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Pr Pierre L ECOMTE, ULg Président
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Abstract

This thesis dissertation is divided into two (distinct but connected) parts that reflect the
joint PhD. We study and we solve several questions regarding on the one hand combinatorics
on words in an abelian context and on the other hand covering problems in graphs. Each
particular problem is the topic of a chapter.

In combinatorics on words, the first problem considered focuses on the 2-regularity of
sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain
symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian
complexity functions of the Thue–Morse word and the period-doubling word are 2-regular.
The computation and arguments leading to these results fit into a quite general scheme that
we hope can be used again to prove additional regularity results.

The second question concerns the notion of return words up to abelian equivalence, in-
troduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with
non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes.
We describe this set of abelian returns for the Fibonacci word but also for the Thue–Morse
word (which is not Sturmian). We investigate the relationship existing between the abelian
complexity and the finiteness of this set.

In graph theory, the first problem considered deals with identifying codes in graphs. These
codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in
multiprocessor systems. The ratio between the optimal size of an identifying code and the
optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V |) + 1
where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can
compute the exact fractional solution for them. We exhibit infinite families, called generalized
quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order
|V |α with α ∈ {1/4, 1/3, 2/5}.

The second problem concerns (r, a, b)-covering codes of the infinite grid already studied
by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted
graphs and study them in four particular weighted cycles. We present a method to link these
labellings with covering codes. Finally, we determine the precise values of the constants a
and b of any (r, a, b)-covering code of the infinite grid with |a− b| > 4. This is an extension
of a theorem of Axenovich.

Key words: combinatorics on words, ℓ-abelian equivalence, regularity, recurrence, abelian
return words, Sturmian words, graph theory, identifying codes, vertex-transitive graphs,
generalized quadrangles, (r, a, b)-covering codes, infinite grid.
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Bref résumé

Cette dissertation se divise en deux parties, distinctes mais connexes, qui sont le reflet de la
cotutelle. Nous étudions et résolvons des problèmes concernant d’une part la combinatoire
des mots dans un contexte abélien et d’autre part des problèmes de couverture dans des
graphes. Chaque question fait l’objet d’un chapitre.

En combinatoire des mots, le premier problème considéré s’intéresse à la régularité des
suites au sens défini par Allouche et Shallit. Nous montrons qu’une suite qui satisfait une
certaine propriété de symétrie est 2-régulière. Ensuite, nous appliquons ce théorème pour
montrer que les fonctions de complexité 2-abélienne du mot de Thue–Morse ainsi que du mot
appelé “period-doubling” sont 2-régulières. Les calculs et arguments développés dans ces
démonstrations s’inscrivent dans un schéma plus général que nous espérons pouvoir utiliser
à nouveau pour prouver d’autres résultats de régularité.

Le deuxième problème poursuit le développement de la notion de mot de retour abélien
introduite par Puzynina et Zamboni. Nous obtenons une caractérisation des mots sturmiens
avec un intercepte non nul en termes du cardinal (fini ou non) de l’ensemble des mots de
retour abélien par rapport à tous les préfixes. Nous décrivons cet ensemble pour Fibonacci
ainsi que pour Thue–Morse (bien que cela ne soit pas un mot sturmien). Nous étudions la
relation existante entre la complexité abélienne et le cardinal de cet ensemble.

En théorie des graphes, le premier problème considéré traite des codes identifiants dans les
graphes. Ces codes ont été introduits par Karpovsky, Chakrabarty et Levitin pour modéliser
un problème de détection de défaillance dans des réseaux multiprocesseurs. Le rapport entre
la taille optimale d’un code identifiant et la taille optimale du relâchement fractionnaire
d’un code identifiant est comprise entre 1 et 2 ln(|V |) + 1 où V est l’ensemble des sommets
du graphe. Nous nous concentrons sur les graphes sommet-transitifs, car nous pouvons y
calculer précisément la solution fractionnaire. Nous exhibons des familles infinies, appelées
quadrangles généralisés, de graphes sommet-transitifs pour lesquelles les solutions entière et
fractionnaire sont de l’ordre |V |α avec α ∈ {1/4, 1/3, 2/5}.

Le second problème concerne les (r, a, b)-codes couvrants de la grille infinie déjà étudiés
par Axenovich et Puzynina. Nous introduisons la notion de 2-coloriages constants de graphes
pondérés et nous les étudions dans le cas de quatre cycles pondérés particuliers. Nous
présentons une méthode permettant de lier ces 2-coloriages aux codes couvrants. Enfin,
nous déterminons les valeurs exactes des constantes a et b de tout (r, a, b)-code couvrant de
la grille infinie avec |a− b| > 4. Il s’agit d’une extension d’un théorème d’Axenovich.

Mots clés : combinatoire des mots, équivalence ℓ-abélienne, régularité, récurrence, mots
de retour abélien, mots sturmiens, théorie des graphes, codes identifiants, graphes sommet-
transitifs, quadrangles généralisés, (r, a, b)-codes couvrants, grille infinie.
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Aperçu de la thèse

Introduction

Cette thèse traite de deux sujets (distincts mais liés) qui sont la combinatoire des mots et
la théorie des graphes. Une fois n’est pas coutume, commençons par une mise en situation
de la théorie des graphes. Le jeu “Qui est-ce ?” était un jeu très à la mode quand j’étais
petite. Il s’agit d’un jeu à deux joueurs où chaque joueur dispose d’un plateau sur lequel
sont représentés les portraits de 24 personnages. Au début de la partie, chaque joueur choisit
secrètement l’un de ces personnages. Le but du jeu est alors de deviner le personnage choisi
par l’adversaire, en posant des questions sur son apparence physique. Par exemple, un joueur
peut demander à l’autre si le personnage choisi a des lunettes. Les questions sont posées à
tour de rôle. Imaginons une version statique de ce jeu où toutes les questions d’un joueur
sont posées d’un coup et regardons un exemple concret (où les nombres de personnages et de
caractéristiques sont réduits). Le plateau représenté à la Figure 1 contient six personnages
qui ont éventuellement une canne, un chapeau, des lunettes ou une moustache. Combien de
questions devons-nous poser pour pouvoir identifier le personnage choisi à coup sûr ?

Figure 1: Exemple de plateau de jeu “Qui est-ce ?”.

Dans cet exemple, il suffit de trois questions à propos de la possession d’une canne, de
lunettes et de chapeau, comme le montre la Figure 2. Les trois attributs canne, lunettes et
chapeau permettent donc d’identifier le personnage choisi.

Transposons cet exemple au monde de la théorie des graphes. Un graphe est un ensemble
de points qui sont reliés entre eux par des lignes, où les points et les lignes sont appelés
respectivement sommets et arêtes. Les graphes permettent de modéliser divers problèmes,
comme par exemple, un plan schématique du métro dans une ville, un arbre généalogique,

1



2 Aperçu de la thèse

Figure 2: Trois questions suffisent pour identifier le personnage choisi secrètement.

la représentation d’un réseau informatique. Ils peuvent aussi modéliser le plan d’une mai-
son (Figure 3). Les pièces deviennent des sommets et deux sommets sont reliées si les pièces
correspondantes sont voisines l’une de l’autre.

S

C

T

Figure 3: Une maison vue de trois façons différentes : en 3 dimensions, en 2 dimensions
et modélisée par un graphe. Les lettres S, C et T indiquent l’emplacement du salon, de la
cuisine et des toilettes dans chacune des vues.

Les attributs d’un sommet ne sont plus des caractéristiques physiques, mais des car-
actéristiques liées à la structure du graphe. Pour un sommet fixé, son attribut est l’ensemble
des sommets qui lui sont reliés. Reprenons l’exemple de la maison. L’heureux propriétaire de
cette maison souhaite la protéger d’un incendie en installant des détecteurs de feu dans cer-
taines pièces. Un détecteur peut détecter un incendie s’il se déclare dans la même pièce que
le détecteur ou dans une pièce voisine. La question naturelle est de déterminer un placement
de détecteurs qui permettra d’identifier l’endroit exact d’un éventuel incendie.

Plaçons les détecteurs dans les pièces selon le dessin à gauche de la Figure 4. Ces
détecteurs permettent de détecter s’il y a un incendie mais ne permettent pas de connâıtre la
position exacte de l’incendie. Par exemple, si le détecteur dans le salon est le seul à s’allumer,
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le feu peut se trouver dans la cuisine, dans les toilettes ou encore ailleurs. Pour résoudre ce
problème, nous pouvons ajouter de nouveaux détecteurs. Plaçons-les comme dans le dessin
à droite de la Figure 4. Cet agencement de détecteurs permet bien de signaler si un incendie
se déclare. De plus, il n’y a plus d’ambigüıté sur la position de l’incendie. Par exemple, si le
détecteur du salon est le seul à signaler l’incendie, alors le feu se trouve dans les toilettes.

S

C

T

S

C

T

Figure 4: Deux placements de détecteurs d’incendie dans le graphe représentant la maison.
Les sommets noirs et les sommets blancs symbolisent respectivement les pièces avec un
détecteur et les pièces sans.

L’ensemble des détecteurs (i.e., l’ensemble des sommets noirs) forme un code identifi-
ant. Ces codes ont été introduits en 1998 par Karvosky, Chakrabarty et Levitin [KCL98]
pour modéliser un problème d’identification de processeurs défectueux dans un réseau mul-
tiprocesseur. Plus tard, d’autres applications furent découvertes telles que la conception de
réseaux de détecteurs d’incendie dans les bâtiments [UTS04].

La question essentielle dans le cadre des codes identifiants est de déterminer pour un
graphe donné, la taille minimale d’un code identifiant de ce graphe (c’est-à-dire le nombre
minimum de sommets qui composent le code identifiant). Dans l’exemple de détecteurs
placés dans la maison, cela revient à vouloir minimiser le nombre de détecteurs nécessaires et
donc de faire des économies sur l’achat des détecteurs. L’exemple de la maison est “simple”
dans le sens où la maison ne contient pas beaucoup de pièces. Donc il n’y a pas beaucoup
de sommets dans le graphe. Nous pouvons aussi considérer des graphes qui correspondent
à des bâtiments plus complexes, comme des châteaux, des musées ou encore des complexes
hôteliers. Plus le nombre de pièces augmentent, plus l’intérêt de minimiser le nombre de
détecteurs nécessaires est évident.

Le problème de trouver un code identifiant est équivalent à un problème de couverture
dans les graphes. Si nous appelons l’attribut d’un sommet donné (c’est-à-dire l’ensemble des
sommets voisins) un disque dont le centre est le sommet donné, alors un code identifiant
est le placement de disques tel que chaque sommet est couvert par au moins un disque
(cela correspond à la condition de pouvoir détecter tout incendie dans la maison) et tel que
l’ensemble des disques qui couvrent un sommet est unique (cela correspond à la condition
de pouvoir déterminer la position exacte de l’incendie). Lorsque nous considérons l’ensemble
des sommets voisins, nous étudions des disques de rayon 1 (les sommets voisins sont proches
du sommet donné). Un autre problème de couverture, auquel nous nous sommes intéressés,
traite de disques de rayon r fixé, c’est-à-dire de l’ensemble des sommets qui se trouvent à
distance au plus r du sommet donné.

Par exemple, considérons un problème de télécommunication (Figure 5). Dans un système
d’antennes téléphoniques pour téléphones portables, nous voulons que deux antennes se trou-
vent à distance au moins r+1 l’une de l’autre (pour éviter les interférences) et nous voulons
que chaque téléphone portable soit à distance au plus r de deux antennes différentes (afin
de garantir une bonne qualité de transmission). En terme de graphes, chaque antenne est le



4 Aperçu de la thèse

sommet d’un centre d’un disque de rayon r et tout sommet qui ne correspond pas à un centre
de disque doit être recouvert par deux disques. Cet exemple est un problème de couverture
appelé (r, a, b)-code couvrant où a désigne le nombre d’antennes qui se trouvent dans chaque
disque et b désigne le nombre de disques qui recouvrent chaque sommet correspondant à un
téléphone portable. Ces codes ont été introduits par Cohen et al. [CHLM95] sous le nom de
codes couvrants pondérés.

Figure 5: Le placement des antennes par rapport aux téléphones portables correspond à un
(r, 1, 2)-code couvrant.

Revenons au problème des codes identifiants. Nous avons montré qu’il était équivalent
à un problème de couverture dans les graphes. Nous allons maintenant le traduire en un
problème de combinatoire des mots dans le cas particulier des graphes appelés chemins Pn

de longueur n (Figure 6). Considérons les n sommets u1, . . . , un du chemin Pn et un code
identifiant C de ce chemin. Si le sommet ui fait partie du code, nous le remplaçons par 1,
sinon par 0. Le mot obtenu (c’est-à-dire la suite des lettres obtenue) à partir de u1 · · ·un est
alors un mot sur l’alphabet {0, 1} et correspond au code identifiant C. Par exemple, le mot
101 correspond à un code identifiant de P3 où u1 et u3 sont les sommets du code.

P3 P4

Pn

u1 u2 u3 u1 u2 u3 u4

u1 u2 u3 un−1 un

Figure 6: Les graphes P3, P4 et Pn sont appelés chemins de longueur respective 3, 4 et n.

Considérons à présent le graphe représenté à la Figure 7, où des flêches étiquetées relient
les sommets. Un cheminement (ou parcours) dans ce graphe est l’enchâınement de plusieurs
flêches en respectant le sens des flêches. Comptons le nombre de chemins empruntant n
arcs, commençant par le sommet “Début” et se terminant dans un des sommets grisés. Nous
pouvons montrer que ce nombre est exactement le nombre d’ensembles de sommets formant
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un code identifiant dans le chemin Pn. De plus, si nous considérons les étiquettes des arcs
empruntées par un de ces cheminements particuliers, il s’agit du mot correspondant à un
code identifiant d’un chemin Pn. Nous remarquons que tous ces mots commencent par 111,
101 ou 011 et se terminent par 111, 110 ou 101. Dans ces mots, nous pouvons nous intéresser
aux occurrences de certains mots finis. Par exemple, ces mots ne contiennent jamais le mot
000 (car il n’y a pas trois flêches consécutives qui sont étiquetées par un 0).

Début

10

1 01

1

1
1

1 0
1

11

01
0

1

1

Figure 7: Des flêches étiquetées relient les sommets du graphe représentant les codes identi-
fiants dans le chemin Pn.

Dans le cas général des mots infinis, nous pouvons aussi compter le nombre de mots
finis apparaissant dans un mot infini donné. Nous considérons des mots infinis obtenus en
appliquant un nombre infini de fois certaines règles. Une règle possible est de remplacer
chaque 0 par 01 et chaque 1 par 10. Par exemple, si nous appliquons cette règle 3 fois à
partir du mot 0, nous obtenons

0 → 01 → (01)(10) = 0110 → (01)(10)(10)(01) = 01101001.

Cette règle permet de construire un mot infini très célèbre, appelé le mot de Thue–Morse.
Dans ce mot, nous comptons le nombre de mots finis d’une longueur donnée qui apparaissent.
Ces mots sont appelés facteurs du mot infini. Par exemple, 00, 01, 10 et 11 sont les 4 facteurs
de longueur 2 du mot infini de Thue–Morse. Ces mots apparaissent déjà après la quatrième
itération de la règle. Au lieu de compter les facteurs distincts, nous pouvons compter les
facteurs distincts à une équivalence près. Considèrons l’équivalence “être un anagramme l’un
de l’autre”, qui porte le nom d’équivalence abélienne. Dans le mot the Thue–Morse, il n’y
en a que trois facteurs distincts de longueur 2 lorsqu’ils sont comptà équivalence abélienne
près. En effet, 01 est l’anagramme de 10. Une généralisation de l’équivalence abélienne a
été introduite par Karhumäki et al. [KSZ13] sous le nom d’équivalence ℓ-abélienne. Un des
problèmes étudiés dans cette thèse traite du nombre de facteurs apparaissant dans le mot de
Thue–Morse, lorsqu’ils sont comptés à l’équivalence 2-abélienne près.
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Le dernier problème concerne la version abélienne de la notion de mot de retour dans les
mots infinis. Soit u un facteur d’un mot infini donné. A mot de retour à u est un facteur
qui commence à une occurrence de u et qui se termine juste avant l’occurrence suivante de
u dans le mot infini. Par exemple, si nous considérons le mot de Thue–Morse et u = 011,
alors nous notons par des barres les occurrrences de u dans le début du mot de Thue–Morse
comme suit

|011010|011001|01101001|0110|011010|011001|0110|01101001|011010|011.

Le premier mot de retour à u est alors le mot 011010, le second mot de retour à u est 011001
etc. Comme dans le problème précédent, nous sommes intéressé par cette notion dans un
contexte abélien. Nous considérons donc les occurrences de u à équivalence abeliènne près.
Cette question a déjà été étudiée par Puzynina et Zamboni [PZ13].

Résumé

Cette thèse se divise en deux parties qui sont le reflet de la cotutelle. La première partie
se consacre à des questions de combinatoire des mots dans un contexte abélien, tandis que
la seconde se préoccupe de problèmes de couvertures dans des graphes. Chaque partie est
organisée de la même façon et commence par un chapitre reprenant les notions de base. Ce
premier chapitre donne aussi une première introduction aux problèmes qui nous intéressent.
Chaque problème particulier, accompagné de son contexte, fait l’objet d’un chapitre. Ces
chapitres se terminent par une section contenant des questions ouvertes ou des pistes de
recherche. Après les deux parties se trouvent les annexes qui contiennent des compléments
d’informations et de démonstrations.

Chapitre 1 : combinatoire des mots

Nous supposons le lecteur familier avec les notions de base de combinatoire des mots. Les
travaux de cette thèse se placent dans un contexte abélien. Le but de ce chapitre est de
rappeler les notions d’équivalence ℓ-abélienne, de k-régularité et de mots sturmiens.

Deux mots finis sont abéliens équivalents si l’un est l’anagramme de l’autre. Cette no-
tion d’équivalence abélienne a été généralisée par Karhumäki et al. [KSZ13]. Soit ℓ un
entier strictement positif. Deux mots finis u et v sont ℓ-abéliens équivalents si pour tout
facteur x de longueur au plus ℓ, le nombre d’occurrences de x dans u cöıncide avec le nom-
bre d’occurrences de x dans v. Cette définition implique que l’équivalence 1-abélienne est
exactement l’équivalence abélienne traditionnelle.

Une notion, utilisée dans le chapitre suivant, est celle de la régularité d’une suite d’entiers
au sens défini par Allouche et Shallit [AS03b]. Soit k un entier strictement plus grand
que 2. Une suite s = (sn)n≥0 d’entiers est k-régulière s’il existe un nombre fini de suite
t1(n)n≥0, . . . , tℓ(n)n≥0 tel que toute suite appartenant à son k-noyau

Kk(s) = {s(ken+ r)n≥0 : e ≥ 0 et 0 ≤ r ≤ ke − 1}

peut s’écrire comme une Z-combinaison linéaire des ti(n)n≥0. Une méthode pour prouver la
k-régularité d’une suite s = (sn)n≥0 est de montrer que toutes les sous-suites s(ken+ r)n≥0

pour un e fixé et 0 ≤ r ≤ ke − 1 s’expriment comme combinaison linéaire de sous-suites de
la forme s(ke

′

n+ r′)n≥0 avec e′ < e et 0 ≤ r′ ≤ ke
′ − 1.



7

En combinatoire des mots, les mots sturmiens forment une des classes les plus étudiées des
mots infinis [Lot02, PF02]. Il s’agit des mots infinis ayant la plus petite complexité en nombre
de facteurs parmi tous les mots apériodiques. Un des exemples les plus connus de mots
sturmiens est le mot de Fibonacci f = 01001010010010100 · · · . Nous rappelons plusieurs
caractérisations des mots sturmiens en termes de mots apériodiques et équilibrés (Théorème
de Coven–Hedlund), de complexité ℓ-abélienne [KSZ13], de mots de retour [Vui01]. Nous
terminons par la caractérisation des mots sturmiens en tant que codages de l’orbite d’un
point, appelé intercepte, sur le cercle unitaire sous l’action d’une rotation d’angle irrationnel.

Chapitre 2 : régularité des complexités ℓ-abéliennes

Dans ce chapitre, nous nous intéressons aux suites d’entiers et à leur structure. Il y a un an,
Madill et Rampersad se sont intéressés à la complexité abélienne du mot de pliage de papier
ordinaire [MR13]. Ils ont montré que celle-ci était 2-régulière en exhibant un nombre fini
de relations de récurrence. Les auteurs ont ainsi été les premiers à calculer précisément une
complexité abélienne qui n’est pas bornée. Depuis, d’autres complexités abéliennes (non-
bornées) ont été étudiées. Karhumäki et al. ont étudié le comportement asymptotique de la
complexité ℓ-abélienne du mot de Thue–Morse et ont aussi exhibé des relations de récurrence
satisfaites par la complexité abélienne du mot “period-doubling” p [KSZ]. Ces relations
montrent que la complexité abélienne de p est 2-régulière. Dans [BSCRF14], la complexité
abélienne d’un point fixe v du morphisme non-uniforme 0 7→ 012, 1 7→ 02, 2 7→ 1 est étudiée
et les auteurs obtiennent des résultats similaires à ceux développés dans ce chapitre.

Nous montrons d’abord que toute suite qui satisfait une certaine relation de récurrence
avec un paramètre c et 2ℓ0 conditions initiales est 2-régulière (Théorème 2.11). En particulier,
ces suites satisfont une certaine propriété de symétrie sur chaque intervalle [2ℓ, 2ℓ+1) pour
ℓ ≥ ℓ0. Ils semblent que plusieurs fonctions de complexité abélienne et 2-abélienne satisfont
une telle symétrie.

Ensuite, nous utilisons ce résultat pour montrer que le mot de Thue–Morse possède
une complexité 2-abélienne qui est 2-régulière. Pour cela, nous commençons par étudier la
complexité abélienne du mot y qui est le codage par blocs de longueur 2 du mot de Thue–
Morse. Cette complexité est étroitement liée à la complexité 2-abélienne du mot de Thue–
Morse. Elle satisfait une relation de récurrence similaire à celle donnée dans le Théorème 2.11
(Proposition 2.28). Nous introduisons la quantité ∆12(n) qui est la différence entre le nombre
maximal de lettres 1 et 2 et le nombre minimal de ces lettres apparaissant dans les facteurs
de longueur n de y. Nous montrons que cette suite ∆12(n)n≥0 satisfait une récurrence de la
même forme que celle énoncée dans le Théorème 2.11 et est donc 2-régulière (Proposition 2.20

et Corollaire 2.21). De plus, il apparâıt que ∆12(n) + 1 = P(1)
p . Nos résultats peuvent donc

être reliés aux travaux développés dans [BSCRF14] et [KSZ]. La régularité de la complexité

abélienne P(1)
y de y découle de celle de ∆12. De même, la régularité de la complexité 2-

abélienne du mot de Thue–Morse provient de la régularité de suites P(1)
y et ∆12.

Des arguments similaires nous permettent de montrer que la complexité 2-abélienne du
mot “period-doubling” est elle aussi 2-régulière. Cette similarité suggère l’existence d’un
cadre général. Dans le cas du mot “period-doubling”, la quantité adéquate à introduire
est ∆0(n) qui est la différence entre le nombre maximal de lettres 0 et le nombre minimal
de lettres 0 apparaissant dans les facteurs de longueur n du mot x qui est le codage par
blocs de longueur 2 du mot “period-doubling” p. Nous montrons que les suites ∆0(n)n≥0 et

P(1)
p satisfont chacune une relation de récurrence de la forme donnée dans le Théorème 2.11.
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Par conséquent, elles sont toutes deux 2-régulières. Comme dans le cas de Thue–Morse, la
régularité de la complexité 2-abélienne du mot “period-doubling” découle de la régularité des

suites P(1)
x et ∆0.

Vu la similarité des arguments, nous pouvons espérer qu’il existe un cadre plus général
qui nous permettraient de traiter en une fois ces problémes de régularité des suites de
complexités. D’ailleurs, quelques calculs par ordinateur semblent indiquer que l’approche
présentée permettrait de montrer que la complexité 3-abélienne du mot de Thue–Morse ainsi
que celle du mot “period-doubling” satisfont des relations de récurrence ainsi qu’une propriété
de réflexion sur les intervalles [2ℓ + 2, 2ℓ+1 + 2].

Chapitre 3 : mots de retour abélien

Les mots de retour sont des notions classiques en combinatoire des mots ainsi que dans les
systèmes symboliques dynamiques [Dur98, HZ99, JV00, Vui01]. Pour un facteur u d’un mot
infini x, un mot de retour à u est un facteur w qui commence par u et se termine juste
avant l’occurrence suivante de u. Si x est uniformément récurrent, c’est-à-dire si chaque
facteur de x apparâıt infiniment souvent et à distance bornée, l’ensemble des mots de retour
à u est fini. Sous cette hypothèse, l’ensemble des mots de retour forme un code [Dur98]
et le mot infini x peut s’écrire de manière unique comme une concaténation de mots de
retour x = m0m1m2 · · · . Nous pouvons ordonner ces mots dans l’ordre de leur première
occurrence dans x et ainsi définir une application Λx,u qui à un mot de retour associe son
ordre. La suite dérivée Du(x) est alors le mot infini Λx,u(m0)Λx,u(m1)Λx,u(m2) · · · sur
l’alphabet {1, . . . ,#Rx,u}. Cette notion de suites dérivées a été utilisée notamment par
Durand pour caractériser les mots primitifs substitutifs (Théorème 1.58). Les mots de retour
ont aussi été utilisés par Vuillon [Vui01] pour caractériser les mots sturmiens (Théorème 1.59)
ou encore les mots périodiques (Proposition 1.60).

Dans ce chapitre, nous considérons la version abélienne des mots de retour. Cette notion
a déjà été étudiée par Puzynina et Zamboni [PZ13] et présentée lors de la conférence WORDS
2011. Leur résultat principal est une caractérisation des mots sturmiens (Théorème 3.1). Les
auteurs s’intéressent aussi au lien entre le nombre de mots de retour abélien et la périodicité.
Ils fournissent une condition suffisante pour la périodicité (Lemme 3.2).

La différence principale entre [PZ13] et le travail présenté dans ce chapitre est que nous
considérons l’ensemble des mots de retour par rapport à tous les facteurs d’un mot infini,
tandis que Puzynina et Zamboni étudient l’ensemble des mots de retour par rapport à chaque
facteur pris séparément.

Nous nous intéressons aussi au lien entre périodicité et mots de retour abélien. Nous
considérons tout d’abord l’ensemble ARx des mots de retour abélien par rapport à tous les
facteurs du mot donné. Nous montrons qu’un mot récurrent est périodique si et seulement
si ARx est fini (Théorème 3.7). La récurrence uniforme implique bien entendu la récurrence
abélienne uniforme, mais le contraire n’est pas vrai en général. Nous donnons un exemple
d’un mot qui est récurrent abéliennement uniformément, mais qui n’est pas uniformément
récurrent (Proposition 3.8). Notons que ce mot est construit à partir du mot de Thue–Morse.

Ensuite, nous considérons l’ensemble APRx des mots de retour abélien par rapport à tous
les préfixes du mot donné. Contrairement au caractère fini de l’ensemble ARx, le caractère
fini de APRx n’implique pas la périodicité ni la périodicité abélienne de x. Nous étudions
le cas particulier du mot de Thue–Morse t et montrons que APRt contient 16 éléments
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(Théorème 3.15). Nous obtenons une caractérisation des mots sturmiens avec un intercepte
non-nul en termes du caractère fini de l’ensemble des mots de retour abélien par rapport aux
préfixes (Theorem 3.18). Comme le mot de Fibonacci f est un mot sturmien avec une pente
et un intercepte égaux à 1/φ2, où φ est le nombre d’or, notre résultat implique que l’ensemble
APRf est fini. Nous décrivons explicitement cet ensemble qui contient cinq éléments. En
comparaison, l’ensemble des mots de retour abélien par rapport aux préfixes du mot 0f est
infini. Nous terminons notre étude de l’ensemble APRx en montrant que si x est un mot
récurrent abéliennement tel que APRx est fini, alors la complexité abélienne de x est finie.

Enfin, nous considérons l’analogue abélien de la suite dérivée. Si x est uniformément
récurrent, il peut alors être factorisé en termes des mots de retour abélien par rapport à un
préfixe donné de x. Cela induit un codage qui donne lieu à une nouvelle suite. Contrairement
au cas non-abélien, la factorisation de x en mots de retour abélien n’est pas nécessairement
unique (Exemple 3.27). Une autre différence entre le cas “classique” et le cas abélien est
que la caractérisation des mots primitifs substitutifs obtenue en terme de la suite dérivée par
Durand n’est plus valable dans le cas abélien. Le mot de Thue–Morse est un exemple de mot
primitif substitutif ayant infiniment de suites dérivées abéliennes (Proposition 3.36).

Chapitre 4 : théorie des graphes

Nous supposons que le lecteur est familier avec les notions de base de théorie des graphes.
Le but de ce chapitre est de rappeler deux problèmes de couverture dans les graphes.

Les codes identifiants ont été introduits en 1998 par Karpovsky, Chakrabarty et Le-
vitin [KCL98] pour modéliser un problème pratique d’identification de processeurs défectueux
dans des réseaux multiprocesseurs. Plus spécifiquement, le réseau multiprocesseur est repré-
senté par un graphe dont les sommets sont les processeurs. Imaginons que chaque processeur
est capable de tester si un processeur dans son voisinage fermé (i.e., les processeurs voisins
et lui-même) est défectueux et ne puisse retourner qu’une information binaire. Par exemple,
un processeur renvoie 0 si aucune défaillance n’a été détectée et 1 dans les autres cas. Le
problème est de déterminer un sous-ensemble C de processeurs tel que

• si tous les processeurs de C renvoient l’information 0, cela signifie qu’il n’y a pas de
défaillance,

• si au moins un des processeurs de C renvoie l’information 1, il y a une défaillance et
nous pouvons localiser le processeur défectueux de manière unique.

En supposant qu’à tout moment, il y a au plus un processeur défectueux, l’ensemble C
recherché correspond exactement à un code identifiant.

En effet, la première condition garantit que s’il y a une défaillance, elle sera détectée.
En termes de graphes, cela signifie que C est un ensemble dominant, c’est-à-dire que tout
sommet du graphe est dans C ou est voisin d’un sommet de C. La deuxième condition, qui
permet de localiser de manière unique le processeur défectueux, équivaut à dire que C est
un ensemble séparant du graphe.

Ils existent aussi d’autres applications des codes identifiants. Par exemple, ces codes sont
utilisés pour modéliser un problème de localisation par des réseaux de capteurs [RSTU04]
ou pour concevoir des réseaux de détecteurs d’incendie dans des bâtiments [UTS04].

Enfin, les codes identifiants dans des graphes fortement réguliers sont étroitement liés
aux ensembles résolvants introduits par [Bab80]. Un ensemble résolvant est un ensemble
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de sommets S tel que chaque sommet du graphe est déterminé de manière unique par ses
distances aux sommets de S. La taille minimale d’un tel ensemble est appelé dimension
métrique. Dans le cas de graphes avec un diamètre égal à 2, un ensemble résolvant C est
presque un code identifiant : seul les sommets du code ne sont éventuellement pas identifiés.
Auquel cas, il suffit d’ajouter |C| sommets à l’ensemble pour le rendre identifiant.

Le second problème de couverture auquel nous nous intéressons traite de couverture par
des boules de rayon r. Pour des entiers positifs r, a et b, un (r, a, b)-code couvrant d’un graphe
G = (V,E) est un ensemble S de sommets qui correspondent aux centres des boules de la
couverture et tel que la propriété suivante est satisfaite. Tout sommet de S (respectivement
de V \ S) est recouvert par a (resp. b) boules de rayon r. Ces codes sont aussi connus
sous le nom de (r, a, b)-coloriages isotropes [Axe03] ou coloriages parfaits [Puz08]. Ses codes
couvrants généralisent la notion de code parfait. En effet, un r-code est un (r, a, b)-code
avec a = 1 = b. Golomb et Welch [GW68, GW70] ont démontré l’existence de (1, 1, 1)-
code couvrant dans la grille multi-dimensionnelle Zd. De plus, les auteurs conjecturent qu’il
n’existe pas de (r, 1, 1)-codes couvrants dans Zd.

Les (r, a, b)-codes couvrants ont déjà été étudiés pour le nom de codes couvrants pondérés
par Cohen et al. [CHLM95]. Les auteurs considèrent ces codes dans la métrique de Hamming,
mais les (r, a, b)-codes couvrants ont été aussi étudiés dans des graphes en général [Tel94].
Telle [Tel94] donne notamment un résultat de complexité: le problème de décision à propos
de l’existence de (1, a, b)-code dans un graphe est NP-complet. Le cas particulier des (r, a, b)-
codes couvrants avec r = 1 a fait l’objet de beaucoup de recherches. Par exemple, Dorbec et
al. [DGHM09] et Gravier et al. [GMP99] ont considérés les (1, a, b)-codes couvrants dans le
cas de la métrique de Lee. Dorbec et al. [DGHM09] présentent notamment une construction
pour obtenir des (1, a, b)-codes couvrants dans la grille multi-dimensionnelle Zd. Dans le cas
particulier de la grille 2-dimensionnelle Z2, Puzynina [Puz04, Puz08] a obtenu des résultats de
périodicité pour les (r, a, b)-codes couvrants et Axenovich [Axe03] a donné une caractérisation
de ces codes lorsque r > 2 et |a− b| > 4.

Chapitre 5 : codes identifiants dans des graphes sommets-transitifs

Le problème de trouver un code identifiant de taille minimale est NP-complet en général
[CHL03] mais peut être exprimé comme un programme linéaire entier (Remarque 4.26).
Nous considérons la relaxation fractionnaire de ce programme. Cela revient à attribuer des
poids réels compris entre 0 et 1 à chaque sommet, au lieu d’attribuer un poids 1 à chaque
sommet dans le code et 0 aux autres. Naturellement, nous sommes intéressés par la “taille”
minimale d’un code identifiant fractionnaire, c’est-à-dire par minimiser la somme de tous les
poids.

Il est naturel de vouloir comparer la taille minimale fractionnaire γIDf avec la taille mi-

nimale entière γID. Leur rapport vaut au plus un facteur logarithmique en le nombre de
sommets du graphe (voir Proposition 5.1).

Dans le cas des graphes sommets-transitifs, i.e., des graphes où tous les sommets jouent
le même rôle, nous pouvons calculer la taille minimale. Elle dépend de seulement trois
paramètres du graphe : le nombre de sommets, le degré des sommets et la plus petite taille
des différences symétriques de deux voisinages fermés. Les codes identifiants entiers ont
déjà été beaucoup étudiés dans les graphes sommets-transitifs, particulièrement dans les
cycles [BCHL04, GMS06, JL12, XTH08] et dans les hypercubes [BHL00, EJLR08, ELR08,
HL02, KCL98]. Dans ces exemples, l’ordre de la taille minimale entière γID semble toujours
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être égal à l’ordre de la taille minimale fractionnaire. Cependant, la plus petite taille des
différences symétriques de voisinages fermés est petite par rapport au nombre de sommets :
soit elle est constante (pour les cycles), soit elle est d’ordre logarithmique dans le nombre
de sommets (pour les hypercubes). Pour cette raison, nous nous concentrons sur les graphes
fortement réguliers et sommets-transitifs. Ces graphes ont comme propriété que la taille des
différences symétriques est toujours au moins d’ordre

√

|V | (si le graphe n’est pas trivial).

De plus, tout graphe fortement régulier est de diamètre 2. Par conséquent, dans ces
graphes, la taille minimale entière γID est toujours du même ordre que la dimension métrique.
Nous pouvons alors calculer l’ordre de la taille minimale entière dans les graphes fortement
réguliers dont la dimension métrique est connue. C’est le cas pour les graphes de Kneser, de
Johnson (de diamètre 2) et pour les graphes de Paley. Ces familles de graphes exhibent deux
comportements différents par rapport aux codes identifiants. Les graphes de Kneser et de
Johnson de diamètre 2 sont une famille de graphes avec γID et γIDf qui sont du même ordre
√

|V |, tandis que les graphes de Paley ont une taille minimale fractionnaire γIDf bornée par

une constante et une taille minimale entière γID d’ordre log2(|V |). En d’autres termes, pour
les graphes de Paley, γID et γIDf sont éloignés d’un facteur logarithmique.

Dans la section 5.4, nous considérons une famille de graphes qui n’a encore jamais été
étudiée de manière générale dans le cadre des codes identifiants ou des ensembles résolvants.
Il s’agit des graphes d’adjacence de quadrangles généralisés. Un quadrangle généralisé est une
structure d’incidence, c’est-à-dire un ensemble de points et de lignes, telle que chaque ligne
contient un nombre fixe de points, chaque point appartient à un nombre fixe de lignes et tout
point se projette de manière unique sur une ligne à laquelle il n’appartient pas. Par exemple,
un graphe complet biparti est un graphe d’adjacence d’un quadrangle généralisé, le produit
cartésien de deux cliques de même taille en est un aussi. Dans le dernier exemple, Gravier
et al. [GMS08] ont déjà étudié les codes identifiants et les deux valeurs γID et γIDf sont de
même ordre. Lorsque le graphe d’adjacence d’un quadrangle généralisé est sommet-transitif,
nous établissons des bornes sur la taille minimale fractionnaire γIDf (voir Proposition 5.12).

A l’heure actuelle, les constructions de quadrangles généralisés sont connues pour seule-
ment certaines valeurs des paramètres correspondants au nombre de points sur chaque ligne
et au nombre de lignes passant par chaque point. Ces constructions font appel à la géométrie
finie. Nous construisons des codes identifiants d’ordre optimal dans certains quadrangles
généralisés1. Ces ordres sont de la forme |V |α avec α ∈ { 1

4 ,
1
3 ,

2
5} et correspondent à l’ordre

de taille minimale fractionnaire.

En conclusion, nous avons considéré des familles de graphes qui ont soit des valeurs γID

et γIDf du même ordre, soit des valeurs γID et γIDf éloignées d’un facteur logarithmique.

Cependant, dans le dernier cas, la taille minimale fractionnaire γIDf est bornée par une
constante. Il serait intéressant de déterminer s’il existe une famille infinie de graphes telles
que le rapport entre γID et γIDf serait logarithmique et que γIDf ne serait pas borné par une
constante. Une question similaire est de déterminer s’il existe un graphe (ou une famille de
graphes) tel que le rapport de la solution entière et de la solution fractionnaire ne soit ni
constant, ni logarithmique. Enfin, comme les graphes considérés sont de diamètre 2, nos
résultats peuvent être étendus aux ensembles localisateurs-dominateurs et à la dimension
métrique.

1Toutes les constructions de graphes considérées donnent lieu à des graphes d’adjacence sommets-transitifs.
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Chapitre 6 : 2-coloriages constants et une application aux (r, a, b)-
codes couvrants de la grille infinie 2-dimensionnelle

Dans ce chapitre, nous introduisons la notion de 2-coloriage constant. Il s’agit de coloriages
avec deux couleurs, noir et blanc, de graphes pondérés qui satisfont certaines propriétés.
Pour un sous-groupe A d’automorphismes d’un graphe pondéré G et un sommet fixé v de
G, un 2-coloriage c est constant si, pour tout coloriage c ◦ f avec f ∈ A, la somme des poids
des sommets noirs ne prend qu’au plus deux valeurs :

• la valeur a si v est de couleur noire,

• la valeur b si v est de couleur blanche.

Une question naturelle est “étant donné un graphe pondéré, un sommet particulier et un
sous-groupe d’automorphismes, existe-t-il un 2-coloriage constant ?”. Nous considérons prin-
cipalement des cycles pondérés avec au plus 3 poids différents et nous fixons le sous-groupe
d’automorphismes à l’ensemble des rotations du cycle. Pour quatre types de cycles, nous
caractérisons les constantes a et b des 2-coloriages constants possibles, en fonction des poids
des sommets.

La motivation pour définir les 2-coloriages constants provient des problèmes couvrants
dans les graphes et plus particulièrement des (r, a, b)-codes couvrants dans la grille infinie mul-
tidimensionnelle. Pour un rayon égal à 1, Dorbec et al. [DGHM09] présentent une méthode
pour construire des (1, a, b)-codes couvrants. Cette méthode produit des codes périodiques.
Dans le cas particulier de la grille infinie 2-dimensionnelle, Puzynina [Puz04] a montré qu’il
existe des (1, a, b)-codes couvrants qui ne sont pas périodiques, mais que pour ces valeurs de
a et b, il existe des coloriages périodiques qui sont des (1, a, b)-codes couvrants. Toujours
dans la grille 2-dimensionnelle, Puzynina [Puz08] a considéré des (r, a, b)-codes couvrants
avec un rayon plus grand ou égal à 2. L’auteur a démontré que tout ces (r, a, b)-codes cou-
vrants sont périodiques [Puz08]. De plus, Axenovich [Axe03] a donné une caractérisation
des (r, a, b)-codes couvrants de Z2 avec r ≥ 2 et |a − b| > 4 en termes de coloriages diago-
naux. La définition des 2-coloriages constants est apparue naturellement pour traduire cette
périodicité. Nous nous concentrons dans ce chapitre sur la grille infinie 2-dimensionnelle afin
d’utiliser la caractérisation obtenue par Axenovich [Axe03]. Dans cette caractérisation, les
valeurs exactes de a et b ne sont pas données. Notre approche avec les 2-coloriages constants
permet de combler cette lacune.

Nous montrons que les (r, a, b)-codes couvrants de la grille infinie sont étroitement liés
aux 2-coloriages constants de cycles pondérés. Pour ce faire, nous présentons une méthode de
projection et repliement qui nous permet de réduire la donnée de la grille infinie en un cycle
pondéré. En composant la caractérisation obtenue par Axenovich avec cette méthode, les
cycles pondérés font partie des quatre types de cycles étudiés. Il ne reste plus qu’à appliquer
les résultats obtenus dans le cadre des 2-coloriages constants pour obtenir les valeurs de a et
b possibles.

Nous avons donc traduits la périodicité des (r, a, b)-codes couvrants de la grille infinie en
2-coloriages constants de quatre types de cycles pondérés. Il serait intéressant d’essayer de
traduire la périodicité des (1, a, b)-codes couvrants de la grille en d dimensions en termes de
2-coloriages constants. Une autre piste de recherche serait de remplacer la grille infinie en
deux dimensions par la grille du roi infinie. Dans ce cas, une première étape serait d’obtenir
une caractérisation similaire à celle obtenue par Axenovich.
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Annexe A : régularité et complexité ℓ-abélienne

Dans cette annexe, nous présentons d’abord le code Mathematica utilisé pour conjecturer les
relations satisfaites par la complexité 2-abélienne du mot de Thue–Morse. Le calcul de cette
complexité est basé sur une approche matricielle ne nécessitant pas de calculer un long préfixe
du mot de Thue–Morse. Cette méthode nous permet de calculer les 65538 premiers termes
de la complexité 2-abélienne en seulement 4 minutes sur un ordinateur standard (Intel R©
CoreTM i3). En comparaison, si l’on calcule la complexité 2-abélienne en passant en revue
tous les facteurs de longueur n, pour n fixé, dans un préfixe suffisamment long du mot de
Thue–Morse, il est nécessaire d’itérer au moins 11 fois le morphisme pour construire le préfixe
requis et le calcul des 513 premiers termes de la complexité 2-abélienne prend déjà plus de 4
minutes.

Ensuite, nous présentons des fonctions de complexité abélienne qui semblent satisfaire
une symétrie dans les valeurs prises sur chaque intervalle de la forme [2ℓ, 2ℓ+1] avec un entier
positif ℓ suffisamment grand. Nous considérons des mots infinis, sur un alphabet de 3 lettres,
qui des sont points fixes de morphismes 2-uniformes. Nous calculons ensuite leurs complexités
1-abélienne et 2-abélienne. Parmi les comportements de ces fonctions de complexité, nous
remarquons que plusieurs sont ultimement périodiques ou satisfont une symétrie. Parmi
les autres comportements, il serait intéressant de regarder la croissance des fonctions de
complexité.

Enfin, nous détaillons les preuves omises dans le chapitre 2. Ces preuves concernent des
résultats à propos du mot “period-doubling” ou de son codage par blocs de longueur 2 et
sont similaires à celles développées dans le cas du mot de Thue–Morse.

Annexe B : 2-coloriages constants dans les cycles pondérés

Cette annexe contient les preuves omises dans le chapitre 6. Il s’agit de preuves concernant
les 2-coloriages constants dans le cas de cycles pondérés.

Conclusion

Durant cette thèse, j’ai pu aborder divers problèmes de la combinatoire des mots et de couver-
ture dans les graphes. En plus des travaux présentés dans les chapitres de ce manuscrit, je me
suis aussi intéressée à la complexité syntaxique associée à un ensemble ultimement périodique
d’entiers représenté dans un système de numération en base entière. Avec mon co-directeur
Rigo, un post-doctorant Rampersad et une autre doctorante Lacroix, nous [LRRV12] avons
obtenu des bornes sur le nombre d’éléments du monöıde syntaxique asssocié à un ensemble
ultimement périodique d’entiers. Généralisant les travaux de Honkala [Hon86] et développant
des techniques différentes de celles employées par Bell et al. [BCFR09], cette étude a per-
mis de mener à des procédures de décision sur le caractère périodique d’ensembles d’entiers
donnés par des automates finis.

Le fait d’effectuer mon doctorat en cotutelle m’a permis de voyager, de rencontrer deux
communautés de chercheurs lors de différentes conférences et de collaborer avec plusieurs
équipes, chacune ayant son sujet de prédilection. J’ai particulièrement apprécié ces collabora-
tions scientifiques comme en témoignent mes neuf co-auteurs de cinq nationalités différentes.
Le travail effectué a donné lieu à plusieurs publications (à ce jour, deux articles publiés dans
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des revues internationales avec comité de lecture [LRRV12, RSV13], un acte de conférence
internationale avec comité de lecture [RV11] et trois articles soumis [GPR+, GV, PRRV]).



Overview of the thesis

Introduction

This thesis deals with two (distinct but connected) topics that are combinatorics on words
and graph theory. Let us first describe a real-life situation. The game “Guess Who?” was
very popular when I was a child. This is a game for two players. Each player starts the
game with a board that includes cartoon images of 24 people with all the images standing
up. The game starts with each player selecting a character. The goal of the game is to be
the first one to determine which card one’s opponent has selected by asking questions on the
physical feature of characters. For instance, one player can ask to the other one whether his
character wears glasses. Players ask alternately their questions. Now, we imagine a static
version where all the questions of a player are asked in a row. Consider for instance the board
depicted in Figure 8 (note that this is a simplified example as the number of characters and
features are reduced). This board contains six characters that have eventually a walking
stick, a hat, glasses or a moustache. How many questions do we have to ask to be sure to
identify the secret character? In other words, how many features do we need to select in
order to identify the secret character?

Figure 8: Example of a board fot the game “Guess Who?”.

In this example, we only need three features, the walking stick, the glasses and the hat,
to identify the secret character as shown in Figure 9.

Now we can translate the example in terms of graph theory. Roughly speaking a graph is
just a set of points, called vertices, that are linked together by some lines where the points and
lines are respectively called vertices and edges. Graphs are useful to model many problems
such as the scheme of the underground network of a city, a family tree or a representation
of computers network. We can also use them to model the map of a house (Figure 10). The

15
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Figure 9: Three features are enough to identify the secret character.

rooms become vertices and two vertices are linked if the corresponding rooms are neighbours
of each other.

L

K

T

Figure 10: A house viewed in three different ways: in 3 dimensions, in 2 dimensions and
modelled by a graph. The letters L, K and T point the location of the living room, the
kitchen and the toilets in each of the views.

The features of a vertex are not physical features as before, but features linked to the
structure of the graph. The feature of a vertex is the set of vertices that are linked to the
given vertex. Consider again the example of the house. The happy owner of this house wants
to protect it from fire issues. So he places fire detectors in some rooms. A detector detects
a fire if the latter is in the same room or in a neighbouring room. A natural question is to
determine a placement of detectors that allows us to locate precisely the potential fire.

Let us place the detectors in the rooms as prescribed in the picture on the left in Figure 11.
These detectors can detect if there is a fire in the house but they can not locate precisely the
fire. Indeed, if the detector placed in the living room is the only one to signal a fire, then
we do not know if the fire broke out in the kitchen or in the toilets or even in other rooms.
To solve this problem, we can add two detectors and place them according to the picture on
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the right in Figure 11. This placement of detectors still detect any fire and now it allows us
to locate precisely the position of the fire. For example, if the detector in the living room is
the only one to signal a fire, then we are sure the fire broke out in the toilets. There is no
ambiguity anymore.

L

K

T

L

K

T

Figure 11: Two placements of fire detectors in the graph that models the house. The black
(respectively white) vertices represent the rooms with (resp. withour) a detector.

The set of detectors (i.e., the set of black vertices) forms an identifying code of the graph.
These codes were introduced in 1998 by Karpovsky, Chakrabarty and Levitin [KCL98] to
model fault-diagnosis in multiprocessor systems. Later, other applications of identifying
codes were discovered such as the design of emergency sensor networks in facilities [UTS04].

The essential question about identifying codes is to determine the minimum size of such
codes in a given graph (i.e., the minimum number of vertices that form an identifying code).
In the example of the detectors placed in the house, it means minimizing the number of
detectors and so minimizing the cost of detectors. The example presented is “simple” in the
sense that the house only has a few rooms. Therefore, its graph only has a few vertices. If
we consider more complicated graphs that correspond to more complicated buildings such as
a castle, a museum or a hotel complex, then they contain a lot of vertices (rooms) and the
interest of minimizing the number of detectors is clear.

We can view the problem of identifying codes as a covering problem. If we call the feature
of a given vertex (i.e., the set of neighbouring vertices) a ball and the center of this ball is the
given vertex, then an identifying code is a placement of balls such that each vertex is covered
by at least a ball (it is similar to the condition of detecting any fire in the house) and the set
of balls that cover a vertex is unique (it is similar to the condition of locating precisely the
place of the fire). When we look at sets of neighbouring vertices, we consider balls of radius
1 (the neighbouring vertices are close to the given vertex). Another covering problem we are
interested in considers balls of fixed radius r. Hence vertices that are at some distance r of
the given vertex.

For example, let us consider an example of network communication problem (Figure 12).
In a system of transmitting stations for cellular phone network, we want each transmitting
station to be at distance at least r + 1 from each other (to avoid interference) and we want
each cellular phone to be within distance r of two distinct transmitting stations (to guarantee
a good transmission quality). In terms of graphs, each transmitting station is the center of
a ball of radius r and any vertex that does not correspond to a transmitting station must
be cover by two balls. This is an example of covering problems called (r, a, b)-covering codes
where a is the number of transmitting station in each ball and b is the number of balls that
cover any vertex corresponding to a cellular phone. These codes were introduced by Cohen
et al. [CHLM95] under the names of weighted covering codes.

Consider again the problem of identifying codes. We showed that it was equivalent to a
covering problem in graphs. Now we translate it into a problem of combinatorics on words
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Figure 12: The placement on the transmitting stations with respect to the cellular phones is
an example of an (r, 1, 2)-covering code.

for the particular case of graphs called paths Pn of length n (Figure 14). Let u1, . . . , un be
the n vertices of the path Pn and let C be an identifying code of Pn. If the vertex ui belongs
to C, then we write 1 instead of ui. Otherwise, we write 0 instead of ui. The word (i.e., the
sequence of letters) obtained from u1 · · ·un is then a word over the alphabet {0, 1} and it
corresponds to the code C. For instance, the word 101 corresponds to an identifying code of
P3 where u1 and u3 are vertices of the code.

P3 P4

Pn

u1 u2 u3 u1 u2 u3 u4

u1 u2 u3 un−1 un

Figure 13: Graphs P3, P4 and Pn are called paths of respective length 3, 4 et n.

We look now at the graph depicted in Figure 13 where labelled arrows link the vertices.
A route (or journey) through the graph is the chain of consecutive arrows with respect to
the direction of the arrows. We count the number of routes going through n arrows, starting
with the vertex “Start” and ending in one of the gray vertices. This number is exactly the
number of vertices subsets that form identifying codes. Moreover, if we look at the labels of
the taken arrows for a particular route, then it is a word corresponding to an identifying code
of the path Pn. We observe that any word corresponding to an identifying code starts with
111, 101 or 011 and ends with 110,110 and 101. In theses words, we can observe the number
of finite words occurring. For instance, 000 does not occur in any word corresponding to an
identifying code (as there do not exist three consecutive arrows with label 0).

In the case of infinite words, we can also consider the number of distinct finite words
occurring in a given infinite words. We consider infinite words obtained by applying infinitely
many times a rule such as “replace each 0 by 01 and each 1 by 10”. For example, if we apply
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Start

10

1 01

1

1
1

1 0
1

11

01
0

1

1

Figure 14: Labelled arrows link the vertices of the graph that represents identifying codes in
the path Pn.

three times this rule to the word 0, we obtain

0 → 01 → (01)(10) = 0110 → (01)(10)(10)(01) = 01101001.

This rule allows us to construct a well-known infinite word called the Thue–Morse word.
The finite words occurring in a given infinite word are called factors of the infinite word.
For instance, 00, 01, 10 and 11 are the four factors of length 2 occurring in the Thue–
Morse word. These words already appear after 3 iterations of the rule. Instead of counting
the number of distinct factors, we can count the number of distinct factors up to a given
equivalence. Consider the equivalence “to be anagram of each other” which is called the
abelian equivalence. There are only three factors of length 2 of the Thue–Morse word, when
counted up to abelian equivalence. Indeed, 01 is the anagram of 10. A generalization of
the abelian equivalence was introduced by Karhumäki et al. [KSZ13] under the name of
ℓ-abelian equivalence. One of the problem studied in this thesis deals with the number of
factors occurring in the Thue–Morse word when they are counted up to 2-abelian equivalence.

The last problem focus on the notion of return words in finite words in an abelian context.
Let u be a factor of a given infinite word. A return word to u is a factor that starts with u
and ends before the next occurrence of u in the infinite word. For instance, if we consider
the Thue–Morse word and u = 011, we can mark the occurrences of u in the beginning of
the Thue–Morse word as follows

|011010|011001|01101001|0110|011010|011001|0110|01101001|011010|011.

So the first return word is 011010, the second return word is 011001 and so on. As for the
previous problem, we are interested in an abelian version of the concept. Hence, we consider
the occurrences of u up to abelian equivalence. Such problems have already been studied by
Puzynina and Zamboni [PZ13].
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Organization of the manuscript

The first three chapters focus on combinatorics on words. The three following chapters
deal with problems in graph theory. Both parts follow the same organization. Each one
begins with a chapter containing the basic notions as well as a first introduction to the
problems considered after. Each particular problem is the topic of a dedicated chapter.
Some complement information and proofs are given in the appendices.

We now present the content of each chapter2.

In Chapter 1, we collect some general results and definitions about words and k-regular
sequences (in particular stability properties of the set of k-regular sequences under sum
and product [AS03b]) that are needed in the other parts of this thesis. We also present
the extension of abelian equivalence of words to ℓ-abelian equivalence that was introduced
by Karhumäki, Saarela and Zamboni [KSZ13]. We end this chapter with the definition of
Sturmian words as the coding of the orbit of a point on the unit circle under rotation by an
irrational angle.

Chapter 2 is dedicated to the study of regularity of ℓ-abelian complexity sequences. We
follow the lead from Madill and Rampersad [MR13] who studied the abelian complexity
of the paperfolding word and showed it was 2-regular. We first show that any sequence
satisfying a particular recurrence relation with a parameter c and 2ℓ0 initial conditions is 2-
regular. In particular, these sequences exhibit a reflection symmetry in the values taken over
each interval of the form [2ℓ, 2ℓ+1) for ℓ ≥ ℓ0. Then, we focus on the 2-abelian complexity
sequence of the Thue–Morse word. To show that this sequence is 2-regular, we first study
the abelian complexity sequence of the 2-block coding of the Thue–Morse word and show
that it is 2-regular. To achieve this, we consider a quantity ∆12(n) that is the difference
between the maximal number of letters 1 and 2 together in a factor of length n of y and the
minimal of this number. The sequence ∆12(n)n≥∞ satisfies a recurrence relation that enters
the framework of our first theorem. Hence, it is 2-regular. Similar arguments applied to the
period-doubling word instead of the Thue–Morse word show that the 2-abelian complexity
sequence of the period-doubling word is 2-regular.

The return word is a classical notion in combinatorics on words and symbolic dynamical
systems [Dur98, HZ99, JV00, Vui01]. We consider abelian returns, that are return words
up to abelian equivalence, in Chapter 3. The notion of abelian returns has already been
studied by Puzynina and Zamboni [PZ13]. Their main theorem [PZ13] is a characterization
of Sturmian words in terms of the number of abelian returns with respect to each factor of
the word. This characterization is similar to the one obtained by Vuillon with the classic
return words [Vui01]. The main difference between [PZ13] and our work is that we consider
the set of abelian returns with respect to all factors of the word together. We first discuss
the relationship between periodicity and finiteness of the set of abelian returns with respect
to all factors. Then, we restrict ourselves to the set of abelian returns with respect to all
prefixes. For the particular case of the Thue–Morse word, this set contains 16 elements. We
obtain a characterization of Sturmian words with a null intercept in terms of the finiteness
of the set of abelian returns to all prefixes. We give this set, which contains 5 elements, for
the Fibonacci word. Finally, as Durand [Dur98] defined the derived sequence for the classic
return words, we define the abelian analogue, the abelian derived sequence. Durand [Dur98]
gave a characterization of primitive substitutive in terms of the finiteness of the set of derived

2This is a short version of the abstract given in French in “Aperçu de la thèse”.
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sequences. Such a characterization does not hold in the abelian case. Indeed, the Thue–Morse
word is an example of primitive substitutive word that has infinitely many abelian derived
sequences.

Chapter 4 contains the basic notions needed for a clear understanding of the two following
chapters. We present identifying codes and (r, a, b)-covering codes that belong to the more
general class of covering problems. Identifying codes in a graph correspond to coverings of
the graph with balls of radius r (i.e., closed neighbourhood) such that each vertex is covered
by at least one ball (domination condition) and the set of balls covering a given vertex is
unique (separation condition). These codes were introduced by Karpovsky et al. [KCL98] to
model fault-diagnosis in multiprocessor system. The (r, a, b)-codes are coverings that satisfy
multiplicity conditions. Each center of balls of radius r is covered a times, whereas each
vertex that is not the center of any ball is covered b times. These codes are a particular case
of weighted covering codes introduced by Cohen et al. [CHLM95].

In Chapter 5, we consider identifying codes. The problem of computing an identifying
code of minimal size is NP-complete in general [CHL03] but can be expressed as an integer
linear program. In such program, vertices are given weights. The weight is equal to 1
(respectively 0) if the vertex belongs (resp. do not belong) to the set. Minimizing the size
of the identifying code is the same as minimizing the sum of the weights. We consider
the fractional relaxation of this program. Hence we allow the weights of vertices to be real
between 0 and 1. We are also interested in minimizing the sum of the weights for the fractional
relaxation. It is natural to compare the integer solution to the fractional solution. Their ratio
is at most logarithmic in the number of vertices of the graphs. We focus on vertex-transitive
graphs as we are able to compute precisely the fractional solution for them. Identifying
codes have already been studied in different classes of vertex-transitive graphs, especially in
cycles [BCHL04, GMS06, JL12, XTH08] and hypercubes [BHL00, EJLR08, ELR08, HL02,
KCL98]. In these examples, the integer and fractional solutions seem to have the same order.
However, the minimal size of the symmetric differences of neighbourhoods is small compared
to the number of vertices. On the opposite, in vertex-transitive strongly regular graphs, the
size of symmetric differences is at least

√

|V | where |V | is the number of vertices. Another
advantage to look at strongly regular graphs is that their diameter is equal to 2. So results
on identifying codes can be extended to results on metric dimension (and vice versa). For
Kneser and Johnson graphs of diameter 2, the integer and fractional solutions are both of
order

√

|V |, while for Paley graphs, the fractional solution is bounded by a constant and the
integer solution is logarithmic in |V |. At the end of the chapter, we consider some adjacency
graphs of generalized quadrangles. It is the first time that these graphs are studied in the
framework of identifying codes. They form infinite families of vertex-transitive graphs with
integer and fractional solutions of order |V |α with α ∈ {1/4, 1/3, 2/5}.

The (r, a, b)-covering codes are another covering problem we considered. In the multidi-
mensional grid Zd, Dorbec et al. [DGHM09] presented a method to obtain (1, a, b)-covering
codes. This method is based on a 1-dimensional pattern that is extended by translations to
colour Zd. This method leads thus to periodic (1, a, b)-covering codes. In particular, in the
2-dimensional grid Z2, Puzynina [Puz08] showed that every (r, a, b)-covering code with r ≥ 2
is periodic and Axenovich [Axe03] gave a characterization of those when |a − b| > 4. The
notion of constant 2-, introduce in Chapter 6, comes up as a natural manner to translate
the periodicity of (r, a, b)-codes. Constant 2-labellings are particular 2-colourings of weighted
graphs that satisfy the following property. For every composition of the colouring with an
automorphism of a given group, the sum of the weights of the black vertices must be equal
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to a constant that depends on the colour of a given particular vertex. We study these colour-
ings into four types of weighted cycles. We conclude this chapter with an application of the
constant 2-labellings to the (r, a, b)-covering codes of the infinite grid with |a − b| > 4. We
obtain the precise value of a and b for (r, a, b)-covering codes. Hence, we extend slightly the
characterization obtained by Axenovich [Axe03].

We present in Appendix A the Mathematica code used to conjecture the recurrence
relations satisfied by the 2-abelian complexity of the Thue–Morse word. The computation is
based on matrix products that allows us to compute more efficiently the 2-abelian complexity
than a more naive approach (like sliding a window of given length and then comparing the
new factor to the ones already seen). For instance, the presented method only takes 4 minutes

to compute the 65538 first terms on a standard computer (Intel R© CoreTM i3) while the naive
approach already takes more than 4 minutes to compute the 513 first terms. Then, we give,
through their graphics, the 1- and 2-abelian complexity sequences of pure morphic words
over a 3-letter alphabet. Many of them exhibit a periodic behaviour or seem to satisfy a
reflection symmetry. Finally, the proofs omitted in Chapter 2 for the period-doubling word
are given in this appendix.

Appendix B contains the omitted proofs of Chapter 6 about constant 2-labellings in
weighted cycles.

Conclusion

During my PhD, I have had the occasion to discover and to study some problems in combi-
natorics on words and covering problems in graphs. In addition to the work presented in this
manuscript, I also studied the syntactic complexity associated with an eventually periodic
set of integers represented in an integer base numeration system. With my co-advisor Rigo,
a postdoctoral fellow Rampersad and a PhD student Lacroix, we obtained bounds on the
number of elements in the syntactic monoid associated with these sets [LRRV12]. Generaliz-
ing Honkala’s work [Hon86] and developing different techniques than the ones in [BCFR09],
this study led to decision procedures on the periodicity of sets of integers given by finite
automata.

The joint PhD offered me the opportunity to travel and to meet two communities of
researchers at the different conferences and workshops. Also it allowed me to work with and
to be part of several teams. I particularly enjoyed the scientific collaboration as attested
by my nine co-authors of five distinct countries. The accomplished work gave rise to several
publications (up to this day, two peer-reviewed publications in international revues [LRRV12,
RSV13], one peer-reviewed publication in proceedings of an international conference [RV11]
and three submitted articles [GPR+, GV, PRRV]).
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Chapter 1

Words

This chapter contains all basic notions needed for a clear understanding of Part I.
First, we recall some usual definitions and results about combinatorics on words.
Secondly, we present three infinite words generated by morphisms: Fibonacci
word, Thue–Morse word and period-doubling word. These words will be dis-
cussed again in the two following chapters. Next, we give definitions of automatic
sequences and their generalization to regular sequences. Then, we consider the
notion of ℓ-abelian complexity. Finally, we present a particular class of infinite bi-
nary words, called Sturmian words. We give characterizations of Sturmian words
in terms of complexity, return words and rotation words.
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1.1 Basic definitions about words

We briefly introduce the basic terminology on words. More details can be found in [BR10,
Lot97]. An alphabet is a non-empty set A. We call letters its elements. A word over an
alphabet A is a, finite or infinite, sequence of letters of A. Let ε denote the empty word , i.e.,
the empty sequence.

