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Chapter 1. Introduction to Qdot lasers

Development of InP-based Qdot lasers

Semiconductor lasers play a crucial role in optical datacom and telecom applications.

Nowadays, high-definition television, video-on-demand, broadband internet and mobile phones are available all around the globe. The exponential rise in cost-effective information transmission would not have been possible without the introduction of optical transmission sytems, which in turn are enabled by semiconductor lasers. A hundred million new semiconductor lasers are deployed in communication systems every year, generating several billion dollars of annual revenue at the component level [START_REF] Murphy | Enabling optical communication[END_REF]. Higher performance semiconductor laser sources are strongly demanded due to the increasing data traffic in the Wide Area Networks (WANs), Metropolitan Area Networks (MANs), and Local Area Networks (LANs), which drives the development of the novel semiconductor laser technologies.

In addition, silicon based semiconductor laser devices and integrated circuits have undergone rapid and significant processes during the last decade, transiting from laboratory research topics to product development in corporations. Silicon photonics is anticipated to be disruptive optical technologies for data communication, with applications such as intra-chip or inter-chip interconnects, and short range communications in datacenters and supercomputers [Richman14]. It also finds applications in telecommunications on metro coherent and longhaul optical transmissions [START_REF] Dong | Silicon photonic devices and integrated circuits[END_REF], [START_REF] Duan | Hybrid III-V on silicon lasers for photonic integrated circuits on silicon[END_REF].

Figure 1.1 shows the history of active layer structure with evolutions. Since the first demonstration of semiconductor laser in 1962, significant development took place from bulkstructure lasers, through Qwell lasers to the advanced nanostructure quantum wire (Qwire), Qdash and Qdot lasers. In 1960s, the 3D bulk laser was developed based on semiconductor heterostructures, which provide efficient confinement of charged carriers in the active region [START_REF] Kroemer | Theory of a wide-gap emitter for transistors[END_REF]. In particular, the double heterostructure (DH), which also yields optical confinement, transformed semiconductor lasers from laboratory research into industrial applications [START_REF] Alferov | Semiconductor Laser with Electric Pumping[END_REF]. The quantum confinement occurs when one or more spatial dimensions of a nanocrystal approach the de Broglie wavelength of the carrier (on the order of 10 nm). The confinement of carriers leads to the quantization of the density of states, and splits the energy band of bulk semiconductors into energetic subbands [START_REF] Dingle | Quantum Effects in Heterostructure Lasers[END_REF]. In 1970s, the first Qwell laser (2D system), in which carriers are confined in one dimension, was demonstrated [van der Ziel75]. The recognized advantages over DH lasers were the reduced threshold current by decreasing the thickness of the active layer as well as the tunability of the wavelength via changing the Qwell thickness. Further decrease of the degrees of freedom leads to low-dimensional nanostructures such as Qwire (1D) and Qdash or Qdot structures (0D). Ideally, 0D systems exhibit atom-like density of states hence resulting with an ultimate carrier confinement. The concept of Qdot semiconductor laser was originally proposed by Arakawa and Sakaki in 1982 [START_REF] Arakawa | Multidimensional quantum well laser and temperature dependence of its threshold current[END_REF],

predicting temperature independence of the threshold current. Henceforth, reduction in threshold current density, high spectral purity, enhancement of differential gain and chirp-free properties were theoretically discussed in 1980s [START_REF] Asada | Gain and the threshold of three-dimensional quantum-box lasers[END_REF]. The most straightforward technique to produce array of Qdots is to fabricate suitably sized mesa-etched quantum wells grown by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE).

However, the nonradiative defects produced during the etching procedure lead to a degradation of the material quality, which results in unsuitable structures for lasers. In the 1λλ0's, both selective growth and self-assembled growth technique, which can avoid nonradiative defects were well developed. Particularly, the Stranski-Krastanow growth mode was very successful for InGaAs/GaAs systems [START_REF] Bimberg | Quantum Dot Heterostructures[END_REF], [START_REF] Arakawa | Progress in growth and physics of nitride-based quantum dots[END_REF]. The strain-induced self-organization of InGaAs/GaAs Qdot lasers [START_REF] Kirstaedter | Low threshold, large T0 injection laser emission from (InGa)As quantum dots[END_REF], [START_REF] Bimberg | InAs-GaAs quantum pyramid lasers: In situ growth, radiative lifetimes and polarization properties[END_REF], [START_REF] Huffaker | 1.3 m room-temperature GaAsbased quantum-dot laser[END_REF] yielded threshold current densities as low as ~60 A/cm 2 at room temperature [START_REF] Ledentsov | Direct formation of vertically coupled quatum dots in Stranski-Krastanow growth[END_REF]. Extensive work on the GaAs based Qdot system has been carried out and the laser performance has been improved a lot since then [START_REF] Crowley | GaAs Based Quantum Dot Lasers[END_REF]. A low threshold density of 17 A/cm 2 [START_REF] Liu | 1.3 m InAs/GaAs multilayer quantum-dot laser with extremely low room temperature threshold current density[END_REF] and a high output power of 7 W (broad area) have been achieved in InAs/GaAs lasers [START_REF] Maksimov | High-power 1.5 m InAs-InGaAs quantum dot lasers on GaAs substrates[END_REF]. Nowadays, the InAs/GaAs Qdot products already become commercialized in the market [START_REF] Bimberg | Quantum Dot Heterostructures[END_REF], [START_REF] Zhukov | Device characteristics of long-wavelength lasers based on self-organized quantum dots[END_REF]. Meanwhile, several self-assembled growth techniques, such as solid-state MBE [START_REF] Joyce | Variations in critical coverage for InAs/GaAs quantum dot formation in bilayer structures[END_REF], gas source MBE [START_REF] Chang | Effect of InGaAs capping layer on the properties of InAs/InGaAs quantum dots and lasers[END_REF], metalorganic vapor phase epitaxy (MOVPE) [START_REF] Oshinowo | Highly uniform InGaAs/GaAs quantum dots (15 nm) by metal organic chemical vapor deposition[END_REF], and chemical-beam epitaxy (CBE) [START_REF] Poole | Growth of InAs/InP-based quantum dots for 1.55 m laser applications[END_REF], have been improved and successfully used to grow the Qdot materials.

However, the GaAs-based Qdot laser devices emit usually in the O band (1260-1360 nm) of the telecommunication windows and can hardly reach the desirable long haul communication window around 1.55 µm. Instead, InAs active region grown on InP substrates allows the realization of laser devices emitting in the C band window (1530-1565 nm) because of the smaller lattice mismatch. In the current market, InP-based 1.55 µm Qwell laser devices have shown substantial improvement in the optical characteristics in comparison with their DH counterparts. In order to improve upon the Qwell laser performance, InAs Qdots grown on InP substrates attract a lot of attention in the research field. However, the formation of nanostructures on InP is much more challenging than on the GaAs substrate [START_REF] Bertru | QD laser on InP substrate for 1.55 µm emission and beyond[END_REF].

Although the InAs/InP and the InAs/GaAs systems have the same material in the Qdots, they differ in three aspects: (a) The lattice mismatch for InAs/InP (3%) is smaller than that for InAs/GaAs (7%); (b) InAs/InP Qdots exhibit less confinement potential for electrons, but a stronger confinement for holes; (c) The InAs/InP material shares the same cation (In), while the InAs/GaAs shares the same anion (As) on the interface [START_REF] Gong | Electronic structure of self-assembled InAs/InP quantum dots: Comparison with self-assembled InAs/GaAs quantum dots[END_REF]. The small lattice mismatch and the complex strain distribution can result in the formation of a new class of self-assembled Qdash nanostructures instead of Qdots. These are elongated dot-like structures exhibiting interesting mixed characteristics in between the Qwell and the Qdot [Wang01]. Strongly anisotropic Qdash nanostructures are even closer to the electronic properties of Qwire [START_REF] Miska | Experimental and theoretical investigation of carrier confinement in InAs quantum dashes grown on InP(001)[END_REF]. Therefore, realization of true InAs/InP Qdots does require specific epitaxial growth procedures. This can be done by employing conventional or miscut (100) InP substrates, as well as a misoriented (311) InP substrate along with various innovations in the growth process [START_REF] Khan | Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices[END_REF]. Nevertheless, reduction of the dot size and suppression of the size dispersion due to the self-assembled growth procedure still pose challenges in achieving high quality epitaxial material and hence better device performance. Currently, the size dispersion, characterized by the full width at half maximum (FWHM) of the photoluminescence (PL) linewidth, is ~20 meV at 10 K for Qdots, and ~50 meV at room temperature for Qdashes [START_REF] Reithmaier | InAs/InP quantum-dash lasers and amplifiers[END_REF], [Zhou08], [START_REF] Zhou | Low threshold current density of InAs quantum dash laser on InP(100) through optimizing double cap technique[END_REF], [START_REF] Sichkovskyi | High-gain wavelength-stablized 1.55 m InAs/InP(100) based lasers with reduced number of quantum dot active layers[END_REF] and Qdots [Paranthëon01]. Further improvements of the material quality are still required to be competitive with the matured InAs/GaAs Qdot systems. InAs dots formed on the (100) InP substrate usually have a lower dot density on the order of 10 9 ~10 10 /cm 2 [START_REF] Kotani | First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state[END_REF]. These laser structures usually require multiple stacked layers for sufficient material gain. In contrast, dots grown on the high index (311)B substrate can lead to a higher Qdots density, commonly in the 5×10 10 ~10 11 /cm 2 range [START_REF] Homeyer | First demonstration of a 1.52 m RT InAs/InP (311)B laser with an active zone based on a single QD layer[END_REF], [START_REF] Cornet | Electronic and optical properties of InAs/InP quantum dots on InP(100) and InP(311)B substratesμ Theory and experiment[END_REF]. 

Lasers on (311)B InP substrate

High indexed (311)B InP substrates can offer a high density of nucleation points for the Qdot islands, which strongly reduces surface migration effects and leads to the formation of more symmetric Qdots in the planar direction. As a reslut, high density and uniform distribution of Qdots can be obtained. In order to reach higher density of Qdots, various studies have been carried out on the InP(311)B substrate and a relatively high density of 5-13×10 10 cm -2 has been obtained [START_REF] Nishi | Long-wavelength lasing from InAs selfassembled quantum dots on (311)B InP[END_REF], [START_REF] Li | Two-dimensional ordering of self-assembled InAs quantum dots grown on (311)B InP substrate[END_REF], [START_REF] Miska | Optical properties and carrier dynamics of InAs/InP(113)B quantum dots emitting between 1.3 and 1.55 m for laser applications[END_REF], [START_REF] Alghoraibi | Self-assembled InAs quantum dots grown on InP(311)B substrates: Role of buffer layer and amount of InAs deposited[END_REF]. The inhomogeneous linewidth broadening can be constrained within 50 meV by using the double capping layer technique [Paranthoen01], [Paranthoen03]. The typical size of dots is about 30-50 nm in base diameter and about 3 nm in height [START_REF] Li | The developments of InP-based quantum dot lasers[END_REF].

Using the InAs/InGaAsP active region, Nishi et al. demonstrated a Qdot laser with 7 stack layers grown by MBE [START_REF] Nishi | Long-wavelength lasing from InAs selfassembled quantum dots on (311)B InP[END_REF]. The laser device emitting at 1.4 µm at room temperature had a dot density of 2×10 10 cm -2 and a threshold current density of 4.8 kA/cm 2 . By using a double capping technique, Caroff et al. achieved a dot density of 1.1×10 11 cm -2 with a lasing emission close to 1.55 µm at room temperature [START_REF] Caroff | High-gain and low-threshold InAs quantum-dot lasers on InP[END_REF]. The laser had a high modal gain of 7 cm -1 per dot layer while the threshold and transparency current densities were 190A/cm 2 (63 A/cm 2 per layer) and 68A/cm 2 (23 A/cm 2 per layer), respectively. These results still represent the best threshold performance reported for the InP(311B) material system. Homeyer et al. reported a broad area laser emitting at 1.54 µm at room temperature with a high internal quantum efficiency of 62% [START_REF] Homeyer | Demonstration of a low threshold current in 1.54 m InAs/InP (311)B quantum dot laser with reduced quantum dot stacks[END_REF]. The laser consisting of only two Qdot stack layers had a modal gain of 8 cm -1 per layer and a dot density as high as ~1.0×10 11 cm -2 . A single active layer laser device with a gain of 13 cm -1 was further demonstrated in 2007, but lasing was observed only up to 295 K [START_REF] Homeyer | First demonstration of a 1.52 m RT InAs/InP (311)B laser with an active zone based on a single QD layer[END_REF]. Recently, a Qdot laser including 9 stack layers was reported with internal loss as low as 6 cm -1 and a total modal gain of 25 cm -1 [START_REF] Klaime | 23 and 3λ GHz low phase noise monosection InAs/InP (113)B quantum dots mode-locked lasers[END_REF]. However, the InAs/InGaAsP material system usually has a poor temperature stability, with a characteristic temperature T 0 of only 25-50 K at room temperature due to the low conduction band offset [START_REF] Caroff | High-gain and low-threshold InAs quantum-dot lasers on InP[END_REF], [START_REF] Khan | Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices[END_REF]. It is reminded that the laser threshold I th increases exponentionally with temperature (T in Kelvin) as 0 0 exp( / )

th th I I T T 
. T 0 (typically 60 to 150 K) is a measure of the temperature sensitivity of laser devices. Higher values of T 0 imply that the threshold current density and the external differential quantum efficiency of the device increase less rapidly with increasing temperatures.

Employing the InAs/InGaAlAs active region, Saito et al. first demonstrated a Qdot laser at a wavelength of 1.63 µm with a threshold current density of 660 A/cm 2 (132 A/cm 2 per layer) [START_REF] Saito | Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on InP(311)B substrates[END_REF]. The extracted internal loss was 3.6 cm -1 , which is the lowest value ever reported for the InAs/InP system. Nine years later, by exploiting the Al atoms in the spacer layers and employing the strain compensation technique, Akahane et al. demonstrated a 30 stack-layer laser with a threshold current density of 2.7 kA/cm 2 (90 A/cm 2 per layer) [START_REF] Akahane | Wavelength tunability of highly stacked quantum dot laser fabricated by a strain compensation technique[END_REF].

Subsequently, by improving the material growth quality, the threshold current density of a 30 stacked laser was reduced down to 1.72 kA/cm 2 (57.4 A/cm 2 per layer) with an extremely high temperature stability. The characteristic temperature T0 was 114 K for temperature operation in the range of 20-75℃ and was further improved to 148 K (for 25-80℃) with a 20-stack layer laser [START_REF] Akahane | The dependence of the characteristic temperature of highly stacked InAs quantum dot laser diodes fabricated using a strain-compensation technique on stacking layer number[END_REF]. However, due to the imperfect coupling of the optical mode with the multistack gain medium, the laser exhibited a high internal loss value of ~ 26 cm -1 .

Lasers on (100) InP substrate

The formation of self-assembled Qdots on the (100)InP substrate is more complicated [Elias09]. The formation of the dots or dashes strongly depends on the growth conditions and the thickness of InAs layers. One of the major problems encountered on the road to obtain lasers with good performance is the low Qdot density provided by this kind of substrate.

In the InAs/InGaAsP material system, the growth of dots is mostly based on CBE or MOCVD techniques. Allen et al. reported a CBE-grown Qdot laser, which was operated in a pulsed mode at room temperature [START_REF] Allen | External cavity quantum dot tunable laser through 1.55 m[END_REF]. Employing the dot height trimming procedure with growth interruptions, the pulsed threshold current density was 3.56 kA/cm 2 (713 A/cm 2 per layer). Then, by using a higher-energy barrier, the dot density was increased to 3-6×10 10 cm -2 .

On the other hand, Lelarge et al. used a hybrid growth technique with MBE grown active region in conjunction with MOCVD-grown p-doped cladding and contact layers [START_REF] Lelarge | Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP(100) quantum dots as active core[END_REF]. The CW threshold current density was 1.4 kA/cm 2 (240 A/cm 2 per layer) and T0 was 56 K at room temperature. Particularly, the laser showed a very high modal gain of 64 cm -1 (10.7 cm -1 per layer). The laser grown by MOCVD exhibited a reduced threshold current density of 615 A/cm 2 (123 A/cm 2 per layer) [START_REF] Anantathanasarn | Lasing of wavelength-tunable (1.55 m region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy[END_REF]. The transparency current density was also as low as 30 A/cm 2 with internal loss of only 4.2 cm -1 .

In the InAs/InGaAlAs material system, Kim et al. first demonstrated a Qdot laser using an assisted growth technique of a thin Gas underlying layer before the growth of InAs dots in

InGaAlAs matrix [START_REF] Kim | Long-wavelength laser based on self-assembled InAs quantum dots in InAlGaAs on InP(001)[END_REF], [START_REF] Kim | Room-temperature operation of InP-based quantum dot laser[END_REF]. The achieved dot density was 6.0×10 10 cm -2 , and the laser exhibited a threshold current density of 2.8 kA/cm 2 (400 A/cm 2 per layer). Measured T0 was 377 K fro temperatures up to 200 K, and 138 K above 200 K. More recently, Gilfert et al.

reported a high gain Qdot laser using MBE method [START_REF] Gilfert | High gain 1.55 m diode lasers based on InAs quantum dot like active regions[END_REF]. A low internal loss coefficient of 4 cm -1 combined with a high modal gain of 15 cm -1 per layer was reported. The lasing threshold current density was 1.95 kA/cm 2 (325 A/cm 2 per layer).

Very recently, Mollet et al. reported a very high modal gain of 97 cm -1 of an InAs/InP(100) Qdash laser. However, the internal loss coefficient was also as high as 23 cm -1 [START_REF] Mollet | Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks[END_REF].

Generally, the performance of the InAs/InP lasers has been improved significantly since its first demonstration. However, it still needs further development in order to be comparable with that of InAs/GaAs laser devices.

Dynamic performance of InP-based Qdot laser

In the fiber optic links, the laser transmitter may either be directly modulated, known as directly modulated (DM) laser, or externally modulated using a modulator. Fig. 1.3 shows an illustration of the direct and external modulations. In the DM scheme (top), the driving current carries the transmitted data and is directly applied to the laser. In the external modulation scheme (bottom), the laser subjected to a constant bias current emits a continuous wave (CW) while an external modulator switches the optical power on or off according to the data stream.

In the external modulation scheme, electro-optical (EO) or electro-absorption (EA) modulators are commonly used [START_REF] Peucheret | Direct and External Modulation of Light[END_REF], [START_REF] Ngo | Transmission performance of chirp-controlled signal emitted by electroabsorption modulator laser integrated with a semiconductor optical amplifier[END_REF]. The EO modulators, such as Mach-Zehnder modulators, utilize a signal-controlled crystalline material exhibiting the electro-optical effect (Pockels effect) to modulate the CW laser light. The electro-optic effect is the change in the refractive index of the material resulting from the application of a DC or lowfrequency electric field. The EA modulator controls the intensity of a laser beam via an electric voltage. Its operation can be based on the Franz-Keldysh effect [START_REF] Seraphin | Franz-Keldysh effect of the refractive index in semiconductors[END_REF], i.e., a change in the absorption spectrum caused by an applied electric field, which changes the bandgap energy but usually does not involve the excitation of carriers by the electric field. However, most EA modulators are made in the form of a waveguide with electrodes for applying an electric field in a direction perpendicular to the modulated light beam. For achieving a high extinction ratio, one usually exploits the quantum-confined Stark effect, which describes the effect of an external electric field upon the light absorption spectrum or emission spectrum of a quantum well structure. Both EO and EA modulators are operated on voltages of a few volts (below 10 V).

In comparison with EO modulators, a convenient feature of EA modulators is that it can be integrated with the laser on a single chip to create a data transmitter in the form of a photonic integrated circuit [START_REF] Kechaou | Improved NRZ transmission distance at 20 Gbit/s using dual electroabsoprtion modulated laser[END_REF], [START_REF] Erasme | The dual-electroabsorption modulated laser, a flexible solution for amplified and dispersion uncompensated networks over standard fiber[END_REF]. In contrast, DM lasers are the most common, particularly for short reach systems. DM lasers do constitute a low cost solution and offer least energy consumption, whereas they usually suffer from poor frequency chirp characteristics [START_REF] Tucker | Green optical communications---Part Iμ Energy limitions in transport[END_REF]. DM lasers generally produce more chirp for higher extinction ratios, leading to an optimum setting for trading off signal to noise ratio and chirp penalty. In addition, the DM scheme is helpful to understand peculiar physical characteristics of semiconductor lasers. Aiming to realize chirp-free DM lasers, many efforts have been devoted to the development of nanostructure semiconductor lasers. Table 1.1

summarizes the reported dynamical performance of InP-based Qdot and Qdash lasers in literature, including the 3-dB modulation bandwidth and the α-factor, which is linked with the frequency chirp under direct modulation. InAs/InGaAlAs/InP Qdot laser with a 3-dB bandwidth of 5 GHz [START_REF] Gready | High-speed low-noise InAs/InAlGaAs/InP 1.55-m quantum-dot lasers[END_REF]. Interestingly, the laser showed a much higher large signal modulation capability: 15 Gbps with a 4-dB extinction ratio. The discrepancy between the small and large signal performances was attributed to the large nonlinear gain compression effect [START_REF] Gready | On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers[END_REF]. Through the optimization of the barrier width and the number of stack layers, the performance of the structure was improved---the small-signal modulation bandwidth was increased to 9 GHz and the large signal modulation was operated up to [START_REF] Wang | Nonlinear dynamics and modulation properties of optically injected quantum cascade lasers[END_REF] Gbps with an extinction ratio of 3 dB [START_REF] Gready | High speed 1.55 m InAs/InAlGaAs/InP quantum dot laser[END_REF]. The best performance of InAs/InP Qdot laser was achieved by Bhowmick et al. recently [START_REF] Bhowmick | High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 m tunnel injection laser[END_REF]. The laser material system was InAs/InGaAlAs and the active zone was grown on (100) InP substrate.

Tunnel injection and p-doping techniques enhanced the modulation bandwidth up to 14.4 GHz, and a near-zero α-factor was reported in this structure. For Qdash lasers realized on (100) InP substrate, most work employed the p-doping technique to improve the modulation bandwidth and to reduce the α-factor [START_REF] Mi | DC and dynamic characteristics of p-doped and tunnel injection 1.65 m InAs quantum-dash lasers grown on InP(001)[END_REF], [START_REF] Mollet | Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks[END_REF], [Joshi14], [START_REF] Joshi | On the nature of the linewidth enhancement factor in p-doped quantum dash based lasers[END_REF]. Mi et al. showed that the modulation bandwidth was increased from 6 GHz for the undoped laser to 8 GHz with p-doping laser [START_REF] Mi | DC and dynamic characteristics of p-doped and tunnel injection 1.65 m InAs quantum-dash lasers grown on InP(001)[END_REF]. Mollet et al. demonstrated that the α-factor was reduced from 5 down to 2.7 by p-doping [START_REF] Mollet | Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks[END_REF]. On the other hand, the tunnel injection technique further increased the modulation bandwidth more than 10 GHz, and reduced the α-factor towards zero [START_REF] Mi | DC and dynamic characteristics of p-doped and tunnel injection 1.65 m InAs quantum-dash lasers grown on InP(001)[END_REF], [START_REF] Bhowmick | High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 m tunnel injection laser[END_REF]. Consequently, a low chirp of 60 pm at a modulation frequency of 8 GHz was achieved in the Qdash laser, and the same chirp level at 10 GHz in a Qdot one.

Motivation and overview

As mentioned previously, in order to face the traffic increase, one timely innovating solution relies on the development of low cost and small foot print optical components while simultaneously enhancing their high-speed performances and reducing their thermal sensitivity and power consumption [START_REF]Cisco Data Center Interconnect Design and Deployment Guide[END_REF]. Since future optical networks are about to operate at 40 Gbps and 100 Gbps, development of "greener and faster optical components" incorporating Qdot material is also highly expected. In order to cope with these societal challenges, DM lasers do still provide a unique low cost and ultra-compact solution. Direct modulation makes however the output light strongly dependent on the lasers' nonlinear characteristics. An external modulator could certainly overcome these problems providing a larger bandwidth with higher linearity and lower chirp but external modulation still does suffer from a high cost and power consumption.

Based on the review of literatures, Qdot lasers are demonstrated to have the following advantages in comparison with their Qwell counterparts:  Low threshold current density [Liu99]  High temperature stability [START_REF] Mikhrin | High power temperatureinsensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers[END_REF]  High material gain [Maximov04]  High differential gain in the range of 10 -15 ~10 -13 cm 2 , which is one or two orders of magnitude lager than that of Qwell lasers [START_REF] Bhattacharyya | Spectral and dynamic properties of InAs-GaAs self-organized quantum-dot lasers[END_REF], [Bhattacharya00]  Potential for reduced α-factor [Saito00]

On the other hand, Qdot lasers are also found to have the following characteristics, which can be drawbacks limiting the lasers' dynamical performances:

 Large inhomogenous broadening (30~80 meV) of the optical spectra due to the fluctuation of the dot size [Bhattacharya00]  High gain compression on the order of 10 -16 ~10 -14 cm 3 , which is also one or two orders of magnitude larger than that of Qwell lasers [START_REF] Zhukov | Gain compression and its dependence on output power in quantum dot lasers[END_REF] These unique features can significantly alter the static and dynamic characteristics of Qdot lasers. For instance, not as expected from the theoretical prediction of the 'ideal' Qdot lasers, the modulation bandwidth is not necessarily that high and shown to be less than 10 GHz [START_REF] Bhattacharya | Quantum well and quantum dot lasers: from strained-layer and self-organized epitaxy to high-performance devices[END_REF], [START_REF] Fathpour | High-speed quantum dot lasers[END_REF]. This limitation is inherently limited by several factors such as phonon bottleneck associated with relatively slow carrier relaxation rates, the inhomogeneous gain broadening and hot carrier effects. As such, the modulation performance of standard Qdot lasers made without any artificial solutions such as tunnel-injection or pdoping does remain lower than the best values reported on Qwell lasers. In addition to that, Qdot lasers have also been touted to exhibit an increased dynamic gain as well as a reduced factor, which in theory should make them superior for implementation in ultra-fast and chirpfree transmitter modules. The reported α-factor varies in a wide range from near-zero value [Newell99] up to more than 10 [START_REF] Dagens | Gain linewidth enhancement factor and purely frequency modulated emission from quantum dot laser[END_REF], which indicates the frequency chirping of modulated Qdot lasers is not necessarily low.

Nowadays, it is known that achieving a simultaneous high 3-dB modulation bandwidth and chirp-free operation in conventional DM lasers, if theoretically proven to be possible, is practically very challenging. Besides, the inherent benefit of having small value of the -factor is not maintained at high current densities where the large bandwidths are potentially accessible. Thus, it is of prime significance to properly to understand the underlying physical mechanism of QD laser that can be leveraged to our benefits for enhancing their dynamical performance.

As far as direct modulation is concerned, chirp-free operation is crucial to overcome the chromatic dispersion arising in standard single mode fibers. The frequency chirp property being directly connected with the -factor, it is therefore still of great significance to engineer novel and reliable high-speed Qdot laser sources with much broader bandwidth, highly reduced factor and ultra-low frequency chirp.

Meanwhile, in order to further improve the Qdot laser's dynamic performance, one possible approach is to introduce external control such as optical feedback or optical injection. Residual optical feedback to the semiconductor laser in optical fiber links is detrimental. Even a weak back-reflection from the optical fiber pigtail or optical connectors could degrade the laser's modulation characteristics and increase the intensity noise [START_REF] Grillot | Diodes Lasers pour les Systèmes de Communications Optiques[END_REF]. Usually expensive optical isolators are required to guarantee the stable operation. On the other hand, with proper control on the feedback strength, phase and time delay, the semiconductor laser subject to optical feedback exhibits numerous nonlinear dynamics from stable regime, over periodic oscillation or pulsation to chaotic behaviors [START_REF] Lüdge | Nonlinear Laser Dynamics: From Quantum Dots to Cryptography[END_REF]. Optical injection technique can also produce rich nonlinear dynamics. In particular, the period one oscillation has been demonstrated to be a promising microwave signal sources [START_REF] Hwang | Characteristics of period-one oscillations in semiconductor lasers subject to optical injection[END_REF] for radio-over-fiber applications [START_REF] Chan | Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser[END_REF]. In the stable injection-locked regime, optical injection is very robust to enhance the modulation bandwidth [START_REF] Simpson | Enhanced modulation bandwidth in injection-locked semiconductor lasers[END_REF], to reduce the frequency chirp [START_REF] Lau | Enhanced modulation characteristics of optical injection-locked lasersμ A tutorial[END_REF], to suppress the relative intensity noise [Simpson95] as well as the nonlinear distortion [START_REF] Seo | Nonlinear distortion suppression in directly modulated distributed feedback lasers by sidemode optical injection locking[END_REF].

