
HAL Id: tel-01161784
https://theses.hal.science/tel-01161784

Submitted on 9 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of flowering plants
Olga Petrenko

To cite this version:
Olga Petrenko. Simulation of flowering plants. Modeling and Simulation. Université de Limoges;
Universitat de Girona, 2014. English. �NNT : 2014LIMO0067�. �tel-01161784�

https://theses.hal.science/tel-01161784
https://hal.archives-ouvertes.fr


 

UNIVERSITE DE LIMOGES 

ECOLE DOCTORALE « Sciences et Ingénierie pour l’Information » 

FACULTÉ DES SCIENCES ET TECHNIQUES 

Thèse 

pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ DE LIMOGES 

Discipline / Spécialité : Informatique et Applications 

présentée et soutenue par 

Olga PETRENKO 

le 12/12/2014 

Simulation des plantes à fleurs 

 

Thèse dirigée par Mateu SBERT, Djamchid GHAZANFARPOUR 

JURY : 

Président du jury 

M. Miguel CHOVER Sellés, Professeur, INIT, Université Jaume I de Castelló 

Rapporteurs 

M. Jean-Pierre JESSEL, Professeur,  IRIT,  Université Paul Sabatier 

M. Xiaopeng ZHANG, Professeur, National Laboratory of Pattern Recognition,  

Institute of Automation, Chinese Academy of Sciences 

Examinateurs 

M. Jean-Pierre JESSEL, Professeur,  IRIT,  Université Paul Sabatier 

M. Olivier TERRAZ, Maître de Conférences - HDR, XLIM, Université de Limoges 

M. Miquel FEIXAS, Maître de Conférences, GIlab, Université de Girona 

T
h

ès
e 

d
e 

d
o
c
to

ra
t 



 

À ma famille, 

À Ivan 

  



 

Remerciements 

Cette thèse est le produit de nombreuses années de travail, les commentaires et 

contributions de nombreuses personnes autour de moi. D'abord, je tiens à remercier mes 

directeurs, Mateu Sbert et Djamchid Ghazanfarpour pour le soutien incomparable qui m'ont 

été donnée tout au long de la thèse. Deuxièmement, je tiens à remercier Olivier Terraz pour 

son dévouement, son aide et les commentaires. Je remercie beaucoup à Dimitri Plemenos qui 

m’a donné la possibilité d’efectuer cette thèse de doctorat. Il faut aussi mentionner la 

coopération de mes collegues du bureau : Mark, Jorge, Ruben, Mario, Ferran, Roger, Xavi ... 

tous ont contribué dans la réalisation de cette thèse. Je remercie également tous les autres dans 

le Département d'informatique et de Mathématiques appliquées - Imma Boada, Miquel 

Feixas. Un grand merci à Nicolas Sunyer pour son soutien moral et les bons moments passés 

à parler de la thèse et bien d'autres choses. 

Je tiens à remercier ma famille qui m'a tout donné et aidé non seulement dans la thèse, 

mais aussi tout au long de ma vie. Merci à mes parents pour leur soutien constant et la 

confiance aveugle dans ma capacité. 

Enfin, un merci tout spécial à Ivan, d'être de mon côté, pour la patience, de soutenir les 

bons, et surtout les moins bons moments tout au long de la thèse. 

  



 

Résumé 

Les plantes ont longtemps intrigué les scientifiques, qui, avec son importance vitale 

pour la planète, sa beauté et l'énorme quantité de formes ayant, les rend un sujet attrayant pour 

la recherche. Un aspect intéressant est la création d'un modèle virtuel capable de simuler de 

vraies plantes avec un degré élevé de précision. L'objectif de notre étude est les plantes à 

fleurs, qui jouent un rôle énorme dans notre vie de fins nutritives et médicales à 

l'embellissement de l’environnement. L'obtention d'un modèle géométrique exacte d'une fleur 

est très utile, car elle joue un rôle important dans la validation du modèle virtuel.  Par ailleurs, 

la visualisation de paramètres non directement traçables dans les plantes à fleurs vivantes est 

d'une grande aide à l'étude de la physiologie. L'énorme biodiversité entre les différentes 

parties d'un spécimen et entre les différents specimens fournit une vaste zone d'objectifs qui la 

synthèse d'image doit contester.  

Modéliser des fleurs est un sous-ensemble d'un espace de recherche beaucoup plus 

vaste que la modélisation de plantes. Les plantes à fleurs ont des caractéristiques structurelles 

qui les rendent différentes des structures d'arbres, d’arbustes ou de l’herbeÀ ce jour, on ne 

tient pas une grande importance à essayer cette ligne de recherche d'une façon particulière et 

en général a été classé dans le contexte plus large de la modélisation des plantesNous avons 

choisi d’utiliser le «L-systems» pour la procédure de la modélisation, et comme base pour 

notre recherche. Il y a différents mécanismes de catégorisation topologie de la plante dans 

chacune des étapes de sa croissancePour construire le plan de la structure d'une plante, avec 

une courte grammaire, quelques lignes étaient quelque chose qui dès le premier moment a 

suscité l'intérêt et par la suite évolué en quelques systèmes d'interprétation géométriques pour 

la modélisation des plantes. Notre objectif est d'étudier les moyens efficaces de décrire la 

structure des plantes à fleurs en utilisant L-systems. Tout d'abord, nous proposons de 

représenter les formes des feuilles, pétales, étamines, carpelles, etc. Avec une extension de L-

systems - un modèle basé sur trois cartes généralisées dimensions - 3Gmaps L-systèmes, qui 

peut être appliquée avec succès pour la modélisation des plantes à fleurs. La description de la 

grammaire de la structure des plantes à fleurs fournit un nombre illimité de ses interprétations 

géométriques. Deuxièmement, nous allons améliorer le processus d'écriture de la grammaire 

par l'ajout d'une nouvelle fonctionnalité de paramétrage interactif. Troisièmement, nous allons 

proposer une nouvelle méthode de modélisation inverse des plantes à fleurs, où l'utilisateur 



 

peut définir de manière interactive les caractéristiques des fleurs. L'algorithme utilise cette 

information comme une entrée, qui est ensuite analysée et codée en tant que L -systèmes 

grammaire. Enfin, nous allons présenter une méthode pour créer des clairières de fleurs 

virtuelles à l'aide de gestes Kinect. Nous voulons faire remarquer que notre travail a été fait 

avec la plateforme de logiciel 3Gmaps L- système développé dans le cadre de la thèse 

d'intégrer toutes les techniques proposées. 

Mots clefs : Synthése d’images, rendu réaliste, phénomène naturel, phénoménologie, 

fleurs. 

 

 

  



 

Simulation of flowering plants 

Abstract  

Plants have always intrigued scientists as besides of its sheer importance for the earth, 

their beauty and enormous variety of shapes tempt to thoroughly inquire about its nature.  One 

of the aspects of this inquiry is the creation of the virtual model in order to mimic real plants 

to a high degree of accuracy. The focus of our study is the flowering plants, which play a 

huge role in our life from nutritive and medical purposes to beautifying the environment. 

Obtaining an accurate geometrical model of a flower is quite useful as it plays an important 

role in the validation of the virtual model. Besides, the visualization of parameters not 

traceable directly in living flowering plants is a stand-by in studying their physiology. A huge 

biological diversity both within and between individuals provides a vast area of objectives 

which the image synthesis must challenge. 

Flower modelling constitutes a part of a larger research area, plant modelling. 

Flowering plants have their particular structural features which are different from the structure 

of trees, bushes or grass. Still not a lot of emphasis has been placed to date on this problem, as 

it was categorized within the modelling of plants in general.  We chose a procedural modeling 

using L-systems as a base of our research.  L-system is a very powerful method of plant 

simulation.  It provides a means of characterizing the topology of a plant at every stage of its 

growth. Grasping the plant structure with just several lines of grammar attracted immediate 

interest and later on evolved into several powerful geometrical interpretation system used in 

plant modelling.  Our purpose is to study efficient ways of describing the structure of 

flowering plants by means of L-systems.  First, we will propose to represent the shapes of 

leafs, petals, stamens, carpels, etc. with an extension of L-systems – a model based on three 

dimensional generalized maps – 3Gmaps L-systems, which can be successfully applied for 

the modelling of flowering plants.  The grammar description of the structure of the flowering 

plants provides an unlimited number of its geometrical interpretations. Second, we will 

improve the process of grammar writing by adding a new functionality of interactive 

parameter adjustment. Third, we will propose a new method of inverse modelling of 

flowering plants, where the user can interactively define the flower characteristics. The 

algorithm uses this information as an input, which is then analyzed and coded as L-systems 



 

grammar.  Finally, we will present a method for creating virtual glades of flowers using 

Kinect gestures. We want to remark that our work has been done with 3Gmaps L-system 

software platform developed in the scope of the thesis to integrate all the proposed 

techniques.  

Keywords : computer graphics, realistic rendering, natural phenomena, enomenology, 

flower. 
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Introduction 

Men's habitat is a green carpet of plants covering our earth. We can find plants almost 

everywhere in the scenery, be it fully natural or urban. They play a huge role in our life 

supplying us with oxygen, being the basis of most food webs, providing habitats for animals 

and beautifying our environment.  And the most impressive and astonishing among them are 

flowers.  Simulation of vegetation is a wide ranging research area of computer graphics. As 

flowering plants have such an intricate structure consisting of numerous components which, 

in its turn, have an enormous variety of shapes the task of its simulating is even more 

challenging for computer graphics. 

There are various aims of the plant simulation, such as enlarging knowledge and 

helping with practical applications.  It can make this knowledge accessible to and usable by 

non-expert. The visualization of growth simulations provides us with an instructive tool 

useful for agronomists and foresters, as well as for educational purposes. The use of plant 

modelling in computer game industry is also very challenging. Flowering plant 

approximations are especially hard, since organic structures tend to be difficult to describe in 

terms that graphics cards understand. 

Plant generation has received a lot of attention in computer graphics. And the main 

research is focused on modelling of trees rather than flowers. Although, being its part, 

flowering plants have their particular structural features which are different from the structure 

of trees, bushes or grass. Still not a lot of emphasis was placed on this problem, as it was 

categorized as the modelling of plants in general.   

We can distinguish several approaches to plant simulation. The first one is aiming at 

getting a plausible model while the botanical correctness is usually disregarded. This 

approach is quite intuitive for a common user, but has the inconvenience of creating each 

sample from scratch in case of generating a variation of slightly different plants (Ijiri et al., 

2005), (Kang & Quan, 2009). The other approach could be referred to as procedural 

modelling, which tries to provide biologically faithful and visually realistic models 

(Prusinkiewicz et al., 2000), (Prusinkiewicz & Federl, 1999), (Prusinkiewicz & Lindenmayer, 

1990). Most of these approaches are based on a mathematical theory of plant development, 

namely L-systems, which can generate complicated multicellular structures from a small 



 

number of rules. They are able to get a lot of plant samples based on a single grammar by 

simply changing the parameter values.  Although these methods can provide impressive 

results, the underlying algorithms are not so intuitive for common users. 

The study of these methods points to look for another approach which can combine 

science with art, establishing interplay of the realism of the models and clearness for the 

users.  In this thesis, we want to face this challenge and provide solutions for a number of 

open problems. 

Challenges 

Over the years the simulation of plants has been extended and the resulting models 

have gained acceptance in as a research tool in biology and have led to increasingly 

convincing visualizations. However, in image synthesis applications the simulation-based 

approach has several drawbacks: 

Visual realism of the models depends on the biological and physical accuracy of 

simulations. The modeler needs to have a good understanding of the underlying processes 

which makes comprehensive models complicated and results in long simulation times.  

All flowers look different, even the specimens of the same type have slight variations. 

Using the same model in the picture would produce a striking, artificial regularity. In order to 

prevent this each flowering plant variation has to be modeled separately.  

Using a set of rules that describe the emergence and growth of individual plant 

components is very efficient and provides very realistic and biologically plausible models.  

But the underlying tools of these methods are not so intuitive for the common user.  Most of 

the methods assume that the user is familiar with the concepts of L-systems and turtle 

interpretation, as well as the elements of the C programming language.   

Vegetation is not only complex in geometry; also the light interaction of leaves, grass 

blades or petals is highly intricate.  A layered structure of the plant tissue has a profound 

impact on both the reflectance and translucency of leaves and petals, an integral part of the 

light interaction of vegetation. Moreover, no general assumptions can be made on plant tissue 

rendering as many leaves and petals differ not only between species but also in their light 

transport on the front and back, depending on the nature of the surface. 



 

Dissertation Thesis 

This work focuses on some specific parts of this huge problem set, mainly geometric 

modelling, which requires specialized techniques for different situations and flowering plant 

species. The main thesis of this work is that it is possible to combine science with art, in order 

to retain the realism of the models and at the same time to simplify the task of the user. This 

requires designing algorithms that include L-system grammar writing and interactive user 

interfaces helping to control the grammars.  

