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Resumé 

Ce manuscrit de these, intitulé ―Nanostructures à base de semi-conducteurs nitrures pour 

l'émission ultra-violette‖, concerne l'élaboration de matériaux actifs pour l'émission de 

lumière dans la gamme spectrale de l'ultraviolet profond, dite UV-C. Plus spécifiquement, 

ces travaux de thèse s'inscrivent dans le programme de travail du projet ANR « UVLamp » 

dont l'objectif est de fabriquer une source UV-C pompée électriquement pour la purification 

de l'eau. Dans ce projet, le pompage électrique est réalisé par une source externe d'électrons 

à base de nanotubes de carbone, qui excite ensuite une couche active à base d'AlGaN. Mes 

travaux de thèse abordent la problématique de l'émission de lumière dans l'UV profond, avec 

une contribution intéressante comparant boîtes quantiques auto-organisées et nanodisques 

intégrés dans des nanofils. 

Ce manuscrit de these est composé de six chapitres. Un premier chapitre d'introduction 

generale expose le context et la motivation de l’étude. Le chapitre deux rappelle les 

propriétés opto-électroniques de base des semiconducteurs nitrures composés d'éléments de 

la colonne III et d'azote (III-N). Le texte commence par une description des différentes 

structures cristallines, suivie de celle des propriétés électroniques : sont ainsi passées en 

revue les structures de bandes, les masses effectives dans les matériaux GaN et AlN, ainsi 

que leurs constantes élastiques et piézo-électriques. Ce chapitre se termine avec une 

presentation des défauts structuraux dans le semi-conducteurs nitrures. 

Le chapitre trois est focalisé sur les techniques expérimentales mises en oeuvre pendant 

cette these, en commençant par l'épitaxie, au coeur de ce travail de doctorat. Je explique par 

ailleurs, comment, en parallèle de l'épitaxie, une caractérisation par diffraction d'électrons de 

haute énergie (RHEED) peut être effectuée in-situ, élément tout à fait essentiel au contrôle 

de la croissance. En préambule des deux chapitres suivants, j’indique les conditions de 

croissance dans plusieurs configurations de base : GaN, AlN et AlGaN massifs crus suivant 

l'axe (0001), boîtes quantiques GaN en conditions riche métal (mode Frank-van der Merve) 

et riche azote (mode Stranski-Krastanov), et enfin nanofils GaN sur substrats sapphir ou 

silicium (111). Les différents types de substrat possibles (saphir, silicium(111) et SiC) sont 

ensuite décrits et comparés. Ce chapitre se termine avec une revue des techniques de 

diffraction X, microscopie à force atomique, microscopie électronique à balayage, 

cathodoluminescence, photoluminescence et transmission infra-rouge qui permettront de 

réaliser une caractérisation détaillée des échantillons fabriqués. 



 

iv 

 

Le chapitre quatre est centré sur les échantillons de boîtes quantiques AlGaN/AlN. Les 

épaisseurs de la couche active et de la barrière sont étudiées et caractérisées avec soin avant 

d'aborder le problème de l'accord en longueur d'onde, qui est étudié en fonction de la 

température du substrat, du rapport des flux Al/métal et enfin de l'épaisseur d'alliage AlGaN 

déposé. En faisant varier ces paramètres, je montre qu'il est possible d'atteindre une longueur 

d'émission de 235 nm avec un rendement quantique interne de l'ordre de 30 % à température 

ambiante. Dans un deuxième temps, je m'intéresse à maximiser l'émission de la couche 

active à température ambiante en jouant sur l'épaisseur d'AlGaN déposé, ce qui conduit à la 

définition d'un compromise entre la densité des boîtes quantiques et leur rendement 

quantique interne, ce compromise étant trouvé pour environ cinq monocouches déposées. 

Une autre stratégie est ensuite abordée consistant à modifier la longueur d'onde d'émission à 

épaisseurd'alliage donnée, en faisant varier le rapport des flux Al et métal. De fait, une 

longueur d'onde d'émission de 260 nm est atteinte. Enfin, ce chapitre termine avec la 

description des essais de polissage et métallisation pour augmenter l'extraction de la lumière, 

ainsi que par la presentation d’un essai de croissance sur substrat SiC, qui sera utilisé dans le 

prototype de lampe UV décrite dans le dernier chapitre. 

Le chapitre cinq est consacré au deuxième type d'échantillons fabriqués, consistant en 

des nanodisques AlGaN/AlN sur nanofils GaN. Dans la géométrie nanofils, l’aspect 

croissance deviant bien plus complexe. Tout d’abord, je describe l’épitaxie de ciyces 

éoausses d’AlGa? sur des nanofils GaN. Les variations du flux d'Al en fonction des flux de 

Ga et N sont étudiées, mettant ainsi en évidence des inhomogénéités importantes de la 

composition de l'alliage AlGaN le long du nanofil. Je montre que c’est la relaxation de la 

contrinte qui est à l’origine de ces inhomogénéités de composition, et donc de la localization 

des porteurs. La conception d'hétérostructures AlGaN/AlN est ensuite étudiée dans les 

régimes métal-riche et azote-riche, ce dernier cas étant le seul à montrer des signatures dans 

le spectre d'émission dépendant de la composition de l'alliage. Température de croissance, 

concentration en Al et épaisseur des nanodisques déposés permettent ainsi de couvrir la 

gamme spectrale 240-350 nm. Enfin, une configuration originale de croissance de 

nanodisques dans les conditions de croissance de boîtes quantiques auto-organisées est testée 

en parallèle sur une couche d'AlN et sur un échantillon de nanofils, aboutissant à des 

résultats radicalement différents. 

Dans le dernier chapitre avant de conclure, je décris brièvement un prototype de source 

UV-C utlisant l’approche optimisée du chapitre 4, à savoir des boîtes quantiques AlGaN/AlN 
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déposées sur substrat SiC. Les résultats de purification d'eau obtenus avec cette lampe sont 

presentés. 
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Chapter 1 

1 Introduction and targets 

 

This chapter starts with a historical introduction to III-nitride semiconductors, 

including a presentation of their optoelectronic and electronic applications. 

Subsequently, the motivation of using III-nitrides to fabricate ultraviolet emitters is 

described, followed by the definition of the targets of this work. Finally, the chapter 

finishes with a description of the organization of the manuscript. 
 

1.1 Historical introduction to III-nitride semiconductors 

Wurtzite III-nitride semiconductors (GaN, AlN, InN, and their ternary and quaternary 

compounds) are direct band gap materials that can cover a large spectral range, from near 

infrared (~0.65 eV for InN), visible, to ultraviolet (UV) (6.2 eV for AlN), as illustrated in 

Figure 1.1. In addition, the high thermal conductivity, chemical inertness, and mechanical 

stability of such semiconductors make them able to compete with Si or GaAs in application 

fields requiring extreme operation conditions. 

 
Figure 1.1: Bandgap energy versus lattice constant of the most common semiconductors. 

The growth of polycrystalline AlN [1], GaN [2], and InN [3] was first reported in 1907, 

1932, and 1938, respectively. By the end of the 60’s, the developments in chemical vapor 

phase epitaxy resulted in GaN [4] and AlN [5] with improved crystalline quality. In the 70’s, 
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we find the first reports of III-nitrides grown by metalorganic vapor phase epitaxy (MOVPE) 

[6] and molecular beam epitaxy (MBE) [7]. However, at that time, the high defect densities 

and high n-type residual doping hampered the development of III-nitride devices. A major 

breakthrough came in 1986, when Amano et al. [8] proposed the use of an AlN buffer layer 

prior to the GaN growth, which successfully improved the crystalline quality. A few years 

later, the same team achieved p-type GaN by doping with Mg [9]. 

III-nitride research progressed rapidly after the first demonstration of high efficient blue 

light emitting diodes (LEDs) in 1994 [10], and laser diodes in 1996 [11]. Nitride-based blue 

and green LEDs, commercialized since 1995, are a basic technology for full color displays, 

and the GaN blue laser diode (405 nm) have become a new standard for data storage (Blue-

ray technology). Furthermore, the combination of the blue LED with phosphors has 

revolutionized the lighting industry, offering an efficient and environmentally friendly 

alternative to the white light bulb. 

Beside the success of LEDs and laser diodes, III-nitride materials are attractive for a 

number of optoelectronic and electronic devices, such as high-electron-mobility transistors 

(HEMTs) or UV photodetectors. AlGaN/GaN HEMTs were first developed in 1994 [12] by 

taking benefit of the high electron mobility (~2000 cm
2
/Vs) in a two-dimensional electron 

gas. By exploiting the robustness of GaN, there have been reports on HEMTs with 

unprecedented breakdown voltages [13], [14] which pave the way for high-voltage and high-

power switching applications, such as the electric drive system used in hybrid electric 

vehicles. Several critical advancements make this application prospect increasingly realistic, 

including the progress in GaN-on-Si substrates, development of normally-off gate structures, 

and suppression of current collapse phenomenon. On the other hand, visible-blind ultraviolet 

photodetectors [15], [16] based on GaN have also found broad public outreach as a cheap 

solution to assess the potential erythema damage, for instance incorporated in wrist watches. 

Beyond the above described commercial devices, the properties of III-nitrides have 

drawn attraction for applications such as solar cells, intersubband devices and UV emitters. 

Because of the extraordinary range of the band gap of InGaN, which covers almost the 

complete solar spectrum (from 0.65 to 3.42 eV), InGaN has been recently investigated for 

solar energy conversion [17]–[19]. InGaN solar cells show promising results in terms of 

open-circuit voltage (~2V) and fill factor (up to 80%). Although the energy conversion 

efficiency remains low (below 3.4% [20]) due to the high defect density in high-indium-



INTRODUCTION AND TARGETS 

3 

 

content InGaN films. 

On the other hand, the large conduction band offset of III-nitride semiconductors is 

highly interesting for the applications in the mid- and far-infrared regions using intersubband 

(ISB) transitions [21], a technology where the operation wavelength is defined by band gap 

engineering in quantum structures. Typically, ISB detectors and lasers are based on III-As-P 

materials [22], [23]. The advantages of III-nitrides lie, on the one hand, on the large 

GaN/AlN conduction band offset which can extend the ISB optical response to the fiber-

optics telecommunication range (1.3-1.5 µm), and on the other hand, the large LO-phonon 

energy of III-nitride materials which should allow operation in the THz spectral range (λ = 

30-1000 µm) at room temperature. 

One important issue in the development of the III-nitride technology is the difficulty to 

obtain lattice-matched substrates. Most often, III-nitride materials are still grown on foreign 

substrates such as sapphire, SiC or Si(111). The different lattice parameters and thermal 

expansion coefficients between the grown III-N and the substrates result in high dislocation 

densities (10
7
-10

10
 cm

-2
). Today, bulk GaN substrates are produced by hydride vapor phase 

epitaxy (HVPE) [24], [25] or by ammonothermal methods [26]. However, these substrates 

remain much more expensive than the commercial sapphire-based GaN templates. 

Regarding the growth techniques, commercial III-N devices are grown by MOVPE. 

However, MBE presents several advantages over MOVPE for the fabrication of structurally-

demanding devices, in spite of the lower production throughput. The relatively low MBE 

growth temperature (~700-800°C for GaN, to be compared to >1000°C when grown by 

MOVPE) makes it possible to achieve chemically sharp GaN/AlGaN/AlN interfaces. The 

ability to control the growth rates in the order of monolayer-per-second (ML/s) enables the 

formation of homogeneous nanofilms. Furthermore, adequate tuning of the growth 

conditions opens the possibility of synthesizing three dimensional nanostructures (quantum 

dots, nanowires) in a broad compositional range. 

 

1.2 III-nitrides for UV emitters: Motivation and targets 

UV emitters are used in a number of industrial applications, for instance water/air 

purification, bio-detection, phototherapy, or resist curing. They consist mostly of mercury 

(Hg) vapor lamps, whose emission spectrum spans from mid-UV until infra-red regions as 

exhibited in Figure 1.2. 
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Figure 1.2 Mercury emission spectrum [27]. 

The electrical/optical energy conversion efficiency for the Hg lamp is ~10% [28]. 

Furthermore, the emission spectrum of the Hg lamp shows a variety of lines, and usually a 

single line is selected for the corresponding application, so that only a small percentage of 

the emitted optical power is used. For instance, the 365 nm line (i-line UV-A) represents  

1.5% of the emission spectrum [29], and thus, taking the reported electrical-optical energy 

conversion into account, the efficiency of the Hg lamp at 365 nm cannot exceed 0.15%. 

Moreover, Hg and its compounds are toxic materials. These facts have motivated research on 

the replacement of the Hg lamp by a solid-state alternative, especially in the medical domain. 

 

Figure 1.3: (a) Schematic of a typical UV LED based on III-nitride semiconductors. (b) Plot of the 

maximum external quantum efficiency UV reported for continuous wave (c.w.) (open triangles) and 

pulsed (closed circles) UV LEDs by different research groups [30]. 
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III-nitride semiconductors are a promising choice for such replacement due to the band 

gap that can span over the entire Hg spectral range. Band gap engineering of AlInGaN alloys 

allows tuning the peak emission wavelength to minimize the problems of unwanted heat and 

non-useful optical emission. For the long wavelength UV-A region (365-400 nm), most of 

the commercially available LEDs with high performance are fabricated using InGaN 

quantum wells (QWs). 

Generally, the performance of the photon emitters is probed by the external quantum 

efficiency (EQE) which is expressed by: 

EQE=CIE×IQE×LEE (1.1) 

where the carrier injection efficiency (CIE) is the ratio between the number of electron-hole 

pairs generated in the active region and the number of carriers injected into the device, the 

internal quantum efficiency (IQE) is the ratio between the number of photons emitted by the 

active region and the number of electron-hole pairs generated in the active region, and the 

light extraction efficiency (LEE) is the ratio between the number of photons emitted in free 

space to the number of photons emitted by the active region. 

If we look at the performance of UV LEDs reported by various research groups [Figure 

1.3(b)], a degradation occurs when approaching λ = 365 nm from visible band, which 

corresponds to the band gap of GaN [31], [32]. In order to further blue shift, Al must be 

introduced into the active region, which results in lower EQE than that of LEDs fabricated 

by InGaN/GaN QWs due to a number of key parameters, such as the stronger quantum 

confined Stark effect [33], the absence of In-rich-InGaN alloy clustering which assists in 

confining carriers away from threading dislocations, or the absorbing coefficients (of SiC 

and sapphire based templates) that further increase with decreasing wavelength. 

To enter UV-B (320-280 nm) and UV-C (280-150 nm) regions, high Al contents are 

introduced, which results in higher dislocation densities (10
10

-10
11

 cm
-2

 compared to ~10
8
 

cm
-2

 in the GaN case). Other challenges are the high resistivity of n-contact AlGaN layer, the 

difficulty of making and contacting a p-type AlGaN layer [34]. Kneissl et al. [35] reported 

that EQE usually drops to lower than 1% for the λ < 320 nm. Currently, to our knowledge 

there is only one company: Sensor Electronic Technology (SET) Inc., in USA, who offers 

commercial UV-C LEDs. 

The efficiency of short-wavelength emitters can be improved by using the electron-

pumped UV (EPUV) emitter concept [36]. Although the presence of threading dislocations 
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in the system is inevitable due to the lack of lattice matched substrates, the p-type doping 

issue can be avoided by injecting carriers directly to the active region using an electron gun 

[36]. However, the efficiency of electron-hole generation when injecting the electron beam 

into semiconductors cannot exceed 1/3 (CIE<1/3) [37], limiting the maximum EQE of 

EPUV devices at 33%. For this reason, it is only worth fabricating EPUV emitters in UV-B 

and UV-C region, where the problems of doping and contacts introduce a dramatic limitation 

for current LED technology. EPUV devices have been formerly studied by a couple of 

Japanese teams (National Institute of Material Science [38] and Kyoto University [36]) using 

AlGaN QWs as active region. 

 

Figure 1.4 UV emitter schematic, showing major components including, A: the cabon nanotube field 

emission source, B: Vacuum tube, and C: AlGaN/AlN active region. 

This manuscript is my contribution to the ―UVLamp‖ project (ANR-2011-NANO-027), 

which aims at developing EPUV emitters. The targeted wavelength is set at 260 nm for the 

application of water purification. Carbon nanotubes (CNT) were selected as electron 

injecting sources, due the small source size, low energy consumption, low voltage turn-on, 

high current stability and current density. One challenge to fabricate electron based devices 

is the requirement of operation under high vacuum. To this fact, a special vacuum tube needs 

to be designed. AlGaN/AlN nanostructures were selected to be used as an active medium 

since their spectral response fits the targeted wavelength, and the efficiency of the materials 

can be enhanced by heterostructuring. 

The project consists of three partners who are responsible for different tasks, namely the 

excitation source, vacuum tube, and active medium. The CNT excitation source (Figure 1.4: 

A) has been studied and optimized under the supervision of Prof. S. Purcell at Université 

Claude Bernard Lyon1. The vacuum tube (10
-6

 Torr) (Figure 1.4: B) has been provided by 
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NEWSTEP technologies. The last part, the active medium fabricated using AlGaN/AlN 

nanostructures (Figure 1.4: C), has been studied and optimized at INAC/SP2M-CEA and 

Institute Néel-CNRS and sets the basis of this PhD work. 

 

 

Figure 1.5: Transmission electron microscope images of (a) a multilayer of self-assembled GaN/GaN 

QDs, and (b) GaN/AlN NDs embedded along the wire axis grown by MBE. (c) Variation of integrated 

PL intensity from QDs, NDs, and QWs with temperatures. 

Although the CIE value in EPUV devices is limited at 33%, the EQE can be improved 

by using the nanostructures with high IQE at room temperature as an active medium. The 

IQE can be probed by the ratio between integrated photoluminescence (PL) intensities at 

room temperature (300K) and at low temperature (~5K). Figure 1.5(c) shows the PL 

evolution with temperature for three kinds of GaN/AlN nanostructures, namely QWs, 

quantum dots (QDs) and nanodisks (NDs) in nanowires (NWs). Assuming that 100% of the 

electron-hole pairs generated at low temperature do emit the photons, the IQE of QDs and 

NDs are ~30-40% derived from the luminescence intensity from Fig.1.5(c), which is higher 

than that of QWs (~0.2%). The difference between QDs/NDs and QWs is due to the three 

dimensional carrier confinement which prevents carriers from reaching nonradiative 

recombination centers. In the case of GaN/AlN nanostructures, reaching the targeted 

wavelength would imply decreasing the thickness of GaN heterostructures down to two 

monolayers, which correspons to the thickness of the wetting layer of GaN QDs. The growth 

of such very thin layers is hard to control and generally results in a degradation of the optical 

quality. Therefore, incorporation of Al in the active nanostructures is considered as an 

alternative solution to approach the targeted 260 nm emission. Two types of nanostructures, 

AlGaN/AlN QDs and AlGaN/AlN NDs on GaN NWs, are chosen to be developed in this 

project.  

GaN ND 

AlN 
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The target of my PhD work was to study the epitaxial growth of AlGaN/AlN QDs and 

AlGaN/AlN NDs on GaN NWs using plasma-assisted MBE, in order to assess their 

capability as active media of EPUV lamps. To the best of my knowledge, this is the first 

attempt to incorporate Al in GaN QDs, to reduce the emission wavelength. Efforts were 

dedicated to understanding of the growth, the structural properties and the optical 

performance of such nanostructures, and to adapt the design of the sample to the targeted 

application. 

During my PhD, my work has concerned the MBE growth of AlGaN/AlN QDs and NDs 

on GaN NWs, and their characterization using in situ reflection high energy electron 

diffraction, atomic force microscopy, photoluminescence, cathodoluminescence and Fourier 

transform infrared spectroscopy. Additional data on the structural properties was provided by 

transmission electron microscopy performed by Dr. Martien den Hertog (Institut Néel, 

Grenoble), and by x-ray diffraction measured by Dr. Edith Bellet-Amalric. The 

characterization of the samples under electron pumping using CNT guns was performed by 

our collaborators at Université Claude Bernard Lyon1 (Prof. S. Purcell). 

 

1.3 Organization of the manuscript 

After this introductory chapter, where I have presented the targets of this work, chapter 2 

reviews the basic properties of III-nitride semiconductors, in order to understand the nature 

of the materials. The crystal properties, namely, the crystal structure and the crystal polarity 

are introduced in the first part of the chapter, followed by the description of their electronic 

properties i.e. the band structure and effective masses. Afterwards, the concepts of the strain 

and the intrinsic nature of spontaneous and piezoelectric polarization are displayed. The 

chapter finishes with a description of the structural defects that can be found in the III-nitride 

material system. 

The aim of the third chapter is first to review the growth of III-nitrides via plasma-

assisted MBE. With this purpose, I start with a description of the concepts of growth 

thermodynamics and kinetics. Then, the growth of the relevant materials for this work, i.e. 

GaN, AlN, AlGaN, GaN/AlN QDs, and GaN NWs, is presented, followed by the 

specification of different types of substrate utilized in this work. In the second part of this 

chapter, the principles of the various experimental techniques used to determine the 

structural and optical properties of the grown nanostructures are discussed. 
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The fourth chapter begins with a brief introduction including the challenges of UV 

emitter fabrication and the reason of using the quantum dot nanostructure as an active 

medium. Followed by the systematic designs of the active region which are divided into the 

report of the total active region thickness, AlN barrier thickness, and the amount of deposited 

AlGaN QDs. In order to have an efficient active media, approaching the targeted wavelength 

is demonstrated by fixing the optimized amount of AlGaN QDs and methodically adjusting 

the Al-to-metal flux ratio and substrate temperature. After all the growth optimization, some 

post-growth processes are displayed that can enhance the light extraction. Finally, the growth 

on SiC is shown that can be done without any degradation with respect to that performed on 

sapphire-based substrates. 

The fifth chapter concentrates on the growth of NW heterostructures, starting with a 

study of AlGaN sections on GaN NWs, in order to use this know-how as a foundation for the 

study of AlGaN/AlN NDs. I generally find that the main challenge for nanowire 

heterostructuring is the ternary alloy inhomogeneity, which is governed by the misfit strain 

relaxation in the structure. 

In chapter 6, I firstly describe the characterization of the active QD structure used for the 

first prototype EPUV emitter. Then, the process of fabrication and characterization of the 

EPUV emitter is described. To complete the study, a final test is set by exposing the E-coli 

bacteria with the prototype EPUV emitter in order to evaluate the purification ability of the 

device. 

Finally, chapter 7 contains the conclusions of this work, and a view on the perspectives.
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Chapter 2 

2 Properties of III-nitride semiconductors 

 

This chapter describes the basic properties of III-nitride semiconductors in order to 

understand the nature of the materials and properly utilize them for each 

application. The crystal properties, namely, crystal structure and crystal polarity 

are presented in the first part of the chapter, followed by their electronic properties 

which are divided into band structure and effective mass. Afterwards, the concepts 

of stress, strain and intrinsic natures of spontaneous and piezoelectric polarization 

are displayed. Finally, the defects that can be found in III-nitride system are 

introduced. 

 

2.1 Crystal properties 

There are three types of crystal structure for group III-nitride semiconductors, namely 

wurtzite (-phase, with hexagonal symmetry), zinc-blende (-phase, with cubic symmetry) 

and rock salt (-phase). However, only the first two structures can be epitaxially grown, 

whereas the last appears only at very high pressures and not stable [39]. In order to 

understand the representations of the hexagonal and cubic unit cells, each unit cell system is 

illustrated with their base vectors in Figure 2.1. 

 

 

Figure 2.1: (a) Hexagonal unit cell with the base vectors a1, a2, a3, and c (b) Cubic unit cell with the 

base vectors a1, a2, a3. 

To describe the position of a plane in a hexagonal symmetry, the notation system uses a 

set of 4 integers called ―Miller-Bravais indices‖, which are denoted by the letters h k i l is 
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utilized. The first three indices represent three basal axes a1, a2, and a3, which make 120° to 

each other, as illustrated in Figure 2.1(a). Note that the summation of the first three indices 

must be equal to zero, i.e. -(h+k)=i. The fourth index represents the vertical c-axis. In case of 

cubic unit cell, the notation system uses a set of 3 integers, which are denoted by the letters h 

k l. The three direction indices represent three axes, a1, a2, and a3 that are perpendicular to 

each other as illustrated in Figure 2.1(b). 

 

Figure 2.2: Schematic representation of (a) the wurtzite and (b) zinc-blende structures. The red and 

blue spheres indicate metal and N atoms, respectively. 

The wurtzite structure consists of two hexagonal compact sublattices shifted by 
3

8
𝑐, as 

shown in Figure 2.2(a), whereas the zinc-blende structure consists of two interpenetrating 

face-centered cubic sublattices with the second sublattice shifted by 
√3

4
[111] with respect to 

the first sublattice as shown in Figure 2.2(b). 

Each atom from wurtzite or zinc-blende structure is tetrahedrally coordinated. When one 

performs a rotation of 60° around [111] axis of the zinc-blende structure, the [0001] wurtzite 

structure is obtained. Figure 2.3 depicts the periodicity of both structures. For wurtzite 

structure, the oriented sequence is AB-AB-AB-… along [0001] axis and for zinc-blende 

structure, the oriented sequence is ABC-ABC-ABC-… along [111] axis. 

 

Figure 2.3: Stacking sequence of (a) (0001) planes in wurtzite (seen along the [11-20] azimuth), and 

(b) (111) planes in zinc-blende (seen along the [1-10] azimuth). 

The wurtzite structure is more thermodynamically stable than the zinc-blende structure. 

The difference of the energy to form these two structures is in the range of -20 to -10 
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meV/atom [40]. The zinc-blende III-N can be grown by using specific conditions [41], [42] 

or appears as stacking faults in the wurtzite segments [43]. In this work, the substrates and 

the growth conditions are selected in such the way that they promote the wurtzite phase. 

 

 

Figure 2.4: Wurtzite unit cell, where c and a are lattice constants and u is the anion-cation bond 

length. 

Figure 2.4 shows the parameters that define the wurtzite unit cells which are the edge of 

hexagon (a), the height of hexagon (c) and the anion-cation bond length (u) along the [0001] 

direction. For the ideal wurtzite structure, the c/a and u/c ratios are 1.633 and 0.375, 

respectively. Deviation from these ratios, which change in experimental measurements of 

GaN and AlN (Table 2.1), reflects the distortion of the real lattice structure. 

 

 GaN AlN 

c (Å) 5.185 4.982 

a (Å) 3.189 3.112 

c/a 1.626 1.600 

u/c 0.377 0.382 

Reference [44], [45] [44], [45] 
Table 2.1: Lattice parameters of bulk GaN and AlN. 

In the case of ternary alloys, all the lattice parameters can be approximated by using 

Vegard’s law, that is, by linear interpolation from the parameters of the binary compounds: 

a(AlxGa1-xN)=x·a(AlN)+(1-x)·a(GaN) (2.1) 

c(AlxGa1-xN)=x·c(AlN)+(1-x)·c(GaN) (2.2) 
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Figure 2.5: Schematic view of polar, non-polar, and semi-polar plane. 

In the wurtzite system, the [0001] c axis is known as the ―polar direction‖. The {0001} 

planes or c planes (blue in Figure 2.5) are the polar planes, which has only group III or 

nitrogen atoms at the surface layer. Surfaces parallel to the c axis, which contain equal 

number of group III and nitrogen atoms, are called ―non-polar surfaces‖. Among them, the 

{11-20} plane family is called a plane, and the {1-100} plane family is called m plane (pink 

and green planes illustrated in Figure 2.5, respectively). Planes that form an angle different 

than 0° and 90° with the c axis are called ―semi-polar‖, e.g. the {11-22} plane family (orange 

plane in Figure 2.5). 

 

Figure 2.6: The polarity in GaN: (a) Ga-polar along [0001], (b) N-polar along [000-1] [46]. 

Due to the asymmetry of the wurtzite structure, the [0001] and [000-1] directions are 

different. The [0001] and [000-1] directions are determined by the vector associated to the 

metal-nitrogen bond along the <0001> axis. The [0001] direction is the direction where the 

vector points from a metal atom to a nitrogen atom, and the [000-1] is the direction where 
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the vector points from a nitrogen atom to a metal atom, as illustrated in Figure 2.6. 

Arbitrarily, the material is metal-polar if it is grown along [0001] direction, and nitrogen-

polar if it is grown along [000-1] direction. 

The polarity strongly affects the surface properties and it is important for the design and 

the fabrication of electronic devices. To determine the polarity of GaN films, various 

analytical tools have been used, such as x-ray photoemission spectroscopy [47], Auger 

spectroscopy [48], x-ray photoelectron diffraction [49], resonant X-ray diffraction [50]–[52], 

convergent beam electron diffraction [53] or ion channeling techniques [54]. The chemical 

etching with KOH or NaOH has also been used to determine the polarity since the N-polar 

face is chemically reactive [55]. The choice of polarity depends on the nature of the substrate 

and the growth conditions. In the case of metalorganic vapor phase epitaxy (MOVPE), GaN 

grown on sapphire is systematically Ga-polar. For molecular beam epitaxy (MBE), the 

polarity depends on the substrate preparation and on the nature of buffer layers. For example, 

Ga-polar GaN can be grown on an AlN buffer layer on (0001) sapphire while N-polar GaN 

can be obtained by nucleating GaN buffer layer directly on (0001) sapphire under heavily 

Ga-rich conditions. On the other hand, Ga-polar GaN can be converted to N-polar GaN 

during the growth by exposure the substrate to Mg [56]. 

 

2.2 Electronic properties 

2.2.1 Band Structure 

The band structures of GaN and AlN shown in Figure 2.7 were calculated by using the 

density-functional theory via the local-density approximation method [57]. As illustrated, the 

conduction band minimum and the valence band maximum locate at the center of Brillouin 

zone (Γ-point, k=0). 
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Figure 2.7: Calculated band structure of GaN (left) and AlN (right) [57]. 

Because of the asymmetric nature of wurtzite structure, the crystal-field splitting (∆cf) 

and spin-orbit splitting (∆SO) result in broken valence band degeneracy, which provides three 

different energy level subbands. As illustrated in Figure 2.8, the heavy-hole (HH), light-hole 

(LH), and crystal field split-off hole (CH) subbands are separated. The subband symmetry at 

the Γ-point is Γ9 for HH and Γ7 for LH, and CH. The reported value of ∆cf for GaN = 10 meV 

[58], resulting in the splitting of subbands as illustrated in Figure 2.8. In the case of AlN,   

∆cf = -169 meV [58], i.e. the energy of the top of the LH subband is higher than the energy of 

HH subband. 