Based on the above introduction and motivations, this thesis investigates the dynamics of nanostructure InP-based semiconductor lasers using both theoretical and experimental approaches. Part I of the thesis is organized as follows:

Chapter 2 presents fundamental properties of Qdot structures and lasers, including the electronic structure, carrier scattering processes, gain and refractive index, as well as the homogeneous and inhomogeneous broadenings. These fundamentals are required to understand the physics and the semi-empirical modeling proposed in the following chapters. 

Chapter 2. Fundamentals of Qdot laser

In the semi-classical quantum theory, the laser field is treated classically with the Maxwell's equations, and the gain medium is described quantum mechanically by the optical Bloch equations or semiconductor Bloch equations. In semiconductor (Class B) lasers based on interband transitions, the polarization dephasing occurs much faster than changes in carrier population and light intensity, which allows adiabatic elimination of the polarization dynamics and results in a simplified rate equation description [START_REF] Chow | On the physics of semiconductor quantum dots for applications in lasers and quantum optics[END_REF], [START_REF] Arecchi | Deterministic chaos in laser with injected signal[END_REF].

In order to properly model the static and dynamic characteristics of Qdot lasers, basic and crucial features of Qdot laser have to be taken into account. On one hand, these features can be microscopically described, which is usually complex but helpful for understanding the physics.

On the other hand, for device engineering applications, these models can be simplified by introducing some phenomenological concepts and empirical parameters. This section deals with the fundamental features of the Qdot laser and describes the state-of-the-art of the Qdot laser modeling.

Qdot electronic structure and carrier scattering processes

Schematically, the active region of a Qdot laser often consists of a 3D separate confinement heterostructure (SCH, also known as barrier), a 2D carrier reservoir (RS, roughly corresponding to the wetting layer) and dots spatially confined in three dimensions. The electronic band structure calculation of semiconductor lasers can be performed using multiband k•p theory [START_REF] Cornet | Electronic and optical properties of InAs/InP quantum dots on InP(100) and InP(311)B substratesμ Theory and experiment[END_REF], [START_REF] Even | Semianalytical model for simulation of electronic properties of narrow-gap strained semiconductor quantum nanostructures[END_REF]. Figure 2.1 shows an illustration of the electronic structure in a Qdot laser.

Carriers in the barrier and the wetting layer can be treated as quasi-free particles. Thus, quasicontinuum electronic states are formed in the SCH and the RS. The densities of states for the SCH (per volume) and that for the RS (per area) are respectively given by [Gioannini07]:

3/2 * 2 22 SCH SCH B m kT       (2.1) * 2 RS RS B m kT    (2.2)
with * m being the effective mass of either electrons or holes. The quasi-continuum carrier reservoir coupling with the localized energy states of the dots results in smaller energy separations and thus states overlapping at higher energies [START_REF] Cornet | Approach to wetting-layerassisted lateral coupling of InAs/InP quantum dots[END_REF]. The discrete states lying at lower energies are separated by a few tens of meV in the conduction band (CB), while smaller in the valence band (VB) due to heavier effective hole masses. The assumption holds as long as electron and hole populations do not exhibit significant deviations. In some cases, it is necessary to utilize more sophisticated approaches [START_REF] Lüdge | Quantum-dot lasers---Desynchronized nonlinear dynamics of electrons and holes[END_REF], [START_REF] Gioannini | Time-domain traveling wave model of quantum dot DFB lasers[END_REF].

Photons

In a Qdot device, once the current injection generates charge carriers in the SCH layer, the carriers will transport across the 3D barrier and reach the 2D RS, which acts as a carrier reservoir for the localized Qdot states. The carrier capture process refers to the subsequent carrier capture from the RS to the ESs of dots. In the dots, carriers relax from high energetic

ESs down to the GS level. Finally, radiative recombination of electrons-holes and lasing occurs ofen on the GS. In addition, carrier capture directly from the RS into the GS is possible as well (not shown in Fig. 2.1 or Fig. 2.2) [START_REF] Wu | Direct and indirect capture of carriers into the lasing ground state and the lightcurrent characteristics of quantum dot lasers[END_REF]. This direct channel accelerates the carrier indirect process (via ES) to the lasing GS, and plays an important role on the dual (GS and ES) lasing process as already pointed out in InAs/InP Qdot lasers [START_REF] Veselinov | Analysis od the double laser emission occurring in 1.55-m InAs-InP(113)B quantum-dot lasers[END_REF]. Moreover, those electronic states also exhibit inter-dot electronic coupling [START_REF] Cornet | Approach to wetting-layerassisted lateral coupling of InAs/InP quantum dots[END_REF].
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Fig. 2.2. Exciton picture of Qdot laser's electronic structure.

As in Qwell lasers, the carrier transport process plays an important role in determining the Qdot laser's dynamics as well, which induces a parasitic-like roll-off that is indistinguishable

from an RC roll-off in the modulation response, and thus limits the modulation bandwidth.

[Nagarajan92], [START_REF] Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF]. Time-resolved photoluminescence (TRPL) shows that the carrier transport time across barrier to the RS is several picoseconds (1~5 ps) depending on the thickness of the SCH layer [START_REF] Siegert | Carrier dynamics in modulation-doped InAs/GaAs quantum dots[END_REF], [Marcinkevicius99].

The carrier capture and relaxation transition processes are supported mainly by two physical mechanisms: Coulomb interaction induced carrier-carrier scattering (Auger process), and carrier-LO phonon scattering. The scattering behavior is different at low and high excitation carrier densities. At low excitation density, the carrier interaction with LO phonons can provide efficient scattering channels provided that energy conservation is fulfilled. While the energy separation of Qdot states typically does not match the LO phonon energy, this scattering mechanism is often possible for holes due to their dense states [START_REF] Nielsen | Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers[END_REF]. When high-density carrier plasma is created in the carrier reservoir, carrier-carrier scattering accounts for the efficient capture from the RS into the localized Qdot states as well as the relaxation between the discrete Qdot states [START_REF] Lorke | Influence of carrier-carrier and carrierphonon correlations on optical absorption and gain in quantum-dot systems[END_REF]. The Auger scattering can be categorized into three types, according to the initial electronic states of the carriers involved. Type I involves two carriers in the RS states [Magnusdottir03], type II is with one carrier in an ES state while the other in the RS [START_REF] Bockelmann | Electron relaxation in quantum dots by means of Auger processes[END_REF], and type III has both carrier occupied the ES [START_REF] Ferreira | Phonon assisted capture and intra-dot Auger relaxation in quantum dots[END_REF].

In TRPL experiments, the capture and relaxation processes can be identified by varying the excitation energy. The carrier-phonon interaction process is shown to be temperature-dependent, the scattering rate increases at high temperature. In contrast, the Auger process is temperatureindependent, but carrier-density dependent [Ohnesorge96], [Ignatiev00], [START_REF] Miska | Carrier relaxation dynamics in InAs/InP quantum dots[END_REF]. From the analysis of PL rise time at room temperature, both the capture and relaxation times are found to vary in a wide range from 0.1 up to 100 ps relying on the excitation intensity [Ohnesorge96],

[Uskov98]. However, for moderate RS carrier density of 10 In the rate equation modeling of Qdot lasers, carrier distributions in all states are assumed to be under the quasi-equilibrium condition with the Fermi-Dirac distribution, which is quite suitable for sufficiently rapid intraband relaxation process [START_REF] Chow | Theory of semiconductor quantum-dot laser dynamics[END_REF]. Carrier occupations at least in a lasing GS and a reservoir (RS) must be modeled in order to distinguish the Qdot case from the Qwell one. However, for achieving better accuracy and connections with experimental data in the InAs/InP system, it is necessary to incorporate the carrier dynamics in the first (and the second) ES, which can have significant influence on the laser's static and dynamic characteristics. Inclusion of more states would be even more accurate but at a price of losing simplicity, and no direct experimental evidence of such ESs lying at higher energy have been obtained by the TRPL in InAs Qdot on InP substrate.

Rigorous calculation of carrier scattering rates is a stiff task, which requires sophisticated many-body quantum theory that treat intraband collision processes [START_REF] Chow | Semiconductor-Laser Fundamentals[END_REF], [START_REF] Chow | Theory of semiconductor quantum-dot laser dynamics[END_REF].

[Berg01] proposed a phenomenological formula to take into account the carrier-dependent capture and relaxation time in a semi-empirical model:

1 i i i RS A C N    (2.3)
where i denotes the capture or relaxation process, A i is the phonon-assisted scattering rate, and C i is the coefficient determining the Auger-assisted scattering by carriers in the RS (N RS ).

Although this expression leads to good agreement with the TRPL experiments in [START_REF] Miska | Carrier relaxation dynamics in InAs/InP quantum dots[END_REF], parameters A i and C i can be quite different from device to device [START_REF] Veselinov | Analysis od the double laser emission occurring in 1.55-m InAs-InP(113)B quantum-dot lasers[END_REF], hence limiting the applicability of this expression. However, due to the fact that once the laser is pumped above its threshold, there is a large density of carriers in the RS which does not vary a lot with the bias current, it is a reasonable approximation to assume the carrier scattering time as a constant value, which simplifies the rate equation model for the study of Qdot laser dynamics.

Gain, refractive index and linewidth enhancement factor

The laser field and the semiconductor gain medium are coupled by the gain and the carrierinduced refractive index, or equivalently, by the complex optical susceptibility. To determine these quantities, it is necessary to solve the quantum mechanical gain medium equations of motion for the microscopic polarization. In principle, these dynamical equations should be derived using the full system Hamiltonian, which includes contributions from the kinetic energies, the many-body Coulomb interactions, the electric-dipole interaction between the carriers and the laser field, as well as the interactions between the carriers and phonons. The effects of injection current pumping should also be included [START_REF] Chow | Semiconductor-Laser Fundamentals[END_REF].

The connection between the classical electrodynamics and quantum mechanics is performed through the macroscopic polarization P and the microscopic polarization p  :

1 p V      (2.4)
where   is the dipole matrix element for the  transition. In QD lasers, the processes include the GS, ES, RS and barrier transitions. V is the active region volume and the polarization summation is performed over all interband optical transitions. The complex optical susceptibility  is connected with the polarization via: 
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where  and c are the laser frequency and velocity of light, and p  is the optical confinement factor. We can obtain the following relation between the gain, refractive index, susceptibility and the polarization [START_REF] Chow | Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers[END_REF]:
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Introducing the differential gain a , the phenomenological gain with linear approximation can be expressed as:

( )

tr g a N N  (2.9)
with N and N tr being the injected carrier density and transparency carrier density of zero gain, respectively.

In semiconductor lasers, the nonlinear gain phenomenon plays an important role in both static and dynamic characteristics such as spectral properties, modulation bandwidth and frequency chirping [Takahashi91]. The main physical mechanisms behind nonlinear gain can be attributed to the spectral hole burning, spatial hole burning and carrier heating [Willatzen91], [START_REF] Klotzkin | Introduction to Semiconductor Lasers for Optical Communications[END_REF]. However, these mechanisms for gain compression are still not fully understood.

Furthermore, the gain nonlinearity was found to be enhanced by the quantum confinement of Carrier heating is related to the fact that, the carrier temperatures can be different from the lattice temperature due to the stimulated emission and free carrier absorption [Willatzen91].

The carrier temperatures relax towards the lattice temperature by electron-phonon scattering processes within a time scale of 0.5-1 ps. The nonlinear gain effect is usually characterized by a phenomenological gain compression factor  as:

(1 )

1 nl g g g S S       (2.10)
with S being the photon density. This expression shows that the linear gain g is reduced at high power density.

The refractive index change related to the optical interband transition as expressed in Eq.

(2.8) is known as anomalous dispersion [START_REF] Schneider | Anomalous carrier-induced dispersion in quantum-dot active media[END_REF]. Another important contribution to the index change is the free carrier plasma originating from intraband transitions [START_REF] Uskov | Carrierinduced refractive index in quatum dot structures due to transitions from discrete quantum dot levels to continuum states[END_REF]. In Qwell lasers, this contribution to the refractive index is well described by the Drude model In semiconductor lasers, it is well known that any change in the imaginary part of the susceptibility (gain) will be accompanied by a corresponding change in its real part (refractive index) via the Kramers-Krönig relations. The linewidth enhancement factor or α-factor describes the coupling between the carrier-induced variation of real and imaginary parts of susceptibility and is defined as [START_REF] Henry | Theory of the linewidth of semiconductor lasers[END_REF], [START_REF] Osiński | Linewidth broadening factor in semiconductor lasers---An overview[END_REF]: In practical case, the variation of the carrier concentration is usually small, this justifies taking the derivatives at the operating point and assuming a linear dependence of g(N) and n(N). Equation (2.13) would thus be written as:
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Through the relation between the refractive index and the frequency variations

/ b nn      ,
we can obtain the following equivalent formula:
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The α-factor plays a crucial role in driving fundamental features of semiconductor lasers such as the spectral linewidth [Duan90], frequency chirp [START_REF] Duan | Analysis of frequency chirping of semiconductot lasers in presence of optical feedback[END_REF], mode stability [START_REF]Intensity dependence of the linewidth enhancement factor and its implications for semiconductor lasers[END_REF] as well as nonlinear dynamics subject to optical injection [START_REF] Wieczorek | Multipulse excitability in a semiconductor laser with optical injection[END_REF] or optical feedback [START_REF] Haegeman | Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback[END_REF], [START_REF] Sciamanna | Hopft bifurcation cascade in small-α laser diodes subject to optical feedback[END_REF], [START_REF] Panajotov | Optical feedback in vertical-cavity surface-emitting lasers[END_REF]. Typical Qwell lasers often exhibit α-factor values in the order of 2~5 [Coldren12]. For Qdot lasers, earlier analyses have suggested a zero or near-zero α-factor due to the delta-function like discrete density of states. A symmetrical gain spectrum indeed leads to a dispersive curve of the refractive index with a zero value at the gain peak. However, experimental α-factor values in Qdot lasers vary over a wide range from zero up to more than 10, and especially a giant value as high as 60 was also reported [Newell99],

[Mi05], [START_REF] Dagens | Gain linewidth enhancement factor and purely frequency modulated emission from quantum dot laser[END_REF]. The non-zero α-factor is attributed to the large inhomogeneous broadening, the off-resonant bound and continuum states as well as the free carrier plasma effect. These mechanisms will be discussed in details in the following chapters.

Homogeneous and inhomogeneous broadenings

The homogenous broadening in semiconductor Qdots is inversely proportional to the polarization dephasing time, which is the decay time of the optical polarization associated with an interband transition. In principle, the dephasing of the optical polarization involves not only the particular electron-hole pair but also other electron-hole polarizations [START_REF] Schneider | Excitation-induced dephasing in semiconductor quantum dots[END_REF].

However, in the quasi-equilibrium carrier system, the dephasing time (T2) can be treated as a time constant, which is simply twice the total carrier scattering time [START_REF] Haug | Quantum Theory of the Optical and Electronic Properties of Semiconductors[END_REF]. There are a number of mechanisms responsible for the homogeneous broadening, such as carrier-carrier scattering, carrier-phonon scattering, and the radiative electron-hole recombination lifetime.

Thus the full width at half maximum (FWHM) of homogeneous broadening for a confined QD bound state can be expressed as [START_REF] Nilsson | Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers[END_REF] hom 2
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where the first term is due to the Auger scattering process among electrons and holes. The second term is the contribution from the carrier-phonon interaction, and the last term is attributed to the radiative recombination. The homogeneous broadening of optical gain is characterized by a Lorentzian function as
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where Eopt is the optical interband transition energy. The homogeneous broadening has been demonstrated to be responsible for the temperature dependence of lasing spectra [START_REF] Veselinov | Lasing spectra of 1.55 m InAs/InP quantum dot lasers: theoretical analysis and comparison with the experiments[END_REF].

Dots are lasing independently at low temperature due to the carrier spatial localization as well as the atom-like gain, while at room temperature the dot ensemble contributes to a narrow-line lasing correlatively via the broadened homogeneous broadening of optical gain as well as the carrier redistribution between the dots [Sugawara00], [START_REF] Gready | Effects of homogeneous and Inhomogeneous broadening on the dynamics of tunneling injection quantum dot lasers[END_REF], [START_REF] Cornet | Increase od charge-carrier redistribution efficiency in a laterally organized superlattice of coupled quantum dots[END_REF].

Meanwhile, the homogeneous broadening of refractive index is given by [Gioannini07] The inhomogeneous broadening originates from the size fluctuation and the composition variation of self-assembled Qdots, which yields different confined energies of state.

Considering a usual Gaussian-shape distribution of the dot size, the energy fluctuation of dots can be thereby represented by the Gaussian function as
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whose FWHM is given as 2.35 inh  . Figure 2.4 shows an illustration of a Gaussian distribution.

The dot inhomogeneous broadening is known to significantly reduce the gain and differential gain of the Qdot laser and thus degrade the laser dynamic performance [START_REF] Dery | The impact of energy band diagram and inhomogeneous broadening on the optical differential gain in nanostructure lasers[END_REF]. In summary, this chapter introduces fundamental knowledge of Qdot nanostructure semiconductor lasers, including the electronic structures, the carrier scattering processes, gain and refractive index, the linewidth enhancement factor as well as the homogeneous and inhomogeneous broadenings. These understandings are helpful for the various analyses conducted in the following chapters.

Chapter 3. Modulation dynamics of free-running

Qdot lasers

This chapter will discuss the small-signal modulation characteristics of Qdot lasers, including the amplitude response, frequency chirp, as well as the linewidth enhancement factor.

The analysis is based on a semi-analytical approach of a set of coupled rate equations. We show how rate equations account for the contributions of off-resonant states on the refractive index change. In order to enhance the laser's dynamic performance, the Qdot laser operating on the excited state is also discussed.

Amplitude modulation response

In this section, the theoretical analysis of the laser is based on a previously developed empirical model for InAs/InP Qdot lasers (FOTON lab) named as Model-I in this thesis [START_REF] Veselinov | Analysis od the double laser emission occurring in 1.55-m InAs-InP(113)B quantum-dot lasers[END_REF]. This numerical model holds under the assumption that the active region consists of only one Qdot ensemble, where the nanostructures are interconnected by the 2D RS. The Qdot density of states contains two energy levels: a two-fold degenerate GS and a four-fold degenerate ES. This simplified picture corresponds to early direct TRPL experimental observations in this material system [START_REF] Miska | Optical properties of double cap grown InAs/InP quantum dots emitting at 1.55 m[END_REF]. The Qdots are implicitly assumed to be always neutral, electrons and holes are treated as electron-hole (eh) pairs, which mean that the system is only composed by excitonic energy states. Carriers are supposed to be injected directly from the contacts into the RS levels, so the carrier dynamics in the barrier are not taken into account in the model.  , which is governed by the Fermi distribution for the quasi-thermal equilibrium without external excitation [START_REF] Grillot | Spectral analysis of 1.55 m InAs-InP(113)B quantum-dot lasers based on a multipopulation rate equations model[END_REF]. Similar dynamic behavior is followed for the carrier population on the GS level with regards to the ES. Direct injection from the RS to the GS was introduced to reproduce the experimental results [START_REF] Veselinov | Analysis od the double laser emission occurring in 1.55-m InAs-InP(113)B quantum-dot lasers[END_REF]. Stimulated emission occurs from the GS when the threshold is reached, and that from the ES is not taken into account in the model. Following the sketch of Fig. 3.1, the four coupled rate equations on carrier and photon densities are described as follows:

Excitons RS

ES

GS

ES GS

(

RS ES RS RS RS GS ES GS ES RS RS spon GS RS ES GS RS RS dN I N N N N N dt qV                1 ) (1 ) 
ES RS GS ES ES ES ES ES GS RS GS ES ES spon ES ES RS GS ES dN N N N N N dt                 (3.1) (1 ) (1 ) (1 ) 
(1 ) 

GS RS ES GS GS GS GS GS ES GS g GS RS ES GS spon GS GS GS ES GS WL dN N N N N N g v S dt                  (3.
                                                       (3.
                                               33 34 43 44 1 4/ 1 1 1 ; 2/ 1 ; S GS ES GS GS ES B B ES ES g GS GS g GS GS ES spon ES GS B B GS p SP p g GS GS p g GS spon GS p N NH N v a S v g NH v a S v g                            (3.9)
Then, we can extract a new modulation transfer function for the Qdot laser as:
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where  is the determinant of the matrix, and the four parameters which characterize 
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The relaxation resonance frequency R  and damping factor  are approximately defined as 
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Using the set of (3.9), the above parameters can be re-expressed as follows:
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where the steady-state relationship  the damping factor can be rewritten as:

2 1 1 2 p SP GS B ES ES R ES GS spon spon B GS ES GS GS GS N H N Kf N S               (3.18)
where the so-called K-factor is as follows: The expression of the K-factor is identical to that of Qwell lasers. However, the offset of the damping factor in (3.18) contains additional terms that are due to the carrier relaxation and escape. These terms are in fact comparable to even at high powers meaning that such offset cannot be neglected for Qdot lasers.

In order to identify the influences of the RS and the ES, Eq. (3.11) can be simplified by neglecting small contributions terms:

2 2 2 2 0 0 1 0 0 2 2 2 0 0 3 0 ; ; R R R R R R R R R R                    (3.20) 2 R

Kf

Based on these expressions, the modulation transfer function (3.10) can be rewritten as
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This novel expression reveals that the two additional terms 2 0 R  and 0  play a similar role in the modulation response as the resonance frequency 2 R  and the damping factor  , respectively. It is important to point out the effects of 2 0 R  and 0  on the modulation dynamics, as well as the underlying physical mechanism. The results will be discussed in the following section.

Then, the modulation bandwidth 3dB f can be obtained by solving
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and the maximum possible bandwidth 3 max
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so the value can be extracted by: In order to validate the semi-analytical approach, the steady-state properties of the system are at first studied by numerically solving the four rate equations (3.1)- (3.4). The results depicted in Fig. 3.2 show that both the GS and the ES carrier populations increase with the injected current. Then, for an injected current larger than 48 mA, the GS population are clamped which leads to the occurrence of the GS lasing emission while the ES population keeps increasing with a reduced slope efficiency. Fig. According to (3.21) 
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The analytical approximation of modulation response at 2.08I th calculated from (3.24) is shown in Fig. 3.5 (solid line), and is compared with the exact solution given by (3.10). Both are found in good agreement except around the resonance peak for which the approximated value is slightly smaller than the exact solution. The behavior of 1 () Theoretical results (solid lines) obtained from the Qdot model lead to a relative good agreement with the experimental ones (dot lines). However, at large current injections, the calculated resonance frequency (lines) is found to be higher than the experimental one. Such a discrepancy is attributed to the gain compression, which is not considered in the present simulations.

H
Analytical calculations also point out that the carrier relaxation and escape between the ES to the GS induce a non-zero resonance frequency around 1 GHz at low bias powers. Based on Eq.

(3.16), we see that the frequency offset at threshold is inversely proportional to the carrier relaxation time. This resonance frequency offset is larger than the one due to the spontaneous emission in Qwell lasers (dash-dot line) [START_REF] Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF]. In the inset, the theoretical modulation responses (solid lines) match relatively well with the experimental results (dots). According to (3.18), their relationship can be fitted as (GHz), in comparison with the result from the conventional Qwell model (inset), which is (GHz). 

Linewidth enhancement factor (α-factor)

As mentioned in Chapter 2, the linewidth enhancement factor plays an important role in determining fundamental features of semiconductor lasers. It is also known as α-factor, amplitude-phase coupling factor and chirp factor, and hereafter we use the name α-factor instead in the following chapters. Although the Qdot laser is predicted to have delta-function like discrete density of states, the measured α-factor values in experiments vary over a wide range from zero up to more than 10. The non-zero α-factor in Qdot lasers is partly attributed to the asymmetric gain spectrum because of the inhomogeneous broadening [START_REF] Oksanen | Linewidth enhancement factor and chirp in quantum dot lasers[END_REF], as well as the carrier population in off-resonant states [START_REF] Melnik | The linewidth enhancement factor α of quantum dot semiconductor lasers[END_REF]. On the other hand, the free carrier plasma effect in the barrier and in the RS is reported to contribute almost half of the total refractive index change [START_REF] Uskov | Carrierinduced refractive index in quatum dot structures due to transitions from discrete quantum dot levels to continuum states[END_REF], [START_REF] Hegarty | Free-carrier effect on index change in 1.3 µm quantum-dot lasers[END_REF].

In order to characterize the α-factor variation of Qdot lasers, Melnik et 
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The optical susceptibility can be derived from the complex gain expression (3.31) through the relationship 0 0 ( , ) 2 ( , ) / ( )

LS bg LS P t G t j        .
The real part of Eq. (3.31) is related to the laser gain while the imaginary part gives the instantaneous frequency shift of the electric field. The three terms on the right hand give contributions of the GS, the ES and the RS, respectively.

Introducing the differential gain ( X a ):

* 0 * 0 * 0 2 4 GS GS GS D GS g bg ES ES ES D ES g bg RS RS RS D RS g bg a v a v a v                   (3.32)
with g v being the group velocity of the light. The material gain of each state is then given by: 
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where N X is the carrier density in each state, S GS is the photon density in the GS, and  denotes the gain compression factor. Because the real part of the complex gain approaches zero very quickly when off resonance, the field gain originates mainly from the resonant state.

Considering the lasing emission in resonance with the GS transition 0

LS GS  
, we obtain Re ( )
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In contrast, the imaginary part of the complex gain decays slowly for off-resonant frequencies (see Fig. 2.3). Thus, the off-resonant states can significantly influence the refractive index change, even though their gain contribution to the GS lasing is almost null. Carrier populations in the off-resonant ES and RS induced frequency shifts of the laser field respectively are 1 2
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From Eq. (3.31), the resonant GS has no contribution to the refractive index change, which is the case when the laser is operated at the gain peak together with a symmetric gain distribution.

Nevertheless, as mentioned in the introduction due to the asymmetric Qdot size dispersion the resonant state induces a finite α-factor GS H  , and the corresponding frequency shift with respect to the cold cavity can be expressed by: 
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With carrier injection, the lasing frequency becomes
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, where  can be separately described. Combining with the equations describing the carrier dynamics in Qdot lasers, the laser system is finally given by: 
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Based on the above differential rate equations, the α-factor of the Qdot laser is derived as
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Following the definition in Eq. (2.12), it is noted that only the carrier contribution ( N  ) is included in the above equation, while the photon contribution ( S  ) is excluded. In the following, it will be shown that the α-factor of Qdot lasers presents peculiar characteristics under direct modulation.

Over the last decades, various techniques have been proposed for the measurement of the αfactor. In this work, we employ the well-kown "FM/AM" technique for the above-threshold and the widely used "Hakki-Paoli" method for the below-threshold analyses, respectively [START_REF] Osiński | Linewidth broadening factor in semiconductor lasers---An overview[END_REF]. The "FM/AM" technique relies on the direct current modulation of the laser, which generates both the optical frequency (FM) and amplitude (AM) modulations [START_REF] Provost | Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer[END_REF]. With respect to the linearized rate equations, the ratio of the FM-to-AM index is derived as
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where the relation

LS j
   is used in the above derivation. In this approach, the laser's αfactor is usually extracted through the formula

  / , min 2 ( ) / ( ) FM AM H QD m     
. This is indeed true for Qwell or bulk lasers, however, this work will show that the α-factor of Qdot lasers is dependent on the modulation frequency but we still take the minimum value to characterize the Qdot laser as reported in [START_REF] Melnik | The linewidth enhancement factor α of quantum dot semiconductor lasers[END_REF].

For semiconductor lasers operating below threshold, the "Hakki-Paoli" method relies on the direct measurement of the optical spectra of amplified spontaneous emission (ASE) in the laser cavity. Tuning the pump current slightly step by step ( I  ), the gain change can be extracted by the Hakki-Paoli method and the wavelength variation can be directly recorded using an optical spectrum analyzer. Correspondingly, the below-threshold α-factor is calculated as
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The laser parameters used in the simulation are listed in Table 3.2 [START_REF] Martinez | Dynamic properties of InAs/InP(311B) quantum dot Fabry-Perot lasers emitting at 1.52-m[END_REF],

[Miska08], [START_REF] Cornet | Quantitative investigations of optical absorption in InAs/InP (311)B quantum dots emitting at 1.55 m wavelength[END_REF]. It is noted that the carrier occupation in the GS has a small contribution to the α-factor (less than 1) [Mi07], hence we assume the value GS H  =0.5 in the simulation.

Figure 3.9 depicts the carrier density variations in the three states under small signal modulation.

For low frequencies smaller than 0.1 GHz, all the carrier density variations remain almost constant, but the variations of the ES (δN ES ) and RS (δN RS ) populations are 15 dB larger than that of the GS (δN GS ) one. The small variation of the GS carrier population is associated with the gain clamping above threshold. Both δN GS and δN ES exhibit resonances around 7 GHz.

