies that					
		t *								
		t m-1							

( f nf , vN ) Ω dt = ( f nf , vNvn N ) Ω dt, (

A

.18) 

and recalling that ∂ t vN = -ρ N , we get

( f nf , vN ) Ω dt ≤

(5.13) 

Remerciements

Chapter 5. Introduction and preliminary results

Here u is the velocity in the uid, p is its pressure and λ is a complex number such that λ ∈ C \ {z ≤ 0}. The notation ∆ is the Laplacian, ∇ is the d-dimensional gradient, and ∇• denotes the divergence operator. From Gauss's law theorem and the incompressibility of the uid (u has divergence free), we assume the following compatibility condition for the boundary value g = (g 1 , . . . , g d ):

where ν is the outward unit normal vector to ∂Ω.

Perturbation problem

Let ∂Ω δ be the boundary given as a δ-perturbation of ∂Ω dened as in ( 1) and ( 2), and denote by Ω δ the interior domain with boundary ∂Ω δ . We assume that g is an analytic function in a small neighborhood of ∂Ω, and denote by g δ the extension of g to ∂Ω δ . Then, denote by (u δ , p δ ) the solution to the perturbation problem

noting that u δ = (u δ,i ) d i=1 and g δ = (g δ,i ) d i=1 are vector-valued functions, and p δ is a scalar function.

Similarly, we also assume the following compatibility condition for problem (5.3)

where ν is the outward normal vector with respect to the boundary ∂Ω δ .

Then in this work, we will verify the continuity of the solution u δ with respect to δ and derive the asymptotic expansion of (u δ -u)| Ω • as δ tends to 0, where Ω • is a closed subset of Ω ∩ Ω δ , with dist(Ω • , ∂Ω) ≥ c 0 > 0 and dist(Ω • , ∂Ω δ ) ≥ c 0 > 0, which means that Ω • is away from the boundary ∂Ω and ∂Ω δ . The asymptotic expansion is both based on potential layer theory in connection with a boundary integral equation method, and properties of the disturbed boundary.

Remark 5.2.1. (Existence and uniqueness). From potential theory, it is known (cf. [Varne]) that if the conditions (5.2) and (5.4) are fullled, the interior Dirichlet problems (5.1) and (5.3) respectively has a solution (u, p) and (u δ , p δ ). The velocity eld is uniquely determined and the pressure function p 5.3. Small perturbation of an interface 65 is uniquely determined up to an additive constant. The solution can be represented by a pure double-layer potential where the density source function is determined from Fredholm integral equation. We will recall this representation in Section 5.4.

Small perturbation of an interface

Using the notations as in Denition 14, it follows that x = X

Lemma 5.3.1. Let ν( x) be the outward unit normal vector to ∂Ω δ at x. Then ν( x) can be expanded uniformly as

where the vector-valued functions ν n (x) are uniformly bounded regardless of n. In particular, we have

where T is the unit tangent vector which is introduced in Denition 14.

Likewise, denote by dσ δ ( x) the length element of ∂Ω δ at x, we have the following result concerning the relation between the length element on ∂Ω and ∂Ω δ : Lemma 5.3.2. The following uniform expansion holds:

(5.6) with x ∈ ∂Ω δ , x ∈ ∂Ω, x = x + δρ(x)ν(x), and σ n are bounded functions regardless of n. In particular,

where τ is the curvature which is introduced in Denition 14.

Then, for numerical purpose, in the following, we will always consider the uniquely solvable system (5.25).

Theorem 5.4.1. (Representation theorem, [Varne]). The solution to system (5.22) with boundary condition b ∈ (C(∂D)) d satises (5.23) can be represented by the pure double-layer potential:

where W D is the double-layer potential dened in (5.17) and φ ∈ (C(∂D)) d is the unique solution to the boundary integral system (5.25).

Chapter 6

Uniform stability of the solution with respect to a small perturbation In this chapter, we will establish the continuity of the velocity eld u δ with respect to the small perturbation parameter δ. In order to do this, we rst prove the stability of the density source function by applying the boundary integral equation, in combination with the results of Riesz theory.