We denote by A∗ the set of all finite words over A including the empty word and by AN

the set of (right) infinite words. The length of a word w ∈ A∗ is the number of its letters
and is denoted by |w|. For a positive integer, we write An (respectively A≤n) the set of all
words of length n (resp. of length at most n).

Remark 1.1. Our convention is that we index letters in an infinite word beginning with
0. Moreover, infinite words will always be denoted by a bold type letter, w ∈ AN, while
non-empty finite words are written with italic letters, w ∈ A∗. Since an infinite word is just
a sequence over N taking values in a finite alphabet, we use the terms ‘infinite word’ and
‘sequence’ interchangeably.

If u = u0 · · ·un−1 and v = v0 · · · vm−1 are two finite words with ui, vi ∈ A, then the
concatenation of u and v, denoted by u · v or simply uv, is given by

w = uv where wi =

{

ui if 0 ≤ i < |u|
vi−|u| if |u| ≤ i < |u|+ |v|.

Note that the set A∗ together with the concatenation form a monoid, where the empty word
ε plays the role of the identity element.

We let un denote the concatenation of n copies of u and we set u0 = ε. We denote by
uω = uuu · · · the infinite word obtained by concatenating copies of u. More precisely, the
infinite word w = w0w1w2 · · · = uω is defined by wi = ui mod n for any i ≥ 0.

We can also define the concatenation of a finite word u = u0 · · ·un−1 with an infinite
word v = v0v1v2 · · · . The concatenation of u and v, denoted by u · v or simply uv, is the
infinite word w satisfying wi = ui for any i ∈ {0, . . . , |u| − 1} and wi = vi−|u| for any i ≥ |u|.

Example 1.2. The concatenation of the words fire and man gives the word fireman.

Let w be a finite word over A. A word u is called a factor (respectively prefix , suffix ) of
a word w if there exist two words x and y such that w = xuy (resp. w = uy, w = xu). We
denote respectively by prefℓ(w) and suffℓ(w) the prefix and suffix of length ℓ of w. The set of
all factors (respectively prefixes, suffixes) of a word w is denoted by Fac(w) (resp. Pref(w),
Suff(w)).

These notions are similarly defined in the case of an infinite word w ∈ AN. The sets of
all the finite factors and of all finite prefixes of an infinite word w are given by

Fac(w) = {u ∈ A∗ | ∃x ∈ A∗,y ∈ AN,w = xuy},
Pref(w) = {u ∈ A∗ | ∃y ∈ AN,w = uy}.

Observe that we have Pref(w) ⊆ Fac(w). We define the sets Prefn(w) = Pref(w) ∩ An and
Facn(w) = Fac(w)∩An, i.e., Prefn(w) and Facn(w) are respectively the sets of prefixes and
factors of length n of w.

Let i, j ∈ N be such that i ≤ j. The factor wiwi+1 · · ·wj of w = w0w1 · · · is denoted by
w[i, j]. The notation w[i, i] is shortened to wi.
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Example 1.3. Consider the word w = supercalifragilisticexpialidocious · · · . Then the
word super is a prefix (and a factor) of w. The word fragilistic is a factor but not a prefix
of w. We have w[5, 8] = cali and w9 = f .

Let w ∈ A∗. If a is a letter, |w|a denotes the number of occurrences of a in w. By analogy,
for a finite word x, we let |w|x denote the number of occurrences of the factor x in u. For
an ordered alphabet A = {a1, . . . , ak} with a1 < · · · < ak, the Parikh mapping Ψ : A∗ → Nk

is defined by

Ψ(w) = (|w|a1 , . . . , |w|ak
).

The Parikh mapping is also known as the commutative image.

Example 1.4. Let A = {a, b}. The finite word w = baaa has length |w| = 4 and it contains
|w|a = 3 occurrences of the letter a. We have |w|aa = 2 and |w|ab = 0. The last equality
means that the word ab is not a factor of w. If we order the alphabet with the order a < b,
then Ψ(w) = (3, 1).

Let C > 0. An infinite word w ∈ Aω is C-balanced , if for all factors u, v ∈ Fac(w) of the
same length, we have for all letters a ∈ A

||u|a − |v|a| ≤ C.

A 1-balanced word is simply called balanced.

Example 1.5. Consider the infinite word (01)ω = 0101010101 · · · . Any factor of even
length 2n has n zeroes and n ones, while any factor of odd length 2n+ 1 has n zeroes and
n+ 1 ones or vice versa. So the infinite word (01)ω is 1-balanced.

If w = w0 · · ·wℓ−1 where wi are letters, then we let wR = wℓ−1 · · ·w0 denote the reversal
of w. When a word is equal to its reversal, we say that the word is a palindrome.

Example 1.6. The reversal of the word w = stressed is the word wR = desserts. The word
w = radar = wR is a palindrome since it is spelt the same backwards and forwards.

For any word w = w0 · · ·wℓ−1 of length ℓ over {0, 1}, we write w for the complement
of w, that is, the word obtained from w by changing 0’s into 1’s and 1’s into 0’s. Hence,
the letters of w are given by (w)i = 1 − wi for 0 ≤ i ≤ |w|. Similarly, we let w denote the
complement of w ∈ {0, 1}N, in the case of infinite words.

Example 1.7. The complement of w = 011010 is the word w = 100101.

If a word w starts with the letter a, then a−1w denotes the word obtained from w by
deleting its first letter. Similarly, if a word w ends with the letter a, then wa−1 denotes the
word obtained from w by deleting its last letter.

Example 1.8. If w is the word tear, then t−1w = ear and wr−1 = tea.

An infinite word w is periodic (of period m), if it can be factored as w = uω = uuu · · ·
with u ∈ A∗ and |u| = m. The smallest m for which such a factorization exists is called
the period of w. An infinite word w is called ultimately periodic if it is the concatenation
of a finite word with a periodic infinite word. An infinite word w is aperiodic if it is not
ultimately periodic.
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Example 1.9 (Representation of reals). Real numbers from the interval [0, 1) are tradition-
ally represented as infinite sequences of digits, that is as infinite words. Let k be a positive
integer and α ∈ [0, 1). The k-expansion of α is the infinite word a1a2 · · · over the alphabet
{0, . . . , k − 1} such that the letters ai satisfy

α =

∞
∑

i=0

aik
−i.

It is well known that a number is rational if and only if its k-expansion is eventually peri-
odic [HW08]. For instance, we can check that the 10-expansion of 11/28, i.e., the decimal
digits of 11/28, is the infinite word 39(28514)ω as

11

28
= 0.392857142857142857142857142857142857142857142 · · · .

An infinite word w is said to be recurrent if every factor u of w appears infinitely often
in w. An infinite word w is said to be uniformly recurrent , if it is recurrent and the distance
between any two consecutive occurrences of any of its factors u is bounded by a constant
depending only on u. In other words, w is uniformly recurrent if it is recurrent and for all
u ∈ Fac(w), there exists a constant Cu > 0 such that for all i ≥ 0, we have

w[i, i+ |u| − 1] = u⇒ (∃j ∈ {i+ 1, . . . , i+ Cu} : w[j, j + |u| − 1] = u).

Many notions occurring in combinatorics on words have been recently and fruitfully
extended to an abelian context. Two words u and v are said to be abelian equivalent if
u is an anagram of v. For instance, the words silent and listen are abelian equivalent.

Definition 1.10. Let u, v be two finite words of the same length. We say that u and v are
abelian equivalent and we write u ∼ab v if Ψ(u) = Ψ(v). For example, 00011 ∼ab 10010.
Note that we see in Section 1.4 that the notion of abelian equivalence can be generalized to
ℓ-abelian equivalence.

Usually, the corresponding concepts are defined up to abelian equivalence. The notion
of avoidance in an abelian context was introduced by Erdős in the 60’s [Erd61]. He raised
the question whether there exist infinite words over a given alphabet that do not contain
abelian squares, i.e., two consecutive permutations of the same factor. The word intestines
is an example of abelian square. Since then many authors have considered questions such
as avoiding abelian repetitions. For instance, abelian squares are avoidable on a 4-letter
alphabet [Ker92]. Abelian cubes are avoidable on a 3-letter alphabet [Dek79]. Abelian 4th

power are avoidable on a 2-letter alphabet [Dek79].
An infinite wordw is abelian periodic (of period m), if it can be factored asw = u1u2u3 · · ·

where, for all i, j, the finite words ui and uj have the same length m and are abelian equiv-
alent. The smallest m for which such a factorization exists is called the abelian period of w.
An infinite word w is called ultimately abelian periodic if it is the concatenation of a finite
word with an abelian periodic infinite word.

Example 1.11 (Thue–Morse word). Consider the infinite word t = t0t1t2 · · · over the
alphabet {0, 1} called the Thue–Morse word [AS99] and defined by the recurrence relations

t0 = 0, t2i = ti and t2i+1 = 1− ti for all i ∈ N.
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The prefix of length 32 of t is then given by

pref32(t) = 01101001100101101001011001101001.

The Thue–Morse word t appears as A010060 in [OF]. We have t2i+1 = t2i for all i ≥ 0. So t
is the concatenation of 01 and 10. Since these words 01 and 10 are abelian equivalent, t is
abelian periodic of period 2.

Let w be an infinite word. If, for each factor u of w, there exist infinitely many i such
that w[i, i+ |u| − 1] ∼ab u, then w is said to be abelian recurrent . If w is abelian recurrent
and if, for each factor u of w, the distance between any two consecutive occurrences of factors
abelian equivalent to u is bounded by a constant depending only on u, then w is said to be
abelian uniformly recurrent .

Remark 1.12. Note that uniform recurrence implies obviously abelian uniform recurrence.
We show in Chapter 3 that the converse does not hold.

1.2 Infinite words generated by morphisms

In this thesis, we consider three notable infinite words : the Fibonacci word, the Thue–Morse
word and the period-doubling word. We can define these words using morphisms.

Let A and B be two alphabets. A morphism is a map ϕ : A∗ → B∗ that satisfies
ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ A∗. Typically we use the Greek letters ϕ, η, θ, µ, ν, σ to
denote morphisms.

Clearly for any morphism ϕ, we have ϕ(ε) = ε. Moreover, a morphism is completely
determined by the images of the letters of the alphabet A. Hence, when we define a morphism,
we always give it by specifying these images. If all these images have the same length k,
then we say that the morphism is k-uniform. A 1-uniform morphism is called a coding or a
letter-to-letter morphism.

Example 1.13. Let A = {a, e, r, t}, B = {e, i, ℓ,m, s}, C = {f, n, u, y} and define the
morphisms

ϕ : A∗ → B∗,















a 7→ ε
e 7→ mi
r 7→ ℓe
t 7→ s

and τ : B∗ → C∗,























e 7→ y
i 7→ n
ℓ 7→ n
m 7→ u
s 7→ f

.

Then ϕ(tear) = smiℓe and τ(smiℓe) = funny. Moreover τ is an example of coding.

Consider now that A = B. Hence, consider a morphism ϕ : A∗ → A∗. Then we can
iterate the application of ϕ. We define ϕ0(a) = a and ϕi+1(a) = ϕ(ϕi(a)) for all a ∈ A. The
morphism ϕ is called primitive if there exists a positive integer k such that |ϕk(a)|b ≥ 1 for
all letters a, b ∈ A. We can also apply morphisms to infinite words. If w = w0w1w2 · · · , then
we define

ϕ(w) = ϕ(w0)ϕ(w1)ϕ(w2) · · · .

An infinite word w such that ϕ(w) = w is called a fixed point of ϕ.
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We equip the set AN of a distance turning it into a metric space1. Let w,x be two distinct
infinite words in AN. We denote by w ∧ x the longest common prefix of w and x. We define
a distance d : AN ×AN → [0,∞) by

d(w,x) = 2−|w∧x|

and we set d(w,w) = 0. Hence, the longer prefix two words share, the closer they are. We
can now introduce the notion of a sequence of finite words converging to an infinite word.
Let (un)n≥0 be a sequence of finite words over A. If $ is a symbol that does not belong to
A, then any word u ∈ A∗ is in bijection with the word u$ω ∈ (A ∪ {$})N. So we say that
the sequence (un)n≥0 of finite words is converging to the infinite word w if the sequence
(un$

ω)n≥0 of infinite words is converging to w, i.e., if

lim
n→∞

d(w, un$
ω) = 0.

Let a be a letter of A. If there exists a finite word u ∈ A∗ such that ϕ(a) = au and
limn→+∞ |ϕn(a)| = +∞, then ϕ is prolongable on the letter a. Note that if ϕ is pro-
longable on a letter, then we say that ϕ is a substitution. In that case, the sequence of words
a, ϕ(a), ϕ2(a), . . . converges to the infinite word

ϕω(a) = auϕ(u)ϕ2(u) · · · ,

which is a fixed point of ϕ as ϕ(ϕω(a)) = ϕω(a). If w = ϕω(a), we say that w is a (pure)
morphic word or a substitutive word . Let C be an alphabet. If w = τ(ϕω(a)) where τ is a
coding from A∗ to C∗, then w is a morphic word . If moreover the morphism ϕ is primitive,
then we say that w is a primitive morphic word.

Let us now introduce three notable examples of morphic words. The first two examples
are discussed again in Chapter 3.

Example 1.14 (Fibonacci word). Let A = {0, 1}. The Fibonacci morphism ϕ : A∗ → A∗ is
defined as follows

ϕ :

{

0 7→ 01

1 7→ 0.

The first few iterations of ϕ are ϕ(0) = 01, ϕ2(0) = 010, ϕ3(0) = 01001, ϕ4(0) = 01001010.
It is easy to check that |ϕn(0)| is the n-th Fibonacci number. Hence ϕω(0) is well-defined
and the Fibonacci word is the fixed point of the morphism ϕ starting with 0:

f = ϕω(0) = 0100101001001010010100100101001001 · · · .

This word appears as A003849 in [OF].

Example 1.15. The Thue–Morse word t introduced in Example 1.11 is also a fixed point
of a morphism. Consider the morphism σ over the free monoid {0, 1}∗ defined by

σ :

{

0 7→ 01

1 7→ 10.

It is easy to check that the Thue–Morse word

t = σω(0) = 01101001100101101001011001101001 · · ·

is the fixed point of σ starting with 0.

1In fact, the set AN equipped with the distance will even be an ultrametric space.
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Example 1.16 (Period-doubling word). The period-doubling word , known as the sequence
A096268 in [OF],

p = ψω(0) = 01000101010001000100 · · ·
is a fixed point of the morphism ψ over {0, 1}∗ defined by

ψ :

{

0 7→ 01

1 7→ 00.

We consider again the last two examples in Chapter 2. Observe that these last two
sequences are obtained by iterating a 2-uniform morphism. These sequences are in fact two
2-automatic sequences as shown in the next section.

1.3 Automatic and regular sequences

Let k ≥ 2 be an integer. A k-automatic sequence is an infinite word w = τ(ϕω(a)), where
ϕ is a k-uniform morphism, τ is a coding and a is a letter. Since the fundamental work
of Cobham [Cob72], the automatic sequences have been extensively studied. See for in-
stance [Eil74, AS03a].

Example 1.17. The Thue–Morse word t and the period-doubling word p are both generated
by 2-uniform morphisms (see Example 1.15 and 1.16). Hence, they are both 2-automatic.

We see that the automatic sequences are related to base-k representations, also known as
base-k expansions. Let n be a positive integer. The base-k representation of n is the word
aℓaℓ−1 · · · a0 over the alphabet {0, . . . , k − 1} where the letters ai satisfy

n =

ℓ
∑

i=0

aik
i

and aℓ 6= 0. We denote the base-k representation of n by repk(n) and we say that n is the
value of the word repk(n) = aℓaℓ−1 · · ·a0. Moreover, this definition implies that numbers are
written with the most significant digit on the left. For instance, the base-3 representation of
n = 11 is the word rep3(11) = 102 over the alphabet {0, 1, 2} since 11 = 1 · 9 + 0 · 3 + 2 · 1.

We give some basic properties of automatic sequences. These results can be found in
[AS03a].

If a sequence w differs only in finitely many terms from a k-automatic sequence,
then it is also k-automatic.

Theorem 1.18. [AS03a]

If w is an ultimately periodic sequence, then it is k-automatic for all k ≥ 2.

Theorem 1.19. [AS03a]
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Let w be a k-automatic sequence and τ be a coding. Then the sequence τ(w) is
also k-automatic.

Theorem 1.20. [AS03a]

Automatic sequences can be characterized by their k-kernel. The k-kernel of a sequence
s = s(n)n≥0 is the set

Kk(s) = {s(ken+ r)n≥0 : e ≥ 0 and 0 ≤ r < ke}.

A sequence w is k-automatic if and only if its k-kernel is finite.

Theorem 1.21. [Eil74, AS03a]

Example 1.22. For instance, the 2-kernel K2(t) of the Thue–Morse word t contains exactly
two elements, namely t and t = σω(1), since σ(0) = 00 and σ(1) = 11. In other words, for
t = t0t1t2 · · · , we have t2i = ti and t2i+1 = ti.

Remark 1.23. Another characterization of k-automatic sequences involves automaton with
output. An automaton with output is just a finite set of elements represented by circles, that
are linked with labelled arcs, and inside each of these elements, there is an output.

More formally, a deterministic finite automaton with output (DFAO) is a 6-tuple
M = (Q, q0, A, δ, B, µ) where Q is a non-empty finite set of elements called states , q0 ∈ Q is
the initial state, A is an alphabet, δ : Q × A → Q is a transition function, B is an output
alphabet and µ : Q → B is an output function. The transition function δ naturally extends
to a function on Q×A∗ as follows

δ(q, ε) = q and δ(q, aw) = δ(δ(q, a), w)

for any state q ∈ Q, letter a ∈ A and word w ∈ A∗.

q0/0 q1/1

0 0

1

1

Figure 1.1: A deterministic finite automaton with output (DFAO).

For example, Figure 1.1 depicts a DFAO with a set of states Q = {q0, q1}, q0 as its initial
state (represented with a small incoming arc), an alphabet A = {0, 1}, a function transition
δ defined by

δ(q0, 0) = q0, δ(q0, 1) = q1, δ(q1, 0) = q1 and δ(q1, 1) = q0,

an output alphabet B = {0, 1} and an output function µ defined by µ(q0) = 0 and µ(q1) = 1.
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Let w = w0w1w2 · · · be an infinite word over an alphabet B. It is of the form w =
τ(ϕω(a)), where ϕ : A∗ → A∗ is a k-uniform morphism, τ : A∗ → B∗ is a coding
and a is a letter of A if and only if there exists a DFAO (Q, qa, {0, . . . , k−1}, δ, B, µ)
such that Q = {qi : i ∈ A}, δ(qa, 0) = qa and

wj = µ(δ(qa, repk(j))) ∀j ≥ 0.

Theorem 1.24. [Cob72]

Example 1.25. We already know that the Thue–Morse word t is 2-automatic since it is
generated by a 2-uniform morphism. In addition, we can check that the DFAO in Figure 1.1
is generating t when we feed him with the base-2 representation of the indices (Table 1.1).
To do this, observe first that the definition given in Example 1.11 implies

ti =

{

1 if |rep2(i)|1 is even

0 otherwise.

Then for instance, consider t6. The base-2 representation of 6, rep2(6) = 110, is processed

from most significant to least significant digit: q0
1→ q1

1→ q0
0→ q0. Hence the automaton

produces the output associated with the state q0 which is 0. So we find t6 = 0.

i 0 1 2 3 4 5 6 7 8 . . .
ti 0 1 1 0 1 0 0 1 1 . . .

rep2(i) ε 1 10 11 100 101 110 111 1000 . . .

Table 1.1: The base-2 representations of the first positive integers and the corresponding
letters of the Thue–Morse word t.

A natural generalization of automatic sequences to sequences over an infinite alphabet is
given by the notion of k-regular sequences, introduced by Allouche and Shallit [AS92]. The
k-regularity of a sequence provides us with structural information about how the different
terms are related to each other. We restrict ourselves to sequences taking integer values only.

Definition 1.26. Let k ≥ 2 be an integer. A sequence s = s(n)n≥0 ∈ ZN is k-regular
if the ideal 〈Kk(s)〉 generated by Kk(s) is a finitely-generated Z-module, i.e., there exist a
finite number of sequences t1(n)n≥0, . . . , tℓ(n)n≥0 such that every sequence in the k-kernel
Kk(s) is a Z-linear combination of the ti’s. Otherwise stated, for all e ≥ 0 and for all
r ∈ {0, . . . , ke − 1}, there exist integers c1, . . . , cℓ such that

∀n ≥ 0, s(ken+ r) =

ℓ
∑

i=1

ci ti(n).

Clearly, from Theorem 1.21, any k-automatic sequence is necessarily k-regular. There are
many natural examples of k-regular sequences [AS92, AS03b].
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Example 1.27 (Sums of digits). Consider the sequence s(n)n≥0 where s(n) is the sum of
the digits of the base-2 representation of n:

s(n)n≥0 = (0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, . . .)

Then
s(2en+ r) = s(n) + s(r)

for all e ≥ 0 and for all r ∈ {0, . . . , ke − 1}, since rep2(2
en) = rep2(n)0

e and |rep2(r)| ≤ e.
Therefore every sequence in the 2-kernel is a Z-linear combination of the sequence s(n)n≥0

and the constant sequence 1. So the 2-kernel is finitely generated and s(n)n≥0 is a 2-regular
sequence.

There is a convenient matrix representation for k-regular sequences which leads to an
efficient algorithm for computing the values of such a sequence (and many related quantities).
See also [BR11, Chapter 5] for connections with rational series.

A sequence s(n)n≥0 is k-regular if and only if there exist ℓ sequences s =
s1, s2, . . . , sℓ and k matrices B0, B1, . . . , Bk−1 of size ℓ × ℓ for some integer ℓ such
that if

V (n) =







s1(n)
...

sℓ(n)






,

one has V (kn+ a) = BaV (n) for 0 ≤ a < k.

Theorem 1.28. [AS92]

Example 1.29 (Example 1.27 continued). For the sequence s(n)n≥0 of the sum of digits of
the base-2 representation, we set ℓ = 2, k = 2,

V (n) =

(

s(n)
1(n)

)

, B0 =

(

1 0
0 1

)

and B1 =

(

1 1
0 1

)

where 1(n)n≥0 denotes the constant sequence 1. Then, we have V (2n) = B0V (n) and
V (2n+ 1) = B1V (n). This shows that s(n)n≥0 is a 2-regular sequence.

In Chapter 2, we use the following classical results stated as Theorem 2.3, Corollary 2.4
and Theorem 2.5 in [AS92].

Let k ≥ 2 be an integer. A sequence taking finitely many values is k-regular if and
only if it is k-automatic.

Lemma 1.30. [AS92]

Let k,m ≥ 2 be integers. If a sequence s(n)n≥0 is k-regular, then (s(n) mod m)n≥0

is k-automatic.

Lemma 1.31. [AS92]
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Let k ≥ 2 be an integer. If the sequences s1(n)n≥0 and s2(n)n≥0 are k-regular, then
so are the sequences

(s1(n) + s2(n))n≥0, (s1(n) · s2(n))n≥0 and (c · s1(n))n≥0

for any constant c.

Lemma 1.32. [AS92]

Moreover, as a direct consequence of two results stated in [AS92], namely Theorem 2.6
and its following remark, we have the next lemma.

Let k ≥ 2 be an integer. Let s(n)n≥0 be a sequence. The sequence s(n)n≥0 is
k-regular if and only if s(n+ 1)n≥0 is k-regular.

Lemma 1.33.

We often make use of the following composition lemma for a function F defined piecewise
on several k-automatic sets. This lemma is a direct consequence of Lemma 1.32.

Let k ≥ 2. Let P1, . . . , Pℓ : N → {0, 1} be unary predicates that are k-automatic.
Let f1, . . . , fℓ be k-regular functions. The function F : N → N defined by

F (n) =

ℓ
∑

i=1

fi(n)Pi(n)

is k-regular.

Lemma 1.34.

Note that if, for each n, there is exactly one i such that Pi(n) = 1, then we can write

F (n) =























f1(n) if P1(n) = 1

f2(n) if P2(n) = 1
...

...

fℓ(n) if Pℓ(n) = 1.

This is the setting in which we apply Lemma 1.34.

1.4 Factor complexity and ℓ-abelian complexity

Given an infinite word, it is natural to wish to determine how “complex” the word is. They
are many measures of complexity. We are interested in the ones counting factors up to some
equivalence.
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A classical measure of the complexity of an infinite word w is its factor complexity

P(∞)
w : N → N which maps n to the number of distinct factors of length n occurring in

w.

Example 1.35. The factor complexity P(∞)
t of the Thue–Morse word t is well-known [Brl89,

dLV88]. The first values are depicted in Figure 1.2. We have P(∞)
t (0) = 1, P(∞)

t (1) = 2,

P(∞)
t (2) = 4 and for n ≥ 2,

P(∞)
t (n) =

{

4n− 2 · 2m − 4 if 2 · 2m < n ≤ 3 · 2m
2n+ 4 · 2m − 2 if 3 · 2m < n ≤ 4 · 2m.

2000 4000 6000 8000 10 000 12 000

10 000

20 000

30 000

40 000

Figure 1.2: The values of the factor complexity P(∞)
t (n) of the Thue–Morse word for n in

{0, . . . , 12000}.

The well-known theorem of Morse–Hedlund gives a characterization of the ultimately
periodic words in terms of factor complexity. See for instance [Lot97, Theorem 2.1.5] or
[AS03a, Theorem 10.2.6] for a proof.

An infinite word w is ultimately periodic if and only if there exists a positive integer

n such that the factor complexity of w satisfies P(∞)
w (n) ≤ n.

Theorem 1.36. Morse–Hedlund theorem

The next result was obtained independently by Charlier et al. [CRS12] and by Carpi and
D’Alonzo [CD10]. The latter authors actually proved that the result holds for a larger class
of sequences, called k-synchronized sequences. The special case of sequences generated by
uniform morphisms (without applying a coding after) was also proved by Mossé [Mos96].
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A k-automatic sequence w has a k-regular factor complexity function and the se-

quence (P(∞)
w (n+ 1)− P(∞)

w (n))n≥0 is k-automatic.

Proposition 1.37. [CD10, CRS12]

Example 1.38. Consider again the Thue–Morse word. We have

P(∞)
t (2n+ 1) = 2P(∞)

t (n+ 1) and P(∞)
t (2n) = P(∞)

t (n+ 1) + P(∞)
t (n)

for all n ≥ 2. It is not obvious from these relations that the factor complexity is 2-regular,
but we also have the following relations

P
(∞)
t (8n) = −2P

(∞)
t (2n) + 3P

(∞)
t (4n)

P
(∞)
t (4n+ 1) = −P

(∞)
t (2n) + P

(∞)
t (2n+ 1) + P

(∞)
t (4n)

P
(∞)
t (4n+ 3) = P

(∞)
t (2n)− P

(∞)
t (2n+ 1) −P

(∞)
t (4n) + 2P

(∞)
t (4n+ 2)

P
(∞)
t (8n+ 2) = −2P

(∞)
t (2n) + 2P

(∞)
t (4n) + P

(∞)
t (4n+ 2)

P
(∞)
t (8n+ 4) = P

(∞)
t (2n)− P

(∞)
t (2n+ 1) −P

(∞)
t (4n) + 3P

(∞)
t (4n+ 2)

P
(∞)
t (8n+ 6) = −2P

(∞)
t (n) + 7P

(∞)
t (2n) − 2P

(∞)
t (2n+ 1)− 5P

(∞)
t (4n) + 5P

(∞)
t (4n+ 2)

which can be checked using the closed formula given in Example 1.35.

In an abelian context, the analogue to factor complexity is the abelian complexity. The

abelian complexity of an infinite word w is a function P(1)
w : N → N which maps n to the

number of distinct factors of length n occurring in w, counted up to abelian equivalence. For
more details on abelian complexity, see the reference [RSZ11] which contains many relevant
bibliographic pointers.

Example 1.39. The abelian complexity of the Thue–Morse word satisfies the following
equalities

P(1)
t (2n+ 1) = 2 and P(1)

t (2n) = 3.

Indeed, for a factor u of odd length, we have |u|0 = |u|1+1 or |u|0 = |u|1−1. Both possibilities
occur: if u ∈ Fac(t), then we also have u ∈ Fac(t) since σn+1(0) = σn(0)σn(0). Now for a
factor u of even length, either it occurs at an even index and |u|0 = |u|1 by definition of σ, or
it occurs at an odd index. In the last case (Figure 1.3), we can write u as the concatenation
of u0v1 · · · vn−1u2n−1 where u0, u2n−1 ∈ {0, 1} and v1, . . . , vn−1 ∈ {0, 1}2. There are three
possible abelian equivalence classes depending on the first letter u0 and the last letter u2n−1

of u :










|u|0 = |u|1 − 2 if u0 = u2n−1 = 1

|u|0 = |u|1 if u0 6= u2n−1

|u|0 = |u|1 + 2 if u0 = u2n−1 = 0.

Again all cases actually occur.

Bounded factor complexity can be interpreted in terms of ultimate periodicity (see the
Morse–Hedlund theorem). Similarly, bounded abelian complexity can be interpreted as fol-
lows.
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t 0 1 1 0 · · ·

2j + 1

u

Figure 1.3: A factor u of even length occurring at an odd index 2j+1 starts and ends at the
middle of a factor 01 or 10.

An infinite word has bounded abelian complexity if and only if it is C-balanced for
some C > 0.

Lemma 1.40. [RSZ11]

Let ℓ ≥ 1 be an integer. Based on [Kar80] the notions of abelian equivalence and thus
abelian complexity were recently extended to ℓ-abelian equivalence and ℓ-abelian complexity
[KSZ13].

Definition 1.41. Let u, x be two finite words. Recall that |u|x denote the number of
occurrences of the factor x in u. Two finite words u and v are ℓ-abelian equivalent if |u|x = |v|x
for all words x of length |x| ≤ ℓ. In that case, we write u ∼ab,ℓ v.

Example 1.42. The words 11010011 and 11101001 are 2-abelian equivalent (see Table 1.2)
but they are not 3-abelian equivalent. Indeed, the factor 011 occurs in the first word but not
in the second one.

u |u|0 |u|1 |u|00 |u|01 |u|10 |u|11
11010011 3 5 1 2 2 2
11101001 3 5 1 2 2 2

Table 1.2: The number of occurrences of factors of length at most 2 into the words 11010011
and 11101001.

The following lemma gives an equivalent way of defining the ℓ-abelian equivalence.

Let u, v be words of length at least ℓ − 1 and let |u|x = |v|x for every word x of
length ℓ. The following conditions are equivalent:

• |u|x = |v|x for all x ∈ A≤ℓ−1,

• prefℓ−1(u) = prefℓ−1(v),

• suffℓ−1(u) = suffℓ−1(v).

Lemma 1.43. [KSZ13]
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The question of avoidance was extended to the context of ℓ-abelian equivalence. Table 1.3
depicts the answer to the following question for n,m ∈ {2, 3, 4}. Given n,m ≥ 2, what is the
smallest ℓ such that ℓ-abelian nth powers are avoidable on an m-letter alphabet? For instance,
the size of the smallest alphabet where 2-abelian squares are avoidable is four [HKS12], like
in the case of the abelian squares [Ker92]. This size is two for 2-abelian cubes [Rao], like in
the case of “usual” cubes [Thu06, Thu12].

n�m 2 3 4
2 3 [Rao] 1 [Ker92]
3 2 [Rao] 1 [Dek79] 1
4 1 [Dek79] 1 1

Table 1.3: The smallest ℓ such that ℓ-abelian nth powers are avoidable on an m-letter alpha-
bet.

Some basic facts on ℓ-abelian equivalence are listed in the next lemma.

Let u, v ∈ A∗ and ℓ ≥ 1.

• If u ∼ab,ℓ v, then u ∼ab,ℓ′ v for all ℓ′ ≤ ℓ.

• If u1 ∼ab,ℓ v1 and u2 ∼ab,ℓ v2, then u1u2 ∼ab,ℓ v1v2.

Lemma 1.44. [KSZ13]

Hence one can define an analogue to factor complexity, with respect to the ℓ-abelian
equivalence.

Definition 1.45. The ℓ-abelian complexity of an infinite word w is a function P(ℓ)
w : N → N

which maps n to the number of distinct factors of length n occurring in the infinite word
w, counted up to ℓ-abelian equivalence. That is, we count ℓ-abelian equivalence classes
partitioning the set of factors Facn(w) of length n occurring in w. In particular, for any
infinite word w, we have for all n ≥ 0

P(1)
w (n) ≤ · · · ≤ P(ℓ)

w (n) ≤ P(ℓ+1)
w (n) ≤ · · · ≤ P(∞)

w (n).

Since we are interested in ℓ-abelian complexity (especially in Chapter 2), it is natural to
consider the following operation that permits us to compare factors of length ℓ occurring in
an infinite word. Indeed, if two finite words are ℓ-abelian equivalent, it implies that their
ℓ-block codings are abelian equivalent, but the converse does not hold (see Example 1.47).

Definition 1.46. Let ℓ ≥ 1. The ℓ-block coding of the word w = w0w1w2 · · · over the
alphabet A is the word

block(w, ℓ) = (w0 · · ·wℓ−1) (w1 · · ·wℓ) (w2 · · ·wℓ+1) · · · (wj · · ·wj+ℓ−1) · · ·

over the alphabet Aℓ. If A = {0, . . . , r − 1}, then it is convenient to identify Aℓ with the
set {0, . . . , rℓ − 1} and each word w0 · · ·wℓ−1 of length ℓ is thus replaced with the integer
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obtained by reading the word in base r, i.e.,

ℓ−1
∑

i=0

wi r
ℓ−1−i.

One can also define similarly the ℓ-block coding of a finite word u of length at least ℓ. The
resulting word block(u, ℓ) has length |u| − ℓ+ 1.

Example 1.47 (Example 1.42 continued). The 2-block codings of the two 2-abelian equiv-
alent words u = 11010011 and v = 11101001 are respectively 3212013 and 3321201, which
are abelian equivalent. Consider now the word 0132132 which is the 2-block coding of
w = 00110110. All the 2-block codings are abelian equivalent but u 6∼ab,2 w 6∼ab,2 v.

Let ℓ ≥ 1. Two finite words u and v of length at least ℓ− 1 are ℓ-abelian equivalent
if and only if they share the same prefix (resp. suffix) of length ℓ− 1 and the words
block(u, ℓ) and block(v, ℓ) are abelian equivalent.

Lemma 1.48. [KSZ13]

It is well known that the ℓ-block coding of a k-automatic sequence is again a k-automatic
sequence [Cob72].

Example 1.49. For the period-doubling word p, the 2-block coding is given by

block(p, 2) = ηω(1) = 12001212120012001200121212001212 · · ·

where η is the morphism over {0, 1, 2}∗ defined by η : 0 7→ 12, 1 7→ 12, 2 7→ 00.

Example 1.50. For the Thue–Morse word t, the 2-block coding is given by

block(t, 2) = νω(1) = 132120132012132120121320 · · ·

where ν is the morphism over {0, 1, 2, 3}∗ defined by ν : 0 7→ 12, 1 7→ 13, 2 7→ 20, 3 7→ 21.

1.5 Sturmian words

Sturmian words form one of the most studied classes of infinite words. For surveys, see [Lot02,
Chapter 3] and [PF02, Chapter 6]. It can be defined in several ways. For instance, it can be
defined as infinite words having the lowest factor complexity among all aperiodic words.

Definition 1.51. An infinite word w is Sturmian if P(∞)
w (n) = n + 1 for all n ≥ 0. In

particular, Sturmian words are over a binary alphabet as P(∞)
w (1) = 2.

Example 1.52. The Fibonacci word introduced in Example 1.14

f = 0100101001001010010100100101001001 · · ·
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is a Sturmian word. A short computation shows

Fac0(f) = {ε} P(∞)
f (0) = 1

Fac1(f) = {0, 1} P(∞)
f (1) = 2

Fac2(f) = {00, 01, 10} P(∞)
f (2) = 3

Fac3(f) = {001, 010, 100, 101} P(∞)
f (3) = 4.

To show that P(∞)
f (n) = n + 1 for all n ∈ N, it remains to show that u ∈ Facn(f) implies

u0 ∈ Facn+1(f), u1 6∈ Facn+1(f) or u0 6∈ Facn+1(f), u1 ∈ Facn+1(f) for all factors u except of
one. The proof of this fact can be found in [Lot02, Example 2.1.1].

An equivalent definition of Sturmian words is given in the following theorem. Recall from
Section 1.1 that an infinite wordw over the alphabet {0, 1} is balanced if for all u, v ∈ Fac(w)
of same length, we have ||u|1 − |v|1| ≤ 1.

An infinite word w ∈ {0, 1}N is Sturmian if and only if it is aperiodic and balanced.

Theorem 1.53. Coven–Hedlund [CH73, Lot02]

This means that if w is a Sturmian word, then its abelian complexity satisfies

P (1)
w (n) = 2 for all n ≥ 1. (1.1)

An aperiodic infinite word w is Sturmian if and only if P(ℓ)
w (n) = min(n+1, 2ℓ) for

all n ≥ 1 and ℓ ∈ N ∪ {∞}.

Theorem 1.54. [KSZ13]

1.5.1 Return words

Another characterization of Sturmian words was established in terms of return words by
Vuillon [Vui01]. The classical notion of return words has been used by Durand [Dur98]
and was previously introduced by Boshernitzan [Bos85] (see also [DGS76] for the notion of
induced transformation in a dynamical context).

Definition 1.55. Let u be a prefix of a uniformly recurrent word w. A non-empty factor w
of w is a return word to u if there exists some i ≥ 0 such that

• w[i, i+ |w| − 1] = w,

• w[i, i+ |u| − 1] = u = w[i + |w|, i + |w|+ |u| − 1],

• w[i+ j, i + j + |u| − 1] 6= u for all j ∈ {1, . . . , |w| − 1}.

Observe that a return word to u may be of smaller length than u (Figure 1.4).
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w u u

w

w u
u

w′

Figure 1.4: Two possible configurations for consecutive occurrences of a factor u in an infinite
word w and their corresponding return words w and w′.

We denote by Rw,u the set of return words to u. Since w is uniformly recurrent, this
set is finite because the length of the longest return word to u is bounded by the maximal
distance between two successive occurrences of u. If we order the return words to u with
respect to their first occurrence in x, then the corresponding map is

Λw,u : Rw,u → {1, . . . ,#(Rw,u)} =: Rw,u.

Since Rw,u is a code [Dur98], i.e., any element in R∗
w,u has a unique factorization as return

words to u, w can be written in a unique way as w = m0m1m2 · · · . The derived sequence
Du(w) is the infinite word Λw,u(m0)Λw,u(m1)Λw,u(m2) · · · over Rw,u.

Let w = ϕω(a) be a fixed point of a primitive morphism ϕ and let u be a non-
empty prefix of w. The derived sequence Du(w) is the unique fixed point of the
unique prolongable morphism σu satisfying Θw,uσu = σΘw,u where Θw,u denotes
the inverse map of Λw,u.

Proposition 1.56. [Dur98]

Example 1.57. Consider the Fibonacci word f and its prefix u = 010. We mark the
beginning of occurrences of u by vertical lines in the following prefix of f :

|010|01|010|010|01|010|01|010|010|01|010|010|01|010 · · · .
Hence, the set of return words to u is the set Rf ,u = {010, 01} where the words are written
in the order of their first occurrences in f . So, Rf ,u = {1, 2} and the map Λf ,u is defined by
010 7→ 1, 01 7→ 2. The derived sequence is then

Du(f) = 1211212112112121121211211212112112121 · · · .
Using Θf ,u,Λf ,u and ϕf , we compute the morphism σ010:

1
Θw,u−−−→ 0100

ϕf−→ 01001010
Λw,u−−−→ 12,

2
Θw,u−−−−→ 010

ϕf−−−→ 010010
Λw,u−−−−−→ 1.

We find that σ010 : 1 7→ 12, 2 7→ 12. So the derived sequence Du(f) is simply the Fibonacci
word up to a relabelling of the letters.
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Durand [Dur98] used the notion of derived sequences to characterize primitive substitutive
word. Recall from Section 1.2 that a primitive substitutive word is an infinite word of the
form ϕω(a) where the morphism ϕ is such that for some positive integer k, |ϕk(b)|c ≥ 1 for
all letters a, b ∈ A.

A word is primitive substitutive if and only if the number of its different derived
sequences is finite.

Theorem 1.58. [Dur98]

Vuillon [Vui01] considered the number of return words with respect to each factor sepa-
rately to obtain a characterization of Sturmian words.

A recurrent infinite word is Sturmian if and only if each of its factor has two return
words.

Theorem 1.59. [Vui01]

There also exists a simple characterization of periodicity via return words.

A recurrent infinite word is periodic if and only if there exists a factor having exactly
one return word.

Proposition 1.60. [Vui01]

1.5.2 Rotation words

Many of our results in Chapter 3 on Sturmian words rely on the definition of Sturmian words
in terms of rotation words . Rotation word can be obtained by coding the orbit (Rn

α(ρ))n≥0

of a point ρ on a circle under a rotation Rα by an angle α when the circle is partitioned in
a suitable way into complementary intervals. See for instance [Rig14].

Example 1.61. Take three distinct points λ1, λ2, λ3 on the circle identified with the interval
[0, 1) and set λ0 = 0. In Figure 1.5, we choose

λ1 = 1.8/(2Pi) ≈ 0.286, λ2 = 3.67/(2π) ≈ 0.584, λ3 = 4.82/(2π) ≈ 0.767.

Then the coding of the orbit of a point ρ ∈ [0, 1) under a rotation of angle α is the word
wρ = w0w1 · · · where wi = j if and only if Ri

α(ρ) ∈ [λj , λj+1). If we set α = 3/(8π) ≈ 0.119
and ρ = 0.08 as in Figure 1.5, we obtain

wρ = 0011123300011223 · · · .
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ρ

Rα(ρ)

λ0 = 0

λ1

λ2

λ3

Figure 1.5: The first points of an orbit under a rotation Rα of angle α.

Let C be the one-dimensional torus R/Z identified with the interval [0, 1). As usual, we
denote by {x} the fractional part of x. The rotation Rα defined for a real number α is the
map

Rα : C → C, x 7→ {x+ α}.

By an interval (resp. half-interval) of C we mean a set of points that is an image of an
interval (resp. half-interval) of R under operation {·}. For instance, if 0 ≤ b < a < 1, then
[a, 1) ∪ [0, b) is denoted by [a, b).

In this setting, if the angle α is a rational number, then it would only produce periodic
orbits and so periodic words [Lot02]. Hence, we only consider irrational angles in the sequel.
Recall a set S is dense in a topological space X if its closure S is equal to the whole space
X .

If a number α is irrational, then the set of points {Ri
α(ρ) | i ∈ N} is dense in C for

all initial points ρ ∈ C.

Theorem 1.62. Kronecker[AS03a]

Sturmian words are particular rotation words with an angle α irrational, a starting point
ρ real and only two intervals partitioning C. Without loss of generality we can assume
0 ≤ α, ρ < 1.
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Let α ∈ [0, 1) be irrational and ρ ∈ [0, 1) be real. An infinite word w is Sturmian if
and only if any letter wi of w satisfies

wi =

{

0 if Ri
α(ρ) ∈ I0

1 if Ri
α(ρ) ∈ I1

where I0 = [0, 1 − α) and I1 = [1 − α, 1) (respectively I0 = (0, 1 − α] and
I1 = (1− α, 1]). In which case, we write w = St(α, ρ) (resp. w = St′(α, ρ)).

Proposition 1.63. [AS03a, Lot02]

The irrational α is called the slope of the Sturmian word St(α, ρ) and the initial point ρ
is its intercept . If ρ = 0, then

St(α, 0) = 0cα and St′(α, 0) = 1cα

and cα is said to be the characteristic Sturmian word of slope α [Lot02]. If w = St(α, 0), we
say that w is a Sturmian word with null intercept.

Example 1.64. The Fibonacci word is a Sturmian word with parameters α and ρ both
equal to 1/φ2 = 2− φ ≈ 0.38197 where φ = (1 +

√
5)/2 is the Golden mean:

f = St(1/φ2, 1/φ2) = 0100101001001010010100100101001001 · · · .

Then the characteristic word of St(1/φ2, 0) is the Fibonacci word.
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Chapter 2

Regularity of ℓ-abelian

complexity functions

This chapter, based on a joint work with my co-advisor Rigo and two postdoc-
toral fellows Parreau and Rowland, is about some structural properties of integer
sequences that occur naturally in combinatorics on words. We prove that a
sequence satisfying a certain symmetry property is 2-regular in the sense of Al-
louche and Shallit. We apply this theorem to show that both the period-doubling
word and the Thue–Morse word have 2-abelian complexity sequences which are
2-regular. The computations and arguments leading to these results permit us
to exhibit some similarities between the two cases and a quite general scheme
that we hope can be used again to prove additional regularity results. Indeed, we
conjecture that any k-automatic sequence has an ℓ-abelian complexity function
that is k-regular.
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Recently there has been a renewal of interest in abelian notions arising in combinatorics
on words. For instance, avoiding abelian or ℓ-abelian repetitions (see Table 1.3), counting
the number of abelian bordered words (see for instance [RRS13, CHPZ14]), and so on.

A year ago, Madill and Rampersad considered the abelian complexity of the ordinary
paperfolding word [MR13]. There are several equivalent definitions of the ordinary paper-
folding word. For instance, consider a morphism θ : {a, b, c, d}∗ → {a, b, c, d}∗ and a coding
η : {a, b, c, d}∗ → {0, 1}∗ defined by

θ :















a 7→ ab
b 7→ ac
c 7→ dc
d 7→ db

and η :















a 7→ 0

b 7→ 0

c 7→ 1

d 7→ 1.

The paperfolding word is the coding of the fixed point of θ starting with a

η(θω(a)) = 0010011000110110001001110011011000100110 · · ·

This sequence is another example of 2-automatic sequences since it is generated by iteration
of a 2-uniform morphism and an application of a coding. Madill and Rampersad were
the first to precisely compute the abelian complexity of an infinite word in the case where
this complexity grows unboundedly large. They showed that the abelian complexity of the
ordinary paperfolding word is 2-regular by proving a finite list of recurrence relations that
determine the complexity.

The abelian complexity P(1)
w of the ordinary paperfolding word w satisfies, for all

n ≥ 0,

P(1)
w (4n) = P(1)

w (2n)

P(1)
w (4n+ 2) = P(1)

w (2n+ 1) + 1

P(1)
w (16n+ 1) = P(1)

w (8n+ 1)

P(1)
w (16n+ {3, 7, 9, 13}) = P(1)

w (2n+ 1) + 2

P(1)
w (16n+ 5) = P(1)

w (4n+ 1) + 2

P(1)
w (16n+ 11) = P(1)

w (4n+ 3) + 2

P(1)
w (16n+ 15) = P(1)

w (2n+ 2) + 1.

Theorem 2.1. [MR13]

Since then, other (unbounded) abelian complexities were studied. For instance, the
(ℓ-) abelian complexities of the Thue–Morse word t, introduced in Example 1.11, and the
period-doubling word p, introduced in Example 1.16, were considered. In [KSZ], the au-

thors studied the asymptotic behaviour of P(ℓ)
t (n) and also derived some recurrence relations

showing that the abelian complexity P(1)
p (n)n≥0 of the period-doubling word p is 2-regular.
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The abelian complexity P(1)
p of the period-doubling word p satisfies, for all n ≥ 1,

P(1)
p (2n) = P(1)

p (n)

P(1)
p (4n− 1) = P(1)

p (n) + 1

P(1)
p (4n+ 1) = P(1)

p (n) + 1.

Theorem 2.2. [KSZ, BSCRF14]

In [BSCRF14], Blanchet-Sadri et al. studied the abelian complexity of the fixed point
v of the non-uniform morphism 0 7→ 012, 1 7→ 02, 2 7→ 1 and they obtain results similar
to those discussed in this chapter. Even though they are not directly interested in the

k-regularity of P(1)
v (n)n≥0, they derive some recurrence relations. From these relations,

following the approach described in this chapter, one can possibly prove some regularity
results. In particular, the result of replacing in v all 2’s by 0’s leads back to the period-
doubling word. Hence, Blanchet-Sadri et al. also proved the relations about the abelian
complexity of p given in Theorem 2.2.

Let us now describe the content and organization of this chapter, which is based on a
joint work with my co-advisor Rigo and two post-doctoral fellows at the University of Liège,
Parreau and Rowland [PRRV].

Using matrices, we compute in Section 2.1 the first 65538 values of the 2-abelian complex-
ity of the Thue–Morse word introduced in Example 1.11. From these values, we conjecture
the 2-regularity of this sequence and some relations. Recently, after hearing a talk I gave
during the Representing Streams II meeting in January 2014, Greinecker proved the recur-
rence relations needed to prove the 2-regularity of this sequence [Gre]. Hopefully, the two
approaches are complementary: we prove the 2-regularity without exhibiting the explicit
recurrence relations.

In Section 2.2, we prove the 2-regularity of a large family of sequences satisfying a re-
currence relation with a parameter c and 2ℓ0 initial conditions. The form of the recurrence
implies that sequences in this family exhibit a reflection symmetry in the values taken over
each interval [2ℓ, 2ℓ+1) for ℓ ≥ ℓ0. For the special case of the Thue–Morse word, a similar
property is shown in [Gre]. Computer experiments suggest that many 2-abelian complexity
functions satisfy such a reflection property. These functions are given in Appendix A.

In Section 2.3, we study the abelian complexity of the 2-block coding y = block(t, 2) of
the Thue–Morse word t, introduced in Example 1.50. We consider the sum of occurrences
of 1 and 2 in each factor of length n in y and we define ∆12(n) to be the difference between
the maximal sum and minimal sum for factors of fixed length n in y. It turns out that

∆12(n) + 1 = P(1)
p (n) and our results can thus be related to [BSCRF14] and [KSZ]. We

prove that ∆12(n)n≥0 and P(1)
y (n)n≥0 are 2-regular. We show that the 2-regularity of P(2)

t (n)

follows from the 2-regularity of ∆12(n)n≥0 and P(1)
y (n)n≥0.

Section 2.4 shares some similarities with Section 2.3. The reader will see that the strategy

used to prove the 2-regularity of P(2)
t (n) can also be applied to the 2-abelian complexity of

the period-doubling word. Nevertheless, some differences do not permit us to treat the two
cases within a completely unified framework.

In Section 2.4, we study the abelian complexity of the 2-block coding x = block(p, 2)
of the period-doubling word p, introduced in Example 1.49. In particular, we consider the
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difference ∆0(n) between the maximal and minimal numbers of 0’s occurring in factors of

length n in block(p, 2). We prove that the sequences ∆0(n)n≥0 and P(1)
x (n)n≥0 are 2-regular.

Then, we study the 2-abelian complexity of p. We show that the 2-regularity of ∆0(n)n≥0

and P(1)
x (n)n≥0 implies the 2-regularity of P(2)

p (n).
Finally, in Section 2.5 we suggest a direction for future work.

2.1 Origin of the result on the 2-abelian complexity of

Thue–Morse word t

The first few terms of the 2-abelian complexity P(2)
t (n)n≥0 of the Thue–Morse word t are

depicted in Figure 2.1 and given by

1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8, 6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, . . .

Naturally, one can ask whether the 2-abelian complexity of t is bounded or whether it

100 200 300 400 500

5

10

15

Figure 2.1: The 2-abelian complexity of t on the interval [0, 512].

is regular. The first question was answered independently by Berthé and Delecroix [BD]
and Karhumäki et al. [KSZ]. Following the result [Ada03, Corollary 15], Berthé and Dele-
croix [BD] showed that the function

n 7→ max
u∈Fac2(t)

max
w,w′∈Facn(t)

||w|u − |w′|u|

is not bounded. In other words, they showed that the 2-abelian complexity of t is not
bounded. Karhumäki et al. [KSZ] studied the behaviour of the 2-abelian complexity of t and
proved that for n ≥ 1 and m ≥ 0,

P(2)
t (n) = O(log n), P(2)

t ((2 · 4m + 4)/3) = Θ(m) and P(2)
t (2m + 1) ≤ 8

which leads to unbounded 2-abelian complexity.



2.1. Origin of the result on the 2-abelian complexity of Thue–Morse word t 51

The second question, whether the 2-abelian complexity is regular, was solved indepen-
dently by Greinecker [Gre] and ourselves [PRRV]. My co-advisor Rigo and I conjectured
recurrence relations that imply the 2-regularity of the complexity [RV12]. Greinecker [Gre]
proved the conjecture relations, while we [PRRV] proved the 2-regularity without exhibiting
the explicit recurrence relations. To make this conjecture, we needed to compute “quickly” a
long enough prefix of the 2-abelian complexity. First, we present the method used to compute
such a prefix. Then, we show how the conjecture was established.

2.1.1 We compute the 2-abelian complexity of t using matrix prod-

uct

We can easily compute the first few terms of the 2-abelian complexity P(2)
t (n)n≥0 of the

Thue–Morse word, using matrix product. The Mathematica code corresponding to this
computation is given in Appendix A. Note that this computation is faster than a more naive
approach (see Remark A.1).

First, to any word u = u1u2 · · ·un−1un, we associate a vector of N10:

Ψ2(u) =

































|u1|0
|u1|1
|u|00
|u|01
|u|10
|u|11

|un−1un|00
|un−1un|01
|un−1un|10
|un−1un|11

































.

For example, Ψ2(11101) = (0, 1, 0, 1, 1, 2, 0, 1, 0, 0). Following the equivalent definition of ℓ-
abelian equivalence given in Lemma 1.43, two words u and v of the same length n ≥ 2 are
2-abelian equivalent if and only if

• the first six entries of Ψ2(u) and Ψ2(v) coincide,

• [Ψ2(u)]7 + [Ψ2(u)]9 = [Ψ2(v)]7 + [Ψ2(v)]9,

• [Ψ2(u)]8 + [Ψ2(u)]10 = [Ψ2(v)]8 + [Ψ2(v)]10.

In this case, we say that their vectors are similar and denote it by Ψ2(u) ∼ Ψ2(v). Observe
that the last two items are implied by the first one by Lemma 1.43. Indeed, the last two
items translate that the last letters of u and v must coincide, since u ends with 1 if and only
if u ends either with 01 or 11, i.e., either [Ψ2(u)]7 = 1 or [Ψ2(u)]9 = 1.

Consider all factors of length 3 in the Thue–Morse word: 001, 010, 011, 100, 101, 110.
They are non 2-abelian equivalent, since their vectors are not similar (Table 2.1).

Second, we obtain the vector Ψ2(v) of a factor v of t from the vector of a shorter factor
u occurring before v. Assume that v is of length 2n − 1 and occurs at an even index 2j.
Then v is the word σ(u) without its last letter, where u denotes the length-n factor occurring
at index j. Similarly, if v occurs at index 2j + 1, then v is σ(u) without its first letter
(Figure 2.2). We define a matrix for each case, Me and Mo, so that

• Ψ2(v) =MeΨ2(u) if v occurs at an even index with |v| = 2n− 1,
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u = u1 · · ·un 001 010 011 100 101 110

|u1|0 1 1 1 0 0 0
|u1|1 0 0 0 1 1 1
|u|00 1 0 0 1 0 0
|u|01 1 1 1 0 1 0
|u|10 0 1 0 1 1 1
|u|11 0 0 1 0 0 1

|un−1un|00 0 0 0 1 0 0
|un−1un|01 1 0 0 0 1 0
|un−1un|10 0 1 0 0 0 1
|un−1un|11 0 0 1 0 0 0

Table 2.1: Vectors of length-3 factors of t.

t

n 2n

σ

j 2j

v
v

Figure 2.2: From a factor of length n to a factor v of length 2n− 1.

• Ψ2(v) =MoΨ2(u) if v occurs at an odd index with |v| = 2n− 1.

Assume now that v is of length 2n − 2. If v occurs at index 2j, then it corresponds to
σ(u) without its last two letters. If v occurs at index 2j + 1, then v is σ(u) without its first
and last letters (Figure 2.3). Again, we define a matrix for each case, Ne and No, so that

• Ψ2(v) = NeΨ2(u) if v occurs at an even index with |v| = 2n− 2,

• Ψ2(v) = NoΨ2(u) if v occurs at an odd index with |v| = 2n− 2.

t

n 2n

σ

j 2j

v
v

Figure 2.3: From a factor of length n to a factor v of length 2n− 2.
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A similar structure appears in all these four matrices:

Me :=













1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 1 -1 0 -1 0
0 1 1 1 0 1 0 -1 0 -1
0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0













,

Mo :=













0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0













,

Ne :=













1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 -1 0
1 0 1 0 1 1 -1 0 -1 -1
0 1 1 1 0 1 -1 -1 0 -1
0 0 0 1 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0













,

and No :=













0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 -1 0 -1 0
0 0 1 1 0 1 0 -1 0 -1
0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0













.

Indeed, we can view them as matrices with fives blocks that are possibly distinct from 0:












B1 0 0

C B2 D

0 0 B3













.

On the diagonal, the first block B1 takes care of the first letter. Similarly, the third block
B3 takes care of the last two letters. The second block B2 takes care of the number of
length-2 factors occurring in σ(u) without its first letter. Since 0−1σ(00) = 0−10101 = 101

contains one 10 and one 01, the first column of B2 is (0, 1, 1, 0). Counting the length-2 factors
occurring in the words 0−1σ(01), 1−1σ(10), 1−1σ(11), we obtain respectively the last three
columns of B2. For example, if u is the factor 011001011 occurring at index 10 in t, then
one can check that 0−1σ(u) = 11010010110011010 has two occurrences 00, five occurrences
01, six occurrences 10 and three occurrences 11, and

B2 (|u|00, |u|01, |u|10, |u|11) =









0 0 1 0
1 0 1 1
1 1 0 1
0 1 0 0

















1
3
2
2









=









2
5
6
3









.

The block C is different from 0 only in Me and Ne, i.e., for factors occurring at even
indices. This block takes into account the first length-2 factor coming from the image of the
first letter of u. Finally, the block D deals with the length-2 factors coming from the image
of the last letter of u. It is distinct from 0 for Me, Ne, No because these matrices correspond
to the factor σ(u) without its last letter or its two last letters.
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These four matrices allow us to provide the set of finite factors of t with the structure of
a tree (Figure 2.4). Let S3 = {Ψ2(u) | u ∈ Fac(t), |u| = 3} and, for all ℓ ≥ 2 and 0 ≤ r < 2ℓ,

S2ℓ+r =

{

{Ney | y ∈ S2ℓ−1+ r
2+1} ∪ {Noy | y ∈ S2ℓ−1+ r

2+1} if r is even

{Mey | y ∈ S2ℓ−1+ r+1
2
} ∪ {Moy | y ∈ S2ℓ−1+ r+1

2
} if r is odd.

Then, we have P(2)
t (n) = #(Sn/∼) for n ≥ 3. Therefore, we are able to easily compute1 the

first values of the P(2)
t .

S3

S5S4

S6 S7 S8 S9

Ne,No Me,Mo

Ne,No Me,MoNe,No Me,Mo

Figure 2.4: Tree structure of the set of finite factors of t.

Let n be a positive integer and u, v be two factors of length n of the Thue–Morse
word t.

1. We have MeΨ2(u) 6∼MoΨ2(u).

2. If Ψ2(u) ∼ Ψ2(v), then MeΨ2(u) ∼MeΨ2(v) and MoΨ2(u) ∼MoΨ2(v). But
the conserve does not hold in general.

3. We have

MeΨ2(u) ∼MeΨ2(v) ⇔MoΨ2(u) ∼MoΨ2(v)

MeΨ2(u) ∼MoΨ2(v) ⇔MoΨ2(u) ∼MeΨ2(v)

4. The factor u starts and ends with the same letter if and only if MeΨ2(u) ∼
MoΨ2(u), which is equivalent to MoΨ2(u) ∼MeΨ2(u).

Lemma 2.3.

Proof. Let n be a positive integer and u = u0 . . . un−1, v = v0 . . . vn−1 be two factors of length
n of the Thue–Morse word t with ui, vi ∈ {0, 1} for 0 ≥ i ≥ n− 1. Let us write [Ψ2(u)]i = yi
and [Ψ2(v)]i = zi for 1 ≤ i ≤ 10.

A straightforward computation shows the first assertion, MeΨ2(u) 6∼ MoΨ2(u), since
y1 = |u0|0 6= |u0|1 = y2.

1The Mathematica code is available in Appendix A
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For the second assertion, assume Ψ2(u) ∼ Ψ2(v), i.e., yi = zi for 1 ≤ i ≤ 6, y7+y9 = z7+z9
and y8 + y10 = z8 + z10. In this case, we have

MeΨ2(u) MoΨ2(u) MeΨ2(u) MoΨ2(u)
−MeΨ2(v) −MoΨ2(v)

y1 y2 0 0
y2 y1 0 0
y5 y4 0 0

y1 + y3 + y5 + y6 − y7 − y9 y3 + y5 + y6 0 0
−y10 + y2 + y3 + y4 + y6 − y8 y3 + y4 + y6 0 0

y4 y5 0 0
y9 0 y9 − z9 0
y10 y7 + y9 y10 − z10 0
y7 y10 + y8 y7 − z7 0
y8 0 y8 − z8 0

and clearly the two last columns of this table are similar to the null vector 0 ∈ N10. To
show that the converse does not hold in general, consider the factors u = 01001 and
v = 01011 of t. They are not 2-abelian equivalent: Ψ2(u) 6∼ Ψ2(v). But one can check
that MeΨ2(u) ∼ MeΨ2(v) and MoΨ2(u) ∼ MoΨ2(v). In other words, one can check that
the associated factors are such that

σ(u)0−1 ∼ab,2 σ(v)0
−1 and 0−1σ(u) ∼ab,2 0

−1σ(v).

The third assertion follows from computation:

MeΨ2(u) ∼MeΨ2(v) ⇔















yi = zi for i = 1, 2, 4, 5
y3 + y6 = z3 + z6
y7 + y9 = z7 + z9
y8 + y10 = z8 + z10

⇔MoΨ2(u) ∼MoΨ2(v).

Similarly,

MeΨ2(u) ∼MoΨ2(v) ⇔















































y1 = z2
y2 = z1
y1 + y3 + y6 − y7 − y9 = z3 + z6
y2 + y3 + y6 − y8 − y10 = z3 + z6
y4 = z4
y5 = z5
y7 + y9 = z8 + z10
y8 + y10 = z7 + z9

⇔MoΨ2(u) ∼MeΨ2(v).

For the last assertion, the factor u starts and ends with the same letter if and only if

y1 = y7 + y9, y2 = y8 + y10, y4 = y5

which is equivalent to MeΨ2(u) ∼ MoΨ2(u). The last equivalence of the assertion follows
from the previous assertion where we set v = u.
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Remark 2.4. We can illustrate the third assertion of the previous lemma by a graph2 where
the vertices are equivalence classes of vectors for the relation ∼ and arrows correspond to
matrix products. Consider two factors u and v of the Thue–Morse word that are not 2-abelian

Ψ2(u) Ψ2(v)

Me

Me

Mo

Mo

Ψ2(u) Ψ2(v)

Me

Mo

Me

Mo

Figure 2.5: Two possible configurations of equivalence classes of vectors.

equivalent. In Figure 2.5, the configuration with the plain edges implies the configuration
with the dotted edges, and vice versa. In particular, it means that the following configuration
never happens:

Ψ2(u) Ψ2(v)

or, in other words, two distinct classes cannot split into three classes after multiplying by
Me and Mo.

