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Discipline : Mathématiques Appliquées

Présentée par

PIETRO FODRA

MODELING OF THE PRICE MICROSTRUCTURE AND
APPLICATIONS OF STOCHASTIC CONTROL TO

ALGORITHMIC TRADING
Modélisation de la microstructure du prix et applications du contrôle

stochastique au trading algorithmique
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Rosenbaum, for having accepted to examine my work and partecipate to the defence.

I thank Jacques Lucas, Philippe de Gouville, J.G.Grebet, and all my colleagues, who have be-
lieved in me, and allowed me to develop many professional skills in an outstanding working
environment, made of daily intellectual challenges and collaborations between colleagues driven
by enthusiasm and passion. A special thank goes to Aurélien, for all the time he devoted me to
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Chapter 1

Introduction

1.1 A introduction to the limit order book

During the last decades, electronic markets have gained an enormous popularity among investors,
and cover now the majority of the transaction volume, especially in U.S. market. Their success
is due to fast, public and traceable transactions, in exchange for small fees to pay to the stock
exchange for the service provided.

Humans are replaced by automatons (luckily still programmed by humans!) sending orders
to the electronic market, a veritable revolution in the finance world. The intrinsic limits of
human speed have been widely overcome by computers, that are able to send several orders in
a fraction of second following complicated and systematic algorithms. A new kind of trader is
born: the high frequency one. Despite the success, their participation to the market has been
widely debated both in terms of moral and regulatory issues: the emblematic flash crash of
6th May 2010 on the U.S. market has highlighted the necessity of better understanding how
high frequency traders affect, impact and drive the market, in particular since an algorithm,
and the chain reaction of others in the next milliseconds, can deeply modify the value of a
stock in few seconds. At present time, a large academic literature (e.g. [55], [48]) has focused
on the flash crash, trying to attack or defend these traders from being responsible of one of
the most spectacular event in the modern finance, but empirical evidences do not suggest a
unique interpretation of these “wild” minutes of trading. Furthermore, it would be restrictive
to consider only extreme scenarios in the analysis of such a complex phenomenon as electronic
(and in particular high-frequency) trading. Its original mission, which has been successfully
accomplished, was, and still is, to bring liquidity at a small price: public concurrence of several
investors in the electronic market has contributed to improve significantly the market liquidity,
lowering the cost of market participation, and this seems to guarantee a future to this activity.

The FIFO matching engine: be what you want!

The key behind this success is a simple queueing system handling the inter-play between sellers
and buyers, liquidity providers and takers.

In the simplest and most popular case, the price-time FIFO (first-in-first-out) electronic book,
several liquidity providers, also called market makers, make public the price they are willing
to sell or buy a lot, as well as the liquidity (the number of lots) they make available at that
price. These passive orders are called limit orders. Sellers (buyers) are ranked in terms of
priority according to the lower (higher) price offered, with the convention that:

i) for sellers or buyers offering liquidity at the same price, the priority is determined by the
timestamp of the limit order (price-time priority),

ii) the best selling (buying) price is called best-ask (best-bid),

1



2 1. Introduction

iii) the difference between the best-ask price and the best-bid price is called the bid-ask spread,
while their average the mid-price.

Notice that the bid-ask spread is always positive: the best-ask price is always bigger than the
best-bid one, since otherwise there would be an agreement between a buyer and a seller, and
thus an immediate transaction.

Now, liquidity takers can accept to buy or sell at the price offered by liquidity providers, sending
active orders, also called market orders. Of course, if their demand of liquidity is small, a
buyer (seller) accepts to treat at the best-ask (best-bid) only. However, if their demand excesses
the liquidity supplied at the best level, they first consume it, and then go for deeper levels in
the book, widening the market spread and altering the current mid-price.

This snapshot of the limit order book should be though dynamically: liquidity providers and
liquidity takers continuously send market and limit orders, improve the current best price to
gain priority, clear levels when a big amount of liquidity is needed, etc... The same investor can
be, during one day, buyer and seller, liquidity provider and liquidity taker. This is one of the
key of the success of electronic trading compared to monopolistic market where one external
liquidity provider establishes the best quotes for all the liquidity takers, and no role exchange is
possible.

Even if the latter is the most popular type of electronic market, this is not the only one: several
markets exist, with different priority rules (e.g. pro-rata, where the displayed liquidity is more
rewarded than timestamp in terms of priority), different fees (e.g. markets where market makers
pay a fixed initial fee not to be charged on each transaction), different visibility (e.g. dark pools,
where limit orders are hidden to liquidity takers), and so on. Since all the models in this work
are inspired to the FIFO matching engine, we will not add further details on other types of
market.

The tick size

So far, we have mentioned that market makers are allowed to send limit orders displaying the
price and the liquidity they are willing to offer. In a price-time priority market, it would be
enough to improve the current best price of any ε > 0 to be the first in the queue. In an electronic
market, this would create an extremely unstable environment where each market maker, as soon
as she is not the best offerer, sends a new limit order to improve the current best price of a small
quantity. This problem is solved by the introduction of apparently harmless but powerful tool:
the tick.

Fixed by the stock exchange, the tick size represents the minimum distance between two levels
in the limit order book, which implies that all the limit orders have prices living on the tick grid
and that a bid-ask spread of 1 tick cannot be improved, forcing any new market maker
to wait to be first served in the line. The timestamp priority becomes a crucial factor, which
justifies the enormous amount of money spent by big financial investors to reduce the latency
between the time when the order is sent and when it is actually received by the exchanxge.

The choice of the tick size is a delicate subject, and the recent work of [31] has focused on how
to determine the optimal size for the exchange in order to guarantee the functional behavior of
the market. Assets can be roughly divided in large tick or small tick assets, comparing the
size of the tick with the asset price.

In large tick assets, the distance between two consecutive levels represents an important amount
of money (recall that high frequency traders make several transactions a day), and lots of market
makers are fine to offer liquidity at levels close to the mid-price. As a consequence, if the bid-ask
spread is more than one tick, there is likely to be one market maker willing to improve it and
fill the gap: for large tick assets the liquidity is concentrated on the first levels and the bid-ask
spread is almost constantly one tick. The liquidity structure of the limit order book is dense
around the mid-price, which is trapped into two walls of market makers offering resistance to
the price movement, making the mid-price jumps mostly of one tick at the time.
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In assets with small tick, the situation is quite the opposite: the displayed liquidity is spread all
over the book, and holes can appear (levels where no liquidity is displayed) also in levels close
to the mid-price. As a result, the spread is not constantly one tick, and the mid-price enjoys a
large freedom of movement, which makes it jump several times and often of multiple ticks. The
difference between the two market is illustrated by Figure 1.1.

Figure 1.1: liquidity distribution for assets with different ticks (simulated data), with the convention that δ = 0
is the mid-price, and δ > 0 (< 0) corresponds to the ask (bid) side. Asset with large tick displays liquidity close
to the mid price δ = 0, while in the small tick case the liquidity is distributed more uniformly.

Summing up, the (mid) price of large tick assets changes less often than in the small tick case,
since the minimal jump possible represents an important amount of money, and usually of one
tick at the time. Nevertheless, assets with different tick size and different frequency of jump can
be highly correlated (see the Eurostoxx and the Dax), since the effect of multiple jumps of a
small tick assets are replicated by few jumps of the large tick asset.

Stylized facts and models for the stock price

The pricing literature has developed over the last 40 years a lot of models for the stock price
based on daily observations, for which continuous processes, as the geometric Brownian motion
and its sophisticated extensions, are well adapted, both in terms of accuracy and tractability
for pricing formulae.

At the micro-structure scale, the choice of a continuous process is arguable. The effect of the
tick size naturally discretizes the stock price, which is a piece-wise constant process jumping on
the tick grid.

This dynamic has direct consequences on the stock price, which exhibits, at the micro-structure
scale, several stylized facts.

We illustrate the most common ones.

i) micro-structure noise: the stock price exhibits a mean reverting behavior, i.e. a strong
anti-correlation between two consecutive jumps. This phenomenon is due to the particular
structure of the limit order book, where the price is the result of the interplay between
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liquidity providers and takers. When market orders consume all the liquidity offered by
market makers at one of the best prices, the mid price jumps in the corresponding direction,
up (down) if theses orders match the best-ask (best-bid) price. The spread suddenly enlarges,
and new market makers are likely to fill the gap: if the price jumps upwards (downwards),
the new best-ask (best-bid) displays a pre-existing liquidity offered by market makers that
were waiting on the second level on the ask (bid) side, while the new best-bid (best-ask)
offers a brand new liquidity due to market makers filling the gap in the spread. Since the new
level offers less liquidity than the older one, the price is likely to jump downwards (upwards)
the next time, and so on... This creates a mechanical mean reversion (see Figure 5.2), which
is stronger for assets where the liquidity is concentrated around the mid price, i.e. large tick
assets. The phenomenon can be quantified by measuring the frequency of two consecutive
jumps in the opposite direction, i.e.

P[↑↓ or ↓↑] .

for large tick assets, it widely overcomes 50% (the random walk): the stock price is not, at
the micro-structure level, a martingale, since the directional information coming from the
last jump (actually jumps!) influences its future evolution.

ii) Volatility clusters: while micro-structure noise is a stylized fact typical of micro-structure,
volatility clusters can be found both at the micro and macro-structure scales. Empirical
evidences suggest that phases of high activity (read volatility) are persistent in time: the
pricing literature has tackled this problem introducing stochastic volatility (GARCH, Heston
, SABR, etc...), and we will see that the micro-structure one has chosen a very similar
approach, employing point processes with stochastic intensity.

iii) Mean signature plot: volatility estimation is crucial in option pricing (and almost every-
where in quantitative finance), since volatility represents a risk an agent is likely to hedge
against. High frequency databases guarantees an impressive number of observations, which
should improve the standard volatility estimator by shrinking its confidence interval. Unfor-
tunately, the microscopic mean reversion leads to a standard estimator that explodes when
the observation frequency increases. In particular the mean signature plot

V̄(τ) :=
1

τ
E
[
(Pt+τ − Pt)2

]
6= σ2 ,

as it should be if (Pt) were driven by dPt = σdWt. Empirical evidences suggest that V̄(τ) is
a decreasing function of τ , and this phenomenon cannot be explained by diffusive models.

iv) Diffusive behaviour on the long run: most of the stylized facts appearing in the micro-
structure world tend to disappear as soon as observations become less frequent, especially for
the micro-structural mean-reversion and the decreasing shape of the signature plot. Pricing
literature has been focusing on continuous price models for years, and the arrival of the
electronic market has not altered the diffusive nature of the stock price at the macroscopic
scale.

v) Epps effect: even if not treated in this work, it is worth mentioning the Epps effect. Em-
pirical evidences suggest that increasing the observation frequency, the correlation between
two assets tends to disappear, even if at the macroscopic scale they are highly correlated.
This can be interpreted as the cross correlation counter-party of the mean signature plot,
and its cause has to be looked for in the discrete nature of the price.

We will detail how different models in the micro-structure literature replicate these stylized
facts, but first it is important to make a remark concerning applications. Trading applications
based on optimal control techniques are often a sophisticated and powerful tools to design an
algorithmic strategy. However, optimality, like magic, comes with a price: sophisticated systems
are usually high-dimensional, complex and difficult to handle both analytically and numerically.
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An electronic trading application should address at least the price model and the execution
mechanism: a faithful description of the entire environment would lead to intractable models.
Often, something must be sacrificed. In the available literature, the most popular choices are to
consider the price as a Brownian motion, or the arrival of market orders in the book as a Poisson
process. Both hypothesis are somehow inconsistent, but in some case tolerable. In particular,
when the agent horizon is big, the micro-structure stylized facts tends to compensate, leaving
space for easier models. For a daily horizon for example, assets with small tick can still be
thought as diffusive, since their jump activity is so high that the stock price can be considered
continuous. For large tick assets instead, the piece-wise constant feature cannot be ignored, and
point processes should be preferred to continuous ones.

A literature background on price modelling at high frequency

The modelling of tick-by-tick asset prices has attracted a growing interest in the statistical and
quantitative finance literature with the availability of high frequency data. The properties of
the stock price, and more generally of whole the limit order book, have been widely investigated
by several econometric and econophysic papers, which focused on the empirical property of the
book starting from minimal assumptions. Some examples are provided by the seminal papers
[13, 58], studying the distribution of incoming limit order around the mid-price, enlightening its
power shape nature, [32], where the the authors observe the role of liquidity providers in the
magnitude of price variation, or [52, 12], studying long memory persistence of the order flow
and the price increments.

We introduce some of the existing models to provide an overview of how different authors has
tackled this problem and to explain the philosophy guiding them. The literature is basically
split into two categories.

i) The macro-to-microscopic (or econometric) approach: (see e.g. [39], [3], [60]) it interprets
the observed price as a noisy representation of an unobserved one, typically assumed to be
a continuous Itô semi-martingale: in this framework several results exist on the robust esti-
mation of the realized volatility, but these models seem not to be adapted to high frequency
trading problems and stochastic control techniques, mainly because the state variables are
latent rather than observed.

ii) The micro-to-macroscopic approach: (see e.g. [9], [7], [25], [1], [35], [17], [29] and [30]) it
exploits point processes, in particular Hawkes and renewal processes (as in our case), to
drive the asset price, either moving on the tick grid or on the real line. In contrast with
the macro-to-microscopic approach, these models do not rely on the arguable assumption of
the existence of a fair or fundamental price, focusing only on observable quantities, which
makes the statistical estimation usually simpler.

Two of the most beautiful examples in the macro-to-microscopic approach are represented by
the rounding model and the uncertainty zone model. In the rounding model, the price process
is given by

Pt := bP̂tc ,

(assuming that the tick size is unitary), where (P̂t) is a continuous semi-martingale (e.g. a Brow-
nian motion). The tick rounding guarantees the reproduction of the micro-structural noise, while
by construction the process has a diffusive behaviour for large scale observations. For this model
[39] and [46] illustrate several statistical properties and provide a volatility estimator for the hid-
den price process, overcoming the problem of the explosion of the mean signature plot. The
uncertainty zone model of [60] instead, assumes that a continuous semi-martingale drives a
hidden price, with the observed price that changes only when the hidden price hits some hidden
barriers, strategically placed to reproduce the micro-structure noise. An efficient estimation
procedure allows to detect the hidden price dynamic (e.g. its volatility in the Brownian motion
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case) and the position of the barriers, and once again the process tends to a diffusive behav-
ior for large scale observations by construction. As previously said, these efficient models are
rather difficult to translate into trading applications using optimal control techniques, since the
knowledge of the current value of the hidden process is a necessary ingredient to use dynamic
programming.

The micro-to-macroscopic literature instead bases her description on observed quantities only.
No hidden process exists, and the stock price is assumed to be driven by piece-wise constant
point processes. The most popular are Hawkes processes. In the seminal paper of [7] the stock
price is given by

Pt = N+
t −N

−
t ,

where (Nt = (N+
t , N

−
t )) is a Hawkes process with stochastic intensity(

h+
t

h+
t

)
=

(
µ+

µ−

)
+

∫ t

−∞

(
ν++(t− u) ν+−(t− u)
ν−+(t− u) ν−−(t− u)

)(
dN+

t

dN−t

)
.

The base intensity µ = (µ+, µ−) represents the minimal intensity of two components, while
the kernel ν handles their covariance structure. This model is able to reproduce the micro-
structure noise choosing an antidiagonal kernel: as a result, when the price jump upwards
(downwards), i.e. N+

t (N−t ) jumps, the downwards (upwards) intensity λ−t (λ+
t ) jumps as

well, increasing the probability of a downward (upwards) jump of the stock price. This kind of
Hawkes process are called cross exciting, since the activity of the two components are reciprocally
activated. This model is able to reproduce efficiently volatility clusters, i.e. the persistence in
time of period of high jump intensity. This key ingredient is provided by the convolution term∫ t
−∞ ν(t−u)dNt, that determines both the feedback effect of a price jump on the jump intensity,

and how the stochastic intensity decays towards the base intensity µ. According to the choice
of the kernel (usually exponential or power type), the influence of the past activity fades away
slowly or quickly, determining big or small clusters of activity. One of the most elegant results are
provided by the closed form for the signature plot and the long-run behavior, i.e. the functional
convergence

lim
T→∞

PtT√
T

L
= σWt , t ∈ [0, 1] ,

where Wt is a Brownian motion whose volatility is known analytically. A non-parametric es-
timation procedure for the kernel shape is provided by [8], and some important generalization
made this model extremely popular. The model can be extended in fact to the multivariate
case, where multiple assets are mutually influenced by the kernel structure, which replaces the
covariance structure of the diffusive Itô case. Once again, results for the large scale observations
are available in closed form that gives the corresponding diffusive covariance starting from the
point process kernel. Another generalization consists in linking the price process to the arrival
or market orders to create a complex system of Hawkes process given by

N̂t :=
(
Na
t , N

+
t , N

−
t , N

b
t

)
,

where (N+
t , N

−
t ) counts stock price upwards/downwards jumps, while (Na

t , N
b
t ) counts market

orders arriving at the best ask/bid price: their intensity is given by
λ̂+
t

ĥ+
t

ĥ−t
λ̂−t

 = µ̂+

∫ t

−∞
ν̂(t− u)dN̂t , ν̂(t) ∈ R4×4 .

This elegant approach has a major inconvenient in applications, because of its dimension. The
only case where this system can be embedded in a Markov system is when the kernel is expo-
nential, and in that case the dimension is (at least) 5 (the time dimension plus an extra one for
each intensity).
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The marked point process approach, given by [17], subordinates the price dynamic to the
market order ones. In particular the stock price is given by

Pt = P0 exp

(
Mt∑
i=1

ξi

)
,

where ξi > 0 (ξi < 0) is the price shock corresponding to a single buy (sell) limit order, counted
by (Mt): the latter can be a renewal process (as in [17]) and (ξi) an i.i.d sequence, but one can
generalise this approach choosing a different model for (Mt), e.g. a self-existing point process,
and give a more complex probabilistic structure to (ξi), e.g. a Markov chain. The exponential
transformation guarantees the positiveness of the stock price, which cannot be achieved by
arithmetic point processes, as the Hawkes one, but does not guarantee that the stock price
moves on the tick grid.

To conclude this non-exhaustive list of examples, [25] proposes an entire endogenous recon-
struction of the price formation, providing the dynamic of the first two levels of the limit
order book (i.e. the best-ask and the best-bid). A couple of random variables models the liq-
uidity offered on both levels, which is gradually consumed by market driven by general point
processes. Every time the stock price jumps, the liquidity offered at the two best prices is
reformed according to a new couple of random variables taking into account the natural imbal-
ance of the two levels immediately after the jump: this reproduces the micro-structural mean
reversion. Furthermore, several results are available for the asymptotic behaviour of the book,
in particular for the long-run law of the stock price.

The market making problem

Market making is a non-directional trading strategy based on taking a profit from providing
liquidity to the market. Sending two limit orders, one on the ask side and one on the bid one
(not necessarily at the best quote), the market maker offers a liquidity that can be consumed
on both sides. Assume that both limit orders have size N , and that the ask order is sent at At,
while the bid one at Bt (notice that At > Bt). If both limit orders are fulfilled, the agent sells at
At and buys at Bt a package of N lots, creating a profit of N (At −Bt) > 0, while her inventory
is unchanged (−N + N = 0). The market maker is rewarded for providing liquidity
collecting several bid-ask spreads during the trading day. We say that this strategy is
non-directional, since the market maker is not interested following the market, but wants to
be paid for the service she provides: on the contrary, she wants to be as market independent
as possible, and in order to achieve this result, she has to control her inventory, avoiding large
positions (both short and long) that would expose her to market risk (called inventory risk).

Market making is a continuous activity all along the day and electronic trading guarantees
(almost) real time reaction to the market: orders are sent, cancelled, replaced or modified in
a short amount of time by all the market makers. Since potential transactions are much more
than in the classic (human) market, liquidity providers can tighten their spread and improve
the market liquidity.

Trivial at first sight, market making is a complex trading activity, since, beyond the inventory
one, there are hidden risks that the market maker takes on her shoulder. Since the liquidity risk
decreases for liquidity takers in an electronic platform, this risk must be carried by someone else.
Market makers are exposed in a subtle way: their orders are always likely to be executed in the
least profitable way. When liquidity takers hit several times the ask (bid) side, market makers
sell (buy) inventory, but since the market pressure pushes the price upwards (downwards), they
sell (buy) an asset whose value is increasing (decreasing). This is an intrinsic property of the
book, called adverse selection, and allows liquidity takers to transfer their risk to market
makers by paying the spread: a general investor wanting to buy (sell) the asset, can either
send a market order at the best ask (bid) price, or send a limit order at a lower (higher) price,
decreasing her chances to be executed. Liquidity takers chose to send market orders, and pay to
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get free of the risk of not being executed, while market makers chose to wait and risk a random
execution in exchange of a small, but frequent reward.

Furthermore, the effect of inventory risk and adverse section combines. The market maker can
accumulate, because of adverse selection, a huge long (short) position due to the downwards
(upwards) market pressure. Suddenly, she has a large position she is averse to: in order not be
exposed to inventory risk, she may decide to sell her liquidity cheaper to revert her inventory to
0. In this case, she suffers a double loss, the directional one due to adverse selection, and the one
due the urgency of getting free of her new inventory, that would expose her to market risk. The
intrinsic execution reward due to liquidity providing can be strongly mitigated, or in the worst
case widely overcome, by adverse selection and inventory risk. That is why optimal control is
necessary to reach a trade-off between liquidity providing and risk controlling. A standard (see
[44]) approach consists in finding a market making strategy maximizing

VT − η
∫ T

t
Y 2
u d〈P 〉u , or VT − ηY 2

T , or exp (−η (VT )) ,

where T is the trading horizon, while η > 0 is the subjective risk aversion controlling the
portfolio variance. In both cases the portfolio mean performance is penalized by its variance: in
the linear case the penalization is given either all along the trading day (the integral term) or at
the horizon, but in both cases the variance control is equivalent to avoid large positions, which is
exactly the source of the inventory risk. In the exponential case, the exponential utility function
allows to reach a compromise between mean and variance: the variance and the inventory control
are, in the end, the same thing. In the seminal paper of [6], the market maker is allowed to
send (unitary) limit orders on both sides, and their probability of execution decreases with the
distance from the mid-price. Other papers, as in [44], the agent sends limit orders only at
the best levels. The choice depends essentially from the market. For assets with small ticks,
the stock price can be assumed continuous, and because of the sparsity of the liquidity in the
limit order book and the rounding error is relatively small, we assume that limit orders can be
placed at any (real) distance from the mid-price. For large tick assets instead, the stock price
is usually better described by point processes, and since liquidity is concentrated on the levels
being closest to the mid price (often the first one), one can allow the market maker to send
order at the existing best price only. In our work we will adopt both approaches, according to
the type of asset we are dealing with (we will develop further details later).

The main difficulties in electronic trading application is, by far, providing analytic formulae for
the optimal strategy. This is due to the intrinsic problem complexity, where several random
processes come into play, making the problem dimension explode. Thanks to several vari-
able changes, and asymptotic developments, some closed formulae are available, illustrating the
interaction between the agent and the market components, and improving the financial inter-
pretability of those results. The usual approach is to

� give the market model,

� define the agent admissible strategies,

� formulate the control problem in terms of maximization of an utility function,

� write the HJB equation associated to the control problem,

� simplify the HJB equation dimension thanks to multiple variable changes,

� solve numerically the remaining part.

Two out of three times, we will exploit the perturbation theory (see [11]) to provide an asymp-
totic expansion of the value function and the optimal controls in the risk aversion parameter.
The risk aversion parameters allows the agent to control her inventory: we will prove that the
value function of a risk neutral agent (no risk aversion) is independent of her current inventory.
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This allows to reduce the problem dimension and access to analytic formula. When small risk
aversion is introduced, the agent profile slightly changes, and deforms her value function and
her optimal policy. This approach leads to much more explicit formulae, that are easier to
understand and test in real algorithmic strategy.

Using exp (−η (VT )) as terminal payoff (see e.g. [44], where the utility function is the exponential
one), we would be able to capture the total risk associated to the agent position. Unfortunately,

this kind of problem formulation represents an obstacle for tractability: using VT−η
∫ T
t Y 2

u d〈P 〉u
or VT − ηY 2

T (or combining the two approaches), since the payoff has a polynomial shape in the
inventory, we can look for solutions, or approximations, of the same form, which would not
be possible for a general utility function. For the exponential utility function, the case with
no risk aversion (η = 0) has no sense, and perturbation methods becomes a hard path to
follow. Furthermore, the choice of the integral or the terminal penalisation allows the agent
to privilege one of the two different form of the inventory risk: the one associated to holding
inventory during all the trading day and the one associated to the terminal inventory only.
According to the agent profile, one penalisation can suit better than another, and in both cases
its interpretation is straightforward, while the exponential utility function handles all the risks
in a unique, elegant but somehow opaque form. Nevertheless, all of the three methods remain
an excellent way to control both inventory and risk, which are intrinsically connected with each
other, and the choice remains a matter of taste or (computational) convenience.

A panoramic of the different models and optimal policy results

Before detailing the content of our work, we would like to explain the reason of approaching the
market making problem under different angles and with different models, reconstructing the iter
that chains one paper to the following and comparing our results with the literature ones.

In Chapter 2, we follow the work of [6, 42] and generalise it to a class of assets from which we
only know their expected incrementation and quadratic variation. In this framework, market
maker limit orders are posted at both sides and at a certain (real, not discrete) distance from
the mid price and executed at a rate decreasing with the limit order distance. For this kind
of models, quotes are adjusted in real time to follow the mid-price dynamic, and the optimal
bid-ask (agent) spread consists in a symmetric position with the respect to the stock price,

� whose centre is translated by the market direction or by the necessity of reverting the
inventory to zero,

� while its width is increased by the level of risk (both objective, the market risk, and sub-
jective, the agent risk aversion).

The problem of this model is that the rounding error on optimal quotes (that in real life must be
on the tick grid) due to the discrete nature of the book has an important impact on strategies
performance, especially on assets with large tick (i.e. where the tick size is large with respect
to the standard volatility of the price arithmetic increments). Furthermore, the model has no
market impact, since the probability of a limit order fulfilment does not depend on the recent
price trend. Market impact and adverse selection can be added (see e.g. [23]) to this framework:
however, we have preferred a different approach, focusing our work to a model where both the
stock price and the agent bid-ask policy live on the tick grid.

Chapters 3 and 4, as in [44, 43], answer this need and deal with discrete value agent quotes. We
define a semi-Markov model for the stock price, whose increments are driven by a Markov chain
on {−1,+1} with random inter-arrival times depending both on the departure and the arrival
state. With a discrete mid-price living on the half-tick, orders can be systematically placed (or
not, determining the agent policy) at the real best ask or best bid price. In this model, we show
that adverse selection can be included (actually we describe two kinds of adverse selection), by
correlating the execution with the price movements. The main result of these chapter is that,
because of the micro-structural mean reversion, i.e. the mid-price repeated oscillation around a
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theoretical fair price, the agent should not place order at the fair price level (we call it the weak
side of the book) to protect herself against the inflation of transaction costs, and place limit
orders mostly at one tick far from it (we call it the strong side),

� unless her risk aversion forces to modify this strategy to revert her inventory to zero,

� or the stock price has not moved for a rather long time (in the high-frequency trading scale),
indicating a temporary stabilisation of the market.

Market making focuses on providing liquidity, and exploiting the bid-ask bouncing previously
mentioned, these actors are rewarded for the service offered to the market. Liquidity strategies
can be enriched and mixed with directional strategies, as shown in the Chapter 2, in order to
have a complete strategy able to adapt itself to the market condition. Chapter 5 answers this
need. This time the theoretical fair price previously described is the center of our framework,
and a long-memory model describes its increments (either +1 or -1). This paper is a natural
consequence of the long-memory of the market ([52]), which is reflected in the stock price (and
in many other components). Thanks to huge database of market data, complex model can be
estimated with care, and VLMC proposed in this paper offers an elegant solution to improve the
semi-Markov setting previously mentioned. This analysis shows that the theoretical fair-price
filters the high-frequency mean reversion and shows trend that can be captured by aggressive
limit orders. So, once again, the market maker can exploit the mean-reversion of the stock price
(which translated to a stability of the fair-price) with passive limit orders and be rewarded for
her liquidity provision, plus she can follow the market with aggressive limit orders as soon as
she has information on its trend.

We have provided a quick glance to the problems treated in this work, and underlined the
importance of optimal control. The next sections are devoted to an overview of the four papers
collected in this thesis, with a list of models and results.

1.2 Directional bets and the power of information in market
making

We address the problem of optimal market making for assets with small tick. Even though
market making is not a directional strategy per se, an agent detaining information on the future
evolution of the stock price should be able to take advantage from it, and adapt her non-
directional strategy. Most of the existing literature on market making assumes that the stock
price is an undrifted Brownian motion, which simplifies the HJB equation and substantially
implies that the optimal strategy is independent from the current mid-price. But what happens
in the general case? And in particular, if the martingale dynamic is slightly deformed, how does
it deform the market making optimal policy? And what about stochastic volatility? We will see
that the agent information translate the agent spread centre in the market direction, creating a
mix directional/market making strategy, while volatility widens the spread.

The market is made by an uncontrolled process, i.e. the stock price, which is assumed exogenous
and independent from the agent strategy which does not impact them (small agent assumption),
and the controlled ones, describing the agent portfolio and how her limit orders are matched.

The uncontrolled processes: the mid-price

We assume that (t, Pt, P̃t) =: (t, Zt) is a Markov process, not necessarily continuous, where (Pt)
is the stock price, while the vectorial process (P̃t) makes the triplet Markovian and independent
from the arrival of market orders in the limit order book. We set to L the infinitesimal generator
of (Zt) and assume that (Pt) ∈ R1 admits finite moment generating function conditionally to

1The mid-price is not assumed to be positive, since in intraday high-frequency trading application, the initial
price is nothing but a reference price.
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its initial value. Its finiteness guarantees that the agent has a finite value function. The only
assumption we made is that

Et,z [PT ]− p := ε(t, z) , (1.2.1)

d〈P 〉t := σ2(t, Zt)dt = σ2
t dt . (1.2.2)

The controlled processes: the agent wealth and her inventory

We borrow the market framework from [6], where the agent places, continuously and on both
sides, limit orders of unitary size at a certain distance ((δ±)t) ∈ R from the opposite best quotes,
with the convention that +/− refers to the ask/bid side. As in [6], we assume that orders placed
at distance δ± from the opposite market best policies are matched by two independent Cox
processes having stochastic intensity (λ±)t := Ae−k(δ±)t , for some A, k ≥ 0. We assume that
every transaction is subjected to a fixed cost ϕ. The goal of the agent is to find an optimal
policy ((δ±)t) maximizing the gain function (called j(η,ε)), i.e

u(η,ε)(t, x, y, z) := max
(δ±)t

j(η,ε)(t, x, y, z; δ±) ,

j(η,ε)(t, x, y, z; δ±) := Et,x,y,z

[
XT [δ±] + YT [δ±]PT − η

(
βY 2

T [δ±] +

∫ T

t
Y 2
u [δ±] d〈P 〉u

)]
,

where [δ±] denotes the controlled process induced by the strategy between braces. We em-
phasize the dependence on η (chosen by the agent) and ε (observed on the market),
since we will explicitly show how, for small values, they deform the agent value
function and her optimal policy.

The explicit solution in the no risk aversion case

For η = 0, we are able to derive explicitly the value function and optimal controls:

u(0,ε) = x+ yh(ε)︸ ︷︷ ︸
buy-and-hold

+ m(ε)︸︷︷︸
market-making

,

h(ε)(t, z) := p+ ε(t, z) = Et,z [PT ] ,

m(ε)(t, z) := 2c

∫ T

t
Et,z [cosh(kε(u, Pu))] du , c :=

A

k
e−k(1/k+ϕ) .

Furthermore, optimal controls are given by

δ
(0,ε)
± := 1/k + ϕ± ε ,

and can be alternatively expressed in terms of

semi-width(0,ε) := 1/k + ϕ = semi-width(0,0) ,

center(0,ε) := p+ ε = center(0,0) + ε.

where semi-width(η,ε) and center(η,ε) are the semi-width and the centre of the agent spread.

The controls δ
(0,0)
± are associated to an agent with no risk aversion and a stock price having

ε ≡ 0, i.e. a martingale: in the general case, for η = 0, the centre of the optimal spread
is linearly impacted by the directional information provided by ε. If ε > 0 (< 0), the
agent estimates that a holding a long (short) position until T is profitable. In order to increase
her chances to buy (sell) and decreases those to sell (buy), she entirely translates her spread of
ε, becoming more aggressive on the bid (ask) and more passive on the opposite one. Thanks to
this “spread shift”, the agent reaches an optimal trade-off between anticipating the market and
providing liquidity, creating a mixed directional/liquidity policy.
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The perturbation approach for positive risk aversion

We extend the previous result to the case of (positive) small risk aversion. We prove that the
value function is O(η2)-approximated by

u(η,ε) ≈ û(η,ε) := u(0,ε) − ηv̂(ε) ,

where u(0,ε) is the risk-neutral value function, u(η,ε)−û(η,ε) ≥ 0, and the risk aversion deformation
is approximated by v̂(ε) = ρ̂0 + 2yρ̂1 + y2ρ̂2 ≥ 0, where

ρ̂2(t, z) = β + Et,z

[∫ T

t
d〈P 〉u

]
≥ 0 ,

ρ̂1 has probabilistic representation

ρ̂1(t, z) = Et,y=0,z

[∫ T

t
Yu

[
δ

(0,ε)
±

]
d〈P 〉u + βYT

[
δ

(0,ε)
±

]]
,

while ρ̂0 is solution of

− (∂t + L) ρ̂0 − 2kc (ρ̂2 cosh(kε) + ρ̂1 sinh(kε)) = 0 , ρ0(T, ) = 0 .

Furthermore, optimal controls are O(η2)-approximated by

δ
(η,ε)
± ≈ δ̂(η,ε)

± := δ
(0,ε)
± + η (∓2ρ̂1 + (1∓ 2y) ρ̂2)︸ ︷︷ ︸

risk aversion

.

The introduction of the risk aversion has the effect of widening the agent spread
of a multiple of η, so that a risk averse agent would adopt a more cautious policy. Widening
the spread, the probability of being executed decreases, while the wealth deriving from a round
trip execution increases. On the other side, the optimal agent spread centre is affect by −2yρ2,
which adjusts the agent spread according to her position.

The special case of small information

The computation or the interpretation of ρ̂1 may represent an obstacle for the determination
of the optimal policies. The results obtained for small risk aversion can be improved, in terms
of interpretability, assuming that ε(t, z) → 0, i.e that the stock price is close to a martingale.
This hypothesis is consistent with the non-arbitrage theory where the stock price, assuming
that interest rates are zero, is a martingale, so that ε ≡ 0. We prove that for small risk
aversions (η → 0+) and small martingale deviations (ε → 0 point-wisely), the value function is
approximated at the first order by

ũ(η,ε) = x+ yp+ yε︸ ︷︷ ︸
forward value

+ m(0) (1− ηD)︸ ︷︷ ︸
market making

− ηρ̃2y
2︸ ︷︷ ︸

inventory risk

,

D(t, z) := k

(
β +

1

T − t
Et,z

[∫ T

t

∫ T

u
d〈P 〉ξ

])
≥ 0 .

Notice that the value function is discounted by the factor ηD, that penalizes the risk-neutral
value function under the martingale regime. Another penalisation is provided by ηρ̃2y

2, which
has a bigger impact on exposed portfolios. Furthermore, optimal controls are approximated by

δ
(η,ε)
± ≈ δ̃(η,ε)

± := δ(0,0) + ε+ η (1∓ 2y) ρ̃2 ,

or equivalently

˜semi-width(η,ε) := 1/k + ϕ+ ηρ̃2 = semi-width(0,0) + ηρ̃2 = ˜semi-width(η,0) ,

˜center(η,ε) := p− 2ηyρ̃2 + ε = center(0,0) + ε− 2ηyρ̃2 = ˜center(η,0) + ε.
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Notice that these controls are a linear deformation of δ(0,0) both in ε and η. In particular the
spread semi-width is impacted only by the risk-aversion, which, as in the previous case, widens
the agent spread. The spread centre is translated by ε to follow the market direction and by
−2ηyρ̃2 to avoid the inventory risk.

Conclusion and further developments

We have extended the work of [6] and understand how conditional information on the stock price
affects the optimal market making. Thanks to perturbation techniques, closed-form formulae are
available, that explains how information linearly translates the spread, while risk aversion widens
it. This model is not suitable for large tick assets, where most of the liquidity is concentrated on
the first level, which implies that the impact of rounding the R-optimal quotes to the tick grid
alters the agent performance. In what follows, will study the large tick asset case, introducing a
simple model for the stock price using point processes, and giving a market making application
complementing these results.

1.3 Semi Markov model for market microstructure

For large tick assets, the stock price cannot be assumed continuous anymore, and point processes
replaces Itô diffusion. This approach is general, and suitable for small tick assets as well. We use
a Markov renewal process (MRP) to describe the random sequence (Tn, Jn). Markov renewal
theory [53] is largely studied in reliability for describing failure of systems and machines, and one
purpose is to show how it can be applied to market micro-structure. By considering a suitable
Markov chain modeling for (Jn), we are able to reproduce the mean-reversion of price returns,
while allowing arbitrary jump size, i.e. the price can jump of more than one tick. On the other
hand, the counting process (Nt), which may depend on the Markov chain, models the jump
activity, and in particular the alternation of high and low activity phases. Finally, MRPs ensure
a Brownian motion behavior of the price process at macroscopic scales, which is consistent with
the classic diffusive approach in the case of daily observations. Our MRP model is a rather
simple but robust model, easy to understand, simulate and estimate, both parametrically and
non-parametrically. An important feature of the MRP approach is the semi-Markov property:
the price process can be embedded into a Markov system with few additional and observable state
variables, ensuring the tractability of the model for applications to market making and statistical
arbitrage. We underline that one of our main prerogative is to provide a model involving only
observable variables, so that non-parametric estimation is easy and no optimization routine is
necessary (as in [19] e.g.), which is a common issue when hidden components are present. MRPs
are powerful tools to model the dependence between jump timestamps and marks, dependence
which is empirically shown (and theoretically supported by [25]), and for which an explanation
relying on the nature of the LOB is provided.

Data sample

The used database is the EURIBOR 3M future (front contract) quoted on the LIFFE electronic
platform (London), from 2010-01-04 to 2010-12-31, observed every day from 10:00 to 14:00
London time. Since the bid-ask spread is 99% of the time equal to one tick, this corresponds to
most of the observations.

We describe the tick-by-tick fluctuation of a univariate stock price by means of a marked point
process (Tn, Jn)n∈N. The increasing sequence (Tn) represents the jump (tick) times of the asset
price, while the marks sequence (Jn) valued in the finite set E = {+1,−1, . . . ,+m,−m} ⊂
Z \ {0}, represents the price increments, where positive (negative) marks stands for upwards
(downwards) jumps.

Here, we have normalized the tick size to 1. We write the price arithmetic returns as Jn =



14 1. Introduction

Ĵn ξn, where Ĵn := sign(Jn) valued in {+1,−1} is an irreducible Markov chain with probability
transition matrix

Q̂ =

(
1+α

2
1−α

2 ,
1−α

2
1+α

2

)
, α = corrπ

(
Ĵn, Ĵn−1

)
,

(we impose α 6= 1 to guarantee the Markov chain irreducibility) while (ξn) is an i.i.d. sequence
valued in {1, . . . ,m}, independent of (Ĵn), with distribution law: pi = P [ξn = i] ∈ (0, 1),
i = 1, . . . ,m. On the given database, α ≈ −85%, which is equivalent to a high level of mean
reversion due to a very large tick.

We assume that conditionally on the jump marks (Jn), (Sn) is an independent sequence of
positive random times, with distribution depending on the current and next jump mark:

Fij(t) = P [Sn+1 ≤ t
∣∣Jn = i, Jn+1 = j] , (i, j) ∈ E .

Here, we allow in general dependency between jump marks and renewal times, and we refer to
the symmetric case when Fij depends only on the sign of ij, by setting

F+(t) = Fij(t), ij > 0 , F−(t) = Fij(t), ij < 0 .

In other words, F+ (F−) is the distribution function of inter-arrival times given two consecutive
jumps in the same (opposite) direction, called trend (mean-reverting) case. The hazard function
associated to the MRP is given by

hij(t) := pj

(
1 + sign(ij)α

2

)
fsign(ij)(t)

1− F (t)
, F (t) :=

1 + α

2
F+(t) +

1− α
2

F−(t) ,

that describes the instantaneous jump activity. We analyse the parametric and the non-
parametric estimation procedures for F± and h±: empirical evidences suggest that the hazard
function is a decreasing function of the elapsed time since the last jump of the stock price, which
can be translated in high activity immediately after a jump, decaying while the stock price is
unchanged.

Scaling limit

We now characterize the large scale limit of the price process constructed from our Markov
renewal model. We assume that the mean sojourn time µ is finite. By classical regenerative
arguments, it is known (see [40]) that the Markov renewal process obeys a strong law of large
numbers, which means the long run stability of price process:

lim
t→∞

Pt
t

= 0 , a.s. .