L 2 -stability of the density function

From the previous section, the solution to the Stokes resolvent system (5.1) can be represented by the pure double-layer potential on ∂Ω. So for all x ∈ Ω\∂Ω, and for i = 1, d, the following formula holds

with the vector density function φ satisfying the following equation

Likewise, the solution to the perturbation problem (5.3) can be represented by the pure double-layer potential on ∂Ω δ . So for all x ∈ Ω δ \ ∂Ω δ , and for i = 1, d, we have

with the vector density function φ satisfying the following equation
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In our work, we consider Ω • is a closed subset of Ω ∩ Ω δ , which is away from ∂Ω and ∂Ω δ . We then obtain the following formula for u δ -u in Ω • :

where the density functions φ and φ are dened in (6.2) and (6.4), respectively.

Let ψ δ (x) = x + δρ(x)ν(x) and ψ δ (x) = x + δν(x) be the dieomorphisms from ∂Ω to ∂Ω δ respectively for d = 2, 3. The following estimates hold. Lemma 6.1.1. There exists a constant C depending only on Ω such that for any function φ ∈ (L 2 (∂Ω δ )) d , we have:

Proof. We will successively detail this for the case d = 2 and d = 3, by estimating the two terms (N

∂Ω ν( y) φ • ψ δ (y)j δ (y)dσ(y), (6.6) noting that here we use the change of variable y = ψ δ (y) on the second integral, and j δ denotes the Jacobian of ψ δ , approximated by j δ (y) = 1 + O(δ).

We have the following approximation in case two dimensions (see

where ν(y) = (ν 1 (y), ν 2 (y)) and T (y) = (T 1 (y), T 2 (y)) are the outward unit normal and the unit tangent to ∂Ω at y, respectively. Then the following estimate holds for y ∈ ∂Ω:

note that the above O(δ) depends only on ∂Ω. We then obtain the following bound, where C is a constant depending only on ∂Ω:

(6.9) 6.1. L 2 -stability of the density function Chapter 6. Uniform stability Theorem

Then there is a constant C depending only on g, Ω and Ω • such that

Proof. As the double-layer potentials W Ω δ φ and W Ω φ are continuous on Ω • , there is a point

We recall that in Section 5.4, we denote -S ijk (x, y)ν k (y) by D ij (x, y). By the change of variables y = ψ δ (y), and making use of j δ , the Jacobian of ψ δ , we obtain the following formula

From the boundednesss of D ij (x 0 , y) on ∂Ω and the approximation j δ (y) = 1 + O(δ), we obtain |I 1 | ≤ δC.

By employing the boundednesss of D ij (x 0 , y) on ∂Ω and Lemma 6.1.1, there is a constant C depending only on g, Ω and Ω • such that

And due to the continuity of D ij (x 0 , y) with respect to variable y, we have

The proof is completed.

Chapter 7

Derivation of the asymptotic expansion

The aim of this chapter is to present the derivation of the high-order asymptotic expansion of the velocity u δ . The outline of this chapter is as follows: In Section 7.1, we present the strategy to derive the asymptotic expansion for the density function by rewriting the Fredholm operator (I + K Ω δ φ -N Ω δ φ) • ψ δ as a power series in terms of δ. Then in Section 7.2 we will obtain the asymptotic expansion for the solution u δ .

Asymptotic expansion of the density function

In order to derive an expansion for φ, we will rstly show that there is a sequence of integral operator (K n Ω ) n∈N and (N n Ω ) n∈N to approximate K Ω δ -N Ω δ .

Lemma 7.1.1. Let N ∈ N. There exists a constant C depending on N and

where φ δ := φ • ψ δ .

Proof. Indeed, we rstly investigate the asymptotic behavior of K Ω δ φ as δ → 0. Denote by φ δ = φ • ψ δ the vector valued function with components φ δ,j (j = 1, d). Applying the change of variable, we can rewrite the integral

Here we consider S ijk ( x, y) as a function of variable x -y. Then using Taylor expansion for S ijk ( x, y) when r = x-y = 0, and combining with formulas (5.6)

Chapter 7. Derivation of the asymptotic expansion and (5.7) regarding the asymptotic expansion of length and area element, respectively, we obtain:

and for d = 3,

m+q=n ∂Ω K m ij (x, y)σ q (y)φ δ,j (y)dσ(y),

where in the case d = 3, we note that σ q = 0 for all q ≥ 3 (according to (5.7)). Note that K 0 Ω = K Ω , and (K n Ω ) n∈N are singular integrals. In case of d = 2, they are bounded in (L 2 (∂Ω)) 2 as a consequence of the theorem of Coifman-McIntosh-Meyer (see (B.4.2)), noting that |ν(x) -ν(y)| ≤ L|x -y|, for x, y ∈ ∂Ω, with some constant L depending only on ∂Ω (see Lemma 5.1.1). In case of d = 3, they are weakly singular kernel integrals and thus they are bounded operator (similar to the estimate (6.22) in the previous chapter).