  

 

Figure 2.8: Schematic illustration of the spin-orbit splitting and crystal-field splitting in wurtzite 

(WZ) materials compared to zinc-blende (ZB) materials [58]. 
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 Eg(T=0K) (eV) Eg(T=300K) (eV)  (meV/K)  (K) References 

GaN 3.47 

3.492 

3.411 

3.426 

0.590 

0.531 

600 

432 

[59] 
[60]  

AlN 6.126 6.030 1.799 1462 [61] 

Table 2.2: Band parameters of GaN, and AlN. 

The band gap of ternary alloys can be found using equation (2.3), where b is the bowing 

parameter which accounts for the deviation from a linear interpolation between the binary 

compounds (A and B). The reported b for AlGaN has the value in the range of 0-1.5 eV [62], 

[63]. 

𝐸g
(𝐴𝐵)

= 𝑥𝐸g
(𝐴)
+ (1 − 𝑥)𝐸g

(𝐵) − 𝑥(1 − 𝑥)𝑏 (2.3) 

The semiconductor band gap changes with temperature due to the lattice expansion and 

electron-lattice interaction. The evolution of the band gap can be modelled by equation (2.4, 

which was proposed by Varshni et al. [64], where  and  are fitting parameters known as 

Varshni’s thermal coefficients. 

𝐸g = 𝐸g(𝑇 = 0) −
𝛼𝑇2

𝛽 + 𝑇
 (2.4) 

2.2.2 Effective mass 

The carriers in a crystal interact with their periodic potential of the lattice, and thus their 

―wave-particle‖ motion is different from electron in free space. The effective mass is 

inversely related to the curvature of the (E, k) relationship, and can be derived from equation 

(2.5) by assuming a parabolic curvature of the (E, k). 

𝑑2𝐸

𝑑2𝒌
=
ℏ2

𝑚
 (2.5) 

Thus, the effective mass has smaller value for the bands with higher degree of curvature (for 

example, the Γ-valley of GaN in comparison to the K-valley and M-L-valleys, as illustrated 

in Figure 2.9).  

In approximations, the bands are assumed parabolic and the average effective masses are 

taken from different experimental measurements, such as infrared reflectivity, Hall effect 

[65], cyclotron resonance [66], and picosecond time-resolved photoluminescence [67]. The 

commonly used effective masses of electrons and holes of wurtzite GaN and AlN are 

summarized in Table 2.3. 
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Figure 2.9: Valence band structure of GaN, indicating the anisotropy [68]. 

 

 Electron effective mass Hole effective mass 

GaN 0.2 m0 [65], [66] 0.3 m0 [69] 

2.2 m0 [67] 

0.54 m0 [70] 

0.8 m0 [71] 

1.0 m0 [72] 

AlN 0.32 m0 [66], [72]  1.41 m0 [73] 

Table 2.3: Effective masses of wurtzite GaN and AlN. 

 

2.3 Elastic properties 

III-nitride materials are mainly synthesized on sapphire, SiC, or Si substrates. The lattice 

and thermal expansion mismatch between substrate and epitaxial layer imposes a stress on 

the epitaxial layer which can profoundly affect its optical and electronic properties. The 

magnitude of the effect depends on the degree of stress. For small stress, the lattice reacts 

elastically through a shape transition (strain). For large deformations, the relaxation occurs 

plastically, i.e. introducing dislocations or cracks. 

2.3.1 Strain and stress 

In a linear elasticity regime, the stress (σij) applied to a material is related to the strain 

(εkl) by Hooke’s law: 

kl

kl

ijklij C    
(2.6) 

where Cijkl is the fourth-order elastic tensor. 
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To simplify the notation especially that of the fourth-order tensor Cijkl , we introduce the 

indices {1, 2, 3, 4, 5, 6}, which replace the pairs of indices. 

ε1 = εxx   σ1 = σxx 

ε2 = εyy   σ2 = σyy 

ε3 = εzz   σ3 = σzz 

ε4 = εyz, εzy  σ4 = σyz, σzy 

ε5 = εzx, εxz  σ5 = σzx, σxz 

ε6 = εxy, εyx  σ6 = σxy, σyx 

For hexagonal symmetry, the elastic tensor contains six elastic modules, five of which 

are independent and C66=(C11-C12)/2 as illustrated in equation (2.7): 
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 (2.7) 

Calculated and experimental values of the Cij parameters of GaN and AlN are 

summarized in Table 2.4. 

 C11 C12 C13 C33 C44 References 

GaN 374 106 70 379 101 [74] exp. 

390 145 106 398 105 [75] exp. 

365 135 114 381 109 [76] exp. 

370 145 110 390 90 [77] exp. 

396 144 100 392 91 [78] The. 

367 135 103 405 95 [79] The. 

AlN 411 149 99 389 125 [80] exp. 

410 140 100 390 120 [77] exp. 

398 140 127 382 96 [78] The. 

396 137 108 373 116 [79] The. 
Table 2.4: Experimental and theoretical stiffness constants of GaN and AlN in GPa. 

When performing heteroepitaxy of III-nitrides on the (0001) plane, biaxial stress occurs, 

i.e. the in-plane stress is uniform (σ11=σ22=σ) and there is neither stress along the c-axis nor 

shear stress. In that particular case (biaxial strain configuration), the Hooke’s law is 

simplified: 
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(
𝜎
𝜎
0
)=(

𝐶11 𝐶12 𝐶13
𝐶12 𝐶11 𝐶13
𝐶13 𝐶13 𝐶33

)(

𝜀1
𝜀2
𝜀3
) (2.8) 

Due to the lattice symmetry, the strain components 𝜀1 and 𝜀2 are equal: 

𝜀1 = 𝜀2 = 𝜀𝑥𝑥 = -(aepi-asub)/asub (2.9) 

where aepi and asub are the lattice constants of the epilayer, and substrate, respectively. 

Consequently, the biaxial strain induces a strain 𝜀3 with the opposite sign of 𝜀𝑥𝑥 along the 

[0001] axis perpendicular to the surface, which is given by: 

𝜀3 = 𝜀𝑧𝑧=-2(C13/C33) 𝜀𝑥𝑥 (2.10) 

 

2.3.2 Spontaneous and Piezoelectric polarization 

Spontaneous polarization (Psp) is an intrinsic property of III-nitride materials, due to the 

asymmetry in hexagonal wurtzite structure. A non-zero dipole moment of III-N orients along 

[0001] direction, different from high symmetry cubic structure where the dipole moments 

cancel each other. Bernardini et al. performed ab initio calculations of III-nitride 

spontaneous polarization using the Berry-phase approach to polarization in solids, obtaining 

Psp = -0.029 and -0.081 C/m
2
 for GaN and AlN, respectively [33]. A later report using the 

generalized gradient approximation corrected these values to Psp = -0.034 and -0.090 C/m
2
 

for GaN and AlN, respectively [81]. In the case of the AlxGa1-xN ternary alloy, the 

spontaneous polarization can be calculated as [82], [83]: 

𝑃𝑆𝑃(𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁) = 𝑥𝑃𝑆𝑃(𝐴𝑙𝑁) + (1 − 𝑥)𝑃𝑆𝑃(𝐺𝑎𝑁) + 𝑏𝑥(1 − 𝑥) (2.11) 

where PSP is the spontaneous polarization and b = 0.019 C/m
2
 is the bowing parameter for 

the spontaneous polarization in AlGaN [83], [84]. 

The piezoelectric polarization (Ppz) exists when applying stress to the system. The 

direction of Ppz depends on the strain state, e.g. in case of tensile biaxial strain of polar 

material the piezoelectric vector points along [000-1] direction whereas compressive biaxial 

strain of polar material, the vector points along [0001] direction. The piezoelectric 

polarization III-N can be calculated with the following equation: 
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𝑃𝑃𝑍 = (
0 0 0
0 0 0
𝑒31 𝑒31 𝑒33

    
0 𝑒15 0
𝑒15 0 0
0 0 0

) ×

(

  
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝜀𝑦𝑧
𝜀𝑥𝑧
𝜀𝑥𝑦)

  
 

 (2.12) 

where eij are the piezoelectric coefficients of the material and εij are the stress tensor. The 

values of the piezoelectric coefficients for GaN and AlN are summarized in Table 2.5. 

 GaN AlN Ref. 

e15(C/m
2
) -0.30 -0.48 [85] 

e31(C/m
2
) -0.49 -0.60 [33] 

e33(C/m
2
) 0.73 1.46 [33] 

Table 2.5: Calculated piezoelectric coefficients e15, e31, e33 for GaN, and AlN. 

 

 

Figure 2.10: Polarization (spontaneous, piezoelectric and total polarization) in a quantum well 

consisting of a pseudomorphic GaN layer embedded in relaxed AlGaN. The interface charge (σ) is 

caused by the different total polarization in the GaN and AlGaN films [46]. 

In order to demonstrate the effect of polarization, the structure of a Ga-polar 

AlGaN/GaN/AlGaN quantum well is depicted in Figure 2.10. The GaN is assumed to be 

grown pseudomorphically on the AlGaN. The lattice constants a and c of the GaN quantum 

well decrease and increase respectively due to the biaxial compressive stress. Piezoelectric 

polarization can be calculated as: 

𝑃𝑃𝑍 = 𝑒33𝜀𝑧𝑧 + 𝑒33(𝜀𝑥𝑥+𝜀𝑦𝑦) (2.13) 

where e13 and e33 are the piezoelectric coefficients. Assuming a biaxial strain configuration, 

and hence combining equations (2.10) and (2.13), the piezoelectric polarization can be 

determined by: 

𝑃𝑃𝑍 = 2(𝑒31 − 𝑒33
𝐶13
𝐶33
) 𝜀𝑥𝑥 (2.14) 
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Figure 2.11: Conduction and valence band edges of a pseudomorphic growth 

Al0.15Ga0.85N/GaN/Al0.15Ga0.85N. The arrow indicates radiative recombination of an electron and hole, 

which is red-shifted in comparison to the bandgap energy due to the Stark effect [46]. 

 

Considering the structure in Figure 2.10, the different total polarization in GaN and 

AlGaN layers induce charge densities (-σ, and +σ) at the GaN/AlGaN interfaces, and 

consequently generate an internal electric field (E) across the GaN epilayer. Figure 2.11 

shows the corresponding conduction and valence bands of the structure depicted in Figure 

2.10. The bands are bent due to the Stark effect, which separates the electron and hole 

wavefunctions along the growth axis and reduces the energy of the band-to-band transition 

[67]. 

 

2.4 Structural Defects 

Structural defects are any interruption of the crystal translation system, and can be 

classified into point defects, line defects, and planar defects. Point defects are defects 

generated only at or around a lattice point, so that the lattice distortion is rather local. Point 

defects can be vacancies, interstitial defects, or substitutional defects, as illustrated in Figure 

2.12. Vacancies are lattice sites which should be occupied in the perfect crystal but are 

vacant. Interstitial defects are atoms that occupy some sites in the structure where, usually, 

there should not be an atom. A pair of nearby vacancy and interstitial atom can be called 

―Frenkel defect‖. Substitutional defects are the types of atoms that should not be in the 

lattice structure but they are, by occupying the vacant sites in the lattice. Hence they can be 

called ―impurities‖. Such substitutional atom can be either smaller (substitutional smaller 

atom) or larger (substitutional larger atom) than the fundamental atom. 
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Figure 2.12: Schematic illustration of point defect types in crystal structure. 

Line defects and planar defects are called in general ―extended defects‖, and they are 

systematically present in III-nitride materials due to the growth on foreign substrates. The 

grown epilayers release the misfit-induced strain via generation of dislocations [53], [86], 

[87], cracks[88]–[90], or stacking faults [91, p. 1998], [92], [93]. These extended defects can 

affect the material properties causing non-radiative recombination, carrier scattering, and 

enhanced diffusion of dopants and impurities [94], [95]. 

The dislocations in the III-nitride system have been studied by Wu et al. [86]. They 

reported that ~70% of such defects are perfect pure edge dislocations (a-type) with burgers 

vector of 1/3<11-20>, consistent to the dislocation vector reported elsewhere [96]–[98]. The 

edge-type threading dislocations are generated at the first stage of the growth when islands 

coalesce and then propagate along the growth direction [99], [100]. Other perfect 

dislocations have also been observed, i.e. mixed screw-edge dislocation (a+c type) and 

screw dislocation (c-type) with burgers vectors of 1/3<11-23> and <0001>, respectively. In 

addition to perfect dislocations, Shockley and Frank partial dislocations are observed close 

to the epilayer-substrate interface. 

Apart from dislocations, there are other mechanisms to release the stress from epilayer 

system, e.g. cracks and stacking faults. For the cracks, it was reported that they are generated 

by the tensile growth stresses once a critical thickness is reached [88]. The cracks are 

reported in nitride system grown on many types of substrate, such as on sapphire [88], on Si 

[89], and on SiC [90]. Another extended defect in III-nitride materials is stacking faults 

(SFs). Generally, they are terminated at each end with partial dislocations. Transmission 
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electron microscopy studies have reported a high density of basal SFs near the epilayer-

substrate interface [86], [101]–[103]. Basal SFs in III-nitride materials are separated into 

type I, type II, and extrinsic SFs [104], which differ in the arrangement of the stacking 

sequence. From theoretical calculations, the formation energy of type I SF is lower than type 

II and extrinsic SF, respectively. The SFs can be considered as quantum-well liked region of 

zinc-blende surrounded by the wurtzite host. Other than the basal stacking fault, which occur 

perpendicularly to the growth axis, another type of SF, namely prismatic SF, can generate 

parallel to the growth axis. The prismatic SF is believed to occur when III-nitrides are grown 

on foreign substrates such as SiC or sapphire [91]. Furthermore, prismatic SFs can be 

generated when basal SFs fold onto the prism plane within epilayers. A summary of the 

typical dislocation and stacking faults found with their burgers vectors (b) and displacement 

vectors (R) are summarized in Table 2.6 [105]. 

Dislocations 

b Type Character 

1/3<11-20> a Perfect 

1/3<11-23> a+c Perfect 

<0001> c Perfect 

1/3<1-100>  Shockley partial 

1/6<20-23>  Frank-Shockley partial 

1/2<0001>  Frank partial 

Stacking faults 

R Type SS or plane 

1/3<1-100> B-I1 ABABCBCB 

1/6<20-23> B-I2 ABABCACA 

1/2<0001> B-E ABABCABAB 

1/2<1-101> P {11-20} 

1/6<20-23> P {11-20} 
Table 2.6: Dislocations and stacking faults in hexagonal structure. P: prismatic, B: basal, and SS: 

stacking sequence [105]. 
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Chapter 3 

3 Experimental techniques 

 

The aim of this chapter is to introduce the concept of epitaxial growth and the 

information concerning the growth of III-Nitrides (GaN, AlN, AlGaN, GaN/AlN 

quantum dots, GaN nanowires, and GaN/AlN nanodisks on GaN nanowires) via 

plasma-assisted molecular beam epitaxy. The ending part of the chapter describes 

the characterization techniques that I used for determining the structural and 

optical properties of the grown samples. 
 

3.1 Epitaxial growth 

The process of material deposition onto a crystalline substrate is called “epitaxy” if the 

crystallographic arrangement of the deposited material is aligned with the substrate lattice. 

When the deposited material is the same as the substrate, the process is called 

“homoepitaxy”, which is generally performed when a purified layer is required or when a 

different doping level is needed. When the deposited material is different from the substrate, 

the process is called “heteroepitaxy”, which is used either to grow crystalline materials for 

which bulk crystals cannot be obtained, i.e. no substrate available for homoepitaxy, or to 

integrate crystalline layers of different materials (heterostructuring). 

 
Figure 3.1: Schematic of different atomic processes occurred on the surface during the growth. 

Figure 3.1 depicts different atomic processes namely adsorption, diffusion, nucleation, 

incorporation and desorption that can take place at the growing surface. The growth process 

depends not only on thermodynamic models, but also on the adatom kinetics [106]–[110] 

which is affected mainly from the substrate temperature. 

In the case of lattice mismatched heteroepitaxy, Daruka and Barabàsi discriminated three 

thermodynamic growth modes, namely Frank van de Merve, Stranski-Krastanov, and 
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Volmer-Weber growth modes [111][112]:  

- Frank van der Merve (FM) growth mode: Adatoms attached preferentially to the 

surface sites due to the comparative lattice constants (very low misfit ε) resulted in 

atomically smooth surface. Misfit dislocations appear above a critical thickness. 

- Stranski-Krastanov (SK) growth mode: Due to the mediate misfit ε affect to the 

primitive growth layer is strained layer-by-layer growth, continuous growth of the 

layer until the height is higher than critical thickness resulted in relaxation of the 

layer and generated three-dimensional islands. Continuation of the growth can result 

in the formation of misfit dislocations (SK-MD)  

- Volmer-Weber (VW) growth mode: Adatom-adatom interactions are stronger than that 

of adatom-surface interactions due to huge misfit ε resulted in three-dimensional 

clusters or islands. 

In the case of the GaN/AlN material system, tuning of the growth conditions allows 

switching between FM and SK growth modes. The choice of growth mode is given by the 

minimum free energy per unit area, understood as E = Estrained epilayer + Esurface, for a certain 

film thickness h (h > 1 monolayer (ML)). If we compare (1) coherent two-dimensional (2D) 

growth (FM), (2) SK growth mode, (3) 2D growth with misfit dislocations (FM-MD), and 

(4) SK growth mode with misfit dislocations (SK-MD), the free energies per unit of area can 

be written as [113]: 

𝐸𝐹𝑀 (𝑕) = 𝑀(∆𝑎/𝑎)
2𝑕 + 𝛾 (3.1) 

𝐸𝑆𝐾  (𝑕) = (1 − 𝛼)𝑀(∆𝑎/𝑎)
2𝑕 + 𝛾+∆𝛾 (3.2) 

𝐸𝐹𝑀−𝑀𝐷 (𝑕) = −
𝐸𝑀𝐷(𝑕)

2

[𝑀(𝛥𝑎/𝑎)2𝑑0
2𝑕))𝑀]

+
2𝐸𝑀𝐷(𝑕)

𝑑0
+ 𝛾 (3.3) 

𝐸𝑆𝐾−𝑀𝐷 (𝑕) = −
𝐸𝑀𝐷(𝑕)

2

[(1 − 𝛼)𝑀(∆𝑎/𝑎)2𝑑0
2𝑕]
+
2𝐸𝑀𝐷(𝑕)

𝑑0
+ 𝛾 + 𝛥𝛾 (3.4) 

where M is the film’s biaxial modulus, Δa/a is the lattice mismatch between the epilayer and 

the substrate: (asubs-aepi)/aepi, γ is the film’s surface energy (<γsubst), α is the elastic gain by 

accommodating the film’s strain through the formation of partly relaxed SK islands, Δγ is the 

surface energy cost by the formation of the facets, d0 is the distance for a fully relaxed 

epilayer, and EMD is the energy cost per unit length of forming a MD. The equations (3.3) 

and (3.4) are only defined when the film thickness (h) is thicker than the critical plastic 
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thickness (𝑕𝑐
𝑀𝐷): 

𝑕𝑐
𝑀𝐷 = 𝐸𝑐−𝑀𝐷/(𝑀(∆𝑎/𝑎)

2𝑑0) (3.5) 

where Ec-MD is the MD energy formation at the critical plastic thickness (𝑕𝑐
𝑀𝐷). Another 

critical thickness is the critical thickness of SK quantum dot (QD) generation (𝑕𝑐
𝑆𝐾), which 

can be expressed from the equations (3.1) and (3.2) as: 

𝑕𝑐
𝑆𝐾 = ∆𝛾/(𝛼𝑀(∆𝑎/𝑎)2) (3.6) 

For a given epilayer thickness, the equilibrium growth mode is the one that exhibits the 

minimum energy. The comparison between the energies deduced from the equations (3.1), 

(3.2), (3.3), and (3.4) would, therefore, allow us to predict the expected growth mode. 

 

 
Figure 3.2: Phase diagram showing the expected growth mode as a function of the deposited 

thickness (h) and the critical thickness ratio (η) [113]. 

Figure 3.2 is the phase diagram showing the expected growth mode derived from the 

minimized formation energy as a function of the deposited thickness and the ratio between 

the two critical thicknesses η: 

(η=𝑕𝑐
𝑀𝐷/𝑕𝑐

𝑆𝐾) (3.7) 

When considering a specific η in equation (3.7), for example η <1, i.e. 𝑕𝑐
𝑀𝐷<𝑕𝑐

𝑆𝐾, the 

system favors plastic relaxation, i.e. the growth evolves along the blue arrow (shown in 

Figure 3.2), which render 2D growth mode in a primitive layer and start generating 

dislocations when deposited film is thickner than the 𝑕𝑐
𝑀𝐷. However, the 𝑕𝑐

𝑆𝐾 can be lowered 

by decreasing the surface energy Δγ for creating facets, consequently transforms the η ratio 

to be more than unity, thus the growth proceeds along the red arrow (displayed in Figure 

3.2). The modification induces the SK transition instead of the plastic relaxation as exhibited 

as the shift of white circle, at the same deposited thickness, in Figure 3.2 from the 2D to SK 
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region. 

The formation of SK QDs in III-As system such as InAs/GaAs is driven by the large 

lattice mismatch (ε=Δa/a≈7%) of the system. However, in II-VI system which also has large 

lattice mismatch (ε≈6%), no clear islands are reported. On the other hand, GaN/AlN system 

with lower lattice mismatch (ε≈2.4%) is known for exhibiting a clear 2D-3D transition. 

Hence, it is obvious that the growth mode depends not only on the lattice mismatch between 

the grown layer and substrate but also on the dislocation formation energy and surface 

energy. These facts emphasize the validity of the equilibrium model presented above. 

 

3.2 Plasma-assisted molecular beam epitaxy 

Epitaxial growth can be performed by various techniques, such as by metalorganic vapor 

phase epitaxy (MOVPE), liquid phase epitaxy (LPE), hydride vapor phase epitaxy (HVPE), 

and molecular beam epitaxy (MBE). The latest is the method used in this work, which was 

developed in the late 60s for the growth of III-V semiconductors in Bell Telephone 

Laboratories [114]. It requires ultra-high vacuum (UHV = 10
-10

-10
-11

 Torr) to ensure that the 

mean free path of the precursor molecules is much longer than the distance between the 

source cells and the substrate. Thus, the crystal growth is mostly governed by the kinetics of 

the surface processes rather than the thermodynamic equilibrium. The relatively low growth 

temperatures (600-700 °C) in MBE compared to other growth techniques allow a wide range 

of alloys to be synthesized even though they are rarely miscible under thermodynamic 

equilibrium. The UHV environment of MBE makes the real-time in situ surface 

characterization by reflection high energy electron diffraction (RHEED) possible. This 

measurement technique allows the grower to determine the surface mechanism and to 

atomically control the layer thickness by observing RHEED intensity oscillations. 
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Figure 3.3: Schematic of the PA-MBE machine. 

Figure 3.3 depicts the schematic of the plasma-assisted MBE (PA-MBE) used in this 

work. The system consists of 3 chambers, i.e. introduction chamber, transfer chamber and 

growth chamber. Samples are loaded into the system through the introduction chamber. The 

pressure of this chamber is normally kept ~10
-8

 Torr. While loading the samples into the 

system, the pressure of the introduction chamber is increased to atmospheric pressure by 

nitrogen gas, which keeps supplying during the transfer process to reduce the contamination 

that is coming from air atmosphere. The samples are transferred from the introduction 

chamber to the transfer chamber through a gate valve. The transfer chamber pressure is 

constantly kept in the 10
-10

 Torr range by an ionic pump. This chamber is used as a buffer 

between the introduction chamber that is often exposed to atmospheric pressure and the 

growth chamber that need to be kept in UHV conditions, since the structure synthesis is 

performed in the growth chamber. The fluctuation of the pressure may disturb the synthesis. 

The background pressure of the growth chamber is kept in the range of 10
-10

-10
-11

 Torr by 

the cryogenic pump, the pressure rises to ~10
-6

 Torr during the deposition. Once the sample 

is transferred to this chamber, it is mounted onto a manipulator and is then adjusted to the 

growth position. During the growth, the substrate holder can be rotated in-plane to have a 

homogeneous deposition. 

In the case of III-N PA-MBE, the metallic III elements (In, Ga, and Al) and doping 

elements (Si, Mg) are normally obtained from solid sources. In contrast, the nitrogen 
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molecules, N2 cannot be thermally dissociated into mono-atomic nitrogen. Generally, there 

are two possibilities to create active N atoms, either by using radio-frequency plasma cell or 

NH3 source. In the first case, the active N is produced by a dissociation of N2 molecules 

which pass through a lightning of plasma generated by radio-frequency (RF) discharge. 

Hence, such system is called ―plasma-assisted MBE‖. In the latter case, the active N atoms 

are created from NH3 molecules in which the bound of nitrogen atom is weaker than that in 

N2. GaN is obtained by reaction of NH3 with Ga adatoms through a surface decomposition 

process shown in equation (3.8). 

2𝑁𝐻3 + 2𝐺𝑎  2𝐺𝑎𝑁 + 3𝐻2 (3.8) 

The presence of NH3 on the surface can prevent GaN from dissociating and evaporating. 

As a consequence, GaN can be grown at higher temperatures than the one grown by PA-

MBE. In our case, PA-MBE is selected for the growth of III-N nanostructures. The system is 

equipped with a radio-frequency (RF) plasma cell HD25 supplied by Oxford Applied 

Research, as illustrated in Figure 3.4. High purity N2 is introduced into a pyrolytic boron 

nitride (PBN) cavity. The N2 molecules are dissociated into active N atoms by the plasma, 

which is generated by inductively-coupled RF excitation. The stability of N atom flux is 

controlled by an optical feed-back loop. 

  

Figure 3.4: Schematic of the RF plasma cell mounted to PA-MBE system. 

 

3.3 Reflection high energy electron diffraction 

As PA-MBE growth is performed under UHV conditions, the system can be equipped 

with RHEED which allows in-situ and real-time monitoring the surface evolution. Figure 3.5 

depicts the schematic description of the RHEED system. Electrons are generated by injecting 

current to a filament and then they are accelerated by high voltage (current = 1.5 A, 

acceleration voltage V = 32 kV in our system). The electron beam strikes on the substrate 

surface at a small grazing angle (2-3°). This driving voltage (V) determines the wavelength 
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of the electron (λ) as: 

𝜆 =
𝑕

√2𝑚0𝑒𝑉(1 +
𝑒𝑉
2𝑚0𝑐2

)

 
(3.9) 

The reflected and diffracted beams from the surface impinge onto the fluorescent screen 

and generate the interference pattern that corresponds to the reciprocal space view of the 

surface structure.  

 
Figure 3.5: (a) Side-view and (b) Top-view schematic descriptions of the RHEED. 

By analyzing the RHEED patterns, the following information can be extracted: 

 Determination of the in-plane lattice constant. As illustrated in Figure 3.6, for a small 

incident angle, the in-plane lattice distance du is given by: 

du=Lλ/t (3.10) 

where L is the distance from the normal surface to the fluorescence screen, λ is the 

electron wavelength, and t is the horizontal distance between two fringes (or two arrays 

of spots) of the RHEED pattern. By this concept, we could real-time monitor the lattice 

parameter evolutions and deduce the strain relaxation process during the growth of 

strained layer. 
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Figure 3.6: Schematic description of the procedure to determine the in-plane lattice constant. 

 Surface morphology. The RHEED pattern is highly sensitive to the surface morphology 

and the crystal quality. However, the interpretation from the RHEED pattern towards 

different surface morphology is not easy due to the ―non-idealities‖ which arise from 

both the substrate and the electron beam [115]. There are some common interpretations 

from the well-known patterns, such as the streaky pattern indicates an atomically flat 

surface, the spotty pattern that moves with the sample rotation indicates the roughness 

with large terrace size, and the stationary spot pattern indicates 3D growth. 

 
Figure 3.7: Schematic description of the procedure to determine the growth rate from the 

variation of the RHEED intensity.Red dots represent adatoms that form during the layer 

formation process, white dots represent adatoms in deep layers that are not involve in RHEED 

intensity, and blue arrows represent the electron beam that projects onto the surface. 

 Determination of the growth rate [116]. The growth rate is defined from the coverage of 

1 ML divided by the interval time spent from θ = 0 to 1 ML as shown in Figure 3.7. The 

RHEED intensity depends on the surface roughness. For a flat surface (coverage 

θ = 0 ML) the RHEED intensity is maximum. Then, the RHEED intensity decreases for 

incomplete coverage due to the electron diffusion and reaches a minimum intensity at 
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θ = 0.5 ML, where the surface roughness is maximum. After that, the space between the 

nucleating sites gets filled, resulting in intensity recovering until θ = 1 ML, where the 

intensity returns to maximum. In the case of III-nitrides, the fluctuation of the RHEED 

intensity is observed under nitrogen rich conditions where the growth occurs in layer-by-

layer fashion, whereas under metal rich conditions, the mobility of the adsorbed species 

is much larger and the growth proceeds in the step-flow layer-by-layer mode. Thus, the 

RHEED intensity remains constant. 

 

3.4 Plasma-assisted molecular beam epitaxy of III-nitrides 

The PA-MBE growth of III-nitrides is performed under constant nitrogen flux which 

sets the maximum growth rate. The key parameters which control the crystal quality and the 

growth kinetics are the substrate temperature and the metal/nitrogen flux ratio. In this 

section, the growth of 2D GaN(0001), AlN(0001), and AlGaN(0001), zero-dimensional (0D) 

GaN/AlN QDs, one-dimensional (1D) GaN nanowires (NWs), and GaN/AlN NW 

heterostructures are presented, respectively. 

3.4.1 Growth of GaN (0001) 

The growth of GaN on GaN (0001) performed by PA-MBE at specific growth 

temperatures may result in various surface morphologies which drastically depend on the 

III/V ratio. As discussed in literatures [117]–[119], the GaN layer presents a facetted surface 

when the growth is performed under N-rich conditions. In order to achieve atomically flat 

GaN layers a certain Ga excess is required, i.e. the GaN growing surface must be covered by 

an adsorbed layer of Ga atoms. Figure 3.8 shows the Ga coverage as a function of impinging 

Ga flux, 4 regimes can be distinguished [117]: 
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Figure 3.8: Ga coverage on top of the GaN (0001) surface as a function of the supplied Ga flux, 

measured at substrate temperature Ts=740°C and under N flux =0.28 ML/s [117]. 

 A: For ΦGa < 0.3 ML/s, the Ga coverage presented on the surface can be ignored. 

 B: For 0.3 ML/s < ΦGa < 0.5 ML/s, there is >1 ML of Ga presented on the surface. 

 C: For 0.5 ML/s < ΦGa < 1 ML/s, there are 2 ML of Ga presented on the surface. 