The thesis is organized in the following manner: In Chapter 1 we present the state of the art 

on modelling plants and flowers. Chapter 2 describes our original method and its application 

in flowering plants. Interactive flower modelling method is presented and discussed in 

Chapter 3. Chapter 4 deals with natural interfaces applied to flower modelling using 

Microsoft Kinect. Conclusions, as well as a future work layout are given in Chapter 5. 

Contributions 

 A variety of new approaches and improvements over existing techniques is presented 

in this thesis. They are mainly concerned with geometric modelling of flowering and 

herbaceous plants and interactive user interfaces helping to control the grammars.  

Modelling of flowering plants. We chose a procedural modelling using L-systems as 

a base of our research.  L-system is a very powerful method of plant simulation.  It provides a 

means of characterizing the topology of a plant at every stage of its growth. Grasping the 

plant structure with just several lines of grammar attracted immediate interest and later on 

evolved into several powerful geometrical interpretation system used in plant modelling.  

During our research we have discovered that the shapes of flower components have a quite 

complex topology, which cannot be described by the most commonly used L-systems with 

one topological dimension.  Some methods use predefined surfaces and 3D shapes 

(generalized cylinders) which are incorporated to each symbol of the grammar.  But 

predefined surfaces and 3D shapes do not “grow”. String symbols have very little control over 

the integrated organs. However, we need to simulate plant development fully; therefore we 

have to use 3 dimensional topological structures. We propose to represent the shapes of leafs, 

petals, stamens, carpels, etc. with an extension of L-systems – a model based on three 



 

dimensional generalized maps – 3Gmaps L-systems, which can be successfully applied for 

modelling of flowering plants . These results have been published in  

• 3Gmap L-systems grammar application to the flowering plants modelling. Intelligent 

Computer Graphics 2012. Studies in Computational Intelligence Volume 441, 2013, pp 1-21. 

Interactive control. The grammar description of the structure of the flowering plants 

provides an unlimited number of its geometrical interpretations. Yet the task of writing a 

grammar is not intuitive for the user. The process of adjusting parameter values could be quite 

cumbersome as the user has to load the grammar every time he/she needs to see the changes 

of the geometry. We added a functionality of interactive change of parameter values. The user 

can adjust the model on the fly, changing parameter values and observing the result at the 

same time. This way of parameters values changing is quite faster as it only takes into account 

the embedding part, leaving the topology part of the program untouched.  

The more complicated the flower is the more intricate and cumbersome the grammar 

could be. As flower complexity grows the grammar also grows leading to huge text files.  As 

the flower consists of different components we decided to introduce modules which can 

substitute these components. Modules are grammars which represent petals, leaves, stamens, 

carpels, etc. They are included into the main grammar. The module itself can contain another 

module, therefore the grammar has a folded structure, which simplifies its construction and 

allows creating quite complicated models, which are the flower fields. This work has been 

published in: 

• Interactive modelling of flowers with 3Gmap L-systems. GraphiCon'2011. 21st 

International Conference on Computer Graphics and Vision. 

Inverse modelling. The process of writing a grammar is usually quite laborious and 

tedious. In order to avoid this we propose new interface functionality: the inverse modelling 

by automatic generation of L-systems. The user describes the flower he wants to model, by 

assigning the properties of its organs. The algorithm uses this information as an input, which 

is then analyzed and coded as L-systems grammar. This application provides an intuitive 

interface which permits the user to create grammars in a more comprehensive level. The user 

does not have to write an intricate code of the grammar, but with the help of our interface, 

he/she can define the flower characteristics, which are used for automatic grammar 



 

generation. This work was published in International Journal of Creative Interfaces and 

Computer Graphics (IJCICG). 

• Modelling of Flowers with Inverse Grammar Generation Interface.  International 

Journal of Creative Interfaces and Computer Graphics (IJCICG).Volume 3, Issue 2. 

Copyright © 2012. 19 pages. 

Modelling of large amounts of flowers using Kinect. We also proposed to create 

virtual glades of flowers using Kinect gestures. The user gestures are read and reinterpreted 

by the Kinect interface. Once the gesture is made, and a correspondence to the parameter 

space of the flower model is done, it is transmitted to a web server which contains a 3Gmap 

L-system application. The 3Gmap L-system receives the command to create or modify the 

flower and returns the 3D model which will be read and visualized by the Unity game engine. 

This work was published in ACM SIGGRAPH International Conference on Virtual-Reality 

Continuum and its Applications in Industry (VRCAI 2013): 

• Flower modelling using natural interface and 3Gmap L-systems. 12th ACM 

International Conference on Virtual Reality Continuum and Its Applications in Industry 

(VRCAI 2013). 

Classification of flowering plants modelling methods. Flower modelling constitutes 

a part of a larger research area, plant modelling. Flowering plants have their particular 

structural features which are different from the structure of trees, bushes or grass. Still not a 

lot of emphasis has been placed to date on this problem, as it was categorized within the 

modelling of plants in general. Our review aims at evaluating the state of the art of 3D plant 

modelling highlighting flowering plants. After researching and analyzing the work done on 

flowering plants modelling we have classified it into four groups: architectural plant 

modelling, image-synthesis oriented modelling, hybrid methods, and inverse modelling. This 

work is submitted to Computer-Aided Design journal. 

  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 
 

 

   Flowering plants simulation 

 

 

A flower's appeal is in its contradictions — so delicate 

in form yet strong in fragrance, so small in size yet big 

in beauty, so short in life yet long on effect. 

 ~Terri Guillemets 



 

1. Flowering plants simulation 

The plant nature is very complex and its simulation requires the implication of various 

disciplines: from botany and applied plant sciences, mathematics and statistics to theoretical 

computer science and computer graphics. There are various aims of the plant simulation, such 

as enlarging knowledge and helping with practical applications.  It can make this knowledge 

accessible to and usable by non-expert. The visualization of growth simulations provides us 

with an instructive tool useful for agronomists and foresters, as well as for teaching (Fourcaud 

et al., 2008). The use of plant modelling in computer game industry is also very challenging. 

Plant approximations are especially hard, since organic structures tend to be difficult to 

describe in terms that graphics cards understand.  

According to (Thornley & Johnson, 1990) there are so many levels of plant 

organization: from molecules, cells and tissues, to the whole plant and crop that the variety of 

the possible models is numerous. In the review of (Prusinkiewicz & Runions, 2012)  

modelling is represented as a wide range of notions such as: description of form, analysis of 

causality, analysis of self-organization, decomposition of problems, hypothesis-driven 

experimentation, and integrative view of development.  

Our research will be focused on flowering plant morphogenesis from the geometric 

perspective, or description of form. Obtaining an accurate geometrical model  of a flower is 

quite useful as it plays an important role in the validation of the virtual model. Besides, the 

visualization of parameters not traceable directly in living flowering plants is a stand-by in 

studying their physiology. A huge biological diversity both within and between individuals 

provides a vast area of objectives which the image synthesis must challenge. 

1.1 State of the art 

Modelling virtual flowering plants have been performed by several methods, most of 

which oriented towards the output image and based on software related motivation. Here the 

task of modelling is undertaken mainly by the user describing a plant structure and its 

components and defining the required parameters. The degree of realism depends on the users 

skills. However some of the methods are pursuing biological plausibility, using procedural 

modelling. Most of them are based on L-systems, which can generate complicated 



 

multicellular structures from a small number of rules. They are able to get a lot of flower 

samples based on a single grammar by simply changing the parameter values. According the 

existent methods we will divide our field of study into the following 4 groups (see Figure 1): 

architectural plant modelling, image-synthesis oriented modelling, and hybrid methods, 

inverse modelling. 

These groups are not mutually exclusive (e.g. a technique can use both natural 

interface and L-systems production rules for the final model generation). This classification 

does not claim to be unique and universal, as it only reflects our general view on flowering 

plants modelling. Other reviews such as (Visser et al., 2002), (Deussen & Lintermann, 2005), 

(Prusinkiewicz & Runions, 2012) represent different visions on plant modelling thus 

providing their own classifications.  

The review of (Visser et al., 2002) gives an overview of various types of plant models 

ranging from purely descriptive, focusing on graphic design, to process based, simulating 

growth processes using in-depth knowledge of plant physiology. The models are divided into 

structural, functional structural, those which are based on genetic expression and those with 

limited or no biological rules. Additionally the review contains a short overview of the current 

software tools that are commercially available for creation of artificial 3D plants. 

 

Figure 1 : Flower modelling classification 



 

The book of (Deussen & Lintermann, 2005) provides a very extensive research on 

computer generated plants and organics. The book gives general information on botanical 

description of plants and represents plants as mathematical objects, including geometrical and 

topological models, branching structures, fractals, phyllotaxis, etc. Such methods as 

procedural modelling, rule-based modelling and rule-based object production are presented 

for the generation of individual plants. Additionally, the modelling of terrain and its plant 

communities along with the rendering of synthetic landscapes are examined in the book of 

(Deussen & Lintermann, 2005). 

(Prusinkiewicz & Runions, 2012) article surveys the modelling techniques and 

selected models that are designed to elucidate plant development in mechanistic terms. The 

review provides the history of mathematical and computational approaches to developmental 

plant biology, followed by the key objectives and methodological aspects of model 

construction. The diverse mathematical and computational methods related to plant modelling 

are reviewed; and the essence of two classes of models, which approach plant morphogenesis 

from the geometric and molecular perspectives, is presented. In the geometric domain, they 

review models of cell division patterns, phyllotaxis, the form and vascular patterns of leaves, 

and branching patterns. In the molecular-level domain, the focus is put on the role of auxin in 

plant morphogenesis. The review is addressed to both biologists and computational modellers. 

1.1.1 Architectural plant modelling 

Architectural modelling considers a plant to be a set of relatively independent spatially 

arranged modules. From the different levels of abstraction it can be plant organs like leaves, 

petals, etc., or plant cellules.  Different types of models can be provided using this kind of 

modelling. There are descriptive models and functional-structural models, or virtual plants. 

The first ones refer to the models which structure and development is characterized 

geometrically. The second type of models also takes into account the physiological processes 

involved into plant growth. 

Plants were the object of intensive  study and as flowering plants are among them we 

will have a look at diverse methods of plants modelling. Plants are living organisms with the 

structure and developmental processes obeying to some internal rules, which the scientists are 

trying to reveal since always. One of such attempts was made by Aristid Lindermayer who 

proposed a formal description of plant development as a string rewriting mechanism, known 



 

as L-system, which has a recursive nature and leads to a self-similarity in plants. Since then it 

has been expanded into a very efficient mechanism, which is applied in modelling of growth 

processes of plant development and also in modelling of morphology of a variety of 

organisms (Prusinkiewicz & Lindenmayer, 1990), (Prusinkiewicz & Federl, 1999), 

(Prusinkiewicz et al., 2000). 

1.1.1.1 L-systems and botanical structures 

Trying to explore and understand the nature scientists were looking for the rules that 

lie underneath its external forms. As we have mentioned above, Aristid Lindermayer 

proposed the multicellular organisms’ description model, known as L-systems. Grasping a 

plant structure with just several lines of grammar attracted immediate interest and later on 

evolved into several powerful geometrical interpretation systems used in plant modelling. Let 

us have a look on L-system traces in nature and on how it is ingrained in flowering plant 

shapes. 

We can consider L-systems as a string-rewriting mechanism, which allows individual 

symbols in a string to be replaced by strings of new symbols. A symbol can be used to denote 

a cell or organ in a plant and the replacement of the symbol by a successor sub- string may 

represent cell division or growth of plant structure. L-systems provide a means of 

characterizing the topology of a plant at every stage of its growth. The rewriting process starts 

from an initial string called the axiom. As plant grows, new organs appear, resulting in more 

complex plant structure. At every step, L-systems generate new sequences of symbols by 

applying various productions or rewriting rules to a string. The preceding string (the 

predecessor) may be the axiom or a descendant string resulting from the previous application 

of productions. The newly generated string (the successor), in turn, is passed back to the set of 

productions at the next step (see Figure 2). 



 

 

Figure 2 : Lindenmayer’s original L-system for modelling the growth of algae 

Since its advent L-Systems have been branched out into various extensions starting 

from the simplest, which is deterministic and context free (DOL-systems) and ending with 

more elaborated context sensitive parametric L-Systems. The theory of L-systems is reviewed 

in many survey papers (Prusinkiewicz et al., 1996), (Prusinkiewicz, 2004), (Prusinkiewicz et 

al., 1995) and books (Prusinkiewicz & Lindenmayer, 1990). Context-sensitive parametric L-

systems is a specifically favorable technique for modelling such biological forms as flowering 

plants. 