We next define the normalized price process:

P
(T )
t =

PtT√
T
, t ∈ [0, 1] ,

and address the macroscopic limit of P (T ) at large scale limit T → ∞. From the functional
central limit theorem for Markov renewal process, we obtain

lim
T→∞

P (T ) (d)
= σ∞W , σ2

∞ :=
1

µ̄

[
Var(ξn) + E[ξn]2

1 + α

1− α

]
,

where W = (Wt)t∈[0,1] is a standard Brownian motion, and σ∞ its macroscopic variance.
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Mean Signature plot

We are able to provide by our Markov renewal model a quantitative justification of the signature
plot effect, described in the introduction. We consider the symmetric and stationary case, i.e.:
(H) (Nt) is a delayed renewal process: for n ≥ 1, Sn has distribution function F (independent of
i, j), with finite mean µ̄ <∞, and finite second moment, and S1 has a distribution with density
(1− F (t))/µ̄.

It is known that the process N is stationary under (H) (see [28]), and so the price process is
also stationary under the stationary probability Pπ, i.e. the distribution of Pt+τ − Pt does not
depend on t but only on increment time τ . In this case, the empirical mean signature plot is
written as (P0 = 0):

V̄(τ) :=
1

T

∑
iτ≤T

Eπ
[(
Piτ − P(i−1)τ

)2]
=

1

τ
Eπ
[
P 2
τ

]
.

Notice that if Pt = σWt, where Wt is a Brownian motion, then V̄ is a flat function: V̄(τ) = σ2,
while it is well known that on real data V̄ is a decreasing function on τ with finite limit when
τ →∞. This is mainly due to the anti-correlation of returns: on a short time-step the signature
plot captures fluctuations due to returns that, on a longer time-steps, mutually cancel. We obtain
the closed-form expression for the mean signature plot, and give some qualitative properties
about the impact of price returns autocorrelation. Under (H), we prove that

V̄(τ) = σ2
∞ +

(
−2α(E[ξn])2

1− α

)
1−Gα(τ)

(1− α)τ
,

where σ2
∞ is the macroscopic variance and Gα(t) := E[αNt ] is given via its Laplace-Stieltjes

transform:

Ĝα(s) = 1− 1

µ̄
(1− α)

1− F̂ (s)

s(1− αF̂ (s))
, α 6= 0 , F̂ (s) :=

∫ ∞
0−

e−stdF (t) .

The term σ2
∞ equal to the limit of the mean signature plot when time step observation τ goes

to infinity, corresponds to the macroscopic variance, and V̄(0+) = 1
µ̄E[ξ2

n] is the micro-structural

variance. Notice that while σ2
∞ increases with the price returns autocorrelation α, the limiting

term V̄(0+) does not depend on α, and the mean signature plot is flat if and only if price returns
are independent, i.e. α = 0. In the case of mean-reversion (α < 0), V̄(0+) > σ2

∞ , while in the
trend case (α > 0), we have: V̄(0+) < σ2

∞ .

Conclusion and further developments

Having in mind a direct application purpose, we decided to sacrifice the autocorrelation of inter-
arrival times in order to have a fast and simple non-parametric estimation, perfect simulation
and the suitable setup for a market making application, presented afterwards in this work.

Aware of the model limits, and with an eye to statistical arbitrage, the next step is to extend the
structure of the counting process (Nt), for example to Hawkes process, to have a better fit, and
the structure of the Markov chain (Jn) to a longer memory binary processes, able to recognize
patterns, which will be treated later as well.

1.4 HFT and asymptotics for small risk aversion in a Markov
renewal model

We study an optimal high frequency trading problem for large tick assets, using a market micro-
structure model reaching a good compromise between accuracy and tractability. The stock price
is driven by a Markov Renewal Process (MRP), as previously described, while market orders
arrive in the limit order book via a point process correlated with the stock price itself.
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Data sample

Market data are taken from tick-by-tick observation of the 3-month future EUROSTOXX50, on
February 2011, from 09:00:000 to 17:00:00.000 (CET).

The stock price

We shall rely on the previous section (see also [36]), where we show how Markov Renewal
processes are an extremely flexible and pertinent tool to model the stock price at high frequency,
as well as easy to estimate, simulate and understand. We assume that the bid-ask spread
is constantly one tick and the stock price jumps of one tick, which is consistent with
liquid large tick assets.

By modeling the stock price by a pure jump process, we are able to introduce probabilistic
and mechanical dependences between the price evolution and the trades arrival. We can easily
introduce correlation between the next price jump and proportion of ask/bid trades before the
next jump, as well as the jump risk. In the context of option pricing, jumps represent a source
of market incompleteness, leading to unhedgeable claims: similarly, jumps of the stock price in
the electronic market are a real source of risk for the market maker. More precisely, the agent
faces two kind of risk due to the stock price jump.

i) Market risk: when the price suddenly jumps, the whole agent inventory is re-evaluated,
changing the portfolio value in no time (i.e. a finite amount of risk in no time, whereas the
Brownian motion has quadratic variation proportional to the interval length).

ii) Adverse selection risk: in our model, we assume that an upwards (downwards) jump at time
t corresponds to a big market order clearing the liquidity on the best ask (bid) price level. If
the agent posts a small limit order, say on the bid side, the latter has to be executed, since
(we guess that) the goal of the big market order was to clear all the available liquidity rather
than consuming a fixed amount of it. In this sense, the agent does not affect the market
dynamics. In this scenario, the agent is systematically penalized, since she sells liquidity
at t− for less than its value at t. This risk, known as adverse selection, can and will be
incorporated, measured and hedged, thanks to our market model.

Market order flow modeling and adverse selection

We introduce a suitable modeling of the market order flow, taking into account the real depen-
dence with the stock price dynamics. Our model is price rather than trade centered, since
we assume that trades (no matter their side) are counted by a Cox process subordinated to the
stock price. Trades arrive more frequently after a price jump, while their arrival rate decreases
as the price stabilizes. In this sense, events have a much richer dynamic than a Poisson process,
and they are not independent from the stock price, as often assumed. We focus on small market
orders that we model by a marked point process (θn, Zn).

i) Timestamps: the increasing sequence (θn) represents the arrival timestamps of (small) mar-
ket orders.

ii) Marks: the marks (Zn) ∈ {−1,+1}, represent the side of the exchange, with the convention
that when Zn = −1(+1), the trade is exchanged at the best bid (ask) price, i.e. market sell
(buy) order has arrived.

We do not take into account the size of trades. On one hand, we assume that the counting
process (Mt) associated to (θn) is a Cox process with conditional intensity λ(St), where St is
the time spent since the last price jump. On the other hand, we assume that market order trade
and stock price in the LOB are correlated via the relation:

Zn := ΓnIθn− ,
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where Γ ≡ (Γn) is an i.i.d. sequence, independent of all other processes, and distributed ac-
cording to a Bernoulli law on {−1,+1} with parameter (1 + ρ)/2, with ρ ∈ (−1, 1), where
ρ = Corr(Zn, Iθ−n ). We define the concordant (+) and discordant (-) trade intensity as

λ±(s) :=

(
1± ρ

2

)
λ(s) , s ≥ 0 .

This definition is consistent with the one of h±(s), where ± indexes the concordance (+) or
discordance (-) of two consecutive jumps. Estimation on real data leads to a value of ρ around
−50%. This means that about 3 over 4 trades arrive on the weak side of the limit order book.
Adding marks (determining the trade exchange side) to the Cox process counting the trade
events, we are able to reproduce the adverse selection risk appearing in a weak and strong form,
the first limiting the agent profit, the second penalizing it, forcing the agent to play a less
aggressive policy.

i) Weak adverse selection: it comes from the small trades flow, made of those trades that are
unable to move the market stock price. For this flow, a limit order is more likely to be
matched on the less profitable side: if the price is likely to jump downwards (upwards), few
trades would arrive at the best ask (bid) price, limiting the chances of building a short (long)
position (that would be profitable w.r.t. to the market direction). Thanks to this feature,
the extra gain (w.r.t. to a market order) due to a limit order execution is compensated by
an unfavorable execution probability.

ii) Strong adverse selection: differently from the weak adverse selection risk, the strong one
comes from big trades affecting immediately the stock price. We assume that a limit order
is automatically executed as soon as the stock price jumps over the corresponding level,
i.e., for an order at the best ask (bid), when the price jumps upwards (downwards). In
this scenario, the agent systematically loses, beyond the transaction cost, half-a-tick w.r.t.
to the new mid-price. Making the stock price change its value, big trades put the market
maker in a bad position, since the sudden execution forces her to sell liquidity at less than
its current value.

The market making problem

The agent strategy consists in placing continuously limit orders of constant small size L ∈ N\(0),
(where small is meant w.r.t. to the total liquidity provided by all the market makers) on both
sides, and at the best price available. The market making strategy is then described by a pair of
predictable processes (`+, `−)t valued in {0, 1}. When `+ = 1 (`− = 1), a limit order of size L is
posted at time t on the strong (weak) side, while in the opposite case no limit order is submitted
or the limit order is cancelled. We denote by A the set of market making controls ` = (`+, `−).

Every time a small market order arrives in the limit order book, if the agent has placed an order
on the corresponding side, the latter is executed according to a random variable. We consider
the distributions

ϑ±(dk, L) on {0, . . . , L} , Φm
± (L) :=

∫
kmϑ±(dk, L) , m = 1, 2 ,

where ϑ−(dk, L) (ϑ+(dk, L)) is the distribution of the executed quantity of limit order of size L
in the concordant (discordant), i.e. strong (weak) side, of the limit order book.

Finally, the value function associated to the market making problem is

u(η)(t, p, i, s, x, y) := max
`∈A

Et,p,i,s,x,y
[
VT − ηY 2

T

]
.
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The no risk aversion case

In the special case where η = 0, we prove that

u(0) = uhold + umm ,

uhold(t, p, i, s, x, y) = x+ yp+ iyθ(t, s) , umm(t, s) = ω(t, s) ≥ 0 ,

with ω(t, s) is the unique bounded viscosity solution to

−∂ω
∂t
− ∂ω

∂s
− σ2(s)∆ω(t, 0)−

∑
ν∈±

max (Gν(t, s), 0) = 0 , ω(T, ) = 0 ,

G±(t, s) := λ±(s) (δ − ϕ∓ θ(t, s)) Φ1
±(L)− h±(s) (δ + ϕ+ θ(t, 0))L ,

σ2(s) := h+(s) + h−(s) ,

and probabilistic representation

ω(t, s) =
∑
ν∈±

Et,s

[∫ T

t
max (Gν(u, Su), 0) du

]
.

Moreover, the optimal controls are given in feedback form by:

ˆ̀(0)
± (t, s) = 1{G±(t, s) > 0} .

Optimal controls are naturally decomposed into

G±(t, s) = Gtrd
± (t, s)−Gjmp

± (t, s)

:= λ±(s) (δ − ϕ∓ θ(t, s)) Φ1
±(L)− h±(s) (δ + ϕ+ θ(t, 0))L .

i) The trade part Gtrd
± : the agent orders are matched by small market orders (not impact-

ing the stock price) of random size, distributed according to ϑ±(dk, L), arriving at rate
λ±(s)(St). For each executed lot she gains the half-spread thanks to passive execution
(market making gain), she loses the transaction costs, and since her inventory changes, she
loses the martingale distance θ(t, s) that she would gain (in average) keeping her position
until the horizon (attention: this quantity might be negative). This scenario is favourable
for the agent, since she has the time to close her spread before the stock price jumps again
and she has gained half a tick w.r.t. to the mid-price evaluation of the stock: this profit
comes from small uninformed traders, that are unable to make the stock price jump and
need the liquidity provided by the market maker.

ii) The jump part Gjmp
± : the agent orders are cleared (fulfilled) at rate h±(St) by big market

orders impacting the stock price. As before, for each executed lot, she gains the half-spread
thanks to passive execution (market making gain), but loses a spread because of the stock
price jumps, ending with a passive of half a spread, she loses the transaction costs, and since
her inventory changes, she loses the martingale distance θ(t, 0) (the price has just jumped).
We prove that

h±(s) (δ + ϕ+ θ(t, 0)) ≥ 0 ,

which implies that the limit order execution due to big orders is a source of risk for the
agent, called strong adverse selection. This is due to the fact that large market orders
makes the price jump, and thus do not allow the agent to close her spread. On the contrary,
the agent finds herself buying/selling L lots (the maximum admissible size) when the stock
price is suddenly decreasing/increasing value.
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We have that ˆ̀(0)
± (t, s) converges for large horizon to the stationary value:

lim
T→∞

ˆ̀(0)
± (t, s) = 1{Ḡ±(s) > 0} ,

Ḡ±(s) := λ±(s)
(
δ − ϕ∓ θ̄(s)

)
Φ1
±(L)− h±(s)

(
δ + ϕ+ θ̄(0)

)
L ,

θ̄(s) := lim
T→∞

θ(t, s) =
ᾱ(s)

1− α
, ᾱ(s) :=

∑
ν∈±

ν

(
1 + να

2

)(
1− Fν(s)

1− F (s)

)
.

The small risk aversion case

We first give the exact solution of the problem in terms of a non-explicit deformation of the
(η = 0)-value function, that one can evaluate numerically if not wanting to involve approximation
arguments. This result will help us to illustrate, in terms of probabilistic representation, how a
particular strategy affects the value function. We prove that the value function is

u(η) := u(0) − v(η) ,

where u(0)(t, p, i, s, x, y) is the solution of the control problem in the no risk aversion case, while
v(η)(t, s, q := iy) is nonnegative and the unique viscosity solution with quadratic growth in q
of a certain PDE, while optimal controls are given in feedback form by in terms of the value
function.

The deformation function v(η) due to risk aversion is solution to a certain semi-linear PDE,
which can be solved numerically. We use instead a perturbation approach for deriving a first-
order expansion of v(η) for small risk aversion η, that proves that the function v(η)(t, s, q) can
be linearly approximated in η > 0 by

v(η)(t, s, q) = η
(
q2 + 2qζ1(t, s) + ζ0(t, s)

)
−R(η)(t, s, q) , (1.4.1)

where

i) ζ1(t, s) is expressed as

ζ1(t, s) := E
[
ŶT
∣∣St− = s, It− = +, Yt− = 0

]
,

where (Ŷt) is the inventory process controlled by the optimal strategy for η = 0;

ii) ζ0(t, s) is the viscosity solution of

−∂ζ0

∂t
− ∂ζ0

∂s
− σ2(s)∆ζ0(t, 0)

−
∑
ν∈±

(
hν(s)

(
L2 − 2Lζ1(t, 0)

)
+ λν(s)

(
Φ2
ν(L)− 2νΦ1

ν(L)ζ1(t, s)
))

ˆ̀(0)
ν (t, s) = 0 ,

ζ0(T, ) = 0 ;

iii) the remainder R(η)(t, s, q) is a non-negative o(η).

Furthermore, we get an approximate optimal limit order control given by˜̀(η)
± (t, s) := 1{G±(t, s) > 〈C±, ṽ(η)〉} ,

〈C±, g〉 := h±(s) (g(t, 0,±q − L)− g(t, 0,±q)) + λ±(s)

∫
∆g(t, s, q ∓ k)ϑ±(dk, L) ,

and the approximate optimal feedback control can be rewritten as˜̀(η)
± (t, s) := 1{G±(t, s) > η

(
C0
±(t, s)∓ 2qC1

±(t, s)
)
} ,

C0
±(t, s) := h±(s)

(
L2 − 2Lζ1(t, 0)

)
+ λ±(s)

(
Φ2
±(L)∓ 2Φ1

±(L)ζ1(t, s)
)
,

C1
±(t, s) := h±(s)L+ λ±(s)Φ1

±(L) ≥ 0 .

The control adjustment due to risk aversion can be understood as follows.
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i) The inventory independent part in affects the agent strategy even when her inventory
is q = y = 0: in the no risk aversion case, the agent places a limit order if Gν(t, s) > 0, but
when η > 0, this trading barrier - depending on the couple (t, s) - is raised by a multiple of
the risk aversion itself. The agent becomes cautious and decides to enter the market only in
the most profitable cases, but renounces to trade if expected gain is small, even if positive.
This result is shown by Figure 4.8, where the non trading region for q = 0 grows w.r.t. the
case η = 0, reflecting the increased trading aversion of the agent.

ii) The linear part in the inventory is in charge of controlling the absolute value of the
inventory, in order to reduce the exposure of the agent to inventory and market risk. For
q = iy > 0, the adjustment of the strong side (weak side) turns the trading barrier down
(up) by a multiple of η: the agent decides to trade on the strong (weak) side under less
(more) restrictive conditions in order to reduce (not to increase) her absolute inventory.
This result is summarized by the summarised by the stationary control, where for large
values of the inventory the agent plays, independently on s, on one side only, in order to
revert the absolute position to a smaller value.

Conclusion and further developments

We have exploited the MRP framework previously described in order to provide an application
to a market making problem. Thanks to a Cox model, we are able to include the matching
engine and complete the order book model of the best levels: only small trades are described
directly, while big market orders affecting the stock price are included in the stock price dynamics
itself. The perturbation technique adopted to derive optimal controls as a deformation of the no
risk aversion case has helped us to improve financial interpretability and reduce the dimension
problem as well as the computational cost of its numerical solution. For further developments,
more complicated stock price model can introduce statistical arbitrage opportunity, that we may
capture by means of optimal control techniques.

1.5 Long memory patterns in high-frequency trading

We present a long memory model, based on marked point processes, which describes the stock
price in the limit order book: its marks are driven by a VLMC (an efficient modeling of high-order
Markov chains), while the inter-arrival times (between two consecutive jumps of the price) are
represented by a self-exciting and independent univariate Hawkes process. Instead of modeling
directly the mid-price, we introduce the fair price process, with the intent to reduce the micro-
structure noise and represent the fundamental value of the asset: empirical evidences show that
micro-structural trends, a source of statistical arbitrage, emerge after noise reduction. The agent
participates to the market both via impulsive (pseudo) market orders and limit orders, whose
execution is modeled by Cox processes. Once the system is embedded into a Markovian one,
we illustrate a trading algorithm based on optimal control techniques: we reduce the complex
HJB equation associated to the problem to a simple system of variational ODE’s, for which
an explicit Euler scheme gives a computationally non-expensive solution. Finally, Monte Carlo
simulations show that the VLMC strategy over-performs the benchmark of a uninformed agent
modeling the fair price as a simple Markov chain.

We address a high-frequency trader wanting to detect short-term patterns of the
stock price, controlling the market risk associated to her portfolio. We work with
liquid large tick assets (see [31] for a rigorous quantitative definition), where the price jumps
and the bid-ask spread are unitary.
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The fair price

It is well-known that the mid-price is subjected to micro-structural mean-reversion: as pointed
out by the empirical literature (e.g. [36], [25] and [60]), at least on a big class of assets having
large tick ([31]), two consecutive jumps of the mid-price are often in opposite directions. Conse-
quently, multiple jumps in the opposite direction clear themselves and do not affect
the fundamental value of the asset. We define, for a mid-price jumping at (TMn ) of (JMn )
such that MTn = Mn,

Pn := Mn −
1

2
sgn

(
JMn
)
, k ∈ N∗ .

and extract from (TMn ) the subsequence of (Tn) such that Pn 6= Pn−1. Notice that (Pt) jumps if
and only if (Mt) does it twice consecutively in the same direction, while it is stable under noise
reversion (see Figure 5.3). We choose (Pt) as the new reference price instead of the mid-oine.
We assume that (Nt) and (Jn) are independent. Getting free of the mutual dependence allows
to use more complex models and describe long memory patterns for both (Nt) and (Jn).

Since (see Figure 5.5) inter-arrival times exhibit strong positive autocorrelation: a
natural candidate to model (Nt) is thus a univariate Hawkes self-exciting process with intensity

ht := µt + α
∑
Ti<t

exp(−β(t− Ti)) ,

where µt reproduces the typical U-shaped intraday seasonality.

Marks exhibit positive auto-correlation: most of the literature focuses on the short-term
mean-reversion, but the latter seems to vanish once we pass from the mid-price price to the fair
one, while trends emerge: these trends are caused by the strong positive autocorrelation of trade
sides, mostly due to splitting of meta-orders. Our goal is to perform an arbitrage of these
trends, hedging against fees and market risk.

Since more than 99% of the price jumps are of the same size of the tick, we can assume that
|Jn| = 1 a.s., and Jn = Jn−1Un, for k ∈ N∗ and (Un) ∈ {−1,+1}. We assume that (Un) is a
stationary Variable Length Markov Chain (VLMC) of finite memory whose dynamic of (Un) is
given by

i) a satured tree with alphabet E ∈ {−1,+1}, whose leaves (terminal nodes) are called “con-
texts” and form a set denoted by C;

ii) a family of probability {℘±(c)}c∈C, such that for every u right infinite word on E

P
[
U0 = ±

∣∣U−1U−2 · · · = u
]

=
1± α(π(u))

2
, π :

∞∏
k=1

E(k) = EN∗ → C ,

where π is the context function associated to the tree, mapping the right infinite sequence
u to the only context c := π(u) being prefix of u.

Unfortunately, a VLMC cannot be directly embedded in a Markov chain on its context set C.
We prove that the VLMC tree can be properly grown without altering the induced probabilistic
structure in such a way that the Markov embedding and dynamic programming are possible.
From now, on, we assume that (Un) is embedded in a Markov chain on its context set C, so
that, for all u ∈ C, π(+u) and π(−u) is well defined, where ±u indicates the word starting with
± and continuing with u.

The agent strategy

We divide limit orders into level-0 and level-1 limit orders.
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A level-0 limit order is sent at the fair price level: its price either coincides with the
best price, or improves the existing best quotes, in which case, since the spread is unitary, it
is immediately converted to a market order and executed. Notice that, if the price reverts, the
order is necessarily filled before the reversion and, since reversions are frequent for large tick
assets (see [36]), a first approximation is to consider level-0 limit orders as (pseudo) market
orders, filled with probability δ ∈ [0, 1]. In order to prevent the agent to affect the exogenous
dynamic of the price, i.e. to limit her market impact, and to make impulsive control easier, an
admissible policy will allow only n ∈ N pseudo market orders per fair price jump. We denote by

� (θj ,mj) the sequence of timestamps θj at which the agent sends a level-0 limit order of size
|mj | ∈ N, where if Iθj−mj > 0 (< 0), the order of buy (sell) type.

� (Kt) the process counting the number of level-0 limit orders since the last fair price jump:
notice that (Kt) increments of 1 when the agent sends an order, while jumps to 0 at each
fair price jump.

A level-1 limit order is sent at the fair price level ±1 tick, +1 (−1) for sell (buy) limit
orders: they are used to gain an extra tick thanks to the execution, as in the market making
case, when no statistical pattern is known, or simply to improve the performance. We assume
that the agent sends orders of small size, that are entirely filled at a random time given by the
first jump of a Cox process having conditional intensity w.r.t. to the current context c

htλ
1± Itα(c)

2
, on the ask/bid side ,

where λ ≥ 0 is non-negative constant. Notice that the total intensity on both sides is htλ, which
does not depend on the current context, while the coefficient 1±Itα(c)

2 tells that if the price is
likely to jump in a certain direction, the same imbalance are reflected in the agent execution,
adding adverse selection to the model, since an order is more likely to be executed if the price
is going in the same direction.

The optimal trading problem

We assume that the agent admissible controls are given by ((`t), (Ij)) ∈ A, where

� `t := (`+, `−)t is a continuously controlled process in L := {0, . . . , L} , predictable w.r.t. Ft
(the market filtration), where `±It− represents the agent level-1 position at time t on the
ask (+) and bid (−) side;

� Ij := (θj ,mj) is an impulsive sequence of level-0 limit orders such that Kt ≤ kmax, and
mj ∈ {−mmax, . . . ,−mmax} := M ⊂ Z;

� the inventory (Yt) satisfies Y := {−ymax, . . . ,+ymax} = −Y ⊆ Z.

In order to ease computation, we consider the optimal control problem with a very
specific random horizon, i.e.:

uk(t, τ, h, x, y, p, c, i) := max
`∈A

Et,τ,h,x,y,p,c,i

[
VT − η

∫ T

t
Y 2
u d〈P 〉u

]
,

where T := inf
{
u : τu :=

∫ u
0 λsds = τmax

}
, for some constant τmax. We prove that the optimal

control problem is solved by uk = x+ yp+ vk, where vk(τ, q, c) is the viscosity solution of

min

{
−∂vk
∂τ
− C(vk), Ivk)

}
= 0 , vk(τmax, ) = 0 ,

where C and I are differential operators defined at Theorem 5.1 (in the body of this work).
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Notice that neither the value function, nor the optimal controls depend on this state variable
h, while estimating the parameters of the Hawkes process can be even more expensive that
computing the value function itself! Such an effort is unfortunately still necessary, since the role
of the stochastic intensity is hidden behind the random horizon T : 〈P 〉t is indeed predictable
w.r.t. to the agent filtration, but only once the parameters determining its dynamic are known.
Long story short, the estimation of the Hawkes process Nt is necessary if and only if we want to
know what the current τ is. Luckily, we observe numerically that the optimal policy stabilizes
after few backward steps. So, rather than a time dependent optimal policy, we can use its
long-horizon version all over the trading day, losing more and more the optimal behaviour as
we get closer to horizon. Using this recipe, the estimation of the Hawkes process parameters is
less relevant under the performance point of view, though it is a good advice to perform it to
validate the model assumptions.

Numerical results

We illustrate numerical result concerning the optimal trading problem previously described.
Figure 5.11 shows both the continuous (level-1) and impulsive (level-0) policy, on the buy and
on the sell side for the slice k = τ = 0 (i.e. immediately after a fair price jump, and at the
beginning of the trading day). We find the inventory on the x-axis and the current context on
y-axis: a coloured circle means that for the system occupying the state (q, c), the agent sends
an order. The side convention is for i = +: in the opposite case the sell and the buy side are
exchanged. Limit orders are of unitary size, i.e. L = 1, while kmax = 1. Comparing the upper
side with the lower one, we immediately notice that the agent is more active on the level-1 limit
order, since it is almost always optimal to send a passive limit order one tick away from the fair
price. Level-1 limit orders lead to a big potential gain with few risk. On the contrary, impulsive
order are widely used for large values of |q|, in order to bring the agent inventory back to zero
with few uncertainty on the execution. Furthermore, notice that the level-0 strategy is much
more sensitive to the context variable c: this is due to the fact that impulsive order are able to
change position quickly and allow the agent to follow the market, rather than being rewarded for
providing liquidity, which is rather market independent instead. Comparing the left side with
the right one, we notice an asymmetry: the agent tends to be more active on the buy side. In
particular, for specify contexts, buying (for i=+, sell otherwise) is optimal both on level-0 and
the level-1 even when q is already positive. This is due to the micro-structural trends emerging
after the VLMC estimation (see Figure 5.7), that leads the agent to exploit her anticipation on
the market to align her position to the market direction. We do not show the result, for k = 1,
since on the level-1 limit order no big changes exist, while no level-0 limit orders are allowed.
Figure 5.13 illustrate the behaviour of the value function for various levels of risk aversion (η).
We plot q 7→ 1

τmax

∑
c∈Cv0(0, q, c) Q∗(c), where Q∗ is the stationary probability of the VLMC

process seen as a Markov chain on its context set C.
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Chapter 2

Directional bets and the power of
information in market making

Abstract

In this paper we study a control problem related to a market maker having directional informa-
tion on the mid-price. She places unitary limit orders on the bid and ask sides simultaneously, at
a certain distance from the mid-price, hoping for a double execution that would yield the spread
between her quotes, leaving her inventory unchanged. Our goal is to understand how stochastic
drift and volatility are reflected into her strategy: we prove that drift translates into limit orders
placed asymmetrically w.r.t. to the mid price, even when she has no inventory, while volatility
widens the agent spread and encourage the inventory reversion to 0. This creates a mixed policy
that enables to exploit a double source of gain, the one due to liquidity providing and the one
due to market anticipation, while controlling the inventory to prevent market risk.

In a the first part of the paper we solve explicitly the problem in the no risk aversion case,
and compare the results with an uninformed trader, who sees the stock price as a martingale:
our conclusion is that the directional information leads to an extra gain explained by the even
moments of the mid-price. In the second part, we allow for a small risk aversion and small
martingale deviation, i.e. we assume that the stock price dynamic is close to the martingale
one. In this case we provide a first deformation of the solution in terms of the previous case:
the associated strategy sacrifices part of the expected gain to control the agent inventory and
the associated risk. This is obtained by widening the spread and shifting its center conveniently
in the opposite side of the current inventory. To conclude, we generalize these results to the
multi-dimensional framework.

keywords: Quantitative Finance, High-Frequency Trading, Market-Making, Inventory Risk,
Markov Processes, Hamilton-Jacobi-Bellman, Stochastic Control, Optimal Control
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Introduction

The market microstructure literature has developed several tools, mostly based on stochastic
optimal control techniques, in order to deal with two fundamental problems of algorithmic
trading:

i) the minimization of the execution cost of a large position,

ii) the maximization of the expected reward of a liquidity provider.

In the first case, from the seminal paper of [5] (using market orders and a mixed perma-
nent/volatile impact approach) a lot of work has been done in the first direction, performing
liquidation, just to provide some examples, a) using limit orders, as in e.g. [10] and [41], in order
to avoid market impact b) using static limit order strategies derived from stochastic algorithm
techniques as in [51], c) using mixed limit/market strategies as in [44], d) tracking the VWAP,
as in [57] and [21].

Our paper falls in the second category: a market maker is defined as a participant of the electronic
book who posts limit orders on both the sell (+) and the buy (-) side, with the intent of gaining
the spread deriving by a double-side (or round-trip) execution, in which case she would obtain
a profit without any position change, avoiding the associated market risk. Our main references
on optimal market-making are [6], [42], [44] and [18]: we share the same execution model of
these papers, assuming that limit orders at distance ((δ±)t) from the mid-price are filled by two
independent Cox processes, whose rate decays exponentially with ((δ±)t).

In [23], the authors have made a different choice, and treat the same problem in a sophisticated
execution environment based on Hawkes processes, including news and adverse selection, where
the local drift includes a mean-reverting component. In our paper instead, we focus on the
directional bets made by the market maker, i.e. how the agent forecasts the evolution of
the stock price without specifying any dynamic for the stock price, as in [23]. Furhermore,
we include transaction costs in order to create a realistic application. Differently from [23], we
do not systematically make any restriction on the optimal policy, that is free to take negative
values that are translated to market orders in real trading. In the general case, we follow
the classical model of [6], where the book has an exponential shape, but in the case of small
perturbation of the martingale deviation and for small risk aversion, we release as in [23] the
exponential hypothesis for the order book shape and deal with the general case: we will see that,
in this particular case and provided that the market maker has a backtest engine, no estimation
of the order arrival is needed to obtain the optimal policy, that can be obtained by a mixed
historical/optimal control approach.

We choose to add an extra inventory penalisation depending on the portfolio terminal position,
which allows to provide a double control on the inventory (along the path and at expiration)
and detail how risk aversion deforms the optimal strategy of a risk neutral agent, to whom we
dedicate a section to enlighten the role of agent information on the stock price, and take into
account what happens if such an information is ignored. On intraday horizons, the agent may
dispose of several signals (based on news, machine learning techniques, technical indicators,
etc. . . ) detecting trends or mean reversions: this information can be incorporated in a policy
that takes advantage from

� the reward due to pure liquidity providing,

� the understanding of the market direction and the market risk.

We prove that all the ingredient we need to derive (asymptotic results for) the optimal policies are
given by the expectation of the terminal value of the stock price and its integrated variance. In
order to simplify calculations, market-making models are usually assuming that the stock price is
a martingale (an undrifted Brownian motion in most cases), so that optimal strategies exclude
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gains coming from directional forecasting. We aim converting potential risks, as unexpected
trends of the stock price, in potential gains.

However, liquidity providing and directional trading are in a natural conflict. A pure
liquidity provider (having no inventory) keeps her two best policies at the same distance from
the mid-price. On the contrary, a pure directional bet leads to open a profitable position as soon
as possible, sending a market order or placing a limit order relatively close to the mid-price (on
one side only). The equilibrium between these two forces is not trivial, and optimal control is a
fundamental tool in this sense.

The stock price

At the current stage, many models for the stock price exist. The papers of [26] and [25] describes
the price formation is terms of the interplay between incoming trades and the existing liquidity,
while [62] provides a complete picture of the book, looking at the price as a singular component of
the whole system. In [24] the price formation follows the trades arriving in the market, where the
latter are driven by a renewal process. The papers [7] and [8] instead, develop a complex theory
using Hawkes processes, incorporating feedback and mean reversion in the stochastic intensities
driving the process components. A different approach consists in assuming the existence of a
latent, unobserved stock price, as in the seminal work of [46], or the recent uncertainty zone
model of [60], that reconstructs the observed price as a representation of an observed diffusion
hitting barriers.

We have been looking for a trade-off between the two literature streams, the first assuming
a very simple price model guaranteeing tractability, the other providing a very realistic but
complex environment, leading to non-closed formula and high-dimensional problems. The goal
of this paper is to understand how the directional information on the mid-price, as
the anticipation of a trend or a mean reversion, can improve the market-making
policy. For this purpose we obtain some results on the Brownian motion with local drift, and
provide some numerical examples for the Ornstein-Uhlenbeck process.

Following [44] and [23], we maximize the expectation of a linear utility function (and not the
exponential one, to ease computations), adding a penalty to keep the agent inventory within a
small range. This choice leads to an explicit solution for no risk aversion, while for small risk
aversions, thanks to a perturbation technique, we derive optimal controls as a deformation of
the previous case. The semi-explicit results, mostly expressed in terms of conditional moments,
are fairly easy to understand and enlighten the role of directional bets in the policy: the agent
adjusts her optimal spread by an entire translation in the convenient direction, in
order to anticipate the price movement.

Plan of the paper

Section 2.1 introduces the setting: we detail the stochastic processes involved in the model,
distinguishing between the uncontrolled processes (the mid-price) and the controlled ones (the
matching engine determining how limit orders are executed, the agent wealth and her inven-
tory). Section 2.2 deals with the explicit problem solution in the special case of no risk aversion.
Thanks to a variable change, the problem dimension reduces drastically: we deduce that direc-
tional information shifts the optimal spread of an uninformed agent in the market
direction. In Section 2.3 we solve the problem in the general case thanks to a regular pertur-
bation technique and provide optimal controls as a deformation of the no risk aversion case. We
prove that the introduction of the risk aversion unconditionally widens the spread,
and adds an extra shift to its center in the opposite direction of the agent inventory,
if any. Assuming that the stock price is close to a martingale, we improve the results finding
explicit formulae for the linear approximation (in the risk aversion parameter) both of the value
function and the optimal controls. Section 2.4 contains two practical examples, where the under-
lying assets follows either an Ornstein-Uhlenbeck dynamic or an arithmetic Heston one: these
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two models provides examples of diffusion with stochastic local drift (Ornstein-Uhlenbeck) and
stochastic volatility (Heston). In both cases the asymptotic expansions of the value function and
the optimal control are completely explicit. Section 2.5 is devoted to the numerical illustration
of the small martingale deviation policy, an explicit policy for small risk aversion and mid-price
dynamic close to the martingale one. Finally Section 2.6 generalizes the previous results to the
multi-dimensional framework.

2.1 The market framework and the control problem

Let us recall the setting of the market-making problem, taken from [6], where

� the agent places, continuously and on both sides, limit orders of unitary size at a certain
distance ((δ±)t) from the opposite best policies;

� orders are matched by two independent Cox processes having intensities decaying with
((δ±)t).

For the rest of the paper we assume that the time variable t ranges in [0, T ], T <∞.

The uncontrolled processes: the mid-price

We assume that (t, Pt, P̃t) =: (t, Zt) is a Markov process, not necessarily continuous, where
(Pt) represents the stock price, while the vectorial process (P̃t) makes the triplet Markovian
and independent from the arrival of market orders in the limit order book. We set to L the
infinitesimal generator of (Zt) and assume that (Pt) ∈ R1 admits finite moment generating
function conditionally to its initial value. Its finiteness guarantees that the agent has a finite
value function. This includes for example stochastic volatility models, as the arithmetic Heston
one, choosing P̃t = σt, where

dPt = αtdt+ σtdWt ,

dσt = a(b− σt)dt+ νdW ′t , 〈dWt, dBt〉 = ρdt ,

or a jump model as the Hawkes one of [7]. The only assumption we made is that

Et,z [PT ]− p := ε(t, z) , (2.1.1)

d〈P 〉t := σ2(t, Zt)dt , (2.1.2)

with the convention that Et,z [•] = E
[
•
∣∣Zt− = z

]
. Since jumps are taken into account, all the

expectation are taken at t− in order to guarantee that the controls are predictable.

The main idea of our paper is to understand how conditional information on the mid-
price (drift and volatility) affect the market-making optimal policy. We will show how,
in the martingale case, the current value of the mid-price does not lead to any contribution to
the optimal policy, while otherwise the agents adjusts her spread center to exploit information
on the asset.

The controlled processes: the agent wealth and her inventory

A market-making policy is defined by a couple of R-valued predictable processes ((δ±)t), where
(δ±)t represents the distance of the agent limit order price from the mid-price at time t, with
the convention that +/− refers to the ask/bid side. Unfortunately, in order to guarantee the
tractability of this system, we cannot exclude negative strategies, that can be translated, in
real-trading application, to market orders.

1The mid-price is not assumed to be positive, since in intraday high-frequency trading application, the initial
price is nothing but a reference price.
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Definition 2.1. (Matching engine) We assume that orders placed at distance δ± from the op-
posite market best policies are matched by two independent Cox processes (N±t ) having stochastic
intensity

(λ±)t = Ae−k(δ±)t , A, k ≥ 0 . (2.1.3)

The decreasing shape of the intensity in δ reflects the fact the farther is a limit order from
market order price, the lower is its probability of execution. Orders are matched at rate Ae−kδ±

(decreasing in δ±), leading to a gain of δ± (increasing in δ±) w.r.t. to the mid-price: a good
policy has to reach a trade-off between two quantities, but not only. The agent must take into
account the inventory change: her portfolio should change according to the market anticipation,
always keeping in mind that a large inventory would expose her to market risk.

Figure 2.1: market order intensities λ±.

Definition 2.2. (The wealth and the inventory process) We assume that every transaction is
subjected to a fixed cost ϕ (usually positive, but not always, as in the case of rebates). The wealth
process (Xt), representing the agent cash flow, and her inventory (Yt), are given by

dXt = dXt [δν ] =
∑
ν∈±

(νPt + (δν)t − ϕ)dNν
t , (2.1.4)

dXt = dYt [δν ] = dN−t − dN
+
t , (2.1.5)

where the notation [δν ] means that the two controlled processes are induced by a certain strategy.
We will adopt this notation only when necessary and drop it when the underlying strategy is
clear from the context.

As one can see from (2.1.4)-(2.1.5), a round trip execution for ϕ = 0 leads to

Xt −Xt−
∣∣N+

t −N
+
t− = N−t −N

−
t− = 1 =

∑
ν∈±

(δν)tdN
ν
t ≥ 0 ,

Yt − Yt−
∣∣N+

t −N
+
t− = N−t −N

−
t− = 1 = 0 .
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i.e. a gain without any inventory change, i.e. a statistical arbitrage. Mathematically speaking,
(N±t ) almost surely never jump simultaneously: the purpose of the previous equations is just
to enlighten the interest of the market maker to have both limit orders matched in a “short”
period.

The stochastic optimal control problem

The goal of the agent is to find an optimal policy ((δ±)t) maximizing the gain function (called
j(η,ε)), i.e

u(η,ε)(t, x, y, z) := max
(δ±)t

j(η,ε)(t, x, y, z; δ±) , (2.1.6)

j(η,ε)(t, x, y, z; δ±) := Et,x,y,z

[
XT [δ±] + YT [δ±]PT − η

(
βY 2

T [δ±] +

∫ T

t
Y 2
u [δ±] d〈P 〉u

)]
,

where:

� z = (p, p̃), p̃ ∈ Rn;

� η ≥ 0 describes the agent risk aversion to the inventory risk;

� ε(t, z) has been defined in (2.1.1);

� Et,x,y,z [] is the conditional expectation given the values of all variables at time t−, i.e.

Et,x,y,z [·] = Et,x,y,z [·|Xt− = x, Yt− = y, Zt− = z] ;

� the gain function j(η,ε) represents the gain function under a particular policy: we use the
convention that, for any pair of (resp. single) constants c±, j(η,ε)(. . . ; c±) is the gain function
under ((δ±)t) ≡ c± (resp. ((δ±)t) ≡ c).

We emphasise the dependence on η (chosen by the agent) and ε (observed on the
market), since we will explicitly show how, for small values, they deform the agent
value function and her optimal policy.

The penalty terms

In this paper we adopt a double approach to control the agent inventory, discouraging large
portfolios both during the trading day and at maturity.

i) Liquidity risk: βY 2
T , β ∈ R+, represents the liquidity component of the inventory risk. An

intraday trader does not want to be exposed to over-night risk, and consequently liquidates
her position at T with a market order. Choosing a quadratic form, we are able penalize
both short and long positions, and reproduce the non-linearity of the market impact2 due
to the final market order. Notice that this quantity does not depend on the asset volatility,
since liquidation is instantaneous. Furthermore, since this penalty is applied at maturity,
it propagates backwards from T to t, so that an inventory control takes place all along the
day.

ii) Market risk: the integral term reflects the agent aversion to risky portfolios. The path-
integration allows to control the variance of the portfolio all over the trading day. This
penalty is applied all over the trading day, depends on the asset volatility, and decreases as
t approaches T , since the agent is exposed for a shorter time.