Example 2.5. Using the same notation as in the previous remark, we consider the effect of
two consecutive matrix products with Me or Mo applied to Ψ2(u) and Ψ2(u). For instance,
consider the factor u = 010 which begins and ends with the same letter. The vectors Ψ2(010)
and Ψ2(010) are not similar. If we apply once or twice a matrix product with Me and Mo,
we obtain the same number of equivalence classes (Figure 2.6(a)) which is 2.

Now consider the factor u = 011 which begins and ends with different letters. Again
Ψ2(011) and Ψ2(100) are not similar and applying once or twice a matrix product with Me

and Mo yields the same number of equivalence classes (Figure 2.6(b)) which is 4.

Let n be the length of u ∈ {010, 011}. Then, factors of length 4n+ 1 that are obtained
from u (applying the Thue–Morse morphism σ twice and deleting a letter each time) form
the same number of 2-abelian equivalence classes as factors of length 2n+1 that are obtained
from u (applying the σ once and deleting a letter).

The result obtained for the factors 010 and 011 in the previous example holds true in
general.

2For a formal definition of graphs, see Chapter 4.
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Ψ2(010) Ψ2(101) Ψ2(011) Ψ2(110)

(a) u = 010 (b) u = 011

Figure 2.6: Equivalence classes of vectors Ψ2(u) and Ψ2(u) and distinct equivalence classes
of vectors obtained after one or two matrix products with Me or Mo.

Let u be a factor of the Thue–Morse word t and let y = Ψ2(u), y = Ψ2(u). We
have

{MeMey,MeMoy,MoMey,MoMoy,MeMey,MeMoy,MoMey,MoMoy}
/

∼
= {MeMey,MeMoy,MoMey,MoMoy}

/

∼

and the cardinal of this set is equal to 2 if u starts and ends with the same letter.
Otherwise, the cardinality of this set is equal to 4.

Lemma 2.6.

Proof. Let u be a factor of the Thue–Morse word t and let y = Ψ2(u), y = Ψ2(u) with
yi = [Ψ2(u)]i and yi = [Ψ2(u)]i for 1 ≤ i ≤ 10. We have































































y1 = y2
y2 = y1
y3 = y6
y4 = y5
y5 = y4
y6 = y3
y7 = y10
y8 = y9
y9 = y8
y10 = y7.

Consider the set S = {MeMey,MeMoy,MoMey,MoMoy}
/

∼ and

S′ = {MeMey,MeMoy,MoMey,MoMoy,MeMey,MeMoy,MoMey,MoMoy}
/

∼.

From Lemma 2.3, we have MeMey 6∼ MoMey and MoMoy 6∼ MeMoy. Hence #S ≥ 2.
Moreover, MeMey ∼MoMoy if and only if MeMoy ∼MoMey. So #S ∈ {2, 4}.
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We have
MeMey −MoMoy MeMoy −MoMey

0 0
0 0

−y10 + y2 − y8 y10 − y2 + y8
y1 − y10 + y2 − y7 − y8 − y9 0
y1 − y10 + y2 − y7 − y8 − y9 0

y1 − y7 − y9 −y1 + y7 + y9
y7 y10 + y8

−y10 −y7 − y9
−y7 −y10 − y8
y10 y7 + y9

and the two columns are equivalent to 0 ∈ N10 if and only if u starts and ends with the same
letter, i.e., y1 = y7 + y9, y2 = y8 + y10, y4 = y5.

If u starts and ends with the same letter, then applying the fourth assertion of Lemma 2.3,
we have Mey ∼Moy and Moy ∼Mey. So we obtain

MoMey ∼MoMoy ∼MeMey ∼MeMoy

6∼MeMey ∼MeMoy ∼MoMey ∼MoMoy.

In other words, the sets S and S′ are equal and contain 2 elements.
Now, if u starts and ends with different letters, we have y1 = y7 + y9, y2 = y8 + y10,

y4 − y1 = y5 − y2. Hence, MeMey 6∼MoMoy and MeMoy 6∼MoMe. Moreover, we get

MeMey −MeMoy MoMoy −MoMey
0 0
0 0

−y10 + y2 + y4 − y5 − y8 −y1 + y4 − y5 + y7 + y9
−y10 + y2 + y4 − y5 − y8 −y1 + y4 − y5 + y7 + y9
y1 − y4 + y5 − y7 − y9 y10 − y2 − y4 + y5 + y8
y1 − y4 + y5 − y7 − y9 y10 − y2 − y4 + y5 + y8

−y9 0
y8 0
y9 0
−y8 0

and
MeMoy −MeMey MoMey −MoMoy

0 0
0 0

−y1 + y4 − y5 + y7 + y9 −y10 + y2 + y4 − y5 − y8
−y1 + y4 − y5 + y7 + y9 −y10 + y2 + y4 − y5 − y8
y10 − y2 − y4 + y5 + y8 y1 − y4 + y5 − y7 − y9
y10 − y2 − y4 + y5 + y8 y1 − y4 + y5 − y7 − y9

y8 0
−y9 0
−y8 0
y9 0

where each column is similar to 0 ∈ N10. Therefore, the set S is equal to S′ and contains 4
elements in this case.
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From Lemma 2.6, the 2-abelian complexity of t clearly satisfies the following relation.

We will see in the next subsection that it is not the only relation that holds for P(2)
t .

For all n ≥ 0, P(2)
t (2n+ 1) = P(2)

t (4n+ 1).

Proposition 2.7.

2.1.2 We conjecture relations for the 2-abelian complexity using a

predictive algorithm

Given the first few terms of a sequence s(n)n≥0, one can easily conjecture the potential
k-regularity of this sequence by exhibiting relations that should be satisfied. Allouche and
Shallit gave such a “predictive” algorithm that recognizes k-regularity [AS03b, Section 6].
Their idea is to construct a list in which the elements are truncated versions of elements of
the k-kernel and such that the list contains the hypothetical generators of the k-kernel. In
practice, the truncated versions may contain N = 100 terms for a start.

To show that the 2-abelian complexity of the Thue–Morse word is 2-regular, we follow
Allouche and Shallit’s ideas. We compute the first N = 100 terms of the 63 first sequences

of the 2-kernel K2 of P(2)
t (n)n≥0:

K2 = {P(2)
t (2en+ r)n≥0 : e ≥ 0, 0 ≤ r < 2e}

= {P(2)
t (n)n≥0,P(2)

t (2n)n≥0,P(2)
t (2n+ 1)n≥0,P(2)

t (4n)n≥0 . . .}.

We let x2e+r denote the sequence P(2)
t (2en+ r)n≥0. Hence, we compute the first 100 terms

of x1, . . . ,x63. In particular, to get x63(100) = P(2)
t (32 · 99 + 31), we need to compute up to

3200 elements of P(2)
t .

• At the first step j = 1, we select the first sequence x1 = P(2)
t (n)n≥0.

• At step j, there are r < j previously selected sequences. We consider the sequence xj

and we check whether xj is a linear combination of the selected sequences. If xj and
the selected sequences are linearly independent, then we add xj to the selection.

• j → j + 1 until j < 63.

Of course, in such an algorithm, a finite examination does not lead to a proof of the k-
regularity of a sequence. We still need to verify the relations that we found through induction
or other means.

Implementing this with Mathematica3, we conjecture that the sequences x32, . . ., x63

are all linear combinations of the sequences x1, . . . ,x31. In particular, we conjecture the

3The corresponding Mathematica code is available in Appendix A.
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following relations and check them for the first 10000 terms:

x32 = x8

x33 = x3

x34 = x10

x35 = x11

x36 = −x10 + x11 + x19

x37 = x19

x38 = −x3 + x10 + x19

x39 = −x3 + x11 + x19

x40 = −x3 + x10 + x11

x41 = x11

x42 = −x3 + x10 + x11

x43 = −2x3 + 3x10

x44 = −2x3 − x6 + x7 + 3x10

x45 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x46 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19

x47 = −2x3 + x7 + 3x10 − x19

x48 = −x3 + x7 + x10

x49 = x7

x50 = −x3 + x7 + x10

x51 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x52 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19

x53 = −2x3 + x7 + 3x10 − x19

x54 = −4x3 + 3x6 + x7 + 3x10 − x11 − 2x14 + x15

x55 = −4x3 + 3x6 + x7 + 3x10 − x11 − 3x14 + 2x15

x56 = −x3 + x10 + x15

x57 = x15

x58 = −x3 + x10 + x15

x59 = −2x3 + 3x6 − x7 − x11 + x15 + x19

x60 = −4x3 + 6x6 + x10 − 2x11 − 3x14 + 2x15 + x19

x61 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19

x62 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19

x63 = x15.

Moreover, we see that not all sequences x1, . . . ,x31 occur in the previous relations. We can
restrict the generators of the 2-kernel according to these conjectured relations on x1, . . . ,x31:
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x5 = x3

x9 = x3

x12 = −x6 + x7 + x11

x13 = x7

x16 = x8

x17 = x3

x18 = x10

x20 = −x10 + x11 + x19

x21 = x11

x22 = −x3 − 2x6 + x7 + 3x10 + x11 − x19

x23 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x24 = −x3 + x7 + x10

x25 = x7

x26 = −x3 + x7 + x10

x27 = −2x3 + x7 + 3x10 − x19

x28 = −2x3 + x7 + 3x10 − x14 + x15 − x19

x29 = x15

x30 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19

x31 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19.

If the conjectured relations hold, then any sequence xn for n ≥ 32 is a linear combination

of x1,x2, . . . ,x19. Indeed, consider a sequence x2e+r = P(2)
t (2en + r)n≥0 with e ≥ 5. Then

P(2)
t (2en+r) can be written as P(2)

t (32n′+r′) with 0 ≤ r′ < 32 and we can apply the relation
corresponding to x32+r′ .

Example 2.8. Consider the sequence x154 = P(2)
t (128n+ 26)n≥0 of the 2-kernel. We have

P(2)
t (128n+ 26) = P(2)

t (32(4n) + 26)

= −P(2)
t (2(4n) + 1) + P(2)

t (8(4n) + 2) + P(2)
t (8(4n) + 7)

= −P(2)
t (8n+ 1) + P(2)

t (32n+ 2) + P(2)
t (32n+ 7)

as P(2)
t (32n+ 26)n≥0 = x58 = −x3 + x10 + x15. So we get

x154 = −x9 + x34 + x39

= −x3 + x10 − x3 + x11 + x19 (using the conjectured relations)

= −2x3 + x10 + x11 + x19.

Note that this is not the only way to obtain a linear combination of x1, . . . ,x19. For example,
we could choose to write P(2)(128n+26) = P(2)(16(8n+1)+10) and then proceed as before.

Let us consider another example with the sequence x164 = P(2)
t (128n + 36)n≥0. We

have that P(2)
t (128n + 36) = P(2)

t (32(4n + 1) + 4). Then, using the conjectured relation

x36 = −x10 + x11 + x19, we obtain that P(2)
t (128n+ 36) is equal to

−P
(2)
t (8(4n+ 1) + 2) + P

(2)
t (8(4n+ 1) + 3) + P

(2)
t (16(4n+ 1) + 3)

=− P
(2)
t (32n+ 10) + P

(2)
t (32n+ 11) + P

(2)
t (32(2n) + 19)

=− P
(2)
t (32n+ 10) + P

(2)
t (32n+ 11) −P

(2)
t (2(2n) + 1) + 3P

(2)
t (4(2n) + 2)

+ 2P
(2)
t (4(2n) + 3) − 3P

(2)
t (8(2n) + 2) + P

(2)
t (8(2n) + 3)− P

(2)
t (16(2n) + 3)

=− P
(2)
t (32n+ 10) + P

(2)
t (32n+ 11) −P

(2)
t (4n+ 1) + 3P

(2)
t (8n+ 2)

+ 2P
(2)
t (8n+ 3) − 3P

(2)
t (16n+ 2) + P

(2)
t (16n+ 3)− P

(2)
t (32n+ 3)

where we used the conjectured relation x51 = −x3 +3x6 +2x7 +3x10 + x11 −x19 to obtain
the third equality.
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Finally, we get

x164 = −x42 + x43 − x5 + 3x10 + 2x11 − 3x18 + x19 − x35

= −(−x3 + x10 + x11) + (−2x3 + 3x10)− x3 + 3x10 + 2x11 − 3x10 + x19 − x11

= −2x3 + 2x10 + x19.

In other words, if the conjectured relations hold, the 2-kernel of the 2-abelian complexity
of the Thue–Morse word is finitely generated by x1,x2, . . . ,x19. As a direct consequence of
Proposition 2.7, some of the conjectured relations are proved.

Let x2e+r denote the subsequence P(2)
t (2en+ r)n≥0 of the 2-abelian complexity of

the Thue–Morse word, with e ≥ 0, 0 ≤ r < 2e. We have

x3 = x5 = x9 = x17 = x33

x7 = x13 = x25 = x49

x11 = x21 = x41

x15 = x29 = x57

x19 = x37

x23 = x45

x27 = x53

x31 = x61.

Corollary 2.9.

Recently, Greinecker proved our conjectured relations and so that the 2-abelian com-
plexity of t is 2-regular [Gre]. His proof is based on reading frames, which are particular
partitions of words, and a variation of reading frames, called off-beat frames. In particular,

he reduces the study of P(2)
t to the study of some vectors. Instead of considering vectors of

length 10 as we did with Ψ2(w), he considers vectors vec(w) of length 3:

vec : Fac(t) → {0, 1} × N× {0, 1}, w 7→





pref1(w)
p(w)
r(w)





where p(w) = |w|00 + |w|11 counts the number of pairs occurring in w and r(w) determines
whether pref2(w) is in the off-beat frame or not.
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Let x2e+r denote the subsequence P(2)
t (2en+ r)n≥0 of the 2-abelian complexity of

the Thue–Morse word, with e ≥ 0, 0 ≤ r < 2e. We have

x5 = x3

x12 = −x6 + x7 + x11

x16 = x8

x18 = x10

x22 = −x3 − 2x6 + x7 + 3x10 + x11 − x19

x23 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x24 = −x3 + x7 + x10

x26 = −x3 + x7 + x10

x27 = −2x3 + x7 + 3x10 − x19

x30 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19

x31 = −x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19

x35 = x11

x51 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19.

Moreover the 2-abelian complexity of the Thue–Morse word is 2-regular.

Theorem 2.10. [Gre]

Along the way, he shows that the 2-abelian complexity of t is a concatenation of longer and
longer palindromes:

P(2)
t (n)n≥0 = (1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8,

6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, 10, 8, 10, 10, 8, 6, . . .).

Otherwise stated, the graph of the values of P(2)
t satisfies a reflection symmetry. We obtain

the same result with our method in Proposition 2.37.

2.2 Sequences satisfying a reflection symmetry

If we sketch the first values of 2-abelian complexity of the Thue–Morse word (Figures 2.7
and 2.8), we observe that the sequence seems to satisfy a reflection symmetry in the values
taken over intervals of the form [2ℓ + 1, 2ℓ+1 + 1] with ℓ ≥ 1.

Other sequences satisfy a reflection symmetry over intervals of the form [2ℓ, 2ℓ+1]. For
instance, it is the case of the abelian complexity of the 2-block coding of the period-doubling
word p introduced in Example 1.16. (The recurrence satisfied by this sequence is given in
Theorem 2.42.) Some values of this sequence are depicted in Figures 2.9 and 2.10.
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Figure 2.7: The 2-abelian complexity of t on the interval [0, 512].
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Figure 2.8: The 2-abelian complexity of t on the interval [0, 64].
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Figure 2.9: The abelian complexity of block(p, 2) on the intervals [16, 32] and [32, 64].
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Figure 2.10: The abelian complexity of block(p, 2) on the interval [64, 128].

In this framework, we are able to prove a general regularity result. Sequences satisfying
a recurrence relation of the following form are 2-regular.

Let ℓ0 ≥ 0 and c ∈ Z. Suppose s(n)n≥0 is a sequence such that, for all ℓ ≥ ℓ0 and
0 ≤ r ≤ 2ℓ − 1, we have

s(2ℓ + r) =

{

s(r) + c if r ≤ 2ℓ−1

s(2ℓ+1 − r) if r > 2ℓ−1.
(2.1)

Then s(n)n≥0 is 2-regular.

Theorem 2.11.

The recurrence satisfied by s(n) in Theorem 2.11 reads words from left to right, i.e.,
starting with the most significant digit. Our proof (given page 67) of this theorem will
express sequences in the 2-kernel of s(n)n≥0 as in Definition 1.26, starting with the least
significant digit.

Remark 2.12. From Equation (2.1) one can get some information about the asymptotic
behaviour of the sequence s(n)n≥0. We have s(n) = O(log n), and moreover

s
(

4ℓ+1−1
3

)

= s(4ℓ + · · ·+ 41 + 40) =
(

ℓ−
⌊

ℓ0−1
2

⌋)

c+ s
(

4⌊(ℓ0+1)/2⌋−1
3

)

for ℓ ≥ ⌊ ℓ0−1
2 ⌋. At the same time, there are many subsequences of s(n)n≥0 which are constant;

for example, s(2ℓ) = c for ℓ ≥ ℓ0.

Before proving Theorem 2.11 in generality, we first examine the sequence satisfying the
recurrence for ℓ0 = 0 and c = 1. It will turn out that the general solution can be expressed
naturally in terms of this sequence.

Let A(0) = 0. For each ℓ ≥ 0 and 0 ≤ r ≤ 2ℓ − 1, let

A(2ℓ + r) =

{

A(r) + 1 if r ≤ 2ℓ−1

A(2ℓ+1 − r) if r > 2ℓ−1.
(2.2)
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The sequence A(n)n≥0 is

0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, . . .

and appears as A007302 in [OF]. Allouche and Shallit [AS03b, Example 12] identified this
sequence as an example of a regular sequence. We include a proof here.

For all n ≥ 0, we have

A(2n) = A(n)

A(8n+ 1) = A(4n+ 1)

A(8n+ 3) = A(2n+ 1) + 1

A(8n+ 5) = A(2n+ 1) + 1

A(8n+ 7) = A(4n+ 3).

In particular, A(n)n≥0 is 2-regular.

Proposition 2.13.

Proof. This proof is typical of many of the proofs throughout the chapter. We work by
induction on n. The case n = 0 can be checked easily using the first few values of the
sequence A(n)n≥0. Therefore, let n ≥ 1 and assume that the recurrence holds for all values
less than n. Write n = 2ℓ + r with ℓ ≥ 0 and 0 ≤ r ≤ 2ℓ − 1.

First let us address the equation A(2n) = A(n). If 0 ≤ r ≤ 2ℓ−1, then

A(2n) = A(2ℓ+1 + 2r)

= A(2r) + 1 (by Equation (2.2))

= A(r) + 1 (by inductive hypothesis)

= A(2ℓ + r) (by Equation (2.2))

= A(n).

On the other hand, if 2ℓ−1 < r < 2ℓ, then

A(2n) = A(2ℓ+1 + 2r)

= A(2ℓ+2 − 2r) (by Equation (2.2))

= A(2ℓ+1 − r) (by inductive hypothesis)

= A(2ℓ + r) (by Equation (2.2))

= A(n).

Next we consider A(8n+ 1) = A(4n+ 1). If 0 ≤ r ≤ 2ℓ−1 − 1, then

A(8n+ 1) = A(2ℓ+3 + 8r + 1)

= A(8r + 1) + 1 (by Equation (2.2))

= A(4r + 1) + 1 (by inductive hypothesis)

= A(2ℓ+2 + 4r + 1) (by Equation (2.2))

= A(4n+ 1).
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If 2ℓ−1 ≤ r < 2ℓ, then

A(8n+ 1) = A(2ℓ+3 + 8r + 1)

= A(2ℓ+4 − 8r − 1) (by Equation (2.2))

= A(2ℓ+4 − 8r − 8 + 7)

= A(2ℓ+3 − 4r − 4 + 3) (by inductive hypothesis)

= A(2ℓ+3 − (4r + 1))

= A(2ℓ+2 + 4r + 1) (by Equation (2.2))

= A(4n+ 1).

The equations for A(8n+ 3), A(8n+ 5) and A(8n+ 7) are handled similarly.

Now we prove Theorem 2.11. We show that for general ℓ0 ≥ 0, a sequence s(n)n≥0

satisfying the recurrence can be written in terms of A(n)n≥0.

Proof of Theorem 2.11. There are 2ℓ0 initial conditions for the recurrence, namely s(0), . . . ,
s(2ℓ0 − 1). We claim that most of the 2ℓ0+2 subsequences of the form s(2ℓ0+2n + i)n≥0

depend on only one of the initial conditions s(j); each of these subsequences is essentially
A(n)n≥0, A(4n+1)n≥0, A(2n+1)n≥0, or A(4n+3)n≥0. Furthermore, each of the remaining
subsequences is equal to s(2ℓ0n+ j)+ c for some j. More precisely, for 0 ≤ i ≤ 2ℓ0+2 − 1 and
n ≥ 0 we have the identity

s(2ℓ0+2n+ i) =


























































cA(n) + s(0) if i = 0

cA(4n+ 1)− c+ s(i) if 1 ≤ i ≤ 2ℓ0 − 1

cA(4n+ 1) + s(0) if i = 2ℓ0

s(2ℓ0n+ i− 2ℓ0) + c if 2ℓ0 + 1 ≤ i ≤ 2ℓ0 + 2ℓ0−1 − 1

cA(2n+ 1) + s(|i− 2ℓ0+1|) if 2ℓ0 + 2ℓ0−1 ≤ i ≤ 2ℓ0+1 + 2ℓ0−1

s(2ℓ0n+ i− 2ℓ0+1) + c if 2ℓ0+1 + 2ℓ0−1 + 1 ≤ i ≤ 2ℓ0+1 + 2ℓ0 − 1

cA(4n+ 3) + s(0) if i = 2ℓ0+1 + 2ℓ0

cA(4n+ 3)− c+ s(2ℓ0+2 − i) if 2ℓ0+1 + 2ℓ0 + 1 ≤ i ≤ 2ℓ0+2 − 1.

(Note the symmetry among the eight cases, which reflects the symmetry s(2ℓ+r) = s(2ℓ+1−r)
of the recurrence for r > 2ℓ−1.) It will follow from this identity that the Z-module generated
by the 2-kernel of s(n)n≥0 is generated by the sequences s(2ℓn + j)n≥0 for 0 ≤ ℓ ≤ ℓ0 + 1
and 0 ≤ j ≤ 2ℓ − 1, A(n)n≥0, A(4n+ 1)n≥0, A(2n+ 1)n≥0, A(4n+ 3)n≥0, and the constant
1 sequence. In particular, this module is finitely generated.

We prove the identity by induction on n. Recall that for all ℓ ≥ ℓ0 and 0 ≤ r ≤ 2ℓ − 1 we
have Equation (2.1), i.e.,

s(2ℓ + r) =

{

s(r) + c if r ≤ 2ℓ−1

s(2ℓ+1 − r) if r > 2ℓ−1.

For n = 0, one uses A(1) = 1 and A(3) = 2 to verify that all eight cases of the identity hold.
Inductively, let n ≥ 1, and assume the identity is true for all n′ < n. Write n = 2ℓ + r with
ℓ ≥ 0 and 0 ≤ r ≤ 2ℓ − 1.
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First we consider the case 0 ≤ r ≤ 2ℓ−1 − 1. For all 0 ≤ i ≤ 2ℓ0+2 − 1 we have
2ℓ0+2r + i ≤ 2(ℓ0+2+ℓ)−1 − 1, so

s(2ℓ0+2n+ i) = s(2ℓ0+2+ℓ + (2ℓ0+2r + i))

= s(2ℓ0+2r + i) + c (by Equation (2.1)).

If 1 ≤ i ≤ 2ℓ0 − 1, then the inductive hypothesis now gives

s(2ℓ0+2n+ i) = s(2ℓ0+2r + i) + c

= cA(4r + 1) + s(i)

= c
(

A(2ℓ+2 + 4r + 1)− 1
)

+ s(i)

= cA(4n+ 1)− c+ s(i),

where we have used A(2ℓ+2 + 4r + 1) = A(4r + 1) + 1 from the recurrence for A(n), since
4r + 1 ≤ 2(ℓ+2)−1. The other seven intervals for i are verified similarly; in each case one
applies the inductive hypothesis to s(2ℓ0+2r + i) + c and then uses the recurrence for either
A(n) or s(n) to raise an argument in r to an argument in n.

It remains to consider 2ℓ−1 ≤ r ≤ 2ℓ − 1. First we address the case i = 0. If r = 2ℓ−1,
then

s(2ℓ0+2n+ i) = s(2ℓ0+2+ℓ + 2ℓ0+2+ℓ−1)

= s(2ℓ0+2+ℓ−1) + c (by Equation (2.1))

= cA(2ℓ−1) + s(0) + c (by inductive hypothesis)

= c
(

A(2ℓ + 2ℓ−1)− 1
)

+ s(0) + c (by Equation (2.2))

= cA(n) + s(0)

as desired. Alternatively, if 2ℓ−1 < r ≤ 2ℓ − 1 then 2ℓ0+2r > 2(ℓ0+2+ℓ)−1, so

s(2ℓ0+2n+ i) = s(2ℓ0+2+ℓ + 2ℓ0+2r)

= s(2ℓ0+2+ℓ+1 − 2ℓ0+2r) (by Equation (2.1))

= s(2ℓ0+2(2ℓ+1 − r) + 0)

= cA(2ℓ+1 − r) + s(0) (by inductive hypothesis)

= cA(2ℓ + r) + s(0) (by Equation (2.2))

= cA(n) + s(0).

Therefore it remains to consider 2ℓ−1 ≤ r ≤ 2ℓ − 1 for 1 ≤ i ≤ 2ℓ0+2 − 1. In this range
we have 2ℓ0+2r + i > 2(ℓ0+2+ℓ)−1, so

s(2ℓ0+2n+ i) = s(2ℓ0+2+ℓ + (2ℓ0+2r + i))

= s(2ℓ0+2+ℓ+1 − 2ℓ0+2r − i) (by Equation (2.1))

= s(2ℓ0+2n′ + i′),

where n′ = 2ℓ+1− r− 1 and i′ = 2ℓ0+2− i. We prove the identity for the seven intervals for i
using the same steps we have already used several times; we have just applied the recurrence
for s(n), so next we use the inductive hypothesis, followed by the recurrence for A(n) or
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s(n), depending on which term appears. For the first interval, if 1 ≤ i ≤ 2ℓ0 − 1, then
2ℓ0+1 + 2ℓ0 + 1 ≤ i′ ≤ 2ℓ0+2 − 1, so

s(2ℓ0+2n+ i) = s(2ℓ0+2n′ + i′)

= cA(4n′ + 3)− c+ s(2ℓ0+2 − i′) (by inductive hypothesis)

= cA(2ℓ+3 − (4r + 1))− c+ s(i)

= cA(2ℓ+2 + 4r + 1)− c+ s(i) (by Equation (2.2))

= cA(4n+ 1)− c+ s(i).

The proofs for the remaining six intervals are routine at this point, so we omit the steps
here.

Example 2.14. In Section 2.3, we will use Theorem 2.11 with ℓ0 = 1 to conclude that
∆12(n)n≥0 is 2-regular for the Thue–Morse word. In Section 2.4, we will use Theorem 2.11

with ℓ0 = 2 to conclude that ∆0(n)n≥0 and P(1)
x (n)n≥0 are 2-regular for the period-doubling

word. For ℓ0 = 2 the value of s(16n+ i) is

s(16n+ i) =



























































cA(n) + s(0) if i = 0

cA(4n+ 1)− c+ s(i) if 1 ≤ i ≤ 3

cA(4n+ 1) + s(0) if i = 4

s(4n+ 1) + c if i = 5

cA(2n+ 1) + s(|i − 8|) if 6 ≤ i ≤ 10

s(4n+ 3) + c if i = 11

cA(4n+ 3) + s(0) if i = 12

cA(4n+ 3)− c+ s(16− i) if 13 ≤ i ≤ 15.

2.3 The case of the Thue–Morse word t

As noticed in the previous section, the graph of the 2-abelian complexity of the Thue–Morse
word t introduced in Example 1.50 exhibits a reflection symmetry, but we will see that it
does not satisfy recurrence relations of the type given in Theorem 2.11.

First we consider the 2-block coding of t denoted by y,

y := block(t, 2) = 132120132012132120121320 · · ·

and its abelian complexity (Figure 2.11). Recall that y is a fixed point of the morphism ν
defined by ν : 0 7→ 12, 1 7→ 13, 2 7→ 20, 3 7→ 21. It will turn out that the abelian complexity
of y satisfies recurrence relations that are similar to Theorem 2.11 (given in Theorem2.28)
and is actually 2-regular.

In order to show that the abelian complexity of the ordinary paperfolding word is 2-
regular, Madill and Rampersad made a substantial use of a function computing the difference
between the number of O’s and the number of 1’s in factors of given length [MR13]. We
will follow their lead and make use of functions related to the number of 1’s and 2’s (or,
equivalently, the total number of 0’s and 3’s) in the factors of y of a fixed length. We will
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Figure 2.11: The abelian complexity of the 2-block coding y of the Thue–Morse word t.

show in Lemma 2.18 that the letters 1 and 2 alternate in y. Therefore, for n ∈ N, we set

max12(n) := max{|u|1 + |u|2 : u is a factor of y with |u| = n},
min12(n) := min{|u|1 + |u|2 : u is a factor of y with |u| = n},
∆12(n) := max12(n)−min12(n).

Remark 2.15. Each of the ∆12(n)+1 integers in the interval [min12(n),max12(n)] is attained
as the number of 1’s and 2’s in some factor of y of length n. Indeed, when we slide a window
of length n along y from a factor with min12(n) ones and twos to a factor with max12(n)
ones and twos, the number of 1’s and 2’s changes by at most 1 per step.

Firstly, we prove that the abelian complexity of y is 2-regular by proving it is piecewise-
defined together with the fact that ∆12(n)n≥0 is 2-regular and the predicates occurring in

the expression of P(1)
y are 2-automatic. In particular, we show that ∆12(n)n≥0 satisfies a

reflection symmetry. This permits us to express recurrence relations for P(1)
y at the end of

Subsection 2.3.1. Secondly, we compare P(2)
t (n + 1) and P(1)

y (n). We then show that the

2-regularity of ∆12(n)n≥0 and P(1)
y (n)n≥0 implies the 2-regularity of P(2)

t (n)n≥0.

2.3.1 The abelian complexity of block(t, 2) is 2-regular

The fact that P(1)
y (n)n≥0 is 2-regular will follow from the next statement.

Let n ∈ N. We have

P(1)
y (n) =



















2∆12(n) + 2 if n is odd
5
2∆12(n) +

5
2 if n and ∆12(n) + 1 are even

5
2∆12(n) + 4 if n, ∆12(n) and min12(n) + 1 are even
5
2∆12(n) + 1 if n, ∆12(n) and min12(n) are even.

Proposition 2.16.
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To be able to apply the composition result given by Lemma 1.34 to the expression of P(1)
y

derived in Proposition 2.16, we have therefore to prove that

• the sequence ∆12(n)n≥0 is 2-regular and

• the predicates occurring in the expression of P(1)
y are 2-automatic.

We first need three technical lemmas about factors of y = block(t, 2).

The set Fac2(y) of factors of length 2 occurring in y is {01, 12, 13, 20, 21, 32}.

Lemma 2.17.

Proof. It is easy to check that these six words are factors:

block(t, 2) = 132120132012132120121320 · · ·

To prove that they are the only ones, it is enough to check that for any element u in
{01, 12, 13, 20, 21, 32}, the three factors of length 2 of ν(u) are still in {01, 12, 13, 20, 21, 32}.

The following lemma has already been observed in [KSZ, Lemma 10].

If w is a factor of y, then
∣

∣|w|1 − |w|2
∣

∣ ≤ 1 and
∣

∣|w|0 − |w|3
∣

∣ ≤ 1. In particular, the
letters 1 and 2 (respectively 0 and 3) alternate in y.

Lemma 2.18.

Proof. First note that if for all factors of a word u, the numbers of two letters x and y differ
by at most 1, then x and y alternate in u. Furthermore, if the first or the last occurrence of
one of these letters is x, then |u|x ≥ |u|y. If both the first and the last occurrences are x,
then |u|x = |u|y + 1.

We prove the result by induction on the length ℓ of the factor. The result is true for
factors of length ℓ = 1. Let w be a factor of length ℓ > 1 and assume the result holds for
factors of length smaller than ℓ. If w can be de-substituted as w = ν(w′), we have

|w|0 = |w′|2,
|w|1 = |w′|0 + |w′|1 + |w′|3,
|w|2 = |w′|0 + |w′|2 + |w′|3,
|w|3 = |w′|1.

Using the inductive hypothesis, we have
∣

∣|w|1 − |w|2
∣

∣ =
∣

∣|w|0 − |w|3
∣

∣ =
∣

∣|w′|1 − |w′|2
∣

∣ ≤ 1.

If w cannot be de-substituted and has odd length, we have

w ∈
{

1−1ν(w′), 2−1ν(w′), ν(w′)1, ν(w′)2
}
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for some factor w′ with |w′| < ℓ. Assume that w = 1−1ν(w′). Then as before, we have
∣

∣|w|0 − |w|3
∣

∣ =
∣

∣|w′|1 − |w′|2
∣

∣ ≤ 1. For the numbers of 1 and 2, w′ starts with 0 or 1. Since
by Lemma 2.17 a 0 is always followed by a 1, w′ starts either with 01 or with 1. In both
cases, since 1 and 2 alternate, we have |w′|1 ≥ |w′|2 and thus

∣

∣|w|1 − |w|2
∣

∣ =
∣

∣|w′|1 − |w′|2 − 1
∣

∣ ≤ 1.

The same reasoning can be done for w = 2−1ν(w′). If w = ν(w′)1, then we clearly have
∣

∣|w|0 − |w|3
∣

∣ ≤ 1 using the result on ν(w′). By Lemma 2.17, the factor ν(w′) must end
either with 0 or 2. So w′ ends with 0 or 2 as well. Since a 0 is always preceded by a 2, we
necessarily have |w′|2 ≥ |w′|1 and

∣

∣|w|1 − |w|2
∣

∣ =
∣

∣|w′|1 − |w′|2 + 1
∣

∣ ≤ 1.

The same reasoning applies to w = ν(w′)2.
If w cannot be de-substituted and has even length, then we have

w ∈
{

1−1ν(w′)1, 1−1ν(w′)2, 2−1ν(w′)1, 2−1ν(w′)2
}

for some factor w′ with |w′| < ℓ. If the same letter is removed and added to ν(w′), then the
result is clearly true. Otherwise, assume that w = 1−1ν(w′)2 (the same reasoning holds for
the last case). It is clear that

∣

∣|w|0−|w|3
∣

∣ ≤ 1 using the result on ν(w′). For the numbers of 1
and 2, as before, w′ starts with 01 or 1 and ends with 13 or 1. Hence we have |w′|1 = |w′|2+1
and then

∣

∣|w|1 − |w|2
∣

∣ =
∣

∣|w′|1 − |w′|2 − 2
∣

∣ ≤ 1.

Let τ, τ ′ be the morphisms respectively defined by

τ :















0 7→ 0

1 7→ 2

2 7→ 1

3 7→ 3

and τ ′ :















0 7→ 3

1 7→ 1

2 7→ 2

3 7→ 0

.

If w is a factor of y, then τ ′(w)R, τ(w)R and τ ′(τ(w)) are also factors of y.

Lemma 2.19.

Proof. We prove the lemma for τ ′(w)R and τ(w)R since τ ′(τ(w)) = τ ′(τ(w)R)R.
We first prove by induction that for any factor u starting with the letter x and ending

with the letter y,

τ ′(ν(u))R = a−1ν(τ(u)R)b (2.3)

where a = 1 (respectively a = 2, b = 1, b = 2) if and only if y ∈ {0, 2} (resp. y ∈ {1, 3},
x ∈ {0, 1}, x ∈ {2, 3}). Note that a−1ν(τ(u)R)b is well defined. Indeed, if y ∈ {0, 2}, then
τ(u)R starts with 0 or 1 and thus ν(τ(u)R) starts with a = 1. The same holds with y ∈ {1, 3}.

The relation (2.3) is true for u of length 1. We have for example

τ ′(ν(0))R = 21 = 1−1ν(0)1 = 1−1ν(τ(0)R)1
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and

τ ′(ν(1))R = 01 = 2−1ν(2)1 = 2−1ν(τ(1)R)1.

Let u = u′yx be a factor with at least two letters x and y. Assume the conclusion holds
for words of length at most |u| − 1. By the inductive hypothesis, we have τ ′(ν(u′y))R =
a−1ν(τ(u′y)R)b and τ ′(ν(x))R = c−1ν(τ(x)R)d with appropriate a, b, c, d. Since yx is a
factor, one can check using Lemma 2.17 that a = d. Indeed, if y ∈ {0, 2}, then x ∈ {0, 1}.
So a = 1 and d = 1. Similarly, if y ∈ {1, 3}, then x ∈ {2, 3}. Hence, a = 2 and d = 2. Thus,
we have

τ ′(ν(u))R = τ ′(ν(u′yx)R)

= τ ′(ν(x))Rτ ′(ν(u′y))R

= c−1ν(τ(x)R)da−1ν(τ(u′y)R)b

= c−1ν(τ(u′yx)R)b

= c−1ν(τ(u)R)b.

We can similarly prove by induction that for any factor u starting with the letter x and
ending with the letter y,

τ(ν(u))R = a−1ν(τ ′(u)R)b

where a = 1 (respectively a = 2, b = 1, b = 2) if and only if y ∈ {1, 3} (resp. y ∈ {0, 2},
x ∈ {2, 3}, x ∈ {0, 1}).

We now prove the lemma (for τ and τ ′ together) by induction on the length of w. One
can check by hand that the lemma is true for w of length at most 4. Assume the lemma is
true for any factor of length at most n ≥ 4, and let w be a factor of length n+1. There exist
some factors s, t and v such that swt = ν(v), 0 ≤ |t| ≤ 1 and 1 ≤ |s| ≤ 2. Then we have
|v| ≤ n+4

2 ≤ n. By the inductive hypothesis, τ(v)R is a factor of y. Hence ν(τ(v)R) is also
a factor of y. Using the previous result, τ ′(ν(v))R = a−1ν(τ(v)R)b for some letters a and b.
But we also have τ ′(ν(v))R = τ ′(t)Rτ ′(w)Rτ ′(s)R and since s has at least one letter, τ ′(w)R

is a factor of ν(τ(v)R). Hence it is a factor of y. We do the same proof for τ(w)R.

We are now ready to prove the relationship between P(1)
y (n) and ∆12(n).

Proof of Proposition 2.16. Let u be a factor of length n of y. Let n12 = |u|1 + |u|2 and
n03 = |u|0 + |u|3.

Assume first that n is odd. If n12 is even, then there are the same number of 1’s and 2’s
in u by Lemma 2.18. Since n13 is odd, if |u|0 = |u|3+1 (resp. |u|3 = |u|0+1), then τ ′(u)R is a
factor by Lemma 2.19 and |τ ′(u)R|3 = |τ ′(u)R|0+1 (resp. |τ ′(u)R|0 = |τ ′(u)R|3+1). In either
case, τ ′(u)R still has n12 ones and twos. Hence there are exactly two abelian equivalence
classes for fixed n odd and n12 even. We can do the same reasoning if n12 is odd. Finally,
there are ∆12(n)+1 possible values for n12 and thus 2(∆12(n)+1) abelian equivalence classes
for a fixed odd n.

Assume now that n is even. If both n12 and n03 are even, then u necessarily has the same
number of 1’s as 2’s and the same number of 0’s as 3’s, and thus there is only one abelian
equivalence class. Hence assume that n12 and n03 are odd. We have (|u|0 − |u|3, |u|1 − |u|2)
in {−1, 1}2. By Lemma 2.19, the four factors u, τ ′(u)R, τ(u)R and τ ′(τ(u)) realize the four
possibilities for (|u|0 − |u|3, |u|1 − |u|2). Hence if n12 and n03 are both odd, there are four
abelian equivalence classes.
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Now, we just have to count pairs (n, n12) with n and n12 even. If ∆12(n) is odd, there
are exactly (∆12(n) + 1)/2 such pairs. So there are

1 · (∆12(n) + 1)/2 + 4 · (∆12(n) + 1)/2 =
5

2
(∆12(n) + 1)

abelian classes for this value of n. If ∆12(n) is even and min12(n) is odd, there are exactly
∆12(n)/2 even values for n12, and so there are

1 ·∆12(n)/2 + 4 · (∆12(n)/2 + 1) =
5

2
∆12(n) + 4

abelian classes. Finally, if ∆12(n) is even and min12(n) is even, there are exactly ∆12(n)/2+1
even values for n12, and so there are

1 · (∆12(n)/2 + 1) + 4 ·∆12(n)/2 =
5

2
∆12(n) + 1

abelian classes.

We now turn our attention to the sequences occurring in the expression of P(1)
y derived

in Proposition 2.16.

Let ℓ ≥ 1 and 0 ≤ r < 2ℓ. We have

∆12(2
ℓ + r) =

{

∆12(r) + 1 if r ≤ 2ℓ−1

∆12(2
ℓ+1 − r) if r > 2ℓ−1.

Moreover,

min12(2
ℓ + r) ≡

{

min12(r) + ℓ (mod 2) if r ≤ 2ℓ−1

min12(2
ℓ+1 − r) + ∆12(2

ℓ+1 − r) (mod 2) otherwise.

Proposition 2.20.

Note that those latter relations have a form similar to (but slightly different from) the
assumptions of Theorem 2.11. Before giving the proof, we prove a corollary. The 2-regularity

of P(1)
y (n)n≥0 follows from Proposition 2.16 and Corollary 2.21.

• The sequence ∆12(n)n≥0 is 2-regular.

• The sequence (∆12(n) mod 2)n≥0 is 2-automatic.

• The sequence (min12(n) mod 2)n≥0 is 2-automatic.

Corollary 2.21.
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Proof. The first assertion is a direct consequence of Proposition 2.20 and Theorem 2.11. The
second assertion follows from Lemma 1.31.

To prove the last assertion, we prove by induction that, modulo 2,

min12(16n+ i) ≡















































min12(4n) if i = 0

min12(4n+ 1) if i ∈ {1, 4, 5}
min12(4n+ 1) + 1 if i ∈ {2, 3}
min12(4n+ 2) if i ∈ {6, 8, 9}
min12(4n+ 2) + 1 if i ∈ {7, 10}
min12(4n+ 3) if i ∈ {12, 13, 15}
min12(4n+ 3) + 1 if i ∈ {11, 14}

and

∆12(16n+ i) ≡















































∆12(4n) if i = 0

∆12(4n+ 1) if i ∈ {1, 2, 4}
∆12(4n+ 1) + 1 if i ∈ {3, 5}
∆12(4n+ 2) if i = 8

∆12(4n+ 2) + 1 if i ∈ {6, 7, 9, 10}
∆12(4n+ 3) if i ∈ {12, 14, 15}
∆12(4n+ 3) + 1 if i ∈ {11, 13}.

The relations are true for n = 0. Let n > 0 and assume they are true for n′ < n. We can
write n = 2ℓ + r with ℓ ≥ 0 and 0 ≤ r < 2ℓ. Let i ∈ {0, . . . , 15}. We consider two cases.

Assume first that r < 2ℓ−1. We have 16n+ i = 2ℓ+4 + 16r + i and 16r + i < 2ℓ+3.

min12(16n+ i) ≡ min12(16r + i) + ℓ+ 4 (by Proposition 2.20)

≡ min12(4r + j) + δ + ℓ+ 4 (by inductive hypothesis)

≡ min12(2
ℓ+2 + 4r + j) + δ (by Proposition 2.20)

≡ min12(4n+ j) + δ (mod 2)

for some j ∈ {0, . . . , 3} and δ ∈ {0, 1} according to the relations. A similar reasoning holds
for the ∆12 relations.

Assume now that r ≥ 2ℓ−1 and i 6= 0. Setting i′ = 16− i and n′ = 2ℓ+1− r− 1, we obtain
16n′ + i′ = 2ℓ+5 − 16r − i. It follows that, by Proposition 2.20,

min12(16n+ i) ≡ min12(2
ℓ+5 − 16r − i) + ∆12(2

ℓ+5 − 16r − i)

≡ min12(16n
′ + i′) + ∆12(16n

′ + i′)

≡ min12(4n
′ + k) + δ +∆12(4n

′ + k′) + δ′ (by inductive hypothesis)

for some k, k′ ∈ {0, . . . , 3} and δ, δ′ ∈ {0, 1} according to the relations. Note that we have
k = k′, so

min12(16n+ i) ≡ min12(4n
′ + k) + δ +∆12(4n

′ + k) + δ′

≡ min12(2
ℓ+3 − (4r + 4− k)) + δ +∆12(2

ℓ+3 − (4r + 4− k)) + δ′

≡ min12(2
ℓ+2 + (4r + 4− k)) + δ + δ′ (by Proposition 2.20)

≡ min12(4n+ (4 − k)) + δ + δ′ (mod 2).



76 Chapter 2. Regularity of ℓ-abelian complexity functions

Table 2.2 gives the values of i′, k, δ and δ′ for all the values of i 6= 0. Observe that the
values of 4− k and (δ + δ′ mod 2) are the values given in the relation for i. To conclude the
proof, consider the case i = 0. We have

min12(16n) ≡ min12(16(2
ℓ+1 − r)) + ∆12(16(2

ℓ+1 − r)) (Proposition 2.20)

≡ min12(4(2
ℓ+1 − r)) + ∆12(4(2

ℓ+1 − r)) (by inductive hypothesis)

≡ min12(4n) (mod 2) (Proposition 2.20).

A similar reasoning works for the ∆12 relations.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i′ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
k 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1
δ 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0
δ′ 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0

Table 2.2: The corresponding values of i′ = 16− i, k, δ and δ′.

Proposition 2.20 is a direct consequence of Lemmas 2.22, 2.25 and 2.27 given below.

Let ℓ ∈ N, ℓ ≥ 1. We have ∆12(2
ℓ) = 1, min12(2

ℓ) ≡ ℓ (mod 2),

min12(2
ℓ) + max12(2

ℓ+1) = 2ℓ+1 and max12(2
ℓ) + min12(2

ℓ+1) = 2ℓ+1.

Lemma 2.22.

Proof. Let ℓ ≥ 1, Aℓ =
2ℓ+1+(−1)ℓ

3 and Bℓ =
2ℓ+1+2(−1)ℓ+1

3 . The sequences

(Aℓ)ℓ≥1 = (1, 3, 5, 11, 21, . . .) and (Bℓ)ℓ≥1 = (2, 2, 6, 10, 22, . . .)

are integer sequences and both satisfy the recurrence relation Xℓ+1 = 2ℓ+1 −Xℓ. Moreover
we have Aℓ = Bℓ+1 for even ℓ and Bℓ = Aℓ+1 for odd ℓ. Note that |νℓ(1)|1+ |νℓ(1)|2 = Aℓ

and |νℓ(0)|1 + |νℓ(0)|2 = Bℓ.
We show by induction that

{

|w|1 + |w|2 : w factor of y with |w| = 2ℓ
}

= {Aℓ, Bℓ}.
Note that this result will imply the lemma and that we already have Aℓ and Bℓ in the

set.
It is easy to check the result for ℓ = 1. Assume the result is true for ℓ ≥ 1. Let w

be a factor of y of length 2ℓ+1. If w can be de-substituted, then w = ν(u) and we have
|w|1 + |w|2 = 2|u|0 + |u|1 + |u|2 + 2|u|3 as in the proof of Lemma 2.18. Hence we obtain
|w|1 + |w|2 = 2|u| − (|u|1 + |u|2) = 2ℓ+1 − (|u|1 + |u|2). Using the recurrence relation for
Aℓ and Bℓ and since |u|1 + |u|2 ∈ {Aℓ, Bℓ}, we have |w|1 + |w|2 ∈ {Aℓ+1, Bℓ+1}. If w
cannot be de-substituted, then we can write w = a−1ν(u)b for some letters a, b ∈ {1, 2} and
|ν(u)| = 2ℓ+1. So |w|1+|w|2 = |ν(u)|1+|ν(u)|2. Since we already proved that |ν(u)|1+|ν(u)|2
is in {Aℓ+1, Bℓ+1}, we are done.

To prove the second assertion of the lemma, observe that min12(2
ℓ) = Aℓ if ℓ is odd and

min12(2
ℓ) = Bℓ if ℓ is even. Furthermore, Aℓ is always odd whereas Bℓ is always even.
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In order to prove Lemmas 2.25 and 2.27, we first need some technical results.

Let u be a factor of y of length n. We have

• |u|1 + |u|2= max12(n) if and only if |ν(u)|1 + |ν(u)|2 = min12(2n),

• |u|1 + |u|2 = min12(n) if and only if |ν(u)|1 + |ν(u)|2 = max12(2n).

Lemma 2.23.

Proof. Recall that |ν(u)|1 + |ν(u)|2 = 2n− (|u|1 + |u|2). Assume that |u|1 + |u|2 = max12(n)
and that |ν(u)|1 + |ν(u)|2 = x > min12(2n). Thus x = 2n−max12(n). There exists a factor
w of length 2n with x − 1 ones and twos. We can assume that w can be de-substituted.
Otherwise, we can write w as w = a−1ν(v)b for some a, b ∈ {1, 2}. Thus ν(v) has the
same length as w and the same number of 1’s and 2’s. So we can assume w = ν(v). Then
|v|1 + |v|2 = 2n− (x− 1) = max12(n) + 1, a contradiction.

For the other direction, assume that |u|1+|u|2 = x < max12(n) and that |ν(u)|1+|ν(u)|2 =
min12(2n). Thus x = n−min12(n). As before, there exists a factor v of length n with x+ 1
ones and twos. Then ν(v) has min12(n)− 1 ones and twos, a contradiction.

The second part of the lemma is similar.

Let n be an odd integer. Then we have

min12(n) = min12(n+ 1)− 1,

max12(n) = max12(n− 1) + 1.

Lemma 2.24.

Proof. Let u be a factor of even length n + 1 minimizing the number of 1’s and 2’s. Then
either u starts with 1 or 2, or ends with 1 or 2. Indeed, if u can be de-substituted, then it
starts with 1 or 2. Otherwise, its last letter is the beginning of an image of ν and thus is 1 or
2. Removing this letter, we get a word of length n with min12(n+1)−1 ones and twos. Since
the function min12 increases by 0 or 1 from n to n+1, we have min12(n) = min12(n+1)− 1.

For the second equality, consider a factor u of even length n− 1 with max12(n− 1) ones
and twos. There exist two letters a and b such that aub is a factor. Then, as before, since
aub has even length, a or b must be a 1 or a 2. Then au or ub is a factor of length n with
max12(n− 1) + 1 ones and twos and we conclude as before.

If ℓ ≥ 1 and 0 ≤ r ≤ 2ℓ−1, then

max12(2
ℓ + r) = max12(2

ℓ) + max12(r)

min12(2
ℓ + r) = min12(2

ℓ) + min12(r).

Lemma 2.25.
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Proof. We prove the two results together by induction on ℓ. One checks the case ℓ = 1. Let
ℓ > 1 and assume the result is true for ℓ− 1. Let 0 ≤ r ≤ 2ℓ−1.

Assume first that r is even. By the inductive hypothesis, there exists a factor u of length
2ℓ−1 + r/2 such that

|u|1 + |u|2 = min12(2
ℓ−1 + r/2) = min12(2

ℓ−1) + min12(r/2).

We can write u = vw with v of length 2ℓ−1 and w of length r/2. Both the words v and
w must minimize the number of 1’s and 2’s for their respective lengths. By Lemma 2.23,
ν(u) = ν(v)ν(w) maximizes the number of 1’s and 2’s and so do ν(v) and ν(w). Thus,
max12(2

ℓ + r) = |ν(u)|1 + |ν(u)|2 and

max12(2
ℓ + r) = |ν(v)|1 + |ν(v)|2 + |ν(w)|1 + |ν(w)|2 = max12(2

ℓ) + max12(r).

A similar proof shows that min12(2
ℓ + r) = min12(2

ℓ) + min12(r).
Assume now that r is odd. We still have 0 ≤ r − 1 < r + 1 ≤ 2ℓ−1. Hence we can apply

the previous result to obtain max12(2
ℓ+ r−1) = max12(2

ℓ)+max12(r−1). By Lemma 2.24,

max12(2
ℓ + r) = max12(2

ℓ + r − 1) + 1

= max12(2
ℓ) + max12(r − 1) + 1

= max12(2
ℓ) + max12(r).

For the min12 equality, a similar argument holds (using the previous result for r+1).

If ℓ ≥ 1 and 2ℓ−1 ≤ r ≤ 2ℓ, then

max12(2
ℓ+1) = max12(2

ℓ + r) + min12(2
ℓ − r)

min12(2
ℓ+1) = min12(2

ℓ + r) + max12(2
ℓ − r).

Moreover, there is a factor of length 2ℓ+1 maximizing (resp. minimizing) the number
of 1’s and 2’s such that the prefix of length 2ℓ+ r also maximizes (resp. minimizes)
the number of 1’s and 2’s.

Lemma 2.26.

Proof. We proceed by induction on ℓ. The result is true for ℓ = 1 since the only non-trivial
case is r = 1. Then max12(4) = max12(3) + min12(1) and min12(4) = min12(3) + max12(1)
and the factors 2120 and 0132 satisfy the claim.

Let ℓ > 1 and assume the result is true for ℓ− 1. Let 2ℓ−1 ≤ r ≤ 2ℓ. Assume first that r
is even. Then 2ℓ−2 ≤ r/2 ≤ 2ℓ−1. By the inductive hypothesis, there is a factor u of length
2ℓ minimizing the number of 1’s and 2’s such that the prefix v of length 2ℓ−1+r/2 minimizes
the number of 1’s and 2’s. Thus we can write u = vw and |v|1+ |v|2 = min12(2

ℓ−1+r/2) and
necessarily |w|1 + |w|2 = max12(2

ℓ−1 − r/2). By Lemma 2.23, ν(u) and ν(v) maximize the
number of 1’s and 2’s and ν(w) minimizes the number of 1’s and 2’s. So we can conclude the
result. A similar proof shows the other relation. If r is odd, then we still have 2ℓ−1 ≤ r−1 ≤ 2ℓ

since ℓ > 1. Thus we can use the previous result and together with Lemma 2.24, we have

max12(2
ℓ+1) = max12(2

ℓ + r − 1) + min12(2
ℓ − r + 1)

= max12(2
ℓ + r)− 1 + min12(2

ℓ − r) + 1

= max12(2
ℓ + r) + min12(2

ℓ − r).



2.3. The case of the Thue–Morse word t 79

Similarly, using the fact that r + 1 ≤ 2ℓ,

min12(2
ℓ+1) = min12(2

ℓ + r + 1) + max12(2
ℓ − r − 1)

= min12(2
ℓ + r) + 1 +max12(2

ℓ − r) − 1

= min12(2
ℓ + r) + max12(2

ℓ − r).

For the construction of the factors, one can construct them using the factor ν(u) maxi-
mizing the number of 1’s and 2’s given for r− 1 and the factor ν(u′) minimizing the number
of 1’s and 2’s given for r+ 1 in the previous construction. Since r is odd, the letter between
the prefix ν(v) of length 2ℓ + r − 1 and 2ℓ + r of ν(u) is 1 or 2. Since the prefix of length
2ℓ + r− 1 of ν(u) maximizes the number of 1’s and 2’s, so does the prefix of length 2ℓ + r of
ν(u). For min12, consider ν(u

′). There exist letters a and b such that w = a−1ν(u′)b is still
a factor. We must have a, b ∈ {1, 2}. Then the prefix of length 2ℓ + r of w minimizes the
number of 1’s and 2’s.

The previous lemma permits us to reformulate some relations between the two sequences
max12(n)n≥0 and min12(n)n≥0.

If ℓ ≥ 1 and 2ℓ−1 ≤ r ≤ 2ℓ, then

max12(2
ℓ + r) = 2ℓ+1 −min12(2

ℓ+1 − r)

min12(2
ℓ + r) = 2ℓ+1 −max12(2

ℓ+1 − r).

Lemma 2.27.

Proof. From the previous lemma, we have

max12(2
ℓ + r) = max12(2

ℓ+1)−min12(2
ℓ − r).

Note that, by Lemma 2.22, we have max12(2
ℓ+1) = 2ℓ+1 −min12(2

ℓ). Moreover, we get by
Lemma 2.25

min12(2
ℓ − r) = min12(2

ℓ + 2ℓ − r)−min12(2
ℓ),

since 0 ≤ 2ℓ − r ≤ 2ℓ−1. Similar relations hold when changing max12 to min12.

The proof of Proposition 2.20 about the reflection relation satisfied by ∆12(n) and the
recurrence relation of min12(n) is now immediate.

Proof of Proposition 2.20. If ℓ ≥ 1 and 0 ≤ r ≤ 2ℓ−1, then subtracting the two relations
provided by Lemma 2.25 gives

∆12(2
ℓ + r) = ∆12(ℓ) + ∆12(r)

and we can conclude using the first relation given in Lemma 2.22, ∆12(2
ℓ) = 1. By

Lemma 2.25, min12(2
ℓ+r) ≡ min12(2

ℓ)+min12(r) (mod 2). The expression for min12(2
ℓ+r)

follows since min12(2
ℓ) ≡ ℓ (mod 2) by Lemma 2.22.
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If ℓ ≥ 1 and 2ℓ−1 < r < 2ℓ, then subtracting the two relations provided by Lemma 2.27
permits us to conclude the expression claimed for ∆12(2

ℓ+ r). Moreover, using Lemma 2.27,
we get

min12(2
ℓ + r) ≡ max12(2

ℓ+1 − r) (mod 2)

≡ min12(2
ℓ+1 − r) + ∆12(2

ℓ+1 − r) (mod 2).

Using Propositions 2.16 and 2.20, we can express recurrence relations for the abelian

complexity P(1)
y of the 2-block coding y of the Thue–Morse word. These recurrence relations

are similar to the ones of Theorem 2.11; unfortunately they do not completely coincide.

Hence, we cannot deduce immediately the 2-regularity of P(1)
y from these relations.

Let ℓ ≥ 2 and 0 ≤ r < 2ℓ. For r ≤ 2ℓ−1, we have

P(1)
y (2ℓ + r) =































P
(1)
y (r) + 2 if r is odd

P
(1)
y (r) + 1 if (r, ∆12(2

ℓ + r) and min12(2
ℓ + r) are even)

or (r and ∆12(2
ℓ + r) + 1 are even

and min12(2
ℓ + r) ≡ ℓ+ 1 (mod 2))

P
(1)
y (r) + 4 otherwise.

For r > 2ℓ−1, we have P(1)
y (2ℓ + r) = P(1)

y (2ℓ+1 − r).

Theorem 2.28.

2.3.2 The 2-abelian complexity of t is 2-regular

To prove the 2-regularity of P(2)
t , the aim of this subsection is to express P(2)

t (n+1) in terms

of P(1)
y (n), ∆12(n), (min12(n) mod 2) and two new functions MJ03(n) and mj03(n).
Let

max03(n) := max{|u|0 + |u|3 : u is a factor of y with |u| = n},
min03(n) := min{|u|0 + |u|3 : u is a factor of y with |u| = n},

We define the max-jump function MJ03(n) : N → {0, 1} by MJ03(0) = 0 and for n ≥ 1,

MJ03(n) :=

{

1 if max03(n) > max03(n− 1)

0 otherwise.

In other words, MJ03(n) = 1 when the function max03 increases. Similarly, the min-jump
function mj03(n) : N → {0, 1} is defined by

mj03(n) :=

{

1 if min03(n+ 1) > min03(n)

0 otherwise.

Remark 2.29. Observe that we could define the max-jump and min-jump functions us-
ing the functions max12(n) and min12(n) since we have max03(n) = n − min12(n) and
min03(n) = n−max12(n). So we have for all n ≥ 0

MJ03(n+ 1) = min12(n)−min12(n+ 1) + 1
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and

mj03(n) = max12(n)−max12(n+ 1) + 1

= min12(n)−min12(n+ 1) + ∆12(n)−∆12(n+ 1) + 1.

We chose to define these two new functions with max03(n) and min03(n) to obtain similar
results in the case of the 2-abelian complexity of the period-doubling word (Section 2.4).

The relationship between these functions and P(2)
t and P(1)

y is given in the following
result.

Let n ∈ N. If n is odd, the difference P(2)
t (n+ 1)− P(1)

y (n) is equal to



















∆12(n) + 2− 2MJ03(n)− 2mj03(n) if min12(n) and ∆12(n) are even

∆12(n) + 1− 2MJ03(n) if min12(n) and ∆12(n) + 1 are even

∆12(n) + 1− 2mj03(n) if min12(n) and ∆12(n) are odd

∆12(n) if min12(n) + 1 and ∆12(n) are even.

For n even, the difference P(2)
t (n+ 1)− P(1)

y (n) is











1
2
∆12(n) + 1 if min12(n) and ∆12(n) are even

1
2
∆12(n) if min12(n) + 1 and ∆12(n) are even

1
2
∆12(n) +

1
2

if ∆12(n) is odd.

Theorem 2.30.

We require several preliminary results.

Let u and v be factors of t of length n. Let u′ and v′ be the 2-block codings of
u and v. The factors u and v are 2-abelian equivalent if and only if u′ and v′ (of
length n − 1) are abelian equivalent and either u′ and v′ both have first letter in
{0, 1} or both have first letter in {2, 3}.

Proposition 2.31.

To compute P(2)
t , we will use the abelian complexity of y = block(t, 2), P(1)

t , and study
when an abelian equivalence class of length-n factors of y splits into two 2-abelian equivalence
classes of factors of length n+ 1 of t. In other words, we study when two abelian equivalent
factors of y can start, respectively, with a letter in {0, 1} and with a letter in {2, 3}.

Let X be an abelian equivalence class of factors of y of length n. For a letter a, let na

denote the number of a’s in each element of X and let n12 = n1 + n2, n03 = n0 + n3.

If n12 is odd, then X leads to a unique 2-abelian equivalence class of t.

Lemma 2.32.
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Proof. Assume that n1 > n2 (the other case is similar). Then a word of X cannot start with
2 since the letters 1 and 2 alternate in y by Lemma 2.18. It cannot start with 3 neither since
n1 > n2 and a 3 is always followed by 2 by Lemma 2.17. Hence it starts with 0 or 1. Thus
X leads to a unique 2-abelian equivalence class.

If n and n12 are even, then X splits into two 2-abelian equivalence classes of t.

Lemma 2.33.

Proof. If n and n12 are even, then n03 is also even and thus n1 = n2 and n0 = n3. Let u be
an element of X . Then u′ = τ ′(τ(u)) is also an element of X . Moreover, the first letter of u
is in {0, 1} if and only if the first letter of u′ is in {2, 3}. Hence X splits into two 2-abelian
equivalence classes.

So the last and hardest case happens when n is odd and n12 is even, i.e., when n and n03

are odd. The MJ03 and mj03 functions permit us to handle this case.

Let n and n03 are odd. Let a ∈ {0, 3} (resp. b ∈ {0, 3}) be the letter in majority
(resp. in minority) in factors in X , among {0, 3}.

• We have n03 = max03(n) and MJ03(n) = 1 if and only if every factor in X
starts and ends with a.

• We have n03 = min03(n) and mj03(n) = 1 if and only if every factor in X is
preceded and followed by b.

Lemma 2.34.