Beyond the resonance frequency, δN GS decays faster than δN ES and δN RS . These features significantly impact the behaviour of the α-factor as described in Eq. (3.48). Based on the ASE and the FM/AM methods, Fig. 3.11 illustrates the α-factor as a function of the normalized pump current I/I th . Below threshold, carrier populations in both the resonant and off-resonant states increase with the pump current. In consequence, the α-factor increases nonlinearly. Above threshold, the carrier population in the GS is clamped, while the offresonant state populations keep increasing. Thus, the α-factor varies almost linearly above threshold as usually measured in experiments [START_REF] Martinez | Dynamic properties of InAs/InP(311B) quantum dot Fabry-Perot lasers emitting at 1.52-m[END_REF], [START_REF] Gioannini | Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers[END_REF]. At threshold, the αfactor extracted from the ASE method is similar to that using the FM/AM technique. In addition, the α-factor is larger than the sole GS-induced value of GS H  =0.5 both below and above threshold, which means the off-resonant ES and RS contribute to the increase of the α-factor in the Qdot laser. This is explained by the fact that the coefficients GS ES F and GS RS F are both positive since the ES and RS have higher energies than the GS (see Eq. (3.37)). 
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 dependence on the GS-ES separation

GS ES E  using Eq. ( 16). The GS transition energy is EGS=0.82 eV, and the GS-RS separation is kept as 3 , where the GS-RS separation is kept as

GS GS RS ES E E     . Inset
3 GS GS RS ES E E    
. It is noted that the carrier capture and relaxation times are fixed as shown in Table 3.2, since the carrier scattering rates are weakly dependent on the energy separation [START_REF] Schuh | Combined influence of carrier-phonon and coulomb scattering on the quantum-dot population dynamics[END_REF]. For a small separation

GS ES E 
=0.01 eV, the laser exhibits a large α-factor with a value of 2.5 due to the contribution of carrier populations in the ES and the RS, which is 5-fold higher than GS H  . Enlarging the energy separation reduces the value of α-factor [START_REF] Molina | Linewidth enhancement factor of quantum-dot optical amplifiers[END_REF]. The value can be even slightly smaller than GS H  due to the gain compression as shown in Eq. (3.48). The inset of Fig. 3.13 presents the corresponding variation of as a function of the modulation frequency. It shows for the first time that Qdot lasers of larger energy separation not only exhibit a smaller α-factor, but also a lower FM-to-AM index ratio over all the low and high frequencies. Especially, a large energy separation significantly suppresses the re-increase of at high modulation frequencies due to the decoupling between the GS and the off-resonant states. Therefore, the simulations unveil that strongly confined Qdots are more favorable to realize low chirp laser devices with small α-factor. A trade-off between this condition and the required 1.55 m GS emission has however to be considered. Growth optimization of InAs/InP to meet both requirements can be achieved via a careful tuning of the radius and thickness of the Qdot.

Frequency chirp

As we saw in the previous sections, direct current modulation of a semiconductor laser results in the modulation of both photon and carrier densities. The modulation of the carrier density modulates the gain as well as the refractive index. As a result, the optical length of the cavity is modulated by the current, causing the resonant mode to shift back and forth in frequency. This frequency chirping broadens the modulated spectrum of the laser, hindering its effectiveness in optical fiber communications. The frequency chirp property of semiconductor lasers can be characterized either by the frequency modulation (FM) response ( / LS I   ) or by the chirp-to-power ratio (CPR). Since the frequency chirping level is dependent on the laser intensity variation, here we employ the latter measurement. Following the analysis in Section 3.2, the CPR is defined as:
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Employing this formula, Fig. 3.14 shows the CPR of the Qdot laser for various bias condition from 1.1I th up to 2.9I th . In the adiabatic chirp regime, the gain compression effect dominates and the CPR can be approximated by , /2

p GS p g GS H QD va   .
As the thermal effect is not included, the CPR remains constant (less than 1 GHz/mW) for modulation frequencies below 1 GHz. In this regime, the CPR value is roughly the same for all the bias currents. 

Qdot laser operating on the excited state

Qdot lasers are usually engineered to operate on the GS optical transition because of its low operation current in contrast to the higher-energy bound states. Nevertheless, as discussed in the previous sections, there are several limitations for Qdot lasers operating on the GS: On one hand, the modulation bandwidth is inherently limited by the slow carrier dynamics [START_REF] Wu | Effect of excited states on the ground-state modulation bandwidth in quantum dot lasers[END_REF], the low differential gain as well as the large gain compression factor [START_REF] Martinez | Dynamic properties of InAs/InP(311B) quantum dot Fabry-Perot lasers emitting at 1.52-m[END_REF], [START_REF] Zhukov | Gain compression and its dependence on output power in quantum dot lasers[END_REF].

On the other hand, the GS lasing laser does not necessarily exhibit a small α-factor, which is a good prerequisite for chirpless operation in fiber-based optical telecommunication.

Alternatively, exploiting the stimulated emission from ES nanostructures could be a promising option to enhance the laser's dynamic performance.

In practice, the ES emission can be achieved by increasing the bias current, shortening the cavity length, coating the cavity facets or via coupling gratings 
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Correspondingly, the phase-amplitude coupling of the electric field in the ES emission laser is given by:
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The α-factor extracted from the FM/AM technique is expressed as: 
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The below-threshold α-factor obtained from the Hakki-Paoli method is calculated by , 2 4 and the former population is larger due to the higher degeneracy of ES than GS. Thus, despite a higher threshold current, the ES does provide a larger saturated gain. In Fig. 3.15(b), however, the carrier population in the ES keeps increasing when the GS laser reaches the threshold current. The computed AM responses for GS and ES lasing operations are shown in Fig. 3.16(a), respectively. As observed, the ES response indeed exhibits a broader and flatter response in contrast to the GS one. The broader bandwidth is partly attributed to the faster carrier capture time [Stevens09], as well as to the higher ES differential gain (a ES ) [START_REF] Lee | Characteristics of a high speed 1.22 m tunnel injection p-doped quantum dot excited state laser[END_REF], which is set twofold larger than the GS one (a GS ). The lower resonance peak in the ES response indicates a stronger damping factor. From the AM response curve, the 3-dB modulation bandwidth is extracted and depicted in Fig. 3.16(b) as a function of the normalized bias current (I/I th ). The ES and GS bandwidths firstly increase with the bias current and then reach a maximum value.
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The calculated maximum ES bandwidth is about 5 GHz larger than the GS case. Further increase of the bias current reduces the bandwidth because the modulation response becomes over-damped [START_REF] Asryan | Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser[END_REF]. It is found that the ES bandwidth decreases faster than the GS lasing case, which means that the ES damping factor is more sensitive to the bias current. It is noted that the carrier transport process from the SCH as well as the inhomogeneous broadening in the Qdots can further reduce the 3-dB bandwidth described in Fig. 3.16 [START_REF] Asryan | Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser[END_REF]. Besides, the electrical parasitic effects limiting the modulation dynamics are out of the scope of the thesis. Fig. 3.17(a) presents the CPR responses of the ES laser and of the GS laser. Due to the reduced α-factor in the ES (this will be discussed in the following section), the ES lasing CPR is found always smaller than the GS case. The difference becomes larger at high modulation frequencies. For instance, at 20 GHz the CPR of the ES laser is 60% smaller than that in the GS configuration. Figure 3.17 Figure 3.20 depicts the below threshold α-factor dependence on the transition energy (I=0.9×I th,ES ). Indeed, when the GS is localized far away from the ES, the GS has little influence on the α-factor value (Fig. 3.20(a)). But once the GS-ES separation is less than 60 meV, the α-factor decreases rapidly with increasing GS transition energy E GS . For a GS-ES separation of 10 meV, the α-factor value is reduced by about 40%. In contrast, Fig. 3.20(b) shows that small energy separation between the RS and the ES leads to a large α-factor. When the separation is less than 40 meV, the laser exhibits a higher value than the ES induced part, which means the RS contributes more than the GS on the α-factor. Increasing the RS energy E RS reduces the αfactor and finally leads to a limit value of about 0.48 when the ES-RS separation is larger than 80 meV. Therefore, in order to reduce the α-factor of the ES emission laser, one potential option is to diminish the energy separation with the ES-GS separation (as opposed to the GS lasing case) while enlarging the ES-RS separation. In InAs/InP or InAs/GaAs material systems, the GS transition energy is mostly determined by the vertical confinement and thus the thickness of the Qdot, while the ES-GS energy splitting is related to Qdot lateral confinement [Garcie97], [START_REF] Raz | Formation of InAs self-assembled quantum rings on InP[END_REF], [START_REF] Even | Exact analytical solutions describing quantum dot, ring and wire wavefunctions[END_REF]. The simulation results provide some basic guidance for the fabrication of zero α-factors of Qdot lasers through proper quantum engineering of the bound and continuum electronic states.

Finally, regarding the reduction of the lasing threshold, the ES emission can be selected by inhibiting the GS one through a dichroic mirror or by external forcing based on optical inejction or optical feedback. The rear facet reflectivity of the Qdot laser can then be modified by depositing a specific dichroic mirror that has a maximum of reflectivity in resonance with the ES wavelength. In such way this modification will reduce the threshold for the ES lasing and completely inhibit oscillation at the GS optical transition.

In summary, although the ES laser requires a higher operation current, it does provide a larger modulation bandwidth and a lower frequency chirp, which are expected to be much superior to those of GS lasers. In addition, the ES laser exhibits a smaller α-factor due to the contribution of the off-resonant GS. From the semi-analytical analysis, calculations provide a guidance to reduce the ES lasing α-factor to zero through the band energy engineering.

Impacts of gain compression

Based on rate equations (3.40)-(3.44), as well as the analysis on the modulation dynamics in the previous sections, this part investigates the impacts of gain compression effect on the modulation dynamics of GS lasing Qdot lasers including the AM response, the α-factor and the CPR. The gain compression factor values used for Figs. 3.21-3.23 vary from 10 -17 cm 3 up to 10 -14 cm 3 (  =1×10 -17 , 1×10 -16 , 5×10 -16 , 1×10 -15 , 5×10 -15 , 1×10 -14 cm 3 ). 

Impacts of carrier capture and relaxation processes

As mentioned in chapter 2, the Qdot laser involves carrier capture process from the 2D RS to the localized ES and carrier relaxation process from the ES to the GS inside the dots. This section discusses the influences of these processes on the lasers' modulation dynamics. The 

A) Impacts of the carrier capture time from the RS to the ES

In order to focus on the impacts of the carrier capture process, the carrier relaxation time ES GS  is fixed at 2.9 ps, while the carrier capture time RS ES  is varied from 0.1 ps up to 50 ps. We firstly examined the steady-state solutions. It is found that the carrier capture process has little impact on the carrier population in the ES or in the GS (not shown). In contrast, as shown in Fig. 3 

B) Impacts of the carrier relaxation time from the ES to the GS

Employing the same approach, the capture time is now fixed in this part at a constant value of 6.3 ps, while the carrier relaxation time is varied from 0.1 ps up to 50 ps. In contrast to the impact of capture process, Fig. 3.28 shows the static solution in which both carriers in the ES and in the RS increases linearly with the relaxation time, while the carrier number in the GS remains constant (not shown). Similarly, the photon number is also reduced by the slow carrier relaxation process. On the other hand, the magnitude of the CPR is enhanced by the slow carrier relaxation process due to the increased α-factor.

Effects of inhomogeneous broadening

Previous implementations of the rate equation model in sections 3.1-3.6 only consider one Qdot ensemble, and thus did not take into account the effect of inhomogeneous broadening. In practice, due to the size and composition fluctuation of the self-assembled dots, Qdot lasers exhibit a broad inhomogeneous broadening of the gain, which is usually characterized by a Gaussian function as in Eq. (2.19). In order to study the influence of the inhomogeneous broadening, we introduce a multi-population rate equation (MPRE) model in this section [START_REF] Gioannini | Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers[END_REF]. By contrast to the semi-analytical approach in sections 3.1-3.6, this section analyzes the Qdot laser dynamics employing a numerical approach.

The numerical model is based on the electronic structure shown in Fig. 2  , where ini and fin denote the initial and final states of the transition with energy E ini and E fin , respectively.

Thus, a capture or relaxation process occurs when E ini >E fin , whereas an escape process does when E ini <E fin . Finally, the rate equations describing the carrier dynamics of the nth group dots are given by:
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Considering M optical modes in interaction with the N subgroup dots, the coupled photon rate equation for the mth optical mode is written as follows: At room temperature and without stimulated emission, the quasi-thermal equilibrium is characterized by the Fermi distribution of the carriers. In order to ensure this condition, the carrier escape times are related to the carrier capture and relaxation times: 
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where the homogeneous broadening of the refractive index , ( )

cv m X n D E E  is given in Eq.
(2.18). The change of the refractive index in time induces a fluctuation of the lasing mode frequency:

( , ) ( , ) m m m b t E n t E n       (3.73)
In the simulations, the material and laser parameters used for the study of the inhomogeneous broadening effect are listed in Table 3.3. The dots are divided into 41 subgroup, and the inhomogeneous broadening is varied from 30 meV to 80 meV. We first investigates the effects of inhomogeneous broadenings on the steady-state properties and secondly on the dynamic characteristics.

A) Effects on the steady-state characteristics of a multimode Fabry-Perot laser

In this section, we consider a multimode Fabry-Perot laser, and a group number of 63~98 optical modes are taken into account depending on the inhomogeneous broadening. 3.32 presents the carrier distributions in each electronic state for broadenings of 30, 55 and 80 meV. It shows that the overlap areas between the GS, the ES1 and the ES2 become larger for higher inhomogeneous broadenings. Consequently, for some optical modes, both the GS and the ES1 (or ES1 and ES2) contributes to the photon emission. Figure 3.33 shows that the threshold current is increased by almost 3 times when the broadening increases from 30 meV to 80 meV. On the other hand, the carrier occupation probabilities of the center subgroup dots for the GS, ES1, and ES2 also increases for broadenings smaller than 60 meV, whereas decrease slightly when larger than 60 meV. This is because the mean energy difference between the GS and the ES1 is 56 mV as shown in Table 3.3. Therefore, for broadenings smaller than this energy difference, only carrier population in the GS contributes to the gain peak. For larger broadenings, not only carriers in the GS contribute to the peak of the gain but also carriers in the ES1, and thus slightly reducing the carrier occupation probability. This phenomenon is presented in Fig. 3.34, which illustrates the net modal gain spectra (solid curve) at threshold. For the broadening of 30 meV, the laser exhibits one narrow positive gain peak, located slightly below the average recombination energy of the GS EGS. For the broadening of 50 meV, another peak appears due to the carrier population in the ES. It is noted that this peak is not located at EES1, because the peak position is determined by both the dot existence probability (Gaussian distribution) and the carrier occupation probability (Fermi distribution) for each dot subgroup. For the broadening of 60 meV, the GS (red dash curve) and the ES1 (blue dash curve) peaks begin to merge. For the 80 meV value, the two peaks merge to form a broad gain spectrum. Carriers in the GS mainly contributes to the low-energy part of the gain, while carriers in the ES1 contributes to the high-energy part. In order to study the α-factor of the laser at the lasing threshold, we impose a small stepfunction like current ( I  ) to the sub-threshold current, which subsequently induces variation of the gain ( () m gE  ) as well as variation of the refractive index ( () m nE 

). Then we obtain the α-factor using Eq. (2.14). Figure 3.35 presents the threshold α-factor as a function of the photon energy for various inhomogeneous broadenings. Generally, the α-factor decreases with the increased photon energy. For low lasing energies, narrow inhomogeneous broadening leads to a smaller α-factor while it is opposite for the high lasing energy case. known as spectral hole burning. For a small inhomogeneous broadening, the spectral hole is narrow and deep, while it becomes broader and shallower for a larger inhomogeneous broadening. On the other hand, the power spectrum also broadens due to the fact that carrier population in higher energy states can be high enough to reach the lasing threshold. This can be seen in the net gain spectrum (right), the flat peak regime of which is broadened by both the large inhomogeneous broadening and the high bias current. For the investigation of dynamic properties, we consider a single mode DFB laser. Therefore, we only need one rate equation in (3.64) for the optical mode group with lasing energy E m =0.8 eV, which is in resonance with the GS recombination energy. In this study, we keep the bias current of the laser at I bias =30 mA. In order to obtain the AM response and the frequency chirp we employ a purely numerical approach, which is different to the semi-analytical approach using the derivation of a full set of differential rate equations (see section 3.3). As shown in Fig. 3.37(a), a small step-function like current () It (1.5 mA, corresponding to a typical RF power of -10 dBm) is superimposed to the bias current at 5.0 ns, and the time integration lasts until 20 ns. Due to the fact that the Qdot laser's transient response is within 5.0 ns as illustrated in Fig. 3.37(b), the laser is ensured to be stable when the current step is imposed. Then, we calculate the response of the power () 

B) Effects on the dynamic characteristics of a single mode DFB laser
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, we can study the small-signal characteristics on the AM response, the CPR as well as the FM-to-AM index. GHz for a broadening of 25 meV down to 1.2 GHz for the case of 75 meV. For the chirp properties depicted in Fig. 3.39, lasers with small broadening exhibits lower CPR both in the adiabatic and the transient regimes. In addition, the adiabatic chirp dominates up to a modulation frequency of 6 GHz for a low broadening of 25 meV whereas for the case of 75 meV, it only dominates lower than 2 GHz. From the evolution of the FM-to-AM index in Fig. 3.40, we can see the α-factor is increased by about 3 times by the inhomogeneous broadening.

The tendency is in agreement with the evolution of the α-factor at lasing threshold shown in 

Large-signal modulation

The large signal modulation of a semiconductor laser determines its capability for digital data transmission. The laser is usually biased above threshold and switched between two power levels, defining the low and the high digital optical signal level. The laser is not biased below threshold in order to avoid the influence of a long turn-on delay, although it may provide a large contrast between the high and the low signal levels. There is a close relationship between the large and the small signal modulation responses. When the laser is underdamped, the small signal AM response shows a high resonance peak, and the large signal waveform exhibits overshoot because of the relaxation oscillation, which can degrade the signal quality. When the laser is overdamped, both the small and the large signal modulations show flat response.

Generally, the maximum bit rate of the large signal modulation lies in the range of the maximum 3-dB bandwidth of the small-signal response. However, recent work reports that when the small signal modulation response is limited by gain compression, the laser can be modulated at much higher bit rates in the large signal regime provided that the optical gain is large enough [START_REF] Gready | Relation between small and large signal modulation capabilities in highly nonlinear quantum dot lasers for optical telecommunication[END_REF], [START_REF] Gready | On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers[END_REF].

There are several measures to evaluate the digital modulation performance of a laser system: the eye diagram, the time-resolved chirp profile, and the bit error rate (BER). This work focuses on the former two properties. The latter is the number of bit errors divided by the total number of transferred bits during a studied time interval. In the optical communication system, the BER may be affected by transmission channel noise, interference, distortion, bit synchronization problems, attenuation, spectral instabilities, etc [START_REF] Grillot | Diodes Lasers pour les Systèmes de Communications Optiques[END_REF]. When testing a laser system, a pseudo random binary sequence (PRBS) is required, which has a quasi-continuous spectrum in the frequency domain [START_REF]Broadband Communication signals[END_REF]. PRBS signal has a long periodicity with a sequence of N bits consisting of 0 and 1. Thus, in the frequency domain, the signal has very dense discrete spectral components distributes over the entire transmission bandwidth and are therefore very similar to completely random signals. For a PRBS-k pattern with index k, its full number of elements is N=2 k -1, which includes all the possibilities of k bits except k-bit zeros. The commonly used PRBS signals have index k=7, 15, 23, and 31. The larger the index k is, the closer the PRBS signal is to completely random signals. In order to obtain a reasonable test as well as to save the computation time, we employ a PRBS-7 signal in this work, and use the non-return-to-zero (NRZ) line encoding scheme. The eye diagram provides plenty of information such as overshoot, ringing, noise, jitter rise and fall times, etc. This work focuses on one of the most important features---the openness of the eye pattern, which is evaluated qualitatively in this section. However, the openness of the eye diagram can be quantified by the eye height and the eye width. The quality of an eye diagram is measured by the Q-factor, which is based on the histogram of the amplitude. The noise, overshoot and ringing will increase the standard deviation and therefore decrease the Q-factor as well as increase the BER [START_REF]Understanding data eye diagram methodology for analyzing high speed digital signals[END_REF]. However, in this work we do not consider the noise effect. In the followings, we will investigate the influences of the carrier scattering rates and the inhomogeneous broadening on the eye diagram and on the time-resolved frequency chirp.

In the simulations, the low bias current is set at 30 mA and the high one is at 60 mA. The modulation bit rate is set at 5.0 Gbps. The transient term is that part of the chirp that correlates to dP(t)/dt while the adiabatic term is linked to P(t) directly. For the laser rate equation, we calculate the frequency chirp using Eq.

A) Influence of the carrier capture process

(3.73) through the variation of the refractive index. for the capture process in Fig. 3.42 (b). Compared to the carrier capture process, the large signal response of a Qdot laser is more sensitive to the relaxation process. In addition, scattering times beyond 5.0 ps lead to stronger deleterious effect on the eye diagrams, which are not presented in this section. It is proved that the α-factor of nanostructure lasers is strongly dependent on the modulation frequency [START_REF] Lingnau | Amplitude-phase coupling and chirp in quantum-dot lasers: Influence of charge carrier scattering dynamics[END_REF]. For instance, the α-factor values calculated at low modulation frequencies are higher than that at high ones obtained by the FM/AM technique. In addition, it is shown that ES laser offers superior dynamic properties than the GS laser, including broader AM bandwidth, smaller α-factor as well as lower frequency chirp. The impacts of the carrier capture and relaxation times on the modulation dynamics are also investigated. Lastly, employing a MPRE model, we have analyzed the effects of inhomogeneous broadening as well as the large-signal modulation performances of the nanostructure lasers.

ES ES  = 1 ES GS  =1.2 ps.

B) Influence of the intradot carrier relaxation process

C) Influence of the inhomogeneous broadening

Chapter 4. Modulation dynamics of optically injectionlocked Qdot lasers

Optical injection-locking semiconductor laser system involves two lasers referred to the master and the slave lasers as shown in Fig. 4.1, illustrating the light transmission diagram. The master laser is usually a single-mode tunable laser with a narrow spectral linewidth. The light of the master laser is coupled into the slave laser, which is the semiconductor laser under test.

The dynamic characteristics of optically injection-locked lasers strongly depend on two vital parameters: the injection ratio, and the frequency detuning. The injection ratio is defined as the ratio of the master laser's power to that of the slave laser. The frequency detuning is the frequency offset between the master laser and the slave laser. [Toba84], nonlinear distortion suppression [Meng98], reduction of relative intensity noise [START_REF] Liu | Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking[END_REF], [START_REF] Yabre | Noise characteristics of singlemode semiconductor lasers under external light injection[END_REF], increased link gain [START_REF] Pochet | Modulation response of a long-cavity, gainlevered quantum-dot semiconductor laser[END_REF], and near single sideband modulation [START_REF] Sung | Optical single sideband modulation using strong optical injectionlocked semiconductor lasers[END_REF]. Periodic oscillations have applications in photonic microwave generation [START_REF] Hwang | Characteristics of period-one oscillations in semiconductor lasers subject to optical injection[END_REF],
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[Chan07], while chaotic dynamics can be used for chaotic communication [START_REF] Lodi | Chaos and locking in a semiconductor laser due to external injection[END_REF] and random bit generation [START_REF] Li | Random bit generation using an optically injected semiconductor laser in chaos with oversampling[END_REF]. This chapter focuses on the simulation of dynamics in the stable locking regime, where the frequency of the slave laser is locked to that of the master laser with a constant phase offset. Chapter 5 will discuss nonlinear dynamics generated in the unstable locking regime.

Electric field under optical injection

Within the framework of the semi-classical laser theory, the time change of the electric field in the semiconductor laser subject to external optical injection is governed by the equation as

[Lang82]: 11 () 2 inj jt g N c inj p d v g j k A e dt              (4.1)
where the first term on the right hand side gives the gain and the optical loss of the field. The second term N  is the carrier-induced frequency shift, and the expression is the same as the free running laser described in chapter 3. The last term is related to the external optical injection with A inj the amplitude of the injected light, and k c the external coupling coefficient between the master and the slave lasers:

1 2 g c v R k L R   (4.2)
where L is the length of the laser cavity, R is the facet reflectivity, and 
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Thus, the phase difference between the slave and the master lasers is given by ( ) ( )

s m inj t t t         .
An alternative approach of the modeling is to describe the photon number S(t) and the phase 

() t  ,
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where the spontaneous emission term is included in Eq. (4.4), and S inj stands for the injected photon number. The internal injection ratio is defined as R inj =S inj /S 0 , where S 0 is photon number of the free-running laser. Coupling Eqs. (4.4) and (4.5) with the rate equations describing the carrier dynamics of the Qdots (chapter 3), we obtain the full set of rate equations for the optically injection-locked Qdot laser system.

Stability diagram

Before discussing the modulation dynamics, it is important to firstly determine the stable locking regime where the modulation operation is meaningful. From the analysis of the steadystate solution of the rate equation system, we can obtain the phase across the stable locking range is approximately The bifurcations can be efficiently predicted by the approach of numerical continuation, which is implemented by the continuation package MATCONT in this work [START_REF] Dhooge | MATCONTμ A MATLAB package for numerical bifurcation analysis of ODEs[END_REF].

MATCONT is a MATLAB package for numerical bifurcation analysis of ordinary differential equations (ODEs). It allows one to compute curves of equilibria, saddle-node points (limit points), Hopf points, limit cycles, period doubling bifurcation points of limit cycles, and fold bifurcation points of limit cycles. All curves are computed by the same function that implements a prediction-correction continuation algorithm based on the Moore-Penrose matrix pseudoinverse. The continuation of bifurcation points of equilibria and limit cycles is based on bordering methods and minimally extended systems. 

Modulation bandwidth enhancement

This section deals with the modulation characteristics of injection-locked lasers. As for the case of free running laser (see sections 3.1-3.3), we also study the modulation dynamics (AM and FM) of the injection-locked laser semi-analytically. Considering a Qdot laser operated on the GS, the rate equation model is described by Eqs. 
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Using the modulation transfer function , Fig. 4.3 presents the injection effect on the AM response for different injection ratios under the zero detuning condition, that is, the master and slave lasers are referenced to the same frequency. In Fig. 4.3(a), at low injection ratio, the response is under-damped and exhibits a high relaxation peak. Large injection ratio increases the damping factor and thereby the laser shows a broadband and flat response. GHz. The injection ratio is fixed at Rinj=1.0.

Figure 4.4 illustrates the effect of frequency detuning on the modulation response within the stable locking region. At negative frequency detuning side, that is when the frequency of the master laser is smaller than that of the slave laser, the modulation response is highly damped, and thus yield quite linear curve. This regime has a high gain and can be used for low bandwidth applications that need low link loss or high linearity [START_REF] Lau | Bandwidth enhancement by master modulation of optical injection-locked lasers[END_REF]. At positive frequency detuning side, the laser shows a sharp and high resonance peak. In addition, there is usually a dip ahead of the resonance frequency, which limits the modulation bandwidth. This regime near the positive stable locking edge can be used for narrow band applications at extremely high frequencies, or for high-speed optoelectronic oscillators.

Frequency chirp reduction

Similarly to the chirp characterization of the free-running laser in Eq. (3.48), the CPR of the laser subject to optical injection is given by [START_REF] Lau | Enhanced modulation characteristics of optical injection-locked lasersμ A tutorial[END_REF]:
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where () H j  is given in Eq. (3.48). The above equation does not include the gain compression term for the sake of simplicity. However, the simulations in the following figures take into account the gain compression effect with a factor of 2×10 -16 cm 3 as listed in Table 3.2.

Without optical injection, Eq. (4.8) will reduce to be the same as Eq. (3.48) for the case of the free running laser. It is noted that we do not consider the thermal impact on the frequency chirp properties, which is known to increase the chirp level for modulation frequencies less than 0.01 GHz [START_REF] Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF], [START_REF] Kechaou | Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization[END_REF]. 

α-factor under optical injection

From the analysis in chapter 3, we know that in the free running laser the α-factor can be extracted from the ratio of the FM-to-AM indices referring to Eq. (3.49). However, the relation between the α-factor and the ratio 2β/m can be substantially modified by the optical injection. Indeed, from the small signal analysis of the differential equation Eq. (4.6) for the injected laser, we obtain
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In comparison with the free-running case in Eq. (3.49), the relation between the two parameters becomes more complex. An injection term appears in the numerator while another one in the denominator. Therefore, the behavior of 2β/m strongly depends on the injection condition. In addition, it is noted that the relation   discussed in the previous chapter, 2β/m of the free-running laser exhibits a giant value at low modulation frequency, which is mostly due to the gain compression in the numerator as well as the small value of modulation frequency in the denominator in Eq. (4.9). In contrast, with optical injection, the giant value disappears due to the additional injection term in the denominator. For modulation frequencies less than 1 GHz, the ratio 2β/m of the injected laser remains almost constant at a rather low value (less than 1). Increasing the modulation frequency makes the 2β/m values converge towards the free-running case. Beyond a few GHz (10 GHz), the plateau gives the α-factor extracted by the FM/AM technique, which has already been discussed in chapter 3. low modulation frequency, the free-running laser has a first constant α-factor value around 5.5, which is consistent with the α-factor of the laser under the DC bias condition. In presence of optical injection, this low modulation-frequency α-factor is strongly reduced down to unity. As shown in Fig. 4.9, this effect can be explained by the difference of the carrier population variations between the off-resonant states (ES, RS) and the resonant GS, which is decreased by the optical injection, in comparison with the free-running laser case (see Fig. (3.9)). At high modulation frequencies, the α-factor of the free running laser decreases to a plateau, which is consistent with the 2β/m value in this range. Fig. 4.8 shows that the optical injection has little impact on the α-factor at this high modulation frequency regime except for low injection ratio, in which case a resonance-like peak occurs. This is attributed to the pre-resonance dip in the frequency response of the GS carrier density (Fig. 4.9). This kind of phenomenon occurs once there is a high relaxation peak in the AM response, which also happens at the positive detuning edge as described in the following. 