We now dene the following sequence of bounded integral operators to approximate the operator (N Ω δ φ) • ψ δ : in case d = 2:

∂Ω ν p j (y)φ δ,j (y)σ q (y)dσ(y),

noting that N q Ω φ δ (x) = 0 for q ≥ 3 (according to the expression of σ n in (5.7)).

This completes the proof of Lemma 7.1.1.
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Then we obtain a sequence of {φ n } n∈N for approximating the density function φ • ψ δ . Firstly, one can see from Theorem 7.1.1 that for each integer N , the density function φ δ satises

Now using the Taylor expansion for g δ ( x) = (g δ,i ( x)) d i=1 at δ = 0:

where G n i are bounded functions regardless of n. Note that, g δ is the extension function of g, so we have g δ (x) = g(x) for all x ∈ ∂Ω. In particular, the rst three terms in the expansion (7.8) are given by

where D 2 g i is the Hessian matrix of g i , and the superscript T denotes the transpose of a vector.

For d = 3, with x ∈ ∂Ω δ , x ∈ ∂Ω, x = x + δν(x), we have:

where G n i are bounded functions regardless of n. In particular, the rst three terms are given by

Therefore, we obtain the following integral equation

δ n G n , on ∂Ω. (7.10)

The equation (7.10) can then be solved recursively in the following way: dene

Chapter 7. Derivation of the asymptotic expansion and for 1 ≤ n ≤ N ,

(7.12)

Note that {φ n } 0≤n≤N are vector-valued functions, and we denote their components by {φ n j } j=1,d . This derives a sequence of {φ n } 0≤n≤N for the approximation of the density function φ • ψ δ . Then the following result holds: Theorem 7.1.1. Let N ∈ N. There exists a constant C depending only on N and Ω such that

where {φ n } 0≤n≤N are dened by the recursive relation (7.12).

Asymptotic expansion for the velocity eld

Now we derive the asymptotic behavior of u δ (x) -u(x) as δ → 0, x ∈ Ω • . The boundary integral representation of the solution in (6.2), through the change of variables y = ψ δ (y), can be expressed as

where D ij (x, y) = -S ijk (x, y) ν k ( y), and φ δ = φ • ψ δ whose the j th -component is φ δ,j , for j = 1, d.

Our task now is to investigate in the kernel D ij (x, y) = -S ijk (x, y) ν k ( y). Using the Taylor expansion of S ijk (x, y) with respect to variable y, and combining with (5.5) and (5.8), we obtain: .

(7.15)

We now give the main result.

Theorem 7.2.1. Dene, for n ∈ N and for x ∈ Ω • , the vector-valued functions u n = (u n i ) i=1,d as follows

Then the following formula holds uniformly for x ∈ Ω • :

here the remainder O(δ N +1 ) depends only on N , Ω and Ω • .

Proof. We rewrite the formula (7.13) by combining the formulae (5.6), (5.7) and (7.15) as follows

The proof is completed.

Computation of the rst order

For example, let us compute the rst order approximation of u δ -u explicitly. Note that φ 0 = φ where φ is dened by (7.11) and

(7.17)

Chapter 8. Conclusion and perpectives

Concerning with the perturbation problem, we will consider the transmission problem with a small inclusion and some other partial dierential equations as well, by tools of potential theory and boundary integral equations. We will also study about the application of the asymptotic expansions in the detection of the defects of the boundary, or the reconstruction of the location and of the geometric features of the inclusion, which are interesting topics in the theory of inverse problem.

Appendix A

This rst appendix presents the proofs for some inequalities and auxiliary results for Part I of the thesis.