Proof. Assume that a = 0 and b = 3 (the other case is symmetric). We first prove the
statement for the maximum. Assume that all the factors in X start and end with 0. If
n03 < max03(n), by continuity of the number of 0’s and 3’s and since y is uniformly recurrent,
there exists a factor yuz such that the factor yu (resp. uz) is of length n with n03 (resp.
n03 + 1) zeros and threes. We necessarily have z ∈ {0, 3} and u is not finishing with a letter
in {0, 3}. Since yu has n03 zeros and threes, yu or τ ′(yu)R is an element of X that is either
not finishing or not starting with 0, a contradiction. Hence we have n03 = max03(n). Assume
now that max03(n − 1) = n03. There exists a factor u of even length n − 1 with n03 zeros.
Without loss of generality, we can assume that u has more 0’s than 3’s (otherwise one can
consider τ ′(u)R by Lemma 2.19). Since u has even length, either u occurs at an even index
in y and is always followed by 1 or 2, or u occurs at an odd index in y and is always preceded
by 1 or 2. In other words, there is a factor of the form yu or uy with y ∈ {1, 2}. Then yu or
uy is an element of X with the first or last letter different from 0, a contradiction.

For the other direction, assume that n03 = max03(n) and MJ03(n) = 1. Let u be a factor
in X . If u = xu′ or u = u′x with a letter x 6= 0, then u′ has length n− 1 and n03 zeros and
threes. Thus MJ03(n) = 0, a contradiction.

The second statement is proved in the same way. Assume that all the factors in X are
preceded and followed by 3. If n03 > min03(n), by continuity of the number of 0’s and 3’s
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and since y is uniformly recurrent, there exists a factor yuz such that the factor yu (resp.
uz) is of length n with n03 (resp. n03 − 1) zeros and threes. We necessarily have z ∈ {1, 2}.
Then as before yu or τ ′(yu)R is and element of X that is either not always followed or not
always preceded by 3, a contradiction. Hence we have n03 = min03(n). Assume now that
min03(n + 1) = n03. There exists a factor u of even length n + 1 with n03 zeros. Without
loss of generality, we can assume that u has more 0’s than 3’s (otherwise one can consider
τ ′(u)R by Lemma 2.19). Since u has even length, either u occurs at an even index and starts
with 1 or 2 or u occurs at an odd index and ends with 1 or 2. In other words, u = yu′ or
u = u′y with y ∈ {1, 2} and u′ is an element of X preceded or followed by a letter different
from 3, a contradiction.

For the other direction, assume that n03 = min03(n) and mj03(n) = 1. Let u be a factor
in X . If u′ = ux or u′ = xu is a factor with x ∈ {1, 2}, then u′ has length n+1 and n03 zeros
and threes. So mj03(n) = 0, which is a contradiction. Observe also that it is impossible to
have 0u or u0 as factors of y since |u|0 > |u|3 by assumption and the letters 0 and 3 alternate
in y by Lemma 2.18. The conclusion is immediate.

If n is odd and n12 is even, then X leads to only one 2-abelian equivalence class of t
if and only if n03 = min03(n) and mj03(n) = 1, or n03 = max03(n) and MJ03(n) = 1.
Otherwise, X splits into two classes.

Lemma 2.35.

Proof. If n is odd and n12 is even, then n03 is even. Assume that n0 > n3 (the other case
is symmetric). If n03 = min03(n) and mj03(n) = 1 then, by Lemma 2.34, all the factors in
X start with 0, and so X leads to only one class. If n03 = max03(n) and MJ03(n) = 1, then
all the factors in X are preceded and followed by 3. In particular, they all start with 2 and
again X leads to only one class.

For the other direction, suppose that X leads to only one class. All the factors in X
must start either with a letter in {0, 1} or with a letter in {2, 3}. Assume first that all the
elements of X start with 0 or 1. Let u be a factor in X . If the first letter of u is 1, it must
start with 120 since u has more 0’s than 3’s. Thus u is always preceded by 2. It cannot end
with 1 (since n1 = n2). So it must end with 0 or 2. If u = 120u′2, then 2120u′ is an element
of X starting with 2, which is a contradiction. If u = 120u′0 then u1 is a factor of y. So
20u′01 is an element of X starting with 2, a contradiction. Hence u cannot start with 1 and
thus starts with 0. Observe that, if u does not end with 0, then τ(u)R is still an element of
X by Lemma 2.19 and τ(u)R does not start with 0, a contradiction. Hence all the factors in
X start and end with 0. By Lemma 2.34, we have n03 = max03(n) and MJ03(n) = 1.

Assume now that all the elements of X start with 2 or 3. Since n0 > n3, they all start
with 2. Moreover, as n1 = n2, they must end with 0 or 1. If u ∈ X ends with 0, then
τ ′(u)R ∈ X starts with 3 by Lemma 2.19, a contradiction. So all factors in X end with 1.
Let u = 2u′1 be an element of X . By Lemma 2.17, the only possible extensions of u as a
factor of length n + 1 of y are 1u, 3u, u2 and u3. If 1u is a factor of y, then 12u′ ∈ X
starts with 1, which is a contradiction. If u2 is factor of y, then τ(u′12)R ∈ X starts with
1, a contradiction. Hence all the factors in X are preceded and followed by 3 in y. By
Lemma 2.34, it means that n03 = min03(n) and mj03(n) = 1.

We are now ready to prove Theorem 2.30.



84 Chapter 2. Regularity of ℓ-abelian complexity functions

Proof of Theorem 2.30. The difference between P(2)
t (n + 1) and P(1)

y (n) is the number of
abelian equivalence classes of factors of length n of y that split into two 2-abelian equivalence
classes of factors of length n+ 1 of t.

For even n, by Lemmas 2.32 and 2.33, it happens when n12 is even. The number of even
values of n12 ∈ {min12(n), . . . ,max12(n)} is











1
2∆12(n) + 1 if min12(n) and ∆12(n) are even
1
2∆12(n) if min12(n) + 1 and ∆12(n) are even
1
2∆12(n) +

1
2 if ∆12(n) is odd,

which leads to the result.
For odd n, by Lemmas 2.32 and 2.35, it happens when n12 is even, except if we have

n03 = min03(n) and mj03(n) = 1, or if n03 = max03(n) and MJ03(n) = 1. The number of
such cases is



















∆12(n)
2 + 1−MJ03(n)−mj03(n) if min12(n) and ∆12(n) are even

∆12(n)+1
2 −MJ03(n) if min12(n) and ∆12(n) + 1 are even

∆12(n)+1
2 −mj03(n) if min12(n) and ∆12(n) are odd

∆12(n)
2 if min12(n) + 1 and ∆12(n) are even.

Indeed, consider for example the case where min12(n) and ∆12(n) are even. First, there

are ∆12(n)
2 + 1 even values of n12. Second, since min12(n) is even and n is odd, we have

max03(n) = n−min12(n) odd. Since ∆12(n) is even, max12(n) is also even and min03(n) is
odd.

If n is such that mj03(n) = 1 (resp. MJ03(n) = 1) then the case n03 = min03(n) and
mj03(n) = 1 (resp. n03 = max03(n) and MJ03(n) = 1) indeed happens. So we have to remove
1, i.e., mj03(n) or MJ03(n) for each case.

As another example, consider the case where min12(n) and ∆12(n) are odd. Then

max03(n) is even and min03(n) is odd. There are ∆12(n)+1
2 even values of n12. We can-

not have n03 = max03(n) (for parity reasons) and thus we never have n03 = max03(n) and
MJ03(n) = 1. But the case n03 = min03(n) happens and thus we have to remove one case
when mj03(n) = 1.

Finally, observe that to each pair (n, n12), with n odd and n12 even, corresponds two
abelian equivalence classes of y (see the proof of Proposition 2.16). Each of these classes
splits into two 2-abelian equivalence classes. Hence multiplying by 2 the number of pairs
(n, n12), with n odd and n12 even, gives the result claimed for n odd.

The sequence P(2)
t (n)n≥0 is 2-regular.

Corollary 2.36.

Proof. We can make use of Lemma 1.34. Thanks to Theorem 2.30, P(2)
t (n + 1) can be

expressed as a combination of P(1)
y (n), ∆12(n), MJ03(n), mj03(n) using the predicates (n mod

2), (∆12(n) mod 2) and (min12(n) mod 2). From Corollary 2.21, all these predicates are 2-
automatic. It remains to show that these functions are 2-regular.
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• The sequence P(1)
y (n)n≥0 is 2-regular since P(1)

y is piecewise-defined by Proposition 2.16
and all functions (respectively predicates) occurring in the definition are 2-regular (resp.
2-automatic) by Corollary 2.21.

• The sequence ∆12(n)n≥0 is 2-regular by Corollary 2.21.

• The sequences MJ03(n)n≥0 and mj03(n)n≥0 are 2-regular. Indeed, MJ03(n + 1) and
mj03(n) are linear combinations of min12(n), min12(n + 1), ∆12(n) and ∆12(n + 1).
Moreover MJ03(n+ 1) and mj03(n) can only take the values 0 and 1. So the relations
can be expressed using (min12(n) mod 2)n≥0 and (∆12(n) mod 2)n≥0. Since these two
latter sequences are 2-regular, the sequences (min12(n + 1) mod 2)n≥0 and (∆12(n +
1) mod 2)n≥0 are 2-regular by Lemma 1.33 and so are MJ03(n+1)n≥0 and mj03(n)n≥0

by Lemma 1.34. Thus, MJ03(n)n≥0 is 2-regular by Lemma 1.33.

Therefore, Lemma 1.34 implies that the sequence P(2)
t (n + 1)n≥0 is 2-regular. Then the

sequence P(2)
t (n)n≥0 is 2-regular by Lemma 1.33.

From Theorem 2.30, we can deduce recurrence relations satisfied by the 2-abelian com-
plexity of the Thue–Morse word. In particular, we obtain the same result as the one obtained

by Greinecker [Gre]: the sequence P(2)
t (n)n≥0 is a concatenation of longer and longer palin-

dromes.

let ℓ ≥ 2 and 0 ≤ r < 2ℓ. We have

P(2)
t (2ℓ + r + 1) = P(2)

t (2ℓ+1 − r + 1)

Proposition 2.37.

Proof. Let us first name the different cases from Theorem 2.30. We set

• Case A: r odd, min12(2
ℓ + r) even, ∆12(2

ℓ + r) even

• Case B: r odd, min12(2
ℓ + r) even, ∆12(2

ℓ + r) odd

• Case C: r odd, min12(2
ℓ + r) odd, ∆12(2

ℓ + r) odd

• Case D: r odd, min12(2
ℓ + r) odd, ∆12(2

ℓ + r) even

• Case E: r even, min12(2
ℓ + r) even, ∆12(2

ℓ + r) even

• Case F : r even, min12(2
ℓ + r) odd, ∆12(2

ℓ + r) even

• Case G: r even, ∆12(2
ℓ + r) odd.

The cases A′, . . . , G′ are defined similarly by replacing 2ℓ + r with 2ℓ+1 − r. We notice the
following equivalences using Proposition 2.20:

• Case A ⇔ Case A′

• Case B ⇔ Case C′

• Case C ⇔ Case B′

• Case D ⇔ Case D′

• Case E ⇔ Case E′

• Case F ⇔ Case F ′

• Case G ⇔ Case G′.
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We know that ∆12(2
ℓ + r) = ∆12(2

ℓ+1 − r) by Proposition 2.20 and that

P(1)
y (2ℓ + r) = P(1)

y (2ℓ+1 − r) by Theorem 2.28. The last relation that we need is

mj03(2
ℓ + r) = MJ03(2

ℓ+1 − r) and MJ03(2
ℓ + r) = mj03(2

ℓ+1 − r).

and it follows from Lemma 2.27. Now straightforward computation shows that

P(2)
t (2ℓ + r + 1) = P(2)

t (2ℓ+1 − r + 1).

For instance, if Case B holds, Case C′ holds too and we have

P(2)
t (2ℓ + r + 1) = ∆12(2

ℓ + r) + 1− 2MJ(2ℓ + r)

= ∆12(2
ℓ+1 − r) + 1− 2mj(2ℓ+1 − r)

which is equal to P(2)
t (2ℓ+1 − r + 1) = ∆12(2

ℓ+1 − r) + 1− 2mj(2ℓ+1 − r)

2.4 The case of the period-doubling word p

In this section, we turn our attention to the period-doubling word p. Note that g(y) is
exactly the period-doubling word p, where g is the coding defined by g(0) = 1, g(1) = 0,
g(2) = 0 and g(3) = 1. In particular, ∆12(n) + 1 is the abelian complexity function of the
period-doubling word. This function was also studied in [BSCRF14, KSZ]. Here we obtain
relations of the same type as the relations in Theorem 2.11.

We let x denote

block(p, 2) = 12001212120012001200121212001212 · · · ,

the 2-block coding of p, introduced in Example 1.49. Recall that x is the fixed point of the
morphism η defined by η : 0 7→ 12, 1 7→ 12, 2 7→ 00. The approach here is similar to that of

the Thue–Morse word: we consider in this section the abelian complexity P(1)
x (n) of x and

then we compare P(1)
x (n) with the 2-abelian complexity P(2)

p (n) of p.
Our study of the Thue–Morse word in Section 2.3 made substantial use of counting 1’s

and 2’s in factors of y. Alternatively, we could have counted the total number of 0’s and 3’s
in factors of y, since this is equivalent information and since the letters 0 and 3 alternate in
y.

For the period-doubling word, the appropriate statistic for factors of x is the total number
of 0’s (or, equivalently, the total number of 1’s and 2’s). Let n ∈ N. We let max0(n) (resp.
min0(n)) denote the maximum (resp. minimum) number of 0’s in a factor of x of length n.
Let ∆0(n) = max0(n)−min0(n) be the difference between these two values.

Each of the ∆0(n)+1 integers in the interval [min0(n),max0(n)] is attained as the number
of 0’s in some factor of x of length n. Indeed, when we slide a window of length n along x
from a factor with min0(n) zeros to a factor with max0(n) zeros, the number of 0’s changes
by at most 1 per step.

If n is even, then max0(n), min0(n) and ∆0(n) are even.

Lemma 2.38.
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Proof. Suppose a factor w = w1 · · ·w2n of x of even length 2n has an odd number n0 of
zeros. Since η(0) = η(1) = 12 and η(2) = 00, the factor w starts or ends with 0. Without
loss of generality, assume it starts with w1 = 0. Then its last letter must be w2n = 1. The
words 0w1 · · ·w2n−1 and w2 · · ·w2n2 are two factors of length 2n with respectively n0 + 1
and n0− 1 zeros. Hence, these two factors have even numbers of zeros which are respectively
greater than and less than n0. The conclusion follows.

We give two related proofs of the 2-regularity of the sequence P(1)
x (n)n≥0. The first

uses the fact that P(1)
x (n)n≥0 is piecewise-defined, together with the fact that the func-

tion occurring in this definition, namely ∆0(n)n≥0, is 2-regular and the two sequences
(∆0(n) mod 2)n≥0 and (min0(n) mod 2)n≥0 are 2-automatic. Then the 2-regularity of the

sequence P(1)
x (n)n≥0 will follow from Lemma 1.34. In the second proof, we show that the

abelian complexity of x satisfies a reflection symmetry, which allows us to apply our gen-

eral result expressed by Theorem 2.11. Finally, we show that the 2-regularity of P(2)
t (n)n≥0

follows from the 2-regularity of ∆0(n)n≥0 and P(1)
x (n)n≥0.

2.4.1 The abelian complexity of block(p, 2) is 2-regular

Following the same approach as in Subsection 2.3.1, one can show that the abelian complexity
of the 2-block coding of p is piecewise-defined. Details of the proof are given in Appendix A.

For n ∈ N,

P(1)
x (n) =











3
2∆0(n) +

3
2 if ∆0(n) is odd

3
2∆0(n) + 1 if ∆0(n) and n−min0(n) are even
3
2∆0(n) + 2 if ∆0(n) and n−min0(n) + 1 are even.

Proposition 2.39.

Moreover the sequences occurring in this piecewise definition satisfy recurrence relations
similar to the assumptions of Theorem 2.11. A complete proof of the following proposition
is available in Appendix A.

Let ℓ ≥ 2 and 0 ≤ r < 2ℓ. We have

∆0(2
ℓ + r) =

{

∆0(r) + 2 if r ≤ 2ℓ−1

∆0(2
ℓ+1 − r) if r > 2ℓ−1

and

min0(2
ℓ + r) ≡

{

min0(r) (mod 2) if r ≤ 2ℓ−1

min0(2
ℓ+1 − r) + ∆0(2

ℓ+1 − r) (mod 2) if r > 2ℓ−1.

Proposition 2.40.
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Then the 2-regularity of P(1)
x (n) follows from Lemma 1.34 since all sequences (respectively

predicates) occurring in the definition are 2-regular (resp. 2-automatic). Recall that a k-
regular sequence taking only finitely many values is k-automatic.

• The sequence ∆0(n)n≥0 is 2-regular.

• The sequence (∆0(n) mod 2)n≥0 is 2-automatic.

• The sequence (min0(n) mod 2)n≥0 is 2-automatic.

Corollary 2.41.

Proof. The first assertion is a direct consequence of Theorem 2.11 and Proposition 2.40. Note
that one can obtain explicit relations satisfied by ∆0(n)n≥0 from Example 2.14. The second
assertion follows from Lemma 1.31.

For the last assertion, for i ∈ {0, . . . , 31} we prove that, modulo 2,

min0(32n+ i) ≡































min0(8n+ 1) if i ∈ {1, 5, 9, 17, 25}
min0(8n+ 3) if i = 11

min0(8n+ 5) if i = 21

min0(8n+ 7) if i ∈ {7, 15, 23, 27, 31}
0 otherwise

and

∆0(32n+ i) ≡































∆0(8n+ 1) if i ∈ {1, 5, 9, 17, 25}
∆0(8n+ 3) if i = 11

∆0(8n+ 5) if i = 21

∆0(8n+ 7) if i ∈ {7, 15, 23, 27, 31}
0 otherwise.

By Lemma 2.38, we already know that min0(2n) ≡ ∆0(2n) ≡ 0 (mod 2) for any n ∈ N.
Hence the relations above are true for i even. We prove the other relations by induction on
n. They are true for n = 0. Let n > 0 and assume the relations are satisfied for all n′ such
that 0 ≤ n′ < n. We can write n = 2ℓ + r with ℓ ≥ 0 and 0 ≤ r < 2ℓ. Let i ∈ {1, . . . , 31} be
odd.

Assume first that r < 2ℓ−1. We have 32n+ i = 2ℓ+5 + 32r + i and 32r + i < 2ℓ+4.

min0(32n+ i) ≡ min0(32r + i) (by Proposition 2.40)

≡ min0(8r + j) (by inductive hypothesis)

≡ min0(2
ℓ+3 + 8r + j) (by Proposition 2.40)

≡ min0(8n+ j) (mod 2)

for some j ∈ {0, . . . , 7} according to the relations. A similar reasoning holds for the ∆0

relations.
Assume now that r ≥ 2ℓ−1. Since 32r + i > 2ℓ+4, we have

min0(32n+ i) ≡ min0(2
ℓ+6 − 32r − i) + ∆0(2

ℓ+6 − 32r − i) (by Proposition 2.40)

≡ min0(32n
′ + j) + ∆0(32n

′ + j) (mod 2)
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with j = 32 − i and n′ = 2ℓ+1 − r − 1. If i ∈ {3, 13, 19, 29}, then j ∈ {3, 13, 19, 29}. By the
inductive hypothesis, min0(32n

′ + j) ≡ ∆0(32n
′ + j) ≡ 0 (mod 2) and we are done.

For the remaining cases, i, j 6∈ {3, 13, 19, 29}. As min0 and ∆0 satisfy the same recurrence
relations, by the inductive hypothesis, there exists k ∈ {1, 3, 5, 7} such that

min0(32n+ i) ≡ min0(8n
′ + k) + ∆0(8n

′ + k)

≡ min0(2
ℓ+4 − (8r + 8− k)) + ∆0(2

ℓ+4 − (8r + 8− k))

≡ min0(2
ℓ+3 + (8r + 8− k)) (by Proposition 2.40)

≡ min0(8n+ (8− k)) (mod 2).

Observe that the value of 8 − k is the value given in the relation for i. This concludes the
proof of the min0 relations. A similar argument works for the ∆0 relations.

2.4.2 The abelian complexity of block(p, 2) satisfies a reflection sym-

metry and so is 2-regular

In this subsection we prove the 2-regularity of the abelian complexity P(1)
x (n)n≥0 in a second

way. As we did for the proof of Theorem 2.28, we can express recurrence relations for P(1)
x

using Propositions 2.39 and 2.40. In this case, these recurrence relations coincide with the
framework of Theorem 2.11.

Let ℓ ≥ 2 and 0 ≤ r < 2ℓ. We have

P(1)
x (2ℓ + r) =

{

P(1)
x (r) + 3 if r ≤ 2ℓ−1

P(1)
x (2ℓ+1 − r) if r > 2ℓ−1.

In particular, the sequence P(1)
x (n)n≥0 is 2-regular.

Theorem 2.42.

From Theorem 2.42, we see that P(1)
x (2ℓ) = P(1)

x (0) + 3 = 4 for all ℓ ≥ 2. Additionally,

one can check that P(1)
x (21) = 4.

Proof of Theorem 2.42. If 2ℓ−1 ≤ r ≤ 2ℓ, since all the conditions in Proposition 2.39 are
equivalent whether considering 2ℓ + r or 2ℓ+1 − r, we have

P(1)
x (2ℓ + r) = P(1)

x (2ℓ+1 − r).

Assume now that 0 ≤ r ≤ 2ℓ−1. If ∆0(2
ℓ+r) is odd, ∆0(r) is also odd by Proposition 2.40.

By Proposition 2.39, we have P(1)
x (2ℓ + r) = 3

2 (∆0(2
ℓ + r) + 1) and P(1)

x (r) = 3
2 (∆0(r) + 1).

By Proposition 2.40, we have ∆0(2
ℓ+r) = ∆0(r)+2. Putting these three equalities together,

we get P(1)
x (2ℓ + r) = P(1)

x (r) + 3.
The other cases can be done similarly. If ∆0(2

ℓ + r) and 2ℓ + r −min0(2
ℓ + r) are even,

then ∆0(r) and r −min0(r) are even and

P(1)
x (2ℓ + r) = 3

2∆0(2
ℓ + r) + 1 (by Proposition 2.39)

= 3
2 (∆0(r) + 2) + 1 (by Proposition 2.40)

= P(1)
x (r) + 3 (by Proposition 2.39).
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If ∆0(2
ℓ + r) is even and 2ℓ+ r−min0(2

ℓ+ r) is odd, then ∆0(r) is even and r−min0(r)
is odd. Then

P(1)
x (2ℓ + r) = 3

2∆0(2
ℓ + r) + 2 (by Proposition 2.39)

= 3
2 (∆0(r) + 2) + 2 (by Proposition 2.40)

= P(1)
x (r) + 3 (by Proposition 2.39).

One can prove the following result in a manner similar to the proof of Theorem 2.11.
There may be simpler recurrences, but these relations exhibit the same symmetry as in
Theorem 2.11.

The abelian complexity sequence P(1)
x (n)n≥0 of the 2-block coding of the period-

doubling word satisfies the following relations.

P(1)
x (8n) = P(1)

x (2n)

4P(1)
x (8n+ 1) = −2P(1)

x (2n+ 1) + 7P(1)
x (4n+ 1) − 2P(1)

x (4n+ 2) + P(1)
x (4n+ 3)

4P(1)
x (8n+ 2) = −6P(1)

x (2n+ 1) + 9P(1)
x (4n+ 1) − 2P(1)

x (4n+ 2) + 3P(1)
x (4n+ 3)

4P(1)
x (8n+ 3) = −6P(1)

x (2n+ 1) + 5P(1)
x (4n+ 1) + 2P(1)

x (4n+ 2) + 3P(1)
x (4n+ 3)

P(1)
x (8n+ 4) = P(1)

x (4n+ 2)

4P(1)
x (8n+ 5) = −6P(1)

x (2n+ 1) + 3P(1)
x (4n+ 1) + 2P(1)

x (4n+ 2) + 5P(1)
x (4n+ 3)

4P(1)
x (8n+ 6) = −6P(1)

x (2n+ 1) + 3P(1)
x (4n+ 1) − 2P(1)

x (4n+ 2) + 9P(1)
x (4n+ 3)

4P(1)
x (8n+ 7) = −2P(1)

x (2n+ 1) + P(1)
x (4n+ 1)− 2P(1)

x (4n+ 2) + 7P(1)
x (4n+ 3)

Theorem 2.43.

2.4.3 The 2-abelian complexity of p is 2-regular

As for the Thue–Morse word, we express the 2-abelian complexity P(2)
p in terms of the 1-

abelian complexity P(1)
x , ∆0(n) and two new functions MJ0(n) and mj0(n), in order to prove

the 2-regularity of P(2)
p (n)n≥0.

The functions MJ0 : N → {0, 1} and mj0 : N → {0, 1} are defined analogously to the
functions MJ03(n) and mj03(n) of Subsection 2.3.2. We set MJ0(0) = 0 and, for n ≥ 1,

MJ0(n) :=

{

1 if max0(n) > max0(n− 1)

0 otherwise,

Similarly, for n ≥ 0,

mj0(n) :=

{

1 if min0(n+ 1) > min0(n)

0 otherwise.

Since max0(n) and min0(n) are non-decreasing, we can write

MJ0(n+ 1) = max0(n+ 1)−max0(n),

mj0(n) = min0(n+ 1)−min0(n).
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To compute P(2)
p , we use the abelian complexity of x = block(p, 2), P(1)

x , and study
when an abelian equivalence class of length-n factors of x splits into one or two 2-abelian
equivalence classes of factors of length n+ 1 of p. The relationship between these sequences

and P(2)
p and P(1)

x is stated in the following result.

Let n ≥ 1 be an integer. Then

P(2)
p (n+ 1)− P(1)

x (n) =

{

0 if n is odd
∆0(n)

2 + 1−MJ0(n)−mj0(n) if n is even.

Proposition 2.44.

The proof of Proposition 2.44 follows the same ideas used in Subsection 2.3.2 and is
available in Appendix A.

The sequence P(2)
p (n)n≥0 is 2-regular.

Corollary 2.45.

Proof. We can make use of Lemma 1.34. Thanks to Proposition 2.44, P(2)
p (n + 1) can be

expressed as a combination of P(1)
x (n), ∆0(n), MJ0(n), mj0(n) using the predicate (n mod 2).

Note that the predicate (n mod 2) is trivially 2-automatic.

• The sequence P(1)
x (n)n≥0 is 2-regular by Theorem 2.42.

• The sequence ∆0(n)n≥0 is 2-regular by Corollary 2.41.

• Both sequences MJ0(n)n≥0 and mj0(n)n≥0 are 2-regular. Indeed, observe that

MJ0(n+ 1) = max0(n+ 1)−max0(n)

= min0(n+ 1) + ∆0(n+ 1)−min0(n)−∆0(n).

Since MJ0(n + 1) can only take the values 0 and 1, the latter relation can also be
expressed using (min0(n) mod 2)n≥0 and (∆0(n) mod 2)n≥0. These latter sequences
are 2-regular by Corollary 2.41. By Lemma 1.33, MJ0(n+1)n≥0 is thus a combination
of four 2-regular sequences. Applying again Lemma 1.33, MJ0(n)n≥0 is also 2-regular.
We can show similarly that mj0(n)n≥0 is 2-regular. In fact, both sequences MJ0(n)n≥0

and mj0(n)n≥0 are 2-automatic since they only take values 0 and 1.

Thus, all the functions in the expression for P(2)
p (n+1) are 2-regular. Finally, as the sequence

P(2)
p (n+ 1)n≥0 is 2-regular, the sequence P(2)

p (n)n≥0 is 2-regular by Lemma 1.33.

2.5 Conclusions and perspectives

The two examples treated in this chapter, namely the 2-abelian complexity of the Thue–
Morse word and the period-doubling word, suggest that a general framework to study the



92 Chapter 2. Regularity of ℓ-abelian complexity functions

ℓ-abelian complexity of k-automatic sequences may exist. As an example, we consider the
3-block coding of the period-doubling word p,

z = block(p, 3) = 240125252401240124 · · · .

The abelian complexity P(1)
z (n)n≥0 = (1, 5, 5, 8, 6, 10, 19, 11, . . .) (Figure 2.12) seems to sat-

isfy, for ℓ ≥ 4, the following relations (which are quite similar to what we have discussed so
far)

P(1)
z (2ℓ + r) =











P(1)
z (r) + 5 if r ≤ 2ℓ−1 and r even

P(1)
z (r) + 7 if r ≤ 2ℓ−1 and r odd

P(1)
z (2ℓ+1 − r) if r > 2ℓ−1.
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Figure 2.12: The 3-abelian complexity of the period-doubling word p (on the left) and the
abelian complexity of block(p, 3) (on the right).

Then, the next step would be to relate P(3)
p (n + 2) with P(1)

z (n) (and try to extend the
developments from Section 2.3 and Section 2.4). We conjecture that the 3-abelian complexity
of the period-doubling word satisfies the following relations

P(3)
p (2ℓ + r + 2) =











P(3)
p (r + 2) + 6 if r ≤ 2ℓ−1 and r ≡ 2 (mod 4)

P(3)
p (r + 2) + 7 if r ≤ 2ℓ−1 and r 6≡ 2 (mod 4)

P(3)
p (2ℓ+1 − r + 2) if r > 2ℓ−1.

Hence, it satisfies a reflection symmetry over intervals of the form [2ℓ + 2, 2ℓ+1 + 2].
For the Thue–Morse word t, the 3-abelian complexity is depicted in Figure 2.13 along

with the abelian complexity of the 3-block coding of t. Note that the two graphs look alike
but different scales were used for the y coordinates. It seems that both functions satisfy a
reflection symmetry respectively over the intervals of the form [2ℓ+2, 2ℓ+1+2] and [2ℓ, 2ℓ+1].
But we cannot easily guess which recurrence relations hold for these two functions.

Recently, this work was presented at Mons Days 2014. The talk raised many questions
and comments. Since the abelian complexity functions we considered are oscillating, it could
be interesting to study the behaviour of the average of the functions. Moreover, we could
look at each interval over which the taken values satisfy a reflection symmetry, and then
rescale all these “windows” in order to compare them. For instance, we could check whether
they converge to a continuous non-differentiable function.

Note that both the Thue–Morse word and the period-doubling word are palindromic,
i.e., the set of all factors is closed under reversal. One can think the reflection symmetry is
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Figure 2.13: The 3-abelian complexity of the Thue–Morse word t (on the left) and the abelian
complexity of block(t, 3) (on the right).

linked to palindromicity. It is not the case since the 2-block coding of the Thue–Morse word
(respectively the period-doubling word) is not palindromic (for instance 01 is a factor but
not 10) and its abelian complexity satisfies a reflection symmetry. Still both 2-block codings
are closed under the application of reversal composed with the coding τ or τ ′ (Lemmas 2.19
and A.4). It would be interesting to see if the words presented in Appendix A, which have
an abelian or a 2-abelian complexity satisfying a reflection symmetry, are closed for reversal
composed with a coding.

Also we have only considered 2-automatic sequences that are pure morphic. Two possible
extensions of our work are to consider morphic words τ(ϕω(a)) with a non-uniform morphism
ϕ, or 2-automatic sequences that are not pure morphic. In the last case, some computer
experiments suggest that for a word w generated by a 2-uniform morphism, if the 2-abelian
complexity of w satisfies a reflection symmetry, then so does the 2-abelian complexity of any
coding of w (Figure 2.14).
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(a) Without any coding (b) With τ : 0 7→ 1, 1 7→ 1, 2 7→ 2
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(c) With τ : 0 7→ 2, 1 7→ 1, 2 7→ 2 (d) With τ : 0 7→ 0, 1 7→ 2, 2 7→ 2

Figure 2.14: The 2-abelian complexity functions of the fixed point w ∈ {0, 1, 2}N of the
morphism defined by 0 7→ 01, 1 7→ 20, 2 7→ 10 (upper curve) and of τ(w) where τ is a coding
(lower curve).



Chapter 3

Abelian return words

We investigate some properties of abelian return words as recently introduced
by Puzynina and Zamboni. In particular, we obtain a characterization of Stur-
mian words with non-zero intercept in terms of the finiteness of the set of abelian
return words to all prefixes. We describe this set of abelian returns for the Fi-
bonacci word but also for the 2-automatic Thue–Morse word. We also investigate
the relationship existing between abelian complexity and finiteness of the set of
abelian returns to all prefixes. The work presented in this chapter is based on a
collaboration with my co-advisor Rigo and a postdoctoral fellow Salimov.
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The return word is a classical notion in combinatorics on words and symbolic dynami-
cal systems [Dur98, HZ99, JV00, Vui01]. For instance, Durand obtained a characterization
of primitive substitutive sequences in terms of return words and derived sequences (Theo-
rem 1.58). Vuillon obtained a characterization of Sturmian words in terms of return words
(Theorem 1.59. Recall from Definition 1.55, that a return word to a factor u in an infinite
word x is a factor of x that starts with u and ends before the next occurrence of u in x.

In this chapter, we consider the abelian analogue of this notion of return word, which
are called abelian return words or simply abelian returns. Such a study has been recently
presented by Puzynina and Zamboni during the WORDS 2011 conference. Here we focus
on different aspects of abelian returns and we hope that our results can be seen as com-
plementary to those found by Puzynina and Zamboni [PZ13]. Their main contribution is a
characterization of Sturmian words similar to the one obtained by Vuillon.

An aperiodic recurrent infinite word is Sturmian if and only if each of its factors
has two or three abelian returns.

Theorem 3.1. [PZ13]

Puzynina and Zamboni also discuss the link between the number of abelian returns and
periodicity. They provide a sufficient condition for periodicity.

Let k denote the size of the alphabet A. If each factor of a recurrent infinite word
over the alphabet A has a most k abelian returns, then the word is periodic.

Lemma 3.2. [PZ13]

The main difference between [PZ13] and this present work is that we usually consider the
set of abelian returns with respect to all the factors of an infinite word x, while Puzynina
and Zamboni study the set of abelian returns with respect to each factor taken separately.

This chapter, which is based on a joint work [RSV13] with my co-advisor Rigo and a
post-doctoral fellow at University of Liège Salimov, is organized as follows. In Section 3.1,
we present the main definitions and notation used in this chapter.

In Section 3.2, we discuss the relationship with periodicity and we prove that a recurrent
word is periodic if and only if its set of abelian returns is finite. We also construct an abelian
uniformly recurrent word which is not uniformly recurrent.

In Section 3.3, we restrict ourselves to the set APRx of abelian returns to all prefixes.
In particular, this set is finite for any uniformly recurrent and abelian periodic word. We
study the special case of the Thue–Morse word t introduced in Example 1.11. We show
that the set of abelian returns to all prefixes of t contains 16 elements. Next, we obtain a
characterization of Sturmian words with (non)zero intercept as follows. Let x = ST (α, ρ)
be a Sturmian word coding an orbit (Rn

α(ρ))n≥0. The set APRx of abelian returns to the
prefixes of x is finite if and only if x does not have a null intercept (see Theorem 3.18). The
celebrated Fibonacci word f introduced in Example 1.14 can be defined with a slope and
an intercept both equal to 1/φ2 where φ is the Golden mean. Therefore our result implies
that APRf is finite. We show that this set contains exactly 5 elements. Interestingly, our
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developments can be related to the lengths of the palindromic prefixes of f . See for instance
[dL97, Fis06]. By contrast the set of abelian returns to all prefixes for the word 0f is infinite.
Then we show that if x is an abelian recurrent word such that APRx is finite, then x has
bounded abelian complexity.

In Section 3.4, we introduce the notion of abelian derived sequence. If a word x is
uniformly recurrent, then x can be factored in terms of abelian returns to a given prefix of
x. This gives rise to a coding that allows one to define a new sequence. Contrary to the non-
abelian case and the characterization obtained by Durand (Theorem 1.58), the Thue–Morse
word is an example of word having infinitely many abelian derived sequences.

In the last section of this chapter, we present related work that extends or completes our
result.

3.1 Abelian return words

Recently, the notion of return words has been generalized to an abelian framework [PZ13].
We will distinguish two cases: abelian return to a prefix and abelian return to a factor. We
make such a distinction to be able to define in the first case the abelian derived sequence.
Let us start with a few definitions, similar to the ones given in Subsection 1.5.1.

Definition 3.3. Let u be a prefix of an abelian uniformly recurrent word x. We say that a
non-empty factor w of x is an abelian return to u, if there exists some i ≥ 0 such that

• x[i, i+ |w| − 1] = w,

• x[i, i+ |u| − 1] ∼ab u ∼ab x[i + |w|, i + |w|+ |u| − 1],

• x[i+ j, i + j + |u| − 1] 6∼ab u, for all j ∈ {1, . . . , |w| − 1}.

We denote by APRx,u the set of abelian returns to the prefix u. Since x is abelian uniformly
recurrent, then the set APRx,u is finite. We define the set of abelian returns to prefixes as

APRx :=
⋃

u∈Pref(x)

APRx,u.

Observe that if x is uniformly recurrent, then the length of the longest element in APRx,u

is bounded by the length of the longest element in Rx,u.

We will also consider a more general situation where u is not restricted to be a prefix of x.
Puzynina and Zamboni [PZ13] called this notion a semi-abelian return to the abelian class of
u and the number of abelian returns is the number of distinct abelian classes of semi-abelian
returns.

Definition 3.4. If x is abelian recurrent and if u is a factor of x, we can define as above the
notion of abelian return to u. The corresponding set ARx,u of abelian returns to u is well
defined. We define the set of abelian returns as

ARx :=
⋃

u∈Fac(x)

ARx,u.

Remark 3.5. Let x be an abelian recurrent word. The set ARx,u is finite, for each factor
u of x, if and only if x is abelian uniformly recurrent.
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3.2 Finiteness of the set of abelian returns

Puzynina and Zamboni [PZ13] provided a discussion between periodicity and the number of
abelian returns and they give a sufficient condition for periodicity (see Lemma 3.2). Moreover
they observe that a characterization of periodicity similar to Proposition 1.60 in terms of
abelian returns does not exist. In the case of abelian returns, such a characterization does
not hold in both direction. They provide the following counter-example.

Example 3.6 ([PZ13]). Consider an aperiodic word that is the concatenation of words of
the form 110010 and 110100. Then, the factor 11 has exactly one abelian return which is:
110010 ∼ab 110100. So the existence of a factor having exactly one abelian return word does
not guarantee the periodicity.

Now consider the periodic word w = (001101001011001100110011)ω of period 24. One
can check that each factor of w has at least two abelian returns1. Hence, periodicity does
not imply the existence of a factor having exactly one abelian return.

Here we take the finiteness of the set of abelian returns to characterize periodicity.

Let x be a recurrent word. The set ARx is finite if and only if x is periodic.

Theorem 3.7.

Proof. The “if” part is obvious. We prove the “only if” part.

Suppose that ARx is finite and that x is recurrent but not periodic. In this case, for
each k, there exists a word u satisfying |u| > k such that au, bu ∈ Fac(x) for some letters
a 6= b. Hence there exist i, j such that i < j, x[i, i + |u|] = au and x[j, j + |u|] = bu. Define
v = x[i, j−1]. Since x[i+d, j−1+d] 6∼ab v for all d ∈ {1, . . . , |u|}, there is an abelian return
to v in x of length at least k. As we can do the same for arbitrarily large k, the set ARx is
infinite.

Obviously, uniform recurrence implies abelian uniform recurrence, but the converse is not
true.

There exists an abelian uniformly recurrent word which is not uniformly recurrent.

Proposition 3.8.

Proof. Let t = t0t1 · · · = 01101001 · · · be the Thue–Morse word and σ be the Thue–Morse
morphism, σ(t) = t, introduced in Example 1.11. Define the set I = {i0 < i1 < . . .} of all
positions where an isolated 1 occurs. That is, for all n, we have tin = 1 and tin−1 = tin+1 = 0.
Moreover we set J = {i2k | k > 0}.

1It suffices to check that each factor of length at most 24 has at least two abelian returns. For a factor of
length longer than 24, its abelian returns coincide with abelian returns of a factor of length less than 24.
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Let y = y0y1 · · · be the word defined by yj = 0, if j ∈ J , and yj = tj otherwise. Define
x = σ(y):

i i0 i1 i2 i3 i4 i5 i6 i7 i8
t 0110100110010110100101100110100110010110011010010110100 · · ·
y 0110100110000110000101100110000110010110011010010110000 · · ·
x 0110100110010110100101100110100110010110011010010110100 · · ·

The word x coincides with t almost everywhere, except for the positions from the set
2J ∪ (2J + 1). Hence, each factor of the Thue–Morse word occurs in x uniformly, i.e., with
bounded gaps. At the same time, the factor σ(000) occurs in x with strictly growing gaps.
Hence x is not uniformly recurrent.

Let us now prove that x is abelian uniformly recurrent. First we point out a property of
the Thue–Morse word: for all d > 0 and all a ∈ {0, 1}, there exists k such that tk = a 6= tk+d.
This property follows from the well-known fact that the Thue–Morse word does not contain
any constant infinite arithmetical subsequence [MSS11].

As x is abelian periodic (of period 2), the weight (i.e., the sum of digits) of each factor u

of x of odd length is either |u|+1
2 or |u|−1

2 . Note that yi = 0 implies |x[2i+1, 2i+ |u|]|1 = |u|+1
2

and yi = 1 implies |x[2i+ 1, 2i+ |u|]|1 = |u|−1
2 . Since 0 (resp. 1) occurs with bounded gaps

in y, gaps between abelian occurrences in x of a factor of odd length are bounded.

The weight of a factor u of even length of x can take values |u|
2 , |u|

2 + 1 and |u|
2 − 1.

The first case takes place when u occurs at an even position in x, meaning that the gaps

between abelian occurrences of u of weight |u|
2 in x are bounded. The last two cases take

place if u occurs in x at an odd position i and if y i−1
2

= 1 and y i−1+|u|
2

= 0 or, y i−1
2

= 0 and

y i−1+|u|
2

= 1. Due to the mentioned property of the Thue–Morse word, there exists k such

that tk = 1 6= t
k+ |u|

2
(resp. tk = 0 6= t

k+ |u|
2
) and since t is uniformly recurrent, the factor

t[k, k + |u|
2 ] occurs infinitely often with bounded gaps in t. Hence abelian occurrences of u

in x appear infinitely often with bounded gaps.

3.3 Finiteness of the set of abelian returns to prefixes

Contrary to the finiteness of ARx, the finiteness of APRx does not imply periodicity nor
abelian periodicity of x. Moreover, if x is uniformly recurrent, it is well-known that

min
v∈Rx,u

|v| → ∞, if |u| → ∞,

meaning that taking longer prefixes eventually leads to longer return words. Here we show
that such a result does not hold for abelian returns to prefixes. Indeed, for the Thue–Morse
word the corresponding set APRt is finite and can be described precisely. Such a result
also holds for the Fibonacci word. In particular, amongst the set of Sturmian words, the
finiteness of APRx characterizes Sturmian words with non-zero intercept.

If x is a uniformly recurrent and abelian periodic word, then the set APRx is finite.

Lemma 3.9.
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Proof. Letm be the (minimal) abelian period of x. Let us find an upper bound on the length
of an abelian return u to a prefix p of x.

Suppose first that |p| = mk. In this case, due to abelian periodicity, for all i, we have
x[mi,m(i+ k)− 1] ∼ab p. Hence we get |u| 6 m.

Suppose now that |p| = mk+ℓ, with 0 < ℓ < m. Let us denote the word x[mk,m(k+1)−1]
by s. If there exists i such that the equality x[mi,m(i + 1) − 1] = s holds, then we have
x[m(i−k),mi+ ℓ− 1]∼ab p as the word x is abelian periodic. Hence, it is sufficient to prove
that the set

{i ≥ 0 | x[mi,m(i+ 1)− 1] = s}
has bounded gaps.

Let us consider the word x′ over the alphabet of factors of x of length m, such that
x′
i = x[mi,m(i + 1)− 1]. It is well-known that the uniform recurrence of x implies uniform

recurrence of x′ (see for instance [Sal10]). Hence, for each letter of x′ there is an upper bound
on the gap between two consecutive occurrences of it in x′. Denoting the maximum of such
constants by D, we get |u| 6 mD.

Remark 3.10. In Lemma 3.9, the condition on a word x to be uniformly recurrent is
essential: there exists an abelian periodic word x which is not uniformly recurrent and such
that APRx,u is infinite for some prefix u of x. Consider the abelian periodic word of period
4 given by x = φϕω(0) where ϕ : 0 7→ 010, 1 7→ 111 and φ : 0 7→ 01230123, 1 7→ 0213:

x = 01230123 0213 01230123 0213 0213 0213 · · ·

In x there are unbounded gaps between consecutive abelian occurrences of its prefix 012301

that correspond to the occurrences of φ(1m).

Remark 3.11. In Lemma 3.9, the condition on abelian periodicity of x is not necessary
to get finiteness of APRx. We shall give an example below when discussing the case of
Sturmian words. Indeed, Sturmian words are not abelian periodic (see Lemma 3.19) but for
instance, the Fibonacci word f is uniformly recurrent and the corresponding set APRf is
finite.

A word x is periodic if and only if there exists some prefix u such that infinitely
many factors of x are abelian equivalent to u and all the abelian returns in APRx,u

have length 1.

Proposition 3.12.

Proof. If x = uω, then x[i, i+ |u|−1] ∼ab u for all i ≥ 0. Conversely, if all the abelian returns
to some prefix u in APRx,u have length 1, then x[i, i + |u| − 1] ∼ab u ∼ab x[i + 1, i + |u|]
for all i ≥ 0. There is an abelian return a of length 1 at position i in x and it also occurs in
position i+ |u|. It follows that |u| is a period of x.

3.3.1 The set APRt for the Thue–Morse word t is finite

We already know from Lemma 3.9 that the Thue–Morse word has a finite set of abelian
returns to all its prefixes. Here we describe precisely this set.
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Let x be a uniformly recurrent word. Let n ≥ 1 and i, j be such that i < j. Assume
that x[i, i+ n− 1] ∼ab x[j, j + n− 1] and there exists a prefix u of length j − i of x
such that u ∼ab x[i, j − 1]. The word x[i, i + n− 1] is an occurrence of an abelian
return to the prefix u if and only if, for all ℓ ∈ {0, . . . , n−2}, x[i, i+ℓ] 6∼ab x[j, j+ℓ].

Lemma 3.13.

Proof. Since |u| = j − i, by assumption we have x[i, i + |u| − 1] ∼ab u. Observe first
that there exists ℓ ∈ {0, . . . , n − 1} such that x[i, i + ℓ] ∼ab x[j, j + ℓ] if and only if
x[i + ℓ+ 1, i+ ℓ + |u|] ∼ab u. In particular, since x[i, i + n − 1] ∼ab x[j, j + n − 1], we get
x[i+ n, i+ n+ |u| − 1] = x[i+ n, j − 1 + n] ∼ab u. Moreover, ℓ ∈ {0, . . . , n− 2} is such that
x[i + ℓ+ 1, i+ ℓ + |u|] 6∼ab u if and only if x[i, i+ ℓ] 6∼ab x[j, j + ℓ].

Remark 3.14. From this lemma, we can derive a necessary condition for a word to be an
abelian return to a prefix. If a word w = w1 · · ·wn of length n is an abelian return to a
prefix, then there exists some factor y = y1 · · · yn of x such that

w ∼ab y and, for all ℓ ∈ {1, . . . , n− 1}, w1 · · ·wℓ 6∼ab y1 · · · yℓ. (3.1)

This condition is not sufficient. For instance, w = 001011 and y = 110010 are two factors
of length 6 satisfying(3.1) and occurring in the Thue–Morse word t. But, as shown in the
following proposition, w is not an abelian return to any prefix.

The set APRt of abelian returns to prefixes for the Thue–Morse word t is

{0, 1, 01, 10, 001, 011, 100, 110, 0011, 0101,
1010, 1100, 00101, 01011, 10100, 11010}.

Theorem 3.15.

Proof. One can check with some computer experiments that the factors given above appear
as abelian returns to some prefix of t. Moreover, one can also check that these are the only
factors of length 2, . . . , 5 in t satisfying condition (3.1).

Assume that there exists some abelian return w = w1 · · ·wn = t[i, i + n − 1] of length
n ≥ 2 to a prefix of t occurring at position i. In particular, we may assume that w is an
abelian return to the prefix u of length j − i > 0 and y = y1 · · · yn = t[j, j + n− 1] satisfies
(3.1). We will show that the length of w is at most 5. Recall that t[2k, 2k + 1] ∈ {01, 10}
for all k ≥ 0.

Assume first that i, j are even. Since t[i, i + 1] and t[j, j + 1] belong to {01, 10}, we
conclude that t[i, i + 1] ∼ab t[j, j + 1] and, in that situation, we can only have an abelian
return of length at most 2.

Assume now that i is odd and j is even and that ti = 0 (symmetric cases can be treated
in the same way). Our aim is to build the longest possible abelian return. Since ti = 0 and
j is even, we consider t[j, j + 1] = 10 because otherwise, t[j, j + 1] = 01 and w1 = y1 (i.e.,
t[i + 1, j + 1] ∼ab t[i, j] ∼ab u and we get directly an abelian return of length n = 1). Now
t[i, i + 2] = 001 because otherwise, t[i, i + 2] = 010 and w1w2 ∼ab y1y2. Continuing this
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way, we have t[j, j + 3] = 1010 and t[i, i + 4] = 00101. Since (10)3 is not a factor of t, we
have t[j, j +5] = 101001 and t[i, i+4] ∼ab t[j, j +4]. In that situation, we can only have an
abelian return of length at most 5.

The last case is when i and j are odd. Assume ti = 0 and tj = 1. We have ti = 0

and tj−1 = 0 because t[j − 1, j] = 01. Moreover, z = t[i + 1, j − 2] ∈ {01, 10}∗ and thus
v = t[i, j − 1] = 0z0 is a word of even length such that |v|0 = 2 + |v|1. Therefore v cannot
be abelian equivalent to a prefix u of t. So in such a situation, we cannot have an abelian
return to some prefix of t.

If a factor of length n ≥ 6 of the Thue–Morse word satisfies (3.1), then n is even.

Proposition 3.16.

Proof. Let w = t[i, i+n− 1] and y = t[j, j + n− 1] be factors of t of length n ≥ 6 satisfying
(3.1). As n ≥ 6, i and j are odd. Hence, to satisfy the condition (3.1), we must have

(

t[i, i+ n− 1]
t[j, j + n− 1]

)

∈
(

0

1

){(

01

01

)

,

(

10

10

)

,

(

01

10

)}∗ (
1

0

)

⋃

(

1

0

){(

01

01

)

,

(

10

10

)

,

(

10

01

)}∗ (
0

1

)

.

So n must be even.

For n = 6, 8, 10, . . . , 104, with a computer search, we get the following number of factors
of length n satisfying (3.1): 6, 4, 8, 12, 12, 4, 8, 8, 4, 0, 0, 8, 0, 0, 4, 8, 4, 0, 0, 0, 0, 0, 4, 0,
4, 0, 0, 0, 0, 0, 4, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0.

3.3.2 The finiteness of APRx for a Sturmian word x depends on its

intercept

Let x = St(α, ρ) be a Sturmian word. For a binary word v = v0v1 · · · vm, we define a
half-interval Iv of C as

Iv := Iv0 ∩R−1
α (Iv1) ∩ · · · ∩R−m

α (Ivm ). (3.2)

Hence x[i, i+m] = v if and only if Ri
α(ρ) ∈ Iv. See [Lot02, Section 2.1.2].

Definition 3.17. Let x = St(α, ρ) be a Sturmian word. For each k the number of 1’s in a
factor of length k in x can only take the values ⌈kα⌉ or ⌈kα⌉− 1. The corresponding factors
will be called respectively heavy and light . If x is understood from the context, H(k) (resp.
L(k)) will denote the set of heavy (resp. light) factors of length k in x. Define

IH(k) :=
⋃

v∈H(k)

Iv and IL(k) :=
⋃

v∈L(k)

Iv.

So, the word x[i, i+ k − 1] is heavy if and only if Ri
α(ρ) ∈ IH(k).
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Let x be a Sturmian word. The set APRx is finite if and only if x does not have a
null intercept.

Theorem 3.18.

Proof. For the sake of convenience, let x be defined as St(α, ρ) for half-intervals I0 = [0, 1−α)
and I1 = [1− α, 1). Let us prove by induction on k ≥ 1 that

IH(k) = [1− {kα}, 1) and IL(k) = [0, 1− {kα}). (3.3)

It holds true for k = 1. Suppose now that the statement holds true for some k ≥ 1. We
consider two cases.

• Assume that 0 6∈ R−k
α (I1). Therefore we get R

−k
α (I1) = [1−{(k+1)α}, 1−{kα}) with

1−{(k+1)α} < 1−{kα}. By the inductive hypothesis, we have IH(k) = [1−{kα}, 1)
and consequently,

R−k
α (I1) ∩ IH(k) = ∅.

This means that all the heavy factors of length k of x can only be extended with 0

to factors of length k + 1 of x. In particular, the weights of heavy factors of length k
and k+ 1 are the same. At the same time, we have R−k

α (I1)∩ IL(k) = R−k
α (I1), which

means that the factors corresponding to elements belonging to this latter set are the
light factors of length k that are extended with 1 to heavy factors of length k + 1. We
conclude that

IH(k + 1) = IH(k) ∪R−k
α (I1) = [1− {(k + 1)α}, 1)

and IL(k + 1) = IL(k)\R−k
α (I1) = [0, 1− {(k + 1)α}).

• Assume now that 0 ∈ R−k
α (I1), i.e., 1 − {(k + 1)α} > 1 − {kα}. In this case, using

again the inductive hypothesis, R−k
α (I1) ∩ IH(k) = [1 − {(k + 1)α}, 1) is non-empty.

This interval corresponds to the heavy factors of length k having an extension with 1

making them the only heavy factors of length k + 1 in x.

Now we are ready to prove the main part of the statement. First of all, let us prove that,
if x has a null intercept, then APRx is infinite. Let k ≥ 1 and p be the prefix of length k
of x. As ρ = 0, we have 0 ∈ Ip. Since the interval Ip corresponds exactly to one word p
which is either light or heavy, we have Ip ⊆ IL(k) or Ip ⊆ IH(k). As 0 ∈ Ip, we conclude
that Ip ⊆ IL(k) using (3.3). In other words, we have just shown that each prefix of x is a
light factor.

Now we show that, for all n, there exists a length ℓ such that gaps between consecutive
occurrences of light factors of length ℓ in x can be larger than n. Let n ≥ 1. Define the set
of points

Sn := {Ri
α(0) | 0 6 i 6 n}

and denote by d the minimal length of intervals having endpoints in Sn. Due to Kronecker’s
theorem, we can find some ℓ such that |IL(ℓ)| < d and it follows that IL(ℓ)∩Sn = {0}. With
our definitions, it means that the light prefix of x of length ℓ is followed by at least n heavy
consecutive factors of length ℓ. Since this can be done for any n, the set APRx is infinite.
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Let us prove that, if x does not have a null intercept, then APRx is finite. The main
difference with the previous situation is that a prefix can now be a heavy or a light factor
depending on its length: ρ ≥ 1 − {kα} if and only the prefix of length k is heavy. We
will show that there exists a constant c such that, for all prefixes p of x, the gap between
consecutive occurrences of factors abelian equivalent to p is bounded by c.

Let n ≥ 1. Consider as before the set Sn and order its elements 0 = s0 < s1 < · · · < sn.
Denote by D(n) the maximal length of the intervals [s0, s1), . . . , [sn−1, sn), [sn, s0) whose
endpoints are consecutive points in Sn. Due to Kronecker’s theorem, there exists some c
such that 2D(c) < min{ρ, 1− ρ}.

Suppose that the prefix of length k of x is a light word. Then we have ρ ∈ IL(k)
and, consequently, |IL(k)| > ρ. Assume that there is a light factor of length k occurring
at position i in x, i.e., Ri

α(ρ) ∈ IL(k). We consider two cases. If Ri
α(ρ) ≥ D(c), there

exists j ∈ {1, . . . , c} such that Rj
α(0) = sc and θ = 1 − Rj

α(0) ∈ (0, D(c)]. Hence the
point Rj

α(R
i
α(ρ)) = Ri+j

α (ρ) = Ri
α(ρ) − θ belongs to IL(k), i.e., the factor of length k at

position i + j in x is light again. If Ri
α(ρ) < D(c), there exists j ∈ {1, . . . , c} such that

Rj
α(0) = s1 ≤ D(c) < ρ/2. Hence the point Rj

α(R
i
α(ρ)) = Ri+j

α (ρ) = Ri
α(ρ) + s1 is less than

ρ and belongs to IL(k).

A similar proof can be done for the case of a heavy prefix of length k. Assume that
ρ ∈ IH(k) and that, for some i ≥ 0, Ri

α(ρ) ∈ IH(k). If Ri
α(ρ) < 1−D(c), then Ri

α(ρ)+s1 < 1.
If Ri

α(ρ) ≥ 1−D(c), then Ri
α(ρ)−(1−sc) ≥ 1−2D(c) > ρ. We can derive the same conclusion

as above.

Hence the number c is an upper bound on the length of abelian returns to any prefix and
therefore APRx is finite.

No Sturmian word is abelian periodic.

Lemma 3.19.

Proof. Proceed by contradiction and assume that x = St(α, ρ) is abelian periodic of periodm
with α irrational. Then all factors of the kind x[tm, (t+1)m−1], t ∈ N, are abelian equivalent,
i.e., have the same weight. Assume that, for all t, Rtm

α (ρ) = Rt
mα(ρ) ∈ IL(m). But since α

is irrational, mα is also irrational and thanks to Kronecker’s theorem, {Rt
mα(ρ) | t ≥ 0} is

dense in C contradicting the fact that {Rt
mα(ρ) | t ≥ 0} ∩ IH(m) should be empty.

3.3.3 The set APRf for the Fibonacci word f is finite

From Theorem 3.18, since the Fibonacci word f is given by St(1/φ2, 1/φ2), we already know
that APRf is finite. Here we exhibit exactly the elements of this set in Theorem 3.21. As
a first attempt, (3.1) gives a necessary condition that allows one to exclude some words
as abelian returns. This condition will not be used in the proof of Theorem 3.21 but,
interestingly, our developments can be related to the lengths of the palindromic prefixes
of f , [dL97, Fis06].
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For the Fibonacci word, there exist exactly two factors of length n satisfying (3.1) if
n is a Fibonacci number. Otherwise, no factor of length n satisfies such a condition.

Proposition 3.20.

Proof. Consider two factors x, y of length n satisfying (3.1) and occurring in the Fibonacci
word f . Assume that x starts with 0. Then to fulfill (3.1), y starts with 1. Since f is
Sturmian, for any two words of the same length x′ and y′ which are prefixes of x and y
respectively, we have ||x′|1 − |y′|1| ≤ 1. Therefore, we deduce that x and y must be of the
form x = 0u1 and y = 1u0 for some u ∈ {0, 1}∗. This means that u is a bispecial factor of
the Fibonacci word.

Recall that the left special factors in f are its prefixes and its right special factors are the
mirror images of its prefixes [CN10, Prop. 4.10.3]. So bispecial factors of f are its palindromic
prefixes. If (ℓi)i≥1 denotes the increasing sequence of all lengths of palindromic prefixes in
f , it is well-known that (ℓi)i≥1 = (0, 1, 3, 6, 11, . . .) is given by ℓi = Fi+1 − 2 where Fi is the
ith Fibonacci number. See [dL97, Theorem 5] and [Fis06]. Hence n must be a Fibonacci
number.

Conversely, for any bispecial factor u of f , it is easy to show that either 0u0 or 1u1 is not
a factor occurring in f (see for instance [Lot02, p. 47]). Therefore, amongst the four words
0u0, 1u1, 0u1 and 1u0, the last two must occur in f and we get exactly two factors of length
|u| + 2 satisfying (3.1). Indeed, assume that 0u0 does not occur in f . Then for u to be left
(resp. right) special, 0u1 (resp. 1u0) must occur in f .

The reader may notice that the computations carried out in the proofs of the next two
results could also be adapted to other Sturmian words.

The set APRf of abelian returns to prefixes for the Fibonacci word f contains
exactly the words 0, 1, 01, 10, 001.

Theorem 3.21.

Proof. Using the same notation as in Theorem 3.18, for c = 7, we have D(7) ≈ 0.145898
which is such that 2D(7) < min{1/φ2, 1 − 1/φ2} ≈ 0.381. Hence, all abelian returns to
prefixes of the Fibonacci word have length at most 7. Actually, this value can be reduced.

There is no abelian return of length greater than 3 to prefixes in the Fibonacci
word.

Lemma 3.22.

Proof. With the notation of the proof of Theorem 3.18, we set ρ = α = 1/φ2 ≈ 0.381. Let
i be a natural number. Define the four points ρi,t = Ri+t

α (ρ) for t = 0, 1, 2, 3. Recall that,
for all k ≥ 1, the unit circle [0, 1) is split into two half-intervals IH(k) = [1 − {kα}, 1) and
IL(k) = [0, 1 − {kα}) such that two factors f [i, i + k − 1] and f [j, j + k − 1] are abelian
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equivalent if and only if the points Ri
α(ρ) and Rj

α(ρ) belong to the same interval IH(k) or
IL(k).

Let I be any of the two intervals IH(k) or IL(k). What we are going to prove is that
if ρ and ρi,0 belong to I, then either ρi,2 or ρi,3 belongs to I. In other words, if we have
f [i, i + k − 1] ∼ab f [0, k − 1], then either f [i + 2, i + k + 1] or f [i + 3, i + k + 2] is abelian
equivalent to f [i, i+ k − 1] which gives the upper bound on the length of any abelian return
to a prefix of f .

Note that ρi,0 = Rδ(ρi,2), ρi,2 = R−δ(ρi,0) and ρi,3 = Rα−δ(ρi,0), where δ is equal to
1−2α ≈ 0.2361. Assume that the factor of length k starting in position i is abelian equivalent
to the prefix of f of length k, i.e., ρ and ρi,0 are both light or heavy words. We consider two
cases. Suppose first that ρ, ρi,0 ∈ IL(k). In this case, we have [0, ρ] ⊆ IL(k).

• If ρ ≤ ρi,0 < 1, then [0, ρi,0] ⊆ IL(k) and 0 < ρi,2 = R−δ(ρi,0) < ρi,0. Thus ρi,2 belongs
also to IL(k).

• If ρ > ρi,0 > 0, either ρi,0 ≥ δ and then ρi,2 = R−δ(ρi,0) ∈ [0, ρ) meaning that ρi,2 is in
IL(k) or, 0 < ρi,0 < δ, i.e. −δ < ρi,2 − 1 < 0 and then 0 < α− δ < ρi,3 = Rα(ρi,2) < ρ
meaning that ρi,3 ∈ IL(k).

Suppose now that ρ, ρi,0 ∈ IH(k). In this case, as ρ ∈ IH(k), we have [ρ, 1) ⊆ IH(k).

• If ρ > ρi,0 > 0, then [ρi,0, 1) ⊆ IH(k) and ρi,3 = Rα−δ(ρi,0) belongs to IH(k).

• If ρ ≤ ρi,0 < 1, either ρi,0 ≥ ρ+δ and then ρi,2 = R−δ(ρi,0) ∈ IH(k) or, ρ ≤ ρi,0 < ρ+δ,
i.e., ρ − δ ≤ ρi,2 < ρ and then ρ < ρ − δ + α ≤ ρi,3 = Rα(ρi,2) < ρ + α < 1 meaning
that ρi,3 ∈ IH(k).