2The polynomial form of m(0) will be crucial to allow computations of the value function approximation.
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The HJB equation associated to the optimal control problem

Throughout the rest of our paper, we use the following compact notation for every function g(x),
for a fixed x lying in some domain,

∆xg(x
′ ) = g(x′ )− g(x) ,

and simply denote ∆ = ∆x where no ambiguity is present. We can finally provide the HJB
equation associated to (2.1.6) for a generic function g:

− (∂t + L) g−A
∑
ν∈±

max
δ
e−kδ∆g(t, x± νp+ δ − ϕ, y ∓ ν, z) = −ησ2y2 , (2.1.7)

g(T, ) = −ηβy2 .

2.2 The explicit solution in the no risk aversion case

In this section we derive explicitly the value function and optimal controls for η = 0. Being not
risk averse leads the agent to an optimal policy which is independent of the state variable y,
simplifying the HJB equation (2.1.7). The main result of this section is the following.

Proposition 2.1 (Informed agent with no risk aversion). The risk-neutral value function is
given by

u(0,ε) = x+ yh(ε) + m(ε) ,

where

h(ε) = h(ε)(t, z) := p+ ε(t, z) = Et,z [PT ] , (2.2.1)

m(ε) = m(ε)(t, z) := 2c

∫ T

t
Et,z [cosh(kε(u, Zu))] du ≥ 0 , (2.2.2)

c = c(A, k, ϕ) :=
A

k
e−k(1/k+ϕ) . (2.2.3)

Furthermore, m(ε) can be expressed in terms of solution of (2.2.6), while optimal controls are
given by

δ
(0,ε)
± := 1/k + ϕ± ε . (2.2.4)

Proof. Assuming the ansatz

g(t, z) = x+ yh(t, z) + m(t, z) ,

(2.1.7) takes the form

−(∂t + L)(yh+ m)−
∑
ν∈±

max
δ
fν(δ, t, z) = 0 , m(T, ) = 0 , h(T, ) = p , (2.2.5)

with f±(δ, t, z) = Ae−kδ(±p+ δ − ϕ∓ h). Using elementary Calculus we find that its maximum
is attained at

δ
(0,ε)
± := 1/k + ϕ± (h− p))⇒ f±

(
δ

(0,ε)
± , t, z

)
=
A

k
e−kδ

(0,ε)
± ,

so that (2.2.5) reduces to

−(∂t + L)(yh+ m)− 2c cosh(kε) = 0 , m(T, ) = 0 , h(T, ) = p .
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We split the previous equation into two parts, one for each one of our unknowns, according to
the degree of y. We obtain in the first degree

−(∂t + L)h = 0 , h(T, ) = p ,

whose solution, provided by the Feymann-Kac theorem, is h(t, z) = p + ε(t, z). Now, m is
solution of

−(∂t + L)m− 2c cosh(kε) = 0 , m(T, ) = 0 , (2.2.6)

and has probabilistic representation (2.2.2).

�

2.2.1 A financial interpretation of the value function

In this section we decompose the value function at Proposition 2.1 in the buy-and-hold and
market-making components.

Definition 2.3. We denote by

εt := ε(t, Zt) , (2.2.7)

Θ
(j)
t,z (u) := Et,z

[
εju
]
, k ∈ N, u ∈ [t, T ] . (2.2.8)

Notice that ε(t, z) represents a measure of the deviation of the mid-price from the martingale

dynamic, while Θ
(j)
t,z (u) is conditional moment of ε(u, Zu)

∣∣Zt = p. We see how these quantities
play a crucial role in the analysis of the market-making value function.

The buy-and-hold component

Corollary 2.1 (The buy-and-hold, or forward, portfolio).

x+ yh(ε)(t, z) = j(0,ε)(t, x, y, z; +∞) .

Proof. If ((δ±)t) ≡ +∞, the agent does not participate to the market, which implies that (Xt)
and (Yt) are constant process, i.e.:

j(0,ε)(t, x, y, z; +∞) = Et,x,y,z [XT [∞] + YT [∞]PT ]

= x+ y Et,z [PT ] = x+ yh(ε)(t, z) .

�

The previous corollary shows that x + yh(ε)(t, z) is a component of the value function corre-
sponding to hold the portfolio until T without participating to the market, i.e. the forward
value of the portfolio. There is no option on this term: independently on its value being positive
or negative, the over-all performance depends on this quantity. This is due to the fact that the
optimal policy does not depend on the current inventory: consequently the current portfolio is
held for all the trading day, while a new one, starting from y = 0, is used for market-making.

The market-making component

Using a Taylor expansion:

Corollary 2.2 (The market-making portfolio).

m(ε)(t, z) = 2c
∞∑
j=0

k2j

(2j)!

∫ T

t
Θ

(2j)
t,z (u) du . (2.2.9)
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This components of the value function is the profit due to playing a dynamic (i.e. high-frequency)
market-making policy, as the integral from t to T suggests. Notice that it does not depend on
the current inventory, and that, since cosh ≥ 1:

Corollary 2.3.

m(ε)(t, z) ≥ 2c(T − t) := m(0)(t) . (2.2.10)

The introduction of the market-making policy improves the performances (recall that m(ε) ≥ 0).
An important observation is that the worst mid-price dynamic is the martingale one: the
function ξ 7→ cosh(ξ) ≥ 1 has a strict minimum for ξ = 0, and in the martingale case ε ≡ 0. This
is due to the fact the current value of the mid-price does not provide any directional information
on its future evolution.

Notice that m(ε) is a complex object, with a much richer structure that ε: in particular, in
the Gaussian case, it depends on both the mean and volatility of the process. Even though in
the general case no explicit formula is available, a Monte Carlo simulation or a numerical PDE
scheme allows to compute m(ε): luckily, optimal controls do not depend on this quantity, so that
its evaluation is not necessary to determine the agent policy. Nevertheless we can use (2.2.9) to
develop m(ε) in terms of conditional moments Θ(j) (see (2.2.8)). Notice that:

� only even moments Θ(2j) ≥ 0 are included in the power series;

� at the 0th order we have m(0), i.e. the value of m(ε) when the stock price is martingale: we
interpret the remaining positive part as the mean advantage brought by information w.r.t.
an unformed trader.

The market parameters

For the market parameters A,k and ϕ, their contribution appears in the constant c(A, k, ϕ).
The market-making policy is proportional to the ratio A/k, i.e. directly proportional
to the arrival rates of market orders and inversely to the intensity decay, while transaction costs
represent an exponential discount, as shown in:

Corollary 2.4 (Asymptotics for big transaction costs).

lim
ϕ→∞

m(ε)(t, z) ≡ 0 .

Proof. The claim can be derived from the value function (see (2.2.2)), or looking at optimal con-
trols (2.2.4), that explode for big transaction costs, implying that the agent does not participate
at all to the market.

�

2.2.2 A financial interpretation of the optimal controls

Summing up, directional bets are not reflected by the hold policy, but by the market-making
one. The agent, aware of the average value of the forward portfolio, adjusts her optimal spread in
order reach an optimal trade-off between the gain due to liquidity providing and the directional
information. In particular, the semi-width and the center of the agent spread are given by:

Policy 2.1. The policy associated to the control δ
(0,ε)
± (see (2.2.4)) is equivalent to

semi-width(0,ε) := 1/k + ϕ = semi-width(0,0) ,

center(0,ε) := p+ ε = center(0,0) + ε.

Notice that semi-width(0,ε) does not depend on ε, i.e. on the directional bet, while center(0,ε) is
obtained as a linear deformation of center(0,0) in ε(t, z). In the next section we will also show
how the introduction of risk aversion deforms the agent policy, widening and shifting her spread.
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The spread width and the round-trip execution

The width of the optimal spread is constant over time, and does not depend on any
state variable. It depends on the shape parameter k of the limit order book, saying that faster
is the intensity decay, the smaller is the agent spread. As expected, fixed costs widen the
optimal spread, since the agent has to compensate the market participation cost: for ϕ→∞,
the agent eventually avoids the market.

On the contrary, the profit of a round-trip execution does not depend on the trans-
action costs: the market maker always expects the same reward from a single round-trip
execution, no matter the value of ϕ, even thought the probability of the event decreases with ϕ,
as shown by the term c(A, k, ϕ) given in (2.2.3), which is an exponential discount (in ϕ) of the
value function.

The spread center

The center of the optimal spread is impacted by the directional bet through the
martingale deviation ε(t, z). If ε(t, z) > 0 (resp. < 0), the agent estimates that a holding
a long (resp. short) position until T is profitable. In order to increase her chances to buy
(resp. sell) and decreases those to sell (resp. buy), she entirely translates her spread of ε(t, z),
becoming more aggressive on the bid (resp. ask) and more passive on the opposite one. Thanks
to this “spread shift”, the agent reaches an optimal trade-off between anticipating the market
and providing liquidity, creating a mixed directional/liquidity strategy.

The martingale policies and the information advantage

By definition, strategies for no risk aversion are extremely exposed to market and inventory risk,
since the directional component is extremely strong. Inventory is not necessarily bounded (notice
that the optimal policy does not depend on the current inventory level) and the directional bets
incorporated in the optimal policy lead to high-risk-high-reward profiles. Directional bets comes
from the agent awareness of the non-martingality of the stock price: under no information, the
agent guesses (committing an error) that the mid-price is a martingale, i.e. that ε ≡ 0, and her
trading policy is given by

δ(0,0) = 1/k + ϕ . (2.2.11)

Adopting this martingale policy:

Lemma 2.1 (Uninformed agent).

j(0,ε)(t, x, y, z; δ(0,0)) = x+ yh(ε) + m(0) . (2.2.12)

Proof. We use the ansatz

x+ yh(t, z) + m(t, z) .

Injecting the constant martingale controls at (2.2.11) in the HJB equation (2.1.7) (where the
max is replaced by injecting the given policies), we are left to solve

−(∂t + L)h = 0 , h(T, ) = p ,

and

−(∂t + L)m− 2c = 0 , m(T, ) = p ,

whose solution are h(ε) and m(0) (see (2.2.1) and (2.2.10)).

�
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Notice the x + yh(ε)(t, z) is the forward value of the current portfolio, where the mid-price
dynamic is not the martingale one, while m(0) rewards the agent as if the mid-price were a
martingale.

The extra gain due to information is the difference between the value function of two agents in

the same market, playing respectively δ
(0,ε)
± and δ(0,0):

j(0,ε)(t, x, y, z; δ
(0,ε)
± )− j(0,ε)(t, x, y, z; δ(0,0))

= u(0,ε)(t, x, y, z)− j(0,ε)(t, x, y, z; δ(0,0))

= m(ε)(t, z) = 2c
k2j

(2j)!

∫ T

t
Θ

(2j)
t,z (u) du ≥ 0 . (2.2.13)

The martingale policies as the best symmetric policies

Since the martingale policies are constant and symmetric, it is interesting to see if they can be
outperformed by policies of the same type.

Corollary 2.5. For η = 0, δ(0,0) are the optimal policies among all the constant symmetric
policies, i.e.

j(0,ε)(t, x, y, z; δ(0,0)) = max
δ∈R

j(0,ε)(t, x, y, z; δ) .

Proof. Once again, injecting the generic constant symmetric policies δ± = δ in the HJB equation,
and using the ansatz

j(0,ε)(t, x, y, z; δ) = x+ yh(ε)(t, z) + mδ(t, z) ,

we obtain

−(∂t + L)(x+ yh(ε) + mδ)−
∑
ν∈±

Ae−kδ(νp+ δ − ϕ− νmδ(t, z))

= −(∂t + L)mδ − 2Ae−kδ(δ − ϕ) = 0 .

By the comparison principle,

j(0,ε)(t, x, y, z; δ) ≤ j(0,ε)(t, x, y, z; δ∗) , for δ∗ := arg max e−kδ(δ − ϕ) = δ(0,0) ,

which implies that

max
δ

j(0,ε)(t, x, y, z; δ) = j(0,ε)(t, x, y, z; δ∗) = j(0,ε)(t, x, y, z; δ(0,0)) .

�

Getting free of the exponential shape of the limit order book

Assume that the agent has no knowledge of the limit order book, but can backtest her strategy
and knows that the stock price is a martingale. In this case we can prove the following result:

Proposition 2.2 (Free book shape). Assume that the shape of the book has symmetric arbitrary
(not necessarily continuos) shape λ(δ) > 0 such that λ(δ)(δ−ϕ) has a unique positive maximum
δ(0,0). Then if ε ≡ 0 (martingale stock price) and η = 0, the optimal policy is constant, given by
δ(0,0), while the value function is given by

u(0,0)(t, x, y, z) = x+ yp+ m(0)(t)

= x+ yp+ 2c(T − t) , c := λ(δ(0,0)) .
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Before giving the trivial proof of the proposition, it is important to understand the previous
result. Reaching optimal strategy by backtesting is hard: a search grid approach is impossible
since a strategy is described by too many parameters. However, since in this case we know that
the optimal strategy is constant, we can optimize backtesting a family of strategies depending
on a unique parameter, and choose the best outcome. This implies no parameter estimation
whatsoever and, since we have made no assumption on regularity of λ, we can think it is
piecewise constant between two tick levels, so that the optimal policies lies on the (market) tick
grid. Furthermore, since δ(0,0) ≥ 0, guarantees that optimal quotes are non-negative.

Proof. The proof is a straightforward, and mimics the one of Proposition 2.1.

�

2.3 The perturbation approach for positive risk aversion

In this section we extend the result of Proposition 2.1 to the case of (positive) small risk aversion.
We prove that the value function can be approximated in the general case by a first order
deformation of the value function for no risk aversion. In a similar fashion, optimal controls are
derived in terms of the no risk aversion ones. Recall that we have an explicit formula for the
solution u(0,ε). Therefore, we use perturbation methods on η to reconstruct the value function
and the optimal controls as a first order deformation in the risk aversion parameter. More
precisely, we propose the following ansatz:

u(η,ε)(t, x, y, z) = u(0,ε)(t, x, y, z)− ηv(η,ε)(t, y, z) .

Injecting the previous ansatz in the HJB equation (2.1.7), we obtain that v(η,ε) solves the
following PDE in the unknown g

−(∂t + L)(u(0,ε) − ηg)−
∑
ν∈±

max
δ
fν(δ, t, y, z) = −ησ2y2 , (2.3.1)

g(T, ) = βy2 ,

where

f±(δ, t, y, z) = Ae−kδ (δ − ϕ∓ ε(t, z)− η∆g(t, y ∓ 1, z)) . (2.3.2)

Once again, using elementary Calculus, we obtain the optimal controls in the feedback form

δ
(η,ε)
± (t, y, z) = 1/k + ϕ± ε(t, z) + η∆g(t, y ∓ 1, z) ,

= δ
(0,ε)
± (t, z) + η∆g(t, y ∓ 1, z) , (2.3.3)

where δ
(0,ε)
± are given by (2.2.4), while plugging (2.3.3) in (2.3.2) we obtain

f±(δ
(η,ε)
± ) = ce∓kε(t,z)−ηk∆g(t,y∓1,z) . (2.3.4)

We can now prove the following result:

Theorem 2.1 (Informed agent with small risk aversion). The value function is O(η2)-approximated
by

u(η,ε) ≈ û(η,ε) := u(0,ε) − ηv̂(ε) ,

where

i) u(0,ε) is the risk-neutral value function provided in Proposition 2.1;
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ii) u(η,ε) − û(η,ε) ≥ 0;

iii) the risk aversion deformation is approximated by

v̂(ε) = ρ̂0 + 2yρ̂1 + y2ρ̂2 ≥ 0 , (2.3.5)

where

ρ̂2(t, z) = β + Et,z

[∫ T

t
d〈P 〉u

]
≥ 0 , (2.3.6)

ρ̂1(t, z) has probabilistic representation

ρ̂1(t, z) = Et,y=0,z

[∫ T

t
Yu

[
δ

(0,ε)
±

]
d〈P 〉u + βYT

[
δ

(0,ε)
±

]]
, (2.3.7)

and is solution of

− (∂t + L) ρ̂1 − 2kc sinh(kε)ρ̂2 = 0 , (2.3.8)

ρ1(T, ) = 0 ,

while ρ̂0 is solution of

− (∂t + L) ρ̂0 − 2kc (ρ̂2 cosh(kε) + ρ̂1 sinh(kε)) = 0 , (2.3.9)

ρ0(T, ) = 0 .

Furthermore, optimal controls are O(η2)-approximated by

δ
(η,ε)
± ≈ δ̂(η,ε)

± := δ
(0,ε)
± + η (∓2ρ̂1 + (1∓ 2y) ρ̂2)︸ ︷︷ ︸

risk aversion

, (2.3.10)

where δ
(0,ε)
± are given by (2.2.4).

Proof. Using (2.2.6) we have

(∂t + L)u(0,ε) = −c
∑
ν∈±

e−νkε ,

and (2.3.1) reduces to

−(∂t + L)g− c
∑
ν∈±

e−kνεNν
η (g) = σ2y2 , g(T, ) = βy2 , (2.3.11)

for

N±η (g) :=
1− e−ηk∆g(t,y∓1,z)

η
= k∆g(t, y ∓ 1, z)︸ ︷︷ ︸

:= L±(g)

−1

η
R(η∆g(t, y ∓ 1, z)) ,

where N±η (g) ≤ L±(g), R ≥ 0, x ∈ R and R(x) is an O(x2) for x2 ↓ 0.

Since the remaining PDE is non-linear, our only hope to find something explicit is to replace
the non-linear operators N±η for its linearisation L± and ignore the remaining non-linear part.
Injecting the ansatz

g(t, y, z) = ρ̂0(t, z) + 2yρ̂1(t, z) + y2ρ̂2(t, z) , (2.3.12)
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in (2.3.11), where N±η is replaced by L±, we obtain

− (∂t + L)
(
ρ̂0 + 2yρ̂1 + y2ρ̂2

)
− kc

∑
ν∈±

e−kνε (−2νρ̂1 + (1− ν2y)ρ̂2) = σ2y2 , (2.3.13)

ρ̂0(T, ) = ρ̂1(T, ) = 0 ,

ρ̂2(T, ) = βy2 .

Assume we can find a solution to (2.3.13). In order to prove ii), we claim that

v̂(ε) ≥ v(η,ε) ≥ 0 .

Injecting v ≡ 0 in (2.3.11) we obtain

−σ2y2 ≤ 0 , v(T, ) = 0 ≤ βy2 ,

which immediately implies, by the comparison principle, that v ≡ 0 is a sub-solution of (2.3.11),
i.e. that v(η,ε) ≥ 0. Now, since N±η ≤ L±, applying once again the comparison principle we

immediately have that v̂(ε) ≥ v(η,ε) ≥ 0, which proves the claimed result.

In order to prove iii), we need to find a solution to (2.3.13), that can decompose it, as for the
proof of Proposition 2.1, and solve them recursively using the Feynman-Kac formula. The first
equation, which regroups the terms in y2, is given by

− (∂t + L) ρ̂2 = σ2 , ρ̂2(T, ) = β , (2.3.14)

and its solution is provided by (2.3.6), while the first and second degrees term in y leads to ρ̂1

and ρ̂0, given in the body of theorem as the solutions of (2.3.9) and (2.3.8).

We are left to prove the probabilistic representation of ρ̂1 given in (2.3.7), for which we (re)define

g(t, x, y, z) := Et,z

[∫ T

t
Yu

[
δ

(0,ε)
±

]
d〈P 〉u + βYT

[
δ

(0,ε)
±

]]
.

We guess that

g(t, x, y, z) = ya(t, z) + b(t, z) ,

and, use the PDE representation of g, given by

− (∂t + L) g−
∑
ν∈±

Ae−kδ
(0,ε)
ν ∆g(t, y − ν, z)− σ2y =

− (∂t + L) g−
∑
ν∈±

Ae−k(1/k+ϕ+νε)∆g(t, y − ν, z)− σ2y =

− (∂t + L) (ya+ b)− 2c
∑
ν∈±

e−kνε∆g(t, y − ν, z)− σ2y =

− (∂t + L) (ya+ b)− 2c
∑
ν∈±

e−kνενa− σ2y =

y
(
− (∂t + L) a− σ2

)
+ (− (∂t + L) b− 2c sinh(ε)a) = 0

g(T, ) = ya(T, ) + b(T, ) = βy .

We have

− (∂t + L) a− σ2 = 0 , a(T, ) = β ⇒ a = ρ̂2 ,

and

− (∂t + L) b− 2c sinh(ε)ρ̂2 = 0 , b(T, ) = 0⇒ kb = ρ̂1 ,

Finally, setting y = 0, we have

kg(t, x, y = 0, z) = ρ̂1(t, z) ,

which conclude the proof.

�
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2.3.1 A financial interpretation of the value function

Lemma 2.2 (Monotonicity in the risk aversion).

u(η2,ε) ≤ u(η1,ε) , ∀η2 ≥ η1 .

Proof. Since βY 2
T +

∫ T
t Y 2

u d〈P 〉u ≥ 0, the lemma is a straightforward consequence of the

XT + YTPT − η
(
βY 2

T +

∫ T

t
Y 2
u d〈P 〉u

)
is an a.s. decreasing random variable in the parameter η.

�

However, even if the introduction of the risk aversion parameter η penalizes the agent per-
formance, the risk aversion is able to control the variance of the portfolio by controlling the
inventory, leading to more cautious strategies.

The reason why small risk aversions are taken into account is not only for computational reasons:
for large risk aversion, following the market direction induces a risk that the agent is not willing
to pay, and the profits deriving from the optimal policies (Policy 2.1) and martingale ones (see
(2.2.11)) do not differ significantly. The directional bets leads to a consistent advantage only if
the market maker has the courage to risk, following the trend or the mean reversion, while a
high level of risk aversion makes information valueless.

The term ρ̂2

Looking at the function ρ̂2(t, z) at (2.3.6), we understand how liquidity risk and market risk im-
pacts the agent performance. In particular, the value function is penalized by the current square
inventory times the sum of the unitary market impact (β) and the future realized volatility. The
first term penalizes the agent in a time-independent way, while the second one is monotone,
increasing function of T − t and penalizes large position at the beginning of the trading day,
since they risk to exposed for a longer time, while for T → t+, this term becomes small.

2.3.2 A financial interpretation of the optimal controls

The spread width and the round trip execution

The introduction of the risk aversion has the effect of widening the optimal spread of η, so that
a risk averse agent would adopt a more cautious policy. Widening the spread, the probability of
being executed decreases, while the wealth deriving from a round trip execution increases. As a
result, the agent plays less often, partially compensating by larger spread, even though widening
the spread does not fully compensate the missing gain due to less market participation.

The spread center

The introduction of the risk aversion has a double effect.

i) Inventory reversion: the linear part −2yρ̂2 adjusts the agent spread according to her posi-
tion. In order to avoid inventory risk, she keeps her position close to 0: when y > 0 (resp.
y < 0), her spread is translated downwards (resp. upwards), so that the limit order placed
on the ask (resp. bid) side increases (reap. decreases) its execution probability. Notice that
for large |y|, this correction can lead to negative strategies, that should be interpreted in
real life as market orders.
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ii) Reduction of the market participation: the term ρ1 is a first order compensation of m(ε) (see
Policy 2.1): this term shifts the agent spread center in the opposite direction of the market.
The agent becomes more cautious and tends to avoid extremely directional strategies, i.e.
she comes back to the “classic” market-making approach, where the mid-price is thought as
a martingale.

Looking at Theorem 2.1, the risk aversion infinitesimally deforms the optimal policies for η = 0
(see Policy 2.1), as shown in:

Policy 2.2. The policy associated to the control δ̂
(η,ε)
± (see (2.3.10)) is equivalent to

̂semi-width(η,ε) := semi-width(0,ε) + ηρ̂2 ,

̂center(η,ε) := center(0,ε) − 2η (ρ̂1 + yρ̂2) .

2.3.3 The special case of small martingale deviation

Because of its complexity, ρ̂1 may represent an obstacle for the determination of the optimal
policies. The results obtained for small risk aversion in Theorem 2.1 can be improved, in terms
of interpretability, assuming that

ε(t, z) = Et,z [PT ]− p→ 0 , ∀(t, z) .

This hypothesis is consistent with the non-arbitrage theory where the stock price, assuming that
interest rates are zero, is a martingale, so that ε(t, z) ≡ 0. High-frequency traders, being the
fastest market participant, are supposed to be the first to take profit from existing arbitrages,
which disappear after their intervention. However, these statistical arbitrages are (in average)
only fractions of the tick, on which the high-frequency traders bets several times during the day.

Theorem 2.2 (Agent with small risk aversion and mid-price close to a martingale). For small
risk aversions (η → 0+) and small martingale deviations (ε(t, z) → 0 point-wisely), the value
function (2.1.6) is approximated at the first order (in the risk aversion and the martingale
deviation) by:

u(η,ε) ≈ ũ(η,ε) = u(0,0) + yε− η
(
ρ̃0 + ρ̃2y

2
)
, (2.3.15)

with u(0,0) given by Proposition 2.1

ρ̃0(t, z) := 2kc

(
β(T − t) + Et,z

[∫ T

t

∫ T

u
d〈P 〉ξ du

])
≥ 0 , (2.3.16)

ρ̃2(t, z) := ρ̂2(t, z) ≥ 0 . (2.3.17)

Furthermore, optimal controls are approximated by

δ
(η,ε)
± ≈ δ̃(η,ε)

± := δ(0,0) + ε+ ηρ̃2 (1∓ 2y) , (2.3.18)

where δ(0,0) is defined at (2.2.11).

Proof. For η = ε ≡ 0, the value function (2.1.6) is given by u(0,0) = x + yp + m(0), satisfying
−(∂t + L)u(0,0) = 2c, For small η and ε, the HJB equation (2.3.1) for a generic function g
linearizes as

− (∂t + L)(u(0,0) − ηg)−
∑
ν∈±

fν(δ(η,ε)
ν (t, z))− ησ2y2

≈ −(∂t + L)(−ηg)− c
∑
ν∈±

((1− k (νε(t, z)− η∆g(t, y − ν, z)))− 1)− ησ2y2

= −η
(
− (∂t + L)g− kc

∑
ν∈±

∆g(t, y − ν, z)− σ2y2
)
.
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Dividing by −η and using the ansatz

g(t, y, z) = ρ̃0(t, z) + y2ρ̃2(t, z) ,

we obtain

∆g(t, y − 1, z) + ∆g(t, y + 1, z) = 2ρ̃2(t, z) ,

which simplifies the HJB equation to

−(∂t + L)
(
ρ̃0 + y2ρ̃2

)
− 2kcρ̃2 = σ2y2 , (2.3.19)

ρ̃0(T, ) + y2ρ̃2(T, ) = βy2 .

Splitting by the y degrees we look for the solution of

−(∂t + L)ρ̃2 = σ2 , ρ̃2(T, ) = β ,

and

−(∂t + L)ρ̃0 − 2kcρ̃2 = 0 , ρ̃0(T, ) = 0 ,

which are given by ρ̃2, defined at (2.3.6), and

ρ̃0(t, z) = 2kcEt,z

[∫ T

t
(β + ρ2(u, Zu)) du

]
,

equivalently expressed by (2.3.16). Finally, approximated controls are obtained injecting g in
(2.3.3).

�

The value function

We can write the value function as

ũ(η,ε) = x+ yp+ yε︸ ︷︷ ︸
forward value

+ m(0) (1− ηD)︸ ︷︷ ︸
market making

− ηρ̃2y
2︸ ︷︷ ︸

inventory risk

, (2.3.20)

D(t, z) := k

(
β +

1

T − t
Et,z

[∫ T

t

∫ T

u
d〈P 〉ξ du

])
≥ 0 ,

that decomposes the value function in its forward value, the market making component and the
penalisation due to the inventory risk. The introduction of the risk aversion linearly deforms the
market making performance m(0) by a relative discount of D(t, z), which is inventory indepen-
dent, but depends (monotonically) on k (the fastest is the intensity decay, the least is the gain

opportunity), β (bigger impact of the final market order), and 1
T−t Et,z

[∫ T
t d〈P 〉u

]
(bigger ex-

posure of the current inventory). On the contrary, the inventory risk part impacts quadratically
the value function, proportionally to ρ̃2.

The small martingale deviation policy

Policy 2.3. The policy associated to the control δ̃
(η,ε)
± (see (2.3.18)) is equivalent to

˜semi-width(η,ε) := 1/k + ϕ+ ηρ̃2 = semi-width(0,0) + ηρ̃2 = ˜semi-width(η,0) ,

˜center(η,ε) := p− 2ηyρ̃2 + ε = center(0,0) + ε− 2ηyρ̃2 = ˜center(η,0) + ε.
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Notice that the small martingale deviation policy is a linear deformation of the martingale one
(see Policy 2.1) both in ε and η. In particular the spread semi-width is impacted only by the
risk-aversion, which, as in the previous case, widens the agent spread. The spread centre is
translated by ε to follow the market direction and by −2ηyρ̃2 to avoid the inventory risk.

Figure 2.2 displays how optimal policy varies in different market conditions: reading from the
left to right, one can see how agent spread changes when only one feature varies. The mid-price
is assumed to be p = 0 and ρ2 ≡ 1 for simplicity:

� when y = ε = η = 0, the agent is placed symmetrically around the mid-price;

� changing (only) ε(t, z) to 0.2, the whole spread is translated upwards by ε(t, z) = 0.2;

� increasing (only) η to 0.2, the spread widens of η, keeping its center invariant;

� finally, changing (only) y to 1, the spread is translated downwards, in order to increase
(resp. decrease) the probability of being executed on the ask (resp. bid) side: the upward
shift of the spread center due to the directional is completely compensated by the necessity
of reverting the current inventory to 0.

Figure 2.2: agent spread in different scenarios.

2.4 Examples

In this two examples we focus on the small martingale deviation policies into two different cases:

i) the first example considers a mean reverting process with stochastic (local) drift and constant
quadratic variation (Ornstein Uhlenbeck);
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ii) the second example is an arithmetic process with constant drift and mean reverting positive
volatility (e.g. the arithmetic Heston model).

The two examples considers two classical generalisations of the drifted Brownian motion, one
enriching the drift structure, the other on the volatility one. Of course, the two examples can
be combined to obtain an Ornstein Uhlenbeck process with CIR stochastic volatility. We have
preferred to keep them separate in order to focus on one component at the time.

2.4.1 The Ornstein-Uhlenbeck process

Assume that the stock price follows3

dPt = −aPtdt+ σdWt , a, σ > 0 . (2.4.1)

In this case we have

ε(t, z) = p
(
e−a(T−t) − 1

)
, (ε Ornstein-Uhlenbeck)

that goes to 0 when the parameter a does. Using (2.3.18) and (2.3.20), we are left to compute
≈ ρ2 and D to have an approximation of the value function and the optimal policy. We easily
obtain:

ρ̃2(t, z) = β + σ2(T − t) , (ρ̃2 Ornstein-Uhlenbeck)

D(t, z) := k

(
β +

1

2
σ2(T − t)

)
. (D Ornstein-Uhlenbeck)

Thanks to the simple structure of the process, we are also able to provide an asymptotic expan-
sion of m(ε) for (T − t) → 0, i.e. the market making gain for a risk neutral agent. Truncating
(2.2.9) at the second order leads to4:

m(ε)(t, z) = 2c ((T − t) + ψ(T − t, z)) , (2.4.2)

ψ(τ, z) := k2

(
σ2τ

2a
+
e−2aτ − 1

2a

(
σ2

2a
− p2

))
+ . . . . (2.4.3)

By (2.4.2), we notice a that the spread acts as a discount factor, while (2.4.3) is an increasing
function of σ2. More volatility means more risk, but also wider movements to anticipate, and
the agent can exploit this information to improve her performance. The model independent part
(τ) corresponds to the uninformed trader, who sees the process as a Brownian motion (notice
that the Brownian motion volatility does not come into play). Notice that

ψ(t, z)

τ
≈ k2σ

2

2a
+ . . . , as τ →∞ ,

where 1 + k2 σ2

2a can be used as an approximation of the market-making mean gain per time unit.

2.4.2 The arithmetic Heston model

The Ornstein Uhlenbeck process provides an excellent example of a how a local drift deforms
the martingale market making policy. Now instead, we focus on a stochastic volatility model,
i.e. an arithmetic model with mean reverting volatility. We assume that

dPt = αtdt+ σtdWt ,

dσ2
t = a(σ2

∞ − σ2
t )dt+ νσtdBt , a, σ2

∞, ν > 0 ,

d〈W,B〉t = ρdt .

3Without loss of generality, we assume the stock price mean reverts to 0, since for any other value p∞, replacing
Pt by Pt − p∞ we would fall in the previous case.

4Computations are provided by sympy, an open source symbolic calculation written in Python, that we suggest
if one wants to calculate further orders of the Taylor series.
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In this case the Markov system is given by (t, Zt) = (t, Pt, σ
2
t ), and, choosing αt = µ as a

constant drift, we have

ε(t, z) = Et,z

[∫ T

t
αsds

]
= µ(T − t) . (ε Heston)

We now are interested in determining ρ̃2 and D, that, injected in (2.3.20) and (2.3.18), provide
an approximation for the value function and the optimal policy. Notice that, by the Itô formula,
defining

σ̄2
t := eat(σ2

t − σ2
∞) ,

we have

dσ̄2
t = aeat(σ2

t − σ2
∞) + eat(a(σ2

∞ − σ2
t )dt+ νσtdBt) = eatνσtdBt ,

which implies that (σ̄2
t ) is a local-martingale. From [27], we know that for 2aσ2

∞ > ν2 this local
martingale is actually a positive martingale. Using the martingale property, We obtain

Eu,Zu

[∫ T

u
σ2
sds

]
= Eu,Zu

[∫ T

u
e−asσ̄2

sds

]
+ σ2

∞(T − u)

= σ̄2
u

∫ T

u
e−asds+ σ2

∞(T − u)

= (σ2
u − σ2

∞)
1− e−a(T−u)

a
+ σ2

∞(T − u) ,

which implies

ρ̃2(t, z) = β + (σ2 − σ2
∞)

1− e−a(T−t)

a
+ σ2

∞(T − t) . (ρ̃2 Heston)

Integrating both terms, using once again the martingale property,

Et,z

[∫ T

t
(σ2
u − σ2

∞)
1− e−a(T−u)

a
du

]
= (σ2

t − σ2
∞)

e−a(T−t) − 1 + a(T − t)
a2

Et,z

[∫ T

t
σ2
∞(T − u)du

]
=

1

2
σ2
∞(T − t) ,

and finally

ρ̃0(t, z) = β(T − t) +
1

2
(σ2 − σ2

∞)
e−a(T−t) − 1 + a(T − t)

2a2
+

1

2
σ2
∞(T − t)

D(t, z) = k

(
β +

1

2
(σ2 − σ2

∞)
e−a(T−t) − 1 + a(T − t)

2a2(T − t)
+

1

2
σ2
∞

)
. (D Heston)

2.5 Numerical experiments

We test the small martingale deviation policy for the Ornstein-Uhlenbeck dynamic (2.4.1) via
numerical simulations, in order to prove that these explicit policies still give good results, both
in terms of performances and inventory risk. These simulation are intended to show how the

small martingale deviation policy associated to δ̃
(η,0)
± (Policy 2.3) behaves with respect to the one

associated to δ̃
(η,0)
± = δ̂

(η,0)
± , where the stock price is considered as a martingale. The spread is

assumed constant, while stock price is driven by (2.4.1). For all the Monte Carlo simulations, 104

trajectories are considered, while T = 30 minutes. The price, on short scales, has an arithmetic
dynamic, so that translating the system in order to start at 0 is always possible: p = 0 is only
a reference, and the price can take negative values.
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The martingale policy against the small martingale deviation ones

As shown by Figure 2.4, the martingale policies loses in terms of performance against the
small martingale deviation ones (which coincides with the optimal policies since η = 0) as ex-
pected, even though the performance profile has a lower variance. Including directional bets
in market-making policy improves the average performance, but the directional nature leads to
new variance and fatter distribution tails.

i) Cautious agent: an agent averse to portfolio variance should limit herself to a pure market-
making policy, where no information of the evolution of the price is taken into account.

ii) Risky agent: an agent having market anticipation and who is ready to trade variance for
profit, should play the small martingale deviation policy, mixing directional views and pure
market-making.

The role of the transaction cost

As expected, a higher level of fixed costs reduces the policy performances, as shown by Figure 2.5.

The role of the risk aversion

As shown by Figure 2.6 and Figure 2.7, introducing risk aversion allows the agent to control
her inventory, who reverts to zero as soon as it becomes too big. As a side effect, the agent
performance is penalized in terms of profit, but not in terms of variance, which is considerably
reduced. A higher risk aversion leads to more conservative strategies, where profit is not ex-
changed for variance: reducing distribution tail and variance have the highest priority, so that
directional bets becomes not relevant for η >> 0.

2.6 Appendix: the multi-asset model

In this section we wish to extend the previous framework to the multidimensional case.

Notation

In this section we will use the following notations:

� ∀v ∈ Rn, we will denote by vi its ith component;

� 1n is the vector (1, . . . , 1) ∈ Rn;

� ∀v1, v2 ∈ Rn, v′1 v2 stands for the inner product in Rn;

� ∀v ∈ Rn, diag(v) is the corresponding diagonal matrix filled by v;

� ∀M ∈ Rn×n, diag(M) is the matrix diagonal.

The uncontrolled process: the mid-price and the spread

Assume that we have n different assets in n different markets. As in the scalar case, we assume
that (t, Zt) = (t, P, P̃t) is a Markov process, such that

εi(t, z) := Et,z [(Pi)T ]− pi = Et,z

[∫ T

t
αi(u, Zu) du

]
, i = 1, . . . , n

〈Pi, Pj〉t := Σ2
ij(t, Zt)dt , i, j = 1, . . . , n .
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The controlled processes: the agent wealth and the inventory process

As in the scalar case, we define an n-dimensional couple

(
N+
t , N

−
t

)
=

 (N+
1 )t (N−1 )t ,
...

... ,
(N+

n )t (N−n )t

 ∈ Rn×2,

determining the limit order matching of all ask/bid limit orders posted on the n market: we
assume that the ith component is a Cox process has controlled intensity decaying exponentially
with (δ±)i, depending on Ai and ki, i = 1, . . . , n, where all the components of the limit order
matcher (Nt) are assumed independent between each other, in order to ease computation. With
these notations, the wealth and the inventory have the same dynamic of the uni-dimensional
case, i.e. the agent wealth and inventory follow

dXt [δ±] =
∑
ν∈±

(νPt + (δν)t − ϕ)′ dNν
t [δ±] , Xt ∈ R , (2.6.1)

dYt [δ±] = dN−t [δ±]− dN+
t [δ±] , Yt ∈ Zn . (2.6.2)

Notice that in the multi-dimensional case, the wealth process (Xt) is a scalar process,
while the inventory (Yt) lives in Zn.

The stochastic optimal control problem

As in (see (2.1.6)), the target of the agent is to find an optimal policy ((δ±)t) maximizing her
utility function, i.e.

u(η,ε)(t, x, y, z) := max
(δ±)t

j(η,ε)(t, x, y, z; δ±) , (2.6.3)

j(η,ε)(t, x, y, z; δ±) := Et,x,y,z

[
XT [δ±] + Y ′T [δ±] PT − η

(
Ω

(1)
T [δ±] +

∫ T

t
Ω(2)
u [δ±] du

)]
,

where

Ω
(1)
T [δ±] :=

n∑
i=1

βi
(
Y 2
i

)
T

[δ±] ≥ 0 , βi ≥ 0

Ω
(2)
t [δ±] := Y ′t [δ±] Σ2(t, Zt)Yt [δ±] ≥ 0 .

An important consequence of the choice of Ω(2) is that the agent limit orders would not drive
her portfolio towards a smaller portfolio in the canonical L2-norm sense, but towards a smaller
portfolio in the L2-norm induces by Σ. One can imagine this risk reduction as an attempt of
the agent to drag the portfolio towards the position (0, . . . , 0) ∈ Zn ⊆ Rn: in order to do so
the agent choses the smallest path from Yt to 0, whose length is given in the metric induced by
inner product associated to the volatility matrix and not identity one!

The stochastic optimal control problem and the associated HJB equation

The HJB equation associated to (2.6.3) is given by

− (∂t + L) g−
n∑
i=1

∑
ν∈±

max
δ
Aie
−kiδ∆g(t, x± νpi + δ − ϕi, y ∓ νei, z) = η

n∑
i,j=1

Σ2
ijyiyj ,

g(T, ) = −η
n∑
i=1

βiy
2
i ,

where L is the infinitesimal generator of (Pt).
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2.6.1 The no risk aversion case

We again use perturbation methods on η: for this we first need the solution in the special case
η = 0. Using the same technique of Proposition 2.1, we obtain, after tedious but straightforward
calculations, the following result.

Proposition 2.3. In the no risk aversion case, the value function associated to the control
problem (2.6.3) is

u(0,ε) = x+ y′h(ε)︸ ︷︷ ︸
buy-and-hold

+ 1′n m(ε)︸ ︷︷ ︸
market-making

, m(ε),h(ε) ∈ Rn ,

with

h
(ε)
i (t, z) := pi + εi(t, z) ,

m
(ε)
i (t, z) := 2ci Et,z

[∫ T

t
cosh (kiεi(u, Zu)) du

]
, ci :=

Ai
ki
e−ki(1/ki+ϕi) . (2.6.4)

Finally, optimal controls are given by

δ
(0,ε)
± = 1/k + ϕ± ε ∈ Rn . (2.6.5)

2.6.2 The case of small risk aversion under small martingale deviation

We now switch to general case of η → 0+. We generalize Theorem 2.2, and leave the vectorial
case of Theorem 2.1 to the reader.