Simple DOL-Systems are not able to easily reproduce continuous phenomena, since it 

uses a technique of discretizing continuous values, thus requiring hundreds of symbols and 

productions. In order to resolve this obstacle Lindenmayer proposed to explicitly associate the 

numerical parameters with L-systems symbols. This was then formulated into parametric L-

systems by (Prusinkiewicz et al., 1996). 

Parametric L-systems follow the same principles of rewriting mechanism but operate 

on parametric words, which are strings of modules consisting of letters with associated 

parameters. A simplified definition is presented below, while the more detailed information 

on parametric L-systems can be found in (Prusinkiewicz et al., 1996), (Prusinkiewicz & 

Lindenmayer, 1990). 

A parametric L-system is defined as an ordered quadruplet G = (V,Σ, ω, P), where  

• V is the alphabet of the system, 

• Σ is the set of formal parameters, 



 

• ω is a nonempty parametric word called the axiom, 

• P  is a finite set of productions. 

The production rule is defined as : predecessor : condition → successor. For example,  

A(x, y) : y > 3 → B(x)A(x/y, 0). 

Productions in the L-systems discussed above are context-free, which means that they 

can be applied, without taking into account the context in which the predecessor appears. But 

while modelling a complex flowering plant, we need an information exchange between its 

parts. For example, the order in which the flower organs grow and the interaction between 

them is important to sustain the botanical correctness.  

Context-sensitive L-systems reckon on the context, using productions of the form al < 

a > ar → χ, where the letter a (called the strict predecessor) can produce word χ if and only if a 

is preceded by letter al and followed by ar (Prusinkiewicz et al., 1996). Therefore, counting on 

the described properties we can enter upon the modelling of flowering plants. 

1.1.1.2 Pursuing L-systems in flowering plant  

Before starting to explore the regular occurrences in flower shapes, let us have a look 

at its botanical structure. The flower basis is a stem which serves as a framework for the 

whole plant. The stem is enveloped with the leaves, which are attached directly to it. On the 

top of the stem there is a flower which is made of four concentric rings or whorls (Coen & 

Meyerowitz, 1991). There is an outer ring of modified leaves called sepals. They protect the 

flower before it opens and are usually green. This ring is known as calyx. There is another 

ring of modified leaves inside the calyx, the ring of petals (corolla) which are often brightly 

coloured. 

Within the corolla there are one or more stamens - the male reproductive structures - 

forming the third ring called androecium. In the very centre of the flower are the female 

reproductive organs, called carpels, which is the fourth whorl - gynoecium. The structure of 

the flower is represented in a floral diagram which depicts the floral morphology plan of each 

species. It is a projection of the cross-section of each ring, which parts are arranged at the 

same relative position as they are in the flower (see Figure 3). 



 

Some flowers are organized in groups, called inflorescence, and are placed on the stem 

in different manners. Queen Anne's Lace flower has a fractal nature. Each of its blossoms 

produces smaller iterative blooms (see Figure 4). Many flowers have radial symmetry and are 

called regular flowers, e.g. Queen Anne's Lace or trillium. But some of them are irregular, 

which, while bisected, form only one line that produces symmetrical halves, e.g. snapdragon 

or most orchids.   

Underneath this structure lies an overwhelming variety of different species, and we 

can hardly find two flowers with the same shape. How can we capture the essence of all this 

variety and express it elegantly using L-systems? It is all about rewriting. Recursively 

applying the appropriate production rules on the initial element can result in complex 

structures. Such aspects of the flowering plants as symmetry, self-similarity, repeatability and 

also inflorescences and floral diagrams can be easily represented by L-systems. Botanical 

application of L-systems in different kinds of inflorescences and regular arrangements of 

lateral organs are thoroughly studied in (Prusinkiewicz & Lindenmayer, 1990). 

 

Figure 3 : Botanical structure of a generalized flower. Floral diagram (Font Quer, 1938) 

If we go further into analysis of flower, we can find that the internal structure of its 

organs is not homogeneous. Leaves and petals tissues consist of different layers of cells, 

which have their own properties defining the variety of surfaces and colorations.  Plant tissue 

has a very complex interaction with light as its inner structure is not homogeneous. Let´s have 

a look at the cross-section of a leaf blade and a petal (See Figure 5). We can see a 



 

comparatively thick photosynthetic region, known as the mesophyll, bounded by thin, 

protective layers of epidermal  by a waxy coating (cuticle), responsible for specular reflection. 

The epidermis layers are transparent and allow light to pass through the mesophyll, which is 

composed of two layers. Beneath the upper epidermis is a layer of elongated, highly-diffusing 

palisade cells, responsible for much of the scattering of light that enters a leaf. Just above the 

lower epidermis lies a spongy layer consisting largely of air space.  Petals are thought to be 

modified leaves with a simplified internal structure, having only one vascular bandle 

compares with the several normally found in leaves and sepals. It was found out that the 

structures like pigments having the colour are included only in the surface cells. The cells in 

the bulk have no observable colour (Ozawa et al., 2009) (see Figure 6). 

 

Figure 4 : Queen Anne's Lace self-similarity and symmetry 

A layered structure of the plant tissue has a profound impact on both the reflectance and 

translucency of leaves and petals, an integral part of the light interaction of vegetation, which 

shows the need of using topological 3D dimensions in order to model flowering plants. 

 



 

 

Figure 5 : A cross-section of a leaf blade and a petal 

1.1.1.3 Architectural models 

A very ample research on L-systems is performed in (Prusinkiewicz & Lindenmayer, 

1990), (Prusinkiewicz, 2004), (Prusinkiewicz et al., 1995). The studies resulted in the 

modelling software L-studio (for Windows platforms) (see Figure 7) (Prusinkiewicz et al., 

2000) and the Virtual Laboratory (for Linux platforms) (Prusinkiewicz & Federl, 1999). 

These tools enable to specify the architecture of various modular organisms, from filamentous 

bacteria and algae to herbaceous plants, trees, and plant ecosystems. Yet the shapes of 

individual plant organs, represented mostly as predefined surfaces or generalized cylinders 

(Fuhrer et al., 2006), are specified by the user and then are incorporated into a plant model. 

 

Figure 6 : Optical microscope image of the petal. Sectional view of the violet petal showing 

cells of the front (upper) and the back surface. The cells in both surfaces are coloured, while 

those inside are otherwise (Ozawa et al., 2009) 

 



 

A huge research on architectural plant modelling is presented in the reviews 

(Prusinkiewicz, 1998) and (Prusinkiewicz & Runions, 2012), classifying the resulting models 

in empirical (descriptive) and causal (functional-structural), and emphasizing on the use of L-

systems as a unifying framework for spatial model construction. In (Deussen & Lintermann, 

2005) a detailed review on computer generated plants is presented including its botanical 

description and considering plants as mathematical objects. 

 

Figure 7 : L-studio with a L-system tab opened (Prusinkiewicz et al., 2000) 

In (Frijters & Lindenmayer, 1974), (Frijters & Lindenmayer, 1976) flowers were 

described as configurations of modules in space. In (Prusinkiewicz & Lindenmayer, 1990), 

(Fowler et al., 1992) they were modelled using phyllotaxis - the regular arrangement of lateral 

organs. Examples such as sunflower head, zinnias, water lily and roses were presented by 

following phyllotactic patterns and associating different surfaces.  In (Peiyu et al., 2006)  it 

was proposed a flower model using the L- system and Bezier surfaces. L- systems were used 

to represent the topologic information of plant flower, while Bezier surfaces excelled at 

depicting geometric information of flower (See Figure 8). 

Other methods, where the L-systems are not explicitly used but following the basic 

principles of architectural plant modelling, are available. Plant modelling tools such as AMAP 

(Reffye et al., 1997) and LIGNUM (Perttunen et al., 1996) provide a wide range of 

functional-structural models and introduce physiological concepts in order to simulate the 

dynamic functioning of trees. The model is presented as a network of parallel pipes or units 

which correspond to the organs of the plant. The plant is considered as a hydraulic structure, 

transporting water from the roots to the leaves, and producing assimilates via photosynthesis. 



 

 

Figure 8 : a) Petal is denoted as a Bezier surface ; b) an apple flower is formed using a 

combination of a stem, six calyxes, six petals with six stamens (Peiyu et al., 2006) 

Architectural plant modelling techniques provides very realistic and biologically 

plausible models.  Most of the methods assume that the user is familiar with the concepts of 

L-systems and turtle interpretation, as well as the elements of the C programming language.  

The underlying tools of these methods are not so intuitive for the common user, which 

narrows the field of use of the system.  

1.1.2 Image synthesis-oriented modelling 

The main objective of the image-synthesis applications is the visual presentation of the 

models. Therefore the tools provided by these methods are user-oriented fostering the 

intuitive interfaces where the user can easily specify and interactively shape the models. 

There is a huge list of practical uses where the resulting models can be applied to, such as 

computer animations and games, virtual reality installations, multimedia presentations for 

educational purposes,  computer-assisted landscape and garden designs,  visual- impact 

analysis for forest harvesting, etc. A comparative table of plant software tools is presented in 

(Discoe, 2013). We next review the most representatives ones.  

1.1.2.1 Component-based modelling 

A system, proposed by (Deussen & Lintermann, 1999) is a modelling method that 

allows easy generation of many types of objects that have branching structures, including 

flowers, bushes, trees, and even some non-botanical objects. In this approach, components 

encapsulate data and algorithms to generate plant elements. All components have a set of 

parameters to control their behaviour. To establish the complete plant description the 

component prototypes are connected in a directed graph called the prototype graph, or p-

graph. When the system traverses the p-graph, it builds a temporary tree of component 



 

instances, which is then used to generate the geometry. In Figure 9 a model of the sunflower is 

represented.  By editing splines, users can choose the appropriate curvature and scale of the 

components responsible for the stem and the leaves to create a typical outline of a small leaf. 

Next the system iterates the leaves as branches describing the plant’s stalk. The top of the 

stalk is opened to form the head of the flower. Then the responsible components construct the 

blossom of the sunflower – for arranging the petals and the seeds. Finally, everything is 

connected to the full p-graph. 

 

Figure 9 : Parts of a sunflower with corresponding p-graphs (Deussen & Lintermann, 1999) 

This research was converted into a commercial system Xfrog (Deussen & Lintermann, 

2014), (Deussen & Lintermann, 2005). It combines the advantages of the rule-based and 

parameterized-based modelling schemes, yielding highly realistic plant models. It provides an 

intuitive interface to manipulate the plant components and design key frames of a plant 

animation process. Xfrog system is oriented on creating elegant models instead of true-to-

nature development modelling. However some of the components have parameters that 

interact with a plant’s response to its environment.  



 

 

Figure 10 : PlantStudio main window, in which you work with the plants in a plant file and 

create compositions (Fernhout & Kurtz, 2014) 

PlantStudio (Fernhout & Kurtz, 2014) is another component based system which uses 

a simulation model with over 200 parameters to encompass a wide range of herbaceous (non-

woody) plants (see Figure 10).  Objects are introduced to model the major plant parts. No 

interaction with the environment is computed and growth and development only depend on 

the time elapsed since emergence.   

Plant Factory (E-on software, 2014) is a commercial 3D vegetation modelling, 

animation and rendering software, dedicated to the CG, SFX, Architecture and Gaming 

communities. Using the graph of nodes, the user builds the plants from simple geometry 

nodes. Each geometry node features multiple parameters that are adjusted and combined 

together to achieve the desired look (See Figure 11 and Figure 12). 

 

Figure 11 : A view of the PlantFactory editor windows (E-on software, 2014) 

 

(Lu et al., 2000)  proposed a perceptually realistic flower generation. The system 

focuses on the simulation of flower petals through all transient stages from a bud to the fully 

developed flower. Lu et al introduced smooth surface model with a bicubic patch for the 



 

petal. The biological factors in length, width and depth represent the principle growth for the 

petal. 

1.1.2.2 Modelling with natural interfaces 

Procedural modelling explicitly using mathematical formula or grammar specification 

is very powerful and efficient, but to a novice user they can also be cumbersome and 

daunting. A complex model requires considerable expertise and effort. More intuitive and 

natural interfaces also found its niche in the plant modelling area, such as sketch-based 

interfaces and 3d gestures.  

The main idea is to use sketches - rapidly executed freehand drawings – in the process 

of modelling instead of directly editing polygons. The system is then automatically interprets 

a sketch and creates a 3D model (Zeleznik et al., 2006). With 3d gestures the user can mold 

and manipulate the model due to the system that turns gestures into computer commands.  