The factors of length at most 3 occurring in f are ε, 0, 1, 00, 01, 10, 001, 010, 100
and 101. Clearly, 00, 010 and 101 do not satisfy (3.1) and cannot be abelian returns. To
conclude the proof, we just have to show that 100 is also forbidden.

The set APRf of abelian returns to prefixes for the Fibonacci word f does not
contain 100.

Lemma 3.23.

Proof. We continue with notation of Lemma 3.22. Suppose that 100 ∈ APRf . There exists
a prefix p of f of length k and a position i ≥ 0 such that

1. f [i, i+ 2] = 100,

2. f [i, i+ k − 1] ∼ab p, i.e., ρ and ρi,0 belong to the same interval I ∈ {IL(k), IH(k)},
3. for t = 1, 2, f [i + t, i+ t+ k − 1] 6∼ab p, i.e., ρi,1 and ρi,2 do not belong to I,

4. f [i+ 3, i+ 2 + k] ∼ab p.

To get a contradiction, let us prove that either ρi,1 or ρi,2 belongs to I. Since fi = 1, ρi,0
belongs to I1 = [1 − α, 1). If I = IL(k), then we have ρi,1 ∈ [0, ρ) ⊆ IL(k). If I = IH(k),
then we have ρi,2 ∈ [ρ, ρ+ α) ⊆ IH(k).

That concludes the proof of Theorem 3.21.
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3.3.4 The finiteness of APRx implies a bounded abelian complexity

of x

We show that the finiteness of APRx implies a bounded abelian complexity of x, but the
converse does not hold in general. Indeed, the abelian complexity of any Sturmian word x

satisfies P(1)
x (n) = 2 for all n ≥ 1 (Equation (1.1)): there are exactly two kinds of factors of

length n, the light ones and the heavy ones. But thanks to Theorem 3.18, if x is a Sturmian
word with null intercept, then APRx is infinite. In other words, bounded abelian complexity
does not imply the finiteness of APRx.

If x is an abelian recurrent word such that APRx is finite, then x has bounded
abelian complexity.

Proposition 3.24.

Proof. Suppose x satisfies the assumptions of the proposition but that x has unbounded
abelian complexity. From Lemma 1.40, we deduce that there exists a symbol a such that the
maximum of differences |u|a− |v|a for factors u, v in x having equal length can be arbitrarily
large.

Let δ > 0. There exist u, v ∈ Fac(x) of equal length n such that |u|a − |v|a ≥ δ. Let
p = x0x1 . . . xn−1 be the prefix of length n of x. Without loss of generality, we may assume
that

||u|a − |p|a| >
δ

2
.

Indeed, if ||u|a−|p|a| < δ/2 and ||v|a−|p|a| < δ/2, then one would deduce that ||u|a−|v|a| < δ.
As x is abelian recurrent, factors abelian equivalent to p (resp. to u) occur infinitely often

in x. Therefore there exist i < j < k such that

1. x[i, i+ n− 1] ∼ab p, x[k, k + n− 1] ∼ab p,

2. for all t such that i < t < k, we have x[t, t+ n− 1] 6∼ab p,

3. x[j, j + n− 1] ∼ab u.

This just means that we can consider two consecutive factors abelian equivalent to p separated
by a factor abelian equivalent to u. Note that, for all t,

||x[t + c, t+ n− 1 + c]|a − |x[t, t+ n− 1]|a| 6 c, ∀c ≤ n.

Hence, j− i ≥ δ/2 and k− j > δ/2. Therefore we get k− i ≥ δ which means that the abelian
return x[i, k − 1] to the prefix p has length at least δ. As δ can be chosen arbitrarily large,
the set APRx is infinite and that is a contradiction.

3.4 Abelian derived sequences

We refer the reader to definitions and notation introduced in Section 3.1. As was studied
by Durand [Dur98] for classical return words, we introduce the notion of abelian derived
sequence which is the factorization of an infinite word with respect to its abelian returns to
prefixes in their order of occurrence. The next result allows us to define such a sequence.
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Let u be a prefix of a uniformly recurrent word x. The word x has a factorization
as a sequence m0m1m2 · · · of elements in APRx,u computed as follows. Consider
the sequence of indices (in)n≥0 such that, for all j ≥ 0, x[ij , ij + |u| − 1] ∼ab u and,
for all i 6∈ {in | n ≥ 0}, we have x[i, i+ |u| − 1] 6∼ab u. Set mn := x[in, in+1 − 1].

Lemma 3.25.

As shown in Example 3.27, the factorization of x with elements in APRx,u is not neces-
sarily unique.

Definition 3.26. We define a map µx,u : APRx,u → {1, . . . ,#(APRx,u)} =: Ax,u analo-
gous to Λx,u. The abelian derived sequence Eu(x) is the corresponding infinite word

µx,u(m0)µx,u(m1)µx,u(m2) · · ·

over Ax,u where the sequence m0m1m2 · · · ∈ APRω
x,u is the one computed in the previous

lemma. The inverse map µ−1
x,u defines a morphism θx,u from A∗

x,u to APR∗
x,u

Observe that Eu(x) is uniformly recurrent. Indeed, if a1 · · · an is a factor occurring in
Eu(x), it comes from a factor m1 · · ·mn ∈ APR∗

x,u such that m1 · · ·mnv occurs in x for
some v ∼ab u and µx,u(m1) · · ·µx,u(mn) = a1 · · · an. Since x is uniformly recurrent, the
factor m1 · · ·mnv occurs infinitely often with bounded gaps in x.

Example 3.27. Consider the Thue–Morse word t introduced in Example 1.11 and its prefix
u = 011 of length 3. By drawing a vertical line, we mark the occurrences of u in the following
prefix of t:

|011010|011001|01101001|0110|011010|011001|0110|01101001|011010|011.

We can easily check that the set of return words to u is

Rt,u = {011010, 011001, 01101001, 0110}

where the words are written in the order of their first occurrence in t. Hence, the set Rt,u is
{1, 2, 3, 4} and the map Λt,u : Rt,u → Rt,u is defined by

Λt,u :















011010 7→ 1

011001 7→ 2

01101001 7→ 3

0110 7→ 4.

The derived sequence Du(t) is given by

Du(t) = 12341243123431241234124312412343123412431234312412 · · ·

Observe that this sequence is the fixed point of the morphism given by














1 7→ 12

2 7→ 34

3 7→ 124

4 7→ 3.
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Similarly in the abelian context, we draw a line to mark the occurrences of of factors abelian
equivalent to u = 011 in the prefix or t:

|0|1|1010|0|1100|1|0|1|10100|1|0|110|0|1|1010|0|1100|1|0|110|0|1|10100|1|0|1|1010|011.

The abelian derived sequence over At,u = {1, . . . , 6} is then

Eu(t) = 12314212521612314216125212314212521612521231421612 · · ·

where the set of abelian returns to u in order of occurrence in t is given by

APRt,u = {0, 1, 1010, 1100, 10100, 110}.

Note that, since 0, 1 ∈ APRt,u, there are infinitely many factorizations of t in terms of
elements belonging to APRt,u. In other words, the set APRt,u is not a code.

Let u be a prefix of a uniformly recurrent word x. There exists a morphism hu from
Rx,u to A∗

x,u such that hu(Du(x)) = Eu(x).

Proposition 3.28.

Proof. Each return word m occurring in x is followed by u. Consider the procedure of
Lemma 3.25 applied to mu. It will define the image by hu of Λx,u(m). Indeed, one has
to take into account a factor u appended to m because some suffix of m and a prefix of u
can give a word v ∼ab u leading to some abelian return in the decomposition of m. More
precisely, we consider all the occurrences 0 = i1 < · · · < it = |m| of factors abelian equivalent
to u in w = mu. Then

hu(Λx,u(m)) := µx,u(w[i1, i2 − 1]) · · ·µx,u(w[it−1, it − 1]).

Example 3.29 (Example 3.27 continued). There exists a morphism hu from Rt,u to A∗
t,u

such that hu(Du(t)) = Eu(t). Take

hu(1) = 123, hu(2) = 142, hu(3) = 1252, hu(4) = 16.

Let us explain how to get hu(2). We have the following factorization where the vertical bars
indicate the occurrence of a factor abelian equivalent to u:

Λ−1
t,u(2)u = (|0|1100|1) 011.

Definition 3.30. A map h : Aω → Bω is a t-block morphism, if there exists some map
f : At → B∗ such that, for all w ∈ Aω,

h(w) = f(w[0, t− 1])f(w[1, t])f(w[2, t+ 1]) · · · .

By abuse of notation, the second map f will also be denoted by h.
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Let u be a prefix of a uniformly recurrent word x. Let v be a prefix of y = Eu(x).
There exist t ≤ |u| − 1 and a t-block morphism hu,v : (Ay,v)

t → A∗
x,u such that

hu,v(Ev(Eu(x))) = Eu(x).

Proposition 3.31.

Proof. Note that any element θx,u(θy,v(a)) with a ∈ Ay,v is a concatenation of abelian re-
turns to u. Now consider a factor a0a1 · · ·at−1 occurring in Ev(Eu(x)). We have to determine
the unique factorization of θx,u(θy,v(a0)) with abelian returns to u given by Lemma 3.25.
This one is completely determined when one knows the |u| − 1 symbols occurring next.
Without that extra knowledge we cannot uniquely determine the factorization for the last
|u| − 1 symbols possibly occurring in θx,u(θy,v(a0)). This is the reason to consider the
suffix a1 · · ·at−1 in such a way that θx,u(θy,v(a1)) · · · θx,u(θy,v(at−1)) has length at least
|u| − 1. One takes t large enough to ensure this property for any initial symbol a0 ∈ Ay,v.
More precisely, consider all the occurrences 0 = i1 < · · · < is of factors abelian equiva-
lent to u in w = θx,u(θy,v(a0)) · · · θx,u(θy,v(at−1)). Let r be the largest integer such that
ir < |θx,u(θy,v(a0))|. Then

hu,v(a0 · · · at−1) := µx,u(w[i1, i2 − 1]) · · ·µx,u(w[ir, ir+1 − 1]).

Note that the above definition is only meaningful if a0 · · · at−1 is a factor of Ev(Eu(x)). Since
this is the only relevant situation, in any other case, the image of hu,v is set to ε.

Observe that if we iterate the process, since the composition of a t-block morphism and
an s-block morphism is an (st)-block morphism, then there exists an r-block morphism h
such that h(Euk

(· · · (Eu2(Eu1(x))) · · · )) = Eu1(x) where prefixes u1, . . . , uk are considered
accordingly.

Example 3.32 (Example 3.27 continued). We can iterate the process of computing the
abelian derived sequence, for instance by taking each time the corresponding prefix of length
3:

E123(E011(t))
= 12131415121315141213141514121315121314151213151412 · · · ,

E121(E123(E011(t)))
= 12341243123431241234124312412343123412431234312412 · · · ,

E123(E121(E123(E011(t))))
= 12341432123432141234143214123432123414321234321412 · · · .

Let us illustrate the previous result. Take again u = 011, y = Eu(t), v = 123. We have

APRy,v = {1, 23142125216, 23142161252, 231421252161252, 2314216}.

Observe that θt,u(θy,v(1)) = θt,u(1) = 0 and, for all a ∈ {2, . . . , 5}, θy,v(a) has a prefix 23, so
θt,u(θy,v(a)) has prefix 110 ∼ab u. Let us assume that hu,v is a 3-block morphism. We define
hu,v(1ab) = 1, for all a, b ∈ Ay,v and a 6= 1. We get hu,v(213) = 23142125216 because,
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if vertical bars denote occurrences of a factor abelian equivalent to u, we get the following
factorization:

θt,u(θy,v(2)) θt,u(θy,v(13))

= (|1|1010|0|1100|1|0|1|10100|1|0|110) |011010011001011001101001.

Let ζ be a primitive substitution and u be a prefix of its fixed point x = ζ(x) ∈ Aω.
There exists a 2-block morphism ζu : A∗

x,u → A∗
x,u such that Eu(x) is fixed point of

ζu and
θx,u(ζu(Eu(x))) = ζ(θx,u(Eu(x))).

Proposition 3.33.

Proof. We may replace ζ by a convenient power of ζ in such a way that, for all a ∈ A,
ζ(a) contains an occurrence of a factor abelian equivalent to u. For all a, b ∈ Ax,u, we
consider all the occurrences i1 < · · · < it of a factor abelian equivalent to u occurring in
w = ζ(θx,u(ab)). With our choice of ζ, at least one of these ij belongs to [0, |ζ(θx,u(a))| − 1]
(resp. [|ζ(θx,u(a))|, |w| − 1]). Let r be the largest integer such that ir < |ζ(θx,u(a))|. We
define

ζu(ab) = µx,u(w[i1, i2 − 1]) · · ·µx,u(w[ir, ir+1 − 1]).

Let ζ be a primitive substitution and u be a prefix of its fixed point x = ζ(x) ∈ Aω.
The sequence Eu(x) is primitive substitutive, i.e., there exists a primitive morphism
ϕu : B → B∗ and a coding φ : B → Ax,u such that Eu(x) = φ(ϕω

u (b)) for some
b ∈ B.

Corollary 3.34.

Proof. We may replace ζ by a convenient power of ζ in such a way that, for all a ∈ A, ζ(a)
contains occurrences of two factors abelian equivalent to u. Consider the alphabet

B = {(a, b) | a, b ∈ Ax,u ∧ ab is a factor of Eu(x)}.

For all a, b ∈ Ax,u such that (a, b) ∈ B, consider all the occurrences i1 < · · · < it of a
factor abelian equivalent to u occurring in w = θx,u(ab). Let r be the smallest integer such
that ir ≥ |θx,u(a)|. Note that r ≥ 3. We define

ϕu((a, b)) = (µx,u(w[i1, i2 − 1]),µx,u(w[i2, i3 − 1])) · · ·
(µx,u(w[ir−1, ir − 1]), µx,u(w[ir, ir+1 − 1])).

Let e0e1 be the prefix of length 2 of Eu(x). We have

Eu(x) = φ(ϕω
u ((e0, e1)))

where φ : B → Ax,u is the coding that maps (a, b) ∈ B to a.
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Observe that, for all (a, b) ∈ B, |ϕn
u((a, b))| ≥ 2n. Let us show that ϕu is primitive.

Since Eu(x) is uniformly recurrent, there exists K such that any factor of length K of Eu(x)
contains all elements in {cd | (c, d) ∈ B}. Therefore any factor of length K of ϕω

u((e0, e1))
contains all the elements of B. Take N such that 2N ≥ K. Then, for all (a, b), (c, d) ∈ B,
ϕN
u ((a, b)) contains (c, d) which means that ϕu is primitive.

Example 3.35 (Example 3.27 continued). Take again u = 011 and set ζ to be the morphism
σ3 defined by 0 7→ 01101001, 1 7→ 10010110 that generates t. We have

ζ(θt,u(12)) = (|0|1|1010|0|1)100|1|0|110 and ζu(12) = 12314

ζ(θt,u(23)) = (100|1|0|1|10)100|1|0|110 · · · and ζu(23) = 2125

ζ(θt,u(31)) = (100|1|0|110|0|1|1010|0|1100|1|0|110|0|1|10100|1)|0|1|101001
and ζu(21) = 216123142161252.

Using the above corollary, we get

ϕu(1, 2) = (1, 2)(2, 3)(3, 1)(1, 4)(4, 2), ϕu(2, 3) = (2, 1)(1, 2)(2, 5)(5, 2), . . . .

3.4.1 There are infinitely many abelian derivatives of the Thue–

Morse word

For the Thue–Morse word t, the set {Eu(t) | u ∈ Pref(t)} is infinite.

Proposition 3.36.

Proof. It is sufficient to show that the set {Eu(t) | u ∈ Pref(t) : |u| ≡ 1 (mod 2)} is infinite.
Proceed by contradiction and suppose that the set {Eu(t) | u ∈ Pref(t) : |u| ≡ 1 (mod 2)}
is finite. Then there exist u and v distinct prefixes of odd length of the Thue–Morse word
t such that Eu(t) = Ev(t). Since APRt is finite, we can moreover assume that θt,u = θt,v.
Indeed, infinitely many sequences of the kind Eu(t) are equal and thus defined on the same
alphabet At,u. For all such sequences, there are finitely many morphisms of the kind θt,u
associating with each element of At,u an element of the finite set APRt. So we can impose
the extra condition on θt,u. Let

I(w) := {i ∈ N | t[i, i+ |w| − 1] ∼ab w}

denote the set of occurrences of factors of t abelian equivalent to a word w. We have
I(u) = I(v) as θt,u = θt,v. Without loss of generality, we may suppose that |u| = 2k + 1,
|v| = 2ℓ+1 with k < ℓ. We have Ψ(u) = (k, k+1) or Ψ(u) = (k+1, k) and Ψ(v) = (ℓ, ℓ+1)
or Ψ(v) = (ℓ+1, ℓ). Let au (resp. av) denote the letter having k+1 (resp. ℓ+1) occurrences
in the prefix u (resp. v). Note that au and av are respectively the last letters of u and v.

For any odd position j, recalling that t[2m, 2m+ 1] ∈ {10, 01}, we have

tj = au ⇔ t[j, j + |u| − 1] ∼ab u⇔ t[j, j + |v| − 1] ∼ab v ⇔ tj = av

where the central equivalence comes from the fact that I(u) = I(v). As there exists at least
one such j, we have au = av =: a.
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For any even position j, we have

tj+|u|−1 = a⇔ j ∈ I(u) ⇔ j ∈ I(v) ⇔ tj+|v|−1 = a

since I(u) = I(v). Using this observation, we can show by induction that

t|u|−1+n(|v|−|u|) = a

for all n ∈ N. In other words, there exists a constant infinite arithmetical subsequence in t,
which is a contradiction, since it is well-known that the Thue-Morse word does not contain
any such subsequence. Indeed, for n = 0, it is clear that the last letter of u is a. Suppose
now that the result holds true for n ≥ 0. We have t|u|−1+n(|v|−|u|) = a. Since |u|, |v| are odd,
n(|v| − |u|) is an even number and belongs to I(u) = I(v). Therefore t|v|−1+n(|v|−|u|) = a
and |v| − 1 + n(|v| − |u|) = |u| − 1 + (n+ 1)(|v| − |u|).

Remark 3.37. Using the same notation as in the previous proof, we show that the set
{Eu(t) | u ∈ Pref(t) : |u| ≡ 0 (mod 2)} is infinite. Proceed by contradiction. Then there
exist u and v distinct prefixes of even length of t such that Eu(t) = Ev(t) and θt,u = θt,v.
Hence I(u) = I(v). Note that 2N ⊆ I(u) = I(v). Suppose that |u| = 2k, |v| = 2ℓ, with k < ℓ.
Since a prefix of even length has a Parikh vector of the kind (r, r), 2i+1 is in I(u) if and only
if ti = ti+k. Similarly, 2i+ 1 is in I(v) if and only if ti = ti+ℓ. From I(u) \ 2N = I(v) \ 2N,
we deduce that, for all i ∈ N, ti = ti+k implies ti = ti+ℓ and conversely. This leads to the
contradiction that t is ultimately periodic of period ℓ − k. Indeed, suppose to the contrary
that for some i, ti+k 6= ti+ℓ. In this case, either ti+k or ti+ℓ is equal to ti. From our last
deduction, we get that all three letters ti, ti+k, ti+ℓ are equal.

Remark 3.38. Using the same notation as in the previous remark, there exist no prefixes
u, v of t such that |u| is even, |v| is odd and I(u) = I(v). (The symmetric case can be treated
in the same way.) Assume that |u| = 2k, |v| = 2ℓ + 1 for some positive integers k 6= ℓ. We
get Ψ(u) = (k, k) and Ψ(v) = (ℓ, ℓ+ 1) or Ψ(v) = (ℓ+ 1, ℓ). Let a denote the letter that has
ℓ + 1 occurrences in v. As v ∈ Pref(t), t|v|−1 = a. Note that, for all even positions j, if j is
in I(v), then tj+|v|−1 = a. Moreover, for all even j, we have j ∈ I(u). Since I(u) = I(v), we
get 2N ⊆ I(v) and thus tj+|v|−1 = a for all even j. Therefore, for all even j ≥ |v| − 1, we
have tj = a and also tj+1 = 1 − a since t is made up of blocks 01 or 10. This means that
the Thue–Morse word is ultimately periodic of period 2 which is a contradiction.

3.5 Related work and some open questions

Masáková and Pelantová complete our work about Sturmian words [MP13]. While we only
describe the set of abelian returns to all prefixes for a particular Sturmian word, namely
the Fibonacci word, they give the set of abelian returns to all prefixes for any characteristic
Sturmian word, using the continued fraction expansion of α [MP13, Proposition 18]. We let
[0, a1, a2, . . .] denote the continued fraction expansion of a number a in (0, 1):

a = 0 +
1

a1 +
1

a2+···

.
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Let α = [0, a1, a2, . . .] be an irrational in (0, 1). For the characteristic Sturmian
word cα, we have

APRcα =

{

{0, 01, 1, 10, 110, . . . , 1a10} if α < 1
2

{1, 10, 0, 01, 001, . . . , 0a2+11} otherwise.

Proposition 3.39. [MP13]

Let
(

pn

qn

)

n≥0
denote the sequence of the convergents associated with α:

pn
qn

= [0, a1, . . . , an].

The numerators pn and the denominators qn satisfy the recurrence relations

pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2

for every k ≥ 1 with initial values p0 = a0 = 0, q0 = 1, p−1 = 1 and q−1 = 0. We set
δk,s := |(s− 1)(pk −αqk)+ pk−1 −αqk−1| for k ≥ 0, 1 ≤ s ≤ qk+1. Then one has δk,s < δk′,s′

if and only if ks is greater than k′s′ for the lexicographic order. Masáková and Pelantová
determine the cardinality of the set APRx for any Sturmian word x [MP13, Theorem 16].

Let α, ρ ∈ (0, 1), α = [0, a1, a2, . . .] irrational with a1 ≥ 2. Let x be a Sturmian
word with slope α and intercept ρ.

• For ρ ∈ (α, 1− α), #APRx ∈ {a1 + 3, a1 + 4}.

• For ρ 6∈ (α, 1−α), let k, s ∈ N, with 1 ≤ s ≤ ak+1, be minimal in lexicographic
order such that min{ρ, 1− ρ} ≥ δk,s. Then #APRx = 2 + a1 + · · ·+ ak + s.

Theorem 3.40. [MP13]

Also, Masáková and Pelantová slightly extend Puzynina and Zamboni’s work [PZ13] and
give an alternative proof of their characterization of Sturmian words. Puzynina and Zamboni
show that an aperiodic recurrent infinite word x is Sturmian if and only if every factor of x
has two or three abelian return words, i.e., #APRx,u ∈ {2, 3} for all u ∈ Fac(x). If a factor
has three abelian return words R1, R2, R3, then |R1|+ |R2| = |R3|. Masáková and Pelantová
show that in fact R3 = R1R2 [MP13].

In Section 1.5, we presented Sturmian words through different equivalent definitions.
In particular, Sturmian words are a particular class of rotation words (Proposition 1.63).
Rampersad et al. study abelian returns in a more general class of rotation words [RRS14].
In addition to the angle α and the intercept ρ, they consider a third parameter β and a
partition the unit circle into intervals I0 = [0, 1 − β) and I1 = [1 − β, 1). So r(α, β, ρ) is
the coding of the trajectory of the point ρ under a rotation of angle α with respect to the
intervals I0, I1. Sturmian words in this setting are words r(α, α, ρ) with α irrational. The
main contribution of Rampersad et al. is a characterization analogous to Theorem 3.18.
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Let α be irrational and m ≥ 1 be an integer. Let r = r(α, {mα}, ρ) be a rotation
word. The set APRr is finite if and only if ρ 6∈ {{−iα} | 0 ≤ i < m}.

Theorem 3.41. [RRS14]

In addition, Rampersad et al. [RRS14] prove that one direction of Theorem 3.1 is a
consequence of the three gap theorem. Their proof uses our number-theoretic approach, in
particular Equation (3.3).

Let ρ be a real number, α ∈ (0, 1) be irrational and let I be a proper subinterval of
(0, 1). The gaps between the successive integers j such that {jα + ρ} ∈ I take at
most three values, one being the sum of the other two.

Theorem 3.42. Three gap theorem [AB98]

In Subsection 3.3.2 and Subsection 3.3.3, we used the bijection v 7→ Iv that maps a
word to an interval. Fici et al. [FLL+13] use a similar Sturmian bijection to study abelian
repetitions in Sturmian words. The authors show that the Sturmian bijection preserves
abelian properties of factors. Hence they are able to apply number-theoretic techniques to
obtain the following result.

Let x be a Sturmian word. For any integer m > 1, let km denote the maximal
exponent of an abelian repetition of period m in x. Then

lim sup
m→∞

km
m

≥
√
5

and the equality holds for Sturmian words with slope 1/φ2.

Theorem 3.43. [FLL+13]

Hence, with the same notation as in the previous theorem, we have lim sup km

m =
√
5 for

the Fibonacci word. We conclude this chapter with two open questions that derives from the
previous theorem and that are given in Fici et al. [FLL+13].

• Is it possible to find the exact value of lim sup km

m for other Sturmian words sα with
slope α different from 1/φ2?

• Is it possible to give the exact value of this superior limit when α is an algebraic number
of degree 2?
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Chapter 4

Graphs

This chapter contains all basic notions used in Part 2. First, we recall some
usual definitions and results about graphs. Secondly, some product operations on
graphs are defined. Next, we define well-known classes of graphs. We present then
colourings of the vertices of a graph. Finally, we consider the notion of covering
problems. We consider in particular the problem of finding an identifying code
of minimal size and a covering problem with multiplicity conditions.
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4.1 Basic definitions about graphs

We briefly introduce the basic terminology used in theory of graphs. More details are given
in [Die10]. An undirected graph G is given by an ordered pair (V,E) where E ⊆ V × V is a
symmetric binary relation on a set V . We call the elements of V vertices and the elements of
E edges . When the sets V and E are not given explicitly, we denote by V (G) and E(G) the
set of vertices and edges of the graph G. Since E is a symmetric relation, an edge between
a vertex u and a vertex v is written as a non-ordered pair {u, v}. If the context is clear, we
write {u, v} simply as uv or vu. An edge of the form uu is a loop. A graph without any loop
is said to be simple.

Remark 4.1. In this thesis, we only consider graphs that are undirected and simple.

The usual way to picture a graph is by drawing a dot or a small circle for each vertex
and joining two of these dots by a line if the corresponding two vertices form an edge. For
instance, Figure 4.1 depicts an undirected graph with vertex set V = {v0, . . . , v6} and edge
set

E = {v0v1, v0v4, v1v2, v1v4, v2v3, v2v5, v2v6, v4v5}.

v0 v1

v2

v3

v6v4 v5

Figure 4.1: A graph with 7 vertices.

Two vertices u and v are adjacent if uv is an edge. Two adjacent vertices are called
neighbours . If all the vertices of G are pairwise adjacent, then the graph is called complete.
We denote by Kn the complete graph on n vertices.

The set of all neighbours of u is the open neighbourhood denoted by N(u):

N(u) = {v ∈ V | uv ∈ E}.

The closed neighbourhood of u is N [u] = N(u) ∪ {u}, i.e., u and all its neighbours. The
degree of a vertex is the number of its neighbours. A graph is regular if all vertices have the
same degree.

Example 4.2. Consider the graph represented in Figure 4.1. The vertex v0 has degree
deg(v0) = 2. The open neighbourhood of v1 is N(v1) = {v0, v2, v4} and the closed neigh-
bourhood of v3 is N [v3] = {v2, v3}.

A set of vertices that are not adjacent is called independent . Similarly, edges without
common vertices are independent . A set M of independent edges in a graph G is called a
matching. We say the matching is perfect if any vertex of the graph is an endpoint of an
edge of M .

Example 4.3. Let G be the graph depicted in Figure 4.1. The set {v0, v5, v6} of vertices is
independent. The set {v0v1, v2v3, v4v5} of edges is a matching of the graph. Moreover, one
can check that the graph does not have any perfect matching.
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Consider now the graph depicted in Figure 4.2(a). It has 3 perfect matchings, one of
them is represented in Figure 4.2(b).

u1

u2

u3

u0

u1

u2

u3

u0

(a) (b)

Figure 4.2: A graph (a) and one of its perfect matchings (b).

Let k ≥ 2 be an integer. A graph G = (V,E) is k-partite or multipartite if V admits a
partition into k sets such that each edge has its ends in different sets. In other words, each
set is independent. Instead of 2-partite, we usually say bipartite. A k-partite graph for which
every two vertices from different sets are adjacent is called complete. The complete k-partite
graph for which the cardinal of the set are respectively n1, . . . , nk is denoted by Kn1,...,nk

.
Examples of 3-partite graphs are given in Figure 4.3, the graph on the right is a complete
3-partite graph.

K2,3,2

Figure 4.3: Two 3-partite graphs.

Given two vertices u and v of G, the distance between u and v is the number of edges in a
shortest path in G between u and v. We denote this distance by dG(u, v), or simply d(u, v) if
the context is clear. The diameter of a finite graph G, denoted by diam(G), is the maximum
distance between any pair of vertices of the graph. Let r be a positive integer. The ball of
radius r with center v, denoted by Br(v) and sometimes called r-ball, is the subset of vertices
lying at distance at most r from v:

Br(v) = {u ∈ V | d(u, v) ≤ r}.

In particular, we have B1(v) = N [v].

Example 4.4. Consider again the graph depicted in Figure 4.1. The distance between v0
and v5 is d(v0, v5) = 2. The ball with radius 2 with center v0 is B2(v0) = {v0, v1, v2, v4, v5}
and the ball of radius 2 with center v2 is equal to the whole vertex set. The diameter of the
graph is 3 and the vertices v0, v6 realize the diameter, i.e., d(v0, v6) = 3 = diam(G).
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An isomorphism ϕ : G = (V,E) → G′ = (V ′, E′) between two graphs G and G′ is a
bijective application from V to V ′ that preserves the edges of the graph: uv is an edge of G
if and only if ϕ(u)ϕ(v) is an edge of G′. If G = G′, ϕ is called an automorphism of G. We
denote by Aut(G) the set of all automorphisms of the graph G.

Example 4.5. There are only two automorphisms in the set of automorphisms of the graph
given in Figure 4.1, namely the map ϕ defined by

ϕ :







vi 7→ vi for i ∈ {0, 1, 2, 4, 5}
v3 7→ v6
v6 7→ v3

and the identity map.

In some graph, vertices seem to play the same role. Such graphs are called vertex-
transitive. More formally, a graph is vertex-transitive if for any pair of vertices u and v there
exists an automorphism sending u to v. A vertex-transitive graph is in particular regular.

Example 4.6. As the graph represented in Figure 4.1 is not regular, it is not vertex-
transitive. The graph depicted in Figure 4.2(a) is clearly vertex-transitive and 3-regular.

Observe that not all regular graphs are vertex-transitive.

Example 4.7 (Frucht graph). The graph depicted in Figure 4.4 is a 3-regular graph that
only has the identity map as automorphism. Hence, it is not vertex-transitive. The graph is
named after Frucht who first described it in 1939 [Fru39].

Figure 4.4: The Frucht graph is 3-regular but not vertex-transitive.

4.1.1 A link between graphs and words

We now present a way to obtain a graph from the set of words of a fixed length, with respect
to a metric. For more details about words see Section 1.1. Let A be an alphabet with k
letters and n be a positive integer. For a metric corresponding to a distance d, we define the
graph G with vertex set V = An and edge set E = {{u, v} ∈ V 2 | d(u, v) = 1}. In other
words, the vertices correspond to words of length n over A and two vertices are adjacent if the
corresponding words are at distance 1 with respect to the metric. In the sequel, we mention
three well-known metrics, namely the Hamming metric, the Lee metric and the Manhattan
metric.
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Definition 4.8 (Hamming metric). The Hamming distance between two words is the number
of different letters appearing at the same index. For instance, the word 01302 is at distance 2
from the word 31102 as the first and the third letters are different. The graphs corresponding
to the Hamming metric are called Hamming graphs .

Definition 4.9 (Manhattan metric). The Manhattan distance between two u = u0 · · ·un−1

and v = v0 · · · vn−1 with ui, vi ∈ A is the sum

n−1
∑

i=0

|ui − vi|.

For example, the words 01302 and 31102 are at distance |0− 3|+ |3− 1| = 5.

The Lee metric is similar to the Manhattan metric. They coincide in the case of infinite
alphabets.

Definition 4.10 (Lee metric). The Lee distance between two words u = u0 · · ·un−1 and
v = v0 · · · vn−1 with ui, vi ∈ A is the sum

n−1
∑

i=0

min(|ui − vi|, k − |ui − vi|)

where k is the number of letters in the alphabet A. For instance, the words 01302 and 31102

are at distance 3 since min(|0− 3|, 4− |0− 3|) = 1 and min(|3− 1|, 4− |3− 1|) = 1.

4.2 Operations on graphs

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. We present first the comple-
ment and power of graph, then some products of two graphs.

The complement (in terms of simple graphs) of G is the graph G with the same vertex set
V (G), such that two distinct vertices are adjacent in G if and only if they are not adjacent
in G. Observe that since we only consider simple graphs, the definition of the complement
of a graph implies that the complement is also simple.

Example 4.11. Consider the graph G that is depicted in Figure 4.5. Its vertex set is
V = {u0, u1, u2, u3, u4} and its edge set is E = {u0u1, u1u2, u2u3, u3u4}. The complement G
of G has edge set

E(G) = {u0u2, u0u3, u0u4, u1u3, u1u4, u2u4}.

G G

Figure 4.5: A graph G and its complement G.
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Let r be a positive integer. The r-power of G is the graph Gr with vertex set V (G) and
such that two vertices are adjacent in Gr if they are at distance at most r in G:

E(Gr) = {uv ∈ V × V |dG(u, v) ≤ r}.
Example 4.12. If G is a graph with vertex set V = {u0, u1, u2, u3, u4} and edge set
E = {u0u1, u1u2, u2u3, u3u4}, then G2 has edge set

E(G2) = E ∪ {u0u2, u1u3, u2u4}
as represented in Figure 4.6.

G G2

Figure 4.6: A graph G and its 2-power G2.

The Cartesian product of G and H , denoted by G�H , has vertex set V (G)× V (H) and
two vertices (uG, uH) and (vG, vH) are adjacent if one of the following holds

• uG = vG and uHvH ∈ E(H),

• uH = vH and uGvG ∈ E(G).

For example, the Cartesian product K3�K4 of two complete graphs K3 and K4 is depicted
in Figure 4.7.

K3�K4K3

K4

Figure 4.7: Cartesian product of two complete graphs.

The direct product of G and H , denoted by G × H , has vertex set V (G) × V (H) and
two vertices (uG, uH) and (vG, vH) are adjacent if uGvG ∈ E(G) and uHvH ∈ E(H). See
Figure 4.8 for an example.

The lexicographic product of two graphs G and H , denoted by G[H ], has vertex set
V (G) × V (H) and two vertices (uG, uH) and (vG, vH) are adjacent if one of the following
holds

• uGvG ∈ E(G),

• uG = vG and uHvH ∈ E(H).

An example is given in Figure 4.9.
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G×HG

H

Figure 4.8: Direct product of two graphs.

G[H ]G H

Figure 4.9: Lexicographic product of two graphs.
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4.3 Some classes of graphs

In this section, we present different graphs considered in the next two chapters. All graphs
in Chapter 5 are finite while the graphs discussed in Chapter 6 are infinite.

4.3.1 Finite paths and cycles

A path on n vertices is a graph, denoted by Pn, with vertex-set {0, . . . , n− 1} and its edges
are the non-ordered pairs {i, i+ 1} for 0 ≤ i < n− 1. The Cartesian product of k paths Pn

corresponds to the graph obtained from the set of words of length k over a n-letter alphabet
with the Manhattan distance.

A cycle on n vertices is a graph, denoted by Cn, with vertex-set {0 . . . , n− 1}. Its edges
are the non-ordered pairs {i, i + 1} for 0 ≤ i < n − 1 and {0, n − 1}. Clearly any cycle is
vertex-transitive. Observe that the Cartesian product of k cycles Cn corresponds to the graph
obtained from the set of words of length k over a n-letter alphabet with the Lee metric.

The length of a finite path or a cycle is the number of its edges. Hence, Pn and Cn have
respective length n− 1 and n.

4.3.2 Hypercubes

Let q ≥ 3. The hypercube of dimension q is the graph Hq with the set {0, 1}q of binary
words of length q as vertex set. Two vertices are adjacent if the corresponding words differ
on exactly one letter. Hence, the hypercube of dimension q is a Hamming graph. For instance,
the hypercubes of dimension 1 to 3 are given in Figure 4.10. Note that we have H1 = P2.

0 1

10 11

00 01

010 011

000 001

110 111

100 101

H1 H2 H3

Figure 4.10: The hypercubes of dimension 1 to 3.

Observe that for all q ≥ 1, the hypercube of dimension q can be recursively constructed
by taking two copies of Hq−1, then adding edges between the corresponding vertices of each
copy (Figure 4.11). In other words, Hq = Hq−1�P2. Clearly, Hq is vertex-transitive with
vertex degree q.

4.3.3 Strongly regular graphs

In the next chapter, we often consider strongly regular graphs, that are a particular class of
finite graphs.

Definition 4.13. A strongly regular graph srg(n, k, λ, µ) is a k-regular graph on n vertices
for which any pair of adjacent (respectively non-adjacent) vertices have exactly λ (resp. µ)
neighbours in common.
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Figure 4.11: The hypercube H4 of dimension 4.

For instance, the cycle C4 is a strongly regular graph with parameters n = p, k = 2,
λ = 0 and µ = 2, but the cycle C6 is not a strongly regular graph as the number of common
neighbours of two non-adjacent vertices is not constant.

The four parameters of a strongly regular graph are related in the following way.

Let G be a srg(n, k, λ, µ). We have

(n− k − 1)µ = k(k − λ− 1). (4.1)

Proposition 4.14.

Proof. Let G = (V,E) be a srg(n, k, λ, µ) and let u be a vertex of V . We consider the
partition of V \ {u} between the neighbours N(u) and the non-neighbours V \N [u] of u. By
definition, #N(u) = k and #(V \ N [u]) = n − 1 − k. We now count the number of edges
between N(u) and V \N [u] (Figure 4.12). For any v ∈ N(u), there are λ edges to vertices
of N(u) as u and v are adjacent. Hence, there are k − 1 − λ edges between v and vertices
of V \N [u]. Similarly, for any w ∈ V \N [u], there are µ edges to vertices of N(u) as u and
w are not adjacent. Therefore, counting the number of edges between N(u) and V \N [u] in
two different ways, we obtain the required equality.

N(u) V \N [u]

u

v

wk

k − 1− λ

λ

µ

k − µ

Figure 4.12: A strongly regular graph srg(n, k, λ, µ) where the number of edges incident with
a given vertex is indicated in gray.
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The complement G of a strongly regular graph G is still a strongly regular graph and has
parameters srg(n, n− 1− k, n− 2− 2k+ µ, n− 2k+ λ). Indeed, by definition V (G) = V (G)
and the degree of any vertex v in the complement is clearly (n−1)−k. Consider two adjacent
vertices u and v in G (Figure 4.13), they have λ common neighbours. Let S denote the set
V (G) \ (N [u] ∪N [v]). In G, u and v are not adjacent and their common neighbours are the
vertices of S which has cardinality equal to n− (k+1)− (k− 1−λ) = n− 2k+λ. Similarly,
if u and v are non-adjacent vertices in G, then they have µ common neighbours. We set
S = V (G)\ (N [u]∪N [v]) again. In G, u and v are adjacent and the number of their common
neighbours is |S| = n− (k + 1)− (k + 1− µ) = n− 2− 2k − µ.

N [u] ∪N [v]

V \ (N [u] ∪N [v])

u v

G G

N(u) ∩N(v)

u v

Figure 4.13: From a strongly regular graph srg(n, k, λ, µ), denoted by G, to its complement
G. Focus on two adjacent vertices.

Definition 4.15. A strongly regular graph is primitive if the graph and its complement are
connected.

Example 4.16. Let G be a srg(n, k, λ, µ). A trivial non primitive case is given by µ = 0.
Indeed, if µ = 0, then it is the disjoint union of complete graphs on k + 1 vertices. In
particular, λ = k − 1. Indeed, let u and v be two adjacent vertices of G. Assume there
exists w adjacent to u but not to v. Then v and w are non-adjacent vertices with a common
neighbours, a contradiction.

Similarly, if µ = k, then G is a complete multipartite graph. Indeed, the relation of being
non-adjacent to u is an equivalence relation since two non-adjacent vertices have exactly the
same open neighbourhood. Hence G is a complete multipartite graph. Necessarily, all the
parts have the same size, n − k. Note that the complement of G corresponds to the first
example.

The two previous examples are the only non primitive graphs.

Let G be a strongly regular graph. G is primitive if and only if µ /∈ {0, k}. In
particular, all primitive strongly regular graphs have diameter 2.

Lemma 4.17.
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Proof. As shown in Example 4.16, if µ ∈ {0, k} then G is not primitive. If µ 6= 0, then two
non-adjacent vertices have at least one vertex in common. Hence the diameter of G is two
and in particular, G is connected. Assume now that µ 6= k. By Equation (4.1), the value of
µ for the complement of G, n− 2k + λ, is not 0. As before, it means that the complement
of G has diameter 2 and is connected.

Let G be a primitive strongly regular graph srg(n, k, λ, µ) on n vertices, then k ≥√
n− 1 and the smallest symmetric difference satisfies d >

√
n− 3.

Proposition 4.18.

Proof. Since G is primitive, by Lemma 4.17, it has diameter 2. Thus there are at most
1 + k + k(k − 1) vertices in G. Hence n ≤ 1 + k2 and we get the upper bound on k.

To prove the second inequality, we use a result of Babai [Bab80]: for every pair of vertices
u, v of a primitive strongly regular graph, one has |N(u)∆N(v)| > √

n − 1. If u and v
are adjacent, then |N [u]∆N [v]| = |N(u)∆N(v)| − 2, whereas if u and v are non-adjacent,
|N [u]∆N [v]| = |N(u)∆N(v)|+ 2. Hence d >

√
n− 3.

4.3.4 Infinite graphs

The infinite path, denoted by P∞, has vertex-set Z and two vertices u and v are adjacent if
|u− v| = 1.

The infinite square grid , or simply infinite grid, is the Cartesian product of two infinite
paths. We can also view the infinite grid as Z2. The vertices are all pairs of integers and two
vertices (x1, x2) and (y1, y2) are adjacent if |x1 − y1| + |x2 − y2| = 1. The infinite grid is a
4-regular graph, i.e., every vertex has 4 neighbours. Let the sets

Le = {(x1, x2) ∈ Z2 | x1 + x2 = 0 (mod 2)}
and

Lo = {(x1, x2) ∈ Z2 | x1 + x2 = 1 (mod 2)}
denote the even and odd sub-lattices of Z2. We have Z2 = Le ∪ Lo. Sets of the type
{(x1, x1 + c) | x1 ∈ Z} and {(x1,−x1 + c) | x1 ∈ Z} with c ∈ Z are called diagonals of Z2.

The infinite king lattice has also all pairs of integers as vertices, but two vertices (x1, x2)
and (y1, y2) are adjacent if |x1 − y1| ≤ 1 and |x2 − y2| ≤ 1. Otherwise stated, the neighbour-
hood of a vertex corresponds to the possible moves of a king on a chessboard. Figure 4.14
displays portions of the infinite square grid and the infinite king lattice. Observe that in
Figure 4.14(b), the white vertices correspond to vertices of the odd sub-lattice.

4.3.5 Hypergraphs

A hypergraph is a couple (V, E) where V is a set and E is a subset of the power set of
V . The elements of V are called vertices and the elements of E are called hyperedges . A
simple undirected graph can be viewed as a hypergraph with all its hyperedges of cardinality
2. An example of hypergraph (V, E) is given in Figure 4.15 where the set of vertices is
V = {v0, . . . , v7} and the set of hyperedges is

E = {{v0,3 , v5, v6}, {v0, v5}, {v2, v4, v6}, {v2, v4, v7}}.
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(a) Square grid (b) Square grid with vertices of the (c) King lattice
even sub-lattice coloured in black

Figure 4.14: Portions of the infinite square grid and of the infinite king lattice.

v0 v1

v4

v2

v7v5 v6

v2

Figure 4.15: Example of hypergraph.

4.4 Colouring of graphs

A colouring of the vertices of a graph G is a map c : V (G) → N. For a vertex u, c(u) is the
colour of u. A k-colouring is a colouring using only k colours. A colouring of the vertices of a
graph is monochromatic if all vertices have the same color. In this thesis, we are interested in
2-colourings, c : V (G) → {0, 1}. Hence we identify the colour 0 with white and 1 with black.
Observe that a 2-colouring c of V (G) can be translated in terms of considering a subset C
of V (G):

c(v) = 1 if and only if v ∈ C.

A 2-colouring of P∞ is periodic if there exists a positive integer p such that c(x) = c(x+p)
for all x ∈ Z. In that case, the smallest p satisfying the previous condition is called the period
and any pattern (i.e., sequence of colours) of length p appearing in the colouring is a pattern
period. The notion of periodicity in infinite paths is similar to the notion of periodicity in
bi-infinite words, i.e., sequences indexed by Z. A 2-colouring c of P∞ is anti-periodic of
anti-period p is c(x) = 1−c(x+p) for all x ∈ Z. Hence such colourings are periodic of period
2p. As each line or row of the infinite grid is isomorphic to P∞, we can define these notions
analogously for lines and rows of Z2. Similarly, we can adapt these definitions to the case
of cycles by working modulo p. Note that a 1-periodic colouring is simply a monochromatic
colouring. A 1-anti-periodic colouring is called alternate.
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Consider now a colouring c of the vertices of the infinite grid Z2. We say that c is periodic
if there exist two non-proportional vectors u,v such that c(x+ u) = c(x) = c(x+ v) for all
x ∈ Z2. In particular, if c is a periodic colouring of Z2, then there exist two integers m and
n distinct from 0 such that c(x + (m, 0)) = c(x) = c(x + (0, n)) for all x ∈ Z2. Otherwise
stated, if c is periodic, then each line and each row are coloured periodically.

Example 4.19. The portions of two infinite grids represented in Figure 4.16 are coloured
with a periodic 2-colouring. For the colouring c given in Figure 4.16(a), the vectors u = (3,−2)
and v = (2, 3) are non-proportional and such that c(x + u) = c(x) = c(x + v) for any
x ∈ Z2. To find the periods of each line and each row, observe that 3u + 2v = (13, 0) and
−2u+3v = (0, 13). Hence, c(x) = c(x+(13, 0)) = c(x+(0, 13)) and the periods of each line
and of each row are equal to 13.

Now consider the colouring c′ given in Figure 4.16(b). We have u′ = (3,−1) and
v′ = (1, 4). We obtain again c′(x) = c′(x+ (13, 0)) = c′(x+ (0, 13)) for any x ∈ Z2.

u

v

u′

v′

(a) u = (3,−2), v = (2, 3) (b) u′ = (3,−1), v′ = (1, 4)

Figure 4.16: Portions of two infinite grids, both coloured periodically.

If c is a colouring of Z2 such that the even and odd sublattices are the disjoint union of
monochromatic diagonals, then c is called a diagonal colouring. Observe that the monochro-
matic diagonals of the even sublattice do not have to be parallel to the monochromatic diag-
onals of the odd sublattice (Figure 4.17). A diagonal colouring c of Z2 is p-periodic (respec-
tively p-anti-periodic) if horizontal lines are coloured p-periodically (resp. p-anti-periodically).

For any 2-colouring c, we write c for the complement of c, that is, the colouring obtained
from c by changing black into white and vice versa. Hence, we have c(u) = 1− c(u) for any
vertex u. Observe that this notion is similar to the complement of binary words defined in
Section 1.1.

4.5 Covering problems

Covering and packing problems are traditional issues in mathematics [CHLL97]. A natural
packing problem in the n-dimensional euclidean space is to ask for the maximal number of
identical non-intersecting spheres in a large volume. Conversely, a covering problem in the
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Figure 4.17: Schemes of diagonal colourings of the infinite grid with respectively parallel and
non-parallel monochromatic diagonals.

euclidean space asks for the minimal number of identical spheres needed to cover a large
volume. See [CHLL97] for many bibliographic pointers.

The same issues can be considered in graphs. Given an r and a graph, a packing problem
is for instance to determine the maximal number of non-intersecting r-balls that can be
placed in the graph; a covering problem is for example to determine the minimal number of
r-balls that can be placed in such a way that every vertex of the graph is contained in at
least one of them. Packing problems are fundamental in “error correction” while covering
problems have application in mobile network.

We consider in this section covering problems that satisfy special conditions. Firstly,
we are interested in using a covering with balls of radius 1 that permit us to identify each
vertex of a given graph. Secondly, we focus on covering problems that satisfy multiplicity
conditions. In each subsection, we present an application of these coverings.

4.5.1 Identifying codes

Given a discrete structure on a set of elements, a natural question is to be able to locate
efficiently the elements using the structure. If the elements are the vertices of a graph, one
can use the neighbourhoods of the elements to locate them. In this context, Karpovsky et
al. [KCL98] have introduced the notion of identifying codes in 1998.

Definition 4.20. A subset of vertices S is a dominating set if each vertex is either in S
or adjacent to a vertex in S. In other words, for every vertex u, S ∩ N [u] is non-empty.
A vertex c separates two vertices u and v if exactly one vertex among u and v is in the
closed neighbourhood of c. In other words, c ∈ N [u]∆N [v] where ∆ denotes the symmetric
difference of sets. A subset of vertices S is a separating set if it separates every pair of vertices
of the graph. A subset of vertices C is an identifying code if it is both a dominating and
separating set. In other words, the set N [u] ∩ C is non-empty and uniquely determines u.

Example 4.21. The set C = {v0, v2, v3, v5} is an identifying code of the graph given in
Figure 4.18. Indeed, we can check that each subset N [u] ∩ C appearing in Table 4.1 is
non-empty and unique.
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u v0 v1 v2 v3 v4 v5 v6
N [u] ∩ C {v0} {v0, v2} {v2, v3, v5} {v2, v3} {v0, v5} {v2, v5} {v5}

Table 4.1: Set of neighbours within a set C.

v0 v3

v2

v5

v1

v6v4

Figure 4.18: The set of black vertices is an identifying code of the graph.

Initially, identifying codes have been introduced to model fault-diagnosis in multiprocessor
systems [KCL98]. A multiprocessor system is represented by a graph where the vertices are
the processors. Assume that a processor can test if a neighbour processor is faulty and only
returns a binary value. For instance, a processor returns 0 if no faults were detected and 1
otherwise. The problem is to find a subset C of processors such that

• if all processors of C return the value 0, it means that no processors are faulty,

• if at least one processor of C returns the value 1, then there is a faulty processor and
we can uniquely determine which one it is.

If we suppose that at any moment, there is at most one faulty processor, then the wanted
set C corresponds exactly to an identifying code.

Indeed, the first condition ensures that if there is a faulty processor, then it will be
detected. In terms of graphs, it means that C is a dominating set. The second condition,
about the unique localisation of the processor, is equivalent to the condition that C is a
separating set of the graph. Later other applications were discovered such as the design of
emergency sensor networks in facilities [UTS04].

Remark 4.22. The identifying code problem in graphs is equivalent to a covering problem
in hypergraphs. Let G = (V,E) be a graph and let H = (V, E) be the hypergraph with
hyperedge set

E = {N [u] | u ∈ V } ∪ {N [u]∆N [v] | u 6= v ∈ V }.

A subset C of vertices is an identifying code of G if and only if C intersects all the hyperedges.

For instance, consider the identifying code {v0, v2, v3, v5} of the graph depicted in Fig-
ure 4.18. We can check that this set intersects all the hyperedges of the corresponding
hypergraph (Table 4.2).

There exists an identifying code in G if and only if G does not have two vertices u and
v with N [u] = N [v]. We say that two such vertices u and v are twin vertices . For instance,
a cycle C4 of length 4 has two pairs of twin vertices (Figure 4.19). In the sequel we only
consider twin-free graphs. The size of a minimal identifying code of G is denoted by γID(G).
We have the following general bounds.
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N [v0] v0 v1 v4
N [v1] v0 v1 v4 v5
N [v2] v1 v2 v3 v5 v6
N [v3] v2 v3
N [v4] v0 v1 v4 v5
N [v5] v1 v2 v4 v5
N [v6] v2 v6

N [v0]∆N [v1] v2 v5
N [v0]∆N [v2] v0 v4
N [v0]∆N [v3] v0 v1 v2 v3 v4
N [v0]∆N [v4] v5
N [v0]∆N [v5] v0 v2 v5
N [v0]∆N [v6] v0 v1 v2 v4 v6
N [v1]∆N [v2] v0 v4

N [v1]∆N [v3] v0 v1 v3 v4 v5
N [v1]∆N [v4] v2
N [v1]∆N [v5] v0
N [v1]∆N [v6] v0 v1 v4 v5 v6
N [v2]∆N [v3] v1 v5 v6
N [v2]∆N [v4] v0 v2 v3 v4 v6
N [v2]∆N [v5] v0 v3 v4 v6
N [v2]∆N [v6] v1 v3 v5
N [v3]∆N [v4] v0 v1 v2 v3 v4 v5
N [v3]∆N [v5] v1 v3 v4 v5
N [v3]∆N [v6] v3 v6
N [v4]∆N [v5] v2
N [v4]∆N [v6] v0 v1 v2 v4 v5 v6
N [v5]∆N [v6] v1 v4 v5 v6

Table 4.2: Each row corresponds to an hyperedge of H and the gray columns correspond to
vertices of the set {v0, v2, v3, v5}.

0

1

2

3

Figure 4.19: The vertices 0 and 2 are twin vertices.
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Let G be a twin-free graph with at least one edge. We have

⌈log2(|V |+ 1)⌉ ≤ γID(G) ≤ |V | − 1.

Proposition 4.23. [GM07, KCL98]

The lower bound can be found by considering that in an identifying code C of size γID(G),
the sets N [u] ∩ C are all distinct and non-empty subsets of a set of size γID(G). Both
bounds are tight and graphs reaching the lower bound are described in [Mon06] whereas
graphs reaching the upper bound are characterized in [FGK+11]. For instance, Figure 4.20
represents one graph reaching the lower bound and another graph reaching the upper bound.

γID(G) = 3 = ⌈log2(|V |+ 1)⌉ γID(G) = 6 = |V | − 1

Figure 4.20: Two graphs reaching the lower and upper bounds on γID(G) in terms of the
number of vertices.

When the maximum degree of the graph is small enough, the following lower bound is
more precise than the previous one.

Let G be a graph of maximum degree k. We have

γID(G) ≥ 2|V |
k + 1

.

Proposition 4.24. [KCL98]

Karpovsky et al. [KCL98] proved this bound using a discharging method that is illustrated
in Figure 4.21. For a fixed subset C of vertices of a graph, each vertex receives a charge 1
at the beginning. Then each vertex v gives to the vertices in N [v] ∩ C the charge 1

|N [v]∩C| .

After this process, only vertices of C have a positive charge and the total charge is still |V |.
We use the same method to obtain a tighter bound which we need when γID(G) is smaller
than the maximum degree of the graph.
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Figure 4.21: Charges of the graph before and after applying the discharging method.

Let G = (V,E) be a twin-free graph of maximum degree k and C an identifying
code of G with k ≥ |C|+ 1. We have

|V | ≤ |C|2
6

+
(2k + 5)|C|

6
.

Proposition 4.25.

Proof. Let G = (V,E) be a twin-free graph of maximum degree k. Assume that C is an
identifying code of G with k ≥ |C| + 1. We use the same discharging method as Karpovsky
et al. in [KCL98]. Each vertex receives a charge 1 at the beginning. Then each vertex v
gives to the vertices in N [v] ∩ C the charge 1

|N [v]∩C| . After this process, only vertices of C

have a positive charge and the total charge is still |V |.
Let c ∈ C. Let Vi be the set of vertices of N [c] with exactly i neighbours in C. Necessarily

|V1| ≤ 1 since vertices in V1 have only c in their neighbourhood. We have |V2| ≤ |C| − 1.
Indeed, a vertex of V2 has c in its neighbourhood and a unique additional vertex of the code.
But all the additional code neighbours of elements of V2 must be different, hence there are at
most |C| − 1 vertices in V2. Finally, there are k+ 1− |V1| − |V2| other vertices giving charge
at most 1/3. Therefore, c receives a charge at most equal to

|V1|+
|V2|
2

+
k + 1− |V1| − |V2|

3
≤ 1 +

|C| − 1

2
+
k − |C|+ 1

3
=

|C|
6

+
2k + 5

6
.

Hence the total charge |V | is at most |C|2

6 + (2k+5)|C|
6 .

Remark 4.26. The problem of finding a minimal identifying code in a graph G can be
expressed as a hitting set problem. Indeed an identifying code is a subset of V that intersects
all the sets N [u] and N [u]∆N [v] for u, v ∈ V . In other words, the problem of finding a
minimal identifying code is equivalent to the following linear integer program PG.
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Minimize
∑

xu∈V

xu

such that
∑

w∈N [u]

xw ≥ 1 ∀u ∈ V (domination)

∑

w∈N [u]∆N [v]

xw ≥ 1 ∀u, v ∈ V, u 6= v (separation)

xu ∈ {0, 1} ∀u ∈ V

The concept of identifying codes is related to other concepts such as locating-dominating
sets [Sla87, Sla88] and resolving sets [Bab80, Sla75]. A locating-dominating set is a dominat-
ing set S that separates the pairs of vertices that are not in S [Sla87, Sla88]. The size of a
minimal locating-dominating set of G is denoted by γLD(G). Note that every graph admits
a locating-dominating set since the whole set of vertices is always a locating-dominating set.
An identifying code is always a locating-dominating set and one can get an identifying code
from a locating-dominating set by adding at most γLD(G) vertices. Therefore we have the
following relations between γLD(G) and γID(G).

Let G be a twin-free graph. We have

γLD(G) ≤ γID(G) ≤ 2γLD(G).

Proposition 4.27. [GKM08]

Example 4.28. Consider the graph with vertex set V = {v0, . . . , v6} and edge set

E = {v0v1, v0v4, v1v2, v1v4, v2v3, v2v5, v2v6, v4v5}.

The set C = {v0, v3, v4, v6} is a locating-dominating set of the graph (Figure 4.22(a)) but it
is not an identifying code since N [v0] ∩ C = {v0, v4} = N [v4] ∩ C. To obtain an identifying
code from C, it suffices to add the vertices v2 and v5 (Figure 4.22(b)). It is not the only
solution to obtain an identifying code. For instance, we can add the vertices v1, v2 instead
of v2, v5.

v0 v3

v4 v6

v2

v5

v1 v0 v3

v4 v6

v2

v5

v1

(a) (b)

Figure 4.22: In (a), the set of black vertices is a locating-dominating set but not an identifying
code. In (b), the set of black vertices is a locating-dominating set and an identifying code.
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A resolving set is a subset of vertices S such that for every pair of vertices u and v, there
exists a vertex x in S that satisfies d(x, u) 6= d(x, v) [Bab80, Sla75]. The smallest size of a
resolving set of G is called the metric dimension and is denoted by β(G). Two examples of
resolving sets are given in Figure 4.23.

(1, 0)

(0, 1)(1, 2)

(2, 3)

(3, 2) (2, 1)

(0, 2, 2, 2, 2)

(2, 0, 2, 2, 2)(2, 2, 0, 2, 2)

(2, 2, 2, 0, 2)

(2, 2, 2, 2, 0) (2, 2, 2, 2, 2)

(1, 1, 1, 1, 1)

β(G) = 2 β(G) = 5

Figure 4.23: For each graph, the black vertices form a resolving set. For any vertex, the
distance between each black vertex and itself is indicated.

A locating-dominating set is always a resolving set and so β(G) ≤ γLD(G). When the
diameter of the graph is 2, the reverse is almost true: adding a vertex to a resolving set
gives a locating dominating set. For instance, in both graphs depicted in Figure 4.23, one
has γLD(G) = β(G).

Let G be a graph of diameter 2. We have

β(G) ≤ γLD(G) ≤ β(G) + 1.

Proposition 4.29.

Proof. The first inequality is true for any graph since a locating-dominating set is a resolving
set. Let now S be a resolving set of a graph G of diameter 2. We order the vertices of
S = {x1, ..., xs}. For every vertex u, let L(u) = (d(u, x1), ..., d(u, xs)) be the distance vector
to vertices of S. Since S is a resolving set, all the vectors L(u) are distinct. Since the
diameter is 2, L(u) ∈ {0, 1, 2}s. But at most one vertex u0 can have L(u0) = (2, 2, ..., 2),
hence all vertices except u0 are dominated by a vertex of S. Therefore, the set S′ = S∪{u0}
is a dominating set. Let u be a vertex not in S′. It has only values 1 and 2 in its vector
L(u) and the set N [u] ∩ S is given by the value 1 in L(u). Hence all the sets N [u] ∩ S for
u /∈ S′ are distinct. Therefore, all the sets N [u] ∩ S′ are also distinct for u /∈ S′ and S′ is a
locating-dominating set. In particular γLD(G) ≤ β(G) + 1.

Proposition 4.27 together with Proposition 4.29 gives a relation between γID(G) and the
metric dimension in graphs of diameter 2. In particular, they have the same order and let
us derive results for identifying codes from results for resolving sets.
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Let G be a twin-free graph of diameter 2. We have

β(G) ≤ γID(G) ≤ 2β(G) + 2.

Corollary 4.30.

4.5.2 (r, a, b)-covering codes

One of the motivations for studying covering codes in special graphs is a network communi-
cation problem. Consider for example a system of transmitting stations for cellular phone
network. In Figure 4.24, we locate transmitting stations in the vertices of the corresponding
graphs such that any two stations are at distance at least r+1 from each other (to avoid in-
terference) but any other vertex is within reaching distance r from 2 transmitting stations (to
guarantee a good quality of transmission). Such coverings are called (r, a, b)-covering codes
where a is the number of transmitting stations within a distance r from a given transmitting
station (a = 1 in the example above) and b is the number of transmitting stations within
a distance r from a given vertex that is not a transmitting station (b = 2 in the example
above).

Figure 4.24: This placement of the transmitting stations with respect to the cellular phones
is an example of an (r, 1, 2)-covering code.

Definition 4.31. Let G = (V,E) be a graph and r, a, b be positive integers. A set S ⊆ V of
vertices is an (r, a, b)-covering code or simply (r, a, b)-code if every element of S belongs to
exactly a balls of radius r with elements of S as centers and every element of V \ S belongs
to exactly b balls of radius r with elements of S as centers. In other words, (r, a, b)-covering
code is such that for a vertex u,

#{Br(v) | u ∈ Br(v), v ∈ S} =

{

a if u ∈ S

b if u 6∈ S.

Such codes are also known as (r, a, b)-isotropic colourings [Axe03] or as perfect colour-
ings [Puz08].
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We can view an (r, a, b)-code as a particular colouring c with two colors, black and white,
where the black vertices are the elements of the code. Hence, the colouring c is such that
an r-ball with a black (respectively white) vertex as center contain exactly a (resp. b) black
vertices.

Example 4.32. The periodic colouring given in Figure 4.16(a) is a (2, 3, 2)-code of the
infinite grid. Since the colouring is periodic, it suffices to check for a finite number of vertices
that each balls of radius contain either 3 black vertices if the center is a black vertex, or
2 black vertices if the center is a white vertex. In this particular example, 15 well-chosen
vertices are enough. Similarly, the periodic colouring of Z2 given in Figure 4.16(b) is a
(3, 3, 4)-code.