Theorem 2.3 (Risk averse agent detaining small martingale deviation). For η ↓ 0 and ε ↓ 0,
the solution of the optimal control problem (2.1.6) is given by

u(η,ε) ≈ ũ(η,ε) = u(0,0) + y′ε︸︷︷︸
directional

− η
(
ρ̃0 + y′ρ̃2y

)︸ ︷︷ ︸
risk aversion

, (2.6.6)

where u(0,0) is the solution for η = 0 (Proposition 2.3), and

ρ̃2(t, z) := diag(β1, . . . , βn) + Et,z

[∫ T

t
Σ2(u, Zu)du

]
∈ Rn×n , (2.6.7)

ρ̃0(t, z) :=
n∑
i=1

2kici

(
βi(T − t) + Et,z

[∫ T

t

∫ T

u
Σ2
ii(ξ, Zξ)dξ du

])
∈ R . (2.6.8)

Furthermore, optimal controls (in vectorial form) are approximated by

δ
(η,ε)
± ≈ δ̃(η,ε)

± := δ
(0,0)
± ±ε(t, z)︸ ︷︷ ︸

directional

+ η (diag (ρ̃2)± 2ρ̃2y)︸ ︷︷ ︸
risk-aversion

,

where δ
(0,ε)
± are given by (2.6.5).

Proof. We briefly recall the main steps of the proof, which mimics the one of Theorem 2.2.
Using the ansatz

u(0,0)(t, x, y, z)− ηg(t, y, z) ,

the ith components of the optimal controls is given by

1/ki + ϕi ± εi(t, z) + η∆g(t, y ∓ ei, z) = δ
(0,ε)
± (t, z)i + η∆g(t, y ∓ ei, z) , (2.6.9)
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and following the proof of Theorem 2.2, taking into account the necessary vectorial adjustment,
we find a linear approximation in ε and η taking g as solution of

−(∂t + L)g−
n∑
i=1

kici
∑
ν∈±

∆g(t, y − νei, z) =
n∑

i,j=1

Σ2
ijyiyj ,

g(T, ) =
n∑
i=1

βiy
2
i .

Using the ansatz g(t, y, z) := ρ̃0(t, z) + y′ρ̃2(t, z)y, we obtain

∆g(t, y − ei, z) + ∆g(t, y + ei, z) = 2e′iρ̃2(t, z)ei , i = 1, . . . , n ,

which leads to

−(∂t + L)
(
ρ̃0 + y′ρ̃2y

)
− 2

n∑
i=1

kicie
′
iρ̃2ei =

n∑
i,j=1

Σ2
ijyiyj ,

ρ̃0(T, ) + y′ρ̃2(T, )y =
n∑
i=1

βiy
2
i .

Once again, splitting by the inventory degree we obtain

−(∂t + L)ρ̃2 = Σ , ρ̃2(T, ) = diag (β1, . . . , βn) ,

(where the previous system is meant for all component-wise), whose solution is (2.6.7), while

−(∂t + L)ρ̃0 − 2

n∑
i=1

kicie
′
iρ̃2ei = 0 , ρ̃0(T, ) = 0 ,

whose solution is given by (2.6.8). Finally, approximated controls are determined injecting g in
(2.6.9).

�
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Approximation error = max |v−v_approx|

a
risk_aversion

max_error

Figure 2.3: (numerically computed) approximation error, i.e. ||u(θ,η)−u(θ,η)||∞ letting go η and the a parameter
of the Ornstein Uhlenbeck (see (2.4.1)) towards 0.
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Figure 2.4: Monte Carlo simulation comparing the small martingale deviation policies agains the martingale
ones for η = 0.

Figure 2.5: Monte Carlo simulation of the small martingale deviation policy for different value of the transaction
cost parameter ϕ.
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Figure 2.6: one trading trajectory (on a large horizon) for the small martingale deviation policies for different
value of the risk aversion parameter η.

Figure 2.7: Monte Carlo simulation of the small martingale deviation policy for different value of the risk
aversion parameter η.
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Chapter 3

Semi Markov model for market
microstructure

Abstract

We introduce a new model based on Markov renewal processes describing the fluctuations of a
tick-by-tick single asset price. We consider a point process associated to the timestamps of the
price jumps, with marks associated to price increments. By modeling the marks with a suit-
able Markov chain, we can reproduce the strong mean-reversion of price returns, a phenomenon
known as microstructure noise. Moreover, using Markov renewal processes, we can model the
alternating of time intervals with high and low market activity, and consider dependence be-
tween price increments and jump times. We also provide simple parametric and non-parametric
statistical procedures for the estimation of our model. We obtain closed-form formula for the
mean signature plot, and show the diffusive behavior of our model at large scale limit. We illus-
trate our results by numerical simulations, and find that our model is consistent with available
empirical data.

Keywords: Microstructure noise, Markov renewal process, Signature plot, Scaling limit.
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Introduction

The modelling of tick-by-tick asset prices has attracted a growing interest in the statistical and
quantitative finance literature with the availability of high frequency data. It is basically split
into two categories, according to the philosophy guiding the modeling.

i) The macro-to-micro (or econometric) approach: (see e.g. [39], [3], [60]) it interprets the
observed price as a noisy representation of an unobserved one, typically assumed to be a
continuous Itô semi-martingale: in this framework several results exist on robust estimation
of the realized volatility, but these models seem not to be adapted to high frequency trading
problems and stochastic control techniques, mainly because the state variables are latent
rather than observed. In this paper, we shall discuss in particular the uncertainty zones
model introduced in [60], for which we detail the connections with our work.

ii) The micro-to-macroscopic approach: (see e.g. [9], [7], [25], [1], [35], [17], [29] and [30]) it
exploits point processes, in particular Hawkes and renewal processes (as in our case), to
drive the asset price, either moving on the tick grid or on the real line. In contrast with the
macro-to-microscopic approach, these models do not rely on the arguable assumption of the
existence of a fair or fundamental price, focusing only on observable quantities, which makes
the statistical estimation usually simpler. These models differ according to the magnifying
glass used to look at the limit order book (LOB).

A first category, to which our paper belongs, describes the stock price directly: the choice
of the point process determines entirely the model, since the stock price is considered as the
primitive random component and no price formation is involved. In general, these models address
problems as the reproduction of fine stylized facts concerning the stock price (in the multi-asset
framework as well), but does not deal with other aspects of the electronic book. An example
is provided by [7], where a bivariate Hawkes process describes the upwards and downwards
jump of the stock price: a kernel rules the memory of the process while the branching matrix
reproduces the microstructure noise. In this setting, result on the explosion of the signature
plot and volatility clustering, as well as non-parametric estimation and diffusive limits are also
available in the multi-asset case. Another example is provided by [29] and [30], where indexed
and weighted semi-Markov chains describe the geometric returns of the asset price, focusing on
the first passage time and the autocorrelation of returns, integrating theoretical results with
numerical simulations.

A second category in this literature looks at the price dynamics as a result of an endogenous
component plus the impact of the market order flow, and addresses a wide range of problems.
A bridge between the previous category and this one is provided by the work [8], where a four-
dimensional Hawkes process drives a single asset market, each component describing a different
event in the book (trades at the best ask/bid, jump upwards/downwards of the stock price),
and the price is driven by an endogenous component plus a market impact one. A completely
different approach is presented in [19], where each trade determines a random, and possibly
zero, revision of the log-price, which is assumed to be a continuous time process on R, and a
hidden Markov chain drives the market, inducing different arrival rates for trades and different
reactions of the price for each regime. In [24] the authors address a different target (option
pricing starting from a microstructure model) and exploit renewal processes to describe the
trade inter-arrival times (which are seen as an i.i.d. sequence of positive random times), while
the stock price moves, at the arrival of each trade, according to a continuous random variable
independent of tick time process. In [23] instead, the stock price is the result of a diffusive
exogenous component and a random drift which is determined by influential market orders
arriving in the book and a mean-reverting component. The market order flow is modeled by a
complex system of branched Hawkes processes, where investors are classified according to their
influential status (e.g. institutional investors affecting the price drift) or not (e.g. small investors
or market maker adjusting their position), and each group action determines a different jump
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in the global market intensity. As an application, explicit optimal market making strategies are
provided for asymptotically small risk aversions.

The autoregressive model of [34] models the timestamps between events with an autoregressive
sequence representing the inter-arrival counterpart of the GARCH model commonly used for
financial returns. Therefore, depending whether this model is used for trade inter-arrivals (as in
the original paper) or for price jump, it may be classified into the first or the second category.

Finally, an extreme approach consists in modeling the entire limit order book (quotes, cancel-
lation, trades, posting of limit order, etc...) and deducing the price consequently. The paper
[26] describes an electronic market where every level is modified by the Poissonian arrival of
new events (market orders, limit order postings or cancellations, etc...). In a similar fashion, the
paper [25] focuses on the first levels of the book (best ask, best bid) and models the asymmetry
in the liquidity provided by the two sides after every price jump. The trade flow is modeled by
general point processes and the main results concern large-scale asymptotic diffusive behavior
of the stock price. Other important contributions in the study of the limit order book shape
and dynamics, with particular focus on the resilience and price formation, are given by [62] and
[50].

A brief introduction to our work and connections to the existing literature

In this paper, we aim to provide a tractable tick-by-tick model for the price of liquid assets with
large tick, in view of an application to an optimal high frequency trading problem (studied in
the companion paper [37]). This feature guarantees that the bid-ask spread in the limit order
book is almost always constant and equal to one tick, as shown in [31], and leads to a much
easier modeling of the book itself. Our goal is to reproduce some of the well-known stylized
facts on high frequency data, see e.g. [38], [14], such as:

i) Microstructure noise: high-frequency returns are extremely anticorrelated, leading to a
short-term mean reversion effect, which is mechanically explicable by the structure of the
limit order book. This effect manifests through an increase of the realized volatility estimator
(signature plot) when the observation frequency decreases from large to fine scales.

ii) Intermittence of durations: markets alternates, independently of the intraday seasonality,
between phases of high and low activity.

iii) Diffusive behaviour: at large scale, the price process displays a diffusive behaviour.

Our starting point is a model-free description of the mid-price, the arithmetic mean of the best
bid and best ask quotes. The latter is a piecewise constant process defined by a random sequence
(Tn, Jn), a marked point process where the timestamps (Tn) represent the jump times of the
asset price associated to a counting process (Nt), and the marks (Jn) are the price increments.
For the modeling of this bivariate sequence, we use a Markov renewal process (MRP). Markov
renewal theory [53] is largely studied in reliability for describing failure of systems and machines,
and one purpose of this paper is to show how it can be applied to market microstructure.

By considering a suitable Markov chain modeling for (Jn), we are able to reproduce the mean-
reversion of price returns, while allowing arbitrary jump size, i.e. the price can jump of more
than one tick. On the other hand, the counting process (Nt), which may depend on the Markov
chain, models the jump activity, and in particular the alternation of high and low activity phases.
Finally, MRPs ensure a Brownian motion behavior of the price process at macroscopic scales,
which is consistent with the classic diffusive approach in the case of daily observations.

Our MRP model is a rather simple but robust model, easy to understand, simulate and estimate,
both parametrically and non-parametrically. An important feature of the MRP approach is its
semi-Markov property: the price process can be embedded into a Markov system with few
additional and observable state variables, ensuring the tractability of the model for applications
to market making and statistical arbitrage.
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In the classification mentioned above, our paper is placed in the micro-to-macro-structure models
describing directly the stock price. We underline that one of our main prerogative is to provide
a model involving only observable variables, so that non-parametric estimation is easy and
no optimization routine is necessary (as in [19] e.g.), which is a common issue when hidden
components are present. This choice naturally leads us to deal with a piecewise constant price
moving on the grid tick, where no diffusive components are present and where jumps are integer-
valued (and not real-valued) processes. MRPs are powerful tools to model the dependence
between jump timestamps and marks, dependence which is empirically shown (and theoretically
supported by [25]), and for which an explanation relying on the nature of the LOB is provided.
Since our goal is to give closed formula on stylized facts of the stock price, by modeling directly
the latter and not its formation (trade = price movement), we obtain a simpler framework to
deal with.

Plan of the paper

The outline of the paper is the following. In Section 3.1, we describe the MRP model for the
asset mid-price, and provides statistical inference. We show how to simulate the model, and
the semi-Markov property of the price process. We also discuss the comparison of our model
with the uncertainty zones model, and Hawkes processes used for modeling asset prices and
microstructure noise. Section 3.2 studies the diffusive limit of the asset price at macroscopic
scale. In Section 3.3, we derive analytical formula for the mean signature plot, and compare with
real data. We conclude by a paper summary and some possible extensions for future research.

Data sample

The used database is the EURIBOR 3M future (front contract) quoted on the LIFFE electronic
platform (London), from 2010-01-04 to 2010-12-31, observed every day from 10:00 to 14:00
London time. In the Appendix we will perform an analysis of the EUROSTOXX 3M future
quoted on the EUREX platform, from 2010-03-22 to 2010-06-18, observed from 10:00 to 11:00
Frankfurt time. For both assets, the analyzed price is the mid one, only those falling at the half
of the tick. Since the bid-ask spread is 99% of the time equal to one tick, this corresponds to
most of the observations.

3.1 Semi-Markov model

We describe the tick-by-tick fluctuation of a univariate stock price by means of a marked point
process (Tn, Jn)n∈N. The increasing sequence (Tn) represents the jump (tick) times of the asset
price, while the marks sequence (Jn) valued in the finite set

E = {+1,−1, . . . ,+m,−m} ⊂ Z \ {0} ,

represents the price increments, where positive (resp. negative) marks stands for upwards (resp.
downwards) jumps. The continuous-time price process is a piecewise constant, pure jump pro-
cess, given by

Pt = P0 +

Nt∑
n=1

Jn , t ≥ 0 , (3.1.1)

where (Nt) is the counting process associated to the tick times (Tn), i.e.

Nt = inf

{
n :

n∑
k=1

Tk ≤ t

}
.
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Here, we have normalized the tick size (the minimum variation of the price) to 1, and the asset
price (Pt) is considered e.g. as the last quotation for the mid-price, i.e. the mean between
the best-bid and best-ask price. Let us mention that the continuous time dynamics (3.1.1) is
a model-free description of the piecewise constant price in the electronic market. We decouple
the modeling of the jump activity via the point process (Nt), while the microstructure noise is
described via the random marks (Jn).

3.1.1 Price return modelling

We write the price return as

Jn = Ĵn ξn , n ≥ 1 , (3.1.2)

where Ĵn := sign(Jn) valued in {−1,+1} indicates whether the price jumps upwards or down-
wards, and ξn := |Jn| is the absolute size of the price increment. In order to simplify the model
and guarantee some explicit computations, we consider that the dependence of the price returns
occurs through their direction, and assume that only the current price direction will impact the
next jump one.

Remark 3.1. This assumption is not satisfied empirically as shown by the autocorrelation func-
tion of (Ĵn) (Figure 3.1), which displays the existence of long-lasting memory in the sequence. In
particular the left side of Figure 3.1 exhibits an alternate-sign memory for (Ĵn), which translates
into a positive autocorrelation function (Bn := Ĵn−1Ĵn), as shown on the right side. However,
the goal of this paper is to explain some basic stylized facts: since the microstructure noise and
the explosion of the mean signature plot are essentially a consequence of the high-frequency mean
reversion, a first order approximation as the Markov chain (3.1.2) fits our needs. Nevertheless,
a more sophisticated model encoding the richer structure of the return sequence, and addressing
in particular statistical arbitrage applications, is in our agenda.
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Figure 3.1: Autocorrelation function of the sequences (Ĵn) and (Ĵn−1Ĵn).

Moreover, we assume that the absolute size of the price returns are independent and also inde-
pendent of the direction of the jumps. Formally, this means that

� (Ĵn) is an irreducible Markov chain with probability transition matrix

Q̂ =

( 1+α+

2
1−α+

2 ,
1−α−

2
1+α−

2

)
, (3.1.3)
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with α+, α− ∈ [−1, 1).

� (ξn) is an i.i.d. sequence valued in {1, . . . ,m}, independent of (Ĵn), with distribution law:
pi = P [ξn = i] ∈ (0, 1), i = 1, . . . ,m.

In this case, (Jn) is an irreducible Markov chain with probability transition matrix given by

Q =

 p1Q̂ . . . pmQ̂
...

. . .
...

p1Q̂ . . . pmQ̂

 . (3.1.4)

We could model in general (Jn) as a Markov chain with transition matrix Q = (qij) involving
2m(2m−1) parameters, while under the above assumption, the matrix Q in (3.1.4) involves only
m + 1 parameters to be estimated. Actually, on real data, we often observe that the number
of consecutive downward and consecutive upward jumps are roughly equal. One can easily see
that

α± = ±E[Ĵn | Ĵn−1 = ±] .

We have estimated the two empirical means: both a t-test and the intersection of their confidence
interval, as shown in Figure 3.2, suggest that we can specialize to the symmetric case where

α+ = α− =: α . (3.1.5)
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Figure 3.2: Estimation and confidence interval for α, α±.

In this case, as shown by the following lemma, we have an intuitive interpretation of the pa-
rameter α ∈ [−1, 1) as the correlation between two consecutive price return directions: in the
case α = 0 price returns are independent, while when α < 0 (resp. α > 0) they are subjected to
mean-reversion (resp. trends).

Lemma 3.1. In the symmetric case, the invariant distribution of the Markov chain (Ĵn) is
π̂ = (1

2 ,
1
2), and the invariant distribution of (Jn) is π = (p1π̂, . . . , pmπ̂). Moreoever, we have:

α = corrπ

(
Ĵn, Ĵn−1

)
, ∀n ≥ 1 , (3.1.6)

where corrπ denotes the correlation under the stationary probability Pπ starting from the initial
distribution π.
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Proof. We easily check that under the symmetric case, π̂Q̂ = π̂ for π̂ = (1/2, 1/2), which means
that π̂ is the invariant distribution of the Markov chain (Ĵn). Consequently, π = (p1π̂, . . . , pmπ̂)
satisfies πQ = π, i.e. π is the invariant distribution of (Jn), and so under Pπ, (Ĵn) (resp. (Jn))
is distributed according to π̂ (resp. π). Therefore, Eπ[Ĵn] = 0 and Varπ[Ĵn] = 1. We also have
for all n ≥ 1, by definition of Q̂:

Eπ
[
ĴnĴn−1

]
= Eπ

[
1 + α

2

(
Ĵn−1

)2
− 1− α

2

(
Ĵn−1

)2
]

= α ,

which proves the relation (3.1.6) for α.

�

We also have another equivalent formulation of the Markov chain, whose proof is trivial and left
to the reader.

Lemma 3.2. In the symmetric case, the Markov chain (Ĵn) can be written as:

Ĵn = Ĵn−1Bn , n ≥ 1 , (3.1.7)

where (Bn) is a sequence of i.i.d. random variables with Bernoulli distribution on {−1,+1},
and parameter (1 + α)/2, i.e. of mean E[Bn] = α. The price increment Markov chain (Jn) can
also be written in an explicit induction form as:

Jn = Ĵn−1ζn , (3.1.8)

where (ζn) is a sequence of i.i.d. random variables valued in E = {+1,−1, . . . ,+m,−m}, and
with distribution

P [ζn = k] = pk(1 + sign(k)α)/2 .

The above lemma is useful for an efficient estimation of α. By the strong law of large numbers,
we have a consistent estimator given by α:

α̂(n) =
1

n

n∑
k=1

Ĵk

Ĵk−1

=
1

n

n∑
k=1

ĴkĴk−1 .

The variance of this estimator is known, equal to 1/n, so that the latter is efficient, with a
confidence interval given by the central limit theorem:

√
n(α̂(n) − α)

(d)−→ N (0, 1) , as n→∞ .

The estimated parameter for the chosen dataset is α̂ ≈ −86%, which shows as expected a strong
anticorrelation of price returns. Figure 3.3 shows the result of the estimation procedure: splitting
the sample in three consecutive and disjoint subsamples, the corresponding confidence intervals
intersect both with each other and with the one obtained by estimation on the whole dataset.
This proves the stability of the estimator over time.

In the case of several tick jumps m > 1, the probability pi = P [ξn = i] may be estimated from
the classical empirical frequency

p̂
(n)
i =

1

n

n∑
k=1

1{ξk = i} , i = 1, . . . ,m .
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Figure 3.3: confidence intervals for the estimators α̂ and α̂i, i = 1, 2, 3, where α̂i are obtained by partitioning
the sample in three disjoint and consecutive subsamples and performing estimation on each one.

3.1.2 Tick times modeling

In order to describe the jump activity, we consider a counting process (Nt) with stochastic
intensity decaying while the stock price is constant and bumping up when the latter jumps.
In this paper we investigate a model based on Markov renewal processes. In what follows, we
briefly recall the standard setting, mainly to fix notations.

Let us denote by Sn = Tn − Tn−1, n ≥ 1, the inter-arrival times associated to (Nt). We assume
that conditionally on the jump marks (Jn), (Sn) is an independent sequence of positive random
times, with distribution depending on the current and next jump mark:

Fij(t) = P [Sn+1 ≤ t
∣∣Jn = i, Jn+1 = j] , (i, j) ∈ E .

We then say that (Tn, Jn) is a Markov Renewal Process (MRP) with transition kernel:

P [Jn+1 = j, Sn+1 ≤ t
∣∣Jn = i] = qijFij(t) , (i, j) ∈ E ,

In the particular case where Fij does not depend on i, j, the point process (Nt) is independent
of (Jn), and called a renewal process. Moreover, if F is the exponential distribution, N is a
Poisson process. Here, we allow in general dependency between jump marks and renewal times,
and we refer to the symmetric case when Fij depends only on the sign of ij, by setting

F+(t) = Fij(t) , ij > 0 , (3.1.9)

F−(t) = Fij(t) , ij < 0 .

In other words, F+ (resp. F−) is the distribution function of inter-arrival times given two
consecutive jumps in the same (resp. opposite) direction, called trend (resp. mean-reverting)
case.

Remark 3.2 (Connection to the uncertainty zones model). A classical approach for modeling
microstructure noise in the financial econometrics literature is to consider an additive noise
independent of a latent efficient price process. Recently, in the works [60] and [61], the authors
propose to make endogenous the microstructure noise through a model with uncertainty zones.
Their model (in short UZM) is basically constructed as follows. Starting from a continuous time
Itô process X representing the efficient price, they define the times (Tn) of change in transaction
price as the exit times of the efficient price from uncertainty zones of size , a around the mid-tick
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grid value. The associated transaction price PTn is then defined as the value of XTn rounded to
the nearest multiple of the tick size, and (Pt)t≥0 is the càd-làg piecewise constant process built
from (Tn, PTn). Denoting by Jn = PTn −PTn−1 the price increments, and in the case where X is
a Brownian motion, it appears that (Tn, Jn) is a Markov renewal process with symmetric kernel.

i) Conditional distribution: F+ and F− are given by the first hitting time distribution of the
Brownian motion against B+ and B−, where the two barriers are given by

B+ = 1 ,

B− =
1

2a
.

This is due to the fact that when the latent price hits a barrier, we know its value, which
coincides with the barrier itself. Now the latent price can either hit the closest barrier, at
distance B−, causing a reversion (Bn = −1), or the farther one, at distance B+, causing a
trend (Bn = +1). So, conditionally to Bn = ±, the next jump time is distributed as the first
hitting time of the latent price against B±.

ii) Marks: (Jn) is a {±}-valued Markov chain with symmetric transition matrix, where the
relation between the bandwidth size , a and α is explicitly given by

α =
2a− 1

2a+ 1
.

Indeed, since Brownian motion is a martingale with constant volatility, we have: Bn = +1
(resp. Bn = −1) if the latent price hits B+ (resp. B−) first, which happens with probability

2a
1+2a (resp. 1

1+2a), and leads to the above formula.

Let us now introduce the marked hazard function:

hij(t) = lim
δ↓0

1

δ
P [t ≤ Sn+1 ≤ t+ δ, Jn+1 = j

∣∣Sn ≥ t, Jn = i] , t ≥ 0 , (3.1.10)

for i, j ∈ E, which represents the instantaneous probability of a jump with mark j, given that
there have not been any jump during the elapsed time t, and the current mark is i. By assuming
that the distributions Fij of the renewal times Sn admit a density fij , we may write hij as:

hij(t) = qij
fij(t)

1−
∑

j∈E qijFij(t)
=: qijλij ,

where ∑
j∈E

qijFij(t) = P [Sn+1 ≤ t
∣∣Jn = i] ,

is the conditional distribution of the renewal time in state i. In the symmetric case (3.1.5),
(3.1.9), we have

hij(t) = pj

(
1 + sign(ij)α

2

)
λsign(ij)(t) ,

with jump intensity

λ±(t) =
f±(t)

1− F (t)
, (3.1.11)

where f± is the density of F±, and

F (t) =
1 + α

2
F+(t) +

1− α
2

F−(t) .
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Markov renewal processes are used in many applications, especially in reliability. Classical
examples of renewal distribution functions are the ones corresponding to the Gamma and Weibull
distribution, with density given by:

fGam(t) =
tβ−1e−t/θ

Γ(β)θβ
,

fWei(t) =
β

θ

(
t

θ

)β−1

e−βt/θ ,

where β > 0, and θ > 0 are the shape and scale parameters, and Γ (resp. Γt) is the Gamma
(resp. lower incomplete Gamma) function:

Γ(β) =

∫ ∞
0

sβ−1e−sds ,

Γt(β) =

∫ t

0
sβ−1e−sds . (3.1.12)

3.1.3 Statistical inference

We design simple statistical procedures for the estimation of the distribution and jump intensities
of the renewal times. Over an observation period, pick a subsample of i.i.d. data

{Sk = Tk − Tk−1 : k : Jk−1 = i, Jk = j} ,

and set

Iij := {k : Jk−1 = i, Jk = j} ,
Ii := {k : Jk−1 = i} ,

with cardinality respectively nij and ni. In the symmetric case, we also denote by

I± := {k : sgn(Jk−1Jk) = ±} ,

with cardinality n±. We describe both parametric and non-parametric estimation.

Parametric estimation.

We discuss the parametric estimation of the distribution Fij of the renewal times when con-
sidering Gamma or Weibull distributions with shape and scale parameters βij , θij . We can

indeed consider the Maximum Likelihood Estimator (MLE) (β̂ij , θ̂ij), which are solution to the
equations:

ln β̂ij −
Γ′(β̂ij)

Γ(β̂ij)
= ln

(
1

nij

nij∑
k=1

Sk

)
− 1

N

nij∑
k=1

lnSk ,

θ̂ij =
1

β̂ij
S̄nij , S̄nij :=

1

nij

nij∑
k=1

Sk .

There is no closed-form solution for β̂ij , which can be obtained numerically e.g. by Newton
method. Alternatively, since the first two moments of the Gamma distribution S  Γ(β, θ) are
explicitly given in terms of the shape and scale parameters, namely:

β =
E[S]2

Var[S]
,

1

θ
=

E[S]

Var[S]
, (3.1.13)
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i j shape scale

+1 +1 0.27651097 2187
-1 -1 0.2806104 2565.371
+1 -1 0.07442401 1606.308
-1 +1 0.06840708 1508.155

Table 3.1: Parameter estimates for the renewal times of a Gamma distribution

we can estimate βij and θij by moment matching method, i.e. by replacing in (3.1.13) the mean
and variance by their empirical estimators, which leads to:

β̃ij =
nijS̄

2
nij∑nij

k=1(Sk − S̄nij )2
,

1

θ̃ij
=

nijS̄nij∑nij
k=1(Sk − S̄nij )2

.

We performed moment matching estimation on our dataset, and obtain the following estimates
in Table 3.1. We observed that the shape and scale parameters depend rather on the product
ij rather than on i and j separately. In other words, the distribution of the renewal times are
symmetric in the sense of (3.1.9). Hence, we have performed again in Table 3.2 the parametric
estimation (β̃+, θ̃+) and (β̃−, θ̃−) for the shape and scale parameters by distinguishing only
samples for ij = 1 (the trend case) and ij = −1 (the mean-reverting case). We also provide in
Figure 3.4 graphical tests of the goodness-of-fit for our estimation results, where the empirical
distributions of F+ and F− are compared to theoretical densities of the gamma distribution with
the estimated parameters both via an histogram versus density plot and a qqplot.

The estimated value β̃+, and β̃− < 1 for the shape parameters, can be interpreted when consid-
ering the hazard rate function of Sn+1 given current and next marks:

λ̂±(t) := lim
δ↓0

1

δ
P [t ≤ Sn+1 ≤ t+ δ|Sn ≥ t, sign(JnJn+1) = ±]

=
f±(t)

1− F±(t)
, t ≥ 0 ,

when F± admits a density f± (Notice that λ̂± differs from λ±). λ̂+(t) (resp. λ̂−(t)) is the
instantaneous probability of price jump given that there were no jump during an elapsed time
t, and the current and next jump are in the same (resp. opposite) direction. For the Gamma
distribution with shape and scale parameters (β, θ), the hazard rate function given by (3.1.11)
is decreasing in time if and only if the shape parameter β < 1, which means that the more the
time passes, the less is the probability that an event occurs. Therefore, the estimated values β̂+,
and β̃− < 1 are consistent with the following phenomenon: when a jump occurs, the probability
of another jump in a short period is high, but if the event does not take place soon, then the
price is likely to stabilize. Using this modelling, a long period of constant price corresponds to
a renewal time in distribution tail. On the contrary, since renewal times are likely to be small
when β < 1, most of the jumps will be extremely close. We also notice that the parameters in
the trend and mean-reverting case differ significantly. This can be explained as follows: trends
(two consecutive jumps in the same direction) are extremely rare (recall that α ≈ −90%), since,
in order to take place, market orders either have to clear two walls of liquidity or there must be
a big number of cancellations. Since these events are caused by specific market dynamic, it is
not surprising that their renewal law differ from the mean-reverting case.

Non-parametric estimation.

Since the renewal times form an i.i.d. sequence, we are able to perform a non-parametric
estimation by kernel method of the density fij and the jump intensity. We recall the smooth
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i j shape scale

+1 (trend) 0.276225 2397.219
-1 (mean-reverting) 0.07132677 1561.593

Table 3.2: Parameter estimates in the trend and mean-reverting case

Figure 3.4: qq-plot and histogram of the distributions F−(left) and F+(right).

kernel method for the density estimation, and, in a similar way, we will give the one for hij and
λij . Let us start with the empirical histogram of the density, which is constructed as follows.
For every collection of breaks

{0 < t1 < ... < tM ≤ ∞} , δr := tr+1 − tr ,

we bin the sample (Sk = Tk − Tk−1)k=1,...,n and define the empirical histogram of fij as

fhstij (tr) =
1

δr

#{k ∈ Iij
∣∣tr ≤ Sk < tr+1}
nij

.

By the strong law of large numbers, when nij →∞, this estimator converges to

1

δr
P [tr ≤ Sk < tr+1] ,

which is a first order approximation of fij(tr). This estimator depends on the choice of the
binning, which has not necessarily small (nor equal) δr’s. The corresponding non-parametric
(smooth kernel) estimator of the density is given by a convolution method:

fnpij (t) =
1

nij

∑
k∈Iij

Kb(t− Sk) = (Kb ∗ Fnpij )(t) ,

where Kb(x) is a smoothing scaled kernel with bandwidth b and Fnpij (t) is non-parametric esti-
mator of the cumulative distribution function given by

Fnpij (t) =
#{k ∈ Iij : Sk ≤ t}

nij
. (3.1.14)
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In our example we have chosen the Gaussian one, given by the density of the normal law of
mean 0 and variance b2. In practice, many softwares provide already optimized version of non-
parametric estimation of the density, with automatic choice of the bandwidth and of the kernel
(here Gaussian). For example in R, this reduces to the function density, applied to the sample
{Sk
∣∣k ∈ Iij}.

+ −
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Figure 3.5: empirical qqplot comparing f−− against f++ (left) and f−+ against f−+ (right) on the whole
sample.

In the symmetric case, which is the case as shown in Figure 3.5, the histogram reduces to:

fhst± (tr) =
1

δr

#{k ∈ I±
∣∣tr ≤ Sk < tr+1}
n±

,

while the kernel estimator is given by:

fnp± (t) =
1

n±

∑
k∈I±

Kb(t− Sk) .

Figure 3.7 shows the result obtained for the kernel estimation of f±(t) in a logarithmic scale.
The non-parametric estimation confirms the decreasing form of both densities, whose interpre-
tation is that most of the jump of the stock price takes place in a short period of time (less than
second), even though some renewal times can go to hours. Figure 3.6 shows a goodness-of-fit test
for the null hypothesis that the probability transform sequence (FBn(Sn)) is an i.i.d. sequence
of uniform random variables. The empirical cumulative distribution functions are obtained by
interpolating linearly the piecewise constant estimator given in (3.1.14). As expected, MRP al-
lows us to fit perfectly the stationary distribution of the inter-arrival time, but cannot reproduce
the dependence reflected by the autocorrelation function (ACF) on the right. As in the case of
the autocorrelation function of the sequence (Jn), MRPs prevent us to catch the long memory
behaviour of the process, but allow us to provide explicit formula reproducing stylized facts and
a reasonable framework for market making application, explored in [37].

Furthermore, Figure 3.8 is a qqplot of the sequence (Sn|Bn = ±) against (S
(i)
n |Bn = ±), where

the S
(i)
n correspond to a partition of the whole sample. This picture shows that the estimation

of f+ and f− are rather stable over time.

We use a similar technique to estimate the marked hazard function hij defined in (3.1.10) and

the cumulative hazard function Hij(t) =
∫ t

0 hij(u)du. The Nelson-Aalen estimator for Hij is



66 3. Semi Markov model for market microstructure

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
transform

ru
ni

fo
rm

Uniform qqplot of the integrated probability transform

−1.0

−0.5

0.0

0.5

1.0

0 10 20 30 40
lag

ACF of the integrated probability transform

Figure 3.6: uniform QQplot and ACF of the sequence (FBn(Sn))

+ −

1e−05

1e−04

1e−03

1e−02

0 500 1000 1500 0 500 1000 1500
s

de
ns

ity

Non−parametric estimation of the density

Figure 3.7: Non-parametric estimation of the densities f+ (bandwith = 24.17) and f− (y-axis in log10 scale,
bandwith = 1.44)

given by the piecewise constant function given by

Hnp
ij (t) :=

∑
k∈Iij

1

#{k ∈ Ii
∣∣Sk ≥ t} ,

and, in the symmetric case, by

Hnp
± (t) :=

∑
k∈I±

1

#{k
∣∣Sk ≥ t} . (3.1.15)

The result of the estimation is shown in Figure 3.9. By writing

hij(t) = lim
δ→0

1

δ

P
[
t ≤ Sk < t+ δ, Jk = j

∣∣Jk−1 = i
]

P
[
Sk ≥ s

∣∣Jk−1 = i
] ,



3.1. Semi-Markov model 67

+ −

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●●

●●●●●●●●●●
●●

●●●● ● ● ●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●
●●
●● ● ● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ● ● ●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●● ●●● ● ●● ●
● ●

● ● ●
● ● ●

●
● ●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●● ● ●● ● ●
● ● ● ●

●
● ● ●

●
●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●
● ●●

● ● ● ● ● ●
● ● ● ●

●
●

●
●

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

0
1

2

0 500 1000 1500 0 500 1000 1500
whole sample

pa
rt

iti
on

Stability in the non−parametric estimation of the renewal densities f[−] and f[+]

Figure 3.8: empirical qqplot of the (Sn|Bn = ±) (x-axis) against (S
(i)
n |Bn = ±), where the S

(i)
n correspond to

a partition of the whole sample.

+ −

0

1

2

3

4

5

0 500 1000 1500 0 500 1000 1500
s

H

Nelson−Aalen estimator of the cumulative hazard function

Figure 3.9: Nelson-Aalen non-parametric estimator of the cumulative hazard functions H±.

we can define the empirical histogram of hij as

hhstij (tr) =
1

δr

#{k ∈ Iij
∣∣tr ≤ Sk < tr + δ}

#{k ∈ Ii
∣∣Sk ≥ tr} ,

and the associated smooth kernel estimator by

hnpij (t) =
∑
k∈Iij

Kb(t− Sk)
1

#{k ∈ Ii
∣∣Sk ≥ t} = Kb ∗Hnp

ij .

Notice that this non-parametric estimator is factored as

hnpij (t) =

(
nij
ni

)(
ni
nij

hnpij (t)

)
,
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where
nij
ni

is the estimator of qij and ni
nij
hnpij (t) is the kernel estimator of the jump intensity

λij(t) =
fij(t)

1−
∑
j FijFij(t)

. Thus, we can either estimate λij and multiply by the estimator of qij to

obtain hij or vice versa, obtaining the same estimators. In the symmetric case, we have:

hhst± (tr) =
1

δr

#{k ∈ I±
∣∣tr ≤ Sk < tr + δ}

#{k
∣∣Sk ≥ tr} ,

while

hnp± (t) =
∑
k∈I±

Kb(t− Sk)
1

#{k
∣∣Sk ≥ t} .

Figure 3.10 shows the result obtained for h±. The interpretation is the following: immediately
after a jump the price is in an unstable condition, which will probably leads it to jump again
soon. If it does not happen, the price gains in stability with time, and the probability of a jump
becomes smaller and smaller. Moreover, due to mean-reversion of price returns, the intensity of
consecutive jumps in the opposite direction is larger than in the same direction, which explains
the higher value of h− compared to h+.
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Figure 3.10: Non-parametric estimation of the hazard function h±: points represent the histogram, while the
black solid line the non-parametric estimator.

3.1.4 Price simulation

The simulation of the price process (3.1.1) with a Markov renewal model is quite simple, much
easier than any other point process modelling microstructure noise. This would allow the user,
even when (Nt) is better fit by a more complex point process, to have a quick proxy for its price
simulation. Choose a starting price P0 at initial time T0.

i) Initialization step: k = 0 (starting points).

� Set P̂0 = P0.

� Draw J0 from initial (e.g. stationary) law π.

ii) Inductive step: k − 1→ k (next price and next timestamp).

� Draw Jk according to the probability transition, and set P̂k = P̂k−1 + Jk;
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� draw Sk → FJk−1Jk , and set Tk = Tk−1 + Sk.

Once (Tk, P̂k)k∈N is known, the price process is given by the piecewise constant process

Pt = P̂k , Tk ≤ t < Tk+1 .

We show in Figure 3.11 one trajectory of the price process based on the estimated parameters.
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Figure 3.11: Simulation of one trajectory of a MRP with estimated parameters on empirical data.

3.1.5 Semi-Markov property

The main purpose of this paper is to provide a Markov framework for an application of stochastic
control theory to high-frequency trading. In what follows, we recall the existence of Markov
embedding for the stock price. Let us define the pure jump process

It = JNt (3.1.16)

which represents the last price increment. Then, I is a semi-Markov process in the sense that
the pair (It, St) is a Markov process, where

St = t− Tn , Tn ≤ t < Tn+1 ,

is the time spent from the last jump price. Moreover, the price process (Pt) is embedded in
a Markov process with three observable state variables: (Pt, It, St) is a Markov process with
infinitesimal generator

Lϕ(p, i, s) =
∂ϕ

∂s
+
∑
j∈E

hij(s)∆ϕ(p+ j, j, 0) ,

which is written in the symmetric case (3.1.5) and (3.1.9) as

Lϕ(p, i, s) =
∂ϕ

∂s
+ λ+(s)

(
1 + α

2

) m∑
j=1

pj∆ϕ(p+ sign(i)j, sign(i)j, 0) ,

+ λ−(s)

(
1− α

2

) m∑
j=1

pj∆ϕ(p− sign(i)j,−sign(i)j, 0) ,

where λ± is the jump intensity defined in (3.1.11).
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3.1.6 Comparison with respect to Hawkes processes

In a recent work [7] (see also [35]), the authors consider a tick-by-tick model for asset price by
means of cross-exciting Hawkes processes. More precisely, the stock price jumps by one tick
according to the dynamics:

Pt = N+
t −N

−
t , (3.1.17)

where (N±t ) is a point process corresponding to the number of upward and downward jumps,
with coupling stochastic intensities:

λ±t = λ∞ +

∫ t

−∞
ϕ(t− u)dN∓u , (3.1.18)

where λ∞ > 0 is an exogenous constant intensity, and ϕ is a positive decay kernel. This
model, which takes into account in the intensity the whole past of the price process, provides
a better good-fit of intraday data than the MRP approach, and can be easily extended to the
multivariate asset price case. However, it is limited to unitary jump size, and presents some
drawbacks especially in view of applications to trading optimization problem. The price process
in (3.1.17)-(3.1.18) is embedded into a Markovian framework only for the case of exponential
decay kernel, i.e. for

ϕ(t) = γe−βt1{R+}(t) ,

with 0 < γ < β. In this case, the Markov price system consists of P together with the stochastic
intensities (λ+, λ−). But in contrast with the MRP approach, the additional state variables
(λ+, λ−) are not directly observable, and have to be computed from their dynamics (3.1.18),
which requires a “precise” estimation of the three parameters λ∞, γ, and β. In that sense,
the MRP approach is less sensitive to the propagation of estimation errors than the Hawkes
one. Notice also that in the MRP approach, we can deal not only with parametric forms of the
renewal distributions (which involves only two parameters for the usual Gamma and Weibull
laws), but also with non-parametric form of the renewal distributions, and so of the jump
intensities. Simulation and estimation in MRP model are simple since they are essentially based
on (conditional) i.i.d. sequence of random variables, with the counterpart that MRP model can
not reproduce the correlation between inter-arrival jump times as in Hawkes model.