Improvement of large-signal performance

This section numerically studies the large-signal modulation characteristics of the injectionlocked laser. In particular, it is shown that improvements of the eye diagram as well as the suppression of the time-resolved chirp are possible under proper injection-locking conditions.

In this section, carrier dynamics including the SCH, the RS, as well as the ES 2 , ES 1 and GS are described by Eqs. (3.59)-(3.63), while the injected laser (complex) field is expressed by Eq. (4.3). The laser under study is a Qdot DFB laser emitting at 1.55 m as described in section 3.7. Taking advantage of the MPRE model, we firstly investigate the effect of optical injection on the gain spectrum. Then in the second part we study the injection influence on the large signal modulation dynamics.

A) Effect of optical injection on the gain

The studied Qdot DFB laser is biased at 30 mA. Figure 4.12(a) shows that the carrier occupation probability of each discrete state in the dots decreases under strong injection strength. As an example, the GS occupation probability is 77% for the free running laser, while it decreases to 54% with an injection ratio R inj =10. On the other hand, Fig 4 .12(b) reveals that the carrier occupation also decreases at the negative frequency detuning side while increasing at the positive detuning side. Figure 4.13 shows that the lasing power is enhanced either by increasing the injection power and/or by tuning frequency of the master laser to the negative side. Figure 4.14 illustrates that the phase  (see Eq. (4.5)) increases significantly at low injection ratio in comparison with the free running case, while at high injection ratio, the phase only changes slightly with the increased injection strength. On the other hand, positive frequency detuning reduces the phase value. Finally, the effect of optical injection on the gain spectrum variation is given in Fig. 4.15. In consistence with the carrier occupation probability in Fig. 4.12, the whole gain spectrum is reduced by the optical injection. In addition, the gain decreases from positive to negative detuning side (Fig. 4.15(b)). This particular feature will be exploited in the next chapter to extract the α-factor with a novel experimental technique.

B) Effect of optical injection on the large-signal dynamics

As discussed in section 4.3, the injected laser at zero frequency detuning usually exhibit a broadband and flat modulation response, which is preferable in high-speed optical telecommunications. Positive detuning is not favourable due to the sharp relaxation peak and the pre-resonance dip while negative detuning is not either because of the small modulation bandwidth. Therefore, this section only discusses the effect of varying injection strength on the large signal performance at the zero detuning condition. In the simulation, the studied Qdot laser is modulated between 30 mA and 60 mA, and the modulation bit rate is set at 5.0 Gbps. In summary, this chapter studies the effect of the optical injection as a function of the injection strength and the detuning frequency. The injection locking technique can improve the AM response as well as suppress the frequency chirp both in small and large modulation regimes. Numerical results also unveil that the optical injection also strongly alters the phaseamplitude coupling (driven by the α-factor) characteristics. Particularly, we show that the optical gain spectrum can be tuned either by the injection strength or by the frequency detuning, which will be used in the following chapter to develop a novel experimental technique for the evaluation of the α-factor.

Chapter 5. Experimental investigation of modulation dynamics

Laser characterization under DC condition

The laser under test is a Qdot laser grown and fabricated at FOTON-INSA laboratory. denotes that the quaternary alloy In0.8Ga0.2As0.435P0.565 emits at 1.18 µm. The stop-etch layer is used to control the etch depth. 'BCB' denotes benzocyclobutene, and '+' or '++' indicates the doping level.

Static characteristics

The experimental investigations were performed at the Optoelectronics Lab, Télécom ParisTech. Figure 5.2 shows the experimental setup for the static characterization of the freerunning laser. A DC current source is used to drive the Qdot laser device through a DC probe.

The laser bar is mounted to an aluminum heat sink. The temperature is controlled by a thermoelectric cooler (TEC) and is set to 293 K. The laser output is collected by a single mode lensed fiber, and the coupling efficiency is about 43%. The power is monitored by a power meter and a high resolution (10 pm) optical spectrum analyzer (OSA) is used to record the optical spectra. Below threshold, the optical gain of the laser increases with the pump current, while it is clamped above threshold. By measuring the evolution of both the wavelength and the gain for various bias currents, the below threshold α-factor of the laser can be determined by

[Raghuraman93] 2 / / H net d dI L dg dI      (5.1)
where g net is the net modal gain, which can be obtained from the Hakki-Paoli method. This method is based on the peak-to-valley ratio of the amplified spontaneous spectrum (ASE), and the net modal gain g net is extracted using the following relationship [START_REF] Hakki | Gain spectra in GaAs double-heterostucture injection lasers[END_REF]:

1 1 1 ln 1 net p i x gg LR x            (5.2)
where g is the material gain and p  is the optical confinement factor. x is the ratio of the peak- to-valley intensity levels. Figure 5.6 shows the net modal gain variation of the Qdot laser under test from I bias =54.5 mA to I bias =63.5 mA with a current step of 0.5 mA. The laser device exhibits a wide gain spectrum with a full-width at half maximum (FWHM) of about 81 nm and a maximum gain of 14.4 cm -1 at 63.5 mA. The wavelength evolution with the pump current can be directly tracked from the OSA. The wavelength is blue-shifted because of the band filling effects driven by the carrier injection, that is, /0 d dI   . However, thermal effects will red-shift the wavelength and affect the accuracy of the measurement. In order to attenuate the thermal effects, the DC current source is operated in pulsed mode. The pulse width is set at 10 s, and the duty cycle is set as 10%.

Further reducing the pulse width and the duty cycle is even better for substantially removing the thermal effect but resulting in too weak spectral signals to track. Through Eq. (5.2), the measured α-factor is shown in Fig. 5.7. Generally, the α-factor increases with the optical wavelength, in consistent with the calculation in chapter 3. 

Nonlinear dynamics in injection-locked laser

This section qualitatively studies the nonlinear dynamics of the Qdot laser subject to an external optical injection. Figure 5.8 shows the experimental setup for the characterization. A single-mode external cavity laser is used as the tunable master laser source, and it is injected into the Qdot laser (slave laser) through an optical circulator. The polarization of the master laser is controlled by the polarization controller to align with that of the slave laser, and the injected power is tuned and is monitored by a power monitor. The light is inverted to electric signal through a high-speed photodiode (12 GHz), followed by an electrical spectrum analyzer (ESA) tracking the electric spectrum and by a high-speed digital oscilloscope (20 GHz, Tektronix) recording the time series. This time-resolved signal is post-processed in a computer, where the electric spectrum is reproduced through the Fourier transform. In addition, the phase portrait is extracted from the amplitude (A(t)) and its difference (Diff(A)=A(tk+1)-A(tk)). a) Stable-locked region (row 1). In this region, both the frequency and the phase of the slave laser are synchronized to the master laser. The intensity of laser output is a constant. Thus, the electric spectrum only has a zero frequency component. The stable locking regime creates a point in the phase portrait. In the following sections, we will study the modulation dynamics of injection-locked lasers operated in this regime. b) Period 1 oscillations (row 2). The laser output intensity oscillates with one period, i.e., one maximum and one minimum. The slave laser frequency is shifted according to the new average carrier density caused by injection. Superposition of the shifted laser field and the injected field, which have different frequencies, results in beating, that is, the signal oscillates with the optical frequency but is modulated on a scale determined by the detuning between the component fields [START_REF] Wieczorek | The dynamical complexity of optically injected semiconductor lasers[END_REF]. The oscillation frequency also strongly depends on the injection strength and the frequency detuning [START_REF] Hwang | Characteristics of period-one oscillations in semiconductor lasers subject to optical injection[END_REF].

The electric spectrum exhibits one non-zero peak, and the phase portrait creates a limit cycle. c) Period 2 dynamics (row 3). The laser intensity has two maxima and two minima.

Another frequency component is born in the electric spectrum, which is half of the basic frequency. Two limit cycles are created in the phase portrait. d) Period 3 dynamics (row 4). The laser output has threes maxima and three minima. The electric spectrum has three non-zero components, and there are three limit cycles in the phase portrait.

Unluckily, the nonlinear dynamics of chaos and FWM are not recorded in this work. For the latter, the slave laser is not locked to the master laser, and thus out of the locking regime.

In the next section, it will be seen that a dual-mode injection-locking technique can be a promising solution to generate efficient FWM dynamics.

Four-wave mixing using dual-mode injection

Optical wavelength conversion plays an important role in wavelength division multiplexed (WDM) systems. The nondegenerate four-wave mixing (NDFWM) in semiconductor gain media is a desirable technique for wavelength conversion due to its ultrafast nature and transparency to the modulation format of the signals [Tatham93], [Geraghty97]. In addition, since the converted signal is the phase-conjugate replica of the input signal, it also provides the possibility for fiber dispersion compensation in long distance transmission systems [Tatham94],

[Marcenac97]. NDFWM in semiconductor optical amplifiers (SOAs) and DFB lasers have been extensively studied and much effort has been devoted to enhance the conversion efficiency (the ratio of the output-converted signal power to the input-signal power) and the optical signal-tonoise ratio [START_REF] Kim | All-optical frequency up-conversion technique using four-wave mixing in semiconductor optical amplifiers for radio-over-fiber applications[END_REF], [D'Ottaviλ6], [START_REF] Simoyama | Cavity length dependence of wavelength conversion efficiency of four-wave mixing in /4-shifted DFB laser[END_REF], [START_REF] Kim | All-optical frequency down conversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications[END_REF], [START_REF] Su | Nondegenerate four-wave mixing in quantum dot distributed feedback lasers[END_REF]. Generally, the SOA has a larger linear gain, which provides high conversion efficiency, whereas it also generates additional amplified spontaneous emission noise. In this way, there is an optimum linear gain for the maximum conversion efficiency to noise ratio [START_REF] Kim | All-optical frequency up-conversion technique using four-wave mixing in semiconductor optical amplifiers for radio-over-fiber applications[END_REF], while a compromise on the pump-wave power is also required to obtain a better performance [D'Ottaviλ6]. In DFB lasers, the lasing mode itself is used as a pump wave, and the NDFWM is enhanced by the cavity resonance. A higher conversion efficiency associated with a lower noise level can be achieved from a laser with a long cavity and a small grating coupling coefficient. A high lasing power is also favorable for obtaining higher conversion efficiency [START_REF] Simoyama | Cavity length dependence of wavelength conversion efficiency of four-wave mixing in /4-shifted DFB laser[END_REF], [START_REF] Kim | All-optical frequency down conversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications[END_REF], [START_REF] Su | Nondegenerate four-wave mixing in quantum dot distributed feedback lasers[END_REF]. As for the nonlinear gain medium, in contrast to the Qwell material, Qdots offer various advantages such as a wider gain spectrum [START_REF] Li | Two-dimensional ordering of self-assembled InAs quantum dots grown on (311)B InP substrate[END_REF], ultrafast carrier dynamics [START_REF] Nielsen | Four-wave mixing and wavelength conversion in quantum dots[END_REF], higher nonlinear gain effect and thus a larger three-order nonlinear susceptibility [START_REF] Akiyama | Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers[END_REF], [START_REF] Lu | Highly efficient non-degenerate four-wave mixing process in InAs/InGaAsP quantum dots[END_REF]. In addition, due to the reduced α-factor, Qdots have the possibility of eliminating destructive interference among the nonlinear processes and also offer an enhanced efficiency in the wavelength up-conversion [Akiyama02], [START_REF] Flayyih | Four-wave mixing in quantum dot semiconductor optical amplifiers[END_REF]. In order to improve the dynamical performance of semiconductor lasers, the optical injection-locking technique has been widely used to reduce the spectral linewidth, frequency chirp as well as to suppress relative intensity noise and nonlinear distortion [Yabre96], [Simpson95], [START_REF] Meng | Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking[END_REF]. In particular, it has been reported that the α-factor value can be reduced under strong optical injection as well [START_REF] Lingnau | Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers[END_REF], [START_REF] Lin | Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers[END_REF], which is quite beneficial for further suppressing the destructive interference. Employing a dual-mode injection-locking scheme in this work, we report the efficient NDFWM generation in a Qdot Fabry-Perot laser, in which one tone of the injected CW beams is used as the pump wave, while the other one plays the role of the probe wave.

Each of these locks a longitudinal mode of the FP laser within the stable-locking range. Figure 5.12 shows the experimental setup, where two tunable CW lasers (TL1,2 : Yenista Optics, T100S ) are injected into the Qdot laser via an optical circulator. The Qdot laser output is collected from port 3 of the circulator, which is followed by a 90/10 fiber splitter. The 10% port is connected with a power meter to monitor the output power while the 90% port is used to analyze the optical spectrum with an OSA. The polarization of the tunable lasers is controlled to align with the slave laser through the polarization controller. The temperature of the Qdot laser is kept constant at 293 K throughout the experiment using a thermo-electric cooler. The Qdot laser structure and basic static properties are already described in section 5.1.1. In the study of the NDFWM performance, the Qdot laser is biased at 110 mA with a fiber-coupled power of 2.0 mW. Each of the two tunable lasers is set at the maximum achievable power around 1.4 mW (1.43 mW for TL1and 1.38 mW TL2), which are measured at port 2 of the circulator. Assuming a power coupling efficiency of 60% [START_REF] Naderi | Modeling the injectionlocked behavior of a quantum dash semiconductor laser[END_REF], the injection ratio for each of the master lasers to the slave laser is calculated to be 0.42, meaning that the strength of the optical injection remains at a relatively low level. The wavelength of the master laser TL1 is fixed around 1628.5 nm and acts as the pump wave, while TL2 is tuned to a longer wavelength and acts as the probe wave. respectively. Due to the third-order nonlinear susceptibility (3)  , new waves S 1 and S 2 are generated as the converted conjugate signal of M 2 and M 1 . Assuming the frequency difference between M 1 and M 2 is 
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where B denotes the contributions from SHB, CH and CDP, and B  is the corresponding time constant. The electric field of the FWM signal is proportional to the induced polarization () Df [START_REF] Park | Highly nondegenrate four-wave mixing in a tunable dual-mode semiconductor laser[END_REF]:
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The normalized conversion efficiency (NCE) is then found to be [Kolchanov96]: Following the above definitions, the normalized conversion efficiency (black) of the FWM in the Qdot laser is presented in Fig. 5.14. The interval of the detuning frequency f  is mainly determined by the mode spacing, which is 0.46 nm in the Qdot laser under study. The detuning frequency is then operated from the minimum 57.6 GHz up to 1.72 THz. For even larger detunings up to 5.7 THz, the FWM signal is submerged in the residual FP modes or noise and disappears. Due to the asymmetric gain spectrum as shown in Fig. 5.6 and carrier populations in higher energy non-lasing states, the Qdot laser has a non-zero α-factor parameter [START_REF] Grillot | Gain compression and above-threshold linewidth enhancement factor in 1.3 µm InAs-GaAs quantum-dot lasers[END_REF].
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The measured below-threshold α-factor of the Qdot laser device under study is found to be 2.6 at 1625 nm as shown in Fig. 5.7. Representing the susceptibilities (3) CDP  , (3) SHB  and (3) CH  as complex phasors [Akiyama02], it is found that this finite α-factor value causes the phasors to be oriented in different directions at zero detuning. When the frequency difference is tuned, on one hand (3) CDP  begins to rotate and its direction becomes closer to that of (3) SHB  and (3) CH  . On the other hand, the magnitude of each susceptibility becomes smaller as expressed in equation (5.3). Then η increases and reaches the peak value when the norm of the three additive susceptibilities is the largest. In the experiment under study, this situation is achieved at the detuning frequency f  =109.6 GHz with a normalized conversion efficiency of -17 dB (η S1 ).

Beyond that, the direction of (3) CDP  deviates away and the conversion efficiency decreases with the detuning frequency. When f  is tuned above the characteristic rates (1 THz) of the SHB and CH processes, (3) SHB  and (3) CH  also begin to rotate making η nearly constant at about -34 dB from f  =1.13 THz to 1.72 THz in the experiment. It is noted that at a detuning frequency around 1.1 THz, the NCE of the studied Qdot laser is more than 15 dB larger than that of a Qwell SOA reported in [START_REF] Koltchanov | Analytical theory of terahertz four-wave mixing in semiconductor-laser amplifiers[END_REF]. From Eqs. (5.3)-( 5.5), it can be derived that η S1 = η S2 .

However, the experimental results depicted in Fig. 5.14 show that η S2 is slightly smaller than η S1 , which is attributed to the assertion that the SHB effect contributes less to the wavelength up-conversion [D'Ottaviλ4]. In addition, Fig. 5.14 also presents the variation of side mode suppression ratio (SMSR, blue) with respect to each converted signal S 1 and S 2 since the residual modes act as optical noise to the converted signals. The SMSR decreases with the detuning frequency and the highest ratio is 20.3 dB at f  =109.6 GHz. The SMSR of S 2 is smaller in comparison with S 1 , which can be partly attributed to the lower power of S 2 . On the other hand, the amplitude of the residual FP modes at the longer wavelength side is higher when the laser is injection locked. This is because the gain at the right side of the pump wave M 1 is larger than that at the left side. Since the gain spectrum is almost clamped above threshold [START_REF] Gioannini | Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers[END_REF], this trend can be partially reflected by the sub-threshold gain shown in Fig. 5.6.

Lastly, it is important to note that in the experiment both the pump wave and the probe signal are operated in the stable-locked regime. However, for an arbitrary probe wavelength the temperature of the FP laser can be controlled to tune one of the FP modes within the stablelocking range of the probe signal. In addition, because the converted signal is enhanced by the cavity resonance, it is important to make the converted signal coincide with one of the resonance frequency peaks in the laser cavity [START_REF] Li | Small-signal analysis of THz optical-frequency conversion in an injectionlocked semiconductor laser[END_REF]. This can be achieved by tuning the pump wave since it typically has a large power and thus a wide locking range. Furthermore, the normalized conversion efficiency can be enhanced by a larger bias current to the FP laser, since the output power is mainly determined by the slave laser. The SMSR can be improved by a higher injection ratio [START_REF] Li | Small-signal analysis of THz optical-frequency conversion in an injectionlocked semiconductor laser[END_REF], which can be achieved by coupling an amplifier into the configuration to amplify the pump wave power. Unfortunately, the impact of the injection strength on the FWM was not studied in this work due to the power limitation of the devices.

Optical Injection-Hakki-Paoli method for α-factor extraction

In the previous section, it has been shown that the Hakki-Paoli method is only applicable to the below-threshold condition for the measurement of the α-factor. One of the major drawbacks of this method is the thermal effect. Lelarge et al. introduced a thermal correction method assuming that the thermal effect below threshold is the same as that above threshold. Besides, it is also assumed that carriers are all clamped above threshold [START_REF] Lelarge | Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP(100) quantum dots as active core[END_REF]. However, this is not true for nanostructure semiconductor lasers, since carriers in off-resonant states remains increase with pump current. Consequently, the measurement usually requires the pulsed current operation. Shorter pulse (< 1 s) results in less thermal effect, however it also leads to rather weak optical signal. Therefore, there is a tradeoff between the reduction of thermal effect and the tracked optical power. Once the laser is operated above threshold, the gain is clamped hindering the application of the Hakki-Paoli method. Modulation techniques including FM/AM method [START_REF] Harder | Measurement of the linewidth enhancement factor α of semiconductor lasers[END_REF] (see Chapter 3) and fiber transfer function method [Devaux93] are commonly used for the above-threshold α-factor measurement. However, both techniques require high-speed modulation operation, and thus increase the complexity of the experimental setup. In this section, we propose a novel approach to measure the α-factor of semiconductors under DC condition, with the help of optical injection. Here we name this approach as Optical Injection-Hakki-Paoli method. Particularly, this method is applicable for both below and above threshold operations. Moreover, it is insensitive to the thermal effects. In the following, we present the preliminary investigations using this novel approach.

From the study of the optical injection effect on the gain spectrum (see Fig. 4.15), it was shown that the gain of the laser can be tuned either by the injection strength or by the frequency detuning. This effect is similar to that of tuning the pump current in the Hakki-Paoli method.

When the laser is operated within the stably-locked area, Fig. 5.9 shows that except the injected mode, all other side modes are well suppressed, and the residual power is supported by the ASE.

Therefore, a novel method related to the Hakki-Paoli technique can be developed for the gain extraction of suppressed side modes both below and above the threshold. In accordance with the α-factor definition using Hakki-Paoli method in Eq. ( 5.1), we replace the pump current I in the original definition either by the injection ratio RInj or the frequency detuning FInj. In such way, we can recast the definition of the α-factor through the two following two relationships:

By tuning the injection ratio RInj:

Inj Inj / 2 / H net d dR L dg dR       (5.6)
Or by varying the frequency detuning FInj:
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Depending on the available master laser sources, it is possible to utilize either of the above two definitions. If the master laser has a poor tunability but the power can be varied in a large scale, the method of tuning the injection power is applicable (Eq. 5.6). If the master laser has a good tunability, the method of tuning the frequency can be employed instead (Eq. 5.7). In this work, we use the latter approach since the master laser source is a tunable external cavity laser.

The laser device under study is based on the InAs/InP Qdash nanostructure, consisting of five stacked layers of self-assembled InAs dashes. The laser structure is grown by the CBE onto an InP substrate. The waveguide is 1 mm long, 2 m width and both facets of the laser are as cleaved. The laser is provided by the National Research Council (NRC), Canada. Figure 5.15 illustrates the experimental setup for the measurement of the α-factor with the help of external optical injection. The schematic description is similar to that of Fig. 5.8. The laser device is operated at room temperature (293 K). The power of the tunable master laser is fixed at 9.3 mW. We tune the wavelength of the master laser, and record the output optical spectrum of the injected laser system using the OSA, which has a resolution of 10 pm. The tunable external cavity laser is used to inject the tested laser through an optical circulator. The output light is collected by a high resolution (10 pm) OSA for post-processing. A polarization controller (PC) is adjusted to align the polarization of the tunable laser with that of the tested laser.

Figure 5.16 shows the L-I curve of the free-running Qdash laser. It has a lasing threshold of 46 mA at room temperature. Figure 5.17 presents the optical spectra of the free-running laser biased at 80 mA. The lasing modes peak around 1550 nm. We aim to study the α-factor of the laser for wavelengths in the range from 1545 to 1555 nm. The injection can be operated at any mode outside of the target span. In this work, the injected mode is chosen around 1570 nm, which is 20 nm away from the gain peak. The optical injection is conducted in the stable locking regime. As shown in Fig. 5.18(a), the frequency detuning is operated from the positive frequency detuning (shorter wavelength) to the negative frequency detuning (longer wavelength) sides. Based on the optical spectra of side modes, we can apply the Hakki-Paoli method to extract the net modal gain of the Qdash laser as presented in Fig. 5.19. It is shown that the gain decreases from positive to negative frequency detunings, which are always lower than that of the free-running laser. Figure 5.20 shows an illustration of the wavelength variation as a function of the net modal gain, which is tuned by the frequency detuning. When the injected laser is tuned to the positive frequency side, the wavelength is blue-shifted while the gain is increased. Through linear fitting, we obtain the value / net d dg



. We point out that this value does exclude the impact of the thermal effect, since the operation is conducted at a fixed bias current. In addition, the knowledge of the exact value of the frequency detuning is not needed.

Last but not least, this approach is applicable for lasers operated both below and above threshold operations. In addition, we investigated another nanostructure Qdot laser as well as a commercial Qwell laser using this Optical Injection-Hakki-Paoli method. The Qdot laser is also based on the InAs/InP system, consisting of 5 stack layers (fabricated at NRC, Canada). The laser structure is grown by CBE, and the waveguide has a length of 1 mm, and a width of 3 m. The Qdot laser has a threshold of 43 mA, and the Qwell laser has one of 23 mA at room temperature. Figure 5.22 shows the measured α-factor of the Qdot laser, which is generally smaller than that of the Qdash laser (Fig. 5.21). Figure 5.23 shows that this novel developed method is well applicable to the Qwell laser as well.

It is noted that all the α-factors measured in the three kinds of laser devices are operated above threshold. During the the writing of this thesis, the measurement below threshold is still ongoing. On the other hand, we theoretically study the α-factor variations for pump currents both below and above threshold dusing its efinition in Eq. (3.48). The calculated α-factor as a function of the modulation frequency ranging from 1 Hz up to 10 11 Hz is presented in Fig. 5.24 (a). As already discussed in section 3.2 (see Fig. 3.9), the α-factor remains constant at low This special feature of nanostructure lasers can be attributed to the different carrier responses below and above threshold as shown in Fig. 5.25. Below threshold (I=0.8×Ith), the carrier populations in the GS and in the ES vary in a high level around 25 dB (at 0.01 GHz), while carriers in the RS varies at a lower level. This results in a small DC α-factor according to the analytical expression (3.48). Once above threshold (I=1.2×Ith), the carrier variation in the GS is strongly suppressed to a low level less than -5 dB, which is 30 dB smaller than the below threshold case. This is due to the gain clamping of the laser emission above threshold. However, carrier variations in the ES and in the RS remain at a high level, which leads to a higher value of the DC α-factor. Therefore, the discontinuity behavior of the DC α-factor at the lasing threshold in nanostructure lasers is attributed to the clamping of the resonant GS carrier populations as well as to the unclamped carrier populations in the off-resonant ES and RS. Since there is no discrete off-resonant state in Qwell lasers, this kind of phenomenon does not occur in the measurement shown in Fig. 5.23. The α-factor gap in nanostructure lasers retains the effort of reduing its value towards zero. Alternative approaches such as p-doping, tunnel injection as well as lasing operation on the ES are possible scenarios to reduce the α-factor [Mollet14], [START_REF] Bhowmick | High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 m tunnel injection laser[END_REF].

Lastly, it is noted that the above discussions are based on our preliminary measurements.

Further investigations are currently ongoing in order to further verify these first results.

Dynamical characterization under direct modulation

In the previous two sections, we studied the nanostructure semiconductor laser properties under DC condition. This section deals with the laser characteristics operating under direct modulation. The laser under study is the Qdash laser described in section 5.2. In section 5.3.1, we discuss the modulated free-running laser in the frequency domain, including the AM response and the CPR properties. In section 5.3.2, the modulated injection-locked laser is investigated in the time domain. In section 5.3.3, we analyze the large-signal modulation properties of both the free-running laser and the injected laser.

Modulated free-running laser

For the direct modulation operation of the semiconductor laser, a high-speed microwave probe is required instead of the DC probe to modulate the laser. In this work, we use high-speed a ground-signal-ground (GSG) pico-probe for the measurement as illustrated in Fig. 5.26. A) Amplitude modulation response Figure 5.27 presents the schematic of the experimental setup for the characterization of the laser's small-signal AM response in the frequency domain. The measurements require the use of the vector network analyzer (VNA), which combines a microwave generator and an ESA in one. From Port 1, the VNA generates an electrical sine wave signal with swept frequency, which is imposed to the DC current via a bias-T and is sent to the laser diode. Collection of the reflected signal from the laser chip in Port 1 (S11), the frequency-dependent impedance of the laser diode can be obtained [START_REF] Kuntz | Modulated InGaAs/GaAs Quantum Dot Lasers[END_REF]. The laser output is converted to an electrical signal through a high-speed photodiode, and then the signal is collected in Port 2. The combined modulation response of the laser diode (H21) and the parasitic circuits (P21) is given by the transmission function S21. The sole intrinsic response H21 of the laser diode can be extracted through a subtraction method eliminating the parasitic effect [START_REF] Morton | Frequency response subtraction for simple measurement of intrinsic laser dynamic properties[END_REF]. The approach assumes that the parasitic components are independent of the pump current. Thus, for two different bias currents I1 and I2 we have relation: 
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Thus, the parasitic effects are eliminated using this formula. The intrinsic modulation transfer function H21(f) of the semiconductor laser [START_REF] Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF] is given by Using the extracted dynamic parameters, Fig. 5.28 reproduces the intrinsic modulation response of the Qdash laser for different bias currents. The damping factor and the resonance frequency of the laser are linked by the K-factor as factor as
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  with Γ 0 the damping factor offset at threshold, and the reciprocal 1/ Γ 0 gives the effective carrier lifetime of the laser device [START_REF] Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF]. In Qwell lasers, the typical value of Γ 0 is 1~2 GHz, which is determined by the spontaneous emission and the non-radiative transition processes [START_REF] Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF]. For the measured Qdash laser, linear fitting in Fig. 5.29 shows that the K-factor is 0.82 ns, and Γ 0 is 5.62 GHz. It is demonstrated that the damping factor offset of the Qdash laser is larger than that of Qwell lasers. Similar phenomenon was also found in Qdot lasers as reported in literatures [START_REF] Su | Dynamic Properties of Quantum Dot Distributed Feedback Lasers[END_REF], [START_REF] Kuntz | Modulated InGaAs/GaAs Quantum Dot Lasers[END_REF], [START_REF] Martinez | Dynamic properties of InAs/InP(311B) quantum dot Fabry-Perot lasers emitting at 1.52-m[END_REF], [START_REF] Pochet | Characterization of the Dynamics of Optically-Injected Nanostructure Lasers[END_REF], [START_REF] Naderi | External Control of Semiconductor Nanostructure Lasers[END_REF], [START_REF] Zhukov | Gain compression and its dependence on output power in quantum dot lasers[END_REF], and is summarized in Table 5.1.