 

Figure 12 : PlantFactory models of flowers (E-on software, 2014) 

(Ijiri et al., 2005) presented a system for modelling flowers in three dimensions 

quickly and easily while preserving correct botanical structures. They use floral diagrams and 

inflorescences, which were developed by botanists to concisely describe structural 

information of flowers (see Figure 13). Floral diagrams represent the layout of floral 

components on a single flower, while inflorescences are arrangements of multiple flowers. 

According to this a simple user interface that is specially tailored to flower editing, is created. 

To define the geometries of flower components sketching interfaces are provided. The user 

first defines the flower's structure in the floral diagram editor by editing the layout of the 

floral components. Then he models the shapes of the floral receptacle and floral components 



 

by inputting its outlines and drawing the modifying strokes in the geometry editor. After that, 

the user associates geometries of floral components with corresponding elements in the floral 

diagrams. The system automatically places geometric objects on the receptacle model. After 

designing individual flowers, the user models inflorescence by defining its structure. 

Although this is a system which allows an efficient modelling of flowers with correct 

botanical structures there are some limitations such as: shape restriction (i.e., petal-like shapes 

that do not have an elliptical outline), inflorescence editor is not able to support the creation 

of a gradual progression of developmental flower stages. 

 

Figure 13 : Lily model. The structural information is given as a floral diagram and an 

inflorescence. The geometry models are designed in the sketch-based editor. The user creates 

a flower and the entire model of a lily combining the structural information and the 

geometries (Ijiri et al., 2005) 

The method of (Ding et al., 2008) is based on (Ijiri et al., 2005). It separates individual 

flower modelling and inflorescence modelling procedures into structure and geometry 

modelling. The interactive editing gestures are incorporated to allow the user to edit structure 

parameters freely onto structure diagram. Free-hand sketching techniques are used to allow 

users to create and edit 3D geometrical elements freely and easily. The final step is to 

automatically merge all independent 3D geometrical elements into a single waterproof mesh. 

The final model can be printed onto real flower toy or decoration directly. 

The next work of (Ijiri et al., 2006) is an interactive modelling system for flower 

composition that supports seamless transformation from an initial sketch to a detailed 3D 

model. To begin with, the user quickly sketches the overall appearance of the desired model 

as a collection of 2D strokes on hierarchical billboards. Then the user iteratively replaces the 



 

coarse sketch with a detailed 3D model referring to the initial sketch as a guide. Since a 

flower model consists of many repetitive components, the system helps the user to reuse 3D 

components to facilitate the modelling process. The global view of the entire model is always 

shown in a separate window to visualize how local modifications affect the global 

appearance. The system helps the user make appropriate design decisions to keep the model 

consistent with the initial design, which is difficult in traditional bottom-up plant modelling 

systems in which the global view only emerges after all of the details are specified. 

The task of the user while modelling using natural interfaces is quite easier and takes 

less time, but  still we cannot  reckon on creating the models with quite complicated structures 

with botanical correctness, neither  cannot consider the obtained model as a sample for 

creating the huge diversity of individuals. 

1.1.2.3 Image-based modelling 

The traditional approach of computer graphics has been to create a geometric model in 

3D and to try to reproject it onto a two-dimensional image. Computer vision, conversely, is 

mostly focused on detecting, grouping, and extracting features (edges, faces, etc.) present in a 

given picture and then trying to interpret them as three-dimensional clouds of points. Instead 

of specifying the plant model by the user image-based approaches use images to help generate 

3Dmodels.  They vary from single image and shape priors use (Han & Zhu, 2003), to multiple 

images (Sakaguchi , 1998) , (Shlyakhter et al., 2001), (Reche et al., 2004). A popular 

approach is to use the visual hull to aid the modelling process (Sakaguchi , 1998). However, 

the models generated by these approaches are only approximate and have limited realism. 

(Reche et al., 2004), on the other hand, compute a volumetric representation with variable 

opacity. While realism is achieved, their models cannot be edited or animated easily. 

A method of (Neubert et al., 2007) produces 3D tree models from several photographs 

based on limited user interaction. Their system is a combination of image-based and sketch-

based modelling.  

(Quan et al., 2006), (Kang & Quan, 2009)  proposed a semi-automatic technique for 

modelling plants. Using this approach as an example we can obtain the idea of the image-

based modelling of plants. This is an interactive system which automatically recovers the 

shape relying on the user to provide simple hints on segmentation. The system is divided into 

three parts: image acquisition and structure from motion, leaf segmentation and recovery, and 

interactive branch recovery. A hand-held camera is used to capture images of the plant at 



 

different views. A standard structure from motion technique is applied to recover the camera 

parameters and a 3D point cloud. Then, the 3D data points and 2D images are segmented into 

individual leaves. To make this process easier, a simple interface is designed that allows the 

user to define the segmentation together with 3D data points and 2D images. The data to be 

partitioned is implemented as a 3D undirected weighted graph that gets updated on-the-fly. To 

model a plant, the user first segments out a leaf; this is used as a deformable generic model. 

This generic leaf model is subsequently used to fit the other segmented data to model all the 

other visible leaves. The reconstruction of the branches is carried out interactively by the user.  

(Yan et al., 2014) proposed a semi-automatic method for reconstructing flower models 

from a single photograph. The technique assumes that the flower head typically consists of 

petals embedded in 3D space that share similar shapes and form certain level of regular 

structure (see Figure 14). Based on these assumptions the method first fits a cone and 

subsequently a surface of revolution to the flower structure and then computes individual 

petal shapes from their projection in the photo. Flowers with multiple layers of petals are 

handled through processing different layers separately. Occlusions are dealt with both within 

and between petal layers. Being an initial attempt of modelling flowers from single images, 

the proposed approach concentrates on rather simple flowers. There are many other types of 

flowers that include more complex arrangements of petals; prominent examples are roses or 

moms. 

 

 

Figure 14 : Flower modelling pipeline (Yan et al, 2014) 

Image–based techniques provide realistic results since they are based on images of 

real plants. However the user interaction could not be completely avoided as the computer 

vision techniques have to be customized in order to work well. Besides they can obtain 



 

models from only preexisting plants rather than create new and visually-plausible plant 

models.  

1.1.3 Hybrid methods 

The groups described above are not mutually exclusive. Taking into account the 

benefits of the previous approaches these methods combine science with art, establishing 

interplay of the realism of the models and clearness for the users. In (McCormack, 1993), 

(Ijiri et al., 2006), (Onishi et al., 2006) the L-systems are mixed with interactive methods, 

such as Sketch-based or 3D gesture modelling or simply interactive control of parameter 

values. In (Power et al., 1999) the plant structures can be interactively manipulated using 

inverse-kinematics optimization technique. Here such kinds of manipulation are provided: 

bending and pruning branches and arranging and clipping leaves and flowers. (Anastacio et 

al., 2008) proposed a combination between sketch-based modelling and L-System, where 

construction lines are employed to parameterize global features of L-System models. This 

means that the user sketches the construction lines that define the overall structure of the 

plant. An interpretation of construction lines is then used to automatically derive a set of 

positional B-spline functions, which are employed as parameters for productions in 

predefined L-System templates, representing phyllotactic patterns (Fowler et al., 1992) for 

positioning lateral organ surfaces such as leaves and petals. 

1.1.4 Inverse modelling 

Up to now we were describing the conventional modelling, which requires the user, in 

order to obtain the model, to anticipate and define feature constraints, relations, and 

dependencies. The object of the inverse modelling is just the contrary; it is to determine 

unknown causes based on observation of their effects. In other words taking a flower model 

or a photo as input the systems estimates the parameters of procedural model or obtains the 

grammar of the model so that it produces flower similar to the input. We will not consider in 

this thesis an image-based modelling as an inverse-modelling. Although it allows the use of a 

single or multiple two-dimensional images in order to generate directly a 3D model, still the 

obtained result is just a geometrical model without any botanical principles beneath it. The 

creating of a new flowering plants having the models of the real flowering plants, or simply 

editing or animating the obtained models using the image-based modelling is likely to be a 

non-trivial task.  



 

Inverse modelling is not an easy task for computer graphics. In recent work several 

methods were trying to create procedural rules from user input.  In (Aliaga et al., 2007) the 

user draws simple building blocks and using the proposed system he/she can automatically 

complete the building “in the style of” other buildings using view-dependent texture mapping 

or non-photorealistic rendering techniques. The system supports an arbitrary number of 

building grammars created from user subdivided building models and captured photographs. 

(Šťava et al., 2010) proposed an algorithm that takes an input vector image with objects 

formed as groups of line segments or Bézier curves and produces an L-system that generates 

the given input 2D model. In (Bokeloh et al., 2010) it is addressed the problem of inverse 

procedural modelling of 3D geometry. This approach consists of semi-or fully automatic 

creation of 3D models that are similar to a piece of example geometry. It is able to compute 

shape grammars for general 3D surfaces from example geometry without any user interaction 

(the similarity radius r is the only parameter). However, the proposed formal framework 

requires models that have perfect partial symmetries, which is currently still a main limitation 

of this approach. 

In (Shlyakhter et al., 2001) a hybrid approach is presented in order to solve the inverse 

problem. The input of the system is a set of images of a tree usually numbering between 4 and 

15 and uniformly covering at least 135 degrees around the tree. The approach involves first 

segmenting the images and constructing a plausible skeleton of the tree (trunk and major 

branches, and growing the rest of the tree with an L-System. 

In (Stava et al., 2014) inverse procedural modelling of trees is represented as a 

framework based on a novel parametric model for tree generation which uses Monte Carlo 

Markov Chains to find the optimal set of parameters. The approach consists on taking 

polygonal tree models as input and estimating the parameters of a procedural model so that it 

produces trees similar to the input.  

1.2 Comparative tables 

In this section we overview most of the techniques previously referenced in this 

survey using tables for comparison. In Table 1 we compare the methods using such criteria as: 

botanical plausibility (whether the resulted model follows botanical rules), interface (if it is 

intuitive for the user) and final image (how realistic is the final result). We are based on 

(Prusinkiewicz, 2000) review in order to determine “botanical plausibility” which includes 

geometric characterization of plant structure and development and  physiological mechanisms 



 

controlling plant development (endogenous interaction – information transfer between 

adjacent elements of the plant structure, for example water, minerals, hormones transported 

by plant tissues; and exogenous interaction – information transfer through the physical space 

in which plants grow, for example competition for space and light or the influence of moisture 

or temperature). By the term “interface” we mean the presence of two factors such as : 

interactivity – whether the user can interactively manipulate the models and change its 

parameters and learnability – the easiness  for the common  user (who is not familiar with the 

concepts of L-systems or programming languages) to accomplish basic tasks. The “final 

image” is represented by visual coincidence with the prototype form and realistic rendering of 

the model (using translucency and global illumination). The methods are grouped by colors in 

order to distinguish to which group of our classification it belongs.   

Table 1 : A comparative analysis of the referenced techniques.  

        architectural plant modelling 

 

        image-synthesis oriented modelling 

 

        hybrid methods 

 

          inverse modelling 

 
 

Plant type 

T Trees 

H Herbaceous plants 

F Flowers 

 

botanical 

plausibility 

geometric characterization of plant structure and 

development 
A 

endogenous interaction B 

exogenous interaction C 

interface 
interactivity A 

learnability B 

final 

image 

visual coincidence with the prototype form A 

realistic rendering B 

 

Author Technique 
Botanical 

plausibility 
Interface 

Final 

image 

Type of 

plant 

(Fowler et al., 1992) 
collision-

based model 
A+B B A F 

(Prusinkiewicz et al., 

2000) 

L-systems, 

generalized 

cylinders 

A+B+C A A T+H+F 

(Prusinkiewicz & 

Federl, 1999) 

L-systems, 

generalized 
A+B+C A A T+H+F 

  

   



 

cylinders 
(Frijters & 

Lindenmayer, 1974) 
L-Systems A × × F 

(Peiyu et al., 2006) 
L-systems, 

Bezier curves 
A A A F 

(Peyrat et al., 2008) 
2Gmap L-

systems 
A N/A A+B H 

(Terraz et al., 2009) 
3Gmap L-

systems 
A N/A A T 

(Reffye et al., 1997) AMAP A+B+C A A T 

(Perttunen et al., 

1996) 
LIGNUM A+B+C × × T 

(Deussen & 

Lintermann, 1999) 

component-

based 
A A+B A+B T+H+F 

(Deussen & 

Lintermann, 2014) 
XFROG A+C A+B A+B T+H+F 

(E-on software, 2014) 
component-

based 
A A+B A+B T+H+F 

(Fernhout & Kurtz, 

2014) 

component-

based, 3D 

Object-

oriented 

model 

A A A H+F 

(Lu et al., 2000) 
plant growth 

function 
× A A F 

(Ijiri et al., 2005) sketch-based A A+B A H+F 

(Ding et al., 2008) sketch-based A A+B A F 

(Ijiri et al., 2006) 

sketch-based, 

seamless 

transformation 
× A+B A F 

(Reche et al., 2004) image-based × A+B A T 

(Neubert et al., 2007) image-based × A+B A T 

(Quan et al., 2006) 

image-based, 

a semi-

automatic 

technique 

 

× 

 

A+B 

 

A 
T+F 

(Kang & Quan, 2009) image-based × A+B A+B T+F 

(Yan et al., 2014) image-based × A+B A+B F 

(Ijiri et al., 2006) 
sketch-based, 

L-Systems 
A A+B A+B T 

(Power et al., 1999) 

inverse-

kinematics, L-

Systems 

A A+B A T+H 

(Anastacio et al., 

2008) 

Sketch-based, 

L-Systems, 

construction 

lines 

A A+B A T+H 

(Shlyakhter et al., 

2001) 

inverse 

problem, 

image 

segmentation, 

L-System 

A A A T 

(Stava et al., 2014) 

procedural 

modelling,  

 Monte Carlo 

Markov 

Chains,  

A A+B A T 



 

Table 2 provides a short overview of the classified groups, where a short description, 

advantages and disadvantages are mentioned. Each group has a list of representative 

techniques previously referenced in this survey.  