We finally mention that one can use a combination of Hawkes process and semi-Markov model
by considering a counting process (Nt) associated to the jump times (Tn), independent of the
price return (Jn), and with stochastic intensity

λt = λ∞ + γ

∫ t

0
e−β(t−u)dNu , (3.1.19)

with λ∞ > 0, and 0 < γ < β. In this case, the pair (It, λt) is a Markov process, and (Pt, It, λt)
is a Markov process with infinitesimal generator:

Lϕ(p, i, `) = β(µ− `)∂ϕ
∂`

+ `
∑
j∈E

qij∆ϕ(p+ j, j, `+ γ) ,

which is written in the symmetric case (3.1.5) as:

Lϕ(p, i, `) = β(µ− `)∂ϕ
∂`

,

+ `

(
1 + α

2

) m∑
j=1

pj∆ϕ(p+ sign(i)j, sign(i)j, `+ γ) ,

+ `

(
1− α

2

) m∑
j=1

pj∆ϕ(p− sign(i)j,−sign(i)j, `+ γ) .
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3.2 Scaling limit

We now study the large scale limit of the price process constructed from our Markov renewal
model. We consider the symmetric case (3.1.5) and (3.1.9), and denote by

F (t) =
1 + α

2
F+(t) +

1− α
2

F−(t) ,

the distribution function of the sojourn time Sn. We assume that the mean sojourn time is
finite:

µ̄ =

∫ ∞
0

tdF (t) <∞ , and we set λ̄ =
1

µ̄
,

By classical regenerative arguments, it is known (see [40]) that the Markov renewal process
obeys a strong law of large numbers, which means the long run stability of price process:

Pt
t
−→ c , a.s. ,

when t goes to infinity, with a limiting constant c given by:

c :=
1

µ̄

∑
i,j∈E

πi qij j ,

where E = {1,−1, . . . ,m,−m}, µ̄ij =
∫∞

0 tdFij(t), Q = (qij) is the transition matrix (3.1.4)
of the embedded Markov chain (Jn), and π = (πi) is the invariant distribution of (Jn). In the
symmetric case (3.1.5) and (3.1.9), we have qij = p|i|(1 + sign(j)α)/2, πi = p|i|/2, and so c = 0.
We next define the normalized price process:

P
(T )
t =

PtT√
T
, t ∈ [0, 1] ,

and address the macroscopic limit of P (T ) at large scale limit T → ∞. From the functional
central limit theorem for Markov renewal process, we obtain the large scale diffusive behavior
of price process.

Proposition 3.1.

lim
T→∞

P (T ) (d)
= σ∞W ,

where W = (Wt)t∈[0,1] is a standard Brownian motion, and σ∞, the macroscopic variance, is
explicitly given by

σ2
∞ = λ̄

[
Var(ξn) + (E[ξn])2 1 + α

1− α

]
. (3.2.1)

Proof. From [40], we know that a functional central limit theorem holds for Markov renewal
process so that

P (T ) (d)→ σ∞W ,

when T goes to infinity (here
(d)→ means convergence in distribution), where σ∞ is given by σ2

∞ =
λ̄σ̃2
∞ with λ̄ = 1/µ̄, and

σ̃2
∞ =

∑
i,j∈E

πiqijH
2
ij ,
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with

Hij = j + gj − gi ,
g = (gi)i = (I2m −Q+ Π)−1b ,

b = (bi), bi =
∑
j∈E

Qijj ,

and Π is the matrix defined by Πij = πj . In the symmetric case (3.1.5), a straightforward
calculation shows that

bi = sign(i)α
m∑
j=1

jpj = sign(i)αE[ξn] ,

and then

gi = sign(i)
α

1− α
E[ξn] , i ∈ E = {1,−1, . . . ,m,−m} .

Thus,

Hij =


j if ij > 0 ,

j + 2α
1−αE[ξn] if j > 0, i < 0 ,

j − 2α
1−αE[ξn] if j < 0, i > 0.

 .

Therefore, a direct calculation yields

σ̃2
∞ =

m∑
j=1

j2pj +
2α

1− α
(E[ξn])2 = Var(ξn) + (E[ξn])2 1 + α

1− α
.

�

3.3 Mean Signature plot

In this section, we aim to provide through our Markov renewal model a quantitative justification
of the signature plot effect, described in the introduction. We consider the symmetric and
stationary case, i.e.:

(H)

i) The price return (Jn) is given by (3.1.2) with a probability transition matrix Q̂ for (Ĵn) =
(sign(Jn)) in the form:

Q̂ =

(
1+α

2
1−α

2 ,
1−α

2
1+α

2

)
,

for some α ∈ [−1, 1) .

ii) (Nt) is a delayed renewal process: for n ≥ 1, Sn has distribution function F (independent
of i, j), with finite mean µ̄ =

∫∞
0 tdF (t) =: 1/λ̄ <∞, and finite second moment, and S1 has

a distribution with density (1− F (t))/µ̄.

It is known that the process N is stationary under (H)(ii) (see [28]), and so the price process is
also stationary under the stationary probability Pπ, i.e. the distribution of Pt+τ − Pt does not
depend on t but only on increment time τ . In this case, the empirical mean signature plot is
written as:

V̄(τ) :=
1

T

∑
iτ≤T

Eπ
[(
Piτ − P(i−1)τ

)2]
=

1

τ
Eπ
[
(Pτ − P0)2

]
. (3.3.1)
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Notice that if Pt = σWt, where Wt is a Brownian motion, then V̄ is a flat function: V̄(τ) = σ2,
while it is well known that on real data V̄ is a decreasing function on τ with finite limit when
τ →∞. This is mainly due to the anticorrelation of returns: on a short time-step the signature
plot captures fluctuations due to returns that, on a longer time-steps, mutually cancel. We obtain
the closed-form expression for the mean signature plot, and give some qualitative properties
about the impact of price returns autocorrelation. The following results are proved in Appendix.

Proposition 3.2. Under (H), we have:

V̄(τ) = σ2
∞ +

(
−2α(E[ξn])2

1− α

)
1−Gα(τ)

(1− α)τ
,

where σ2
∞ is the macroscopic variance given in (3.2.1), and Gα(t) := E[αNt ] is given via its

Laplace-Stieltjes transform:

Ĝα(s) = 1− λ̄(1− α)
1− F̂ (s)

s(1− αF̂ (s))
, α 6= 0 , (3.3.2)

F̂ (s) :=
∫∞

0− e
−stdF (t). Alternatively, Gα is given directly by the integral form:

Gα(t) = 1− λ̄
(

1− α
α

)(
t− (1− α)

∫ t

0
Q0
α(u)du

)
, (3.3.3)

where Q0
α(t) =

∑∞
n=0 α

nF ∗(n)(t), and F ∗(n) is the n-fold convolution of the distribution function

F , i.e. F ∗(n)(t) =
∫ t

0 F
∗(n−1)(t− u)dF (u), F ∗(0) = 1.

Corollary 3.1. Under (H), we obtain the asymptotic behavior of the mean signature plot:

V̄(∞) := lim
τ→∞

V̄(τ) = σ2
∞ ,

V̄(0+) := lim
τ↓0+
V̄(τ) = λ̄E[ξ2

n] .

Moreover,

α
(
V̄(0+)− V̄(∞)

)
≤ 0 .

Remark 3.3. In the case of renewal process where F is the distribution function of the Gamma
law with shape β and scale θ, it is known that F ∗(n) is the distribution function a the Gamma
law with shape nβ and scale θ, and so:

F ∗(n)(t) =
Γt/θ(nβ)

Γ(nβ)
,

where Γ is the Gamma function, and Γt is the lower incomplete Gamma functions defined in
(3.1.12). Plugging into (3.3.3), we obtain an explicit integral expression of the mean signature
plot, which is computed numerically by avoiding the inversion of the Laplace transform (3.3.2).
Notice that in the special case of Poisson process for N , i.e. F is the exponential distribution
of rate λ̄, the function Gα is explicitly given by : Gα(t) = e−λ̄(1−α)t.

Remark 3.4. The term σ2
∞ equal to the limit of the mean signature plot when time step

observation τ goes to infinity, corresponds to the macroscopic variance, and V̄(0+) = λ̄E[ξ2
n] is the

microstructural variance. Notice that while σ2
∞ increases with the price returns autocorrelation

α, the limiting term V̄(0+) does not depend on α, and the mean signature plot is flat if and
only if price returns are independent, i.e. α = 0. In the case of mean-reversion (α < 0),
V̄(0+) > σ2

∞ , while in the trend case (α > 0), we have: V̄(0+) < σ2
∞ . We display in Figure 3.13

an example of the mean signature plot function for a Gamma distribution when varying α. We
also compare in Figure 3.12 the signature plot obtained from empirical data on the Euribor, the
signature plot simulated in our model with estimated parameters, and the mean signature for
a Gamma distribution with the estimated parameters. This example shows how the signature
plot decreasing form is a consequence (rather coarse) of the microstructure noise, and that the
shape parameters of the gamma law, which is responsible for the volatility cluster, is able to
reproduce the convexity of the signature plot shape.
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Figure 3.12: Mean signature plot for the EURIBOR.
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Figure 3.13: τ → V̄(τ) when varying price return autocorrelation α. Left: α > 0. Right: α < 0

Conclusion and extensions

In this paper we used a Markov renewal process (Tn, Jn) to describe the tick-by-tick evolution
of the stock price and reproduce two important stylized facts, as the diffusive behavior and the
decreasing shape of the mean signature plot towards the diffusive variance. Having in mind a
direct application purpose, we decided to sacrifice the autocorrelation of inter-arrival times in
order to have a fast and simple non-parametric estimation, perfect simulation and the suitable
setup for a market making application, presented in a companion paper [37]. Aware of the model
limits, and with an eye to statistical arbitrage, the next step is to extend the structure of the
counting process (Nt), for example to Hawkes process, to have a better fit, and the structure of
the Markov chain (Jn) to a longer memory binary processes, able to recognize patterns. Another
direction of study will be the extension to the multivariate asset price case.
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3.4 Appendix: the mean signature plot

The price process Pt is given by

Pt = P0 +

Nt∑
k=1

Jk =

∞∑
n=0

Ln1{Nt = n} , (3.4.1)

where

Ln =
n∑
k=1

Jkn ≥ 1 , L0 = 0 .

Lemma 3.3. Under (H), we have

Eπ
[
L2
n

]
= n

σ2
∞

λ̄
− 2α

1− α
1− αn

1− α
(E[ξn])2 ,

where σ∞ is defined in (3.2.1).

Proof. By writing that Ln = Ln−1 + ξnĴn, we have for n ≥ 1:

Eπ
[
L2
n

]
= Eπ

[
L2
n−1 + ξ2

nĴ
2
n + 2ξnLn−1Ĵn

]
,

= Eπ
[
L2
n−1

]
+ Eπ

[
ξ2
n

]
+ 2 (E [ξn])2

n−1∑
k=1

Eπ
[
ĴkĴn

]
,

= Eπ
[
L2
n−1

]
+ Eπ

[
ξ2
n

]
+ 2 (E [ξn])2

n−1∑
k=1

Eπ
[
ĴkĴ0

]
, (3.4.2)

where we used the fact that Ĵ2
n = 1, (ξn) are i.i.d, and independent of (Ĵn) in the second equality,

and the stationarity of (Ĵn) in the third equality. Now, from the Markov property of (Ĵk)k with
probability transition matrix Q̂ in (3.1.3) and (3.1.5), we have for any k ≥ 1:

Eπ
[
ĴkĴ0

]
= Eπ

[
Eπ
[
Ĵk|Ĵk−1

]
Ĵ0

]
,

= E

[(
1 + α

2

)
Ĵk−1Ĵ0 −

(
1− α

2

)
Ĵk−1Ĵ0

]
,

= αEπ
[
Ĵk−1Ĵ0

]
,

from which we obtain by induction:

Eπ
[
ĴkĴ0

]
= αk .

Plugging into (3.4.2), this gives

Eπ
[
L2
n

]
= Eπ

[
L2
n−1

]
+ Eπ

[
ξ2
n

]
+

2α

1− α
(1− αn−1) (E[ξn])2 .

By induction, we get the required relation for Eπ
[
L2
n

]
.

�

Consequently, we obtain the following expression of the mean signature plot:

Proposition 3.3. Under (H), we have

V̄(τ) = σ2
∞ −

2α

1− α
1−Gα(τ)

(1− α)τ
(E[ξn])2 , τ > 0 , (3.4.3)

where Gα(t) := Eπ[αNt ] =
∑∞

n=0 α
nPπ[Nt = n].



76 3. Semi Markov model for market microstructure

Proof. From (3.3.1) and (3.4.1), we see that the mean signature plot is written as

V̄(τ) =
1

τ

∞∑
n=0

Eπ[L2
n]Pπ[Nτ = n] ,

since the renewal process N is independent of the marks (Jn). Together with the expression of
Eπ[L2

n] in Lemma 3.3, this yields

V̄(τ) =
σ2
∞

λ̄

Eπ[Nτ ]

τ
− 2α

1− α
1−Gα(τ)

(1− α)τ
(E[ξn])2 .

Finally, since Eπ[Nτ ] = λ̄τ by stationarity of N , we get the required relation.

�

We now focus on the finite variation function Gα that we shall compute through its Laplace-
Stieltjes transform:

Ĝα(s) :=

∫ ∞
0−

e−stdGα(t) , s ≥ 0 ,

We recall the convolution property for Laplace-Stieltjes transform

Ĝ ∗H = Ĝ Ĥ ,

where

G ∗H(t) =

∫ t

0
G(t− s)dH(s) .

Let us consider the function Qα defined by:

Qα(t) :=

∞∑
n=0

αnPπ[Nt ≥ n] . (3.4.4)

Lemma 3.4. Under (H), we have for all α 6= 0,

Gα =

(
1− 1

α

)
Qα +

1

α
, (3.4.5)

Q̂α(s) = 1 + α
λ̄

s

(
1− F̂ (s)

1− αF̂ (s)

)
. (3.4.6)

Proof.

For any α 6= 0, t ≥ 0, we have

Gα(t) =
∞∑
n=0

αnPπ[Nt = n] =
∞∑
n=0

αn (Pπ[Nt ≥ n]− Pπ[Nt ≥ n+ 1]) ,

=

∞∑
n=0

αnPπ[Nt ≥ n]− 1

α

( ∞∑
n=0

αnPπ[Nt ≥ n]− Pπ[Nt ≥ 0]

)
,

= Qα(t)− 1

α
(Qα(t)− 1) ,

which proves (3.4.5).

Recall that for the delayed renewal process N , the first arrival time S1 is distributed according
to the distribution ∆ with density λ̄(1 − F ). Let us denote by N0 the no-delayed renewal
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process, i.e. with all interarrival times S0
n = T 0

n − T 0
n−1 distributed according to F , and by Q0

α

the function defined similarly as in (3.4.4) with N replaced by N0. Then,

Qα(t) = 1 + α
∞∑
n=0

αnPπ [Nt ≥ n+ 1]

= 1 + α
∞∑
n=0

αnPπ[S1 + T 0
n ≤ t]

= 1 + αEπ

[ ∞∑
n=0

αnPπ[T 0
n ≤ t− S1|S1 ≤ t]

]
= 1 + αEπ

[
Q0
α(t− S1)1{S1 ≤ t}

]
= 1 + αQ0

α ∗∆(t) . (3.4.7)

By taking the Laplace-Stieltjes transform in the above relation, and from the convolution prop-
erty, we get

Q̂α = 1 + αQ̂0
α∆̂ . (3.4.8)

By same arguments as in (3.4.7) and (3.4.8), we get Q̂0
α = 1 + αQ̂0

αF̂ , and so

Q̂0
α =

1

1− αF̂
. (3.4.9)

Now, from the relation ∆(t) =
∫ t

0 λ̄(1− F (u))du, and by taking Laplace-Stieltjes transform we
get:

∆̂(s) =
λ̄

s

(
1− F̂ (s)

)
. (3.4.10)

By substituting (3.4.9) and (3.4.10) into (3.4.8), we get the required relation (3.4.6).

�

From the relations (3.4.5)-(3.4.6) in the above lemma, we immediately obtain the expression
(3.3.2) for the Laplace-Stieltjes transform Ĝα. Let us now derive the alternative integral expres-
sion (3.3.3) for Gα.

Lemma 3.5. Under (H), we have for all α 6= 0:

Qα(t) = 1 + λ̄t− λ̄(1− α)

∫ t

0
Q0
α(u)du , (3.4.11)

with

Q0
α(t) =

∞∑
n=0

αnF ∗(n)(t) ,

and F ∗(n) is the n-fold convolution of the distribution function F .

Proof. We rewrite the expression (3.4.6) Laplace-Stieltjes transform as

Q̂α(s) = 1 +
αλ̄

s
(1− F̂ )

∞∑
n=0

(αF̂ )n ,

= 1 +
αλ̄

s

∞∑
n=0

αn
(

(F̂ )n − (F̂ )n+1
)
. (3.4.12)
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Let us now consider the function G0
α (resp. Q0

α) defined similarly as for Gα (resp. Qα) with
N replaced by N0, the no-delayed renewal process with all interarrival times S0

n = T 0
n − T 0

n−1

distributed according to F . Then,

G0
α(t) =

∞∑
n=0

αn
(
Pπ[N0

t ≥ n]− Pπ[N0
t ≥ n+ 1]

)
,

=
∞∑
n=0

αn
(
Pπ[T 0

n ≤ t]− Pπ[T 0
n+1 ≤ t]

)
,

=

∞∑
n=0

αn
(
F ∗(n) − F ∗(n+1)

)
(t) .

Therefore, the Laplace-Stieltjes transform of G0
α is written also as

Ĝ0
α =

∞∑
n=0

αn
(

(F̂ )n − (F̂ )n+1
)
.

By defining the function I0
α(t) :=

∫ t
0 G

0
α(u)du, we then see from (3.4.12) that

Q̂α(s) = 1 + αλ̄Î0
α ,

and thus

Qα(t) = 1 + αλ̄

∫ t

0
G0
α(u)du . (3.4.13)

Finally, by same arguments as in (3.4.5), we have

G0
α =

(
1− 1

α

)
Q0
α +

1

α
,

and plugging into (3.4.13), we get the required result.

�

By using (3.4.5) and (3.4.11), we then obtain the integral expression (3.3.3) of the function
Gα as in proposition Proposition 3.2. Finally, we derive the asymptotic behavior of the mean
signature plot.

Proposition 3.4. Under (H), we get:

V̄(∞) := lim
τ→∞

V̄(τ) = σ2
∞ , (3.4.14)

V̄(0+) := lim
τ↓0+
V̄(τ) = λ̄E[ξ2

n] , (3.4.15)

and

V̄(0+) > V̄(∞)⇔ α < 0 .

Proof. By observing that the function Gα is stricly bounded in τ by 1 for any α ∈ [−1, 1), we
easily obtain from the expression (3.4.3) the limit for V̄(τ) when τ goes to infinity. On the other
hand, by substituting the integral formula (3.3.3) of the function Gα into the expression (3.4.3)
of the mean signature plot, we have:

V̄(τ) = σ2
∞ −

2α

1− α
(E[ξn])2

(
λ̄

α

)(
1− (1− α)

1

τ

∫ τ

0
Q0
α(s)ds

)
.
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Next, by noting that

lim
τ→0+

1

τ

∫ t

0
Q0
α(s)ds = Q0

α(0) = 1 ,

we deduce that

lim
τ→0+

V̄(τ) = σ2
∞ −

2λ̄α

1− α
(E[ξn])2 , (3.4.16)

which gives (3.4.15) from the expression (3.2.1) of σ2
∞ . Finally, we immediately see from (3.4.16)

that V̄(0+) > V̄(∞) if and only if α < 0.

�

3.5 Appendix: a comparison to the Eurostoxx50

For the sake of completeness, we have performed a (non-parametric) estimation on the Eu-
rostoxx50 3M-future (large tick asset) contract exchanged on the EUREX platform.

For this kind of asset we have noticed a smaller microstructure noise, with α ≈ −70% (confidence
interval [−0.690,−0.674]), mainly due to the different structure of the limit order book. While
the EURIBOR contract is exchanged in a prorata matching engineering LOB, the EUROSTOXX
market obeys to the FIFO (First In First Out) principle. This implies that while the EURIBOR’s
liquidity is concentrated only on the first level, the EUROSTOXX displays liquidity also on
deeper ones, making reversion less important, but still significant.

+ −

0.001

0.010

0.100

1.000

0

0 10 20 30 0 10 20 30
s

de
ns

ity

Non−parametric estimation of the density

Figure 3.14: Log-density estimation of the density function f± on the EUROSTOXX.

Figure 3.14 shows how the shape of the density looks similar to the one displayed by Figure 3.7,
even though the EUROSTOXX asset is much more volatile than the EURIBOR one: as a
consequence, the inter-arrival times are usually much shorter, achieving a maximum of only 30
seconds. Figure 3.15 concerns the estimation of the hazard functions h±. In this case as well,
we notice a similar shape compared to Figure 3.10, even though both axis are rescaled.
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Figure 3.15: Log-density estimation of the hazard function h± on the EUROSTOXX.



Chapter 4

HFT and asymptotics for small risk
aversion in a Markov renewal model

Abstract

We study an optimal high frequency trading problem within a market micro-structure model
designed to be a good compromise between accuracy and tractability. The stock price is driven
by a Markov Renewal Process (MRP), as described in [36], while market orders arrive in the
limit order book via a point process correlated with the stock price itself. In this framework, we
can reproduce the adverse selection risk, appearing in two different forms: the weak one, due
to small market orders and reducing the probability of a profitable execution, and the strong
one, due to big market orders impacting the stock price and penalizing the agent. We solve the
market making problem by stochastic control techniques in this semi-Markov model. In the no
risk aversion case, we provide explicit formula for the optimal controls and characterize the value
function as a simple linear PDE. In the general case, we derive the optimal controls and the value
function in terms of the previous result, and illustrate how risk aversion influences the trader
strategy and her expected gain. Finally, using a perturbation method, optimal controls for small
risk aversions are explicitly computed in terms of two simple PDE’s, reducing drastically the
computational cost and enlightening the financial interpretation of the results.

81
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Introduction

Before illustrating the main results of the paper, let us recall some of the existing literature on
high-frequency trading, that can be roughly divided into two main streams.

i) Models of intra-day asset price: this branch is devoted to the description of a tick-by-
tick asset price in a limit order book, adopting two different philosophies. The latent
process approach starts from a macroscopic unobserved process (typically a diffusion),
which is contaminated by a noise reproducing the market micro-structure: discreteness of
the price (valued on the tick grid), irregular spacing of price jump times (known as volatility
clustering), and mean-reversion of price variations. Some papers in this direction are [39],
[2], and [60]. The micro-to-macro approach instead models directly the observed stock
price by means of point processes, see e.g. [9], [25], [1] or [7]. These papers consider
sophisticated models, and are mainly intended to reproduce micro-structure stylized facts,
as the explosion of the signature plot, the Epps effect, the volatility clustering and the short
mean-reversion. Often the main purpose is volatility estimation, while trading applications
are not studied: the complexity of these models leads to high dimensional equations in
control problems, difficult to treat both analytically and numerically.

ii) High frequency trading problems: another important literature stream focuses on trading
problems in the limit order book: stock liquidation and execution problems ([5], [4], [10],
[45], etc ...), or market making problems ([6], [23], [44], [42], [49], [16], etc ...). These
papers use stochastic control methods to determine optimal trading strategies, and they are
mostly based on classical models for asset price, typically arithmetic or geometric Brownian
motion, while the market order flow is usually driven by a Poisson process independent of
the continuous price process.

The goal of this paper is to make a bridge between these two streams of literature,
constructing a simple model for the limit order book, intended to be both

� realistic, capturing the main stylized facts of micro-structure, easy to estimate and simulate,

� tractable, (simple to analyze and implement) in order to lead to explicit formula in high-
frequency trading applications with a nice financial interpretation.

Since our point of view is the market maker’s one, that we allow to interact with the market
only by limit orders, we will speak of limit orders only for those posted by the agent,
while trades, or equivalently called market orders, refer to non-agent market orders
arriving in the market, and potentially matching the agent limit orders.

The stock price

We shall rely on our previous work [36], where we show how Markov Renewal processes are an
extremely flexible and pertinent tool to model the stock price at high frequency, as well as easy
to estimate, simulate and understand. We assume that the bid-ask spread is constantly
one tick and the stock price jumps of one tick, which is consistent with liquid assets with
large tick.

By modeling the stock price through a pure jump process (and not a continuous one as e.g. a
Brownian motion), we are able to introduce probabilistic and mechanical dependences between
the price evolution and the trades arrival. We can easily introduce correlation between the next
price jump and proportion of ask/bid trades before the next jump, and take into account the
jump risk. In the context of option pricing, jumps represent a source of market incompleteness,
leading to unhedgeable claims: similarly, jumps of the stock price in the electronic market are a
real source of risk for the market maker. More precisely, the agent faces two kind of risk:
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i) Market risk: when the price suddenly jumps, the whole agent inventory is re-evaluated,
changing the portfolio value in no time (i.e. a finite amount of risk in no time, whereas the
Brownian motion has quadratic variation proportional to the interval length).

ii) Adverse selection risk: in our model, we assume that an upwards (resp. downwards) jump
at time t corresponds to a big market order clearing the liquidity on the best ask (resp. bid)
price level. If the agent has posted a small limit order, say on the bid side, the latter has
to be executed, since (we guess that) the goal of the big market order was to clear all the
available liquidity (rather than consuming a fixed amount of it). In this sense, the agent
does not affect the market dynamics. In this scenario, the agent is systematically penalized,
since she sells liquidity at t− for less than its value at t. This risk, known as adverse
selection, will be incorporated, measured and hedged, thanks to our market model.

The market order flow

We introduce a suitable modeling of the market order flow, taking into account the real depen-
dence with the stock price dynamics. The existing literature has provided several models for
the arrival of trades in the limit order book. The seminal work [34] describes these events as a
time series with an autoregressive behaviour, in order to model intensity spikes in the trading
activity. Other authors (e.g. [19]) exploit renewal processes for modeling trades and describe
the price formation in terms of this flow. One of the richest example is provided by [8], where a
four-dimensional Hawkes process drives both trades and price, taking into account the mutual in-
teraction of all its components: unfortunately, this elegant approach leads to a high-dimensional
system, and consequently to computational issues. Our model is price rather than trade
centered, since trades (no matter their side) are counted by a Cox process subordinated to the
stock price. Trades arrive more frequently after a price jump, while their arrival rate decreases
as the price stabilizes. In this sense, events have a much richer dynamic than a Poisson process,
and they are not independent from the stock price, as often assumed. For this improvement, we
pay no computational cost: we will see that the state variables describing the stock price are all
we need. We do not include self-exciting components as in Hawkes process in order to keep the
model dimension to the minimum.

The adverse selection risk

By adding marks (determining the trade exchange side) to the Cox process counting the trade
events, we are able to reproduce the adverse selection risk appearing in its weak and strong
form, the first limiting the agent profit, the second penalizing it, forcing the agent to play a less
aggressive policy.

i) Weak adverse selection: it comes from the flow of small trades, made of those trades that
are unable to move the market stock price. For this flow, a limit order is more likely to be
matched on the less profitable side: if the price is likely to jump downwards (resp. upwards),
few trades would arrive at the best ask (resp. bid) price, limiting the chances of building a
short (resp. long) position (that would be profitable w.r.t. to the market direction). Thanks
to this feature, the extra gain (w.r.t. to a market order) due to a limit order execution is
compensated by an unfavorable execution probability.

ii) Strong adverse selection: differently from the weak adverse selection risk, the strong one
comes from big trades affecting immediately the stock price. We assume that a limit order
is automatically executed as soon as the stock price jumps over the corresponding level, i.e.,
for an order at the best ask (resp. bid), when the price jumps upwards (resp. downwards).
In this scenario, the agent systematically loses, beyond the transaction cost, half-a-tick w.r.t.
to the new mid-price. Making the stock price change its value, big trades put the market
maker in a bad position, since the sudden execution forces her to sell liquidity at less than
its current value.
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The market making problem

In this context, we study the market making problem of an agent submitting optimally limit
orders (market orders, as in [44], are not taken into account to improve the problem tractability)
at best bid and best ask prices. The agent is not the unique market maker, but only one of the
many participants of the exchange, and she has no constraint in terms of liquidity providing.
Several authors in previous literature, as e.g. in the seminal paper [6] (see also [42]) consider limit
orders, which are posted at a mid-price distance which may be nonpositive (some exception is the
paper [23] which imposes a nonnegative constraint on the distance). This induces some problems
with high frequency applications, in particular for large tick assets (see [31]) or pro-rata limit
order book, where most of the liquidity is concentrated in few levels, making real-life rounding
of the optimal quotes to the tick grid a non trivial issue. By replacing real controls with binary
ones (limit order placed or not at the best price) we artificially add a policy constraint, but in
such a specific context, the model fits better the reality: estimation is easier, policies are not
subject to rounding as in the real case, no problem of negative posting distance exists, and the
market spread is never improved; in other words theoretical policies need no translation
to real-trading ones.

In this framework, we are able to derive explicit formula for both the value function and the
(binary) optimal controls for an agent without risk aversion. Next, by a perturbation technique,
we solve the market making problem for small risk aversions. This allows us to reduce drasti-
cally the problem dimension, and greatly improves the financial interpretability of the optimal
strategy. In particular, we clearly understand the potential sources of gain and risk in the model,
and how the introduction of risk aversion deforms them.

Plan of the paper

The structure of the paper is organized as follows. We briefly review in Section 4.1 the asset
price model introduced in [36], and derive some useful results concerning the conditional mean
of the stock price, i.e. a trend indicator. In Section 4.2, we describe the market order flow
modeling small market trades, i.e. those trades leaving the stock price unchanged. On the
contrary, big market orders, i.e. those affecting immediately the stock price value, are assumed
to be incorporated into the price dynamics. For small trades, we introduce a marked Cox process
subordinated to the stock price dynamics in order to reproduce the (weak) adverse selection risk
and the intensity correlation between the two processes. Section 4.3 includes the formulation
of the market making problem, and describes the agent process (wealth, inventory) dynamics,
while Section 4.4 is devoted to the resolution of the market making problem, using a perturbation
method for small risk aversion. Some numerical tests illustrate our results and show some useful
results in the Appendixes.

4.1 Stock price in the limit order book

We consider a model for the mid-price of a stock (the arithmetic mean between the best-bid
and best-ask price) in a limit order book (LOB) with a constant bid-ask spread 2δ > 0. For
simplicity, we assume that the stock price jumps only of one tick. The mid-price (Pt) is then
defined by the càd-làg piecewise constant process

Pt := P0 + 2δ

Nt∑
n=1

Jn , (4.1.1)

where P0 is the opening mid-price, Nt (representing the tick times) is the point process asso-
ciated to the price jump times (Tn)n, i.e.

Nt := inf

{
n :

n∑
k=1

Tk ≤ t

}
, (4.1.2)
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and Jn (called price direction) is the marks sequence valued in {−1,+1} indicating whether
the price has jumped upwards (Jn = +1) or downwards (Jn = −1) at time Tn.

4.1.1 Markov renewal model

We use a Markov renewal approach as in [36] for modeling the marked point process (Tn, Jn)n,
and briefly review the main features. The price direction is driven by the Markov chain

Jn = Jn−1Bn , (4.1.3)

where B ≡ (Bn) is an i.i.d. sequence, independent of (Jn), and distributed according to a
Bernoull iL aw on {−1,+1} with parameter (1+α)/2, α ∈ [−1, 1). In other words, the probability
of two consecutive jumps in the same (resp. opposite) direction is given by

P [JnJn−1 = ±1] =
1± α

2
,

where α represents the correlation between two consecutive price directions Jn−1 and Jn under
the stationary measure π = (1/2, 1/2) associated to the Markov chain (Jn). For α = 0, the
jumps of the stock price are independent, for α > 0, the price is short-term trended, while for
α < 0, the stock price exhibits a short-term mean-reversion, which is a well-known stylized fact
about high-frequency data, usually called micro-structure noise.

In a second step, we model the counting process (Nt). Denoting by

Sn := Tn − Tn−1 ≥ 0 , (4.1.4)

the inter-arrival times of the price jump times, we assume that, conditioned on JnJn−1, (Sn) is
an independent sequence of random variable with distribution

F±(s) := P
[
Sn+1 ≤ s

∣∣JnJn−1 = ±1
]
,

and density f±(s) with no masses. We can easily check that (Sn) is also unconditionally i.i.d.,
which implies that (Nt) is the renewal process with inter-arrival times distribution given by

F (s) :=
1 + α

2
F+(s) +

1− α
2

F−(s) . (4.1.5)

We define the pure jump process valued in {−1,+1}

It := JNt , (4.1.6)

which gives at time t the direction of the last jump of the stock price. (It) is a semi-Markov
process in the sense that the pair (It, St) is a Markov process, where

St := t− sup{Tn : Tn ≤ t} ≥ 0 , (4.1.7)

is the elapsed time since the last price jump. Finally, we set to

h±(s) := lim
∆s→0+

1

∆s
P
[
s ≤ Sn+1 ≤ s+ ∆s, Jn+1 = ±Jn

∣∣Sn ≥ s, Jn]
=

1± α
2

f±(s)

1− F (s)
, (4.1.8)

the intensity function of price jump, assumed a bounded continuous function, in the same (resp.
opposite) direction, and define µ(s) (resp. σ2(s)) as the measure of the conditional trend (resp.
agitation state) of the stock price:

µ(s) := h+(s)− h−(s) , (4.1.9)

σ2(s) := h+(s) + h−(s) . (4.1.10)

We recall that the elapsed time process (t, St) is an homogeneous Markov jump process with
stochastic intensity σ2(St) (the same as the renewal process Nt, since they jump at the same
time) and infinitesimal generator

g(t, s) 7→ ∂g

∂t
+
∂g

∂s
+ σ2(s)∆g(t, 0) , ∆g(t, 0) := g(t, 0)− g(t, s) . (4.1.11)
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Figure 4.1: µ(s) (trend) and σ2(s) (volatility). For small s the renewal drift is negative, while for large s both
functions tend to 0. For large s, µ(s) changes sign, reflecting a trending behavior of the stock price in the right
queue of the renewal distribution. �

Notations

From now on, in order to keep notations compact, we will use, for any function f = f(x), x ∈ Rn,
the following notation:

∆xf(x′) := f(x′)− f(x) ,

with the convention that the subscript in ∆x will be omitted if it is clear from the context.
Furthermore, since (Nt) is a renewal process associated to the renewal distribution F given in
(4.1.5), we will often refer, in order to obtain a natural rescale for s, to

ŝ := F−1(s) ∈ [0, 1] ,

as the renewal quantile associated to the elapsed time s. In order to increase the interpretabil-
ity of the results, all the charts in this paper rescale the state variable s according to this
transformation.

Data sample

We refer to [36] for the statistical estimation of the trendiness parameter α, the distribution
F± of the renewal times, and the jump intensities h±(s). In the sequel, market data are taken
from tick-by-tick observation of the 3-month future EUROSTOXX50, on February 2011, from
09:00:000 to 17:00:00.000 (CET). Figure 4.2 plots the form of h±(s) as a function of the renewal
quantile: the reverting intensity h−(s) is dominant w.r.t. to the trending intensity h+(s) for
small renewals, while this discrepancy tends to disappear for higher quantiles (> 0.50), ending
with h+(s) dominating h−(s) on the right boundary. This tells that when the price is stable, i.e.
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its quotation has been constant for a relatively long time, the micro-structural mean reversion
disappears, and the price looks like a Bernoulli random walk.
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Figure 4.2: Non parametric estimation of h±(s) as a function of the renewal quantile (α = −0.75), with
bootstrap 95% confidence intervals. �

4.1.2 The stock price conditional mean and the trend indicator

We recall that the price process (t, Pt) is embedded into a Markov system with three observable
state variables: (t, Pt, It, St) is a Markov process with infinitesimal generator:

∂g

∂t
+ Lg(t, p, i, s) =

∂g

∂t
+
∂g

∂s
+
∑
ν∈±

hν(s)∆g(t, p+ 2νδi, νi, 0) .

In the sequel, for the applications of our model to market making problem, we shall extensively
use properties of the mean value of the stock price at horizon, i.e.

π(t, p, i, s) := Et,p,i,s [PT ] . (4.1.12)

Here, Et,p,i,s denotes the expectation operator under the initial conditions

(t, Pt, It, St) = (t, p, i, s) , (t, p, i, s) ∈ [0, T ]× 2δZ× {−1,+1} × R+ .

We devote a separate part to the study of this function, which is fully developed in the Sec-
tion 4.7. Here we concentrate the main results concerning π(t, p, i, s) in the following proposition,
which will be a useful reference in the remaining part of the paper.

Proposition 4.1. The function π in (4.1.12) is given by

π(t, p, i, s) = p+ iθ(t, s) , (4.1.13)
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where θ(t, s) is the unique bounded solution to

〈Z, θ〉 := −∂θ
∂t
− ∂θ

∂s
− µ(s)θ(t, 0) + σ2(s)θ(t, s)− 2δµ(s) = 0 , (4.1.14)

θ(T, ) = 0 ,

for (t, s) ∈ [0, T ]× R+.

Furthermore, fixed T ≥ 0, θ(t, s) := θT (t, s) has the following properties:

i) it agrees with the sign of µ, i.e.

if µ(s) ≥ 0 (≤ 0), ∀s ≥ 0⇒ θT (t, s) ≥ 0 (≤ 0), ∀(t, s) ∈ [0, T ]× R+ ; (4.1.15)

ii) it is bounded from below, uniformly in T , by the minus half-tick, i.e.

θT (t, s) ≥ −δ ; (4.1.16)

iii) it admits a limit for large horizons, i.e. fixed t ≥ 0,

lim
T→∞

θT (t, s) =
ᾱ(s)

1− α
:= θ̄(s) , (4.1.17)

where

ᾱ(s) := P
[
J1

∣∣S0 = s, J0 = +1
]

=
∑
ν∈±

ν

(
1 + να

2

)(
1− Fν(s)

1− F (s)

)
, (4.1.18)

with i) ᾱ(0) = α and ii) ᾱ(s) ≡ α if marks and tick times are independent.

Proof. This proposition sums up all the main properties proved in Section 4.7: in particular the
PDE representation (4.1.14) is given in Lemma 4.3, the inequalities (4.1.15) in Corollary 4.1,
(4.1.16) in Corollary 4.2, and (4.1.17) is a direct consequence of Proposition 4.2, while (4.1.18)
is shown in Corollary 4.3.

�

From the definition of the function π, and relation (4.1.13), we see that θ admits the probabilistic
representation:

θT (t, s) = E
[
PT
∣∣St− = s, Pt− = 0, It = +1

]
, (4.1.19)

and can be interpreted as a martingale deviation of the stock price (θ ≡ 0 means that price
is martingale), as wellx as, in view of (4.1.15), a trend indicator of the stock price. The func-
tion θ can be computed either by the numerical resolution of the 1-dimensional PDE (4.1.14)
via an implicit Euler scheme, or by a Monte Carlo method based on the linear Feynman-Kac
representation (4.1.19). We plot in Figure 4.3 the form of θ for a fixed horizon T .

4.2 Market order flow modeling and adverse selection

In this section, we model the market order flow, that is the counterpart trade of the limit orders
in a LOB. We distinguish two types of market orders:

� big market orders that affect the bid or ask price, inducing a jump of the mid-price;

� small market orders that do not affect the price.
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Figure 4.3: θ(t, s) for different t-sections. Its value is negative for small s, it inverts its sign for big s, and goes
to 0 in the distribution queue. For t = 0, θ(, s) approximates its asymptotical behavior, given by (4.1.17). �

Let us first describe the impact of big market orders. Suppose that a limit order is posted, say
at the bid price. If a big market order arrives at the bid price, and consumes all the available
liquidity, the price jumps downwards. The agent limit order is then executed at the new best
ask price, i.e. it becomes a market buy order, hence is executed unfavorably. This phenomenon
is know in the literature on market micro-structure as the (strong) adverse selection. We
discuss more in detail this feature in the next section (see Remark 4.1). We now focus on small
market orders that we model by a marked point process (θk, Zk).

i) Timestamps: the increasing sequence (θk) represents the arrival timestamps of (small) mar-
ket orders.

ii) Marks: the marks (Zk) ∈ {−1,+1}, represent the side of the exchange, with the convention
that when Zk = −1(resp. + 1), the trade is exchanged at the best bid (resp. ask) price, i.e.
market sell (resp. buy) order has arrived.

In this paper, we do not take into account the size of trades. Here is an example of a database
in a market with tick size 2δ = 0.01. To every trade, we attach the corresponding most recent
quotes.

index k θk Traded price ASK-BID Zk
1 09:00:01.123 98.47 98.47 - 98.46 + 1

2 09:00:02.517 98.46 98.47 - 98.46 - 1

3 09:00:02.985 98.47 98.48 - 98.47 - 1

4 09:00:03.110 98.47 98.48 - 98.47 - 1

5 09:00:05.458 98.47 98.47 - 98.46 + 1
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The market order counting process

On one hand, we assume that the counting process (Mt) associated to (θk) is a Cox process
with conditional intensity λ(St), where St is the time spent since the last price jump given in
(4.1.7). This approach extends the simple case where (Mt) is a Poisson process. A statistical
procedure for the estimation of λ is described in the Section 4.5: Figure 4.4 shows the function
λ as a function of renewal quantile. We recall that for small values the function σ2(s) defined at
(4.1.10) is big (Figure 4.1): when the price is very unstable, many trades arrive in the limit order
book. On the contrary, when the price stabilizes, the trading activity is weaker, but present.

quantile
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Figure 4.4: estimation of λ(s) = λ0 + a exp(−ks). The conditional rate of order arrival decays exponentially
with the time passing with no event occurring, but never completely disappears, as shown by λ0 > 0, representing
the base and minimal intensity of the process. �

We shall assume that the intensity function λ is a continuous bounded function of s.