This result is also consistent with our theoretical study described in section 3.1. Therefore, nanostructure semiconductor lasers generally have a smaller carrier lifetime in comparison with Qwell lasers. This is attributed to the slow intradot carrier relaxation process from the ES to the GS as well as to the carrier escape process [START_REF] Lingnau | Influencing modulation properties of quantumdot semiconductor lasers by carrier lifetime engineering[END_REF], which increases the effective carrier lifetime of the GS.

B) Frequency chirp

The frequency chirping properties of semiconductor lasers can be characterized using optical discriminators. The purpose of the discriminator is to convert optical frequency variations into detectable intensity variations. Optical slope discriminator may be realized using interferometers [START_REF] Provost | Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer[END_REF], optical fibers [START_REF] Consoli | Time resolved chirp measurement of gain switched semiconductor laser using a polarization based optical differentiator[END_REF], and so on. In principle, any linear optical component with wavelength-dependent transmission characteristics may serve as a discriminator. In this section, we examine in detail the Mach-Zehnder (MZ) interferometer, which has two paths with different optical length. The field in the longer path is a delayed replica of the field in the short path. Assuming the time delay is  , the electric field in each
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where the optical power is P(t), the angular optical frequency is 0  , and the optical phase is () t  . The output power of the interferometer is given by 2
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where the third term is due to the interference of the two optical field. The phase difference is

( ) ( ) ( ) t t t         (5.14)
Assuming the phase difference is small ( ) 1 t    , that is, the differential time delay  is small enough in comparison with the signal coherent time, then we get the approximation

() ( ) 2 ( ) dt t v t dt          (5.15)
where () vt  is the frequency shift of the electrical field. The time domain analysis above is applicable for both small and large input signals. This can be manipulated using an oscilloscope in the experiment. For the small-modulation signal, an alternative efficient approach is to study the chirp in the frequency domain. This can be realized by a network analysis measurement. Assuming that the signal is modulated at a frequency m  , the optical power is given by 0

( ) [1 cos( )] m P t P m t   (5.20)
where m is the AM index. Similarly, the optical phase is also modulated and is written as

( ) cos( ) m tt      (5.21) 
where  is the FM index, and  is the phase difference between the FM and the AM modulations.
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Only consider the first order terms and neglect the continuous and higher order terms of modulation frequency, we obtain:
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where the relation sin( ( )) ( )

t t    
is used in the above equation. In the frequency domain,

this formula is transferred to [Sorin92]:   , 0 ( ) 2 ( ) ( ) ( ) ( ) AB out m m AM m m FM m P f P m f T f v f T f    (5.24) where ( ) ( ) 
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In the above formula, the AM transfer function of the MZ interferometer is:

( ) cos( ) m jf AM m m T f f e     (5.25)
and its FM transfer function is :
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Thus, we can obtain the AM modulation index in the frequency domain:
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and the FM modulation index:
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Then, the ratio of the FM-to-AM index is given by [Provost11]
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Correspondingly, we can obtain the chirp-to-power ratio (CPR) through the relationship

0 2 ( ) () 2(2 ) ( ) m m m m ff CPR f P m f   (5.30)
It is noted that the total input power into both paths of the MZ interferometer is 2P 0 .

Based on the above analysis, Fig. 

Modulated injection-locked laser

In Chapter 4, we have theoretically presented that the ratio of FM-to-AM index of injectionlocked semiconductor laser has a different behavior in comparison with the free-running laser.

In this section, we show experimental demonstrations in the time domain. quarter wave plate and two polarizers) [START_REF] Consoli | Time resolved chirp measurement of gain switched semiconductor laser using a polarization based optical differentiator[END_REF], [START_REF] Chaibi | Time resolved chirp measurement based on a polarization-maintaining fiber[END_REF]. Its transfer function is similar to that of MZ interferometer, and the intensity as well as the chirp responses is extracted in the same way as well [START_REF] Provost | Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer[END_REF]. Instead of a VNA, a waveform generator is used to generate the sine-wave signal with a certain frequency to modulate the Qdash laser. A high-speed sampling oscilloscope is required to record the time series , () AB out Pt , which is synchronized with the waveform generator. The Qdash laser is biased above threshold at 80 mA at room temperature, and the optical mode under study is at 1550.6 nm. . The AM (m) and the FM (β) indices are extracted by fitting the waveforms using the sine function. By varying the modulation frequency, we can obtain the ratio 2β/m for each frequency, and the results are reported in Fig. 5.35. For the free-running laser, the curve of 2β/m extracted from the time domain analysis is similar to that shown in Fig. 5.32, which is obtained from the frequency analysis. The ratio 2β/m gives the α-factor of 5.4 around f m =3 GHz. When the laser is subjected to optical injection, the behavior of 2β/m becomes quite different. The injected laser shows a much lower value instead of a giant one at low modulation frequencies, which is even smaller than the α-factor of the free-running laser.

For an injection of R=2.0, 2β/m increases from 4.0 for f m =0.2 GHz up to 8.5 for f m =6.0 GHz.

In contrast, for R=5.0, 2β/m remains almost constant around 3.0. The experimental observation is qualitatively consistent with the simulations in Chapter 4.

Large-signal modulation

This section deals with the large signal behavior of the modulated Qdash laser for both the free running case and for the laser subject to optical injection. The large signal analysis is operated in the time domain, and the experimental setup is the same one as in Fig. 5.33. The Qdash laser is biased at 80 mA at room temperature. Figure 5.38 shows that peak-to-peak chirp increases with the wavelength detuning, from 2.0 GHz for detuning of +0.04 nm up to 3.2 GHz for detuning of 0.08 nm, which are smaller than that of the free-running laser. Therefore, in addition to the elimination of adiabatic chirp, optical injection suppresses the peak-to-peak chirp as well. In summary, this chapter characterizes the modulation dynamics of nanostructure Qdash and Qdot lasers. The AM and FM responses of the free-running laser are studied in the frequency domain. Using optical injection, various nonlinear regimes are identified. In particular, the stable locked area is leveraged to our benefits in order to study the phase-amplitude coupling and the frequency chirp. The high efficiency FWM properties generated in the Qdot laser employing dual-mode injection are investigated. Under optical injection, the NDFWM is operated up to a detuning range of 1.7 THz with a low injection ratio of 0.42. The normalized conversion efficiency and the side-mode suppression ratio with respect to the converted signal are analyzed. The highest NCE of -17 dB associated with a SMSR of 20.3 dB is achieved at detuning of 110 GHz. Under direct current modulation, the phase-amplitude coupling properties of the laser are found to be strongly altered by the external optical injection. In addition, optical injection also well suppresses the time-resolved large-signal chirp. These findings are of prime importance for the realization of chirp-free laser devices. From an implementation perspective the slave laser can be referenced to the proper wavelength locker, facilitating implementation in a compact butterfly package suitable for high-speed applications in optical fiber links.

Particularly, a novel Optical Injection-Hakki-Paoli method is proposed to extract the α-factor of semiconductor laser under DC operation. In contrast to the Hakki-Paoli method operated only below threshold, this technique that is insensitive to the thermal effect is applicable to both below and above threshold measurements. Further measurements are ongoing to better explore this technique and to understand the physical mechanisms. In addition, for the first time we theoretically demonstrate the existence of a discontinuity of the α-factor in nanostructure lasers at the lasing threshold. This phenomenon is attributed to the carrier clamping of the resonant GS, as well as the unclamped carrier populations in the off-resonant states. In contrast, this behavior does not occur in Qwell lasers, since there are no discrete off-resonant states. Such a discontinuity is a fundamental limitation, preventing the reduction of the α-factor towards zero.

This new result is significant for the future improvement of Qdot devices with reduced α-factor. 

Part

Brief history and applications

The first demonstration of an intersubband semiconductor lasers, named quantum cascade (QC) laser, was reported in 1λλ4 by Faist and coworkers in Capasso's group at Bell Labs, USA Pulsed mode [START_REF] Faist | High power mid-infrared quantum cascade lasers operating above room temperature[END_REF] and continuous wave operations [START_REF] Faist | Rom temperature midinfrared quantum cascade lasers[END_REF] at room temperature operation were demonstrated one by one. The first step towards the realization of a terahertz QC laser was supported by the observation of a 4.5 THz electroluminescence from a QC structure in 1998 [Rochat98]. The first THz QC laser emitting at 4.4 THz was reported in 2002 using a chirped superlattice based structure in a low-loss semi-insulating surface plasmon waveguide [START_REF] Kohler | Terahertz semiconductor-heterostructure laser[END_REF]. Nowadays, the QC laser field keeps mushrooming quickly, and has brought significant impact to the scientific world. The laser devices are coming to the market and are expected to bring wide range of applications. A) Gas spectroscopy.

Absorption spectroscopy based sensing is one key application for QC lasers. A lot of molecules have strong vibrational/rotational absorption lines in the MIR or the THz ranges.

The gas sensing technology can be used in, for instance, the air pollutant and greenhouse gas monitoring, breath analysis for medical diagnostics, explosive and hazardous materials detection, and industrial process monitoring [START_REF] Weidmann | Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser[END_REF], [START_REF] Manne | Pulsed quantum cascade laser-based cavity ringdown spectroscopy for ammonia detection in breath[END_REF], [START_REF] Fuchs | Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers[END_REF], [START_REF] Wysocki | Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems[END_REF]. THz spectroscopy systems have been applied to various materials in order to understanding the basic characteristics and to demonstrate potential applications in sending and diagnostics. Especially, astronomy and space researches are strong drivers for THz research because the interstellar dust clouds contains a huge amount of information, in which the molecules can be probed in the THz regime [START_REF] Siegel | Terahertz technology[END_REF].

B) Terahertz imaging

THz imaging is attractive because it has the possibility to generate phase-sensitive spectroscopic images, which can be applied for material identification. Dielectric substances like paper, plastics and ceramics, are relatively non-absorbing in this frequency range. Different materials can be easily identified based on the analysis of their refractive index, which is extracted from the THz phase information. Therefore, the imaging systems find applications in security screening and manufacturing quality control. Particularly, 3D tomographic THz imaging system is of great interest. In addition, studies of cellular structure using THz imaging is also increasing [START_REF] Hu | Imaging with terahertz waves[END_REF], [START_REF] Loffler | Terahertz dark-field imaging of biomedical tissue[END_REF], [START_REF] Ferguson | T-ray computed tomography[END_REF], [START_REF] Mitrofanov | Collection-mode near-field imaging with 0.5 THz pulses[END_REF], [START_REF] Han | Time-domain transillumination of biological tissues with terahertz pulses[END_REF]. C) Free space optical (FSO) communication [START_REF] Ajili | Quantum Cascade Lasers at Terahertz Frequencies[END_REF], [START_REF] Majumdar | Free Space Laser Communication: Principles and Advances[END_REF] FSO communication links have received attention in the research and commercial communities because of their high bandwidth with relatively high security to eavesdropping but without the complexity of installing optical fiber. Commercially available systems have been mostly based on telecommunication components in the NIR spectral region. However, the atmospheric optical channel has quite different characteristics from fiber-based channels.

Molecular absorption, light scattering from suspended particulates, fog, rain and snow all conspire to make the FSO transmission systems more complex and less controlled. The choice of source wavelength is thus a critical parameter in the design of such systems. In the MIR wavelength range, the atmosphere has two windows of 3-5 m and 8-14 m, which make QC lasers promising for FSO communication links. Particularly, the intrinsic lasing mechanism makes QC laser have a large modulation bandwidth on the order of several hundreds of gigahertz, which is potential to realize ultrahigh speed optical transmission.

Martini succeeded in transmission of radio/video images over 70 m under lab conditions [START_REF] Martini | High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers[END_REF]. Later, Blaser demonstrated an optical data link between two different buildings separated by 350 m using a λ.3 m QC laser [START_REF] Blaser | Free-space optical data link using Peltier-cooled quantum cascade laser[END_REF]. In addition, QC lasers can be also employed in LIDAR systems for remote sensing [START_REF] Paschke | Quantum cascade laser for elastic-backscattering LIDAR measurement[END_REF].

Fundamentals of QC lasers

Quantum cascade lasers are unipolar semiconductor devices based on intersubband transitions instead of interband transitions like in bipolar semiconductor lasers. The radiative transition occurs between confined electronic states usually in the conduction band. Figure 6.2 compares the difference between the interband and intersubband transitions. Interband QW lasers have a staircase-like density of states for energies larger than the transition energy E21.

In contrast, intersubband transitions have an atomic-like density of states peaking at E21, leading to a very narrow gain spectrum. Because the initial and final subbands have the same curvature, the gain linewidth only depends on the collision processes [START_REF] Maulini | Broadly Tunable Mid-Infrared Quantum Cascade Lasers for Spectroscopic Applications[END_REF]. Another fundamental characteristic of the intersubband transitions is the short carrier lifetime (~1 ps), which is three orders of magnitude faster than that of interband transitions (~1 ns). The active region provides the optical gain for the laser emission. The active region relies on multiple-QW structures as shown in Fig. 6.3. The electronic structure of the active region consists of at least 3 energy levels. Electrons are injected into the upper laser level-3. The carrier population inversion occurs between level-3 and level-2, where the laser radiation takes place.

Carriers in the lower laser level-2 are depopulated into the bottom level 1 via optical phonon assisted non-radiative transition. In order to meet the condition of the population inversion, the lifetime of the upper laser level-3 must be longer than that of the level-2. On one hand, the lifetime of level-3 is increased (on the order of 1 ps) by employing a transition with a reduced spatial overlap of the wavefunctions (diagonal transition). On the other hand, the lifetime of level-2 is minimized (on the order of 0.1 ps) by making the spacing with level-1 resonant with the optical phonon energy.

An important parameter in the QC laser design is the oscillator strength Rij, which is defined as [START_REF] Weisbuch | Quantum Semiconductor Structures[END_REF], [START_REF] Liu | Intersubband Transitions in Quantum Wells: Physics and Device Applications I[END_REF]:
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where 0 m is the electron mass, ij E is the state energy, and ij z is the dipole matrix element. In the effective one-band model [START_REF] Wittmann | High-Performance Quantum Cascade Laser Sources for Spectroscopic Applications[END_REF], the wavefunction in the conduction band satisfies the Schrödinger equation: 

ij i z z j i j i j i z p p E E m E z m E z      (6.4)
where the momentum operator is defined as z pi z    .

The injector region bridges the adjacent active regions. The band structure is another multi-QW structure or a superlattice structure. Carriers tunneled out from the bottom level of one stage are collected here and then are injected to the upper lasing level of the following stage by resonant tunneling. The injection region also introduces an additional energy drop between the lower lasing level and the bottom state of the period. Therefore, it reduces the thermal backfilling of the former. Finally, the injector region is doped to act as an electron reservoir, insuring that the integrated negative charge in the structure is compensated by the positive donors, even in the situation of strong electrical injection to prevent the formation of spacecharge domains [START_REF] Maulini | Broadly Tunable Mid-Infrared Quantum Cascade Lasers for Spectroscopic Applications[END_REF].

After the birth of the QC laser concept, various architectures of both active region and injector region were proposed, which led to dramatic improvements of the laser's performances.

The first QC laser was composed of three coupled Qwells, where the radiation relies on the diagonal transition in the real space. Later, the vertical transition design was introduced aiming to be less sensitive to interface roughness and impurity fluctuations [START_REF] Faist | Vertical transition quantum cascade laser with Bragg confined excited-state[END_REF]. The injection efficiency of the injector region is maximized by introducing a thin well, which increases the overlap between the bottom state and the upper lasing state of the following period [START_REF] Faist | High power mid-infrared quantum cascade lasers operating above room temperature[END_REF].

In 1997, Scamarcio et al. brought a completely different concept using the superlattice (SL) active region instead of discrete energy levels. In this design, electrons transit between two superlattice conduction bands (miniband), and the photon energy follows that of the energy gap (minigap). A distinctive feature of the architecture is the high oscillator strength of the optical transition at the mini-Brillouin zone boundary of the superlattice [START_REF] Scamarcio | Highpower infrared (8-mircometer wavelength) superlattice laser[END_REF]. The performance is further improved by a chirped SL active region design, which overcomes the need of doping in the active region [START_REF] Tredicucci | High-power inter-miniband lasing in intrinsic superlattices[END_REF]. This kind of structures improves the carrier extraction efficiency from the lower lasing state to the bottom state. Today, two active designs are the most promising: The bound (or continuum)-to-continuum (or bound) design [START_REF] Faist | Quantum-cascade lasers based on a bound-to-continuum transition[END_REF],

[Yao10], [START_REF] Yao | High performance "continuum-to-continuum" quantum cascade lasers with a broad gain bandwidth of over 400 cm -1[END_REF], and the two-phonon resonance design [START_REF] Hofstetter | Continuous wave operation of a λ.3 m quantum cascade laser on a Peltier cooler[END_REF].

Finally, we summarize the fundamental features of the QC lasers in contrast to the interband semiconductor lasers:

A) The transition energy is determined by the confinement energy of the electrons in the quantum well rather than the band gap energy of the material. Thus, it is possible to tune the lasing wavelength by adjusting the Qwell thickness. The covered wavelength range can be up to 50% of the conduction band offset using the same material system.

B) Multiple cascade stages. The electrons are recycled from one stage to the subsequent, that is, one electron can trigger lots of photons while passing all the stages. This results in high differential quantum efficiency. Although the threshold current of QC lasers is usually very high due to the ultra-short non-radiative lifetime, its value can however be reduced since the threshold current density is inversely proportional to the number of cascades.

C) The short carrier lifetime on the order of 1 ps. It is even smaller than the photon lifetime (> 5 ps). In contrast, the interband laser has a much longer carrier lifetime (~ 1 ns) than the photon lifetime. This main difference brings new dynamical characteristics like broadband modulation bandwidth up to several hundreds of GHz without any relaxation oscillation.

D) Narrow gain spectrum. This is due to the discrete atomic-like density of states in QC lasers. The symmetric gain shape also leads to a near-zero α-factor (typically -1~1).

In the following, Chapter 7 discusses the dynamic properties of the free running QC laser, and Chapter 8 investigates the QC laser subject to optical injection.

Chapter 7. Free-running QC laser

Rate equations and static solutions

From the introduction in chapter 6, it is known that the QC laser is a three-level laser system with many repeated stages. Since the stages can be slightly different from one to another, the laser system can be in principle macroscopically described by a full set of rate equations including three equations of carriers and one of photons for each stage [START_REF] Rana | Current noise and photon noise in quantum cascade lasers[END_REF]. Assuming the QC laser has Npd (20~50) periods, the total number of coupled rate equations are 4×Npd, which means there are 80~200 equations describing one QC laser system. In order to simplify the analysis, here it is assumed that all the gain stages are identical. That is, every stage has the same carrier number and the same time constants. Finally, the simplified rate equation system is given by [Harder05]: where ΔN=N 3 -N 2 is the population inversion, L is the cavity length and w is the cavity width. In a parabolic band approximation for the electronic dispersion in the conduction band, the differential gain a is given by [Gmachl99]: 

 is the full width at half maximum (FWHM) of the optical transition, and p L is the length of a single gain stage.

A) Below threshold

The steady-state solution to the rate equations can be obtained by setting all the time derivatives to zero. Below the lasing threshold, the photon emission is only owing to the spontaneous emission and is small, thereby it is often assumed that S=0. Then, we obtain the carrier numbers of each state as a function of the injected current:
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In order to realize population inversion, i. e, N 3 >N 2 , the carrier lifetime of the lower lasing level must be smaller than that of the upper lasing level 21 32   .

B) Above threshold

Once the laser is operated above the lasing threshold, the gain is clamped at 
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Setting the photon number to zero in the above equation, we obtain the threshold current: (  )
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The radiative quantum efficiency for a QC laser is defined as the fraction of the total number of electrons into each gain stage per second that contributes to the photon emission. Equation (7.18) shows that if the lifetime of the lower lasing level 21

 is much smaller than both the non- radiative lifetimes 32  and 31  , the radiative quantum efficiency would be close to unity. In the simulations, all the parameters are listed in Table 7.1. Figure 7.1 shows the steadystate solutions of the QC laser. In contrast to interband semiconductor lasers, carrier populations in the lasing states 3 and 2 keep increasing beyond their threshold values. As a result, an increase in the injected current of the QC laser not only leads to an increase in the photon emission rate but it also leads to an increase in the rate of non-radiative transitions. This property is indicated in Eqs. (7.11) and (7.12). However, the population inversion as well as the gain is clamped above threshold as described in Eq. (7.14). Carriers in the bottom state N 1 increases linearly with the pump current. 

Modulation dynamics

In the modulation response of QC lasers, one particular feature is the absence of the relaxation oscillation, which is owing to its shorter carrier lifetime as compared to the photon lifetime. The short non-radiative lifetime suppresses the relaxation oscillation resulting in an over-damped class-A oscillator with carrier equilibrium completely restored after one photon roundtrip. On the other hand, because of the ultrafast carrier lifetime on the order of 1 ps, QC lasers lead to an ultra-broad modulation bandwidth, which is highly desirable for free-space short-range communications [START_REF] Mustafa | Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers[END_REF]. Assuming a simplified set of rate equations, the AM bandwidth was predicted to be as large as of 100 GHz [Cheung97]. Values up to terahertz were even theoretically calculated in intersubband semiconductor lasers based on a triple quantum well structure [START_REF] Donovan | Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1-xAs device[END_REF], [Haldar05]. However, these values are lowered to tens of gigahertz when using a full rate equation approach taking into account the QCL periods as well as the ground level from which electrons leave the active region into the injector of the next stage [START_REF] Rana | Current noise and photon noise in quantum cascade lasers[END_REF], [START_REF] Petijean | Dynamic modeling of terahertz quantum cascade lasers[END_REF] Experimentally, Paiella et al. reported a QCL emitting at 8 m with a 10 GHz AM bandwidth and no relaxation oscillation resonance [Paiella01]. Besides AM bandwidths up to 13 GHz and 24 GHz have also been measured on terahertz QCLs using a test bench technique [Barbieri07], [START_REF] Maineult | Microwave modulation of terahertz quantum cascade lasers: a transmission-line approach[END_REF]. In this section, we study both the amplitude and frequency modulation response properties through the small-signal analysis.

Considering that the laser is directly modulated by a small current I  with a given modulation frequency, the carriers and the photon will be modulated correspondingly 
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where 0 / ( ) pg G v a Lw  , and 44 0   ignoring the spontaneous emission and the gain compression.

A) AM response

The modulation transfer function is then given by In addition, the responses remain quite flat with no resonance peak in comparison with the interband semiconductor lasers. This is attributed to the ultra-fast carrier lifetime, which is even shorter than the photon lifetime. From Table 7.1, the zero of the QC laser system is z=-1.5×10 12 rad/s. In Class-B type interband semiconductor lasers have a pair of conjugate complex poles, determined by the damping factor  and the resonance frequency R  as
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In contrast, the poles of the QC laser at the bias current of 1.5×I th respectively are p 1 = -9.60×10 10 rad/s, p 2 =-1.02×10 12 rad/s, and p 3 =-2.57×10 12 rad/s. From the knowledge of the Bode plot analysis, the modulation bandwidth is mainly determined by the smallest pole p 1 (15.3 GHz).

In addition, it is shown that all poles of the QC laser are real values, which is a feature of class-A laser. No complex eigenvalue of the laser system indicates that the QC laser has not relaxation oscillation in consistent with the experimental observation [Paiella01].

B) FM response

In order to study the FM behavior of the QC laser, one additional equation of the phase variation of the electric field is coupled with the rate equations (7.1)-(7.4):
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where H  is the linewidth enhancement factor of the QC laser. The gain compression effect has to be taken into account, by replacing the gain in the rate equations as follows
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  (7.26) where  is the gain compression factor, and p V is the photon volume. The gain compression effect is responsible for the adiabatic chirp and the bending of L-I curve of the QC laser as already observed in the experiment [START_REF] Hangauer | Gain compression in a quantum cascade laserμ Connection between high frequency tuning and bending of LI curve[END_REF]. Potential mechanisms of the gain compression of the QC laser are the spectral and spatial hole burning as well as the carrier heating as for interband semiconductor lasers [Willatzen91], [START_REF] Klotzkin | Introduction to Semiconductor Lasers for Optical Communications[END_REF], [START_REF] Morthier | Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 F-P and DFB lasers[END_REF].

However, a full identification of the physical effects still requires further studies.

From the small-signal analysis of the differential rate equations, the CPR of the QC laser is derived as

0 3 2 1 ( ) ( )(1 / ) 2 H pd p P j CPR j N G N N S V SS                   (7.27)
where the spontaneous emission is neglected. It is shown that the CPR of the QC laser is very similar to that of interband lasers, except the gain expression. The FM response of the QC laser is then given by

( ) ( ) ( ) / j FM CPR H Iq       (7.28)
Figure 7.3 shows the CPR of the QC laser decreases with the increasing bias current, because the CPR is inversely proportional to the laser power. The adiabatic chirp due to the gain compression at low modulation frequency is around 0.05 GHz/mW. At high modulation frequencies, the CPR increases linearly proportional to the value of the linewidth enhancement factor. Figure 7.4 presents for the first time the FM response of the QC laser. Surprisingly, the FM bandwidth is on the order of tens of THz, which is three orders of magnitude larger than that of the AM bandwidth (Fig. 7.2). On the other hand, a resonance-like peak occurs in the FM response. Through the Bode plot analysis of Eq. (7.28), this peak is attributed to the spontaneous emission and the gain compression. In the future work, it is necessary to perform experimental investigations on the FM behavior to verify these theoretical predictions. In summary, this chapter studied the static and dynamic properties of free-running QC lasers based on a set of coupled rate equations. Semi-analytical analyses show that the QC lasers exhibit a flat and broadband AM response with a bandwidth on the order of tens of GHz.

Particularly, the QC lasers do not have any relaxation oscillation. On the other hand, the FM response of QC lasers exhibits an ultra-broad bandwidth on the order of tens of THz, three orders of magnitude higher than the AM response. These properties make the QC laser very promising for modulation applications such as free space communications.

Chapter 8. Injection-locking of QC lasers

The optical injection locking architecture has been a powerful engine for establishing tunable photonic oscillators and high bandwidth radio frequency links. For intersubband QC laser geometries, the suppression of residual amplitude modulation was observed [START_REF] Taubman | Frequency stabilization of quantum cascade lasers by use of optical cavities[END_REF],

as well as power scaling, linewidth reduction and frequency noise suppression of frequency combs [START_REF] Borri | Direct link of a mid-infrared QCL to a frequency comb by optical injection[END_REF]. The AM bandwidth enhancement effect by optical injection was theoretically reported via a simple model without taking into account gain stage cascading [START_REF] Meng | Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers[END_REF]. This chapter first introduce the rate equation models describing the injection-locked QC laser and the steady-state solutions. Secondly, the local bifurcation diagram will be presented. Thirdly, we analyze both the AM and FM properties of the QC laser subject to optical injection locking.

Static characteristics

As in interband semiconductor lasers, the optical injection of the QC laser can be described by replacing the photon and phase equations (7.4), (7.25) using

  3 1/ 2 cos pd p g P pd c inj sp dS N N v g S N k S S dt           (7.29) 
    and is dependent on both the injection ratio and the detuning frequency. for a QC laser. The injection ratio is with respect to the photon number of the free running laser at 1.5×Ith, that is, SFR=7.26×10 6 (0.52 mW). The frequency detuning is fixed at zero.

Stability diagram

The bifurcation diagrams are useful to identify nonlinear dynamics such as period doubling and chaos in optically injected semiconductor lasers [START_REF] Wieczorek | The dynamical complexity of optically injected semiconductor lasers[END_REF]. In this section, we investigate the main saddle-node (SN) and Hopf bifurcations of the injection-locked QC laser using the continuation package Matcont as introduced in section 4.2 [START_REF] Dhooge | MATCONTμ A MATLAB package for numerical bifurcation analysis of ODEs[END_REF]. It is known that the bifurcation diagram strongly depends on the value of the α-factor. Due to the nature of intersubband transitions, QC lasers are expected to exhibit a narrow and symmetric gain spectrum, leading to a zero α-factor at the gain peak according to the Kramers-Krönig relation.

However, many body Coulomb interactions, coherence of resonant-tunneling transport and electronic dispersion non-parabolicity yields to a non-zero α-factor in real QC laser devices.