 D: For ΦGa > 1 ML/s, the system reach the Ga accumulation regime, forming Ga 

droplets on the surface. 

It is noteworthy that the above described experiment was performed at 740°C, since 

performing at different temperatures might affect Ga desorption characteristics and thus 

changing the stated boundaries, as illustrated in Fig. 3.9 [119]. 

 

Figure 3.9: Ga coverage regimes as a function of both substrate temperature and impinging Ga flux. 

On the right side, AFM images of the surface of GaN layers grown at different values of Ga flux 

[119]. 
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The benefit of the Ga excess becomes obvious in view of the morphology of the GaN 

surfaces grown with different Ga coverage, (see Figure 3.9). The AFM images show that if 

GaN is grown with a Ga coverage of less than 2 ML it presents a rough surface, whereas 

atomic steps can be seen when GaN is grown under Ga excess. The appearance of Ga 

bilayers reduces the (0001) surface energy thus favoring 2D growth. The 2 ML regime 

consists of two Ga layers on top of the Ga-terminated GaN(0001) surface [120], [121], 

following the laterally-contracted Ga bilayer model proposed [122] as shown in Figure 3.10. 

 
Figure 3.10: Schematic view of the laterally-contracted Ga bilayer model [122]. 

Even though a relatively large stability window for the Ga bilayer on the GaN surface 

can be obtained, the 2D growth of heterostructures requires identifying ΦGa at the transition 

between 2 ML of Ga coverage and Ga accumulation conditions, to prevent the formation of 

pits associated to threading dislocations [119], [123]. 

3.4.2 Growth of AlN (0001) 

The growth of 2D AlN also requires metal-rich conditions as in the 2D GaN growth. At 

the standard growth temperature of III-N system (>800°C [124]), Al atoms do not desorb 

from the surface, thus causing Al excess condition. The excess Al can be noticed by the 

shadow lines in RHEED pattern taken along <11-20> azimuth occur, as shown in Figure 

3.11. These shadow lines are an evidence of metal-Al, with reduced lattice constant in 

comparison to that of AlN. Since Al cannot desorb, in order to get rid of the excess Al, one 

needs to perform a growth interruption under N atmosphere, to capture excess Al forming 

AlN on the surface. The consuming time is an interval time from the closure of Al shutter 

until the shadow lines disappear. The time required to consume the excess Al can be used to 

calculate the Al cell temperature which provides Al:N stoichiometric growth conditions. 

Since the Al-N binding energy is much higher than the Ga-N binding energy, it results in 

preferential Al-N incorporation in presence of Al, Ga, and N. This fact can be taken as an 

advantage when growing AlN at stoichiometry, by using the additional Ga flux as a surface 
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surfactant to improve mobility of adatoms at the growing surface, thus promoting a smooth 

surface morphology, without Ga incorporation into the AlN layer [125]. 

 

 

Figure 3.11: RHEED image of an Al-rich AlN surface (azimuth<11-20>). (b) Intensity profile along 

the <11-20> direction of the region delimited by a dashed rectangle in (a). The extra streaks due to 

the Al excess are indicated by the arrows. 

3.4.3 Growth of AlGaN (0001) 

Similar to the cases of GaN and AlN, the growth of 2D AlGaN requires metal-rich 

conditions [125], [126]. Some additional difficulties are triggered by the differences in Ga-N 

and Al-N binding energies, and in the mobility of Al and Ga adatoms on the growing surface. 

The strong Al-N bond allows Al to primarily incorporate in the AlGaN alloy, i.e. the sticking 

coefficient of Al is unity. This information can be applied to the growth of AlGaN, where the 

required Al content is calculated from the Al/N flux ratio, and an additional Ga flux is used 

to generate the metal excess to obtain the self-surfactant effect that favors 2D growth. 

However, all the explained procedure is valid only for low Al content regime (Al/N<0.4). 

For the high Al content regime, another parameter, i.e. substrate temperature (Ts), needs to be 

considered in order to maintain 2D growth. Decreasing Ts helps balancing the diffusion 

barrier between Al, Ga, and N. In addition, indium (In) can be added in the AlGaN system 

during the growth as a surfactant to smoothen the surface of AlGaN without incorporating in 

the AlGaN layer [125]. 

3.4.4 Growth of GaN/AlN quantum dots 

As described in figure 3.2, the formation of a 3D structure requires an enhancement of 

the (0001) surface energy to favor the relaxation by faceting instead of creating dislocations. 

The means to achieve high (0001) surface energy are either to perform a growth interruption 

in vacuum to evaporate the metal excess or to grow under N-rich conditions. 
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a) Ga-rich GaN QDs: GaN QDs can be achieved by depositing them in Ga-rich conditions 

followed by a growth interruption in vacuum [127]–[129]. In this method, a GaN layer is 

grown under Ga excess (ΦGa > ΦN) under the Frank-van der Merve growth mode, then 

the layer re-arranges into 3D nanostructures due to the increase in (0001) surface energy 

when the Ga excess is evaporated. The high mobility of adatoms when growing under 

Ga-rich conditions results in low density (10
10

-10
11

 cm
-2

) and large (2-5 nm high) GaN 

QDs as illustrated in Figure 3.12. 

 

Figure 3.12: (a) Typical AFM image [130] and (b) Cross-section TEM bright-field image of GaN 

QDs grown under Ga-rich conditions (TEM image from Prof. Ph. Komninou, Aristotle University of 

Thessaloniki). 

b) N-rich GaN QDs: GaN QDs under N-rich conditions can also be achieved [131], since a 

III/N flux ratio < 1 increases the surface energy of the (0001) plane [120]. Hence, the 

growth favors the formation of 3D faceted structures. Under these conditions, the growth 

starts 2D until the deposition of a ~2-ML-thick wetting layer (critical thickness). Further 

depositing GaN leads to the formation of 3D islands via the Stranski-Krastanov growth 

mode [54], [131]. N-rich growth implies a low mobility of adatoms which results in a 

high density (10
11

-10
12

 cm
-2

) and small (1-2 nm high) GaN QDs as illustrated in Figure 

3.13. 
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Figure 3.13 (a) Typical AFM image [130] and (b) Cross-section TEM bright-field image of GaN QDs 

grown under N-rich conditions (TEM image from Prof. Ph. Komninou, Aristotle University of 

Thessaloniki). 

 

3.4.5 Growth of GaN nanowires 

III-nitride NWs have recently emerged as a promising structure for novel optoelectronic 

applications owing to their advantages. For instance, NWs possess reduced dislocation 

density due to the efficient elastic relaxation through their free surface [132]. One 

dimensional structure of NW could enhance the light extraction efficiency because of the 

waveguide effect [133]. NW heterostructuring offers an alternative pathway to synthesize 

zero dimensional nanostructures, and simplicity to perform band gap engineering. In 

addition, modulating electrical conductivity can be achieved by adjusting impurities along 

the nanowire axes. The flexibility of material combination in nanowires also opens the way 

to integrate high quality semiconductor materials on low cost mainstream Si technology. 

Utilizing the mentioned superior features, the prototype of several nanowire based devices 

have successfully demonstrated, e.g. light emitting diodes, lasers or photodetectors [134]–

[137]. 

To synthesize NWs, vapor-liquid-solid (VLS) catalyst-induced or catalyst-free 

approaches can be used. The NW growth via VLS mechanism was first demonstrated by 

Wagner et al. [138] for the growth of Si NWs in 1964. They used Si contained (SiCl4) vapor 

as a source which reacts at the liquid catalyst-substrate (Au-Si) interface. The chemical 

reaction leads to the formation of a solid Si wire. The advantage of the VLS growth is that 
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the diameter and the density of the NW can be adjusted by controlling those parameters of 

the catalyst. This mechanism has been used widely in the NW synthesis of III-V (MBE: 

[139]–[141], MOVPE: [142]–[145]), and II-VI compounds (MBE: [146]–[149], MOVPE: 

[150]–[152]). For the catalyst-induced NWs, there are various metal catalysts which can be 

used as an initiator such as Ni, Fe and Au [139], [143]–[145]. Lately, Geelhaar et al. [139] 

presented the MBE growth of Ni induced GaN NWs (Figure 3.14). Ni seeds were sputtered 

onto a c-plane sapphire substrate and used as a catalyst to induce the NW formation. The 

NW growth occurred at the interface between the supersaturated Ni droplets and the 

substrate via the VLS process. However, the presence of catalyst could induce unwanted 

contaminations in the NWs because of the metal catalyst diffusion, causing a difficulty to 

adjust the electrical conductivity via doping. The problem concerning the contamination in 

NWs can be avoided by using catalyst-free growth. 

 

Figure 3.14: Ni-induced GaN NWs grown by MBE on sapphire. Scanning electron microscopy 

images that were acquired at an angle of (a) 90° and (b) 45° normal to the surface. (c) Cross-

sectional transmission electron microscopy (XTEM) image of two NWs. (d) XTEM image of a NW 

that resulted from Ga-rich growth after initially N-rich growth. The seed particle is indicated by an 

arrow. The vertical lines across the NW are attributed to stacking faults [139]. 

Catalyst-free GaN NWs can be synthesized by using various growth techniques. For 

examples, Koester et al. reported that the growth of catalyst-free GaN NWs by MOVPE was 

achieved on c-plane sapphire substrates [153]. In this case, a thin SiNx layer (~2 nm) was 

created prior to the NW growth in order to favor GaN seed nucleation and assist the vertical 

growth of GaN NWs. PA-MBE is another technique which allows the formation of catalyst-

free GaN NWs on both sapphire [154], [155] and Si(111) substrates [156]. The latter 

substrate is highly of interest because of its compatibility with the electronic industrial 

mainstream. 
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The growth of GaN NWs by PA-MBE can be achieved by direct depositing Ga and N 

fluxes onto Si(111). However, this growth process possibly generates amorphous SiNx [157], 

which might lead to the formation of disoriented GaN NWs. A thin AlN buffer layer was 

reported to assist the vertically alignment of the wires [158]. Songmuang et al. [158] 

demonstrated an improvement of the vertical orientation of GaN wires after inserting a thin 

AlN layer on Si(111) substrate prior to the NW growth. This is attributed to a favorable 

formation of AlN in a presences of Al, N, and Si [159] due to the higher binding energy of 

Al-N than that of Si-N. For PA-MBE, the key parameters to synthesize the GaN NWs are 

III/N flux ratio (ΦGa/ΦN) and substrate temperature. As described in section 3.4.4, Ga-rich 

conditions (ΦGa>ΦN) promote 2D growth whereas N-rich conditions (ΦGa<ΦN) would 

introduce 3D growth which is a basis of the SK QDs and NWs formation [160]–[162]. In 

addition to the N-rich conditions, relatively higher temperature than those used for 2D 

growth is also mandatory for the NW formation [158], [162]. 

In this thesis, GaN NWs are grown by depositing Ga and N fluxes in N-rich conditions 

on Si(111) substrate at various flux ratios and growth temperatures. As the flux calibration is 

presented (see 3.3), here, I present the Si(111) substrate temperature calibration by 

measuring the Ga desorption time from the substrate surface. This calibration method 

provides a better reproducibility of the growth temperature than by using a thermocouple, 

since it is the measurement of physical dynamics on the substrate surface. 

Before introducing Si(111) into PA-MBE system, it was chemically degreased to 

eliminate contamination, and was dipped in HF 5% for a few minutes to remove native oxide 

from the surface. In the growth chamber, the Si(111) substrate was heated ~800°C 

(thermocouple temperature) for ~30 min to thermally clean the surface. The cleaned surface 

was proved by (7×7) reconstruction as illustrated in Figure 3.15(c), which is generally 

observed at 600-850°C [163]–[165]. 
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Figure 3.15: (a) top view and (b) side view of the Si(111) (7x7) reconstruction [166]. (c) 7x7 surface 

reconstruction observed by RHEED along [-1-12] azimuth. 

Takayanagi et al. [166] proposed the orientation of Si atoms on the topmost surface as 

shown in Figure 3.15(a) and (b). The periodicity of the topmost surface orientation is 7 times 

larger than that of the bulk Si atoms. Thus, the reconstruction pattern of the topmost surface 

periodicity is 7 times smaller than the pattern of bulk Si atoms. The RHEED pattern of the 

topmost surface is displayed in Figure 3.15(c), the black marked lines correspond to the 

periodicity of bulk Si atoms while the white marked lines (7 times narrower in width to that 

of the black marked lines) correspond to the topmost atoms which form the reconstruction. 

In order to calibrate the growth temperature, the evolution of RHEED intensity was 

recorded from the red rectangular delimited area in Figure 3.15(c) during the deposition of 

Ga flux. Exposing the surface to Ga results in the abrupt drop of RHEED intensity at t = 0 s 

in Figure 3.16(a). When the Ga shutter was closed after 10 s of Ga deposition, Ga adatoms 

would desorb from Si(111) surface, leading to the recovery of the RHEED intensity. The 

time required for the RHEED intensity recovering can be used as a reference for the 

temperature calibration since the Ga desorption rate depends on the substrate temperature. 
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Figure 3.16: (a) RHEED intensity recovery profile taken at the red rectangular delimited area in 

Figure 3.15(c). At time t=0s, the Ga shutter is opened, at t=10s, the Ga shutter is closed. The interval 

time between the closure of the Ga and the first inflexion point is defined as the Ga desorption time. 

(b) Substrate temperature (measured by the thermocouple in contact with Si(111) wafer as a function 

of Ga desorption time). 

Figure 3.16(a) presents the evolution of the RHEED intensity taken at the area defined 

by a red rectangle in Figure 3.15(c). The desorption time (td) is defined as the time interval 

between the closure of Ga shutter (at t = 10s) and the inflexion point. The desorption time 

corresponds to the time spent of Ga adatoms for desorbing from the surface, which is 

strongly affected by the substrate temperature. 

Figure 3.16(b) shows evolution of the desorption time as a function of substrate 

temperature which was measured by thermocouple. The accuracy of the plot was assured by 

averaging few calibration sets. As exhibited, the desorption time exponentially decays with 

linearly increasing of the substrate temperature, described by Arrhenius relationship for the 

temperature reproducibility. Ga desorption calibration was performed prior the growth on 

Si(111) for every sample. Then, the growth temperature is found using the plot shown in 

Figure 3.16(b). 
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Figure 3.17: (a) SEM image of GaN nanowires grown on thin AlN layer on Si(111) substrate and (b) 

their corresponding RHEED pattern. 

In this manuscript, GaN NWs are used as a starting point for studying the growth of 

AlxGa1-xN sections and AlxGa1-xN/AlN NDs grown on GaN NWs. The GaN NWs grown by 

PA-MBE were synthesized by using the same method over the entire manuscript. Prior to the 

growth of GaN NWs, a thin AlN (~0.5nm) was deposited at Ts = 840°C (corresponding 

td = 2 s) in order to suppress the SiNx formation. Subsequently, Ts was decreased to 795°C 

(corresponding td = 8 s) to grow GaN NWs under N-rich conditions (ΦGa/ΦN ~0.5) for 2.5 

hours. The presence of NW structure was confirmed in-situ by RHEED. The general 

structure of GaN NWs and its corresponding RHEED pattern are shown in Figure 3.17(a) 

and Figure 3.17(b), respectively. 

The formation of GaN NW can be described into two major steps, namely the nucleation 

and the NW growth. Several teams have suggested that NWs develop from GaN islands at 

the initial stage of the deposition, and then transform into wire-like structure [158], [161], 

[167], [168]. During the nucleation stage, the density of NWs increases rapidly to >10
10

 cm
-2

 

[169]. The wire nucleation was elaborately studied by Consonni et al. [168]. They reported 

the structural evolution observed by high-resolution TEM, describing how GaN 2D 

metastable nuclei [170] evolve to truncated pyramids with {1-103} side facets (Figure 

3.18(b)), to full pyramids (Figure 3.18(c)), and to NWs (Figure 3.18(d)). The shape 

transition to truncated pyramids with {1-103} side facets which are the facets mentioned in 

SK GaN QDs, is attributed to their smaller surface energy compared to the {0001} planes 

[171], [172]. The shrinking of the {0001} top facet and the progresses of the {1-103} lateral 

facets are due to the minimization of the free energy per unit volume [173], [174] of the 

structure, resulting in the shape transition from the truncated pyramids to full pyramids. 

Further deposition of GaN triggers the plastic relaxation process and then promotes the NW 

growth [175]. 
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Figure 3.18: High-resolution TEM images collected on dedicated samples grown during 4.5, 6, 9, 10, 

and 15 min, revealing the following respective GaN island shapes at the onset of the nucleation 

process: (a) spherical-cap-shaped island with an inset representing a high magnification of the first 

AlN monolayers at the interface, (b) truncated-pyramid-shaped island, (c) full-pyramid-shaped 

island, and (d) NW [168]. 

After the nucleation stage, it was found that the deposited material only increases the 

volume of each NW, i.e. only enlarges the NW diameter and length. The growth behavior of 

III-N NWs was studied using a marker technique. Figure 3.19(a) depicts a scanning TEM 

(STEM) image of the GaN NWs (dark contrast) with AlN marker layers (bright contrast). 

The evolution of the GaN growth rate in NWs (RGaN,NW) as a function of Ga cell temperature 

(TGa) was plotted as a green line in Figure 3.19(b). The 2D growth rate (R2D) deduced from 

RHEED oscillation was plotted in comparison shown in Figure 3.19(b). The grey line (black 

line) represents the R2D measured at 745°C (790°C). 

Figure 3.19(b) shows 2 different growth regimes of GaN NWs. For the first regime (TGa 

< 940°C), RGaN,NW is systematically higher than R2D. This observation evidences that besides 

the Ga atoms that impinged to the wire top, there are contributions of Ga diffusing along the 

NW sidewalls to the vertical growth. In principle, Ga adatoms can diffuse in any direction 

with different diffusion lengths depending on the diffusion barriers set by the potential 
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energy surface distribution along the different crystallographic axis. The theoretical work of 

Lymperakis et al. suggests that only Ga adatoms adsorbing at the sidewall in a proximity to 

the top of the NW are able to participate in the axial growth [176]. Those atoms which can 

reach the NW top can be easily incorporated due to the larger number of adatom adsorption 

sites at the NW top (c-plane) in comparison to the sidewall (m-plane). The NW growth could 

occur when these two contributions (the direct deposition and the diffusion) overcome the 

Ga desorption and GaN dissociation processes which are significant at the high growth 

temperatures. 

For the second regime, the RGaN,NW saturates at the value close to the N-limited value, 

pointing out that only the N atoms impinged on the NW participate in the wire growth. On 

the other hand, the N diffusion can be neglected. This fact agrees with theoretical work 

which shows that the diffusion barrier of N atoms is higher than that of Ga atoms [177]. 

Figure 3.19: (a) STEM image of GaN with AlN marker layers. The Ga flux was progressively 

increased before depositing (black contrast) among AlN thin marker layer (white contrast). (b) 

Growth rate comparison between GaN in NWs (RGaN, NW) growth at Tsub = 790°C and that in a 2D 

layer (RGaN, 2D) as a function of TGa. RGaN, 2D was measured at Tsub = 745 and 790°C. The grey shading 

represents the regime where the impinging Ga flux is higher than the active N flux at Tsub = 790°C. 

The inset of (b) is a schematic illustration of the sample shown in (a) [178]. (c) Schematic of the 

MBE growth process of NWs in which the relevant processes, such as adsorption, desorption, and 

diffusion are included. 
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Figure 3.20: (a) STEM image of AlN with GaN marker layers. The Al flux was progressively 

increased before depositing (white contrast) among GaN thin marker layer (black contrast). (b) 

Growth rate comparison between AlN in NWs (RAlN, NW) growth at Tsub = 790°C and that in a 2D 

layer (RAlN, 2D) as a function of TAl. R2D was measured at 790°C. The grey shading represents the 

regime where the impinging Al flux is higher than the active N. The inset of (b) is a schematic 

illustration of the sample shown in (a) [178]. 

This section describes the growth of AlN in NWs which was studied by using the 

marker technique in order to further apply for NW heterostructuring. Figure 3.20(a) shows 

STEM image of AlN (bright contrast) with GaN (dark contrast) grown on top of GaN NW. 

The wire shows a cone-like shape with gradually increasing diameter from ~30 to ~200nm. 

This shape suggests a non-negligible lateral growth of AlN. The AlN growth rate (RAlN,NW) 

was obtained by averaging 20 wires measurements. Then the evolution of RAlN,NW as a 

function of Al cell temperature (TAl) was plotted (green squares) in Figure 3.20(b) in 

comparison with 2D growth rate (R2D) which was deduced from RHEED oscillation at the 

same growth temperature (black dash line). In contrast to the growth of GaN NWs, RAlN,NW 

and R2D of AlN are similar at different TAl as displayed in the figure. Most of the Al and N 

atoms which arrive at the top and sidewall of the NWs would directly incorporate to the 

NWs. The different growth behavior between AlN and GaN in NWs is due to the shorter 

diffusion length of Al atoms in comparison to Ga atoms at the wire growth temperatures 

[169], [178]. 

3.4.6 Growth GaN/AlN NW heterostructures 

The understanding of GaN and AlN NW growth is considered as a basis for the 

fabrication of NDs and superlattices in NWs. In catalyst-free growth, by switching the 

deposition of GaN and AlN on the NWs results not only in material alternation along the 

wire axis but also in the formation of a radial heterostructures around the GaN NWs [169], 
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[178]. However, the superlattices of GaN/AlN grown by MBE are mostly reported in an 

axial direction [178]–[181]. The difficulty to implement the radial GaN/AlN heterostructures 

is because of the high NW density (>10
10

 cm
-2

) [158], which induces a shadowing effect, 

preventing the lateral deposition on  the NW sidewall [182], [183]. 

Despite the difficulty, Carnevale et al. [184] demonstrate a possibility to produce both 

vertical and coaxial GaN/AlN heterostructures on GaN NWs as illustrated in Figure 3.21. 

The vertical heterostructures were achieved by the alternation of Ga and Al fluxes [178]–

[181], whereas the coaxial heterostructures were achieved by reducing the NW density to 

suppress the shadowing effect. Subsequently, GaN/AlN heterostructures were deposited at 

low growth temperature to minimize the diffusion of group III materials from the surface. 

 
Figure 3.21: STEM images of three-dimensional GaN/AlN heterostructures. (a) Fifty-period 

vertically-aligned GaN/AlN superlattice. (b) Five-period coaxially-aligned GaN/AlN heterostructures 

[184]. 

 

3.5 Substrates 

Today GaN substrates are commercially available. However, the target of this thesis 

being AlN/AlGaN nanostructures, AlN substrates would be the more adequate choice. Bulk 

AlN exists in the market, but its crystalline quality is not compatible with homoepitaxial 

growth by MBE. Therefore, growth needs to be performed on foreign substrates. The 

selection of substrate for III-N heteroepitaxy should be made by considering the parameters 

such as lattice constant, thermal expansion coefficient, requirement of III-N epilayer 

orientation, defect density, purity. Possible choices of substrate which can be provided for 

the growth of III-N are sapphire-, Si(111)-, and SiC-based substrates. The lattice constants 

and thermal expansion coefficients of GaN, AlN and their possible substrates are illustrated 

in Table 3.1. In the case of conventional SK QDs, there are two types of substrate that we 

used, i.e. GaN and AlN on sapphire while III-N NDs on GaN NWs were grown on Si(111). 
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Space group 

symmetry 
Lattice constant (Å) 

Thermal expansion coefficient 

(x10
-6

 K
-1

) 

GaN P63mc a=3.189, c=5.185 [45] 3.34, 3.43 [185] 

AlN P63mc a=3.112, c=4.982 [45] 3.48, 4.35 [185] 

Al2O3 R3c a=4.7589, c=12.991 7.3, 8.5 

Si Fd-3m 5.431 2.6 

6H-SiC P63mc a=3.0806, c=15.1173 4.46, 4.16 
Table 3.1: Space group symmetry, lattice constants, and thermal expansion coefficients for substrate 

materials (Al2O3, Si, SiC) comparing to those of epitaxial layer (GaN, AlN) [46]. 

3.5.1 Sapphire-based substrates 

The sapphire (α-Al2O3) structure can be described using either a rhombohedral unit cell 

as shown in Figure 3.22 or a hexagonal unit cell. By using the hexagonal unit cell, the lattice 

parameters are a=4.765 Å and c=12.982Å. The growth of GaN or AlN epitaxial layer on c-

plane sapphire results in c-plane oriented film with in-plane orientation of 30° respect to the 

sapphire(0001) substrate to reduce the lattice mismatch between the epitaxial layer and the 

sapphire (13.9%). The epitaxial GaN layer can also be grown on a-plane sapphire [11], [186] 

which results in the lower lattice mismatch (2%). However the c-axis of GaN film grown on 

an a-plane sapphire has a non-zeroinclenation, thus crystal twinnings, which is one of the 

lattice deformations, might generate in the structure. This is the main disadvantage of an a-

plane comparing to c-plane sapphire substrates. The a-plane (11-20) AlN or GaN can be 

produced by growing the epitaxial layer on r-plane (1-102) sapphire [187]. By growing GaN 

or AlN films on (10-10) m-plane sapphires, the grown layers could have (10-10), (10-13), or 

(11-22) orientations, depending on the growth technique and growth conditions [188]–[190]. 

 

Figure 3.22: Rhombohedral structure and surface planes of sapphire [46]. 

The sapphire-based substrates used in this thesis are separated into two templates, i.e. 

GaN(0001)-on-sapphire and AlN(0001)-on-sapphire templates. The GaN(0001)-on-sapphire 
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templates are supplied by LUMILOG, consisting of 4-μm-thick GaN on c-sapphire grown by 

MOCVD with a dislocation density of ~10
8
 cm

-2
. The AlN(0001)-on-sapphire templates are 

supplied by DOWA consist of ~1μm-thick AlN deposited by MOCVD on c-sapphire with a 

dislocation density ~10
9
 cm

-2
. Atomic force microscopy (AFM) images as illustrated in 

Figure 3.23 reveal the atomically flat surface of GaN (Figure 3.23 (a)) and AlN (Figure 3.23 

(b)) templates. 

 

 

Figure 3.23: AFM images of (a) the GaN-on-sapphire and (b) the AlN-on-sapphire templates. 

3.5.2 Si(111)-based substrates 

Silicon is widely used in mainstream semiconductor electronic industry since it has 

many advantages, e.g. low prices, large scale productions support, and good 

thermal/electrical conductivity.  The common crystal structure for Si substrate is a diamond 

structure with a lattice parameter, asi =5.431 Å as illustrated in Figure 3.24. Its (111) surface 

presents a hexagonal geometry which can be compared with hexagonal system, that is 

𝑎𝑆𝑖
ℎ𝑒𝑥 =

𝑎𝑆𝑖√2

2
 = 3.840 Å and 𝑐𝑆𝑖

ℎ𝑒𝑥 = 𝑎𝑆𝑖√3 = 9.407 Å. 

 

Figure 3.24: Silicon diamond crystalline structure compare with hexagonal structure. 

Using Si(111) as a substrate for III-nitride materials has faced many challenges. The 

greater thermal expansion coefficient than the one of III-N materials induces a strain 
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generating cracks during the cooling down process. Furthermore, the Si(111) surface exhibits 

17% lattice mismatch to GaN and 19% lattice mismatch to AlN. As a result, the defect 

density of III-N-on-Si templates is significantly higher than the one grown on sapphire or 

SiC. Hence, we mainly used sapphire-based substrates for the growth of 2D III-nitride 

materials. On the other hand, Si(111) substrate is used for particular geometries of 

nanostructures where the differences of lattice parameters do not degrade the crystal quality, 

such as the growth of NWs. 

3.5.3 SiC-based substrates 

4H-, 6H-SiC configurations can be used as a substrate for III-N system because of their 

comparable lattice a parameter to that of AlN. The higher thermal conductivity of SiC than 

sapphire-based substrate, thus providing a better heat dissipation, is another interesting 

parameter driving the use of SiC-based substrate for III-N system. However, the main factor 

that limits the wider use of SiC is the high cost of these substrates. 

 

3.6 Characterization techniques 

Two major properties of nanostructures, i.e. structural and optical properties were 

investigated. The structural characterizations were performed using X-ray diffraction (XRD), 

scanning electron microscopy (SEM), and Atomic Force Microscopy (AFM) whereas the  

optical characterizations were performed using Photoluminescence (PL), Time-resolved PL 

Cathodoluminescence (CL), and Fourier Transform Infrared spectroscopy (FTIR). 

3.6.1 X-ray diffraction 

X-ray diffraction (XRD) is a versatile structural characterization technique which is an 

indispensable method to determine composition, crystal orientation, strain state, grain size, 

and crystal quality. XRD utilizes the constructive interference of monochromatic x-ray 

diffracted by the crystalline structure. The beam-sample interaction produces the 

constructive interference of the diffracted x-ray at specific angles which satisfy Bragg’s Law: 

2𝑑 sin 𝜃 = 𝑛 𝜆 (3.11) 

where n (an integer) is the order of reflection, λ is the wavelength of the x-rays, d is the 

interplanar spacing of the reflecting planes, and 𝜃 is the angle of the incidents which are 
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specified only some angles. There are no signals perceived by the detector for all the other 

angles that undergo destructive interference. The interplanar spacing of the crystal, d can be 

obtained from the eq. (3.11) after specifying the angle, 𝜃. 

 
Figure 3.25: Illustration of the X-ray diffraction system used in this work. 

XRD measurements in this study were performed on a Seifert XRD 3003 PTS system, 

illustrated in Figure 3.25, which uses the Cu Kα1 wavelength (λ=0.154056 nm). XRD 

consists of three parts: an x-ray beam generator, sample holder (goniometer), and x-ray 

detector. X-rays are generated by applying an accelerating high voltage (15-60 kV) to 

accelerate the electrons that are released from a hot cathode. These electrons subsequently 

collide with a metal target (anode) and create x-ray emission. The emission beam is reflected 

by a parabolic mirror to transform into parallel beam and increase its intensity by one order 

of magnitude. The beam passes through two monochromators (each of them consists of two 

mounted Ge(220) monocrystals, thus they are called ―4-crystal‖ scheme) for reducing the 

angular and wavelength divergences of the beam. The improved resolution of the beam after 

passing through the monochromators is ∆θ=0.0033° and ∆λ/λ=1.4х10
-4

. 
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Figure 3.26: Schematic representation of the angles and axis which allow positioning the sample. 