Surprisingly, (r, a, b)-covering codes do not exist for every value of the parameters even in
the particular case of the infinite square grid. For instance, (r, 1, 3)-covering code does not
exist [Axe03].

The notion of (r, a, b)-codes generalizes the notion of domination and perfect codes in
graphs. Perfect codes were introduced in terms of graphs by Biggs [Big73]. An r-perfect
code of a graph G = (V,E) is a subset C ⊆ V with the property that each vertex is within
distance r of exactly one vertex of C. In other words, the balls of radius r with elements of
C as centers form a partition of V . Hence, an r-perfect code is an (r, 1, 1)-code. If r = 1,
then a 1-perfect code is a dominating set with no adjacent vertices. Figure 4.25 depicts two
examples of r-perfect codes of the Cartesian product of two paths P4.

r = 1 r = 2

Figure 4.25: The set of black vertices is an r-perfect code, i.e., (r, 1, 1)-code, of P4�P4.

Kratochv́ıl [Kra88] showed that the problem of finding an r-perfect code in graphs is
NP-complete. Moreover, this problem is still NP-complete in the particular case of bipartite
graphs with maximum degree three. For more information about perfect codes, see [CHLL97,
Chapter 11].

Perfect codes have also been studied in infinite graphs. For example, Golomb and Welsh
[GW68, GW70] considered the multidimensional rectangular grid Zd. They proved the exis-
tence of 1-perfect codes, i.e., (1, 1, 1)-codes, in Zd. Such codes can be considered as periodic
tilings of the grid Zn by balls of radius 1. Moreover, the authors conjectured that there do
not exist r-perfect codes with r > 1 in Zd [GW68, GW70].

The (r, a, b)-codes have already been studied in some graphs under the names of weighted
covering codes by Cohen et al. [CHLM95]. Their work corresponds to a study of these codes
in the Hamming metric. For a subset C of vertices, they attach weights to different layers of
the Hamming sphere and they consider weighted spheres centred at vertices of C. If several
such spheres intersect in a vertex, they define the density of each vertex as the sum of the
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weights of the corresponding layers. The set C is called a weighted covering if the density
at each vertex is at least one. When the density is exactly equal to one for all vertices,
then C is called a perfect weighted covering. If the radius is equal to 1, a (1, a, b)-code is
exactly a perfect weighted covering of radius one with weight

(

b−a+1
b , 1b

)

. For more details
see [CHLL97, Chapter 13].

While Cohen et al. [CHLM95] studied weighted codes in Hamming metric, Telle consid-
ered a particular case of these codes in graphs in general [Tel94]. For a subset C of vertices,
he defines the state of a vertex u ∈ C by

state(u) =

{

σi if u ∈ C and |N(u) ∩ C| = i
ρi if u 6∈ C and |N(u) ∩ C| = i.

Then many properties of vertex subsets can be defined by allowing only a specific set L of
states. For instance, the set C is a dominating set if the state ρ0 is not allowed. In this
setting, (1, a, b)-codes are equivalent to [σa−1, ρb]-dominating sets. Telle proved [Tel94] that
the following decidability problem was NP-complete: “Is it possible to decide whether a
graph has an [σa, ρb]-dominating set ?”. The problem is still NP-complete when restricted
to planar bipartite graphs of maximum degree three.

The particular case where the radius is 1 has been studied a lot. In the multidimensional
grid, which corresponds to the Lee metric with an infinite alphabet, (1, a, b)-codes were
studied by Dorbec et al. [DGHM09] and Gravier et al. [GMP99]. For instance, the existence of
(1, 2, 1)-codes1 in Zd is proved in both papers [DGHM09, GMP99]. In [DGHM09, Theorem 4],
Dorbec et al. present a method to construct (1, a, b)-codes in Zd. This method is based on a
one-dimensional pattern of finite length that is extended by translations to colour Zd. Hence,
the code obtained satisfies periodic properties.

Assume that 1 ≤ k ≤ n, 1 ≤ d and

A = {a1, a2, . . . , ak} ⊆ Zn (where ai 6= aj , when i 6= j

and w1, . . . , wd are (not necessarily distinct) elements of Zn. Consider the sums
ai + w and the differences aj − wj . If these 2kd elements take each value in A
exactly a times and each value in Zn \A exactly b times, then the set

C = {(x1, . . . , xd) ∈ Zd | x1w1 + · · ·+ xdwd ∈ A}

is an (1, a+ 1, b)-code of Zd.

Theorem 4.33. [DGHM09]

1The reader may notice a distinction of notation between this thesis and [DGHM09]. They write (a, b)-
codes for what we denote (1, a + 1, b)-code as they consider open neighbourhoods and we consider closed
neighbourhoods.
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Example 4.34 ([Dor07]). We present here an illustration of the method described in the
previous theorem [DGHM09]. For instance, consider n = 15 and the set A = {1, 2, 3} that
corresponds to the pattern

• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦,

and w1 = 0, w2 = 2, w3 = 4, w4 = 5, w5 = 7. Table 4.3 shows the existence of a (1, 5, 2)-code
C in Z6.

A • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
|N [u] ∩A| 2 3 2 1 0 0 0 0 0 0 0 0 0 0 1
w1 = 0 • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w1 = 0 • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
w2 = 2 ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w2 = −2 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
w3 = 4 ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w3 = −4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦
w4 = 5 ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

−w4 = −5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦
w5 = 7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦

−w5 = −7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦
|N(u) ∩ C| 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2

Table 4.3: Illustration of the Theorem 4.33 to construct a (1, 5, 2)-code of Z6.

In the two-dimensional grid, i.e., the usual infinite grid, Puzynina studied the periodicity
of (r, a, b)-codes. For r = 1, there exist non-periodic (r, a, b)-codes but, all of them can be
obtained from periodic ones [Puz04]. That is to say, if r, a, b are such that there exists an
(r, a, b)-code, then there exists a periodic colouring that is an (r, a, b)-code. Moreover when
r ≥ 2, the author proved that every (r, a, b)-code is periodic [Puz08].

For r ≥ 2, every (r, a, b)-code of Z2 is periodic.

Theorem 4.35. [Puz08]

When the difference between a and b is large enough, the precise type of the periodic
colouring is known.
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If a colouring is an (r, a, b)-code of Z2 with r ≥ 2 and |a− b| > 4, then it is one of
the following diagonal colourings 1–5:

1. q-periodic colouring where q ∈ {r, r+1} is odd and the monochromatic diag-
onals are parallel.

2. q-anti-periodic colouring where q ∈ {r, r + 1} is even.

3. q-periodic colouring where q ∈ {r, r + 1} is even and for all horizontal or
vertical interval I of length p the number of black vertices from the even
sublattice and from the odd sublattice is the same.

4. (2r+1)-periodic colouring and for all horizontal or vertical interval I of length
p the number of black vertices from the even sublattice and from the odd
sublattice is the same.

5. 2-periodic or 3-periodic colouring.

Theorem 4.36. [Axe03]

This theorem is used in Chapter 6 to obtain the precise values of a and b for any (r, a, b)-
code of Z2 with r ≥ 2 and |a− b| > 4.
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Chapter 5

Identifying codes in

vertex-transitive graphs

We consider the problem of computing identifying codes of graphs and its frac-
tional relaxation. The ratio between the size of optimal integer and fractional
solutions is between 1 and 2 ln(|V |)+1 where V is the set of vertices of the graph.
We focus on vertex-transitive graphs for which we can compute the exact frac-
tional solution. There are known examples of vertex-transitive graphs that reach
both bounds. We exhibit infinite families of vertex-transitive graphs with integer
and fractional identifying codes of order |V |α with α ∈ { 1

4 ,
1
3 ,

2
5}. These families

are generalized quadrangles (strongly regular graphs based on finite geometries).
They also provide examples for metric dimension of graphs. This chapter is based
on a joint work with my co-advisor Gravier, a postdoctoral fellow Parreau and
two specialists in generalized quadrangles, Professor Storme and one of his PhD
candidate Rottey.
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The problem of computing an identifying code of minimal size is NP-complete in gen-
eral [CHL03] but can be naturally expressed as an integer linear program. A possible way to
tackle this problem is to consider the fractional relaxation of the program. Naturally, one can
ask how good the fractional relaxation can be. We focus on vertex-transitive graphs since for
these graphs, we are able to compute the optimal size of a fractional identifying code. This
value depends only on three parameters of the graph: the number and degree of vertices and
the smallest size of the symmetric difference of two distinct closed neighbourhoods. More-
over, the optimal cardinality of an integer identifying code is at most at a logarithmic factor
(in the number of vertices |V |) of the fractional optimal value.

Identifying codes have already been studied in different classes of vertex-transitive graphs,
especially in cycles [BCHL04, GMS06, JL12, XTH08] and hypercubes [BHL00, EJLR08,
ELR08, HL02, KCL98]. In these examples, the order of the size of an optimal identifying
code seems to always match its fractional value. However, the smallest size of symmetric
differences of closed neighbourhoods is small compared to the number of vertices: either it is
constant (for cycles) or it has logarithmic order in the number of vertices (for hypercubes).
Therefore we focus in this chapter on strongly regular vertex-transitive graphs that are
graphs with the property that two adjacent (respectively non-adjacent) vertices always have
the same number of common neighbours. In particular, the size of symmetric differences can
only take two values and is of order at least

√

|V | if the graph is not a trivial strongly regular
graph.

Another interest of considering identifying codes in strongly regular graphs is that they
are strongly related to resolving sets (Corollary 4.30). In particular, the optimal size of
identifying codes and the metric dimension have the same order for strongly regular graphs.
Actually, resolving sets were introduced by Babai [Bab80] in order to improve the complexity
of the isomorphism problem for strongly regular graphs. He established an upper bound of
order

√

|V | log2(|V |) on the metric dimension of strongly regular graphs [Bab80, Bab81].
Later, Fijavž and Mohar exhibited a family of strongly regular graphs with logarithmic
metric dimension, namely Paley graphs [FM04]. Bailey and Cameron proved that the metric
dimension of some Kneser and Johnson graphs has order

√

|V | [BC11]. Values for small
strongly regular graphs have been computed [Bai13a, KCČ+08]. Recently, Bailey [Bai13b]
used resolving sets in strongly regular graphs to compute the metric dimension of some
distance-regular graphs (graphs for which there is an automorphism between any two pairs
of vertices at the same distance).

Paley graphs give an example of an infinite family of graphs for which the optimal value
of fractional identifying code is constant but the integer value is logarithmic, and so the
gap between the two is also logarithmic. We consider another family of strongly regular
graphs that have never been studied in the context of identifying codes nor resolving sets:
the adjacency graphs of generalized quadrangles. These graphs are constructed using finite
geometries. Constructing identifying codes can be seen as a way to break the inherent
symmetry of these graphs. We give constructions of identifying codes with size of optimal
order. This order is of the form |V |α with α ∈ { 1

4 ,
1
3 ,

2
5} and corresponds to the order of the

fractional value.

This chapter is based on a joint work [GPR+]. At the origin, with my co-advisor Gravier
and a post-doctoral fellow at the University of Liège Parreau, we looked at the fractional
relaxation of the identifying code problem and discuss the cases when the separation condition
or the domination condition prevails. A poster presentation at a PhD-day organized by the
Belgian Mathematical Society [GPV13] aroused the interest of Professor Storme from Gand
university. As specialists in generalized quadrangles, his doctoral student and himself joined
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us to study identifying codes in these graphs. The collaboration was fruitful as we found
constructions of identifying codes of optimal size in this setting.

This chapter is organized as follows. In Section 5.1, we exhibit the linear program for
identifying codes, compute the optimal value of the relaxation for vertex-transitive graphs
and deduce a general bound. In Section 5.2, we review known results for identifying codes in
vertex-transitive graphs and compare them to our general bound. Finally in Section 5.3, we
study strongly regular graphs and in particular adjacency graphs of generalized quadrangles.

5.1 Fractional relaxation

The problem of finding a minimal identifying code in a graph G can be expressed as a
linear program PG (Remark 4.26). Let us denote by P ∗

G the linear programming fractional
relaxation of PG where the integrality condition xu ∈ {0, 1} is replaced by a linear constraint
0 ≤ xu ≤ 1 for all vertices u ∈ V .

Minimize
∑

xu∈V

xu

such that
∑

w∈N [u]

xw ≥ 1 ∀u ∈ V (domination)

∑

w∈N [u]∆N [v]

xw ≥ 1 ∀u, v ∈ V, u 6= v (separation)

xu ∈ [0, 1] ∀u ∈ V

The optimal value of P ∗
G, denoted by γIDf (G), gives an estimation on γID(G) within a

logarithmic factor.

Let G = (V,E) be a twin-free graph. We have

γIDf (G) ≤ γID(G) ≤ γIDf (G)(1 + 2 ln |V |).

Proposition 5.1.

Proof. The first inequality is trivial since P ∗
G is a relaxation of PG. Recall from Remark 4.22,

that the identifying code problem in G = (V,E) is equivalent to a covering problem in the
hypergraph H = (V, E) with hyperedge set

E = {N [u] | u ∈ V } ∪ {N [u]∆N [v] | u 6= v ∈ V }.

The covering problem in H is to find a set of vertices of minimum size that intersects all the
hyperedges. The linear programming formulations of the two problems are the same. Using
the result of Lovász [Lov75] on the ratio of optimal integral and fractional covers, we have

γID(G) ≤ γIDf (G)(1 + ln r)

where r is the maximal degree of H, i.e., the maximal number of hyperedges a vertex is
belonging to. Let u ∈ V and k be its degree in G. Then u is in k+1 hyperedges of the form



148 Chapter 5. Identifying codes in vertex-transitive graphs

N [v] and in (|V | − k − 1)(k + 1) hyperedges of the form N [v]∆N [w]. Indeed, we must have
v ∈ N [u] and w /∈ N [u]. Hence the degree of u in H is (|V |−k)(k+1). The maximal value of

(|V |−k)(k+1) with 0 ≤ k ≤ |V |−1 is obtained for k = |V |−1
2 . Therefore, r ≤ (|V |+1)2

4 ≤ |V |2
for |V | 6= 0 which leads to the upper bound of the proposition.

In the case of vertex-transitive graphs, we can compute the exact value of γIDf .

Let G = (V,E) be a twin-free vertex-transitive graph. Let k denote the degree of G
and let d denote the smallest size of symmetric differences of closed neighbourhoods
N [u]∆N [v] among all the pairs of distinct vertices u, v of V . We have

γIDf (G) =
|V |

min(k + 1, d)
.

In particular
|V |

min(k + 1, d)
≤ γID(G) ≤ |V |(1 + 2 ln |V |)

min(k + 1, d)
.

Proposition 5.2.

Proof. Giving to each variable xu the value 1
min(k+1,d) leads to a feasible solution of P ∗

G,

hence

γIDf (G) ≤ |V |
min(k + 1, d)

.

Since G is a vertex-transitive graph, all the vertices play the same role. Consider the
finite set S of extreme optimal solutions (solutions that are vertices of the polytope defined
by P ∗

G). Any linear combination of elements of S, with the sum of coefficients equal to 1,
is still an optimal solution of P ∗

G. In particular, x = 1
|S|

∑

s∈S s is an optimal solution. We

claim that all the components of x are equal. Indeed, assume that xu 6= xv and let µ be an
automorphism sending u to v. Let s ∈ S, then µ(s) and µ−1(s), obtaining by permuting the
value inside s following the automorphism µ are still extreme optimal solutions. Hence S is
stable by µ and so µ(x) = x, a contradiction since xu 6= xv.

Remark 5.3. Let G = (V,E) be a vertex-transitive graph with degree k and let d denote
the smallest size of symmetric differences between closed neighbourhoods. If d < k+1, then
γIDf (G) = n

d from the previous proposition. In this case, we say that the separation condition

prevails. If k+1 < d, then γIDf (G) = n
k+1 and we say that the domination condition prevails.

5.2 Known results on transitive graphs

We review some known results on classes of transitive graphs. In particular, we discuss the
gap between γID and γIDf . Sometimes, not only identifying codes but also r-identifying codes
have been studied in these classes. Instead of using the closed neighbourhoods, that are the
balls of radius 1, one consider the balls of radius r to identify the vertices. It is equivalent to
consider r-identifying codes in a graph G or to consider identifying codes in Gr, the rth-power
of G, obtained by adding edges between each pair of vertices of G that are at distance at
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most r. In the following, we express the results in terms of identifying codes in the power
graph.

5.2.1 Cycles

We first consider cycles and powers of cycles. Let n, r ∈ N with n ≥ 5 and 1 ≤ r < n−1
2 .

Recall from Subsection 4.3.1 that the cycle Cn on n vertices has vertex set V = {0, 1, ..., n−1}
and two distinct vertices i and j are adjacent if |i − j| = 1 (modulo n). The graph Cr

n is
still vertex-transitive with vertex degree 2r. The smallest symmetric difference of closed
neighbourhoods has size 2. It is obtained via two consecutive vertices i and i + 1 whose
symmetric difference of closed neighbourhoods is the set {i− r, i+ r+1} (modulo n). Hence
the fractional identifying code value is γIDf (Cr

n) =
n
2 .

On the other hand, the study of integer identifying codes in power of cycles had taken
several years (see e.g. [BCHL04, GMS06, XTH08]) before being completed by Junnila and
Laihonen [JL12]. We have the following results. If n is even and at least 2r + 4, then

γID(Cr
n) =

n

2
= γIDf (Cr

n).

If n is odd and at least 2r + 3, then

n+ 1

2
≤ γID(Cr

n) ≤
n+ 1

2
+ r.

In particular, the difference between γID(Cr
n) and γIDf (Cr

n) is bounded by r . Hence the
ratio is converging to 1 when r is fixed and n is large.

When n = 2r + 2, Cr
n is a complete graph where a perfect matching is removed. See for

instance Figure 5.1. In this case, we have γID(Cr
n) = n − 1. Then

γID(Cr
n)

γID
f (Cr

n)
→ 2 when n is

large. Finally, if n = 2r + 3, γID(Cr
n) = ⌊ 2n

3 ⌋ and the ratio is converging to 4/3.

Figure 5.1: The set of black vertices is an identifying code of C3
8 of minimal size.

5.2.2 Hypercubes

Let q ≥ 3. Recall from Subsection 4.3.2, that each vertex of the hypercube Hq has degree q.
The smallest symmetric difference of closed neighbourhoods in Hq has size d = 2q− 2 and is
obtained via two adjacent vertices. Hence, by Proposition 5.2,

γIDf (Hq) =
2q

q + 1
.
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Computing the exact value of γID(Hq) seems difficult and only few exact values are
known. However, we have the following bounds (see [EJLR08, Theorem 4] for the upper
bound and [KCL98] for the lower bound)

q2q+1

q(q + 1) + 2
≤ γID(Hq) ≤

9

2
· 2q

q + 1
.

Hence the integer and the fractional identifying code values have the same order and the
ratio satisfies

2− 4

q(q + 1) + 2
≤ γID(Hq)

γIDf (Hq)
≤ 9

2
.

Let 1 < r < q. We now consider r-identifying codes or equivalently identifying codes in
Hr

q. The graph Hr
q is still vertex-transitive. The degree of the vertices is k =

∑r
i=1

(

q
i

)

. The

smallest symmetric difference of closed neighbourhoods has now size d = 2
(

q−1
r

)

and is still
done by two adjacent vertices of Hq. Thus, by Proposition 5.2,

γIDf (Hr
q) =

2q

min
(
∑r

i=0

(

q
i

)

, 2
(

q−1
r

)) .

Concerning the general behaviour of γID(Hr
q), we consider two cases: r is fixed or r is

linearly dependent of q. Assume first that r is fixed and q is large. The bounds given by
Karpovsky et al. [KCL98] can be translated as follows. There are two constants α and β
(depending on r) such that, for large q,

α
2q

qr
≤ γID(Hr

q) ≤ β
2q

qr
. (5.1)

Thus γID(Hr
q) and γ

ID
f (Hr

q) have the same order, that is 2q/qr.

Assume now that r = ⌊ρq⌋ for some constant ρ. Honkala and Lobstein [HL02] proved
that

lim
q→∞

log2 γ
ID(Hr

q)

q
= 1− h(ρ)

where h(x) = −x log2(x)− (1−x) log2(1−x) is the binary entropy function. This result can

be proved with Proposition 5.1. Indeed,
log2

∑r
i=0 (

q
i)

q and
log2 (

q
r)

q tend to h(ρ). Hence

lim
q→∞

log2 γ
ID
f (Hr

q)

q
= 1− h(ρ)

and

lim
q→∞

log2

(

γIDf (Hr
q)(1 + 2 ln 2q)

)

q
= 1− h(ρ).

But we do not know if γID(Hr
q) and γ

ID
f (Hr

q) have the same order in this case.

5.2.3 Product of graphs

One can easily obtain other vertex-transitive graphs by doing products of vertex-transitive
graphs such as cliques1. Identifying codes in the following products of graphs have been
recently considered.

1This was already the case for hypercubes which are Cartesian products of q cliques of size 2.
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Cartesian product of two cliques. Let 2 ≤ p ≤ q be integers. The Cartesian product
Kp�Kq of two cliques is a vertex-transitive graph with vertex degree k = p + q − 1. The
smallest symmetric difference of closed neighbourhoods has sized d = 2p− 2 and is obtained
via two adjacent vertices. By Proposition 5.2,

γIDf (Kp�Kq) =
pq

2p− 2
.

Identifying codes in Kp�Kq have been studied by Gravier et al. [GMS08] when the two
cliques are of the same size, and by Goddard and Wash [GW13] in the general case. When
q = p, Gravier et al. [GMS08] proved that γID(Kp�Kp) = ⌊ 3p

2 ⌋ and an identifying code of
Kp�Kp of minimal size is given by the set of vertices of a diagonal of the graph together
with half of the vertices of the other diagonal, as depicted in Figure 5.2. Goddard and
Wash [GW13] proved that

γID(Kp�Kq) =

{

q + ⌊p
2⌋ if q ≤ 3p

2

2q − p if q ≥ 3p
2 .

Therefore, the ratio between integer and fractional identifying codes values is

γID(Kp�Kq)

γIDf (Kp�Kq)
=

{

2 + p
q − 2

p − 1
q if q ≤ 3p

2

4− 2p
q − 4

p + 2
q if q ≥ 3p

2

In particular, it is bounded by a constant.

K3�K3 K4�K4

Figure 5.2: The set of black vertices is an identifying code of Kp�Kp of minimal size, with
p = 3 and p = 4.

Direct product of cliques Let 2 ≤ p ≤ q be integers. The direct product Kp × Kq of
two cliques is a vertex-transitive graph with vertex degree k = (p− 1)(q − 1). The smallest
symmetric difference of closed neighbourhoods has sized d = 2p and is obtained via two
vertices belonging to the same copy of Kq. By Proposition 5.2,

γIDf (Kp ×Kq) =

{

q
2 if p ≥ 4 or q > p

pq
(p−1)2+1 if p ≤ 3 and p = q.
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Rall and Wash [RW14] gave the exact size of optimal identifying codes in Kp × Kq.
Except the small values of p and q, there are two main cases. If p ≥ 3 and q ≥ 2p, then

γID(Kp ×Kq) = q− 1. If p ≥ 5 and q < 2p, then γID(Kp ×Kq) is either ⌊ 2(p+q)
3 ⌋ or ⌈ 2(p+q)

3 ⌉
depending on the value of p+q modulo 3. Therefore, the ratio between integer and fractional
identifying codes values is either 2− 2/q or 4/3(1 + p/q) and is again bounded.

Lexicographic product of graphs. Let G and H be two vertex-transitive graphs that
are not complete graphs. Then G[H ] is also vertex-transitive. If G (respectively H) has
vertex degree kG (resp. kH) and nG (resp. nH) vertices, then G[H ] has nGnH vertices and
vertex degree k = kGnH + kH . Moreover, the size of the smallest symmetric difference of
closed neighbourhoods of G[H ] and H are equal. Hence

γIDf (G[H ]) =
nGnH

dH

where dH is the smallest symmetric difference of closed neighbourhoods of H .
Assume that G does not have two vertices u and v such that N(u) = N(v). Feng et

al. [FXW12] proved that in this case

γID(G[H ]) = nGsH

where sH is the minimum size of a separating set of H . Hence we have

γID(G[H ])

γIDf (G[H ])
=
sHdH
nH

.

If H is such that kH + 1 ≥ dH , then γIDf (H) = nH

dH
. Since sH is either equal to γID(H) or

γID(H)− 1, the ratio between γID(G[H ]) and γIDf (G[H ]) is the same than the one for H . In
particular, if we have a ratio α for a graph H we can get graphs with arbitrary sizes and still
ratio α.

5.3 Strongly regular graphs

The bound of Proposition 5.2 is helpful when the symmetric differences are large (larger than
ln |V |). For this reason, we now focus on the family of strongly regular graphs for which the
smallest symmetric difference has, in most cases, size at least

√

|V | (see Proposition 4.18).
Recall from Subsection 4.3.3, that a strongly regular graph srg(n, k, λ, µ) is a k-regular graph
G on n vertices for which any pair of adjacent (respectively non-adjacent) vertices have
exactly λ (resp. µ) neighbours in common.

Strongly regular graphs have been used once for the problem of identifying codes by
Gravier et al. [GJLR14] to provide families of graphs for which all the subsets of a given
size are identifying codes. However, they did not study optimal identifying codes. On the
opposite and as mentioned in the introduction, resolving sets and metric dimension have been
studied in several contexts for strongly regular graphs. In particular, Babai [Bab80] gave an
upper bound on the size of the symmetric differences of open neighbourhood in strongly
regular graphs which lead to bounds on the metric dimension. Following these ideas, we
prove similar results for identifying codes.

We first compute the smallest size d of the symmetric differences of closed neighbourhoods
using λ and µ and then give a general upper bound on d.
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Let G be a strongly regular graph srg(n, k, λ, µ). Let u and v be two vertices of
G. If u is adjacent to v, then |N [u]∆N [v]| = 2(k − 1) − 2λ. Otherwise, we have
|N [u]∆N [v]| = 2(k + 1) − 2µ. Hence, the smallest symmetric difference of closed
neighbourhoods is

d = min(2(k − λ− 1), 2(k − µ+ 1)) = 2k − 2max(λ+ 1, µ− 1).

If G is vertex-transitive, we have

γIDf (G) =
n

min(k + 1, 2(k − λ− 1), 2(k − µ+ 1))
.

Proposition 5.4.

Proof. Let u and v be two adjacent vertices. There are k − λ neighbours of u that are not
neighbours of v. But v is counted in these vertices. Hence |N [u] \N [v]| = k − 1− λ and we
get the results. The computation for the non-adjacent case is similar.

Remark 5.5. Actually, it seems that almost all the strongly regular graphs are not-vertex
transitive, see for example [KÖ04]. However, all the strongly regular graphs we are consid-
ering in the following are in fact vertex-transitive.

From Proposition 5.4 and Proposition 5.2 together with the bounds obtained in Propo-
sition 4.18, we derive the following general bound for strongly regular graphs when they are
vertex-transitive.

Let G be a primitive strongly regular graph srg(n, k, λ, µ). If G is vertex-transitive,
we have

γID(G) ≤ n(1 + 2 lnn)√
n− 3

.

In particular γID(G) = O(
√
n lnn).

Corollary 5.6.

5.3.1 Known results on particular families

The only strongly regular graphs for which we know optimal identifying codes are Cartesian
and direct product of two cliques of the same size that we already mentioned in the previous
section. The Cartesian product Kp�Kp is a strongly regular graph srg(p2, 2p − 2, p − 2, 2)
whereas Kp×Kp (that is the complement of Kp�Kp) is a srg(p2, (p−1)2, (p−2)2, (p−2)(p−
1)). We obtain results for some other families by considering the previous work on metric
dimension.

Kneser and Johnson graphs (of diameter 2). Let 1 ≤ p ≤ m. The Johnson graph
J(m, p) is the graph whose vertices are the subsets of size p of a set of m elements and two
vertices are adjacent if the corresponding sets intersect in exactly p− 1 elements. Since the
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diameter of J(m, p) is min(p,m− p), the graph J(m, p) is a primitive strongly regular graph
if and only if p = 2 or p = m − 2. Note that the two corresponding graphs are isomorphic
and have parameters srg(

(

m
2

)

, 2(m− 2),m− 2, 4).
The Kneser graph K(m, p) is the graph whose vertices are the subsets of size p of a

set of m elements and two vertices are adjacent if the corresponding sets do not intersect.
The Kneser graph K(5, 2) corresponds to the well known Petersen graph (Figure 5.3). The
graph K(m, p) is a primitive strongly regular graph if and only if p = 2 and K(m, 2) is a
srg(

(

m
2

)

,
(

m−2
2

)

,
(

m−4
2

)

,
(

m−3
2

)

).

Figure 5.3: The Kneser graph K(5, 2), also known as the Petersen graph.

Bailey and Cameron [BC11] have computed the exact value of the metric dimension in
J(m, 2) and K(m, 2).

For m ≥ 6, the metric dimension of the Johnson graph J(m, 2) and the Kneser
graph K(m, 2) is 2

3 (m− i) + i where m ≡ i mod 3.

Proposition 5.7. [BC11, Corollary 3.33]

Using Corollary 4.30 we obtain a bound for identifying codes.

Let G be K(m, 2) or J(m, 2). We have

2m

3
≤ γID(G) ≤ 4(m+ 1)

3
.

In particular, γID(G) ∈ Θ(
√

|V |).

Corollary 5.8.

To compute the fractional identifying code number, one just has to compute the value of
the smallest symmetric difference using Proposition 5.4. ForK(m, 2) andm ≥ 6, µ−1 ≥ λ+1
and 2k − 2µ+ 2 = 2(m− 1) ≤ k + 1. Hence, for m ≥ 6,

γIDf (K(m, 2)) =
m(m− 1)

4(m− 1)
=
m

4
.
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For J(m, 2), λ+ 1 ≥ µ− 1 whenever m ≥ 4 and 2k − 2λ− 2 = 2(m− 3) = k. Hence

γIDf (J(m, 2)) =
m(m− 1)

4(m− 3)
=
m

4
+ 2.

In all cases, we have γIDf (G) ∈ Θ(
√

|V |) and the fractional and integer values have the same
order for these graphs.

Paley graphs. The Paley graph Pq is defined for a prime power q = 1 mod 4. Vertices
are the elements of the finite field Fq on q elements, and a is adjacent to b if a − b is a
square. They are strongly regular srg

(

q, 12 (q − 1), 14 (q − 5), 14 (q − 1)
)

. Paley graphs have the
particularity to have symmetric difference of closed neighbourhoods of order |V |, hence the
fractional identifying code number is bounded by a constant and the identifying code number
is of order log2 |V |.

Let q be a prime power satisfying q = 1 mod 4 and q ≥ 9. We have γIDf (Pq) =
2q
q−1

and thus
log2(q + 1) ≤ γID(Pq) ≤ (2 + o(1))(1 + 2 ln q).

In particular, γID(Pq) ∈ Θ(log2 |V |).

Proposition 5.9.

Proof. We first compute the value of d. We have

max(λ + 1, µ− 1) = q−1
4 .

Thus d = q−1
2 < k + 1 = q+1

2 and γIDf (Pq) =
2q
q−1 ≤ 2 + o(1).

The lower bound on γID(Pq) is the general lower bound of Proposition 4.23. For the
upper bound, we use the bound of Proposition 5.1 with γIDf (Pq).

Similar results were obtained for metric dimension.

Let q be a prime power satisfying q = 1 mod 4. Then the metric dimension of the
Paley graph Pq satisfies

log2 q ≤ β(Pq) ≤ 2 log2 q.

In particular, β(Pq) ∈ Θ(log2 |V |).

Proposition 5.10. Fijavž and Mohar [FM04]

5.4 Generalized quadrangles

The graphs obtained from generalized quadrangles form another family of strongly regular
graphs. This family provides examples of vertex-transitive graphs where the domination
condition prevails for the value of γIDf . Let s, t be positive integers. A generalized quadrangle
GQ(s, t) is an incidence structure, i.e., a set of points and lines, such that
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• there are s+ 1 points on each line,

• there are t+ 1 lines passing through each point,

• for a point P that does not lie on a line L, there is exactly one line passing through P
and intersecting L.

Such an incidence structure has (st + 1)(s + 1) points and (st + 1)(t + 1) lines. A trivial
example is the incidence structure given by a square grid of size s×s which is a GQ(s−1, 1).
The dual of a generalized quadrangle is obtained by reversing the role of the lines and the
points.

Adjacency graphs can be naturally obtained from generalized quadrangles: consider the
points as vertices and two vertices are adjacent if the corresponding points belong to a
common line. For example, a bipartite complete graph Kt,t is a GQ(1, t − 1). By abuse
of notation, GQ(s, t) will also denote the adjacency graph of a generalized quadrangle with
parameters s and t.

Observe that a GQ(s, t) is a strongly regular graph

srg((st+ 1)(s+ 1), s(t+ 1), s− 1, t+ 1).

Indeed, any vertex has degree k = s(t+ 1), any pair of adjacent vertices has s− 1 common
neighbours and any pair of non-adjacent vertices has t+ 1 common neighbours. From these
values, we can easily compute the smallest size of symmetric differences of closed neighbour-
hoods: d = 2s(t+1)−2max(s, t). We have d > k+1 if and only if GQ(s, t) is not trivial, i.e.,
s > 1 and t > 1. In other words, In that case, the following inequalities, for which Cameron
gave a short combinatorial proof [Cam75], hold.

For a GQ(s, t), if s > 1 and t > 1, then t ≤ s2 and dually s ≤ t2.

Lemma 5.11. Higman’s inequality [Hig71, Hig74]

From now on, we assume that s > 1 and t > 1. We obtain the following bounds on γIDf
for generalized quadrangles.

Let G be a vertex-transitive GQ(s, t) with s > 1 and t > 1. Let n denote the
number of vertices of the graph G. We have

2−5/4 · n1/4 ≤ γIDf (G) ≤ 2 · n2/5.

Proposition 5.12.

Proof. Let G be a vertex-transitive adjacency graph of a GQ(s, t) with s > 1 and t > 1.
Then n = (st+ 1)(s+ 1) is the number of vertices of G. We have by Proposition 5.2

γIDf (G) =
(st+ 1)(s+ 1)

s(t+ 1) + 1
=

s2t

st+ s+ 1
+ 1.
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As st < st+ s+ 1 < 2st, we obtain 1
2s < γIDf (G) < 2s.

Moreover, using the previous lemma, we get

s5/2 ≤ s2t < s2t+ st+ s+ 1 = n ≤ s4 + s3 + s+ 1 < 2 · s4.

So
(

1
2n

)1/4
< s < n2/5. It follows that

(

1
2

)5/4 · n1/4 < γIDf (G) < 2 · n2/5.

Constructions of GQ(s, t) are known only for (s, t) or (t, s) in the set

{(q, q), (q, q2), (q2, q3), (q − 1, q + 1)}

where q is a prime power. Many of them are based on finite geometries. Generalized quad-
rangles coming from finite classical polar spaces of rank 2 are given in Table 5.1. For more
information on these geometric structures, see e.g. [HT91]. It is well known that these polar
spaces give rise to generalized quadrangles and they are often referred to as the classical
generalized quadrangles [PT84].

Polar space Name (s, t)
Q+(3, q) Hyperbolic (q, 1) a grid
Q(4, q) Parabolic (q, q) dual of W (3, q)
Q−(5, q) Elliptic (q, q2) dual of H(3, q2)
H(3, q2) Hermitian (q2, q) dual of Q−(5, q)
H(4, q2) Hermitian (q2, q3)
W (3, q) Symplectic (q, q) dual of Q(4, q)

Table 5.1: The finite classical polar spaces of rank 2.

Example 5.13 (The grid GQ(q, 1)). Let q be a prime power. We set ourselves in the 3-
dimensional projective space PG(3, q) over the finite field Fq. The points of PG(3, q) can be
described using four coordinates (X0, X1, X2, X3) ∈ F4

q \ {(0, 0, 0, 0)} where two coordinates
that are proportional refer to the same point.

Let Q be the set of points of PG(3, q) that satisfy the equation X0X1 +X2X3 = 0 (Q is
a hyperbolic quadric). The incidence structure Q+(3, q) obtained from the (q+1)2 points of
Q and 2(q + 1) lines of Q (i.e., lines of PG(3, q) included in Q) is a generalized quadrangle
GQ(q, 1). Any point of this quadric is of the form (bd, ac, ad, bc) 6= (0, 0, 0, 0), a, b, c, d ∈ Fq.
There are two sets of lines on this quadric. Lines of the first type arise as the intersection of
the planes aX0 − bX2 = 0 and bX1 − aX3 = 0. The q + 1 lines of the second type are the
intersection of the planes cX0 − dX3 = 0 and dX1 − cX2 = 0.

It is easy to see that Q+(3, q) is isomorphic to a grid with q+1 points on each line. The
adjacency graph of the grid is the Cartesian product of two cliques of size q+1, Kq+1�Kq+1.
As mentioned in Section 5.2.3, the optimal cardinality of identifying codes in these graphs

is γID(Ks�Ks) = 3s
2 [GMS08] and the fractional optimal value is γIDf (Ks�Ks) = s2

2(s−1) .

Hence they have the same order.

There are other generalized quadrangles known, however they have the same parameters
as one given in Table 5.1 or they have parameters (q− 1, q+1) or (q+1, q− 1). We provide
identifying codes of optimal order for some cases.
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5.4.1 Identifying codes in T ∗
2 (O), a particular GQ(q − 1, q + 1)

Let q > 2 be a power of 2. There exists a GQ(q− 1, q+1) with an identifying code
of size 3q − 3 ∈ Θ(n1/3) where n is the number of vertices.

Proposition 5.14.

Before giving the proof, we will consider a particular construction of a GQ(q − 1, q + 1)
and give some structural properties.

Let q be a power of 2. We consider points of the 3-dimensional projective space PG(3, q)
over the finite field Fq of order q as in Example 5.13. Consider the hyperplaneH∞ of equation
X0 = 0 in PG(3, q) and the conic C of equation X1X3 −X2

2 = 0 in the hyperplane H∞. Any
line of H∞ intersects C in 0, 1 or 2 points. A line intersecting C in one point is tangent to
C. There is a special point, N(0, 0, 1, 0), called the nucleus of C, that lies on all tangents of
C. Then any other point of H∞ lies on exactly one tangent of C. The set O = C ∪ {N} is a
hyperconic. This set has the property that each line of H∞ intersects O in 0 or 2 points.

Consider now the following incidence structure T ∗
2 (O) = (P ,L), where the set P of points

is the set of affine points, i.e., points not in H∞ and the set L of lines is the set of the lines
through a point of O not lying in H∞. It is well-known in geometry that the incidence
structure T ∗

2 (O) is a generalized quadrangle with parameters q − 1 and q + 1 (see [PT84,
Theorem 3.1.3.]). Since this structure plays a important role in the sequel, we give a proof of
this fact in this manuscript so that non-familiar readers have the opportunity to understand
the incidence structure.

The incidence structure T ∗
2 (O) is a GQ(q − 1, q + 1).

Theorem 5.15. [PT84]

Proof. Each line of PG(3, q) contains q+1 points and if it does not lie inH∞, then it intersects
H∞ in exactly one point. Hence, each line of L has q points of P . Since O contains q + 2
points, there are q + 2 lines of L going through a point of P .

Let ℓ ∈ L and P ∈ P a point not in ℓ. First, we construct a line ℓ′ of L incident with
P and intersecting ℓ in Q ∈ P (Figure 5.4(a)). Let P∞ be the intersection point of ℓ and
H∞. By definition of the structure, P∞ ∈ O. Consider the plane π containing ℓ and P . It
intersects H∞ on a line ℓ∞ incident with P∞. The line ℓ∞ intersects O in 0 or 2 points.
Since P∞ already belongs to the intersection, there exists another point P ′

∞ of O that lies
on ℓ∞. Consider now the line ℓ′ incident with P ′

∞ and P . This line is an element of L and
must intersect ℓ in a point Q not lying in H∞, i.e., an element of P .

Secondly, we prove that the projection of P on ℓ is unique (Figure 5.4(b)). Assume there
is another line ℓ′′ of L incident with P and intersecting ℓ in another point Q′. Consider again
the hyperplane π containing P and ℓ. It contains also the lines ℓ′ and ℓ′′. So the intersection
ℓ′′ ∩ H∞ is a point P ′′

∞ lying on the line ℓ∞. Hence, the points P∞, P ′
∞ and P ′′

∞ are three
collinear points of O, which is a contradiction.

We will now construct an identifying code in T ∗
2 (O). In T ∗

2 (O), the neighbourhood of a
point P is composed of a cone PC (all the lines going through P and a point of C) and the
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Figure 5.4: There exists a unique projection of a point on a line in T ∗
2 (O).

line PN , where the points of H∞ are removed. The common neighbours of two adjacent
vertices are the q− 2 points lying on the unique line incident with these two vertices. In the
case of non-adjacent vertices, we first determine the intersection of their two cones.

Consider two distinct affine points P and Q such that PQ∩H∞ /∈ O. The intersec-
tion of the two cones PC and QC consists of the points of the conic C and of points
lying in a plane containing N and PQ ∩H∞.

Lemma 5.16.

Proof. Consider two distinct affine points P (1, a, b, c) and Q(1, α, β, γ) such that the inter-
section point PQ∩H∞ does not belong to O. Consider the cones PC and QC in PG(3, q). It
is clear that the conic C belongs to PC ∩QC. Consider now a point V (1, v1, v2, v3) not lying
in H∞. Then V belongs to PC if and only if

(0, a− v1, b− v2, c− v3) ∈ C
⇐⇒ (a− v1)(c− v3)− (b− v2)

2 = 0

⇐⇒ (ac− b2)− cv1 − av3 + (v1v3 − v22) = 0.

A similar computation holds for V ∈ QC. Hence V ∈ PC ∩QC implies that

(ac− b2)− (αγ − β2)− (c− γ)v1 − (a− α)v3 = 0.

So V lies in the plane π of equation ((ac− b2)− (αγ − β2))X0 − (c− γ)X1 − (a−α)X3 = 0.
Consider the intersection of H∞ and π. It is the line ℓ satisfying the equations X0 = 0 and
−(c − γ)X1 − (a − α)X3 = 0. Clearly, the line ℓ contains the nucleus N(0, 0, 1, 0) and also
the point PQ ∩H∞ = (0, a− α, b− β, c− γ).

Remark 5.17. In the previous statement, the intersection points lying in a plane containing
N and PQ ∩ H∞ form actually a conic C′. Since the two quadratic cones intersect in an
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algebraic curve of degree 4 which already contains the conic C, the remaining curve Γ of degree
2 is either a conic C′, either a line with multiplicity 2 or two lines. The last two cases are in
contradiction with the fact that P and Q are two distinct points with PQ∩H∞ /∈ C ∪ {N}.
So it follows that Γ = C′.

Consider two distinct non-adjacent vertices P and Q of T ∗
2 (O). Their common

neighbours are q points lying in a plane containing N and PQ ∩ H∞, and two
points on the lines PN and QN .

Corollary 5.18.

Proof. Let P and Q be two distinct non-adjacent vertices of T ∗
2 (O). From the structure of

the GQ(q − 1, q + 1), P and Q have q + 2 common neighbours. Consider the lines PN and
QN . They intersect only in N . Since P (respectively Q) has a unique projection P ′ on QN
(resp. Q′ on PN), P ′ and Q′ are two common neighbours. The q other common neighbours
come from the intersection of the two cones PC and QC. Hence, from the previous lemma,
they lie on a plane containing N and PQ ∩H∞.

The points of three lines of T ∗
2 (O) containing N and spanning PG(3, q) form an

identifying code of T ∗
2 (O).

Theorem 5.19.

Proof. Consider three lines ℓ1, ℓ2, ℓ3 of T ∗
2 (O) containing N and spanning PG(3, q). The

points of these lines form a dominating set since any point is either on one of these lines or
has a unique projection on each line ℓi. As each point has a unique projection on each line
ℓi, it is clear that two points on these lines are always separated. Similarly, a point incident
with a line ℓi is always separated from a point not incident with ℓ1, ℓ2 or ℓ3.

Consider now two points S1 and S2 that do not lie on the lines ℓi. Assume that these
points are not separated. In other words, assume that Q1 ∈ ℓ1, Q2 ∈ ℓ2 and Q3 ∈ ℓ3 are
common neighbours of S1 and S2. If S1 and S2 are adjacent, then their common neighbours
lie on the same line S1S2. Hence Q1, Q2 and Q3 are collinear, a contradiction since ℓ1, ℓ2, ℓ3
span PG(3, q).

If S1 and S2 are not adjacent, then either Q1, Q2, Q3 all lie in the plane containing the
nucleus N and S1S2 ∩ H∞ (this plane is uniquely defined by the previous corollary), or at
least one of them lies in the plane containing S1, S2 and N . In the first case, the three points
Q1, Q2, Q3 are all in the same plane containing N . Hence, ℓ1, ℓ2, ℓ3 are coplanar which is a
contradiction. In the second case, suppose that Q1 lies in the plane containing S1, S2 and
N . It follows that Q1 is incident with the line S1N or S2N . It implies that either S1 ∈ ℓ1 or
S2 ∈ ℓ1, which is a contradiction.

Therefore the set of points on ℓ1, ℓ2, ℓ3 is an identifying code of T ∗
2 (O).

Proof of Proposition 5.14. Let ℓ1, ℓ2 and ℓ3 be three lines incident with N and spanning
PG(3, q). Consider the set C consisting of the points of T ∗

2 (O) on ℓ1, ℓ2, ℓ3. By Theorem 5.19,
this set is an identifying code of size 3q. Let Q1 be a point on ℓ1 and Q2, Q3 be its projections
on respectively ℓ2 and ℓ3. The set C \ {Q1, Q2, Q3} is still a dominating set. Indeed, a point
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P that does not lie on the lines ℓi can not have Q1, Q2 and Q3 as neighbours. Otherwise, Q2

would have two projections on the line Q1P , namely Q1 and P .
Moreover, we have a one-to-one correspondence between the sets (N [P ]∩C)\{Q1, Q2, Q3}

and N [P ]∩C since we can easily determine which vertices are eventually missing in the first
sets. Hence, C \ {Q1, Q2, Q3} is an identifying code of T ∗

2 (O) of size 3q − 3.

The next proposition gives lower bounds on the size of an identifying code in any adjacency
graph of a GQ(q− 1, q+1). In particular, our previous construction is optimal for q = 4 and
close to a constant for the other cases.

Le q be a power of 2. Any identifying code of a GQ(q − 1, q + 1) has size at least
3q − 7. Moreover, it has size at least 8 = 3q − 4 if q = 4, 19 = 3q − 5 if q = 8,
42 = 3q − 6 if q = 16 and 90 = 3q − 6 if q = 32.

Proposition 5.20.

Proof. To prove the lower bound on γID(G) for an adjacency graph G of a GQ(q− 1, q+1),
we use Proposition 4.25. Any identifying code C of a G, with |C| < q2 + q − 2 satisfies the
inequality

q3 ≤ |C|2
6

+
(2(q2 + q − 2) + 5)|C|

6
.

Hence, |C|2 + (2q2 + 2q + 1)|C| − 6q3 ≥ 0. If there exists an identifying code of size 3q − 8,
then the right-hand side of the inequality is equal to

(3q − 8)2 + (2q2 + 2q + 1)(3q − 8)− 6q3 = −q2 − 61q + 56

which is negative for all q ≥ 32. This is a contradiction. Therefore, any identifying code of a
GQ(q− 1, q+1) has size at least 3q− 7. For small values of q, we can obtain a better bound
using the same inequality. Since the expression (3q − c)2 + (2q2 + 2q + 1)(3q − c) − 6q3 is
negative for (q, c) ∈ {(4, 5), (8, 6), (16, 7), (32, 7)}, any identifying code of a GQ(q − 1, q + 1)
has size at least



















8 = 3q − 4 if q = 4

19 = 3q − 5 if q = 8

42 = 3q − 6 if q = 16

90 = 3q − 6 if q = 32.

We can slightly improve the bound for q = 4, that is to say for generalized quadrangles
GQ(3, 5). Recall that the adjacency graph of a GQ(3, 5) has 64 vertices, each vertex be-
longs to 6 lines of the generalized quadrangle and each line is incident with 4 vertices. The
adjacency of a GQ(3, 5) is depicted in Figure 5.5.

Any identifying code of a GQ(3, 5) is of size at least 9.

Proposition 5.21.
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Figure 5.5: Adjacency graph of a GQ(3, 5).

Proof. We use the same discharging method as in Lemma 4.25. Assume that there exists an
identifying code C of size 8 of a GQ(3, 5). At the beginning each vertex receives a charge 1.
Then each vertex v gives the charge 1/(N [v] ∩C) to each vertex of N [v] ∩ C. The aim is to
compute the maximal charge a code vertex can get from its neighbours. Then we prove that
the sum of all charges (after discharging) is strictly smaller than 64, which is a contradiction.

Let c ∈ C be a code vertex. Let n be the number of code vertices in N(c), i.e.,
n = |N(c) ∩ C|. In all cases, c gives itself the charge 1/(n + 1). Consider a line ℓ inci-
dent with c and denote by v1, v2, v3 the other vertices of ℓ. Let x be the number of code
vertices distinct from c in ℓ. We have 0 ≤ x ≤ min(3, n) since x = #{vi ∈ C | i = 1, 2, 3}. If
c′ ∈ C is a code vertex not adjacent to c, it has a unique projection on ℓ, which is distinct
from c. Hence the 7 − n vertices of C \N [c] can be partitioned in three parts: one for each
vertex vi of ℓ \ {c}. Let ni denote |(N(vi) \ ℓ) ∩ C| for i = 1, 2, 3. We have

n1 + n2 + n3 = 7− n.

The vertex c will receive from the vertices vi the charge 1/(ni + 1 + x). So c receives from
the vertices (distinct from c) of line ℓ a total charge of

f(n, x, n1, n2) =
1

n1 + 1 + x
+

1

n2 + 1 + x
+

1

7− n− n1 − n2 + 1 + x
.

We now turn our attention to the possible values of (n, x, n1, n2). We have 0 ≤ n < 6,
otherwise two of the vertices v1, v2, v3 of a given line ℓ incident with c will not be separated.
Moreover, 0 ≤ x ≤ min(3, n) and n3 = 7 − n − n1 − n2 ≥ 0. Let ℓ0, . . . , ℓ5 be the six lines

incident with c. For each value of n, we consider the partitions (n
(i)
1 , n

(i)
2 , n

(i)
3 ) of the lines ℓi

in order to compute the maximal charge of c:

1

n+ 1
+

5
∑

i=0

f(n, x(i), n
(i)
1 , n

(i)
2 ).
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If n = 0, then ni 6= 0 for any i = 1, 2, 3 since n = 0 = ni implies that c and vi are not
separated. So the possible partitions, up to permutations of the values n1, n2, n3, are given
in the following table

(n1, n2, n3) (1, 1, 5) (1, 2, 4) (1, 3, 3) (2, 2, 3)
f(0, 0, n1, n2) 1.16667 1.03333 1 0.916667

We can use at most three times the partition (1, 1, 5). Indeed, at most seven vertices have c
and a unique other code vertex in their neighbourhood. The best choice of the partitions is
three lines with partition (1, 1, 5), giving charge f(0, 0, 1, 1) = 1 + 1/6 and three lines with
partition (2, 2, 3) giving charge f(0, 0, 2, 2) = 2/3 + 1/4. In this precise case, c will receive
1 + 3 + 3/6 + 2 + 3/4 = 7.25 < 8.

If n = 1, the possible partitions, up to permutations are given by

(n1, n2, n3) (0, 1, 5) (0, 2, 4) (0, 3, 3) (1, 1, 4) (1, 2, 3) (2, 2, 2)
f(1, 0, n1, n2) 1.66667 1.53333 1.5 1.2 1.08333 1
f(1, 1, n1, n2) 0.97619 0.916667 0.9 0.833333 0.783333 0.75

Since n = 1, there is exactly one line among ℓ0, . . . , ℓ5 that has one code vertex (i.e., with
x = 1). This line cannot have a partition (0, 1, 5) (otherwise c and v1 are not separated). So
this line will give charge at most f(1, 1, 0, 1) = 41/42. At most one line without code vertex
(i.e., x = 0) has a partition (0, 1, 5) and gives a charge of at most f(1, 0, 0, 1) = 5/3. The
other four lines without code vertex give a charge at most f(1, 0, 1, 1) = 6/5 that corresponds
to a partition (1, 1, 4). Finally, c gets a charge at most 1/2+41/42+5/3+4 ·6/5 = 7.94 < 8.

If n = 2, we have the following partitions and values of f(2, x, n1, n2)

(n1, n2, n3) (0, 1, 4) (0, 2, 3) (1, 1, 3) (1, 2, 3)
f(2, 0, n1, n2) 1.7 1.58333 1.25 1.16667
f(2, 1, n1, n2) 1 0.95 0.866667 0.833333
f(2, 2, n1, n2) 0.72619 0.7 0.666667 0.65

Either the two code neighbours of c belong to different lines or belong to the same line. In
the first case, the best choice of partitions for the two lines with a code vertex, neighbour of
c, is (0, 1, 4). So the lines give each a charge at most f(2, 1, 0, 1) = 1.

Note that for all lines ℓj with x = 0, there is at most one vertex v
(j)
i with n

(j)
i = 0

(otherwise some vertices will not be separated). So among the four lines without a code
vertex except for c (i.e., with x = 0), at most one line has partition (0, 1, 4) and the best
choice of partitions for the other three lines is (1, 1, 3). Hence, these four lines give together
a charge at most f(2, 0, 0, 1) + 3f(2, 0, 1, 1) = 17/10 + 3 · 5/4. So c gets a charge at most
7.78333 < 8 in this case.

In the second case, the two code neighbours of c belong to the same line. This line cannot
have a partition (0, 1, 4) (otherwise, c and v1 are not separated). So this line will give charge
at most f(2, 2, 1, 1) = 2/3, corresponding to a partition (1, 1, 3). Then the other five lines
can give charge at most f(2, 0, 0, 1) + 4f(2, 0, 1, 1) = 17/10 + 4 · 5/4. So c receives a charge
at most 7.7 < 8.

If n = 3, the possible partitions and values of of f(3, x, n1, n2) are given in the following
table

(n1, n2, n3) (0, 1, 3) (0, 2, 2) (1, 1, 2)
f(3, 0, n1, n2) 1.75 1.66667 1.33333
f(3, 1, n1, n2) 1.03333 1 0.916667
f(3, 2, n1, n2) 0.75 0.733333 0.7
f(3, 2, n1, n2) 0.592857 0.583333 0.566667
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If all three code neighbours belong to the same line, say ℓ0, then the best choice of
partitions is (1, 1, 2) for ℓ0, once (0, 1, 3) and three times (1, 1, 2) for the other lines without
a code vertex except of c. So c can get a charge at most

1/4 + f(3, 3, 1, 1) + f(3, 0, 0, 1) + 4f(3, 0, 1, 1) = 7.9 < 8.

If two code neighbours belong to the same line, say ℓ0, then the best choice of partitions
is (0, 1, 3) for ℓ0, (0, 1, 3) for the line with one code vertex except of c, once (0, 1, 3) and three
times (1, 1, 2) for the other lines without a code vertex except of c. So c receives a charge at
most 1/4 + f(3, 2, 0, 1) + f(3, 1, 0, 1) + f(3, 0, 0, 1) + 3f(3, 0, 1, 1) = 7.78333 < 8.

Finally, if the three code neighbours belong to three distinct lines, then the best choice
of partitions is (0, 1, 3) for the three lines with a code vertex distinct from c, once (0, 1, 3)
and twice (1, 1, 2) for the other lines. So c gets a charge at most

1/4 + 3f(3, 1, 0, 1) + f(3, 0, 0, 1) + 2f(3, 0, 1, 1) = 7.76667 < 8.

It is not possible to have n = 4. Indeed, if it is the case, at least two lines, say ℓ0 and
ℓ1 do not have any code vertex except c. Then at most one vertex on ℓ0 or ℓ1 has only c in
its neighbourhood. If this vertex is on ℓ1, it means that ℓ0 has the partition (1, 1, 1). But
then, ℓ1 has the partition (0, 1, 2) and the vertex having only one extra code vertex in its
neighbourhood is not separated from one of the vertices of ℓ0, which is a contradiction.

If n = 5, then there are two code vertices in C \N [c]. It is impossible to have two lines
ℓ0 and ℓ1 incident with c that have no other code vertices. Indeed, among the six vertices of
ℓ0 and ℓ1, two will have the same code vertices in their neighbourhood, which is impossible.
So there is exactly one line without another code vertex and five lines with another code
vertex. The only partition possible is (0, 1, 1) up to permutation. So c gets a charge at most
1/6 + f(5, 0, 0, 1) + 5f(5, 1, 0, 1) = 8.

Note that at least one vertex of C do not have k = 5. If c has k = 5, then its five
neighbours in C are on distinct lines and they all have at most k = 3 vertices in their
neighbourhood.

In conclusion, after discharging, the sum of all charges is strictly less than 64, the number
of vertices of the GQ(3, 5). This is a contradiction.

For an adjacency graph G of a GQ(3, 5), we have

γID(G) = 9.

Corollary 5.22.

We thank Nathann Cohen for helping us with implementations in Sage. Thanks to him,
we checked by brute force that the optimal size of identifying codes in an adjacency graph
of a GQ(3, 5) is 9. Moreover, Figure 5.5 depicting an adjacency graph of a GQ(3, 5) was
produced through these implementations.
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5.4.2 Identifying codes in a parabolic quadric which is a GQ(q, q)

Let q be a prime power. There exists a GQ(q, q) with an identifying code of size
5q − 2 ∈ Θ(n1/3) where n is the number of vertices.

Proposition 5.23.

Before giving the proof, we will consider a particular construction of a GQ(q, q) and give
some structural properties.

Let q be a prime power. Let Q be the set of points of PG(4, q) that satisfy the equation
X2

0 +X1X2 +X3X4 = 0 (Q is a parabolic quadric).

The incidence structure Q(4, q) obtained from the points of Q and lines of Q (i.e.,
lines of PG(4, q) included in Q) is a generalized quadrangle GQ(q, q). Moreover,
the closed neighbourhood of a point A of Q(4, q) is exactly the intersection between
a hyperplane πA (the tangent hyperplane) and Q.

Lemma 5.24. [HT91, PT84]

Let A and B be two non-adjacent points of Q. The common neighbours of A and
B are coplanar.

Lemma 5.25.

Proof. Let πA (respectively πB) be the hyperplane containing all the neighbours of A (resp.
B). Since A and B are non-adjacent, πA and πB are two distinct hyperplanes (of dimension
3). The common neighbours of A and B are all located in the intersection of πA and πB
which is a plane.

Proof of Proposition 5.23. We will construct an identifying code for Q(4, q), which is, by
Lemma 5.24, a GQ(q, q). Consider a hyperplane π = PG(3, q) intersecting Q(4, q) in a
hyperbolic quadric Q+(3, q) (for example the hyperplane X0 = 0). The hyperbolic quadric
is isomorphic to a grid Kq+1�Kq+1.

Consider three lines ℓ0, ℓ1, ℓ2 of Q+(3, q) that are pairwise not intersecting. Consider two
distinct points P1, P2 ∈ ℓ2 and take lines M1 and M2 through P1 and P2 respectively, both
not contained in the Q+(3, q) and hence not lying in the 3-space π.

The set of 3(q + 1) + 2q = 5q + 3 points S = ℓ0 ∪ ℓ1 ∪ ℓ2 ∪M1 ∪M2 is an identifying
code. Since it contains a whole line, it is a dominating set. A point A on a line N1 of S is
clearly separated from all the points that are not on N1 since it is adjacent to all the points
of N1. The point A is also separated from all the other points of N1 since they have different
projection on any line N2 of S not intersecting N1. Hence all the points of S are separated
from all the other points.

Consider now a point of Q+(3, q)\S. It has exactly three neighbours on ℓ0, ℓ1, ℓ2 (that are
collinear). Two points of Q+(3, q)\S with the same projections on ℓ0, ℓ1, ℓ2 are necessarily
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collinear. Hence they have different neighbours on M1 (if the projection on ℓ2 is not P1) or
on M2 (otherwise). Hence any point of Q+(3, q)\S has a unique set of neighbours.

A point A not in S has four or five neighbours in ℓ0 ∪ ℓ1 ∪ ℓ2 ∪M1 ∪M2. Since A does
not lie in Q+(3, q), the three points on ℓ0, ℓ1 and ℓ2 are not collinear, hence they span a
plane, that is contained in π. The only points of M1 and M2 that could be contained in
this plane are the intersection of M1 and M2 with π which is exactly the points P1 and P2.
Since P1 and P2 are both in ℓ2 they cannot be both in the neighbourhood of A. Finally, the
neighbours of A in S are not coplanar. Using Lemma 5.25, A is separated from all the other
vertices.

To conclude the proof, note that as before we can remove a point on each line of S and
still have an identifying code (remove a point on ℓ0, which does not have P1 or P2 as a
neighbour, and remove its 4 distinct projections on the other lines).

Next proposition gives a lower bound on the size of any identifying code of a GQ(q, q).
In particular, the order of our previous construction is optimal. The proof is similar to the
proof of Proposition 5.20.

Let q be a prime power. Any identifying code of a GQ(q, q) has size at least 3q− 4.

Proposition 5.26.

5.4.3 Identifying codes in an elliptic quadric which is a GQ(q, q2)

Let q be a prime power. There exists a GQ(q, q2) with an identifying code of size
5q ∈ Θ(n1/4) where n is the number of vertices.

Proposition 5.27.

Before giving the proof, we will consider a particular construction of a GQ(q, q2) and give
some structural properties.

Let q be a prime power. Let Q be the set of points of PG(5, q) that satisfy the equation
f(X0, X1)+X2X3+X4X5 = 0 where f(X0, X1) = dX2

0+X0X1+X
2
1 , d ∈ Fq, is an irreducible

binary quadratic form over Fq (Q is an elliptic quadric).

The incidence structure Q−(5, q) obtained from the (q3 +1)(q+1) points of Q and
the (q3 +1)(q2 +1) lines of Q (i.e., lines of PG(5, q) included in Q) is a generalized
quadrangle GQ(q, q2). Moreover, the closed neighbourhood of a point A of Q−(5, q)
is exactly the intersection between a hyperplane πA (the tangent hyperplane of A)
and Q.

Lemma 5.28. [HT91, PT84]
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Let A and B be two non-adjacent points of Q. The common neighbours of A and
B lie in a 3-dimensional space.

Lemma 5.29.

Proof. Let πA (respectively πB) be the hyperplane containing all the neighbours of A (resp.
B). Since A and B are non-adjacent, πA and πB are two distinct hyperplanes (of dimension
4). The common neighbours of A and B are all located in the intersection of πA and πB
which is a 3-dimensional space.

Proof of Proposition 5.27. We construct an identifying code for Q−(5, q) which is a general-
ized quadrangle GQ(q, q2). Consider a line ℓ0 of Q−(5, q), take two distinct 3-spaces π1 and
π2 of PG(5, q) intersecting each other only in ℓ0 such that πi ∩ Q−(5, q) = Q+(3, q). Take
two lines ℓ1, ℓ2 in π1 ∩ Q−(5, q) such that ℓ0, ℓ1 and ℓ2 are pairwise non-intersecting. Using
the geometry, one can always consider two lines ℓ3, ℓ4 in π2 ∩ Q−(5, q) such that ℓ0, ℓ3 and
ℓ4 are pairwise non-intersecting.

We will prove that the set of 5(q+1) = 5q+5 points of S = {ℓi}i=0,...,4 is an identifying
code. Since S contains a whole line, the set S is a dominating set.

A point A on a line N1 of S is clearly separated from all the points that are not on N1

since it is adjacent to all the points of N1. The point A is also separated from all the other
points of N1 since they have different projections on any line N2 of S not intersecting N1.
Hence all the points of S are separated from all the other points.