Experimentally reported α-factor values range from -2.0 up to 3.0 [START_REF] Kumazaki | Detuning characteristics of the linewidth enhancement factor of a midinfrared quantum cascade laser[END_REF], [START_REF] Liu | Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers[END_REF].

Nevertheless, in most cases, the α-factor of QC lasers is much smaller than that of interband semiconductor lasers. The simulated stability diagrams are shown in Fig. 7.6 for several α-factors. The stable locking regime is bounded by the supercritical bifurcations, which is enlarged by increasing the α-factor from 0 to 2.5. In contrast to the case of interband lasers (see Fig. 4.2), the zero frequency detuning case is always stable even under low injection level. Besides, the codimension-two SN-Hopf points are of Bogdanov-Takens (BT) form instead of Zero-Hopf (ZH) form [START_REF] Pausch | Optically injected quantum dot lasers: Impact of nonlinear carrier lifetimes on frequency-locking dynamics[END_REF], where the bifurcations change criticality. Complex nonlinear dynamics usually arise around these codimension-two points [START_REF] Wieczorek | The dynamical complexity of optically injected semiconductor lasers[END_REF]. With a larger α-factor, BT 1 moves toward the negative axis of injection ratio associated with the positive axis of detuning, while BT 2 moves oppositely. For a zero α-factor α H =0, the bifurcation diagram is symmetric, while a non-zero one leads to an asymmetry. A bistability region emerges near the cusp point at the negative detuning side for α H =1.0, which is not exhibited in conventional interband semiconductor lasers [START_REF] Kelleher | Optically injected lasersμ The transition from class B to class A lasers[END_REF]. For an α-factor of α H =2.5, a small unstable locked area appears at the positive detuning side. When compared to interband lasers, all above differences in the bifurcation diagram can be directly attributed to the high ratio of the photon lifetime to the carrier lifetime in QC lasers (τ p /τ 32 =1.85) [START_REF] Kelleher | Optically injected lasersμ The transition from class B to class A lasers[END_REF], [START_REF] Erneux | Nonlinear dynamics of an injected quantum cascade laser[END_REF].

Modulation dynamics

A) AM response enhancement

With the bifurcation diagram, the modulation properties of the injection-locked QC laser can be studied within the stable locked regime. To investigate the AM response, we linearize the rate equations via the standard approach of small signal analysis. The modulation transfer function of the injection-locked QC laser can be expressed as follows:
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where zk, pk are respectively the zeros and poles of the steady-state polynomials, which are useful in the modulation response's behavior analysis with respect to the Bode plots. Among the zeros, z1 is the smallest one and is expressed as:

1 z / (cos sin ) c inj H k S S      (7.36) 
From chapter 7, it is known that the free running QC lasers exhibit a rather flat AM response without resonance peak due to their ultrafast carrier lifetime [START_REF] Maineult | Microwave modulation of terahertz quantum cascade lasers: a transmission-line approach[END_REF]. The modulation bandwidth can be enhanced by increasing bias current but at the price of the excess heating and the degradation of spectral properties. The inset of Fig. 7.7 illustrates that the injection-locked laser at zero detuning does not present resonance peak as well. Fig. 7.7 also shows that the 3-dB modulation bandwidth increases with the optical injection strength, however, the bandwidth tends to saturate at high injection ratios. The possible underlying physical mechanism to this saturation is the finite carrier and photon lifetimes, which remains open for further investigation in the future.

In Fig. 7.8, we present the detuning effect on the modulation response. The detuning range is controlled in the stable locked regime with respect to the bifurcation diagram. It is seen that the 3-dB bandwidth is enhanced by both positive and negative detunings, while the former is more efficient. From the inset, under both detunings it is found that peaks arise in the response.

However, from the Bode plot analysis the underlying mechanisms are different. For the positive detuning, a pair of complex conjugate poles appears which surprisingly give rise to a resonance originating from the interaction between the locked field and the shifted cavity-resonance field [START_REF] Murakami | Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection[END_REF]. The resonance combined with the small zero z1 results in the peak in the modulation response. In the case of negative detuning, all the poles remain real indicating there is no resonance. The appearance of the peak is due to the fact that the zero z1 is smaller than any of the poles (in the Bode plot). In addition, the simulation in Fig. 7.9 shows that a large αfactor also increases the peak amplitude in the modulation response. However, the modulation bandwidth is hardly influenced. One fundamental feature of QC lasers is the multistage cascade scheme, where electrons contribute to the gain and the photon emission in each period, leading to a radiative quantum efficiency proportional to the period number [START_REF] Wang | Intensity modulation response of injection-locked quantum cascade lasers[END_REF]. We therefore study the influences of the cascade gain stage number on the AM response. Surprisingly, it is shown that the response is little impacted by the stage number, both in free running and injection-locked lasers under the same bias-threshold current ratio (I bias =1.5×I th ). However, when all the responses are normalized to the DC value with N pd =30 as shown in Fig. 7.10, it is found that the amplitude of the response increases with a larger stage number which means more power is obtained in the modulation, while the response shape remains similar. In contrast, the inset of Fig. 7.10 presents that the steady-state property is strongly impacted by the stage number. With more gain stages in the QC laser, both carriers in the upper and lower subbands decrease, while the photon number remains almost constant. Additionally, the threshold current of the free running laser is substantially reduced while the external differential efficiency (dS/dI) is enhanced, as reported in [START_REF] Faist | High-power continuous-wave quantum cascade lasers[END_REF]. When compared to the free running laser, the carrier number of the upper subband (N 3 ) in the locked laser decreases while that of the lower subband (N 2 ) slightly increases. The population in the bottom state remains constant at 1 / out N I q   . Besides, the laser power is scaled up. On the other hand, laser devices with more stages require higher operating voltage, which is useful to reduce the undesired potential drops in the injector region, but it also leads to poor heat-removal efficiency from the active region [START_REF] Tournié | Advances in semiconductor lasers[END_REF]. For the free running laser, the CPR remains almost constant in the modulation range 0.01~0.1

B) Frequency chirp reduction

GHz. In this region, the adiabatic chirp dominates the chirp level originating from the gain compression as well as from the spontaneous emission. For higher frequencies than 0.1 GHz, the CPR increases almost linearly with the modulation frequency, and the slope is then determined by the linewidth enhancement factor and the laser output power. For the laser operating under optical injection, the constant CPR region vanishes, which value is determined by the injection ratio, phase difference and the linewidth enhancement factor. At zero detuning, the optical injection remarkably reduces the CPR level, especially for modulation frequencies less than 10 GHz. At the frequency of 1.0 GHz, the optical injection substantially decreases the free-running CPR from 480 MHz/mW down to 30 MHz/mW with an injection ratio of 10. For frequencies higher than 10 GHz, the modulation frequency dominates the CPR value, and more than half of the chirp is reduced. Figure 7.12 presents the impact of frequency detuning under an injection ratio of 5.0. It shows that the frequency detuning in either direction increases the CPR value. In contrast to the interband laser, the CPR can be even larger than the free-running laser case for detunings near the stable-locked regime edges. The minimum CPR is obtained at zero detuning. Since the detuning also enhances the AM bandwidth, a trade-off is required in the optical injection to simultaneously reach a low frequency chirp and a large modulation bandwidth. To summarize, this chapter investigated the dynamic properties of optical injection-locked QC lasers both on bifurcation diagrams and modulation responses. It is demonstrated that the stable locking regime widens as the α-factor value increases. Meanwhile, both bistable and unstable locked regions are found in this dynamical system. Increasing either the injection ratio or the master-slave frequency difference enhances the 3-dB AM modulation bandwidth. In addition, optical injection reduces the CPR of QC lasers as for interband lasers. These findings are of prime importance for the performance enhancement of future integrated QC lasers.

Chapter λ. Summary and outlook

In this thesis, we studied the modulation dynamics of nanostructured Qdot semiconductor lasers in the first part and of QC lasers in the second part.

The small-signal modulation dynamics are studied in a semi-analytical approach based on a set of coupled rate equations, incorporating the special features of nanostructures. The carrier scattering processes (capture and relaxation) are found to be the main limitation of the 3-dB modulation bandwidth. We also improved the model by taking into account the contribution of carrier populations of off-resonant states on the refractive index change. This model allows us to study the α-factor properties of nanostructure lasers, which are compared with common experimental approaches used to measure it. Results quantitatively unveil that carrier populations of off-resonant states strongly increase the α-factor of Qdot lasers. Therefore, enlarging the energy separation between the resonant and off-resonant states helps to reduce its magnitude. On the other hand, fast carrier scattering rates also leads to a smaller α-factor. In contrast to the usual GS emission, ES lasing Qdot lasers exhibit superior dynamic performances, including broader modulation bandwidth, lower frequency chirping. Particularly, calculations reveal that the α-factor of an ES laser is only half of that in a GS laser. Through proper energy band engineering, it is of high potential for the realization of chirp-free emitters with zero or even negative α-factor values using the ES emission. Employing a multi-population rate equation model, we also numerically studied the inhomogeneous broadening impacts both on the small and large signal analysis. It strongly limits the modulation performances of Qdot lasers, such as reducing the modulation bandwidth and degrading the eye diagram quality, raising the α-factor as well as the frequency chirp.

The optical injection-locking technique does improve the dynamic characteristics of nanostructure lasers. Depending on the injection conditions, calculations show that the modulation bandwidth is strongly enhanced while the frequency chirp is well suppressed. In addition, the phase-amplitude coupling properties of the nanostructure laser are significantly altered by the optical injection.

The modulation dynamics of nanostructure lasers are characterized in the experiments both for the free-running and for the injection-locking operations. Particularly, based on the simulations of the optical gain in presence of optical injection, a novel Optical Injection-Hakki-Paoli method has been developed based on the preliminary results. This experimental technique does not suffer from thermal effects and offers the possibility to extract both the below and above threshold α-factor of semiconductor laser simply by adjusting the injection ratio or the frequency detuning. In addition, we theoretically revealed for the first time the occurrence of a threshold discontinuity of the -factor in nanostructure (Qdot and Qdash) lasers while it does not in Qwell lasers. This behavior is attributed to the unclamped carrier populations in the offresonant states, and thus retains the efforts of reducing the α-factor and thus the frequency chirp of nanostructure lasers.

In the second part, we investigated the modulation dynamics of the QC lasers. Owing to its intersubband optical transition and the ultrafast carrier lifetime (on the order of 1 ps), the dynamic properties of the QC lasers are different to those of interband semiconductor lasers.

The AM response has a broad modulation bandwidth on the order of tens of GHz without any relaxation resonance, while the FM response shows an ultra-broad bandwidth on the order of tens of THz. When the QC laser is injection-locked, the bifurcation diagram is substantially different to the case of interband lasers with an enhanced stability. In addition, the modulation bandwidth can be enhanced not only at the positive frequency detuning side but also at the negative one. All these properties offer promising perspectives that can be explored for future development of free-space communications.

In future works, various experimental demonstrations are required to verify the theoretical predictions presented in this thesis, such as the reduction of α-factor through band structure engineering in nanostructure lasers, and the superior dynamic performance of lasers operating on the ES. The proposed Optical Injection-Hakki-Paoli method in this work deserves further theoretical and experimental investigations. Modulation dynamics of injection-locked QC lasers needs experimental investigations as well. Furthermore, tunnel injection and p-doped schemes can be possible solutions to enhance the dynamical performances of nanostructure semiconductor lasers.

In addition to the modulation dynamics, it is also important to study the intensity and phase noise characteristics of the nanostructure and QC lasers both theoretically and experimentally, which have significant influences on their applications. Especially, optical injection locking technique can well improve the noise properties of both kind lasers [START_REF] Simos | Intensity noise properties of mid-infrared injection locked quantum cascade lasersμ I. Modeling[END_REF], [START_REF] Juretzka | Intensity noise properties of mid-infrared injection locked quantum cascade lasersμ II. Experiments[END_REF].

Moreover, in the rate equation modeling we used the exciton approximation. However, this approximation has some limitations in predicting behaviors such as the so-called GS quenching when Qdot lasers exhibit simultaneous GS and ES lasing, which is attributed to the asymmetry of electrons and holes [START_REF] Gioannini | Ground-state power quenching in two-state lasing quantum dot lasers[END_REF], [Rohm15]. In future works, it will be interesting to investigate influences of the de-synchronization between electrons and holes on the lasers' static and dynamic characteristics.

As for the injection-locked lasers, this work mainly focus on the stably locking regime, but as mentioned in chapter 5, the technique also produces a large variety of nonlinear dynamics such as periodic oscillation and chaos. It will be interesting to further characterize the behaviors and to explore the physical mechanisms in the nanostructure and QC lasers. Particularly, the QC lasers are expected to exhibit different and interesting dynamics owing to its ultrafast carrier lifetimes. Nanostructure and QC lasers subject to optical feedback as well as mode-locked lasers for optical clock distribution are interesting field to explore. Investigation on modulation dynamics of silicon based emitters [START_REF] Liang | Recent progress in lasers on silicon[END_REF], [START_REF] Duan | Hybrid III-V on silicon lasers for photonic integrated circuits on silicon[END_REF], [START_REF] Rickman | The commercialization of silicon photonics[END_REF] is a promising topic as well.

d'amélioration. Dans ce but, la première partie de ce travail de thèse se focalise sur la dynamique des lasers à îlots quantiques sur substrats InP, incluant la modulation en amplitude (AM), en fréquence (FM) et les propriétés du facteur α. L'analyse de la dynamique des lasers à îlots quantiques est basée sur un modèle d'équations bilan, dérivé du couplage entre les équations de Bloch optiques et les équations de Maxwell [Chow03], après élimination de la polarisation. Ce modèle prend en compte les populations dans les états RS, ES and GS ainsi que les effets de champ électrique. Pour l'analyse petits-signaux, la dynamique des lasers a été étudiée à l'aide d'un modèle semi-analytique, dérivé de ces équations bilan.

A) Réponse AM

Pour un courant de modulation faible () I  appliqué à un laser à îlots quantiques polarisé en continu, la population de photons induite est représentée par () S  . La réponse AM est alors caractérisée par la fonction de transfert:
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 ,  sont la fréquence de résonance et le facteur d'amortissement associés à l'interaction entre la population de photons et la population de porteurs dans l'état GS. Comme la modulation des populations de porteurs provoque l'apparition d'une modulation du gain mais aussi de l'indice de réfraction, la longueur effective de la cavité optique subit aussi une modulation ce qui se traduit par une modification de la fréquence de résonance. Ce phénomène de « chirp » en fréquence, couplé à la dispersion chromatique des fibres optiques, provoque une dégradation des signaux au sein des réseaux de fibres optiques. Le « chirp » au sein des lasers à îlots quantiques est caractérisé dans ce travail de thèse par le paramètre CPR (« chirp-to-power ratio ») qui est lié au facteur α selon la relation : 

D) Effets de l'élargissement inhomogène

Des îlots quantiques sont usuellement obtenus grâce au mode de croissance Stranski-Kratanov mode de croissance auto-organisée, qui provoque l'apparition de formes pyramidales ou coniques tronquées [START_REF] Bimberg | Quantum Dot Heterostructures[END_REF]. La densité surfacique varie entre 10 9 et 10 12 dots/cm 2 . En raison des fluctuations de taille et de géométrie des îlots, le spectre de photoluminescence subit un élargissement inhomogène. L'élargissement inhomogène à température ambiante varie entre In this dissertation, we investigate the dynamic characteristics of InPbased nanostructure semiconductor lasers operating under direct current modulation, including the amplitude (AM) and frequency (FM) modulation responses, the linewidth enhancement factor (also known as α-factor), as well as large-signal modulation responses. Using a semi-analytical analysis of the rate equation model, it is found that the modulation bandwidth of the quantum dot laser is strongly limited by the inite carrier capture and relaxation rates. In order to study the αfactor and chirp properties of the quantum dot laser, we develop an improved rate equation model, which takes into account the contribution of carrier populations in off-resonant states to the refractive index change. It is demonstrated that the α-factor of quantum dot lasers is strongly dependent on the pump current as well as the modulation frequency, in comparison to the case of Qwell lasers. The α-factor remains constant at low modulation frequencies (<0.1 GHz) and higher than the value derived at high modulation frequencies (beyond several GHz) from the FM/AM technique. These unique features are mostly attributed to the carrier populations in off-resonant states. Further simulations show that the α-factor can be reduced by enlarging the energy separation between the resonant ground state (GS) and off-resonant states. Lasing from the excited state (ES) can 

E) Lasers nanostructurés sous injection optique

Fig. 1 . 1 .

 11 Fig. 1.1. The history of evolutions and structure of active layers in lasers, after [QD Laser, Inc., 08]

Figure 1 .

 1 Figure 1.2 shows atomic force microscopy (AFM) images of InAs/InP Qdashes (left), Qdots (middle) on (100) substrate and Qdots (right) on (311)B substrates. Carlin et al. were the first to report the Qdot formation in the ultra-thin InAs/InP Qwells grown by CBE [Carlin91]. The first InAs/InP Qdot laser emitting at ~1.9 µm at 77 K was reported by Ustinov et al. in 1998 [Ustinov98], [Ustinov98a]. Room temperature operation was then realized by Nishi et al. [Nishi98]. In the following, we review the development of the InAs/InP Qdot lasers on both (311)B and (100) InP substrates employing the InAs/InGaAsP or InAs/InGaAlAs active material regions.
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 12 Fig. 1.2. AFM image of InAs Qdashes (left), Qdots (middle) formed on (100) InP substrate, and Qdots (right) on (311)B InP substrate, after [Alghoraibi06].

Fig. 1 . 3 .

 13 Fig. 1.3. Direct (top) and external (bottom) modulation schemes of the laser transmitter.

2 Martinez

 2 et al. reported a Qdot laser grown on the (311)B InP substrate with a modulation bandwidth of 4.8 GHz. The above-threshold α-factor was about 6 and did not change significantly with the bias current [Martinez08]. However, most reported dynamics of 1.55 µm lasers are for nanostructures grown on (100) InP substrate. Gready et al. demonstrated an

Chapter 3

 3 deals with the modulation dynamics of the free running Qdot laser, where three different rate equation models are introduced. Model-I was already introduced in 2007 [Veselinov07], and is re-used in section 3.1 for the study of the amplitude modulation response of free-running lasers. However, this model is not capable of studying the linewidth enhancement factor. As such, in sections 3.2-3.6, we develop an improved rate equation model Model-II in collaboration with Technische Universität Berlin, Germany. This novel model takes into account the phase change of the electric field due to the carrier injection, and allows investigating the linewidth enhancement factor and hence the frequency chirping characteristics of Qdot lasers. The above two models can be implemented in a semi-analytical approach for the analysis of the Qdot laser dynamics owing to its simplicity. Sections 3.7-3.8 introduce a multiple population rate equation (MPRE) model Model-III developed in collaboration with Politecnico di Torino, Italy [Gioannini07]. This model includes the homogeneous and inhomogeneous broadening effects, and is used to study the large-signal modulation properties of the laser. Chapter 4 discusses the effects of optical injection locking on the modulation dynamics. We show the improvement of the modulation bandwidth, large-signal modulation capability and reduction of frequency chirp in the stable locking regime. The properties of linewidth enhancement factor under optical injection are discussed as well. In this chapter, section 4.2 employs Model-I to analyze the injection-locking diagram. Sections 4.3-4.5 use Model-II for the small-signal analysis and section 4.6 utilize Model-III for the large-signal analysis. Chapter 5 experimentally characterizes the dynamic properties of nanostructure semiconductor lasers. Particularly, we propose in section 5.2 an improved Hakki-Paoli method using optical injection, named as Optical Injection-Hakki-Paoli method, which is capable of measuring the α-factor of the lasers operating above threshold.
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 21 Fig. 2.1. Schematic of a Qdot laser electronic band structure of electrons and holes.Due to the Coulomb interaction, electrons and holes in the semiconductor can be bounded into electron-hole pairs, known as excitons. The distance between the electron and the hole within an exciton is called Bohr radius of the exciton. Typical exciton Bohr radius of semiconductors is of a few nanometers[START_REF] Nozik | Multiple exciton generation in semiconductor quantum dots[END_REF]. The exciton nature can be modified by the confinement structure and thus exhibits different optical properties. Within the framework of a simplified excitonic picture, the electronic structure of Qdot laser is illustrated in Fig.2.2. The exciton approximation can significantly simplify the semi-empirical modeling of Qdot lasers because it reduces half of the rate equations regarding the carrier populations. This approximation enables direct input from experimental data and can give intuitive images of physical processes. The assumption holds as long as electron and hole populations do not
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  is the vacuum permittivity of the light, b n is the refractive index without carrier injection, and E is the amplitude of the electric field. The gain g and the carrier-induced refractive index n  in the model are defined by:

  carriers and carrier relaxation processes [Lam94]. Spectral hole burning is the formation of a dip in the gain spectrum due to stimulated emission. The dip occurs by the recombination of electrons and hole at a specific energy and the subsequent redistribution of carrier energies due to carrier-carrier scattering. The scattering process takes place on a time scale of the order of 50-100 fs and leads to a dip width of about 20-40 meV. It also ensures that the temperature equilibrium is established among the carriers within the same time scale. The spatial hole burning is referred to the non-uniform photon density in the laser cavity. For higher photon density at certain locations (at the facets in Fabry-Perot lasers, or anywhere in DFB lasers) depletes the carriers and hence reduces the net gain [Morthier91], [Duan92], [Wentworth93].

[

  e the electronic charge. Analog transitions in Qdot lasers can be envisaged between bound Qdot states and the continuum levels of the RS and the barrier. It has been shown that the Drude formula can also be applied to the case of Qdot lasers when the Qdot carriers are not tightly confined and when working at photon energies within the 0.8-1.0 eV region[START_REF] Uskov | Carrierinduced refractive index in quatum dot structures due to transitions from discrete quantum dot levels to continuum states[END_REF].
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 24 Fig. 2.4. Inhomogeneous broadening function Gcv(E-Eopt) of dot size or energy fluctuation.
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 31 Fig. 3.1. Sketch of carrier dynamics model including a direct relaxation channel

Fig. 3 .

 3 Fig. 3.1 shows the schematic of the carrier dynamics in the conduction band. Firstly, the external injected carrier fills directly into the RS reservoir, some of the carriers are then either captured into the ES within time RS ES  or directly into the GS within time RS GS  , and some of them
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 3233 Photon density (10 14 cm -3 )
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 34 Fig. 3.4. Modulation responses at several injected currents, which are calculated from the new analytical expression (3.10).
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 35 Fig. 3.5. Comparisons of analytical approximation (solid) calculated from (3.24) for modulation response and the precise value (dot) calculated from (3.10). Dashed line indicates contribution of 0 () H  to the total modulation response, and dash-dot line is contribution of 1 () H  .
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 3 Fig. 3.7 depicts the resonance frequency R f as a function of the current
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 37 Fig. 3.7. Resonance frequency as a function of the current (I-Ith) 1/2 and intensity modulation response at 50 mA and 77 mA (inset). Dots denote experimental results. Solid lines are theoretical results from Qdot model, compared with those from Qwell model (dash-dot lines).
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 3 Fig. 3.8 shows the evolution of damping factor as a function of the resonance frequency.
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 38 Fig. 3.8. Comparisons of damping factors calculated from the Qdot model and the QW model. In summary, based on a set of four rate equations, a new analytical modulation transfer function of Qdot lasers has been introduced via a small-signal analysis. This numerical study clarifies the roles of the RS and of the ES in the modulation response: finite carrier capture time, finite carrier relaxation time and Pauli blocking have been found to be the physical limitations to the enhancement of the modulation bandwidth. The model has been used to recast the definitions of the resonance frequency and of the damping factor. These results give intuitive insights into the relevant material and nanostructure parameters and are of first importance for further improvements of the Qdot laser dynamic properties.
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  emission time and SP  is the spontaneous emission factor. Carriers in the RS are scattered into the dots through the phonon-assisted and Auger-assisted processes [Ohnesorge96], [Ignatiev00]. The latter one makes the scattering rates nonlinearly depend on the carrier density in the RS. However, for the sake of simplicity, the carrier capture time RS ES  and the relaxation time ES GS  are both treated as constants in this work. On the other hand, the carrier-escape times ( ES RS  , GS ES  ) are governed by the Fermi distribution for a quasi- thermal equilibrium system [Grillot08]. For semiconductor lasers operating under small-signal modulation with frequency  , the bias current change I  induces variations of the carriers and the phase  . In order to perform analytical analyses, the differential rate equations are derived as follows:

Fig. 3 . 9 .Fig. 3 .

 393 Fig.3.9. Small-signal carrier density variations in the GS (solid line), ES (dashed line), and RS (dash-dot line) versus modulation frequency. The bias current is I=1.2×Ith, with the threshold current Ith=49 mA. The carrier variation is normalized to the value δNGS of 0.01 GHz.
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 33 Fig. 3.10 compares the difference between the α-factor

  Fig. 3.12.

F

  shows the corresponding dependence of 2/ m  on the modulation frequency. The simulated range is from 10 meV up to 150 meV.In addition, Eq. (3.37) points out that the α-factor coefficients , energy separation between the GS and the off-resonant states. As presented in Fig.3.12, ,GS ES RSF undergo a drastic increase at small energy separation and peaks around a separation of 0.01 eV.values decrease toward zero when increasing the energy separation. Thus, for large separations (>0.3 eV), the ES and the RS have little contribution to the laser's α-factor, which is therefore mainly limited by the symmetry of the inhomogeneous broadening.

Figure 3 .

 3 Figure 3.13 depicts the α-factor dependence on the GS-ES separation

Fig. 3 .

 3 Fig. 3.14. CPR of the Qdot laser for various bias currents.

  ], [Parantheon03],[START_REF] Grillot | A dual-mode quantum dot laser operating in the excited state[END_REF],[START_REF] Naderi | Two-color multi-section quantum dot distributed feedback laser[END_REF]. However, ES lasing devices draw less attention because of the high operation current as well as the short wavelength located out of the C-band optical communication window in the fibre (1530 nm-1565 nm). However, in the InAs/InP Qdot material system, the GS laser has natural potential to emit at 1.60~1.65 m, longer than the C-band wavelengths. Consequently, since the ES has a higher optical transition energy than the GS, it is indeed possible to tune the ES emission back within the C band through proper band energy engineering and growth optimizations like the double cap procedure [Paranthoen01],[START_REF] Cornet | Electronic and optical properties of InAs/InP quantum dots on InP(100) and InP(311)B substratesμ Theory and experiment[END_REF]. On the other hand, the ES in Qdots shows faster carrier capture rates from the surrounding carrier reservoir as well as a higher saturated gain than the GS [Stevens09],[START_REF] Lee | Characteristics of a high speed 1.22 m tunnel injection p-doped quantum dot excited state laser[END_REF]. Indeed, Qdot lasers operating on the ES has shown a broader modulation bandwidth and the K-factor limited bandwidth is estimated almost twice of that in the GS lasing [Xu10]. A recent experimental work has demonstrated an ES emission InAs/GaAs Qdot laser with a large-signal modulation capability up to 22.5 Gbps [Arsenijevi14]. In addition, the ES emission exhibits a smaller α-factor in comparison with the GS emission in a Qdot laser [Xu12], [Xiao13]. In order to compare the performance of the Qdot laser operating on the ES with that on the GS, we reuse rate equations (3.40)-(3.44) by considering stimulated emission on the ES instead of the GS. The gain terms are the same as Eq. (3.33), while the different contributions to the instantaneous electric field frequency shift (3.35)-(3.38) are revised as: 1 2
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 33 Photon number(10 5 )

Figure 3 .

 3 Figure 3.15 compares the steady-state solutions of lasing in the ES (Fig. 3.15(a)) and in the GS (Fig. 3.15(b)). The threshold current of ES lasing is about 90 mA, which is 1.8-fold larger than that of the GS. In Fig. 3.15(a), carriers both in ES and GS are clamped above threshold,

Fig. 3 .

 3 Fig. 3.17. (a) CPR response versus the modulation frequency. The bias currents are set at IES=1.2×Ith,ES and IGS=1.2×Ith,GS, respectively. The dotted line indicates CPR at modulation frequency f=5.0 GHz (b) CPR variation as a function of the normalized bias current (I/Ith) at f=5.0 GHz.

Fig. 3 .

 3 Fig. 3.18. A comparison on the α-factors between the ES and GS emission lasers. The dashed line gives the resonant state contributed part (0.5) of α-factor.

Figure 3 .FF

 3 Figure 3.18 compares the variations of ES and GS α-factors with the injected current. Below threshold, carriers in both resonant and off-resonant states increase with the pump current and the α-factors rise nonlinearly. Above threshold, the carrier population in the resonant state is clamped while the α-factor evolution becomes relatively linear. At threshold, it is found that the α-factors extracted from the ASE method and from the FM/AM method are in good agreement. For both below and above threshold, the predicted ES α-factor is found always smaller than the GS one. The ES lasing α-factor at threshold is reduced by about 40% in contrast to the GS lasing case. It is noted that the GS α-factor is always larger than the resonant GS contribution part ( GS H  =0.5), whereas the ES α-factor can be smaller than the resonant ES one
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 33 Figure 3.19 presents the variations of the

Fig. 3 . 3 )Fig. 3 .