The x-ray beam is injected into the sample which is mounted on a goniometer (sample 

holder), allowing us to select the plane family of orientation. The goniometer can 

independently rotate in 4 angles, i.e. ω, 2θ, φ, and χ, as shown in Figure 3.26. The angle ω is 

the angle between the incident x-ray beam and the surface, 2θ is the angle between the 

incident beam and the reflect beam from the surface, φ is the rotate angle around z-axis, and 

χ is the rotate angle normal to z-axis. For each reflection, we can measure ω, 2θ, ω-2θ scans 

or a 2D scan around a reflection i.e. a 2D map of the reciprocal space. 

The detector has an aperture of ≤2°. The slits might be inserted in order to improve the 

resolution of the diffracted beam which results in decreasing the aperture and thus decreasing 

the signal. For high resolution XRD measurements, an analyzer (two pieces of Ge(220) 

monocrystals) is placed between the sample and the diffracted beam to improve the angular 

precision of the diffracted beam (≤0.001°). 

3.6.2 Atomic force microscopy 

Atomic force microscopy (AFM) is one type of scanning probe microscopies, which is 

used for probing the surface morphology of the sample. As no current flow is needed, in 

contrast with scanning tunneling microscopy, AFM can be used for characterizing the 

surface of various types of samples, i.e. conductors, semiconductors, and insulators. Figure 

3.27(a) depicts the schematic of AFM setup. The bending of the cantilever, which is 

proportional to the force on the cantilever, is measured by the deviation of a laser beam 

position on the detector. The applied force is kept constant by a feedback circuit by changing 

the tip-sample distance using piezoelectric actuator which also drives the lateral movement 

of the measured sample. 
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Figure 3.27: (a) Schematics of an AFM system, (b) AFM tip. 

The AFM tip, illustrated in Figure 3.27(b), has a couple of microns length and less than 

100 Å-diameter. The AFM tip and cantilever are fabricated from Si or Si3N4. The type and 

magnitude of the interaction force between the tip and the sample directly depend on the 

distance between the tip and the sample [191]. Thus, the variation of the interaction force 

between the sample and the tip mirrors the variation of the surface height; that is, the surface 

morphology. 

The AFM can be operated in 3 different modes, which are contact, non-contact, or 

tapping mode, as illustrated in Figure 3.28 and described below: 

1. Contact mode: The measurement is done by keeping the repulsive force constant. In this 

mode, the cantilever is kept very close to the surface (few angstroms above the surface) 

throughout the measurement hence the measurement is done with huge frictional and 

adhesive forces that can damage the sample surface and distort the measured image. 

2. Non-contact mode: The interaction force between the surface and the tip in this mode is 

attractive Van der Waals force which is a force occurring when the distance between the 

sample and the tip is in the order of ten to hundreds of angstrom. In this mode, the 

cantilever can oscillate with large amplitudes near the tip resonance frequency. Thus, the 

non-contact mode measurement typically provides low resolution and the measured 

image can be hampered by the natural oscillations. However, it is very useful for 

measuring the morphology which is soft or liquid. 

3. Tapping mode: This mode combines the advantages of the contact and non-contact mode. 

In this mode, the force between the surface and the tip is kept near ―0‖ to avoid the 

surface damage problems, occurring in the contact-mode and to provide better resolution 

than that performed by the non-contact mode. This mode was used to measure all the 

samples in this thesis. 
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Figure 3.28: Force vs. tip-to-sample distance in AFM operation. 

In tapping mode, the tip operates near its resonant frequency, ω0. The high resonance 

frequency (ω0 >> 1kHz) is advantageous, since it allows us to decouple the tip oscillating 

frequency from the low-noise frequency induced by the mechanical vibrations. ω0 is defined 

with: 

ω0 = √𝑘/𝑚 (3.12) 

where k and m are the force constant and the mass of the tip. When the tip is close to the 

surface (<100 angstrom), it exposes to a Van der Waals interaction gradient. This gradient 

affects to the resonance frequency of the tip, that is: 

ω = ω0√1 −
1

𝑘

𝜕𝐹

𝜕𝑧
 

(3.13) 

In this mode, the oscillating amplitude (the tip-sample distance) is kept constant using a 

piezo-electronic actuator and a PID regulator to minimize the force gradient, 
𝜕𝐹

𝜕𝑧
. The 

minimal detectable force gradient is given by [192]: 

𝜕𝐹

𝜕𝑧
=
1

𝐴
√
4𝐵κ𝑘𝐵𝑇

𝜔0𝑄
 

(3.14) 

where A is the root mean square oscillation amplitude, B is the detection bandwidth, and 

Q=∆ω/ω is the quality factor of the resonance. Hence there are four main parameters to 

optimize the sensitivity. The force constant (κ) should be small which requires the 

minimization of the cantilever mass while the quality factor of the resonance (Q) should be 

high. Measuring at low temperature is usually preferred. In addition, the oscillation 

amplitude (A) which is limited by the experimental setup should be large. 
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The spatial resolution of AFM measurement depends on the shape and size of the tip. 

The actual tip that is not ideally sharp might generate the effect called ―tip-evolution‖ which 

consequently differentiate the measured image and the real topology of the object. The 

convolution occurred when the radius of the tip is comparable with or larger than the size of 

measured object [193]. As shown in Figure 3.29, where the semi-spheres represent the tips 

and the trapezoids represent the islands. The diameter of the island, which measured from 

Figure 3.29(a), is larger than the real island size whereas the heights of the islands, which 

measured from Figure 3.29(b), are shorter than the real island height due to the convolution 

effect. The accurate convolution of the tip is hard to compensate since the effective tip shape 

might change during measurements. Furthermore, the influencing factors affected to the 

resolution are the non-linear response of the piezo-scanner and environmental noise 

interference. 

 

 

Figure 3.29: (a) Increase of lateral island size with respect to the real island size and (b) Decrease of 

the island height when two islands are closer to each other than the tip diameter. 

3.6.3 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is an imaging magnification which results from 

the measuring of secondary electrons while the specimen is scanned with an electron beam. 

The interaction of the electron beam with the specimen results in the generation of a number 

of secondary particles, for example secondary electron, backscattered electrons, x-rays, 

photons and phonons (heat) as illustrated in Figure 3.30. The secondary electrons are most 

valuable for showing morphology and topology of the specimen whereas the backscattered 

electrons are most valuable for imaging contrasts in composition in a multi-phase specimen. 

The process of photon measuring when the specimen is excited by electron beam, is called 

cathodoluminescence (CL, which is explained in 3.6.4) 
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Figure 3.30: Signals that result from electron beam-specimen interaction [194]. 

 

Figure 3.31: (a) Schematic diagram of an SEM. 

Figure 3.31(a) illustrates the schematic of SEM. Electron gun is located at the top of the 

column where free electrons are generated by a tungsten filament, and an acceleration 

voltage projects them onto a specimen. The electron beam is converged by condenser lens, 

which focus the beam into a small aperture which determines spot size of the electron beam. 

Decreasing spot size would provide a better resolution [195]. The scanning system is 

processed by rastering the electron beam across the specimen. Only secondary electrons, 

resulted from inelastic collision and scattering of incident electrons, are attracted to the 

detector by a positive charge. Since the SEM is regarding the characteristics at and near the 
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surface of the specimen, as displayed in Figure 3.30, an acceleration voltage < 50 kV is 

utilized for revealing the surface of the material with a resolution better than 10 nm [194], 

allowing magnification of the image from 10× to 100,000×. 

3.6.4 Cathodoluminescence spectroscopy 

Cathodoluminescence (CL) is the process of the light emission resulting from the 

electron injection (0.2-30 kV) into the material, which is one of the generated signals via this 

excitation method as illustrated in Figure 3.30. CL has a wide variety of applications since its 

system can be assembled with electron imaging techniques. The advantage of CL over 

photoluminescence (PL) is the small size of electron beam (in the order of 100 nanometers), 

which allows us to characterize a very specific area of a sample. By varying the electron 

beam energy, the volume of excitation especially along the depth can be changed. 

The CL is known to be an above band gap excitation method, that is all the materials 

within the excitation volume is excited no matter how much the band gap energies are, 

differing from the PL where the excitation laser can excite some parts in the materials which 

have the band gap energies lower than the excitation photon whereas the other part remains 

transparent. For instance, to measure PL of GaN/AlN SLs, the excitation laser (Ephoton = 

5.08eV, in our case) can excite only GaN (Eg = 3.51 eV [72]) while AlN (Eg = 6.23 eV [72]) 

let photons passing through. 

In our study, CL characterization is performed on FEI quanta 200. An aluminium 

parabolic mirror is placed between the sample stage and the electron beam pole as illustrated 

in Figure 3.32. The electrons pass through the hole in the parabolic mirror and then penetrate 

into the sample which is placed at the focal point of the mirror. The mirror reflects the 

emission from the sample into a parallel beam which is focused onto a Jobin Yvon HR460 

monochromator. The monochromator scans over a specific range to project photons on to a 

detector. There are 2 detectors equipped to the monochromator, i.e. charge-couple device 

(CCD) camera and photomultiplier tube (PMT) detector. The CCD camera is used to acquire 

photons as a function of wavelength that is changed by the grating in monochromator. The 

PMT is used to obtain the CL intensity mapping at one specific wavelength by synchronizing 

it to the raster electron beam. 
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Figure 3.32: Schematic representation of the detection of light with the parabolic mirror from the CL 

system. 

3.6.5 Photoluminescence spectroscopy  

PL spectroscopy is a method to measure the light emission induced by excitation and 

recombination of electron-hole pairs, as depicted in Figure 3.33. Incoming photon energy 

must exceed the band gap energy (Eg) of semiconductor to allow material to absorb (process-

(a)) and create an electron-hole pair. The excess excitation energy holes and electrons will 

thermally relax to the edges (process-(b)) of conduction and valence bands, respectively by 

releasing the energy in the form of longitudinal optical (LO) phonons. The direct 

recombination (process-(c)) occurs as the electron recombines to the hole in the valence 

band, giving a photon with specific energy (approximately equal to the Eg). In addition to the 

free exciton recombination, there are other processes, namely donor bound (process-(d)), 

acceptor bound (process-(e)), and donor-acceptor pair (process-(f)). These processes can 

emit photons, resulting from additional donor band (Ed) and acceptor band (Ea) appear in the 

band diagram. The Ed and Ea can either unintentionally appear because of the impurities /the 

lattice defects or they can be intentionally generated by doping. The recombination of 

electron hole pairs does not necessarily lead to the photon emission.  Non-radiative 

recombination to the mid-gap level (Et) (process-(g)) is another relaxation path via phonons, 

i.e. the heating of the crystal. The origin of mid-gap level might attribute to vacancies, 

dislocations, impurities, or surface dangling bonds. 
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Figure 3.33: Schematic of carrier generation and different radiative and non-radiative 

recombination paths in semiconductors. 

Time-resolved PL (TR-PL) is also used in our experiments to measure decay times 

which provide information about the nature of transition in the material. TR-PL is a method 

where the sample is excited with a light pulse and then the intensity of photoluminescence as 

a function of time is recorded. At low temperature where the non-radiative processes are 

suppressed, the luminescence decay time is, thus, associated to the radiative decay time. This 

decay time provides information concerning the overlapping of the electron and hole carrier 

distribution in the conduction and valence band. Furthermore, the evolution of the decay 

time as a function of temperature would also provide knowledge of the temperature where 

the non-radiative recombination processes start playing a role on decay time, hence giving 

the localization efficiency of the structure.  

 

 
Figure 3.34: (Time-resolved) photoluminescence setup 
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Figure 3.34 shows the PL setup used in this work. The excitation source is frequency-

doubled continuous wave Ar+ laser (λ=244 nm). After exciting the sample which is placed in 

the cryostat, the photon emission was collected by focusing lenses to project on a Jobin Yvon 

HR460 monochromator equipped with a UV-enhanced CCD camera. For the time-resolved 

PL (TR-PL) setup, the schematic is quite similar to that shown in Figure 3.34. the excitation 

source is a frequency-tripled Ti:sapphire laser (λ=270 nm) with pulse width of 200 fs and 

repetition rate that can be adjusted in the range of 0.9-76MHz. The luminescence from the 

sample was dispersed into a Triax320 monochromator and was detected by a streak-camera 

using a 2.2 ns window, giving a system response of about 25 ps, allowing us to characterize 

the measured signal in both frequency (x-axis) and time (y-axis) aspects. 

3.6.6 Fourier Transform Infrared Spectroscopy  

Fourier transform infrared spectroscopy (FTIR) is an optical measurement used for 

measure transmission or absorption characteristics of the material as a function of 

wavelength in the infrared (IR) region with a very fast scan rate due to the specific design of 

excitation source. A very fast scan rate is achieved by the allowance of simultaneously 

measuring all of the IR frequencies, without progressively scan the sample characteristic as a 

function of IR wavelengths, but by encoding a various frequencies into an encoded 

interferogram and use it as an excitation object. The source-interferogram excitation signal is 

created using the Michelson interferometer (Figure 3.35(a)), which consists of a beam 

splitter, fixed mirror and moving mirror. As the moving mirror travels back and forth, 

various wavelengths of beam go in and out of phase, which provide a specific interferogram 

as illustrated in Figure 3.35(b).  

 

 

Figure 3.35: (a) Schematic of the interferometer. (b) Interferogram obtained by the detector. 
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The source-interferogram passes through the characterized material, which changes the 

characteristic of interferogram due to the absorption/transmission characteristic of the 

material, and projects onto the specific detector for interferogram measurement. After the 

output interferogram is detected, the analysis cannot be instantly performed from the 

obtained interferogram. The signal is digitized and is Fourier transformed to frequency 

domain, resulting in an IR absorption/transmission spectrum. For instance, the Fourier 

transform of the detected interferogram in Figure 3.35 (b) with no sample on the sample 

compartment give a spectrum as in Figure 3.36, which shows many absorption lines due to 

presence of molecules which exist in atmosphere, such as H2O, CO2, …. 

 

 

Figure 3.36 Air vapor IR spectrum. 

In this work, FTIR spectroscopy was performed by Bruker Vertex 70v, which is able to 

perform in vacuum. Thus, the detrimental atmospheric effects can be minimized, which 

eliminates the unwanted absorption spectra that can be observed as a noisy signal. The 

schematic of the FTIR machine is illustrated in Figure 3.37. 

The source-interferogram, in our experiments, was convoluted with a polarizer in order 

to probe the excited electronic levels in the conduction band under transverse-magnetic (TM) 

and transverse-electric (TE) polarized excitation. The signature of intra-band is the transition 

between the ground state of the conduction band, s, and the first excited electronic state 

confined along the growth axis, pz, under TM-polarized excitation and the transition between 

the s and the first excited electronic state due to the lateral confinement, px and py under TE-

polarized excitation. However, all the transition that takes place at >4 µm is masked by the 

sapphire absorption. 
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Figure 3.37: Schematic configuration and optical path in the FTIR spectrometer. 
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Chapter 4 

4 AlGaN/AlN Quantum Dots 

 

The chapter begins with a brief introduction describing the challenges of the 

fabrication of an ultraviolet emitter, and the reason to use quantum dot 

nanostructures as active medium. Then, I introduce the design of the active region 

of an electron-pumped quantum-dot-based ultraviolet emitter, addressing the 

calculation of the total active region thickness, optimum AlN barrier thickness, and 

the amount of deposited AlGaN in each quantum dot layer which provides the 

maximum luminescence. The targeted wavelength is tuned by methodically 

adjusting the Al-to-metal flux ratio and substrate temperature. After the growth 

optimization, I propose some post-growth processes that can enhance the light 

extraction. Finally, I show that the technological transfer to 6H-SiC substrates can 

be performed without any performance degradation. 

 

4.1 Introduction 

AlGaN/AlN quantum wells (QWs) with a broad dispersion in internal quantum 

efficiency (IQE~5-50%) have been reported [196]–[199], but there is a general agreement 

that high IQE values are associated to in-plane carrier localization [198]–[200]. To fully 

exploit the advantages of carrier localization, Stranski-Krastanov (SK) quantum dots (QDs) 

are proposed in this work, since their size and density can be adjusted thanks to the control-

by-growth of the nanostructure. Excitons trapped in QDs are expected to be much more 

insensitive to non-radiative recombination than those in QW structures, as demonstrated in 

GaN/Al(Ga)N system [130], [201]. Thus, various groups have proposed using GaN QDs as 

active layers for ultraviolet (UV) light emitting diodes (LEDs) to reduce non-radiative 

recombination [202]–[205]. However, GaN/AlN QD LEDs have a limitation in emission 

wavelength and must face the challenges of p-type doping and contacting high-Al-content 

layers. In this thesis, an AlGaN/AlN QD electron-pumped UV (EPUV) source was proposed. 

The choice of AlGaN/AlN QDs as active media was made in order to blue shift the peak 

emission wavelength to the targeted position (λ=260-270 nm) for water purification, whereas 

the EPUV approach allows circumventing the LED-related difficulties. To my knowledge, 

here is the first systematic study of AlGaN/AlN SK QDs. 
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4.2 Active region design 

Figure 4.1 depicts the general AlGaN/AlN QDs structure which I have synthesized 

during my PhD for the fabrication of EPUV sources. The active region (Figure 4.1-A) 

consists of a certain number of AlGaN QD layers (Figure 4.1-B), each QD layer is separated 

by AlN barrier (Figure 4.1-C). The active region is grown directly on the substrate, which is 

generally a commercial 1-µm-thick AlN-on-sapphire template. Three parameters of the 

structure must be optimized: 

 The minimum active region thickness, which is given by the electron penetration depth. 

The acceleration voltage (Vac) of the EPUV emitter has been set, in our case, at 5 kV in 

order to minimize x-ray emission from the active region. Thus, the first experiment 

aimed at identifying the penetration depth of the electrons in such conditions (section 

4.2.1). 

 The AlN barrier thickness, which should be thick enough to recover two-dimensional 

growth before the following QD layer, and thin enough to prevent carrier diffusion loses 

(section 4.2.2). 

 The amount of AlGaN in each QD layer, which can affect the QD density and size, and 

the Al/Ga flux ratio and growth temperature can further modify the structural and optical 

properties of the QDs. These parameters are discussed in sections 4.3 and 4.4. 

 

 

Figure 4.1: Schematic of the AlGaN/AlN QD structure, illustrates the (A) active region which 

consists of (B) multilayers of AlGaN QDs and (C) AlN barriers separate between each QD layer. 

 

4.2.1 Active layer thickness 

When electrons impinge onto the structure, they can penetrate a certain depth which 

depends on the acceleration voltage (Vac) and the type of material. An empirical equation to 

describe the electron penetration depth (Re) was developed by Kanaya et al. [206] which 
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predicts the maximum penetration depth of electrons. At a given acceleration voltage, the 

maximum penetration depth is given by [206]: 

𝑅𝑒 =
0.0276𝐴

𝜌𝑍0.889
𝑉𝑎𝑐
1.67 (𝜇𝑚) (4.1) 

where A is the atomic weight of the sample in g/mol, ρ is the density in g/cm
3
, and Z is the 

atomic number. For instance, if Vac = 5 kV is applied on GaN bulk, the maximum penetration 

depth of electrons, which is calculated from (4.1), is ~300 nm, whereas the maximum 

penetration depth of electron in AlN bulk, using the same acceleration voltage, is ~600 nm. 

Hence, following this empirical equation, to cover all the area that electron can reach 

through when accelerating with 5 kV, an active region of ~600 nm should be grown. 

Apart from the empirical method presented above, Monte Carlo simulations [207] of 

electron beam interaction with solid structures can precisely predict the volume of material 

that electrons can penetrate through. Such simulations require the material density, the 

energy of electron beam as input parameters, and then the collision events are computed 

until all the electrons come to a rest and an energy loss curve is generated. CASINO [208]–

[210] is a Monte Carlo simulator that is extensively used to model electron penetration 

depth. As illustrated in Figure 4.2, for Vac = 5 kV, the maximum electron penetration depths 

are 250 and 350 nm for GaN and AlN, respectively. Therefore, the active region thickness 

for the EPUV source should be > 350 nm, in order to cover the whole electron penetration 

depth, and hence maximize the photon emission. 

 
Figure 4.2: Depth dependent CL spectra of as a function of electron kinetic energy at the surface for 

(a) bulk GaN and (b) bulk AlN. 

As an experimental verification, I have determined the minimum active region thickness 

by growing a series samples containing a single layer of GaN QDs with various AlN capping 
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thicknesses (100, 300, and 500 nm for samples E2900, E2901, and E2902, respectively) via 

PA-MBE. The flux of active nitrogen (ΦN) was set at 0.34 monolayers per second (ML/s). 

The growth of GaN QDs was performed under N-rich conditions (ΦGa/ΦN ~ 0.75). The 

thickness of GaN QDs was fixed at 3 ML over entire samples in the series. The QDs were 

Si-doped in the 10
19

 cm
-3

 range to favor charge evacuation. After the growth, they were 

measured by cathodoluminescence (CL) at Vac = 5 kV. The schematics of the samples are 

depicted in Figure 4.3. 

 

Figure 4.3: Schematics of samples consisting of a single GaN QD layer grown in an AlN matrix, and 

illustration of the electron trajectories when measuring CL. (a) Thin AlN cap layer thicknesses (100 

and 300 nm AlN) where electrons penetrate beyond the QD layer, and (b) thick AlN cap layer 

thickness (500 nm AlN) where electrons do not reach QD layer. 

 

Figure 4.4: Luminescence intensity from the samples with capping thicknesses of 100, 300, and 500 

nm probed by cathodoluminescence with acceleration voltage of 5kV. 

As illustrated in Figure 4.4, the maximum CL intensity is obtained from the sample with 

100 nm cap layer, whereas the emission decreases by almost one order of magnitude for the 

sample with a 300 nm thick cap layer, and there is no signal of GaN QDs probed from the 

sample with a cap layer thickness of 500 nm, which means that for Vac = 5 kV the electrons 
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cannot penetrate 500 nm in the structure. From this experiment, I extract that the minimum 

active region thickness (for Vac = 5 kV) is ~400 nm. This experimental value is lower than 

the maximum active region thickness of ~600 nm which was defined using empirical 

equation, and is in the same range of the maximum active region thickness of 350 nm 

simulated by the Monte Carlo method presented in Figure 4.2. 

4.2.2 Maximum barrier thickness 

The maximum AlN barrier thickness was determined by the measurements of carrier 

diffusion length. With this purpose, a sample consisting of 10 layers of GaN QDs was grown 

by plasma-assited molecular beam epitaxy (PA-MBE), each QD layer separated by 50 nm of 

AlN barrier. Then the sample was characterized by CL performed in a STEM microscope at 

the Otto-von-Guericke-University in Magdeburg (Germany) by the group of Prof. Christen. 

The CL-detection unit is integrated in a FEI STEM Tecnai F20 equipped with a liquid 

helium transmission electron microscopy (TEM) cryo-sample holder (T = 10K/300K). The 

emitted CL light is collected by a parabolic mirror above the sample and focused onto the 

entrance slit of the grating monochromator system Gatan MonoCL4. In scanning-TEM 

(STEM) mode the electron beam is convergent and either kept at a single position for local 

spectra or scanned over the region of interest in imaging mode. Panchromatic as well as 

spectrally resolved CL imaging is used. The CL-intensity is collected simultaneously to the 

STEM signal at each pixel. 

 
Figure 4.5: Low temperature panchromatic STEM-CL mapping in overview shows (a) high angle 

annular dark field contrast of the upper GaN QD layers, and (b) panchromatic spot like CL-intensity 

within the upper marked QD layers; red dashed lines mark the interface between the AlN-on-

sapphire template (MOVPE) and the the AlN grown by MBE, the formed QD layers and the surface. 
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Figure 4.6: (a) Spot-like panchromatic CL intensity distribution at 16K (b) A linescan over spot-like 

emission shows the QD carrier capture length of 18 nm. 

The cross-section STEM image clearly shows the interface between the AlN-on-

sapphire template, grown by metalorganic vapor phase epitaxy (MOVPE) and the AlN 

grown by molecular beam epitaxy (MBE) containing the GaN QD layers (Figure 4.5(a)). 

Originating from the AlN sapphire interface, vertically running threading dislocations show 

up in the high angle annular dark field contrast (HAADF). The comparison of the HAADF-

STEM images with the simultaneously recorded panchromatic CL mappings (Figure 4.5(b)) 

at 16 K exhibits a spot like luminescence distribution in the QD layers.  

To investigate the CL distribution of single QDs, an area of 175×175 nm
2
 was scanned 

in panchromatic mode (see Figure 4.6(a)). A line scan (yellow arrow) was performed across 

the center of the QD emission and plotted as a variation of the QD emission intensity as a 

function of position (Figure 4.6(b)). From the logarithm decay, a carrier diffusion length of 

18 nm was extracted from the experimental curve. 

Carrier diffusion length measurements set a maximum barrier thickness while the 

minimum barrier thickness is determined by the requirement of a flat surface before the 

growth of the subsequent QD layer. Deposition of the second QD layer before complete 

planarization leads to the vertical correlation of the QDs, as a result of the non-homogenous 

strain state of AlN capping layer [211]. Vertical correlation affects both the structural [212] 

and optical properties of the dots: the QD density decreases, the QD diameter and height 

increases, and the emission wavelength red-shifts with the number of QD periods [211]. 

Therefore, to get small QDs and uniform emission along the active region, vertical 

correlation should be avoided. 

The minimum AlN thickness to achieve planarization depends on the QD size and 

density. For instance, the small QDs need less thickness of AlN barrier for surface flattening 
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whereas the big QDs need more AlN barrier thickness. The minimum AlN barrier thickness 

has been determined experimentally by the recovery of a streaky reflection high energy 

electron diffraction (RHEED) pattern after the QD formation. To flatten QDs that are grown 

under N-rich conditions with QD thicknesses in the 3-7 ML range, minimum AlN barrier 

thicknesses are in the range of 4-5 nm. It is noteworthy that the thickness of 4-5 nm of AlN 

barrier is much smaller than the maximum AlN barrier thickness of 18 nm that was defined 

above, so that it is possible to achieve a good carrier collection with planar interfaces. 

 

4.3 Wavelength tunability: Substrate temperature, Al-to-metal 

flux ratio, and the amount of AlGaN in each QD layer 

In this section, I describe the structural and optical properties of AlGaN/AlN QD 

superlattices (SLs) synthesized by PA-MBE, with the target to assess the range of emission 

wavelengths accessible by AlGaN QDs. The samples were designed so as to adapt to the 

requirements of EPUV sources: they consisted of 100 periods of AlGaN QDs with 4-nm-

thick AlN barriers (i.e. active region > 400 nm) deposited on 1-m-thick (0001)-oriented 

AlN-on-sapphire templates. The N was fixed at 0.32 (ML/s). The growth of AlGaN QDs 

was performed under N-rich conditions, i.e. the total metal flux (metal = Al + Ga) was 

lower than N. The QDs were Si-doped in the 10
19

 cm
-3

 range, in order to favor charge 

evacuation in EPUV modules. As reported for GaN QDs [131], [213]. Under these 

conditions, the growth starts two-dimensionally, with a transition into three-dimensional 

(3D) islands (SK growth mode) when the deposited material is beyond a certain critical 

thickness. The growth kinetics was analyzed in situ by reflection high-energy electron 

diffraction, which confirmed the formation of a 3D surface after the deposition of the QD 

layers, and the subsequent planarization during the growth of the AlN barriers. The choice of 

N-rich conditions is motivated by the target of short wavelength emission: the nitrogen 

excess reduces the mobility of adsorbed species during growth, resulting in a high density of 

small QDs (10
11

 cm
-2

), which contributes to the luminescence blue shift thanks to the carrier 

confinement. The QD deposition was followed by a 10-s growth interruption in vacuum, 

before capping with 3-4 nm of AlN grown under slightly Al-rich conditions to achieve a 

good planarization before the next QD layer. The purpose of this interruption is to have the 

time to visually confirm the QD formation after deposition of every QD layer –the RHEED 

pattern was not permanently visible since the substrate kept rotating to achieve good in-plane 
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homogeneity. It is known that QDs in vacuum undergo morphological changes with time, 

known as Ostwald ripening [214]. However, in this work I have verified that growth 

interruptions up to 15 s have no influence on the QD emission spectra at this relatively low 

growth temperature.  

In the samples under study, I tuned the emission wavelength by adjusting three 

parameters, namely the substrate temperature (TS), Al-to-metal flux ratio (Al/metal), and the 

amount of AlGaN in each QD layer. Table 4.1 presents a summary of the growth parameters 

of the samples under study. 

Sample Ts (ºC) Al/metal Amount of 

AlGaN in the 

QD layer (ML) 

Emission 

wavelength 

(nm) 

IQE(%) Measuring 

technique 

QD-1, E1761 720 0 4 320 60 PL, CL 

QD-2, E2816 720 0.14 5 287 40 PL, CL 

QD-3, E2817 720 0.24 6 280 39 PL, CL 

QD-4, E2818 720 0.33 6 274 38 PL, CL 

QD-5, E2820 720 0.42 7 268 42 PL, CL 

QD-6, E2368 745 0.12 4 256 40 CL 

QD-7, E2366 745 0.21 4 245 40 CL 

QD-8, E2999 745 0.12 1.6 235 26 CL 
Table 4.1: Description of the AlGaN QD samples under study: growth parameters, peak emission 

wavelengths at room temperature, IQEs, and measuring techniques (photoluminescence or 

cathodoluminesce. 

 

Figure 4.7: AFM images of (a) GaN/AlN QDs synthesized by deposition of 4 ML of GaN under N-

rich conditions (ΦGa/ΦN~0.8), and (b) AlGaN/AlN QDs synthesized by deposition of ML of AlGaN 

under N-rich conditions (ΦGa/ΦN~0.8), and (c) TEM micrograph corresponds to the AlGaN/AlN QDs 

shown in (b). 
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To verify the presence of QD structures ex situ via atomic force microscopy (AFM) 

characterization, an additional QD plane was deposited on the sample surface. Figure 4.7(a) 

and (b) depict the surface of SLs containing GaN and AlGaN (Al/metal = 0.33) QDs, 

respectively when Figure 4.7(c) shows corresponding high-resolution transmission electron 

microscopy (HRTEM) image of AlGaN QDs in Figure 4.7(b). In both cases, the QD height is 

1-2 nm above the wetting layer, their base diameter is < 10 nm, and the QD density is 10
11

-

10
12

 cm
-2

. HRTEM image of the sample reveals the presence of 3D structures with a base 

dimension ~7 nm and a height ~1.5 nm, consistent with AFM observations. However, the 

high QD density results in the superimposition of several QDs in the HRTEM images, which 

hinders the clear identification of the QD facets and a precise measurement of the thickness 

of the wetting layer. It is noteworthy that a 2D/3D transition is obtained for flux ratios as 

high as Al/metal = 0.42, which implies a lattice mismatch between the QD material and the 

underlying AlN layer lower than 1.7%. Therefore, I attribute the SK transition in this 

semiconductor system not only to the accumulation of elastic energy due to lattice mismatch, 

but also to the high surface energy of the (0001) plane in presence of nitrogen [215]. 