Table 2 : A short overview of modelling techniques 

Modelling group Representative systems Description 
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Descriptive 

(Fowler et al., 1992) 

(Peiyu et al., 2006) 

L-Studio and Virtual Laboratory 

(Prusinkiewicz & Lindenmayer, 

1990) 

 
 

It considers a plant to be a set of 

relatively independent spatially 

arranged modules. Descriptive 

type refers to the models which 

structure and development is 

characterized geometrically. 

Functional-structural type of 

models also takes into account 

the physiological processes 

involved into plant growth. 

L-systems are widely involved in 

this group of modelling. The 

techniques provide very realistic 

and biologically plausible models. 

But the underlying tools are not 

so intuitive for the common user, 

which narrows the field of use of 

the system. 

 

Functonal-structural 
L-Studio and Virtual Laboratory 
(Prusinkiewicz, 2004)] 
(Harder & Prusinkiewicz, 2013) 

Im
ag

e-
sy

n
th

es
is

 o
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en
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d
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o
d
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n
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Component based 
modelling 

(Deussen & Lintermann, 1999) 
XFROG (Deussen & Lintermann, 
2014), 
Plant Studio (Fernhout & Kurtz, 
2014), 
The Plant Factory (E-on 
software, 2014), 
 

The main objective is the visual 

presentation of the models. The 

provided tools are user-oriented 

fostering the intuitive interfaces 

where the user can easily specify 

and interactively shape the 

models. These methods provide 

impressive results, however they 

don’t take into account the 

biological rules or their 

application is quite limited. 

Based on natural 

interfaces 

(Ijiri et al., 2005), 
(Ijiri et al., 2006), 
The Plant Factory (E-on 
software, 2014), 
(Ding et al., 2008) 

Image-based modelling 
(Yan et al., 2014) 
(Kang & Quan, 2009) 

Hybrid methods 

(Power et al., 1999) 
(Anastacio et al., 2008) 
 
 

A combination of architectural 

plant modelling with image-

synthesis oriented modelling. 

This group establishes interplay 

of the realism of the models and 

clearness for the users. 

Invesre modelling 
(Stava et al., 2014) 
(Shlyakhter et al., 2001) 

The object is to determine 

unknown causes based on 

observation of their effects. 

Taking a flower model or a photo 



 

as input the systems estimates 

the parameters of procedural 

model or obtains the grammar of 

the model so that it produces 

flower similar to the input. This is 

a relatively new problem and the 

provided techniques are limited. 

1.3 Conclusions 

Flowering plants comprise about 90 percent of earth plants. A huge biological 

diversity both within and between individuals provides a vast area of objectives which the 

image synthesis must challenge. Having all the features that define botanical structures, such 

a as self-similarity, symmetry, branching arrangement, etc., flowers constitute a part of a large 

scope of study, which is modelling of plants. 

There are various methods of plant modelling. Some of them are aiming at getting a 

plausible model while the botanical correctness is usually disregarded. Here the task of 

modelling is undertaken mainly by the user describing a plant structure and its components 

and defining the required parameters. As flower has quite a complicated structure, the degree 

of realism will depend on the user skills. These approaches are quite intuitive for a common 

user, but have an inconvenience of creating each sample from scratch in case of generating a 

variation of slightly different flowers. 

Other methods could be referred to as procedural modelling, which tries to provide 

biologically faithful and visually realistic models. Most of these methods are based on a 

mathematical theory of plant development, namely L-systems, which can generate 

complicated multicellular structures from a small number of rules. They are able to get a lot 

of flower samples based on a single grammar. Although these methods can provide 

impressive results, the underlying algorithms are not so intuitive for common users. 

The study of these methods points to look for another approach which can combine 

science with art, establishing interplay of the realism of the models and clearness for the 

users. Pursuing this goal we propose an application of the 3Gmap L-systems: flower 

modelling by growth simulation. Our approach combines L-systems grammar writing with 

interactive control of parameter settings. Here the L-systems operate with subdivision of 

volumes, namely 3Gmaps. The used L-systems grammars have a nested structure allowing 

combining several grammars which represent the different flower organs. In order to avoid 

the laborious task of grammar writing we propose a new interface function: the inverse 

modelling by automatic generation of L-systems. The user describes the flower he wants to 



 

model, by mentioning the properties of its organs. The algorithm uses this information as an 

input, which is then analyzed and coded as L-systems grammar. The user can control the final 

result by interactively setting the parameters of the grammar. These contributions make the 

task of a user more obvious and intuitive which in turn enables to create more accurate 

models. In addition, the way the model is built allows us to take into account its internal 

structure. As the flower tissue is non-homogeneous, this can be quite useful to render more 

accurate subsurface scattering. 
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The artist is the confidant of nature, flowers carry on 
dialogues with him through the graceful bending of their 
stems and the harmoniously tinted nuances of their 
blossoms. Every flower has a cordial word which nature 
directs towards him.  

~Auguste Rodin 

 



 

2. 3Gmap L-systems application to flowers 

2.1 Introduction 

String L-systems are quite efficient and are applied to model a wide variety of plants. 

Although they are of one-topological dimension, even if 3D geometrical features are 

incorporated into a model. However, many shapes in nature can only be described by two or 

three topological dimensions (for example, leaves, petals, pistils and stamens). Thus, 

Prusinkiewicz and Lindenmayer described in (Prusinkiewicz & Lindenmayer, 1990) map L-

systems and cellwork L-systems which were mainly used for modelling cellular layers. A map 

is a finite set of regions, surrounded by a boundary consisting of edges. A map L-system  is a 

parallel rewriting system that operates on maps and does not allow for interaction between 

regions. Cellwork L-system is an extension of map-L-systems which was proposed in order to 

capture the three-dimensional aspect of cellular layers. These methods provide quite realistic 

results. However, it is quite difficult to specify L-system grammar and there is not enough 

control over the generated topologies. 

In (Peyrat et al., 2008), (Terraz et al., 2009) 2Gmap and 3Gmap L-systems address the 

limitations of previously described methods. These approaches are applied to model realistic 

leaves and wood.  2Gmap and 3Gmap L-Systems are based on two and three-dimensional 

generalized maps, which could be controlled by the operations associated with production 

rules.  The direct use of high level operations on surfaces and volumes simplifies model 

specification and the use of adjacency relations between  volumes allows context-dependent 

behaviors.  3Gmap L-systems can be successfully applied for the modelling of flowering 

plants. 

2.2  3Gmap L-Systems 

3Gmap is an ordered topological model that allows representing the topology of 

subdivisions of orientable or non-orientable 3D spaces, with or without boundary. It is close 

to facet-edge data structure (Brisson, 1993) or cell tuple (Dobkin & Laszlo, 1987). A 

subdivision of a topological space is a partition of this space into cells with dimensions 0, 1, 

2, 3, i.e. into vertices, edges, faces, volumes. This model is based on the use of an unique 

basic element - a volume - on which four operators act. These operators are used to represent 



 

adjacency relations between edges, faces and volumes. A combination of these basic elements 

allows representing the topology of an object, which corresponds to an unlimited number of 

embeddings of this structure in three-dimensional space. As we have mentioned above 

3Gmap L-systems are operated with volumes, which are mostly regular prisms. In order to 

control each volume we use a label, associated to it, which is a word in capital letters. A prism 

GERM of order n is denoted as GERM (n). Each face of a volume also has a label which is 

defined as GERMO, GERME and GERMC1, GERMC2, …, GERMCn for the base, the end 

and the side faces of the prism STEM respectively (see Figure 15Error! Reference source 

not found.). A flower model is created by growing, splitting and gluing its building blocks, 

following the production rules of a grammar. The grammar is a description of a flowering 

plant, containing the information of its building blocks and the instructions used in the 

development of its final shape. 

 

Figure 15 : 3Gmap description. 3Gmap L-Systems operations 

2.2.1 Managing the grammar 

The grammar structure is represented in Table 3.  It consists of a volume description, a 

variable and function definition, an axiom and a set of production rules (growing, gluing, and 

splitting) (see Figure 15).  

Table 3 : Grammar example                           

 

@volume description@ 

#define STEM(21,1,0,0,0,1,1,6) 

#define RECEPTACLE(21,1,0,0,0,3,1,1,6) 

#define PETAL(4,1,0,0,0,0.5,0.5,1,4) 

 

@variable and function definition@ 

#define rd=7 

 

#axiom: STEM 

 



 

@production rules@ 

p00 STEM{}{step<4}{}->STEM[STEM(,,,,,4.1,5,1.5,)]_{E} 

p00 STEM{}{step>=4}{}->STEM[STEM(,,,,,,,,)]_{E} 

p00 STEM{}{step>=finalStep-10}{}->STEM[RECEPTACLE(,,,,,,,,)]_{E} 

p00 RECEPTACLE->RECEPTACLE[PETAL(4,1,0,2,0,1,1,1,4)]_{C5} 

p00 RECEPTACLE->RECEPTACLE[PETAL(4,1,0,-3,0,1,1,1,4)]_{C9} 

p00 RECEPTACLE->RECEPTACLE[PETAL(, , ,<math.random(0,rd)>,,,,,)]_{C13} 

p00 RECEPTACLE->RECEPTACLE[PETAL(, , ,<math.random(0,rd)>,,,,,)]_{C17} 

p00 PETAL->PETAL[&PTULIP(16,1,0,0,0,3,0.1,0.1,4)]_{E} 

 

 

All the operations depend on the adjacency of the objects. In 3Gmap model the 

dependence on the context is expressed through the relations of adjacencies between various 

topological objects. In the grammar the following formalism of context dependency is used: 

predecessor : block1 cond block2 → successor, 

 where 

- cond : a boolean condition that guards production application; 

- block1 : optional code lines always executed; 

- block2 : optional code lines executed only if cond is true.  

Here is a short description of topological operations on volumes. 

Growing. Creating a new volume and gluing it on one of the faces of predecessor, 

called a “support face”. This operation is denoted as: VOLA → VOLA[VOLB(n)]F, where F 

is the support face of the volume VOLA and n is the degree of the new volume VOLB. 

Gluing. This operation glues two adjacent faces and is denoted as follows: VOL : 

VOLF1< VOLF3 → VOLF1| VOLF3, where the faces F1 and F3 of  volumes labelled VOL are 

glued if they are adjacent.  

Splitting. This operation splits a volume into two parts and is denoted VOLA →
F
 

VOLB VOLC, where F is a face of volume VOLA. Here all faces adjacent to F are split and 

the volumes, obtained with a face are closed. 

The described operations are traditional and formally defined in the corresponding 

literature (for more details, readers can refer to (Lienhardt, 1994). 

3GMaps are topological objects without inherent geometric properties. In order to 

visualize them, we assign a set of parameters to each of the volume. These parameters refer to 

the topological properties (order of the prism N), material (m) and geometrical attributes 

(angles of the turtle: atx, aty, atz, dimensions of volume) of the volume. The geometrical 

interpretation of the model is obtained using these parameters. More precisely, the order of 



 

them is as follows VOL(N, atx, aty, atz, H, L, W, m). The values of parameters can be 

specified directly in the rewriting rules or can be defined using instructions “#define”. 

2.2.2 Modules 

Some models can be very elaborated with a huge amount of detail. This can result into 

writing an intricate grammar, containing many lines of code and a lot of parameters difficult 

to control. Some parts of the grammar (for instance, lateral organs) can be extruded and serve 

as independent grammars. We call them - modules. These are the grammars that can be 

integrated into another grammar (see Figure 16).  

Therefore we reduce the size of the grammar, by introducing a nested structure. This 

constitutes an advantage, as we can create very complex models and still maintain the 

conciseness and clearness of the grammar. 