 333 Fig. 3.21. (a) Gain compression effect on the IM response; (b) Resonance frequency and damping factor as a function of gain compression factor.

Figure 3 . 2 p through the relationship 1

 321 Figure 3.21(a) shows that the gain compression effect suppresses the resonance peak and reduce the 3-dB modulation bandwidth in the AM response. The bandwidth decreases from 10.5 GHz for  =1×10 -17 cm 3 down to 3.7 GHz for  =1×10 -14 cm 3 . From the analysis of the eigenvalues of the Qdot laser system, which are obtained by solving the determinant of the coefficient matrix in the differential rate equation system (see Eqs. (3.45)-(3.47)). We extracted the resonance frequency R f and damping factor  from the pair of conjugate complex values

Fig. 3 .

 3 Fig. 3.23. Gain compression effect on the CPR.
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  .24, slow carrier capture process significantly accumulates carriers in the 2D carrier reservoir. The carrier number N RS increases linearly by about two orders of magnitude from 4.5×10 4 for RS ES  =0.1 ps to 2.8×10 6 for RS ES  =50 ps. Meanwhile, the emitted photon number S GS is reduced linearly by the slow capture process.

Fig. 3 .

 3 Fig. 3.25. (a) Influence of carrier capture time on the IM response; (b) Resonance frequency and damping factor as a function of the capture time.

Fig. 3 .

 3 Fig. 3.26. (a) Influence of carrier capture time on the ratio of FM-to-AM index. Inset shows its comparison with the directly calculated α-factor using Eq. (3.48) for RS ES  =50 ps. (b) α-factor variation (extracted from plot (a)) as a

Figure 3 .

 3 Figure 3.25(a) shows the variation of the IM response for different capture times. Slow capture process reduces the 3-dB modulation bandwidth, from 11 GHz down to 7 GHz. Besides, the resonance peak is also slightly reduced. Interestingly, for capture times larger than 30 ps, a parasitic-like roll-off (dip) appears in the response, which is similar to the effect of slow carrier

Figure 3 .

 3 Figure 3.26(a) illustrates that the ratio of FM-to-AM index 2/ m  exhibits a significant reincrease beyond 10 GHz for slow carrier capture process (large capture time). With respect to Eq. (3.48), this can be attributed to the larger carrier variation in the RS

Figure 3 .Fig. 3 .

 33 Figure 3.26(b) indicates that increasing the carrier capture time enhances the α-factor by 11% from 0.80 for RS ES  =0.10 ps to 0.88 for RS ES  =50 ps. Because of the large α-factor for slow capture process, the overall CPR in Fig. 3.27 is also enlarged both in the adiabatic and the high modulation frequency regimes.
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 333 Figure 3.29(a) shows that the modulation bandwidth is significantly reduced by the slow relaxation process from 10.8 GHz for ES GS  =0.1 ps to 1.6 GHz for ES GS  =50 ps. In addition, the response is strongly damped for large relaxation times. It is noted that the evolution of the IM response shape is quite different to that for the capture process in Fig. 3.25(a). For relaxation times ES GS  >25 ps, the response shows a clear resonance around 8 GHz. Correspondingly, Fig. 3.29(b) presents the resonance frequency and the damping factor extracted from the eigenvalues.The behavior is much more complex than the one of the capture process. The resonance frequency firstly decreases for ES GS  <10 ps, while the damping factor increases with the

Figure 3 .

 3 Figure 3.30(a) depicts that slow carrier relaxation process induces steep re-increase of 2/ m 

Figure 3 .

 3 30(b) shows the α-factor extracted from the minimum value of 2/ m  , which increases by about 36% from 58 0.78 for ES GS  =0.1 ps to 1.06 for ES GS  =50 ps. Figure 3.31 shows the CPR at various relaxation times. It is found that for fast relaxation time, the adiabatic chirp dominates in modulation frequencies only less than 1.0 GHz, while it expands up to 10 GHz for slow relaxation times.

Fig. 3 .

 3 Fig. 3.32. Carrier distributions in each Qdot electronic levels for inhomogeneous broadenings equal to 30, 55 and 80 meV.

Figure

  Figure 3.32 presents the carrier distributions in each electronic state for broadenings of 30,

Fig. 3 .

 3 Fig. 3.33. Threshold current of the laser and carrier occupation probabilities of the center (21th) group dot as a function of the inhomogeneous broadening width.

Fig. 3 .Fig. 3 .

 33 Fig. 3.34. Net modal gain spectra (solid curve) at threshold for inhomogeneous broadenings of 30, 50, 60 and 80 meV. The dashed curves indicate contributions of the GS, the ES1 and the ES2, respectively; and the internal loss is included in the GS gain curve. The grey dash lines give the recombination energy of the GS, the ES1 and the ES2, respectively.

Fig. 3 .

 3 Fig. 3.36. Carrier occupation probability, power (left) and net modal gain spectrum (right) beyond the lasing threshold (25, 65, 105 mA) for inhomogeneous broadenings of 30, 50, 60, 80 meV (from up to down). The corresponding threshold currents can be found in Fig. 3.33.

Figure 3 .

 3 Figure 3.36 presents the steady-state behavior above threshold. It is shown that the carrier occupation probability (left) of the discrete Qdot states (the center subgroup) generally follows the Fermi-Dirac distribution. Due to the lasing emission, a hole is formed in the population,

Fig. 3 .

 3 Fig.3.37. Current, power and frequency shift of the laser field versus time. The transient power and frequency changes before 5 ns are due to the turn-on dynamics with a step current from 0 mA to 30 mA at 0 ns.

Fig. 3 .

 3 Fig. 3.37(c) with respect to the current step in the time domain. Taking the differences () It  , () Pt  and
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 33 Fig. 3.38. AM response for various values of inhomogeneous broadenings. The QD laser under study shows flat responses due to the large damping factor as shown in Fig. 3.38. The inhomogeneous broadening reduces the 3-dB modulation bandwidth from 4.1
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 333 Fig. 3.35.

Fig. 3 .

 3 Fig. 3.41. One PRBS7 sequence of modulation current and the time-resolved intensity profile. The data modulation bit rate is 5.0 Gbps.

Figure 3 .

 3 Figure 3.41(a) illustrates one full pattern of PRBS-7 current signal with a modulation bit rate of 5.0 Gbps. The total duration of the signal is (2 7 -1)/(5.0 Gbps)= 25.4 ns. The rise and fall times of the signal is set to a typical value of 80 ps. By integrating rate equations (3.59)-(3.64) over the time duration, we obtain the time-resolved intensity waveform in Fig. 3.41(b). An alternative way of displaying the digital intensity signal is the so-called eye diagram (eye pattern) [Onsemi14]. The eye diagram is a methodology to represent and analyze a high-speed digital signal. It is constructed from the intensity waveforms by folding the parts of the waveform corresponding to each individual bit into a signal graph with signal amplitude on the vertical axis and time on horizontal axis. By repeating this construction over samples of the waveform, the resultant graph will represent the average statistics of the signal and will resemble an eye.

Figure 3 .Fig. 3 .

 33 Figure 3.42(a) shows the eye diagrams for difference capture times from the RS to the ES2. A characteristic feature is the low distortion of the high and low levels due to the strong damping of the laser oscillation in contrast to Qwell lasers. For fast carrier capture rates (top), the laser has a smaller damping factor, and shows an overshoot in the eye diagram. Slow capture rate

Fig. 3 .Fig. 3 .

 33 Fig. 3.43. (a) Eye diagram for different relaxation times ( 2 1 ES ES  = 1 ES GS  ): 0.5 ps (top left), 1.2 ps (top right), 2.0 ps (bottom left), 4.0 ps (bottom right); (b) Time-resolved chirp profiles for different relaxation times. The capture time is fixed at 2 RS ES  =2.1 ps. The inhomogeneous broadening is 45 meV. In Fig. 3.42(b), the time-resolved chirp with fast capture rate shows overshoot (transient chirp) in the high level due to the relaxation oscillation. The adiabatic chirp is increased from 1.8 GHz for

Figure 3 .

 3 Figure 3.43(a) shows the influence of the intra-dot carrier relaxation process on the openness of the eye diagram. Similarly as the capture process, fast carrier relaxation induces overshoot in the diagram due to the relaxation oscillation. Slow relaxation reduces the openness of the eye. The variation of the chirp profile for the relaxation process in Fig. 3.43(b) is similar to that

Figure 3 .

 3 Figure 3.44(a) clearly shows that the inhomogeneous broadening degrades the quality of the eye diagram. For a broadening of 35 meV (top left) the eye openness is quite good, and it becomes very poor for the broadening of 65 meV (bottom right). On the other hand, the peakto-peak chirp in Fig. 3.44(b) increases from 2.2 GHz up to 3.4 GHz.Conclusion of chapter 3: this chapter investigated the modulation dynamics of free-runningQdot lasers based on a semi-analytical method. The AM bandwidth is found to be limited by the carrier capture and relaxation processes as well as the Pauli blocking effect, which are also responsible for the large damping factor often observed in Qdot lasers. An improved rate equation model is developed taking into account carrier contributions of off-resonant state on the refractive index change and allowing to study the α-factor properties of nanostructure lasers.
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 41 Fig. 4.1. Schematic diagram of an optically injection-locked semiconductor laser Semiconductor lasers subject to optical injection are known to produce a large variety of dynamical behaviors including stable locking, locking-unlocking bistability, periodic oscillations, chaotic dynamics, and many other instabilities [Wieczorek05]. In the stable locking regime, the optical injection technique can improve a host of performance of semiconductor lasers, such as side-mode suppression [Iwashita82], bandwidth and relaxation oscillation enhancement [Murakami03], [Simpson95], reduced frequency chirping [Lin84],

  positive frequency detuning edges[START_REF] Lau | Bandwidth enhancement by master modulation of optical injection-locked lasers[END_REF]. The accurate locking region is given by the local bifurcations of the Qdot laser, namely saddle-node and Hopf bifurcations[START_REF] Wieczorek | Multipulse excitability in a semiconductor laser with optical injection[END_REF],[START_REF] Wieczorek | The dynamical complexity of optically injected semiconductor lasers[END_REF],[START_REF] Sciamanna | Two-mode injection locking in vertical-cavity surface-emitting lasers[END_REF]. The bifurcations can be obtained by an eigenvalue analysis of the fixed point, that is, if a single, real eigenvalue passes through the imaginary axis in the complex plane, one typically finds a saddlenode (SN) bifurcation while a pair of complex conjugate eigenvalues passing through the imaginary axis corresponds to a Hopf bifurcation. One distinguishes between bifurcations of attracting objects, which are called supercritical, and bifurcations of unstable objects, which are called subcritical. Note that subcritical bifurcations, which may not seem to be of immediate relevance from an experimental point of view, are generally necessary to obtain an overall and consistent dynamical picture. As a result of numerical continuation one obtains a bifurcation curve as a boundary between two regions of qualitatively different dynamics of the laser[START_REF] Wieczorek | The dynamical complexity of optically injected semiconductor lasers[END_REF].

Fig. 4 . 2 .

 42 Fig. 4.2. Local bifurcation diagrams as a function of the injection ratio and the detuning frequency for α-factor αH =1.3 (a) and (b); and for α-factor αH=3.0 (c) and (d). Solid line is the saddle-node (SN) bifurcation and dashed line is the Hopf bifurcation. The supercritical bifurcation is denoted by thick lines while subcritical bifurcation by thin lines. The stable locking regime is bounded by the supercritical bifurcations.

Figure 4 .

 4 Figure 4.2 shows the SN (solid lines) and Hopf (dashed lines) bifurcations of the Qdot laser. The stable locking regime is bounded by the supercritical bifurcations (both solid and dashed thick lines) [Wieczorek99]. This regime is enlarged under high injection level as shown in the right part of Fig. 4.2. At low injection strength ((a) and (c)), the intersection of the Hopf and SN curves produces a codimension-two point G1 where the bifurcations change from supercritical (subcritical) to subcritical (supercritical) along both the Hopf and SN curves. It isknown that the laser system can generate a variety of nonlinear dynamics around the G1 point in its vicinity[START_REF] Wieczorek | A unifying view of bifurcations in a semiconductor laser subject to optical injection[END_REF]. The supercritical bifurcation can be tracked in experiment while the subcritical bifurcation not. Nevertheless, the latter is important for understanding the global dynamical bifurcations[START_REF] Wieczorek | Bifurcation transitions in an optically injected diode laser: theory and experiment[END_REF]. In addition, Fig.4.2 shows that the bifurcation diagram strongly depends on the value of the α-factor. A nonzero α-factor always leads to an asymmetric bifurcation, and a large α-factor shifts the stable-locked region to the negative side[START_REF] Wieczorek | The dynamical complexity of optically injected semiconductor lasers[END_REF].

  (4.4), (4.5) associated with Eqs. (3.40)-(3.42) in chapter 3. Through the small signal analysis, we linearize the rate equations,
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 4444 Fig. 4.3. (a) Amplitude response of the optically injection-locked QD laser for increasing values of the injection ratios of Rinj= 0, 0.2, 0.4, 1.0, 2.0, 4.0, 6.0, 8.0, 10. (b) 3-dB modulation bandwidth as a function of the injection ratio. The frequency detuning is fixed at Δfinj=0 GHz.

Fig. 4 .

 4 Fig. 4.5. (a) CPR of the optically injection-locked Qdot laser for increasing injection ratios of Rinj= 0, 0.2, 0.4, 1.0, 2.0, 4.0, 6.0, 8.0, 10. (b) CPR value at 10 GHz as a function of the injection ratio. The frequency detuning is fixed at Δfinj=0 GHz. The gain compression effect is included with a factor of 2×10 -16 cm 3 .

Figure 4 .

 4 Figure 4.5(a) shows the CPR of the injected laser at various injection ratios. At low modulation frequencies less than 1 GHz, the adiabatic chirp of the free-running laser remains constant at 1.0 GHz/mW. In contrast, the CPR of the injected laser is well reduced. This is attributed to the injection term shown in the denominator of Eq. (4.8). Therefore, optical injection suppresses the adiabatic chirp of the Qdot laser. At high modulation frequencies, the CPR is also reduced. Figure 4.5(b) presents the CPR value at 10 GHz as a function of the

Figure 4 .

 4 5(b) presents the CPR value at 10 GHz as a function of the injection ratio. It is shown that the CPR is reduced from 5 GHz/mW for the free-running laser down to 0.5 GHz/mW at an injection ratio of Rinj=10.0.
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 446 Fig. 4.6. Effect of frequency detuning on the CPR. The injection ratio is fixed at Rinj=1.0. The minimum CPR is obtained at a slightly negative detuning frequency (-3 GHz).

Figure 4 . 7

 47 Figure 4.7 shows the variation of the ratio 2β/m at different injection strengths. As already
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 4748 Fig.[START_REF] Wang | Modulation properties of optically injectionlocked quantum cascade lasers[END_REF].7. FM-to-AM index ratio of the injection-locked Qdot laser for injection ratios of Rinj= 0, 0.2, 0.4, 1.0, 2.0, 4.0, 6.0, 8.0, 10. The frequency detuning is fixed at Δfinj=0 GHz.

Fig. 4 . 9 .

 49 Fig. 4.9. Carrier density variations at an injection ratio of Rinj= 0.2. The frequency detuning is Δfinj=0 GHz. The dip in the GS leads to the resonance-like peak in the α-factor. The carrier variation is normalized to the value δNGS of 0.01 GHz.

Figure 4 .

 4 Figure 4.10 shows that the ratio 2β/m also strongly depends on the frequency detuning. The minimum value occurs at a detuning of -3.0 GHz as for the CPR.Figure 4.11 demonstrates that the α-factor under low modulation frequency slightly decreases when varying the frequency

Figure 4 .

 4 [START_REF] Gosset | Self-referenced technique for monitoring and analyzing the non-linear dynamics of semiconductor lasers[END_REF] demonstrates that the α-factor under low modulation frequency slightly decreases when varying the frequency detuning from negative to positive side.
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 4411 Fig. 4.10. Frequency detuning effect on the ratio of FM-to-AM indices. The injection ratio is fixed at Rinj=1.0.

Fig. 4 .

 4 Fig. 4.12. Carrier occupation probability in each discrete Qdot states of injected laser. (a) Injection strength effect with fixed detuning Δfinj=0 GHz. (b) Frequency detuning effect with fixed injection ratio Rinj=1.0.

Fig. 4 .

 4 Fig. 4.13. (a) Influence of injection strength on the lasing power with fixed detuning Δfinj=0 GHz. (b) Influence of frequency detuning on the lasing power with fixed injection ratio Rinj=1.0.
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 4415 Fig. 4.14. (a) Influence of injection strength on the phase  with fixed detuning Δfinj=0 GHz. (b) Influence of frequency detuning on the phase with fixed injection ratio Rinj=1.0.

Figure 4 .

 4 Figure 4.16 shows that the openness of the eye diagram are improved by the external optical injection, due to the enhancement of the modulation bandwidth.Figure 4.17 demonstrates that

Figure 4 .

 4 [START_REF] Wang | Influence of inhomogeneous broadening on the dynamics of quantum dot lasers[END_REF] demonstrates that the adiabatic chirp is almost totally suppressed by the optical injection. In addition, the peakto-peak transient chirp decreases with the increasing injection ratio.

Fig. 4 . 16 .

 416 Fig. 4.16. Eye diagram of free-running and injected lasers modulated at 5.0 Gbps. The injections ratios are Rinj=0.1, 1.0, 10.0.

Fig. 4 .

 4 Fig. 4.17. Time-resolved chirp waveforms of free-running and injected lasers at 5.0 Gbps. Injections ratios are Rinj=0.1, 1.0, 10.0.

Figure 5 .

 5 1 illustrates the epitaxial layer structure of the Qdot laser. The Qdot structure was grown by gas source molecular beam epitaxy on a 2° misoriented (100) n-doped InP substrate [Elias09]. The misorientation allows the formation of Qdots instead of Qdashes which are traditionally formed on InP(100) oriented substrate [Lelarge07]. The active layer consists of six stacked layers of InAs dots, which are embedded into an InGaAsP quaternary alloy. The 4-µm wide (W) ridge waveguide was fabricated by selective wet and dry etching sequence based on a CH4-H2-Ar RIE plasma using a Ti-Au mask. Then, a benzocyclobutene (BCB) layer was spin-coated to planarize the mesa structure and dry-etched back to expose the top surface of the ridge. This self-alignment step enables the p-contact electrode to be defined by Ti-Au e-beam evaporation. The substrate was thinned to 150 µm and a backside n-type metallization was performed with an AuGe sputtered alloy. Finally, the device was cleaved into a 830-µm long (L) cavity, and the reflectivity of both facet is R1=R2=0.32.

Fig. 5 . 1 .

 51 Fig. 5.1. The epitaxial layer structure of the InAs/InP(100) Qdot laser grown at FOTON-INSA laboratory. 'Q1.18'
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 52535354 Fig. 5.2. Experimental setup (up) and image of mounting (bottom) for CW operation of the free-running QD laser

Fig. 5 . 5 .

 55 Fig. 5.5. Group refractive index. The average value is ng=3.497.

Fig. 5 . 6 .

 56 Fig. 5.6. Net modal gain evolution from 54.5 mA to 63.5 mA. The current step is 0.5 mA.

Fig. 5 . 7 .

 57 Fig. 5.7. Wavelength dependence of the below threshold α-factor of the Qdot laser measured using the Hakki-Paoli method.
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 58 Photodiode
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 559 Figure 5.9 shows an optical spectrum of the Fabry-Perot Qdot laser subject to optical injection (stably locked) at bias current Ibias=80 mA. The injected mode is amplified while other longitudinal modes are well suppressed, the side mode suppression ratio (SMSR) is more than 50 dB. This is because that the gain value over the whole spectra is reduced by the optical injection as discussed in Chapter 4, therefore all the side modes fall below the lasing threshold condition and the residual power owes to the spontaneous emission. It is noted that the residual side modes are all red-shifted due to the reduction of the injected carriers.

Fig. 5 .

 5 Fig. 5.10. Stability diagram of the Qdot laser subject to optical injection. The bias current is 80 mA, and the freerunning wavelength is1637.11nm. The injection ratio is operated up to Rinj=0.82, limited by the power of the master laser device.

Figure 5 .

 5 Figure 5.10 shows the measured stability map of the optically injected Qdot laser. The generated nonlinear dynamics is a function of the detuning frequency as well as the injection ratio. In the diagram, we identified the stable-locked, periodic, chaotic, and four-wave mixing (FWM) regions. Some of the dynamics are recorded in Fig. 5.11:

Fig. 5 .

 5 Fig. 5.12. Schematic of the experimental setup. TL1,2 : Tunable laser ; PC : Polarization controller ; OSA : Optical spectrum analyzer ; and PM : Power meter.

Fig. 5 .

 5 Fig. 5.13. Optical spectrum with FWM. M1,2 are the stably locked modes by the tunable master lasers. The frequency difference between the locked modes is 109.6 GHz. S1,2 are the newly converted signals.

Figure 5 .

 5 Figure 5.13 shows an optical spectrum of the dual-mode injection-locked Qdot laser. Each injected wavelength selects a longitudinal mode within the free-running FP multimodes, while all other modes are well suppressed. M 1 and M 2 are the stable locked modes by TL 1 and TL 2 ,

  the FWM process is governed by the carrier density pulsation (CDP) mechanism for f  within a few GHz [Agrawal88], which creates temporal carrier modulation. For larger frequency detunings up to THz range, spectral hole burning (SHB) and carrier heating (CH) dominates. In the SHB mechanism, the injected signals create a hole and change the intraband carrier distribution, producing a modulation of the occupation probability of carriers within the energy band [Kikuchi92]. In the case of Qdot lasers, the slow interdot processes on the order of a few to tens of picoseconds allow for the creation of deeper spectral holes and thus for more efficient FWM [Nielsen10]. The CH mechanism is caused by the stimulated emission from the ground state, which removes the lowest energy carriers, while free carriers absorb photons leading to higher energy [Nielsen10], [Kikuchi92]. The frequencies of the two newly generated signals respectively are

Fig. 5 .

 5 Fig. 5.14. The normalized conversion efficiency (NCE) ηS1, ηS2 (black) and SMSR (blue) as a function of the detuning frequency. S1 is denoted by the full circle, and S2 is by the open circle. Note that signal S2 at 1.72 THz is invisible because it is submerged in the residual FP modes.

Fig. 5 .

 5 Fig. 5.15. Experimental setup for the measurement of the α-factor using the Optical Injection-Hakki-Paoli method.

Figure 5 .

 5 18(b) illustrates the variation of the side modes around 1550 nm under optical injection. When the master laser is tuned from shorter to longer wavelengths, the side modes are red shifted and the amplitude is reduced, which indicates the reduction of the optical gain.
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 55 Fig.5.16. L-I curve of the Qdash laser operated at room temperature (293 K). The lasing threshold is 46 mA.

Fig. 5 .

 5 Fig. 5.18. (a) Optical spectra of injected laser mode around 1570 nm, and (b) Side modes around 1550 nm at various frequency detunings. The detuning step is 10 pm, and the injected power is fixed at 9.3 mW.

Fig. 5 . 2 P o s i t v e d e t u n i n g Solitary Fig. 5 . 20 .

 52Solitary520 Fig. 5.19. Net modal gain spectra under optical injection for various frequency detunings from 1570.21 nm to 1570.35 nm. The detuning step is 10 pm, and the injected power is fixed at 9.3 mW.
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 55 Figure 5.21 shows the measured α-factor of the Qdash laser for various bias currents, both above and below thresholds. Generally, the α-factor increases with the bias current because more carriers are populated in the off-resonant states. In addition, the α-factor increases from shorter to longer wavelengths.
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 522 Fig. 5.22. Measured α-factor of a Qdot laser for different bias currents with the Optical Injection-Hakki-Paoli method. A gap occurs for α-factor values between above and below thresholds. The lasing threshold is 43 mA.

Fig. 5 . 23 .

 523 Fig. 5.23. Measured α-factor of a Qwell laser for different bias currents. No gap occurs for α-factor values around the lasing threshold. The lasing threshold is 23 mA.

  than 10 7 Hz, which is consistent with the value under DC condition ( , The α-factor obtained by the FM/AM technique ( modulation frequencies increases continuously from below to above threshold, as was shown in Fig. 3.10. Since the developed Optical Injection-Hakki-Paoli method provides the DC α-factor value , the simulated value in Fig. 5.24(b) as a function of the normalized pump current. The simulation demonstrates for the first time the discontinuity of the DC α-factor value , DC H QD  at threshold. It is noted that this plot is different to the one in Fig. 3.10 showing the high modulation frequency α-factor / , FM AM H QD  given by the FM/AM technique.

Fig. 5 .

 5 Fig. 5.24. (a) Simulated α-factor as a function of the modulation frequency for different bias currents using Eq. (3.48). The constant value at low modulation frequencies (<10 7 Hz) is consistent with the DC value

Fig. 5 .

 5 Fig. 5.25. Carrier variations (a) below threshold at Ibias=0.8×Ith, and (b) above threshold at Ibias=1.2×Ith. The carrier variations are normalized to the value δNGS of 0.01 GHz at lasing threshold Ith.

Fig. 5 .Fig. 5 . 27 .

 5527 Fig. 5.26. Image of the laser mounting for modulation operation. A high-speed ground-signal-ground (GSG) picoprobe is used for the modulation.

Fig. 5 .

 5 Fig. 5.28. Reproduced intrinsic modulation response H21 after Eq. (5.10).

Fig. 5 . 29 .

 529 Fig. 5.29. Damping factor versus the square of the resonance frequency of the Qdash laser. Linear fitting gives the K-factor of 0.82 ns, and the offset of 5.62 GHz.

Figure 5 . 1

 51 30 illustrates a sketch of the transfer function of a MZ interferometer. In the absence of any frequency chirp, () t   is zero. such that coh t   . b) Sensitivity requirement, which prefers a longer delay. This is because the conversion is proportional to sin(2 ( ) ) vt  . c) Frequency bandwidth requirement, which desires a short delay. To maintain a linear conversion, the delay is set as max intensity to be made proportional to the frequency change. 4) Modulation frequency requirement, which requires short delay. The delay must be smaller than the inverse of the maximum modulation speed, that is,

Fig. 5 .

 5 Photodiode

Figure 5 .Fig. 5 .

 55 Figure 5.32(a) shows the measured FM-to-AM index ratio. As the simulation in chapter 3, 2/ m 

Fig. 5 .

 5 Fig. 5.33. Experimental setup used for the time-resolved AM and FM responses. PMF: polarization maintaining fibre; HWP: half-wave plate; QWP: quarter-wave plate.

Figure 5 .

 5 Figure 5.33 shows the experimental setup developed at Télécom ParisTech for the timeresolved intensity and chirp measurement of the injection-locked Qdash laser. The optical frequency discriminator in this setup is a fibre-based interferometer, which consists of polarization maintaining fibers (PMFs) and a phase shifter unit (including a half wave plate, a

Figure 5 .Fig. 5 .

 55 Figure 5.34. Time-resolved intensity (black) and chirp (blue) waveforms recorded for a modulation frequency of 6 GHz.

Figure 5 .

 5 Figure 5.34 shows an example of the measured time-resolved intensity profile AM(t) and the frequency chirp () t   . The AM (m) and the FM (β) indices are extracted by fitting the

Figure 5 .Fig. 5 .

 55 Figure 5.36(a) shows the intensity and chirp profiles of the free-running Qdash laser at a modulation rate of 2.5 Gbps. The transient chirp is related with the overshoot in the modulation response, which is attributed to the relaxation oscillation. It is also shown that the adiabatic chirp of the free-running laser is more than 2.0 GHz due to the gain compression as well as the spontaneous emission.

Figure 5 .Fig. 5 .

 55 Figure 5.37 presents the effect of optical injection on the intensity and chirp profiles. It is shown that the relaxation oscillation in the intensity waveform becomes stronger with the decreased (increased) wavelength (frequency) detuning. Correspondingly, the transient chirp increases as well. It is noted that for all frequency detuning conditions, the adiabatic chirp is

Fig. 5 .

 5 Fig. 5.38. Peak-to-peak chirp as a function of wavelength detuning. The peak-to-peak chirp of the free-running laser is 4.3 GHz.

Chapter 6 .

 6 II. Quantum Cascade (QC) Laser 123 Introduction to QC lasers Bipolar semiconductor lasers described in Part I are based on the interband electronic transitions in heterostructures. The lasing spectrum usually lies in the near-infrared (NIR, 0.8~3 m) regime (see Fig. 6.1). It is hard to extend its wavelength to the mid-infrared (MIR, 3~30 m) region due to the band gap limitation of the semiconductor materials. Quantum cascade (QC) lasers, however, are unipolar semiconductor lasers relying on intersubband transitions.This kind of lasing mechanism extends the lasing spectra from MIR up to Terahertz regime (THz, 100 m~1000 m, or 0.3~3 THz). So far, most QC lasers are built using either InGaAs-AlInAs grown on InP substrates or AlGaAs-GaAs on GaAs substrates. High-performance devices are based on multi-quantum well design or on chirped superlattices[START_REF] Blaser | Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition[END_REF].