 

Figure 4.8: (a) Room-temperature emission from E2816 measured by PL (solid line) and CL (dash 

line). (b) Variation of fitted integrated luminescence intensity (black scatters correspond to CL data 

and red scatters correspond to PL data) from E2816 as a function of temperature. 

The choice of optical characterization by photoluminescence (PL) or CL is made among 

samples because PL technique works by exciting with Ar laser (λ = 244nm), thus can probe 

only the sample with λ > 250 nm. On the contrary, there is no wavelength limitation when 



WAVELENGTH TUNABILITY 

72 

 

characterize using CL technique. The optical characterizations were probed both by CL and 

PL. Figure 4.8(a) shows a comparison of both techniques, the CL spectrum is slightly red 

shift from the one measured by PL, which might relate to a certain in-plain inhomogeneity 

among QD layers. However both spectra render a similar linewidths. PL measurement shows 

a superimposed Fabry-Perot interferences associated to the total nitride layer thickness (~1.5 

µm). This interference does not occur in CL measurements, where high-energy electron 

injection results in a Gaussian-like profile. The IQEs probed, by the variation of the 

integrated emission intensity as a function of temperature, from PL and CL show the same 

characteristics as illustrated Figure 4.8(b). This experiment assures us that the comparisons 

between IQEs extracted from PL and CL that report elsewhere in the manuscript are valid. 

 

Figure 4.9: (a) Room-temperature emission from AlGaN/AlN QDs. Spectra peaking at λ>265 nm 

were measured by PL and the ones at λ < 265 nm were measured by CL. (b) Variations of the peak 

emission wavelength as a function of the growth parameters. 

Figure 4.9(a) shows the emission of the samples at room temperature. Spectra from 

samples peaking at λ = 340 nm and λ < 265 nm were measured by CL, and the rest of the 

spectra were obtained by PL. By varying Al/metal, TS, and the amount of AlGaN in each 

QD layer as stated in Figure 4.9(b), the peak emission wavelength can be tuned down to 

235 nm. The full width at half maximum (FWHM) of the luminescence is in the range of 

0.19-0.26 eV (spectral width Δλ/λ = 4-6%). 
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Figure 4.10: Variation of the integrated intensity from (Al)GaN/AlN QDs with temperature. Data 

from GaN/AlN QWs emitting at 310 nm is included for comparison. (b) Temperature dependence of 

the luminescence peak position for (Al)GaN/AlN QDs. The solid lines represent the expected 

evolution following Varshni’s equation. Varshni’s parameters for AlGaN samples were obtained by 

linear interpolation between the AlN [61] and GaN [59]. 

 

The emission efficiency has been evaluated via PL measurements as a function of 

temperature. Let us remind that the IQE is defined as: 

IQE=τR
-1

/(τR
-1

+τNR
-1

) (4.2) 

where τR and τNR are the radiative and nonradiative carrier lifetimes, respectively. For 

thermally activated non-radiative recombination centers, i.e. for τNR=τ0e
Ea/kT

 with Ea being 

the nonradiative activation energy, kT being the thermal energy, and τ0 being a constant 

prefactor, the IQE can be expressed as: 

IQE=1/(1+ae
-Ea/kT

) (4.3) 

where a = τR/τ0 [130], [216]. 

Figure 4.10(a) presents the integrated emission intensity as a function of temperature 

normalized to its value at low temperature (T = 5 K) for various AlGaN/AlN QDs. Data 

corresponding to GaN/AlN QDs (E1761) and to GaN/AlN QWs (E1379, consisting of 40 

periods of 1.2nm GaN / 3nm AlN, with peak emission at 310 nm) are included for 
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comparison. Keeping in mind that the PL intensity remains stable below ~70 K for all the 

QD samples, and below ~30 K for the QW sample, the data presented in Figure 4.10(a) 

should correspond directly to the IQE as a function of temperature. In all the samples under 

study, the IQE at room temperature remained higher than 25%. The values of Ea and a 

extracted from fits to equation 4.3 (solid lines in the figure) are summarized in Table 4.2. 

The value of a remains in the 9-17 range for all the QD samples, which could be an 

indication that the introduction of Al in the AlGaN QDs does not modify significantly the 

non-radiative recombination path, i.e. the density and nature of the defects remain stable. On 

the contrary, the value of Ea is maximum for GaN/AlN QDs (785 meV), and decreases 

monotonically when increasing Al/metal, i.e. when reducing the band offsets. This 

activation energy is the potential barrier that the carriers have to overcome to reach the non-

radiative recombination centers, which is significantly higher for QDs than for QWs, thanks 

to the 3D carrier confinement. The in-plane carrier confinement in QWs is only associated to 

thickness or alloy fluctuations. 

Sample 
Emission wavelength 

at 300K (nm) 
Ea (meV) a 

Decay time 

at 5K (ps) 

s-pz 

(µm) 

QD-1, E1761 320 78±5 13±3 770 1.45 

QD-2, E2816 287 64±4 17±3 500 1.57 

QD-3, E2818 274 57±2 14±2 400 1.78 

QD-4, E2820 268 49±2 9±2 360 2.02 

QW-1, E1379 310 
Ea1=15±3 (*) 

Ea2=110±15 
 280  

Table 4.2: PL data of various samples: peak emission wavelength at room temperature, thermal 

activation energy, and exponential prefactor in Eq. (4.3), PL decay time measured at T=5K, and s-pz 

intra-conduction-band transition wavelength at room temperature. 

(*) In the case of QWs, I systematically identify two activation energies, as described in Ref. [130]. 

The smaller one is associated to the onset of the PL decay at low temperatures (~30K in Figure 4.10) 

The PL spectral shifts with temperature, which can provide information concerning the 

carrier localization in potential fluctuations in the AlGaN/AlN QDs, are shown in Figure 

4.10(b). All the samples present a red shift of the PL with increasing temperature which fits 

well with the expected evolution of the AlGaN band gap calculated using Varshni’s equation 

(solid lines in the figure) [59], [61]. Therefore, I conclude that the effect of potential 

fluctuations inside the QDs is negligible. This is in contrast with the results in GaN/InGaN 

QDs and in nonpolar GaN/AlN QDs, which present a strong S-shaped evolution of the PL 

with temperature attributed to intra-dot potential fluctuations associated to alloy 

inhomogeneities [130], [217] or to the presence of stacking faults [218]. S-shaped PL-
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behavior has also been reported in AlGaN thin films [125], [219]–[221] and AlGaN/GaN 

QWs [222], [223], which points out that the AlGaN inhomogeneities originating from 

potential fluctuations are larger than the exciton Bohr radius (~ 2 nm in bulk GaN). The fact 

that these fluctuations do not have an effect on the spectral response of AlGaN QDs is an 

indication of the strong carrier localization imposed by both the band offsets and the 

polarization-induced electric fields in these 3D nanostructures. 

 

Figure 4.11: (a) Time-resolved PL of AlGaN/AlN QDs at 5K. (b) Evolution of the decay time as a 

function of temperature. The decay time is fit in the range where the PL intensity decreases from 90% 

to 10% of its maximum value. 

The radiative recombination efficiency of QD samples has also been assessed by time-

resolved PL. As shown in Figure 4.11 and Table 4.2, the decay time of the AlGaN QD 

samples is mono-exponential at low temperature (T = 5 K), with decay times evolving from 

500 to 360 ps with increasing Al content, possibly due to the reduction of the polarization-

induced internal electric field. For all the samples, the decay times decrease by less than 30% 

between T = 5 K and T = 300 K, confirming that the carriers are efficiently localized in the 

QD and hence relatively insensitive to non-radiative recombination centers. In contrast, the 

decay time in the QW sample decreases by more than one decade in the same temperature 

range, due to the in-plane carrier mobility, as previously observed [201]. 

As a further verification of the electronic structure and optical quality of AlGaN QDs, I 

have studied their excited electronic levels in the conduction band using FTIR spectroscopy. 

Figure 4.12(a) displays the TM-polarized absorption of AlGaN/AlN QDs measured at room 

temperature, showing a dip in the 1.6-2 µm wavelength range, which does not appear for TE 

polarization. This is a signature of an intraband transition between the ground state of the 

conduction band, s, and the first excited electronic state confined along the growth axis, pz. 

The lateral confinement in the QDs should give rise to additional transitions under TE-
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polarized excitation. However, taking into account the lateral dimension of the QDs ~7 nm, 

the s-px and s-py transitions should be masked by the sapphire absorption for λ > 4 µm. The 

s-pz transition red shifts for increasing Al mole fraction in the QDs as a result of the 

reduction of the band offset. A comparison with theoretical calculations using the 8-band k·p 

Schrödinger-Poisson Nextnano
3
 solver [119], [224] with a one-dimensional approximation 

provides an excellent fit with the experimental results, as illustrated in the inset of Figure 

4.12 which supports the Al incorporation in the QDs in levels close to the nominal values. 

 

Figure 4.12: Room temperature infrared absorption spectra for TM-polarized light measured in 

AlGaN/AlN QDs. Inset: Evolution of the s-pz intraband transition wavelength as a function of the Al 

mole fraction in the nanostructures. Scatters correspond to experimental measurements and the solid 

line is a theoretical calculation using the 8-band k·p Schrödinger-Poisson Nextnano
3
 solver. The 

calculation considers a one-dimensional approximation with the material parameters in [119], a QD 

height of 1.4 nm, and the Al mole fraction in the nanostructures as the only variable parameter. 

In conclusion, I have demonstrated the PA-MBE growth of AlGaN/AlN QD SLs 

displaying room-temperature emission down to 235 nm wavelength with IQE higher than 

25%. The spectral evolution of the PL with temperature presents no indications of intra-dot 

carrier localization. The efficient carrier confinement is confirmed by the stability of the PL 

decay time as a function of temperature up to 100 K. Above this threshold, the PL intensity 

decreases and the radiative lifetime increases due to carrier thermalization. Using Fourier 

transform infrared (FTIR) spectroscopy, I have identified the intraband electronic transition 

between the ground level of the conduction band and the first excited state confined along 

the growth axis. The evolution of the intraband transition with the Al-to-metal flux ratio is in 

good agreement with theoretical calculations confirms the incorporation of Al in the QDs. 
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4.4 Effect of the amount of AlGaN on the IQE and morphology 

In this section, I describe the identification of an optimum deposited amount of AlGaN 

in AlGaN/AlN QDs to achieve maximum luminescence at room temperature. Such thickness 

is given by a compromise between the thicknesses providing maximum IQE and maximum 

QD density. To perform this study, I grew stacks of 19 periods of AlGaN/AlN QDs on 1-m-

thick (0001)-oriented AlN-on-sapphire templates. The structures of all the samples are 

illustrated in Figure 4.13. 

 

Figure 4.13: The structure of the grown samples for section 4.4, which consists of 19 periods of 

AlGaN/AlN QD SLs. The thickness of AlN barrier was set at 12 nm while the thicknesses of AlGaN 

QD is varied from 3 to 7 ML, which associate to the sample number as shown in Table 4.3. 

The growth of AlGaN QDs was performed under N-rich conditions [131], [213], i.e. the 

total metal flux (metal = Al + Ga) was lower than the active nitrogen flux N which was 

set at 0.44 ML/s. The QDs were Si-doped in the 10
19

 cm
-3

 range in order to improve the 

conductivity, hence preventing the charging effect that might occur in electron-injection 

measurements. The substrate temperature remained at TS=720°C, the Al-to-metal flux ratio 

was fixed at Al/metal = 0.09, and the amount of AlGaN in each QD layer was varied from 3 

to 7 ML. The synthesis of each AlGaN QD layer is followed by a 10 s growth interruption 

under vacuum, during which additional reflections corresponding to the QD facets are 

visible in the RHEED pattern when the total amount of AlGaN is larger than 4 ML. The QDs 

were capped with 12 nm of AlN grown under slightly Al-rich conditions. The reason for such 

large barriers in comparison with the experiments described in section 4.3 is that I wanted to 

guarantee surface planarization after the growth of the barrier even in the samples with 

thicker QDs (deposition of 7 ML). Table 4.3 presents a summary of the growth parameters of 

the samples under study. 
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Sample 
Amount of 

AlGaN (ML) 

QD density 

(×10
11

cm
-2

) 
λRT (nm) IQE (%) Ea a 

s-pz 

(μm) 

E3180 3 2.4±0.3 256 38 38±3 6±1 -- 

E3179 4 2.9±0.3 276 60 74±3 11±2 1.50 

E3178 5 7.3±0.3 296 52 45±3 5±1 1.51 

E3177 6 9.5±0.5 311 31 
22±3 

89±20 

2.1±0.7 

19±14 
1.55 

E3175 7 9.0±0.5 322 22 
18±2 

102±7 

1.1±0.2 

90±20 
1.59 

Table 4.3: Description of the AlGaN QD samples under study: amount of AlGaN in the QD layers, 

QD density, room temperature peak emission wavelength (λRT), IQE, thermal activation energy (Ea), 

exponential prefactor (a) in Eq. (4.3), and intraband transition energy (s-pz). 

 

Figure 4.14: Variation of QD density as a function of the amount of AlGaN deposited to form each 

QD layer. 

The QD densities were extracted from AFM measurements and plotted in Figure 4.14. 

When progressively increasing the amount of AlGaN in the QDs from 3 to 7 ML, the QD 

density increases monotonously from (2.4±0.3)×10
11

 cm
-2

 (E3180) to (9±1)×10
11

 cm
-2 

(E3175). However, the base diameter and height cannot be straightforwardly extracted since 

the AFM tip radius (~7 nm) is comparable to the size of the measured objects [193]. This 

relatively high QD saturation density, compared to previous literature [129], [225]–[227], is 

achieved due to the low growth temperature (TS = 720°C) and short ripening time (10 s), 

which reduces the material capture radius around the QD nucleation site [131]. Figure 4.15 

(a)-(c) show a cross-sectional HAADF-STEM image of 3, 5, 7-ML AlGaN QDs. The QDs 

appear closely packed for the 5 and 7 ML QDs when they are scarcely seen for 3 ML QDs 

since the deposited thickness is close to the thickness ~2 ML of wetting layer. The extracted 

base-diameter DQD and height hQD of 5 ML AlGaN QDs are 6.5±1.0 nm and 4±1 ML when 

those of 7 ML AlGaN QDs are 7.5±1.0 nm and 6±1 ML. 
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Figure 4.15: Cross-sectional HAADF-STEM images of (a) 3 ML, (b) 5 ML, and (c) 7 ML 

QDs taken along the <11-20> axis. White contrast is provided by Ga atoms. 
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Figure 4.16: (a) Cross-sectional HDAAF-STEM image of 7 ML AlGaN QDs (E3175) taken 

along the <11-20> axis, showing 3 AlGaN QD layers. White contrast is provided by Ga 

atoms. (b) Map of the (0001) interplanar distance obtained by GPA of the region delimited 

by a dashed rectangle in (a). The AlN area is considered as a reference lattice assuming it 

relaxed (average AlN interplanar distance = 2.491 Å). (c) Variation of the (0001) 

interplanar distance along the growth axis obtained by horizontal averaging of (b). 

In order to verify the incorporation of Al in the QDs, geometrical phase analysis (GPA) 

[228] was performed on Figure 4.16 (a) to analyze the variation of the (0001) interplane 

distance [see color mapping in Figure 4.16(b)]. For the GPA analysis, scan distortions were 

removed using the AlN as reference region [229]. Figure 4.16(c) shows the interplane 

distance profile extracted by horizontal averaging of Figure 4.16(b). At the AlGaN QD 

layers, the (0001) interplane distance reaches 2.61±0.01 Å, which corresponds to an Al 

composition of 12±7% assuming that the QDs are pseudomorphic on AlN and applying the 

biaxial strain approximation (ezz/exx = −2𝑐13/𝑐33 ≈ −0.537, ezz and exx being the strain 

along <0001> and <11-20>, respectively, and the elastic constants c13 = 106 GPa and 

c33 = 398 GPa for GaN [75] and c13 = 108 GPa and c33 = 373 GPa for AlN [79]). 
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Figure 4.17: (a) Reciprocal space map around the asymmetric (-1015) reflection for E3175, Qx and 

Qz are the reciprocal space vectors in Å
-1

. (b) High-resolution XRD θ-2θ scans of the symmetric 

(0002) reflections of samples E3180, E3179, E3178, E3177, and E3175. The simulations 

superimposed on the experimental scans were performed using the X’Pert Epitaxy 40 software from 

Philips Analytical, assuming that the structures are fully strained on the AlN substrates, and using 

the data in Table 4.3 (biaxial strain configuration). 

Reciprocal space maps around the (-1015) asymmetrical reflection (shown in Figure 

4.17(a)) confirm that the QDs are pseudomorphic on AlN within the error bar of the 

characterization technique, i.e. the relaxation of the a lattice parameter is smaller than 1%. 

Relaxation here is defined as R = (a – aAlN)/(a0 – aAlN), where a is the measured average in-

plane lattice parameter, a0 is the average lattice parameter of the relaxed AlGaN SLs and aAlN 

is the lattice parameter of the AlN matrix. From the maps, I assume that the structures are 

fully strained on the AlN substrate. Figure 4.17(b) shows x-ray diffraction (XRD) θ-2θ scans 

around the (0002) reflection of all the samples, together with simulations using the X’Pert 

Epitaxy software from Panalytical. From such diffractograms, I extract the superlattice (SL) 

period, dp, and average SL c lattice parameter, <cSL>, which are summarized in Table II for 

the samples under study. From all these data, the average c lattice parameter in the QD layer, 

<cQD>, can be calculated from the equation: 

< 𝑐𝑆𝐿 > 𝑑𝑝 = 𝑐𝐴𝑙𝑁(𝑑𝑝 − 𝑑𝑄𝐷)+< 𝑐𝑄𝐷 > 𝑑𝑄𝐷 (4.4) 

where cAlN is the lattice parameter of relaxed AlN, and the average thickness of the QD layer, 

dQD, is given by: 

𝑑𝑄𝐷 = (ΦAl + ηGaΦGa)𝑡𝑑 (4.5) 
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where ΦGa (ΦAl) are deposited Ga (Al) flux, ηGa (<1)
*
 is the Ga sticking coefficient. Note that 

the nominal QD thicknesses are already corrected to take into account the 0.05 ML/s Ga 

desorption rate, the Al sticking coefficient is considered as 1, and td is the QD deposition 

time. The average Al composition, x of the QD layer can be obtained from: 

𝑥 =
ΦAl𝑡𝑑
𝑑𝑄𝐷

=
𝑐𝐺𝑎𝑁
′ −< 𝑐𝑄𝐷 >

𝑐𝐺𝑎𝑁
′ − 𝑐𝐴𝑙𝑁

 (4.6) 

where I assume pseudomorphic growth, and thus the Vegard’s law is modified so that 𝑐𝐺𝑎𝑁
′  is 

the lattice parameter of GaN biaxially strained on AlN. Combining Eqs. (4.4) and (4.6), I 

extract x = 12.0% and dQD = 5.2 ML for E3175, in good agreement with the microscopic-

scale calculation performed by GPA on HAADF-STEM. The calculated x and dQD for all the 

samples assuming biaxial strain configuration are summarized in Table 4.4. However, this 

picture of biaxially strained QD SLs is oversimplified. The biaxial deformation assumes 

identical stress along the <11-20> directions and no stress along <0001>. In a 3D structure 

like AlGaN/AlN QDs, the surrounding AlN matrix imposes a compressive stress on the QD 

facets with a component along <0001> which might not be negligible. Therefore, a complete 

3D modeling of actual strain distribution is required for precise determination of the Al 

composition, as it is described below. 

 

Sample dp (nm) 
<cSL> 

(nm) 

Biaxial strain 

configuration 
ezz/exx 

3D strain 

calculation 

x (%) 
dQD 

(ML) 
x (%) 

dQD 

(ML) 

E3180 12.7 0.4994 11.7 2.4 - - - 

E3179 13.0 0.4997 11.0 3.2 -0.236 9.6 3.6 

E3178 13.3 0.5000 11.6 3.9 -0.267 10.4 4.4 

E3177 13.6 0.5003 11.9 4.7 -0.337 11.0 5.1 

E3175 13.9 0.5005 12.0 5.2 -0.375 11.4 5.5 

Table 4.4: SL period (dp) and average SL c lattice parameter (<cSL>) measured by XRD in the AlGaN 

QD samples under study. Extracted average Al composition (x) and thickness (dQD) of the QD layer 

assuming biaxial strain configuration. Strain ratio ezz/exx in the center of the QDs obtained from 

calculations of the 3D strain distribution in the structure. Extracted values of x and dQD using the 3D 

strain calculation. 

                                                   
* At 720°C, the desorption of adsorbed Ga on a GaN surface happens at a rate of 0.05 ML/s. Taking 

into account that our impinging Ga flux is in the range of 0.3 ML/s, the Ga sticking coefficient is 

only 0.83 in absence of other factors that can further reduce this value (for instance, strain). 
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Figure 4.18: Normalized room-temperature CL spectra of AlGaN QDs obtained by deposition of 

different amoutns of AlGaN in Table 4.3. 

The luminescence of each sample was characterized as a function of temperature using 

CL and PL. Normalized CL spectra at room temperature are displayed in Figure 4.18(a), and 

the emission peak wavelengths (λRT) are summarized in Table 4.3, whereas the peak 

emission spectra measured by PL as shown in Figure 4.18(b) are red-shift from those 

measured by CL in the range of 14-51 meV. Except the spectrum of E3180, which shows a 

huge deviation (217 meV). Such deviation is attributed the fact that the smaller QDs are not 

active for PL measurements since they cannot be excited by the laser. Increasing the amount 

of AlGaN in each QD layer from 3 to 7 ML, results in a CL red shift from 256 to 323 nm 

which associated to a weaker confinement effect. CL from the wetting layer could be 

expected around 240 nm for the alloy composition under consideration. However, features 

associated to the wetting layer are only observed in the case of highly diluted QDs (for 

instance, as reported by simeonov et al. [230] for GaN/AlN with maximum QD density of 

5×10
10

 cm
-2

). For high QD density, a good transfer of the free carriers to the QDs, enhanced 

by the internal electric field, quenches the emission associated to the wetting layer. In cases 

of quasi-coalescence, like 6 or 7 ML QDs (E3177 or E3175), the electronic level of the 

wetting layer is strongly perturbed by the presence of the dots. A 3D calculation of the 

electronic structure, considering both the QDs and the wetting layer, is required to identify 

the electronic levels. 
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Figure 4.19: (a) Evolution of the integrated CL intensity from AlGaN/AlN QDs with temperature. 

Solid lines are fits to Eq.(4.3). (b) Temperature dependence of the CL peak position of AlGaN/AlN 

QDs. Solid lines represent the evolutions of the emission with temperature following Varshni’s 

equation. Varshni’s parameters of AlGaN samples were obtained by linear interpolation between the 

AlN [61] and GaN [59] values. 

Figure 4.19(a) presents the integrated emission intensity as a function of temperature 

normalized to its value at low temperature (T = 5 K) for various AlGaN QD samples. In all 

cases the CL intensity remains stable at low temperatures (T < 30 K). Therefore, the IQE can 

be approximated by Eqs.(4.2) or/and (4.3). 

Solid lines of 3 to 5 ML QDs are fit to Eq.(4.3). The calculated values of Ea and a are 

summarized in Table 4.3. The maximum Ea corresponds to 4 ML QDs (E3179). Let us 

remind that increasing the amount of deposited AlGaN results in an increase of the QD 

density, which reaches saturation at 6 ML, as confirmed in Figure 4.23(c). When the QDs get 

closer, the hole wavefunction, which is located at the base of the dot due to the polarization-

induced internal electric field, gets delocalized, and the probability of carriers to escape via 

the wetting layer increases, which explains the monotonous decrease of IQE from 5 to 7 ML 

QDs. In addition, in high density QDs (6 and 7 ML QDs) the variation of IQE with 

temperature do no longer follows Eq. (4.3); a second activation energy is required to obtain a 

good fit, similar to the case of GaN/AlN QWs [130]. This provides additional evidence that 

6 and 7 ML QDs start losing the character of QDs and their wetting layers start playing role 

as non-radiative recombination path. 

The CL spectral shifts with temperature, which can provide information concerning 
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carrier localization in intra-dot potential fluctuations, are shown in Figure 4.19(b). All the 

samples present a red shift with very slight S-shaped evolution of the CL with increasing 

temperature which fit with the expected evolution of the AlGaN band gap calculated using 

Varshni’s equation (solid lines in the figure) [59], [61]. Therefore, I conclude that the effect 

of potential fluctuations inside the QDs is negligible, which agree with our previous results 

in section 4.3 [231].This is in contrast with the results in InGaN/GaN QDs and in nonpolar 

GaN/AlN QDs, which present a strong S-shaped evolution of the PL with temperature 

attributed to intra-dot potential fluctuations associated to alloy inhomogeneities [130], [217] 

or to the presence of stacking faults [218], respectively. 

 

 
Figure 4.20: Variation of the room-temperature integrated CL/PL intensity as function of amount of 

AlGaN in the QD layer. In case of PL, the intensity is corrected to account for the different 

absorption volume. 

Figure 4.20 shows the room-temperature emission intensity of each sample measured by 

PL and CL and normalized to the maximum value. The PL data are corrected by the amount 

of AlGaN in the samples, to account for the incomplete excitation absorption – PL 

measurements used an Ar Laser (244 Nm) as excitation source, so that photons could only be 

absorbed in the AlGaN QD layers, while the AlN barriers were optically transparent. 

Therefore, a correction by the amount of AlGaN is required to account for the different 

absorption in the various samples. In contrast, the generation of electron-hole pairs by CL 

should be comparable in all the samples, since they have approximately the same density. 

The variation of emission intensity shows the same trend in both cases (CL and PL). Initially, 

the intensity increases with the amount of AlGaN due to the improved IQE and the increased 

QD density. Maximum emission intensity is observed for 5 ML QDs (E3178), where the 

slight decrease of IQE with respect to 4 ML QDs (E3179) is compensated by the higher QD 

density. The marked decrease in 6 and 7 ML QDs emission intensity can be directly related 

to the drop in IQE (Figure 4.19(a)) and the saturation of the QD density. 
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Figure 4.21: Room-temperature infrared absorption spectra for TM-polarized light measured in 

AlGaN/AlN QDs. 

Further information on the electronic structure of the AlGaN QDs was obtained by 

studying the excited electronic levels in the conduction band using FTIR spectroscopy. 

Figure 4.21 displays the normalized absorption of transverse-magnetic (TM) polarized light 

measured in AlGaN/AlN QDs at room temperature. No transverse-electric (TE) polarized 

absorption was observed for any of the samples. The absorption peak energies, summarized 

in Table 4.3, red shift when increase the amount of AlGaN in the QD layer. These absorption 

lines are assigned to intra-band transitions between the ground state of the conduction band, 

s, and the first excited electronic state confined along the growth axis, pz. The lateral 

confinement in the QDs can give rise to additional transitions under TE-polarized excitation. 

However, taking into account the lateral dimension of the QDs ~7.5 nm, the s-px and s-py 

transitions should be masked by the sapphire absorption for λ > 5 µm. 

For interpretation and correlation of the interband and intraband optical data, I have 

performed 3D calculations of the QD strain state, band diagram and quantum confined states 

by using the Nextnano
3
 Schrödinger-Poisson equation solver [224] with the GaN and AlN 

parameters in ref. [119] and neglecting the AlGaN bowing parameters. The simulated 

structure consisted of 10 periods of Al0.1Ga0.9N QDs separated by 10-nm-thick AlN barriers 

grown on bulk AlN. In each layer, the QDs were defined as a hexagonal truncated pyramids 

with {10-13} facets [212], connected by a 0.5-nm-thick wetting layer. A schematic view of 

the structure is presented in Figure 4.22(a)-(b) In this example, the Al0.1Ga0.9N QDs have a 

base diameter of 8.3 nm and a height of 1.5 nm. 
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Figure 4.22: (a) Cross-section and (b) plane-view of a schematic material description of the structure 

simulated with Nextnano
3
. In this example, Al0.1Ga0.9N QDs have a base diameter of 8.3 nm and a 

height of 1.5 nm, and are separated by 10 nm AlN barriers. Cross-sectional views of the (c) ezz and 

(d) exx strain components in a QD layer. (e) Evolution of the ezz/exx ratio as a function of the aspect 

ratio in QDs with a height of 1 nm and 1.6 nm. The dashed line indicates the value for biaxial strain. 

The 3D strain distribution was calculated by minimization of the elastic energy through 

the application of periodic boundary conditions along the <1-100> and <11-20> directions. 

Figure 4.22(c) and (d) display cross-sectional views of the strain components along the 

<0001> direction, ezz, and along the <1-100> direction, exx, for three QDs passing through 

the center of the simulated structure. In this example, the ratio between ezz and exx at the QD 

center, ezz/exx = 0.337, is significantly smaller than the theoretical value in the biaxial strain 

configuration (ezz/exx ≈ −0.537). This confirms that the AlN matrix results in the 

application of a uniaxial compressive stress along <0001> which adds up to the biaxial strain 

configuration, hence reducing the value of ezz. Note that the value of ezz/exx is sensitive to the 

QD aspect ratio (τ = QD height / base diameter), as illustrated in Figure 4.22(e). 

For the calculation of the band profiles, the spontaneous and piezoelectric polarizations 

and the band gap deformation potentials were taken into account. Figure 4.23(a) displays a 

cross section view of the conduction band in the structure in Figure 4.22, and Figure 4.23(b) 

describes a conduction band profile along <0001> passing through the center of the QDs. 

The Al0.1Ga0.9N/AlN sequence presents the saw-tooth profile characteristic of III-nitride, due 

to spontaneous and piezoelectric polarizations. In this example, the magnitude of the electric 

field in the center of the QDs is 6.7 MV/cm, to be compared with 7.1 MV/cm expected in an 

Al0.1Ga0.9N/AlN QW with the same thickness. 
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Figure 4.23: (a) Cross-sectional view of the conduction band of 3 QD layers in the stack described in 

Figure 4.22(a). (b) Conduction band profile along the growth axis passing though the center of the 

QDs (dashed line in (a)). The energetic position of the electronic levels s, px, py and pz are indicated 

in the figure. (c) Probability density distribution, |Ψ(r)|
2
, for the first hole state in the valence band 

(h1), the three lowest electron states of the conduction band (s, px, py), and the first excited electron 

state due to confinement along the growth axis (pz). 