The market order exchange side

On the other hand, we assume that market order trade and stock price in the LOB are correlated
via the relation:

Zk := ΓkIθk− , (4.2.1)

where Γ ≡ (Γk) is an i.i.d. sequence, independent of all other processes, and distributed ac-
cording to a Bernoulli law on {−1,+1} with parameter (1 + ρ)/2, with ρ ∈ (−1, 1). It is
straightforward to see that

ρ = Corr(Zk, Iθ−k
) ,

with the following interpretation:

i) for ρ = 0, the law of the trade side does not depend on the stock price, and market order
flow arrives independently at best bid and best ask. This is the usual assumption made in
the literature, see e.g. [6];

ii) for ρ > 0, most of the trade sides are concordant with the direction of the last jump of
the stock price: market orders arrive more often on the strong side (+) of the limit order
book, i.e. on the same direction than the last jump - best ask (resp. bid) when price jumped
upwards (resp. downwards);
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iii) for ρ < 0, most of the trade sides are discordant with the direction of the last jump of the
stock price: market orders arrive more often in the weak side (−) of the limit order book,
i.e. the side in the opposite direction than the last jump - best bid (resp. ask) when price
jumped upwards (resp. downwards).

We define the concordant (+) and discordant (-) trade intensity as

λ±(s) :=

(
1± ρ

2

)
λ(s) . (4.2.2)

This definition is consistent with the one of h±(s), where ± indexes the concordance (+) or
discordance (-) of two consecutive jumps.

The weak adverse selection risk

From (4.2.1), and by the strong law of large numbers, we have a consistent estimator of ρ given
by

ρ̂(n) =
1

n

n∑
k=1

Zk
Iθk−

=
1

n

n∑
k=1

ZkIθ−k
−→ E [Γk] = ρ , a.s. ,

as n goes to infinity. Estimation on real data leads to a value of ρ around −50%. This means
that about 3 over 4 trades arrive on the weak side of the limit order book. Recall that stock price
usually exhibits a short-term mean reversion, i.e. a negative correlation α of price increments,
so that

αρ > 0 . (4.2.3)

The fact that α and ρ are of the same sign is consistent with the execution dynamics. Suppose
on the contrary that α and ρ are of opposite sign, say α < 0 and ρ > 0, and assume e.g. that the
last price jumped downwards. Then ρ > 0 means that most of the trades will occur at best bid,
hence will execute buy limit orders in a bull market (since α < 0), allowing market makers on
best bid to open a low risk profitable position. The quantity αρ is a measure of the inefficiency
of limit orders w.r.t. to trend capturing: the bigger it is, the lower is the probability of building
a profitable position via a limit order. This quantity compensates the intrinsic advantage of a
limit order execution (one spread w.r.t. to a market order), and provides a first explanation
of why market making is not a trivial game. We call this phenomenon the weak adverse
selection, in comparison with the strong adverse selection considered above and related to big
market orders.

4.3 The market making problem

The agent strategy

The agent strategy consists in placing continuously limit orders of constant small size L ∈ N\(0),
(where small is meant w.r.t. to the total liquidity provided by all the market makers) on both
sides, and at the best price available. The market making strategy is then described by a pair
of predictable processes (`+, `−) valued in {0, 1}. When `+t = 1 (resp. `−t = 1), a limit order of
size L is posted at time t on the strong (resp. weak) side, while in the opposite case no limit
order is submitted or the limit order is cancelled. We denote by A the set of market making
controls ` = (`+, `−).

Every time a small market order arrives in the limit order book, if the agent has placed an
order on the corresponding side, the latter is executed according to a random variable, whose
distribution may differ according to the book matching rules. We recall the two main frameworks
we can deal with.
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� Price time priority (PTP): in a PTP order book, orders are matched according to their
price (more priority to those closer to the mid price) and time (like in single file queue).

� Pro-rata: in a (pure) pro-rata order book, there is price priority (as in PTP), but not the
time one. Multiple market makers are executed when a single trade arrives, according to a
proportion rewarding the limit orders of bigger size.

Notice that, if the price jumps upwards and the agent is in the condition to place her limit
orders immediately after the jump, she will find a huge volume of concurrent limit order on the
ask side (old orders), while very few on the bid side. The situation is symmetric when the price
has jumped downwards. We then consider the distributions

ϑ±(dk, L) on {0, . . . , L} ,

where ϑ−(dk, L) (resp. ϑ+(dk, L)) is the distribution of the executed quantity of limit order of
size L in the concordant (resp. discordant), i.e. strong (resp. weak) side, of the limit order book
(an estimation procedure for ϑ± is provided in the Section 4.6). We denote by

Φm
± (L) :=

∫
kmϑ±(dk, L) , m = 1, 2 ,

the first and second moment of these distributions.

Remark 4.1 (The strong adverse selection risk). Recall once again that the sign ± indexing
the distribution must not be interpreted as the ask/bid side of the limit order book but as the
strong/weak side of the limit order book taking into account the last price direction. Moreover, in
order to be consistent with the small agent assumption (the price is exogenous and not impacted
by the agent strategy), we assume that, if the price jumps across the level of a limit order placed
by the agent, the latter is automatically executed. This can be justified saying that, since the
agent is small, the price jumps independently of the presence of her limit order, since a large
market order whose goal was (at least) to clear the best level. Furthermore, since the spread is
constantly one tick and orders are placed at the best price, when the price jumps, limit orders
converts automatically to market ones, which are immediately executed. Notice that this scenario
is particularly adverse to the agent: she is selling (resp. buying) a stock at ask price Pt−+δ (resp.
bid price Pt−−δ), while the current mid-price is Pt = Pt−+2δ (resp. Pt = Pt−−2δ ), so in both
cases she is losing δ for each lot! The sudden execution is both against the market and does not
let her the time to close the spread, leaving an open position: she faces both adverse selection
and inventory risk. This phenomenon, refereed as strong adverse selection, is considered
also in [19]. �

The wealth and the inventory process

We assume that each transaction is subject to a fixed cost ϕ ≥ 0. Let us then denote by (Xt)
and (Yt) the wealth and inventory describing the agent portfolio, valued respectively in R and
Z.

Lemma 4.1. For a market making strategy ` ∈ A, the dynamics of the portfolio value processes
X and Y are given by

dXt =
∑
ν∈±

∫
k`νt− (νPt−It− + δ − ϕ)

(
Rtrdν (dt, dk, St−) +Rjmpν (dt, dk, St−)

)
,

dYt = −
∑
ν∈±

∫
k ν `νt−It−

(
Rtrdν (dt, dk, St−) +Rjmpν (dt, dk, St−)

)
,

where Rtrd
± (resp. Rjmp

± ) is a random measure with intensity

λ±(St−)dt⊗ ϑ±(dk, L) , (resp. h±(s)(St−)dt⊗ δL(dk)) ,

and δL is the Dirac measure at L.
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Proof. To fix the ideas, assume that, at time t, i = It− = +1, i.e. the last jump of the price has
been upwards (in the case i = −1 the proof is symmetric). Then if `±t− = 1, i.e. if the agent has
placed a limit order on the strong (i.e. ask) or the weak (i.e. bid) side:

i) either she can be executed by an incoming trade of a random number of quantities k, where
k has distribution ϑ±(dk, L), with trade intensity λ±(St−)

ii) or she can be entirely executed, thus k = L, by a jump of the price, with rate h±(St−).

In both cases, the agent inventory (Yt) jumps of ∓k, while her wealth (Xt) jumps of k times
±Pt− (asset sold or bought), plus the market making prime of δ (the half spread), minus the
fixed cost ϕ.

�

We now consider the following criterion for the market making optimization problem, as usually
adopted in [6], [19], [44]: the agent is looking for the optimal admissible market making strategy,
which maximises her expected portfolio value at terminal date T , evaluated at the mid price:

VT := XT + YTPT ,

while controlling her final inventory through a quadratic penalization term ηY 2
T , with a risk

aversion parameter η ≥ 0.

We can now define in our MRP model the value function associated to the market making
problem:

u(η)(t, p, i, s, x, y) := max
`∈A

Et,p,i,s,x,y
[
XT + YTPT − ηY 2

T

]
, (4.3.1)

for (t, p, i, s, x, y) ∈ [0, T ] × 2δZ × {−1,+1} × R+ × R × Z, and where Et,p,i,s,x,y denotes the
expectation operator under the initial conditions Pt− = p, It− = i, St− = s, Xt− = x, Yt− = y.

The choice of a linear/quadratic utility function rather than an exponential one is purely due
to computational ease: the utility function being polynomial in the state variable y allows us to
split PDE’s according to their degree, reducing the problem dimension. The penalization term
−ηY 2

T limits the agent inventory risk: the agent does not want to close her trading day with a
large position, that she would execute via a unique market order impacting the market. The
quadratic form is consistent with a limit order book with constant liquidity shape, as explained
in [20]: the risk aversion parameter η has to be considered as the subjective aversion of the
agent to a final market order. This risk term was also recently demonstrated to stem from
model ambiguity, see [18]. Since trading horizons are usually short (minutes), this penalisation
affects the whole strategy, and provides an excellent inventory control throughout the whole
trajectory, as we will illustrate later.

As an alternative, this penalisation can be replaced by −η
∫ T
t Y 2

u du, without changing substan-
tially the arguments we are going to adopt to solve the control problem.

4.4 Value function and optimal controls: a perturbation ap-
proach

In order to solve the HJB equation associated to the optimal control problem (4.3.1), we will go
through the following steps:

i) we consider an agent with no risk aversion (η = 0), and provide analytical formula for the
optimal controls and a numerical method for the value function;

ii) thanks to a suitable variable change, we perform a dimension reduction of the HJB equation
for η > 0, and obtain optimal controls as a non-explicit deformation of the previous case;
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iii) finally, by a perturbation method for η → 0+, we provide optimal controls for small risk
aversion in terms of the solution of four linear PDE’s, and give a financial interpretation
of this result.

From (4.1.11) and the dynamics of the controlled process (Xt, Yt) in Lemma 4.1, the Hamilton-
Jacobi-Bellman (HJB) equation arising from dynamic programming associated to the control
problem (4.3.1) is given by

−∂u(η)

∂t
− ∂u(η)

∂s
−
∑
ν∈±

max
`∈{0,1}

hν(s)〈Jν [`],u(η)〉+ λν(s)〈Tν [`],u(η)〉 = 0 , (4.4.1)

u(η)(T, ) = x+ yp− ηy2 ,

for (t, p, i, s, x, y) ∈ [0, T ]× 2δZ× {−1,+1} × R+ × R× Z, where

〈J±[`], g〉 := ∆g(t, p± 2δi,±i, 0, x+ L`(±ip+ δ − ϕ), y ∓ iL`) , (4.4.2)

〈T±[`], g〉 :=

∫
∆g(t, p, i, s, x+ k`(±ip+ δ − ϕ), y ∓ ik`)ϑ±(dk, L) . (4.4.3)

The interpretation of these operators is rather clear:

i) on one hand, 〈J±[`],u(η)〉 represents the variation of the value function when a limit order
` in the side ± of the LOB is executed due to a price jump (this occurs with intensity rate
h±(s)), hence the totality of size L is traded by the big market orders at the unfavorable
price, right after jump (strong adverse selection);

ii) on the other hand, 〈T±[`],u(η)〉 represents the variation of the value function when a limit
order ` on the side ± of the LOB is executed by a small market order (which arrives with
intensity λ±(s)), hence a quantity k ∈ {0, . . . , L} is traded with probability ϑ±(dk, L) at
the favorable current price.

The following lemma shows that the value function os this problem is actually bounded.

Lemma 4.2. There exists some positive constant C s.t.

x+ y Et,i,s [PT ]− ηy2 ≤ u(η)(t, p, i, s, x, y) ≤ x+ yp+ eC(T−t)(1 + |y|) ,

for all (t, p, i, s, x, y) ∈ [0, T ]× 2δZ× {−1,+1} × R+ × R× Z.

Proof. Let us consider the function: ϕ(t, p, x, y) := x + yp + eC(T−t)(1 + |y|) for some pos-
itive constant C. Then, under the assumption that h± and λ± are bounded, say by B∞, a
straightforward calculation shows that:

− ∂ϕ

∂t
−
∑
ν∈±

max
`∈{0,1}

hν(s)〈Jν [`], ϕ〉+ λν〈Tν [`], ϕ〉

≥ CeC(T−t)(1 + |y|)− 2B∞
[
L|δ − ε|+ 2δ|y|+ 2LeC(T−t)] ≥ 0 ,

for C large enough. By Dynkin’s formula for pure jump processes, we deduce that the process
ϕ(t, Pt, Xt, Yt) is a supermartingale for any ` admissible control, and so:

Et,p,i,s,x,y
[
XT + YTPT − ηY 2

T

]
≤ Et,p,i,s,x,y

[
ϕ(T, PT , XT , YT )

]
≤ ϕ(t, p, x, y) .

Since ` is arbitrary in the above inequality, this shows the required upper bound: u(η) ≤ ϕ. The
lower bound is instead given by holding the inventory (` ≡ 0) until the horizon T .

�
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4.4.1 The no risk aversion case

An agent with no risk aversion does not worry about her market position since neither any
penalty for holding a large inventory affects her utility function, nor she has any inventory
constraint. Our guess is that the value function can be decomposed as

i) the hold part, given by the average value at T of the current portfolio, and

ii) the market making part, obtained by an optimal strategy, completely independent from
the current portfolio, i.e. from the variables (x, p, i, y).

This suggests the ansatz:

u(0) = u
(0)
hold + u(0)

mm , (4.4.4)

u
(0)
hold(t, p, i, s, x, y) := x+ y Et,p,i,s [PT ] ,

u(0)
mm(t, s) := ω(t, s) .

We will prove that u
(0)
mm is nonnegative: it corresponds indeed to the additional value with

respect to the hold-strategy in u
(0)
hold, and the key feature is to observe that it depends only on

(t, s) in the no-risk aversion case. Thanks to Lemma 4.3, and setting the new state variable,
called strong inventory

q := iy ,

u
(0)
hold in (4.4.4) becomes

u
(0)
hold(t, p, i, s, x, y) = (x+ yp) + (qθ(t, s)) ,

= current portfolio value + martingale deviation .

Notice that the latter decomposes as i) the sum of the current portfolio portfolio value, valued
at the mid-price, and ii) a part proportional to q. The function θ(t, s) (studied in paragraph
Section 4.7) represents the average distance from the martingale price, i.e. it measures the
average behavior of the stock price in terms of drift and reversion. For θ > 0 (resp. θ < 0),
the average value of stock price at maturity will reflect a drifting (resp. reverting) component,
while for θ ≡ 0, the stock price is a martingale.

By plugging the ansatz (4.4.4) into the HJB equation (4.4.1), we obtain the following charac-
terization of the value function and optimal controls.

Theorem 4.1. For η = 0, the value function of the control problem (4.3.1) is given by

u(0) = u
(0)
hold + u(0)

mm ,

u
(0)
hold(t, p, i, s, x, y) = x+ yp+ qθ(t, s) ,

u(0)
mm(t, s) = ω(t, s) ≥ 0 ,

where ω(t, s) is the unique bounded viscosity solution to

−∂ω
∂t
− ∂ω

∂s
− σ2(s)∆ω(t, 0)−

∑
ν∈±

max (Gν(t, s), 0) = 0 , (4.4.5)

ω(T, ) = 0 ,

for (t, s) ∈ [0, T ]× R+, with

G±(t, s) := λ±(s) (δ − ϕ∓ θ(t, s)) Φ1
±(L)− h±(s) (δ + ϕ+ θ(t, 0))L , (4.4.6)
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and admits the probabilistic representation

ω(t, s) =
∑
ν∈±

Et,s

[∫ T

t
max (Gν(u, Su), 0) du

]
. (4.4.7)

Moreover, the optimal controls are given in feedback form by

ˆ̀±(t, s) = 1{G±(t, s) > 0} . (4.4.8)

Proof. From the ansatz (4.4.4) and the definitions (4.4.2)-(4.4.3) of the operators J± and T±,
we have

∂u(0)

∂t
+
∂u(0)

∂s
= q

(
∂θ

∂t
+
∂θ

∂s

)
+

(
∂ω

∂t
+
∂ω

∂s

)
,

〈J±[`],u(0)〉 = q(±2δ ± θ(t, 0)− θ(t, s)) + ∆ω(t, 0) + L` (−δ − ε− θ(t, 0)) ,

〈T±[`],u(0)〉 =

∫
k` (δ − ϕ∓ θ(t, s))ϑ±(dk, L) .

Now, plugging into (4.4.1),

−∂ω
∂t
− ∂ω

∂s
− σ2∆ω(t, 0)−

∑
ν∈±

max (Gν(t, s), 0)

−q
(
∂θ

∂t
+
∂θ

∂s
+ µ(s)θ(t, 0)− σ2(s)θ(t, s) + 2δµ(s)

)
= 0 .

From (4.1.14), the expression in the bracket in front of q is zero, and we obtain the PDE satisfied

by ω. The terminal condition is clear since u(T, p, i, s, x, y) = x+ yp = u
(0)
hold(T, p, i, s, x, y), and

so ω(T, p, i, s, x, y) = 0.

The probabilistic representation (4.4.7) is simply the Feynman-Kac representation of the linear
PDE (4.4.5), recalling that (St) is a piecewise deterministic jump process with intensity σ2(St),
see (4.1.11), and since h and λ are bounded and non-negative, so are G and ω.

Finally, the optimal feedback control on the side ± of the LOB is obtained for ˆ̀± attaining the
argument maximum over ` ∈ {0, 1} of

h±(s)〈J±[`],u(0)〉+ λ±〈T±[`],u(0)〉 .

In other words,

ˆ̀± = 1⇐⇒ h±(s)〈J±[1],u(0)〉+ λ±(s)〈T±[1],u(0)〉 > h±(s)〈J±[0],u(0)〉+ λ±(s)〈T±[0],u(0)〉 .

By substituting the decomposition u(0) = u
(0)
hold + u

(0)
mm, we see that ˆ̀± = ˆ̀±(t, s) and

ˆ̀±(t, s) = 1⇐⇒ G±(t, s) > 0 ,

i.e. the required assertion.

�

Financial interpretation

The strong (resp. weak) optimal policies described in (4.4.8) are binary controls depending on
G±(t, s). Cutting the surfaces z = G±(t, s) with the hyperplane z = 0 and projecting on (t, s)-
plane the portions above the hyperplane, we obtain the trading regions. Since controls drive
execution, and execution is due either on a trade or a price jump, optimal controls are naturally
decomposed into two parts, as shown by the expression of G± in (4.4.6):

G±(t, s) = Gtrd
± (t, s)−Gjmp

± (t, s)

:= λ±(s) (δ − ϕ∓ θ(t, s)) Φ1
±(L)− h±(s) (δ + ϕ+ θ(t, 0))L .
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i) The trade part Gtrd
± : the agent orders are matched by small market orders (not impacting

the stock price) of random size, distributed according to ϑ±(dk, L), arriving at rate λ±(St).
For each executed lot, she gains the half-spread thanks to passive execution (market making
gain), she loses the transaction costs, and since her inventory changes, she loses the martin-
gale distance θ(t, s) that she would gain (in average) keeping her position until the horizon
(attention: this quantity might be negative). This scenario is favourable, since she has the
time to close her spread before the stock price jumps again and she has gained half a tick
w.r.t. to the mid-price evaluation of the stock: this profit comes from small uninformed
traders, that are unable to make the stock price jump and need the liquidity provided by
the market maker.

ii) The jump part Gjmp
± : the agent orders are cleared (fulfilled) at rate h±(St) by big market

orders impacting the stock price. As before, for each executed lot she gains the half-spread
thanks to passive execution (market making gain), but loses a spread because of the stock
price jumps, ending with a passive of half a spread, she loses the transaction costs, and since
her inventory changes, she loses the martingale distance θ(t, 0) (the price has just jumped).
Notice that, by Corollary 4.2,

h±(s) (δ + ϕ+ θ(t, 0)) ≥ 0 ,

and looking at (4.4.6), it is clear that the limit order execution due to big orders is a source
of risk, called strong adverse selection. This is due to the fact that large market orders
make the price jump, and do not allow the agent to close her spread. On the contrary, the
agent finds herself buying/selling L lots (the maximum admissible size) when the stock price
is suddenly decreasing/increasing value (adverse selection).

As one can see, the “trade” case represents a positive event, since it leads to a proper market
making strategy collecting spreads where buy and hold portfolio would not lead to substantial
gains, while the “jump” one represents a negative event, since it leads to an unfavourable
execution, where we sell (resp. buy) a stock whose value has decreased (resp. increased).
Hence, the marked point process modeling of stock price leads to a much more realistic model,
evaluating the risk of being executed under negative circumstances, which would not be possible
if the stock price were continuous. The quantity G± is interpreted as the portfolio value arising

from market making strategy, and naturally the value function u
(0)
mm = ω in (4.4.7) is the

expected gain of the portfolio value. Optimal controls are determined by a trade-off among

i) pure market making due to round-trip executions,

ii) trend or reversion anticipation thanks to the information associated to θ(t, s),

iii) limitation of strong adverse selection risk.

By stressing the dependence of optimal control on horizon T , we write ˆ̀T
±(t, s) for ˆ̀±(t, s), and

we see from (4.4.8) and (4.1.17) that it converges for large horizon to the stationary value:

lim
T→∞

ˆ̀T
±(t, s) = 1{Ḡ±(s) > 0} , (4.4.9)

with

Ḡ±(s) := λ±(s)
(
δ − ϕ∓ θ̄(s)

)
Φ1
±(L)− h±(s)

(
δ + ϕ+ θ̄(0)

)
L ,

We plot in Figure 4.5 the trade and jump parts functions Gtrd
± and Gjmp

± , in Figure 4.6 the
market making performance ω, and in Figure 4.7 the optimal limit order controls.
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Figure 4.5: the trade part and the jump part in (4.4.6). The chart shows that the trade part dominates the
jump part on the strong side, which leads the agent to place her orders on that side, while this scenario is inversed
on the weak side. The risk due to jump execution on the weak side leads the agent to be more cautious, and to
place her limit orders only under particular circumstances. �

4.4.2 The small risk aversion case

In this section, we prove that for small risk aversions, the solution of the HJB equation (4.4.1)
associated to the optimal control problem (4.3.1) is a deformation of the solution in the case
η = 0, and we explicitly characterize this deformation.

We first give the exact solution of the problem in terms of a non-explicit deformation of the
(η = 0)-value function, that one can evaluate numerically if not wanting to involve approximation
arguments. This result illustrates, in terms of probabilistic representation, how a particular
strategy affects the value function.

Theorem 4.2. The value function associated to the control problem (4.3.1) is given by

u(η) = u(0) − v(η) , (4.4.10)

where u(0)(t, p, i, s, x, y) is the solution of the control problem in the no risk aversion case (Theo-
rem 4.1), while v(η)(t, s, q := iy) is nonnegative and is the unique viscosity solution with quadratic
growth in q to

−∂v(η)

∂t
− ∂v(η)

∂s
+
∑
ν∈±

max
`∈{0,1}

(
`Gν(t, s)− 〈Rν [`],v(η)〉

)
−max (Gν(t, s), 0) = 0 , (4.4.11)

v(η)(T, ) = ηq2 ,

for (t, s, q) ∈ [0, T ]× R+ × Z, where Gν(t, s) is given by (4.4.6) and

〈R±[`],v(η)〉 := h±(s)∆v(η)(t, 0,±q − L`) + λ±(s)

∫
∆v(η)(t, s, q ∓ k`)ϑ±(dk, L) . (4.4.12)
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Figure 4.6: ω(T − t, s) for different s-sections. Far from the horizon, the agent has a linear average gain per
time unit depending on the starting elapsed time. In the distribution queue, the agent gains more since she enters
the market at a stable time, where the stock price is not likely to jump, representing a perfect scenario for the
market maker. �

Moreover, the optimal controls for problem (4.3.1) are given in feedback form by

ˆ̀±(t, s) := ˆ̀(η)
± (t, s) = 1{G±(t, s) > 〈R1

±,v
(η)〉} , (4.4.13)

where

〈R1
±,v

(η)〉 := h±(s)
(
v(η)(t, 0,±q − L)− v(η)(t, 0,±q)

)
+ λ±(s)

∫
∆v(η)(t, s, q ∓ k)ϑ±(dk, L) .

In particular 〈R1
±,v

(0)〉 = 〈R1
±, 0〉 = 0.

Proof. Injecting the ansatz (4.4.4) and (4.4.10) in (4.4.2) and (4.4.3), we have

∂u(η)

∂t
+
∂u(η)

∂s
=

(
∂u(0)

∂t
+
∂u(0)

∂s

)
−

(
∂v(η)

∂t
+
∂v(η)

∂s

)
, (4.4.14)

〈J±[`],u(η)〉 = 〈J±[`],u(0)〉 −∆v(η)(t, 0,±q − L`) ,

〈T±[`],u(η)〉 = 〈T±[`],u(0)〉 −
∫

∆v(η)(t, s, q ∓ k`)ϑ±(dk, L) .

Plugging into (4.4.1), and using also (4.4.5), we see after some straightforward calculations that
v(η) should satisfy the PDE (4.4.11).

By definition of the control problem (4.3.1), it is clear that u(η) ≤ u(0), and so v(η) is nonnegative.
On the other hand, by taking the null strategy (`± ≡ 0), we trivially obtain, since ω ≡ 0,

u(η)(t, p, i, s, x, y) = x+ yπ(t, p, i, s)− ηq2 ⇒ v(η)(t, s, q) ≤ ηq2 ,

which proves the quadratic growth of v(η) in q.
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Figure 4.7: optimal policy for η = 0. The figures translated Figure 4.5 in terms of binary optimal policy, as
described by (4.4.8). The agent places her limit order on the strong side for both small and big elapsed times,
while posting on the weak side is restricted to large s: this is due to behavior of θ(t, s), changing signs in the
right side of the cart, inducing the maker maker to place orders on the side to exploit the anticipation on the next
jump. For t→ 0, the horizon is far and the policy stabilizes to her asymptotic value described in (4.4.9) �.

Finally, optimal controls are determined choosing, for both strong and the weak side, the max-
imum between 〈R±[0],v(η)〉 and 〈R±[1],v(η)〉, which gives precisely the form (4.4.13).

�

Remark 4.2. The value function u(η) of the market making control problem with risk aversion
η is deformed with respect to the no risk aversion case u(0) via the risk aversion function v(η),
which depends only on current time t, elapsed time s and strong inventory q. Is is also clear that
v(0) ≡ 0, and v(η) is non-decreasing in η, since u(η) is non-increasing in η. Moreover, the optimal

control ˆ̀(η)
± is a deformation of the optimal control ˆ̀(0)

± in the no risk aversion case through the

barrier 〈R1
±,v

(η)〉, which is null for η = 0. �

The deformation function v(η) due to risk aversion is solution to the semi-linear PDE (4.4.11),
which can be solved numerically. We use instead a perturbation approach for deriving a first-
order expansion of v(η) for small risk aversion η.

Theorem 4.3. The function v(η)(t, s, q) can be linearly approximated in η > 0 by

v(η)(t, s, q) = η
(
q2 + 2qζ1(t, s) + ζ0(t, s)

)
−R(η)(t, s, q) , (4.4.15)

where

i) ζ1(t, s) is the viscosity solution of

−∂ζ1

∂t
− ∂ζ1

∂s
− µ(s)ζ1(t, 0) + σ2(s)ζ1(t, s) +

∑
ν∈±

ν
(
hν(s)L+ λν(s)Φ1

ν(L)
)

ˆ̀(0)
ν (t, s) = 0 ,

ζ1(T, ) = 0 ,
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which is alternatively expressed as

ζ1(t, s) := E
[
ŶT
∣∣It− = i, St− = s, Yt− = 0

]
,

where (Ŷt) is the inventory process controlled by the optimal strategy for η = 0 (see (4.4.13))
under particular initial conditions.

ii) ζ0(t, s) is the viscosity solution of

−∂ζ0

∂t
− ∂ζ0

∂s
− σ2(s)∆ζ0(t, 0)

−
∑
ν∈±

(
hν(s)

(
L2 − 2Lζ1(t, 0)

)
+ λν(s)

(
Φ2
ν(L)− 2νΦ1

ν(L)ζ1(t, s)
))

ˆ̀(0)
ν (t, s) = 0 ,

ζ0(T, ) = 0 ;

iii) the remainder R(η)(t, s, q) is a non-negative o(η).

Proof. See Section 4.8.

�

Remark 4.3. The computation of v(η)(t, s, q) through the equation (4.4.11) requires the nu-
merical resolution of a non-linear system of 1-dimensional PDE indexed by q ∈ Z. Alternatively,
the first-order expansion for small risk aversion, with a quadratic in q leading term, involves the
computation of (ζ0, ζ1) through a system of linear PDE’s with an upper triangular structure:
ζ1(t, s) can be numerically solved without knowing ζ0(t, s). It is worth noticing that:

i) thanks to the approximation methods, we are led to solve four linear simple PDE’s (for
θ, ω, ζ1, ζ0), reducing of one the dimension of the problem;

ii) since Z is an infinite set, a numerical solution needs a domain truncation and the specification
of boundary conditions, while this problem does not affect the approximated solution;

iii) the numerical scheme can be trivially parallelized: the solution of ω(t, s) depends on θ(t, s),
while the one of ζ0(t, s) depends on ζ1(t, s), but the two couples are independent, leading to
a natural parallelization.

�

We can also provide a probabilistic characterisation of ζ1, as the average terminal inventory of
the optimal strategy under no risk aversion.

Remark 4.4. From the structure (4.4.13) of optimal control and the small expansion (4.4.15),
we get an approximate optimal limit order control given by

˜̀(η)
± (t, s) := 1{G±(t, s) > 〈R1

±, ṽ
(η)〉}

ṽ(η)(t, s, q) := η
(
q2 + 2qζ1(t, s) + ζ0(t, s)

)
.

The approximate optimal feedback control can be rewritten as:

˜̀(η)
± (t, s) := 1{G±(t, s) > η

(
C0
±(t, s)∓ 2C1

±(t, s)q
)
} ,

where

C0
±(t, s) := h±(s)

(
L2 − 2Lζ1(t, 0)

)
+ λ±(s)

(
Φ2
±(L)∓ 2ζ1(t, s)Φ1

±(L)
)
, (4.4.16)

C1
±(t, s) := h±(s)L+ λ±(s)Φ1

±(L) ≥ 0 . (4.4.17)

The control adjustment due to risk aversion can be understood as follows.
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Figure 4.8: trading region for q = 0 and different risk aversion. The chart shows how increasing the risk aversion
deforms the trading region, widening the zone where the agent does not send any order. �

i) The inventory independent part in (4.4.16) affects the agent strategy even when her
inventory is q = y = 0: in the no risk aversion case, the agent places a limit order if
G±(t, s) > 0, but when η > 0, this trading barrier - depending on the couple (t, s) - is
raised by a multiple of the risk aversion itself. The agent becomes cautious and decides to
enter the market only in the most profitable cases, but renounces to trade if expected gain
is small, even if positive. This result is shown by Figure 4.8, where the non trading region
for q = 0 grows w.r.t. the case η = 0, reflecting the increased trading aversion of the agent.

ii) The linear part in the inventory in (4.4.17) is in charge of controlling the absolute value
of the inventory, in order to reduce the exposure of the agent to inventory and market risk.
For q > 0 (i.e. iy > 0), the adjustment of the strong side (resp. weak side) turns the trading
barrier down (resp. up) by a multiple of η: the agent decides to trade on the strong (resp.
weak) side under less (resp. more) restrictive conditions in order to reduce (resp. not to
increase) her absolute inventory. This result is summarized by Figure 4.9, where for large
values of the inventory the agent plays, independently on s, on one side only, in order to
revert the absolute position to a smaller value.
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Figure 4.9: the optimal policy at time 0 for different values of q and s and positive risk aversion. The agent
plays only only on the strong (resp. weak) side for large (small values) of the strong inventory in order not to be
exposed to the inventory risk. For q ≈ 0, the policy takes into account the inventory risk and the pure gain due
to a market making strategy. The two lines denoted by q±(t, s) determines the trading boundary on the strong
and the weak side. �

�

Conclusion and further developments

In this paper we have exploited the framework described in the companion paper [36] in order
to provide an application to a market making problem. Thanks to a Cox model, we are able to
include the matching engine and complete the order book model of the best levels: only small
trades are described directly, while big market orders affecting the stock price are included in the
stock price dynamics itself. The perturbation technique adopted to derive optimal controls as a
deformation of the no risk aversion case has helped us to improve financial interpretability and
reduce the dimension problem as well as the computational cost of its numerical solution. For
further developments, more complicated stock price model can introduce statistical arbitrage
opportunity, that we may capture by means of optimal control techniques. This part represents
a work in progress, that will soon appear.

4.5 Appendix: the trade intensity function λ

We give a statistical procedure for the parametric estimation of the intensity function λ. The
log-likelihood function associated to the counting process (Mt) with intensity λ(St) is given over
[0, T ] by

lnLT =

∫ T

0
ln (λ(St)) dMs −

∫ T

0
λ(St)dt .
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Fix now T = Tn the n-th jump time of the stock price. Since St jumps at (Tk)k=1,...,n, so does
λ. This implies that:∫ T

0
λ(St) dt =

n∑
k=1

∫ Tk

Tk−1

λ(St) dt =

n∑
k=1

∫ Tk

Tk−1

λ(t− Tk−1) dt =

n∑
k=1

∫ Sk

0
λ(t) dt .

Moreover, trades arrive at θ1, . . . , θm, and so:∫ T

0
ln (λ(St)) dMs =

m∑
j=1

lnλ(Sθj−) .

Putting all together, we have:

lnLT =

m∑
j=1

lnλ(Sθj−)−
n∑
k=1

∫ Sk

0
λ(t) dt .

Assuming that λ is of parametric form, we can then obtain the MLE estimator for λ maximizing
over the parameters the above log-likelihood function. For example, we can use the following
parametric forms, reproducing the intensity decay when s is large:

λexp(s) = λ0 + a sr e−ks ,

for λ0, a, r, k ≥ 0 . Notice that in both cases,

i) λ is finite and smooth on R+;

ii) when a = 0 we fall into the homogeneous Poisson case of intensity λ = λ0;

iii) when r > 0, λ(0) = λ(∞) = λ0 with a maximum reached at s∗ > 0;

iv) for special value of r and k (e.g. r ∈ N in the exponential case),
∫ s

0 λ(t) dt has an explicit
form, leading to a much faster optimization.

In our case we have chosen:

λ(s) = λ0 + ae−ks and so

∫ s

0
λ(t) dt = λ0s+ a

1− e−ks

k
.

The estimated parameters on the data are: λ0 = 0.9772205, a = 77.0405310, k = 34.5428134.

4.6 Appendix: the estimation of the agent execution distribu-
tion ϑ±(dk, L)

Unfortunately, the agent execution cannot be estimated before playing or backtesting a zero
intelligence strategy, i.e. placing continuously limit orders on both sides of the limit order book.
This problem cannot be overcome easily: a high-frequency backtest platform is necessary to
estimate the execution rate.

Assuming that the agent is always placed with one lot on the strong/weak side - updating her
position as soon as she is executed or she is not placed anymore at the best prices - ϑ±(dk, L) is
estimated by the ratio between the number of agent executions and the total amount of incoming
market orders on the corresponding side. More in details, assume that

Ek± := number of trades on the ± side in (Tk−1, Tk]− 1{Bk = ±} ,

where Bk = JkJk−1 is the same as (4.1.3). Following the strategy `± ≡ 1, the agent places
continuously on one side a limit order of size L. We can determine the statistics

ek±(i) := number of agent trades of size i on the ± side in (Tk−1, Tk]− 1{Bk = ±, i = L} ,
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Setting

EN± :=

N∑
k=1

Ek± , eN± (i) :=

N∑
k=1

ek± (i) ,

by the Strong Law of the Large Number we have

eN
EN
→ P [ϑ±(dk, L) = i] , i = 1, . . . , L ,

that provides an estimator for ϑ±(dk, L). �

4.7 Appendix: properties of the function θT (t, s)

For the applications of our model to market making problem, we shall extensively use properties
of the mean value of the stock price at horizon, i.e.

π(t, p, i, s) := Et,p,i,s [PT ] .

Here, Et,p,i,s denotes the expectation operator under the initial conditions: (Pt, It, St) = (p, i, s)
for (t, p, i, s) ∈ [0, T ]×2δZ×{−1,+1}×R+. We devote this section to the study of this function,
using both a PDE and a probabilistic approach.

4.7.1 The PDE representation

The next lemma gives first a decomposition of π guessed by the arithmetic nature of the stock
price, as well as its particular symmetry.

Lemma 4.3 (Feynman-Kac representation). The function π is given by

π(t, p, i, s) = p+ iθ(t, s) ,

where θ(t, s) is the unique bounded solution to

〈Z, θ〉 := −∂θ
∂t
− ∂θ

∂s
− µ(s)θ(t, 0) + σ2(s)θ(t, s)− 2δµ(s) = 0 , (4.7.1)

θ(T, ) = 0 ,

for (t, s) ∈ [0, T ]× R+.

Proof. By the Feynman-Kac representation theorem, π(t, p, i, s) is solution to the linear PDE:

−∂π
∂t
− ∂π

∂s
−
∑
ν∈±

hν(s)∆π(t, p+ 2δνi, νi, 0) = 0 ,

π(T, ) = p ,

for (t, p, i, s) ∈ [0, T ]×2δZ×{−1,+1}×R+. The result of the lemma follows injecting the ansatz
(4.1.13) in the previous PDE, while the boundness of θ will be shown in the next section using
an independent probabilistic argument.

�

Notice that in particular, the following probabilistic representation holds:

θ(t, s) = θT (t, s) = E
[
PT
∣∣St = s, Pt = 0, It = +1

]
. (4.7.2)

Furthermore, the following two corollaries, based on the comparison theorem, provide bounds
for θT (t, s) in different cases.
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Corollary 4.1. (Drift of constant sign) If µ(s) ≥ 0 (resp. µ(s) ≤ 0), then θ ≥ 0 (resp. θ ≤ 0).
In particular if µ(s) ≡ 0, then θ ≡ 0.

Proof. Looking at (4.7.1), it is straightforward to check that for µ(s) being identically bigger
(resp. smaller) than 0, then 〈Z, 0〉 = −2δµ(s) ≤ 0 (resp. ≥ 0). Since the terminal condition
is 0, we have proved that the zero function is a sub (resp. super)-solution of (4.7.1), and we
conclude by comparison principle.

�

Corollary 4.2 (Lower bound). The following lower bound holds:

θ(t, s) ≥ −δ , (t, s) ∈ [0, T ]× R+ .

Proof. Observe that for constant function c ∈ R, we have

〈Z, c〉 = −µ(s)(c+ 2δ) + σ2(s)c .

Moreover, since h±(s) ≥ 0, we have

µ(s)

σ2(s)
=
h+(s)− h−(s)

h+(s) + h−(s)
≥ −1 , s ∈ R+ ,

and so for c ≥ −2δ, we get

〈Z, c〉 ≤ 2σ2(s)(c+ δ) .

Therefore, taking any constant c ∈ (−2δ,−δ), we have 〈Z, c〉 ≤ 0, and we conclude by comparison
principle that θ ≥ c, i.e. the required assertion.

�

4.7.2 The probabilistic representation

We now investigate further bounds for θ(t, s), as well as its asymptotic behavior for large hori-
zons, using a probabilistic approach based on the representation (4.1.19). The probabilistic
angle allows to exploit the Markov property of the stock price to capture information that is
hidden in the probabilistic representation of Lemma 4.3. In order to emphasize the dependence
on the horizon T , we write θT (t, s) for θ(t, s) and define the conditional mean of the next jump
w.r.t. to the elapsed time as

ᾱ(s) := E
[
J1

∣∣S0 = s , J0 = +1
]
, s ∈ R+ . (4.7.3)

Notice that, by its very definition,

ᾱ(s) := E
[
J1

∣∣T1 ≥ s , J0 = +1
]

= P
[
B1

∣∣T1 ≥ s, J0 = +1
]
, s ∈ R+ ,

where B1 is given in (4.1.3).

Lemma 4.4. For a Markov Renewal Process (Jk, Tk) on a finite state space E with

Qij := P [Jk = j|Jk−1 = i] , Fij := P [Tk − Tk−1 ≤ s|Jk = j, Jk−1 = i] , i, j ∈ E ,

we have

P [Jk = j|Jk−1 = i, Tk − Tk−1 ≥ s] = Qij
1− Fij(s)

1−
∑

j∈E QijFij(s)
, i, j ∈ E . (4.7.4)
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Proof. A simple Bayes argument gives

P [Jk = j|Jk−1 = i, Tk − Tk−1 ≥ s] =
P [Jk = j, Tk − Tk−1 ≥ s|Jk−1 = i]

P [Tk − Tk−1 ≥ s|Jk−1 = i]

=
P [Tk − Tk−1 ≥ s|Jk−1 = i, Jk = j] P [Jk = j|Jk−1 = i]∑
j∈E P [Tk − Tk−1 ≥ s|Jk−1 = i, Jk = j] P [Jk = j|Jk−1 = i]

=
Qij (1− Fij(s))∑
j∈E Qij (1− Fij(s))

= Qij
1− Fij(s)

1−
∑

j∈E QijFij(s)
.