2.2.3 Application to the modelling of flowering plants 

 

Figure 16 : Nested structure of the grammar. SEPAL, PETAL, STAMEN, CARPEL are 

modules, which are integrated into the initial grammar with the symbol “&” 

While applying 3Gmaps L-systems to the modelling of flowering plants we have to 

follow natural laws, lying underneath their botanical structure. In section 1.1.1.2 we have 

outlined how the flower is arranged and we can mark out the main characteristics which we 

have to take into account while modelling. Symmetry, self -similarity, repeatability, the way 

the flowers are arranged on the stem are the essentials of most of the flowering plants. 



 

In order to depict the arrangement of the lateral organs, according to the floral diagram 

we use the initial element as a short stem, the side faces of which serve as basis for growing 

the sepals (see Figure 17). 

On the end face there is another building block which is the basis for growing petals 

and stamens on its side faces (see Figure 18). 

Finally, on its end face there is a volume, on the top of each grows carpel. If there is 

more than one carpel, they will grow on the side faces of this block (see Figure 19). 

In the grammar in Table 3 we use a growing operation, attaching the modules of 

lateral organs. Controlling the way the lateral organs are attached to the side faces of the basic 

building blocks we model a regular (with radial symmetry) or irregular flowers.  

The inflorescences are also represented using the appropriate sequence of side faces of 

the stem, from which the whole flowers are growing (see Figure 20). 

 

Figure 17 : First whorl of the floral diagram – calyx. Growing the sepals from the side faces 

of the stem 

As we can see from the flower structure in Figure 3, the shapes of flower components 

have a more complex topology, which cannot be described by the most commonly used L-

systems with one topological dimension. In some methods like (Prusinkiewicz & 

Lindenmayer, 1990) predefined surfaces and 3Dshapes (generalized cylinders) are 

incorporated to each symbol, during the final representation. But predefined surfaces and 3D 

shapes do not “grow”. String symbols have very little control over the integrated organs. 

However, we need to simulate plant development fully; therefore we have to use topological 



 

3d dimension structures. We use 3Gmap L-systems to describe them. They are integrated into 

the grammar as modules, which are grammars too. Thus the entire grammar has a nested 

structure, making it more intuitive to control. 

 

Figure 18 : Second and the third whorl of the floral diagram: corolla and androecium. 

Growing petals and stamens from the side faces of the base from the side faces of the base 

 

Figure 19 : The fourth whorl of the floral diagram – gynoecium 

Lateral organs are mostly volumetric. Even if leaves, sepals and petals seem to be flat 

and can be represented with predefined surfaces, we consider them as having an internal 

structure consisting of various layers, thus the third dimension, the thickness, is also taken 



 

into account. For example, in order to model a petal, we use its central vein as an initial 

building block. On the side faces of the vein volume grow the right and the left lobes of the 

petal, forming 3 layers: upper epidermis, mesophyll and lower epidermis (see Figure 5). After 

various derivation steps, the number of building blocks has increased and such faces as the 

sides of the lobes are glued (see Figure 21). Finally the topology of the petal is defined, that is 

the neighbourhood relations between 3Gmaps are established, passing the baton to the 

geometrical interpretation. 

 

Figure 20 : Compound double umbel inflorescence. The model is represented with 2 

derivation steps 

In order to shape the lateral organs into appropriate forms we use parameters. The 

curvy shapes are achieved by using equations of linear regression model, where the 

independent variable is a derivation step. In Figure 22 we can see how, the parameters for 

linear regression model are determined, based on the set of points. The obtained equation (1) 

is then used as a parameter in the grammar, where x is a derivation step, y represent the width 

and height of the volume and a,b,c,d,f,g,h are parameters of linear regression. 

y = a + bx + cx
2
 + dx3 + fx

4
 + gx

5
 + hx

6
                     (1) 

Using random functions as parameters we can add some irregularities into the final 

shape thus creating more realistic models of flowers (see Figure 23). 

It is also possible to create the models of a huge amount of flowers, like meadows or 

fields, due to the nested structure of grammar. In Figure 24 a small meadow is created, where 

some of its building blocks are represented as “seeds” from which the flowers will grow. The 



 

entire structure of the flower is stored in a module and is integrated into the principal 

grammar, by using the grow operation onto the “seed” building block. 

 

Figure 21 : Petal, consisting of three layers : upper and lower epidermis and mesophyll. The 

upper images are the results of 11  derivation steps, growing and gluing operations 

2.2.4 Materials 

Flowers are not homogeneous structures and consist of lots of different components. 

Each one of them has its own properties and not only distinct shapes but also distinct 

materials. While writing a grammar we try to compose the volumes in such a manner that the 

main components of the flower can be quite distinguished. So one or another group of 

volumes can represent a petal or a leaf, etc. And of course they differ in colour and 

illumination properties, as well as texture, etc. Thereby we decided to add a new parameter in 

a volume definition of grammar. It represents a material of a flower organ and is denoted as 

integer, which is a number of materials listed in material.mtl file, containing definition of its 

various properties. This function is also useful for the models having an internal structure. 

Flower tissue is not homogeneous and consists of several layers: upper epidermis, lower 

epidermis, veins, and mesophyll. If we create a model of a petal with all these layers, we 

assign to each one of them its proper material. Using this contribution the rendered results 

look much more realistic, as each component of a flower has its own colour, illumination 

properties, etc. 

 



 

 

Figure 22 : The equation of the curve, with parameters for linear regression model, based on 

the set of points. Carpel is constructed using the equation for its width and length parameters 

with 11 derivation steps 

2.3 Flower rendering 

The models were rendered with Blender 2.49b. We used 2 spot lights and a lamp. One 

of the spot lights was placed behind the model (see). For each model we define a set of 

materials with Lambert diffuse shader, Cook-Torrance specular shader, translucency property 

and subsurface scattering function.   

 

Figure 23 : Applying random function as parameters of the volumes 

 



 

 

Figure 24 : Meadow of tulips model. The tulips are modules integrated into the initial 

grammar. The model is constructed with 13 derivation steps 

 

 

Figure 25 : Camera and light position of the scene 

In Figure 26 we can see the difference between the results rendered without and with 

translucency and subsurface scattering. 

 

 

 

 

 

 



 

 

Figure 26 : Tulip rendered without and with translucency property and subsurface scattering 

function 

2.4 Results 

Our method allows getting a mesh of huge variety of flowers, as well as flower 

compositions and terrains. The software was developed under Linux Ubuntu , in c++ using 

cross platform library Qt,. The output is exported to obj format with the information of 

material assigned to each volume composing flower geometry. 

In Figure 27 we can see a bluebell and tulip flower models. Here we can see that all 

the petals slightly differ one from another with their shapes and angles. To obtain this we used 

random values of parameters for the petal grammar. To make a grammar more intuitive we 

also used a nested structure adding modules for each component.  

The geometric models are then rendered using Blender version 2.49. In Figure 28 

several species of flowers are presented. Here using interactivity function we can easily adjust 

the shape of all flower components to get more realistic models. 

Our method also allows creating realistic terrains of flowers just using one grammar. 

We construct a terrain containing volumes and add modules which represent different flowers 

using random parameter values. In Figure 29 we can see several terrains of flowers, where 

each flower is distinct from another due to passing random values of the parameters of the 

modules. The times of generation of the models, represented in Figures 28a, 28b, 28c and 28d 

is 37:5 s, 120:4 s, 56:3 s, 63:4 s respectively. This possibility of automatic creation of a huge 

amount of  flowers in a quite short period of time is a great advantage in the area of plant 



 

modelling. Besides the entire flower samples are different one from each other even if the 

species of the flower are the same. 

 

Figure 27 : Bluebell and tulip flower models 

2.5 Conclusion 

We introduced a method of flower generation based on 3Gmap L-system, allowing to 

create a grammar in order to construct flower models. Once written one grammar we can get a 

great variety of flowers by simply changing the values of its parameters. In that way we have 

a possibility to obtain complicated scenes with a large number of different flowers with a 

minimum amount of work on the grammar. We also took into account the needs of the user to 

have an intuitive modelling tool. Thus the shape of the flower can be modified interactively 

and the grammar has an intuitive structure allowing to use the modules. Due to volumetric 

model we can construct the internal structure of flower tissue, which consists of several 

layers. Assigning a material with special properties to each layer, we would be able to get 

more realistic results while rendering. 



 

 

Figure 28 : Models of a) tulips , b) water lily, c) bluebells and d) poppies 

 

Figure 29 : Models of flower fields and meadows 
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Interactive modelling of flowering plants 

 

 

 

 

 

 

 

 

 

 

 



 

3. Interactive modelling of flowering plants  

3.1 Introduction 

As we have mentioned before, we can distinguish two different approaches to flower 

simulation. The first one is aiming at getting a plausible model while the botanical correctness 

is usually disregarded. Here the task of modelling is undertaken mainly by the user describing 

a plant structure and its components and defining the required parameters. The degree of 

realism depends on the users skills. This approach is quite intuitive for a common user, but 

has the inconvenience of creating each sample from scratch in case of generating a variation 

of slightly different flowers (Ijiri et al., 2005), (Quan et al., 2006). 

The other approach could be referred to as procedural modelling, which tries to 

provide biologically faithful and visually realistic models (Prusinkiewicz & Lindenmayer, 

1990). Most of these approaches are based on L-Systems, which can generate complicated 

multicellular structures from a small number of rules. They are able to get a lot of flower 

samples based on a single grammar by simply changing the parameter values. Although these 

methods can provide impressive results, the underlying algorithms are not so intuitive for 

common users. 

An analysis of previous work points to look for some kind of symbiosis between these 

two groups of approaches in order to simplify the task of the user and at the same time to 

retain the realism of the models. Pursuing this goal we propose to combine L-systems 

grammar writing with interactive control of parameter settings. In order to avoid  the 

laborious task of grammar writing we propose a new interface function: the inverse modelling 

by automatic generation of L-systems. The user describes the flower he wants to model, by 

mentioning the properties of its organs. The algorithm uses this information as an input, 

which is then analysed and coded as L-systems grammar. The user can control the final result 

by interactively setting  the parameters of the grammar. These contributions make the task of 

a user more obvious and intuitive which in turn enables to create more accurate models. In 

addition, the way the model is built allows us to take into account its internal structure. As the 

flower tissue is non-homogeneous, this can be quite useful to render more accurate subsurface 

scattering. 



 

3.2 Inverse problem challenges in flower modelling 

The methods of inverse modelling group attempt to obtain feature constraints, 

relations, and dependencies based on the observation of the given model. Automatic 

generation of procedural rules has been an open problem for a long period of time. Its 

achievement would constitute a great advantage as the rules allows generation of classes of 

similar models, the internal structure of the model could be modified, the model could be 

represented by its generative rules (compressed), the syntactic analysis of the rules could be 

used for image analysis, and so forth (Stava et al., 2014). This is not a trivial task and the 

obtained models up to now have limited functions, which require a further research. 

Procedural models have an ability to generate a wide range of complex structures from 

a small set of specified parameters. However precisely because of the nature of this ability, 

the procedural models are hard to control as a small perturbation in the parameter space 

results in a significant change in the resulting structure. The obtained grammar with a current 

set of parameters can correspond to the current model of the flower, but it does not guaranty 

that with the small change of parameter values the result would correspond to a botanically 

plausible flower model. Besides, because of the huge diversity of flowering plants, the gaps 

between the problem and solution domain and between concrete and abstract are rather vast. 

Perhaps this is the reason that few work has been done on the inverse procedural models.        

We propose a hybrid approach to solving the inverse problem of modelling of 

flowering plants. Our method involves first defining the structure of the abstract flower, and 

then applying 3Gmaps L-Systems. 

3.3 Inverse grammar generation interface 

The whole process of writing a grammar is not intuitive and tedious. But still the 

grammar itself represents a valuable piece of information, as it has in its code an unlimited 

variety of potential flower models. In addition, storing geometries in a grammar format is 

much more compact than storing it in a conventional way. Taking into account all these 

advantages we added a new functionality of inverse procedural modelling. Here we have to 

face up to the inverse problem that is given as input the description of flower we have to find 

a grammar which contains the approximate structure of this input.  

Our interface provides an option to describe the flower we want, instead of editing a 

grammar. By choosing an appropriate organ shape, its size, its growth nature, etc. the user 



 

defines a framework for generating a grammar. We are following the biological rules of 

flowering plant structure and growth, managing an interface in a way that the user can take 

into account every organ of the plant, resulting in a botanically correct flower.  

We are trying to create the models of botanically correct structures but of course we 

cannot pretend to develop a tool which could be able to describe all the existing types of 

flowers. There is an enormous variety some of which have not even been studied yet.  