Any point of (π1 ∩ Q−(5, q))\S has exactly three neighbours on ℓ0, ℓ1, ℓ2 (and these
neighbours are collinear). Moreover, two points of (π1∩Q−(5, q))\S with the same projection
on ℓ0, ℓ1, ℓ2 are necessarily collinear. Hence, they have different neighbours on ℓ3. It follows
that all the points of (π1∩Q−(5, q))\S are separated from all the other points. Equivalently,
also all the points of (π2 ∩Q−(5, q))\S are separated from all the other points.

A point P ∈ Q−(5, q) not in π1 ∪ π2 has five neighbours in S. Since P does not lie in π1,
the three points on ℓ0, ℓ1 and ℓ2 are not collinear, hence they span a plane of π1, containing
one point of ℓ0. Since P does not lie in π2, the three points on ℓ0, ℓ3 and ℓ4 are not collinear,
hence they span a plane of π2, containing one point of ℓ0. Now it is clear that the five
neighbours of P span a 4-space. Using Lemma 5.29 it follows that the point P is separated
by S to all other points.

To conclude the proof, note that as before we can remove a point on each line of S and
still have an identifying code (remove a point on ℓ0 and remove its 4 distinct projections on
the lines ℓ1, ℓ2, ℓ3, ℓ4).

The next proposition gives a lower bound on the size of any identifying code of a GQ(q, q2).
In particular, the order of our previous construction is optimal. The proof is similar to the
proof of Proposition 5.20.

Let q be a prime power. Any identifying code of a GQ(q, q2) has size at least 3q+2.

Proposition 5.30.
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5.4.4 Identifying codes in a hermitian variety which is a GQ(q2, q)

Let q be a prime power. There exists a GQ(q2, q) with an identifying code of size
5q2 − 2 ∈ Θ(n2/5) where n is the number of vertices.

Proposition 5.31.

Before giving the proof, we will consider a particular construction of a GQ(q2, q) and give
some structural properties.

Let q be a prime power. Let H be the set of points of PG(3, q2) that satisfy the equation
Xq+1

0 +Xq+1
1 +Xq+1

2 +Xq+1
3 = 0 (H is a Hermitian variety).

The incidence structure H(3, q2) obtained from the (q3+1)(q2+1) points of H and
the (q3 +1)(q+1) lines of H (i.e., lines of PG(3, q2) included in H) is a generalized
quadrangle GQ(q2, q). Moreover, the closed neighbourhood of a point A of H(3, q2)
is exactly the intersection between a plane πA (the tangent hyperplane of A) and
H .

Lemma 5.32. [HT91, PT84]

It is well known that the dual of H(3, q2) is Q−(5, q), see [PT84, 3.2.3].

Let A and B be two non-adjacent points of H . The common neighbours of A and
B lie on a line.

Lemma 5.33.

Proof. Let πA (respectively πB) be the hyperplane containing all the neighbours of A (resp.
B). Since A and B are non-adjacent, πA and πB are two distinct planes. The common
neighbours of A and B are all located in the intersection of πA and πB which is a line.

Proof of Proposition 5.31. We construct an identifying code for H(3, q2) which is a general-
ized quadrangle GQ(q2, q).

Consider three disjoint lines ℓ0, ℓ1, ℓ2, two distinct points P1, P2 ∈ ℓ0 and two lines ℓ′1 and
ℓ′2 containing P1 and P2 respectively, and not intersecting ℓ1 or ℓ2. The set

S = ℓ0 ∪ ℓ1 ∪ ℓ2 ∪ ℓ′1 ∪ ℓ′2

of |S| = 5q2 + 3 points will be an identifying code. Since S contains a whole line, the set S
is a dominating set.

A point A on a line N1 of S is clearly separated from all the points that are not on N1

since it is adjacent to all the points of N1. The point A is also separated from all the other
points of N1 since they have different projections on any line N2 of S not intersecting N1.
Hence all the points of S are separated from all the other points.



5.5. Conclusion and Perspectives 169

If two points R and Q have the same neighbourhood on {ℓ0, ℓ1, ℓ2}, then this neighbour-
hood consists of collinear points by Lemma 5.33. If the line containing these points also
contains P1, then the projections of R and Q on the line ℓ′2 are different. If the line would
contain P2, then the projections of R and Q on the line ℓ′1 are different. Hence, S is a
separating set.

To conclude the proof, note that as before we can remove a point on each line of S and
still have an identifying code (remove a point on ℓ1, that is not a neighbour of P1 nor of P2,
and remove its 4 distinct projections on the lines ℓ0, ℓ2, ℓ

′
1, ℓ

′
2).

The next proposition gives a lower bound on the size of any identifying code of a GQ(q2, q).
In particular, the order of our previous construction is optimal. The proof is similar to the
proof of Proposition 5.20.

Let q be a prime power. Any identifying code of a GQ(q2, q) has size at least 2q2−2.

Proposition 5.34.

5.5 Conclusion and Perspectives

We provide identifying codes for several vertex-transitive families of graphs which have size
of the same order as the fractional value. Since the considered graphs have diameter 2,
our results can be extended to locating-dominating sets and to metric dimension, providing
constructions of optimal order for such sets in new families of strongly regular graphs.

Paley graphs are an example of a family of graphs for which the optimal order for the size
of identifying codes is at a logarithmic factor of the fractional value. However, the fractional
value is bounded by a constant. It would be interesting to exhibit a family of graphs for
which the fractional value is not constant and the integer value has not the same order.

A last natural question arising from this work is to ask whether there exists a graph G (or
a family of graphs) where the quotient γID(G)/γIDf (G) is neither constant nor logarithmic.
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Chapter 6

Constant 2-labellings and an

application to (r, a, b)-covering
codes

We present in this chapter a joint work with my co-advisor Gravier. We introduce
the concept of constant 2-labelling of a weighted graph and show how it can
be used to obtain perfect weighted coverings. Roughly speaking, a constant 2-
labelling of a weighted graph is a 2-colouring of its vertex set which preserves
the sum of the weights of black vertices under some automorphisms. We study
this problem on four types of weighted cycles. Our results on cycles allow us to
determine (r, a, b)-codes in Z2 whenever |a− b| > 4, r ≥ 2 and we give the precise
values of a and b. This is a refinement of Axenovich’s theorem proved in 2003.
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Constant 2-labellings are particular 2-colourings of weighted graphs. For every composi-
tion of the colouring with an automorphism of a given group, the sum of the weights of the
black vertices must be equal to a constant that depends on the colour of a given particular
vertex.

The motivation about introducing constant 2-labellings, that are particular 2-colourings,
comes from covering problems in graphs. These coverings are coverings with balls of constant
radius satisfying special multiplicity condition. Recall from Definition 4.31, that for positive
integers r, a, b, an (r, a, b)-code of a graph G = (V,E) is a set S ⊆ V of vertices such that
every element of S belongs to exactly a balls of radius r with elements of S as centres and
every element of V \S belongs to exactly b balls of radius r with elements of S as centres. In
the multidimensional grid Zd, the construction presented by Dorbec et al. (see Theorem 4.33)
leads to periodic (1, a, b)-codes. In particular, for the 2-dimensional grid, there exist non-
periodic (1, a, b)-codes but for such values of a and b, there also exist periodic colourings that
are (1, a, b)-codes [Puz04]. For a larger radius r, Puzynina showed that every (r, a, b)-code
of Z2 is periodic (Theorem 4.35). The notion of constant 2-labellings comes up as a natural
translation of the periodicity of (r, a, b)-codes in the infinite grid Z2.

Using Axenovich’s characterization in terms of diagonal colouring of all (r, a, b)-codes in
Z2 with r ≥ 2 and |a − b| > 4 (Theorem 4.36), we show that the existence of (r, a, b)-codes
in the infinite grid is linked with the existence of constant 2-labellings in particular cycles.
It turns out that studying only four types of weighted cycles is sufficient to characterize all
(r, a, b)-codes with |a − b| > 4 and to determine explicitly the possible values taken by the
constants a and b. Hence, we obtain a refinement of Axenovich’s theorem.

This chapter, which is a joint work with my co-advisor Gravier [GV], is organized as
follows. The first section is dedicated to the presentation of constant 2-labellings of weighted
graphs in a general framework. Then we focus on the constant 2-labellings in four types
of weighted cycles. In Section 6.2, we present projection and folding techniques that link
constant 2-labellings to (r, a, b)-codes. Hopefully, these techniques can be applied to other
problems involving periodic tilings. In Section 6.3, we apply the projection and folding
method to obtain all possible values of constants a and b such that there exist (r, a, b)-codes
of Z2 with |a− b| > 4 and r ≥ 2. Note that to apply this method, the colouring of the grid
must satisfy some specific properties. Finally, we suggest directions for future work.

6.1 Constant 2-labellings

Given a graph G = (V,E), a particular vertex v ∈ V , a map w : V → R and a subgroup
A of the set Aut(G) of all automorphisms of G, a constant 2-labelling of G is a mapping
c : V → {0, 1} such that there exist constants a and b satisfying

a =
∑

{u∈V |c(ξ(u))=1}

w(u), ∀ξ ∈ A• and b =
∑

{u∈V |c(ξ′(u))=1}

w(u), ∀ξ′ ∈ A◦.

where A• = {ξ ∈ A | c(ξ(v)) = 1} and A◦ = {ξ ∈ A | c(ξ(v)) = 0}.

Example 6.1. let G = (V,E) be the graph with V = {v0, . . . , v4} represented in Fig-
ure 6.1. Take v = v0, A = Aut(G), w : V → R and c : V → {0, 1} defined by w(v0) = 3,
w(v1) = w(v3) = 2, w(v2) = w(v4) = 5 and c(v0) = c(v3) = c(v4) = 0, c(v1) = c(v2) = 1. It
is clear that c is a constant 2-labelling since A contains only two automorphisms, id and

σ : v0 7→ v0; v1 7→ v4; v2 7→ v3; v3 7→ v2; v4 7→ v1.



6.1. Constant 2-labellings 173

v0 3

v1 2

v2 5v32

v45

v0 3

v1 2

v2 5v32

v45

Figure 6.1: A colouring of a graph G and its composition with the automorphism σ.

We can make some straightforward observations about constant 2-labellings. The fol-
lowing proposition allows us to consider either a colouring c or its complement colouring
c.

Let G = (V,E) be a weighted graph, w : V → R be the weight map, v ∈ V and
A ≤ Aut(G). Set ω :=

∑

u∈V w(u). A colouring c is a constant 2-labelling of G with
respective constants a and b if and only if the colouring c is a constant 2-labelling
with respective constants ω − b and ω − a.

Proposition 6.2. Complementary property

If c is monochromatic black, then the constants are such that a =
∑

u∈V w(u) and b is not
defined. Otherwise c is white, a is not defined and b = 0. It is clear that, for a weighted graph
G = (V,E) with v ∈ V , any trivial colouring of V is a constant 2-labelling for any weight map
and any subgroup of Aut(G). Such constant 2-labellings are called trivial. The definition
of constant 2-labellings gives rise to the natural question: whether there exists non-trivial
constant 2-labellings for some classes of weighted graphs. We answer that question in the
case of four types of weighted cycles in the next subsection.

Remark 6.3. Consider the complete graph Kn and let w : V (Kn) → R, v ∈ V (Kn),
A = Aut(Kn). It is straightforward to show that there exists a non-trivial constant 2-
labelling of Kn if and only if w(v1) = w(v2) for all v1, v2 ∈ V \ {v}.

Indeed, assume that v1, v2 ∈ V \ {v} have different weights and c : V → {0, 1} is a non-
monochromatic colouring. Even if it means taking a composition with an automorphism, we
may assume that v1 and v2 are of different colours such that 1 = c(v1) 6= (v2) = 0. Let f
denote the automorphism that sends v1 on v2 and vice versa. We obtain that c(v) = c ◦ f(v)
and

∑

c(u)=1

w(u) =
∑

c(u)=1,u6=u1,u2

w(u) + w(v1)

6=
∑

c(u)=1,u6=u1,u2

w(u) + w(v2) =
∑

(c◦f)(u)=1

w(u).

Therefore, c is not a constant 2-labelling.
Now, suppose that all vertices of V \ {v} have same weight, say ω. Then any colouring

c : V → {0, 1} of Kn is a constant 2-labelling. Let n be the number of black vertices. It is
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clear that
∑

ξ(u)=1

w(u) = w(v) + (n− 1)ω and
∑

ξ′(u)=1

w(u) = nω

for all ξ ∈ A•, ξ
′ ∈ A◦.

6.1.1 Constant 2-labellings in particular weighted cycles

We consider some particular weighted cycles Cp with at most 4 different weights on the
vertices 0, . . . , p− 1. If the weights are w(0), . . . , w(p− 1), then we represent the cycle by the
word w(0) . . . w(p− 1). We will use the letters z, x, y and t to denote the weights of vertices.
For instance, the cycle depicted in Figure 6.2 is represented by the word zxp−1.

x
z

x

Figure 6.2: Weighted cycle Cp of Type 0.

We restrict our study of constant 2-labellings to only four types of weighted cycles (see
Figure 6.3) and we set v := 0 and A := {Rk | k ∈ Z}. This restriction is due to the initial
motivation behind this work: to know the possible values of the constants in (r, a, b)-code of
the infinite grid. The four types of weighted cycles on p vertices depend on p mod 4.

• If p ≡ 1 (mod 4), the cycle represented by z(xy)
p−1
4 (yx)

p−1
4 is called Type1mod.

• If p ≡ 2 (mod 4), the cycle represented by z(xy)
p−2
4 t(yx)

p−2
4 is called Type2mod.

• If p ≡ 3 (mod 4), the cycle represented by z(xy)
p−3
4 xx(yx)

p−3
4 is called Type3mod.

• If p ≡ 0 (mod 4), the cycle represented by z(xy)
p−4
4 xtx(yx)

p−4
4 is called Type4mod.

Hence, we only consider weighted cycles with an axial symmetry in the distribution of weights.
It seems to play an important role for the existence of constant 2-labellings. For instance,

a weighted cycle Cp represented by the word z(xy)
p−1
2 with x 6= y, has only monochromatic

colourings as constant 2-labellings. See Lemma B.3 given in Appendix B for a proof.
Note that the cycle in Figure 6.2 is a particular case of all of these types. Such cycles are

called Type 0. As we see in the next lemma, the case of Type 0 cycles is easy to handle.

x
z

x
For cycles Cp of Type 0, i.e., zxp−1 with 1 < p ∈ N, all colourings
are constant 2-labellings.

Lemma 6.4.
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Type1mod: z(xy)
p−1
4 (yx)

p−1
4 Type3mod: z(xy)

p−3
4 xx(yx)

p−3
4

y
x

z
x

y

x

y y

x

y
x

z
x

y

x x

Type2mod: z(xy)
p−2
4 t(yx)

p−2
4 Type4mod: z(xy)

p−4
4 xtx(yx)

p−4
4

y
x

z
x

y

x
y

t

y
x

y
x

z
x

y

x

t

x

Figure 6.3: Types of weighted cycles Cp.

Proof. Let c be a colouring of Cp. We set αx to be the number of black vertices with weight
x. If c(0) = 1, we have αx + 1 black vertices and it is clear that c is a constant 2-labelling
where the weighted sum of black vertices is equal to a = αxx+z (respectively b = (αx+1)x)
if the vertex 0 is black (resp. white).

We now turn our attention to cycles of Type1mod which are not of Type 0.

y
x

z
x

y

x

y y

x

Let p > 2 be an integer such that p ≡ 1 (mod 4). For cycles Cp
of Type1mod, i.e., z(xy)

p−1
4 (yx)

p−1
4 , with x 6= y, there exists a

non-trivial constant 2-labelling c if and only if p ≡ 0 (mod 3). In
which case, c is 3-periodic of pattern period 110.

Lemma 6.5.

Proof. Let p > 2 be an integer such that p ≡ 1 (mod 4) and let Cp be a cycle of Type1mod
with x 6= y. Assume that c is a non-trivial constant 2-labelling of Cp. The colouring c is not
alternate since p is odd. Hence, without loss of generality, we can assume that there exist
two consecutive black vertices. Moreover, we can suppose that these vertices are the vertices
0 and 1 of Cp. Indeed, c is a constant 2-labelling if and only if c ◦ Rj is a constant labelling
for all j ∈ Z.

For the colouring c, we let αx, αy denote respectively the number of black vertices with
weight x and y. We have a = αxx+ αyy + z. We consider the colour of the vertex p+1

2 .
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Assume first that c(p+1
2 ) = 1. Then, for the colouring c ◦ R1, the sum of the weights of

black vertices is

a = (αx − 1)y + z + (αy − 1)x+ y = αyx+ αxy + z

since under a 1-rotation, any black vertex with weight x becomes a black vertex of weight
y, except for the vertex 1 which becomes the vertex with weight z, and similarly any black
vertex with weight y becomes a black vertex of weight x except for the vertex p+1

2 which
becomes a vertex of weight y. As the weights x and y are distinct, it implies that αx = αy

(in order to have a sum of black vertices constant and equal to a). We set α := αx = αy for
a shorter notation.

Let i be the smallest integer in {0, . . . , p−1
2 − 1} such that c(i + 1) = 0 and assume

c(p+1
2 + ℓ) = 1 for any ℓ ∈ {0, . . . , i} (otherwise, consider the colouring c ◦ R p+1

2
instead of

c). Then c(p+1
2 + i+1) = 0 as depicted in Figure 6.4. With the colouring c◦Ri+1, we obtain

a sum of the weights of black vertices equal to b = αx+ (α+ 1)y (Figure 6.5). To conclude
this case, consider the vertex i + 2 and observe that whatever value is assigned to c(i + 2),
we obtain a contradiction (Figure 6.6).
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2 − 1
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2 − i− 2 R1

1
0

p− i

p+1
2

p−1
2

p+1
2 − i− 1

a = (α − 1)y + z + αx + x a = αx+ αy + z

Figure 6.4: Rotations of the colouring c of a Type1mod cycle with c(p+1
2 + i + 1) = 1, and

their corresponding weighted sums of black vertices which are not all equal.

Therefore, we have c(p+1
2 ) = 0 and a = αxx+αyy+ z as in the beginning. Observe that

the previous reasoning means that for any integer j, we have

c ◦ Rj(0) = 1 = c ◦ Rj(1) ⇒ c ◦ Rj

(

p+ 1

2

)

= 0. (6.1)

With the colouring c ◦ R1, the sum of the weights of black vertices is

a = (αx − 1)y + z + αyx+ x = (αy + 1)x+ (αx − 1)y + z.

Since x 6= y, we get αx = αy + 1. We set α := αy for a shorter notation.



6.1. Constant 2-labellings 177
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2
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2 − i− 1

a = αx+ αy + z a = αx+ αy + z b = αy + (α− 1)x+ y + x

Figure 6.5: Rotations of the colouring c of a Type1mod cycle with c(p+1
2 + i + 1) = 0, and

their corresponding weighted sums of black vertices.
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(a) If c(i+ 2) = 0 b = αx+ (α+ 1)y b = αy + (α+ 1)x
(b) If c(i+ 2) = 1 b = αx+ (α+ 1)y a = (α− 1)y + z + (α+ 1)x

Figure 6.6: Rotations of the colouring c of a Type1mod cycle and their corresponding
weighted sums of black vertices depending on the colour c(i+ 2).

Let i be the smallest integer in {0, . . . , p−1
2 − 1} such that c(i + 1) = 0. From Equa-

tion (6.1), we have c(p+1
2 +ℓ) = 0 for any ℓ ∈ {0, . . . , i−1}. Moreover, we have c(p+1

2 +i) = 1.

Indeed, assume that c(p+1
2 + i) = 0 (Figure 6.7), then with the colouring c ◦Ri+1 we obtain

a sum of the weights of black vertices equal to b = (α + 1)x + (α + 1)y. As c is a constant
2-labelling, with the colouring c ◦ R p+1

2
, we have the same weighted sum b. Then it implies

that the weighted sum b with the colouring c ◦R p+1
2 +1 has a different value, which is a con-

tradiction. So c(p+1
2 + i) = 1 and with the colouring c ◦Ri+1, we have a sum of the weights

of black vertices equal to b = αx+ (α + 2)y (Figure 6.8).

From b = αx + (α + 2)y, it follows that i must be equal to 2, otherwise the colouring
c ◦R p+1

2
leads to a different sum of the weights of black vertices (Figure 6.9). Then we have

c(3) = 1 (Figure 6.10). Similarly c(p+1
2 + 2) = 1 (Figure 6.11).

Therefore, the colouring c ◦ R p+1
2 +1 has the same configuration as the colouring c, i.e.,

the vertices 0, 1 are black and the vertex p+1
2 is white. We can apply the same argument as

before. Hence, the colouring c must be 3-periodic of pattern period 110 and the number p
of vertices is such that p ≡ 0 (mod 3).

Remark 6.6. In the previous proof, we used the following fact. Let c be a constant 2-
labelling of a cycle of Type1mod with x 6= y. If the sum of the weights of black vertices is
equal to a = αxx+αyy+ z with the colouring c, where αx, αy respectively denote the black
vertices with weight x and weight y, then for any colouring c ◦ Rj such that c ◦ Rj(0) = 1,
the weighted sum is a = αxx+αyy+ z and αx, αy respectively denote the numbers of black
vertices of weight x and weight y with respect to the colouring c ◦ Rj . In other words, the
number of black vertices of weight x (respectively y) is the same for the colouring c◦Rj such
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a = (α+ 1)x+ αy + z
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Figure 6.7: Rotations of the colouring c of a Type1mod cycle with c(p+1
2 + i) = 0, and their

corresponding weighted sums b of black vertices which are not all equal.
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Figure 6.8: Rotations of the colouring c of a Type1mod cycle with c(p+1
2 + i) = 1, and their

corresponding weighted sums of black vertices.
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Figure 6.9: Rotations of the colouring c of a Type1mod cycle with c(j) = 1 for all 0 ≤ j ≤ i
with i > 1, and their corresponding weighted sums of black vertices distinct which are not
all equal.
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Figure 6.10: Rotations of the colouring c of a Type1mod cycle with c(0) = c(1) =) = 1,
c(p+1

2 + 1) = 1 and c(3) = c(p+1
2 ) = 0, and their corresponding weighted sums of black

vertices depending on the colour c(p+1
2 + 2).
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Figure 6.11: Rotations of the colouring c of a Type1mod cycle with c(0) = c(1) = 1,
c(p+1

2 + 1) = 1 and c(3) = c(p+1
2 ) = c(p+1

2 + 2) = 0, and their corresponding weighted
sums of black vertices which are not all equal.
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that c ◦Rj(0) = 1. This fact follows from the uniqueness of the solution (λ, µ) of the system

{

a− z = λx+ µy
n− 1 = λ+ µ

where n denotes the total number of black vertices (which is known from the colouring c).

The same argument holds when the weighted sum is b = αxx + αyy and the colouring
c ◦ Rj such that c ◦ Rj(0) = 0.

Cycles of Type1mod and Type3mod share some similarities. Both types have at most
3 distinct weights and their non-trivial constant 2-labellings are the same as shown in the
next lemma. We omit the proof here since it follows exactly the same lines as the proof of
Lemma 6.5, but the details can be found in Appendix B.

y
x

z
x

y

x x

For cycles Cp of Type3mod, i.e., z(xy)
p−3
4 xx(yx)

p−3
4 with x 6= y

and 3 < p ∈ N, if c is a non-trivial constant 2-labelling, then p ≡ 0
(mod 3) and c is 3-periodic of pattern period 110.

Lemma 6.7.

Now for cycles of Type2mod and Type4mod with weights z, x, y, t, if the number n of
black vertices and the values a := z + αxx+ αyy + αtt and b := βxx+ βyy + βtt are known,
then the following system

{

a = λx+ µy + νt+ z
n = λ+ µ+ ν + 1

(

respectively

{

b = λx+ µy + νt
n = λ+ µ+ ν

)

does not necessarily have a unique solution (λ, µ, ν) = (αx, αy, αt) (resp. (λ, µ, ν) =
(βx, βy, βt)). Hence for these cycles, it is be important to make a distinction between the
colouring c and its rotations.

We first deal with an easy particular case of these cycles that corresponds to a Type2mod
cycle with t = x 6= y or to a Type4mod cycle with t = y 6= x.

yx
z

xy
x

Let p ≥ 4 be an integer such that p ≡ 0 (mod 2). Let Cp be a cycle
of of Type2mod with t = x 6= y or of Type4mod with t = y 6= x,

i.e., Cp is a cycle represented by z(xy)
p−2
2 x with x 6= y. Any non-

trivial constant 2-labelling c of Cp is either the alternate colouring,
or a colouring such that the number αx of black vertices of weight
x is equal to αy + c(0) where αy is the number of black vertices of
weight y.

Lemma 6.8.
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Proof. Let p ≥ 4 be an integer such that p ≡ 0 (mod 2) and let Cp be a cycle represented

by z(xy)
p−2
2 x with x 6= y. Clearly the alternate colouring is a constant 2-labelling with

a = (p2 − 1)y + z and b = p
2x.

Now assume that c is a non-trivial constant 2-labelling of Cp which is not the alternate
colouring. Without loss of generality, we assume that the vertices 0 and 1 are both coloured
in black. Let αx, αy denote respectively the number of black vertices with weight x and y
for the colouring c. We have a = αxx+ αyy + z as the sum of the weights of black vertices.
For the colouring c ◦ R1, the weighted sum is equal to

a = (αx − 1)y + z + αyx+ x = (αy + 1)x+ (αx − 1)y + z.

As x 6= y, we get αx = αy + 1 and we set α := αy.
Let i be the smallest integer in {0, . . . , p− 2} such that c(i + 1) = 0. The weighted sum

for the colouring c ◦Ri is a = (α+1)x+αy+ z by hypothesis. Therefore, the weighted sum
for the colouring c ◦Ri+1 is equal to b = (α+1)y+αx+x = (α+1)x+(α+1)y. Moreover,
the weighted sum is preserved for the colouring c◦Ri+2 regardless to the colour of the vertex
i+ 2:

{

b = (α+ 1)y + (α+ 1)x if c(i+ 2) = 0

a = (α)y + z + (α+ 1)y if c(i+ 2) = 1.

It follows that the only condition on the constant 2-labelling c is to be a colouring with
αx = αy + 1 if c(0) = 1. Similarly, the condition is αx = αy if c(0) = 0.

We now consider the Type2mod cycles in general.

Let p ≡ 2 (mod 4) with p > 2 and let Cp be a weighted cycle of Type2mod

represented by z(xy)
p−2
4 t(yx)

p−2
4 where the weights x, y, t are not all equal. If c is

a non-trivial constant 2-labelling, then c is one of the following colouring

y
x

z
x

y

x
y

t

y
x

• alternate,

• p
2 -periodic,

• if x = y, p
2 -anti-periodic,

• if t = x, any colouring such that the number of black vertices
of weight x is equal to the sum of c(0) and the number of
black vertices of weight y.

Lemma 6.9.

Proof. Let p ≡ 2 (mod 4) with p > 2 and let Cp be a weighted cycle of Type2mod repre-

sented by z(xy)
p−2
4 t(yx)

p−2
4 where the weights x, y, t are not all equal. Clearly, the alternate

colouring is a constant 2-labelling with a = (p2 − 1)y + z and b = (p2 − 1)x+ t.
The case where the weights t and x are equal follows from Lemma 6.8. Hence, we suppose

from now on that t 6= x. Consider a non-trivial constant 2-labelling c of Cp that is not the
alternate colouring. Without loss of generality, we may assume that c(0) = c(1) = 1. We let
αx, αy, αt denote respectively the number of black vertices of weight x and y for the colouring
c. The sum of the weights of the black vertices is then equal to a = αxx+αyy+αtt+ z. We
consider the colour of the vertex p

2 + 1.
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Assume first that c(p2 + 1) = 1. It follows that c(p2 ) = 1 and αt = 1, otherwise the
weighted sum is not preserved (Figure 6.12). Then for the colouring c ◦ R1, the sum of the
weights of the black vertices is

a = (αx − 1)y + z + (αy − 1)x+ t+ x+ y = αyx+ αxy + t+ z

as under a 1-rotation, any black vertex with weight x becomes a black vertex of weight y,
except for the vertex 1 which becomes the vertex 0 with weight z, and similarly any black
vertex with weight y becomes a black vertex of weight x, except for the vertex p

2 + 1 which
becomes the vertex p

2 with weight t. If the weights x and y are distinct, then αx = αy and
we set α := αx. Otherwise, we denote by β the number αx+αy of black vertices with weight
x = y.
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p
2 + 1

p
2

R p
2

0
1

p
2 + 1

p
2

R1

0
p− 1

p
2 − 1

p
2

a = αxx+ αyy + z b = αxy + αyx+ t a = (αx − 1)x+ t+ (αy − 1)y + z + y

Figure 6.12: Rotations of the colouring c of a Type2mod cycle with c(p2 + 1) = 1, and their
corresponding weighted sums of black vertices which are not all equal as x 6= t.

Let i be the smallest integer in {0, . . . , p2 − 1} such that c(i + 1) = 0 and assume that
c(p2 + i) = 1 for any ℓ ∈ {0, . . . , i} (otherwise, consider the colouring c ◦ R p

2
instead of c).

Then c(p2 + i+ 1) = 0 as depicted in Figure 6.13.

With the colouring c◦Ri+1 we obtain (Figure 6.14) a sum of the weights of black vertices
equal to

b =

{

(α+ 1)(x+ y) if x 6= y
(β + 2)x if x = y

and the number of black vertices of weight x for the colouring c ◦ Ri+1 is actually α + 1
(respectively β + 2) when x 6= y (resp. x = y). Observe that if c(i + 2) = 0 = c(p2 + i + 2),
then the weighted sum b for the colouring c ◦ Ri+2 is preserved.

Therefore, let j be the smallest integer in {i + 1, . . . , p2 − 1} such that c(j + 1) = 1.
Without loss of generality, we assume that c(p2 + ℓ) = 0 for all ℓ ∈ {i + 1, . . . , j}. Then
c
(

p
2 + j + 1

)

= 1, otherwise it implies that x = t which is a contradiction (Figure 6.15).

Consequently, the sum of the weights of the black vertices for the colouring c ◦ Rj+1

is a = αx + αy + z + t (respectively a = βx + t + z) if the weights x and y are distinct
(resp. equal). Moreover, the colourings c and c ◦ Rj+1 present the same configuration as
c(j + 1) = 1 = c(p2 + j + 1) and as the weighted sums are equal. Hence, we can apply the
same reasoning given before for c to the colouring c ◦Rj+1. It follows that the colouring c is
p
2 -periodic. In particular, we have the following weighted sums

{

a = α(x + y) + z + t and b = (α + 1)(x+ y) if x 6= y
a = βx+ t+ z and b = (β + 2)x if x = y

with β even.
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(b) a = (β + 1)x+ z (b) a = βx + t+ z

Figure 6.13: Rotations of the colouring c of a Type2mod cycle Cp with c(p2 + i+ 1) = 1, and
their corresponding weighted sums of black vertices which are not all equal, where the line
(a) corresponds to the case x 6= y and the line (b) to the case x = y.
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(a) If x 6= y a = αx + αy + t+ z b = αy + αx + x+ y
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Figure 6.14: Rotations of the colouring c of a Type2mod cycle and their corresponding
weighted sums of black vertices depending on the equality of the weights x and y.
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(a) a = αx+ αy + t+ z b = (α+ 1)(x+ y) a = αy + z + (α+ 1)x
(b) a = βx+ t+ z b = (β + 2)x a = (β + 1)x+ z

Figure 6.15: Rotations of the colouring c of a Type2mod cycle with c(j+1) 6= c(p2+j+1) = 0,
and their corresponding weighted sums of black vertices which are not all equal, where the
line (a) corresponds to the case x 6= y and the line (b) to the case x = y.
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Assume now that c(p2 + 1) = 0. It follows that c(p2 ) = 0. Indeed, suppose that c(p2 ) = 1,
i.e., αt = 1. If the weights x and y are distinct, then the weighted sum a = αxx+αyy+ t+ z
for the colouring c implies that the weighted sum for the colouring c ◦ R p

2
is equal to

a = αxy + αyx+ t+ z.

Hence, αx = αy as c is a constant 2-labelling. Then the weighted sum for the colouring c◦R1

is given by

a = (αx − 1)y + z + αxx+ y + x = (αx + 1)x+ αxy + z

which is not equal to the initial weighted sum as t 6= x. This is a contradiction. Now, if the
weights x and y are equal, then the weighted sum a = (αx + αy)x+ t+ z for the colouring c
implies that the weighted sum for the colouring c ◦ R1 is equal to

a = (αx + αy − 1)x+ z + x+ x = (αx + αy + 1)x+ z

which is a contradiction (as t 6= x).
So c(p2 +1) = 0 = c(p2 ) and αt = 0. For the colouring c ◦R1, we obtain the weighted sum

a = (αx − 1)y + z + αyx+ x as depicted in Figure 6.16. Hence, αx must be equal to αy + 1
if the weights x and y are distinct. In this case, we set α = αy. In the case where x = y, we
simply set β = αx + αy. Hence,

{

a = (α+ 1)x+ αy + z if x 6= y
a = βx+ z if x = y.

We obtain the following weighted sum (Figure 6.16) for the colouring c ◦ R p
2

{

b = (α+ 1)y + αx+ t if x 6= y
b = βx+ t if x = y.
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b = αxy + αyx+ t a = αxx+ αyy + z a = (αx − 1)y + z + αyx+ x

Figure 6.16: Rotations of the colouring c of a Type2mod cycle with c(p2 ) = 0 = c(p2 +1), and
their corresponding weighted sums of black vertices.

Let i be the smallest integer in {0, . . . , p2 −1} such that c(i+1) = 0. We may assume that
c
(

p
2 + ℓ

)

= 0 for all ℓ ∈ {0, . . . , i}. Then c(p2 + i+1) = 1, otherwise we obtain a contradiction
as x 6= t (Figure 6.17).

Observe that if c(i + 2) = 0 and c(p2 + i + 2) = 1, then the weighted sum b for the
colouring c ◦ Ri+2 is preserved. Therefore, let j be the smallest integer in {i+ 1, . . . , p2 + i}
such that c(j + 1) = 1. Without loss of generality, we suppose that c

(

p
2 + ℓ

)

= 1 for all

ℓ ∈ {i + 1, . . . , j}. It follows that c
(

p
2 + j + 1

)

= 0. Indeed, c
(

p
2 + j + 1

)

= 1 leads to a
contradiction as x 6= t (Figure 6.18).
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(a) If x 6= y a = (α+ 1)x+ αy + z b = (α+ 1)y + αx+ x
(b) If x = y a = βx + z b = βx+ x

Figure 6.17: Rotations of the colouring c of a Type2mod cycle and their corresponding
weighted sums of black vertices depending on the equality of the weights x and y.
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(a) a = (α+ 1)x+ αy + z b = αx + (α+ 1)y + t a = (α− 1)y + z + αx+ t+ y
(b) a = βx + z b = βx + t a = (β − 2)x+ z + t+ x

Figure 6.18: Rotations of the colouring c of a Type2mod cycle with c(j+1) 6= c(p2+j+1) = 0,
and their corresponding weighted sums of black vertices which are not all equal, where the
line (a) corresponds to the case x 6= y and the line (b) to the case x = y.

Therefore, the sum of the weights of the black vertices for the colouring c ◦ Rj+1 is
a = (α + 1)x + αy + z (respectively a = βx + z) if the weights x and y are distinct (resp.
equal). Hence, the colourings c and c ◦ Rj+1 present the same configuration as c(j + 1) = 1

and c(p2 + j + 1) = 0 and as the weighted sums are equal. It follows that the colouring c is
p
2 -anti-periodic.

If the weights x and y are distinct, then the number of black vertices is equal to 2α+2 = p
2 .

It means that p
2 is even which is a contradiction as p ≡ 2 (mod 4). Thus, there doest not

exist a constant 2-labelling in this case.

If the weights x and y are equal, then any p
2 -anti-periodic colouring is a constant 2

labelling with

a =
(p

2
− 1

)

x+ z and b =
(p

2
− 1

)

x+ t.

The last type of cycles is similar to Type2mod cycles. Hence, the proof of the following
lemma is similar to the proof of Lemma 6.9. It is thus given in Appendix B.
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y
x

z
x

y

x
t

x

Let p ≡ 4 (mod 4) with p > 4 and let Cp be a weighted cycle

of Type4mod represented by z(xy)
p−4
4 xtx(yx)

p−4
4 where the

weights x, y, t are not all equal. If c is a non-trivial constant
2-labelling, then c is one of the following colouring

• alternate,

• p
2 -anti-periodic,

• p
2 -periodic if x = y; p

2 -periodic and such that the numbers of black vertices of
weight x and y are equal when c(0) = 0 if y 6= x,

• if t = p
4x + (1 − p

4 )y, c can be moreover such that c(i) = c(i + p
2 ) = 1 for all

even i ∈ {0, . . . , p2 − 1} and c(i) 6= c(i + p
2 ) for all odd i ∈ {0, . . . , p2 − 1} (up

to a 1-rotation).

Lemma 6.10.

Using all the previous lemmas, we can now prove our main theorem.

Let c be a non-trivial constant 2-labelling of a cycle Cp of Type 0, Type1mod,
Type2mod, Type3mod or Type4mod with A = {Rk | k ∈ Z} and v = 0. Let
a =

∑

{u∈V |c◦ξ(u)=1}w(u) and b =
∑

{u∈V |c◦ξ′(u)=1} w(u) for ξ ∈ A•, ξ
′ ∈ A◦. Then

the possible values of the constants a and b are given in the following table.

Type Value of a Value of b Condition on parameters

0 αx+ z (α+ 1)x α ∈ {0, . . . , p− 2}

1mod p

3
x+ ( p

3
− 1)y + z ( p

3
− 1)x+ ( p

3
+ 1)y p ≡ 0 (mod 3)

3mod p

3
x+ ( p

3
− 1)y + z ( p

3
+ 1)x+ ( p

3
− 1)y p ≡ 0 (mod 3)

2mod ( p
2
− 1)y + z ( p

2
− 1)x+ t

α(x+ y) + t+ z (α+ 1)(x+ y) α ∈ {0, . . . , p

2
− 1}

4mod ( p
2
− 2)y + z + t p

2
x

(2α+ 2)x+ 2αy + z + t (2α+ 2)(x+ y) α ∈ {0, . . . , p

4
− 1}

p

4
x+ ( p

4
− 1)y + z p

4
x+ ( p

4
− 1)y + t

p

2
x+ ( p

4
− 1)y + z 3p

4
x t = p

4
x+ (1− p

4
)y

( p
4
− 1)y + z p

4
x t = p

4
x+ (1− p

4
)y

2αx + t+ z 2(α+ 1)x α ∈ {0, . . . , p

2
− 2}, x = y

(α+ 1)x+ αy + z (α+ 1)(x+ y) α ∈ {0, . . . , p

2
− 2}, t = y

Theorem 6.11.
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6.2 Projection and folding method

In this section, we present a method that allows us to translate specific colouring problems of
the infinite grid in terms of constant 2-labellings of weighted cycles. We first give an example
of such problems. Let t and p be integers and let t = (t, 1), p = (p, 0). A frame is a set of
vertices of a given shape (see Figure 6.19) where one of the vertices plays a special role and
therefore is called the center of the frame. Let a and b be non-negative integers. We consider
the problem of deciding whether there exists a 2-colouring c of the infinite grid such that the
colouring is periodic with c(y + t) = c(y) = c(y + p) for any y ∈ Z2, and that each frame
contains

• a black vertices if the center of the frame is black,

• b black vertices if the center of the frame is white.

Clearly, if the frames are the balls of radius r, then the problem is the same as determining
if there exists an (r, a, b)-covering code of the infinite grid that is periodic of periods t and
p.

center

Figure 6.19: An example of a frame shape in the infinite grid.

Now, for t = (t, 1), p = (p, 0), consider a 2-colouring of Z2 that is periodic of periods t
and p. Since c is periodic of period t, the colouring of a line is obtained by doing a translation
t = (t, 1) (respectively -t = (−t,−1)) of the colouring of the line below (resp. above). In
this case, if we know the colouring of one line and the translation t, then the colouring of
the whole grid Z2 is known.

Projection

Let y ∈ Z2. Using the translation t = (t, 1), we can project the frame with center y on the
line L containing y. We assume y = (0, 0) to simplify the notation. Let Trans denote the
set of all the translated frames of the frame with center y by a multiple of t. Let h : L→ N

be a map defined by
h((i, 0)) = #{T ∈ Trans | (i, 0) ∈ T }.

The image of the line L by the mapping h, denoted by h(L), is called the projection of
the frame with center y with translation t = (t, 1). An example is given in Figure 6.20.
Observe that h((i, 0)) is a finite number for any i ∈ N, h takes a non-zero value only finitely
many times and the number of vertices of a frame is equal to

∑

i∈Z
h((i, 0)). The map h is
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introduced to count the number of occurrences in the frame with center y of vertices of L,
up to translation t.

t = (2, 1)

(0, 0)

(0, 0)

. . . . . .0 1 1 1 2 2 4 4 3 3 3 2 2 3 3 2 2 1 0

Figure 6.20: Representation of the translated frames with translation t = (2, 1) of a frame
in the finite grid and the projection of this frame on a line.

Folding

Using the translation (p, 0), we can fold a projection on a cycle of p weighted vertices. Let
L be the line containing y = (0, 0) and {0, . . . , p− 1} be the set of vertices of the cycle Cp.
We define a map w : {0, . . . , p− 1} → N such that, for i ∈ {0, . . . , p− 1},

w(i) :=
∑

k∈Z

h((i + kp, 0)).

The folding of the projection h(L) is the cycle Cp with vertices 0, . . . , p − 1 of respective
weights w(0), . . . , w(p− 1).

6.3 Application to (r, a, b)-codes of Z2

The projection and folding method can be used to find (r, a, b)-codes that are periodic. We
first give an example, then we characterize the values of a and b of any (r, a, b)-code with
r ≥ 2 and |a− b| > 4.

Example 6.12. Consider frames that are balls of radius r = 3 and set t = 2, p = 4. Using
the projection and folding method, there exists an (r, a, b)-code of the infinite grid that is
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periodic of periods t = (2, 1) and p = (4, 0) if and only there exists a constant 2-labelling of
the cycle C4 with weights w(0) = 7, w(1) = w(2) = w(3) = 6. For instance, the colouring c
defined by c(0) = c(1) = 1 and c(2) = c(3) = 0 is a constant 2-labelling. Hence, there exists
an (3, 13, 12)-code of Z2, which is given at the bottom of Figure 6.21.

p = (4, 0)

p = (4, 0)

p = (4, 0)

t = (2, 1)

t = (2, 1)

r = 3

. . . 0 0 1 1 2 3 2 2 3 2 2 3 2 1 1 0 0 . . .

1+ 2+ 3 3+ 2+ 1

2+ 3+ 2

1+ 2+ 2+ 1

6 6

7

6

. . . 0 0 1 1 2 3 2 2 3 2 2 3 2 1 1 0 0 . . .

(0, 0)

(0, 0)

Figure 6.21: Projection and folding of a ball of radius 3 with respect to the translations
t = (2, 1) and p = (4, 0).

Let r ≥ 2 and a, b ∈ N such that |a − b| > 4. Let c be an (r, a, b)-code of Z2. By
Theorem 4.36, c is a diagonal colouring. Hence, c is determined by the colouring of any
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horizontal line, e.g. {(x1, 0) | x1 ∈ Z}, and by the orientation of the monochromatic diagonals
in the even and odd sublattices.

Assume first that the monochromatic diagonals are all parallel. Without loss of generality,
we can suppose that they are of the type {(x1, x1 + c) | x1 ∈ Z} with c ∈ Z. Indeed, the case
where the monochromatic diagonals are of type {(x1,−x1 + c) | x1 ∈ Z} is similar since the
grid is symmetric. In this case, if the colouring of a line of Z2 is known, then the colouring
of the line above (resp. below) is obtained by doing a translation t = (1, 1) (resp. −t)
as c(x) = c(x + t) for all x ∈ Z2. So we can apply the projection method. Moreover, by
Theorem 4.35, c is such that c(x+ (m, 0)) = c(x) for some m ∈ N and all x ∈ Z2. Hence, it
is possible to apply the folding method.

Now assume that the monochromatic diagonals are not parallel. We may suppose that
the even (resp. odd) sublattice is the union of monochromatic diagonals of type {(x1, x1+c) |
x1 ∈ Z} (resp. {(x1,−x1 + c) | x1 ∈ Z}) with c ∈ Z. We consider an r-ball Br(y) with
center y. Observe that a diagonal intersecting the ball contains either r or r+1 elements of
the ball. Moreover two intersecting diagonals belong to the same sublattice. Hence, in terms
of counting vertices of a particular colour appearing in the ball, it is equivalent to consider
monochromatic diagonals that are parallel or not. So, we can apply the folding method in
both cases.

Therefore, for r ≥ 2 and |a− b| > 4, there exists an (r, a, b)-code of the infinite grid Z2 if
and only if there exists a constant 2-labelling of some cycle Cp, with v = 0, A = {Rk | k ∈ Z}
and the mapping w defined as before, such that

a =
∑

{u∈V |c◦ξ(u)=1}

w(u) and b =
∑

{u∈V |c◦ξ′(u)=1}

w(u) ∀ξ ∈ A•, ξ
′ ∈ A◦.

6.3.1 Characterization of (r, a, b)-codes of Z2 with |a−b| > 4 and r ≥ 2

Let r, a, b ∈ N such that |a − b| > 4 and r ≥ 2. If there exists an (r, a, b)-code of
Z2, then the values of a and b are given in the following table

a b Condition on parameters

r + 1 + α(2r + 1) (α+ 1)(2r + 1) α ∈ {0, . . . , r − 1}, r ≡ 0 (mod 2)

(r + 1)2 − α(3r2 + 1) r2 + α(3r2 + 1) α ∈ {0, 1}, r ≡ 0 (mod 2)

r + 1 + (α+ 1)(2r + 1) (α+ 1)(2r + 1) α ∈ {0, . . . , r − 2}, r ≡ 1 (mod 2)

r2 + α 3r+1
2 (r + 1)2 − α 3r+1

2 α ∈ {0, 1}, r ≡ 1 (mod 2)

(α+ 1)2r
2+2r+2

3 − 1 (α+ 1)2r
2+2r+2

3 α ∈ {0, 1}, r ≡ 1 (mod 3)

(α+ 1)2r
2+2r
3 − r+1

3 + 1 (α+ 1)2r
2+2r
3 + r+1

3 α ∈ {0, 1}, r ≡ 2 (mod 3)

(α + 1)2r
2+2r
3 + r

3 − 1 (α+ 1)2r
2+2r
3 − r

3 α ∈ {0, 1}, r ≡ 0 (mod 3)

Theorem 6.13.

Proof. For r ≥ 2 and |a− b| > 4, Axenovich described all possible (r, a, b)-codes (see Theo-
rem 4.36) in terms of diagonal colourings. Theorem 4.36 allows us to apply the projection
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and folding method in this case. Let y = (0, 0). We project the ball Br(y) on the line L
using the translation t = (1, 1) and we obtain for an even (respectively odd) radius r

h((i, 0)) =







r if i ≤ r and i is odd
r + 1 if i ≤ r and i is even
0 otherwise

and for an odd radius r

h((i, 0)) =







r + 1 if i ≤ r and i is odd
r if i ≤ r and i is even
0 otherwise.

Indeed, if r is even, then any diagonal of the even (respectively odd) sublattice intersecting
the ball contains r + 1 (resp. r) elements of Br(y). The other case can be treated similarly.

Consider now the colourings 1–5 given in Theorem 4.36. For each kind of colouring, we
fold the projection of Br(y) on a cycle Cp, with p ∈ {2, 3, r, r+1, 2r, 2r+1, 2r+2}, according
to the parity of r (see Table 6.1). Then we use Theorem 6.11 to give the possible values of
the constant weighted sums a and b.

The colouring 1 is p-periodic of odd period p ∈ {r, r + 1}. Hence it gives two different
weighted cycles. If r is even, then Br(y) is projected and folded on the cycle Cr+1 of Type
0 with z = r + 1 and x = 2r + 1. The corresponding values of the constants are then

a = r + 1 + α(2r + 1) and b = (α+ 1)(2r + 1)

with α ∈ {0, . . . , r − 1}. If r is odd, Br(y) is projected and folded on the cycle Cr of Type 0
with z = 3r + 2 and x = 2r + 1. So the corresponding values of the constants are

a = 3r + 2 + α(2r + 1) and b = (α+ 1)(2r + 1)

with α ∈ {0, . . . , r − 2}.
The colouring 2 is a p-anti-periodic colouring with p ∈ {r, r+1} and p even. It gives then

two different weighted cycles with 2p vertices. If r is even, Br(y) is projected and folded on
the cycle C2r of Type4mod with z = r+1 = y, x = r and t = 2r+2. Then the corresponding
values of the constants are

a =
2r

4
r + (

2r

4
− 1)(r + 1) + r + 1 = (r + 1)2 + (

3r

2
+ 1),

b =
2r

4
r + (

2r

4
− 1)(r + 1) + 2(r + 1) = r2 + (

3r

2
+ 1).

If r is odd, Br(y) is projected and folded on the cycle C2r+2 of Type4mod with z = r = y,
x = r + 1 and t = 0. The corresponding values are

a =
2r + 2

4
(r + 1) +

2r + 2

4
r = r2 +

3r + 1

2
,

b =
2r + 2

4
(r + 1) + (

2r + 2

4
− 1)r = (r + 1)2 +

3r + 1

2
.

The colouring 3 is p-periodic of period p ∈ {r, r + 1} with p even. If r is even, Br(y) is
projected and folded on the cycle Cr. This cycle is a particular case of a Type2mod with
t = x or of a Type4mod with t = y, according to the value of r mod 4. So Cr is represented
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For r even For r odd
Type 0: p = r + 1 Type 0: p = r

C
o
lo
u
ri
n
g
1

r + 1
2r + 12r + 1

3r + 2
2r + 12r + 1

Type4mod: p = 2r Type4mod: p = 2(r + 1)

C
o
lo
u
ri
n
g
2

r + 1

2(r + 1)

r + 1
rr

r + 1

r r

r

0

r
r + 1r + 1

r

r + 1 r + 1

Type2mod or Type4mod: p = r Type2mod or Type4mod: p = r + 1

C
o
lo
u
ri
n
g
3

3(r + 1)

2(r + 1)
2r2r

2(r + 1)
2r

r

2r
2(r + 1)2(r + 1)

2r
2r

Type1mod: p = 2r + 1 Type3mod: p = 2r + 1

C
o
lo
u
ri
n
g
4

r + 1

r + 1 r + 1

r + 1
rr

r + 1

r r

r

r + 1 r + 1

r
r + 1r + 1

r

Table 6.1: Weighted cycles Cp corresponding to the colourings 1–4.
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by z(xy)
r−2
2 x with z = 3(r + 1), x = 2r and y = 2(r + 1). The corresponding values of the

constants are either a = (r + 1)2 and b = r2, or

a = 2(α+ 1)r + 2α(r + 1) + 3(r + 1) and b = 2(α+ 1)(2r + 1)

with α ∈ {0, . . . , r2 −2}. Similarly, if r is odd, Br(y) is projected and folded on the cycle Cr+1

which is a particular case of a Type2mod or a Type4mod cycle, represented by z(xy)
r−1
2 x

with z = r, x = 2(r + 1) and y = 2r. The corresponding values of the constants are either
a = r2 and b = (r + 1)2 or

a = 2(α+ 1)(r + 1) + 2αr + r and b = 2(α+ 1)(2r + 1)

with α ∈ {0, . . . , r−1
2 − 1}.

The colouring 4 is 2r + 1-periodic. If r is even, Br(y) is projected and folded on the
cycle C2r+1 of Type1mod with z = r + 1 = y and x = r. Such weighted cycle has a constant
2-labelling if 2r + 1 ≡ 0 (mod 3). Then the corresponding values of the constants are

a =
2r + 1

3
· r +

(

2r + 1

3
− 1

)

(r + 1) + r + 1 =
(2r + 1)2

3

b =

(

2r + 1

3
− 1

)

r +

(

2r + 1

3
+ 1

)

(r + 1) =
(2r + 1)2

3
+ 1.

If r is odd, Br(y) is projected and folded on the cycle C2r+1 of Type3mod with z = r = y
and x = r+1. Hence, under the condition that 2r+1 ≡ 0 (mod 3), the corresponding values
of the constants are

a =
2r + 1

3
(r + 1) +

(

2r + 1

3
− 1

)

r + r + 1 =
(2r + 1)2

3
+ 1

b =

(

2r + 1

3
+ 1

)

(r + 1) +

(

2r + 1

3
− 1

)

r =
(2r + 1)2

3
+ 1.

Since the difference |a− b| ≤ 4 in this case, we never obtain these values of a and b.
The colouring 5 is either 2-periodic or 3-periodic. Hence it gives five different weighted

cycles. Let c be the colouring 5. If c is 2-periodic, then Br(y) is projected and folded on C2
of Type 0, represented by zx with

{

z = (r + 1)2, x = r2 for r even
z = r2, x = (r + 1)2 for r odd.

So the corresponding values of the constants are a = (r + 1)2 and b = r2 for r even, and
a = r2, b = (r + 1)2 for r odd. If c is 3-periodic, then Br(y) is projected and folded on C3 of
Type 0. In that case, straightforward analysis give the weights z and x:

• z = 2r2+2r−1
3 and x = 2r2+2r+2

3 if r = 3k + 1,

• z = 2r2+2r
3 − 2k + 1 and x = 2r2+2r

3 + k if r = 3k − 1,

• z = 2r2+2r
3 + 2k + 1 and x = 2r2+2r

3 − k if r = 3k.

The corresponding values of the constants are then given by

a = αx+ z and b = (α+ 1)x with α ∈ {0, 1}.
This concludes the proof of Theorem 6.13.
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6.4 Conclusions and perspectives

Constant 2-labellings in weighted cycles allows us to translate the periodicity of (r, a, b)-codes,
with r ≥ 2, of the 2-dimensional grid. It seems that for a radius 1, many (1, a, b)-codes of
the multidimensional grid Zd are periodic (see Theorem 4.33 and [DGHM09]). It would
be interesting to find the corresponding weighted graphs obtained with our projection and
folding method and then to study constant 2-labellings in these graphs. Also, the projection
and folding method is presented in general and can be applied to linear codes. It would be
interesting to consider (r, a, b)-codes in other types of lattices as for example, in the king
lattice.

The problem of finding a constant 2-labelling of a graph is interesting in and of itself.
In Theorem 6.11, we only obtain a characterization of constant 2-labellings in four types of
weighted cycles. It would be interesting to consider different weighted cycles, with eventually
more weights. Moreover, we could study constant 2-labelling in graphs having a big auto-
morphisms group, for instance, in circulant graphs or in vertex-transitive graphs. Finally, we
could find a natural generalization of constant 2-labellings into constant k-labellings using k
colours and then consider their links with distinguishing numbers and weighted codes with
more than two values.
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Appendix A

Regularity and ℓ-abelian

complexity

We present in this appendix the Mathematica code used to compute the 65538
first elements of the 2-abelian complexity of the Thue–Morse word and to con-
jecture recurrence relations for this complexity. Then we consider the behaviour
of abelian and 2-abelian complexity functions of words over a 3-letter alphabet
that are generated by 2-uniform morphisms. Finally, we give the proofs omitted
in Chapter 2 for the period–doubling word.
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A.1 Mathematica code

In this section, we provide the Mathematica code used to conjecture the relations satisfied
by the 2-abelian complexity of the Thue–Morse word. First, we define the four matrices as
in Section 2.1 : Me, Mo for factors of length 2n − 2 occurring respectively in even and odd
indices, Ne, No for factors of length 2n− 1 occurring respectively in even and odd indices.

The following predicate vectequiv tests whether two given vectors of N10 are similar.

:> vectequiv[v_, w_]

:= ((Take[v, 6] - Take[w, 6] == {0, 0, 0, 0, 0, 0})

&& ((v[[7]] + v[[9]] == w[[7]] + w[[9]])

&& (v[[8]] + v[[10]] == w[[8]] + w[[10]])))

:> vectequiv[{0, 1, 0, 1, 1, 1, 0, 0, 0, 1},

{0, 1, 0, 1, 1, 1, 0, 1, 0, 0}]

Out[]= True

The function quotient takes a list of vectors of N10 in argument and outputs the quotient
of the given list by the relation ∼.

:> quotient[ls_]

:= Module[{list = {}, t = ls},

While[Length[t] > 0,

AppendTo[liste, t[[1]]];

t = Select[t, ! vectequiv[#, t[[1]]] &];];

list]

:> quotient[{{0, 1, 0, 1, 1, 1, 0, 0, 0, 1},

{0, 1, 0, 1, 1, 1, 0, 1, 0, 0},

{0, 1, 0, 1, 1, 1, 0, 0, 1, 0}}]

Out[]= {{0, 1, 0, 1, 1, 1, 0, 0, 0, 1},

{0, 1, 0, 1, 1, 1, 0, 0, 1, 0}}

We encode the set S3 = {Ψ2(u) | u ∈ Fac(t), |u| = 3} by

:> S3 = quotient[{{0, 1, 0, 0, 1, 1, 0, 0, 1, 0},

{0, 1, 0, 1, 1, 0, 0, 1, 0, 0},

{0, 1, 1, 0, 1, 0, 1, 0, 0, 0},

{1, 0, 0, 1, 0, 1, 0, 0, 0, 1},

{1, 0, 0, 1, 1, 0, 0, 0, 1, 0},

{1, 0, 1, 1, 0, 0, 0, 1, 0, 0}}];

Using the tree structure of the sets Sn (Figure 2.4), we create two functions to obtain from
a set Sn, its right and left children.

:> left[ls_] := Union[Map[Ne.# &, ls], Map[No.# &, ls]];

:> right[ls_] := Union[Map[Me.# &, ls], Map[Mo.# &, ls]];

We are now able to compute the 65538 first values of the 2-abelian complexity P(2)
t of the

Thue–Morse word. These values are given by the list comp, which starts with 1, 2, 4. We
construct comp by iterating two steps: we build a list ls that contains all the sets Sn of a
given level in the tree structure using the sets of the previous level, then we append to comp,
the cardinal of each quotiented set Sn/ ∼.
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:> comp = {1, 2, 4, Length[quotient[S3]]};

:> ls = {S3};

:> For[i = 1, i < 16, i++,

ls = Flatten[Map[{left[#], right[#]} &, ls], 1];

comp = Flatten[Append[

comp, Map[Length[quotient[#]] &, ls]]];]

Remark A.1. This computation of comp only takes 4 minutes which is rather fast. Indeed,
another approach to compute the 2-abelian complexity of the Thue–Morse word is to generate
a long enough prefix of t and then to count the number of 2-abelian equivalence classes that
appear when we slide a window of given length along the prefix. For instance, with the latter
method, we must at least iterate the morphism 11 times to find a long enough prefix to
compute the first 29 + 1 = 513 first terms. The whole computation already takes more than
4 minutes.

:> AbelianFactorCount[list, k, factorlength]

:= Length[Union[

Table[Sort[Tally[Partition[#, i, 1]]], {i, 1, k}] &

/@ Partition[list, factorlength, 1]]]

:> AbelianFactorTally[list, k, maxfactorlength]

:= Function[factorlength,

AbelianFactorCount[list, k, factorlength]]

/@ Range[0, maxfactorlength]

:> AbsoluteTiming[

f[x_] := Flatten[x

/. {"0" -> {"0", "1"}, "1" -> {"1", "0"}}];

TMword = Nest[f[#] &, {"0"}, 11];

AbelianFactorTally[TMword, 2, 2^9];]

Out[]= {228.5170705}

We consider the 255 first sequences of the 2-kernel of P(2)
t and encode their prefixes of

length 451 in a list called kernel. We denote by x2e+r the subsequence P(3)
t (2en + r)n≥0.

Then kernel[[i,j]] will denote the jth element of the ith sequence of the kernel, xi(j).

:> kernel

= Flatten[Table[Table[Table[comp[[2^e n + r + 1]],

{n, 0, 450}],{r, 0, 2^e - 1}],{e, 0, 7}], 1];

Now we try to find a positive integer g such that x1, . . . ,xg are generators of the ideal
〈K2(t)〉. If 2ℓ ≤ g + 1 < 2ℓ+1 and x1, . . . ,xg are generators, then any sequence xm with
g+1 ≤ m ≤ 2ℓ+2 must be a linear combination of the generators. For a fixed g, we construct
a matrix M containing the g + 1 first elements of x1, . . . ,xg:

M =







x1(1) x2(1) · · · xg(1)
...

...
...

x1(g + 1) x2(g + 1) · · · xg(g + 1)






.

:> M = Transpose[Table[Table[

kernel[[i, j]], {j, 1, g + 1}] , {i, 1, g}]];
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For each m ∈ {g + 1, . . . , 2ℓ+2}, we create a list Coefficients of coefficients ci (denoted by
c[i] in the computation) and then we determine the values of coefficients ci such that

xm(j) = c1x1(j) + c2x2(j) + · · ·+ cgxg(j)

for all j ∈ {0, . . . , g}. To obtain a unique solution, we set all free variables to zero using the
code /.c[ ]− > 0. The solution is then saved in a list called temp.

:> Coefficients = Table[c[i], {i, 1, g}];

temp = (

(Coefficients /. Flatten[Solve

[(M.Coefficients) == Take[kernel[[m]], g + 1],

Coefficients]])

/. c[_] -> 0);

Finally, the program prints xm = c1x1 + c2x2 + · · · + cgxg if the relation guessed from
the g + 1 first elements holds for the 451 first elements. Otherwise, the program prints
xm = False. If at least one False appears, then the value of g is too small and has to be
changed.

:> Print[x[m], " = ",

If[kernel[[m]] == temp.Table[kernel[[n]], {n, 1, g}],

temp.Table[x[j], {j, 1, g}], "False"]];

Hence, putting everything together, the following program outputs the list of relations
given in page 61.

:> g = 31;

M = Transpose[Table[Table[

kernel[[i, j]], {j, 1, g + 1}] , {i, 1, g}]];

For[m = g + 1, m < 4 2^Floor[Log[2, g]],

Quiet[

Coefficients = Table[c[i], {i, 1, g}];

temp = (

(Coefficients /. Flatten[Solve

[(M.Coefficients) == Take[kernel[[m]], g + 1],

Coefficients]])

/. c[_] -> 0);

Print[x[m], " = ",

If[kernel[[m]] == temp.Table[kernel[[n]], {n, 1, g}],

temp.Table[x[j], {j, 1, g}], "False"]];

m++

];

]

We observe that none of the relations use the sequences x20, . . . ,x31
1. Hence, we can

reduce the number of generators to g = 19. In fact, if we start the “loop For” with m = 1,

1This holds when the program runs under version 7 of Mathematica. With the version 9, the program
outputs other equivalent relations. For example, x36 = x21 + 3

2
x26 − 2x27 + 3

2
x28 − 3

2
x29 + x30 − 1

2
x31. In

that case, none of the sequences x1, . . . ,x15 appear in the relations.
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we see from the relations given for x1, . . . ,x63 (pages 61 and 61) that only 12 sequences
suffice to form a set of generators.

Another possibility to predict the recurrence relations satisfied by a sequence is to use
the Mathematica package “Regular sequences” created by Rowland in 2010 [Row10]. For
a regular sequence, the computation will output either recurrence relations as the one we
conjectured, or a set of matrices as in Theorem 1.28.

A.2 Abelian complexity functions satisfying a reflection

symmetry

Many abelian complexity functions seem to satisfy a reflection symmetry. First, we consider
the abelian complexity of pure morphic words over a 3-letter alphabet {0, 1, 2}, that are fixed
points of 2-uniform morphisms. Secondly, we consider the 2-abelian complexity of these fixed
points.