�

As an immediate consequence of the previous lemma we obtain ᾱ(s) specialising to our particular
MRP.

Corollary 4.3. For s ∈ R+,

ᾱ(s) =
∑
ν∈±

ν

(
1 + να

2

)(
1− Fν(s)

1− F (s)

)
.

In particular i) α̃(0) = α, while ii) if marks and tick times are independent, ᾱ(s) ≡ α.

Proof. The claimed expression for ᾱ(s) follows from Lemma 4.4 applied to the MRP driving the
stock price: indeed, using the notation of the lemma with

E = {−1,+1} , Qij =
1 + ijα

2
, Fij =

∑
ν∈±

Fν1{ij=ν} ,

we have for any i ∈ E:∑
j∈E

j P [J1 = j|J0 = i, T1 ≥ s] =
∑
j∈E

jQij
1− Fij(s)

1−
∑

j∈E QijFij(s)

=
∑
ν∈±

ν

(
1 + να

2

)(
1− Fν(s)

1− F (s)

)
.

In order to prove that ᾱ(0) = α, we can either show it directly from (4.7.3), since

ᾱ(0) = E [J1|S0 = 0, J0 = +] = E [B1] = α ,

or by the analytic formula (4.7.4), noticing that (no masses in 0 are assumed)

F (0) = F+(0) = F−(0) = 0 .

For the final assertion, one can use (4.7.4), noticing that if the tick time (Nt) and mark process
(Jk) are independent, then

F+ = F− = F ⇒ ᾱ(s) =
∑
ν∈±

ν
1 + να

2
= α .

�

Remark 4.5. Notice that α < 0 does not imply that ᾱ(s) shares the same property: α represents
in fact the mean value of the trend variable Bn immediately after a price jump. The information
brought by time passing without jumps may lead to a different behavior (trend/reversion) from
the one described by α. �

Proposition 4.2. The asymptotic behaviour of θT (t, s) is given by

lim
T→∞

θT (t, s) = 2δ
ᾱ(s)

1− α
, ∀s ∈ R+. (4.7.5)
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Proof. We assume that the first jump event, under I0 = + and S0 = s, is described by the couple
(J1, T1). At time T1 (T1 < ∞, since the process Nt is assumed non-explosive), PT1 = 2δJ1,
IT1 = J1, ST1 = 0, while

E
[
PT1
∣∣P0 = 0, S0 = s, I0 = +1

]
= 2δ E

[
J1

∣∣S0 = s, I0 = +1
]

= 2δᾱ(s) .

We notice that (Pu)u≥T1 conditionally on (T1, J1) is given by PT1 plus the independent product
of J1 times an independent stochastic process (driven by the same dynamic of (Pt) conditionally
on S0 = P0 = 0 and I0 = +1), as shown by

Pt := PT1 + 2δ

Nt∑
k=2

Jk = PT1 + J1

(
2δ

Nt∑
k=2

k∏
i=1

Bi

)
,

which proves that

Pt
∣∣J1, T1 ≡ PT1 + J1P̂Nt−1 , P̂n ≡ 2δ

n∑
k=1

k∏
i=1

Bi ,

where (P̂n) is independent from J1. Now, by tower conditioning w.r.t. to (T1, J1),

lim
T→∞

θT (t, s) = lim
t→∞

θt(0, s) = lim
t→∞

E
[
Pt
∣∣P0 = 0, S0 = s, I0 = +1

]
= 2δᾱ(s) + 2δᾱ(s) lim

n→∞
E
[
P̂n

]
= 2δᾱ(s) + 2δᾱ(s)

∞∑
k=1

αk = 2δᾱ(s)

∞∑
k=0

αk = 2δ

(
ᾱ(s)

1− α

)
,

which concludes the proof. Notice that key element in the proof is finding a random time where
(Pt) “regenerates” (we can apply somehow the Markov property), and from which its average
long-run behavior can be deduced only by the embedded Markov chain (Jk) associated to the
Markov renewal process (Pt).

�

4.8 Appendix: proof of Theorem 4.3

The following proposition will be useful to improve the interpretation of the main result.

Proposition 4.3. Under a particular strategy ` := (`±(t, s)),

Et,s,i,y [YT ] = y + ig(t, s) ,

where g is the viscosity solution of

−∂g
∂t
− ∂g

∂s
− µ(s)g(t, 0) + σ2(s)g(t, s) +

∑
ν∈±

ν
(
hν(s)L+ λν(s)Φ1

±(L)
)
`ν(t, s) = 0 ,

g(T, ) = 0 .

Proof. Set

G(t, s, i, y) := Et,s,i,y [YT ] ,

which is associated to the Feymann-Kac equation

−∂G
∂t
− ∂G

∂s
−
∑
ν∈±

hν(s)∆G(t, 0, νi, y − νiL`ν(t, s)) (4.8.1)

−
∑
ν∈±

λν(s)

∫
∆G(t, s, i, y − νik`ν(t, s))ϑν(dk, L) = 0 ,

G(T, ) = y .
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Using the ansatz

G(t, s, i, y) = y + ig(t, s) ,

we obtain

−∂G
∂t
− ∂G

∂s
= i

(
−∂g
∂t
− ∂g

∂s

)
,

∆G(t, 0, νi, y − νiL`ν(t, s)) = −νiL`ν(t, s) + i (νg(t, 0)− g(t, s)) ,∫
∆G(t, s, i, y − νik`ν(t, s))ϑν(dk, L) = −νiΦ1

±(L)`ν(t, s) ,

g(T, ) = 0 .

The HJB equation (4.8.1) becomes

i

(
−∂g
∂t
− ∂g

∂s

)
−
∑
ν∈±

hν(s) (−νiL`ν(t, s) + i (νg(t, 0)− g(t, s))) + λν(s)
(
−νiΦ1

±(L)`ν(t, s)
)

= 0 ,

g(T, ) = 0 ,

and, by a further simplification,(
−∂g
∂t
− ∂g

∂s

)
− µ(s)g(t, 0) + σ2(s)g(t, s) +

∑
ν∈±

ν
(
hν(s)L+ λν(s)Φ1

±(L)
)
`ν(t, s) = 0 ,

g(T, ) = 0 ,

proving that g = g, which ends the proof.

�

Proof of Theorem 4.3

We define ηg := v(η), that solves, thanks to (4.4.11):

η

(
−∂g
∂t
− ∂g

∂s

)
+
∑
ν∈±

(
max
`∈{0,1}

(`Gν(t, s)− η〈Rν [`], g〉)−max (Gν(t, s), 0)

)
= 0 ,

ηg(T, ) = ηq2 ,

with

〈Rν [`], g〉 = hν(s)∆g(t, νq − `, s) + λν(s)

∫
∆g(t, q ∓ `k, s)ϑν(dk, L) (4.8.2)

:= 〈R0
ν , g〉+ `〈R1

ν , g〉 ,

and

〈R0
ν , g〉 = hν(s)∆g(t, νq, 0) , (4.8.3)

〈R1
ν , g〉 = hν(s) (g(t, νq − L, 0)− g(t, νq, 0)) + λν(s)

∫
∆g(t, q − νk, s)ϑν(dk, L) .

Using the (sub)-approximation for ε→ 0:

max (x− ε, 0) = max (x, 0)− ε1{x > 0}+ o(ε) ≈ max (x, 0)− ε1{x > 0} ,
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and since, by the operator continuity,

lim
η→0+

η〈R1
ν , g〉 = lim

η→0+
〈R1

ν , ηg〉 = 〈R1
ν , lim
η→0+

v(η)〉 = 〈R1
ν , 0〉 = 0 ,

the HJB equation is approximated by

η

(
−∂g
∂t
− ∂g

∂s

)
− η〈R0

ν , g〉+
∑
ν∈±

(
max

(
Gν(t, s)− η〈R1

ν , g〉, 0
)
−max (Gν(t, s), 0)

)
≈ (≥)

η

(
−∂g
∂t
− ∂g

∂s

)
− η

∑
ν∈±
〈R0

ν , g〉 − η
∑
ν∈±
〈R1

ν , g〉1{Gν(t, s) > 0} = 0

ηg(T, ) = ηq2 .

Dividing by η > 0 and using (4.4.13) for η = 0, we obtain

−∂g
∂t
− ∂g

∂s
−
∑
ν∈±
〈R0

ν , g〉 −
∑
ν∈±
〈R1

ν , g〉ˆ̀(0)
ν (t, s) = 0 (4.8.4)

g(T, ) = q2 .

Since we have used a sub-approximation, by the comparison principle, any solution of (4.8.4) is
an upper bound for g, which is positive since replacing g by g∗ = 0:

−∂g∗
∂t
− ∂g∗

∂s
−
∑
ν∈±
〈R0

ν , g∗〉 −
∑
ν∈±
〈R1

ν , g∗〉ˆ̀(0)
ν (t, s) ≥ 0

0 ≥ q2 .

Using the ansatz

g̃(t, s, q) := q2 + qζ̃1(t, s) + ζ0(t, s) ,

and injecting in the equations at (4.8.3), we obtain

〈R0
ν , g̃〉 = hν(s)

(
(νq)2 − q2 + (νq)ζ̃1(t, 0)− qζ̃1(t, s) + ∆ζ0(t, 0)

)
= hν(s)

(
q
(
νζ̃1(t, 0)− ζ̃1(t, s)

)
+ ∆ζ0(t, 0)

)
〈R1

ν , g̃〉 = hν(s)
(

(νq − L)2 − (νq)2 + (νq − L)ζ̃1(t, 0)− (νq)ζ̃1(t, 0)
)

+ λν(s)

∫ (
(q − νk)2 − q2 + (q − νk)ζ̃1(t, s)− qζ̃1(t, s)

)
ϑν(dk, L)

= hν(s)
(
L2 − ν2Lq − ζ̃1(t, 0)

)
+ λν(s)

∫ (
k2 − ν2qk − νkζ̃1(t, s)

)
ϑν(dk, L)

= hν(s)
(
L2 − ν2Lq − ζ̃1(t, 0)

)
+ λν(s)

(
Φ2
ν(L)− ν2qΦ1

ν(L)− νΦ1
ν(L)ζ̃1(t, s)

)
= q

(
−2ν

(
hν(s) + λν(s)Φ1

ν(L)
))

+ hν(s)
(
L2 − Lζ̃1(t, 0)

)
+ λν(s)

(
Φ2
ν(L)− νΦ1

ν(L)ζ̃1(t, s)
)
,

that, injected in (4.8.4), and splitting by the degree in q, lead to

−∂ζ̃1

∂t
− ∂ζ̃1

∂s
−
∑
ν∈±

hν(s)
(
νζ̃1(t, 0)− ζ̃1(t, s)

)
−
∑
ν∈±

(
−2ν

(
hν(s) + λν(s)Φ1

ν(L)
)

ˆ̀(0)
ν (t, s)

)
= 0 ,

ζ̃1(T, ) = 0 .

Setting ζ̃1 := 2ζ1, and noticing that

−
∑
ν∈±

hν(s) (νζ1(t, 0)− ζ1(t, s)) = µ(s)ζ1(t, 0)− σ2(s)ζ1(t, s) ,
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we obtain the characterisation for ζ1, while the probabilistic representation of ζ1 derives imme-
diately from Proposition 4.3. Grouping the remaining terms non multiplying q, we obtain

−∂ζ0

∂t
− ∂ζ0

∂s
− σ2(s)∆ζ0(t, 0)

−
∑
ν∈±

(
hν(s)

(
L2 − 2Lζ1(t, 0)

)
+ λν(s)

(
Φ2
ν(L)− 2νΦ1

ν(L)ζ1(t, s)
))

ˆ̀(0)
ν (t, s) = 0 ,

ζ0(T, ) = 0 .

We recall that, by the previous argument, g̃ ≥ g ≥ 0, which are η-uniform bounds for g.

For the error analysis, consider that

−∂g
∂t
− ∂g

∂s
− 〈R0

ν , g〉+ η−1
∑
ν∈±

(
max

(
Gν(t, s)− η〈R1

ν , g〉, 0
)
−max (Gν(t, s), 0)

)
= 0

〈A, g̃〉 := −∂g̃
∂t
− ∂g̃

∂s
−
∑
ν∈±
〈R0

ν , g̃〉 −
∑
ν∈±
〈R1

ν , g̃〉1{G±(t, s) > 0} = 0

g(T, ) = g̃(T, ) = 0 .

We define δ(η) := g̃− g ≥ 0, solving:

−∂δ
(η)

∂t
− ∂δ(η)

∂s
− 〈R0

ν , δ
(η)〉

−
∑
ν∈±
〈R1

ν , g̃〉1{Gν(t, s) > 0}+ η−1
(
max

(
Gν(t, s)− η〈R1

ν , g〉, 0
)
−max (Gν(t, s), 0)

)
≥

−∂δ
(η)

∂t
− ∂δ(η)

∂s
− 〈R0

ν , δ
(η)〉 − 〈R1

ν , δ
(η)〉ˆ̀(0) −

∑
ν∈±

∣∣〈R1
ν , g〉

∣∣ 1{|Gν(t, s)| < η
∣∣〈R1

ν , g〉
∣∣} =

−∂δ
(η)

∂t
− ∂δ(η)

∂s
− 〈Rν [ˆ̀(0)], δ(η)〉 −

∑
ν∈±

∣∣〈R1
ν , g〉

∣∣ 1{|Gν(t, s)| < η
∣∣〈R1

ν , g〉
∣∣}︸ ︷︷ ︸

Fη(t,s,q)

=

δ(η)(T, ) = 0 ,

where the inequality comes from the fact that

0 ≤ max (x− ε, 0)− (max (x, 0)− ε1{x > 0}) ≤ |ε| 1{|x| < |ε|} .

Since 〈A(η), δ(η)〉 = −∂δ(η)

∂t −
∂δ(η)

∂s − 〈Rν [ˆ̀(0)], δ(η)〉 is the infinitesimal generator of the Markov

process (t, St, Qt) under the trading strategy ˆ̀(0) (see (4.8.2)), we have the probabilistic repre-
sentation

δ(η)(t, s, q) = Et,s,q

[∫ T

t
Fη (t, Su, Qu)

]
.

Using the η uniform bound for g, we can provide a η uniform bound for
∣∣〈R1

ν , g〉
∣∣, so that

0 ≤ Fη ≤ F̄η ↓ 0, for η ↓ 0: using the monotone convergence theorem, δ(η) = 1
ηR

(η) → 0, ending
the proof. (Alternatively, an application of the stability principle of viscosity solution can be
used).
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Chapter 5

Long memory patterns in
high-frequency trading

Abstract

In this paper we present a long memory model, based on marked point processes, which describes
the stock price in the limit order book: its marks are driven by a VLMC (an efficient generaliza-
tion of high-order Markov chains), while the inter-arrival times (between two consecutive jumps
of the price) are represented by a self-exciting and independent univariate Hawkes process.

Instead of modeling directly the mid-price, we introduce a new price, called the fair one, with
the intent to reduce the microstructure noise and represent the fundamental value of the asset:
empirical evidences show that micro-structural trends, a potential source of statistical arbitrage,
emerge after noise reduction.

The agent participates to the market both via impulsive (pseudo) market orders and limit orders,
whose execution is modeled by Cox processes. Once the system is embedded into a Markovian
one, we illustrate a trading algorithm based on optimal control techniques: we reduce the
complex HJB equation associated to the problem to a simple system of variational ODE’s, for
which an explicit Euler scheme gives a computationally non-expensive solution.

Finally, Monte Carlo simulations show that the VLMC strategy over-performs the benchmark
of a uninformed agent modeling the fair price as a simple Markov chain.

keywords: market micro-structure, self-exciting process, VLMC, optimal high-frequency trad-
ing

113
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Introduction

One goal of this paper is to provide a model for the stock price in the limit order book and the
execution mechanism for a single agent. The main difficulties arising in its conception are due
to:

i) The microstructure noise: high-frequency mean reversion makes the best quotes move
fuzzily, so that the very identification of a reference price represents a challenge.

ii) The FIFO matching engine: knowing how trades arrive is not sufficient to know how the
agent limit orders are executed, since their position in the stack determines their execution
priority.

iii) Technical issues: the way from a complex model (several state variables, non Markovianity,
etc...) able to describe stylized facts (e.g. the volatility clusters) to an optimal trading
algorithm is often a hard one, both computationally and mathematically.

Literature background

A vast literature exists on market microstructure: each author has tackled the subject from a
different angle and with different techniques according to their main purpose being

� modeling the stock price,

� reproducing microstructure stylized facts,

� describing the market impact,

� providing an optimal trading application (mostly market making and optimal liquidation).

Roughly, this literature can be split into three big categories (since it is not the purpose of this
paper, we omit optimal liquidation algorithms).

i) Complex models on the observed price: these papers exploit a complex system of mutually
dependent point processes to reproduce several stylized effects characterizing the stock price
at high-frequency, as the microstructure noise and the volatility clustering, the explosion
of the mean signature plot, the Epps effect and the market impact. These models have
become more and more sophisticated, going from the seminal paper [7], where the price is
described by a couple of cross-exciting Hawkes processes, to [8], where the price and the
market activity form a 4-dimensional Hawkes process with arbitrary kernel, for which a
non-parametric estimation procedure is provided (see [7]). Limit theorems for large scale
observations are available in the single and in the multi-asset case (see e.g. [7]), and recently
[47] has shown a result concerning nearly unstable kernels. Using a different approach,
[36] describes the mid-price using semi-Markov processes, choosing another perspective to
represent the dependence among the tick times and the jump directions. Finally, in [25],
the price is reconstructed endogenously from the interaction of market orders with the first
levels of the book ([24]).

ii) Hidden continuous price: these papers describe the price as the representation of a hidden
and continuous fundamental value: a microstructure noise due to the discrete nature of the
book is supposed to hide the real value of the asset. A classic approach, with several further
developments on the estimation of the quadratic volatility under noised observations, is
due to [46]: the stock price observed at fixed frequency is seen as the sum of a Brownian
motion and an independent noise. A new framework has been recently proposed by [60],
who develops a very general model based on incertitude zones. Based on this work, [31]
enlightens the role of the tick in the limit order book, and suggests the existence of an
optimal tick size that guarantees the right liquidity distribution in the market.
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iii) Trading applications: in most of these papers the price is a continuous martingale (usually
a Brownian motion with constant volatility) while the agent execution is described by a
complex system of stochastic intensity point processes, where market impact, news arrival
and feedback execution are taken into account. In this list we can find the seminal papers [6]
and [42] on optimal market making, where the agent limit orders are assumed to be filled by
a Cox process with conditional intensity depending on the distance of the limit price from
the mid one. In [23], the authors keep the hypothesis of a continuous price, and introduce a
mean-reverting drift, while the agent execution is described by a complex system of Hawkes
processes, and asymptotic formulas for small risk aversion describe explicitly the optimal
posting distance. In [22], learning techniques are used to exploit information from the past
in order to improve and stabilise the agent performance. The recent paper [33] focuses
on option market making in a stochastic volatility framework with possibile parameter
misspecification and provides explicit formula in the risk neutral case, that are deformed
by the risk aversion of the agent. To conclude this non exhaustive list, [44] is one of the
rare example where the stock price is not necessarily a continuous martingale, where the
execution mechanism is pro-rata, rather than FIFO, and market orders are included in order
to keep the inventory close to zero.

Our attempt is to bridge the first and the third group, looking for a good compromise between
efficiency in price modeling and tractability. This paper aims a high-frequency trader want-
ing to detect short-term patterns of the stock price, controlling the market risk
associated to her portfolio. We work with liquid large tick assets (see [31] for a rigorous
quantitative definition), where the price jumps and the bid-ask spread are unitary.

The fair price

We first want to reconstruct the symmetry broken by both the microstructure noise
and the volatility clusters, and then design a simple model able to describe all the market
components. Replacing the mid-price by the fair one, defined as the best quote supplying the
least liquidity immediately after a jump (see Figure 5.2), we obtain a new price

� living on the tick grid,

� being more stable,

� such that the agent has a high probability to buy or sell the asset at that price before its
value changes.

In this paper we choose an independent description of the tick times (the process counting
the number of the fair price jumps) and the mark process (telling if the fair price jumps ↑ or
↓)1. With respect to [7] (where a bivariate Hawkes process drives upwards and downwards the
price process) we model the tick times by a univariate marked point process: this dimensional
reduction allows to add complexity somewhere else, in particular on the marks structure, the
real source of statistical arbitrage.

i) Tick times: observing the inter-arrival times on a long period, we detect clusters of several
days, as shown by Figure 5.1, during which the time between consecutive jumps is much
shorter than its mean value: a natural choice to reproduce this effect is a univariate
self-exciting Hawkes process. The tick times are the base ingredient for the description
of other counting processes in the limit order book: we assume that the jump intensity
of the fair price provides a time change such that an observer in this system
sees all the market events as Poisson processes.

1The independence hypothesis allows parallel estimation, which is relevant under a computational point of
view, since we are dealing with big data.
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Figure 5.1: number of jumps of the fair price per day (taken from our dataset).

ii) Marks: at the microstructure level, the fair price exhibits patterns of variable length
due to news anticipations, large order executions, trend following and several other reasons.
Since the price jumps are either upwards (+) or downwards (-), we need a binary discrete
process with long memory and efficient behaviour (parsimonious and quick to estimate). In
[36], we exploit Markov chains, which have no memory but still a sufficiently rich dynamic
to reproduce the microstructure noise. A natural candidate is represented by higher order
Markov chains, which are unfortunately affected by dimensional curse: their state space
grows exponentially with the memory depth, which makes their estimation extremely noisy
and applications computationally involved. An efficient alternative, inspired by applications
in DNA pattern recognition (see [15] for a complete theoretic framework) and text compress-
ing (as in the original paper of [59]), are VLMC’s (Variable Length Markov Chain), which
generalizes higher order Markov chains, avoiding the dimensional curse.

The matching engine (execution of limit and market orders)

We let the agent participate to the market in two ways:

i) Pseudo market orders: notice the fair price is close to a tradable reference price, i.e. a sell
(resp. buy) limit order of small volume at that level is likely to be filled before the fair
price changes. This is a natural consequence of the microstructure noise, that makes the
mid-price oscillate several times around the fair one before the latter jumps (see Figure 5.3):
before its next jump, the fair price is likely to coincide with the best-bid (resp. best-ask)
price, leading to immediate execution (since the order is of small size and the limit order is
sent at the market order level). Therefore, limit orders sent at that level are almost surely
filled before the fair prices changes, so that they can be considered as market orders in a
first approximation.

ii) Passive limit orders: in order to complement her strategy and compensate her lack of
information, the agent can place passive limit orders at the fair price ±1 tick, in order to
gain, in the market making fashion, an extra tick rewarding the provided liquidity.

This framework simplifies the execution model, since the asymmetry due to microstructure
noise and bid-ask imbalance is replaced by a system in equilibrium at the fair price.
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The trading algorithm

We use optimal control to exploit the pattern recognition technique previously described: we
find a non-trivial policy capable of reaching an optimal trade-off between the rewards due to
statistical arbitrages, and the risks associated to the trading activity. Taking care of transaction
costs is essential, since many trades with low average expected gain take place during the day.
Under the technical point of view, we reduce the complex system of variational PDE’s charac-
terizing the value function of the optimal trading problem to a system of variational ODE’s by
a suitable time change.

Figure 5.2: mechanical mean reversion. Starting from the left, the reader can see a low supply of liquidity at
the best-bid level, which leads the price system to jump downwards. After the jump, a pre-existing liquidity block
offers resistance on the bid side, while a brand new level provides only a modest support on the ask one, so that
the price jumps upwards, and so on. Summing up, since the price is likely to jump over the weakest side on the
limit order book, i.e. the one providing less liquidity, it is likely to revert. Notice that the weak side in the figure
does not change since only reversions occur.

Plan of the paper

Section 5.1 is devoted to the reduction of the microstructure noise and the definition of the fair
price. In Section 5.2 we provide a model for the fair price, independently describing the tick
times (the process counting the number of jumps) and the mark process (telling if the price
jumps upwards or downwards). Section 5.3 is devoted to the agent trading strategy and the
matching engine, while Section 5.4 deals with application to statistical arbitrage. We conclude by
commenting the numerical solution to the previously mentioned ODE: Monte Carlo simulations
show that this model theoretically outperforms the one presented in [36], where the
fair price is seen a simple Markov chain.
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Framework and basic assumptions

In this paper we assume that the tick size is equal to 1 and that all the other quantities (e.g. the
fees per transaction, bid-ask spread, etc. . . ) are expressed in this unity measure. Furthermore,
we assume that the bid-ask spread is constantly 1 tick, which is consistent with the data in our
possession: in extremely liquid large tick assets, as the Eurostoxx future, the reaction of market
participants is so fast that the bid-ask spread reverts instantaneously to its minimal value, i.e.
one tick, which justifies our hypothesis.

Data

Data are taken from the 3-month future contract (front) on the Eurostoxx50 exchanged on
EUREX, observed for 21 Mars to 17 June 2011 (contract maturity), from 09:30 to 16:00 Frankfurt
TZ. All the empirical graphs are based on this database.

5.1 From the mid-price to the fair one

In our previous paper [36], and in several others in the market microstructure literature (e.g. [44]
and [6]), the mid-price has been chosen as a reference price for market making application. For
optimal execution instead, the mid-price is replaced either by one of the best quotes (e.g. [10]),
depending if the agent is buyer or seller, while for some statistical papers on high-frequency
stylized facts (e.g. [7]), the modeled price was the last traded one. Our main target is the
pattern arbitrage and the mid-price does not seem a representative measure of the asset, since
it is impossible to trade at that price (its value is not on the tick grid). Since our agent is both
a buyer and a seller, the two best quotes are inappropriate as well, while the last traded price is
subjected to an extremely high microstructure noise, which makes it difficult to describe. Our
choice has been to define a different reference price, based on the notion of weak side
(for which we send to [36] for further details): we obtain a process less affected by microstructure
noise and which makes execution modeling less tricky.

The mid-price

We recall that the mid-price is defined as the arithmetic mean between the two best quotes in
the limit order book. Let us fix some notations.

Definition 5.1 (Mid-price). We assume that the mid-price is described by (Mn, T
M
n ), the latter

being the only sequence such that

JMn := MTMn
−MTMn − 6= 0 , n ∈ N∗ , (5.1.1)

Mt = MTMn
, t ≥ 0 , s.t. , TMn ≤ t < TMn+1 . (5.1.2)

Notice that (5.1.1) means that (Mt) jumps exactly at (TMn −), while (5.1.2) that it is piecewise
constant and cádlág. Notice that (Mt) is not on the tick grid Z, which makes impossible to trade
the asset at this price by sending any kind of order: our purpose is to replace this quantitative
measure by a more representative and “tradable” one.

The fair price

It is well-known that the mid-price is subjected to micro-structural mean-reversion: as pointed
out by the empirical literature (e.g. [36], [25] and [60]), at least on a big class of assets having
large tick ([31]), two consecutive jumps of the mid-price are often in opposite directions. Conse-
quently, multiple jumps in the opposite direction clear themselves and do not affect
the fundamental value of the asset: they represent only an uninformative noise, whose
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origin must be sought in the execution mechanism of the limit order book (see Figure 5.3 for
further details). A natural candidate to replace the mid-price is given by:

Definition 5.2 (Fair price). We define the fair price at (TMn ) as

Pn := Mn −
1

2
sgn

(
JMn
)
, k ∈ N∗ , (5.1.3)

and, as we did in Definition 5.1, we associate to (5.1.3) the sequence(
Pn, T

P
n

)
:= (Pn, Tn) ,

describing its cádlág path, where (Tn) represents the timestamps of non-zero jumps of the fair
price.

Notice that (Pt) jumps if and only if (Mt) does it twice consecutively in the same direction,
while it is stable under noise reversion (see Figure 5.3). We choose (Pt) as the new reference
price: sending a limit order at that fair price level, the agent has a high probability
of trading, independently if she is a buyer or seller (we explain the execution dynamic
in details in Section 5.3). In this sense, we say that the fair price is a representative measure of
the asset value. Furthermore, its jump intensity (ht) will define, in one of the following sections,
a time change for which an observer in the new system sees all the events in limit order book
as Poisson processes.

Figure 5.3: fair price corresponding to a path of the mid one (simulated data). Notice that the fair coincides
either with the best-ask or the best-bid price and that it is stable under the reversion of the mid-price, i.e it jumps
only if the mid-price jumps twice in the same direction.

5.2 The dynamic of the fair price

Before giving the price dynamic explicitly, we provide some (model independent) notations.

Definition 5.3. We call (Nt) the counting process associated to (Tn), i.e. the continuous cádlág
process (here T0 = 0) determining the number of jumps until t:

Nt := inf{k ≥ 0 : Tn ≥ t} , t ≥ 0 .

Definition 5.4. We call (Jn) the {−1,+1}-valued discrete process describing the jump direc-
tions of the fair price:

Jn := PTn − PTn− , n ∈ N∗ .
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Definition 5.5. Let It be the last direction taken by the fair price, i.e.

It := JNt .

It is worth noticing that (Nt) and (Jn) characterize (Pt) thanks to:

Pt = P0 +

Nt∑
k=0

Jn , t ≥ 0 . (5.2.1)

In our previous paper ([36]) we have given a description of the mid-price in terms of a semi-
Markov process, where the tick times and the mark processes are mutually dependent and with
short memory. In this paper instead, we assume that (Nt) and (Jn) are independent: this is not
in contradiction with our previous work, since in this case the reference price is not the same.
Getting free of the mutual dependence allows to use more complex models and describe long
memory patterns for both (Nt) and (Jn) (a vast empirical literature, as e.g. [12, 52] has
focused on the market persistence and long memory behavior).

Since the bid-ask spread is constantly 1 tick, the fair price - which coincides with the weak side
of the limit order book, i.e. the best-bid (resp. best-ask) after an upward (resp. downward)
jump, as shown in Figure 5.2 - is by definition one of the best prices: when the fair price is lower
(resp. higher) than the mid one, it coincides with best-bid (resp. best-ask). This implies that a
limit order at the fair price level is accepted by the trading platform as:

� a sell (resp. buy) limit order, sent when the fair price is the best-ask (resp. best-bid), is a
passive limit order waiting for a match;

� a buy (resp. sell) limit order, sent when the fair price is the best-ask (resp. best-bid), is an
aggressive limit order, which is automatically converted to a market one.

The difference between an aggressive limit order and a market one is that the first matches limit
orders on the first level only, while the second seeks for liquidity in deeper levels of the LOB
if necessary. Therefore, market orders have a bigger impact on the book, since they can clear
multiple levels, making the price jumps of several ticks.

5.2.1 The tick times

As usual, the first point process to be tested for (Nt) is the Poisson one, which in this case leads
to a poor fit, as shown by the qq-plot in Figure 5.5.

The Hawkes process approach

A renewal process is inappropriate as well, since, as shown by Figure 5.5, inter-arrival times
exhibit strong positive autocorrelation: a natural candidate to model (Nt) is thus a uni-
variate Hawkes self-exciting process. We quickly recall its definition (see [28] for a general
introduction) in order to fix notations.

Definition 5.6 (Hawkes process). A self-exciting Hawkes process is a point process whose
stochastic intensity is given by

ht = µt +
∑
Tn<t

ν(t− Tn) , µt > 0 , t ≥ 0 ,

where ν is a positive integrable function called kernel, while µt > 0 is called the base intensity.
In order to guarantee the stability of the process, we impose the constraint ||ν||1 < 1.



5.2. The dynamic of the fair price 121

The intraday seasonality

Figure 5.4 shows the intraday seasonality of the fair price jump activity, i.e. the empirical density
ρ for a fair price jump to be in a certain time region. As expected, it reproduces the typical
U-shape form of the intraday volatility and the market volume distribution. We assume that µt
depends on the day time, and to avoid the estimation of a collection of (µi), e.g. one for each
hour, we rather assume that

µt := µ(0)ρ(HH : MM(t)) ,

where HH : MM(t) projects the current time to the corresponding day-time, expressed in hours
and minutes after the midnight, and µ(0) ∈ R+ is a constant to estimate.

Figure 5.4: distribution of the fair price jumps according to the day time, reproducing the typical U shape
(empirical data).

The exponential kernel

A common choice is taking the exponential kernel, even if the recent literature ([7]) has pointed
out that the power one better represents the long memory of the limit order book. In order not
to lose the Markov property, we keep the exponential assumption

ν(t) := α exp(−βt) , 0 ≤ α < β ,

where the parameter constraint guarantees the stability of the process. For this particular kernel
(which is not the case for the power one for example) (ht) is a Markov process satisfying

dht = α(µt − ht−)dt+ βdNt . (5.2.2)

Estimation and goodness-of-fit

We choose the MLE procedure for the estimation of the triplet (h, β, α): the process log-
likelihood (see the original paper of [56]) is given by

loglik =

NT∑
n=1

[
ln
(
hTn−

)
−
∫ Tn

Tn−1

hsds

]
.

The exponential kernel guarantees an on-the-fly computation, which is a saving memory feature
for big databases. The goodness-of-fit is given by testing that(

ζn :=

∫ Tn

Tn−1

htdt

)
, n = 1, . . . , NT , (5.2.3)

is a i.i.d. sequence of exponential random variable of rate 1.
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Figure 5.5: qq-plot (left) and autocorrelation function (right) of the original inter-arrival times
(

Tn−Tn−1

E[Tn−Tn−1]

)
and of Hawkes-transformed one

(∫ Tn

Tn−1
hsds

)
against the exponential distribution (empirical data). This shows

a Hawkes process with exponential kernel fits the data much better than a Poisson one.

The stochastic time change

Figure 5.5 shows an exponential qq-plot and an autocorrelation plot of the time series (ζn),
proving that the model is consistent with data. Furthermore, the goodness-of-fit property (5.2.3)
suggests a natural time change where (Nt) is a standard Poisson process.

Definition 5.7 (Stochastic time change). Let τt be the stochastic time change given by

τt := 〈P 〉t =

∫ t

0
hsds . (5.2.4)

For every stochastic process Z we define its time changed by

Ẑ := Z ◦ τ−1 .

Notice that since 〈P 〉t ≥
∫ t

0 µudu, τ−1(s) is well defined for all s and bounded. In particular,

(N̂t) is a standard Poisson process, i.e. an observer of the limit order book having a
clock running (ht) faster than the normal one, sees the inter-arrival times as an i.i.d.
sequence of exponential random variables of parameter 1. We will use this clock to get
a Poisson normalization of all the other processes in the market.

The leverage effect

Figure 5.5 shows the fair price (Pt) and the jump intensity (ht) processes. As for the Heston
model, we suspected a negative correlation between volatility and price variation, usually called
leverage effect. In order to test this assumption, we have replaced (5.2.2) by

dht = α(µt − ht−)dt+ (β + lJNt)dNt , l ∈ R ,

where the size of the jumps of the stochastic intensity depends on the side of the price jump:
notice that (ht) is not predictable anymore, but adapted to the filtration generated by the fair
price. Surprisingly, a MLE estimation algorithm shows that this parameters is not statistically
different from 0: at this scale we have found no leverage effect.
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5.2.2 The marks of the stock price

Figure 5.6 shows that the autocorrelation function of the discrete time series (Jn) is not trivial,
which leads to reject the i.i.d. model. Marks exhibit positive auto-correlation: most of
the literature focuses on the short-term mean-reversion, but the latter seems to vanish once we
pass from the mid-price price to the fair one. Furthermore, Figure 5.6 shows that while there
are approximatively the same number of upwards and downwards jumps, this is not true for
the number or trends and reversions, the first widely overcoming the second. These trends are
caused by the strong positive autocorrelation of trade sides, mostly due to splitting of meta
orders [52]: splitting algorithms avoid the instantaneous and tremendous impact that a single
market order would have on the stock price, but they lead the agent to trade in the same sense
for a rather long period. Trends in the fair price are a consequence, among other things, of this
common practice. The goal of this paper is to perform an arbitrage of these trends,
hedging against fees and market risk.
Since more than 99% of the price jumps are of the same size of the tick, we can assume that
|Jn| = 1 a.s., even though the model can be easily extended to the general case introducing an
independent law for the absolute size of the jumps.

Definition 5.8. We assume that

Jn = Jn−1Un , n ∈ N∗ ,

where (Un) is valued in {−1,+1} as well.

As we did in [36], rather than studying the law of sequences of marks, we focus on the proba-
bilistic structure of sequences of trends (Un = 1) and reversions (Un = −1)2.

Figure 5.6: empirical distribution (left) and autocorrelation function of the time series (Jn) and (Un). Differently
from (Jn), the trend process (Un) exhibits an asymmetric empirical distribution, while both of them shows a non-
trivial autocorrelation function, proving the presence of memory in the two direction processes.

The Variable Length Markov Chain model

We assume that (Un) is a stationary Variable Length Markov Chain (VLMC) of finite memory,
and on the state space E := {−1,+1}. Formally (see [15] for a complete introduction to this
model):

2 The previous hypothesis is not necessary for the development of the model and its application, it just leads
to a nice simplification for the solution of the control problem. If the reader feels uncomfortable with such an
assumption, he/she can easily pass to the general case, where (Jn) is modelled directly.
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Definition 5.9 (VLMC). The VLMC process describing the dynamic of (Un) is given by

i) a satured tree3 with alphabet E, whose leaves (terminal nodes) are called “contexts” and
form a set denoted by C;

ii) a family of probability {℘±(c)}c∈C, such that for every u right infinite word on E

P
[
U0 = ±

∣∣U−1U−2 · · · = u
]

= ℘± (π(u)) , (5.2.5)

where

π :

∞∏
k=1

E(k) = EN∗ → C (5.2.6)

is the context function associated to the tree, mapping a right infinite sequence u to the only
context c := π(u) being prefix of u (continue reading for further details).

Remark 5.1. Notice that, since E = {−1,+1},

℘±(c) :=
1± α(c)

2
, c ∈ C ,

where α is the conditional mean of the next state given c.

Remark 5.2. Notice that since the process is stationary, (5.2.5) holds shifting all the indexes
by k.

The formal Definition 5.9 is better understood by looking at

root

+

-

0.05

-

+

0.10

-

0.05

-

0.20

Assume that we want to predict U0 and u := U−1U−2U−3U−4 · · · = +−+ + . . . : starting from
the root, walk on the tree following the path given by u (drawn in blue). At the third step the
walk ends at c = +−+, independently on U−k, k ≥ 4: the context c := π(u) is called the context
associated to u and α(c) = 0.10 determines the conditional distribution of U0 on the state space
E = {−1,+1}. In this case the next state is + 1 (resp. -1) with probability 0.55 = (1 + 0.10)/2
(resp. 0.45 = (1− 0.10)/2).

Definition 5.10 (Length function). We define the length function as

l(u) := d(root, π(u)) ,

where the distance d represents the length of the shortest path from the root to the context.

The function l of Definition 5.10 says how back in the past we need to go to have the conditional
distribution of the next space. Notice that the contexts have variable length and thus the model
has variable memory. If all the contexts had the same length, the tree would be complete of
order Lmax and describe the probabilistic structure of a high order Markov chain, of which the
VLMC model is a generalization. By the assumption of finite memory, l is bounded by a certain
Lmax <∞.

Remark 5.3. Notice that the context function π can be trivially extended to all left finite the
words, right finite and infinite, having one of the context as prefix (at most one context can enjoy
this property), i.e. all the left finite words but the internal nodes of the tree.

3In a satured tree, each node has either 0 or |E| children
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Estimation

The original estimation procedure is performed by the CONTEXT algorithm of Ris-
sanen (see [59]), and several implementations are available in C/C++. The estimation depends
on a confidence level and on a tuning parameter, called the threshold, giving a lower bound of
the number of observation associated to a context. For example, the VLMC package of in R
(see [54]) relies on one of these implementation and represents a user-friendly tool to estimate
and manipulate this model. Here is the result of the estimation procedure both under tree
representation (Section 5.2.2) and (c, α) scatterplot, as shown by Figure 5.7.

Figure 5.7: Estimation of α(c) on our dataset: the x axis contains the contexts, while the height (resp. the
size) of the circles represents the function value (resp. the empirical estimator of the probability of that context
to appear). Notice that α is positive almost everywhere, which is a further evidence of the fact that trends
are dominant w.r.t. reversions. The importance of the VLMC model relies in its application: even if the next
predicted state would almost always be Un = +, knowing its conditional distribution allows to know if execution
costs and market risk kill or not the expected return of the agent’s arbitrage strategy.

The Markov embedding

The VLMC processes allows to describe the probabilistic structure of long patterns, but, on the
contrary of higher order Markov chains, they are immune to the dimensional curse. Notice that

� a Markov chain of order n is a VLMC with on C = En,

� a Markov chain of order n is a (embedded in a) Markov chain on En, but

� a VLMC may not be embedded in a Markov process on its context set C.

The following example clarifies the previous statement: assume that the VLMC tree is given by

root
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-
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-

+

0.10

-

0.05

-

0.20
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R

+

+

+

+

0.12

-

+

+

0.08

-

0.19

-

0.12

-

0.15

-

+

+

+

0.16

-

0.05

-

0.1

-

+

+

+

+

+

+

0.28

-

-0.06

-

0.27

-

0.14

-

0.19

-

0.2

-

+

+

+

0.09

-

0.28

-

0.15

-

+

0.26

-

+

0.1

-

0.35

-

+

0.11

-

0.04

Table 5.1: estimation of the VLMC model on the process (Un).