Let us have a look at an example to see more clearly what we are dealing with. Let us 

suppose the user wants to generate a grammar of the tulip flower. In order to do this he/she 

has to describe the flower structure, which we have divided into 6 control points: stem, leaves, 

and the four flower rings (calyx, corolla, androecium and gynoecium). Figure 30 depicts the 

interface containing all control points of the plant, represented with the tab menu bar. 

 

 

Figure 30 : Inverse grammar generation interface. The control points are represented as tabs 

and located on the left of the main panel. The first control point – the stem. The grammar of 

the stem generated according to the description 



 

 

Figure 31 : The second control point – the leaf. Generated geometrical model of the leaf and 

its grammar 

Starting with the first control point, we describe the stem of the tulip which has a 

round form of cross-section and erect growth nature. We also can mention its length and 

radius size or leave it for the default values to be automatically assigned. The grammar is then 

generated and stored in a file. 

The second control point is a leaf (see Figure 31), which has several characteristics to 

be determined. We chose the value of contour form as apical, length, width and thickness of 

the leaf, and the quantity of leaves on the stem.    

Checking the absence of sepals on the third control point, we are passing directly to 

the fourth control point which is petal (see Figure 32). In order to define a petal we 

distinguished several properties, such as: its size (length, width and thickness), shape, material 

and quantity.  

Choosing a rounded shape, the size and quantity of 6 petals we are moving to the next 

control points. The fifth and the sixth control points are the descriptions of flower 

reproductive organs: stamens and carpels.  

The stamen (see Figure 33) is that part of a flower that looks like a thin hair with a 

follicle on top. Usually there are several stamens surrounding the pistil(s). The hair is called 

the filament and the follicle is the anther where pollen is produced. The filament and anther 

together  make up the stamen. Tulip has 6 stamens, whose anthers are attached at its base to 



 

the filament. Choosing the number of stamens as 6, with basifixed attachment, we are passing 

to the last ring of the flower (see Figure 34). 

The carpel or pistil is in the very centre of the flower and contains the female organs. 

There may be one or more pistils. This part of a flower resembles a bowling pin in shape with 

the rounded lower base being the ovary. Coming up from the ovary the pistil narrows into a 

neck called the style, and the knob at the top of the neck is the stigma. Tulip has multiple 

connate fused carpels. Therefore we chose a syncarpous property. 

3.3.1 Grammar generation and assembling 

Our inverse modelling interface permits creating the grammars of the separate flower 

organs, as well as the whole flower grammar.  

 

Figure 32 : The fourth control point – the petal. Generated geometrical model of the petal 

 

If the user wants to obtain the grammar of some flower organ, he/she has to indicate 

all the properties that this organ must have. As it is explained in the previous section the user 

goes through the control points and chooses the properties he wants. For example, defining 

the leaf for a tulip flower, the user chooses acicular leaf shape in the corresponding control 

point. The program connects with a database, searching for the acicular value in a leaf shape 

table, and then extracts the necessary parameters, which are the equation coefficients (see 



 

Figure 22). The extracted parameters and its values are then stored in a vector and will be 

used by the program later. 

The method of grammar generation is based on templates grammars, which are 

predefined grammars corresponding to each control point. Every template grammar has a 

particular list of volumes, parameters and rules describing a generic organ structure. We have 

4 templates corresponding to stem, petal-like units (leaf, sepal, petal), stamen and pistil. We 

store the template in XML format, arranging its content as a tree of tags and its default values. 

The grammar structure is represented in Table 4. 

 

Figure 33 : The fifth control point – the stamen. Generated geometrical model of the tulip’s 

stamen 



 

 

Figure 34 : The sixth control point – the pistil. Generated geometrical model of the tulip pistil 

 

Figure 35 : Left: assembled model of tulip. Right: the closer view of the tulip flower 

 

Table 4 : Grammar representation in gl3 and xml formats 

gl3 xml 

volume description 
#define STEM(8,0,0,0,0,1,1,2,1)  <volume category="#define">  

<name>STEM</name><degree>8</degree>  

<transl_coef>0</transl_coef><x_rotation>0</x_rotation>  

<y_rotation>0</y_rotation><z_rotation>0</z_rotation>  

<height>1</height><length>1</length><width>2</width>  

<material>1</material>  

</volume>  



 

variable definition 
#define thickness=7  <variable category="#define">  

<thickness>7</thickness>  
</variable>  

axiom 
#axiome: STEM  <axiom prefix="#axiome : ">STEM</axiom>  

set of production rules 
p00 STEM->STEM[STEM(8,0.1,0,0,0,1,1,1,1)]_{E}  <rule>  

<predecessor init="p00 ">  
<volume category="predcsr">  
<name>STEM</name><degree/> 
<transl_coef/><x_rotation/><y_rotation/><z_rotation/>  
<height/><length/><width/><material/>  
</volume>  
<block1/>  
<condition/>  
<block2/>  
<element>-></element>  
</predecessor>  
<successor>  
<volume category="root">  
<name>STEM</name><degree/>  
<transl_coef/><x_rotation/><y_rotation/><z_rotation/> 
<height/><length/><width/><material/>  
</volume>  
<element>[</element>  
<volume category="successor">  
<name>STEM</name><degree/>  
<transl_coef/><x_rotation>0</x_rotation>  
<y_rotation>0</y_rotation><z_rotation>0</z_rotation>  
<height/><length/><width/><material/>  
</volume>  
<element>]_</element>  
<face>{E}</face>  
</successor>  
</rule>  

 

Once the user defines all the properties for a particular control point (a leaf for a tulip 

flower in our example), the program then opens a template for a petal-like unit for parsing. 

The program will now use the stored vector of parameters. The DOM parser goes through the 

template, putting the necessary parameter values in its places and thus generating the final 

grammar.  

In order to get the whole flower we have to assemble all control points. Here the 

system collects all the input information and unifies all the grammars of flower organs into 

one flower structure grammar (see Figure 35).  

3.4 Interactive parameter adjustment 

After obtaining the grammar of the organ or flower, the user may want to modify the 

resulting geometry. He/she would have to come back to the grammar, modify the values of 

appropriate parameters and reload the grammar once and before he sees the final result. Our 

system allows us avoid this laborious work, providing a functionality of interactively 



 

changing L-systems parameters. We do not have to recreate the model, but, reusing its 

topology, reload the embedding of the model (see Figure 36). This constitutes a great 

advantage because separate management from the topology and from its embedding 

simplifies the algorithms allowing us to easily create lots of model variations. This way of 

changing parameter values is quite faster as it only takes into account the embedding part, 

leaving the topology part of the program untouched.  

Let us come back to our example of tulip flower. For the moment, the model is very 

static. The user can now interactively manipulate with every organ. In Figure 37 we can see 

how different components of the flower are changing. A user just selects an appropriate 

volume and, by clicking on a box of parameter values, changes a model shape on the fly, 

observing the results at the same time. Groups of different volumes can represent flower 

organs. In order to control them we used variables, which represent different flower 

component measures. The variable values can also be interactively changed, thus making the 

flower shape managing even more intuitive and faster.  

 

Figure 36 : Separate management from topology and its embeddings 

We can also change the topology of volumes interactively which simplifies the 

creation of models with different number of petals, leaves, etc. In this case the order of the 

prism is changed and we have to rerun the grammar from the very beginning which is a much 

slower process than the previous one. Nevertheless, this makes the process of modelling more 

intuitive for the user. 



 

 

Figure 37 : Interactive control of flower shapes, by changing the values of parameters 

 

3.5 Results 

Here are some examples of using 3Gmap L system interface functionality of inverse 

modelling.  

 

Figure 38 : Interactive control of flower shapes, by changing the values of parameters 

The globeflower was modelled by describing the control points and then assembling 

the organs together. After that the model was adjusted using an interactive control interface 

(see Figure 38). 

We can also mix the inverse grammar modelling with the manual grammar writing. 

Some flowers have very complicated structure and could be modelled only with individual 

grammars, which the user must write himself. Nevertheless he/she can combine the 



 

complicated parts with those which can be modelled with the inverse grammar generation 

tool. The model of a sunflower was obtained by writing the grammar of its complex 

headflower and combining it with the grammars of organs (such as petals, sepals and leaves) 

obtained by inverse grammar generation tool (see Figure 39). 

 

Figure 39 : The numerous florets which are crowded together with spirals were modelled 

manually, while the external petal, sepal and leaves are modelled automatically 

All the geometrical models were rendered with 3Ds Max 2012, using mental ray (see 

Figure 41). The advanced user can use the existing grammars to create fields of flowers (see 

Figure 40). In Chapter 3 the folded structure of the grammar was explained and some 

examples of constructing the flower fields were presented. Using this method we unify all the 

flowers we need into one grammar. Random values of parameters provide slightly different 

geometries using the same grammar, thus making the results more realistic.  

The comparison of real flowers and rendered models of poppies, daisies, globeflowers, 

dandelions, bluebells and sunflowers are presented in Table 5. 

3.6 Conclusions and future work 

In this chapter we have presented intent to combine the two modelling groups, in order 

to ease the task of the user while preserving the plausibility and efficiency of procedural 

methods. This application provides an intuitive interface which permits the user to create 

grammars in a more comprehensive level. The user doesn’t have to write an intricate code of 



 

the grammar, but with the help of our interface, he/she can define the flower characteristics, 

which are used for automatic grammar generation.  

 

Figure 40 : The rendered models of flower fields. Above : poppies. Below : globeflowers and 

dandelions 

  



 

Table 5 : Real flowers and modelled flowers comparison. 

Real flowers Modeled flowers 

Poppies 

 
 

Daisies 

  

Globeflowers 

 
 

 

 

 



 

Dandelions 

 
 

Bluebells 

  

Sunflowers 

  

 

 

 



 

 

Figure 41 : Rendered models of globeflowers and bluebells 

There are several straightforward improvements on our current implementation. The 

assembling of the flower model is manual, which requires the user to collaborate partly in 

grammar writing.  A needed extension of the system is an automatic assembling of the flower 

organs. This includes an implementation of the parser collecting the grammars of the flower 

organs and plugging them into the base flower grammar. Another direction of the future work 

is enlarging the data base of the template grammars, in order to describe more precisely the 

flower we need. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 
 

 

Interactive modelling of flowering plants 

 

 

 

 

 

 

 

 

 



 

4. Flower modelling and Kinect 

4.1 Introduction 

Virtual worlds in videogames have grown in size and complexity as computers 

increased in performance. The creation of these worlds requires many hours by expensive 

modellers to provide a believable experience to the final user. As technology advanced, more 

tools have been provided to modellers to ease their work. For example, interactive terrain 

editors allow the modeller to paint over a terrain texture, and the colours of this texture are 

used by the game engine to add trees or other vegetation, using a predefined set of models. 

While the results are quite good for casual walkthroughs through the terrain, closer inspection 

shows that only a discrete number of models are being used to populate the terrain. In our 

framework, the models are located in the terrain using similar techniques, but each model 

instance is requested to a flower server. Since the flower models are parameterized using a 

customizable grammar with different tuneable parameters, we can guarantee that all the 

flowers will be different, providing the final user with a much more believable world even 

when performing close inspections of the models. The grammar model ensures that all the 

flowers are physically plausible. In order to lighten the task of the user we combine 3Gmap L-

system with the natural user interface by means of Microsoft Kinect. Analysing the gestures 

of the user, Kinect provides basic interactions, which are reinterpreted as signals for changing 

parameter values of the grammar, and which in its turn returns a modified geometrical model 

of the flower. Using simple gestures the user can create new flowers or interactively modify 

its shape, such as the curvature, the length and the width of each of its organs. 

4.2  Microsoft Kinect  

To hide the complexity of the L-systems from the final users, we can map the different 

parameters to different gestures using a Microsoft Kinect (Microsoft, 2012). A Kinect, 

originally intended for the Xbox 360 game, is a webcam-style add-on peripheral designed to 

support the most natural ways of communication with the computer: gesture recognition or 

spoken commands (often referred to as natural user interface). It is both equipped with a 

colour camera and an infrared projector extended with a sensor providing depth information, 

turning the Kinect into a low-cost, real-time full body 3D motion capture device. According 



 

to the documentation, two skeletons, and up to 6 people within its field of view can be 

detected. For a single skeleton, 20 joints can be used in standing posture and 10 joints while 

sitting. By analysing the gestures and poses of the user, Kinect can provide basic interactions 

similar to mouse, keyboard and touch interactions (i.e. selecting buttons, zooming and 

panning around a surface). Kinect control has been successfully applied to many different 

areas, such as computer games and entertainment, education or healthcare. The creation of 

intuitive gestures allows the user to control a large quantity of parameters seamlessly. In 

addition, Kinects have been used to directly measure vegetation structure (Azzari et al., 2012), 

to track plant leaves (IRI, 2011), and to segment them (Wallenberg et al., 2011). 