Figure 4.23(c) presents cross-sectional views of the square wave function, |(r)|
2
, for the 

first hole state in the valence band (h1), the three lowest electron states (s, px, py), and the 

first excited state with a secondary node along the growth axis (pz). As a result of the 

polarization-induced internal electric field, s is shifted towards the top of the QD, whereas h1 

is confined in the wetting layer, as previously described in GaN QDs [232], [233]. 

Figure 4.24 displays the evolution of the s-pz intraband transition as a function of the s-

h1 interband transition, comparing various nanostructures. In the case of QWs, experimental 

data correspond to FTIR and PL measurements of GaN/AlN QWs with 3-4 nm AlN barriers 

and various QW thicknesses (data in ref. [119]). An increase of the QW width results in a 

red shift of both interband and intraband transitions. The solid line corresponds to one-

dimensional calculations using the Nextnano
3
 Schrödinger-Poisson solver with the 

parameters in ref. [119], assuming that the final strain state of the structure corresponds to 

the minimum-energy configuration independent of the substrate, as experimentally observed 

[234]. Since the interband transition is more sensitive to the strain state and electric field 

whereas the excited levels are more sensitive to the confinement (see Figs. 3 and 4 in ref. 

[235]), the good fit between theory and experiment in Figure 4.24 confirms that our model 

provides a good description of the structure as a whole. 
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Figure 4.24: Evolution of the s-pz intraband transition energy as a function of the s-h1 interband 

transition in various nanostructures. Experimental points represent peak intraband absorption 

energy vs. peak PL energy for GaN/AlN QWs [217], GaN/AlN QDs [131], and the AlGaN/AlN QD 

samples in this study. The solid lines are theoretical calculations. In the case of GaN/AlN QDs, 

calculations assume an aspect ratio τ = 0.12. In the case of AlGaN/AlN QDs, the solid line is a guide 

for the eye, and dashed/dotted lines are calculations assuming various aspect ratios. 

In the case of GaN/AlN QDs, experimental data correspond to FTIR and PL 

measurements of Stranski-Krastanov GaN/AlN QDs with 3-4 nm AlN barriers, the dots 

being deposited under N-rich conditions varying the growth temperature or the amount of 

GaN in the QD layer (data in ref. [131]). The experimental GaN QD data are well fitted by 

the solid line which is obtained from 3D calculations that consider a strain distribution 

extracted by elastic energy minimization. The aspect ratio used for the 3D calculations is 

0.12, following the results of Adelmann et al. in similarly grown structures [225]. The QD 

intraband transition is blue shifted in comparison to QWs due, on the one hand, to the lateral 

confinement in the QDs, and, on the other hand, to the additional compressive strain along 

<0001> imposed by the AlN matrix, as observed in Figure 4.22(c). 

The data corresponding to the Al0.1Ga0.9N/AlN QDs in this study are further blue shifted 

in terms of interband transition due to the introduction of Al in the QDs. However, the 

experimental intraband vs. interband trend cannot be fitted using a unique aspect ratio value. 

Data is rather consistent with a decrease of the aspect ratio for increasing amount of AlGaN 

deposited, obtaining good fits for 4 ML QDs with τ = 0.15, whereas 7 ML QDs require 

τ = 0.09. These values are within the large error bars of microscopy characterization. 

Therefore, in the case of AlGaN QDs (in this case Al content is ~10%), the variation of 

aspect ratio when changing the amount of deposited AlGaN cannot be neglected in the 

interpretation of the optical data. 
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Using this information of aspect ratio, I have re-calculated the strain distribution in the 

QDs under study (for each sample, I have considered the geometry (QD height and diameter) 

that provides a better fit to PL and intraband absorption), obtaining ezz/exx as summarized in 

Table 4.4. By applying these values of strain to the calculation of cGaN
′  in Eq. (4.6), I extract 

a more precise estimation of the average QD alloy compositions (10.6±0.8% for all the 

samples) and layer thicknesses, also presented in Table 4.4. The obtained dQD values 

correspond to (85±5)% of the nominal amounts of AlGaN. These deviations of dQD and the 

difference between the measured Al mole fraction and the metal flux ratio (Al/metal = 0.09) 

can be explained by the fact that Ga desorption is active at the growth temperature, and by 

the etching of GaN observed during AlN overgrowth [226]. 

In conclusion, I have demonstrated the PA-MBE growth of AlGaN/AlN QDs with 

various amounts of AlGaN in each QD layer. The structural characterization has shown that 

the AlGaN QD density increases with the amount of deposited material, and saturates at 

~9×10
11

 cm
-2

. XRD confirms that the AlGaN QDs grow pseudomorphic in the AlN matrix 

for deposited thickness up to 7 ML. XRD measurements point to an Al incorporation in the 

~11%, slightly higher than the Al-to-metal flux ratio due to Ga desorption. The interband 

emission of the QDs was studied by PL and CL, and the s-pz intra-conduction-band transition 

was identified by FTIR. By comparing interband and intraband characterization with 3D 

modeling of the electronic structure accounting for the elastic energy minimization, I 

conclude that the QDs strain distribution deviates significantly from the biaxial strain 

configuration, and a decrease of the QD height/base diameter ratio takes place when 

increasing the amount of deposited AlGaN. Best room-temperature emission intensity is 

obtained for QDs formed by deposition of 5 ML of AlGaN, due to a compromise between 

internal quantum efficiency and QD density.  

 

4.5 Target-wavelength approaching 

In the previous section, I determined that the best optical performance which was 

achieved by deposition of 5 ML of AlGaN to form each QD layer. However, in this 

experiment, the thicknesses of AlGaN were fixed at 4 ML which is the condition that provide 

best IQE, since the experiments were parallel done before I have a conclusion of 5 ML-

maximum luminescence. The samples of 80 periods of AlGaN QDs with 5-nm-thick AlN 
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barriers were synthesized by PAMBE on 1-m-thick (0001)-oriented AlN-on-sapphire 

templates. The ΦN was set at 0.38 ML/s. The AlGaN QD was performed under N-rich 

conditions [131], [213], i.e. the metal <  N = 0.38 ML/s. The QDs were Si-doped in the 10
19

 

cm
-3

 range. The ΦAl/Φmetal of the first sample was set at 0.11 and was systematically 

increased to 0.14 and 0.18. The substrate temperature was fixed at 720°C, and was 

progressively increased to 730 and 740°C. Schematic of the grown structure in this section is 

illustrated in Figure 4.25, the growth parameters for all the samples are presented in Table 

4.5. 

 

Figure 4.25: The structure of the grown samples for section 4.5, consisting of 80 periods of 

AlGaN/AlN QD SLs. The thicknesses of AlGaN QDs and AlN barriers were set at 4 ML and 5 nm, 

respectively, while the Al contents (ΦAl/Φmetal) were varied from 0.11, 0.14 to 0.18, and the substrate 

temperatures were varied from 720, 740 to 750°C. 

sample ΦAl/Φmetal 
AlGaN QDs 

thickness (ML) 

Substrate 

temperature (°C) 

Peak emission 

wavelength (nm) 

E3274 0.11 4 720 295 

E3273 0.11 4 730 291 

E3275 0.11 4 740 280 

E3277 0.14 4 740 274 

E3278, 

E3279 
0.18 4 740 261 

Table 4.5: Description of the AlGaN QD samples under study: growth parameters, peak emission 

wavelength at room temperature. 

As illustrated in Table 4.5, the spectral response of E3274 peaks at 295 nm. The sample 

was grown with the same AlGaN QD thickness (4 ML) and approximately the same nominal 

Al content (~10%) as E3179 (see Table 4.3 in section 4.4) which peaks at 276 nm. I attribute 

the red-shift of E3274 to the lower growth temperature than that used for E3179. Increasing 

substrate temperature results in two phenomena, i.e. increasing Ga desorption rate from the 

growth structure (higher Al content QDs is obtained) and/or enhancing adatom mobility 

(larger QDs are generated). The higher Al content blue shifts emission spectrum, whereas the 

larger QDs, due to the weaker carrier confinement, red-shifts emission spectrum. Thus, in 
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my case, the higher Al content overwhelmed the shape evolution of the dots when increasing 

temperature. 

The increasing of Al content and substrate temperature were done, in order to blue shift 

the peak to the peak emission wavelength to (λRT = 260-270 nm) for water purification. From 

our experimental results, increasing the substrate temperature from 720 to 740 ºC 

monotonously blue shifts peak emission spectrum from 295 to 280 nm as shown in Figure 

4.26, which indicates that the effect of Ga desorption overwhelmed that of QD-shape 

evolution when increasing the substrate temperature. 

 

Figure 4.26: Room-temperature PL spectra of AlGaN QDs in Table 4.5 

It was reported [236] that at very high growth temperature (~758 ºC), GaN QDs are not 

well-formed and display very broad size distribution which might result in broad emission 

linewidth. To avoid entering that regime, I decided to stop increasing Ts, but increasing 

ΦAl/Φmetal instead, to further blue shift the peak emission spectra. As shown in Table 4.5, 

increasing the ΦAl/Φmetal from 0.11 to 0.14, and 0.18% shifts peak emission spectra from 280 

to 261 nm. Eventually, the growth condition of E3278, which provides peak emission 

spectrum at 261 nm, were set as the condition to fabricate the prototype active region for 

water purification. 

 

4.6 Post-growth dice shaping 

Despite finding the optimum growth parameters to acquire highly efficient active media, 

post-growth processes must be applied to enhance the light extraction. Since all the growth 

was performed on AlN-on-sapphire substrates, the transparency of the sample allows 

multiple-pass configurations to extract the light from the medium. Processes can be applied 
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to improve light extraction from a transparent medium, i.e. material shaping, metallizing and 

surface texturing [237]. The material shaping into a truncated-inverted-pyramid (TIP) 

geometry [238] combined with an external back mirror and surface texturing techniques 

have led to an external quantum efficiency of 50% for GaP-based LEDs [239]. 

I have performed a study of the effect shaping and back-metallizing the active region, 

using stacks of 80 periods of AlGaN/AlN QDs. The dots were deposited under N-rich 

conditions, and the substrate temperature, Al-to-metal flux ratio, and amount of AlGaN in 

each QD layer were set at TS = 720°C, Al/metal = 0.12, and dQD = 3 ML, respectively. The 

sample was diced into 8 pieces of 4 mm × 4 mm, namely A, B, C, D, E, F and G, which were 

characterized by PL. Subsequently, different treatments were applied to the various pieces, as 

summarized in Table 4.6. 

Sample Back polishing Edge polishing Metallizing Improvement factor (%) 

A    -2 

B    0 

C    -19 

D    -11 

E    11 

F    -10 

G    22 

H    31 

Table 4.6: Applied processes to the samples (back polishing, edge polishing, and metallizing) and 

their improvement factors. 

The edge polishing of the samples was performed at a 45° angle. The metallization 

consisted in the deposition of 200 nm of aluminum by e-beam metallization. One of the 

samples (B) was kept as a reference of as-grown conditions. After the treatments, all the 

samples were measured by PL in order to assess the improvement factors due to each 

treatment, as illustrated in Figure 4.27. 

Against the report on GaP based LEDs [238], back and edge polishings (A, D, and F ) in 

our experiment did not improve but slightly degraded the light extraction efficiency. This 

might attribute to the annihilation of the bottom surface roughening of the sapphire substrate, 

which primitively assists in light randomization (promoting multiple pass light). However, 

the treatments of metallizing on the polished samples (E, G, and H) resulted in the 

improvement factors of 12-31%. Thus, in our case, the back-metallization helps improving 

the light extraction efficiency if and only if performing it on the polished surfaces. 
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Figure 4.27: Improvement factor of samples after Back polishing, Edge polishing and Metallizing 

treatments. 

 

4.7 The growth on SiC substrate 

In the previous sections, the growths of AlGaN/AlN QD structures were performed on 

sapphire substrates. Being ultraviolet-transparent, sapphire presents advantages in terms of 

light extraction. However, its high resistivity and low thermal conductivity are drawbacks for 

some applications, involving electron-pumped devices. As an alternative, SiC is almost 

lattice matched with AlN and present advantages over the sapphire substrate in terms of 

thermal and electrical conductivity, although sacrificing the substrate transparency (6H-SiC 

band gap at 3.23 eV [240], i.e. 384 nm). However, the main factor that limits the use of SiC 

today is the price of high-quality SiC substrates. 

In order to illustrate the possibility to transfer the growth process to SiC, I synthesized 

AlGaN/AlN QDs samples on both sapphire and SiC substrates using the same growth 

conditions as E3279 for acquiring a peak emission spectrum of 260-270 nm. The growth of 

80 periods of AlGaN/AlN QDs with 5-nm-thick AlN barriers was performed simultaneously 

on both AlN-on-sapphire and SiC substrates. The ΦN was set at 0.38 ML/s. The AlGaN QD 

was performed under N-rich condition, and the dots were Si-doped in the 10
19

 cm
-3

 range. 

The ΦAl /Φmetal was set at 0.18 and the substrate temperature was fixed at 740°C (68% of 

heater). As illustrated in Figure 4.28(a), the peak emission spectrum of active medium grown 

on SiC was characterized by PL, showing emission peak at 270 nm, slightly red shifted from 

that grown on AlN-on-sapphire. Both spectra show comparable full width at half maximum 

(12-14 nm) and luminescence intensity (~12,000 counts/sec). 
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Figure 4.28 (a) Room-temperature PL spectra of AlGaN QDs grown on AlN-on-saphhire and SiC 

substrates. (b) Evolution of the integrated PL intensity from AlGaN/AlN QDs grown on SiC with 

temperature. 

The IQE of AlGaN/AlN QDs grown on SiC was estimated by the ratio of integrated 

intensity measured at room and low (5K) temperatures, providing the IQE of 42% as 

displayed in Figure 4.28(b), which is in the range of all the presented samples that were 

grown on AlN-on-sapphire (20-60%). The spectrum at 100K was added to prove that the 

integrated intensities were constant at low temperature region, to assure the validity of the 

probed IQE. 

 

4.8 Conclusions 

The first experiment aimed at identifying the penetration depth of the electrons at the 

acceleration voltage of 5kV which can set the minimum active region thickness, consisting 

of AlGaN QD layers and AlN barriers, at 400 nm. The minimum AlN barrier thickness of 4-5 

nm was subsequently designed, in order to achieve surface planarization, confirmed by the 

streaky RHEED patterns, and to prevent QD vertical correlation. Such AlN barrier thickness 

is assured to have a good carrier collection from the structure since it is lower than the 

maximum AlN barrier thickness which was defined from the carrier diffusion length 

measurement. 

The efficient amount of AlGaN in each QD layer (5 ML QDs) was explored in section 

4.4. It is the AlGaN QD thickness condition that provides maximum luminescence at room-

temperature which compromise between the conditions of best IQE of 60% (4 ML QDs) and 
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highest QD density of (9±1)×10
11

 cm
-2

 (6 ML QDs). Furthermore, from the fitting of 

theoretical calculations performed by Nextnano
3
 solver to the experimental information, the 

evolution of QD shape was discovered. I found that the QD ratio (height/base diameter) 

decreases when increasing the amount of deposited AlGaN. 

By knowing the competent thicknesses of AlN barriers and AlGaN QDs and the active 

region thickness, the periods of superlattices can be further designed (~80 periods). The peak 

emission spectra were illustrated that they can be adjusted by applying 3 main growth 

parameters, namely the substrate temperature, ΦAl/Φmetal, and the amount of AlGaN in each 

QD layer. After the AlGaN QD thickness was set to obtain the maximum efficiency. 

Approaching the targeted wavelength at 260 nm was performed by systematically adjusting 

the ΦAl/Φmetal, and substrate temperature. Despite active region optimization, post–growth 

technique, i.e. polishing and metalizing are shown to increase the luminescence efficiency 

for 30% from as-grown sample as illustrated in the section 4.6. 

Because I have been working on electron injecting devices, the high resistivity and low 

thermal conductivity of sapphire are important drawbacks. At the last section, I perform the 

growth on SiC to demonstrate that it can be synthesized without any degradation in terms of 

spectral response as shown in section 4.7. The choice of SiC substrate can be made when a 

good thermal conductivity is required, however sacrificing the substrate transparency.  
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Chapter 5 

5 AlGaN/AlN Nanodisks on GaN Nanowires

 

In this chapter, I present a study of AlGaN sections on GaN nanowires and use this 

know-how as a foundation for the fabrication of AlGaN/AlN nanodisks. The main 

challenge to grow ternary alloys in nanowire geometry is the chemical 

inhomogeneity which is experimentally evidenced by structural and optical 

characterization. This inhomogeneity is correlated with the misfit strain distribution 

by performing strain calculations using the Nextnano
3
 solver. 

 

5.1 Introduction 

For a decade, nanowires (NWs) have been considered as an attractive building block for 

III-N optoelectronics especially for light emitting devices since this nanostructure provides a 

solution for well-known problems of III-nitrides such as defects and dislocations. There are 

two ways to fabricate NW light emitting diodes (LEDs), either via top–down or bottom–up 

approaches. The first one is usually performed by etching a planar III-N LED structure into a 

rod-like morphology. Ramesh et al. [241] showed that the internal quantum efficiency (IQE) 

of top–down NWs created by etching the InGaN/GaN quantum wells (QWs) was improved 

up to 60% while the luminescence peak was controlled by adjusting the InGaN QW 

thickness. However, the drawback of the top-down NW is the etching process that is tedious 

and might deteriorate the material quality. Such problems could be possibly avoided by using 

bottom-up NWs. 

Up to now, several research teams have developed the LEDs based on self-assembly 

NWs. Those nano-devices can be synthesized by different growth methods [135], [137], 

[242], [243]. For instance, Kim et al. [242] reported self-assembly GaN NW LEDs grown by 

hybride vapor phase epitaxy. In their case, the active region was InGaN/GaN QWs which 

provided the emission peak at 466 nm. Hersee at al. [243] realized the GaN NWs LEDs 

using selective-area growth via metalorganic vapor phase epitaxy, showing the spectrum 

peak at 372 nm. For molecular beam epitaxy (MBE), Kikuchi et al. [137] demonstrated the 

NW LEDs using InGaN/GaN nanodisks (NDs) as an active region, with the luminescence 
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peak locating at  ~580 nm. Later on, Lin et al. [135] presented a realization of phosphor-free 

mixed-color white light emission LEDs by fabricating InGaN/GaN NDs on GaN NWs. 

Luminescence from such devices was obtained by collecting various locally monochromatic 

emissions due to the statistical distribution of GaN NW diameter in the range of 10-25 nm. 

Generally, to tune the emission wavelength of NW LEDs, the bandgap of their active 

region should be engineered by heterostructuring and alloying the NWs. In catalyst-free 

growth, it is straightforward to create nanodisks by tailoring the bandgap along the wire axis. 

Several groups showed a feasibility to adjust the luminescence spectra from the III-N NDs 

using the quantum confinement determined by the ND height [244], [245]. 

 
Figure 5.1: 4K-Photoluminescence spectra of NDs with different height (dND). The ND related 

emissions are indicated by arrows. The dotted line at 3.477 eV indicates the near-band-edge emission 

from the GaN base region. (a) Three GaN/AlxGa1-xN NW samples with x = 0.14 and dND = 1.7, 2.5, 

and 3.5 nm. (b) Four GaN/AlN NW samples with dND = 1.2, 1.7, 2.5, and 3.5 nm [244]. 

Renard et al. [245] show that the spectral peak of GaN/AlN NDs was tuned from 458 to 

322 nm (2.71 to 3.85 eV) when the ND thickness was decreased from 4 to 1 nm. Later on, 

Furtmayr et al. extensively studied the luminescence characteristics of GaN/Al(Ga)N NDs 

[244]. The influences of quantum confinement and polarization-induced internal electric 

field allow them to tune the emission wavelength of GaN/Al0.14Ga0.86N NDs from 353 to 345 

nm (3.51 to 3.59 eV) when the ND thickness was decreased from 3.5 to 1.7 nm (Figure 

5.1(a)). In the case of GaN/AlN NDs, they were able to tune the emission wavelength from 

2.95 to 4.10 eV by decreasing ND thickness from 3.5 to 1.2 nm as illustrated in Figure 5.1 

(b). In this manuscript, I focus on synthesizing the III-N NDs that could luminesce in the 

ultraviolet (UV) -C spectral region. A shorter wavelength range in comparison to what has 

been achieved motivates the study of AlGaN/AlN NDs. 
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5.2 AlxGa1-xN sections on GaN nanowires

In this section, I present the plasma-assisted (PA-MBE) growth of AlxGa1-xN sections on 

GaN NWs. The know-how from this section is used as a foundation for the growth of 

AlGaN/AlN NDs. The studied growth parameters are the alloy composition and the growth 

temperature as described in the following sections (5.2.1 and 5.2.2). 

5.2.1 Effect of the Al content 

AlGaN sections were grown on the top of catalyst-free GaN NWs, whose growth 

process is presented in section 3.4.5. The AlxGa1-xN sections were grown by fixing Ga flux 

(ΦGa) at 0.1 monolayer per second (ML/s), and N flux (ΦN) at 0.34 or 0.44 ML/s, while Al 

flux (ΦAl) was varied between 0.07 and 0.40 ML/s. The nominal Al content (x) was defined 

as ΦAl/ΦN. The deposition time of AlGaN sections was set at 40 min for the samples grown 

with ΦN = 0.34 ML/s, and at 27 min for the samples grown with ΦN = 0.44 ML/s. The Al, 

Ga, and N shutters were simultaneously opened during the growth of AlGaN sections. 

 

Sample 
ΦAl 

(ML/s) 

ΦGa 

(ML/s) 

ΦGa,3D 

(ML/s) 

ΦN 

(ML/s) 
x Φ2D,metal:ΦN Φ3D,metal:ΦN 

E2915 0.07 0.10 0.25 0.34 0.21 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D<ΦN 

E2916 0.10 0.10 0.25 0.34 0.29 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 

E2917 0.12 0.10 0.25 0.34 0.36 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 

E2918 0.15 0.10 0.25 0.34 0.44 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 

E2921 0.17 0.10 0.25 0.34 0.50 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 

E3218 0.22 0.10 0.20 0.44 0.50 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D<ΦN 

E3219 0.31 0.10 0.20 0.44 0.70 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 

E3220 0.40 0.10 0.20 0.44 0.90 ΦAl+ΦGa>ΦN ΦAl+ΦGa,3D>ΦN 

Table 5.1: Description of AlxGa1-xN sections grown on GaN NWs samples under study: deposited 

fluxes, nominal Al content (x), Φ2D,metal:ΦN comparison, Φ3D,metal:ΦN comparison. 

In order to identify the growth regime at the surface of the NW top, the three-

dimensional (3D) metal flux (ΦAl+Φ3D,Ga) must be compared with ΦN. 3D Ga flux (Φ3D,Ga) is 

the amount of Ga atoms available on the NW top during the GaN NW growth, which is 

derived by dividing the GaN NW length with the deposition time. This value is higher than 

ΦGa because the amount of Ga atoms on the NW top surface is associated with the 

combination of the direct deposited Ga flux, Ga adatoms diffusion, and Ga desorption. In 

contrast, the amount of Al and N atoms on the NW top surface is similar to the direct 

deposition flux (ΦAl and ΦN) because of their short diffusion length [169], [178], [246]. All 

the growth parameters of AlxGa1-xN sections on GaN NWs were summarized in Table 5.1. 
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Note that the comparison between the two-dimensional (2D) metal flux (Φ2D,metal = ΦAl+ΦGa) 

and ΦN is also provided to compare the NW growth conditions with the 2D layer growth. 

 

Figure 5.2: SEM images of (a) GaN NWs, and of AlxGa1-xN sections grown on GaN NWs with (b) 

x=0.21, and (c) x=0.50. 

After the growth, the structural properties were characterized by field emission scanning 

electron microscopy (FE-SEM) using a Zeiss Ultra55. Detailed structural properties were 

measured by high angle annular dark field scanning transmission electron microscopy 

(HAADF-STEM) using a probe-corrected FEI Titan operated at 300 kV. The SEM images 

shown in Figure 5.2(a)-(c) illustrate the morphology of GaN NWs without (Figure 5.2(a)) 

and with (Figure 5.2(b)-(c)) AlGaN sections on the NW tops. From the SEM images, the 

lengths of AlGaN sections ~200 nm were deduced for all the samples. 

Figure 5.3(a) displays the HAADF-STEM image of Al0.50Ga0.50N section on the GaN 

NW base. The bright contrast corresponds to the Ga-rich area while the darker contrast is the 

area with higher Al composition. Although the Al, Ga, and N shutters were simultaneously 

opened during the AlGaN growth, Figure 5.3(a) shows various regions in AlGaN sections 

which have different alloy distributions. Figure 5.3(b) displays the intensity profile taken 

along the wire axis of Figure 5.3(a). Deduced from HAADF-STEM images of several wires, 

the average length of the AlGaN sections on the GaN NW is ~180 nm. This value 

corresponds to an AlGaN growth rate ΦAlGaN,3D ~0.30 ML/s, independent of ΦAl and nearly 

equal to ΦN, indicating that the AlGaN growth was limited by ΦN [178]. Moreover, ΦAlGaN,3D 

is larger than the 2D-metal flux (0.27 ML/s). This fact confirms that in addition to the direct 

material deposition on the NW top, the adatom diffusion along the NW sidewall contributes 

to the NW growth. The lower growth rate than the ΦN (0.34 ML/s) is attributed to the 

decomposition of the material at the wire growth temperature [178], [247]. 
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Figure 5.3:(a) HAADF-STEM image of E2921 showing GaN NWs with AlGaN section on top. Bright 

contrast represents Ga-rich area while the darker contrast represents the area which consists of Al-

atoms. Intensity profile is taken along the axis (b) and radius (c) from the delimited areas of the NW 

shown in (a). 

Figure 5.3(c) shows the intensity profile taken along the wire radius, which 

demonstrates the GaN core diameter of 25 nm, and the thickness of 10 nm-high-Al content 

AlGaN shell. This high-Al content shell is observed in all our growth conditions, i.e. various 

metal/N ratios and growth temperatures. The spontaneous core-shell formation is explained 

by the higher incorporation rate of Al at the sidewalls caused by the shorter diffusion length 

of the Al adatoms than that of Ga atoms [248], [249]. 

 

Figure 5.4:(a) HAADF-STEM image of a single Al0.50Ga0.50N /GaN NW grown at 795°C (E2921) (b) 

Corresponding image contrast profile taken at the center of the NW shown in (a). (c) HAADF-STEM 

image of a single Al0.50Ga0.50N /GaN NW grown at 755°C. 
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Figures 5.4(a) and (b) present zoom-in HAADF-STEM image of an Al0.5Ga0.5N section 

grown at substrate temperature, Ts=795°C on a GaN NW and the contrast profile taken at the 

center along the wire axis. Most of the investigated NWs show a transition zone (Figure 

5.4(b)–labeled (2)) between the GaN stem (Figure 5.4(b)–labeled (1)) and the AlGaN 

section. The typical thickness of this area with a lower Al content is ~10 nm. By reducing the 

growth temperature of AlGaN sections from 795°C to 755°C, the HAADF-STEM images 

(Figures 5.4(a) and (c)) show negligible changes in this zone in terms of chemical contrast 

and thickness. This fact indicates that the formation of this zone is not related to a surface 

reservoir of Ga atoms at the NW sidewalls, as Ga desorption/diffusion is highly temperature 

dependent in the range of our growth temperatures. After the transition zone, an Al-rich area 

(Figure 5.4(b)–labeled (3)) was found, followed by an area displaying chemical ordering 

(Figure 5.4(b)–labeled (4)). The lengths of these two regions fluctuate from wire to wire. In 

the labeled (4)–region, I usually find the 1:1 ratio ordering with the thickness of Al-rich and 

Ga-rich layers of about ~3 ML. However, it is difficult to precisely determine the Al content 

in both regions. The spontaneous chemical ordering is similar to what was observed in 

AlGaN [250]–[252] and InGaN films [253]. Theoretically, the ordering in wurtzite AlxGa1-xN 

was suggested to be driven by the different binding energy of Al-N bond and Ga-N bond 

[254], [255]. The adatom surface diffusion generally allows the incorporation of Al and Ga 

atoms at their different preferential sites, leading to the ordering sequence of Al-rich and Ga-

rich areas along the growth axis. Such description is a highly probable for the AlGaN growth 

in NWs where the contribution of adatom diffusion is significant. 

To understand the transition zone formation, an AlN/GaN NW superlattice was 

investigated by HAADF-STEM, as shown in Figure 5.5(a). The image contrast reveals a 

transition zone with a length of ~8 nm at the first AlN/GaN interface (label (1) in Figure 

5.5(a)). The transition zones at the second, third and the fourth interfaces (Labels (2), (3) and 

(4)) are significantly shorter. From the image contrast, these regions should be Al-Ga 

intermixing areas. Besides, the intermixing process is seemingly more pronounced on the top 

of GaN rather than at the interface below them. 
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Figure 5.5: (a) HAADF-STEM image of a GaN NW with an AlN/GaN superlattice. The arrows 

indicate the transition zone at the AlN/GaN interfaces. (b)-(c) Contour exx plots in a GaN NW with an 

AlN section on top: (b) in-plane view of the interface at the AlN side, and (c) cross-section at the 

center of GaN NW. (d) Plot of the elastic energy density measured at the topmost AlN/GaN interface 

on the AlN sides as a function of the number of AlN layers in the stack. 

In view of these results, I propose that the intermixing at the AlN/GaN interface forms 

in order to partially relieve the strain induced by the lattice mismatch between AlN and GaN. 

I have explored the role of the strain via 3D strain calculations using NextNano
3
 solver. The 

strain distribution was obtained by the minimization of the elastic strain energy through the 

application of zero-stress boundary conditions at the NW surface, which allows the NW to 

deform in all three spatial directions. The structure of interest is a 50 nm-diameter hexagonal 

GaN NW overgrown by various periods of 10-nm-GaN/10-nm-AlN, i.e. the geometry 

corresponding to the structure in Figure 5.5(a). The formation of an Al shell is not 

considered as it is not clearly visible in this HAADF-STEM image. The number of GaN/AlN 

periods in the simulation was increased sequentially, to assess the strain distribution at the 

topmost AlN/GaN interface after the deposition of each period. Note that the Al-Ga 

intermixing at the AlN/GaN interface was not taken into account for the simulation. 