Without loss of generality, we may assume that the first letter of the fixed points is 0

and then assume that the image of 0 is 01, up to relabelling the letters. Moreover we only
consider morphisms that generate an infinite word w with |w|a ≥ 1 for any a ∈ {0, 1, 2}.

The 1-abelian complexity functions exhibit three distinct behaviours. Some of the func-
tions seem either eventually periodic (Figure A.1), others are not eventually periodic but still
satisfy a reflection symmetry in the values taken over each interval [2ℓ, 2ℓ+1] for large enough
ℓ (Figure A.2). It would be interesting to classify the functions that do not seem to satisfy
a reflection symmetry (Figure A.3 and Figure A.4) by their growth rate. For example, the
abelian complexity of the word

w = 0122111122222222111111111111111122222222222222222222 · · ·

generated by the morphism 0 7→ 01, 1 7→ 22, 2 7→ 11, seems to grow linearly

P(2)
w (n)n≥∞ = (1, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . .).

Consider, for another example, the abelian complexity of the fixed point starting with 0

of the morphism 0 7→ 01, 1 7→ 12, 2 7→ 20. The first values of the abelian complexity are

1, 3, 6, 7, 12, 12, 13, 12, 18, 19, 21, 18, 19, 18, 21, 19, 27, . . .

and they are depicted in Figure A.4. This complexity satisfies a reflection symmetry over
each interval [2ℓ + 1, 2ℓ+1 − 1] but differs for powers of 2.

In the case of 2-abelian complexity functions, we find the same behaviours again. The
functions that seem eventually periodic are depicted in Figure A.5, the ones that seems to
satisfy a reflection symmetry are shown in Figure A.6, and the other functions are represented
in Figure A.7.
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Figure A.1: Abelian complexity functions, which seem eventually periodic, of words generated
by a 2-uniform morphism over a 3-letter alphabet
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Figure A.4: Abelian complexity functions, which do not satisfy a reflection symmetry, of
words generated by a 2-uniform morphism over a 3-letter alphabet
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Figure A.5: 2-abelian complexity functions, which seem eventually periodic, of words gener-
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Figure A.6: 2-abelian complexity functions, which seem to satisfy a reflection symmetry, of
words generated by a 2-uniform morphism over a 3-letter alphabet
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Figure A.7: 2-abelian complexity functions, which do not satisfy a reflection symmetry, of
words generated by a 2-uniform morphism over a 3-letter alphabet
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Figure A.8: 2-abelian complexity functions, which do not satisfy a reflection symmetry, of
words generated by a 2-uniform morphism over a 3-letter alphabet
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A.3 The case of the period-doubling word p

We give in this section the proofs omitted in Chapter 2 for the period–doubling word.

A.3.1 The abelian complexity of block(p, 2) is piecewise-defined

In order to prove Proposition 2.39, establishing that P(1)
x is piecewise-defined in terms of ∆0,

we first mention some properties of factors of the word x.

The set Fac2(x) of factors of length 2 occurring in x is {00, 01, 12, 20, 21}.

Lemma A.2.

Proof. It is easy to check that these five words are factors:

block(p, 2) = 12001212120012001200121212001212 · · ·

To prove that they are the only ones, it is enough to check that for any element u in
{00, 01, 12, 20, 21} the three factors of length 2 of φ(u) are in {00, 01, 12, 20, 21}.

If w is a factor of x then
∣

∣|w|1−|w|2
∣

∣ ≤ 1. In particular, the letters 1 and 2 alternate
in x.

Lemma A.3.

Proof. Let w be a factor of x. There are two cases to consider.
If w can be de-substituted (that is, w = φ(v) for some v), then |w|1 = |w|2 since

|φ(i)|1 = |φ(i)|2 for all i ∈ {0, 1, 2}.
If w cannot be de-substituted, then either w has even length and occurs at an odd index

in x, or w has odd length. If w has odd length, then deleting either the first or last letter
results in a word that can be de-substituted, so

∣

∣|w|1 − |w|2
∣

∣ ≤ 1. If w has even length and
occurs at an odd index, then its first letter is 0 or 2 and its last letter is 0 or 1; deleting the
first and last letters results in a word that can be de-substituted, so

∣

∣|w|1 − |w|2
∣

∣ ≤ 1.
Finally, observe that if for all factors of a word u, the numbers of two letters x and y

differ by at most 1, then x and y alternate in u.

Let τ be the morphism defined by τ : 0 7→ 0, 1 7→ 2, 2 7→ 1. If w is a factor of x,
then τ(w)R is also a factor of x.

Lemma A.4.

Proof. We first prove by induction that

τ(φ(2u1))R = φ(τ(12u)R)
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for every factor of the form 2u1 of x.
One checks that this is true for 21 and 2001. If 2u1 is a factor not equal to 21 nor 2001,

then u must contain a 2 and we can write 2u1 = 2u′12u′′1 where 2u′1 and 2u′′1 are factors
of x. By the inductive hypothesis we have

τ(φ(2u1))R = τ(φ(2u′12u′′1))R

= τ(φ(2u′′1))Rτ(φ(2u′1))R

= φ(τ(12u′′)R)φ(τ(12u′)R)

= φ(τ(12u′12u′′)R)

= φ(τ(12u)R).

We now prove the lemma by induction on the length of w. One can check by hand that
the lemma is true for w of length at most 15. Assume the lemma is true for every factor of
length at most n ≥ 15, and let w be a factor of length n+ 1. Then w is a factor of φ(v) for
some factor v of x with n+1

2 ≤ |v| ≤ n+3
2 .

Since all factors of length 4 contain a 1 and a 2, there exists a factor u such that v is
a factor of 2u1 and |2u1| ≤ n+3

2 + 6. In particular, w is a factor of φ(2u1) and τ(w)R is a
factor of τ(φ(2u1))R. To obtain the conclusion, we just need to show that τ(φ(2u1))R is a
factor of x.

As by Lemma A.2, a 2 is always preceded by a 1 in x, the word 12u is a factor of x and
it has length |12u| ≤ n+3

2 + 6 ≤ n. By inductive hypothesis, τ(12u)R is a factor of x. Hence
φ(τ(12u)R) is also a factor. Finally, using the previous result, τ(φ(2u1))R = φ(τ(12u)R) is
a factor of x.

We can now express P(1)
x in terms of ∆0.

Proof of Proposition 2.39. Let w be a factor of x of length |w| = n.
If |w| − |w|0 = |w|1 + |w|2 is even, it follows from Lemma A.3 that |w|1 = |w|2. Therefore

every factor of length n containing exactly |w|0 zeros is abelian-equivalent to w, so the pair
(n, |w|0) determines a unique abelian equivalence class of factors.

If |w| − |w|0 is odd, then by Lemma A.3 either |w|1 = |w|2 + 1 or |w|2 = |w|1 + 1.
By Lemma A.4, there exists another factor, v = τ(w)R, of length n with |v|0 = |w|0 and
|v|1 − |v|2 = |w|2 − |w|1. Therefore both possibilities occur. So the number of abelian equiv-
alence classes corresponding to a pair (n, |w|0) is 2.

There are ∆0(n) + 1 possible values for the number of 0’s in a factor of length n. Since
each value occurs for some factor, we have

P(1)
x (n) =

max0(n)
∑

i=min0(n)

{

1 if n− i is even

2 if n− i is odd

=

n−min0(n)
∑

j=n−max0(n)

{

1 if j is even

2 if j is odd.

Therefore P(1)
x (n) = 3

2∆0(n) + c(n), where c(n) depends only on the parities of ∆0(n) and
n −min0(n); computing four explicit values allows one to determine the values of c(n) and

obtain the equation claimed for P(1)
x (n).
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A.3.2 ∆0(n)n≥0 and (min0(n) mod 2)n≥0 satisfy recurrence relations

We break the proof of Proposition 2.40 into three parts, covered by Lemmas A.5, A.7 and
A.9. We first deal with powers of 2.

Let ℓ ∈ N, ℓ ≥ 1. We have P(1)
x (2ℓ) = 4, ∆0(2

ℓ) = 2,

max0(2
ℓ+1) = 2ℓ −min0(2

ℓ) and min0(2
ℓ+1) = 2ℓ −max0(2

ℓ).

Lemma A.5.

Proof. Recall from Chapter 1 that Ψ(w) = (|w|0, |w|1, |w|2) is the Parikh vector of w. We
show by induction that

{Ψ(w) : w factor of x with |w| = 2ℓ}
= {Pℓ + (0, 0, 0), Pℓ + (−2, 1, 1), Pℓ + (−1, 1, 0), Pℓ + (−1, 0, 1)}

and that

Ψ(φℓ(0)) =

{

Pℓ if ℓ is even

Pℓ + (−2, 1, 1) if ℓ is odd

Ψ(φℓ(2)) =

{

Pℓ + (−2, 1, 1) if ℓ is even

Pℓ if ℓ is odd,

where Pℓ = (2
ℓ+4
3 , 2

ℓ−2
3 , 2

ℓ−2
3 ) if ℓ is odd and Pℓ = (2

ℓ+2
3 , 2

ℓ−1
3 , 2

ℓ−1
3 ) if ℓ is even. Since Parikh

vectors of factors of length 2ℓ can take exactly four values, the conclusion is immediate.
The result is true for ℓ ∈ {1, 2}. Let ℓ > 2 and assume the result holds for ℓ − 1. Let w

be a factor of length 2ℓ.
If w can be de-substituted, then we have w = φ(v) for some factor v of length 2ℓ−1,

and Ψ(w) = (2|v|2, |v|0 + |v|1, |v|0 + |v|1). Using the inductive hypothesis, it is easy to check
that Ψ(w) = Pℓ or Ψ(w) = Pℓ + (−2, 1, 1) and that the equalities for Ψ(φℓ(0)),Ψ(φℓ(2)) are
satisfied.

If w cannot be de-substituted, then w occurs at an odd index in x and w is of the form

0−1φ(v)0, 1−1φ(v)1, 0−1φ(v)1 or 1−1φ(v)0

for some factor v of length 2ℓ−1. If w is of one of the first two forms, then Ψ(w) = Ψ(φ(v))
and Ψ(w) = Pℓ or Ψ(w) = Pℓ + (−2, 1, 1) (as in the previous case).

If w = 0−1φ(v)1, then w can also be written as w = 0φ(u)2−1 for some factor u of
length 2ℓ−1. So both Parikh vectors Ψ(φ(v)) and Ψ(φ(u)) belong to {Pℓ, Pℓ + (−2, 1, 1)}.
Since by construction φ(v) has two more zeros than φ(u), we obtain Ψ(φ(v)) = Pℓ and
Ψ(φ(u)) = Pℓ + (−2, 1, 1). Thus Ψ(w) = Ψ(φ(v)) + (−1, 1, 0) = Pℓ + (−1, 1, 0).

Similarly, if w = 1−1φ(v)0, then Ψ(w) = Pℓ + (−1, 0, 1).
To conclude the proof, we just need to show that these four cases actually occur for all ℓ.

Since {Ψ(φℓ(0)),Ψ(φℓ(2))} = {Pℓ, Pℓ +(−2, 1, 1)}, consider all factors of length 2ℓ occurring
between two consecutive occurrences of Ψ(φℓ(0)) and Ψ(φℓ(2)). By continuity of the number
of 0’s, one of these factors must have a Parikh vector equal to Pℓ+(−1, 1, 0) or Pℓ+(−1, 0, 1).
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Using Lemma A.4, we obtain that w is a factor of length 2ℓ with Ψ(w) = Pℓ + (−1, 1, 0) if
and only if τ(w)R is a factor of length 2ℓ with Ψ(w) = Pℓ + (−1, 0, 1). So all four values
actually occur.

To show Lemmas A.7 and A.9, we first prove the following technical result.

Let u be a factor of x of length n ≥ 1. Let max2(n) (resp. min2(n)) denote the
maximum (resp. minimum) of {|w|2 : w factor of x of length n}. We have

• |u|2 = max2(n) if and only if |φ(u)|0 = max0(2n),

• |u|2 = min2(n) if and only if |φ(u)|0 = min0(2n).

Lemma A.6.

Proof. For the first assertion, assume that |u|2 = max2(n) and suppose |φ(u)|0 < max0(2n).
Note that |φ(u)|0 = 2|u|2 by definition of φ. Let v be a factor of length 2n such that
|v|0 = max0(2n), which is even by Lemma 2.38. In addition, we can assume that v starts
with 00. Indeed, if it is not the case, then either v starts with 01 and ends with 0, or v is of
the form t00s where t does not contain any zero. In the first case, we can consider the word
0v0−1 that starts with 00 and has max0(2n) zeros. In the second case, we can consider the
word 00sw for some w with |w| = |t|. This factor has also max0(2n) zeros. Therefore v can
be de-substituted. So v = φ(z) and |z|2 = 1

2 |v|0 > |u|2, which is a contradiction.
For the other direction, assume |φ(u)|0 = max0(2n) and suppose |u|2 does not maximize

the number of 2’s. Then there exists a factor v of length n such that |v|2 = max2(n). Hence,

|φ(v)|0 = 2|v|2 > 2|u|2 = |φ(u)|0 = max0(2n),

which is a contradiction. Similar arguments hold for the second assertion.

If ℓ ≥ 2 and 0 ≤ r ≤ 2ℓ−1, then

max0(2
ℓ + r) = max0(2

ℓ) + max0(r),

min0(2
ℓ + r) = min0(2

ℓ) + min0(r).

Lemma A.7.

Proof. We work by induction on ℓ. One checks the case ℓ = 2. Let ℓ > 2 and assume the
statements are true for ℓ− 1. Let 0 ≤ r ≤ 2ℓ−1.

Assume first that r is even. We exhibit a factor of length 2ℓ+r that has max0(2
ℓ) + max0(r)

zeros and maximizes the number of 0’s. By the inductive hypothesis, the result is true for
2ℓ−1 + r/2. So there exists a factor u of length 2ℓ−1 + r/2 with a number of zeros equal to
min0(2

ℓ−1 + r/2) = min0(2
ℓ−1) + min0(r/2). In addition, we can assume that u maximizes

the number of 2’s. Indeed, since |u|0 = min0(2
ℓ−1 + r/2), |u|1 + |u|2 is maximal among

all factors of length 2ℓ−1 + r/2. If the number of 1 and 2 in u is even, then |u|2 = |u|1 is
maximal. Otherwise, either |u|2 = |u|1 + 1 and |u|2 is maximal, or |u|2 = |u|1 − 1 and u
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does not maximize the number of 2’s. In the last case, by Lemma A.4, we can consider the
factor τ(u)R which satisfies |τ(u)R|0 = |u|0 and |τ(u)R|2 = |u|1. Hence, τ(u)R minimizes the
number of 0’s and maximizes the number of 2’s.

Let us write u = vw with |v| = 2ℓ−1 and |w| = r/2. Then, as |v|0 + |w|0 = |u|0 is equal
to min0(2

ℓ−1) +min0(r/2), the words v and w minimize the number of 0’s for words of their
respective lengths. The word v maximizes also the number of 2’s for factors of length 2ℓ−1

because |v| and |v|0 = min0(2
ℓ−1) are even by Lemma A.5 and so is |v|1 + |v|2. Since u

maximizes the number of 2’s and |v|2 = |v|1, the word w also maximizes the number of 2’s.
Hence, by Lemma A.6, φ(u), φ(v) and φ(w) maximize the number of 0’s for words of their
respective lengths. Thus,

max0(2
ℓ + r) = |φ(u)|0 = |φ(v)|0 + |φ(w)|0 = max0(2

ℓ) + max0(r).

If r is odd, we still have 0 ≤ r − 1 ≤ r + 1 ≤ 2ℓ−1 and we can use the previous results:

max0(2
ℓ + r − 1) = max0(2

ℓ) + max0(r − 1),

max0(2
ℓ + r + 1) = max0(2

ℓ) + max0(r + 1).

Note that max0 is even for even values and can only grow by 0 or 1. So there are two cases to
consider: either max0(2

ℓ+r+1) = max0(2
ℓ+r−1) or max0(2

ℓ+r+1) = max0(2
ℓ+r−1)+2.

If the two maxima are equal, then we have max0(r + 1) = max0(r − 1), max0(2
ℓ + r) =

max0(2
ℓ + r− 1) and max0(r) = max0(r− 1), and we are done. Otherwise, the two maxima

differ by 2, and then max0(r + 1) = max0(r − 1) + 2, max0(2
ℓ + r) = max0(2

ℓ + r − 1) + 1
and max0(r) = max0(r − 1) + 1, and we are done.

A similar proof shows that min0(2
ℓ + r) = min0(2

ℓ) + min0(r).

Lemma A.9 will follow directly from the following lemma.

If ℓ ≥ 2 and 2ℓ−1 ≤ r ≤ 2ℓ, then

max0(2
ℓ+1) = max0(2

ℓ + r) + min0(2
ℓ − r),

min0(2
ℓ+1) = min0(2

ℓ + r) + max0(2
ℓ − r).

Moreover, there is a factor of length 2ℓ+1 maximizing (resp. minimizing) the number
of 0’s such that the prefix of length 2ℓ + r also maximizes (resp. minimizes) the
number of 0’s. In addition, the first equality max0(2

ℓ+1) = max0(2
ℓ+r)+min0(2

ℓ−
r) holds even if ℓ = 1.

Lemma A.8.

Proof. We proceed by induction on ℓ. One checks that the results are true for ℓ = 2 and,
for the first equality, for ℓ = 1. Let ℓ > 2 and assume both equalities hold for ℓ − 1. Let
2ℓ−1 ≤ r ≤ 2ℓ.

Assume first that r is even. By the inductive hypothesis, there exists a factor u = vw of
length 2ℓ such that

|u|0 = min0(2
ℓ) = min0(2

ℓ−1 + r/2) + max0(2
ℓ−1 − r/2),
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|v| = 2ℓ−1 + r/2 and v minimizes the number of 0’s. Hence, |v|0 = min0(2
ℓ−1 + r/2) and

|w|0 = max0(2
ℓ−1 − r/2).

Observe that u maximizes the number of 2’s as |u| and |u|0 = min0(2
ℓ) are even. In

addition, we can assume that v also maximizes the number of 2’s. Indeed, if v is of even
length, |v|0 = min0(2

ℓ−1 + r/2) implies |v|2 is maximal. If v is of odd length and v does not
maximize the number of 2’s, then it ends with 1. Thus, v is followed by a 2. In particular,
v occurs at an even index in x. So is u and u12 or u00 is a factor of x. If u12 is a factor,
then consider, instead of u, u′ = z−1u1 where z denotes the first letter of u. In that case,
the prefix of length 2ℓ−1 + r/2 of u′ is z−1v2. It still minimizes the number of 0’s and now
maximizes the number of 2’s. Assume now that u00 is a factor. Observe that x is the fixed
point of φ. So it is also the fixed point of φ2. Therefore, x is a concatenation of blocks of
length 4 of the form φ2(0) = φ2(1) = 1200 and φ2(2) = 1212. Since u00 is a factor of x, the
only extension of this factor is 12u00 as |u| = 2ℓ ≡ 0 (mod 4). Consider then u′ = 2u2−1.

Since |u|1 = |u|2 and |v|2 ≥ |v|1, |w|1 ≥ |w|2. Thus, as |w|0 = max0(2
ℓ−1 − r/2), w mini-

mizes the number of 2’s. By Lemma A.6, we obtain |φ(u)|0 = max0(2
ℓ+1),

|φ(v)|0 = max0(2
ℓ + r), |φ(w)|0 = min0(2

ℓ − r). So

max0(2
ℓ+1) = |φ(u)|0 = |φ(v)|0 + |φ(w)|0

= max0(2
ℓ + r) + min0(2

ℓ − r).

We can show similarly that min0(2
ℓ+1) = min0(2

ℓ + r) + max0(2
ℓ − r). Note that in

this case, we can assume that the factor u with |u|0 = max0(2
ℓ), given by the inductive

hypothesis, starts with 00 as in the proof of Lemma A.6.
Assume now that r is odd. Then 2ℓ−1 ≤ r−1 < r+1 ≤ 2ℓ and we can apply the previous

result:

max0(2
ℓ+1) = max0(2

ℓ + r − 1) + min0(2
ℓ − r + 1)

= max0(2
ℓ + r + 1) + min0(2

ℓ − r − 1).

Since max0 is even for even values and can only grow by 0 or 1, there are two cases to consider:
either max0(2

ℓ + r − 1) = max0(2
ℓ + r + 1) or max0(2

ℓ + r − 1) + 2 = max0(2
ℓ + r + 1).

If the two maxima are equal, then min0(2
ℓ − r + 1) = min0(2

ℓ − r − 1) = min0(2
ℓ − r)

and max0(2
ℓ+ r) = max0(2

ℓ+ r− 1), and we are done. Otherwise, the two maxima differ by
2, and then min0(2

ℓ − r+1)− 2 = min0(2
ℓ − r− 1). So max0(2

ℓ + r) = max0(2
ℓ + r− 1)+ 1

and min0(2
ℓ − r) = min0(2

ℓ − r + 1)− 1, and we are done. Using similar argument, we can
conclude that min0(2

ℓ+1) = min0(2
ℓ + r) + max0(2

ℓ − r).
For the construction of the factors, one can construct them using the factors φ(u) and

φ(u′) given for r− 1 and r+1 in the previous construction. We consider the same two cases
as before.

If the maxima are equal, then max0(2
ℓ + r) = max0(2

ℓ + r − 1). By construction, φ(u)
has a prefix φ(v) of length 2ℓ + r − 1, maximizing the number of 0’s. The letter z following
the prefix φ(v) in φ(u) is not a 0. Otherwise, φ(v)0 would be a factor of length 2ℓ + r with
max0(2

ℓ + r) + 1 zeros, which is a contradiction. Hence, φ(v)z is a prefix of length 2ℓ + r of
φ(u) that maximizes the number of 0’s.

If max0(2
ℓ + r − 1) + 2 = max0(2

ℓ + r + 1), then max0(2
ℓ + r) = max0(2

ℓ + r + 1)− 1.
By construction, φ(u′) has a prefix φ(v′) of length 2ℓ + r+1, maximizing the number of 0’s.
This prefix must end with 0. Otherwise, deleting the last letter of φ(v′) would give a factor
of length 2ℓ + r with max0(2

ℓ + r + 1) = max0(2
ℓ + r) + 1 zeros, which is a contradiction.

Hence, φ(v′)0−1 is a prefix of length 2ℓ + r of φ(u′) that maximizes the number of 0’s.
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A similar construction yields a factor of length 2ℓ+1 minimizing the number of 0’s such
that the prefix of length 2ℓ + r also minimizes the number of 0’s.

The previous lemma permits us to reformulate some relations between the two sequences
max0(n)n≥0 and min0(n)n≥0.

If ℓ ≥ 2 and 2ℓ−1 ≤ r ≤ 2ℓ, then

max0(2
ℓ + r) = 2ℓ −min0(2

ℓ+1 − r),

min0(2
ℓ + r) = 2ℓ −max0(2

ℓ+1 − r).

The first equality holds even if ℓ = 1.

Lemma A.9.

Proof. One can check the first equality for ℓ = 1. Let ℓ ≥ 2 and 2ℓ−1 ≤ r ≤ 2ℓ. From the
previous lemma, we have

max0(2
ℓ + r) = max0(2

ℓ+1)−min0(2
ℓ − r).

Note that, by Lemma A.5, we have max0(2
ℓ+1) = 2ℓ −min0(2

ℓ). Moreover, by Lemma A.7,
since 0 ≤ 2ℓ − r ≤ 2ℓ, we get

min0(2
ℓ) + min0(2

ℓ − r) = min0(2
ℓ + 2ℓ − r).

Since similar relations hold when exchanging min0 and max0, the conclusion follows.

The proof of Proposition 2.40 about the reflection relation satisfied by ∆0(n) and the
recurrence relation of min0(n) is now immediate.

Proof of Proposition 2.40. Let ℓ ≥ 2. For 0 ≤ r ≤ 2ℓ−1, subtracting the two relations
provided by Lemma A.7 gives ∆0(2

ℓ + r) = ∆0(2
ℓ) +∆0(r). Using the first relation given in

Lemma A.5, ∆0(2
ℓ) = 2, it follows that

∆0(2
ℓ + r) = ∆0(r) + 2.

Furthermore, min0(2
ℓ + r) ≡ min0(2

ℓ) + min0(r) (mod 2) by Lemma A.7. Since we have
min0(2

ℓ) ≡ 0 (mod 2) by Lemma A.5, we obtain

min0(2
ℓ + r) ≡ min0(r) (mod 2).

For 2ℓ−1 < r < 2ℓ, subtracting the two relations provided by Lemma A.9 permits us to
conclude that

∆0(2
ℓ + r) = ∆0(2

ℓ+1 − r).

Moreover, using Lemma A.9, we get

min0(2
ℓ + r) ≡ max0(2

ℓ+1 − r) (mod 2)

≡ min0(2
ℓ+1 − r) + ∆0(2

ℓ+1 − r) (mod 2).
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A.3.3 The 2-abelian complexity of p is piecewise-defined

In this section, we want to compute the 2-abelian complexity of the period-doubling word in
terms of the 1-abelian complexity of its 2-block coding, x = block(p, 2). We require several
preliminary results.

Let u and v be factors of p of length n. Let u′ and v′ be the 2-block codings of
u and v. The factors u and v are 2-abelian equivalent if and only if u′ and v′ are
abelian equivalent and either u′ and v′ both start with 2 or none of them start with
2.

Proposition A.10.

Proof. By Lemma 1.48, u and v are 2-abelian equivalent if and only if they start with the same
letter and have the same number of factors 00, 01 and 10. The number of 00 (respectively
01 and 10) in u is exactly the number of 0 (resp. 1 and 2) in u′. Moreover, u starts with 0
(resp. by 1) if and only if u′ starts with 0 or 1 (resp. by 2). Therefore, u and v are 2-abelian
equivalent if and only if u′ and v′ are abelian equivalent and both start with 2 or none of
them start with 2.

If the class does not split, we say that it leads to only one class.

Let X be an abelian equivalence class of factors of length n of x. If the number
of 1’s in an element of X differs from the number of 2’s, then X leads to only one
2-abelian equivalence class of p.

Lemma A.11.

Proof. It is enough to prove that if an element of X starts with 2, all the other elements of
X start with 2. If u starts with 2, then all the elements of X have more 2’s than 1’s. But
any factor with more 2’s than 1’s starts with a 2.

If n is odd, P(2)
p (n+ 1) = P(1)

x (n).

Corollary A.12.

Proof. Let X be an abelian equivalence class of factors of odd length n. If no element of X
starts with a 2, X leads to only one 2-abelian equivalence class of factors of p. So assume
that there is a factor u in X starting with 2. Since n is odd, we can write u = 2φ(u′). Then
the number of 0’s in u is even and there is a different number of 2’s than 1’s. By Lemma A.11,
X again leads to a unique 2-abelian equivalence class of p.
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Let X be an abelian equivalence class of factors of x of even length n with an odd
number of zeros. Then X leads to only one 2-abelian equivalence class of p.

Corollary A.13.

Proof. Factors in X have an odd number of 1’s and 2’s counted together, so the number of
1’s and the number of 2’s are different and we can apply Lemma A.11.

Thus, an abelian equivalence class X of factors of length n of x can possibly lead to two
2-abelian equivalence classes of factors of length n+ 1 of p only if n is even and if there are
an even number of zeros in X . In most cases X will indeed lead to two different equivalence
classes. The exceptions are identified by the following lemma.

Let n be a positive even integer and n0 such that min0(n) ≤ n0 ≤ max0(n). Let X
be an abelian equivalence class of factors of x of length n with exactly n0 zeros.

• We have n0 = max0(n) and MJ0(n) = 1 if and only if every factor u in X can
be written as u = 00u′00.

• We have n0 = min0(n) and mj0(n) = 1 if and only if every factor u in X is
preceded and followed only by 00.

Lemma A.14.

Proof. We start by proving the first part of the lemma. Assume that all the elements of X
have the form 00u′00. In particular, n0 is even. If n0 6= max0(n), it means that there is a
factor v of length n with n0+1 zeros. Indeed, sliding a window of length n from a word of X
to a factor with max0(n) zeros gives factors with all possibilities between n0 and max0(n) for
the number of zeros. Since |v|0 is odd and n is even, we must have v = 0φ(v′)1 or v = 2φ(v′)0.
But then 0−1v2 or 1v0−1 is an element of X not of the form 00u′00, a contradiction. Hence
n0 = max0(n). If MJ0(n) = 0, then max0(n− 1) = n0 and there is a factor v of odd length
n− 1 with even number n0 of 0’s. We must have v = 2φ(v′) or v = φ(v′)1 but then 1v or v2
is an element of X not of the form 00u′00, a contradiction and MJ0(n) = 1.

For the other direction, assume that n0 = max0(n) and MJ0(n) = 1. In particular,
max0(n − 1) = n0 − 1. Assume there exists a factor u of X not of the form u = 00u′00.
Since u has even length and even number of 0’s, we must have u = 01u′20 or u has its first
or last letter y not equal to 0. In the first case, v = 001u′ has length n − 1 and n0 zeros, a
contradiction. In the second case, removing the letter y leads also to a factor of length n− 1
with n0 zeros.

The second part of the lemma is similar. Assume first that all the elements of X are
preceded and followed by 00. In particular, n0 is even. If n0 6= min0(n), there is a factor v
of length n with n0 − 1 zeros. Since |v|0 is odd but n is even, we must have v = 0φ(v′)1 or
v = 2φ(v′)0 but then 0v1−1 or 2−1v0 is an element of X that starts or ends with 00 and so
is preceded or followed by 12, a contradiction. Hence we have n0 = min0(n). If mj0(n) = 0,
then min0(n + 1) = n0 and there is a factor v of odd length n + 1 with even number n0 of
0’s. We must have v = 2φ(v′) or v = φ(v′)1 but then φ(v′) is an element of X without a 00
preceding or following it.
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For the other direction, assume that n0 = min0(n) and mj0(n) = 1. In particular, it
means that min0(n+ 1) = n0 + 1. If there exists a factor u of X such that 1u, 2u, u1 or u2
is a factor, then min0(n+1) ≤ n0, a contradiction. Hence all the factors u of X can only be
extended by 0u0. Finally, note that u ∈ X cannot occur in x at odd index. In other words,
any u ∈ X can be de-substituted. Indeed, if it is not the case, then u is of the form 0φ(u′)0,
0φ(u′)1, 2φ(u′)0 or 2φ(u′)1. If u is of the first form, then φ(u′)001 is a factor of length n+1
with only n0 zeros, which is a contradiction. Otherwise, u is of one of the last three forms.
Then either u2 or 1u is a factor of x, which is not possible. So the only extension of u as a
factor of x is 00u00.

Let n be a positive even integer and n0 even such that min0(n) ≤ n0 ≤ max0(n).
Let X be an abelian equivalence class of factors of x of length n with n0 zeros. The
class X leads to only one 2-abelian equivalence class of p if and only if n0 = min0(n)
and mj0(n) = 1 or n0 = max0(n) and MJ0(n) = 1. Otherwise, X splits into two
classes.

Lemma A.15.

Proof. The factors in x of length n = 2 are 00, 01, 12, 21, 20. The two classes to consider are
X1 = {00}, which leads to one class, and X2 = {12, 21}, which splits into two classes. Since
MJ0(2) = 1 and mj0(2) = 0, the proposition is true.

Hence let n ≥ 4 even. If n0 = min0(n) and mj0(n) = 1, then by Lemma A.14, all
the elements of X are preceded by 00. In particular, they all start with 1 and X leads to
only one 2-abelian equivalence class. Similarly, if n0 = max0(n) and MJ0(n) = 1, then by
Lemma A.14, all the elements of X start with 0 and we have only one class.

Assume now that X leads to only one class. If an element u of X starts with 2, we have
u = 2φ(u′)1 since n and n0 are even. Then 1u1−1 is an element of X starting with 1 and X
splits into two classes. Hence every element u of X starts with 0 or 1. Assume there exists a
factor u in X that starts with a 1. Then u = 12φ(u′) and u cannot be followed by a 1 since
otherwise 1−1u1 would be an element of X starting with 2. Hence u is always followed by
00 and so ends with 12. Similarly, it can only be preceded by 00. Hence all the factors in
X starting with a 1 are preceded and followed by 00. In particular, if a factor in X starts
with 1 and occurs in x at index i, then the two factors starting at indices i− 1 and i + 1 in
x have n0 + 1 zeros. Assume now there exists a factor u in X starting with a 0. Then, u
can be de-substituted. Otherwise, as n and n0 are even, u is of the form 0φ(u′)0 where φ(u′)
ends with 12. Thus 2φ(u′)2−1 is an element of X starting with 2, which is a contradiction.
Hence u starts with 00. If u ends with 12, then again, 2u2−1 is an element of X starting
with 2. Hence u = 00φ(u′)00 and all elements of X starting with 0 start and end with 00.
In particular, if a factor in X starts with 0 and occurs in x at index i, then the two factors
starting at indices i− 1 and i+ 1 in x have n0 − 1 zeros.

If no elements of X start with 1 or no elements start with 0, we are done by Lemma A.14.
Otherwise, since one can show that x is uniformly recurrent, we can assume that there exist
a factor u ∈ X that starts with 0 and occurs at index i in x, and a factor v ∈ X that starts
with 1 and occurs at index i+ ℓ in x, such that any factor ws of length n occurring at index
i + s in x does not belong to X for 0 < s < ℓ. Then w1 has n0 − 1 zeros whereas wℓ−1

has n0 + 1 zeros. But there is no factor ws with n0 zeros. This is a contradiction since the
number of 0’s changes by at most one between two factors of the same length starting at
consecutive indexes.
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Proof of Proposition 2.44. The case n odd is given by Corollary A.12. Assume now that n
is even. Then by Lemma 2.38, min0(n) and max0(n) are even, and therefore ∆0(n) is even
as well. Let X be an abelian equivalence class of factors of x of length n. Let n0 be the

number of 0’s in the elements of X . There are exactly ∆0(n)
2 odd values of n0 and ∆0(n)

2 + 1
even values. By Corollary A.13, if n0 is odd, X leads to one 2-abelian equivalence class of
p. By Lemma A.15, X splits into two classes except for n0 = min0(n) if mj0(n) = 1 and for

n0 = max0(n) if MJ0(n) = 1. Hence there are in total ∆0(n)
2 + 1 −MJ0(n) −mj0(n) cases

where X leads to two 2-abelian equivalence classes of p instead of one and this is exactly the

difference between P(2)
p (n+ 1) and P(1)

x (n).
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We give in this appendix the proofs omitted in Chapter 6 about constant 2-
labellings of weighted cycles.
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B.1 Weighted cycles of Type3mod

Constant 2-labellings of cycles of Type3mod are similar to the ones of cycles of Type1mod.

y
x

z
x

y

x x

Let p > 3 be an integer such that p ≡ 3 (mod 4). Let Cp be a cycle

of Type3mod, i.e., z(xy)
p−3
4 xx(yx)

p−3
4 , with x 6= y. If c is a non-

trivial constant 2-labelling, then p ≡ 0 (mod 3) and c is 3-periodic
of pattern period 110.

Lemma B.1.

Proof. Let p > 2 be an integer such that p ≡ 1 (mod 4) and let Cp be a cycle of Type3mod
with x 6= y. Assume that c is a non-trivial constant 2-labelling of Cp. The colouring c is not
alternate since p is odd. Hence, without loss of generality, we can assume that there exist
two consecutive black vertices. Moreover, we can suppose that these vertices are the vertices
0 and 1 of Cp.

For the colouring c, we let αx, αy denote respectively the number of black vertices with
weight x and y. We have a = αxx+ αyy + z. We consider the colour of the vertex p+1

2 .

Assume first that c(p+1
2 ) = 1. Then, for the colouring c ◦ R1, the sum of the weights of

black vertices is

a = (αx − 2)y + z + x+ αyx+ y = (αy + 2)x+ (αx − 2)y + z

since under a 1-rotation, any black vertex with weight y becomes a black vertex of weight
x. Similarly, under a 1-rotation, any black vertex with weight x becomes a black vertex of
weight y, except for two vertices: the vertex 1 which becomes the vertex with weight z and
the vertex p+1

2 which becomes the vertex p−1
2 with weight x. As the weights x and y are

distinct, it implies that αx = αy + 2. We set α := αy for a shorter notation.
Let i be the smallest integer in {0, . . . , p−1

2 − 1} such that c(i + 1) = 0 and assume

c(p+1
2 + ℓ) = 1 for any ℓ ∈ {0, . . . , i} (otherwise, consider the colouring c ◦ R p+1

2
instead of

c). Then c(p+1
2 + i + 1) = 0 as depicted in Figure B.1. With the colouring c ◦ Ri+1, we

obtain a sum of the weights of black vertices equal to b = (α+ 2)x+ (α+ 1)y (Figure B.2).
To conclude this case, consider the vertex i+ 2 and observe that whatever value is assigned
to c(i+ 2), we obtain a contradiction (Figure B.3).

Therefore, we have c(p+1
2 ) = 0 and a = αxx+αyy+ z as in the beginning. Observe that

the previous reasoning means that for any integer j, we have1

c ◦ Rj(0) = 1 = c ◦ Rj(1) ⇒ c ◦ Rj

(

p+ 1

2

)

= 0. (B.1)

With the colouring c ◦ R1, the sum of the weights of black vertices is

a = (αx − 1)y + z + αyx+ x = (αy + 1)x+ (αx − 1)y + z.

Since x 6= y, we get αx = αy + 1. We set α := αy for a shorter notation.

1Equation (B.1) is exactly the same as Equation (6.1) obtained for cycles of Type1mod.
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1
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p− i
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2
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2
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2 − i− 1

a = (α+ 1)y + z + αx + x a = (α+ 2)x+ αy + z

Figure B.1: Rotations of the colouring c of a Type3mod cycle with c(p+1
2 + i + 1) = 1, and

their corresponding weighted sums of black vertices which are not all equal.
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a = (α+ 2)x+ αy + z a = (α+ 2)x+ αy + z b = (α + 1)y + x+ αx + x

Figure B.2: Rotations of the colouring c of a Type3mod cycle with c(p+1
2 + i + 1) = 0, and

their corresponding weighted sums of black vertices.
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(a) If c(i+ 2) = 0 b = (α+ 2)x+ (α+ 1)y b = (α+ 2)y + (α+ 1)x
(b) If c(i+ 2) = 1 b = (α+ 2)x+ (α+ 1)y a = (α+ 1)y + z + (α+ 1)x

Figure B.3: Rotations of the colouring c of a Type3mod cycle and their corresponding
weighted sums of black vertices depending on the colour c(i+ 2).
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Let i be the smallest integer in {0, . . . , p−1
2 − 1} such that c(i + 1) = 0. From Equa-

tion (B.1), we have c(p+1
2 +ℓ) = 0 for any ℓ ∈ {0, . . . , i−1}. Moreover, we have c(p+1

2 +i) = 1.

Indeed, assume that c(p+1
2 + i) = 0 (Figure B.4), then with the colouring c ◦Ri+1 we obtain

a sum of the weights of black vertices equal to b = (α + 1)x + (α + 1)y. As c is a constant
2-labelling, with the colouring c ◦ R p+1

2
, we have the same weighted sum b. Then it implies

that the weighted sum b with the colouring c ◦R p+1
2 +1 has a different value, which is a con-

tradiction. So c(p+1
2 + i) = 1 and with the colouring c ◦Ri+1, we have a sum of the weights

of black vertices equal to b = (α+ 2)x+ αy (Figure B.5).
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Figure B.4: Rotations of the colouring c of a Type3mod cycle with c(p+1
2 + i) = 0, and their

corresponding weighted sums b of black vertices which are not all equal.
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a = (α+ 1)x+ αy + z a = (α+ 1)x+ αy + z b = αy + x+ αx+ x

Figure B.5: Rotations of the colouring c of a Type3mod cycle with c(p+1
2 + i) = 1, and their

corresponding weighted sums of black vertices.

From b = (α + 2)x + αy, it follows that i must be equal to 2, otherwise the colouring
c ◦R p+1

2
leads to a different sum of the weights of black vertices (Figure B.6). Then we have

c(3) = 1 (Figure B.7). Similarly c(p+1
2 + 2) = 1 (Figure B.8).

Therefore, the colouring c ◦ R p+1
2 +1 has the same configuration as the colouring c, i.e.,

the vertices 0, 1 are black and the vertex p+1
2 is white. We can apply the same argument as

before. Hence, the colouring c must be 3-periodic of pattern period 110 and the number p
of vertices is such that p ≡ 0 (mod 3).
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a = (α+ 1)x+ αy + z b = (α+ 2)x+ αy b = (α+ 1)y + x+ αx

Figure B.6: Rotations of the colouring c of a Type3mod cycle with c(j) = 1 for any 0 ≤ j ≤ i
with i > 1, and their corresponding weighted sums of black vertices distinct which are not
all equal.
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2 + 2) = 0 b = (α+ 2)x+ αy b = (α+ 2)y + αx

(b) If c(p+1
2 + 2) = 1 b = (α+ 2)x+ αy b = (α+ 1)y + x+ αx

Figure B.7: Rotations of the colouring c of a Type3mod cycle with c(0) = c(1) = 1,
c(p+1

2 + 1) = 1 and c(3) = c(p+1
2 ) = 0, and their corresponding weighted sums of black

vertices depending on the colour c(p+1
2 + 2).
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Figure B.8: Rotations of the colouring c of a Type3mod cycle with c(0) = c(1) = 1,
c(p+1

2 + 1) = 1 and c(3) = c(p+1
2 ) = c(p+1

2 + 2) = 0, and their corresponding weighted
sums of black vertices which are not all equal.
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B.2 Weighted cycles of Type4mod

Constant 2-labellings of cycles of Type4mod are similar to the ones of cycles of Type2mod.

y
x

z
x

y

x
t

x

Let p ≡ 4 (mod 4) with p > 4 and let Cp be a weighted cycle

of Type4mod represented by z(xy)
p−4
4 xtx(yx)

p−4
4 where the

weights x, y, t are not all equal. If c is a non-trivial constant
2-labelling, then c is one of the following colouring

• alternate,

• p
2 -anti-periodic,

• p
2 -periodic if x = y; p

2 -periodic and such that the numbers of black vertices of
weight x and y are equal when c(0) = 0 if y 6= x,

• if t = p
4x + (1 − p

4 )y, c can be moreover such that c(i) = c(i + p
2 ) = 1 for all

even i ∈ {0, . . . , p2 − 1} and c(i) 6= c(i + p
2 ) for all odd i ∈ {0, . . . , p2 − 1} (up

to a 1-rotation).

Lemma B.2.

Proof. Let p ≡ 4 (mod 4) with p > 4 and let Cp be a weighted cycle of Type4mod represented

by z(xy)
p−4
4 xtx(yx)

p−4
4 where the weights x, y, t are not all equal. Clearly, the alternate

colouring is a constant 2-labelling of Cp with weighted sums a = (p2 − 2)y+ z+ t and b = p
2x.

The case where the weights t and y are equal follows from Lemma 6.8. Hence, we
suppose from now on that t 6= y. Consider a non-trivial constant 2-labelling c of Cp that is
not the alternate colouring. Without loss of generality, we may assume that there exist two
consecutive vertices black vertices and that they are the vertices 0 and 1. Hence, we assume
that c(0) = c(1) = 1. We let αx, αy and αt denote respectively the numbers of the vertices
with weight x, y and t for the colouring c. We have then a = αxx + αyy + αtt + z. We
consider four cases depending on the colours of the vertices p

2 and p
2 + 1.

Case 1: Suppose that c(p2 ) = 1 = c(p2 + 1). It means in particular that αt = 1. Then for
the colouring c ◦ R1, the sum of the weights of the black vertices is

a = (αx − 2)y + z + t+ αyx+ x+ x = (αy + 2)x+ (αx − 2)y + t+ z.

If the weights x and y are distinct, then we have αx = αy+2 and we set α := αy for a shorter
notation. Otherwise, we denote by β the number αx + αy of black vertices of weights x = y.
We have

{

a = (α+ 2)x+ αy + t+ z if x 6= y
a = βx+ t+ z if x = y

Let i be the smallest integer in {0, . . . , p2 − 1} such that c(i + 1) = 0 and assume that
c
(

p
2 + ℓ

)

= 1 for all ℓ ∈ {0, . . . , i} (otherwise, consider the colouring c ◦ R p
2
instead of c).

Since t 6= y, it follows c(p2 + i+ 1) = 0 as depicted in Figure B.9.
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(a) a = (α+ 1)y + z + αx+ x+ x (a) a = (α+ 2)x+ αy + z + t
(b) a = (β − 1)x+ z + x+ x a = βx + t+ z

Figure B.9: Rotations of the colouring c of a Type4mod cycle Cp with c(p2 + i+ 1) = 1, and
their corresponding weighted sums of black vertices which are not all equal, where the line
(a) corresponds to the case x 6= y and the line (b) to the case x = y.

Hence c(i+1) = c
(

p
2 + i + 1

)

= 0. With the colouring c ◦Ri+1, we obtain (Figure B.10)
a sum of the weights of the black vertices equal to

{

b = (α+ 2)(x+ y) if x 6= y
b = (β + 2)x if x = y

and the number of black vertices of weight x for the colouring c ◦ Ri+1 is actually α + 2
(respectively β + 2) when x 6= y (resp. x = y). Observe that if c(i + 2) = 0 = c(p2 + i + 2),
then the weighted sum is preserved.
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(a) If x 6= y a = (α+ 2)x+ αy + t+ z b = (α+ 2)y + αx+ x+ x
(b) If x = y a = βx+ t+ z b = βx+ x+ x

Figure B.10: Rotations of the colouring c of a Type4mod cycle and their corresponding
weighted sums of black vertices depending on the equality of the weights x and y.

Let j be the smallest integer in {i + 1, . . . , p2 − 1} such that c(j + 1) = 1. Without
loss of generality, we may assume that c

(

p
2 + ℓ

)

= 0 for all ℓ ∈ {i + 1, . . . , j}. Therefore

c
(

p
2 + j + 1

)

= 1, otherwise it implies that t = y which is a contradiction (Figure B.11).
Consequently, the sum of the weights of the black vertices with the colouring c ◦ Rj+1 is
a = (α + 2)x + αy + t + z (respectively a = βx + t + z) if the weights x and y are distinct
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(resp. equal). Moreover, the colourings c and c ◦ Rj+1 present the same configuration as
c(j + 1) = 1 = c(p2 + j + 1) and as the weighted sums are equal. Hence, we can apply the
same reasoning given before for c to the colouring c ◦Rj+1. It follows that the colouring c is
p
2 -periodic. In particular, we have the following weighted sums

{

a = (α+ 2)x+ αy + z + t and b = (α+ 1)(x+ y) if x 6= y
a = βx+ t+ z and b = (β + 2)x if x = y

with β even.
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2

(a) a = (α+ 2)x+ αy + t+ z b = (α+ 2)(x+ y) a = (α+ 1)y + z + (α+ 2)x
(b) a = βx+ t+ z b = (β + 2)x a = (β + 1)x+ z

Figure B.11: Rotations of the colouring c of a Type4mod cycle with c(j+1) 6= c(p2+j+1) = 0,
and their corresponding weighted sums of black vertices which are not all equal, where the
line (a) corresponds to the case x 6= y and the line (b) to the case x = y.

Case 2: Suppose that c(p2 ) = 0 = c(p2 + 1). It means that αt = 0 and a = αxx+ αy + z.
With the colouring c ◦ R1, the weighted sum of black vertices is equal to

a = (αx − 1)y + z + αyx+ x = (αy + 1)x+ (αx − 1)y + z

as depicted in Figure B.12. Hence, αx must be equal to αy + 1 if the weights x and y are
distinct. In this case, we set α := αy. In the case where x = y, we simply set β := αx + αy.
We have

{

a = (α+ 1)x+ αy + z if x 6= y
a = βx+ z if x = y.

We obtain (Figure B.12) the following weighted sum for the colouring c ◦ R p
2

{

b = (α+ 1)x+ αy + t if x 6= y
b = βx+ t if x = y.

Let i be the smallest integer in {0, . . . , p2 − 1} such that c(i + 1) = 0. We may assume
that c

(

p
2 + ℓ

)

= 0 for all ℓ ∈ {0, . . . , i}. Otherwise, we consider the colouring c ◦R p
2
instead

of c and we apply the same reasoning to the complement colouring of c. It follows that
c
(

p
2 + i+ 1

)

= 1, otherwise we obtain a contradiction as t 6= y (Figure B.13).
Observe that if c(i + 2) = 0 and c(p2 + i + 2) = 1, then the weighted sum b for the

colouring c ◦ Ri+2 is preserved. Therefore, let j be the smallest integer in {i+ 1, . . . , p2 + i}
such that c(j + 1) = 1. Without loss of generality, we suppose that c

(

p
2 + ℓ

)

= 1 for all

ℓ ∈ {i + 1, . . . , j}. It follows that c
(

p
2 + j + 1

)

= 0. Indeed, c
(

p
2 + j + 1

)

= 1 leads to a
contradiction as x 6= t (Figure B.14). Therefore, the sum of the weights of the black vertices
for the colouring c ◦ Rj+1 is a = (α + 1)x + αy + z (respectively a = βx + z) if the weights
x and y are distinct (resp. equal). Hence, the colourings c and c ◦ Rj+1 present the same



B.2. Weighted cycles of Type4mod 229

0
1

p
2 + 1

p
2

R p
2

0
1

p
2 + 1

p
2

R1

0
p− 1

p
2 − 1

p
2

b = αxx+ αyy + t a = αxx+ αyy + z a = (αx − 1)y + z + αyx+ x

Figure B.12: Rotations of the colouring c of a Type4mod cycle with c(p2 ) = 0 = c(p2 + 1),
and their corresponding weighted sums of black vertices.
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(a) If x 6= y a = (α+ 1)x+ αy + z b = (α+ 1)y + αx+ x
(b) If x = y a = βx + z b = βx+ x

Figure B.13: Rotations of the colouring c of a Type4mod cycle and their corresponding
weighted sums of black vertices depending on the equality of the weights x and y.

configuration as c(j + 1) = 1 and c(p2 + j + 1) = 0 and as the weighted sums are equal. It
follows that c is p

2 -anti-periodic. In particular, we obtain in this case

a =
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4
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)

y + z and b =
p

4
x+

(p

4
− 1

)

y + t.
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(a) a = (α+ 1)x+ αy + z b = (α+ 1)x+ αy + t a = (α− 1)y + z + t+ αx+ x
(b) a = βx+ z b = βx+ t a = (β − 2)x+ z + t+ x

Figure B.14: Rotations of the colouring c of a Type4mod cycle with c(j+1) 6= c(p2+j+1) = 0,
and their corresponding weighted sums of black vertices which are not all equal, where the
line (a) corresponds to the case x 6= y and the line (b) to the case x = y.

Case 3: Suppose that c(p2 ) = 0 and c(p2 + 1) = 1. It means that αt = 0 and we have
a = αxx + αyy + z as the sum of the weights of the black vertices for the colouring c. For
the colouring c ◦ R1, we get a = (αx − 2)y + z + t+ αyx+ x. Hence,

t = (αx − αy − 1)x+ (αy − αx + 2)y. (B.2)

Moreover, we know the value of the constant b by a p
2 -rotation. The colouring c ◦ R p

2
has

weighted sum of black vertices equal to b = αxx+ αyy + t.
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Consider the colouring c ◦R1 which has weighted sum a = (αy +1)x+ (αx − 2)y+ z+ t.
Then c(2) 6= c(p2 +2). Indeed, the assumption c(2) = c(p2 +2) leads to the following weighted
sum

{

a = (αy − 1)y + z + t+ (αx − 2)x+ 2x if c(2) = 1

b = (αy + 1)y + (αx − 2)x+ 2x if c(2) = 0

for the colouring c ◦ R2. This is a contradiction as t 6= y.
If c(2) = 1 and c(p2+2) = 0, then the colouring c◦R2 has weighted sum a = αxx+αyy+z

as depicted in Figure B.15. The only possible colours for c(3) and c(p2+3) are both 1. Indeed,
if c(3) = 0 or c(p2 + 3) = 0, then we obtain y = t in order to have the weighted sum of the
black vertices for the colouring c ◦ R3 equal to a or b (according to the colour c(3)). This
is a contradiction. Hence, c(3) = 1 = c(p2 + 3) and we obtain that the weighted sum of the
black vertices for the colouring c ◦ R3 is a = (αy + 1)x+ (αx − 2)y + t+ z.
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a = (αx − 2)y + z + t+ αyx+ x a = αxx+ αyy + z

Figure B.15: Rotations of the colouring c of a Type4mod cycle with c(1) 6= c(p2 + 1), and
their corresponding weighted sums of black vertices.

If c(2) = 0 and c(p2+2) = 1, then the colouring c◦R2 has weighted sum b = αxx+αyy+t.
Using the same reasoning as above, the only possible colouring of the vertices 3 and p

2 +3 is
c(3) = 1 = c(p2 + 3). In this case, the weighted sum of the black vertices for the colouring
c ◦ R3 is also a = (αx − 2)y + z + t+ αyx+ x = (αy + 1)x+ (αx − 2)y + t+ z.

Therefore, for both cases of possible colours c(2) and c(p2 + 2), we have

c(1) = c(3), c
(p

2
+ 1

)

= c
(p

2
+ 3

)

and the weighted sums of the black vertices corresponding to the colourings c◦R1 and c◦R3

are equal to a = (αy +1)x+(αx− 2)y+ z+ t. Hence the colourings c◦R1 and c◦R3 present
the same configuration and we can apply the same reasoning again.

It follows a black pair of diametrically opposed vertices is always followed by a white and
black pair and vice versa. That is to say, for any i ∈ {0, . . . , p2 − 1},

{

c(i) = c(i + p
2 ) = 1 if i odd

c(i) 6= c(i + p
2 ) if i even.
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Note that this is possible since p ≡ 0 (mod 4). So we have αx = p
2 , αy = p

4 − 1 and, by
Equation (B.2),

t =
(p

2
− p

4

)

x+
(p

4
− p

2
+ 1

)

y =
p

4
x+

(

1− p

4

)

y.

So we obtain a = p
2x+(p4 − 1)y+ z and b = 3p

4 x. By Proposition 6.2, we get a = (p4 − 1)y+ z
and b = p

4x for the complementary colouring since

∑

u∈{0,...,p−1}

w(u) = z + t+
p

2
x+

(p

2
− 2

)

y.

Case 4: Suppose that c(p2 ) = 1 and c(p2 + 1) = 0. This case is similar to Case 3 (Fig-
ure B.16) by axial symmetry where the axis is the diameter passing through the vertex 0
and by rotation R−1. Hence we obtain the same conclusion.
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z
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t
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Figure B.16: Axial symmetry Sym and (−1)-rotation R−1 of the colouring c of a Type4mod
cycle Cp.

B.3 Other weighted cycles

y
x

z
y

x Let p be a positive integer. For cycles Cp represented by z(xy)
p−1
2

with x 6= y, only monochromatic colourings are constant 2-
labellings.

Lemma B.3.

Proof. Consider a non-trivial constant 2-labelling c of the cycle represented by z(xy)
p−1
2 with

x 6= y As the number of vertices is odd, c is not the alternate colouring. Without loss of
generality, we assume that c(0) = c(1) = 1. Let αx, αy respectively denote the number of
black vertices with weight x and weight y. We have a = αxx+ αyy + z. With the colouring
c ◦R1, we obtain a = (αx− 1)y+ z+αyx+ y. So αx = αy as x 6= y and we set α := αx Let i
be the smallest integer in {0, . . . , p− 2} such that c(i+ 1) = 0. With the colouring c ◦Ri+1,
we obtain a sum of the weights of the black vertices equal to b = αy+αx+y = αx+(α+1)y
(Figure B.17).
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i+ 1

i

0

Ri R1

1
0

p− i

0
p− 1

p− i− 1

a = αx+ αy + z a = αx+ αy + z b = αy + αx + y

Figure B.17: Rotations of the colouring c and their corresponding weighted sum.

If c(i+2) = 0, then we get the weighted sum b = αxy+(αx+1)x with the colouring c◦Ri+2,
which is a contradiction. If c(i+2) = 0, we obtain the weighted sum a = (α−1)y+z+(α+1)x,
which is a contradiction. Hence, only trivial colourings are constant 2-labellings of this
cycle.
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List of symbols

Arabic letters

i, j, k, ℓ, . . . positive integers

repk(n) base-k representation of n

srg(n, k, λ, µ) strongly regular graphs on n vertices of degree k with pa-
rameters λ, µ

Aut(G) set of all automorphisms of the graph G

Br(v) ball of radius r with center v

E(G) edge set of the graph G

Fac(w) set of factors of the infinite word w

GQ(s, t) generalized quadrangle with parameters s and t

Kn clique of size n

N(u) open neighbourhood of the vertex u

N [u] closed neighbourhood of the vertex u

PG(n, q) n-dimensional projective space over Fq

Pref(w) set of prefixes of the infinite word w

Rα rotation of angle α

St(α, ρ) Sturmian word with slope α and intercept ρ

V (G) vertex set of the graph G

APRx,u set of abelian returns to the prefix u of the infinite word x

APRx set of all abelian returns to prefixes of x

ARx,u set of abelian returns to the factor u of x

ARx set of all abelian returns to factors of x

C 1-dimensional torus R/Z identified with the interval [0, 1)

Cp cycle with p vertices

Du(x) derived sequence of x with respect to u

Eu(x) abelian derived sequence of x with respect to u
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E(G) the set of hyperedges of the hypergraph G

Hq hypercube of dimension q

Kk(s) k-kernel of the sequence s = (sn)n≥0

Pp path with p vertices

Pℓ
w ℓ-abelian complexity of the infinite word w

P∞
w factor complexity of the infinite word w

Rx,u set of return words to u of x

f Fibonacci word

p period-doubling word

t Thue–Morse word

x 2-block coding of the period-doubling word

y 2-block coding of the Thue–Morse word

Fq finite field of order q

Greek letters

δ transition function of an automata

β(G) metric dimension of the graph G

γID(G) identifying number of the graph G

γIDf (G) fractional identifying number of the graph G

γLD(G) locating-dominating number of the graph G

η morphism generating the 2-block coding of the period-
doubling word

µx,u abelian derivation

θx,u inverse map of µx,u

ν morphism generating the 2-block coding of the Thue–Morse
word

σ morphism generating the Thue–Morse word

τ a coding

(In Chapter 2, the coding changing 1 into 2 and vice versa)

τ ′ the coding changing 0 into 3 and vice versa

ϕ morphism generating the Fibonacci word

φ Golden mean

ψ morphism generating the period-doubling word

∆ symmetric difference between sets
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∆0 difference between the maximal number of 0’s and the min-
imal number of 0’s in factors of a given length of x

∆12 difference between the maximal number of 1’s and 2’s to-
gether and the minimal number of 1’s and 2’s together in
factors of a given length of y

Λx,u derivation map

Ψ(u) Parikh vector of a word u

Ψ2(u) vector of N10 associated with a word over {0, 1}

Miscellaneous

∼ab abelian equivalence between words

∼ab,ℓ ℓ-abelian equivalence between words

∼ equivalence between vectors



Index

(r, a, b)-covering code, 139
k-expansion, 28
r-perfect code, 140

abelian
ℓ-abelian complexity, 39
ℓ-abelian equivalence, 38
complexity, 37, 107
derived sequences, 107
equivalence, 28
recurrent word, 29
return word, 97, 98
return word to prefixes, 99

alphabet, 26
automaton

deterministic with output, 32
automorphism, 122

ball, 121
base-k representation, 31
bipartite graph, 121

code, 42, 109
r-perfect, 140
identifying, 133
weighted covering, 140

coding, 29
ℓ-block, 39

colour, 131
colouring, 131

alternate, 131
anti-periodic, 131
diagonal, 131
periodic, 131, 191

commutative image, 27
complement

of a 2-colouring, 131, 173
of a binary word, 27
of a graph, 123, 127

complexity
ℓ-abelian, 39
abelian, 37, 107
factor, 36

concatenation, 26
cone, 158
convergence, 30
covering

problem, 131
weighted covering, 171
weighted covering code, 140

cycle, 126

degree, 120
diagonal, 130
diameter, 121
distance

between vertices, 121
between words, 30, 122

dual, 155

edge, 120
hyperedge, 130, 147

factor, 26
heavy, 102
light, 102

Fibonacci morphism, 30
Fibonacci word, 30, 104
fixed point, 29
folding, 188
function

max-jump, 80
min-jump, 80
transition, 32

graph, 120
r-power, 124, 148
bipartite, 121, 140
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complete, 120
Hamming, 123
hypercube, 149
hypergraph, 130
multipartite, 121, 129
Petersen, 153
regular, 120
simple, 120
strongly regular, 127, 151
undirected, 120
vertex-transitive, 122

Hamming
graph, 123
metric, 123, 126

hyperconic, 157
hypercube, 126, 149
hyperedge, 130, 147
hypergraph, 130, 147
hyperplane, 164

tangent, 166, 167

identifying code, 133
independent

edges, 120
vertices, 120

infinite grid, 129
infinite king lattice, 130
infinite path, 129
intercept, 45
interval, 44

half-interval, 44
isomorphism, 122

kernel, 32

Lee
metric, 123, 126

length, 26, 126
letter, 26

Manhattan
metric, 123, 126

matching, 120
metric

Hamming, 123, 126
Lee, 123, 126
Manhattan, 123, 126

metric dimension, 138
monochromatic, 131, 173

morphism, 29
k-uniform, 29
t-block, 109
automorphism, 122
Fibonacci, 30
isomorphism, 122
letter-to-letter, 29
prolongable, 30

multipartite graph, 121, 129

neighbour, 120
neighbourhood

closed, 120
open, 120

palindrome, 27
paperfolding word, 48
Parikh mapping, 27, 212
path, 126
perfect matching, 120, 149
period-doubling word, 31, 40, 48, 63
periodic

colouring, 131, 191
word, 27

periodicity, 131, 142
power of a graph, 124, 148
prefix, 26
primitive

graph, 127
morphic word, 30
morphism, 29

product
Cartesian, 124
direct, 124, 125
lexicographic, 124

projection, 187

recurrent word, 28, 96
uniformly, 28

representation
of integers, 31
of reals, 28

return word, 41, 96
abelian, 97–99
semi-abelian, 97
to prefixes, 99

reversal, 27
rotation, 44

sequence
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k-automatic, 31
k-regular, 33
abelian derived, 107, 108
derived, 42

set
dominating, 133
locating-dominating, 137
resolving, 138
separating, 133

similar vectors, 51
slope, 45
state, 32

initial, 32
strongly regular graph, 127, 151
Sturmian word, 40, 45, 96

characteristic, 45
sub-lattices, 130
substitution, 30
suffix, 26

Thue–Morse word, 28, 30, 40, 49, 98, 100
twin

twin-free graph, 135
vertices, 134

vertex, 120, 130
vertices, 120

adjacent, 120
twin, 134

weighted
covering, 171

word, 26, 126
(pure) morphic, 30
abelian equivalent, 28
abelian periodic, 28
abelian recurrent, 29, 97
abelian uniformly recurrent, 29, 97
aperiodic, 27
balanced, 27, 41
empty, 26
Fibonacci, 30, 104
morphic, 93
morphic word, 30
paperfolding, 48
period-doubling, 31, 40, 48, 63
periodic, 27, 96
primitive morphic, 30
recurrent, 28

return, 96
rotation, 43
Sturmian, 40, 45, 96
substitutive, 30
Thue–Morse, 28, 30, 40, 49, 98, 100
ultimately abelian periodic, 28
ultimately periodic, 27
uniformly recurrent, 28