4.3 Flower generation using Kinect 

In the following sections, we describe the architecture of our system, the content 

generation module and the natural interface module. 

4.3.1 System architecture 

The architecture of our system is as follows (see Figure 42): 

 A command line flower generator reads the grammar and applies the requested 

transformations to create a unique flower, and generates an OBJ file using the 

libraries developed to support the system presented in Chapter 2. 

 A webserver using Common Gateway Interface (CGI) provides the interface 

between the flower generator and the clients requiring the flowers (Table 6). A 

unique url provides the information of the base grammar, the depth and the 

different values of the parameter space. Accessing the url produces the 

corresponding OBJ file. 



 

 

Figure 42 : Pipeline of our framework 

 A library of routines running in the Unity game engine (Unity_Technologies, 

2013) can be used to load either a specific flower or to generate flowerbeds (see 

Figure 48). The flowerbeds can be parameterized setting the minimum and 

maximum values of the different flower parameters, and each flower is generated 

by sampling uniformly in the desired parameter space. The url for the flower is 

used to retrieve the OBJ file with the flower model. The number of flowers and 

their density can also be chosen by the user. 

 We have used a library of gestures on top of the standard OpenNI unity sdk  

(Zigfu, 2013) and the NITE middleware, which is described in (Rodriguez et al., 

2013). The intensity of these gestures has been mapped into the available range of 

the corresponding flower parameter. 

This architecture allows us to separate the flower generation from the rendering, and is 

less demanding for low-power devices such as mobile phones, since the flower generation is 

run on a separate server. As an example, Figure 43 shows the rendering of different flowers in 

an android device. Additionally, the web server provides authentication, authorization and 

encryption, a possibly useful feature in DRM schemes, and can hide the grammars from the 

final users (if needed). 



 

Table 6 : CGI script to interface with the flower generator 

#!/bin/bash 
echo Content-type: text/plain 
echo 
saveIFS=$IFS 
IFS=’=&’ 
parm=($QUERY_STRING) 
IFS=$saveIFS 
./CL3Gmap ${parm[0]} ${parm[1]} ${parm[2]}${parm[3]} ${parm[4]} ${parm[5]} 
${parm[6]} 
${parm[7]} ${parm[8]} ${parm[9]}${parm[10]} ${parm[11]} ${parm[12]}${parm[13]} 
${parm[14]} ${parm[15]}${parm[16]} ${parm[17]} \ 
2>&1 >/dev/null || 
echo "Error running CL3Gmap" 
cat export/out.obj 
rm -f export/out.obj 
 

4.3.2 Content Generation 

The content generation routines have been implemented as scripts running in the Unity 

game engine, which provides support for different architectures (Microsoft Windows, Mac 

OSX, Android, iOS and Flash). The routines are portable, and are only constrained by the 

processing power and memory of the device (very realistic flowers contain on the order of 

tens of thousands of triangles, and a flowerbed contains many flowers). 

 

Figure 43 : Procedural flowers rendered on Android 

The flowerbed generator code fills a terrain by choosing flower locations using 

stratified sampling (Figure 44; flowers are more sparse to highlight the sampling). The 



 

number of flowers, their species and density are parameters to the script. In addition, a range 

of possible values for the grammar parameters can be given (or a default will be used). The 

script samples stochastically the parameter space, generates a url, and requests each flower, 

until the flowerbed is filled. Different flowerbed scripts can be used to interspace different 

species of flowers or to add grass. Additionally, different flowers can be interspaced in the 

same flowerbed by choosing randomly among a predefined set of flowers. Figure 45 shows a 

flowerbed with interspaced bluebells and daisies integrated in a game being developed at the 

group based on the Windmill adventure of Don Quixote (de Cervantes, 1605). 

4.3.3 Exploring the parameter space using Kinect 

Flowers are complex objects, and procedural modelling of them requires attention to 

many parameters. Classical interfaces based on keyboard and mice require the display of a 

multitude of parameters and nested menus. However, newer, camera-based input devices such 

as Microsoft Kinect allow the user to use a much richer collection of gestures using different 

parts of the body to indicate their wishes. Specific gestures can be designed and mapped to 

different parameters of the flower grammar, obtaining very intuitive modelling gestures (see 

Figure 46).  

As an example, we have modelled the horizontal and vertical movement of the right 

hand to the rotation and length of the stem of the flower, respectively. When we display a 

circle indicating the position of the current parameters, we observe an interesting emerging 

behaviour: the flower grows and bends towards the circle, in a manner reminiscent of the 

known biological concept of phototropism (Whippo & Hangarter, 2006) (see Figure 47). We 

believe that this emerging behaviour provides an intuitive control for modellers and 

biologists. Formally, the Kinect gesture for hand position provides two axes (vertical and 

horizontal position of the hand), which range in values between 0 and 1. By contrast, the 

rotation parameter of the flower is in degrees (which range for realistic flowers between -5  ͦ

and +5 ͦ) and the length parameter ranges between 0 and 100. Two linear transforms connect 

the values of the Kinect axes to the flower parameters. The vertical axis is linked to the length 

of the flower by transforming the interval [0; 1] to [100; 0] as the screen coordinates grow 

down. The horizontal axes is linked to the angle parameter by transforming [0; 1] to [-5; 5]. 

 

 



 

 

 

Figure 44 : Top view of a sparse flowerbed 

 

 

Figure 45 : Bluebells and daisies in the Don Quixote game 



 

 

Figure 46 : Controlling the flower shape with Kinect gestures 

 

Figure 47 : Different screenshots of a daisy in which the length and rotation parameters are 

controlled using Kinect gestures. The red circle indicates the horizontal and vertical position 

of the user’s hand. The movement resembles phototropism 



 

 

Figure 48 : Automatically generated flowerbeds using sunflowers and grass 

4.4 Conclusions 

We have shown how unique, realistic grass and flowers can be generated by L-

Systems, and described a framework to model them using a natural interface (Microsoft 

Kinect), and to generate flowerbeds in the Unity game engine. These flowerbeds can be 

integrated in videogames very easily. We plan to integrate the procedural flowerbed generator 

in the Legends of Girona game (Rodriguez et al., 2013) to provide more realistic rendering of 

the fields outside of the city, and to validate the software in real-world scenarios. The current 

bottleneck of the system is the load of the flower models, which is sent using the OBJ format 

(we are currently loading the models using a library based on Bartek Drozdz’s Objloader 

(Drozdz, 2010). To alleviate this bottleneck, we will search for efficient implementations of 

3D model loaders for Unity and integrate them in our framework. 
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5. Summary and conclusions 

5.1 Key Contributions 

Modelling of vegetation is a huge area of investigation where computer graphics 

scientists have been exploring since decades. Although the resulting models have gained 

acceptance in as a research tool in biology and have led to increasingly convincing 

visualizations, still a lot of areas are left unexplored.  One of such areas is the flowering plants 

simulation which received less attention since the main research is focused on modelling of 

trees rather than flowers. Although, being part of vegetation, flowering plants have their 

particular structural features which are different from the structure of trees, bushes or grass. 

Another area is the interchange between biological plausibility, efficiency and visualisation is 

still very weak. A 3D artist can use commercial tools, spend more than several hours for 

creation a model from scratch, but obtain a visually impressive result. While an L-Systems 

specialist can create an unlimited number of visually less impressive, but biologically 

plausible models generating them from one grammar in a short period of time. The underlying 

tools of L-system methods assume that the user is familiar with the concepts of L-systems and 

turtle interpretation, as well as the elements of the C programming language. In this thesis, the 

following contributions are made to these areas:  

 

Modelling of flowering plants 

Flowers have quite an intricate structure consisting of numerous components which, in 

turn, have an enormous variety of shapes. A number of very different approaches have been 

proposed, depending on the grass properties as well as the modelling purposes. We chose a 

procedural modelling using L-systems as a base of our research. We propose to represent the  

shapes of leafs, petals, stamens, carpels, etc. with an extension of L-Systems – a model based 

on three dimensional generalized maps – 3Gmaps L-systems, which can be successfully 

applied for modelling of flowering plants . The grammar description of the structure of the 

flowering plants provides an unlimited number of its geometrical interpretations.  Moreover 

the way the model is built allows us to take into account its internal structure. As the flower 

tissue is non-homogeneous, the possibility of obtaining its internal composition could be quite 

useful for rendering, allowing for instance to render more accurate subsurface scattering. 

 



 

Interactive control the model 

Procedural modelling of flowering plants is very efficient and provides impressive 

results but the underlying tools are not intuitive for the common user. The process of 

adjusting parameter values of the grammar could be quite cumbersome as the user has to load 

the grammar every time he/she needs to see the changes of the geometry. We added a 

functionality of interactive change of parameter values. The user can adjust the model on the 

fly, changing parameter values and observing the result at the same time. This way of 

parameters values changing is quite faster as it only takes into account the embedding part, 

leaving the topology part of the program untouched.  

 

Inverse modelling 

The process of writing a grammar is usually quite laborious and tedious. In order to 

avoid this we propose new interface functionality: the inverse modelling by automatic 

generation of L-systems. The user describes the flower he wants to model, by assigning the 

properties of its organs. The algorithm uses this information as an input, which is then 

analysed and coded as L-systems grammar.  

This application provides an intuitive interface which permits the user to create 

grammars in a more comprehensive level. A big advantage is that the user does not have to 

write an intricate code of the grammar, but with the help of our interface, he/she can define 

the flower characteristics, which are used for automatic grammar generation.  

 

Modelling of large amounts of flowers  

The creation of virtual terrains requires many hours by expensive modellers to provide 

a believable experience to the final user. Interactive terrain editors allow the modeller to paint 

over a terrain texture, and the colours of this texture are used by the game engine to add trees 

or other vegetation, using a predefined set of models. While the results are quite good for 

casual walkthroughs through the terrain, closer inspection shows that only a discrete number 

of models are being used to populate the terrain. In our framework, the models are located in 

the terrain using similar techniques, but each model instance is requested to a flower server. 

Since the flower models are parameterized using a customizable grammar with different 

tuneable parameters, we can guarantee that all the flowers will be different, providing the 

final user with a much more believable world even when performing close inspections of the 

models. The grammar model ensures that all the flowers are physically plausible. 

 



 

Modelling plants using gesture capture 

In order to lighten the task of the user we combine 3Gmap L-system with the natural 

user interface by means of Microsoft Kinect. Analysing the gestures of the user, Kinect 

provides basic interactions, which are reinterpreted as signals for changing parameter values 

of the grammar, and which in its turn returns a modified geometrical model of the flower. 

Using simple gestures the user can create new flowers or interactively modify its shape, such 

as the curvature, the length and the width of each of its organs. 

5.2 Research Outlook 

Vegetation is not only complex in geometry; also the light interaction of leaves or 

grass blades is highly intricate. A leaf for example usually consists of different layers and is 

strongly structured, which has a profound impact on both the reflectance and translucency of 

leaves, an integral part of the light interaction of vegetation. Rendering vegetation is 

substantially different from rendering geometry with less geometric complexity such as 

houses, manufactured products or other objects consisting of largely connected surfaces.  

Modelling each flower individually in a landscape would require a huge amount of geometry, 

making a naive geometric approach impractical for interactive rendering. In order to solve this 

problem, new approaches should be proposed.  By using modern GPU capabilities to full 

extend could considerably optimize the process of visualisation. Considering a lawn of 

flowers for example, sending the grammar directly to the GPU provides model rendering 

entirely on the GPU without having to send the geometry to the CPU. Additionally due to the 

parallelism of the GPU it is possible to generate and visualise thousands of slightly different 

flower instances using only one grammar and a set of parameter values. 

Our application provides grammar generating of a limited number of flower types. We 

are planning to expand our database with more properties, permitting to describe the flower in 

a more complex way thus obtaining more intricate grammars. Another future research work 

will be directed on generating the grammars of flower models, given one or several images.  

Using subsurface scattering for rendering by taking into account the internal structure 

of the tissue is a future task yet to be implemented. Another improvement to be attained is 

texture generation according to the flower organs. 



 

5.3 Conclusions 

Men’s habitat is a green carpet of plants covering our earth. And the most impressive 

among them are flowers. Flowering plants play a huge role in our life from nutritive and 

medical purposes to beautifying the environment and therefore form an essential part of 

computer graphics. As the technology progresses, new possibilities will be available to 

increase the quality of all aspects, but specialized techniques still will be necessary to 

optimize the calculations. 

Significant advances have been made, but a fully photo-realistic real-time display of 

plants down to the last detail is still far ahead. Nonetheless, state-of-the-art methods as 

presented in this thesis can provide the visual complexity in appearance needed to render 

many forms of flowering plants in a convincing and faithful way. 
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