Figure 5.8: 10-fold cross validation for the estimation of the VLMC tree on (Un). For a fixed level of confidence
(α = 5%), the minus-log-likelihood is shown as a function of the “threshold” parameter: for small thresholds,
the model over-optimises, while for big thresholds the model is an i.i.d. walk. The optimal threshold gives a
non-trivial tree structure, shown in Section 5.2.2.

and that the current context is c = − (red). If we could embed the VLMC in a Markov chain
on C, c is all we need to know to simulate the future trajectory of the process. We are able to
simulate the next step, since α(c) = 0.20 is its conditional mean: if the next state is +, all the
information we own to simulate the next state is given by the sequence +−, which is an internal
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node of the tree (green). Since π cannot be extended on internal node (see Remark 5.3), we
cannot simulate the next step. This suggests that we need to embed the VLMC in a Markov
chain on a state space larger than the context set.

We could embed the VLMC in a Markov chain of order L (the maximal length of a context),
but this leads to a unnecessarily huge state space. A better solution is available. In order to
provide a Markov embedding using the context function π, it is enough to define a Markov chain
on C with probability Q defined as

Qc := π∗(Pπ−1(c)) , (5.2.7)

where

� Qc is the distribution of the next state of the Markov chain given c,

� Pu is the distribution of (. . . U−2U−1U0) given (u = U−1U−2 . . .).

The reason why VLMC’s are not necessarily a Markov chain on their context set is that (5.2.7)
is not necessarily well defined: (5.2.7) is equivalently stated in terms of transition probability
as

Q[c→ d] := P[π−1(c)→ π−1(d)] .

Going back to the previous example, choosing c = − and d = +−+, we have

Q[+→ +−+] := P[(+ω . . .)→ (+−+ . . .)] = 0 , ω = + ,

=
1 + α(c)

2
, ω = − ,

which is not well defined, since it depends on ω. We would be done taking

root

+

-

0.05

-

+

0.10

-

0.05

-

+

0.20

-

0.20

We simply add two children to the context c = −, and let them inherit their father’s α function
to preserve the probabilistic structure. Now c = − is not a context anymore and it has been
replaced by −+ and −−. Notice that

Q[−+→ +−+] := P[(−+ . . .)→ (+−+ . . .)] =
1 + α(c)

2
,

Q[−− → +−+] := P[(−− . . .)→ (+−+ . . .)] = 0 ,

i.e. they are well defined in both cases.

The procedure consists in adding leaves to the tree and extend α by parental inheritance (in
order to preserve the probabilistic structure) until one finds a tree such that, for each context
c (of the new tree), the words +c and −c are not internal nodes (so that π is well defined). A
natural candidate is given by:

Definition 5.11 (Embedding algorithm). Call T the tree associated to the VLMC process and
define the recursive sequence of trees given by

T 0 = T ,

Tn+1 = Tn ∪ Tn+ ∪ Tn− , k > 0 ,

where ∪ denotes the union of trees (given by the set union of all the nodes) an Tn± are the subtrees
of Tn attached to the nodes ± (i.e. the two nodes attached to the root of the tree).
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By definition, if this algorithm converges, we are done.

Lemma 5.1. The algorithm given in Definition 5.11 converges, i.e.

∃T∞ := lim
n→∞

Tn ,

and T∞ does not exceed the complete tree of order Lmax.

Proof. By assumption T 0 has maximal height Lmax < ∞: we can prove by induction that
this holds for every Tn by the following argument. Assume Tn shares the same property for
some index k: Tn+ and Tn− has maximal height less or equal than Lmax − 1, which implies that
Tn+1 = Tn ∪ Tn+ ∪ Tn− has maximal height Lmax, and so this is true for all k’s by induction.
Since Tn ⊆ Tn+1, they are equal if and only if they have the same number of nodes, and since
Tn has at most 2Lmax nodes, we know that the algorithm eventually has a fixed point. In the
worst case scenario, the fixed point is the complete tree of order Lmax.

�

The resulting is usually much smaller than the complete one, and this helps us reducing the
dimension of the state space we will work with. From now on, we assume that T = T∞,
i.e. that the VLMC process is a Markov chain on its context set C.

5.3 Execution via limit orders

In this section we illustrate how the agent trades in this electronic market. We classify limit
orders according to the distance of their limit price from the fair one, dividing them
into level-0 and level-1 type.

Level-0 limit orders

A level-0 limit order is sent at the fair price level. In this case its price

� either improves the existing best quotes: since the spread is unitary, it is immediately
converted to a market order and executed,

� or coincides with the best quote: if the price reverts, the order is filled before the price
reverts4, otherwise a match is still possible before the fair price jumps.

Since reversions are frequent for large tick assets (see [36, 31]), a first approximation is to
consider level-0 limit orders as (pseudo) market orders, filled instantaneously with
probability δ ∈ [0, 1].

In order to prevent the agent to affect the exogenous dynamic of the price, i.e. to limit her
market impact, and to make impulsive control easier, an admissible policy will allow only kmax

pseudo market order per fair price jump.

Definition 5.12. We denote by

� (θj ,mj) the sequence of timestamps θj at which the agent sends a level-0 limit order of size
|mj | ∈ N, where if Iθj−mj > 0 (resp. < 0), the order of buy (resp. sell) type.

� (K̃t) the associated counting process, i.e.

K̃t := inf{j ≥ 0 : θj ≥ t} , t ≥ 0 ,

4In a backtest simulation, as soon as the price reverts, the agent limit order price coincides with the opposite
best quotes and thus it is automatically executed as in the first scenario.
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� (Kt) the process counting the number of level-0 limit orders since the last fair price jump,
i.e.

Kt := K̃t − K̃TNt
, t ≥ 0 .

Notice that (Kt) increments of 1 when the agent sends an order, while jumps to 0 at each
fair price jump.

Level-1 limit orders

A level-1 limit order is sent at the fair price level ±1 tick, +1 (resp. −1) for sell (resp. buy) limit
orders: they are used to gain an extra tick thanks to the execution, as in the market making
case, when no statistical pattern is known, or simply to improve the performance. The blue
(resp. red) band in Figure 5.9 shows a buy (resp. sell) limit order sent at the constant fair price
minus (resp. plus) one tick.

Figure 5.9: level 1 limit orders. According to the position of the fair price w.r.t. to the mid-price, a level 1
limit order coincides with either the first or the second level of the limit order book.

Definition 5.13 (Level-1 limit orders). They consist in sell (resp. buy) limit orders sent at the
fair price level + 1 (resp. -1) tick. We assume that the agent sends orders of small size, that
are entirely filled at a random time given by the first jump of a Cox process - independent from
any other process in the market - having conditional intensity w.r.t. to the current context c

htλ
1 + Itα(c)

2
, on the ask side , (5.3.1)

htλ
1− Itα(c)

2
, on the bid sidew

here λ ≥ 0 is non-negative constant. Notice that the total intensity of both sides is given by∑
ν∈±

htλ
1 + νItα(c)

2
= htλ , (5.3.2)

which does not depend on the current context.

The coefficient 1±Itα(c)
2 tells that if the price is likely to jump in a certain direction, the same

imbalance are reflected in the agent execution, adding adverse selection to the model, since
an order is more likely to be executed if the price is going in the same direction: it is easier for



130 5. Long memory patterns in high-frequency trading

an agent to buy (resp. sell) an asset whose value is likely to decrease (resp. increase). In [37]
we called this phenomenon weak adverse selection.

Notice that using level-1 limit orders, the agent tries to build a position gaining extra ticks
thanks to the execution (as in market making strategies): the level-1 coincides either with the
best or the second best price, depending on the relative position of the fair price w.r.t. to the mid
one. In practice, sending limit orders to the second level, one is able to gain priority execution
when the latter becomes the best one.

About the market impact, since the strong side (the opposite best quote of the weak side) usually
offers liquidity, we assume that these orders have no impact on the fair price.

Estimation

For the estimation of the parameter λ:

i) at T0 send unitary limit orders at PT0 ± 1 on both sides on the book;

ii) every time an order is executed, replace it with another one at the same level;

iii) at every (Tn), k ≥ 1, cancel all the existing limit orders and send new ones on both sides as
in the step 1.

Since (Nt) (the fair price counting process) and (Lt) (the level-1 execution counting process)
have intensity ht and λht, in the time system given by dτt = hdt their are Poisson processes of
intensity 1 (N̂) and φ (L̂). Using the Strong Law of the Large numbers,

lim
T→∞

LT
NT

= lim
τ→∞

L̂τ
τ

(
N̂τ

τ

)−1

= λ ,

which provides an estimator for λ (independent on the estimation of the Hawkes process driving
(Nt)).

5.4 The optimal trading problem

In this section we formalize the optimal control problem, defining the admissible trading strate-
gies and the corresponding value function. The final part of the section is devoted to the dimen-
sion reduction of the HJB equation associated to the control problem, leading to a numerical
low dimensional problem.

5.4.1 The agent strategy and the portfolio dynamic

We describe the dynamic of the processes involved in the optimal control problem and define
formally an agent strategy. We assume that every trade is subjected to an absolute transaction
cost ϕ ≥ 0. We denote by (Xt) and (Yt) the agent wealth and inventory associated to her
portfolio. We can reconstruct their dynamic using this straightforward lemma:

Lemma 5.2. Let L±(dt) the simple point process associated to the level 1 trading strategy (count-
ing the number of trades matching her level-1 limit orders) at the side ±It. The wealth and the
inventory associated to the agent portfolio are given by (here (Bj(p)) is an i.i.d. sequence of
Bernoulli random variable of parameter p):

Xt = X0 +
∑
ν∈±

∫ t

0

∫
(`ν)t− [νIt−Pt− + (1− ϕ)]Lν(dt) +

∑
j:θj≤t

(
Iθj−Pθj−mj − ϕ|mj |

)
Bj(δ) ,

Yt = Y0 +
∑
ν∈±

∫ t

0

∫
(`ν)t− (νIt−)Lν(dt) +

∑
j:θj≤t

(
Iθj−mj

)
Bj(δ) .
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Definition 5.14 (The admissible strategies). We assume that the agent admissible controls are
given by ((`t), (Ij)) ∈ A, where

� `t := (`+, `−)t is a continuously controlled process, with

(`±)t ∈ L := {0, . . . , L} ,

predictable w.r.t. Ft (the market filtration), where (`±It)t represents the agent level-1 position
at time t on the ask (+) and bid (−) side;

� Ij := (θj ,mj) is an impulsive sequence of level-0 limit orders such that Kt ≤ kmax, t ≥ 0,
and

mj ∈ {−mmax, . . . ,−mmax} := M ,

where mmax ∈ N;

� the inventory (Yt) satisfies

Y := {−ymax, . . . ,+ymax} = −Y ,

where ymax ∈ N ∪∞.

5.4.2 The HJB equation

The agent’s goal is to arbitrate frequent short-term patterns in the stock price, controlling her
exposure to market risk. So, as in the market making case, the agent faces an inventory risk,
i.e. she is adverse to keep large position for a long time.

Definition 5.15 (Portfolio value). The value of the agent portfolio is given by the wealth plus
the agent position valued at the fair price, i.e.

Vt := Xt + YtPt . (5.4.1)

The agent’s target is to maximize her profile over all the admissible execution strategies A, i.e.

value function at t = max
((`t),(Ij))∈A

E

[
Vtmax − η

∫ tmax

t
Y 2
u−d〈P 〉u

∣∣Ft−] ,
where

� t ≤ tmax <∞ is the agent horizon,

� η > 0 is called the agent risk aversion,

� F is the market filtration, generated all the processes mentioned so far.

Notice that if the system is Markovian, as in our case, the value function is a deterministic
function of the state variables taken at t−. In order to ease computation, it is simpler
but still meaningful to consider the same problem, but with a very specific random
horizon, i.e.:

Definition 5.16. The agent optimal control problem is given by

uk(t, τ, h, x, y, p, c, i) := max
`∈A

E

[
VT − η

∫ T

t
Y 2
u−d〈P 〉u

∣∣Ft−] , (5.4.2)

where T is the random time (see Figure 5.10)

T := inf {u ≥ t : τu = τmax} , (5.4.3)

and τt− = τ ∈ [0, τmax], ht− = h ≥ µt− ≥ 0, Xt− = x ∈ Z, Yt− = y ∈ Y, Pt− = p ∈ Z, Kt− =
k ∈ {0, . . . kmax}, Ct− = c ∈ C, It− = i ∈ {−1,+1} .
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Figure 5.10: three simulated trajectories of the process τt, showing the random hitting time of the τmax barrier.

The following table summarize how different processes are seen in the two system, the real (dt)
and the accelerated one (dτ).

clock dt dτ

Nt Hawkes standard Poisson
level−1 arrival rate htλ λ

horizon random T deterministic τmax

Here is the main result of the paper, concerning the characterization of the value function as
viscosity solution of a system of ODE’s. We use the notation convention that for a function
usually denoted by f = f(x1, . . . , xn):

∆f(y1, . . . , yn) := f(y1, . . . , yn)− f(x1, . . . , xn).

Theorem 5.1. The optimal control problem (5.4.2) is solved by

uk(t, τ, h, x, y, p, c, i) = x+ yp+ vk(τ, iy, c) ,

where vk(τ, q, c) is the viscosity solution of

min

{
−∂vk
∂τ
− C(vk), I(vk)

}
= 0 , (τ, q, c, k) ∈ [0, τmax)× Y× C× {0, . . . , kmax} , (5.4.4)

vk(τmax, ) = 0 ,

where
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C(vk) := γ(η)(c, q) +
∑
ν∈±
Jν(vk) + Lν(vk) ,

γ(η)(c, q) := α(c)q − ηq2 ,

J±(vk) :=
1± α(c)

2
∆v0 (τ,±q, π (±c)) ,

L±(vk) :=
1± α(c)

2

(
max

`∈L: q∓`∈Y
∆vk (τ, q ∓ `, c) + `(1− ϕ)

)
,

I(vk) := ∆vk+1(τ, q, c)− δ
(

max
m∈M: q+m∈Y

∆vk+1(τ, q −m, c)− ϕ |m|
)
, k < kmax

=∞ k = kmax

Furthermore, optimal controls are given in feedback forms by

ˆ̀±(τ, q, c) := arg max
`∈L: q∓`∈Y

∆vk (τ, q ∓ `, c) + `(1− ϕ) ,

m̂(τ, q, c) := arg max
m∈M: q+m∈Y

∆vk+1(τ, q −m, c)− ϕ |m| , k < kmax ,

:= do nothing , k = kmax

Proof. See Section 5.6.

�

Definition 5.17 (Strong inventory). We define as strong inventory the state variable:

q := iy .

Notice that the value function and the optimal control do not depend separately on the state
variable i and y, on their product. This simplification (it induces a variable reduction) is due to
the particular symmetry of the problem: the fair price and the limit order execution is described
relatively to the process (It), as one can see in Definition 5.8 and Definition 5.13. In practice,
when q > 0 (resp. q < 0), the agent inventory has the same (resp. opposite) sign of the last fair
price jump.

The following simple lemma remarks a monotonicity property of the value function in the k
state variable.

Lemma 5.3. The following inequalities hold:

vk(τ, q, c) ≥ vk+1(τ, q, c) , k < kmax .

Proof. Assume that at time τ we have sent no pseudo market after the last fair price jumps
again. Sending one of them of size m = 0, k increments and all the other state variables are
unchanged. By the very definition of the value function:

x+ yp+ vk(τ, q, c) ≥ x+ yp+ vk+1(τ, q, c).

Furthermore, since I(v) := ∞ if k = kmax, the optimal policy cannot send more than kmax

pseudo market order per fair jump, concluding the proof.

�

Remark 5.4. Notice that the value function u does not depend on the time variable t: this is
a consequence of the random horizon defined at (5.4.3), which is reflected in the HJB equation
by a t-independent terminal condition (which depends on τ instead). The proof of Theorem 5.1
is in fact based on the time change (5.2.4), thanks to which Hawkes processes become Poisson
ones, and the random horizon becomes deterministic.
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The role of the stochastic intensity (ht)

Looking at Theorem 5.1, one may wonder: where is the stochastic intensity (ht) gone? We notice
that neither the value function, nor the optimal controls depend on this state variable, while
estimating the parameters of the Hawkes process can be even more expensive that computing
the value function itself! Such an effort is unfortunately still necessary, since the role of the
stochastic intensity is hidden behind the random horizon T in (5.4.3): 〈P 〉t is indeed predictable
w.r.t. to the agent filtration, but only once the parameters determining its dynamic are known.
Long story short, the estimation of the Hawkes process Nt is necessary if and only if we want
to to know when to know what the current τ is.

Luckily, we observe numerically that the optimal policy stabilizes after few backward steps. So,
rather than a time dependent optimal policy, we can use its long-horizon version all over the
trading day, losing more and more the optimal behaviour as we get closer to horizon. Using this
recipe, the estimation of the Hawkes process parameters is less relevant under the performance
point of view, though it is a good advice to perform it to validate the model assumptions.

The scaling property

The next proposition is particularly useful when the agent is able to in the position of trading
a large amount of stocks. For assets like the DAX, because of the huge size of the contract (≈ 6
contracts for 1M EUR), a typical order consists in some unit, while for smaller assets like the
EUROSTOXX (≈ 30− 40 contracts for 1M EUR), a typical order has much bigger size. Since
computing the optimal policy means numerically maximizing over all the possible order sizes,
for contract having small face value we can construct a quantum policy, where all the orders are
multiple of a certain minimal size ℵ, and the inventory lives in ℵY. This will allow the agent to
handle big inventory without maximizing over all the possible limit order sizes.

Definition 5.18. We call the ℵ-version of the stochastic optimal control of Definition 5.16 the
problem where all the order sizes are a multiplied by ℵ, and the inventory process starts (and
then lives) in ℵY.

Proposition 5.1 (Scaling property for the quantum strategy). Let v(N,η) be the viscosity so-
lution of (5.4.4) associated to the ℵ-version of the optimal control problem of Definition 5.16,
with risk aversion η. Then

v
(N,η)
k (τ, q, c) = ℵv(1,ℵη)

k (τ, q/ℵ, c) , q ∈ ℵY .

Proof. See Section 5.7.

�

5.5 Numerical results

In this section we illustrate numerical result concerning the optimal trading problem described
in the previous section. We show both the numerical solution of the HJB equation (value
function and optimal control) and perform a Monte Carlo simulation in order to obtain both
the performance distribution (and its Sharpe ratio) and a stress scenario where the price does
not behave as expected.

Remark 5.5. Notice that (5.4.4) is a system of variational ODE’s, for which we can provide an
explicit Euler scheme with no CFL condition, which is computationally parsimonious w.r.t. to
an implicit scheme since system resolution is needed. For our parameter choice, our Java solver
obtains both value function and optimal controls in less than a second.
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Thanks to numerical methods, we observe that the optimal policy stabilizes after few backward
steps to a time-independent strategy. So, rather than the real optimal policy, we test only its
long-run version all over the trading day. This has 2 advantages.

i) Using this recipe, the estimation of the Hawkes process parameters is less relevant under
the performance point of view since knowing the current value of the process τt does not
affect the trading strategy. Anyway, it is a good advice to perform the tick times model
estimation to validate the model assumptions.

ii) No time interpolation is necessary: since the trading strategy is computed numerically, a
real time application would require an interpolation over the points of the grid where the
optimal solution has been computed: using the long-run version this problem does not occur.

Monte Carlo simulations must not be interpreted only as a tool to test and validate the numerical
solution provided by the Euler scheme. Thanks to simulations, we can access the performance
profile, i.e. its distribution at maturity rather the its mean only, but mostly important we
can test any kind of strategy, despite its optimality. In this case, solving numerically the HJB
equation leads us to an optimal strategy: its long-run version is not optimal anymore, but it is
simpler to implement and understand, and it is likely to perform well. Monte Carlo simulations
show that this intuition is correct.

The optimal controls

Figure 5.11 shows the both the continuous (level-1) and impulsive (level-0) policy, on the buy
and on the sell side for the slice k = τ = 0 (i.e. immediately after a fair price jump, and at
the beginning of the trading day). We find the inventory on the x-axis and the current context
on y-axis: a colored circle means that for the system occupying the state (q, c), the agent sends
an order. The side convention is for i = +: in the opposite case the sell and the buy side are
exchanged. Limit orders are of unitary size, i.e. L = 1, and kmax = 1.

� Comparing the upper side with the lower one, we immediately notice that the agent is more
active on the level-1 limit order, since it is almost always optimal to send a passive limit
order one tick away from the fair price. Level-1 limit orders lead to a big potential gain with
few risk. On the contrary, impulsive order are widely used for large values of |q|, in order to
bring the agent inventory back to zero with few uncertainty on the execution. Furthermore,
notice that the level-0 strategy is much more sensitive to the context variable c: this is due
to the fact that impulsive order are able to change position quickly and allow the agent
to follow the market, rather than being rewarded for providing liquidity, which is rather
market independent instead.

� Comparing the left side with the right one, we notice an asymmetry: the agent tends to
be more active on the buy side. In particular, for specify contexts, buying (for i= + , sell
otherwise) is optimal both on level-0 and the level-1 even when q is already positive. This
is due to the micro-structural trends emerging after the VLMC estimation (see Figure 5.7),
that leads the agent to exploit her anticipation on the market to align her position to the
market direction.

We do not show the result, for k > 0, since on the level-1 limit order no big changes emerge,
while no level-0 limit orders are allowed.

The value function

Figure 5.12 and Figure 5.13 illustrate the behaviour of the value function for various values of
the transaction costs (ϕ) and risk aversion (η). We plot

q 7→ 1

τmax

∑
c∈C

v(0, q, c) Q∗(c), ,
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Figure 5.11: optimal policy for i = + and k = τ = 0.

where Q∗ is the stationary probability of the VLMC process seen as a Markov chain on its
context set C. Notice that:

� the value function is concave in the q, since risk aversion penalizes large inventories;

� incrementing the transaction costs penalizes the value function, reducing the agent perfor-
mance;

� incrementing the risk aversion increases the concavity of the value function in the variable
q (strong inventory).

The no risk aversion case

We expect that reducing the η to 0, the value function has no concavity in q: this intuition is
correct and can be formalized. Taking no inventory constraint, i.e. setting Y = Z, and assuming
the polynomial growth of the value function, we can characterize the value function as an affine
function on the state variable q. Using the ansatz

vk(τ, q, c) = a(τ, c)q + bk(τ, c) ,

(5.4.4) becomes

min

{
−∂vk
∂τ
− C(vk), I(vk)

}
= 0 , (τ, c, k) ∈ [0, τmax)× Y× C× {0, . . . , kmax} , (5.5.1)

vk(τmax, ) = 0 ,
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where

C(vk) := γ(0)(c, q) +
∑
ν∈±
Jν(vk) + Lν(vk) ,

γ(0)(c, q) := α(c)q ,

J±(vk) :=
1± α(c)

2
(q (νa(τ, π(νc))− a(τ, c))) + ∆b0 (τ, π (±c)) ,

L±(vk) :=
1± α(c)

2

(
max
` : `≤L

` (νa(τ, c) + 1− ϕ)

)
,

=
1± α(c)

2
L (νa(τ, c) + 1− ϕ)+ ,

I(vk) := ∆bk+1(τ, c)− δmax
m∈M

(−ma(τ, c)− ϕ |m|) , k < kmax ,

:=∞ , k = kmax .

Choosing a(τ, c) solution of

∂a

∂τ
− α(c)− α(c)a(τ, π(νc)) + a(τ, c) = 0 , (τ, c) ∈ [0, τmax)× C , (5.5.2)

a(τmax, ) = 0 , c ∈ C ,

the coefficient multiplying q in (5.5.1) disappear. Furthermore, we have

Lemma 5.4. The function a(τ, c) has the probabilistic representation

a(τ, c) = E
[
PT
∣∣τt− = τ, Pt− = 0 , Ct− = c, It− = +

]
. (5.5.3)

Proof. Notice that, by the Feymann-Kac representation theorem,

G(t, τ, h, p, c, i) := E
[
PT
∣∣τt− = τ, ht− = h, Pt− = p, Ct− = c, It− = i

]
solves

−∂G
∂t
− h∂G

∂τ
− β(µt − h)

∂G

∂h
− h

∑
ν∈±

1 + να(c)

2
∆G(t, τ, h+ α, p+ νi, π(νc), νi) = 0 ,

G(τmax, ) = p ,

Using the ansatz G(t, τ, h, p, c, i) = p+iã(τ, c) and after tedious but straightforward calculations,
one checks that ã(τ, c) verifies (5.5.2), concluding the proof.

�

Going back to value function characterization, the equation describing bk has become (notice
that it depends on a(τ, c)):

min

{
−∂bk
∂τ
− C0(bk), I0(bk)

}
= 0 , (τ, c, k) ∈ [0, τmax)× C× {0, . . . , kmax} , (5.5.4)

bk(τmax, ) = 0 ,
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where

C0(bk) :=
∑
ν∈±
J 0
ν (bk) + L0

ν(bk) ,

J 0
±(bk) :=

1± α(c)

2
∆b0 (τ, π (±c)) ,

L0
±(bk) :=

1± α(c)

2
L (νa(τ, c) + 1− ϕ)+ ,

I0(bk) := ∆bk+1(τ, c)− δmax
m∈M

(−ma(τ, c)− ϕ |m|) , k < kmax ,

:=∞ , k = kmax .

We have proved that:

Proposition 5.2. In the special case when ymax =∞ (no inventory constraint) and η = 0, and
if vk(τ, q, c) has polynomial growth, then

vk(τ, q, c) = a(τ, c)q + bk(τ, c) ,

where a(τ, c) and bk(τ, c) are given by (5.5.2) (or (5.5.3)) and (5.5.4). Optimal controls are
given in feedback form by

m̂k(τ, c) = arg max
m∈M

−ma(τ, c)− ϕ |m| ,

ˆ̀±(τ, c) = L1{±a(τ, c) + 1− ϕ > 0} .

In particular, vk is an affine function of q with no concavity.

Monte Carlo simulations

Since we observe that, after few backward steps, the optimal policy stabilizes to a time asymp-
totic regime (a contribution to a formal proof is welcome), in these Monte Carlo simulations we
inject the optimal policy for τ = 0, calculated for τmax >> 0. As for the initial condition, we
took:

� k = 0 (we assume that the price has just jumped),

� i distributed according to δ1/2 + δ−1/2,

� c distributed according to the stationary distribution of the VLMC (seen as a Markov chain
on its context set C).

We investigate how risk aversion impacts the trading strategy5

� Figure 5.14 shows the inventory of different agents: for high levels of risk aversion, the
inventory reverts quickly to zero, and oscillates in small range, while for no risk aversion the
inventory obeys only to its absolute constraint (|Yt| ≤ ymax), which is a data of the problem.

� Figure 5.15 shows the cumulative performance of the strategy: risk aversion penalizes the
mean performance decreases, even though its variance is drastically reduced, as shown by
Figure 5.16.

We claim an information advantage deriving from the VLMC model for (Un) w.r.t. to a myopic
agent that sees the process as a simple random walk (in which case (Jn) is a Markov chain, as
in [36]).

5Low, medium and high risk aversions correspond to 0.0001, 0.001 and 0.01.
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Figure 5.12: the computed value function for different levels of transaction cost.

� Figure 5.17 shows the performance of a portfolio where the underlying asset is a VLMC:
the first agent uses an optimal strategy based on this information, while the second one
estimates the process as a simple random walk, and deduces her policy consequently. We
notice that the informed agent, whose right tail is fatter, outperforms the previous one in
terms of mean outcome.

� Figure 5.18 shows a stress test where the fair price is driven by a random walk having the
same stationary distribution of the VLMC process (seen as a Markov chain): the first agent
is aware of the price dynamic, while the second thinks the process is VLMC. The impact of
the model mis-specification is rather low compared to the information advantage previously
described, which makes this approach rather robust.

Conclusion and further developments.

In this paper we essentially wanted to show how to combine long memory models to provide
an efficient description of the stock price dynamic without precluding the development of an
optimal trading applications. Because of the modeling of the agent execution, our choice has
fallen on the fair price. Anyway, following the same idea, the model can be applied to the
mid-price itself, possibly introducing dependence between tick times and marks.

For further developments, an application to stock liquidation is in program, but this needs to
formalize the notion of impulsive market impact in these models keeping the global dimension
within reasonable bounds.
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Figure 5.13: the computed value function for different levels of risk aversion.

Figure 5.14: simulated evolution of the agent inventory for different risk aversions.

5.6 Appendix: proof of Theorem 5.1

Before giving the main result, we determine an upper and lower bound for the value function.
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Figure 5.15: simulated evolution of the trading performance for different risk aversions.

Figure 5.16: simulated histogram of the daily trading performance for different risk aversions.

Bounds of the value function

The first thing we to prove is that the value function is bounded by a function with polynomial
growth in its arguments: this guarantees that the value is the unique viscosity solution of the
HJB equation (with polynomial growth) associated to the optimal control problem (5.4.2).
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Figure 5.17: optimal policy and information advantage. The figure shows the simulation of different PnL
distributions (given by the portfolio valued at the mid-price, with no inventory penalization) when (Uk) is driven
by the VLMC model, and the first agent (red) estimates it as an i.i.d. sequence, while the second (blue) knows
its real dynamic. The right blue tail exceeding the red one represents the information advantage due to the
knowledge of the effective price dynamic.

Proposition 5.3. For the control problem of Definition 5.16:

uk(t, τ, h, x, y, p, c, i) ≤
(
λL+

1

4η

)
(τmax − τ) .

Proof. The portfolio process V defined at (5.4.1) starts at x+yp (which has polynomial growth),
and its dynamic can be written as

dVt = (dXt + Pt−dYt) + (Yt−dPt) + d〈Y, P 〉t ,
= (dXt + Pt−dYt) + (Yt−dPt) ,

where d〈Y, P 〉t = 0 a.s. for all t since Yt and Pt have no jumps in common. This leads to

Vt −
∫ T

t
Q2
u−d〈P 〉u = x+ yp+ Z1

t + Z2
t ,

Z1
t :=

∫ t

0
dXu + Pu−dYu ,

Z2
t :=

∫ t

0
Yu−dPu − ηY 2

u−d〈P 〉u .

It is thus enough to bound E[Z1
T |Ft−] and E[Z2

T |Ft−] uniformly in the strategy to achieve our
goal. These bounds are given by Lemma 5.6 and Lemma 5.7.
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Figure 5.18: stress test against model mis-specification and robustness of the optimal policy. The figure shows
the different simulated PnL distributions (given by the portfolio valued at the mid-price, with no inventory
penalization) when (Uk) is driven by an i.i.d sequence, and the first agent (red) knows the exact dynamic, while
the second one (blue) sees (Uk) as a VLMC process with the same stationary mean value of the real i.i.d. sequence
underlying the stock price. The figure shows, that, despite the model error, the second agent is not particularly
penalised by her mistake.

�

Lemma 5.5. Let (Nt) (resp. (Lt = L+
t + L−t )) be the process counting the number of jumps of

the fair price (resp. the number of times a level-1 limit order is executed). Then

E[NT |Ft−] = τmax − τ ,
E[LT |Ft−] = λ(τmax − τ) .

Proof. By (5.4.3):

E[NT |Ft−] = E

[∫ T

t
hudu|Ft−

]
= τmax − τ ,

E[LT |Ft−] = λE[NT |Ft−] = λ(τmax − τ) .

�

Lemma 5.6. For the control problem of Definition 5.16:

E[Z1
T |Ft−] ≤ λL(τmax − τ) .

Proof. Z1
t is a piecewise constant process jumping when the inventory does, and in particular

of −ϕ times the absolute size of the executed inventory plus an extra tick for each lot traded at
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level-1. This process represents the gain and the loss due to the execution only. Z1
t can jump

upwards of at most one tick for every level-1 limit order executed, while it has non-positive
jumps for level-0 executions. Since the agent is allowed to place on both sides limit orders of
size bounded by L <∞ and level-1 execution arrives (independently on their side) at rate λ in
the time changed dynamic,

E
[
Z1
T |Ft−

]
≤ LE [LT |Ft−] = λL(τmax − τ) ,

which ends the proof.

�

Lemma 5.7. For the control problem of Definition 5.16:

E[Z2
T |Ft−] ≤ 1

4η
(τmax − τ) .

Proof. Z2
t is a piecewise constant process jumping when either the inventory or the stock price

do. This process represents the gain due to the pattern anticipation. For η > 0

E
[
Z2
T |Ft−

]
= E

[∫ T

t
Yu−dPu − ηY 2

u−d〈P 〉u|Ft−
]

≤ E

[∫ T

t
|Yu−|d〈P 〉u − ηY 2

u−d〈P 〉u|Ft−
]

≤ E

[∫ T

t
max
Yu−

(|Yu−| − ηY 2
u−) d〈P 〉u|Ft−

]
≤ 1

4η
E

[∫ T

t
d〈P 〉u|Ft−

]
=

1

4η
(τmax − τ) ,

which ends the proof. Notice that limη→0+
1
4η =∞.

�

Proposition 5.4. For the control problem of Definition 5.16:

uk(t, τ, h, x, y, p, c, i) ≥ x+ yp−
(
|y| − ηy2

)
(τmax − τ) .

Proof. For the lower bound of the value function, is in enough to bound the expected value of a
single strategy. Canceling all the living limit orders and holding the inventory until the random
horizon, we obtain

VT = x+ yPT ,

Rt,T = −ηy2

∫ T

t
d〈P 〉u .

We conclude by taking expectations:

E[VT
∣∣Ft−] = x+ yp+ E[PT − p

∣∣Ft−] ≥ x+ yp− |y| (τmax − τ) ,

E[Rt,T
∣∣Ft−] = −ηy2(τmax − τ) .

�
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Proof of Theorem 5.1

Thanks to Proposition 5.4 and Proposition 5.3, guaranteeing the problem is well-posed and that
the value function grows sub-polynomially, we can characterize the value function as the unique
viscosity solution (with polynomial growth) of the HJB equation

min

{
−∂vk
∂t
− h∂vk

∂τ
− C(vk), I(vk)

}
= 0 , 0 ≤ τ < τmax , (5.6.1)

vk(τmax, ) = 0 ,

where

C(vk) :=
∑
ν∈±
J 0
ν (vk) + L0

ν(vk) ,

J 0
±(vk) := β(µt − h)

∂vk
∂h

+ h

(
1± α(c)

2

)
∆v0 (t, τ, h+ α, x, y, p± i, π (±c) ,±i) ,

L0
±(vk) := λh

(
1± α(c)

2

)
max

`±:y±i`±∈Y
∆vk (t, τ, h, x± ip`− |i`|ϕ+ |i`|, y ∓ i`, p, c, i) ,

I(vk) := max
m : y+im∈Y

δvk+1(t, τ, h, x+ ipm− ϕ |m| , y − im, p, c) + (1− δ)vk+1 , k < kmax ,

:=∞ , k = kmax .

Notice that:

� J 0
±(φ) is the operator associated to the jump of the fair price: the sign ± corresponds to a

jump in the same ( + ) or the opposite (-) sign of the state variable i;

� L0
±(φ) is the operator associated to activity at level-1: the sign± corresponds to an execution

of a limit order on the side i, where the side = + (resp. side = −) is for the best ask (resp.
bid);

� I(φ) is the operator associated to the impulsive activity (pseudo market orders): an impulse
of size m correspond to a pseudo market order of volume |m| of type isgn(m), where type
= + (resp. type = −) is for sell (resp. buy) orders. Notice that I(φ) = ∞ if k = kmax

guarantees the strategy admissibility: it is always suboptimal to send an impulse if the agent
has already sent kmax after the last fair price jump.

Using the ansatz

uk(t, τ, h, x, y, p, c, i) := x+ yp+ vk(τ, q = iy, c), ,

we obtain

−∂uk
∂t

= 0 ,

J 0
±(uk) = h

(
1± α(c)

2

)
(v0 (τ,±q, π (±c))± q) := λh (J±(vk)± q) ,

L0
±(uk) = λh

(
1± α(c)

2

)
max

`±:q±`+∈Y
vk (τ, q ∓ `, c) + `(1− ϕ) := hL±(vk) ,

I(uk) = ∆vk+1(τ, q, c)− δ max
m : q+m∈Y

(∆vk+1(τ, q −m, c)− ϕ |m|) := I(vk) , k < kmax ,

:=∞ := I(vk) , k = kmax.

The HJB equation (5.6.1) becomes
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min

{
h

(
−∂vk
∂τ
− C(vk)

)
, I(vk)

}
= 0 , (5.6.2)

vk(τmax, ) = 0 ,

where

C(vk) := α(c)q − ηq2 +
∑
ν∈±
Jν(vk) + Lν(vk) := γ(η)(q, c) +

∑
ν∈±
Jν(vk) + Lν(vk). .

Since h ≥ µt > 0, we can divide by h, and conclude the proof.

Remark 5.6. Notice that we have simplified (5.6.1) introducing the extra state variable τ , and
dividing by h at (5.6.2). For this proof to work, two crucial assumptions are necessary:

i) the trade intensity on the level-1 is proportional to h (see (5.4.3)),

ii) the terminal condition does not depend on t, which explains the choice of the random horizon
rather than the standard deterministic one (see (5.3.1)).

5.7 Appendix: proof of Proposition 5.1

The proof is somehow intuitive and straightforward, but handing notations needs some care. We
start from the very equation and prove the result by a simple variable change. We know that

v
(N,η)
k (τ, q, c) satisfies (5.4.4), where C, γ(η) and J are unchanged, while (following the notation

of Theorem 5.1),

L±(vk) = λ

(
1± α(c)

2

)
max

`±:q±N`+∈Y
vk (τ, q ∓ ℵ`, c) + ℵ`(1− ϕ) ,

I(vk) := max
m : q+ℵm∈Y

δ (Vn+1(τ, q − ℵm, c)− ϕ |m|) + (1− δ)Vn+1(τ, q, c) := I(vk) , k < kmax ,

:=∞ , k = kmax .

Notice that q ∈ ℵY, since that inventory can jump only of ±N , and we assume it starts on the
lattice ℵY: by the variable change

vk(τ, q, c) = ℵṽk(τ, q̃ = q/ℵ, c), ,

we obtain

J±(vk)(τ, q, c) = ℵL±(ṽk)(τ, q/ℵ, c) ,
L±(vk)(τ, q, c) = ℵL±(ṽk)(τ, q/ℵ, c) ,
I±(vk)(τ, q, c) = ℵI±(ṽk)(τ, q/ℵ, c) ,

γ(η)(q, c) = ℵ
[
α(c)(q/ℵ)− (ℵη)(q/ℵ)2

]
= ℵγ(ℵη)(q/ℵ, c) .

Since we can factor ℵ everywhere, ṽ is the solution of the unitary problem (N = 1) where the
risk aversion is multiplied by ℵ. This ends the proof.



Notations

Sets

We denote by

� N,Z,R the natural, integers and real numbers;

� N∗,Z∗,R∗ the corresponding sets without 0;

� 1{A} the indicator function on the A set.

The agent portfolio

Throughout this work, we will assume that an agent participates to the market via a trading
strategy. A single-asset agent portfolio contains a certain inventory of the asset: we denote by

� (Pt)t≥0 the reference price at which the portfolio is evalued: it can either be the mid-price,
or any reference price chosen as representative of the intrinsic asset value;

� (Xt)t≥0 the agent bank account, also called wealth, which is subjected to no interest rate:
it can be either positive, or negative, if the agent has a debt;

� (Yt)t≥0 the agent inventory, either positive (long position) or negative (short position): short
selling is allowed;

� (Vt)t≥0 the mark-to-market of the portfolio, i.e. Vt := Xt + YtPt;

� T is the agent horizon, which can be deterministic or random, but in both cases almost
surely finite;

� ϕ ≥ 0 is the execution cost (fees) to which each transaction is subjected;

� η ≥ 0 is the agent risk aversion to hold a large inventory.

The piece-wise constant reference price

Most of the times the reference price will be described by a point process, i.e. a piece-wise
constant process which jumps at random times of a random quantity. In this case we denote by

� (Tn)n∈N the timestamps at which the price jumps;

� (Sn)n∈N∗ the inter-arrival times, i.e. Sn := Tn − Tn−1;

� (Pn)n∈N the value of the price during the interval [Tn, Tn+1), i.e. Pn := PTn ;

� (Jn)n∈N∗ the price jumps at Tn−, i.e. Jn := Pn − Pn−1 6= 0;

� (Ĵn)n∈N∗ the direction of the stock price jumps at Tn−, i.e. Ĵn := sgn (Jn);

� (Un)n∈N∗ the type of direction taken by the stock price at Tn−, i.e. Un := ĴnĴn−1;
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� (Nt)t≥0 the counting process Nt := inf {n :
∑n

k=1 Tk ≤ t}, with the convention that N0 = 0.

� (Pt)t≥0 the real time value of the reference price, i.e. Pt := P0 +
∑Nt

k=1 Jk;

� (It)t≥0 the last direction taken by the stock price, i.e. It := ĴNt ;

� (St)t≥0 the elapsed time since the last price jump, i.e. St := t− TNt ;

Markov processes

We will often use conditional expectation in this work. For a general (multi-dimensional) Markov
process (Xt)t≥0 we denote by

� Et,x [XT ] := E[XT

∣∣Xt = x];

� if the reference price (Pt)t≥0 is Markovian, we denote by

π(t, p) := Et,p [PT ] =: p+ ε(t, p) =: p+ iθ(t, p) ;

For any Markov process (Xt) such that Xt = x we will denote by

∆t,xg(t, y) = g(t, y)− g(t, x) ,

where g denotes a generic test function. In practice, we will omit the subscript “t, x” when it
is clear from the context. This notation will be particularly useful for the description of the
infinitesimal generators of jump processes appearing in the HJB equations.
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