Figure 5.5(b) and (c) present the color map of the strain in x direction (exx) in a 

hexagonal GaN NW capped with a single AlN layer. Figure 5.5(b) illustrates the in-plane 
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distribution of tensile strain at the interface of GaN NW and AlN layer on the AlN side. The 

cross section in Figure 5.5(c) shows the high degree of compressive strain (blue contrast) at 

the interface in the GaN region, and the tensile strain (red contrast) in the AlN region. From 

the simulation, the first AlN layer is strongly tensile strained by the GaN NW base. Figure 

5.5(d) describes the elastic energy density at the topmost AlN/GaN interface on the AlN side 

taken at the center of a GaN NW (■), plotted as a function of the number of AlN sections in 

the stack. 

The stronger tensile strain in the first AlN layer probably enhances Al-Ga intermixing at 

the AlN/GaN interface. As the NW growth proceeds, the higher AlN barriers are less 

strained, thus giving lower driving force for the intermixing process, and consequently a 

shorter transition zone. The lower intermixing effect at the interface below each GaN layer 

than the one above them is possibly caused by the higher binding energy of the Al-N bond 

with respect to the Ga-N bond. 

 

 

Figure 5.6: (a) CL spectra of AlxGa1-xN sections on GaN NWs with various x = 0.21(E2915), 

0.29(E2916), 0.36(E2917), 0.44(E2918), 0.50(E2921*, E3218**), 0.70(E3219), and 0.90(E3220)) 

measured at 5K. E3218 is the sample that was grown using lower ΦGa,3D than that of E2921. (b) 

Evolutions of the higher (■) and lower (●) energy CL peak energy position at 5K, comparing with the 

calculated band gap value at 5K (solid line).The error bars represent the FWHMs of CL spectra. 

Note that the second peak appears for the AlxGa1-xN sections with x>0.50. 

The optical characteristics of AlxGa1-xN sections on GaN NWs were assessed by 

cathodoluminescence (CL). Figure 5.6(a) shows CL spectra measured at 5K from the 

ensemble AlxGa1-xN sections on GaN NWs grown at 795°C where x = 0.21, 0.29, 0.36, 0.44, 

0.50, 0.70, and 0.90. The peak which remains constant at ~3.48 eV is assigned to the 
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luminescence from the GaN NWs base, whereas the peak at higher energy that blue shifts 

with increasing Al content is attributed to the luminescence from AlxGa1-xN sections. I also 

observed a second emission line when x > 0.50, in the range of 3.96–4.00 eV and stable with 

x. Even though the origin of this second peak is unclear, the luminescence from the defect 

band in AlGaN which changes with x [256] is excluded [249]. 

Despite having the same nominal Al content (x = 0.5), E2921 and E3218 possess 

different luminescence characteristic. E2921 shows a single spectral peak which centers at 

4.18 eV whereas E3218 shows two spectral peaks which center at 3.96 and 4.38 eV, 

indicating that the latter sample contains higher Al content in AlGaN section. From the 

growth conditions, the ΦGa,3D  used in E2921 was 0.25 ML/s, higher than that used in E3218 

which was 0.20 ML/s. As a result, the growth regime on the NW top surface in E2921 is N-

limited regime (ΦAl+ΦGa,3D>ΦN), but the one in E3218 is N-rich regime (ΦAl+ΦGa,3D<ΦN). 

The growth in N-rich regime on the NW top of sample E3218 could be an explanation of the 

higher Al content in this sample. 

Figure 5.6(b) summarized the evolution of the peak emission energy (■) as a function of 

x, showing that the emission peaks of AlxGa1-xN sections systematically blue shift from 3.77 

to 4.96 eV with increasing nominal Al content. The linewidth was derived by fitting the CL 

spectra with Gaussian function and presented as an error bar in the figure. These observed 

linewidths also increase from 150 to 800 meV as a function of nominal Al content and larger 

than those reported in AlGaN 2D films [257]. The emission energies are systematically 

lower than the expected energy gaps defined by equation 2.3 (the black solid line in Figure 

5.6(b)), when x increases. The maximum deviation from the calculated value was observed 

at x = 0.90. I attribute this deviation to the alloy inhomogeneity in AlGaN as it could strongly 

affect the band gap of semiconductor [258]. The second spectral peaks center in the 3.96-

4.00eV (●) from the sample with x > 0.50 were also summarized in this figure with their full 

width at half maximum (FWHM) of 260-700 meV. 

To investigate in detail the optical characteristics of AlxGa1-xN sections on GaN NWs, 

the temperature dependence PL was performed on AlxGa1-xN sections on GaN NWs samples 

where = 0.21(E2915), 0.35(E2917), and 0.50(E2921). Figure 5.7(a) shows the normalized 

integrated PL intensity as a function of temperature. Since all the intensities are stable at low 

temperatures, therefore the IQE can be approximated using Eqs.(4.1), and (4.2). Different 

from the cases of AlGaN quantum dots (QDs) [231], [259] , the second activation energy is 
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required for a good fit [260] which is similar to the case of AlGaN/AlN QWs [130] and 

GaN/AlGaN NDs in GaN NWs [261]. In this case, the IQE is represented by: 

IQE=1/((1+ae
-Ea1/kT

) (1+be
-Ea2/kT

)) (5.1) 

where a and b are fitting parameters, kT is the thermal energy, and Ea1 and Ea2 are the 

activation energies. The extracted Ea1 in the range of 75-135 meV is attributed to the 

localization energy corresponding to the potential barriers which confine the carriers in Ga-

rich area of AlxGa1-xN section. The Ea2 with the value in the range of 15-20 meV could 

represent the activation energy accounting for the de-trapping of excitons from the interface 

roughness fluctuation in the ordered alloy. The extracted IQE of AlGaN section increases 

from 0.7 to 5 % when x increases, indicating the higher carrier localization of the sample at 

higher Al content. 

 

Figure 5.7: (a) Normalized integrated PL intensity as a function of temperature for AlxGa1-xN 

sections on GaN NWs. (b) Temperature dependent PL peak position for AlxGa1-xN sections with x = 

0.21, 0.36 and 0.50. The solid line represents the shift expected from the Varshini’s equation. 

Figure 5.7(b) depicts the evolution of PL peak energy as a function of temperature, 

showing an s-shape behavior which deviates significantly from Varshni’s equation [64]. This 

trend, which can provide information on the carrier localization in alloy potential 

fluctuations, is explained by the exciton freeze-out in the alloy local potential minima at low 

temperatures, followed by the onset of exciton thermalization with increasing temperature. 

The deviation becomes more pronounced with increasing x, similar to the case of AlGaN 2D 

films [219]. This s-shape was also reported in AlGaN thin films [125], [219], [221], [256], 

AlGaN/GaN QWs [222], [223], and InGaN/GaN QDs [130]. Potential fluctuations in ternary 

alloys can reduce the probability of carrier capture by nonradiative recombination centers. 

Therefore, the higher IQE in AlxGa1-xN sections with larger Al content (in this case, 

0<x<0.5) could be associated to the larger alloy inhomogeneity.  
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In the next section, I study the Al0.5Ga0.5N sections on GaN NWs grown at different 

temperatures in order to optimize the growth condition to achieve high quality AlGaN 

sections on GaN NWs. 

5.2.2 Effect of the Growth temperature 

In this study, I grew Al0.50Ga0.50N sections using various growth temperatures on GaN 

NWs. The initial growth conditions of this study (E2958) were set similar to those of E2921, 

i.e. the Al0.50Ga0.50N sections were grown by depositing ΦAl, ΦGa, and ΦN at 0.17, 0.10 and 

0.34 ML/s, respectively, on the GaN NWs at Ts = 795°C. The deposition time of the AlGaN 

sections was set at 40 min. The only varied parameter in this study was the growth 

temperature that was changed from 795°C (E2958), to 760°C (E2955), 755 °C (E2965), 

747°C (E2969), 740°C (E2967), and to 735 °C (E2966). After the growth, the structural 

properties were characterized by SEM and HAADF-STEM while the optical properties were 

investigated by PL. 

 

Figure 5.8: SEM of AlGaN sections grown at various growth temperatures at (a) 795°C, (b) 755°C, 

(c) 747°C, and (d) 735°C on GaN NWs and their corresponding RHEED patterns. 
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Figure 5.8 shows the morphologies of GaN NWs covered by AlGaN sections grown at 

different growth temperatures and their corresponding reflection high energy electron 

diffraction (RHEED) patterns. At Ts = 795°C and 755°C, SEM images show flat-top NWs 

with a typical RHEED pattern of GaN NWs [158]. On the contrary, I observe a pyramid-like 

structure at the NW tops for the growth temperature of 747°C and 735°C. The corresponding 

RHEED pattern of NW shows a ring-like characteristic that distorted from the standard 

RHEED pattern of wurtzite GaN NWs (see Figure 3.17 in chapter 3), indicating the 

formation of different NW orientation and crystal structure. 

 

Figure 5.9: HAADF-SEM of AlGaN sections grown at (a) 795 °C, (b) 755 °C, and (c) BF-STEM of 

AlGaN sections grown at 735 °C 

Figure 5.9(a)–(b) show HAADF-STEM while (c) shows Bright Field (BF)–STEM of the 

NWs grown at 795°C, 755°C and 735°C, respectively. By reducing the growth temperature 

from 795°C to 755°C, the structural properties of the NW do not change significantly. Total 

lengths of AlGaN section in both cases remains 180 nm, revealing that the AlGaN growth 

was limited by ΦN [178]. The transition zone at the AlGaN/GaN interfaces (red arrows in the 

figures) as well as chemical ordering was generally observed. For the samples which were 

grown at Ts = 735°C, stacking faults become visible in NWs as shown in Figure 5.9(c). 

Figure 5.10(a) shows normalized PL from Al0.50Ga0.50N sections grown at different 

growth temperatures on GaN NWs. The peak located at around 3.50 eV for all samples is 

assigned to the luminescence from GaN NW base while the peak locates in the 4.35-4.60eV 

range corresponds to the luminescence of Al0.50Ga0.50N sections. By gradually decreasing the 

growth temperature of Al0.50Ga0.50N sections from 795 to 735°C, the luminescence of AlGaN 

sections systematically red shifts from 4.60 to 4.35eV. The red shifting is attributed to the 
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larger amount of Ga atoms incorporated in AlGaN sections at the lower growth temperatures 

because of the suppression of Ga desorption process. 

 

Figure 5.10: (a) Normalized PL spectra measured at 5K and (b) PL integrated intensity of 

Al0.50Ga0.50N sections grown at different growth temperatures on GaN NWs. Inset of (b) illustrates the 

integrated intensity obtained from the interval area (250nm<wavelength<330nm) for E2958. 

Figure 5.10(b) presents the evolution of integrated PL intensity of Al0.50Ga0.50N sections 

as a function of grown temperature. To ensure the accuracy of intensity comparison, all the 

samples were placed side by side in the cryostat and were concurrently characterized by 

using the same excitation power while all the optical paths were preserved. Obtained Spectra 

exhibit two peaks which correspond to the luminescence of GaN NWs and AlGaN sections. 

Only the luminescence concerning to the AlGaN sections (250nm<λ<330nm) was integrated 

as shown in inset of Figure 5.10(b) and plotted as a function of growth temperature. The 

integrated PL intensity for the AlGaN sections monotonically increases when the growth 

temperature was lower than 760°C. Seemingly, the intensity enhancement occurs along with 

the modification of NW morphology which presented as a shaded-area in Figure 5.10(b).  

 

5.3 AlxGa1-xN/AlN nanodisks on GaN nanowires

In this section, I study the growth of AlxGa1-xN/AlN NDs on GaN NWs by applying 

knowledge of AlGaN sections on GaN NWs. I firstly report the growth regime of        

AlxGa1-xN/AlN NDs on GaN NWs that suits for the UV-C emission target. Later on, the 

peak emission spectra of AlxG1-xN NDs were varied by changing growth temperature, Al 

content, and ND thickness. 3D strain distribution was also calculated by performing it on the 
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assimilated growth structure dynamics in order to interpret the effect of the strain to the 

structural and optical characteristics. 

5.3.1 AlGaN/AlN nanodisk growth regime: metal rich (ΦAl+ΦGa≥ΦN) and 

nitrogen rich (ΦAl+ΦGa<ΦN) 

This section aims to study the effect of the growth regime (metal rich or nitrogen rich) 

of AlxGa1-xN/AlN NDs that influences different structural and optical properties, in order to 

effectively apply it for the corresponding requirements.  

Two different regimes: 2D-metal rich and 2D-nitrogen rich of 30 periods of          

AlxGa1-xN/AlN NDs were grown on the top of catalyst free GaN NWs at Ts = 795°C. The 

AlxGa1-xN NDs were grown by varying ΦAl from 0.10 to 0.23 ML/s whereas ΦN was set at 

0.34 ML/s, providing nominal Al contents (x = ΦAl/ΦN) in the 0.29-0.68 range. ΦGa was 

adjusted into 2 different values, those are 0.24 and 0.09 ML/s in order to switch the growth 

regime into 2D-metal rich and 2D-nitrogen rich regime, respectively. The deposition time of 

NDs was set at 12 s. All the growth parameters for AlxGa1-xN NDs in this study were 

summarized in Table 5.2. For the AlN barriers, the ΦAl and deposition time were set at 0.19 

ML/s and 84 s for all the samples. 

 

Sample 
ΦAl 

(ML/s) 

ΦGa 

(ML/s) 

ΦGa,3D 

(ML/s) 

ΦN 

(ML/s) 
x Φ2D,metal:ΦN Φ3D,metal:ΦN 

E2849 0.10 0.24 0.30 0.34 0.29 ΦAl+ΦGa≥ΦN ΦAl+ΦGa,3D>ΦN 

E2850 0.12 0.24 0.30 0.34 0.35 ΦAl+ΦGa≥ΦN ΦAl+ΦGa,3D>ΦN 

E2851 0.16 0.24 0.30 0.34 0.47 ΦAl+ΦGa≥ΦN ΦAl+ΦGa,3D>ΦN 

E2852 0.20 0.24 0.30 0.34 0.59 ΦAl+ΦGa≥ΦN ΦAl+ΦGa,3D>ΦN 

E2853 0.23 0.24 0.30 0.34 0.68 ΦAl+ΦGa≥ΦN ΦAl+ΦGa,3D>ΦN 

E2879 0.10 0.09 0.22 0.34 0.29 ΦAl+ΦGa≤ΦN ΦAl+ΦGa,3D~ΦN 

E2880 0.12 0.09 0.22 0.34 0.35 ΦAl+ΦGa≤ΦN ΦAl+ΦGa,3D~ΦN 

E2881 0.16 0.09 0.22 0.34 0.47 ΦAl+ΦGa≤ΦN ΦAl+ΦGa,3D>ΦN 

E2882 0.20 0.09 0.22 0.34 0.59 ΦAl+ΦGa≤ΦN ΦAl+ΦGa,3D>ΦN 

E2883 0.23 0.09 0.22 0.34 0.68 ΦAl+ΦGa≤ΦN ΦAl+ΦGa,3D>ΦN 
Table 5.2: Description of 30 periods of AlxGa1-xN NDs on GaN NWs under study: deposited fluxes, 

nominal Al content (x), Φ2D,metal:ΦN comparison, Φ3D,metal:ΦN comparison. 

 

Unlike the study of AlGaN sections whose regime was three-dimensionally (3D) defined 

by taking into account the Ga diffusion and desorption, the regime in this section is 2D 

identified by comparing ΦAl+ΦGa and ΦN. 2D regime is used in this case to be able to 

compare with Stranski-Krastanov (SK)-QDs growth atmosphere. Additionally, the 3D 
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regime comparison is obscure in this case since all the samples were grown in 3D-metal rich 

regime (ΦAl+ΦGa,3D>ΦN) as illustrated in Table 5.2. 

 

 
Figure 5.11: Cross-sectional HAADF-STEM images of Al0.35Ga0.65N/AlN NDs when the disk were 

grown in (a) 2D-nitrogen rich regime(E2880). (b) Image contrast taken along the center (black solid 

line shown in (a)) and (c) image constrast taken along the edge (black dash line shown in (a)) of the 

AlGaN NDs. 

In this section, I perform HAADF-STEM measurements on Al0.35Ga0.65N NDs on NWs 

grown in 2D-nitrogen rich condition (E2880) in order to study the chemical distribution in 

the structure. NWs were dispersed on silicon nitride membrane to be individually 

investigated with a probe-corrected FEI Titan operated at 300 kV. Figure 5.11(b) depicts 

HAADF-STEM image which shows AlGaN ND thickness in the range of 1-2 nm, whereas 

that of the AlN barriers is ~5 nm. The diameter of the first AlGaN ND is similar to the one of 

GaN NW stem. Due to the lateral growth of AlN barrier, the ND diameter progressively 

increases along the growth axis. Moreover, the shape of the NDs evolves to the pyramid-like 

shape with {1-103} facets, similar to GaN SK QDs [262]. The contrast profile taken at the 

center of the NW in Figure 5.11(c) reveals that the Al composition at the center of the NDs 

gradually increases along the growth axis (the image contrast become darker) and finally 

saturates at the third ND. In addition, the contrast profile in Figure 5.11(d) taken at the edge 

of the NW shows that the Ga-rich area becomes better defined. By comparing the contrast 

profiles between the center and the edge of ND in each layer, I observe that the degree of 

lateral phase separation is more pronounced in the higher ND layer. Note that the HAADF-

STEM of NDs grown under 2D-metal rich conditions show similar structural characteristics. 
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From our data, I suggest that the strain can modify the shape, the axial and the radial 

distribution of Al composition of the AlGaN NDs. I performed 3D strain simulations of a 25 

nm- diameter hexagonal GaN NW with various periods of 2 nm Al0.35Ga0.65N/ 4 nm AlN, to 

imitate our result shown in Figure 5.11(a). In this case, I consider the formation of the Al 

shell which encapsulates NDs and NW. To follow the real growth sequence, I performed the 

strain simulations on the 5 different structures; that is, the number of periods in the 

simulation was increased sequentially, to assess the strain distribution after the growth of an 

AlN barrier, following 0, 1, 2, 3 periods of Al0.35Ga0.65N/AlN ND. For simplicity, I assume 

random alloy in the AlGaN NDs with rectangular shape. Figure 5.12(a) presents the cross-

section contour plot of exx taken at the center of the NW after the growth of the 4
th

 AlN 

barrier.  

 
Figure 5.12: (a) The cross-section contour view of exx in the structure with 3 layers of 2-nm-

Al0.35Ga0.65N/4-nm-AlN on the first AlN barrier on GaN NW stem. (b) The plot of the elastic energy 

density, taken at the center of the NW on the surface of the topmost 4-nm AlN barrier prior to the 

growth of the Al0.35Ga0.65N ND, as a function of the number of AlN barriers. 

Figure 5.12(b) shows the elastic energy density that was taken at the topmost surface of 

AlN barrier at the center of NW of 5 different simulated structures and were plotted as a 

function of the number of AlN barrier. The first simulated structure, 4-nm AlN on GaN NW 

stem, shows highly tensile strained by the GaN NW base. Then, the strain gradually 

decreases and saturates after the fourth AlN layer. I propose that the higher tensile strain in 

the first AlN barrier should facilitate Ga incorporation in the first Al0.35Ga0.65N ND. As the 

NW growth proceeds, the tensile strain in the AlN barriers monotonically decreases which 

enhances the Al incorporation at the center of the AlxGa1-xN NDs. Radially, the efficient 

strain relaxation at the edge of the NDs possibly results in the higher accumulation of Ga 

atoms at that area. From the simulations, I suggest that the strain can modify the shape, the 
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axial and radial distribution of Al composition in AlGaN NDs as illustrated in the structural 

results. 

Figure 5.13(a) and (b) show CL spectra obtained from AlGaN NDs grown in 2D-metal 

rich and 2D-nitrogen rich regime, respectively. Despite similar detailed structural results, 

luminescence spectra show different characteristics for the samples grown in different 

regimes. CL spectra from all the samples grown in 2D-metal rich regime show the peaks 

located at 300 nm as illustrated in Figure 5.13(a). However, there are components at shorter 

wavelengths centerd at 240 nm and 260 nm with low intensities. The variation of these peak 

emission spectra does not depend on the nominal Al content. In contrast, luminescence of the 

peaks center at 240 and 260 nm become more pronounced for the samples grown under 2D-

nitrogen rich regime as shown in Figure 5.13(b). 

 

Figure 5.13: CL spectra measured at 5K of AlxGa1-xN/AlN NDs on GaN NWs samples grown in (a) 

2D-metal rich regimes and (b) 2D-nitrogen rich regimes. 

By considering the luminescent results, I further investigate the growth of AlGaN/AlN 

NDs in 2D-nitrogen rich conditions since they show a potential to control the emission 

wavelength to λ = 260-270 nm. However, the challenge of this growth regime is the broad 

and multi-peak spectral response. 
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5.3.2 Effect of the growth temperature  

Based on the results from the section 5.2.2, I define the growth temperature regime 

which preserves the flat top morphology of NWs to be above 755°C. In this section, I 

present the effect of the growth temperature to the luminescence of AlGaN NDs, while the 

growth temperature was varied from 795°C to 755°C. 

I grew 30 periods of AlxGa1-xN/AlN NDs on the top of catalyst free GaN NWs. The 

AlxGa1-xN NDs were grown by setting ΦAl and ΦN at 0.13 and 0.32 ML/s, providing nominal 

Al content = 0.4 throughout the series. The ΦGa was kept at 0.13 ML/s which corresponds to 

ΦGa,3D = 0.26 ML/s, deducing from the structural results. The AlGaN NDs deposition time of 

NDs was set at 20s. The growth temperature of AlGaN NDs was changed from 795 to 

755°C. The growth parameters for Al0.40Ga0.60N NDs in this study were summarized in Table 

5.3. While the AlN barriers were grown for 4 nm by depositing ΦAl = 0.18 ML/s for 84 s. 

Sample 
ΦAl 

(ML/s) 

ΦGa 

(ML/s) 

ΦGa,3D 

(ML/s) 

ΦN 

(ML/s) 
x Φ2D,metal:ΦN Φ3D,metal:ΦN 

Ts 

(°C) 

td 

(s) 

E3017 0.13 0.14 0.26 0.32 0.40 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D~ΦN 795 20 

E3018 0.13 0.14 0.26 0.32 0.40 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 780 20 

E3019 0.13 0.14 0.26 0.32 0.40 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 765 20 

E3021 0.13 0.14 0.26 0.32 0.40 ΦAl+ΦGa<ΦN ΦAl+ΦGa,3D>ΦN 755 20 

Table 5.3: Description of 30 periods of Al0.40Ga0.60N NDs: deposited fluxes, nominal Al content (x),  

Φ2D,metal:ΦN comparison, Φ3D,metal:ΦN comparison, growth temperatures, and ND deposition time. 
 

 
Figure 5.14: (a) Room-temperature CL spectra of Al0.40Ga0.60N/AlN NDs grown with various 

temperatures on GaN NWs. (b) CL integrated intensity of Al0.40Ga0.60N/AlN NDs obtained from 

integrate interval area (250nm<λ<340nm) 
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Figure 5.14(a) presents the room-temperature CL spectra of Al0.40Ga0.60N/AlN NDs 

grown at various temperatures. The emission intensity of AlGaN NDs progressively 

increases while the peak position systematically red shifts from 282 to 292 nm when the 

growth temperature was decreased from 795 to 755°C. The slightly red shift of the 

luminescence spectra is associated to the suppression of desorption and dissociation 

processes at low growth temperature, leading to a higher Ga incorporations in AlGaN NDs. 

5.3.3 Wavelength tunability: Al content, nanodisk thickness 

In this section, I demonstrate the potential to adjust the emission spectrum of 

AlGaN/AlN NDs by adjusting the ND thickness and Al content. Their CL spectra measured 

at 300K are presented in Figure 5.15. By increasing x from 0 to 0.4 and/or reducing the ND 

thickness from 4 to 1 nm, the CL peak emission can be adjusted from 350 nm to 240 nm, 

with a FWHM in the range of 50-500 meV. Interestingly, each AlGaN/AlN NDs shows the 

luminescence peak located ~4.13eV which does not shift as a function of ND thickness and 

Al content. The higher-energy luminescence peaks which locate at 4.78 and/or 5.17eV (λ = 

260 and 240 nm) appear when the ND thickness was reduced and the nominal Al content 

was increased. As illustrated, the blue-shifting is achieved along with the generating of 

multi-peaks characteristic which is attributed to the alloy inhomogeneity in the AlGaN NDs.  

 

Figure 5.15: Room-temperature CL spectra of GaN/AlGaN NDs(E2188) and AlxGa1-xN/AlN NDs 

grown with different AlxGa1-xN ND thicknesses and Al contents. E3047 (*) is grown with lower ΦGa 

(=0.13 ML/s) than E3023 and E3019 (ΦGa = 0.14 ML/s). 
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Figure 5.16: (a) Integrated CL intensity as a function of temperature of a 180 nm-Al0.4Ga0.6N section, 

1- nm and 2-nm-Al0.4Ga0.6N/AlN NDs, in comparison to that of GaN/AlN QWs. Note that * represents 

AlxGa1-xN/AlN NDs which were grown by changing ΦGa from 0.14 to 0.13 ML/s. (b) 5K and RT CL 

spectra of of 2-nm-Al0.40Ga0.60N/AlN NDs (E3019), Blue- and red-shaded show the areas where 

integrated intensities for each sample were calculated. 

Figure 5.16(a) shows integrated CL intensity as a function of temperature of 2 nm-

Al0.40Ga0.60N/AlN NDs (E3019), 1nm-Al0.40Ga0.60N/AlN NDs (E3023), and 1 nm-

Al0.40Ga0.60N/AlN NDs grown with adapted ΦGa from 0.14 to 0.13 ML/s (E3047). In 

comparison, integrated CL intensity as a function of temperature of 180 nm-Al0.36Ga0.64N 

sections on GaN NWs and of GaN/AlN QWs were provided. Figure 5.16(b) shows the 

luminescence spectra of 2nm-Al0.40Ga0.60N/AlN NDs on GaN NWs (E3019) to illustrate how 

the integrated intensity was calculated. For the structure grown on GaN NWs, luminescence 

from the sample generally shows peak emission spectra correspond to GaN NWs stem and 

structure on the wire tops. As depicted in Figure 5.16(b), the blue- and red-shaded spectra 

belong to the luminescence from AlGaN/AlN NDs while the peaks center 360-370 nm 

belong to that from GaN NWs. In such case, only shaded areas were summarized as the 

integrated CL intensity. 

The IQEs of AlGaN/AlN NDs shown in Figure 5.16(a) are in the range of 30-40%, 

progressively higher than the IQE of 180 nm-Al0.36Ga0.64N sections and GaN/AlN QWs 

which provides IQE at 5% and 0.5%, respectively, showing the efficient carrier confinement 

of the ND structure. The thickness of AlGaN ND was adjusted by controlling the deposited 

fluxes and deposition time of materials while the ND lateral dimension is governed by GaN 

NWs diameter which generally reports at 60 nm. The possibility of enhanced lateral 

confinement are investigated in the next section by applying the SK-QD conditions to the 
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GaN NWs heterostructuring, since the diameter of the reported SK-QDs is ~10 nm less than 

that of GaN NWs. 

 

5.4 AlGaN/AlN heterostructuring via SK-QD growth conditions

In this section, I investigate the possibility to apply the growth conditions of SK-QDs to 

the synthesis of AlGaN/AlN heterostructures on a GaN NWs since an enhanced lateral 

confinement can be acquired from the structure. 

 

Figure 5.17: Process of the simultaneous growth of AlGaN/AlN QD SLs: (a) GaN NWs on AlN buffer 

layer on Si(111). (b) Sample from (a) was taken from the growth chamber, AlN-on-sapphire template 

substrate was placed next to the sample (a) and re-entered to the growth chamber. (c) AlGaN/AlN 

QD SLs were grown simultaneously on GaN NWs and on AlN-on-sapphire substrates. 

The growth of QDs was simultaneously performed on GaN NWs and AlN-on-sapphire 

templates, as the schematic shown in Figure 5.17. First, ~600 nm of GaN NWs was grown 

on Si(111) substrate. After the NWs growth, the sample holder was taken out of the growth 

chamber. A piece of AlN-on-sapphire was attached next to the GaN NWs sample on the same 

sample holder which was subsequently re-entered to the growth chamber. 30 periods of 

AlGaN QDs were grown by keeping Ts = 720°C. ΦAl, ΦGa, and ΦN were kept at 0.035, 0.35, 

and 0.44 ML/s, respectively. The Al content in this section was calculated using x= 

ΦAl/(ΦGa+ΦAl) = 9%, as the AlGaN QDs were grown in N-rich regime at Ts = 720°C, where 

Ga desorption and diffusion is not crucial. The amount of deposited AlGaN was varied from 

3 ML(E3209) to 4 ML(E3211), and 5 ML(E3212) in the series. The growth parameters for 

this study are summarized in the Table 5.4. For the growth of AlN barriers, ΦAl and 

deposition time were kept at ~0.44 ML/s and 45 s. 

Figure 5.18(a)-(b) shows the morphology of AlGaN/AlN SLs grown by using SK-QDs 

growth conditions on the top of GaN NWs. The growth at low temperature (720°C) enhances 

lateral growth, makes NWs progressively widen along the growth axis as depicted Figure 
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5.18(a), this widening might eventually cause the merging at the NW sidewalls, subsequently 

triggering the dislocations which deteriorate the luminescence. I also observe (in Figure 

5.18(b)) that NW top morphology deviates from the flat top surface to a faceted structure, 

similar to the case of AlGaN sections grown on GaN NWs at low temperature range (735°C-

750°C) (See 5.2.2). 

Sample ΦAl (ML/s) 
ΦGa 

(ML/s) 

ΦN 

(ML/s) 

Al content 

ΦAl/(ΦAl+ΦGa) 

Amount of deposited 

AlGaN (ML) 

E3209 0.035 0.35 0.44 9% 3 

E3211 0.035 0.35 0.44 9% 4 

E3212 0.035 0.35 0.44 9% 5 

Table 5.4: Description of AlGaN SK-QDs grown simulaneously on AlN-on-sapphire and GaN NWs 

on Si(111): deposited fluxes, Al content, and the amount of deposited AlGaN. 

 

Figure 5.18: (a) SEM and (b) zoomed SEM images of 5ML-AlGaN/AlN-SLs grown on GaN NWs 

(E3212) using SK-QDs growth conditions. 