Fig. 6 . 1 .

 61 Fig. 6.1. Position of NIR, MIR, and THz regimes in the electromagnetic spectrum

[

  Faist94]. The great invention was built upon a couple of breakthroughs in earlier years. In 1970, heterojunction superlattices (SLs) and associated transport properties were investigated by Esaki and Tsu [Esaki70]. In 1971, Kazarinov and Suris first proposed to use the intersubband transitions in a SL structure for electromagnetic radiation amplification [Kazarinov71]. This intersubband emission was observed by West in 1985 [West85]. In 1986, the first sequential resonant tunneling through a multi-quantum-well SL was reported by Capasso et al. [Capasso86]. The first QC laser reported by Faist was grown by MBE and has an emission wavelength of 4.3 m. After that, the development of QC lasers has kept progressing rapidly.

Fig. 6 . 2 .

 62 Fig. 6.2. Band diagram and in-plane energy dispersion of (a) interband transition and of (b) intersubband transition.

Figure 6 .Fig. 6 . 3 .

 663 Figure 6.3 shows the band structure of a typical QC laser. The basic structure of QC lasers consists of the active region and the injector region, which form one stage of the laser. The QC lasers typically have 20-50 repeated identical stages.

Fig. 7 . 1

 71 Photon number (10 7 )

( 7 . 22 )

 722 Both the numerator and the denominator are multiplied by the same term  1/ out j  , resulting in a cancellation in Eq.(7.21). Through the above modulation transfer function, Fig.7.2 shows the normalized AM response of the QC laser for various bias currents. It demonstrates that the QC laser indeed has a broadband response with a bandwidth of tens of GHz as reported in the measurements [Barbieri07],[START_REF] Maineult | Microwave modulation of terahertz quantum cascade lasers: a transmission-line approach[END_REF]. The 3-dB bandwidth increases from several GHz near the lasing threshold up to 60 GHz at the bias current of 4.5×I th .

Fig. 7 .

 7 Fig. 7.2. (a) AM response of the QC laser for different bias currents. (b) 3-dB modulation bandwidth as a function of bias current. The threshold current of the laser is 223 mA.In order to gain an intuitive insight of the AM response behavior, we analyze the zero and the poles (eigenvalues) of the modulation transfer function(7.21). The QC laser system only has one constant zero given by

Fig. 7 . 3 .Fig. 7 . 4 .

 7374 Fig. 7.3. CPR of the QC laser for different bias currents. The gain compression factor is assumed to be  = 5×10 - 17 cm 3 .

Figure 7 .Fig. 7 . 5 .

 775 Figure 7.5 shows that optical injection reduces the threshold current. The lasing power is increased (a), while the carrier population inversion (N 3 -N 2 ) is reduced (b).

UnstableFig. 7 . 6 .

 76 Fig. 7.6. Local bifurcation diagram of an injection-locked QC laser for α-factor values of 0, 0.5, 1.0 and 2.5. Solid line is the saddle-node (SN) bifurcation and dashed line is the Hopf bifurcation. The supercritical bifurcation is denoted by thick lines while subcritical bifurcation by thin lines. The stable locking regime is bounded by the supercritical bifurcations. The investigated laser is operating in the stable locked region of the bifurcation diagram with an α-factor of 0.5, where the vertical dotted line indicates an injection ratio of 5.0.

Fig. 7 . 7 .

 77 Fig. 7.7. The 3-dB modulation bandwidth as a function of injection ratio (for zero detuning and α-factor=0.5).Inset: The related AM response. Note the absence of any peaks.

Fig. 7 . 8 .Fig. 7 . 9 .

 7879 Fig.7.8. The 3-dB modulation bandwidth as a function of detuning (for Rinj=5.0 and α-factor=0.5). Inset: The AM response under various detuning conditions. The peak at positive detuning is due to the resonance while the one at negative detuning is not.

Fig. 7 .

 7 Fig. 7.10. AM response for various gain stage number increasing from 20 to 40, note that it is normalized to the case with Npd=30 (under zero detuning and Rinj=5.0). Inset is steady-state result for Ibias=1.5×Ith.

Figure 7 .

 7 Figure 7.11 shows the calculated CPR for the QC laser with and without optical injection.

Fig. 7 .Fig. 7 .

 77 Fig. 7.11. The CPR level for the free-running QC laser and the laser with optical injection at zero detuning. The injection ratio increases from 0.1 up to 10.

  paramètres permettant d'introduire les contributions des états ES et RS.

Fig

  Fig. A.1. Réponse AM d'un laser à îlots quantiques. 1 () H  est associé à l'interaction entre la population de

Fig. B. 1 .

 1 Fig. B.1. Variation du facteur α d'un laser à îlots quantiques en fonction de la fréquence de modulation (trait continu). Les contributions des porteurs dans les états ES (traits discontinus) et RS (traits/pointillés) sont aussi indiquées. La ligne grisée permet de repérer la valeur mesurable par la technique FM/AM.

Fig. B. 2 .Fig. C. 1 .

 21 Fig. B.2. CPR d'un laser à îlots quantiques pour différents courants de polarisation de 1.1Ith à 2.9Ith.

  30 et 80 meV [Bhattacharya00]. L'élargissement inhomogène augmente le seuil de courant pour l'effet laser, réduit le gain différentiel, augmente le facteur K, et dégrade donc les performances dynamiques du laser à îlots quantiques. La bande passante est réduite alors que le facteur αfactor et le « chirp » sont augmentés par l'élargissement inhomogène. La figure D.1 montre clairement que l'ouverture du diagramme de l'oeil en modulation pour des signaux de grande amplitude est réduite par les effets d'élargissement inhomogène.

Fig. D. 1 .

 1 Fig. D.1. Diagramme de l'oeil pour différentes valeurs d'élargissement inhomogèneμ 35 meV (haut à gauche), 45 meV (haut à droite), 55 meV (bas à gauche), 65 meV (bas à droite).

L

  'injection optique dans les systèmes de lasers à semi-conducteurs implique deux lasers, un laser « maître » et un laser « esclave ». Le laser « maître » est habituellement un laser accordable monomode de faible largeur spectrale. Le faisceau du laser « maître » est couplé à celui du laser « esclave » étudié que l'on souhaite tester. Les caractéristiques dynamiques du système ainsi créé dépend de deux paramètres cruciauxμ le taux d'injection et le désaccord en fréquence. Le taux d'injection est défini comme le ratio entre la puissance du laser « maître » et celle du laser « esclave » Le désaccord en fréquence est la différence entre la fréquence du laser maître et la fréquence de résonance du laser « esclave ». Les systèmes de lasers à semi-conducteurs sous injection optique sont connus pour présenter une grande variété de comportements dynamiques incluant : verrouillage stable, bistabilité, oscillations périodiques, dynamique chaotique, et bien d'autres instabilités [Wieczorek05]. Dans le régime de verrouillage stable, la technique d'injection optique peut améliorer de nombreuses performances des lasers à semi-conducteurs : suppression des modes latéraux[Iwashita82], augmentation de la bande passante et des oscillations de relaxation [Murakami03], [Simpson95], chirp en fréquence réduit [Lin84], [Toba84], suppression des distorsions non-linéaires [Meng98], réduction of bruit en intensité [Liu97], [Yabre00], augmentation du gain et amélioration de la modulation [Pochet14] [Sung07].

Fig. E. 1 .

 1 Fig. E.1. Forme du signal de chirp résolu en temps sous injection optique, pour plusieurs valeurs du taux d'injection et à 5.0 Gbps.Cette partie se focalise plus particulièrement sur l'injection optique dans les lasers à îlots quantiques en verrouillage stable : accroissement de la bande passante, réduction du « chirp » en fréquence, et amélioration des caractéristiques de couplage phase-amplitude. L'injection optique réduit le facteur α dans le régime des faibles fréquences de modulation (<1 GHz), alors qu'elle a un impact plus faible dans le régime des fortes fréquences de modulation. Ce comportement est attribué à la dynamique des populations de porteurs sous injection optique.La figure E.1. montre l'effet de l'injection optique sur la forme du signal de « chirp » résolu en temps. Le « chirp » adiabatique est presque entièrement supprimé sous injection optique et le « chirp » transitoire (« peak-to-peak ») est aussi fortement réduit. De plus, cette analyse des effets de l'injection optique sur la dynamique s'appuie également sur une étude expérimentale.

F) Méthode Hakki -Fig. F. 1 .

 Hakki1 Fig. F.1. Représentation schématique du montage expérimental pour la mesure du facteur α par la méthode « Optical Injection-Hakki-Paoli ». Un laser accordable à cavité externe jouant le rôle du « laser maître» est couplé au laser testé par un circulateur optique. Les spectres optiques du laser testé sont mesurés en régime de verrouillage stable avec désaccords en fréquence positifs ou négatifs. La lumière est collectée et analysée grâce à un OSA de haute résolution (0.01 nm) OSA.

1 .Fig. G. 2 .

 12 Fig. F.2. Facteur α pour différents courants de polarisation au-dessous et au-dessus du seuil. Au seuil, (a) le facteur α, d'un laser puits quantiques varie continument, alors que, pour un laser (b) Qdash ou (c) Qdot laser, il existe un gap pour le facteur α. Les seuils des lasers Qwell, Qdash, et Qdot sont égaux à 24, 46, et 43 mA, pour des longueurs d'onde de 1545, 1550, 1545 nm, respectivement. La figure F.2. montre qu'au seuil, (a) le facteur α, d'un laser puits quantiques varie continument, alors que, pour un laser (b) Qdash ou (c) Qdot laser. Les seuils des lasers Qwell, Qdash, et Qdot sont égaux à 24, 46, et 43 mA, pour des longueurs d'onde de 1545, 1550, 1545 nm, respectivement.G) Dynamique de modulation des lasers à cascades quantiquesLes lasers de type bipolaire analysés dans les parties précédentes, sont basés sur des transitions électroniques inter-bandes au sein d'hétérostructures à semi-conducteurs. Les spectres lasers sont usuellement situés dans le proche infrarouge (NIR, 0.8~3 m). Il est difficile d'étendre ce concept de lasers aux longueurs d'onde dans le domaine du moyen infrarouge (MIR, 3~30 m) en raison des gaps électroniques accessibles avec les matériaux semiconducteurs classiques. Les lasers à cascades quantiques (QC), sont des lasers à semiconducteurs unipolaires qui dépendent de transitions électroniques intra-bandes, dans la bande de conduction en général [Faist94]. Ce mécanisme particulier permet d'étendre le domaine accessible par effet laser du MIR au domaine Térahertz (THz, 100 m~1000 m / 0.3~3 THz). Les lasers QC présentent des potentialités variées pour l'analyse de gas [Weidmann04], l'imagerie térahertz [Hu95], ou les communications en espace libre [Ajili07]. Une autre caractéristique fondamentale des structures lasers QC est le temps de relaxation ultra-rapide des porteurs au sein des structures à la transition (~ 1 ps). Ces deux aspects fondamentaux sont illustrés schématiquement sur la Fig. G.1.

Fig. G. 3 .

 3 Fig. G.3. (a) Evolutions de la bande passante AM et (b) du CPR d'un laser QC lasers sous injection optique.. Quand un laser inter-sousbandes QC est soumis à une injection optique, la bande passante AM augmente et le CPR est fortement réduit par comparaison avec les lasers inter-bandes (Fig. G.3). Les simulations montrent qu'un désaccord en fréquence positif ou négative augmente la bande passante et exalte le pic de résonance en régime de modulation. Cela indique que les lasers QC, présente eux aussi potentiellement une grande richesse de comportements nonlinéaires. Cette dynamique complexe sous injection optique nécessite des investigations plus poussées dans le fur.

  laser exhibits a broader modulation response and the α-factor can be reduced by as much as 40%.The optical injection technique is attractive to improve the laser's dynamical performance, including bandwidth enhancement and chirp phase-amplitude coupling property is altered as well in comparison with the free-running laser and the optical gain depends on the injection strength and the frequency detuning. This work proposes a new method derived from the Hakki-Paoli method, enabling to measure the α-factor of semiconductor lasers under optical injection both below and above threshold. In addition, it is demonstrated theoretically that the α-factor in nanostructure lasers exhibits a threshold discontinuity, which is mainly attributed to the unclamped carrier populations in the off-resonant states. It is a fundamental limitation, preventing the reduction of the α-factor towards zero. Quantum cascade (QC) lasers rely on intersubband electronic transitions in multi-quantum well heterostructures. QC lasers show lat broadband AM response (tens of GHz) without resonance, which show that the QC laser exhibits an ultrabroad FM bandwidth on the order of tens of THz, about three orders of magnitude larger than the AM bandwidth. Optically injection-locked QC lasers also exhibit speciic characteristics by comparison to interband semiconductor lasers. Both positive and negative frequency detunings enhance the modulation bandwidth.

Table 1 .

 1 1. Dynamic characteristics of Qdot or Qdash lasers grown on InP substrate

	Reference	material	Bandwidth	α-factor, <=Ith	α-factor, >Ith	Differential gain, Gain compression factor
	Martinez08	Qdot, (311)B InP	4.8 GHz	~1.8	~6	7.3×10 -15 cm 2 6.4×10 -16 cm 3
	Gready12	Qdot, (100) InP	5 GHz 15 Gbps			
	Gready14	Qdot, (100) InP	9 GHz 22 Gbps			
	Bhowmick14	Qdot, (100) InP p-doped & tunnel injection	14.4 GHz	~0		0.8×10 -15 cm 2 5.4×10 -17 cm 3
	Kaiser05	Qdash, (100) InP	7.6 GHz			
	Mi06	Qdash,				

  11 ~10 12 cm -2 , the typical carrier scattering times are of the order of 1~10 ps[START_REF] Siegert | Carrier dynamics in modulation-doped InAs/GaAs quantum dots[END_REF], [Uskov97]. For the processes related to Coulomb many-body interactions, relaxation within the Qdot is typically on a faster time scale than the carrier capture from the WL into the Qdot. Processes involving holes are faster than the corresponding processes involving electrons and capture to the excited states is more efficient than capture to the ground states. Hence in a dynamical scenario, first the holes are captured to the excited Qdot states and immediately scattered via relaxation to the Qdot ground

states. Capture of electrons is somewhat slower, the subsequent relaxation for electrons is only slightly slower than for holes

[START_REF] Nielsen | Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers[END_REF]

.

Table 3 .

 3 1. Material and laser parameters used in the simulation of the AM response

	Symbols Simulation parameters	Values	Symbols	Simulation parameters	Values
	ERS	RS energy	0.97 eV	L		Active region length	0.11 cm
	EES	ES energy	0.87 eV	W	Active region width	3×10 -4 cm
	EGS	GS energy	0.82 eV	N	Number of QD layers	5
		RS ES	Capture time from RS to ES	25.1 ps	NB	QD density	5×10 10 cm -2
		ES GS	Relaxation time from ES to GS	11.6 ps		p	Optical factor	confinement	0.06
		spon RS	Spontaneous time of RS	500 ps		SP	Spontaneous emission factor:	1×10 -4
		spon ES	Spontaneous time of ES	500 ps		i	Internal modal loss	6 cm -1
		spon GS	Spontaneous time of GS	1200 ps	R1=R2	Mirror reflectivity	0.3
							GS a	Differential gain	8.3×10 -14 cm 2
			All the material and Qdot laser parameters used in the calculations are summarized in Table
	3.1. The direct carrier capture time from the RS to the GS	RS GS  is observed to be larger than the
	capture time	RS ES  in the low excitation regime [Bockelmann92], while under strong excitation

-30 -24 -18 -12 -6 0 6 12 IM response(dB) Frequency(GHz)

  

						3.3 illustrates the turn-on delay properties for
	various injected currents. With the increase of the pump current, the delay time becomes shorter
	which means that the effective carrier lifetime is decreased [Agrawal86]. Both the oscillation
	frequency and the damping factor increase with the current. The oscillation frequencies at 1.5Ith,
	2Ith and 4Ith are 1.94 GHz, 2.64 GHz and 3.52 GHz, respectively.		
	0	1	2	3	4	5	6	7	8	9	10

1.05I th 2.08I th 1.63I th 2.88I th (a)

  

  al. empirically introduced the off-resonant RS contribution to the refractive index change [Melnik06].

	section 3.1) [Markus03]. The active region consists of only one Qdot ensemble. In addition, the
	electrons and holes are treated as neutral pairs (excitons). Two discrete states ---the ground
	state (GS) and the first excited state (ES) ---are considered in the dots. With these assumptions,
	the slowly varying electric field () Et is given by [Lingnau13]:
	Gioannini et al. macroscopically derived the index variation due to the carrier population in localized states of the dots through the Kramers-Krönig relationship [Gioannini06]. In 2008,   0 * ,, 0 1 1 ( ) ( ) 2 2 LS P XX X GS ES RS bg RS B P dj E t P E t dt A H           (3.29)
	Grillot et al. proposed an analytical expression for the α-factor based on the analysis of the where 0 LS  is the lasing frequency in the cold cavity, bg  and 0  are the background and
	nonlinear gain [Grillot08]. Recent work by Lingnau et al. microscopically pointed out that the vacuum permittivity, respectively. P  is the optical confinement factor and B H is the height real and imaginary parts of the optical susceptibility in Qdot lasers are desynchronized because the resonant state contributes primarily to the gain change, while the off-resonant states mainly (equals to the dot's height). The sum over X (X=GS, ES, RS) includes all possible optical
	influence the refractive index [Lingnau12],[Lingnau13]. The microscopic rate equation model transitions, with X  being the corresponding dipole transition matrix element and X P being the
	provides an accurate description of the Qdot laser physics. On the other hand, in order to bridge microscopic polarization. P  is the photon lifetime in the laser cavity. Assuming a sufficiently
	the gap between the theoretical approaches and experimental investigations, this work proposes short dephasing time D T and adiabatically eliminating the interband polarization, yield the
	a simplified electric field model taking into account the contribution of off-resonant states on quasi-static relation the refractive index change, which allows a semi-analytical study of the α-factor features in combination with the dot carrier dynamics in the Qdots. The model can explore the crucial 0 0 2 2 1 ( ) ( ) (2 1) ( ) 2 1 ( ) X D X LS D XX X LS D T j T P t j E t T           (3.30)
	physical mechanisms driven the Qdot laser's α-factor. where X  denotes the carrier occupation probability and	X  gives the transition energy of
	Conventional model describing the complex electric field of semiconductor lasers is given by: each state. Inserting Eq. (3.30) into Eq. (3.29), we obtain the complex gain
	~0 ( LS G	, ) t	2	* GS	2 j	0 0 LS P bg	( ) 1 2 dE t dt  ( ) 4 ( ) GS N P t B B H E t 2	   * ES 	P g v g 0 0 2 LS P  bg j	1 P  2 N P t ( ) E t    j    ( ) ( ) B ES B H E t	( ) E t 0 0 2 N LS P bg j	2 RS A H	B	* RS RS D	( ) ( ) RS P t E t	(3.27)
	where the first term on the right hand gives the gain and the photon loss of the laser cavity. The
	second term	N  describes the carrier induced frequency shift of the laser field with respect to 
	the frequency at the lasing threshold.	N  is usually expressed by the α-factor H   as:
										11 ( 2 P g P vg     N  	) 	H	(3.28)
	This model is able to study the impacts of a non-zero α-factor on the modulation dynamics
	and nonlinear dynamics of Qdot lasers [Wieczorek05], but does not allow the study of H 
	itself for different operating conditions. In order to investigate the α-factor, we need to obtain
	the expression of the gain and the refractive index separately. In the semi-classical theory, the
	semiconductor laser system can be fully described by the optical Bloch equations together with
	the Maxell's equations [Chow03]. The RS is treated as a discrete energy state of degeneracy
	RS D		* k Tm A B RS	/ ( 	2	)	, with * m the reduced carrier mass and RS A the RS surface area (see

  

																		spon GS	2	1	B	ES ES GS	g	GS	;
	34		g GS	g P GS	;	43	p g	GS	p SP spon	;	44	p g GS	1	p g P GS	;	51	p g RS RS	;
												GS						p
	52	1 4	p g ES ES	;	53	1 2	p g	GS H	;	54	1 2		GS p g P H	;

Table 3 .

 3 

	Symbol	Description	Value	Symbol Description	Value
	L	Active region length	5×10 -2 cm		RS ES	Capture time from RS to ES	6.3 ps
	W	Active region width	4×10 -4 cm		ES GS	Relaxation time from ES to GS	2.9 ps
	R1=R2	Mirror reflectivity	0.32	aGS	GS differential gain	5×10 -15 cm 2
	nr	Refractive index 3.5	aES	ES differential gain	10×10 -15 cm 2
		i	Internal modal loss	6 cm -1	aRS	RS differential gain	2.5×10 -15 cm 2
	NB	Dot density	10×10 10 cm -2				Gain compression factor	2×10 -16 cm 3
	HB	Dot height	5×10 -7 cm		GS H	GS induced α-factor	0.5
	ERS	RS transition energy	0.97 eV	TD	Dephasing time	0.1 ps
	EES	ES transition energy	0.87 eV			

2. Qdot material and laser parameters for study of the α-factor

  )
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		g	ES mn		ES ES n  P E  ES g B C N	ES n		cv n cv G B E E m 	ES n	(3.67)
	where	2   , GS	1   , and 4 ES	2   are the degeneracies of the GS, ES 1 , and the ES 2 6 ES
	including the spin. g C is a constant (	C	g		2 q cn m 0 2 / ( 0 ) r  2	)[Gioannini06], [Sugawara00] N B
	is the dot density per unit area,	2 P  is the transition matrix element of the interband X
	recombination [Sugawara00].	cv B E E m 	X n	is the Lorentzian homogeneous broadening
	function with width		hom	as indicated in Eq. (2.17). Symbols	, Auger Xn R	and	, sp Xn R represent the
	Auger and the spontaneous recombination rates of the carriers in the state X of the dot group n,
	respectively. The stimulated recombination rate	, Xn st R is expressed by:
										M
								, X n st R		p g v	X mn m g S
										m	1

, (

)

   (3.68)

Table 3 .

 3 3. QD material and laser parameters for study of the inhomogeneous broadening effect ) , which follows the Kramer-Krönig relation with the gain change. The other part is attributed to the free-carrier plasma effect in the RS ( RS n  ), and is evaluated by the Drude model as in Eq. (2.11). The plasma effect of the 3D SCH barrier

	Symbol	Description	Value	Symbol Description	Value
	L	Active region length	8.3×10 -2 cm	EES2	Recombination energy	0.905 eV
	W	Active region width	4×10 -4 cm	EES1	Recombination energy	0.856 eV
	R1=R2	Mirror reflectivity	0.32	EGS	Recombination energy	0.800 eV
	nr	Refractive index	3.5		SCH RS	Transport time	1.2 ps
		i	Internal modal loss	4 cm -1		RS ES	2	Capture time	2.1 ps
	NB	Dot density	7×10 10 cm -2		2 1 ES ES	Relaxation time	1.2 ps
	HB	Dot height	5×10 -7 cm		ES GS	1	Relaxation time	1.2 ps
	Nlayer	QD layer number	6	TD	Dephasing time	0.1 ps
		I	Current injection efficiency	0.8		p	Optical confinement factor	0.06
	ESCH -ERS	Energy separation	50 meV		SP	Spontaneous emission factor	1×10 -4
	ERS -EES2	Energy separation	40 meV	N		dot subgroup number 41
	Homogeneous broadening	5 meV				

As already discussed in chapter 2, the variation of the refractive index in Qdot lasers due to the carrier injection consists of two part contributions. One part is related with the interband transitions of the states insides the dots ( QD n 

Table . 5

 . .1. Damping factor offset of QD lasers reported in the literature

	Reference	Laser type	K-factor	Γ0
	[Kuntz06]	InGaAs/GaAs (FP)	1.20 ns	17.0 GHz
	[Zhukov13]	InAs/InGaAs (DFB)	1.02 ns	9.9 GHz
	[Naderi11]	InAs/GaAs (FP)	1.51 ns	9.0 GHz
	[Pochet10]	InAs/GaAs (FP)	1.44 ns	7.5 GHz
	[Martinez08]	InAs/InP(311)B (FP)	0.63 ns	3.0 GHz
	[Su04]	InAs/GaAs (DFB)	0.23 ns	1.7 GHz

Table 7 .
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	1. QC laser parameters used in the simulation [Sirtori02], [Rana02], [Faist04], [Harder05], [Gensty05],
	[Petijean11]							
	Parameter	Symbol	Value	Parameter	Symbol	Value
	Lasing frequency		2.9 THz (103 m)	Differential gain		a	5 ×10 -8 cm
	Stage number	Npd	30	Spontaneous emission factor		1×10 -6
	Optical confinement factor		p	0.27	Current injection efficiency		0.15
	Cavity length	L	3 mm	Carrier lifetime from level 3 to 2		32	2.0 ps
	Cavity width	w	80 m	Carrier lifetime from level 3 to 1		31	2.4 ps
	Facet reflectivity	R	0.29	Carrier lifetime from level 2 to 1		21	0.5 ps
	Group index	nr	3.3	Tunneling out time		out	0.5 ps
	Cavity loss		i	24 cm -1	Photon lifetime		P	3.7 ps
	Spontaneous emission time		sp	7 ns			

Table 7 .

 7 laser, and k c denotes the coupling rate of the master into the slave. The injection ratio is defined as R inj =S inj /S FR , where S inj is the injected photon number and S FR is the photon number of the free running laser. All parameters used in the computations are outlined in

						2 H  dt d  	N	pd p g v g 		1/		P	inj   		k	c	inj S S	sin	 	(7.30)
	where the phase difference between the slave and the master lasers is	slave    		master 	with
	,  being the phases of the master and slave lasers, respectively. The frequency detuning master slave
	is	inj  		master 		slave 	,where master 		is the angular frequency of the master laser and slave  that
	of the slave 1.											
		The steady-state solutions of the injection-locked laser system is given by
							32 N N  	N	pd p g Lw v a 	1 2 p   cos inj c S k S      	(7.31)
										1 N		I q 	out	(7.32)

  figure A.1. montre la réponse AM d'un laser à îlot quantique. Les populations de porteurs des états RS et ES limitent la fonction de transfert à hautes fréquences. Ce résultat est attribué au temps de capture des porteurs de l'état RS vers l'état ES, au temps de relaxation time de l'état ES vers l'état GS et aux effets de remplissage liés au principe de Pauli. De plus, les simulations montrent que la fréquence de résonance et le facteur d'amortissement décroissent linéairement en fonction du temps de capture, alors que la dépendance en fonction du temps de relaxation est plus complexe. Dans les lasers à semi-conducteurs, le facteur α décrit le couplage entre les variations des parties réelle (indice de réfraction) et imaginaire (gain) de la susceptibilité optique, induites par des variations des populations de porteurs. Ce facteur joue un rôle déterminant pour des propriétés des lasers telles que, la largeur spectrale [Duan90], la dérive de fréquence (« chirp ») [Duan87], la stabilité modale [Agrawal89], la dynamique non-linéaire sous injection optique [Wieczorek02] ou la rétroaction optique [Sciamanna04].La relation de Kramers-Krönig permet de montrer qu'un élargissement du gain autour de la fréquence de résonance, donne une amplitude de gain plus faible et un spectre d'indice de réfraction étendu. Il est donc nécessaire, pour caractériser le facteur α des lasers à îlots quantiques, de prendre en compte les contributions des populations de porteurs dans les états ES et RS à l'indice de réfraction calculé à la résonance GS. A partir d'une analyse petits signaux, le facteur α à la résonance GS d'un laser à îlots quantiques est donné par la relationμ  est la contribution associée aux porteurs dans l'état GS, , , et a le gain différentiel à GS incluant l'effet de compression du gain.

				, GS H QD	( ) 			2 P g v	() ( ) LS N GS N g N     			GS H		1 2	ES F	2  ES RS RS GS a N ES a N GS RS F a N a N   	(B.1)
	où	 	() N N LS	est la déviation en fréquence du champ électrique et	()
																a	ES RS	les gains différentiels pour
	ES ou RS												

1 () H  est associé à l'interaction entre la population de photons et la population de porteurs dans l'état GS. 0 () H  est attribué aux contributions des états ES et RS. La B) Facteur α et chirp GS gN le gain optique. GS H
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However, any changes in the frequency of the signal at the interferometer input will create a change of () t   , which in turn changes the output optical power.

A B

Power

Frequency The free spectral range (FSR) of the interferometer is an important parameter for the MZ interferometer, which is defined as the change in optical frequency, to obtain a phase shift of 2 between the two combining fields, i. e., the frequency difference between the two peaks shown in Fig. 5.30. The FSR is given by the reciprocal of interferometer differential delay1/ . By adjusting the differential delay, the interferometer can be operated at the quadrature point A at the positive slope, which results in the relation 0 / 2 2k It is noted that in the chirp measurement using a MZ interferometer, the differential delay between the two paths must be carefully selected considering several requirements [START_REF] Hui | Fiber Optic Measurement Techniques[END_REF]: a)

Coherence requirement. It needs the time delay to be small enough than the coherent time t coh