A.1 Proof of Lemma 1.9

Proof. Indeed, for w = (w i ) 

To show the coercivity of the form A, we note that

αh -1 u 2 0,e dA. (A.4) By using the Cauchy-Schwarz's inequality, the Young's inequality and the stability bound of the lifting operator in Lemma 3.4.1, we obtain

for a parameter γ > 0 specied later. We conclude that

.

For γ = c * /2, and α ≥ α min , we obtain the expected coercivity bound.

A.3 Calculus facts

Firstly, we give the proof of Lemma 4.2.1 concerning the zero-mean value of 

We have that

this yields that M (t) reachs its maximum value at t = t n +2t n-1 3

The following formula holds

Proof. Indeed, 

Lemma A.4.4. (Time-reconstruction error bound). Under the assumptions of Theorem 4.3.1 and with the notation (4.13), we have .22) Proof. Noting that ∂ 2 u n h is piecewise constant, and recalling the zero-mean value (4.2.1) of µ n in [t n-1 , t n ], n = 1, . . . , N , we have

) Ω dt, (A.23) where

commute with the time integration, we obtain

For the last term in I 4 , by using an argument similar to (A.20), we have A.25) and this completes the proof.

Appendix B

This appendix presents some special functions, preliminary results about Bessel function, fundamental result of Riesz theory and singular kernel integrals, which are involving in Part II of this thesis.

B.1 Modied Bessel functions I and K

The dierential equation

where ν is a real constant, is called the modied Bessel's equation and its solutions I ν (z) and K ν (z) are known as modied Bessel functions.

To have the formulas for I ν (z) and K ν (z) we need the following preliminary denitions (can be seen in [A-S]).

Denition 17. Euler constant (sometimes called Gamma) is dened as the limit of the expression

The abbreviation ln stands for the natural logarithm, also called the base e logarithm.

Denition 18. (Euler's formula). For all complex numbers z, except the non-positive integers (z = 0, -1, -2, . . .),

If n is a positive integer,the function is dened by Γ(n) = (n -1)!. 
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For integer values, the function is dened by

Denition 20. (Modied Bessel function of the rst kind)

.

Denition 21. (Modied Bessel function of the second kind)

where ψ(n) is given by Def. 19.

We also have the following decay behaviour for K ν (z) as ν is xed (Reν > 0) and z → 0

B.2 Approximation of unit normal vector

The following result can be seen e.g. in [A-K-L-Z]).

Lemma B.2.1. Let ν( x) be the outward unit normal vector to ∂Ω δ at x.

Then the following formula holds

Proof. Under the notations as in Denition 14, it follows that x = X(t) =

t) is a parametrization of ∂Ω δ (with R stands for the rotation operator), ν(x) = R -π 2 X (t), the tangent vector T (x) = X (t), X (t)⊥X (t) and X (t) = τ (x)ν(x). Using the simplied notations ρ(t) for ρ(X(t)) and ρ (t) for the tangential derivative of ρ(t), then we have

This completes the proof.

B.3 Fundamental result of Riesz theory

Theorem B.3.1. (see [Kress], Theorem 3.4). Let A : X → X be a compact linear operator on a normed space X. Then I -A is injective if and only if it is surjective. If I -A is injective (and therefore also bijective), then the inverse operator (I -A) -1 : X → X is bounded, i.e., I -A is an isomorphism. Remark B.4.1. The above theorem is applied to derive the boundedness of the singular kernel integral T dened in Eq. (6.15) and of the integrals (K n Ω ) n∈N dened in Eq. 7.5. Let us present the boundedness of the singular kernel integral T for example, the proofs for the boundedness of (K n Ω ) n∈N can be carried out in the same way.

B.4 Singular kernel integrals

Lemma B.4.1. Let T = {T i } 2 i=1 be the singular kernel integral dened in Eq. (6.15), T is bounded on (L 2 (∂Ω)) 2 , i.e. there is a constant C such that the following estimate holds for all φ ∈ L 2 (∂Ω) 2 :

T φ L 2 (∂Ω) 2 ≤ C φ L 2 (∂Ω) 2 . restricted to ∂Ω becomes (for example we take i = 1, j = 2)

2 .

i) For the rst component, let F 1 be an innitely dierentiable and odd function dened by

ii) For the second component, let F 2 be an innitely dierentiable and odd function dened by

and the kernels for some other index (1 ≤ i, j ≤ 2) can be carried out similarly, then applying Theorem B.4.2 we obtain (B.7).