Figure 5.19(a) shows spectral response of AlGaN QDs grown on the AlN-on-sapphire 

template. All the spectra show single-Gaussian characteristic with the peak blue-shift from 

4.17 eV to 4.69 eV (with FWHMs ~250 meV) when the amount of AlGaN is decreased from 

5 ML to 3 ML. This result is comparable to samples E3180 (3ML AlGaN QDs), E3179(4ML 

AlGaN QDs), and E3178(5ML AlGaN QDs) reported in section 4.4, which were grown 

using the same growth conditions. In contrast, the luminescence from the AlGaN/AlN SLs 

on GaN NWs show a much larger linewidth in the range of 500-750 meV as displayed in 

Figure 5.19(b). Interestingly, for a deposited AlGaN amount of 3 ML, the luminescence 

shows favourable emitting positions at 4.25, 4.78 and 5.17 eV, i.e. at the same spectral 

positions of AlGaN NDs grown on GaN NWs (see Figure 5.15).  
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Figure 5.19: (a) Normalized room temperature CL spectra of AlGaN SK-QD SLs grown on (a) AlN-

on-sapphire and on (b) GaN NWs on Si(111). 

These preliminary results show that the GaN NW heterostructuring can be performed 

using SK-QDs growth conditions, leading to the optical characteristics (linewidth, spectral 

distribution) similar to those of AlGaN/AlN NDs grown on GaN NWs. 

 

5.5 Conclusions

I firstly present the study of AlGaN sections (~180 nm long) on GaN NWs. Structural 

investigations show the alloy inhomogeneity in AlGaN sections which does not strongly 

depend on the growth temperature in the 795-755°C range. The alloy inhomogeneity leads to 

potential fluctuations that induce carrier localization, which determines their optical 

behavior, i.e. red shift of the emission, s-shaped temperature dependence and linewidth 

broadening. The Al-Ga intermixing at the GaN NW and Al(Ga)N section interface is 

attributed to strain relaxation process interpreted by the strain calculations performed using 

Nextnano
3
 solver on the simulated 3D structure. I exclude the growth dynamics as the origin 

of such intermixing since the structural results show the same characteristic at different 

growth temperatures. 

For the study of AlGaN/AlN NDs, I define the suitable growth regime to be 2D-nitrogen 

rich in order to obtain short wavelength emission spectra. Structural characterization of 

AlGaN NDs shows that the ND shape evolves from flat top and down interfaces to a 

pyramidal shape with {1-103} facets. Axially, the Al composition at the center of the NDs 
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gradually increases along the growth axis, and radially a Ga-rich area is generated at the 

edge of the NDs. The radial phase separation is more pronounced in the topmost ND layers. 

These structural results are correlated to the strain evolution which was solved using 3D 

strain calculations. Despite the challenge to control the alloy inhomogeneity, I demonstrate 

that the emission peak wavelength of AlGaN NDs can be tuned from 240 to 350 nm with 

IQE = 30-40% by adjusting the ND thickness and Al content. Nonetheless, the short 

wavelength approaching was obtained along with multi-peaks, thus producing a large 

FWHM whereas the growth at low temperature (755°C) enhances the long wavelength line 

by suppressing the Ga desorption processes. 

Integrating the AlGaN/AlN SLs inside GaN NWs by using SK-QD growth conditions 

was proved possible, in spite of a widening of the NW that can eventually result in NW-

sidewall merging. The optical characteristic grants the luminescence with a broad linewidth 

associated to alloy and structural inhomogeneity, similar to the case of AlGaN/AlN NDs 

grown on GaN NWs. 
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Chapter 6 

6 The electron-pumped ultraviolet emitter

 

In this chapter, I first describe the growth and characterization of the active medium 

selected for the first prototype of electron-pumped ultraviolet (EPUV) emitter, 

consisting of an AlGaN/AlN quantum dot superlattice deposited on 6H-SiC. Then, I 

describe the device fabrication and characterization of the device. To complete the 

study, a final test is set by exposing E-coli bacteria to the prototype emission in 

order to evaluate its purification ability. 

 

 

This chapter reports on the first prototype of electron-pumped ultraviolet (EPUV) 

emitter, integrating the carbon nanotube (CNT) electron emitter, the vacuum tube, and the 

active medium. The prototype fabrication characterization was performed by the group of 

Prof. S. Purcell at Université Claude Bernard Lyon1. 

 

6.1 The active medium 

For the active medium, I fabricated an AlxGa1-xN/AlN quantum dot (QD) superlattice 

(SL) on 6H-SiC using the optimized parameters reported in chapter 4. The active medium 

consists of 80 periods of 4-monolayer (ML)-thick AlGaN QDs and 5-nm-thick AlN barriers 

deposited on 100-nm-thick AlN grown by plasma-assisted molecular beam epitaxy (PA-

MBE) on a 6H-SiC substrate. The choice of 6H-SiC was made to exploit the advantages of 

thermal and electrical conductivity of such substrate to favour the heat and charge 

evacuation, which might be main challenges in EPUV devices. The growth of AlGaN QDs 

was performed at a substrate temperature of 740°C, using a Ga flux Ga = 0.3 ML/s, Al flux 

Al = 0.064 ML/s, and N flux N = 0.38 ML/s. The AlGaN QDs were Si-doped in the 

10
19

 cm
-3

 range to favor charge evacuation under electron injection. The schematic of the 

grown sample is depicted in Figure 6.1. 

The efficiency of such sample was evaluated in terms of internal quantum efficiency 

(IQE) and external quantum efficiency (EQE). An IQE of 42% was estimated by the ratio of 
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integrated photoluminescence (PL) intensity measured at room and low temperature (5 K), 

as displayed in Figure 6.2(a).  

 
Figure 6.1: The schematic of the grown prototype sample, consisting of 80 periods of 

Al0.18Ga0.82N/AlN QDs. The thickness of AlGaN QDs and AlN barriers were set at 4 ML and 5 nm, 

respectively. 

 

Figure 6.2 (a) PL spectra from AlGaN/AlN QDs grown on SiC measured at 5 K, 100 K, and 300 K. 

The spectrum measured at 100K was added in order to prove that the integrated intensities were 

constant at low temperature region, to assure the validity of the probed IQE. Inset: Evolution of the 

integrated PL intensity from the prototype sample with temperature. (b) PL spectrum of the prototype 

sample measured at room temperature compare with that of commercial UV-C LED. 

The EQE was evaluated by quantifying the PL intensity by comparison with a 

commercial UV-C light emitting diode (LED) (λ = 260 nm). First, the LED optical power 

was measured with a calibrated silicon detector, obtaining Pout,LED = 7.54 µW. Then, using 

the same input current, the electroluminescence of the LED was collected by a 

monochromator equipped with a UV-enhanced charge-couple device (CCD) camera which 

provided the LED spectrum shown as the black solid line in Figure 6.2(b). The blue solid 

line spectrum in Figure 6.2(b) is the emission from the QD SL when excited with Ar
+
 laser at 
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an incident power Pin = 1.1 mW. Using the LED as a reference, the emission of the sample is 

estimated to Pout = 8.7 µW. Then, the EQE calculated from the ratio between the radiant flux 

(Pout) and the input power (Pin) is 0.79%, higher than the wall-plug efficiency (WPE) of the 

commercial UV-C LED which was estimated at 0.15% using the equation: 

𝑊𝑎𝑙𝑙 − 𝑃𝑙𝑢𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑊𝑃𝐸) (%) =  
𝑃𝑜𝑢𝑡,𝐿𝐸𝐷

𝑃𝑖𝑛,𝐿𝐸𝐷
× 100% (6.1) 

where Pin,LED is the electrical input power of the LED. 

 

6.2 The prototype 

EPUV device (Figure 6.3) was fabricated by attaching the as-grown AlGaN/AlN QD 

SLs active medium on the copper block with indium, to help dissipating the generated heat. 

The CNT field emitter was optimized by Dr. M. Choueib and K. Naji from the group of Prof. 

S. Purcell. The source cathode was connected to the CNTs whereas the source anode was 

connected to the copper block which the active medium was placed on. Thus the CNTs were 

induced to emit electrons that are accelerated towards the active medium. Due to the 

requirement of operating under high vacuum, the vacuum tube was preserved under 10
-6

 Torr 

over the entire operation by the dynamic pump.  

 

Figure 6.3: Schematic of UV emitter along with the first prototype of EPUV lamp, showing the major 

components including, A: the CNT field emission source, B: the vacuum tube, and C: the AlGaN/AlN 

QD SL active medium. 

Figure 6.4(a) shows emission spectra of the AlGaN/AlN QD SL. The electron beam 

energy was set at 5keV, while the excitation current was scanned from 12 to 250 µA. CL 

measurements were carried out at room temperature in HV chamber with a base pressure 

~10
-8

 torr. The electron beam energy from a thermionic field emitter can be varied between 
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1-20 keV and the emitted current from 1 µA to 1 mA. To measure the angular distribution of 

the UV emission, a UV photodetector (GaP) has been attached to a rotator in the chamber 

(the system has been installed by Prof. C. Dujardin). 

 The inset of Figure 6.4(a) shows the evolution of the peak emission intensity as a 

function of excitation current. The linearity of the emission points to efficient heat and 

charge evacuation. The angular distribution of the luminescence was also explored, as 

illustrated in Figure 6.4(b). The highest intensity is emitted normal to the sample surface, 

whereas the total emission angle was defined to be in the range of ±45° normal to the 

surface. These emission characteristics both in terms of non-saturated emission intensity 

with the excitation current and the moderate emission angle are sufficient to set up the UV-C 

purification testing to examine the purification performance. 

 
Figure 6.4:(a) CL spectra from the AlGaN/AlN QDs grown on SiC (prototype sample) exciting with a 

thermionic field emitter accelerated at 5 kV with various excitation currents. Inset: Evolution of CL 

peak intensity as a function of excitation current. (b) Measurement of the angular distribution of the 

luminescence angle of the prototype sample under electron excitation. 

The UV-C purification testing was performed by Dr. M. Choueib in the group of Prof. S. 

Purcell and in collaboration with Prof. N. Cote-Pattat director of the MAP laboratory at 

Université Claude Bernard Lyon1. Different samples of E-coli bacteria were prepared and 

irradiated by exposing to our EPUV emitter. It was decided to work at low current and low 

acceleration voltage to prevent any degradation of the active media during the test, even if 

that increased the required irradiation time (field emitter current = 300 µA, acceleration 

voltage = 4 kV, optical power Pout = 38 µW). As the emission is distributed over 45° (Fig. 

6.4(b)), all the UV light should be absorbed by the bacteria if they are placed at a distance of 

l cm to the EPUV source on a beaker with a diameter of 3.5 cm (see Fig 6.5) 

The irradiated time, t was estimated from the output optical power of the EPUV emitter 
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and the purification class required after the treatment. We target the purification class 5, i.e. 

order of magnitude from initial condition 𝑙𝑜𝑔
𝑁0

𝑁
= 5 where N0 is the initial concentration 

and N is the concentration after irradiation. Such purification class is reported to require an 

irradiation dose of 10 mWcm
-2

s, defined as: 

𝐷𝑜𝑠𝑒 =  
𝑃𝑜𝑢𝑡 × 𝑡

𝑆𝑢𝑟𝑓𝑎𝑐𝑒
 (6.2) 

An irradiated time ~40 min was estimated from equation 6.2 using Pout = 38 µW and the 

surface of the beaker = 9.62 cm
2
.  

 
Figure 6.5: Schematic description of the experiment of UV irradiation of E-coli bacteria. 

Three specimens of bacteria were prepared in a phosphate-buffered saline (PBS) 

solution, one as a reference, one to be irradiated for 40 min and one to be irradiated for one 

hour. After irradiation, specimens with various bacteria concentrations (non-diluted, 10
-1

, 10
-

2
, 10

-3
, and 10

-4
 diluted) were prepared for counting. For reliability, 9 specimens were 

cultivated on nutrient agar petri dishes. After 24 hours, it is possible to count the bacterial 

colonies that grew in each petri dish. In the reference beakers, the bacteria were uncountable 

for high concentrations, and 100-200 for the 10
-3

 diluted condition (see Figure 6.6(a) and 

Table 6.1). Tracing back to the non-dilute condition, the amount of bacteria should be 1-

2×10
5
. Then, from the design of purification class, the quantity of bacteria left from the non-

diluted condition after treating for 40 min should be 1-2 bacteria. 

Table 6.1 shows experimental results of the purification test, the numbers illustrate the 

amount of bacteria left from each testing condition. Different digit after 40 min treatment 

shows the quantity of bacteria from the 3 different specimens used for the same test 
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conditions. For instance, the result of 40 min treatment of non-dilute condition is 4 4 4, 

meaning that there were 4 bacteria left from the first, the second, and the third specimen. 

This is the only test condition where bacteria can be observed after the irradiation, as 

illustrated in Figure 6.6(b). For any other conditions, all the bacteria were killed. The 

experimental result of 4 bacteria left is in agreement with the expected calculation. 

 

 

Figure 6.6: Various concentrations of bacteria, i.e. non-dilution, 10
-1

, 10
-2

, 10
-3

, and 10
-4

 dilutions (a) 

before UV-C treatment and (b) after UV-C treatment. 

 

 Non-diluted 10
-1

 diluted 10
-2

 diluted 10
-3

 diluted 10
-4

 diluted 

Before 

Treatment 
Uncountable Uncountable Uncountable >100 bacteria <10 bacteria 

After 1 hour 

treatment 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

After 40 min 

treatment 
4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 

Table 6.1: Amount of bacteria in each diluted condition before and after purification treatment. 

 

6.3 Conclusions 

In summary, I fabricated the active medium for the first prototype EPUV emitter. The 

active medium consists of an 80-period Al0.18Ga0.82N/AlN QD SL grown on 100-nm-thick 
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AlN on 6H-SiC. The pre-assembly efficiency of the active medium was assessed in terms of 

IQE (42%) and EQE (0.79%).  

The prototype was fabricated under the supervision of Prof. S. Purcell at Université 

Claude Bernard Lyon1, by integrating the active medium with a CNT electron emitter in a 

vacuum tube. After the fabrication, the performance of the device was evaluated by driving 

the thermionic electron emitter at various currents and observing emission characteristic 

from the active medium. The emission intensity that increases linearly with the excitation 

current confirms the heat and charge evacuation efficiency. 

The prototype EPUV emitter was used for a UV-C purification test which was 

performed by Dr. M. Choueib in collaboration with Prof. N. Cote-Pattat. The test was carried 

out by irradiating E-coli bacteria with EPUV emitter with various testing conditions (various 

exposition times), showing that all the specimens were successfully purified at the predicted 

UV dose.  
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Chapter 7 

7 Conclusions and perspectives 

 

7.1 Conclusions

The aim of this thesis was to investigate an active media for electron-pumped ultraviolet 

(EPUV) emitters targeting operation at 260-270 nm for water purification. Two structures 

were proposed, namely AlGaN/AlN quantum dots (QDs) grown by the Stranski-Krastanov 

(SK) method on AlN, and AlGaN/AlN nanodisks (NDs) on GaN nanowires (NWs) 

synthesized on Si(111) substrates. I have investigated the growth and performance of both 

kinds of nanostructures with the following conclusions. 

Regarding AlGaN/AlN QD superlattices (SLs), I have demonstrated that by modifying 

the composition and geometry of the QDs, the peak emission wavelength can be shifted from 

340 nm to 235 nm while keeping the internal quantum efficiency (IQE) larger than 35%. The 

efficient carrier confinement is confirmed by the stability of the photoluminescence (PL) 

intensity and decay time, from low temperature up to 100 K. Above this threshold, the PL 

intensity decreases and the radiative lifetime increases due to carrier thermalization.  

I propose a design for the AlGaN/AlN QD SLs active region, taking into account: 

 Active region thickness: A minimum thickness of 400 nm is obtained by measuring the 

electron penetration depth, with the acceleration voltage fixed at 5 kV to minimize x-ray 

emissions. 

 AlN barrier thickness: A minimum AlN barrier thickness of 4-5 nm is necessary to 

achieve surface planarization after the deposition of each QD layer, and to prevent QD 

vertical correlation. Utilizing such AlN barrier thickness is assured to have a good carrier 

collection from the structure, since it is lower than the maximum AlN barrier thickness 

(~18 nm) which was defined from measurements of carrier diffusion length. 

 Amount of AlGaN in each QD layer: An optimum amount of 5 monolayer (ML) of 

AlGaN provides maximum luminescence at room-temperature. This value is a 

compromise between the conditions of best IQE of 60% (4 ML) and highest QD density 
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of (9±1)×10
11

 cm
-2

 (6 ML). The evolution of QD shape is also discovered from the fitting 

of theoretical calculations performed by Nextnano
3
 solver to the experimental results, I 

discover that the QD ratio (height/base diameter) decreases when increasing the amount 

of deposited AlGaN.  

 Remaining AlGaN QD growth parameters, namely the growth temperature, and the Al 

content provide room for design—adjusting peak emission wavelength to support 

specific applications.  

 Post-growth treatments—polishing, metalizing to enhance the device efficiency up to 

30% is also reported.  

 Substrate options: Although most of my work was performed on AlN-on-sapphire 

templates, with the advantage of being transparent in the UV range, I have also verified 

that the AlGaN/AlN QD SLs can be synthesized on 6H-SiC substrate without any 

degradation in terms of spectral response. The choice of SiC substrate is to be made 

when thermal/electrical conductivity becomes a limiting factor, although SiC implies 

sacrificing the substrate transparency. 

Concerning AlGaN/AlN NW heterostructures synthesized on Si(111), I firstly 

investigated AlGaN sections on GaN NWs to set a foundation for the study of ND 

heterostructure. For the AlGaN sections grown on GaN NWs, I generally observe alloy 

inhomogeneity in the AlGaN sections, with appearance of a transition zone between Al(Ga)N 

sections and GaN NWs. The alloy inhomogeneity and transition zone characteristics are 

insensitive to the growth temperature in the range of 750-795°C. However, decreasing the 

growth temperature below 750°C, instead of improving alloy inhomogeneity and/or 

modifying transition zone, switches NW morphology to a triangle-like shape at the NW tops. 

The transition zone is associated to the strain relaxation process, which is confirmed by 

strain calculations using Nextnano
3

 solver. The involvement of dynamic processes is 

excluded because the transition zone characteristic does not depend on the growth 

temperature. From the optical point of view, enhanced IQE and more deviated peak emission 

from the calculated value are obtained when Al content of the AlGaN sections is increased, 

evidencing that the alloy inhomogeneity progressively play a role when depositing higher Al 

contents. 

For AlGaN/AlN NDs on GaN NWs, I propose the growth under 2D-nitrogen rich 

conditions when the emission in UV-C range is required. The peak emission wavelength of 

AlGaN NDs was tuned from 240 to 350 nm with IQE 30-40% by adjusting the ND thickness 



CONCLUSIONS AND PERSPECTIVES 

131 

 

and Al content. I found that the ND shape evolves from the flat surface to the pyramidal 

shape with {1-103} facets when increasing the number of ND layers. Axial and radial phase 

separations occur in the ND structure. Al composition at the center of the NDs gradually 

increases along the growth axis, and radially a Ga-rich area is generated at the edge of NDs. 

The radial phase separation is more pronounced in the topmost ND layers. The ND structural 

evolutions are attributed to the effect of strain evolutions which were solved using strain 

calculations by Nextnano
3
 solver for the structure that imitates the real growth sequences. 

This thesis ends with the 1
st
 prototype fabrication which was implemented using SK-

QDs (80-period Al0.18Ga0.82N/AlN QD SL grown on 100-nm-thick AlN on 6H-SiC), 

integrated with the CNT electron emitter in a vacuum tube. Prior the fabrication, optical 

performance of the active medium was assessed in terms of IQE (42%) and EQE (0.79%). 

After the fabrication, the luminescence grants an emission angle of ±45° with a linearly 

dependent to the excitation current, revealing a good thermal and charge evacuations of the 

device. A water purification test was carried out by irradiating the E-coli bacteria with the 

prototype emitter. The results show that all the specimens were successfully purified at the 

nominal dose. 

 

7.2 Perspectives

In view of the fabrication of competitive EPUV emitters, I have identified the prioritary 

lines of work for both types of proposed active media. 

Regarding the AlGaN/AlN QD SLs, the 1
st
 prototype device was fabricated using 6H-

SiC as a substrate since the charge and heat evacuations were a concern. However, SiC is 

sometimes abstained because of its high-priced and opaqueness. Thus, I propose further 

investigations on the AlGaN/AlN QD SLs grown on sapphire substrates which are: 

 Evaluation of charge and heat evacuation on sapphire substrates. This is a requirement to 

know whether or not this substrate disturbs the luminescence characteristics. If charge 

evacuation were a problem, it could be solved by the insertion of a conductive buffer 

layer between the AlN-on-sapphire template and the active region. Heat dissipation could 

be improved, for instance, by thinning the sapphire substrate or defining some deep 

etching areas to be filled with metal.  
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 Post-growth treatments, namely polishing, metalizing, and/or surface patterning need to 

be investigated to enhance the luminescence. For instance, it has been shown [263] that 

the optical output power of the sample increases for 2.2 times (at a forward current of 20 

mA) when one-side surface patterning is performed. These treatments would be more 

efficient in the case of using sapphire substrates due to their transparency in the emission 

spectral range.  

Despite the discussed advantages of the AlGaN/AlN NDs on GaN NWs, the reason of 

refraining it for the prototype fabrication was the distinct alloy inhomogeneity which induces 

the challenge of a broad-multiple spectrum especially in UV-C range. These facts has 

influenced the following views: 

 Correlated microscopic-scale luminescence and structural investigations of single NWs 

should be studied in order to better understand the effect of alloy characteristics on the 

linewidth broadening and further design proper structures and growth conditions. 

 Selective-area growth, which provides extremely uniform GaN NW diameters and 

adjustable density [264], is proposed. This method can minimize the shadowing effect 

and the wire geometry distribution, which are critical parameters that broaden the 

luminescence lines. Furthermore, the homogeneity of the ternary alloys under such 

conditions has not been studied yet. The change of polarity and growth kinetics might 

result in significant changes in comparison to the self-assemble NW structures described 

in this thesis. 

 Despite the targeted UV-C application set as a basis for this manuscript, the 

luminescence characteristics of (Al)GaN/AlN NDs on GaN NWs are convincing to 

realize devices which operate in UV-B range. Note that the EPUV emitters are worth to 

investigate only these ranges (UV-B, UV-C) where the problems of doping and contacts 

introduce a dramatic limitation for current LED technology. 
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[148] E. Janik, J. Sadowski, P. Dłużewski, S. Kret, L. T. Baczewski, A. Petroutchik, E. 

Łusakowska, J. Wro ́bel, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, and A. Presz, 

―ZnTe nanowires grown on GaAs(100) substrates by molecular beam epitaxy,‖ Appl. 
Phys. Lett., vol. 89, no. 13, p. 133114, 2006. 

[149] J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi, and C. B. Carter, 

―Structure and growth mechanism of ZnSe nanowires,‖ J. Appl. Phys., vol. 104, no. 6, 

p. 064302, 2008. 

[150] X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, ―Growth and luminescence of 

zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,‖ 

Appl. Phys. Lett., vol. 83, no. 26, p. 5533, 2003. 



REFERENCES 

 

141 

 

[151] X. T. Zhang, ―Luminescence of ZnSe nanowires grown by metalorganic vapor phase 

deposition under different pressures,‖ J. Appl. Phys., vol. 95, no. 10, p. 5752, 2004. 

[152] U. Philipose, T. Xu, S. Yang, P. Sun, H. E. Ruda, Y. Q. Wang, and K. L. Kavanagh, 

―Enhancement of band edge luminescence in ZnSe nanowires,‖ J. Appl. Phys., vol. 

100, no. 8, p. 084316, 2006. 

[153] R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang, and J. Eymery, ―Self-assembled 

growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy,‖ 

Nanotechnology, vol. 21, no. 1, p. 015602, Jan. 2010. 

[154] M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, ―Growth of Self-

Organized GaN Nanostructures on $\bf Al_{2}O_{3}(0001)$ by RF-Radical Source 

Molecular Beam Epitaxy,‖ Jpn. J. Appl. Phys., vol. 36, no. Part 2, No. 4B, pp. L459–

L462, Apr. 1997. 

[155] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, ―Self-

organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0001) Al2O3 by RF 

molecular beam epitaxy for fabricating GaN quantum disks,‖ J. Cryst. Growth, vol. 

189–190, pp. 138–141, Jun. 1998. 

[156] M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Muñoz, and R. 

Beresford, ―The effect of the III/V ratio and substrate temperature on the morphology 

and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 

1),‖ J. Cryst. Growth, vol. 183, no. 1–2, pp. 23–30, Jan. 1998. 

[157] J. Grandal, M. A. Sa ́nchez-García, E. Calleja, E. Luna, and A. Trampert, 

―Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by 

molecular beam epitaxy,‖ Appl. Phys. Lett., vol. 91, no. 2, p. 021902, 2007. 

[158] R. Songmuang, O. Landre ́, and B. Daudin, ―From nucleation to growth of catalyst-

free GaN nanowires on thin AlN buffer layer,‖ Appl. Phys. Lett., vol. 91, no. 25, p. 

251902, 2007. 

[159] A. Ohtani, K. S. Stevens, and R. Beresford, ―Microstructure and photoluminescence of 

GaN grown on Si(111) by plasma-assisted molecular beam epitaxy,‖ Appl. Phys. Lett., 
vol. 65, no. 1, p. 61, 1994. 

[160] E. Calleja, M. . Sánchez-Garcı́a, F. . Sánchez, F. Calle, F. . Naranjo, E. Muñoz, S. . 

Molina, A. . Sánchez, F. . Pacheco, and R. Garcı ́a, ―Growth of III-nitrides on Si(111) by 

molecular beam epitaxy Doping, optical, and electrical properties,‖ J. Cryst. Growth, 

vol. 201–202, pp. 296–317, May 1999. 

[161] J. Ristić, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. 

H. Ploog, ―On the mechanisms of spontaneous growth of III-nitride nanocolumns by 

plasma-assisted molecular beam epitaxy,‖ J. Cryst. Growth, vol. 310, no. 18, pp. 

4035–4045, Aug. 2008. 

[162] S. Fernández-Garrido, J. Grandal, E. Calleja, M. A. Sa ́nchez-García, and D. López-
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This work reports on the design, epitaxial growth, and the structural, and optical characterization of two types 

of nanostructures, namely AlGaN/AlN Stranski-Krastanov quantum dots (SK-QD) and AlGaN/AlN nanodisks 

(NDs) on GaN nanowires (NWs). These nanostructures were grown using plasma-assisted molecular beam 

epitaxy (PA-MBE) and were conceived to be the active media of electron-pumped ultraviolet (EPUV) emitters 

for water purification, operating in mid-ultraviolet range. 

The peak emission wavelength of three-dimensional SK-QD can be tuned in mid-ultraviolet range while 

keeping high internal quantum efficiency (IQE > 35%) by modifying the Al composition and the QD geometry. 

The efficient carrier confinement was confirmed by the stability of the photoluminescence intensity and decay 

time with temperature. The optimal deposited amount of AlGaN in AlGaN/AlN QDs which grants maximum 

luminescence at room temperature was determined by finding a compromise between the designs providing 

maximum IQE and maximum QD density. The effect of the variation of the QD height/base-diameter ratio on 

the interband and intraband optical properties was explored by fitting the experimental data with three-

dimensional calculations of the band diagram and quantum levels. 

Regarding AlGaN/AlN NDs on GaN NWs, the Al-Ga intermixing at Al(Ga)N/GaN interfaces and the alloy 

inhomogeneity in AlGaN/AlN NDs are attributed to the strain relaxation process. This interpretation was 

proved by correlation of experimental data with three-dimensional strain distribution calculations performed on 

structures that imitate the real growth sequence. Despite the challenge of inhomogeneity, the emission 

wavelength of AlGaN/AlN NDs can be tuned in mid-ultraviolet range while preserving high IQE by adjusting 

the ND thickness and Al content. 

A prototype of EPUV emitter was fabricated using the AlGaN/AlN SK-QDs active region with proposed 

optimal design of active region thickness, AlN barrier thickness, and amount of AlGaN in each QD layer. For 

this first device, SiC was used as a substrate to prevent problems associated to charge or heat evacuation. A 

water purification test by such prototype EPUV emitter was carried out by irradiating E-coli bacteria, showing 

that all the specimens were successfully purified at the predicted ultraviolet dose. 

Keywords: III-nitrides, quantum dots, nanowires, molecular beam epitaxy, ultraviolet 

 

 

Ce travail porte sur la conception, l’épitaxie, et la caractérisation structural et optique de deux types de 

nanostructures, à savoir des boîtes quantiques AlGaN/AIN et des nanodisques AlGaN/AIN sur nanofils GaN. 

Ces nanostructures ont été synthetisées par épitaxie par jets moléculaires assistée par plasma (PA-MBE) et ont 

été conçues pour être le matériau actif d’une lampe ultraviolette à pompage électronique (EPUV) pour la 

purification de l'eau. 

En modifiant la composition Al et la géométrie des boîtes quantiques AlGaN/AlN, leur longueur d'onde 

d'émission peut être réglée dans la gamme 320-235 nm tout en gardant une grande efficacité quantique interne 

(> 35%). Le confinement quantique a été confirmé par la stabilité de l'intensité et du temps de déclin de la 

photoluminescence avec la température. La quantité optimale d’AlGaN dans les boîtes pour obtenir une 

luminescence maximale à la température ambiante est un compromis entre densité de boîtes quantiques et 

rendement quantique interne. L'effet de la variation du rapport hauteur/diamètre de base sur les transitions 

interbande et intrabande dans les boîtes a été explorée par ajustement des données expérimentales à des calculs 

tridimensionnels du diagramme de bande et des niveaux quantiques. 

En ce qui concerne les nanodisques d’AlGaN sur nanofils GaN, l'interdiffusion Al-Ga aux interfaces et 

l'hétérogénéité de l'alliage ternaire sont attribuées aux processus de relaxation des contraintes. Cette 

interprétation a été prouvée par la corrélation des données expérimentales avec des calculs de distribution 

déformation en trois dimensions effectuées sur des structures qui imitent la séquence de croissance réelle. 

Malgré le défi du manque d'homogénéité, la longueur d'onde d'émission des nanodisques AlGaN/AIN peut être 

réglée dans la gamme ultraviolette en préservant une haute efficacité quantique interne. 

Un prototype de lampe EPUV a été fabriqué en utilisant une région active à base de boîtes quantiques 

AlGaN/AIN avec les valeurs optimals d'épaisseur de la région active, d'épaisseur de la barrière AlN, et de 

quantité d’AlGaN dans chaque couche de boîtes. Pour ce premier dispositif, le SiC a été utilisé comme substrat 

pour éviter les problèmes associés à l’évacuation de charge ou de chaleur. Un essai de purification de l'eau par 

une telle lampe a été réalisé. Tous les échantillons ont été purifiés avec succès à la dose prévue. 

Mots-clés: Nitrures III-V, boîtes quantiques, nanofils, épitaxie par jets moléculaires, ultraviolet. 


